1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 /* This is the pathetic reminder of old fame of the jump-optimization pass
23 of the compiler. Now it contains basically set of utility function to
26 Each CODE_LABEL has a count of the times it is used
27 stored in the LABEL_NUSES internal field, and each JUMP_INSN
28 has one label that it refers to stored in the
29 JUMP_LABEL internal field. With this we can detect labels that
30 become unused because of the deletion of all the jumps that
31 formerly used them. The JUMP_LABEL info is sometimes looked
34 The subroutines delete_insn, redirect_jump, and invert_jump are used
35 from other passes as well. */
39 #include "coretypes.h"
44 #include "hard-reg-set.h"
46 #include "insn-config.h"
47 #include "insn-attr.h"
53 #include "diagnostic.h"
59 /* Optimize jump y; x: ... y: jumpif... x?
60 Don't know if it is worth bothering with. */
61 /* Optimize two cases of conditional jump to conditional jump?
62 This can never delete any instruction or make anything dead,
63 or even change what is live at any point.
64 So perhaps let combiner do it. */
66 static rtx
next_nonnote_insn_in_loop (rtx
);
67 static void init_label_info (rtx
);
68 static void mark_all_labels (rtx
);
69 static int duplicate_loop_exit_test (rtx
);
70 static void delete_computation (rtx
);
71 static void redirect_exp_1 (rtx
*, rtx
, rtx
, rtx
);
72 static int redirect_exp (rtx
, rtx
, rtx
);
73 static void invert_exp_1 (rtx
);
74 static int invert_exp (rtx
);
75 static int returnjump_p_1 (rtx
*, void *);
76 static void delete_prior_computation (rtx
, rtx
);
78 /* Alternate entry into the jump optimizer. This entry point only rebuilds
79 the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
82 rebuild_jump_labels (rtx f
)
86 timevar_push (TV_REBUILD_JUMP
);
90 /* Keep track of labels used from static data; we don't track them
91 closely enough to delete them here, so make sure their reference
92 count doesn't drop to zero. */
94 for (insn
= forced_labels
; insn
; insn
= XEXP (insn
, 1))
95 if (GET_CODE (XEXP (insn
, 0)) == CODE_LABEL
)
96 LABEL_NUSES (XEXP (insn
, 0))++;
97 timevar_pop (TV_REBUILD_JUMP
);
100 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
101 non-fallthru insn. This is not generally true, as multiple barriers
102 may have crept in, or the BARRIER may be separated from the last
103 real insn by one or more NOTEs.
105 This simple pass moves barriers and removes duplicates so that the
109 cleanup_barriers (void)
111 rtx insn
, next
, prev
;
112 for (insn
= get_insns (); insn
; insn
= next
)
114 next
= NEXT_INSN (insn
);
115 if (GET_CODE (insn
) == BARRIER
)
117 prev
= prev_nonnote_insn (insn
);
118 if (GET_CODE (prev
) == BARRIER
)
119 delete_barrier (insn
);
120 else if (prev
!= PREV_INSN (insn
))
121 reorder_insns (insn
, insn
, prev
);
126 /* Return the next insn after INSN that is not a NOTE and is in the loop,
127 i.e. when there is no such INSN before NOTE_INSN_LOOP_END return NULL_RTX.
128 This routine does not look inside SEQUENCEs. */
131 next_nonnote_insn_in_loop (rtx insn
)
135 insn
= NEXT_INSN (insn
);
136 if (insn
== 0 || GET_CODE (insn
) != NOTE
)
138 if (GET_CODE (insn
) == NOTE
139 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
)
147 copy_loop_headers (rtx f
)
150 /* Now iterate optimizing jumps until nothing changes over one pass. */
151 for (insn
= f
; insn
; insn
= next
)
155 next
= NEXT_INSN (insn
);
157 /* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
158 jump. Try to optimize by duplicating the loop exit test if so.
159 This is only safe immediately after regscan, because it uses
160 the values of regno_first_uid and regno_last_uid. */
161 if (GET_CODE (insn
) == NOTE
162 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
163 && (temp1
= next_nonnote_insn_in_loop (insn
)) != 0
164 && any_uncondjump_p (temp1
) && onlyjump_p (temp1
))
166 temp
= PREV_INSN (insn
);
167 if (duplicate_loop_exit_test (insn
))
169 next
= NEXT_INSN (temp
);
176 purge_line_number_notes (rtx f
)
180 /* Delete extraneous line number notes.
181 Note that two consecutive notes for different lines are not really
182 extraneous. There should be some indication where that line belonged,
183 even if it became empty. */
185 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
186 if (GET_CODE (insn
) == NOTE
)
188 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_FUNCTION_BEG
)
189 /* Any previous line note was for the prologue; gdb wants a new
190 note after the prologue even if it is for the same line. */
191 last_note
= NULL_RTX
;
192 else if (NOTE_LINE_NUMBER (insn
) >= 0)
194 /* Delete this note if it is identical to previous note. */
196 && NOTE_SOURCE_FILE (insn
) == NOTE_SOURCE_FILE (last_note
)
197 && NOTE_LINE_NUMBER (insn
) == NOTE_LINE_NUMBER (last_note
))
199 delete_related_insns (insn
);
208 /* Initialize LABEL_NUSES and JUMP_LABEL fields. Delete any REG_LABEL
209 notes whose labels don't occur in the insn any more. Returns the
210 largest INSN_UID found. */
212 init_label_info (rtx f
)
216 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
217 if (GET_CODE (insn
) == CODE_LABEL
)
218 LABEL_NUSES (insn
) = (LABEL_PRESERVE_P (insn
) != 0);
219 else if (GET_CODE (insn
) == JUMP_INSN
)
220 JUMP_LABEL (insn
) = 0;
221 else if (GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == CALL_INSN
)
225 for (note
= REG_NOTES (insn
); note
; note
= next
)
227 next
= XEXP (note
, 1);
228 if (REG_NOTE_KIND (note
) == REG_LABEL
229 && ! reg_mentioned_p (XEXP (note
, 0), PATTERN (insn
)))
230 remove_note (insn
, note
);
235 /* Mark the label each jump jumps to.
236 Combine consecutive labels, and count uses of labels. */
239 mark_all_labels (rtx f
)
243 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
246 if (GET_CODE (insn
) == CALL_INSN
247 && GET_CODE (PATTERN (insn
)) == CALL_PLACEHOLDER
)
249 mark_all_labels (XEXP (PATTERN (insn
), 0));
250 mark_all_labels (XEXP (PATTERN (insn
), 1));
251 mark_all_labels (XEXP (PATTERN (insn
), 2));
253 /* Canonicalize the tail recursion label attached to the
254 CALL_PLACEHOLDER insn. */
255 if (XEXP (PATTERN (insn
), 3))
257 rtx label_ref
= gen_rtx_LABEL_REF (VOIDmode
,
258 XEXP (PATTERN (insn
), 3));
259 mark_jump_label (label_ref
, insn
, 0);
260 XEXP (PATTERN (insn
), 3) = XEXP (label_ref
, 0);
266 mark_jump_label (PATTERN (insn
), insn
, 0);
267 if (! INSN_DELETED_P (insn
) && GET_CODE (insn
) == JUMP_INSN
)
269 /* When we know the LABEL_REF contained in a REG used in
270 an indirect jump, we'll have a REG_LABEL note so that
271 flow can tell where it's going. */
272 if (JUMP_LABEL (insn
) == 0)
274 rtx label_note
= find_reg_note (insn
, REG_LABEL
, NULL_RTX
);
277 /* But a LABEL_REF around the REG_LABEL note, so
278 that we can canonicalize it. */
279 rtx label_ref
= gen_rtx_LABEL_REF (VOIDmode
,
280 XEXP (label_note
, 0));
282 mark_jump_label (label_ref
, insn
, 0);
283 XEXP (label_note
, 0) = XEXP (label_ref
, 0);
284 JUMP_LABEL (insn
) = XEXP (label_note
, 0);
291 /* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
292 jump. Assume that this unconditional jump is to the exit test code. If
293 the code is sufficiently simple, make a copy of it before INSN,
294 followed by a jump to the exit of the loop. Then delete the unconditional
297 Return 1 if we made the change, else 0.
299 This is only safe immediately after a regscan pass because it uses the
300 values of regno_first_uid and regno_last_uid. */
303 duplicate_loop_exit_test (rtx loop_start
)
305 rtx insn
, set
, reg
, p
, link
;
306 rtx copy
= 0, first_copy
= 0;
309 = NEXT_INSN (JUMP_LABEL (next_nonnote_insn_in_loop (loop_start
)));
311 int max_reg
= max_reg_num ();
313 rtx loop_pre_header_label
;
315 /* Scan the exit code. We do not perform this optimization if any insn:
319 has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
320 is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
322 We also do not do this if we find an insn with ASM_OPERANDS. While
323 this restriction should not be necessary, copying an insn with
324 ASM_OPERANDS can confuse asm_noperands in some cases.
326 Also, don't do this if the exit code is more than 20 insns. */
328 for (insn
= exitcode
;
330 && ! (GET_CODE (insn
) == NOTE
331 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
);
332 insn
= NEXT_INSN (insn
))
334 switch (GET_CODE (insn
))
342 && (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_BEG
343 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_END
))
344 /* If we were to duplicate this code, we would not move
345 the BLOCK notes, and so debugging the moved code would
346 be difficult. Thus, we only move the code with -O2 or
354 || find_reg_note (insn
, REG_RETVAL
, NULL_RTX
)
355 || find_reg_note (insn
, REG_LIBCALL
, NULL_RTX
))
363 /* Unless INSN is zero, we can do the optimization. */
369 /* See if any insn sets a register only used in the loop exit code and
370 not a user variable. If so, replace it with a new register. */
371 for (insn
= exitcode
; insn
!= lastexit
; insn
= NEXT_INSN (insn
))
372 if (GET_CODE (insn
) == INSN
373 && (set
= single_set (insn
)) != 0
374 && ((reg
= SET_DEST (set
), GET_CODE (reg
) == REG
)
375 || (GET_CODE (reg
) == SUBREG
376 && (reg
= SUBREG_REG (reg
), GET_CODE (reg
) == REG
)))
377 && REGNO (reg
) >= FIRST_PSEUDO_REGISTER
378 && REGNO_FIRST_UID (REGNO (reg
)) == INSN_UID (insn
))
380 for (p
= NEXT_INSN (insn
); p
!= lastexit
; p
= NEXT_INSN (p
))
381 if (REGNO_LAST_UID (REGNO (reg
)) == INSN_UID (p
))
386 /* We can do the replacement. Allocate reg_map if this is the
387 first replacement we found. */
389 reg_map
= xcalloc (max_reg
, sizeof (rtx
));
391 REG_LOOP_TEST_P (reg
) = 1;
393 reg_map
[REGNO (reg
)] = gen_reg_rtx (GET_MODE (reg
));
396 loop_pre_header_label
= gen_label_rtx ();
398 /* Now copy each insn. */
399 for (insn
= exitcode
; insn
!= lastexit
; insn
= NEXT_INSN (insn
))
401 switch (GET_CODE (insn
))
404 copy
= emit_barrier_before (loop_start
);
407 /* Only copy line-number notes. */
408 if (NOTE_LINE_NUMBER (insn
) >= 0)
410 copy
= emit_note_before (NOTE_LINE_NUMBER (insn
), loop_start
);
411 NOTE_SOURCE_FILE (copy
) = NOTE_SOURCE_FILE (insn
);
416 copy
= emit_insn_before (copy_insn (PATTERN (insn
)), loop_start
);
418 replace_regs (PATTERN (copy
), reg_map
, max_reg
, 1);
420 mark_jump_label (PATTERN (copy
), copy
, 0);
421 INSN_LOCATOR (copy
) = INSN_LOCATOR (insn
);
423 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
425 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
426 if (REG_NOTE_KIND (link
) != REG_LABEL
)
428 if (GET_CODE (link
) == EXPR_LIST
)
430 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link
),
435 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link
),
440 if (reg_map
&& REG_NOTES (copy
))
441 replace_regs (REG_NOTES (copy
), reg_map
, max_reg
, 1);
445 copy
= emit_jump_insn_before (copy_insn (PATTERN (insn
)),
447 INSN_LOCATOR (copy
) = INSN_LOCATOR (insn
);
449 replace_regs (PATTERN (copy
), reg_map
, max_reg
, 1);
450 mark_jump_label (PATTERN (copy
), copy
, 0);
451 if (REG_NOTES (insn
))
453 REG_NOTES (copy
) = copy_insn_1 (REG_NOTES (insn
));
455 replace_regs (REG_NOTES (copy
), reg_map
, max_reg
, 1);
458 /* Predict conditional jump that do make loop looping as taken.
459 Other jumps are probably exit conditions, so predict
461 if (any_condjump_p (copy
))
463 rtx label
= JUMP_LABEL (copy
);
466 /* The jump_insn after loop_start should be followed
467 by barrier and loopback label. */
468 if (prev_nonnote_insn (label
)
469 && (prev_nonnote_insn (prev_nonnote_insn (label
))
470 == next_nonnote_insn (loop_start
)))
472 predict_insn_def (copy
, PRED_LOOP_HEADER
, TAKEN
);
473 /* To keep pre-header, we need to redirect all loop
474 entrances before the LOOP_BEG note. */
475 redirect_jump (copy
, loop_pre_header_label
, 0);
478 predict_insn_def (copy
, PRED_LOOP_HEADER
, NOT_TAKEN
);
487 /* Record the first insn we copied. We need it so that we can
488 scan the copied insns for new pseudo registers. */
493 /* Now clean up by emitting a jump to the end label and deleting the jump
494 at the start of the loop. */
495 if (! copy
|| GET_CODE (copy
) != BARRIER
)
497 copy
= emit_jump_insn_before (gen_jump (get_label_after (insn
)),
500 /* Record the first insn we copied. We need it so that we can
501 scan the copied insns for new pseudo registers. This may not
502 be strictly necessary since we should have copied at least one
503 insn above. But I am going to be safe. */
507 mark_jump_label (PATTERN (copy
), copy
, 0);
508 emit_barrier_before (loop_start
);
511 emit_label_before (loop_pre_header_label
, loop_start
);
513 /* Now scan from the first insn we copied to the last insn we copied
514 (copy) for new pseudo registers. Do this after the code to jump to
515 the end label since that might create a new pseudo too. */
516 reg_scan_update (first_copy
, copy
, max_reg
);
518 /* Mark the exit code as the virtual top of the converted loop. */
519 emit_note_before (NOTE_INSN_LOOP_VTOP
, exitcode
);
521 delete_related_insns (next_nonnote_insn (loop_start
));
530 /* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, loop-end,
531 notes between START and END out before START. START and END may be such
532 notes. Returns the values of the new starting and ending insns, which
533 may be different if the original ones were such notes.
534 Return true if there were only such notes and no real instructions. */
537 squeeze_notes (rtx
* startp
, rtx
* endp
)
545 rtx past_end
= NEXT_INSN (end
);
547 for (insn
= start
; insn
!= past_end
; insn
= next
)
549 next
= NEXT_INSN (insn
);
550 if (GET_CODE (insn
) == NOTE
551 && (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_END
552 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BLOCK_BEG
553 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
554 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_END
555 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_CONT
556 || NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_VTOP
))
562 rtx prev
= PREV_INSN (insn
);
563 PREV_INSN (insn
) = PREV_INSN (start
);
564 NEXT_INSN (insn
) = start
;
565 NEXT_INSN (PREV_INSN (insn
)) = insn
;
566 PREV_INSN (NEXT_INSN (insn
)) = insn
;
567 NEXT_INSN (prev
) = next
;
568 PREV_INSN (next
) = prev
;
575 /* There were no real instructions. */
576 if (start
== past_end
)
586 /* Return the label before INSN, or put a new label there. */
589 get_label_before (rtx insn
)
593 /* Find an existing label at this point
594 or make a new one if there is none. */
595 label
= prev_nonnote_insn (insn
);
597 if (label
== 0 || GET_CODE (label
) != CODE_LABEL
)
599 rtx prev
= PREV_INSN (insn
);
601 label
= gen_label_rtx ();
602 emit_label_after (label
, prev
);
603 LABEL_NUSES (label
) = 0;
608 /* Return the label after INSN, or put a new label there. */
611 get_label_after (rtx insn
)
615 /* Find an existing label at this point
616 or make a new one if there is none. */
617 label
= next_nonnote_insn (insn
);
619 if (label
== 0 || GET_CODE (label
) != CODE_LABEL
)
621 label
= gen_label_rtx ();
622 emit_label_after (label
, insn
);
623 LABEL_NUSES (label
) = 0;
628 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
629 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
630 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
631 know whether it's source is floating point or integer comparison. Machine
632 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
633 to help this function avoid overhead in these cases. */
635 reversed_comparison_code_parts (enum rtx_code code
, rtx arg0
, rtx arg1
, rtx insn
)
637 enum machine_mode mode
;
639 /* If this is not actually a comparison, we can't reverse it. */
640 if (GET_RTX_CLASS (code
) != '<')
643 mode
= GET_MODE (arg0
);
644 if (mode
== VOIDmode
)
645 mode
= GET_MODE (arg1
);
647 /* First see if machine description supply us way to reverse the comparison.
648 Give it priority over everything else to allow machine description to do
650 #ifdef REVERSIBLE_CC_MODE
651 if (GET_MODE_CLASS (mode
) == MODE_CC
652 && REVERSIBLE_CC_MODE (mode
))
654 #ifdef REVERSE_CONDITION
655 return REVERSE_CONDITION (code
, mode
);
657 return reverse_condition (code
);
661 /* Try a few special cases based on the comparison code. */
670 /* It is always safe to reverse EQ and NE, even for the floating
671 point. Similarly the unsigned comparisons are never used for
672 floating point so we can reverse them in the default way. */
673 return reverse_condition (code
);
678 /* In case we already see unordered comparison, we can be sure to
679 be dealing with floating point so we don't need any more tests. */
680 return reverse_condition_maybe_unordered (code
);
685 /* We don't have safe way to reverse these yet. */
691 if (GET_MODE_CLASS (mode
) == MODE_CC
|| CC0_P (arg0
))
694 /* Try to search for the comparison to determine the real mode.
695 This code is expensive, but with sane machine description it
696 will be never used, since REVERSIBLE_CC_MODE will return true
701 for (prev
= prev_nonnote_insn (insn
);
702 prev
!= 0 && GET_CODE (prev
) != CODE_LABEL
;
703 prev
= prev_nonnote_insn (prev
))
705 rtx set
= set_of (arg0
, prev
);
706 if (set
&& GET_CODE (set
) == SET
707 && rtx_equal_p (SET_DEST (set
), arg0
))
709 rtx src
= SET_SRC (set
);
711 if (GET_CODE (src
) == COMPARE
)
713 rtx comparison
= src
;
714 arg0
= XEXP (src
, 0);
715 mode
= GET_MODE (arg0
);
716 if (mode
== VOIDmode
)
717 mode
= GET_MODE (XEXP (comparison
, 1));
720 /* We can get past reg-reg moves. This may be useful for model
721 of i387 comparisons that first move flag registers around. */
728 /* If register is clobbered in some ununderstandable way,
735 /* Test for an integer condition, or a floating-point comparison
736 in which NaNs can be ignored. */
737 if (GET_CODE (arg0
) == CONST_INT
738 || (GET_MODE (arg0
) != VOIDmode
739 && GET_MODE_CLASS (mode
) != MODE_CC
740 && !HONOR_NANS (mode
)))
741 return reverse_condition (code
);
746 /* A wrapper around the previous function to take COMPARISON as rtx
747 expression. This simplifies many callers. */
749 reversed_comparison_code (rtx comparison
, rtx insn
)
751 if (GET_RTX_CLASS (GET_CODE (comparison
)) != '<')
753 return reversed_comparison_code_parts (GET_CODE (comparison
),
754 XEXP (comparison
, 0),
755 XEXP (comparison
, 1), insn
);
758 /* Given an rtx-code for a comparison, return the code for the negated
759 comparison. If no such code exists, return UNKNOWN.
761 WATCH OUT! reverse_condition is not safe to use on a jump that might
762 be acting on the results of an IEEE floating point comparison, because
763 of the special treatment of non-signaling nans in comparisons.
764 Use reversed_comparison_code instead. */
767 reverse_condition (enum rtx_code code
)
809 /* Similar, but we're allowed to generate unordered comparisons, which
810 makes it safe for IEEE floating-point. Of course, we have to recognize
811 that the target will support them too... */
814 reverse_condition_maybe_unordered (enum rtx_code code
)
852 /* Similar, but return the code when two operands of a comparison are swapped.
853 This IS safe for IEEE floating-point. */
856 swap_condition (enum rtx_code code
)
898 /* Given a comparison CODE, return the corresponding unsigned comparison.
899 If CODE is an equality comparison or already an unsigned comparison,
903 unsigned_condition (enum rtx_code code
)
929 /* Similarly, return the signed version of a comparison. */
932 signed_condition (enum rtx_code code
)
958 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
959 truth of CODE1 implies the truth of CODE2. */
962 comparison_dominates_p (enum rtx_code code1
, enum rtx_code code2
)
964 /* UNKNOWN comparison codes can happen as a result of trying to revert
966 They can't match anything, so we have to reject them here. */
967 if (code1
== UNKNOWN
|| code2
== UNKNOWN
)
976 if (code2
== UNLE
|| code2
== UNGE
)
981 if (code2
== LE
|| code2
== LEU
|| code2
== GE
|| code2
== GEU
987 if (code2
== UNLE
|| code2
== NE
)
992 if (code2
== LE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
997 if (code2
== UNGE
|| code2
== NE
)
1002 if (code2
== GE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
1008 if (code2
== ORDERED
)
1013 if (code2
== NE
|| code2
== ORDERED
)
1018 if (code2
== LEU
|| code2
== NE
)
1023 if (code2
== GEU
|| code2
== NE
)
1028 if (code2
== NE
|| code2
== UNEQ
|| code2
== UNLE
|| code2
== UNLT
1029 || code2
== UNGE
|| code2
== UNGT
)
1040 /* Return 1 if INSN is an unconditional jump and nothing else. */
1043 simplejump_p (rtx insn
)
1045 return (GET_CODE (insn
) == JUMP_INSN
1046 && GET_CODE (PATTERN (insn
)) == SET
1047 && GET_CODE (SET_DEST (PATTERN (insn
))) == PC
1048 && GET_CODE (SET_SRC (PATTERN (insn
))) == LABEL_REF
);
1051 /* Return nonzero if INSN is a (possibly) conditional jump
1054 Use this function is deprecated, since we need to support combined
1055 branch and compare insns. Use any_condjump_p instead whenever possible. */
1058 condjump_p (rtx insn
)
1060 rtx x
= PATTERN (insn
);
1062 if (GET_CODE (x
) != SET
1063 || GET_CODE (SET_DEST (x
)) != PC
)
1067 if (GET_CODE (x
) == LABEL_REF
)
1070 return (GET_CODE (x
) == IF_THEN_ELSE
1071 && ((GET_CODE (XEXP (x
, 2)) == PC
1072 && (GET_CODE (XEXP (x
, 1)) == LABEL_REF
1073 || GET_CODE (XEXP (x
, 1)) == RETURN
))
1074 || (GET_CODE (XEXP (x
, 1)) == PC
1075 && (GET_CODE (XEXP (x
, 2)) == LABEL_REF
1076 || GET_CODE (XEXP (x
, 2)) == RETURN
))));
1081 /* Return nonzero if INSN is a (possibly) conditional jump inside a
1084 Use this function is deprecated, since we need to support combined
1085 branch and compare insns. Use any_condjump_p instead whenever possible. */
1088 condjump_in_parallel_p (rtx insn
)
1090 rtx x
= PATTERN (insn
);
1092 if (GET_CODE (x
) != PARALLEL
)
1095 x
= XVECEXP (x
, 0, 0);
1097 if (GET_CODE (x
) != SET
)
1099 if (GET_CODE (SET_DEST (x
)) != PC
)
1101 if (GET_CODE (SET_SRC (x
)) == LABEL_REF
)
1103 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
1105 if (XEXP (SET_SRC (x
), 2) == pc_rtx
1106 && (GET_CODE (XEXP (SET_SRC (x
), 1)) == LABEL_REF
1107 || GET_CODE (XEXP (SET_SRC (x
), 1)) == RETURN
))
1109 if (XEXP (SET_SRC (x
), 1) == pc_rtx
1110 && (GET_CODE (XEXP (SET_SRC (x
), 2)) == LABEL_REF
1111 || GET_CODE (XEXP (SET_SRC (x
), 2)) == RETURN
))
1116 /* Return set of PC, otherwise NULL. */
1122 if (GET_CODE (insn
) != JUMP_INSN
)
1124 pat
= PATTERN (insn
);
1126 /* The set is allowed to appear either as the insn pattern or
1127 the first set in a PARALLEL. */
1128 if (GET_CODE (pat
) == PARALLEL
)
1129 pat
= XVECEXP (pat
, 0, 0);
1130 if (GET_CODE (pat
) == SET
&& GET_CODE (SET_DEST (pat
)) == PC
)
1136 /* Return true when insn is an unconditional direct jump,
1137 possibly bundled inside a PARALLEL. */
1140 any_uncondjump_p (rtx insn
)
1142 rtx x
= pc_set (insn
);
1145 if (GET_CODE (SET_SRC (x
)) != LABEL_REF
)
1150 /* Return true when insn is a conditional jump. This function works for
1151 instructions containing PC sets in PARALLELs. The instruction may have
1152 various other effects so before removing the jump you must verify
1155 Note that unlike condjump_p it returns false for unconditional jumps. */
1158 any_condjump_p (rtx insn
)
1160 rtx x
= pc_set (insn
);
1165 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
1168 a
= GET_CODE (XEXP (SET_SRC (x
), 1));
1169 b
= GET_CODE (XEXP (SET_SRC (x
), 2));
1171 return ((b
== PC
&& (a
== LABEL_REF
|| a
== RETURN
))
1172 || (a
== PC
&& (b
== LABEL_REF
|| b
== RETURN
)));
1175 /* Return the label of a conditional jump. */
1178 condjump_label (rtx insn
)
1180 rtx x
= pc_set (insn
);
1185 if (GET_CODE (x
) == LABEL_REF
)
1187 if (GET_CODE (x
) != IF_THEN_ELSE
)
1189 if (XEXP (x
, 2) == pc_rtx
&& GET_CODE (XEXP (x
, 1)) == LABEL_REF
)
1191 if (XEXP (x
, 1) == pc_rtx
&& GET_CODE (XEXP (x
, 2)) == LABEL_REF
)
1196 /* Return true if INSN is a (possibly conditional) return insn. */
1199 returnjump_p_1 (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
1203 return x
&& (GET_CODE (x
) == RETURN
1204 || (GET_CODE (x
) == SET
&& SET_IS_RETURN_P (x
)));
1208 returnjump_p (rtx insn
)
1210 if (GET_CODE (insn
) != JUMP_INSN
)
1212 return for_each_rtx (&PATTERN (insn
), returnjump_p_1
, NULL
);
1215 /* Return true if INSN is a jump that only transfers control and
1219 onlyjump_p (rtx insn
)
1223 if (GET_CODE (insn
) != JUMP_INSN
)
1226 set
= single_set (insn
);
1229 if (GET_CODE (SET_DEST (set
)) != PC
)
1231 if (side_effects_p (SET_SRC (set
)))
1239 /* Return nonzero if X is an RTX that only sets the condition codes
1240 and has no side effects. */
1243 only_sets_cc0_p (rtx x
)
1251 return sets_cc0_p (x
) == 1 && ! side_effects_p (x
);
1254 /* Return 1 if X is an RTX that does nothing but set the condition codes
1255 and CLOBBER or USE registers.
1256 Return -1 if X does explicitly set the condition codes,
1257 but also does other things. */
1268 if (GET_CODE (x
) == SET
&& SET_DEST (x
) == cc0_rtx
)
1270 if (GET_CODE (x
) == PARALLEL
)
1274 int other_things
= 0;
1275 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1277 if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
1278 && SET_DEST (XVECEXP (x
, 0, i
)) == cc0_rtx
)
1280 else if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
)
1283 return ! sets_cc0
? 0 : other_things
? -1 : 1;
1289 /* Follow any unconditional jump at LABEL;
1290 return the ultimate label reached by any such chain of jumps.
1291 If LABEL is not followed by a jump, return LABEL.
1292 If the chain loops or we can't find end, return LABEL,
1293 since that tells caller to avoid changing the insn.
1295 If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
1296 a USE or CLOBBER. */
1299 follow_jumps (rtx label
)
1308 && (insn
= next_active_insn (value
)) != 0
1309 && GET_CODE (insn
) == JUMP_INSN
1310 && ((JUMP_LABEL (insn
) != 0 && any_uncondjump_p (insn
)
1311 && onlyjump_p (insn
))
1312 || GET_CODE (PATTERN (insn
)) == RETURN
)
1313 && (next
= NEXT_INSN (insn
))
1314 && GET_CODE (next
) == BARRIER
);
1317 /* Don't chain through the insn that jumps into a loop
1318 from outside the loop,
1319 since that would create multiple loop entry jumps
1320 and prevent loop optimization. */
1322 if (!reload_completed
)
1323 for (tem
= value
; tem
!= insn
; tem
= NEXT_INSN (tem
))
1324 if (GET_CODE (tem
) == NOTE
1325 && (NOTE_LINE_NUMBER (tem
) == NOTE_INSN_LOOP_BEG
1326 /* ??? Optional. Disables some optimizations, but makes
1327 gcov output more accurate with -O. */
1328 || (flag_test_coverage
&& NOTE_LINE_NUMBER (tem
) > 0)))
1331 /* If we have found a cycle, make the insn jump to itself. */
1332 if (JUMP_LABEL (insn
) == label
)
1335 tem
= next_active_insn (JUMP_LABEL (insn
));
1336 if (tem
&& (GET_CODE (PATTERN (tem
)) == ADDR_VEC
1337 || GET_CODE (PATTERN (tem
)) == ADDR_DIFF_VEC
))
1340 value
= JUMP_LABEL (insn
);
1348 /* Find all CODE_LABELs referred to in X, and increment their use counts.
1349 If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
1350 in INSN, then store one of them in JUMP_LABEL (INSN).
1351 If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
1352 referenced in INSN, add a REG_LABEL note containing that label to INSN.
1353 Also, when there are consecutive labels, canonicalize on the last of them.
1355 Note that two labels separated by a loop-beginning note
1356 must be kept distinct if we have not yet done loop-optimization,
1357 because the gap between them is where loop-optimize
1358 will want to move invariant code to. CROSS_JUMP tells us
1359 that loop-optimization is done with. */
1362 mark_jump_label (rtx x
, rtx insn
, int in_mem
)
1364 RTX_CODE code
= GET_CODE (x
);
1387 /* If this is a constant-pool reference, see if it is a label. */
1388 if (CONSTANT_POOL_ADDRESS_P (x
))
1389 mark_jump_label (get_pool_constant (x
), insn
, in_mem
);
1394 rtx label
= XEXP (x
, 0);
1396 /* Ignore remaining references to unreachable labels that
1397 have been deleted. */
1398 if (GET_CODE (label
) == NOTE
1399 && NOTE_LINE_NUMBER (label
) == NOTE_INSN_DELETED_LABEL
)
1402 if (GET_CODE (label
) != CODE_LABEL
)
1405 /* Ignore references to labels of containing functions. */
1406 if (LABEL_REF_NONLOCAL_P (x
))
1409 XEXP (x
, 0) = label
;
1410 if (! insn
|| ! INSN_DELETED_P (insn
))
1411 ++LABEL_NUSES (label
);
1415 if (GET_CODE (insn
) == JUMP_INSN
)
1416 JUMP_LABEL (insn
) = label
;
1419 /* Add a REG_LABEL note for LABEL unless there already
1420 is one. All uses of a label, except for labels
1421 that are the targets of jumps, must have a
1423 if (! find_reg_note (insn
, REG_LABEL
, label
))
1424 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_LABEL
, label
,
1431 /* Do walk the labels in a vector, but not the first operand of an
1432 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1435 if (! INSN_DELETED_P (insn
))
1437 int eltnum
= code
== ADDR_DIFF_VEC
? 1 : 0;
1439 for (i
= 0; i
< XVECLEN (x
, eltnum
); i
++)
1440 mark_jump_label (XVECEXP (x
, eltnum
, i
), NULL_RTX
, in_mem
);
1448 fmt
= GET_RTX_FORMAT (code
);
1449 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1452 mark_jump_label (XEXP (x
, i
), insn
, in_mem
);
1453 else if (fmt
[i
] == 'E')
1456 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1457 mark_jump_label (XVECEXP (x
, i
, j
), insn
, in_mem
);
1462 /* If all INSN does is set the pc, delete it,
1463 and delete the insn that set the condition codes for it
1464 if that's what the previous thing was. */
1467 delete_jump (rtx insn
)
1469 rtx set
= single_set (insn
);
1471 if (set
&& GET_CODE (SET_DEST (set
)) == PC
)
1472 delete_computation (insn
);
1475 /* Verify INSN is a BARRIER and delete it. */
1478 delete_barrier (rtx insn
)
1480 if (GET_CODE (insn
) != BARRIER
)
1486 /* Recursively delete prior insns that compute the value (used only by INSN
1487 which the caller is deleting) stored in the register mentioned by NOTE
1488 which is a REG_DEAD note associated with INSN. */
1491 delete_prior_computation (rtx note
, rtx insn
)
1494 rtx reg
= XEXP (note
, 0);
1496 for (our_prev
= prev_nonnote_insn (insn
);
1497 our_prev
&& (GET_CODE (our_prev
) == INSN
1498 || GET_CODE (our_prev
) == CALL_INSN
);
1499 our_prev
= prev_nonnote_insn (our_prev
))
1501 rtx pat
= PATTERN (our_prev
);
1503 /* If we reach a CALL which is not calling a const function
1504 or the callee pops the arguments, then give up. */
1505 if (GET_CODE (our_prev
) == CALL_INSN
1506 && (! CONST_OR_PURE_CALL_P (our_prev
)
1507 || GET_CODE (pat
) != SET
|| GET_CODE (SET_SRC (pat
)) != CALL
))
1510 /* If we reach a SEQUENCE, it is too complex to try to
1511 do anything with it, so give up. We can be run during
1512 and after reorg, so SEQUENCE rtl can legitimately show
1514 if (GET_CODE (pat
) == SEQUENCE
)
1517 if (GET_CODE (pat
) == USE
1518 && GET_CODE (XEXP (pat
, 0)) == INSN
)
1519 /* reorg creates USEs that look like this. We leave them
1520 alone because reorg needs them for its own purposes. */
1523 if (reg_set_p (reg
, pat
))
1525 if (side_effects_p (pat
) && GET_CODE (our_prev
) != CALL_INSN
)
1528 if (GET_CODE (pat
) == PARALLEL
)
1530 /* If we find a SET of something else, we can't
1535 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
1537 rtx part
= XVECEXP (pat
, 0, i
);
1539 if (GET_CODE (part
) == SET
1540 && SET_DEST (part
) != reg
)
1544 if (i
== XVECLEN (pat
, 0))
1545 delete_computation (our_prev
);
1547 else if (GET_CODE (pat
) == SET
1548 && GET_CODE (SET_DEST (pat
)) == REG
)
1550 int dest_regno
= REGNO (SET_DEST (pat
));
1553 + (dest_regno
< FIRST_PSEUDO_REGISTER
1554 ? HARD_REGNO_NREGS (dest_regno
,
1555 GET_MODE (SET_DEST (pat
))) : 1));
1556 int regno
= REGNO (reg
);
1559 + (regno
< FIRST_PSEUDO_REGISTER
1560 ? HARD_REGNO_NREGS (regno
, GET_MODE (reg
)) : 1));
1562 if (dest_regno
>= regno
1563 && dest_endregno
<= endregno
)
1564 delete_computation (our_prev
);
1566 /* We may have a multi-word hard register and some, but not
1567 all, of the words of the register are needed in subsequent
1568 insns. Write REG_UNUSED notes for those parts that were not
1570 else if (dest_regno
<= regno
1571 && dest_endregno
>= endregno
)
1575 REG_NOTES (our_prev
)
1576 = gen_rtx_EXPR_LIST (REG_UNUSED
, reg
,
1577 REG_NOTES (our_prev
));
1579 for (i
= dest_regno
; i
< dest_endregno
; i
++)
1580 if (! find_regno_note (our_prev
, REG_UNUSED
, i
))
1583 if (i
== dest_endregno
)
1584 delete_computation (our_prev
);
1591 /* If PAT references the register that dies here, it is an
1592 additional use. Hence any prior SET isn't dead. However, this
1593 insn becomes the new place for the REG_DEAD note. */
1594 if (reg_overlap_mentioned_p (reg
, pat
))
1596 XEXP (note
, 1) = REG_NOTES (our_prev
);
1597 REG_NOTES (our_prev
) = note
;
1603 /* Delete INSN and recursively delete insns that compute values used only
1604 by INSN. This uses the REG_DEAD notes computed during flow analysis.
1605 If we are running before flow.c, we need do nothing since flow.c will
1606 delete dead code. We also can't know if the registers being used are
1607 dead or not at this point.
1609 Otherwise, look at all our REG_DEAD notes. If a previous insn does
1610 nothing other than set a register that dies in this insn, we can delete
1613 On machines with CC0, if CC0 is used in this insn, we may be able to
1614 delete the insn that set it. */
1617 delete_computation (rtx insn
)
1622 if (reg_referenced_p (cc0_rtx
, PATTERN (insn
)))
1624 rtx prev
= prev_nonnote_insn (insn
);
1625 /* We assume that at this stage
1626 CC's are always set explicitly
1627 and always immediately before the jump that
1628 will use them. So if the previous insn
1629 exists to set the CC's, delete it
1630 (unless it performs auto-increments, etc.). */
1631 if (prev
&& GET_CODE (prev
) == INSN
1632 && sets_cc0_p (PATTERN (prev
)))
1634 if (sets_cc0_p (PATTERN (prev
)) > 0
1635 && ! side_effects_p (PATTERN (prev
)))
1636 delete_computation (prev
);
1638 /* Otherwise, show that cc0 won't be used. */
1639 REG_NOTES (prev
) = gen_rtx_EXPR_LIST (REG_UNUSED
,
1640 cc0_rtx
, REG_NOTES (prev
));
1645 for (note
= REG_NOTES (insn
); note
; note
= next
)
1647 next
= XEXP (note
, 1);
1649 if (REG_NOTE_KIND (note
) != REG_DEAD
1650 /* Verify that the REG_NOTE is legitimate. */
1651 || GET_CODE (XEXP (note
, 0)) != REG
)
1654 delete_prior_computation (note
, insn
);
1657 delete_related_insns (insn
);
1660 /* Delete insn INSN from the chain of insns and update label ref counts
1661 and delete insns now unreachable.
1663 Returns the first insn after INSN that was not deleted.
1665 Usage of this instruction is deprecated. Use delete_insn instead and
1666 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1669 delete_related_insns (rtx insn
)
1671 int was_code_label
= (GET_CODE (insn
) == CODE_LABEL
);
1673 rtx next
= NEXT_INSN (insn
), prev
= PREV_INSN (insn
);
1675 while (next
&& INSN_DELETED_P (next
))
1676 next
= NEXT_INSN (next
);
1678 /* This insn is already deleted => return first following nondeleted. */
1679 if (INSN_DELETED_P (insn
))
1684 /* If instruction is followed by a barrier,
1685 delete the barrier too. */
1687 if (next
!= 0 && GET_CODE (next
) == BARRIER
)
1690 /* If deleting a jump, decrement the count of the label,
1691 and delete the label if it is now unused. */
1693 if (GET_CODE (insn
) == JUMP_INSN
&& JUMP_LABEL (insn
))
1695 rtx lab
= JUMP_LABEL (insn
), lab_next
;
1697 if (LABEL_NUSES (lab
) == 0)
1699 /* This can delete NEXT or PREV,
1700 either directly if NEXT is JUMP_LABEL (INSN),
1701 or indirectly through more levels of jumps. */
1702 delete_related_insns (lab
);
1704 /* I feel a little doubtful about this loop,
1705 but I see no clean and sure alternative way
1706 to find the first insn after INSN that is not now deleted.
1707 I hope this works. */
1708 while (next
&& INSN_DELETED_P (next
))
1709 next
= NEXT_INSN (next
);
1712 else if (tablejump_p (insn
, NULL
, &lab_next
))
1714 /* If we're deleting the tablejump, delete the dispatch table.
1715 We may not be able to kill the label immediately preceding
1716 just yet, as it might be referenced in code leading up to
1718 delete_related_insns (lab_next
);
1722 /* Likewise if we're deleting a dispatch table. */
1724 if (GET_CODE (insn
) == JUMP_INSN
1725 && (GET_CODE (PATTERN (insn
)) == ADDR_VEC
1726 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
))
1728 rtx pat
= PATTERN (insn
);
1729 int i
, diff_vec_p
= GET_CODE (pat
) == ADDR_DIFF_VEC
;
1730 int len
= XVECLEN (pat
, diff_vec_p
);
1732 for (i
= 0; i
< len
; i
++)
1733 if (LABEL_NUSES (XEXP (XVECEXP (pat
, diff_vec_p
, i
), 0)) == 0)
1734 delete_related_insns (XEXP (XVECEXP (pat
, diff_vec_p
, i
), 0));
1735 while (next
&& INSN_DELETED_P (next
))
1736 next
= NEXT_INSN (next
);
1740 /* Likewise for an ordinary INSN / CALL_INSN with a REG_LABEL note. */
1741 if (GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == CALL_INSN
)
1742 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1743 if (REG_NOTE_KIND (note
) == REG_LABEL
1744 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1745 && GET_CODE (XEXP (note
, 0)) == CODE_LABEL
)
1746 if (LABEL_NUSES (XEXP (note
, 0)) == 0)
1747 delete_related_insns (XEXP (note
, 0));
1749 while (prev
&& (INSN_DELETED_P (prev
) || GET_CODE (prev
) == NOTE
))
1750 prev
= PREV_INSN (prev
);
1752 /* If INSN was a label and a dispatch table follows it,
1753 delete the dispatch table. The tablejump must have gone already.
1754 It isn't useful to fall through into a table. */
1757 && NEXT_INSN (insn
) != 0
1758 && GET_CODE (NEXT_INSN (insn
)) == JUMP_INSN
1759 && (GET_CODE (PATTERN (NEXT_INSN (insn
))) == ADDR_VEC
1760 || GET_CODE (PATTERN (NEXT_INSN (insn
))) == ADDR_DIFF_VEC
))
1761 next
= delete_related_insns (NEXT_INSN (insn
));
1763 /* If INSN was a label, delete insns following it if now unreachable. */
1765 if (was_code_label
&& prev
&& GET_CODE (prev
) == BARRIER
)
1769 && (GET_RTX_CLASS (code
= GET_CODE (next
)) == 'i'
1770 || code
== NOTE
|| code
== BARRIER
1771 || (code
== CODE_LABEL
&& INSN_DELETED_P (next
))))
1774 && NOTE_LINE_NUMBER (next
) != NOTE_INSN_FUNCTION_END
)
1775 next
= NEXT_INSN (next
);
1776 /* Keep going past other deleted labels to delete what follows. */
1777 else if (code
== CODE_LABEL
&& INSN_DELETED_P (next
))
1778 next
= NEXT_INSN (next
);
1780 /* Note: if this deletes a jump, it can cause more
1781 deletion of unreachable code, after a different label.
1782 As long as the value from this recursive call is correct,
1783 this invocation functions correctly. */
1784 next
= delete_related_insns (next
);
1791 /* Delete a range of insns from FROM to TO, inclusive.
1792 This is for the sake of peephole optimization, so assume
1793 that whatever these insns do will still be done by a new
1794 peephole insn that will replace them. */
1797 delete_for_peephole (rtx from
, rtx to
)
1803 rtx next
= NEXT_INSN (insn
);
1804 rtx prev
= PREV_INSN (insn
);
1806 if (GET_CODE (insn
) != NOTE
)
1808 INSN_DELETED_P (insn
) = 1;
1810 /* Patch this insn out of the chain. */
1811 /* We don't do this all at once, because we
1812 must preserve all NOTEs. */
1814 NEXT_INSN (prev
) = next
;
1817 PREV_INSN (next
) = prev
;
1825 /* Note that if TO is an unconditional jump
1826 we *do not* delete the BARRIER that follows,
1827 since the peephole that replaces this sequence
1828 is also an unconditional jump in that case. */
1831 /* We have determined that AVOIDED_INSN is never reached, and are
1832 about to delete it. If the insn chain between AVOIDED_INSN and
1833 FINISH contains more than one line from the current function, and
1834 contains at least one operation, print a warning if the user asked
1835 for it. If FINISH is NULL, look between AVOIDED_INSN and a LABEL.
1837 CSE and inlining can duplicate insns, so it's possible to get
1838 spurious warnings from this. */
1841 never_reached_warning (rtx avoided_insn
, rtx finish
)
1844 rtx a_line_note
= NULL
;
1845 int two_avoided_lines
= 0, contains_insn
= 0, reached_end
= 0;
1847 if (!warn_notreached
)
1850 /* Back up to the first of any NOTEs preceding avoided_insn; flow passes
1851 us the head of a block, a NOTE_INSN_BASIC_BLOCK, which often follows
1853 insn
= avoided_insn
;
1856 rtx prev
= PREV_INSN (insn
);
1857 if (prev
== NULL_RTX
1858 || GET_CODE (prev
) != NOTE
)
1863 /* Scan forwards, looking at LINE_NUMBER notes, until we hit a LABEL
1864 in case FINISH is NULL, otherwise until we run out of insns. */
1866 for (; insn
!= NULL
; insn
= NEXT_INSN (insn
))
1868 if ((finish
== NULL
&& GET_CODE (insn
) == CODE_LABEL
)
1869 || GET_CODE (insn
) == BARRIER
)
1872 if (GET_CODE (insn
) == NOTE
/* A line number note? */
1873 && NOTE_LINE_NUMBER (insn
) >= 0)
1875 if (a_line_note
== NULL
)
1878 two_avoided_lines
|= (NOTE_LINE_NUMBER (a_line_note
)
1879 != NOTE_LINE_NUMBER (insn
));
1881 else if (INSN_P (insn
))
1891 if (two_avoided_lines
&& contains_insn
)
1894 locus
.file
= NOTE_SOURCE_FILE (a_line_note
);
1895 locus
.line
= NOTE_LINE_NUMBER (a_line_note
);
1896 warning ("%Hwill never be executed", &locus
);
1900 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1901 NLABEL as a return. Accrue modifications into the change group. */
1904 redirect_exp_1 (rtx
*loc
, rtx olabel
, rtx nlabel
, rtx insn
)
1907 RTX_CODE code
= GET_CODE (x
);
1911 if (code
== LABEL_REF
)
1913 if (XEXP (x
, 0) == olabel
)
1917 n
= gen_rtx_LABEL_REF (VOIDmode
, nlabel
);
1919 n
= gen_rtx_RETURN (VOIDmode
);
1921 validate_change (insn
, loc
, n
, 1);
1925 else if (code
== RETURN
&& olabel
== 0)
1927 x
= gen_rtx_LABEL_REF (VOIDmode
, nlabel
);
1928 if (loc
== &PATTERN (insn
))
1929 x
= gen_rtx_SET (VOIDmode
, pc_rtx
, x
);
1930 validate_change (insn
, loc
, x
, 1);
1934 if (code
== SET
&& nlabel
== 0 && SET_DEST (x
) == pc_rtx
1935 && GET_CODE (SET_SRC (x
)) == LABEL_REF
1936 && XEXP (SET_SRC (x
), 0) == olabel
)
1938 validate_change (insn
, loc
, gen_rtx_RETURN (VOIDmode
), 1);
1942 fmt
= GET_RTX_FORMAT (code
);
1943 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1946 redirect_exp_1 (&XEXP (x
, i
), olabel
, nlabel
, insn
);
1947 else if (fmt
[i
] == 'E')
1950 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1951 redirect_exp_1 (&XVECEXP (x
, i
, j
), olabel
, nlabel
, insn
);
1956 /* Similar, but apply the change group and report success or failure. */
1959 redirect_exp (rtx olabel
, rtx nlabel
, rtx insn
)
1963 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
1964 loc
= &XVECEXP (PATTERN (insn
), 0, 0);
1966 loc
= &PATTERN (insn
);
1968 redirect_exp_1 (loc
, olabel
, nlabel
, insn
);
1969 if (num_validated_changes () == 0)
1972 return apply_change_group ();
1975 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1976 the modifications into the change group. Return false if we did
1977 not see how to do that. */
1980 redirect_jump_1 (rtx jump
, rtx nlabel
)
1982 int ochanges
= num_validated_changes ();
1985 if (GET_CODE (PATTERN (jump
)) == PARALLEL
)
1986 loc
= &XVECEXP (PATTERN (jump
), 0, 0);
1988 loc
= &PATTERN (jump
);
1990 redirect_exp_1 (loc
, JUMP_LABEL (jump
), nlabel
, jump
);
1991 return num_validated_changes () > ochanges
;
1994 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1995 jump target label is unused as a result, it and the code following
1998 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
2001 The return value will be 1 if the change was made, 0 if it wasn't
2002 (this can only occur for NLABEL == 0). */
2005 redirect_jump (rtx jump
, rtx nlabel
, int delete_unused
)
2007 rtx olabel
= JUMP_LABEL (jump
);
2010 if (nlabel
== olabel
)
2013 if (! redirect_exp (olabel
, nlabel
, jump
))
2016 JUMP_LABEL (jump
) = nlabel
;
2018 ++LABEL_NUSES (nlabel
);
2020 /* Update labels in any REG_EQUAL note. */
2021 if ((note
= find_reg_note (jump
, REG_EQUAL
, NULL_RTX
)) != NULL_RTX
)
2023 if (nlabel
&& olabel
)
2025 rtx dest
= XEXP (note
, 0);
2027 if (GET_CODE (dest
) == IF_THEN_ELSE
)
2029 if (GET_CODE (XEXP (dest
, 1)) == LABEL_REF
2030 && XEXP (XEXP (dest
, 1), 0) == olabel
)
2031 XEXP (XEXP (dest
, 1), 0) = nlabel
;
2032 if (GET_CODE (XEXP (dest
, 2)) == LABEL_REF
2033 && XEXP (XEXP (dest
, 2), 0) == olabel
)
2034 XEXP (XEXP (dest
, 2), 0) = nlabel
;
2037 remove_note (jump
, note
);
2040 remove_note (jump
, note
);
2043 /* If we're eliding the jump over exception cleanups at the end of a
2044 function, move the function end note so that -Wreturn-type works. */
2045 if (olabel
&& nlabel
2046 && NEXT_INSN (olabel
)
2047 && GET_CODE (NEXT_INSN (olabel
)) == NOTE
2048 && NOTE_LINE_NUMBER (NEXT_INSN (olabel
)) == NOTE_INSN_FUNCTION_END
)
2049 emit_note_after (NOTE_INSN_FUNCTION_END
, nlabel
);
2051 if (olabel
&& --LABEL_NUSES (olabel
) == 0 && delete_unused
2052 /* Undefined labels will remain outside the insn stream. */
2053 && INSN_UID (olabel
))
2054 delete_related_insns (olabel
);
2059 /* Invert the jump condition of rtx X contained in jump insn, INSN.
2060 Accrue the modifications into the change group. */
2063 invert_exp_1 (rtx insn
)
2066 rtx x
= pc_set (insn
);
2072 code
= GET_CODE (x
);
2074 if (code
== IF_THEN_ELSE
)
2076 rtx comp
= XEXP (x
, 0);
2078 enum rtx_code reversed_code
;
2080 /* We can do this in two ways: The preferable way, which can only
2081 be done if this is not an integer comparison, is to reverse
2082 the comparison code. Otherwise, swap the THEN-part and ELSE-part
2083 of the IF_THEN_ELSE. If we can't do either, fail. */
2085 reversed_code
= reversed_comparison_code (comp
, insn
);
2087 if (reversed_code
!= UNKNOWN
)
2089 validate_change (insn
, &XEXP (x
, 0),
2090 gen_rtx_fmt_ee (reversed_code
,
2091 GET_MODE (comp
), XEXP (comp
, 0),
2098 validate_change (insn
, &XEXP (x
, 1), XEXP (x
, 2), 1);
2099 validate_change (insn
, &XEXP (x
, 2), tem
, 1);
2105 /* Invert the jump condition of conditional jump insn, INSN.
2107 Return 1 if we can do so, 0 if we cannot find a way to do so that
2108 matches a pattern. */
2111 invert_exp (rtx insn
)
2113 invert_exp_1 (insn
);
2114 if (num_validated_changes () == 0)
2117 return apply_change_group ();
2120 /* Invert the condition of the jump JUMP, and make it jump to label
2121 NLABEL instead of where it jumps now. Accrue changes into the
2122 change group. Return false if we didn't see how to perform the
2123 inversion and redirection. */
2126 invert_jump_1 (rtx jump
, rtx nlabel
)
2130 ochanges
= num_validated_changes ();
2131 invert_exp_1 (jump
);
2132 if (num_validated_changes () == ochanges
)
2135 return redirect_jump_1 (jump
, nlabel
);
2138 /* Invert the condition of the jump JUMP, and make it jump to label
2139 NLABEL instead of where it jumps now. Return true if successful. */
2142 invert_jump (rtx jump
, rtx nlabel
, int delete_unused
)
2144 /* We have to either invert the condition and change the label or
2145 do neither. Either operation could fail. We first try to invert
2146 the jump. If that succeeds, we try changing the label. If that fails,
2147 we invert the jump back to what it was. */
2149 if (! invert_exp (jump
))
2152 if (redirect_jump (jump
, nlabel
, delete_unused
))
2154 /* Remove REG_EQUAL note if we have one. */
2155 rtx note
= find_reg_note (jump
, REG_EQUAL
, NULL_RTX
);
2157 remove_note (jump
, note
);
2159 invert_br_probabilities (jump
);
2164 if (! invert_exp (jump
))
2165 /* This should just be putting it back the way it was. */
2172 /* Like rtx_equal_p except that it considers two REGs as equal
2173 if they renumber to the same value and considers two commutative
2174 operations to be the same if the order of the operands has been
2177 ??? Addition is not commutative on the PA due to the weird implicit
2178 space register selection rules for memory addresses. Therefore, we
2179 don't consider a + b == b + a.
2181 We could/should make this test a little tighter. Possibly only
2182 disabling it on the PA via some backend macro or only disabling this
2183 case when the PLUS is inside a MEM. */
2186 rtx_renumbered_equal_p (rtx x
, rtx y
)
2189 RTX_CODE code
= GET_CODE (x
);
2195 if ((code
== REG
|| (code
== SUBREG
&& GET_CODE (SUBREG_REG (x
)) == REG
))
2196 && (GET_CODE (y
) == REG
|| (GET_CODE (y
) == SUBREG
2197 && GET_CODE (SUBREG_REG (y
)) == REG
)))
2199 int reg_x
= -1, reg_y
= -1;
2200 int byte_x
= 0, byte_y
= 0;
2202 if (GET_MODE (x
) != GET_MODE (y
))
2205 /* If we haven't done any renumbering, don't
2206 make any assumptions. */
2207 if (reg_renumber
== 0)
2208 return rtx_equal_p (x
, y
);
2212 reg_x
= REGNO (SUBREG_REG (x
));
2213 byte_x
= SUBREG_BYTE (x
);
2215 if (reg_renumber
[reg_x
] >= 0)
2217 reg_x
= subreg_regno_offset (reg_renumber
[reg_x
],
2218 GET_MODE (SUBREG_REG (x
)),
2227 if (reg_renumber
[reg_x
] >= 0)
2228 reg_x
= reg_renumber
[reg_x
];
2231 if (GET_CODE (y
) == SUBREG
)
2233 reg_y
= REGNO (SUBREG_REG (y
));
2234 byte_y
= SUBREG_BYTE (y
);
2236 if (reg_renumber
[reg_y
] >= 0)
2238 reg_y
= subreg_regno_offset (reg_renumber
[reg_y
],
2239 GET_MODE (SUBREG_REG (y
)),
2248 if (reg_renumber
[reg_y
] >= 0)
2249 reg_y
= reg_renumber
[reg_y
];
2252 return reg_x
>= 0 && reg_x
== reg_y
&& byte_x
== byte_y
;
2255 /* Now we have disposed of all the cases
2256 in which different rtx codes can match. */
2257 if (code
!= GET_CODE (y
))
2270 /* We can't assume nonlocal labels have their following insns yet. */
2271 if (LABEL_REF_NONLOCAL_P (x
) || LABEL_REF_NONLOCAL_P (y
))
2272 return XEXP (x
, 0) == XEXP (y
, 0);
2274 /* Two label-refs are equivalent if they point at labels
2275 in the same position in the instruction stream. */
2276 return (next_real_insn (XEXP (x
, 0))
2277 == next_real_insn (XEXP (y
, 0)));
2280 return XSTR (x
, 0) == XSTR (y
, 0);
2283 /* If we didn't match EQ equality above, they aren't the same. */
2290 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2292 if (GET_MODE (x
) != GET_MODE (y
))
2295 /* For commutative operations, the RTX match if the operand match in any
2296 order. Also handle the simple binary and unary cases without a loop.
2298 ??? Don't consider PLUS a commutative operator; see comments above. */
2299 if ((code
== EQ
|| code
== NE
|| GET_RTX_CLASS (code
) == 'c')
2301 return ((rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
2302 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)))
2303 || (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 1))
2304 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 0))));
2305 else if (GET_RTX_CLASS (code
) == '<' || GET_RTX_CLASS (code
) == '2')
2306 return (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
2307 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)));
2308 else if (GET_RTX_CLASS (code
) == '1')
2309 return rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0));
2311 /* Compare the elements. If any pair of corresponding elements
2312 fail to match, return 0 for the whole things. */
2314 fmt
= GET_RTX_FORMAT (code
);
2315 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2321 if (XWINT (x
, i
) != XWINT (y
, i
))
2326 if (XINT (x
, i
) != XINT (y
, i
))
2331 if (XTREE (x
, i
) != XTREE (y
, i
))
2336 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
2341 if (! rtx_renumbered_equal_p (XEXP (x
, i
), XEXP (y
, i
)))
2346 if (XEXP (x
, i
) != XEXP (y
, i
))
2353 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
2355 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2356 if (!rtx_renumbered_equal_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
)))
2367 /* If X is a hard register or equivalent to one or a subregister of one,
2368 return the hard register number. If X is a pseudo register that was not
2369 assigned a hard register, return the pseudo register number. Otherwise,
2370 return -1. Any rtx is valid for X. */
2375 if (GET_CODE (x
) == REG
)
2377 if (REGNO (x
) >= FIRST_PSEUDO_REGISTER
&& reg_renumber
[REGNO (x
)] >= 0)
2378 return reg_renumber
[REGNO (x
)];
2381 if (GET_CODE (x
) == SUBREG
)
2383 int base
= true_regnum (SUBREG_REG (x
));
2384 if (base
>= 0 && base
< FIRST_PSEUDO_REGISTER
)
2385 return base
+ subreg_regno_offset (REGNO (SUBREG_REG (x
)),
2386 GET_MODE (SUBREG_REG (x
)),
2387 SUBREG_BYTE (x
), GET_MODE (x
));
2392 /* Return regno of the register REG and handle subregs too. */
2394 reg_or_subregno (rtx reg
)
2398 if (GET_CODE (reg
) == SUBREG
)
2399 return REGNO (SUBREG_REG (reg
));