* tree.c (free_lang_data_in_decl): Also set target/optimization flags
[official-gcc.git] / gcc / tree-data-ref.c
blobed28ca1d6e5a665883ffbf8f8016299d42b6f44f
1 /* Data references and dependences detectors.
2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This pass walks a given loop structure searching for array
22 references. The information about the array accesses is recorded
23 in DATA_REFERENCE structures.
25 The basic test for determining the dependences is:
26 given two access functions chrec1 and chrec2 to a same array, and
27 x and y two vectors from the iteration domain, the same element of
28 the array is accessed twice at iterations x and y if and only if:
29 | chrec1 (x) == chrec2 (y).
31 The goals of this analysis are:
33 - to determine the independence: the relation between two
34 independent accesses is qualified with the chrec_known (this
35 information allows a loop parallelization),
37 - when two data references access the same data, to qualify the
38 dependence relation with classic dependence representations:
40 - distance vectors
41 - direction vectors
42 - loop carried level dependence
43 - polyhedron dependence
44 or with the chains of recurrences based representation,
46 - to define a knowledge base for storing the data dependence
47 information,
49 - to define an interface to access this data.
52 Definitions:
54 - subscript: given two array accesses a subscript is the tuple
55 composed of the access functions for a given dimension. Example:
56 Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
57 (f1, g1), (f2, g2), (f3, g3).
59 - Diophantine equation: an equation whose coefficients and
60 solutions are integer constants, for example the equation
61 | 3*x + 2*y = 1
62 has an integer solution x = 1 and y = -1.
64 References:
66 - "Advanced Compilation for High Performance Computing" by Randy
67 Allen and Ken Kennedy.
68 http://citeseer.ist.psu.edu/goff91practical.html
70 - "Loop Transformations for Restructuring Compilers - The Foundations"
71 by Utpal Banerjee.
76 #include "config.h"
77 #include "system.h"
78 #include "coretypes.h"
79 #include "backend.h"
80 #include "rtl.h"
81 #include "tree.h"
82 #include "gimple.h"
83 #include "gimple-pretty-print.h"
84 #include "alias.h"
85 #include "fold-const.h"
86 #include "expr.h"
87 #include "gimple-iterator.h"
88 #include "tree-ssa-loop-niter.h"
89 #include "tree-ssa-loop.h"
90 #include "tree-ssa.h"
91 #include "cfgloop.h"
92 #include "tree-data-ref.h"
93 #include "tree-scalar-evolution.h"
94 #include "dumpfile.h"
95 #include "tree-affine.h"
96 #include "params.h"
98 static struct datadep_stats
100 int num_dependence_tests;
101 int num_dependence_dependent;
102 int num_dependence_independent;
103 int num_dependence_undetermined;
105 int num_subscript_tests;
106 int num_subscript_undetermined;
107 int num_same_subscript_function;
109 int num_ziv;
110 int num_ziv_independent;
111 int num_ziv_dependent;
112 int num_ziv_unimplemented;
114 int num_siv;
115 int num_siv_independent;
116 int num_siv_dependent;
117 int num_siv_unimplemented;
119 int num_miv;
120 int num_miv_independent;
121 int num_miv_dependent;
122 int num_miv_unimplemented;
123 } dependence_stats;
125 static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
126 struct data_reference *,
127 struct data_reference *,
128 struct loop *);
129 /* Returns true iff A divides B. */
131 static inline bool
132 tree_fold_divides_p (const_tree a, const_tree b)
134 gcc_assert (TREE_CODE (a) == INTEGER_CST);
135 gcc_assert (TREE_CODE (b) == INTEGER_CST);
136 return integer_zerop (int_const_binop (TRUNC_MOD_EXPR, b, a));
139 /* Returns true iff A divides B. */
141 static inline bool
142 int_divides_p (int a, int b)
144 return ((b % a) == 0);
149 /* Dump into FILE all the data references from DATAREFS. */
151 static void
152 dump_data_references (FILE *file, vec<data_reference_p> datarefs)
154 unsigned int i;
155 struct data_reference *dr;
157 FOR_EACH_VEC_ELT (datarefs, i, dr)
158 dump_data_reference (file, dr);
161 /* Unified dump into FILE all the data references from DATAREFS. */
163 DEBUG_FUNCTION void
164 debug (vec<data_reference_p> &ref)
166 dump_data_references (stderr, ref);
169 DEBUG_FUNCTION void
170 debug (vec<data_reference_p> *ptr)
172 if (ptr)
173 debug (*ptr);
174 else
175 fprintf (stderr, "<nil>\n");
179 /* Dump into STDERR all the data references from DATAREFS. */
181 DEBUG_FUNCTION void
182 debug_data_references (vec<data_reference_p> datarefs)
184 dump_data_references (stderr, datarefs);
187 /* Print to STDERR the data_reference DR. */
189 DEBUG_FUNCTION void
190 debug_data_reference (struct data_reference *dr)
192 dump_data_reference (stderr, dr);
195 /* Dump function for a DATA_REFERENCE structure. */
197 void
198 dump_data_reference (FILE *outf,
199 struct data_reference *dr)
201 unsigned int i;
203 fprintf (outf, "#(Data Ref: \n");
204 fprintf (outf, "# bb: %d \n", gimple_bb (DR_STMT (dr))->index);
205 fprintf (outf, "# stmt: ");
206 print_gimple_stmt (outf, DR_STMT (dr), 0, 0);
207 fprintf (outf, "# ref: ");
208 print_generic_stmt (outf, DR_REF (dr), 0);
209 fprintf (outf, "# base_object: ");
210 print_generic_stmt (outf, DR_BASE_OBJECT (dr), 0);
212 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
214 fprintf (outf, "# Access function %d: ", i);
215 print_generic_stmt (outf, DR_ACCESS_FN (dr, i), 0);
217 fprintf (outf, "#)\n");
220 /* Unified dump function for a DATA_REFERENCE structure. */
222 DEBUG_FUNCTION void
223 debug (data_reference &ref)
225 dump_data_reference (stderr, &ref);
228 DEBUG_FUNCTION void
229 debug (data_reference *ptr)
231 if (ptr)
232 debug (*ptr);
233 else
234 fprintf (stderr, "<nil>\n");
238 /* Dumps the affine function described by FN to the file OUTF. */
240 DEBUG_FUNCTION void
241 dump_affine_function (FILE *outf, affine_fn fn)
243 unsigned i;
244 tree coef;
246 print_generic_expr (outf, fn[0], TDF_SLIM);
247 for (i = 1; fn.iterate (i, &coef); i++)
249 fprintf (outf, " + ");
250 print_generic_expr (outf, coef, TDF_SLIM);
251 fprintf (outf, " * x_%u", i);
255 /* Dumps the conflict function CF to the file OUTF. */
257 DEBUG_FUNCTION void
258 dump_conflict_function (FILE *outf, conflict_function *cf)
260 unsigned i;
262 if (cf->n == NO_DEPENDENCE)
263 fprintf (outf, "no dependence");
264 else if (cf->n == NOT_KNOWN)
265 fprintf (outf, "not known");
266 else
268 for (i = 0; i < cf->n; i++)
270 if (i != 0)
271 fprintf (outf, " ");
272 fprintf (outf, "[");
273 dump_affine_function (outf, cf->fns[i]);
274 fprintf (outf, "]");
279 /* Dump function for a SUBSCRIPT structure. */
281 DEBUG_FUNCTION void
282 dump_subscript (FILE *outf, struct subscript *subscript)
284 conflict_function *cf = SUB_CONFLICTS_IN_A (subscript);
286 fprintf (outf, "\n (subscript \n");
287 fprintf (outf, " iterations_that_access_an_element_twice_in_A: ");
288 dump_conflict_function (outf, cf);
289 if (CF_NONTRIVIAL_P (cf))
291 tree last_iteration = SUB_LAST_CONFLICT (subscript);
292 fprintf (outf, "\n last_conflict: ");
293 print_generic_expr (outf, last_iteration, 0);
296 cf = SUB_CONFLICTS_IN_B (subscript);
297 fprintf (outf, "\n iterations_that_access_an_element_twice_in_B: ");
298 dump_conflict_function (outf, cf);
299 if (CF_NONTRIVIAL_P (cf))
301 tree last_iteration = SUB_LAST_CONFLICT (subscript);
302 fprintf (outf, "\n last_conflict: ");
303 print_generic_expr (outf, last_iteration, 0);
306 fprintf (outf, "\n (Subscript distance: ");
307 print_generic_expr (outf, SUB_DISTANCE (subscript), 0);
308 fprintf (outf, " ))\n");
311 /* Print the classic direction vector DIRV to OUTF. */
313 DEBUG_FUNCTION void
314 print_direction_vector (FILE *outf,
315 lambda_vector dirv,
316 int length)
318 int eq;
320 for (eq = 0; eq < length; eq++)
322 enum data_dependence_direction dir = ((enum data_dependence_direction)
323 dirv[eq]);
325 switch (dir)
327 case dir_positive:
328 fprintf (outf, " +");
329 break;
330 case dir_negative:
331 fprintf (outf, " -");
332 break;
333 case dir_equal:
334 fprintf (outf, " =");
335 break;
336 case dir_positive_or_equal:
337 fprintf (outf, " +=");
338 break;
339 case dir_positive_or_negative:
340 fprintf (outf, " +-");
341 break;
342 case dir_negative_or_equal:
343 fprintf (outf, " -=");
344 break;
345 case dir_star:
346 fprintf (outf, " *");
347 break;
348 default:
349 fprintf (outf, "indep");
350 break;
353 fprintf (outf, "\n");
356 /* Print a vector of direction vectors. */
358 DEBUG_FUNCTION void
359 print_dir_vectors (FILE *outf, vec<lambda_vector> dir_vects,
360 int length)
362 unsigned j;
363 lambda_vector v;
365 FOR_EACH_VEC_ELT (dir_vects, j, v)
366 print_direction_vector (outf, v, length);
369 /* Print out a vector VEC of length N to OUTFILE. */
371 DEBUG_FUNCTION void
372 print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
374 int i;
376 for (i = 0; i < n; i++)
377 fprintf (outfile, "%3d ", vector[i]);
378 fprintf (outfile, "\n");
381 /* Print a vector of distance vectors. */
383 DEBUG_FUNCTION void
384 print_dist_vectors (FILE *outf, vec<lambda_vector> dist_vects,
385 int length)
387 unsigned j;
388 lambda_vector v;
390 FOR_EACH_VEC_ELT (dist_vects, j, v)
391 print_lambda_vector (outf, v, length);
394 /* Dump function for a DATA_DEPENDENCE_RELATION structure. */
396 DEBUG_FUNCTION void
397 dump_data_dependence_relation (FILE *outf,
398 struct data_dependence_relation *ddr)
400 struct data_reference *dra, *drb;
402 fprintf (outf, "(Data Dep: \n");
404 if (!ddr || DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
406 if (ddr)
408 dra = DDR_A (ddr);
409 drb = DDR_B (ddr);
410 if (dra)
411 dump_data_reference (outf, dra);
412 else
413 fprintf (outf, " (nil)\n");
414 if (drb)
415 dump_data_reference (outf, drb);
416 else
417 fprintf (outf, " (nil)\n");
419 fprintf (outf, " (don't know)\n)\n");
420 return;
423 dra = DDR_A (ddr);
424 drb = DDR_B (ddr);
425 dump_data_reference (outf, dra);
426 dump_data_reference (outf, drb);
428 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
429 fprintf (outf, " (no dependence)\n");
431 else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
433 unsigned int i;
434 struct loop *loopi;
436 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
438 fprintf (outf, " access_fn_A: ");
439 print_generic_stmt (outf, DR_ACCESS_FN (dra, i), 0);
440 fprintf (outf, " access_fn_B: ");
441 print_generic_stmt (outf, DR_ACCESS_FN (drb, i), 0);
442 dump_subscript (outf, DDR_SUBSCRIPT (ddr, i));
445 fprintf (outf, " inner loop index: %d\n", DDR_INNER_LOOP (ddr));
446 fprintf (outf, " loop nest: (");
447 FOR_EACH_VEC_ELT (DDR_LOOP_NEST (ddr), i, loopi)
448 fprintf (outf, "%d ", loopi->num);
449 fprintf (outf, ")\n");
451 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
453 fprintf (outf, " distance_vector: ");
454 print_lambda_vector (outf, DDR_DIST_VECT (ddr, i),
455 DDR_NB_LOOPS (ddr));
458 for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
460 fprintf (outf, " direction_vector: ");
461 print_direction_vector (outf, DDR_DIR_VECT (ddr, i),
462 DDR_NB_LOOPS (ddr));
466 fprintf (outf, ")\n");
469 /* Debug version. */
471 DEBUG_FUNCTION void
472 debug_data_dependence_relation (struct data_dependence_relation *ddr)
474 dump_data_dependence_relation (stderr, ddr);
477 /* Dump into FILE all the dependence relations from DDRS. */
479 DEBUG_FUNCTION void
480 dump_data_dependence_relations (FILE *file,
481 vec<ddr_p> ddrs)
483 unsigned int i;
484 struct data_dependence_relation *ddr;
486 FOR_EACH_VEC_ELT (ddrs, i, ddr)
487 dump_data_dependence_relation (file, ddr);
490 DEBUG_FUNCTION void
491 debug (vec<ddr_p> &ref)
493 dump_data_dependence_relations (stderr, ref);
496 DEBUG_FUNCTION void
497 debug (vec<ddr_p> *ptr)
499 if (ptr)
500 debug (*ptr);
501 else
502 fprintf (stderr, "<nil>\n");
506 /* Dump to STDERR all the dependence relations from DDRS. */
508 DEBUG_FUNCTION void
509 debug_data_dependence_relations (vec<ddr_p> ddrs)
511 dump_data_dependence_relations (stderr, ddrs);
514 /* Dumps the distance and direction vectors in FILE. DDRS contains
515 the dependence relations, and VECT_SIZE is the size of the
516 dependence vectors, or in other words the number of loops in the
517 considered nest. */
519 DEBUG_FUNCTION void
520 dump_dist_dir_vectors (FILE *file, vec<ddr_p> ddrs)
522 unsigned int i, j;
523 struct data_dependence_relation *ddr;
524 lambda_vector v;
526 FOR_EACH_VEC_ELT (ddrs, i, ddr)
527 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_AFFINE_P (ddr))
529 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), j, v)
531 fprintf (file, "DISTANCE_V (");
532 print_lambda_vector (file, v, DDR_NB_LOOPS (ddr));
533 fprintf (file, ")\n");
536 FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr), j, v)
538 fprintf (file, "DIRECTION_V (");
539 print_direction_vector (file, v, DDR_NB_LOOPS (ddr));
540 fprintf (file, ")\n");
544 fprintf (file, "\n\n");
547 /* Dumps the data dependence relations DDRS in FILE. */
549 DEBUG_FUNCTION void
550 dump_ddrs (FILE *file, vec<ddr_p> ddrs)
552 unsigned int i;
553 struct data_dependence_relation *ddr;
555 FOR_EACH_VEC_ELT (ddrs, i, ddr)
556 dump_data_dependence_relation (file, ddr);
558 fprintf (file, "\n\n");
561 DEBUG_FUNCTION void
562 debug_ddrs (vec<ddr_p> ddrs)
564 dump_ddrs (stderr, ddrs);
567 /* Helper function for split_constant_offset. Expresses OP0 CODE OP1
568 (the type of the result is TYPE) as VAR + OFF, where OFF is a nonzero
569 constant of type ssizetype, and returns true. If we cannot do this
570 with OFF nonzero, OFF and VAR are set to NULL_TREE instead and false
571 is returned. */
573 static bool
574 split_constant_offset_1 (tree type, tree op0, enum tree_code code, tree op1,
575 tree *var, tree *off)
577 tree var0, var1;
578 tree off0, off1;
579 enum tree_code ocode = code;
581 *var = NULL_TREE;
582 *off = NULL_TREE;
584 switch (code)
586 case INTEGER_CST:
587 *var = build_int_cst (type, 0);
588 *off = fold_convert (ssizetype, op0);
589 return true;
591 case POINTER_PLUS_EXPR:
592 ocode = PLUS_EXPR;
593 /* FALLTHROUGH */
594 case PLUS_EXPR:
595 case MINUS_EXPR:
596 split_constant_offset (op0, &var0, &off0);
597 split_constant_offset (op1, &var1, &off1);
598 *var = fold_build2 (code, type, var0, var1);
599 *off = size_binop (ocode, off0, off1);
600 return true;
602 case MULT_EXPR:
603 if (TREE_CODE (op1) != INTEGER_CST)
604 return false;
606 split_constant_offset (op0, &var0, &off0);
607 *var = fold_build2 (MULT_EXPR, type, var0, op1);
608 *off = size_binop (MULT_EXPR, off0, fold_convert (ssizetype, op1));
609 return true;
611 case ADDR_EXPR:
613 tree base, poffset;
614 HOST_WIDE_INT pbitsize, pbitpos;
615 machine_mode pmode;
616 int punsignedp, preversep, pvolatilep;
618 op0 = TREE_OPERAND (op0, 0);
619 base
620 = get_inner_reference (op0, &pbitsize, &pbitpos, &poffset, &pmode,
621 &punsignedp, &preversep, &pvolatilep, false);
623 if (pbitpos % BITS_PER_UNIT != 0)
624 return false;
625 base = build_fold_addr_expr (base);
626 off0 = ssize_int (pbitpos / BITS_PER_UNIT);
628 if (poffset)
630 split_constant_offset (poffset, &poffset, &off1);
631 off0 = size_binop (PLUS_EXPR, off0, off1);
632 if (POINTER_TYPE_P (TREE_TYPE (base)))
633 base = fold_build_pointer_plus (base, poffset);
634 else
635 base = fold_build2 (PLUS_EXPR, TREE_TYPE (base), base,
636 fold_convert (TREE_TYPE (base), poffset));
639 var0 = fold_convert (type, base);
641 /* If variable length types are involved, punt, otherwise casts
642 might be converted into ARRAY_REFs in gimplify_conversion.
643 To compute that ARRAY_REF's element size TYPE_SIZE_UNIT, which
644 possibly no longer appears in current GIMPLE, might resurface.
645 This perhaps could run
646 if (CONVERT_EXPR_P (var0))
648 gimplify_conversion (&var0);
649 // Attempt to fill in any within var0 found ARRAY_REF's
650 // element size from corresponding op embedded ARRAY_REF,
651 // if unsuccessful, just punt.
652 } */
653 while (POINTER_TYPE_P (type))
654 type = TREE_TYPE (type);
655 if (int_size_in_bytes (type) < 0)
656 return false;
658 *var = var0;
659 *off = off0;
660 return true;
663 case SSA_NAME:
665 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0))
666 return false;
668 gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
669 enum tree_code subcode;
671 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
672 return false;
674 var0 = gimple_assign_rhs1 (def_stmt);
675 subcode = gimple_assign_rhs_code (def_stmt);
676 var1 = gimple_assign_rhs2 (def_stmt);
678 return split_constant_offset_1 (type, var0, subcode, var1, var, off);
680 CASE_CONVERT:
682 /* We must not introduce undefined overflow, and we must not change the value.
683 Hence we're okay if the inner type doesn't overflow to start with
684 (pointer or signed), the outer type also is an integer or pointer
685 and the outer precision is at least as large as the inner. */
686 tree itype = TREE_TYPE (op0);
687 if ((POINTER_TYPE_P (itype)
688 || (INTEGRAL_TYPE_P (itype) && TYPE_OVERFLOW_UNDEFINED (itype)))
689 && TYPE_PRECISION (type) >= TYPE_PRECISION (itype)
690 && (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)))
692 split_constant_offset (op0, &var0, off);
693 *var = fold_convert (type, var0);
694 return true;
696 return false;
699 default:
700 return false;
704 /* Expresses EXP as VAR + OFF, where off is a constant. The type of OFF
705 will be ssizetype. */
707 void
708 split_constant_offset (tree exp, tree *var, tree *off)
710 tree type = TREE_TYPE (exp), otype, op0, op1, e, o;
711 enum tree_code code;
713 *var = exp;
714 *off = ssize_int (0);
715 STRIP_NOPS (exp);
717 if (tree_is_chrec (exp)
718 || get_gimple_rhs_class (TREE_CODE (exp)) == GIMPLE_TERNARY_RHS)
719 return;
721 otype = TREE_TYPE (exp);
722 code = TREE_CODE (exp);
723 extract_ops_from_tree (exp, &code, &op0, &op1);
724 if (split_constant_offset_1 (otype, op0, code, op1, &e, &o))
726 *var = fold_convert (type, e);
727 *off = o;
731 /* Returns the address ADDR of an object in a canonical shape (without nop
732 casts, and with type of pointer to the object). */
734 static tree
735 canonicalize_base_object_address (tree addr)
737 tree orig = addr;
739 STRIP_NOPS (addr);
741 /* The base address may be obtained by casting from integer, in that case
742 keep the cast. */
743 if (!POINTER_TYPE_P (TREE_TYPE (addr)))
744 return orig;
746 if (TREE_CODE (addr) != ADDR_EXPR)
747 return addr;
749 return build_fold_addr_expr (TREE_OPERAND (addr, 0));
752 /* Analyzes the behavior of the memory reference DR in the innermost loop or
753 basic block that contains it. Returns true if analysis succeed or false
754 otherwise. */
756 bool
757 dr_analyze_innermost (struct data_reference *dr, struct loop *nest)
759 gimple *stmt = DR_STMT (dr);
760 struct loop *loop = loop_containing_stmt (stmt);
761 tree ref = DR_REF (dr);
762 HOST_WIDE_INT pbitsize, pbitpos;
763 tree base, poffset;
764 machine_mode pmode;
765 int punsignedp, preversep, pvolatilep;
766 affine_iv base_iv, offset_iv;
767 tree init, dinit, step;
768 bool in_loop = (loop && loop->num);
770 if (dump_file && (dump_flags & TDF_DETAILS))
771 fprintf (dump_file, "analyze_innermost: ");
773 base = get_inner_reference (ref, &pbitsize, &pbitpos, &poffset, &pmode,
774 &punsignedp, &preversep, &pvolatilep, false);
775 gcc_assert (base != NULL_TREE);
777 if (pbitpos % BITS_PER_UNIT != 0)
779 if (dump_file && (dump_flags & TDF_DETAILS))
780 fprintf (dump_file, "failed: bit offset alignment.\n");
781 return false;
784 if (preversep)
786 if (dump_file && (dump_flags & TDF_DETAILS))
787 fprintf (dump_file, "failed: reverse storage order.\n");
788 return false;
791 if (TREE_CODE (base) == MEM_REF)
793 if (!integer_zerop (TREE_OPERAND (base, 1)))
795 offset_int moff = mem_ref_offset (base);
796 tree mofft = wide_int_to_tree (sizetype, moff);
797 if (!poffset)
798 poffset = mofft;
799 else
800 poffset = size_binop (PLUS_EXPR, poffset, mofft);
802 base = TREE_OPERAND (base, 0);
804 else
805 base = build_fold_addr_expr (base);
807 if (in_loop)
809 if (!simple_iv (loop, loop_containing_stmt (stmt), base, &base_iv,
810 nest ? true : false))
812 if (nest)
814 if (dump_file && (dump_flags & TDF_DETAILS))
815 fprintf (dump_file, "failed: evolution of base is not"
816 " affine.\n");
817 return false;
819 else
821 base_iv.base = base;
822 base_iv.step = ssize_int (0);
823 base_iv.no_overflow = true;
827 else
829 base_iv.base = base;
830 base_iv.step = ssize_int (0);
831 base_iv.no_overflow = true;
834 if (!poffset)
836 offset_iv.base = ssize_int (0);
837 offset_iv.step = ssize_int (0);
839 else
841 if (!in_loop)
843 offset_iv.base = poffset;
844 offset_iv.step = ssize_int (0);
846 else if (!simple_iv (loop, loop_containing_stmt (stmt),
847 poffset, &offset_iv,
848 nest ? true : false))
850 if (nest)
852 if (dump_file && (dump_flags & TDF_DETAILS))
853 fprintf (dump_file, "failed: evolution of offset is not"
854 " affine.\n");
855 return false;
857 else
859 offset_iv.base = poffset;
860 offset_iv.step = ssize_int (0);
865 init = ssize_int (pbitpos / BITS_PER_UNIT);
866 split_constant_offset (base_iv.base, &base_iv.base, &dinit);
867 init = size_binop (PLUS_EXPR, init, dinit);
868 split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
869 init = size_binop (PLUS_EXPR, init, dinit);
871 step = size_binop (PLUS_EXPR,
872 fold_convert (ssizetype, base_iv.step),
873 fold_convert (ssizetype, offset_iv.step));
875 DR_BASE_ADDRESS (dr) = canonicalize_base_object_address (base_iv.base);
877 DR_OFFSET (dr) = fold_convert (ssizetype, offset_iv.base);
878 DR_INIT (dr) = init;
879 DR_STEP (dr) = step;
881 DR_ALIGNED_TO (dr) = size_int (highest_pow2_factor (offset_iv.base));
883 if (dump_file && (dump_flags & TDF_DETAILS))
884 fprintf (dump_file, "success.\n");
886 return true;
889 /* Determines the base object and the list of indices of memory reference
890 DR, analyzed in LOOP and instantiated in loop nest NEST. */
892 static void
893 dr_analyze_indices (struct data_reference *dr, loop_p nest, loop_p loop)
895 vec<tree> access_fns = vNULL;
896 tree ref, op;
897 tree base, off, access_fn;
898 basic_block before_loop;
900 /* If analyzing a basic-block there are no indices to analyze
901 and thus no access functions. */
902 if (!nest)
904 DR_BASE_OBJECT (dr) = DR_REF (dr);
905 DR_ACCESS_FNS (dr).create (0);
906 return;
909 ref = DR_REF (dr);
910 before_loop = block_before_loop (nest);
912 /* REALPART_EXPR and IMAGPART_EXPR can be handled like accesses
913 into a two element array with a constant index. The base is
914 then just the immediate underlying object. */
915 if (TREE_CODE (ref) == REALPART_EXPR)
917 ref = TREE_OPERAND (ref, 0);
918 access_fns.safe_push (integer_zero_node);
920 else if (TREE_CODE (ref) == IMAGPART_EXPR)
922 ref = TREE_OPERAND (ref, 0);
923 access_fns.safe_push (integer_one_node);
926 /* Analyze access functions of dimensions we know to be independent. */
927 while (handled_component_p (ref))
929 if (TREE_CODE (ref) == ARRAY_REF)
931 op = TREE_OPERAND (ref, 1);
932 access_fn = analyze_scalar_evolution (loop, op);
933 access_fn = instantiate_scev (before_loop, loop, access_fn);
934 access_fns.safe_push (access_fn);
936 else if (TREE_CODE (ref) == COMPONENT_REF
937 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
939 /* For COMPONENT_REFs of records (but not unions!) use the
940 FIELD_DECL offset as constant access function so we can
941 disambiguate a[i].f1 and a[i].f2. */
942 tree off = component_ref_field_offset (ref);
943 off = size_binop (PLUS_EXPR,
944 size_binop (MULT_EXPR,
945 fold_convert (bitsizetype, off),
946 bitsize_int (BITS_PER_UNIT)),
947 DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1)));
948 access_fns.safe_push (off);
950 else
951 /* If we have an unhandled component we could not translate
952 to an access function stop analyzing. We have determined
953 our base object in this case. */
954 break;
956 ref = TREE_OPERAND (ref, 0);
959 /* If the address operand of a MEM_REF base has an evolution in the
960 analyzed nest, add it as an additional independent access-function. */
961 if (TREE_CODE (ref) == MEM_REF)
963 op = TREE_OPERAND (ref, 0);
964 access_fn = analyze_scalar_evolution (loop, op);
965 access_fn = instantiate_scev (before_loop, loop, access_fn);
966 if (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
968 tree orig_type;
969 tree memoff = TREE_OPERAND (ref, 1);
970 base = initial_condition (access_fn);
971 orig_type = TREE_TYPE (base);
972 STRIP_USELESS_TYPE_CONVERSION (base);
973 split_constant_offset (base, &base, &off);
974 STRIP_USELESS_TYPE_CONVERSION (base);
975 /* Fold the MEM_REF offset into the evolutions initial
976 value to make more bases comparable. */
977 if (!integer_zerop (memoff))
979 off = size_binop (PLUS_EXPR, off,
980 fold_convert (ssizetype, memoff));
981 memoff = build_int_cst (TREE_TYPE (memoff), 0);
983 /* Adjust the offset so it is a multiple of the access type
984 size and thus we separate bases that can possibly be used
985 to produce partial overlaps (which the access_fn machinery
986 cannot handle). */
987 wide_int rem;
988 if (TYPE_SIZE_UNIT (TREE_TYPE (ref))
989 && TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (ref))) == INTEGER_CST
990 && !integer_zerop (TYPE_SIZE_UNIT (TREE_TYPE (ref))))
991 rem = wi::mod_trunc (off, TYPE_SIZE_UNIT (TREE_TYPE (ref)), SIGNED);
992 else
993 /* If we can't compute the remainder simply force the initial
994 condition to zero. */
995 rem = off;
996 off = wide_int_to_tree (ssizetype, wi::sub (off, rem));
997 memoff = wide_int_to_tree (TREE_TYPE (memoff), rem);
998 /* And finally replace the initial condition. */
999 access_fn = chrec_replace_initial_condition
1000 (access_fn, fold_convert (orig_type, off));
1001 /* ??? This is still not a suitable base object for
1002 dr_may_alias_p - the base object needs to be an
1003 access that covers the object as whole. With
1004 an evolution in the pointer this cannot be
1005 guaranteed.
1006 As a band-aid, mark the access so we can special-case
1007 it in dr_may_alias_p. */
1008 tree old = ref;
1009 ref = fold_build2_loc (EXPR_LOCATION (ref),
1010 MEM_REF, TREE_TYPE (ref),
1011 base, memoff);
1012 MR_DEPENDENCE_CLIQUE (ref) = MR_DEPENDENCE_CLIQUE (old);
1013 MR_DEPENDENCE_BASE (ref) = MR_DEPENDENCE_BASE (old);
1014 DR_UNCONSTRAINED_BASE (dr) = true;
1015 access_fns.safe_push (access_fn);
1018 else if (DECL_P (ref))
1020 /* Canonicalize DR_BASE_OBJECT to MEM_REF form. */
1021 ref = build2 (MEM_REF, TREE_TYPE (ref),
1022 build_fold_addr_expr (ref),
1023 build_int_cst (reference_alias_ptr_type (ref), 0));
1026 DR_BASE_OBJECT (dr) = ref;
1027 DR_ACCESS_FNS (dr) = access_fns;
1030 /* Extracts the alias analysis information from the memory reference DR. */
1032 static void
1033 dr_analyze_alias (struct data_reference *dr)
1035 tree ref = DR_REF (dr);
1036 tree base = get_base_address (ref), addr;
1038 if (INDIRECT_REF_P (base)
1039 || TREE_CODE (base) == MEM_REF)
1041 addr = TREE_OPERAND (base, 0);
1042 if (TREE_CODE (addr) == SSA_NAME)
1043 DR_PTR_INFO (dr) = SSA_NAME_PTR_INFO (addr);
1047 /* Frees data reference DR. */
1049 void
1050 free_data_ref (data_reference_p dr)
1052 DR_ACCESS_FNS (dr).release ();
1053 free (dr);
1056 /* Analyzes memory reference MEMREF accessed in STMT. The reference
1057 is read if IS_READ is true, write otherwise. Returns the
1058 data_reference description of MEMREF. NEST is the outermost loop
1059 in which the reference should be instantiated, LOOP is the loop in
1060 which the data reference should be analyzed. */
1062 struct data_reference *
1063 create_data_ref (loop_p nest, loop_p loop, tree memref, gimple *stmt,
1064 bool is_read)
1066 struct data_reference *dr;
1068 if (dump_file && (dump_flags & TDF_DETAILS))
1070 fprintf (dump_file, "Creating dr for ");
1071 print_generic_expr (dump_file, memref, TDF_SLIM);
1072 fprintf (dump_file, "\n");
1075 dr = XCNEW (struct data_reference);
1076 DR_STMT (dr) = stmt;
1077 DR_REF (dr) = memref;
1078 DR_IS_READ (dr) = is_read;
1080 dr_analyze_innermost (dr, nest);
1081 dr_analyze_indices (dr, nest, loop);
1082 dr_analyze_alias (dr);
1084 if (dump_file && (dump_flags & TDF_DETAILS))
1086 unsigned i;
1087 fprintf (dump_file, "\tbase_address: ");
1088 print_generic_expr (dump_file, DR_BASE_ADDRESS (dr), TDF_SLIM);
1089 fprintf (dump_file, "\n\toffset from base address: ");
1090 print_generic_expr (dump_file, DR_OFFSET (dr), TDF_SLIM);
1091 fprintf (dump_file, "\n\tconstant offset from base address: ");
1092 print_generic_expr (dump_file, DR_INIT (dr), TDF_SLIM);
1093 fprintf (dump_file, "\n\tstep: ");
1094 print_generic_expr (dump_file, DR_STEP (dr), TDF_SLIM);
1095 fprintf (dump_file, "\n\taligned to: ");
1096 print_generic_expr (dump_file, DR_ALIGNED_TO (dr), TDF_SLIM);
1097 fprintf (dump_file, "\n\tbase_object: ");
1098 print_generic_expr (dump_file, DR_BASE_OBJECT (dr), TDF_SLIM);
1099 fprintf (dump_file, "\n");
1100 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
1102 fprintf (dump_file, "\tAccess function %d: ", i);
1103 print_generic_stmt (dump_file, DR_ACCESS_FN (dr, i), TDF_SLIM);
1107 return dr;
1110 /* Check if OFFSET1 and OFFSET2 (DR_OFFSETs of some data-refs) are identical
1111 expressions. */
1112 static bool
1113 dr_equal_offsets_p1 (tree offset1, tree offset2)
1115 bool res;
1117 STRIP_NOPS (offset1);
1118 STRIP_NOPS (offset2);
1120 if (offset1 == offset2)
1121 return true;
1123 if (TREE_CODE (offset1) != TREE_CODE (offset2)
1124 || (!BINARY_CLASS_P (offset1) && !UNARY_CLASS_P (offset1)))
1125 return false;
1127 res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 0),
1128 TREE_OPERAND (offset2, 0));
1130 if (!res || !BINARY_CLASS_P (offset1))
1131 return res;
1133 res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 1),
1134 TREE_OPERAND (offset2, 1));
1136 return res;
1139 /* Check if DRA and DRB have equal offsets. */
1140 bool
1141 dr_equal_offsets_p (struct data_reference *dra,
1142 struct data_reference *drb)
1144 tree offset1, offset2;
1146 offset1 = DR_OFFSET (dra);
1147 offset2 = DR_OFFSET (drb);
1149 return dr_equal_offsets_p1 (offset1, offset2);
1152 /* Returns true if FNA == FNB. */
1154 static bool
1155 affine_function_equal_p (affine_fn fna, affine_fn fnb)
1157 unsigned i, n = fna.length ();
1159 if (n != fnb.length ())
1160 return false;
1162 for (i = 0; i < n; i++)
1163 if (!operand_equal_p (fna[i], fnb[i], 0))
1164 return false;
1166 return true;
1169 /* If all the functions in CF are the same, returns one of them,
1170 otherwise returns NULL. */
1172 static affine_fn
1173 common_affine_function (conflict_function *cf)
1175 unsigned i;
1176 affine_fn comm;
1178 if (!CF_NONTRIVIAL_P (cf))
1179 return affine_fn ();
1181 comm = cf->fns[0];
1183 for (i = 1; i < cf->n; i++)
1184 if (!affine_function_equal_p (comm, cf->fns[i]))
1185 return affine_fn ();
1187 return comm;
1190 /* Returns the base of the affine function FN. */
1192 static tree
1193 affine_function_base (affine_fn fn)
1195 return fn[0];
1198 /* Returns true if FN is a constant. */
1200 static bool
1201 affine_function_constant_p (affine_fn fn)
1203 unsigned i;
1204 tree coef;
1206 for (i = 1; fn.iterate (i, &coef); i++)
1207 if (!integer_zerop (coef))
1208 return false;
1210 return true;
1213 /* Returns true if FN is the zero constant function. */
1215 static bool
1216 affine_function_zero_p (affine_fn fn)
1218 return (integer_zerop (affine_function_base (fn))
1219 && affine_function_constant_p (fn));
1222 /* Returns a signed integer type with the largest precision from TA
1223 and TB. */
1225 static tree
1226 signed_type_for_types (tree ta, tree tb)
1228 if (TYPE_PRECISION (ta) > TYPE_PRECISION (tb))
1229 return signed_type_for (ta);
1230 else
1231 return signed_type_for (tb);
1234 /* Applies operation OP on affine functions FNA and FNB, and returns the
1235 result. */
1237 static affine_fn
1238 affine_fn_op (enum tree_code op, affine_fn fna, affine_fn fnb)
1240 unsigned i, n, m;
1241 affine_fn ret;
1242 tree coef;
1244 if (fnb.length () > fna.length ())
1246 n = fna.length ();
1247 m = fnb.length ();
1249 else
1251 n = fnb.length ();
1252 m = fna.length ();
1255 ret.create (m);
1256 for (i = 0; i < n; i++)
1258 tree type = signed_type_for_types (TREE_TYPE (fna[i]),
1259 TREE_TYPE (fnb[i]));
1260 ret.quick_push (fold_build2 (op, type, fna[i], fnb[i]));
1263 for (; fna.iterate (i, &coef); i++)
1264 ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
1265 coef, integer_zero_node));
1266 for (; fnb.iterate (i, &coef); i++)
1267 ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
1268 integer_zero_node, coef));
1270 return ret;
1273 /* Returns the sum of affine functions FNA and FNB. */
1275 static affine_fn
1276 affine_fn_plus (affine_fn fna, affine_fn fnb)
1278 return affine_fn_op (PLUS_EXPR, fna, fnb);
1281 /* Returns the difference of affine functions FNA and FNB. */
1283 static affine_fn
1284 affine_fn_minus (affine_fn fna, affine_fn fnb)
1286 return affine_fn_op (MINUS_EXPR, fna, fnb);
1289 /* Frees affine function FN. */
1291 static void
1292 affine_fn_free (affine_fn fn)
1294 fn.release ();
1297 /* Determine for each subscript in the data dependence relation DDR
1298 the distance. */
1300 static void
1301 compute_subscript_distance (struct data_dependence_relation *ddr)
1303 conflict_function *cf_a, *cf_b;
1304 affine_fn fn_a, fn_b, diff;
1306 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
1308 unsigned int i;
1310 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
1312 struct subscript *subscript;
1314 subscript = DDR_SUBSCRIPT (ddr, i);
1315 cf_a = SUB_CONFLICTS_IN_A (subscript);
1316 cf_b = SUB_CONFLICTS_IN_B (subscript);
1318 fn_a = common_affine_function (cf_a);
1319 fn_b = common_affine_function (cf_b);
1320 if (!fn_a.exists () || !fn_b.exists ())
1322 SUB_DISTANCE (subscript) = chrec_dont_know;
1323 return;
1325 diff = affine_fn_minus (fn_a, fn_b);
1327 if (affine_function_constant_p (diff))
1328 SUB_DISTANCE (subscript) = affine_function_base (diff);
1329 else
1330 SUB_DISTANCE (subscript) = chrec_dont_know;
1332 affine_fn_free (diff);
1337 /* Returns the conflict function for "unknown". */
1339 static conflict_function *
1340 conflict_fn_not_known (void)
1342 conflict_function *fn = XCNEW (conflict_function);
1343 fn->n = NOT_KNOWN;
1345 return fn;
1348 /* Returns the conflict function for "independent". */
1350 static conflict_function *
1351 conflict_fn_no_dependence (void)
1353 conflict_function *fn = XCNEW (conflict_function);
1354 fn->n = NO_DEPENDENCE;
1356 return fn;
1359 /* Returns true if the address of OBJ is invariant in LOOP. */
1361 static bool
1362 object_address_invariant_in_loop_p (const struct loop *loop, const_tree obj)
1364 while (handled_component_p (obj))
1366 if (TREE_CODE (obj) == ARRAY_REF)
1368 /* Index of the ARRAY_REF was zeroed in analyze_indices, thus we only
1369 need to check the stride and the lower bound of the reference. */
1370 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
1371 loop->num)
1372 || chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 3),
1373 loop->num))
1374 return false;
1376 else if (TREE_CODE (obj) == COMPONENT_REF)
1378 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
1379 loop->num))
1380 return false;
1382 obj = TREE_OPERAND (obj, 0);
1385 if (!INDIRECT_REF_P (obj)
1386 && TREE_CODE (obj) != MEM_REF)
1387 return true;
1389 return !chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 0),
1390 loop->num);
1393 /* Returns false if we can prove that data references A and B do not alias,
1394 true otherwise. If LOOP_NEST is false no cross-iteration aliases are
1395 considered. */
1397 bool
1398 dr_may_alias_p (const struct data_reference *a, const struct data_reference *b,
1399 bool loop_nest)
1401 tree addr_a = DR_BASE_OBJECT (a);
1402 tree addr_b = DR_BASE_OBJECT (b);
1404 /* If we are not processing a loop nest but scalar code we
1405 do not need to care about possible cross-iteration dependences
1406 and thus can process the full original reference. Do so,
1407 similar to how loop invariant motion applies extra offset-based
1408 disambiguation. */
1409 if (!loop_nest)
1411 aff_tree off1, off2;
1412 widest_int size1, size2;
1413 get_inner_reference_aff (DR_REF (a), &off1, &size1);
1414 get_inner_reference_aff (DR_REF (b), &off2, &size2);
1415 aff_combination_scale (&off1, -1);
1416 aff_combination_add (&off2, &off1);
1417 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1418 return false;
1421 if ((TREE_CODE (addr_a) == MEM_REF || TREE_CODE (addr_a) == TARGET_MEM_REF)
1422 && (TREE_CODE (addr_b) == MEM_REF || TREE_CODE (addr_b) == TARGET_MEM_REF)
1423 && MR_DEPENDENCE_CLIQUE (addr_a) == MR_DEPENDENCE_CLIQUE (addr_b)
1424 && MR_DEPENDENCE_BASE (addr_a) != MR_DEPENDENCE_BASE (addr_b))
1425 return false;
1427 /* If we had an evolution in a pointer-based MEM_REF BASE_OBJECT we
1428 do not know the size of the base-object. So we cannot do any
1429 offset/overlap based analysis but have to rely on points-to
1430 information only. */
1431 if (TREE_CODE (addr_a) == MEM_REF
1432 && (DR_UNCONSTRAINED_BASE (a)
1433 || TREE_CODE (TREE_OPERAND (addr_a, 0)) == SSA_NAME))
1435 /* For true dependences we can apply TBAA. */
1436 if (flag_strict_aliasing
1437 && DR_IS_WRITE (a) && DR_IS_READ (b)
1438 && !alias_sets_conflict_p (get_alias_set (DR_REF (a)),
1439 get_alias_set (DR_REF (b))))
1440 return false;
1441 if (TREE_CODE (addr_b) == MEM_REF)
1442 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
1443 TREE_OPERAND (addr_b, 0));
1444 else
1445 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
1446 build_fold_addr_expr (addr_b));
1448 else if (TREE_CODE (addr_b) == MEM_REF
1449 && (DR_UNCONSTRAINED_BASE (b)
1450 || TREE_CODE (TREE_OPERAND (addr_b, 0)) == SSA_NAME))
1452 /* For true dependences we can apply TBAA. */
1453 if (flag_strict_aliasing
1454 && DR_IS_WRITE (a) && DR_IS_READ (b)
1455 && !alias_sets_conflict_p (get_alias_set (DR_REF (a)),
1456 get_alias_set (DR_REF (b))))
1457 return false;
1458 if (TREE_CODE (addr_a) == MEM_REF)
1459 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
1460 TREE_OPERAND (addr_b, 0));
1461 else
1462 return ptr_derefs_may_alias_p (build_fold_addr_expr (addr_a),
1463 TREE_OPERAND (addr_b, 0));
1466 /* Otherwise DR_BASE_OBJECT is an access that covers the whole object
1467 that is being subsetted in the loop nest. */
1468 if (DR_IS_WRITE (a) && DR_IS_WRITE (b))
1469 return refs_output_dependent_p (addr_a, addr_b);
1470 else if (DR_IS_READ (a) && DR_IS_WRITE (b))
1471 return refs_anti_dependent_p (addr_a, addr_b);
1472 return refs_may_alias_p (addr_a, addr_b);
1475 /* Initialize a data dependence relation between data accesses A and
1476 B. NB_LOOPS is the number of loops surrounding the references: the
1477 size of the classic distance/direction vectors. */
1479 struct data_dependence_relation *
1480 initialize_data_dependence_relation (struct data_reference *a,
1481 struct data_reference *b,
1482 vec<loop_p> loop_nest)
1484 struct data_dependence_relation *res;
1485 unsigned int i;
1487 res = XNEW (struct data_dependence_relation);
1488 DDR_A (res) = a;
1489 DDR_B (res) = b;
1490 DDR_LOOP_NEST (res).create (0);
1491 DDR_REVERSED_P (res) = false;
1492 DDR_SUBSCRIPTS (res).create (0);
1493 DDR_DIR_VECTS (res).create (0);
1494 DDR_DIST_VECTS (res).create (0);
1496 if (a == NULL || b == NULL)
1498 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1499 return res;
1502 /* If the data references do not alias, then they are independent. */
1503 if (!dr_may_alias_p (a, b, loop_nest.exists ()))
1505 DDR_ARE_DEPENDENT (res) = chrec_known;
1506 return res;
1509 /* The case where the references are exactly the same. */
1510 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
1512 if ((loop_nest.exists ()
1513 && !object_address_invariant_in_loop_p (loop_nest[0],
1514 DR_BASE_OBJECT (a)))
1515 || DR_NUM_DIMENSIONS (a) == 0)
1517 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1518 return res;
1520 DDR_AFFINE_P (res) = true;
1521 DDR_ARE_DEPENDENT (res) = NULL_TREE;
1522 DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
1523 DDR_LOOP_NEST (res) = loop_nest;
1524 DDR_INNER_LOOP (res) = 0;
1525 DDR_SELF_REFERENCE (res) = true;
1526 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
1528 struct subscript *subscript;
1530 subscript = XNEW (struct subscript);
1531 SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
1532 SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
1533 SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
1534 SUB_DISTANCE (subscript) = chrec_dont_know;
1535 DDR_SUBSCRIPTS (res).safe_push (subscript);
1537 return res;
1540 /* If the references do not access the same object, we do not know
1541 whether they alias or not. We do not care about TBAA or alignment
1542 info so we can use OEP_ADDRESS_OF to avoid false negatives.
1543 But the accesses have to use compatible types as otherwise the
1544 built indices would not match. */
1545 if (!operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), OEP_ADDRESS_OF)
1546 || !types_compatible_p (TREE_TYPE (DR_BASE_OBJECT (a)),
1547 TREE_TYPE (DR_BASE_OBJECT (b))))
1549 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1550 return res;
1553 /* If the base of the object is not invariant in the loop nest, we cannot
1554 analyze it. TODO -- in fact, it would suffice to record that there may
1555 be arbitrary dependences in the loops where the base object varies. */
1556 if ((loop_nest.exists ()
1557 && !object_address_invariant_in_loop_p (loop_nest[0], DR_BASE_OBJECT (a)))
1558 || DR_NUM_DIMENSIONS (a) == 0)
1560 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1561 return res;
1564 /* If the number of dimensions of the access to not agree we can have
1565 a pointer access to a component of the array element type and an
1566 array access while the base-objects are still the same. Punt. */
1567 if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
1569 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1570 return res;
1573 DDR_AFFINE_P (res) = true;
1574 DDR_ARE_DEPENDENT (res) = NULL_TREE;
1575 DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
1576 DDR_LOOP_NEST (res) = loop_nest;
1577 DDR_INNER_LOOP (res) = 0;
1578 DDR_SELF_REFERENCE (res) = false;
1580 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
1582 struct subscript *subscript;
1584 subscript = XNEW (struct subscript);
1585 SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
1586 SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
1587 SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
1588 SUB_DISTANCE (subscript) = chrec_dont_know;
1589 DDR_SUBSCRIPTS (res).safe_push (subscript);
1592 return res;
1595 /* Frees memory used by the conflict function F. */
1597 static void
1598 free_conflict_function (conflict_function *f)
1600 unsigned i;
1602 if (CF_NONTRIVIAL_P (f))
1604 for (i = 0; i < f->n; i++)
1605 affine_fn_free (f->fns[i]);
1607 free (f);
1610 /* Frees memory used by SUBSCRIPTS. */
1612 static void
1613 free_subscripts (vec<subscript_p> subscripts)
1615 unsigned i;
1616 subscript_p s;
1618 FOR_EACH_VEC_ELT (subscripts, i, s)
1620 free_conflict_function (s->conflicting_iterations_in_a);
1621 free_conflict_function (s->conflicting_iterations_in_b);
1622 free (s);
1624 subscripts.release ();
1627 /* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
1628 description. */
1630 static inline void
1631 finalize_ddr_dependent (struct data_dependence_relation *ddr,
1632 tree chrec)
1634 DDR_ARE_DEPENDENT (ddr) = chrec;
1635 free_subscripts (DDR_SUBSCRIPTS (ddr));
1636 DDR_SUBSCRIPTS (ddr).create (0);
1639 /* The dependence relation DDR cannot be represented by a distance
1640 vector. */
1642 static inline void
1643 non_affine_dependence_relation (struct data_dependence_relation *ddr)
1645 if (dump_file && (dump_flags & TDF_DETAILS))
1646 fprintf (dump_file, "(Dependence relation cannot be represented by distance vector.) \n");
1648 DDR_AFFINE_P (ddr) = false;
1653 /* This section contains the classic Banerjee tests. */
1655 /* Returns true iff CHREC_A and CHREC_B are not dependent on any index
1656 variables, i.e., if the ZIV (Zero Index Variable) test is true. */
1658 static inline bool
1659 ziv_subscript_p (const_tree chrec_a, const_tree chrec_b)
1661 return (evolution_function_is_constant_p (chrec_a)
1662 && evolution_function_is_constant_p (chrec_b));
1665 /* Returns true iff CHREC_A and CHREC_B are dependent on an index
1666 variable, i.e., if the SIV (Single Index Variable) test is true. */
1668 static bool
1669 siv_subscript_p (const_tree chrec_a, const_tree chrec_b)
1671 if ((evolution_function_is_constant_p (chrec_a)
1672 && evolution_function_is_univariate_p (chrec_b))
1673 || (evolution_function_is_constant_p (chrec_b)
1674 && evolution_function_is_univariate_p (chrec_a)))
1675 return true;
1677 if (evolution_function_is_univariate_p (chrec_a)
1678 && evolution_function_is_univariate_p (chrec_b))
1680 switch (TREE_CODE (chrec_a))
1682 case POLYNOMIAL_CHREC:
1683 switch (TREE_CODE (chrec_b))
1685 case POLYNOMIAL_CHREC:
1686 if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b))
1687 return false;
1689 default:
1690 return true;
1693 default:
1694 return true;
1698 return false;
1701 /* Creates a conflict function with N dimensions. The affine functions
1702 in each dimension follow. */
1704 static conflict_function *
1705 conflict_fn (unsigned n, ...)
1707 unsigned i;
1708 conflict_function *ret = XCNEW (conflict_function);
1709 va_list ap;
1711 gcc_assert (0 < n && n <= MAX_DIM);
1712 va_start (ap, n);
1714 ret->n = n;
1715 for (i = 0; i < n; i++)
1716 ret->fns[i] = va_arg (ap, affine_fn);
1717 va_end (ap);
1719 return ret;
1722 /* Returns constant affine function with value CST. */
1724 static affine_fn
1725 affine_fn_cst (tree cst)
1727 affine_fn fn;
1728 fn.create (1);
1729 fn.quick_push (cst);
1730 return fn;
1733 /* Returns affine function with single variable, CST + COEF * x_DIM. */
1735 static affine_fn
1736 affine_fn_univar (tree cst, unsigned dim, tree coef)
1738 affine_fn fn;
1739 fn.create (dim + 1);
1740 unsigned i;
1742 gcc_assert (dim > 0);
1743 fn.quick_push (cst);
1744 for (i = 1; i < dim; i++)
1745 fn.quick_push (integer_zero_node);
1746 fn.quick_push (coef);
1747 return fn;
1750 /* Analyze a ZIV (Zero Index Variable) subscript. *OVERLAPS_A and
1751 *OVERLAPS_B are initialized to the functions that describe the
1752 relation between the elements accessed twice by CHREC_A and
1753 CHREC_B. For k >= 0, the following property is verified:
1755 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
1757 static void
1758 analyze_ziv_subscript (tree chrec_a,
1759 tree chrec_b,
1760 conflict_function **overlaps_a,
1761 conflict_function **overlaps_b,
1762 tree *last_conflicts)
1764 tree type, difference;
1765 dependence_stats.num_ziv++;
1767 if (dump_file && (dump_flags & TDF_DETAILS))
1768 fprintf (dump_file, "(analyze_ziv_subscript \n");
1770 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
1771 chrec_a = chrec_convert (type, chrec_a, NULL);
1772 chrec_b = chrec_convert (type, chrec_b, NULL);
1773 difference = chrec_fold_minus (type, chrec_a, chrec_b);
1775 switch (TREE_CODE (difference))
1777 case INTEGER_CST:
1778 if (integer_zerop (difference))
1780 /* The difference is equal to zero: the accessed index
1781 overlaps for each iteration in the loop. */
1782 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1783 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
1784 *last_conflicts = chrec_dont_know;
1785 dependence_stats.num_ziv_dependent++;
1787 else
1789 /* The accesses do not overlap. */
1790 *overlaps_a = conflict_fn_no_dependence ();
1791 *overlaps_b = conflict_fn_no_dependence ();
1792 *last_conflicts = integer_zero_node;
1793 dependence_stats.num_ziv_independent++;
1795 break;
1797 default:
1798 /* We're not sure whether the indexes overlap. For the moment,
1799 conservatively answer "don't know". */
1800 if (dump_file && (dump_flags & TDF_DETAILS))
1801 fprintf (dump_file, "ziv test failed: difference is non-integer.\n");
1803 *overlaps_a = conflict_fn_not_known ();
1804 *overlaps_b = conflict_fn_not_known ();
1805 *last_conflicts = chrec_dont_know;
1806 dependence_stats.num_ziv_unimplemented++;
1807 break;
1810 if (dump_file && (dump_flags & TDF_DETAILS))
1811 fprintf (dump_file, ")\n");
1814 /* Similar to max_stmt_executions_int, but returns the bound as a tree,
1815 and only if it fits to the int type. If this is not the case, or the
1816 bound on the number of iterations of LOOP could not be derived, returns
1817 chrec_dont_know. */
1819 static tree
1820 max_stmt_executions_tree (struct loop *loop)
1822 widest_int nit;
1824 if (!max_stmt_executions (loop, &nit))
1825 return chrec_dont_know;
1827 if (!wi::fits_to_tree_p (nit, unsigned_type_node))
1828 return chrec_dont_know;
1830 return wide_int_to_tree (unsigned_type_node, nit);
1833 /* Determine whether the CHREC is always positive/negative. If the expression
1834 cannot be statically analyzed, return false, otherwise set the answer into
1835 VALUE. */
1837 static bool
1838 chrec_is_positive (tree chrec, bool *value)
1840 bool value0, value1, value2;
1841 tree end_value, nb_iter;
1843 switch (TREE_CODE (chrec))
1845 case POLYNOMIAL_CHREC:
1846 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
1847 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
1848 return false;
1850 /* FIXME -- overflows. */
1851 if (value0 == value1)
1853 *value = value0;
1854 return true;
1857 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
1858 and the proof consists in showing that the sign never
1859 changes during the execution of the loop, from 0 to
1860 loop->nb_iterations. */
1861 if (!evolution_function_is_affine_p (chrec))
1862 return false;
1864 nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
1865 if (chrec_contains_undetermined (nb_iter))
1866 return false;
1868 #if 0
1869 /* TODO -- If the test is after the exit, we may decrease the number of
1870 iterations by one. */
1871 if (after_exit)
1872 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
1873 #endif
1875 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
1877 if (!chrec_is_positive (end_value, &value2))
1878 return false;
1880 *value = value0;
1881 return value0 == value1;
1883 case INTEGER_CST:
1884 switch (tree_int_cst_sgn (chrec))
1886 case -1:
1887 *value = false;
1888 break;
1889 case 1:
1890 *value = true;
1891 break;
1892 default:
1893 return false;
1895 return true;
1897 default:
1898 return false;
1903 /* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
1904 constant, and CHREC_B is an affine function. *OVERLAPS_A and
1905 *OVERLAPS_B are initialized to the functions that describe the
1906 relation between the elements accessed twice by CHREC_A and
1907 CHREC_B. For k >= 0, the following property is verified:
1909 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
1911 static void
1912 analyze_siv_subscript_cst_affine (tree chrec_a,
1913 tree chrec_b,
1914 conflict_function **overlaps_a,
1915 conflict_function **overlaps_b,
1916 tree *last_conflicts)
1918 bool value0, value1, value2;
1919 tree type, difference, tmp;
1921 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
1922 chrec_a = chrec_convert (type, chrec_a, NULL);
1923 chrec_b = chrec_convert (type, chrec_b, NULL);
1924 difference = chrec_fold_minus (type, initial_condition (chrec_b), chrec_a);
1926 /* Special case overlap in the first iteration. */
1927 if (integer_zerop (difference))
1929 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1930 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
1931 *last_conflicts = integer_one_node;
1932 return;
1935 if (!chrec_is_positive (initial_condition (difference), &value0))
1937 if (dump_file && (dump_flags & TDF_DETAILS))
1938 fprintf (dump_file, "siv test failed: chrec is not positive.\n");
1940 dependence_stats.num_siv_unimplemented++;
1941 *overlaps_a = conflict_fn_not_known ();
1942 *overlaps_b = conflict_fn_not_known ();
1943 *last_conflicts = chrec_dont_know;
1944 return;
1946 else
1948 if (value0 == false)
1950 if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value1))
1952 if (dump_file && (dump_flags & TDF_DETAILS))
1953 fprintf (dump_file, "siv test failed: chrec not positive.\n");
1955 *overlaps_a = conflict_fn_not_known ();
1956 *overlaps_b = conflict_fn_not_known ();
1957 *last_conflicts = chrec_dont_know;
1958 dependence_stats.num_siv_unimplemented++;
1959 return;
1961 else
1963 if (value1 == true)
1965 /* Example:
1966 chrec_a = 12
1967 chrec_b = {10, +, 1}
1970 if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
1972 HOST_WIDE_INT numiter;
1973 struct loop *loop = get_chrec_loop (chrec_b);
1975 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1976 tmp = fold_build2 (EXACT_DIV_EXPR, type,
1977 fold_build1 (ABS_EXPR, type, difference),
1978 CHREC_RIGHT (chrec_b));
1979 *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
1980 *last_conflicts = integer_one_node;
1983 /* Perform weak-zero siv test to see if overlap is
1984 outside the loop bounds. */
1985 numiter = max_stmt_executions_int (loop);
1987 if (numiter >= 0
1988 && compare_tree_int (tmp, numiter) > 0)
1990 free_conflict_function (*overlaps_a);
1991 free_conflict_function (*overlaps_b);
1992 *overlaps_a = conflict_fn_no_dependence ();
1993 *overlaps_b = conflict_fn_no_dependence ();
1994 *last_conflicts = integer_zero_node;
1995 dependence_stats.num_siv_independent++;
1996 return;
1998 dependence_stats.num_siv_dependent++;
1999 return;
2002 /* When the step does not divide the difference, there are
2003 no overlaps. */
2004 else
2006 *overlaps_a = conflict_fn_no_dependence ();
2007 *overlaps_b = conflict_fn_no_dependence ();
2008 *last_conflicts = integer_zero_node;
2009 dependence_stats.num_siv_independent++;
2010 return;
2014 else
2016 /* Example:
2017 chrec_a = 12
2018 chrec_b = {10, +, -1}
2020 In this case, chrec_a will not overlap with chrec_b. */
2021 *overlaps_a = conflict_fn_no_dependence ();
2022 *overlaps_b = conflict_fn_no_dependence ();
2023 *last_conflicts = integer_zero_node;
2024 dependence_stats.num_siv_independent++;
2025 return;
2029 else
2031 if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value2))
2033 if (dump_file && (dump_flags & TDF_DETAILS))
2034 fprintf (dump_file, "siv test failed: chrec not positive.\n");
2036 *overlaps_a = conflict_fn_not_known ();
2037 *overlaps_b = conflict_fn_not_known ();
2038 *last_conflicts = chrec_dont_know;
2039 dependence_stats.num_siv_unimplemented++;
2040 return;
2042 else
2044 if (value2 == false)
2046 /* Example:
2047 chrec_a = 3
2048 chrec_b = {10, +, -1}
2050 if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
2052 HOST_WIDE_INT numiter;
2053 struct loop *loop = get_chrec_loop (chrec_b);
2055 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2056 tmp = fold_build2 (EXACT_DIV_EXPR, type, difference,
2057 CHREC_RIGHT (chrec_b));
2058 *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
2059 *last_conflicts = integer_one_node;
2061 /* Perform weak-zero siv test to see if overlap is
2062 outside the loop bounds. */
2063 numiter = max_stmt_executions_int (loop);
2065 if (numiter >= 0
2066 && compare_tree_int (tmp, numiter) > 0)
2068 free_conflict_function (*overlaps_a);
2069 free_conflict_function (*overlaps_b);
2070 *overlaps_a = conflict_fn_no_dependence ();
2071 *overlaps_b = conflict_fn_no_dependence ();
2072 *last_conflicts = integer_zero_node;
2073 dependence_stats.num_siv_independent++;
2074 return;
2076 dependence_stats.num_siv_dependent++;
2077 return;
2080 /* When the step does not divide the difference, there
2081 are no overlaps. */
2082 else
2084 *overlaps_a = conflict_fn_no_dependence ();
2085 *overlaps_b = conflict_fn_no_dependence ();
2086 *last_conflicts = integer_zero_node;
2087 dependence_stats.num_siv_independent++;
2088 return;
2091 else
2093 /* Example:
2094 chrec_a = 3
2095 chrec_b = {4, +, 1}
2097 In this case, chrec_a will not overlap with chrec_b. */
2098 *overlaps_a = conflict_fn_no_dependence ();
2099 *overlaps_b = conflict_fn_no_dependence ();
2100 *last_conflicts = integer_zero_node;
2101 dependence_stats.num_siv_independent++;
2102 return;
2109 /* Helper recursive function for initializing the matrix A. Returns
2110 the initial value of CHREC. */
2112 static tree
2113 initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
2115 gcc_assert (chrec);
2117 switch (TREE_CODE (chrec))
2119 case POLYNOMIAL_CHREC:
2120 gcc_assert (TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST);
2122 A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec));
2123 return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
2125 case PLUS_EXPR:
2126 case MULT_EXPR:
2127 case MINUS_EXPR:
2129 tree op0 = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
2130 tree op1 = initialize_matrix_A (A, TREE_OPERAND (chrec, 1), index, mult);
2132 return chrec_fold_op (TREE_CODE (chrec), chrec_type (chrec), op0, op1);
2135 CASE_CONVERT:
2137 tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
2138 return chrec_convert (chrec_type (chrec), op, NULL);
2141 case BIT_NOT_EXPR:
2143 /* Handle ~X as -1 - X. */
2144 tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
2145 return chrec_fold_op (MINUS_EXPR, chrec_type (chrec),
2146 build_int_cst (TREE_TYPE (chrec), -1), op);
2149 case INTEGER_CST:
2150 return chrec;
2152 default:
2153 gcc_unreachable ();
2154 return NULL_TREE;
2158 #define FLOOR_DIV(x,y) ((x) / (y))
2160 /* Solves the special case of the Diophantine equation:
2161 | {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)
2163 Computes the descriptions OVERLAPS_A and OVERLAPS_B. NITER is the
2164 number of iterations that loops X and Y run. The overlaps will be
2165 constructed as evolutions in dimension DIM. */
2167 static void
2168 compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b,
2169 affine_fn *overlaps_a,
2170 affine_fn *overlaps_b,
2171 tree *last_conflicts, int dim)
2173 if (((step_a > 0 && step_b > 0)
2174 || (step_a < 0 && step_b < 0)))
2176 int step_overlaps_a, step_overlaps_b;
2177 int gcd_steps_a_b, last_conflict, tau2;
2179 gcd_steps_a_b = gcd (step_a, step_b);
2180 step_overlaps_a = step_b / gcd_steps_a_b;
2181 step_overlaps_b = step_a / gcd_steps_a_b;
2183 if (niter > 0)
2185 tau2 = FLOOR_DIV (niter, step_overlaps_a);
2186 tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b));
2187 last_conflict = tau2;
2188 *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
2190 else
2191 *last_conflicts = chrec_dont_know;
2193 *overlaps_a = affine_fn_univar (integer_zero_node, dim,
2194 build_int_cst (NULL_TREE,
2195 step_overlaps_a));
2196 *overlaps_b = affine_fn_univar (integer_zero_node, dim,
2197 build_int_cst (NULL_TREE,
2198 step_overlaps_b));
2201 else
2203 *overlaps_a = affine_fn_cst (integer_zero_node);
2204 *overlaps_b = affine_fn_cst (integer_zero_node);
2205 *last_conflicts = integer_zero_node;
2209 /* Solves the special case of a Diophantine equation where CHREC_A is
2210 an affine bivariate function, and CHREC_B is an affine univariate
2211 function. For example,
2213 | {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
2215 has the following overlapping functions:
2217 | x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
2218 | y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
2219 | z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v
2221 FORNOW: This is a specialized implementation for a case occurring in
2222 a common benchmark. Implement the general algorithm. */
2224 static void
2225 compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
2226 conflict_function **overlaps_a,
2227 conflict_function **overlaps_b,
2228 tree *last_conflicts)
2230 bool xz_p, yz_p, xyz_p;
2231 int step_x, step_y, step_z;
2232 HOST_WIDE_INT niter_x, niter_y, niter_z, niter;
2233 affine_fn overlaps_a_xz, overlaps_b_xz;
2234 affine_fn overlaps_a_yz, overlaps_b_yz;
2235 affine_fn overlaps_a_xyz, overlaps_b_xyz;
2236 affine_fn ova1, ova2, ovb;
2237 tree last_conflicts_xz, last_conflicts_yz, last_conflicts_xyz;
2239 step_x = int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a)));
2240 step_y = int_cst_value (CHREC_RIGHT (chrec_a));
2241 step_z = int_cst_value (CHREC_RIGHT (chrec_b));
2243 niter_x = max_stmt_executions_int (get_chrec_loop (CHREC_LEFT (chrec_a)));
2244 niter_y = max_stmt_executions_int (get_chrec_loop (chrec_a));
2245 niter_z = max_stmt_executions_int (get_chrec_loop (chrec_b));
2247 if (niter_x < 0 || niter_y < 0 || niter_z < 0)
2249 if (dump_file && (dump_flags & TDF_DETAILS))
2250 fprintf (dump_file, "overlap steps test failed: no iteration counts.\n");
2252 *overlaps_a = conflict_fn_not_known ();
2253 *overlaps_b = conflict_fn_not_known ();
2254 *last_conflicts = chrec_dont_know;
2255 return;
2258 niter = MIN (niter_x, niter_z);
2259 compute_overlap_steps_for_affine_univar (niter, step_x, step_z,
2260 &overlaps_a_xz,
2261 &overlaps_b_xz,
2262 &last_conflicts_xz, 1);
2263 niter = MIN (niter_y, niter_z);
2264 compute_overlap_steps_for_affine_univar (niter, step_y, step_z,
2265 &overlaps_a_yz,
2266 &overlaps_b_yz,
2267 &last_conflicts_yz, 2);
2268 niter = MIN (niter_x, niter_z);
2269 niter = MIN (niter_y, niter);
2270 compute_overlap_steps_for_affine_univar (niter, step_x + step_y, step_z,
2271 &overlaps_a_xyz,
2272 &overlaps_b_xyz,
2273 &last_conflicts_xyz, 3);
2275 xz_p = !integer_zerop (last_conflicts_xz);
2276 yz_p = !integer_zerop (last_conflicts_yz);
2277 xyz_p = !integer_zerop (last_conflicts_xyz);
2279 if (xz_p || yz_p || xyz_p)
2281 ova1 = affine_fn_cst (integer_zero_node);
2282 ova2 = affine_fn_cst (integer_zero_node);
2283 ovb = affine_fn_cst (integer_zero_node);
2284 if (xz_p)
2286 affine_fn t0 = ova1;
2287 affine_fn t2 = ovb;
2289 ova1 = affine_fn_plus (ova1, overlaps_a_xz);
2290 ovb = affine_fn_plus (ovb, overlaps_b_xz);
2291 affine_fn_free (t0);
2292 affine_fn_free (t2);
2293 *last_conflicts = last_conflicts_xz;
2295 if (yz_p)
2297 affine_fn t0 = ova2;
2298 affine_fn t2 = ovb;
2300 ova2 = affine_fn_plus (ova2, overlaps_a_yz);
2301 ovb = affine_fn_plus (ovb, overlaps_b_yz);
2302 affine_fn_free (t0);
2303 affine_fn_free (t2);
2304 *last_conflicts = last_conflicts_yz;
2306 if (xyz_p)
2308 affine_fn t0 = ova1;
2309 affine_fn t2 = ova2;
2310 affine_fn t4 = ovb;
2312 ova1 = affine_fn_plus (ova1, overlaps_a_xyz);
2313 ova2 = affine_fn_plus (ova2, overlaps_a_xyz);
2314 ovb = affine_fn_plus (ovb, overlaps_b_xyz);
2315 affine_fn_free (t0);
2316 affine_fn_free (t2);
2317 affine_fn_free (t4);
2318 *last_conflicts = last_conflicts_xyz;
2320 *overlaps_a = conflict_fn (2, ova1, ova2);
2321 *overlaps_b = conflict_fn (1, ovb);
2323 else
2325 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2326 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
2327 *last_conflicts = integer_zero_node;
2330 affine_fn_free (overlaps_a_xz);
2331 affine_fn_free (overlaps_b_xz);
2332 affine_fn_free (overlaps_a_yz);
2333 affine_fn_free (overlaps_b_yz);
2334 affine_fn_free (overlaps_a_xyz);
2335 affine_fn_free (overlaps_b_xyz);
2338 /* Copy the elements of vector VEC1 with length SIZE to VEC2. */
2340 static void
2341 lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
2342 int size)
2344 memcpy (vec2, vec1, size * sizeof (*vec1));
2347 /* Copy the elements of M x N matrix MAT1 to MAT2. */
2349 static void
2350 lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2,
2351 int m, int n)
2353 int i;
2355 for (i = 0; i < m; i++)
2356 lambda_vector_copy (mat1[i], mat2[i], n);
2359 /* Store the N x N identity matrix in MAT. */
2361 static void
2362 lambda_matrix_id (lambda_matrix mat, int size)
2364 int i, j;
2366 for (i = 0; i < size; i++)
2367 for (j = 0; j < size; j++)
2368 mat[i][j] = (i == j) ? 1 : 0;
2371 /* Return the first nonzero element of vector VEC1 between START and N.
2372 We must have START <= N. Returns N if VEC1 is the zero vector. */
2374 static int
2375 lambda_vector_first_nz (lambda_vector vec1, int n, int start)
2377 int j = start;
2378 while (j < n && vec1[j] == 0)
2379 j++;
2380 return j;
2383 /* Add a multiple of row R1 of matrix MAT with N columns to row R2:
2384 R2 = R2 + CONST1 * R1. */
2386 static void
2387 lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2, int const1)
2389 int i;
2391 if (const1 == 0)
2392 return;
2394 for (i = 0; i < n; i++)
2395 mat[r2][i] += const1 * mat[r1][i];
2398 /* Multiply vector VEC1 of length SIZE by a constant CONST1,
2399 and store the result in VEC2. */
2401 static void
2402 lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
2403 int size, int const1)
2405 int i;
2407 if (const1 == 0)
2408 lambda_vector_clear (vec2, size);
2409 else
2410 for (i = 0; i < size; i++)
2411 vec2[i] = const1 * vec1[i];
2414 /* Negate vector VEC1 with length SIZE and store it in VEC2. */
2416 static void
2417 lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
2418 int size)
2420 lambda_vector_mult_const (vec1, vec2, size, -1);
2423 /* Negate row R1 of matrix MAT which has N columns. */
2425 static void
2426 lambda_matrix_row_negate (lambda_matrix mat, int n, int r1)
2428 lambda_vector_negate (mat[r1], mat[r1], n);
2431 /* Return true if two vectors are equal. */
2433 static bool
2434 lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
2436 int i;
2437 for (i = 0; i < size; i++)
2438 if (vec1[i] != vec2[i])
2439 return false;
2440 return true;
2443 /* Given an M x N integer matrix A, this function determines an M x
2444 M unimodular matrix U, and an M x N echelon matrix S such that
2445 "U.A = S". This decomposition is also known as "right Hermite".
2447 Ref: Algorithm 2.1 page 33 in "Loop Transformations for
2448 Restructuring Compilers" Utpal Banerjee. */
2450 static void
2451 lambda_matrix_right_hermite (lambda_matrix A, int m, int n,
2452 lambda_matrix S, lambda_matrix U)
2454 int i, j, i0 = 0;
2456 lambda_matrix_copy (A, S, m, n);
2457 lambda_matrix_id (U, m);
2459 for (j = 0; j < n; j++)
2461 if (lambda_vector_first_nz (S[j], m, i0) < m)
2463 ++i0;
2464 for (i = m - 1; i >= i0; i--)
2466 while (S[i][j] != 0)
2468 int sigma, factor, a, b;
2470 a = S[i-1][j];
2471 b = S[i][j];
2472 sigma = (a * b < 0) ? -1: 1;
2473 a = abs (a);
2474 b = abs (b);
2475 factor = sigma * (a / b);
2477 lambda_matrix_row_add (S, n, i, i-1, -factor);
2478 std::swap (S[i], S[i-1]);
2480 lambda_matrix_row_add (U, m, i, i-1, -factor);
2481 std::swap (U[i], U[i-1]);
2488 /* Determines the overlapping elements due to accesses CHREC_A and
2489 CHREC_B, that are affine functions. This function cannot handle
2490 symbolic evolution functions, ie. when initial conditions are
2491 parameters, because it uses lambda matrices of integers. */
2493 static void
2494 analyze_subscript_affine_affine (tree chrec_a,
2495 tree chrec_b,
2496 conflict_function **overlaps_a,
2497 conflict_function **overlaps_b,
2498 tree *last_conflicts)
2500 unsigned nb_vars_a, nb_vars_b, dim;
2501 HOST_WIDE_INT init_a, init_b, gamma, gcd_alpha_beta;
2502 lambda_matrix A, U, S;
2503 struct obstack scratch_obstack;
2505 if (eq_evolutions_p (chrec_a, chrec_b))
2507 /* The accessed index overlaps for each iteration in the
2508 loop. */
2509 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2510 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
2511 *last_conflicts = chrec_dont_know;
2512 return;
2514 if (dump_file && (dump_flags & TDF_DETAILS))
2515 fprintf (dump_file, "(analyze_subscript_affine_affine \n");
2517 /* For determining the initial intersection, we have to solve a
2518 Diophantine equation. This is the most time consuming part.
2520 For answering to the question: "Is there a dependence?" we have
2521 to prove that there exists a solution to the Diophantine
2522 equation, and that the solution is in the iteration domain,
2523 i.e. the solution is positive or zero, and that the solution
2524 happens before the upper bound loop.nb_iterations. Otherwise
2525 there is no dependence. This function outputs a description of
2526 the iterations that hold the intersections. */
2528 nb_vars_a = nb_vars_in_chrec (chrec_a);
2529 nb_vars_b = nb_vars_in_chrec (chrec_b);
2531 gcc_obstack_init (&scratch_obstack);
2533 dim = nb_vars_a + nb_vars_b;
2534 U = lambda_matrix_new (dim, dim, &scratch_obstack);
2535 A = lambda_matrix_new (dim, 1, &scratch_obstack);
2536 S = lambda_matrix_new (dim, 1, &scratch_obstack);
2538 init_a = int_cst_value (initialize_matrix_A (A, chrec_a, 0, 1));
2539 init_b = int_cst_value (initialize_matrix_A (A, chrec_b, nb_vars_a, -1));
2540 gamma = init_b - init_a;
2542 /* Don't do all the hard work of solving the Diophantine equation
2543 when we already know the solution: for example,
2544 | {3, +, 1}_1
2545 | {3, +, 4}_2
2546 | gamma = 3 - 3 = 0.
2547 Then the first overlap occurs during the first iterations:
2548 | {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
2550 if (gamma == 0)
2552 if (nb_vars_a == 1 && nb_vars_b == 1)
2554 HOST_WIDE_INT step_a, step_b;
2555 HOST_WIDE_INT niter, niter_a, niter_b;
2556 affine_fn ova, ovb;
2558 niter_a = max_stmt_executions_int (get_chrec_loop (chrec_a));
2559 niter_b = max_stmt_executions_int (get_chrec_loop (chrec_b));
2560 niter = MIN (niter_a, niter_b);
2561 step_a = int_cst_value (CHREC_RIGHT (chrec_a));
2562 step_b = int_cst_value (CHREC_RIGHT (chrec_b));
2564 compute_overlap_steps_for_affine_univar (niter, step_a, step_b,
2565 &ova, &ovb,
2566 last_conflicts, 1);
2567 *overlaps_a = conflict_fn (1, ova);
2568 *overlaps_b = conflict_fn (1, ovb);
2571 else if (nb_vars_a == 2 && nb_vars_b == 1)
2572 compute_overlap_steps_for_affine_1_2
2573 (chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts);
2575 else if (nb_vars_a == 1 && nb_vars_b == 2)
2576 compute_overlap_steps_for_affine_1_2
2577 (chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts);
2579 else
2581 if (dump_file && (dump_flags & TDF_DETAILS))
2582 fprintf (dump_file, "affine-affine test failed: too many variables.\n");
2583 *overlaps_a = conflict_fn_not_known ();
2584 *overlaps_b = conflict_fn_not_known ();
2585 *last_conflicts = chrec_dont_know;
2587 goto end_analyze_subs_aa;
2590 /* U.A = S */
2591 lambda_matrix_right_hermite (A, dim, 1, S, U);
2593 if (S[0][0] < 0)
2595 S[0][0] *= -1;
2596 lambda_matrix_row_negate (U, dim, 0);
2598 gcd_alpha_beta = S[0][0];
2600 /* Something went wrong: for example in {1, +, 0}_5 vs. {0, +, 0}_5,
2601 but that is a quite strange case. Instead of ICEing, answer
2602 don't know. */
2603 if (gcd_alpha_beta == 0)
2605 *overlaps_a = conflict_fn_not_known ();
2606 *overlaps_b = conflict_fn_not_known ();
2607 *last_conflicts = chrec_dont_know;
2608 goto end_analyze_subs_aa;
2611 /* The classic "gcd-test". */
2612 if (!int_divides_p (gcd_alpha_beta, gamma))
2614 /* The "gcd-test" has determined that there is no integer
2615 solution, i.e. there is no dependence. */
2616 *overlaps_a = conflict_fn_no_dependence ();
2617 *overlaps_b = conflict_fn_no_dependence ();
2618 *last_conflicts = integer_zero_node;
2621 /* Both access functions are univariate. This includes SIV and MIV cases. */
2622 else if (nb_vars_a == 1 && nb_vars_b == 1)
2624 /* Both functions should have the same evolution sign. */
2625 if (((A[0][0] > 0 && -A[1][0] > 0)
2626 || (A[0][0] < 0 && -A[1][0] < 0)))
2628 /* The solutions are given by:
2630 | [GAMMA/GCD_ALPHA_BETA t].[u11 u12] = [x0]
2631 | [u21 u22] [y0]
2633 For a given integer t. Using the following variables,
2635 | i0 = u11 * gamma / gcd_alpha_beta
2636 | j0 = u12 * gamma / gcd_alpha_beta
2637 | i1 = u21
2638 | j1 = u22
2640 the solutions are:
2642 | x0 = i0 + i1 * t,
2643 | y0 = j0 + j1 * t. */
2644 HOST_WIDE_INT i0, j0, i1, j1;
2646 i0 = U[0][0] * gamma / gcd_alpha_beta;
2647 j0 = U[0][1] * gamma / gcd_alpha_beta;
2648 i1 = U[1][0];
2649 j1 = U[1][1];
2651 if ((i1 == 0 && i0 < 0)
2652 || (j1 == 0 && j0 < 0))
2654 /* There is no solution.
2655 FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
2656 falls in here, but for the moment we don't look at the
2657 upper bound of the iteration domain. */
2658 *overlaps_a = conflict_fn_no_dependence ();
2659 *overlaps_b = conflict_fn_no_dependence ();
2660 *last_conflicts = integer_zero_node;
2661 goto end_analyze_subs_aa;
2664 if (i1 > 0 && j1 > 0)
2666 HOST_WIDE_INT niter_a
2667 = max_stmt_executions_int (get_chrec_loop (chrec_a));
2668 HOST_WIDE_INT niter_b
2669 = max_stmt_executions_int (get_chrec_loop (chrec_b));
2670 HOST_WIDE_INT niter = MIN (niter_a, niter_b);
2672 /* (X0, Y0) is a solution of the Diophantine equation:
2673 "chrec_a (X0) = chrec_b (Y0)". */
2674 HOST_WIDE_INT tau1 = MAX (CEIL (-i0, i1),
2675 CEIL (-j0, j1));
2676 HOST_WIDE_INT x0 = i1 * tau1 + i0;
2677 HOST_WIDE_INT y0 = j1 * tau1 + j0;
2679 /* (X1, Y1) is the smallest positive solution of the eq
2680 "chrec_a (X1) = chrec_b (Y1)", i.e. this is where the
2681 first conflict occurs. */
2682 HOST_WIDE_INT min_multiple = MIN (x0 / i1, y0 / j1);
2683 HOST_WIDE_INT x1 = x0 - i1 * min_multiple;
2684 HOST_WIDE_INT y1 = y0 - j1 * min_multiple;
2686 if (niter > 0)
2688 HOST_WIDE_INT tau2 = MIN (FLOOR_DIV (niter - i0, i1),
2689 FLOOR_DIV (niter - j0, j1));
2690 HOST_WIDE_INT last_conflict = tau2 - (x1 - i0)/i1;
2692 /* If the overlap occurs outside of the bounds of the
2693 loop, there is no dependence. */
2694 if (x1 >= niter || y1 >= niter)
2696 *overlaps_a = conflict_fn_no_dependence ();
2697 *overlaps_b = conflict_fn_no_dependence ();
2698 *last_conflicts = integer_zero_node;
2699 goto end_analyze_subs_aa;
2701 else
2702 *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
2704 else
2705 *last_conflicts = chrec_dont_know;
2707 *overlaps_a
2708 = conflict_fn (1,
2709 affine_fn_univar (build_int_cst (NULL_TREE, x1),
2711 build_int_cst (NULL_TREE, i1)));
2712 *overlaps_b
2713 = conflict_fn (1,
2714 affine_fn_univar (build_int_cst (NULL_TREE, y1),
2716 build_int_cst (NULL_TREE, j1)));
2718 else
2720 /* FIXME: For the moment, the upper bound of the
2721 iteration domain for i and j is not checked. */
2722 if (dump_file && (dump_flags & TDF_DETAILS))
2723 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
2724 *overlaps_a = conflict_fn_not_known ();
2725 *overlaps_b = conflict_fn_not_known ();
2726 *last_conflicts = chrec_dont_know;
2729 else
2731 if (dump_file && (dump_flags & TDF_DETAILS))
2732 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
2733 *overlaps_a = conflict_fn_not_known ();
2734 *overlaps_b = conflict_fn_not_known ();
2735 *last_conflicts = chrec_dont_know;
2738 else
2740 if (dump_file && (dump_flags & TDF_DETAILS))
2741 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
2742 *overlaps_a = conflict_fn_not_known ();
2743 *overlaps_b = conflict_fn_not_known ();
2744 *last_conflicts = chrec_dont_know;
2747 end_analyze_subs_aa:
2748 obstack_free (&scratch_obstack, NULL);
2749 if (dump_file && (dump_flags & TDF_DETAILS))
2751 fprintf (dump_file, " (overlaps_a = ");
2752 dump_conflict_function (dump_file, *overlaps_a);
2753 fprintf (dump_file, ")\n (overlaps_b = ");
2754 dump_conflict_function (dump_file, *overlaps_b);
2755 fprintf (dump_file, "))\n");
2759 /* Returns true when analyze_subscript_affine_affine can be used for
2760 determining the dependence relation between chrec_a and chrec_b,
2761 that contain symbols. This function modifies chrec_a and chrec_b
2762 such that the analysis result is the same, and such that they don't
2763 contain symbols, and then can safely be passed to the analyzer.
2765 Example: The analysis of the following tuples of evolutions produce
2766 the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1
2767 vs. {0, +, 1}_1
2769 {x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1)
2770 {-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1)
2773 static bool
2774 can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b)
2776 tree diff, type, left_a, left_b, right_b;
2778 if (chrec_contains_symbols (CHREC_RIGHT (*chrec_a))
2779 || chrec_contains_symbols (CHREC_RIGHT (*chrec_b)))
2780 /* FIXME: For the moment not handled. Might be refined later. */
2781 return false;
2783 type = chrec_type (*chrec_a);
2784 left_a = CHREC_LEFT (*chrec_a);
2785 left_b = chrec_convert (type, CHREC_LEFT (*chrec_b), NULL);
2786 diff = chrec_fold_minus (type, left_a, left_b);
2788 if (!evolution_function_is_constant_p (diff))
2789 return false;
2791 if (dump_file && (dump_flags & TDF_DETAILS))
2792 fprintf (dump_file, "can_use_subscript_aff_aff_for_symbolic \n");
2794 *chrec_a = build_polynomial_chrec (CHREC_VARIABLE (*chrec_a),
2795 diff, CHREC_RIGHT (*chrec_a));
2796 right_b = chrec_convert (type, CHREC_RIGHT (*chrec_b), NULL);
2797 *chrec_b = build_polynomial_chrec (CHREC_VARIABLE (*chrec_b),
2798 build_int_cst (type, 0),
2799 right_b);
2800 return true;
2803 /* Analyze a SIV (Single Index Variable) subscript. *OVERLAPS_A and
2804 *OVERLAPS_B are initialized to the functions that describe the
2805 relation between the elements accessed twice by CHREC_A and
2806 CHREC_B. For k >= 0, the following property is verified:
2808 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
2810 static void
2811 analyze_siv_subscript (tree chrec_a,
2812 tree chrec_b,
2813 conflict_function **overlaps_a,
2814 conflict_function **overlaps_b,
2815 tree *last_conflicts,
2816 int loop_nest_num)
2818 dependence_stats.num_siv++;
2820 if (dump_file && (dump_flags & TDF_DETAILS))
2821 fprintf (dump_file, "(analyze_siv_subscript \n");
2823 if (evolution_function_is_constant_p (chrec_a)
2824 && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
2825 analyze_siv_subscript_cst_affine (chrec_a, chrec_b,
2826 overlaps_a, overlaps_b, last_conflicts);
2828 else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
2829 && evolution_function_is_constant_p (chrec_b))
2830 analyze_siv_subscript_cst_affine (chrec_b, chrec_a,
2831 overlaps_b, overlaps_a, last_conflicts);
2833 else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
2834 && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
2836 if (!chrec_contains_symbols (chrec_a)
2837 && !chrec_contains_symbols (chrec_b))
2839 analyze_subscript_affine_affine (chrec_a, chrec_b,
2840 overlaps_a, overlaps_b,
2841 last_conflicts);
2843 if (CF_NOT_KNOWN_P (*overlaps_a)
2844 || CF_NOT_KNOWN_P (*overlaps_b))
2845 dependence_stats.num_siv_unimplemented++;
2846 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
2847 || CF_NO_DEPENDENCE_P (*overlaps_b))
2848 dependence_stats.num_siv_independent++;
2849 else
2850 dependence_stats.num_siv_dependent++;
2852 else if (can_use_analyze_subscript_affine_affine (&chrec_a,
2853 &chrec_b))
2855 analyze_subscript_affine_affine (chrec_a, chrec_b,
2856 overlaps_a, overlaps_b,
2857 last_conflicts);
2859 if (CF_NOT_KNOWN_P (*overlaps_a)
2860 || CF_NOT_KNOWN_P (*overlaps_b))
2861 dependence_stats.num_siv_unimplemented++;
2862 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
2863 || CF_NO_DEPENDENCE_P (*overlaps_b))
2864 dependence_stats.num_siv_independent++;
2865 else
2866 dependence_stats.num_siv_dependent++;
2868 else
2869 goto siv_subscript_dontknow;
2872 else
2874 siv_subscript_dontknow:;
2875 if (dump_file && (dump_flags & TDF_DETAILS))
2876 fprintf (dump_file, " siv test failed: unimplemented");
2877 *overlaps_a = conflict_fn_not_known ();
2878 *overlaps_b = conflict_fn_not_known ();
2879 *last_conflicts = chrec_dont_know;
2880 dependence_stats.num_siv_unimplemented++;
2883 if (dump_file && (dump_flags & TDF_DETAILS))
2884 fprintf (dump_file, ")\n");
2887 /* Returns false if we can prove that the greatest common divisor of the steps
2888 of CHREC does not divide CST, false otherwise. */
2890 static bool
2891 gcd_of_steps_may_divide_p (const_tree chrec, const_tree cst)
2893 HOST_WIDE_INT cd = 0, val;
2894 tree step;
2896 if (!tree_fits_shwi_p (cst))
2897 return true;
2898 val = tree_to_shwi (cst);
2900 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
2902 step = CHREC_RIGHT (chrec);
2903 if (!tree_fits_shwi_p (step))
2904 return true;
2905 cd = gcd (cd, tree_to_shwi (step));
2906 chrec = CHREC_LEFT (chrec);
2909 return val % cd == 0;
2912 /* Analyze a MIV (Multiple Index Variable) subscript with respect to
2913 LOOP_NEST. *OVERLAPS_A and *OVERLAPS_B are initialized to the
2914 functions that describe the relation between the elements accessed
2915 twice by CHREC_A and CHREC_B. For k >= 0, the following property
2916 is verified:
2918 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
2920 static void
2921 analyze_miv_subscript (tree chrec_a,
2922 tree chrec_b,
2923 conflict_function **overlaps_a,
2924 conflict_function **overlaps_b,
2925 tree *last_conflicts,
2926 struct loop *loop_nest)
2928 tree type, difference;
2930 dependence_stats.num_miv++;
2931 if (dump_file && (dump_flags & TDF_DETAILS))
2932 fprintf (dump_file, "(analyze_miv_subscript \n");
2934 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
2935 chrec_a = chrec_convert (type, chrec_a, NULL);
2936 chrec_b = chrec_convert (type, chrec_b, NULL);
2937 difference = chrec_fold_minus (type, chrec_a, chrec_b);
2939 if (eq_evolutions_p (chrec_a, chrec_b))
2941 /* Access functions are the same: all the elements are accessed
2942 in the same order. */
2943 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2944 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
2945 *last_conflicts = max_stmt_executions_tree (get_chrec_loop (chrec_a));
2946 dependence_stats.num_miv_dependent++;
2949 else if (evolution_function_is_constant_p (difference)
2950 /* For the moment, the following is verified:
2951 evolution_function_is_affine_multivariate_p (chrec_a,
2952 loop_nest->num) */
2953 && !gcd_of_steps_may_divide_p (chrec_a, difference))
2955 /* testsuite/.../ssa-chrec-33.c
2956 {{21, +, 2}_1, +, -2}_2 vs. {{20, +, 2}_1, +, -2}_2
2958 The difference is 1, and all the evolution steps are multiples
2959 of 2, consequently there are no overlapping elements. */
2960 *overlaps_a = conflict_fn_no_dependence ();
2961 *overlaps_b = conflict_fn_no_dependence ();
2962 *last_conflicts = integer_zero_node;
2963 dependence_stats.num_miv_independent++;
2966 else if (evolution_function_is_affine_multivariate_p (chrec_a, loop_nest->num)
2967 && !chrec_contains_symbols (chrec_a)
2968 && evolution_function_is_affine_multivariate_p (chrec_b, loop_nest->num)
2969 && !chrec_contains_symbols (chrec_b))
2971 /* testsuite/.../ssa-chrec-35.c
2972 {0, +, 1}_2 vs. {0, +, 1}_3
2973 the overlapping elements are respectively located at iterations:
2974 {0, +, 1}_x and {0, +, 1}_x,
2975 in other words, we have the equality:
2976 {0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
2978 Other examples:
2979 {{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
2980 {0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)
2982 {{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
2983 {{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
2985 analyze_subscript_affine_affine (chrec_a, chrec_b,
2986 overlaps_a, overlaps_b, last_conflicts);
2988 if (CF_NOT_KNOWN_P (*overlaps_a)
2989 || CF_NOT_KNOWN_P (*overlaps_b))
2990 dependence_stats.num_miv_unimplemented++;
2991 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
2992 || CF_NO_DEPENDENCE_P (*overlaps_b))
2993 dependence_stats.num_miv_independent++;
2994 else
2995 dependence_stats.num_miv_dependent++;
2998 else
3000 /* When the analysis is too difficult, answer "don't know". */
3001 if (dump_file && (dump_flags & TDF_DETAILS))
3002 fprintf (dump_file, "analyze_miv_subscript test failed: unimplemented.\n");
3004 *overlaps_a = conflict_fn_not_known ();
3005 *overlaps_b = conflict_fn_not_known ();
3006 *last_conflicts = chrec_dont_know;
3007 dependence_stats.num_miv_unimplemented++;
3010 if (dump_file && (dump_flags & TDF_DETAILS))
3011 fprintf (dump_file, ")\n");
3014 /* Determines the iterations for which CHREC_A is equal to CHREC_B in
3015 with respect to LOOP_NEST. OVERLAP_ITERATIONS_A and
3016 OVERLAP_ITERATIONS_B are initialized with two functions that
3017 describe the iterations that contain conflicting elements.
3019 Remark: For an integer k >= 0, the following equality is true:
3021 CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
3024 static void
3025 analyze_overlapping_iterations (tree chrec_a,
3026 tree chrec_b,
3027 conflict_function **overlap_iterations_a,
3028 conflict_function **overlap_iterations_b,
3029 tree *last_conflicts, struct loop *loop_nest)
3031 unsigned int lnn = loop_nest->num;
3033 dependence_stats.num_subscript_tests++;
3035 if (dump_file && (dump_flags & TDF_DETAILS))
3037 fprintf (dump_file, "(analyze_overlapping_iterations \n");
3038 fprintf (dump_file, " (chrec_a = ");
3039 print_generic_expr (dump_file, chrec_a, 0);
3040 fprintf (dump_file, ")\n (chrec_b = ");
3041 print_generic_expr (dump_file, chrec_b, 0);
3042 fprintf (dump_file, ")\n");
3045 if (chrec_a == NULL_TREE
3046 || chrec_b == NULL_TREE
3047 || chrec_contains_undetermined (chrec_a)
3048 || chrec_contains_undetermined (chrec_b))
3050 dependence_stats.num_subscript_undetermined++;
3052 *overlap_iterations_a = conflict_fn_not_known ();
3053 *overlap_iterations_b = conflict_fn_not_known ();
3056 /* If they are the same chrec, and are affine, they overlap
3057 on every iteration. */
3058 else if (eq_evolutions_p (chrec_a, chrec_b)
3059 && (evolution_function_is_affine_multivariate_p (chrec_a, lnn)
3060 || operand_equal_p (chrec_a, chrec_b, 0)))
3062 dependence_stats.num_same_subscript_function++;
3063 *overlap_iterations_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
3064 *overlap_iterations_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
3065 *last_conflicts = chrec_dont_know;
3068 /* If they aren't the same, and aren't affine, we can't do anything
3069 yet. */
3070 else if ((chrec_contains_symbols (chrec_a)
3071 || chrec_contains_symbols (chrec_b))
3072 && (!evolution_function_is_affine_multivariate_p (chrec_a, lnn)
3073 || !evolution_function_is_affine_multivariate_p (chrec_b, lnn)))
3075 dependence_stats.num_subscript_undetermined++;
3076 *overlap_iterations_a = conflict_fn_not_known ();
3077 *overlap_iterations_b = conflict_fn_not_known ();
3080 else if (ziv_subscript_p (chrec_a, chrec_b))
3081 analyze_ziv_subscript (chrec_a, chrec_b,
3082 overlap_iterations_a, overlap_iterations_b,
3083 last_conflicts);
3085 else if (siv_subscript_p (chrec_a, chrec_b))
3086 analyze_siv_subscript (chrec_a, chrec_b,
3087 overlap_iterations_a, overlap_iterations_b,
3088 last_conflicts, lnn);
3090 else
3091 analyze_miv_subscript (chrec_a, chrec_b,
3092 overlap_iterations_a, overlap_iterations_b,
3093 last_conflicts, loop_nest);
3095 if (dump_file && (dump_flags & TDF_DETAILS))
3097 fprintf (dump_file, " (overlap_iterations_a = ");
3098 dump_conflict_function (dump_file, *overlap_iterations_a);
3099 fprintf (dump_file, ")\n (overlap_iterations_b = ");
3100 dump_conflict_function (dump_file, *overlap_iterations_b);
3101 fprintf (dump_file, "))\n");
3105 /* Helper function for uniquely inserting distance vectors. */
3107 static void
3108 save_dist_v (struct data_dependence_relation *ddr, lambda_vector dist_v)
3110 unsigned i;
3111 lambda_vector v;
3113 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, v)
3114 if (lambda_vector_equal (v, dist_v, DDR_NB_LOOPS (ddr)))
3115 return;
3117 DDR_DIST_VECTS (ddr).safe_push (dist_v);
3120 /* Helper function for uniquely inserting direction vectors. */
3122 static void
3123 save_dir_v (struct data_dependence_relation *ddr, lambda_vector dir_v)
3125 unsigned i;
3126 lambda_vector v;
3128 FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr), i, v)
3129 if (lambda_vector_equal (v, dir_v, DDR_NB_LOOPS (ddr)))
3130 return;
3132 DDR_DIR_VECTS (ddr).safe_push (dir_v);
3135 /* Add a distance of 1 on all the loops outer than INDEX. If we
3136 haven't yet determined a distance for this outer loop, push a new
3137 distance vector composed of the previous distance, and a distance
3138 of 1 for this outer loop. Example:
3140 | loop_1
3141 | loop_2
3142 | A[10]
3143 | endloop_2
3144 | endloop_1
3146 Saved vectors are of the form (dist_in_1, dist_in_2). First, we
3147 save (0, 1), then we have to save (1, 0). */
3149 static void
3150 add_outer_distances (struct data_dependence_relation *ddr,
3151 lambda_vector dist_v, int index)
3153 /* For each outer loop where init_v is not set, the accesses are
3154 in dependence of distance 1 in the loop. */
3155 while (--index >= 0)
3157 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3158 lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
3159 save_v[index] = 1;
3160 save_dist_v (ddr, save_v);
3164 /* Return false when fail to represent the data dependence as a
3165 distance vector. INIT_B is set to true when a component has been
3166 added to the distance vector DIST_V. INDEX_CARRY is then set to
3167 the index in DIST_V that carries the dependence. */
3169 static bool
3170 build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
3171 struct data_reference *ddr_a,
3172 struct data_reference *ddr_b,
3173 lambda_vector dist_v, bool *init_b,
3174 int *index_carry)
3176 unsigned i;
3177 lambda_vector init_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3179 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3181 tree access_fn_a, access_fn_b;
3182 struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
3184 if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
3186 non_affine_dependence_relation (ddr);
3187 return false;
3190 access_fn_a = DR_ACCESS_FN (ddr_a, i);
3191 access_fn_b = DR_ACCESS_FN (ddr_b, i);
3193 if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
3194 && TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
3196 int dist, index;
3197 int var_a = CHREC_VARIABLE (access_fn_a);
3198 int var_b = CHREC_VARIABLE (access_fn_b);
3200 if (var_a != var_b
3201 || chrec_contains_undetermined (SUB_DISTANCE (subscript)))
3203 non_affine_dependence_relation (ddr);
3204 return false;
3207 dist = int_cst_value (SUB_DISTANCE (subscript));
3208 index = index_in_loop_nest (var_a, DDR_LOOP_NEST (ddr));
3209 *index_carry = MIN (index, *index_carry);
3211 /* This is the subscript coupling test. If we have already
3212 recorded a distance for this loop (a distance coming from
3213 another subscript), it should be the same. For example,
3214 in the following code, there is no dependence:
3216 | loop i = 0, N, 1
3217 | T[i+1][i] = ...
3218 | ... = T[i][i]
3219 | endloop
3221 if (init_v[index] != 0 && dist_v[index] != dist)
3223 finalize_ddr_dependent (ddr, chrec_known);
3224 return false;
3227 dist_v[index] = dist;
3228 init_v[index] = 1;
3229 *init_b = true;
3231 else if (!operand_equal_p (access_fn_a, access_fn_b, 0))
3233 /* This can be for example an affine vs. constant dependence
3234 (T[i] vs. T[3]) that is not an affine dependence and is
3235 not representable as a distance vector. */
3236 non_affine_dependence_relation (ddr);
3237 return false;
3241 return true;
3244 /* Return true when the DDR contains only constant access functions. */
3246 static bool
3247 constant_access_functions (const struct data_dependence_relation *ddr)
3249 unsigned i;
3251 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3252 if (!evolution_function_is_constant_p (DR_ACCESS_FN (DDR_A (ddr), i))
3253 || !evolution_function_is_constant_p (DR_ACCESS_FN (DDR_B (ddr), i)))
3254 return false;
3256 return true;
3259 /* Helper function for the case where DDR_A and DDR_B are the same
3260 multivariate access function with a constant step. For an example
3261 see pr34635-1.c. */
3263 static void
3264 add_multivariate_self_dist (struct data_dependence_relation *ddr, tree c_2)
3266 int x_1, x_2;
3267 tree c_1 = CHREC_LEFT (c_2);
3268 tree c_0 = CHREC_LEFT (c_1);
3269 lambda_vector dist_v;
3270 int v1, v2, cd;
3272 /* Polynomials with more than 2 variables are not handled yet. When
3273 the evolution steps are parameters, it is not possible to
3274 represent the dependence using classical distance vectors. */
3275 if (TREE_CODE (c_0) != INTEGER_CST
3276 || TREE_CODE (CHREC_RIGHT (c_1)) != INTEGER_CST
3277 || TREE_CODE (CHREC_RIGHT (c_2)) != INTEGER_CST)
3279 DDR_AFFINE_P (ddr) = false;
3280 return;
3283 x_2 = index_in_loop_nest (CHREC_VARIABLE (c_2), DDR_LOOP_NEST (ddr));
3284 x_1 = index_in_loop_nest (CHREC_VARIABLE (c_1), DDR_LOOP_NEST (ddr));
3286 /* For "{{0, +, 2}_1, +, 3}_2" the distance vector is (3, -2). */
3287 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3288 v1 = int_cst_value (CHREC_RIGHT (c_1));
3289 v2 = int_cst_value (CHREC_RIGHT (c_2));
3290 cd = gcd (v1, v2);
3291 v1 /= cd;
3292 v2 /= cd;
3294 if (v2 < 0)
3296 v2 = -v2;
3297 v1 = -v1;
3300 dist_v[x_1] = v2;
3301 dist_v[x_2] = -v1;
3302 save_dist_v (ddr, dist_v);
3304 add_outer_distances (ddr, dist_v, x_1);
3307 /* Helper function for the case where DDR_A and DDR_B are the same
3308 access functions. */
3310 static void
3311 add_other_self_distances (struct data_dependence_relation *ddr)
3313 lambda_vector dist_v;
3314 unsigned i;
3315 int index_carry = DDR_NB_LOOPS (ddr);
3317 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3319 tree access_fun = DR_ACCESS_FN (DDR_A (ddr), i);
3321 if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
3323 if (!evolution_function_is_univariate_p (access_fun))
3325 if (DDR_NUM_SUBSCRIPTS (ddr) != 1)
3327 DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
3328 return;
3331 access_fun = DR_ACCESS_FN (DDR_A (ddr), 0);
3333 if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC)
3334 add_multivariate_self_dist (ddr, access_fun);
3335 else
3336 /* The evolution step is not constant: it varies in
3337 the outer loop, so this cannot be represented by a
3338 distance vector. For example in pr34635.c the
3339 evolution is {0, +, {0, +, 4}_1}_2. */
3340 DDR_AFFINE_P (ddr) = false;
3342 return;
3345 index_carry = MIN (index_carry,
3346 index_in_loop_nest (CHREC_VARIABLE (access_fun),
3347 DDR_LOOP_NEST (ddr)));
3351 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3352 add_outer_distances (ddr, dist_v, index_carry);
3355 static void
3356 insert_innermost_unit_dist_vector (struct data_dependence_relation *ddr)
3358 lambda_vector dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3360 dist_v[DDR_INNER_LOOP (ddr)] = 1;
3361 save_dist_v (ddr, dist_v);
3364 /* Adds a unit distance vector to DDR when there is a 0 overlap. This
3365 is the case for example when access functions are the same and
3366 equal to a constant, as in:
3368 | loop_1
3369 | A[3] = ...
3370 | ... = A[3]
3371 | endloop_1
3373 in which case the distance vectors are (0) and (1). */
3375 static void
3376 add_distance_for_zero_overlaps (struct data_dependence_relation *ddr)
3378 unsigned i, j;
3380 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3382 subscript_p sub = DDR_SUBSCRIPT (ddr, i);
3383 conflict_function *ca = SUB_CONFLICTS_IN_A (sub);
3384 conflict_function *cb = SUB_CONFLICTS_IN_B (sub);
3386 for (j = 0; j < ca->n; j++)
3387 if (affine_function_zero_p (ca->fns[j]))
3389 insert_innermost_unit_dist_vector (ddr);
3390 return;
3393 for (j = 0; j < cb->n; j++)
3394 if (affine_function_zero_p (cb->fns[j]))
3396 insert_innermost_unit_dist_vector (ddr);
3397 return;
3402 /* Compute the classic per loop distance vector. DDR is the data
3403 dependence relation to build a vector from. Return false when fail
3404 to represent the data dependence as a distance vector. */
3406 static bool
3407 build_classic_dist_vector (struct data_dependence_relation *ddr,
3408 struct loop *loop_nest)
3410 bool init_b = false;
3411 int index_carry = DDR_NB_LOOPS (ddr);
3412 lambda_vector dist_v;
3414 if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
3415 return false;
3417 if (same_access_functions (ddr))
3419 /* Save the 0 vector. */
3420 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3421 save_dist_v (ddr, dist_v);
3423 if (constant_access_functions (ddr))
3424 add_distance_for_zero_overlaps (ddr);
3426 if (DDR_NB_LOOPS (ddr) > 1)
3427 add_other_self_distances (ddr);
3429 return true;
3432 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3433 if (!build_classic_dist_vector_1 (ddr, DDR_A (ddr), DDR_B (ddr),
3434 dist_v, &init_b, &index_carry))
3435 return false;
3437 /* Save the distance vector if we initialized one. */
3438 if (init_b)
3440 /* Verify a basic constraint: classic distance vectors should
3441 always be lexicographically positive.
3443 Data references are collected in the order of execution of
3444 the program, thus for the following loop
3446 | for (i = 1; i < 100; i++)
3447 | for (j = 1; j < 100; j++)
3449 | t = T[j+1][i-1]; // A
3450 | T[j][i] = t + 2; // B
3453 references are collected following the direction of the wind:
3454 A then B. The data dependence tests are performed also
3455 following this order, such that we're looking at the distance
3456 separating the elements accessed by A from the elements later
3457 accessed by B. But in this example, the distance returned by
3458 test_dep (A, B) is lexicographically negative (-1, 1), that
3459 means that the access A occurs later than B with respect to
3460 the outer loop, ie. we're actually looking upwind. In this
3461 case we solve test_dep (B, A) looking downwind to the
3462 lexicographically positive solution, that returns the
3463 distance vector (1, -1). */
3464 if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
3466 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3467 if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3468 loop_nest))
3469 return false;
3470 compute_subscript_distance (ddr);
3471 if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3472 save_v, &init_b, &index_carry))
3473 return false;
3474 save_dist_v (ddr, save_v);
3475 DDR_REVERSED_P (ddr) = true;
3477 /* In this case there is a dependence forward for all the
3478 outer loops:
3480 | for (k = 1; k < 100; k++)
3481 | for (i = 1; i < 100; i++)
3482 | for (j = 1; j < 100; j++)
3484 | t = T[j+1][i-1]; // A
3485 | T[j][i] = t + 2; // B
3488 the vectors are:
3489 (0, 1, -1)
3490 (1, 1, -1)
3491 (1, -1, 1)
3493 if (DDR_NB_LOOPS (ddr) > 1)
3495 add_outer_distances (ddr, save_v, index_carry);
3496 add_outer_distances (ddr, dist_v, index_carry);
3499 else
3501 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3502 lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
3504 if (DDR_NB_LOOPS (ddr) > 1)
3506 lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3508 if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr),
3509 DDR_A (ddr), loop_nest))
3510 return false;
3511 compute_subscript_distance (ddr);
3512 if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3513 opposite_v, &init_b,
3514 &index_carry))
3515 return false;
3517 save_dist_v (ddr, save_v);
3518 add_outer_distances (ddr, dist_v, index_carry);
3519 add_outer_distances (ddr, opposite_v, index_carry);
3521 else
3522 save_dist_v (ddr, save_v);
3525 else
3527 /* There is a distance of 1 on all the outer loops: Example:
3528 there is a dependence of distance 1 on loop_1 for the array A.
3530 | loop_1
3531 | A[5] = ...
3532 | endloop
3534 add_outer_distances (ddr, dist_v,
3535 lambda_vector_first_nz (dist_v,
3536 DDR_NB_LOOPS (ddr), 0));
3539 if (dump_file && (dump_flags & TDF_DETAILS))
3541 unsigned i;
3543 fprintf (dump_file, "(build_classic_dist_vector\n");
3544 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
3546 fprintf (dump_file, " dist_vector = (");
3547 print_lambda_vector (dump_file, DDR_DIST_VECT (ddr, i),
3548 DDR_NB_LOOPS (ddr));
3549 fprintf (dump_file, " )\n");
3551 fprintf (dump_file, ")\n");
3554 return true;
3557 /* Return the direction for a given distance.
3558 FIXME: Computing dir this way is suboptimal, since dir can catch
3559 cases that dist is unable to represent. */
3561 static inline enum data_dependence_direction
3562 dir_from_dist (int dist)
3564 if (dist > 0)
3565 return dir_positive;
3566 else if (dist < 0)
3567 return dir_negative;
3568 else
3569 return dir_equal;
3572 /* Compute the classic per loop direction vector. DDR is the data
3573 dependence relation to build a vector from. */
3575 static void
3576 build_classic_dir_vector (struct data_dependence_relation *ddr)
3578 unsigned i, j;
3579 lambda_vector dist_v;
3581 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
3583 lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3585 for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
3586 dir_v[j] = dir_from_dist (dist_v[j]);
3588 save_dir_v (ddr, dir_v);
3592 /* Helper function. Returns true when there is a dependence between
3593 data references DRA and DRB. */
3595 static bool
3596 subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
3597 struct data_reference *dra,
3598 struct data_reference *drb,
3599 struct loop *loop_nest)
3601 unsigned int i;
3602 tree last_conflicts;
3603 struct subscript *subscript;
3604 tree res = NULL_TREE;
3606 for (i = 0; DDR_SUBSCRIPTS (ddr).iterate (i, &subscript); i++)
3608 conflict_function *overlaps_a, *overlaps_b;
3610 analyze_overlapping_iterations (DR_ACCESS_FN (dra, i),
3611 DR_ACCESS_FN (drb, i),
3612 &overlaps_a, &overlaps_b,
3613 &last_conflicts, loop_nest);
3615 if (SUB_CONFLICTS_IN_A (subscript))
3616 free_conflict_function (SUB_CONFLICTS_IN_A (subscript));
3617 if (SUB_CONFLICTS_IN_B (subscript))
3618 free_conflict_function (SUB_CONFLICTS_IN_B (subscript));
3620 SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
3621 SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
3622 SUB_LAST_CONFLICT (subscript) = last_conflicts;
3624 /* If there is any undetermined conflict function we have to
3625 give a conservative answer in case we cannot prove that
3626 no dependence exists when analyzing another subscript. */
3627 if (CF_NOT_KNOWN_P (overlaps_a)
3628 || CF_NOT_KNOWN_P (overlaps_b))
3630 res = chrec_dont_know;
3631 continue;
3634 /* When there is a subscript with no dependence we can stop. */
3635 else if (CF_NO_DEPENDENCE_P (overlaps_a)
3636 || CF_NO_DEPENDENCE_P (overlaps_b))
3638 res = chrec_known;
3639 break;
3643 if (res == NULL_TREE)
3644 return true;
3646 if (res == chrec_known)
3647 dependence_stats.num_dependence_independent++;
3648 else
3649 dependence_stats.num_dependence_undetermined++;
3650 finalize_ddr_dependent (ddr, res);
3651 return false;
3654 /* Computes the conflicting iterations in LOOP_NEST, and initialize DDR. */
3656 static void
3657 subscript_dependence_tester (struct data_dependence_relation *ddr,
3658 struct loop *loop_nest)
3660 if (subscript_dependence_tester_1 (ddr, DDR_A (ddr), DDR_B (ddr), loop_nest))
3661 dependence_stats.num_dependence_dependent++;
3663 compute_subscript_distance (ddr);
3664 if (build_classic_dist_vector (ddr, loop_nest))
3665 build_classic_dir_vector (ddr);
3668 /* Returns true when all the access functions of A are affine or
3669 constant with respect to LOOP_NEST. */
3671 static bool
3672 access_functions_are_affine_or_constant_p (const struct data_reference *a,
3673 const struct loop *loop_nest)
3675 unsigned int i;
3676 vec<tree> fns = DR_ACCESS_FNS (a);
3677 tree t;
3679 FOR_EACH_VEC_ELT (fns, i, t)
3680 if (!evolution_function_is_invariant_p (t, loop_nest->num)
3681 && !evolution_function_is_affine_multivariate_p (t, loop_nest->num))
3682 return false;
3684 return true;
3687 /* This computes the affine dependence relation between A and B with
3688 respect to LOOP_NEST. CHREC_KNOWN is used for representing the
3689 independence between two accesses, while CHREC_DONT_KNOW is used
3690 for representing the unknown relation.
3692 Note that it is possible to stop the computation of the dependence
3693 relation the first time we detect a CHREC_KNOWN element for a given
3694 subscript. */
3696 void
3697 compute_affine_dependence (struct data_dependence_relation *ddr,
3698 struct loop *loop_nest)
3700 struct data_reference *dra = DDR_A (ddr);
3701 struct data_reference *drb = DDR_B (ddr);
3703 if (dump_file && (dump_flags & TDF_DETAILS))
3705 fprintf (dump_file, "(compute_affine_dependence\n");
3706 fprintf (dump_file, " stmt_a: ");
3707 print_gimple_stmt (dump_file, DR_STMT (dra), 0, TDF_SLIM);
3708 fprintf (dump_file, " stmt_b: ");
3709 print_gimple_stmt (dump_file, DR_STMT (drb), 0, TDF_SLIM);
3712 /* Analyze only when the dependence relation is not yet known. */
3713 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
3715 dependence_stats.num_dependence_tests++;
3717 if (access_functions_are_affine_or_constant_p (dra, loop_nest)
3718 && access_functions_are_affine_or_constant_p (drb, loop_nest))
3719 subscript_dependence_tester (ddr, loop_nest);
3721 /* As a last case, if the dependence cannot be determined, or if
3722 the dependence is considered too difficult to determine, answer
3723 "don't know". */
3724 else
3726 dependence_stats.num_dependence_undetermined++;
3728 if (dump_file && (dump_flags & TDF_DETAILS))
3730 fprintf (dump_file, "Data ref a:\n");
3731 dump_data_reference (dump_file, dra);
3732 fprintf (dump_file, "Data ref b:\n");
3733 dump_data_reference (dump_file, drb);
3734 fprintf (dump_file, "affine dependence test not usable: access function not affine or constant.\n");
3736 finalize_ddr_dependent (ddr, chrec_dont_know);
3740 if (dump_file && (dump_flags & TDF_DETAILS))
3742 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
3743 fprintf (dump_file, ") -> no dependence\n");
3744 else if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
3745 fprintf (dump_file, ") -> dependence analysis failed\n");
3746 else
3747 fprintf (dump_file, ")\n");
3751 /* Compute in DEPENDENCE_RELATIONS the data dependence graph for all
3752 the data references in DATAREFS, in the LOOP_NEST. When
3753 COMPUTE_SELF_AND_RR is FALSE, don't compute read-read and self
3754 relations. Return true when successful, i.e. data references number
3755 is small enough to be handled. */
3757 bool
3758 compute_all_dependences (vec<data_reference_p> datarefs,
3759 vec<ddr_p> *dependence_relations,
3760 vec<loop_p> loop_nest,
3761 bool compute_self_and_rr)
3763 struct data_dependence_relation *ddr;
3764 struct data_reference *a, *b;
3765 unsigned int i, j;
3767 if ((int) datarefs.length ()
3768 > PARAM_VALUE (PARAM_LOOP_MAX_DATAREFS_FOR_DATADEPS))
3770 struct data_dependence_relation *ddr;
3772 /* Insert a single relation into dependence_relations:
3773 chrec_dont_know. */
3774 ddr = initialize_data_dependence_relation (NULL, NULL, loop_nest);
3775 dependence_relations->safe_push (ddr);
3776 return false;
3779 FOR_EACH_VEC_ELT (datarefs, i, a)
3780 for (j = i + 1; datarefs.iterate (j, &b); j++)
3781 if (DR_IS_WRITE (a) || DR_IS_WRITE (b) || compute_self_and_rr)
3783 ddr = initialize_data_dependence_relation (a, b, loop_nest);
3784 dependence_relations->safe_push (ddr);
3785 if (loop_nest.exists ())
3786 compute_affine_dependence (ddr, loop_nest[0]);
3789 if (compute_self_and_rr)
3790 FOR_EACH_VEC_ELT (datarefs, i, a)
3792 ddr = initialize_data_dependence_relation (a, a, loop_nest);
3793 dependence_relations->safe_push (ddr);
3794 if (loop_nest.exists ())
3795 compute_affine_dependence (ddr, loop_nest[0]);
3798 return true;
3801 /* Describes a location of a memory reference. */
3803 struct data_ref_loc
3805 /* The memory reference. */
3806 tree ref;
3808 /* True if the memory reference is read. */
3809 bool is_read;
3813 /* Stores the locations of memory references in STMT to REFERENCES. Returns
3814 true if STMT clobbers memory, false otherwise. */
3816 static bool
3817 get_references_in_stmt (gimple *stmt, vec<data_ref_loc, va_heap> *references)
3819 bool clobbers_memory = false;
3820 data_ref_loc ref;
3821 tree op0, op1;
3822 enum gimple_code stmt_code = gimple_code (stmt);
3824 /* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
3825 As we cannot model data-references to not spelled out
3826 accesses give up if they may occur. */
3827 if (stmt_code == GIMPLE_CALL
3828 && !(gimple_call_flags (stmt) & ECF_CONST))
3830 /* Allow IFN_GOMP_SIMD_LANE in their own loops. */
3831 if (gimple_call_internal_p (stmt))
3832 switch (gimple_call_internal_fn (stmt))
3834 case IFN_GOMP_SIMD_LANE:
3836 struct loop *loop = gimple_bb (stmt)->loop_father;
3837 tree uid = gimple_call_arg (stmt, 0);
3838 gcc_assert (TREE_CODE (uid) == SSA_NAME);
3839 if (loop == NULL
3840 || loop->simduid != SSA_NAME_VAR (uid))
3841 clobbers_memory = true;
3842 break;
3844 case IFN_MASK_LOAD:
3845 case IFN_MASK_STORE:
3846 break;
3847 default:
3848 clobbers_memory = true;
3849 break;
3851 else
3852 clobbers_memory = true;
3854 else if (stmt_code == GIMPLE_ASM
3855 && (gimple_asm_volatile_p (as_a <gasm *> (stmt))
3856 || gimple_vuse (stmt)))
3857 clobbers_memory = true;
3859 if (!gimple_vuse (stmt))
3860 return clobbers_memory;
3862 if (stmt_code == GIMPLE_ASSIGN)
3864 tree base;
3865 op0 = gimple_assign_lhs (stmt);
3866 op1 = gimple_assign_rhs1 (stmt);
3868 if (DECL_P (op1)
3869 || (REFERENCE_CLASS_P (op1)
3870 && (base = get_base_address (op1))
3871 && TREE_CODE (base) != SSA_NAME))
3873 ref.ref = op1;
3874 ref.is_read = true;
3875 references->safe_push (ref);
3878 else if (stmt_code == GIMPLE_CALL)
3880 unsigned i, n;
3881 tree ptr, type;
3882 unsigned int align;
3884 ref.is_read = false;
3885 if (gimple_call_internal_p (stmt))
3886 switch (gimple_call_internal_fn (stmt))
3888 case IFN_MASK_LOAD:
3889 if (gimple_call_lhs (stmt) == NULL_TREE)
3890 break;
3891 ref.is_read = true;
3892 case IFN_MASK_STORE:
3893 ptr = build_int_cst (TREE_TYPE (gimple_call_arg (stmt, 1)), 0);
3894 align = tree_to_shwi (gimple_call_arg (stmt, 1));
3895 if (ref.is_read)
3896 type = TREE_TYPE (gimple_call_lhs (stmt));
3897 else
3898 type = TREE_TYPE (gimple_call_arg (stmt, 3));
3899 if (TYPE_ALIGN (type) != align)
3900 type = build_aligned_type (type, align);
3901 ref.ref = fold_build2 (MEM_REF, type, gimple_call_arg (stmt, 0),
3902 ptr);
3903 references->safe_push (ref);
3904 return false;
3905 default:
3906 break;
3909 op0 = gimple_call_lhs (stmt);
3910 n = gimple_call_num_args (stmt);
3911 for (i = 0; i < n; i++)
3913 op1 = gimple_call_arg (stmt, i);
3915 if (DECL_P (op1)
3916 || (REFERENCE_CLASS_P (op1) && get_base_address (op1)))
3918 ref.ref = op1;
3919 ref.is_read = true;
3920 references->safe_push (ref);
3924 else
3925 return clobbers_memory;
3927 if (op0
3928 && (DECL_P (op0)
3929 || (REFERENCE_CLASS_P (op0) && get_base_address (op0))))
3931 ref.ref = op0;
3932 ref.is_read = false;
3933 references->safe_push (ref);
3935 return clobbers_memory;
3939 /* Returns true if the loop-nest has any data reference. */
3941 bool
3942 loop_nest_has_data_refs (loop_p loop)
3944 basic_block *bbs = get_loop_body (loop);
3945 vec<data_ref_loc> references;
3946 references.create (3);
3948 for (unsigned i = 0; i < loop->num_nodes; i++)
3950 basic_block bb = bbs[i];
3951 gimple_stmt_iterator bsi;
3953 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
3955 gimple *stmt = gsi_stmt (bsi);
3956 get_references_in_stmt (stmt, &references);
3957 if (references.length ())
3959 free (bbs);
3960 references.release ();
3961 return true;
3965 free (bbs);
3966 references.release ();
3968 if (loop->inner)
3970 loop = loop->inner;
3971 while (loop)
3973 if (loop_nest_has_data_refs (loop))
3974 return true;
3975 loop = loop->next;
3978 return false;
3981 /* Stores the data references in STMT to DATAREFS. If there is an unanalyzable
3982 reference, returns false, otherwise returns true. NEST is the outermost
3983 loop of the loop nest in which the references should be analyzed. */
3985 bool
3986 find_data_references_in_stmt (struct loop *nest, gimple *stmt,
3987 vec<data_reference_p> *datarefs)
3989 unsigned i;
3990 auto_vec<data_ref_loc, 2> references;
3991 data_ref_loc *ref;
3992 bool ret = true;
3993 data_reference_p dr;
3995 if (get_references_in_stmt (stmt, &references))
3996 return false;
3998 FOR_EACH_VEC_ELT (references, i, ref)
4000 dr = create_data_ref (nest, loop_containing_stmt (stmt),
4001 ref->ref, stmt, ref->is_read);
4002 gcc_assert (dr != NULL);
4003 datarefs->safe_push (dr);
4005 references.release ();
4006 return ret;
4009 /* Stores the data references in STMT to DATAREFS. If there is an
4010 unanalyzable reference, returns false, otherwise returns true.
4011 NEST is the outermost loop of the loop nest in which the references
4012 should be instantiated, LOOP is the loop in which the references
4013 should be analyzed. */
4015 bool
4016 graphite_find_data_references_in_stmt (loop_p nest, loop_p loop, gimple *stmt,
4017 vec<data_reference_p> *datarefs)
4019 unsigned i;
4020 auto_vec<data_ref_loc, 2> references;
4021 data_ref_loc *ref;
4022 bool ret = true;
4023 data_reference_p dr;
4025 if (get_references_in_stmt (stmt, &references))
4026 return false;
4028 FOR_EACH_VEC_ELT (references, i, ref)
4030 dr = create_data_ref (nest, loop, ref->ref, stmt, ref->is_read);
4031 gcc_assert (dr != NULL);
4032 datarefs->safe_push (dr);
4035 references.release ();
4036 return ret;
4039 /* Search the data references in LOOP, and record the information into
4040 DATAREFS. Returns chrec_dont_know when failing to analyze a
4041 difficult case, returns NULL_TREE otherwise. */
4043 tree
4044 find_data_references_in_bb (struct loop *loop, basic_block bb,
4045 vec<data_reference_p> *datarefs)
4047 gimple_stmt_iterator bsi;
4049 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
4051 gimple *stmt = gsi_stmt (bsi);
4053 if (!find_data_references_in_stmt (loop, stmt, datarefs))
4055 struct data_reference *res;
4056 res = XCNEW (struct data_reference);
4057 datarefs->safe_push (res);
4059 return chrec_dont_know;
4063 return NULL_TREE;
4066 /* Search the data references in LOOP, and record the information into
4067 DATAREFS. Returns chrec_dont_know when failing to analyze a
4068 difficult case, returns NULL_TREE otherwise.
4070 TODO: This function should be made smarter so that it can handle address
4071 arithmetic as if they were array accesses, etc. */
4073 tree
4074 find_data_references_in_loop (struct loop *loop,
4075 vec<data_reference_p> *datarefs)
4077 basic_block bb, *bbs;
4078 unsigned int i;
4080 bbs = get_loop_body_in_dom_order (loop);
4082 for (i = 0; i < loop->num_nodes; i++)
4084 bb = bbs[i];
4086 if (find_data_references_in_bb (loop, bb, datarefs) == chrec_dont_know)
4088 free (bbs);
4089 return chrec_dont_know;
4092 free (bbs);
4094 return NULL_TREE;
4097 /* Recursive helper function. */
4099 static bool
4100 find_loop_nest_1 (struct loop *loop, vec<loop_p> *loop_nest)
4102 /* Inner loops of the nest should not contain siblings. Example:
4103 when there are two consecutive loops,
4105 | loop_0
4106 | loop_1
4107 | A[{0, +, 1}_1]
4108 | endloop_1
4109 | loop_2
4110 | A[{0, +, 1}_2]
4111 | endloop_2
4112 | endloop_0
4114 the dependence relation cannot be captured by the distance
4115 abstraction. */
4116 if (loop->next)
4117 return false;
4119 loop_nest->safe_push (loop);
4120 if (loop->inner)
4121 return find_loop_nest_1 (loop->inner, loop_nest);
4122 return true;
4125 /* Return false when the LOOP is not well nested. Otherwise return
4126 true and insert in LOOP_NEST the loops of the nest. LOOP_NEST will
4127 contain the loops from the outermost to the innermost, as they will
4128 appear in the classic distance vector. */
4130 bool
4131 find_loop_nest (struct loop *loop, vec<loop_p> *loop_nest)
4133 loop_nest->safe_push (loop);
4134 if (loop->inner)
4135 return find_loop_nest_1 (loop->inner, loop_nest);
4136 return true;
4139 /* Returns true when the data dependences have been computed, false otherwise.
4140 Given a loop nest LOOP, the following vectors are returned:
4141 DATAREFS is initialized to all the array elements contained in this loop,
4142 DEPENDENCE_RELATIONS contains the relations between the data references.
4143 Compute read-read and self relations if
4144 COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
4146 bool
4147 compute_data_dependences_for_loop (struct loop *loop,
4148 bool compute_self_and_read_read_dependences,
4149 vec<loop_p> *loop_nest,
4150 vec<data_reference_p> *datarefs,
4151 vec<ddr_p> *dependence_relations)
4153 bool res = true;
4155 memset (&dependence_stats, 0, sizeof (dependence_stats));
4157 /* If the loop nest is not well formed, or one of the data references
4158 is not computable, give up without spending time to compute other
4159 dependences. */
4160 if (!loop
4161 || !find_loop_nest (loop, loop_nest)
4162 || find_data_references_in_loop (loop, datarefs) == chrec_dont_know
4163 || !compute_all_dependences (*datarefs, dependence_relations, *loop_nest,
4164 compute_self_and_read_read_dependences))
4165 res = false;
4167 if (dump_file && (dump_flags & TDF_STATS))
4169 fprintf (dump_file, "Dependence tester statistics:\n");
4171 fprintf (dump_file, "Number of dependence tests: %d\n",
4172 dependence_stats.num_dependence_tests);
4173 fprintf (dump_file, "Number of dependence tests classified dependent: %d\n",
4174 dependence_stats.num_dependence_dependent);
4175 fprintf (dump_file, "Number of dependence tests classified independent: %d\n",
4176 dependence_stats.num_dependence_independent);
4177 fprintf (dump_file, "Number of undetermined dependence tests: %d\n",
4178 dependence_stats.num_dependence_undetermined);
4180 fprintf (dump_file, "Number of subscript tests: %d\n",
4181 dependence_stats.num_subscript_tests);
4182 fprintf (dump_file, "Number of undetermined subscript tests: %d\n",
4183 dependence_stats.num_subscript_undetermined);
4184 fprintf (dump_file, "Number of same subscript function: %d\n",
4185 dependence_stats.num_same_subscript_function);
4187 fprintf (dump_file, "Number of ziv tests: %d\n",
4188 dependence_stats.num_ziv);
4189 fprintf (dump_file, "Number of ziv tests returning dependent: %d\n",
4190 dependence_stats.num_ziv_dependent);
4191 fprintf (dump_file, "Number of ziv tests returning independent: %d\n",
4192 dependence_stats.num_ziv_independent);
4193 fprintf (dump_file, "Number of ziv tests unimplemented: %d\n",
4194 dependence_stats.num_ziv_unimplemented);
4196 fprintf (dump_file, "Number of siv tests: %d\n",
4197 dependence_stats.num_siv);
4198 fprintf (dump_file, "Number of siv tests returning dependent: %d\n",
4199 dependence_stats.num_siv_dependent);
4200 fprintf (dump_file, "Number of siv tests returning independent: %d\n",
4201 dependence_stats.num_siv_independent);
4202 fprintf (dump_file, "Number of siv tests unimplemented: %d\n",
4203 dependence_stats.num_siv_unimplemented);
4205 fprintf (dump_file, "Number of miv tests: %d\n",
4206 dependence_stats.num_miv);
4207 fprintf (dump_file, "Number of miv tests returning dependent: %d\n",
4208 dependence_stats.num_miv_dependent);
4209 fprintf (dump_file, "Number of miv tests returning independent: %d\n",
4210 dependence_stats.num_miv_independent);
4211 fprintf (dump_file, "Number of miv tests unimplemented: %d\n",
4212 dependence_stats.num_miv_unimplemented);
4215 return res;
4218 /* Free the memory used by a data dependence relation DDR. */
4220 void
4221 free_dependence_relation (struct data_dependence_relation *ddr)
4223 if (ddr == NULL)
4224 return;
4226 if (DDR_SUBSCRIPTS (ddr).exists ())
4227 free_subscripts (DDR_SUBSCRIPTS (ddr));
4228 DDR_DIST_VECTS (ddr).release ();
4229 DDR_DIR_VECTS (ddr).release ();
4231 free (ddr);
4234 /* Free the memory used by the data dependence relations from
4235 DEPENDENCE_RELATIONS. */
4237 void
4238 free_dependence_relations (vec<ddr_p> dependence_relations)
4240 unsigned int i;
4241 struct data_dependence_relation *ddr;
4243 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
4244 if (ddr)
4245 free_dependence_relation (ddr);
4247 dependence_relations.release ();
4250 /* Free the memory used by the data references from DATAREFS. */
4252 void
4253 free_data_refs (vec<data_reference_p> datarefs)
4255 unsigned int i;
4256 struct data_reference *dr;
4258 FOR_EACH_VEC_ELT (datarefs, i, dr)
4259 free_data_ref (dr);
4260 datarefs.release ();