1 //===-- tsan_rtl.cc -------------------------------------------------------===//
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
6 //===----------------------------------------------------------------------===//
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 // Main file (entry points) for the TSan run-time.
11 //===----------------------------------------------------------------------===//
13 #include "sanitizer_common/sanitizer_atomic.h"
14 #include "sanitizer_common/sanitizer_common.h"
15 #include "sanitizer_common/sanitizer_libc.h"
16 #include "sanitizer_common/sanitizer_stackdepot.h"
17 #include "sanitizer_common/sanitizer_placement_new.h"
18 #include "sanitizer_common/sanitizer_symbolizer.h"
19 #include "tsan_defs.h"
20 #include "tsan_platform.h"
22 #include "tsan_mman.h"
23 #include "tsan_suppressions.h"
24 #include "tsan_symbolize.h"
25 #include "ubsan/ubsan_init.h"
28 // <emmintrin.h> transitively includes <stdlib.h>,
29 // and it's prohibited to include std headers into tsan runtime.
30 // So we do this dirty trick.
31 #define _MM_MALLOC_H_INCLUDED
33 #include <emmintrin.h>
37 volatile int __tsan_resumed
= 0;
39 extern "C" void __tsan_resume() {
45 #if !SANITIZER_GO && !SANITIZER_MAC
46 __attribute__((tls_model("initial-exec")))
47 THREADLOCAL
char cur_thread_placeholder
[sizeof(ThreadState
)] ALIGNED(64);
49 static char ctx_placeholder
[sizeof(Context
)] ALIGNED(64);
52 // Can be overriden by a front-end.
53 #ifdef TSAN_EXTERNAL_HOOKS
54 bool OnFinalize(bool failed
);
57 SANITIZER_WEAK_CXX_DEFAULT_IMPL
58 bool OnFinalize(bool failed
) {
61 SANITIZER_WEAK_CXX_DEFAULT_IMPL
62 void OnInitialize() {}
65 static char thread_registry_placeholder
[sizeof(ThreadRegistry
)];
67 static ThreadContextBase
*CreateThreadContext(u32 tid
) {
68 // Map thread trace when context is created.
70 internal_snprintf(name
, sizeof(name
), "trace %u", tid
);
71 MapThreadTrace(GetThreadTrace(tid
), TraceSize() * sizeof(Event
), name
);
72 const uptr hdr
= GetThreadTraceHeader(tid
);
73 internal_snprintf(name
, sizeof(name
), "trace header %u", tid
);
74 MapThreadTrace(hdr
, sizeof(Trace
), name
);
75 new((void*)hdr
) Trace();
76 // We are going to use only a small part of the trace with the default
77 // value of history_size. However, the constructor writes to the whole trace.
78 // Unmap the unused part.
79 uptr hdr_end
= hdr
+ sizeof(Trace
);
80 hdr_end
-= sizeof(TraceHeader
) * (kTraceParts
- TraceParts());
81 hdr_end
= RoundUp(hdr_end
, GetPageSizeCached());
82 if (hdr_end
< hdr
+ sizeof(Trace
))
83 UnmapOrDie((void*)hdr_end
, hdr
+ sizeof(Trace
) - hdr_end
);
84 void *mem
= internal_alloc(MBlockThreadContex
, sizeof(ThreadContext
));
85 return new(mem
) ThreadContext(tid
);
89 static const u32 kThreadQuarantineSize
= 16;
91 static const u32 kThreadQuarantineSize
= 64;
96 , report_mtx(MutexTypeReport
, StatMtxReport
)
99 , thread_registry(new(thread_registry_placeholder
) ThreadRegistry(
100 CreateThreadContext
, kMaxTid
, kThreadQuarantineSize
, kMaxTidReuse
))
101 , racy_mtx(MutexTypeRacy
, StatMtxRacy
)
102 , racy_stacks(MBlockRacyStacks
)
103 , racy_addresses(MBlockRacyAddresses
)
104 , fired_suppressions_mtx(MutexTypeFired
, StatMtxFired
)
105 , fired_suppressions(8) {
108 // The objects are allocated in TLS, so one may rely on zero-initialization.
109 ThreadState::ThreadState(Context
*ctx
, int tid
, int unique_id
, u64 epoch
,
110 unsigned reuse_count
,
111 uptr stk_addr
, uptr stk_size
,
112 uptr tls_addr
, uptr tls_size
)
113 : fast_state(tid
, epoch
)
114 // Do not touch these, rely on zero initialization,
115 // they may be accessed before the ctor.
116 // , ignore_reads_and_writes()
117 // , ignore_interceptors()
118 , clock(tid
, reuse_count
)
120 , jmp_bufs(MBlockJmpBuf
)
123 , unique_id(unique_id
)
129 , last_sleep_clock(tid
)
135 static void MemoryProfiler(Context
*ctx
, fd_t fd
, int i
) {
137 uptr n_running_threads
;
138 ctx
->thread_registry
->GetNumberOfThreads(&n_threads
, &n_running_threads
);
139 InternalScopedBuffer
<char> buf(4096);
140 WriteMemoryProfile(buf
.data(), buf
.size(), n_threads
, n_running_threads
);
141 WriteToFile(fd
, buf
.data(), internal_strlen(buf
.data()));
144 static void BackgroundThread(void *arg
) {
145 // This is a non-initialized non-user thread, nothing to see here.
146 // We don't use ScopedIgnoreInterceptors, because we want ignores to be
147 // enabled even when the thread function exits (e.g. during pthread thread
149 cur_thread()->ignore_interceptors
++;
150 const u64 kMs2Ns
= 1000 * 1000;
152 fd_t mprof_fd
= kInvalidFd
;
153 if (flags()->profile_memory
&& flags()->profile_memory
[0]) {
154 if (internal_strcmp(flags()->profile_memory
, "stdout") == 0) {
156 } else if (internal_strcmp(flags()->profile_memory
, "stderr") == 0) {
159 InternalScopedString
filename(kMaxPathLength
);
160 filename
.append("%s.%d", flags()->profile_memory
, (int)internal_getpid());
161 fd_t fd
= OpenFile(filename
.data(), WrOnly
);
162 if (fd
== kInvalidFd
) {
163 Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
171 u64 last_flush
= NanoTime();
174 atomic_load(&ctx
->stop_background_thread
, memory_order_relaxed
) == 0;
177 u64 now
= NanoTime();
179 // Flush memory if requested.
180 if (flags()->flush_memory_ms
> 0) {
181 if (last_flush
+ flags()->flush_memory_ms
* kMs2Ns
< now
) {
182 VPrintf(1, "ThreadSanitizer: periodic memory flush\n");
184 last_flush
= NanoTime();
187 // GetRSS can be expensive on huge programs, so don't do it every 100ms.
188 if (flags()->memory_limit_mb
> 0) {
190 uptr limit
= uptr(flags()->memory_limit_mb
) << 20;
191 VPrintf(1, "ThreadSanitizer: memory flush check"
192 " RSS=%llu LAST=%llu LIMIT=%llu\n",
193 (u64
)rss
>> 20, (u64
)last_rss
>> 20, (u64
)limit
>> 20);
194 if (2 * rss
> limit
+ last_rss
) {
195 VPrintf(1, "ThreadSanitizer: flushing memory due to RSS\n");
198 VPrintf(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64
)rss
>>20);
203 // Write memory profile if requested.
204 if (mprof_fd
!= kInvalidFd
)
205 MemoryProfiler(ctx
, mprof_fd
, i
);
207 // Flush symbolizer cache if requested.
208 if (flags()->flush_symbolizer_ms
> 0) {
209 u64 last
= atomic_load(&ctx
->last_symbolize_time_ns
,
210 memory_order_relaxed
);
211 if (last
!= 0 && last
+ flags()->flush_symbolizer_ms
* kMs2Ns
< now
) {
212 Lock
l(&ctx
->report_mtx
);
213 SpinMutexLock
l2(&CommonSanitizerReportMutex
);
215 atomic_store(&ctx
->last_symbolize_time_ns
, 0, memory_order_relaxed
);
221 static void StartBackgroundThread() {
222 ctx
->background_thread
= internal_start_thread(&BackgroundThread
, 0);
226 static void StopBackgroundThread() {
227 atomic_store(&ctx
->stop_background_thread
, 1, memory_order_relaxed
);
228 internal_join_thread(ctx
->background_thread
);
229 ctx
->background_thread
= 0;
234 void DontNeedShadowFor(uptr addr
, uptr size
) {
235 uptr shadow_beg
= MemToShadow(addr
);
236 uptr shadow_end
= MemToShadow(addr
+ size
);
237 ReleaseMemoryToOS(shadow_beg
, shadow_end
- shadow_beg
);
240 void MapShadow(uptr addr
, uptr size
) {
241 // Global data is not 64K aligned, but there are no adjacent mappings,
242 // so we can get away with unaligned mapping.
243 // CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment
244 const uptr kPageSize
= GetPageSizeCached();
245 uptr shadow_begin
= RoundDownTo((uptr
)MemToShadow(addr
), kPageSize
);
246 uptr shadow_end
= RoundUpTo((uptr
)MemToShadow(addr
+ size
), kPageSize
);
247 MmapFixedNoReserve(shadow_begin
, shadow_end
- shadow_begin
, "shadow");
249 // Meta shadow is 2:1, so tread carefully.
250 static bool data_mapped
= false;
251 static uptr mapped_meta_end
= 0;
252 uptr meta_begin
= (uptr
)MemToMeta(addr
);
253 uptr meta_end
= (uptr
)MemToMeta(addr
+ size
);
254 meta_begin
= RoundDownTo(meta_begin
, 64 << 10);
255 meta_end
= RoundUpTo(meta_end
, 64 << 10);
257 // First call maps data+bss.
259 MmapFixedNoReserve(meta_begin
, meta_end
- meta_begin
, "meta shadow");
261 // Mapping continous heap.
262 // Windows wants 64K alignment.
263 meta_begin
= RoundDownTo(meta_begin
, 64 << 10);
264 meta_end
= RoundUpTo(meta_end
, 64 << 10);
265 if (meta_end
<= mapped_meta_end
)
267 if (meta_begin
< mapped_meta_end
)
268 meta_begin
= mapped_meta_end
;
269 MmapFixedNoReserve(meta_begin
, meta_end
- meta_begin
, "meta shadow");
270 mapped_meta_end
= meta_end
;
272 VPrintf(2, "mapped meta shadow for (%p-%p) at (%p-%p)\n",
273 addr
, addr
+size
, meta_begin
, meta_end
);
276 void MapThreadTrace(uptr addr
, uptr size
, const char *name
) {
277 DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr
, addr
+ size
, size
);
278 CHECK_GE(addr
, TraceMemBeg());
279 CHECK_LE(addr
+ size
, TraceMemEnd());
280 CHECK_EQ(addr
, addr
& ~((64 << 10) - 1)); // windows wants 64K alignment
281 uptr addr1
= (uptr
)MmapFixedNoReserve(addr
, size
, name
);
283 Printf("FATAL: ThreadSanitizer can not mmap thread trace (%p/%p->%p)\n",
289 static void CheckShadowMapping() {
291 for (int i
= 0; GetUserRegion(i
, &beg
, &end
); i
++) {
292 // Skip cases for empty regions (heap definition for architectures that
293 // do not use 64-bit allocator).
296 VPrintf(3, "checking shadow region %p-%p\n", beg
, end
);
298 for (uptr p0
= beg
; p0
<= end
; p0
+= (end
- beg
) / 4) {
299 for (int x
= -(int)kShadowCell
; x
<= (int)kShadowCell
; x
+= kShadowCell
) {
300 const uptr p
= RoundDown(p0
+ x
, kShadowCell
);
301 if (p
< beg
|| p
>= end
)
303 const uptr s
= MemToShadow(p
);
304 const uptr m
= (uptr
)MemToMeta(p
);
305 VPrintf(3, " checking pointer %p: shadow=%p meta=%p\n", p
, s
, m
);
307 CHECK(IsShadowMem(s
));
308 CHECK_EQ(p
, ShadowToMem(s
));
311 // Ensure that shadow and meta mappings are linear within a single
312 // user range. Lots of code that processes memory ranges assumes it.
313 const uptr prev_s
= MemToShadow(prev
);
314 const uptr prev_m
= (uptr
)MemToMeta(prev
);
315 CHECK_EQ(s
- prev_s
, (p
- prev
) * kShadowMultiplier
);
316 CHECK_EQ((m
- prev_m
) / kMetaShadowSize
,
317 (p
- prev
) / kMetaShadowCell
);
325 void Initialize(ThreadState
*thr
) {
326 // Thread safe because done before all threads exist.
327 static bool is_initialized
= false;
330 is_initialized
= true;
331 // We are not ready to handle interceptors yet.
332 ScopedIgnoreInterceptors ignore
;
333 SanitizerToolName
= "ThreadSanitizer";
334 // Install tool-specific callbacks in sanitizer_common.
335 SetCheckFailedCallback(TsanCheckFailed
);
337 ctx
= new(ctx_placeholder
) Context
;
338 const char *options
= GetEnv(SANITIZER_GO
? "GORACE" : "TSAN_OPTIONS");
340 InitializeFlags(&ctx
->flags
, options
);
341 AvoidCVE_2016_2143();
342 InitializePlatformEarly();
344 // Re-exec ourselves if we need to set additional env or command line args.
347 InitializeAllocator();
348 ReplaceSystemMalloc();
350 if (common_flags()->detect_deadlocks
)
351 ctx
->dd
= DDetector::Create(flags());
352 Processor
*proc
= ProcCreate();
354 InitializeInterceptors();
355 CheckShadowMapping();
356 InitializePlatform();
358 InitializeDynamicAnnotations();
360 InitializeShadowMemory();
361 InitializeAllocatorLate();
363 // Setup correct file descriptor for error reports.
364 __sanitizer_set_report_path(common_flags()->log_path
);
365 InitializeSuppressions();
367 InitializeLibIgnore();
368 Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer
, ExitSymbolizer
);
369 // On MIPS, TSan initialization is run before
370 // __pthread_initialize_minimal_internal() is finished, so we can not spawn
373 StartBackgroundThread();
374 SetSandboxingCallback(StopBackgroundThread
);
378 VPrintf(1, "***** Running under ThreadSanitizer v2 (pid %d) *****\n",
379 (int)internal_getpid());
381 // Initialize thread 0.
382 int tid
= ThreadCreate(thr
, 0, 0, true);
384 ThreadStart(thr
, tid
, internal_getpid());
385 #if TSAN_CONTAINS_UBSAN
386 __ubsan::InitAsPlugin();
388 ctx
->initialized
= true;
391 Symbolizer::LateInitialize();
394 if (flags()->stop_on_start
) {
395 Printf("ThreadSanitizer is suspended at startup (pid %d)."
396 " Call __tsan_resume().\n",
397 (int)internal_getpid());
398 while (__tsan_resumed
== 0) {}
404 int Finalize(ThreadState
*thr
) {
407 if (flags()->atexit_sleep_ms
> 0 && ThreadCount(thr
) > 1)
408 SleepForMillis(flags()->atexit_sleep_ms
);
410 // Wait for pending reports.
411 ctx
->report_mtx
.Lock();
412 CommonSanitizerReportMutex
.Lock();
413 CommonSanitizerReportMutex
.Unlock();
414 ctx
->report_mtx
.Unlock();
417 if (Verbosity()) AllocatorPrintStats();
422 if (ctx
->nreported
) {
425 Printf("ThreadSanitizer: reported %d warnings\n", ctx
->nreported
);
427 Printf("Found %d data race(s)\n", ctx
->nreported
);
431 if (ctx
->nmissed_expected
) {
433 Printf("ThreadSanitizer: missed %d expected races\n",
434 ctx
->nmissed_expected
);
437 if (common_flags()->print_suppressions
)
438 PrintMatchedSuppressions();
440 if (flags()->print_benign
)
441 PrintMatchedBenignRaces();
444 failed
= OnFinalize(failed
);
446 #if TSAN_COLLECT_STATS
447 StatAggregate(ctx
->stat
, thr
->stat
);
448 StatOutput(ctx
->stat
);
451 return failed
? common_flags()->exitcode
: 0;
455 void ForkBefore(ThreadState
*thr
, uptr pc
) {
456 ctx
->thread_registry
->Lock();
457 ctx
->report_mtx
.Lock();
460 void ForkParentAfter(ThreadState
*thr
, uptr pc
) {
461 ctx
->report_mtx
.Unlock();
462 ctx
->thread_registry
->Unlock();
465 void ForkChildAfter(ThreadState
*thr
, uptr pc
) {
466 ctx
->report_mtx
.Unlock();
467 ctx
->thread_registry
->Unlock();
470 ctx
->thread_registry
->GetNumberOfThreads(0, 0, &nthread
/* alive threads */);
471 VPrintf(1, "ThreadSanitizer: forked new process with pid %d,"
472 " parent had %d threads\n", (int)internal_getpid(), (int)nthread
);
474 StartBackgroundThread();
476 // We've just forked a multi-threaded process. We cannot reasonably function
477 // after that (some mutexes may be locked before fork). So just enable
478 // ignores for everything in the hope that we will exec soon.
479 ctx
->after_multithreaded_fork
= true;
480 thr
->ignore_interceptors
++;
481 ThreadIgnoreBegin(thr
, pc
);
482 ThreadIgnoreSyncBegin(thr
, pc
);
489 void GrowShadowStack(ThreadState
*thr
) {
490 const int sz
= thr
->shadow_stack_end
- thr
->shadow_stack
;
491 const int newsz
= 2 * sz
;
492 uptr
*newstack
= (uptr
*)internal_alloc(MBlockShadowStack
,
493 newsz
* sizeof(uptr
));
494 internal_memcpy(newstack
, thr
->shadow_stack
, sz
* sizeof(uptr
));
495 internal_free(thr
->shadow_stack
);
496 thr
->shadow_stack
= newstack
;
497 thr
->shadow_stack_pos
= newstack
+ sz
;
498 thr
->shadow_stack_end
= newstack
+ newsz
;
502 u32
CurrentStackId(ThreadState
*thr
, uptr pc
) {
503 if (!thr
->is_inited
) // May happen during bootstrap.
507 DCHECK_LT(thr
->shadow_stack_pos
, thr
->shadow_stack_end
);
509 if (thr
->shadow_stack_pos
== thr
->shadow_stack_end
)
510 GrowShadowStack(thr
);
512 thr
->shadow_stack_pos
[0] = pc
;
513 thr
->shadow_stack_pos
++;
515 u32 id
= StackDepotPut(
516 StackTrace(thr
->shadow_stack
, thr
->shadow_stack_pos
- thr
->shadow_stack
));
518 thr
->shadow_stack_pos
--;
522 void TraceSwitch(ThreadState
*thr
) {
524 Trace
*thr_trace
= ThreadTrace(thr
->tid
);
525 Lock
l(&thr_trace
->mtx
);
526 unsigned trace
= (thr
->fast_state
.epoch() / kTracePartSize
) % TraceParts();
527 TraceHeader
*hdr
= &thr_trace
->headers
[trace
];
528 hdr
->epoch0
= thr
->fast_state
.epoch();
529 ObtainCurrentStack(thr
, 0, &hdr
->stack0
);
530 hdr
->mset0
= thr
->mset
;
534 Trace
*ThreadTrace(int tid
) {
535 return (Trace
*)GetThreadTraceHeader(tid
);
538 uptr
TraceTopPC(ThreadState
*thr
) {
539 Event
*events
= (Event
*)GetThreadTrace(thr
->tid
);
540 uptr pc
= events
[thr
->fast_state
.GetTracePos()];
545 return (uptr
)(1ull << (kTracePartSizeBits
+ flags()->history_size
+ 1));
549 return TraceSize() / kTracePartSize
;
553 extern "C" void __tsan_trace_switch() {
554 TraceSwitch(cur_thread());
557 extern "C" void __tsan_report_race() {
558 ReportRace(cur_thread());
563 Shadow
LoadShadow(u64
*p
) {
564 u64 raw
= atomic_load((atomic_uint64_t
*)p
, memory_order_relaxed
);
569 void StoreShadow(u64
*sp
, u64 s
) {
570 atomic_store((atomic_uint64_t
*)sp
, s
, memory_order_relaxed
);
574 void StoreIfNotYetStored(u64
*sp
, u64
*s
) {
580 void HandleRace(ThreadState
*thr
, u64
*shadow_mem
,
581 Shadow cur
, Shadow old
) {
582 thr
->racy_state
[0] = cur
.raw();
583 thr
->racy_state
[1] = old
.raw();
584 thr
->racy_shadow_addr
= shadow_mem
;
586 HACKY_CALL(__tsan_report_race
);
592 static inline bool HappensBefore(Shadow old
, ThreadState
*thr
) {
593 return thr
->clock
.get(old
.TidWithIgnore()) >= old
.epoch();
597 void MemoryAccessImpl1(ThreadState
*thr
, uptr addr
,
598 int kAccessSizeLog
, bool kAccessIsWrite
, bool kIsAtomic
,
599 u64
*shadow_mem
, Shadow cur
) {
600 StatInc(thr
, StatMop
);
601 StatInc(thr
, kAccessIsWrite
? StatMopWrite
: StatMopRead
);
602 StatInc(thr
, (StatType
)(StatMop1
+ kAccessSizeLog
));
604 // This potentially can live in an MMX/SSE scratch register.
605 // The required intrinsics are:
606 // __m128i _mm_move_epi64(__m128i*);
607 // _mm_storel_epi64(u64*, __m128i);
608 u64 store_word
= cur
.raw();
610 // scan all the shadow values and dispatch to 4 categories:
611 // same, replace, candidate and race (see comments below).
612 // we consider only 3 cases regarding access sizes:
613 // equal, intersect and not intersect. initially I considered
614 // larger and smaller as well, it allowed to replace some
615 // 'candidates' with 'same' or 'replace', but I think
616 // it's just not worth it (performance- and complexity-wise).
620 // It release mode we manually unroll the loop,
621 // because empirically gcc generates better code this way.
622 // However, we can't afford unrolling in debug mode, because the function
623 // consumes almost 4K of stack. Gtest gives only 4K of stack to death test
624 // threads, which is not enough for the unrolled loop.
626 for (int idx
= 0; idx
< 4; idx
++) {
627 #include "tsan_update_shadow_word_inl.h"
631 #include "tsan_update_shadow_word_inl.h"
633 #include "tsan_update_shadow_word_inl.h"
635 #include "tsan_update_shadow_word_inl.h"
637 #include "tsan_update_shadow_word_inl.h"
640 // we did not find any races and had already stored
641 // the current access info, so we are done
642 if (LIKELY(store_word
== 0))
644 // choose a random candidate slot and replace it
645 StoreShadow(shadow_mem
+ (cur
.epoch() % kShadowCnt
), store_word
);
646 StatInc(thr
, StatShadowReplace
);
649 HandleRace(thr
, shadow_mem
, cur
, old
);
653 void UnalignedMemoryAccess(ThreadState
*thr
, uptr pc
, uptr addr
,
654 int size
, bool kAccessIsWrite
, bool kIsAtomic
) {
657 int kAccessSizeLog
= kSizeLog1
;
658 if (size
>= 8 && (addr
& ~7) == ((addr
+ 7) & ~7)) {
660 kAccessSizeLog
= kSizeLog8
;
661 } else if (size
>= 4 && (addr
& ~7) == ((addr
+ 3) & ~7)) {
663 kAccessSizeLog
= kSizeLog4
;
664 } else if (size
>= 2 && (addr
& ~7) == ((addr
+ 1) & ~7)) {
666 kAccessSizeLog
= kSizeLog2
;
668 MemoryAccess(thr
, pc
, addr
, kAccessSizeLog
, kAccessIsWrite
, kIsAtomic
);
675 bool ContainsSameAccessSlow(u64
*s
, u64 a
, u64 sync_epoch
, bool is_write
) {
677 for (uptr i
= 0; i
< kShadowCnt
; i
++) {
678 Shadow
old(LoadShadow(&s
[i
]));
679 if (Shadow::Addr0AndSizeAreEqual(cur
, old
) &&
680 old
.TidWithIgnore() == cur
.TidWithIgnore() &&
681 old
.epoch() > sync_epoch
&&
682 old
.IsAtomic() == cur
.IsAtomic() &&
683 old
.IsRead() <= cur
.IsRead())
689 #if defined(__SSE3__)
690 #define SHUF(v0, v1, i0, i1, i2, i3) _mm_castps_si128(_mm_shuffle_ps( \
691 _mm_castsi128_ps(v0), _mm_castsi128_ps(v1), \
692 (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64))
694 bool ContainsSameAccessFast(u64
*s
, u64 a
, u64 sync_epoch
, bool is_write
) {
695 // This is an optimized version of ContainsSameAccessSlow.
696 // load current access into access[0:63]
697 const m128 access
= _mm_cvtsi64_si128(a
);
698 // duplicate high part of access in addr0:
699 // addr0[0:31] = access[32:63]
700 // addr0[32:63] = access[32:63]
701 // addr0[64:95] = access[32:63]
702 // addr0[96:127] = access[32:63]
703 const m128 addr0
= SHUF(access
, access
, 1, 1, 1, 1);
704 // load 4 shadow slots
705 const m128 shadow0
= _mm_load_si128((__m128i
*)s
);
706 const m128 shadow1
= _mm_load_si128((__m128i
*)s
+ 1);
707 // load high parts of 4 shadow slots into addr_vect:
708 // addr_vect[0:31] = shadow0[32:63]
709 // addr_vect[32:63] = shadow0[96:127]
710 // addr_vect[64:95] = shadow1[32:63]
711 // addr_vect[96:127] = shadow1[96:127]
712 m128 addr_vect
= SHUF(shadow0
, shadow1
, 1, 3, 1, 3);
714 // set IsRead bit in addr_vect
715 const m128 rw_mask1
= _mm_cvtsi64_si128(1<<15);
716 const m128 rw_mask
= SHUF(rw_mask1
, rw_mask1
, 0, 0, 0, 0);
717 addr_vect
= _mm_or_si128(addr_vect
, rw_mask
);
719 // addr0 == addr_vect?
720 const m128 addr_res
= _mm_cmpeq_epi32(addr0
, addr_vect
);
721 // epoch1[0:63] = sync_epoch
722 const m128 epoch1
= _mm_cvtsi64_si128(sync_epoch
);
723 // epoch[0:31] = sync_epoch[0:31]
724 // epoch[32:63] = sync_epoch[0:31]
725 // epoch[64:95] = sync_epoch[0:31]
726 // epoch[96:127] = sync_epoch[0:31]
727 const m128 epoch
= SHUF(epoch1
, epoch1
, 0, 0, 0, 0);
728 // load low parts of shadow cell epochs into epoch_vect:
729 // epoch_vect[0:31] = shadow0[0:31]
730 // epoch_vect[32:63] = shadow0[64:95]
731 // epoch_vect[64:95] = shadow1[0:31]
732 // epoch_vect[96:127] = shadow1[64:95]
733 const m128 epoch_vect
= SHUF(shadow0
, shadow1
, 0, 2, 0, 2);
734 // epoch_vect >= sync_epoch?
735 const m128 epoch_res
= _mm_cmpgt_epi32(epoch_vect
, epoch
);
736 // addr_res & epoch_res
737 const m128 res
= _mm_and_si128(addr_res
, epoch_res
);
741 // mask[15] = res[127]
742 const int mask
= _mm_movemask_epi8(res
);
748 bool ContainsSameAccess(u64
*s
, u64 a
, u64 sync_epoch
, bool is_write
) {
749 #if defined(__SSE3__)
750 bool res
= ContainsSameAccessFast(s
, a
, sync_epoch
, is_write
);
751 // NOTE: this check can fail if the shadow is concurrently mutated
752 // by other threads. But it still can be useful if you modify
753 // ContainsSameAccessFast and want to ensure that it's not completely broken.
754 // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write));
757 return ContainsSameAccessSlow(s
, a
, sync_epoch
, is_write
);
762 void MemoryAccess(ThreadState
*thr
, uptr pc
, uptr addr
,
763 int kAccessSizeLog
, bool kAccessIsWrite
, bool kIsAtomic
) {
764 u64
*shadow_mem
= (u64
*)MemToShadow(addr
);
765 DPrintf2("#%d: MemoryAccess: @%p %p size=%d"
766 " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
767 (int)thr
->fast_state
.tid(), (void*)pc
, (void*)addr
,
768 (int)(1 << kAccessSizeLog
), kAccessIsWrite
, shadow_mem
,
769 (uptr
)shadow_mem
[0], (uptr
)shadow_mem
[1],
770 (uptr
)shadow_mem
[2], (uptr
)shadow_mem
[3]);
772 if (!IsAppMem(addr
)) {
773 Printf("Access to non app mem %zx\n", addr
);
774 DCHECK(IsAppMem(addr
));
776 if (!IsShadowMem((uptr
)shadow_mem
)) {
777 Printf("Bad shadow addr %p (%zx)\n", shadow_mem
, addr
);
778 DCHECK(IsShadowMem((uptr
)shadow_mem
));
782 if (!SANITIZER_GO
&& *shadow_mem
== kShadowRodata
) {
783 // Access to .rodata section, no races here.
784 // Measurements show that it can be 10-20% of all memory accesses.
785 StatInc(thr
, StatMop
);
786 StatInc(thr
, kAccessIsWrite
? StatMopWrite
: StatMopRead
);
787 StatInc(thr
, (StatType
)(StatMop1
+ kAccessSizeLog
));
788 StatInc(thr
, StatMopRodata
);
792 FastState fast_state
= thr
->fast_state
;
793 if (fast_state
.GetIgnoreBit()) {
794 StatInc(thr
, StatMop
);
795 StatInc(thr
, kAccessIsWrite
? StatMopWrite
: StatMopRead
);
796 StatInc(thr
, (StatType
)(StatMop1
+ kAccessSizeLog
));
797 StatInc(thr
, StatMopIgnored
);
801 Shadow
cur(fast_state
);
802 cur
.SetAddr0AndSizeLog(addr
& 7, kAccessSizeLog
);
803 cur
.SetWrite(kAccessIsWrite
);
804 cur
.SetAtomic(kIsAtomic
);
806 if (LIKELY(ContainsSameAccess(shadow_mem
, cur
.raw(),
807 thr
->fast_synch_epoch
, kAccessIsWrite
))) {
808 StatInc(thr
, StatMop
);
809 StatInc(thr
, kAccessIsWrite
? StatMopWrite
: StatMopRead
);
810 StatInc(thr
, (StatType
)(StatMop1
+ kAccessSizeLog
));
811 StatInc(thr
, StatMopSame
);
815 if (kCollectHistory
) {
816 fast_state
.IncrementEpoch();
817 thr
->fast_state
= fast_state
;
818 TraceAddEvent(thr
, fast_state
, EventTypeMop
, pc
);
819 cur
.IncrementEpoch();
822 MemoryAccessImpl1(thr
, addr
, kAccessSizeLog
, kAccessIsWrite
, kIsAtomic
,
826 // Called by MemoryAccessRange in tsan_rtl_thread.cc
828 void MemoryAccessImpl(ThreadState
*thr
, uptr addr
,
829 int kAccessSizeLog
, bool kAccessIsWrite
, bool kIsAtomic
,
830 u64
*shadow_mem
, Shadow cur
) {
831 if (LIKELY(ContainsSameAccess(shadow_mem
, cur
.raw(),
832 thr
->fast_synch_epoch
, kAccessIsWrite
))) {
833 StatInc(thr
, StatMop
);
834 StatInc(thr
, kAccessIsWrite
? StatMopWrite
: StatMopRead
);
835 StatInc(thr
, (StatType
)(StatMop1
+ kAccessSizeLog
));
836 StatInc(thr
, StatMopSame
);
840 MemoryAccessImpl1(thr
, addr
, kAccessSizeLog
, kAccessIsWrite
, kIsAtomic
,
844 static void MemoryRangeSet(ThreadState
*thr
, uptr pc
, uptr addr
, uptr size
,
851 uptr offset
= addr
% kShadowCell
;
853 offset
= kShadowCell
- offset
;
859 DCHECK_EQ(addr
% 8, 0);
860 // If a user passes some insane arguments (memset(0)),
861 // let it just crash as usual.
862 if (!IsAppMem(addr
) || !IsAppMem(addr
+ size
- 1))
864 // Don't want to touch lots of shadow memory.
865 // If a program maps 10MB stack, there is no need reset the whole range.
866 size
= (size
+ (kShadowCell
- 1)) & ~(kShadowCell
- 1);
867 // UnmapOrDie/MmapFixedNoReserve does not work on Windows,
868 // so we do it only for C/C++.
869 if (SANITIZER_GO
|| size
< common_flags()->clear_shadow_mmap_threshold
) {
870 u64
*p
= (u64
*)MemToShadow(addr
);
871 CHECK(IsShadowMem((uptr
)p
));
872 CHECK(IsShadowMem((uptr
)(p
+ size
* kShadowCnt
/ kShadowCell
- 1)));
873 // FIXME: may overwrite a part outside the region
874 for (uptr i
= 0; i
< size
/ kShadowCell
* kShadowCnt
;) {
876 for (uptr j
= 1; j
< kShadowCnt
; j
++)
880 // The region is big, reset only beginning and end.
881 const uptr kPageSize
= GetPageSizeCached();
882 u64
*begin
= (u64
*)MemToShadow(addr
);
883 u64
*end
= begin
+ size
/ kShadowCell
* kShadowCnt
;
885 // Set at least first kPageSize/2 to page boundary.
886 while ((p
< begin
+ kPageSize
/ kShadowSize
/ 2) || ((uptr
)p
% kPageSize
)) {
888 for (uptr j
= 1; j
< kShadowCnt
; j
++)
891 // Reset middle part.
893 p
= RoundDown(end
, kPageSize
);
894 UnmapOrDie((void*)p1
, (uptr
)p
- (uptr
)p1
);
895 MmapFixedNoReserve((uptr
)p1
, (uptr
)p
- (uptr
)p1
);
899 for (uptr j
= 1; j
< kShadowCnt
; j
++)
905 void MemoryResetRange(ThreadState
*thr
, uptr pc
, uptr addr
, uptr size
) {
906 MemoryRangeSet(thr
, pc
, addr
, size
, 0);
909 void MemoryRangeFreed(ThreadState
*thr
, uptr pc
, uptr addr
, uptr size
) {
910 // Processing more than 1k (4k of shadow) is expensive,
911 // can cause excessive memory consumption (user does not necessary touch
912 // the whole range) and most likely unnecessary.
915 CHECK_EQ(thr
->is_freeing
, false);
916 thr
->is_freeing
= true;
917 MemoryAccessRange(thr
, pc
, addr
, size
, true);
918 thr
->is_freeing
= false;
919 if (kCollectHistory
) {
920 thr
->fast_state
.IncrementEpoch();
921 TraceAddEvent(thr
, thr
->fast_state
, EventTypeMop
, pc
);
923 Shadow
s(thr
->fast_state
);
927 s
.SetAddr0AndSizeLog(0, 3);
928 MemoryRangeSet(thr
, pc
, addr
, size
, s
.raw());
931 void MemoryRangeImitateWrite(ThreadState
*thr
, uptr pc
, uptr addr
, uptr size
) {
932 if (kCollectHistory
) {
933 thr
->fast_state
.IncrementEpoch();
934 TraceAddEvent(thr
, thr
->fast_state
, EventTypeMop
, pc
);
936 Shadow
s(thr
->fast_state
);
939 s
.SetAddr0AndSizeLog(0, 3);
940 MemoryRangeSet(thr
, pc
, addr
, size
, s
.raw());
944 void FuncEntry(ThreadState
*thr
, uptr pc
) {
945 StatInc(thr
, StatFuncEnter
);
946 DPrintf2("#%d: FuncEntry %p\n", (int)thr
->fast_state
.tid(), (void*)pc
);
947 if (kCollectHistory
) {
948 thr
->fast_state
.IncrementEpoch();
949 TraceAddEvent(thr
, thr
->fast_state
, EventTypeFuncEnter
, pc
);
952 // Shadow stack maintenance can be replaced with
953 // stack unwinding during trace switch (which presumably must be faster).
954 DCHECK_GE(thr
->shadow_stack_pos
, thr
->shadow_stack
);
956 DCHECK_LT(thr
->shadow_stack_pos
, thr
->shadow_stack_end
);
958 if (thr
->shadow_stack_pos
== thr
->shadow_stack_end
)
959 GrowShadowStack(thr
);
961 thr
->shadow_stack_pos
[0] = pc
;
962 thr
->shadow_stack_pos
++;
966 void FuncExit(ThreadState
*thr
) {
967 StatInc(thr
, StatFuncExit
);
968 DPrintf2("#%d: FuncExit\n", (int)thr
->fast_state
.tid());
969 if (kCollectHistory
) {
970 thr
->fast_state
.IncrementEpoch();
971 TraceAddEvent(thr
, thr
->fast_state
, EventTypeFuncExit
, 0);
974 DCHECK_GT(thr
->shadow_stack_pos
, thr
->shadow_stack
);
976 DCHECK_LT(thr
->shadow_stack_pos
, thr
->shadow_stack_end
);
978 thr
->shadow_stack_pos
--;
981 void ThreadIgnoreBegin(ThreadState
*thr
, uptr pc
) {
982 DPrintf("#%d: ThreadIgnoreBegin\n", thr
->tid
);
983 thr
->ignore_reads_and_writes
++;
984 CHECK_GT(thr
->ignore_reads_and_writes
, 0);
985 thr
->fast_state
.SetIgnoreBit();
987 if (!ctx
->after_multithreaded_fork
)
988 thr
->mop_ignore_set
.Add(CurrentStackId(thr
, pc
));
992 void ThreadIgnoreEnd(ThreadState
*thr
, uptr pc
) {
993 DPrintf("#%d: ThreadIgnoreEnd\n", thr
->tid
);
994 thr
->ignore_reads_and_writes
--;
995 CHECK_GE(thr
->ignore_reads_and_writes
, 0);
996 if (thr
->ignore_reads_and_writes
== 0) {
997 thr
->fast_state
.ClearIgnoreBit();
999 thr
->mop_ignore_set
.Reset();
1004 void ThreadIgnoreSyncBegin(ThreadState
*thr
, uptr pc
) {
1005 DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr
->tid
);
1007 CHECK_GT(thr
->ignore_sync
, 0);
1009 if (!ctx
->after_multithreaded_fork
)
1010 thr
->sync_ignore_set
.Add(CurrentStackId(thr
, pc
));
1014 void ThreadIgnoreSyncEnd(ThreadState
*thr
, uptr pc
) {
1015 DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr
->tid
);
1017 CHECK_GE(thr
->ignore_sync
, 0);
1019 if (thr
->ignore_sync
== 0)
1020 thr
->sync_ignore_set
.Reset();
1024 bool MD5Hash::operator==(const MD5Hash
&other
) const {
1025 return hash
[0] == other
.hash
[0] && hash
[1] == other
.hash
[1];
1029 void build_consistency_debug() {}
1031 void build_consistency_release() {}
1034 #if TSAN_COLLECT_STATS
1035 void build_consistency_stats() {}
1037 void build_consistency_nostats() {}
1040 } // namespace __tsan
1043 // Must be included in this file to make sure everything is inlined.
1044 #include "tsan_interface_inl.h"