Backport r203445 from v17
[official-gcc.git] / gcc-4_8 / gcc / tree-ssa-loop-niter.c
blob85c1f3a7bde998943626224d04608b48b22dc684
1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "gimple-pretty-print.h"
28 #include "intl.h"
29 #include "tree-flow.h"
30 #include "dumpfile.h"
31 #include "cfgloop.h"
32 #include "ggc.h"
33 #include "tree-chrec.h"
34 #include "tree-scalar-evolution.h"
35 #include "tree-data-ref.h"
36 #include "params.h"
37 #include "flags.h"
38 #include "diagnostic-core.h"
39 #include "tree-inline.h"
40 #include "tree-pass.h"
42 #define SWAP(X, Y) do { affine_iv *tmp = (X); (X) = (Y); (Y) = tmp; } while (0)
44 /* The maximum number of dominator BBs we search for conditions
45 of loop header copies we use for simplifying a conditional
46 expression. */
47 #define MAX_DOMINATORS_TO_WALK 8
51 Analysis of number of iterations of an affine exit test.
55 /* Bounds on some value, BELOW <= X <= UP. */
57 typedef struct
59 mpz_t below, up;
60 } bounds;
63 /* Splits expression EXPR to a variable part VAR and constant OFFSET. */
65 static void
66 split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
68 tree type = TREE_TYPE (expr);
69 tree op0, op1;
70 double_int off;
71 bool negate = false;
73 *var = expr;
74 mpz_set_ui (offset, 0);
76 switch (TREE_CODE (expr))
78 case MINUS_EXPR:
79 negate = true;
80 /* Fallthru. */
82 case PLUS_EXPR:
83 case POINTER_PLUS_EXPR:
84 op0 = TREE_OPERAND (expr, 0);
85 op1 = TREE_OPERAND (expr, 1);
87 if (TREE_CODE (op1) != INTEGER_CST)
88 break;
90 *var = op0;
91 /* Always sign extend the offset. */
92 off = tree_to_double_int (op1);
93 off = off.sext (TYPE_PRECISION (type));
94 mpz_set_double_int (offset, off, false);
95 if (negate)
96 mpz_neg (offset, offset);
97 break;
99 case INTEGER_CST:
100 *var = build_int_cst_type (type, 0);
101 off = tree_to_double_int (expr);
102 mpz_set_double_int (offset, off, TYPE_UNSIGNED (type));
103 break;
105 default:
106 break;
110 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
111 in TYPE to MIN and MAX. */
113 static void
114 determine_value_range (tree type, tree var, mpz_t off,
115 mpz_t min, mpz_t max)
117 /* If the expression is a constant, we know its value exactly. */
118 if (integer_zerop (var))
120 mpz_set (min, off);
121 mpz_set (max, off);
122 return;
125 /* If the computation may wrap, we know nothing about the value, except for
126 the range of the type. */
127 get_type_static_bounds (type, min, max);
128 if (!nowrap_type_p (type))
129 return;
131 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
132 add it to MIN, otherwise to MAX. */
133 if (mpz_sgn (off) < 0)
134 mpz_add (max, max, off);
135 else
136 mpz_add (min, min, off);
139 /* Stores the bounds on the difference of the values of the expressions
140 (var + X) and (var + Y), computed in TYPE, to BNDS. */
142 static void
143 bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
144 bounds *bnds)
146 int rel = mpz_cmp (x, y);
147 bool may_wrap = !nowrap_type_p (type);
148 mpz_t m;
150 /* If X == Y, then the expressions are always equal.
151 If X > Y, there are the following possibilities:
152 a) neither of var + X and var + Y overflow or underflow, or both of
153 them do. Then their difference is X - Y.
154 b) var + X overflows, and var + Y does not. Then the values of the
155 expressions are var + X - M and var + Y, where M is the range of
156 the type, and their difference is X - Y - M.
157 c) var + Y underflows and var + X does not. Their difference again
158 is M - X + Y.
159 Therefore, if the arithmetics in type does not overflow, then the
160 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
161 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
162 (X - Y, X - Y + M). */
164 if (rel == 0)
166 mpz_set_ui (bnds->below, 0);
167 mpz_set_ui (bnds->up, 0);
168 return;
171 mpz_init (m);
172 mpz_set_double_int (m, double_int::mask (TYPE_PRECISION (type)), true);
173 mpz_add_ui (m, m, 1);
174 mpz_sub (bnds->up, x, y);
175 mpz_set (bnds->below, bnds->up);
177 if (may_wrap)
179 if (rel > 0)
180 mpz_sub (bnds->below, bnds->below, m);
181 else
182 mpz_add (bnds->up, bnds->up, m);
185 mpz_clear (m);
188 /* From condition C0 CMP C1 derives information regarding the
189 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
190 and stores it to BNDS. */
192 static void
193 refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
194 tree vary, mpz_t offy,
195 tree c0, enum tree_code cmp, tree c1,
196 bounds *bnds)
198 tree varc0, varc1, tmp, ctype;
199 mpz_t offc0, offc1, loffx, loffy, bnd;
200 bool lbound = false;
201 bool no_wrap = nowrap_type_p (type);
202 bool x_ok, y_ok;
204 switch (cmp)
206 case LT_EXPR:
207 case LE_EXPR:
208 case GT_EXPR:
209 case GE_EXPR:
210 STRIP_SIGN_NOPS (c0);
211 STRIP_SIGN_NOPS (c1);
212 ctype = TREE_TYPE (c0);
213 if (!useless_type_conversion_p (ctype, type))
214 return;
216 break;
218 case EQ_EXPR:
219 /* We could derive quite precise information from EQ_EXPR, however, such
220 a guard is unlikely to appear, so we do not bother with handling
221 it. */
222 return;
224 case NE_EXPR:
225 /* NE_EXPR comparisons do not contain much of useful information, except for
226 special case of comparing with the bounds of the type. */
227 if (TREE_CODE (c1) != INTEGER_CST
228 || !INTEGRAL_TYPE_P (type))
229 return;
231 /* Ensure that the condition speaks about an expression in the same type
232 as X and Y. */
233 ctype = TREE_TYPE (c0);
234 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
235 return;
236 c0 = fold_convert (type, c0);
237 c1 = fold_convert (type, c1);
239 if (TYPE_MIN_VALUE (type)
240 && operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
242 cmp = GT_EXPR;
243 break;
245 if (TYPE_MAX_VALUE (type)
246 && operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
248 cmp = LT_EXPR;
249 break;
252 return;
253 default:
254 return;
257 mpz_init (offc0);
258 mpz_init (offc1);
259 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
260 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
262 /* We are only interested in comparisons of expressions based on VARX and
263 VARY. TODO -- we might also be able to derive some bounds from
264 expressions containing just one of the variables. */
266 if (operand_equal_p (varx, varc1, 0))
268 tmp = varc0; varc0 = varc1; varc1 = tmp;
269 mpz_swap (offc0, offc1);
270 cmp = swap_tree_comparison (cmp);
273 if (!operand_equal_p (varx, varc0, 0)
274 || !operand_equal_p (vary, varc1, 0))
275 goto end;
277 mpz_init_set (loffx, offx);
278 mpz_init_set (loffy, offy);
280 if (cmp == GT_EXPR || cmp == GE_EXPR)
282 tmp = varx; varx = vary; vary = tmp;
283 mpz_swap (offc0, offc1);
284 mpz_swap (loffx, loffy);
285 cmp = swap_tree_comparison (cmp);
286 lbound = true;
289 /* If there is no overflow, the condition implies that
291 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
293 The overflows and underflows may complicate things a bit; each
294 overflow decreases the appropriate offset by M, and underflow
295 increases it by M. The above inequality would not necessarily be
296 true if
298 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
299 VARX + OFFC0 overflows, but VARX + OFFX does not.
300 This may only happen if OFFX < OFFC0.
301 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
302 VARY + OFFC1 underflows and VARY + OFFY does not.
303 This may only happen if OFFY > OFFC1. */
305 if (no_wrap)
307 x_ok = true;
308 y_ok = true;
310 else
312 x_ok = (integer_zerop (varx)
313 || mpz_cmp (loffx, offc0) >= 0);
314 y_ok = (integer_zerop (vary)
315 || mpz_cmp (loffy, offc1) <= 0);
318 if (x_ok && y_ok)
320 mpz_init (bnd);
321 mpz_sub (bnd, loffx, loffy);
322 mpz_add (bnd, bnd, offc1);
323 mpz_sub (bnd, bnd, offc0);
325 if (cmp == LT_EXPR)
326 mpz_sub_ui (bnd, bnd, 1);
328 if (lbound)
330 mpz_neg (bnd, bnd);
331 if (mpz_cmp (bnds->below, bnd) < 0)
332 mpz_set (bnds->below, bnd);
334 else
336 if (mpz_cmp (bnd, bnds->up) < 0)
337 mpz_set (bnds->up, bnd);
339 mpz_clear (bnd);
342 mpz_clear (loffx);
343 mpz_clear (loffy);
344 end:
345 mpz_clear (offc0);
346 mpz_clear (offc1);
349 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
350 The subtraction is considered to be performed in arbitrary precision,
351 without overflows.
353 We do not attempt to be too clever regarding the value ranges of X and
354 Y; most of the time, they are just integers or ssa names offsetted by
355 integer. However, we try to use the information contained in the
356 comparisons before the loop (usually created by loop header copying). */
358 static void
359 bound_difference (struct loop *loop, tree x, tree y, bounds *bnds)
361 tree type = TREE_TYPE (x);
362 tree varx, vary;
363 mpz_t offx, offy;
364 mpz_t minx, maxx, miny, maxy;
365 int cnt = 0;
366 edge e;
367 basic_block bb;
368 tree c0, c1;
369 gimple cond;
370 enum tree_code cmp;
372 /* Get rid of unnecessary casts, but preserve the value of
373 the expressions. */
374 STRIP_SIGN_NOPS (x);
375 STRIP_SIGN_NOPS (y);
377 mpz_init (bnds->below);
378 mpz_init (bnds->up);
379 mpz_init (offx);
380 mpz_init (offy);
381 split_to_var_and_offset (x, &varx, offx);
382 split_to_var_and_offset (y, &vary, offy);
384 if (!integer_zerop (varx)
385 && operand_equal_p (varx, vary, 0))
387 /* Special case VARX == VARY -- we just need to compare the
388 offsets. The matters are a bit more complicated in the
389 case addition of offsets may wrap. */
390 bound_difference_of_offsetted_base (type, offx, offy, bnds);
392 else
394 /* Otherwise, use the value ranges to determine the initial
395 estimates on below and up. */
396 mpz_init (minx);
397 mpz_init (maxx);
398 mpz_init (miny);
399 mpz_init (maxy);
400 determine_value_range (type, varx, offx, minx, maxx);
401 determine_value_range (type, vary, offy, miny, maxy);
403 mpz_sub (bnds->below, minx, maxy);
404 mpz_sub (bnds->up, maxx, miny);
405 mpz_clear (minx);
406 mpz_clear (maxx);
407 mpz_clear (miny);
408 mpz_clear (maxy);
411 /* If both X and Y are constants, we cannot get any more precise. */
412 if (integer_zerop (varx) && integer_zerop (vary))
413 goto end;
415 /* Now walk the dominators of the loop header and use the entry
416 guards to refine the estimates. */
417 for (bb = loop->header;
418 bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
419 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
421 if (!single_pred_p (bb))
422 continue;
423 e = single_pred_edge (bb);
425 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
426 continue;
428 cond = last_stmt (e->src);
429 c0 = gimple_cond_lhs (cond);
430 cmp = gimple_cond_code (cond);
431 c1 = gimple_cond_rhs (cond);
433 if (e->flags & EDGE_FALSE_VALUE)
434 cmp = invert_tree_comparison (cmp, false);
436 refine_bounds_using_guard (type, varx, offx, vary, offy,
437 c0, cmp, c1, bnds);
438 ++cnt;
441 end:
442 mpz_clear (offx);
443 mpz_clear (offy);
446 /* Update the bounds in BNDS that restrict the value of X to the bounds
447 that restrict the value of X + DELTA. X can be obtained as a
448 difference of two values in TYPE. */
450 static void
451 bounds_add (bounds *bnds, double_int delta, tree type)
453 mpz_t mdelta, max;
455 mpz_init (mdelta);
456 mpz_set_double_int (mdelta, delta, false);
458 mpz_init (max);
459 mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type)), true);
461 mpz_add (bnds->up, bnds->up, mdelta);
462 mpz_add (bnds->below, bnds->below, mdelta);
464 if (mpz_cmp (bnds->up, max) > 0)
465 mpz_set (bnds->up, max);
467 mpz_neg (max, max);
468 if (mpz_cmp (bnds->below, max) < 0)
469 mpz_set (bnds->below, max);
471 mpz_clear (mdelta);
472 mpz_clear (max);
475 /* Update the bounds in BNDS that restrict the value of X to the bounds
476 that restrict the value of -X. */
478 static void
479 bounds_negate (bounds *bnds)
481 mpz_t tmp;
483 mpz_init_set (tmp, bnds->up);
484 mpz_neg (bnds->up, bnds->below);
485 mpz_neg (bnds->below, tmp);
486 mpz_clear (tmp);
489 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
491 static tree
492 inverse (tree x, tree mask)
494 tree type = TREE_TYPE (x);
495 tree rslt;
496 unsigned ctr = tree_floor_log2 (mask);
498 if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
500 unsigned HOST_WIDE_INT ix;
501 unsigned HOST_WIDE_INT imask;
502 unsigned HOST_WIDE_INT irslt = 1;
504 gcc_assert (cst_and_fits_in_hwi (x));
505 gcc_assert (cst_and_fits_in_hwi (mask));
507 ix = int_cst_value (x);
508 imask = int_cst_value (mask);
510 for (; ctr; ctr--)
512 irslt *= ix;
513 ix *= ix;
515 irslt &= imask;
517 rslt = build_int_cst_type (type, irslt);
519 else
521 rslt = build_int_cst (type, 1);
522 for (; ctr; ctr--)
524 rslt = int_const_binop (MULT_EXPR, rslt, x);
525 x = int_const_binop (MULT_EXPR, x, x);
527 rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
530 return rslt;
533 /* Derives the upper bound BND on the number of executions of loop with exit
534 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
535 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
536 that the loop ends through this exit, i.e., the induction variable ever
537 reaches the value of C.
539 The value C is equal to final - base, where final and base are the final and
540 initial value of the actual induction variable in the analysed loop. BNDS
541 bounds the value of this difference when computed in signed type with
542 unbounded range, while the computation of C is performed in an unsigned
543 type with the range matching the range of the type of the induction variable.
544 In particular, BNDS.up contains an upper bound on C in the following cases:
545 -- if the iv must reach its final value without overflow, i.e., if
546 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
547 -- if final >= base, which we know to hold when BNDS.below >= 0. */
549 static void
550 number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
551 bounds *bnds, bool exit_must_be_taken)
553 double_int max;
554 mpz_t d;
555 tree type = TREE_TYPE (c);
556 bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
557 || mpz_sgn (bnds->below) >= 0);
559 if (integer_onep (s)
560 || (TREE_CODE (c) == INTEGER_CST
561 && TREE_CODE (s) == INTEGER_CST
562 && tree_to_double_int (c).mod (tree_to_double_int (s),
563 TYPE_UNSIGNED (type),
564 EXACT_DIV_EXPR).is_zero ())
565 || (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (c))
566 && multiple_of_p (type, c, s)))
568 /* If C is an exact multiple of S, then its value will be reached before
569 the induction variable overflows (unless the loop is exited in some
570 other way before). Note that the actual induction variable in the
571 loop (which ranges from base to final instead of from 0 to C) may
572 overflow, in which case BNDS.up will not be giving a correct upper
573 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
574 no_overflow = true;
575 exit_must_be_taken = true;
578 /* If the induction variable can overflow, the number of iterations is at
579 most the period of the control variable (or infinite, but in that case
580 the whole # of iterations analysis will fail). */
581 if (!no_overflow)
583 max = double_int::mask (TYPE_PRECISION (type)
584 - tree_low_cst (num_ending_zeros (s), 1));
585 mpz_set_double_int (bnd, max, true);
586 return;
589 /* Now we know that the induction variable does not overflow, so the loop
590 iterates at most (range of type / S) times. */
591 mpz_set_double_int (bnd, double_int::mask (TYPE_PRECISION (type)), true);
593 /* If the induction variable is guaranteed to reach the value of C before
594 overflow, ... */
595 if (exit_must_be_taken)
597 /* ... then we can strengthen this to C / S, and possibly we can use
598 the upper bound on C given by BNDS. */
599 if (TREE_CODE (c) == INTEGER_CST)
600 mpz_set_double_int (bnd, tree_to_double_int (c), true);
601 else if (bnds_u_valid)
602 mpz_set (bnd, bnds->up);
605 mpz_init (d);
606 mpz_set_double_int (d, tree_to_double_int (s), true);
607 mpz_fdiv_q (bnd, bnd, d);
608 mpz_clear (d);
611 /* Determines number of iterations of loop whose ending condition
612 is IV <> FINAL. TYPE is the type of the iv. The number of
613 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
614 we know that the exit must be taken eventually, i.e., that the IV
615 ever reaches the value FINAL (we derived this earlier, and possibly set
616 NITER->assumptions to make sure this is the case). BNDS contains the
617 bounds on the difference FINAL - IV->base. */
619 static bool
620 number_of_iterations_ne (tree type, affine_iv *iv, tree final,
621 struct tree_niter_desc *niter, bool exit_must_be_taken,
622 bounds *bnds)
624 tree niter_type = unsigned_type_for (type);
625 tree s, c, d, bits, assumption, tmp, bound;
626 mpz_t max;
628 niter->control = *iv;
629 niter->bound = final;
630 niter->cmp = NE_EXPR;
632 /* Rearrange the terms so that we get inequality S * i <> C, with S
633 positive. Also cast everything to the unsigned type. If IV does
634 not overflow, BNDS bounds the value of C. Also, this is the
635 case if the computation |FINAL - IV->base| does not overflow, i.e.,
636 if BNDS->below in the result is nonnegative. */
637 if (tree_int_cst_sign_bit (iv->step))
639 s = fold_convert (niter_type,
640 fold_build1 (NEGATE_EXPR, type, iv->step));
641 c = fold_build2 (MINUS_EXPR, niter_type,
642 fold_convert (niter_type, iv->base),
643 fold_convert (niter_type, final));
644 bounds_negate (bnds);
646 else
648 s = fold_convert (niter_type, iv->step);
649 c = fold_build2 (MINUS_EXPR, niter_type,
650 fold_convert (niter_type, final),
651 fold_convert (niter_type, iv->base));
654 mpz_init (max);
655 number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
656 exit_must_be_taken);
657 niter->max = mpz_get_double_int (niter_type, max, false);
658 mpz_clear (max);
660 /* First the trivial cases -- when the step is 1. */
661 if (integer_onep (s))
663 niter->niter = c;
664 return true;
667 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
668 is infinite. Otherwise, the number of iterations is
669 (inverse(s/d) * (c/d)) mod (size of mode/d). */
670 bits = num_ending_zeros (s);
671 bound = build_low_bits_mask (niter_type,
672 (TYPE_PRECISION (niter_type)
673 - tree_low_cst (bits, 1)));
675 d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
676 build_int_cst (niter_type, 1), bits);
677 s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
679 if (!exit_must_be_taken)
681 /* If we cannot assume that the exit is taken eventually, record the
682 assumptions for divisibility of c. */
683 assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
684 assumption = fold_build2 (EQ_EXPR, boolean_type_node,
685 assumption, build_int_cst (niter_type, 0));
686 if (!integer_nonzerop (assumption))
687 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
688 niter->assumptions, assumption);
691 c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
692 tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
693 niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
694 return true;
697 /* Checks whether we can determine the final value of the control variable
698 of the loop with ending condition IV0 < IV1 (computed in TYPE).
699 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
700 of the step. The assumptions necessary to ensure that the computation
701 of the final value does not overflow are recorded in NITER. If we
702 find the final value, we adjust DELTA and return TRUE. Otherwise
703 we return false. BNDS bounds the value of IV1->base - IV0->base,
704 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
705 true if we know that the exit must be taken eventually. */
707 static bool
708 number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
709 struct tree_niter_desc *niter,
710 tree *delta, tree step,
711 bool exit_must_be_taken, bounds *bnds)
713 tree niter_type = TREE_TYPE (step);
714 tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
715 tree tmod;
716 mpz_t mmod;
717 tree assumption = boolean_true_node, bound, noloop;
718 bool ret = false, fv_comp_no_overflow;
719 tree type1 = type;
720 if (POINTER_TYPE_P (type))
721 type1 = sizetype;
723 if (TREE_CODE (mod) != INTEGER_CST)
724 return false;
725 if (integer_nonzerop (mod))
726 mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
727 tmod = fold_convert (type1, mod);
729 mpz_init (mmod);
730 mpz_set_double_int (mmod, tree_to_double_int (mod), true);
731 mpz_neg (mmod, mmod);
733 /* If the induction variable does not overflow and the exit is taken,
734 then the computation of the final value does not overflow. This is
735 also obviously the case if the new final value is equal to the
736 current one. Finally, we postulate this for pointer type variables,
737 as the code cannot rely on the object to that the pointer points being
738 placed at the end of the address space (and more pragmatically,
739 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
740 if (integer_zerop (mod) || POINTER_TYPE_P (type))
741 fv_comp_no_overflow = true;
742 else if (!exit_must_be_taken)
743 fv_comp_no_overflow = false;
744 else
745 fv_comp_no_overflow =
746 (iv0->no_overflow && integer_nonzerop (iv0->step))
747 || (iv1->no_overflow && integer_nonzerop (iv1->step));
749 if (integer_nonzerop (iv0->step))
751 /* The final value of the iv is iv1->base + MOD, assuming that this
752 computation does not overflow, and that
753 iv0->base <= iv1->base + MOD. */
754 if (!fv_comp_no_overflow)
756 bound = fold_build2 (MINUS_EXPR, type1,
757 TYPE_MAX_VALUE (type1), tmod);
758 assumption = fold_build2 (LE_EXPR, boolean_type_node,
759 iv1->base, bound);
760 if (integer_zerop (assumption))
761 goto end;
763 if (mpz_cmp (mmod, bnds->below) < 0)
764 noloop = boolean_false_node;
765 else if (POINTER_TYPE_P (type))
766 noloop = fold_build2 (GT_EXPR, boolean_type_node,
767 iv0->base,
768 fold_build_pointer_plus (iv1->base, tmod));
769 else
770 noloop = fold_build2 (GT_EXPR, boolean_type_node,
771 iv0->base,
772 fold_build2 (PLUS_EXPR, type1,
773 iv1->base, tmod));
775 else
777 /* The final value of the iv is iv0->base - MOD, assuming that this
778 computation does not overflow, and that
779 iv0->base - MOD <= iv1->base. */
780 if (!fv_comp_no_overflow)
782 bound = fold_build2 (PLUS_EXPR, type1,
783 TYPE_MIN_VALUE (type1), tmod);
784 assumption = fold_build2 (GE_EXPR, boolean_type_node,
785 iv0->base, bound);
786 if (integer_zerop (assumption))
787 goto end;
789 if (mpz_cmp (mmod, bnds->below) < 0)
790 noloop = boolean_false_node;
791 else if (POINTER_TYPE_P (type))
792 noloop = fold_build2 (GT_EXPR, boolean_type_node,
793 fold_build_pointer_plus (iv0->base,
794 fold_build1 (NEGATE_EXPR,
795 type1, tmod)),
796 iv1->base);
797 else
798 noloop = fold_build2 (GT_EXPR, boolean_type_node,
799 fold_build2 (MINUS_EXPR, type1,
800 iv0->base, tmod),
801 iv1->base);
804 if (!integer_nonzerop (assumption))
805 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
806 niter->assumptions,
807 assumption);
808 if (!integer_zerop (noloop))
809 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
810 niter->may_be_zero,
811 noloop);
812 bounds_add (bnds, tree_to_double_int (mod), type);
813 *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
815 ret = true;
816 end:
817 mpz_clear (mmod);
818 return ret;
821 /* Add assertions to NITER that ensure that the control variable of the loop
822 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
823 are TYPE. Returns false if we can prove that there is an overflow, true
824 otherwise. STEP is the absolute value of the step. */
826 static bool
827 assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
828 struct tree_niter_desc *niter, tree step)
830 tree bound, d, assumption, diff;
831 tree niter_type = TREE_TYPE (step);
833 if (integer_nonzerop (iv0->step))
835 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
836 if (iv0->no_overflow)
837 return true;
839 /* If iv0->base is a constant, we can determine the last value before
840 overflow precisely; otherwise we conservatively assume
841 MAX - STEP + 1. */
843 if (TREE_CODE (iv0->base) == INTEGER_CST)
845 d = fold_build2 (MINUS_EXPR, niter_type,
846 fold_convert (niter_type, TYPE_MAX_VALUE (type)),
847 fold_convert (niter_type, iv0->base));
848 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
850 else
851 diff = fold_build2 (MINUS_EXPR, niter_type, step,
852 build_int_cst (niter_type, 1));
853 bound = fold_build2 (MINUS_EXPR, type,
854 TYPE_MAX_VALUE (type), fold_convert (type, diff));
855 assumption = fold_build2 (LE_EXPR, boolean_type_node,
856 iv1->base, bound);
858 else
860 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
861 if (iv1->no_overflow)
862 return true;
864 if (TREE_CODE (iv1->base) == INTEGER_CST)
866 d = fold_build2 (MINUS_EXPR, niter_type,
867 fold_convert (niter_type, iv1->base),
868 fold_convert (niter_type, TYPE_MIN_VALUE (type)));
869 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
871 else
872 diff = fold_build2 (MINUS_EXPR, niter_type, step,
873 build_int_cst (niter_type, 1));
874 bound = fold_build2 (PLUS_EXPR, type,
875 TYPE_MIN_VALUE (type), fold_convert (type, diff));
876 assumption = fold_build2 (GE_EXPR, boolean_type_node,
877 iv0->base, bound);
880 if (integer_zerop (assumption))
881 return false;
882 if (!integer_nonzerop (assumption))
883 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
884 niter->assumptions, assumption);
886 iv0->no_overflow = true;
887 iv1->no_overflow = true;
888 return true;
891 /* Add an assumption to NITER that a loop whose ending condition
892 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
893 bounds the value of IV1->base - IV0->base. */
895 static void
896 assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
897 struct tree_niter_desc *niter, bounds *bnds)
899 tree assumption = boolean_true_node, bound, diff;
900 tree mbz, mbzl, mbzr, type1;
901 bool rolls_p, no_overflow_p;
902 double_int dstep;
903 mpz_t mstep, max;
905 /* We are going to compute the number of iterations as
906 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
907 variant of TYPE. This formula only works if
909 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
911 (where MAX is the maximum value of the unsigned variant of TYPE, and
912 the computations in this formula are performed in full precision,
913 i.e., without overflows).
915 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
916 we have a condition of the form iv0->base - step < iv1->base before the loop,
917 and for loops iv0->base < iv1->base - step * i the condition
918 iv0->base < iv1->base + step, due to loop header copying, which enable us
919 to prove the lower bound.
921 The upper bound is more complicated. Unless the expressions for initial
922 and final value themselves contain enough information, we usually cannot
923 derive it from the context. */
925 /* First check whether the answer does not follow from the bounds we gathered
926 before. */
927 if (integer_nonzerop (iv0->step))
928 dstep = tree_to_double_int (iv0->step);
929 else
931 dstep = tree_to_double_int (iv1->step).sext (TYPE_PRECISION (type));
932 dstep = -dstep;
935 mpz_init (mstep);
936 mpz_set_double_int (mstep, dstep, true);
937 mpz_neg (mstep, mstep);
938 mpz_add_ui (mstep, mstep, 1);
940 rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
942 mpz_init (max);
943 mpz_set_double_int (max, double_int::mask (TYPE_PRECISION (type)), true);
944 mpz_add (max, max, mstep);
945 no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
946 /* For pointers, only values lying inside a single object
947 can be compared or manipulated by pointer arithmetics.
948 Gcc in general does not allow or handle objects larger
949 than half of the address space, hence the upper bound
950 is satisfied for pointers. */
951 || POINTER_TYPE_P (type));
952 mpz_clear (mstep);
953 mpz_clear (max);
955 if (rolls_p && no_overflow_p)
956 return;
958 type1 = type;
959 if (POINTER_TYPE_P (type))
960 type1 = sizetype;
962 /* Now the hard part; we must formulate the assumption(s) as expressions, and
963 we must be careful not to introduce overflow. */
965 if (integer_nonzerop (iv0->step))
967 diff = fold_build2 (MINUS_EXPR, type1,
968 iv0->step, build_int_cst (type1, 1));
970 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
971 0 address never belongs to any object, we can assume this for
972 pointers. */
973 if (!POINTER_TYPE_P (type))
975 bound = fold_build2 (PLUS_EXPR, type1,
976 TYPE_MIN_VALUE (type), diff);
977 assumption = fold_build2 (GE_EXPR, boolean_type_node,
978 iv0->base, bound);
981 /* And then we can compute iv0->base - diff, and compare it with
982 iv1->base. */
983 mbzl = fold_build2 (MINUS_EXPR, type1,
984 fold_convert (type1, iv0->base), diff);
985 mbzr = fold_convert (type1, iv1->base);
987 else
989 diff = fold_build2 (PLUS_EXPR, type1,
990 iv1->step, build_int_cst (type1, 1));
992 if (!POINTER_TYPE_P (type))
994 bound = fold_build2 (PLUS_EXPR, type1,
995 TYPE_MAX_VALUE (type), diff);
996 assumption = fold_build2 (LE_EXPR, boolean_type_node,
997 iv1->base, bound);
1000 mbzl = fold_convert (type1, iv0->base);
1001 mbzr = fold_build2 (MINUS_EXPR, type1,
1002 fold_convert (type1, iv1->base), diff);
1005 if (!integer_nonzerop (assumption))
1006 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1007 niter->assumptions, assumption);
1008 if (!rolls_p)
1010 mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
1011 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1012 niter->may_be_zero, mbz);
1016 /* Determines number of iterations of loop whose ending condition
1017 is IV0 < IV1. TYPE is the type of the iv. The number of
1018 iterations is stored to NITER. BNDS bounds the difference
1019 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1020 that the exit must be taken eventually. */
1022 static bool
1023 number_of_iterations_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1024 struct tree_niter_desc *niter,
1025 bool exit_must_be_taken, bounds *bnds)
1027 tree niter_type = unsigned_type_for (type);
1028 tree delta, step, s;
1029 mpz_t mstep, tmp;
1031 if (integer_nonzerop (iv0->step))
1033 niter->control = *iv0;
1034 niter->cmp = LT_EXPR;
1035 niter->bound = iv1->base;
1037 else
1039 niter->control = *iv1;
1040 niter->cmp = GT_EXPR;
1041 niter->bound = iv0->base;
1044 delta = fold_build2 (MINUS_EXPR, niter_type,
1045 fold_convert (niter_type, iv1->base),
1046 fold_convert (niter_type, iv0->base));
1048 /* First handle the special case that the step is +-1. */
1049 if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
1050 || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
1052 /* for (i = iv0->base; i < iv1->base; i++)
1056 for (i = iv1->base; i > iv0->base; i--).
1058 In both cases # of iterations is iv1->base - iv0->base, assuming that
1059 iv1->base >= iv0->base.
1061 First try to derive a lower bound on the value of
1062 iv1->base - iv0->base, computed in full precision. If the difference
1063 is nonnegative, we are done, otherwise we must record the
1064 condition. */
1066 if (mpz_sgn (bnds->below) < 0)
1067 niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
1068 iv1->base, iv0->base);
1069 niter->niter = delta;
1070 niter->max = mpz_get_double_int (niter_type, bnds->up, false);
1071 return true;
1074 if (integer_nonzerop (iv0->step))
1075 step = fold_convert (niter_type, iv0->step);
1076 else
1077 step = fold_convert (niter_type,
1078 fold_build1 (NEGATE_EXPR, type, iv1->step));
1080 /* If we can determine the final value of the control iv exactly, we can
1081 transform the condition to != comparison. In particular, this will be
1082 the case if DELTA is constant. */
1083 if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
1084 exit_must_be_taken, bnds))
1086 affine_iv zps;
1088 zps.base = build_int_cst (niter_type, 0);
1089 zps.step = step;
1090 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1091 zps does not overflow. */
1092 zps.no_overflow = true;
1094 return number_of_iterations_ne (type, &zps, delta, niter, true, bnds);
1097 /* Make sure that the control iv does not overflow. */
1098 if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
1099 return false;
1101 /* We determine the number of iterations as (delta + step - 1) / step. For
1102 this to work, we must know that iv1->base >= iv0->base - step + 1,
1103 otherwise the loop does not roll. */
1104 assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
1106 s = fold_build2 (MINUS_EXPR, niter_type,
1107 step, build_int_cst (niter_type, 1));
1108 delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
1109 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
1111 mpz_init (mstep);
1112 mpz_init (tmp);
1113 mpz_set_double_int (mstep, tree_to_double_int (step), true);
1114 mpz_add (tmp, bnds->up, mstep);
1115 mpz_sub_ui (tmp, tmp, 1);
1116 mpz_fdiv_q (tmp, tmp, mstep);
1117 niter->max = mpz_get_double_int (niter_type, tmp, false);
1118 mpz_clear (mstep);
1119 mpz_clear (tmp);
1121 return true;
1124 /* Determines number of iterations of loop whose ending condition
1125 is IV0 <= IV1. TYPE is the type of the iv. The number of
1126 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1127 we know that this condition must eventually become false (we derived this
1128 earlier, and possibly set NITER->assumptions to make sure this
1129 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1131 static bool
1132 number_of_iterations_le (tree type, affine_iv *iv0, affine_iv *iv1,
1133 struct tree_niter_desc *niter, bool exit_must_be_taken,
1134 bounds *bnds)
1136 tree assumption;
1137 tree type1 = type;
1138 if (POINTER_TYPE_P (type))
1139 type1 = sizetype;
1141 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1142 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1143 value of the type. This we must know anyway, since if it is
1144 equal to this value, the loop rolls forever. We do not check
1145 this condition for pointer type ivs, as the code cannot rely on
1146 the object to that the pointer points being placed at the end of
1147 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1148 not defined for pointers). */
1150 if (!exit_must_be_taken && !POINTER_TYPE_P (type))
1152 if (integer_nonzerop (iv0->step))
1153 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1154 iv1->base, TYPE_MAX_VALUE (type));
1155 else
1156 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1157 iv0->base, TYPE_MIN_VALUE (type));
1159 if (integer_zerop (assumption))
1160 return false;
1161 if (!integer_nonzerop (assumption))
1162 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1163 niter->assumptions, assumption);
1166 if (integer_nonzerop (iv0->step))
1168 if (POINTER_TYPE_P (type))
1169 iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
1170 else
1171 iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
1172 build_int_cst (type1, 1));
1174 else if (POINTER_TYPE_P (type))
1175 iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
1176 else
1177 iv0->base = fold_build2 (MINUS_EXPR, type1,
1178 iv0->base, build_int_cst (type1, 1));
1180 bounds_add (bnds, double_int_one, type1);
1182 return number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1183 bnds);
1186 /* Dumps description of affine induction variable IV to FILE. */
1188 static void
1189 dump_affine_iv (FILE *file, affine_iv *iv)
1191 if (!integer_zerop (iv->step))
1192 fprintf (file, "[");
1194 print_generic_expr (dump_file, iv->base, TDF_SLIM);
1196 if (!integer_zerop (iv->step))
1198 fprintf (file, ", + , ");
1199 print_generic_expr (dump_file, iv->step, TDF_SLIM);
1200 fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
1204 /* Determine the number of iterations according to condition (for staying
1205 inside loop) which compares two induction variables using comparison
1206 operator CODE. The induction variable on left side of the comparison
1207 is IV0, the right-hand side is IV1. Both induction variables must have
1208 type TYPE, which must be an integer or pointer type. The steps of the
1209 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1211 LOOP is the loop whose number of iterations we are determining.
1213 ONLY_EXIT is true if we are sure this is the only way the loop could be
1214 exited (including possibly non-returning function calls, exceptions, etc.)
1215 -- in this case we can use the information whether the control induction
1216 variables can overflow or not in a more efficient way.
1218 if EVERY_ITERATION is true, we know the test is executed on every iteration.
1220 The results (number of iterations and assumptions as described in
1221 comments at struct tree_niter_desc in tree-flow.h) are stored to NITER.
1222 Returns false if it fails to determine number of iterations, true if it
1223 was determined (possibly with some assumptions). */
1225 static bool
1226 number_of_iterations_cond (struct loop *loop,
1227 tree type, affine_iv *iv0, enum tree_code code,
1228 affine_iv *iv1, struct tree_niter_desc *niter,
1229 bool only_exit, bool every_iteration)
1231 bool exit_must_be_taken = false, ret;
1232 bounds bnds;
1234 /* If the test is not executed every iteration, wrapping may make the test
1235 to pass again.
1236 TODO: the overflow case can be still used as unreliable estimate of upper
1237 bound. But we have no API to pass it down to number of iterations code
1238 and, at present, it will not use it anyway. */
1239 if (!every_iteration
1240 && (!iv0->no_overflow || !iv1->no_overflow
1241 || code == NE_EXPR || code == EQ_EXPR))
1242 return false;
1244 /* The meaning of these assumptions is this:
1245 if !assumptions
1246 then the rest of information does not have to be valid
1247 if may_be_zero then the loop does not roll, even if
1248 niter != 0. */
1249 niter->assumptions = boolean_true_node;
1250 niter->may_be_zero = boolean_false_node;
1251 niter->niter = NULL_TREE;
1252 niter->max = double_int_zero;
1254 niter->bound = NULL_TREE;
1255 niter->cmp = ERROR_MARK;
1257 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1258 the control variable is on lhs. */
1259 if (code == GE_EXPR || code == GT_EXPR
1260 || (code == NE_EXPR && integer_zerop (iv0->step)))
1262 SWAP (iv0, iv1);
1263 code = swap_tree_comparison (code);
1266 if (POINTER_TYPE_P (type))
1268 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1269 to the same object. If they do, the control variable cannot wrap
1270 (as wrap around the bounds of memory will never return a pointer
1271 that would be guaranteed to point to the same object, even if we
1272 avoid undefined behavior by casting to size_t and back). */
1273 iv0->no_overflow = true;
1274 iv1->no_overflow = true;
1277 /* If the control induction variable does not overflow and the only exit
1278 from the loop is the one that we analyze, we know it must be taken
1279 eventually. */
1280 if (only_exit)
1282 if (!integer_zerop (iv0->step) && iv0->no_overflow)
1283 exit_must_be_taken = true;
1284 else if (!integer_zerop (iv1->step) && iv1->no_overflow)
1285 exit_must_be_taken = true;
1288 /* We can handle the case when neither of the sides of the comparison is
1289 invariant, provided that the test is NE_EXPR. This rarely occurs in
1290 practice, but it is simple enough to manage. */
1291 if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
1293 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1294 if (code != NE_EXPR)
1295 return false;
1297 iv0->step = fold_binary_to_constant (MINUS_EXPR, step_type,
1298 iv0->step, iv1->step);
1299 iv0->no_overflow = false;
1300 iv1->step = build_int_cst (step_type, 0);
1301 iv1->no_overflow = true;
1304 /* If the result of the comparison is a constant, the loop is weird. More
1305 precise handling would be possible, but the situation is not common enough
1306 to waste time on it. */
1307 if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
1308 return false;
1310 /* Ignore loops of while (i-- < 10) type. */
1311 if (code != NE_EXPR)
1313 if (iv0->step && tree_int_cst_sign_bit (iv0->step))
1314 return false;
1316 if (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step))
1317 return false;
1320 /* If the loop exits immediately, there is nothing to do. */
1321 tree tem = fold_binary (code, boolean_type_node, iv0->base, iv1->base);
1322 if (tem && integer_zerop (tem))
1324 niter->niter = build_int_cst (unsigned_type_for (type), 0);
1325 niter->max = double_int_zero;
1326 return true;
1329 /* OK, now we know we have a senseful loop. Handle several cases, depending
1330 on what comparison operator is used. */
1331 bound_difference (loop, iv1->base, iv0->base, &bnds);
1333 if (dump_file && (dump_flags & TDF_DETAILS))
1335 fprintf (dump_file,
1336 "Analyzing # of iterations of loop %d\n", loop->num);
1338 fprintf (dump_file, " exit condition ");
1339 dump_affine_iv (dump_file, iv0);
1340 fprintf (dump_file, " %s ",
1341 code == NE_EXPR ? "!="
1342 : code == LT_EXPR ? "<"
1343 : "<=");
1344 dump_affine_iv (dump_file, iv1);
1345 fprintf (dump_file, "\n");
1347 fprintf (dump_file, " bounds on difference of bases: ");
1348 mpz_out_str (dump_file, 10, bnds.below);
1349 fprintf (dump_file, " ... ");
1350 mpz_out_str (dump_file, 10, bnds.up);
1351 fprintf (dump_file, "\n");
1354 switch (code)
1356 case NE_EXPR:
1357 gcc_assert (integer_zerop (iv1->step));
1358 ret = number_of_iterations_ne (type, iv0, iv1->base, niter,
1359 exit_must_be_taken, &bnds);
1360 break;
1362 case LT_EXPR:
1363 ret = number_of_iterations_lt (type, iv0, iv1, niter, exit_must_be_taken,
1364 &bnds);
1365 break;
1367 case LE_EXPR:
1368 ret = number_of_iterations_le (type, iv0, iv1, niter, exit_must_be_taken,
1369 &bnds);
1370 break;
1372 default:
1373 gcc_unreachable ();
1376 mpz_clear (bnds.up);
1377 mpz_clear (bnds.below);
1379 if (dump_file && (dump_flags & TDF_DETAILS))
1381 if (ret)
1383 fprintf (dump_file, " result:\n");
1384 if (!integer_nonzerop (niter->assumptions))
1386 fprintf (dump_file, " under assumptions ");
1387 print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
1388 fprintf (dump_file, "\n");
1391 if (!integer_zerop (niter->may_be_zero))
1393 fprintf (dump_file, " zero if ");
1394 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
1395 fprintf (dump_file, "\n");
1398 fprintf (dump_file, " # of iterations ");
1399 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
1400 fprintf (dump_file, ", bounded by ");
1401 dump_double_int (dump_file, niter->max, true);
1402 fprintf (dump_file, "\n");
1404 else
1405 fprintf (dump_file, " failed\n\n");
1407 return ret;
1410 /* Substitute NEW for OLD in EXPR and fold the result. */
1412 static tree
1413 simplify_replace_tree (tree expr, tree old, tree new_tree)
1415 unsigned i, n;
1416 tree ret = NULL_TREE, e, se;
1418 if (!expr)
1419 return NULL_TREE;
1421 /* Do not bother to replace constants. */
1422 if (CONSTANT_CLASS_P (old))
1423 return expr;
1425 if (expr == old
1426 || operand_equal_p (expr, old, 0))
1427 return unshare_expr (new_tree);
1429 if (!EXPR_P (expr))
1430 return expr;
1432 n = TREE_OPERAND_LENGTH (expr);
1433 for (i = 0; i < n; i++)
1435 e = TREE_OPERAND (expr, i);
1436 se = simplify_replace_tree (e, old, new_tree);
1437 if (e == se)
1438 continue;
1440 if (!ret)
1441 ret = copy_node (expr);
1443 TREE_OPERAND (ret, i) = se;
1446 return (ret ? fold (ret) : expr);
1449 /* Expand definitions of ssa names in EXPR as long as they are simple
1450 enough, and return the new expression. */
1452 tree
1453 expand_simple_operations (tree expr)
1455 unsigned i, n;
1456 tree ret = NULL_TREE, e, ee, e1;
1457 enum tree_code code;
1458 gimple stmt;
1460 if (expr == NULL_TREE)
1461 return expr;
1463 if (is_gimple_min_invariant (expr))
1464 return expr;
1466 code = TREE_CODE (expr);
1467 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
1469 n = TREE_OPERAND_LENGTH (expr);
1470 for (i = 0; i < n; i++)
1472 e = TREE_OPERAND (expr, i);
1473 ee = expand_simple_operations (e);
1474 if (e == ee)
1475 continue;
1477 if (!ret)
1478 ret = copy_node (expr);
1480 TREE_OPERAND (ret, i) = ee;
1483 if (!ret)
1484 return expr;
1486 fold_defer_overflow_warnings ();
1487 ret = fold (ret);
1488 fold_undefer_and_ignore_overflow_warnings ();
1489 return ret;
1492 if (TREE_CODE (expr) != SSA_NAME)
1493 return expr;
1495 stmt = SSA_NAME_DEF_STMT (expr);
1496 if (gimple_code (stmt) == GIMPLE_PHI)
1498 basic_block src, dest;
1500 if (gimple_phi_num_args (stmt) != 1)
1501 return expr;
1502 e = PHI_ARG_DEF (stmt, 0);
1504 /* Avoid propagating through loop exit phi nodes, which
1505 could break loop-closed SSA form restrictions. */
1506 dest = gimple_bb (stmt);
1507 src = single_pred (dest);
1508 if (TREE_CODE (e) == SSA_NAME
1509 && src->loop_father != dest->loop_father)
1510 return expr;
1512 return expand_simple_operations (e);
1514 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1515 return expr;
1517 e = gimple_assign_rhs1 (stmt);
1518 code = gimple_assign_rhs_code (stmt);
1519 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1521 if (is_gimple_min_invariant (e))
1522 return e;
1524 if (code == SSA_NAME)
1525 return expand_simple_operations (e);
1527 return expr;
1530 switch (code)
1532 CASE_CONVERT:
1533 /* Casts are simple. */
1534 ee = expand_simple_operations (e);
1535 return fold_build1 (code, TREE_TYPE (expr), ee);
1537 case PLUS_EXPR:
1538 case MINUS_EXPR:
1539 case POINTER_PLUS_EXPR:
1540 /* And increments and decrements by a constant are simple. */
1541 e1 = gimple_assign_rhs2 (stmt);
1542 if (!is_gimple_min_invariant (e1))
1543 return expr;
1545 ee = expand_simple_operations (e);
1546 return fold_build2 (code, TREE_TYPE (expr), ee, e1);
1548 default:
1549 return expr;
1553 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1554 expression (or EXPR unchanged, if no simplification was possible). */
1556 static tree
1557 tree_simplify_using_condition_1 (tree cond, tree expr)
1559 bool changed;
1560 tree e, te, e0, e1, e2, notcond;
1561 enum tree_code code = TREE_CODE (expr);
1563 if (code == INTEGER_CST)
1564 return expr;
1566 if (code == TRUTH_OR_EXPR
1567 || code == TRUTH_AND_EXPR
1568 || code == COND_EXPR)
1570 changed = false;
1572 e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
1573 if (TREE_OPERAND (expr, 0) != e0)
1574 changed = true;
1576 e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
1577 if (TREE_OPERAND (expr, 1) != e1)
1578 changed = true;
1580 if (code == COND_EXPR)
1582 e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
1583 if (TREE_OPERAND (expr, 2) != e2)
1584 changed = true;
1586 else
1587 e2 = NULL_TREE;
1589 if (changed)
1591 if (code == COND_EXPR)
1592 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1593 else
1594 expr = fold_build2 (code, boolean_type_node, e0, e1);
1597 return expr;
1600 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
1601 propagation, and vice versa. Fold does not handle this, since it is
1602 considered too expensive. */
1603 if (TREE_CODE (cond) == EQ_EXPR)
1605 e0 = TREE_OPERAND (cond, 0);
1606 e1 = TREE_OPERAND (cond, 1);
1608 /* We know that e0 == e1. Check whether we cannot simplify expr
1609 using this fact. */
1610 e = simplify_replace_tree (expr, e0, e1);
1611 if (integer_zerop (e) || integer_nonzerop (e))
1612 return e;
1614 e = simplify_replace_tree (expr, e1, e0);
1615 if (integer_zerop (e) || integer_nonzerop (e))
1616 return e;
1618 if (TREE_CODE (expr) == EQ_EXPR)
1620 e0 = TREE_OPERAND (expr, 0);
1621 e1 = TREE_OPERAND (expr, 1);
1623 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
1624 e = simplify_replace_tree (cond, e0, e1);
1625 if (integer_zerop (e))
1626 return e;
1627 e = simplify_replace_tree (cond, e1, e0);
1628 if (integer_zerop (e))
1629 return e;
1631 if (TREE_CODE (expr) == NE_EXPR)
1633 e0 = TREE_OPERAND (expr, 0);
1634 e1 = TREE_OPERAND (expr, 1);
1636 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
1637 e = simplify_replace_tree (cond, e0, e1);
1638 if (integer_zerop (e))
1639 return boolean_true_node;
1640 e = simplify_replace_tree (cond, e1, e0);
1641 if (integer_zerop (e))
1642 return boolean_true_node;
1645 te = expand_simple_operations (expr);
1647 /* Check whether COND ==> EXPR. */
1648 notcond = invert_truthvalue (cond);
1649 e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, te);
1650 if (e && integer_nonzerop (e))
1651 return e;
1653 /* Check whether COND ==> not EXPR. */
1654 e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, te);
1655 if (e && integer_zerop (e))
1656 return e;
1658 return expr;
1661 /* Tries to simplify EXPR using the condition COND. Returns the simplified
1662 expression (or EXPR unchanged, if no simplification was possible).
1663 Wrapper around tree_simplify_using_condition_1 that ensures that chains
1664 of simple operations in definitions of ssa names in COND are expanded,
1665 so that things like casts or incrementing the value of the bound before
1666 the loop do not cause us to fail. */
1668 static tree
1669 tree_simplify_using_condition (tree cond, tree expr)
1671 cond = expand_simple_operations (cond);
1673 return tree_simplify_using_condition_1 (cond, expr);
1676 /* Tries to simplify EXPR using the conditions on entry to LOOP.
1677 Returns the simplified expression (or EXPR unchanged, if no
1678 simplification was possible).*/
1680 static tree
1681 simplify_using_initial_conditions (struct loop *loop, tree expr)
1683 edge e;
1684 basic_block bb;
1685 gimple stmt;
1686 tree cond;
1687 int cnt = 0;
1689 if (TREE_CODE (expr) == INTEGER_CST)
1690 return expr;
1692 /* Limit walking the dominators to avoid quadraticness in
1693 the number of BBs times the number of loops in degenerate
1694 cases. */
1695 for (bb = loop->header;
1696 bb != ENTRY_BLOCK_PTR && cnt < MAX_DOMINATORS_TO_WALK;
1697 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
1699 if (!single_pred_p (bb))
1700 continue;
1701 e = single_pred_edge (bb);
1703 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
1704 continue;
1706 stmt = last_stmt (e->src);
1707 cond = fold_build2 (gimple_cond_code (stmt),
1708 boolean_type_node,
1709 gimple_cond_lhs (stmt),
1710 gimple_cond_rhs (stmt));
1711 if (e->flags & EDGE_FALSE_VALUE)
1712 cond = invert_truthvalue (cond);
1713 expr = tree_simplify_using_condition (cond, expr);
1714 ++cnt;
1717 return expr;
1720 /* Tries to simplify EXPR using the evolutions of the loop invariants
1721 in the superloops of LOOP. Returns the simplified expression
1722 (or EXPR unchanged, if no simplification was possible). */
1724 static tree
1725 simplify_using_outer_evolutions (struct loop *loop, tree expr)
1727 enum tree_code code = TREE_CODE (expr);
1728 bool changed;
1729 tree e, e0, e1, e2;
1731 if (is_gimple_min_invariant (expr))
1732 return expr;
1734 if (code == TRUTH_OR_EXPR
1735 || code == TRUTH_AND_EXPR
1736 || code == COND_EXPR)
1738 changed = false;
1740 e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
1741 if (TREE_OPERAND (expr, 0) != e0)
1742 changed = true;
1744 e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
1745 if (TREE_OPERAND (expr, 1) != e1)
1746 changed = true;
1748 if (code == COND_EXPR)
1750 e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
1751 if (TREE_OPERAND (expr, 2) != e2)
1752 changed = true;
1754 else
1755 e2 = NULL_TREE;
1757 if (changed)
1759 if (code == COND_EXPR)
1760 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
1761 else
1762 expr = fold_build2 (code, boolean_type_node, e0, e1);
1765 return expr;
1768 e = instantiate_parameters (loop, expr);
1769 if (is_gimple_min_invariant (e))
1770 return e;
1772 return expr;
1775 /* Returns true if EXIT is the only possible exit from LOOP. */
1777 bool
1778 loop_only_exit_p (const struct loop *loop, const_edge exit)
1780 basic_block *body;
1781 gimple_stmt_iterator bsi;
1782 unsigned i;
1783 gimple call;
1785 if (exit != single_exit (loop))
1786 return false;
1788 body = get_loop_body (loop);
1789 for (i = 0; i < loop->num_nodes; i++)
1791 for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
1793 call = gsi_stmt (bsi);
1794 if (gimple_code (call) != GIMPLE_CALL)
1795 continue;
1797 if (gimple_has_side_effects (call))
1799 free (body);
1800 return false;
1805 free (body);
1806 return true;
1809 /* Stores description of number of iterations of LOOP derived from
1810 EXIT (an exit edge of the LOOP) in NITER. Returns true if some
1811 useful information could be derived (and fields of NITER has
1812 meaning described in comments at struct tree_niter_desc
1813 declaration), false otherwise. If WARN is true and
1814 -Wunsafe-loop-optimizations was given, warn if the optimizer is going to use
1815 potentially unsafe assumptions.
1816 When EVERY_ITERATION is true, only tests that are known to be executed
1817 every iteration are considered (i.e. only test that alone bounds the loop).
1820 bool
1821 number_of_iterations_exit (struct loop *loop, edge exit,
1822 struct tree_niter_desc *niter,
1823 bool warn, bool every_iteration)
1825 gimple stmt;
1826 tree type;
1827 tree op0, op1;
1828 enum tree_code code;
1829 affine_iv iv0, iv1;
1830 bool safe;
1832 safe = dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src);
1834 if (every_iteration && !safe)
1835 return false;
1837 niter->assumptions = boolean_false_node;
1838 stmt = last_stmt (exit->src);
1839 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1840 return false;
1842 /* We want the condition for staying inside loop. */
1843 code = gimple_cond_code (stmt);
1844 if (exit->flags & EDGE_TRUE_VALUE)
1845 code = invert_tree_comparison (code, false);
1847 switch (code)
1849 case GT_EXPR:
1850 case GE_EXPR:
1851 case LT_EXPR:
1852 case LE_EXPR:
1853 case NE_EXPR:
1854 break;
1856 default:
1857 return false;
1860 op0 = gimple_cond_lhs (stmt);
1861 op1 = gimple_cond_rhs (stmt);
1862 type = TREE_TYPE (op0);
1864 if (TREE_CODE (type) != INTEGER_TYPE
1865 && !POINTER_TYPE_P (type))
1866 return false;
1868 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, false))
1869 return false;
1870 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, false))
1871 return false;
1873 /* We don't want to see undefined signed overflow warnings while
1874 computing the number of iterations. */
1875 fold_defer_overflow_warnings ();
1877 iv0.base = expand_simple_operations (iv0.base);
1878 iv1.base = expand_simple_operations (iv1.base);
1879 if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
1880 loop_only_exit_p (loop, exit), safe))
1882 fold_undefer_and_ignore_overflow_warnings ();
1883 return false;
1886 if (optimize >= 3)
1888 niter->assumptions = simplify_using_outer_evolutions (loop,
1889 niter->assumptions);
1890 niter->may_be_zero = simplify_using_outer_evolutions (loop,
1891 niter->may_be_zero);
1892 niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
1895 niter->assumptions
1896 = simplify_using_initial_conditions (loop,
1897 niter->assumptions);
1898 niter->may_be_zero
1899 = simplify_using_initial_conditions (loop,
1900 niter->may_be_zero);
1902 fold_undefer_and_ignore_overflow_warnings ();
1904 /* If NITER has simplified into a constant, update MAX. */
1905 if (TREE_CODE (niter->niter) == INTEGER_CST)
1906 niter->max = tree_to_double_int (niter->niter);
1908 if (integer_onep (niter->assumptions))
1909 return true;
1911 /* With -funsafe-loop-optimizations we assume that nothing bad can happen.
1912 But if we can prove that there is overflow or some other source of weird
1913 behavior, ignore the loop even with -funsafe-loop-optimizations. */
1914 if (integer_zerop (niter->assumptions) || !single_exit (loop))
1915 return false;
1917 if (flag_unsafe_loop_optimizations)
1918 niter->assumptions = boolean_true_node;
1920 if (warn)
1922 const char *wording;
1923 location_t loc = gimple_location (stmt);
1925 /* We can provide a more specific warning if one of the operator is
1926 constant and the other advances by +1 or -1. */
1927 if (!integer_zerop (iv1.step)
1928 ? (integer_zerop (iv0.step)
1929 && (integer_onep (iv1.step) || integer_all_onesp (iv1.step)))
1930 : (integer_onep (iv0.step) || integer_all_onesp (iv0.step)))
1931 wording =
1932 flag_unsafe_loop_optimizations
1933 ? N_("assuming that the loop is not infinite")
1934 : N_("cannot optimize possibly infinite loops");
1935 else
1936 wording =
1937 flag_unsafe_loop_optimizations
1938 ? N_("assuming that the loop counter does not overflow")
1939 : N_("cannot optimize loop, the loop counter may overflow");
1941 warning_at ((LOCATION_LINE (loc) > 0) ? loc : input_location,
1942 OPT_Wunsafe_loop_optimizations, "%s", gettext (wording));
1945 return flag_unsafe_loop_optimizations;
1948 /* Try to determine the number of iterations of LOOP. If we succeed,
1949 expression giving number of iterations is returned and *EXIT is
1950 set to the edge from that the information is obtained. Otherwise
1951 chrec_dont_know is returned. */
1953 tree
1954 find_loop_niter (struct loop *loop, edge *exit)
1956 unsigned i;
1957 vec<edge> exits = get_loop_exit_edges (loop);
1958 edge ex;
1959 tree niter = NULL_TREE, aniter;
1960 struct tree_niter_desc desc;
1962 *exit = NULL;
1963 FOR_EACH_VEC_ELT (exits, i, ex)
1965 if (!number_of_iterations_exit (loop, ex, &desc, false))
1966 continue;
1968 if (integer_nonzerop (desc.may_be_zero))
1970 /* We exit in the first iteration through this exit.
1971 We won't find anything better. */
1972 niter = build_int_cst (unsigned_type_node, 0);
1973 *exit = ex;
1974 break;
1977 if (!integer_zerop (desc.may_be_zero))
1978 continue;
1980 aniter = desc.niter;
1982 if (!niter)
1984 /* Nothing recorded yet. */
1985 niter = aniter;
1986 *exit = ex;
1987 continue;
1990 /* Prefer constants, the lower the better. */
1991 if (TREE_CODE (aniter) != INTEGER_CST)
1992 continue;
1994 if (TREE_CODE (niter) != INTEGER_CST)
1996 niter = aniter;
1997 *exit = ex;
1998 continue;
2001 if (tree_int_cst_lt (aniter, niter))
2003 niter = aniter;
2004 *exit = ex;
2005 continue;
2008 exits.release ();
2010 return niter ? niter : chrec_dont_know;
2013 /* Return true if loop is known to have bounded number of iterations. */
2015 bool
2016 finite_loop_p (struct loop *loop)
2018 double_int nit;
2019 int flags;
2021 if (flag_unsafe_loop_optimizations)
2022 return true;
2023 flags = flags_from_decl_or_type (current_function_decl);
2024 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
2026 if (dump_file && (dump_flags & TDF_DETAILS))
2027 fprintf (dump_file, "Found loop %i to be finite: it is within pure or const function.\n",
2028 loop->num);
2029 return true;
2032 if (loop->any_upper_bound
2033 || max_loop_iterations (loop, &nit))
2035 if (dump_file && (dump_flags & TDF_DETAILS))
2036 fprintf (dump_file, "Found loop %i to be finite: upper bound found.\n",
2037 loop->num);
2038 return true;
2040 return false;
2045 Analysis of a number of iterations of a loop by a brute-force evaluation.
2049 /* Bound on the number of iterations we try to evaluate. */
2051 #define MAX_ITERATIONS_TO_TRACK \
2052 ((unsigned) PARAM_VALUE (PARAM_MAX_ITERATIONS_TO_TRACK))
2054 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
2055 result by a chain of operations such that all but exactly one of their
2056 operands are constants. */
2058 static gimple
2059 chain_of_csts_start (struct loop *loop, tree x)
2061 gimple stmt = SSA_NAME_DEF_STMT (x);
2062 tree use;
2063 basic_block bb = gimple_bb (stmt);
2064 enum tree_code code;
2066 if (!bb
2067 || !flow_bb_inside_loop_p (loop, bb))
2068 return NULL;
2070 if (gimple_code (stmt) == GIMPLE_PHI)
2072 if (bb == loop->header)
2073 return stmt;
2075 return NULL;
2078 if (gimple_code (stmt) != GIMPLE_ASSIGN
2079 || gimple_assign_rhs_class (stmt) == GIMPLE_TERNARY_RHS)
2080 return NULL;
2082 code = gimple_assign_rhs_code (stmt);
2083 if (gimple_references_memory_p (stmt)
2084 || TREE_CODE_CLASS (code) == tcc_reference
2085 || (code == ADDR_EXPR
2086 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
2087 return NULL;
2089 use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
2090 if (use == NULL_TREE)
2091 return NULL;
2093 return chain_of_csts_start (loop, use);
2096 /* Determines whether the expression X is derived from a result of a phi node
2097 in header of LOOP such that
2099 * the derivation of X consists only from operations with constants
2100 * the initial value of the phi node is constant
2101 * the value of the phi node in the next iteration can be derived from the
2102 value in the current iteration by a chain of operations with constants.
2104 If such phi node exists, it is returned, otherwise NULL is returned. */
2106 static gimple
2107 get_base_for (struct loop *loop, tree x)
2109 gimple phi;
2110 tree init, next;
2112 if (is_gimple_min_invariant (x))
2113 return NULL;
2115 phi = chain_of_csts_start (loop, x);
2116 if (!phi)
2117 return NULL;
2119 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2120 next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2122 if (TREE_CODE (next) != SSA_NAME)
2123 return NULL;
2125 if (!is_gimple_min_invariant (init))
2126 return NULL;
2128 if (chain_of_csts_start (loop, next) != phi)
2129 return NULL;
2131 return phi;
2134 /* Given an expression X, then
2136 * if X is NULL_TREE, we return the constant BASE.
2137 * otherwise X is a SSA name, whose value in the considered loop is derived
2138 by a chain of operations with constant from a result of a phi node in
2139 the header of the loop. Then we return value of X when the value of the
2140 result of this phi node is given by the constant BASE. */
2142 static tree
2143 get_val_for (tree x, tree base)
2145 gimple stmt;
2147 gcc_checking_assert (is_gimple_min_invariant (base));
2149 if (!x)
2150 return base;
2152 stmt = SSA_NAME_DEF_STMT (x);
2153 if (gimple_code (stmt) == GIMPLE_PHI)
2154 return base;
2156 gcc_checking_assert (is_gimple_assign (stmt));
2158 /* STMT must be either an assignment of a single SSA name or an
2159 expression involving an SSA name and a constant. Try to fold that
2160 expression using the value for the SSA name. */
2161 if (gimple_assign_ssa_name_copy_p (stmt))
2162 return get_val_for (gimple_assign_rhs1 (stmt), base);
2163 else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
2164 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
2166 return fold_build1 (gimple_assign_rhs_code (stmt),
2167 gimple_expr_type (stmt),
2168 get_val_for (gimple_assign_rhs1 (stmt), base));
2170 else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
2172 tree rhs1 = gimple_assign_rhs1 (stmt);
2173 tree rhs2 = gimple_assign_rhs2 (stmt);
2174 if (TREE_CODE (rhs1) == SSA_NAME)
2175 rhs1 = get_val_for (rhs1, base);
2176 else if (TREE_CODE (rhs2) == SSA_NAME)
2177 rhs2 = get_val_for (rhs2, base);
2178 else
2179 gcc_unreachable ();
2180 return fold_build2 (gimple_assign_rhs_code (stmt),
2181 gimple_expr_type (stmt), rhs1, rhs2);
2183 else
2184 gcc_unreachable ();
2188 /* Tries to count the number of iterations of LOOP till it exits by EXIT
2189 by brute force -- i.e. by determining the value of the operands of the
2190 condition at EXIT in first few iterations of the loop (assuming that
2191 these values are constant) and determining the first one in that the
2192 condition is not satisfied. Returns the constant giving the number
2193 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
2195 tree
2196 loop_niter_by_eval (struct loop *loop, edge exit)
2198 tree acnd;
2199 tree op[2], val[2], next[2], aval[2];
2200 gimple phi, cond;
2201 unsigned i, j;
2202 enum tree_code cmp;
2204 cond = last_stmt (exit->src);
2205 if (!cond || gimple_code (cond) != GIMPLE_COND)
2206 return chrec_dont_know;
2208 cmp = gimple_cond_code (cond);
2209 if (exit->flags & EDGE_TRUE_VALUE)
2210 cmp = invert_tree_comparison (cmp, false);
2212 switch (cmp)
2214 case EQ_EXPR:
2215 case NE_EXPR:
2216 case GT_EXPR:
2217 case GE_EXPR:
2218 case LT_EXPR:
2219 case LE_EXPR:
2220 op[0] = gimple_cond_lhs (cond);
2221 op[1] = gimple_cond_rhs (cond);
2222 break;
2224 default:
2225 return chrec_dont_know;
2228 for (j = 0; j < 2; j++)
2230 if (is_gimple_min_invariant (op[j]))
2232 val[j] = op[j];
2233 next[j] = NULL_TREE;
2234 op[j] = NULL_TREE;
2236 else
2238 phi = get_base_for (loop, op[j]);
2239 if (!phi)
2240 return chrec_dont_know;
2241 val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
2242 next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
2246 /* Don't issue signed overflow warnings. */
2247 fold_defer_overflow_warnings ();
2249 for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
2251 for (j = 0; j < 2; j++)
2252 aval[j] = get_val_for (op[j], val[j]);
2254 acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
2255 if (acnd && integer_zerop (acnd))
2257 fold_undefer_and_ignore_overflow_warnings ();
2258 if (dump_file && (dump_flags & TDF_DETAILS))
2259 fprintf (dump_file,
2260 "Proved that loop %d iterates %d times using brute force.\n",
2261 loop->num, i);
2262 return build_int_cst (unsigned_type_node, i);
2265 for (j = 0; j < 2; j++)
2267 val[j] = get_val_for (next[j], val[j]);
2268 if (!is_gimple_min_invariant (val[j]))
2270 fold_undefer_and_ignore_overflow_warnings ();
2271 return chrec_dont_know;
2276 fold_undefer_and_ignore_overflow_warnings ();
2278 return chrec_dont_know;
2281 /* Finds the exit of the LOOP by that the loop exits after a constant
2282 number of iterations and stores the exit edge to *EXIT. The constant
2283 giving the number of iterations of LOOP is returned. The number of
2284 iterations is determined using loop_niter_by_eval (i.e. by brute force
2285 evaluation). If we are unable to find the exit for that loop_niter_by_eval
2286 determines the number of iterations, chrec_dont_know is returned. */
2288 tree
2289 find_loop_niter_by_eval (struct loop *loop, edge *exit)
2291 unsigned i;
2292 vec<edge> exits = get_loop_exit_edges (loop);
2293 edge ex;
2294 tree niter = NULL_TREE, aniter;
2296 *exit = NULL;
2298 /* Loops with multiple exits are expensive to handle and less important. */
2299 if (!flag_expensive_optimizations
2300 && exits.length () > 1)
2302 exits.release ();
2303 return chrec_dont_know;
2306 FOR_EACH_VEC_ELT (exits, i, ex)
2308 if (!just_once_each_iteration_p (loop, ex->src))
2309 continue;
2311 aniter = loop_niter_by_eval (loop, ex);
2312 if (chrec_contains_undetermined (aniter))
2313 continue;
2315 if (niter
2316 && !tree_int_cst_lt (aniter, niter))
2317 continue;
2319 niter = aniter;
2320 *exit = ex;
2322 exits.release ();
2324 return niter ? niter : chrec_dont_know;
2329 Analysis of upper bounds on number of iterations of a loop.
2333 static double_int derive_constant_upper_bound_ops (tree, tree,
2334 enum tree_code, tree);
2336 /* Returns a constant upper bound on the value of the right-hand side of
2337 an assignment statement STMT. */
2339 static double_int
2340 derive_constant_upper_bound_assign (gimple stmt)
2342 enum tree_code code = gimple_assign_rhs_code (stmt);
2343 tree op0 = gimple_assign_rhs1 (stmt);
2344 tree op1 = gimple_assign_rhs2 (stmt);
2346 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
2347 op0, code, op1);
2350 /* Returns a constant upper bound on the value of expression VAL. VAL
2351 is considered to be unsigned. If its type is signed, its value must
2352 be nonnegative. */
2354 static double_int
2355 derive_constant_upper_bound (tree val)
2357 enum tree_code code;
2358 tree op0, op1;
2360 extract_ops_from_tree (val, &code, &op0, &op1);
2361 return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
2364 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
2365 whose type is TYPE. The expression is considered to be unsigned. If
2366 its type is signed, its value must be nonnegative. */
2368 static double_int
2369 derive_constant_upper_bound_ops (tree type, tree op0,
2370 enum tree_code code, tree op1)
2372 tree subtype, maxt;
2373 double_int bnd, max, mmax, cst;
2374 gimple stmt;
2376 if (INTEGRAL_TYPE_P (type))
2377 maxt = TYPE_MAX_VALUE (type);
2378 else
2379 maxt = upper_bound_in_type (type, type);
2381 max = tree_to_double_int (maxt);
2383 switch (code)
2385 case INTEGER_CST:
2386 return tree_to_double_int (op0);
2388 CASE_CONVERT:
2389 subtype = TREE_TYPE (op0);
2390 if (!TYPE_UNSIGNED (subtype)
2391 /* If TYPE is also signed, the fact that VAL is nonnegative implies
2392 that OP0 is nonnegative. */
2393 && TYPE_UNSIGNED (type)
2394 && !tree_expr_nonnegative_p (op0))
2396 /* If we cannot prove that the casted expression is nonnegative,
2397 we cannot establish more useful upper bound than the precision
2398 of the type gives us. */
2399 return max;
2402 /* We now know that op0 is an nonnegative value. Try deriving an upper
2403 bound for it. */
2404 bnd = derive_constant_upper_bound (op0);
2406 /* If the bound does not fit in TYPE, max. value of TYPE could be
2407 attained. */
2408 if (max.ult (bnd))
2409 return max;
2411 return bnd;
2413 case PLUS_EXPR:
2414 case POINTER_PLUS_EXPR:
2415 case MINUS_EXPR:
2416 if (TREE_CODE (op1) != INTEGER_CST
2417 || !tree_expr_nonnegative_p (op0))
2418 return max;
2420 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
2421 choose the most logical way how to treat this constant regardless
2422 of the signedness of the type. */
2423 cst = tree_to_double_int (op1);
2424 cst = cst.sext (TYPE_PRECISION (type));
2425 if (code != MINUS_EXPR)
2426 cst = -cst;
2428 bnd = derive_constant_upper_bound (op0);
2430 if (cst.is_negative ())
2432 cst = -cst;
2433 /* Avoid CST == 0x80000... */
2434 if (cst.is_negative ())
2435 return max;;
2437 /* OP0 + CST. We need to check that
2438 BND <= MAX (type) - CST. */
2440 mmax -= cst;
2441 if (bnd.ugt (mmax))
2442 return max;
2444 return bnd + cst;
2446 else
2448 /* OP0 - CST, where CST >= 0.
2450 If TYPE is signed, we have already verified that OP0 >= 0, and we
2451 know that the result is nonnegative. This implies that
2452 VAL <= BND - CST.
2454 If TYPE is unsigned, we must additionally know that OP0 >= CST,
2455 otherwise the operation underflows.
2458 /* This should only happen if the type is unsigned; however, for
2459 buggy programs that use overflowing signed arithmetics even with
2460 -fno-wrapv, this condition may also be true for signed values. */
2461 if (bnd.ult (cst))
2462 return max;
2464 if (TYPE_UNSIGNED (type))
2466 tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
2467 double_int_to_tree (type, cst));
2468 if (!tem || integer_nonzerop (tem))
2469 return max;
2472 bnd -= cst;
2475 return bnd;
2477 case FLOOR_DIV_EXPR:
2478 case EXACT_DIV_EXPR:
2479 if (TREE_CODE (op1) != INTEGER_CST
2480 || tree_int_cst_sign_bit (op1))
2481 return max;
2483 bnd = derive_constant_upper_bound (op0);
2484 return bnd.udiv (tree_to_double_int (op1), FLOOR_DIV_EXPR);
2486 case BIT_AND_EXPR:
2487 if (TREE_CODE (op1) != INTEGER_CST
2488 || tree_int_cst_sign_bit (op1))
2489 return max;
2490 return tree_to_double_int (op1);
2492 case SSA_NAME:
2493 stmt = SSA_NAME_DEF_STMT (op0);
2494 if (gimple_code (stmt) != GIMPLE_ASSIGN
2495 || gimple_assign_lhs (stmt) != op0)
2496 return max;
2497 return derive_constant_upper_bound_assign (stmt);
2499 default:
2500 return max;
2504 /* Records that every statement in LOOP is executed I_BOUND times.
2505 REALISTIC is true if I_BOUND is expected to be close to the real number
2506 of iterations. UPPER is true if we are sure the loop iterates at most
2507 I_BOUND times. */
2509 void
2510 record_niter_bound (struct loop *loop, double_int i_bound, bool realistic,
2511 bool upper)
2513 /* Update the bounds only when there is no previous estimation, or when the
2514 current estimation is smaller. */
2515 if (upper
2516 && (!loop->any_upper_bound
2517 || i_bound.ult (loop->nb_iterations_upper_bound)))
2519 loop->any_upper_bound = true;
2520 loop->nb_iterations_upper_bound = i_bound;
2522 if (realistic
2523 && (!loop->any_estimate
2524 || (!flag_auto_profile &&
2525 i_bound.ult (loop->nb_iterations_estimate))))
2527 loop->any_estimate = true;
2528 loop->nb_iterations_estimate = i_bound;
2531 /* If an upper bound is smaller than the realistic estimate of the
2532 number of iterations, use the upper bound instead. */
2533 if (loop->any_upper_bound
2534 && loop->any_estimate
2535 && loop->nb_iterations_upper_bound.ult (loop->nb_iterations_estimate))
2536 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
2539 /* Emit a -Waggressive-loop-optimizations warning if needed. */
2541 static void
2542 do_warn_aggressive_loop_optimizations (struct loop *loop,
2543 double_int i_bound, gimple stmt)
2545 /* Don't warn if the loop doesn't have known constant bound. */
2546 if (!loop->nb_iterations
2547 || TREE_CODE (loop->nb_iterations) != INTEGER_CST
2548 || !warn_aggressive_loop_optimizations
2549 /* To avoid warning multiple times for the same loop,
2550 only start warning when we preserve loops. */
2551 || (cfun->curr_properties & PROP_loops) == 0
2552 /* Only warn once per loop. */
2553 || loop->warned_aggressive_loop_optimizations
2554 /* Only warn if undefined behavior gives us lower estimate than the
2555 known constant bound. */
2556 || i_bound.ucmp (tree_to_double_int (loop->nb_iterations)) >= 0
2557 /* And undefined behavior happens unconditionally. */
2558 || !dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (stmt)))
2559 return;
2561 edge e = single_exit (loop);
2562 if (e == NULL)
2563 return;
2565 gimple estmt = last_stmt (e->src);
2566 if (warning_at (gimple_location (stmt), OPT_Waggressive_loop_optimizations,
2567 "iteration %E invokes undefined behavior",
2568 double_int_to_tree (TREE_TYPE (loop->nb_iterations),
2569 i_bound)))
2570 inform (gimple_location (estmt), "containing loop");
2571 loop->warned_aggressive_loop_optimizations = true;
2574 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
2575 is true if the loop is exited immediately after STMT, and this exit
2576 is taken at last when the STMT is executed BOUND + 1 times.
2577 REALISTIC is true if BOUND is expected to be close to the real number
2578 of iterations. UPPER is true if we are sure the loop iterates at most
2579 BOUND times. I_BOUND is an unsigned double_int upper estimate on BOUND. */
2581 static void
2582 record_estimate (struct loop *loop, tree bound, double_int i_bound,
2583 gimple at_stmt, bool is_exit, bool realistic, bool upper)
2585 double_int delta;
2587 if (dump_file && (dump_flags & TDF_DETAILS))
2589 fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
2590 print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
2591 fprintf (dump_file, " is %sexecuted at most ",
2592 upper ? "" : "probably ");
2593 print_generic_expr (dump_file, bound, TDF_SLIM);
2594 fprintf (dump_file, " (bounded by ");
2595 dump_double_int (dump_file, i_bound, true);
2596 fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
2599 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
2600 real number of iterations. */
2601 if (TREE_CODE (bound) != INTEGER_CST)
2602 realistic = false;
2603 else
2604 gcc_checking_assert (i_bound == tree_to_double_int (bound));
2605 if (!upper && !realistic)
2606 return;
2608 /* If we have a guaranteed upper bound, record it in the appropriate
2609 list, unless this is an !is_exit bound (i.e. undefined behavior in
2610 at_stmt) in a loop with known constant number of iterations. */
2611 if (upper
2612 && (is_exit
2613 || loop->nb_iterations == NULL_TREE
2614 || TREE_CODE (loop->nb_iterations) != INTEGER_CST))
2616 struct nb_iter_bound *elt = ggc_alloc_nb_iter_bound ();
2618 elt->bound = i_bound;
2619 elt->stmt = at_stmt;
2620 elt->is_exit = is_exit;
2621 elt->next = loop->bounds;
2622 loop->bounds = elt;
2625 /* If statement is executed on every path to the loop latch, we can directly
2626 infer the upper bound on the # of iterations of the loop. */
2627 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (at_stmt)))
2628 return;
2630 /* Update the number of iteration estimates according to the bound.
2631 If at_stmt is an exit then the loop latch is executed at most BOUND times,
2632 otherwise it can be executed BOUND + 1 times. We will lower the estimate
2633 later if such statement must be executed on last iteration */
2634 if (is_exit)
2635 delta = double_int_zero;
2636 else
2637 delta = double_int_one;
2638 i_bound += delta;
2640 /* If an overflow occurred, ignore the result. */
2641 if (i_bound.ult (delta))
2642 return;
2644 if (upper && !is_exit)
2645 do_warn_aggressive_loop_optimizations (loop, i_bound, at_stmt);
2646 record_niter_bound (loop, i_bound, realistic, upper);
2649 /* Record the estimate on number of iterations of LOOP based on the fact that
2650 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
2651 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
2652 estimated number of iterations is expected to be close to the real one.
2653 UPPER is true if we are sure the induction variable does not wrap. */
2655 static void
2656 record_nonwrapping_iv (struct loop *loop, tree base, tree step, gimple stmt,
2657 tree low, tree high, bool realistic, bool upper)
2659 tree niter_bound, extreme, delta;
2660 tree type = TREE_TYPE (base), unsigned_type;
2661 double_int max;
2663 if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
2664 return;
2666 if (dump_file && (dump_flags & TDF_DETAILS))
2668 fprintf (dump_file, "Induction variable (");
2669 print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
2670 fprintf (dump_file, ") ");
2671 print_generic_expr (dump_file, base, TDF_SLIM);
2672 fprintf (dump_file, " + ");
2673 print_generic_expr (dump_file, step, TDF_SLIM);
2674 fprintf (dump_file, " * iteration does not wrap in statement ");
2675 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2676 fprintf (dump_file, " in loop %d.\n", loop->num);
2679 unsigned_type = unsigned_type_for (type);
2680 base = fold_convert (unsigned_type, base);
2681 step = fold_convert (unsigned_type, step);
2683 if (tree_int_cst_sign_bit (step))
2685 extreme = fold_convert (unsigned_type, low);
2686 if (TREE_CODE (base) != INTEGER_CST)
2687 base = fold_convert (unsigned_type, high);
2688 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
2689 step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
2691 else
2693 extreme = fold_convert (unsigned_type, high);
2694 if (TREE_CODE (base) != INTEGER_CST)
2695 base = fold_convert (unsigned_type, low);
2696 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
2699 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
2700 would get out of the range. */
2701 niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
2702 max = derive_constant_upper_bound (niter_bound);
2703 record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
2706 /* Determine information about number of iterations a LOOP from the index
2707 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
2708 guaranteed to be executed in every iteration of LOOP. Callback for
2709 for_each_index. */
2711 struct ilb_data
2713 struct loop *loop;
2714 gimple stmt;
2717 static bool
2718 idx_infer_loop_bounds (tree base, tree *idx, void *dta)
2720 struct ilb_data *data = (struct ilb_data *) dta;
2721 tree ev, init, step;
2722 tree low, high, type, next;
2723 bool sign, upper = true, at_end = false;
2724 struct loop *loop = data->loop;
2725 bool reliable = true;
2727 if (TREE_CODE (base) != ARRAY_REF)
2728 return true;
2730 /* For arrays at the end of the structure, we are not guaranteed that they
2731 do not really extend over their declared size. However, for arrays of
2732 size greater than one, this is unlikely to be intended. */
2733 if (array_at_struct_end_p (base))
2735 at_end = true;
2736 upper = false;
2739 struct loop *dloop = loop_containing_stmt (data->stmt);
2740 if (!dloop)
2741 return true;
2743 ev = analyze_scalar_evolution (dloop, *idx);
2744 ev = instantiate_parameters (loop, ev);
2745 init = initial_condition (ev);
2746 step = evolution_part_in_loop_num (ev, loop->num);
2748 if (!init
2749 || !step
2750 || TREE_CODE (step) != INTEGER_CST
2751 || integer_zerop (step)
2752 || tree_contains_chrecs (init, NULL)
2753 || chrec_contains_symbols_defined_in_loop (init, loop->num))
2754 return true;
2756 low = array_ref_low_bound (base);
2757 high = array_ref_up_bound (base);
2759 /* The case of nonconstant bounds could be handled, but it would be
2760 complicated. */
2761 if (TREE_CODE (low) != INTEGER_CST
2762 || !high
2763 || TREE_CODE (high) != INTEGER_CST)
2764 return true;
2765 sign = tree_int_cst_sign_bit (step);
2766 type = TREE_TYPE (step);
2768 /* The array of length 1 at the end of a structure most likely extends
2769 beyond its bounds. */
2770 if (at_end
2771 && operand_equal_p (low, high, 0))
2772 return true;
2774 /* In case the relevant bound of the array does not fit in type, or
2775 it does, but bound + step (in type) still belongs into the range of the
2776 array, the index may wrap and still stay within the range of the array
2777 (consider e.g. if the array is indexed by the full range of
2778 unsigned char).
2780 To make things simpler, we require both bounds to fit into type, although
2781 there are cases where this would not be strictly necessary. */
2782 if (!int_fits_type_p (high, type)
2783 || !int_fits_type_p (low, type))
2784 return true;
2785 low = fold_convert (type, low);
2786 high = fold_convert (type, high);
2788 if (sign)
2789 next = fold_binary (PLUS_EXPR, type, low, step);
2790 else
2791 next = fold_binary (PLUS_EXPR, type, high, step);
2793 if (tree_int_cst_compare (low, next) <= 0
2794 && tree_int_cst_compare (next, high) <= 0)
2795 return true;
2797 /* If access is not executed on every iteration, we must ensure that overlow may
2798 not make the access valid later. */
2799 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (data->stmt))
2800 && scev_probably_wraps_p (initial_condition_in_loop_num (ev, loop->num),
2801 step, data->stmt, loop, true))
2802 reliable = false;
2804 record_nonwrapping_iv (loop, init, step, data->stmt, low, high, reliable, upper);
2805 return true;
2808 /* Determine information about number of iterations a LOOP from the bounds
2809 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
2810 STMT is guaranteed to be executed in every iteration of LOOP.*/
2812 static void
2813 infer_loop_bounds_from_ref (struct loop *loop, gimple stmt, tree ref)
2815 struct ilb_data data;
2817 data.loop = loop;
2818 data.stmt = stmt;
2819 for_each_index (&ref, idx_infer_loop_bounds, &data);
2822 /* Determine information about number of iterations of a LOOP from the way
2823 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
2824 executed in every iteration of LOOP. */
2826 static void
2827 infer_loop_bounds_from_array (struct loop *loop, gimple stmt)
2829 if (is_gimple_assign (stmt))
2831 tree op0 = gimple_assign_lhs (stmt);
2832 tree op1 = gimple_assign_rhs1 (stmt);
2834 /* For each memory access, analyze its access function
2835 and record a bound on the loop iteration domain. */
2836 if (REFERENCE_CLASS_P (op0))
2837 infer_loop_bounds_from_ref (loop, stmt, op0);
2839 if (REFERENCE_CLASS_P (op1))
2840 infer_loop_bounds_from_ref (loop, stmt, op1);
2842 else if (is_gimple_call (stmt))
2844 tree arg, lhs;
2845 unsigned i, n = gimple_call_num_args (stmt);
2847 lhs = gimple_call_lhs (stmt);
2848 if (lhs && REFERENCE_CLASS_P (lhs))
2849 infer_loop_bounds_from_ref (loop, stmt, lhs);
2851 for (i = 0; i < n; i++)
2853 arg = gimple_call_arg (stmt, i);
2854 if (REFERENCE_CLASS_P (arg))
2855 infer_loop_bounds_from_ref (loop, stmt, arg);
2860 /* Determine information about number of iterations of a LOOP from the fact
2861 that pointer arithmetics in STMT does not overflow. */
2863 static void
2864 infer_loop_bounds_from_pointer_arith (struct loop *loop, gimple stmt)
2866 tree def, base, step, scev, type, low, high;
2867 tree var, ptr;
2869 if (!is_gimple_assign (stmt)
2870 || gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
2871 return;
2873 def = gimple_assign_lhs (stmt);
2874 if (TREE_CODE (def) != SSA_NAME)
2875 return;
2877 type = TREE_TYPE (def);
2878 if (!nowrap_type_p (type))
2879 return;
2881 ptr = gimple_assign_rhs1 (stmt);
2882 if (!expr_invariant_in_loop_p (loop, ptr))
2883 return;
2885 var = gimple_assign_rhs2 (stmt);
2886 if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
2887 return;
2889 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
2890 if (chrec_contains_undetermined (scev))
2891 return;
2893 base = initial_condition_in_loop_num (scev, loop->num);
2894 step = evolution_part_in_loop_num (scev, loop->num);
2896 if (!base || !step
2897 || TREE_CODE (step) != INTEGER_CST
2898 || tree_contains_chrecs (base, NULL)
2899 || chrec_contains_symbols_defined_in_loop (base, loop->num))
2900 return;
2902 low = lower_bound_in_type (type, type);
2903 high = upper_bound_in_type (type, type);
2905 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
2906 produce a NULL pointer. The contrary would mean NULL points to an object,
2907 while NULL is supposed to compare unequal with the address of all objects.
2908 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
2909 NULL pointer since that would mean wrapping, which we assume here not to
2910 happen. So, we can exclude NULL from the valid range of pointer
2911 arithmetic. */
2912 if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
2913 low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));
2915 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
2918 /* Determine information about number of iterations of a LOOP from the fact
2919 that signed arithmetics in STMT does not overflow. */
2921 static void
2922 infer_loop_bounds_from_signedness (struct loop *loop, gimple stmt)
2924 tree def, base, step, scev, type, low, high;
2926 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2927 return;
2929 def = gimple_assign_lhs (stmt);
2931 if (TREE_CODE (def) != SSA_NAME)
2932 return;
2934 type = TREE_TYPE (def);
2935 if (!INTEGRAL_TYPE_P (type)
2936 || !TYPE_OVERFLOW_UNDEFINED (type))
2937 return;
2939 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
2940 if (chrec_contains_undetermined (scev))
2941 return;
2943 base = initial_condition_in_loop_num (scev, loop->num);
2944 step = evolution_part_in_loop_num (scev, loop->num);
2946 if (!base || !step
2947 || TREE_CODE (step) != INTEGER_CST
2948 || tree_contains_chrecs (base, NULL)
2949 || chrec_contains_symbols_defined_in_loop (base, loop->num))
2950 return;
2952 low = lower_bound_in_type (type, type);
2953 high = upper_bound_in_type (type, type);
2955 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
2958 /* The following analyzers are extracting informations on the bounds
2959 of LOOP from the following undefined behaviors:
2961 - data references should not access elements over the statically
2962 allocated size,
2964 - signed variables should not overflow when flag_wrapv is not set.
2967 static void
2968 infer_loop_bounds_from_undefined (struct loop *loop)
2970 unsigned i;
2971 basic_block *bbs;
2972 gimple_stmt_iterator bsi;
2973 basic_block bb;
2974 bool reliable;
2976 bbs = get_loop_body (loop);
2978 for (i = 0; i < loop->num_nodes; i++)
2980 bb = bbs[i];
2982 /* If BB is not executed in each iteration of the loop, we cannot
2983 use the operations in it to infer reliable upper bound on the
2984 # of iterations of the loop. However, we can use it as a guess.
2985 Reliable guesses come only from array bounds. */
2986 reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
2988 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2990 gimple stmt = gsi_stmt (bsi);
2992 infer_loop_bounds_from_array (loop, stmt);
2994 if (reliable)
2996 infer_loop_bounds_from_signedness (loop, stmt);
2997 infer_loop_bounds_from_pointer_arith (loop, stmt);
3003 free (bbs);
3006 /* Converts VAL to double_int. */
3008 static double_int
3009 gcov_type_to_double_int (gcov_type val)
3011 double_int ret;
3013 ret.low = (unsigned HOST_WIDE_INT) val;
3014 /* If HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_WIDEST_INT, avoid shifting by
3015 the size of type. */
3016 val >>= HOST_BITS_PER_WIDE_INT - 1;
3017 val >>= 1;
3018 ret.high = (unsigned HOST_WIDE_INT) val;
3020 return ret;
3023 /* Compare double ints, callback for qsort. */
3026 double_int_cmp (const void *p1, const void *p2)
3028 const double_int *d1 = (const double_int *)p1;
3029 const double_int *d2 = (const double_int *)p2;
3030 if (*d1 == *d2)
3031 return 0;
3032 if (d1->ult (*d2))
3033 return -1;
3034 return 1;
3037 /* Return index of BOUND in BOUNDS array sorted in increasing order.
3038 Lookup by binary search. */
3041 bound_index (vec<double_int> bounds, double_int bound)
3043 unsigned int end = bounds.length ();
3044 unsigned int begin = 0;
3046 /* Find a matching index by means of a binary search. */
3047 while (begin != end)
3049 unsigned int middle = (begin + end) / 2;
3050 double_int index = bounds[middle];
3052 if (index == bound)
3053 return middle;
3054 else if (index.ult (bound))
3055 begin = middle + 1;
3056 else
3057 end = middle;
3059 gcc_unreachable ();
3062 /* We recorded loop bounds only for statements dominating loop latch (and thus
3063 executed each loop iteration). If there are any bounds on statements not
3064 dominating the loop latch we can improve the estimate by walking the loop
3065 body and seeing if every path from loop header to loop latch contains
3066 some bounded statement. */
3068 static void
3069 discover_iteration_bound_by_body_walk (struct loop *loop)
3071 pointer_map_t *bb_bounds;
3072 struct nb_iter_bound *elt;
3073 vec<double_int> bounds = vNULL;
3074 vec<vec<basic_block> > queues = vNULL;
3075 vec<basic_block> queue = vNULL;
3076 ptrdiff_t queue_index;
3077 ptrdiff_t latch_index = 0;
3078 pointer_map_t *block_priority;
3080 /* Discover what bounds may interest us. */
3081 for (elt = loop->bounds; elt; elt = elt->next)
3083 double_int bound = elt->bound;
3085 /* Exit terminates loop at given iteration, while non-exits produce undefined
3086 effect on the next iteration. */
3087 if (!elt->is_exit)
3089 bound += double_int_one;
3090 /* If an overflow occurred, ignore the result. */
3091 if (bound.is_zero ())
3092 continue;
3095 if (!loop->any_upper_bound
3096 || bound.ult (loop->nb_iterations_upper_bound))
3097 bounds.safe_push (bound);
3100 /* Exit early if there is nothing to do. */
3101 if (!bounds.exists ())
3102 return;
3104 if (dump_file && (dump_flags & TDF_DETAILS))
3105 fprintf (dump_file, " Trying to walk loop body to reduce the bound.\n");
3107 /* Sort the bounds in decreasing order. */
3108 qsort (bounds.address (), bounds.length (),
3109 sizeof (double_int), double_int_cmp);
3111 /* For every basic block record the lowest bound that is guaranteed to
3112 terminate the loop. */
3114 bb_bounds = pointer_map_create ();
3115 for (elt = loop->bounds; elt; elt = elt->next)
3117 double_int bound = elt->bound;
3118 if (!elt->is_exit)
3120 bound += double_int_one;
3121 /* If an overflow occurred, ignore the result. */
3122 if (bound.is_zero ())
3123 continue;
3126 if (!loop->any_upper_bound
3127 || bound.ult (loop->nb_iterations_upper_bound))
3129 ptrdiff_t index = bound_index (bounds, bound);
3130 void **entry = pointer_map_contains (bb_bounds,
3131 gimple_bb (elt->stmt));
3132 if (!entry)
3133 *pointer_map_insert (bb_bounds,
3134 gimple_bb (elt->stmt)) = (void *)index;
3135 else if ((ptrdiff_t)*entry > index)
3136 *entry = (void *)index;
3140 block_priority = pointer_map_create ();
3142 /* Perform shortest path discovery loop->header ... loop->latch.
3144 The "distance" is given by the smallest loop bound of basic block
3145 present in the path and we look for path with largest smallest bound
3146 on it.
3148 To avoid the need for fibonacci heap on double ints we simply compress
3149 double ints into indexes to BOUNDS array and then represent the queue
3150 as arrays of queues for every index.
3151 Index of BOUNDS.length() means that the execution of given BB has
3152 no bounds determined.
3154 VISITED is a pointer map translating basic block into smallest index
3155 it was inserted into the priority queue with. */
3156 latch_index = -1;
3158 /* Start walk in loop header with index set to infinite bound. */
3159 queue_index = bounds.length ();
3160 queues.safe_grow_cleared (queue_index + 1);
3161 queue.safe_push (loop->header);
3162 queues[queue_index] = queue;
3163 *pointer_map_insert (block_priority, loop->header) = (void *)queue_index;
3165 for (; queue_index >= 0; queue_index--)
3167 if (latch_index < queue_index)
3169 while (queues[queue_index].length ())
3171 basic_block bb;
3172 ptrdiff_t bound_index = queue_index;
3173 void **entry;
3174 edge e;
3175 edge_iterator ei;
3177 queue = queues[queue_index];
3178 bb = queue.pop ();
3180 /* OK, we later inserted the BB with lower priority, skip it. */
3181 if ((ptrdiff_t)*pointer_map_contains (block_priority, bb) > queue_index)
3182 continue;
3184 /* See if we can improve the bound. */
3185 entry = pointer_map_contains (bb_bounds, bb);
3186 if (entry && (ptrdiff_t)*entry < bound_index)
3187 bound_index = (ptrdiff_t)*entry;
3189 /* Insert succesors into the queue, watch for latch edge
3190 and record greatest index we saw. */
3191 FOR_EACH_EDGE (e, ei, bb->succs)
3193 bool insert = false;
3194 void **entry;
3196 if (loop_exit_edge_p (loop, e))
3197 continue;
3199 if (e == loop_latch_edge (loop)
3200 && latch_index < bound_index)
3201 latch_index = bound_index;
3202 else if (!(entry = pointer_map_contains (block_priority, e->dest)))
3204 insert = true;
3205 *pointer_map_insert (block_priority, e->dest) = (void *)bound_index;
3207 else if ((ptrdiff_t)*entry < bound_index)
3209 insert = true;
3210 *entry = (void *)bound_index;
3213 if (insert)
3214 queues[bound_index].safe_push (e->dest);
3218 queues[queue_index].release ();
3221 gcc_assert (latch_index >= 0);
3222 if ((unsigned)latch_index < bounds.length ())
3224 if (dump_file && (dump_flags & TDF_DETAILS))
3226 fprintf (dump_file, "Found better loop bound ");
3227 dump_double_int (dump_file, bounds[latch_index], true);
3228 fprintf (dump_file, "\n");
3230 record_niter_bound (loop, bounds[latch_index], false, true);
3233 queues.release ();
3234 bounds.release ();
3235 pointer_map_destroy (bb_bounds);
3236 pointer_map_destroy (block_priority);
3239 /* See if every path cross the loop goes through a statement that is known
3240 to not execute at the last iteration. In that case we can decrese iteration
3241 count by 1. */
3243 static void
3244 maybe_lower_iteration_bound (struct loop *loop)
3246 pointer_set_t *not_executed_last_iteration = NULL;
3247 struct nb_iter_bound *elt;
3248 bool found_exit = false;
3249 vec<basic_block> queue = vNULL;
3250 bitmap visited;
3252 /* Collect all statements with interesting (i.e. lower than
3253 nb_iterations_upper_bound) bound on them.
3255 TODO: Due to the way record_estimate choose estimates to store, the bounds
3256 will be always nb_iterations_upper_bound-1. We can change this to record
3257 also statements not dominating the loop latch and update the walk bellow
3258 to the shortest path algorthm. */
3259 for (elt = loop->bounds; elt; elt = elt->next)
3261 if (!elt->is_exit
3262 && elt->bound.ult (loop->nb_iterations_upper_bound))
3264 if (!not_executed_last_iteration)
3265 not_executed_last_iteration = pointer_set_create ();
3266 pointer_set_insert (not_executed_last_iteration, elt->stmt);
3269 if (!not_executed_last_iteration)
3270 return;
3272 /* Start DFS walk in the loop header and see if we can reach the
3273 loop latch or any of the exits (including statements with side
3274 effects that may terminate the loop otherwise) without visiting
3275 any of the statements known to have undefined effect on the last
3276 iteration. */
3277 queue.safe_push (loop->header);
3278 visited = BITMAP_ALLOC (NULL);
3279 bitmap_set_bit (visited, loop->header->index);
3280 found_exit = false;
3284 basic_block bb = queue.pop ();
3285 gimple_stmt_iterator gsi;
3286 bool stmt_found = false;
3288 /* Loop for possible exits and statements bounding the execution. */
3289 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3291 gimple stmt = gsi_stmt (gsi);
3292 if (pointer_set_contains (not_executed_last_iteration, stmt))
3294 stmt_found = true;
3295 break;
3297 if (gimple_has_side_effects (stmt))
3299 found_exit = true;
3300 break;
3303 if (found_exit)
3304 break;
3306 /* If no bounding statement is found, continue the walk. */
3307 if (!stmt_found)
3309 edge e;
3310 edge_iterator ei;
3312 FOR_EACH_EDGE (e, ei, bb->succs)
3314 if (loop_exit_edge_p (loop, e)
3315 || e == loop_latch_edge (loop))
3317 found_exit = true;
3318 break;
3320 if (bitmap_set_bit (visited, e->dest->index))
3321 queue.safe_push (e->dest);
3325 while (queue.length () && !found_exit);
3327 /* If every path through the loop reach bounding statement before exit,
3328 then we know the last iteration of the loop will have undefined effect
3329 and we can decrease number of iterations. */
3331 if (!found_exit)
3333 if (dump_file && (dump_flags & TDF_DETAILS))
3334 fprintf (dump_file, "Reducing loop iteration estimate by 1; "
3335 "undefined statement must be executed at the last iteration.\n");
3336 record_niter_bound (loop, loop->nb_iterations_upper_bound - double_int_one,
3337 false, true);
3339 BITMAP_FREE (visited);
3340 queue.release ();
3341 pointer_set_destroy (not_executed_last_iteration);
3344 /* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
3345 is true also use estimates derived from undefined behavior. */
3347 void
3348 estimate_numbers_of_iterations_loop (struct loop *loop)
3350 vec<edge> exits;
3351 tree niter, type;
3352 unsigned i;
3353 struct tree_niter_desc niter_desc;
3354 edge ex;
3355 double_int bound;
3356 edge likely_exit;
3358 /* Give up if we already have tried to compute an estimation. */
3359 if (loop->estimate_state != EST_NOT_COMPUTED)
3360 return;
3362 loop->estimate_state = EST_AVAILABLE;
3363 /* Force estimate compuation but leave any existing upper bound in place. */
3364 loop->any_estimate = false;
3366 /* Ensure that loop->nb_iterations is computed if possible. If it turns out
3367 to be constant, we avoid undefined behavior implied bounds and instead
3368 diagnose those loops with -Waggressive-loop-optimizations. */
3369 number_of_latch_executions (loop);
3371 exits = get_loop_exit_edges (loop);
3372 likely_exit = single_likely_exit (loop);
3373 FOR_EACH_VEC_ELT (exits, i, ex)
3375 if (!number_of_iterations_exit (loop, ex, &niter_desc, false, false))
3376 continue;
3378 niter = niter_desc.niter;
3379 type = TREE_TYPE (niter);
3380 if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
3381 niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
3382 build_int_cst (type, 0),
3383 niter);
3384 record_estimate (loop, niter, niter_desc.max,
3385 last_stmt (ex->src),
3386 true, ex == likely_exit, true);
3388 exits.release ();
3390 if (flag_aggressive_loop_optimizations)
3391 infer_loop_bounds_from_undefined (loop);
3393 discover_iteration_bound_by_body_walk (loop);
3395 maybe_lower_iteration_bound (loop);
3397 /* If we have a measured profile, use it to estimate the number of
3398 iterations. */
3399 if (loop->header->count != 0)
3401 gcov_type nit = expected_loop_iterations_unbounded (loop) + 1;
3402 bound = gcov_type_to_double_int (nit);
3403 record_niter_bound (loop, bound, true, false);
3406 /* If we know the exact number of iterations of this loop, try to
3407 not break code with undefined behavior by not recording smaller
3408 maximum number of iterations. */
3409 if (loop->nb_iterations
3410 && TREE_CODE (loop->nb_iterations) == INTEGER_CST)
3412 loop->any_upper_bound = true;
3413 loop->nb_iterations_upper_bound
3414 = tree_to_double_int (loop->nb_iterations);
3418 /* Sets NIT to the estimated number of executions of the latch of the
3419 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
3420 large as the number of iterations. If we have no reliable estimate,
3421 the function returns false, otherwise returns true. */
3423 bool
3424 estimated_loop_iterations (struct loop *loop, double_int *nit)
3426 /* When SCEV information is available, try to update loop iterations
3427 estimate. Otherwise just return whatever we recorded earlier. */
3428 if (scev_initialized_p ())
3429 estimate_numbers_of_iterations_loop (loop);
3431 /* Even if the bound is not recorded, possibly we can derrive one from
3432 profile. */
3433 if (!loop->any_estimate)
3435 if (loop->header->count)
3437 *nit = gcov_type_to_double_int
3438 (expected_loop_iterations_unbounded (loop) + 1);
3439 return true;
3441 return false;
3444 *nit = loop->nb_iterations_estimate;
3445 return true;
3448 /* Sets NIT to an upper bound for the maximum number of executions of the
3449 latch of the LOOP. If we have no reliable estimate, the function returns
3450 false, otherwise returns true. */
3452 bool
3453 max_loop_iterations (struct loop *loop, double_int *nit)
3455 /* When SCEV information is available, try to update loop iterations
3456 estimate. Otherwise just return whatever we recorded earlier. */
3457 if (scev_initialized_p ())
3458 estimate_numbers_of_iterations_loop (loop);
3459 if (!loop->any_upper_bound)
3460 return false;
3462 *nit = loop->nb_iterations_upper_bound;
3463 return true;
3466 /* Similar to estimated_loop_iterations, but returns the estimate only
3467 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3468 on the number of iterations of LOOP could not be derived, returns -1. */
3470 HOST_WIDE_INT
3471 estimated_loop_iterations_int (struct loop *loop)
3473 double_int nit;
3474 HOST_WIDE_INT hwi_nit;
3476 if (!estimated_loop_iterations (loop, &nit))
3477 return -1;
3479 if (!nit.fits_shwi ())
3480 return -1;
3481 hwi_nit = nit.to_shwi ();
3483 return hwi_nit < 0 ? -1 : hwi_nit;
3486 /* Similar to max_loop_iterations, but returns the estimate only
3487 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
3488 on the number of iterations of LOOP could not be derived, returns -1. */
3490 HOST_WIDE_INT
3491 max_loop_iterations_int (struct loop *loop)
3493 double_int nit;
3494 HOST_WIDE_INT hwi_nit;
3496 if (!max_loop_iterations (loop, &nit))
3497 return -1;
3499 if (!nit.fits_shwi ())
3500 return -1;
3501 hwi_nit = nit.to_shwi ();
3503 return hwi_nit < 0 ? -1 : hwi_nit;
3506 /* Returns an upper bound on the number of executions of statements
3507 in the LOOP. For statements before the loop exit, this exceeds
3508 the number of execution of the latch by one. */
3510 HOST_WIDE_INT
3511 max_stmt_executions_int (struct loop *loop)
3513 HOST_WIDE_INT nit = max_loop_iterations_int (loop);
3514 HOST_WIDE_INT snit;
3516 if (nit == -1)
3517 return -1;
3519 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
3521 /* If the computation overflows, return -1. */
3522 return snit < 0 ? -1 : snit;
3525 /* Returns an estimate for the number of executions of statements
3526 in the LOOP. For statements before the loop exit, this exceeds
3527 the number of execution of the latch by one. */
3529 HOST_WIDE_INT
3530 estimated_stmt_executions_int (struct loop *loop)
3532 HOST_WIDE_INT nit = estimated_loop_iterations_int (loop);
3533 HOST_WIDE_INT snit;
3535 if (nit == -1)
3536 return -1;
3538 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
3540 /* If the computation overflows, return -1. */
3541 return snit < 0 ? -1 : snit;
3544 /* Sets NIT to the estimated maximum number of executions of the latch of the
3545 LOOP, plus one. If we have no reliable estimate, the function returns
3546 false, otherwise returns true. */
3548 bool
3549 max_stmt_executions (struct loop *loop, double_int *nit)
3551 double_int nit_minus_one;
3553 if (!max_loop_iterations (loop, nit))
3554 return false;
3556 nit_minus_one = *nit;
3558 *nit += double_int_one;
3560 return (*nit).ugt (nit_minus_one);
3563 /* Sets NIT to the estimated number of executions of the latch of the
3564 LOOP, plus one. If we have no reliable estimate, the function returns
3565 false, otherwise returns true. */
3567 bool
3568 estimated_stmt_executions (struct loop *loop, double_int *nit)
3570 double_int nit_minus_one;
3572 if (!estimated_loop_iterations (loop, nit))
3573 return false;
3575 nit_minus_one = *nit;
3577 *nit += double_int_one;
3579 return (*nit).ugt (nit_minus_one);
3582 /* Records estimates on numbers of iterations of loops. */
3584 void
3585 estimate_numbers_of_iterations (void)
3587 loop_iterator li;
3588 struct loop *loop;
3590 /* We don't want to issue signed overflow warnings while getting
3591 loop iteration estimates. */
3592 fold_defer_overflow_warnings ();
3594 FOR_EACH_LOOP (li, loop, 0)
3596 estimate_numbers_of_iterations_loop (loop);
3599 fold_undefer_and_ignore_overflow_warnings ();
3602 /* Returns true if statement S1 dominates statement S2. */
3604 bool
3605 stmt_dominates_stmt_p (gimple s1, gimple s2)
3607 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
3609 if (!bb1
3610 || s1 == s2)
3611 return true;
3613 if (bb1 == bb2)
3615 gimple_stmt_iterator bsi;
3617 if (gimple_code (s2) == GIMPLE_PHI)
3618 return false;
3620 if (gimple_code (s1) == GIMPLE_PHI)
3621 return true;
3623 for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
3624 if (gsi_stmt (bsi) == s1)
3625 return true;
3627 return false;
3630 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
3633 /* Returns true when we can prove that the number of executions of
3634 STMT in the loop is at most NITER, according to the bound on
3635 the number of executions of the statement NITER_BOUND->stmt recorded in
3636 NITER_BOUND and fact that NITER_BOUND->stmt dominate STMT.
3638 ??? This code can become quite a CPU hog - we can have many bounds,
3639 and large basic block forcing stmt_dominates_stmt_p to be queried
3640 many times on a large basic blocks, so the whole thing is O(n^2)
3641 for scev_probably_wraps_p invocation (that can be done n times).
3643 It would make more sense (and give better answers) to remember BB
3644 bounds computed by discover_iteration_bound_by_body_walk. */
3646 static bool
3647 n_of_executions_at_most (gimple stmt,
3648 struct nb_iter_bound *niter_bound,
3649 tree niter)
3651 double_int bound = niter_bound->bound;
3652 tree nit_type = TREE_TYPE (niter), e;
3653 enum tree_code cmp;
3655 gcc_assert (TYPE_UNSIGNED (nit_type));
3657 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
3658 the number of iterations is small. */
3659 if (!double_int_fits_to_tree_p (nit_type, bound))
3660 return false;
3662 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
3663 times. This means that:
3665 -- if NITER_BOUND->is_exit is true, then everything after
3666 it at most NITER_BOUND->bound times.
3668 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
3669 is executed, then NITER_BOUND->stmt is executed as well in the same
3670 iteration then STMT is executed at most NITER_BOUND->bound + 1 times.
3672 If we can determine that NITER_BOUND->stmt is always executed
3673 after STMT, then STMT is executed at most NITER_BOUND->bound + 2 times.
3674 We conclude that if both statements belong to the same
3675 basic block and STMT is before NITER_BOUND->stmt and there are no
3676 statements with side effects in between. */
3678 if (niter_bound->is_exit)
3680 if (stmt == niter_bound->stmt
3681 || !stmt_dominates_stmt_p (niter_bound->stmt, stmt))
3682 return false;
3683 cmp = GE_EXPR;
3685 else
3687 if (!stmt_dominates_stmt_p (niter_bound->stmt, stmt))
3689 gimple_stmt_iterator bsi;
3690 if (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
3691 || gimple_code (stmt) == GIMPLE_PHI
3692 || gimple_code (niter_bound->stmt) == GIMPLE_PHI)
3693 return false;
3695 /* By stmt_dominates_stmt_p we already know that STMT appears
3696 before NITER_BOUND->STMT. Still need to test that the loop
3697 can not be terinated by a side effect in between. */
3698 for (bsi = gsi_for_stmt (stmt); gsi_stmt (bsi) != niter_bound->stmt;
3699 gsi_next (&bsi))
3700 if (gimple_has_side_effects (gsi_stmt (bsi)))
3701 return false;
3702 bound += double_int_one;
3703 if (bound.is_zero ()
3704 || !double_int_fits_to_tree_p (nit_type, bound))
3705 return false;
3707 cmp = GT_EXPR;
3710 e = fold_binary (cmp, boolean_type_node,
3711 niter, double_int_to_tree (nit_type, bound));
3712 return e && integer_nonzerop (e);
3715 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
3717 bool
3718 nowrap_type_p (tree type)
3720 if (INTEGRAL_TYPE_P (type)
3721 && TYPE_OVERFLOW_UNDEFINED (type))
3722 return true;
3724 if (POINTER_TYPE_P (type))
3725 return true;
3727 return false;
3730 /* Return false only when the induction variable BASE + STEP * I is
3731 known to not overflow: i.e. when the number of iterations is small
3732 enough with respect to the step and initial condition in order to
3733 keep the evolution confined in TYPEs bounds. Return true when the
3734 iv is known to overflow or when the property is not computable.
3736 USE_OVERFLOW_SEMANTICS is true if this function should assume that
3737 the rules for overflow of the given language apply (e.g., that signed
3738 arithmetics in C does not overflow). */
3740 bool
3741 scev_probably_wraps_p (tree base, tree step,
3742 gimple at_stmt, struct loop *loop,
3743 bool use_overflow_semantics)
3745 tree delta, step_abs;
3746 tree unsigned_type, valid_niter;
3747 tree type = TREE_TYPE (step);
3748 tree e;
3749 double_int niter;
3750 struct nb_iter_bound *bound;
3752 /* FIXME: We really need something like
3753 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
3755 We used to test for the following situation that frequently appears
3756 during address arithmetics:
3758 D.1621_13 = (long unsigned intD.4) D.1620_12;
3759 D.1622_14 = D.1621_13 * 8;
3760 D.1623_15 = (doubleD.29 *) D.1622_14;
3762 And derived that the sequence corresponding to D_14
3763 can be proved to not wrap because it is used for computing a
3764 memory access; however, this is not really the case -- for example,
3765 if D_12 = (unsigned char) [254,+,1], then D_14 has values
3766 2032, 2040, 0, 8, ..., but the code is still legal. */
3768 if (chrec_contains_undetermined (base)
3769 || chrec_contains_undetermined (step))
3770 return true;
3772 if (integer_zerop (step))
3773 return false;
3775 /* If we can use the fact that signed and pointer arithmetics does not
3776 wrap, we are done. */
3777 if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
3778 return false;
3780 /* To be able to use estimates on number of iterations of the loop,
3781 we must have an upper bound on the absolute value of the step. */
3782 if (TREE_CODE (step) != INTEGER_CST)
3783 return true;
3785 /* Don't issue signed overflow warnings. */
3786 fold_defer_overflow_warnings ();
3788 /* Otherwise, compute the number of iterations before we reach the
3789 bound of the type, and verify that the loop is exited before this
3790 occurs. */
3791 unsigned_type = unsigned_type_for (type);
3792 base = fold_convert (unsigned_type, base);
3794 if (tree_int_cst_sign_bit (step))
3796 tree extreme = fold_convert (unsigned_type,
3797 lower_bound_in_type (type, type));
3798 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
3799 step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
3800 fold_convert (unsigned_type, step));
3802 else
3804 tree extreme = fold_convert (unsigned_type,
3805 upper_bound_in_type (type, type));
3806 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
3807 step_abs = fold_convert (unsigned_type, step);
3810 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
3812 estimate_numbers_of_iterations_loop (loop);
3814 if (max_loop_iterations (loop, &niter)
3815 && double_int_fits_to_tree_p (TREE_TYPE (valid_niter), niter)
3816 && (e = fold_binary (GT_EXPR, boolean_type_node, valid_niter,
3817 double_int_to_tree (TREE_TYPE (valid_niter),
3818 niter))) != NULL
3819 && integer_nonzerop (e))
3821 fold_undefer_and_ignore_overflow_warnings ();
3822 return false;
3824 if (at_stmt)
3825 for (bound = loop->bounds; bound; bound = bound->next)
3827 if (n_of_executions_at_most (at_stmt, bound, valid_niter))
3829 fold_undefer_and_ignore_overflow_warnings ();
3830 return false;
3834 fold_undefer_and_ignore_overflow_warnings ();
3836 /* At this point we still don't have a proof that the iv does not
3837 overflow: give up. */
3838 return true;
3841 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
3843 void
3844 free_numbers_of_iterations_estimates_loop (struct loop *loop)
3846 struct nb_iter_bound *bound, *next;
3848 loop->nb_iterations = NULL;
3849 loop->estimate_state = EST_NOT_COMPUTED;
3850 for (bound = loop->bounds; bound; bound = next)
3852 next = bound->next;
3853 ggc_free (bound);
3856 loop->bounds = NULL;
3859 /* Frees the information on upper bounds on numbers of iterations of loops. */
3861 void
3862 free_numbers_of_iterations_estimates (void)
3864 loop_iterator li;
3865 struct loop *loop;
3867 FOR_EACH_LOOP (li, loop, 0)
3869 free_numbers_of_iterations_estimates_loop (loop);
3873 /* Substitute value VAL for ssa name NAME inside expressions held
3874 at LOOP. */
3876 void
3877 substitute_in_loop_info (struct loop *loop, tree name, tree val)
3879 loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);