1 /* Straight-line strength reduction.
2 Copyright (C) 2012-2014 Free Software Foundation, Inc.
3 Contributed by Bill Schmidt, IBM <wschmidt@linux.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* There are many algorithms for performing strength reduction on
22 loops. This is not one of them. IVOPTS handles strength reduction
23 of induction variables just fine. This pass is intended to pick
24 up the crumbs it leaves behind, by considering opportunities for
25 strength reduction along dominator paths.
27 Strength reduction addresses explicit multiplies, and certain
28 multiplies implicit in addressing expressions. It would also be
29 possible to apply strength reduction to divisions and modulos,
30 but such opportunities are relatively uncommon.
32 Strength reduction is also currently restricted to integer operations.
33 If desired, it could be extended to floating-point operations under
34 control of something like -funsafe-math-optimizations. */
38 #include "coretypes.h"
41 #include "hash-table.h"
42 #include "basic-block.h"
43 #include "tree-ssa-alias.h"
44 #include "internal-fn.h"
45 #include "gimple-expr.h"
48 #include "gimple-iterator.h"
49 #include "gimplify-me.h"
50 #include "stor-layout.h"
52 #include "tree-pass.h"
54 #include "gimple-pretty-print.h"
55 #include "gimple-ssa.h"
57 #include "tree-phinodes.h"
58 #include "ssa-iterators.h"
59 #include "stringpool.h"
60 #include "tree-ssanames.h"
64 #include "tree-ssa-address.h"
65 #include "tree-affine.h"
66 #include "wide-int-print.h"
69 /* Information about a strength reduction candidate. Each statement
70 in the candidate table represents an expression of one of the
71 following forms (the special case of CAND_REF will be described
74 (CAND_MULT) S1: X = (B + i) * S
75 (CAND_ADD) S1: X = B + (i * S)
77 Here X and B are SSA names, i is an integer constant, and S is
78 either an SSA name or a constant. We call B the "base," i the
79 "index", and S the "stride."
81 Any statement S0 that dominates S1 and is of the form:
83 (CAND_MULT) S0: Y = (B + i') * S
84 (CAND_ADD) S0: Y = B + (i' * S)
86 is called a "basis" for S1. In both cases, S1 may be replaced by
88 S1': X = Y + (i - i') * S,
90 where (i - i') * S is folded to the extent possible.
92 All gimple statements are visited in dominator order, and each
93 statement that may contribute to one of the forms of S1 above is
94 given at least one entry in the candidate table. Such statements
95 include addition, pointer addition, subtraction, multiplication,
96 negation, copies, and nontrivial type casts. If a statement may
97 represent more than one expression of the forms of S1 above,
98 multiple "interpretations" are stored in the table and chained
101 * An add of two SSA names may treat either operand as the base.
102 * A multiply of two SSA names, likewise.
103 * A copy or cast may be thought of as either a CAND_MULT with
104 i = 0 and S = 1, or as a CAND_ADD with i = 0 or S = 0.
106 Candidate records are allocated from an obstack. They are addressed
107 both from a hash table keyed on S1, and from a vector of candidate
108 pointers arranged in predominator order.
112 Currently we don't recognize:
117 as a strength reduction opportunity, even though this S1 would
118 also be replaceable by the S1' above. This can be added if it
119 comes up in practice.
121 Strength reduction in addressing
122 --------------------------------
123 There is another kind of candidate known as CAND_REF. A CAND_REF
124 describes a statement containing a memory reference having
125 complex addressing that might benefit from strength reduction.
126 Specifically, we are interested in references for which
127 get_inner_reference returns a base address, offset, and bitpos as
130 base: MEM_REF (T1, C1)
131 offset: MULT_EXPR (PLUS_EXPR (T2, C2), C3)
132 bitpos: C4 * BITS_PER_UNIT
134 Here T1 and T2 are arbitrary trees, and C1, C2, C3, C4 are
135 arbitrary integer constants. Note that C2 may be zero, in which
136 case the offset will be MULT_EXPR (T2, C3).
138 When this pattern is recognized, the original memory reference
139 can be replaced with:
141 MEM_REF (POINTER_PLUS_EXPR (T1, MULT_EXPR (T2, C3)),
144 which distributes the multiply to allow constant folding. When
145 two or more addressing expressions can be represented by MEM_REFs
146 of this form, differing only in the constants C1, C2, and C4,
147 making this substitution produces more efficient addressing during
148 the RTL phases. When there are not at least two expressions with
149 the same values of T1, T2, and C3, there is nothing to be gained
152 Strength reduction of CAND_REFs uses the same infrastructure as
153 that used by CAND_MULTs and CAND_ADDs. We record T1 in the base (B)
154 field, MULT_EXPR (T2, C3) in the stride (S) field, and
155 C1 + (C2 * C3) + C4 in the index (i) field. A basis for a CAND_REF
156 is thus another CAND_REF with the same B and S values. When at
157 least two CAND_REFs are chained together using the basis relation,
158 each of them is replaced as above, resulting in improved code
159 generation for addressing.
161 Conditional candidates
162 ======================
164 Conditional candidates are best illustrated with an example.
165 Consider the code sequence:
168 (2) a_0 = x_0 * 5; MULT (B: x_0; i: 0; S: 5)
170 (3) x_1 = x_0 + 1; ADD (B: x_0, i: 1; S: 1)
171 (4) x_2 = PHI <x_0, x_1>; PHI (B: x_0, i: 0, S: 1)
172 (5) x_3 = x_2 + 1; ADD (B: x_2, i: 1, S: 1)
173 (6) a_1 = x_3 * 5; MULT (B: x_2, i: 1; S: 5)
175 Here strength reduction is complicated by the uncertain value of x_2.
176 A legitimate transformation is:
185 (4) [x_2 = PHI <x_0, x_1>;]
186 (4a) t_2 = PHI <a_0, t_1>;
190 where the bracketed instructions may go dead.
192 To recognize this opportunity, we have to observe that statement (6)
193 has a "hidden basis" (2). The hidden basis is unlike a normal basis
194 in that the statement and the hidden basis have different base SSA
195 names (x_2 and x_0, respectively). The relationship is established
196 when a statement's base name (x_2) is defined by a phi statement (4),
197 each argument of which (x_0, x_1) has an identical "derived base name."
198 If the argument is defined by a candidate (as x_1 is by (3)) that is a
199 CAND_ADD having a stride of 1, the derived base name of the argument is
200 the base name of the candidate (x_0). Otherwise, the argument itself
201 is its derived base name (as is the case with argument x_0).
203 The hidden basis for statement (6) is the nearest dominating candidate
204 whose base name is the derived base name (x_0) of the feeding phi (4),
205 and whose stride is identical to that of the statement. We can then
206 create the new "phi basis" (4a) and feeding adds along incoming arcs (3a),
207 allowing the final replacement of (6) by the strength-reduced (6r).
209 To facilitate this, a new kind of candidate (CAND_PHI) is introduced.
210 A CAND_PHI is not a candidate for replacement, but is maintained in the
211 candidate table to ease discovery of hidden bases. Any phi statement
212 whose arguments share a common derived base name is entered into the
213 table with the derived base name, an (arbitrary) index of zero, and a
214 stride of 1. A statement with a hidden basis can then be detected by
215 simply looking up its feeding phi definition in the candidate table,
216 extracting the derived base name, and searching for a basis in the
217 usual manner after substituting the derived base name.
219 Note that the transformation is only valid when the original phi and
220 the statements that define the phi's arguments are all at the same
221 position in the loop hierarchy. */
224 /* Index into the candidate vector, offset by 1. VECs are zero-based,
225 while cand_idx's are one-based, with zero indicating null. */
226 typedef unsigned cand_idx
;
228 /* The kind of candidate. */
239 /* The candidate statement S1. */
242 /* The base expression B: often an SSA name, but not always. */
248 /* The index constant i. */
251 /* The type of the candidate. This is normally the type of base_expr,
252 but casts may have occurred when combining feeding instructions.
253 A candidate can only be a basis for candidates of the same final type.
254 (For CAND_REFs, this is the type to be used for operand 1 of the
255 replacement MEM_REF.) */
258 /* The kind of candidate (CAND_MULT, etc.). */
261 /* Index of this candidate in the candidate vector. */
264 /* Index of the next candidate record for the same statement.
265 A statement may be useful in more than one way (e.g., due to
266 commutativity). So we can have multiple "interpretations"
268 cand_idx next_interp
;
270 /* Index of the basis statement S0, if any, in the candidate vector. */
273 /* First candidate for which this candidate is a basis, if one exists. */
276 /* Next candidate having the same basis as this one. */
279 /* If this is a conditional candidate, the CAND_PHI candidate
280 that defines the base SSA name B. */
283 /* Savings that can be expected from eliminating dead code if this
284 candidate is replaced. */
288 typedef struct slsr_cand_d slsr_cand
, *slsr_cand_t
;
289 typedef const struct slsr_cand_d
*const_slsr_cand_t
;
291 /* Pointers to candidates are chained together as part of a mapping
292 from base expressions to the candidates that use them. */
296 /* Base expression for the chain of candidates: often, but not
297 always, an SSA name. */
300 /* Pointer to a candidate. */
304 struct cand_chain_d
*next
;
308 typedef struct cand_chain_d cand_chain
, *cand_chain_t
;
309 typedef const struct cand_chain_d
*const_cand_chain_t
;
311 /* Information about a unique "increment" associated with candidates
312 having an SSA name for a stride. An increment is the difference
313 between the index of the candidate and the index of its basis,
314 i.e., (i - i') as discussed in the module commentary.
316 When we are not going to generate address arithmetic we treat
317 increments that differ only in sign as the same, allowing sharing
318 of the cost of initializers. The absolute value of the increment
319 is stored in the incr_info. */
323 /* The increment that relates a candidate to its basis. */
326 /* How many times the increment occurs in the candidate tree. */
329 /* Cost of replacing candidates using this increment. Negative and
330 zero costs indicate replacement should be performed. */
333 /* If this increment is profitable but is not -1, 0, or 1, it requires
334 an initializer T_0 = stride * incr to be found or introduced in the
335 nearest common dominator of all candidates. This field holds T_0
336 for subsequent use. */
339 /* If the initializer was found to already exist, this is the block
340 where it was found. */
344 typedef struct incr_info_d incr_info
, *incr_info_t
;
346 /* Candidates are maintained in a vector. If candidate X dominates
347 candidate Y, then X appears before Y in the vector; but the
348 converse does not necessarily hold. */
349 static vec
<slsr_cand_t
> cand_vec
;
363 enum phi_adjust_status
369 enum count_phis_status
375 /* Pointer map embodying a mapping from statements to candidates. */
376 static hash_map
<gimple
, slsr_cand_t
> *stmt_cand_map
;
378 /* Obstack for candidates. */
379 static struct obstack cand_obstack
;
381 /* Obstack for candidate chains. */
382 static struct obstack chain_obstack
;
384 /* An array INCR_VEC of incr_infos is used during analysis of related
385 candidates having an SSA name for a stride. INCR_VEC_LEN describes
386 its current length. MAX_INCR_VEC_LEN is used to avoid costly
387 pathological cases. */
388 static incr_info_t incr_vec
;
389 static unsigned incr_vec_len
;
390 const int MAX_INCR_VEC_LEN
= 16;
392 /* For a chain of candidates with unknown stride, indicates whether or not
393 we must generate pointer arithmetic when replacing statements. */
394 static bool address_arithmetic_p
;
396 /* Forward function declarations. */
397 static slsr_cand_t
base_cand_from_table (tree
);
398 static tree
introduce_cast_before_cand (slsr_cand_t
, tree
, tree
);
399 static bool legal_cast_p_1 (tree
, tree
);
401 /* Produce a pointer to the IDX'th candidate in the candidate vector. */
404 lookup_cand (cand_idx idx
)
406 return cand_vec
[idx
- 1];
409 /* Helper for hashing a candidate chain header. */
411 struct cand_chain_hasher
: typed_noop_remove
<cand_chain
>
413 typedef cand_chain value_type
;
414 typedef cand_chain compare_type
;
415 static inline hashval_t
hash (const value_type
*);
416 static inline bool equal (const value_type
*, const compare_type
*);
420 cand_chain_hasher::hash (const value_type
*p
)
422 tree base_expr
= p
->base_expr
;
423 return iterative_hash_expr (base_expr
, 0);
427 cand_chain_hasher::equal (const value_type
*chain1
, const compare_type
*chain2
)
429 return operand_equal_p (chain1
->base_expr
, chain2
->base_expr
, 0);
432 /* Hash table embodying a mapping from base exprs to chains of candidates. */
433 static hash_table
<cand_chain_hasher
> *base_cand_map
;
435 /* Pointer map used by tree_to_aff_combination_expand. */
436 static hash_map
<tree
, name_expansion
*> *name_expansions
;
437 /* Pointer map embodying a mapping from bases to alternative bases. */
438 static hash_map
<tree
, tree
> *alt_base_map
;
440 /* Given BASE, use the tree affine combiniation facilities to
441 find the underlying tree expression for BASE, with any
442 immediate offset excluded.
444 N.B. we should eliminate this backtracking with better forward
445 analysis in a future release. */
448 get_alternative_base (tree base
)
450 tree
*result
= alt_base_map
->get (base
);
457 tree_to_aff_combination_expand (base
, TREE_TYPE (base
),
458 &aff
, &name_expansions
);
460 expr
= aff_combination_to_tree (&aff
);
462 gcc_assert (!alt_base_map
->put (base
, base
== expr
? NULL
: expr
));
464 return expr
== base
? NULL
: expr
;
470 /* Look in the candidate table for a CAND_PHI that defines BASE and
471 return it if found; otherwise return NULL. */
474 find_phi_def (tree base
)
478 if (TREE_CODE (base
) != SSA_NAME
)
481 c
= base_cand_from_table (base
);
483 if (!c
|| c
->kind
!= CAND_PHI
)
489 /* Helper routine for find_basis_for_candidate. May be called twice:
490 once for the candidate's base expr, and optionally again either for
491 the candidate's phi definition or for a CAND_REF's alternative base
495 find_basis_for_base_expr (slsr_cand_t c
, tree base_expr
)
497 cand_chain mapping_key
;
499 slsr_cand_t basis
= NULL
;
501 // Limit potential of N^2 behavior for long candidate chains.
503 int max_iters
= PARAM_VALUE (PARAM_MAX_SLSR_CANDIDATE_SCAN
);
505 mapping_key
.base_expr
= base_expr
;
506 chain
= base_cand_map
->find (&mapping_key
);
508 for (; chain
&& iters
< max_iters
; chain
= chain
->next
, ++iters
)
510 slsr_cand_t one_basis
= chain
->cand
;
512 if (one_basis
->kind
!= c
->kind
513 || one_basis
->cand_stmt
== c
->cand_stmt
514 || !operand_equal_p (one_basis
->stride
, c
->stride
, 0)
515 || !types_compatible_p (one_basis
->cand_type
, c
->cand_type
)
516 || !dominated_by_p (CDI_DOMINATORS
,
517 gimple_bb (c
->cand_stmt
),
518 gimple_bb (one_basis
->cand_stmt
)))
521 if (!basis
|| basis
->cand_num
< one_basis
->cand_num
)
528 /* Use the base expr from candidate C to look for possible candidates
529 that can serve as a basis for C. Each potential basis must also
530 appear in a block that dominates the candidate statement and have
531 the same stride and type. If more than one possible basis exists,
532 the one with highest index in the vector is chosen; this will be
533 the most immediately dominating basis. */
536 find_basis_for_candidate (slsr_cand_t c
)
538 slsr_cand_t basis
= find_basis_for_base_expr (c
, c
->base_expr
);
540 /* If a candidate doesn't have a basis using its base expression,
541 it may have a basis hidden by one or more intervening phis. */
542 if (!basis
&& c
->def_phi
)
544 basic_block basis_bb
, phi_bb
;
545 slsr_cand_t phi_cand
= lookup_cand (c
->def_phi
);
546 basis
= find_basis_for_base_expr (c
, phi_cand
->base_expr
);
550 /* A hidden basis must dominate the phi-definition of the
551 candidate's base name. */
552 phi_bb
= gimple_bb (phi_cand
->cand_stmt
);
553 basis_bb
= gimple_bb (basis
->cand_stmt
);
555 if (phi_bb
== basis_bb
556 || !dominated_by_p (CDI_DOMINATORS
, phi_bb
, basis_bb
))
562 /* If we found a hidden basis, estimate additional dead-code
563 savings if the phi and its feeding statements can be removed. */
564 if (basis
&& has_single_use (gimple_phi_result (phi_cand
->cand_stmt
)))
565 c
->dead_savings
+= phi_cand
->dead_savings
;
569 if (flag_expensive_optimizations
&& !basis
&& c
->kind
== CAND_REF
)
571 tree alt_base_expr
= get_alternative_base (c
->base_expr
);
573 basis
= find_basis_for_base_expr (c
, alt_base_expr
);
578 c
->sibling
= basis
->dependent
;
579 basis
->dependent
= c
->cand_num
;
580 return basis
->cand_num
;
586 /* Record a mapping from BASE to C, indicating that C may potentially serve
587 as a basis using that base expression. BASE may be the same as
588 C->BASE_EXPR; alternatively BASE can be a different tree that share the
589 underlining expression of C->BASE_EXPR. */
592 record_potential_basis (slsr_cand_t c
, tree base
)
599 node
= (cand_chain_t
) obstack_alloc (&chain_obstack
, sizeof (cand_chain
));
600 node
->base_expr
= base
;
603 slot
= base_cand_map
->find_slot (node
, INSERT
);
607 cand_chain_t head
= (cand_chain_t
) (*slot
);
608 node
->next
= head
->next
;
615 /* Allocate storage for a new candidate and initialize its fields.
616 Attempt to find a basis for the candidate.
618 For CAND_REF, an alternative base may also be recorded and used
619 to find a basis. This helps cases where the expression hidden
620 behind BASE (which is usually an SSA_NAME) has immediate offset,
624 a2[i + 20][j] = 2; */
627 alloc_cand_and_find_basis (enum cand_kind kind
, gimple gs
, tree base
,
628 const widest_int
&index
, tree stride
, tree ctype
,
631 slsr_cand_t c
= (slsr_cand_t
) obstack_alloc (&cand_obstack
,
637 c
->cand_type
= ctype
;
639 c
->cand_num
= cand_vec
.length () + 1;
643 c
->def_phi
= kind
== CAND_MULT
? find_phi_def (base
) : 0;
644 c
->dead_savings
= savings
;
646 cand_vec
.safe_push (c
);
648 if (kind
== CAND_PHI
)
651 c
->basis
= find_basis_for_candidate (c
);
653 record_potential_basis (c
, base
);
654 if (flag_expensive_optimizations
&& kind
== CAND_REF
)
656 tree alt_base
= get_alternative_base (base
);
658 record_potential_basis (c
, alt_base
);
664 /* Determine the target cost of statement GS when compiling according
668 stmt_cost (gimple gs
, bool speed
)
670 tree lhs
, rhs1
, rhs2
;
671 enum machine_mode lhs_mode
;
673 gcc_assert (is_gimple_assign (gs
));
674 lhs
= gimple_assign_lhs (gs
);
675 rhs1
= gimple_assign_rhs1 (gs
);
676 lhs_mode
= TYPE_MODE (TREE_TYPE (lhs
));
678 switch (gimple_assign_rhs_code (gs
))
681 rhs2
= gimple_assign_rhs2 (gs
);
683 if (tree_fits_shwi_p (rhs2
))
684 return mult_by_coeff_cost (tree_to_shwi (rhs2
), lhs_mode
, speed
);
686 gcc_assert (TREE_CODE (rhs1
) != INTEGER_CST
);
687 return mul_cost (speed
, lhs_mode
);
690 case POINTER_PLUS_EXPR
:
692 return add_cost (speed
, lhs_mode
);
695 return neg_cost (speed
, lhs_mode
);
698 return convert_cost (lhs_mode
, TYPE_MODE (TREE_TYPE (rhs1
)), speed
);
700 /* Note that we don't assign costs to copies that in most cases
710 /* Look up the defining statement for BASE_IN and return a pointer
711 to its candidate in the candidate table, if any; otherwise NULL.
712 Only CAND_ADD and CAND_MULT candidates are returned. */
715 base_cand_from_table (tree base_in
)
719 gimple def
= SSA_NAME_DEF_STMT (base_in
);
721 return (slsr_cand_t
) NULL
;
723 result
= stmt_cand_map
->get (def
);
725 if (result
&& (*result
)->kind
!= CAND_REF
)
728 return (slsr_cand_t
) NULL
;
731 /* Add an entry to the statement-to-candidate mapping. */
734 add_cand_for_stmt (gimple gs
, slsr_cand_t c
)
736 gcc_assert (!stmt_cand_map
->put (gs
, c
));
739 /* Given PHI which contains a phi statement, determine whether it
740 satisfies all the requirements of a phi candidate. If so, create
741 a candidate. Note that a CAND_PHI never has a basis itself, but
742 is used to help find a basis for subsequent candidates. */
745 slsr_process_phi (gimple phi
, bool speed
)
748 tree arg0_base
= NULL_TREE
, base_type
;
750 struct loop
*cand_loop
= gimple_bb (phi
)->loop_father
;
751 unsigned savings
= 0;
753 /* A CAND_PHI requires each of its arguments to have the same
754 derived base name. (See the module header commentary for a
755 definition of derived base names.) Furthermore, all feeding
756 definitions must be in the same position in the loop hierarchy
759 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
761 slsr_cand_t arg_cand
;
762 tree arg
= gimple_phi_arg_def (phi
, i
);
763 tree derived_base_name
= NULL_TREE
;
764 gimple arg_stmt
= NULL
;
765 basic_block arg_bb
= NULL
;
767 if (TREE_CODE (arg
) != SSA_NAME
)
770 arg_cand
= base_cand_from_table (arg
);
774 while (arg_cand
->kind
!= CAND_ADD
&& arg_cand
->kind
!= CAND_PHI
)
776 if (!arg_cand
->next_interp
)
779 arg_cand
= lookup_cand (arg_cand
->next_interp
);
782 if (!integer_onep (arg_cand
->stride
))
785 derived_base_name
= arg_cand
->base_expr
;
786 arg_stmt
= arg_cand
->cand_stmt
;
787 arg_bb
= gimple_bb (arg_stmt
);
789 /* Gather potential dead code savings if the phi statement
790 can be removed later on. */
791 if (has_single_use (arg
))
793 if (gimple_code (arg_stmt
) == GIMPLE_PHI
)
794 savings
+= arg_cand
->dead_savings
;
796 savings
+= stmt_cost (arg_stmt
, speed
);
801 derived_base_name
= arg
;
803 if (SSA_NAME_IS_DEFAULT_DEF (arg
))
804 arg_bb
= single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
806 gimple_bb (SSA_NAME_DEF_STMT (arg
));
809 if (!arg_bb
|| arg_bb
->loop_father
!= cand_loop
)
813 arg0_base
= derived_base_name
;
814 else if (!operand_equal_p (derived_base_name
, arg0_base
, 0))
818 /* Create the candidate. "alloc_cand_and_find_basis" is named
819 misleadingly for this case, as no basis will be sought for a
821 base_type
= TREE_TYPE (arg0_base
);
823 c
= alloc_cand_and_find_basis (CAND_PHI
, phi
, arg0_base
,
824 0, integer_one_node
, base_type
, savings
);
826 /* Add the candidate to the statement-candidate mapping. */
827 add_cand_for_stmt (phi
, c
);
830 /* Given PBASE which is a pointer to tree, look up the defining
831 statement for it and check whether the candidate is in the
834 X = B + (1 * S), S is integer constant
835 X = B + (i * S), S is integer one
837 If so, set PBASE to the candidate's base_expr and return double
839 Otherwise, just return double int zero. */
842 backtrace_base_for_ref (tree
*pbase
)
844 tree base_in
= *pbase
;
845 slsr_cand_t base_cand
;
847 STRIP_NOPS (base_in
);
849 /* Strip off widening conversion(s) to handle cases where
850 e.g. 'B' is widened from an 'int' in order to calculate
852 if (CONVERT_EXPR_P (base_in
)
853 && legal_cast_p_1 (base_in
, TREE_OPERAND (base_in
, 0)))
854 base_in
= get_unwidened (base_in
, NULL_TREE
);
856 if (TREE_CODE (base_in
) != SSA_NAME
)
859 base_cand
= base_cand_from_table (base_in
);
861 while (base_cand
&& base_cand
->kind
!= CAND_PHI
)
863 if (base_cand
->kind
== CAND_ADD
864 && base_cand
->index
== 1
865 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
)
867 /* X = B + (1 * S), S is integer constant. */
868 *pbase
= base_cand
->base_expr
;
869 return wi::to_widest (base_cand
->stride
);
871 else if (base_cand
->kind
== CAND_ADD
872 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
873 && integer_onep (base_cand
->stride
))
875 /* X = B + (i * S), S is integer one. */
876 *pbase
= base_cand
->base_expr
;
877 return base_cand
->index
;
880 if (base_cand
->next_interp
)
881 base_cand
= lookup_cand (base_cand
->next_interp
);
889 /* Look for the following pattern:
891 *PBASE: MEM_REF (T1, C1)
893 *POFFSET: MULT_EXPR (T2, C3) [C2 is zero]
895 MULT_EXPR (PLUS_EXPR (T2, C2), C3)
897 MULT_EXPR (MINUS_EXPR (T2, -C2), C3)
899 *PINDEX: C4 * BITS_PER_UNIT
901 If not present, leave the input values unchanged and return FALSE.
902 Otherwise, modify the input values as follows and return TRUE:
905 *POFFSET: MULT_EXPR (T2, C3)
906 *PINDEX: C1 + (C2 * C3) + C4
908 When T2 is recorded by a CAND_ADD in the form of (T2' + C5), it
909 will be further restructured to:
912 *POFFSET: MULT_EXPR (T2', C3)
913 *PINDEX: C1 + (C2 * C3) + C4 + (C5 * C3) */
916 restructure_reference (tree
*pbase
, tree
*poffset
, widest_int
*pindex
,
919 tree base
= *pbase
, offset
= *poffset
;
920 widest_int index
= *pindex
;
921 tree mult_op0
, t1
, t2
, type
;
922 widest_int c1
, c2
, c3
, c4
, c5
;
926 || TREE_CODE (base
) != MEM_REF
927 || TREE_CODE (offset
) != MULT_EXPR
928 || TREE_CODE (TREE_OPERAND (offset
, 1)) != INTEGER_CST
929 || wi::umod_floor (index
, BITS_PER_UNIT
) != 0)
932 t1
= TREE_OPERAND (base
, 0);
933 c1
= widest_int::from (mem_ref_offset (base
), SIGNED
);
934 type
= TREE_TYPE (TREE_OPERAND (base
, 1));
936 mult_op0
= TREE_OPERAND (offset
, 0);
937 c3
= wi::to_widest (TREE_OPERAND (offset
, 1));
939 if (TREE_CODE (mult_op0
) == PLUS_EXPR
)
941 if (TREE_CODE (TREE_OPERAND (mult_op0
, 1)) == INTEGER_CST
)
943 t2
= TREE_OPERAND (mult_op0
, 0);
944 c2
= wi::to_widest (TREE_OPERAND (mult_op0
, 1));
949 else if (TREE_CODE (mult_op0
) == MINUS_EXPR
)
951 if (TREE_CODE (TREE_OPERAND (mult_op0
, 1)) == INTEGER_CST
)
953 t2
= TREE_OPERAND (mult_op0
, 0);
954 c2
= -wi::to_widest (TREE_OPERAND (mult_op0
, 1));
965 c4
= wi::lrshift (index
, LOG2_BITS_PER_UNIT
);
966 c5
= backtrace_base_for_ref (&t2
);
969 *poffset
= fold_build2 (MULT_EXPR
, sizetype
, fold_convert (sizetype
, t2
),
970 wide_int_to_tree (sizetype
, c3
));
971 *pindex
= c1
+ c2
* c3
+ c4
+ c5
* c3
;
977 /* Given GS which contains a data reference, create a CAND_REF entry in
978 the candidate table and attempt to find a basis. */
981 slsr_process_ref (gimple gs
)
983 tree ref_expr
, base
, offset
, type
;
984 HOST_WIDE_INT bitsize
, bitpos
;
985 enum machine_mode mode
;
986 int unsignedp
, volatilep
;
989 if (gimple_vdef (gs
))
990 ref_expr
= gimple_assign_lhs (gs
);
992 ref_expr
= gimple_assign_rhs1 (gs
);
994 if (!handled_component_p (ref_expr
)
995 || TREE_CODE (ref_expr
) == BIT_FIELD_REF
996 || (TREE_CODE (ref_expr
) == COMPONENT_REF
997 && DECL_BIT_FIELD (TREE_OPERAND (ref_expr
, 1))))
1000 base
= get_inner_reference (ref_expr
, &bitsize
, &bitpos
, &offset
, &mode
,
1001 &unsignedp
, &volatilep
, false);
1002 widest_int index
= bitpos
;
1004 if (!restructure_reference (&base
, &offset
, &index
, &type
))
1007 c
= alloc_cand_and_find_basis (CAND_REF
, gs
, base
, index
, offset
,
1010 /* Add the candidate to the statement-candidate mapping. */
1011 add_cand_for_stmt (gs
, c
);
1014 /* Create a candidate entry for a statement GS, where GS multiplies
1015 two SSA names BASE_IN and STRIDE_IN. Propagate any known information
1016 about the two SSA names into the new candidate. Return the new
1020 create_mul_ssa_cand (gimple gs
, tree base_in
, tree stride_in
, bool speed
)
1022 tree base
= NULL_TREE
, stride
= NULL_TREE
, ctype
= NULL_TREE
;
1024 unsigned savings
= 0;
1026 slsr_cand_t base_cand
= base_cand_from_table (base_in
);
1028 /* Look at all interpretations of the base candidate, if necessary,
1029 to find information to propagate into this candidate. */
1030 while (base_cand
&& !base
&& base_cand
->kind
!= CAND_PHI
)
1033 if (base_cand
->kind
== CAND_MULT
&& integer_onep (base_cand
->stride
))
1039 base
= base_cand
->base_expr
;
1040 index
= base_cand
->index
;
1042 ctype
= base_cand
->cand_type
;
1043 if (has_single_use (base_in
))
1044 savings
= (base_cand
->dead_savings
1045 + stmt_cost (base_cand
->cand_stmt
, speed
));
1047 else if (base_cand
->kind
== CAND_ADD
1048 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
)
1050 /* Y = B + (i' * S), S constant
1052 ============================
1053 X = B + ((i' * S) * Z) */
1054 base
= base_cand
->base_expr
;
1055 index
= base_cand
->index
* wi::to_widest (base_cand
->stride
);
1057 ctype
= base_cand
->cand_type
;
1058 if (has_single_use (base_in
))
1059 savings
= (base_cand
->dead_savings
1060 + stmt_cost (base_cand
->cand_stmt
, speed
));
1063 if (base_cand
->next_interp
)
1064 base_cand
= lookup_cand (base_cand
->next_interp
);
1071 /* No interpretations had anything useful to propagate, so
1072 produce X = (Y + 0) * Z. */
1076 ctype
= TREE_TYPE (base_in
);
1079 c
= alloc_cand_and_find_basis (CAND_MULT
, gs
, base
, index
, stride
,
1084 /* Create a candidate entry for a statement GS, where GS multiplies
1085 SSA name BASE_IN by constant STRIDE_IN. Propagate any known
1086 information about BASE_IN into the new candidate. Return the new
1090 create_mul_imm_cand (gimple gs
, tree base_in
, tree stride_in
, bool speed
)
1092 tree base
= NULL_TREE
, stride
= NULL_TREE
, ctype
= NULL_TREE
;
1093 widest_int index
, temp
;
1094 unsigned savings
= 0;
1096 slsr_cand_t base_cand
= base_cand_from_table (base_in
);
1098 /* Look at all interpretations of the base candidate, if necessary,
1099 to find information to propagate into this candidate. */
1100 while (base_cand
&& !base
&& base_cand
->kind
!= CAND_PHI
)
1102 if (base_cand
->kind
== CAND_MULT
1103 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
)
1105 /* Y = (B + i') * S, S constant
1107 ============================
1108 X = (B + i') * (S * c) */
1109 temp
= wi::to_widest (base_cand
->stride
) * wi::to_widest (stride_in
);
1110 if (wi::fits_to_tree_p (temp
, TREE_TYPE (stride_in
)))
1112 base
= base_cand
->base_expr
;
1113 index
= base_cand
->index
;
1114 stride
= wide_int_to_tree (TREE_TYPE (stride_in
), temp
);
1115 ctype
= base_cand
->cand_type
;
1116 if (has_single_use (base_in
))
1117 savings
= (base_cand
->dead_savings
1118 + stmt_cost (base_cand
->cand_stmt
, speed
));
1121 else if (base_cand
->kind
== CAND_ADD
&& integer_onep (base_cand
->stride
))
1125 ===========================
1127 base
= base_cand
->base_expr
;
1128 index
= base_cand
->index
;
1130 ctype
= base_cand
->cand_type
;
1131 if (has_single_use (base_in
))
1132 savings
= (base_cand
->dead_savings
1133 + stmt_cost (base_cand
->cand_stmt
, speed
));
1135 else if (base_cand
->kind
== CAND_ADD
1136 && base_cand
->index
== 1
1137 && TREE_CODE (base_cand
->stride
) == INTEGER_CST
)
1139 /* Y = B + (1 * S), S constant
1141 ===========================
1143 base
= base_cand
->base_expr
;
1144 index
= wi::to_widest (base_cand
->stride
);
1146 ctype
= base_cand
->cand_type
;
1147 if (has_single_use (base_in
))
1148 savings
= (base_cand
->dead_savings
1149 + stmt_cost (base_cand
->cand_stmt
, speed
));
1152 if (base_cand
->next_interp
)
1153 base_cand
= lookup_cand (base_cand
->next_interp
);
1160 /* No interpretations had anything useful to propagate, so
1161 produce X = (Y + 0) * c. */
1165 ctype
= TREE_TYPE (base_in
);
1168 c
= alloc_cand_and_find_basis (CAND_MULT
, gs
, base
, index
, stride
,
1173 /* Given GS which is a multiply of scalar integers, make an appropriate
1174 entry in the candidate table. If this is a multiply of two SSA names,
1175 create two CAND_MULT interpretations and attempt to find a basis for
1176 each of them. Otherwise, create a single CAND_MULT and attempt to
1180 slsr_process_mul (gimple gs
, tree rhs1
, tree rhs2
, bool speed
)
1184 /* If this is a multiply of an SSA name with itself, it is highly
1185 unlikely that we will get a strength reduction opportunity, so
1186 don't record it as a candidate. This simplifies the logic for
1187 finding a basis, so if this is removed that must be considered. */
1191 if (TREE_CODE (rhs2
) == SSA_NAME
)
1193 /* Record an interpretation of this statement in the candidate table
1194 assuming RHS1 is the base expression and RHS2 is the stride. */
1195 c
= create_mul_ssa_cand (gs
, rhs1
, rhs2
, speed
);
1197 /* Add the first interpretation to the statement-candidate mapping. */
1198 add_cand_for_stmt (gs
, c
);
1200 /* Record another interpretation of this statement assuming RHS1
1201 is the stride and RHS2 is the base expression. */
1202 c2
= create_mul_ssa_cand (gs
, rhs2
, rhs1
, speed
);
1203 c
->next_interp
= c2
->cand_num
;
1207 /* Record an interpretation for the multiply-immediate. */
1208 c
= create_mul_imm_cand (gs
, rhs1
, rhs2
, speed
);
1210 /* Add the interpretation to the statement-candidate mapping. */
1211 add_cand_for_stmt (gs
, c
);
1215 /* Create a candidate entry for a statement GS, where GS adds two
1216 SSA names BASE_IN and ADDEND_IN if SUBTRACT_P is false, and
1217 subtracts ADDEND_IN from BASE_IN otherwise. Propagate any known
1218 information about the two SSA names into the new candidate.
1219 Return the new candidate. */
1222 create_add_ssa_cand (gimple gs
, tree base_in
, tree addend_in
,
1223 bool subtract_p
, bool speed
)
1225 tree base
= NULL_TREE
, stride
= NULL_TREE
, ctype
= NULL
;
1227 unsigned savings
= 0;
1229 slsr_cand_t base_cand
= base_cand_from_table (base_in
);
1230 slsr_cand_t addend_cand
= base_cand_from_table (addend_in
);
1232 /* The most useful transformation is a multiply-immediate feeding
1233 an add or subtract. Look for that first. */
1234 while (addend_cand
&& !base
&& addend_cand
->kind
!= CAND_PHI
)
1236 if (addend_cand
->kind
== CAND_MULT
1237 && addend_cand
->index
== 0
1238 && TREE_CODE (addend_cand
->stride
) == INTEGER_CST
)
1240 /* Z = (B + 0) * S, S constant
1242 ===========================
1243 X = Y + ((+/-1 * S) * B) */
1245 index
= wi::to_widest (addend_cand
->stride
);
1248 stride
= addend_cand
->base_expr
;
1249 ctype
= TREE_TYPE (base_in
);
1250 if (has_single_use (addend_in
))
1251 savings
= (addend_cand
->dead_savings
1252 + stmt_cost (addend_cand
->cand_stmt
, speed
));
1255 if (addend_cand
->next_interp
)
1256 addend_cand
= lookup_cand (addend_cand
->next_interp
);
1261 while (base_cand
&& !base
&& base_cand
->kind
!= CAND_PHI
)
1263 if (base_cand
->kind
== CAND_ADD
1264 && (base_cand
->index
== 0
1265 || operand_equal_p (base_cand
->stride
,
1266 integer_zero_node
, 0)))
1268 /* Y = B + (i' * S), i' * S = 0
1270 ============================
1271 X = B + (+/-1 * Z) */
1272 base
= base_cand
->base_expr
;
1273 index
= subtract_p
? -1 : 1;
1275 ctype
= base_cand
->cand_type
;
1276 if (has_single_use (base_in
))
1277 savings
= (base_cand
->dead_savings
1278 + stmt_cost (base_cand
->cand_stmt
, speed
));
1280 else if (subtract_p
)
1282 slsr_cand_t subtrahend_cand
= base_cand_from_table (addend_in
);
1284 while (subtrahend_cand
&& !base
&& subtrahend_cand
->kind
!= CAND_PHI
)
1286 if (subtrahend_cand
->kind
== CAND_MULT
1287 && subtrahend_cand
->index
== 0
1288 && TREE_CODE (subtrahend_cand
->stride
) == INTEGER_CST
)
1290 /* Z = (B + 0) * S, S constant
1292 ===========================
1293 Value: X = Y + ((-1 * S) * B) */
1295 index
= wi::to_widest (subtrahend_cand
->stride
);
1297 stride
= subtrahend_cand
->base_expr
;
1298 ctype
= TREE_TYPE (base_in
);
1299 if (has_single_use (addend_in
))
1300 savings
= (subtrahend_cand
->dead_savings
1301 + stmt_cost (subtrahend_cand
->cand_stmt
, speed
));
1304 if (subtrahend_cand
->next_interp
)
1305 subtrahend_cand
= lookup_cand (subtrahend_cand
->next_interp
);
1307 subtrahend_cand
= NULL
;
1311 if (base_cand
->next_interp
)
1312 base_cand
= lookup_cand (base_cand
->next_interp
);
1319 /* No interpretations had anything useful to propagate, so
1320 produce X = Y + (1 * Z). */
1322 index
= subtract_p
? -1 : 1;
1324 ctype
= TREE_TYPE (base_in
);
1327 c
= alloc_cand_and_find_basis (CAND_ADD
, gs
, base
, index
, stride
,
1332 /* Create a candidate entry for a statement GS, where GS adds SSA
1333 name BASE_IN to constant INDEX_IN. Propagate any known information
1334 about BASE_IN into the new candidate. Return the new candidate. */
1337 create_add_imm_cand (gimple gs
, tree base_in
, const widest_int
&index_in
,
1340 enum cand_kind kind
= CAND_ADD
;
1341 tree base
= NULL_TREE
, stride
= NULL_TREE
, ctype
= NULL_TREE
;
1342 widest_int index
, multiple
;
1343 unsigned savings
= 0;
1345 slsr_cand_t base_cand
= base_cand_from_table (base_in
);
1347 while (base_cand
&& !base
&& base_cand
->kind
!= CAND_PHI
)
1349 signop sign
= TYPE_SIGN (TREE_TYPE (base_cand
->stride
));
1351 if (TREE_CODE (base_cand
->stride
) == INTEGER_CST
1352 && wi::multiple_of_p (index_in
, wi::to_widest (base_cand
->stride
),
1355 /* Y = (B + i') * S, S constant, c = kS for some integer k
1357 ============================
1358 X = (B + (i'+ k)) * S
1360 Y = B + (i' * S), S constant, c = kS for some integer k
1362 ============================
1363 X = (B + (i'+ k)) * S */
1364 kind
= base_cand
->kind
;
1365 base
= base_cand
->base_expr
;
1366 index
= base_cand
->index
+ multiple
;
1367 stride
= base_cand
->stride
;
1368 ctype
= base_cand
->cand_type
;
1369 if (has_single_use (base_in
))
1370 savings
= (base_cand
->dead_savings
1371 + stmt_cost (base_cand
->cand_stmt
, speed
));
1374 if (base_cand
->next_interp
)
1375 base_cand
= lookup_cand (base_cand
->next_interp
);
1382 /* No interpretations had anything useful to propagate, so
1383 produce X = Y + (c * 1). */
1387 stride
= integer_one_node
;
1388 ctype
= TREE_TYPE (base_in
);
1391 c
= alloc_cand_and_find_basis (kind
, gs
, base
, index
, stride
,
1396 /* Given GS which is an add or subtract of scalar integers or pointers,
1397 make at least one appropriate entry in the candidate table. */
1400 slsr_process_add (gimple gs
, tree rhs1
, tree rhs2
, bool speed
)
1402 bool subtract_p
= gimple_assign_rhs_code (gs
) == MINUS_EXPR
;
1403 slsr_cand_t c
= NULL
, c2
;
1405 if (TREE_CODE (rhs2
) == SSA_NAME
)
1407 /* First record an interpretation assuming RHS1 is the base expression
1408 and RHS2 is the stride. But it doesn't make sense for the
1409 stride to be a pointer, so don't record a candidate in that case. */
1410 if (!POINTER_TYPE_P (TREE_TYPE (rhs2
)))
1412 c
= create_add_ssa_cand (gs
, rhs1
, rhs2
, subtract_p
, speed
);
1414 /* Add the first interpretation to the statement-candidate
1416 add_cand_for_stmt (gs
, c
);
1419 /* If the two RHS operands are identical, or this is a subtract,
1421 if (operand_equal_p (rhs1
, rhs2
, 0) || subtract_p
)
1424 /* Otherwise, record another interpretation assuming RHS2 is the
1425 base expression and RHS1 is the stride, again provided that the
1426 stride is not a pointer. */
1427 if (!POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1429 c2
= create_add_ssa_cand (gs
, rhs2
, rhs1
, false, speed
);
1431 c
->next_interp
= c2
->cand_num
;
1433 add_cand_for_stmt (gs
, c2
);
1438 /* Record an interpretation for the add-immediate. */
1439 widest_int index
= wi::to_widest (rhs2
);
1443 c
= create_add_imm_cand (gs
, rhs1
, index
, speed
);
1445 /* Add the interpretation to the statement-candidate mapping. */
1446 add_cand_for_stmt (gs
, c
);
1450 /* Given GS which is a negate of a scalar integer, make an appropriate
1451 entry in the candidate table. A negate is equivalent to a multiply
1455 slsr_process_neg (gimple gs
, tree rhs1
, bool speed
)
1457 /* Record a CAND_MULT interpretation for the multiply by -1. */
1458 slsr_cand_t c
= create_mul_imm_cand (gs
, rhs1
, integer_minus_one_node
, speed
);
1460 /* Add the interpretation to the statement-candidate mapping. */
1461 add_cand_for_stmt (gs
, c
);
1464 /* Help function for legal_cast_p, operating on two trees. Checks
1465 whether it's allowable to cast from RHS to LHS. See legal_cast_p
1466 for more details. */
1469 legal_cast_p_1 (tree lhs
, tree rhs
)
1471 tree lhs_type
, rhs_type
;
1472 unsigned lhs_size
, rhs_size
;
1473 bool lhs_wraps
, rhs_wraps
;
1475 lhs_type
= TREE_TYPE (lhs
);
1476 rhs_type
= TREE_TYPE (rhs
);
1477 lhs_size
= TYPE_PRECISION (lhs_type
);
1478 rhs_size
= TYPE_PRECISION (rhs_type
);
1479 lhs_wraps
= TYPE_OVERFLOW_WRAPS (lhs_type
);
1480 rhs_wraps
= TYPE_OVERFLOW_WRAPS (rhs_type
);
1482 if (lhs_size
< rhs_size
1483 || (rhs_wraps
&& !lhs_wraps
)
1484 || (rhs_wraps
&& lhs_wraps
&& rhs_size
!= lhs_size
))
1490 /* Return TRUE if GS is a statement that defines an SSA name from
1491 a conversion and is legal for us to combine with an add and multiply
1492 in the candidate table. For example, suppose we have:
1498 Without the type-cast, we would create a CAND_MULT for D with base B,
1499 index i, and stride S. We want to record this candidate only if it
1500 is equivalent to apply the type cast following the multiply:
1506 We will record the type with the candidate for D. This allows us
1507 to use a similar previous candidate as a basis. If we have earlier seen
1513 we can replace D with
1515 D = D' + (i - i') * S;
1517 But if moving the type-cast would change semantics, we mustn't do this.
1519 This is legitimate for casts from a non-wrapping integral type to
1520 any integral type of the same or larger size. It is not legitimate
1521 to convert a wrapping type to a non-wrapping type, or to a wrapping
1522 type of a different size. I.e., with a wrapping type, we must
1523 assume that the addition B + i could wrap, in which case performing
1524 the multiply before or after one of the "illegal" type casts will
1525 have different semantics. */
1528 legal_cast_p (gimple gs
, tree rhs
)
1530 if (!is_gimple_assign (gs
)
1531 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs
)))
1534 return legal_cast_p_1 (gimple_assign_lhs (gs
), rhs
);
1537 /* Given GS which is a cast to a scalar integer type, determine whether
1538 the cast is legal for strength reduction. If so, make at least one
1539 appropriate entry in the candidate table. */
1542 slsr_process_cast (gimple gs
, tree rhs1
, bool speed
)
1545 slsr_cand_t base_cand
, c
, c2
;
1546 unsigned savings
= 0;
1548 if (!legal_cast_p (gs
, rhs1
))
1551 lhs
= gimple_assign_lhs (gs
);
1552 base_cand
= base_cand_from_table (rhs1
);
1553 ctype
= TREE_TYPE (lhs
);
1555 if (base_cand
&& base_cand
->kind
!= CAND_PHI
)
1559 /* Propagate all data from the base candidate except the type,
1560 which comes from the cast, and the base candidate's cast,
1561 which is no longer applicable. */
1562 if (has_single_use (rhs1
))
1563 savings
= (base_cand
->dead_savings
1564 + stmt_cost (base_cand
->cand_stmt
, speed
));
1566 c
= alloc_cand_and_find_basis (base_cand
->kind
, gs
,
1567 base_cand
->base_expr
,
1568 base_cand
->index
, base_cand
->stride
,
1570 if (base_cand
->next_interp
)
1571 base_cand
= lookup_cand (base_cand
->next_interp
);
1578 /* If nothing is known about the RHS, create fresh CAND_ADD and
1579 CAND_MULT interpretations:
1584 The first of these is somewhat arbitrary, but the choice of
1585 1 for the stride simplifies the logic for propagating casts
1587 c
= alloc_cand_and_find_basis (CAND_ADD
, gs
, rhs1
,
1588 0, integer_one_node
, ctype
, 0);
1589 c2
= alloc_cand_and_find_basis (CAND_MULT
, gs
, rhs1
,
1590 0, integer_one_node
, ctype
, 0);
1591 c
->next_interp
= c2
->cand_num
;
1594 /* Add the first (or only) interpretation to the statement-candidate
1596 add_cand_for_stmt (gs
, c
);
1599 /* Given GS which is a copy of a scalar integer type, make at least one
1600 appropriate entry in the candidate table.
1602 This interface is included for completeness, but is unnecessary
1603 if this pass immediately follows a pass that performs copy
1604 propagation, such as DOM. */
1607 slsr_process_copy (gimple gs
, tree rhs1
, bool speed
)
1609 slsr_cand_t base_cand
, c
, c2
;
1610 unsigned savings
= 0;
1612 base_cand
= base_cand_from_table (rhs1
);
1614 if (base_cand
&& base_cand
->kind
!= CAND_PHI
)
1618 /* Propagate all data from the base candidate. */
1619 if (has_single_use (rhs1
))
1620 savings
= (base_cand
->dead_savings
1621 + stmt_cost (base_cand
->cand_stmt
, speed
));
1623 c
= alloc_cand_and_find_basis (base_cand
->kind
, gs
,
1624 base_cand
->base_expr
,
1625 base_cand
->index
, base_cand
->stride
,
1626 base_cand
->cand_type
, savings
);
1627 if (base_cand
->next_interp
)
1628 base_cand
= lookup_cand (base_cand
->next_interp
);
1635 /* If nothing is known about the RHS, create fresh CAND_ADD and
1636 CAND_MULT interpretations:
1641 The first of these is somewhat arbitrary, but the choice of
1642 1 for the stride simplifies the logic for propagating casts
1644 c
= alloc_cand_and_find_basis (CAND_ADD
, gs
, rhs1
,
1645 0, integer_one_node
, TREE_TYPE (rhs1
), 0);
1646 c2
= alloc_cand_and_find_basis (CAND_MULT
, gs
, rhs1
,
1647 0, integer_one_node
, TREE_TYPE (rhs1
), 0);
1648 c
->next_interp
= c2
->cand_num
;
1651 /* Add the first (or only) interpretation to the statement-candidate
1653 add_cand_for_stmt (gs
, c
);
1656 class find_candidates_dom_walker
: public dom_walker
1659 find_candidates_dom_walker (cdi_direction direction
)
1660 : dom_walker (direction
) {}
1661 virtual void before_dom_children (basic_block
);
1664 /* Find strength-reduction candidates in block BB. */
1667 find_candidates_dom_walker::before_dom_children (basic_block bb
)
1669 bool speed
= optimize_bb_for_speed_p (bb
);
1670 gimple_stmt_iterator gsi
;
1672 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1673 slsr_process_phi (gsi_stmt (gsi
), speed
);
1675 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1677 gimple gs
= gsi_stmt (gsi
);
1679 if (gimple_vuse (gs
) && gimple_assign_single_p (gs
))
1680 slsr_process_ref (gs
);
1682 else if (is_gimple_assign (gs
)
1683 && SCALAR_INT_MODE_P
1684 (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs
)))))
1686 tree rhs1
= NULL_TREE
, rhs2
= NULL_TREE
;
1688 switch (gimple_assign_rhs_code (gs
))
1692 rhs1
= gimple_assign_rhs1 (gs
);
1693 rhs2
= gimple_assign_rhs2 (gs
);
1694 /* Should never happen, but currently some buggy situations
1695 in earlier phases put constants in rhs1. */
1696 if (TREE_CODE (rhs1
) != SSA_NAME
)
1700 /* Possible future opportunity: rhs1 of a ptr+ can be
1702 case POINTER_PLUS_EXPR
:
1704 rhs2
= gimple_assign_rhs2 (gs
);
1710 rhs1
= gimple_assign_rhs1 (gs
);
1711 if (TREE_CODE (rhs1
) != SSA_NAME
)
1719 switch (gimple_assign_rhs_code (gs
))
1722 slsr_process_mul (gs
, rhs1
, rhs2
, speed
);
1726 case POINTER_PLUS_EXPR
:
1728 slsr_process_add (gs
, rhs1
, rhs2
, speed
);
1732 slsr_process_neg (gs
, rhs1
, speed
);
1736 slsr_process_cast (gs
, rhs1
, speed
);
1740 slsr_process_copy (gs
, rhs1
, speed
);
1750 /* Dump a candidate for debug. */
1753 dump_candidate (slsr_cand_t c
)
1755 fprintf (dump_file
, "%3d [%d] ", c
->cand_num
,
1756 gimple_bb (c
->cand_stmt
)->index
);
1757 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0, 0);
1761 fputs (" MULT : (", dump_file
);
1762 print_generic_expr (dump_file
, c
->base_expr
, 0);
1763 fputs (" + ", dump_file
);
1764 print_decs (c
->index
, dump_file
);
1765 fputs (") * ", dump_file
);
1766 print_generic_expr (dump_file
, c
->stride
, 0);
1767 fputs (" : ", dump_file
);
1770 fputs (" ADD : ", dump_file
);
1771 print_generic_expr (dump_file
, c
->base_expr
, 0);
1772 fputs (" + (", dump_file
);
1773 print_decs (c
->index
, dump_file
);
1774 fputs (" * ", dump_file
);
1775 print_generic_expr (dump_file
, c
->stride
, 0);
1776 fputs (") : ", dump_file
);
1779 fputs (" REF : ", dump_file
);
1780 print_generic_expr (dump_file
, c
->base_expr
, 0);
1781 fputs (" + (", dump_file
);
1782 print_generic_expr (dump_file
, c
->stride
, 0);
1783 fputs (") + ", dump_file
);
1784 print_decs (c
->index
, dump_file
);
1785 fputs (" : ", dump_file
);
1788 fputs (" PHI : ", dump_file
);
1789 print_generic_expr (dump_file
, c
->base_expr
, 0);
1790 fputs (" + (unknown * ", dump_file
);
1791 print_generic_expr (dump_file
, c
->stride
, 0);
1792 fputs (") : ", dump_file
);
1797 print_generic_expr (dump_file
, c
->cand_type
, 0);
1798 fprintf (dump_file
, "\n basis: %d dependent: %d sibling: %d\n",
1799 c
->basis
, c
->dependent
, c
->sibling
);
1800 fprintf (dump_file
, " next-interp: %d dead-savings: %d\n",
1801 c
->next_interp
, c
->dead_savings
);
1803 fprintf (dump_file
, " phi: %d\n", c
->def_phi
);
1804 fputs ("\n", dump_file
);
1807 /* Dump the candidate vector for debug. */
1810 dump_cand_vec (void)
1815 fprintf (dump_file
, "\nStrength reduction candidate vector:\n\n");
1817 FOR_EACH_VEC_ELT (cand_vec
, i
, c
)
1821 /* Callback used to dump the candidate chains hash table. */
1824 ssa_base_cand_dump_callback (cand_chain
**slot
, void *ignored ATTRIBUTE_UNUSED
)
1826 const_cand_chain_t chain
= *slot
;
1829 print_generic_expr (dump_file
, chain
->base_expr
, 0);
1830 fprintf (dump_file
, " -> %d", chain
->cand
->cand_num
);
1832 for (p
= chain
->next
; p
; p
= p
->next
)
1833 fprintf (dump_file
, " -> %d", p
->cand
->cand_num
);
1835 fputs ("\n", dump_file
);
1839 /* Dump the candidate chains. */
1842 dump_cand_chains (void)
1844 fprintf (dump_file
, "\nStrength reduction candidate chains:\n\n");
1845 base_cand_map
->traverse_noresize
<void *, ssa_base_cand_dump_callback
>
1847 fputs ("\n", dump_file
);
1850 /* Dump the increment vector for debug. */
1853 dump_incr_vec (void)
1855 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1859 fprintf (dump_file
, "\nIncrement vector:\n\n");
1861 for (i
= 0; i
< incr_vec_len
; i
++)
1863 fprintf (dump_file
, "%3d increment: ", i
);
1864 print_decs (incr_vec
[i
].incr
, dump_file
);
1865 fprintf (dump_file
, "\n count: %d", incr_vec
[i
].count
);
1866 fprintf (dump_file
, "\n cost: %d", incr_vec
[i
].cost
);
1867 fputs ("\n initializer: ", dump_file
);
1868 print_generic_expr (dump_file
, incr_vec
[i
].initializer
, 0);
1869 fputs ("\n\n", dump_file
);
1874 /* Replace *EXPR in candidate C with an equivalent strength-reduced
1878 replace_ref (tree
*expr
, slsr_cand_t c
)
1880 tree add_expr
, mem_ref
, acc_type
= TREE_TYPE (*expr
);
1881 unsigned HOST_WIDE_INT misalign
;
1884 /* Ensure the memory reference carries the minimum alignment
1885 requirement for the data type. See PR58041. */
1886 get_object_alignment_1 (*expr
, &align
, &misalign
);
1888 align
= (misalign
& -misalign
);
1889 if (align
< TYPE_ALIGN (acc_type
))
1890 acc_type
= build_aligned_type (acc_type
, align
);
1892 add_expr
= fold_build2 (POINTER_PLUS_EXPR
, TREE_TYPE (c
->base_expr
),
1893 c
->base_expr
, c
->stride
);
1894 mem_ref
= fold_build2 (MEM_REF
, acc_type
, add_expr
,
1895 wide_int_to_tree (c
->cand_type
, c
->index
));
1897 /* Gimplify the base addressing expression for the new MEM_REF tree. */
1898 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
1899 TREE_OPERAND (mem_ref
, 0)
1900 = force_gimple_operand_gsi (&gsi
, TREE_OPERAND (mem_ref
, 0),
1901 /*simple_p=*/true, NULL
,
1902 /*before=*/true, GSI_SAME_STMT
);
1903 copy_ref_info (mem_ref
, *expr
);
1905 update_stmt (c
->cand_stmt
);
1908 /* Replace CAND_REF candidate C, each sibling of candidate C, and each
1909 dependent of candidate C with an equivalent strength-reduced data
1913 replace_refs (slsr_cand_t c
)
1915 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1917 fputs ("Replacing reference: ", dump_file
);
1918 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0, 0);
1921 if (gimple_vdef (c
->cand_stmt
))
1923 tree
*lhs
= gimple_assign_lhs_ptr (c
->cand_stmt
);
1924 replace_ref (lhs
, c
);
1928 tree
*rhs
= gimple_assign_rhs1_ptr (c
->cand_stmt
);
1929 replace_ref (rhs
, c
);
1932 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1934 fputs ("With: ", dump_file
);
1935 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0, 0);
1936 fputs ("\n", dump_file
);
1940 replace_refs (lookup_cand (c
->sibling
));
1943 replace_refs (lookup_cand (c
->dependent
));
1946 /* Return TRUE if candidate C is dependent upon a PHI. */
1949 phi_dependent_cand_p (slsr_cand_t c
)
1951 /* A candidate is not necessarily dependent upon a PHI just because
1952 it has a phi definition for its base name. It may have a basis
1953 that relies upon the same phi definition, in which case the PHI
1954 is irrelevant to this candidate. */
1957 && lookup_cand (c
->basis
)->def_phi
!= c
->def_phi
);
1960 /* Calculate the increment required for candidate C relative to
1964 cand_increment (slsr_cand_t c
)
1968 /* If the candidate doesn't have a basis, just return its own
1969 index. This is useful in record_increments to help us find
1970 an existing initializer. Also, if the candidate's basis is
1971 hidden by a phi, then its own index will be the increment
1972 from the newly introduced phi basis. */
1973 if (!c
->basis
|| phi_dependent_cand_p (c
))
1976 basis
= lookup_cand (c
->basis
);
1977 gcc_assert (operand_equal_p (c
->base_expr
, basis
->base_expr
, 0));
1978 return c
->index
- basis
->index
;
1981 /* Calculate the increment required for candidate C relative to
1982 its basis. If we aren't going to generate pointer arithmetic
1983 for this candidate, return the absolute value of that increment
1986 static inline widest_int
1987 cand_abs_increment (slsr_cand_t c
)
1989 widest_int increment
= cand_increment (c
);
1991 if (!address_arithmetic_p
&& wi::neg_p (increment
))
1992 increment
= -increment
;
1997 /* Return TRUE iff candidate C has already been replaced under
1998 another interpretation. */
2001 cand_already_replaced (slsr_cand_t c
)
2003 return (gimple_bb (c
->cand_stmt
) == 0);
2006 /* Common logic used by replace_unconditional_candidate and
2007 replace_conditional_candidate. */
2010 replace_mult_candidate (slsr_cand_t c
, tree basis_name
, widest_int bump
)
2012 tree target_type
= TREE_TYPE (gimple_assign_lhs (c
->cand_stmt
));
2013 enum tree_code cand_code
= gimple_assign_rhs_code (c
->cand_stmt
);
2015 /* It is highly unlikely, but possible, that the resulting
2016 bump doesn't fit in a HWI. Abandon the replacement
2017 in this case. This does not affect siblings or dependents
2018 of C. Restriction to signed HWI is conservative for unsigned
2019 types but allows for safe negation without twisted logic. */
2020 if (wi::fits_shwi_p (bump
)
2021 && bump
.to_shwi () != HOST_WIDE_INT_MIN
2022 /* It is not useful to replace casts, copies, or adds of
2023 an SSA name and a constant. */
2024 && cand_code
!= MODIFY_EXPR
2025 && cand_code
!= NOP_EXPR
2026 && cand_code
!= PLUS_EXPR
2027 && cand_code
!= POINTER_PLUS_EXPR
2028 && cand_code
!= MINUS_EXPR
)
2030 enum tree_code code
= PLUS_EXPR
;
2032 gimple stmt_to_print
= NULL
;
2034 /* If the basis name and the candidate's LHS have incompatible
2035 types, introduce a cast. */
2036 if (!useless_type_conversion_p (target_type
, TREE_TYPE (basis_name
)))
2037 basis_name
= introduce_cast_before_cand (c
, target_type
, basis_name
);
2038 if (wi::neg_p (bump
))
2044 bump_tree
= wide_int_to_tree (target_type
, bump
);
2046 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2048 fputs ("Replacing: ", dump_file
);
2049 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0, 0);
2054 tree lhs
= gimple_assign_lhs (c
->cand_stmt
);
2055 gimple copy_stmt
= gimple_build_assign (lhs
, basis_name
);
2056 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
2057 gimple_set_location (copy_stmt
, gimple_location (c
->cand_stmt
));
2058 gsi_replace (&gsi
, copy_stmt
, false);
2059 c
->cand_stmt
= copy_stmt
;
2060 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2061 stmt_to_print
= copy_stmt
;
2066 if (cand_code
!= NEGATE_EXPR
) {
2067 rhs1
= gimple_assign_rhs1 (c
->cand_stmt
);
2068 rhs2
= gimple_assign_rhs2 (c
->cand_stmt
);
2070 if (cand_code
!= NEGATE_EXPR
2071 && ((operand_equal_p (rhs1
, basis_name
, 0)
2072 && operand_equal_p (rhs2
, bump_tree
, 0))
2073 || (operand_equal_p (rhs1
, bump_tree
, 0)
2074 && operand_equal_p (rhs2
, basis_name
, 0))))
2076 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2078 fputs ("(duplicate, not actually replacing)", dump_file
);
2079 stmt_to_print
= c
->cand_stmt
;
2084 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
2085 gimple_assign_set_rhs_with_ops (&gsi
, code
,
2086 basis_name
, bump_tree
);
2087 update_stmt (gsi_stmt (gsi
));
2088 c
->cand_stmt
= gsi_stmt (gsi
);
2089 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2090 stmt_to_print
= gsi_stmt (gsi
);
2094 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2096 fputs ("With: ", dump_file
);
2097 print_gimple_stmt (dump_file
, stmt_to_print
, 0, 0);
2098 fputs ("\n", dump_file
);
2103 /* Replace candidate C with an add or subtract. Note that we only
2104 operate on CAND_MULTs with known strides, so we will never generate
2105 a POINTER_PLUS_EXPR. Each candidate X = (B + i) * S is replaced by
2106 X = Y + ((i - i') * S), as described in the module commentary. The
2107 folded value ((i - i') * S) is referred to here as the "bump." */
2110 replace_unconditional_candidate (slsr_cand_t c
)
2114 if (cand_already_replaced (c
))
2117 basis
= lookup_cand (c
->basis
);
2118 widest_int bump
= cand_increment (c
) * wi::to_widest (c
->stride
);
2120 replace_mult_candidate (c
, gimple_assign_lhs (basis
->cand_stmt
), bump
);
2123 /* Return the index in the increment vector of the given INCREMENT,
2124 or -1 if not found. The latter can occur if more than
2125 MAX_INCR_VEC_LEN increments have been found. */
2128 incr_vec_index (const widest_int
&increment
)
2132 for (i
= 0; i
< incr_vec_len
&& increment
!= incr_vec
[i
].incr
; i
++)
2135 if (i
< incr_vec_len
)
2141 /* Create a new statement along edge E to add BASIS_NAME to the product
2142 of INCREMENT and the stride of candidate C. Create and return a new
2143 SSA name from *VAR to be used as the LHS of the new statement.
2144 KNOWN_STRIDE is true iff C's stride is a constant. */
2147 create_add_on_incoming_edge (slsr_cand_t c
, tree basis_name
,
2148 widest_int increment
, edge e
, location_t loc
,
2151 basic_block insert_bb
;
2152 gimple_stmt_iterator gsi
;
2153 tree lhs
, basis_type
;
2156 /* If the add candidate along this incoming edge has the same
2157 index as C's hidden basis, the hidden basis represents this
2162 basis_type
= TREE_TYPE (basis_name
);
2163 lhs
= make_temp_ssa_name (basis_type
, NULL
, "slsr");
2168 enum tree_code code
= PLUS_EXPR
;
2169 widest_int bump
= increment
* wi::to_widest (c
->stride
);
2170 if (wi::neg_p (bump
))
2176 bump_tree
= wide_int_to_tree (basis_type
, bump
);
2177 new_stmt
= gimple_build_assign_with_ops (code
, lhs
, basis_name
,
2183 bool negate_incr
= (!address_arithmetic_p
&& wi::neg_p (increment
));
2184 i
= incr_vec_index (negate_incr
? -increment
: increment
);
2185 gcc_assert (i
>= 0);
2187 if (incr_vec
[i
].initializer
)
2189 enum tree_code code
= negate_incr
? MINUS_EXPR
: PLUS_EXPR
;
2190 new_stmt
= gimple_build_assign_with_ops (code
, lhs
, basis_name
,
2191 incr_vec
[i
].initializer
);
2193 else if (increment
== 1)
2194 new_stmt
= gimple_build_assign_with_ops (PLUS_EXPR
, lhs
, basis_name
,
2196 else if (increment
== -1)
2197 new_stmt
= gimple_build_assign_with_ops (MINUS_EXPR
, lhs
, basis_name
,
2203 insert_bb
= single_succ_p (e
->src
) ? e
->src
: split_edge (e
);
2204 gsi
= gsi_last_bb (insert_bb
);
2206 if (!gsi_end_p (gsi
) && is_ctrl_stmt (gsi_stmt (gsi
)))
2207 gsi_insert_before (&gsi
, new_stmt
, GSI_NEW_STMT
);
2209 gsi_insert_after (&gsi
, new_stmt
, GSI_NEW_STMT
);
2211 gimple_set_location (new_stmt
, loc
);
2213 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2215 fprintf (dump_file
, "Inserting in block %d: ", insert_bb
->index
);
2216 print_gimple_stmt (dump_file
, new_stmt
, 0, 0);
2222 /* Given a candidate C with BASIS_NAME being the LHS of C's basis which
2223 is hidden by the phi node FROM_PHI, create a new phi node in the same
2224 block as FROM_PHI. The new phi is suitable for use as a basis by C,
2225 with its phi arguments representing conditional adjustments to the
2226 hidden basis along conditional incoming paths. Those adjustments are
2227 made by creating add statements (and sometimes recursively creating
2228 phis) along those incoming paths. LOC is the location to attach to
2229 the introduced statements. KNOWN_STRIDE is true iff C's stride is a
2233 create_phi_basis (slsr_cand_t c
, gimple from_phi
, tree basis_name
,
2234 location_t loc
, bool known_stride
)
2240 slsr_cand_t basis
= lookup_cand (c
->basis
);
2241 int nargs
= gimple_phi_num_args (from_phi
);
2242 basic_block phi_bb
= gimple_bb (from_phi
);
2243 slsr_cand_t phi_cand
= base_cand_from_table (gimple_phi_result (from_phi
));
2244 phi_args
.create (nargs
);
2246 /* Process each argument of the existing phi that represents
2247 conditionally-executed add candidates. */
2248 for (i
= 0; i
< nargs
; i
++)
2250 edge e
= (*phi_bb
->preds
)[i
];
2251 tree arg
= gimple_phi_arg_def (from_phi
, i
);
2254 /* If the phi argument is the base name of the CAND_PHI, then
2255 this incoming arc should use the hidden basis. */
2256 if (operand_equal_p (arg
, phi_cand
->base_expr
, 0))
2257 if (basis
->index
== 0)
2258 feeding_def
= gimple_assign_lhs (basis
->cand_stmt
);
2261 widest_int incr
= -basis
->index
;
2262 feeding_def
= create_add_on_incoming_edge (c
, basis_name
, incr
,
2263 e
, loc
, known_stride
);
2267 gimple arg_def
= SSA_NAME_DEF_STMT (arg
);
2269 /* If there is another phi along this incoming edge, we must
2270 process it in the same fashion to ensure that all basis
2271 adjustments are made along its incoming edges. */
2272 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2273 feeding_def
= create_phi_basis (c
, arg_def
, basis_name
,
2277 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
2278 widest_int diff
= arg_cand
->index
- basis
->index
;
2279 feeding_def
= create_add_on_incoming_edge (c
, basis_name
, diff
,
2280 e
, loc
, known_stride
);
2284 /* Because of recursion, we need to save the arguments in a vector
2285 so we can create the PHI statement all at once. Otherwise the
2286 storage for the half-created PHI can be reclaimed. */
2287 phi_args
.safe_push (feeding_def
);
2290 /* Create the new phi basis. */
2291 name
= make_temp_ssa_name (TREE_TYPE (basis_name
), NULL
, "slsr");
2292 phi
= create_phi_node (name
, phi_bb
);
2293 SSA_NAME_DEF_STMT (name
) = phi
;
2295 FOR_EACH_VEC_ELT (phi_args
, i
, phi_arg
)
2297 edge e
= (*phi_bb
->preds
)[i
];
2298 add_phi_arg (phi
, phi_arg
, e
, loc
);
2303 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2305 fputs ("Introducing new phi basis: ", dump_file
);
2306 print_gimple_stmt (dump_file
, phi
, 0, 0);
2312 /* Given a candidate C whose basis is hidden by at least one intervening
2313 phi, introduce a matching number of new phis to represent its basis
2314 adjusted by conditional increments along possible incoming paths. Then
2315 replace C as though it were an unconditional candidate, using the new
2319 replace_conditional_candidate (slsr_cand_t c
)
2321 tree basis_name
, name
;
2325 /* Look up the LHS SSA name from C's basis. This will be the
2326 RHS1 of the adds we will introduce to create new phi arguments. */
2327 basis
= lookup_cand (c
->basis
);
2328 basis_name
= gimple_assign_lhs (basis
->cand_stmt
);
2330 /* Create a new phi statement which will represent C's true basis
2331 after the transformation is complete. */
2332 loc
= gimple_location (c
->cand_stmt
);
2333 name
= create_phi_basis (c
, lookup_cand (c
->def_phi
)->cand_stmt
,
2334 basis_name
, loc
, KNOWN_STRIDE
);
2335 /* Replace C with an add of the new basis phi and a constant. */
2336 widest_int bump
= c
->index
* wi::to_widest (c
->stride
);
2338 replace_mult_candidate (c
, name
, bump
);
2341 /* Compute the expected costs of inserting basis adjustments for
2342 candidate C with phi-definition PHI. The cost of inserting
2343 one adjustment is given by ONE_ADD_COST. If PHI has arguments
2344 which are themselves phi results, recursively calculate costs
2345 for those phis as well. */
2348 phi_add_costs (gimple phi
, slsr_cand_t c
, int one_add_cost
)
2352 slsr_cand_t phi_cand
= base_cand_from_table (gimple_phi_result (phi
));
2354 /* If we work our way back to a phi that isn't dominated by the hidden
2355 basis, this isn't a candidate for replacement. Indicate this by
2356 returning an unreasonably high cost. It's not easy to detect
2357 these situations when determining the basis, so we defer the
2358 decision until now. */
2359 basic_block phi_bb
= gimple_bb (phi
);
2360 slsr_cand_t basis
= lookup_cand (c
->basis
);
2361 basic_block basis_bb
= gimple_bb (basis
->cand_stmt
);
2363 if (phi_bb
== basis_bb
|| !dominated_by_p (CDI_DOMINATORS
, phi_bb
, basis_bb
))
2364 return COST_INFINITE
;
2366 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2368 tree arg
= gimple_phi_arg_def (phi
, i
);
2370 if (arg
!= phi_cand
->base_expr
)
2372 gimple arg_def
= SSA_NAME_DEF_STMT (arg
);
2374 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2375 cost
+= phi_add_costs (arg_def
, c
, one_add_cost
);
2378 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
2380 if (arg_cand
->index
!= c
->index
)
2381 cost
+= one_add_cost
;
2389 /* For candidate C, each sibling of candidate C, and each dependent of
2390 candidate C, determine whether the candidate is dependent upon a
2391 phi that hides its basis. If not, replace the candidate unconditionally.
2392 Otherwise, determine whether the cost of introducing compensation code
2393 for the candidate is offset by the gains from strength reduction. If
2394 so, replace the candidate and introduce the compensation code. */
2397 replace_uncond_cands_and_profitable_phis (slsr_cand_t c
)
2399 if (phi_dependent_cand_p (c
))
2401 if (c
->kind
== CAND_MULT
)
2403 /* A candidate dependent upon a phi will replace a multiply by
2404 a constant with an add, and will insert at most one add for
2405 each phi argument. Add these costs with the potential dead-code
2406 savings to determine profitability. */
2407 bool speed
= optimize_bb_for_speed_p (gimple_bb (c
->cand_stmt
));
2408 int mult_savings
= stmt_cost (c
->cand_stmt
, speed
);
2409 gimple phi
= lookup_cand (c
->def_phi
)->cand_stmt
;
2410 tree phi_result
= gimple_phi_result (phi
);
2411 int one_add_cost
= add_cost (speed
,
2412 TYPE_MODE (TREE_TYPE (phi_result
)));
2413 int add_costs
= one_add_cost
+ phi_add_costs (phi
, c
, one_add_cost
);
2414 int cost
= add_costs
- mult_savings
- c
->dead_savings
;
2416 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2418 fprintf (dump_file
, " Conditional candidate %d:\n", c
->cand_num
);
2419 fprintf (dump_file
, " add_costs = %d\n", add_costs
);
2420 fprintf (dump_file
, " mult_savings = %d\n", mult_savings
);
2421 fprintf (dump_file
, " dead_savings = %d\n", c
->dead_savings
);
2422 fprintf (dump_file
, " cost = %d\n", cost
);
2423 if (cost
<= COST_NEUTRAL
)
2424 fputs (" Replacing...\n", dump_file
);
2426 fputs (" Not replaced.\n", dump_file
);
2429 if (cost
<= COST_NEUTRAL
)
2430 replace_conditional_candidate (c
);
2434 replace_unconditional_candidate (c
);
2437 replace_uncond_cands_and_profitable_phis (lookup_cand (c
->sibling
));
2440 replace_uncond_cands_and_profitable_phis (lookup_cand (c
->dependent
));
2443 /* Count the number of candidates in the tree rooted at C that have
2444 not already been replaced under other interpretations. */
2447 count_candidates (slsr_cand_t c
)
2449 unsigned count
= cand_already_replaced (c
) ? 0 : 1;
2452 count
+= count_candidates (lookup_cand (c
->sibling
));
2455 count
+= count_candidates (lookup_cand (c
->dependent
));
2460 /* Increase the count of INCREMENT by one in the increment vector.
2461 INCREMENT is associated with candidate C. If INCREMENT is to be
2462 conditionally executed as part of a conditional candidate replacement,
2463 IS_PHI_ADJUST is true, otherwise false. If an initializer
2464 T_0 = stride * I is provided by a candidate that dominates all
2465 candidates with the same increment, also record T_0 for subsequent use. */
2468 record_increment (slsr_cand_t c
, widest_int increment
, bool is_phi_adjust
)
2473 /* Treat increments that differ only in sign as identical so as to
2474 share initializers, unless we are generating pointer arithmetic. */
2475 if (!address_arithmetic_p
&& wi::neg_p (increment
))
2476 increment
= -increment
;
2478 for (i
= 0; i
< incr_vec_len
; i
++)
2480 if (incr_vec
[i
].incr
== increment
)
2482 incr_vec
[i
].count
++;
2485 /* If we previously recorded an initializer that doesn't
2486 dominate this candidate, it's not going to be useful to
2488 if (incr_vec
[i
].initializer
2489 && !dominated_by_p (CDI_DOMINATORS
,
2490 gimple_bb (c
->cand_stmt
),
2491 incr_vec
[i
].init_bb
))
2493 incr_vec
[i
].initializer
= NULL_TREE
;
2494 incr_vec
[i
].init_bb
= NULL
;
2501 if (!found
&& incr_vec_len
< MAX_INCR_VEC_LEN
- 1)
2503 /* The first time we see an increment, create the entry for it.
2504 If this is the root candidate which doesn't have a basis, set
2505 the count to zero. We're only processing it so it can possibly
2506 provide an initializer for other candidates. */
2507 incr_vec
[incr_vec_len
].incr
= increment
;
2508 incr_vec
[incr_vec_len
].count
= c
->basis
|| is_phi_adjust
? 1 : 0;
2509 incr_vec
[incr_vec_len
].cost
= COST_INFINITE
;
2511 /* Optimistically record the first occurrence of this increment
2512 as providing an initializer (if it does); we will revise this
2513 opinion later if it doesn't dominate all other occurrences.
2514 Exception: increments of -1, 0, 1 never need initializers;
2515 and phi adjustments don't ever provide initializers. */
2516 if (c
->kind
== CAND_ADD
2518 && c
->index
== increment
2519 && (wi::gts_p (increment
, 1)
2520 || wi::lts_p (increment
, -1))
2521 && (gimple_assign_rhs_code (c
->cand_stmt
) == PLUS_EXPR
2522 || gimple_assign_rhs_code (c
->cand_stmt
) == POINTER_PLUS_EXPR
))
2524 tree t0
= NULL_TREE
;
2525 tree rhs1
= gimple_assign_rhs1 (c
->cand_stmt
);
2526 tree rhs2
= gimple_assign_rhs2 (c
->cand_stmt
);
2527 if (operand_equal_p (rhs1
, c
->base_expr
, 0))
2529 else if (operand_equal_p (rhs2
, c
->base_expr
, 0))
2532 && SSA_NAME_DEF_STMT (t0
)
2533 && gimple_bb (SSA_NAME_DEF_STMT (t0
)))
2535 incr_vec
[incr_vec_len
].initializer
= t0
;
2536 incr_vec
[incr_vec_len
++].init_bb
2537 = gimple_bb (SSA_NAME_DEF_STMT (t0
));
2541 incr_vec
[incr_vec_len
].initializer
= NULL_TREE
;
2542 incr_vec
[incr_vec_len
++].init_bb
= NULL
;
2547 incr_vec
[incr_vec_len
].initializer
= NULL_TREE
;
2548 incr_vec
[incr_vec_len
++].init_bb
= NULL
;
2553 /* Given phi statement PHI that hides a candidate from its BASIS, find
2554 the increments along each incoming arc (recursively handling additional
2555 phis that may be present) and record them. These increments are the
2556 difference in index between the index-adjusting statements and the
2557 index of the basis. */
2560 record_phi_increments (slsr_cand_t basis
, gimple phi
)
2563 slsr_cand_t phi_cand
= base_cand_from_table (gimple_phi_result (phi
));
2565 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2567 tree arg
= gimple_phi_arg_def (phi
, i
);
2569 if (!operand_equal_p (arg
, phi_cand
->base_expr
, 0))
2571 gimple arg_def
= SSA_NAME_DEF_STMT (arg
);
2573 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2574 record_phi_increments (basis
, arg_def
);
2577 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
2578 widest_int diff
= arg_cand
->index
- basis
->index
;
2579 record_increment (arg_cand
, diff
, PHI_ADJUST
);
2585 /* Determine how many times each unique increment occurs in the set
2586 of candidates rooted at C's parent, recording the data in the
2587 increment vector. For each unique increment I, if an initializer
2588 T_0 = stride * I is provided by a candidate that dominates all
2589 candidates with the same increment, also record T_0 for subsequent
2593 record_increments (slsr_cand_t c
)
2595 if (!cand_already_replaced (c
))
2597 if (!phi_dependent_cand_p (c
))
2598 record_increment (c
, cand_increment (c
), NOT_PHI_ADJUST
);
2601 /* A candidate with a basis hidden by a phi will have one
2602 increment for its relationship to the index represented by
2603 the phi, and potentially additional increments along each
2604 incoming edge. For the root of the dependency tree (which
2605 has no basis), process just the initial index in case it has
2606 an initializer that can be used by subsequent candidates. */
2607 record_increment (c
, c
->index
, NOT_PHI_ADJUST
);
2610 record_phi_increments (lookup_cand (c
->basis
),
2611 lookup_cand (c
->def_phi
)->cand_stmt
);
2616 record_increments (lookup_cand (c
->sibling
));
2619 record_increments (lookup_cand (c
->dependent
));
2622 /* Add up and return the costs of introducing add statements that
2623 require the increment INCR on behalf of candidate C and phi
2624 statement PHI. Accumulate into *SAVINGS the potential savings
2625 from removing existing statements that feed PHI and have no other
2629 phi_incr_cost (slsr_cand_t c
, const widest_int
&incr
, gimple phi
, int *savings
)
2633 slsr_cand_t basis
= lookup_cand (c
->basis
);
2634 slsr_cand_t phi_cand
= base_cand_from_table (gimple_phi_result (phi
));
2636 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2638 tree arg
= gimple_phi_arg_def (phi
, i
);
2640 if (!operand_equal_p (arg
, phi_cand
->base_expr
, 0))
2642 gimple arg_def
= SSA_NAME_DEF_STMT (arg
);
2644 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2646 int feeding_savings
= 0;
2647 cost
+= phi_incr_cost (c
, incr
, arg_def
, &feeding_savings
);
2648 if (has_single_use (gimple_phi_result (arg_def
)))
2649 *savings
+= feeding_savings
;
2653 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
2654 widest_int diff
= arg_cand
->index
- basis
->index
;
2658 tree basis_lhs
= gimple_assign_lhs (basis
->cand_stmt
);
2659 tree lhs
= gimple_assign_lhs (arg_cand
->cand_stmt
);
2660 cost
+= add_cost (true, TYPE_MODE (TREE_TYPE (basis_lhs
)));
2661 if (has_single_use (lhs
))
2662 *savings
+= stmt_cost (arg_cand
->cand_stmt
, true);
2671 /* Return the first candidate in the tree rooted at C that has not
2672 already been replaced, favoring siblings over dependents. */
2675 unreplaced_cand_in_tree (slsr_cand_t c
)
2677 if (!cand_already_replaced (c
))
2682 slsr_cand_t sib
= unreplaced_cand_in_tree (lookup_cand (c
->sibling
));
2689 slsr_cand_t dep
= unreplaced_cand_in_tree (lookup_cand (c
->dependent
));
2697 /* Return TRUE if the candidates in the tree rooted at C should be
2698 optimized for speed, else FALSE. We estimate this based on the block
2699 containing the most dominant candidate in the tree that has not yet
2703 optimize_cands_for_speed_p (slsr_cand_t c
)
2705 slsr_cand_t c2
= unreplaced_cand_in_tree (c
);
2707 return optimize_bb_for_speed_p (gimple_bb (c2
->cand_stmt
));
2710 /* Add COST_IN to the lowest cost of any dependent path starting at
2711 candidate C or any of its siblings, counting only candidates along
2712 such paths with increment INCR. Assume that replacing a candidate
2713 reduces cost by REPL_SAVINGS. Also account for savings from any
2714 statements that would go dead. If COUNT_PHIS is true, include
2715 costs of introducing feeding statements for conditional candidates. */
2718 lowest_cost_path (int cost_in
, int repl_savings
, slsr_cand_t c
,
2719 const widest_int
&incr
, bool count_phis
)
2721 int local_cost
, sib_cost
, savings
= 0;
2722 widest_int cand_incr
= cand_abs_increment (c
);
2724 if (cand_already_replaced (c
))
2725 local_cost
= cost_in
;
2726 else if (incr
== cand_incr
)
2727 local_cost
= cost_in
- repl_savings
- c
->dead_savings
;
2729 local_cost
= cost_in
- c
->dead_savings
;
2732 && phi_dependent_cand_p (c
)
2733 && !cand_already_replaced (c
))
2735 gimple phi
= lookup_cand (c
->def_phi
)->cand_stmt
;
2736 local_cost
+= phi_incr_cost (c
, incr
, phi
, &savings
);
2738 if (has_single_use (gimple_phi_result (phi
)))
2739 local_cost
-= savings
;
2743 local_cost
= lowest_cost_path (local_cost
, repl_savings
,
2744 lookup_cand (c
->dependent
), incr
,
2749 sib_cost
= lowest_cost_path (cost_in
, repl_savings
,
2750 lookup_cand (c
->sibling
), incr
,
2752 local_cost
= MIN (local_cost
, sib_cost
);
2758 /* Compute the total savings that would accrue from all replacements
2759 in the candidate tree rooted at C, counting only candidates with
2760 increment INCR. Assume that replacing a candidate reduces cost
2761 by REPL_SAVINGS. Also account for savings from statements that
2765 total_savings (int repl_savings
, slsr_cand_t c
, const widest_int
&incr
,
2769 widest_int cand_incr
= cand_abs_increment (c
);
2771 if (incr
== cand_incr
&& !cand_already_replaced (c
))
2772 savings
+= repl_savings
+ c
->dead_savings
;
2775 && phi_dependent_cand_p (c
)
2776 && !cand_already_replaced (c
))
2778 int phi_savings
= 0;
2779 gimple phi
= lookup_cand (c
->def_phi
)->cand_stmt
;
2780 savings
-= phi_incr_cost (c
, incr
, phi
, &phi_savings
);
2782 if (has_single_use (gimple_phi_result (phi
)))
2783 savings
+= phi_savings
;
2787 savings
+= total_savings (repl_savings
, lookup_cand (c
->dependent
), incr
,
2791 savings
+= total_savings (repl_savings
, lookup_cand (c
->sibling
), incr
,
2797 /* Use target-specific costs to determine and record which increments
2798 in the current candidate tree are profitable to replace, assuming
2799 MODE and SPEED. FIRST_DEP is the first dependent of the root of
2802 One slight limitation here is that we don't account for the possible
2803 introduction of casts in some cases. See replace_one_candidate for
2804 the cases where these are introduced. This should probably be cleaned
2808 analyze_increments (slsr_cand_t first_dep
, enum machine_mode mode
, bool speed
)
2812 for (i
= 0; i
< incr_vec_len
; i
++)
2814 HOST_WIDE_INT incr
= incr_vec
[i
].incr
.to_shwi ();
2816 /* If somehow this increment is bigger than a HWI, we won't
2817 be optimizing candidates that use it. And if the increment
2818 has a count of zero, nothing will be done with it. */
2819 if (!wi::fits_shwi_p (incr_vec
[i
].incr
) || !incr_vec
[i
].count
)
2820 incr_vec
[i
].cost
= COST_INFINITE
;
2822 /* Increments of 0, 1, and -1 are always profitable to replace,
2823 because they always replace a multiply or add with an add or
2824 copy, and may cause one or more existing instructions to go
2825 dead. Exception: -1 can't be assumed to be profitable for
2826 pointer addition. */
2830 && (gimple_assign_rhs_code (first_dep
->cand_stmt
)
2831 != POINTER_PLUS_EXPR
)))
2832 incr_vec
[i
].cost
= COST_NEUTRAL
;
2834 /* FORNOW: If we need to add an initializer, give up if a cast from
2835 the candidate's type to its stride's type can lose precision.
2836 This could eventually be handled better by expressly retaining the
2837 result of a cast to a wider type in the stride. Example:
2842 _4 = x + _3; ADD: x + (10 * _1) : int
2844 _6 = x + _3; ADD: x + (15 * _1) : int
2846 Right now replacing _6 would cause insertion of an initializer
2847 of the form "short int T = _1 * 5;" followed by a cast to
2848 int, which could overflow incorrectly. Had we recorded _2 or
2849 (int)_1 as the stride, this wouldn't happen. However, doing
2850 this breaks other opportunities, so this will require some
2852 else if (!incr_vec
[i
].initializer
2853 && TREE_CODE (first_dep
->stride
) != INTEGER_CST
2854 && !legal_cast_p_1 (first_dep
->stride
,
2855 gimple_assign_lhs (first_dep
->cand_stmt
)))
2857 incr_vec
[i
].cost
= COST_INFINITE
;
2859 /* If we need to add an initializer, make sure we don't introduce
2860 a multiply by a pointer type, which can happen in certain cast
2861 scenarios. FIXME: When cleaning up these cast issues, we can
2862 afford to introduce the multiply provided we cast out to an
2863 unsigned int of appropriate size. */
2864 else if (!incr_vec
[i
].initializer
2865 && TREE_CODE (first_dep
->stride
) != INTEGER_CST
2866 && POINTER_TYPE_P (TREE_TYPE (first_dep
->stride
)))
2868 incr_vec
[i
].cost
= COST_INFINITE
;
2870 /* For any other increment, if this is a multiply candidate, we
2871 must introduce a temporary T and initialize it with
2872 T_0 = stride * increment. When optimizing for speed, walk the
2873 candidate tree to calculate the best cost reduction along any
2874 path; if it offsets the fixed cost of inserting the initializer,
2875 replacing the increment is profitable. When optimizing for
2876 size, instead calculate the total cost reduction from replacing
2877 all candidates with this increment. */
2878 else if (first_dep
->kind
== CAND_MULT
)
2880 int cost
= mult_by_coeff_cost (incr
, mode
, speed
);
2881 int repl_savings
= mul_cost (speed
, mode
) - add_cost (speed
, mode
);
2883 cost
= lowest_cost_path (cost
, repl_savings
, first_dep
,
2884 incr_vec
[i
].incr
, COUNT_PHIS
);
2886 cost
-= total_savings (repl_savings
, first_dep
, incr_vec
[i
].incr
,
2889 incr_vec
[i
].cost
= cost
;
2892 /* If this is an add candidate, the initializer may already
2893 exist, so only calculate the cost of the initializer if it
2894 doesn't. We are replacing one add with another here, so the
2895 known replacement savings is zero. We will account for removal
2896 of dead instructions in lowest_cost_path or total_savings. */
2900 if (!incr_vec
[i
].initializer
)
2901 cost
= mult_by_coeff_cost (incr
, mode
, speed
);
2904 cost
= lowest_cost_path (cost
, 0, first_dep
, incr_vec
[i
].incr
,
2907 cost
-= total_savings (0, first_dep
, incr_vec
[i
].incr
,
2910 incr_vec
[i
].cost
= cost
;
2915 /* Return the nearest common dominator of BB1 and BB2. If the blocks
2916 are identical, return the earlier of C1 and C2 in *WHERE. Otherwise,
2917 if the NCD matches BB1, return C1 in *WHERE; if the NCD matches BB2,
2918 return C2 in *WHERE; and if the NCD matches neither, return NULL in
2919 *WHERE. Note: It is possible for one of C1 and C2 to be NULL. */
2922 ncd_for_two_cands (basic_block bb1
, basic_block bb2
,
2923 slsr_cand_t c1
, slsr_cand_t c2
, slsr_cand_t
*where
)
2939 ncd
= nearest_common_dominator (CDI_DOMINATORS
, bb1
, bb2
);
2941 /* If both candidates are in the same block, the earlier
2943 if (bb1
== ncd
&& bb2
== ncd
)
2945 if (!c1
|| (c2
&& c2
->cand_num
< c1
->cand_num
))
2951 /* Otherwise, if one of them produced a candidate in the
2952 dominator, that one wins. */
2953 else if (bb1
== ncd
)
2956 else if (bb2
== ncd
)
2959 /* If neither matches the dominator, neither wins. */
2966 /* Consider all candidates that feed PHI. Find the nearest common
2967 dominator of those candidates requiring the given increment INCR.
2968 Further find and return the nearest common dominator of this result
2969 with block NCD. If the returned block contains one or more of the
2970 candidates, return the earliest candidate in the block in *WHERE. */
2973 ncd_with_phi (slsr_cand_t c
, const widest_int
&incr
, gimple phi
,
2974 basic_block ncd
, slsr_cand_t
*where
)
2977 slsr_cand_t basis
= lookup_cand (c
->basis
);
2978 slsr_cand_t phi_cand
= base_cand_from_table (gimple_phi_result (phi
));
2980 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2982 tree arg
= gimple_phi_arg_def (phi
, i
);
2984 if (!operand_equal_p (arg
, phi_cand
->base_expr
, 0))
2986 gimple arg_def
= SSA_NAME_DEF_STMT (arg
);
2988 if (gimple_code (arg_def
) == GIMPLE_PHI
)
2989 ncd
= ncd_with_phi (c
, incr
, arg_def
, ncd
, where
);
2992 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
2993 widest_int diff
= arg_cand
->index
- basis
->index
;
2994 basic_block pred
= gimple_phi_arg_edge (phi
, i
)->src
;
2996 if ((incr
== diff
) || (!address_arithmetic_p
&& incr
== -diff
))
2997 ncd
= ncd_for_two_cands (ncd
, pred
, *where
, NULL
, where
);
3005 /* Consider the candidate C together with any candidates that feed
3006 C's phi dependence (if any). Find and return the nearest common
3007 dominator of those candidates requiring the given increment INCR.
3008 If the returned block contains one or more of the candidates,
3009 return the earliest candidate in the block in *WHERE. */
3012 ncd_of_cand_and_phis (slsr_cand_t c
, const widest_int
&incr
, slsr_cand_t
*where
)
3014 basic_block ncd
= NULL
;
3016 if (cand_abs_increment (c
) == incr
)
3018 ncd
= gimple_bb (c
->cand_stmt
);
3022 if (phi_dependent_cand_p (c
))
3023 ncd
= ncd_with_phi (c
, incr
, lookup_cand (c
->def_phi
)->cand_stmt
,
3029 /* Consider all candidates in the tree rooted at C for which INCR
3030 represents the required increment of C relative to its basis.
3031 Find and return the basic block that most nearly dominates all
3032 such candidates. If the returned block contains one or more of
3033 the candidates, return the earliest candidate in the block in
3037 nearest_common_dominator_for_cands (slsr_cand_t c
, const widest_int
&incr
,
3040 basic_block sib_ncd
= NULL
, dep_ncd
= NULL
, this_ncd
= NULL
, ncd
;
3041 slsr_cand_t sib_where
= NULL
, dep_where
= NULL
, this_where
= NULL
, new_where
;
3043 /* First find the NCD of all siblings and dependents. */
3045 sib_ncd
= nearest_common_dominator_for_cands (lookup_cand (c
->sibling
),
3048 dep_ncd
= nearest_common_dominator_for_cands (lookup_cand (c
->dependent
),
3050 if (!sib_ncd
&& !dep_ncd
)
3055 else if (sib_ncd
&& !dep_ncd
)
3057 new_where
= sib_where
;
3060 else if (dep_ncd
&& !sib_ncd
)
3062 new_where
= dep_where
;
3066 ncd
= ncd_for_two_cands (sib_ncd
, dep_ncd
, sib_where
,
3067 dep_where
, &new_where
);
3069 /* If the candidate's increment doesn't match the one we're interested
3070 in (and nor do any increments for feeding defs of a phi-dependence),
3071 then the result depends only on siblings and dependents. */
3072 this_ncd
= ncd_of_cand_and_phis (c
, incr
, &this_where
);
3074 if (!this_ncd
|| cand_already_replaced (c
))
3080 /* Otherwise, compare this candidate with the result from all siblings
3082 ncd
= ncd_for_two_cands (ncd
, this_ncd
, new_where
, this_where
, where
);
3087 /* Return TRUE if the increment indexed by INDEX is profitable to replace. */
3090 profitable_increment_p (unsigned index
)
3092 return (incr_vec
[index
].cost
<= COST_NEUTRAL
);
3095 /* For each profitable increment in the increment vector not equal to
3096 0 or 1 (or -1, for non-pointer arithmetic), find the nearest common
3097 dominator of all statements in the candidate chain rooted at C
3098 that require that increment, and insert an initializer
3099 T_0 = stride * increment at that location. Record T_0 with the
3100 increment record. */
3103 insert_initializers (slsr_cand_t c
)
3107 for (i
= 0; i
< incr_vec_len
; i
++)
3110 slsr_cand_t where
= NULL
;
3112 tree stride_type
, new_name
, incr_tree
;
3113 widest_int incr
= incr_vec
[i
].incr
;
3115 if (!profitable_increment_p (i
)
3118 && gimple_assign_rhs_code (c
->cand_stmt
) != POINTER_PLUS_EXPR
)
3122 /* We may have already identified an existing initializer that
3124 if (incr_vec
[i
].initializer
)
3126 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3128 fputs ("Using existing initializer: ", dump_file
);
3129 print_gimple_stmt (dump_file
,
3130 SSA_NAME_DEF_STMT (incr_vec
[i
].initializer
),
3136 /* Find the block that most closely dominates all candidates
3137 with this increment. If there is at least one candidate in
3138 that block, the earliest one will be returned in WHERE. */
3139 bb
= nearest_common_dominator_for_cands (c
, incr
, &where
);
3141 /* Create a new SSA name to hold the initializer's value. */
3142 stride_type
= TREE_TYPE (c
->stride
);
3143 new_name
= make_temp_ssa_name (stride_type
, NULL
, "slsr");
3144 incr_vec
[i
].initializer
= new_name
;
3146 /* Create the initializer and insert it in the latest possible
3147 dominating position. */
3148 incr_tree
= wide_int_to_tree (stride_type
, incr
);
3149 init_stmt
= gimple_build_assign_with_ops (MULT_EXPR
, new_name
,
3150 c
->stride
, incr_tree
);
3153 gimple_stmt_iterator gsi
= gsi_for_stmt (where
->cand_stmt
);
3154 gsi_insert_before (&gsi
, init_stmt
, GSI_SAME_STMT
);
3155 gimple_set_location (init_stmt
, gimple_location (where
->cand_stmt
));
3159 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
3160 gimple basis_stmt
= lookup_cand (c
->basis
)->cand_stmt
;
3162 if (!gsi_end_p (gsi
) && is_ctrl_stmt (gsi_stmt (gsi
)))
3163 gsi_insert_before (&gsi
, init_stmt
, GSI_SAME_STMT
);
3165 gsi_insert_after (&gsi
, init_stmt
, GSI_SAME_STMT
);
3167 gimple_set_location (init_stmt
, gimple_location (basis_stmt
));
3170 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3172 fputs ("Inserting initializer: ", dump_file
);
3173 print_gimple_stmt (dump_file
, init_stmt
, 0, 0);
3178 /* Return TRUE iff all required increments for candidates feeding PHI
3179 are profitable to replace on behalf of candidate C. */
3182 all_phi_incrs_profitable (slsr_cand_t c
, gimple phi
)
3185 slsr_cand_t basis
= lookup_cand (c
->basis
);
3186 slsr_cand_t phi_cand
= base_cand_from_table (gimple_phi_result (phi
));
3188 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
3190 tree arg
= gimple_phi_arg_def (phi
, i
);
3192 if (!operand_equal_p (arg
, phi_cand
->base_expr
, 0))
3194 gimple arg_def
= SSA_NAME_DEF_STMT (arg
);
3196 if (gimple_code (arg_def
) == GIMPLE_PHI
)
3198 if (!all_phi_incrs_profitable (c
, arg_def
))
3204 slsr_cand_t arg_cand
= base_cand_from_table (arg
);
3205 widest_int increment
= arg_cand
->index
- basis
->index
;
3207 if (!address_arithmetic_p
&& wi::neg_p (increment
))
3208 increment
= -increment
;
3210 j
= incr_vec_index (increment
);
3212 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3214 fprintf (dump_file
, " Conditional candidate %d, phi: ",
3216 print_gimple_stmt (dump_file
, phi
, 0, 0);
3217 fputs (" increment: ", dump_file
);
3218 print_decs (increment
, dump_file
);
3221 "\n Not replaced; incr_vec overflow.\n");
3223 fprintf (dump_file
, "\n cost: %d\n", incr_vec
[j
].cost
);
3224 if (profitable_increment_p (j
))
3225 fputs (" Replacing...\n", dump_file
);
3227 fputs (" Not replaced.\n", dump_file
);
3231 if (j
< 0 || !profitable_increment_p (j
))
3240 /* Create a NOP_EXPR that copies FROM_EXPR into a new SSA name of
3241 type TO_TYPE, and insert it in front of the statement represented
3242 by candidate C. Use *NEW_VAR to create the new SSA name. Return
3243 the new SSA name. */
3246 introduce_cast_before_cand (slsr_cand_t c
, tree to_type
, tree from_expr
)
3250 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3252 cast_lhs
= make_temp_ssa_name (to_type
, NULL
, "slsr");
3253 cast_stmt
= gimple_build_assign_with_ops (NOP_EXPR
, cast_lhs
,
3254 from_expr
, NULL_TREE
);
3255 gimple_set_location (cast_stmt
, gimple_location (c
->cand_stmt
));
3256 gsi_insert_before (&gsi
, cast_stmt
, GSI_SAME_STMT
);
3258 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3260 fputs (" Inserting: ", dump_file
);
3261 print_gimple_stmt (dump_file
, cast_stmt
, 0, 0);
3267 /* Replace the RHS of the statement represented by candidate C with
3268 NEW_CODE, NEW_RHS1, and NEW_RHS2, provided that to do so doesn't
3269 leave C unchanged or just interchange its operands. The original
3270 operation and operands are in OLD_CODE, OLD_RHS1, and OLD_RHS2.
3271 If the replacement was made and we are doing a details dump,
3272 return the revised statement, else NULL. */
3275 replace_rhs_if_not_dup (enum tree_code new_code
, tree new_rhs1
, tree new_rhs2
,
3276 enum tree_code old_code
, tree old_rhs1
, tree old_rhs2
,
3279 if (new_code
!= old_code
3280 || ((!operand_equal_p (new_rhs1
, old_rhs1
, 0)
3281 || !operand_equal_p (new_rhs2
, old_rhs2
, 0))
3282 && (!operand_equal_p (new_rhs1
, old_rhs2
, 0)
3283 || !operand_equal_p (new_rhs2
, old_rhs1
, 0))))
3285 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3286 gimple_assign_set_rhs_with_ops (&gsi
, new_code
, new_rhs1
, new_rhs2
);
3287 update_stmt (gsi_stmt (gsi
));
3288 c
->cand_stmt
= gsi_stmt (gsi
);
3290 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3291 return gsi_stmt (gsi
);
3294 else if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3295 fputs (" (duplicate, not actually replacing)\n", dump_file
);
3300 /* Strength-reduce the statement represented by candidate C by replacing
3301 it with an equivalent addition or subtraction. I is the index into
3302 the increment vector identifying C's increment. NEW_VAR is used to
3303 create a new SSA name if a cast needs to be introduced. BASIS_NAME
3304 is the rhs1 to use in creating the add/subtract. */
3307 replace_one_candidate (slsr_cand_t c
, unsigned i
, tree basis_name
)
3309 gimple stmt_to_print
= NULL
;
3310 tree orig_rhs1
, orig_rhs2
;
3312 enum tree_code orig_code
, repl_code
;
3313 widest_int cand_incr
;
3315 orig_code
= gimple_assign_rhs_code (c
->cand_stmt
);
3316 orig_rhs1
= gimple_assign_rhs1 (c
->cand_stmt
);
3317 orig_rhs2
= gimple_assign_rhs2 (c
->cand_stmt
);
3318 cand_incr
= cand_increment (c
);
3320 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3322 fputs ("Replacing: ", dump_file
);
3323 print_gimple_stmt (dump_file
, c
->cand_stmt
, 0, 0);
3324 stmt_to_print
= c
->cand_stmt
;
3327 if (address_arithmetic_p
)
3328 repl_code
= POINTER_PLUS_EXPR
;
3330 repl_code
= PLUS_EXPR
;
3332 /* If the increment has an initializer T_0, replace the candidate
3333 statement with an add of the basis name and the initializer. */
3334 if (incr_vec
[i
].initializer
)
3336 tree init_type
= TREE_TYPE (incr_vec
[i
].initializer
);
3337 tree orig_type
= TREE_TYPE (orig_rhs2
);
3339 if (types_compatible_p (orig_type
, init_type
))
3340 rhs2
= incr_vec
[i
].initializer
;
3342 rhs2
= introduce_cast_before_cand (c
, orig_type
,
3343 incr_vec
[i
].initializer
);
3345 if (incr_vec
[i
].incr
!= cand_incr
)
3347 gcc_assert (repl_code
== PLUS_EXPR
);
3348 repl_code
= MINUS_EXPR
;
3351 stmt_to_print
= replace_rhs_if_not_dup (repl_code
, basis_name
, rhs2
,
3352 orig_code
, orig_rhs1
, orig_rhs2
,
3356 /* Otherwise, the increment is one of -1, 0, and 1. Replace
3357 with a subtract of the stride from the basis name, a copy
3358 from the basis name, or an add of the stride to the basis
3359 name, respectively. It may be necessary to introduce a
3360 cast (or reuse an existing cast). */
3361 else if (cand_incr
== 1)
3363 tree stride_type
= TREE_TYPE (c
->stride
);
3364 tree orig_type
= TREE_TYPE (orig_rhs2
);
3366 if (types_compatible_p (orig_type
, stride_type
))
3369 rhs2
= introduce_cast_before_cand (c
, orig_type
, c
->stride
);
3371 stmt_to_print
= replace_rhs_if_not_dup (repl_code
, basis_name
, rhs2
,
3372 orig_code
, orig_rhs1
, orig_rhs2
,
3376 else if (cand_incr
== -1)
3378 tree stride_type
= TREE_TYPE (c
->stride
);
3379 tree orig_type
= TREE_TYPE (orig_rhs2
);
3380 gcc_assert (repl_code
!= POINTER_PLUS_EXPR
);
3382 if (types_compatible_p (orig_type
, stride_type
))
3385 rhs2
= introduce_cast_before_cand (c
, orig_type
, c
->stride
);
3387 if (orig_code
!= MINUS_EXPR
3388 || !operand_equal_p (basis_name
, orig_rhs1
, 0)
3389 || !operand_equal_p (rhs2
, orig_rhs2
, 0))
3391 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3392 gimple_assign_set_rhs_with_ops (&gsi
, MINUS_EXPR
, basis_name
, rhs2
);
3393 update_stmt (gsi_stmt (gsi
));
3394 c
->cand_stmt
= gsi_stmt (gsi
);
3396 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3397 stmt_to_print
= gsi_stmt (gsi
);
3399 else if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3400 fputs (" (duplicate, not actually replacing)\n", dump_file
);
3403 else if (cand_incr
== 0)
3405 tree lhs
= gimple_assign_lhs (c
->cand_stmt
);
3406 tree lhs_type
= TREE_TYPE (lhs
);
3407 tree basis_type
= TREE_TYPE (basis_name
);
3409 if (types_compatible_p (lhs_type
, basis_type
))
3411 gimple copy_stmt
= gimple_build_assign (lhs
, basis_name
);
3412 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3413 gimple_set_location (copy_stmt
, gimple_location (c
->cand_stmt
));
3414 gsi_replace (&gsi
, copy_stmt
, false);
3415 c
->cand_stmt
= copy_stmt
;
3417 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3418 stmt_to_print
= copy_stmt
;
3422 gimple_stmt_iterator gsi
= gsi_for_stmt (c
->cand_stmt
);
3423 gimple cast_stmt
= gimple_build_assign_with_ops (NOP_EXPR
, lhs
,
3426 gimple_set_location (cast_stmt
, gimple_location (c
->cand_stmt
));
3427 gsi_replace (&gsi
, cast_stmt
, false);
3428 c
->cand_stmt
= cast_stmt
;
3430 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3431 stmt_to_print
= cast_stmt
;
3437 if (dump_file
&& (dump_flags
& TDF_DETAILS
) && stmt_to_print
)
3439 fputs ("With: ", dump_file
);
3440 print_gimple_stmt (dump_file
, stmt_to_print
, 0, 0);
3441 fputs ("\n", dump_file
);
3445 /* For each candidate in the tree rooted at C, replace it with
3446 an increment if such has been shown to be profitable. */
3449 replace_profitable_candidates (slsr_cand_t c
)
3451 if (!cand_already_replaced (c
))
3453 widest_int increment
= cand_abs_increment (c
);
3454 enum tree_code orig_code
= gimple_assign_rhs_code (c
->cand_stmt
);
3457 i
= incr_vec_index (increment
);
3459 /* Only process profitable increments. Nothing useful can be done
3460 to a cast or copy. */
3462 && profitable_increment_p (i
)
3463 && orig_code
!= MODIFY_EXPR
3464 && orig_code
!= NOP_EXPR
)
3466 if (phi_dependent_cand_p (c
))
3468 gimple phi
= lookup_cand (c
->def_phi
)->cand_stmt
;
3470 if (all_phi_incrs_profitable (c
, phi
))
3472 /* Look up the LHS SSA name from C's basis. This will be
3473 the RHS1 of the adds we will introduce to create new
3475 slsr_cand_t basis
= lookup_cand (c
->basis
);
3476 tree basis_name
= gimple_assign_lhs (basis
->cand_stmt
);
3478 /* Create a new phi statement that will represent C's true
3479 basis after the transformation is complete. */
3480 location_t loc
= gimple_location (c
->cand_stmt
);
3481 tree name
= create_phi_basis (c
, phi
, basis_name
,
3482 loc
, UNKNOWN_STRIDE
);
3484 /* Replace C with an add of the new basis phi and the
3486 replace_one_candidate (c
, i
, name
);
3491 slsr_cand_t basis
= lookup_cand (c
->basis
);
3492 tree basis_name
= gimple_assign_lhs (basis
->cand_stmt
);
3493 replace_one_candidate (c
, i
, basis_name
);
3499 replace_profitable_candidates (lookup_cand (c
->sibling
));
3502 replace_profitable_candidates (lookup_cand (c
->dependent
));
3505 /* Analyze costs of related candidates in the candidate vector,
3506 and make beneficial replacements. */
3509 analyze_candidates_and_replace (void)
3514 /* Each candidate that has a null basis and a non-null
3515 dependent is the root of a tree of related statements.
3516 Analyze each tree to determine a subset of those
3517 statements that can be replaced with maximum benefit. */
3518 FOR_EACH_VEC_ELT (cand_vec
, i
, c
)
3520 slsr_cand_t first_dep
;
3522 if (c
->basis
!= 0 || c
->dependent
== 0)
3525 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3526 fprintf (dump_file
, "\nProcessing dependency tree rooted at %d.\n",
3529 first_dep
= lookup_cand (c
->dependent
);
3531 /* If this is a chain of CAND_REFs, unconditionally replace
3532 each of them with a strength-reduced data reference. */
3533 if (c
->kind
== CAND_REF
)
3536 /* If the common stride of all related candidates is a known
3537 constant, each candidate without a phi-dependence can be
3538 profitably replaced. Each replaces a multiply by a single
3539 add, with the possibility that a feeding add also goes dead.
3540 A candidate with a phi-dependence is replaced only if the
3541 compensation code it requires is offset by the strength
3542 reduction savings. */
3543 else if (TREE_CODE (c
->stride
) == INTEGER_CST
)
3544 replace_uncond_cands_and_profitable_phis (first_dep
);
3546 /* When the stride is an SSA name, it may still be profitable
3547 to replace some or all of the dependent candidates, depending
3548 on whether the introduced increments can be reused, or are
3549 less expensive to calculate than the replaced statements. */
3552 enum machine_mode mode
;
3555 /* Determine whether we'll be generating pointer arithmetic
3556 when replacing candidates. */
3557 address_arithmetic_p
= (c
->kind
== CAND_ADD
3558 && POINTER_TYPE_P (c
->cand_type
));
3560 /* If all candidates have already been replaced under other
3561 interpretations, nothing remains to be done. */
3562 if (!count_candidates (c
))
3565 /* Construct an array of increments for this candidate chain. */
3566 incr_vec
= XNEWVEC (incr_info
, MAX_INCR_VEC_LEN
);
3568 record_increments (c
);
3570 /* Determine which increments are profitable to replace. */
3571 mode
= TYPE_MODE (TREE_TYPE (gimple_assign_lhs (c
->cand_stmt
)));
3572 speed
= optimize_cands_for_speed_p (c
);
3573 analyze_increments (first_dep
, mode
, speed
);
3575 /* Insert initializers of the form T_0 = stride * increment
3576 for use in profitable replacements. */
3577 insert_initializers (first_dep
);
3580 /* Perform the replacements. */
3581 replace_profitable_candidates (first_dep
);
3589 const pass_data pass_data_strength_reduction
=
3591 GIMPLE_PASS
, /* type */
3593 OPTGROUP_NONE
, /* optinfo_flags */
3594 TV_GIMPLE_SLSR
, /* tv_id */
3595 ( PROP_cfg
| PROP_ssa
), /* properties_required */
3596 0, /* properties_provided */
3597 0, /* properties_destroyed */
3598 0, /* todo_flags_start */
3599 0, /* todo_flags_finish */
3602 class pass_strength_reduction
: public gimple_opt_pass
3605 pass_strength_reduction (gcc::context
*ctxt
)
3606 : gimple_opt_pass (pass_data_strength_reduction
, ctxt
)
3609 /* opt_pass methods: */
3610 virtual bool gate (function
*) { return flag_tree_slsr
; }
3611 virtual unsigned int execute (function
*);
3613 }; // class pass_strength_reduction
3616 pass_strength_reduction::execute (function
*fun
)
3618 /* Create the obstack where candidates will reside. */
3619 gcc_obstack_init (&cand_obstack
);
3621 /* Allocate the candidate vector. */
3622 cand_vec
.create (128);
3624 /* Allocate the mapping from statements to candidate indices. */
3625 stmt_cand_map
= new hash_map
<gimple
, slsr_cand_t
>;
3627 /* Create the obstack where candidate chains will reside. */
3628 gcc_obstack_init (&chain_obstack
);
3630 /* Allocate the mapping from base expressions to candidate chains. */
3631 base_cand_map
= new hash_table
<cand_chain_hasher
> (500);
3633 /* Allocate the mapping from bases to alternative bases. */
3634 alt_base_map
= new hash_map
<tree
, tree
>;
3636 /* Initialize the loop optimizer. We need to detect flow across
3637 back edges, and this gives us dominator information as well. */
3638 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
3640 /* Walk the CFG in predominator order looking for strength reduction
3642 find_candidates_dom_walker (CDI_DOMINATORS
)
3643 .walk (fun
->cfg
->x_entry_block_ptr
);
3645 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3648 dump_cand_chains ();
3651 delete alt_base_map
;
3652 free_affine_expand_cache (&name_expansions
);
3654 /* Analyze costs and make appropriate replacements. */
3655 analyze_candidates_and_replace ();
3657 loop_optimizer_finalize ();
3658 delete base_cand_map
;
3659 base_cand_map
= NULL
;
3660 obstack_free (&chain_obstack
, NULL
);
3661 delete stmt_cand_map
;
3662 cand_vec
.release ();
3663 obstack_free (&cand_obstack
, NULL
);
3671 make_pass_strength_reduction (gcc::context
*ctxt
)
3673 return new pass_strength_reduction (ctxt
);