2 Copyright (C) 2005-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
29 #include "tree-pass.h"
30 #include "gimple-ssa.h"
31 #include "optabs-query.h"
32 #include "tree-pretty-print.h"
33 #include "fold-const.h"
34 #include "stor-layout.h"
36 #include "gimple-iterator.h"
37 #include "gimplify-me.h"
38 #include "tree-ssa-loop-ivopts.h"
39 #include "tree-ssa-loop-manip.h"
40 #include "tree-ssa-loop-niter.h"
41 #include "tree-ssa-loop.h"
43 #include "tree-into-ssa.h"
45 #include "tree-scalar-evolution.h"
47 #include "langhooks.h"
48 #include "tree-inline.h"
49 #include "tree-data-ref.h"
50 #include "diagnostic-core.h"
52 /* This pass inserts prefetch instructions to optimize cache usage during
53 accesses to arrays in loops. It processes loops sequentially and:
55 1) Gathers all memory references in the single loop.
56 2) For each of the references it decides when it is profitable to prefetch
57 it. To do it, we evaluate the reuse among the accesses, and determines
58 two values: PREFETCH_BEFORE (meaning that it only makes sense to do
59 prefetching in the first PREFETCH_BEFORE iterations of the loop) and
60 PREFETCH_MOD (meaning that it only makes sense to prefetch in the
61 iterations of the loop that are zero modulo PREFETCH_MOD). For example
62 (assuming cache line size is 64 bytes, char has size 1 byte and there
63 is no hardware sequential prefetch):
66 for (i = 0; i < max; i++)
73 a[187*i + 50] = ...; (5)
76 (0) obviously has PREFETCH_BEFORE 1
77 (1) has PREFETCH_BEFORE 64, since (2) accesses the same memory
78 location 64 iterations before it, and PREFETCH_MOD 64 (since
79 it hits the same cache line otherwise).
80 (2) has PREFETCH_MOD 64
81 (3) has PREFETCH_MOD 4
82 (4) has PREFETCH_MOD 1. We do not set PREFETCH_BEFORE here, since
83 the cache line accessed by (5) is the same with probability only
85 (5) has PREFETCH_MOD 1 as well.
87 Additionally, we use data dependence analysis to determine for each
88 reference the distance till the first reuse; this information is used
89 to determine the temporality of the issued prefetch instruction.
91 3) We determine how much ahead we need to prefetch. The number of
92 iterations needed is time to fetch / time spent in one iteration of
93 the loop. The problem is that we do not know either of these values,
94 so we just make a heuristic guess based on a magic (possibly)
95 target-specific constant and size of the loop.
97 4) Determine which of the references we prefetch. We take into account
98 that there is a maximum number of simultaneous prefetches (provided
99 by machine description). We prefetch as many prefetches as possible
100 while still within this bound (starting with those with lowest
101 prefetch_mod, since they are responsible for most of the cache
104 5) We unroll and peel loops so that we are able to satisfy PREFETCH_MOD
105 and PREFETCH_BEFORE requirements (within some bounds), and to avoid
106 prefetching nonaccessed memory.
107 TODO -- actually implement peeling.
109 6) We actually emit the prefetch instructions. ??? Perhaps emit the
110 prefetch instructions with guards in cases where 5) was not sufficient
111 to satisfy the constraints?
113 A cost model is implemented to determine whether or not prefetching is
114 profitable for a given loop. The cost model has three heuristics:
116 1. Function trip_count_to_ahead_ratio_too_small_p implements a
117 heuristic that determines whether or not the loop has too few
118 iterations (compared to ahead). Prefetching is not likely to be
119 beneficial if the trip count to ahead ratio is below a certain
122 2. Function mem_ref_count_reasonable_p implements a heuristic that
123 determines whether the given loop has enough CPU ops that can be
124 overlapped with cache missing memory ops. If not, the loop
125 won't benefit from prefetching. In the implementation,
126 prefetching is not considered beneficial if the ratio between
127 the instruction count and the mem ref count is below a certain
130 3. Function insn_to_prefetch_ratio_too_small_p implements a
131 heuristic that disables prefetching in a loop if the prefetching
132 cost is above a certain limit. The relative prefetching cost is
133 estimated by taking the ratio between the prefetch count and the
134 total intruction count (this models the I-cache cost).
136 The limits used in these heuristics are defined as parameters with
137 reasonable default values. Machine-specific default values will be
141 -- write and use more general reuse analysis (that could be also used
142 in other cache aimed loop optimizations)
143 -- make it behave sanely together with the prefetches given by user
144 (now we just ignore them; at the very least we should avoid
145 optimizing loops in that user put his own prefetches)
146 -- we assume cache line size alignment of arrays; this could be
149 /* Magic constants follow. These should be replaced by machine specific
152 /* True if write can be prefetched by a read prefetch. */
154 #ifndef WRITE_CAN_USE_READ_PREFETCH
155 #define WRITE_CAN_USE_READ_PREFETCH 1
158 /* True if read can be prefetched by a write prefetch. */
160 #ifndef READ_CAN_USE_WRITE_PREFETCH
161 #define READ_CAN_USE_WRITE_PREFETCH 0
164 /* The size of the block loaded by a single prefetch. Usually, this is
165 the same as cache line size (at the moment, we only consider one level
166 of cache hierarchy). */
168 #ifndef PREFETCH_BLOCK
169 #define PREFETCH_BLOCK L1_CACHE_LINE_SIZE
172 /* Do we have a forward hardware sequential prefetching? */
174 #ifndef HAVE_FORWARD_PREFETCH
175 #define HAVE_FORWARD_PREFETCH 0
178 /* Do we have a backward hardware sequential prefetching? */
180 #ifndef HAVE_BACKWARD_PREFETCH
181 #define HAVE_BACKWARD_PREFETCH 0
184 /* In some cases we are only able to determine that there is a certain
185 probability that the two accesses hit the same cache line. In this
186 case, we issue the prefetches for both of them if this probability
187 is less then (1000 - ACCEPTABLE_MISS_RATE) per thousand. */
189 #ifndef ACCEPTABLE_MISS_RATE
190 #define ACCEPTABLE_MISS_RATE 50
193 #define L1_CACHE_SIZE_BYTES ((unsigned) (L1_CACHE_SIZE * 1024))
194 #define L2_CACHE_SIZE_BYTES ((unsigned) (L2_CACHE_SIZE * 1024))
196 /* We consider a memory access nontemporal if it is not reused sooner than
197 after L2_CACHE_SIZE_BYTES of memory are accessed. However, we ignore
198 accesses closer than L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
199 so that we use nontemporal prefetches e.g. if single memory location
200 is accessed several times in a single iteration of the loop. */
201 #define NONTEMPORAL_FRACTION 16
203 /* In case we have to emit a memory fence instruction after the loop that
204 uses nontemporal stores, this defines the builtin to use. */
206 #ifndef FENCE_FOLLOWING_MOVNT
207 #define FENCE_FOLLOWING_MOVNT NULL_TREE
210 /* It is not profitable to prefetch when the trip count is not at
211 least TRIP_COUNT_TO_AHEAD_RATIO times the prefetch ahead distance.
212 For example, in a loop with a prefetch ahead distance of 10,
213 supposing that TRIP_COUNT_TO_AHEAD_RATIO is equal to 4, it is
214 profitable to prefetch when the trip count is greater or equal to
215 40. In that case, 30 out of the 40 iterations will benefit from
218 #ifndef TRIP_COUNT_TO_AHEAD_RATIO
219 #define TRIP_COUNT_TO_AHEAD_RATIO 4
222 /* The group of references between that reuse may occur. */
226 tree base
; /* Base of the reference. */
227 tree step
; /* Step of the reference. */
228 struct mem_ref
*refs
; /* References in the group. */
229 struct mem_ref_group
*next
; /* Next group of references. */
232 /* Assigned to PREFETCH_BEFORE when all iterations are to be prefetched. */
234 #define PREFETCH_ALL HOST_WIDE_INT_M1U
236 /* Do not generate a prefetch if the unroll factor is significantly less
237 than what is required by the prefetch. This is to avoid redundant
238 prefetches. For example, when prefetch_mod is 16 and unroll_factor is
239 2, prefetching requires unrolling the loop 16 times, but
240 the loop is actually unrolled twice. In this case (ratio = 8),
241 prefetching is not likely to be beneficial. */
243 #ifndef PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
244 #define PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO 4
247 /* Some of the prefetch computations have quadratic complexity. We want to
248 avoid huge compile times and, therefore, want to limit the amount of
249 memory references per loop where we consider prefetching. */
251 #ifndef PREFETCH_MAX_MEM_REFS_PER_LOOP
252 #define PREFETCH_MAX_MEM_REFS_PER_LOOP 200
255 /* The memory reference. */
259 gimple
*stmt
; /* Statement in that the reference appears. */
260 tree mem
; /* The reference. */
261 HOST_WIDE_INT delta
; /* Constant offset of the reference. */
262 struct mem_ref_group
*group
; /* The group of references it belongs to. */
263 unsigned HOST_WIDE_INT prefetch_mod
;
264 /* Prefetch only each PREFETCH_MOD-th
266 unsigned HOST_WIDE_INT prefetch_before
;
267 /* Prefetch only first PREFETCH_BEFORE
269 unsigned reuse_distance
; /* The amount of data accessed before the first
270 reuse of this value. */
271 struct mem_ref
*next
; /* The next reference in the group. */
272 unsigned write_p
: 1; /* Is it a write? */
273 unsigned independent_p
: 1; /* True if the reference is independent on
274 all other references inside the loop. */
275 unsigned issue_prefetch_p
: 1; /* Should we really issue the prefetch? */
276 unsigned storent_p
: 1; /* True if we changed the store to a
280 /* Dumps information about memory reference */
282 dump_mem_details (FILE *file
, tree base
, tree step
,
283 HOST_WIDE_INT delta
, bool write_p
)
285 fprintf (file
, "(base ");
286 print_generic_expr (file
, base
, TDF_SLIM
);
287 fprintf (file
, ", step ");
288 if (cst_and_fits_in_hwi (step
))
289 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, int_cst_value (step
));
291 print_generic_expr (file
, step
, TDF_TREE
);
292 fprintf (file
, ")\n");
293 fprintf (file
, " delta ");
294 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, delta
);
295 fprintf (file
, "\n");
296 fprintf (file
, " %s\n", write_p
? "write" : "read");
297 fprintf (file
, "\n");
300 /* Dumps information about reference REF to FILE. */
303 dump_mem_ref (FILE *file
, struct mem_ref
*ref
)
305 fprintf (file
, "Reference %p:\n", (void *) ref
);
307 fprintf (file
, " group %p ", (void *) ref
->group
);
309 dump_mem_details (file
, ref
->group
->base
, ref
->group
->step
, ref
->delta
,
313 /* Finds a group with BASE and STEP in GROUPS, or creates one if it does not
316 static struct mem_ref_group
*
317 find_or_create_group (struct mem_ref_group
**groups
, tree base
, tree step
)
319 struct mem_ref_group
*group
;
321 for (; *groups
; groups
= &(*groups
)->next
)
323 if (operand_equal_p ((*groups
)->step
, step
, 0)
324 && operand_equal_p ((*groups
)->base
, base
, 0))
327 /* If step is an integer constant, keep the list of groups sorted
328 by decreasing step. */
329 if (cst_and_fits_in_hwi ((*groups
)->step
) && cst_and_fits_in_hwi (step
)
330 && int_cst_value ((*groups
)->step
) < int_cst_value (step
))
334 group
= XNEW (struct mem_ref_group
);
338 group
->next
= *groups
;
344 /* Records a memory reference MEM in GROUP with offset DELTA and write status
345 WRITE_P. The reference occurs in statement STMT. */
348 record_ref (struct mem_ref_group
*group
, gimple
*stmt
, tree mem
,
349 HOST_WIDE_INT delta
, bool write_p
)
351 struct mem_ref
**aref
;
353 /* Do not record the same address twice. */
354 for (aref
= &group
->refs
; *aref
; aref
= &(*aref
)->next
)
356 /* It does not have to be possible for write reference to reuse the read
357 prefetch, or vice versa. */
358 if (!WRITE_CAN_USE_READ_PREFETCH
360 && !(*aref
)->write_p
)
362 if (!READ_CAN_USE_WRITE_PREFETCH
367 if ((*aref
)->delta
== delta
)
371 (*aref
) = XNEW (struct mem_ref
);
372 (*aref
)->stmt
= stmt
;
374 (*aref
)->delta
= delta
;
375 (*aref
)->write_p
= write_p
;
376 (*aref
)->prefetch_before
= PREFETCH_ALL
;
377 (*aref
)->prefetch_mod
= 1;
378 (*aref
)->reuse_distance
= 0;
379 (*aref
)->issue_prefetch_p
= false;
380 (*aref
)->group
= group
;
381 (*aref
)->next
= NULL
;
382 (*aref
)->independent_p
= false;
383 (*aref
)->storent_p
= false;
385 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
386 dump_mem_ref (dump_file
, *aref
);
389 /* Release memory references in GROUPS. */
392 release_mem_refs (struct mem_ref_group
*groups
)
394 struct mem_ref_group
*next_g
;
395 struct mem_ref
*ref
, *next_r
;
397 for (; groups
; groups
= next_g
)
399 next_g
= groups
->next
;
400 for (ref
= groups
->refs
; ref
; ref
= next_r
)
409 /* A structure used to pass arguments to idx_analyze_ref. */
413 struct loop
*loop
; /* Loop of the reference. */
414 gimple
*stmt
; /* Statement of the reference. */
415 tree
*step
; /* Step of the memory reference. */
416 HOST_WIDE_INT
*delta
; /* Offset of the memory reference. */
419 /* Analyzes a single INDEX of a memory reference to obtain information
420 described at analyze_ref. Callback for for_each_index. */
423 idx_analyze_ref (tree base
, tree
*index
, void *data
)
425 struct ar_data
*ar_data
= (struct ar_data
*) data
;
426 tree ibase
, step
, stepsize
;
427 HOST_WIDE_INT idelta
= 0, imult
= 1;
430 if (!simple_iv (ar_data
->loop
, loop_containing_stmt (ar_data
->stmt
),
436 if (TREE_CODE (ibase
) == POINTER_PLUS_EXPR
437 && cst_and_fits_in_hwi (TREE_OPERAND (ibase
, 1)))
439 idelta
= int_cst_value (TREE_OPERAND (ibase
, 1));
440 ibase
= TREE_OPERAND (ibase
, 0);
442 if (cst_and_fits_in_hwi (ibase
))
444 idelta
+= int_cst_value (ibase
);
445 ibase
= build_int_cst (TREE_TYPE (ibase
), 0);
448 if (TREE_CODE (base
) == ARRAY_REF
)
450 stepsize
= array_ref_element_size (base
);
451 if (!cst_and_fits_in_hwi (stepsize
))
453 imult
= int_cst_value (stepsize
);
454 step
= fold_build2 (MULT_EXPR
, sizetype
,
455 fold_convert (sizetype
, step
),
456 fold_convert (sizetype
, stepsize
));
460 if (*ar_data
->step
== NULL_TREE
)
461 *ar_data
->step
= step
;
463 *ar_data
->step
= fold_build2 (PLUS_EXPR
, sizetype
,
464 fold_convert (sizetype
, *ar_data
->step
),
465 fold_convert (sizetype
, step
));
466 *ar_data
->delta
+= idelta
;
472 /* Tries to express REF_P in shape &BASE + STEP * iter + DELTA, where DELTA and
473 STEP are integer constants and iter is number of iterations of LOOP. The
474 reference occurs in statement STMT. Strips nonaddressable component
475 references from REF_P. */
478 analyze_ref (struct loop
*loop
, tree
*ref_p
, tree
*base
,
479 tree
*step
, HOST_WIDE_INT
*delta
,
482 struct ar_data ar_data
;
484 HOST_WIDE_INT bit_offset
;
490 /* First strip off the component references. Ignore bitfields.
491 Also strip off the real and imagine parts of a complex, so that
492 they can have the same base. */
493 if (TREE_CODE (ref
) == REALPART_EXPR
494 || TREE_CODE (ref
) == IMAGPART_EXPR
495 || (TREE_CODE (ref
) == COMPONENT_REF
496 && DECL_NONADDRESSABLE_P (TREE_OPERAND (ref
, 1))))
498 if (TREE_CODE (ref
) == IMAGPART_EXPR
)
499 *delta
+= int_size_in_bytes (TREE_TYPE (ref
));
500 ref
= TREE_OPERAND (ref
, 0);
505 for (; TREE_CODE (ref
) == COMPONENT_REF
; ref
= TREE_OPERAND (ref
, 0))
507 off
= DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref
, 1));
508 bit_offset
= TREE_INT_CST_LOW (off
);
509 gcc_assert (bit_offset
% BITS_PER_UNIT
== 0);
511 *delta
+= bit_offset
/ BITS_PER_UNIT
;
514 *base
= unshare_expr (ref
);
518 ar_data
.delta
= delta
;
519 return for_each_index (base
, idx_analyze_ref
, &ar_data
);
522 /* Record a memory reference REF to the list REFS. The reference occurs in
523 LOOP in statement STMT and it is write if WRITE_P. Returns true if the
524 reference was recorded, false otherwise. */
527 gather_memory_references_ref (struct loop
*loop
, struct mem_ref_group
**refs
,
528 tree ref
, bool write_p
, gimple
*stmt
)
532 struct mem_ref_group
*agrp
;
534 if (get_base_address (ref
) == NULL
)
537 if (!analyze_ref (loop
, &ref
, &base
, &step
, &delta
, stmt
))
539 /* If analyze_ref fails the default is a NULL_TREE. We can stop here. */
540 if (step
== NULL_TREE
)
543 /* Stop if the address of BASE could not be taken. */
544 if (may_be_nonaddressable_p (base
))
547 /* Limit non-constant step prefetching only to the innermost loops and
548 only when the step is loop invariant in the entire loop nest. */
549 if (!cst_and_fits_in_hwi (step
))
551 if (loop
->inner
!= NULL
)
553 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
555 fprintf (dump_file
, "Memory expression %p\n",(void *) ref
);
556 print_generic_expr (dump_file
, ref
, TDF_TREE
);
557 fprintf (dump_file
,":");
558 dump_mem_details (dump_file
, base
, step
, delta
, write_p
);
560 "Ignoring %p, non-constant step prefetching is "
561 "limited to inner most loops \n",
568 if (!expr_invariant_in_loop_p (loop_outermost (loop
), step
))
570 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
572 fprintf (dump_file
, "Memory expression %p\n",(void *) ref
);
573 print_generic_expr (dump_file
, ref
, TDF_TREE
);
574 fprintf (dump_file
,":");
575 dump_mem_details (dump_file
, base
, step
, delta
, write_p
);
577 "Not prefetching, ignoring %p due to "
578 "loop variant step\n",
586 /* Now we know that REF = &BASE + STEP * iter + DELTA, where DELTA and STEP
587 are integer constants. */
588 agrp
= find_or_create_group (refs
, base
, step
);
589 record_ref (agrp
, stmt
, ref
, delta
, write_p
);
594 /* Record the suitable memory references in LOOP. NO_OTHER_REFS is set to
595 true if there are no other memory references inside the loop. */
597 static struct mem_ref_group
*
598 gather_memory_references (struct loop
*loop
, bool *no_other_refs
, unsigned *ref_count
)
600 basic_block
*body
= get_loop_body_in_dom_order (loop
);
603 gimple_stmt_iterator bsi
;
606 struct mem_ref_group
*refs
= NULL
;
608 *no_other_refs
= true;
611 /* Scan the loop body in order, so that the former references precede the
613 for (i
= 0; i
< loop
->num_nodes
; i
++)
616 if (bb
->loop_father
!= loop
)
619 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
621 stmt
= gsi_stmt (bsi
);
623 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
625 if (gimple_vuse (stmt
)
626 || (is_gimple_call (stmt
)
627 && !(gimple_call_flags (stmt
) & ECF_CONST
)))
628 *no_other_refs
= false;
632 if (! gimple_vuse (stmt
))
635 lhs
= gimple_assign_lhs (stmt
);
636 rhs
= gimple_assign_rhs1 (stmt
);
638 if (REFERENCE_CLASS_P (rhs
))
640 *no_other_refs
&= gather_memory_references_ref (loop
, &refs
,
644 if (REFERENCE_CLASS_P (lhs
))
646 *no_other_refs
&= gather_memory_references_ref (loop
, &refs
,
657 /* Prune the prefetch candidate REF using the self-reuse. */
660 prune_ref_by_self_reuse (struct mem_ref
*ref
)
665 /* If the step size is non constant, we cannot calculate prefetch_mod. */
666 if (!cst_and_fits_in_hwi (ref
->group
->step
))
669 step
= int_cst_value (ref
->group
->step
);
675 /* Prefetch references to invariant address just once. */
676 ref
->prefetch_before
= 1;
683 if (step
> PREFETCH_BLOCK
)
686 if ((backward
&& HAVE_BACKWARD_PREFETCH
)
687 || (!backward
&& HAVE_FORWARD_PREFETCH
))
689 ref
->prefetch_before
= 1;
693 ref
->prefetch_mod
= PREFETCH_BLOCK
/ step
;
696 /* Divides X by BY, rounding down. */
699 ddown (HOST_WIDE_INT x
, unsigned HOST_WIDE_INT by
)
704 return x
/ (HOST_WIDE_INT
) by
;
706 return (x
+ (HOST_WIDE_INT
) by
- 1) / (HOST_WIDE_INT
) by
;
709 /* Given a CACHE_LINE_SIZE and two inductive memory references
710 with a common STEP greater than CACHE_LINE_SIZE and an address
711 difference DELTA, compute the probability that they will fall
712 in different cache lines. Return true if the computed miss rate
713 is not greater than the ACCEPTABLE_MISS_RATE. DISTINCT_ITERS is the
714 number of distinct iterations after which the pattern repeats itself.
715 ALIGN_UNIT is the unit of alignment in bytes. */
718 is_miss_rate_acceptable (unsigned HOST_WIDE_INT cache_line_size
,
719 HOST_WIDE_INT step
, HOST_WIDE_INT delta
,
720 unsigned HOST_WIDE_INT distinct_iters
,
723 unsigned align
, iter
;
724 int total_positions
, miss_positions
, max_allowed_miss_positions
;
725 int address1
, address2
, cache_line1
, cache_line2
;
727 /* It always misses if delta is greater than or equal to the cache
729 if (delta
>= (HOST_WIDE_INT
) cache_line_size
)
733 total_positions
= (cache_line_size
/ align_unit
) * distinct_iters
;
734 max_allowed_miss_positions
= (ACCEPTABLE_MISS_RATE
* total_positions
) / 1000;
736 /* Iterate through all possible alignments of the first
737 memory reference within its cache line. */
738 for (align
= 0; align
< cache_line_size
; align
+= align_unit
)
740 /* Iterate through all distinct iterations. */
741 for (iter
= 0; iter
< distinct_iters
; iter
++)
743 address1
= align
+ step
* iter
;
744 address2
= address1
+ delta
;
745 cache_line1
= address1
/ cache_line_size
;
746 cache_line2
= address2
/ cache_line_size
;
747 if (cache_line1
!= cache_line2
)
750 if (miss_positions
> max_allowed_miss_positions
)
757 /* Prune the prefetch candidate REF using the reuse with BY.
758 If BY_IS_BEFORE is true, BY is before REF in the loop. */
761 prune_ref_by_group_reuse (struct mem_ref
*ref
, struct mem_ref
*by
,
766 HOST_WIDE_INT delta_r
= ref
->delta
, delta_b
= by
->delta
;
767 HOST_WIDE_INT delta
= delta_b
- delta_r
;
768 HOST_WIDE_INT hit_from
;
769 unsigned HOST_WIDE_INT prefetch_before
, prefetch_block
;
770 HOST_WIDE_INT reduced_step
;
771 unsigned HOST_WIDE_INT reduced_prefetch_block
;
775 /* If the step is non constant we cannot calculate prefetch_before. */
776 if (!cst_and_fits_in_hwi (ref
->group
->step
)) {
780 step
= int_cst_value (ref
->group
->step
);
787 /* If the references has the same address, only prefetch the
790 ref
->prefetch_before
= 0;
797 /* If the reference addresses are invariant and fall into the
798 same cache line, prefetch just the first one. */
802 if (ddown (ref
->delta
, PREFETCH_BLOCK
)
803 != ddown (by
->delta
, PREFETCH_BLOCK
))
806 ref
->prefetch_before
= 0;
810 /* Only prune the reference that is behind in the array. */
816 /* Transform the data so that we may assume that the accesses
820 delta_r
= PREFETCH_BLOCK
- 1 - delta_r
;
821 delta_b
= PREFETCH_BLOCK
- 1 - delta_b
;
829 /* Check whether the two references are likely to hit the same cache
830 line, and how distant the iterations in that it occurs are from
833 if (step
<= PREFETCH_BLOCK
)
835 /* The accesses are sure to meet. Let us check when. */
836 hit_from
= ddown (delta_b
, PREFETCH_BLOCK
) * PREFETCH_BLOCK
;
837 prefetch_before
= (hit_from
- delta_r
+ step
- 1) / step
;
839 /* Do not reduce prefetch_before if we meet beyond cache size. */
840 if (prefetch_before
> absu_hwi (L2_CACHE_SIZE_BYTES
/ step
))
841 prefetch_before
= PREFETCH_ALL
;
842 if (prefetch_before
< ref
->prefetch_before
)
843 ref
->prefetch_before
= prefetch_before
;
848 /* A more complicated case with step > prefetch_block. First reduce
849 the ratio between the step and the cache line size to its simplest
850 terms. The resulting denominator will then represent the number of
851 distinct iterations after which each address will go back to its
852 initial location within the cache line. This computation assumes
853 that PREFETCH_BLOCK is a power of two. */
854 prefetch_block
= PREFETCH_BLOCK
;
855 reduced_prefetch_block
= prefetch_block
;
857 while ((reduced_step
& 1) == 0
858 && reduced_prefetch_block
> 1)
861 reduced_prefetch_block
>>= 1;
864 prefetch_before
= delta
/ step
;
866 ref_type
= TREE_TYPE (ref
->mem
);
867 align_unit
= TYPE_ALIGN (ref_type
) / 8;
868 if (is_miss_rate_acceptable (prefetch_block
, step
, delta
,
869 reduced_prefetch_block
, align_unit
))
871 /* Do not reduce prefetch_before if we meet beyond cache size. */
872 if (prefetch_before
> L2_CACHE_SIZE_BYTES
/ PREFETCH_BLOCK
)
873 prefetch_before
= PREFETCH_ALL
;
874 if (prefetch_before
< ref
->prefetch_before
)
875 ref
->prefetch_before
= prefetch_before
;
880 /* Try also the following iteration. */
882 delta
= step
- delta
;
883 if (is_miss_rate_acceptable (prefetch_block
, step
, delta
,
884 reduced_prefetch_block
, align_unit
))
886 if (prefetch_before
< ref
->prefetch_before
)
887 ref
->prefetch_before
= prefetch_before
;
892 /* The ref probably does not reuse by. */
896 /* Prune the prefetch candidate REF using the reuses with other references
900 prune_ref_by_reuse (struct mem_ref
*ref
, struct mem_ref
*refs
)
902 struct mem_ref
*prune_by
;
905 prune_ref_by_self_reuse (ref
);
907 for (prune_by
= refs
; prune_by
; prune_by
= prune_by
->next
)
915 if (!WRITE_CAN_USE_READ_PREFETCH
917 && !prune_by
->write_p
)
919 if (!READ_CAN_USE_WRITE_PREFETCH
921 && prune_by
->write_p
)
924 prune_ref_by_group_reuse (ref
, prune_by
, before
);
928 /* Prune the prefetch candidates in GROUP using the reuse analysis. */
931 prune_group_by_reuse (struct mem_ref_group
*group
)
933 struct mem_ref
*ref_pruned
;
935 for (ref_pruned
= group
->refs
; ref_pruned
; ref_pruned
= ref_pruned
->next
)
937 prune_ref_by_reuse (ref_pruned
, group
->refs
);
939 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
941 fprintf (dump_file
, "Reference %p:", (void *) ref_pruned
);
943 if (ref_pruned
->prefetch_before
== PREFETCH_ALL
944 && ref_pruned
->prefetch_mod
== 1)
945 fprintf (dump_file
, " no restrictions");
946 else if (ref_pruned
->prefetch_before
== 0)
947 fprintf (dump_file
, " do not prefetch");
948 else if (ref_pruned
->prefetch_before
<= ref_pruned
->prefetch_mod
)
949 fprintf (dump_file
, " prefetch once");
952 if (ref_pruned
->prefetch_before
!= PREFETCH_ALL
)
954 fprintf (dump_file
, " prefetch before ");
955 fprintf (dump_file
, HOST_WIDE_INT_PRINT_DEC
,
956 ref_pruned
->prefetch_before
);
958 if (ref_pruned
->prefetch_mod
!= 1)
960 fprintf (dump_file
, " prefetch mod ");
961 fprintf (dump_file
, HOST_WIDE_INT_PRINT_DEC
,
962 ref_pruned
->prefetch_mod
);
965 fprintf (dump_file
, "\n");
970 /* Prune the list of prefetch candidates GROUPS using the reuse analysis. */
973 prune_by_reuse (struct mem_ref_group
*groups
)
975 for (; groups
; groups
= groups
->next
)
976 prune_group_by_reuse (groups
);
979 /* Returns true if we should issue prefetch for REF. */
982 should_issue_prefetch_p (struct mem_ref
*ref
)
984 /* For now do not issue prefetches for only first few of the
986 if (ref
->prefetch_before
!= PREFETCH_ALL
)
988 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
989 fprintf (dump_file
, "Ignoring %p due to prefetch_before\n",
994 /* Do not prefetch nontemporal stores. */
997 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
998 fprintf (dump_file
, "Ignoring nontemporal store %p\n", (void *) ref
);
1005 /* Decide which of the prefetch candidates in GROUPS to prefetch.
1006 AHEAD is the number of iterations to prefetch ahead (which corresponds
1007 to the number of simultaneous instances of one prefetch running at a
1008 time). UNROLL_FACTOR is the factor by that the loop is going to be
1009 unrolled. Returns true if there is anything to prefetch. */
1012 schedule_prefetches (struct mem_ref_group
*groups
, unsigned unroll_factor
,
1015 unsigned remaining_prefetch_slots
, n_prefetches
, prefetch_slots
;
1016 unsigned slots_per_prefetch
;
1017 struct mem_ref
*ref
;
1020 /* At most SIMULTANEOUS_PREFETCHES should be running at the same time. */
1021 remaining_prefetch_slots
= SIMULTANEOUS_PREFETCHES
;
1023 /* The prefetch will run for AHEAD iterations of the original loop, i.e.,
1024 AHEAD / UNROLL_FACTOR iterations of the unrolled loop. In each iteration,
1025 it will need a prefetch slot. */
1026 slots_per_prefetch
= (ahead
+ unroll_factor
/ 2) / unroll_factor
;
1027 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1028 fprintf (dump_file
, "Each prefetch instruction takes %u prefetch slots.\n",
1029 slots_per_prefetch
);
1031 /* For now we just take memory references one by one and issue
1032 prefetches for as many as possible. The groups are sorted
1033 starting with the largest step, since the references with
1034 large step are more likely to cause many cache misses. */
1036 for (; groups
; groups
= groups
->next
)
1037 for (ref
= groups
->refs
; ref
; ref
= ref
->next
)
1039 if (!should_issue_prefetch_p (ref
))
1042 /* The loop is far from being sufficiently unrolled for this
1043 prefetch. Do not generate prefetch to avoid many redudant
1045 if (ref
->prefetch_mod
/ unroll_factor
> PREFETCH_MOD_TO_UNROLL_FACTOR_RATIO
)
1048 /* If we need to prefetch the reference each PREFETCH_MOD iterations,
1049 and we unroll the loop UNROLL_FACTOR times, we need to insert
1050 ceil (UNROLL_FACTOR / PREFETCH_MOD) instructions in each
1052 n_prefetches
= ((unroll_factor
+ ref
->prefetch_mod
- 1)
1053 / ref
->prefetch_mod
);
1054 prefetch_slots
= n_prefetches
* slots_per_prefetch
;
1056 /* If more than half of the prefetches would be lost anyway, do not
1057 issue the prefetch. */
1058 if (2 * remaining_prefetch_slots
< prefetch_slots
)
1061 ref
->issue_prefetch_p
= true;
1063 if (remaining_prefetch_slots
<= prefetch_slots
)
1065 remaining_prefetch_slots
-= prefetch_slots
;
1072 /* Return TRUE if no prefetch is going to be generated in the given
1076 nothing_to_prefetch_p (struct mem_ref_group
*groups
)
1078 struct mem_ref
*ref
;
1080 for (; groups
; groups
= groups
->next
)
1081 for (ref
= groups
->refs
; ref
; ref
= ref
->next
)
1082 if (should_issue_prefetch_p (ref
))
1088 /* Estimate the number of prefetches in the given GROUPS.
1089 UNROLL_FACTOR is the factor by which LOOP was unrolled. */
1092 estimate_prefetch_count (struct mem_ref_group
*groups
, unsigned unroll_factor
)
1094 struct mem_ref
*ref
;
1095 unsigned n_prefetches
;
1096 int prefetch_count
= 0;
1098 for (; groups
; groups
= groups
->next
)
1099 for (ref
= groups
->refs
; ref
; ref
= ref
->next
)
1100 if (should_issue_prefetch_p (ref
))
1102 n_prefetches
= ((unroll_factor
+ ref
->prefetch_mod
- 1)
1103 / ref
->prefetch_mod
);
1104 prefetch_count
+= n_prefetches
;
1107 return prefetch_count
;
1110 /* Issue prefetches for the reference REF into loop as decided before.
1111 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR
1112 is the factor by which LOOP was unrolled. */
1115 issue_prefetch_ref (struct mem_ref
*ref
, unsigned unroll_factor
, unsigned ahead
)
1117 HOST_WIDE_INT delta
;
1118 tree addr
, addr_base
, write_p
, local
, forward
;
1120 gimple_stmt_iterator bsi
;
1121 unsigned n_prefetches
, ap
;
1122 bool nontemporal
= ref
->reuse_distance
>= L2_CACHE_SIZE_BYTES
;
1124 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1125 fprintf (dump_file
, "Issued%s prefetch for %p.\n",
1126 nontemporal
? " nontemporal" : "",
1129 bsi
= gsi_for_stmt (ref
->stmt
);
1131 n_prefetches
= ((unroll_factor
+ ref
->prefetch_mod
- 1)
1132 / ref
->prefetch_mod
);
1133 addr_base
= build_fold_addr_expr_with_type (ref
->mem
, ptr_type_node
);
1134 addr_base
= force_gimple_operand_gsi (&bsi
, unshare_expr (addr_base
),
1135 true, NULL
, true, GSI_SAME_STMT
);
1136 write_p
= ref
->write_p
? integer_one_node
: integer_zero_node
;
1137 local
= nontemporal
? integer_zero_node
: integer_three_node
;
1139 for (ap
= 0; ap
< n_prefetches
; ap
++)
1141 if (cst_and_fits_in_hwi (ref
->group
->step
))
1143 /* Determine the address to prefetch. */
1144 delta
= (ahead
+ ap
* ref
->prefetch_mod
) *
1145 int_cst_value (ref
->group
->step
);
1146 addr
= fold_build_pointer_plus_hwi (addr_base
, delta
);
1147 addr
= force_gimple_operand_gsi (&bsi
, unshare_expr (addr
), true, NULL
,
1148 true, GSI_SAME_STMT
);
1152 /* The step size is non-constant but loop-invariant. We use the
1153 heuristic to simply prefetch ahead iterations ahead. */
1154 forward
= fold_build2 (MULT_EXPR
, sizetype
,
1155 fold_convert (sizetype
, ref
->group
->step
),
1156 fold_convert (sizetype
, size_int (ahead
)));
1157 addr
= fold_build_pointer_plus (addr_base
, forward
);
1158 addr
= force_gimple_operand_gsi (&bsi
, unshare_expr (addr
), true,
1159 NULL
, true, GSI_SAME_STMT
);
1162 if (addr_base
!= addr
1163 && TREE_CODE (addr_base
) == SSA_NAME
1164 && TREE_CODE (addr
) == SSA_NAME
)
1166 duplicate_ssa_name_ptr_info (addr
, SSA_NAME_PTR_INFO (addr_base
));
1167 /* As this isn't a plain copy we have to reset alignment
1169 if (SSA_NAME_PTR_INFO (addr
))
1170 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (addr
));
1173 /* Create the prefetch instruction. */
1174 prefetch
= gimple_build_call (builtin_decl_explicit (BUILT_IN_PREFETCH
),
1175 3, addr
, write_p
, local
);
1176 gsi_insert_before (&bsi
, prefetch
, GSI_SAME_STMT
);
1180 /* Issue prefetches for the references in GROUPS into loop as decided before.
1181 HEAD is the number of iterations to prefetch ahead. UNROLL_FACTOR is the
1182 factor by that LOOP was unrolled. */
1185 issue_prefetches (struct mem_ref_group
*groups
,
1186 unsigned unroll_factor
, unsigned ahead
)
1188 struct mem_ref
*ref
;
1190 for (; groups
; groups
= groups
->next
)
1191 for (ref
= groups
->refs
; ref
; ref
= ref
->next
)
1192 if (ref
->issue_prefetch_p
)
1193 issue_prefetch_ref (ref
, unroll_factor
, ahead
);
1196 /* Returns true if REF is a memory write for that a nontemporal store insn
1200 nontemporal_store_p (struct mem_ref
*ref
)
1203 enum insn_code code
;
1205 /* REF must be a write that is not reused. We require it to be independent
1206 on all other memory references in the loop, as the nontemporal stores may
1207 be reordered with respect to other memory references. */
1209 || !ref
->independent_p
1210 || ref
->reuse_distance
< L2_CACHE_SIZE_BYTES
)
1213 /* Check that we have the storent instruction for the mode. */
1214 mode
= TYPE_MODE (TREE_TYPE (ref
->mem
));
1215 if (mode
== BLKmode
)
1218 code
= optab_handler (storent_optab
, mode
);
1219 return code
!= CODE_FOR_nothing
;
1222 /* If REF is a nontemporal store, we mark the corresponding modify statement
1223 and return true. Otherwise, we return false. */
1226 mark_nontemporal_store (struct mem_ref
*ref
)
1228 if (!nontemporal_store_p (ref
))
1231 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1232 fprintf (dump_file
, "Marked reference %p as a nontemporal store.\n",
1235 gimple_assign_set_nontemporal_move (ref
->stmt
, true);
1236 ref
->storent_p
= true;
1241 /* Issue a memory fence instruction after LOOP. */
1244 emit_mfence_after_loop (struct loop
*loop
)
1246 vec
<edge
> exits
= get_loop_exit_edges (loop
);
1249 gimple_stmt_iterator bsi
;
1252 FOR_EACH_VEC_ELT (exits
, i
, exit
)
1254 call
= gimple_build_call (FENCE_FOLLOWING_MOVNT
, 0);
1256 if (!single_pred_p (exit
->dest
)
1257 /* If possible, we prefer not to insert the fence on other paths
1259 && !(exit
->flags
& EDGE_ABNORMAL
))
1260 split_loop_exit_edge (exit
);
1261 bsi
= gsi_after_labels (exit
->dest
);
1263 gsi_insert_before (&bsi
, call
, GSI_NEW_STMT
);
1267 update_ssa (TODO_update_ssa_only_virtuals
);
1270 /* Returns true if we can use storent in loop, false otherwise. */
1273 may_use_storent_in_loop_p (struct loop
*loop
)
1277 if (loop
->inner
!= NULL
)
1280 /* If we must issue a mfence insn after using storent, check that there
1281 is a suitable place for it at each of the loop exits. */
1282 if (FENCE_FOLLOWING_MOVNT
!= NULL_TREE
)
1284 vec
<edge
> exits
= get_loop_exit_edges (loop
);
1288 FOR_EACH_VEC_ELT (exits
, i
, exit
)
1289 if ((exit
->flags
& EDGE_ABNORMAL
)
1290 && exit
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1299 /* Marks nontemporal stores in LOOP. GROUPS contains the description of memory
1300 references in the loop. */
1303 mark_nontemporal_stores (struct loop
*loop
, struct mem_ref_group
*groups
)
1305 struct mem_ref
*ref
;
1308 if (!may_use_storent_in_loop_p (loop
))
1311 for (; groups
; groups
= groups
->next
)
1312 for (ref
= groups
->refs
; ref
; ref
= ref
->next
)
1313 any
|= mark_nontemporal_store (ref
);
1315 if (any
&& FENCE_FOLLOWING_MOVNT
!= NULL_TREE
)
1316 emit_mfence_after_loop (loop
);
1319 /* Determines whether we can profitably unroll LOOP FACTOR times, and if
1320 this is the case, fill in DESC by the description of number of
1324 should_unroll_loop_p (struct loop
*loop
, struct tree_niter_desc
*desc
,
1327 if (!can_unroll_loop_p (loop
, factor
, desc
))
1330 /* We only consider loops without control flow for unrolling. This is not
1331 a hard restriction -- tree_unroll_loop works with arbitrary loops
1332 as well; but the unrolling/prefetching is usually more profitable for
1333 loops consisting of a single basic block, and we want to limit the
1335 if (loop
->num_nodes
> 2)
1341 /* Determine the coefficient by that unroll LOOP, from the information
1342 contained in the list of memory references REFS. Description of
1343 umber of iterations of LOOP is stored to DESC. NINSNS is the number of
1344 insns of the LOOP. EST_NITER is the estimated number of iterations of
1345 the loop, or -1 if no estimate is available. */
1348 determine_unroll_factor (struct loop
*loop
, struct mem_ref_group
*refs
,
1349 unsigned ninsns
, struct tree_niter_desc
*desc
,
1350 HOST_WIDE_INT est_niter
)
1352 unsigned upper_bound
;
1353 unsigned nfactor
, factor
, mod_constraint
;
1354 struct mem_ref_group
*agp
;
1355 struct mem_ref
*ref
;
1357 /* First check whether the loop is not too large to unroll. We ignore
1358 PARAM_MAX_UNROLL_TIMES, because for small loops, it prevented us
1359 from unrolling them enough to make exactly one cache line covered by each
1360 iteration. Also, the goal of PARAM_MAX_UNROLL_TIMES is to prevent
1361 us from unrolling the loops too many times in cases where we only expect
1362 gains from better scheduling and decreasing loop overhead, which is not
1364 upper_bound
= PARAM_VALUE (PARAM_MAX_UNROLLED_INSNS
) / ninsns
;
1366 /* If we unrolled the loop more times than it iterates, the unrolled version
1367 of the loop would be never entered. */
1368 if (est_niter
>= 0 && est_niter
< (HOST_WIDE_INT
) upper_bound
)
1369 upper_bound
= est_niter
;
1371 if (upper_bound
<= 1)
1374 /* Choose the factor so that we may prefetch each cache just once,
1375 but bound the unrolling by UPPER_BOUND. */
1377 for (agp
= refs
; agp
; agp
= agp
->next
)
1378 for (ref
= agp
->refs
; ref
; ref
= ref
->next
)
1379 if (should_issue_prefetch_p (ref
))
1381 mod_constraint
= ref
->prefetch_mod
;
1382 nfactor
= least_common_multiple (mod_constraint
, factor
);
1383 if (nfactor
<= upper_bound
)
1387 if (!should_unroll_loop_p (loop
, desc
, factor
))
1393 /* Returns the total volume of the memory references REFS, taking into account
1394 reuses in the innermost loop and cache line size. TODO -- we should also
1395 take into account reuses across the iterations of the loops in the loop
1399 volume_of_references (struct mem_ref_group
*refs
)
1401 unsigned volume
= 0;
1402 struct mem_ref_group
*gr
;
1403 struct mem_ref
*ref
;
1405 for (gr
= refs
; gr
; gr
= gr
->next
)
1406 for (ref
= gr
->refs
; ref
; ref
= ref
->next
)
1408 /* Almost always reuses another value? */
1409 if (ref
->prefetch_before
!= PREFETCH_ALL
)
1412 /* If several iterations access the same cache line, use the size of
1413 the line divided by this number. Otherwise, a cache line is
1414 accessed in each iteration. TODO -- in the latter case, we should
1415 take the size of the reference into account, rounding it up on cache
1416 line size multiple. */
1417 volume
+= L1_CACHE_LINE_SIZE
/ ref
->prefetch_mod
;
1422 /* Returns the volume of memory references accessed across VEC iterations of
1423 loops, whose sizes are described in the LOOP_SIZES array. N is the number
1424 of the loops in the nest (length of VEC and LOOP_SIZES vectors). */
1427 volume_of_dist_vector (lambda_vector vec
, unsigned *loop_sizes
, unsigned n
)
1431 for (i
= 0; i
< n
; i
++)
1438 gcc_assert (vec
[i
] > 0);
1440 /* We ignore the parts of the distance vector in subloops, since usually
1441 the numbers of iterations are much smaller. */
1442 return loop_sizes
[i
] * vec
[i
];
1445 /* Add the steps of ACCESS_FN multiplied by STRIDE to the array STRIDE
1446 at the position corresponding to the loop of the step. N is the depth
1447 of the considered loop nest, and, LOOP is its innermost loop. */
1450 add_subscript_strides (tree access_fn
, unsigned stride
,
1451 HOST_WIDE_INT
*strides
, unsigned n
, struct loop
*loop
)
1455 HOST_WIDE_INT astep
;
1456 unsigned min_depth
= loop_depth (loop
) - n
;
1458 while (TREE_CODE (access_fn
) == POLYNOMIAL_CHREC
)
1460 aloop
= get_chrec_loop (access_fn
);
1461 step
= CHREC_RIGHT (access_fn
);
1462 access_fn
= CHREC_LEFT (access_fn
);
1464 if ((unsigned) loop_depth (aloop
) <= min_depth
)
1467 if (tree_fits_shwi_p (step
))
1468 astep
= tree_to_shwi (step
);
1470 astep
= L1_CACHE_LINE_SIZE
;
1472 strides
[n
- 1 - loop_depth (loop
) + loop_depth (aloop
)] += astep
* stride
;
1477 /* Returns the volume of memory references accessed between two consecutive
1478 self-reuses of the reference DR. We consider the subscripts of DR in N
1479 loops, and LOOP_SIZES contains the volumes of accesses in each of the
1480 loops. LOOP is the innermost loop of the current loop nest. */
1483 self_reuse_distance (data_reference_p dr
, unsigned *loop_sizes
, unsigned n
,
1486 tree stride
, access_fn
;
1487 HOST_WIDE_INT
*strides
, astride
;
1488 vec
<tree
> access_fns
;
1489 tree ref
= DR_REF (dr
);
1490 unsigned i
, ret
= ~0u;
1492 /* In the following example:
1494 for (i = 0; i < N; i++)
1495 for (j = 0; j < N; j++)
1497 the same cache line is accessed each N steps (except if the change from
1498 i to i + 1 crosses the boundary of the cache line). Thus, for self-reuse,
1499 we cannot rely purely on the results of the data dependence analysis.
1501 Instead, we compute the stride of the reference in each loop, and consider
1502 the innermost loop in that the stride is less than cache size. */
1504 strides
= XCNEWVEC (HOST_WIDE_INT
, n
);
1505 access_fns
= DR_ACCESS_FNS (dr
);
1507 FOR_EACH_VEC_ELT (access_fns
, i
, access_fn
)
1509 /* Keep track of the reference corresponding to the subscript, so that we
1511 while (handled_component_p (ref
) && TREE_CODE (ref
) != ARRAY_REF
)
1512 ref
= TREE_OPERAND (ref
, 0);
1514 if (TREE_CODE (ref
) == ARRAY_REF
)
1516 stride
= TYPE_SIZE_UNIT (TREE_TYPE (ref
));
1517 if (tree_fits_uhwi_p (stride
))
1518 astride
= tree_to_uhwi (stride
);
1520 astride
= L1_CACHE_LINE_SIZE
;
1522 ref
= TREE_OPERAND (ref
, 0);
1527 add_subscript_strides (access_fn
, astride
, strides
, n
, loop
);
1530 for (i
= n
; i
-- > 0; )
1532 unsigned HOST_WIDE_INT s
;
1534 s
= strides
[i
] < 0 ? -strides
[i
] : strides
[i
];
1536 if (s
< (unsigned) L1_CACHE_LINE_SIZE
1538 > (unsigned) (L1_CACHE_SIZE_BYTES
/ NONTEMPORAL_FRACTION
)))
1540 ret
= loop_sizes
[i
];
1549 /* Determines the distance till the first reuse of each reference in REFS
1550 in the loop nest of LOOP. NO_OTHER_REFS is true if there are no other
1551 memory references in the loop. Return false if the analysis fails. */
1554 determine_loop_nest_reuse (struct loop
*loop
, struct mem_ref_group
*refs
,
1557 struct loop
*nest
, *aloop
;
1558 vec
<data_reference_p
> datarefs
= vNULL
;
1559 vec
<ddr_p
> dependences
= vNULL
;
1560 struct mem_ref_group
*gr
;
1561 struct mem_ref
*ref
, *refb
;
1562 auto_vec
<loop_p
> vloops
;
1563 unsigned *loop_data_size
;
1565 unsigned volume
, dist
, adist
;
1567 data_reference_p dr
;
1573 /* Find the outermost loop of the loop nest of loop (we require that
1574 there are no sibling loops inside the nest). */
1578 aloop
= loop_outer (nest
);
1580 if (aloop
== current_loops
->tree_root
1581 || aloop
->inner
->next
)
1587 /* For each loop, determine the amount of data accessed in each iteration.
1588 We use this to estimate whether the reference is evicted from the
1589 cache before its reuse. */
1590 find_loop_nest (nest
, &vloops
);
1591 n
= vloops
.length ();
1592 loop_data_size
= XNEWVEC (unsigned, n
);
1593 volume
= volume_of_references (refs
);
1597 loop_data_size
[i
] = volume
;
1598 /* Bound the volume by the L2 cache size, since above this bound,
1599 all dependence distances are equivalent. */
1600 if (volume
> L2_CACHE_SIZE_BYTES
)
1604 vol
= estimated_stmt_executions_int (aloop
);
1606 vol
= expected_loop_iterations (aloop
);
1610 /* Prepare the references in the form suitable for data dependence
1611 analysis. We ignore unanalyzable data references (the results
1612 are used just as a heuristics to estimate temporality of the
1613 references, hence we do not need to worry about correctness). */
1614 for (gr
= refs
; gr
; gr
= gr
->next
)
1615 for (ref
= gr
->refs
; ref
; ref
= ref
->next
)
1617 dr
= create_data_ref (nest
, loop_containing_stmt (ref
->stmt
),
1618 ref
->mem
, ref
->stmt
, !ref
->write_p
);
1622 ref
->reuse_distance
= volume
;
1624 datarefs
.safe_push (dr
);
1627 no_other_refs
= false;
1630 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
1632 dist
= self_reuse_distance (dr
, loop_data_size
, n
, loop
);
1633 ref
= (struct mem_ref
*) dr
->aux
;
1634 if (ref
->reuse_distance
> dist
)
1635 ref
->reuse_distance
= dist
;
1638 ref
->independent_p
= true;
1641 if (!compute_all_dependences (datarefs
, &dependences
, vloops
, true))
1644 FOR_EACH_VEC_ELT (dependences
, i
, dep
)
1646 if (DDR_ARE_DEPENDENT (dep
) == chrec_known
)
1649 ref
= (struct mem_ref
*) DDR_A (dep
)->aux
;
1650 refb
= (struct mem_ref
*) DDR_B (dep
)->aux
;
1652 if (DDR_ARE_DEPENDENT (dep
) == chrec_dont_know
1653 || DDR_NUM_DIST_VECTS (dep
) == 0)
1655 /* If the dependence cannot be analyzed, assume that there might be
1659 ref
->independent_p
= false;
1660 refb
->independent_p
= false;
1664 /* The distance vectors are normalized to be always lexicographically
1665 positive, hence we cannot tell just from them whether DDR_A comes
1666 before DDR_B or vice versa. However, it is not important,
1667 anyway -- if DDR_A is close to DDR_B, then it is either reused in
1668 DDR_B (and it is not nontemporal), or it reuses the value of DDR_B
1669 in cache (and marking it as nontemporal would not affect
1673 for (j
= 0; j
< DDR_NUM_DIST_VECTS (dep
); j
++)
1675 adist
= volume_of_dist_vector (DDR_DIST_VECT (dep
, j
),
1678 /* If this is a dependence in the innermost loop (i.e., the
1679 distances in all superloops are zero) and it is not
1680 the trivial self-dependence with distance zero, record that
1681 the references are not completely independent. */
1682 if (lambda_vector_zerop (DDR_DIST_VECT (dep
, j
), n
- 1)
1684 || DDR_DIST_VECT (dep
, j
)[n
-1] != 0))
1686 ref
->independent_p
= false;
1687 refb
->independent_p
= false;
1690 /* Ignore accesses closer than
1691 L1_CACHE_SIZE_BYTES / NONTEMPORAL_FRACTION,
1692 so that we use nontemporal prefetches e.g. if single memory
1693 location is accessed several times in a single iteration of
1695 if (adist
< L1_CACHE_SIZE_BYTES
/ NONTEMPORAL_FRACTION
)
1703 if (ref
->reuse_distance
> dist
)
1704 ref
->reuse_distance
= dist
;
1705 if (refb
->reuse_distance
> dist
)
1706 refb
->reuse_distance
= dist
;
1709 free_dependence_relations (dependences
);
1710 free_data_refs (datarefs
);
1711 free (loop_data_size
);
1713 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1715 fprintf (dump_file
, "Reuse distances:\n");
1716 for (gr
= refs
; gr
; gr
= gr
->next
)
1717 for (ref
= gr
->refs
; ref
; ref
= ref
->next
)
1718 fprintf (dump_file
, " ref %p distance %u\n",
1719 (void *) ref
, ref
->reuse_distance
);
1725 /* Determine whether or not the trip count to ahead ratio is too small based
1726 on prefitablility consideration.
1727 AHEAD: the iteration ahead distance,
1728 EST_NITER: the estimated trip count. */
1731 trip_count_to_ahead_ratio_too_small_p (unsigned ahead
, HOST_WIDE_INT est_niter
)
1733 /* Assume trip count to ahead ratio is big enough if the trip count could not
1734 be estimated at compile time. */
1738 if (est_niter
< (HOST_WIDE_INT
) (TRIP_COUNT_TO_AHEAD_RATIO
* ahead
))
1740 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1742 "Not prefetching -- loop estimated to roll only %d times\n",
1750 /* Determine whether or not the number of memory references in the loop is
1751 reasonable based on the profitablity and compilation time considerations.
1752 NINSNS: estimated number of instructions in the loop,
1753 MEM_REF_COUNT: total number of memory references in the loop. */
1756 mem_ref_count_reasonable_p (unsigned ninsns
, unsigned mem_ref_count
)
1758 int insn_to_mem_ratio
;
1760 if (mem_ref_count
== 0)
1763 /* Miss rate computation (is_miss_rate_acceptable) and dependence analysis
1764 (compute_all_dependences) have high costs based on quadratic complexity.
1765 To avoid huge compilation time, we give up prefetching if mem_ref_count
1767 if (mem_ref_count
> PREFETCH_MAX_MEM_REFS_PER_LOOP
)
1770 /* Prefetching improves performance by overlapping cache missing
1771 memory accesses with CPU operations. If the loop does not have
1772 enough CPU operations to overlap with memory operations, prefetching
1773 won't give a significant benefit. One approximate way of checking
1774 this is to require the ratio of instructions to memory references to
1775 be above a certain limit. This approximation works well in practice.
1776 TODO: Implement a more precise computation by estimating the time
1777 for each CPU or memory op in the loop. Time estimates for memory ops
1778 should account for cache misses. */
1779 insn_to_mem_ratio
= ninsns
/ mem_ref_count
;
1781 if (insn_to_mem_ratio
< PREFETCH_MIN_INSN_TO_MEM_RATIO
)
1783 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1785 "Not prefetching -- instruction to memory reference ratio (%d) too small\n",
1793 /* Determine whether or not the instruction to prefetch ratio in the loop is
1794 too small based on the profitablity consideration.
1795 NINSNS: estimated number of instructions in the loop,
1796 PREFETCH_COUNT: an estimate of the number of prefetches,
1797 UNROLL_FACTOR: the factor to unroll the loop if prefetching. */
1800 insn_to_prefetch_ratio_too_small_p (unsigned ninsns
, unsigned prefetch_count
,
1801 unsigned unroll_factor
)
1803 int insn_to_prefetch_ratio
;
1805 /* Prefetching most likely causes performance degradation when the instruction
1806 to prefetch ratio is too small. Too many prefetch instructions in a loop
1807 may reduce the I-cache performance.
1808 (unroll_factor * ninsns) is used to estimate the number of instructions in
1809 the unrolled loop. This implementation is a bit simplistic -- the number
1810 of issued prefetch instructions is also affected by unrolling. So,
1811 prefetch_mod and the unroll factor should be taken into account when
1812 determining prefetch_count. Also, the number of insns of the unrolled
1813 loop will usually be significantly smaller than the number of insns of the
1814 original loop * unroll_factor (at least the induction variable increases
1815 and the exit branches will get eliminated), so it might be better to use
1816 tree_estimate_loop_size + estimated_unrolled_size. */
1817 insn_to_prefetch_ratio
= (unroll_factor
* ninsns
) / prefetch_count
;
1818 if (insn_to_prefetch_ratio
< MIN_INSN_TO_PREFETCH_RATIO
)
1820 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1822 "Not prefetching -- instruction to prefetch ratio (%d) too small\n",
1823 insn_to_prefetch_ratio
);
1831 /* Issue prefetch instructions for array references in LOOP. Returns
1832 true if the LOOP was unrolled. */
1835 loop_prefetch_arrays (struct loop
*loop
)
1837 struct mem_ref_group
*refs
;
1838 unsigned ahead
, ninsns
, time
, unroll_factor
;
1839 HOST_WIDE_INT est_niter
;
1840 struct tree_niter_desc desc
;
1841 bool unrolled
= false, no_other_refs
;
1842 unsigned prefetch_count
;
1843 unsigned mem_ref_count
;
1845 if (optimize_loop_nest_for_size_p (loop
))
1847 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1848 fprintf (dump_file
, " ignored (cold area)\n");
1852 /* FIXME: the time should be weighted by the probabilities of the blocks in
1854 time
= tree_num_loop_insns (loop
, &eni_time_weights
);
1858 ahead
= (PREFETCH_LATENCY
+ time
- 1) / time
;
1859 est_niter
= estimated_stmt_executions_int (loop
);
1860 if (est_niter
== -1)
1861 est_niter
= likely_max_stmt_executions_int (loop
);
1863 /* Prefetching is not likely to be profitable if the trip count to ahead
1864 ratio is too small. */
1865 if (trip_count_to_ahead_ratio_too_small_p (ahead
, est_niter
))
1868 ninsns
= tree_num_loop_insns (loop
, &eni_size_weights
);
1870 /* Step 1: gather the memory references. */
1871 refs
= gather_memory_references (loop
, &no_other_refs
, &mem_ref_count
);
1873 /* Give up prefetching if the number of memory references in the
1874 loop is not reasonable based on profitablity and compilation time
1876 if (!mem_ref_count_reasonable_p (ninsns
, mem_ref_count
))
1879 /* Step 2: estimate the reuse effects. */
1880 prune_by_reuse (refs
);
1882 if (nothing_to_prefetch_p (refs
))
1885 if (!determine_loop_nest_reuse (loop
, refs
, no_other_refs
))
1888 /* Step 3: determine unroll factor. */
1889 unroll_factor
= determine_unroll_factor (loop
, refs
, ninsns
, &desc
,
1892 /* Estimate prefetch count for the unrolled loop. */
1893 prefetch_count
= estimate_prefetch_count (refs
, unroll_factor
);
1894 if (prefetch_count
== 0)
1897 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1898 fprintf (dump_file
, "Ahead %d, unroll factor %d, trip count "
1899 HOST_WIDE_INT_PRINT_DEC
"\n"
1900 "insn count %d, mem ref count %d, prefetch count %d\n",
1901 ahead
, unroll_factor
, est_niter
,
1902 ninsns
, mem_ref_count
, prefetch_count
);
1904 /* Prefetching is not likely to be profitable if the instruction to prefetch
1905 ratio is too small. */
1906 if (insn_to_prefetch_ratio_too_small_p (ninsns
, prefetch_count
,
1910 mark_nontemporal_stores (loop
, refs
);
1912 /* Step 4: what to prefetch? */
1913 if (!schedule_prefetches (refs
, unroll_factor
, ahead
))
1916 /* Step 5: unroll the loop. TODO -- peeling of first and last few
1917 iterations so that we do not issue superfluous prefetches. */
1918 if (unroll_factor
!= 1)
1920 tree_unroll_loop (loop
, unroll_factor
,
1921 single_dom_exit (loop
), &desc
);
1925 /* Step 6: issue the prefetches. */
1926 issue_prefetches (refs
, unroll_factor
, ahead
);
1929 release_mem_refs (refs
);
1933 /* Issue prefetch instructions for array references in loops. */
1936 tree_ssa_prefetch_arrays (void)
1939 bool unrolled
= false;
1942 if (!targetm
.have_prefetch ()
1943 /* It is possible to ask compiler for say -mtune=i486 -march=pentium4.
1944 -mtune=i486 causes us having PREFETCH_BLOCK 0, since this is part
1945 of processor costs and i486 does not have prefetch, but
1946 -march=pentium4 causes targetm.have_prefetch to be true. Ugh. */
1947 || PREFETCH_BLOCK
== 0)
1950 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1952 fprintf (dump_file
, "Prefetching parameters:\n");
1953 fprintf (dump_file
, " simultaneous prefetches: %d\n",
1954 SIMULTANEOUS_PREFETCHES
);
1955 fprintf (dump_file
, " prefetch latency: %d\n", PREFETCH_LATENCY
);
1956 fprintf (dump_file
, " prefetch block size: %d\n", PREFETCH_BLOCK
);
1957 fprintf (dump_file
, " L1 cache size: %d lines, %d kB\n",
1958 L1_CACHE_SIZE_BYTES
/ L1_CACHE_LINE_SIZE
, L1_CACHE_SIZE
);
1959 fprintf (dump_file
, " L1 cache line size: %d\n", L1_CACHE_LINE_SIZE
);
1960 fprintf (dump_file
, " L2 cache size: %d kB\n", L2_CACHE_SIZE
);
1961 fprintf (dump_file
, " min insn-to-prefetch ratio: %d \n",
1962 MIN_INSN_TO_PREFETCH_RATIO
);
1963 fprintf (dump_file
, " min insn-to-mem ratio: %d \n",
1964 PREFETCH_MIN_INSN_TO_MEM_RATIO
);
1965 fprintf (dump_file
, "\n");
1968 initialize_original_copy_tables ();
1970 if (!builtin_decl_explicit_p (BUILT_IN_PREFETCH
))
1972 tree type
= build_function_type_list (void_type_node
,
1973 const_ptr_type_node
, NULL_TREE
);
1974 tree decl
= add_builtin_function ("__builtin_prefetch", type
,
1975 BUILT_IN_PREFETCH
, BUILT_IN_NORMAL
,
1977 DECL_IS_NOVOPS (decl
) = true;
1978 set_builtin_decl (BUILT_IN_PREFETCH
, decl
, false);
1981 FOR_EACH_LOOP (loop
, LI_FROM_INNERMOST
)
1983 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1984 fprintf (dump_file
, "Processing loop %d:\n", loop
->num
);
1986 unrolled
|= loop_prefetch_arrays (loop
);
1988 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1989 fprintf (dump_file
, "\n\n");
1995 todo_flags
|= TODO_cleanup_cfg
;
1998 free_original_copy_tables ();
2006 const pass_data pass_data_loop_prefetch
=
2008 GIMPLE_PASS
, /* type */
2009 "aprefetch", /* name */
2010 OPTGROUP_LOOP
, /* optinfo_flags */
2011 TV_TREE_PREFETCH
, /* tv_id */
2012 ( PROP_cfg
| PROP_ssa
), /* properties_required */
2013 0, /* properties_provided */
2014 0, /* properties_destroyed */
2015 0, /* todo_flags_start */
2016 0, /* todo_flags_finish */
2019 class pass_loop_prefetch
: public gimple_opt_pass
2022 pass_loop_prefetch (gcc::context
*ctxt
)
2023 : gimple_opt_pass (pass_data_loop_prefetch
, ctxt
)
2026 /* opt_pass methods: */
2027 virtual bool gate (function
*) { return flag_prefetch_loop_arrays
> 0; }
2028 virtual unsigned int execute (function
*);
2030 }; // class pass_loop_prefetch
2033 pass_loop_prefetch::execute (function
*fun
)
2035 if (number_of_loops (fun
) <= 1)
2038 if ((PREFETCH_BLOCK
& (PREFETCH_BLOCK
- 1)) != 0)
2040 static bool warned
= false;
2044 warning (OPT_Wdisabled_optimization
,
2045 "%<l1-cache-size%> parameter is not a power of two %d",
2052 return tree_ssa_prefetch_arrays ();
2058 make_pass_loop_prefetch (gcc::context
*ctxt
)
2060 return new pass_loop_prefetch (ctxt
);