1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
34 #include "coretypes.h"
47 #include "langhooks.h"
49 /* obstack.[ch] explicitly declined to prototype this. */
50 extern int _obstack_allocated_p (struct obstack
*h
, void *obj
);
52 #ifdef GATHER_STATISTICS
53 /* Statistics-gathering stuff. */
55 int tree_node_counts
[(int) all_kinds
];
56 int tree_node_sizes
[(int) all_kinds
];
58 /* Keep in sync with tree.h:enum tree_node_kind. */
59 static const char * const tree_node_kind_names
[] = {
75 #endif /* GATHER_STATISTICS */
77 /* Unique id for next decl created. */
78 static GTY(()) int next_decl_uid
;
79 /* Unique id for next type created. */
80 static GTY(()) int next_type_uid
= 1;
82 /* Since we cannot rehash a type after it is in the table, we have to
83 keep the hash code. */
85 struct type_hash
GTY(())
91 /* Initial size of the hash table (rounded to next prime). */
92 #define TYPE_HASH_INITIAL_SIZE 1000
94 /* Now here is the hash table. When recording a type, it is added to
95 the slot whose index is the hash code. Note that the hash table is
96 used for several kinds of types (function types, array types and
97 array index range types, for now). While all these live in the
98 same table, they are completely independent, and the hash code is
99 computed differently for each of these. */
101 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash
)))
102 htab_t type_hash_table
;
104 static void set_type_quals (tree
, int);
105 static int type_hash_eq (const void *, const void *);
106 static hashval_t
type_hash_hash (const void *);
107 static void print_type_hash_statistics (void);
108 static void finish_vector_type (tree
);
109 static tree
make_vector (enum machine_mode
, tree
, int);
110 static int type_hash_marked_p (const void *);
112 tree global_trees
[TI_MAX
];
113 tree integer_types
[itk_none
];
120 /* Initialize the hash table of types. */
121 type_hash_table
= htab_create_ggc (TYPE_HASH_INITIAL_SIZE
, type_hash_hash
,
126 /* The name of the object as the assembler will see it (but before any
127 translations made by ASM_OUTPUT_LABELREF). Often this is the same
128 as DECL_NAME. It is an IDENTIFIER_NODE. */
130 decl_assembler_name (tree decl
)
132 if (!DECL_ASSEMBLER_NAME_SET_P (decl
))
133 (*lang_hooks
.set_decl_assembler_name
) (decl
);
134 return DECL_CHECK (decl
)->decl
.assembler_name
;
137 /* Compute the number of bytes occupied by 'node'. This routine only
138 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
140 tree_size (tree node
)
142 enum tree_code code
= TREE_CODE (node
);
144 switch (TREE_CODE_CLASS (code
))
146 case 'd': /* A decl node */
147 return sizeof (struct tree_decl
);
149 case 't': /* a type node */
150 return sizeof (struct tree_type
);
152 case 'b': /* a lexical block node */
153 return sizeof (struct tree_block
);
155 case 'r': /* a reference */
156 case 'e': /* an expression */
157 case 's': /* an expression with side effects */
158 case '<': /* a comparison expression */
159 case '1': /* a unary arithmetic expression */
160 case '2': /* a binary arithmetic expression */
161 return (sizeof (struct tree_exp
)
162 + TREE_CODE_LENGTH (code
) * sizeof (char *) - sizeof (char *));
164 case 'c': /* a constant */
167 case INTEGER_CST
: return sizeof (struct tree_int_cst
);
168 case REAL_CST
: return sizeof (struct tree_real_cst
);
169 case COMPLEX_CST
: return sizeof (struct tree_complex
);
170 case VECTOR_CST
: return sizeof (struct tree_vector
);
171 case STRING_CST
: return sizeof (struct tree_string
);
173 return (*lang_hooks
.tree_size
) (code
);
176 case 'x': /* something random, like an identifier. */
179 case IDENTIFIER_NODE
: return lang_hooks
.identifier_size
;
180 case TREE_LIST
: return sizeof (struct tree_list
);
181 case TREE_VEC
: return (sizeof (struct tree_vec
)
182 + TREE_VEC_LENGTH(node
) * sizeof(char *)
186 case PLACEHOLDER_EXPR
: return sizeof (struct tree_common
);
189 return (*lang_hooks
.tree_size
) (code
);
197 /* Return a newly allocated node of code CODE.
198 For decl and type nodes, some other fields are initialized.
199 The rest of the node is initialized to zero.
201 Achoo! I got a code in the node. */
204 make_node (enum tree_code code
)
207 int type
= TREE_CODE_CLASS (code
);
209 #ifdef GATHER_STATISTICS
212 struct tree_common ttmp
;
214 /* We can't allocate a TREE_VEC without knowing how many elements
216 if (code
== TREE_VEC
)
219 TREE_SET_CODE ((tree
)&ttmp
, code
);
220 length
= tree_size ((tree
)&ttmp
);
222 #ifdef GATHER_STATISTICS
225 case 'd': /* A decl node */
229 case 't': /* a type node */
233 case 'b': /* a lexical block */
237 case 's': /* an expression with side effects */
241 case 'r': /* a reference */
245 case 'e': /* an expression */
246 case '<': /* a comparison expression */
247 case '1': /* a unary arithmetic expression */
248 case '2': /* a binary arithmetic expression */
252 case 'c': /* a constant */
256 case 'x': /* something random, like an identifier. */
257 if (code
== IDENTIFIER_NODE
)
259 else if (code
== TREE_VEC
)
269 tree_node_counts
[(int) kind
]++;
270 tree_node_sizes
[(int) kind
] += length
;
273 t
= ggc_alloc_tree (length
);
275 memset (t
, 0, length
);
277 TREE_SET_CODE (t
, code
);
282 TREE_SIDE_EFFECTS (t
) = 1;
286 if (code
!= FUNCTION_DECL
)
288 DECL_USER_ALIGN (t
) = 0;
289 DECL_IN_SYSTEM_HEADER (t
) = in_system_header
;
290 DECL_SOURCE_LOCATION (t
) = input_location
;
291 DECL_UID (t
) = next_decl_uid
++;
293 /* We have not yet computed the alias set for this declaration. */
294 DECL_POINTER_ALIAS_SET (t
) = -1;
298 TYPE_UID (t
) = next_type_uid
++;
299 TYPE_ALIGN (t
) = char_type_node
? TYPE_ALIGN (char_type_node
) : 0;
300 TYPE_USER_ALIGN (t
) = 0;
301 TYPE_MAIN_VARIANT (t
) = t
;
303 /* Default to no attributes for type, but let target change that. */
304 TYPE_ATTRIBUTES (t
) = NULL_TREE
;
305 (*targetm
.set_default_type_attributes
) (t
);
307 /* We have not yet computed the alias set for this type. */
308 TYPE_ALIAS_SET (t
) = -1;
312 TREE_CONSTANT (t
) = 1;
322 case PREDECREMENT_EXPR
:
323 case PREINCREMENT_EXPR
:
324 case POSTDECREMENT_EXPR
:
325 case POSTINCREMENT_EXPR
:
326 /* All of these have side-effects, no matter what their
328 TREE_SIDE_EFFECTS (t
) = 1;
340 /* Return a new node with the same contents as NODE except that its
341 TREE_CHAIN is zero and it has a fresh uid. */
344 copy_node (tree node
)
347 enum tree_code code
= TREE_CODE (node
);
350 length
= tree_size (node
);
351 t
= ggc_alloc_tree (length
);
352 memcpy (t
, node
, length
);
355 TREE_ASM_WRITTEN (t
) = 0;
357 if (TREE_CODE_CLASS (code
) == 'd')
358 DECL_UID (t
) = next_decl_uid
++;
359 else if (TREE_CODE_CLASS (code
) == 't')
361 TYPE_UID (t
) = next_type_uid
++;
362 /* The following is so that the debug code for
363 the copy is different from the original type.
364 The two statements usually duplicate each other
365 (because they clear fields of the same union),
366 but the optimizer should catch that. */
367 TYPE_SYMTAB_POINTER (t
) = 0;
368 TYPE_SYMTAB_ADDRESS (t
) = 0;
374 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
375 For example, this can copy a list made of TREE_LIST nodes. */
378 copy_list (tree list
)
386 head
= prev
= copy_node (list
);
387 next
= TREE_CHAIN (list
);
390 TREE_CHAIN (prev
) = copy_node (next
);
391 prev
= TREE_CHAIN (prev
);
392 next
= TREE_CHAIN (next
);
398 /* Return a newly constructed INTEGER_CST node whose constant value
399 is specified by the two ints LOW and HI.
400 The TREE_TYPE is set to `int'.
402 This function should be used via the `build_int_2' macro. */
405 build_int_2_wide (unsigned HOST_WIDE_INT low
, HOST_WIDE_INT hi
)
407 tree t
= make_node (INTEGER_CST
);
409 TREE_INT_CST_LOW (t
) = low
;
410 TREE_INT_CST_HIGH (t
) = hi
;
411 TREE_TYPE (t
) = integer_type_node
;
415 /* Return a new VECTOR_CST node whose type is TYPE and whose values
416 are in a list pointed by VALS. */
419 build_vector (tree type
, tree vals
)
421 tree v
= make_node (VECTOR_CST
);
422 int over1
= 0, over2
= 0;
425 TREE_VECTOR_CST_ELTS (v
) = vals
;
426 TREE_TYPE (v
) = type
;
428 /* Iterate through elements and check for overflow. */
429 for (link
= vals
; link
; link
= TREE_CHAIN (link
))
431 tree value
= TREE_VALUE (link
);
433 over1
|= TREE_OVERFLOW (value
);
434 over2
|= TREE_CONSTANT_OVERFLOW (value
);
437 TREE_OVERFLOW (v
) = over1
;
438 TREE_CONSTANT_OVERFLOW (v
) = over2
;
443 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
444 are in a list pointed to by VALS. */
446 build_constructor (tree type
, tree vals
)
448 tree c
= make_node (CONSTRUCTOR
);
449 TREE_TYPE (c
) = type
;
450 CONSTRUCTOR_ELTS (c
) = vals
;
452 /* ??? May not be necessary. Mirrors what build does. */
455 TREE_SIDE_EFFECTS (c
) = TREE_SIDE_EFFECTS (vals
);
456 TREE_READONLY (c
) = TREE_READONLY (vals
);
457 TREE_CONSTANT (c
) = TREE_CONSTANT (vals
);
460 TREE_CONSTANT (c
) = 0; /* safe side */
465 /* Return a new REAL_CST node whose type is TYPE and value is D. */
468 build_real (tree type
, REAL_VALUE_TYPE d
)
474 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
475 Consider doing it via real_convert now. */
477 v
= make_node (REAL_CST
);
478 dp
= ggc_alloc (sizeof (REAL_VALUE_TYPE
));
479 memcpy (dp
, &d
, sizeof (REAL_VALUE_TYPE
));
481 TREE_TYPE (v
) = type
;
482 TREE_REAL_CST_PTR (v
) = dp
;
483 TREE_OVERFLOW (v
) = TREE_CONSTANT_OVERFLOW (v
) = overflow
;
487 /* Return a new REAL_CST node whose type is TYPE
488 and whose value is the integer value of the INTEGER_CST node I. */
491 real_value_from_int_cst (tree type ATTRIBUTE_UNUSED
, tree i
)
495 /* Clear all bits of the real value type so that we can later do
496 bitwise comparisons to see if two values are the same. */
497 memset (&d
, 0, sizeof d
);
499 if (! TREE_UNSIGNED (TREE_TYPE (i
)))
500 REAL_VALUE_FROM_INT (d
, TREE_INT_CST_LOW (i
), TREE_INT_CST_HIGH (i
),
503 REAL_VALUE_FROM_UNSIGNED_INT (d
, TREE_INT_CST_LOW (i
),
504 TREE_INT_CST_HIGH (i
), TYPE_MODE (type
));
508 /* Given a tree representing an integer constant I, return a tree
509 representing the same value as a floating-point constant of type TYPE. */
512 build_real_from_int_cst (tree type
, tree i
)
515 int overflow
= TREE_OVERFLOW (i
);
517 v
= build_real (type
, real_value_from_int_cst (type
, i
));
519 TREE_OVERFLOW (v
) |= overflow
;
520 TREE_CONSTANT_OVERFLOW (v
) |= overflow
;
524 /* Return a newly constructed STRING_CST node whose value is
525 the LEN characters at STR.
526 The TREE_TYPE is not initialized. */
529 build_string (int len
, const char *str
)
531 tree s
= make_node (STRING_CST
);
533 TREE_STRING_LENGTH (s
) = len
;
534 TREE_STRING_POINTER (s
) = ggc_alloc_string (str
, len
);
539 /* Return a newly constructed COMPLEX_CST node whose value is
540 specified by the real and imaginary parts REAL and IMAG.
541 Both REAL and IMAG should be constant nodes. TYPE, if specified,
542 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
545 build_complex (tree type
, tree real
, tree imag
)
547 tree t
= make_node (COMPLEX_CST
);
549 TREE_REALPART (t
) = real
;
550 TREE_IMAGPART (t
) = imag
;
551 TREE_TYPE (t
) = type
? type
: build_complex_type (TREE_TYPE (real
));
552 TREE_OVERFLOW (t
) = TREE_OVERFLOW (real
) | TREE_OVERFLOW (imag
);
553 TREE_CONSTANT_OVERFLOW (t
)
554 = TREE_CONSTANT_OVERFLOW (real
) | TREE_CONSTANT_OVERFLOW (imag
);
558 /* Build a newly constructed TREE_VEC node of length LEN. */
561 make_tree_vec (int len
)
564 int length
= (len
- 1) * sizeof (tree
) + sizeof (struct tree_vec
);
566 #ifdef GATHER_STATISTICS
567 tree_node_counts
[(int) vec_kind
]++;
568 tree_node_sizes
[(int) vec_kind
] += length
;
571 t
= ggc_alloc_tree (length
);
573 memset (t
, 0, length
);
574 TREE_SET_CODE (t
, TREE_VEC
);
575 TREE_VEC_LENGTH (t
) = len
;
580 /* Return 1 if EXPR is the integer constant zero or a complex constant
584 integer_zerop (tree expr
)
588 return ((TREE_CODE (expr
) == INTEGER_CST
589 && ! TREE_CONSTANT_OVERFLOW (expr
)
590 && TREE_INT_CST_LOW (expr
) == 0
591 && TREE_INT_CST_HIGH (expr
) == 0)
592 || (TREE_CODE (expr
) == COMPLEX_CST
593 && integer_zerop (TREE_REALPART (expr
))
594 && integer_zerop (TREE_IMAGPART (expr
))));
597 /* Return 1 if EXPR is the integer constant one or the corresponding
601 integer_onep (tree expr
)
605 return ((TREE_CODE (expr
) == INTEGER_CST
606 && ! TREE_CONSTANT_OVERFLOW (expr
)
607 && TREE_INT_CST_LOW (expr
) == 1
608 && TREE_INT_CST_HIGH (expr
) == 0)
609 || (TREE_CODE (expr
) == COMPLEX_CST
610 && integer_onep (TREE_REALPART (expr
))
611 && integer_zerop (TREE_IMAGPART (expr
))));
614 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
615 it contains. Likewise for the corresponding complex constant. */
618 integer_all_onesp (tree expr
)
625 if (TREE_CODE (expr
) == COMPLEX_CST
626 && integer_all_onesp (TREE_REALPART (expr
))
627 && integer_zerop (TREE_IMAGPART (expr
)))
630 else if (TREE_CODE (expr
) != INTEGER_CST
631 || TREE_CONSTANT_OVERFLOW (expr
))
634 uns
= TREE_UNSIGNED (TREE_TYPE (expr
));
636 return (TREE_INT_CST_LOW (expr
) == ~(unsigned HOST_WIDE_INT
) 0
637 && TREE_INT_CST_HIGH (expr
) == -1);
639 /* Note that using TYPE_PRECISION here is wrong. We care about the
640 actual bits, not the (arbitrary) range of the type. */
641 prec
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr
)));
642 if (prec
>= HOST_BITS_PER_WIDE_INT
)
644 HOST_WIDE_INT high_value
;
647 shift_amount
= prec
- HOST_BITS_PER_WIDE_INT
;
649 if (shift_amount
> HOST_BITS_PER_WIDE_INT
)
650 /* Can not handle precisions greater than twice the host int size. */
652 else if (shift_amount
== HOST_BITS_PER_WIDE_INT
)
653 /* Shifting by the host word size is undefined according to the ANSI
654 standard, so we must handle this as a special case. */
657 high_value
= ((HOST_WIDE_INT
) 1 << shift_amount
) - 1;
659 return (TREE_INT_CST_LOW (expr
) == ~(unsigned HOST_WIDE_INT
) 0
660 && TREE_INT_CST_HIGH (expr
) == high_value
);
663 return TREE_INT_CST_LOW (expr
) == ((unsigned HOST_WIDE_INT
) 1 << prec
) - 1;
666 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
670 integer_pow2p (tree expr
)
673 HOST_WIDE_INT high
, low
;
677 if (TREE_CODE (expr
) == COMPLEX_CST
678 && integer_pow2p (TREE_REALPART (expr
))
679 && integer_zerop (TREE_IMAGPART (expr
)))
682 if (TREE_CODE (expr
) != INTEGER_CST
|| TREE_CONSTANT_OVERFLOW (expr
))
685 prec
= (POINTER_TYPE_P (TREE_TYPE (expr
))
686 ? POINTER_SIZE
: TYPE_PRECISION (TREE_TYPE (expr
)));
687 high
= TREE_INT_CST_HIGH (expr
);
688 low
= TREE_INT_CST_LOW (expr
);
690 /* First clear all bits that are beyond the type's precision in case
691 we've been sign extended. */
693 if (prec
== 2 * HOST_BITS_PER_WIDE_INT
)
695 else if (prec
> HOST_BITS_PER_WIDE_INT
)
696 high
&= ~((HOST_WIDE_INT
) (-1) << (prec
- HOST_BITS_PER_WIDE_INT
));
700 if (prec
< HOST_BITS_PER_WIDE_INT
)
701 low
&= ~((HOST_WIDE_INT
) (-1) << prec
);
704 if (high
== 0 && low
== 0)
707 return ((high
== 0 && (low
& (low
- 1)) == 0)
708 || (low
== 0 && (high
& (high
- 1)) == 0));
711 /* Return 1 if EXPR is an integer constant other than zero or a
712 complex constant other than zero. */
715 integer_nonzerop (tree expr
)
719 return ((TREE_CODE (expr
) == INTEGER_CST
720 && ! TREE_CONSTANT_OVERFLOW (expr
)
721 && (TREE_INT_CST_LOW (expr
) != 0
722 || TREE_INT_CST_HIGH (expr
) != 0))
723 || (TREE_CODE (expr
) == COMPLEX_CST
724 && (integer_nonzerop (TREE_REALPART (expr
))
725 || integer_nonzerop (TREE_IMAGPART (expr
)))));
728 /* Return the power of two represented by a tree node known to be a
732 tree_log2 (tree expr
)
735 HOST_WIDE_INT high
, low
;
739 if (TREE_CODE (expr
) == COMPLEX_CST
)
740 return tree_log2 (TREE_REALPART (expr
));
742 prec
= (POINTER_TYPE_P (TREE_TYPE (expr
))
743 ? POINTER_SIZE
: TYPE_PRECISION (TREE_TYPE (expr
)));
745 high
= TREE_INT_CST_HIGH (expr
);
746 low
= TREE_INT_CST_LOW (expr
);
748 /* First clear all bits that are beyond the type's precision in case
749 we've been sign extended. */
751 if (prec
== 2 * HOST_BITS_PER_WIDE_INT
)
753 else if (prec
> HOST_BITS_PER_WIDE_INT
)
754 high
&= ~((HOST_WIDE_INT
) (-1) << (prec
- HOST_BITS_PER_WIDE_INT
));
758 if (prec
< HOST_BITS_PER_WIDE_INT
)
759 low
&= ~((HOST_WIDE_INT
) (-1) << prec
);
762 return (high
!= 0 ? HOST_BITS_PER_WIDE_INT
+ exact_log2 (high
)
766 /* Similar, but return the largest integer Y such that 2 ** Y is less
767 than or equal to EXPR. */
770 tree_floor_log2 (tree expr
)
773 HOST_WIDE_INT high
, low
;
777 if (TREE_CODE (expr
) == COMPLEX_CST
)
778 return tree_log2 (TREE_REALPART (expr
));
780 prec
= (POINTER_TYPE_P (TREE_TYPE (expr
))
781 ? POINTER_SIZE
: TYPE_PRECISION (TREE_TYPE (expr
)));
783 high
= TREE_INT_CST_HIGH (expr
);
784 low
= TREE_INT_CST_LOW (expr
);
786 /* First clear all bits that are beyond the type's precision in case
787 we've been sign extended. Ignore if type's precision hasn't been set
788 since what we are doing is setting it. */
790 if (prec
== 2 * HOST_BITS_PER_WIDE_INT
|| prec
== 0)
792 else if (prec
> HOST_BITS_PER_WIDE_INT
)
793 high
&= ~((HOST_WIDE_INT
) (-1) << (prec
- HOST_BITS_PER_WIDE_INT
));
797 if (prec
< HOST_BITS_PER_WIDE_INT
)
798 low
&= ~((HOST_WIDE_INT
) (-1) << prec
);
801 return (high
!= 0 ? HOST_BITS_PER_WIDE_INT
+ floor_log2 (high
)
805 /* Return 1 if EXPR is the real constant zero. */
808 real_zerop (tree expr
)
812 return ((TREE_CODE (expr
) == REAL_CST
813 && ! TREE_CONSTANT_OVERFLOW (expr
)
814 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr
), dconst0
))
815 || (TREE_CODE (expr
) == COMPLEX_CST
816 && real_zerop (TREE_REALPART (expr
))
817 && real_zerop (TREE_IMAGPART (expr
))));
820 /* Return 1 if EXPR is the real constant one in real or complex form. */
823 real_onep (tree expr
)
827 return ((TREE_CODE (expr
) == REAL_CST
828 && ! TREE_CONSTANT_OVERFLOW (expr
)
829 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr
), dconst1
))
830 || (TREE_CODE (expr
) == COMPLEX_CST
831 && real_onep (TREE_REALPART (expr
))
832 && real_zerop (TREE_IMAGPART (expr
))));
835 /* Return 1 if EXPR is the real constant two. */
838 real_twop (tree expr
)
842 return ((TREE_CODE (expr
) == REAL_CST
843 && ! TREE_CONSTANT_OVERFLOW (expr
)
844 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr
), dconst2
))
845 || (TREE_CODE (expr
) == COMPLEX_CST
846 && real_twop (TREE_REALPART (expr
))
847 && real_zerop (TREE_IMAGPART (expr
))));
850 /* Return 1 if EXPR is the real constant minus one. */
853 real_minus_onep (tree expr
)
857 return ((TREE_CODE (expr
) == REAL_CST
858 && ! TREE_CONSTANT_OVERFLOW (expr
)
859 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr
), dconstm1
))
860 || (TREE_CODE (expr
) == COMPLEX_CST
861 && real_minus_onep (TREE_REALPART (expr
))
862 && real_zerop (TREE_IMAGPART (expr
))));
865 /* Nonzero if EXP is a constant or a cast of a constant. */
868 really_constant_p (tree exp
)
870 /* This is not quite the same as STRIP_NOPS. It does more. */
871 while (TREE_CODE (exp
) == NOP_EXPR
872 || TREE_CODE (exp
) == CONVERT_EXPR
873 || TREE_CODE (exp
) == NON_LVALUE_EXPR
)
874 exp
= TREE_OPERAND (exp
, 0);
875 return TREE_CONSTANT (exp
);
878 /* Return first list element whose TREE_VALUE is ELEM.
879 Return 0 if ELEM is not in LIST. */
882 value_member (tree elem
, tree list
)
886 if (elem
== TREE_VALUE (list
))
888 list
= TREE_CHAIN (list
);
893 /* Return first list element whose TREE_PURPOSE is ELEM.
894 Return 0 if ELEM is not in LIST. */
897 purpose_member (tree elem
, tree list
)
901 if (elem
== TREE_PURPOSE (list
))
903 list
= TREE_CHAIN (list
);
908 /* Return first list element whose BINFO_TYPE is ELEM.
909 Return 0 if ELEM is not in LIST. */
912 binfo_member (tree elem
, tree list
)
916 if (elem
== BINFO_TYPE (list
))
918 list
= TREE_CHAIN (list
);
923 /* Return nonzero if ELEM is part of the chain CHAIN. */
926 chain_member (tree elem
, tree chain
)
932 chain
= TREE_CHAIN (chain
);
938 /* Return the length of a chain of nodes chained through TREE_CHAIN.
939 We expect a null pointer to mark the end of the chain.
940 This is the Lisp primitive `length'. */
948 for (tail
= t
; tail
; tail
= TREE_CHAIN (tail
))
954 /* Returns the number of FIELD_DECLs in TYPE. */
957 fields_length (tree type
)
959 tree t
= TYPE_FIELDS (type
);
962 for (; t
; t
= TREE_CHAIN (t
))
963 if (TREE_CODE (t
) == FIELD_DECL
)
969 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
970 by modifying the last node in chain 1 to point to chain 2.
971 This is the Lisp primitive `nconc'. */
974 chainon (tree op1
, tree op2
)
983 for (t1
= op1
; TREE_CHAIN (t1
); t1
= TREE_CHAIN (t1
))
985 TREE_CHAIN (t1
) = op2
;
987 #ifdef ENABLE_TREE_CHECKING
990 for (t2
= op2
; t2
; t2
= TREE_CHAIN (t2
))
992 abort (); /* Circularity created. */
999 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1002 tree_last (tree chain
)
1006 while ((next
= TREE_CHAIN (chain
)))
1011 /* Reverse the order of elements in the chain T,
1012 and return the new head of the chain (old last element). */
1017 tree prev
= 0, decl
, next
;
1018 for (decl
= t
; decl
; decl
= next
)
1020 next
= TREE_CHAIN (decl
);
1021 TREE_CHAIN (decl
) = prev
;
1027 /* Return a newly created TREE_LIST node whose
1028 purpose and value fields are PARM and VALUE. */
1031 build_tree_list (tree parm
, tree value
)
1033 tree t
= make_node (TREE_LIST
);
1034 TREE_PURPOSE (t
) = parm
;
1035 TREE_VALUE (t
) = value
;
1039 /* Return a newly created TREE_LIST node whose
1040 purpose and value fields are PURPOSE and VALUE
1041 and whose TREE_CHAIN is CHAIN. */
1044 tree_cons (tree purpose
, tree value
, tree chain
)
1048 node
= ggc_alloc_tree (sizeof (struct tree_list
));
1050 memset (node
, 0, sizeof (struct tree_common
));
1052 #ifdef GATHER_STATISTICS
1053 tree_node_counts
[(int) x_kind
]++;
1054 tree_node_sizes
[(int) x_kind
] += sizeof (struct tree_list
);
1057 TREE_SET_CODE (node
, TREE_LIST
);
1058 TREE_CHAIN (node
) = chain
;
1059 TREE_PURPOSE (node
) = purpose
;
1060 TREE_VALUE (node
) = value
;
1064 /* Return the first expression in a sequence of COMPOUND_EXPRs. */
1067 expr_first (tree expr
)
1069 if (expr
== NULL_TREE
)
1071 while (TREE_CODE (expr
) == COMPOUND_EXPR
)
1072 expr
= TREE_OPERAND (expr
, 0);
1076 /* Return the last expression in a sequence of COMPOUND_EXPRs. */
1079 expr_last (tree expr
)
1081 if (expr
== NULL_TREE
)
1083 while (TREE_CODE (expr
) == COMPOUND_EXPR
)
1084 expr
= TREE_OPERAND (expr
, 1);
1088 /* Return the number of subexpressions in a sequence of COMPOUND_EXPRs. */
1091 expr_length (tree expr
)
1095 if (expr
== NULL_TREE
)
1097 for (; TREE_CODE (expr
) == COMPOUND_EXPR
; expr
= TREE_OPERAND (expr
, 1))
1098 len
+= expr_length (TREE_OPERAND (expr
, 0));
1103 /* Return the size nominally occupied by an object of type TYPE
1104 when it resides in memory. The value is measured in units of bytes,
1105 and its data type is that normally used for type sizes
1106 (which is the first type created by make_signed_type or
1107 make_unsigned_type). */
1110 size_in_bytes (tree type
)
1114 if (type
== error_mark_node
)
1115 return integer_zero_node
;
1117 type
= TYPE_MAIN_VARIANT (type
);
1118 t
= TYPE_SIZE_UNIT (type
);
1122 (*lang_hooks
.types
.incomplete_type_error
) (NULL_TREE
, type
);
1123 return size_zero_node
;
1126 if (TREE_CODE (t
) == INTEGER_CST
)
1127 force_fit_type (t
, 0);
1132 /* Return the size of TYPE (in bytes) as a wide integer
1133 or return -1 if the size can vary or is larger than an integer. */
1136 int_size_in_bytes (tree type
)
1140 if (type
== error_mark_node
)
1143 type
= TYPE_MAIN_VARIANT (type
);
1144 t
= TYPE_SIZE_UNIT (type
);
1146 || TREE_CODE (t
) != INTEGER_CST
1147 || TREE_OVERFLOW (t
)
1148 || TREE_INT_CST_HIGH (t
) != 0
1149 /* If the result would appear negative, it's too big to represent. */
1150 || (HOST_WIDE_INT
) TREE_INT_CST_LOW (t
) < 0)
1153 return TREE_INT_CST_LOW (t
);
1156 /* Return the bit position of FIELD, in bits from the start of the record.
1157 This is a tree of type bitsizetype. */
1160 bit_position (tree field
)
1162 return bit_from_pos (DECL_FIELD_OFFSET (field
),
1163 DECL_FIELD_BIT_OFFSET (field
));
1166 /* Likewise, but return as an integer. Abort if it cannot be represented
1167 in that way (since it could be a signed value, we don't have the option
1168 of returning -1 like int_size_in_byte can. */
1171 int_bit_position (tree field
)
1173 return tree_low_cst (bit_position (field
), 0);
1176 /* Return the byte position of FIELD, in bytes from the start of the record.
1177 This is a tree of type sizetype. */
1180 byte_position (tree field
)
1182 return byte_from_pos (DECL_FIELD_OFFSET (field
),
1183 DECL_FIELD_BIT_OFFSET (field
));
1186 /* Likewise, but return as an integer. Abort if it cannot be represented
1187 in that way (since it could be a signed value, we don't have the option
1188 of returning -1 like int_size_in_byte can. */
1191 int_byte_position (tree field
)
1193 return tree_low_cst (byte_position (field
), 0);
1196 /* Return the strictest alignment, in bits, that T is known to have. */
1201 unsigned int align0
, align1
;
1203 switch (TREE_CODE (t
))
1205 case NOP_EXPR
: case CONVERT_EXPR
: case NON_LVALUE_EXPR
:
1206 /* If we have conversions, we know that the alignment of the
1207 object must meet each of the alignments of the types. */
1208 align0
= expr_align (TREE_OPERAND (t
, 0));
1209 align1
= TYPE_ALIGN (TREE_TYPE (t
));
1210 return MAX (align0
, align1
);
1212 case SAVE_EXPR
: case COMPOUND_EXPR
: case MODIFY_EXPR
:
1213 case INIT_EXPR
: case TARGET_EXPR
: case WITH_CLEANUP_EXPR
:
1214 case WITH_RECORD_EXPR
: case CLEANUP_POINT_EXPR
: case UNSAVE_EXPR
:
1215 /* These don't change the alignment of an object. */
1216 return expr_align (TREE_OPERAND (t
, 0));
1219 /* The best we can do is say that the alignment is the least aligned
1221 align0
= expr_align (TREE_OPERAND (t
, 1));
1222 align1
= expr_align (TREE_OPERAND (t
, 2));
1223 return MIN (align0
, align1
);
1225 case LABEL_DECL
: case CONST_DECL
:
1226 case VAR_DECL
: case PARM_DECL
: case RESULT_DECL
:
1227 if (DECL_ALIGN (t
) != 0)
1228 return DECL_ALIGN (t
);
1232 return FUNCTION_BOUNDARY
;
1238 /* Otherwise take the alignment from that of the type. */
1239 return TYPE_ALIGN (TREE_TYPE (t
));
1242 /* Return, as a tree node, the number of elements for TYPE (which is an
1243 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1246 array_type_nelts (tree type
)
1248 tree index_type
, min
, max
;
1250 /* If they did it with unspecified bounds, then we should have already
1251 given an error about it before we got here. */
1252 if (! TYPE_DOMAIN (type
))
1253 return error_mark_node
;
1255 index_type
= TYPE_DOMAIN (type
);
1256 min
= TYPE_MIN_VALUE (index_type
);
1257 max
= TYPE_MAX_VALUE (index_type
);
1259 return (integer_zerop (min
)
1261 : fold (build (MINUS_EXPR
, TREE_TYPE (max
), max
, min
)));
1264 /* Return nonzero if arg is static -- a reference to an object in
1265 static storage. This is not the same as the C meaning of `static'. */
1270 switch (TREE_CODE (arg
))
1273 /* Nested functions aren't static, since taking their address
1274 involves a trampoline. */
1275 return ((decl_function_context (arg
) == 0 || DECL_NO_STATIC_CHAIN (arg
))
1276 && ! DECL_NON_ADDR_CONST_P (arg
));
1279 return ((TREE_STATIC (arg
) || DECL_EXTERNAL (arg
))
1280 && ! DECL_THREAD_LOCAL (arg
)
1281 && ! DECL_NON_ADDR_CONST_P (arg
));
1284 return TREE_STATIC (arg
);
1290 /* If we are referencing a bitfield, we can't evaluate an
1291 ADDR_EXPR at compile time and so it isn't a constant. */
1293 return (! DECL_BIT_FIELD (TREE_OPERAND (arg
, 1))
1294 && staticp (TREE_OPERAND (arg
, 0)));
1300 /* This case is technically correct, but results in setting
1301 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1304 return TREE_CONSTANT (TREE_OPERAND (arg
, 0));
1308 case ARRAY_RANGE_REF
:
1309 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg
))) == INTEGER_CST
1310 && TREE_CODE (TREE_OPERAND (arg
, 1)) == INTEGER_CST
)
1311 return staticp (TREE_OPERAND (arg
, 0));
1314 if ((unsigned int) TREE_CODE (arg
)
1315 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
)
1316 return (*lang_hooks
.staticp
) (arg
);
1322 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1323 Do this to any expression which may be used in more than one place,
1324 but must be evaluated only once.
1326 Normally, expand_expr would reevaluate the expression each time.
1327 Calling save_expr produces something that is evaluated and recorded
1328 the first time expand_expr is called on it. Subsequent calls to
1329 expand_expr just reuse the recorded value.
1331 The call to expand_expr that generates code that actually computes
1332 the value is the first call *at compile time*. Subsequent calls
1333 *at compile time* generate code to use the saved value.
1334 This produces correct result provided that *at run time* control
1335 always flows through the insns made by the first expand_expr
1336 before reaching the other places where the save_expr was evaluated.
1337 You, the caller of save_expr, must make sure this is so.
1339 Constants, and certain read-only nodes, are returned with no
1340 SAVE_EXPR because that is safe. Expressions containing placeholders
1341 are not touched; see tree.def for an explanation of what these
1345 save_expr (tree expr
)
1347 tree t
= fold (expr
);
1350 /* If the tree evaluates to a constant, then we don't want to hide that
1351 fact (i.e. this allows further folding, and direct checks for constants).
1352 However, a read-only object that has side effects cannot be bypassed.
1353 Since it is no problem to reevaluate literals, we just return the
1355 inner
= skip_simple_arithmetic (t
);
1356 if (TREE_CONSTANT (inner
)
1357 || (TREE_READONLY (inner
) && ! TREE_SIDE_EFFECTS (inner
))
1358 || TREE_CODE (inner
) == SAVE_EXPR
1359 || TREE_CODE (inner
) == ERROR_MARK
)
1362 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1363 it means that the size or offset of some field of an object depends on
1364 the value within another field.
1366 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1367 and some variable since it would then need to be both evaluated once and
1368 evaluated more than once. Front-ends must assure this case cannot
1369 happen by surrounding any such subexpressions in their own SAVE_EXPR
1370 and forcing evaluation at the proper time. */
1371 if (contains_placeholder_p (inner
))
1374 t
= build (SAVE_EXPR
, TREE_TYPE (expr
), t
, current_function_decl
, NULL_TREE
);
1376 /* This expression might be placed ahead of a jump to ensure that the
1377 value was computed on both sides of the jump. So make sure it isn't
1378 eliminated as dead. */
1379 TREE_SIDE_EFFECTS (t
) = 1;
1380 TREE_READONLY (t
) = 1;
1384 /* Look inside EXPR and into any simple arithmetic operations. Return
1385 the innermost non-arithmetic node. */
1388 skip_simple_arithmetic (tree expr
)
1392 /* We don't care about whether this can be used as an lvalue in this
1394 while (TREE_CODE (expr
) == NON_LVALUE_EXPR
)
1395 expr
= TREE_OPERAND (expr
, 0);
1397 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1398 a constant, it will be more efficient to not make another SAVE_EXPR since
1399 it will allow better simplification and GCSE will be able to merge the
1400 computations if they actually occur. */
1404 if (TREE_CODE_CLASS (TREE_CODE (inner
)) == '1')
1405 inner
= TREE_OPERAND (inner
, 0);
1406 else if (TREE_CODE_CLASS (TREE_CODE (inner
)) == '2')
1408 if (TREE_CONSTANT (TREE_OPERAND (inner
, 1)))
1409 inner
= TREE_OPERAND (inner
, 0);
1410 else if (TREE_CONSTANT (TREE_OPERAND (inner
, 0)))
1411 inner
= TREE_OPERAND (inner
, 1);
1422 /* Return TRUE if EXPR is a SAVE_EXPR or wraps simple arithmetic around a
1423 SAVE_EXPR. Return FALSE otherwise. */
1426 saved_expr_p (tree expr
)
1428 return TREE_CODE (skip_simple_arithmetic (expr
)) == SAVE_EXPR
;
1431 /* Arrange for an expression to be expanded multiple independent
1432 times. This is useful for cleanup actions, as the backend can
1433 expand them multiple times in different places. */
1436 unsave_expr (tree expr
)
1440 /* If this is already protected, no sense in protecting it again. */
1441 if (TREE_CODE (expr
) == UNSAVE_EXPR
)
1444 t
= build1 (UNSAVE_EXPR
, TREE_TYPE (expr
), expr
);
1445 TREE_SIDE_EFFECTS (t
) = TREE_SIDE_EFFECTS (expr
);
1449 /* Returns the index of the first non-tree operand for CODE, or the number
1450 of operands if all are trees. */
1453 first_rtl_op (enum tree_code code
)
1459 case GOTO_SUBROUTINE_EXPR
:
1462 case WITH_CLEANUP_EXPR
:
1465 return TREE_CODE_LENGTH (code
);
1469 /* Return which tree structure is used by T. */
1471 enum tree_node_structure_enum
1472 tree_node_structure (tree t
)
1474 enum tree_code code
= TREE_CODE (t
);
1476 switch (TREE_CODE_CLASS (code
))
1478 case 'd': return TS_DECL
;
1479 case 't': return TS_TYPE
;
1480 case 'b': return TS_BLOCK
;
1481 case 'r': case '<': case '1': case '2': case 'e': case 's':
1483 default: /* 'c' and 'x' */
1489 case INTEGER_CST
: return TS_INT_CST
;
1490 case REAL_CST
: return TS_REAL_CST
;
1491 case COMPLEX_CST
: return TS_COMPLEX
;
1492 case VECTOR_CST
: return TS_VECTOR
;
1493 case STRING_CST
: return TS_STRING
;
1495 case ERROR_MARK
: return TS_COMMON
;
1496 case IDENTIFIER_NODE
: return TS_IDENTIFIER
;
1497 case TREE_LIST
: return TS_LIST
;
1498 case TREE_VEC
: return TS_VEC
;
1499 case PLACEHOLDER_EXPR
: return TS_COMMON
;
1506 /* Perform any modifications to EXPR required when it is unsaved. Does
1507 not recurse into EXPR's subtrees. */
1510 unsave_expr_1 (tree expr
)
1512 switch (TREE_CODE (expr
))
1515 if (! SAVE_EXPR_PERSISTENT_P (expr
))
1516 SAVE_EXPR_RTL (expr
) = 0;
1520 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1521 It's OK for this to happen if it was part of a subtree that
1522 isn't immediately expanded, such as operand 2 of another
1524 if (TREE_OPERAND (expr
, 1))
1527 TREE_OPERAND (expr
, 1) = TREE_OPERAND (expr
, 3);
1528 TREE_OPERAND (expr
, 3) = NULL_TREE
;
1532 /* I don't yet know how to emit a sequence multiple times. */
1533 if (RTL_EXPR_SEQUENCE (expr
) != 0)
1542 /* Default lang hook for "unsave_expr_now". */
1545 lhd_unsave_expr_now (tree expr
)
1547 enum tree_code code
;
1549 /* There's nothing to do for NULL_TREE. */
1553 unsave_expr_1 (expr
);
1555 code
= TREE_CODE (expr
);
1556 switch (TREE_CODE_CLASS (code
))
1558 case 'c': /* a constant */
1559 case 't': /* a type node */
1560 case 'd': /* A decl node */
1561 case 'b': /* A block node */
1564 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1565 if (code
== TREE_LIST
)
1567 lhd_unsave_expr_now (TREE_VALUE (expr
));
1568 lhd_unsave_expr_now (TREE_CHAIN (expr
));
1572 case 'e': /* an expression */
1573 case 'r': /* a reference */
1574 case 's': /* an expression with side effects */
1575 case '<': /* a comparison expression */
1576 case '2': /* a binary arithmetic expression */
1577 case '1': /* a unary arithmetic expression */
1581 for (i
= first_rtl_op (code
) - 1; i
>= 0; i
--)
1582 lhd_unsave_expr_now (TREE_OPERAND (expr
, i
));
1593 /* Return 0 if it is safe to evaluate EXPR multiple times,
1594 return 1 if it is safe if EXPR is unsaved afterward, or
1595 return 2 if it is completely unsafe.
1597 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1598 an expression tree, so that it safe to unsave them and the surrounding
1599 context will be correct.
1601 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1602 occasionally across the whole of a function. It is therefore only
1603 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1604 below the UNSAVE_EXPR.
1606 RTL_EXPRs consume their rtl during evaluation. It is therefore
1607 never possible to unsave them. */
1610 unsafe_for_reeval (tree expr
)
1613 enum tree_code code
;
1618 if (expr
== NULL_TREE
)
1621 code
= TREE_CODE (expr
);
1622 first_rtl
= first_rtl_op (code
);
1631 for (exp
= expr
; exp
!= 0; exp
= TREE_CHAIN (exp
))
1633 tmp
= unsafe_for_reeval (TREE_VALUE (exp
));
1634 unsafeness
= MAX (tmp
, unsafeness
);
1640 tmp2
= unsafe_for_reeval (TREE_OPERAND (expr
, 0));
1641 tmp
= unsafe_for_reeval (TREE_OPERAND (expr
, 1));
1642 return MAX (MAX (tmp
, 1), tmp2
);
1649 tmp
= (*lang_hooks
.unsafe_for_reeval
) (expr
);
1655 switch (TREE_CODE_CLASS (code
))
1657 case 'c': /* a constant */
1658 case 't': /* a type node */
1659 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1660 case 'd': /* A decl node */
1661 case 'b': /* A block node */
1664 case 'e': /* an expression */
1665 case 'r': /* a reference */
1666 case 's': /* an expression with side effects */
1667 case '<': /* a comparison expression */
1668 case '2': /* a binary arithmetic expression */
1669 case '1': /* a unary arithmetic expression */
1670 for (i
= first_rtl
- 1; i
>= 0; i
--)
1672 tmp
= unsafe_for_reeval (TREE_OPERAND (expr
, i
));
1673 unsafeness
= MAX (tmp
, unsafeness
);
1683 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1684 or offset that depends on a field within a record. */
1687 contains_placeholder_p (tree exp
)
1689 enum tree_code code
;
1695 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1696 in it since it is supplying a value for it. */
1697 code
= TREE_CODE (exp
);
1698 if (code
== WITH_RECORD_EXPR
)
1700 else if (code
== PLACEHOLDER_EXPR
)
1703 switch (TREE_CODE_CLASS (code
))
1706 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1707 position computations since they will be converted into a
1708 WITH_RECORD_EXPR involving the reference, which will assume
1709 here will be valid. */
1710 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 0));
1713 if (code
== TREE_LIST
)
1714 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp
))
1715 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp
)));
1724 /* Ignoring the first operand isn't quite right, but works best. */
1725 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 1));
1732 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 0))
1733 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 1))
1734 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 2)));
1737 /* If we already know this doesn't have a placeholder, don't
1739 if (SAVE_EXPR_NOPLACEHOLDER (exp
) || SAVE_EXPR_RTL (exp
) != 0)
1742 SAVE_EXPR_NOPLACEHOLDER (exp
) = 1;
1743 result
= CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 0));
1745 SAVE_EXPR_NOPLACEHOLDER (exp
) = 0;
1750 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 1));
1756 switch (TREE_CODE_LENGTH (code
))
1759 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 0));
1761 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 0))
1762 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp
, 1)));
1773 /* Return 1 if any part of the computation of TYPE involves a PLACEHOLDER_EXPR.
1774 This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and field
1778 type_contains_placeholder_p (tree type
)
1780 /* If the size contains a placeholder or the parent type (component type in
1781 the case of arrays) type involves a placeholder, this type does. */
1782 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type
))
1783 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type
))
1784 || (TREE_TYPE (type
) != 0
1785 && type_contains_placeholder_p (TREE_TYPE (type
))))
1788 /* Now do type-specific checks. Note that the last part of the check above
1789 greatly limits what we have to do below. */
1790 switch (TREE_CODE (type
))
1800 case REFERENCE_TYPE
:
1808 /* Here we just check the bounds. */
1809 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type
))
1810 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type
)));
1814 /* We're already checked the component type (TREE_TYPE), so just check
1816 return type_contains_placeholder_p (TYPE_DOMAIN (type
));
1820 case QUAL_UNION_TYPE
:
1822 static tree seen_types
= 0;
1826 /* We have to be careful here that we don't end up in infinite
1827 recursions due to a field of a type being a pointer to that type
1828 or to a mutually-recursive type. So we store a list of record
1829 types that we've seen and see if this type is in them. To save
1830 memory, we don't use a list for just one type. Here we check
1831 whether we've seen this type before and store it if not. */
1832 if (seen_types
== 0)
1834 else if (TREE_CODE (seen_types
) != TREE_LIST
)
1836 if (seen_types
== type
)
1839 seen_types
= tree_cons (NULL_TREE
, type
,
1840 build_tree_list (NULL_TREE
, seen_types
));
1844 if (value_member (type
, seen_types
) != 0)
1847 seen_types
= tree_cons (NULL_TREE
, type
, seen_types
);
1850 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
1851 if (TREE_CODE (field
) == FIELD_DECL
1852 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field
))
1853 || (TREE_CODE (type
) == QUAL_UNION_TYPE
1854 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field
)))
1855 || type_contains_placeholder_p (TREE_TYPE (field
))))
1861 /* Now remove us from seen_types and return the result. */
1862 if (seen_types
== type
)
1865 seen_types
= TREE_CHAIN (seen_types
);
1875 /* Return 1 if EXP contains any expressions that produce cleanups for an
1876 outer scope to deal with. Used by fold. */
1879 has_cleanups (tree exp
)
1883 if (! TREE_SIDE_EFFECTS (exp
))
1886 switch (TREE_CODE (exp
))
1889 case GOTO_SUBROUTINE_EXPR
:
1890 case WITH_CLEANUP_EXPR
:
1893 case CLEANUP_POINT_EXPR
:
1897 for (exp
= TREE_OPERAND (exp
, 1); exp
; exp
= TREE_CHAIN (exp
))
1899 cmp
= has_cleanups (TREE_VALUE (exp
));
1909 /* This general rule works for most tree codes. All exceptions should be
1910 handled above. If this is a language-specific tree code, we can't
1911 trust what might be in the operand, so say we don't know
1913 if ((int) TREE_CODE (exp
) >= (int) LAST_AND_UNUSED_TREE_CODE
)
1916 nops
= first_rtl_op (TREE_CODE (exp
));
1917 for (i
= 0; i
< nops
; i
++)
1918 if (TREE_OPERAND (exp
, i
) != 0)
1920 int type
= TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp
, i
)));
1921 if (type
== 'e' || type
== '<' || type
== '1' || type
== '2'
1922 || type
== 'r' || type
== 's')
1924 cmp
= has_cleanups (TREE_OPERAND (exp
, i
));
1933 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1934 return a tree with all occurrences of references to F in a
1935 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1936 contains only arithmetic expressions or a CALL_EXPR with a
1937 PLACEHOLDER_EXPR occurring only in its arglist. */
1940 substitute_in_expr (tree exp
, tree f
, tree r
)
1942 enum tree_code code
= TREE_CODE (exp
);
1947 switch (TREE_CODE_CLASS (code
))
1954 if (code
== PLACEHOLDER_EXPR
)
1956 else if (code
== TREE_LIST
)
1958 op0
= (TREE_CHAIN (exp
) == 0
1959 ? 0 : substitute_in_expr (TREE_CHAIN (exp
), f
, r
));
1960 op1
= substitute_in_expr (TREE_VALUE (exp
), f
, r
);
1961 if (op0
== TREE_CHAIN (exp
) && op1
== TREE_VALUE (exp
))
1964 return tree_cons (TREE_PURPOSE (exp
), op1
, op0
);
1973 switch (TREE_CODE_LENGTH (code
))
1976 op0
= substitute_in_expr (TREE_OPERAND (exp
, 0), f
, r
);
1977 if (op0
== TREE_OPERAND (exp
, 0))
1980 if (code
== NON_LVALUE_EXPR
)
1983 new = fold (build1 (code
, TREE_TYPE (exp
), op0
));
1987 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
1988 could, but we don't support it. */
1989 if (code
== RTL_EXPR
)
1991 else if (code
== CONSTRUCTOR
)
1994 op0
= TREE_OPERAND (exp
, 0);
1995 op1
= TREE_OPERAND (exp
, 1);
1996 if (CONTAINS_PLACEHOLDER_P (op0
))
1997 op0
= substitute_in_expr (op0
, f
, r
);
1998 if (CONTAINS_PLACEHOLDER_P (op1
))
1999 op1
= substitute_in_expr (op1
, f
, r
);
2001 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1))
2004 new = fold (build (code
, TREE_TYPE (exp
), op0
, op1
));
2008 /* It cannot be that anything inside a SAVE_EXPR contains a
2009 PLACEHOLDER_EXPR. */
2010 if (code
== SAVE_EXPR
)
2013 else if (code
== CALL_EXPR
)
2015 op1
= substitute_in_expr (TREE_OPERAND (exp
, 1), f
, r
);
2016 if (op1
== TREE_OPERAND (exp
, 1))
2019 return build (code
, TREE_TYPE (exp
),
2020 TREE_OPERAND (exp
, 0), op1
, NULL_TREE
);
2023 else if (code
!= COND_EXPR
)
2026 op0
= TREE_OPERAND (exp
, 0);
2027 op1
= TREE_OPERAND (exp
, 1);
2028 op2
= TREE_OPERAND (exp
, 2);
2030 if (CONTAINS_PLACEHOLDER_P (op0
))
2031 op0
= substitute_in_expr (op0
, f
, r
);
2032 if (CONTAINS_PLACEHOLDER_P (op1
))
2033 op1
= substitute_in_expr (op1
, f
, r
);
2034 if (CONTAINS_PLACEHOLDER_P (op2
))
2035 op2
= substitute_in_expr (op2
, f
, r
);
2037 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1)
2038 && op2
== TREE_OPERAND (exp
, 2))
2041 new = fold (build (code
, TREE_TYPE (exp
), op0
, op1
, op2
));
2054 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2055 and it is the right field, replace it with R. */
2056 for (inner
= TREE_OPERAND (exp
, 0);
2057 TREE_CODE_CLASS (TREE_CODE (inner
)) == 'r';
2058 inner
= TREE_OPERAND (inner
, 0))
2060 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
2061 && TREE_OPERAND (exp
, 1) == f
)
2064 /* If this expression hasn't been completed let, leave it
2066 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
2067 && TREE_TYPE (inner
) == 0)
2070 op0
= substitute_in_expr (TREE_OPERAND (exp
, 0), f
, r
);
2071 if (op0
== TREE_OPERAND (exp
, 0))
2074 new = fold (build (code
, TREE_TYPE (exp
), op0
,
2075 TREE_OPERAND (exp
, 1)));
2079 op0
= substitute_in_expr (TREE_OPERAND (exp
, 0), f
, r
);
2080 op1
= substitute_in_expr (TREE_OPERAND (exp
, 1), f
, r
);
2081 op2
= substitute_in_expr (TREE_OPERAND (exp
, 2), f
, r
);
2082 if (op0
== TREE_OPERAND (exp
, 0) && op1
== TREE_OPERAND (exp
, 1)
2083 && op2
== TREE_OPERAND (exp
, 2))
2086 new = fold (build (code
, TREE_TYPE (exp
), op0
, op1
, op2
));
2091 op0
= substitute_in_expr (TREE_OPERAND (exp
, 0), f
, r
);
2092 if (op0
== TREE_OPERAND (exp
, 0))
2095 new = fold (build1 (code
, TREE_TYPE (exp
), op0
));
2107 TREE_READONLY (new) = TREE_READONLY (exp
);
2111 /* Stabilize a reference so that we can use it any number of times
2112 without causing its operands to be evaluated more than once.
2113 Returns the stabilized reference. This works by means of save_expr,
2114 so see the caveats in the comments about save_expr.
2116 Also allows conversion expressions whose operands are references.
2117 Any other kind of expression is returned unchanged. */
2120 stabilize_reference (tree ref
)
2123 enum tree_code code
= TREE_CODE (ref
);
2130 /* No action is needed in this case. */
2136 case FIX_TRUNC_EXPR
:
2137 case FIX_FLOOR_EXPR
:
2138 case FIX_ROUND_EXPR
:
2140 result
= build_nt (code
, stabilize_reference (TREE_OPERAND (ref
, 0)));
2144 result
= build_nt (INDIRECT_REF
,
2145 stabilize_reference_1 (TREE_OPERAND (ref
, 0)));
2149 result
= build_nt (COMPONENT_REF
,
2150 stabilize_reference (TREE_OPERAND (ref
, 0)),
2151 TREE_OPERAND (ref
, 1));
2155 result
= build_nt (BIT_FIELD_REF
,
2156 stabilize_reference (TREE_OPERAND (ref
, 0)),
2157 stabilize_reference_1 (TREE_OPERAND (ref
, 1)),
2158 stabilize_reference_1 (TREE_OPERAND (ref
, 2)));
2162 result
= build_nt (ARRAY_REF
,
2163 stabilize_reference (TREE_OPERAND (ref
, 0)),
2164 stabilize_reference_1 (TREE_OPERAND (ref
, 1)));
2167 case ARRAY_RANGE_REF
:
2168 result
= build_nt (ARRAY_RANGE_REF
,
2169 stabilize_reference (TREE_OPERAND (ref
, 0)),
2170 stabilize_reference_1 (TREE_OPERAND (ref
, 1)));
2174 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2175 it wouldn't be ignored. This matters when dealing with
2177 return stabilize_reference_1 (ref
);
2180 result
= build1 (INDIRECT_REF
, TREE_TYPE (ref
),
2181 save_expr (build1 (ADDR_EXPR
,
2182 build_pointer_type (TREE_TYPE (ref
)),
2186 /* If arg isn't a kind of lvalue we recognize, make no change.
2187 Caller should recognize the error for an invalid lvalue. */
2192 return error_mark_node
;
2195 TREE_TYPE (result
) = TREE_TYPE (ref
);
2196 TREE_READONLY (result
) = TREE_READONLY (ref
);
2197 TREE_SIDE_EFFECTS (result
) = TREE_SIDE_EFFECTS (ref
);
2198 TREE_THIS_VOLATILE (result
) = TREE_THIS_VOLATILE (ref
);
2203 /* Subroutine of stabilize_reference; this is called for subtrees of
2204 references. Any expression with side-effects must be put in a SAVE_EXPR
2205 to ensure that it is only evaluated once.
2207 We don't put SAVE_EXPR nodes around everything, because assigning very
2208 simple expressions to temporaries causes us to miss good opportunities
2209 for optimizations. Among other things, the opportunity to fold in the
2210 addition of a constant into an addressing mode often gets lost, e.g.
2211 "y[i+1] += x;". In general, we take the approach that we should not make
2212 an assignment unless we are forced into it - i.e., that any non-side effect
2213 operator should be allowed, and that cse should take care of coalescing
2214 multiple utterances of the same expression should that prove fruitful. */
2217 stabilize_reference_1 (tree e
)
2220 enum tree_code code
= TREE_CODE (e
);
2222 /* We cannot ignore const expressions because it might be a reference
2223 to a const array but whose index contains side-effects. But we can
2224 ignore things that are actual constant or that already have been
2225 handled by this function. */
2227 if (TREE_CONSTANT (e
) || code
== SAVE_EXPR
)
2230 switch (TREE_CODE_CLASS (code
))
2240 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2241 so that it will only be evaluated once. */
2242 /* The reference (r) and comparison (<) classes could be handled as
2243 below, but it is generally faster to only evaluate them once. */
2244 if (TREE_SIDE_EFFECTS (e
))
2245 return save_expr (e
);
2249 /* Constants need no processing. In fact, we should never reach
2254 /* Division is slow and tends to be compiled with jumps,
2255 especially the division by powers of 2 that is often
2256 found inside of an array reference. So do it just once. */
2257 if (code
== TRUNC_DIV_EXPR
|| code
== TRUNC_MOD_EXPR
2258 || code
== FLOOR_DIV_EXPR
|| code
== FLOOR_MOD_EXPR
2259 || code
== CEIL_DIV_EXPR
|| code
== CEIL_MOD_EXPR
2260 || code
== ROUND_DIV_EXPR
|| code
== ROUND_MOD_EXPR
)
2261 return save_expr (e
);
2262 /* Recursively stabilize each operand. */
2263 result
= build_nt (code
, stabilize_reference_1 (TREE_OPERAND (e
, 0)),
2264 stabilize_reference_1 (TREE_OPERAND (e
, 1)));
2268 /* Recursively stabilize each operand. */
2269 result
= build_nt (code
, stabilize_reference_1 (TREE_OPERAND (e
, 0)));
2276 TREE_TYPE (result
) = TREE_TYPE (e
);
2277 TREE_READONLY (result
) = TREE_READONLY (e
);
2278 TREE_SIDE_EFFECTS (result
) = TREE_SIDE_EFFECTS (e
);
2279 TREE_THIS_VOLATILE (result
) = TREE_THIS_VOLATILE (e
);
2284 /* Low-level constructors for expressions. */
2286 /* Build an expression of code CODE, data type TYPE,
2287 and operands as specified by the arguments ARG1 and following arguments.
2288 Expressions and reference nodes can be created this way.
2289 Constants, decls, types and misc nodes cannot be. */
2292 build (enum tree_code code
, tree tt
, ...)
2303 t
= make_node (code
);
2304 length
= TREE_CODE_LENGTH (code
);
2307 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2308 result based on those same flags for the arguments. But if the
2309 arguments aren't really even `tree' expressions, we shouldn't be trying
2311 fro
= first_rtl_op (code
);
2313 /* Expressions without side effects may be constant if their
2314 arguments are as well. */
2315 constant
= (TREE_CODE_CLASS (code
) == '<'
2316 || TREE_CODE_CLASS (code
) == '1'
2317 || TREE_CODE_CLASS (code
) == '2'
2318 || TREE_CODE_CLASS (code
) == 'c');
2322 /* This is equivalent to the loop below, but faster. */
2323 tree arg0
= va_arg (p
, tree
);
2324 tree arg1
= va_arg (p
, tree
);
2326 TREE_OPERAND (t
, 0) = arg0
;
2327 TREE_OPERAND (t
, 1) = arg1
;
2328 TREE_READONLY (t
) = 1;
2329 if (arg0
&& fro
> 0)
2331 if (TREE_SIDE_EFFECTS (arg0
))
2332 TREE_SIDE_EFFECTS (t
) = 1;
2333 if (!TREE_READONLY (arg0
))
2334 TREE_READONLY (t
) = 0;
2335 if (!TREE_CONSTANT (arg0
))
2339 if (arg1
&& fro
> 1)
2341 if (TREE_SIDE_EFFECTS (arg1
))
2342 TREE_SIDE_EFFECTS (t
) = 1;
2343 if (!TREE_READONLY (arg1
))
2344 TREE_READONLY (t
) = 0;
2345 if (!TREE_CONSTANT (arg1
))
2349 else if (length
== 1)
2351 tree arg0
= va_arg (p
, tree
);
2353 /* The only one-operand cases we handle here are those with side-effects.
2354 Others are handled with build1. So don't bother checked if the
2355 arg has side-effects since we'll already have set it.
2357 ??? This really should use build1 too. */
2358 if (TREE_CODE_CLASS (code
) != 's')
2360 TREE_OPERAND (t
, 0) = arg0
;
2364 for (i
= 0; i
< length
; i
++)
2366 tree operand
= va_arg (p
, tree
);
2368 TREE_OPERAND (t
, i
) = operand
;
2369 if (operand
&& fro
> i
)
2371 if (TREE_SIDE_EFFECTS (operand
))
2372 TREE_SIDE_EFFECTS (t
) = 1;
2373 if (!TREE_CONSTANT (operand
))
2380 TREE_CONSTANT (t
) = constant
;
2384 /* Same as above, but only builds for unary operators.
2385 Saves lions share of calls to `build'; cuts down use
2386 of varargs, which is expensive for RISC machines. */
2389 build1 (enum tree_code code
, tree type
, tree node
)
2391 int length
= sizeof (struct tree_exp
);
2392 #ifdef GATHER_STATISTICS
2393 tree_node_kind kind
;
2397 #ifdef GATHER_STATISTICS
2398 switch (TREE_CODE_CLASS (code
))
2400 case 's': /* an expression with side effects */
2403 case 'r': /* a reference */
2411 tree_node_counts
[(int) kind
]++;
2412 tree_node_sizes
[(int) kind
] += length
;
2415 #ifdef ENABLE_CHECKING
2416 if (TREE_CODE_CLASS (code
) == '2'
2417 || TREE_CODE_CLASS (code
) == '<'
2418 || TREE_CODE_LENGTH (code
) != 1)
2420 #endif /* ENABLE_CHECKING */
2422 t
= ggc_alloc_tree (length
);
2424 memset (t
, 0, sizeof (struct tree_common
));
2426 TREE_SET_CODE (t
, code
);
2428 TREE_TYPE (t
) = type
;
2429 TREE_COMPLEXITY (t
) = 0;
2430 TREE_OPERAND (t
, 0) = node
;
2431 if (node
&& first_rtl_op (code
) != 0)
2433 TREE_SIDE_EFFECTS (t
) = TREE_SIDE_EFFECTS (node
);
2434 TREE_READONLY (t
) = TREE_READONLY (node
);
2437 if (TREE_CODE_CLASS (code
) == 's')
2438 TREE_SIDE_EFFECTS (t
) = 1;
2445 case PREDECREMENT_EXPR
:
2446 case PREINCREMENT_EXPR
:
2447 case POSTDECREMENT_EXPR
:
2448 case POSTINCREMENT_EXPR
:
2449 /* All of these have side-effects, no matter what their
2451 TREE_SIDE_EFFECTS (t
) = 1;
2452 TREE_READONLY (t
) = 0;
2456 /* Whether a dereference is readonly has nothing to do with whether
2457 its operand is readonly. */
2458 TREE_READONLY (t
) = 0;
2462 if (TREE_CODE_CLASS (code
) == '1' && node
&& TREE_CONSTANT (node
))
2463 TREE_CONSTANT (t
) = 1;
2470 /* Similar except don't specify the TREE_TYPE
2471 and leave the TREE_SIDE_EFFECTS as 0.
2472 It is permissible for arguments to be null,
2473 or even garbage if their values do not matter. */
2476 build_nt (enum tree_code code
, ...)
2485 t
= make_node (code
);
2486 length
= TREE_CODE_LENGTH (code
);
2488 for (i
= 0; i
< length
; i
++)
2489 TREE_OPERAND (t
, i
) = va_arg (p
, tree
);
2495 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2496 We do NOT enter this node in any sort of symbol table.
2498 layout_decl is used to set up the decl's storage layout.
2499 Other slots are initialized to 0 or null pointers. */
2502 build_decl (enum tree_code code
, tree name
, tree type
)
2506 t
= make_node (code
);
2508 /* if (type == error_mark_node)
2509 type = integer_type_node; */
2510 /* That is not done, deliberately, so that having error_mark_node
2511 as the type can suppress useless errors in the use of this variable. */
2513 DECL_NAME (t
) = name
;
2514 TREE_TYPE (t
) = type
;
2516 if (code
== VAR_DECL
|| code
== PARM_DECL
|| code
== RESULT_DECL
)
2518 else if (code
== FUNCTION_DECL
)
2519 DECL_MODE (t
) = FUNCTION_MODE
;
2524 /* BLOCK nodes are used to represent the structure of binding contours
2525 and declarations, once those contours have been exited and their contents
2526 compiled. This information is used for outputting debugging info. */
2529 build_block (tree vars
, tree tags ATTRIBUTE_UNUSED
, tree subblocks
,
2530 tree supercontext
, tree chain
)
2532 tree block
= make_node (BLOCK
);
2534 BLOCK_VARS (block
) = vars
;
2535 BLOCK_SUBBLOCKS (block
) = subblocks
;
2536 BLOCK_SUPERCONTEXT (block
) = supercontext
;
2537 BLOCK_CHAIN (block
) = chain
;
2541 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2542 location where an expression or an identifier were encountered. It
2543 is necessary for languages where the frontend parser will handle
2544 recursively more than one file (Java is one of them). */
2547 build_expr_wfl (tree node
, const char *file
, int line
, int col
)
2549 static const char *last_file
= 0;
2550 static tree last_filenode
= NULL_TREE
;
2551 tree wfl
= make_node (EXPR_WITH_FILE_LOCATION
);
2553 EXPR_WFL_NODE (wfl
) = node
;
2554 EXPR_WFL_SET_LINECOL (wfl
, line
, col
);
2555 if (file
!= last_file
)
2558 last_filenode
= file
? get_identifier (file
) : NULL_TREE
;
2561 EXPR_WFL_FILENAME_NODE (wfl
) = last_filenode
;
2564 TREE_SIDE_EFFECTS (wfl
) = TREE_SIDE_EFFECTS (node
);
2565 TREE_TYPE (wfl
) = TREE_TYPE (node
);
2571 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2575 build_decl_attribute_variant (tree ddecl
, tree attribute
)
2577 DECL_ATTRIBUTES (ddecl
) = attribute
;
2581 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2584 Record such modified types already made so we don't make duplicates. */
2587 build_type_attribute_variant (tree ttype
, tree attribute
)
2589 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype
), attribute
))
2591 unsigned int hashcode
;
2594 ntype
= copy_node (ttype
);
2596 TYPE_POINTER_TO (ntype
) = 0;
2597 TYPE_REFERENCE_TO (ntype
) = 0;
2598 TYPE_ATTRIBUTES (ntype
) = attribute
;
2600 /* Create a new main variant of TYPE. */
2601 TYPE_MAIN_VARIANT (ntype
) = ntype
;
2602 TYPE_NEXT_VARIANT (ntype
) = 0;
2603 set_type_quals (ntype
, TYPE_UNQUALIFIED
);
2605 hashcode
= (TYPE_HASH (TREE_CODE (ntype
))
2606 + TYPE_HASH (TREE_TYPE (ntype
))
2607 + attribute_hash_list (attribute
));
2609 switch (TREE_CODE (ntype
))
2612 hashcode
+= TYPE_HASH (TYPE_ARG_TYPES (ntype
));
2615 hashcode
+= TYPE_HASH (TYPE_DOMAIN (ntype
));
2618 hashcode
+= TYPE_HASH (TYPE_MAX_VALUE (ntype
));
2621 hashcode
+= TYPE_HASH (TYPE_PRECISION (ntype
));
2627 ntype
= type_hash_canon (hashcode
, ntype
);
2628 ttype
= build_qualified_type (ntype
, TYPE_QUALS (ttype
));
2634 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2637 We try both `text' and `__text__', ATTR may be either one. */
2638 /* ??? It might be a reasonable simplification to require ATTR to be only
2639 `text'. One might then also require attribute lists to be stored in
2640 their canonicalized form. */
2643 is_attribute_p (const char *attr
, tree ident
)
2645 int ident_len
, attr_len
;
2648 if (TREE_CODE (ident
) != IDENTIFIER_NODE
)
2651 if (strcmp (attr
, IDENTIFIER_POINTER (ident
)) == 0)
2654 p
= IDENTIFIER_POINTER (ident
);
2655 ident_len
= strlen (p
);
2656 attr_len
= strlen (attr
);
2658 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2662 || attr
[attr_len
- 2] != '_'
2663 || attr
[attr_len
- 1] != '_')
2665 if (ident_len
== attr_len
- 4
2666 && strncmp (attr
+ 2, p
, attr_len
- 4) == 0)
2671 if (ident_len
== attr_len
+ 4
2672 && p
[0] == '_' && p
[1] == '_'
2673 && p
[ident_len
- 2] == '_' && p
[ident_len
- 1] == '_'
2674 && strncmp (attr
, p
+ 2, attr_len
) == 0)
2681 /* Given an attribute name and a list of attributes, return a pointer to the
2682 attribute's list element if the attribute is part of the list, or NULL_TREE
2683 if not found. If the attribute appears more than once, this only
2684 returns the first occurrence; the TREE_CHAIN of the return value should
2685 be passed back in if further occurrences are wanted. */
2688 lookup_attribute (const char *attr_name
, tree list
)
2692 for (l
= list
; l
; l
= TREE_CHAIN (l
))
2694 if (TREE_CODE (TREE_PURPOSE (l
)) != IDENTIFIER_NODE
)
2696 if (is_attribute_p (attr_name
, TREE_PURPOSE (l
)))
2703 /* Return an attribute list that is the union of a1 and a2. */
2706 merge_attributes (tree a1
, tree a2
)
2710 /* Either one unset? Take the set one. */
2712 if ((attributes
= a1
) == 0)
2715 /* One that completely contains the other? Take it. */
2717 else if (a2
!= 0 && ! attribute_list_contained (a1
, a2
))
2719 if (attribute_list_contained (a2
, a1
))
2723 /* Pick the longest list, and hang on the other list. */
2725 if (list_length (a1
) < list_length (a2
))
2726 attributes
= a2
, a2
= a1
;
2728 for (; a2
!= 0; a2
= TREE_CHAIN (a2
))
2731 for (a
= lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2
)),
2734 a
= lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2
)),
2737 if (simple_cst_equal (TREE_VALUE (a
), TREE_VALUE (a2
)) == 1)
2742 a1
= copy_node (a2
);
2743 TREE_CHAIN (a1
) = attributes
;
2752 /* Given types T1 and T2, merge their attributes and return
2756 merge_type_attributes (tree t1
, tree t2
)
2758 return merge_attributes (TYPE_ATTRIBUTES (t1
),
2759 TYPE_ATTRIBUTES (t2
));
2762 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2766 merge_decl_attributes (tree olddecl
, tree newdecl
)
2768 return merge_attributes (DECL_ATTRIBUTES (olddecl
),
2769 DECL_ATTRIBUTES (newdecl
));
2772 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2774 /* Specialization of merge_decl_attributes for various Windows targets.
2776 This handles the following situation:
2778 __declspec (dllimport) int foo;
2781 The second instance of `foo' nullifies the dllimport. */
2784 merge_dllimport_decl_attributes (tree old
, tree
new)
2787 int delete_dllimport_p
;
2789 old
= DECL_ATTRIBUTES (old
);
2790 new = DECL_ATTRIBUTES (new);
2792 /* What we need to do here is remove from `old' dllimport if it doesn't
2793 appear in `new'. dllimport behaves like extern: if a declaration is
2794 marked dllimport and a definition appears later, then the object
2795 is not dllimport'd. */
2796 if (lookup_attribute ("dllimport", old
) != NULL_TREE
2797 && lookup_attribute ("dllimport", new) == NULL_TREE
)
2798 delete_dllimport_p
= 1;
2800 delete_dllimport_p
= 0;
2802 a
= merge_attributes (old
, new);
2804 if (delete_dllimport_p
)
2808 /* Scan the list for dllimport and delete it. */
2809 for (prev
= NULL_TREE
, t
= a
; t
; prev
= t
, t
= TREE_CHAIN (t
))
2811 if (is_attribute_p ("dllimport", TREE_PURPOSE (t
)))
2813 if (prev
== NULL_TREE
)
2816 TREE_CHAIN (prev
) = TREE_CHAIN (t
);
2825 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2827 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2828 of the various TYPE_QUAL values. */
2831 set_type_quals (tree type
, int type_quals
)
2833 TYPE_READONLY (type
) = (type_quals
& TYPE_QUAL_CONST
) != 0;
2834 TYPE_VOLATILE (type
) = (type_quals
& TYPE_QUAL_VOLATILE
) != 0;
2835 TYPE_RESTRICT (type
) = (type_quals
& TYPE_QUAL_RESTRICT
) != 0;
2838 /* Return a version of the TYPE, qualified as indicated by the
2839 TYPE_QUALS, if one exists. If no qualified version exists yet,
2840 return NULL_TREE. */
2843 get_qualified_type (tree type
, int type_quals
)
2847 /* Search the chain of variants to see if there is already one there just
2848 like the one we need to have. If so, use that existing one. We must
2849 preserve the TYPE_NAME, since there is code that depends on this. */
2850 for (t
= TYPE_MAIN_VARIANT (type
); t
; t
= TYPE_NEXT_VARIANT (t
))
2851 if (TYPE_QUALS (t
) == type_quals
&& TYPE_NAME (t
) == TYPE_NAME (type
)
2852 && TYPE_CONTEXT (t
) == TYPE_CONTEXT (type
))
2858 /* Like get_qualified_type, but creates the type if it does not
2859 exist. This function never returns NULL_TREE. */
2862 build_qualified_type (tree type
, int type_quals
)
2866 /* See if we already have the appropriate qualified variant. */
2867 t
= get_qualified_type (type
, type_quals
);
2869 /* If not, build it. */
2872 t
= build_type_copy (type
);
2873 set_type_quals (t
, type_quals
);
2879 /* Create a new variant of TYPE, equivalent but distinct.
2880 This is so the caller can modify it. */
2883 build_type_copy (tree type
)
2885 tree t
, m
= TYPE_MAIN_VARIANT (type
);
2887 t
= copy_node (type
);
2889 TYPE_POINTER_TO (t
) = 0;
2890 TYPE_REFERENCE_TO (t
) = 0;
2892 /* Add this type to the chain of variants of TYPE. */
2893 TYPE_NEXT_VARIANT (t
) = TYPE_NEXT_VARIANT (m
);
2894 TYPE_NEXT_VARIANT (m
) = t
;
2899 /* Hashing of types so that we don't make duplicates.
2900 The entry point is `type_hash_canon'. */
2902 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
2903 with types in the TREE_VALUE slots), by adding the hash codes
2904 of the individual types. */
2907 type_hash_list (tree list
)
2909 unsigned int hashcode
;
2912 for (hashcode
= 0, tail
= list
; tail
; tail
= TREE_CHAIN (tail
))
2913 hashcode
+= TYPE_HASH (TREE_VALUE (tail
));
2918 /* These are the Hashtable callback functions. */
2920 /* Returns true if the types are equal. */
2923 type_hash_eq (const void *va
, const void *vb
)
2925 const struct type_hash
*a
= va
, *b
= vb
;
2926 if (a
->hash
== b
->hash
2927 && TREE_CODE (a
->type
) == TREE_CODE (b
->type
)
2928 && TREE_TYPE (a
->type
) == TREE_TYPE (b
->type
)
2929 && attribute_list_equal (TYPE_ATTRIBUTES (a
->type
),
2930 TYPE_ATTRIBUTES (b
->type
))
2931 && TYPE_ALIGN (a
->type
) == TYPE_ALIGN (b
->type
)
2932 && (TYPE_MAX_VALUE (a
->type
) == TYPE_MAX_VALUE (b
->type
)
2933 || tree_int_cst_equal (TYPE_MAX_VALUE (a
->type
),
2934 TYPE_MAX_VALUE (b
->type
)))
2935 && (TYPE_MIN_VALUE (a
->type
) == TYPE_MIN_VALUE (b
->type
)
2936 || tree_int_cst_equal (TYPE_MIN_VALUE (a
->type
),
2937 TYPE_MIN_VALUE (b
->type
)))
2938 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
2939 && (TYPE_DOMAIN (a
->type
) == TYPE_DOMAIN (b
->type
)
2940 || (TYPE_DOMAIN (a
->type
)
2941 && TREE_CODE (TYPE_DOMAIN (a
->type
)) == TREE_LIST
2942 && TYPE_DOMAIN (b
->type
)
2943 && TREE_CODE (TYPE_DOMAIN (b
->type
)) == TREE_LIST
2944 && type_list_equal (TYPE_DOMAIN (a
->type
),
2945 TYPE_DOMAIN (b
->type
)))))
2950 /* Return the cached hash value. */
2953 type_hash_hash (const void *item
)
2955 return ((const struct type_hash
*) item
)->hash
;
2958 /* Look in the type hash table for a type isomorphic to TYPE.
2959 If one is found, return it. Otherwise return 0. */
2962 type_hash_lookup (unsigned int hashcode
, tree type
)
2964 struct type_hash
*h
, in
;
2966 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
2967 must call that routine before comparing TYPE_ALIGNs. */
2973 h
= htab_find_with_hash (type_hash_table
, &in
, hashcode
);
2979 /* Add an entry to the type-hash-table
2980 for a type TYPE whose hash code is HASHCODE. */
2983 type_hash_add (unsigned int hashcode
, tree type
)
2985 struct type_hash
*h
;
2988 h
= ggc_alloc (sizeof (struct type_hash
));
2991 loc
= htab_find_slot_with_hash (type_hash_table
, h
, hashcode
, INSERT
);
2992 *(struct type_hash
**) loc
= h
;
2995 /* Given TYPE, and HASHCODE its hash code, return the canonical
2996 object for an identical type if one already exists.
2997 Otherwise, return TYPE, and record it as the canonical object
2998 if it is a permanent object.
3000 To use this function, first create a type of the sort you want.
3001 Then compute its hash code from the fields of the type that
3002 make it different from other similar types.
3003 Then call this function and use the value.
3004 This function frees the type you pass in if it is a duplicate. */
3006 /* Set to 1 to debug without canonicalization. Never set by program. */
3007 int debug_no_type_hash
= 0;
3010 type_hash_canon (unsigned int hashcode
, tree type
)
3014 if (debug_no_type_hash
)
3017 /* See if the type is in the hash table already. If so, return it.
3018 Otherwise, add the type. */
3019 t1
= type_hash_lookup (hashcode
, type
);
3022 #ifdef GATHER_STATISTICS
3023 tree_node_counts
[(int) t_kind
]--;
3024 tree_node_sizes
[(int) t_kind
] -= sizeof (struct tree_type
);
3030 type_hash_add (hashcode
, type
);
3035 /* See if the data pointed to by the type hash table is marked. We consider
3036 it marked if the type is marked or if a debug type number or symbol
3037 table entry has been made for the type. This reduces the amount of
3038 debugging output and eliminates that dependency of the debug output on
3039 the number of garbage collections. */
3042 type_hash_marked_p (const void *p
)
3044 tree type
= ((struct type_hash
*) p
)->type
;
3046 return ggc_marked_p (type
) || TYPE_SYMTAB_POINTER (type
);
3050 print_type_hash_statistics (void)
3052 fprintf (stderr
, "Type hash: size %ld, %ld elements, %f collisions\n",
3053 (long) htab_size (type_hash_table
),
3054 (long) htab_elements (type_hash_table
),
3055 htab_collisions (type_hash_table
));
3058 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3059 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3060 by adding the hash codes of the individual attributes. */
3063 attribute_hash_list (tree list
)
3065 unsigned int hashcode
;
3068 for (hashcode
= 0, tail
= list
; tail
; tail
= TREE_CHAIN (tail
))
3069 /* ??? Do we want to add in TREE_VALUE too? */
3070 hashcode
+= TYPE_HASH (TREE_PURPOSE (tail
));
3074 /* Given two lists of attributes, return true if list l2 is
3075 equivalent to l1. */
3078 attribute_list_equal (tree l1
, tree l2
)
3080 return attribute_list_contained (l1
, l2
)
3081 && attribute_list_contained (l2
, l1
);
3084 /* Given two lists of attributes, return true if list L2 is
3085 completely contained within L1. */
3086 /* ??? This would be faster if attribute names were stored in a canonicalized
3087 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3088 must be used to show these elements are equivalent (which they are). */
3089 /* ??? It's not clear that attributes with arguments will always be handled
3093 attribute_list_contained (tree l1
, tree l2
)
3097 /* First check the obvious, maybe the lists are identical. */
3101 /* Maybe the lists are similar. */
3102 for (t1
= l1
, t2
= l2
;
3104 && TREE_PURPOSE (t1
) == TREE_PURPOSE (t2
)
3105 && TREE_VALUE (t1
) == TREE_VALUE (t2
);
3106 t1
= TREE_CHAIN (t1
), t2
= TREE_CHAIN (t2
));
3108 /* Maybe the lists are equal. */
3109 if (t1
== 0 && t2
== 0)
3112 for (; t2
!= 0; t2
= TREE_CHAIN (t2
))
3115 for (attr
= lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2
)), l1
);
3117 attr
= lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2
)),
3120 if (simple_cst_equal (TREE_VALUE (t2
), TREE_VALUE (attr
)) == 1)
3127 if (simple_cst_equal (TREE_VALUE (t2
), TREE_VALUE (attr
)) != 1)
3134 /* Given two lists of types
3135 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3136 return 1 if the lists contain the same types in the same order.
3137 Also, the TREE_PURPOSEs must match. */
3140 type_list_equal (tree l1
, tree l2
)
3144 for (t1
= l1
, t2
= l2
; t1
&& t2
; t1
= TREE_CHAIN (t1
), t2
= TREE_CHAIN (t2
))
3145 if (TREE_VALUE (t1
) != TREE_VALUE (t2
)
3146 || (TREE_PURPOSE (t1
) != TREE_PURPOSE (t2
)
3147 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1
), TREE_PURPOSE (t2
))
3148 && (TREE_TYPE (TREE_PURPOSE (t1
))
3149 == TREE_TYPE (TREE_PURPOSE (t2
))))))
3155 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3156 given by TYPE. If the argument list accepts variable arguments,
3157 then this function counts only the ordinary arguments. */
3160 type_num_arguments (tree type
)
3165 for (t
= TYPE_ARG_TYPES (type
); t
; t
= TREE_CHAIN (t
))
3166 /* If the function does not take a variable number of arguments,
3167 the last element in the list will have type `void'. */
3168 if (VOID_TYPE_P (TREE_VALUE (t
)))
3176 /* Nonzero if integer constants T1 and T2
3177 represent the same constant value. */
3180 tree_int_cst_equal (tree t1
, tree t2
)
3185 if (t1
== 0 || t2
== 0)
3188 if (TREE_CODE (t1
) == INTEGER_CST
3189 && TREE_CODE (t2
) == INTEGER_CST
3190 && TREE_INT_CST_LOW (t1
) == TREE_INT_CST_LOW (t2
)
3191 && TREE_INT_CST_HIGH (t1
) == TREE_INT_CST_HIGH (t2
))
3197 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3198 The precise way of comparison depends on their data type. */
3201 tree_int_cst_lt (tree t1
, tree t2
)
3206 if (TREE_UNSIGNED (TREE_TYPE (t1
)) != TREE_UNSIGNED (TREE_TYPE (t2
)))
3208 int t1_sgn
= tree_int_cst_sgn (t1
);
3209 int t2_sgn
= tree_int_cst_sgn (t2
);
3211 if (t1_sgn
< t2_sgn
)
3213 else if (t1_sgn
> t2_sgn
)
3215 /* Otherwise, both are non-negative, so we compare them as
3216 unsigned just in case one of them would overflow a signed
3219 else if (! TREE_UNSIGNED (TREE_TYPE (t1
)))
3220 return INT_CST_LT (t1
, t2
);
3222 return INT_CST_LT_UNSIGNED (t1
, t2
);
3225 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3228 tree_int_cst_compare (tree t1
, tree t2
)
3230 if (tree_int_cst_lt (t1
, t2
))
3232 else if (tree_int_cst_lt (t2
, t1
))
3238 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3239 the host. If POS is zero, the value can be represented in a single
3240 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3241 be represented in a single unsigned HOST_WIDE_INT. */
3244 host_integerp (tree t
, int pos
)
3246 return (TREE_CODE (t
) == INTEGER_CST
3247 && ! TREE_OVERFLOW (t
)
3248 && ((TREE_INT_CST_HIGH (t
) == 0
3249 && (HOST_WIDE_INT
) TREE_INT_CST_LOW (t
) >= 0)
3250 || (! pos
&& TREE_INT_CST_HIGH (t
) == -1
3251 && (HOST_WIDE_INT
) TREE_INT_CST_LOW (t
) < 0
3252 && ! TREE_UNSIGNED (TREE_TYPE (t
)))
3253 || (pos
&& TREE_INT_CST_HIGH (t
) == 0)));
3256 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3257 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3258 be positive. Abort if we cannot satisfy the above conditions. */
3261 tree_low_cst (tree t
, int pos
)
3263 if (host_integerp (t
, pos
))
3264 return TREE_INT_CST_LOW (t
);
3269 /* Return the most significant bit of the integer constant T. */
3272 tree_int_cst_msb (tree t
)
3276 unsigned HOST_WIDE_INT l
;
3278 /* Note that using TYPE_PRECISION here is wrong. We care about the
3279 actual bits, not the (arbitrary) range of the type. */
3280 prec
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t
))) - 1;
3281 rshift_double (TREE_INT_CST_LOW (t
), TREE_INT_CST_HIGH (t
), prec
,
3282 2 * HOST_BITS_PER_WIDE_INT
, &l
, &h
, 0);
3283 return (l
& 1) == 1;
3286 /* Return an indication of the sign of the integer constant T.
3287 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3288 Note that -1 will never be returned it T's type is unsigned. */
3291 tree_int_cst_sgn (tree t
)
3293 if (TREE_INT_CST_LOW (t
) == 0 && TREE_INT_CST_HIGH (t
) == 0)
3295 else if (TREE_UNSIGNED (TREE_TYPE (t
)))
3297 else if (TREE_INT_CST_HIGH (t
) < 0)
3303 /* Compare two constructor-element-type constants. Return 1 if the lists
3304 are known to be equal; otherwise return 0. */
3307 simple_cst_list_equal (tree l1
, tree l2
)
3309 while (l1
!= NULL_TREE
&& l2
!= NULL_TREE
)
3311 if (simple_cst_equal (TREE_VALUE (l1
), TREE_VALUE (l2
)) != 1)
3314 l1
= TREE_CHAIN (l1
);
3315 l2
= TREE_CHAIN (l2
);
3321 /* Return truthvalue of whether T1 is the same tree structure as T2.
3322 Return 1 if they are the same.
3323 Return 0 if they are understandably different.
3324 Return -1 if either contains tree structure not understood by
3328 simple_cst_equal (tree t1
, tree t2
)
3330 enum tree_code code1
, code2
;
3336 if (t1
== 0 || t2
== 0)
3339 code1
= TREE_CODE (t1
);
3340 code2
= TREE_CODE (t2
);
3342 if (code1
== NOP_EXPR
|| code1
== CONVERT_EXPR
|| code1
== NON_LVALUE_EXPR
)
3344 if (code2
== NOP_EXPR
|| code2
== CONVERT_EXPR
3345 || code2
== NON_LVALUE_EXPR
)
3346 return simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3348 return simple_cst_equal (TREE_OPERAND (t1
, 0), t2
);
3351 else if (code2
== NOP_EXPR
|| code2
== CONVERT_EXPR
3352 || code2
== NON_LVALUE_EXPR
)
3353 return simple_cst_equal (t1
, TREE_OPERAND (t2
, 0));
3361 return (TREE_INT_CST_LOW (t1
) == TREE_INT_CST_LOW (t2
)
3362 && TREE_INT_CST_HIGH (t1
) == TREE_INT_CST_HIGH (t2
));
3365 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1
), TREE_REAL_CST (t2
));
3368 return (TREE_STRING_LENGTH (t1
) == TREE_STRING_LENGTH (t2
)
3369 && ! memcmp (TREE_STRING_POINTER (t1
), TREE_STRING_POINTER (t2
),
3370 TREE_STRING_LENGTH (t1
)));
3373 if (CONSTRUCTOR_ELTS (t1
) == CONSTRUCTOR_ELTS (t2
))
3379 return simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3382 cmp
= simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3386 simple_cst_list_equal (TREE_OPERAND (t1
, 1), TREE_OPERAND (t2
, 1));
3389 /* Special case: if either target is an unallocated VAR_DECL,
3390 it means that it's going to be unified with whatever the
3391 TARGET_EXPR is really supposed to initialize, so treat it
3392 as being equivalent to anything. */
3393 if ((TREE_CODE (TREE_OPERAND (t1
, 0)) == VAR_DECL
3394 && DECL_NAME (TREE_OPERAND (t1
, 0)) == NULL_TREE
3395 && !DECL_RTL_SET_P (TREE_OPERAND (t1
, 0)))
3396 || (TREE_CODE (TREE_OPERAND (t2
, 0)) == VAR_DECL
3397 && DECL_NAME (TREE_OPERAND (t2
, 0)) == NULL_TREE
3398 && !DECL_RTL_SET_P (TREE_OPERAND (t2
, 0))))
3401 cmp
= simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3406 return simple_cst_equal (TREE_OPERAND (t1
, 1), TREE_OPERAND (t2
, 1));
3408 case WITH_CLEANUP_EXPR
:
3409 cmp
= simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3413 return simple_cst_equal (TREE_OPERAND (t1
, 1), TREE_OPERAND (t1
, 1));
3416 if (TREE_OPERAND (t1
, 1) == TREE_OPERAND (t2
, 1))
3417 return simple_cst_equal (TREE_OPERAND (t1
, 0), TREE_OPERAND (t2
, 0));
3431 /* This general rule works for most tree codes. All exceptions should be
3432 handled above. If this is a language-specific tree code, we can't
3433 trust what might be in the operand, so say we don't know
3435 if ((int) code1
>= (int) LAST_AND_UNUSED_TREE_CODE
)
3438 switch (TREE_CODE_CLASS (code1
))
3447 for (i
= 0; i
< TREE_CODE_LENGTH (code1
); i
++)
3449 cmp
= simple_cst_equal (TREE_OPERAND (t1
, i
), TREE_OPERAND (t2
, i
));
3461 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3462 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3463 than U, respectively. */
3466 compare_tree_int (tree t
, unsigned HOST_WIDE_INT u
)
3468 if (tree_int_cst_sgn (t
) < 0)
3470 else if (TREE_INT_CST_HIGH (t
) != 0)
3472 else if (TREE_INT_CST_LOW (t
) == u
)
3474 else if (TREE_INT_CST_LOW (t
) < u
)
3480 /* Generate a hash value for an expression. This can be used iteratively
3481 by passing a previous result as the "val" argument.
3483 This function is intended to produce the same hash for expressions which
3484 would compare equal using operand_equal_p. */
3487 iterative_hash_expr (tree t
, hashval_t val
)
3490 enum tree_code code
;
3494 return iterative_hash_object (t
, val
);
3496 code
= TREE_CODE (t
);
3497 class = TREE_CODE_CLASS (code
);
3501 /* Decls we can just compare by pointer. */
3502 val
= iterative_hash_object (t
, val
);
3504 else if (class == 'c')
3506 /* Alas, constants aren't shared, so we can't rely on pointer
3508 if (code
== INTEGER_CST
)
3510 val
= iterative_hash_object (TREE_INT_CST_LOW (t
), val
);
3511 val
= iterative_hash_object (TREE_INT_CST_HIGH (t
), val
);
3513 else if (code
== REAL_CST
)
3514 val
= iterative_hash (TREE_REAL_CST_PTR (t
),
3515 sizeof (REAL_VALUE_TYPE
), val
);
3516 else if (code
== STRING_CST
)
3517 val
= iterative_hash (TREE_STRING_POINTER (t
),
3518 TREE_STRING_LENGTH (t
), val
);
3519 else if (code
== COMPLEX_CST
)
3521 val
= iterative_hash_expr (TREE_REALPART (t
), val
);
3522 val
= iterative_hash_expr (TREE_IMAGPART (t
), val
);
3524 else if (code
== VECTOR_CST
)
3525 val
= iterative_hash_expr (TREE_VECTOR_CST_ELTS (t
), val
);
3529 else if (IS_EXPR_CODE_CLASS (class) || class == 'r')
3531 val
= iterative_hash_object (code
, val
);
3533 if (code
== NOP_EXPR
|| code
== CONVERT_EXPR
3534 || code
== NON_LVALUE_EXPR
)
3535 val
= iterative_hash_object (TREE_TYPE (t
), val
);
3537 if (code
== PLUS_EXPR
|| code
== MULT_EXPR
|| code
== MIN_EXPR
3538 || code
== MAX_EXPR
|| code
== BIT_IOR_EXPR
|| code
== BIT_XOR_EXPR
3539 || code
== BIT_AND_EXPR
|| code
== NE_EXPR
|| code
== EQ_EXPR
)
3541 /* It's a commutative expression. We want to hash it the same
3542 however it appears. We do this by first hashing both operands
3543 and then rehashing based on the order of their independent
3545 hashval_t one
= iterative_hash_expr (TREE_OPERAND (t
, 0), 0);
3546 hashval_t two
= iterative_hash_expr (TREE_OPERAND (t
, 1), 0);
3550 t
= one
, one
= two
, two
= t
;
3552 val
= iterative_hash_object (one
, val
);
3553 val
= iterative_hash_object (two
, val
);
3556 for (i
= first_rtl_op (code
) - 1; i
>= 0; --i
)
3557 val
= iterative_hash_expr (TREE_OPERAND (t
, i
), val
);
3559 else if (code
== TREE_LIST
)
3561 /* A list of expressions, for a CALL_EXPR or as the elements of a
3563 for (; t
; t
= TREE_CHAIN (t
))
3564 val
= iterative_hash_expr (TREE_VALUE (t
), val
);
3572 /* Constructors for pointer, array and function types.
3573 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3574 constructed by language-dependent code, not here.) */
3576 /* Construct, lay out and return the type of pointers to TO_TYPE
3577 with mode MODE. If such a type has already been constructed,
3581 build_pointer_type_for_mode (tree to_type
, enum machine_mode mode
)
3583 tree t
= TYPE_POINTER_TO (to_type
);
3585 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3586 if (t
!= 0 && mode
== ptr_mode
)
3589 t
= make_node (POINTER_TYPE
);
3591 TREE_TYPE (t
) = to_type
;
3592 TYPE_MODE (t
) = mode
;
3594 /* Record this type as the pointer to TO_TYPE. */
3595 if (mode
== ptr_mode
)
3596 TYPE_POINTER_TO (to_type
) = t
;
3598 /* Lay out the type. This function has many callers that are concerned
3599 with expression-construction, and this simplifies them all.
3600 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3606 /* By default build pointers in ptr_mode. */
3609 build_pointer_type (tree to_type
)
3611 return build_pointer_type_for_mode (to_type
, ptr_mode
);
3614 /* Construct, lay out and return the type of references to TO_TYPE
3615 with mode MODE. If such a type has already been constructed,
3619 build_reference_type_for_mode (tree to_type
, enum machine_mode mode
)
3621 tree t
= TYPE_REFERENCE_TO (to_type
);
3623 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3624 if (t
!= 0 && mode
== ptr_mode
)
3627 t
= make_node (REFERENCE_TYPE
);
3629 TREE_TYPE (t
) = to_type
;
3630 TYPE_MODE (t
) = mode
;
3632 /* Record this type as the pointer to TO_TYPE. */
3633 if (mode
== ptr_mode
)
3634 TYPE_REFERENCE_TO (to_type
) = t
;
3642 /* Build the node for the type of references-to-TO_TYPE by default
3646 build_reference_type (tree to_type
)
3648 return build_reference_type_for_mode (to_type
, ptr_mode
);
3651 /* Build a type that is compatible with t but has no cv quals anywhere
3654 const char *const *const * -> char ***. */
3657 build_type_no_quals (tree t
)
3659 switch (TREE_CODE (t
))
3662 return build_pointer_type (build_type_no_quals (TREE_TYPE (t
)));
3663 case REFERENCE_TYPE
:
3664 return build_reference_type (build_type_no_quals (TREE_TYPE (t
)));
3666 return TYPE_MAIN_VARIANT (t
);
3670 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3671 MAXVAL should be the maximum value in the domain
3672 (one less than the length of the array).
3674 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3675 We don't enforce this limit, that is up to caller (e.g. language front end).
3676 The limit exists because the result is a signed type and we don't handle
3677 sizes that use more than one HOST_WIDE_INT. */
3680 build_index_type (tree maxval
)
3682 tree itype
= make_node (INTEGER_TYPE
);
3684 TREE_TYPE (itype
) = sizetype
;
3685 TYPE_PRECISION (itype
) = TYPE_PRECISION (sizetype
);
3686 TYPE_MIN_VALUE (itype
) = size_zero_node
;
3687 TYPE_MAX_VALUE (itype
) = convert (sizetype
, maxval
);
3688 TYPE_MODE (itype
) = TYPE_MODE (sizetype
);
3689 TYPE_SIZE (itype
) = TYPE_SIZE (sizetype
);
3690 TYPE_SIZE_UNIT (itype
) = TYPE_SIZE_UNIT (sizetype
);
3691 TYPE_ALIGN (itype
) = TYPE_ALIGN (sizetype
);
3692 TYPE_USER_ALIGN (itype
) = TYPE_USER_ALIGN (sizetype
);
3694 if (host_integerp (maxval
, 1))
3695 return type_hash_canon (tree_low_cst (maxval
, 1), itype
);
3700 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3701 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3702 low bound LOWVAL and high bound HIGHVAL.
3703 if TYPE==NULL_TREE, sizetype is used. */
3706 build_range_type (tree type
, tree lowval
, tree highval
)
3708 tree itype
= make_node (INTEGER_TYPE
);
3710 TREE_TYPE (itype
) = type
;
3711 if (type
== NULL_TREE
)
3714 TYPE_MIN_VALUE (itype
) = convert (type
, lowval
);
3715 TYPE_MAX_VALUE (itype
) = highval
? convert (type
, highval
) : NULL
;
3717 TYPE_PRECISION (itype
) = TYPE_PRECISION (type
);
3718 TYPE_MODE (itype
) = TYPE_MODE (type
);
3719 TYPE_SIZE (itype
) = TYPE_SIZE (type
);
3720 TYPE_SIZE_UNIT (itype
) = TYPE_SIZE_UNIT (type
);
3721 TYPE_ALIGN (itype
) = TYPE_ALIGN (type
);
3722 TYPE_USER_ALIGN (itype
) = TYPE_USER_ALIGN (type
);
3724 if (host_integerp (lowval
, 0) && highval
!= 0 && host_integerp (highval
, 0))
3725 return type_hash_canon (tree_low_cst (highval
, 0)
3726 - tree_low_cst (lowval
, 0),
3732 /* Just like build_index_type, but takes lowval and highval instead
3733 of just highval (maxval). */
3736 build_index_2_type (tree lowval
, tree highval
)
3738 return build_range_type (sizetype
, lowval
, highval
);
3741 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3742 and number of elements specified by the range of values of INDEX_TYPE.
3743 If such a type has already been constructed, reuse it. */
3746 build_array_type (tree elt_type
, tree index_type
)
3749 unsigned int hashcode
;
3751 if (TREE_CODE (elt_type
) == FUNCTION_TYPE
)
3753 error ("arrays of functions are not meaningful");
3754 elt_type
= integer_type_node
;
3757 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3758 build_pointer_type (elt_type
);
3760 /* Allocate the array after the pointer type,
3761 in case we free it in type_hash_canon. */
3762 t
= make_node (ARRAY_TYPE
);
3763 TREE_TYPE (t
) = elt_type
;
3764 TYPE_DOMAIN (t
) = index_type
;
3766 if (index_type
== 0)
3771 hashcode
= TYPE_HASH (elt_type
) + TYPE_HASH (index_type
);
3772 t
= type_hash_canon (hashcode
, t
);
3774 if (!COMPLETE_TYPE_P (t
))
3779 /* Return the TYPE of the elements comprising
3780 the innermost dimension of ARRAY. */
3783 get_inner_array_type (tree array
)
3785 tree type
= TREE_TYPE (array
);
3787 while (TREE_CODE (type
) == ARRAY_TYPE
)
3788 type
= TREE_TYPE (type
);
3793 /* Construct, lay out and return
3794 the type of functions returning type VALUE_TYPE
3795 given arguments of types ARG_TYPES.
3796 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3797 are data type nodes for the arguments of the function.
3798 If such a type has already been constructed, reuse it. */
3801 build_function_type (tree value_type
, tree arg_types
)
3804 unsigned int hashcode
;
3806 if (TREE_CODE (value_type
) == FUNCTION_TYPE
)
3808 error ("function return type cannot be function");
3809 value_type
= integer_type_node
;
3812 /* Make a node of the sort we want. */
3813 t
= make_node (FUNCTION_TYPE
);
3814 TREE_TYPE (t
) = value_type
;
3815 TYPE_ARG_TYPES (t
) = arg_types
;
3817 /* If we already have such a type, use the old one and free this one. */
3818 hashcode
= TYPE_HASH (value_type
) + type_hash_list (arg_types
);
3819 t
= type_hash_canon (hashcode
, t
);
3821 if (!COMPLETE_TYPE_P (t
))
3826 /* Build a function type. The RETURN_TYPE is the type retured by the
3827 function. If additional arguments are provided, they are
3828 additional argument types. The list of argument types must always
3829 be terminated by NULL_TREE. */
3832 build_function_type_list (tree return_type
, ...)
3837 va_start (p
, return_type
);
3839 t
= va_arg (p
, tree
);
3840 for (args
= NULL_TREE
; t
!= NULL_TREE
; t
= va_arg (p
, tree
))
3841 args
= tree_cons (NULL_TREE
, t
, args
);
3844 args
= nreverse (args
);
3845 TREE_CHAIN (last
) = void_list_node
;
3846 args
= build_function_type (return_type
, args
);
3852 /* Construct, lay out and return the type of methods belonging to class
3853 BASETYPE and whose arguments and values are described by TYPE.
3854 If that type exists already, reuse it.
3855 TYPE must be a FUNCTION_TYPE node. */
3858 build_method_type (tree basetype
, tree type
)
3861 unsigned int hashcode
;
3863 /* Make a node of the sort we want. */
3864 t
= make_node (METHOD_TYPE
);
3866 if (TREE_CODE (type
) != FUNCTION_TYPE
)
3869 TYPE_METHOD_BASETYPE (t
) = TYPE_MAIN_VARIANT (basetype
);
3870 TREE_TYPE (t
) = TREE_TYPE (type
);
3872 /* The actual arglist for this function includes a "hidden" argument
3873 which is "this". Put it into the list of argument types. */
3876 = tree_cons (NULL_TREE
,
3877 build_pointer_type (basetype
), TYPE_ARG_TYPES (type
));
3879 /* If we already have such a type, use the old one and free this one. */
3880 hashcode
= TYPE_HASH (basetype
) + TYPE_HASH (type
);
3881 t
= type_hash_canon (hashcode
, t
);
3883 if (!COMPLETE_TYPE_P (t
))
3889 /* Construct, lay out and return the type of offsets to a value
3890 of type TYPE, within an object of type BASETYPE.
3891 If a suitable offset type exists already, reuse it. */
3894 build_offset_type (tree basetype
, tree type
)
3897 unsigned int hashcode
;
3899 /* Make a node of the sort we want. */
3900 t
= make_node (OFFSET_TYPE
);
3902 TYPE_OFFSET_BASETYPE (t
) = TYPE_MAIN_VARIANT (basetype
);
3903 TREE_TYPE (t
) = type
;
3905 /* If we already have such a type, use the old one and free this one. */
3906 hashcode
= TYPE_HASH (basetype
) + TYPE_HASH (type
);
3907 t
= type_hash_canon (hashcode
, t
);
3909 if (!COMPLETE_TYPE_P (t
))
3915 /* Create a complex type whose components are COMPONENT_TYPE. */
3918 build_complex_type (tree component_type
)
3921 unsigned int hashcode
;
3923 /* Make a node of the sort we want. */
3924 t
= make_node (COMPLEX_TYPE
);
3926 TREE_TYPE (t
) = TYPE_MAIN_VARIANT (component_type
);
3927 set_type_quals (t
, TYPE_QUALS (component_type
));
3929 /* If we already have such a type, use the old one and free this one. */
3930 hashcode
= TYPE_HASH (component_type
);
3931 t
= type_hash_canon (hashcode
, t
);
3933 if (!COMPLETE_TYPE_P (t
))
3936 /* If we are writing Dwarf2 output we need to create a name,
3937 since complex is a fundamental type. */
3938 if ((write_symbols
== DWARF2_DEBUG
|| write_symbols
== VMS_AND_DWARF2_DEBUG
)
3942 if (component_type
== char_type_node
)
3943 name
= "complex char";
3944 else if (component_type
== signed_char_type_node
)
3945 name
= "complex signed char";
3946 else if (component_type
== unsigned_char_type_node
)
3947 name
= "complex unsigned char";
3948 else if (component_type
== short_integer_type_node
)
3949 name
= "complex short int";
3950 else if (component_type
== short_unsigned_type_node
)
3951 name
= "complex short unsigned int";
3952 else if (component_type
== integer_type_node
)
3953 name
= "complex int";
3954 else if (component_type
== unsigned_type_node
)
3955 name
= "complex unsigned int";
3956 else if (component_type
== long_integer_type_node
)
3957 name
= "complex long int";
3958 else if (component_type
== long_unsigned_type_node
)
3959 name
= "complex long unsigned int";
3960 else if (component_type
== long_long_integer_type_node
)
3961 name
= "complex long long int";
3962 else if (component_type
== long_long_unsigned_type_node
)
3963 name
= "complex long long unsigned int";
3968 TYPE_NAME (t
) = get_identifier (name
);
3974 /* Return OP, stripped of any conversions to wider types as much as is safe.
3975 Converting the value back to OP's type makes a value equivalent to OP.
3977 If FOR_TYPE is nonzero, we return a value which, if converted to
3978 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
3980 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
3981 narrowest type that can hold the value, even if they don't exactly fit.
3982 Otherwise, bit-field references are changed to a narrower type
3983 only if they can be fetched directly from memory in that type.
3985 OP must have integer, real or enumeral type. Pointers are not allowed!
3987 There are some cases where the obvious value we could return
3988 would regenerate to OP if converted to OP's type,
3989 but would not extend like OP to wider types.
3990 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
3991 For example, if OP is (unsigned short)(signed char)-1,
3992 we avoid returning (signed char)-1 if FOR_TYPE is int,
3993 even though extending that to an unsigned short would regenerate OP,
3994 since the result of extending (signed char)-1 to (int)
3995 is different from (int) OP. */
3998 get_unwidened (tree op
, tree for_type
)
4000 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4001 tree type
= TREE_TYPE (op
);
4003 = TYPE_PRECISION (for_type
!= 0 ? for_type
: type
);
4005 = (for_type
!= 0 && for_type
!= type
4006 && final_prec
> TYPE_PRECISION (type
)
4007 && TREE_UNSIGNED (type
));
4010 while (TREE_CODE (op
) == NOP_EXPR
)
4013 = TYPE_PRECISION (TREE_TYPE (op
))
4014 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op
, 0)));
4016 /* Truncations are many-one so cannot be removed.
4017 Unless we are later going to truncate down even farther. */
4019 && final_prec
> TYPE_PRECISION (TREE_TYPE (op
)))
4022 /* See what's inside this conversion. If we decide to strip it,
4024 op
= TREE_OPERAND (op
, 0);
4026 /* If we have not stripped any zero-extensions (uns is 0),
4027 we can strip any kind of extension.
4028 If we have previously stripped a zero-extension,
4029 only zero-extensions can safely be stripped.
4030 Any extension can be stripped if the bits it would produce
4031 are all going to be discarded later by truncating to FOR_TYPE. */
4035 if (! uns
|| final_prec
<= TYPE_PRECISION (TREE_TYPE (op
)))
4037 /* TREE_UNSIGNED says whether this is a zero-extension.
4038 Let's avoid computing it if it does not affect WIN
4039 and if UNS will not be needed again. */
4040 if ((uns
|| TREE_CODE (op
) == NOP_EXPR
)
4041 && TREE_UNSIGNED (TREE_TYPE (op
)))
4049 if (TREE_CODE (op
) == COMPONENT_REF
4050 /* Since type_for_size always gives an integer type. */
4051 && TREE_CODE (type
) != REAL_TYPE
4052 /* Don't crash if field not laid out yet. */
4053 && DECL_SIZE (TREE_OPERAND (op
, 1)) != 0
4054 && host_integerp (DECL_SIZE (TREE_OPERAND (op
, 1)), 1))
4056 unsigned int innerprec
4057 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op
, 1)), 1);
4058 int unsignedp
= TREE_UNSIGNED (TREE_OPERAND (op
, 1));
4059 type
= (*lang_hooks
.types
.type_for_size
) (innerprec
, unsignedp
);
4061 /* We can get this structure field in the narrowest type it fits in.
4062 If FOR_TYPE is 0, do this only for a field that matches the
4063 narrower type exactly and is aligned for it
4064 The resulting extension to its nominal type (a fullword type)
4065 must fit the same conditions as for other extensions. */
4067 if (innerprec
< TYPE_PRECISION (TREE_TYPE (op
))
4068 && (for_type
|| ! DECL_BIT_FIELD (TREE_OPERAND (op
, 1)))
4069 && (! uns
|| final_prec
<= innerprec
|| unsignedp
)
4072 win
= build (COMPONENT_REF
, type
, TREE_OPERAND (op
, 0),
4073 TREE_OPERAND (op
, 1));
4074 TREE_SIDE_EFFECTS (win
) = TREE_SIDE_EFFECTS (op
);
4075 TREE_THIS_VOLATILE (win
) = TREE_THIS_VOLATILE (op
);
4082 /* Return OP or a simpler expression for a narrower value
4083 which can be sign-extended or zero-extended to give back OP.
4084 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4085 or 0 if the value should be sign-extended. */
4088 get_narrower (tree op
, int *unsignedp_ptr
)
4094 while (TREE_CODE (op
) == NOP_EXPR
)
4097 = (TYPE_PRECISION (TREE_TYPE (op
))
4098 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op
, 0))));
4100 /* Truncations are many-one so cannot be removed. */
4104 /* See what's inside this conversion. If we decide to strip it,
4109 op
= TREE_OPERAND (op
, 0);
4110 /* An extension: the outermost one can be stripped,
4111 but remember whether it is zero or sign extension. */
4113 uns
= TREE_UNSIGNED (TREE_TYPE (op
));
4114 /* Otherwise, if a sign extension has been stripped,
4115 only sign extensions can now be stripped;
4116 if a zero extension has been stripped, only zero-extensions. */
4117 else if (uns
!= TREE_UNSIGNED (TREE_TYPE (op
)))
4121 else /* bitschange == 0 */
4123 /* A change in nominal type can always be stripped, but we must
4124 preserve the unsignedness. */
4126 uns
= TREE_UNSIGNED (TREE_TYPE (op
));
4128 op
= TREE_OPERAND (op
, 0);
4134 if (TREE_CODE (op
) == COMPONENT_REF
4135 /* Since type_for_size always gives an integer type. */
4136 && TREE_CODE (TREE_TYPE (op
)) != REAL_TYPE
4137 /* Ensure field is laid out already. */
4138 && DECL_SIZE (TREE_OPERAND (op
, 1)) != 0)
4140 unsigned HOST_WIDE_INT innerprec
4141 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op
, 1)), 1);
4142 tree type
= (*lang_hooks
.types
.type_for_size
) (innerprec
,
4143 TREE_UNSIGNED (op
));
4145 /* We can get this structure field in a narrower type that fits it,
4146 but the resulting extension to its nominal type (a fullword type)
4147 must satisfy the same conditions as for other extensions.
4149 Do this only for fields that are aligned (not bit-fields),
4150 because when bit-field insns will be used there is no
4151 advantage in doing this. */
4153 if (innerprec
< TYPE_PRECISION (TREE_TYPE (op
))
4154 && ! DECL_BIT_FIELD (TREE_OPERAND (op
, 1))
4155 && (first
|| uns
== TREE_UNSIGNED (TREE_OPERAND (op
, 1)))
4159 uns
= TREE_UNSIGNED (TREE_OPERAND (op
, 1));
4160 win
= build (COMPONENT_REF
, type
, TREE_OPERAND (op
, 0),
4161 TREE_OPERAND (op
, 1));
4162 TREE_SIDE_EFFECTS (win
) = TREE_SIDE_EFFECTS (op
);
4163 TREE_THIS_VOLATILE (win
) = TREE_THIS_VOLATILE (op
);
4166 *unsignedp_ptr
= uns
;
4170 /* Nonzero if integer constant C has a value that is permissible
4171 for type TYPE (an INTEGER_TYPE). */
4174 int_fits_type_p (tree c
, tree type
)
4176 tree type_low_bound
= TYPE_MIN_VALUE (type
);
4177 tree type_high_bound
= TYPE_MAX_VALUE (type
);
4178 int ok_for_low_bound
, ok_for_high_bound
;
4180 /* Perform some generic filtering first, which may allow making a decision
4181 even if the bounds are not constant. First, negative integers never fit
4182 in unsigned types, */
4183 if ((TREE_UNSIGNED (type
) && tree_int_cst_sgn (c
) < 0)
4184 /* Also, unsigned integers with top bit set never fit signed types. */
4185 || (! TREE_UNSIGNED (type
)
4186 && TREE_UNSIGNED (TREE_TYPE (c
)) && tree_int_cst_msb (c
)))
4189 /* If at least one bound of the type is a constant integer, we can check
4190 ourselves and maybe make a decision. If no such decision is possible, but
4191 this type is a subtype, try checking against that. Otherwise, use
4192 force_fit_type, which checks against the precision.
4194 Compute the status for each possibly constant bound, and return if we see
4195 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4196 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4197 for "constant known to fit". */
4199 ok_for_low_bound
= -1;
4200 ok_for_high_bound
= -1;
4202 /* Check if C >= type_low_bound. */
4203 if (type_low_bound
&& TREE_CODE (type_low_bound
) == INTEGER_CST
)
4205 ok_for_low_bound
= ! tree_int_cst_lt (c
, type_low_bound
);
4206 if (! ok_for_low_bound
)
4210 /* Check if c <= type_high_bound. */
4211 if (type_high_bound
&& TREE_CODE (type_high_bound
) == INTEGER_CST
)
4213 ok_for_high_bound
= ! tree_int_cst_lt (type_high_bound
, c
);
4214 if (! ok_for_high_bound
)
4218 /* If the constant fits both bounds, the result is known. */
4219 if (ok_for_low_bound
== 1 && ok_for_high_bound
== 1)
4222 /* If we haven't been able to decide at this point, there nothing more we
4223 can check ourselves here. Look at the base type if we have one. */
4224 else if (TREE_CODE (type
) == INTEGER_TYPE
&& TREE_TYPE (type
) != 0)
4225 return int_fits_type_p (c
, TREE_TYPE (type
));
4227 /* Or to force_fit_type, if nothing else. */
4231 TREE_TYPE (c
) = type
;
4232 return !force_fit_type (c
, 0);
4236 /* Returns true if T is, contains, or refers to a type with variable
4237 size. This concept is more general than that of C99 'variably
4238 modified types': in C99, a struct type is never variably modified
4239 because a VLA may not appear as a structure member. However, in
4242 struct S { int i[f()]; };
4244 is valid, and other languages may define similar constructs. */
4247 variably_modified_type_p (tree type
)
4249 if (type
== error_mark_node
)
4252 /* If TYPE itself has variable size, it is variably modified.
4254 We do not yet have a representation of the C99 '[*]' syntax.
4255 When a representation is chosen, this function should be modified
4256 to test for that case as well. */
4257 if (TYPE_SIZE (type
)
4258 && TYPE_SIZE (type
) != error_mark_node
4259 && TREE_CODE (TYPE_SIZE (type
)) != INTEGER_CST
)
4262 /* If TYPE is a pointer or reference, it is variably modified if
4263 the type pointed to is variably modified. */
4264 if ((TREE_CODE (type
) == POINTER_TYPE
4265 || TREE_CODE (type
) == REFERENCE_TYPE
)
4266 && variably_modified_type_p (TREE_TYPE (type
)))
4269 /* If TYPE is an array, it is variably modified if the array
4270 elements are. (Note that the VLA case has already been checked
4272 if (TREE_CODE (type
) == ARRAY_TYPE
4273 && variably_modified_type_p (TREE_TYPE (type
)))
4276 /* If TYPE is a function type, it is variably modified if any of the
4277 parameters or the return type are variably modified. */
4278 if (TREE_CODE (type
) == FUNCTION_TYPE
4279 || TREE_CODE (type
) == METHOD_TYPE
)
4283 if (variably_modified_type_p (TREE_TYPE (type
)))
4285 for (parm
= TYPE_ARG_TYPES (type
);
4286 parm
&& parm
!= void_list_node
;
4287 parm
= TREE_CHAIN (parm
))
4288 if (variably_modified_type_p (TREE_VALUE (parm
)))
4292 /* The current language may have other cases to check, but in general,
4293 all other types are not variably modified. */
4294 return (*lang_hooks
.tree_inlining
.var_mod_type_p
) (type
);
4297 /* Given a DECL or TYPE, return the scope in which it was declared, or
4298 NULL_TREE if there is no containing scope. */
4301 get_containing_scope (tree t
)
4303 return (TYPE_P (t
) ? TYPE_CONTEXT (t
) : DECL_CONTEXT (t
));
4306 /* Return the innermost context enclosing DECL that is
4307 a FUNCTION_DECL, or zero if none. */
4310 decl_function_context (tree decl
)
4314 if (TREE_CODE (decl
) == ERROR_MARK
)
4317 if (TREE_CODE (decl
) == SAVE_EXPR
)
4318 context
= SAVE_EXPR_CONTEXT (decl
);
4320 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4321 where we look up the function at runtime. Such functions always take
4322 a first argument of type 'pointer to real context'.
4324 C++ should really be fixed to use DECL_CONTEXT for the real context,
4325 and use something else for the "virtual context". */
4326 else if (TREE_CODE (decl
) == FUNCTION_DECL
&& DECL_VINDEX (decl
))
4329 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl
)))));
4331 context
= DECL_CONTEXT (decl
);
4333 while (context
&& TREE_CODE (context
) != FUNCTION_DECL
)
4335 if (TREE_CODE (context
) == BLOCK
)
4336 context
= BLOCK_SUPERCONTEXT (context
);
4338 context
= get_containing_scope (context
);
4344 /* Return the innermost context enclosing DECL that is
4345 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4346 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4349 decl_type_context (tree decl
)
4351 tree context
= DECL_CONTEXT (decl
);
4354 switch (TREE_CODE (context
))
4356 case NAMESPACE_DECL
:
4357 case TRANSLATION_UNIT_DECL
:
4362 case QUAL_UNION_TYPE
:
4367 context
= DECL_CONTEXT (context
);
4371 context
= BLOCK_SUPERCONTEXT (context
);
4381 /* CALL is a CALL_EXPR. Return the declaration for the function
4382 called, or NULL_TREE if the called function cannot be
4386 get_callee_fndecl (tree call
)
4390 /* It's invalid to call this function with anything but a
4392 if (TREE_CODE (call
) != CALL_EXPR
)
4395 /* The first operand to the CALL is the address of the function
4397 addr
= TREE_OPERAND (call
, 0);
4401 /* If this is a readonly function pointer, extract its initial value. */
4402 if (DECL_P (addr
) && TREE_CODE (addr
) != FUNCTION_DECL
4403 && TREE_READONLY (addr
) && ! TREE_THIS_VOLATILE (addr
)
4404 && DECL_INITIAL (addr
))
4405 addr
= DECL_INITIAL (addr
);
4407 /* If the address is just `&f' for some function `f', then we know
4408 that `f' is being called. */
4409 if (TREE_CODE (addr
) == ADDR_EXPR
4410 && TREE_CODE (TREE_OPERAND (addr
, 0)) == FUNCTION_DECL
)
4411 return TREE_OPERAND (addr
, 0);
4413 /* We couldn't figure out what was being called. */
4417 /* Print debugging information about tree nodes generated during the compile,
4418 and any language-specific information. */
4421 dump_tree_statistics (void)
4423 #ifdef GATHER_STATISTICS
4425 int total_nodes
, total_bytes
;
4428 fprintf (stderr
, "\n??? tree nodes created\n\n");
4429 #ifdef GATHER_STATISTICS
4430 fprintf (stderr
, "Kind Nodes Bytes\n");
4431 fprintf (stderr
, "---------------------------------------\n");
4432 total_nodes
= total_bytes
= 0;
4433 for (i
= 0; i
< (int) all_kinds
; i
++)
4435 fprintf (stderr
, "%-20s %7d %10d\n", tree_node_kind_names
[i
],
4436 tree_node_counts
[i
], tree_node_sizes
[i
]);
4437 total_nodes
+= tree_node_counts
[i
];
4438 total_bytes
+= tree_node_sizes
[i
];
4440 fprintf (stderr
, "---------------------------------------\n");
4441 fprintf (stderr
, "%-20s %7d %10d\n", "Total", total_nodes
, total_bytes
);
4442 fprintf (stderr
, "---------------------------------------\n");
4444 fprintf (stderr
, "(No per-node statistics)\n");
4446 print_type_hash_statistics ();
4447 (*lang_hooks
.print_statistics
) ();
4450 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4452 /* Generate a crc32 of a string. */
4455 crc32_string (unsigned chksum
, const char *string
)
4459 unsigned value
= *string
<< 24;
4462 for (ix
= 8; ix
--; value
<<= 1)
4466 feedback
= (value
^ chksum
) & 0x80000000 ? 0x04c11db7 : 0;
4475 /* P is a string that will be used in a symbol. Mask out any characters
4476 that are not valid in that context. */
4479 clean_symbol_name (char *p
)
4483 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4486 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4493 /* Generate a name for a function unique to this translation unit.
4494 TYPE is some string to identify the purpose of this function to the
4495 linker or collect2. */
4498 get_file_function_name_long (const char *type
)
4504 if (first_global_object_name
)
4505 p
= first_global_object_name
;
4508 /* We don't have anything that we know to be unique to this translation
4509 unit, so use what we do have and throw in some randomness. */
4511 const char *name
= weak_global_object_name
;
4512 const char *file
= main_input_filename
;
4517 file
= input_filename
;
4519 len
= strlen (file
);
4520 q
= alloca (9 * 2 + len
);
4521 memcpy (q
, file
, len
+ 1);
4522 clean_symbol_name (q
);
4524 sprintf (q
+ len
, "_%08X_%08X", crc32_string (0, name
),
4525 crc32_string (0, flag_random_seed
));
4530 buf
= alloca (sizeof (FILE_FUNCTION_FORMAT
) + strlen (p
) + strlen (type
));
4532 /* Set up the name of the file-level functions we may need.
4533 Use a global object (which is already required to be unique over
4534 the program) rather than the file name (which imposes extra
4536 sprintf (buf
, FILE_FUNCTION_FORMAT
, type
, p
);
4538 return get_identifier (buf
);
4541 /* If KIND=='I', return a suitable global initializer (constructor) name.
4542 If KIND=='D', return a suitable global clean-up (destructor) name. */
4545 get_file_function_name (int kind
)
4552 return get_file_function_name_long (p
);
4555 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4556 The result is placed in BUFFER (which has length BIT_SIZE),
4557 with one bit in each char ('\000' or '\001').
4559 If the constructor is constant, NULL_TREE is returned.
4560 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4563 get_set_constructor_bits (tree init
, char *buffer
, int bit_size
)
4567 HOST_WIDE_INT domain_min
4568 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init
))), 0);
4569 tree non_const_bits
= NULL_TREE
;
4571 for (i
= 0; i
< bit_size
; i
++)
4574 for (vals
= TREE_OPERAND (init
, 1);
4575 vals
!= NULL_TREE
; vals
= TREE_CHAIN (vals
))
4577 if (!host_integerp (TREE_VALUE (vals
), 0)
4578 || (TREE_PURPOSE (vals
) != NULL_TREE
4579 && !host_integerp (TREE_PURPOSE (vals
), 0)))
4581 = tree_cons (TREE_PURPOSE (vals
), TREE_VALUE (vals
), non_const_bits
);
4582 else if (TREE_PURPOSE (vals
) != NULL_TREE
)
4584 /* Set a range of bits to ones. */
4585 HOST_WIDE_INT lo_index
4586 = tree_low_cst (TREE_PURPOSE (vals
), 0) - domain_min
;
4587 HOST_WIDE_INT hi_index
4588 = tree_low_cst (TREE_VALUE (vals
), 0) - domain_min
;
4590 if (lo_index
< 0 || lo_index
>= bit_size
4591 || hi_index
< 0 || hi_index
>= bit_size
)
4593 for (; lo_index
<= hi_index
; lo_index
++)
4594 buffer
[lo_index
] = 1;
4598 /* Set a single bit to one. */
4600 = tree_low_cst (TREE_VALUE (vals
), 0) - domain_min
;
4601 if (index
< 0 || index
>= bit_size
)
4603 error ("invalid initializer for bit string");
4609 return non_const_bits
;
4612 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4613 The result is placed in BUFFER (which is an array of bytes).
4614 If the constructor is constant, NULL_TREE is returned.
4615 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4618 get_set_constructor_bytes (tree init
, unsigned char *buffer
, int wd_size
)
4621 int set_word_size
= BITS_PER_UNIT
;
4622 int bit_size
= wd_size
* set_word_size
;
4624 unsigned char *bytep
= buffer
;
4625 char *bit_buffer
= alloca (bit_size
);
4626 tree non_const_bits
= get_set_constructor_bits (init
, bit_buffer
, bit_size
);
4628 for (i
= 0; i
< wd_size
; i
++)
4631 for (i
= 0; i
< bit_size
; i
++)
4635 if (BYTES_BIG_ENDIAN
)
4636 *bytep
|= (1 << (set_word_size
- 1 - bit_pos
));
4638 *bytep
|= 1 << bit_pos
;
4641 if (bit_pos
>= set_word_size
)
4642 bit_pos
= 0, bytep
++;
4644 return non_const_bits
;
4647 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4648 /* Complain that the tree code of NODE does not match the expected CODE.
4649 FILE, LINE, and FUNCTION are of the caller. */
4652 tree_check_failed (const tree node
, enum tree_code code
, const char *file
,
4653 int line
, const char *function
)
4655 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4656 tree_code_name
[code
], tree_code_name
[TREE_CODE (node
)],
4657 function
, trim_filename (file
), line
);
4660 /* Similar to above, except that we check for a class of tree
4661 code, given in CL. */
4664 tree_class_check_failed (const tree node
, int cl
, const char *file
,
4665 int line
, const char *function
)
4668 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4669 cl
, TREE_CODE_CLASS (TREE_CODE (node
)),
4670 tree_code_name
[TREE_CODE (node
)], function
, trim_filename (file
), line
);
4673 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
4674 (dynamically sized) vector. */
4677 tree_vec_elt_check_failed (int idx
, int len
, const char *file
, int line
,
4678 const char *function
)
4681 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
4682 idx
+ 1, len
, function
, trim_filename (file
), line
);
4685 /* Similar to above, except that the check is for the bounds of the operand
4686 vector of an expression node. */
4689 tree_operand_check_failed (int idx
, enum tree_code code
, const char *file
,
4690 int line
, const char *function
)
4693 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
4694 idx
+ 1, tree_code_name
[code
], TREE_CODE_LENGTH (code
),
4695 function
, trim_filename (file
), line
);
4697 #endif /* ENABLE_TREE_CHECKING */
4699 /* For a new vector type node T, build the information necessary for
4700 debugging output. */
4703 finish_vector_type (tree t
)
4708 tree index
= build_int_2 (TYPE_VECTOR_SUBPARTS (t
) - 1, 0);
4709 tree array
= build_array_type (TREE_TYPE (t
),
4710 build_index_type (index
));
4711 tree rt
= make_node (RECORD_TYPE
);
4713 TYPE_FIELDS (rt
) = build_decl (FIELD_DECL
, get_identifier ("f"), array
);
4714 DECL_CONTEXT (TYPE_FIELDS (rt
)) = rt
;
4716 TYPE_DEBUG_REPRESENTATION_TYPE (t
) = rt
;
4717 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4718 the representation type, and we want to find that die when looking up
4719 the vector type. This is most easily achieved by making the TYPE_UID
4721 TYPE_UID (rt
) = TYPE_UID (t
);
4725 /* Create nodes for all integer types (and error_mark_node) using the sizes
4726 of C datatypes. The caller should call set_sizetype soon after calling
4727 this function to select one of the types as sizetype. */
4730 build_common_tree_nodes (int signed_char
)
4732 error_mark_node
= make_node (ERROR_MARK
);
4733 TREE_TYPE (error_mark_node
) = error_mark_node
;
4735 initialize_sizetypes ();
4737 /* Define both `signed char' and `unsigned char'. */
4738 signed_char_type_node
= make_signed_type (CHAR_TYPE_SIZE
);
4739 unsigned_char_type_node
= make_unsigned_type (CHAR_TYPE_SIZE
);
4741 /* Define `char', which is like either `signed char' or `unsigned char'
4742 but not the same as either. */
4745 ? make_signed_type (CHAR_TYPE_SIZE
)
4746 : make_unsigned_type (CHAR_TYPE_SIZE
));
4748 short_integer_type_node
= make_signed_type (SHORT_TYPE_SIZE
);
4749 short_unsigned_type_node
= make_unsigned_type (SHORT_TYPE_SIZE
);
4750 integer_type_node
= make_signed_type (INT_TYPE_SIZE
);
4751 unsigned_type_node
= make_unsigned_type (INT_TYPE_SIZE
);
4752 long_integer_type_node
= make_signed_type (LONG_TYPE_SIZE
);
4753 long_unsigned_type_node
= make_unsigned_type (LONG_TYPE_SIZE
);
4754 long_long_integer_type_node
= make_signed_type (LONG_LONG_TYPE_SIZE
);
4755 long_long_unsigned_type_node
= make_unsigned_type (LONG_LONG_TYPE_SIZE
);
4757 intQI_type_node
= make_signed_type (GET_MODE_BITSIZE (QImode
));
4758 intHI_type_node
= make_signed_type (GET_MODE_BITSIZE (HImode
));
4759 intSI_type_node
= make_signed_type (GET_MODE_BITSIZE (SImode
));
4760 intDI_type_node
= make_signed_type (GET_MODE_BITSIZE (DImode
));
4761 intTI_type_node
= make_signed_type (GET_MODE_BITSIZE (TImode
));
4763 unsigned_intQI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (QImode
));
4764 unsigned_intHI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (HImode
));
4765 unsigned_intSI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (SImode
));
4766 unsigned_intDI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (DImode
));
4767 unsigned_intTI_type_node
= make_unsigned_type (GET_MODE_BITSIZE (TImode
));
4770 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4771 It will create several other common tree nodes. */
4774 build_common_tree_nodes_2 (int short_double
)
4776 /* Define these next since types below may used them. */
4777 integer_zero_node
= build_int_2 (0, 0);
4778 integer_one_node
= build_int_2 (1, 0);
4779 integer_minus_one_node
= build_int_2 (-1, -1);
4781 size_zero_node
= size_int (0);
4782 size_one_node
= size_int (1);
4783 bitsize_zero_node
= bitsize_int (0);
4784 bitsize_one_node
= bitsize_int (1);
4785 bitsize_unit_node
= bitsize_int (BITS_PER_UNIT
);
4787 void_type_node
= make_node (VOID_TYPE
);
4788 layout_type (void_type_node
);
4790 /* We are not going to have real types in C with less than byte alignment,
4791 so we might as well not have any types that claim to have it. */
4792 TYPE_ALIGN (void_type_node
) = BITS_PER_UNIT
;
4793 TYPE_USER_ALIGN (void_type_node
) = 0;
4795 null_pointer_node
= build_int_2 (0, 0);
4796 TREE_TYPE (null_pointer_node
) = build_pointer_type (void_type_node
);
4797 layout_type (TREE_TYPE (null_pointer_node
));
4799 ptr_type_node
= build_pointer_type (void_type_node
);
4801 = build_pointer_type (build_type_variant (void_type_node
, 1, 0));
4803 float_type_node
= make_node (REAL_TYPE
);
4804 TYPE_PRECISION (float_type_node
) = FLOAT_TYPE_SIZE
;
4805 layout_type (float_type_node
);
4807 double_type_node
= make_node (REAL_TYPE
);
4809 TYPE_PRECISION (double_type_node
) = FLOAT_TYPE_SIZE
;
4811 TYPE_PRECISION (double_type_node
) = DOUBLE_TYPE_SIZE
;
4812 layout_type (double_type_node
);
4814 long_double_type_node
= make_node (REAL_TYPE
);
4815 TYPE_PRECISION (long_double_type_node
) = LONG_DOUBLE_TYPE_SIZE
;
4816 layout_type (long_double_type_node
);
4818 complex_integer_type_node
= make_node (COMPLEX_TYPE
);
4819 TREE_TYPE (complex_integer_type_node
) = integer_type_node
;
4820 layout_type (complex_integer_type_node
);
4822 complex_float_type_node
= make_node (COMPLEX_TYPE
);
4823 TREE_TYPE (complex_float_type_node
) = float_type_node
;
4824 layout_type (complex_float_type_node
);
4826 complex_double_type_node
= make_node (COMPLEX_TYPE
);
4827 TREE_TYPE (complex_double_type_node
) = double_type_node
;
4828 layout_type (complex_double_type_node
);
4830 complex_long_double_type_node
= make_node (COMPLEX_TYPE
);
4831 TREE_TYPE (complex_long_double_type_node
) = long_double_type_node
;
4832 layout_type (complex_long_double_type_node
);
4836 BUILD_VA_LIST_TYPE (t
);
4838 /* Many back-ends define record types without setting TYPE_NAME.
4839 If we copied the record type here, we'd keep the original
4840 record type without a name. This breaks name mangling. So,
4841 don't copy record types and let c_common_nodes_and_builtins()
4842 declare the type to be __builtin_va_list. */
4843 if (TREE_CODE (t
) != RECORD_TYPE
)
4844 t
= build_type_copy (t
);
4846 va_list_type_node
= t
;
4849 unsigned_V4SI_type_node
4850 = make_vector (V4SImode
, unsigned_intSI_type_node
, 1);
4851 unsigned_V2HI_type_node
4852 = make_vector (V2HImode
, unsigned_intHI_type_node
, 1);
4853 unsigned_V2SI_type_node
4854 = make_vector (V2SImode
, unsigned_intSI_type_node
, 1);
4855 unsigned_V2DI_type_node
4856 = make_vector (V2DImode
, unsigned_intDI_type_node
, 1);
4857 unsigned_V4HI_type_node
4858 = make_vector (V4HImode
, unsigned_intHI_type_node
, 1);
4859 unsigned_V8QI_type_node
4860 = make_vector (V8QImode
, unsigned_intQI_type_node
, 1);
4861 unsigned_V8HI_type_node
4862 = make_vector (V8HImode
, unsigned_intHI_type_node
, 1);
4863 unsigned_V16QI_type_node
4864 = make_vector (V16QImode
, unsigned_intQI_type_node
, 1);
4865 unsigned_V1DI_type_node
4866 = make_vector (V1DImode
, unsigned_intDI_type_node
, 1);
4868 V16SF_type_node
= make_vector (V16SFmode
, float_type_node
, 0);
4869 V4SF_type_node
= make_vector (V4SFmode
, float_type_node
, 0);
4870 V4SI_type_node
= make_vector (V4SImode
, intSI_type_node
, 0);
4871 V2HI_type_node
= make_vector (V2HImode
, intHI_type_node
, 0);
4872 V2SI_type_node
= make_vector (V2SImode
, intSI_type_node
, 0);
4873 V2DI_type_node
= make_vector (V2DImode
, intDI_type_node
, 0);
4874 V4HI_type_node
= make_vector (V4HImode
, intHI_type_node
, 0);
4875 V8QI_type_node
= make_vector (V8QImode
, intQI_type_node
, 0);
4876 V8HI_type_node
= make_vector (V8HImode
, intHI_type_node
, 0);
4877 V2SF_type_node
= make_vector (V2SFmode
, float_type_node
, 0);
4878 V2DF_type_node
= make_vector (V2DFmode
, double_type_node
, 0);
4879 V16QI_type_node
= make_vector (V16QImode
, intQI_type_node
, 0);
4880 V1DI_type_node
= make_vector (V1DImode
, intDI_type_node
, 0);
4881 V4DF_type_node
= make_vector (V4DFmode
, double_type_node
, 0);
4884 /* Returns a vector tree node given a vector mode, the inner type, and
4888 make_vector (enum machine_mode mode
, tree innertype
, int unsignedp
)
4892 t
= make_node (VECTOR_TYPE
);
4893 TREE_TYPE (t
) = innertype
;
4894 TYPE_MODE (t
) = mode
;
4895 TREE_UNSIGNED (TREE_TYPE (t
)) = unsignedp
;
4896 finish_vector_type (t
);
4901 /* Given an initializer INIT, return TRUE if INIT is zero or some
4902 aggregate of zeros. Otherwise return FALSE. */
4905 initializer_zerop (tree init
)
4909 switch (TREE_CODE (init
))
4912 return integer_zerop (init
);
4914 return real_zerop (init
)
4915 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init
));
4917 return integer_zerop (init
)
4918 || (real_zerop (init
)
4919 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init
)))
4920 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init
))));
4923 if (AGGREGATE_TYPE_P (TREE_TYPE (init
)))
4925 tree aggr_init
= CONSTRUCTOR_ELTS (init
);
4929 if (! initializer_zerop (TREE_VALUE (aggr_init
)))
4931 aggr_init
= TREE_CHAIN (aggr_init
);
4942 #include "gt-tree.h"