1 /* Code for RTL register eliminations.
2 Copyright (C) 2010-2015 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Eliminable registers (like a soft argument or frame pointer) are
22 widely used in RTL. These eliminable registers should be replaced
23 by real hard registers (like the stack pointer or hard frame
24 pointer) plus some offset. The offsets usually change whenever the
25 stack is expanded. We know the final offsets only at the very end
28 Within LRA, we usually keep the RTL in such a state that the
29 eliminable registers can be replaced by just the corresponding hard
30 register (without any offset). To achieve this we should add the
31 initial elimination offset at the beginning of LRA and update the
32 offsets whenever the stack is expanded. We need to do this before
33 every constraint pass because the choice of offset often affects
34 whether a particular address or memory constraint is satisfied.
36 We keep RTL code at most time in such state that the virtual
37 registers can be changed by just the corresponding hard registers
38 (with zero offsets) and we have the right RTL code. To achieve this
39 we should add initial offset at the beginning of LRA work and update
40 offsets after each stack expanding. But actually we update virtual
41 registers to the same virtual registers + corresponding offsets
42 before every constraint pass because it affects constraint
43 satisfaction (e.g. an address displacement became too big for some
46 The final change of eliminable registers to the corresponding hard
47 registers are done at the very end of LRA when there were no change
56 #include "coretypes.h"
58 #include "hard-reg-set.h"
62 #include "insn-config.h"
63 #include "insn-codes.h"
66 #include "addresses.h"
76 #include "statistics.h"
77 #include "double-int.h"
79 #include "fixed-value.h"
93 #include "dominance.h"
95 #include "basic-block.h"
100 #include "rtl-error.h"
103 /* This structure is used to record information about hard register
105 struct lra_elim_table
107 /* Hard register number to be eliminated. */
109 /* Hard register number used as replacement. */
111 /* Difference between values of the two hard registers above on
112 previous iteration. */
113 HOST_WIDE_INT previous_offset
;
114 /* Difference between the values on the current iteration. */
115 HOST_WIDE_INT offset
;
116 /* Nonzero if this elimination can be done. */
118 /* CAN_ELIMINATE since the last check. */
119 bool prev_can_eliminate
;
120 /* REG rtx for the register to be eliminated. We cannot simply
121 compare the number since we might then spuriously replace a hard
122 register corresponding to a pseudo assigned to the reg to be
125 /* REG rtx for the replacement. */
129 /* The elimination table. Each array entry describes one possible way
130 of eliminating a register in favor of another. If there is more
131 than one way of eliminating a particular register, the most
132 preferred should be specified first. */
133 static struct lra_elim_table
*reg_eliminate
= 0;
135 /* This is an intermediate structure to initialize the table. It has
136 exactly the members provided by ELIMINABLE_REGS. */
137 static const struct elim_table_1
141 } reg_eliminate_1
[] =
143 /* If a set of eliminable hard registers was specified, define the
144 table from it. Otherwise, default to the normal case of the frame
145 pointer being replaced by the stack pointer. */
147 #ifdef ELIMINABLE_REGS
150 {{ FRAME_POINTER_REGNUM
, STACK_POINTER_REGNUM
}};
153 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
155 /* Print info about elimination table to file F. */
157 print_elim_table (FILE *f
)
159 struct lra_elim_table
*ep
;
161 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
162 fprintf (f
, "%s eliminate %d to %d (offset=" HOST_WIDE_INT_PRINT_DEC
163 ", prev_offset=" HOST_WIDE_INT_PRINT_DEC
")\n",
164 ep
->can_eliminate
? "Can" : "Can't",
165 ep
->from
, ep
->to
, ep
->offset
, ep
->previous_offset
);
168 /* Print info about elimination table to stderr. */
170 lra_debug_elim_table (void)
172 print_elim_table (stderr
);
175 /* Setup possibility of elimination in elimination table element EP to
176 VALUE. Setup FRAME_POINTER_NEEDED if elimination from frame
177 pointer to stack pointer is not possible anymore. */
179 setup_can_eliminate (struct lra_elim_table
*ep
, bool value
)
181 ep
->can_eliminate
= ep
->prev_can_eliminate
= value
;
183 && ep
->from
== FRAME_POINTER_REGNUM
&& ep
->to
== STACK_POINTER_REGNUM
)
184 frame_pointer_needed
= 1;
185 if (!frame_pointer_needed
)
186 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = 0;
189 /* Map: eliminable "from" register -> its current elimination,
190 or NULL if none. The elimination table may contain more than
191 one elimination for the same hard register, but this map specifies
192 the one that we are currently using. */
193 static struct lra_elim_table
*elimination_map
[FIRST_PSEUDO_REGISTER
];
195 /* When an eliminable hard register becomes not eliminable, we use the
196 following special structure to restore original offsets for the
198 static struct lra_elim_table self_elim_table
;
200 /* Offsets should be used to restore original offsets for eliminable
201 hard register which just became not eliminable. Zero,
203 static HOST_WIDE_INT self_elim_offsets
[FIRST_PSEUDO_REGISTER
];
205 /* Map: hard regno -> RTL presentation. RTL presentations of all
206 potentially eliminable hard registers are stored in the map. */
207 static rtx eliminable_reg_rtx
[FIRST_PSEUDO_REGISTER
];
209 /* Set up ELIMINATION_MAP of the currently used eliminations. */
211 setup_elimination_map (void)
214 struct lra_elim_table
*ep
;
216 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
217 elimination_map
[i
] = NULL
;
218 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
219 if (ep
->can_eliminate
&& elimination_map
[ep
->from
] == NULL
)
220 elimination_map
[ep
->from
] = ep
;
225 /* Compute the sum of X and Y, making canonicalizations assumed in an
226 address, namely: sum constant integers, surround the sum of two
227 constants with a CONST, put the constant as the second operand, and
228 group the constant on the outermost sum.
230 This routine assumes both inputs are already in canonical form. */
232 form_sum (rtx x
, rtx y
)
235 machine_mode mode
= GET_MODE (x
);
237 if (mode
== VOIDmode
)
240 if (mode
== VOIDmode
)
244 return plus_constant (mode
, y
, INTVAL (x
));
245 else if (CONST_INT_P (y
))
246 return plus_constant (mode
, x
, INTVAL (y
));
247 else if (CONSTANT_P (x
))
248 tem
= x
, x
= y
, y
= tem
;
250 if (GET_CODE (x
) == PLUS
&& CONSTANT_P (XEXP (x
, 1)))
251 return form_sum (XEXP (x
, 0), form_sum (XEXP (x
, 1), y
));
253 /* Note that if the operands of Y are specified in the opposite
254 order in the recursive calls below, infinite recursion will
256 if (GET_CODE (y
) == PLUS
&& CONSTANT_P (XEXP (y
, 1)))
257 return form_sum (form_sum (x
, XEXP (y
, 0)), XEXP (y
, 1));
259 /* If both constant, encapsulate sum. Otherwise, just form sum. A
260 constant will have been placed second. */
261 if (CONSTANT_P (x
) && CONSTANT_P (y
))
263 if (GET_CODE (x
) == CONST
)
265 if (GET_CODE (y
) == CONST
)
268 return gen_rtx_CONST (VOIDmode
, gen_rtx_PLUS (mode
, x
, y
));
271 return gen_rtx_PLUS (mode
, x
, y
);
274 /* Return the current substitution hard register of the elimination of
275 HARD_REGNO. If HARD_REGNO is not eliminable, return itself. */
277 lra_get_elimination_hard_regno (int hard_regno
)
279 struct lra_elim_table
*ep
;
281 if (hard_regno
< 0 || hard_regno
>= FIRST_PSEUDO_REGISTER
)
283 if ((ep
= elimination_map
[hard_regno
]) == NULL
)
288 /* Return elimination which will be used for hard reg REG, NULL
290 static struct lra_elim_table
*
291 get_elimination (rtx reg
)
294 struct lra_elim_table
*ep
;
295 HOST_WIDE_INT offset
;
297 lra_assert (REG_P (reg
));
298 if ((hard_regno
= REGNO (reg
)) < 0 || hard_regno
>= FIRST_PSEUDO_REGISTER
)
300 if ((ep
= elimination_map
[hard_regno
]) != NULL
)
301 return ep
->from_rtx
!= reg
? NULL
: ep
;
302 if ((offset
= self_elim_offsets
[hard_regno
]) == 0)
304 /* This is an iteration to restore offsets just after HARD_REGNO
305 stopped to be eliminable. */
306 self_elim_table
.from
= self_elim_table
.to
= hard_regno
;
307 self_elim_table
.from_rtx
308 = self_elim_table
.to_rtx
309 = eliminable_reg_rtx
[hard_regno
];
310 lra_assert (self_elim_table
.from_rtx
!= NULL
);
311 self_elim_table
.offset
= offset
;
312 return &self_elim_table
;
315 /* Scan X and replace any eliminable registers (such as fp) with a
316 replacement (such as sp) if SUBST_P, plus an offset. The offset is
317 a change in the offset between the eliminable register and its
318 substitution if UPDATE_P, or the full offset if FULL_P, or
319 otherwise zero. If FULL_P, we also use the SP offsets for
320 elimination to SP. If UPDATE_P, use UPDATE_SP_OFFSET for updating
321 offsets of register elimnable to SP. If UPDATE_SP_OFFSET is
322 non-zero, don't use difference of the offset and the previous
325 MEM_MODE is the mode of an enclosing MEM. We need this to know how
326 much to adjust a register for, e.g., PRE_DEC. Also, if we are
327 inside a MEM, we are allowed to replace a sum of a hard register
328 and the constant zero with the hard register, which we cannot do
329 outside a MEM. In addition, we need to record the fact that a
330 hard register is referenced outside a MEM.
332 If we make full substitution to SP for non-null INSN, add the insn
335 lra_eliminate_regs_1 (rtx_insn
*insn
, rtx x
, machine_mode mem_mode
,
336 bool subst_p
, bool update_p
,
337 HOST_WIDE_INT update_sp_offset
, bool full_p
)
339 enum rtx_code code
= GET_CODE (x
);
340 struct lra_elim_table
*ep
;
346 lra_assert (!update_p
|| !full_p
);
347 lra_assert (update_sp_offset
== 0 || (!subst_p
&& update_p
&& !full_p
));
348 if (! current_function_decl
)
366 /* First handle the case where we encounter a bare hard register
367 that is eliminable. Replace it with a PLUS. */
368 if ((ep
= get_elimination (x
)) != NULL
)
370 rtx to
= subst_p
? ep
->to_rtx
: ep
->from_rtx
;
372 if (update_sp_offset
!= 0)
374 if (ep
->to_rtx
== stack_pointer_rtx
)
375 return plus_constant (Pmode
, to
, update_sp_offset
);
379 return plus_constant (Pmode
, to
, ep
->offset
- ep
->previous_offset
);
381 return plus_constant (Pmode
, to
,
384 && ep
->to_rtx
== stack_pointer_rtx
385 ? lra_get_insn_recog_data (insn
)->sp_offset
393 /* If this is the sum of an eliminable register and a constant, rework
395 if (REG_P (XEXP (x
, 0)) && CONSTANT_P (XEXP (x
, 1)))
397 if ((ep
= get_elimination (XEXP (x
, 0))) != NULL
)
399 HOST_WIDE_INT offset
;
400 rtx to
= subst_p
? ep
->to_rtx
: ep
->from_rtx
;
402 if (! update_p
&& ! full_p
)
403 return gen_rtx_PLUS (Pmode
, to
, XEXP (x
, 1));
405 if (update_sp_offset
!= 0)
406 offset
= ep
->to_rtx
== stack_pointer_rtx
? update_sp_offset
: 0;
409 ? ep
->offset
- ep
->previous_offset
: ep
->offset
);
410 if (full_p
&& insn
!= NULL_RTX
&& ep
->to_rtx
== stack_pointer_rtx
)
411 offset
-= lra_get_insn_recog_data (insn
)->sp_offset
;
412 if (CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) == -offset
)
415 return gen_rtx_PLUS (Pmode
, to
,
416 plus_constant (Pmode
,
417 XEXP (x
, 1), offset
));
420 /* If the hard register is not eliminable, we are done since
421 the other operand is a constant. */
425 /* If this is part of an address, we want to bring any constant
426 to the outermost PLUS. We will do this by doing hard
427 register replacement in our operands and seeing if a constant
428 shows up in one of them.
430 Note that there is no risk of modifying the structure of the
431 insn, since we only get called for its operands, thus we are
432 either modifying the address inside a MEM, or something like
433 an address operand of a load-address insn. */
436 rtx new0
= lra_eliminate_regs_1 (insn
, XEXP (x
, 0), mem_mode
,
438 update_sp_offset
, full_p
);
439 rtx new1
= lra_eliminate_regs_1 (insn
, XEXP (x
, 1), mem_mode
,
441 update_sp_offset
, full_p
);
443 if (new0
!= XEXP (x
, 0) || new1
!= XEXP (x
, 1))
444 return form_sum (new0
, new1
);
449 /* If this is the product of an eliminable hard register and a
450 constant, apply the distribute law and move the constant out
451 so that we have (plus (mult ..) ..). This is needed in order
452 to keep load-address insns valid. This case is pathological.
453 We ignore the possibility of overflow here. */
454 if (REG_P (XEXP (x
, 0)) && CONST_INT_P (XEXP (x
, 1))
455 && (ep
= get_elimination (XEXP (x
, 0))) != NULL
)
457 rtx to
= subst_p
? ep
->to_rtx
: ep
->from_rtx
;
459 if (update_sp_offset
!= 0)
461 if (ep
->to_rtx
== stack_pointer_rtx
)
462 return plus_constant (Pmode
,
463 gen_rtx_MULT (Pmode
, to
, XEXP (x
, 1)),
464 update_sp_offset
* INTVAL (XEXP (x
, 1)));
465 return gen_rtx_MULT (Pmode
, to
, XEXP (x
, 1));
468 return plus_constant (Pmode
,
469 gen_rtx_MULT (Pmode
, to
, XEXP (x
, 1)),
470 (ep
->offset
- ep
->previous_offset
)
471 * INTVAL (XEXP (x
, 1)));
474 HOST_WIDE_INT offset
= ep
->offset
;
476 if (insn
!= NULL_RTX
&& ep
->to_rtx
== stack_pointer_rtx
)
477 offset
-= lra_get_insn_recog_data (insn
)->sp_offset
;
479 plus_constant (Pmode
,
480 gen_rtx_MULT (Pmode
, to
, XEXP (x
, 1)),
481 offset
* INTVAL (XEXP (x
, 1)));
484 return gen_rtx_MULT (Pmode
, to
, XEXP (x
, 1));
487 /* ... fall through ... */
491 /* See comments before PLUS about handling MINUS. */
495 case AND
: case IOR
: case XOR
:
496 case ROTATERT
: case ROTATE
:
497 case ASHIFTRT
: case LSHIFTRT
: case ASHIFT
:
499 case GE
: case GT
: case GEU
: case GTU
:
500 case LE
: case LT
: case LEU
: case LTU
:
502 rtx new0
= lra_eliminate_regs_1 (insn
, XEXP (x
, 0), mem_mode
,
504 update_sp_offset
, full_p
);
505 rtx new1
= XEXP (x
, 1)
506 ? lra_eliminate_regs_1 (insn
, XEXP (x
, 1), mem_mode
,
508 update_sp_offset
, full_p
) : 0;
510 if (new0
!= XEXP (x
, 0) || new1
!= XEXP (x
, 1))
511 return gen_rtx_fmt_ee (code
, GET_MODE (x
), new0
, new1
);
516 /* If we have something in XEXP (x, 0), the usual case,
520 new_rtx
= lra_eliminate_regs_1 (insn
, XEXP (x
, 0), mem_mode
,
522 update_sp_offset
, full_p
);
523 if (new_rtx
!= XEXP (x
, 0))
525 /* If this is a REG_DEAD note, it is not valid anymore.
526 Using the eliminated version could result in creating a
527 REG_DEAD note for the stack or frame pointer. */
528 if (REG_NOTE_KIND (x
) == REG_DEAD
)
530 ? lra_eliminate_regs_1 (insn
, XEXP (x
, 1), mem_mode
,
532 update_sp_offset
, full_p
)
535 x
= alloc_reg_note (REG_NOTE_KIND (x
), new_rtx
, XEXP (x
, 1));
539 /* ... fall through ... */
543 /* Now do eliminations in the rest of the chain. If this was
544 an EXPR_LIST, this might result in allocating more memory than is
545 strictly needed, but it simplifies the code. */
548 new_rtx
= lra_eliminate_regs_1 (insn
, XEXP (x
, 1), mem_mode
,
550 update_sp_offset
, full_p
);
551 if (new_rtx
!= XEXP (x
, 1))
553 gen_rtx_fmt_ee (GET_CODE (x
), GET_MODE (x
),
554 XEXP (x
, 0), new_rtx
);
562 /* We do not support elimination of a register that is modified.
563 elimination_effects has already make sure that this does not
569 /* We do not support elimination of a hard register that is
570 modified. LRA has already make sure that this does not
571 happen. The only remaining case we need to consider here is
572 that the increment value may be an eliminable register. */
573 if (GET_CODE (XEXP (x
, 1)) == PLUS
574 && XEXP (XEXP (x
, 1), 0) == XEXP (x
, 0))
576 rtx new_rtx
= lra_eliminate_regs_1 (insn
, XEXP (XEXP (x
, 1), 1),
577 mem_mode
, subst_p
, update_p
,
578 update_sp_offset
, full_p
);
580 if (new_rtx
!= XEXP (XEXP (x
, 1), 1))
581 return gen_rtx_fmt_ee (code
, GET_MODE (x
), XEXP (x
, 0),
582 gen_rtx_PLUS (GET_MODE (x
),
583 XEXP (x
, 0), new_rtx
));
587 case STRICT_LOW_PART
:
589 case SIGN_EXTEND
: case ZERO_EXTEND
:
590 case TRUNCATE
: case FLOAT_EXTEND
: case FLOAT_TRUNCATE
:
591 case FLOAT
: case FIX
:
592 case UNSIGNED_FIX
: case UNSIGNED_FLOAT
:
601 new_rtx
= lra_eliminate_regs_1 (insn
, XEXP (x
, 0), mem_mode
,
603 update_sp_offset
, full_p
);
604 if (new_rtx
!= XEXP (x
, 0))
605 return gen_rtx_fmt_e (code
, GET_MODE (x
), new_rtx
);
609 new_rtx
= lra_eliminate_regs_1 (insn
, SUBREG_REG (x
), mem_mode
,
611 update_sp_offset
, full_p
);
613 if (new_rtx
!= SUBREG_REG (x
))
615 int x_size
= GET_MODE_SIZE (GET_MODE (x
));
616 int new_size
= GET_MODE_SIZE (GET_MODE (new_rtx
));
618 if (MEM_P (new_rtx
) && x_size
<= new_size
)
620 SUBREG_REG (x
) = new_rtx
;
621 alter_subreg (&x
, false);
626 /* LRA can transform subregs itself. So don't call
627 simplify_gen_subreg until LRA transformations are
628 finished. Function simplify_gen_subreg can do
629 non-trivial transformations (like truncation) which
630 might make LRA work to fail. */
631 SUBREG_REG (x
) = new_rtx
;
635 return simplify_gen_subreg (GET_MODE (x
), new_rtx
,
636 GET_MODE (new_rtx
), SUBREG_BYTE (x
));
642 /* Our only special processing is to pass the mode of the MEM to our
643 recursive call and copy the flags. While we are here, handle this
644 case more efficiently. */
646 replace_equiv_address_nv
648 lra_eliminate_regs_1 (insn
, XEXP (x
, 0), GET_MODE (x
),
649 subst_p
, update_p
, update_sp_offset
, full_p
));
652 /* Handle insn_list USE that a call to a pure function may generate. */
653 new_rtx
= lra_eliminate_regs_1 (insn
, XEXP (x
, 0), VOIDmode
,
654 subst_p
, update_p
, update_sp_offset
, full_p
);
655 if (new_rtx
!= XEXP (x
, 0))
656 return gen_rtx_USE (GET_MODE (x
), new_rtx
);
667 /* Process each of our operands recursively. If any have changed, make a
669 fmt
= GET_RTX_FORMAT (code
);
670 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++, fmt
++)
674 new_rtx
= lra_eliminate_regs_1 (insn
, XEXP (x
, i
), mem_mode
,
676 update_sp_offset
, full_p
);
677 if (new_rtx
!= XEXP (x
, i
) && ! copied
)
679 x
= shallow_copy_rtx (x
);
682 XEXP (x
, i
) = new_rtx
;
684 else if (*fmt
== 'E')
687 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
689 new_rtx
= lra_eliminate_regs_1 (insn
, XVECEXP (x
, i
, j
), mem_mode
,
691 update_sp_offset
, full_p
);
692 if (new_rtx
!= XVECEXP (x
, i
, j
) && ! copied_vec
)
694 rtvec new_v
= gen_rtvec_v (XVECLEN (x
, i
),
698 x
= shallow_copy_rtx (x
);
704 XVECEXP (x
, i
, j
) = new_rtx
;
712 /* This function is used externally in subsequent passes of GCC. It
713 always does a full elimination of X. */
715 lra_eliminate_regs (rtx x
, machine_mode mem_mode
,
716 rtx insn ATTRIBUTE_UNUSED
)
718 return lra_eliminate_regs_1 (NULL
, x
, mem_mode
, true, false, 0, true);
721 /* Stack pointer offset before the current insn relative to one at the
722 func start. RTL insns can change SP explicitly. We keep the
723 changes from one insn to another through this variable. */
724 static HOST_WIDE_INT curr_sp_change
;
726 /* Scan rtx X for references to elimination source or target registers
727 in contexts that would prevent the elimination from happening.
728 Update the table of eliminables to reflect the changed state.
729 MEM_MODE is the mode of an enclosing MEM rtx, or VOIDmode if not
732 mark_not_eliminable (rtx x
, machine_mode mem_mode
)
734 enum rtx_code code
= GET_CODE (x
);
735 struct lra_elim_table
*ep
;
747 if (XEXP (x
, 0) == stack_pointer_rtx
748 && ((code
!= PRE_MODIFY
&& code
!= POST_MODIFY
)
749 || (GET_CODE (XEXP (x
, 1)) == PLUS
750 && XEXP (x
, 0) == XEXP (XEXP (x
, 1), 0)
751 && CONST_INT_P (XEXP (XEXP (x
, 1), 1)))))
753 int size
= GET_MODE_SIZE (mem_mode
);
756 /* If more bytes than MEM_MODE are pushed, account for
758 size
= PUSH_ROUNDING (size
);
760 if (code
== PRE_DEC
|| code
== POST_DEC
)
761 curr_sp_change
-= size
;
762 else if (code
== PRE_INC
|| code
== POST_INC
)
763 curr_sp_change
+= size
;
764 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
765 curr_sp_change
+= INTVAL (XEXP (XEXP (x
, 1), 1));
767 else if (REG_P (XEXP (x
, 0))
768 && REGNO (XEXP (x
, 0)) >= FIRST_PSEUDO_REGISTER
)
770 /* If we modify the source of an elimination rule, disable
771 it. Do the same if it is the destination and not the
772 hard frame register. */
773 for (ep
= reg_eliminate
;
774 ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
];
776 if (ep
->from_rtx
== XEXP (x
, 0)
777 || (ep
->to_rtx
== XEXP (x
, 0)
778 && ep
->to_rtx
!= hard_frame_pointer_rtx
))
779 setup_can_eliminate (ep
, false);
784 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
785 /* If using a hard register that is the source of an eliminate
786 we still think can be performed, note it cannot be
787 performed since we don't know how this hard register is
789 for (ep
= reg_eliminate
;
790 ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
];
792 if (ep
->from_rtx
== XEXP (x
, 0)
793 && ep
->to_rtx
!= hard_frame_pointer_rtx
)
794 setup_can_eliminate (ep
, false);
798 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
799 /* If clobbering a hard register that is the replacement
800 register for an elimination we still think can be
801 performed, note that it cannot be performed. Otherwise, we
802 need not be concerned about it. */
803 for (ep
= reg_eliminate
;
804 ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
];
806 if (ep
->to_rtx
== XEXP (x
, 0)
807 && ep
->to_rtx
!= hard_frame_pointer_rtx
)
808 setup_can_eliminate (ep
, false);
812 if (SET_DEST (x
) == stack_pointer_rtx
813 && GET_CODE (SET_SRC (x
)) == PLUS
814 && XEXP (SET_SRC (x
), 0) == SET_DEST (x
)
815 && CONST_INT_P (XEXP (SET_SRC (x
), 1)))
817 curr_sp_change
+= INTVAL (XEXP (SET_SRC (x
), 1));
820 if (! REG_P (SET_DEST (x
))
821 || REGNO (SET_DEST (x
)) >= FIRST_PSEUDO_REGISTER
)
822 mark_not_eliminable (SET_DEST (x
), mem_mode
);
825 /* See if this is setting the replacement hard register for
828 If DEST is the hard frame pointer, we do nothing because
829 we assume that all assignments to the frame pointer are
830 for non-local gotos and are being done at a time when
831 they are valid and do not disturb anything else. Some
832 machines want to eliminate a fake argument pointer (or
833 even a fake frame pointer) with either the real frame
834 pointer or the stack pointer. Assignments to the hard
835 frame pointer must not prevent this elimination. */
836 for (ep
= reg_eliminate
;
837 ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
];
839 if (ep
->to_rtx
== SET_DEST (x
)
840 && SET_DEST (x
) != hard_frame_pointer_rtx
)
841 setup_can_eliminate (ep
, false);
844 mark_not_eliminable (SET_SRC (x
), mem_mode
);
848 /* Our only special processing is to pass the mode of the MEM to
849 our recursive call. */
850 mark_not_eliminable (XEXP (x
, 0), GET_MODE (x
));
857 fmt
= GET_RTX_FORMAT (code
);
858 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++, fmt
++)
861 mark_not_eliminable (XEXP (x
, i
), mem_mode
);
862 else if (*fmt
== 'E')
863 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
864 mark_not_eliminable (XVECEXP (x
, i
, j
), mem_mode
);
870 #ifdef HARD_FRAME_POINTER_REGNUM
872 /* Find offset equivalence note for reg WHAT in INSN and return the
873 found elmination offset. If the note is not found, return NULL.
874 Remove the found note. */
876 remove_reg_equal_offset_note (rtx insn
, rtx what
)
880 for (link_loc
= ®_NOTES (insn
);
881 (link
= *link_loc
) != NULL_RTX
;
882 link_loc
= &XEXP (link
, 1))
883 if (REG_NOTE_KIND (link
) == REG_EQUAL
884 && GET_CODE (XEXP (link
, 0)) == PLUS
885 && XEXP (XEXP (link
, 0), 0) == what
886 && CONST_INT_P (XEXP (XEXP (link
, 0), 1)))
888 *link_loc
= XEXP (link
, 1);
889 return XEXP (XEXP (link
, 0), 1);
896 /* Scan INSN and eliminate all eliminable hard registers in it.
898 If REPLACE_P is true, do the replacement destructively. Also
899 delete the insn as dead it if it is setting an eliminable register.
901 If REPLACE_P is false, just update the offsets while keeping the
902 base register the same. If FIRST_P, use the sp offset for
903 elimination to sp. Otherwise, use UPDATE_SP_OFFSET for this. If
904 UPDATE_SP_OFFSET is non-zero, don't use difference of the offset
905 and the previous offset. Attach the note about used elimination
906 for insns setting frame pointer to update elimination easy (without
907 parsing already generated elimination insns to find offset
908 previously used) in future. */
911 eliminate_regs_in_insn (rtx_insn
*insn
, bool replace_p
, bool first_p
,
912 HOST_WIDE_INT update_sp_offset
)
914 int icode
= recog_memoized (insn
);
915 rtx old_set
= single_set (insn
);
918 rtx substed_operand
[MAX_RECOG_OPERANDS
];
919 rtx orig_operand
[MAX_RECOG_OPERANDS
];
920 struct lra_elim_table
*ep
;
921 rtx plus_src
, plus_cst_src
;
922 lra_insn_recog_data_t id
;
923 struct lra_static_insn_data
*static_id
;
925 if (icode
< 0 && asm_noperands (PATTERN (insn
)) < 0 && ! DEBUG_INSN_P (insn
))
927 lra_assert (GET_CODE (PATTERN (insn
)) == USE
928 || GET_CODE (PATTERN (insn
)) == CLOBBER
929 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
);
933 /* Check for setting an eliminable register. */
934 if (old_set
!= 0 && REG_P (SET_DEST (old_set
))
935 && (ep
= get_elimination (SET_DEST (old_set
))) != NULL
)
937 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
938 if (ep
->from_rtx
== SET_DEST (old_set
) && ep
->can_eliminate
)
940 bool delete_p
= replace_p
;
942 #ifdef HARD_FRAME_POINTER_REGNUM
943 if (ep
->from
== FRAME_POINTER_REGNUM
944 && ep
->to
== HARD_FRAME_POINTER_REGNUM
)
945 /* If this is setting the frame pointer register to the
946 hardware frame pointer register and this is an
947 elimination that will be done (tested above), this
948 insn is really adjusting the frame pointer downward
949 to compensate for the adjustment done before a
952 rtx src
= SET_SRC (old_set
);
953 rtx off
= remove_reg_equal_offset_note (insn
, ep
->to_rtx
);
955 /* We should never process such insn with non-zero
957 lra_assert (update_sp_offset
== 0);
961 || (GET_CODE (src
) == PLUS
962 && XEXP (src
, 0) == ep
->to_rtx
963 && CONST_INT_P (XEXP (src
, 1))))
965 HOST_WIDE_INT offset
;
969 SET_DEST (old_set
) = ep
->to_rtx
;
970 lra_update_insn_recog_data (insn
);
973 offset
= (off
!= NULL_RTX
? INTVAL (off
)
974 : src
== ep
->to_rtx
? 0 : INTVAL (XEXP (src
, 1)));
975 offset
-= (ep
->offset
- ep
->previous_offset
);
976 src
= plus_constant (Pmode
, ep
->to_rtx
, offset
);
978 /* First see if this insn remains valid when we
979 make the change. If not, keep the INSN_CODE
980 the same and let the constraint pass fit it
982 validate_change (insn
, &SET_SRC (old_set
), src
, 1);
983 validate_change (insn
, &SET_DEST (old_set
),
985 if (! apply_change_group ())
987 SET_SRC (old_set
) = src
;
988 SET_DEST (old_set
) = ep
->from_rtx
;
990 lra_update_insn_recog_data (insn
);
991 /* Add offset note for future updates. */
992 add_reg_note (insn
, REG_EQUAL
, src
);
998 /* This insn isn't serving a useful purpose. We delete it
999 when REPLACE is set. */
1001 lra_delete_dead_insn (insn
);
1006 /* We allow one special case which happens to work on all machines we
1007 currently support: a single set with the source or a REG_EQUAL
1008 note being a PLUS of an eliminable register and a constant. */
1009 plus_src
= plus_cst_src
= 0;
1010 if (old_set
&& REG_P (SET_DEST (old_set
)))
1012 if (GET_CODE (SET_SRC (old_set
)) == PLUS
)
1013 plus_src
= SET_SRC (old_set
);
1014 /* First see if the source is of the form (plus (...) CST). */
1016 && CONST_INT_P (XEXP (plus_src
, 1)))
1017 plus_cst_src
= plus_src
;
1018 /* Check that the first operand of the PLUS is a hard reg or
1019 the lowpart subreg of one. */
1022 rtx reg
= XEXP (plus_cst_src
, 0);
1024 if (GET_CODE (reg
) == SUBREG
&& subreg_lowpart_p (reg
))
1025 reg
= SUBREG_REG (reg
);
1027 if (!REG_P (reg
) || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
)
1033 rtx reg
= XEXP (plus_cst_src
, 0);
1034 HOST_WIDE_INT offset
= INTVAL (XEXP (plus_cst_src
, 1));
1036 if (GET_CODE (reg
) == SUBREG
)
1037 reg
= SUBREG_REG (reg
);
1039 if (REG_P (reg
) && (ep
= get_elimination (reg
)) != NULL
)
1041 rtx to_rtx
= replace_p
? ep
->to_rtx
: ep
->from_rtx
;
1045 if (update_sp_offset
== 0)
1046 offset
+= (ep
->offset
- ep
->previous_offset
);
1047 if (ep
->to_rtx
== stack_pointer_rtx
)
1050 offset
-= lra_get_insn_recog_data (insn
)->sp_offset
;
1052 offset
+= update_sp_offset
;
1054 offset
= trunc_int_for_mode (offset
, GET_MODE (plus_cst_src
));
1057 if (GET_CODE (XEXP (plus_cst_src
, 0)) == SUBREG
)
1058 to_rtx
= gen_lowpart (GET_MODE (XEXP (plus_cst_src
, 0)), to_rtx
);
1059 /* If we have a nonzero offset, and the source is already a
1060 simple REG, the following transformation would increase
1061 the cost of the insn by replacing a simple REG with (plus
1062 (reg sp) CST). So try only when we already had a PLUS
1064 if (offset
== 0 || plus_src
)
1066 rtx new_src
= plus_constant (GET_MODE (to_rtx
), to_rtx
, offset
);
1068 old_set
= single_set (insn
);
1070 /* First see if this insn remains valid when we make the
1071 change. If not, try to replace the whole pattern
1072 with a simple set (this may help if the original insn
1073 was a PARALLEL that was only recognized as single_set
1074 due to REG_UNUSED notes). If this isn't valid
1075 either, keep the INSN_CODE the same and let the
1076 constraint pass fix it up. */
1077 if (! validate_change (insn
, &SET_SRC (old_set
), new_src
, 0))
1079 rtx new_pat
= gen_rtx_SET (VOIDmode
,
1080 SET_DEST (old_set
), new_src
);
1082 if (! validate_change (insn
, &PATTERN (insn
), new_pat
, 0))
1083 SET_SRC (old_set
) = new_src
;
1085 lra_update_insn_recog_data (insn
);
1086 /* This can't have an effect on elimination offsets, so skip
1087 right to the end. */
1093 /* Eliminate all eliminable registers occurring in operands that
1094 can be handled by the constraint pass. */
1095 id
= lra_get_insn_recog_data (insn
);
1096 static_id
= id
->insn_static_data
;
1098 for (i
= 0; i
< static_id
->n_operands
; i
++)
1100 orig_operand
[i
] = *id
->operand_loc
[i
];
1101 substed_operand
[i
] = *id
->operand_loc
[i
];
1103 /* For an asm statement, every operand is eliminable. */
1104 if (icode
< 0 || insn_data
[icode
].operand
[i
].eliminable
)
1106 /* Check for setting a hard register that we know about. */
1107 if (static_id
->operand
[i
].type
!= OP_IN
1108 && REG_P (orig_operand
[i
]))
1110 /* If we are assigning to a hard register that can be
1111 eliminated, it must be as part of a PARALLEL, since
1112 the code above handles single SETs. This reg can not
1113 be longer eliminated -- it is forced by
1114 mark_not_eliminable. */
1115 for (ep
= reg_eliminate
;
1116 ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
];
1118 lra_assert (ep
->from_rtx
!= orig_operand
[i
]
1119 || ! ep
->can_eliminate
);
1122 /* Companion to the above plus substitution, we can allow
1123 invariants as the source of a plain move. */
1125 = lra_eliminate_regs_1 (insn
, *id
->operand_loc
[i
], VOIDmode
,
1126 replace_p
, ! replace_p
&& ! first_p
,
1127 update_sp_offset
, first_p
);
1128 if (substed_operand
[i
] != orig_operand
[i
])
1136 /* Substitute the operands; the new values are in the substed_operand
1138 for (i
= 0; i
< static_id
->n_operands
; i
++)
1139 *id
->operand_loc
[i
] = substed_operand
[i
];
1140 for (i
= 0; i
< static_id
->n_dups
; i
++)
1141 *id
->dup_loc
[i
] = substed_operand
[(int) static_id
->dup_num
[i
]];
1143 /* If we had a move insn but now we don't, re-recognize it.
1144 This will cause spurious re-recognition if the old move had a
1145 PARALLEL since the new one still will, but we can't call
1146 single_set without having put new body into the insn and the
1147 re-recognition won't hurt in this rare case. */
1148 id
= lra_update_insn_recog_data (insn
);
1149 static_id
= id
->insn_static_data
;
1152 /* Spill pseudos which are assigned to hard registers in SET. Add
1153 affected insns for processing in the subsequent constraint
1156 spill_pseudos (HARD_REG_SET set
)
1159 bitmap_head to_process
;
1162 if (hard_reg_set_empty_p (set
))
1164 if (lra_dump_file
!= NULL
)
1166 fprintf (lra_dump_file
, " Spilling non-eliminable hard regs:");
1167 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1168 if (TEST_HARD_REG_BIT (set
, i
))
1169 fprintf (lra_dump_file
, " %d", i
);
1170 fprintf (lra_dump_file
, "\n");
1172 bitmap_initialize (&to_process
, ®_obstack
);
1173 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_reg_num (); i
++)
1174 if (lra_reg_info
[i
].nrefs
!= 0 && reg_renumber
[i
] >= 0
1175 && overlaps_hard_reg_set_p (set
,
1176 PSEUDO_REGNO_MODE (i
), reg_renumber
[i
]))
1178 if (lra_dump_file
!= NULL
)
1179 fprintf (lra_dump_file
, " Spilling r%d(%d)\n",
1180 i
, reg_renumber
[i
]);
1181 reg_renumber
[i
] = -1;
1182 bitmap_ior_into (&to_process
, &lra_reg_info
[i
].insn_bitmap
);
1184 IOR_HARD_REG_SET (lra_no_alloc_regs
, set
);
1185 for (insn
= get_insns (); insn
!= NULL_RTX
; insn
= NEXT_INSN (insn
))
1186 if (bitmap_bit_p (&to_process
, INSN_UID (insn
)))
1188 lra_push_insn (insn
);
1189 lra_set_used_insn_alternative (insn
, -1);
1191 bitmap_clear (&to_process
);
1194 /* Update all offsets and possibility for elimination on eliminable
1195 registers. Spill pseudos assigned to registers which are
1196 uneliminable, update LRA_NO_ALLOC_REGS and ELIMINABLE_REG_SET. Add
1197 insns to INSNS_WITH_CHANGED_OFFSETS containing eliminable hard
1198 registers whose offsets should be changed. Return true if any
1199 elimination offset changed. */
1201 update_reg_eliminate (bitmap insns_with_changed_offsets
)
1204 struct lra_elim_table
*ep
, *ep1
;
1205 HARD_REG_SET temp_hard_reg_set
;
1207 /* Clear self elimination offsets. */
1208 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
1209 self_elim_offsets
[ep
->from
] = 0;
1210 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
1212 /* If it is a currently used elimination: update the previous
1214 if (elimination_map
[ep
->from
] == ep
)
1215 ep
->previous_offset
= ep
->offset
;
1217 prev
= ep
->prev_can_eliminate
;
1218 setup_can_eliminate (ep
, targetm
.can_eliminate (ep
->from
, ep
->to
));
1219 if (ep
->can_eliminate
&& ! prev
)
1221 /* It is possible that not eliminable register becomes
1222 eliminable because we took other reasons into account to
1223 set up eliminable regs in the initial set up. Just
1224 ignore new eliminable registers. */
1225 setup_can_eliminate (ep
, false);
1228 if (ep
->can_eliminate
!= prev
&& elimination_map
[ep
->from
] == ep
)
1230 /* We cannot use this elimination anymore -- find another
1232 if (lra_dump_file
!= NULL
)
1233 fprintf (lra_dump_file
,
1234 " Elimination %d to %d is not possible anymore\n",
1236 /* If after processing RTL we decides that SP can be used as
1237 a result of elimination, it can not be changed. */
1238 gcc_assert ((ep
->to_rtx
!= stack_pointer_rtx
)
1239 || (ep
->from
< FIRST_PSEUDO_REGISTER
1240 && fixed_regs
[ep
->from
]));
1241 /* Mark that is not eliminable anymore. */
1242 elimination_map
[ep
->from
] = NULL
;
1243 for (ep1
= ep
+ 1; ep1
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep1
++)
1244 if (ep1
->can_eliminate
&& ep1
->from
== ep
->from
)
1246 if (ep1
< ®_eliminate
[NUM_ELIMINABLE_REGS
])
1248 if (lra_dump_file
!= NULL
)
1249 fprintf (lra_dump_file
, " Using elimination %d to %d now\n",
1250 ep1
->from
, ep1
->to
);
1251 lra_assert (ep1
->previous_offset
== 0);
1252 ep1
->previous_offset
= ep
->offset
;
1256 /* There is no elimination anymore just use the hard
1257 register `from' itself. Setup self elimination
1258 offset to restore the original offset values. */
1259 if (lra_dump_file
!= NULL
)
1260 fprintf (lra_dump_file
, " %d is not eliminable at all\n",
1262 self_elim_offsets
[ep
->from
] = -ep
->offset
;
1263 if (ep
->offset
!= 0)
1264 bitmap_ior_into (insns_with_changed_offsets
,
1265 &lra_reg_info
[ep
->from
].insn_bitmap
);
1269 #ifdef ELIMINABLE_REGS
1270 INITIAL_ELIMINATION_OFFSET (ep
->from
, ep
->to
, ep
->offset
);
1272 INITIAL_FRAME_POINTER_OFFSET (ep
->offset
);
1275 setup_elimination_map ();
1277 CLEAR_HARD_REG_SET (temp_hard_reg_set
);
1278 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
1279 if (elimination_map
[ep
->from
] == NULL
)
1280 SET_HARD_REG_BIT (temp_hard_reg_set
, ep
->from
);
1281 else if (elimination_map
[ep
->from
] == ep
)
1283 /* Prevent the hard register into which we eliminate from
1284 the usage for pseudos. */
1285 if (ep
->from
!= ep
->to
)
1286 SET_HARD_REG_BIT (temp_hard_reg_set
, ep
->to
);
1287 if (ep
->previous_offset
!= ep
->offset
)
1289 bitmap_ior_into (insns_with_changed_offsets
,
1290 &lra_reg_info
[ep
->from
].insn_bitmap
);
1292 /* Update offset when the eliminate offset have been
1294 lra_update_reg_val_offset (lra_reg_info
[ep
->from
].val
,
1295 ep
->offset
- ep
->previous_offset
);
1299 IOR_HARD_REG_SET (lra_no_alloc_regs
, temp_hard_reg_set
);
1300 AND_COMPL_HARD_REG_SET (eliminable_regset
, temp_hard_reg_set
);
1301 spill_pseudos (temp_hard_reg_set
);
1305 /* Initialize the table of hard registers to eliminate.
1306 Pre-condition: global flag frame_pointer_needed has been set before
1307 calling this function. */
1309 init_elim_table (void)
1311 struct lra_elim_table
*ep
;
1312 #ifdef ELIMINABLE_REGS
1314 const struct elim_table_1
*ep1
;
1318 reg_eliminate
= XCNEWVEC (struct lra_elim_table
, NUM_ELIMINABLE_REGS
);
1320 memset (self_elim_offsets
, 0, sizeof (self_elim_offsets
));
1321 /* Initiate member values which will be never changed. */
1322 self_elim_table
.can_eliminate
= self_elim_table
.prev_can_eliminate
= true;
1323 self_elim_table
.previous_offset
= 0;
1324 #ifdef ELIMINABLE_REGS
1325 for (ep
= reg_eliminate
, ep1
= reg_eliminate_1
;
1326 ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++, ep1
++)
1328 ep
->offset
= ep
->previous_offset
= 0;
1329 ep
->from
= ep1
->from
;
1331 value_p
= (targetm
.can_eliminate (ep
->from
, ep
->to
)
1332 && ! (ep
->to
== STACK_POINTER_REGNUM
1333 && frame_pointer_needed
1334 && (! SUPPORTS_STACK_ALIGNMENT
1335 || ! stack_realign_fp
)));
1336 setup_can_eliminate (ep
, value_p
);
1339 reg_eliminate
[0].offset
= reg_eliminate
[0].previous_offset
= 0;
1340 reg_eliminate
[0].from
= reg_eliminate_1
[0].from
;
1341 reg_eliminate
[0].to
= reg_eliminate_1
[0].to
;
1342 setup_can_eliminate (®_eliminate
[0], ! frame_pointer_needed
);
1345 /* Build the FROM and TO REG rtx's. Note that code in gen_rtx_REG
1346 will cause, e.g., gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to
1347 equal stack_pointer_rtx. We depend on this. Threfore we switch
1348 off that we are in LRA temporarily. */
1349 lra_in_progress
= 0;
1350 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
1352 ep
->from_rtx
= gen_rtx_REG (Pmode
, ep
->from
);
1353 ep
->to_rtx
= gen_rtx_REG (Pmode
, ep
->to
);
1354 eliminable_reg_rtx
[ep
->from
] = ep
->from_rtx
;
1356 lra_in_progress
= 1;
1359 /* Function for initialization of elimination once per function. It
1360 sets up sp offset for each insn. */
1362 init_elimination (void)
1364 bool stop_to_sp_elimination_p
;
1367 struct lra_elim_table
*ep
;
1370 FOR_EACH_BB_FN (bb
, cfun
)
1373 stop_to_sp_elimination_p
= false;
1374 FOR_BB_INSNS (bb
, insn
)
1377 lra_get_insn_recog_data (insn
)->sp_offset
= curr_sp_change
;
1378 if (NONDEBUG_INSN_P (insn
))
1380 mark_not_eliminable (PATTERN (insn
), VOIDmode
);
1381 if (curr_sp_change
!= 0
1382 && find_reg_note (insn
, REG_LABEL_OPERAND
, NULL_RTX
))
1383 stop_to_sp_elimination_p
= true;
1386 if (! frame_pointer_needed
1387 && (curr_sp_change
!= 0 || stop_to_sp_elimination_p
)
1388 && bb
->succs
&& bb
->succs
->length () != 0)
1389 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
1390 if (ep
->to
== STACK_POINTER_REGNUM
)
1391 setup_can_eliminate (ep
, false);
1393 setup_elimination_map ();
1396 /* Eliminate hard reg given by its location LOC. */
1398 lra_eliminate_reg_if_possible (rtx
*loc
)
1401 struct lra_elim_table
*ep
;
1403 lra_assert (REG_P (*loc
));
1404 if ((regno
= REGNO (*loc
)) >= FIRST_PSEUDO_REGISTER
1405 || ! TEST_HARD_REG_BIT (lra_no_alloc_regs
, regno
))
1407 if ((ep
= get_elimination (*loc
)) != NULL
)
1411 /* Do (final if FINAL_P or first if FIRST_P) elimination in INSN. Add
1412 the insn for subsequent processing in the constraint pass, update
1415 process_insn_for_elimination (rtx_insn
*insn
, bool final_p
, bool first_p
)
1417 eliminate_regs_in_insn (insn
, final_p
, first_p
, 0);
1420 /* Check that insn changed its code. This is a case when a move
1421 insn becomes an add insn and we do not want to process the
1422 insn as a move anymore. */
1423 int icode
= recog (PATTERN (insn
), insn
, 0);
1425 if (icode
>= 0 && icode
!= INSN_CODE (insn
))
1427 INSN_CODE (insn
) = icode
;
1428 lra_update_insn_recog_data (insn
);
1430 lra_update_insn_regno_info (insn
);
1431 lra_push_insn (insn
);
1432 lra_set_used_insn_alternative (insn
, -1);
1436 /* Entry function to do final elimination if FINAL_P or to update
1437 elimination register offsets (FIRST_P if we are doing it the first
1440 lra_eliminate (bool final_p
, bool first_p
)
1443 bitmap_head insns_with_changed_offsets
;
1445 struct lra_elim_table
*ep
;
1447 gcc_assert (! final_p
|| ! first_p
);
1449 timevar_push (TV_LRA_ELIMINATE
);
1452 init_elimination ();
1454 bitmap_initialize (&insns_with_changed_offsets
, ®_obstack
);
1457 #ifdef ENABLE_CHECKING
1458 update_reg_eliminate (&insns_with_changed_offsets
);
1459 if (! bitmap_empty_p (&insns_with_changed_offsets
))
1462 /* We change eliminable hard registers in insns so we should do
1463 this for all insns containing any eliminable hard
1465 for (ep
= reg_eliminate
; ep
< ®_eliminate
[NUM_ELIMINABLE_REGS
]; ep
++)
1466 if (elimination_map
[ep
->from
] != NULL
)
1467 bitmap_ior_into (&insns_with_changed_offsets
,
1468 &lra_reg_info
[ep
->from
].insn_bitmap
);
1470 else if (! update_reg_eliminate (&insns_with_changed_offsets
))
1471 goto lra_eliminate_done
;
1472 if (lra_dump_file
!= NULL
)
1474 fprintf (lra_dump_file
, "New elimination table:\n");
1475 print_elim_table (lra_dump_file
);
1477 EXECUTE_IF_SET_IN_BITMAP (&insns_with_changed_offsets
, 0, uid
, bi
)
1478 /* A dead insn can be deleted in process_insn_for_elimination. */
1479 if (lra_insn_recog_data
[uid
] != NULL
)
1480 process_insn_for_elimination (lra_insn_recog_data
[uid
]->insn
,
1482 bitmap_clear (&insns_with_changed_offsets
);
1485 timevar_pop (TV_LRA_ELIMINATE
);