2003-04-21 Aldy Hernandez <aldyh@redhat.com>
[official-gcc.git] / gcc / optabs.c
blobf57c81448dd3500d9a3d2eb2c2b738beeb794c95
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
29 /* Include insn-config.h before expr.h so that HAVE_conditional_move
30 is properly defined. */
31 #include "insn-config.h"
32 #include "rtl.h"
33 #include "tree.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "function.h"
37 #include "except.h"
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "ggc.h"
44 #include "real.h"
45 #include "basic-block.h"
47 /* Each optab contains info on how this target machine
48 can perform a particular operation
49 for all sizes and kinds of operands.
51 The operation to be performed is often specified
52 by passing one of these optabs as an argument.
54 See expr.h for documentation of these optabs. */
56 optab optab_table[OTI_MAX];
58 rtx libfunc_table[LTI_MAX];
60 /* Tables of patterns for extending one integer mode to another. */
61 enum insn_code extendtab[MAX_MACHINE_MODE][MAX_MACHINE_MODE][2];
63 /* Tables of patterns for converting between fixed and floating point. */
64 enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
65 enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
66 enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
68 /* Contains the optab used for each rtx code. */
69 optab code_to_optab[NUM_RTX_CODE + 1];
71 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
72 gives the gen_function to make a branch to test that condition. */
74 rtxfun bcc_gen_fctn[NUM_RTX_CODE];
76 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
77 gives the insn code to make a store-condition insn
78 to test that condition. */
80 enum insn_code setcc_gen_code[NUM_RTX_CODE];
82 #ifdef HAVE_conditional_move
83 /* Indexed by the machine mode, gives the insn code to make a conditional
84 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
85 setcc_gen_code to cut down on the number of named patterns. Consider a day
86 when a lot more rtx codes are conditional (eg: for the ARM). */
88 enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
89 #endif
91 static int add_equal_note PARAMS ((rtx, rtx, enum rtx_code, rtx, rtx));
92 static rtx widen_operand PARAMS ((rtx, enum machine_mode,
93 enum machine_mode, int, int));
94 static int expand_cmplxdiv_straight PARAMS ((rtx, rtx, rtx, rtx,
95 rtx, rtx, enum machine_mode,
96 int, enum optab_methods,
97 enum mode_class, optab));
98 static int expand_cmplxdiv_wide PARAMS ((rtx, rtx, rtx, rtx,
99 rtx, rtx, enum machine_mode,
100 int, enum optab_methods,
101 enum mode_class, optab));
102 static void prepare_cmp_insn PARAMS ((rtx *, rtx *, enum rtx_code *, rtx,
103 enum machine_mode *, int *,
104 enum can_compare_purpose));
105 static enum insn_code can_fix_p PARAMS ((enum machine_mode, enum machine_mode,
106 int, int *));
107 static enum insn_code can_float_p PARAMS ((enum machine_mode,
108 enum machine_mode,
109 int));
110 static rtx ftruncify PARAMS ((rtx));
111 static optab new_optab PARAMS ((void));
112 static inline optab init_optab PARAMS ((enum rtx_code));
113 static inline optab init_optabv PARAMS ((enum rtx_code));
114 static void init_libfuncs PARAMS ((optab, int, int, const char *, int));
115 static void init_integral_libfuncs PARAMS ((optab, const char *, int));
116 static void init_floating_libfuncs PARAMS ((optab, const char *, int));
117 #ifdef HAVE_conditional_trap
118 static void init_traps PARAMS ((void));
119 #endif
120 static void emit_cmp_and_jump_insn_1 PARAMS ((rtx, rtx, enum machine_mode,
121 enum rtx_code, int, rtx));
122 static void prepare_float_lib_cmp PARAMS ((rtx *, rtx *, enum rtx_code *,
123 enum machine_mode *, int *));
124 static rtx expand_vector_binop PARAMS ((enum machine_mode, optab,
125 rtx, rtx, rtx, int,
126 enum optab_methods));
127 static rtx expand_vector_unop PARAMS ((enum machine_mode, optab, rtx, rtx,
128 int));
129 static rtx widen_clz PARAMS ((enum machine_mode, rtx, rtx));
130 static rtx expand_parity PARAMS ((enum machine_mode, rtx, rtx));
132 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
133 the result of operation CODE applied to OP0 (and OP1 if it is a binary
134 operation).
136 If the last insn does not set TARGET, don't do anything, but return 1.
138 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
139 don't add the REG_EQUAL note but return 0. Our caller can then try
140 again, ensuring that TARGET is not one of the operands. */
142 static int
143 add_equal_note (insns, target, code, op0, op1)
144 rtx insns;
145 rtx target;
146 enum rtx_code code;
147 rtx op0, op1;
149 rtx last_insn, insn, set;
150 rtx note;
152 if (! insns
153 || ! INSN_P (insns)
154 || NEXT_INSN (insns) == NULL_RTX)
155 abort ();
157 if (GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2'
158 && GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<')
159 return 1;
161 if (GET_CODE (target) == ZERO_EXTRACT)
162 return 1;
164 for (last_insn = insns;
165 NEXT_INSN (last_insn) != NULL_RTX;
166 last_insn = NEXT_INSN (last_insn))
169 set = single_set (last_insn);
170 if (set == NULL_RTX)
171 return 1;
173 if (! rtx_equal_p (SET_DEST (set), target)
174 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
175 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
176 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
177 return 1;
179 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
180 besides the last insn. */
181 if (reg_overlap_mentioned_p (target, op0)
182 || (op1 && reg_overlap_mentioned_p (target, op1)))
184 insn = PREV_INSN (last_insn);
185 while (insn != NULL_RTX)
187 if (reg_set_p (target, insn))
188 return 0;
190 insn = PREV_INSN (insn);
194 if (GET_RTX_CLASS (code) == '1')
195 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
196 else
197 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
199 set_unique_reg_note (last_insn, REG_EQUAL, note);
201 return 1;
204 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
205 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
206 not actually do a sign-extend or zero-extend, but can leave the
207 higher-order bits of the result rtx undefined, for example, in the case
208 of logical operations, but not right shifts. */
210 static rtx
211 widen_operand (op, mode, oldmode, unsignedp, no_extend)
212 rtx op;
213 enum machine_mode mode, oldmode;
214 int unsignedp;
215 int no_extend;
217 rtx result;
219 /* If we don't have to extend and this is a constant, return it. */
220 if (no_extend && GET_MODE (op) == VOIDmode)
221 return op;
223 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
224 extend since it will be more efficient to do so unless the signedness of
225 a promoted object differs from our extension. */
226 if (! no_extend
227 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
228 && SUBREG_PROMOTED_UNSIGNED_P (op) == unsignedp))
229 return convert_modes (mode, oldmode, op, unsignedp);
231 /* If MODE is no wider than a single word, we return a paradoxical
232 SUBREG. */
233 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
234 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
236 /* Otherwise, get an object of MODE, clobber it, and set the low-order
237 part to OP. */
239 result = gen_reg_rtx (mode);
240 emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
241 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
242 return result;
245 /* Generate code to perform a straightforward complex divide. */
247 static int
248 expand_cmplxdiv_straight (real0, real1, imag0, imag1, realr, imagr, submode,
249 unsignedp, methods, class, binoptab)
250 rtx real0, real1, imag0, imag1, realr, imagr;
251 enum machine_mode submode;
252 int unsignedp;
253 enum optab_methods methods;
254 enum mode_class class;
255 optab binoptab;
257 rtx divisor;
258 rtx real_t, imag_t;
259 rtx temp1, temp2;
260 rtx res;
261 optab this_add_optab = add_optab;
262 optab this_sub_optab = sub_optab;
263 optab this_neg_optab = neg_optab;
264 optab this_mul_optab = smul_optab;
266 if (binoptab == sdivv_optab)
268 this_add_optab = addv_optab;
269 this_sub_optab = subv_optab;
270 this_neg_optab = negv_optab;
271 this_mul_optab = smulv_optab;
274 /* Don't fetch these from memory more than once. */
275 real0 = force_reg (submode, real0);
276 real1 = force_reg (submode, real1);
278 if (imag0 != 0)
279 imag0 = force_reg (submode, imag0);
281 imag1 = force_reg (submode, imag1);
283 /* Divisor: c*c + d*d. */
284 temp1 = expand_binop (submode, this_mul_optab, real1, real1,
285 NULL_RTX, unsignedp, methods);
287 temp2 = expand_binop (submode, this_mul_optab, imag1, imag1,
288 NULL_RTX, unsignedp, methods);
290 if (temp1 == 0 || temp2 == 0)
291 return 0;
293 divisor = expand_binop (submode, this_add_optab, temp1, temp2,
294 NULL_RTX, unsignedp, methods);
295 if (divisor == 0)
296 return 0;
298 if (imag0 == 0)
300 /* Mathematically, ((a)(c-id))/divisor. */
301 /* Computationally, (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)). */
303 /* Calculate the dividend. */
304 real_t = expand_binop (submode, this_mul_optab, real0, real1,
305 NULL_RTX, unsignedp, methods);
307 imag_t = expand_binop (submode, this_mul_optab, real0, imag1,
308 NULL_RTX, unsignedp, methods);
310 if (real_t == 0 || imag_t == 0)
311 return 0;
313 imag_t = expand_unop (submode, this_neg_optab, imag_t,
314 NULL_RTX, unsignedp);
316 else
318 /* Mathematically, ((a+ib)(c-id))/divider. */
319 /* Calculate the dividend. */
320 temp1 = expand_binop (submode, this_mul_optab, real0, real1,
321 NULL_RTX, unsignedp, methods);
323 temp2 = expand_binop (submode, this_mul_optab, imag0, imag1,
324 NULL_RTX, unsignedp, methods);
326 if (temp1 == 0 || temp2 == 0)
327 return 0;
329 real_t = expand_binop (submode, this_add_optab, temp1, temp2,
330 NULL_RTX, unsignedp, methods);
332 temp1 = expand_binop (submode, this_mul_optab, imag0, real1,
333 NULL_RTX, unsignedp, methods);
335 temp2 = expand_binop (submode, this_mul_optab, real0, imag1,
336 NULL_RTX, unsignedp, methods);
338 if (temp1 == 0 || temp2 == 0)
339 return 0;
341 imag_t = expand_binop (submode, this_sub_optab, temp1, temp2,
342 NULL_RTX, unsignedp, methods);
344 if (real_t == 0 || imag_t == 0)
345 return 0;
348 if (class == MODE_COMPLEX_FLOAT)
349 res = expand_binop (submode, binoptab, real_t, divisor,
350 realr, unsignedp, methods);
351 else
352 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
353 real_t, divisor, realr, unsignedp);
355 if (res == 0)
356 return 0;
358 if (res != realr)
359 emit_move_insn (realr, res);
361 if (class == MODE_COMPLEX_FLOAT)
362 res = expand_binop (submode, binoptab, imag_t, divisor,
363 imagr, unsignedp, methods);
364 else
365 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
366 imag_t, divisor, imagr, unsignedp);
368 if (res == 0)
369 return 0;
371 if (res != imagr)
372 emit_move_insn (imagr, res);
374 return 1;
377 /* Generate code to perform a wide-input-range-acceptable complex divide. */
379 static int
380 expand_cmplxdiv_wide (real0, real1, imag0, imag1, realr, imagr, submode,
381 unsignedp, methods, class, binoptab)
382 rtx real0, real1, imag0, imag1, realr, imagr;
383 enum machine_mode submode;
384 int unsignedp;
385 enum optab_methods methods;
386 enum mode_class class;
387 optab binoptab;
389 rtx ratio, divisor;
390 rtx real_t, imag_t;
391 rtx temp1, temp2, lab1, lab2;
392 enum machine_mode mode;
393 rtx res;
394 optab this_add_optab = add_optab;
395 optab this_sub_optab = sub_optab;
396 optab this_neg_optab = neg_optab;
397 optab this_mul_optab = smul_optab;
399 if (binoptab == sdivv_optab)
401 this_add_optab = addv_optab;
402 this_sub_optab = subv_optab;
403 this_neg_optab = negv_optab;
404 this_mul_optab = smulv_optab;
407 /* Don't fetch these from memory more than once. */
408 real0 = force_reg (submode, real0);
409 real1 = force_reg (submode, real1);
411 if (imag0 != 0)
412 imag0 = force_reg (submode, imag0);
414 imag1 = force_reg (submode, imag1);
416 /* XXX What's an "unsigned" complex number? */
417 if (unsignedp)
419 temp1 = real1;
420 temp2 = imag1;
422 else
424 temp1 = expand_abs (submode, real1, NULL_RTX, unsignedp, 1);
425 temp2 = expand_abs (submode, imag1, NULL_RTX, unsignedp, 1);
428 if (temp1 == 0 || temp2 == 0)
429 return 0;
431 mode = GET_MODE (temp1);
432 lab1 = gen_label_rtx ();
433 emit_cmp_and_jump_insns (temp1, temp2, LT, NULL_RTX,
434 mode, unsignedp, lab1);
436 /* |c| >= |d|; use ratio d/c to scale dividend and divisor. */
438 if (class == MODE_COMPLEX_FLOAT)
439 ratio = expand_binop (submode, binoptab, imag1, real1,
440 NULL_RTX, unsignedp, methods);
441 else
442 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
443 imag1, real1, NULL_RTX, unsignedp);
445 if (ratio == 0)
446 return 0;
448 /* Calculate divisor. */
450 temp1 = expand_binop (submode, this_mul_optab, imag1, ratio,
451 NULL_RTX, unsignedp, methods);
453 if (temp1 == 0)
454 return 0;
456 divisor = expand_binop (submode, this_add_optab, temp1, real1,
457 NULL_RTX, unsignedp, methods);
459 if (divisor == 0)
460 return 0;
462 /* Calculate dividend. */
464 if (imag0 == 0)
466 real_t = real0;
468 /* Compute a / (c+id) as a / (c+d(d/c)) + i (-a(d/c)) / (c+d(d/c)). */
470 imag_t = expand_binop (submode, this_mul_optab, real0, ratio,
471 NULL_RTX, unsignedp, methods);
473 if (imag_t == 0)
474 return 0;
476 imag_t = expand_unop (submode, this_neg_optab, imag_t,
477 NULL_RTX, unsignedp);
479 if (real_t == 0 || imag_t == 0)
480 return 0;
482 else
484 /* Compute (a+ib)/(c+id) as
485 (a+b(d/c))/(c+d(d/c) + i(b-a(d/c))/(c+d(d/c)). */
487 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
488 NULL_RTX, unsignedp, methods);
490 if (temp1 == 0)
491 return 0;
493 real_t = expand_binop (submode, this_add_optab, temp1, real0,
494 NULL_RTX, unsignedp, methods);
496 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
497 NULL_RTX, unsignedp, methods);
499 if (temp1 == 0)
500 return 0;
502 imag_t = expand_binop (submode, this_sub_optab, imag0, temp1,
503 NULL_RTX, unsignedp, methods);
505 if (real_t == 0 || imag_t == 0)
506 return 0;
509 if (class == MODE_COMPLEX_FLOAT)
510 res = expand_binop (submode, binoptab, real_t, divisor,
511 realr, unsignedp, methods);
512 else
513 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
514 real_t, divisor, realr, unsignedp);
516 if (res == 0)
517 return 0;
519 if (res != realr)
520 emit_move_insn (realr, res);
522 if (class == MODE_COMPLEX_FLOAT)
523 res = expand_binop (submode, binoptab, imag_t, divisor,
524 imagr, unsignedp, methods);
525 else
526 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
527 imag_t, divisor, imagr, unsignedp);
529 if (res == 0)
530 return 0;
532 if (res != imagr)
533 emit_move_insn (imagr, res);
535 lab2 = gen_label_rtx ();
536 emit_jump_insn (gen_jump (lab2));
537 emit_barrier ();
539 emit_label (lab1);
541 /* |d| > |c|; use ratio c/d to scale dividend and divisor. */
543 if (class == MODE_COMPLEX_FLOAT)
544 ratio = expand_binop (submode, binoptab, real1, imag1,
545 NULL_RTX, unsignedp, methods);
546 else
547 ratio = expand_divmod (0, TRUNC_DIV_EXPR, submode,
548 real1, imag1, NULL_RTX, unsignedp);
550 if (ratio == 0)
551 return 0;
553 /* Calculate divisor. */
555 temp1 = expand_binop (submode, this_mul_optab, real1, ratio,
556 NULL_RTX, unsignedp, methods);
558 if (temp1 == 0)
559 return 0;
561 divisor = expand_binop (submode, this_add_optab, temp1, imag1,
562 NULL_RTX, unsignedp, methods);
564 if (divisor == 0)
565 return 0;
567 /* Calculate dividend. */
569 if (imag0 == 0)
571 /* Compute a / (c+id) as a(c/d) / (c(c/d)+d) + i (-a) / (c(c/d)+d). */
573 real_t = expand_binop (submode, this_mul_optab, real0, ratio,
574 NULL_RTX, unsignedp, methods);
576 imag_t = expand_unop (submode, this_neg_optab, real0,
577 NULL_RTX, unsignedp);
579 if (real_t == 0 || imag_t == 0)
580 return 0;
582 else
584 /* Compute (a+ib)/(c+id) as
585 (a(c/d)+b)/(c(c/d)+d) + i (b(c/d)-a)/(c(c/d)+d). */
587 temp1 = expand_binop (submode, this_mul_optab, real0, ratio,
588 NULL_RTX, unsignedp, methods);
590 if (temp1 == 0)
591 return 0;
593 real_t = expand_binop (submode, this_add_optab, temp1, imag0,
594 NULL_RTX, unsignedp, methods);
596 temp1 = expand_binop (submode, this_mul_optab, imag0, ratio,
597 NULL_RTX, unsignedp, methods);
599 if (temp1 == 0)
600 return 0;
602 imag_t = expand_binop (submode, this_sub_optab, temp1, real0,
603 NULL_RTX, unsignedp, methods);
605 if (real_t == 0 || imag_t == 0)
606 return 0;
609 if (class == MODE_COMPLEX_FLOAT)
610 res = expand_binop (submode, binoptab, real_t, divisor,
611 realr, unsignedp, methods);
612 else
613 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
614 real_t, divisor, realr, unsignedp);
616 if (res == 0)
617 return 0;
619 if (res != realr)
620 emit_move_insn (realr, res);
622 if (class == MODE_COMPLEX_FLOAT)
623 res = expand_binop (submode, binoptab, imag_t, divisor,
624 imagr, unsignedp, methods);
625 else
626 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
627 imag_t, divisor, imagr, unsignedp);
629 if (res == 0)
630 return 0;
632 if (res != imagr)
633 emit_move_insn (imagr, res);
635 emit_label (lab2);
637 return 1;
640 /* Wrapper around expand_binop which takes an rtx code to specify
641 the operation to perform, not an optab pointer. All other
642 arguments are the same. */
644 expand_simple_binop (mode, code, op0, op1, target, unsignedp, methods)
645 enum machine_mode mode;
646 enum rtx_code code;
647 rtx op0, op1;
648 rtx target;
649 int unsignedp;
650 enum optab_methods methods;
652 optab binop = code_to_optab[(int) code];
653 if (binop == 0)
654 abort ();
656 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
659 /* Generate code to perform an operation specified by BINOPTAB
660 on operands OP0 and OP1, with result having machine-mode MODE.
662 UNSIGNEDP is for the case where we have to widen the operands
663 to perform the operation. It says to use zero-extension.
665 If TARGET is nonzero, the value
666 is generated there, if it is convenient to do so.
667 In all cases an rtx is returned for the locus of the value;
668 this may or may not be TARGET. */
671 expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
672 enum machine_mode mode;
673 optab binoptab;
674 rtx op0, op1;
675 rtx target;
676 int unsignedp;
677 enum optab_methods methods;
679 enum optab_methods next_methods
680 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
681 ? OPTAB_WIDEN : methods);
682 enum mode_class class;
683 enum machine_mode wider_mode;
684 rtx temp;
685 int commutative_op = 0;
686 int shift_op = (binoptab->code == ASHIFT
687 || binoptab->code == ASHIFTRT
688 || binoptab->code == LSHIFTRT
689 || binoptab->code == ROTATE
690 || binoptab->code == ROTATERT);
691 rtx entry_last = get_last_insn ();
692 rtx last;
694 class = GET_MODE_CLASS (mode);
696 op0 = protect_from_queue (op0, 0);
697 op1 = protect_from_queue (op1, 0);
698 if (target)
699 target = protect_from_queue (target, 1);
701 if (flag_force_mem)
703 op0 = force_not_mem (op0);
704 op1 = force_not_mem (op1);
707 /* If subtracting an integer constant, convert this into an addition of
708 the negated constant. */
710 if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
712 op1 = negate_rtx (mode, op1);
713 binoptab = add_optab;
716 /* If we are inside an appropriately-short loop and one operand is an
717 expensive constant, force it into a register. */
718 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
719 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
720 op0 = force_reg (mode, op0);
722 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
723 && ! shift_op && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
724 op1 = force_reg (mode, op1);
726 /* Record where to delete back to if we backtrack. */
727 last = get_last_insn ();
729 /* If operation is commutative,
730 try to make the first operand a register.
731 Even better, try to make it the same as the target.
732 Also try to make the last operand a constant. */
733 if (GET_RTX_CLASS (binoptab->code) == 'c'
734 || binoptab == smul_widen_optab
735 || binoptab == umul_widen_optab
736 || binoptab == smul_highpart_optab
737 || binoptab == umul_highpart_optab)
739 commutative_op = 1;
741 if (((target == 0 || GET_CODE (target) == REG)
742 ? ((GET_CODE (op1) == REG
743 && GET_CODE (op0) != REG)
744 || target == op1)
745 : rtx_equal_p (op1, target))
746 || GET_CODE (op0) == CONST_INT)
748 temp = op1;
749 op1 = op0;
750 op0 = temp;
754 /* If we can do it with a three-operand insn, do so. */
756 if (methods != OPTAB_MUST_WIDEN
757 && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
759 int icode = (int) binoptab->handlers[(int) mode].insn_code;
760 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
761 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
762 rtx pat;
763 rtx xop0 = op0, xop1 = op1;
765 if (target)
766 temp = target;
767 else
768 temp = gen_reg_rtx (mode);
770 /* If it is a commutative operator and the modes would match
771 if we would swap the operands, we can save the conversions. */
772 if (commutative_op)
774 if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
775 && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
777 rtx tmp;
779 tmp = op0; op0 = op1; op1 = tmp;
780 tmp = xop0; xop0 = xop1; xop1 = tmp;
784 /* In case the insn wants input operands in modes different from
785 those of the actual operands, convert the operands. It would
786 seem that we don't need to convert CONST_INTs, but we do, so
787 that they're properly zero-extended, sign-extended or truncated
788 for their mode. */
790 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
791 xop0 = convert_modes (mode0,
792 GET_MODE (op0) != VOIDmode
793 ? GET_MODE (op0)
794 : mode,
795 xop0, unsignedp);
797 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
798 xop1 = convert_modes (mode1,
799 GET_MODE (op1) != VOIDmode
800 ? GET_MODE (op1)
801 : mode,
802 xop1, unsignedp);
804 /* Now, if insn's predicates don't allow our operands, put them into
805 pseudo regs. */
807 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0)
808 && mode0 != VOIDmode)
809 xop0 = copy_to_mode_reg (mode0, xop0);
811 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1)
812 && mode1 != VOIDmode)
813 xop1 = copy_to_mode_reg (mode1, xop1);
815 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
816 temp = gen_reg_rtx (mode);
818 pat = GEN_FCN (icode) (temp, xop0, xop1);
819 if (pat)
821 /* If PAT is composed of more than one insn, try to add an appropriate
822 REG_EQUAL note to it. If we can't because TEMP conflicts with an
823 operand, call ourselves again, this time without a target. */
824 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
825 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
827 delete_insns_since (last);
828 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
829 unsignedp, methods);
832 emit_insn (pat);
833 return temp;
835 else
836 delete_insns_since (last);
839 /* If this is a multiply, see if we can do a widening operation that
840 takes operands of this mode and makes a wider mode. */
842 if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
843 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
844 ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
845 != CODE_FOR_nothing))
847 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
848 unsignedp ? umul_widen_optab : smul_widen_optab,
849 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
851 if (temp != 0)
853 if (GET_MODE_CLASS (mode) == MODE_INT)
854 return gen_lowpart (mode, temp);
855 else
856 return convert_to_mode (mode, temp, unsignedp);
860 /* Look for a wider mode of the same class for which we think we
861 can open-code the operation. Check for a widening multiply at the
862 wider mode as well. */
864 if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
865 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
866 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
867 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
869 if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
870 || (binoptab == smul_optab
871 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
872 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
873 ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
874 != CODE_FOR_nothing)))
876 rtx xop0 = op0, xop1 = op1;
877 int no_extend = 0;
879 /* For certain integer operations, we need not actually extend
880 the narrow operands, as long as we will truncate
881 the results to the same narrowness. */
883 if ((binoptab == ior_optab || binoptab == and_optab
884 || binoptab == xor_optab
885 || binoptab == add_optab || binoptab == sub_optab
886 || binoptab == smul_optab || binoptab == ashl_optab)
887 && class == MODE_INT)
888 no_extend = 1;
890 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
892 /* The second operand of a shift must always be extended. */
893 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
894 no_extend && binoptab != ashl_optab);
896 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
897 unsignedp, OPTAB_DIRECT);
898 if (temp)
900 if (class != MODE_INT)
902 if (target == 0)
903 target = gen_reg_rtx (mode);
904 convert_move (target, temp, 0);
905 return target;
907 else
908 return gen_lowpart (mode, temp);
910 else
911 delete_insns_since (last);
915 /* These can be done a word at a time. */
916 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
917 && class == MODE_INT
918 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
919 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
921 int i;
922 rtx insns;
923 rtx equiv_value;
925 /* If TARGET is the same as one of the operands, the REG_EQUAL note
926 won't be accurate, so use a new target. */
927 if (target == 0 || target == op0 || target == op1)
928 target = gen_reg_rtx (mode);
930 start_sequence ();
932 /* Do the actual arithmetic. */
933 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
935 rtx target_piece = operand_subword (target, i, 1, mode);
936 rtx x = expand_binop (word_mode, binoptab,
937 operand_subword_force (op0, i, mode),
938 operand_subword_force (op1, i, mode),
939 target_piece, unsignedp, next_methods);
941 if (x == 0)
942 break;
944 if (target_piece != x)
945 emit_move_insn (target_piece, x);
948 insns = get_insns ();
949 end_sequence ();
951 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
953 if (binoptab->code != UNKNOWN)
954 equiv_value
955 = gen_rtx_fmt_ee (binoptab->code, mode,
956 copy_rtx (op0), copy_rtx (op1));
957 else
958 equiv_value = 0;
960 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
961 return target;
965 /* Synthesize double word shifts from single word shifts. */
966 if ((binoptab == lshr_optab || binoptab == ashl_optab
967 || binoptab == ashr_optab)
968 && class == MODE_INT
969 && GET_CODE (op1) == CONST_INT
970 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
971 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
972 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
973 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
975 rtx insns, inter, equiv_value;
976 rtx into_target, outof_target;
977 rtx into_input, outof_input;
978 int shift_count, left_shift, outof_word;
980 /* If TARGET is the same as one of the operands, the REG_EQUAL note
981 won't be accurate, so use a new target. */
982 if (target == 0 || target == op0 || target == op1)
983 target = gen_reg_rtx (mode);
985 start_sequence ();
987 shift_count = INTVAL (op1);
989 /* OUTOF_* is the word we are shifting bits away from, and
990 INTO_* is the word that we are shifting bits towards, thus
991 they differ depending on the direction of the shift and
992 WORDS_BIG_ENDIAN. */
994 left_shift = binoptab == ashl_optab;
995 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
997 outof_target = operand_subword (target, outof_word, 1, mode);
998 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1000 outof_input = operand_subword_force (op0, outof_word, mode);
1001 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1003 if (shift_count >= BITS_PER_WORD)
1005 inter = expand_binop (word_mode, binoptab,
1006 outof_input,
1007 GEN_INT (shift_count - BITS_PER_WORD),
1008 into_target, unsignedp, next_methods);
1010 if (inter != 0 && inter != into_target)
1011 emit_move_insn (into_target, inter);
1013 /* For a signed right shift, we must fill the word we are shifting
1014 out of with copies of the sign bit. Otherwise it is zeroed. */
1015 if (inter != 0 && binoptab != ashr_optab)
1016 inter = CONST0_RTX (word_mode);
1017 else if (inter != 0)
1018 inter = expand_binop (word_mode, binoptab,
1019 outof_input,
1020 GEN_INT (BITS_PER_WORD - 1),
1021 outof_target, unsignedp, next_methods);
1023 if (inter != 0 && inter != outof_target)
1024 emit_move_insn (outof_target, inter);
1026 else
1028 rtx carries;
1029 optab reverse_unsigned_shift, unsigned_shift;
1031 /* For a shift of less then BITS_PER_WORD, to compute the carry,
1032 we must do a logical shift in the opposite direction of the
1033 desired shift. */
1035 reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
1037 /* For a shift of less than BITS_PER_WORD, to compute the word
1038 shifted towards, we need to unsigned shift the orig value of
1039 that word. */
1041 unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
1043 carries = expand_binop (word_mode, reverse_unsigned_shift,
1044 outof_input,
1045 GEN_INT (BITS_PER_WORD - shift_count),
1046 0, unsignedp, next_methods);
1048 if (carries == 0)
1049 inter = 0;
1050 else
1051 inter = expand_binop (word_mode, unsigned_shift, into_input,
1052 op1, 0, unsignedp, next_methods);
1054 if (inter != 0)
1055 inter = expand_binop (word_mode, ior_optab, carries, inter,
1056 into_target, unsignedp, next_methods);
1058 if (inter != 0 && inter != into_target)
1059 emit_move_insn (into_target, inter);
1061 if (inter != 0)
1062 inter = expand_binop (word_mode, binoptab, outof_input,
1063 op1, outof_target, unsignedp, next_methods);
1065 if (inter != 0 && inter != outof_target)
1066 emit_move_insn (outof_target, inter);
1069 insns = get_insns ();
1070 end_sequence ();
1072 if (inter != 0)
1074 if (binoptab->code != UNKNOWN)
1075 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1076 else
1077 equiv_value = 0;
1079 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1080 return target;
1084 /* Synthesize double word rotates from single word shifts. */
1085 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1086 && class == MODE_INT
1087 && GET_CODE (op1) == CONST_INT
1088 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1089 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1090 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1092 rtx insns, equiv_value;
1093 rtx into_target, outof_target;
1094 rtx into_input, outof_input;
1095 rtx inter;
1096 int shift_count, left_shift, outof_word;
1098 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1099 won't be accurate, so use a new target. */
1100 if (target == 0 || target == op0 || target == op1)
1101 target = gen_reg_rtx (mode);
1103 start_sequence ();
1105 shift_count = INTVAL (op1);
1107 /* OUTOF_* is the word we are shifting bits away from, and
1108 INTO_* is the word that we are shifting bits towards, thus
1109 they differ depending on the direction of the shift and
1110 WORDS_BIG_ENDIAN. */
1112 left_shift = (binoptab == rotl_optab);
1113 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1115 outof_target = operand_subword (target, outof_word, 1, mode);
1116 into_target = operand_subword (target, 1 - outof_word, 1, mode);
1118 outof_input = operand_subword_force (op0, outof_word, mode);
1119 into_input = operand_subword_force (op0, 1 - outof_word, mode);
1121 if (shift_count == BITS_PER_WORD)
1123 /* This is just a word swap. */
1124 emit_move_insn (outof_target, into_input);
1125 emit_move_insn (into_target, outof_input);
1126 inter = const0_rtx;
1128 else
1130 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1131 rtx first_shift_count, second_shift_count;
1132 optab reverse_unsigned_shift, unsigned_shift;
1134 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1135 ? lshr_optab : ashl_optab);
1137 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1138 ? ashl_optab : lshr_optab);
1140 if (shift_count > BITS_PER_WORD)
1142 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
1143 second_shift_count = GEN_INT (2 * BITS_PER_WORD - shift_count);
1145 else
1147 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
1148 second_shift_count = GEN_INT (shift_count);
1151 into_temp1 = expand_binop (word_mode, unsigned_shift,
1152 outof_input, first_shift_count,
1153 NULL_RTX, unsignedp, next_methods);
1154 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1155 into_input, second_shift_count,
1156 NULL_RTX, unsignedp, next_methods);
1158 if (into_temp1 != 0 && into_temp2 != 0)
1159 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1160 into_target, unsignedp, next_methods);
1161 else
1162 inter = 0;
1164 if (inter != 0 && inter != into_target)
1165 emit_move_insn (into_target, inter);
1167 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1168 into_input, first_shift_count,
1169 NULL_RTX, unsignedp, next_methods);
1170 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1171 outof_input, second_shift_count,
1172 NULL_RTX, unsignedp, next_methods);
1174 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1175 inter = expand_binop (word_mode, ior_optab,
1176 outof_temp1, outof_temp2,
1177 outof_target, unsignedp, next_methods);
1179 if (inter != 0 && inter != outof_target)
1180 emit_move_insn (outof_target, inter);
1183 insns = get_insns ();
1184 end_sequence ();
1186 if (inter != 0)
1188 if (binoptab->code != UNKNOWN)
1189 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
1190 else
1191 equiv_value = 0;
1193 /* We can't make this a no conflict block if this is a word swap,
1194 because the word swap case fails if the input and output values
1195 are in the same register. */
1196 if (shift_count != BITS_PER_WORD)
1197 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
1198 else
1199 emit_insn (insns);
1202 return target;
1206 /* These can be done a word at a time by propagating carries. */
1207 if ((binoptab == add_optab || binoptab == sub_optab)
1208 && class == MODE_INT
1209 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
1210 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1212 unsigned int i;
1213 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1214 const unsigned int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
1215 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1216 rtx xop0, xop1, xtarget;
1218 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1219 value is one of those, use it. Otherwise, use 1 since it is the
1220 one easiest to get. */
1221 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1222 int normalizep = STORE_FLAG_VALUE;
1223 #else
1224 int normalizep = 1;
1225 #endif
1227 /* Prepare the operands. */
1228 xop0 = force_reg (mode, op0);
1229 xop1 = force_reg (mode, op1);
1231 xtarget = gen_reg_rtx (mode);
1233 if (target == 0 || GET_CODE (target) != REG)
1234 target = xtarget;
1236 /* Indicate for flow that the entire target reg is being set. */
1237 if (GET_CODE (target) == REG)
1238 emit_insn (gen_rtx_CLOBBER (VOIDmode, xtarget));
1240 /* Do the actual arithmetic. */
1241 for (i = 0; i < nwords; i++)
1243 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1244 rtx target_piece = operand_subword (xtarget, index, 1, mode);
1245 rtx op0_piece = operand_subword_force (xop0, index, mode);
1246 rtx op1_piece = operand_subword_force (xop1, index, mode);
1247 rtx x;
1249 /* Main add/subtract of the input operands. */
1250 x = expand_binop (word_mode, binoptab,
1251 op0_piece, op1_piece,
1252 target_piece, unsignedp, next_methods);
1253 if (x == 0)
1254 break;
1256 if (i + 1 < nwords)
1258 /* Store carry from main add/subtract. */
1259 carry_out = gen_reg_rtx (word_mode);
1260 carry_out = emit_store_flag_force (carry_out,
1261 (binoptab == add_optab
1262 ? LT : GT),
1263 x, op0_piece,
1264 word_mode, 1, normalizep);
1267 if (i > 0)
1269 rtx newx;
1271 /* Add/subtract previous carry to main result. */
1272 newx = expand_binop (word_mode,
1273 normalizep == 1 ? binoptab : otheroptab,
1274 x, carry_in,
1275 NULL_RTX, 1, next_methods);
1277 if (i + 1 < nwords)
1279 /* Get out carry from adding/subtracting carry in. */
1280 rtx carry_tmp = gen_reg_rtx (word_mode);
1281 carry_tmp = emit_store_flag_force (carry_tmp,
1282 (binoptab == add_optab
1283 ? LT : GT),
1284 newx, x,
1285 word_mode, 1, normalizep);
1287 /* Logical-ior the two poss. carry together. */
1288 carry_out = expand_binop (word_mode, ior_optab,
1289 carry_out, carry_tmp,
1290 carry_out, 0, next_methods);
1291 if (carry_out == 0)
1292 break;
1294 emit_move_insn (target_piece, newx);
1297 carry_in = carry_out;
1300 if (i == GET_MODE_BITSIZE (mode) / (unsigned) BITS_PER_WORD)
1302 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
1303 || ! rtx_equal_p (target, xtarget))
1305 rtx temp = emit_move_insn (target, xtarget);
1307 set_unique_reg_note (temp,
1308 REG_EQUAL,
1309 gen_rtx_fmt_ee (binoptab->code, mode,
1310 copy_rtx (xop0),
1311 copy_rtx (xop1)));
1313 else
1314 target = xtarget;
1316 return target;
1319 else
1320 delete_insns_since (last);
1323 /* If we want to multiply two two-word values and have normal and widening
1324 multiplies of single-word values, we can do this with three smaller
1325 multiplications. Note that we do not make a REG_NO_CONFLICT block here
1326 because we are not operating on one word at a time.
1328 The multiplication proceeds as follows:
1329 _______________________
1330 [__op0_high_|__op0_low__]
1331 _______________________
1332 * [__op1_high_|__op1_low__]
1333 _______________________________________________
1334 _______________________
1335 (1) [__op0_low__*__op1_low__]
1336 _______________________
1337 (2a) [__op0_low__*__op1_high_]
1338 _______________________
1339 (2b) [__op0_high_*__op1_low__]
1340 _______________________
1341 (3) [__op0_high_*__op1_high_]
1344 This gives a 4-word result. Since we are only interested in the
1345 lower 2 words, partial result (3) and the upper words of (2a) and
1346 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1347 calculated using non-widening multiplication.
1349 (1), however, needs to be calculated with an unsigned widening
1350 multiplication. If this operation is not directly supported we
1351 try using a signed widening multiplication and adjust the result.
1352 This adjustment works as follows:
1354 If both operands are positive then no adjustment is needed.
1356 If the operands have different signs, for example op0_low < 0 and
1357 op1_low >= 0, the instruction treats the most significant bit of
1358 op0_low as a sign bit instead of a bit with significance
1359 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1360 with 2**BITS_PER_WORD - op0_low, and two's complements the
1361 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1362 the result.
1364 Similarly, if both operands are negative, we need to add
1365 (op0_low + op1_low) * 2**BITS_PER_WORD.
1367 We use a trick to adjust quickly. We logically shift op0_low right
1368 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1369 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1370 logical shift exists, we do an arithmetic right shift and subtract
1371 the 0 or -1. */
1373 if (binoptab == smul_optab
1374 && class == MODE_INT
1375 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1376 && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1377 && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1378 && ((umul_widen_optab->handlers[(int) mode].insn_code
1379 != CODE_FOR_nothing)
1380 || (smul_widen_optab->handlers[(int) mode].insn_code
1381 != CODE_FOR_nothing)))
1383 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1384 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1385 rtx op0_high = operand_subword_force (op0, high, mode);
1386 rtx op0_low = operand_subword_force (op0, low, mode);
1387 rtx op1_high = operand_subword_force (op1, high, mode);
1388 rtx op1_low = operand_subword_force (op1, low, mode);
1389 rtx product = 0;
1390 rtx op0_xhigh = NULL_RTX;
1391 rtx op1_xhigh = NULL_RTX;
1393 /* If the target is the same as one of the inputs, don't use it. This
1394 prevents problems with the REG_EQUAL note. */
1395 if (target == op0 || target == op1
1396 || (target != 0 && GET_CODE (target) != REG))
1397 target = 0;
1399 /* Multiply the two lower words to get a double-word product.
1400 If unsigned widening multiplication is available, use that;
1401 otherwise use the signed form and compensate. */
1403 if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1405 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1406 target, 1, OPTAB_DIRECT);
1408 /* If we didn't succeed, delete everything we did so far. */
1409 if (product == 0)
1410 delete_insns_since (last);
1411 else
1412 op0_xhigh = op0_high, op1_xhigh = op1_high;
1415 if (product == 0
1416 && smul_widen_optab->handlers[(int) mode].insn_code
1417 != CODE_FOR_nothing)
1419 rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
1420 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1421 target, 1, OPTAB_DIRECT);
1422 op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1423 NULL_RTX, 1, next_methods);
1424 if (op0_xhigh)
1425 op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
1426 op0_xhigh, op0_xhigh, 0, next_methods);
1427 else
1429 op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1430 NULL_RTX, 0, next_methods);
1431 if (op0_xhigh)
1432 op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
1433 op0_xhigh, op0_xhigh, 0,
1434 next_methods);
1437 op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1438 NULL_RTX, 1, next_methods);
1439 if (op1_xhigh)
1440 op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
1441 op1_xhigh, op1_xhigh, 0, next_methods);
1442 else
1444 op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1445 NULL_RTX, 0, next_methods);
1446 if (op1_xhigh)
1447 op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
1448 op1_xhigh, op1_xhigh, 0,
1449 next_methods);
1453 /* If we have been able to directly compute the product of the
1454 low-order words of the operands and perform any required adjustments
1455 of the operands, we proceed by trying two more multiplications
1456 and then computing the appropriate sum.
1458 We have checked above that the required addition is provided.
1459 Full-word addition will normally always succeed, especially if
1460 it is provided at all, so we don't worry about its failure. The
1461 multiplication may well fail, however, so we do handle that. */
1463 if (product && op0_xhigh && op1_xhigh)
1465 rtx product_high = operand_subword (product, high, 1, mode);
1466 rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
1467 NULL_RTX, 0, OPTAB_DIRECT);
1469 if (!REG_P (product_high))
1470 product_high = force_reg (word_mode, product_high);
1472 if (temp != 0)
1473 temp = expand_binop (word_mode, add_optab, temp, product_high,
1474 product_high, 0, next_methods);
1476 if (temp != 0 && temp != product_high)
1477 emit_move_insn (product_high, temp);
1479 if (temp != 0)
1480 temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
1481 NULL_RTX, 0, OPTAB_DIRECT);
1483 if (temp != 0)
1484 temp = expand_binop (word_mode, add_optab, temp,
1485 product_high, product_high,
1486 0, next_methods);
1488 if (temp != 0 && temp != product_high)
1489 emit_move_insn (product_high, temp);
1491 emit_move_insn (operand_subword (product, high, 1, mode), product_high);
1493 if (temp != 0)
1495 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1497 temp = emit_move_insn (product, product);
1498 set_unique_reg_note (temp,
1499 REG_EQUAL,
1500 gen_rtx_fmt_ee (MULT, mode,
1501 copy_rtx (op0),
1502 copy_rtx (op1)));
1505 return product;
1509 /* If we get here, we couldn't do it for some reason even though we
1510 originally thought we could. Delete anything we've emitted in
1511 trying to do it. */
1513 delete_insns_since (last);
1516 /* Open-code the vector operations if we have no hardware support
1517 for them. */
1518 if (class == MODE_VECTOR_INT || class == MODE_VECTOR_FLOAT)
1519 return expand_vector_binop (mode, binoptab, op0, op1, target,
1520 unsignedp, methods);
1522 /* We need to open-code the complex type operations: '+, -, * and /' */
1524 /* At this point we allow operations between two similar complex
1525 numbers, and also if one of the operands is not a complex number
1526 but rather of MODE_FLOAT or MODE_INT. However, the caller
1527 must make sure that the MODE of the non-complex operand matches
1528 the SUBMODE of the complex operand. */
1530 if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
1532 rtx real0 = 0, imag0 = 0;
1533 rtx real1 = 0, imag1 = 0;
1534 rtx realr, imagr, res;
1535 rtx seq;
1536 rtx equiv_value;
1537 int ok = 0;
1539 /* Find the correct mode for the real and imaginary parts */
1540 enum machine_mode submode = GET_MODE_INNER(mode);
1542 if (submode == BLKmode)
1543 abort ();
1545 if (! target)
1546 target = gen_reg_rtx (mode);
1548 start_sequence ();
1550 realr = gen_realpart (submode, target);
1551 imagr = gen_imagpart (submode, target);
1553 if (GET_MODE (op0) == mode)
1555 real0 = gen_realpart (submode, op0);
1556 imag0 = gen_imagpart (submode, op0);
1558 else
1559 real0 = op0;
1561 if (GET_MODE (op1) == mode)
1563 real1 = gen_realpart (submode, op1);
1564 imag1 = gen_imagpart (submode, op1);
1566 else
1567 real1 = op1;
1569 if (real0 == 0 || real1 == 0 || ! (imag0 != 0 || imag1 != 0))
1570 abort ();
1572 switch (binoptab->code)
1574 case PLUS:
1575 /* (a+ib) + (c+id) = (a+c) + i(b+d) */
1576 case MINUS:
1577 /* (a+ib) - (c+id) = (a-c) + i(b-d) */
1578 res = expand_binop (submode, binoptab, real0, real1,
1579 realr, unsignedp, methods);
1581 if (res == 0)
1582 break;
1583 else if (res != realr)
1584 emit_move_insn (realr, res);
1586 if (imag0 != 0 && imag1 != 0)
1587 res = expand_binop (submode, binoptab, imag0, imag1,
1588 imagr, unsignedp, methods);
1589 else if (imag0 != 0)
1590 res = imag0;
1591 else if (binoptab->code == MINUS)
1592 res = expand_unop (submode,
1593 binoptab == subv_optab ? negv_optab : neg_optab,
1594 imag1, imagr, unsignedp);
1595 else
1596 res = imag1;
1598 if (res == 0)
1599 break;
1600 else if (res != imagr)
1601 emit_move_insn (imagr, res);
1603 ok = 1;
1604 break;
1606 case MULT:
1607 /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
1609 if (imag0 != 0 && imag1 != 0)
1611 rtx temp1, temp2;
1613 /* Don't fetch these from memory more than once. */
1614 real0 = force_reg (submode, real0);
1615 real1 = force_reg (submode, real1);
1616 imag0 = force_reg (submode, imag0);
1617 imag1 = force_reg (submode, imag1);
1619 temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
1620 unsignedp, methods);
1622 temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
1623 unsignedp, methods);
1625 if (temp1 == 0 || temp2 == 0)
1626 break;
1628 res = (expand_binop
1629 (submode,
1630 binoptab == smulv_optab ? subv_optab : sub_optab,
1631 temp1, temp2, realr, unsignedp, methods));
1633 if (res == 0)
1634 break;
1635 else if (res != realr)
1636 emit_move_insn (realr, res);
1638 temp1 = expand_binop (submode, binoptab, real0, imag1,
1639 NULL_RTX, unsignedp, methods);
1641 temp2 = expand_binop (submode, binoptab, real1, imag0,
1642 NULL_RTX, unsignedp, methods);
1644 if (temp1 == 0 || temp2 == 0)
1645 break;
1647 res = (expand_binop
1648 (submode,
1649 binoptab == smulv_optab ? addv_optab : add_optab,
1650 temp1, temp2, imagr, unsignedp, methods));
1652 if (res == 0)
1653 break;
1654 else if (res != imagr)
1655 emit_move_insn (imagr, res);
1657 ok = 1;
1659 else
1661 /* Don't fetch these from memory more than once. */
1662 real0 = force_reg (submode, real0);
1663 real1 = force_reg (submode, real1);
1665 res = expand_binop (submode, binoptab, real0, real1,
1666 realr, unsignedp, methods);
1667 if (res == 0)
1668 break;
1669 else if (res != realr)
1670 emit_move_insn (realr, res);
1672 if (imag0 != 0)
1673 res = expand_binop (submode, binoptab,
1674 real1, imag0, imagr, unsignedp, methods);
1675 else
1676 res = expand_binop (submode, binoptab,
1677 real0, imag1, imagr, unsignedp, methods);
1679 if (res == 0)
1680 break;
1681 else if (res != imagr)
1682 emit_move_insn (imagr, res);
1684 ok = 1;
1686 break;
1688 case DIV:
1689 /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
1691 if (imag1 == 0)
1693 /* (a+ib) / (c+i0) = (a/c) + i(b/c) */
1695 /* Don't fetch these from memory more than once. */
1696 real1 = force_reg (submode, real1);
1698 /* Simply divide the real and imaginary parts by `c' */
1699 if (class == MODE_COMPLEX_FLOAT)
1700 res = expand_binop (submode, binoptab, real0, real1,
1701 realr, unsignedp, methods);
1702 else
1703 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1704 real0, real1, realr, unsignedp);
1706 if (res == 0)
1707 break;
1708 else if (res != realr)
1709 emit_move_insn (realr, res);
1711 if (class == MODE_COMPLEX_FLOAT)
1712 res = expand_binop (submode, binoptab, imag0, real1,
1713 imagr, unsignedp, methods);
1714 else
1715 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1716 imag0, real1, imagr, unsignedp);
1718 if (res == 0)
1719 break;
1720 else if (res != imagr)
1721 emit_move_insn (imagr, res);
1723 ok = 1;
1725 else
1727 switch (flag_complex_divide_method)
1729 case 0:
1730 ok = expand_cmplxdiv_straight (real0, real1, imag0, imag1,
1731 realr, imagr, submode,
1732 unsignedp, methods,
1733 class, binoptab);
1734 break;
1736 case 1:
1737 ok = expand_cmplxdiv_wide (real0, real1, imag0, imag1,
1738 realr, imagr, submode,
1739 unsignedp, methods,
1740 class, binoptab);
1741 break;
1743 default:
1744 abort ();
1747 break;
1749 default:
1750 abort ();
1753 seq = get_insns ();
1754 end_sequence ();
1756 if (ok)
1758 if (binoptab->code != UNKNOWN)
1759 equiv_value
1760 = gen_rtx_fmt_ee (binoptab->code, mode,
1761 copy_rtx (op0), copy_rtx (op1));
1762 else
1763 equiv_value = 0;
1765 emit_no_conflict_block (seq, target, op0, op1, equiv_value);
1767 return target;
1771 /* It can't be open-coded in this mode.
1772 Use a library call if one is available and caller says that's ok. */
1774 if (binoptab->handlers[(int) mode].libfunc
1775 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1777 rtx insns;
1778 rtx op1x = op1;
1779 enum machine_mode op1_mode = mode;
1780 rtx value;
1782 start_sequence ();
1784 if (shift_op)
1786 op1_mode = word_mode;
1787 /* Specify unsigned here,
1788 since negative shift counts are meaningless. */
1789 op1x = convert_to_mode (word_mode, op1, 1);
1792 if (GET_MODE (op0) != VOIDmode
1793 && GET_MODE (op0) != mode)
1794 op0 = convert_to_mode (mode, op0, unsignedp);
1796 /* Pass 1 for NO_QUEUE so we don't lose any increments
1797 if the libcall is cse'd or moved. */
1798 value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
1799 NULL_RTX, LCT_CONST, mode, 2,
1800 op0, mode, op1x, op1_mode);
1802 insns = get_insns ();
1803 end_sequence ();
1805 target = gen_reg_rtx (mode);
1806 emit_libcall_block (insns, target, value,
1807 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
1809 return target;
1812 delete_insns_since (last);
1814 /* It can't be done in this mode. Can we do it in a wider mode? */
1816 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1817 || methods == OPTAB_MUST_WIDEN))
1819 /* Caller says, don't even try. */
1820 delete_insns_since (entry_last);
1821 return 0;
1824 /* Compute the value of METHODS to pass to recursive calls.
1825 Don't allow widening to be tried recursively. */
1827 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1829 /* Look for a wider mode of the same class for which it appears we can do
1830 the operation. */
1832 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1834 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1835 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1837 if ((binoptab->handlers[(int) wider_mode].insn_code
1838 != CODE_FOR_nothing)
1839 || (methods == OPTAB_LIB
1840 && binoptab->handlers[(int) wider_mode].libfunc))
1842 rtx xop0 = op0, xop1 = op1;
1843 int no_extend = 0;
1845 /* For certain integer operations, we need not actually extend
1846 the narrow operands, as long as we will truncate
1847 the results to the same narrowness. */
1849 if ((binoptab == ior_optab || binoptab == and_optab
1850 || binoptab == xor_optab
1851 || binoptab == add_optab || binoptab == sub_optab
1852 || binoptab == smul_optab || binoptab == ashl_optab)
1853 && class == MODE_INT)
1854 no_extend = 1;
1856 xop0 = widen_operand (xop0, wider_mode, mode,
1857 unsignedp, no_extend);
1859 /* The second operand of a shift must always be extended. */
1860 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1861 no_extend && binoptab != ashl_optab);
1863 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1864 unsignedp, methods);
1865 if (temp)
1867 if (class != MODE_INT)
1869 if (target == 0)
1870 target = gen_reg_rtx (mode);
1871 convert_move (target, temp, 0);
1872 return target;
1874 else
1875 return gen_lowpart (mode, temp);
1877 else
1878 delete_insns_since (last);
1883 delete_insns_since (entry_last);
1884 return 0;
1887 /* Like expand_binop, but for open-coding vectors binops. */
1889 static rtx
1890 expand_vector_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
1891 enum machine_mode mode;
1892 optab binoptab;
1893 rtx op0, op1;
1894 rtx target;
1895 int unsignedp;
1896 enum optab_methods methods;
1898 enum machine_mode submode, tmode;
1899 int size, elts, subsize, subbitsize, i;
1900 rtx t, a, b, res, seq;
1901 enum mode_class class;
1903 class = GET_MODE_CLASS (mode);
1905 size = GET_MODE_SIZE (mode);
1906 submode = GET_MODE_INNER (mode);
1908 /* Search for the widest vector mode with the same inner mode that is
1909 still narrower than MODE and that allows to open-code this operator.
1910 Note, if we find such a mode and the handler later decides it can't
1911 do the expansion, we'll be called recursively with the narrower mode. */
1912 for (tmode = GET_CLASS_NARROWEST_MODE (class);
1913 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
1914 tmode = GET_MODE_WIDER_MODE (tmode))
1916 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
1917 && binoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
1918 submode = tmode;
1921 switch (binoptab->code)
1923 case AND:
1924 case IOR:
1925 case XOR:
1926 tmode = int_mode_for_mode (mode);
1927 if (tmode != BLKmode)
1928 submode = tmode;
1929 case PLUS:
1930 case MINUS:
1931 case MULT:
1932 case DIV:
1933 subsize = GET_MODE_SIZE (submode);
1934 subbitsize = GET_MODE_BITSIZE (submode);
1935 elts = size / subsize;
1937 /* If METHODS is OPTAB_DIRECT, we don't insist on the exact mode,
1938 but that we operate on more than one element at a time. */
1939 if (subsize == GET_MODE_UNIT_SIZE (mode) && methods == OPTAB_DIRECT)
1940 return 0;
1942 start_sequence ();
1944 /* Errors can leave us with a const0_rtx as operand. */
1945 if (GET_MODE (op0) != mode)
1946 op0 = copy_to_mode_reg (mode, op0);
1947 if (GET_MODE (op1) != mode)
1948 op1 = copy_to_mode_reg (mode, op1);
1950 if (!target)
1951 target = gen_reg_rtx (mode);
1953 for (i = 0; i < elts; ++i)
1955 /* If this is part of a register, and not the first item in the
1956 word, we can't store using a SUBREG - that would clobber
1957 previous results.
1958 And storing with a SUBREG is only possible for the least
1959 significant part, hence we can't do it for big endian
1960 (unless we want to permute the evaluation order. */
1961 if (GET_CODE (target) == REG
1962 && (BYTES_BIG_ENDIAN
1963 ? subsize < UNITS_PER_WORD
1964 : ((i * subsize) % UNITS_PER_WORD) != 0))
1965 t = NULL_RTX;
1966 else
1967 t = simplify_gen_subreg (submode, target, mode, i * subsize);
1968 if (CONSTANT_P (op0))
1969 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
1970 else
1971 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
1972 NULL_RTX, submode, submode, size);
1973 if (CONSTANT_P (op1))
1974 b = simplify_gen_subreg (submode, op1, mode, i * subsize);
1975 else
1976 b = extract_bit_field (op1, subbitsize, i * subbitsize, unsignedp,
1977 NULL_RTX, submode, submode, size);
1979 if (binoptab->code == DIV)
1981 if (class == MODE_VECTOR_FLOAT)
1982 res = expand_binop (submode, binoptab, a, b, t,
1983 unsignedp, methods);
1984 else
1985 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1986 a, b, t, unsignedp);
1988 else
1989 res = expand_binop (submode, binoptab, a, b, t,
1990 unsignedp, methods);
1992 if (res == 0)
1993 break;
1995 if (t)
1996 emit_move_insn (t, res);
1997 else
1998 store_bit_field (target, subbitsize, i * subbitsize, submode, res,
1999 size);
2001 break;
2003 default:
2004 abort ();
2007 seq = get_insns ();
2008 end_sequence ();
2009 emit_insn (seq);
2011 return target;
2014 /* Like expand_unop but for open-coding vector unops. */
2016 static rtx
2017 expand_vector_unop (mode, unoptab, op0, target, unsignedp)
2018 enum machine_mode mode;
2019 optab unoptab;
2020 rtx op0;
2021 rtx target;
2022 int unsignedp;
2024 enum machine_mode submode, tmode;
2025 int size, elts, subsize, subbitsize, i;
2026 rtx t, a, res, seq;
2028 size = GET_MODE_SIZE (mode);
2029 submode = GET_MODE_INNER (mode);
2031 /* Search for the widest vector mode with the same inner mode that is
2032 still narrower than MODE and that allows to open-code this operator.
2033 Note, if we find such a mode and the handler later decides it can't
2034 do the expansion, we'll be called recursively with the narrower mode. */
2035 for (tmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (mode));
2036 GET_MODE_SIZE (tmode) < GET_MODE_SIZE (mode);
2037 tmode = GET_MODE_WIDER_MODE (tmode))
2039 if (GET_MODE_INNER (tmode) == GET_MODE_INNER (mode)
2040 && unoptab->handlers[(int) tmode].insn_code != CODE_FOR_nothing)
2041 submode = tmode;
2043 /* If there is no negate operation, try doing a subtract from zero. */
2044 if (unoptab == neg_optab && GET_MODE_CLASS (submode) == MODE_INT
2045 /* Avoid infinite recursion when an
2046 error has left us with the wrong mode. */
2047 && GET_MODE (op0) == mode)
2049 rtx temp;
2050 temp = expand_binop (mode, sub_optab, CONST0_RTX (mode), op0,
2051 target, unsignedp, OPTAB_DIRECT);
2052 if (temp)
2053 return temp;
2056 if (unoptab == one_cmpl_optab)
2058 tmode = int_mode_for_mode (mode);
2059 if (tmode != BLKmode)
2060 submode = tmode;
2063 subsize = GET_MODE_SIZE (submode);
2064 subbitsize = GET_MODE_BITSIZE (submode);
2065 elts = size / subsize;
2067 /* Errors can leave us with a const0_rtx as operand. */
2068 if (GET_MODE (op0) != mode)
2069 op0 = copy_to_mode_reg (mode, op0);
2071 if (!target)
2072 target = gen_reg_rtx (mode);
2074 start_sequence ();
2076 for (i = 0; i < elts; ++i)
2078 /* If this is part of a register, and not the first item in the
2079 word, we can't store using a SUBREG - that would clobber
2080 previous results.
2081 And storing with a SUBREG is only possible for the least
2082 significant part, hence we can't do it for big endian
2083 (unless we want to permute the evaluation order. */
2084 if (GET_CODE (target) == REG
2085 && (BYTES_BIG_ENDIAN
2086 ? subsize < UNITS_PER_WORD
2087 : ((i * subsize) % UNITS_PER_WORD) != 0))
2088 t = NULL_RTX;
2089 else
2090 t = simplify_gen_subreg (submode, target, mode, i * subsize);
2091 if (CONSTANT_P (op0))
2092 a = simplify_gen_subreg (submode, op0, mode, i * subsize);
2093 else
2094 a = extract_bit_field (op0, subbitsize, i * subbitsize, unsignedp,
2095 t, submode, submode, size);
2097 res = expand_unop (submode, unoptab, a, t, unsignedp);
2099 if (t)
2100 emit_move_insn (t, res);
2101 else
2102 store_bit_field (target, subbitsize, i * subbitsize, submode, res,
2103 size);
2106 seq = get_insns ();
2107 end_sequence ();
2108 emit_insn (seq);
2110 return target;
2113 /* Expand a binary operator which has both signed and unsigned forms.
2114 UOPTAB is the optab for unsigned operations, and SOPTAB is for
2115 signed operations.
2117 If we widen unsigned operands, we may use a signed wider operation instead
2118 of an unsigned wider operation, since the result would be the same. */
2121 sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods)
2122 enum machine_mode mode;
2123 optab uoptab, soptab;
2124 rtx op0, op1, target;
2125 int unsignedp;
2126 enum optab_methods methods;
2128 rtx temp;
2129 optab direct_optab = unsignedp ? uoptab : soptab;
2130 struct optab wide_soptab;
2132 /* Do it without widening, if possible. */
2133 temp = expand_binop (mode, direct_optab, op0, op1, target,
2134 unsignedp, OPTAB_DIRECT);
2135 if (temp || methods == OPTAB_DIRECT)
2136 return temp;
2138 /* Try widening to a signed int. Make a fake signed optab that
2139 hides any signed insn for direct use. */
2140 wide_soptab = *soptab;
2141 wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
2142 wide_soptab.handlers[(int) mode].libfunc = 0;
2144 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2145 unsignedp, OPTAB_WIDEN);
2147 /* For unsigned operands, try widening to an unsigned int. */
2148 if (temp == 0 && unsignedp)
2149 temp = expand_binop (mode, uoptab, op0, op1, target,
2150 unsignedp, OPTAB_WIDEN);
2151 if (temp || methods == OPTAB_WIDEN)
2152 return temp;
2154 /* Use the right width lib call if that exists. */
2155 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
2156 if (temp || methods == OPTAB_LIB)
2157 return temp;
2159 /* Must widen and use a lib call, use either signed or unsigned. */
2160 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
2161 unsignedp, methods);
2162 if (temp != 0)
2163 return temp;
2164 if (unsignedp)
2165 return expand_binop (mode, uoptab, op0, op1, target,
2166 unsignedp, methods);
2167 return 0;
2170 /* Generate code to perform an operation specified by BINOPTAB
2171 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2172 We assume that the order of the operands for the instruction
2173 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2174 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2176 Either TARG0 or TARG1 may be zero, but what that means is that
2177 the result is not actually wanted. We will generate it into
2178 a dummy pseudo-reg and discard it. They may not both be zero.
2180 Returns 1 if this operation can be performed; 0 if not. */
2183 expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp)
2184 optab binoptab;
2185 rtx op0, op1;
2186 rtx targ0, targ1;
2187 int unsignedp;
2189 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2190 enum mode_class class;
2191 enum machine_mode wider_mode;
2192 rtx entry_last = get_last_insn ();
2193 rtx last;
2195 class = GET_MODE_CLASS (mode);
2197 op0 = protect_from_queue (op0, 0);
2198 op1 = protect_from_queue (op1, 0);
2200 if (flag_force_mem)
2202 op0 = force_not_mem (op0);
2203 op1 = force_not_mem (op1);
2206 /* If we are inside an appropriately-short loop and one operand is an
2207 expensive constant, force it into a register. */
2208 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
2209 && rtx_cost (op0, binoptab->code) > COSTS_N_INSNS (1))
2210 op0 = force_reg (mode, op0);
2212 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
2213 && rtx_cost (op1, binoptab->code) > COSTS_N_INSNS (1))
2214 op1 = force_reg (mode, op1);
2216 if (targ0)
2217 targ0 = protect_from_queue (targ0, 1);
2218 else
2219 targ0 = gen_reg_rtx (mode);
2220 if (targ1)
2221 targ1 = protect_from_queue (targ1, 1);
2222 else
2223 targ1 = gen_reg_rtx (mode);
2225 /* Record where to go back to if we fail. */
2226 last = get_last_insn ();
2228 if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2230 int icode = (int) binoptab->handlers[(int) mode].insn_code;
2231 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2232 enum machine_mode mode1 = insn_data[icode].operand[2].mode;
2233 rtx pat;
2234 rtx xop0 = op0, xop1 = op1;
2236 /* In case the insn wants input operands in modes different from
2237 those of the actual operands, convert the operands. It would
2238 seem that we don't need to convert CONST_INTs, but we do, so
2239 that they're properly zero-extended, sign-extended or truncated
2240 for their mode. */
2242 if (GET_MODE (op0) != mode0 && mode0 != VOIDmode)
2243 xop0 = convert_modes (mode0,
2244 GET_MODE (op0) != VOIDmode
2245 ? GET_MODE (op0)
2246 : mode,
2247 xop0, unsignedp);
2249 if (GET_MODE (op1) != mode1 && mode1 != VOIDmode)
2250 xop1 = convert_modes (mode1,
2251 GET_MODE (op1) != VOIDmode
2252 ? GET_MODE (op1)
2253 : mode,
2254 xop1, unsignedp);
2256 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2257 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2258 xop0 = copy_to_mode_reg (mode0, xop0);
2260 if (! (*insn_data[icode].operand[2].predicate) (xop1, mode1))
2261 xop1 = copy_to_mode_reg (mode1, xop1);
2263 /* We could handle this, but we should always be called with a pseudo
2264 for our targets and all insns should take them as outputs. */
2265 if (! (*insn_data[icode].operand[0].predicate) (targ0, mode)
2266 || ! (*insn_data[icode].operand[3].predicate) (targ1, mode))
2267 abort ();
2269 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
2270 if (pat)
2272 emit_insn (pat);
2273 return 1;
2275 else
2276 delete_insns_since (last);
2279 /* It can't be done in this mode. Can we do it in a wider mode? */
2281 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2283 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2284 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2286 if (binoptab->handlers[(int) wider_mode].insn_code
2287 != CODE_FOR_nothing)
2289 rtx t0 = gen_reg_rtx (wider_mode);
2290 rtx t1 = gen_reg_rtx (wider_mode);
2291 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2292 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2294 if (expand_twoval_binop (binoptab, cop0, cop1,
2295 t0, t1, unsignedp))
2297 convert_move (targ0, t0, unsignedp);
2298 convert_move (targ1, t1, unsignedp);
2299 return 1;
2301 else
2302 delete_insns_since (last);
2307 delete_insns_since (entry_last);
2308 return 0;
2311 /* Wrapper around expand_unop which takes an rtx code to specify
2312 the operation to perform, not an optab pointer. All other
2313 arguments are the same. */
2315 expand_simple_unop (mode, code, op0, target, unsignedp)
2316 enum machine_mode mode;
2317 enum rtx_code code;
2318 rtx op0;
2319 rtx target;
2320 int unsignedp;
2322 optab unop = code_to_optab[(int) code];
2323 if (unop == 0)
2324 abort ();
2326 return expand_unop (mode, unop, op0, target, unsignedp);
2329 /* Try calculating
2330 (clz:narrow x)
2332 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)). */
2333 static rtx
2334 widen_clz (mode, op0, target)
2335 enum machine_mode mode;
2336 rtx op0;
2337 rtx target;
2339 enum mode_class class = GET_MODE_CLASS (mode);
2340 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2342 enum machine_mode wider_mode;
2343 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2344 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2346 if (clz_optab->handlers[(int) wider_mode].insn_code
2347 != CODE_FOR_nothing)
2349 rtx xop0, temp, last;
2351 last = get_last_insn ();
2353 if (target == 0)
2354 target = gen_reg_rtx (mode);
2355 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2356 temp = expand_unop (wider_mode, clz_optab, xop0, NULL_RTX, true);
2357 if (temp != 0)
2358 temp = expand_binop (wider_mode, sub_optab, temp,
2359 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2360 - GET_MODE_BITSIZE (mode)),
2361 target, true, OPTAB_DIRECT);
2362 if (temp == 0)
2363 delete_insns_since (last);
2365 return temp;
2369 return 0;
2372 /* Try calculating (parity x) as (and (popcount x) 1), where
2373 popcount can also be done in a wider mode. */
2374 static rtx
2375 expand_parity (mode, op0, target)
2376 enum machine_mode mode;
2377 rtx op0;
2378 rtx target;
2380 enum mode_class class = GET_MODE_CLASS (mode);
2381 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2383 enum machine_mode wider_mode;
2384 for (wider_mode = mode; wider_mode != VOIDmode;
2385 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2387 if (popcount_optab->handlers[(int) wider_mode].insn_code
2388 != CODE_FOR_nothing)
2390 rtx xop0, temp, last;
2392 last = get_last_insn ();
2394 if (target == 0)
2395 target = gen_reg_rtx (mode);
2396 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2397 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2398 true);
2399 if (temp != 0)
2400 temp = expand_binop (wider_mode, and_optab, temp, GEN_INT (1),
2401 target, true, OPTAB_DIRECT);
2402 if (temp == 0)
2403 delete_insns_since (last);
2405 return temp;
2409 return 0;
2412 /* Generate code to perform an operation specified by UNOPTAB
2413 on operand OP0, with result having machine-mode MODE.
2415 UNSIGNEDP is for the case where we have to widen the operands
2416 to perform the operation. It says to use zero-extension.
2418 If TARGET is nonzero, the value
2419 is generated there, if it is convenient to do so.
2420 In all cases an rtx is returned for the locus of the value;
2421 this may or may not be TARGET. */
2424 expand_unop (mode, unoptab, op0, target, unsignedp)
2425 enum machine_mode mode;
2426 optab unoptab;
2427 rtx op0;
2428 rtx target;
2429 int unsignedp;
2431 enum mode_class class;
2432 enum machine_mode wider_mode;
2433 rtx temp;
2434 rtx last = get_last_insn ();
2435 rtx pat;
2437 class = GET_MODE_CLASS (mode);
2439 op0 = protect_from_queue (op0, 0);
2441 if (flag_force_mem)
2443 op0 = force_not_mem (op0);
2446 if (target)
2447 target = protect_from_queue (target, 1);
2449 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2451 int icode = (int) unoptab->handlers[(int) mode].insn_code;
2452 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2453 rtx xop0 = op0;
2455 if (target)
2456 temp = target;
2457 else
2458 temp = gen_reg_rtx (mode);
2460 if (GET_MODE (xop0) != VOIDmode
2461 && GET_MODE (xop0) != mode0)
2462 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2464 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2466 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2467 xop0 = copy_to_mode_reg (mode0, xop0);
2469 if (! (*insn_data[icode].operand[0].predicate) (temp, mode))
2470 temp = gen_reg_rtx (mode);
2472 pat = GEN_FCN (icode) (temp, xop0);
2473 if (pat)
2475 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2476 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
2478 delete_insns_since (last);
2479 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2482 emit_insn (pat);
2484 return temp;
2486 else
2487 delete_insns_since (last);
2490 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2492 /* Widening clz needs special treatment. */
2493 if (unoptab == clz_optab)
2495 temp = widen_clz (mode, op0, target);
2496 if (temp)
2497 return temp;
2498 else
2499 goto try_libcall;
2502 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2503 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2504 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2506 if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
2508 rtx xop0 = op0;
2510 /* For certain operations, we need not actually extend
2511 the narrow operand, as long as we will truncate the
2512 results to the same narrowness. */
2514 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2515 (unoptab == neg_optab
2516 || unoptab == one_cmpl_optab)
2517 && class == MODE_INT);
2519 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2520 unsignedp);
2522 if (temp)
2524 if (class != MODE_INT)
2526 if (target == 0)
2527 target = gen_reg_rtx (mode);
2528 convert_move (target, temp, 0);
2529 return target;
2531 else
2532 return gen_lowpart (mode, temp);
2534 else
2535 delete_insns_since (last);
2539 /* These can be done a word at a time. */
2540 if (unoptab == one_cmpl_optab
2541 && class == MODE_INT
2542 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
2543 && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
2545 int i;
2546 rtx insns;
2548 if (target == 0 || target == op0)
2549 target = gen_reg_rtx (mode);
2551 start_sequence ();
2553 /* Do the actual arithmetic. */
2554 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
2556 rtx target_piece = operand_subword (target, i, 1, mode);
2557 rtx x = expand_unop (word_mode, unoptab,
2558 operand_subword_force (op0, i, mode),
2559 target_piece, unsignedp);
2561 if (target_piece != x)
2562 emit_move_insn (target_piece, x);
2565 insns = get_insns ();
2566 end_sequence ();
2568 emit_no_conflict_block (insns, target, op0, NULL_RTX,
2569 gen_rtx_fmt_e (unoptab->code, mode,
2570 copy_rtx (op0)));
2571 return target;
2574 /* Open-code the complex negation operation. */
2575 else if (unoptab->code == NEG
2576 && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
2578 rtx target_piece;
2579 rtx x;
2580 rtx seq;
2582 /* Find the correct mode for the real and imaginary parts */
2583 enum machine_mode submode = GET_MODE_INNER (mode);
2585 if (submode == BLKmode)
2586 abort ();
2588 if (target == 0)
2589 target = gen_reg_rtx (mode);
2591 start_sequence ();
2593 target_piece = gen_imagpart (submode, target);
2594 x = expand_unop (submode, unoptab,
2595 gen_imagpart (submode, op0),
2596 target_piece, unsignedp);
2597 if (target_piece != x)
2598 emit_move_insn (target_piece, x);
2600 target_piece = gen_realpart (submode, target);
2601 x = expand_unop (submode, unoptab,
2602 gen_realpart (submode, op0),
2603 target_piece, unsignedp);
2604 if (target_piece != x)
2605 emit_move_insn (target_piece, x);
2607 seq = get_insns ();
2608 end_sequence ();
2610 emit_no_conflict_block (seq, target, op0, 0,
2611 gen_rtx_fmt_e (unoptab->code, mode,
2612 copy_rtx (op0)));
2613 return target;
2616 /* Try negating floating point values by flipping the sign bit. */
2617 if (unoptab->code == NEG && class == MODE_FLOAT
2618 && GET_MODE_BITSIZE (mode) <= 2 * HOST_BITS_PER_WIDE_INT)
2620 const struct real_format *fmt = real_format_for_mode[mode - QFmode];
2621 enum machine_mode imode = int_mode_for_mode (mode);
2622 int bitpos = (fmt != 0) ? fmt->signbit : -1;
2624 if (imode != BLKmode && bitpos >= 0 && fmt->has_signed_zero)
2626 HOST_WIDE_INT hi, lo;
2627 rtx last = get_last_insn ();
2629 /* Handle targets with different FP word orders. */
2630 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2632 int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
2633 int word = nwords - (bitpos / BITS_PER_WORD) - 1;
2634 bitpos = word * BITS_PER_WORD + bitpos % BITS_PER_WORD;
2637 if (bitpos < HOST_BITS_PER_WIDE_INT)
2639 hi = 0;
2640 lo = (HOST_WIDE_INT) 1 << bitpos;
2642 else
2644 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
2645 lo = 0;
2647 temp = expand_binop (imode, xor_optab,
2648 gen_lowpart (imode, op0),
2649 immed_double_const (lo, hi, imode),
2650 NULL_RTX, 1, OPTAB_LIB_WIDEN);
2651 if (temp != 0)
2652 return gen_lowpart (mode, temp);
2653 delete_insns_since (last);
2657 /* Try calculating parity (x) as popcount (x) % 2. */
2658 if (unoptab == parity_optab)
2660 temp = expand_parity (mode, op0, target);
2661 if (temp)
2662 return temp;
2665 try_libcall:
2666 /* Now try a library call in this mode. */
2667 if (unoptab->handlers[(int) mode].libfunc)
2669 rtx insns;
2670 rtx value;
2671 enum machine_mode outmode = mode;
2673 /* All of these functions return small values. Thus we choose to
2674 have them return something that isn't a double-word. */
2675 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
2676 || unoptab == popcount_optab || unoptab == parity_optab)
2677 outmode = TYPE_MODE (integer_type_node);
2679 start_sequence ();
2681 /* Pass 1 for NO_QUEUE so we don't lose any increments
2682 if the libcall is cse'd or moved. */
2683 value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
2684 NULL_RTX, LCT_CONST, outmode,
2685 1, op0, mode);
2686 insns = get_insns ();
2687 end_sequence ();
2689 target = gen_reg_rtx (outmode);
2690 emit_libcall_block (insns, target, value,
2691 gen_rtx_fmt_e (unoptab->code, mode, op0));
2693 return target;
2696 if (class == MODE_VECTOR_FLOAT || class == MODE_VECTOR_INT)
2697 return expand_vector_unop (mode, unoptab, op0, target, unsignedp);
2699 /* It can't be done in this mode. Can we do it in a wider mode? */
2701 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2703 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2704 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2706 if ((unoptab->handlers[(int) wider_mode].insn_code
2707 != CODE_FOR_nothing)
2708 || unoptab->handlers[(int) wider_mode].libfunc)
2710 rtx xop0 = op0;
2712 /* For certain operations, we need not actually extend
2713 the narrow operand, as long as we will truncate the
2714 results to the same narrowness. */
2716 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2717 (unoptab == neg_optab
2718 || unoptab == one_cmpl_optab)
2719 && class == MODE_INT);
2721 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2722 unsignedp);
2724 /* If we are generating clz using wider mode, adjust the
2725 result. */
2726 if (unoptab == clz_optab && temp != 0)
2727 temp = expand_binop (wider_mode, sub_optab, temp,
2728 GEN_INT (GET_MODE_BITSIZE (wider_mode)
2729 - GET_MODE_BITSIZE (mode)),
2730 target, true, OPTAB_DIRECT);
2732 if (temp)
2734 if (class != MODE_INT)
2736 if (target == 0)
2737 target = gen_reg_rtx (mode);
2738 convert_move (target, temp, 0);
2739 return target;
2741 else
2742 return gen_lowpart (mode, temp);
2744 else
2745 delete_insns_since (last);
2750 /* If there is no negate operation, try doing a subtract from zero.
2751 The US Software GOFAST library needs this. */
2752 if (unoptab->code == NEG)
2754 rtx temp;
2755 temp = expand_binop (mode,
2756 unoptab == negv_optab ? subv_optab : sub_optab,
2757 CONST0_RTX (mode), op0,
2758 target, unsignedp, OPTAB_LIB_WIDEN);
2759 if (temp)
2760 return temp;
2763 return 0;
2766 /* Emit code to compute the absolute value of OP0, with result to
2767 TARGET if convenient. (TARGET may be 0.) The return value says
2768 where the result actually is to be found.
2770 MODE is the mode of the operand; the mode of the result is
2771 different but can be deduced from MODE.
2776 expand_abs (mode, op0, target, result_unsignedp, safe)
2777 enum machine_mode mode;
2778 rtx op0;
2779 rtx target;
2780 int result_unsignedp;
2781 int safe;
2783 rtx temp, op1;
2785 if (! flag_trapv)
2786 result_unsignedp = 1;
2788 /* First try to do it with a special abs instruction. */
2789 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
2790 op0, target, 0);
2791 if (temp != 0)
2792 return temp;
2794 /* For floating point modes, try clearing the sign bit. */
2795 if (GET_MODE_CLASS (mode) == MODE_FLOAT
2796 && GET_MODE_BITSIZE (mode) <= 2 * HOST_BITS_PER_WIDE_INT)
2798 const struct real_format *fmt = real_format_for_mode[mode - QFmode];
2799 enum machine_mode imode = int_mode_for_mode (mode);
2800 int bitpos = (fmt != 0) ? fmt->signbit : -1;
2802 if (imode != BLKmode && bitpos >= 0)
2804 HOST_WIDE_INT hi, lo;
2805 rtx last = get_last_insn ();
2807 /* Handle targets with different FP word orders. */
2808 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
2810 int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
2811 int word = nwords - (bitpos / BITS_PER_WORD) - 1;
2812 bitpos = word * BITS_PER_WORD + bitpos % BITS_PER_WORD;
2815 if (bitpos < HOST_BITS_PER_WIDE_INT)
2817 hi = 0;
2818 lo = (HOST_WIDE_INT) 1 << bitpos;
2820 else
2822 hi = (HOST_WIDE_INT) 1 << (bitpos - HOST_BITS_PER_WIDE_INT);
2823 lo = 0;
2825 temp = expand_binop (imode, and_optab,
2826 gen_lowpart (imode, op0),
2827 immed_double_const (~lo, ~hi, imode),
2828 NULL_RTX, 1, OPTAB_LIB_WIDEN);
2829 if (temp != 0)
2830 return gen_lowpart (mode, temp);
2831 delete_insns_since (last);
2835 /* If we have a MAX insn, we can do this as MAX (x, -x). */
2836 if (smax_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2838 rtx last = get_last_insn ();
2840 temp = expand_unop (mode, neg_optab, op0, NULL_RTX, 0);
2841 if (temp != 0)
2842 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
2843 OPTAB_WIDEN);
2845 if (temp != 0)
2846 return temp;
2848 delete_insns_since (last);
2851 /* If this machine has expensive jumps, we can do integer absolute
2852 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
2853 where W is the width of MODE. */
2855 if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
2857 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
2858 size_int (GET_MODE_BITSIZE (mode) - 1),
2859 NULL_RTX, 0);
2861 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
2862 OPTAB_LIB_WIDEN);
2863 if (temp != 0)
2864 temp = expand_binop (mode, result_unsignedp ? sub_optab : subv_optab,
2865 temp, extended, target, 0, OPTAB_LIB_WIDEN);
2867 if (temp != 0)
2868 return temp;
2871 /* If that does not win, use conditional jump and negate. */
2873 /* It is safe to use the target if it is the same
2874 as the source if this is also a pseudo register */
2875 if (op0 == target && GET_CODE (op0) == REG
2876 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
2877 safe = 1;
2879 op1 = gen_label_rtx ();
2880 if (target == 0 || ! safe
2881 || GET_MODE (target) != mode
2882 || (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
2883 || (GET_CODE (target) == REG
2884 && REGNO (target) < FIRST_PSEUDO_REGISTER))
2885 target = gen_reg_rtx (mode);
2887 emit_move_insn (target, op0);
2888 NO_DEFER_POP;
2890 /* If this mode is an integer too wide to compare properly,
2891 compare word by word. Rely on CSE to optimize constant cases. */
2892 if (GET_MODE_CLASS (mode) == MODE_INT
2893 && ! can_compare_p (GE, mode, ccp_jump))
2894 do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx,
2895 NULL_RTX, op1);
2896 else
2897 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
2898 NULL_RTX, NULL_RTX, op1);
2900 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
2901 target, target, 0);
2902 if (op0 != target)
2903 emit_move_insn (target, op0);
2904 emit_label (op1);
2905 OK_DEFER_POP;
2906 return target;
2909 /* Emit code to compute the absolute value of OP0, with result to
2910 TARGET if convenient. (TARGET may be 0.) The return value says
2911 where the result actually is to be found.
2913 MODE is the mode of the operand; the mode of the result is
2914 different but can be deduced from MODE.
2916 UNSIGNEDP is relevant for complex integer modes. */
2919 expand_complex_abs (mode, op0, target, unsignedp)
2920 enum machine_mode mode;
2921 rtx op0;
2922 rtx target;
2923 int unsignedp;
2925 enum mode_class class = GET_MODE_CLASS (mode);
2926 enum machine_mode wider_mode;
2927 rtx temp;
2928 rtx entry_last = get_last_insn ();
2929 rtx last;
2930 rtx pat;
2931 optab this_abs_optab;
2933 /* Find the correct mode for the real and imaginary parts. */
2934 enum machine_mode submode = GET_MODE_INNER (mode);
2936 if (submode == BLKmode)
2937 abort ();
2939 op0 = protect_from_queue (op0, 0);
2941 if (flag_force_mem)
2943 op0 = force_not_mem (op0);
2946 last = get_last_insn ();
2948 if (target)
2949 target = protect_from_queue (target, 1);
2951 this_abs_optab = ! unsignedp && flag_trapv
2952 && (GET_MODE_CLASS(mode) == MODE_INT)
2953 ? absv_optab : abs_optab;
2955 if (this_abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2957 int icode = (int) this_abs_optab->handlers[(int) mode].insn_code;
2958 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
2959 rtx xop0 = op0;
2961 if (target)
2962 temp = target;
2963 else
2964 temp = gen_reg_rtx (submode);
2966 if (GET_MODE (xop0) != VOIDmode
2967 && GET_MODE (xop0) != mode0)
2968 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2970 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2972 if (! (*insn_data[icode].operand[1].predicate) (xop0, mode0))
2973 xop0 = copy_to_mode_reg (mode0, xop0);
2975 if (! (*insn_data[icode].operand[0].predicate) (temp, submode))
2976 temp = gen_reg_rtx (submode);
2978 pat = GEN_FCN (icode) (temp, xop0);
2979 if (pat)
2981 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2982 && ! add_equal_note (pat, temp, this_abs_optab->code, xop0,
2983 NULL_RTX))
2985 delete_insns_since (last);
2986 return expand_unop (mode, this_abs_optab, op0, NULL_RTX,
2987 unsignedp);
2990 emit_insn (pat);
2992 return temp;
2994 else
2995 delete_insns_since (last);
2998 /* It can't be done in this mode. Can we open-code it in a wider mode? */
3000 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3001 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3003 if (this_abs_optab->handlers[(int) wider_mode].insn_code
3004 != CODE_FOR_nothing)
3006 rtx xop0 = op0;
3008 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
3009 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
3011 if (temp)
3013 if (class != MODE_COMPLEX_INT)
3015 if (target == 0)
3016 target = gen_reg_rtx (submode);
3017 convert_move (target, temp, 0);
3018 return target;
3020 else
3021 return gen_lowpart (submode, temp);
3023 else
3024 delete_insns_since (last);
3028 /* Open-code the complex absolute-value operation
3029 if we can open-code sqrt. Otherwise it's not worth while. */
3030 if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing
3031 && ! flag_trapv)
3033 rtx real, imag, total;
3035 real = gen_realpart (submode, op0);
3036 imag = gen_imagpart (submode, op0);
3038 /* Square both parts. */
3039 real = expand_mult (submode, real, real, NULL_RTX, 0);
3040 imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
3042 /* Sum the parts. */
3043 total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
3044 0, OPTAB_LIB_WIDEN);
3046 /* Get sqrt in TARGET. Set TARGET to where the result is. */
3047 target = expand_unop (submode, sqrt_optab, total, target, 0);
3048 if (target == 0)
3049 delete_insns_since (last);
3050 else
3051 return target;
3054 /* Now try a library call in this mode. */
3055 if (this_abs_optab->handlers[(int) mode].libfunc)
3057 rtx insns;
3058 rtx value;
3060 start_sequence ();
3062 /* Pass 1 for NO_QUEUE so we don't lose any increments
3063 if the libcall is cse'd or moved. */
3064 value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
3065 NULL_RTX, LCT_CONST, submode, 1, op0, mode);
3066 insns = get_insns ();
3067 end_sequence ();
3069 target = gen_reg_rtx (submode);
3070 emit_libcall_block (insns, target, value,
3071 gen_rtx_fmt_e (this_abs_optab->code, mode, op0));
3073 return target;
3076 /* It can't be done in this mode. Can we do it in a wider mode? */
3078 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3079 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3081 if ((this_abs_optab->handlers[(int) wider_mode].insn_code
3082 != CODE_FOR_nothing)
3083 || this_abs_optab->handlers[(int) wider_mode].libfunc)
3085 rtx xop0 = op0;
3087 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
3089 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
3091 if (temp)
3093 if (class != MODE_COMPLEX_INT)
3095 if (target == 0)
3096 target = gen_reg_rtx (submode);
3097 convert_move (target, temp, 0);
3098 return target;
3100 else
3101 return gen_lowpart (submode, temp);
3103 else
3104 delete_insns_since (last);
3108 delete_insns_since (entry_last);
3109 return 0;
3112 /* Generate an instruction whose insn-code is INSN_CODE,
3113 with two operands: an output TARGET and an input OP0.
3114 TARGET *must* be nonzero, and the output is always stored there.
3115 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3116 the value that is stored into TARGET. */
3118 void
3119 emit_unop_insn (icode, target, op0, code)
3120 int icode;
3121 rtx target;
3122 rtx op0;
3123 enum rtx_code code;
3125 rtx temp;
3126 enum machine_mode mode0 = insn_data[icode].operand[1].mode;
3127 rtx pat;
3129 temp = target = protect_from_queue (target, 1);
3131 op0 = protect_from_queue (op0, 0);
3133 /* Sign and zero extension from memory is often done specially on
3134 RISC machines, so forcing into a register here can pessimize
3135 code. */
3136 if (flag_force_mem && code != SIGN_EXTEND && code != ZERO_EXTEND)
3137 op0 = force_not_mem (op0);
3139 /* Now, if insn does not accept our operands, put them into pseudos. */
3141 if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
3142 op0 = copy_to_mode_reg (mode0, op0);
3144 if (! (*insn_data[icode].operand[0].predicate) (temp, GET_MODE (temp))
3145 || (flag_force_mem && GET_CODE (temp) == MEM))
3146 temp = gen_reg_rtx (GET_MODE (temp));
3148 pat = GEN_FCN (icode) (temp, op0);
3150 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX && code != UNKNOWN)
3151 add_equal_note (pat, temp, code, op0, NULL_RTX);
3153 emit_insn (pat);
3155 if (temp != target)
3156 emit_move_insn (target, temp);
3159 /* Emit code to perform a series of operations on a multi-word quantity, one
3160 word at a time.
3162 Such a block is preceded by a CLOBBER of the output, consists of multiple
3163 insns, each setting one word of the output, and followed by a SET copying
3164 the output to itself.
3166 Each of the insns setting words of the output receives a REG_NO_CONFLICT
3167 note indicating that it doesn't conflict with the (also multi-word)
3168 inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
3169 notes.
3171 INSNS is a block of code generated to perform the operation, not including
3172 the CLOBBER and final copy. All insns that compute intermediate values
3173 are first emitted, followed by the block as described above.
3175 TARGET, OP0, and OP1 are the output and inputs of the operations,
3176 respectively. OP1 may be zero for a unary operation.
3178 EQUIV, if nonzero, is an expression to be placed into a REG_EQUAL note
3179 on the last insn.
3181 If TARGET is not a register, INSNS is simply emitted with no special
3182 processing. Likewise if anything in INSNS is not an INSN or if
3183 there is a libcall block inside INSNS.
3185 The final insn emitted is returned. */
3188 emit_no_conflict_block (insns, target, op0, op1, equiv)
3189 rtx insns;
3190 rtx target;
3191 rtx op0, op1;
3192 rtx equiv;
3194 rtx prev, next, first, last, insn;
3196 if (GET_CODE (target) != REG || reload_in_progress)
3197 return emit_insn (insns);
3198 else
3199 for (insn = insns; insn; insn = NEXT_INSN (insn))
3200 if (GET_CODE (insn) != INSN
3201 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
3202 return emit_insn (insns);
3204 /* First emit all insns that do not store into words of the output and remove
3205 these from the list. */
3206 for (insn = insns; insn; insn = next)
3208 rtx set = 0, note;
3209 int i;
3211 next = NEXT_INSN (insn);
3213 /* Some ports (cris) create an libcall regions at their own. We must
3214 avoid any potential nesting of LIBCALLs. */
3215 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3216 remove_note (insn, note);
3217 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3218 remove_note (insn, note);
3220 if (GET_CODE (PATTERN (insn)) == SET || GET_CODE (PATTERN (insn)) == USE
3221 || GET_CODE (PATTERN (insn)) == CLOBBER)
3222 set = PATTERN (insn);
3223 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3225 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
3226 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
3228 set = XVECEXP (PATTERN (insn), 0, i);
3229 break;
3233 if (set == 0)
3234 abort ();
3236 if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
3238 if (PREV_INSN (insn))
3239 NEXT_INSN (PREV_INSN (insn)) = next;
3240 else
3241 insns = next;
3243 if (next)
3244 PREV_INSN (next) = PREV_INSN (insn);
3246 add_insn (insn);
3250 prev = get_last_insn ();
3252 /* Now write the CLOBBER of the output, followed by the setting of each
3253 of the words, followed by the final copy. */
3254 if (target != op0 && target != op1)
3255 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
3257 for (insn = insns; insn; insn = next)
3259 next = NEXT_INSN (insn);
3260 add_insn (insn);
3262 if (op1 && GET_CODE (op1) == REG)
3263 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
3264 REG_NOTES (insn));
3266 if (op0 && GET_CODE (op0) == REG)
3267 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
3268 REG_NOTES (insn));
3271 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3272 != CODE_FOR_nothing)
3274 last = emit_move_insn (target, target);
3275 if (equiv)
3276 set_unique_reg_note (last, REG_EQUAL, equiv);
3278 else
3280 last = get_last_insn ();
3282 /* Remove any existing REG_EQUAL note from "last", or else it will
3283 be mistaken for a note referring to the full contents of the
3284 alleged libcall value when found together with the REG_RETVAL
3285 note added below. An existing note can come from an insn
3286 expansion at "last". */
3287 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3290 if (prev == 0)
3291 first = get_insns ();
3292 else
3293 first = NEXT_INSN (prev);
3295 /* Encapsulate the block so it gets manipulated as a unit. */
3296 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3297 REG_NOTES (first));
3298 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
3300 return last;
3303 /* Emit code to make a call to a constant function or a library call.
3305 INSNS is a list containing all insns emitted in the call.
3306 These insns leave the result in RESULT. Our block is to copy RESULT
3307 to TARGET, which is logically equivalent to EQUIV.
3309 We first emit any insns that set a pseudo on the assumption that these are
3310 loading constants into registers; doing so allows them to be safely cse'ed
3311 between blocks. Then we emit all the other insns in the block, followed by
3312 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3313 note with an operand of EQUIV.
3315 Moving assignments to pseudos outside of the block is done to improve
3316 the generated code, but is not required to generate correct code,
3317 hence being unable to move an assignment is not grounds for not making
3318 a libcall block. There are two reasons why it is safe to leave these
3319 insns inside the block: First, we know that these pseudos cannot be
3320 used in generated RTL outside the block since they are created for
3321 temporary purposes within the block. Second, CSE will not record the
3322 values of anything set inside a libcall block, so we know they must
3323 be dead at the end of the block.
3325 Except for the first group of insns (the ones setting pseudos), the
3326 block is delimited by REG_RETVAL and REG_LIBCALL notes. */
3328 void
3329 emit_libcall_block (insns, target, result, equiv)
3330 rtx insns;
3331 rtx target;
3332 rtx result;
3333 rtx equiv;
3335 rtx final_dest = target;
3336 rtx prev, next, first, last, insn;
3338 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3339 into a MEM later. Protect the libcall block from this change. */
3340 if (! REG_P (target) || REG_USERVAR_P (target))
3341 target = gen_reg_rtx (GET_MODE (target));
3343 /* If we're using non-call exceptions, a libcall corresponding to an
3344 operation that may trap may also trap. */
3345 if (flag_non_call_exceptions && may_trap_p (equiv))
3347 for (insn = insns; insn; insn = NEXT_INSN (insn))
3348 if (GET_CODE (insn) == CALL_INSN)
3350 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3352 if (note != 0 && INTVAL (XEXP (note, 0)) <= 0)
3353 remove_note (insn, note);
3356 else
3357 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3358 reg note to indicate that this call cannot throw or execute a nonlocal
3359 goto (unless there is already a REG_EH_REGION note, in which case
3360 we update it). */
3361 for (insn = insns; insn; insn = NEXT_INSN (insn))
3362 if (GET_CODE (insn) == CALL_INSN)
3364 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3366 if (note != 0)
3367 XEXP (note, 0) = GEN_INT (-1);
3368 else
3369 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (-1),
3370 REG_NOTES (insn));
3373 /* First emit all insns that set pseudos. Remove them from the list as
3374 we go. Avoid insns that set pseudos which were referenced in previous
3375 insns. These can be generated by move_by_pieces, for example,
3376 to update an address. Similarly, avoid insns that reference things
3377 set in previous insns. */
3379 for (insn = insns; insn; insn = next)
3381 rtx set = single_set (insn);
3382 rtx note;
3384 /* Some ports (cris) create an libcall regions at their own. We must
3385 avoid any potential nesting of LIBCALLs. */
3386 if ((note = find_reg_note (insn, REG_LIBCALL, NULL)) != NULL)
3387 remove_note (insn, note);
3388 if ((note = find_reg_note (insn, REG_RETVAL, NULL)) != NULL)
3389 remove_note (insn, note);
3391 next = NEXT_INSN (insn);
3393 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
3394 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
3395 && (insn == insns
3396 || ((! INSN_P(insns)
3397 || ! reg_mentioned_p (SET_DEST (set), PATTERN (insns)))
3398 && ! reg_used_between_p (SET_DEST (set), insns, insn)
3399 && ! modified_in_p (SET_SRC (set), insns)
3400 && ! modified_between_p (SET_SRC (set), insns, insn))))
3402 if (PREV_INSN (insn))
3403 NEXT_INSN (PREV_INSN (insn)) = next;
3404 else
3405 insns = next;
3407 if (next)
3408 PREV_INSN (next) = PREV_INSN (insn);
3410 add_insn (insn);
3414 prev = get_last_insn ();
3416 /* Write the remaining insns followed by the final copy. */
3418 for (insn = insns; insn; insn = next)
3420 next = NEXT_INSN (insn);
3422 add_insn (insn);
3425 last = emit_move_insn (target, result);
3426 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
3427 != CODE_FOR_nothing)
3428 set_unique_reg_note (last, REG_EQUAL, copy_rtx (equiv));
3429 else
3431 /* Remove any existing REG_EQUAL note from "last", or else it will
3432 be mistaken for a note referring to the full contents of the
3433 libcall value when found together with the REG_RETVAL note added
3434 below. An existing note can come from an insn expansion at
3435 "last". */
3436 remove_note (last, find_reg_note (last, REG_EQUAL, NULL_RTX));
3439 if (final_dest != target)
3440 emit_move_insn (final_dest, target);
3442 if (prev == 0)
3443 first = get_insns ();
3444 else
3445 first = NEXT_INSN (prev);
3447 /* Encapsulate the block so it gets manipulated as a unit. */
3448 if (!flag_non_call_exceptions || !may_trap_p (equiv))
3450 /* We can't attach the REG_LIBCALL and REG_RETVAL notes
3451 when the encapsulated region would not be in one basic block,
3452 i.e. when there is a control_flow_insn_p insn between FIRST and LAST.
3454 bool attach_libcall_retval_notes = true;
3455 next = NEXT_INSN (last);
3456 for (insn = first; insn != next; insn = NEXT_INSN (insn))
3457 if (control_flow_insn_p (insn))
3459 attach_libcall_retval_notes = false;
3460 break;
3463 if (attach_libcall_retval_notes)
3465 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
3466 REG_NOTES (first));
3467 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first,
3468 REG_NOTES (last));
3473 /* Generate code to store zero in X. */
3475 void
3476 emit_clr_insn (x)
3477 rtx x;
3479 emit_move_insn (x, const0_rtx);
3482 /* Generate code to store 1 in X
3483 assuming it contains zero beforehand. */
3485 void
3486 emit_0_to_1_insn (x)
3487 rtx x;
3489 emit_move_insn (x, const1_rtx);
3492 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3493 PURPOSE describes how this comparison will be used. CODE is the rtx
3494 comparison code we will be using.
3496 ??? Actually, CODE is slightly weaker than that. A target is still
3497 required to implement all of the normal bcc operations, but not
3498 required to implement all (or any) of the unordered bcc operations. */
3501 can_compare_p (code, mode, purpose)
3502 enum rtx_code code;
3503 enum machine_mode mode;
3504 enum can_compare_purpose purpose;
3508 if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3510 if (purpose == ccp_jump)
3511 return bcc_gen_fctn[(int) code] != NULL;
3512 else if (purpose == ccp_store_flag)
3513 return setcc_gen_code[(int) code] != CODE_FOR_nothing;
3514 else
3515 /* There's only one cmov entry point, and it's allowed to fail. */
3516 return 1;
3518 if (purpose == ccp_jump
3519 && cbranch_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3520 return 1;
3521 if (purpose == ccp_cmov
3522 && cmov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3523 return 1;
3524 if (purpose == ccp_store_flag
3525 && cstore_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
3526 return 1;
3528 mode = GET_MODE_WIDER_MODE (mode);
3530 while (mode != VOIDmode);
3532 return 0;
3535 /* This function is called when we are going to emit a compare instruction that
3536 compares the values found in *PX and *PY, using the rtl operator COMPARISON.
3538 *PMODE is the mode of the inputs (in case they are const_int).
3539 *PUNSIGNEDP nonzero says that the operands are unsigned;
3540 this matters if they need to be widened.
3542 If they have mode BLKmode, then SIZE specifies the size of both operands.
3544 This function performs all the setup necessary so that the caller only has
3545 to emit a single comparison insn. This setup can involve doing a BLKmode
3546 comparison or emitting a library call to perform the comparison if no insn
3547 is available to handle it.
3548 The values which are passed in through pointers can be modified; the caller
3549 should perform the comparison on the modified values. */
3551 static void
3552 prepare_cmp_insn (px, py, pcomparison, size, pmode, punsignedp, purpose)
3553 rtx *px, *py;
3554 enum rtx_code *pcomparison;
3555 rtx size;
3556 enum machine_mode *pmode;
3557 int *punsignedp;
3558 enum can_compare_purpose purpose;
3560 enum machine_mode mode = *pmode;
3561 rtx x = *px, y = *py;
3562 int unsignedp = *punsignedp;
3563 enum mode_class class;
3565 class = GET_MODE_CLASS (mode);
3567 /* They could both be VOIDmode if both args are immediate constants,
3568 but we should fold that at an earlier stage.
3569 With no special code here, this will call abort,
3570 reminding the programmer to implement such folding. */
3572 if (mode != BLKmode && flag_force_mem)
3574 x = force_not_mem (x);
3575 y = force_not_mem (y);
3578 /* If we are inside an appropriately-short loop and one operand is an
3579 expensive constant, force it into a register. */
3580 if (CONSTANT_P (x) && preserve_subexpressions_p ()
3581 && rtx_cost (x, COMPARE) > COSTS_N_INSNS (1))
3582 x = force_reg (mode, x);
3584 if (CONSTANT_P (y) && preserve_subexpressions_p ()
3585 && rtx_cost (y, COMPARE) > COSTS_N_INSNS (1))
3586 y = force_reg (mode, y);
3588 #ifdef HAVE_cc0
3589 /* Abort if we have a non-canonical comparison. The RTL documentation
3590 states that canonical comparisons are required only for targets which
3591 have cc0. */
3592 if (CONSTANT_P (x) && ! CONSTANT_P (y))
3593 abort ();
3594 #endif
3596 /* Don't let both operands fail to indicate the mode. */
3597 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3598 x = force_reg (mode, x);
3600 /* Handle all BLKmode compares. */
3602 if (mode == BLKmode)
3604 rtx result;
3605 enum machine_mode result_mode;
3606 rtx opalign ATTRIBUTE_UNUSED
3607 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
3609 emit_queue ();
3610 x = protect_from_queue (x, 0);
3611 y = protect_from_queue (y, 0);
3613 if (size == 0)
3614 abort ();
3615 #ifdef HAVE_cmpstrqi
3616 if (HAVE_cmpstrqi
3617 && GET_CODE (size) == CONST_INT
3618 && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode)))
3620 result_mode = insn_data[(int) CODE_FOR_cmpstrqi].operand[0].mode;
3621 result = gen_reg_rtx (result_mode);
3622 emit_insn (gen_cmpstrqi (result, x, y, size, opalign));
3624 else
3625 #endif
3626 #ifdef HAVE_cmpstrhi
3627 if (HAVE_cmpstrhi
3628 && GET_CODE (size) == CONST_INT
3629 && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode)))
3631 result_mode = insn_data[(int) CODE_FOR_cmpstrhi].operand[0].mode;
3632 result = gen_reg_rtx (result_mode);
3633 emit_insn (gen_cmpstrhi (result, x, y, size, opalign));
3635 else
3636 #endif
3637 #ifdef HAVE_cmpstrsi
3638 if (HAVE_cmpstrsi)
3640 result_mode = insn_data[(int) CODE_FOR_cmpstrsi].operand[0].mode;
3641 result = gen_reg_rtx (result_mode);
3642 size = protect_from_queue (size, 0);
3643 emit_insn (gen_cmpstrsi (result, x, y,
3644 convert_to_mode (SImode, size, 1),
3645 opalign));
3647 else
3648 #endif
3650 #ifdef TARGET_MEM_FUNCTIONS
3651 result = emit_library_call_value (memcmp_libfunc, NULL_RTX, LCT_PURE_MAKE_BLOCK,
3652 TYPE_MODE (integer_type_node), 3,
3653 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
3654 convert_to_mode (TYPE_MODE (sizetype), size,
3655 TREE_UNSIGNED (sizetype)),
3656 TYPE_MODE (sizetype));
3657 #else
3658 result = emit_library_call_value (bcmp_libfunc, NULL_RTX, LCT_PURE_MAKE_BLOCK,
3659 TYPE_MODE (integer_type_node), 3,
3660 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
3661 convert_to_mode (TYPE_MODE (integer_type_node),
3662 size,
3663 TREE_UNSIGNED (integer_type_node)),
3664 TYPE_MODE (integer_type_node));
3665 #endif
3667 result_mode = TYPE_MODE (integer_type_node);
3669 *px = result;
3670 *py = const0_rtx;
3671 *pmode = result_mode;
3672 return;
3675 *px = x;
3676 *py = y;
3677 if (can_compare_p (*pcomparison, mode, purpose))
3678 return;
3680 /* Handle a lib call just for the mode we are using. */
3682 if (cmp_optab->handlers[(int) mode].libfunc && class != MODE_FLOAT)
3684 rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
3685 rtx result;
3687 /* If we want unsigned, and this mode has a distinct unsigned
3688 comparison routine, use that. */
3689 if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
3690 libfunc = ucmp_optab->handlers[(int) mode].libfunc;
3692 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST_MAKE_BLOCK,
3693 word_mode, 2, x, mode, y, mode);
3695 /* Integer comparison returns a result that must be compared against 1,
3696 so that even if we do an unsigned compare afterward,
3697 there is still a value that can represent the result "less than". */
3698 *px = result;
3699 *py = const1_rtx;
3700 *pmode = word_mode;
3701 return;
3704 if (class == MODE_FLOAT)
3705 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
3707 else
3708 abort ();
3711 /* Before emitting an insn with code ICODE, make sure that X, which is going
3712 to be used for operand OPNUM of the insn, is converted from mode MODE to
3713 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
3714 that it is accepted by the operand predicate. Return the new value. */
3717 prepare_operand (icode, x, opnum, mode, wider_mode, unsignedp)
3718 int icode;
3719 rtx x;
3720 int opnum;
3721 enum machine_mode mode, wider_mode;
3722 int unsignedp;
3724 x = protect_from_queue (x, 0);
3726 if (mode != wider_mode)
3727 x = convert_modes (wider_mode, mode, x, unsignedp);
3729 if (! (*insn_data[icode].operand[opnum].predicate)
3730 (x, insn_data[icode].operand[opnum].mode))
3731 x = copy_to_mode_reg (insn_data[icode].operand[opnum].mode, x);
3732 return x;
3735 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
3736 we can do the comparison.
3737 The arguments are the same as for emit_cmp_and_jump_insns; but LABEL may
3738 be NULL_RTX which indicates that only a comparison is to be generated. */
3740 static void
3741 emit_cmp_and_jump_insn_1 (x, y, mode, comparison, unsignedp, label)
3742 rtx x, y;
3743 enum machine_mode mode;
3744 enum rtx_code comparison;
3745 int unsignedp;
3746 rtx label;
3748 rtx test = gen_rtx_fmt_ee (comparison, mode, x, y);
3749 enum mode_class class = GET_MODE_CLASS (mode);
3750 enum machine_mode wider_mode = mode;
3752 /* Try combined insns first. */
3755 enum insn_code icode;
3756 PUT_MODE (test, wider_mode);
3758 if (label)
3760 icode = cbranch_optab->handlers[(int) wider_mode].insn_code;
3762 if (icode != CODE_FOR_nothing
3763 && (*insn_data[icode].operand[0].predicate) (test, wider_mode))
3765 x = prepare_operand (icode, x, 1, mode, wider_mode, unsignedp);
3766 y = prepare_operand (icode, y, 2, mode, wider_mode, unsignedp);
3767 emit_jump_insn (GEN_FCN (icode) (test, x, y, label));
3768 return;
3772 /* Handle some compares against zero. */
3773 icode = (int) tst_optab->handlers[(int) wider_mode].insn_code;
3774 if (y == CONST0_RTX (mode) && icode != CODE_FOR_nothing)
3776 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3777 emit_insn (GEN_FCN (icode) (x));
3778 if (label)
3779 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3780 return;
3783 /* Handle compares for which there is a directly suitable insn. */
3785 icode = (int) cmp_optab->handlers[(int) wider_mode].insn_code;
3786 if (icode != CODE_FOR_nothing)
3788 x = prepare_operand (icode, x, 0, mode, wider_mode, unsignedp);
3789 y = prepare_operand (icode, y, 1, mode, wider_mode, unsignedp);
3790 emit_insn (GEN_FCN (icode) (x, y));
3791 if (label)
3792 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
3793 return;
3796 if (class != MODE_INT && class != MODE_FLOAT
3797 && class != MODE_COMPLEX_FLOAT)
3798 break;
3800 wider_mode = GET_MODE_WIDER_MODE (wider_mode);
3802 while (wider_mode != VOIDmode);
3804 abort ();
3807 /* Generate code to compare X with Y so that the condition codes are
3808 set and to jump to LABEL if the condition is true. If X is a
3809 constant and Y is not a constant, then the comparison is swapped to
3810 ensure that the comparison RTL has the canonical form.
3812 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
3813 need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
3814 the proper branch condition code.
3816 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
3818 MODE is the mode of the inputs (in case they are const_int).
3820 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
3821 be passed unchanged to emit_cmp_insn, then potentially converted into an
3822 unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
3824 void
3825 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, label)
3826 rtx x, y;
3827 enum rtx_code comparison;
3828 rtx size;
3829 enum machine_mode mode;
3830 int unsignedp;
3831 rtx label;
3833 rtx op0 = x, op1 = y;
3835 /* Swap operands and condition to ensure canonical RTL. */
3836 if (swap_commutative_operands_p (x, y))
3838 /* If we're not emitting a branch, this means some caller
3839 is out of sync. */
3840 if (! label)
3841 abort ();
3843 op0 = y, op1 = x;
3844 comparison = swap_condition (comparison);
3847 #ifdef HAVE_cc0
3848 /* If OP0 is still a constant, then both X and Y must be constants. Force
3849 X into a register to avoid aborting in emit_cmp_insn due to non-canonical
3850 RTL. */
3851 if (CONSTANT_P (op0))
3852 op0 = force_reg (mode, op0);
3853 #endif
3855 emit_queue ();
3856 if (unsignedp)
3857 comparison = unsigned_condition (comparison);
3859 prepare_cmp_insn (&op0, &op1, &comparison, size, &mode, &unsignedp,
3860 ccp_jump);
3861 emit_cmp_and_jump_insn_1 (op0, op1, mode, comparison, unsignedp, label);
3864 /* Like emit_cmp_and_jump_insns, but generate only the comparison. */
3866 void
3867 emit_cmp_insn (x, y, comparison, size, mode, unsignedp)
3868 rtx x, y;
3869 enum rtx_code comparison;
3870 rtx size;
3871 enum machine_mode mode;
3872 int unsignedp;
3874 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, 0);
3877 /* Emit a library call comparison between floating point X and Y.
3878 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
3880 static void
3881 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp)
3882 rtx *px, *py;
3883 enum rtx_code *pcomparison;
3884 enum machine_mode *pmode;
3885 int *punsignedp;
3887 enum rtx_code comparison = *pcomparison;
3888 rtx tmp;
3889 rtx x = *px = protect_from_queue (*px, 0);
3890 rtx y = *py = protect_from_queue (*py, 0);
3891 enum machine_mode mode = GET_MODE (x);
3892 rtx libfunc = 0;
3893 rtx result;
3895 if (mode == HFmode)
3896 switch (comparison)
3898 case EQ:
3899 libfunc = eqhf2_libfunc;
3900 break;
3902 case NE:
3903 libfunc = nehf2_libfunc;
3904 break;
3906 case GT:
3907 libfunc = gthf2_libfunc;
3908 if (libfunc == NULL_RTX)
3910 tmp = x; x = y; y = tmp;
3911 *pcomparison = LT;
3912 libfunc = lthf2_libfunc;
3914 break;
3916 case GE:
3917 libfunc = gehf2_libfunc;
3918 if (libfunc == NULL_RTX)
3920 tmp = x; x = y; y = tmp;
3921 *pcomparison = LE;
3922 libfunc = lehf2_libfunc;
3924 break;
3926 case LT:
3927 libfunc = lthf2_libfunc;
3928 if (libfunc == NULL_RTX)
3930 tmp = x; x = y; y = tmp;
3931 *pcomparison = GT;
3932 libfunc = gthf2_libfunc;
3934 break;
3936 case LE:
3937 libfunc = lehf2_libfunc;
3938 if (libfunc == NULL_RTX)
3940 tmp = x; x = y; y = tmp;
3941 *pcomparison = GE;
3942 libfunc = gehf2_libfunc;
3944 break;
3946 case UNORDERED:
3947 libfunc = unordhf2_libfunc;
3948 break;
3950 default:
3951 break;
3953 else if (mode == SFmode)
3954 switch (comparison)
3956 case EQ:
3957 libfunc = eqsf2_libfunc;
3958 break;
3960 case NE:
3961 libfunc = nesf2_libfunc;
3962 break;
3964 case GT:
3965 libfunc = gtsf2_libfunc;
3966 if (libfunc == NULL_RTX)
3968 tmp = x; x = y; y = tmp;
3969 *pcomparison = LT;
3970 libfunc = ltsf2_libfunc;
3972 break;
3974 case GE:
3975 libfunc = gesf2_libfunc;
3976 if (libfunc == NULL_RTX)
3978 tmp = x; x = y; y = tmp;
3979 *pcomparison = LE;
3980 libfunc = lesf2_libfunc;
3982 break;
3984 case LT:
3985 libfunc = ltsf2_libfunc;
3986 if (libfunc == NULL_RTX)
3988 tmp = x; x = y; y = tmp;
3989 *pcomparison = GT;
3990 libfunc = gtsf2_libfunc;
3992 break;
3994 case LE:
3995 libfunc = lesf2_libfunc;
3996 if (libfunc == NULL_RTX)
3998 tmp = x; x = y; y = tmp;
3999 *pcomparison = GE;
4000 libfunc = gesf2_libfunc;
4002 break;
4004 case UNORDERED:
4005 libfunc = unordsf2_libfunc;
4006 break;
4008 default:
4009 break;
4011 else if (mode == DFmode)
4012 switch (comparison)
4014 case EQ:
4015 libfunc = eqdf2_libfunc;
4016 break;
4018 case NE:
4019 libfunc = nedf2_libfunc;
4020 break;
4022 case GT:
4023 libfunc = gtdf2_libfunc;
4024 if (libfunc == NULL_RTX)
4026 tmp = x; x = y; y = tmp;
4027 *pcomparison = LT;
4028 libfunc = ltdf2_libfunc;
4030 break;
4032 case GE:
4033 libfunc = gedf2_libfunc;
4034 if (libfunc == NULL_RTX)
4036 tmp = x; x = y; y = tmp;
4037 *pcomparison = LE;
4038 libfunc = ledf2_libfunc;
4040 break;
4042 case LT:
4043 libfunc = ltdf2_libfunc;
4044 if (libfunc == NULL_RTX)
4046 tmp = x; x = y; y = tmp;
4047 *pcomparison = GT;
4048 libfunc = gtdf2_libfunc;
4050 break;
4052 case LE:
4053 libfunc = ledf2_libfunc;
4054 if (libfunc == NULL_RTX)
4056 tmp = x; x = y; y = tmp;
4057 *pcomparison = GE;
4058 libfunc = gedf2_libfunc;
4060 break;
4062 case UNORDERED:
4063 libfunc = unorddf2_libfunc;
4064 break;
4066 default:
4067 break;
4069 else if (mode == XFmode)
4070 switch (comparison)
4072 case EQ:
4073 libfunc = eqxf2_libfunc;
4074 break;
4076 case NE:
4077 libfunc = nexf2_libfunc;
4078 break;
4080 case GT:
4081 libfunc = gtxf2_libfunc;
4082 if (libfunc == NULL_RTX)
4084 tmp = x; x = y; y = tmp;
4085 *pcomparison = LT;
4086 libfunc = ltxf2_libfunc;
4088 break;
4090 case GE:
4091 libfunc = gexf2_libfunc;
4092 if (libfunc == NULL_RTX)
4094 tmp = x; x = y; y = tmp;
4095 *pcomparison = LE;
4096 libfunc = lexf2_libfunc;
4098 break;
4100 case LT:
4101 libfunc = ltxf2_libfunc;
4102 if (libfunc == NULL_RTX)
4104 tmp = x; x = y; y = tmp;
4105 *pcomparison = GT;
4106 libfunc = gtxf2_libfunc;
4108 break;
4110 case LE:
4111 libfunc = lexf2_libfunc;
4112 if (libfunc == NULL_RTX)
4114 tmp = x; x = y; y = tmp;
4115 *pcomparison = GE;
4116 libfunc = gexf2_libfunc;
4118 break;
4120 case UNORDERED:
4121 libfunc = unordxf2_libfunc;
4122 break;
4124 default:
4125 break;
4127 else if (mode == TFmode)
4128 switch (comparison)
4130 case EQ:
4131 libfunc = eqtf2_libfunc;
4132 break;
4134 case NE:
4135 libfunc = netf2_libfunc;
4136 break;
4138 case GT:
4139 libfunc = gttf2_libfunc;
4140 if (libfunc == NULL_RTX)
4142 tmp = x; x = y; y = tmp;
4143 *pcomparison = LT;
4144 libfunc = lttf2_libfunc;
4146 break;
4148 case GE:
4149 libfunc = getf2_libfunc;
4150 if (libfunc == NULL_RTX)
4152 tmp = x; x = y; y = tmp;
4153 *pcomparison = LE;
4154 libfunc = letf2_libfunc;
4156 break;
4158 case LT:
4159 libfunc = lttf2_libfunc;
4160 if (libfunc == NULL_RTX)
4162 tmp = x; x = y; y = tmp;
4163 *pcomparison = GT;
4164 libfunc = gttf2_libfunc;
4166 break;
4168 case LE:
4169 libfunc = letf2_libfunc;
4170 if (libfunc == NULL_RTX)
4172 tmp = x; x = y; y = tmp;
4173 *pcomparison = GE;
4174 libfunc = getf2_libfunc;
4176 break;
4178 case UNORDERED:
4179 libfunc = unordtf2_libfunc;
4180 break;
4182 default:
4183 break;
4185 else
4187 enum machine_mode wider_mode;
4189 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
4190 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4192 if ((cmp_optab->handlers[(int) wider_mode].insn_code
4193 != CODE_FOR_nothing)
4194 || (cmp_optab->handlers[(int) wider_mode].libfunc != 0))
4196 x = protect_from_queue (x, 0);
4197 y = protect_from_queue (y, 0);
4198 *px = convert_to_mode (wider_mode, x, 0);
4199 *py = convert_to_mode (wider_mode, y, 0);
4200 prepare_float_lib_cmp (px, py, pcomparison, pmode, punsignedp);
4201 return;
4204 abort ();
4207 if (libfunc == 0)
4208 abort ();
4210 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST_MAKE_BLOCK,
4211 word_mode, 2, x, mode, y, mode);
4212 *px = result;
4213 *py = const0_rtx;
4214 *pmode = word_mode;
4215 if (comparison == UNORDERED)
4216 *pcomparison = NE;
4217 #ifdef FLOAT_LIB_COMPARE_RETURNS_BOOL
4218 else if (FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4219 *pcomparison = NE;
4220 #endif
4221 *punsignedp = 0;
4224 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4226 void
4227 emit_indirect_jump (loc)
4228 rtx loc;
4230 if (! ((*insn_data[(int) CODE_FOR_indirect_jump].operand[0].predicate)
4231 (loc, Pmode)))
4232 loc = copy_to_mode_reg (Pmode, loc);
4234 emit_jump_insn (gen_indirect_jump (loc));
4235 emit_barrier ();
4238 #ifdef HAVE_conditional_move
4240 /* Emit a conditional move instruction if the machine supports one for that
4241 condition and machine mode.
4243 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4244 the mode to use should they be constants. If it is VOIDmode, they cannot
4245 both be constants.
4247 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4248 should be stored there. MODE is the mode to use should they be constants.
4249 If it is VOIDmode, they cannot both be constants.
4251 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4252 is not supported. */
4255 emit_conditional_move (target, code, op0, op1, cmode, op2, op3, mode,
4256 unsignedp)
4257 rtx target;
4258 enum rtx_code code;
4259 rtx op0, op1;
4260 enum machine_mode cmode;
4261 rtx op2, op3;
4262 enum machine_mode mode;
4263 int unsignedp;
4265 rtx tem, subtarget, comparison, insn;
4266 enum insn_code icode;
4267 enum rtx_code reversed;
4269 /* If one operand is constant, make it the second one. Only do this
4270 if the other operand is not constant as well. */
4272 if (swap_commutative_operands_p (op0, op1))
4274 tem = op0;
4275 op0 = op1;
4276 op1 = tem;
4277 code = swap_condition (code);
4280 /* get_condition will prefer to generate LT and GT even if the old
4281 comparison was against zero, so undo that canonicalization here since
4282 comparisons against zero are cheaper. */
4283 if (code == LT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == 1)
4284 code = LE, op1 = const0_rtx;
4285 else if (code == GT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == -1)
4286 code = GE, op1 = const0_rtx;
4288 if (cmode == VOIDmode)
4289 cmode = GET_MODE (op0);
4291 if (swap_commutative_operands_p (op2, op3)
4292 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4293 != UNKNOWN))
4295 tem = op2;
4296 op2 = op3;
4297 op3 = tem;
4298 code = reversed;
4301 if (mode == VOIDmode)
4302 mode = GET_MODE (op2);
4304 icode = movcc_gen_code[mode];
4306 if (icode == CODE_FOR_nothing)
4307 return 0;
4309 if (flag_force_mem)
4311 op2 = force_not_mem (op2);
4312 op3 = force_not_mem (op3);
4315 if (target)
4316 target = protect_from_queue (target, 1);
4317 else
4318 target = gen_reg_rtx (mode);
4320 subtarget = target;
4322 emit_queue ();
4324 op2 = protect_from_queue (op2, 0);
4325 op3 = protect_from_queue (op3, 0);
4327 /* If the insn doesn't accept these operands, put them in pseudos. */
4329 if (! (*insn_data[icode].operand[0].predicate)
4330 (subtarget, insn_data[icode].operand[0].mode))
4331 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4333 if (! (*insn_data[icode].operand[2].predicate)
4334 (op2, insn_data[icode].operand[2].mode))
4335 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4337 if (! (*insn_data[icode].operand[3].predicate)
4338 (op3, insn_data[icode].operand[3].mode))
4339 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4341 /* Everything should now be in the suitable form, so emit the compare insn
4342 and then the conditional move. */
4344 comparison
4345 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
4347 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
4348 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4349 return NULL and let the caller figure out how best to deal with this
4350 situation. */
4351 if (GET_CODE (comparison) != code)
4352 return NULL_RTX;
4354 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4356 /* If that failed, then give up. */
4357 if (insn == 0)
4358 return 0;
4360 emit_insn (insn);
4362 if (subtarget != target)
4363 convert_move (target, subtarget, 0);
4365 return target;
4368 /* Return nonzero if a conditional move of mode MODE is supported.
4370 This function is for combine so it can tell whether an insn that looks
4371 like a conditional move is actually supported by the hardware. If we
4372 guess wrong we lose a bit on optimization, but that's it. */
4373 /* ??? sparc64 supports conditionally moving integers values based on fp
4374 comparisons, and vice versa. How do we handle them? */
4377 can_conditionally_move_p (mode)
4378 enum machine_mode mode;
4380 if (movcc_gen_code[mode] != CODE_FOR_nothing)
4381 return 1;
4383 return 0;
4386 #endif /* HAVE_conditional_move */
4388 /* Emit a conditional addition instruction if the machine supports one for that
4389 condition and machine mode.
4391 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4392 the mode to use should they be constants. If it is VOIDmode, they cannot
4393 both be constants.
4395 OP2 should be stored in TARGET if the comparison is true, otherwise OP2+OP3
4396 should be stored there. MODE is the mode to use should they be constants.
4397 If it is VOIDmode, they cannot both be constants.
4399 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4400 is not supported. */
4403 emit_conditional_add (target, code, op0, op1, cmode, op2, op3, mode,
4404 unsignedp)
4405 rtx target;
4406 enum rtx_code code;
4407 rtx op0, op1;
4408 enum machine_mode cmode;
4409 rtx op2, op3;
4410 enum machine_mode mode;
4411 int unsignedp;
4413 rtx tem, subtarget, comparison, insn;
4414 enum insn_code icode;
4415 enum rtx_code reversed;
4417 /* If one operand is constant, make it the second one. Only do this
4418 if the other operand is not constant as well. */
4420 if (swap_commutative_operands_p (op0, op1))
4422 tem = op0;
4423 op0 = op1;
4424 op1 = tem;
4425 code = swap_condition (code);
4428 /* get_condition will prefer to generate LT and GT even if the old
4429 comparison was against zero, so undo that canonicalization here since
4430 comparisons against zero are cheaper. */
4431 if (code == LT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == 1)
4432 code = LE, op1 = const0_rtx;
4433 else if (code == GT && GET_CODE (op1) == CONST_INT && INTVAL (op1) == -1)
4434 code = GE, op1 = const0_rtx;
4436 if (cmode == VOIDmode)
4437 cmode = GET_MODE (op0);
4439 if (swap_commutative_operands_p (op2, op3)
4440 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4441 != UNKNOWN))
4443 tem = op2;
4444 op2 = op3;
4445 op3 = tem;
4446 code = reversed;
4449 if (mode == VOIDmode)
4450 mode = GET_MODE (op2);
4452 icode = addcc_optab->handlers[(int) mode].insn_code;
4454 if (icode == CODE_FOR_nothing)
4455 return 0;
4457 if (flag_force_mem)
4459 op2 = force_not_mem (op2);
4460 op3 = force_not_mem (op3);
4463 if (target)
4464 target = protect_from_queue (target, 1);
4465 else
4466 target = gen_reg_rtx (mode);
4468 subtarget = target;
4470 emit_queue ();
4472 op2 = protect_from_queue (op2, 0);
4473 op3 = protect_from_queue (op3, 0);
4475 /* If the insn doesn't accept these operands, put them in pseudos. */
4477 if (! (*insn_data[icode].operand[0].predicate)
4478 (subtarget, insn_data[icode].operand[0].mode))
4479 subtarget = gen_reg_rtx (insn_data[icode].operand[0].mode);
4481 if (! (*insn_data[icode].operand[2].predicate)
4482 (op2, insn_data[icode].operand[2].mode))
4483 op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2);
4485 if (! (*insn_data[icode].operand[3].predicate)
4486 (op3, insn_data[icode].operand[3].mode))
4487 op3 = copy_to_mode_reg (insn_data[icode].operand[3].mode, op3);
4489 /* Everything should now be in the suitable form, so emit the compare insn
4490 and then the conditional move. */
4492 comparison
4493 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX);
4495 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
4496 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4497 return NULL and let the caller figure out how best to deal with this
4498 situation. */
4499 if (GET_CODE (comparison) != code)
4500 return NULL_RTX;
4502 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
4504 /* If that failed, then give up. */
4505 if (insn == 0)
4506 return 0;
4508 emit_insn (insn);
4510 if (subtarget != target)
4511 convert_move (target, subtarget, 0);
4513 return target;
4516 /* These functions attempt to generate an insn body, rather than
4517 emitting the insn, but if the gen function already emits them, we
4518 make no attempt to turn them back into naked patterns.
4520 They do not protect from queued increments,
4521 because they may be used 1) in protect_from_queue itself
4522 and 2) in other passes where there is no queue. */
4524 /* Generate and return an insn body to add Y to X. */
4527 gen_add2_insn (x, y)
4528 rtx x, y;
4530 int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
4532 if (! ((*insn_data[icode].operand[0].predicate)
4533 (x, insn_data[icode].operand[0].mode))
4534 || ! ((*insn_data[icode].operand[1].predicate)
4535 (x, insn_data[icode].operand[1].mode))
4536 || ! ((*insn_data[icode].operand[2].predicate)
4537 (y, insn_data[icode].operand[2].mode)))
4538 abort ();
4540 return (GEN_FCN (icode) (x, x, y));
4543 /* Generate and return an insn body to add r1 and c,
4544 storing the result in r0. */
4546 gen_add3_insn (r0, r1, c)
4547 rtx r0, r1, c;
4549 int icode = (int) add_optab->handlers[(int) GET_MODE (r0)].insn_code;
4551 if (icode == CODE_FOR_nothing
4552 || ! ((*insn_data[icode].operand[0].predicate)
4553 (r0, insn_data[icode].operand[0].mode))
4554 || ! ((*insn_data[icode].operand[1].predicate)
4555 (r1, insn_data[icode].operand[1].mode))
4556 || ! ((*insn_data[icode].operand[2].predicate)
4557 (c, insn_data[icode].operand[2].mode)))
4558 return NULL_RTX;
4560 return (GEN_FCN (icode) (r0, r1, c));
4564 have_add2_insn (x, y)
4565 rtx x, y;
4567 int icode;
4569 if (GET_MODE (x) == VOIDmode)
4570 abort ();
4572 icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
4574 if (icode == CODE_FOR_nothing)
4575 return 0;
4577 if (! ((*insn_data[icode].operand[0].predicate)
4578 (x, insn_data[icode].operand[0].mode))
4579 || ! ((*insn_data[icode].operand[1].predicate)
4580 (x, insn_data[icode].operand[1].mode))
4581 || ! ((*insn_data[icode].operand[2].predicate)
4582 (y, insn_data[icode].operand[2].mode)))
4583 return 0;
4585 return 1;
4588 /* Generate and return an insn body to subtract Y from X. */
4591 gen_sub2_insn (x, y)
4592 rtx x, y;
4594 int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4596 if (! ((*insn_data[icode].operand[0].predicate)
4597 (x, insn_data[icode].operand[0].mode))
4598 || ! ((*insn_data[icode].operand[1].predicate)
4599 (x, insn_data[icode].operand[1].mode))
4600 || ! ((*insn_data[icode].operand[2].predicate)
4601 (y, insn_data[icode].operand[2].mode)))
4602 abort ();
4604 return (GEN_FCN (icode) (x, x, y));
4607 /* Generate and return an insn body to subtract r1 and c,
4608 storing the result in r0. */
4610 gen_sub3_insn (r0, r1, c)
4611 rtx r0, r1, c;
4613 int icode = (int) sub_optab->handlers[(int) GET_MODE (r0)].insn_code;
4615 if (icode == CODE_FOR_nothing
4616 || ! ((*insn_data[icode].operand[0].predicate)
4617 (r0, insn_data[icode].operand[0].mode))
4618 || ! ((*insn_data[icode].operand[1].predicate)
4619 (r1, insn_data[icode].operand[1].mode))
4620 || ! ((*insn_data[icode].operand[2].predicate)
4621 (c, insn_data[icode].operand[2].mode)))
4622 return NULL_RTX;
4624 return (GEN_FCN (icode) (r0, r1, c));
4628 have_sub2_insn (x, y)
4629 rtx x, y;
4631 int icode;
4633 if (GET_MODE (x) == VOIDmode)
4634 abort ();
4636 icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
4638 if (icode == CODE_FOR_nothing)
4639 return 0;
4641 if (! ((*insn_data[icode].operand[0].predicate)
4642 (x, insn_data[icode].operand[0].mode))
4643 || ! ((*insn_data[icode].operand[1].predicate)
4644 (x, insn_data[icode].operand[1].mode))
4645 || ! ((*insn_data[icode].operand[2].predicate)
4646 (y, insn_data[icode].operand[2].mode)))
4647 return 0;
4649 return 1;
4652 /* Generate the body of an instruction to copy Y into X.
4653 It may be a list of insns, if one insn isn't enough. */
4656 gen_move_insn (x, y)
4657 rtx x, y;
4659 rtx seq;
4661 start_sequence ();
4662 emit_move_insn_1 (x, y);
4663 seq = get_insns ();
4664 end_sequence ();
4665 return seq;
4668 /* Return the insn code used to extend FROM_MODE to TO_MODE.
4669 UNSIGNEDP specifies zero-extension instead of sign-extension. If
4670 no such operation exists, CODE_FOR_nothing will be returned. */
4672 enum insn_code
4673 can_extend_p (to_mode, from_mode, unsignedp)
4674 enum machine_mode to_mode, from_mode;
4675 int unsignedp;
4677 #ifdef HAVE_ptr_extend
4678 if (unsignedp < 0)
4679 return CODE_FOR_ptr_extend;
4680 else
4681 #endif
4682 return extendtab[(int) to_mode][(int) from_mode][unsignedp != 0];
4685 /* Generate the body of an insn to extend Y (with mode MFROM)
4686 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4689 gen_extend_insn (x, y, mto, mfrom, unsignedp)
4690 rtx x, y;
4691 enum machine_mode mto, mfrom;
4692 int unsignedp;
4694 return (GEN_FCN (extendtab[(int) mto][(int) mfrom][unsignedp != 0]) (x, y));
4697 /* can_fix_p and can_float_p say whether the target machine
4698 can directly convert a given fixed point type to
4699 a given floating point type, or vice versa.
4700 The returned value is the CODE_FOR_... value to use,
4701 or CODE_FOR_nothing if these modes cannot be directly converted.
4703 *TRUNCP_PTR is set to 1 if it is necessary to output
4704 an explicit FTRUNC insn before the fix insn; otherwise 0. */
4706 static enum insn_code
4707 can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr)
4708 enum machine_mode fltmode, fixmode;
4709 int unsignedp;
4710 int *truncp_ptr;
4712 *truncp_ptr = 0;
4713 if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp != 0]
4714 != CODE_FOR_nothing)
4715 return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp != 0];
4717 if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing)
4719 *truncp_ptr = 1;
4720 return fixtab[(int) fltmode][(int) fixmode][unsignedp != 0];
4722 return CODE_FOR_nothing;
4725 static enum insn_code
4726 can_float_p (fltmode, fixmode, unsignedp)
4727 enum machine_mode fixmode, fltmode;
4728 int unsignedp;
4730 return floattab[(int) fltmode][(int) fixmode][unsignedp != 0];
4733 /* Generate code to convert FROM to floating point
4734 and store in TO. FROM must be fixed point and not VOIDmode.
4735 UNSIGNEDP nonzero means regard FROM as unsigned.
4736 Normally this is done by correcting the final value
4737 if it is negative. */
4739 void
4740 expand_float (to, from, unsignedp)
4741 rtx to, from;
4742 int unsignedp;
4744 enum insn_code icode;
4745 rtx target = to;
4746 enum machine_mode fmode, imode;
4748 /* Crash now, because we won't be able to decide which mode to use. */
4749 if (GET_MODE (from) == VOIDmode)
4750 abort ();
4752 /* Look for an insn to do the conversion. Do it in the specified
4753 modes if possible; otherwise convert either input, output or both to
4754 wider mode. If the integer mode is wider than the mode of FROM,
4755 we can do the conversion signed even if the input is unsigned. */
4757 for (fmode = GET_MODE (to); fmode != VOIDmode;
4758 fmode = GET_MODE_WIDER_MODE (fmode))
4759 for (imode = GET_MODE (from); imode != VOIDmode;
4760 imode = GET_MODE_WIDER_MODE (imode))
4762 int doing_unsigned = unsignedp;
4764 if (fmode != GET_MODE (to)
4765 && significand_size (fmode) < GET_MODE_BITSIZE (GET_MODE (from)))
4766 continue;
4768 icode = can_float_p (fmode, imode, unsignedp);
4769 if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
4770 icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
4772 if (icode != CODE_FOR_nothing)
4774 to = protect_from_queue (to, 1);
4775 from = protect_from_queue (from, 0);
4777 if (imode != GET_MODE (from))
4778 from = convert_to_mode (imode, from, unsignedp);
4780 if (fmode != GET_MODE (to))
4781 target = gen_reg_rtx (fmode);
4783 emit_unop_insn (icode, target, from,
4784 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4786 if (target != to)
4787 convert_move (to, target, 0);
4788 return;
4792 /* Unsigned integer, and no way to convert directly.
4793 Convert as signed, then conditionally adjust the result. */
4794 if (unsignedp)
4796 rtx label = gen_label_rtx ();
4797 rtx temp;
4798 REAL_VALUE_TYPE offset;
4800 emit_queue ();
4802 to = protect_from_queue (to, 1);
4803 from = protect_from_queue (from, 0);
4805 if (flag_force_mem)
4806 from = force_not_mem (from);
4808 /* Look for a usable floating mode FMODE wider than the source and at
4809 least as wide as the target. Using FMODE will avoid rounding woes
4810 with unsigned values greater than the signed maximum value. */
4812 for (fmode = GET_MODE (to); fmode != VOIDmode;
4813 fmode = GET_MODE_WIDER_MODE (fmode))
4814 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
4815 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
4816 break;
4818 if (fmode == VOIDmode)
4820 /* There is no such mode. Pretend the target is wide enough. */
4821 fmode = GET_MODE (to);
4823 /* Avoid double-rounding when TO is narrower than FROM. */
4824 if ((significand_size (fmode) + 1)
4825 < GET_MODE_BITSIZE (GET_MODE (from)))
4827 rtx temp1;
4828 rtx neglabel = gen_label_rtx ();
4830 /* Don't use TARGET if it isn't a register, is a hard register,
4831 or is the wrong mode. */
4832 if (GET_CODE (target) != REG
4833 || REGNO (target) < FIRST_PSEUDO_REGISTER
4834 || GET_MODE (target) != fmode)
4835 target = gen_reg_rtx (fmode);
4837 imode = GET_MODE (from);
4838 do_pending_stack_adjust ();
4840 /* Test whether the sign bit is set. */
4841 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
4842 0, neglabel);
4844 /* The sign bit is not set. Convert as signed. */
4845 expand_float (target, from, 0);
4846 emit_jump_insn (gen_jump (label));
4847 emit_barrier ();
4849 /* The sign bit is set.
4850 Convert to a usable (positive signed) value by shifting right
4851 one bit, while remembering if a nonzero bit was shifted
4852 out; i.e., compute (from & 1) | (from >> 1). */
4854 emit_label (neglabel);
4855 temp = expand_binop (imode, and_optab, from, const1_rtx,
4856 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4857 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
4858 NULL_RTX, 1);
4859 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4860 OPTAB_LIB_WIDEN);
4861 expand_float (target, temp, 0);
4863 /* Multiply by 2 to undo the shift above. */
4864 temp = expand_binop (fmode, add_optab, target, target,
4865 target, 0, OPTAB_LIB_WIDEN);
4866 if (temp != target)
4867 emit_move_insn (target, temp);
4869 do_pending_stack_adjust ();
4870 emit_label (label);
4871 goto done;
4875 /* If we are about to do some arithmetic to correct for an
4876 unsigned operand, do it in a pseudo-register. */
4878 if (GET_MODE (to) != fmode
4879 || GET_CODE (to) != REG || REGNO (to) < FIRST_PSEUDO_REGISTER)
4880 target = gen_reg_rtx (fmode);
4882 /* Convert as signed integer to floating. */
4883 expand_float (target, from, 0);
4885 /* If FROM is negative (and therefore TO is negative),
4886 correct its value by 2**bitwidth. */
4888 do_pending_stack_adjust ();
4889 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
4890 0, label);
4893 real_2expN (&offset, GET_MODE_BITSIZE (GET_MODE (from)));
4894 temp = expand_binop (fmode, add_optab, target,
4895 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
4896 target, 0, OPTAB_LIB_WIDEN);
4897 if (temp != target)
4898 emit_move_insn (target, temp);
4900 do_pending_stack_adjust ();
4901 emit_label (label);
4902 goto done;
4905 /* No hardware instruction available; call a library routine to convert from
4906 SImode, DImode, or TImode into SFmode, DFmode, XFmode, or TFmode. */
4908 rtx libfcn;
4909 rtx insns;
4910 rtx value;
4912 to = protect_from_queue (to, 1);
4913 from = protect_from_queue (from, 0);
4915 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
4916 from = convert_to_mode (SImode, from, unsignedp);
4918 if (flag_force_mem)
4919 from = force_not_mem (from);
4921 if (GET_MODE (to) == SFmode)
4923 if (GET_MODE (from) == SImode)
4924 libfcn = floatsisf_libfunc;
4925 else if (GET_MODE (from) == DImode)
4926 libfcn = floatdisf_libfunc;
4927 else if (GET_MODE (from) == TImode)
4928 libfcn = floattisf_libfunc;
4929 else
4930 abort ();
4932 else if (GET_MODE (to) == DFmode)
4934 if (GET_MODE (from) == SImode)
4935 libfcn = floatsidf_libfunc;
4936 else if (GET_MODE (from) == DImode)
4937 libfcn = floatdidf_libfunc;
4938 else if (GET_MODE (from) == TImode)
4939 libfcn = floattidf_libfunc;
4940 else
4941 abort ();
4943 else if (GET_MODE (to) == XFmode)
4945 if (GET_MODE (from) == SImode)
4946 libfcn = floatsixf_libfunc;
4947 else if (GET_MODE (from) == DImode)
4948 libfcn = floatdixf_libfunc;
4949 else if (GET_MODE (from) == TImode)
4950 libfcn = floattixf_libfunc;
4951 else
4952 abort ();
4954 else if (GET_MODE (to) == TFmode)
4956 if (GET_MODE (from) == SImode)
4957 libfcn = floatsitf_libfunc;
4958 else if (GET_MODE (from) == DImode)
4959 libfcn = floatditf_libfunc;
4960 else if (GET_MODE (from) == TImode)
4961 libfcn = floattitf_libfunc;
4962 else
4963 abort ();
4965 else
4966 abort ();
4968 start_sequence ();
4970 value = emit_library_call_value (libfcn, NULL_RTX, LCT_CONST,
4971 GET_MODE (to), 1, from,
4972 GET_MODE (from));
4973 insns = get_insns ();
4974 end_sequence ();
4976 emit_libcall_block (insns, target, value,
4977 gen_rtx_FLOAT (GET_MODE (to), from));
4980 done:
4982 /* Copy result to requested destination
4983 if we have been computing in a temp location. */
4985 if (target != to)
4987 if (GET_MODE (target) == GET_MODE (to))
4988 emit_move_insn (to, target);
4989 else
4990 convert_move (to, target, 0);
4994 /* expand_fix: generate code to convert FROM to fixed point
4995 and store in TO. FROM must be floating point. */
4997 static rtx
4998 ftruncify (x)
4999 rtx x;
5001 rtx temp = gen_reg_rtx (GET_MODE (x));
5002 return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0);
5005 void
5006 expand_fix (to, from, unsignedp)
5007 rtx to, from;
5008 int unsignedp;
5010 enum insn_code icode;
5011 rtx target = to;
5012 enum machine_mode fmode, imode;
5013 int must_trunc = 0;
5014 rtx libfcn = 0;
5016 /* We first try to find a pair of modes, one real and one integer, at
5017 least as wide as FROM and TO, respectively, in which we can open-code
5018 this conversion. If the integer mode is wider than the mode of TO,
5019 we can do the conversion either signed or unsigned. */
5021 for (fmode = GET_MODE (from); fmode != VOIDmode;
5022 fmode = GET_MODE_WIDER_MODE (fmode))
5023 for (imode = GET_MODE (to); imode != VOIDmode;
5024 imode = GET_MODE_WIDER_MODE (imode))
5026 int doing_unsigned = unsignedp;
5028 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
5029 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
5030 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
5032 if (icode != CODE_FOR_nothing)
5034 to = protect_from_queue (to, 1);
5035 from = protect_from_queue (from, 0);
5037 if (fmode != GET_MODE (from))
5038 from = convert_to_mode (fmode, from, 0);
5040 if (must_trunc)
5041 from = ftruncify (from);
5043 if (imode != GET_MODE (to))
5044 target = gen_reg_rtx (imode);
5046 emit_unop_insn (icode, target, from,
5047 doing_unsigned ? UNSIGNED_FIX : FIX);
5048 if (target != to)
5049 convert_move (to, target, unsignedp);
5050 return;
5054 /* For an unsigned conversion, there is one more way to do it.
5055 If we have a signed conversion, we generate code that compares
5056 the real value to the largest representable positive number. If if
5057 is smaller, the conversion is done normally. Otherwise, subtract
5058 one plus the highest signed number, convert, and add it back.
5060 We only need to check all real modes, since we know we didn't find
5061 anything with a wider integer mode.
5063 This code used to extend FP value into mode wider than the destination.
5064 This is not needed. Consider, for instance conversion from SFmode
5065 into DImode.
5067 The hot path trought the code is dealing with inputs smaller than 2^63
5068 and doing just the conversion, so there is no bits to lose.
5070 In the other path we know the value is positive in the range 2^63..2^64-1
5071 inclusive. (as for other imput overflow happens and result is undefined)
5072 So we know that the most important bit set in mantisa corresponds to
5073 2^63. The subtraction of 2^63 should not generate any rounding as it
5074 simply clears out that bit. The rest is trivial. */
5076 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
5077 for (fmode = GET_MODE (from); fmode != VOIDmode;
5078 fmode = GET_MODE_WIDER_MODE (fmode))
5079 if (CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
5080 &must_trunc))
5082 int bitsize;
5083 REAL_VALUE_TYPE offset;
5084 rtx limit, lab1, lab2, insn;
5086 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
5087 real_2expN (&offset, bitsize - 1);
5088 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
5089 lab1 = gen_label_rtx ();
5090 lab2 = gen_label_rtx ();
5092 emit_queue ();
5093 to = protect_from_queue (to, 1);
5094 from = protect_from_queue (from, 0);
5096 if (flag_force_mem)
5097 from = force_not_mem (from);
5099 if (fmode != GET_MODE (from))
5100 from = convert_to_mode (fmode, from, 0);
5102 /* See if we need to do the subtraction. */
5103 do_pending_stack_adjust ();
5104 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
5105 0, lab1);
5107 /* If not, do the signed "fix" and branch around fixup code. */
5108 expand_fix (to, from, 0);
5109 emit_jump_insn (gen_jump (lab2));
5110 emit_barrier ();
5112 /* Otherwise, subtract 2**(N-1), convert to signed number,
5113 then add 2**(N-1). Do the addition using XOR since this
5114 will often generate better code. */
5115 emit_label (lab1);
5116 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5117 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5118 expand_fix (to, target, 0);
5119 target = expand_binop (GET_MODE (to), xor_optab, to,
5120 gen_int_mode
5121 ((HOST_WIDE_INT) 1 << (bitsize - 1),
5122 GET_MODE (to)),
5123 to, 1, OPTAB_LIB_WIDEN);
5125 if (target != to)
5126 emit_move_insn (to, target);
5128 emit_label (lab2);
5130 if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
5131 != CODE_FOR_nothing)
5133 /* Make a place for a REG_NOTE and add it. */
5134 insn = emit_move_insn (to, to);
5135 set_unique_reg_note (insn,
5136 REG_EQUAL,
5137 gen_rtx_fmt_e (UNSIGNED_FIX,
5138 GET_MODE (to),
5139 copy_rtx (from)));
5142 return;
5145 /* We can't do it with an insn, so use a library call. But first ensure
5146 that the mode of TO is at least as wide as SImode, since those are the
5147 only library calls we know about. */
5149 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
5151 target = gen_reg_rtx (SImode);
5153 expand_fix (target, from, unsignedp);
5155 else if (GET_MODE (from) == SFmode)
5157 if (GET_MODE (to) == SImode)
5158 libfcn = unsignedp ? fixunssfsi_libfunc : fixsfsi_libfunc;
5159 else if (GET_MODE (to) == DImode)
5160 libfcn = unsignedp ? fixunssfdi_libfunc : fixsfdi_libfunc;
5161 else if (GET_MODE (to) == TImode)
5162 libfcn = unsignedp ? fixunssfti_libfunc : fixsfti_libfunc;
5163 else
5164 abort ();
5166 else if (GET_MODE (from) == DFmode)
5168 if (GET_MODE (to) == SImode)
5169 libfcn = unsignedp ? fixunsdfsi_libfunc : fixdfsi_libfunc;
5170 else if (GET_MODE (to) == DImode)
5171 libfcn = unsignedp ? fixunsdfdi_libfunc : fixdfdi_libfunc;
5172 else if (GET_MODE (to) == TImode)
5173 libfcn = unsignedp ? fixunsdfti_libfunc : fixdfti_libfunc;
5174 else
5175 abort ();
5177 else if (GET_MODE (from) == XFmode)
5179 if (GET_MODE (to) == SImode)
5180 libfcn = unsignedp ? fixunsxfsi_libfunc : fixxfsi_libfunc;
5181 else if (GET_MODE (to) == DImode)
5182 libfcn = unsignedp ? fixunsxfdi_libfunc : fixxfdi_libfunc;
5183 else if (GET_MODE (to) == TImode)
5184 libfcn = unsignedp ? fixunsxfti_libfunc : fixxfti_libfunc;
5185 else
5186 abort ();
5188 else if (GET_MODE (from) == TFmode)
5190 if (GET_MODE (to) == SImode)
5191 libfcn = unsignedp ? fixunstfsi_libfunc : fixtfsi_libfunc;
5192 else if (GET_MODE (to) == DImode)
5193 libfcn = unsignedp ? fixunstfdi_libfunc : fixtfdi_libfunc;
5194 else if (GET_MODE (to) == TImode)
5195 libfcn = unsignedp ? fixunstfti_libfunc : fixtfti_libfunc;
5196 else
5197 abort ();
5199 else
5200 abort ();
5202 if (libfcn)
5204 rtx insns;
5205 rtx value;
5207 to = protect_from_queue (to, 1);
5208 from = protect_from_queue (from, 0);
5210 if (flag_force_mem)
5211 from = force_not_mem (from);
5213 start_sequence ();
5215 value = emit_library_call_value (libfcn, NULL_RTX, LCT_CONST,
5216 GET_MODE (to), 1, from,
5217 GET_MODE (from));
5218 insns = get_insns ();
5219 end_sequence ();
5221 emit_libcall_block (insns, target, value,
5222 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5223 GET_MODE (to), from));
5226 if (target != to)
5228 if (GET_MODE (to) == GET_MODE (target))
5229 emit_move_insn (to, target);
5230 else
5231 convert_move (to, target, 0);
5235 /* Report whether we have an instruction to perform the operation
5236 specified by CODE on operands of mode MODE. */
5238 have_insn_for (code, mode)
5239 enum rtx_code code;
5240 enum machine_mode mode;
5242 return (code_to_optab[(int) code] != 0
5243 && (code_to_optab[(int) code]->handlers[(int) mode].insn_code
5244 != CODE_FOR_nothing));
5247 /* Create a blank optab. */
5248 static optab
5249 new_optab ()
5251 int i;
5252 optab op = (optab) ggc_alloc (sizeof (struct optab));
5253 for (i = 0; i < NUM_MACHINE_MODES; i++)
5255 op->handlers[i].insn_code = CODE_FOR_nothing;
5256 op->handlers[i].libfunc = 0;
5259 return op;
5262 /* Same, but fill in its code as CODE, and write it into the
5263 code_to_optab table. */
5264 static inline optab
5265 init_optab (code)
5266 enum rtx_code code;
5268 optab op = new_optab ();
5269 op->code = code;
5270 code_to_optab[(int) code] = op;
5271 return op;
5274 /* Same, but fill in its code as CODE, and do _not_ write it into
5275 the code_to_optab table. */
5276 static inline optab
5277 init_optabv (code)
5278 enum rtx_code code;
5280 optab op = new_optab ();
5281 op->code = code;
5282 return op;
5285 /* Initialize the libfunc fields of an entire group of entries in some
5286 optab. Each entry is set equal to a string consisting of a leading
5287 pair of underscores followed by a generic operation name followed by
5288 a mode name (downshifted to lower case) followed by a single character
5289 representing the number of operands for the given operation (which is
5290 usually one of the characters '2', '3', or '4').
5292 OPTABLE is the table in which libfunc fields are to be initialized.
5293 FIRST_MODE is the first machine mode index in the given optab to
5294 initialize.
5295 LAST_MODE is the last machine mode index in the given optab to
5296 initialize.
5297 OPNAME is the generic (string) name of the operation.
5298 SUFFIX is the character which specifies the number of operands for
5299 the given generic operation.
5302 static void
5303 init_libfuncs (optable, first_mode, last_mode, opname, suffix)
5304 optab optable;
5305 int first_mode;
5306 int last_mode;
5307 const char *opname;
5308 int suffix;
5310 int mode;
5311 unsigned opname_len = strlen (opname);
5313 for (mode = first_mode; (int) mode <= (int) last_mode;
5314 mode = (enum machine_mode) ((int) mode + 1))
5316 const char *mname = GET_MODE_NAME (mode);
5317 unsigned mname_len = strlen (mname);
5318 char *libfunc_name = alloca (2 + opname_len + mname_len + 1 + 1);
5319 char *p;
5320 const char *q;
5322 p = libfunc_name;
5323 *p++ = '_';
5324 *p++ = '_';
5325 for (q = opname; *q; )
5326 *p++ = *q++;
5327 for (q = mname; *q; q++)
5328 *p++ = TOLOWER (*q);
5329 *p++ = suffix;
5330 *p = '\0';
5332 optable->handlers[(int) mode].libfunc
5333 = init_one_libfunc (ggc_alloc_string (libfunc_name, p - libfunc_name));
5337 /* Initialize the libfunc fields of an entire group of entries in some
5338 optab which correspond to all integer mode operations. The parameters
5339 have the same meaning as similarly named ones for the `init_libfuncs'
5340 routine. (See above). */
5342 static void
5343 init_integral_libfuncs (optable, opname, suffix)
5344 optab optable;
5345 const char *opname;
5346 int suffix;
5348 int maxsize = 2*BITS_PER_WORD;
5349 if (maxsize < LONG_LONG_TYPE_SIZE)
5350 maxsize = LONG_LONG_TYPE_SIZE;
5351 init_libfuncs (optable, word_mode,
5352 mode_for_size (maxsize, MODE_INT, 0),
5353 opname, suffix);
5356 /* Initialize the libfunc fields of an entire group of entries in some
5357 optab which correspond to all real mode operations. The parameters
5358 have the same meaning as similarly named ones for the `init_libfuncs'
5359 routine. (See above). */
5361 static void
5362 init_floating_libfuncs (optable, opname, suffix)
5363 optab optable;
5364 const char *opname;
5365 int suffix;
5367 enum machine_mode fmode, dmode, lmode;
5369 fmode = float_type_node ? TYPE_MODE (float_type_node) : VOIDmode;
5370 dmode = double_type_node ? TYPE_MODE (double_type_node) : VOIDmode;
5371 lmode = long_double_type_node ? TYPE_MODE (long_double_type_node) : VOIDmode;
5373 if (fmode != VOIDmode)
5374 init_libfuncs (optable, fmode, fmode, opname, suffix);
5375 if (dmode != fmode && dmode != VOIDmode)
5376 init_libfuncs (optable, dmode, dmode, opname, suffix);
5377 if (lmode != dmode && lmode != VOIDmode)
5378 init_libfuncs (optable, lmode, lmode, opname, suffix);
5382 init_one_libfunc (name)
5383 const char *name;
5385 rtx symbol;
5387 /* Create a FUNCTION_DECL that can be passed to
5388 targetm.encode_section_info. */
5389 /* ??? We don't have any type information except for this is
5390 a function. Pretend this is "int foo()". */
5391 tree decl = build_decl (FUNCTION_DECL, get_identifier (name),
5392 build_function_type (integer_type_node, NULL_TREE));
5393 DECL_ARTIFICIAL (decl) = 1;
5394 DECL_EXTERNAL (decl) = 1;
5395 TREE_PUBLIC (decl) = 1;
5397 symbol = XEXP (DECL_RTL (decl), 0);
5399 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
5400 are the flags assigned by targetm.encode_section_info. */
5401 SYMBOL_REF_DECL (symbol) = 0;
5403 return symbol;
5406 /* Call this once to initialize the contents of the optabs
5407 appropriately for the current target machine. */
5409 void
5410 init_optabs ()
5412 unsigned int i, j, k;
5414 /* Start by initializing all tables to contain CODE_FOR_nothing. */
5416 for (i = 0; i < ARRAY_SIZE (fixtab); i++)
5417 for (j = 0; j < ARRAY_SIZE (fixtab[0]); j++)
5418 for (k = 0; k < ARRAY_SIZE (fixtab[0][0]); k++)
5419 fixtab[i][j][k] = CODE_FOR_nothing;
5421 for (i = 0; i < ARRAY_SIZE (fixtrunctab); i++)
5422 for (j = 0; j < ARRAY_SIZE (fixtrunctab[0]); j++)
5423 for (k = 0; k < ARRAY_SIZE (fixtrunctab[0][0]); k++)
5424 fixtrunctab[i][j][k] = CODE_FOR_nothing;
5426 for (i = 0; i < ARRAY_SIZE (floattab); i++)
5427 for (j = 0; j < ARRAY_SIZE (floattab[0]); j++)
5428 for (k = 0; k < ARRAY_SIZE (floattab[0][0]); k++)
5429 floattab[i][j][k] = CODE_FOR_nothing;
5431 for (i = 0; i < ARRAY_SIZE (extendtab); i++)
5432 for (j = 0; j < ARRAY_SIZE (extendtab[0]); j++)
5433 for (k = 0; k < ARRAY_SIZE (extendtab[0][0]); k++)
5434 extendtab[i][j][k] = CODE_FOR_nothing;
5436 for (i = 0; i < NUM_RTX_CODE; i++)
5437 setcc_gen_code[i] = CODE_FOR_nothing;
5439 #ifdef HAVE_conditional_move
5440 for (i = 0; i < NUM_MACHINE_MODES; i++)
5441 movcc_gen_code[i] = CODE_FOR_nothing;
5442 #endif
5444 add_optab = init_optab (PLUS);
5445 addv_optab = init_optabv (PLUS);
5446 sub_optab = init_optab (MINUS);
5447 subv_optab = init_optabv (MINUS);
5448 smul_optab = init_optab (MULT);
5449 smulv_optab = init_optabv (MULT);
5450 smul_highpart_optab = init_optab (UNKNOWN);
5451 umul_highpart_optab = init_optab (UNKNOWN);
5452 smul_widen_optab = init_optab (UNKNOWN);
5453 umul_widen_optab = init_optab (UNKNOWN);
5454 sdiv_optab = init_optab (DIV);
5455 sdivv_optab = init_optabv (DIV);
5456 sdivmod_optab = init_optab (UNKNOWN);
5457 udiv_optab = init_optab (UDIV);
5458 udivmod_optab = init_optab (UNKNOWN);
5459 smod_optab = init_optab (MOD);
5460 umod_optab = init_optab (UMOD);
5461 ftrunc_optab = init_optab (UNKNOWN);
5462 and_optab = init_optab (AND);
5463 ior_optab = init_optab (IOR);
5464 xor_optab = init_optab (XOR);
5465 ashl_optab = init_optab (ASHIFT);
5466 ashr_optab = init_optab (ASHIFTRT);
5467 lshr_optab = init_optab (LSHIFTRT);
5468 rotl_optab = init_optab (ROTATE);
5469 rotr_optab = init_optab (ROTATERT);
5470 smin_optab = init_optab (SMIN);
5471 smax_optab = init_optab (SMAX);
5472 umin_optab = init_optab (UMIN);
5473 umax_optab = init_optab (UMAX);
5474 pow_optab = init_optab (UNKNOWN);
5475 atan2_optab = init_optab (UNKNOWN);
5477 /* These three have codes assigned exclusively for the sake of
5478 have_insn_for. */
5479 mov_optab = init_optab (SET);
5480 movstrict_optab = init_optab (STRICT_LOW_PART);
5481 cmp_optab = init_optab (COMPARE);
5483 ucmp_optab = init_optab (UNKNOWN);
5484 tst_optab = init_optab (UNKNOWN);
5485 neg_optab = init_optab (NEG);
5486 negv_optab = init_optabv (NEG);
5487 abs_optab = init_optab (ABS);
5488 absv_optab = init_optabv (ABS);
5489 addcc_optab = init_optab (UNKNOWN);
5490 one_cmpl_optab = init_optab (NOT);
5491 ffs_optab = init_optab (FFS);
5492 clz_optab = init_optab (CLZ);
5493 ctz_optab = init_optab (CTZ);
5494 popcount_optab = init_optab (POPCOUNT);
5495 parity_optab = init_optab (PARITY);
5496 sqrt_optab = init_optab (SQRT);
5497 floor_optab = init_optab (UNKNOWN);
5498 ceil_optab = init_optab (UNKNOWN);
5499 round_optab = init_optab (UNKNOWN);
5500 trunc_optab = init_optab (UNKNOWN);
5501 nearbyint_optab = init_optab (UNKNOWN);
5502 sin_optab = init_optab (UNKNOWN);
5503 cos_optab = init_optab (UNKNOWN);
5504 exp_optab = init_optab (UNKNOWN);
5505 log_optab = init_optab (UNKNOWN);
5506 strlen_optab = init_optab (UNKNOWN);
5507 cbranch_optab = init_optab (UNKNOWN);
5508 cmov_optab = init_optab (UNKNOWN);
5509 cstore_optab = init_optab (UNKNOWN);
5510 push_optab = init_optab (UNKNOWN);
5512 for (i = 0; i < NUM_MACHINE_MODES; i++)
5514 movstr_optab[i] = CODE_FOR_nothing;
5515 clrstr_optab[i] = CODE_FOR_nothing;
5517 #ifdef HAVE_SECONDARY_RELOADS
5518 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
5519 #endif
5522 /* Fill in the optabs with the insns we support. */
5523 init_all_optabs ();
5525 #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
5526 /* This flag says the same insns that convert to a signed fixnum
5527 also convert validly to an unsigned one. */
5528 for (i = 0; i < NUM_MACHINE_MODES; i++)
5529 for (j = 0; j < NUM_MACHINE_MODES; j++)
5530 fixtrunctab[i][j][1] = fixtrunctab[i][j][0];
5531 #endif
5533 /* Initialize the optabs with the names of the library functions. */
5534 init_integral_libfuncs (add_optab, "add", '3');
5535 init_floating_libfuncs (add_optab, "add", '3');
5536 init_integral_libfuncs (addv_optab, "addv", '3');
5537 init_floating_libfuncs (addv_optab, "add", '3');
5538 init_integral_libfuncs (sub_optab, "sub", '3');
5539 init_floating_libfuncs (sub_optab, "sub", '3');
5540 init_integral_libfuncs (subv_optab, "subv", '3');
5541 init_floating_libfuncs (subv_optab, "sub", '3');
5542 init_integral_libfuncs (smul_optab, "mul", '3');
5543 init_floating_libfuncs (smul_optab, "mul", '3');
5544 init_integral_libfuncs (smulv_optab, "mulv", '3');
5545 init_floating_libfuncs (smulv_optab, "mul", '3');
5546 init_integral_libfuncs (sdiv_optab, "div", '3');
5547 init_floating_libfuncs (sdiv_optab, "div", '3');
5548 init_integral_libfuncs (sdivv_optab, "divv", '3');
5549 init_integral_libfuncs (udiv_optab, "udiv", '3');
5550 init_integral_libfuncs (sdivmod_optab, "divmod", '4');
5551 init_integral_libfuncs (udivmod_optab, "udivmod", '4');
5552 init_integral_libfuncs (smod_optab, "mod", '3');
5553 init_integral_libfuncs (umod_optab, "umod", '3');
5554 init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
5555 init_integral_libfuncs (and_optab, "and", '3');
5556 init_integral_libfuncs (ior_optab, "ior", '3');
5557 init_integral_libfuncs (xor_optab, "xor", '3');
5558 init_integral_libfuncs (ashl_optab, "ashl", '3');
5559 init_integral_libfuncs (ashr_optab, "ashr", '3');
5560 init_integral_libfuncs (lshr_optab, "lshr", '3');
5561 init_integral_libfuncs (smin_optab, "min", '3');
5562 init_floating_libfuncs (smin_optab, "min", '3');
5563 init_integral_libfuncs (smax_optab, "max", '3');
5564 init_floating_libfuncs (smax_optab, "max", '3');
5565 init_integral_libfuncs (umin_optab, "umin", '3');
5566 init_integral_libfuncs (umax_optab, "umax", '3');
5567 init_integral_libfuncs (neg_optab, "neg", '2');
5568 init_floating_libfuncs (neg_optab, "neg", '2');
5569 init_integral_libfuncs (negv_optab, "negv", '2');
5570 init_floating_libfuncs (negv_optab, "neg", '2');
5571 init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
5572 init_integral_libfuncs (ffs_optab, "ffs", '2');
5573 init_integral_libfuncs (clz_optab, "clz", '2');
5574 init_integral_libfuncs (ctz_optab, "ctz", '2');
5575 init_integral_libfuncs (popcount_optab, "popcount", '2');
5576 init_integral_libfuncs (parity_optab, "parity", '2');
5578 /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
5579 init_integral_libfuncs (cmp_optab, "cmp", '2');
5580 init_integral_libfuncs (ucmp_optab, "ucmp", '2');
5581 init_floating_libfuncs (cmp_optab, "cmp", '2');
5583 #ifdef MULSI3_LIBCALL
5584 smul_optab->handlers[(int) SImode].libfunc
5585 = init_one_libfunc (MULSI3_LIBCALL);
5586 #endif
5587 #ifdef MULDI3_LIBCALL
5588 smul_optab->handlers[(int) DImode].libfunc
5589 = init_one_libfunc (MULDI3_LIBCALL);
5590 #endif
5592 #ifdef DIVSI3_LIBCALL
5593 sdiv_optab->handlers[(int) SImode].libfunc
5594 = init_one_libfunc (DIVSI3_LIBCALL);
5595 #endif
5596 #ifdef DIVDI3_LIBCALL
5597 sdiv_optab->handlers[(int) DImode].libfunc
5598 = init_one_libfunc (DIVDI3_LIBCALL);
5599 #endif
5601 #ifdef UDIVSI3_LIBCALL
5602 udiv_optab->handlers[(int) SImode].libfunc
5603 = init_one_libfunc (UDIVSI3_LIBCALL);
5604 #endif
5605 #ifdef UDIVDI3_LIBCALL
5606 udiv_optab->handlers[(int) DImode].libfunc
5607 = init_one_libfunc (UDIVDI3_LIBCALL);
5608 #endif
5610 #ifdef MODSI3_LIBCALL
5611 smod_optab->handlers[(int) SImode].libfunc
5612 = init_one_libfunc (MODSI3_LIBCALL);
5613 #endif
5614 #ifdef MODDI3_LIBCALL
5615 smod_optab->handlers[(int) DImode].libfunc
5616 = init_one_libfunc (MODDI3_LIBCALL);
5617 #endif
5619 #ifdef UMODSI3_LIBCALL
5620 umod_optab->handlers[(int) SImode].libfunc
5621 = init_one_libfunc (UMODSI3_LIBCALL);
5622 #endif
5623 #ifdef UMODDI3_LIBCALL
5624 umod_optab->handlers[(int) DImode].libfunc
5625 = init_one_libfunc (UMODDI3_LIBCALL);
5626 #endif
5628 /* Use cabs for DC complex abs, since systems generally have cabs.
5629 Don't define any libcall for SCmode, so that cabs will be used. */
5630 abs_optab->handlers[(int) DCmode].libfunc
5631 = init_one_libfunc ("cabs");
5633 /* The ffs function operates on `int'. */
5634 ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)].libfunc
5635 = init_one_libfunc ("ffs");
5637 extendsfdf2_libfunc = init_one_libfunc ("__extendsfdf2");
5638 extendsfxf2_libfunc = init_one_libfunc ("__extendsfxf2");
5639 extendsftf2_libfunc = init_one_libfunc ("__extendsftf2");
5640 extenddfxf2_libfunc = init_one_libfunc ("__extenddfxf2");
5641 extenddftf2_libfunc = init_one_libfunc ("__extenddftf2");
5643 truncdfsf2_libfunc = init_one_libfunc ("__truncdfsf2");
5644 truncxfsf2_libfunc = init_one_libfunc ("__truncxfsf2");
5645 trunctfsf2_libfunc = init_one_libfunc ("__trunctfsf2");
5646 truncxfdf2_libfunc = init_one_libfunc ("__truncxfdf2");
5647 trunctfdf2_libfunc = init_one_libfunc ("__trunctfdf2");
5649 abort_libfunc = init_one_libfunc ("abort");
5650 memcpy_libfunc = init_one_libfunc ("memcpy");
5651 memmove_libfunc = init_one_libfunc ("memmove");
5652 bcopy_libfunc = init_one_libfunc ("bcopy");
5653 memcmp_libfunc = init_one_libfunc ("memcmp");
5654 bcmp_libfunc = init_one_libfunc ("__gcc_bcmp");
5655 memset_libfunc = init_one_libfunc ("memset");
5656 bzero_libfunc = init_one_libfunc ("bzero");
5657 setbits_libfunc = init_one_libfunc ("__setbits");
5659 unwind_resume_libfunc = init_one_libfunc (USING_SJLJ_EXCEPTIONS
5660 ? "_Unwind_SjLj_Resume"
5661 : "_Unwind_Resume");
5662 #ifndef DONT_USE_BUILTIN_SETJMP
5663 setjmp_libfunc = init_one_libfunc ("__builtin_setjmp");
5664 longjmp_libfunc = init_one_libfunc ("__builtin_longjmp");
5665 #else
5666 setjmp_libfunc = init_one_libfunc ("setjmp");
5667 longjmp_libfunc = init_one_libfunc ("longjmp");
5668 #endif
5669 unwind_sjlj_register_libfunc = init_one_libfunc ("_Unwind_SjLj_Register");
5670 unwind_sjlj_unregister_libfunc
5671 = init_one_libfunc ("_Unwind_SjLj_Unregister");
5673 eqhf2_libfunc = init_one_libfunc ("__eqhf2");
5674 nehf2_libfunc = init_one_libfunc ("__nehf2");
5675 gthf2_libfunc = init_one_libfunc ("__gthf2");
5676 gehf2_libfunc = init_one_libfunc ("__gehf2");
5677 lthf2_libfunc = init_one_libfunc ("__lthf2");
5678 lehf2_libfunc = init_one_libfunc ("__lehf2");
5679 unordhf2_libfunc = init_one_libfunc ("__unordhf2");
5681 eqsf2_libfunc = init_one_libfunc ("__eqsf2");
5682 nesf2_libfunc = init_one_libfunc ("__nesf2");
5683 gtsf2_libfunc = init_one_libfunc ("__gtsf2");
5684 gesf2_libfunc = init_one_libfunc ("__gesf2");
5685 ltsf2_libfunc = init_one_libfunc ("__ltsf2");
5686 lesf2_libfunc = init_one_libfunc ("__lesf2");
5687 unordsf2_libfunc = init_one_libfunc ("__unordsf2");
5689 eqdf2_libfunc = init_one_libfunc ("__eqdf2");
5690 nedf2_libfunc = init_one_libfunc ("__nedf2");
5691 gtdf2_libfunc = init_one_libfunc ("__gtdf2");
5692 gedf2_libfunc = init_one_libfunc ("__gedf2");
5693 ltdf2_libfunc = init_one_libfunc ("__ltdf2");
5694 ledf2_libfunc = init_one_libfunc ("__ledf2");
5695 unorddf2_libfunc = init_one_libfunc ("__unorddf2");
5697 eqxf2_libfunc = init_one_libfunc ("__eqxf2");
5698 nexf2_libfunc = init_one_libfunc ("__nexf2");
5699 gtxf2_libfunc = init_one_libfunc ("__gtxf2");
5700 gexf2_libfunc = init_one_libfunc ("__gexf2");
5701 ltxf2_libfunc = init_one_libfunc ("__ltxf2");
5702 lexf2_libfunc = init_one_libfunc ("__lexf2");
5703 unordxf2_libfunc = init_one_libfunc ("__unordxf2");
5705 eqtf2_libfunc = init_one_libfunc ("__eqtf2");
5706 netf2_libfunc = init_one_libfunc ("__netf2");
5707 gttf2_libfunc = init_one_libfunc ("__gttf2");
5708 getf2_libfunc = init_one_libfunc ("__getf2");
5709 lttf2_libfunc = init_one_libfunc ("__lttf2");
5710 letf2_libfunc = init_one_libfunc ("__letf2");
5711 unordtf2_libfunc = init_one_libfunc ("__unordtf2");
5713 floatsisf_libfunc = init_one_libfunc ("__floatsisf");
5714 floatdisf_libfunc = init_one_libfunc ("__floatdisf");
5715 floattisf_libfunc = init_one_libfunc ("__floattisf");
5717 floatsidf_libfunc = init_one_libfunc ("__floatsidf");
5718 floatdidf_libfunc = init_one_libfunc ("__floatdidf");
5719 floattidf_libfunc = init_one_libfunc ("__floattidf");
5721 floatsixf_libfunc = init_one_libfunc ("__floatsixf");
5722 floatdixf_libfunc = init_one_libfunc ("__floatdixf");
5723 floattixf_libfunc = init_one_libfunc ("__floattixf");
5725 floatsitf_libfunc = init_one_libfunc ("__floatsitf");
5726 floatditf_libfunc = init_one_libfunc ("__floatditf");
5727 floattitf_libfunc = init_one_libfunc ("__floattitf");
5729 fixsfsi_libfunc = init_one_libfunc ("__fixsfsi");
5730 fixsfdi_libfunc = init_one_libfunc ("__fixsfdi");
5731 fixsfti_libfunc = init_one_libfunc ("__fixsfti");
5733 fixdfsi_libfunc = init_one_libfunc ("__fixdfsi");
5734 fixdfdi_libfunc = init_one_libfunc ("__fixdfdi");
5735 fixdfti_libfunc = init_one_libfunc ("__fixdfti");
5737 fixxfsi_libfunc = init_one_libfunc ("__fixxfsi");
5738 fixxfdi_libfunc = init_one_libfunc ("__fixxfdi");
5739 fixxfti_libfunc = init_one_libfunc ("__fixxfti");
5741 fixtfsi_libfunc = init_one_libfunc ("__fixtfsi");
5742 fixtfdi_libfunc = init_one_libfunc ("__fixtfdi");
5743 fixtfti_libfunc = init_one_libfunc ("__fixtfti");
5745 fixunssfsi_libfunc = init_one_libfunc ("__fixunssfsi");
5746 fixunssfdi_libfunc = init_one_libfunc ("__fixunssfdi");
5747 fixunssfti_libfunc = init_one_libfunc ("__fixunssfti");
5749 fixunsdfsi_libfunc = init_one_libfunc ("__fixunsdfsi");
5750 fixunsdfdi_libfunc = init_one_libfunc ("__fixunsdfdi");
5751 fixunsdfti_libfunc = init_one_libfunc ("__fixunsdfti");
5753 fixunsxfsi_libfunc = init_one_libfunc ("__fixunsxfsi");
5754 fixunsxfdi_libfunc = init_one_libfunc ("__fixunsxfdi");
5755 fixunsxfti_libfunc = init_one_libfunc ("__fixunsxfti");
5757 fixunstfsi_libfunc = init_one_libfunc ("__fixunstfsi");
5758 fixunstfdi_libfunc = init_one_libfunc ("__fixunstfdi");
5759 fixunstfti_libfunc = init_one_libfunc ("__fixunstfti");
5761 /* For function entry/exit instrumentation. */
5762 profile_function_entry_libfunc
5763 = init_one_libfunc ("__cyg_profile_func_enter");
5764 profile_function_exit_libfunc
5765 = init_one_libfunc ("__cyg_profile_func_exit");
5767 gcov_flush_libfunc = init_one_libfunc ("__gcov_flush");
5768 gcov_init_libfunc = init_one_libfunc ("__gcov_init");
5770 #ifdef HAVE_conditional_trap
5771 init_traps ();
5772 #endif
5774 #ifdef INIT_TARGET_OPTABS
5775 /* Allow the target to add more libcalls or rename some, etc. */
5776 INIT_TARGET_OPTABS;
5777 #endif
5780 static GTY(()) rtx trap_rtx;
5782 #ifdef HAVE_conditional_trap
5783 /* The insn generating function can not take an rtx_code argument.
5784 TRAP_RTX is used as an rtx argument. Its code is replaced with
5785 the code to be used in the trap insn and all other fields are
5786 ignored. */
5788 static void
5789 init_traps ()
5791 if (HAVE_conditional_trap)
5793 trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
5796 #endif
5798 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5799 CODE. Return 0 on failure. */
5802 gen_cond_trap (code, op1, op2, tcode)
5803 enum rtx_code code ATTRIBUTE_UNUSED;
5804 rtx op1, op2 ATTRIBUTE_UNUSED, tcode ATTRIBUTE_UNUSED;
5806 enum machine_mode mode = GET_MODE (op1);
5808 if (mode == VOIDmode)
5809 return 0;
5811 #ifdef HAVE_conditional_trap
5812 if (HAVE_conditional_trap
5813 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
5815 rtx insn;
5816 start_sequence ();
5817 emit_insn (GEN_FCN (cmp_optab->handlers[(int) mode].insn_code) (op1, op2));
5818 PUT_CODE (trap_rtx, code);
5819 insn = gen_conditional_trap (trap_rtx, tcode);
5820 if (insn)
5822 emit_insn (insn);
5823 insn = get_insns ();
5825 end_sequence ();
5826 return insn;
5828 #endif
5830 return 0;
5833 #include "gt-optabs.h"