gcc:
[official-gcc.git] / gcc / ra.c
blob1f24abd45d1c560b335b8db7af30a6fcdeb78156
1 /* Graph coloring register allocator
2 Copyright (C) 2001, 2002 Free Software Foundation, Inc.
3 Contributed by Michael Matz <matz@suse.de>
4 and Daniel Berlin <dan@cgsoftware.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under the
9 terms of the GNU General Public License as published by the Free Software
10 Foundation; either version 2, or (at your option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
14 FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
15 details.
17 You should have received a copy of the GNU General Public License along
18 with GCC; see the file COPYING. If not, write to the Free Software
19 Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "insn-config.h"
28 #include "recog.h"
29 #include "reload.h"
30 #include "integrate.h"
31 #include "function.h"
32 #include "regs.h"
33 #include "obstack.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "df.h"
37 #include "expr.h"
38 #include "output.h"
39 #include "toplev.h"
40 #include "flags.h"
41 #include "ra.h"
43 /* This is the toplevel file of a graph coloring register allocator.
44 It is able to act like a George & Appel allocator, i.e. with iterative
45 coalescing plus spill coalescing/propagation.
46 And it can act as a traditional Briggs allocator, although with
47 optimistic coalescing. Additionally it has a custom pass, which
48 tries to reduce the overall cost of the colored graph.
50 We support two modes of spilling: spill-everywhere, which is extremely
51 fast, and interference region spilling, which reduces spill code to a
52 large extent, but is slower.
54 Helpful documents:
56 Briggs, P., Cooper, K. D., and Torczon, L. 1994. Improvements to graph
57 coloring register allocation. ACM Trans. Program. Lang. Syst. 16, 3 (May),
58 428-455.
60 Bergner, P., Dahl, P., Engebretsen, D., and O'Keefe, M. 1997. Spill code
61 minimization via interference region spilling. In Proc. ACM SIGPLAN '97
62 Conf. on Prog. Language Design and Implementation. ACM, 287-295.
64 George, L., Appel, A.W. 1996. Iterated register coalescing.
65 ACM Trans. Program. Lang. Syst. 18, 3 (May), 300-324.
69 /* This file contains the main entry point (reg_alloc), some helper routines
70 used by more than one file of the register allocator, and the toplevel
71 driver procedure (one_pass). */
73 /* Things, one might do somewhen:
75 * Lattice based rematerialization
76 * create definitions of ever-life regs at the beginning of
77 the insn chain
78 * insert loads as soon, stores as late as possible
79 * insert spill insns as outward as possible (either looptree, or LCM)
80 * reuse stack-slots
81 * delete coalesced insns. Partly done. The rest can only go, when we get
82 rid of reload.
83 * don't destroy coalescing information completely when spilling
84 * use the constraints from asms
87 static struct obstack ra_obstack;
88 static void create_insn_info PARAMS ((struct df *));
89 static void free_insn_info PARAMS ((void));
90 static void alloc_mem PARAMS ((struct df *));
91 static void free_mem PARAMS ((struct df *));
92 static void free_all_mem PARAMS ((struct df *df));
93 static int one_pass PARAMS ((struct df *, int));
94 static void check_df PARAMS ((struct df *));
95 static void init_ra PARAMS ((void));
97 void reg_alloc PARAMS ((void));
99 /* These global variables are "internal" to the register allocator.
100 They are all documented at their declarations in ra.h. */
102 /* Somewhen we want to get rid of one of those sbitmaps.
103 (for now I need the sup_igraph to note if there is any conflict between
104 parts of webs at all. I can't use igraph for this, as there only the real
105 conflicts are noted.) This is only used to prevent coalescing two
106 conflicting webs, were only parts of them are in conflict. */
107 sbitmap igraph;
108 sbitmap sup_igraph;
110 /* Note the insns not inserted by the allocator, where we detected any
111 deaths of pseudos. It is used to detect closeness of defs and uses.
112 In the first pass this is empty (we could initialize it from REG_DEAD
113 notes), in the other passes it is left from the pass before. */
114 sbitmap insns_with_deaths;
115 int death_insns_max_uid;
117 struct web_part *web_parts;
119 unsigned int num_webs;
120 unsigned int num_subwebs;
121 unsigned int num_allwebs;
122 struct web **id2web;
123 struct web *hardreg2web[FIRST_PSEUDO_REGISTER];
124 struct web **def2web;
125 struct web **use2web;
126 struct move_list *wl_moves;
127 int ra_max_regno;
128 short *ra_reg_renumber;
129 struct df *df;
130 bitmap *live_at_end;
131 int ra_pass;
132 unsigned int max_normal_pseudo;
133 int an_unusable_color;
135 /* The different lists on which a web can be (based on the type). */
136 struct dlist *web_lists[(int) LAST_NODE_TYPE];
138 unsigned int last_def_id;
139 unsigned int last_use_id;
140 unsigned int last_num_webs;
141 int last_max_uid;
142 sbitmap last_check_uses;
143 unsigned int remember_conflicts;
145 int orig_max_uid;
147 HARD_REG_SET never_use_colors;
148 HARD_REG_SET usable_regs[N_REG_CLASSES];
149 unsigned int num_free_regs[N_REG_CLASSES];
150 HARD_REG_SET hardregs_for_mode[NUM_MACHINE_MODES];
151 HARD_REG_SET invalid_mode_change_regs;
152 unsigned char byte2bitcount[256];
154 unsigned int debug_new_regalloc = -1;
155 int flag_ra_biased = 0;
156 int flag_ra_improved_spilling = 0;
157 int flag_ra_ir_spilling = 0;
158 int flag_ra_optimistic_coalescing = 0;
159 int flag_ra_break_aliases = 0;
160 int flag_ra_merge_spill_costs = 0;
161 int flag_ra_spill_every_use = 0;
162 int flag_ra_dump_notes = 0;
164 /* Fast allocation of small objects, which live until the allocator
165 is done. Allocate an object of SIZE bytes. */
167 void *
168 ra_alloc (size)
169 size_t size;
171 return obstack_alloc (&ra_obstack, size);
174 /* Like ra_alloc(), but clear the returned memory. */
176 void *
177 ra_calloc (size)
178 size_t size;
180 void *p = obstack_alloc (&ra_obstack, size);
181 memset (p, 0, size);
182 return p;
185 /* Returns the number of hardregs in HARD_REG_SET RS. */
188 hard_regs_count (rs)
189 HARD_REG_SET rs;
191 int count = 0;
192 #ifdef HARD_REG_SET
193 while (rs)
195 unsigned char byte = rs & 0xFF;
196 rs >>= 8;
197 /* Avoid memory access, if nothing is set. */
198 if (byte)
199 count += byte2bitcount[byte];
201 #else
202 unsigned int ofs;
203 for (ofs = 0; ofs < HARD_REG_SET_LONGS; ofs++)
205 HARD_REG_ELT_TYPE elt = rs[ofs];
206 while (elt)
208 unsigned char byte = elt & 0xFF;
209 elt >>= 8;
210 if (byte)
211 count += byte2bitcount[byte];
214 #endif
215 return count;
218 /* Basically like emit_move_insn (i.e. validifies constants and such),
219 but also handle MODE_CC moves (but then the operands must already
220 be basically valid. */
223 ra_emit_move_insn (x, y)
224 rtx x, y;
226 enum machine_mode mode = GET_MODE (x);
227 if (GET_MODE_CLASS (mode) == MODE_CC)
228 return emit_insn (gen_move_insn (x, y));
229 else
230 return emit_move_insn (x, y);
233 int insn_df_max_uid;
234 struct ra_insn_info *insn_df;
235 static struct ref **refs_for_insn_df;
237 /* Create the insn_df structure for each insn to have fast access to
238 all valid defs and uses in an insn. */
240 static void
241 create_insn_info (df)
242 struct df *df;
244 rtx insn;
245 struct ref **act_refs;
246 insn_df_max_uid = get_max_uid ();
247 insn_df = xcalloc (insn_df_max_uid, sizeof (insn_df[0]));
248 refs_for_insn_df = xcalloc (df->def_id + df->use_id, sizeof (struct ref *));
249 act_refs = refs_for_insn_df;
250 /* We create those things backwards to mimic the order in which
251 the insns are visited in rewrite_program2() and live_in(). */
252 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
254 int uid = INSN_UID (insn);
255 unsigned int n;
256 struct df_link *link;
257 if (!INSN_P (insn))
258 continue;
259 for (n = 0, link = DF_INSN_DEFS (df, insn); link; link = link->next)
260 if (link->ref
261 && (DF_REF_REGNO (link->ref) >= FIRST_PSEUDO_REGISTER
262 || !TEST_HARD_REG_BIT (never_use_colors,
263 DF_REF_REGNO (link->ref))))
265 if (n == 0)
266 insn_df[uid].defs = act_refs;
267 insn_df[uid].defs[n++] = link->ref;
269 act_refs += n;
270 insn_df[uid].num_defs = n;
271 for (n = 0, link = DF_INSN_USES (df, insn); link; link = link->next)
272 if (link->ref
273 && (DF_REF_REGNO (link->ref) >= FIRST_PSEUDO_REGISTER
274 || !TEST_HARD_REG_BIT (never_use_colors,
275 DF_REF_REGNO (link->ref))))
277 if (n == 0)
278 insn_df[uid].uses = act_refs;
279 insn_df[uid].uses[n++] = link->ref;
281 act_refs += n;
282 insn_df[uid].num_uses = n;
284 if (refs_for_insn_df + (df->def_id + df->use_id) < act_refs)
285 abort ();
288 /* Free the insn_df structures. */
290 static void
291 free_insn_info ()
293 free (refs_for_insn_df);
294 refs_for_insn_df = NULL;
295 free (insn_df);
296 insn_df = NULL;
297 insn_df_max_uid = 0;
300 /* Search WEB for a subweb, which represents REG. REG needs to
301 be a SUBREG, and the inner reg of it needs to be the one which is
302 represented by WEB. Returns the matching subweb or NULL. */
304 struct web *
305 find_subweb (web, reg)
306 struct web *web;
307 rtx reg;
309 struct web *w;
310 if (GET_CODE (reg) != SUBREG)
311 abort ();
312 for (w = web->subreg_next; w; w = w->subreg_next)
313 if (GET_MODE (w->orig_x) == GET_MODE (reg)
314 && SUBREG_BYTE (w->orig_x) == SUBREG_BYTE (reg))
315 return w;
316 return NULL;
319 /* Similar to find_subweb(), but matches according to SIZE_WORD,
320 a collection of the needed size and offset (in bytes). */
322 struct web *
323 find_subweb_2 (web, size_word)
324 struct web *web;
325 unsigned int size_word;
327 struct web *w = web;
328 if (size_word == GET_MODE_SIZE (GET_MODE (web->orig_x)))
329 /* size_word == size means BYTE_BEGIN(size_word) == 0. */
330 return web;
331 for (w = web->subreg_next; w; w = w->subreg_next)
333 unsigned int bl = rtx_to_bits (w->orig_x);
334 if (size_word == bl)
335 return w;
337 return NULL;
340 /* Returns the superweb for SUBWEB. */
342 struct web *
343 find_web_for_subweb_1 (subweb)
344 struct web *subweb;
346 while (subweb->parent_web)
347 subweb = subweb->parent_web;
348 return subweb;
351 /* Determine if two hard register sets intersect.
352 Return 1 if they do. */
355 hard_regs_intersect_p (a, b)
356 HARD_REG_SET *a, *b;
358 HARD_REG_SET c;
359 COPY_HARD_REG_SET (c, *a);
360 AND_HARD_REG_SET (c, *b);
361 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
362 return 1;
363 lose:
364 return 0;
367 /* Allocate and initialize the memory necessary for one pass of the
368 register allocator. */
370 static void
371 alloc_mem (df)
372 struct df *df;
374 int i;
375 ra_build_realloc (df);
376 if (!live_at_end)
378 live_at_end = xmalloc ((last_basic_block + 2) * sizeof (bitmap));
379 for (i = 0; i < last_basic_block + 2; i++)
380 live_at_end[i] = BITMAP_XMALLOC ();
381 live_at_end += 2;
383 create_insn_info (df);
386 /* Free the memory which isn't necessary for the next pass. */
388 static void
389 free_mem (df)
390 struct df *df ATTRIBUTE_UNUSED;
392 free_insn_info ();
393 ra_build_free ();
396 /* Free all memory allocated for the register allocator. Used, when
397 it's done. */
399 static void
400 free_all_mem (df)
401 struct df *df;
403 unsigned int i;
404 live_at_end -= 2;
405 for (i = 0; i < (unsigned)last_basic_block + 2; i++)
406 BITMAP_XFREE (live_at_end[i]);
407 free (live_at_end);
409 ra_colorize_free_all ();
410 ra_build_free_all (df);
411 obstack_free (&ra_obstack, NULL);
414 static long ticks_build;
415 static long ticks_rebuild;
417 /* Perform one pass of allocation. Returns nonzero, if some spill code
418 was added, i.e. if the allocator needs to rerun. */
420 static int
421 one_pass (df, rebuild)
422 struct df *df;
423 int rebuild;
425 long ticks = clock ();
426 int something_spilled;
427 remember_conflicts = 0;
429 /* Build the complete interference graph, or if this is not the first
430 pass, rebuild it incrementally. */
431 build_i_graph (df);
433 /* From now on, if we create new conflicts, we need to remember the
434 initial list of conflicts per web. */
435 remember_conflicts = 1;
436 if (!rebuild)
437 dump_igraph_machine ();
439 /* Colorize the I-graph. This results in either a list of
440 spilled_webs, in which case we need to run the spill phase, and
441 rerun the allocator, or that list is empty, meaning we are done. */
442 ra_colorize_graph (df);
444 last_max_uid = get_max_uid ();
445 /* actual_spill() might change WEBS(SPILLED) and even empty it,
446 so we need to remember it's state. */
447 something_spilled = !!WEBS(SPILLED);
449 /* Add spill code if necessary. */
450 if (something_spilled)
451 actual_spill ();
453 ticks = clock () - ticks;
454 if (rebuild)
455 ticks_rebuild += ticks;
456 else
457 ticks_build += ticks;
458 return something_spilled;
461 /* Initialize various arrays for the register allocator. */
463 static void
464 init_ra ()
466 int i;
467 HARD_REG_SET rs;
468 #ifdef ELIMINABLE_REGS
469 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
470 unsigned int j;
471 #endif
472 int need_fp
473 = (! flag_omit_frame_pointer
474 #ifdef EXIT_IGNORE_STACK
475 || (current_function_calls_alloca && EXIT_IGNORE_STACK)
476 #endif
477 || FRAME_POINTER_REQUIRED);
479 ra_colorize_init ();
481 /* We can't ever use any of the fixed regs. */
482 COPY_HARD_REG_SET (never_use_colors, fixed_reg_set);
484 /* Additionally don't even try to use hardregs, which we already
485 know are not eliminable. This includes also either the
486 hard framepointer or all regs which are eliminable into the
487 stack pointer, if need_fp is set. */
488 #ifdef ELIMINABLE_REGS
489 for (j = 0; j < ARRAY_SIZE (eliminables); j++)
491 if (! CAN_ELIMINATE (eliminables[j].from, eliminables[j].to)
492 || (eliminables[j].to == STACK_POINTER_REGNUM && need_fp))
493 for (i = HARD_REGNO_NREGS (eliminables[j].from, Pmode); i--;)
494 SET_HARD_REG_BIT (never_use_colors, eliminables[j].from + i);
496 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
497 if (need_fp)
498 for (i = HARD_REGNO_NREGS (HARD_FRAME_POINTER_REGNUM, Pmode); i--;)
499 SET_HARD_REG_BIT (never_use_colors, HARD_FRAME_POINTER_REGNUM + i);
500 #endif
502 #else
503 if (need_fp)
504 for (i = HARD_REGNO_NREGS (FRAME_POINTER_REGNUM, Pmode); i--;)
505 SET_HARD_REG_BIT (never_use_colors, FRAME_POINTER_REGNUM + i);
506 #endif
508 /* Stack and argument pointer are also rather useless to us. */
509 for (i = HARD_REGNO_NREGS (STACK_POINTER_REGNUM, Pmode); i--;)
510 SET_HARD_REG_BIT (never_use_colors, STACK_POINTER_REGNUM + i);
512 for (i = HARD_REGNO_NREGS (ARG_POINTER_REGNUM, Pmode); i--;)
513 SET_HARD_REG_BIT (never_use_colors, ARG_POINTER_REGNUM + i);
515 for (i = 0; i < 256; i++)
517 unsigned char byte = ((unsigned) i) & 0xFF;
518 unsigned char count = 0;
519 while (byte)
521 if (byte & 1)
522 count++;
523 byte >>= 1;
525 byte2bitcount[i] = count;
528 for (i = 0; i < N_REG_CLASSES; i++)
530 int size;
531 COPY_HARD_REG_SET (rs, reg_class_contents[i]);
532 AND_COMPL_HARD_REG_SET (rs, never_use_colors);
533 size = hard_regs_count (rs);
534 num_free_regs[i] = size;
535 COPY_HARD_REG_SET (usable_regs[i], rs);
538 /* Setup hardregs_for_mode[].
539 We are not interested only in the beginning of a multi-reg, but in
540 all the hardregs involved. Maybe HARD_REGNO_MODE_OK() only ok's
541 for beginnings. */
542 for (i = 0; i < NUM_MACHINE_MODES; i++)
544 int reg, size;
545 CLEAR_HARD_REG_SET (rs);
546 for (reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
547 if (HARD_REGNO_MODE_OK (reg, i)
548 /* Ignore VOIDmode and similar things. */
549 && (size = HARD_REGNO_NREGS (reg, i)) != 0
550 && (reg + size) <= FIRST_PSEUDO_REGISTER)
552 while (size--)
553 SET_HARD_REG_BIT (rs, reg + size);
555 COPY_HARD_REG_SET (hardregs_for_mode[i], rs);
558 CLEAR_HARD_REG_SET (invalid_mode_change_regs);
559 #ifdef CANNOT_CHANGE_MODE_CLASS
560 if (0)
561 for (i = 0; i < NUM_MACHINE_MODES; i++)
563 enum machine_mode from = (enum machine_mode) i;
564 enum machine_mode to;
565 for (to = VOIDmode; to < MAX_MACHINE_MODE; ++to)
567 int r;
568 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
569 if (REG_CANNOT_CHANGE_MODE_P (from, to, r))
570 SET_HARD_REG_BIT (invalid_mode_change_regs, r);
573 #endif
575 for (an_unusable_color = 0; an_unusable_color < FIRST_PSEUDO_REGISTER;
576 an_unusable_color++)
577 if (TEST_HARD_REG_BIT (never_use_colors, an_unusable_color))
578 break;
579 if (an_unusable_color == FIRST_PSEUDO_REGISTER)
580 abort ();
582 orig_max_uid = get_max_uid ();
583 compute_bb_for_insn ();
584 ra_reg_renumber = NULL;
585 insns_with_deaths = sbitmap_alloc (orig_max_uid);
586 death_insns_max_uid = orig_max_uid;
587 sbitmap_ones (insns_with_deaths);
588 gcc_obstack_init (&ra_obstack);
591 /* Check the consistency of DF. This aborts if it violates some
592 invariances we expect. */
594 static void
595 check_df (df)
596 struct df *df;
598 struct df_link *link;
599 rtx insn;
600 int regno;
601 unsigned int ui;
602 bitmap b = BITMAP_XMALLOC ();
603 bitmap empty_defs = BITMAP_XMALLOC ();
604 bitmap empty_uses = BITMAP_XMALLOC ();
606 /* Collect all the IDs of NULL references in the ID->REF arrays,
607 as df.c leaves them when updating the df structure. */
608 for (ui = 0; ui < df->def_id; ui++)
609 if (!df->defs[ui])
610 bitmap_set_bit (empty_defs, ui);
611 for (ui = 0; ui < df->use_id; ui++)
612 if (!df->uses[ui])
613 bitmap_set_bit (empty_uses, ui);
615 /* For each insn we check if the chain of references contain each
616 ref only once, doesn't contain NULL refs, or refs whose ID is invalid
617 (it df->refs[id] element is NULL). */
618 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
619 if (INSN_P (insn))
621 bitmap_clear (b);
622 for (link = DF_INSN_DEFS (df, insn); link; link = link->next)
623 if (!link->ref || bitmap_bit_p (empty_defs, DF_REF_ID (link->ref))
624 || bitmap_bit_p (b, DF_REF_ID (link->ref)))
625 abort ();
626 else
627 bitmap_set_bit (b, DF_REF_ID (link->ref));
629 bitmap_clear (b);
630 for (link = DF_INSN_USES (df, insn); link; link = link->next)
631 if (!link->ref || bitmap_bit_p (empty_uses, DF_REF_ID (link->ref))
632 || bitmap_bit_p (b, DF_REF_ID (link->ref)))
633 abort ();
634 else
635 bitmap_set_bit (b, DF_REF_ID (link->ref));
638 /* Now the same for the chains per register number. */
639 for (regno = 0; regno < max_reg_num (); regno++)
641 bitmap_clear (b);
642 for (link = df->regs[regno].defs; link; link = link->next)
643 if (!link->ref || bitmap_bit_p (empty_defs, DF_REF_ID (link->ref))
644 || bitmap_bit_p (b, DF_REF_ID (link->ref)))
645 abort ();
646 else
647 bitmap_set_bit (b, DF_REF_ID (link->ref));
649 bitmap_clear (b);
650 for (link = df->regs[regno].uses; link; link = link->next)
651 if (!link->ref || bitmap_bit_p (empty_uses, DF_REF_ID (link->ref))
652 || bitmap_bit_p (b, DF_REF_ID (link->ref)))
653 abort ();
654 else
655 bitmap_set_bit (b, DF_REF_ID (link->ref));
658 BITMAP_XFREE (empty_uses);
659 BITMAP_XFREE (empty_defs);
660 BITMAP_XFREE (b);
663 /* Main register allocator entry point. */
665 void
666 reg_alloc ()
668 int changed;
669 FILE *ra_dump_file = rtl_dump_file;
670 rtx last = get_last_insn ();
672 if (! INSN_P (last))
673 last = prev_real_insn (last);
674 /* If this is an empty function we shouldn't do all the following,
675 but instead just setup what's necessary, and return. */
677 /* We currently rely on the existence of the return value USE as
678 one of the last insns. Add it if it's not there anymore. */
679 if (last)
681 edge e;
682 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
684 basic_block bb = e->src;
685 last = bb->end;
686 if (!INSN_P (last) || GET_CODE (PATTERN (last)) != USE)
688 rtx insns;
689 start_sequence ();
690 use_return_register ();
691 insns = get_insns ();
692 end_sequence ();
693 emit_insn_after (insns, last);
698 /* Setup debugging levels. */
699 switch (0)
701 /* Some useful presets of the debug level, I often use. */
702 case 0: debug_new_regalloc = DUMP_EVER; break;
703 case 1: debug_new_regalloc = DUMP_COSTS; break;
704 case 2: debug_new_regalloc = DUMP_IGRAPH_M; break;
705 case 3: debug_new_regalloc = DUMP_COLORIZE + DUMP_COSTS; break;
706 case 4: debug_new_regalloc = DUMP_COLORIZE + DUMP_COSTS + DUMP_WEBS;
707 break;
708 case 5: debug_new_regalloc = DUMP_FINAL_RTL + DUMP_COSTS +
709 DUMP_CONSTRAINTS;
710 break;
711 case 6: debug_new_regalloc = DUMP_VALIDIFY; break;
713 if (!rtl_dump_file)
714 debug_new_regalloc = 0;
716 /* Run regclass first, so we know the preferred and alternate classes
717 for each pseudo. Deactivate emitting of debug info, if it's not
718 explicitly requested. */
719 if ((debug_new_regalloc & DUMP_REGCLASS) == 0)
720 rtl_dump_file = NULL;
721 regclass (get_insns (), max_reg_num (), rtl_dump_file);
722 rtl_dump_file = ra_dump_file;
724 /* We don't use those NOTEs, and as we anyway change all registers,
725 they only make problems later. */
726 count_or_remove_death_notes (NULL, 1);
728 /* Initialize the different global arrays and regsets. */
729 init_ra ();
731 /* And some global variables. */
732 ra_pass = 0;
733 no_new_pseudos = 0;
734 max_normal_pseudo = (unsigned) max_reg_num ();
735 ra_rewrite_init ();
736 last_def_id = 0;
737 last_use_id = 0;
738 last_num_webs = 0;
739 last_max_uid = 0;
740 last_check_uses = NULL;
741 live_at_end = NULL;
742 WEBS(INITIAL) = NULL;
743 WEBS(FREE) = NULL;
744 memset (hardreg2web, 0, sizeof (hardreg2web));
745 ticks_build = ticks_rebuild = 0;
747 /* The default is to use optimistic coalescing with interference
748 region spilling, without biased coloring. */
749 flag_ra_biased = 0;
750 flag_ra_spill_every_use = 0;
751 flag_ra_improved_spilling = 1;
752 flag_ra_ir_spilling = 1;
753 flag_ra_break_aliases = 0;
754 flag_ra_optimistic_coalescing = 1;
755 flag_ra_merge_spill_costs = 1;
756 if (flag_ra_optimistic_coalescing)
757 flag_ra_break_aliases = 1;
758 flag_ra_dump_notes = 0;
760 /* Allocate the global df structure. */
761 df = df_init ();
763 /* This is the main loop, calling one_pass as long as there are still
764 some spilled webs. */
767 ra_debug_msg (DUMP_NEARLY_EVER, "RegAlloc Pass %d\n\n", ra_pass);
768 if (ra_pass++ > 40)
769 internal_error ("Didn't find a coloring.\n");
771 /* First collect all the register refs and put them into
772 chains per insn, and per regno. In later passes only update
773 that info from the new and modified insns. */
774 df_analyse (df, (ra_pass == 1) ? 0 : (bitmap) -1,
775 DF_HARD_REGS | DF_RD_CHAIN | DF_RU_CHAIN | DF_FOR_REGALLOC);
777 if ((debug_new_regalloc & DUMP_DF) != 0)
779 rtx insn;
780 df_dump (df, DF_HARD_REGS, rtl_dump_file);
781 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
782 if (INSN_P (insn))
783 df_insn_debug_regno (df, insn, rtl_dump_file);
785 check_df (df);
787 /* Now allocate the memory needed for this pass, or (if it's not the
788 first pass), reallocate only additional memory. */
789 alloc_mem (df);
791 /* Build and colorize the interference graph, and possibly emit
792 spill insns. This also might delete certain move insns. */
793 changed = one_pass (df, ra_pass > 1);
795 /* If that produced no changes, the graph was colorizable. */
796 if (!changed)
798 /* Change the insns to refer to the new pseudos (one per web). */
799 emit_colors (df);
800 /* Already setup a preliminary reg_renumber[] array, but don't
801 free our own version. reg_renumber[] will again be destroyed
802 later. We right now need it in dump_constraints() for
803 constrain_operands(1) whose subproc sometimes reference
804 it (because we are checking strictly, i.e. as if
805 after reload). */
806 setup_renumber (0);
807 /* Delete some more of the coalesced moves. */
808 delete_moves ();
809 dump_constraints ();
811 else
813 /* If there were changes, this means spill code was added,
814 therefore repeat some things, including some initialization
815 of global data structures. */
816 if ((debug_new_regalloc & DUMP_REGCLASS) == 0)
817 rtl_dump_file = NULL;
818 /* We have new pseudos (the stackwebs). */
819 allocate_reg_info (max_reg_num (), FALSE, FALSE);
820 /* And new insns. */
821 compute_bb_for_insn ();
822 /* Some of them might be dead. */
823 delete_trivially_dead_insns (get_insns (), max_reg_num ());
824 /* Those new pseudos need to have their REFS count set. */
825 reg_scan_update (get_insns (), NULL, max_regno);
826 max_regno = max_reg_num ();
827 /* And they need useful classes too. */
828 regclass (get_insns (), max_reg_num (), rtl_dump_file);
829 rtl_dump_file = ra_dump_file;
831 /* Remember the number of defs and uses, so we can distinguish
832 new from old refs in the next pass. */
833 last_def_id = df->def_id;
834 last_use_id = df->use_id;
837 /* Output the graph, and possibly the current insn sequence. */
838 dump_ra (df);
839 if (changed && (debug_new_regalloc & DUMP_RTL) != 0)
841 ra_print_rtl_with_bb (rtl_dump_file, get_insns ());
842 fflush (rtl_dump_file);
845 /* Reset the web lists. */
846 reset_lists ();
847 free_mem (df);
849 while (changed);
851 /* We are done with allocation, free all memory and output some
852 debug info. */
853 free_all_mem (df);
854 df_finish (df);
855 if ((debug_new_regalloc & DUMP_RESULTS) == 0)
856 dump_cost (DUMP_COSTS);
857 ra_debug_msg (DUMP_COSTS, "ticks for build-phase: %ld\n", ticks_build);
858 ra_debug_msg (DUMP_COSTS, "ticks for rebuild-phase: %ld\n", ticks_rebuild);
859 if ((debug_new_regalloc & (DUMP_FINAL_RTL | DUMP_RTL)) != 0)
860 ra_print_rtl_with_bb (rtl_dump_file, get_insns ());
862 /* We might have new pseudos, so allocate the info arrays for them. */
863 if ((debug_new_regalloc & DUMP_SM) == 0)
864 rtl_dump_file = NULL;
865 no_new_pseudos = 0;
866 allocate_reg_info (max_reg_num (), FALSE, FALSE);
867 no_new_pseudos = 1;
868 rtl_dump_file = ra_dump_file;
870 /* Some spill insns could've been inserted after trapping calls, i.e.
871 at the end of a basic block, which really ends at that call.
872 Fixup that breakages by adjusting basic block boundaries. */
873 fixup_abnormal_edges ();
875 /* Cleanup the flow graph. */
876 if ((debug_new_regalloc & DUMP_LAST_FLOW) == 0)
877 rtl_dump_file = NULL;
878 life_analysis (get_insns (), rtl_dump_file,
879 PROP_DEATH_NOTES | PROP_LOG_LINKS | PROP_REG_INFO);
880 cleanup_cfg (CLEANUP_EXPENSIVE);
881 recompute_reg_usage (get_insns (), TRUE);
882 if (rtl_dump_file)
883 dump_flow_info (rtl_dump_file);
884 rtl_dump_file = ra_dump_file;
886 /* update_equiv_regs() can't be called after register allocation.
887 It might delete some pseudos, and insert other insns setting
888 up those pseudos in different places. This of course screws up
889 the allocation because that may destroy a hardreg for another
890 pseudo.
891 XXX we probably should do something like that on our own. I.e.
892 creating REG_EQUIV notes. */
893 /*update_equiv_regs ();*/
895 /* Setup the reg_renumber[] array for reload. */
896 setup_renumber (1);
897 sbitmap_free (insns_with_deaths);
899 /* Remove REG_DEAD notes which are incorrectly set. See the docu
900 of that function. */
901 remove_suspicious_death_notes ();
903 if ((debug_new_regalloc & DUMP_LAST_RTL) != 0)
904 ra_print_rtl_with_bb (rtl_dump_file, get_insns ());
905 dump_static_insn_cost (rtl_dump_file,
906 "after allocation/spilling, before reload", NULL);
908 /* Allocate the reg_equiv_memory_loc array for reload. */
909 reg_equiv_memory_loc = xcalloc (max_regno, sizeof (rtx));
910 /* And possibly initialize it. */
911 allocate_initial_values (reg_equiv_memory_loc);
912 /* And one last regclass pass just before reload. */
913 regclass (get_insns (), max_reg_num (), rtl_dump_file);
917 vim:cinoptions={.5s,g0,p5,t0,(0,^-0.5s,n-0.5s:tw=78:cindent:sw=4: