Daily bump.
[official-gcc.git] / gcc / tree-vect-loop.c
blob8740a7573acdd5e44777e5f8ca80ab2086685f8a
1 /* Loop Vectorization
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "tree-pass.h"
32 #include "ssa.h"
33 #include "optabs-tree.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "cfganal.h"
38 #include "gimplify.h"
39 #include "gimple-iterator.h"
40 #include "gimplify-me.h"
41 #include "tree-ssa-loop-ivopts.h"
42 #include "tree-ssa-loop-manip.h"
43 #include "tree-ssa-loop-niter.h"
44 #include "tree-ssa-loop.h"
45 #include "cfgloop.h"
46 #include "params.h"
47 #include "tree-scalar-evolution.h"
48 #include "tree-vectorizer.h"
49 #include "gimple-fold.h"
50 #include "cgraph.h"
51 #include "tree-cfg.h"
52 #include "tree-if-conv.h"
54 /* Loop Vectorization Pass.
56 This pass tries to vectorize loops.
58 For example, the vectorizer transforms the following simple loop:
60 short a[N]; short b[N]; short c[N]; int i;
62 for (i=0; i<N; i++){
63 a[i] = b[i] + c[i];
66 as if it was manually vectorized by rewriting the source code into:
68 typedef int __attribute__((mode(V8HI))) v8hi;
69 short a[N]; short b[N]; short c[N]; int i;
70 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
71 v8hi va, vb, vc;
73 for (i=0; i<N/8; i++){
74 vb = pb[i];
75 vc = pc[i];
76 va = vb + vc;
77 pa[i] = va;
80 The main entry to this pass is vectorize_loops(), in which
81 the vectorizer applies a set of analyses on a given set of loops,
82 followed by the actual vectorization transformation for the loops that
83 had successfully passed the analysis phase.
84 Throughout this pass we make a distinction between two types of
85 data: scalars (which are represented by SSA_NAMES), and memory references
86 ("data-refs"). These two types of data require different handling both
87 during analysis and transformation. The types of data-refs that the
88 vectorizer currently supports are ARRAY_REFS which base is an array DECL
89 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
90 accesses are required to have a simple (consecutive) access pattern.
92 Analysis phase:
93 ===============
94 The driver for the analysis phase is vect_analyze_loop().
95 It applies a set of analyses, some of which rely on the scalar evolution
96 analyzer (scev) developed by Sebastian Pop.
98 During the analysis phase the vectorizer records some information
99 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
100 loop, as well as general information about the loop as a whole, which is
101 recorded in a "loop_vec_info" struct attached to each loop.
103 Transformation phase:
104 =====================
105 The loop transformation phase scans all the stmts in the loop, and
106 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
107 the loop that needs to be vectorized. It inserts the vector code sequence
108 just before the scalar stmt S, and records a pointer to the vector code
109 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
110 attached to S). This pointer will be used for the vectorization of following
111 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
112 otherwise, we rely on dead code elimination for removing it.
114 For example, say stmt S1 was vectorized into stmt VS1:
116 VS1: vb = px[i];
117 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
118 S2: a = b;
120 To vectorize stmt S2, the vectorizer first finds the stmt that defines
121 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
122 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
123 resulting sequence would be:
125 VS1: vb = px[i];
126 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
127 VS2: va = vb;
128 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
130 Operands that are not SSA_NAMEs, are data-refs that appear in
131 load/store operations (like 'x[i]' in S1), and are handled differently.
133 Target modeling:
134 =================
135 Currently the only target specific information that is used is the
136 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
137 Targets that can support different sizes of vectors, for now will need
138 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
139 flexibility will be added in the future.
141 Since we only vectorize operations which vector form can be
142 expressed using existing tree codes, to verify that an operation is
143 supported, the vectorizer checks the relevant optab at the relevant
144 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
145 the value found is CODE_FOR_nothing, then there's no target support, and
146 we can't vectorize the stmt.
148 For additional information on this project see:
149 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
152 static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
154 /* Function vect_determine_vectorization_factor
156 Determine the vectorization factor (VF). VF is the number of data elements
157 that are operated upon in parallel in a single iteration of the vectorized
158 loop. For example, when vectorizing a loop that operates on 4byte elements,
159 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
160 elements can fit in a single vector register.
162 We currently support vectorization of loops in which all types operated upon
163 are of the same size. Therefore this function currently sets VF according to
164 the size of the types operated upon, and fails if there are multiple sizes
165 in the loop.
167 VF is also the factor by which the loop iterations are strip-mined, e.g.:
168 original loop:
169 for (i=0; i<N; i++){
170 a[i] = b[i] + c[i];
173 vectorized loop:
174 for (i=0; i<N; i+=VF){
175 a[i:VF] = b[i:VF] + c[i:VF];
179 static bool
180 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
182 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
183 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
184 unsigned nbbs = loop->num_nodes;
185 unsigned int vectorization_factor = 0;
186 tree scalar_type = NULL_TREE;
187 gphi *phi;
188 tree vectype;
189 unsigned int nunits;
190 stmt_vec_info stmt_info;
191 unsigned i;
192 HOST_WIDE_INT dummy;
193 gimple *stmt, *pattern_stmt = NULL;
194 gimple_seq pattern_def_seq = NULL;
195 gimple_stmt_iterator pattern_def_si = gsi_none ();
196 bool analyze_pattern_stmt = false;
197 bool bool_result;
198 auto_vec<stmt_vec_info> mask_producers;
200 if (dump_enabled_p ())
201 dump_printf_loc (MSG_NOTE, vect_location,
202 "=== vect_determine_vectorization_factor ===\n");
204 for (i = 0; i < nbbs; i++)
206 basic_block bb = bbs[i];
208 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
209 gsi_next (&si))
211 phi = si.phi ();
212 stmt_info = vinfo_for_stmt (phi);
213 if (dump_enabled_p ())
215 dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
216 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
219 gcc_assert (stmt_info);
221 if (STMT_VINFO_RELEVANT_P (stmt_info)
222 || STMT_VINFO_LIVE_P (stmt_info))
224 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
225 scalar_type = TREE_TYPE (PHI_RESULT (phi));
227 if (dump_enabled_p ())
229 dump_printf_loc (MSG_NOTE, vect_location,
230 "get vectype for scalar type: ");
231 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
232 dump_printf (MSG_NOTE, "\n");
235 vectype = get_vectype_for_scalar_type (scalar_type);
236 if (!vectype)
238 if (dump_enabled_p ())
240 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
241 "not vectorized: unsupported "
242 "data-type ");
243 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
244 scalar_type);
245 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
247 return false;
249 STMT_VINFO_VECTYPE (stmt_info) = vectype;
251 if (dump_enabled_p ())
253 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
254 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
255 dump_printf (MSG_NOTE, "\n");
258 nunits = TYPE_VECTOR_SUBPARTS (vectype);
259 if (dump_enabled_p ())
260 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n",
261 nunits);
263 if (!vectorization_factor
264 || (nunits > vectorization_factor))
265 vectorization_factor = nunits;
269 for (gimple_stmt_iterator si = gsi_start_bb (bb);
270 !gsi_end_p (si) || analyze_pattern_stmt;)
272 tree vf_vectype;
274 if (analyze_pattern_stmt)
275 stmt = pattern_stmt;
276 else
277 stmt = gsi_stmt (si);
279 stmt_info = vinfo_for_stmt (stmt);
281 if (dump_enabled_p ())
283 dump_printf_loc (MSG_NOTE, vect_location,
284 "==> examining statement: ");
285 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
288 gcc_assert (stmt_info);
290 /* Skip stmts which do not need to be vectorized. */
291 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
292 && !STMT_VINFO_LIVE_P (stmt_info))
293 || gimple_clobber_p (stmt))
295 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
296 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
297 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
298 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
300 stmt = pattern_stmt;
301 stmt_info = vinfo_for_stmt (pattern_stmt);
302 if (dump_enabled_p ())
304 dump_printf_loc (MSG_NOTE, vect_location,
305 "==> examining pattern statement: ");
306 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
309 else
311 if (dump_enabled_p ())
312 dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
313 gsi_next (&si);
314 continue;
317 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
318 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
319 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
320 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
321 analyze_pattern_stmt = true;
323 /* If a pattern statement has def stmts, analyze them too. */
324 if (is_pattern_stmt_p (stmt_info))
326 if (pattern_def_seq == NULL)
328 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
329 pattern_def_si = gsi_start (pattern_def_seq);
331 else if (!gsi_end_p (pattern_def_si))
332 gsi_next (&pattern_def_si);
333 if (pattern_def_seq != NULL)
335 gimple *pattern_def_stmt = NULL;
336 stmt_vec_info pattern_def_stmt_info = NULL;
338 while (!gsi_end_p (pattern_def_si))
340 pattern_def_stmt = gsi_stmt (pattern_def_si);
341 pattern_def_stmt_info
342 = vinfo_for_stmt (pattern_def_stmt);
343 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
344 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
345 break;
346 gsi_next (&pattern_def_si);
349 if (!gsi_end_p (pattern_def_si))
351 if (dump_enabled_p ())
353 dump_printf_loc (MSG_NOTE, vect_location,
354 "==> examining pattern def stmt: ");
355 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
356 pattern_def_stmt, 0);
359 stmt = pattern_def_stmt;
360 stmt_info = pattern_def_stmt_info;
362 else
364 pattern_def_si = gsi_none ();
365 analyze_pattern_stmt = false;
368 else
369 analyze_pattern_stmt = false;
372 if (gimple_get_lhs (stmt) == NULL_TREE
373 /* MASK_STORE has no lhs, but is ok. */
374 && (!is_gimple_call (stmt)
375 || !gimple_call_internal_p (stmt)
376 || gimple_call_internal_fn (stmt) != IFN_MASK_STORE))
378 if (is_gimple_call (stmt))
380 /* Ignore calls with no lhs. These must be calls to
381 #pragma omp simd functions, and what vectorization factor
382 it really needs can't be determined until
383 vectorizable_simd_clone_call. */
384 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
386 pattern_def_seq = NULL;
387 gsi_next (&si);
389 continue;
391 if (dump_enabled_p ())
393 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
394 "not vectorized: irregular stmt.");
395 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
398 return false;
401 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
403 if (dump_enabled_p ())
405 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
406 "not vectorized: vector stmt in loop:");
407 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
409 return false;
412 bool_result = false;
414 if (STMT_VINFO_VECTYPE (stmt_info))
416 /* The only case when a vectype had been already set is for stmts
417 that contain a dataref, or for "pattern-stmts" (stmts
418 generated by the vectorizer to represent/replace a certain
419 idiom). */
420 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
421 || is_pattern_stmt_p (stmt_info)
422 || !gsi_end_p (pattern_def_si));
423 vectype = STMT_VINFO_VECTYPE (stmt_info);
425 else
427 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
428 if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
429 scalar_type = TREE_TYPE (gimple_call_arg (stmt, 3));
430 else
431 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
433 /* Bool ops don't participate in vectorization factor
434 computation. For comparison use compared types to
435 compute a factor. */
436 if (VECT_SCALAR_BOOLEAN_TYPE_P (scalar_type)
437 && is_gimple_assign (stmt)
438 && gimple_assign_rhs_code (stmt) != COND_EXPR)
440 if (STMT_VINFO_RELEVANT_P (stmt_info)
441 || STMT_VINFO_LIVE_P (stmt_info))
442 mask_producers.safe_push (stmt_info);
443 bool_result = true;
445 if (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt))
446 == tcc_comparison
447 && !VECT_SCALAR_BOOLEAN_TYPE_P
448 (TREE_TYPE (gimple_assign_rhs1 (stmt))))
449 scalar_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
450 else
452 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
454 pattern_def_seq = NULL;
455 gsi_next (&si);
457 continue;
461 if (dump_enabled_p ())
463 dump_printf_loc (MSG_NOTE, vect_location,
464 "get vectype for scalar type: ");
465 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
466 dump_printf (MSG_NOTE, "\n");
468 vectype = get_vectype_for_scalar_type (scalar_type);
469 if (!vectype)
471 if (dump_enabled_p ())
473 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
474 "not vectorized: unsupported "
475 "data-type ");
476 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
477 scalar_type);
478 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
480 return false;
483 if (!bool_result)
484 STMT_VINFO_VECTYPE (stmt_info) = vectype;
486 if (dump_enabled_p ())
488 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
489 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
490 dump_printf (MSG_NOTE, "\n");
494 /* Don't try to compute VF out scalar types if we stmt
495 produces boolean vector. Use result vectype instead. */
496 if (VECTOR_BOOLEAN_TYPE_P (vectype))
497 vf_vectype = vectype;
498 else
500 /* The vectorization factor is according to the smallest
501 scalar type (or the largest vector size, but we only
502 support one vector size per loop). */
503 if (!bool_result)
504 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
505 &dummy);
506 if (dump_enabled_p ())
508 dump_printf_loc (MSG_NOTE, vect_location,
509 "get vectype for scalar type: ");
510 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
511 dump_printf (MSG_NOTE, "\n");
513 vf_vectype = get_vectype_for_scalar_type (scalar_type);
515 if (!vf_vectype)
517 if (dump_enabled_p ())
519 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
520 "not vectorized: unsupported data-type ");
521 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
522 scalar_type);
523 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
525 return false;
528 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
529 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
531 if (dump_enabled_p ())
533 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
534 "not vectorized: different sized vector "
535 "types in statement, ");
536 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
537 vectype);
538 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
539 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
540 vf_vectype);
541 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
543 return false;
546 if (dump_enabled_p ())
548 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
549 dump_generic_expr (MSG_NOTE, TDF_SLIM, vf_vectype);
550 dump_printf (MSG_NOTE, "\n");
553 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
554 if (dump_enabled_p ())
555 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n", nunits);
556 if (!vectorization_factor
557 || (nunits > vectorization_factor))
558 vectorization_factor = nunits;
560 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
562 pattern_def_seq = NULL;
563 gsi_next (&si);
568 /* TODO: Analyze cost. Decide if worth while to vectorize. */
569 if (dump_enabled_p ())
570 dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = %d\n",
571 vectorization_factor);
572 if (vectorization_factor <= 1)
574 if (dump_enabled_p ())
575 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
576 "not vectorized: unsupported data-type\n");
577 return false;
579 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
581 for (i = 0; i < mask_producers.length (); i++)
583 tree mask_type = NULL;
585 stmt = STMT_VINFO_STMT (mask_producers[i]);
587 if (is_gimple_assign (stmt)
588 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison
589 && !VECT_SCALAR_BOOLEAN_TYPE_P
590 (TREE_TYPE (gimple_assign_rhs1 (stmt))))
592 scalar_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
593 mask_type = get_mask_type_for_scalar_type (scalar_type);
595 if (!mask_type)
597 if (dump_enabled_p ())
598 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
599 "not vectorized: unsupported mask\n");
600 return false;
603 else
605 tree rhs;
606 ssa_op_iter iter;
607 gimple *def_stmt;
608 enum vect_def_type dt;
610 FOR_EACH_SSA_TREE_OPERAND (rhs, stmt, iter, SSA_OP_USE)
612 if (!vect_is_simple_use (rhs, mask_producers[i]->vinfo,
613 &def_stmt, &dt, &vectype))
615 if (dump_enabled_p ())
617 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
618 "not vectorized: can't compute mask type "
619 "for statement, ");
620 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
623 return false;
626 /* No vectype probably means external definition.
627 Allow it in case there is another operand which
628 allows to determine mask type. */
629 if (!vectype)
630 continue;
632 if (!mask_type)
633 mask_type = vectype;
634 else if (TYPE_VECTOR_SUBPARTS (mask_type)
635 != TYPE_VECTOR_SUBPARTS (vectype))
637 if (dump_enabled_p ())
639 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
640 "not vectorized: different sized masks "
641 "types in statement, ");
642 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
643 mask_type);
644 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
645 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
646 vectype);
647 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
649 return false;
651 else if (VECTOR_BOOLEAN_TYPE_P (mask_type)
652 != VECTOR_BOOLEAN_TYPE_P (vectype))
654 if (dump_enabled_p ())
656 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
657 "not vectorized: mixed mask and "
658 "nonmask vector types in statement, ");
659 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
660 mask_type);
661 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
662 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
663 vectype);
664 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
666 return false;
670 /* We may compare boolean value loaded as vector of integers.
671 Fix mask_type in such case. */
672 if (mask_type
673 && !VECTOR_BOOLEAN_TYPE_P (mask_type)
674 && gimple_code (stmt) == GIMPLE_ASSIGN
675 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
676 mask_type = build_same_sized_truth_vector_type (mask_type);
679 /* No mask_type should mean loop invariant predicate.
680 This is probably a subject for optimization in
681 if-conversion. */
682 if (!mask_type)
684 if (dump_enabled_p ())
686 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
687 "not vectorized: can't compute mask type "
688 "for statement, ");
689 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
692 return false;
695 STMT_VINFO_VECTYPE (mask_producers[i]) = mask_type;
698 return true;
702 /* Function vect_is_simple_iv_evolution.
704 FORNOW: A simple evolution of an induction variables in the loop is
705 considered a polynomial evolution. */
707 static bool
708 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
709 tree * step)
711 tree init_expr;
712 tree step_expr;
713 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
714 basic_block bb;
716 /* When there is no evolution in this loop, the evolution function
717 is not "simple". */
718 if (evolution_part == NULL_TREE)
719 return false;
721 /* When the evolution is a polynomial of degree >= 2
722 the evolution function is not "simple". */
723 if (tree_is_chrec (evolution_part))
724 return false;
726 step_expr = evolution_part;
727 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
729 if (dump_enabled_p ())
731 dump_printf_loc (MSG_NOTE, vect_location, "step: ");
732 dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
733 dump_printf (MSG_NOTE, ", init: ");
734 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
735 dump_printf (MSG_NOTE, "\n");
738 *init = init_expr;
739 *step = step_expr;
741 if (TREE_CODE (step_expr) != INTEGER_CST
742 && (TREE_CODE (step_expr) != SSA_NAME
743 || ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
744 && flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
745 || (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
746 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
747 || !flag_associative_math)))
748 && (TREE_CODE (step_expr) != REAL_CST
749 || !flag_associative_math))
751 if (dump_enabled_p ())
752 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
753 "step unknown.\n");
754 return false;
757 return true;
760 /* Function vect_analyze_scalar_cycles_1.
762 Examine the cross iteration def-use cycles of scalar variables
763 in LOOP. LOOP_VINFO represents the loop that is now being
764 considered for vectorization (can be LOOP, or an outer-loop
765 enclosing LOOP). */
767 static void
768 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
770 basic_block bb = loop->header;
771 tree init, step;
772 auto_vec<gimple *, 64> worklist;
773 gphi_iterator gsi;
774 bool double_reduc;
776 if (dump_enabled_p ())
777 dump_printf_loc (MSG_NOTE, vect_location,
778 "=== vect_analyze_scalar_cycles ===\n");
780 /* First - identify all inductions. Reduction detection assumes that all the
781 inductions have been identified, therefore, this order must not be
782 changed. */
783 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
785 gphi *phi = gsi.phi ();
786 tree access_fn = NULL;
787 tree def = PHI_RESULT (phi);
788 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
790 if (dump_enabled_p ())
792 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
793 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
796 /* Skip virtual phi's. The data dependences that are associated with
797 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
798 if (virtual_operand_p (def))
799 continue;
801 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
803 /* Analyze the evolution function. */
804 access_fn = analyze_scalar_evolution (loop, def);
805 if (access_fn)
807 STRIP_NOPS (access_fn);
808 if (dump_enabled_p ())
810 dump_printf_loc (MSG_NOTE, vect_location,
811 "Access function of PHI: ");
812 dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
813 dump_printf (MSG_NOTE, "\n");
815 STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
816 = initial_condition_in_loop_num (access_fn, loop->num);
817 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
818 = evolution_part_in_loop_num (access_fn, loop->num);
821 if (!access_fn
822 || !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
823 || (LOOP_VINFO_LOOP (loop_vinfo) != loop
824 && TREE_CODE (step) != INTEGER_CST))
826 worklist.safe_push (phi);
827 continue;
830 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
831 != NULL_TREE);
832 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
834 if (dump_enabled_p ())
835 dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
836 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
840 /* Second - identify all reductions and nested cycles. */
841 while (worklist.length () > 0)
843 gimple *phi = worklist.pop ();
844 tree def = PHI_RESULT (phi);
845 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
846 gimple *reduc_stmt;
848 if (dump_enabled_p ())
850 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
851 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
854 gcc_assert (!virtual_operand_p (def)
855 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
857 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi,
858 &double_reduc, false);
859 if (reduc_stmt)
861 if (double_reduc)
863 if (dump_enabled_p ())
864 dump_printf_loc (MSG_NOTE, vect_location,
865 "Detected double reduction.\n");
867 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
868 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
869 vect_double_reduction_def;
871 else
873 if (loop != LOOP_VINFO_LOOP (loop_vinfo))
875 if (dump_enabled_p ())
876 dump_printf_loc (MSG_NOTE, vect_location,
877 "Detected vectorizable nested cycle.\n");
879 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
880 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
881 vect_nested_cycle;
883 else
885 if (dump_enabled_p ())
886 dump_printf_loc (MSG_NOTE, vect_location,
887 "Detected reduction.\n");
889 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
890 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
891 vect_reduction_def;
892 /* Store the reduction cycles for possible vectorization in
893 loop-aware SLP if it was not detected as reduction
894 chain. */
895 if (! GROUP_FIRST_ELEMENT (vinfo_for_stmt (reduc_stmt)))
896 LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
900 else
901 if (dump_enabled_p ())
902 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
903 "Unknown def-use cycle pattern.\n");
908 /* Function vect_analyze_scalar_cycles.
910 Examine the cross iteration def-use cycles of scalar variables, by
911 analyzing the loop-header PHIs of scalar variables. Classify each
912 cycle as one of the following: invariant, induction, reduction, unknown.
913 We do that for the loop represented by LOOP_VINFO, and also to its
914 inner-loop, if exists.
915 Examples for scalar cycles:
917 Example1: reduction:
919 loop1:
920 for (i=0; i<N; i++)
921 sum += a[i];
923 Example2: induction:
925 loop2:
926 for (i=0; i<N; i++)
927 a[i] = i; */
929 static void
930 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
932 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
934 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
936 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
937 Reductions in such inner-loop therefore have different properties than
938 the reductions in the nest that gets vectorized:
939 1. When vectorized, they are executed in the same order as in the original
940 scalar loop, so we can't change the order of computation when
941 vectorizing them.
942 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
943 current checks are too strict. */
945 if (loop->inner)
946 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
949 /* Transfer group and reduction information from STMT to its pattern stmt. */
951 static void
952 vect_fixup_reduc_chain (gimple *stmt)
954 gimple *firstp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
955 gimple *stmtp;
956 gcc_assert (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (firstp))
957 && GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
958 GROUP_SIZE (vinfo_for_stmt (firstp)) = GROUP_SIZE (vinfo_for_stmt (stmt));
961 stmtp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
962 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmtp)) = firstp;
963 stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
964 if (stmt)
965 GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmtp))
966 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
968 while (stmt);
969 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmtp)) = vect_reduction_def;
972 /* Fixup scalar cycles that now have their stmts detected as patterns. */
974 static void
975 vect_fixup_scalar_cycles_with_patterns (loop_vec_info loop_vinfo)
977 gimple *first;
978 unsigned i;
980 FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo), i, first)
981 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (first)))
983 gimple *next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (first));
984 while (next)
986 if (! STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (next)))
987 break;
988 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
990 /* If not all stmt in the chain are patterns try to handle
991 the chain without patterns. */
992 if (! next)
994 vect_fixup_reduc_chain (first);
995 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo)[i]
996 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (first));
1001 /* Function vect_get_loop_niters.
1003 Determine how many iterations the loop is executed and place it
1004 in NUMBER_OF_ITERATIONS. Place the number of latch iterations
1005 in NUMBER_OF_ITERATIONSM1. Place the condition under which the
1006 niter information holds in ASSUMPTIONS.
1008 Return the loop exit condition. */
1011 static gcond *
1012 vect_get_loop_niters (struct loop *loop, tree *assumptions,
1013 tree *number_of_iterations, tree *number_of_iterationsm1)
1015 edge exit = single_exit (loop);
1016 struct tree_niter_desc niter_desc;
1017 tree niter_assumptions, niter, may_be_zero;
1018 gcond *cond = get_loop_exit_condition (loop);
1020 *assumptions = boolean_true_node;
1021 *number_of_iterationsm1 = chrec_dont_know;
1022 *number_of_iterations = chrec_dont_know;
1023 if (dump_enabled_p ())
1024 dump_printf_loc (MSG_NOTE, vect_location,
1025 "=== get_loop_niters ===\n");
1027 if (!exit)
1028 return cond;
1030 niter = chrec_dont_know;
1031 may_be_zero = NULL_TREE;
1032 niter_assumptions = boolean_true_node;
1033 if (!number_of_iterations_exit_assumptions (loop, exit, &niter_desc, NULL)
1034 || chrec_contains_undetermined (niter_desc.niter))
1035 return cond;
1037 niter_assumptions = niter_desc.assumptions;
1038 may_be_zero = niter_desc.may_be_zero;
1039 niter = niter_desc.niter;
1041 if (may_be_zero && integer_zerop (may_be_zero))
1042 may_be_zero = NULL_TREE;
1044 if (may_be_zero)
1046 if (COMPARISON_CLASS_P (may_be_zero))
1048 /* Try to combine may_be_zero with assumptions, this can simplify
1049 computation of niter expression. */
1050 if (niter_assumptions && !integer_nonzerop (niter_assumptions))
1051 niter_assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1052 niter_assumptions,
1053 fold_build1 (TRUTH_NOT_EXPR,
1054 boolean_type_node,
1055 may_be_zero));
1056 else
1057 niter = fold_build3 (COND_EXPR, TREE_TYPE (niter), may_be_zero,
1058 build_int_cst (TREE_TYPE (niter), 0), niter);
1060 may_be_zero = NULL_TREE;
1062 else if (integer_nonzerop (may_be_zero))
1064 *number_of_iterationsm1 = build_int_cst (TREE_TYPE (niter), 0);
1065 *number_of_iterations = build_int_cst (TREE_TYPE (niter), 1);
1066 return cond;
1068 else
1069 return cond;
1072 *assumptions = niter_assumptions;
1073 *number_of_iterationsm1 = niter;
1075 /* We want the number of loop header executions which is the number
1076 of latch executions plus one.
1077 ??? For UINT_MAX latch executions this number overflows to zero
1078 for loops like do { n++; } while (n != 0); */
1079 if (niter && !chrec_contains_undetermined (niter))
1080 niter = fold_build2 (PLUS_EXPR, TREE_TYPE (niter), unshare_expr (niter),
1081 build_int_cst (TREE_TYPE (niter), 1));
1082 *number_of_iterations = niter;
1084 return cond;
1087 /* Function bb_in_loop_p
1089 Used as predicate for dfs order traversal of the loop bbs. */
1091 static bool
1092 bb_in_loop_p (const_basic_block bb, const void *data)
1094 const struct loop *const loop = (const struct loop *)data;
1095 if (flow_bb_inside_loop_p (loop, bb))
1096 return true;
1097 return false;
1101 /* Function new_loop_vec_info.
1103 Create and initialize a new loop_vec_info struct for LOOP, as well as
1104 stmt_vec_info structs for all the stmts in LOOP. */
1106 static loop_vec_info
1107 new_loop_vec_info (struct loop *loop)
1109 loop_vec_info res;
1110 basic_block *bbs;
1111 gimple_stmt_iterator si;
1112 unsigned int i, nbbs;
1114 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
1115 res->kind = vec_info::loop;
1116 LOOP_VINFO_LOOP (res) = loop;
1118 bbs = get_loop_body (loop);
1120 /* Create/Update stmt_info for all stmts in the loop. */
1121 for (i = 0; i < loop->num_nodes; i++)
1123 basic_block bb = bbs[i];
1125 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1127 gimple *phi = gsi_stmt (si);
1128 gimple_set_uid (phi, 0);
1129 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res));
1132 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1134 gimple *stmt = gsi_stmt (si);
1135 gimple_set_uid (stmt, 0);
1136 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res));
1140 /* CHECKME: We want to visit all BBs before their successors (except for
1141 latch blocks, for which this assertion wouldn't hold). In the simple
1142 case of the loop forms we allow, a dfs order of the BBs would the same
1143 as reversed postorder traversal, so we are safe. */
1145 free (bbs);
1146 bbs = XCNEWVEC (basic_block, loop->num_nodes);
1147 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
1148 bbs, loop->num_nodes, loop);
1149 gcc_assert (nbbs == loop->num_nodes);
1151 LOOP_VINFO_BBS (res) = bbs;
1152 LOOP_VINFO_NITERSM1 (res) = NULL;
1153 LOOP_VINFO_NITERS (res) = NULL;
1154 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
1155 LOOP_VINFO_NITERS_ASSUMPTIONS (res) = NULL;
1156 LOOP_VINFO_COST_MODEL_THRESHOLD (res) = 0;
1157 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
1158 LOOP_VINFO_PEELING_FOR_ALIGNMENT (res) = 0;
1159 LOOP_VINFO_VECT_FACTOR (res) = 0;
1160 LOOP_VINFO_LOOP_NEST (res) = vNULL;
1161 LOOP_VINFO_DATAREFS (res) = vNULL;
1162 LOOP_VINFO_DDRS (res) = vNULL;
1163 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
1164 LOOP_VINFO_MAY_MISALIGN_STMTS (res) = vNULL;
1165 LOOP_VINFO_MAY_ALIAS_DDRS (res) = vNULL;
1166 LOOP_VINFO_GROUPED_STORES (res) = vNULL;
1167 LOOP_VINFO_REDUCTIONS (res) = vNULL;
1168 LOOP_VINFO_REDUCTION_CHAINS (res) = vNULL;
1169 LOOP_VINFO_SLP_INSTANCES (res) = vNULL;
1170 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
1171 LOOP_VINFO_TARGET_COST_DATA (res) = init_cost (loop);
1172 LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
1173 LOOP_VINFO_PEELING_FOR_NITER (res) = false;
1174 LOOP_VINFO_OPERANDS_SWAPPED (res) = false;
1175 LOOP_VINFO_ORIG_LOOP_INFO (res) = NULL;
1177 return res;
1181 /* Function destroy_loop_vec_info.
1183 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
1184 stmts in the loop. */
1186 void
1187 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
1189 struct loop *loop;
1190 basic_block *bbs;
1191 int nbbs;
1192 gimple_stmt_iterator si;
1193 int j;
1194 vec<slp_instance> slp_instances;
1195 slp_instance instance;
1196 bool swapped;
1198 if (!loop_vinfo)
1199 return;
1201 loop = LOOP_VINFO_LOOP (loop_vinfo);
1203 bbs = LOOP_VINFO_BBS (loop_vinfo);
1204 nbbs = clean_stmts ? loop->num_nodes : 0;
1205 swapped = LOOP_VINFO_OPERANDS_SWAPPED (loop_vinfo);
1207 for (j = 0; j < nbbs; j++)
1209 basic_block bb = bbs[j];
1210 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1211 free_stmt_vec_info (gsi_stmt (si));
1213 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
1215 gimple *stmt = gsi_stmt (si);
1217 /* We may have broken canonical form by moving a constant
1218 into RHS1 of a commutative op. Fix such occurrences. */
1219 if (swapped && is_gimple_assign (stmt))
1221 enum tree_code code = gimple_assign_rhs_code (stmt);
1223 if ((code == PLUS_EXPR
1224 || code == POINTER_PLUS_EXPR
1225 || code == MULT_EXPR)
1226 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
1227 swap_ssa_operands (stmt,
1228 gimple_assign_rhs1_ptr (stmt),
1229 gimple_assign_rhs2_ptr (stmt));
1230 else if (code == COND_EXPR
1231 && CONSTANT_CLASS_P (gimple_assign_rhs2 (stmt)))
1233 tree cond_expr = gimple_assign_rhs1 (stmt);
1234 enum tree_code cond_code = TREE_CODE (cond_expr);
1236 if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
1238 bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr,
1239 0));
1240 cond_code = invert_tree_comparison (cond_code,
1241 honor_nans);
1242 if (cond_code != ERROR_MARK)
1244 TREE_SET_CODE (cond_expr, cond_code);
1245 swap_ssa_operands (stmt,
1246 gimple_assign_rhs2_ptr (stmt),
1247 gimple_assign_rhs3_ptr (stmt));
1253 /* Free stmt_vec_info. */
1254 free_stmt_vec_info (stmt);
1255 gsi_next (&si);
1259 free (LOOP_VINFO_BBS (loop_vinfo));
1260 vect_destroy_datarefs (loop_vinfo);
1261 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
1262 LOOP_VINFO_LOOP_NEST (loop_vinfo).release ();
1263 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).release ();
1264 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
1265 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).release ();
1266 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
1267 FOR_EACH_VEC_ELT (slp_instances, j, instance)
1268 vect_free_slp_instance (instance);
1270 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
1271 LOOP_VINFO_GROUPED_STORES (loop_vinfo).release ();
1272 LOOP_VINFO_REDUCTIONS (loop_vinfo).release ();
1273 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).release ();
1275 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
1276 loop_vinfo->scalar_cost_vec.release ();
1278 free (loop_vinfo);
1279 loop->aux = NULL;
1283 /* Calculate the cost of one scalar iteration of the loop. */
1284 static void
1285 vect_compute_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
1287 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1288 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1289 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
1290 int innerloop_iters, i;
1292 /* Count statements in scalar loop. Using this as scalar cost for a single
1293 iteration for now.
1295 TODO: Add outer loop support.
1297 TODO: Consider assigning different costs to different scalar
1298 statements. */
1300 /* FORNOW. */
1301 innerloop_iters = 1;
1302 if (loop->inner)
1303 innerloop_iters = 50; /* FIXME */
1305 for (i = 0; i < nbbs; i++)
1307 gimple_stmt_iterator si;
1308 basic_block bb = bbs[i];
1310 if (bb->loop_father == loop->inner)
1311 factor = innerloop_iters;
1312 else
1313 factor = 1;
1315 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1317 gimple *stmt = gsi_stmt (si);
1318 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1320 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
1321 continue;
1323 /* Skip stmts that are not vectorized inside the loop. */
1324 if (stmt_info
1325 && !STMT_VINFO_RELEVANT_P (stmt_info)
1326 && (!STMT_VINFO_LIVE_P (stmt_info)
1327 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1328 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
1329 continue;
1331 vect_cost_for_stmt kind;
1332 if (STMT_VINFO_DATA_REF (stmt_info))
1334 if (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)))
1335 kind = scalar_load;
1336 else
1337 kind = scalar_store;
1339 else
1340 kind = scalar_stmt;
1342 scalar_single_iter_cost
1343 += record_stmt_cost (&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
1344 factor, kind, stmt_info, 0, vect_prologue);
1347 LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo)
1348 = scalar_single_iter_cost;
1352 /* Function vect_analyze_loop_form_1.
1354 Verify that certain CFG restrictions hold, including:
1355 - the loop has a pre-header
1356 - the loop has a single entry and exit
1357 - the loop exit condition is simple enough
1358 - the number of iterations can be analyzed, i.e, a countable loop. The
1359 niter could be analyzed under some assumptions. */
1361 bool
1362 vect_analyze_loop_form_1 (struct loop *loop, gcond **loop_cond,
1363 tree *assumptions, tree *number_of_iterationsm1,
1364 tree *number_of_iterations, gcond **inner_loop_cond)
1366 if (dump_enabled_p ())
1367 dump_printf_loc (MSG_NOTE, vect_location,
1368 "=== vect_analyze_loop_form ===\n");
1370 /* Different restrictions apply when we are considering an inner-most loop,
1371 vs. an outer (nested) loop.
1372 (FORNOW. May want to relax some of these restrictions in the future). */
1374 if (!loop->inner)
1376 /* Inner-most loop. We currently require that the number of BBs is
1377 exactly 2 (the header and latch). Vectorizable inner-most loops
1378 look like this:
1380 (pre-header)
1382 header <--------+
1383 | | |
1384 | +--> latch --+
1386 (exit-bb) */
1388 if (loop->num_nodes != 2)
1390 if (dump_enabled_p ())
1391 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1392 "not vectorized: control flow in loop.\n");
1393 return false;
1396 if (empty_block_p (loop->header))
1398 if (dump_enabled_p ())
1399 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1400 "not vectorized: empty loop.\n");
1401 return false;
1404 else
1406 struct loop *innerloop = loop->inner;
1407 edge entryedge;
1409 /* Nested loop. We currently require that the loop is doubly-nested,
1410 contains a single inner loop, and the number of BBs is exactly 5.
1411 Vectorizable outer-loops look like this:
1413 (pre-header)
1415 header <---+
1417 inner-loop |
1419 tail ------+
1421 (exit-bb)
1423 The inner-loop has the properties expected of inner-most loops
1424 as described above. */
1426 if ((loop->inner)->inner || (loop->inner)->next)
1428 if (dump_enabled_p ())
1429 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1430 "not vectorized: multiple nested loops.\n");
1431 return false;
1434 if (loop->num_nodes != 5)
1436 if (dump_enabled_p ())
1437 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1438 "not vectorized: control flow in loop.\n");
1439 return false;
1442 entryedge = loop_preheader_edge (innerloop);
1443 if (entryedge->src != loop->header
1444 || !single_exit (innerloop)
1445 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1447 if (dump_enabled_p ())
1448 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1449 "not vectorized: unsupported outerloop form.\n");
1450 return false;
1453 /* Analyze the inner-loop. */
1454 tree inner_niterm1, inner_niter, inner_assumptions;
1455 if (! vect_analyze_loop_form_1 (loop->inner, inner_loop_cond,
1456 &inner_assumptions, &inner_niterm1,
1457 &inner_niter, NULL)
1458 /* Don't support analyzing niter under assumptions for inner
1459 loop. */
1460 || !integer_onep (inner_assumptions))
1462 if (dump_enabled_p ())
1463 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1464 "not vectorized: Bad inner loop.\n");
1465 return false;
1468 if (!expr_invariant_in_loop_p (loop, inner_niter))
1470 if (dump_enabled_p ())
1471 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1472 "not vectorized: inner-loop count not"
1473 " invariant.\n");
1474 return false;
1477 if (dump_enabled_p ())
1478 dump_printf_loc (MSG_NOTE, vect_location,
1479 "Considering outer-loop vectorization.\n");
1482 if (!single_exit (loop)
1483 || EDGE_COUNT (loop->header->preds) != 2)
1485 if (dump_enabled_p ())
1487 if (!single_exit (loop))
1488 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1489 "not vectorized: multiple exits.\n");
1490 else if (EDGE_COUNT (loop->header->preds) != 2)
1491 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1492 "not vectorized: too many incoming edges.\n");
1494 return false;
1497 /* We assume that the loop exit condition is at the end of the loop. i.e,
1498 that the loop is represented as a do-while (with a proper if-guard
1499 before the loop if needed), where the loop header contains all the
1500 executable statements, and the latch is empty. */
1501 if (!empty_block_p (loop->latch)
1502 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1504 if (dump_enabled_p ())
1505 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1506 "not vectorized: latch block not empty.\n");
1507 return false;
1510 /* Make sure the exit is not abnormal. */
1511 edge e = single_exit (loop);
1512 if (e->flags & EDGE_ABNORMAL)
1514 if (dump_enabled_p ())
1515 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1516 "not vectorized: abnormal loop exit edge.\n");
1517 return false;
1520 *loop_cond = vect_get_loop_niters (loop, assumptions, number_of_iterations,
1521 number_of_iterationsm1);
1522 if (!*loop_cond)
1524 if (dump_enabled_p ())
1525 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1526 "not vectorized: complicated exit condition.\n");
1527 return false;
1530 if (integer_zerop (*assumptions)
1531 || !*number_of_iterations
1532 || chrec_contains_undetermined (*number_of_iterations))
1534 if (dump_enabled_p ())
1535 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1536 "not vectorized: number of iterations cannot be "
1537 "computed.\n");
1538 return false;
1541 if (integer_zerop (*number_of_iterations))
1543 if (dump_enabled_p ())
1544 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1545 "not vectorized: number of iterations = 0.\n");
1546 return false;
1549 return true;
1552 /* Analyze LOOP form and return a loop_vec_info if it is of suitable form. */
1554 loop_vec_info
1555 vect_analyze_loop_form (struct loop *loop)
1557 tree assumptions, number_of_iterations, number_of_iterationsm1;
1558 gcond *loop_cond, *inner_loop_cond = NULL;
1560 if (! vect_analyze_loop_form_1 (loop, &loop_cond,
1561 &assumptions, &number_of_iterationsm1,
1562 &number_of_iterations, &inner_loop_cond))
1563 return NULL;
1565 loop_vec_info loop_vinfo = new_loop_vec_info (loop);
1566 LOOP_VINFO_NITERSM1 (loop_vinfo) = number_of_iterationsm1;
1567 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1568 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1569 if (!integer_onep (assumptions))
1571 /* We consider to vectorize this loop by versioning it under
1572 some assumptions. In order to do this, we need to clear
1573 existing information computed by scev and niter analyzer. */
1574 scev_reset_htab ();
1575 free_numbers_of_iterations_estimates (loop);
1576 /* Also set flag for this loop so that following scev and niter
1577 analysis are done under the assumptions. */
1578 loop_constraint_set (loop, LOOP_C_FINITE);
1579 /* Also record the assumptions for versioning. */
1580 LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo) = assumptions;
1583 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
1585 if (dump_enabled_p ())
1587 dump_printf_loc (MSG_NOTE, vect_location,
1588 "Symbolic number of iterations is ");
1589 dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
1590 dump_printf (MSG_NOTE, "\n");
1594 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1595 if (inner_loop_cond)
1596 STMT_VINFO_TYPE (vinfo_for_stmt (inner_loop_cond))
1597 = loop_exit_ctrl_vec_info_type;
1599 gcc_assert (!loop->aux);
1600 loop->aux = loop_vinfo;
1601 return loop_vinfo;
1606 /* Scan the loop stmts and dependent on whether there are any (non-)SLP
1607 statements update the vectorization factor. */
1609 static void
1610 vect_update_vf_for_slp (loop_vec_info loop_vinfo)
1612 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1613 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1614 int nbbs = loop->num_nodes;
1615 unsigned int vectorization_factor;
1616 int i;
1618 if (dump_enabled_p ())
1619 dump_printf_loc (MSG_NOTE, vect_location,
1620 "=== vect_update_vf_for_slp ===\n");
1622 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1623 gcc_assert (vectorization_factor != 0);
1625 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1626 vectorization factor of the loop is the unrolling factor required by
1627 the SLP instances. If that unrolling factor is 1, we say, that we
1628 perform pure SLP on loop - cross iteration parallelism is not
1629 exploited. */
1630 bool only_slp_in_loop = true;
1631 for (i = 0; i < nbbs; i++)
1633 basic_block bb = bbs[i];
1634 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1635 gsi_next (&si))
1637 gimple *stmt = gsi_stmt (si);
1638 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1639 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
1640 && STMT_VINFO_RELATED_STMT (stmt_info))
1642 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
1643 stmt_info = vinfo_for_stmt (stmt);
1645 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1646 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1647 && !PURE_SLP_STMT (stmt_info))
1648 /* STMT needs both SLP and loop-based vectorization. */
1649 only_slp_in_loop = false;
1653 if (only_slp_in_loop)
1655 dump_printf_loc (MSG_NOTE, vect_location,
1656 "Loop contains only SLP stmts\n");
1657 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1659 else
1661 dump_printf_loc (MSG_NOTE, vect_location,
1662 "Loop contains SLP and non-SLP stmts\n");
1663 vectorization_factor
1664 = least_common_multiple (vectorization_factor,
1665 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1668 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1669 if (dump_enabled_p ())
1670 dump_printf_loc (MSG_NOTE, vect_location,
1671 "Updating vectorization factor to %d\n",
1672 vectorization_factor);
1675 /* Function vect_analyze_loop_operations.
1677 Scan the loop stmts and make sure they are all vectorizable. */
1679 static bool
1680 vect_analyze_loop_operations (loop_vec_info loop_vinfo)
1682 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1683 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1684 int nbbs = loop->num_nodes;
1685 int i;
1686 stmt_vec_info stmt_info;
1687 bool need_to_vectorize = false;
1688 bool ok;
1690 if (dump_enabled_p ())
1691 dump_printf_loc (MSG_NOTE, vect_location,
1692 "=== vect_analyze_loop_operations ===\n");
1694 for (i = 0; i < nbbs; i++)
1696 basic_block bb = bbs[i];
1698 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
1699 gsi_next (&si))
1701 gphi *phi = si.phi ();
1702 ok = true;
1704 stmt_info = vinfo_for_stmt (phi);
1705 if (dump_enabled_p ())
1707 dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
1708 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1710 if (virtual_operand_p (gimple_phi_result (phi)))
1711 continue;
1713 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1714 (i.e., a phi in the tail of the outer-loop). */
1715 if (! is_loop_header_bb_p (bb))
1717 /* FORNOW: we currently don't support the case that these phis
1718 are not used in the outerloop (unless it is double reduction,
1719 i.e., this phi is vect_reduction_def), cause this case
1720 requires to actually do something here. */
1721 if (STMT_VINFO_LIVE_P (stmt_info)
1722 && STMT_VINFO_DEF_TYPE (stmt_info)
1723 != vect_double_reduction_def)
1725 if (dump_enabled_p ())
1726 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1727 "Unsupported loop-closed phi in "
1728 "outer-loop.\n");
1729 return false;
1732 /* If PHI is used in the outer loop, we check that its operand
1733 is defined in the inner loop. */
1734 if (STMT_VINFO_RELEVANT_P (stmt_info))
1736 tree phi_op;
1737 gimple *op_def_stmt;
1739 if (gimple_phi_num_args (phi) != 1)
1740 return false;
1742 phi_op = PHI_ARG_DEF (phi, 0);
1743 if (TREE_CODE (phi_op) != SSA_NAME)
1744 return false;
1746 op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
1747 if (gimple_nop_p (op_def_stmt)
1748 || !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
1749 || !vinfo_for_stmt (op_def_stmt))
1750 return false;
1752 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1753 != vect_used_in_outer
1754 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1755 != vect_used_in_outer_by_reduction)
1756 return false;
1759 continue;
1762 gcc_assert (stmt_info);
1764 if ((STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1765 || STMT_VINFO_LIVE_P (stmt_info))
1766 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1768 /* A scalar-dependence cycle that we don't support. */
1769 if (dump_enabled_p ())
1770 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1771 "not vectorized: scalar dependence cycle.\n");
1772 return false;
1775 if (STMT_VINFO_RELEVANT_P (stmt_info))
1777 need_to_vectorize = true;
1778 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
1779 && ! PURE_SLP_STMT (stmt_info))
1780 ok = vectorizable_induction (phi, NULL, NULL, NULL);
1781 else if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
1782 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
1783 && ! PURE_SLP_STMT (stmt_info))
1784 ok = vectorizable_reduction (phi, NULL, NULL, NULL, NULL);
1787 if (ok && STMT_VINFO_LIVE_P (stmt_info))
1788 ok = vectorizable_live_operation (phi, NULL, NULL, -1, NULL);
1790 if (!ok)
1792 if (dump_enabled_p ())
1794 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1795 "not vectorized: relevant phi not "
1796 "supported: ");
1797 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
1799 return false;
1803 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1804 gsi_next (&si))
1806 gimple *stmt = gsi_stmt (si);
1807 if (!gimple_clobber_p (stmt)
1808 && !vect_analyze_stmt (stmt, &need_to_vectorize, NULL, NULL))
1809 return false;
1811 } /* bbs */
1813 /* All operations in the loop are either irrelevant (deal with loop
1814 control, or dead), or only used outside the loop and can be moved
1815 out of the loop (e.g. invariants, inductions). The loop can be
1816 optimized away by scalar optimizations. We're better off not
1817 touching this loop. */
1818 if (!need_to_vectorize)
1820 if (dump_enabled_p ())
1821 dump_printf_loc (MSG_NOTE, vect_location,
1822 "All the computation can be taken out of the loop.\n");
1823 if (dump_enabled_p ())
1824 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1825 "not vectorized: redundant loop. no profit to "
1826 "vectorize.\n");
1827 return false;
1830 return true;
1834 /* Function vect_analyze_loop_2.
1836 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1837 for it. The different analyses will record information in the
1838 loop_vec_info struct. */
1839 static bool
1840 vect_analyze_loop_2 (loop_vec_info loop_vinfo, bool &fatal)
1842 bool ok;
1843 int max_vf = MAX_VECTORIZATION_FACTOR;
1844 int min_vf = 2;
1845 unsigned int n_stmts = 0;
1847 /* The first group of checks is independent of the vector size. */
1848 fatal = true;
1850 /* Find all data references in the loop (which correspond to vdefs/vuses)
1851 and analyze their evolution in the loop. */
1853 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1855 loop_p loop = LOOP_VINFO_LOOP (loop_vinfo);
1856 if (!find_loop_nest (loop, &LOOP_VINFO_LOOP_NEST (loop_vinfo)))
1858 if (dump_enabled_p ())
1859 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1860 "not vectorized: loop nest containing two "
1861 "or more consecutive inner loops cannot be "
1862 "vectorized\n");
1863 return false;
1866 for (unsigned i = 0; i < loop->num_nodes; i++)
1867 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
1868 !gsi_end_p (gsi); gsi_next (&gsi))
1870 gimple *stmt = gsi_stmt (gsi);
1871 if (is_gimple_debug (stmt))
1872 continue;
1873 ++n_stmts;
1874 if (!find_data_references_in_stmt (loop, stmt,
1875 &LOOP_VINFO_DATAREFS (loop_vinfo)))
1877 if (is_gimple_call (stmt) && loop->safelen)
1879 tree fndecl = gimple_call_fndecl (stmt), op;
1880 if (fndecl != NULL_TREE)
1882 cgraph_node *node = cgraph_node::get (fndecl);
1883 if (node != NULL && node->simd_clones != NULL)
1885 unsigned int j, n = gimple_call_num_args (stmt);
1886 for (j = 0; j < n; j++)
1888 op = gimple_call_arg (stmt, j);
1889 if (DECL_P (op)
1890 || (REFERENCE_CLASS_P (op)
1891 && get_base_address (op)))
1892 break;
1894 op = gimple_call_lhs (stmt);
1895 /* Ignore #pragma omp declare simd functions
1896 if they don't have data references in the
1897 call stmt itself. */
1898 if (j == n
1899 && !(op
1900 && (DECL_P (op)
1901 || (REFERENCE_CLASS_P (op)
1902 && get_base_address (op)))))
1903 continue;
1907 if (dump_enabled_p ())
1908 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1909 "not vectorized: loop contains function "
1910 "calls or data references that cannot "
1911 "be analyzed\n");
1912 return false;
1916 /* Analyze the data references and also adjust the minimal
1917 vectorization factor according to the loads and stores. */
1919 ok = vect_analyze_data_refs (loop_vinfo, &min_vf);
1920 if (!ok)
1922 if (dump_enabled_p ())
1923 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1924 "bad data references.\n");
1925 return false;
1928 /* Classify all cross-iteration scalar data-flow cycles.
1929 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1930 vect_analyze_scalar_cycles (loop_vinfo);
1932 vect_pattern_recog (loop_vinfo);
1934 vect_fixup_scalar_cycles_with_patterns (loop_vinfo);
1936 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1937 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1939 ok = vect_analyze_data_ref_accesses (loop_vinfo);
1940 if (!ok)
1942 if (dump_enabled_p ())
1943 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1944 "bad data access.\n");
1945 return false;
1948 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1950 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1951 if (!ok)
1953 if (dump_enabled_p ())
1954 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1955 "unexpected pattern.\n");
1956 return false;
1959 /* While the rest of the analysis below depends on it in some way. */
1960 fatal = false;
1962 /* Analyze data dependences between the data-refs in the loop
1963 and adjust the maximum vectorization factor according to
1964 the dependences.
1965 FORNOW: fail at the first data dependence that we encounter. */
1967 ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
1968 if (!ok
1969 || max_vf < min_vf)
1971 if (dump_enabled_p ())
1972 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1973 "bad data dependence.\n");
1974 return false;
1977 ok = vect_determine_vectorization_factor (loop_vinfo);
1978 if (!ok)
1980 if (dump_enabled_p ())
1981 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1982 "can't determine vectorization factor.\n");
1983 return false;
1985 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1987 if (dump_enabled_p ())
1988 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1989 "bad data dependence.\n");
1990 return false;
1993 /* Compute the scalar iteration cost. */
1994 vect_compute_single_scalar_iteration_cost (loop_vinfo);
1996 int saved_vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1997 HOST_WIDE_INT estimated_niter;
1998 unsigned th;
1999 int min_scalar_loop_bound;
2001 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
2002 ok = vect_analyze_slp (loop_vinfo, n_stmts);
2003 if (!ok)
2004 return false;
2006 /* If there are any SLP instances mark them as pure_slp. */
2007 bool slp = vect_make_slp_decision (loop_vinfo);
2008 if (slp)
2010 /* Find stmts that need to be both vectorized and SLPed. */
2011 vect_detect_hybrid_slp (loop_vinfo);
2013 /* Update the vectorization factor based on the SLP decision. */
2014 vect_update_vf_for_slp (loop_vinfo);
2017 /* This is the point where we can re-start analysis with SLP forced off. */
2018 start_over:
2020 /* Now the vectorization factor is final. */
2021 unsigned vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2022 gcc_assert (vectorization_factor != 0);
2024 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
2025 dump_printf_loc (MSG_NOTE, vect_location,
2026 "vectorization_factor = %d, niters = "
2027 HOST_WIDE_INT_PRINT_DEC "\n", vectorization_factor,
2028 LOOP_VINFO_INT_NITERS (loop_vinfo));
2030 HOST_WIDE_INT max_niter
2031 = likely_max_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
2032 if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2033 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
2034 || (max_niter != -1
2035 && (unsigned HOST_WIDE_INT) max_niter < vectorization_factor))
2037 if (dump_enabled_p ())
2038 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2039 "not vectorized: iteration count smaller than "
2040 "vectorization factor.\n");
2041 return false;
2044 /* Analyze the alignment of the data-refs in the loop.
2045 Fail if a data reference is found that cannot be vectorized. */
2047 ok = vect_analyze_data_refs_alignment (loop_vinfo);
2048 if (!ok)
2050 if (dump_enabled_p ())
2051 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2052 "bad data alignment.\n");
2053 return false;
2056 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
2057 It is important to call pruning after vect_analyze_data_ref_accesses,
2058 since we use grouping information gathered by interleaving analysis. */
2059 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
2060 if (!ok)
2061 return false;
2063 /* Do not invoke vect_enhance_data_refs_alignment for eplilogue
2064 vectorization. */
2065 if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
2067 /* This pass will decide on using loop versioning and/or loop peeling in
2068 order to enhance the alignment of data references in the loop. */
2069 ok = vect_enhance_data_refs_alignment (loop_vinfo);
2070 if (!ok)
2072 if (dump_enabled_p ())
2073 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2074 "bad data alignment.\n");
2075 return false;
2079 if (slp)
2081 /* Analyze operations in the SLP instances. Note this may
2082 remove unsupported SLP instances which makes the above
2083 SLP kind detection invalid. */
2084 unsigned old_size = LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length ();
2085 vect_slp_analyze_operations (LOOP_VINFO_SLP_INSTANCES (loop_vinfo),
2086 LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
2087 if (LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length () != old_size)
2088 goto again;
2091 /* Scan all the remaining operations in the loop that are not subject
2092 to SLP and make sure they are vectorizable. */
2093 ok = vect_analyze_loop_operations (loop_vinfo);
2094 if (!ok)
2096 if (dump_enabled_p ())
2097 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2098 "bad operation or unsupported loop bound.\n");
2099 return false;
2102 /* If epilog loop is required because of data accesses with gaps,
2103 one additional iteration needs to be peeled. Check if there is
2104 enough iterations for vectorization. */
2105 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2106 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2108 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2109 tree scalar_niters = LOOP_VINFO_NITERSM1 (loop_vinfo);
2111 if (wi::to_widest (scalar_niters) < vf)
2113 if (dump_enabled_p ())
2114 dump_printf_loc (MSG_NOTE, vect_location,
2115 "loop has no enough iterations to support"
2116 " peeling for gaps.\n");
2117 return false;
2121 /* Analyze cost. Decide if worth while to vectorize. */
2122 int min_profitable_estimate, min_profitable_iters;
2123 vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
2124 &min_profitable_estimate);
2126 if (min_profitable_iters < 0)
2128 if (dump_enabled_p ())
2129 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2130 "not vectorized: vectorization not profitable.\n");
2131 if (dump_enabled_p ())
2132 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2133 "not vectorized: vector version will never be "
2134 "profitable.\n");
2135 goto again;
2138 min_scalar_loop_bound = (PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
2139 * vectorization_factor);
2141 /* Use the cost model only if it is more conservative than user specified
2142 threshold. */
2143 th = (unsigned) MAX (min_scalar_loop_bound, min_profitable_iters);
2145 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = th;
2147 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2148 && LOOP_VINFO_INT_NITERS (loop_vinfo) < th)
2150 if (dump_enabled_p ())
2151 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2152 "not vectorized: vectorization not profitable.\n");
2153 if (dump_enabled_p ())
2154 dump_printf_loc (MSG_NOTE, vect_location,
2155 "not vectorized: iteration count smaller than user "
2156 "specified loop bound parameter or minimum profitable "
2157 "iterations (whichever is more conservative).\n");
2158 goto again;
2161 estimated_niter
2162 = estimated_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
2163 if (estimated_niter == -1)
2164 estimated_niter = max_niter;
2165 if (estimated_niter != -1
2166 && ((unsigned HOST_WIDE_INT) estimated_niter
2167 < MAX (th, (unsigned) min_profitable_estimate)))
2169 if (dump_enabled_p ())
2170 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2171 "not vectorized: estimated iteration count too "
2172 "small.\n");
2173 if (dump_enabled_p ())
2174 dump_printf_loc (MSG_NOTE, vect_location,
2175 "not vectorized: estimated iteration count smaller "
2176 "than specified loop bound parameter or minimum "
2177 "profitable iterations (whichever is more "
2178 "conservative).\n");
2179 goto again;
2182 /* Decide whether we need to create an epilogue loop to handle
2183 remaining scalar iterations. */
2184 th = ((LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo)
2185 / LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2186 * LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2188 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2189 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2191 if (ctz_hwi (LOOP_VINFO_INT_NITERS (loop_vinfo)
2192 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
2193 < exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
2194 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
2196 else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
2197 || (tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
2198 < (unsigned)exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2199 /* In case of versioning, check if the maximum number of
2200 iterations is greater than th. If they are identical,
2201 the epilogue is unnecessary. */
2202 && (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
2203 || (unsigned HOST_WIDE_INT) max_niter > th)))
2204 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
2206 /* If an epilogue loop is required make sure we can create one. */
2207 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2208 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
2210 if (dump_enabled_p ())
2211 dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
2212 if (!vect_can_advance_ivs_p (loop_vinfo)
2213 || !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
2214 single_exit (LOOP_VINFO_LOOP
2215 (loop_vinfo))))
2217 if (dump_enabled_p ())
2218 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2219 "not vectorized: can't create required "
2220 "epilog loop\n");
2221 goto again;
2225 /* During peeling, we need to check if number of loop iterations is
2226 enough for both peeled prolog loop and vector loop. This check
2227 can be merged along with threshold check of loop versioning, so
2228 increase threshold for this case if necessary. */
2229 if (LOOP_REQUIRES_VERSIONING (loop_vinfo)
2230 && (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2231 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)))
2233 unsigned niters_th;
2235 /* Niters for peeled prolog loop. */
2236 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2238 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2239 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr)));
2241 niters_th = TYPE_VECTOR_SUBPARTS (vectype) - 1;
2243 else
2244 niters_th = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2246 /* Niters for at least one iteration of vectorized loop. */
2247 niters_th += LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2248 /* One additional iteration because of peeling for gap. */
2249 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2250 niters_th++;
2251 if (LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) < niters_th)
2252 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = niters_th;
2255 gcc_assert (vectorization_factor
2256 == (unsigned)LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2258 /* Ok to vectorize! */
2259 return true;
2261 again:
2262 /* Try again with SLP forced off but if we didn't do any SLP there is
2263 no point in re-trying. */
2264 if (!slp)
2265 return false;
2267 /* If there are reduction chains re-trying will fail anyway. */
2268 if (! LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).is_empty ())
2269 return false;
2271 /* Likewise if the grouped loads or stores in the SLP cannot be handled
2272 via interleaving or lane instructions. */
2273 slp_instance instance;
2274 slp_tree node;
2275 unsigned i, j;
2276 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
2278 stmt_vec_info vinfo;
2279 vinfo = vinfo_for_stmt
2280 (SLP_TREE_SCALAR_STMTS (SLP_INSTANCE_TREE (instance))[0]);
2281 if (! STMT_VINFO_GROUPED_ACCESS (vinfo))
2282 continue;
2283 vinfo = vinfo_for_stmt (STMT_VINFO_GROUP_FIRST_ELEMENT (vinfo));
2284 unsigned int size = STMT_VINFO_GROUP_SIZE (vinfo);
2285 tree vectype = STMT_VINFO_VECTYPE (vinfo);
2286 if (! vect_store_lanes_supported (vectype, size)
2287 && ! vect_grouped_store_supported (vectype, size))
2288 return false;
2289 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), j, node)
2291 vinfo = vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (node)[0]);
2292 vinfo = vinfo_for_stmt (STMT_VINFO_GROUP_FIRST_ELEMENT (vinfo));
2293 bool single_element_p = !STMT_VINFO_GROUP_NEXT_ELEMENT (vinfo);
2294 size = STMT_VINFO_GROUP_SIZE (vinfo);
2295 vectype = STMT_VINFO_VECTYPE (vinfo);
2296 if (! vect_load_lanes_supported (vectype, size)
2297 && ! vect_grouped_load_supported (vectype, single_element_p,
2298 size))
2299 return false;
2303 if (dump_enabled_p ())
2304 dump_printf_loc (MSG_NOTE, vect_location,
2305 "re-trying with SLP disabled\n");
2307 /* Roll back state appropriately. No SLP this time. */
2308 slp = false;
2309 /* Restore vectorization factor as it were without SLP. */
2310 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = saved_vectorization_factor;
2311 /* Free the SLP instances. */
2312 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), j, instance)
2313 vect_free_slp_instance (instance);
2314 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
2315 /* Reset SLP type to loop_vect on all stmts. */
2316 for (i = 0; i < LOOP_VINFO_LOOP (loop_vinfo)->num_nodes; ++i)
2318 basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
2319 for (gimple_stmt_iterator si = gsi_start_phis (bb);
2320 !gsi_end_p (si); gsi_next (&si))
2322 stmt_vec_info stmt_info = vinfo_for_stmt (gsi_stmt (si));
2323 STMT_SLP_TYPE (stmt_info) = loop_vect;
2325 for (gimple_stmt_iterator si = gsi_start_bb (bb);
2326 !gsi_end_p (si); gsi_next (&si))
2328 stmt_vec_info stmt_info = vinfo_for_stmt (gsi_stmt (si));
2329 STMT_SLP_TYPE (stmt_info) = loop_vect;
2330 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
2332 stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
2333 STMT_SLP_TYPE (stmt_info) = loop_vect;
2334 for (gimple_stmt_iterator pi
2335 = gsi_start (STMT_VINFO_PATTERN_DEF_SEQ (stmt_info));
2336 !gsi_end_p (pi); gsi_next (&pi))
2338 gimple *pstmt = gsi_stmt (pi);
2339 STMT_SLP_TYPE (vinfo_for_stmt (pstmt)) = loop_vect;
2344 /* Free optimized alias test DDRS. */
2345 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
2346 /* Reset target cost data. */
2347 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
2348 LOOP_VINFO_TARGET_COST_DATA (loop_vinfo)
2349 = init_cost (LOOP_VINFO_LOOP (loop_vinfo));
2350 /* Reset assorted flags. */
2351 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = false;
2352 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = false;
2353 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = 0;
2355 goto start_over;
2358 /* Function vect_analyze_loop.
2360 Apply a set of analyses on LOOP, and create a loop_vec_info struct
2361 for it. The different analyses will record information in the
2362 loop_vec_info struct. If ORIG_LOOP_VINFO is not NULL epilogue must
2363 be vectorized. */
2364 loop_vec_info
2365 vect_analyze_loop (struct loop *loop, loop_vec_info orig_loop_vinfo)
2367 loop_vec_info loop_vinfo;
2368 unsigned int vector_sizes;
2370 /* Autodetect first vector size we try. */
2371 current_vector_size = 0;
2372 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
2374 if (dump_enabled_p ())
2375 dump_printf_loc (MSG_NOTE, vect_location,
2376 "===== analyze_loop_nest =====\n");
2378 if (loop_outer (loop)
2379 && loop_vec_info_for_loop (loop_outer (loop))
2380 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
2382 if (dump_enabled_p ())
2383 dump_printf_loc (MSG_NOTE, vect_location,
2384 "outer-loop already vectorized.\n");
2385 return NULL;
2388 while (1)
2390 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
2391 loop_vinfo = vect_analyze_loop_form (loop);
2392 if (!loop_vinfo)
2394 if (dump_enabled_p ())
2395 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2396 "bad loop form.\n");
2397 return NULL;
2400 bool fatal = false;
2402 if (orig_loop_vinfo)
2403 LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo) = orig_loop_vinfo;
2405 if (vect_analyze_loop_2 (loop_vinfo, fatal))
2407 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
2409 return loop_vinfo;
2412 destroy_loop_vec_info (loop_vinfo, true);
2414 vector_sizes &= ~current_vector_size;
2415 if (fatal
2416 || vector_sizes == 0
2417 || current_vector_size == 0)
2418 return NULL;
2420 /* Try the next biggest vector size. */
2421 current_vector_size = 1 << floor_log2 (vector_sizes);
2422 if (dump_enabled_p ())
2423 dump_printf_loc (MSG_NOTE, vect_location,
2424 "***** Re-trying analysis with "
2425 "vector size %d\n", current_vector_size);
2430 /* Function reduction_code_for_scalar_code
2432 Input:
2433 CODE - tree_code of a reduction operations.
2435 Output:
2436 REDUC_CODE - the corresponding tree-code to be used to reduce the
2437 vector of partial results into a single scalar result, or ERROR_MARK
2438 if the operation is a supported reduction operation, but does not have
2439 such a tree-code.
2441 Return FALSE if CODE currently cannot be vectorized as reduction. */
2443 static bool
2444 reduction_code_for_scalar_code (enum tree_code code,
2445 enum tree_code *reduc_code)
2447 switch (code)
2449 case MAX_EXPR:
2450 *reduc_code = REDUC_MAX_EXPR;
2451 return true;
2453 case MIN_EXPR:
2454 *reduc_code = REDUC_MIN_EXPR;
2455 return true;
2457 case PLUS_EXPR:
2458 *reduc_code = REDUC_PLUS_EXPR;
2459 return true;
2461 case MULT_EXPR:
2462 case MINUS_EXPR:
2463 case BIT_IOR_EXPR:
2464 case BIT_XOR_EXPR:
2465 case BIT_AND_EXPR:
2466 *reduc_code = ERROR_MARK;
2467 return true;
2469 default:
2470 return false;
2475 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
2476 STMT is printed with a message MSG. */
2478 static void
2479 report_vect_op (dump_flags_t msg_type, gimple *stmt, const char *msg)
2481 dump_printf_loc (msg_type, vect_location, "%s", msg);
2482 dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
2486 /* Detect SLP reduction of the form:
2488 #a1 = phi <a5, a0>
2489 a2 = operation (a1)
2490 a3 = operation (a2)
2491 a4 = operation (a3)
2492 a5 = operation (a4)
2494 #a = phi <a5>
2496 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
2497 FIRST_STMT is the first reduction stmt in the chain
2498 (a2 = operation (a1)).
2500 Return TRUE if a reduction chain was detected. */
2502 static bool
2503 vect_is_slp_reduction (loop_vec_info loop_info, gimple *phi,
2504 gimple *first_stmt)
2506 struct loop *loop = (gimple_bb (phi))->loop_father;
2507 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2508 enum tree_code code;
2509 gimple *current_stmt = NULL, *loop_use_stmt = NULL, *first, *next_stmt;
2510 stmt_vec_info use_stmt_info, current_stmt_info;
2511 tree lhs;
2512 imm_use_iterator imm_iter;
2513 use_operand_p use_p;
2514 int nloop_uses, size = 0, n_out_of_loop_uses;
2515 bool found = false;
2517 if (loop != vect_loop)
2518 return false;
2520 lhs = PHI_RESULT (phi);
2521 code = gimple_assign_rhs_code (first_stmt);
2522 while (1)
2524 nloop_uses = 0;
2525 n_out_of_loop_uses = 0;
2526 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
2528 gimple *use_stmt = USE_STMT (use_p);
2529 if (is_gimple_debug (use_stmt))
2530 continue;
2532 /* Check if we got back to the reduction phi. */
2533 if (use_stmt == phi)
2535 loop_use_stmt = use_stmt;
2536 found = true;
2537 break;
2540 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2542 loop_use_stmt = use_stmt;
2543 nloop_uses++;
2545 else
2546 n_out_of_loop_uses++;
2548 /* There are can be either a single use in the loop or two uses in
2549 phi nodes. */
2550 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
2551 return false;
2554 if (found)
2555 break;
2557 /* We reached a statement with no loop uses. */
2558 if (nloop_uses == 0)
2559 return false;
2561 /* This is a loop exit phi, and we haven't reached the reduction phi. */
2562 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
2563 return false;
2565 if (!is_gimple_assign (loop_use_stmt)
2566 || code != gimple_assign_rhs_code (loop_use_stmt)
2567 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
2568 return false;
2570 /* Insert USE_STMT into reduction chain. */
2571 use_stmt_info = vinfo_for_stmt (loop_use_stmt);
2572 if (current_stmt)
2574 current_stmt_info = vinfo_for_stmt (current_stmt);
2575 GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
2576 GROUP_FIRST_ELEMENT (use_stmt_info)
2577 = GROUP_FIRST_ELEMENT (current_stmt_info);
2579 else
2580 GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
2582 lhs = gimple_assign_lhs (loop_use_stmt);
2583 current_stmt = loop_use_stmt;
2584 size++;
2587 if (!found || loop_use_stmt != phi || size < 2)
2588 return false;
2590 /* Swap the operands, if needed, to make the reduction operand be the second
2591 operand. */
2592 lhs = PHI_RESULT (phi);
2593 next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2594 while (next_stmt)
2596 if (gimple_assign_rhs2 (next_stmt) == lhs)
2598 tree op = gimple_assign_rhs1 (next_stmt);
2599 gimple *def_stmt = NULL;
2601 if (TREE_CODE (op) == SSA_NAME)
2602 def_stmt = SSA_NAME_DEF_STMT (op);
2604 /* Check that the other def is either defined in the loop
2605 ("vect_internal_def"), or it's an induction (defined by a
2606 loop-header phi-node). */
2607 if (def_stmt
2608 && gimple_bb (def_stmt)
2609 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2610 && (is_gimple_assign (def_stmt)
2611 || is_gimple_call (def_stmt)
2612 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2613 == vect_induction_def
2614 || (gimple_code (def_stmt) == GIMPLE_PHI
2615 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2616 == vect_internal_def
2617 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2619 lhs = gimple_assign_lhs (next_stmt);
2620 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2621 continue;
2624 return false;
2626 else
2628 tree op = gimple_assign_rhs2 (next_stmt);
2629 gimple *def_stmt = NULL;
2631 if (TREE_CODE (op) == SSA_NAME)
2632 def_stmt = SSA_NAME_DEF_STMT (op);
2634 /* Check that the other def is either defined in the loop
2635 ("vect_internal_def"), or it's an induction (defined by a
2636 loop-header phi-node). */
2637 if (def_stmt
2638 && gimple_bb (def_stmt)
2639 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2640 && (is_gimple_assign (def_stmt)
2641 || is_gimple_call (def_stmt)
2642 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2643 == vect_induction_def
2644 || (gimple_code (def_stmt) == GIMPLE_PHI
2645 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2646 == vect_internal_def
2647 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2649 if (dump_enabled_p ())
2651 dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
2652 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
2655 swap_ssa_operands (next_stmt,
2656 gimple_assign_rhs1_ptr (next_stmt),
2657 gimple_assign_rhs2_ptr (next_stmt));
2658 update_stmt (next_stmt);
2660 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
2661 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2663 else
2664 return false;
2667 lhs = gimple_assign_lhs (next_stmt);
2668 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2671 /* Save the chain for further analysis in SLP detection. */
2672 first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2673 LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
2674 GROUP_SIZE (vinfo_for_stmt (first)) = size;
2676 return true;
2680 /* Function vect_is_simple_reduction
2682 (1) Detect a cross-iteration def-use cycle that represents a simple
2683 reduction computation. We look for the following pattern:
2685 loop_header:
2686 a1 = phi < a0, a2 >
2687 a3 = ...
2688 a2 = operation (a3, a1)
2692 a3 = ...
2693 loop_header:
2694 a1 = phi < a0, a2 >
2695 a2 = operation (a3, a1)
2697 such that:
2698 1. operation is commutative and associative and it is safe to
2699 change the order of the computation
2700 2. no uses for a2 in the loop (a2 is used out of the loop)
2701 3. no uses of a1 in the loop besides the reduction operation
2702 4. no uses of a1 outside the loop.
2704 Conditions 1,4 are tested here.
2705 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2707 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2708 nested cycles.
2710 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2711 reductions:
2713 a1 = phi < a0, a2 >
2714 inner loop (def of a3)
2715 a2 = phi < a3 >
2717 (4) Detect condition expressions, ie:
2718 for (int i = 0; i < N; i++)
2719 if (a[i] < val)
2720 ret_val = a[i];
2724 static gimple *
2725 vect_is_simple_reduction (loop_vec_info loop_info, gimple *phi,
2726 bool *double_reduc,
2727 bool need_wrapping_integral_overflow,
2728 enum vect_reduction_type *v_reduc_type)
2730 struct loop *loop = (gimple_bb (phi))->loop_father;
2731 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2732 gimple *def_stmt, *def1 = NULL, *def2 = NULL, *phi_use_stmt = NULL;
2733 enum tree_code orig_code, code;
2734 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
2735 tree type;
2736 int nloop_uses;
2737 tree name;
2738 imm_use_iterator imm_iter;
2739 use_operand_p use_p;
2740 bool phi_def;
2742 *double_reduc = false;
2743 *v_reduc_type = TREE_CODE_REDUCTION;
2745 name = PHI_RESULT (phi);
2746 /* ??? If there are no uses of the PHI result the inner loop reduction
2747 won't be detected as possibly double-reduction by vectorizable_reduction
2748 because that tries to walk the PHI arg from the preheader edge which
2749 can be constant. See PR60382. */
2750 if (has_zero_uses (name))
2751 return NULL;
2752 nloop_uses = 0;
2753 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2755 gimple *use_stmt = USE_STMT (use_p);
2756 if (is_gimple_debug (use_stmt))
2757 continue;
2759 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2761 if (dump_enabled_p ())
2762 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2763 "intermediate value used outside loop.\n");
2765 return NULL;
2768 nloop_uses++;
2769 if (nloop_uses > 1)
2771 if (dump_enabled_p ())
2772 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2773 "reduction value used in loop.\n");
2774 return NULL;
2777 phi_use_stmt = use_stmt;
2780 edge latch_e = loop_latch_edge (loop);
2781 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2782 if (TREE_CODE (loop_arg) != SSA_NAME)
2784 if (dump_enabled_p ())
2786 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2787 "reduction: not ssa_name: ");
2788 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
2789 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2791 return NULL;
2794 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2795 if (is_gimple_assign (def_stmt))
2797 name = gimple_assign_lhs (def_stmt);
2798 phi_def = false;
2800 else if (gimple_code (def_stmt) == GIMPLE_PHI)
2802 name = PHI_RESULT (def_stmt);
2803 phi_def = true;
2805 else
2807 if (dump_enabled_p ())
2809 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2810 "reduction: unhandled reduction operation: ");
2811 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, def_stmt, 0);
2813 return NULL;
2816 if (! flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
2817 return NULL;
2819 nloop_uses = 0;
2820 auto_vec<gphi *, 3> lcphis;
2821 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2823 gimple *use_stmt = USE_STMT (use_p);
2824 if (is_gimple_debug (use_stmt))
2825 continue;
2826 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2827 nloop_uses++;
2828 else
2829 /* We can have more than one loop-closed PHI. */
2830 lcphis.safe_push (as_a <gphi *> (use_stmt));
2831 if (nloop_uses > 1)
2833 if (dump_enabled_p ())
2834 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2835 "reduction used in loop.\n");
2836 return NULL;
2840 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2841 defined in the inner loop. */
2842 if (phi_def)
2844 op1 = PHI_ARG_DEF (def_stmt, 0);
2846 if (gimple_phi_num_args (def_stmt) != 1
2847 || TREE_CODE (op1) != SSA_NAME)
2849 if (dump_enabled_p ())
2850 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2851 "unsupported phi node definition.\n");
2853 return NULL;
2856 def1 = SSA_NAME_DEF_STMT (op1);
2857 if (gimple_bb (def1)
2858 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2859 && loop->inner
2860 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
2861 && is_gimple_assign (def1)
2862 && flow_bb_inside_loop_p (loop->inner, gimple_bb (phi_use_stmt)))
2864 if (dump_enabled_p ())
2865 report_vect_op (MSG_NOTE, def_stmt,
2866 "detected double reduction: ");
2868 *double_reduc = true;
2869 return def_stmt;
2872 return NULL;
2875 /* If we are vectorizing an inner reduction we are executing that
2876 in the original order only in case we are not dealing with a
2877 double reduction. */
2878 bool check_reduction = true;
2879 if (flow_loop_nested_p (vect_loop, loop))
2881 gphi *lcphi;
2882 unsigned i;
2883 check_reduction = false;
2884 FOR_EACH_VEC_ELT (lcphis, i, lcphi)
2885 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (lcphi))
2887 gimple *use_stmt = USE_STMT (use_p);
2888 if (is_gimple_debug (use_stmt))
2889 continue;
2890 if (! flow_bb_inside_loop_p (vect_loop, gimple_bb (use_stmt)))
2891 check_reduction = true;
2895 bool nested_in_vect_loop = flow_loop_nested_p (vect_loop, loop);
2896 code = orig_code = gimple_assign_rhs_code (def_stmt);
2898 /* We can handle "res -= x[i]", which is non-associative by
2899 simply rewriting this into "res += -x[i]". Avoid changing
2900 gimple instruction for the first simple tests and only do this
2901 if we're allowed to change code at all. */
2902 if (code == MINUS_EXPR
2903 && ! ((op1 = gimple_assign_rhs2 (def_stmt))
2904 && TREE_CODE (op1) == SSA_NAME
2905 && SSA_NAME_DEF_STMT (op1) == phi))
2906 code = PLUS_EXPR;
2908 if (code == COND_EXPR)
2910 if (! nested_in_vect_loop)
2911 *v_reduc_type = COND_REDUCTION;
2913 op3 = gimple_assign_rhs1 (def_stmt);
2914 if (COMPARISON_CLASS_P (op3))
2916 op4 = TREE_OPERAND (op3, 1);
2917 op3 = TREE_OPERAND (op3, 0);
2920 op1 = gimple_assign_rhs2 (def_stmt);
2921 op2 = gimple_assign_rhs3 (def_stmt);
2923 else if (!commutative_tree_code (code) || !associative_tree_code (code))
2925 if (dump_enabled_p ())
2926 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2927 "reduction: not commutative/associative: ");
2928 return NULL;
2930 else if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
2932 op1 = gimple_assign_rhs1 (def_stmt);
2933 op2 = gimple_assign_rhs2 (def_stmt);
2935 else
2937 if (dump_enabled_p ())
2938 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2939 "reduction: not handled operation: ");
2940 return NULL;
2943 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2945 if (dump_enabled_p ())
2946 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2947 "reduction: both uses not ssa_names: ");
2949 return NULL;
2952 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
2953 if ((TREE_CODE (op1) == SSA_NAME
2954 && !types_compatible_p (type,TREE_TYPE (op1)))
2955 || (TREE_CODE (op2) == SSA_NAME
2956 && !types_compatible_p (type, TREE_TYPE (op2)))
2957 || (op3 && TREE_CODE (op3) == SSA_NAME
2958 && !types_compatible_p (type, TREE_TYPE (op3)))
2959 || (op4 && TREE_CODE (op4) == SSA_NAME
2960 && !types_compatible_p (type, TREE_TYPE (op4))))
2962 if (dump_enabled_p ())
2964 dump_printf_loc (MSG_NOTE, vect_location,
2965 "reduction: multiple types: operation type: ");
2966 dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
2967 dump_printf (MSG_NOTE, ", operands types: ");
2968 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2969 TREE_TYPE (op1));
2970 dump_printf (MSG_NOTE, ",");
2971 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2972 TREE_TYPE (op2));
2973 if (op3)
2975 dump_printf (MSG_NOTE, ",");
2976 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2977 TREE_TYPE (op3));
2980 if (op4)
2982 dump_printf (MSG_NOTE, ",");
2983 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2984 TREE_TYPE (op4));
2986 dump_printf (MSG_NOTE, "\n");
2989 return NULL;
2992 /* Check that it's ok to change the order of the computation.
2993 Generally, when vectorizing a reduction we change the order of the
2994 computation. This may change the behavior of the program in some
2995 cases, so we need to check that this is ok. One exception is when
2996 vectorizing an outer-loop: the inner-loop is executed sequentially,
2997 and therefore vectorizing reductions in the inner-loop during
2998 outer-loop vectorization is safe. */
3000 if (*v_reduc_type != COND_REDUCTION
3001 && check_reduction)
3003 /* CHECKME: check for !flag_finite_math_only too? */
3004 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math)
3006 /* Changing the order of operations changes the semantics. */
3007 if (dump_enabled_p ())
3008 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3009 "reduction: unsafe fp math optimization: ");
3010 return NULL;
3012 else if (INTEGRAL_TYPE_P (type))
3014 if (!operation_no_trapping_overflow (type, code))
3016 /* Changing the order of operations changes the semantics. */
3017 if (dump_enabled_p ())
3018 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3019 "reduction: unsafe int math optimization"
3020 " (overflow traps): ");
3021 return NULL;
3023 if (need_wrapping_integral_overflow
3024 && !TYPE_OVERFLOW_WRAPS (type)
3025 && operation_can_overflow (code))
3027 /* Changing the order of operations changes the semantics. */
3028 if (dump_enabled_p ())
3029 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3030 "reduction: unsafe int math optimization"
3031 " (overflow doesn't wrap): ");
3032 return NULL;
3035 else if (SAT_FIXED_POINT_TYPE_P (type))
3037 /* Changing the order of operations changes the semantics. */
3038 if (dump_enabled_p ())
3039 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3040 "reduction: unsafe fixed-point math optimization: ");
3041 return NULL;
3045 /* Reduction is safe. We're dealing with one of the following:
3046 1) integer arithmetic and no trapv
3047 2) floating point arithmetic, and special flags permit this optimization
3048 3) nested cycle (i.e., outer loop vectorization). */
3049 if (TREE_CODE (op1) == SSA_NAME)
3050 def1 = SSA_NAME_DEF_STMT (op1);
3052 if (TREE_CODE (op2) == SSA_NAME)
3053 def2 = SSA_NAME_DEF_STMT (op2);
3055 if (code != COND_EXPR
3056 && ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
3058 if (dump_enabled_p ())
3059 report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
3060 return NULL;
3063 /* Check that one def is the reduction def, defined by PHI,
3064 the other def is either defined in the loop ("vect_internal_def"),
3065 or it's an induction (defined by a loop-header phi-node). */
3067 if (def2 && def2 == phi
3068 && (code == COND_EXPR
3069 || !def1 || gimple_nop_p (def1)
3070 || !flow_bb_inside_loop_p (loop, gimple_bb (def1))
3071 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
3072 && (is_gimple_assign (def1)
3073 || is_gimple_call (def1)
3074 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
3075 == vect_induction_def
3076 || (gimple_code (def1) == GIMPLE_PHI
3077 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
3078 == vect_internal_def
3079 && !is_loop_header_bb_p (gimple_bb (def1)))))))
3081 if (dump_enabled_p ())
3082 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
3083 return def_stmt;
3086 if (def1 && def1 == phi
3087 && (code == COND_EXPR
3088 || !def2 || gimple_nop_p (def2)
3089 || !flow_bb_inside_loop_p (loop, gimple_bb (def2))
3090 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
3091 && (is_gimple_assign (def2)
3092 || is_gimple_call (def2)
3093 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
3094 == vect_induction_def
3095 || (gimple_code (def2) == GIMPLE_PHI
3096 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
3097 == vect_internal_def
3098 && !is_loop_header_bb_p (gimple_bb (def2)))))))
3100 if (! nested_in_vect_loop && orig_code != MINUS_EXPR)
3102 /* Check if we can swap operands (just for simplicity - so that
3103 the rest of the code can assume that the reduction variable
3104 is always the last (second) argument). */
3105 if (code == COND_EXPR)
3107 /* Swap cond_expr by inverting the condition. */
3108 tree cond_expr = gimple_assign_rhs1 (def_stmt);
3109 enum tree_code invert_code = ERROR_MARK;
3110 enum tree_code cond_code = TREE_CODE (cond_expr);
3112 if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
3114 bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr, 0));
3115 invert_code = invert_tree_comparison (cond_code, honor_nans);
3117 if (invert_code != ERROR_MARK)
3119 TREE_SET_CODE (cond_expr, invert_code);
3120 swap_ssa_operands (def_stmt,
3121 gimple_assign_rhs2_ptr (def_stmt),
3122 gimple_assign_rhs3_ptr (def_stmt));
3124 else
3126 if (dump_enabled_p ())
3127 report_vect_op (MSG_NOTE, def_stmt,
3128 "detected reduction: cannot swap operands "
3129 "for cond_expr");
3130 return NULL;
3133 else
3134 swap_ssa_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
3135 gimple_assign_rhs2_ptr (def_stmt));
3137 if (dump_enabled_p ())
3138 report_vect_op (MSG_NOTE, def_stmt,
3139 "detected reduction: need to swap operands: ");
3141 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
3142 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
3144 else
3146 if (dump_enabled_p ())
3147 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
3150 return def_stmt;
3153 /* Try to find SLP reduction chain. */
3154 if (! nested_in_vect_loop
3155 && code != COND_EXPR
3156 && orig_code != MINUS_EXPR
3157 && vect_is_slp_reduction (loop_info, phi, def_stmt))
3159 if (dump_enabled_p ())
3160 report_vect_op (MSG_NOTE, def_stmt,
3161 "reduction: detected reduction chain: ");
3163 return def_stmt;
3166 /* Dissolve group eventually half-built by vect_is_slp_reduction. */
3167 gimple *first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (def_stmt));
3168 while (first)
3170 gimple *next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (first));
3171 GROUP_FIRST_ELEMENT (vinfo_for_stmt (first)) = NULL;
3172 GROUP_NEXT_ELEMENT (vinfo_for_stmt (first)) = NULL;
3173 first = next;
3176 /* Look for the expression computing loop_arg from loop PHI result. */
3177 auto_vec<std::pair<ssa_op_iter, use_operand_p> > path;
3178 auto_bitmap visited;
3179 tree lookfor = PHI_RESULT (phi);
3180 ssa_op_iter curri;
3181 use_operand_p curr = op_iter_init_phiuse (&curri, as_a <gphi *>(phi),
3182 SSA_OP_USE);
3183 while (USE_FROM_PTR (curr) != loop_arg)
3184 curr = op_iter_next_use (&curri);
3185 curri.i = curri.numops;
3188 path.safe_push (std::make_pair (curri, curr));
3189 tree use = USE_FROM_PTR (curr);
3190 if (use == lookfor)
3191 break;
3192 gimple *def = SSA_NAME_DEF_STMT (use);
3193 if (gimple_nop_p (def)
3194 || ! flow_bb_inside_loop_p (loop, gimple_bb (def)))
3196 pop:
3199 std::pair<ssa_op_iter, use_operand_p> x = path.pop ();
3200 curri = x.first;
3201 curr = x.second;
3203 curr = op_iter_next_use (&curri);
3204 /* Skip already visited or non-SSA operands (from iterating
3205 over PHI args). */
3206 while (curr != NULL_USE_OPERAND_P
3207 && (TREE_CODE (USE_FROM_PTR (curr)) != SSA_NAME
3208 || ! bitmap_set_bit (visited,
3209 SSA_NAME_VERSION
3210 (USE_FROM_PTR (curr)))));
3212 while (curr == NULL_USE_OPERAND_P && ! path.is_empty ());
3213 if (curr == NULL_USE_OPERAND_P)
3214 break;
3216 else
3218 if (gimple_code (def) == GIMPLE_PHI)
3219 curr = op_iter_init_phiuse (&curri, as_a <gphi *>(def), SSA_OP_USE);
3220 else
3221 curr = op_iter_init_use (&curri, def, SSA_OP_USE);
3222 while (curr != NULL_USE_OPERAND_P
3223 && (TREE_CODE (USE_FROM_PTR (curr)) != SSA_NAME
3224 || ! bitmap_set_bit (visited,
3225 SSA_NAME_VERSION
3226 (USE_FROM_PTR (curr)))))
3227 curr = op_iter_next_use (&curri);
3228 if (curr == NULL_USE_OPERAND_P)
3229 goto pop;
3232 while (1);
3233 if (dump_file && (dump_flags & TDF_DETAILS))
3235 dump_printf_loc (MSG_NOTE, vect_location,
3236 "reduction path: ");
3237 unsigned i;
3238 std::pair<ssa_op_iter, use_operand_p> *x;
3239 FOR_EACH_VEC_ELT (path, i, x)
3241 dump_generic_expr (MSG_NOTE, TDF_SLIM, USE_FROM_PTR (x->second));
3242 dump_printf (MSG_NOTE, " ");
3244 dump_printf (MSG_NOTE, "\n");
3247 /* Check whether the reduction path detected is valid. */
3248 bool fail = path.length () == 0;
3249 bool neg = false;
3250 for (unsigned i = 1; i < path.length (); ++i)
3252 gimple *use_stmt = USE_STMT (path[i].second);
3253 tree op = USE_FROM_PTR (path[i].second);
3254 if (! has_single_use (op)
3255 || ! is_gimple_assign (use_stmt))
3257 fail = true;
3258 break;
3260 if (gimple_assign_rhs_code (use_stmt) != code)
3262 if (code == PLUS_EXPR
3263 && gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
3265 /* Track whether we negate the reduction value each iteration. */
3266 if (gimple_assign_rhs2 (use_stmt) == op)
3267 neg = ! neg;
3269 else
3271 fail = true;
3272 break;
3276 if (! fail && ! neg)
3277 return def_stmt;
3279 if (dump_enabled_p ())
3281 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3282 "reduction: unknown pattern: ");
3285 return NULL;
3288 /* Wrapper around vect_is_simple_reduction, which will modify code
3289 in-place if it enables detection of more reductions. Arguments
3290 as there. */
3292 gimple *
3293 vect_force_simple_reduction (loop_vec_info loop_info, gimple *phi,
3294 bool *double_reduc,
3295 bool need_wrapping_integral_overflow)
3297 enum vect_reduction_type v_reduc_type;
3298 gimple *def = vect_is_simple_reduction (loop_info, phi, double_reduc,
3299 need_wrapping_integral_overflow,
3300 &v_reduc_type);
3301 if (def)
3303 stmt_vec_info reduc_def_info = vinfo_for_stmt (phi);
3304 STMT_VINFO_REDUC_TYPE (reduc_def_info) = v_reduc_type;
3305 STMT_VINFO_REDUC_DEF (reduc_def_info) = def;
3306 reduc_def_info = vinfo_for_stmt (def);
3307 STMT_VINFO_REDUC_DEF (reduc_def_info) = phi;
3309 return def;
3312 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
3314 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
3315 int *peel_iters_epilogue,
3316 stmt_vector_for_cost *scalar_cost_vec,
3317 stmt_vector_for_cost *prologue_cost_vec,
3318 stmt_vector_for_cost *epilogue_cost_vec)
3320 int retval = 0;
3321 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3323 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
3325 *peel_iters_epilogue = vf/2;
3326 if (dump_enabled_p ())
3327 dump_printf_loc (MSG_NOTE, vect_location,
3328 "cost model: epilogue peel iters set to vf/2 "
3329 "because loop iterations are unknown .\n");
3331 /* If peeled iterations are known but number of scalar loop
3332 iterations are unknown, count a taken branch per peeled loop. */
3333 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
3334 NULL, 0, vect_prologue);
3335 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
3336 NULL, 0, vect_epilogue);
3338 else
3340 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
3341 peel_iters_prologue = niters < peel_iters_prologue ?
3342 niters : peel_iters_prologue;
3343 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
3344 /* If we need to peel for gaps, but no peeling is required, we have to
3345 peel VF iterations. */
3346 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
3347 *peel_iters_epilogue = vf;
3350 stmt_info_for_cost *si;
3351 int j;
3352 if (peel_iters_prologue)
3353 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
3355 stmt_vec_info stmt_info
3356 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3357 retval += record_stmt_cost (prologue_cost_vec,
3358 si->count * peel_iters_prologue,
3359 si->kind, stmt_info, si->misalign,
3360 vect_prologue);
3362 if (*peel_iters_epilogue)
3363 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
3365 stmt_vec_info stmt_info
3366 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3367 retval += record_stmt_cost (epilogue_cost_vec,
3368 si->count * *peel_iters_epilogue,
3369 si->kind, stmt_info, si->misalign,
3370 vect_epilogue);
3373 return retval;
3376 /* Function vect_estimate_min_profitable_iters
3378 Return the number of iterations required for the vector version of the
3379 loop to be profitable relative to the cost of the scalar version of the
3380 loop.
3382 *RET_MIN_PROFITABLE_NITERS is a cost model profitability threshold
3383 of iterations for vectorization. -1 value means loop vectorization
3384 is not profitable. This returned value may be used for dynamic
3385 profitability check.
3387 *RET_MIN_PROFITABLE_ESTIMATE is a profitability threshold to be used
3388 for static check against estimated number of iterations. */
3390 static void
3391 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
3392 int *ret_min_profitable_niters,
3393 int *ret_min_profitable_estimate)
3395 int min_profitable_iters;
3396 int min_profitable_estimate;
3397 int peel_iters_prologue;
3398 int peel_iters_epilogue;
3399 unsigned vec_inside_cost = 0;
3400 int vec_outside_cost = 0;
3401 unsigned vec_prologue_cost = 0;
3402 unsigned vec_epilogue_cost = 0;
3403 int scalar_single_iter_cost = 0;
3404 int scalar_outside_cost = 0;
3405 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3406 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
3407 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3409 /* Cost model disabled. */
3410 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
3412 dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
3413 *ret_min_profitable_niters = 0;
3414 *ret_min_profitable_estimate = 0;
3415 return;
3418 /* Requires loop versioning tests to handle misalignment. */
3419 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
3421 /* FIXME: Make cost depend on complexity of individual check. */
3422 unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
3423 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
3424 vect_prologue);
3425 dump_printf (MSG_NOTE,
3426 "cost model: Adding cost of checks for loop "
3427 "versioning to treat misalignment.\n");
3430 /* Requires loop versioning with alias checks. */
3431 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
3433 /* FIXME: Make cost depend on complexity of individual check. */
3434 unsigned len = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).length ();
3435 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
3436 vect_prologue);
3437 dump_printf (MSG_NOTE,
3438 "cost model: Adding cost of checks for loop "
3439 "versioning aliasing.\n");
3442 /* Requires loop versioning with niter checks. */
3443 if (LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo))
3445 /* FIXME: Make cost depend on complexity of individual check. */
3446 (void) add_stmt_cost (target_cost_data, 1, vector_stmt, NULL, 0,
3447 vect_prologue);
3448 dump_printf (MSG_NOTE,
3449 "cost model: Adding cost of checks for loop "
3450 "versioning niters.\n");
3453 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
3454 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
3455 vect_prologue);
3457 /* Count statements in scalar loop. Using this as scalar cost for a single
3458 iteration for now.
3460 TODO: Add outer loop support.
3462 TODO: Consider assigning different costs to different scalar
3463 statements. */
3465 scalar_single_iter_cost
3466 = LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo);
3468 /* Add additional cost for the peeled instructions in prologue and epilogue
3469 loop.
3471 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
3472 at compile-time - we assume it's vf/2 (the worst would be vf-1).
3474 TODO: Build an expression that represents peel_iters for prologue and
3475 epilogue to be used in a run-time test. */
3477 if (npeel < 0)
3479 peel_iters_prologue = vf/2;
3480 dump_printf (MSG_NOTE, "cost model: "
3481 "prologue peel iters set to vf/2.\n");
3483 /* If peeling for alignment is unknown, loop bound of main loop becomes
3484 unknown. */
3485 peel_iters_epilogue = vf/2;
3486 dump_printf (MSG_NOTE, "cost model: "
3487 "epilogue peel iters set to vf/2 because "
3488 "peeling for alignment is unknown.\n");
3490 /* If peeled iterations are unknown, count a taken branch and a not taken
3491 branch per peeled loop. Even if scalar loop iterations are known,
3492 vector iterations are not known since peeled prologue iterations are
3493 not known. Hence guards remain the same. */
3494 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
3495 NULL, 0, vect_prologue);
3496 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
3497 NULL, 0, vect_prologue);
3498 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
3499 NULL, 0, vect_epilogue);
3500 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
3501 NULL, 0, vect_epilogue);
3502 stmt_info_for_cost *si;
3503 int j;
3504 FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), j, si)
3506 struct _stmt_vec_info *stmt_info
3507 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3508 (void) add_stmt_cost (target_cost_data,
3509 si->count * peel_iters_prologue,
3510 si->kind, stmt_info, si->misalign,
3511 vect_prologue);
3512 (void) add_stmt_cost (target_cost_data,
3513 si->count * peel_iters_epilogue,
3514 si->kind, stmt_info, si->misalign,
3515 vect_epilogue);
3518 else
3520 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
3521 stmt_info_for_cost *si;
3522 int j;
3523 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3525 prologue_cost_vec.create (2);
3526 epilogue_cost_vec.create (2);
3527 peel_iters_prologue = npeel;
3529 (void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
3530 &peel_iters_epilogue,
3531 &LOOP_VINFO_SCALAR_ITERATION_COST
3532 (loop_vinfo),
3533 &prologue_cost_vec,
3534 &epilogue_cost_vec);
3536 FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
3538 struct _stmt_vec_info *stmt_info
3539 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3540 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
3541 si->misalign, vect_prologue);
3544 FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
3546 struct _stmt_vec_info *stmt_info
3547 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3548 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
3549 si->misalign, vect_epilogue);
3552 prologue_cost_vec.release ();
3553 epilogue_cost_vec.release ();
3556 /* FORNOW: The scalar outside cost is incremented in one of the
3557 following ways:
3559 1. The vectorizer checks for alignment and aliasing and generates
3560 a condition that allows dynamic vectorization. A cost model
3561 check is ANDED with the versioning condition. Hence scalar code
3562 path now has the added cost of the versioning check.
3564 if (cost > th & versioning_check)
3565 jmp to vector code
3567 Hence run-time scalar is incremented by not-taken branch cost.
3569 2. The vectorizer then checks if a prologue is required. If the
3570 cost model check was not done before during versioning, it has to
3571 be done before the prologue check.
3573 if (cost <= th)
3574 prologue = scalar_iters
3575 if (prologue == 0)
3576 jmp to vector code
3577 else
3578 execute prologue
3579 if (prologue == num_iters)
3580 go to exit
3582 Hence the run-time scalar cost is incremented by a taken branch,
3583 plus a not-taken branch, plus a taken branch cost.
3585 3. The vectorizer then checks if an epilogue is required. If the
3586 cost model check was not done before during prologue check, it
3587 has to be done with the epilogue check.
3589 if (prologue == 0)
3590 jmp to vector code
3591 else
3592 execute prologue
3593 if (prologue == num_iters)
3594 go to exit
3595 vector code:
3596 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
3597 jmp to epilogue
3599 Hence the run-time scalar cost should be incremented by 2 taken
3600 branches.
3602 TODO: The back end may reorder the BBS's differently and reverse
3603 conditions/branch directions. Change the estimates below to
3604 something more reasonable. */
3606 /* If the number of iterations is known and we do not do versioning, we can
3607 decide whether to vectorize at compile time. Hence the scalar version
3608 do not carry cost model guard costs. */
3609 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
3610 || LOOP_REQUIRES_VERSIONING (loop_vinfo))
3612 /* Cost model check occurs at versioning. */
3613 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
3614 scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
3615 else
3617 /* Cost model check occurs at prologue generation. */
3618 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
3619 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
3620 + vect_get_stmt_cost (cond_branch_not_taken);
3621 /* Cost model check occurs at epilogue generation. */
3622 else
3623 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
3627 /* Complete the target-specific cost calculations. */
3628 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
3629 &vec_inside_cost, &vec_epilogue_cost);
3631 vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
3633 if (dump_enabled_p ())
3635 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
3636 dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
3637 vec_inside_cost);
3638 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
3639 vec_prologue_cost);
3640 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
3641 vec_epilogue_cost);
3642 dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
3643 scalar_single_iter_cost);
3644 dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
3645 scalar_outside_cost);
3646 dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
3647 vec_outside_cost);
3648 dump_printf (MSG_NOTE, " prologue iterations: %d\n",
3649 peel_iters_prologue);
3650 dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
3651 peel_iters_epilogue);
3654 /* Calculate number of iterations required to make the vector version
3655 profitable, relative to the loop bodies only. The following condition
3656 must hold true:
3657 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
3658 where
3659 SIC = scalar iteration cost, VIC = vector iteration cost,
3660 VOC = vector outside cost, VF = vectorization factor,
3661 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
3662 SOC = scalar outside cost for run time cost model check. */
3664 if ((scalar_single_iter_cost * vf) > (int) vec_inside_cost)
3666 if (vec_outside_cost <= 0)
3667 min_profitable_iters = 0;
3668 else
3670 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
3671 - vec_inside_cost * peel_iters_prologue
3672 - vec_inside_cost * peel_iters_epilogue)
3673 / ((scalar_single_iter_cost * vf)
3674 - vec_inside_cost);
3676 if ((scalar_single_iter_cost * vf * min_profitable_iters)
3677 <= (((int) vec_inside_cost * min_profitable_iters)
3678 + (((int) vec_outside_cost - scalar_outside_cost) * vf)))
3679 min_profitable_iters++;
3682 /* vector version will never be profitable. */
3683 else
3685 if (LOOP_VINFO_LOOP (loop_vinfo)->force_vectorize)
3686 warning_at (vect_location, OPT_Wopenmp_simd, "vectorization "
3687 "did not happen for a simd loop");
3689 if (dump_enabled_p ())
3690 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3691 "cost model: the vector iteration cost = %d "
3692 "divided by the scalar iteration cost = %d "
3693 "is greater or equal to the vectorization factor = %d"
3694 ".\n",
3695 vec_inside_cost, scalar_single_iter_cost, vf);
3696 *ret_min_profitable_niters = -1;
3697 *ret_min_profitable_estimate = -1;
3698 return;
3701 dump_printf (MSG_NOTE,
3702 " Calculated minimum iters for profitability: %d\n",
3703 min_profitable_iters);
3705 /* We want the vectorized loop to execute at least once. */
3706 if (min_profitable_iters < (vf + peel_iters_prologue + peel_iters_epilogue))
3707 min_profitable_iters = vf + peel_iters_prologue + peel_iters_epilogue;
3709 if (dump_enabled_p ())
3710 dump_printf_loc (MSG_NOTE, vect_location,
3711 " Runtime profitability threshold = %d\n",
3712 min_profitable_iters);
3714 *ret_min_profitable_niters = min_profitable_iters;
3716 /* Calculate number of iterations required to make the vector version
3717 profitable, relative to the loop bodies only.
3719 Non-vectorized variant is SIC * niters and it must win over vector
3720 variant on the expected loop trip count. The following condition must hold true:
3721 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
3723 if (vec_outside_cost <= 0)
3724 min_profitable_estimate = 0;
3725 else
3727 min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) * vf
3728 - vec_inside_cost * peel_iters_prologue
3729 - vec_inside_cost * peel_iters_epilogue)
3730 / ((scalar_single_iter_cost * vf)
3731 - vec_inside_cost);
3733 min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
3734 if (dump_enabled_p ())
3735 dump_printf_loc (MSG_NOTE, vect_location,
3736 " Static estimate profitability threshold = %d\n",
3737 min_profitable_estimate);
3739 *ret_min_profitable_estimate = min_profitable_estimate;
3742 /* Writes into SEL a mask for a vec_perm, equivalent to a vec_shr by OFFSET
3743 vector elements (not bits) for a vector of mode MODE. */
3744 static void
3745 calc_vec_perm_mask_for_shift (machine_mode mode, unsigned int offset,
3746 unsigned char *sel)
3748 unsigned int i, nelt = GET_MODE_NUNITS (mode);
3750 for (i = 0; i < nelt; i++)
3751 sel[i] = (i + offset) & (2*nelt - 1);
3754 /* Checks whether the target supports whole-vector shifts for vectors of mode
3755 MODE. This is the case if _either_ the platform handles vec_shr_optab, _or_
3756 it supports vec_perm_const with masks for all necessary shift amounts. */
3757 static bool
3758 have_whole_vector_shift (machine_mode mode)
3760 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3761 return true;
3763 if (direct_optab_handler (vec_perm_const_optab, mode) == CODE_FOR_nothing)
3764 return false;
3766 unsigned int i, nelt = GET_MODE_NUNITS (mode);
3767 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
3769 for (i = nelt/2; i >= 1; i/=2)
3771 calc_vec_perm_mask_for_shift (mode, i, sel);
3772 if (!can_vec_perm_p (mode, false, sel))
3773 return false;
3775 return true;
3778 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
3779 functions. Design better to avoid maintenance issues. */
3781 /* Function vect_model_reduction_cost.
3783 Models cost for a reduction operation, including the vector ops
3784 generated within the strip-mine loop, the initial definition before
3785 the loop, and the epilogue code that must be generated. */
3787 static void
3788 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
3789 int ncopies)
3791 int prologue_cost = 0, epilogue_cost = 0;
3792 enum tree_code code;
3793 optab optab;
3794 tree vectype;
3795 gimple *orig_stmt;
3796 machine_mode mode;
3797 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3798 struct loop *loop = NULL;
3799 void *target_cost_data;
3801 if (loop_vinfo)
3803 loop = LOOP_VINFO_LOOP (loop_vinfo);
3804 target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3806 else
3807 target_cost_data = BB_VINFO_TARGET_COST_DATA (STMT_VINFO_BB_VINFO (stmt_info));
3809 /* Condition reductions generate two reductions in the loop. */
3810 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3811 ncopies *= 2;
3813 /* Cost of reduction op inside loop. */
3814 unsigned inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3815 stmt_info, 0, vect_body);
3817 vectype = STMT_VINFO_VECTYPE (stmt_info);
3818 mode = TYPE_MODE (vectype);
3819 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3821 if (!orig_stmt)
3822 orig_stmt = STMT_VINFO_STMT (stmt_info);
3824 code = gimple_assign_rhs_code (orig_stmt);
3826 /* Add in cost for initial definition.
3827 For cond reduction we have four vectors: initial index, step, initial
3828 result of the data reduction, initial value of the index reduction. */
3829 int prologue_stmts = STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
3830 == COND_REDUCTION ? 4 : 1;
3831 prologue_cost += add_stmt_cost (target_cost_data, prologue_stmts,
3832 scalar_to_vec, stmt_info, 0,
3833 vect_prologue);
3835 /* Determine cost of epilogue code.
3837 We have a reduction operator that will reduce the vector in one statement.
3838 Also requires scalar extract. */
3840 if (!loop || !nested_in_vect_loop_p (loop, orig_stmt))
3842 if (reduc_code != ERROR_MARK)
3844 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3846 /* An EQ stmt and an COND_EXPR stmt. */
3847 epilogue_cost += add_stmt_cost (target_cost_data, 2,
3848 vector_stmt, stmt_info, 0,
3849 vect_epilogue);
3850 /* Reduction of the max index and a reduction of the found
3851 values. */
3852 epilogue_cost += add_stmt_cost (target_cost_data, 2,
3853 vec_to_scalar, stmt_info, 0,
3854 vect_epilogue);
3855 /* A broadcast of the max value. */
3856 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3857 scalar_to_vec, stmt_info, 0,
3858 vect_epilogue);
3860 else
3862 epilogue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
3863 stmt_info, 0, vect_epilogue);
3864 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3865 vec_to_scalar, stmt_info, 0,
3866 vect_epilogue);
3869 else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3871 unsigned nunits = TYPE_VECTOR_SUBPARTS (vectype);
3872 /* Extraction of scalar elements. */
3873 epilogue_cost += add_stmt_cost (target_cost_data, 2 * nunits,
3874 vec_to_scalar, stmt_info, 0,
3875 vect_epilogue);
3876 /* Scalar max reductions via COND_EXPR / MAX_EXPR. */
3877 epilogue_cost += add_stmt_cost (target_cost_data, 2 * nunits - 3,
3878 scalar_stmt, stmt_info, 0,
3879 vect_epilogue);
3881 else
3883 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
3884 tree bitsize =
3885 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
3886 int element_bitsize = tree_to_uhwi (bitsize);
3887 int nelements = vec_size_in_bits / element_bitsize;
3889 if (code == COND_EXPR)
3890 code = MAX_EXPR;
3892 optab = optab_for_tree_code (code, vectype, optab_default);
3894 /* We have a whole vector shift available. */
3895 if (optab != unknown_optab
3896 && VECTOR_MODE_P (mode)
3897 && optab_handler (optab, mode) != CODE_FOR_nothing
3898 && have_whole_vector_shift (mode))
3900 /* Final reduction via vector shifts and the reduction operator.
3901 Also requires scalar extract. */
3902 epilogue_cost += add_stmt_cost (target_cost_data,
3903 exact_log2 (nelements) * 2,
3904 vector_stmt, stmt_info, 0,
3905 vect_epilogue);
3906 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3907 vec_to_scalar, stmt_info, 0,
3908 vect_epilogue);
3910 else
3911 /* Use extracts and reduction op for final reduction. For N
3912 elements, we have N extracts and N-1 reduction ops. */
3913 epilogue_cost += add_stmt_cost (target_cost_data,
3914 nelements + nelements - 1,
3915 vector_stmt, stmt_info, 0,
3916 vect_epilogue);
3920 if (dump_enabled_p ())
3921 dump_printf (MSG_NOTE,
3922 "vect_model_reduction_cost: inside_cost = %d, "
3923 "prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
3924 prologue_cost, epilogue_cost);
3928 /* Function vect_model_induction_cost.
3930 Models cost for induction operations. */
3932 static void
3933 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
3935 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3936 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3937 unsigned inside_cost, prologue_cost;
3939 if (PURE_SLP_STMT (stmt_info))
3940 return;
3942 /* loop cost for vec_loop. */
3943 inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3944 stmt_info, 0, vect_body);
3946 /* prologue cost for vec_init and vec_step. */
3947 prologue_cost = add_stmt_cost (target_cost_data, 2, scalar_to_vec,
3948 stmt_info, 0, vect_prologue);
3950 if (dump_enabled_p ())
3951 dump_printf_loc (MSG_NOTE, vect_location,
3952 "vect_model_induction_cost: inside_cost = %d, "
3953 "prologue_cost = %d .\n", inside_cost, prologue_cost);
3958 /* Function get_initial_def_for_reduction
3960 Input:
3961 STMT - a stmt that performs a reduction operation in the loop.
3962 INIT_VAL - the initial value of the reduction variable
3964 Output:
3965 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
3966 of the reduction (used for adjusting the epilog - see below).
3967 Return a vector variable, initialized according to the operation that STMT
3968 performs. This vector will be used as the initial value of the
3969 vector of partial results.
3971 Option1 (adjust in epilog): Initialize the vector as follows:
3972 add/bit or/xor: [0,0,...,0,0]
3973 mult/bit and: [1,1,...,1,1]
3974 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
3975 and when necessary (e.g. add/mult case) let the caller know
3976 that it needs to adjust the result by init_val.
3978 Option2: Initialize the vector as follows:
3979 add/bit or/xor: [init_val,0,0,...,0]
3980 mult/bit and: [init_val,1,1,...,1]
3981 min/max/cond_expr: [init_val,init_val,...,init_val]
3982 and no adjustments are needed.
3984 For example, for the following code:
3986 s = init_val;
3987 for (i=0;i<n;i++)
3988 s = s + a[i];
3990 STMT is 's = s + a[i]', and the reduction variable is 's'.
3991 For a vector of 4 units, we want to return either [0,0,0,init_val],
3992 or [0,0,0,0] and let the caller know that it needs to adjust
3993 the result at the end by 'init_val'.
3995 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
3996 initialization vector is simpler (same element in all entries), if
3997 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
3999 A cost model should help decide between these two schemes. */
4001 tree
4002 get_initial_def_for_reduction (gimple *stmt, tree init_val,
4003 tree *adjustment_def)
4005 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
4006 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
4007 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4008 tree scalar_type = TREE_TYPE (init_val);
4009 tree vectype = get_vectype_for_scalar_type (scalar_type);
4010 int nunits;
4011 enum tree_code code = gimple_assign_rhs_code (stmt);
4012 tree def_for_init;
4013 tree init_def;
4014 tree *elts;
4015 int i;
4016 bool nested_in_vect_loop = false;
4017 REAL_VALUE_TYPE real_init_val = dconst0;
4018 int int_init_val = 0;
4019 gimple *def_stmt = NULL;
4020 gimple_seq stmts = NULL;
4022 gcc_assert (vectype);
4023 nunits = TYPE_VECTOR_SUBPARTS (vectype);
4025 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
4026 || SCALAR_FLOAT_TYPE_P (scalar_type));
4028 if (nested_in_vect_loop_p (loop, stmt))
4029 nested_in_vect_loop = true;
4030 else
4031 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
4033 /* In case of double reduction we only create a vector variable to be put
4034 in the reduction phi node. The actual statement creation is done in
4035 vect_create_epilog_for_reduction. */
4036 if (adjustment_def && nested_in_vect_loop
4037 && TREE_CODE (init_val) == SSA_NAME
4038 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
4039 && gimple_code (def_stmt) == GIMPLE_PHI
4040 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
4041 && vinfo_for_stmt (def_stmt)
4042 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
4043 == vect_double_reduction_def)
4045 *adjustment_def = NULL;
4046 return vect_create_destination_var (init_val, vectype);
4049 /* In case of a nested reduction do not use an adjustment def as
4050 that case is not supported by the epilogue generation correctly
4051 if ncopies is not one. */
4052 if (adjustment_def && nested_in_vect_loop)
4054 *adjustment_def = NULL;
4055 return vect_get_vec_def_for_operand (init_val, stmt);
4058 switch (code)
4060 case WIDEN_SUM_EXPR:
4061 case DOT_PROD_EXPR:
4062 case SAD_EXPR:
4063 case PLUS_EXPR:
4064 case MINUS_EXPR:
4065 case BIT_IOR_EXPR:
4066 case BIT_XOR_EXPR:
4067 case MULT_EXPR:
4068 case BIT_AND_EXPR:
4069 /* ADJUSMENT_DEF is NULL when called from
4070 vect_create_epilog_for_reduction to vectorize double reduction. */
4071 if (adjustment_def)
4072 *adjustment_def = init_val;
4074 if (code == MULT_EXPR)
4076 real_init_val = dconst1;
4077 int_init_val = 1;
4080 if (code == BIT_AND_EXPR)
4081 int_init_val = -1;
4083 if (SCALAR_FLOAT_TYPE_P (scalar_type))
4084 def_for_init = build_real (scalar_type, real_init_val);
4085 else
4086 def_for_init = build_int_cst (scalar_type, int_init_val);
4088 /* Create a vector of '0' or '1' except the first element. */
4089 elts = XALLOCAVEC (tree, nunits);
4090 for (i = nunits - 2; i >= 0; --i)
4091 elts[i + 1] = def_for_init;
4093 /* Option1: the first element is '0' or '1' as well. */
4094 if (adjustment_def)
4096 elts[0] = def_for_init;
4097 init_def = build_vector (vectype, elts);
4098 break;
4101 /* Option2: the first element is INIT_VAL. */
4102 elts[0] = init_val;
4103 if (TREE_CONSTANT (init_val))
4104 init_def = build_vector (vectype, elts);
4105 else
4107 vec<constructor_elt, va_gc> *v;
4108 vec_alloc (v, nunits);
4109 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init_val);
4110 for (i = 1; i < nunits; ++i)
4111 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
4112 init_def = build_constructor (vectype, v);
4115 break;
4117 case MIN_EXPR:
4118 case MAX_EXPR:
4119 case COND_EXPR:
4120 if (adjustment_def)
4122 *adjustment_def = NULL_TREE;
4123 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_vinfo) != COND_REDUCTION)
4125 init_def = vect_get_vec_def_for_operand (init_val, stmt);
4126 break;
4129 init_val = gimple_convert (&stmts, TREE_TYPE (vectype), init_val);
4130 if (! gimple_seq_empty_p (stmts))
4131 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
4132 init_def = build_vector_from_val (vectype, init_val);
4133 break;
4135 default:
4136 gcc_unreachable ();
4139 return init_def;
4142 /* Get at the initial defs for the reduction PHIs in SLP_NODE.
4143 NUMBER_OF_VECTORS is the number of vector defs to create. */
4145 static void
4146 get_initial_defs_for_reduction (slp_tree slp_node,
4147 vec<tree> *vec_oprnds,
4148 unsigned int number_of_vectors,
4149 enum tree_code code, bool reduc_chain)
4151 vec<gimple *> stmts = SLP_TREE_SCALAR_STMTS (slp_node);
4152 gimple *stmt = stmts[0];
4153 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
4154 unsigned nunits;
4155 tree vec_cst;
4156 tree *elts;
4157 unsigned j, number_of_places_left_in_vector;
4158 tree vector_type, scalar_type;
4159 tree vop;
4160 int group_size = stmts.length ();
4161 unsigned int vec_num, i;
4162 unsigned number_of_copies = 1;
4163 vec<tree> voprnds;
4164 voprnds.create (number_of_vectors);
4165 bool constant_p;
4166 tree neutral_op = NULL;
4167 struct loop *loop;
4168 gimple_seq ctor_seq = NULL;
4170 vector_type = STMT_VINFO_VECTYPE (stmt_vinfo);
4171 scalar_type = TREE_TYPE (vector_type);
4172 nunits = TYPE_VECTOR_SUBPARTS (vector_type);
4174 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def);
4176 loop = (gimple_bb (stmt))->loop_father;
4177 gcc_assert (loop);
4179 /* op is the reduction operand of the first stmt already. */
4180 /* For additional copies (see the explanation of NUMBER_OF_COPIES below)
4181 we need either neutral operands or the original operands. See
4182 get_initial_def_for_reduction() for details. */
4183 switch (code)
4185 case WIDEN_SUM_EXPR:
4186 case DOT_PROD_EXPR:
4187 case SAD_EXPR:
4188 case PLUS_EXPR:
4189 case MINUS_EXPR:
4190 case BIT_IOR_EXPR:
4191 case BIT_XOR_EXPR:
4192 neutral_op = build_zero_cst (scalar_type);
4193 break;
4195 case MULT_EXPR:
4196 neutral_op = build_one_cst (scalar_type);
4197 break;
4199 case BIT_AND_EXPR:
4200 neutral_op = build_all_ones_cst (scalar_type);
4201 break;
4203 /* For MIN/MAX we don't have an easy neutral operand but
4204 the initial values can be used fine here. Only for
4205 a reduction chain we have to force a neutral element. */
4206 case MAX_EXPR:
4207 case MIN_EXPR:
4208 if (! reduc_chain)
4209 neutral_op = NULL;
4210 else
4211 neutral_op = PHI_ARG_DEF_FROM_EDGE (stmt,
4212 loop_preheader_edge (loop));
4213 break;
4215 default:
4216 gcc_assert (! reduc_chain);
4217 neutral_op = NULL;
4220 /* NUMBER_OF_COPIES is the number of times we need to use the same values in
4221 created vectors. It is greater than 1 if unrolling is performed.
4223 For example, we have two scalar operands, s1 and s2 (e.g., group of
4224 strided accesses of size two), while NUNITS is four (i.e., four scalars
4225 of this type can be packed in a vector). The output vector will contain
4226 two copies of each scalar operand: {s1, s2, s1, s2}. (NUMBER_OF_COPIES
4227 will be 2).
4229 If GROUP_SIZE > NUNITS, the scalars will be split into several vectors
4230 containing the operands.
4232 For example, NUNITS is four as before, and the group size is 8
4233 (s1, s2, ..., s8). We will create two vectors {s1, s2, s3, s4} and
4234 {s5, s6, s7, s8}. */
4236 number_of_copies = nunits * number_of_vectors / group_size;
4238 number_of_places_left_in_vector = nunits;
4239 constant_p = true;
4240 elts = XALLOCAVEC (tree, nunits);
4241 for (j = 0; j < number_of_copies; j++)
4243 for (i = group_size - 1; stmts.iterate (i, &stmt); i--)
4245 tree op;
4246 /* Get the def before the loop. In reduction chain we have only
4247 one initial value. */
4248 if ((j != (number_of_copies - 1)
4249 || (reduc_chain && i != 0))
4250 && neutral_op)
4251 op = neutral_op;
4252 else
4253 op = PHI_ARG_DEF_FROM_EDGE (stmt,
4254 loop_preheader_edge (loop));
4256 /* Create 'vect_ = {op0,op1,...,opn}'. */
4257 number_of_places_left_in_vector--;
4258 elts[number_of_places_left_in_vector] = op;
4259 if (!CONSTANT_CLASS_P (op))
4260 constant_p = false;
4262 if (number_of_places_left_in_vector == 0)
4264 if (constant_p)
4265 vec_cst = build_vector (vector_type, elts);
4266 else
4268 vec<constructor_elt, va_gc> *v;
4269 unsigned k;
4270 vec_alloc (v, nunits);
4271 for (k = 0; k < nunits; ++k)
4272 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[k]);
4273 vec_cst = build_constructor (vector_type, v);
4275 tree init;
4276 gimple_stmt_iterator gsi;
4277 init = vect_init_vector (stmt, vec_cst, vector_type, NULL);
4278 if (ctor_seq != NULL)
4280 gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (init));
4281 gsi_insert_seq_before_without_update (&gsi, ctor_seq,
4282 GSI_SAME_STMT);
4283 ctor_seq = NULL;
4285 voprnds.quick_push (init);
4287 number_of_places_left_in_vector = nunits;
4288 constant_p = true;
4293 /* Since the vectors are created in the reverse order, we should invert
4294 them. */
4295 vec_num = voprnds.length ();
4296 for (j = vec_num; j != 0; j--)
4298 vop = voprnds[j - 1];
4299 vec_oprnds->quick_push (vop);
4302 voprnds.release ();
4304 /* In case that VF is greater than the unrolling factor needed for the SLP
4305 group of stmts, NUMBER_OF_VECTORS to be created is greater than
4306 NUMBER_OF_SCALARS/NUNITS or NUNITS/NUMBER_OF_SCALARS, and hence we have
4307 to replicate the vectors. */
4308 while (number_of_vectors > vec_oprnds->length ())
4310 tree neutral_vec = NULL;
4312 if (neutral_op)
4314 if (!neutral_vec)
4315 neutral_vec = build_vector_from_val (vector_type, neutral_op);
4317 vec_oprnds->quick_push (neutral_vec);
4319 else
4321 for (i = 0; vec_oprnds->iterate (i, &vop) && i < vec_num; i++)
4322 vec_oprnds->quick_push (vop);
4328 /* Function vect_create_epilog_for_reduction
4330 Create code at the loop-epilog to finalize the result of a reduction
4331 computation.
4333 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
4334 reduction statements.
4335 STMT is the scalar reduction stmt that is being vectorized.
4336 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
4337 number of elements that we can fit in a vectype (nunits). In this case
4338 we have to generate more than one vector stmt - i.e - we need to "unroll"
4339 the vector stmt by a factor VF/nunits. For more details see documentation
4340 in vectorizable_operation.
4341 REDUC_CODE is the tree-code for the epilog reduction.
4342 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
4343 computation.
4344 REDUC_INDEX is the index of the operand in the right hand side of the
4345 statement that is defined by REDUCTION_PHI.
4346 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
4347 SLP_NODE is an SLP node containing a group of reduction statements. The
4348 first one in this group is STMT.
4350 This function:
4351 1. Creates the reduction def-use cycles: sets the arguments for
4352 REDUCTION_PHIS:
4353 The loop-entry argument is the vectorized initial-value of the reduction.
4354 The loop-latch argument is taken from VECT_DEFS - the vector of partial
4355 sums.
4356 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
4357 by applying the operation specified by REDUC_CODE if available, or by
4358 other means (whole-vector shifts or a scalar loop).
4359 The function also creates a new phi node at the loop exit to preserve
4360 loop-closed form, as illustrated below.
4362 The flow at the entry to this function:
4364 loop:
4365 vec_def = phi <null, null> # REDUCTION_PHI
4366 VECT_DEF = vector_stmt # vectorized form of STMT
4367 s_loop = scalar_stmt # (scalar) STMT
4368 loop_exit:
4369 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4370 use <s_out0>
4371 use <s_out0>
4373 The above is transformed by this function into:
4375 loop:
4376 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4377 VECT_DEF = vector_stmt # vectorized form of STMT
4378 s_loop = scalar_stmt # (scalar) STMT
4379 loop_exit:
4380 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4381 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4382 v_out2 = reduce <v_out1>
4383 s_out3 = extract_field <v_out2, 0>
4384 s_out4 = adjust_result <s_out3>
4385 use <s_out4>
4386 use <s_out4>
4389 static void
4390 vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple *stmt,
4391 gimple *reduc_def_stmt,
4392 int ncopies, enum tree_code reduc_code,
4393 vec<gimple *> reduction_phis,
4394 bool double_reduc,
4395 slp_tree slp_node,
4396 slp_instance slp_node_instance)
4398 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4399 stmt_vec_info prev_phi_info;
4400 tree vectype;
4401 machine_mode mode;
4402 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4403 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
4404 basic_block exit_bb;
4405 tree scalar_dest;
4406 tree scalar_type;
4407 gimple *new_phi = NULL, *phi;
4408 gimple_stmt_iterator exit_gsi;
4409 tree vec_dest;
4410 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
4411 gimple *epilog_stmt = NULL;
4412 enum tree_code code = gimple_assign_rhs_code (stmt);
4413 gimple *exit_phi;
4414 tree bitsize;
4415 tree adjustment_def = NULL;
4416 tree vec_initial_def = NULL;
4417 tree expr, def, initial_def = NULL;
4418 tree orig_name, scalar_result;
4419 imm_use_iterator imm_iter, phi_imm_iter;
4420 use_operand_p use_p, phi_use_p;
4421 gimple *use_stmt, *orig_stmt, *reduction_phi = NULL;
4422 bool nested_in_vect_loop = false;
4423 auto_vec<gimple *> new_phis;
4424 auto_vec<gimple *> inner_phis;
4425 enum vect_def_type dt = vect_unknown_def_type;
4426 int j, i;
4427 auto_vec<tree> scalar_results;
4428 unsigned int group_size = 1, k, ratio;
4429 auto_vec<tree> vec_initial_defs;
4430 auto_vec<gimple *> phis;
4431 bool slp_reduc = false;
4432 tree new_phi_result;
4433 gimple *inner_phi = NULL;
4434 tree induction_index = NULL_TREE;
4436 if (slp_node)
4437 group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
4439 if (nested_in_vect_loop_p (loop, stmt))
4441 outer_loop = loop;
4442 loop = loop->inner;
4443 nested_in_vect_loop = true;
4444 gcc_assert (!slp_node);
4447 vectype = STMT_VINFO_VECTYPE (stmt_info);
4448 gcc_assert (vectype);
4449 mode = TYPE_MODE (vectype);
4451 /* 1. Create the reduction def-use cycle:
4452 Set the arguments of REDUCTION_PHIS, i.e., transform
4454 loop:
4455 vec_def = phi <null, null> # REDUCTION_PHI
4456 VECT_DEF = vector_stmt # vectorized form of STMT
4459 into:
4461 loop:
4462 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4463 VECT_DEF = vector_stmt # vectorized form of STMT
4466 (in case of SLP, do it for all the phis). */
4468 /* Get the loop-entry arguments. */
4469 enum vect_def_type initial_def_dt = vect_unknown_def_type;
4470 if (slp_node)
4472 unsigned vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
4473 vec_initial_defs.reserve (vec_num);
4474 get_initial_defs_for_reduction (slp_node_instance->reduc_phis,
4475 &vec_initial_defs, vec_num, code,
4476 GROUP_FIRST_ELEMENT (stmt_info));
4478 else
4480 /* Get at the scalar def before the loop, that defines the initial value
4481 of the reduction variable. */
4482 gimple *def_stmt;
4483 initial_def = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
4484 loop_preheader_edge (loop));
4485 vect_is_simple_use (initial_def, loop_vinfo, &def_stmt, &initial_def_dt);
4486 vec_initial_def = get_initial_def_for_reduction (stmt, initial_def,
4487 &adjustment_def);
4488 vec_initial_defs.create (1);
4489 vec_initial_defs.quick_push (vec_initial_def);
4492 /* Set phi nodes arguments. */
4493 FOR_EACH_VEC_ELT (reduction_phis, i, phi)
4495 tree vec_init_def, def;
4496 gimple_seq stmts;
4497 vec_init_def = force_gimple_operand (vec_initial_defs[i], &stmts,
4498 true, NULL_TREE);
4499 if (stmts)
4500 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
4502 def = vect_defs[i];
4503 for (j = 0; j < ncopies; j++)
4505 if (j != 0)
4507 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4508 if (nested_in_vect_loop)
4509 vec_init_def
4510 = vect_get_vec_def_for_stmt_copy (initial_def_dt,
4511 vec_init_def);
4514 /* Set the loop-entry arg of the reduction-phi. */
4516 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
4517 == INTEGER_INDUC_COND_REDUCTION)
4519 /* Initialise the reduction phi to zero. This prevents initial
4520 values of non-zero interferring with the reduction op. */
4521 gcc_assert (ncopies == 1);
4522 gcc_assert (i == 0);
4524 tree vec_init_def_type = TREE_TYPE (vec_init_def);
4525 tree zero_vec = build_zero_cst (vec_init_def_type);
4527 add_phi_arg (as_a <gphi *> (phi), zero_vec,
4528 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4530 else
4531 add_phi_arg (as_a <gphi *> (phi), vec_init_def,
4532 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4534 /* Set the loop-latch arg for the reduction-phi. */
4535 if (j > 0)
4536 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
4538 add_phi_arg (as_a <gphi *> (phi), def, loop_latch_edge (loop),
4539 UNKNOWN_LOCATION);
4541 if (dump_enabled_p ())
4543 dump_printf_loc (MSG_NOTE, vect_location,
4544 "transform reduction: created def-use cycle: ");
4545 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
4546 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
4551 /* For cond reductions we want to create a new vector (INDEX_COND_EXPR)
4552 which is updated with the current index of the loop for every match of
4553 the original loop's cond_expr (VEC_STMT). This results in a vector
4554 containing the last time the condition passed for that vector lane.
4555 The first match will be a 1 to allow 0 to be used for non-matching
4556 indexes. If there are no matches at all then the vector will be all
4557 zeroes. */
4558 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
4560 tree indx_before_incr, indx_after_incr;
4561 int nunits_out = TYPE_VECTOR_SUBPARTS (vectype);
4562 int k;
4564 gimple *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
4565 gcc_assert (gimple_assign_rhs_code (vec_stmt) == VEC_COND_EXPR);
4567 int scalar_precision
4568 = GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (vectype)));
4569 tree cr_index_scalar_type = make_unsigned_type (scalar_precision);
4570 tree cr_index_vector_type = build_vector_type
4571 (cr_index_scalar_type, TYPE_VECTOR_SUBPARTS (vectype));
4573 /* First we create a simple vector induction variable which starts
4574 with the values {1,2,3,...} (SERIES_VECT) and increments by the
4575 vector size (STEP). */
4577 /* Create a {1,2,3,...} vector. */
4578 tree *vtemp = XALLOCAVEC (tree, nunits_out);
4579 for (k = 0; k < nunits_out; ++k)
4580 vtemp[k] = build_int_cst (cr_index_scalar_type, k + 1);
4581 tree series_vect = build_vector (cr_index_vector_type, vtemp);
4583 /* Create a vector of the step value. */
4584 tree step = build_int_cst (cr_index_scalar_type, nunits_out);
4585 tree vec_step = build_vector_from_val (cr_index_vector_type, step);
4587 /* Create an induction variable. */
4588 gimple_stmt_iterator incr_gsi;
4589 bool insert_after;
4590 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
4591 create_iv (series_vect, vec_step, NULL_TREE, loop, &incr_gsi,
4592 insert_after, &indx_before_incr, &indx_after_incr);
4594 /* Next create a new phi node vector (NEW_PHI_TREE) which starts
4595 filled with zeros (VEC_ZERO). */
4597 /* Create a vector of 0s. */
4598 tree zero = build_zero_cst (cr_index_scalar_type);
4599 tree vec_zero = build_vector_from_val (cr_index_vector_type, zero);
4601 /* Create a vector phi node. */
4602 tree new_phi_tree = make_ssa_name (cr_index_vector_type);
4603 new_phi = create_phi_node (new_phi_tree, loop->header);
4604 set_vinfo_for_stmt (new_phi,
4605 new_stmt_vec_info (new_phi, loop_vinfo));
4606 add_phi_arg (as_a <gphi *> (new_phi), vec_zero,
4607 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4609 /* Now take the condition from the loops original cond_expr
4610 (VEC_STMT) and produce a new cond_expr (INDEX_COND_EXPR) which for
4611 every match uses values from the induction variable
4612 (INDEX_BEFORE_INCR) otherwise uses values from the phi node
4613 (NEW_PHI_TREE).
4614 Finally, we update the phi (NEW_PHI_TREE) to take the value of
4615 the new cond_expr (INDEX_COND_EXPR). */
4617 /* Duplicate the condition from vec_stmt. */
4618 tree ccompare = unshare_expr (gimple_assign_rhs1 (vec_stmt));
4620 /* Create a conditional, where the condition is taken from vec_stmt
4621 (CCOMPARE), then is the induction index (INDEX_BEFORE_INCR) and
4622 else is the phi (NEW_PHI_TREE). */
4623 tree index_cond_expr = build3 (VEC_COND_EXPR, cr_index_vector_type,
4624 ccompare, indx_before_incr,
4625 new_phi_tree);
4626 induction_index = make_ssa_name (cr_index_vector_type);
4627 gimple *index_condition = gimple_build_assign (induction_index,
4628 index_cond_expr);
4629 gsi_insert_before (&incr_gsi, index_condition, GSI_SAME_STMT);
4630 stmt_vec_info index_vec_info = new_stmt_vec_info (index_condition,
4631 loop_vinfo);
4632 STMT_VINFO_VECTYPE (index_vec_info) = cr_index_vector_type;
4633 set_vinfo_for_stmt (index_condition, index_vec_info);
4635 /* Update the phi with the vec cond. */
4636 add_phi_arg (as_a <gphi *> (new_phi), induction_index,
4637 loop_latch_edge (loop), UNKNOWN_LOCATION);
4640 /* 2. Create epilog code.
4641 The reduction epilog code operates across the elements of the vector
4642 of partial results computed by the vectorized loop.
4643 The reduction epilog code consists of:
4645 step 1: compute the scalar result in a vector (v_out2)
4646 step 2: extract the scalar result (s_out3) from the vector (v_out2)
4647 step 3: adjust the scalar result (s_out3) if needed.
4649 Step 1 can be accomplished using one the following three schemes:
4650 (scheme 1) using reduc_code, if available.
4651 (scheme 2) using whole-vector shifts, if available.
4652 (scheme 3) using a scalar loop. In this case steps 1+2 above are
4653 combined.
4655 The overall epilog code looks like this:
4657 s_out0 = phi <s_loop> # original EXIT_PHI
4658 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4659 v_out2 = reduce <v_out1> # step 1
4660 s_out3 = extract_field <v_out2, 0> # step 2
4661 s_out4 = adjust_result <s_out3> # step 3
4663 (step 3 is optional, and steps 1 and 2 may be combined).
4664 Lastly, the uses of s_out0 are replaced by s_out4. */
4667 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
4668 v_out1 = phi <VECT_DEF>
4669 Store them in NEW_PHIS. */
4671 exit_bb = single_exit (loop)->dest;
4672 prev_phi_info = NULL;
4673 new_phis.create (vect_defs.length ());
4674 FOR_EACH_VEC_ELT (vect_defs, i, def)
4676 for (j = 0; j < ncopies; j++)
4678 tree new_def = copy_ssa_name (def);
4679 phi = create_phi_node (new_def, exit_bb);
4680 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo));
4681 if (j == 0)
4682 new_phis.quick_push (phi);
4683 else
4685 def = vect_get_vec_def_for_stmt_copy (dt, def);
4686 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
4689 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
4690 prev_phi_info = vinfo_for_stmt (phi);
4694 /* The epilogue is created for the outer-loop, i.e., for the loop being
4695 vectorized. Create exit phis for the outer loop. */
4696 if (double_reduc)
4698 loop = outer_loop;
4699 exit_bb = single_exit (loop)->dest;
4700 inner_phis.create (vect_defs.length ());
4701 FOR_EACH_VEC_ELT (new_phis, i, phi)
4703 tree new_result = copy_ssa_name (PHI_RESULT (phi));
4704 gphi *outer_phi = create_phi_node (new_result, exit_bb);
4705 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4706 PHI_RESULT (phi));
4707 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4708 loop_vinfo));
4709 inner_phis.quick_push (phi);
4710 new_phis[i] = outer_phi;
4711 prev_phi_info = vinfo_for_stmt (outer_phi);
4712 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
4714 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4715 new_result = copy_ssa_name (PHI_RESULT (phi));
4716 outer_phi = create_phi_node (new_result, exit_bb);
4717 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4718 PHI_RESULT (phi));
4719 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4720 loop_vinfo));
4721 STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
4722 prev_phi_info = vinfo_for_stmt (outer_phi);
4727 exit_gsi = gsi_after_labels (exit_bb);
4729 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
4730 (i.e. when reduc_code is not available) and in the final adjustment
4731 code (if needed). Also get the original scalar reduction variable as
4732 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
4733 represents a reduction pattern), the tree-code and scalar-def are
4734 taken from the original stmt that the pattern-stmt (STMT) replaces.
4735 Otherwise (it is a regular reduction) - the tree-code and scalar-def
4736 are taken from STMT. */
4738 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4739 if (!orig_stmt)
4741 /* Regular reduction */
4742 orig_stmt = stmt;
4744 else
4746 /* Reduction pattern */
4747 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
4748 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
4749 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
4752 code = gimple_assign_rhs_code (orig_stmt);
4753 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
4754 partial results are added and not subtracted. */
4755 if (code == MINUS_EXPR)
4756 code = PLUS_EXPR;
4758 scalar_dest = gimple_assign_lhs (orig_stmt);
4759 scalar_type = TREE_TYPE (scalar_dest);
4760 scalar_results.create (group_size);
4761 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
4762 bitsize = TYPE_SIZE (scalar_type);
4764 /* In case this is a reduction in an inner-loop while vectorizing an outer
4765 loop - we don't need to extract a single scalar result at the end of the
4766 inner-loop (unless it is double reduction, i.e., the use of reduction is
4767 outside the outer-loop). The final vector of partial results will be used
4768 in the vectorized outer-loop, or reduced to a scalar result at the end of
4769 the outer-loop. */
4770 if (nested_in_vect_loop && !double_reduc)
4771 goto vect_finalize_reduction;
4773 /* SLP reduction without reduction chain, e.g.,
4774 # a1 = phi <a2, a0>
4775 # b1 = phi <b2, b0>
4776 a2 = operation (a1)
4777 b2 = operation (b1) */
4778 slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
4780 /* In case of reduction chain, e.g.,
4781 # a1 = phi <a3, a0>
4782 a2 = operation (a1)
4783 a3 = operation (a2),
4785 we may end up with more than one vector result. Here we reduce them to
4786 one vector. */
4787 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4789 tree first_vect = PHI_RESULT (new_phis[0]);
4790 gassign *new_vec_stmt = NULL;
4791 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4792 for (k = 1; k < new_phis.length (); k++)
4794 gimple *next_phi = new_phis[k];
4795 tree second_vect = PHI_RESULT (next_phi);
4796 tree tem = make_ssa_name (vec_dest, new_vec_stmt);
4797 new_vec_stmt = gimple_build_assign (tem, code,
4798 first_vect, second_vect);
4799 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
4800 first_vect = tem;
4803 new_phi_result = first_vect;
4804 if (new_vec_stmt)
4806 new_phis.truncate (0);
4807 new_phis.safe_push (new_vec_stmt);
4810 /* Likewise if we couldn't use a single defuse cycle. */
4811 else if (ncopies > 1)
4813 gcc_assert (new_phis.length () == 1);
4814 tree first_vect = PHI_RESULT (new_phis[0]);
4815 gassign *new_vec_stmt = NULL;
4816 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4817 gimple *next_phi = new_phis[0];
4818 for (int k = 1; k < ncopies; ++k)
4820 next_phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (next_phi));
4821 tree second_vect = PHI_RESULT (next_phi);
4822 tree tem = make_ssa_name (vec_dest, new_vec_stmt);
4823 new_vec_stmt = gimple_build_assign (tem, code,
4824 first_vect, second_vect);
4825 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
4826 first_vect = tem;
4828 new_phi_result = first_vect;
4829 new_phis.truncate (0);
4830 new_phis.safe_push (new_vec_stmt);
4832 else
4833 new_phi_result = PHI_RESULT (new_phis[0]);
4835 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION
4836 && reduc_code != ERROR_MARK)
4838 /* For condition reductions, we have a vector (NEW_PHI_RESULT) containing
4839 various data values where the condition matched and another vector
4840 (INDUCTION_INDEX) containing all the indexes of those matches. We
4841 need to extract the last matching index (which will be the index with
4842 highest value) and use this to index into the data vector.
4843 For the case where there were no matches, the data vector will contain
4844 all default values and the index vector will be all zeros. */
4846 /* Get various versions of the type of the vector of indexes. */
4847 tree index_vec_type = TREE_TYPE (induction_index);
4848 gcc_checking_assert (TYPE_UNSIGNED (index_vec_type));
4849 tree index_scalar_type = TREE_TYPE (index_vec_type);
4850 tree index_vec_cmp_type = build_same_sized_truth_vector_type
4851 (index_vec_type);
4853 /* Get an unsigned integer version of the type of the data vector. */
4854 int scalar_precision = GET_MODE_PRECISION (TYPE_MODE (scalar_type));
4855 tree scalar_type_unsigned = make_unsigned_type (scalar_precision);
4856 tree vectype_unsigned = build_vector_type
4857 (scalar_type_unsigned, TYPE_VECTOR_SUBPARTS (vectype));
4859 /* First we need to create a vector (ZERO_VEC) of zeros and another
4860 vector (MAX_INDEX_VEC) filled with the last matching index, which we
4861 can create using a MAX reduction and then expanding.
4862 In the case where the loop never made any matches, the max index will
4863 be zero. */
4865 /* Vector of {0, 0, 0,...}. */
4866 tree zero_vec = make_ssa_name (vectype);
4867 tree zero_vec_rhs = build_zero_cst (vectype);
4868 gimple *zero_vec_stmt = gimple_build_assign (zero_vec, zero_vec_rhs);
4869 gsi_insert_before (&exit_gsi, zero_vec_stmt, GSI_SAME_STMT);
4871 /* Find maximum value from the vector of found indexes. */
4872 tree max_index = make_ssa_name (index_scalar_type);
4873 gimple *max_index_stmt = gimple_build_assign (max_index, REDUC_MAX_EXPR,
4874 induction_index);
4875 gsi_insert_before (&exit_gsi, max_index_stmt, GSI_SAME_STMT);
4877 /* Vector of {max_index, max_index, max_index,...}. */
4878 tree max_index_vec = make_ssa_name (index_vec_type);
4879 tree max_index_vec_rhs = build_vector_from_val (index_vec_type,
4880 max_index);
4881 gimple *max_index_vec_stmt = gimple_build_assign (max_index_vec,
4882 max_index_vec_rhs);
4883 gsi_insert_before (&exit_gsi, max_index_vec_stmt, GSI_SAME_STMT);
4885 /* Next we compare the new vector (MAX_INDEX_VEC) full of max indexes
4886 with the vector (INDUCTION_INDEX) of found indexes, choosing values
4887 from the data vector (NEW_PHI_RESULT) for matches, 0 (ZERO_VEC)
4888 otherwise. Only one value should match, resulting in a vector
4889 (VEC_COND) with one data value and the rest zeros.
4890 In the case where the loop never made any matches, every index will
4891 match, resulting in a vector with all data values (which will all be
4892 the default value). */
4894 /* Compare the max index vector to the vector of found indexes to find
4895 the position of the max value. */
4896 tree vec_compare = make_ssa_name (index_vec_cmp_type);
4897 gimple *vec_compare_stmt = gimple_build_assign (vec_compare, EQ_EXPR,
4898 induction_index,
4899 max_index_vec);
4900 gsi_insert_before (&exit_gsi, vec_compare_stmt, GSI_SAME_STMT);
4902 /* Use the compare to choose either values from the data vector or
4903 zero. */
4904 tree vec_cond = make_ssa_name (vectype);
4905 gimple *vec_cond_stmt = gimple_build_assign (vec_cond, VEC_COND_EXPR,
4906 vec_compare, new_phi_result,
4907 zero_vec);
4908 gsi_insert_before (&exit_gsi, vec_cond_stmt, GSI_SAME_STMT);
4910 /* Finally we need to extract the data value from the vector (VEC_COND)
4911 into a scalar (MATCHED_DATA_REDUC). Logically we want to do a OR
4912 reduction, but because this doesn't exist, we can use a MAX reduction
4913 instead. The data value might be signed or a float so we need to cast
4914 it first.
4915 In the case where the loop never made any matches, the data values are
4916 all identical, and so will reduce down correctly. */
4918 /* Make the matched data values unsigned. */
4919 tree vec_cond_cast = make_ssa_name (vectype_unsigned);
4920 tree vec_cond_cast_rhs = build1 (VIEW_CONVERT_EXPR, vectype_unsigned,
4921 vec_cond);
4922 gimple *vec_cond_cast_stmt = gimple_build_assign (vec_cond_cast,
4923 VIEW_CONVERT_EXPR,
4924 vec_cond_cast_rhs);
4925 gsi_insert_before (&exit_gsi, vec_cond_cast_stmt, GSI_SAME_STMT);
4927 /* Reduce down to a scalar value. */
4928 tree data_reduc = make_ssa_name (scalar_type_unsigned);
4929 optab ot = optab_for_tree_code (REDUC_MAX_EXPR, vectype_unsigned,
4930 optab_default);
4931 gcc_assert (optab_handler (ot, TYPE_MODE (vectype_unsigned))
4932 != CODE_FOR_nothing);
4933 gimple *data_reduc_stmt = gimple_build_assign (data_reduc,
4934 REDUC_MAX_EXPR,
4935 vec_cond_cast);
4936 gsi_insert_before (&exit_gsi, data_reduc_stmt, GSI_SAME_STMT);
4938 /* Convert the reduced value back to the result type and set as the
4939 result. */
4940 gimple_seq stmts = NULL;
4941 new_temp = gimple_build (&stmts, VIEW_CONVERT_EXPR, scalar_type,
4942 data_reduc);
4943 gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
4944 scalar_results.safe_push (new_temp);
4946 else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION
4947 && reduc_code == ERROR_MARK)
4949 /* Condition redution without supported REDUC_MAX_EXPR. Generate
4950 idx = 0;
4951 idx_val = induction_index[0];
4952 val = data_reduc[0];
4953 for (idx = 0, val = init, i = 0; i < nelts; ++i)
4954 if (induction_index[i] > idx_val)
4955 val = data_reduc[i], idx_val = induction_index[i];
4956 return val; */
4958 tree data_eltype = TREE_TYPE (TREE_TYPE (new_phi_result));
4959 tree idx_eltype = TREE_TYPE (TREE_TYPE (induction_index));
4960 unsigned HOST_WIDE_INT el_size = tree_to_uhwi (TYPE_SIZE (idx_eltype));
4961 unsigned HOST_WIDE_INT v_size
4962 = el_size * TYPE_VECTOR_SUBPARTS (TREE_TYPE (induction_index));
4963 tree idx_val = NULL_TREE, val = NULL_TREE;
4964 for (unsigned HOST_WIDE_INT off = 0; off < v_size; off += el_size)
4966 tree old_idx_val = idx_val;
4967 tree old_val = val;
4968 idx_val = make_ssa_name (idx_eltype);
4969 epilog_stmt = gimple_build_assign (idx_val, BIT_FIELD_REF,
4970 build3 (BIT_FIELD_REF, idx_eltype,
4971 induction_index,
4972 bitsize_int (el_size),
4973 bitsize_int (off)));
4974 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4975 val = make_ssa_name (data_eltype);
4976 epilog_stmt = gimple_build_assign (val, BIT_FIELD_REF,
4977 build3 (BIT_FIELD_REF,
4978 data_eltype,
4979 new_phi_result,
4980 bitsize_int (el_size),
4981 bitsize_int (off)));
4982 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4983 if (off != 0)
4985 tree new_idx_val = idx_val;
4986 tree new_val = val;
4987 if (off != v_size - el_size)
4989 new_idx_val = make_ssa_name (idx_eltype);
4990 epilog_stmt = gimple_build_assign (new_idx_val,
4991 MAX_EXPR, idx_val,
4992 old_idx_val);
4993 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4995 new_val = make_ssa_name (data_eltype);
4996 epilog_stmt = gimple_build_assign (new_val,
4997 COND_EXPR,
4998 build2 (GT_EXPR,
4999 boolean_type_node,
5000 idx_val,
5001 old_idx_val),
5002 val, old_val);
5003 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5004 idx_val = new_idx_val;
5005 val = new_val;
5008 /* Convert the reduced value back to the result type and set as the
5009 result. */
5010 gimple_seq stmts = NULL;
5011 val = gimple_convert (&stmts, scalar_type, val);
5012 gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
5013 scalar_results.safe_push (val);
5016 /* 2.3 Create the reduction code, using one of the three schemes described
5017 above. In SLP we simply need to extract all the elements from the
5018 vector (without reducing them), so we use scalar shifts. */
5019 else if (reduc_code != ERROR_MARK && !slp_reduc)
5021 tree tmp;
5022 tree vec_elem_type;
5024 /* Case 1: Create:
5025 v_out2 = reduc_expr <v_out1> */
5027 if (dump_enabled_p ())
5028 dump_printf_loc (MSG_NOTE, vect_location,
5029 "Reduce using direct vector reduction.\n");
5031 vec_elem_type = TREE_TYPE (TREE_TYPE (new_phi_result));
5032 if (!useless_type_conversion_p (scalar_type, vec_elem_type))
5034 tree tmp_dest =
5035 vect_create_destination_var (scalar_dest, vec_elem_type);
5036 tmp = build1 (reduc_code, vec_elem_type, new_phi_result);
5037 epilog_stmt = gimple_build_assign (tmp_dest, tmp);
5038 new_temp = make_ssa_name (tmp_dest, epilog_stmt);
5039 gimple_assign_set_lhs (epilog_stmt, new_temp);
5040 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5042 tmp = build1 (NOP_EXPR, scalar_type, new_temp);
5044 else
5045 tmp = build1 (reduc_code, scalar_type, new_phi_result);
5047 epilog_stmt = gimple_build_assign (new_scalar_dest, tmp);
5048 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5049 gimple_assign_set_lhs (epilog_stmt, new_temp);
5050 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5052 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5053 == INTEGER_INDUC_COND_REDUCTION)
5055 /* Earlier we set the initial value to be zero. Check the result
5056 and if it is zero then replace with the original initial
5057 value. */
5058 tree zero = build_zero_cst (scalar_type);
5059 tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp, zero);
5061 tmp = make_ssa_name (new_scalar_dest);
5062 epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
5063 initial_def, new_temp);
5064 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5065 new_temp = tmp;
5068 scalar_results.safe_push (new_temp);
5070 else
5072 bool reduce_with_shift = have_whole_vector_shift (mode);
5073 int element_bitsize = tree_to_uhwi (bitsize);
5074 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
5075 tree vec_temp;
5077 /* COND reductions all do the final reduction with MAX_EXPR. */
5078 if (code == COND_EXPR)
5079 code = MAX_EXPR;
5081 /* Regardless of whether we have a whole vector shift, if we're
5082 emulating the operation via tree-vect-generic, we don't want
5083 to use it. Only the first round of the reduction is likely
5084 to still be profitable via emulation. */
5085 /* ??? It might be better to emit a reduction tree code here, so that
5086 tree-vect-generic can expand the first round via bit tricks. */
5087 if (!VECTOR_MODE_P (mode))
5088 reduce_with_shift = false;
5089 else
5091 optab optab = optab_for_tree_code (code, vectype, optab_default);
5092 if (optab_handler (optab, mode) == CODE_FOR_nothing)
5093 reduce_with_shift = false;
5096 if (reduce_with_shift && !slp_reduc)
5098 int nelements = vec_size_in_bits / element_bitsize;
5099 unsigned char *sel = XALLOCAVEC (unsigned char, nelements);
5101 int elt_offset;
5103 tree zero_vec = build_zero_cst (vectype);
5104 /* Case 2: Create:
5105 for (offset = nelements/2; offset >= 1; offset/=2)
5107 Create: va' = vec_shift <va, offset>
5108 Create: va = vop <va, va'>
5109 } */
5111 tree rhs;
5113 if (dump_enabled_p ())
5114 dump_printf_loc (MSG_NOTE, vect_location,
5115 "Reduce using vector shifts\n");
5117 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5118 new_temp = new_phi_result;
5119 for (elt_offset = nelements / 2;
5120 elt_offset >= 1;
5121 elt_offset /= 2)
5123 calc_vec_perm_mask_for_shift (mode, elt_offset, sel);
5124 tree mask = vect_gen_perm_mask_any (vectype, sel);
5125 epilog_stmt = gimple_build_assign (vec_dest, VEC_PERM_EXPR,
5126 new_temp, zero_vec, mask);
5127 new_name = make_ssa_name (vec_dest, epilog_stmt);
5128 gimple_assign_set_lhs (epilog_stmt, new_name);
5129 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5131 epilog_stmt = gimple_build_assign (vec_dest, code, new_name,
5132 new_temp);
5133 new_temp = make_ssa_name (vec_dest, epilog_stmt);
5134 gimple_assign_set_lhs (epilog_stmt, new_temp);
5135 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5138 /* 2.4 Extract the final scalar result. Create:
5139 s_out3 = extract_field <v_out2, bitpos> */
5141 if (dump_enabled_p ())
5142 dump_printf_loc (MSG_NOTE, vect_location,
5143 "extract scalar result\n");
5145 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp,
5146 bitsize, bitsize_zero_node);
5147 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
5148 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5149 gimple_assign_set_lhs (epilog_stmt, new_temp);
5150 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5151 scalar_results.safe_push (new_temp);
5153 else
5155 /* Case 3: Create:
5156 s = extract_field <v_out2, 0>
5157 for (offset = element_size;
5158 offset < vector_size;
5159 offset += element_size;)
5161 Create: s' = extract_field <v_out2, offset>
5162 Create: s = op <s, s'> // For non SLP cases
5163 } */
5165 if (dump_enabled_p ())
5166 dump_printf_loc (MSG_NOTE, vect_location,
5167 "Reduce using scalar code.\n");
5169 vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
5170 FOR_EACH_VEC_ELT (new_phis, i, new_phi)
5172 int bit_offset;
5173 if (gimple_code (new_phi) == GIMPLE_PHI)
5174 vec_temp = PHI_RESULT (new_phi);
5175 else
5176 vec_temp = gimple_assign_lhs (new_phi);
5177 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
5178 bitsize_zero_node);
5179 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
5180 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5181 gimple_assign_set_lhs (epilog_stmt, new_temp);
5182 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5184 /* In SLP we don't need to apply reduction operation, so we just
5185 collect s' values in SCALAR_RESULTS. */
5186 if (slp_reduc)
5187 scalar_results.safe_push (new_temp);
5189 for (bit_offset = element_bitsize;
5190 bit_offset < vec_size_in_bits;
5191 bit_offset += element_bitsize)
5193 tree bitpos = bitsize_int (bit_offset);
5194 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
5195 bitsize, bitpos);
5197 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
5198 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
5199 gimple_assign_set_lhs (epilog_stmt, new_name);
5200 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5202 if (slp_reduc)
5204 /* In SLP we don't need to apply reduction operation, so
5205 we just collect s' values in SCALAR_RESULTS. */
5206 new_temp = new_name;
5207 scalar_results.safe_push (new_name);
5209 else
5211 epilog_stmt = gimple_build_assign (new_scalar_dest, code,
5212 new_name, new_temp);
5213 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5214 gimple_assign_set_lhs (epilog_stmt, new_temp);
5215 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5220 /* The only case where we need to reduce scalar results in SLP, is
5221 unrolling. If the size of SCALAR_RESULTS is greater than
5222 GROUP_SIZE, we reduce them combining elements modulo
5223 GROUP_SIZE. */
5224 if (slp_reduc)
5226 tree res, first_res, new_res;
5227 gimple *new_stmt;
5229 /* Reduce multiple scalar results in case of SLP unrolling. */
5230 for (j = group_size; scalar_results.iterate (j, &res);
5231 j++)
5233 first_res = scalar_results[j % group_size];
5234 new_stmt = gimple_build_assign (new_scalar_dest, code,
5235 first_res, res);
5236 new_res = make_ssa_name (new_scalar_dest, new_stmt);
5237 gimple_assign_set_lhs (new_stmt, new_res);
5238 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
5239 scalar_results[j % group_size] = new_res;
5242 else
5243 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
5244 scalar_results.safe_push (new_temp);
5247 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5248 == INTEGER_INDUC_COND_REDUCTION)
5250 /* Earlier we set the initial value to be zero. Check the result
5251 and if it is zero then replace with the original initial
5252 value. */
5253 tree zero = build_zero_cst (scalar_type);
5254 tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp, zero);
5256 tree tmp = make_ssa_name (new_scalar_dest);
5257 epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
5258 initial_def, new_temp);
5259 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5260 scalar_results[0] = tmp;
5264 vect_finalize_reduction:
5266 if (double_reduc)
5267 loop = loop->inner;
5269 /* 2.5 Adjust the final result by the initial value of the reduction
5270 variable. (When such adjustment is not needed, then
5271 'adjustment_def' is zero). For example, if code is PLUS we create:
5272 new_temp = loop_exit_def + adjustment_def */
5274 if (adjustment_def)
5276 gcc_assert (!slp_reduc);
5277 if (nested_in_vect_loop)
5279 new_phi = new_phis[0];
5280 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
5281 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
5282 new_dest = vect_create_destination_var (scalar_dest, vectype);
5284 else
5286 new_temp = scalar_results[0];
5287 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
5288 expr = build2 (code, scalar_type, new_temp, adjustment_def);
5289 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
5292 epilog_stmt = gimple_build_assign (new_dest, expr);
5293 new_temp = make_ssa_name (new_dest, epilog_stmt);
5294 gimple_assign_set_lhs (epilog_stmt, new_temp);
5295 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5296 if (nested_in_vect_loop)
5298 set_vinfo_for_stmt (epilog_stmt,
5299 new_stmt_vec_info (epilog_stmt, loop_vinfo));
5300 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
5301 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
5303 if (!double_reduc)
5304 scalar_results.quick_push (new_temp);
5305 else
5306 scalar_results[0] = new_temp;
5308 else
5309 scalar_results[0] = new_temp;
5311 new_phis[0] = epilog_stmt;
5314 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
5315 phis with new adjusted scalar results, i.e., replace use <s_out0>
5316 with use <s_out4>.
5318 Transform:
5319 loop_exit:
5320 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
5321 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
5322 v_out2 = reduce <v_out1>
5323 s_out3 = extract_field <v_out2, 0>
5324 s_out4 = adjust_result <s_out3>
5325 use <s_out0>
5326 use <s_out0>
5328 into:
5330 loop_exit:
5331 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
5332 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
5333 v_out2 = reduce <v_out1>
5334 s_out3 = extract_field <v_out2, 0>
5335 s_out4 = adjust_result <s_out3>
5336 use <s_out4>
5337 use <s_out4> */
5340 /* In SLP reduction chain we reduce vector results into one vector if
5341 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
5342 the last stmt in the reduction chain, since we are looking for the loop
5343 exit phi node. */
5344 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
5346 gimple *dest_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1];
5347 /* Handle reduction patterns. */
5348 if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt)))
5349 dest_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt));
5351 scalar_dest = gimple_assign_lhs (dest_stmt);
5352 group_size = 1;
5355 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
5356 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
5357 need to match SCALAR_RESULTS with corresponding statements. The first
5358 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
5359 the first vector stmt, etc.
5360 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
5361 if (group_size > new_phis.length ())
5363 ratio = group_size / new_phis.length ();
5364 gcc_assert (!(group_size % new_phis.length ()));
5366 else
5367 ratio = 1;
5369 for (k = 0; k < group_size; k++)
5371 if (k % ratio == 0)
5373 epilog_stmt = new_phis[k / ratio];
5374 reduction_phi = reduction_phis[k / ratio];
5375 if (double_reduc)
5376 inner_phi = inner_phis[k / ratio];
5379 if (slp_reduc)
5381 gimple *current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
5383 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
5384 /* SLP statements can't participate in patterns. */
5385 gcc_assert (!orig_stmt);
5386 scalar_dest = gimple_assign_lhs (current_stmt);
5389 phis.create (3);
5390 /* Find the loop-closed-use at the loop exit of the original scalar
5391 result. (The reduction result is expected to have two immediate uses -
5392 one at the latch block, and one at the loop exit). */
5393 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
5394 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))
5395 && !is_gimple_debug (USE_STMT (use_p)))
5396 phis.safe_push (USE_STMT (use_p));
5398 /* While we expect to have found an exit_phi because of loop-closed-ssa
5399 form we can end up without one if the scalar cycle is dead. */
5401 FOR_EACH_VEC_ELT (phis, i, exit_phi)
5403 if (outer_loop)
5405 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
5406 gphi *vect_phi;
5408 /* FORNOW. Currently not supporting the case that an inner-loop
5409 reduction is not used in the outer-loop (but only outside the
5410 outer-loop), unless it is double reduction. */
5411 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
5412 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
5413 || double_reduc);
5415 if (double_reduc)
5416 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = inner_phi;
5417 else
5418 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
5419 if (!double_reduc
5420 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
5421 != vect_double_reduction_def)
5422 continue;
5424 /* Handle double reduction:
5426 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
5427 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
5428 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
5429 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
5431 At that point the regular reduction (stmt2 and stmt3) is
5432 already vectorized, as well as the exit phi node, stmt4.
5433 Here we vectorize the phi node of double reduction, stmt1, and
5434 update all relevant statements. */
5436 /* Go through all the uses of s2 to find double reduction phi
5437 node, i.e., stmt1 above. */
5438 orig_name = PHI_RESULT (exit_phi);
5439 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
5441 stmt_vec_info use_stmt_vinfo;
5442 stmt_vec_info new_phi_vinfo;
5443 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
5444 basic_block bb = gimple_bb (use_stmt);
5445 gimple *use;
5447 /* Check that USE_STMT is really double reduction phi
5448 node. */
5449 if (gimple_code (use_stmt) != GIMPLE_PHI
5450 || gimple_phi_num_args (use_stmt) != 2
5451 || bb->loop_father != outer_loop)
5452 continue;
5453 use_stmt_vinfo = vinfo_for_stmt (use_stmt);
5454 if (!use_stmt_vinfo
5455 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
5456 != vect_double_reduction_def)
5457 continue;
5459 /* Create vector phi node for double reduction:
5460 vs1 = phi <vs0, vs2>
5461 vs1 was created previously in this function by a call to
5462 vect_get_vec_def_for_operand and is stored in
5463 vec_initial_def;
5464 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
5465 vs0 is created here. */
5467 /* Create vector phi node. */
5468 vect_phi = create_phi_node (vec_initial_def, bb);
5469 new_phi_vinfo = new_stmt_vec_info (vect_phi,
5470 loop_vec_info_for_loop (outer_loop));
5471 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
5473 /* Create vs0 - initial def of the double reduction phi. */
5474 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
5475 loop_preheader_edge (outer_loop));
5476 init_def = get_initial_def_for_reduction (stmt,
5477 preheader_arg, NULL);
5478 vect_phi_init = vect_init_vector (use_stmt, init_def,
5479 vectype, NULL);
5481 /* Update phi node arguments with vs0 and vs2. */
5482 add_phi_arg (vect_phi, vect_phi_init,
5483 loop_preheader_edge (outer_loop),
5484 UNKNOWN_LOCATION);
5485 add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
5486 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
5487 if (dump_enabled_p ())
5489 dump_printf_loc (MSG_NOTE, vect_location,
5490 "created double reduction phi node: ");
5491 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
5494 vect_phi_res = PHI_RESULT (vect_phi);
5496 /* Replace the use, i.e., set the correct vs1 in the regular
5497 reduction phi node. FORNOW, NCOPIES is always 1, so the
5498 loop is redundant. */
5499 use = reduction_phi;
5500 for (j = 0; j < ncopies; j++)
5502 edge pr_edge = loop_preheader_edge (loop);
5503 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
5504 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
5510 phis.release ();
5511 if (nested_in_vect_loop)
5513 if (double_reduc)
5514 loop = outer_loop;
5515 else
5516 continue;
5519 phis.create (3);
5520 /* Find the loop-closed-use at the loop exit of the original scalar
5521 result. (The reduction result is expected to have two immediate uses,
5522 one at the latch block, and one at the loop exit). For double
5523 reductions we are looking for exit phis of the outer loop. */
5524 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
5526 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
5528 if (!is_gimple_debug (USE_STMT (use_p)))
5529 phis.safe_push (USE_STMT (use_p));
5531 else
5533 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
5535 tree phi_res = PHI_RESULT (USE_STMT (use_p));
5537 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
5539 if (!flow_bb_inside_loop_p (loop,
5540 gimple_bb (USE_STMT (phi_use_p)))
5541 && !is_gimple_debug (USE_STMT (phi_use_p)))
5542 phis.safe_push (USE_STMT (phi_use_p));
5548 FOR_EACH_VEC_ELT (phis, i, exit_phi)
5550 /* Replace the uses: */
5551 orig_name = PHI_RESULT (exit_phi);
5552 scalar_result = scalar_results[k];
5553 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
5554 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
5555 SET_USE (use_p, scalar_result);
5558 phis.release ();
5563 /* Function is_nonwrapping_integer_induction.
5565 Check if STMT (which is part of loop LOOP) both increments and
5566 does not cause overflow. */
5568 static bool
5569 is_nonwrapping_integer_induction (gimple *stmt, struct loop *loop)
5571 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
5572 tree base = STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo);
5573 tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo);
5574 tree lhs_type = TREE_TYPE (gimple_phi_result (stmt));
5575 widest_int ni, max_loop_value, lhs_max;
5576 bool overflow = false;
5578 /* Make sure the loop is integer based. */
5579 if (TREE_CODE (base) != INTEGER_CST
5580 || TREE_CODE (step) != INTEGER_CST)
5581 return false;
5583 /* Check that the induction increments. */
5584 if (tree_int_cst_sgn (step) == -1)
5585 return false;
5587 /* Check that the max size of the loop will not wrap. */
5589 if (TYPE_OVERFLOW_UNDEFINED (lhs_type))
5590 return true;
5592 if (! max_stmt_executions (loop, &ni))
5593 return false;
5595 max_loop_value = wi::mul (wi::to_widest (step), ni, TYPE_SIGN (lhs_type),
5596 &overflow);
5597 if (overflow)
5598 return false;
5600 max_loop_value = wi::add (wi::to_widest (base), max_loop_value,
5601 TYPE_SIGN (lhs_type), &overflow);
5602 if (overflow)
5603 return false;
5605 return (wi::min_precision (max_loop_value, TYPE_SIGN (lhs_type))
5606 <= TYPE_PRECISION (lhs_type));
5609 /* Function vectorizable_reduction.
5611 Check if STMT performs a reduction operation that can be vectorized.
5612 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
5613 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
5614 Return FALSE if not a vectorizable STMT, TRUE otherwise.
5616 This function also handles reduction idioms (patterns) that have been
5617 recognized in advance during vect_pattern_recog. In this case, STMT may be
5618 of this form:
5619 X = pattern_expr (arg0, arg1, ..., X)
5620 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
5621 sequence that had been detected and replaced by the pattern-stmt (STMT).
5623 This function also handles reduction of condition expressions, for example:
5624 for (int i = 0; i < N; i++)
5625 if (a[i] < value)
5626 last = a[i];
5627 This is handled by vectorising the loop and creating an additional vector
5628 containing the loop indexes for which "a[i] < value" was true. In the
5629 function epilogue this is reduced to a single max value and then used to
5630 index into the vector of results.
5632 In some cases of reduction patterns, the type of the reduction variable X is
5633 different than the type of the other arguments of STMT.
5634 In such cases, the vectype that is used when transforming STMT into a vector
5635 stmt is different than the vectype that is used to determine the
5636 vectorization factor, because it consists of a different number of elements
5637 than the actual number of elements that are being operated upon in parallel.
5639 For example, consider an accumulation of shorts into an int accumulator.
5640 On some targets it's possible to vectorize this pattern operating on 8
5641 shorts at a time (hence, the vectype for purposes of determining the
5642 vectorization factor should be V8HI); on the other hand, the vectype that
5643 is used to create the vector form is actually V4SI (the type of the result).
5645 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
5646 indicates what is the actual level of parallelism (V8HI in the example), so
5647 that the right vectorization factor would be derived. This vectype
5648 corresponds to the type of arguments to the reduction stmt, and should *NOT*
5649 be used to create the vectorized stmt. The right vectype for the vectorized
5650 stmt is obtained from the type of the result X:
5651 get_vectype_for_scalar_type (TREE_TYPE (X))
5653 This means that, contrary to "regular" reductions (or "regular" stmts in
5654 general), the following equation:
5655 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
5656 does *NOT* necessarily hold for reduction patterns. */
5658 bool
5659 vectorizable_reduction (gimple *stmt, gimple_stmt_iterator *gsi,
5660 gimple **vec_stmt, slp_tree slp_node,
5661 slp_instance slp_node_instance)
5663 tree vec_dest;
5664 tree scalar_dest;
5665 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5666 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
5667 tree vectype_in = NULL_TREE;
5668 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5669 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5670 enum tree_code code, orig_code, epilog_reduc_code;
5671 machine_mode vec_mode;
5672 int op_type;
5673 optab optab, reduc_optab;
5674 tree new_temp = NULL_TREE;
5675 gimple *def_stmt;
5676 enum vect_def_type dt, cond_reduc_dt = vect_unknown_def_type;
5677 tree scalar_type;
5678 bool is_simple_use;
5679 gimple *orig_stmt;
5680 stmt_vec_info orig_stmt_info = NULL;
5681 int i;
5682 int ncopies;
5683 int epilog_copies;
5684 stmt_vec_info prev_stmt_info, prev_phi_info;
5685 bool single_defuse_cycle = false;
5686 gimple *new_stmt = NULL;
5687 int j;
5688 tree ops[3];
5689 enum vect_def_type dts[3];
5690 bool nested_cycle = false, found_nested_cycle_def = false;
5691 bool double_reduc = false;
5692 basic_block def_bb;
5693 struct loop * def_stmt_loop, *outer_loop = NULL;
5694 tree def_arg;
5695 gimple *def_arg_stmt;
5696 auto_vec<tree> vec_oprnds0;
5697 auto_vec<tree> vec_oprnds1;
5698 auto_vec<tree> vec_oprnds2;
5699 auto_vec<tree> vect_defs;
5700 auto_vec<gimple *> phis;
5701 int vec_num;
5702 tree def0, tem;
5703 bool first_p = true;
5704 tree cr_index_scalar_type = NULL_TREE, cr_index_vector_type = NULL_TREE;
5705 tree cond_reduc_val = NULL_TREE;
5707 /* Make sure it was already recognized as a reduction computation. */
5708 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_reduction_def
5709 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_nested_cycle)
5710 return false;
5712 if (nested_in_vect_loop_p (loop, stmt))
5714 outer_loop = loop;
5715 loop = loop->inner;
5716 nested_cycle = true;
5719 /* In case of reduction chain we switch to the first stmt in the chain, but
5720 we don't update STMT_INFO, since only the last stmt is marked as reduction
5721 and has reduction properties. */
5722 if (GROUP_FIRST_ELEMENT (stmt_info)
5723 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
5725 stmt = GROUP_FIRST_ELEMENT (stmt_info);
5726 first_p = false;
5729 if (gimple_code (stmt) == GIMPLE_PHI)
5731 /* Analysis is fully done on the reduction stmt invocation. */
5732 if (! vec_stmt)
5734 if (slp_node)
5735 slp_node_instance->reduc_phis = slp_node;
5737 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
5738 return true;
5741 gimple *reduc_stmt = STMT_VINFO_REDUC_DEF (stmt_info);
5742 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (reduc_stmt)))
5743 reduc_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (reduc_stmt));
5745 gcc_assert (is_gimple_assign (reduc_stmt));
5746 for (unsigned k = 1; k < gimple_num_ops (reduc_stmt); ++k)
5748 tree op = gimple_op (reduc_stmt, k);
5749 if (op == gimple_phi_result (stmt))
5750 continue;
5751 if (k == 1
5752 && gimple_assign_rhs_code (reduc_stmt) == COND_EXPR)
5753 continue;
5754 tem = get_vectype_for_scalar_type (TREE_TYPE (op));
5755 if (! vectype_in
5756 || TYPE_VECTOR_SUBPARTS (tem) < TYPE_VECTOR_SUBPARTS (vectype_in))
5757 vectype_in = tem;
5758 break;
5760 gcc_assert (vectype_in);
5762 if (slp_node)
5763 ncopies = 1;
5764 else
5765 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5766 / TYPE_VECTOR_SUBPARTS (vectype_in));
5768 use_operand_p use_p;
5769 gimple *use_stmt;
5770 if (ncopies > 1
5771 && (STMT_VINFO_RELEVANT (vinfo_for_stmt (reduc_stmt))
5772 <= vect_used_only_live)
5773 && single_imm_use (gimple_phi_result (stmt), &use_p, &use_stmt)
5774 && (use_stmt == reduc_stmt
5775 || (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use_stmt))
5776 == reduc_stmt)))
5777 single_defuse_cycle = true;
5779 /* Create the destination vector */
5780 scalar_dest = gimple_assign_lhs (reduc_stmt);
5781 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
5783 if (slp_node)
5784 /* The size vect_schedule_slp_instance computes is off for us. */
5785 vec_num = ((LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5786 * SLP_TREE_SCALAR_STMTS (slp_node).length ())
5787 / TYPE_VECTOR_SUBPARTS (vectype_in));
5788 else
5789 vec_num = 1;
5791 /* Generate the reduction PHIs upfront. */
5792 prev_phi_info = NULL;
5793 for (j = 0; j < ncopies; j++)
5795 if (j == 0 || !single_defuse_cycle)
5797 for (i = 0; i < vec_num; i++)
5799 /* Create the reduction-phi that defines the reduction
5800 operand. */
5801 gimple *new_phi = create_phi_node (vec_dest, loop->header);
5802 set_vinfo_for_stmt (new_phi,
5803 new_stmt_vec_info (new_phi, loop_vinfo));
5805 if (slp_node)
5806 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_phi);
5807 else
5809 if (j == 0)
5810 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_phi;
5811 else
5812 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
5813 prev_phi_info = vinfo_for_stmt (new_phi);
5819 return true;
5822 /* 1. Is vectorizable reduction? */
5823 /* Not supportable if the reduction variable is used in the loop, unless
5824 it's a reduction chain. */
5825 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
5826 && !GROUP_FIRST_ELEMENT (stmt_info))
5827 return false;
5829 /* Reductions that are not used even in an enclosing outer-loop,
5830 are expected to be "live" (used out of the loop). */
5831 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
5832 && !STMT_VINFO_LIVE_P (stmt_info))
5833 return false;
5835 /* 2. Has this been recognized as a reduction pattern?
5837 Check if STMT represents a pattern that has been recognized
5838 in earlier analysis stages. For stmts that represent a pattern,
5839 the STMT_VINFO_RELATED_STMT field records the last stmt in
5840 the original sequence that constitutes the pattern. */
5842 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
5843 if (orig_stmt)
5845 orig_stmt_info = vinfo_for_stmt (orig_stmt);
5846 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
5847 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
5850 /* 3. Check the operands of the operation. The first operands are defined
5851 inside the loop body. The last operand is the reduction variable,
5852 which is defined by the loop-header-phi. */
5854 gcc_assert (is_gimple_assign (stmt));
5856 /* Flatten RHS. */
5857 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
5859 case GIMPLE_BINARY_RHS:
5860 code = gimple_assign_rhs_code (stmt);
5861 op_type = TREE_CODE_LENGTH (code);
5862 gcc_assert (op_type == binary_op);
5863 ops[0] = gimple_assign_rhs1 (stmt);
5864 ops[1] = gimple_assign_rhs2 (stmt);
5865 break;
5867 case GIMPLE_TERNARY_RHS:
5868 code = gimple_assign_rhs_code (stmt);
5869 op_type = TREE_CODE_LENGTH (code);
5870 gcc_assert (op_type == ternary_op);
5871 ops[0] = gimple_assign_rhs1 (stmt);
5872 ops[1] = gimple_assign_rhs2 (stmt);
5873 ops[2] = gimple_assign_rhs3 (stmt);
5874 break;
5876 case GIMPLE_UNARY_RHS:
5877 return false;
5879 default:
5880 gcc_unreachable ();
5883 if (code == COND_EXPR && slp_node)
5884 return false;
5886 scalar_dest = gimple_assign_lhs (stmt);
5887 scalar_type = TREE_TYPE (scalar_dest);
5888 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
5889 && !SCALAR_FLOAT_TYPE_P (scalar_type))
5890 return false;
5892 /* Do not try to vectorize bit-precision reductions. */
5893 if ((TYPE_PRECISION (scalar_type)
5894 != GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
5895 return false;
5897 /* All uses but the last are expected to be defined in the loop.
5898 The last use is the reduction variable. In case of nested cycle this
5899 assumption is not true: we use reduc_index to record the index of the
5900 reduction variable. */
5901 gimple *reduc_def_stmt = NULL;
5902 int reduc_index = -1;
5903 for (i = 0; i < op_type; i++)
5905 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
5906 if (i == 0 && code == COND_EXPR)
5907 continue;
5909 is_simple_use = vect_is_simple_use (ops[i], loop_vinfo,
5910 &def_stmt, &dts[i], &tem);
5911 dt = dts[i];
5912 gcc_assert (is_simple_use);
5913 if (dt == vect_reduction_def)
5915 reduc_def_stmt = def_stmt;
5916 reduc_index = i;
5917 continue;
5919 else
5921 if (!vectype_in)
5922 vectype_in = tem;
5925 if (dt != vect_internal_def
5926 && dt != vect_external_def
5927 && dt != vect_constant_def
5928 && dt != vect_induction_def
5929 && !(dt == vect_nested_cycle && nested_cycle))
5930 return false;
5932 if (dt == vect_nested_cycle)
5934 found_nested_cycle_def = true;
5935 reduc_def_stmt = def_stmt;
5936 reduc_index = i;
5939 if (i == 1 && code == COND_EXPR)
5941 /* Record how value of COND_EXPR is defined. */
5942 if (dt == vect_constant_def)
5944 cond_reduc_dt = dt;
5945 cond_reduc_val = ops[i];
5947 if (dt == vect_induction_def && def_stmt != NULL
5948 && is_nonwrapping_integer_induction (def_stmt, loop))
5949 cond_reduc_dt = dt;
5953 if (!vectype_in)
5954 vectype_in = vectype_out;
5956 /* When vectorizing a reduction chain w/o SLP the reduction PHI is not
5957 directy used in stmt. */
5958 if (reduc_index == -1)
5960 if (orig_stmt)
5961 reduc_def_stmt = STMT_VINFO_REDUC_DEF (orig_stmt_info);
5962 else
5963 reduc_def_stmt = STMT_VINFO_REDUC_DEF (stmt_info);
5966 if (! reduc_def_stmt || gimple_code (reduc_def_stmt) != GIMPLE_PHI)
5967 return false;
5969 if (!(reduc_index == -1
5970 || dts[reduc_index] == vect_reduction_def
5971 || dts[reduc_index] == vect_nested_cycle
5972 || ((dts[reduc_index] == vect_internal_def
5973 || dts[reduc_index] == vect_external_def
5974 || dts[reduc_index] == vect_constant_def
5975 || dts[reduc_index] == vect_induction_def)
5976 && nested_cycle && found_nested_cycle_def)))
5978 /* For pattern recognized stmts, orig_stmt might be a reduction,
5979 but some helper statements for the pattern might not, or
5980 might be COND_EXPRs with reduction uses in the condition. */
5981 gcc_assert (orig_stmt);
5982 return false;
5985 stmt_vec_info reduc_def_info = vinfo_for_stmt (reduc_def_stmt);
5986 enum vect_reduction_type v_reduc_type
5987 = STMT_VINFO_REDUC_TYPE (reduc_def_info);
5988 gimple *tmp = STMT_VINFO_REDUC_DEF (reduc_def_info);
5990 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = v_reduc_type;
5991 /* If we have a condition reduction, see if we can simplify it further. */
5992 if (v_reduc_type == COND_REDUCTION)
5994 if (cond_reduc_dt == vect_induction_def)
5996 if (dump_enabled_p ())
5997 dump_printf_loc (MSG_NOTE, vect_location,
5998 "condition expression based on "
5999 "integer induction.\n");
6000 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
6001 = INTEGER_INDUC_COND_REDUCTION;
6004 /* Loop peeling modifies initial value of reduction PHI, which
6005 makes the reduction stmt to be transformed different to the
6006 original stmt analyzed. We need to record reduction code for
6007 CONST_COND_REDUCTION type reduction at analyzing stage, thus
6008 it can be used directly at transform stage. */
6009 if (STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info) == MAX_EXPR
6010 || STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info) == MIN_EXPR)
6012 /* Also set the reduction type to CONST_COND_REDUCTION. */
6013 gcc_assert (cond_reduc_dt == vect_constant_def);
6014 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = CONST_COND_REDUCTION;
6016 else if (cond_reduc_dt == vect_constant_def)
6018 enum vect_def_type cond_initial_dt;
6019 gimple *def_stmt = SSA_NAME_DEF_STMT (ops[reduc_index]);
6020 tree cond_initial_val
6021 = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
6023 gcc_assert (cond_reduc_val != NULL_TREE);
6024 vect_is_simple_use (cond_initial_val, loop_vinfo,
6025 &def_stmt, &cond_initial_dt);
6026 if (cond_initial_dt == vect_constant_def
6027 && types_compatible_p (TREE_TYPE (cond_initial_val),
6028 TREE_TYPE (cond_reduc_val)))
6030 tree e = fold_binary (LE_EXPR, boolean_type_node,
6031 cond_initial_val, cond_reduc_val);
6032 if (e && (integer_onep (e) || integer_zerop (e)))
6034 if (dump_enabled_p ())
6035 dump_printf_loc (MSG_NOTE, vect_location,
6036 "condition expression based on "
6037 "compile time constant.\n");
6038 /* Record reduction code at analysis stage. */
6039 STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info)
6040 = integer_onep (e) ? MAX_EXPR : MIN_EXPR;
6041 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
6042 = CONST_COND_REDUCTION;
6048 if (orig_stmt)
6049 gcc_assert (tmp == orig_stmt
6050 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == orig_stmt);
6051 else
6052 /* We changed STMT to be the first stmt in reduction chain, hence we
6053 check that in this case the first element in the chain is STMT. */
6054 gcc_assert (stmt == tmp
6055 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
6057 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
6058 return false;
6060 if (slp_node)
6061 ncopies = 1;
6062 else
6063 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
6064 / TYPE_VECTOR_SUBPARTS (vectype_in));
6066 gcc_assert (ncopies >= 1);
6068 vec_mode = TYPE_MODE (vectype_in);
6070 if (code == COND_EXPR)
6072 /* Only call during the analysis stage, otherwise we'll lose
6073 STMT_VINFO_TYPE. */
6074 if (!vec_stmt && !vectorizable_condition (stmt, gsi, NULL,
6075 ops[reduc_index], 0, NULL))
6077 if (dump_enabled_p ())
6078 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6079 "unsupported condition in reduction\n");
6080 return false;
6083 else
6085 /* 4. Supportable by target? */
6087 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
6088 || code == LROTATE_EXPR || code == RROTATE_EXPR)
6090 /* Shifts and rotates are only supported by vectorizable_shifts,
6091 not vectorizable_reduction. */
6092 if (dump_enabled_p ())
6093 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6094 "unsupported shift or rotation.\n");
6095 return false;
6098 /* 4.1. check support for the operation in the loop */
6099 optab = optab_for_tree_code (code, vectype_in, optab_default);
6100 if (!optab)
6102 if (dump_enabled_p ())
6103 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6104 "no optab.\n");
6106 return false;
6109 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
6111 if (dump_enabled_p ())
6112 dump_printf (MSG_NOTE, "op not supported by target.\n");
6114 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
6115 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
6116 < vect_min_worthwhile_factor (code))
6117 return false;
6119 if (dump_enabled_p ())
6120 dump_printf (MSG_NOTE, "proceeding using word mode.\n");
6123 /* Worthwhile without SIMD support? */
6124 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
6125 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
6126 < vect_min_worthwhile_factor (code))
6128 if (dump_enabled_p ())
6129 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6130 "not worthwhile without SIMD support.\n");
6132 return false;
6136 /* 4.2. Check support for the epilog operation.
6138 If STMT represents a reduction pattern, then the type of the
6139 reduction variable may be different than the type of the rest
6140 of the arguments. For example, consider the case of accumulation
6141 of shorts into an int accumulator; The original code:
6142 S1: int_a = (int) short_a;
6143 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
6145 was replaced with:
6146 STMT: int_acc = widen_sum <short_a, int_acc>
6148 This means that:
6149 1. The tree-code that is used to create the vector operation in the
6150 epilog code (that reduces the partial results) is not the
6151 tree-code of STMT, but is rather the tree-code of the original
6152 stmt from the pattern that STMT is replacing. I.e, in the example
6153 above we want to use 'widen_sum' in the loop, but 'plus' in the
6154 epilog.
6155 2. The type (mode) we use to check available target support
6156 for the vector operation to be created in the *epilog*, is
6157 determined by the type of the reduction variable (in the example
6158 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
6159 However the type (mode) we use to check available target support
6160 for the vector operation to be created *inside the loop*, is
6161 determined by the type of the other arguments to STMT (in the
6162 example we'd check this: optab_handler (widen_sum_optab,
6163 vect_short_mode)).
6165 This is contrary to "regular" reductions, in which the types of all
6166 the arguments are the same as the type of the reduction variable.
6167 For "regular" reductions we can therefore use the same vector type
6168 (and also the same tree-code) when generating the epilog code and
6169 when generating the code inside the loop. */
6171 if (orig_stmt)
6173 /* This is a reduction pattern: get the vectype from the type of the
6174 reduction variable, and get the tree-code from orig_stmt. */
6175 gcc_assert (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
6176 == TREE_CODE_REDUCTION);
6177 orig_code = gimple_assign_rhs_code (orig_stmt);
6178 gcc_assert (vectype_out);
6179 vec_mode = TYPE_MODE (vectype_out);
6181 else
6183 /* Regular reduction: use the same vectype and tree-code as used for
6184 the vector code inside the loop can be used for the epilog code. */
6185 orig_code = code;
6187 if (code == MINUS_EXPR)
6188 orig_code = PLUS_EXPR;
6190 /* For simple condition reductions, replace with the actual expression
6191 we want to base our reduction around. */
6192 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == CONST_COND_REDUCTION)
6194 orig_code = STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info);
6195 gcc_assert (orig_code == MAX_EXPR || orig_code == MIN_EXPR);
6197 else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
6198 == INTEGER_INDUC_COND_REDUCTION)
6199 orig_code = MAX_EXPR;
6202 if (nested_cycle)
6204 def_bb = gimple_bb (reduc_def_stmt);
6205 def_stmt_loop = def_bb->loop_father;
6206 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
6207 loop_preheader_edge (def_stmt_loop));
6208 if (TREE_CODE (def_arg) == SSA_NAME
6209 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
6210 && gimple_code (def_arg_stmt) == GIMPLE_PHI
6211 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
6212 && vinfo_for_stmt (def_arg_stmt)
6213 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
6214 == vect_double_reduction_def)
6215 double_reduc = true;
6218 epilog_reduc_code = ERROR_MARK;
6220 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) != COND_REDUCTION)
6222 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
6224 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
6225 optab_default);
6226 if (!reduc_optab)
6228 if (dump_enabled_p ())
6229 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6230 "no optab for reduction.\n");
6232 epilog_reduc_code = ERROR_MARK;
6234 else if (optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
6236 if (dump_enabled_p ())
6237 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6238 "reduc op not supported by target.\n");
6240 epilog_reduc_code = ERROR_MARK;
6243 else
6245 if (!nested_cycle || double_reduc)
6247 if (dump_enabled_p ())
6248 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6249 "no reduc code for scalar code.\n");
6251 return false;
6255 else
6257 int scalar_precision = GET_MODE_PRECISION (TYPE_MODE (scalar_type));
6258 cr_index_scalar_type = make_unsigned_type (scalar_precision);
6259 cr_index_vector_type = build_vector_type
6260 (cr_index_scalar_type, TYPE_VECTOR_SUBPARTS (vectype_out));
6262 optab = optab_for_tree_code (REDUC_MAX_EXPR, cr_index_vector_type,
6263 optab_default);
6264 if (optab_handler (optab, TYPE_MODE (cr_index_vector_type))
6265 != CODE_FOR_nothing)
6266 epilog_reduc_code = REDUC_MAX_EXPR;
6269 if ((double_reduc
6270 || STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) != TREE_CODE_REDUCTION)
6271 && ncopies > 1)
6273 if (dump_enabled_p ())
6274 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6275 "multiple types in double reduction or condition "
6276 "reduction.\n");
6277 return false;
6280 /* In case of widenning multiplication by a constant, we update the type
6281 of the constant to be the type of the other operand. We check that the
6282 constant fits the type in the pattern recognition pass. */
6283 if (code == DOT_PROD_EXPR
6284 && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
6286 if (TREE_CODE (ops[0]) == INTEGER_CST)
6287 ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
6288 else if (TREE_CODE (ops[1]) == INTEGER_CST)
6289 ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
6290 else
6292 if (dump_enabled_p ())
6293 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6294 "invalid types in dot-prod\n");
6296 return false;
6300 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
6302 widest_int ni;
6304 if (! max_loop_iterations (loop, &ni))
6306 if (dump_enabled_p ())
6307 dump_printf_loc (MSG_NOTE, vect_location,
6308 "loop count not known, cannot create cond "
6309 "reduction.\n");
6310 return false;
6312 /* Convert backedges to iterations. */
6313 ni += 1;
6315 /* The additional index will be the same type as the condition. Check
6316 that the loop can fit into this less one (because we'll use up the
6317 zero slot for when there are no matches). */
6318 tree max_index = TYPE_MAX_VALUE (cr_index_scalar_type);
6319 if (wi::geu_p (ni, wi::to_widest (max_index)))
6321 if (dump_enabled_p ())
6322 dump_printf_loc (MSG_NOTE, vect_location,
6323 "loop size is greater than data size.\n");
6324 return false;
6328 /* In case the vectorization factor (VF) is bigger than the number
6329 of elements that we can fit in a vectype (nunits), we have to generate
6330 more than one vector stmt - i.e - we need to "unroll" the
6331 vector stmt by a factor VF/nunits. For more details see documentation
6332 in vectorizable_operation. */
6334 /* If the reduction is used in an outer loop we need to generate
6335 VF intermediate results, like so (e.g. for ncopies=2):
6336 r0 = phi (init, r0)
6337 r1 = phi (init, r1)
6338 r0 = x0 + r0;
6339 r1 = x1 + r1;
6340 (i.e. we generate VF results in 2 registers).
6341 In this case we have a separate def-use cycle for each copy, and therefore
6342 for each copy we get the vector def for the reduction variable from the
6343 respective phi node created for this copy.
6345 Otherwise (the reduction is unused in the loop nest), we can combine
6346 together intermediate results, like so (e.g. for ncopies=2):
6347 r = phi (init, r)
6348 r = x0 + r;
6349 r = x1 + r;
6350 (i.e. we generate VF/2 results in a single register).
6351 In this case for each copy we get the vector def for the reduction variable
6352 from the vectorized reduction operation generated in the previous iteration.
6354 This only works when we see both the reduction PHI and its only consumer
6355 in vectorizable_reduction and there are no intermediate stmts
6356 participating. */
6357 use_operand_p use_p;
6358 gimple *use_stmt;
6359 if (ncopies > 1
6360 && (STMT_VINFO_RELEVANT (stmt_info) <= vect_used_only_live)
6361 && single_imm_use (gimple_phi_result (reduc_def_stmt), &use_p, &use_stmt)
6362 && (use_stmt == stmt
6363 || STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use_stmt)) == stmt))
6365 single_defuse_cycle = true;
6366 epilog_copies = 1;
6368 else
6369 epilog_copies = ncopies;
6371 /* If the reduction stmt is one of the patterns that have lane
6372 reduction embedded we cannot handle the case of ! single_defuse_cycle. */
6373 if ((ncopies > 1
6374 && ! single_defuse_cycle)
6375 && (code == DOT_PROD_EXPR
6376 || code == WIDEN_SUM_EXPR
6377 || code == SAD_EXPR))
6379 if (dump_enabled_p ())
6380 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6381 "multi def-use cycle not possible for lane-reducing "
6382 "reduction operation\n");
6383 return false;
6386 if (!vec_stmt) /* transformation not required. */
6388 if (first_p)
6389 vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies);
6390 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
6391 return true;
6394 /* Transform. */
6396 if (dump_enabled_p ())
6397 dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
6399 /* FORNOW: Multiple types are not supported for condition. */
6400 if (code == COND_EXPR)
6401 gcc_assert (ncopies == 1);
6403 /* Create the destination vector */
6404 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
6406 prev_stmt_info = NULL;
6407 prev_phi_info = NULL;
6408 if (slp_node)
6409 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
6410 else
6412 vec_num = 1;
6413 vec_oprnds0.create (1);
6414 vec_oprnds1.create (1);
6415 if (op_type == ternary_op)
6416 vec_oprnds2.create (1);
6419 phis.create (vec_num);
6420 vect_defs.create (vec_num);
6421 if (!slp_node)
6422 vect_defs.quick_push (NULL_TREE);
6424 if (slp_node)
6425 phis.splice (SLP_TREE_VEC_STMTS (slp_node_instance->reduc_phis));
6426 else
6427 phis.quick_push (STMT_VINFO_VEC_STMT (vinfo_for_stmt (reduc_def_stmt)));
6429 for (j = 0; j < ncopies; j++)
6431 if (code == COND_EXPR)
6433 gcc_assert (!slp_node);
6434 vectorizable_condition (stmt, gsi, vec_stmt,
6435 PHI_RESULT (phis[0]),
6436 reduc_index, NULL);
6437 /* Multiple types are not supported for condition. */
6438 break;
6441 /* Handle uses. */
6442 if (j == 0)
6444 if (slp_node)
6446 /* Get vec defs for all the operands except the reduction index,
6447 ensuring the ordering of the ops in the vector is kept. */
6448 auto_vec<tree, 3> slp_ops;
6449 auto_vec<vec<tree>, 3> vec_defs;
6451 slp_ops.quick_push (ops[0]);
6452 slp_ops.quick_push (ops[1]);
6453 if (op_type == ternary_op)
6454 slp_ops.quick_push (ops[2]);
6456 vect_get_slp_defs (slp_ops, slp_node, &vec_defs);
6458 vec_oprnds0.safe_splice (vec_defs[0]);
6459 vec_defs[0].release ();
6460 vec_oprnds1.safe_splice (vec_defs[1]);
6461 vec_defs[1].release ();
6462 if (op_type == ternary_op)
6464 vec_oprnds2.safe_splice (vec_defs[2]);
6465 vec_defs[2].release ();
6468 else
6470 vec_oprnds0.quick_push
6471 (vect_get_vec_def_for_operand (ops[0], stmt));
6472 vec_oprnds1.quick_push
6473 (vect_get_vec_def_for_operand (ops[1], stmt));
6474 if (op_type == ternary_op)
6475 vec_oprnds2.quick_push
6476 (vect_get_vec_def_for_operand (ops[2], stmt));
6479 else
6481 if (!slp_node)
6483 gcc_assert (reduc_index != -1 || ! single_defuse_cycle);
6485 if (single_defuse_cycle && reduc_index == 0)
6486 vec_oprnds0[0] = gimple_assign_lhs (new_stmt);
6487 else
6488 vec_oprnds0[0]
6489 = vect_get_vec_def_for_stmt_copy (dts[0], vec_oprnds0[0]);
6490 if (single_defuse_cycle && reduc_index == 1)
6491 vec_oprnds1[0] = gimple_assign_lhs (new_stmt);
6492 else
6493 vec_oprnds1[0]
6494 = vect_get_vec_def_for_stmt_copy (dts[1], vec_oprnds1[0]);
6495 if (op_type == ternary_op)
6497 if (single_defuse_cycle && reduc_index == 2)
6498 vec_oprnds2[0] = gimple_assign_lhs (new_stmt);
6499 else
6500 vec_oprnds2[0]
6501 = vect_get_vec_def_for_stmt_copy (dts[2], vec_oprnds2[0]);
6506 FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
6508 tree vop[3] = { def0, vec_oprnds1[i], NULL_TREE };
6509 if (op_type == ternary_op)
6510 vop[2] = vec_oprnds2[i];
6512 new_temp = make_ssa_name (vec_dest, new_stmt);
6513 new_stmt = gimple_build_assign (new_temp, code,
6514 vop[0], vop[1], vop[2]);
6515 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6517 if (slp_node)
6519 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
6520 vect_defs.quick_push (new_temp);
6522 else
6523 vect_defs[0] = new_temp;
6526 if (slp_node)
6527 continue;
6529 if (j == 0)
6530 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
6531 else
6532 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
6534 prev_stmt_info = vinfo_for_stmt (new_stmt);
6537 /* Finalize the reduction-phi (set its arguments) and create the
6538 epilog reduction code. */
6539 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
6540 vect_defs[0] = gimple_assign_lhs (*vec_stmt);
6542 vect_create_epilog_for_reduction (vect_defs, stmt, reduc_def_stmt,
6543 epilog_copies,
6544 epilog_reduc_code, phis,
6545 double_reduc, slp_node, slp_node_instance);
6547 return true;
6550 /* Function vect_min_worthwhile_factor.
6552 For a loop where we could vectorize the operation indicated by CODE,
6553 return the minimum vectorization factor that makes it worthwhile
6554 to use generic vectors. */
6556 vect_min_worthwhile_factor (enum tree_code code)
6558 switch (code)
6560 case PLUS_EXPR:
6561 case MINUS_EXPR:
6562 case NEGATE_EXPR:
6563 return 4;
6565 case BIT_AND_EXPR:
6566 case BIT_IOR_EXPR:
6567 case BIT_XOR_EXPR:
6568 case BIT_NOT_EXPR:
6569 return 2;
6571 default:
6572 return INT_MAX;
6577 /* Function vectorizable_induction
6579 Check if PHI performs an induction computation that can be vectorized.
6580 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
6581 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
6582 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
6584 bool
6585 vectorizable_induction (gimple *phi,
6586 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
6587 gimple **vec_stmt, slp_tree slp_node)
6589 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
6590 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6591 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6592 unsigned ncopies;
6593 bool nested_in_vect_loop = false;
6594 struct loop *iv_loop;
6595 tree vec_def;
6596 edge pe = loop_preheader_edge (loop);
6597 basic_block new_bb;
6598 tree new_vec, vec_init, vec_step, t;
6599 tree new_name;
6600 gimple *new_stmt;
6601 gphi *induction_phi;
6602 tree induc_def, vec_dest;
6603 tree init_expr, step_expr;
6604 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
6605 unsigned i;
6606 tree expr;
6607 gimple_seq stmts;
6608 imm_use_iterator imm_iter;
6609 use_operand_p use_p;
6610 gimple *exit_phi;
6611 edge latch_e;
6612 tree loop_arg;
6613 gimple_stmt_iterator si;
6614 basic_block bb = gimple_bb (phi);
6616 if (gimple_code (phi) != GIMPLE_PHI)
6617 return false;
6619 if (!STMT_VINFO_RELEVANT_P (stmt_info))
6620 return false;
6622 /* Make sure it was recognized as induction computation. */
6623 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
6624 return false;
6626 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6627 unsigned nunits = TYPE_VECTOR_SUBPARTS (vectype);
6629 if (slp_node)
6630 ncopies = 1;
6631 else
6632 ncopies = vf / nunits;
6633 gcc_assert (ncopies >= 1);
6635 /* FORNOW. These restrictions should be relaxed. */
6636 if (nested_in_vect_loop_p (loop, phi))
6638 imm_use_iterator imm_iter;
6639 use_operand_p use_p;
6640 gimple *exit_phi;
6641 edge latch_e;
6642 tree loop_arg;
6644 if (ncopies > 1)
6646 if (dump_enabled_p ())
6647 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6648 "multiple types in nested loop.\n");
6649 return false;
6652 /* FORNOW: outer loop induction with SLP not supported. */
6653 if (STMT_SLP_TYPE (stmt_info))
6654 return false;
6656 exit_phi = NULL;
6657 latch_e = loop_latch_edge (loop->inner);
6658 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
6659 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
6661 gimple *use_stmt = USE_STMT (use_p);
6662 if (is_gimple_debug (use_stmt))
6663 continue;
6665 if (!flow_bb_inside_loop_p (loop->inner, gimple_bb (use_stmt)))
6667 exit_phi = use_stmt;
6668 break;
6671 if (exit_phi)
6673 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
6674 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
6675 && !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
6677 if (dump_enabled_p ())
6678 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6679 "inner-loop induction only used outside "
6680 "of the outer vectorized loop.\n");
6681 return false;
6685 nested_in_vect_loop = true;
6686 iv_loop = loop->inner;
6688 else
6689 iv_loop = loop;
6690 gcc_assert (iv_loop == (gimple_bb (phi))->loop_father);
6692 if (!vec_stmt) /* transformation not required. */
6694 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
6695 if (dump_enabled_p ())
6696 dump_printf_loc (MSG_NOTE, vect_location,
6697 "=== vectorizable_induction ===\n");
6698 vect_model_induction_cost (stmt_info, ncopies);
6699 return true;
6702 /* Transform. */
6704 /* Compute a vector variable, initialized with the first VF values of
6705 the induction variable. E.g., for an iv with IV_PHI='X' and
6706 evolution S, for a vector of 4 units, we want to compute:
6707 [X, X + S, X + 2*S, X + 3*S]. */
6709 if (dump_enabled_p ())
6710 dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
6712 latch_e = loop_latch_edge (iv_loop);
6713 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
6715 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
6716 gcc_assert (step_expr != NULL_TREE);
6718 pe = loop_preheader_edge (iv_loop);
6719 init_expr = PHI_ARG_DEF_FROM_EDGE (phi,
6720 loop_preheader_edge (iv_loop));
6722 /* Convert the step to the desired type. */
6723 stmts = NULL;
6724 step_expr = gimple_convert (&stmts, TREE_TYPE (vectype), step_expr);
6725 if (stmts)
6727 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6728 gcc_assert (!new_bb);
6731 /* Find the first insertion point in the BB. */
6732 si = gsi_after_labels (bb);
6734 /* For SLP induction we have to generate several IVs as for example
6735 with group size 3 we need [i, i, i, i + S] [i + S, i + S, i + 2*S, i + 2*S]
6736 [i + 2*S, i + 3*S, i + 3*S, i + 3*S]. The step is the same uniform
6737 [VF*S, VF*S, VF*S, VF*S] for all. */
6738 if (slp_node)
6740 /* Convert the init to the desired type. */
6741 stmts = NULL;
6742 init_expr = gimple_convert (&stmts, TREE_TYPE (vectype), init_expr);
6743 if (stmts)
6745 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6746 gcc_assert (!new_bb);
6749 /* Generate [VF*S, VF*S, ... ]. */
6750 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6752 expr = build_int_cst (integer_type_node, vf);
6753 expr = fold_convert (TREE_TYPE (step_expr), expr);
6755 else
6756 expr = build_int_cst (TREE_TYPE (step_expr), vf);
6757 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6758 expr, step_expr);
6759 if (! CONSTANT_CLASS_P (new_name))
6760 new_name = vect_init_vector (phi, new_name,
6761 TREE_TYPE (step_expr), NULL);
6762 new_vec = build_vector_from_val (vectype, new_name);
6763 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6765 /* Now generate the IVs. */
6766 unsigned group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
6767 unsigned nvects = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
6768 unsigned elts = nunits * nvects;
6769 unsigned nivs = least_common_multiple (group_size, nunits) / nunits;
6770 gcc_assert (elts % group_size == 0);
6771 tree elt = init_expr;
6772 unsigned ivn;
6773 for (ivn = 0; ivn < nivs; ++ivn)
6775 tree *elts = XALLOCAVEC (tree, nunits);
6776 bool constant_p = true;
6777 for (unsigned eltn = 0; eltn < nunits; ++eltn)
6779 if (ivn*nunits + eltn >= group_size
6780 && (ivn*nunits + eltn) % group_size == 0)
6782 stmts = NULL;
6783 elt = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (elt),
6784 elt, step_expr);
6785 if (stmts)
6787 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6788 gcc_assert (!new_bb);
6791 if (! CONSTANT_CLASS_P (elt))
6792 constant_p = false;
6793 elts[eltn] = elt;
6795 if (constant_p)
6796 new_vec = build_vector (vectype, elts);
6797 else
6799 vec<constructor_elt, va_gc> *v;
6800 vec_alloc (v, nunits);
6801 for (i = 0; i < nunits; ++i)
6802 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
6803 new_vec = build_constructor (vectype, v);
6805 vec_init = vect_init_vector (phi, new_vec, vectype, NULL);
6807 /* Create the induction-phi that defines the induction-operand. */
6808 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
6809 induction_phi = create_phi_node (vec_dest, iv_loop->header);
6810 set_vinfo_for_stmt (induction_phi,
6811 new_stmt_vec_info (induction_phi, loop_vinfo));
6812 induc_def = PHI_RESULT (induction_phi);
6814 /* Create the iv update inside the loop */
6815 vec_def = make_ssa_name (vec_dest);
6816 new_stmt = gimple_build_assign (vec_def, PLUS_EXPR, induc_def, vec_step);
6817 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6818 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo));
6820 /* Set the arguments of the phi node: */
6821 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
6822 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
6823 UNKNOWN_LOCATION);
6825 SLP_TREE_VEC_STMTS (slp_node).quick_push (induction_phi);
6828 /* Re-use IVs when we can. */
6829 if (ivn < nvects)
6831 unsigned vfp
6832 = least_common_multiple (group_size, nunits) / group_size;
6833 /* Generate [VF'*S, VF'*S, ... ]. */
6834 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6836 expr = build_int_cst (integer_type_node, vfp);
6837 expr = fold_convert (TREE_TYPE (step_expr), expr);
6839 else
6840 expr = build_int_cst (TREE_TYPE (step_expr), vfp);
6841 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6842 expr, step_expr);
6843 if (! CONSTANT_CLASS_P (new_name))
6844 new_name = vect_init_vector (phi, new_name,
6845 TREE_TYPE (step_expr), NULL);
6846 new_vec = build_vector_from_val (vectype, new_name);
6847 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6848 for (; ivn < nvects; ++ivn)
6850 gimple *iv = SLP_TREE_VEC_STMTS (slp_node)[ivn - nivs];
6851 tree def;
6852 if (gimple_code (iv) == GIMPLE_PHI)
6853 def = gimple_phi_result (iv);
6854 else
6855 def = gimple_assign_lhs (iv);
6856 new_stmt = gimple_build_assign (make_ssa_name (vectype),
6857 PLUS_EXPR,
6858 def, vec_step);
6859 if (gimple_code (iv) == GIMPLE_PHI)
6860 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6861 else
6863 gimple_stmt_iterator tgsi = gsi_for_stmt (iv);
6864 gsi_insert_after (&tgsi, new_stmt, GSI_CONTINUE_LINKING);
6866 set_vinfo_for_stmt (new_stmt,
6867 new_stmt_vec_info (new_stmt, loop_vinfo));
6868 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
6872 return true;
6875 /* Create the vector that holds the initial_value of the induction. */
6876 if (nested_in_vect_loop)
6878 /* iv_loop is nested in the loop to be vectorized. init_expr had already
6879 been created during vectorization of previous stmts. We obtain it
6880 from the STMT_VINFO_VEC_STMT of the defining stmt. */
6881 vec_init = vect_get_vec_def_for_operand (init_expr, phi);
6882 /* If the initial value is not of proper type, convert it. */
6883 if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
6885 new_stmt
6886 = gimple_build_assign (vect_get_new_ssa_name (vectype,
6887 vect_simple_var,
6888 "vec_iv_"),
6889 VIEW_CONVERT_EXPR,
6890 build1 (VIEW_CONVERT_EXPR, vectype,
6891 vec_init));
6892 vec_init = gimple_assign_lhs (new_stmt);
6893 new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
6894 new_stmt);
6895 gcc_assert (!new_bb);
6896 set_vinfo_for_stmt (new_stmt,
6897 new_stmt_vec_info (new_stmt, loop_vinfo));
6900 else
6902 vec<constructor_elt, va_gc> *v;
6904 /* iv_loop is the loop to be vectorized. Create:
6905 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
6906 stmts = NULL;
6907 new_name = gimple_convert (&stmts, TREE_TYPE (vectype), init_expr);
6909 vec_alloc (v, nunits);
6910 bool constant_p = is_gimple_min_invariant (new_name);
6911 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
6912 for (i = 1; i < nunits; i++)
6914 /* Create: new_name_i = new_name + step_expr */
6915 new_name = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (new_name),
6916 new_name, step_expr);
6917 if (!is_gimple_min_invariant (new_name))
6918 constant_p = false;
6919 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
6921 if (stmts)
6923 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
6924 gcc_assert (!new_bb);
6927 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
6928 if (constant_p)
6929 new_vec = build_vector_from_ctor (vectype, v);
6930 else
6931 new_vec = build_constructor (vectype, v);
6932 vec_init = vect_init_vector (phi, new_vec, vectype, NULL);
6936 /* Create the vector that holds the step of the induction. */
6937 if (nested_in_vect_loop)
6938 /* iv_loop is nested in the loop to be vectorized. Generate:
6939 vec_step = [S, S, S, S] */
6940 new_name = step_expr;
6941 else
6943 /* iv_loop is the loop to be vectorized. Generate:
6944 vec_step = [VF*S, VF*S, VF*S, VF*S] */
6945 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
6947 expr = build_int_cst (integer_type_node, vf);
6948 expr = fold_convert (TREE_TYPE (step_expr), expr);
6950 else
6951 expr = build_int_cst (TREE_TYPE (step_expr), vf);
6952 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
6953 expr, step_expr);
6954 if (TREE_CODE (step_expr) == SSA_NAME)
6955 new_name = vect_init_vector (phi, new_name,
6956 TREE_TYPE (step_expr), NULL);
6959 t = unshare_expr (new_name);
6960 gcc_assert (CONSTANT_CLASS_P (new_name)
6961 || TREE_CODE (new_name) == SSA_NAME);
6962 new_vec = build_vector_from_val (vectype, t);
6963 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
6966 /* Create the following def-use cycle:
6967 loop prolog:
6968 vec_init = ...
6969 vec_step = ...
6970 loop:
6971 vec_iv = PHI <vec_init, vec_loop>
6973 STMT
6975 vec_loop = vec_iv + vec_step; */
6977 /* Create the induction-phi that defines the induction-operand. */
6978 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
6979 induction_phi = create_phi_node (vec_dest, iv_loop->header);
6980 set_vinfo_for_stmt (induction_phi,
6981 new_stmt_vec_info (induction_phi, loop_vinfo));
6982 induc_def = PHI_RESULT (induction_phi);
6984 /* Create the iv update inside the loop */
6985 vec_def = make_ssa_name (vec_dest);
6986 new_stmt = gimple_build_assign (vec_def, PLUS_EXPR, induc_def, vec_step);
6987 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
6988 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo));
6990 /* Set the arguments of the phi node: */
6991 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
6992 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
6993 UNKNOWN_LOCATION);
6995 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = induction_phi;
6997 /* In case that vectorization factor (VF) is bigger than the number
6998 of elements that we can fit in a vectype (nunits), we have to generate
6999 more than one vector stmt - i.e - we need to "unroll" the
7000 vector stmt by a factor VF/nunits. For more details see documentation
7001 in vectorizable_operation. */
7003 if (ncopies > 1)
7005 stmt_vec_info prev_stmt_vinfo;
7006 /* FORNOW. This restriction should be relaxed. */
7007 gcc_assert (!nested_in_vect_loop);
7009 /* Create the vector that holds the step of the induction. */
7010 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
7012 expr = build_int_cst (integer_type_node, nunits);
7013 expr = fold_convert (TREE_TYPE (step_expr), expr);
7015 else
7016 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
7017 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
7018 expr, step_expr);
7019 if (TREE_CODE (step_expr) == SSA_NAME)
7020 new_name = vect_init_vector (phi, new_name,
7021 TREE_TYPE (step_expr), NULL);
7022 t = unshare_expr (new_name);
7023 gcc_assert (CONSTANT_CLASS_P (new_name)
7024 || TREE_CODE (new_name) == SSA_NAME);
7025 new_vec = build_vector_from_val (vectype, t);
7026 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
7028 vec_def = induc_def;
7029 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
7030 for (i = 1; i < ncopies; i++)
7032 /* vec_i = vec_prev + vec_step */
7033 new_stmt = gimple_build_assign (vec_dest, PLUS_EXPR,
7034 vec_def, vec_step);
7035 vec_def = make_ssa_name (vec_dest, new_stmt);
7036 gimple_assign_set_lhs (new_stmt, vec_def);
7038 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
7039 set_vinfo_for_stmt (new_stmt,
7040 new_stmt_vec_info (new_stmt, loop_vinfo));
7041 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
7042 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
7046 if (nested_in_vect_loop)
7048 /* Find the loop-closed exit-phi of the induction, and record
7049 the final vector of induction results: */
7050 exit_phi = NULL;
7051 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
7053 gimple *use_stmt = USE_STMT (use_p);
7054 if (is_gimple_debug (use_stmt))
7055 continue;
7057 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (use_stmt)))
7059 exit_phi = use_stmt;
7060 break;
7063 if (exit_phi)
7065 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
7066 /* FORNOW. Currently not supporting the case that an inner-loop induction
7067 is not used in the outer-loop (i.e. only outside the outer-loop). */
7068 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
7069 && !STMT_VINFO_LIVE_P (stmt_vinfo));
7071 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
7072 if (dump_enabled_p ())
7074 dump_printf_loc (MSG_NOTE, vect_location,
7075 "vector of inductions after inner-loop:");
7076 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
7082 if (dump_enabled_p ())
7084 dump_printf_loc (MSG_NOTE, vect_location,
7085 "transform induction: created def-use cycle: ");
7086 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
7087 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
7088 SSA_NAME_DEF_STMT (vec_def), 0);
7091 return true;
7094 /* Function vectorizable_live_operation.
7096 STMT computes a value that is used outside the loop. Check if
7097 it can be supported. */
7099 bool
7100 vectorizable_live_operation (gimple *stmt,
7101 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
7102 slp_tree slp_node, int slp_index,
7103 gimple **vec_stmt)
7105 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
7106 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
7107 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
7108 imm_use_iterator imm_iter;
7109 tree lhs, lhs_type, bitsize, vec_bitsize;
7110 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
7111 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
7112 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
7113 gimple *use_stmt;
7114 auto_vec<tree> vec_oprnds;
7116 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
7118 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
7119 return false;
7121 /* FORNOW. CHECKME. */
7122 if (nested_in_vect_loop_p (loop, stmt))
7123 return false;
7125 /* If STMT is not relevant and it is a simple assignment and its inputs are
7126 invariant then it can remain in place, unvectorized. The original last
7127 scalar value that it computes will be used. */
7128 if (!STMT_VINFO_RELEVANT_P (stmt_info))
7130 gcc_assert (is_simple_and_all_uses_invariant (stmt, loop_vinfo));
7131 if (dump_enabled_p ())
7132 dump_printf_loc (MSG_NOTE, vect_location,
7133 "statement is simple and uses invariant. Leaving in "
7134 "place.\n");
7135 return true;
7138 if (!vec_stmt)
7139 /* No transformation required. */
7140 return true;
7142 /* If stmt has a related stmt, then use that for getting the lhs. */
7143 if (is_pattern_stmt_p (stmt_info))
7144 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
7146 lhs = (is_a <gphi *> (stmt)) ? gimple_phi_result (stmt)
7147 : gimple_get_lhs (stmt);
7148 lhs_type = TREE_TYPE (lhs);
7150 bitsize = TYPE_SIZE (TREE_TYPE (vectype));
7151 vec_bitsize = TYPE_SIZE (vectype);
7153 /* Get the vectorized lhs of STMT and the lane to use (counted in bits). */
7154 tree vec_lhs, bitstart;
7155 if (slp_node)
7157 gcc_assert (slp_index >= 0);
7159 int num_scalar = SLP_TREE_SCALAR_STMTS (slp_node).length ();
7160 int num_vec = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
7162 /* Get the last occurrence of the scalar index from the concatenation of
7163 all the slp vectors. Calculate which slp vector it is and the index
7164 within. */
7165 int pos = (num_vec * nunits) - num_scalar + slp_index;
7166 int vec_entry = pos / nunits;
7167 int vec_index = pos % nunits;
7169 /* Get the correct slp vectorized stmt. */
7170 vec_lhs = gimple_get_lhs (SLP_TREE_VEC_STMTS (slp_node)[vec_entry]);
7172 /* Get entry to use. */
7173 bitstart = build_int_cst (unsigned_type_node, vec_index);
7174 bitstart = int_const_binop (MULT_EXPR, bitsize, bitstart);
7176 else
7178 enum vect_def_type dt = STMT_VINFO_DEF_TYPE (stmt_info);
7179 vec_lhs = vect_get_vec_def_for_operand_1 (stmt, dt);
7181 /* For multiple copies, get the last copy. */
7182 for (int i = 1; i < ncopies; ++i)
7183 vec_lhs = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type,
7184 vec_lhs);
7186 /* Get the last lane in the vector. */
7187 bitstart = int_const_binop (MINUS_EXPR, vec_bitsize, bitsize);
7190 /* Create a new vectorized stmt for the uses of STMT and insert outside the
7191 loop. */
7192 gimple_seq stmts = NULL;
7193 tree bftype = TREE_TYPE (vectype);
7194 if (VECTOR_BOOLEAN_TYPE_P (vectype))
7195 bftype = build_nonstandard_integer_type (tree_to_uhwi (bitsize), 1);
7196 tree new_tree = build3 (BIT_FIELD_REF, bftype, vec_lhs, bitsize, bitstart);
7197 new_tree = force_gimple_operand (fold_convert (lhs_type, new_tree), &stmts,
7198 true, NULL_TREE);
7199 if (stmts)
7200 gsi_insert_seq_on_edge_immediate (single_exit (loop), stmts);
7202 /* Replace use of lhs with newly computed result. If the use stmt is a
7203 single arg PHI, just replace all uses of PHI result. It's necessary
7204 because lcssa PHI defining lhs may be before newly inserted stmt. */
7205 use_operand_p use_p;
7206 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
7207 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
7208 && !is_gimple_debug (use_stmt))
7210 if (gimple_code (use_stmt) == GIMPLE_PHI
7211 && gimple_phi_num_args (use_stmt) == 1)
7213 replace_uses_by (gimple_phi_result (use_stmt), new_tree);
7215 else
7217 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
7218 SET_USE (use_p, new_tree);
7220 update_stmt (use_stmt);
7223 return true;
7226 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
7228 static void
7229 vect_loop_kill_debug_uses (struct loop *loop, gimple *stmt)
7231 ssa_op_iter op_iter;
7232 imm_use_iterator imm_iter;
7233 def_operand_p def_p;
7234 gimple *ustmt;
7236 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
7238 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
7240 basic_block bb;
7242 if (!is_gimple_debug (ustmt))
7243 continue;
7245 bb = gimple_bb (ustmt);
7247 if (!flow_bb_inside_loop_p (loop, bb))
7249 if (gimple_debug_bind_p (ustmt))
7251 if (dump_enabled_p ())
7252 dump_printf_loc (MSG_NOTE, vect_location,
7253 "killing debug use\n");
7255 gimple_debug_bind_reset_value (ustmt);
7256 update_stmt (ustmt);
7258 else
7259 gcc_unreachable ();
7265 /* Given loop represented by LOOP_VINFO, return true if computation of
7266 LOOP_VINFO_NITERS (= LOOP_VINFO_NITERSM1 + 1) doesn't overflow, false
7267 otherwise. */
7269 static bool
7270 loop_niters_no_overflow (loop_vec_info loop_vinfo)
7272 /* Constant case. */
7273 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
7275 tree cst_niters = LOOP_VINFO_NITERS (loop_vinfo);
7276 tree cst_nitersm1 = LOOP_VINFO_NITERSM1 (loop_vinfo);
7278 gcc_assert (TREE_CODE (cst_niters) == INTEGER_CST);
7279 gcc_assert (TREE_CODE (cst_nitersm1) == INTEGER_CST);
7280 if (wi::to_widest (cst_nitersm1) < wi::to_widest (cst_niters))
7281 return true;
7284 widest_int max;
7285 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
7286 /* Check the upper bound of loop niters. */
7287 if (get_max_loop_iterations (loop, &max))
7289 tree type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
7290 signop sgn = TYPE_SIGN (type);
7291 widest_int type_max = widest_int::from (wi::max_value (type), sgn);
7292 if (max < type_max)
7293 return true;
7295 return false;
7298 /* Scale profiling counters by estimation for LOOP which is vectorized
7299 by factor VF. */
7301 static void
7302 scale_profile_for_vect_loop (struct loop *loop, unsigned vf)
7304 edge preheader = loop_preheader_edge (loop);
7305 /* Reduce loop iterations by the vectorization factor. */
7306 gcov_type new_est_niter = niter_for_unrolled_loop (loop, vf);
7307 profile_count freq_h = loop->header->count, freq_e = preheader->count;
7309 /* Use frequency only if counts are zero. */
7310 if (!(freq_h > 0) && !(freq_e > 0))
7312 freq_h = profile_count::from_gcov_type (loop->header->frequency);
7313 freq_e = profile_count::from_gcov_type (EDGE_FREQUENCY (preheader));
7315 if (freq_h > 0)
7317 profile_probability p;
7319 /* Avoid dropping loop body profile counter to 0 because of zero count
7320 in loop's preheader. */
7321 if (!(freq_e > profile_count::from_gcov_type (1)))
7322 freq_e = profile_count::from_gcov_type (1);
7323 p = freq_e.apply_scale (new_est_niter + 1, 1).probability_in (freq_h);
7324 scale_loop_frequencies (loop, p);
7327 basic_block exit_bb = single_pred (loop->latch);
7328 edge exit_e = single_exit (loop);
7329 exit_e->count = loop_preheader_edge (loop)->count;
7330 exit_e->probability = profile_probability::always ()
7331 .apply_scale (1, new_est_niter + 1);
7333 edge exit_l = single_pred_edge (loop->latch);
7334 profile_probability prob = exit_l->probability;
7335 exit_l->probability = exit_e->probability.invert ();
7336 exit_l->count = exit_bb->count - exit_e->count;
7337 if (prob.initialized_p () && exit_l->probability.initialized_p ())
7338 scale_bbs_frequencies (&loop->latch, 1, exit_l->probability / prob);
7341 /* Function vect_transform_loop.
7343 The analysis phase has determined that the loop is vectorizable.
7344 Vectorize the loop - created vectorized stmts to replace the scalar
7345 stmts in the loop, and update the loop exit condition.
7346 Returns scalar epilogue loop if any. */
7348 struct loop *
7349 vect_transform_loop (loop_vec_info loop_vinfo)
7351 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
7352 struct loop *epilogue = NULL;
7353 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
7354 int nbbs = loop->num_nodes;
7355 int i;
7356 tree niters_vector = NULL;
7357 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
7358 bool grouped_store;
7359 bool slp_scheduled = false;
7360 gimple *stmt, *pattern_stmt;
7361 gimple_seq pattern_def_seq = NULL;
7362 gimple_stmt_iterator pattern_def_si = gsi_none ();
7363 bool transform_pattern_stmt = false;
7364 bool check_profitability = false;
7365 int th;
7367 if (dump_enabled_p ())
7368 dump_printf_loc (MSG_NOTE, vect_location, "=== vec_transform_loop ===\n");
7370 /* Use the more conservative vectorization threshold. If the number
7371 of iterations is constant assume the cost check has been performed
7372 by our caller. If the threshold makes all loops profitable that
7373 run at least the vectorization factor number of times checking
7374 is pointless, too. */
7375 th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
7376 if (th >= LOOP_VINFO_VECT_FACTOR (loop_vinfo)
7377 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
7379 if (dump_enabled_p ())
7380 dump_printf_loc (MSG_NOTE, vect_location,
7381 "Profitability threshold is %d loop iterations.\n",
7382 th);
7383 check_profitability = true;
7386 /* Make sure there exists a single-predecessor exit bb. Do this before
7387 versioning. */
7388 edge e = single_exit (loop);
7389 if (! single_pred_p (e->dest))
7391 split_loop_exit_edge (e);
7392 if (dump_enabled_p ())
7393 dump_printf (MSG_NOTE, "split exit edge\n");
7396 /* Version the loop first, if required, so the profitability check
7397 comes first. */
7399 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
7401 vect_loop_versioning (loop_vinfo, th, check_profitability);
7402 check_profitability = false;
7405 /* Make sure there exists a single-predecessor exit bb also on the
7406 scalar loop copy. Do this after versioning but before peeling
7407 so CFG structure is fine for both scalar and if-converted loop
7408 to make slpeel_duplicate_current_defs_from_edges face matched
7409 loop closed PHI nodes on the exit. */
7410 if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
7412 e = single_exit (LOOP_VINFO_SCALAR_LOOP (loop_vinfo));
7413 if (! single_pred_p (e->dest))
7415 split_loop_exit_edge (e);
7416 if (dump_enabled_p ())
7417 dump_printf (MSG_NOTE, "split exit edge of scalar loop\n");
7421 tree niters = vect_build_loop_niters (loop_vinfo);
7422 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = niters;
7423 tree nitersm1 = unshare_expr (LOOP_VINFO_NITERSM1 (loop_vinfo));
7424 bool niters_no_overflow = loop_niters_no_overflow (loop_vinfo);
7425 epilogue = vect_do_peeling (loop_vinfo, niters, nitersm1, &niters_vector, th,
7426 check_profitability, niters_no_overflow);
7427 if (niters_vector == NULL_TREE)
7429 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
7430 niters_vector
7431 = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
7432 LOOP_VINFO_INT_NITERS (loop_vinfo) / vf);
7433 else
7434 vect_gen_vector_loop_niters (loop_vinfo, niters, &niters_vector,
7435 niters_no_overflow);
7438 /* 1) Make sure the loop header has exactly two entries
7439 2) Make sure we have a preheader basic block. */
7441 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
7443 split_edge (loop_preheader_edge (loop));
7445 /* FORNOW: the vectorizer supports only loops which body consist
7446 of one basic block (header + empty latch). When the vectorizer will
7447 support more involved loop forms, the order by which the BBs are
7448 traversed need to be reconsidered. */
7450 for (i = 0; i < nbbs; i++)
7452 basic_block bb = bbs[i];
7453 stmt_vec_info stmt_info;
7455 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
7456 gsi_next (&si))
7458 gphi *phi = si.phi ();
7459 if (dump_enabled_p ())
7461 dump_printf_loc (MSG_NOTE, vect_location,
7462 "------>vectorizing phi: ");
7463 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
7465 stmt_info = vinfo_for_stmt (phi);
7466 if (!stmt_info)
7467 continue;
7469 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
7470 vect_loop_kill_debug_uses (loop, phi);
7472 if (!STMT_VINFO_RELEVANT_P (stmt_info)
7473 && !STMT_VINFO_LIVE_P (stmt_info))
7474 continue;
7476 if (STMT_VINFO_VECTYPE (stmt_info)
7477 && (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
7478 != (unsigned HOST_WIDE_INT) vf)
7479 && dump_enabled_p ())
7480 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
7482 if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
7483 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
7484 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
7485 && ! PURE_SLP_STMT (stmt_info))
7487 if (dump_enabled_p ())
7488 dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
7489 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
7493 pattern_stmt = NULL;
7494 for (gimple_stmt_iterator si = gsi_start_bb (bb);
7495 !gsi_end_p (si) || transform_pattern_stmt;)
7497 bool is_store;
7499 if (transform_pattern_stmt)
7500 stmt = pattern_stmt;
7501 else
7503 stmt = gsi_stmt (si);
7504 /* During vectorization remove existing clobber stmts. */
7505 if (gimple_clobber_p (stmt))
7507 unlink_stmt_vdef (stmt);
7508 gsi_remove (&si, true);
7509 release_defs (stmt);
7510 continue;
7514 if (dump_enabled_p ())
7516 dump_printf_loc (MSG_NOTE, vect_location,
7517 "------>vectorizing statement: ");
7518 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
7521 stmt_info = vinfo_for_stmt (stmt);
7523 /* vector stmts created in the outer-loop during vectorization of
7524 stmts in an inner-loop may not have a stmt_info, and do not
7525 need to be vectorized. */
7526 if (!stmt_info)
7528 gsi_next (&si);
7529 continue;
7532 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
7533 vect_loop_kill_debug_uses (loop, stmt);
7535 if (!STMT_VINFO_RELEVANT_P (stmt_info)
7536 && !STMT_VINFO_LIVE_P (stmt_info))
7538 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
7539 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
7540 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
7541 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
7543 stmt = pattern_stmt;
7544 stmt_info = vinfo_for_stmt (stmt);
7546 else
7548 gsi_next (&si);
7549 continue;
7552 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
7553 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
7554 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
7555 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
7556 transform_pattern_stmt = true;
7558 /* If pattern statement has def stmts, vectorize them too. */
7559 if (is_pattern_stmt_p (stmt_info))
7561 if (pattern_def_seq == NULL)
7563 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
7564 pattern_def_si = gsi_start (pattern_def_seq);
7566 else if (!gsi_end_p (pattern_def_si))
7567 gsi_next (&pattern_def_si);
7568 if (pattern_def_seq != NULL)
7570 gimple *pattern_def_stmt = NULL;
7571 stmt_vec_info pattern_def_stmt_info = NULL;
7573 while (!gsi_end_p (pattern_def_si))
7575 pattern_def_stmt = gsi_stmt (pattern_def_si);
7576 pattern_def_stmt_info
7577 = vinfo_for_stmt (pattern_def_stmt);
7578 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
7579 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
7580 break;
7581 gsi_next (&pattern_def_si);
7584 if (!gsi_end_p (pattern_def_si))
7586 if (dump_enabled_p ())
7588 dump_printf_loc (MSG_NOTE, vect_location,
7589 "==> vectorizing pattern def "
7590 "stmt: ");
7591 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
7592 pattern_def_stmt, 0);
7595 stmt = pattern_def_stmt;
7596 stmt_info = pattern_def_stmt_info;
7598 else
7600 pattern_def_si = gsi_none ();
7601 transform_pattern_stmt = false;
7604 else
7605 transform_pattern_stmt = false;
7608 if (STMT_VINFO_VECTYPE (stmt_info))
7610 unsigned int nunits
7611 = (unsigned int)
7612 TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
7613 if (!STMT_SLP_TYPE (stmt_info)
7614 && nunits != (unsigned int) vf
7615 && dump_enabled_p ())
7616 /* For SLP VF is set according to unrolling factor, and not
7617 to vector size, hence for SLP this print is not valid. */
7618 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
7621 /* SLP. Schedule all the SLP instances when the first SLP stmt is
7622 reached. */
7623 if (STMT_SLP_TYPE (stmt_info))
7625 if (!slp_scheduled)
7627 slp_scheduled = true;
7629 if (dump_enabled_p ())
7630 dump_printf_loc (MSG_NOTE, vect_location,
7631 "=== scheduling SLP instances ===\n");
7633 vect_schedule_slp (loop_vinfo);
7636 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
7637 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
7639 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
7641 pattern_def_seq = NULL;
7642 gsi_next (&si);
7644 continue;
7648 /* -------- vectorize statement ------------ */
7649 if (dump_enabled_p ())
7650 dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
7652 grouped_store = false;
7653 is_store = vect_transform_stmt (stmt, &si, &grouped_store, NULL, NULL);
7654 if (is_store)
7656 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
7658 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
7659 interleaving chain was completed - free all the stores in
7660 the chain. */
7661 gsi_next (&si);
7662 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
7664 else
7666 /* Free the attached stmt_vec_info and remove the stmt. */
7667 gimple *store = gsi_stmt (si);
7668 free_stmt_vec_info (store);
7669 unlink_stmt_vdef (store);
7670 gsi_remove (&si, true);
7671 release_defs (store);
7674 /* Stores can only appear at the end of pattern statements. */
7675 gcc_assert (!transform_pattern_stmt);
7676 pattern_def_seq = NULL;
7678 else if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
7680 pattern_def_seq = NULL;
7681 gsi_next (&si);
7683 } /* stmts in BB */
7684 } /* BBs in loop */
7686 slpeel_make_loop_iterate_ntimes (loop, niters_vector);
7688 scale_profile_for_vect_loop (loop, vf);
7690 /* The minimum number of iterations performed by the epilogue. This
7691 is 1 when peeling for gaps because we always need a final scalar
7692 iteration. */
7693 int min_epilogue_iters = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) ? 1 : 0;
7694 /* +1 to convert latch counts to loop iteration counts,
7695 -min_epilogue_iters to remove iterations that cannot be performed
7696 by the vector code. */
7697 int bias = 1 - min_epilogue_iters;
7698 /* In these calculations the "- 1" converts loop iteration counts
7699 back to latch counts. */
7700 if (loop->any_upper_bound)
7701 loop->nb_iterations_upper_bound
7702 = wi::udiv_floor (loop->nb_iterations_upper_bound + bias, vf) - 1;
7703 if (loop->any_likely_upper_bound)
7704 loop->nb_iterations_likely_upper_bound
7705 = wi::udiv_floor (loop->nb_iterations_likely_upper_bound + bias, vf) - 1;
7706 if (loop->any_estimate)
7707 loop->nb_iterations_estimate
7708 = wi::udiv_floor (loop->nb_iterations_estimate + bias, vf) - 1;
7710 if (dump_enabled_p ())
7712 if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
7714 dump_printf_loc (MSG_NOTE, vect_location,
7715 "LOOP VECTORIZED\n");
7716 if (loop->inner)
7717 dump_printf_loc (MSG_NOTE, vect_location,
7718 "OUTER LOOP VECTORIZED\n");
7719 dump_printf (MSG_NOTE, "\n");
7721 else
7722 dump_printf_loc (MSG_NOTE, vect_location,
7723 "LOOP EPILOGUE VECTORIZED (VS=%d)\n",
7724 current_vector_size);
7727 /* Free SLP instances here because otherwise stmt reference counting
7728 won't work. */
7729 slp_instance instance;
7730 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
7731 vect_free_slp_instance (instance);
7732 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
7733 /* Clear-up safelen field since its value is invalid after vectorization
7734 since vectorized loop can have loop-carried dependencies. */
7735 loop->safelen = 0;
7737 /* Don't vectorize epilogue for epilogue. */
7738 if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
7739 epilogue = NULL;
7741 if (epilogue)
7743 unsigned int vector_sizes
7744 = targetm.vectorize.autovectorize_vector_sizes ();
7745 vector_sizes &= current_vector_size - 1;
7747 if (!PARAM_VALUE (PARAM_VECT_EPILOGUES_NOMASK))
7748 epilogue = NULL;
7749 else if (!vector_sizes)
7750 epilogue = NULL;
7751 else if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
7752 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) >= 0)
7754 int smallest_vec_size = 1 << ctz_hwi (vector_sizes);
7755 int ratio = current_vector_size / smallest_vec_size;
7756 int eiters = LOOP_VINFO_INT_NITERS (loop_vinfo)
7757 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
7758 eiters = eiters % vf;
7760 epilogue->nb_iterations_upper_bound = eiters - 1;
7762 if (eiters < vf / ratio)
7763 epilogue = NULL;
7767 if (epilogue)
7769 epilogue->force_vectorize = loop->force_vectorize;
7770 epilogue->safelen = loop->safelen;
7771 epilogue->dont_vectorize = false;
7773 /* We may need to if-convert epilogue to vectorize it. */
7774 if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
7775 tree_if_conversion (epilogue);
7778 return epilogue;
7781 /* The code below is trying to perform simple optimization - revert
7782 if-conversion for masked stores, i.e. if the mask of a store is zero
7783 do not perform it and all stored value producers also if possible.
7784 For example,
7785 for (i=0; i<n; i++)
7786 if (c[i])
7788 p1[i] += 1;
7789 p2[i] = p3[i] +2;
7791 this transformation will produce the following semi-hammock:
7793 if (!mask__ifc__42.18_165 == { 0, 0, 0, 0, 0, 0, 0, 0 })
7795 vect__11.19_170 = MASK_LOAD (vectp_p1.20_168, 0B, mask__ifc__42.18_165);
7796 vect__12.22_172 = vect__11.19_170 + vect_cst__171;
7797 MASK_STORE (vectp_p1.23_175, 0B, mask__ifc__42.18_165, vect__12.22_172);
7798 vect__18.25_182 = MASK_LOAD (vectp_p3.26_180, 0B, mask__ifc__42.18_165);
7799 vect__19.28_184 = vect__18.25_182 + vect_cst__183;
7800 MASK_STORE (vectp_p2.29_187, 0B, mask__ifc__42.18_165, vect__19.28_184);
7804 void
7805 optimize_mask_stores (struct loop *loop)
7807 basic_block *bbs = get_loop_body (loop);
7808 unsigned nbbs = loop->num_nodes;
7809 unsigned i;
7810 basic_block bb;
7811 struct loop *bb_loop;
7812 gimple_stmt_iterator gsi;
7813 gimple *stmt;
7814 auto_vec<gimple *> worklist;
7816 vect_location = find_loop_location (loop);
7817 /* Pick up all masked stores in loop if any. */
7818 for (i = 0; i < nbbs; i++)
7820 bb = bbs[i];
7821 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
7822 gsi_next (&gsi))
7824 stmt = gsi_stmt (gsi);
7825 if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
7826 worklist.safe_push (stmt);
7830 free (bbs);
7831 if (worklist.is_empty ())
7832 return;
7834 /* Loop has masked stores. */
7835 while (!worklist.is_empty ())
7837 gimple *last, *last_store;
7838 edge e, efalse;
7839 tree mask;
7840 basic_block store_bb, join_bb;
7841 gimple_stmt_iterator gsi_to;
7842 tree vdef, new_vdef;
7843 gphi *phi;
7844 tree vectype;
7845 tree zero;
7847 last = worklist.pop ();
7848 mask = gimple_call_arg (last, 2);
7849 bb = gimple_bb (last);
7850 /* Create then_bb and if-then structure in CFG, then_bb belongs to
7851 the same loop as if_bb. It could be different to LOOP when two
7852 level loop-nest is vectorized and mask_store belongs to the inner
7853 one. */
7854 e = split_block (bb, last);
7855 bb_loop = bb->loop_father;
7856 gcc_assert (loop == bb_loop || flow_loop_nested_p (loop, bb_loop));
7857 join_bb = e->dest;
7858 store_bb = create_empty_bb (bb);
7859 add_bb_to_loop (store_bb, bb_loop);
7860 e->flags = EDGE_TRUE_VALUE;
7861 efalse = make_edge (bb, store_bb, EDGE_FALSE_VALUE);
7862 /* Put STORE_BB to likely part. */
7863 efalse->probability = profile_probability::unlikely ();
7864 store_bb->frequency = PROB_ALWAYS - EDGE_FREQUENCY (efalse);
7865 make_single_succ_edge (store_bb, join_bb, EDGE_FALLTHRU);
7866 if (dom_info_available_p (CDI_DOMINATORS))
7867 set_immediate_dominator (CDI_DOMINATORS, store_bb, bb);
7868 if (dump_enabled_p ())
7869 dump_printf_loc (MSG_NOTE, vect_location,
7870 "Create new block %d to sink mask stores.",
7871 store_bb->index);
7872 /* Create vector comparison with boolean result. */
7873 vectype = TREE_TYPE (mask);
7874 zero = build_zero_cst (vectype);
7875 stmt = gimple_build_cond (EQ_EXPR, mask, zero, NULL_TREE, NULL_TREE);
7876 gsi = gsi_last_bb (bb);
7877 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
7878 /* Create new PHI node for vdef of the last masked store:
7879 .MEM_2 = VDEF <.MEM_1>
7880 will be converted to
7881 .MEM.3 = VDEF <.MEM_1>
7882 and new PHI node will be created in join bb
7883 .MEM_2 = PHI <.MEM_1, .MEM_3>
7885 vdef = gimple_vdef (last);
7886 new_vdef = make_ssa_name (gimple_vop (cfun), last);
7887 gimple_set_vdef (last, new_vdef);
7888 phi = create_phi_node (vdef, join_bb);
7889 add_phi_arg (phi, new_vdef, EDGE_SUCC (store_bb, 0), UNKNOWN_LOCATION);
7891 /* Put all masked stores with the same mask to STORE_BB if possible. */
7892 while (true)
7894 gimple_stmt_iterator gsi_from;
7895 gimple *stmt1 = NULL;
7897 /* Move masked store to STORE_BB. */
7898 last_store = last;
7899 gsi = gsi_for_stmt (last);
7900 gsi_from = gsi;
7901 /* Shift GSI to the previous stmt for further traversal. */
7902 gsi_prev (&gsi);
7903 gsi_to = gsi_start_bb (store_bb);
7904 gsi_move_before (&gsi_from, &gsi_to);
7905 /* Setup GSI_TO to the non-empty block start. */
7906 gsi_to = gsi_start_bb (store_bb);
7907 if (dump_enabled_p ())
7909 dump_printf_loc (MSG_NOTE, vect_location,
7910 "Move stmt to created bb\n");
7911 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, last, 0);
7913 /* Move all stored value producers if possible. */
7914 while (!gsi_end_p (gsi))
7916 tree lhs;
7917 imm_use_iterator imm_iter;
7918 use_operand_p use_p;
7919 bool res;
7921 /* Skip debug statements. */
7922 if (is_gimple_debug (gsi_stmt (gsi)))
7924 gsi_prev (&gsi);
7925 continue;
7927 stmt1 = gsi_stmt (gsi);
7928 /* Do not consider statements writing to memory or having
7929 volatile operand. */
7930 if (gimple_vdef (stmt1)
7931 || gimple_has_volatile_ops (stmt1))
7932 break;
7933 gsi_from = gsi;
7934 gsi_prev (&gsi);
7935 lhs = gimple_get_lhs (stmt1);
7936 if (!lhs)
7937 break;
7939 /* LHS of vectorized stmt must be SSA_NAME. */
7940 if (TREE_CODE (lhs) != SSA_NAME)
7941 break;
7943 if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
7945 /* Remove dead scalar statement. */
7946 if (has_zero_uses (lhs))
7948 gsi_remove (&gsi_from, true);
7949 continue;
7953 /* Check that LHS does not have uses outside of STORE_BB. */
7954 res = true;
7955 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
7957 gimple *use_stmt;
7958 use_stmt = USE_STMT (use_p);
7959 if (is_gimple_debug (use_stmt))
7960 continue;
7961 if (gimple_bb (use_stmt) != store_bb)
7963 res = false;
7964 break;
7967 if (!res)
7968 break;
7970 if (gimple_vuse (stmt1)
7971 && gimple_vuse (stmt1) != gimple_vuse (last_store))
7972 break;
7974 /* Can move STMT1 to STORE_BB. */
7975 if (dump_enabled_p ())
7977 dump_printf_loc (MSG_NOTE, vect_location,
7978 "Move stmt to created bb\n");
7979 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt1, 0);
7981 gsi_move_before (&gsi_from, &gsi_to);
7982 /* Shift GSI_TO for further insertion. */
7983 gsi_prev (&gsi_to);
7985 /* Put other masked stores with the same mask to STORE_BB. */
7986 if (worklist.is_empty ()
7987 || gimple_call_arg (worklist.last (), 2) != mask
7988 || worklist.last () != stmt1)
7989 break;
7990 last = worklist.pop ();
7992 add_phi_arg (phi, gimple_vuse (last_store), e, UNKNOWN_LOCATION);