* Makefile.in: Add ipa-profile.o
[official-gcc.git] / gcc / tree-ssa-dce.c
blob22ae50b791c17330089ca97a8ee702d56353d155
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002-2013 Free Software Foundation, Inc.
3 Contributed by Ben Elliston <bje@redhat.com>
4 and Andrew MacLeod <amacleod@redhat.com>
5 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 3, or (at your option) any
12 later version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* Dead code elimination.
25 References:
27 Building an Optimizing Compiler,
28 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30 Advanced Compiler Design and Implementation,
31 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33 Dead-code elimination is the removal of statements which have no
34 impact on the program's output. "Dead statements" have no impact
35 on the program's output, while "necessary statements" may have
36 impact on the output.
38 The algorithm consists of three phases:
39 1. Marking as necessary all statements known to be necessary,
40 e.g. most function calls, writing a value to memory, etc;
41 2. Propagating necessary statements, e.g., the statements
42 giving values to operands in necessary statements; and
43 3. Removing dead statements. */
45 #include "config.h"
46 #include "system.h"
47 #include "coretypes.h"
48 #include "tm.h"
50 #include "tree.h"
51 #include "gimple-pretty-print.h"
52 #include "basic-block.h"
53 #include "tree-flow.h"
54 #include "gimple.h"
55 #include "tree-pass.h"
56 #include "flags.h"
57 #include "cfgloop.h"
58 #include "tree-scalar-evolution.h"
60 static struct stmt_stats
62 int total;
63 int total_phis;
64 int removed;
65 int removed_phis;
66 } stats;
68 #define STMT_NECESSARY GF_PLF_1
70 static vec<gimple> worklist;
72 /* Vector indicating an SSA name has already been processed and marked
73 as necessary. */
74 static sbitmap processed;
76 /* Vector indicating that the last statement of a basic block has already
77 been marked as necessary. */
78 static sbitmap last_stmt_necessary;
80 /* Vector indicating that BB contains statements that are live. */
81 static sbitmap bb_contains_live_stmts;
83 /* Before we can determine whether a control branch is dead, we need to
84 compute which blocks are control dependent on which edges.
86 We expect each block to be control dependent on very few edges so we
87 use a bitmap for each block recording its edges. An array holds the
88 bitmap. The Ith bit in the bitmap is set if that block is dependent
89 on the Ith edge. */
90 static bitmap *control_dependence_map;
92 /* Vector indicating that a basic block has already had all the edges
93 processed that it is control dependent on. */
94 static sbitmap visited_control_parents;
96 /* TRUE if this pass alters the CFG (by removing control statements).
97 FALSE otherwise.
99 If this pass alters the CFG, then it will arrange for the dominators
100 to be recomputed. */
101 static bool cfg_altered;
103 /* Execute code that follows the macro for each edge (given number
104 EDGE_NUMBER within the CODE) for which the block with index N is
105 control dependent. */
106 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
107 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
108 (EDGE_NUMBER), (BI))
111 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
112 static inline void
113 set_control_dependence_map_bit (basic_block bb, int edge_index)
115 if (bb == ENTRY_BLOCK_PTR)
116 return;
117 gcc_assert (bb != EXIT_BLOCK_PTR);
118 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
121 /* Clear all control dependences for block BB. */
122 static inline void
123 clear_control_dependence_bitmap (basic_block bb)
125 bitmap_clear (control_dependence_map[bb->index]);
129 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
130 This function is necessary because some blocks have negative numbers. */
132 static inline basic_block
133 find_pdom (basic_block block)
135 gcc_assert (block != ENTRY_BLOCK_PTR);
137 if (block == EXIT_BLOCK_PTR)
138 return EXIT_BLOCK_PTR;
139 else
141 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
142 if (! bb)
143 return EXIT_BLOCK_PTR;
144 return bb;
149 /* Determine all blocks' control dependences on the given edge with edge_list
150 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
152 static void
153 find_control_dependence (struct edge_list *el, int edge_index)
155 basic_block current_block;
156 basic_block ending_block;
158 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
160 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
161 ending_block = single_succ (ENTRY_BLOCK_PTR);
162 else
163 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
165 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
166 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
167 current_block = find_pdom (current_block))
169 edge e = INDEX_EDGE (el, edge_index);
171 /* For abnormal edges, we don't make current_block control
172 dependent because instructions that throw are always necessary
173 anyway. */
174 if (e->flags & EDGE_ABNORMAL)
175 continue;
177 set_control_dependence_map_bit (current_block, edge_index);
182 /* Record all blocks' control dependences on all edges in the edge
183 list EL, ala Morgan, Section 3.6. */
185 static void
186 find_all_control_dependences (struct edge_list *el)
188 int i;
190 for (i = 0; i < NUM_EDGES (el); ++i)
191 find_control_dependence (el, i);
194 /* If STMT is not already marked necessary, mark it, and add it to the
195 worklist if ADD_TO_WORKLIST is true. */
197 static inline void
198 mark_stmt_necessary (gimple stmt, bool add_to_worklist)
200 gcc_assert (stmt);
202 if (gimple_plf (stmt, STMT_NECESSARY))
203 return;
205 if (dump_file && (dump_flags & TDF_DETAILS))
207 fprintf (dump_file, "Marking useful stmt: ");
208 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
209 fprintf (dump_file, "\n");
212 gimple_set_plf (stmt, STMT_NECESSARY, true);
213 if (add_to_worklist)
214 worklist.safe_push (stmt);
215 if (bb_contains_live_stmts && !is_gimple_debug (stmt))
216 bitmap_set_bit (bb_contains_live_stmts, gimple_bb (stmt)->index);
220 /* Mark the statement defining operand OP as necessary. */
222 static inline void
223 mark_operand_necessary (tree op)
225 gimple stmt;
226 int ver;
228 gcc_assert (op);
230 ver = SSA_NAME_VERSION (op);
231 if (bitmap_bit_p (processed, ver))
233 stmt = SSA_NAME_DEF_STMT (op);
234 gcc_assert (gimple_nop_p (stmt)
235 || gimple_plf (stmt, STMT_NECESSARY));
236 return;
238 bitmap_set_bit (processed, ver);
240 stmt = SSA_NAME_DEF_STMT (op);
241 gcc_assert (stmt);
243 if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
244 return;
246 if (dump_file && (dump_flags & TDF_DETAILS))
248 fprintf (dump_file, "marking necessary through ");
249 print_generic_expr (dump_file, op, 0);
250 fprintf (dump_file, " stmt ");
251 print_gimple_stmt (dump_file, stmt, 0, 0);
254 gimple_set_plf (stmt, STMT_NECESSARY, true);
255 if (bb_contains_live_stmts)
256 bitmap_set_bit (bb_contains_live_stmts, gimple_bb (stmt)->index);
257 worklist.safe_push (stmt);
261 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
262 it can make other statements necessary.
264 If AGGRESSIVE is false, control statements are conservatively marked as
265 necessary. */
267 static void
268 mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
270 /* With non-call exceptions, we have to assume that all statements could
271 throw. If a statement could throw, it can be deemed necessary. */
272 if (cfun->can_throw_non_call_exceptions
273 && !cfun->can_delete_dead_exceptions
274 && stmt_could_throw_p (stmt))
276 mark_stmt_necessary (stmt, true);
277 return;
280 /* Statements that are implicitly live. Most function calls, asm
281 and return statements are required. Labels and GIMPLE_BIND nodes
282 are kept because they are control flow, and we have no way of
283 knowing whether they can be removed. DCE can eliminate all the
284 other statements in a block, and CFG can then remove the block
285 and labels. */
286 switch (gimple_code (stmt))
288 case GIMPLE_PREDICT:
289 case GIMPLE_LABEL:
290 mark_stmt_necessary (stmt, false);
291 return;
293 case GIMPLE_ASM:
294 case GIMPLE_RESX:
295 case GIMPLE_RETURN:
296 mark_stmt_necessary (stmt, true);
297 return;
299 case GIMPLE_CALL:
301 tree callee = gimple_call_fndecl (stmt);
302 if (callee != NULL_TREE
303 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
304 switch (DECL_FUNCTION_CODE (callee))
306 case BUILT_IN_MALLOC:
307 case BUILT_IN_CALLOC:
308 case BUILT_IN_ALLOCA:
309 case BUILT_IN_ALLOCA_WITH_ALIGN:
310 return;
312 default:;
314 /* Most, but not all function calls are required. Function calls that
315 produce no result and have no side effects (i.e. const pure
316 functions) are unnecessary. */
317 if (gimple_has_side_effects (stmt))
319 mark_stmt_necessary (stmt, true);
320 return;
322 if (!gimple_call_lhs (stmt))
323 return;
324 break;
327 case GIMPLE_DEBUG:
328 /* Debug temps without a value are not useful. ??? If we could
329 easily locate the debug temp bind stmt for a use thereof,
330 would could refrain from marking all debug temps here, and
331 mark them only if they're used. */
332 if (!gimple_debug_bind_p (stmt)
333 || gimple_debug_bind_has_value_p (stmt)
334 || TREE_CODE (gimple_debug_bind_get_var (stmt)) != DEBUG_EXPR_DECL)
335 mark_stmt_necessary (stmt, false);
336 return;
338 case GIMPLE_GOTO:
339 gcc_assert (!simple_goto_p (stmt));
340 mark_stmt_necessary (stmt, true);
341 return;
343 case GIMPLE_COND:
344 gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
345 /* Fall through. */
347 case GIMPLE_SWITCH:
348 if (! aggressive)
349 mark_stmt_necessary (stmt, true);
350 break;
352 case GIMPLE_ASSIGN:
353 if (TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME
354 && TREE_CLOBBER_P (gimple_assign_rhs1 (stmt)))
355 return;
356 break;
358 default:
359 break;
362 /* If the statement has volatile operands, it needs to be preserved.
363 Same for statements that can alter control flow in unpredictable
364 ways. */
365 if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
367 mark_stmt_necessary (stmt, true);
368 return;
371 if (stmt_may_clobber_global_p (stmt))
373 mark_stmt_necessary (stmt, true);
374 return;
377 return;
381 /* Mark the last statement of BB as necessary. */
383 static void
384 mark_last_stmt_necessary (basic_block bb)
386 gimple stmt = last_stmt (bb);
388 bitmap_set_bit (last_stmt_necessary, bb->index);
389 bitmap_set_bit (bb_contains_live_stmts, bb->index);
391 /* We actually mark the statement only if it is a control statement. */
392 if (stmt && is_ctrl_stmt (stmt))
393 mark_stmt_necessary (stmt, true);
397 /* Mark control dependent edges of BB as necessary. We have to do this only
398 once for each basic block so we set the appropriate bit after we're done.
400 When IGNORE_SELF is true, ignore BB in the list of control dependences. */
402 static void
403 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el,
404 bool ignore_self)
406 bitmap_iterator bi;
407 unsigned edge_number;
408 bool skipped = false;
410 gcc_assert (bb != EXIT_BLOCK_PTR);
412 if (bb == ENTRY_BLOCK_PTR)
413 return;
415 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
417 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
419 if (ignore_self && cd_bb == bb)
421 skipped = true;
422 continue;
425 if (!bitmap_bit_p (last_stmt_necessary, cd_bb->index))
426 mark_last_stmt_necessary (cd_bb);
429 if (!skipped)
430 bitmap_set_bit (visited_control_parents, bb->index);
434 /* Find obviously necessary statements. These are things like most function
435 calls, and stores to file level variables.
437 If EL is NULL, control statements are conservatively marked as
438 necessary. Otherwise it contains the list of edges used by control
439 dependence analysis. */
441 static void
442 find_obviously_necessary_stmts (struct edge_list *el)
444 basic_block bb;
445 gimple_stmt_iterator gsi;
446 edge e;
447 gimple phi, stmt;
448 int flags;
450 FOR_EACH_BB (bb)
452 /* PHI nodes are never inherently necessary. */
453 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
455 phi = gsi_stmt (gsi);
456 gimple_set_plf (phi, STMT_NECESSARY, false);
459 /* Check all statements in the block. */
460 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
462 stmt = gsi_stmt (gsi);
463 gimple_set_plf (stmt, STMT_NECESSARY, false);
464 mark_stmt_if_obviously_necessary (stmt, el != NULL);
468 /* Pure and const functions are finite and thus have no infinite loops in
469 them. */
470 flags = flags_from_decl_or_type (current_function_decl);
471 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
472 return;
474 /* Prevent the empty possibly infinite loops from being removed. */
475 if (el)
477 loop_iterator li;
478 struct loop *loop;
479 scev_initialize ();
480 if (mark_irreducible_loops ())
481 FOR_EACH_BB (bb)
483 edge_iterator ei;
484 FOR_EACH_EDGE (e, ei, bb->succs)
485 if ((e->flags & EDGE_DFS_BACK)
486 && (e->flags & EDGE_IRREDUCIBLE_LOOP))
488 if (dump_file)
489 fprintf (dump_file, "Marking back edge of irreducible loop %i->%i\n",
490 e->src->index, e->dest->index);
491 mark_control_dependent_edges_necessary (e->dest, el, false);
495 FOR_EACH_LOOP (li, loop, 0)
496 if (!finite_loop_p (loop))
498 if (dump_file)
499 fprintf (dump_file, "can not prove finiteness of loop %i\n", loop->num);
500 mark_control_dependent_edges_necessary (loop->latch, el, false);
502 scev_finalize ();
507 /* Return true if REF is based on an aliased base, otherwise false. */
509 static bool
510 ref_may_be_aliased (tree ref)
512 gcc_assert (TREE_CODE (ref) != WITH_SIZE_EXPR);
513 while (handled_component_p (ref))
514 ref = TREE_OPERAND (ref, 0);
515 if (TREE_CODE (ref) == MEM_REF
516 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
517 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
518 return !(DECL_P (ref)
519 && !may_be_aliased (ref));
522 static bitmap visited = NULL;
523 static unsigned int longest_chain = 0;
524 static unsigned int total_chain = 0;
525 static unsigned int nr_walks = 0;
526 static bool chain_ovfl = false;
528 /* Worker for the walker that marks reaching definitions of REF,
529 which is based on a non-aliased decl, necessary. It returns
530 true whenever the defining statement of the current VDEF is
531 a kill for REF, as no dominating may-defs are necessary for REF
532 anymore. DATA points to the basic-block that contains the
533 stmt that refers to REF. */
535 static bool
536 mark_aliased_reaching_defs_necessary_1 (ao_ref *ref, tree vdef, void *data)
538 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
540 /* All stmts we visit are necessary. */
541 mark_operand_necessary (vdef);
543 /* If the stmt lhs kills ref, then we can stop walking. */
544 if (gimple_has_lhs (def_stmt)
545 && TREE_CODE (gimple_get_lhs (def_stmt)) != SSA_NAME
546 /* The assignment is not necessarily carried out if it can throw
547 and we can catch it in the current function where we could inspect
548 the previous value.
549 ??? We only need to care about the RHS throwing. For aggregate
550 assignments or similar calls and non-call exceptions the LHS
551 might throw as well. */
552 && !stmt_can_throw_internal (def_stmt))
554 tree base, lhs = gimple_get_lhs (def_stmt);
555 HOST_WIDE_INT size, offset, max_size;
556 ao_ref_base (ref);
557 base = get_ref_base_and_extent (lhs, &offset, &size, &max_size);
558 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
559 so base == refd->base does not always hold. */
560 if (base == ref->base)
562 /* For a must-alias check we need to be able to constrain
563 the accesses properly. */
564 if (size != -1 && size == max_size
565 && ref->max_size != -1)
567 if (offset <= ref->offset
568 && offset + size >= ref->offset + ref->max_size)
569 return true;
571 /* Or they need to be exactly the same. */
572 else if (ref->ref
573 /* Make sure there is no induction variable involved
574 in the references (gcc.c-torture/execute/pr42142.c).
575 The simplest way is to check if the kill dominates
576 the use. */
577 /* But when both are in the same block we cannot
578 easily tell whether we came from a backedge
579 unless we decide to compute stmt UIDs
580 (see PR58246). */
581 && (basic_block) data != gimple_bb (def_stmt)
582 && dominated_by_p (CDI_DOMINATORS, (basic_block) data,
583 gimple_bb (def_stmt))
584 && operand_equal_p (ref->ref, lhs, 0))
585 return true;
589 /* Otherwise keep walking. */
590 return false;
593 static void
594 mark_aliased_reaching_defs_necessary (gimple stmt, tree ref)
596 unsigned int chain;
597 ao_ref refd;
598 gcc_assert (!chain_ovfl);
599 ao_ref_init (&refd, ref);
600 chain = walk_aliased_vdefs (&refd, gimple_vuse (stmt),
601 mark_aliased_reaching_defs_necessary_1,
602 gimple_bb (stmt), NULL);
603 if (chain > longest_chain)
604 longest_chain = chain;
605 total_chain += chain;
606 nr_walks++;
609 /* Worker for the walker that marks reaching definitions of REF, which
610 is not based on a non-aliased decl. For simplicity we need to end
611 up marking all may-defs necessary that are not based on a non-aliased
612 decl. The only job of this walker is to skip may-defs based on
613 a non-aliased decl. */
615 static bool
616 mark_all_reaching_defs_necessary_1 (ao_ref *ref ATTRIBUTE_UNUSED,
617 tree vdef, void *data ATTRIBUTE_UNUSED)
619 gimple def_stmt = SSA_NAME_DEF_STMT (vdef);
621 /* We have to skip already visited (and thus necessary) statements
622 to make the chaining work after we dropped back to simple mode. */
623 if (chain_ovfl
624 && bitmap_bit_p (processed, SSA_NAME_VERSION (vdef)))
626 gcc_assert (gimple_nop_p (def_stmt)
627 || gimple_plf (def_stmt, STMT_NECESSARY));
628 return false;
631 /* We want to skip stores to non-aliased variables. */
632 if (!chain_ovfl
633 && gimple_assign_single_p (def_stmt))
635 tree lhs = gimple_assign_lhs (def_stmt);
636 if (!ref_may_be_aliased (lhs))
637 return false;
640 /* We want to skip statments that do not constitute stores but have
641 a virtual definition. */
642 if (is_gimple_call (def_stmt))
644 tree callee = gimple_call_fndecl (def_stmt);
645 if (callee != NULL_TREE
646 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
647 switch (DECL_FUNCTION_CODE (callee))
649 case BUILT_IN_MALLOC:
650 case BUILT_IN_CALLOC:
651 case BUILT_IN_ALLOCA:
652 case BUILT_IN_ALLOCA_WITH_ALIGN:
653 case BUILT_IN_FREE:
654 return false;
656 default:;
660 mark_operand_necessary (vdef);
662 return false;
665 static void
666 mark_all_reaching_defs_necessary (gimple stmt)
668 walk_aliased_vdefs (NULL, gimple_vuse (stmt),
669 mark_all_reaching_defs_necessary_1, NULL, &visited);
672 /* Return true for PHI nodes with one or identical arguments
673 can be removed. */
674 static bool
675 degenerate_phi_p (gimple phi)
677 unsigned int i;
678 tree op = gimple_phi_arg_def (phi, 0);
679 for (i = 1; i < gimple_phi_num_args (phi); i++)
680 if (gimple_phi_arg_def (phi, i) != op)
681 return false;
682 return true;
685 /* Propagate necessity using the operands of necessary statements.
686 Process the uses on each statement in the worklist, and add all
687 feeding statements which contribute to the calculation of this
688 value to the worklist.
690 In conservative mode, EL is NULL. */
692 static void
693 propagate_necessity (struct edge_list *el)
695 gimple stmt;
696 bool aggressive = (el ? true : false);
698 if (dump_file && (dump_flags & TDF_DETAILS))
699 fprintf (dump_file, "\nProcessing worklist:\n");
701 while (worklist.length () > 0)
703 /* Take STMT from worklist. */
704 stmt = worklist.pop ();
706 if (dump_file && (dump_flags & TDF_DETAILS))
708 fprintf (dump_file, "processing: ");
709 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
710 fprintf (dump_file, "\n");
713 if (aggressive)
715 /* Mark the last statement of the basic blocks on which the block
716 containing STMT is control dependent, but only if we haven't
717 already done so. */
718 basic_block bb = gimple_bb (stmt);
719 if (bb != ENTRY_BLOCK_PTR
720 && !bitmap_bit_p (visited_control_parents, bb->index))
721 mark_control_dependent_edges_necessary (bb, el, false);
724 if (gimple_code (stmt) == GIMPLE_PHI
725 /* We do not process virtual PHI nodes nor do we track their
726 necessity. */
727 && !virtual_operand_p (gimple_phi_result (stmt)))
729 /* PHI nodes are somewhat special in that each PHI alternative has
730 data and control dependencies. All the statements feeding the
731 PHI node's arguments are always necessary. In aggressive mode,
732 we also consider the control dependent edges leading to the
733 predecessor block associated with each PHI alternative as
734 necessary. */
735 size_t k;
737 for (k = 0; k < gimple_phi_num_args (stmt); k++)
739 tree arg = PHI_ARG_DEF (stmt, k);
740 if (TREE_CODE (arg) == SSA_NAME)
741 mark_operand_necessary (arg);
744 /* For PHI operands it matters from where the control flow arrives
745 to the BB. Consider the following example:
747 a=exp1;
748 b=exp2;
749 if (test)
751 else
753 c=PHI(a,b)
755 We need to mark control dependence of the empty basic blocks, since they
756 contains computation of PHI operands.
758 Doing so is too restrictive in the case the predecestor block is in
759 the loop. Consider:
761 if (b)
763 int i;
764 for (i = 0; i<1000; ++i)
766 j = 0;
768 return j;
770 There is PHI for J in the BB containing return statement.
771 In this case the control dependence of predecestor block (that is
772 within the empty loop) also contains the block determining number
773 of iterations of the block that would prevent removing of empty
774 loop in this case.
776 This scenario can be avoided by splitting critical edges.
777 To save the critical edge splitting pass we identify how the control
778 dependence would look like if the edge was split.
780 Consider the modified CFG created from current CFG by splitting
781 edge B->C. In the postdominance tree of modified CFG, C' is
782 always child of C. There are two cases how chlids of C' can look
783 like:
785 1) C' is leaf
787 In this case the only basic block C' is control dependent on is B.
789 2) C' has single child that is B
791 In this case control dependence of C' is same as control
792 dependence of B in original CFG except for block B itself.
793 (since C' postdominate B in modified CFG)
795 Now how to decide what case happens? There are two basic options:
797 a) C postdominate B. Then C immediately postdominate B and
798 case 2 happens iff there is no other way from B to C except
799 the edge B->C.
801 There is other way from B to C iff there is succesor of B that
802 is not postdominated by B. Testing this condition is somewhat
803 expensive, because we need to iterate all succesors of B.
804 We are safe to assume that this does not happen: we will mark B
805 as needed when processing the other path from B to C that is
806 conrol dependent on B and marking control dependencies of B
807 itself is harmless because they will be processed anyway after
808 processing control statement in B.
810 b) C does not postdominate B. Always case 1 happens since there is
811 path from C to exit that does not go through B and thus also C'. */
813 if (aggressive && !degenerate_phi_p (stmt))
815 for (k = 0; k < gimple_phi_num_args (stmt); k++)
817 basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
819 if (gimple_bb (stmt)
820 != get_immediate_dominator (CDI_POST_DOMINATORS, arg_bb))
822 if (!bitmap_bit_p (last_stmt_necessary, arg_bb->index))
823 mark_last_stmt_necessary (arg_bb);
825 else if (arg_bb != ENTRY_BLOCK_PTR
826 && !bitmap_bit_p (visited_control_parents,
827 arg_bb->index))
828 mark_control_dependent_edges_necessary (arg_bb, el, true);
832 else
834 /* Propagate through the operands. Examine all the USE, VUSE and
835 VDEF operands in this statement. Mark all the statements
836 which feed this statement's uses as necessary. */
837 ssa_op_iter iter;
838 tree use;
840 /* If this is a call to free which is directly fed by an
841 allocation function do not mark that necessary through
842 processing the argument. */
843 if (gimple_call_builtin_p (stmt, BUILT_IN_FREE))
845 tree ptr = gimple_call_arg (stmt, 0);
846 gimple def_stmt;
847 tree def_callee;
848 /* If the pointer we free is defined by an allocation
849 function do not add the call to the worklist. */
850 if (TREE_CODE (ptr) == SSA_NAME
851 && is_gimple_call (def_stmt = SSA_NAME_DEF_STMT (ptr))
852 && (def_callee = gimple_call_fndecl (def_stmt))
853 && DECL_BUILT_IN_CLASS (def_callee) == BUILT_IN_NORMAL
854 && (DECL_FUNCTION_CODE (def_callee) == BUILT_IN_MALLOC
855 || DECL_FUNCTION_CODE (def_callee) == BUILT_IN_CALLOC))
856 continue;
859 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
860 mark_operand_necessary (use);
862 use = gimple_vuse (stmt);
863 if (!use)
864 continue;
866 /* If we dropped to simple mode make all immediately
867 reachable definitions necessary. */
868 if (chain_ovfl)
870 mark_all_reaching_defs_necessary (stmt);
871 continue;
874 /* For statements that may load from memory (have a VUSE) we
875 have to mark all reaching (may-)definitions as necessary.
876 We partition this task into two cases:
877 1) explicit loads based on decls that are not aliased
878 2) implicit loads (like calls) and explicit loads not
879 based on decls that are not aliased (like indirect
880 references or loads from globals)
881 For 1) we mark all reaching may-defs as necessary, stopping
882 at dominating kills. For 2) we want to mark all dominating
883 references necessary, but non-aliased ones which we handle
884 in 1). By keeping a global visited bitmap for references
885 we walk for 2) we avoid quadratic behavior for those. */
887 if (is_gimple_call (stmt))
889 tree callee = gimple_call_fndecl (stmt);
890 unsigned i;
892 /* Calls to functions that are merely acting as barriers
893 or that only store to memory do not make any previous
894 stores necessary. */
895 if (callee != NULL_TREE
896 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
897 && (DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET
898 || DECL_FUNCTION_CODE (callee) == BUILT_IN_MEMSET_CHK
899 || DECL_FUNCTION_CODE (callee) == BUILT_IN_MALLOC
900 || DECL_FUNCTION_CODE (callee) == BUILT_IN_CALLOC
901 || DECL_FUNCTION_CODE (callee) == BUILT_IN_FREE
902 || DECL_FUNCTION_CODE (callee) == BUILT_IN_VA_END
903 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
904 || (DECL_FUNCTION_CODE (callee)
905 == BUILT_IN_ALLOCA_WITH_ALIGN)
906 || DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE
907 || DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE
908 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ASSUME_ALIGNED))
909 continue;
911 /* Calls implicitly load from memory, their arguments
912 in addition may explicitly perform memory loads. */
913 mark_all_reaching_defs_necessary (stmt);
914 for (i = 0; i < gimple_call_num_args (stmt); ++i)
916 tree arg = gimple_call_arg (stmt, i);
917 if (TREE_CODE (arg) == SSA_NAME
918 || is_gimple_min_invariant (arg))
919 continue;
920 if (TREE_CODE (arg) == WITH_SIZE_EXPR)
921 arg = TREE_OPERAND (arg, 0);
922 if (!ref_may_be_aliased (arg))
923 mark_aliased_reaching_defs_necessary (stmt, arg);
926 else if (gimple_assign_single_p (stmt))
928 tree rhs;
929 /* If this is a load mark things necessary. */
930 rhs = gimple_assign_rhs1 (stmt);
931 if (TREE_CODE (rhs) != SSA_NAME
932 && !is_gimple_min_invariant (rhs)
933 && TREE_CODE (rhs) != CONSTRUCTOR)
935 if (!ref_may_be_aliased (rhs))
936 mark_aliased_reaching_defs_necessary (stmt, rhs);
937 else
938 mark_all_reaching_defs_necessary (stmt);
941 else if (gimple_code (stmt) == GIMPLE_RETURN)
943 tree rhs = gimple_return_retval (stmt);
944 /* A return statement may perform a load. */
945 if (rhs
946 && TREE_CODE (rhs) != SSA_NAME
947 && !is_gimple_min_invariant (rhs)
948 && TREE_CODE (rhs) != CONSTRUCTOR)
950 if (!ref_may_be_aliased (rhs))
951 mark_aliased_reaching_defs_necessary (stmt, rhs);
952 else
953 mark_all_reaching_defs_necessary (stmt);
956 else if (gimple_code (stmt) == GIMPLE_ASM)
958 unsigned i;
959 mark_all_reaching_defs_necessary (stmt);
960 /* Inputs may perform loads. */
961 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
963 tree op = TREE_VALUE (gimple_asm_input_op (stmt, i));
964 if (TREE_CODE (op) != SSA_NAME
965 && !is_gimple_min_invariant (op)
966 && TREE_CODE (op) != CONSTRUCTOR
967 && !ref_may_be_aliased (op))
968 mark_aliased_reaching_defs_necessary (stmt, op);
971 else if (gimple_code (stmt) == GIMPLE_TRANSACTION)
973 /* The beginning of a transaction is a memory barrier. */
974 /* ??? If we were really cool, we'd only be a barrier
975 for the memories touched within the transaction. */
976 mark_all_reaching_defs_necessary (stmt);
978 else
979 gcc_unreachable ();
981 /* If we over-used our alias oracle budget drop to simple
982 mode. The cost metric allows quadratic behavior
983 (number of uses times number of may-defs queries) up to
984 a constant maximal number of queries and after that falls back to
985 super-linear complexity. */
986 if (/* Constant but quadratic for small functions. */
987 total_chain > 128 * 128
988 /* Linear in the number of may-defs. */
989 && total_chain > 32 * longest_chain
990 /* Linear in the number of uses. */
991 && total_chain > nr_walks * 32)
993 chain_ovfl = true;
994 if (visited)
995 bitmap_clear (visited);
1001 /* Replace all uses of NAME by underlying variable and mark it
1002 for renaming. This assumes the defining statement of NAME is
1003 going to be removed. */
1005 void
1006 mark_virtual_operand_for_renaming (tree name)
1008 tree name_var = SSA_NAME_VAR (name);
1009 bool used = false;
1010 imm_use_iterator iter;
1011 use_operand_p use_p;
1012 gimple stmt;
1014 gcc_assert (VAR_DECL_IS_VIRTUAL_OPERAND (name_var));
1015 FOR_EACH_IMM_USE_STMT (stmt, iter, name)
1017 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1018 SET_USE (use_p, name_var);
1019 used = true;
1021 if (used)
1022 mark_virtual_operands_for_renaming (cfun);
1025 /* Replace all uses of the virtual PHI result by its underlying variable
1026 and mark it for renaming. This assumes the PHI node is going to be
1027 removed. */
1029 void
1030 mark_virtual_phi_result_for_renaming (gimple phi)
1032 if (dump_file && (dump_flags & TDF_DETAILS))
1034 fprintf (dump_file, "Marking result for renaming : ");
1035 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
1036 fprintf (dump_file, "\n");
1039 mark_virtual_operand_for_renaming (gimple_phi_result (phi));
1043 /* Remove dead PHI nodes from block BB. */
1045 static bool
1046 remove_dead_phis (basic_block bb)
1048 bool something_changed = false;
1049 gimple phi;
1050 gimple_stmt_iterator gsi;
1052 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);)
1054 stats.total_phis++;
1055 phi = gsi_stmt (gsi);
1057 /* We do not track necessity of virtual PHI nodes. Instead do
1058 very simple dead PHI removal here. */
1059 if (virtual_operand_p (gimple_phi_result (phi)))
1061 /* Virtual PHI nodes with one or identical arguments
1062 can be removed. */
1063 if (degenerate_phi_p (phi))
1065 tree vdef = gimple_phi_result (phi);
1066 tree vuse = gimple_phi_arg_def (phi, 0);
1068 use_operand_p use_p;
1069 imm_use_iterator iter;
1070 gimple use_stmt;
1071 FOR_EACH_IMM_USE_STMT (use_stmt, iter, vdef)
1072 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1073 SET_USE (use_p, vuse);
1074 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef)
1075 && TREE_CODE (vuse) == SSA_NAME)
1076 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse) = 1;
1078 else
1079 gimple_set_plf (phi, STMT_NECESSARY, true);
1082 if (!gimple_plf (phi, STMT_NECESSARY))
1084 something_changed = true;
1085 if (dump_file && (dump_flags & TDF_DETAILS))
1087 fprintf (dump_file, "Deleting : ");
1088 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
1089 fprintf (dump_file, "\n");
1092 remove_phi_node (&gsi, true);
1093 stats.removed_phis++;
1094 continue;
1097 gsi_next (&gsi);
1099 return something_changed;
1102 /* Forward edge E to respective POST_DOM_BB and update PHIs. */
1104 static edge
1105 forward_edge_to_pdom (edge e, basic_block post_dom_bb)
1107 gimple_stmt_iterator gsi;
1108 edge e2 = NULL;
1109 edge_iterator ei;
1111 if (dump_file && (dump_flags & TDF_DETAILS))
1112 fprintf (dump_file, "Redirecting edge %i->%i to %i\n", e->src->index,
1113 e->dest->index, post_dom_bb->index);
1115 e2 = redirect_edge_and_branch (e, post_dom_bb);
1116 cfg_altered = true;
1118 /* If edge was already around, no updating is necessary. */
1119 if (e2 != e)
1120 return e2;
1122 if (!gimple_seq_empty_p (phi_nodes (post_dom_bb)))
1124 /* We are sure that for every live PHI we are seeing control dependent BB.
1125 This means that we can pick any edge to duplicate PHI args from. */
1126 FOR_EACH_EDGE (e2, ei, post_dom_bb->preds)
1127 if (e2 != e)
1128 break;
1129 for (gsi = gsi_start_phis (post_dom_bb); !gsi_end_p (gsi);)
1131 gimple phi = gsi_stmt (gsi);
1132 tree op;
1133 source_location locus;
1135 /* PHIs for virtuals have no control dependency relation on them.
1136 We are lost here and must force renaming of the symbol. */
1137 if (virtual_operand_p (gimple_phi_result (phi)))
1139 mark_virtual_phi_result_for_renaming (phi);
1140 remove_phi_node (&gsi, true);
1141 continue;
1144 /* Dead PHI do not imply control dependency. */
1145 if (!gimple_plf (phi, STMT_NECESSARY))
1147 gsi_next (&gsi);
1148 continue;
1151 op = gimple_phi_arg_def (phi, e2->dest_idx);
1152 locus = gimple_phi_arg_location (phi, e2->dest_idx);
1153 add_phi_arg (phi, op, e, locus);
1154 /* The resulting PHI if not dead can only be degenerate. */
1155 gcc_assert (degenerate_phi_p (phi));
1156 gsi_next (&gsi);
1159 return e;
1162 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
1163 containing I so that we don't have to look it up. */
1165 static void
1166 remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
1168 gimple stmt = gsi_stmt (*i);
1170 if (dump_file && (dump_flags & TDF_DETAILS))
1172 fprintf (dump_file, "Deleting : ");
1173 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1174 fprintf (dump_file, "\n");
1177 stats.removed++;
1179 /* If we have determined that a conditional branch statement contributes
1180 nothing to the program, then we not only remove it, but we also change
1181 the flow graph so that the current block will simply fall-thru to its
1182 immediate post-dominator. The blocks we are circumventing will be
1183 removed by cleanup_tree_cfg if this change in the flow graph makes them
1184 unreachable. */
1185 if (is_ctrl_stmt (stmt))
1187 basic_block post_dom_bb;
1188 edge e, e2;
1189 edge_iterator ei;
1191 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
1193 e = find_edge (bb, post_dom_bb);
1195 /* If edge is already there, try to use it. This avoids need to update
1196 PHI nodes. Also watch for cases where post dominator does not exists
1197 or is exit block. These can happen for infinite loops as we create
1198 fake edges in the dominator tree. */
1199 if (e)
1201 else if (! post_dom_bb || post_dom_bb == EXIT_BLOCK_PTR)
1202 e = EDGE_SUCC (bb, 0);
1203 else
1204 e = forward_edge_to_pdom (EDGE_SUCC (bb, 0), post_dom_bb);
1205 gcc_assert (e);
1206 e->probability = REG_BR_PROB_BASE;
1207 e->count = bb->count;
1209 /* The edge is no longer associated with a conditional, so it does
1210 not have TRUE/FALSE flags. */
1211 e->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
1213 /* The lone outgoing edge from BB will be a fallthru edge. */
1214 e->flags |= EDGE_FALLTHRU;
1216 /* Remove the remaining outgoing edges. */
1217 for (ei = ei_start (bb->succs); (e2 = ei_safe_edge (ei)); )
1218 if (e != e2)
1220 cfg_altered = true;
1221 remove_edge (e2);
1223 else
1224 ei_next (&ei);
1227 /* If this is a store into a variable that is being optimized away,
1228 add a debug bind stmt if possible. */
1229 if (MAY_HAVE_DEBUG_STMTS
1230 && gimple_assign_single_p (stmt)
1231 && is_gimple_val (gimple_assign_rhs1 (stmt)))
1233 tree lhs = gimple_assign_lhs (stmt);
1234 if ((TREE_CODE (lhs) == VAR_DECL || TREE_CODE (lhs) == PARM_DECL)
1235 && !DECL_IGNORED_P (lhs)
1236 && is_gimple_reg_type (TREE_TYPE (lhs))
1237 && !is_global_var (lhs)
1238 && !DECL_HAS_VALUE_EXPR_P (lhs))
1240 tree rhs = gimple_assign_rhs1 (stmt);
1241 gimple note
1242 = gimple_build_debug_bind (lhs, unshare_expr (rhs), stmt);
1243 gsi_insert_after (i, note, GSI_SAME_STMT);
1247 unlink_stmt_vdef (stmt);
1248 gsi_remove (i, true);
1249 release_defs (stmt);
1252 /* Eliminate unnecessary statements. Any instruction not marked as necessary
1253 contributes nothing to the program, and can be deleted. */
1255 static bool
1256 eliminate_unnecessary_stmts (void)
1258 bool something_changed = false;
1259 basic_block bb;
1260 gimple_stmt_iterator gsi, psi;
1261 gimple stmt;
1262 tree call;
1263 vec<basic_block> h;
1265 if (dump_file && (dump_flags & TDF_DETAILS))
1266 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
1268 clear_special_calls ();
1270 /* Walking basic blocks and statements in reverse order avoids
1271 releasing SSA names before any other DEFs that refer to them are
1272 released. This helps avoid loss of debug information, as we get
1273 a chance to propagate all RHSs of removed SSAs into debug uses,
1274 rather than only the latest ones. E.g., consider:
1276 x_3 = y_1 + z_2;
1277 a_5 = x_3 - b_4;
1278 # DEBUG a => a_5
1280 If we were to release x_3 before a_5, when we reached a_5 and
1281 tried to substitute it into the debug stmt, we'd see x_3 there,
1282 but x_3's DEF, type, etc would have already been disconnected.
1283 By going backwards, the debug stmt first changes to:
1285 # DEBUG a => x_3 - b_4
1287 and then to:
1289 # DEBUG a => y_1 + z_2 - b_4
1291 as desired. */
1292 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
1293 h = get_all_dominated_blocks (CDI_DOMINATORS, single_succ (ENTRY_BLOCK_PTR));
1295 while (h.length ())
1297 bb = h.pop ();
1299 /* Remove dead statements. */
1300 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi = psi)
1302 stmt = gsi_stmt (gsi);
1304 psi = gsi;
1305 gsi_prev (&psi);
1307 stats.total++;
1309 /* We can mark a call to free as not necessary if the
1310 defining statement of its argument is an allocation
1311 function and that is not necessary itself. */
1312 if (gimple_call_builtin_p (stmt, BUILT_IN_FREE))
1314 tree ptr = gimple_call_arg (stmt, 0);
1315 tree callee2;
1316 gimple def_stmt;
1317 if (TREE_CODE (ptr) != SSA_NAME)
1318 continue;
1319 def_stmt = SSA_NAME_DEF_STMT (ptr);
1320 if (!is_gimple_call (def_stmt)
1321 || gimple_plf (def_stmt, STMT_NECESSARY))
1322 continue;
1323 callee2 = gimple_call_fndecl (def_stmt);
1324 if (callee2 == NULL_TREE
1325 || DECL_BUILT_IN_CLASS (callee2) != BUILT_IN_NORMAL
1326 || (DECL_FUNCTION_CODE (callee2) != BUILT_IN_MALLOC
1327 && DECL_FUNCTION_CODE (callee2) != BUILT_IN_CALLOC))
1328 continue;
1329 gimple_set_plf (stmt, STMT_NECESSARY, false);
1332 /* If GSI is not necessary then remove it. */
1333 if (!gimple_plf (stmt, STMT_NECESSARY))
1335 if (!is_gimple_debug (stmt))
1336 something_changed = true;
1337 remove_dead_stmt (&gsi, bb);
1339 else if (is_gimple_call (stmt))
1341 tree name = gimple_call_lhs (stmt);
1343 notice_special_calls (stmt);
1345 /* When LHS of var = call (); is dead, simplify it into
1346 call (); saving one operand. */
1347 if (name
1348 && TREE_CODE (name) == SSA_NAME
1349 && !bitmap_bit_p (processed, SSA_NAME_VERSION (name))
1350 /* Avoid doing so for allocation calls which we
1351 did not mark as necessary, it will confuse the
1352 special logic we apply to malloc/free pair removal. */
1353 && (!(call = gimple_call_fndecl (stmt))
1354 || DECL_BUILT_IN_CLASS (call) != BUILT_IN_NORMAL
1355 || (DECL_FUNCTION_CODE (call) != BUILT_IN_MALLOC
1356 && DECL_FUNCTION_CODE (call) != BUILT_IN_CALLOC
1357 && DECL_FUNCTION_CODE (call) != BUILT_IN_ALLOCA
1358 && (DECL_FUNCTION_CODE (call)
1359 != BUILT_IN_ALLOCA_WITH_ALIGN))))
1361 something_changed = true;
1362 if (dump_file && (dump_flags & TDF_DETAILS))
1364 fprintf (dump_file, "Deleting LHS of call: ");
1365 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1366 fprintf (dump_file, "\n");
1369 gimple_call_set_lhs (stmt, NULL_TREE);
1370 maybe_clean_or_replace_eh_stmt (stmt, stmt);
1371 update_stmt (stmt);
1372 release_ssa_name (name);
1378 h.release ();
1380 /* Since we don't track liveness of virtual PHI nodes, it is possible that we
1381 rendered some PHI nodes unreachable while they are still in use.
1382 Mark them for renaming. */
1383 if (cfg_altered)
1385 basic_block prev_bb;
1387 find_unreachable_blocks ();
1389 /* Delete all unreachable basic blocks in reverse dominator order. */
1390 for (bb = EXIT_BLOCK_PTR->prev_bb; bb != ENTRY_BLOCK_PTR; bb = prev_bb)
1392 prev_bb = bb->prev_bb;
1394 if (!bitmap_bit_p (bb_contains_live_stmts, bb->index)
1395 || !(bb->flags & BB_REACHABLE))
1397 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1398 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1400 bool found = false;
1401 imm_use_iterator iter;
1403 FOR_EACH_IMM_USE_STMT (stmt, iter, gimple_phi_result (gsi_stmt (gsi)))
1405 if (!(gimple_bb (stmt)->flags & BB_REACHABLE))
1406 continue;
1407 if (gimple_code (stmt) == GIMPLE_PHI
1408 || gimple_plf (stmt, STMT_NECESSARY))
1410 found = true;
1411 BREAK_FROM_IMM_USE_STMT (iter);
1414 if (found)
1415 mark_virtual_phi_result_for_renaming (gsi_stmt (gsi));
1418 if (!(bb->flags & BB_REACHABLE))
1420 /* Speed up the removal of blocks that don't
1421 dominate others. Walking backwards, this should
1422 be the common case. ??? Do we need to recompute
1423 dominators because of cfg_altered? */
1424 if (!MAY_HAVE_DEBUG_STMTS
1425 || !first_dom_son (CDI_DOMINATORS, bb))
1426 delete_basic_block (bb);
1427 else
1429 h = get_all_dominated_blocks (CDI_DOMINATORS, bb);
1431 while (h.length ())
1433 bb = h.pop ();
1434 prev_bb = bb->prev_bb;
1435 /* Rearrangements to the CFG may have failed
1436 to update the dominators tree, so that
1437 formerly-dominated blocks are now
1438 otherwise reachable. */
1439 if (!!(bb->flags & BB_REACHABLE))
1440 continue;
1441 delete_basic_block (bb);
1444 h.release ();
1450 FOR_EACH_BB (bb)
1452 /* Remove dead PHI nodes. */
1453 something_changed |= remove_dead_phis (bb);
1456 return something_changed;
1460 /* Print out removed statement statistics. */
1462 static void
1463 print_stats (void)
1465 float percg;
1467 percg = ((float) stats.removed / (float) stats.total) * 100;
1468 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
1469 stats.removed, stats.total, (int) percg);
1471 if (stats.total_phis == 0)
1472 percg = 0;
1473 else
1474 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
1476 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
1477 stats.removed_phis, stats.total_phis, (int) percg);
1480 /* Initialization for this pass. Set up the used data structures. */
1482 static void
1483 tree_dce_init (bool aggressive)
1485 memset ((void *) &stats, 0, sizeof (stats));
1487 if (aggressive)
1489 int i;
1491 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
1492 for (i = 0; i < last_basic_block; ++i)
1493 control_dependence_map[i] = BITMAP_ALLOC (NULL);
1495 last_stmt_necessary = sbitmap_alloc (last_basic_block);
1496 bitmap_clear (last_stmt_necessary);
1497 bb_contains_live_stmts = sbitmap_alloc (last_basic_block);
1498 bitmap_clear (bb_contains_live_stmts);
1501 processed = sbitmap_alloc (num_ssa_names + 1);
1502 bitmap_clear (processed);
1504 worklist.create (64);
1505 cfg_altered = false;
1508 /* Cleanup after this pass. */
1510 static void
1511 tree_dce_done (bool aggressive)
1513 if (aggressive)
1515 int i;
1517 for (i = 0; i < last_basic_block; ++i)
1518 BITMAP_FREE (control_dependence_map[i]);
1519 free (control_dependence_map);
1521 sbitmap_free (visited_control_parents);
1522 sbitmap_free (last_stmt_necessary);
1523 sbitmap_free (bb_contains_live_stmts);
1524 bb_contains_live_stmts = NULL;
1527 sbitmap_free (processed);
1529 worklist.release ();
1532 /* Main routine to eliminate dead code.
1534 AGGRESSIVE controls the aggressiveness of the algorithm.
1535 In conservative mode, we ignore control dependence and simply declare
1536 all but the most trivially dead branches necessary. This mode is fast.
1537 In aggressive mode, control dependences are taken into account, which
1538 results in more dead code elimination, but at the cost of some time.
1540 FIXME: Aggressive mode before PRE doesn't work currently because
1541 the dominance info is not invalidated after DCE1. This is
1542 not an issue right now because we only run aggressive DCE
1543 as the last tree SSA pass, but keep this in mind when you
1544 start experimenting with pass ordering. */
1546 static unsigned int
1547 perform_tree_ssa_dce (bool aggressive)
1549 struct edge_list *el = NULL;
1550 bool something_changed = 0;
1552 calculate_dominance_info (CDI_DOMINATORS);
1554 /* Preheaders are needed for SCEV to work.
1555 Simple lateches and recorded exits improve chances that loop will
1556 proved to be finite in testcases such as in loop-15.c and loop-24.c */
1557 if (aggressive)
1558 loop_optimizer_init (LOOPS_NORMAL
1559 | LOOPS_HAVE_RECORDED_EXITS);
1561 tree_dce_init (aggressive);
1563 if (aggressive)
1565 /* Compute control dependence. */
1566 timevar_push (TV_CONTROL_DEPENDENCES);
1567 calculate_dominance_info (CDI_POST_DOMINATORS);
1568 el = create_edge_list ();
1569 find_all_control_dependences (el);
1570 timevar_pop (TV_CONTROL_DEPENDENCES);
1572 visited_control_parents = sbitmap_alloc (last_basic_block);
1573 bitmap_clear (visited_control_parents);
1575 mark_dfs_back_edges ();
1578 find_obviously_necessary_stmts (el);
1580 if (aggressive)
1581 loop_optimizer_finalize ();
1583 longest_chain = 0;
1584 total_chain = 0;
1585 nr_walks = 0;
1586 chain_ovfl = false;
1587 visited = BITMAP_ALLOC (NULL);
1588 propagate_necessity (el);
1589 BITMAP_FREE (visited);
1591 something_changed |= eliminate_unnecessary_stmts ();
1592 something_changed |= cfg_altered;
1594 /* We do not update postdominators, so free them unconditionally. */
1595 free_dominance_info (CDI_POST_DOMINATORS);
1597 /* If we removed paths in the CFG, then we need to update
1598 dominators as well. I haven't investigated the possibility
1599 of incrementally updating dominators. */
1600 if (cfg_altered)
1601 free_dominance_info (CDI_DOMINATORS);
1603 statistics_counter_event (cfun, "Statements deleted", stats.removed);
1604 statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
1606 /* Debugging dumps. */
1607 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
1608 print_stats ();
1610 tree_dce_done (aggressive);
1612 free_edge_list (el);
1614 if (something_changed)
1615 return TODO_update_ssa | TODO_cleanup_cfg;
1616 return 0;
1619 /* Pass entry points. */
1620 static unsigned int
1621 tree_ssa_dce (void)
1623 return perform_tree_ssa_dce (/*aggressive=*/false);
1626 static unsigned int
1627 tree_ssa_dce_loop (void)
1629 unsigned int todo;
1630 todo = perform_tree_ssa_dce (/*aggressive=*/false);
1631 if (todo)
1633 free_numbers_of_iterations_estimates ();
1634 scev_reset ();
1636 return todo;
1639 static unsigned int
1640 tree_ssa_cd_dce (void)
1642 return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
1645 static bool
1646 gate_dce (void)
1648 return flag_tree_dce != 0;
1651 namespace {
1653 const pass_data pass_data_dce =
1655 GIMPLE_PASS, /* type */
1656 "dce", /* name */
1657 OPTGROUP_NONE, /* optinfo_flags */
1658 true, /* has_gate */
1659 true, /* has_execute */
1660 TV_TREE_DCE, /* tv_id */
1661 ( PROP_cfg | PROP_ssa ), /* properties_required */
1662 0, /* properties_provided */
1663 0, /* properties_destroyed */
1664 0, /* todo_flags_start */
1665 TODO_verify_ssa, /* todo_flags_finish */
1668 class pass_dce : public gimple_opt_pass
1670 public:
1671 pass_dce(gcc::context *ctxt)
1672 : gimple_opt_pass(pass_data_dce, ctxt)
1675 /* opt_pass methods: */
1676 opt_pass * clone () { return new pass_dce (ctxt_); }
1677 bool gate () { return gate_dce (); }
1678 unsigned int execute () { return tree_ssa_dce (); }
1680 }; // class pass_dce
1682 } // anon namespace
1684 gimple_opt_pass *
1685 make_pass_dce (gcc::context *ctxt)
1687 return new pass_dce (ctxt);
1690 namespace {
1692 const pass_data pass_data_dce_loop =
1694 GIMPLE_PASS, /* type */
1695 "dceloop", /* name */
1696 OPTGROUP_NONE, /* optinfo_flags */
1697 true, /* has_gate */
1698 true, /* has_execute */
1699 TV_TREE_DCE, /* tv_id */
1700 ( PROP_cfg | PROP_ssa ), /* properties_required */
1701 0, /* properties_provided */
1702 0, /* properties_destroyed */
1703 0, /* todo_flags_start */
1704 TODO_verify_ssa, /* todo_flags_finish */
1707 class pass_dce_loop : public gimple_opt_pass
1709 public:
1710 pass_dce_loop(gcc::context *ctxt)
1711 : gimple_opt_pass(pass_data_dce_loop, ctxt)
1714 /* opt_pass methods: */
1715 opt_pass * clone () { return new pass_dce_loop (ctxt_); }
1716 bool gate () { return gate_dce (); }
1717 unsigned int execute () { return tree_ssa_dce_loop (); }
1719 }; // class pass_dce_loop
1721 } // anon namespace
1723 gimple_opt_pass *
1724 make_pass_dce_loop (gcc::context *ctxt)
1726 return new pass_dce_loop (ctxt);
1729 namespace {
1731 const pass_data pass_data_cd_dce =
1733 GIMPLE_PASS, /* type */
1734 "cddce", /* name */
1735 OPTGROUP_NONE, /* optinfo_flags */
1736 true, /* has_gate */
1737 true, /* has_execute */
1738 TV_TREE_CD_DCE, /* tv_id */
1739 ( PROP_cfg | PROP_ssa ), /* properties_required */
1740 0, /* properties_provided */
1741 0, /* properties_destroyed */
1742 0, /* todo_flags_start */
1743 ( TODO_verify_ssa | TODO_verify_flow ), /* todo_flags_finish */
1746 class pass_cd_dce : public gimple_opt_pass
1748 public:
1749 pass_cd_dce(gcc::context *ctxt)
1750 : gimple_opt_pass(pass_data_cd_dce, ctxt)
1753 /* opt_pass methods: */
1754 opt_pass * clone () { return new pass_cd_dce (ctxt_); }
1755 bool gate () { return gate_dce (); }
1756 unsigned int execute () { return tree_ssa_cd_dce (); }
1758 }; // class pass_cd_dce
1760 } // anon namespace
1762 gimple_opt_pass *
1763 make_pass_cd_dce (gcc::context *ctxt)
1765 return new pass_cd_dce (ctxt);