1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1996, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
25 #include "coretypes.h"
36 #include "langhooks.h"
38 /* Set to one when set_sizetype has been called. */
39 static int sizetype_set
;
41 /* List of types created before set_sizetype has been called. We do not
42 make this a GGC root since we want these nodes to be reclaimed. */
43 static tree early_type_list
;
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab
[(int) TYPE_KIND_LAST
];
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment
;
53 /* If nonzero, the alignment of a bitstring or (power-)set value, in bits.
54 May be overridden by front-ends. */
55 unsigned int set_alignment
= 0;
57 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be
58 allocated in Pmode, not ptr_mode. Set only by internal_reference_types
59 called only by a front end. */
60 static int reference_types_internal
= 0;
62 static void finalize_record_size (record_layout_info
);
63 static void finalize_type_size (tree
);
64 static void place_union_field (record_layout_info
, tree
);
65 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
66 static int excess_unit_span (HOST_WIDE_INT
, HOST_WIDE_INT
, HOST_WIDE_INT
,
69 static unsigned int update_alignment_for_field (record_layout_info
, tree
,
71 extern void debug_rli (record_layout_info
);
73 /* SAVE_EXPRs for sizes of types and decls, waiting to be expanded. */
75 static GTY(()) tree pending_sizes
;
77 /* Nonzero means cannot safely call expand_expr now,
78 so put variable sizes onto `pending_sizes' instead. */
80 int immediate_size_expand
;
82 /* Show that REFERENCE_TYPES are internal and should be Pmode. Called only
86 internal_reference_types (void)
88 reference_types_internal
= 1;
91 /* Get a list of all the objects put on the pending sizes list. */
94 get_pending_sizes (void)
96 tree chain
= pending_sizes
;
99 /* Put each SAVE_EXPR into the current function. */
100 for (t
= chain
; t
; t
= TREE_CHAIN (t
))
101 SAVE_EXPR_CONTEXT (TREE_VALUE (t
)) = current_function_decl
;
107 /* Return nonzero if EXPR is present on the pending sizes list. */
110 is_pending_size (tree expr
)
114 for (t
= pending_sizes
; t
; t
= TREE_CHAIN (t
))
115 if (TREE_VALUE (t
) == expr
)
120 /* Add EXPR to the pending sizes list. */
123 put_pending_size (tree expr
)
125 /* Strip any simple arithmetic from EXPR to see if it has an underlying
127 expr
= skip_simple_arithmetic (expr
);
129 if (TREE_CODE (expr
) == SAVE_EXPR
)
130 pending_sizes
= tree_cons (NULL_TREE
, expr
, pending_sizes
);
133 /* Put a chain of objects into the pending sizes list, which must be
137 put_pending_sizes (tree chain
)
142 pending_sizes
= chain
;
145 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
146 to serve as the actual size-expression for a type or decl. */
149 variable_size (tree size
)
153 /* If the language-processor is to take responsibility for variable-sized
154 items (e.g., languages which have elaboration procedures like Ada),
155 just return SIZE unchanged. Likewise for self-referential sizes and
157 if (TREE_CONSTANT (size
)
158 || (*lang_hooks
.decls
.global_bindings_p
) () < 0
159 || CONTAINS_PLACEHOLDER_P (size
))
162 if (TREE_CODE (size
) == MINUS_EXPR
&& integer_onep (TREE_OPERAND (size
, 1)))
163 /* If this is the upper bound of a C array, leave the minus 1 outside
164 the SAVE_EXPR so it can be folded away. */
165 TREE_OPERAND (size
, 0) = save
= save_expr (TREE_OPERAND (size
, 0));
167 size
= save
= save_expr (size
);
169 /* If an array with a variable number of elements is declared, and
170 the elements require destruction, we will emit a cleanup for the
171 array. That cleanup is run both on normal exit from the block
172 and in the exception-handler for the block. Normally, when code
173 is used in both ordinary code and in an exception handler it is
174 `unsaved', i.e., all SAVE_EXPRs are recalculated. However, we do
175 not wish to do that here; the array-size is the same in both
177 if (TREE_CODE (save
) == SAVE_EXPR
)
178 SAVE_EXPR_PERSISTENT_P (save
) = 1;
180 if ((*lang_hooks
.decls
.global_bindings_p
) ())
182 if (TREE_CONSTANT (size
))
183 error ("type size can't be explicitly evaluated");
185 error ("variable-size type declared outside of any function");
187 return size_one_node
;
190 if (immediate_size_expand
)
191 expand_expr (save
, const0_rtx
, VOIDmode
, 0);
192 else if (cfun
!= 0 && cfun
->x_dont_save_pending_sizes_p
)
193 /* The front-end doesn't want us to keep a list of the expressions
194 that determine sizes for variable size objects. */
197 put_pending_size (save
);
202 #ifndef MAX_FIXED_MODE_SIZE
203 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode)
206 /* Return the machine mode to use for a nonscalar of SIZE bits.
207 The mode must be in class CLASS, and have exactly that many bits.
208 If LIMIT is nonzero, modes of wider than MAX_FIXED_MODE_SIZE will not
212 mode_for_size (unsigned int size
, enum mode_class
class, int limit
)
214 enum machine_mode mode
;
216 if (limit
&& size
> MAX_FIXED_MODE_SIZE
)
219 /* Get the first mode which has this size, in the specified class. */
220 for (mode
= GET_CLASS_NARROWEST_MODE (class); mode
!= VOIDmode
;
221 mode
= GET_MODE_WIDER_MODE (mode
))
222 if (GET_MODE_BITSIZE (mode
) == size
)
228 /* Similar, except passed a tree node. */
231 mode_for_size_tree (tree size
, enum mode_class
class, int limit
)
233 if (TREE_CODE (size
) != INTEGER_CST
234 || TREE_OVERFLOW (size
)
235 /* What we really want to say here is that the size can fit in a
236 host integer, but we know there's no way we'd find a mode for
237 this many bits, so there's no point in doing the precise test. */
238 || compare_tree_int (size
, 1000) > 0)
241 return mode_for_size (tree_low_cst (size
, 1), class, limit
);
244 /* Similar, but never return BLKmode; return the narrowest mode that
245 contains at least the requested number of bits. */
248 smallest_mode_for_size (unsigned int size
, enum mode_class
class)
250 enum machine_mode mode
;
252 /* Get the first mode which has at least this size, in the
254 for (mode
= GET_CLASS_NARROWEST_MODE (class); mode
!= VOIDmode
;
255 mode
= GET_MODE_WIDER_MODE (mode
))
256 if (GET_MODE_BITSIZE (mode
) >= size
)
262 /* Find an integer mode of the exact same size, or BLKmode on failure. */
265 int_mode_for_mode (enum machine_mode mode
)
267 switch (GET_MODE_CLASS (mode
))
270 case MODE_PARTIAL_INT
:
273 case MODE_COMPLEX_INT
:
274 case MODE_COMPLEX_FLOAT
:
276 case MODE_VECTOR_INT
:
277 case MODE_VECTOR_FLOAT
:
278 mode
= mode_for_size (GET_MODE_BITSIZE (mode
), MODE_INT
, 0);
285 /* ... fall through ... */
295 /* Return the alignment of MODE. This will be bounded by 1 and
296 BIGGEST_ALIGNMENT. */
299 get_mode_alignment (enum machine_mode mode
)
301 unsigned int alignment
;
303 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
304 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
)
305 alignment
= GET_MODE_UNIT_SIZE (mode
);
307 alignment
= GET_MODE_SIZE (mode
);
309 /* Extract the LSB of the size. */
310 alignment
= alignment
& -alignment
;
311 alignment
*= BITS_PER_UNIT
;
313 alignment
= MIN (BIGGEST_ALIGNMENT
, MAX (1, alignment
));
317 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
318 This can only be applied to objects of a sizetype. */
321 round_up (tree value
, int divisor
)
323 tree arg
= size_int_type (divisor
, TREE_TYPE (value
));
325 return size_binop (MULT_EXPR
, size_binop (CEIL_DIV_EXPR
, value
, arg
), arg
);
328 /* Likewise, but round down. */
331 round_down (tree value
, int divisor
)
333 tree arg
= size_int_type (divisor
, TREE_TYPE (value
));
335 return size_binop (MULT_EXPR
, size_binop (FLOOR_DIV_EXPR
, value
, arg
), arg
);
338 /* Subroutine of layout_decl: Force alignment required for the data type.
339 But if the decl itself wants greater alignment, don't override that. */
342 do_type_align (tree type
, tree decl
)
344 if (TYPE_ALIGN (type
) > DECL_ALIGN (decl
))
346 DECL_ALIGN (decl
) = TYPE_ALIGN (type
);
347 DECL_USER_ALIGN (decl
) = TYPE_USER_ALIGN (type
);
351 /* Set the size, mode and alignment of a ..._DECL node.
352 TYPE_DECL does need this for C++.
353 Note that LABEL_DECL and CONST_DECL nodes do not need this,
354 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
355 Don't call layout_decl for them.
357 KNOWN_ALIGN is the amount of alignment we can assume this
358 decl has with no special effort. It is relevant only for FIELD_DECLs
359 and depends on the previous fields.
360 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
361 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
362 the record will be aligned to suit. */
365 layout_decl (tree decl
, unsigned int known_align
)
367 tree type
= TREE_TYPE (decl
);
368 enum tree_code code
= TREE_CODE (decl
);
371 if (code
== CONST_DECL
)
373 else if (code
!= VAR_DECL
&& code
!= PARM_DECL
&& code
!= RESULT_DECL
374 && code
!= TYPE_DECL
&& code
!= FIELD_DECL
)
377 rtl
= DECL_RTL_IF_SET (decl
);
379 if (type
== error_mark_node
)
380 type
= void_type_node
;
382 /* Usually the size and mode come from the data type without change,
383 however, the front-end may set the explicit width of the field, so its
384 size may not be the same as the size of its type. This happens with
385 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
386 also happens with other fields. For example, the C++ front-end creates
387 zero-sized fields corresponding to empty base classes, and depends on
388 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
389 size in bytes from the size in bits. If we have already set the mode,
390 don't set it again since we can be called twice for FIELD_DECLs. */
392 TREE_UNSIGNED (decl
) = TREE_UNSIGNED (type
);
393 if (DECL_MODE (decl
) == VOIDmode
)
394 DECL_MODE (decl
) = TYPE_MODE (type
);
396 if (DECL_SIZE (decl
) == 0)
398 DECL_SIZE (decl
) = TYPE_SIZE (type
);
399 DECL_SIZE_UNIT (decl
) = TYPE_SIZE_UNIT (type
);
401 else if (DECL_SIZE_UNIT (decl
) == 0)
402 DECL_SIZE_UNIT (decl
)
403 = convert (sizetype
, size_binop (CEIL_DIV_EXPR
, DECL_SIZE (decl
),
406 if (code
!= FIELD_DECL
)
407 /* For non-fields, update the alignment from the type. */
408 do_type_align (type
, decl
);
410 /* For fields, it's a bit more complicated... */
412 if (DECL_BIT_FIELD (decl
))
414 DECL_BIT_FIELD_TYPE (decl
) = type
;
416 /* A zero-length bit-field affects the alignment of the next
418 if (integer_zerop (DECL_SIZE (decl
))
419 && ! DECL_PACKED (decl
)
420 && ! (*targetm
.ms_bitfield_layout_p
) (DECL_FIELD_CONTEXT (decl
)))
422 #ifdef PCC_BITFIELD_TYPE_MATTERS
423 if (PCC_BITFIELD_TYPE_MATTERS
)
424 do_type_align (type
, decl
);
428 #ifdef EMPTY_FIELD_BOUNDARY
429 if (EMPTY_FIELD_BOUNDARY
> DECL_ALIGN (decl
))
431 DECL_ALIGN (decl
) = EMPTY_FIELD_BOUNDARY
;
432 DECL_USER_ALIGN (decl
) = 0;
438 /* See if we can use an ordinary integer mode for a bit-field.
439 Conditions are: a fixed size that is correct for another mode
440 and occupying a complete byte or bytes on proper boundary. */
441 if (TYPE_SIZE (type
) != 0
442 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
443 && GET_MODE_CLASS (TYPE_MODE (type
)) == MODE_INT
)
445 enum machine_mode xmode
446 = mode_for_size_tree (DECL_SIZE (decl
), MODE_INT
, 1);
448 if (xmode
!= BLKmode
&& known_align
>= GET_MODE_ALIGNMENT (xmode
))
450 DECL_ALIGN (decl
) = MAX (GET_MODE_ALIGNMENT (xmode
),
452 DECL_MODE (decl
) = xmode
;
453 DECL_BIT_FIELD (decl
) = 0;
457 /* Turn off DECL_BIT_FIELD if we won't need it set. */
458 if (TYPE_MODE (type
) == BLKmode
&& DECL_MODE (decl
) == BLKmode
459 && known_align
>= TYPE_ALIGN (type
)
460 && DECL_ALIGN (decl
) >= TYPE_ALIGN (type
))
461 DECL_BIT_FIELD (decl
) = 0;
463 else if (DECL_PACKED (decl
) && DECL_USER_ALIGN (decl
))
464 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
465 round up; we'll reduce it again below. */;
467 do_type_align (type
, decl
);
469 /* If the field is of variable size, we can't misalign it since we
470 have no way to make a temporary to align the result. But this
471 isn't an issue if the decl is not addressable. Likewise if it
472 is of unknown size. */
473 if (DECL_PACKED (decl
)
474 && !DECL_USER_ALIGN (decl
)
475 && (DECL_NONADDRESSABLE_P (decl
)
476 || DECL_SIZE_UNIT (decl
) == 0
477 || TREE_CODE (DECL_SIZE_UNIT (decl
)) == INTEGER_CST
))
478 DECL_ALIGN (decl
) = MIN (DECL_ALIGN (decl
), BITS_PER_UNIT
);
480 /* Should this be controlled by DECL_USER_ALIGN, too? */
481 if (maximum_field_alignment
!= 0)
482 DECL_ALIGN (decl
) = MIN (DECL_ALIGN (decl
), maximum_field_alignment
);
483 if (! DECL_USER_ALIGN (decl
))
485 /* Some targets (i.e. i386, VMS) limit struct field alignment
486 to a lower boundary than alignment of variables unless
487 it was overridden by attribute aligned. */
488 #ifdef BIGGEST_FIELD_ALIGNMENT
490 = MIN (DECL_ALIGN (decl
), (unsigned) BIGGEST_FIELD_ALIGNMENT
);
492 #ifdef ADJUST_FIELD_ALIGN
493 DECL_ALIGN (decl
) = ADJUST_FIELD_ALIGN (decl
, DECL_ALIGN (decl
));
498 /* Evaluate nonconstant size only once, either now or as soon as safe. */
499 if (DECL_SIZE (decl
) != 0 && TREE_CODE (DECL_SIZE (decl
)) != INTEGER_CST
)
500 DECL_SIZE (decl
) = variable_size (DECL_SIZE (decl
));
501 if (DECL_SIZE_UNIT (decl
) != 0
502 && TREE_CODE (DECL_SIZE_UNIT (decl
)) != INTEGER_CST
)
503 DECL_SIZE_UNIT (decl
) = variable_size (DECL_SIZE_UNIT (decl
));
505 /* If requested, warn about definitions of large data objects. */
507 && (code
== VAR_DECL
|| code
== PARM_DECL
)
508 && ! DECL_EXTERNAL (decl
))
510 tree size
= DECL_SIZE_UNIT (decl
);
512 if (size
!= 0 && TREE_CODE (size
) == INTEGER_CST
513 && compare_tree_int (size
, larger_than_size
) > 0)
515 int size_as_int
= TREE_INT_CST_LOW (size
);
517 if (compare_tree_int (size
, size_as_int
) == 0)
518 warning_with_decl (decl
, "size of `%s' is %d bytes", size_as_int
);
520 warning_with_decl (decl
, "size of `%s' is larger than %d bytes",
525 /* If the RTL was already set, update its mode and mem attributes. */
528 PUT_MODE (rtl
, DECL_MODE (decl
));
529 SET_DECL_RTL (decl
, 0);
530 set_mem_attributes (rtl
, decl
, 1);
531 SET_DECL_RTL (decl
, rtl
);
535 /* Hook for a front-end function that can modify the record layout as needed
536 immediately before it is finalized. */
538 void (*lang_adjust_rli
) (record_layout_info
) = 0;
541 set_lang_adjust_rli (void (*f
) (record_layout_info
))
546 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
547 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
548 is to be passed to all other layout functions for this record. It is the
549 responsibility of the caller to call `free' for the storage returned.
550 Note that garbage collection is not permitted until we finish laying
554 start_record_layout (tree t
)
556 record_layout_info rli
= xmalloc (sizeof (struct record_layout_info_s
));
560 /* If the type has a minimum specified alignment (via an attribute
561 declaration, for example) use it -- otherwise, start with a
562 one-byte alignment. */
563 rli
->record_align
= MAX (BITS_PER_UNIT
, TYPE_ALIGN (t
));
564 rli
->unpacked_align
= rli
->record_align
;
565 rli
->offset_align
= MAX (rli
->record_align
, BIGGEST_ALIGNMENT
);
567 #ifdef STRUCTURE_SIZE_BOUNDARY
568 /* Packed structures don't need to have minimum size. */
569 if (! TYPE_PACKED (t
))
570 rli
->record_align
= MAX (rli
->record_align
, (unsigned) STRUCTURE_SIZE_BOUNDARY
);
573 rli
->offset
= size_zero_node
;
574 rli
->bitpos
= bitsize_zero_node
;
576 rli
->pending_statics
= 0;
577 rli
->packed_maybe_necessary
= 0;
582 /* These four routines perform computations that convert between
583 the offset/bitpos forms and byte and bit offsets. */
586 bit_from_pos (tree offset
, tree bitpos
)
588 return size_binop (PLUS_EXPR
, bitpos
,
589 size_binop (MULT_EXPR
, convert (bitsizetype
, offset
),
594 byte_from_pos (tree offset
, tree bitpos
)
596 return size_binop (PLUS_EXPR
, offset
,
598 size_binop (TRUNC_DIV_EXPR
, bitpos
,
599 bitsize_unit_node
)));
603 pos_from_bit (tree
*poffset
, tree
*pbitpos
, unsigned int off_align
,
606 *poffset
= size_binop (MULT_EXPR
,
608 size_binop (FLOOR_DIV_EXPR
, pos
,
609 bitsize_int (off_align
))),
610 size_int (off_align
/ BITS_PER_UNIT
));
611 *pbitpos
= size_binop (FLOOR_MOD_EXPR
, pos
, bitsize_int (off_align
));
614 /* Given a pointer to bit and byte offsets and an offset alignment,
615 normalize the offsets so they are within the alignment. */
618 normalize_offset (tree
*poffset
, tree
*pbitpos
, unsigned int off_align
)
620 /* If the bit position is now larger than it should be, adjust it
622 if (compare_tree_int (*pbitpos
, off_align
) >= 0)
624 tree extra_aligns
= size_binop (FLOOR_DIV_EXPR
, *pbitpos
,
625 bitsize_int (off_align
));
628 = size_binop (PLUS_EXPR
, *poffset
,
629 size_binop (MULT_EXPR
, convert (sizetype
, extra_aligns
),
630 size_int (off_align
/ BITS_PER_UNIT
)));
633 = size_binop (FLOOR_MOD_EXPR
, *pbitpos
, bitsize_int (off_align
));
637 /* Print debugging information about the information in RLI. */
640 debug_rli (record_layout_info rli
)
642 print_node_brief (stderr
, "type", rli
->t
, 0);
643 print_node_brief (stderr
, "\noffset", rli
->offset
, 0);
644 print_node_brief (stderr
, " bitpos", rli
->bitpos
, 0);
646 fprintf (stderr
, "\naligns: rec = %u, unpack = %u, off = %u\n",
647 rli
->record_align
, rli
->unpacked_align
,
649 if (rli
->packed_maybe_necessary
)
650 fprintf (stderr
, "packed may be necessary\n");
652 if (rli
->pending_statics
)
654 fprintf (stderr
, "pending statics:\n");
655 debug_tree (rli
->pending_statics
);
659 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
660 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
663 normalize_rli (record_layout_info rli
)
665 normalize_offset (&rli
->offset
, &rli
->bitpos
, rli
->offset_align
);
668 /* Returns the size in bytes allocated so far. */
671 rli_size_unit_so_far (record_layout_info rli
)
673 return byte_from_pos (rli
->offset
, rli
->bitpos
);
676 /* Returns the size in bits allocated so far. */
679 rli_size_so_far (record_layout_info rli
)
681 return bit_from_pos (rli
->offset
, rli
->bitpos
);
684 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
685 the next available location is given by KNOWN_ALIGN. Update the
686 variable alignment fields in RLI, and return the alignment to give
690 update_alignment_for_field (record_layout_info rli
, tree field
,
691 unsigned int known_align
)
693 /* The alignment required for FIELD. */
694 unsigned int desired_align
;
695 /* The type of this field. */
696 tree type
= TREE_TYPE (field
);
697 /* True if the field was explicitly aligned by the user. */
701 /* Lay out the field so we know what alignment it needs. */
702 layout_decl (field
, known_align
);
703 desired_align
= DECL_ALIGN (field
);
704 user_align
= DECL_USER_ALIGN (field
);
706 is_bitfield
= (type
!= error_mark_node
707 && DECL_BIT_FIELD_TYPE (field
)
708 && ! integer_zerop (TYPE_SIZE (type
)));
710 /* Record must have at least as much alignment as any field.
711 Otherwise, the alignment of the field within the record is
713 if (is_bitfield
&& (* targetm
.ms_bitfield_layout_p
) (rli
->t
))
715 /* Here, the alignment of the underlying type of a bitfield can
716 affect the alignment of a record; even a zero-sized field
717 can do this. The alignment should be to the alignment of
718 the type, except that for zero-size bitfields this only
719 applies if there was an immediately prior, nonzero-size
720 bitfield. (That's the way it is, experimentally.) */
721 if (! integer_zerop (DECL_SIZE (field
))
722 ? ! DECL_PACKED (field
)
724 && DECL_BIT_FIELD_TYPE (rli
->prev_field
)
725 && ! integer_zerop (DECL_SIZE (rli
->prev_field
))))
727 unsigned int type_align
= TYPE_ALIGN (type
);
728 type_align
= MAX (type_align
, desired_align
);
729 if (maximum_field_alignment
!= 0)
730 type_align
= MIN (type_align
, maximum_field_alignment
);
731 rli
->record_align
= MAX (rli
->record_align
, type_align
);
732 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
735 #ifdef PCC_BITFIELD_TYPE_MATTERS
736 else if (is_bitfield
&& PCC_BITFIELD_TYPE_MATTERS
)
738 /* Named bit-fields cause the entire structure to have the
739 alignment implied by their type. */
740 if (DECL_NAME (field
) != 0)
742 unsigned int type_align
= TYPE_ALIGN (type
);
744 #ifdef ADJUST_FIELD_ALIGN
745 if (! TYPE_USER_ALIGN (type
))
746 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
749 if (maximum_field_alignment
!= 0)
750 type_align
= MIN (type_align
, maximum_field_alignment
);
751 else if (DECL_PACKED (field
))
752 type_align
= MIN (type_align
, BITS_PER_UNIT
);
754 /* The alignment of the record is increased to the maximum
755 of the current alignment, the alignment indicated on the
756 field (i.e., the alignment specified by an __aligned__
757 attribute), and the alignment indicated by the type of
759 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
760 rli
->record_align
= MAX (rli
->record_align
, type_align
);
763 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
764 user_align
|= TYPE_USER_ALIGN (type
);
770 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
771 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
774 TYPE_USER_ALIGN (rli
->t
) |= user_align
;
776 return desired_align
;
779 /* Called from place_field to handle unions. */
782 place_union_field (record_layout_info rli
, tree field
)
784 update_alignment_for_field (rli
, field
, /*known_align=*/0);
786 DECL_FIELD_OFFSET (field
) = size_zero_node
;
787 DECL_FIELD_BIT_OFFSET (field
) = bitsize_zero_node
;
788 SET_DECL_OFFSET_ALIGN (field
, BIGGEST_ALIGNMENT
);
790 /* We assume the union's size will be a multiple of a byte so we don't
791 bother with BITPOS. */
792 if (TREE_CODE (rli
->t
) == UNION_TYPE
)
793 rli
->offset
= size_binop (MAX_EXPR
, rli
->offset
, DECL_SIZE_UNIT (field
));
794 else if (TREE_CODE (rli
->t
) == QUAL_UNION_TYPE
)
795 rli
->offset
= fold (build (COND_EXPR
, sizetype
,
796 DECL_QUALIFIER (field
),
797 DECL_SIZE_UNIT (field
), rli
->offset
));
800 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
801 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
802 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
803 units of alignment than the underlying TYPE. */
805 excess_unit_span (HOST_WIDE_INT byte_offset
, HOST_WIDE_INT bit_offset
,
806 HOST_WIDE_INT size
, HOST_WIDE_INT align
, tree type
)
808 /* Note that the calculation of OFFSET might overflow; we calculate it so
809 that we still get the right result as long as ALIGN is a power of two. */
810 unsigned HOST_WIDE_INT offset
= byte_offset
* BITS_PER_UNIT
+ bit_offset
;
812 offset
= offset
% align
;
813 return ((offset
+ size
+ align
- 1) / align
814 > ((unsigned HOST_WIDE_INT
) tree_low_cst (TYPE_SIZE (type
), 1)
819 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
820 is a FIELD_DECL to be added after those fields already present in
821 T. (FIELD is not actually added to the TYPE_FIELDS list here;
822 callers that desire that behavior must manually perform that step.) */
825 place_field (record_layout_info rli
, tree field
)
827 /* The alignment required for FIELD. */
828 unsigned int desired_align
;
829 /* The alignment FIELD would have if we just dropped it into the
830 record as it presently stands. */
831 unsigned int known_align
;
832 unsigned int actual_align
;
833 /* The type of this field. */
834 tree type
= TREE_TYPE (field
);
836 if (TREE_CODE (field
) == ERROR_MARK
|| TREE_CODE (type
) == ERROR_MARK
)
839 /* If FIELD is static, then treat it like a separate variable, not
840 really like a structure field. If it is a FUNCTION_DECL, it's a
841 method. In both cases, all we do is lay out the decl, and we do
842 it *after* the record is laid out. */
843 if (TREE_CODE (field
) == VAR_DECL
)
845 rli
->pending_statics
= tree_cons (NULL_TREE
, field
,
846 rli
->pending_statics
);
850 /* Enumerators and enum types which are local to this class need not
851 be laid out. Likewise for initialized constant fields. */
852 else if (TREE_CODE (field
) != FIELD_DECL
)
855 /* Unions are laid out very differently than records, so split
856 that code off to another function. */
857 else if (TREE_CODE (rli
->t
) != RECORD_TYPE
)
859 place_union_field (rli
, field
);
863 /* Work out the known alignment so far. Note that A & (-A) is the
864 value of the least-significant bit in A that is one. */
865 if (! integer_zerop (rli
->bitpos
))
866 known_align
= (tree_low_cst (rli
->bitpos
, 1)
867 & - tree_low_cst (rli
->bitpos
, 1));
868 else if (integer_zerop (rli
->offset
))
869 known_align
= BIGGEST_ALIGNMENT
;
870 else if (host_integerp (rli
->offset
, 1))
871 known_align
= (BITS_PER_UNIT
872 * (tree_low_cst (rli
->offset
, 1)
873 & - tree_low_cst (rli
->offset
, 1)));
875 known_align
= rli
->offset_align
;
877 desired_align
= update_alignment_for_field (rli
, field
, known_align
);
879 if (warn_packed
&& DECL_PACKED (field
))
881 if (known_align
>= TYPE_ALIGN (type
))
883 if (TYPE_ALIGN (type
) > desired_align
)
885 if (STRICT_ALIGNMENT
)
886 warning_with_decl (field
, "packed attribute causes inefficient alignment for `%s'");
888 warning_with_decl (field
, "packed attribute is unnecessary for `%s'");
892 rli
->packed_maybe_necessary
= 1;
895 /* Does this field automatically have alignment it needs by virtue
896 of the fields that precede it and the record's own alignment? */
897 if (known_align
< desired_align
)
899 /* No, we need to skip space before this field.
900 Bump the cumulative size to multiple of field alignment. */
903 warning_with_decl (field
, "padding struct to align `%s'");
905 /* If the alignment is still within offset_align, just align
907 if (desired_align
< rli
->offset_align
)
908 rli
->bitpos
= round_up (rli
->bitpos
, desired_align
);
911 /* First adjust OFFSET by the partial bits, then align. */
913 = size_binop (PLUS_EXPR
, rli
->offset
,
915 size_binop (CEIL_DIV_EXPR
, rli
->bitpos
,
916 bitsize_unit_node
)));
917 rli
->bitpos
= bitsize_zero_node
;
919 rli
->offset
= round_up (rli
->offset
, desired_align
/ BITS_PER_UNIT
);
922 if (! TREE_CONSTANT (rli
->offset
))
923 rli
->offset_align
= desired_align
;
927 /* Handle compatibility with PCC. Note that if the record has any
928 variable-sized fields, we need not worry about compatibility. */
929 #ifdef PCC_BITFIELD_TYPE_MATTERS
930 if (PCC_BITFIELD_TYPE_MATTERS
931 && ! (* targetm
.ms_bitfield_layout_p
) (rli
->t
)
932 && TREE_CODE (field
) == FIELD_DECL
933 && type
!= error_mark_node
934 && DECL_BIT_FIELD (field
)
935 && ! DECL_PACKED (field
)
936 && maximum_field_alignment
== 0
937 && ! integer_zerop (DECL_SIZE (field
))
938 && host_integerp (DECL_SIZE (field
), 1)
939 && host_integerp (rli
->offset
, 1)
940 && host_integerp (TYPE_SIZE (type
), 1))
942 unsigned int type_align
= TYPE_ALIGN (type
);
943 tree dsize
= DECL_SIZE (field
);
944 HOST_WIDE_INT field_size
= tree_low_cst (dsize
, 1);
945 HOST_WIDE_INT offset
= tree_low_cst (rli
->offset
, 0);
946 HOST_WIDE_INT bit_offset
= tree_low_cst (rli
->bitpos
, 0);
948 #ifdef ADJUST_FIELD_ALIGN
949 if (! TYPE_USER_ALIGN (type
))
950 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
953 /* A bit field may not span more units of alignment of its type
954 than its type itself. Advance to next boundary if necessary. */
955 if (excess_unit_span (offset
, bit_offset
, field_size
, type_align
, type
))
956 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
958 TYPE_USER_ALIGN (rli
->t
) |= TYPE_USER_ALIGN (type
);
962 #ifdef BITFIELD_NBYTES_LIMITED
963 if (BITFIELD_NBYTES_LIMITED
964 && ! (* targetm
.ms_bitfield_layout_p
) (rli
->t
)
965 && TREE_CODE (field
) == FIELD_DECL
966 && type
!= error_mark_node
967 && DECL_BIT_FIELD_TYPE (field
)
968 && ! DECL_PACKED (field
)
969 && ! integer_zerop (DECL_SIZE (field
))
970 && host_integerp (DECL_SIZE (field
), 1)
971 && host_integerp (rli
->offset
, 1)
972 && host_integerp (TYPE_SIZE (type
), 1))
974 unsigned int type_align
= TYPE_ALIGN (type
);
975 tree dsize
= DECL_SIZE (field
);
976 HOST_WIDE_INT field_size
= tree_low_cst (dsize
, 1);
977 HOST_WIDE_INT offset
= tree_low_cst (rli
->offset
, 0);
978 HOST_WIDE_INT bit_offset
= tree_low_cst (rli
->bitpos
, 0);
980 #ifdef ADJUST_FIELD_ALIGN
981 if (! TYPE_USER_ALIGN (type
))
982 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
985 if (maximum_field_alignment
!= 0)
986 type_align
= MIN (type_align
, maximum_field_alignment
);
987 /* ??? This test is opposite the test in the containing if
988 statement, so this code is unreachable currently. */
989 else if (DECL_PACKED (field
))
990 type_align
= MIN (type_align
, BITS_PER_UNIT
);
992 /* A bit field may not span the unit of alignment of its type.
993 Advance to next boundary if necessary. */
994 if (excess_unit_span (offset
, bit_offset
, field_size
, type_align
, type
))
995 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
997 TYPE_USER_ALIGN (rli
->t
) |= TYPE_USER_ALIGN (type
);
1001 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1003 When a bit field is inserted into a packed record, the whole
1004 size of the underlying type is used by one or more same-size
1005 adjacent bitfields. (That is, if its long:3, 32 bits is
1006 used in the record, and any additional adjacent long bitfields are
1007 packed into the same chunk of 32 bits. However, if the size
1008 changes, a new field of that size is allocated.) In an unpacked
1009 record, this is the same as using alignment, but not equivalent
1012 Note: for compatibility, we use the type size, not the type alignment
1013 to determine alignment, since that matches the documentation */
1015 if ((* targetm
.ms_bitfield_layout_p
) (rli
->t
)
1016 && ((DECL_BIT_FIELD_TYPE (field
) && ! DECL_PACKED (field
))
1017 || (rli
->prev_field
&& ! DECL_PACKED (rli
->prev_field
))))
1019 /* At this point, either the prior or current are bitfields,
1020 (possibly both), and we're dealing with MS packing. */
1021 tree prev_saved
= rli
->prev_field
;
1023 /* Is the prior field a bitfield? If so, handle "runs" of same
1024 type size fields. */
1025 if (rli
->prev_field
/* necessarily a bitfield if it exists. */)
1027 /* If both are bitfields, nonzero, and the same size, this is
1028 the middle of a run. Zero declared size fields are special
1029 and handled as "end of run". (Note: it's nonzero declared
1030 size, but equal type sizes!) (Since we know that both
1031 the current and previous fields are bitfields by the
1032 time we check it, DECL_SIZE must be present for both.) */
1033 if (DECL_BIT_FIELD_TYPE (field
)
1034 && !integer_zerop (DECL_SIZE (field
))
1035 && !integer_zerop (DECL_SIZE (rli
->prev_field
))
1036 && host_integerp (DECL_SIZE (rli
->prev_field
), 0)
1037 && host_integerp (TYPE_SIZE (type
), 0)
1038 && simple_cst_equal (TYPE_SIZE (type
),
1039 TYPE_SIZE (TREE_TYPE (rli
->prev_field
))))
1041 /* We're in the middle of a run of equal type size fields; make
1042 sure we realign if we run out of bits. (Not decl size,
1044 HOST_WIDE_INT bitsize
= tree_low_cst (DECL_SIZE (field
), 0);
1046 if (rli
->remaining_in_alignment
< bitsize
)
1048 /* out of bits; bump up to next 'word'. */
1049 rli
->offset
= DECL_FIELD_OFFSET (rli
->prev_field
);
1051 = size_binop (PLUS_EXPR
, TYPE_SIZE (type
),
1052 DECL_FIELD_BIT_OFFSET (rli
->prev_field
));
1053 rli
->prev_field
= field
;
1054 rli
->remaining_in_alignment
1055 = tree_low_cst (TYPE_SIZE (type
), 0);
1058 rli
->remaining_in_alignment
-= bitsize
;
1062 /* End of a run: if leaving a run of bitfields of the same type
1063 size, we have to "use up" the rest of the bits of the type
1066 Compute the new position as the sum of the size for the prior
1067 type and where we first started working on that type.
1068 Note: since the beginning of the field was aligned then
1069 of course the end will be too. No round needed. */
1071 if (!integer_zerop (DECL_SIZE (rli
->prev_field
)))
1073 tree type_size
= TYPE_SIZE (TREE_TYPE (rli
->prev_field
));
1076 = size_binop (PLUS_EXPR
, type_size
,
1077 DECL_FIELD_BIT_OFFSET (rli
->prev_field
));
1080 /* We "use up" size zero fields; the code below should behave
1081 as if the prior field was not a bitfield. */
1084 /* Cause a new bitfield to be captured, either this time (if
1085 currently a bitfield) or next time we see one. */
1086 if (!DECL_BIT_FIELD_TYPE(field
)
1087 || integer_zerop (DECL_SIZE (field
)))
1088 rli
->prev_field
= NULL
;
1091 normalize_rli (rli
);
1094 /* If we're starting a new run of same size type bitfields
1095 (or a run of non-bitfields), set up the "first of the run"
1098 That is, if the current field is not a bitfield, or if there
1099 was a prior bitfield the type sizes differ, or if there wasn't
1100 a prior bitfield the size of the current field is nonzero.
1102 Note: we must be sure to test ONLY the type size if there was
1103 a prior bitfield and ONLY for the current field being zero if
1106 if (!DECL_BIT_FIELD_TYPE (field
)
1107 || ( prev_saved
!= NULL
1108 ? !simple_cst_equal (TYPE_SIZE (type
),
1109 TYPE_SIZE (TREE_TYPE (prev_saved
)))
1110 : !integer_zerop (DECL_SIZE (field
)) ))
1112 /* Never smaller than a byte for compatibility. */
1113 unsigned int type_align
= BITS_PER_UNIT
;
1115 /* (When not a bitfield), we could be seeing a flex array (with
1116 no DECL_SIZE). Since we won't be using remaining_in_alignment
1117 until we see a bitfield (and come by here again) we just skip
1119 if (DECL_SIZE (field
) != NULL
1120 && host_integerp (TYPE_SIZE (TREE_TYPE (field
)), 0)
1121 && host_integerp (DECL_SIZE (field
), 0))
1122 rli
->remaining_in_alignment
1123 = tree_low_cst (TYPE_SIZE (TREE_TYPE(field
)), 0)
1124 - tree_low_cst (DECL_SIZE (field
), 0);
1126 /* Now align (conventionally) for the new type. */
1127 if (!DECL_PACKED(field
))
1128 type_align
= MAX(TYPE_ALIGN (type
), type_align
);
1131 && DECL_BIT_FIELD_TYPE (prev_saved
)
1132 /* If the previous bit-field is zero-sized, we've already
1133 accounted for its alignment needs (or ignored it, if
1134 appropriate) while placing it. */
1135 && ! integer_zerop (DECL_SIZE (prev_saved
)))
1136 type_align
= MAX (type_align
,
1137 TYPE_ALIGN (TREE_TYPE (prev_saved
)));
1139 if (maximum_field_alignment
!= 0)
1140 type_align
= MIN (type_align
, maximum_field_alignment
);
1142 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1144 /* If we really aligned, don't allow subsequent bitfields
1146 rli
->prev_field
= NULL
;
1150 /* Offset so far becomes the position of this field after normalizing. */
1151 normalize_rli (rli
);
1152 DECL_FIELD_OFFSET (field
) = rli
->offset
;
1153 DECL_FIELD_BIT_OFFSET (field
) = rli
->bitpos
;
1154 SET_DECL_OFFSET_ALIGN (field
, rli
->offset_align
);
1156 /* If this field ended up more aligned than we thought it would be (we
1157 approximate this by seeing if its position changed), lay out the field
1158 again; perhaps we can use an integral mode for it now. */
1159 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field
)))
1160 actual_align
= (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
1161 & - tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1));
1162 else if (integer_zerop (DECL_FIELD_OFFSET (field
)))
1163 actual_align
= BIGGEST_ALIGNMENT
;
1164 else if (host_integerp (DECL_FIELD_OFFSET (field
), 1))
1165 actual_align
= (BITS_PER_UNIT
1166 * (tree_low_cst (DECL_FIELD_OFFSET (field
), 1)
1167 & - tree_low_cst (DECL_FIELD_OFFSET (field
), 1)));
1169 actual_align
= DECL_OFFSET_ALIGN (field
);
1171 if (known_align
!= actual_align
)
1172 layout_decl (field
, actual_align
);
1174 /* Only the MS bitfields use this. */
1175 if (rli
->prev_field
== NULL
&& DECL_BIT_FIELD_TYPE(field
))
1176 rli
->prev_field
= field
;
1178 /* Now add size of this field to the size of the record. If the size is
1179 not constant, treat the field as being a multiple of bytes and just
1180 adjust the offset, resetting the bit position. Otherwise, apportion the
1181 size amongst the bit position and offset. First handle the case of an
1182 unspecified size, which can happen when we have an invalid nested struct
1183 definition, such as struct j { struct j { int i; } }. The error message
1184 is printed in finish_struct. */
1185 if (DECL_SIZE (field
) == 0)
1187 else if (TREE_CODE (DECL_SIZE_UNIT (field
)) != INTEGER_CST
1188 || TREE_CONSTANT_OVERFLOW (DECL_SIZE_UNIT (field
)))
1191 = size_binop (PLUS_EXPR
, rli
->offset
,
1193 size_binop (CEIL_DIV_EXPR
, rli
->bitpos
,
1194 bitsize_unit_node
)));
1196 = size_binop (PLUS_EXPR
, rli
->offset
, DECL_SIZE_UNIT (field
));
1197 rli
->bitpos
= bitsize_zero_node
;
1198 rli
->offset_align
= MIN (rli
->offset_align
, desired_align
);
1202 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
, DECL_SIZE (field
));
1203 normalize_rli (rli
);
1207 /* Assuming that all the fields have been laid out, this function uses
1208 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1209 indicated by RLI. */
1212 finalize_record_size (record_layout_info rli
)
1214 tree unpadded_size
, unpadded_size_unit
;
1216 /* Now we want just byte and bit offsets, so set the offset alignment
1217 to be a byte and then normalize. */
1218 rli
->offset_align
= BITS_PER_UNIT
;
1219 normalize_rli (rli
);
1221 /* Determine the desired alignment. */
1222 #ifdef ROUND_TYPE_ALIGN
1223 TYPE_ALIGN (rli
->t
) = ROUND_TYPE_ALIGN (rli
->t
, TYPE_ALIGN (rli
->t
),
1226 TYPE_ALIGN (rli
->t
) = MAX (TYPE_ALIGN (rli
->t
), rli
->record_align
);
1229 /* Compute the size so far. Be sure to allow for extra bits in the
1230 size in bytes. We have guaranteed above that it will be no more
1231 than a single byte. */
1232 unpadded_size
= rli_size_so_far (rli
);
1233 unpadded_size_unit
= rli_size_unit_so_far (rli
);
1234 if (! integer_zerop (rli
->bitpos
))
1236 = size_binop (PLUS_EXPR
, unpadded_size_unit
, size_one_node
);
1238 /* Round the size up to be a multiple of the required alignment. */
1239 TYPE_SIZE (rli
->t
) = round_up (unpadded_size
, TYPE_ALIGN (rli
->t
));
1240 TYPE_SIZE_UNIT (rli
->t
) = round_up (unpadded_size_unit
,
1241 TYPE_ALIGN (rli
->t
) / BITS_PER_UNIT
);
1243 if (warn_padded
&& TREE_CONSTANT (unpadded_size
)
1244 && simple_cst_equal (unpadded_size
, TYPE_SIZE (rli
->t
)) == 0)
1245 warning ("padding struct size to alignment boundary");
1247 if (warn_packed
&& TREE_CODE (rli
->t
) == RECORD_TYPE
1248 && TYPE_PACKED (rli
->t
) && ! rli
->packed_maybe_necessary
1249 && TREE_CONSTANT (unpadded_size
))
1253 #ifdef ROUND_TYPE_ALIGN
1255 = ROUND_TYPE_ALIGN (rli
->t
, TYPE_ALIGN (rli
->t
), rli
->unpacked_align
);
1257 rli
->unpacked_align
= MAX (TYPE_ALIGN (rli
->t
), rli
->unpacked_align
);
1260 unpacked_size
= round_up (TYPE_SIZE (rli
->t
), rli
->unpacked_align
);
1261 if (simple_cst_equal (unpacked_size
, TYPE_SIZE (rli
->t
)))
1263 TYPE_PACKED (rli
->t
) = 0;
1265 if (TYPE_NAME (rli
->t
))
1269 if (TREE_CODE (TYPE_NAME (rli
->t
)) == IDENTIFIER_NODE
)
1270 name
= IDENTIFIER_POINTER (TYPE_NAME (rli
->t
));
1272 name
= IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (rli
->t
)));
1274 if (STRICT_ALIGNMENT
)
1275 warning ("packed attribute causes inefficient alignment for `%s'", name
);
1277 warning ("packed attribute is unnecessary for `%s'", name
);
1281 if (STRICT_ALIGNMENT
)
1282 warning ("packed attribute causes inefficient alignment");
1284 warning ("packed attribute is unnecessary");
1290 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1293 compute_record_mode (tree type
)
1296 enum machine_mode mode
= VOIDmode
;
1298 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1299 However, if possible, we use a mode that fits in a register
1300 instead, in order to allow for better optimization down the
1302 TYPE_MODE (type
) = BLKmode
;
1304 if (! host_integerp (TYPE_SIZE (type
), 1))
1307 /* A record which has any BLKmode members must itself be
1308 BLKmode; it can't go in a register. Unless the member is
1309 BLKmode only because it isn't aligned. */
1310 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
1312 if (TREE_CODE (field
) != FIELD_DECL
)
1315 if (TREE_CODE (TREE_TYPE (field
)) == ERROR_MARK
1316 || (TYPE_MODE (TREE_TYPE (field
)) == BLKmode
1317 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field
)))
1318 || ! host_integerp (bit_position (field
), 1)
1319 || DECL_SIZE (field
) == 0
1320 || ! host_integerp (DECL_SIZE (field
), 1))
1323 /* If this field is the whole struct, remember its mode so
1324 that, say, we can put a double in a class into a DF
1325 register instead of forcing it to live in the stack. */
1326 if (simple_cst_equal (TYPE_SIZE (type
), DECL_SIZE (field
)))
1327 mode
= DECL_MODE (field
);
1329 #ifdef MEMBER_TYPE_FORCES_BLK
1330 /* With some targets, eg. c4x, it is sub-optimal
1331 to access an aligned BLKmode structure as a scalar. */
1333 if (MEMBER_TYPE_FORCES_BLK (field
, mode
))
1335 #endif /* MEMBER_TYPE_FORCES_BLK */
1338 /* If we only have one real field; use its mode. This only applies to
1339 RECORD_TYPE. This does not apply to unions. */
1340 if (TREE_CODE (type
) == RECORD_TYPE
&& mode
!= VOIDmode
)
1341 TYPE_MODE (type
) = mode
;
1343 TYPE_MODE (type
) = mode_for_size_tree (TYPE_SIZE (type
), MODE_INT
, 1);
1345 /* If structure's known alignment is less than what the scalar
1346 mode would need, and it matters, then stick with BLKmode. */
1347 if (TYPE_MODE (type
) != BLKmode
1349 && ! (TYPE_ALIGN (type
) >= BIGGEST_ALIGNMENT
1350 || TYPE_ALIGN (type
) >= GET_MODE_ALIGNMENT (TYPE_MODE (type
))))
1352 /* If this is the only reason this type is BLKmode, then
1353 don't force containing types to be BLKmode. */
1354 TYPE_NO_FORCE_BLK (type
) = 1;
1355 TYPE_MODE (type
) = BLKmode
;
1359 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1363 finalize_type_size (tree type
)
1365 /* Normally, use the alignment corresponding to the mode chosen.
1366 However, where strict alignment is not required, avoid
1367 over-aligning structures, since most compilers do not do this
1370 if (TYPE_MODE (type
) != BLKmode
&& TYPE_MODE (type
) != VOIDmode
1371 && (STRICT_ALIGNMENT
1372 || (TREE_CODE (type
) != RECORD_TYPE
&& TREE_CODE (type
) != UNION_TYPE
1373 && TREE_CODE (type
) != QUAL_UNION_TYPE
1374 && TREE_CODE (type
) != ARRAY_TYPE
)))
1376 TYPE_ALIGN (type
) = GET_MODE_ALIGNMENT (TYPE_MODE (type
));
1377 TYPE_USER_ALIGN (type
) = 0;
1380 /* Do machine-dependent extra alignment. */
1381 #ifdef ROUND_TYPE_ALIGN
1383 = ROUND_TYPE_ALIGN (type
, TYPE_ALIGN (type
), BITS_PER_UNIT
);
1386 /* If we failed to find a simple way to calculate the unit size
1387 of the type, find it by division. */
1388 if (TYPE_SIZE_UNIT (type
) == 0 && TYPE_SIZE (type
) != 0)
1389 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1390 result will fit in sizetype. We will get more efficient code using
1391 sizetype, so we force a conversion. */
1392 TYPE_SIZE_UNIT (type
)
1393 = convert (sizetype
,
1394 size_binop (FLOOR_DIV_EXPR
, TYPE_SIZE (type
),
1395 bitsize_unit_node
));
1397 if (TYPE_SIZE (type
) != 0)
1399 TYPE_SIZE (type
) = round_up (TYPE_SIZE (type
), TYPE_ALIGN (type
));
1400 TYPE_SIZE_UNIT (type
)
1401 = round_up (TYPE_SIZE_UNIT (type
), TYPE_ALIGN (type
) / BITS_PER_UNIT
);
1404 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1405 if (TYPE_SIZE (type
) != 0 && TREE_CODE (TYPE_SIZE (type
)) != INTEGER_CST
)
1406 TYPE_SIZE (type
) = variable_size (TYPE_SIZE (type
));
1407 if (TYPE_SIZE_UNIT (type
) != 0
1408 && TREE_CODE (TYPE_SIZE_UNIT (type
)) != INTEGER_CST
)
1409 TYPE_SIZE_UNIT (type
) = variable_size (TYPE_SIZE_UNIT (type
));
1411 /* Also layout any other variants of the type. */
1412 if (TYPE_NEXT_VARIANT (type
)
1413 || type
!= TYPE_MAIN_VARIANT (type
))
1416 /* Record layout info of this variant. */
1417 tree size
= TYPE_SIZE (type
);
1418 tree size_unit
= TYPE_SIZE_UNIT (type
);
1419 unsigned int align
= TYPE_ALIGN (type
);
1420 unsigned int user_align
= TYPE_USER_ALIGN (type
);
1421 enum machine_mode mode
= TYPE_MODE (type
);
1423 /* Copy it into all variants. */
1424 for (variant
= TYPE_MAIN_VARIANT (type
);
1426 variant
= TYPE_NEXT_VARIANT (variant
))
1428 TYPE_SIZE (variant
) = size
;
1429 TYPE_SIZE_UNIT (variant
) = size_unit
;
1430 TYPE_ALIGN (variant
) = align
;
1431 TYPE_USER_ALIGN (variant
) = user_align
;
1432 TYPE_MODE (variant
) = mode
;
1437 /* Do all of the work required to layout the type indicated by RLI,
1438 once the fields have been laid out. This function will call `free'
1439 for RLI, unless FREE_P is false. Passing a value other than false
1440 for FREE_P is bad practice; this option only exists to support the
1444 finish_record_layout (record_layout_info rli
, int free_p
)
1446 /* Compute the final size. */
1447 finalize_record_size (rli
);
1449 /* Compute the TYPE_MODE for the record. */
1450 compute_record_mode (rli
->t
);
1452 /* Perform any last tweaks to the TYPE_SIZE, etc. */
1453 finalize_type_size (rli
->t
);
1455 /* Lay out any static members. This is done now because their type
1456 may use the record's type. */
1457 while (rli
->pending_statics
)
1459 layout_decl (TREE_VALUE (rli
->pending_statics
), 0);
1460 rli
->pending_statics
= TREE_CHAIN (rli
->pending_statics
);
1469 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
1470 NAME, its fields are chained in reverse on FIELDS.
1472 If ALIGN_TYPE is non-null, it is given the same alignment as
1476 finish_builtin_struct (tree type
, const char *name
, tree fields
,
1481 for (tail
= NULL_TREE
; fields
; tail
= fields
, fields
= next
)
1483 DECL_FIELD_CONTEXT (fields
) = type
;
1484 next
= TREE_CHAIN (fields
);
1485 TREE_CHAIN (fields
) = tail
;
1487 TYPE_FIELDS (type
) = tail
;
1491 TYPE_ALIGN (type
) = TYPE_ALIGN (align_type
);
1492 TYPE_USER_ALIGN (type
) = TYPE_USER_ALIGN (align_type
);
1496 #if 0 /* not yet, should get fixed properly later */
1497 TYPE_NAME (type
) = make_type_decl (get_identifier (name
), type
);
1499 TYPE_NAME (type
) = build_decl (TYPE_DECL
, get_identifier (name
), type
);
1501 TYPE_STUB_DECL (type
) = TYPE_NAME (type
);
1502 layout_decl (TYPE_NAME (type
), 0);
1505 /* Calculate the mode, size, and alignment for TYPE.
1506 For an array type, calculate the element separation as well.
1507 Record TYPE on the chain of permanent or temporary types
1508 so that dbxout will find out about it.
1510 TYPE_SIZE of a type is nonzero if the type has been laid out already.
1511 layout_type does nothing on such a type.
1513 If the type is incomplete, its TYPE_SIZE remains zero. */
1516 layout_type (tree type
)
1521 /* Do nothing if type has been laid out before. */
1522 if (TYPE_SIZE (type
))
1525 switch (TREE_CODE (type
))
1528 /* This kind of type is the responsibility
1529 of the language-specific code. */
1532 case BOOLEAN_TYPE
: /* Used for Java, Pascal, and Chill. */
1533 if (TYPE_PRECISION (type
) == 0)
1534 TYPE_PRECISION (type
) = 1; /* default to one byte/boolean. */
1536 /* ... fall through ... */
1541 if (TREE_CODE (TYPE_MIN_VALUE (type
)) == INTEGER_CST
1542 && tree_int_cst_sgn (TYPE_MIN_VALUE (type
)) >= 0)
1543 TREE_UNSIGNED (type
) = 1;
1545 TYPE_MODE (type
) = smallest_mode_for_size (TYPE_PRECISION (type
),
1547 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
1548 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
1552 TYPE_MODE (type
) = mode_for_size (TYPE_PRECISION (type
), MODE_FLOAT
, 0);
1553 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
1554 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
1558 TREE_UNSIGNED (type
) = TREE_UNSIGNED (TREE_TYPE (type
));
1560 = mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type
)),
1561 (TREE_CODE (TREE_TYPE (type
)) == INTEGER_TYPE
1562 ? MODE_COMPLEX_INT
: MODE_COMPLEX_FLOAT
),
1564 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
1565 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
1572 subtype
= TREE_TYPE (type
);
1573 TREE_UNSIGNED (type
) = TREE_UNSIGNED (subtype
);
1574 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
1575 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
1580 /* This is an incomplete type and so doesn't have a size. */
1581 TYPE_ALIGN (type
) = 1;
1582 TYPE_USER_ALIGN (type
) = 0;
1583 TYPE_MODE (type
) = VOIDmode
;
1587 TYPE_SIZE (type
) = bitsize_int (POINTER_SIZE
);
1588 TYPE_SIZE_UNIT (type
) = size_int (POINTER_SIZE
/ BITS_PER_UNIT
);
1589 /* A pointer might be MODE_PARTIAL_INT,
1590 but ptrdiff_t must be integral. */
1591 TYPE_MODE (type
) = mode_for_size (POINTER_SIZE
, MODE_INT
, 0);
1596 TYPE_MODE (type
) = mode_for_size (2 * POINTER_SIZE
, MODE_INT
, 0);
1597 TYPE_SIZE (type
) = bitsize_int (2 * POINTER_SIZE
);
1598 TYPE_SIZE_UNIT (type
) = size_int ((2 * POINTER_SIZE
) / BITS_PER_UNIT
);
1602 case REFERENCE_TYPE
:
1605 enum machine_mode mode
= ((TREE_CODE (type
) == REFERENCE_TYPE
1606 && reference_types_internal
)
1607 ? Pmode
: TYPE_MODE (type
));
1609 int nbits
= GET_MODE_BITSIZE (mode
);
1611 TYPE_SIZE (type
) = bitsize_int (nbits
);
1612 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (mode
));
1613 TREE_UNSIGNED (type
) = 1;
1614 TYPE_PRECISION (type
) = nbits
;
1620 tree index
= TYPE_DOMAIN (type
);
1621 tree element
= TREE_TYPE (type
);
1623 build_pointer_type (element
);
1625 /* We need to know both bounds in order to compute the size. */
1626 if (index
&& TYPE_MAX_VALUE (index
) && TYPE_MIN_VALUE (index
)
1627 && TYPE_SIZE (element
))
1629 tree ub
= TYPE_MAX_VALUE (index
);
1630 tree lb
= TYPE_MIN_VALUE (index
);
1634 /* The initial subtraction should happen in the original type so
1635 that (possible) negative values are handled appropriately. */
1636 length
= size_binop (PLUS_EXPR
, size_one_node
,
1638 fold (build (MINUS_EXPR
,
1642 /* Special handling for arrays of bits (for Chill). */
1643 element_size
= TYPE_SIZE (element
);
1644 if (TYPE_PACKED (type
) && INTEGRAL_TYPE_P (element
)
1645 && (integer_zerop (TYPE_MAX_VALUE (element
))
1646 || integer_onep (TYPE_MAX_VALUE (element
)))
1647 && host_integerp (TYPE_MIN_VALUE (element
), 1))
1649 HOST_WIDE_INT maxvalue
1650 = tree_low_cst (TYPE_MAX_VALUE (element
), 1);
1651 HOST_WIDE_INT minvalue
1652 = tree_low_cst (TYPE_MIN_VALUE (element
), 1);
1654 if (maxvalue
- minvalue
== 1
1655 && (maxvalue
== 1 || maxvalue
== 0))
1656 element_size
= integer_one_node
;
1659 /* If neither bound is a constant and sizetype is signed, make
1660 sure the size is never negative. We should really do this
1661 if *either* bound is non-constant, but this is the best
1662 compromise between C and Ada. */
1663 if (! TREE_UNSIGNED (sizetype
)
1664 && TREE_CODE (TYPE_MIN_VALUE (index
)) != INTEGER_CST
1665 && TREE_CODE (TYPE_MAX_VALUE (index
)) != INTEGER_CST
)
1666 length
= size_binop (MAX_EXPR
, length
, size_zero_node
);
1668 TYPE_SIZE (type
) = size_binop (MULT_EXPR
, element_size
,
1669 convert (bitsizetype
, length
));
1671 /* If we know the size of the element, calculate the total
1672 size directly, rather than do some division thing below.
1673 This optimization helps Fortran assumed-size arrays
1674 (where the size of the array is determined at runtime)
1676 Note that we can't do this in the case where the size of
1677 the elements is one bit since TYPE_SIZE_UNIT cannot be
1678 set correctly in that case. */
1679 if (TYPE_SIZE_UNIT (element
) != 0 && ! integer_onep (element_size
))
1680 TYPE_SIZE_UNIT (type
)
1681 = size_binop (MULT_EXPR
, TYPE_SIZE_UNIT (element
), length
);
1684 /* Now round the alignment and size,
1685 using machine-dependent criteria if any. */
1687 #ifdef ROUND_TYPE_ALIGN
1689 = ROUND_TYPE_ALIGN (type
, TYPE_ALIGN (element
), BITS_PER_UNIT
);
1691 TYPE_ALIGN (type
) = MAX (TYPE_ALIGN (element
), BITS_PER_UNIT
);
1693 TYPE_USER_ALIGN (type
) = TYPE_USER_ALIGN (element
);
1694 TYPE_MODE (type
) = BLKmode
;
1695 if (TYPE_SIZE (type
) != 0
1696 #ifdef MEMBER_TYPE_FORCES_BLK
1697 && ! MEMBER_TYPE_FORCES_BLK (type
, VOIDmode
)
1699 /* BLKmode elements force BLKmode aggregate;
1700 else extract/store fields may lose. */
1701 && (TYPE_MODE (TREE_TYPE (type
)) != BLKmode
1702 || TYPE_NO_FORCE_BLK (TREE_TYPE (type
))))
1704 /* One-element arrays get the component type's mode. */
1705 if (simple_cst_equal (TYPE_SIZE (type
),
1706 TYPE_SIZE (TREE_TYPE (type
))))
1707 TYPE_MODE (type
) = TYPE_MODE (TREE_TYPE (type
));
1710 = mode_for_size_tree (TYPE_SIZE (type
), MODE_INT
, 1);
1712 if (TYPE_MODE (type
) != BLKmode
1713 && STRICT_ALIGNMENT
&& TYPE_ALIGN (type
) < BIGGEST_ALIGNMENT
1714 && TYPE_ALIGN (type
) < GET_MODE_ALIGNMENT (TYPE_MODE (type
))
1715 && TYPE_MODE (type
) != BLKmode
)
1717 TYPE_NO_FORCE_BLK (type
) = 1;
1718 TYPE_MODE (type
) = BLKmode
;
1726 case QUAL_UNION_TYPE
:
1729 record_layout_info rli
;
1731 /* Initialize the layout information. */
1732 rli
= start_record_layout (type
);
1734 /* If this is a QUAL_UNION_TYPE, we want to process the fields
1735 in the reverse order in building the COND_EXPR that denotes
1736 its size. We reverse them again later. */
1737 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
1738 TYPE_FIELDS (type
) = nreverse (TYPE_FIELDS (type
));
1740 /* Place all the fields. */
1741 for (field
= TYPE_FIELDS (type
); field
; field
= TREE_CHAIN (field
))
1742 place_field (rli
, field
);
1744 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
1745 TYPE_FIELDS (type
) = nreverse (TYPE_FIELDS (type
));
1747 if (lang_adjust_rli
)
1748 (*lang_adjust_rli
) (rli
);
1750 /* Finish laying out the record. */
1751 finish_record_layout (rli
, /*free_p=*/true);
1755 case SET_TYPE
: /* Used by Chill and Pascal. */
1756 if (TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (type
))) != INTEGER_CST
1757 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (type
))) != INTEGER_CST
)
1761 #ifndef SET_WORD_SIZE
1762 #define SET_WORD_SIZE BITS_PER_WORD
1764 unsigned int alignment
1765 = set_alignment
? set_alignment
: SET_WORD_SIZE
;
1766 HOST_WIDE_INT size_in_bits
1767 = (tree_low_cst (TYPE_MAX_VALUE (TYPE_DOMAIN (type
)), 0)
1768 - tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (type
)), 0) + 1);
1769 HOST_WIDE_INT rounded_size
1770 = ((size_in_bits
+ alignment
- 1) / alignment
) * alignment
;
1772 if (rounded_size
> (int) alignment
)
1773 TYPE_MODE (type
) = BLKmode
;
1775 TYPE_MODE (type
) = mode_for_size (alignment
, MODE_INT
, 1);
1777 TYPE_SIZE (type
) = bitsize_int (rounded_size
);
1778 TYPE_SIZE_UNIT (type
) = size_int (rounded_size
/ BITS_PER_UNIT
);
1779 TYPE_ALIGN (type
) = alignment
;
1780 TYPE_USER_ALIGN (type
) = 0;
1781 TYPE_PRECISION (type
) = size_in_bits
;
1786 /* The size may vary in different languages, so the language front end
1787 should fill in the size. */
1788 TYPE_ALIGN (type
) = BIGGEST_ALIGNMENT
;
1789 TYPE_USER_ALIGN (type
) = 0;
1790 TYPE_MODE (type
) = BLKmode
;
1797 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
1798 records and unions, finish_record_layout already called this
1800 if (TREE_CODE (type
) != RECORD_TYPE
1801 && TREE_CODE (type
) != UNION_TYPE
1802 && TREE_CODE (type
) != QUAL_UNION_TYPE
)
1803 finalize_type_size (type
);
1805 /* If this type is created before sizetype has been permanently set,
1806 record it so set_sizetype can fix it up. */
1808 early_type_list
= tree_cons (NULL_TREE
, type
, early_type_list
);
1810 /* If an alias set has been set for this aggregate when it was incomplete,
1811 force it into alias set 0.
1812 This is too conservative, but we cannot call record_component_aliases
1813 here because some frontends still change the aggregates after
1815 if (AGGREGATE_TYPE_P (type
) && TYPE_ALIAS_SET_KNOWN_P (type
))
1816 TYPE_ALIAS_SET (type
) = 0;
1819 /* Create and return a type for signed integers of PRECISION bits. */
1822 make_signed_type (int precision
)
1824 tree type
= make_node (INTEGER_TYPE
);
1826 TYPE_PRECISION (type
) = precision
;
1828 fixup_signed_type (type
);
1832 /* Create and return a type for unsigned integers of PRECISION bits. */
1835 make_unsigned_type (int precision
)
1837 tree type
= make_node (INTEGER_TYPE
);
1839 TYPE_PRECISION (type
) = precision
;
1841 fixup_unsigned_type (type
);
1845 /* Initialize sizetype and bitsizetype to a reasonable and temporary
1846 value to enable integer types to be created. */
1849 initialize_sizetypes (void)
1851 tree t
= make_node (INTEGER_TYPE
);
1853 /* Set this so we do something reasonable for the build_int_2 calls
1855 integer_type_node
= t
;
1857 TYPE_MODE (t
) = SImode
;
1858 TYPE_ALIGN (t
) = GET_MODE_ALIGNMENT (SImode
);
1859 TYPE_USER_ALIGN (t
) = 0;
1860 TYPE_SIZE (t
) = build_int_2 (GET_MODE_BITSIZE (SImode
), 0);
1861 TYPE_SIZE_UNIT (t
) = build_int_2 (GET_MODE_SIZE (SImode
), 0);
1862 TREE_UNSIGNED (t
) = 1;
1863 TYPE_PRECISION (t
) = GET_MODE_BITSIZE (SImode
);
1864 TYPE_MIN_VALUE (t
) = build_int_2 (0, 0);
1865 TYPE_IS_SIZETYPE (t
) = 1;
1867 /* 1000 avoids problems with possible overflow and is certainly
1868 larger than any size value we'd want to be storing. */
1869 TYPE_MAX_VALUE (t
) = build_int_2 (1000, 0);
1871 /* These two must be different nodes because of the caching done in
1874 bitsizetype
= copy_node (t
);
1875 integer_type_node
= 0;
1878 /* Set sizetype to TYPE, and initialize *sizetype accordingly.
1879 Also update the type of any standard type's sizes made so far. */
1882 set_sizetype (tree type
)
1884 int oprecision
= TYPE_PRECISION (type
);
1885 /* The *bitsizetype types use a precision that avoids overflows when
1886 calculating signed sizes / offsets in bits. However, when
1887 cross-compiling from a 32 bit to a 64 bit host, we are limited to 64 bit
1889 int precision
= MIN (oprecision
+ BITS_PER_UNIT_LOG
+ 1,
1890 2 * HOST_BITS_PER_WIDE_INT
);
1897 /* Make copies of nodes since we'll be setting TYPE_IS_SIZETYPE. */
1898 sizetype
= copy_node (type
);
1899 TYPE_DOMAIN (sizetype
) = type
;
1900 TYPE_IS_SIZETYPE (sizetype
) = 1;
1901 bitsizetype
= make_node (INTEGER_TYPE
);
1902 TYPE_NAME (bitsizetype
) = TYPE_NAME (type
);
1903 TYPE_PRECISION (bitsizetype
) = precision
;
1904 TYPE_IS_SIZETYPE (bitsizetype
) = 1;
1906 if (TREE_UNSIGNED (type
))
1907 fixup_unsigned_type (bitsizetype
);
1909 fixup_signed_type (bitsizetype
);
1911 layout_type (bitsizetype
);
1913 if (TREE_UNSIGNED (type
))
1915 usizetype
= sizetype
;
1916 ubitsizetype
= bitsizetype
;
1917 ssizetype
= copy_node (make_signed_type (oprecision
));
1918 sbitsizetype
= copy_node (make_signed_type (precision
));
1922 ssizetype
= sizetype
;
1923 sbitsizetype
= bitsizetype
;
1924 usizetype
= copy_node (make_unsigned_type (oprecision
));
1925 ubitsizetype
= copy_node (make_unsigned_type (precision
));
1928 TYPE_NAME (bitsizetype
) = get_identifier ("bit_size_type");
1930 /* Show is a sizetype, is a main type, and has no pointers to it. */
1931 for (i
= 0; i
< ARRAY_SIZE (sizetype_tab
); i
++)
1933 TYPE_IS_SIZETYPE (sizetype_tab
[i
]) = 1;
1934 TYPE_MAIN_VARIANT (sizetype_tab
[i
]) = sizetype_tab
[i
];
1935 TYPE_NEXT_VARIANT (sizetype_tab
[i
]) = 0;
1936 TYPE_POINTER_TO (sizetype_tab
[i
]) = 0;
1937 TYPE_REFERENCE_TO (sizetype_tab
[i
]) = 0;
1940 /* Go down each of the types we already made and set the proper type
1941 for the sizes in them. */
1942 for (t
= early_type_list
; t
!= 0; t
= TREE_CHAIN (t
))
1944 if (TREE_CODE (TREE_VALUE (t
)) != INTEGER_TYPE
)
1947 TREE_TYPE (TYPE_SIZE (TREE_VALUE (t
))) = bitsizetype
;
1948 TREE_TYPE (TYPE_SIZE_UNIT (TREE_VALUE (t
))) = sizetype
;
1951 early_type_list
= 0;
1955 /* Set the extreme values of TYPE based on its precision in bits,
1956 then lay it out. Used when make_signed_type won't do
1957 because the tree code is not INTEGER_TYPE.
1958 E.g. for Pascal, when the -fsigned-char option is given. */
1961 fixup_signed_type (tree type
)
1963 int precision
= TYPE_PRECISION (type
);
1965 /* We can not represent properly constants greater then
1966 2 * HOST_BITS_PER_WIDE_INT, still we need the types
1967 as they are used by i386 vector extensions and friends. */
1968 if (precision
> HOST_BITS_PER_WIDE_INT
* 2)
1969 precision
= HOST_BITS_PER_WIDE_INT
* 2;
1971 TYPE_MIN_VALUE (type
)
1972 = build_int_2 ((precision
- HOST_BITS_PER_WIDE_INT
> 0
1973 ? 0 : (HOST_WIDE_INT
) (-1) << (precision
- 1)),
1974 (((HOST_WIDE_INT
) (-1)
1975 << (precision
- HOST_BITS_PER_WIDE_INT
- 1 > 0
1976 ? precision
- HOST_BITS_PER_WIDE_INT
- 1
1978 TYPE_MAX_VALUE (type
)
1979 = build_int_2 ((precision
- HOST_BITS_PER_WIDE_INT
> 0
1980 ? -1 : ((HOST_WIDE_INT
) 1 << (precision
- 1)) - 1),
1981 (precision
- HOST_BITS_PER_WIDE_INT
- 1 > 0
1982 ? (((HOST_WIDE_INT
) 1
1983 << (precision
- HOST_BITS_PER_WIDE_INT
- 1))) - 1
1986 TREE_TYPE (TYPE_MIN_VALUE (type
)) = type
;
1987 TREE_TYPE (TYPE_MAX_VALUE (type
)) = type
;
1989 /* Lay out the type: set its alignment, size, etc. */
1993 /* Set the extreme values of TYPE based on its precision in bits,
1994 then lay it out. This is used both in `make_unsigned_type'
1995 and for enumeral types. */
1998 fixup_unsigned_type (tree type
)
2000 int precision
= TYPE_PRECISION (type
);
2002 /* We can not represent properly constants greater then
2003 2 * HOST_BITS_PER_WIDE_INT, still we need the types
2004 as they are used by i386 vector extensions and friends. */
2005 if (precision
> HOST_BITS_PER_WIDE_INT
* 2)
2006 precision
= HOST_BITS_PER_WIDE_INT
* 2;
2008 TYPE_MIN_VALUE (type
) = build_int_2 (0, 0);
2009 TYPE_MAX_VALUE (type
)
2010 = build_int_2 (precision
- HOST_BITS_PER_WIDE_INT
>= 0
2011 ? -1 : ((HOST_WIDE_INT
) 1 << precision
) - 1,
2012 precision
- HOST_BITS_PER_WIDE_INT
> 0
2013 ? ((unsigned HOST_WIDE_INT
) ~0
2014 >> (HOST_BITS_PER_WIDE_INT
2015 - (precision
- HOST_BITS_PER_WIDE_INT
)))
2017 TREE_TYPE (TYPE_MIN_VALUE (type
)) = type
;
2018 TREE_TYPE (TYPE_MAX_VALUE (type
)) = type
;
2020 /* Lay out the type: set its alignment, size, etc. */
2024 /* Find the best machine mode to use when referencing a bit field of length
2025 BITSIZE bits starting at BITPOS.
2027 The underlying object is known to be aligned to a boundary of ALIGN bits.
2028 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2029 larger than LARGEST_MODE (usually SImode).
2031 If no mode meets all these conditions, we return VOIDmode. Otherwise, if
2032 VOLATILEP is true or SLOW_BYTE_ACCESS is false, we return the smallest
2033 mode meeting these conditions.
2035 Otherwise (VOLATILEP is false and SLOW_BYTE_ACCESS is true), we return
2036 the largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2037 all the conditions. */
2040 get_best_mode (int bitsize
, int bitpos
, unsigned int align
,
2041 enum machine_mode largest_mode
, int volatilep
)
2043 enum machine_mode mode
;
2044 unsigned int unit
= 0;
2046 /* Find the narrowest integer mode that contains the bit field. */
2047 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2048 mode
= GET_MODE_WIDER_MODE (mode
))
2050 unit
= GET_MODE_BITSIZE (mode
);
2051 if ((bitpos
% unit
) + bitsize
<= unit
)
2055 if (mode
== VOIDmode
2056 /* It is tempting to omit the following line
2057 if STRICT_ALIGNMENT is true.
2058 But that is incorrect, since if the bitfield uses part of 3 bytes
2059 and we use a 4-byte mode, we could get a spurious segv
2060 if the extra 4th byte is past the end of memory.
2061 (Though at least one Unix compiler ignores this problem:
2062 that on the Sequent 386 machine. */
2063 || MIN (unit
, BIGGEST_ALIGNMENT
) > align
2064 || (largest_mode
!= VOIDmode
&& unit
> GET_MODE_BITSIZE (largest_mode
)))
2067 if (SLOW_BYTE_ACCESS
&& ! volatilep
)
2069 enum machine_mode wide_mode
= VOIDmode
, tmode
;
2071 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); tmode
!= VOIDmode
;
2072 tmode
= GET_MODE_WIDER_MODE (tmode
))
2074 unit
= GET_MODE_BITSIZE (tmode
);
2075 if (bitpos
/ unit
== (bitpos
+ bitsize
- 1) / unit
2076 && unit
<= BITS_PER_WORD
2077 && unit
<= MIN (align
, BIGGEST_ALIGNMENT
)
2078 && (largest_mode
== VOIDmode
2079 || unit
<= GET_MODE_BITSIZE (largest_mode
)))
2083 if (wide_mode
!= VOIDmode
)
2090 #include "gt-stor-layout.h"