1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
26 #include "stor-layout.h"
27 #include "stringpool.h"
29 #include "print-tree.h"
35 #include "diagnostic-core.h"
37 #include "langhooks.h"
41 #include "tree-inline.h"
42 #include "tree-dump.h"
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab
[(int) stk_type_kind_last
];
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment
= TARGET_DEFAULT_PACK_STRUCT
* BITS_PER_UNIT
;
53 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
54 in the address spaces' address_mode, not pointer_mode. Set only by
55 internal_reference_types called only by a front end. */
56 static int reference_types_internal
= 0;
58 static tree
self_referential_size (tree
);
59 static void finalize_record_size (record_layout_info
);
60 static void finalize_type_size (tree
);
61 static void place_union_field (record_layout_info
, tree
);
62 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
63 static int excess_unit_span (HOST_WIDE_INT
, HOST_WIDE_INT
, HOST_WIDE_INT
,
66 extern void debug_rli (record_layout_info
);
68 /* Show that REFERENCE_TYPES are internal and should use address_mode.
69 Called only by front end. */
72 internal_reference_types (void)
74 reference_types_internal
= 1;
77 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
78 to serve as the actual size-expression for a type or decl. */
81 variable_size (tree size
)
84 if (TREE_CONSTANT (size
))
87 /* If the size is self-referential, we can't make a SAVE_EXPR (see
88 save_expr for the rationale). But we can do something else. */
89 if (CONTAINS_PLACEHOLDER_P (size
))
90 return self_referential_size (size
);
92 /* If we are in the global binding level, we can't make a SAVE_EXPR
93 since it may end up being shared across functions, so it is up
94 to the front-end to deal with this case. */
95 if (lang_hooks
.decls
.global_bindings_p ())
98 return save_expr (size
);
101 /* An array of functions used for self-referential size computation. */
102 static GTY(()) vec
<tree
, va_gc
> *size_functions
;
104 /* Similar to copy_tree_r but do not copy component references involving
105 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
106 and substituted in substitute_in_expr. */
109 copy_self_referential_tree_r (tree
*tp
, int *walk_subtrees
, void *data
)
111 enum tree_code code
= TREE_CODE (*tp
);
113 /* Stop at types, decls, constants like copy_tree_r. */
114 if (TREE_CODE_CLASS (code
) == tcc_type
115 || TREE_CODE_CLASS (code
) == tcc_declaration
116 || TREE_CODE_CLASS (code
) == tcc_constant
)
122 /* This is the pattern built in ada/make_aligning_type. */
123 else if (code
== ADDR_EXPR
124 && TREE_CODE (TREE_OPERAND (*tp
, 0)) == PLACEHOLDER_EXPR
)
130 /* Default case: the component reference. */
131 else if (code
== COMPONENT_REF
)
134 for (inner
= TREE_OPERAND (*tp
, 0);
135 REFERENCE_CLASS_P (inner
);
136 inner
= TREE_OPERAND (inner
, 0))
139 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
)
146 /* We're not supposed to have them in self-referential size trees
147 because we wouldn't properly control when they are evaluated.
148 However, not creating superfluous SAVE_EXPRs requires accurate
149 tracking of readonly-ness all the way down to here, which we
150 cannot always guarantee in practice. So punt in this case. */
151 else if (code
== SAVE_EXPR
)
152 return error_mark_node
;
154 else if (code
== STATEMENT_LIST
)
157 return copy_tree_r (tp
, walk_subtrees
, data
);
160 /* Given a SIZE expression that is self-referential, return an equivalent
161 expression to serve as the actual size expression for a type. */
164 self_referential_size (tree size
)
166 static unsigned HOST_WIDE_INT fnno
= 0;
167 vec
<tree
> self_refs
= vNULL
;
168 tree param_type_list
= NULL
, param_decl_list
= NULL
;
169 tree t
, ref
, return_type
, fntype
, fnname
, fndecl
;
172 vec
<tree
, va_gc
> *args
= NULL
;
174 /* Do not factor out simple operations. */
175 t
= skip_simple_constant_arithmetic (size
);
176 if (TREE_CODE (t
) == CALL_EXPR
)
179 /* Collect the list of self-references in the expression. */
180 find_placeholder_in_expr (size
, &self_refs
);
181 gcc_assert (self_refs
.length () > 0);
183 /* Obtain a private copy of the expression. */
185 if (walk_tree (&t
, copy_self_referential_tree_r
, NULL
, NULL
) != NULL_TREE
)
189 /* Build the parameter and argument lists in parallel; also
190 substitute the former for the latter in the expression. */
191 vec_alloc (args
, self_refs
.length ());
192 FOR_EACH_VEC_ELT (self_refs
, i
, ref
)
194 tree subst
, param_name
, param_type
, param_decl
;
198 /* We shouldn't have true variables here. */
199 gcc_assert (TREE_READONLY (ref
));
202 /* This is the pattern built in ada/make_aligning_type. */
203 else if (TREE_CODE (ref
) == ADDR_EXPR
)
205 /* Default case: the component reference. */
207 subst
= TREE_OPERAND (ref
, 1);
209 sprintf (buf
, "p%d", i
);
210 param_name
= get_identifier (buf
);
211 param_type
= TREE_TYPE (ref
);
213 = build_decl (input_location
, PARM_DECL
, param_name
, param_type
);
214 if (targetm
.calls
.promote_prototypes (NULL_TREE
)
215 && INTEGRAL_TYPE_P (param_type
)
216 && TYPE_PRECISION (param_type
) < TYPE_PRECISION (integer_type_node
))
217 DECL_ARG_TYPE (param_decl
) = integer_type_node
;
219 DECL_ARG_TYPE (param_decl
) = param_type
;
220 DECL_ARTIFICIAL (param_decl
) = 1;
221 TREE_READONLY (param_decl
) = 1;
223 size
= substitute_in_expr (size
, subst
, param_decl
);
225 param_type_list
= tree_cons (NULL_TREE
, param_type
, param_type_list
);
226 param_decl_list
= chainon (param_decl
, param_decl_list
);
227 args
->quick_push (ref
);
230 self_refs
.release ();
232 /* Append 'void' to indicate that the number of parameters is fixed. */
233 param_type_list
= tree_cons (NULL_TREE
, void_type_node
, param_type_list
);
235 /* The 3 lists have been created in reverse order. */
236 param_type_list
= nreverse (param_type_list
);
237 param_decl_list
= nreverse (param_decl_list
);
239 /* Build the function type. */
240 return_type
= TREE_TYPE (size
);
241 fntype
= build_function_type (return_type
, param_type_list
);
243 /* Build the function declaration. */
244 sprintf (buf
, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED
, fnno
++);
245 fnname
= get_file_function_name (buf
);
246 fndecl
= build_decl (input_location
, FUNCTION_DECL
, fnname
, fntype
);
247 for (t
= param_decl_list
; t
; t
= DECL_CHAIN (t
))
248 DECL_CONTEXT (t
) = fndecl
;
249 DECL_ARGUMENTS (fndecl
) = param_decl_list
;
251 = build_decl (input_location
, RESULT_DECL
, 0, return_type
);
252 DECL_CONTEXT (DECL_RESULT (fndecl
)) = fndecl
;
254 /* The function has been created by the compiler and we don't
255 want to emit debug info for it. */
256 DECL_ARTIFICIAL (fndecl
) = 1;
257 DECL_IGNORED_P (fndecl
) = 1;
259 /* It is supposed to be "const" and never throw. */
260 TREE_READONLY (fndecl
) = 1;
261 TREE_NOTHROW (fndecl
) = 1;
263 /* We want it to be inlined when this is deemed profitable, as
264 well as discarded if every call has been integrated. */
265 DECL_DECLARED_INLINE_P (fndecl
) = 1;
267 /* It is made up of a unique return statement. */
268 DECL_INITIAL (fndecl
) = make_node (BLOCK
);
269 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl
)) = fndecl
;
270 t
= build2 (MODIFY_EXPR
, return_type
, DECL_RESULT (fndecl
), size
);
271 DECL_SAVED_TREE (fndecl
) = build1 (RETURN_EXPR
, void_type_node
, t
);
272 TREE_STATIC (fndecl
) = 1;
274 /* Put it onto the list of size functions. */
275 vec_safe_push (size_functions
, fndecl
);
277 /* Replace the original expression with a call to the size function. */
278 return build_call_expr_loc_vec (UNKNOWN_LOCATION
, fndecl
, args
);
281 /* Take, queue and compile all the size functions. It is essential that
282 the size functions be gimplified at the very end of the compilation
283 in order to guarantee transparent handling of self-referential sizes.
284 Otherwise the GENERIC inliner would not be able to inline them back
285 at each of their call sites, thus creating artificial non-constant
286 size expressions which would trigger nasty problems later on. */
289 finalize_size_functions (void)
294 for (i
= 0; size_functions
&& size_functions
->iterate (i
, &fndecl
); i
++)
296 allocate_struct_function (fndecl
, false);
298 dump_function (TDI_original
, fndecl
);
299 gimplify_function_tree (fndecl
);
300 dump_function (TDI_generic
, fndecl
);
301 cgraph_node::finalize_function (fndecl
, false);
304 vec_free (size_functions
);
307 /* Return the machine mode to use for a nonscalar of SIZE bits. The
308 mode must be in class MCLASS, and have exactly that many value bits;
309 it may have padding as well. If LIMIT is nonzero, modes of wider
310 than MAX_FIXED_MODE_SIZE will not be used. */
313 mode_for_size (unsigned int size
, enum mode_class mclass
, int limit
)
315 enum machine_mode mode
;
317 if (limit
&& size
> MAX_FIXED_MODE_SIZE
)
320 /* Get the first mode which has this size, in the specified class. */
321 for (mode
= GET_CLASS_NARROWEST_MODE (mclass
); mode
!= VOIDmode
;
322 mode
= GET_MODE_WIDER_MODE (mode
))
323 if (GET_MODE_PRECISION (mode
) == size
)
329 /* Similar, except passed a tree node. */
332 mode_for_size_tree (const_tree size
, enum mode_class mclass
, int limit
)
334 unsigned HOST_WIDE_INT uhwi
;
337 if (!tree_fits_uhwi_p (size
))
339 uhwi
= tree_to_uhwi (size
);
343 return mode_for_size (ui
, mclass
, limit
);
346 /* Similar, but never return BLKmode; return the narrowest mode that
347 contains at least the requested number of value bits. */
350 smallest_mode_for_size (unsigned int size
, enum mode_class mclass
)
352 enum machine_mode mode
;
354 /* Get the first mode which has at least this size, in the
356 for (mode
= GET_CLASS_NARROWEST_MODE (mclass
); mode
!= VOIDmode
;
357 mode
= GET_MODE_WIDER_MODE (mode
))
358 if (GET_MODE_PRECISION (mode
) >= size
)
364 /* Find an integer mode of the exact same size, or BLKmode on failure. */
367 int_mode_for_mode (enum machine_mode mode
)
369 switch (GET_MODE_CLASS (mode
))
372 case MODE_PARTIAL_INT
:
375 case MODE_COMPLEX_INT
:
376 case MODE_COMPLEX_FLOAT
:
378 case MODE_DECIMAL_FLOAT
:
379 case MODE_VECTOR_INT
:
380 case MODE_VECTOR_FLOAT
:
385 case MODE_VECTOR_FRACT
:
386 case MODE_VECTOR_ACCUM
:
387 case MODE_VECTOR_UFRACT
:
388 case MODE_VECTOR_UACCUM
:
389 mode
= mode_for_size (GET_MODE_BITSIZE (mode
), MODE_INT
, 0);
396 /* ... fall through ... */
406 /* Find a mode that can be used for efficient bitwise operations on MODE.
407 Return BLKmode if no such mode exists. */
410 bitwise_mode_for_mode (enum machine_mode mode
)
412 /* Quick exit if we already have a suitable mode. */
413 unsigned int bitsize
= GET_MODE_BITSIZE (mode
);
414 if (SCALAR_INT_MODE_P (mode
) && bitsize
<= MAX_FIXED_MODE_SIZE
)
417 /* Reuse the sanity checks from int_mode_for_mode. */
418 gcc_checking_assert ((int_mode_for_mode (mode
), true));
420 /* Try to replace complex modes with complex modes. In general we
421 expect both components to be processed independently, so we only
422 care whether there is a register for the inner mode. */
423 if (COMPLEX_MODE_P (mode
))
425 enum machine_mode trial
= mode
;
426 if (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
)
427 trial
= mode_for_size (bitsize
, MODE_COMPLEX_INT
, false);
429 && have_regs_of_mode
[GET_MODE_INNER (trial
)])
433 /* Try to replace vector modes with vector modes. Also try using vector
434 modes if an integer mode would be too big. */
435 if (VECTOR_MODE_P (mode
) || bitsize
> MAX_FIXED_MODE_SIZE
)
437 enum machine_mode trial
= mode
;
438 if (GET_MODE_CLASS (mode
) != MODE_VECTOR_INT
)
439 trial
= mode_for_size (bitsize
, MODE_VECTOR_INT
, 0);
441 && have_regs_of_mode
[trial
]
442 && targetm
.vector_mode_supported_p (trial
))
446 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
447 return mode_for_size (bitsize
, MODE_INT
, true);
450 /* Find a type that can be used for efficient bitwise operations on MODE.
451 Return null if no such mode exists. */
454 bitwise_type_for_mode (enum machine_mode mode
)
456 mode
= bitwise_mode_for_mode (mode
);
460 unsigned int inner_size
= GET_MODE_UNIT_BITSIZE (mode
);
461 tree inner_type
= build_nonstandard_integer_type (inner_size
, true);
463 if (VECTOR_MODE_P (mode
))
464 return build_vector_type_for_mode (inner_type
, mode
);
466 if (COMPLEX_MODE_P (mode
))
467 return build_complex_type (inner_type
);
469 gcc_checking_assert (GET_MODE_INNER (mode
) == VOIDmode
);
473 /* Find a mode that is suitable for representing a vector with
474 NUNITS elements of mode INNERMODE. Returns BLKmode if there
475 is no suitable mode. */
478 mode_for_vector (enum machine_mode innermode
, unsigned nunits
)
480 enum machine_mode mode
;
482 /* First, look for a supported vector type. */
483 if (SCALAR_FLOAT_MODE_P (innermode
))
484 mode
= MIN_MODE_VECTOR_FLOAT
;
485 else if (SCALAR_FRACT_MODE_P (innermode
))
486 mode
= MIN_MODE_VECTOR_FRACT
;
487 else if (SCALAR_UFRACT_MODE_P (innermode
))
488 mode
= MIN_MODE_VECTOR_UFRACT
;
489 else if (SCALAR_ACCUM_MODE_P (innermode
))
490 mode
= MIN_MODE_VECTOR_ACCUM
;
491 else if (SCALAR_UACCUM_MODE_P (innermode
))
492 mode
= MIN_MODE_VECTOR_UACCUM
;
494 mode
= MIN_MODE_VECTOR_INT
;
496 /* Do not check vector_mode_supported_p here. We'll do that
497 later in vector_type_mode. */
498 for (; mode
!= VOIDmode
; mode
= GET_MODE_WIDER_MODE (mode
))
499 if (GET_MODE_NUNITS (mode
) == nunits
500 && GET_MODE_INNER (mode
) == innermode
)
503 /* For integers, try mapping it to a same-sized scalar mode. */
505 && GET_MODE_CLASS (innermode
) == MODE_INT
)
506 mode
= mode_for_size (nunits
* GET_MODE_BITSIZE (innermode
),
510 || (GET_MODE_CLASS (mode
) == MODE_INT
511 && !have_regs_of_mode
[mode
]))
517 /* Return the alignment of MODE. This will be bounded by 1 and
518 BIGGEST_ALIGNMENT. */
521 get_mode_alignment (enum machine_mode mode
)
523 return MIN (BIGGEST_ALIGNMENT
, MAX (1, mode_base_align
[mode
]*BITS_PER_UNIT
));
526 /* Return the precision of the mode, or for a complex or vector mode the
527 precision of the mode of its elements. */
530 element_precision (enum machine_mode mode
)
532 if (COMPLEX_MODE_P (mode
) || VECTOR_MODE_P (mode
))
533 mode
= GET_MODE_INNER (mode
);
535 return GET_MODE_PRECISION (mode
);
538 /* Return the natural mode of an array, given that it is SIZE bytes in
539 total and has elements of type ELEM_TYPE. */
541 static enum machine_mode
542 mode_for_array (tree elem_type
, tree size
)
545 unsigned HOST_WIDE_INT int_size
, int_elem_size
;
548 /* One-element arrays get the component type's mode. */
549 elem_size
= TYPE_SIZE (elem_type
);
550 if (simple_cst_equal (size
, elem_size
))
551 return TYPE_MODE (elem_type
);
554 if (tree_fits_uhwi_p (size
) && tree_fits_uhwi_p (elem_size
))
556 int_size
= tree_to_uhwi (size
);
557 int_elem_size
= tree_to_uhwi (elem_size
);
558 if (int_elem_size
> 0
559 && int_size
% int_elem_size
== 0
560 && targetm
.array_mode_supported_p (TYPE_MODE (elem_type
),
561 int_size
/ int_elem_size
))
564 return mode_for_size_tree (size
, MODE_INT
, limit_p
);
567 /* Subroutine of layout_decl: Force alignment required for the data type.
568 But if the decl itself wants greater alignment, don't override that. */
571 do_type_align (tree type
, tree decl
)
573 if (TYPE_ALIGN (type
) > DECL_ALIGN (decl
))
575 DECL_ALIGN (decl
) = TYPE_ALIGN (type
);
576 if (TREE_CODE (decl
) == FIELD_DECL
)
577 DECL_USER_ALIGN (decl
) = TYPE_USER_ALIGN (type
);
581 /* Set the size, mode and alignment of a ..._DECL node.
582 TYPE_DECL does need this for C++.
583 Note that LABEL_DECL and CONST_DECL nodes do not need this,
584 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
585 Don't call layout_decl for them.
587 KNOWN_ALIGN is the amount of alignment we can assume this
588 decl has with no special effort. It is relevant only for FIELD_DECLs
589 and depends on the previous fields.
590 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
591 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
592 the record will be aligned to suit. */
595 layout_decl (tree decl
, unsigned int known_align
)
597 tree type
= TREE_TYPE (decl
);
598 enum tree_code code
= TREE_CODE (decl
);
600 location_t loc
= DECL_SOURCE_LOCATION (decl
);
602 if (code
== CONST_DECL
)
605 gcc_assert (code
== VAR_DECL
|| code
== PARM_DECL
|| code
== RESULT_DECL
606 || code
== TYPE_DECL
||code
== FIELD_DECL
);
608 rtl
= DECL_RTL_IF_SET (decl
);
610 if (type
== error_mark_node
)
611 type
= void_type_node
;
613 /* Usually the size and mode come from the data type without change,
614 however, the front-end may set the explicit width of the field, so its
615 size may not be the same as the size of its type. This happens with
616 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
617 also happens with other fields. For example, the C++ front-end creates
618 zero-sized fields corresponding to empty base classes, and depends on
619 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
620 size in bytes from the size in bits. If we have already set the mode,
621 don't set it again since we can be called twice for FIELD_DECLs. */
623 DECL_UNSIGNED (decl
) = TYPE_UNSIGNED (type
);
624 if (DECL_MODE (decl
) == VOIDmode
)
625 DECL_MODE (decl
) = TYPE_MODE (type
);
627 if (DECL_SIZE (decl
) == 0)
629 DECL_SIZE (decl
) = TYPE_SIZE (type
);
630 DECL_SIZE_UNIT (decl
) = TYPE_SIZE_UNIT (type
);
632 else if (DECL_SIZE_UNIT (decl
) == 0)
633 DECL_SIZE_UNIT (decl
)
634 = fold_convert_loc (loc
, sizetype
,
635 size_binop_loc (loc
, CEIL_DIV_EXPR
, DECL_SIZE (decl
),
638 if (code
!= FIELD_DECL
)
639 /* For non-fields, update the alignment from the type. */
640 do_type_align (type
, decl
);
642 /* For fields, it's a bit more complicated... */
644 bool old_user_align
= DECL_USER_ALIGN (decl
);
645 bool zero_bitfield
= false;
646 bool packed_p
= DECL_PACKED (decl
);
649 if (DECL_BIT_FIELD (decl
))
651 DECL_BIT_FIELD_TYPE (decl
) = type
;
653 /* A zero-length bit-field affects the alignment of the next
654 field. In essence such bit-fields are not influenced by
655 any packing due to #pragma pack or attribute packed. */
656 if (integer_zerop (DECL_SIZE (decl
))
657 && ! targetm
.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl
)))
659 zero_bitfield
= true;
661 #ifdef PCC_BITFIELD_TYPE_MATTERS
662 if (PCC_BITFIELD_TYPE_MATTERS
)
663 do_type_align (type
, decl
);
667 #ifdef EMPTY_FIELD_BOUNDARY
668 if (EMPTY_FIELD_BOUNDARY
> DECL_ALIGN (decl
))
670 DECL_ALIGN (decl
) = EMPTY_FIELD_BOUNDARY
;
671 DECL_USER_ALIGN (decl
) = 0;
677 /* See if we can use an ordinary integer mode for a bit-field.
678 Conditions are: a fixed size that is correct for another mode,
679 occupying a complete byte or bytes on proper boundary. */
680 if (TYPE_SIZE (type
) != 0
681 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
682 && GET_MODE_CLASS (TYPE_MODE (type
)) == MODE_INT
)
684 enum machine_mode xmode
685 = mode_for_size_tree (DECL_SIZE (decl
), MODE_INT
, 1);
686 unsigned int xalign
= GET_MODE_ALIGNMENT (xmode
);
689 && !(xalign
> BITS_PER_UNIT
&& DECL_PACKED (decl
))
690 && (known_align
== 0 || known_align
>= xalign
))
692 DECL_ALIGN (decl
) = MAX (xalign
, DECL_ALIGN (decl
));
693 DECL_MODE (decl
) = xmode
;
694 DECL_BIT_FIELD (decl
) = 0;
698 /* Turn off DECL_BIT_FIELD if we won't need it set. */
699 if (TYPE_MODE (type
) == BLKmode
&& DECL_MODE (decl
) == BLKmode
700 && known_align
>= TYPE_ALIGN (type
)
701 && DECL_ALIGN (decl
) >= TYPE_ALIGN (type
))
702 DECL_BIT_FIELD (decl
) = 0;
704 else if (packed_p
&& DECL_USER_ALIGN (decl
))
705 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
706 round up; we'll reduce it again below. We want packing to
707 supersede USER_ALIGN inherited from the type, but defer to
708 alignment explicitly specified on the field decl. */;
710 do_type_align (type
, decl
);
712 /* If the field is packed and not explicitly aligned, give it the
713 minimum alignment. Note that do_type_align may set
714 DECL_USER_ALIGN, so we need to check old_user_align instead. */
717 DECL_ALIGN (decl
) = MIN (DECL_ALIGN (decl
), BITS_PER_UNIT
);
719 if (! packed_p
&& ! DECL_USER_ALIGN (decl
))
721 /* Some targets (i.e. i386, VMS) limit struct field alignment
722 to a lower boundary than alignment of variables unless
723 it was overridden by attribute aligned. */
724 #ifdef BIGGEST_FIELD_ALIGNMENT
726 = MIN (DECL_ALIGN (decl
), (unsigned) BIGGEST_FIELD_ALIGNMENT
);
728 #ifdef ADJUST_FIELD_ALIGN
729 DECL_ALIGN (decl
) = ADJUST_FIELD_ALIGN (decl
, DECL_ALIGN (decl
));
734 mfa
= initial_max_fld_align
* BITS_PER_UNIT
;
736 mfa
= maximum_field_alignment
;
737 /* Should this be controlled by DECL_USER_ALIGN, too? */
739 DECL_ALIGN (decl
) = MIN (DECL_ALIGN (decl
), mfa
);
742 /* Evaluate nonconstant size only once, either now or as soon as safe. */
743 if (DECL_SIZE (decl
) != 0 && TREE_CODE (DECL_SIZE (decl
)) != INTEGER_CST
)
744 DECL_SIZE (decl
) = variable_size (DECL_SIZE (decl
));
745 if (DECL_SIZE_UNIT (decl
) != 0
746 && TREE_CODE (DECL_SIZE_UNIT (decl
)) != INTEGER_CST
)
747 DECL_SIZE_UNIT (decl
) = variable_size (DECL_SIZE_UNIT (decl
));
749 /* If requested, warn about definitions of large data objects. */
751 && (code
== VAR_DECL
|| code
== PARM_DECL
)
752 && ! DECL_EXTERNAL (decl
))
754 tree size
= DECL_SIZE_UNIT (decl
);
756 if (size
!= 0 && TREE_CODE (size
) == INTEGER_CST
757 && compare_tree_int (size
, larger_than_size
) > 0)
759 int size_as_int
= TREE_INT_CST_LOW (size
);
761 if (compare_tree_int (size
, size_as_int
) == 0)
762 warning (OPT_Wlarger_than_
, "size of %q+D is %d bytes", decl
, size_as_int
);
764 warning (OPT_Wlarger_than_
, "size of %q+D is larger than %wd bytes",
765 decl
, larger_than_size
);
769 /* If the RTL was already set, update its mode and mem attributes. */
772 PUT_MODE (rtl
, DECL_MODE (decl
));
773 SET_DECL_RTL (decl
, 0);
774 set_mem_attributes (rtl
, decl
, 1);
775 SET_DECL_RTL (decl
, rtl
);
779 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
780 a previous call to layout_decl and calls it again. */
783 relayout_decl (tree decl
)
785 DECL_SIZE (decl
) = DECL_SIZE_UNIT (decl
) = 0;
786 DECL_MODE (decl
) = VOIDmode
;
787 if (!DECL_USER_ALIGN (decl
))
788 DECL_ALIGN (decl
) = 0;
789 SET_DECL_RTL (decl
, 0);
791 layout_decl (decl
, 0);
794 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
795 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
796 is to be passed to all other layout functions for this record. It is the
797 responsibility of the caller to call `free' for the storage returned.
798 Note that garbage collection is not permitted until we finish laying
802 start_record_layout (tree t
)
804 record_layout_info rli
= XNEW (struct record_layout_info_s
);
808 /* If the type has a minimum specified alignment (via an attribute
809 declaration, for example) use it -- otherwise, start with a
810 one-byte alignment. */
811 rli
->record_align
= MAX (BITS_PER_UNIT
, TYPE_ALIGN (t
));
812 rli
->unpacked_align
= rli
->record_align
;
813 rli
->offset_align
= MAX (rli
->record_align
, BIGGEST_ALIGNMENT
);
815 #ifdef STRUCTURE_SIZE_BOUNDARY
816 /* Packed structures don't need to have minimum size. */
817 if (! TYPE_PACKED (t
))
821 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
822 tmp
= (unsigned) STRUCTURE_SIZE_BOUNDARY
;
823 if (maximum_field_alignment
!= 0)
824 tmp
= MIN (tmp
, maximum_field_alignment
);
825 rli
->record_align
= MAX (rli
->record_align
, tmp
);
829 rli
->offset
= size_zero_node
;
830 rli
->bitpos
= bitsize_zero_node
;
832 rli
->pending_statics
= 0;
833 rli
->packed_maybe_necessary
= 0;
834 rli
->remaining_in_alignment
= 0;
839 /* Return the combined bit position for the byte offset OFFSET and the
842 These functions operate on byte and bit positions present in FIELD_DECLs
843 and assume that these expressions result in no (intermediate) overflow.
844 This assumption is necessary to fold the expressions as much as possible,
845 so as to avoid creating artificially variable-sized types in languages
846 supporting variable-sized types like Ada. */
849 bit_from_pos (tree offset
, tree bitpos
)
851 if (TREE_CODE (offset
) == PLUS_EXPR
)
852 offset
= size_binop (PLUS_EXPR
,
853 fold_convert (bitsizetype
, TREE_OPERAND (offset
, 0)),
854 fold_convert (bitsizetype
, TREE_OPERAND (offset
, 1)));
856 offset
= fold_convert (bitsizetype
, offset
);
857 return size_binop (PLUS_EXPR
, bitpos
,
858 size_binop (MULT_EXPR
, offset
, bitsize_unit_node
));
861 /* Return the combined truncated byte position for the byte offset OFFSET and
862 the bit position BITPOS. */
865 byte_from_pos (tree offset
, tree bitpos
)
868 if (TREE_CODE (bitpos
) == MULT_EXPR
869 && tree_int_cst_equal (TREE_OPERAND (bitpos
, 1), bitsize_unit_node
))
870 bytepos
= TREE_OPERAND (bitpos
, 0);
872 bytepos
= size_binop (TRUNC_DIV_EXPR
, bitpos
, bitsize_unit_node
);
873 return size_binop (PLUS_EXPR
, offset
, fold_convert (sizetype
, bytepos
));
876 /* Split the bit position POS into a byte offset *POFFSET and a bit
877 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
880 pos_from_bit (tree
*poffset
, tree
*pbitpos
, unsigned int off_align
,
883 tree toff_align
= bitsize_int (off_align
);
884 if (TREE_CODE (pos
) == MULT_EXPR
885 && tree_int_cst_equal (TREE_OPERAND (pos
, 1), toff_align
))
887 *poffset
= size_binop (MULT_EXPR
,
888 fold_convert (sizetype
, TREE_OPERAND (pos
, 0)),
889 size_int (off_align
/ BITS_PER_UNIT
));
890 *pbitpos
= bitsize_zero_node
;
894 *poffset
= size_binop (MULT_EXPR
,
895 fold_convert (sizetype
,
896 size_binop (FLOOR_DIV_EXPR
, pos
,
898 size_int (off_align
/ BITS_PER_UNIT
));
899 *pbitpos
= size_binop (FLOOR_MOD_EXPR
, pos
, toff_align
);
903 /* Given a pointer to bit and byte offsets and an offset alignment,
904 normalize the offsets so they are within the alignment. */
907 normalize_offset (tree
*poffset
, tree
*pbitpos
, unsigned int off_align
)
909 /* If the bit position is now larger than it should be, adjust it
911 if (compare_tree_int (*pbitpos
, off_align
) >= 0)
914 pos_from_bit (&offset
, &bitpos
, off_align
, *pbitpos
);
915 *poffset
= size_binop (PLUS_EXPR
, *poffset
, offset
);
920 /* Print debugging information about the information in RLI. */
923 debug_rli (record_layout_info rli
)
925 print_node_brief (stderr
, "type", rli
->t
, 0);
926 print_node_brief (stderr
, "\noffset", rli
->offset
, 0);
927 print_node_brief (stderr
, " bitpos", rli
->bitpos
, 0);
929 fprintf (stderr
, "\naligns: rec = %u, unpack = %u, off = %u\n",
930 rli
->record_align
, rli
->unpacked_align
,
933 /* The ms_struct code is the only that uses this. */
934 if (targetm
.ms_bitfield_layout_p (rli
->t
))
935 fprintf (stderr
, "remaining in alignment = %u\n", rli
->remaining_in_alignment
);
937 if (rli
->packed_maybe_necessary
)
938 fprintf (stderr
, "packed may be necessary\n");
940 if (!vec_safe_is_empty (rli
->pending_statics
))
942 fprintf (stderr
, "pending statics:\n");
943 debug_vec_tree (rli
->pending_statics
);
947 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
948 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
951 normalize_rli (record_layout_info rli
)
953 normalize_offset (&rli
->offset
, &rli
->bitpos
, rli
->offset_align
);
956 /* Returns the size in bytes allocated so far. */
959 rli_size_unit_so_far (record_layout_info rli
)
961 return byte_from_pos (rli
->offset
, rli
->bitpos
);
964 /* Returns the size in bits allocated so far. */
967 rli_size_so_far (record_layout_info rli
)
969 return bit_from_pos (rli
->offset
, rli
->bitpos
);
972 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
973 the next available location within the record is given by KNOWN_ALIGN.
974 Update the variable alignment fields in RLI, and return the alignment
975 to give the FIELD. */
978 update_alignment_for_field (record_layout_info rli
, tree field
,
979 unsigned int known_align
)
981 /* The alignment required for FIELD. */
982 unsigned int desired_align
;
983 /* The type of this field. */
984 tree type
= TREE_TYPE (field
);
985 /* True if the field was explicitly aligned by the user. */
989 /* Do not attempt to align an ERROR_MARK node */
990 if (TREE_CODE (type
) == ERROR_MARK
)
993 /* Lay out the field so we know what alignment it needs. */
994 layout_decl (field
, known_align
);
995 desired_align
= DECL_ALIGN (field
);
996 user_align
= DECL_USER_ALIGN (field
);
998 is_bitfield
= (type
!= error_mark_node
999 && DECL_BIT_FIELD_TYPE (field
)
1000 && ! integer_zerop (TYPE_SIZE (type
)));
1002 /* Record must have at least as much alignment as any field.
1003 Otherwise, the alignment of the field within the record is
1005 if (targetm
.ms_bitfield_layout_p (rli
->t
))
1007 /* Here, the alignment of the underlying type of a bitfield can
1008 affect the alignment of a record; even a zero-sized field
1009 can do this. The alignment should be to the alignment of
1010 the type, except that for zero-size bitfields this only
1011 applies if there was an immediately prior, nonzero-size
1012 bitfield. (That's the way it is, experimentally.) */
1013 if ((!is_bitfield
&& !DECL_PACKED (field
))
1014 || ((DECL_SIZE (field
) == NULL_TREE
1015 || !integer_zerop (DECL_SIZE (field
)))
1016 ? !DECL_PACKED (field
)
1018 && DECL_BIT_FIELD_TYPE (rli
->prev_field
)
1019 && ! integer_zerop (DECL_SIZE (rli
->prev_field
)))))
1021 unsigned int type_align
= TYPE_ALIGN (type
);
1022 type_align
= MAX (type_align
, desired_align
);
1023 if (maximum_field_alignment
!= 0)
1024 type_align
= MIN (type_align
, maximum_field_alignment
);
1025 rli
->record_align
= MAX (rli
->record_align
, type_align
);
1026 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
1029 #ifdef PCC_BITFIELD_TYPE_MATTERS
1030 else if (is_bitfield
&& PCC_BITFIELD_TYPE_MATTERS
)
1032 /* Named bit-fields cause the entire structure to have the
1033 alignment implied by their type. Some targets also apply the same
1034 rules to unnamed bitfields. */
1035 if (DECL_NAME (field
) != 0
1036 || targetm
.align_anon_bitfield ())
1038 unsigned int type_align
= TYPE_ALIGN (type
);
1040 #ifdef ADJUST_FIELD_ALIGN
1041 if (! TYPE_USER_ALIGN (type
))
1042 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
1045 /* Targets might chose to handle unnamed and hence possibly
1046 zero-width bitfield. Those are not influenced by #pragmas
1047 or packed attributes. */
1048 if (integer_zerop (DECL_SIZE (field
)))
1050 if (initial_max_fld_align
)
1051 type_align
= MIN (type_align
,
1052 initial_max_fld_align
* BITS_PER_UNIT
);
1054 else if (maximum_field_alignment
!= 0)
1055 type_align
= MIN (type_align
, maximum_field_alignment
);
1056 else if (DECL_PACKED (field
))
1057 type_align
= MIN (type_align
, BITS_PER_UNIT
);
1059 /* The alignment of the record is increased to the maximum
1060 of the current alignment, the alignment indicated on the
1061 field (i.e., the alignment specified by an __aligned__
1062 attribute), and the alignment indicated by the type of
1064 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
1065 rli
->record_align
= MAX (rli
->record_align
, type_align
);
1068 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
1069 user_align
|= TYPE_USER_ALIGN (type
);
1075 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
1076 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
1079 TYPE_USER_ALIGN (rli
->t
) |= user_align
;
1081 return desired_align
;
1084 /* Called from place_field to handle unions. */
1087 place_union_field (record_layout_info rli
, tree field
)
1089 update_alignment_for_field (rli
, field
, /*known_align=*/0);
1091 DECL_FIELD_OFFSET (field
) = size_zero_node
;
1092 DECL_FIELD_BIT_OFFSET (field
) = bitsize_zero_node
;
1093 SET_DECL_OFFSET_ALIGN (field
, BIGGEST_ALIGNMENT
);
1095 /* If this is an ERROR_MARK return *after* having set the
1096 field at the start of the union. This helps when parsing
1098 if (TREE_CODE (TREE_TYPE (field
)) == ERROR_MARK
)
1101 /* We assume the union's size will be a multiple of a byte so we don't
1102 bother with BITPOS. */
1103 if (TREE_CODE (rli
->t
) == UNION_TYPE
)
1104 rli
->offset
= size_binop (MAX_EXPR
, rli
->offset
, DECL_SIZE_UNIT (field
));
1105 else if (TREE_CODE (rli
->t
) == QUAL_UNION_TYPE
)
1106 rli
->offset
= fold_build3 (COND_EXPR
, sizetype
, DECL_QUALIFIER (field
),
1107 DECL_SIZE_UNIT (field
), rli
->offset
);
1110 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1111 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1112 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1113 units of alignment than the underlying TYPE. */
1115 excess_unit_span (HOST_WIDE_INT byte_offset
, HOST_WIDE_INT bit_offset
,
1116 HOST_WIDE_INT size
, HOST_WIDE_INT align
, tree type
)
1118 /* Note that the calculation of OFFSET might overflow; we calculate it so
1119 that we still get the right result as long as ALIGN is a power of two. */
1120 unsigned HOST_WIDE_INT offset
= byte_offset
* BITS_PER_UNIT
+ bit_offset
;
1122 offset
= offset
% align
;
1123 return ((offset
+ size
+ align
- 1) / align
1124 > tree_to_uhwi (TYPE_SIZE (type
)) / align
);
1128 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1129 is a FIELD_DECL to be added after those fields already present in
1130 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1131 callers that desire that behavior must manually perform that step.) */
1134 place_field (record_layout_info rli
, tree field
)
1136 /* The alignment required for FIELD. */
1137 unsigned int desired_align
;
1138 /* The alignment FIELD would have if we just dropped it into the
1139 record as it presently stands. */
1140 unsigned int known_align
;
1141 unsigned int actual_align
;
1142 /* The type of this field. */
1143 tree type
= TREE_TYPE (field
);
1145 gcc_assert (TREE_CODE (field
) != ERROR_MARK
);
1147 /* If FIELD is static, then treat it like a separate variable, not
1148 really like a structure field. If it is a FUNCTION_DECL, it's a
1149 method. In both cases, all we do is lay out the decl, and we do
1150 it *after* the record is laid out. */
1151 if (TREE_CODE (field
) == VAR_DECL
)
1153 vec_safe_push (rli
->pending_statics
, field
);
1157 /* Enumerators and enum types which are local to this class need not
1158 be laid out. Likewise for initialized constant fields. */
1159 else if (TREE_CODE (field
) != FIELD_DECL
)
1162 /* Unions are laid out very differently than records, so split
1163 that code off to another function. */
1164 else if (TREE_CODE (rli
->t
) != RECORD_TYPE
)
1166 place_union_field (rli
, field
);
1170 else if (TREE_CODE (type
) == ERROR_MARK
)
1172 /* Place this field at the current allocation position, so we
1173 maintain monotonicity. */
1174 DECL_FIELD_OFFSET (field
) = rli
->offset
;
1175 DECL_FIELD_BIT_OFFSET (field
) = rli
->bitpos
;
1176 SET_DECL_OFFSET_ALIGN (field
, rli
->offset_align
);
1180 /* Work out the known alignment so far. Note that A & (-A) is the
1181 value of the least-significant bit in A that is one. */
1182 if (! integer_zerop (rli
->bitpos
))
1183 known_align
= (tree_to_uhwi (rli
->bitpos
)
1184 & - tree_to_uhwi (rli
->bitpos
));
1185 else if (integer_zerop (rli
->offset
))
1187 else if (tree_fits_uhwi_p (rli
->offset
))
1188 known_align
= (BITS_PER_UNIT
1189 * (tree_to_uhwi (rli
->offset
)
1190 & - tree_to_uhwi (rli
->offset
)));
1192 known_align
= rli
->offset_align
;
1194 desired_align
= update_alignment_for_field (rli
, field
, known_align
);
1195 if (known_align
== 0)
1196 known_align
= MAX (BIGGEST_ALIGNMENT
, rli
->record_align
);
1198 if (warn_packed
&& DECL_PACKED (field
))
1200 if (known_align
>= TYPE_ALIGN (type
))
1202 if (TYPE_ALIGN (type
) > desired_align
)
1204 if (STRICT_ALIGNMENT
)
1205 warning (OPT_Wattributes
, "packed attribute causes "
1206 "inefficient alignment for %q+D", field
);
1207 /* Don't warn if DECL_PACKED was set by the type. */
1208 else if (!TYPE_PACKED (rli
->t
))
1209 warning (OPT_Wattributes
, "packed attribute is "
1210 "unnecessary for %q+D", field
);
1214 rli
->packed_maybe_necessary
= 1;
1217 /* Does this field automatically have alignment it needs by virtue
1218 of the fields that precede it and the record's own alignment? */
1219 if (known_align
< desired_align
)
1221 /* No, we need to skip space before this field.
1222 Bump the cumulative size to multiple of field alignment. */
1224 if (!targetm
.ms_bitfield_layout_p (rli
->t
)
1225 && DECL_SOURCE_LOCATION (field
) != BUILTINS_LOCATION
)
1226 warning (OPT_Wpadded
, "padding struct to align %q+D", field
);
1228 /* If the alignment is still within offset_align, just align
1229 the bit position. */
1230 if (desired_align
< rli
->offset_align
)
1231 rli
->bitpos
= round_up (rli
->bitpos
, desired_align
);
1234 /* First adjust OFFSET by the partial bits, then align. */
1236 = size_binop (PLUS_EXPR
, rli
->offset
,
1237 fold_convert (sizetype
,
1238 size_binop (CEIL_DIV_EXPR
, rli
->bitpos
,
1239 bitsize_unit_node
)));
1240 rli
->bitpos
= bitsize_zero_node
;
1242 rli
->offset
= round_up (rli
->offset
, desired_align
/ BITS_PER_UNIT
);
1245 if (! TREE_CONSTANT (rli
->offset
))
1246 rli
->offset_align
= desired_align
;
1247 if (targetm
.ms_bitfield_layout_p (rli
->t
))
1248 rli
->prev_field
= NULL
;
1251 /* Handle compatibility with PCC. Note that if the record has any
1252 variable-sized fields, we need not worry about compatibility. */
1253 #ifdef PCC_BITFIELD_TYPE_MATTERS
1254 if (PCC_BITFIELD_TYPE_MATTERS
1255 && ! targetm
.ms_bitfield_layout_p (rli
->t
)
1256 && TREE_CODE (field
) == FIELD_DECL
1257 && type
!= error_mark_node
1258 && DECL_BIT_FIELD (field
)
1259 && (! DECL_PACKED (field
)
1260 /* Enter for these packed fields only to issue a warning. */
1261 || TYPE_ALIGN (type
) <= BITS_PER_UNIT
)
1262 && maximum_field_alignment
== 0
1263 && ! integer_zerop (DECL_SIZE (field
))
1264 && tree_fits_uhwi_p (DECL_SIZE (field
))
1265 && tree_fits_uhwi_p (rli
->offset
)
1266 && tree_fits_uhwi_p (TYPE_SIZE (type
)))
1268 unsigned int type_align
= TYPE_ALIGN (type
);
1269 tree dsize
= DECL_SIZE (field
);
1270 HOST_WIDE_INT field_size
= tree_to_uhwi (dsize
);
1271 HOST_WIDE_INT offset
= tree_to_uhwi (rli
->offset
);
1272 HOST_WIDE_INT bit_offset
= tree_to_shwi (rli
->bitpos
);
1274 #ifdef ADJUST_FIELD_ALIGN
1275 if (! TYPE_USER_ALIGN (type
))
1276 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
1279 /* A bit field may not span more units of alignment of its type
1280 than its type itself. Advance to next boundary if necessary. */
1281 if (excess_unit_span (offset
, bit_offset
, field_size
, type_align
, type
))
1283 if (DECL_PACKED (field
))
1285 if (warn_packed_bitfield_compat
== 1)
1288 "offset of packed bit-field %qD has changed in GCC 4.4",
1292 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1295 if (! DECL_PACKED (field
))
1296 TYPE_USER_ALIGN (rli
->t
) |= TYPE_USER_ALIGN (type
);
1300 #ifdef BITFIELD_NBYTES_LIMITED
1301 if (BITFIELD_NBYTES_LIMITED
1302 && ! targetm
.ms_bitfield_layout_p (rli
->t
)
1303 && TREE_CODE (field
) == FIELD_DECL
1304 && type
!= error_mark_node
1305 && DECL_BIT_FIELD_TYPE (field
)
1306 && ! DECL_PACKED (field
)
1307 && ! integer_zerop (DECL_SIZE (field
))
1308 && tree_fits_uhwi_p (DECL_SIZE (field
))
1309 && tree_fits_uhwi_p (rli
->offset
)
1310 && tree_fits_uhwi_p (TYPE_SIZE (type
)))
1312 unsigned int type_align
= TYPE_ALIGN (type
);
1313 tree dsize
= DECL_SIZE (field
);
1314 HOST_WIDE_INT field_size
= tree_to_uhwi (dsize
);
1315 HOST_WIDE_INT offset
= tree_to_uhwi (rli
->offset
);
1316 HOST_WIDE_INT bit_offset
= tree_to_shwi (rli
->bitpos
);
1318 #ifdef ADJUST_FIELD_ALIGN
1319 if (! TYPE_USER_ALIGN (type
))
1320 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
1323 if (maximum_field_alignment
!= 0)
1324 type_align
= MIN (type_align
, maximum_field_alignment
);
1325 /* ??? This test is opposite the test in the containing if
1326 statement, so this code is unreachable currently. */
1327 else if (DECL_PACKED (field
))
1328 type_align
= MIN (type_align
, BITS_PER_UNIT
);
1330 /* A bit field may not span the unit of alignment of its type.
1331 Advance to next boundary if necessary. */
1332 if (excess_unit_span (offset
, bit_offset
, field_size
, type_align
, type
))
1333 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1335 TYPE_USER_ALIGN (rli
->t
) |= TYPE_USER_ALIGN (type
);
1339 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1341 When a bit field is inserted into a packed record, the whole
1342 size of the underlying type is used by one or more same-size
1343 adjacent bitfields. (That is, if its long:3, 32 bits is
1344 used in the record, and any additional adjacent long bitfields are
1345 packed into the same chunk of 32 bits. However, if the size
1346 changes, a new field of that size is allocated.) In an unpacked
1347 record, this is the same as using alignment, but not equivalent
1350 Note: for compatibility, we use the type size, not the type alignment
1351 to determine alignment, since that matches the documentation */
1353 if (targetm
.ms_bitfield_layout_p (rli
->t
))
1355 tree prev_saved
= rli
->prev_field
;
1356 tree prev_type
= prev_saved
? DECL_BIT_FIELD_TYPE (prev_saved
) : NULL
;
1358 /* This is a bitfield if it exists. */
1359 if (rli
->prev_field
)
1361 /* If both are bitfields, nonzero, and the same size, this is
1362 the middle of a run. Zero declared size fields are special
1363 and handled as "end of run". (Note: it's nonzero declared
1364 size, but equal type sizes!) (Since we know that both
1365 the current and previous fields are bitfields by the
1366 time we check it, DECL_SIZE must be present for both.) */
1367 if (DECL_BIT_FIELD_TYPE (field
)
1368 && !integer_zerop (DECL_SIZE (field
))
1369 && !integer_zerop (DECL_SIZE (rli
->prev_field
))
1370 && tree_fits_shwi_p (DECL_SIZE (rli
->prev_field
))
1371 && tree_fits_uhwi_p (TYPE_SIZE (type
))
1372 && simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (prev_type
)))
1374 /* We're in the middle of a run of equal type size fields; make
1375 sure we realign if we run out of bits. (Not decl size,
1377 HOST_WIDE_INT bitsize
= tree_to_uhwi (DECL_SIZE (field
));
1379 if (rli
->remaining_in_alignment
< bitsize
)
1381 HOST_WIDE_INT typesize
= tree_to_uhwi (TYPE_SIZE (type
));
1383 /* out of bits; bump up to next 'word'. */
1385 = size_binop (PLUS_EXPR
, rli
->bitpos
,
1386 bitsize_int (rli
->remaining_in_alignment
));
1387 rli
->prev_field
= field
;
1388 if (typesize
< bitsize
)
1389 rli
->remaining_in_alignment
= 0;
1391 rli
->remaining_in_alignment
= typesize
- bitsize
;
1394 rli
->remaining_in_alignment
-= bitsize
;
1398 /* End of a run: if leaving a run of bitfields of the same type
1399 size, we have to "use up" the rest of the bits of the type
1402 Compute the new position as the sum of the size for the prior
1403 type and where we first started working on that type.
1404 Note: since the beginning of the field was aligned then
1405 of course the end will be too. No round needed. */
1407 if (!integer_zerop (DECL_SIZE (rli
->prev_field
)))
1410 = size_binop (PLUS_EXPR
, rli
->bitpos
,
1411 bitsize_int (rli
->remaining_in_alignment
));
1414 /* We "use up" size zero fields; the code below should behave
1415 as if the prior field was not a bitfield. */
1418 /* Cause a new bitfield to be captured, either this time (if
1419 currently a bitfield) or next time we see one. */
1420 if (!DECL_BIT_FIELD_TYPE (field
)
1421 || integer_zerop (DECL_SIZE (field
)))
1422 rli
->prev_field
= NULL
;
1425 normalize_rli (rli
);
1428 /* If we're starting a new run of same type size bitfields
1429 (or a run of non-bitfields), set up the "first of the run"
1432 That is, if the current field is not a bitfield, or if there
1433 was a prior bitfield the type sizes differ, or if there wasn't
1434 a prior bitfield the size of the current field is nonzero.
1436 Note: we must be sure to test ONLY the type size if there was
1437 a prior bitfield and ONLY for the current field being zero if
1440 if (!DECL_BIT_FIELD_TYPE (field
)
1441 || (prev_saved
!= NULL
1442 ? !simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (prev_type
))
1443 : !integer_zerop (DECL_SIZE (field
)) ))
1445 /* Never smaller than a byte for compatibility. */
1446 unsigned int type_align
= BITS_PER_UNIT
;
1448 /* (When not a bitfield), we could be seeing a flex array (with
1449 no DECL_SIZE). Since we won't be using remaining_in_alignment
1450 until we see a bitfield (and come by here again) we just skip
1452 if (DECL_SIZE (field
) != NULL
1453 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field
)))
1454 && tree_fits_uhwi_p (DECL_SIZE (field
)))
1456 unsigned HOST_WIDE_INT bitsize
1457 = tree_to_uhwi (DECL_SIZE (field
));
1458 unsigned HOST_WIDE_INT typesize
1459 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field
)));
1461 if (typesize
< bitsize
)
1462 rli
->remaining_in_alignment
= 0;
1464 rli
->remaining_in_alignment
= typesize
- bitsize
;
1467 /* Now align (conventionally) for the new type. */
1468 type_align
= TYPE_ALIGN (TREE_TYPE (field
));
1470 if (maximum_field_alignment
!= 0)
1471 type_align
= MIN (type_align
, maximum_field_alignment
);
1473 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1475 /* If we really aligned, don't allow subsequent bitfields
1477 rli
->prev_field
= NULL
;
1481 /* Offset so far becomes the position of this field after normalizing. */
1482 normalize_rli (rli
);
1483 DECL_FIELD_OFFSET (field
) = rli
->offset
;
1484 DECL_FIELD_BIT_OFFSET (field
) = rli
->bitpos
;
1485 SET_DECL_OFFSET_ALIGN (field
, rli
->offset_align
);
1487 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1488 if (TREE_CODE (DECL_FIELD_OFFSET (field
)) != INTEGER_CST
)
1489 DECL_FIELD_OFFSET (field
) = variable_size (DECL_FIELD_OFFSET (field
));
1491 /* If this field ended up more aligned than we thought it would be (we
1492 approximate this by seeing if its position changed), lay out the field
1493 again; perhaps we can use an integral mode for it now. */
1494 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field
)))
1495 actual_align
= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
1496 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
)));
1497 else if (integer_zerop (DECL_FIELD_OFFSET (field
)))
1498 actual_align
= MAX (BIGGEST_ALIGNMENT
, rli
->record_align
);
1499 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field
)))
1500 actual_align
= (BITS_PER_UNIT
1501 * (tree_to_uhwi (DECL_FIELD_OFFSET (field
))
1502 & - tree_to_uhwi (DECL_FIELD_OFFSET (field
))));
1504 actual_align
= DECL_OFFSET_ALIGN (field
);
1505 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1506 store / extract bit field operations will check the alignment of the
1507 record against the mode of bit fields. */
1509 if (known_align
!= actual_align
)
1510 layout_decl (field
, actual_align
);
1512 if (rli
->prev_field
== NULL
&& DECL_BIT_FIELD_TYPE (field
))
1513 rli
->prev_field
= field
;
1515 /* Now add size of this field to the size of the record. If the size is
1516 not constant, treat the field as being a multiple of bytes and just
1517 adjust the offset, resetting the bit position. Otherwise, apportion the
1518 size amongst the bit position and offset. First handle the case of an
1519 unspecified size, which can happen when we have an invalid nested struct
1520 definition, such as struct j { struct j { int i; } }. The error message
1521 is printed in finish_struct. */
1522 if (DECL_SIZE (field
) == 0)
1524 else if (TREE_CODE (DECL_SIZE (field
)) != INTEGER_CST
1525 || TREE_OVERFLOW (DECL_SIZE (field
)))
1528 = size_binop (PLUS_EXPR
, rli
->offset
,
1529 fold_convert (sizetype
,
1530 size_binop (CEIL_DIV_EXPR
, rli
->bitpos
,
1531 bitsize_unit_node
)));
1533 = size_binop (PLUS_EXPR
, rli
->offset
, DECL_SIZE_UNIT (field
));
1534 rli
->bitpos
= bitsize_zero_node
;
1535 rli
->offset_align
= MIN (rli
->offset_align
, desired_align
);
1537 else if (targetm
.ms_bitfield_layout_p (rli
->t
))
1539 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
, DECL_SIZE (field
));
1541 /* If we ended a bitfield before the full length of the type then
1542 pad the struct out to the full length of the last type. */
1543 if ((DECL_CHAIN (field
) == NULL
1544 || TREE_CODE (DECL_CHAIN (field
)) != FIELD_DECL
)
1545 && DECL_BIT_FIELD_TYPE (field
)
1546 && !integer_zerop (DECL_SIZE (field
)))
1547 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
,
1548 bitsize_int (rli
->remaining_in_alignment
));
1550 normalize_rli (rli
);
1554 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
, DECL_SIZE (field
));
1555 normalize_rli (rli
);
1559 /* Assuming that all the fields have been laid out, this function uses
1560 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1561 indicated by RLI. */
1564 finalize_record_size (record_layout_info rli
)
1566 tree unpadded_size
, unpadded_size_unit
;
1568 /* Now we want just byte and bit offsets, so set the offset alignment
1569 to be a byte and then normalize. */
1570 rli
->offset_align
= BITS_PER_UNIT
;
1571 normalize_rli (rli
);
1573 /* Determine the desired alignment. */
1574 #ifdef ROUND_TYPE_ALIGN
1575 TYPE_ALIGN (rli
->t
) = ROUND_TYPE_ALIGN (rli
->t
, TYPE_ALIGN (rli
->t
),
1578 TYPE_ALIGN (rli
->t
) = MAX (TYPE_ALIGN (rli
->t
), rli
->record_align
);
1581 /* Compute the size so far. Be sure to allow for extra bits in the
1582 size in bytes. We have guaranteed above that it will be no more
1583 than a single byte. */
1584 unpadded_size
= rli_size_so_far (rli
);
1585 unpadded_size_unit
= rli_size_unit_so_far (rli
);
1586 if (! integer_zerop (rli
->bitpos
))
1588 = size_binop (PLUS_EXPR
, unpadded_size_unit
, size_one_node
);
1590 if (TREE_CODE (unpadded_size_unit
) == INTEGER_CST
1591 && !TREE_OVERFLOW (unpadded_size_unit
)
1592 && !valid_constant_size_p (unpadded_size_unit
))
1593 error ("type %qT is too large", rli
->t
);
1595 /* Round the size up to be a multiple of the required alignment. */
1596 TYPE_SIZE (rli
->t
) = round_up (unpadded_size
, TYPE_ALIGN (rli
->t
));
1597 TYPE_SIZE_UNIT (rli
->t
)
1598 = round_up (unpadded_size_unit
, TYPE_ALIGN_UNIT (rli
->t
));
1600 if (TREE_CONSTANT (unpadded_size
)
1601 && simple_cst_equal (unpadded_size
, TYPE_SIZE (rli
->t
)) == 0
1602 && input_location
!= BUILTINS_LOCATION
)
1603 warning (OPT_Wpadded
, "padding struct size to alignment boundary");
1605 if (warn_packed
&& TREE_CODE (rli
->t
) == RECORD_TYPE
1606 && TYPE_PACKED (rli
->t
) && ! rli
->packed_maybe_necessary
1607 && TREE_CONSTANT (unpadded_size
))
1611 #ifdef ROUND_TYPE_ALIGN
1613 = ROUND_TYPE_ALIGN (rli
->t
, TYPE_ALIGN (rli
->t
), rli
->unpacked_align
);
1615 rli
->unpacked_align
= MAX (TYPE_ALIGN (rli
->t
), rli
->unpacked_align
);
1618 unpacked_size
= round_up (TYPE_SIZE (rli
->t
), rli
->unpacked_align
);
1619 if (simple_cst_equal (unpacked_size
, TYPE_SIZE (rli
->t
)))
1621 if (TYPE_NAME (rli
->t
))
1625 if (TREE_CODE (TYPE_NAME (rli
->t
)) == IDENTIFIER_NODE
)
1626 name
= TYPE_NAME (rli
->t
);
1628 name
= DECL_NAME (TYPE_NAME (rli
->t
));
1630 if (STRICT_ALIGNMENT
)
1631 warning (OPT_Wpacked
, "packed attribute causes inefficient "
1632 "alignment for %qE", name
);
1634 warning (OPT_Wpacked
,
1635 "packed attribute is unnecessary for %qE", name
);
1639 if (STRICT_ALIGNMENT
)
1640 warning (OPT_Wpacked
,
1641 "packed attribute causes inefficient alignment");
1643 warning (OPT_Wpacked
, "packed attribute is unnecessary");
1649 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1652 compute_record_mode (tree type
)
1655 enum machine_mode mode
= VOIDmode
;
1657 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1658 However, if possible, we use a mode that fits in a register
1659 instead, in order to allow for better optimization down the
1661 SET_TYPE_MODE (type
, BLKmode
);
1663 if (! tree_fits_uhwi_p (TYPE_SIZE (type
)))
1666 /* A record which has any BLKmode members must itself be
1667 BLKmode; it can't go in a register. Unless the member is
1668 BLKmode only because it isn't aligned. */
1669 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
1671 if (TREE_CODE (field
) != FIELD_DECL
)
1674 if (TREE_CODE (TREE_TYPE (field
)) == ERROR_MARK
1675 || (TYPE_MODE (TREE_TYPE (field
)) == BLKmode
1676 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field
))
1677 && !(TYPE_SIZE (TREE_TYPE (field
)) != 0
1678 && integer_zerop (TYPE_SIZE (TREE_TYPE (field
)))))
1679 || ! tree_fits_uhwi_p (bit_position (field
))
1680 || DECL_SIZE (field
) == 0
1681 || ! tree_fits_uhwi_p (DECL_SIZE (field
)))
1684 /* If this field is the whole struct, remember its mode so
1685 that, say, we can put a double in a class into a DF
1686 register instead of forcing it to live in the stack. */
1687 if (simple_cst_equal (TYPE_SIZE (type
), DECL_SIZE (field
)))
1688 mode
= DECL_MODE (field
);
1690 /* With some targets, it is sub-optimal to access an aligned
1691 BLKmode structure as a scalar. */
1692 if (targetm
.member_type_forces_blk (field
, mode
))
1696 /* If we only have one real field; use its mode if that mode's size
1697 matches the type's size. This only applies to RECORD_TYPE. This
1698 does not apply to unions. */
1699 if (TREE_CODE (type
) == RECORD_TYPE
&& mode
!= VOIDmode
1700 && tree_fits_uhwi_p (TYPE_SIZE (type
))
1701 && GET_MODE_BITSIZE (mode
) == tree_to_uhwi (TYPE_SIZE (type
)))
1702 SET_TYPE_MODE (type
, mode
);
1704 SET_TYPE_MODE (type
, mode_for_size_tree (TYPE_SIZE (type
), MODE_INT
, 1));
1706 /* If structure's known alignment is less than what the scalar
1707 mode would need, and it matters, then stick with BLKmode. */
1708 if (TYPE_MODE (type
) != BLKmode
1710 && ! (TYPE_ALIGN (type
) >= BIGGEST_ALIGNMENT
1711 || TYPE_ALIGN (type
) >= GET_MODE_ALIGNMENT (TYPE_MODE (type
))))
1713 /* If this is the only reason this type is BLKmode, then
1714 don't force containing types to be BLKmode. */
1715 TYPE_NO_FORCE_BLK (type
) = 1;
1716 SET_TYPE_MODE (type
, BLKmode
);
1720 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1724 finalize_type_size (tree type
)
1726 /* Normally, use the alignment corresponding to the mode chosen.
1727 However, where strict alignment is not required, avoid
1728 over-aligning structures, since most compilers do not do this
1731 if (TYPE_MODE (type
) != BLKmode
&& TYPE_MODE (type
) != VOIDmode
1732 && (STRICT_ALIGNMENT
1733 || (TREE_CODE (type
) != RECORD_TYPE
&& TREE_CODE (type
) != UNION_TYPE
1734 && TREE_CODE (type
) != QUAL_UNION_TYPE
1735 && TREE_CODE (type
) != ARRAY_TYPE
)))
1737 unsigned mode_align
= GET_MODE_ALIGNMENT (TYPE_MODE (type
));
1739 /* Don't override a larger alignment requirement coming from a user
1740 alignment of one of the fields. */
1741 if (mode_align
>= TYPE_ALIGN (type
))
1743 TYPE_ALIGN (type
) = mode_align
;
1744 TYPE_USER_ALIGN (type
) = 0;
1748 /* Do machine-dependent extra alignment. */
1749 #ifdef ROUND_TYPE_ALIGN
1751 = ROUND_TYPE_ALIGN (type
, TYPE_ALIGN (type
), BITS_PER_UNIT
);
1754 /* If we failed to find a simple way to calculate the unit size
1755 of the type, find it by division. */
1756 if (TYPE_SIZE_UNIT (type
) == 0 && TYPE_SIZE (type
) != 0)
1757 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1758 result will fit in sizetype. We will get more efficient code using
1759 sizetype, so we force a conversion. */
1760 TYPE_SIZE_UNIT (type
)
1761 = fold_convert (sizetype
,
1762 size_binop (FLOOR_DIV_EXPR
, TYPE_SIZE (type
),
1763 bitsize_unit_node
));
1765 if (TYPE_SIZE (type
) != 0)
1767 TYPE_SIZE (type
) = round_up (TYPE_SIZE (type
), TYPE_ALIGN (type
));
1768 TYPE_SIZE_UNIT (type
)
1769 = round_up (TYPE_SIZE_UNIT (type
), TYPE_ALIGN_UNIT (type
));
1772 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1773 if (TYPE_SIZE (type
) != 0 && TREE_CODE (TYPE_SIZE (type
)) != INTEGER_CST
)
1774 TYPE_SIZE (type
) = variable_size (TYPE_SIZE (type
));
1775 if (TYPE_SIZE_UNIT (type
) != 0
1776 && TREE_CODE (TYPE_SIZE_UNIT (type
)) != INTEGER_CST
)
1777 TYPE_SIZE_UNIT (type
) = variable_size (TYPE_SIZE_UNIT (type
));
1779 /* Also layout any other variants of the type. */
1780 if (TYPE_NEXT_VARIANT (type
)
1781 || type
!= TYPE_MAIN_VARIANT (type
))
1784 /* Record layout info of this variant. */
1785 tree size
= TYPE_SIZE (type
);
1786 tree size_unit
= TYPE_SIZE_UNIT (type
);
1787 unsigned int align
= TYPE_ALIGN (type
);
1788 unsigned int precision
= TYPE_PRECISION (type
);
1789 unsigned int user_align
= TYPE_USER_ALIGN (type
);
1790 enum machine_mode mode
= TYPE_MODE (type
);
1792 /* Copy it into all variants. */
1793 for (variant
= TYPE_MAIN_VARIANT (type
);
1795 variant
= TYPE_NEXT_VARIANT (variant
))
1797 TYPE_SIZE (variant
) = size
;
1798 TYPE_SIZE_UNIT (variant
) = size_unit
;
1799 TYPE_ALIGN (variant
) = align
;
1800 TYPE_PRECISION (variant
) = precision
;
1801 TYPE_USER_ALIGN (variant
) = user_align
;
1802 SET_TYPE_MODE (variant
, mode
);
1807 /* Return a new underlying object for a bitfield started with FIELD. */
1810 start_bitfield_representative (tree field
)
1812 tree repr
= make_node (FIELD_DECL
);
1813 DECL_FIELD_OFFSET (repr
) = DECL_FIELD_OFFSET (field
);
1814 /* Force the representative to begin at a BITS_PER_UNIT aligned
1815 boundary - C++ may use tail-padding of a base object to
1816 continue packing bits so the bitfield region does not start
1817 at bit zero (see g++.dg/abi/bitfield5.C for example).
1818 Unallocated bits may happen for other reasons as well,
1819 for example Ada which allows explicit bit-granular structure layout. */
1820 DECL_FIELD_BIT_OFFSET (repr
)
1821 = size_binop (BIT_AND_EXPR
,
1822 DECL_FIELD_BIT_OFFSET (field
),
1823 bitsize_int (~(BITS_PER_UNIT
- 1)));
1824 SET_DECL_OFFSET_ALIGN (repr
, DECL_OFFSET_ALIGN (field
));
1825 DECL_SIZE (repr
) = DECL_SIZE (field
);
1826 DECL_SIZE_UNIT (repr
) = DECL_SIZE_UNIT (field
);
1827 DECL_PACKED (repr
) = DECL_PACKED (field
);
1828 DECL_CONTEXT (repr
) = DECL_CONTEXT (field
);
1832 /* Finish up a bitfield group that was started by creating the underlying
1833 object REPR with the last field in the bitfield group FIELD. */
1836 finish_bitfield_representative (tree repr
, tree field
)
1838 unsigned HOST_WIDE_INT bitsize
, maxbitsize
;
1839 enum machine_mode mode
;
1842 size
= size_diffop (DECL_FIELD_OFFSET (field
),
1843 DECL_FIELD_OFFSET (repr
));
1844 gcc_assert (tree_fits_uhwi_p (size
));
1845 bitsize
= (tree_to_uhwi (size
) * BITS_PER_UNIT
1846 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
1847 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
))
1848 + tree_to_uhwi (DECL_SIZE (field
)));
1850 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1851 bitsize
= (bitsize
+ BITS_PER_UNIT
- 1) & ~(BITS_PER_UNIT
- 1);
1853 /* Now nothing tells us how to pad out bitsize ... */
1854 nextf
= DECL_CHAIN (field
);
1855 while (nextf
&& TREE_CODE (nextf
) != FIELD_DECL
)
1856 nextf
= DECL_CHAIN (nextf
);
1860 /* If there was an error, the field may be not laid out
1861 correctly. Don't bother to do anything. */
1862 if (TREE_TYPE (nextf
) == error_mark_node
)
1864 maxsize
= size_diffop (DECL_FIELD_OFFSET (nextf
),
1865 DECL_FIELD_OFFSET (repr
));
1866 if (tree_fits_uhwi_p (maxsize
))
1868 maxbitsize
= (tree_to_uhwi (maxsize
) * BITS_PER_UNIT
1869 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf
))
1870 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
1871 /* If the group ends within a bitfield nextf does not need to be
1872 aligned to BITS_PER_UNIT. Thus round up. */
1873 maxbitsize
= (maxbitsize
+ BITS_PER_UNIT
- 1) & ~(BITS_PER_UNIT
- 1);
1876 maxbitsize
= bitsize
;
1880 /* ??? If you consider that tail-padding of this struct might be
1881 re-used when deriving from it we cannot really do the following
1882 and thus need to set maxsize to bitsize? Also we cannot
1883 generally rely on maxsize to fold to an integer constant, so
1884 use bitsize as fallback for this case. */
1885 tree maxsize
= size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field
)),
1886 DECL_FIELD_OFFSET (repr
));
1887 if (tree_fits_uhwi_p (maxsize
))
1888 maxbitsize
= (tree_to_uhwi (maxsize
) * BITS_PER_UNIT
1889 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
1891 maxbitsize
= bitsize
;
1894 /* Only if we don't artificially break up the representative in
1895 the middle of a large bitfield with different possibly
1896 overlapping representatives. And all representatives start
1898 gcc_assert (maxbitsize
% BITS_PER_UNIT
== 0);
1900 /* Find the smallest nice mode to use. */
1901 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1902 mode
= GET_MODE_WIDER_MODE (mode
))
1903 if (GET_MODE_BITSIZE (mode
) >= bitsize
)
1905 if (mode
!= VOIDmode
1906 && (GET_MODE_BITSIZE (mode
) > maxbitsize
1907 || GET_MODE_BITSIZE (mode
) > MAX_FIXED_MODE_SIZE
))
1910 if (mode
== VOIDmode
)
1912 /* We really want a BLKmode representative only as a last resort,
1913 considering the member b in
1914 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1915 Otherwise we simply want to split the representative up
1916 allowing for overlaps within the bitfield region as required for
1917 struct { int a : 7; int b : 7;
1918 int c : 10; int d; } __attribute__((packed));
1919 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1920 DECL_SIZE (repr
) = bitsize_int (bitsize
);
1921 DECL_SIZE_UNIT (repr
) = size_int (bitsize
/ BITS_PER_UNIT
);
1922 DECL_MODE (repr
) = BLKmode
;
1923 TREE_TYPE (repr
) = build_array_type_nelts (unsigned_char_type_node
,
1924 bitsize
/ BITS_PER_UNIT
);
1928 unsigned HOST_WIDE_INT modesize
= GET_MODE_BITSIZE (mode
);
1929 DECL_SIZE (repr
) = bitsize_int (modesize
);
1930 DECL_SIZE_UNIT (repr
) = size_int (modesize
/ BITS_PER_UNIT
);
1931 DECL_MODE (repr
) = mode
;
1932 TREE_TYPE (repr
) = lang_hooks
.types
.type_for_mode (mode
, 1);
1935 /* Remember whether the bitfield group is at the end of the
1936 structure or not. */
1937 DECL_CHAIN (repr
) = nextf
;
1940 /* Compute and set FIELD_DECLs for the underlying objects we should
1941 use for bitfield access for the structure laid out with RLI. */
1944 finish_bitfield_layout (record_layout_info rli
)
1947 tree repr
= NULL_TREE
;
1949 /* Unions would be special, for the ease of type-punning optimizations
1950 we could use the underlying type as hint for the representative
1951 if the bitfield would fit and the representative would not exceed
1952 the union in size. */
1953 if (TREE_CODE (rli
->t
) != RECORD_TYPE
)
1956 for (prev
= NULL_TREE
, field
= TYPE_FIELDS (rli
->t
);
1957 field
; field
= DECL_CHAIN (field
))
1959 if (TREE_CODE (field
) != FIELD_DECL
)
1962 /* In the C++ memory model, consecutive bit fields in a structure are
1963 considered one memory location and updating a memory location
1964 may not store into adjacent memory locations. */
1966 && DECL_BIT_FIELD_TYPE (field
))
1968 /* Start new representative. */
1969 repr
= start_bitfield_representative (field
);
1972 && ! DECL_BIT_FIELD_TYPE (field
))
1974 /* Finish off new representative. */
1975 finish_bitfield_representative (repr
, prev
);
1978 else if (DECL_BIT_FIELD_TYPE (field
))
1980 gcc_assert (repr
!= NULL_TREE
);
1982 /* Zero-size bitfields finish off a representative and
1983 do not have a representative themselves. This is
1984 required by the C++ memory model. */
1985 if (integer_zerop (DECL_SIZE (field
)))
1987 finish_bitfield_representative (repr
, prev
);
1991 /* We assume that either DECL_FIELD_OFFSET of the representative
1992 and each bitfield member is a constant or they are equal.
1993 This is because we need to be able to compute the bit-offset
1994 of each field relative to the representative in get_bit_range
1995 during RTL expansion.
1996 If these constraints are not met, simply force a new
1997 representative to be generated. That will at most
1998 generate worse code but still maintain correctness with
1999 respect to the C++ memory model. */
2000 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr
))
2001 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field
)))
2002 || operand_equal_p (DECL_FIELD_OFFSET (repr
),
2003 DECL_FIELD_OFFSET (field
), 0)))
2005 finish_bitfield_representative (repr
, prev
);
2006 repr
= start_bitfield_representative (field
);
2013 DECL_BIT_FIELD_REPRESENTATIVE (field
) = repr
;
2019 finish_bitfield_representative (repr
, prev
);
2022 /* Do all of the work required to layout the type indicated by RLI,
2023 once the fields have been laid out. This function will call `free'
2024 for RLI, unless FREE_P is false. Passing a value other than false
2025 for FREE_P is bad practice; this option only exists to support the
2029 finish_record_layout (record_layout_info rli
, int free_p
)
2033 /* Compute the final size. */
2034 finalize_record_size (rli
);
2036 /* Compute the TYPE_MODE for the record. */
2037 compute_record_mode (rli
->t
);
2039 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2040 finalize_type_size (rli
->t
);
2042 /* Compute bitfield representatives. */
2043 finish_bitfield_layout (rli
);
2045 /* Propagate TYPE_PACKED to variants. With C++ templates,
2046 handle_packed_attribute is too early to do this. */
2047 for (variant
= TYPE_NEXT_VARIANT (rli
->t
); variant
;
2048 variant
= TYPE_NEXT_VARIANT (variant
))
2049 TYPE_PACKED (variant
) = TYPE_PACKED (rli
->t
);
2051 /* Lay out any static members. This is done now because their type
2052 may use the record's type. */
2053 while (!vec_safe_is_empty (rli
->pending_statics
))
2054 layout_decl (rli
->pending_statics
->pop (), 0);
2059 vec_free (rli
->pending_statics
);
2065 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2066 NAME, its fields are chained in reverse on FIELDS.
2068 If ALIGN_TYPE is non-null, it is given the same alignment as
2072 finish_builtin_struct (tree type
, const char *name
, tree fields
,
2077 for (tail
= NULL_TREE
; fields
; tail
= fields
, fields
= next
)
2079 DECL_FIELD_CONTEXT (fields
) = type
;
2080 next
= DECL_CHAIN (fields
);
2081 DECL_CHAIN (fields
) = tail
;
2083 TYPE_FIELDS (type
) = tail
;
2087 TYPE_ALIGN (type
) = TYPE_ALIGN (align_type
);
2088 TYPE_USER_ALIGN (type
) = TYPE_USER_ALIGN (align_type
);
2092 #if 0 /* not yet, should get fixed properly later */
2093 TYPE_NAME (type
) = make_type_decl (get_identifier (name
), type
);
2095 TYPE_NAME (type
) = build_decl (BUILTINS_LOCATION
,
2096 TYPE_DECL
, get_identifier (name
), type
);
2098 TYPE_STUB_DECL (type
) = TYPE_NAME (type
);
2099 layout_decl (TYPE_NAME (type
), 0);
2102 /* Calculate the mode, size, and alignment for TYPE.
2103 For an array type, calculate the element separation as well.
2104 Record TYPE on the chain of permanent or temporary types
2105 so that dbxout will find out about it.
2107 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2108 layout_type does nothing on such a type.
2110 If the type is incomplete, its TYPE_SIZE remains zero. */
2113 layout_type (tree type
)
2117 if (type
== error_mark_node
)
2120 /* Do nothing if type has been laid out before. */
2121 if (TYPE_SIZE (type
))
2124 switch (TREE_CODE (type
))
2127 /* This kind of type is the responsibility
2128 of the language-specific code. */
2134 SET_TYPE_MODE (type
,
2135 smallest_mode_for_size (TYPE_PRECISION (type
), MODE_INT
));
2136 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2137 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2138 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2142 SET_TYPE_MODE (type
,
2143 mode_for_size (TYPE_PRECISION (type
), MODE_FLOAT
, 0));
2144 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2145 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2148 case FIXED_POINT_TYPE
:
2149 /* TYPE_MODE (type) has been set already. */
2150 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2151 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2155 TYPE_UNSIGNED (type
) = TYPE_UNSIGNED (TREE_TYPE (type
));
2156 SET_TYPE_MODE (type
,
2157 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type
)),
2158 (TREE_CODE (TREE_TYPE (type
)) == REAL_TYPE
2159 ? MODE_COMPLEX_FLOAT
: MODE_COMPLEX_INT
),
2161 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2162 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2167 int nunits
= TYPE_VECTOR_SUBPARTS (type
);
2168 tree innertype
= TREE_TYPE (type
);
2170 gcc_assert (!(nunits
& (nunits
- 1)));
2172 /* Find an appropriate mode for the vector type. */
2173 if (TYPE_MODE (type
) == VOIDmode
)
2174 SET_TYPE_MODE (type
,
2175 mode_for_vector (TYPE_MODE (innertype
), nunits
));
2177 TYPE_SATURATING (type
) = TYPE_SATURATING (TREE_TYPE (type
));
2178 TYPE_UNSIGNED (type
) = TYPE_UNSIGNED (TREE_TYPE (type
));
2179 TYPE_SIZE_UNIT (type
) = int_const_binop (MULT_EXPR
,
2180 TYPE_SIZE_UNIT (innertype
),
2182 TYPE_SIZE (type
) = int_const_binop (MULT_EXPR
, TYPE_SIZE (innertype
),
2183 bitsize_int (nunits
));
2185 /* For vector types, we do not default to the mode's alignment.
2186 Instead, query a target hook, defaulting to natural alignment.
2187 This prevents ABI changes depending on whether or not native
2188 vector modes are supported. */
2189 TYPE_ALIGN (type
) = targetm
.vector_alignment (type
);
2191 /* However, if the underlying mode requires a bigger alignment than
2192 what the target hook provides, we cannot use the mode. For now,
2193 simply reject that case. */
2194 gcc_assert (TYPE_ALIGN (type
)
2195 >= GET_MODE_ALIGNMENT (TYPE_MODE (type
)));
2200 /* This is an incomplete type and so doesn't have a size. */
2201 TYPE_ALIGN (type
) = 1;
2202 TYPE_USER_ALIGN (type
) = 0;
2203 SET_TYPE_MODE (type
, VOIDmode
);
2207 TYPE_SIZE (type
) = bitsize_int (POINTER_SIZE
);
2208 TYPE_SIZE_UNIT (type
) = size_int (POINTER_SIZE_UNITS
);
2209 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2210 integral, which may be an __intN. */
2211 SET_TYPE_MODE (type
, mode_for_size (POINTER_SIZE
, MODE_INT
, 0));
2212 TYPE_PRECISION (type
) = POINTER_SIZE
;
2217 /* It's hard to see what the mode and size of a function ought to
2218 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2219 make it consistent with that. */
2220 SET_TYPE_MODE (type
, mode_for_size (FUNCTION_BOUNDARY
, MODE_INT
, 0));
2221 TYPE_SIZE (type
) = bitsize_int (FUNCTION_BOUNDARY
);
2222 TYPE_SIZE_UNIT (type
) = size_int (FUNCTION_BOUNDARY
/ BITS_PER_UNIT
);
2226 case REFERENCE_TYPE
:
2228 enum machine_mode mode
= TYPE_MODE (type
);
2229 if (TREE_CODE (type
) == REFERENCE_TYPE
&& reference_types_internal
)
2231 addr_space_t as
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
2232 mode
= targetm
.addr_space
.address_mode (as
);
2235 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (mode
));
2236 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (mode
));
2237 TYPE_UNSIGNED (type
) = 1;
2238 TYPE_PRECISION (type
) = GET_MODE_PRECISION (mode
);
2244 tree index
= TYPE_DOMAIN (type
);
2245 tree element
= TREE_TYPE (type
);
2247 build_pointer_type (element
);
2249 /* We need to know both bounds in order to compute the size. */
2250 if (index
&& TYPE_MAX_VALUE (index
) && TYPE_MIN_VALUE (index
)
2251 && TYPE_SIZE (element
))
2253 tree ub
= TYPE_MAX_VALUE (index
);
2254 tree lb
= TYPE_MIN_VALUE (index
);
2255 tree element_size
= TYPE_SIZE (element
);
2258 /* Make sure that an array of zero-sized element is zero-sized
2259 regardless of its extent. */
2260 if (integer_zerop (element_size
))
2261 length
= size_zero_node
;
2263 /* The computation should happen in the original signedness so
2264 that (possible) negative values are handled appropriately
2265 when determining overflow. */
2268 /* ??? When it is obvious that the range is signed
2269 represent it using ssizetype. */
2270 if (TREE_CODE (lb
) == INTEGER_CST
2271 && TREE_CODE (ub
) == INTEGER_CST
2272 && TYPE_UNSIGNED (TREE_TYPE (lb
))
2273 && tree_int_cst_lt (ub
, lb
))
2275 lb
= wide_int_to_tree (ssizetype
,
2276 offset_int::from (lb
, SIGNED
));
2277 ub
= wide_int_to_tree (ssizetype
,
2278 offset_int::from (ub
, SIGNED
));
2281 = fold_convert (sizetype
,
2282 size_binop (PLUS_EXPR
,
2283 build_int_cst (TREE_TYPE (lb
), 1),
2284 size_binop (MINUS_EXPR
, ub
, lb
)));
2287 /* ??? We have no way to distinguish a null-sized array from an
2288 array spanning the whole sizetype range, so we arbitrarily
2289 decide that [0, -1] is the only valid representation. */
2290 if (integer_zerop (length
)
2291 && TREE_OVERFLOW (length
)
2292 && integer_zerop (lb
))
2293 length
= size_zero_node
;
2295 TYPE_SIZE (type
) = size_binop (MULT_EXPR
, element_size
,
2296 fold_convert (bitsizetype
,
2299 /* If we know the size of the element, calculate the total size
2300 directly, rather than do some division thing below. This
2301 optimization helps Fortran assumed-size arrays (where the
2302 size of the array is determined at runtime) substantially. */
2303 if (TYPE_SIZE_UNIT (element
))
2304 TYPE_SIZE_UNIT (type
)
2305 = size_binop (MULT_EXPR
, TYPE_SIZE_UNIT (element
), length
);
2308 /* Now round the alignment and size,
2309 using machine-dependent criteria if any. */
2311 #ifdef ROUND_TYPE_ALIGN
2313 = ROUND_TYPE_ALIGN (type
, TYPE_ALIGN (element
), BITS_PER_UNIT
);
2315 TYPE_ALIGN (type
) = MAX (TYPE_ALIGN (element
), BITS_PER_UNIT
);
2317 TYPE_USER_ALIGN (type
) = TYPE_USER_ALIGN (element
);
2318 SET_TYPE_MODE (type
, BLKmode
);
2319 if (TYPE_SIZE (type
) != 0
2320 && ! targetm
.member_type_forces_blk (type
, VOIDmode
)
2321 /* BLKmode elements force BLKmode aggregate;
2322 else extract/store fields may lose. */
2323 && (TYPE_MODE (TREE_TYPE (type
)) != BLKmode
2324 || TYPE_NO_FORCE_BLK (TREE_TYPE (type
))))
2326 SET_TYPE_MODE (type
, mode_for_array (TREE_TYPE (type
),
2328 if (TYPE_MODE (type
) != BLKmode
2329 && STRICT_ALIGNMENT
&& TYPE_ALIGN (type
) < BIGGEST_ALIGNMENT
2330 && TYPE_ALIGN (type
) < GET_MODE_ALIGNMENT (TYPE_MODE (type
)))
2332 TYPE_NO_FORCE_BLK (type
) = 1;
2333 SET_TYPE_MODE (type
, BLKmode
);
2336 /* When the element size is constant, check that it is at least as
2337 large as the element alignment. */
2338 if (TYPE_SIZE_UNIT (element
)
2339 && TREE_CODE (TYPE_SIZE_UNIT (element
)) == INTEGER_CST
2340 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2342 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element
))
2343 && !integer_zerop (TYPE_SIZE_UNIT (element
))
2344 && compare_tree_int (TYPE_SIZE_UNIT (element
),
2345 TYPE_ALIGN_UNIT (element
)) < 0)
2346 error ("alignment of array elements is greater than element size");
2352 case QUAL_UNION_TYPE
:
2355 record_layout_info rli
;
2357 /* Initialize the layout information. */
2358 rli
= start_record_layout (type
);
2360 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2361 in the reverse order in building the COND_EXPR that denotes
2362 its size. We reverse them again later. */
2363 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
2364 TYPE_FIELDS (type
) = nreverse (TYPE_FIELDS (type
));
2366 /* Place all the fields. */
2367 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
2368 place_field (rli
, field
);
2370 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
2371 TYPE_FIELDS (type
) = nreverse (TYPE_FIELDS (type
));
2373 /* Finish laying out the record. */
2374 finish_record_layout (rli
, /*free_p=*/true);
2382 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2383 records and unions, finish_record_layout already called this
2385 if (TREE_CODE (type
) != RECORD_TYPE
2386 && TREE_CODE (type
) != UNION_TYPE
2387 && TREE_CODE (type
) != QUAL_UNION_TYPE
)
2388 finalize_type_size (type
);
2390 /* We should never see alias sets on incomplete aggregates. And we
2391 should not call layout_type on not incomplete aggregates. */
2392 if (AGGREGATE_TYPE_P (type
))
2393 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type
));
2396 /* Return the least alignment required for type TYPE. */
2399 min_align_of_type (tree type
)
2401 unsigned int align
= TYPE_ALIGN (type
);
2402 align
= MIN (align
, BIGGEST_ALIGNMENT
);
2403 #ifdef BIGGEST_FIELD_ALIGNMENT
2404 align
= MIN (align
, BIGGEST_FIELD_ALIGNMENT
);
2406 unsigned int field_align
= align
;
2407 #ifdef ADJUST_FIELD_ALIGN
2408 tree field
= build_decl (UNKNOWN_LOCATION
, FIELD_DECL
, NULL_TREE
,
2410 field_align
= ADJUST_FIELD_ALIGN (field
, field_align
);
2413 align
= MIN (align
, field_align
);
2414 return align
/ BITS_PER_UNIT
;
2417 /* Vector types need to re-check the target flags each time we report
2418 the machine mode. We need to do this because attribute target can
2419 change the result of vector_mode_supported_p and have_regs_of_mode
2420 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2421 change on a per-function basis. */
2422 /* ??? Possibly a better solution is to run through all the types
2423 referenced by a function and re-compute the TYPE_MODE once, rather
2424 than make the TYPE_MODE macro call a function. */
2427 vector_type_mode (const_tree t
)
2429 enum machine_mode mode
;
2431 gcc_assert (TREE_CODE (t
) == VECTOR_TYPE
);
2433 mode
= t
->type_common
.mode
;
2434 if (VECTOR_MODE_P (mode
)
2435 && (!targetm
.vector_mode_supported_p (mode
)
2436 || !have_regs_of_mode
[mode
]))
2438 enum machine_mode innermode
= TREE_TYPE (t
)->type_common
.mode
;
2440 /* For integers, try mapping it to a same-sized scalar mode. */
2441 if (GET_MODE_CLASS (innermode
) == MODE_INT
)
2443 mode
= mode_for_size (TYPE_VECTOR_SUBPARTS (t
)
2444 * GET_MODE_BITSIZE (innermode
), MODE_INT
, 0);
2446 if (mode
!= VOIDmode
&& have_regs_of_mode
[mode
])
2456 /* Create and return a type for signed integers of PRECISION bits. */
2459 make_signed_type (int precision
)
2461 tree type
= make_node (INTEGER_TYPE
);
2463 TYPE_PRECISION (type
) = precision
;
2465 fixup_signed_type (type
);
2469 /* Create and return a type for unsigned integers of PRECISION bits. */
2472 make_unsigned_type (int precision
)
2474 tree type
= make_node (INTEGER_TYPE
);
2476 TYPE_PRECISION (type
) = precision
;
2478 fixup_unsigned_type (type
);
2482 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2486 make_fract_type (int precision
, int unsignedp
, int satp
)
2488 tree type
= make_node (FIXED_POINT_TYPE
);
2490 TYPE_PRECISION (type
) = precision
;
2493 TYPE_SATURATING (type
) = 1;
2495 /* Lay out the type: set its alignment, size, etc. */
2498 TYPE_UNSIGNED (type
) = 1;
2499 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_UFRACT
, 0));
2502 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_FRACT
, 0));
2508 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2512 make_accum_type (int precision
, int unsignedp
, int satp
)
2514 tree type
= make_node (FIXED_POINT_TYPE
);
2516 TYPE_PRECISION (type
) = precision
;
2519 TYPE_SATURATING (type
) = 1;
2521 /* Lay out the type: set its alignment, size, etc. */
2524 TYPE_UNSIGNED (type
) = 1;
2525 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_UACCUM
, 0));
2528 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_ACCUM
, 0));
2534 /* Initialize sizetypes so layout_type can use them. */
2537 initialize_sizetypes (void)
2539 int precision
, bprecision
;
2541 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2542 if (strcmp (SIZETYPE
, "unsigned int") == 0)
2543 precision
= INT_TYPE_SIZE
;
2544 else if (strcmp (SIZETYPE
, "long unsigned int") == 0)
2545 precision
= LONG_TYPE_SIZE
;
2546 else if (strcmp (SIZETYPE
, "long long unsigned int") == 0)
2547 precision
= LONG_LONG_TYPE_SIZE
;
2548 else if (strcmp (SIZETYPE
, "short unsigned int") == 0)
2549 precision
= SHORT_TYPE_SIZE
;
2554 = MIN (precision
+ BITS_PER_UNIT_LOG
+ 1, MAX_FIXED_MODE_SIZE
);
2556 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision
, MODE_INT
));
2557 if (bprecision
> HOST_BITS_PER_DOUBLE_INT
)
2558 bprecision
= HOST_BITS_PER_DOUBLE_INT
;
2560 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2561 sizetype
= make_node (INTEGER_TYPE
);
2562 TYPE_NAME (sizetype
) = get_identifier ("sizetype");
2563 TYPE_PRECISION (sizetype
) = precision
;
2564 TYPE_UNSIGNED (sizetype
) = 1;
2565 bitsizetype
= make_node (INTEGER_TYPE
);
2566 TYPE_NAME (bitsizetype
) = get_identifier ("bitsizetype");
2567 TYPE_PRECISION (bitsizetype
) = bprecision
;
2568 TYPE_UNSIGNED (bitsizetype
) = 1;
2570 /* Now layout both types manually. */
2571 SET_TYPE_MODE (sizetype
, smallest_mode_for_size (precision
, MODE_INT
));
2572 TYPE_ALIGN (sizetype
) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype
));
2573 TYPE_SIZE (sizetype
) = bitsize_int (precision
);
2574 TYPE_SIZE_UNIT (sizetype
) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype
)));
2575 set_min_and_max_values_for_integral_type (sizetype
, precision
, UNSIGNED
);
2577 SET_TYPE_MODE (bitsizetype
, smallest_mode_for_size (bprecision
, MODE_INT
));
2578 TYPE_ALIGN (bitsizetype
) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype
));
2579 TYPE_SIZE (bitsizetype
) = bitsize_int (bprecision
);
2580 TYPE_SIZE_UNIT (bitsizetype
)
2581 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype
)));
2582 set_min_and_max_values_for_integral_type (bitsizetype
, bprecision
, UNSIGNED
);
2584 /* Create the signed variants of *sizetype. */
2585 ssizetype
= make_signed_type (TYPE_PRECISION (sizetype
));
2586 TYPE_NAME (ssizetype
) = get_identifier ("ssizetype");
2587 sbitsizetype
= make_signed_type (TYPE_PRECISION (bitsizetype
));
2588 TYPE_NAME (sbitsizetype
) = get_identifier ("sbitsizetype");
2591 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2592 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2593 for TYPE, based on the PRECISION and whether or not the TYPE
2594 IS_UNSIGNED. PRECISION need not correspond to a width supported
2595 natively by the hardware; for example, on a machine with 8-bit,
2596 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2600 set_min_and_max_values_for_integral_type (tree type
,
2604 /* For bitfields with zero width we end up creating integer types
2605 with zero precision. Don't assign any minimum/maximum values
2606 to those types, they don't have any valid value. */
2610 TYPE_MIN_VALUE (type
)
2611 = wide_int_to_tree (type
, wi::min_value (precision
, sgn
));
2612 TYPE_MAX_VALUE (type
)
2613 = wide_int_to_tree (type
, wi::max_value (precision
, sgn
));
2616 /* Set the extreme values of TYPE based on its precision in bits,
2617 then lay it out. Used when make_signed_type won't do
2618 because the tree code is not INTEGER_TYPE.
2619 E.g. for Pascal, when the -fsigned-char option is given. */
2622 fixup_signed_type (tree type
)
2624 int precision
= TYPE_PRECISION (type
);
2626 set_min_and_max_values_for_integral_type (type
, precision
, SIGNED
);
2628 /* Lay out the type: set its alignment, size, etc. */
2632 /* Set the extreme values of TYPE based on its precision in bits,
2633 then lay it out. This is used both in `make_unsigned_type'
2634 and for enumeral types. */
2637 fixup_unsigned_type (tree type
)
2639 int precision
= TYPE_PRECISION (type
);
2641 TYPE_UNSIGNED (type
) = 1;
2643 set_min_and_max_values_for_integral_type (type
, precision
, UNSIGNED
);
2645 /* Lay out the type: set its alignment, size, etc. */
2649 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2652 BITREGION_START is the bit position of the first bit in this
2653 sequence of bit fields. BITREGION_END is the last bit in this
2654 sequence. If these two fields are non-zero, we should restrict the
2655 memory access to that range. Otherwise, we are allowed to touch
2656 any adjacent non bit-fields.
2658 ALIGN is the alignment of the underlying object in bits.
2659 VOLATILEP says whether the bitfield is volatile. */
2661 bit_field_mode_iterator
2662 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
2663 HOST_WIDE_INT bitregion_start
,
2664 HOST_WIDE_INT bitregion_end
,
2665 unsigned int align
, bool volatilep
)
2666 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT
)), m_bitsize (bitsize
),
2667 m_bitpos (bitpos
), m_bitregion_start (bitregion_start
),
2668 m_bitregion_end (bitregion_end
), m_align (align
),
2669 m_volatilep (volatilep
), m_count (0)
2671 if (!m_bitregion_end
)
2673 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2674 the bitfield is mapped and won't trap, provided that ALIGN isn't
2675 too large. The cap is the biggest required alignment for data,
2676 or at least the word size. And force one such chunk at least. */
2677 unsigned HOST_WIDE_INT units
2678 = MIN (align
, MAX (BIGGEST_ALIGNMENT
, BITS_PER_WORD
));
2681 m_bitregion_end
= bitpos
+ bitsize
+ units
- 1;
2682 m_bitregion_end
-= m_bitregion_end
% units
+ 1;
2686 /* Calls to this function return successively larger modes that can be used
2687 to represent the bitfield. Return true if another bitfield mode is
2688 available, storing it in *OUT_MODE if so. */
2691 bit_field_mode_iterator::next_mode (enum machine_mode
*out_mode
)
2693 for (; m_mode
!= VOIDmode
; m_mode
= GET_MODE_WIDER_MODE (m_mode
))
2695 unsigned int unit
= GET_MODE_BITSIZE (m_mode
);
2697 /* Skip modes that don't have full precision. */
2698 if (unit
!= GET_MODE_PRECISION (m_mode
))
2701 /* Stop if the mode is too wide to handle efficiently. */
2702 if (unit
> MAX_FIXED_MODE_SIZE
)
2705 /* Don't deliver more than one multiword mode; the smallest one
2707 if (m_count
> 0 && unit
> BITS_PER_WORD
)
2710 /* Skip modes that are too small. */
2711 unsigned HOST_WIDE_INT substart
= (unsigned HOST_WIDE_INT
) m_bitpos
% unit
;
2712 unsigned HOST_WIDE_INT subend
= substart
+ m_bitsize
;
2716 /* Stop if the mode goes outside the bitregion. */
2717 HOST_WIDE_INT start
= m_bitpos
- substart
;
2718 if (m_bitregion_start
&& start
< m_bitregion_start
)
2720 HOST_WIDE_INT end
= start
+ unit
;
2721 if (end
> m_bitregion_end
+ 1)
2724 /* Stop if the mode requires too much alignment. */
2725 if (GET_MODE_ALIGNMENT (m_mode
) > m_align
2726 && SLOW_UNALIGNED_ACCESS (m_mode
, m_align
))
2730 m_mode
= GET_MODE_WIDER_MODE (m_mode
);
2737 /* Return true if smaller modes are generally preferred for this kind
2741 bit_field_mode_iterator::prefer_smaller_modes ()
2744 ? targetm
.narrow_volatile_bitfield ()
2745 : !SLOW_BYTE_ACCESS
);
2748 /* Find the best machine mode to use when referencing a bit field of length
2749 BITSIZE bits starting at BITPOS.
2751 BITREGION_START is the bit position of the first bit in this
2752 sequence of bit fields. BITREGION_END is the last bit in this
2753 sequence. If these two fields are non-zero, we should restrict the
2754 memory access to that range. Otherwise, we are allowed to touch
2755 any adjacent non bit-fields.
2757 The underlying object is known to be aligned to a boundary of ALIGN bits.
2758 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2759 larger than LARGEST_MODE (usually SImode).
2761 If no mode meets all these conditions, we return VOIDmode.
2763 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2764 smallest mode meeting these conditions.
2766 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2767 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2770 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2771 decide which of the above modes should be used. */
2774 get_best_mode (int bitsize
, int bitpos
,
2775 unsigned HOST_WIDE_INT bitregion_start
,
2776 unsigned HOST_WIDE_INT bitregion_end
,
2778 enum machine_mode largest_mode
, bool volatilep
)
2780 bit_field_mode_iterator
iter (bitsize
, bitpos
, bitregion_start
,
2781 bitregion_end
, align
, volatilep
);
2782 enum machine_mode widest_mode
= VOIDmode
;
2783 enum machine_mode mode
;
2784 while (iter
.next_mode (&mode
)
2785 /* ??? For historical reasons, reject modes that would normally
2786 receive greater alignment, even if unaligned accesses are
2787 acceptable. This has both advantages and disadvantages.
2788 Removing this check means that something like:
2790 struct s { unsigned int x; unsigned int y; };
2791 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2793 can be implemented using a single load and compare on
2794 64-bit machines that have no alignment restrictions.
2795 For example, on powerpc64-linux-gnu, we would generate:
2817 However, accessing more than one field can make life harder
2818 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2819 has a series of unsigned short copies followed by a series of
2820 unsigned short comparisons. With this check, both the copies
2821 and comparisons remain 16-bit accesses and FRE is able
2822 to eliminate the latter. Without the check, the comparisons
2823 can be done using 2 64-bit operations, which FRE isn't able
2824 to handle in the same way.
2826 Either way, it would probably be worth disabling this check
2827 during expand. One particular example where removing the
2828 check would help is the get_best_mode call in store_bit_field.
2829 If we are given a memory bitregion of 128 bits that is aligned
2830 to a 64-bit boundary, and the bitfield we want to modify is
2831 in the second half of the bitregion, this check causes
2832 store_bitfield to turn the memory into a 64-bit reference
2833 to the _first_ half of the region. We later use
2834 adjust_bitfield_address to get a reference to the correct half,
2835 but doing so looks to adjust_bitfield_address as though we are
2836 moving past the end of the original object, so it drops the
2837 associated MEM_EXPR and MEM_OFFSET. Removing the check
2838 causes store_bit_field to keep a 128-bit memory reference,
2839 so that the final bitfield reference still has a MEM_EXPR
2841 && GET_MODE_ALIGNMENT (mode
) <= align
2842 && (largest_mode
== VOIDmode
2843 || GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (largest_mode
)))
2846 if (iter
.prefer_smaller_modes ())
2852 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2853 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2856 get_mode_bounds (enum machine_mode mode
, int sign
,
2857 enum machine_mode target_mode
,
2858 rtx
*mmin
, rtx
*mmax
)
2860 unsigned size
= GET_MODE_PRECISION (mode
);
2861 unsigned HOST_WIDE_INT min_val
, max_val
;
2863 gcc_assert (size
<= HOST_BITS_PER_WIDE_INT
);
2865 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2868 if (STORE_FLAG_VALUE
< 0)
2870 min_val
= STORE_FLAG_VALUE
;
2876 max_val
= STORE_FLAG_VALUE
;
2881 min_val
= -((unsigned HOST_WIDE_INT
) 1 << (size
- 1));
2882 max_val
= ((unsigned HOST_WIDE_INT
) 1 << (size
- 1)) - 1;
2887 max_val
= ((unsigned HOST_WIDE_INT
) 1 << (size
- 1) << 1) - 1;
2890 *mmin
= gen_int_mode (min_val
, target_mode
);
2891 *mmax
= gen_int_mode (max_val
, target_mode
);
2894 #include "gt-stor-layout.h"