* config/nvptx/nvptx.c (nvptx_process_pars): Fix whitespace.
[official-gcc.git] / gcc / combine.c
blob2a66fd5c8bdf6dbccc407ab3290ee8723bb71448
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "predict.h"
86 #include "df.h"
87 #include "tm_p.h"
88 #include "optabs.h"
89 #include "regs.h"
90 #include "emit-rtl.h"
91 #include "recog.h"
92 #include "cgraph.h"
93 #include "stor-layout.h"
94 #include "cfgrtl.h"
95 #include "cfgcleanup.h"
96 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
97 #include "explow.h"
98 #include "insn-attr.h"
99 #include "rtlhooks-def.h"
100 #include "params.h"
101 #include "tree-pass.h"
102 #include "valtrack.h"
103 #include "rtl-iter.h"
104 #include "print-rtl.h"
106 #ifndef LOAD_EXTEND_OP
107 #define LOAD_EXTEND_OP(M) UNKNOWN
108 #endif
110 /* Number of attempts to combine instructions in this function. */
112 static int combine_attempts;
114 /* Number of attempts that got as far as substitution in this function. */
116 static int combine_merges;
118 /* Number of instructions combined with added SETs in this function. */
120 static int combine_extras;
122 /* Number of instructions combined in this function. */
124 static int combine_successes;
126 /* Totals over entire compilation. */
128 static int total_attempts, total_merges, total_extras, total_successes;
130 /* combine_instructions may try to replace the right hand side of the
131 second instruction with the value of an associated REG_EQUAL note
132 before throwing it at try_combine. That is problematic when there
133 is a REG_DEAD note for a register used in the old right hand side
134 and can cause distribute_notes to do wrong things. This is the
135 second instruction if it has been so modified, null otherwise. */
137 static rtx_insn *i2mod;
139 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
141 static rtx i2mod_old_rhs;
143 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
145 static rtx i2mod_new_rhs;
147 struct reg_stat_type {
148 /* Record last point of death of (hard or pseudo) register n. */
149 rtx_insn *last_death;
151 /* Record last point of modification of (hard or pseudo) register n. */
152 rtx_insn *last_set;
154 /* The next group of fields allows the recording of the last value assigned
155 to (hard or pseudo) register n. We use this information to see if an
156 operation being processed is redundant given a prior operation performed
157 on the register. For example, an `and' with a constant is redundant if
158 all the zero bits are already known to be turned off.
160 We use an approach similar to that used by cse, but change it in the
161 following ways:
163 (1) We do not want to reinitialize at each label.
164 (2) It is useful, but not critical, to know the actual value assigned
165 to a register. Often just its form is helpful.
167 Therefore, we maintain the following fields:
169 last_set_value the last value assigned
170 last_set_label records the value of label_tick when the
171 register was assigned
172 last_set_table_tick records the value of label_tick when a
173 value using the register is assigned
174 last_set_invalid set to nonzero when it is not valid
175 to use the value of this register in some
176 register's value
178 To understand the usage of these tables, it is important to understand
179 the distinction between the value in last_set_value being valid and
180 the register being validly contained in some other expression in the
181 table.
183 (The next two parameters are out of date).
185 reg_stat[i].last_set_value is valid if it is nonzero, and either
186 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
188 Register I may validly appear in any expression returned for the value
189 of another register if reg_n_sets[i] is 1. It may also appear in the
190 value for register J if reg_stat[j].last_set_invalid is zero, or
191 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
193 If an expression is found in the table containing a register which may
194 not validly appear in an expression, the register is replaced by
195 something that won't match, (clobber (const_int 0)). */
197 /* Record last value assigned to (hard or pseudo) register n. */
199 rtx last_set_value;
201 /* Record the value of label_tick when an expression involving register n
202 is placed in last_set_value. */
204 int last_set_table_tick;
206 /* Record the value of label_tick when the value for register n is placed in
207 last_set_value. */
209 int last_set_label;
211 /* These fields are maintained in parallel with last_set_value and are
212 used to store the mode in which the register was last set, the bits
213 that were known to be zero when it was last set, and the number of
214 sign bits copies it was known to have when it was last set. */
216 unsigned HOST_WIDE_INT last_set_nonzero_bits;
217 char last_set_sign_bit_copies;
218 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
220 /* Set nonzero if references to register n in expressions should not be
221 used. last_set_invalid is set nonzero when this register is being
222 assigned to and last_set_table_tick == label_tick. */
224 char last_set_invalid;
226 /* Some registers that are set more than once and used in more than one
227 basic block are nevertheless always set in similar ways. For example,
228 a QImode register may be loaded from memory in two places on a machine
229 where byte loads zero extend.
231 We record in the following fields if a register has some leading bits
232 that are always equal to the sign bit, and what we know about the
233 nonzero bits of a register, specifically which bits are known to be
234 zero.
236 If an entry is zero, it means that we don't know anything special. */
238 unsigned char sign_bit_copies;
240 unsigned HOST_WIDE_INT nonzero_bits;
242 /* Record the value of the label_tick when the last truncation
243 happened. The field truncated_to_mode is only valid if
244 truncation_label == label_tick. */
246 int truncation_label;
248 /* Record the last truncation seen for this register. If truncation
249 is not a nop to this mode we might be able to save an explicit
250 truncation if we know that value already contains a truncated
251 value. */
253 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
257 static vec<reg_stat_type> reg_stat;
259 /* One plus the highest pseudo for which we track REG_N_SETS.
260 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
261 but during combine_split_insns new pseudos can be created. As we don't have
262 updated DF information in that case, it is hard to initialize the array
263 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
264 so instead of growing the arrays, just assume all newly created pseudos
265 during combine might be set multiple times. */
267 static unsigned int reg_n_sets_max;
269 /* Record the luid of the last insn that invalidated memory
270 (anything that writes memory, and subroutine calls, but not pushes). */
272 static int mem_last_set;
274 /* Record the luid of the last CALL_INSN
275 so we can tell whether a potential combination crosses any calls. */
277 static int last_call_luid;
279 /* When `subst' is called, this is the insn that is being modified
280 (by combining in a previous insn). The PATTERN of this insn
281 is still the old pattern partially modified and it should not be
282 looked at, but this may be used to examine the successors of the insn
283 to judge whether a simplification is valid. */
285 static rtx_insn *subst_insn;
287 /* This is the lowest LUID that `subst' is currently dealing with.
288 get_last_value will not return a value if the register was set at or
289 after this LUID. If not for this mechanism, we could get confused if
290 I2 or I1 in try_combine were an insn that used the old value of a register
291 to obtain a new value. In that case, we might erroneously get the
292 new value of the register when we wanted the old one. */
294 static int subst_low_luid;
296 /* This contains any hard registers that are used in newpat; reg_dead_at_p
297 must consider all these registers to be always live. */
299 static HARD_REG_SET newpat_used_regs;
301 /* This is an insn to which a LOG_LINKS entry has been added. If this
302 insn is the earlier than I2 or I3, combine should rescan starting at
303 that location. */
305 static rtx_insn *added_links_insn;
307 /* Basic block in which we are performing combines. */
308 static basic_block this_basic_block;
309 static bool optimize_this_for_speed_p;
312 /* Length of the currently allocated uid_insn_cost array. */
314 static int max_uid_known;
316 /* The following array records the insn_rtx_cost for every insn
317 in the instruction stream. */
319 static int *uid_insn_cost;
321 /* The following array records the LOG_LINKS for every insn in the
322 instruction stream as struct insn_link pointers. */
324 struct insn_link {
325 rtx_insn *insn;
326 unsigned int regno;
327 struct insn_link *next;
330 static struct insn_link **uid_log_links;
332 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
333 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
335 #define FOR_EACH_LOG_LINK(L, INSN) \
336 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
338 /* Links for LOG_LINKS are allocated from this obstack. */
340 static struct obstack insn_link_obstack;
342 /* Allocate a link. */
344 static inline struct insn_link *
345 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
347 struct insn_link *l
348 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
349 sizeof (struct insn_link));
350 l->insn = insn;
351 l->regno = regno;
352 l->next = next;
353 return l;
356 /* Incremented for each basic block. */
358 static int label_tick;
360 /* Reset to label_tick for each extended basic block in scanning order. */
362 static int label_tick_ebb_start;
364 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
365 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
367 static machine_mode nonzero_bits_mode;
369 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
370 be safely used. It is zero while computing them and after combine has
371 completed. This former test prevents propagating values based on
372 previously set values, which can be incorrect if a variable is modified
373 in a loop. */
375 static int nonzero_sign_valid;
378 /* Record one modification to rtl structure
379 to be undone by storing old_contents into *where. */
381 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
383 struct undo
385 struct undo *next;
386 enum undo_kind kind;
387 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
388 union { rtx *r; int *i; struct insn_link **l; } where;
391 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
392 num_undo says how many are currently recorded.
394 other_insn is nonzero if we have modified some other insn in the process
395 of working on subst_insn. It must be verified too. */
397 struct undobuf
399 struct undo *undos;
400 struct undo *frees;
401 rtx_insn *other_insn;
404 static struct undobuf undobuf;
406 /* Number of times the pseudo being substituted for
407 was found and replaced. */
409 static int n_occurrences;
411 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
412 machine_mode,
413 unsigned HOST_WIDE_INT,
414 unsigned HOST_WIDE_INT *);
415 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
416 machine_mode,
417 unsigned int, unsigned int *);
418 static void do_SUBST (rtx *, rtx);
419 static void do_SUBST_INT (int *, int);
420 static void init_reg_last (void);
421 static void setup_incoming_promotions (rtx_insn *);
422 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
423 static int cant_combine_insn_p (rtx_insn *);
424 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
425 rtx_insn *, rtx_insn *, rtx *, rtx *);
426 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
427 static int contains_muldiv (rtx);
428 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
429 int *, rtx_insn *);
430 static void undo_all (void);
431 static void undo_commit (void);
432 static rtx *find_split_point (rtx *, rtx_insn *, bool);
433 static rtx subst (rtx, rtx, rtx, int, int, int);
434 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
435 static rtx simplify_if_then_else (rtx);
436 static rtx simplify_set (rtx);
437 static rtx simplify_logical (rtx);
438 static rtx expand_compound_operation (rtx);
439 static const_rtx expand_field_assignment (const_rtx);
440 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
441 rtx, unsigned HOST_WIDE_INT, int, int, int);
442 static rtx extract_left_shift (rtx, int);
443 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
444 unsigned HOST_WIDE_INT *);
445 static rtx canon_reg_for_combine (rtx, rtx);
446 static rtx force_to_mode (rtx, machine_mode,
447 unsigned HOST_WIDE_INT, int);
448 static rtx if_then_else_cond (rtx, rtx *, rtx *);
449 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
450 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
451 static rtx make_field_assignment (rtx);
452 static rtx apply_distributive_law (rtx);
453 static rtx distribute_and_simplify_rtx (rtx, int);
454 static rtx simplify_and_const_int_1 (machine_mode, rtx,
455 unsigned HOST_WIDE_INT);
456 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
457 unsigned HOST_WIDE_INT);
458 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
459 HOST_WIDE_INT, machine_mode, int *);
460 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
461 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
462 int);
463 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
464 static rtx gen_lowpart_for_combine (machine_mode, rtx);
465 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
466 rtx, rtx *);
467 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
468 static void update_table_tick (rtx);
469 static void record_value_for_reg (rtx, rtx_insn *, rtx);
470 static void check_promoted_subreg (rtx_insn *, rtx);
471 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
472 static void record_dead_and_set_regs (rtx_insn *);
473 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
474 static rtx get_last_value (const_rtx);
475 static int use_crosses_set_p (const_rtx, int);
476 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
477 static int reg_dead_at_p (rtx, rtx_insn *);
478 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
479 static int reg_bitfield_target_p (rtx, rtx);
480 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
481 static void distribute_links (struct insn_link *);
482 static void mark_used_regs_combine (rtx);
483 static void record_promoted_value (rtx_insn *, rtx);
484 static bool unmentioned_reg_p (rtx, rtx);
485 static void record_truncated_values (rtx *, void *);
486 static bool reg_truncated_to_mode (machine_mode, const_rtx);
487 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
490 /* It is not safe to use ordinary gen_lowpart in combine.
491 See comments in gen_lowpart_for_combine. */
492 #undef RTL_HOOKS_GEN_LOWPART
493 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
495 /* Our implementation of gen_lowpart never emits a new pseudo. */
496 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
497 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
499 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
500 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
502 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
503 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
505 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
506 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
508 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
511 /* Convenience wrapper for the canonicalize_comparison target hook.
512 Target hooks cannot use enum rtx_code. */
513 static inline void
514 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
515 bool op0_preserve_value)
517 int code_int = (int)*code;
518 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
519 *code = (enum rtx_code)code_int;
522 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
523 PATTERN can not be split. Otherwise, it returns an insn sequence.
524 This is a wrapper around split_insns which ensures that the
525 reg_stat vector is made larger if the splitter creates a new
526 register. */
528 static rtx_insn *
529 combine_split_insns (rtx pattern, rtx_insn *insn)
531 rtx_insn *ret;
532 unsigned int nregs;
534 ret = split_insns (pattern, insn);
535 nregs = max_reg_num ();
536 if (nregs > reg_stat.length ())
537 reg_stat.safe_grow_cleared (nregs);
538 return ret;
541 /* This is used by find_single_use to locate an rtx in LOC that
542 contains exactly one use of DEST, which is typically either a REG
543 or CC0. It returns a pointer to the innermost rtx expression
544 containing DEST. Appearances of DEST that are being used to
545 totally replace it are not counted. */
547 static rtx *
548 find_single_use_1 (rtx dest, rtx *loc)
550 rtx x = *loc;
551 enum rtx_code code = GET_CODE (x);
552 rtx *result = NULL;
553 rtx *this_result;
554 int i;
555 const char *fmt;
557 switch (code)
559 case CONST:
560 case LABEL_REF:
561 case SYMBOL_REF:
562 CASE_CONST_ANY:
563 case CLOBBER:
564 return 0;
566 case SET:
567 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
568 of a REG that occupies all of the REG, the insn uses DEST if
569 it is mentioned in the destination or the source. Otherwise, we
570 need just check the source. */
571 if (GET_CODE (SET_DEST (x)) != CC0
572 && GET_CODE (SET_DEST (x)) != PC
573 && !REG_P (SET_DEST (x))
574 && ! (GET_CODE (SET_DEST (x)) == SUBREG
575 && REG_P (SUBREG_REG (SET_DEST (x)))
576 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
577 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
578 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
579 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
580 break;
582 return find_single_use_1 (dest, &SET_SRC (x));
584 case MEM:
585 case SUBREG:
586 return find_single_use_1 (dest, &XEXP (x, 0));
588 default:
589 break;
592 /* If it wasn't one of the common cases above, check each expression and
593 vector of this code. Look for a unique usage of DEST. */
595 fmt = GET_RTX_FORMAT (code);
596 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
598 if (fmt[i] == 'e')
600 if (dest == XEXP (x, i)
601 || (REG_P (dest) && REG_P (XEXP (x, i))
602 && REGNO (dest) == REGNO (XEXP (x, i))))
603 this_result = loc;
604 else
605 this_result = find_single_use_1 (dest, &XEXP (x, i));
607 if (result == NULL)
608 result = this_result;
609 else if (this_result)
610 /* Duplicate usage. */
611 return NULL;
613 else if (fmt[i] == 'E')
615 int j;
617 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
619 if (XVECEXP (x, i, j) == dest
620 || (REG_P (dest)
621 && REG_P (XVECEXP (x, i, j))
622 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
623 this_result = loc;
624 else
625 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
627 if (result == NULL)
628 result = this_result;
629 else if (this_result)
630 return NULL;
635 return result;
639 /* See if DEST, produced in INSN, is used only a single time in the
640 sequel. If so, return a pointer to the innermost rtx expression in which
641 it is used.
643 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
645 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
646 care about REG_DEAD notes or LOG_LINKS.
648 Otherwise, we find the single use by finding an insn that has a
649 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
650 only referenced once in that insn, we know that it must be the first
651 and last insn referencing DEST. */
653 static rtx *
654 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
656 basic_block bb;
657 rtx_insn *next;
658 rtx *result;
659 struct insn_link *link;
661 if (dest == cc0_rtx)
663 next = NEXT_INSN (insn);
664 if (next == 0
665 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
666 return 0;
668 result = find_single_use_1 (dest, &PATTERN (next));
669 if (result && ploc)
670 *ploc = next;
671 return result;
674 if (!REG_P (dest))
675 return 0;
677 bb = BLOCK_FOR_INSN (insn);
678 for (next = NEXT_INSN (insn);
679 next && BLOCK_FOR_INSN (next) == bb;
680 next = NEXT_INSN (next))
681 if (INSN_P (next) && dead_or_set_p (next, dest))
683 FOR_EACH_LOG_LINK (link, next)
684 if (link->insn == insn && link->regno == REGNO (dest))
685 break;
687 if (link)
689 result = find_single_use_1 (dest, &PATTERN (next));
690 if (ploc)
691 *ploc = next;
692 return result;
696 return 0;
699 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
700 insn. The substitution can be undone by undo_all. If INTO is already
701 set to NEWVAL, do not record this change. Because computing NEWVAL might
702 also call SUBST, we have to compute it before we put anything into
703 the undo table. */
705 static void
706 do_SUBST (rtx *into, rtx newval)
708 struct undo *buf;
709 rtx oldval = *into;
711 if (oldval == newval)
712 return;
714 /* We'd like to catch as many invalid transformations here as
715 possible. Unfortunately, there are way too many mode changes
716 that are perfectly valid, so we'd waste too much effort for
717 little gain doing the checks here. Focus on catching invalid
718 transformations involving integer constants. */
719 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
720 && CONST_INT_P (newval))
722 /* Sanity check that we're replacing oldval with a CONST_INT
723 that is a valid sign-extension for the original mode. */
724 gcc_assert (INTVAL (newval)
725 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
727 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
728 CONST_INT is not valid, because after the replacement, the
729 original mode would be gone. Unfortunately, we can't tell
730 when do_SUBST is called to replace the operand thereof, so we
731 perform this test on oldval instead, checking whether an
732 invalid replacement took place before we got here. */
733 gcc_assert (!(GET_CODE (oldval) == SUBREG
734 && CONST_INT_P (SUBREG_REG (oldval))));
735 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
736 && CONST_INT_P (XEXP (oldval, 0))));
739 if (undobuf.frees)
740 buf = undobuf.frees, undobuf.frees = buf->next;
741 else
742 buf = XNEW (struct undo);
744 buf->kind = UNDO_RTX;
745 buf->where.r = into;
746 buf->old_contents.r = oldval;
747 *into = newval;
749 buf->next = undobuf.undos, undobuf.undos = buf;
752 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
754 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
755 for the value of a HOST_WIDE_INT value (including CONST_INT) is
756 not safe. */
758 static void
759 do_SUBST_INT (int *into, int newval)
761 struct undo *buf;
762 int oldval = *into;
764 if (oldval == newval)
765 return;
767 if (undobuf.frees)
768 buf = undobuf.frees, undobuf.frees = buf->next;
769 else
770 buf = XNEW (struct undo);
772 buf->kind = UNDO_INT;
773 buf->where.i = into;
774 buf->old_contents.i = oldval;
775 *into = newval;
777 buf->next = undobuf.undos, undobuf.undos = buf;
780 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
782 /* Similar to SUBST, but just substitute the mode. This is used when
783 changing the mode of a pseudo-register, so that any other
784 references to the entry in the regno_reg_rtx array will change as
785 well. */
787 static void
788 do_SUBST_MODE (rtx *into, machine_mode newval)
790 struct undo *buf;
791 machine_mode oldval = GET_MODE (*into);
793 if (oldval == newval)
794 return;
796 if (undobuf.frees)
797 buf = undobuf.frees, undobuf.frees = buf->next;
798 else
799 buf = XNEW (struct undo);
801 buf->kind = UNDO_MODE;
802 buf->where.r = into;
803 buf->old_contents.m = oldval;
804 adjust_reg_mode (*into, newval);
806 buf->next = undobuf.undos, undobuf.undos = buf;
809 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
811 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
813 static void
814 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
816 struct undo *buf;
817 struct insn_link * oldval = *into;
819 if (oldval == newval)
820 return;
822 if (undobuf.frees)
823 buf = undobuf.frees, undobuf.frees = buf->next;
824 else
825 buf = XNEW (struct undo);
827 buf->kind = UNDO_LINKS;
828 buf->where.l = into;
829 buf->old_contents.l = oldval;
830 *into = newval;
832 buf->next = undobuf.undos, undobuf.undos = buf;
835 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
837 /* Subroutine of try_combine. Determine whether the replacement patterns
838 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
839 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
840 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
841 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
842 of all the instructions can be estimated and the replacements are more
843 expensive than the original sequence. */
845 static bool
846 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
847 rtx newpat, rtx newi2pat, rtx newotherpat)
849 int i0_cost, i1_cost, i2_cost, i3_cost;
850 int new_i2_cost, new_i3_cost;
851 int old_cost, new_cost;
853 /* Lookup the original insn_rtx_costs. */
854 i2_cost = INSN_COST (i2);
855 i3_cost = INSN_COST (i3);
857 if (i1)
859 i1_cost = INSN_COST (i1);
860 if (i0)
862 i0_cost = INSN_COST (i0);
863 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
864 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
866 else
868 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
869 ? i1_cost + i2_cost + i3_cost : 0);
870 i0_cost = 0;
873 else
875 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
876 i1_cost = i0_cost = 0;
879 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
880 correct that. */
881 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
882 old_cost -= i1_cost;
885 /* Calculate the replacement insn_rtx_costs. */
886 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
887 if (newi2pat)
889 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
890 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
891 ? new_i2_cost + new_i3_cost : 0;
893 else
895 new_cost = new_i3_cost;
896 new_i2_cost = 0;
899 if (undobuf.other_insn)
901 int old_other_cost, new_other_cost;
903 old_other_cost = INSN_COST (undobuf.other_insn);
904 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
905 if (old_other_cost > 0 && new_other_cost > 0)
907 old_cost += old_other_cost;
908 new_cost += new_other_cost;
910 else
911 old_cost = 0;
914 /* Disallow this combination if both new_cost and old_cost are greater than
915 zero, and new_cost is greater than old cost. */
916 int reject = old_cost > 0 && new_cost > old_cost;
918 if (dump_file)
920 fprintf (dump_file, "%s combination of insns ",
921 reject ? "rejecting" : "allowing");
922 if (i0)
923 fprintf (dump_file, "%d, ", INSN_UID (i0));
924 if (i1 && INSN_UID (i1) != INSN_UID (i2))
925 fprintf (dump_file, "%d, ", INSN_UID (i1));
926 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
928 fprintf (dump_file, "original costs ");
929 if (i0)
930 fprintf (dump_file, "%d + ", i0_cost);
931 if (i1 && INSN_UID (i1) != INSN_UID (i2))
932 fprintf (dump_file, "%d + ", i1_cost);
933 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
935 if (newi2pat)
936 fprintf (dump_file, "replacement costs %d + %d = %d\n",
937 new_i2_cost, new_i3_cost, new_cost);
938 else
939 fprintf (dump_file, "replacement cost %d\n", new_cost);
942 if (reject)
943 return false;
945 /* Update the uid_insn_cost array with the replacement costs. */
946 INSN_COST (i2) = new_i2_cost;
947 INSN_COST (i3) = new_i3_cost;
948 if (i1)
950 INSN_COST (i1) = 0;
951 if (i0)
952 INSN_COST (i0) = 0;
955 return true;
959 /* Delete any insns that copy a register to itself. */
961 static void
962 delete_noop_moves (void)
964 rtx_insn *insn, *next;
965 basic_block bb;
967 FOR_EACH_BB_FN (bb, cfun)
969 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
971 next = NEXT_INSN (insn);
972 if (INSN_P (insn) && noop_move_p (insn))
974 if (dump_file)
975 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
977 delete_insn_and_edges (insn);
984 /* Return false if we do not want to (or cannot) combine DEF. */
985 static bool
986 can_combine_def_p (df_ref def)
988 /* Do not consider if it is pre/post modification in MEM. */
989 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
990 return false;
992 unsigned int regno = DF_REF_REGNO (def);
994 /* Do not combine frame pointer adjustments. */
995 if ((regno == FRAME_POINTER_REGNUM
996 && (!reload_completed || frame_pointer_needed))
997 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
998 && regno == HARD_FRAME_POINTER_REGNUM
999 && (!reload_completed || frame_pointer_needed))
1000 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1001 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1002 return false;
1004 return true;
1007 /* Return false if we do not want to (or cannot) combine USE. */
1008 static bool
1009 can_combine_use_p (df_ref use)
1011 /* Do not consider the usage of the stack pointer by function call. */
1012 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1013 return false;
1015 return true;
1018 /* Fill in log links field for all insns. */
1020 static void
1021 create_log_links (void)
1023 basic_block bb;
1024 rtx_insn **next_use;
1025 rtx_insn *insn;
1026 df_ref def, use;
1028 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1030 /* Pass through each block from the end, recording the uses of each
1031 register and establishing log links when def is encountered.
1032 Note that we do not clear next_use array in order to save time,
1033 so we have to test whether the use is in the same basic block as def.
1035 There are a few cases below when we do not consider the definition or
1036 usage -- these are taken from original flow.c did. Don't ask me why it is
1037 done this way; I don't know and if it works, I don't want to know. */
1039 FOR_EACH_BB_FN (bb, cfun)
1041 FOR_BB_INSNS_REVERSE (bb, insn)
1043 if (!NONDEBUG_INSN_P (insn))
1044 continue;
1046 /* Log links are created only once. */
1047 gcc_assert (!LOG_LINKS (insn));
1049 FOR_EACH_INSN_DEF (def, insn)
1051 unsigned int regno = DF_REF_REGNO (def);
1052 rtx_insn *use_insn;
1054 if (!next_use[regno])
1055 continue;
1057 if (!can_combine_def_p (def))
1058 continue;
1060 use_insn = next_use[regno];
1061 next_use[regno] = NULL;
1063 if (BLOCK_FOR_INSN (use_insn) != bb)
1064 continue;
1066 /* flow.c claimed:
1068 We don't build a LOG_LINK for hard registers contained
1069 in ASM_OPERANDs. If these registers get replaced,
1070 we might wind up changing the semantics of the insn,
1071 even if reload can make what appear to be valid
1072 assignments later. */
1073 if (regno < FIRST_PSEUDO_REGISTER
1074 && asm_noperands (PATTERN (use_insn)) >= 0)
1075 continue;
1077 /* Don't add duplicate links between instructions. */
1078 struct insn_link *links;
1079 FOR_EACH_LOG_LINK (links, use_insn)
1080 if (insn == links->insn && regno == links->regno)
1081 break;
1083 if (!links)
1084 LOG_LINKS (use_insn)
1085 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1088 FOR_EACH_INSN_USE (use, insn)
1089 if (can_combine_use_p (use))
1090 next_use[DF_REF_REGNO (use)] = insn;
1094 free (next_use);
1097 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1098 true if we found a LOG_LINK that proves that A feeds B. This only works
1099 if there are no instructions between A and B which could have a link
1100 depending on A, since in that case we would not record a link for B.
1101 We also check the implicit dependency created by a cc0 setter/user
1102 pair. */
1104 static bool
1105 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1107 struct insn_link *links;
1108 FOR_EACH_LOG_LINK (links, b)
1109 if (links->insn == a)
1110 return true;
1111 if (HAVE_cc0 && sets_cc0_p (a))
1112 return true;
1113 return false;
1116 /* Main entry point for combiner. F is the first insn of the function.
1117 NREGS is the first unused pseudo-reg number.
1119 Return nonzero if the combiner has turned an indirect jump
1120 instruction into a direct jump. */
1121 static int
1122 combine_instructions (rtx_insn *f, unsigned int nregs)
1124 rtx_insn *insn, *next;
1125 rtx_insn *prev;
1126 struct insn_link *links, *nextlinks;
1127 rtx_insn *first;
1128 basic_block last_bb;
1130 int new_direct_jump_p = 0;
1132 for (first = f; first && !INSN_P (first); )
1133 first = NEXT_INSN (first);
1134 if (!first)
1135 return 0;
1137 combine_attempts = 0;
1138 combine_merges = 0;
1139 combine_extras = 0;
1140 combine_successes = 0;
1142 rtl_hooks = combine_rtl_hooks;
1144 reg_stat.safe_grow_cleared (nregs);
1146 init_recog_no_volatile ();
1148 /* Allocate array for insn info. */
1149 max_uid_known = get_max_uid ();
1150 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1151 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1152 gcc_obstack_init (&insn_link_obstack);
1154 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1156 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1157 problems when, for example, we have j <<= 1 in a loop. */
1159 nonzero_sign_valid = 0;
1160 label_tick = label_tick_ebb_start = 1;
1162 /* Scan all SETs and see if we can deduce anything about what
1163 bits are known to be zero for some registers and how many copies
1164 of the sign bit are known to exist for those registers.
1166 Also set any known values so that we can use it while searching
1167 for what bits are known to be set. */
1169 setup_incoming_promotions (first);
1170 /* Allow the entry block and the first block to fall into the same EBB.
1171 Conceptually the incoming promotions are assigned to the entry block. */
1172 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1174 create_log_links ();
1175 FOR_EACH_BB_FN (this_basic_block, cfun)
1177 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1178 last_call_luid = 0;
1179 mem_last_set = -1;
1181 label_tick++;
1182 if (!single_pred_p (this_basic_block)
1183 || single_pred (this_basic_block) != last_bb)
1184 label_tick_ebb_start = label_tick;
1185 last_bb = this_basic_block;
1187 FOR_BB_INSNS (this_basic_block, insn)
1188 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1190 rtx links;
1192 subst_low_luid = DF_INSN_LUID (insn);
1193 subst_insn = insn;
1195 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1196 insn);
1197 record_dead_and_set_regs (insn);
1199 if (AUTO_INC_DEC)
1200 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1201 if (REG_NOTE_KIND (links) == REG_INC)
1202 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1203 insn);
1205 /* Record the current insn_rtx_cost of this instruction. */
1206 if (NONJUMP_INSN_P (insn))
1207 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1208 optimize_this_for_speed_p);
1209 if (dump_file)
1210 fprintf (dump_file, "insn_cost %d: %d\n",
1211 INSN_UID (insn), INSN_COST (insn));
1215 nonzero_sign_valid = 1;
1217 /* Now scan all the insns in forward order. */
1218 label_tick = label_tick_ebb_start = 1;
1219 init_reg_last ();
1220 setup_incoming_promotions (first);
1221 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1222 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1224 FOR_EACH_BB_FN (this_basic_block, cfun)
1226 rtx_insn *last_combined_insn = NULL;
1227 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1228 last_call_luid = 0;
1229 mem_last_set = -1;
1231 label_tick++;
1232 if (!single_pred_p (this_basic_block)
1233 || single_pred (this_basic_block) != last_bb)
1234 label_tick_ebb_start = label_tick;
1235 last_bb = this_basic_block;
1237 rtl_profile_for_bb (this_basic_block);
1238 for (insn = BB_HEAD (this_basic_block);
1239 insn != NEXT_INSN (BB_END (this_basic_block));
1240 insn = next ? next : NEXT_INSN (insn))
1242 next = 0;
1243 if (!NONDEBUG_INSN_P (insn))
1244 continue;
1246 while (last_combined_insn
1247 && last_combined_insn->deleted ())
1248 last_combined_insn = PREV_INSN (last_combined_insn);
1249 if (last_combined_insn == NULL_RTX
1250 || BARRIER_P (last_combined_insn)
1251 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1252 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1253 last_combined_insn = insn;
1255 /* See if we know about function return values before this
1256 insn based upon SUBREG flags. */
1257 check_promoted_subreg (insn, PATTERN (insn));
1259 /* See if we can find hardregs and subreg of pseudos in
1260 narrower modes. This could help turning TRUNCATEs
1261 into SUBREGs. */
1262 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1264 /* Try this insn with each insn it links back to. */
1266 FOR_EACH_LOG_LINK (links, insn)
1267 if ((next = try_combine (insn, links->insn, NULL,
1268 NULL, &new_direct_jump_p,
1269 last_combined_insn)) != 0)
1271 statistics_counter_event (cfun, "two-insn combine", 1);
1272 goto retry;
1275 /* Try each sequence of three linked insns ending with this one. */
1277 if (max_combine >= 3)
1278 FOR_EACH_LOG_LINK (links, insn)
1280 rtx_insn *link = links->insn;
1282 /* If the linked insn has been replaced by a note, then there
1283 is no point in pursuing this chain any further. */
1284 if (NOTE_P (link))
1285 continue;
1287 FOR_EACH_LOG_LINK (nextlinks, link)
1288 if ((next = try_combine (insn, link, nextlinks->insn,
1289 NULL, &new_direct_jump_p,
1290 last_combined_insn)) != 0)
1292 statistics_counter_event (cfun, "three-insn combine", 1);
1293 goto retry;
1297 /* Try to combine a jump insn that uses CC0
1298 with a preceding insn that sets CC0, and maybe with its
1299 logical predecessor as well.
1300 This is how we make decrement-and-branch insns.
1301 We need this special code because data flow connections
1302 via CC0 do not get entered in LOG_LINKS. */
1304 if (HAVE_cc0
1305 && JUMP_P (insn)
1306 && (prev = prev_nonnote_insn (insn)) != 0
1307 && NONJUMP_INSN_P (prev)
1308 && sets_cc0_p (PATTERN (prev)))
1310 if ((next = try_combine (insn, prev, NULL, NULL,
1311 &new_direct_jump_p,
1312 last_combined_insn)) != 0)
1313 goto retry;
1315 FOR_EACH_LOG_LINK (nextlinks, prev)
1316 if ((next = try_combine (insn, prev, nextlinks->insn,
1317 NULL, &new_direct_jump_p,
1318 last_combined_insn)) != 0)
1319 goto retry;
1322 /* Do the same for an insn that explicitly references CC0. */
1323 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1324 && (prev = prev_nonnote_insn (insn)) != 0
1325 && NONJUMP_INSN_P (prev)
1326 && sets_cc0_p (PATTERN (prev))
1327 && GET_CODE (PATTERN (insn)) == SET
1328 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1330 if ((next = try_combine (insn, prev, NULL, NULL,
1331 &new_direct_jump_p,
1332 last_combined_insn)) != 0)
1333 goto retry;
1335 FOR_EACH_LOG_LINK (nextlinks, prev)
1336 if ((next = try_combine (insn, prev, nextlinks->insn,
1337 NULL, &new_direct_jump_p,
1338 last_combined_insn)) != 0)
1339 goto retry;
1342 /* Finally, see if any of the insns that this insn links to
1343 explicitly references CC0. If so, try this insn, that insn,
1344 and its predecessor if it sets CC0. */
1345 if (HAVE_cc0)
1347 FOR_EACH_LOG_LINK (links, insn)
1348 if (NONJUMP_INSN_P (links->insn)
1349 && GET_CODE (PATTERN (links->insn)) == SET
1350 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1351 && (prev = prev_nonnote_insn (links->insn)) != 0
1352 && NONJUMP_INSN_P (prev)
1353 && sets_cc0_p (PATTERN (prev))
1354 && (next = try_combine (insn, links->insn,
1355 prev, NULL, &new_direct_jump_p,
1356 last_combined_insn)) != 0)
1357 goto retry;
1360 /* Try combining an insn with two different insns whose results it
1361 uses. */
1362 if (max_combine >= 3)
1363 FOR_EACH_LOG_LINK (links, insn)
1364 for (nextlinks = links->next; nextlinks;
1365 nextlinks = nextlinks->next)
1366 if ((next = try_combine (insn, links->insn,
1367 nextlinks->insn, NULL,
1368 &new_direct_jump_p,
1369 last_combined_insn)) != 0)
1372 statistics_counter_event (cfun, "three-insn combine", 1);
1373 goto retry;
1376 /* Try four-instruction combinations. */
1377 if (max_combine >= 4)
1378 FOR_EACH_LOG_LINK (links, insn)
1380 struct insn_link *next1;
1381 rtx_insn *link = links->insn;
1383 /* If the linked insn has been replaced by a note, then there
1384 is no point in pursuing this chain any further. */
1385 if (NOTE_P (link))
1386 continue;
1388 FOR_EACH_LOG_LINK (next1, link)
1390 rtx_insn *link1 = next1->insn;
1391 if (NOTE_P (link1))
1392 continue;
1393 /* I0 -> I1 -> I2 -> I3. */
1394 FOR_EACH_LOG_LINK (nextlinks, link1)
1395 if ((next = try_combine (insn, link, link1,
1396 nextlinks->insn,
1397 &new_direct_jump_p,
1398 last_combined_insn)) != 0)
1400 statistics_counter_event (cfun, "four-insn combine", 1);
1401 goto retry;
1403 /* I0, I1 -> I2, I2 -> I3. */
1404 for (nextlinks = next1->next; nextlinks;
1405 nextlinks = nextlinks->next)
1406 if ((next = try_combine (insn, link, link1,
1407 nextlinks->insn,
1408 &new_direct_jump_p,
1409 last_combined_insn)) != 0)
1411 statistics_counter_event (cfun, "four-insn combine", 1);
1412 goto retry;
1416 for (next1 = links->next; next1; next1 = next1->next)
1418 rtx_insn *link1 = next1->insn;
1419 if (NOTE_P (link1))
1420 continue;
1421 /* I0 -> I2; I1, I2 -> I3. */
1422 FOR_EACH_LOG_LINK (nextlinks, link)
1423 if ((next = try_combine (insn, link, link1,
1424 nextlinks->insn,
1425 &new_direct_jump_p,
1426 last_combined_insn)) != 0)
1428 statistics_counter_event (cfun, "four-insn combine", 1);
1429 goto retry;
1431 /* I0 -> I1; I1, I2 -> I3. */
1432 FOR_EACH_LOG_LINK (nextlinks, link1)
1433 if ((next = try_combine (insn, link, link1,
1434 nextlinks->insn,
1435 &new_direct_jump_p,
1436 last_combined_insn)) != 0)
1438 statistics_counter_event (cfun, "four-insn combine", 1);
1439 goto retry;
1444 /* Try this insn with each REG_EQUAL note it links back to. */
1445 FOR_EACH_LOG_LINK (links, insn)
1447 rtx set, note;
1448 rtx_insn *temp = links->insn;
1449 if ((set = single_set (temp)) != 0
1450 && (note = find_reg_equal_equiv_note (temp)) != 0
1451 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1452 /* Avoid using a register that may already been marked
1453 dead by an earlier instruction. */
1454 && ! unmentioned_reg_p (note, SET_SRC (set))
1455 && (GET_MODE (note) == VOIDmode
1456 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1457 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1459 /* Temporarily replace the set's source with the
1460 contents of the REG_EQUAL note. The insn will
1461 be deleted or recognized by try_combine. */
1462 rtx orig = SET_SRC (set);
1463 SET_SRC (set) = note;
1464 i2mod = temp;
1465 i2mod_old_rhs = copy_rtx (orig);
1466 i2mod_new_rhs = copy_rtx (note);
1467 next = try_combine (insn, i2mod, NULL, NULL,
1468 &new_direct_jump_p,
1469 last_combined_insn);
1470 i2mod = NULL;
1471 if (next)
1473 statistics_counter_event (cfun, "insn-with-note combine", 1);
1474 goto retry;
1476 SET_SRC (set) = orig;
1480 if (!NOTE_P (insn))
1481 record_dead_and_set_regs (insn);
1483 retry:
1488 default_rtl_profile ();
1489 clear_bb_flags ();
1490 new_direct_jump_p |= purge_all_dead_edges ();
1491 delete_noop_moves ();
1493 /* Clean up. */
1494 obstack_free (&insn_link_obstack, NULL);
1495 free (uid_log_links);
1496 free (uid_insn_cost);
1497 reg_stat.release ();
1500 struct undo *undo, *next;
1501 for (undo = undobuf.frees; undo; undo = next)
1503 next = undo->next;
1504 free (undo);
1506 undobuf.frees = 0;
1509 total_attempts += combine_attempts;
1510 total_merges += combine_merges;
1511 total_extras += combine_extras;
1512 total_successes += combine_successes;
1514 nonzero_sign_valid = 0;
1515 rtl_hooks = general_rtl_hooks;
1517 /* Make recognizer allow volatile MEMs again. */
1518 init_recog ();
1520 return new_direct_jump_p;
1523 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1525 static void
1526 init_reg_last (void)
1528 unsigned int i;
1529 reg_stat_type *p;
1531 FOR_EACH_VEC_ELT (reg_stat, i, p)
1532 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1535 /* Set up any promoted values for incoming argument registers. */
1537 static void
1538 setup_incoming_promotions (rtx_insn *first)
1540 tree arg;
1541 bool strictly_local = false;
1543 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1544 arg = DECL_CHAIN (arg))
1546 rtx x, reg = DECL_INCOMING_RTL (arg);
1547 int uns1, uns3;
1548 machine_mode mode1, mode2, mode3, mode4;
1550 /* Only continue if the incoming argument is in a register. */
1551 if (!REG_P (reg))
1552 continue;
1554 /* Determine, if possible, whether all call sites of the current
1555 function lie within the current compilation unit. (This does
1556 take into account the exporting of a function via taking its
1557 address, and so forth.) */
1558 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1560 /* The mode and signedness of the argument before any promotions happen
1561 (equal to the mode of the pseudo holding it at that stage). */
1562 mode1 = TYPE_MODE (TREE_TYPE (arg));
1563 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1565 /* The mode and signedness of the argument after any source language and
1566 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1567 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1568 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1570 /* The mode and signedness of the argument as it is actually passed,
1571 see assign_parm_setup_reg in function.c. */
1572 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1573 TREE_TYPE (cfun->decl), 0);
1575 /* The mode of the register in which the argument is being passed. */
1576 mode4 = GET_MODE (reg);
1578 /* Eliminate sign extensions in the callee when:
1579 (a) A mode promotion has occurred; */
1580 if (mode1 == mode3)
1581 continue;
1582 /* (b) The mode of the register is the same as the mode of
1583 the argument as it is passed; */
1584 if (mode3 != mode4)
1585 continue;
1586 /* (c) There's no language level extension; */
1587 if (mode1 == mode2)
1589 /* (c.1) All callers are from the current compilation unit. If that's
1590 the case we don't have to rely on an ABI, we only have to know
1591 what we're generating right now, and we know that we will do the
1592 mode1 to mode2 promotion with the given sign. */
1593 else if (!strictly_local)
1594 continue;
1595 /* (c.2) The combination of the two promotions is useful. This is
1596 true when the signs match, or if the first promotion is unsigned.
1597 In the later case, (sign_extend (zero_extend x)) is the same as
1598 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1599 else if (uns1)
1600 uns3 = true;
1601 else if (uns3)
1602 continue;
1604 /* Record that the value was promoted from mode1 to mode3,
1605 so that any sign extension at the head of the current
1606 function may be eliminated. */
1607 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1608 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1609 record_value_for_reg (reg, first, x);
1613 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1614 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1615 because some machines (maybe most) will actually do the sign-extension and
1616 this is the conservative approach.
1618 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1619 kludge. */
1621 static rtx
1622 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1624 if (GET_MODE_PRECISION (mode) < prec
1625 && CONST_INT_P (src)
1626 && INTVAL (src) > 0
1627 && val_signbit_known_set_p (mode, INTVAL (src)))
1628 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1630 return src;
1633 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1634 and SET. */
1636 static void
1637 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1638 rtx x)
1640 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1641 unsigned HOST_WIDE_INT bits = 0;
1642 rtx reg_equal = NULL, src = SET_SRC (set);
1643 unsigned int num = 0;
1645 if (reg_equal_note)
1646 reg_equal = XEXP (reg_equal_note, 0);
1648 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1650 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1651 if (reg_equal)
1652 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1655 /* Don't call nonzero_bits if it cannot change anything. */
1656 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1658 bits = nonzero_bits (src, nonzero_bits_mode);
1659 if (reg_equal && bits)
1660 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1661 rsp->nonzero_bits |= bits;
1664 /* Don't call num_sign_bit_copies if it cannot change anything. */
1665 if (rsp->sign_bit_copies != 1)
1667 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1668 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1670 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1671 if (num == 0 || numeq > num)
1672 num = numeq;
1674 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1675 rsp->sign_bit_copies = num;
1679 /* Called via note_stores. If X is a pseudo that is narrower than
1680 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1682 If we are setting only a portion of X and we can't figure out what
1683 portion, assume all bits will be used since we don't know what will
1684 be happening.
1686 Similarly, set how many bits of X are known to be copies of the sign bit
1687 at all locations in the function. This is the smallest number implied
1688 by any set of X. */
1690 static void
1691 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1693 rtx_insn *insn = (rtx_insn *) data;
1695 if (REG_P (x)
1696 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1697 /* If this register is undefined at the start of the file, we can't
1698 say what its contents were. */
1699 && ! REGNO_REG_SET_P
1700 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1701 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1703 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1705 if (set == 0 || GET_CODE (set) == CLOBBER)
1707 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1708 rsp->sign_bit_copies = 1;
1709 return;
1712 /* If this register is being initialized using itself, and the
1713 register is uninitialized in this basic block, and there are
1714 no LOG_LINKS which set the register, then part of the
1715 register is uninitialized. In that case we can't assume
1716 anything about the number of nonzero bits.
1718 ??? We could do better if we checked this in
1719 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1720 could avoid making assumptions about the insn which initially
1721 sets the register, while still using the information in other
1722 insns. We would have to be careful to check every insn
1723 involved in the combination. */
1725 if (insn
1726 && reg_referenced_p (x, PATTERN (insn))
1727 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1728 REGNO (x)))
1730 struct insn_link *link;
1732 FOR_EACH_LOG_LINK (link, insn)
1733 if (dead_or_set_p (link->insn, x))
1734 break;
1735 if (!link)
1737 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1738 rsp->sign_bit_copies = 1;
1739 return;
1743 /* If this is a complex assignment, see if we can convert it into a
1744 simple assignment. */
1745 set = expand_field_assignment (set);
1747 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1748 set what we know about X. */
1750 if (SET_DEST (set) == x
1751 || (paradoxical_subreg_p (SET_DEST (set))
1752 && SUBREG_REG (SET_DEST (set)) == x))
1753 update_rsp_from_reg_equal (rsp, insn, set, x);
1754 else
1756 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1757 rsp->sign_bit_copies = 1;
1762 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1763 optionally insns that were previously combined into I3 or that will be
1764 combined into the merger of INSN and I3. The order is PRED, PRED2,
1765 INSN, SUCC, SUCC2, I3.
1767 Return 0 if the combination is not allowed for any reason.
1769 If the combination is allowed, *PDEST will be set to the single
1770 destination of INSN and *PSRC to the single source, and this function
1771 will return 1. */
1773 static int
1774 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1775 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1776 rtx *pdest, rtx *psrc)
1778 int i;
1779 const_rtx set = 0;
1780 rtx src, dest;
1781 rtx_insn *p;
1782 rtx link;
1783 bool all_adjacent = true;
1784 int (*is_volatile_p) (const_rtx);
1786 if (succ)
1788 if (succ2)
1790 if (next_active_insn (succ2) != i3)
1791 all_adjacent = false;
1792 if (next_active_insn (succ) != succ2)
1793 all_adjacent = false;
1795 else if (next_active_insn (succ) != i3)
1796 all_adjacent = false;
1797 if (next_active_insn (insn) != succ)
1798 all_adjacent = false;
1800 else if (next_active_insn (insn) != i3)
1801 all_adjacent = false;
1803 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1804 or a PARALLEL consisting of such a SET and CLOBBERs.
1806 If INSN has CLOBBER parallel parts, ignore them for our processing.
1807 By definition, these happen during the execution of the insn. When it
1808 is merged with another insn, all bets are off. If they are, in fact,
1809 needed and aren't also supplied in I3, they may be added by
1810 recog_for_combine. Otherwise, it won't match.
1812 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1813 note.
1815 Get the source and destination of INSN. If more than one, can't
1816 combine. */
1818 if (GET_CODE (PATTERN (insn)) == SET)
1819 set = PATTERN (insn);
1820 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1821 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1823 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1825 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1827 switch (GET_CODE (elt))
1829 /* This is important to combine floating point insns
1830 for the SH4 port. */
1831 case USE:
1832 /* Combining an isolated USE doesn't make sense.
1833 We depend here on combinable_i3pat to reject them. */
1834 /* The code below this loop only verifies that the inputs of
1835 the SET in INSN do not change. We call reg_set_between_p
1836 to verify that the REG in the USE does not change between
1837 I3 and INSN.
1838 If the USE in INSN was for a pseudo register, the matching
1839 insn pattern will likely match any register; combining this
1840 with any other USE would only be safe if we knew that the
1841 used registers have identical values, or if there was
1842 something to tell them apart, e.g. different modes. For
1843 now, we forgo such complicated tests and simply disallow
1844 combining of USES of pseudo registers with any other USE. */
1845 if (REG_P (XEXP (elt, 0))
1846 && GET_CODE (PATTERN (i3)) == PARALLEL)
1848 rtx i3pat = PATTERN (i3);
1849 int i = XVECLEN (i3pat, 0) - 1;
1850 unsigned int regno = REGNO (XEXP (elt, 0));
1854 rtx i3elt = XVECEXP (i3pat, 0, i);
1856 if (GET_CODE (i3elt) == USE
1857 && REG_P (XEXP (i3elt, 0))
1858 && (REGNO (XEXP (i3elt, 0)) == regno
1859 ? reg_set_between_p (XEXP (elt, 0),
1860 PREV_INSN (insn), i3)
1861 : regno >= FIRST_PSEUDO_REGISTER))
1862 return 0;
1864 while (--i >= 0);
1866 break;
1868 /* We can ignore CLOBBERs. */
1869 case CLOBBER:
1870 break;
1872 case SET:
1873 /* Ignore SETs whose result isn't used but not those that
1874 have side-effects. */
1875 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1876 && insn_nothrow_p (insn)
1877 && !side_effects_p (elt))
1878 break;
1880 /* If we have already found a SET, this is a second one and
1881 so we cannot combine with this insn. */
1882 if (set)
1883 return 0;
1885 set = elt;
1886 break;
1888 default:
1889 /* Anything else means we can't combine. */
1890 return 0;
1894 if (set == 0
1895 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1896 so don't do anything with it. */
1897 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1898 return 0;
1900 else
1901 return 0;
1903 if (set == 0)
1904 return 0;
1906 /* The simplification in expand_field_assignment may call back to
1907 get_last_value, so set safe guard here. */
1908 subst_low_luid = DF_INSN_LUID (insn);
1910 set = expand_field_assignment (set);
1911 src = SET_SRC (set), dest = SET_DEST (set);
1913 /* Do not eliminate user-specified register if it is in an
1914 asm input because we may break the register asm usage defined
1915 in GCC manual if allow to do so.
1916 Be aware that this may cover more cases than we expect but this
1917 should be harmless. */
1918 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1919 && extract_asm_operands (PATTERN (i3)))
1920 return 0;
1922 /* Don't eliminate a store in the stack pointer. */
1923 if (dest == stack_pointer_rtx
1924 /* Don't combine with an insn that sets a register to itself if it has
1925 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1926 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1927 /* Can't merge an ASM_OPERANDS. */
1928 || GET_CODE (src) == ASM_OPERANDS
1929 /* Can't merge a function call. */
1930 || GET_CODE (src) == CALL
1931 /* Don't eliminate a function call argument. */
1932 || (CALL_P (i3)
1933 && (find_reg_fusage (i3, USE, dest)
1934 || (REG_P (dest)
1935 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1936 && global_regs[REGNO (dest)])))
1937 /* Don't substitute into an incremented register. */
1938 || FIND_REG_INC_NOTE (i3, dest)
1939 || (succ && FIND_REG_INC_NOTE (succ, dest))
1940 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1941 /* Don't substitute into a non-local goto, this confuses CFG. */
1942 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1943 /* Make sure that DEST is not used after SUCC but before I3. */
1944 || (!all_adjacent
1945 && ((succ2
1946 && (reg_used_between_p (dest, succ2, i3)
1947 || reg_used_between_p (dest, succ, succ2)))
1948 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1949 /* Make sure that the value that is to be substituted for the register
1950 does not use any registers whose values alter in between. However,
1951 If the insns are adjacent, a use can't cross a set even though we
1952 think it might (this can happen for a sequence of insns each setting
1953 the same destination; last_set of that register might point to
1954 a NOTE). If INSN has a REG_EQUIV note, the register is always
1955 equivalent to the memory so the substitution is valid even if there
1956 are intervening stores. Also, don't move a volatile asm or
1957 UNSPEC_VOLATILE across any other insns. */
1958 || (! all_adjacent
1959 && (((!MEM_P (src)
1960 || ! find_reg_note (insn, REG_EQUIV, src))
1961 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1962 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1963 || GET_CODE (src) == UNSPEC_VOLATILE))
1964 /* Don't combine across a CALL_INSN, because that would possibly
1965 change whether the life span of some REGs crosses calls or not,
1966 and it is a pain to update that information.
1967 Exception: if source is a constant, moving it later can't hurt.
1968 Accept that as a special case. */
1969 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1970 return 0;
1972 /* DEST must either be a REG or CC0. */
1973 if (REG_P (dest))
1975 /* If register alignment is being enforced for multi-word items in all
1976 cases except for parameters, it is possible to have a register copy
1977 insn referencing a hard register that is not allowed to contain the
1978 mode being copied and which would not be valid as an operand of most
1979 insns. Eliminate this problem by not combining with such an insn.
1981 Also, on some machines we don't want to extend the life of a hard
1982 register. */
1984 if (REG_P (src)
1985 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1986 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1987 /* Don't extend the life of a hard register unless it is
1988 user variable (if we have few registers) or it can't
1989 fit into the desired register (meaning something special
1990 is going on).
1991 Also avoid substituting a return register into I3, because
1992 reload can't handle a conflict with constraints of other
1993 inputs. */
1994 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1995 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1996 return 0;
1998 else if (GET_CODE (dest) != CC0)
1999 return 0;
2002 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2003 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2004 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2006 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2008 /* If the clobber represents an earlyclobber operand, we must not
2009 substitute an expression containing the clobbered register.
2010 As we do not analyze the constraint strings here, we have to
2011 make the conservative assumption. However, if the register is
2012 a fixed hard reg, the clobber cannot represent any operand;
2013 we leave it up to the machine description to either accept or
2014 reject use-and-clobber patterns. */
2015 if (!REG_P (reg)
2016 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2017 || !fixed_regs[REGNO (reg)])
2018 if (reg_overlap_mentioned_p (reg, src))
2019 return 0;
2022 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2023 or not), reject, unless nothing volatile comes between it and I3 */
2025 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2027 /* Make sure neither succ nor succ2 contains a volatile reference. */
2028 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2029 return 0;
2030 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2031 return 0;
2032 /* We'll check insns between INSN and I3 below. */
2035 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2036 to be an explicit register variable, and was chosen for a reason. */
2038 if (GET_CODE (src) == ASM_OPERANDS
2039 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2040 return 0;
2042 /* If INSN contains volatile references (specifically volatile MEMs),
2043 we cannot combine across any other volatile references.
2044 Even if INSN doesn't contain volatile references, any intervening
2045 volatile insn might affect machine state. */
2047 is_volatile_p = volatile_refs_p (PATTERN (insn))
2048 ? volatile_refs_p
2049 : volatile_insn_p;
2051 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2052 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2053 return 0;
2055 /* If INSN contains an autoincrement or autodecrement, make sure that
2056 register is not used between there and I3, and not already used in
2057 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2058 Also insist that I3 not be a jump; if it were one
2059 and the incremented register were spilled, we would lose. */
2061 if (AUTO_INC_DEC)
2062 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2063 if (REG_NOTE_KIND (link) == REG_INC
2064 && (JUMP_P (i3)
2065 || reg_used_between_p (XEXP (link, 0), insn, i3)
2066 || (pred != NULL_RTX
2067 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2068 || (pred2 != NULL_RTX
2069 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2070 || (succ != NULL_RTX
2071 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2072 || (succ2 != NULL_RTX
2073 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2074 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2075 return 0;
2077 /* Don't combine an insn that follows a CC0-setting insn.
2078 An insn that uses CC0 must not be separated from the one that sets it.
2079 We do, however, allow I2 to follow a CC0-setting insn if that insn
2080 is passed as I1; in that case it will be deleted also.
2081 We also allow combining in this case if all the insns are adjacent
2082 because that would leave the two CC0 insns adjacent as well.
2083 It would be more logical to test whether CC0 occurs inside I1 or I2,
2084 but that would be much slower, and this ought to be equivalent. */
2086 if (HAVE_cc0)
2088 p = prev_nonnote_insn (insn);
2089 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2090 && ! all_adjacent)
2091 return 0;
2094 /* If we get here, we have passed all the tests and the combination is
2095 to be allowed. */
2097 *pdest = dest;
2098 *psrc = src;
2100 return 1;
2103 /* LOC is the location within I3 that contains its pattern or the component
2104 of a PARALLEL of the pattern. We validate that it is valid for combining.
2106 One problem is if I3 modifies its output, as opposed to replacing it
2107 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2108 doing so would produce an insn that is not equivalent to the original insns.
2110 Consider:
2112 (set (reg:DI 101) (reg:DI 100))
2113 (set (subreg:SI (reg:DI 101) 0) <foo>)
2115 This is NOT equivalent to:
2117 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2118 (set (reg:DI 101) (reg:DI 100))])
2120 Not only does this modify 100 (in which case it might still be valid
2121 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2123 We can also run into a problem if I2 sets a register that I1
2124 uses and I1 gets directly substituted into I3 (not via I2). In that
2125 case, we would be getting the wrong value of I2DEST into I3, so we
2126 must reject the combination. This case occurs when I2 and I1 both
2127 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2128 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2129 of a SET must prevent combination from occurring. The same situation
2130 can occur for I0, in which case I0_NOT_IN_SRC is set.
2132 Before doing the above check, we first try to expand a field assignment
2133 into a set of logical operations.
2135 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2136 we place a register that is both set and used within I3. If more than one
2137 such register is detected, we fail.
2139 Return 1 if the combination is valid, zero otherwise. */
2141 static int
2142 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2143 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2145 rtx x = *loc;
2147 if (GET_CODE (x) == SET)
2149 rtx set = x ;
2150 rtx dest = SET_DEST (set);
2151 rtx src = SET_SRC (set);
2152 rtx inner_dest = dest;
2153 rtx subdest;
2155 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2156 || GET_CODE (inner_dest) == SUBREG
2157 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2158 inner_dest = XEXP (inner_dest, 0);
2160 /* Check for the case where I3 modifies its output, as discussed
2161 above. We don't want to prevent pseudos from being combined
2162 into the address of a MEM, so only prevent the combination if
2163 i1 or i2 set the same MEM. */
2164 if ((inner_dest != dest &&
2165 (!MEM_P (inner_dest)
2166 || rtx_equal_p (i2dest, inner_dest)
2167 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2168 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2169 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2170 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2171 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2173 /* This is the same test done in can_combine_p except we can't test
2174 all_adjacent; we don't have to, since this instruction will stay
2175 in place, thus we are not considering increasing the lifetime of
2176 INNER_DEST.
2178 Also, if this insn sets a function argument, combining it with
2179 something that might need a spill could clobber a previous
2180 function argument; the all_adjacent test in can_combine_p also
2181 checks this; here, we do a more specific test for this case. */
2183 || (REG_P (inner_dest)
2184 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2185 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2186 GET_MODE (inner_dest))))
2187 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2188 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2189 return 0;
2191 /* If DEST is used in I3, it is being killed in this insn, so
2192 record that for later. We have to consider paradoxical
2193 subregs here, since they kill the whole register, but we
2194 ignore partial subregs, STRICT_LOW_PART, etc.
2195 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2196 STACK_POINTER_REGNUM, since these are always considered to be
2197 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2198 subdest = dest;
2199 if (GET_CODE (subdest) == SUBREG
2200 && (GET_MODE_SIZE (GET_MODE (subdest))
2201 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2202 subdest = SUBREG_REG (subdest);
2203 if (pi3dest_killed
2204 && REG_P (subdest)
2205 && reg_referenced_p (subdest, PATTERN (i3))
2206 && REGNO (subdest) != FRAME_POINTER_REGNUM
2207 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2208 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2209 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2210 || (REGNO (subdest) != ARG_POINTER_REGNUM
2211 || ! fixed_regs [REGNO (subdest)]))
2212 && REGNO (subdest) != STACK_POINTER_REGNUM)
2214 if (*pi3dest_killed)
2215 return 0;
2217 *pi3dest_killed = subdest;
2221 else if (GET_CODE (x) == PARALLEL)
2223 int i;
2225 for (i = 0; i < XVECLEN (x, 0); i++)
2226 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2227 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2228 return 0;
2231 return 1;
2234 /* Return 1 if X is an arithmetic expression that contains a multiplication
2235 and division. We don't count multiplications by powers of two here. */
2237 static int
2238 contains_muldiv (rtx x)
2240 switch (GET_CODE (x))
2242 case MOD: case DIV: case UMOD: case UDIV:
2243 return 1;
2245 case MULT:
2246 return ! (CONST_INT_P (XEXP (x, 1))
2247 && exact_log2 (UINTVAL (XEXP (x, 1))) >= 0);
2248 default:
2249 if (BINARY_P (x))
2250 return contains_muldiv (XEXP (x, 0))
2251 || contains_muldiv (XEXP (x, 1));
2253 if (UNARY_P (x))
2254 return contains_muldiv (XEXP (x, 0));
2256 return 0;
2260 /* Determine whether INSN can be used in a combination. Return nonzero if
2261 not. This is used in try_combine to detect early some cases where we
2262 can't perform combinations. */
2264 static int
2265 cant_combine_insn_p (rtx_insn *insn)
2267 rtx set;
2268 rtx src, dest;
2270 /* If this isn't really an insn, we can't do anything.
2271 This can occur when flow deletes an insn that it has merged into an
2272 auto-increment address. */
2273 if (! INSN_P (insn))
2274 return 1;
2276 /* Never combine loads and stores involving hard regs that are likely
2277 to be spilled. The register allocator can usually handle such
2278 reg-reg moves by tying. If we allow the combiner to make
2279 substitutions of likely-spilled regs, reload might die.
2280 As an exception, we allow combinations involving fixed regs; these are
2281 not available to the register allocator so there's no risk involved. */
2283 set = single_set (insn);
2284 if (! set)
2285 return 0;
2286 src = SET_SRC (set);
2287 dest = SET_DEST (set);
2288 if (GET_CODE (src) == SUBREG)
2289 src = SUBREG_REG (src);
2290 if (GET_CODE (dest) == SUBREG)
2291 dest = SUBREG_REG (dest);
2292 if (REG_P (src) && REG_P (dest)
2293 && ((HARD_REGISTER_P (src)
2294 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2295 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2296 || (HARD_REGISTER_P (dest)
2297 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2298 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2299 return 1;
2301 return 0;
2304 struct likely_spilled_retval_info
2306 unsigned regno, nregs;
2307 unsigned mask;
2310 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2311 hard registers that are known to be written to / clobbered in full. */
2312 static void
2313 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2315 struct likely_spilled_retval_info *const info =
2316 (struct likely_spilled_retval_info *) data;
2317 unsigned regno, nregs;
2318 unsigned new_mask;
2320 if (!REG_P (XEXP (set, 0)))
2321 return;
2322 regno = REGNO (x);
2323 if (regno >= info->regno + info->nregs)
2324 return;
2325 nregs = REG_NREGS (x);
2326 if (regno + nregs <= info->regno)
2327 return;
2328 new_mask = (2U << (nregs - 1)) - 1;
2329 if (regno < info->regno)
2330 new_mask >>= info->regno - regno;
2331 else
2332 new_mask <<= regno - info->regno;
2333 info->mask &= ~new_mask;
2336 /* Return nonzero iff part of the return value is live during INSN, and
2337 it is likely spilled. This can happen when more than one insn is needed
2338 to copy the return value, e.g. when we consider to combine into the
2339 second copy insn for a complex value. */
2341 static int
2342 likely_spilled_retval_p (rtx_insn *insn)
2344 rtx_insn *use = BB_END (this_basic_block);
2345 rtx reg;
2346 rtx_insn *p;
2347 unsigned regno, nregs;
2348 /* We assume here that no machine mode needs more than
2349 32 hard registers when the value overlaps with a register
2350 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2351 unsigned mask;
2352 struct likely_spilled_retval_info info;
2354 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2355 return 0;
2356 reg = XEXP (PATTERN (use), 0);
2357 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2358 return 0;
2359 regno = REGNO (reg);
2360 nregs = REG_NREGS (reg);
2361 if (nregs == 1)
2362 return 0;
2363 mask = (2U << (nregs - 1)) - 1;
2365 /* Disregard parts of the return value that are set later. */
2366 info.regno = regno;
2367 info.nregs = nregs;
2368 info.mask = mask;
2369 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2370 if (INSN_P (p))
2371 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2372 mask = info.mask;
2374 /* Check if any of the (probably) live return value registers is
2375 likely spilled. */
2376 nregs --;
2379 if ((mask & 1 << nregs)
2380 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2381 return 1;
2382 } while (nregs--);
2383 return 0;
2386 /* Adjust INSN after we made a change to its destination.
2388 Changing the destination can invalidate notes that say something about
2389 the results of the insn and a LOG_LINK pointing to the insn. */
2391 static void
2392 adjust_for_new_dest (rtx_insn *insn)
2394 /* For notes, be conservative and simply remove them. */
2395 remove_reg_equal_equiv_notes (insn);
2397 /* The new insn will have a destination that was previously the destination
2398 of an insn just above it. Call distribute_links to make a LOG_LINK from
2399 the next use of that destination. */
2401 rtx set = single_set (insn);
2402 gcc_assert (set);
2404 rtx reg = SET_DEST (set);
2406 while (GET_CODE (reg) == ZERO_EXTRACT
2407 || GET_CODE (reg) == STRICT_LOW_PART
2408 || GET_CODE (reg) == SUBREG)
2409 reg = XEXP (reg, 0);
2410 gcc_assert (REG_P (reg));
2412 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2414 df_insn_rescan (insn);
2417 /* Return TRUE if combine can reuse reg X in mode MODE.
2418 ADDED_SETS is nonzero if the original set is still required. */
2419 static bool
2420 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2422 unsigned int regno;
2424 if (!REG_P (x))
2425 return false;
2427 regno = REGNO (x);
2428 /* Allow hard registers if the new mode is legal, and occupies no more
2429 registers than the old mode. */
2430 if (regno < FIRST_PSEUDO_REGISTER)
2431 return (HARD_REGNO_MODE_OK (regno, mode)
2432 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2434 /* Or a pseudo that is only used once. */
2435 return (regno < reg_n_sets_max
2436 && REG_N_SETS (regno) == 1
2437 && !added_sets
2438 && !REG_USERVAR_P (x));
2442 /* Check whether X, the destination of a set, refers to part of
2443 the register specified by REG. */
2445 static bool
2446 reg_subword_p (rtx x, rtx reg)
2448 /* Check that reg is an integer mode register. */
2449 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2450 return false;
2452 if (GET_CODE (x) == STRICT_LOW_PART
2453 || GET_CODE (x) == ZERO_EXTRACT)
2454 x = XEXP (x, 0);
2456 return GET_CODE (x) == SUBREG
2457 && SUBREG_REG (x) == reg
2458 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2461 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2462 Note that the INSN should be deleted *after* removing dead edges, so
2463 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2464 but not for a (set (pc) (label_ref FOO)). */
2466 static void
2467 update_cfg_for_uncondjump (rtx_insn *insn)
2469 basic_block bb = BLOCK_FOR_INSN (insn);
2470 gcc_assert (BB_END (bb) == insn);
2472 purge_dead_edges (bb);
2474 delete_insn (insn);
2475 if (EDGE_COUNT (bb->succs) == 1)
2477 rtx_insn *insn;
2479 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2481 /* Remove barriers from the footer if there are any. */
2482 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2483 if (BARRIER_P (insn))
2485 if (PREV_INSN (insn))
2486 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2487 else
2488 BB_FOOTER (bb) = NEXT_INSN (insn);
2489 if (NEXT_INSN (insn))
2490 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2492 else if (LABEL_P (insn))
2493 break;
2497 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2498 by an arbitrary number of CLOBBERs. */
2499 static bool
2500 is_parallel_of_n_reg_sets (rtx pat, int n)
2502 if (GET_CODE (pat) != PARALLEL)
2503 return false;
2505 int len = XVECLEN (pat, 0);
2506 if (len < n)
2507 return false;
2509 int i;
2510 for (i = 0; i < n; i++)
2511 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2512 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2513 return false;
2514 for ( ; i < len; i++)
2515 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
2516 return false;
2518 return true;
2521 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2522 CLOBBERs), can be split into individual SETs in that order, without
2523 changing semantics. */
2524 static bool
2525 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2527 if (!insn_nothrow_p (insn))
2528 return false;
2530 rtx pat = PATTERN (insn);
2532 int i, j;
2533 for (i = 0; i < n; i++)
2535 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2536 return false;
2538 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2540 for (j = i + 1; j < n; j++)
2541 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2542 return false;
2545 return true;
2548 /* Try to combine the insns I0, I1 and I2 into I3.
2549 Here I0, I1 and I2 appear earlier than I3.
2550 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2553 If we are combining more than two insns and the resulting insn is not
2554 recognized, try splitting it into two insns. If that happens, I2 and I3
2555 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2556 Otherwise, I0, I1 and I2 are pseudo-deleted.
2558 Return 0 if the combination does not work. Then nothing is changed.
2559 If we did the combination, return the insn at which combine should
2560 resume scanning.
2562 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2563 new direct jump instruction.
2565 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2566 been I3 passed to an earlier try_combine within the same basic
2567 block. */
2569 static rtx_insn *
2570 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2571 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2573 /* New patterns for I3 and I2, respectively. */
2574 rtx newpat, newi2pat = 0;
2575 rtvec newpat_vec_with_clobbers = 0;
2576 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2577 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2578 dead. */
2579 int added_sets_0, added_sets_1, added_sets_2;
2580 /* Total number of SETs to put into I3. */
2581 int total_sets;
2582 /* Nonzero if I2's or I1's body now appears in I3. */
2583 int i2_is_used = 0, i1_is_used = 0;
2584 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2585 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2586 /* Contains I3 if the destination of I3 is used in its source, which means
2587 that the old life of I3 is being killed. If that usage is placed into
2588 I2 and not in I3, a REG_DEAD note must be made. */
2589 rtx i3dest_killed = 0;
2590 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2591 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2592 /* Copy of SET_SRC of I1 and I0, if needed. */
2593 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2594 /* Set if I2DEST was reused as a scratch register. */
2595 bool i2scratch = false;
2596 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2597 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2598 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2599 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2600 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2601 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2602 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2603 /* Notes that must be added to REG_NOTES in I3 and I2. */
2604 rtx new_i3_notes, new_i2_notes;
2605 /* Notes that we substituted I3 into I2 instead of the normal case. */
2606 int i3_subst_into_i2 = 0;
2607 /* Notes that I1, I2 or I3 is a MULT operation. */
2608 int have_mult = 0;
2609 int swap_i2i3 = 0;
2610 int changed_i3_dest = 0;
2612 int maxreg;
2613 rtx_insn *temp_insn;
2614 rtx temp_expr;
2615 struct insn_link *link;
2616 rtx other_pat = 0;
2617 rtx new_other_notes;
2618 int i;
2620 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2621 never be). */
2622 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2623 return 0;
2625 /* Only try four-insn combinations when there's high likelihood of
2626 success. Look for simple insns, such as loads of constants or
2627 binary operations involving a constant. */
2628 if (i0)
2630 int i;
2631 int ngood = 0;
2632 int nshift = 0;
2633 rtx set0, set3;
2635 if (!flag_expensive_optimizations)
2636 return 0;
2638 for (i = 0; i < 4; i++)
2640 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2641 rtx set = single_set (insn);
2642 rtx src;
2643 if (!set)
2644 continue;
2645 src = SET_SRC (set);
2646 if (CONSTANT_P (src))
2648 ngood += 2;
2649 break;
2651 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2652 ngood++;
2653 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2654 || GET_CODE (src) == LSHIFTRT)
2655 nshift++;
2658 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2659 are likely manipulating its value. Ideally we'll be able to combine
2660 all four insns into a bitfield insertion of some kind.
2662 Note the source in I0 might be inside a sign/zero extension and the
2663 memory modes in I0 and I3 might be different. So extract the address
2664 from the destination of I3 and search for it in the source of I0.
2666 In the event that there's a match but the source/dest do not actually
2667 refer to the same memory, the worst that happens is we try some
2668 combinations that we wouldn't have otherwise. */
2669 if ((set0 = single_set (i0))
2670 /* Ensure the source of SET0 is a MEM, possibly buried inside
2671 an extension. */
2672 && (GET_CODE (SET_SRC (set0)) == MEM
2673 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2674 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2675 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2676 && (set3 = single_set (i3))
2677 /* Ensure the destination of SET3 is a MEM. */
2678 && GET_CODE (SET_DEST (set3)) == MEM
2679 /* Would it be better to extract the base address for the MEM
2680 in SET3 and look for that? I don't have cases where it matters
2681 but I could envision such cases. */
2682 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2683 ngood += 2;
2685 if (ngood < 2 && nshift < 2)
2686 return 0;
2689 /* Exit early if one of the insns involved can't be used for
2690 combinations. */
2691 if (CALL_P (i2)
2692 || (i1 && CALL_P (i1))
2693 || (i0 && CALL_P (i0))
2694 || cant_combine_insn_p (i3)
2695 || cant_combine_insn_p (i2)
2696 || (i1 && cant_combine_insn_p (i1))
2697 || (i0 && cant_combine_insn_p (i0))
2698 || likely_spilled_retval_p (i3))
2699 return 0;
2701 combine_attempts++;
2702 undobuf.other_insn = 0;
2704 /* Reset the hard register usage information. */
2705 CLEAR_HARD_REG_SET (newpat_used_regs);
2707 if (dump_file && (dump_flags & TDF_DETAILS))
2709 if (i0)
2710 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2711 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2712 else if (i1)
2713 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2714 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2715 else
2716 fprintf (dump_file, "\nTrying %d -> %d:\n",
2717 INSN_UID (i2), INSN_UID (i3));
2720 /* If multiple insns feed into one of I2 or I3, they can be in any
2721 order. To simplify the code below, reorder them in sequence. */
2722 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2723 std::swap (i0, i2);
2724 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2725 std::swap (i0, i1);
2726 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2727 std::swap (i1, i2);
2729 added_links_insn = 0;
2731 /* First check for one important special case that the code below will
2732 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2733 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2734 we may be able to replace that destination with the destination of I3.
2735 This occurs in the common code where we compute both a quotient and
2736 remainder into a structure, in which case we want to do the computation
2737 directly into the structure to avoid register-register copies.
2739 Note that this case handles both multiple sets in I2 and also cases
2740 where I2 has a number of CLOBBERs inside the PARALLEL.
2742 We make very conservative checks below and only try to handle the
2743 most common cases of this. For example, we only handle the case
2744 where I2 and I3 are adjacent to avoid making difficult register
2745 usage tests. */
2747 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2748 && REG_P (SET_SRC (PATTERN (i3)))
2749 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2750 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2751 && GET_CODE (PATTERN (i2)) == PARALLEL
2752 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2753 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2754 below would need to check what is inside (and reg_overlap_mentioned_p
2755 doesn't support those codes anyway). Don't allow those destinations;
2756 the resulting insn isn't likely to be recognized anyway. */
2757 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2758 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2759 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2760 SET_DEST (PATTERN (i3)))
2761 && next_active_insn (i2) == i3)
2763 rtx p2 = PATTERN (i2);
2765 /* Make sure that the destination of I3,
2766 which we are going to substitute into one output of I2,
2767 is not used within another output of I2. We must avoid making this:
2768 (parallel [(set (mem (reg 69)) ...)
2769 (set (reg 69) ...)])
2770 which is not well-defined as to order of actions.
2771 (Besides, reload can't handle output reloads for this.)
2773 The problem can also happen if the dest of I3 is a memory ref,
2774 if another dest in I2 is an indirect memory ref. */
2775 for (i = 0; i < XVECLEN (p2, 0); i++)
2776 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2777 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2778 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2779 SET_DEST (XVECEXP (p2, 0, i))))
2780 break;
2782 /* Make sure this PARALLEL is not an asm. We do not allow combining
2783 that usually (see can_combine_p), so do not here either. */
2784 for (i = 0; i < XVECLEN (p2, 0); i++)
2785 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2786 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2787 break;
2789 if (i == XVECLEN (p2, 0))
2790 for (i = 0; i < XVECLEN (p2, 0); i++)
2791 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2792 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2794 combine_merges++;
2796 subst_insn = i3;
2797 subst_low_luid = DF_INSN_LUID (i2);
2799 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2800 i2src = SET_SRC (XVECEXP (p2, 0, i));
2801 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2802 i2dest_killed = dead_or_set_p (i2, i2dest);
2804 /* Replace the dest in I2 with our dest and make the resulting
2805 insn the new pattern for I3. Then skip to where we validate
2806 the pattern. Everything was set up above. */
2807 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2808 newpat = p2;
2809 i3_subst_into_i2 = 1;
2810 goto validate_replacement;
2814 /* If I2 is setting a pseudo to a constant and I3 is setting some
2815 sub-part of it to another constant, merge them by making a new
2816 constant. */
2817 if (i1 == 0
2818 && (temp_expr = single_set (i2)) != 0
2819 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2820 && GET_CODE (PATTERN (i3)) == SET
2821 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2822 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2824 rtx dest = SET_DEST (PATTERN (i3));
2825 int offset = -1;
2826 int width = 0;
2828 if (GET_CODE (dest) == ZERO_EXTRACT)
2830 if (CONST_INT_P (XEXP (dest, 1))
2831 && CONST_INT_P (XEXP (dest, 2)))
2833 width = INTVAL (XEXP (dest, 1));
2834 offset = INTVAL (XEXP (dest, 2));
2835 dest = XEXP (dest, 0);
2836 if (BITS_BIG_ENDIAN)
2837 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2840 else
2842 if (GET_CODE (dest) == STRICT_LOW_PART)
2843 dest = XEXP (dest, 0);
2844 width = GET_MODE_PRECISION (GET_MODE (dest));
2845 offset = 0;
2848 if (offset >= 0)
2850 /* If this is the low part, we're done. */
2851 if (subreg_lowpart_p (dest))
2853 /* Handle the case where inner is twice the size of outer. */
2854 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2855 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2856 offset += GET_MODE_PRECISION (GET_MODE (dest));
2857 /* Otherwise give up for now. */
2858 else
2859 offset = -1;
2862 if (offset >= 0)
2864 rtx inner = SET_SRC (PATTERN (i3));
2865 rtx outer = SET_SRC (temp_expr);
2867 wide_int o
2868 = wi::insert (std::make_pair (outer, GET_MODE (SET_DEST (temp_expr))),
2869 std::make_pair (inner, GET_MODE (dest)),
2870 offset, width);
2872 combine_merges++;
2873 subst_insn = i3;
2874 subst_low_luid = DF_INSN_LUID (i2);
2875 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2876 i2dest = SET_DEST (temp_expr);
2877 i2dest_killed = dead_or_set_p (i2, i2dest);
2879 /* Replace the source in I2 with the new constant and make the
2880 resulting insn the new pattern for I3. Then skip to where we
2881 validate the pattern. Everything was set up above. */
2882 SUBST (SET_SRC (temp_expr),
2883 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2885 newpat = PATTERN (i2);
2887 /* The dest of I3 has been replaced with the dest of I2. */
2888 changed_i3_dest = 1;
2889 goto validate_replacement;
2893 /* If we have no I1 and I2 looks like:
2894 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2895 (set Y OP)])
2896 make up a dummy I1 that is
2897 (set Y OP)
2898 and change I2 to be
2899 (set (reg:CC X) (compare:CC Y (const_int 0)))
2901 (We can ignore any trailing CLOBBERs.)
2903 This undoes a previous combination and allows us to match a branch-and-
2904 decrement insn. */
2906 if (!HAVE_cc0 && i1 == 0
2907 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2908 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2909 == MODE_CC)
2910 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2911 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2912 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2913 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2914 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2915 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2917 /* We make I1 with the same INSN_UID as I2. This gives it
2918 the same DF_INSN_LUID for value tracking. Our fake I1 will
2919 never appear in the insn stream so giving it the same INSN_UID
2920 as I2 will not cause a problem. */
2922 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2923 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2924 -1, NULL_RTX);
2925 INSN_UID (i1) = INSN_UID (i2);
2927 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2928 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2929 SET_DEST (PATTERN (i1)));
2930 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2931 SUBST_LINK (LOG_LINKS (i2),
2932 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2935 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2936 make those two SETs separate I1 and I2 insns, and make an I0 that is
2937 the original I1. */
2938 if (!HAVE_cc0 && i0 == 0
2939 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2940 && can_split_parallel_of_n_reg_sets (i2, 2)
2941 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2942 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2944 /* If there is no I1, there is no I0 either. */
2945 i0 = i1;
2947 /* We make I1 with the same INSN_UID as I2. This gives it
2948 the same DF_INSN_LUID for value tracking. Our fake I1 will
2949 never appear in the insn stream so giving it the same INSN_UID
2950 as I2 will not cause a problem. */
2952 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2953 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2954 -1, NULL_RTX);
2955 INSN_UID (i1) = INSN_UID (i2);
2957 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2960 /* Verify that I2 and I1 are valid for combining. */
2961 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2962 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2963 &i1dest, &i1src))
2964 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2965 &i0dest, &i0src)))
2967 undo_all ();
2968 return 0;
2971 /* Record whether I2DEST is used in I2SRC and similarly for the other
2972 cases. Knowing this will help in register status updating below. */
2973 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2974 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2975 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2976 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2977 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2978 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2979 i2dest_killed = dead_or_set_p (i2, i2dest);
2980 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2981 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2983 /* For the earlier insns, determine which of the subsequent ones they
2984 feed. */
2985 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
2986 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
2987 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
2988 : (!reg_overlap_mentioned_p (i1dest, i0dest)
2989 && reg_overlap_mentioned_p (i0dest, i2src))));
2991 /* Ensure that I3's pattern can be the destination of combines. */
2992 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
2993 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
2994 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
2995 || (i1dest_in_i0src && !i0_feeds_i1_n)),
2996 &i3dest_killed))
2998 undo_all ();
2999 return 0;
3002 /* See if any of the insns is a MULT operation. Unless one is, we will
3003 reject a combination that is, since it must be slower. Be conservative
3004 here. */
3005 if (GET_CODE (i2src) == MULT
3006 || (i1 != 0 && GET_CODE (i1src) == MULT)
3007 || (i0 != 0 && GET_CODE (i0src) == MULT)
3008 || (GET_CODE (PATTERN (i3)) == SET
3009 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3010 have_mult = 1;
3012 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3013 We used to do this EXCEPT in one case: I3 has a post-inc in an
3014 output operand. However, that exception can give rise to insns like
3015 mov r3,(r3)+
3016 which is a famous insn on the PDP-11 where the value of r3 used as the
3017 source was model-dependent. Avoid this sort of thing. */
3019 #if 0
3020 if (!(GET_CODE (PATTERN (i3)) == SET
3021 && REG_P (SET_SRC (PATTERN (i3)))
3022 && MEM_P (SET_DEST (PATTERN (i3)))
3023 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3024 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3025 /* It's not the exception. */
3026 #endif
3027 if (AUTO_INC_DEC)
3029 rtx link;
3030 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3031 if (REG_NOTE_KIND (link) == REG_INC
3032 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3033 || (i1 != 0
3034 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3036 undo_all ();
3037 return 0;
3041 /* See if the SETs in I1 or I2 need to be kept around in the merged
3042 instruction: whenever the value set there is still needed past I3.
3043 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3045 For the SET in I1, we have two cases: if I1 and I2 independently feed
3046 into I3, the set in I1 needs to be kept around unless I1DEST dies
3047 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3048 in I1 needs to be kept around unless I1DEST dies or is set in either
3049 I2 or I3. The same considerations apply to I0. */
3051 added_sets_2 = !dead_or_set_p (i3, i2dest);
3053 if (i1)
3054 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3055 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3056 else
3057 added_sets_1 = 0;
3059 if (i0)
3060 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3061 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3062 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3063 && dead_or_set_p (i2, i0dest)));
3064 else
3065 added_sets_0 = 0;
3067 /* We are about to copy insns for the case where they need to be kept
3068 around. Check that they can be copied in the merged instruction. */
3070 if (targetm.cannot_copy_insn_p
3071 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3072 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3073 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3075 undo_all ();
3076 return 0;
3079 /* If the set in I2 needs to be kept around, we must make a copy of
3080 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3081 PATTERN (I2), we are only substituting for the original I1DEST, not into
3082 an already-substituted copy. This also prevents making self-referential
3083 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3084 I2DEST. */
3086 if (added_sets_2)
3088 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3089 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3090 else
3091 i2pat = copy_rtx (PATTERN (i2));
3094 if (added_sets_1)
3096 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3097 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3098 else
3099 i1pat = copy_rtx (PATTERN (i1));
3102 if (added_sets_0)
3104 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3105 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3106 else
3107 i0pat = copy_rtx (PATTERN (i0));
3110 combine_merges++;
3112 /* Substitute in the latest insn for the regs set by the earlier ones. */
3114 maxreg = max_reg_num ();
3116 subst_insn = i3;
3118 /* Many machines that don't use CC0 have insns that can both perform an
3119 arithmetic operation and set the condition code. These operations will
3120 be represented as a PARALLEL with the first element of the vector
3121 being a COMPARE of an arithmetic operation with the constant zero.
3122 The second element of the vector will set some pseudo to the result
3123 of the same arithmetic operation. If we simplify the COMPARE, we won't
3124 match such a pattern and so will generate an extra insn. Here we test
3125 for this case, where both the comparison and the operation result are
3126 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3127 I2SRC. Later we will make the PARALLEL that contains I2. */
3129 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3130 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3131 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3132 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3134 rtx newpat_dest;
3135 rtx *cc_use_loc = NULL;
3136 rtx_insn *cc_use_insn = NULL;
3137 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3138 machine_mode compare_mode, orig_compare_mode;
3139 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3141 newpat = PATTERN (i3);
3142 newpat_dest = SET_DEST (newpat);
3143 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3145 if (undobuf.other_insn == 0
3146 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3147 &cc_use_insn)))
3149 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3150 compare_code = simplify_compare_const (compare_code,
3151 GET_MODE (i2dest), op0, &op1);
3152 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3155 /* Do the rest only if op1 is const0_rtx, which may be the
3156 result of simplification. */
3157 if (op1 == const0_rtx)
3159 /* If a single use of the CC is found, prepare to modify it
3160 when SELECT_CC_MODE returns a new CC-class mode, or when
3161 the above simplify_compare_const() returned a new comparison
3162 operator. undobuf.other_insn is assigned the CC use insn
3163 when modifying it. */
3164 if (cc_use_loc)
3166 #ifdef SELECT_CC_MODE
3167 machine_mode new_mode
3168 = SELECT_CC_MODE (compare_code, op0, op1);
3169 if (new_mode != orig_compare_mode
3170 && can_change_dest_mode (SET_DEST (newpat),
3171 added_sets_2, new_mode))
3173 unsigned int regno = REGNO (newpat_dest);
3174 compare_mode = new_mode;
3175 if (regno < FIRST_PSEUDO_REGISTER)
3176 newpat_dest = gen_rtx_REG (compare_mode, regno);
3177 else
3179 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3180 newpat_dest = regno_reg_rtx[regno];
3183 #endif
3184 /* Cases for modifying the CC-using comparison. */
3185 if (compare_code != orig_compare_code
3186 /* ??? Do we need to verify the zero rtx? */
3187 && XEXP (*cc_use_loc, 1) == const0_rtx)
3189 /* Replace cc_use_loc with entire new RTX. */
3190 SUBST (*cc_use_loc,
3191 gen_rtx_fmt_ee (compare_code, compare_mode,
3192 newpat_dest, const0_rtx));
3193 undobuf.other_insn = cc_use_insn;
3195 else if (compare_mode != orig_compare_mode)
3197 /* Just replace the CC reg with a new mode. */
3198 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3199 undobuf.other_insn = cc_use_insn;
3203 /* Now we modify the current newpat:
3204 First, SET_DEST(newpat) is updated if the CC mode has been
3205 altered. For targets without SELECT_CC_MODE, this should be
3206 optimized away. */
3207 if (compare_mode != orig_compare_mode)
3208 SUBST (SET_DEST (newpat), newpat_dest);
3209 /* This is always done to propagate i2src into newpat. */
3210 SUBST (SET_SRC (newpat),
3211 gen_rtx_COMPARE (compare_mode, op0, op1));
3212 /* Create new version of i2pat if needed; the below PARALLEL
3213 creation needs this to work correctly. */
3214 if (! rtx_equal_p (i2src, op0))
3215 i2pat = gen_rtx_SET (i2dest, op0);
3216 i2_is_used = 1;
3220 if (i2_is_used == 0)
3222 /* It is possible that the source of I2 or I1 may be performing
3223 an unneeded operation, such as a ZERO_EXTEND of something
3224 that is known to have the high part zero. Handle that case
3225 by letting subst look at the inner insns.
3227 Another way to do this would be to have a function that tries
3228 to simplify a single insn instead of merging two or more
3229 insns. We don't do this because of the potential of infinite
3230 loops and because of the potential extra memory required.
3231 However, doing it the way we are is a bit of a kludge and
3232 doesn't catch all cases.
3234 But only do this if -fexpensive-optimizations since it slows
3235 things down and doesn't usually win.
3237 This is not done in the COMPARE case above because the
3238 unmodified I2PAT is used in the PARALLEL and so a pattern
3239 with a modified I2SRC would not match. */
3241 if (flag_expensive_optimizations)
3243 /* Pass pc_rtx so no substitutions are done, just
3244 simplifications. */
3245 if (i1)
3247 subst_low_luid = DF_INSN_LUID (i1);
3248 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3251 subst_low_luid = DF_INSN_LUID (i2);
3252 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3255 n_occurrences = 0; /* `subst' counts here */
3256 subst_low_luid = DF_INSN_LUID (i2);
3258 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3259 copy of I2SRC each time we substitute it, in order to avoid creating
3260 self-referential RTL when we will be substituting I1SRC for I1DEST
3261 later. Likewise if I0 feeds into I2, either directly or indirectly
3262 through I1, and I0DEST is in I0SRC. */
3263 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3264 (i1_feeds_i2_n && i1dest_in_i1src)
3265 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3266 && i0dest_in_i0src));
3267 substed_i2 = 1;
3269 /* Record whether I2's body now appears within I3's body. */
3270 i2_is_used = n_occurrences;
3273 /* If we already got a failure, don't try to do more. Otherwise, try to
3274 substitute I1 if we have it. */
3276 if (i1 && GET_CODE (newpat) != CLOBBER)
3278 /* Check that an autoincrement side-effect on I1 has not been lost.
3279 This happens if I1DEST is mentioned in I2 and dies there, and
3280 has disappeared from the new pattern. */
3281 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3282 && i1_feeds_i2_n
3283 && dead_or_set_p (i2, i1dest)
3284 && !reg_overlap_mentioned_p (i1dest, newpat))
3285 /* Before we can do this substitution, we must redo the test done
3286 above (see detailed comments there) that ensures I1DEST isn't
3287 mentioned in any SETs in NEWPAT that are field assignments. */
3288 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3289 0, 0, 0))
3291 undo_all ();
3292 return 0;
3295 n_occurrences = 0;
3296 subst_low_luid = DF_INSN_LUID (i1);
3298 /* If the following substitution will modify I1SRC, make a copy of it
3299 for the case where it is substituted for I1DEST in I2PAT later. */
3300 if (added_sets_2 && i1_feeds_i2_n)
3301 i1src_copy = copy_rtx (i1src);
3303 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3304 copy of I1SRC each time we substitute it, in order to avoid creating
3305 self-referential RTL when we will be substituting I0SRC for I0DEST
3306 later. */
3307 newpat = subst (newpat, i1dest, i1src, 0, 0,
3308 i0_feeds_i1_n && i0dest_in_i0src);
3309 substed_i1 = 1;
3311 /* Record whether I1's body now appears within I3's body. */
3312 i1_is_used = n_occurrences;
3315 /* Likewise for I0 if we have it. */
3317 if (i0 && GET_CODE (newpat) != CLOBBER)
3319 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3320 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3321 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3322 && !reg_overlap_mentioned_p (i0dest, newpat))
3323 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3324 0, 0, 0))
3326 undo_all ();
3327 return 0;
3330 /* If the following substitution will modify I0SRC, make a copy of it
3331 for the case where it is substituted for I0DEST in I1PAT later. */
3332 if (added_sets_1 && i0_feeds_i1_n)
3333 i0src_copy = copy_rtx (i0src);
3334 /* And a copy for I0DEST in I2PAT substitution. */
3335 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3336 || (i0_feeds_i2_n)))
3337 i0src_copy2 = copy_rtx (i0src);
3339 n_occurrences = 0;
3340 subst_low_luid = DF_INSN_LUID (i0);
3341 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3342 substed_i0 = 1;
3345 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3346 to count all the ways that I2SRC and I1SRC can be used. */
3347 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3348 && i2_is_used + added_sets_2 > 1)
3349 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3350 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3351 > 1))
3352 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3353 && (n_occurrences + added_sets_0
3354 + (added_sets_1 && i0_feeds_i1_n)
3355 + (added_sets_2 && i0_feeds_i2_n)
3356 > 1))
3357 /* Fail if we tried to make a new register. */
3358 || max_reg_num () != maxreg
3359 /* Fail if we couldn't do something and have a CLOBBER. */
3360 || GET_CODE (newpat) == CLOBBER
3361 /* Fail if this new pattern is a MULT and we didn't have one before
3362 at the outer level. */
3363 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3364 && ! have_mult))
3366 undo_all ();
3367 return 0;
3370 /* If the actions of the earlier insns must be kept
3371 in addition to substituting them into the latest one,
3372 we must make a new PARALLEL for the latest insn
3373 to hold additional the SETs. */
3375 if (added_sets_0 || added_sets_1 || added_sets_2)
3377 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3378 combine_extras++;
3380 if (GET_CODE (newpat) == PARALLEL)
3382 rtvec old = XVEC (newpat, 0);
3383 total_sets = XVECLEN (newpat, 0) + extra_sets;
3384 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3385 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3386 sizeof (old->elem[0]) * old->num_elem);
3388 else
3390 rtx old = newpat;
3391 total_sets = 1 + extra_sets;
3392 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3393 XVECEXP (newpat, 0, 0) = old;
3396 if (added_sets_0)
3397 XVECEXP (newpat, 0, --total_sets) = i0pat;
3399 if (added_sets_1)
3401 rtx t = i1pat;
3402 if (i0_feeds_i1_n)
3403 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3405 XVECEXP (newpat, 0, --total_sets) = t;
3407 if (added_sets_2)
3409 rtx t = i2pat;
3410 if (i1_feeds_i2_n)
3411 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3412 i0_feeds_i1_n && i0dest_in_i0src);
3413 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3414 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3416 XVECEXP (newpat, 0, --total_sets) = t;
3420 validate_replacement:
3422 /* Note which hard regs this insn has as inputs. */
3423 mark_used_regs_combine (newpat);
3425 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3426 consider splitting this pattern, we might need these clobbers. */
3427 if (i1 && GET_CODE (newpat) == PARALLEL
3428 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3430 int len = XVECLEN (newpat, 0);
3432 newpat_vec_with_clobbers = rtvec_alloc (len);
3433 for (i = 0; i < len; i++)
3434 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3437 /* We have recognized nothing yet. */
3438 insn_code_number = -1;
3440 /* See if this is a PARALLEL of two SETs where one SET's destination is
3441 a register that is unused and this isn't marked as an instruction that
3442 might trap in an EH region. In that case, we just need the other SET.
3443 We prefer this over the PARALLEL.
3445 This can occur when simplifying a divmod insn. We *must* test for this
3446 case here because the code below that splits two independent SETs doesn't
3447 handle this case correctly when it updates the register status.
3449 It's pointless doing this if we originally had two sets, one from
3450 i3, and one from i2. Combining then splitting the parallel results
3451 in the original i2 again plus an invalid insn (which we delete).
3452 The net effect is only to move instructions around, which makes
3453 debug info less accurate. */
3455 if (!(added_sets_2 && i1 == 0)
3456 && is_parallel_of_n_reg_sets (newpat, 2)
3457 && asm_noperands (newpat) < 0)
3459 rtx set0 = XVECEXP (newpat, 0, 0);
3460 rtx set1 = XVECEXP (newpat, 0, 1);
3461 rtx oldpat = newpat;
3463 if (((REG_P (SET_DEST (set1))
3464 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3465 || (GET_CODE (SET_DEST (set1)) == SUBREG
3466 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3467 && insn_nothrow_p (i3)
3468 && !side_effects_p (SET_SRC (set1)))
3470 newpat = set0;
3471 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3474 else if (((REG_P (SET_DEST (set0))
3475 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3476 || (GET_CODE (SET_DEST (set0)) == SUBREG
3477 && find_reg_note (i3, REG_UNUSED,
3478 SUBREG_REG (SET_DEST (set0)))))
3479 && insn_nothrow_p (i3)
3480 && !side_effects_p (SET_SRC (set0)))
3482 newpat = set1;
3483 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3485 if (insn_code_number >= 0)
3486 changed_i3_dest = 1;
3489 if (insn_code_number < 0)
3490 newpat = oldpat;
3493 /* Is the result of combination a valid instruction? */
3494 if (insn_code_number < 0)
3495 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3497 /* If we were combining three insns and the result is a simple SET
3498 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3499 insns. There are two ways to do this. It can be split using a
3500 machine-specific method (like when you have an addition of a large
3501 constant) or by combine in the function find_split_point. */
3503 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3504 && asm_noperands (newpat) < 0)
3506 rtx parallel, *split;
3507 rtx_insn *m_split_insn;
3509 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3510 use I2DEST as a scratch register will help. In the latter case,
3511 convert I2DEST to the mode of the source of NEWPAT if we can. */
3513 m_split_insn = combine_split_insns (newpat, i3);
3515 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3516 inputs of NEWPAT. */
3518 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3519 possible to try that as a scratch reg. This would require adding
3520 more code to make it work though. */
3522 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3524 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3526 /* First try to split using the original register as a
3527 scratch register. */
3528 parallel = gen_rtx_PARALLEL (VOIDmode,
3529 gen_rtvec (2, newpat,
3530 gen_rtx_CLOBBER (VOIDmode,
3531 i2dest)));
3532 m_split_insn = combine_split_insns (parallel, i3);
3534 /* If that didn't work, try changing the mode of I2DEST if
3535 we can. */
3536 if (m_split_insn == 0
3537 && new_mode != GET_MODE (i2dest)
3538 && new_mode != VOIDmode
3539 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3541 machine_mode old_mode = GET_MODE (i2dest);
3542 rtx ni2dest;
3544 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3545 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3546 else
3548 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3549 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3552 parallel = (gen_rtx_PARALLEL
3553 (VOIDmode,
3554 gen_rtvec (2, newpat,
3555 gen_rtx_CLOBBER (VOIDmode,
3556 ni2dest))));
3557 m_split_insn = combine_split_insns (parallel, i3);
3559 if (m_split_insn == 0
3560 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3562 struct undo *buf;
3564 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3565 buf = undobuf.undos;
3566 undobuf.undos = buf->next;
3567 buf->next = undobuf.frees;
3568 undobuf.frees = buf;
3572 i2scratch = m_split_insn != 0;
3575 /* If recog_for_combine has discarded clobbers, try to use them
3576 again for the split. */
3577 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3579 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3580 m_split_insn = combine_split_insns (parallel, i3);
3583 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3585 rtx m_split_pat = PATTERN (m_split_insn);
3586 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3587 if (insn_code_number >= 0)
3588 newpat = m_split_pat;
3590 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3591 && (next_nonnote_nondebug_insn (i2) == i3
3592 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3594 rtx i2set, i3set;
3595 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3596 newi2pat = PATTERN (m_split_insn);
3598 i3set = single_set (NEXT_INSN (m_split_insn));
3599 i2set = single_set (m_split_insn);
3601 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3603 /* If I2 or I3 has multiple SETs, we won't know how to track
3604 register status, so don't use these insns. If I2's destination
3605 is used between I2 and I3, we also can't use these insns. */
3607 if (i2_code_number >= 0 && i2set && i3set
3608 && (next_nonnote_nondebug_insn (i2) == i3
3609 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3610 insn_code_number = recog_for_combine (&newi3pat, i3,
3611 &new_i3_notes);
3612 if (insn_code_number >= 0)
3613 newpat = newi3pat;
3615 /* It is possible that both insns now set the destination of I3.
3616 If so, we must show an extra use of it. */
3618 if (insn_code_number >= 0)
3620 rtx new_i3_dest = SET_DEST (i3set);
3621 rtx new_i2_dest = SET_DEST (i2set);
3623 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3624 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3625 || GET_CODE (new_i3_dest) == SUBREG)
3626 new_i3_dest = XEXP (new_i3_dest, 0);
3628 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3629 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3630 || GET_CODE (new_i2_dest) == SUBREG)
3631 new_i2_dest = XEXP (new_i2_dest, 0);
3633 if (REG_P (new_i3_dest)
3634 && REG_P (new_i2_dest)
3635 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3636 && REGNO (new_i2_dest) < reg_n_sets_max)
3637 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3641 /* If we can split it and use I2DEST, go ahead and see if that
3642 helps things be recognized. Verify that none of the registers
3643 are set between I2 and I3. */
3644 if (insn_code_number < 0
3645 && (split = find_split_point (&newpat, i3, false)) != 0
3646 && (!HAVE_cc0 || REG_P (i2dest))
3647 /* We need I2DEST in the proper mode. If it is a hard register
3648 or the only use of a pseudo, we can change its mode.
3649 Make sure we don't change a hard register to have a mode that
3650 isn't valid for it, or change the number of registers. */
3651 && (GET_MODE (*split) == GET_MODE (i2dest)
3652 || GET_MODE (*split) == VOIDmode
3653 || can_change_dest_mode (i2dest, added_sets_2,
3654 GET_MODE (*split)))
3655 && (next_nonnote_nondebug_insn (i2) == i3
3656 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3657 /* We can't overwrite I2DEST if its value is still used by
3658 NEWPAT. */
3659 && ! reg_referenced_p (i2dest, newpat))
3661 rtx newdest = i2dest;
3662 enum rtx_code split_code = GET_CODE (*split);
3663 machine_mode split_mode = GET_MODE (*split);
3664 bool subst_done = false;
3665 newi2pat = NULL_RTX;
3667 i2scratch = true;
3669 /* *SPLIT may be part of I2SRC, so make sure we have the
3670 original expression around for later debug processing.
3671 We should not need I2SRC any more in other cases. */
3672 if (MAY_HAVE_DEBUG_INSNS)
3673 i2src = copy_rtx (i2src);
3674 else
3675 i2src = NULL;
3677 /* Get NEWDEST as a register in the proper mode. We have already
3678 validated that we can do this. */
3679 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3681 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3682 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3683 else
3685 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3686 newdest = regno_reg_rtx[REGNO (i2dest)];
3690 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3691 an ASHIFT. This can occur if it was inside a PLUS and hence
3692 appeared to be a memory address. This is a kludge. */
3693 if (split_code == MULT
3694 && CONST_INT_P (XEXP (*split, 1))
3695 && INTVAL (XEXP (*split, 1)) > 0
3696 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3698 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3699 XEXP (*split, 0), GEN_INT (i)));
3700 /* Update split_code because we may not have a multiply
3701 anymore. */
3702 split_code = GET_CODE (*split);
3705 /* Similarly for (plus (mult FOO (const_int pow2))). */
3706 if (split_code == PLUS
3707 && GET_CODE (XEXP (*split, 0)) == MULT
3708 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3709 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3710 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3712 rtx nsplit = XEXP (*split, 0);
3713 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3714 XEXP (nsplit, 0), GEN_INT (i)));
3715 /* Update split_code because we may not have a multiply
3716 anymore. */
3717 split_code = GET_CODE (*split);
3720 #ifdef INSN_SCHEDULING
3721 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3722 be written as a ZERO_EXTEND. */
3723 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3725 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3726 what it really is. */
3727 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3728 == SIGN_EXTEND)
3729 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3730 SUBREG_REG (*split)));
3731 else
3732 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3733 SUBREG_REG (*split)));
3735 #endif
3737 /* Attempt to split binary operators using arithmetic identities. */
3738 if (BINARY_P (SET_SRC (newpat))
3739 && split_mode == GET_MODE (SET_SRC (newpat))
3740 && ! side_effects_p (SET_SRC (newpat)))
3742 rtx setsrc = SET_SRC (newpat);
3743 machine_mode mode = GET_MODE (setsrc);
3744 enum rtx_code code = GET_CODE (setsrc);
3745 rtx src_op0 = XEXP (setsrc, 0);
3746 rtx src_op1 = XEXP (setsrc, 1);
3748 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3749 if (rtx_equal_p (src_op0, src_op1))
3751 newi2pat = gen_rtx_SET (newdest, src_op0);
3752 SUBST (XEXP (setsrc, 0), newdest);
3753 SUBST (XEXP (setsrc, 1), newdest);
3754 subst_done = true;
3756 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3757 else if ((code == PLUS || code == MULT)
3758 && GET_CODE (src_op0) == code
3759 && GET_CODE (XEXP (src_op0, 0)) == code
3760 && (INTEGRAL_MODE_P (mode)
3761 || (FLOAT_MODE_P (mode)
3762 && flag_unsafe_math_optimizations)))
3764 rtx p = XEXP (XEXP (src_op0, 0), 0);
3765 rtx q = XEXP (XEXP (src_op0, 0), 1);
3766 rtx r = XEXP (src_op0, 1);
3767 rtx s = src_op1;
3769 /* Split both "((X op Y) op X) op Y" and
3770 "((X op Y) op Y) op X" as "T op T" where T is
3771 "X op Y". */
3772 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3773 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3775 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3776 SUBST (XEXP (setsrc, 0), newdest);
3777 SUBST (XEXP (setsrc, 1), newdest);
3778 subst_done = true;
3780 /* Split "((X op X) op Y) op Y)" as "T op T" where
3781 T is "X op Y". */
3782 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3784 rtx tmp = simplify_gen_binary (code, mode, p, r);
3785 newi2pat = gen_rtx_SET (newdest, tmp);
3786 SUBST (XEXP (setsrc, 0), newdest);
3787 SUBST (XEXP (setsrc, 1), newdest);
3788 subst_done = true;
3793 if (!subst_done)
3795 newi2pat = gen_rtx_SET (newdest, *split);
3796 SUBST (*split, newdest);
3799 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3801 /* recog_for_combine might have added CLOBBERs to newi2pat.
3802 Make sure NEWPAT does not depend on the clobbered regs. */
3803 if (GET_CODE (newi2pat) == PARALLEL)
3804 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3805 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3807 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3808 if (reg_overlap_mentioned_p (reg, newpat))
3810 undo_all ();
3811 return 0;
3815 /* If the split point was a MULT and we didn't have one before,
3816 don't use one now. */
3817 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3818 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3822 /* Check for a case where we loaded from memory in a narrow mode and
3823 then sign extended it, but we need both registers. In that case,
3824 we have a PARALLEL with both loads from the same memory location.
3825 We can split this into a load from memory followed by a register-register
3826 copy. This saves at least one insn, more if register allocation can
3827 eliminate the copy.
3829 We cannot do this if the destination of the first assignment is a
3830 condition code register or cc0. We eliminate this case by making sure
3831 the SET_DEST and SET_SRC have the same mode.
3833 We cannot do this if the destination of the second assignment is
3834 a register that we have already assumed is zero-extended. Similarly
3835 for a SUBREG of such a register. */
3837 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3838 && GET_CODE (newpat) == PARALLEL
3839 && XVECLEN (newpat, 0) == 2
3840 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3841 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3842 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3843 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3844 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3845 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3846 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3847 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3848 DF_INSN_LUID (i2))
3849 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3850 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3851 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3852 (REG_P (temp_expr)
3853 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3854 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3855 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3856 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3857 != GET_MODE_MASK (word_mode))))
3858 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3859 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3860 (REG_P (temp_expr)
3861 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3862 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3863 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3864 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3865 != GET_MODE_MASK (word_mode)))))
3866 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3867 SET_SRC (XVECEXP (newpat, 0, 1)))
3868 && ! find_reg_note (i3, REG_UNUSED,
3869 SET_DEST (XVECEXP (newpat, 0, 0))))
3871 rtx ni2dest;
3873 newi2pat = XVECEXP (newpat, 0, 0);
3874 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3875 newpat = XVECEXP (newpat, 0, 1);
3876 SUBST (SET_SRC (newpat),
3877 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3878 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3880 if (i2_code_number >= 0)
3881 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3883 if (insn_code_number >= 0)
3884 swap_i2i3 = 1;
3887 /* Similarly, check for a case where we have a PARALLEL of two independent
3888 SETs but we started with three insns. In this case, we can do the sets
3889 as two separate insns. This case occurs when some SET allows two
3890 other insns to combine, but the destination of that SET is still live.
3892 Also do this if we started with two insns and (at least) one of the
3893 resulting sets is a noop; this noop will be deleted later. */
3895 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3896 && GET_CODE (newpat) == PARALLEL
3897 && XVECLEN (newpat, 0) == 2
3898 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3899 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3900 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3901 || set_noop_p (XVECEXP (newpat, 0, 1)))
3902 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3903 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3904 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3905 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3906 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3907 XVECEXP (newpat, 0, 0))
3908 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3909 XVECEXP (newpat, 0, 1))
3910 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3911 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3913 rtx set0 = XVECEXP (newpat, 0, 0);
3914 rtx set1 = XVECEXP (newpat, 0, 1);
3916 /* Normally, it doesn't matter which of the two is done first,
3917 but the one that references cc0 can't be the second, and
3918 one which uses any regs/memory set in between i2 and i3 can't
3919 be first. The PARALLEL might also have been pre-existing in i3,
3920 so we need to make sure that we won't wrongly hoist a SET to i2
3921 that would conflict with a death note present in there. */
3922 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3923 && !(REG_P (SET_DEST (set1))
3924 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3925 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3926 && find_reg_note (i2, REG_DEAD,
3927 SUBREG_REG (SET_DEST (set1))))
3928 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3929 /* If I3 is a jump, ensure that set0 is a jump so that
3930 we do not create invalid RTL. */
3931 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3934 newi2pat = set1;
3935 newpat = set0;
3937 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3938 && !(REG_P (SET_DEST (set0))
3939 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3940 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3941 && find_reg_note (i2, REG_DEAD,
3942 SUBREG_REG (SET_DEST (set0))))
3943 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3944 /* If I3 is a jump, ensure that set1 is a jump so that
3945 we do not create invalid RTL. */
3946 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3949 newi2pat = set0;
3950 newpat = set1;
3952 else
3954 undo_all ();
3955 return 0;
3958 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3960 if (i2_code_number >= 0)
3962 /* recog_for_combine might have added CLOBBERs to newi2pat.
3963 Make sure NEWPAT does not depend on the clobbered regs. */
3964 if (GET_CODE (newi2pat) == PARALLEL)
3966 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3967 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3969 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3970 if (reg_overlap_mentioned_p (reg, newpat))
3972 undo_all ();
3973 return 0;
3978 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3982 /* If it still isn't recognized, fail and change things back the way they
3983 were. */
3984 if ((insn_code_number < 0
3985 /* Is the result a reasonable ASM_OPERANDS? */
3986 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3988 undo_all ();
3989 return 0;
3992 /* If we had to change another insn, make sure it is valid also. */
3993 if (undobuf.other_insn)
3995 CLEAR_HARD_REG_SET (newpat_used_regs);
3997 other_pat = PATTERN (undobuf.other_insn);
3998 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3999 &new_other_notes);
4001 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4003 undo_all ();
4004 return 0;
4008 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4009 they are adjacent to each other or not. */
4010 if (HAVE_cc0)
4012 rtx_insn *p = prev_nonnote_insn (i3);
4013 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4014 && sets_cc0_p (newi2pat))
4016 undo_all ();
4017 return 0;
4021 /* Only allow this combination if insn_rtx_costs reports that the
4022 replacement instructions are cheaper than the originals. */
4023 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4025 undo_all ();
4026 return 0;
4029 if (MAY_HAVE_DEBUG_INSNS)
4031 struct undo *undo;
4033 for (undo = undobuf.undos; undo; undo = undo->next)
4034 if (undo->kind == UNDO_MODE)
4036 rtx reg = *undo->where.r;
4037 machine_mode new_mode = GET_MODE (reg);
4038 machine_mode old_mode = undo->old_contents.m;
4040 /* Temporarily revert mode back. */
4041 adjust_reg_mode (reg, old_mode);
4043 if (reg == i2dest && i2scratch)
4045 /* If we used i2dest as a scratch register with a
4046 different mode, substitute it for the original
4047 i2src while its original mode is temporarily
4048 restored, and then clear i2scratch so that we don't
4049 do it again later. */
4050 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4051 this_basic_block);
4052 i2scratch = false;
4053 /* Put back the new mode. */
4054 adjust_reg_mode (reg, new_mode);
4056 else
4058 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4059 rtx_insn *first, *last;
4061 if (reg == i2dest)
4063 first = i2;
4064 last = last_combined_insn;
4066 else
4068 first = i3;
4069 last = undobuf.other_insn;
4070 gcc_assert (last);
4071 if (DF_INSN_LUID (last)
4072 < DF_INSN_LUID (last_combined_insn))
4073 last = last_combined_insn;
4076 /* We're dealing with a reg that changed mode but not
4077 meaning, so we want to turn it into a subreg for
4078 the new mode. However, because of REG sharing and
4079 because its mode had already changed, we have to do
4080 it in two steps. First, replace any debug uses of
4081 reg, with its original mode temporarily restored,
4082 with this copy we have created; then, replace the
4083 copy with the SUBREG of the original shared reg,
4084 once again changed to the new mode. */
4085 propagate_for_debug (first, last, reg, tempreg,
4086 this_basic_block);
4087 adjust_reg_mode (reg, new_mode);
4088 propagate_for_debug (first, last, tempreg,
4089 lowpart_subreg (old_mode, reg, new_mode),
4090 this_basic_block);
4095 /* If we will be able to accept this, we have made a
4096 change to the destination of I3. This requires us to
4097 do a few adjustments. */
4099 if (changed_i3_dest)
4101 PATTERN (i3) = newpat;
4102 adjust_for_new_dest (i3);
4105 /* We now know that we can do this combination. Merge the insns and
4106 update the status of registers and LOG_LINKS. */
4108 if (undobuf.other_insn)
4110 rtx note, next;
4112 PATTERN (undobuf.other_insn) = other_pat;
4114 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4115 ensure that they are still valid. Then add any non-duplicate
4116 notes added by recog_for_combine. */
4117 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4119 next = XEXP (note, 1);
4121 if ((REG_NOTE_KIND (note) == REG_DEAD
4122 && !reg_referenced_p (XEXP (note, 0),
4123 PATTERN (undobuf.other_insn)))
4124 ||(REG_NOTE_KIND (note) == REG_UNUSED
4125 && !reg_set_p (XEXP (note, 0),
4126 PATTERN (undobuf.other_insn))))
4127 remove_note (undobuf.other_insn, note);
4130 distribute_notes (new_other_notes, undobuf.other_insn,
4131 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4132 NULL_RTX);
4135 if (swap_i2i3)
4137 rtx_insn *insn;
4138 struct insn_link *link;
4139 rtx ni2dest;
4141 /* I3 now uses what used to be its destination and which is now
4142 I2's destination. This requires us to do a few adjustments. */
4143 PATTERN (i3) = newpat;
4144 adjust_for_new_dest (i3);
4146 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4147 so we still will.
4149 However, some later insn might be using I2's dest and have
4150 a LOG_LINK pointing at I3. We must remove this link.
4151 The simplest way to remove the link is to point it at I1,
4152 which we know will be a NOTE. */
4154 /* newi2pat is usually a SET here; however, recog_for_combine might
4155 have added some clobbers. */
4156 if (GET_CODE (newi2pat) == PARALLEL)
4157 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4158 else
4159 ni2dest = SET_DEST (newi2pat);
4161 for (insn = NEXT_INSN (i3);
4162 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4163 || insn != BB_HEAD (this_basic_block->next_bb));
4164 insn = NEXT_INSN (insn))
4166 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
4168 FOR_EACH_LOG_LINK (link, insn)
4169 if (link->insn == i3)
4170 link->insn = i1;
4172 break;
4178 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4179 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4180 rtx midnotes = 0;
4181 int from_luid;
4182 /* Compute which registers we expect to eliminate. newi2pat may be setting
4183 either i3dest or i2dest, so we must check it. */
4184 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4185 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4186 || !i2dest_killed
4187 ? 0 : i2dest);
4188 /* For i1, we need to compute both local elimination and global
4189 elimination information with respect to newi2pat because i1dest
4190 may be the same as i3dest, in which case newi2pat may be setting
4191 i1dest. Global information is used when distributing REG_DEAD
4192 note for i2 and i3, in which case it does matter if newi2pat sets
4193 i1dest or not.
4195 Local information is used when distributing REG_DEAD note for i1,
4196 in which case it doesn't matter if newi2pat sets i1dest or not.
4197 See PR62151, if we have four insns combination:
4198 i0: r0 <- i0src
4199 i1: r1 <- i1src (using r0)
4200 REG_DEAD (r0)
4201 i2: r0 <- i2src (using r1)
4202 i3: r3 <- i3src (using r0)
4203 ix: using r0
4204 From i1's point of view, r0 is eliminated, no matter if it is set
4205 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4206 should be discarded.
4208 Note local information only affects cases in forms like "I1->I2->I3",
4209 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4210 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4211 i0dest anyway. */
4212 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4213 || !i1dest_killed
4214 ? 0 : i1dest);
4215 rtx elim_i1 = (local_elim_i1 == 0
4216 || (newi2pat && reg_set_p (i1dest, newi2pat))
4217 ? 0 : i1dest);
4218 /* Same case as i1. */
4219 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4220 ? 0 : i0dest);
4221 rtx elim_i0 = (local_elim_i0 == 0
4222 || (newi2pat && reg_set_p (i0dest, newi2pat))
4223 ? 0 : i0dest);
4225 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4226 clear them. */
4227 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4228 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4229 if (i1)
4230 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4231 if (i0)
4232 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4234 /* Ensure that we do not have something that should not be shared but
4235 occurs multiple times in the new insns. Check this by first
4236 resetting all the `used' flags and then copying anything is shared. */
4238 reset_used_flags (i3notes);
4239 reset_used_flags (i2notes);
4240 reset_used_flags (i1notes);
4241 reset_used_flags (i0notes);
4242 reset_used_flags (newpat);
4243 reset_used_flags (newi2pat);
4244 if (undobuf.other_insn)
4245 reset_used_flags (PATTERN (undobuf.other_insn));
4247 i3notes = copy_rtx_if_shared (i3notes);
4248 i2notes = copy_rtx_if_shared (i2notes);
4249 i1notes = copy_rtx_if_shared (i1notes);
4250 i0notes = copy_rtx_if_shared (i0notes);
4251 newpat = copy_rtx_if_shared (newpat);
4252 newi2pat = copy_rtx_if_shared (newi2pat);
4253 if (undobuf.other_insn)
4254 reset_used_flags (PATTERN (undobuf.other_insn));
4256 INSN_CODE (i3) = insn_code_number;
4257 PATTERN (i3) = newpat;
4259 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4261 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
4263 reset_used_flags (call_usage);
4264 call_usage = copy_rtx (call_usage);
4266 if (substed_i2)
4268 /* I2SRC must still be meaningful at this point. Some splitting
4269 operations can invalidate I2SRC, but those operations do not
4270 apply to calls. */
4271 gcc_assert (i2src);
4272 replace_rtx (call_usage, i2dest, i2src);
4275 if (substed_i1)
4276 replace_rtx (call_usage, i1dest, i1src);
4277 if (substed_i0)
4278 replace_rtx (call_usage, i0dest, i0src);
4280 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
4283 if (undobuf.other_insn)
4284 INSN_CODE (undobuf.other_insn) = other_code_number;
4286 /* We had one special case above where I2 had more than one set and
4287 we replaced a destination of one of those sets with the destination
4288 of I3. In that case, we have to update LOG_LINKS of insns later
4289 in this basic block. Note that this (expensive) case is rare.
4291 Also, in this case, we must pretend that all REG_NOTEs for I2
4292 actually came from I3, so that REG_UNUSED notes from I2 will be
4293 properly handled. */
4295 if (i3_subst_into_i2)
4297 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4298 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4299 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4300 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4301 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4302 && ! find_reg_note (i2, REG_UNUSED,
4303 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4304 for (temp_insn = NEXT_INSN (i2);
4305 temp_insn
4306 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4307 || BB_HEAD (this_basic_block) != temp_insn);
4308 temp_insn = NEXT_INSN (temp_insn))
4309 if (temp_insn != i3 && INSN_P (temp_insn))
4310 FOR_EACH_LOG_LINK (link, temp_insn)
4311 if (link->insn == i2)
4312 link->insn = i3;
4314 if (i3notes)
4316 rtx link = i3notes;
4317 while (XEXP (link, 1))
4318 link = XEXP (link, 1);
4319 XEXP (link, 1) = i2notes;
4321 else
4322 i3notes = i2notes;
4323 i2notes = 0;
4326 LOG_LINKS (i3) = NULL;
4327 REG_NOTES (i3) = 0;
4328 LOG_LINKS (i2) = NULL;
4329 REG_NOTES (i2) = 0;
4331 if (newi2pat)
4333 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4334 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4335 this_basic_block);
4336 INSN_CODE (i2) = i2_code_number;
4337 PATTERN (i2) = newi2pat;
4339 else
4341 if (MAY_HAVE_DEBUG_INSNS && i2src)
4342 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4343 this_basic_block);
4344 SET_INSN_DELETED (i2);
4347 if (i1)
4349 LOG_LINKS (i1) = NULL;
4350 REG_NOTES (i1) = 0;
4351 if (MAY_HAVE_DEBUG_INSNS)
4352 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4353 this_basic_block);
4354 SET_INSN_DELETED (i1);
4357 if (i0)
4359 LOG_LINKS (i0) = NULL;
4360 REG_NOTES (i0) = 0;
4361 if (MAY_HAVE_DEBUG_INSNS)
4362 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4363 this_basic_block);
4364 SET_INSN_DELETED (i0);
4367 /* Get death notes for everything that is now used in either I3 or
4368 I2 and used to die in a previous insn. If we built two new
4369 patterns, move from I1 to I2 then I2 to I3 so that we get the
4370 proper movement on registers that I2 modifies. */
4372 if (i0)
4373 from_luid = DF_INSN_LUID (i0);
4374 else if (i1)
4375 from_luid = DF_INSN_LUID (i1);
4376 else
4377 from_luid = DF_INSN_LUID (i2);
4378 if (newi2pat)
4379 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4380 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4382 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4383 if (i3notes)
4384 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4385 elim_i2, elim_i1, elim_i0);
4386 if (i2notes)
4387 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4388 elim_i2, elim_i1, elim_i0);
4389 if (i1notes)
4390 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4391 elim_i2, local_elim_i1, local_elim_i0);
4392 if (i0notes)
4393 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4394 elim_i2, elim_i1, local_elim_i0);
4395 if (midnotes)
4396 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4397 elim_i2, elim_i1, elim_i0);
4399 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4400 know these are REG_UNUSED and want them to go to the desired insn,
4401 so we always pass it as i3. */
4403 if (newi2pat && new_i2_notes)
4404 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4405 NULL_RTX);
4407 if (new_i3_notes)
4408 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4409 NULL_RTX);
4411 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4412 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4413 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4414 in that case, it might delete I2. Similarly for I2 and I1.
4415 Show an additional death due to the REG_DEAD note we make here. If
4416 we discard it in distribute_notes, we will decrement it again. */
4418 if (i3dest_killed)
4420 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4421 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4422 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4423 elim_i1, elim_i0);
4424 else
4425 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4426 elim_i2, elim_i1, elim_i0);
4429 if (i2dest_in_i2src)
4431 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4432 if (newi2pat && reg_set_p (i2dest, newi2pat))
4433 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4434 NULL_RTX, NULL_RTX);
4435 else
4436 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4437 NULL_RTX, NULL_RTX, NULL_RTX);
4440 if (i1dest_in_i1src)
4442 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4443 if (newi2pat && reg_set_p (i1dest, newi2pat))
4444 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4445 NULL_RTX, NULL_RTX);
4446 else
4447 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4448 NULL_RTX, NULL_RTX, NULL_RTX);
4451 if (i0dest_in_i0src)
4453 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4454 if (newi2pat && reg_set_p (i0dest, newi2pat))
4455 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4456 NULL_RTX, NULL_RTX);
4457 else
4458 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4459 NULL_RTX, NULL_RTX, NULL_RTX);
4462 distribute_links (i3links);
4463 distribute_links (i2links);
4464 distribute_links (i1links);
4465 distribute_links (i0links);
4467 if (REG_P (i2dest))
4469 struct insn_link *link;
4470 rtx_insn *i2_insn = 0;
4471 rtx i2_val = 0, set;
4473 /* The insn that used to set this register doesn't exist, and
4474 this life of the register may not exist either. See if one of
4475 I3's links points to an insn that sets I2DEST. If it does,
4476 that is now the last known value for I2DEST. If we don't update
4477 this and I2 set the register to a value that depended on its old
4478 contents, we will get confused. If this insn is used, thing
4479 will be set correctly in combine_instructions. */
4480 FOR_EACH_LOG_LINK (link, i3)
4481 if ((set = single_set (link->insn)) != 0
4482 && rtx_equal_p (i2dest, SET_DEST (set)))
4483 i2_insn = link->insn, i2_val = SET_SRC (set);
4485 record_value_for_reg (i2dest, i2_insn, i2_val);
4487 /* If the reg formerly set in I2 died only once and that was in I3,
4488 zero its use count so it won't make `reload' do any work. */
4489 if (! added_sets_2
4490 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4491 && ! i2dest_in_i2src
4492 && REGNO (i2dest) < reg_n_sets_max)
4493 INC_REG_N_SETS (REGNO (i2dest), -1);
4496 if (i1 && REG_P (i1dest))
4498 struct insn_link *link;
4499 rtx_insn *i1_insn = 0;
4500 rtx i1_val = 0, set;
4502 FOR_EACH_LOG_LINK (link, i3)
4503 if ((set = single_set (link->insn)) != 0
4504 && rtx_equal_p (i1dest, SET_DEST (set)))
4505 i1_insn = link->insn, i1_val = SET_SRC (set);
4507 record_value_for_reg (i1dest, i1_insn, i1_val);
4509 if (! added_sets_1
4510 && ! i1dest_in_i1src
4511 && REGNO (i1dest) < reg_n_sets_max)
4512 INC_REG_N_SETS (REGNO (i1dest), -1);
4515 if (i0 && REG_P (i0dest))
4517 struct insn_link *link;
4518 rtx_insn *i0_insn = 0;
4519 rtx i0_val = 0, set;
4521 FOR_EACH_LOG_LINK (link, i3)
4522 if ((set = single_set (link->insn)) != 0
4523 && rtx_equal_p (i0dest, SET_DEST (set)))
4524 i0_insn = link->insn, i0_val = SET_SRC (set);
4526 record_value_for_reg (i0dest, i0_insn, i0_val);
4528 if (! added_sets_0
4529 && ! i0dest_in_i0src
4530 && REGNO (i0dest) < reg_n_sets_max)
4531 INC_REG_N_SETS (REGNO (i0dest), -1);
4534 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4535 been made to this insn. The order is important, because newi2pat
4536 can affect nonzero_bits of newpat. */
4537 if (newi2pat)
4538 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4539 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4542 if (undobuf.other_insn != NULL_RTX)
4544 if (dump_file)
4546 fprintf (dump_file, "modifying other_insn ");
4547 dump_insn_slim (dump_file, undobuf.other_insn);
4549 df_insn_rescan (undobuf.other_insn);
4552 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4554 if (dump_file)
4556 fprintf (dump_file, "modifying insn i0 ");
4557 dump_insn_slim (dump_file, i0);
4559 df_insn_rescan (i0);
4562 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4564 if (dump_file)
4566 fprintf (dump_file, "modifying insn i1 ");
4567 dump_insn_slim (dump_file, i1);
4569 df_insn_rescan (i1);
4572 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4574 if (dump_file)
4576 fprintf (dump_file, "modifying insn i2 ");
4577 dump_insn_slim (dump_file, i2);
4579 df_insn_rescan (i2);
4582 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4584 if (dump_file)
4586 fprintf (dump_file, "modifying insn i3 ");
4587 dump_insn_slim (dump_file, i3);
4589 df_insn_rescan (i3);
4592 /* Set new_direct_jump_p if a new return or simple jump instruction
4593 has been created. Adjust the CFG accordingly. */
4594 if (returnjump_p (i3) || any_uncondjump_p (i3))
4596 *new_direct_jump_p = 1;
4597 mark_jump_label (PATTERN (i3), i3, 0);
4598 update_cfg_for_uncondjump (i3);
4601 if (undobuf.other_insn != NULL_RTX
4602 && (returnjump_p (undobuf.other_insn)
4603 || any_uncondjump_p (undobuf.other_insn)))
4605 *new_direct_jump_p = 1;
4606 update_cfg_for_uncondjump (undobuf.other_insn);
4609 /* A noop might also need cleaning up of CFG, if it comes from the
4610 simplification of a jump. */
4611 if (JUMP_P (i3)
4612 && GET_CODE (newpat) == SET
4613 && SET_SRC (newpat) == pc_rtx
4614 && SET_DEST (newpat) == pc_rtx)
4616 *new_direct_jump_p = 1;
4617 update_cfg_for_uncondjump (i3);
4620 if (undobuf.other_insn != NULL_RTX
4621 && JUMP_P (undobuf.other_insn)
4622 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4623 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4624 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4626 *new_direct_jump_p = 1;
4627 update_cfg_for_uncondjump (undobuf.other_insn);
4630 combine_successes++;
4631 undo_commit ();
4633 if (added_links_insn
4634 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4635 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4636 return added_links_insn;
4637 else
4638 return newi2pat ? i2 : i3;
4641 /* Get a marker for undoing to the current state. */
4643 static void *
4644 get_undo_marker (void)
4646 return undobuf.undos;
4649 /* Undo the modifications up to the marker. */
4651 static void
4652 undo_to_marker (void *marker)
4654 struct undo *undo, *next;
4656 for (undo = undobuf.undos; undo != marker; undo = next)
4658 gcc_assert (undo);
4660 next = undo->next;
4661 switch (undo->kind)
4663 case UNDO_RTX:
4664 *undo->where.r = undo->old_contents.r;
4665 break;
4666 case UNDO_INT:
4667 *undo->where.i = undo->old_contents.i;
4668 break;
4669 case UNDO_MODE:
4670 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4671 break;
4672 case UNDO_LINKS:
4673 *undo->where.l = undo->old_contents.l;
4674 break;
4675 default:
4676 gcc_unreachable ();
4679 undo->next = undobuf.frees;
4680 undobuf.frees = undo;
4683 undobuf.undos = (struct undo *) marker;
4686 /* Undo all the modifications recorded in undobuf. */
4688 static void
4689 undo_all (void)
4691 undo_to_marker (0);
4694 /* We've committed to accepting the changes we made. Move all
4695 of the undos to the free list. */
4697 static void
4698 undo_commit (void)
4700 struct undo *undo, *next;
4702 for (undo = undobuf.undos; undo; undo = next)
4704 next = undo->next;
4705 undo->next = undobuf.frees;
4706 undobuf.frees = undo;
4708 undobuf.undos = 0;
4711 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4712 where we have an arithmetic expression and return that point. LOC will
4713 be inside INSN.
4715 try_combine will call this function to see if an insn can be split into
4716 two insns. */
4718 static rtx *
4719 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4721 rtx x = *loc;
4722 enum rtx_code code = GET_CODE (x);
4723 rtx *split;
4724 unsigned HOST_WIDE_INT len = 0;
4725 HOST_WIDE_INT pos = 0;
4726 int unsignedp = 0;
4727 rtx inner = NULL_RTX;
4729 /* First special-case some codes. */
4730 switch (code)
4732 case SUBREG:
4733 #ifdef INSN_SCHEDULING
4734 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4735 point. */
4736 if (MEM_P (SUBREG_REG (x)))
4737 return loc;
4738 #endif
4739 return find_split_point (&SUBREG_REG (x), insn, false);
4741 case MEM:
4742 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4743 using LO_SUM and HIGH. */
4744 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4745 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4747 machine_mode address_mode = get_address_mode (x);
4749 SUBST (XEXP (x, 0),
4750 gen_rtx_LO_SUM (address_mode,
4751 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4752 XEXP (x, 0)));
4753 return &XEXP (XEXP (x, 0), 0);
4756 /* If we have a PLUS whose second operand is a constant and the
4757 address is not valid, perhaps will can split it up using
4758 the machine-specific way to split large constants. We use
4759 the first pseudo-reg (one of the virtual regs) as a placeholder;
4760 it will not remain in the result. */
4761 if (GET_CODE (XEXP (x, 0)) == PLUS
4762 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4763 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4764 MEM_ADDR_SPACE (x)))
4766 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4767 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4768 subst_insn);
4770 /* This should have produced two insns, each of which sets our
4771 placeholder. If the source of the second is a valid address,
4772 we can make put both sources together and make a split point
4773 in the middle. */
4775 if (seq
4776 && NEXT_INSN (seq) != NULL_RTX
4777 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4778 && NONJUMP_INSN_P (seq)
4779 && GET_CODE (PATTERN (seq)) == SET
4780 && SET_DEST (PATTERN (seq)) == reg
4781 && ! reg_mentioned_p (reg,
4782 SET_SRC (PATTERN (seq)))
4783 && NONJUMP_INSN_P (NEXT_INSN (seq))
4784 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4785 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4786 && memory_address_addr_space_p
4787 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4788 MEM_ADDR_SPACE (x)))
4790 rtx src1 = SET_SRC (PATTERN (seq));
4791 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4793 /* Replace the placeholder in SRC2 with SRC1. If we can
4794 find where in SRC2 it was placed, that can become our
4795 split point and we can replace this address with SRC2.
4796 Just try two obvious places. */
4798 src2 = replace_rtx (src2, reg, src1);
4799 split = 0;
4800 if (XEXP (src2, 0) == src1)
4801 split = &XEXP (src2, 0);
4802 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4803 && XEXP (XEXP (src2, 0), 0) == src1)
4804 split = &XEXP (XEXP (src2, 0), 0);
4806 if (split)
4808 SUBST (XEXP (x, 0), src2);
4809 return split;
4813 /* If that didn't work, perhaps the first operand is complex and
4814 needs to be computed separately, so make a split point there.
4815 This will occur on machines that just support REG + CONST
4816 and have a constant moved through some previous computation. */
4818 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4819 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4820 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4821 return &XEXP (XEXP (x, 0), 0);
4824 /* If we have a PLUS whose first operand is complex, try computing it
4825 separately by making a split there. */
4826 if (GET_CODE (XEXP (x, 0)) == PLUS
4827 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4828 MEM_ADDR_SPACE (x))
4829 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4830 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4831 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4832 return &XEXP (XEXP (x, 0), 0);
4833 break;
4835 case SET:
4836 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4837 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4838 we need to put the operand into a register. So split at that
4839 point. */
4841 if (SET_DEST (x) == cc0_rtx
4842 && GET_CODE (SET_SRC (x)) != COMPARE
4843 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4844 && !OBJECT_P (SET_SRC (x))
4845 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4846 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4847 return &SET_SRC (x);
4849 /* See if we can split SET_SRC as it stands. */
4850 split = find_split_point (&SET_SRC (x), insn, true);
4851 if (split && split != &SET_SRC (x))
4852 return split;
4854 /* See if we can split SET_DEST as it stands. */
4855 split = find_split_point (&SET_DEST (x), insn, false);
4856 if (split && split != &SET_DEST (x))
4857 return split;
4859 /* See if this is a bitfield assignment with everything constant. If
4860 so, this is an IOR of an AND, so split it into that. */
4861 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4862 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4863 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4864 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4865 && CONST_INT_P (SET_SRC (x))
4866 && ((INTVAL (XEXP (SET_DEST (x), 1))
4867 + INTVAL (XEXP (SET_DEST (x), 2)))
4868 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4869 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4871 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4872 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4873 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4874 rtx dest = XEXP (SET_DEST (x), 0);
4875 machine_mode mode = GET_MODE (dest);
4876 unsigned HOST_WIDE_INT mask
4877 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
4878 rtx or_mask;
4880 if (BITS_BIG_ENDIAN)
4881 pos = GET_MODE_PRECISION (mode) - len - pos;
4883 or_mask = gen_int_mode (src << pos, mode);
4884 if (src == mask)
4885 SUBST (SET_SRC (x),
4886 simplify_gen_binary (IOR, mode, dest, or_mask));
4887 else
4889 rtx negmask = gen_int_mode (~(mask << pos), mode);
4890 SUBST (SET_SRC (x),
4891 simplify_gen_binary (IOR, mode,
4892 simplify_gen_binary (AND, mode,
4893 dest, negmask),
4894 or_mask));
4897 SUBST (SET_DEST (x), dest);
4899 split = find_split_point (&SET_SRC (x), insn, true);
4900 if (split && split != &SET_SRC (x))
4901 return split;
4904 /* Otherwise, see if this is an operation that we can split into two.
4905 If so, try to split that. */
4906 code = GET_CODE (SET_SRC (x));
4908 switch (code)
4910 case AND:
4911 /* If we are AND'ing with a large constant that is only a single
4912 bit and the result is only being used in a context where we
4913 need to know if it is zero or nonzero, replace it with a bit
4914 extraction. This will avoid the large constant, which might
4915 have taken more than one insn to make. If the constant were
4916 not a valid argument to the AND but took only one insn to make,
4917 this is no worse, but if it took more than one insn, it will
4918 be better. */
4920 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4921 && REG_P (XEXP (SET_SRC (x), 0))
4922 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4923 && REG_P (SET_DEST (x))
4924 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4925 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4926 && XEXP (*split, 0) == SET_DEST (x)
4927 && XEXP (*split, 1) == const0_rtx)
4929 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4930 XEXP (SET_SRC (x), 0),
4931 pos, NULL_RTX, 1, 1, 0, 0);
4932 if (extraction != 0)
4934 SUBST (SET_SRC (x), extraction);
4935 return find_split_point (loc, insn, false);
4938 break;
4940 case NE:
4941 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4942 is known to be on, this can be converted into a NEG of a shift. */
4943 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4944 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4945 && 1 <= (pos = exact_log2
4946 (nonzero_bits (XEXP (SET_SRC (x), 0),
4947 GET_MODE (XEXP (SET_SRC (x), 0))))))
4949 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4951 SUBST (SET_SRC (x),
4952 gen_rtx_NEG (mode,
4953 gen_rtx_LSHIFTRT (mode,
4954 XEXP (SET_SRC (x), 0),
4955 GEN_INT (pos))));
4957 split = find_split_point (&SET_SRC (x), insn, true);
4958 if (split && split != &SET_SRC (x))
4959 return split;
4961 break;
4963 case SIGN_EXTEND:
4964 inner = XEXP (SET_SRC (x), 0);
4966 /* We can't optimize if either mode is a partial integer
4967 mode as we don't know how many bits are significant
4968 in those modes. */
4969 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4970 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4971 break;
4973 pos = 0;
4974 len = GET_MODE_PRECISION (GET_MODE (inner));
4975 unsignedp = 0;
4976 break;
4978 case SIGN_EXTRACT:
4979 case ZERO_EXTRACT:
4980 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4981 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
4983 inner = XEXP (SET_SRC (x), 0);
4984 len = INTVAL (XEXP (SET_SRC (x), 1));
4985 pos = INTVAL (XEXP (SET_SRC (x), 2));
4987 if (BITS_BIG_ENDIAN)
4988 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
4989 unsignedp = (code == ZERO_EXTRACT);
4991 break;
4993 default:
4994 break;
4997 if (len && pos >= 0
4998 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5000 machine_mode mode = GET_MODE (SET_SRC (x));
5002 /* For unsigned, we have a choice of a shift followed by an
5003 AND or two shifts. Use two shifts for field sizes where the
5004 constant might be too large. We assume here that we can
5005 always at least get 8-bit constants in an AND insn, which is
5006 true for every current RISC. */
5008 if (unsignedp && len <= 8)
5010 unsigned HOST_WIDE_INT mask
5011 = ((unsigned HOST_WIDE_INT) 1 << len) - 1;
5012 SUBST (SET_SRC (x),
5013 gen_rtx_AND (mode,
5014 gen_rtx_LSHIFTRT
5015 (mode, gen_lowpart (mode, inner),
5016 GEN_INT (pos)),
5017 gen_int_mode (mask, mode)));
5019 split = find_split_point (&SET_SRC (x), insn, true);
5020 if (split && split != &SET_SRC (x))
5021 return split;
5023 else
5025 SUBST (SET_SRC (x),
5026 gen_rtx_fmt_ee
5027 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5028 gen_rtx_ASHIFT (mode,
5029 gen_lowpart (mode, inner),
5030 GEN_INT (GET_MODE_PRECISION (mode)
5031 - len - pos)),
5032 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5034 split = find_split_point (&SET_SRC (x), insn, true);
5035 if (split && split != &SET_SRC (x))
5036 return split;
5040 /* See if this is a simple operation with a constant as the second
5041 operand. It might be that this constant is out of range and hence
5042 could be used as a split point. */
5043 if (BINARY_P (SET_SRC (x))
5044 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5045 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5046 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5047 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5048 return &XEXP (SET_SRC (x), 1);
5050 /* Finally, see if this is a simple operation with its first operand
5051 not in a register. The operation might require this operand in a
5052 register, so return it as a split point. We can always do this
5053 because if the first operand were another operation, we would have
5054 already found it as a split point. */
5055 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5056 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5057 return &XEXP (SET_SRC (x), 0);
5059 return 0;
5061 case AND:
5062 case IOR:
5063 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5064 it is better to write this as (not (ior A B)) so we can split it.
5065 Similarly for IOR. */
5066 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5068 SUBST (*loc,
5069 gen_rtx_NOT (GET_MODE (x),
5070 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5071 GET_MODE (x),
5072 XEXP (XEXP (x, 0), 0),
5073 XEXP (XEXP (x, 1), 0))));
5074 return find_split_point (loc, insn, set_src);
5077 /* Many RISC machines have a large set of logical insns. If the
5078 second operand is a NOT, put it first so we will try to split the
5079 other operand first. */
5080 if (GET_CODE (XEXP (x, 1)) == NOT)
5082 rtx tem = XEXP (x, 0);
5083 SUBST (XEXP (x, 0), XEXP (x, 1));
5084 SUBST (XEXP (x, 1), tem);
5086 break;
5088 case PLUS:
5089 case MINUS:
5090 /* Canonicalization can produce (minus A (mult B C)), where C is a
5091 constant. It may be better to try splitting (plus (mult B -C) A)
5092 instead if this isn't a multiply by a power of two. */
5093 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5094 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5095 && exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1))) < 0)
5097 machine_mode mode = GET_MODE (x);
5098 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5099 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5100 SUBST (*loc, gen_rtx_PLUS (mode,
5101 gen_rtx_MULT (mode,
5102 XEXP (XEXP (x, 1), 0),
5103 gen_int_mode (other_int,
5104 mode)),
5105 XEXP (x, 0)));
5106 return find_split_point (loc, insn, set_src);
5109 /* Split at a multiply-accumulate instruction. However if this is
5110 the SET_SRC, we likely do not have such an instruction and it's
5111 worthless to try this split. */
5112 if (!set_src
5113 && (GET_CODE (XEXP (x, 0)) == MULT
5114 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5115 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5116 return loc;
5118 default:
5119 break;
5122 /* Otherwise, select our actions depending on our rtx class. */
5123 switch (GET_RTX_CLASS (code))
5125 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5126 case RTX_TERNARY:
5127 split = find_split_point (&XEXP (x, 2), insn, false);
5128 if (split)
5129 return split;
5130 /* ... fall through ... */
5131 case RTX_BIN_ARITH:
5132 case RTX_COMM_ARITH:
5133 case RTX_COMPARE:
5134 case RTX_COMM_COMPARE:
5135 split = find_split_point (&XEXP (x, 1), insn, false);
5136 if (split)
5137 return split;
5138 /* ... fall through ... */
5139 case RTX_UNARY:
5140 /* Some machines have (and (shift ...) ...) insns. If X is not
5141 an AND, but XEXP (X, 0) is, use it as our split point. */
5142 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5143 return &XEXP (x, 0);
5145 split = find_split_point (&XEXP (x, 0), insn, false);
5146 if (split)
5147 return split;
5148 return loc;
5150 default:
5151 /* Otherwise, we don't have a split point. */
5152 return 0;
5156 /* Throughout X, replace FROM with TO, and return the result.
5157 The result is TO if X is FROM;
5158 otherwise the result is X, but its contents may have been modified.
5159 If they were modified, a record was made in undobuf so that
5160 undo_all will (among other things) return X to its original state.
5162 If the number of changes necessary is too much to record to undo,
5163 the excess changes are not made, so the result is invalid.
5164 The changes already made can still be undone.
5165 undobuf.num_undo is incremented for such changes, so by testing that
5166 the caller can tell whether the result is valid.
5168 `n_occurrences' is incremented each time FROM is replaced.
5170 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5172 IN_COND is nonzero if we are at the top level of a condition.
5174 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5175 by copying if `n_occurrences' is nonzero. */
5177 static rtx
5178 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5180 enum rtx_code code = GET_CODE (x);
5181 machine_mode op0_mode = VOIDmode;
5182 const char *fmt;
5183 int len, i;
5184 rtx new_rtx;
5186 /* Two expressions are equal if they are identical copies of a shared
5187 RTX or if they are both registers with the same register number
5188 and mode. */
5190 #define COMBINE_RTX_EQUAL_P(X,Y) \
5191 ((X) == (Y) \
5192 || (REG_P (X) && REG_P (Y) \
5193 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5195 /* Do not substitute into clobbers of regs -- this will never result in
5196 valid RTL. */
5197 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5198 return x;
5200 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5202 n_occurrences++;
5203 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5206 /* If X and FROM are the same register but different modes, they
5207 will not have been seen as equal above. However, the log links code
5208 will make a LOG_LINKS entry for that case. If we do nothing, we
5209 will try to rerecognize our original insn and, when it succeeds,
5210 we will delete the feeding insn, which is incorrect.
5212 So force this insn not to match in this (rare) case. */
5213 if (! in_dest && code == REG && REG_P (from)
5214 && reg_overlap_mentioned_p (x, from))
5215 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5217 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5218 of which may contain things that can be combined. */
5219 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5220 return x;
5222 /* It is possible to have a subexpression appear twice in the insn.
5223 Suppose that FROM is a register that appears within TO.
5224 Then, after that subexpression has been scanned once by `subst',
5225 the second time it is scanned, TO may be found. If we were
5226 to scan TO here, we would find FROM within it and create a
5227 self-referent rtl structure which is completely wrong. */
5228 if (COMBINE_RTX_EQUAL_P (x, to))
5229 return to;
5231 /* Parallel asm_operands need special attention because all of the
5232 inputs are shared across the arms. Furthermore, unsharing the
5233 rtl results in recognition failures. Failure to handle this case
5234 specially can result in circular rtl.
5236 Solve this by doing a normal pass across the first entry of the
5237 parallel, and only processing the SET_DESTs of the subsequent
5238 entries. Ug. */
5240 if (code == PARALLEL
5241 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5242 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5244 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5246 /* If this substitution failed, this whole thing fails. */
5247 if (GET_CODE (new_rtx) == CLOBBER
5248 && XEXP (new_rtx, 0) == const0_rtx)
5249 return new_rtx;
5251 SUBST (XVECEXP (x, 0, 0), new_rtx);
5253 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5255 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5257 if (!REG_P (dest)
5258 && GET_CODE (dest) != CC0
5259 && GET_CODE (dest) != PC)
5261 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5263 /* If this substitution failed, this whole thing fails. */
5264 if (GET_CODE (new_rtx) == CLOBBER
5265 && XEXP (new_rtx, 0) == const0_rtx)
5266 return new_rtx;
5268 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5272 else
5274 len = GET_RTX_LENGTH (code);
5275 fmt = GET_RTX_FORMAT (code);
5277 /* We don't need to process a SET_DEST that is a register, CC0,
5278 or PC, so set up to skip this common case. All other cases
5279 where we want to suppress replacing something inside a
5280 SET_SRC are handled via the IN_DEST operand. */
5281 if (code == SET
5282 && (REG_P (SET_DEST (x))
5283 || GET_CODE (SET_DEST (x)) == CC0
5284 || GET_CODE (SET_DEST (x)) == PC))
5285 fmt = "ie";
5287 /* Substituting into the operands of a widening MULT is not likely
5288 to create RTL matching a machine insn. */
5289 if (code == MULT
5290 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5291 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5292 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5293 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5294 && REG_P (XEXP (XEXP (x, 0), 0))
5295 && REG_P (XEXP (XEXP (x, 1), 0)))
5297 if (from == to)
5298 return x;
5299 else
5300 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5303 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5304 constant. */
5305 if (fmt[0] == 'e')
5306 op0_mode = GET_MODE (XEXP (x, 0));
5308 for (i = 0; i < len; i++)
5310 if (fmt[i] == 'E')
5312 int j;
5313 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5315 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5317 new_rtx = (unique_copy && n_occurrences
5318 ? copy_rtx (to) : to);
5319 n_occurrences++;
5321 else
5323 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5324 unique_copy);
5326 /* If this substitution failed, this whole thing
5327 fails. */
5328 if (GET_CODE (new_rtx) == CLOBBER
5329 && XEXP (new_rtx, 0) == const0_rtx)
5330 return new_rtx;
5333 SUBST (XVECEXP (x, i, j), new_rtx);
5336 else if (fmt[i] == 'e')
5338 /* If this is a register being set, ignore it. */
5339 new_rtx = XEXP (x, i);
5340 if (in_dest
5341 && i == 0
5342 && (((code == SUBREG || code == ZERO_EXTRACT)
5343 && REG_P (new_rtx))
5344 || code == STRICT_LOW_PART))
5347 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5349 /* In general, don't install a subreg involving two
5350 modes not tieable. It can worsen register
5351 allocation, and can even make invalid reload
5352 insns, since the reg inside may need to be copied
5353 from in the outside mode, and that may be invalid
5354 if it is an fp reg copied in integer mode.
5356 We allow two exceptions to this: It is valid if
5357 it is inside another SUBREG and the mode of that
5358 SUBREG and the mode of the inside of TO is
5359 tieable and it is valid if X is a SET that copies
5360 FROM to CC0. */
5362 if (GET_CODE (to) == SUBREG
5363 && ! MODES_TIEABLE_P (GET_MODE (to),
5364 GET_MODE (SUBREG_REG (to)))
5365 && ! (code == SUBREG
5366 && MODES_TIEABLE_P (GET_MODE (x),
5367 GET_MODE (SUBREG_REG (to))))
5368 && (!HAVE_cc0
5369 || (! (code == SET
5370 && i == 1
5371 && XEXP (x, 0) == cc0_rtx))))
5372 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5374 if (code == SUBREG
5375 && REG_P (to)
5376 && REGNO (to) < FIRST_PSEUDO_REGISTER
5377 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5378 SUBREG_BYTE (x),
5379 GET_MODE (x)) < 0)
5380 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5382 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5383 n_occurrences++;
5385 else
5386 /* If we are in a SET_DEST, suppress most cases unless we
5387 have gone inside a MEM, in which case we want to
5388 simplify the address. We assume here that things that
5389 are actually part of the destination have their inner
5390 parts in the first expression. This is true for SUBREG,
5391 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5392 things aside from REG and MEM that should appear in a
5393 SET_DEST. */
5394 new_rtx = subst (XEXP (x, i), from, to,
5395 (((in_dest
5396 && (code == SUBREG || code == STRICT_LOW_PART
5397 || code == ZERO_EXTRACT))
5398 || code == SET)
5399 && i == 0),
5400 code == IF_THEN_ELSE && i == 0,
5401 unique_copy);
5403 /* If we found that we will have to reject this combination,
5404 indicate that by returning the CLOBBER ourselves, rather than
5405 an expression containing it. This will speed things up as
5406 well as prevent accidents where two CLOBBERs are considered
5407 to be equal, thus producing an incorrect simplification. */
5409 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5410 return new_rtx;
5412 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5414 machine_mode mode = GET_MODE (x);
5416 x = simplify_subreg (GET_MODE (x), new_rtx,
5417 GET_MODE (SUBREG_REG (x)),
5418 SUBREG_BYTE (x));
5419 if (! x)
5420 x = gen_rtx_CLOBBER (mode, const0_rtx);
5422 else if (CONST_SCALAR_INT_P (new_rtx)
5423 && GET_CODE (x) == ZERO_EXTEND)
5425 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5426 new_rtx, GET_MODE (XEXP (x, 0)));
5427 gcc_assert (x);
5429 else
5430 SUBST (XEXP (x, i), new_rtx);
5435 /* Check if we are loading something from the constant pool via float
5436 extension; in this case we would undo compress_float_constant
5437 optimization and degenerate constant load to an immediate value. */
5438 if (GET_CODE (x) == FLOAT_EXTEND
5439 && MEM_P (XEXP (x, 0))
5440 && MEM_READONLY_P (XEXP (x, 0)))
5442 rtx tmp = avoid_constant_pool_reference (x);
5443 if (x != tmp)
5444 return x;
5447 /* Try to simplify X. If the simplification changed the code, it is likely
5448 that further simplification will help, so loop, but limit the number
5449 of repetitions that will be performed. */
5451 for (i = 0; i < 4; i++)
5453 /* If X is sufficiently simple, don't bother trying to do anything
5454 with it. */
5455 if (code != CONST_INT && code != REG && code != CLOBBER)
5456 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5458 if (GET_CODE (x) == code)
5459 break;
5461 code = GET_CODE (x);
5463 /* We no longer know the original mode of operand 0 since we
5464 have changed the form of X) */
5465 op0_mode = VOIDmode;
5468 return x;
5471 /* Simplify X, a piece of RTL. We just operate on the expression at the
5472 outer level; call `subst' to simplify recursively. Return the new
5473 expression.
5475 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5476 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5477 of a condition. */
5479 static rtx
5480 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5481 int in_cond)
5483 enum rtx_code code = GET_CODE (x);
5484 machine_mode mode = GET_MODE (x);
5485 rtx temp;
5486 int i;
5488 /* If this is a commutative operation, put a constant last and a complex
5489 expression first. We don't need to do this for comparisons here. */
5490 if (COMMUTATIVE_ARITH_P (x)
5491 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5493 temp = XEXP (x, 0);
5494 SUBST (XEXP (x, 0), XEXP (x, 1));
5495 SUBST (XEXP (x, 1), temp);
5498 /* Try to fold this expression in case we have constants that weren't
5499 present before. */
5500 temp = 0;
5501 switch (GET_RTX_CLASS (code))
5503 case RTX_UNARY:
5504 if (op0_mode == VOIDmode)
5505 op0_mode = GET_MODE (XEXP (x, 0));
5506 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5507 break;
5508 case RTX_COMPARE:
5509 case RTX_COMM_COMPARE:
5511 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5512 if (cmp_mode == VOIDmode)
5514 cmp_mode = GET_MODE (XEXP (x, 1));
5515 if (cmp_mode == VOIDmode)
5516 cmp_mode = op0_mode;
5518 temp = simplify_relational_operation (code, mode, cmp_mode,
5519 XEXP (x, 0), XEXP (x, 1));
5521 break;
5522 case RTX_COMM_ARITH:
5523 case RTX_BIN_ARITH:
5524 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5525 break;
5526 case RTX_BITFIELD_OPS:
5527 case RTX_TERNARY:
5528 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5529 XEXP (x, 1), XEXP (x, 2));
5530 break;
5531 default:
5532 break;
5535 if (temp)
5537 x = temp;
5538 code = GET_CODE (temp);
5539 op0_mode = VOIDmode;
5540 mode = GET_MODE (temp);
5543 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5544 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5545 things. Check for cases where both arms are testing the same
5546 condition.
5548 Don't do anything if all operands are very simple. */
5550 if ((BINARY_P (x)
5551 && ((!OBJECT_P (XEXP (x, 0))
5552 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5553 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5554 || (!OBJECT_P (XEXP (x, 1))
5555 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5556 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5557 || (UNARY_P (x)
5558 && (!OBJECT_P (XEXP (x, 0))
5559 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5560 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5562 rtx cond, true_rtx, false_rtx;
5564 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5565 if (cond != 0
5566 /* If everything is a comparison, what we have is highly unlikely
5567 to be simpler, so don't use it. */
5568 && ! (COMPARISON_P (x)
5569 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5571 rtx cop1 = const0_rtx;
5572 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5574 if (cond_code == NE && COMPARISON_P (cond))
5575 return x;
5577 /* Simplify the alternative arms; this may collapse the true and
5578 false arms to store-flag values. Be careful to use copy_rtx
5579 here since true_rtx or false_rtx might share RTL with x as a
5580 result of the if_then_else_cond call above. */
5581 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5582 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5584 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5585 is unlikely to be simpler. */
5586 if (general_operand (true_rtx, VOIDmode)
5587 && general_operand (false_rtx, VOIDmode))
5589 enum rtx_code reversed;
5591 /* Restarting if we generate a store-flag expression will cause
5592 us to loop. Just drop through in this case. */
5594 /* If the result values are STORE_FLAG_VALUE and zero, we can
5595 just make the comparison operation. */
5596 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5597 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5598 cond, cop1);
5599 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5600 && ((reversed = reversed_comparison_code_parts
5601 (cond_code, cond, cop1, NULL))
5602 != UNKNOWN))
5603 x = simplify_gen_relational (reversed, mode, VOIDmode,
5604 cond, cop1);
5606 /* Likewise, we can make the negate of a comparison operation
5607 if the result values are - STORE_FLAG_VALUE and zero. */
5608 else if (CONST_INT_P (true_rtx)
5609 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5610 && false_rtx == const0_rtx)
5611 x = simplify_gen_unary (NEG, mode,
5612 simplify_gen_relational (cond_code,
5613 mode, VOIDmode,
5614 cond, cop1),
5615 mode);
5616 else if (CONST_INT_P (false_rtx)
5617 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5618 && true_rtx == const0_rtx
5619 && ((reversed = reversed_comparison_code_parts
5620 (cond_code, cond, cop1, NULL))
5621 != UNKNOWN))
5622 x = simplify_gen_unary (NEG, mode,
5623 simplify_gen_relational (reversed,
5624 mode, VOIDmode,
5625 cond, cop1),
5626 mode);
5627 else
5628 return gen_rtx_IF_THEN_ELSE (mode,
5629 simplify_gen_relational (cond_code,
5630 mode,
5631 VOIDmode,
5632 cond,
5633 cop1),
5634 true_rtx, false_rtx);
5636 code = GET_CODE (x);
5637 op0_mode = VOIDmode;
5642 /* First see if we can apply the inverse distributive law. */
5643 if (code == PLUS || code == MINUS
5644 || code == AND || code == IOR || code == XOR)
5646 x = apply_distributive_law (x);
5647 code = GET_CODE (x);
5648 op0_mode = VOIDmode;
5651 /* If CODE is an associative operation not otherwise handled, see if we
5652 can associate some operands. This can win if they are constants or
5653 if they are logically related (i.e. (a & b) & a). */
5654 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5655 || code == AND || code == IOR || code == XOR
5656 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5657 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5658 || (flag_associative_math && FLOAT_MODE_P (mode))))
5660 if (GET_CODE (XEXP (x, 0)) == code)
5662 rtx other = XEXP (XEXP (x, 0), 0);
5663 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5664 rtx inner_op1 = XEXP (x, 1);
5665 rtx inner;
5667 /* Make sure we pass the constant operand if any as the second
5668 one if this is a commutative operation. */
5669 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5670 std::swap (inner_op0, inner_op1);
5671 inner = simplify_binary_operation (code == MINUS ? PLUS
5672 : code == DIV ? MULT
5673 : code,
5674 mode, inner_op0, inner_op1);
5676 /* For commutative operations, try the other pair if that one
5677 didn't simplify. */
5678 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5680 other = XEXP (XEXP (x, 0), 1);
5681 inner = simplify_binary_operation (code, mode,
5682 XEXP (XEXP (x, 0), 0),
5683 XEXP (x, 1));
5686 if (inner)
5687 return simplify_gen_binary (code, mode, other, inner);
5691 /* A little bit of algebraic simplification here. */
5692 switch (code)
5694 case MEM:
5695 /* Ensure that our address has any ASHIFTs converted to MULT in case
5696 address-recognizing predicates are called later. */
5697 temp = make_compound_operation (XEXP (x, 0), MEM);
5698 SUBST (XEXP (x, 0), temp);
5699 break;
5701 case SUBREG:
5702 if (op0_mode == VOIDmode)
5703 op0_mode = GET_MODE (SUBREG_REG (x));
5705 /* See if this can be moved to simplify_subreg. */
5706 if (CONSTANT_P (SUBREG_REG (x))
5707 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5708 /* Don't call gen_lowpart if the inner mode
5709 is VOIDmode and we cannot simplify it, as SUBREG without
5710 inner mode is invalid. */
5711 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5712 || gen_lowpart_common (mode, SUBREG_REG (x))))
5713 return gen_lowpart (mode, SUBREG_REG (x));
5715 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5716 break;
5718 rtx temp;
5719 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5720 SUBREG_BYTE (x));
5721 if (temp)
5722 return temp;
5724 /* If op is known to have all lower bits zero, the result is zero. */
5725 if (!in_dest
5726 && SCALAR_INT_MODE_P (mode)
5727 && SCALAR_INT_MODE_P (op0_mode)
5728 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5729 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5730 && HWI_COMPUTABLE_MODE_P (op0_mode)
5731 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5732 & GET_MODE_MASK (mode)) == 0)
5733 return CONST0_RTX (mode);
5736 /* Don't change the mode of the MEM if that would change the meaning
5737 of the address. */
5738 if (MEM_P (SUBREG_REG (x))
5739 && (MEM_VOLATILE_P (SUBREG_REG (x))
5740 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5741 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5742 return gen_rtx_CLOBBER (mode, const0_rtx);
5744 /* Note that we cannot do any narrowing for non-constants since
5745 we might have been counting on using the fact that some bits were
5746 zero. We now do this in the SET. */
5748 break;
5750 case NEG:
5751 temp = expand_compound_operation (XEXP (x, 0));
5753 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5754 replaced by (lshiftrt X C). This will convert
5755 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5757 if (GET_CODE (temp) == ASHIFTRT
5758 && CONST_INT_P (XEXP (temp, 1))
5759 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5760 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5761 INTVAL (XEXP (temp, 1)));
5763 /* If X has only a single bit that might be nonzero, say, bit I, convert
5764 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5765 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5766 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5767 or a SUBREG of one since we'd be making the expression more
5768 complex if it was just a register. */
5770 if (!REG_P (temp)
5771 && ! (GET_CODE (temp) == SUBREG
5772 && REG_P (SUBREG_REG (temp)))
5773 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5775 rtx temp1 = simplify_shift_const
5776 (NULL_RTX, ASHIFTRT, mode,
5777 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5778 GET_MODE_PRECISION (mode) - 1 - i),
5779 GET_MODE_PRECISION (mode) - 1 - i);
5781 /* If all we did was surround TEMP with the two shifts, we
5782 haven't improved anything, so don't use it. Otherwise,
5783 we are better off with TEMP1. */
5784 if (GET_CODE (temp1) != ASHIFTRT
5785 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5786 || XEXP (XEXP (temp1, 0), 0) != temp)
5787 return temp1;
5789 break;
5791 case TRUNCATE:
5792 /* We can't handle truncation to a partial integer mode here
5793 because we don't know the real bitsize of the partial
5794 integer mode. */
5795 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5796 break;
5798 if (HWI_COMPUTABLE_MODE_P (mode))
5799 SUBST (XEXP (x, 0),
5800 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5801 GET_MODE_MASK (mode), 0));
5803 /* We can truncate a constant value and return it. */
5804 if (CONST_INT_P (XEXP (x, 0)))
5805 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5807 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5808 whose value is a comparison can be replaced with a subreg if
5809 STORE_FLAG_VALUE permits. */
5810 if (HWI_COMPUTABLE_MODE_P (mode)
5811 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5812 && (temp = get_last_value (XEXP (x, 0)))
5813 && COMPARISON_P (temp))
5814 return gen_lowpart (mode, XEXP (x, 0));
5815 break;
5817 case CONST:
5818 /* (const (const X)) can become (const X). Do it this way rather than
5819 returning the inner CONST since CONST can be shared with a
5820 REG_EQUAL note. */
5821 if (GET_CODE (XEXP (x, 0)) == CONST)
5822 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5823 break;
5825 case LO_SUM:
5826 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5827 can add in an offset. find_split_point will split this address up
5828 again if it doesn't match. */
5829 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5830 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5831 return XEXP (x, 1);
5832 break;
5834 case PLUS:
5835 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5836 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5837 bit-field and can be replaced by either a sign_extend or a
5838 sign_extract. The `and' may be a zero_extend and the two
5839 <c>, -<c> constants may be reversed. */
5840 if (GET_CODE (XEXP (x, 0)) == XOR
5841 && CONST_INT_P (XEXP (x, 1))
5842 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5843 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5844 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5845 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5846 && HWI_COMPUTABLE_MODE_P (mode)
5847 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5848 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5849 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5850 == ((unsigned HOST_WIDE_INT) 1 << (i + 1)) - 1))
5851 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5852 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5853 == (unsigned int) i + 1))))
5854 return simplify_shift_const
5855 (NULL_RTX, ASHIFTRT, mode,
5856 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5857 XEXP (XEXP (XEXP (x, 0), 0), 0),
5858 GET_MODE_PRECISION (mode) - (i + 1)),
5859 GET_MODE_PRECISION (mode) - (i + 1));
5861 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5862 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5863 the bitsize of the mode - 1. This allows simplification of
5864 "a = (b & 8) == 0;" */
5865 if (XEXP (x, 1) == constm1_rtx
5866 && !REG_P (XEXP (x, 0))
5867 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5868 && REG_P (SUBREG_REG (XEXP (x, 0))))
5869 && nonzero_bits (XEXP (x, 0), mode) == 1)
5870 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5871 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5872 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5873 GET_MODE_PRECISION (mode) - 1),
5874 GET_MODE_PRECISION (mode) - 1);
5876 /* If we are adding two things that have no bits in common, convert
5877 the addition into an IOR. This will often be further simplified,
5878 for example in cases like ((a & 1) + (a & 2)), which can
5879 become a & 3. */
5881 if (HWI_COMPUTABLE_MODE_P (mode)
5882 && (nonzero_bits (XEXP (x, 0), mode)
5883 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5885 /* Try to simplify the expression further. */
5886 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5887 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5889 /* If we could, great. If not, do not go ahead with the IOR
5890 replacement, since PLUS appears in many special purpose
5891 address arithmetic instructions. */
5892 if (GET_CODE (temp) != CLOBBER
5893 && (GET_CODE (temp) != IOR
5894 || ((XEXP (temp, 0) != XEXP (x, 0)
5895 || XEXP (temp, 1) != XEXP (x, 1))
5896 && (XEXP (temp, 0) != XEXP (x, 1)
5897 || XEXP (temp, 1) != XEXP (x, 0)))))
5898 return temp;
5900 break;
5902 case MINUS:
5903 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5904 (and <foo> (const_int pow2-1)) */
5905 if (GET_CODE (XEXP (x, 1)) == AND
5906 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5907 && exact_log2 (-UINTVAL (XEXP (XEXP (x, 1), 1))) >= 0
5908 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5909 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5910 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5911 break;
5913 case MULT:
5914 /* If we have (mult (plus A B) C), apply the distributive law and then
5915 the inverse distributive law to see if things simplify. This
5916 occurs mostly in addresses, often when unrolling loops. */
5918 if (GET_CODE (XEXP (x, 0)) == PLUS)
5920 rtx result = distribute_and_simplify_rtx (x, 0);
5921 if (result)
5922 return result;
5925 /* Try simplify a*(b/c) as (a*b)/c. */
5926 if (FLOAT_MODE_P (mode) && flag_associative_math
5927 && GET_CODE (XEXP (x, 0)) == DIV)
5929 rtx tem = simplify_binary_operation (MULT, mode,
5930 XEXP (XEXP (x, 0), 0),
5931 XEXP (x, 1));
5932 if (tem)
5933 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5935 break;
5937 case UDIV:
5938 /* If this is a divide by a power of two, treat it as a shift if
5939 its first operand is a shift. */
5940 if (CONST_INT_P (XEXP (x, 1))
5941 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
5942 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5943 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5944 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5945 || GET_CODE (XEXP (x, 0)) == ROTATE
5946 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5947 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5948 break;
5950 case EQ: case NE:
5951 case GT: case GTU: case GE: case GEU:
5952 case LT: case LTU: case LE: case LEU:
5953 case UNEQ: case LTGT:
5954 case UNGT: case UNGE:
5955 case UNLT: case UNLE:
5956 case UNORDERED: case ORDERED:
5957 /* If the first operand is a condition code, we can't do anything
5958 with it. */
5959 if (GET_CODE (XEXP (x, 0)) == COMPARE
5960 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5961 && ! CC0_P (XEXP (x, 0))))
5963 rtx op0 = XEXP (x, 0);
5964 rtx op1 = XEXP (x, 1);
5965 enum rtx_code new_code;
5967 if (GET_CODE (op0) == COMPARE)
5968 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5970 /* Simplify our comparison, if possible. */
5971 new_code = simplify_comparison (code, &op0, &op1);
5973 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5974 if only the low-order bit is possibly nonzero in X (such as when
5975 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5976 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5977 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5978 (plus X 1).
5980 Remove any ZERO_EXTRACT we made when thinking this was a
5981 comparison. It may now be simpler to use, e.g., an AND. If a
5982 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5983 the call to make_compound_operation in the SET case.
5985 Don't apply these optimizations if the caller would
5986 prefer a comparison rather than a value.
5987 E.g., for the condition in an IF_THEN_ELSE most targets need
5988 an explicit comparison. */
5990 if (in_cond)
5993 else if (STORE_FLAG_VALUE == 1
5994 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5995 && op1 == const0_rtx
5996 && mode == GET_MODE (op0)
5997 && nonzero_bits (op0, mode) == 1)
5998 return gen_lowpart (mode,
5999 expand_compound_operation (op0));
6001 else if (STORE_FLAG_VALUE == 1
6002 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6003 && op1 == const0_rtx
6004 && mode == GET_MODE (op0)
6005 && (num_sign_bit_copies (op0, mode)
6006 == GET_MODE_PRECISION (mode)))
6008 op0 = expand_compound_operation (op0);
6009 return simplify_gen_unary (NEG, mode,
6010 gen_lowpart (mode, op0),
6011 mode);
6014 else if (STORE_FLAG_VALUE == 1
6015 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6016 && op1 == const0_rtx
6017 && mode == GET_MODE (op0)
6018 && nonzero_bits (op0, mode) == 1)
6020 op0 = expand_compound_operation (op0);
6021 return simplify_gen_binary (XOR, mode,
6022 gen_lowpart (mode, op0),
6023 const1_rtx);
6026 else if (STORE_FLAG_VALUE == 1
6027 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6028 && op1 == const0_rtx
6029 && mode == GET_MODE (op0)
6030 && (num_sign_bit_copies (op0, mode)
6031 == GET_MODE_PRECISION (mode)))
6033 op0 = expand_compound_operation (op0);
6034 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6037 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6038 those above. */
6039 if (in_cond)
6042 else if (STORE_FLAG_VALUE == -1
6043 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6044 && op1 == const0_rtx
6045 && mode == GET_MODE (op0)
6046 && (num_sign_bit_copies (op0, mode)
6047 == GET_MODE_PRECISION (mode)))
6048 return gen_lowpart (mode,
6049 expand_compound_operation (op0));
6051 else if (STORE_FLAG_VALUE == -1
6052 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6053 && op1 == const0_rtx
6054 && mode == GET_MODE (op0)
6055 && nonzero_bits (op0, mode) == 1)
6057 op0 = expand_compound_operation (op0);
6058 return simplify_gen_unary (NEG, mode,
6059 gen_lowpart (mode, op0),
6060 mode);
6063 else if (STORE_FLAG_VALUE == -1
6064 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6065 && op1 == const0_rtx
6066 && mode == GET_MODE (op0)
6067 && (num_sign_bit_copies (op0, mode)
6068 == GET_MODE_PRECISION (mode)))
6070 op0 = expand_compound_operation (op0);
6071 return simplify_gen_unary (NOT, mode,
6072 gen_lowpart (mode, op0),
6073 mode);
6076 /* If X is 0/1, (eq X 0) is X-1. */
6077 else if (STORE_FLAG_VALUE == -1
6078 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6079 && op1 == const0_rtx
6080 && mode == GET_MODE (op0)
6081 && nonzero_bits (op0, mode) == 1)
6083 op0 = expand_compound_operation (op0);
6084 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6087 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6088 one bit that might be nonzero, we can convert (ne x 0) to
6089 (ashift x c) where C puts the bit in the sign bit. Remove any
6090 AND with STORE_FLAG_VALUE when we are done, since we are only
6091 going to test the sign bit. */
6092 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6093 && HWI_COMPUTABLE_MODE_P (mode)
6094 && val_signbit_p (mode, STORE_FLAG_VALUE)
6095 && op1 == const0_rtx
6096 && mode == GET_MODE (op0)
6097 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6099 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6100 expand_compound_operation (op0),
6101 GET_MODE_PRECISION (mode) - 1 - i);
6102 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6103 return XEXP (x, 0);
6104 else
6105 return x;
6108 /* If the code changed, return a whole new comparison.
6109 We also need to avoid using SUBST in cases where
6110 simplify_comparison has widened a comparison with a CONST_INT,
6111 since in that case the wider CONST_INT may fail the sanity
6112 checks in do_SUBST. */
6113 if (new_code != code
6114 || (CONST_INT_P (op1)
6115 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6116 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6117 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6119 /* Otherwise, keep this operation, but maybe change its operands.
6120 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6121 SUBST (XEXP (x, 0), op0);
6122 SUBST (XEXP (x, 1), op1);
6124 break;
6126 case IF_THEN_ELSE:
6127 return simplify_if_then_else (x);
6129 case ZERO_EXTRACT:
6130 case SIGN_EXTRACT:
6131 case ZERO_EXTEND:
6132 case SIGN_EXTEND:
6133 /* If we are processing SET_DEST, we are done. */
6134 if (in_dest)
6135 return x;
6137 return expand_compound_operation (x);
6139 case SET:
6140 return simplify_set (x);
6142 case AND:
6143 case IOR:
6144 return simplify_logical (x);
6146 case ASHIFT:
6147 case LSHIFTRT:
6148 case ASHIFTRT:
6149 case ROTATE:
6150 case ROTATERT:
6151 /* If this is a shift by a constant amount, simplify it. */
6152 if (CONST_INT_P (XEXP (x, 1)))
6153 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6154 INTVAL (XEXP (x, 1)));
6156 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6157 SUBST (XEXP (x, 1),
6158 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6159 ((unsigned HOST_WIDE_INT) 1
6160 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6161 - 1,
6162 0));
6163 break;
6165 default:
6166 break;
6169 return x;
6172 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6174 static rtx
6175 simplify_if_then_else (rtx x)
6177 machine_mode mode = GET_MODE (x);
6178 rtx cond = XEXP (x, 0);
6179 rtx true_rtx = XEXP (x, 1);
6180 rtx false_rtx = XEXP (x, 2);
6181 enum rtx_code true_code = GET_CODE (cond);
6182 int comparison_p = COMPARISON_P (cond);
6183 rtx temp;
6184 int i;
6185 enum rtx_code false_code;
6186 rtx reversed;
6188 /* Simplify storing of the truth value. */
6189 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6190 return simplify_gen_relational (true_code, mode, VOIDmode,
6191 XEXP (cond, 0), XEXP (cond, 1));
6193 /* Also when the truth value has to be reversed. */
6194 if (comparison_p
6195 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6196 && (reversed = reversed_comparison (cond, mode)))
6197 return reversed;
6199 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6200 in it is being compared against certain values. Get the true and false
6201 comparisons and see if that says anything about the value of each arm. */
6203 if (comparison_p
6204 && ((false_code = reversed_comparison_code (cond, NULL))
6205 != UNKNOWN)
6206 && REG_P (XEXP (cond, 0)))
6208 HOST_WIDE_INT nzb;
6209 rtx from = XEXP (cond, 0);
6210 rtx true_val = XEXP (cond, 1);
6211 rtx false_val = true_val;
6212 int swapped = 0;
6214 /* If FALSE_CODE is EQ, swap the codes and arms. */
6216 if (false_code == EQ)
6218 swapped = 1, true_code = EQ, false_code = NE;
6219 std::swap (true_rtx, false_rtx);
6222 /* If we are comparing against zero and the expression being tested has
6223 only a single bit that might be nonzero, that is its value when it is
6224 not equal to zero. Similarly if it is known to be -1 or 0. */
6226 if (true_code == EQ && true_val == const0_rtx
6227 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
6229 false_code = EQ;
6230 false_val = gen_int_mode (nzb, GET_MODE (from));
6232 else if (true_code == EQ && true_val == const0_rtx
6233 && (num_sign_bit_copies (from, GET_MODE (from))
6234 == GET_MODE_PRECISION (GET_MODE (from))))
6236 false_code = EQ;
6237 false_val = constm1_rtx;
6240 /* Now simplify an arm if we know the value of the register in the
6241 branch and it is used in the arm. Be careful due to the potential
6242 of locally-shared RTL. */
6244 if (reg_mentioned_p (from, true_rtx))
6245 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6246 from, true_val),
6247 pc_rtx, pc_rtx, 0, 0, 0);
6248 if (reg_mentioned_p (from, false_rtx))
6249 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6250 from, false_val),
6251 pc_rtx, pc_rtx, 0, 0, 0);
6253 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6254 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6256 true_rtx = XEXP (x, 1);
6257 false_rtx = XEXP (x, 2);
6258 true_code = GET_CODE (cond);
6261 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6262 reversed, do so to avoid needing two sets of patterns for
6263 subtract-and-branch insns. Similarly if we have a constant in the true
6264 arm, the false arm is the same as the first operand of the comparison, or
6265 the false arm is more complicated than the true arm. */
6267 if (comparison_p
6268 && reversed_comparison_code (cond, NULL) != UNKNOWN
6269 && (true_rtx == pc_rtx
6270 || (CONSTANT_P (true_rtx)
6271 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6272 || true_rtx == const0_rtx
6273 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6274 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6275 && !OBJECT_P (false_rtx))
6276 || reg_mentioned_p (true_rtx, false_rtx)
6277 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6279 true_code = reversed_comparison_code (cond, NULL);
6280 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6281 SUBST (XEXP (x, 1), false_rtx);
6282 SUBST (XEXP (x, 2), true_rtx);
6284 std::swap (true_rtx, false_rtx);
6285 cond = XEXP (x, 0);
6287 /* It is possible that the conditional has been simplified out. */
6288 true_code = GET_CODE (cond);
6289 comparison_p = COMPARISON_P (cond);
6292 /* If the two arms are identical, we don't need the comparison. */
6294 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6295 return true_rtx;
6297 /* Convert a == b ? b : a to "a". */
6298 if (true_code == EQ && ! side_effects_p (cond)
6299 && !HONOR_NANS (mode)
6300 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6301 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6302 return false_rtx;
6303 else if (true_code == NE && ! side_effects_p (cond)
6304 && !HONOR_NANS (mode)
6305 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6306 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6307 return true_rtx;
6309 /* Look for cases where we have (abs x) or (neg (abs X)). */
6311 if (GET_MODE_CLASS (mode) == MODE_INT
6312 && comparison_p
6313 && XEXP (cond, 1) == const0_rtx
6314 && GET_CODE (false_rtx) == NEG
6315 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6316 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6317 && ! side_effects_p (true_rtx))
6318 switch (true_code)
6320 case GT:
6321 case GE:
6322 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6323 case LT:
6324 case LE:
6325 return
6326 simplify_gen_unary (NEG, mode,
6327 simplify_gen_unary (ABS, mode, true_rtx, mode),
6328 mode);
6329 default:
6330 break;
6333 /* Look for MIN or MAX. */
6335 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6336 && comparison_p
6337 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6338 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6339 && ! side_effects_p (cond))
6340 switch (true_code)
6342 case GE:
6343 case GT:
6344 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6345 case LE:
6346 case LT:
6347 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6348 case GEU:
6349 case GTU:
6350 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6351 case LEU:
6352 case LTU:
6353 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6354 default:
6355 break;
6358 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6359 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6360 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6361 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6362 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6363 neither 1 or -1, but it isn't worth checking for. */
6365 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6366 && comparison_p
6367 && GET_MODE_CLASS (mode) == MODE_INT
6368 && ! side_effects_p (x))
6370 rtx t = make_compound_operation (true_rtx, SET);
6371 rtx f = make_compound_operation (false_rtx, SET);
6372 rtx cond_op0 = XEXP (cond, 0);
6373 rtx cond_op1 = XEXP (cond, 1);
6374 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6375 machine_mode m = mode;
6376 rtx z = 0, c1 = NULL_RTX;
6378 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6379 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6380 || GET_CODE (t) == ASHIFT
6381 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6382 && rtx_equal_p (XEXP (t, 0), f))
6383 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6385 /* If an identity-zero op is commutative, check whether there
6386 would be a match if we swapped the operands. */
6387 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6388 || GET_CODE (t) == XOR)
6389 && rtx_equal_p (XEXP (t, 1), f))
6390 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6391 else if (GET_CODE (t) == SIGN_EXTEND
6392 && (GET_CODE (XEXP (t, 0)) == PLUS
6393 || GET_CODE (XEXP (t, 0)) == MINUS
6394 || GET_CODE (XEXP (t, 0)) == IOR
6395 || GET_CODE (XEXP (t, 0)) == XOR
6396 || GET_CODE (XEXP (t, 0)) == ASHIFT
6397 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6398 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6399 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6400 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6401 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6402 && (num_sign_bit_copies (f, GET_MODE (f))
6403 > (unsigned int)
6404 (GET_MODE_PRECISION (mode)
6405 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6407 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6408 extend_op = SIGN_EXTEND;
6409 m = GET_MODE (XEXP (t, 0));
6411 else if (GET_CODE (t) == SIGN_EXTEND
6412 && (GET_CODE (XEXP (t, 0)) == PLUS
6413 || GET_CODE (XEXP (t, 0)) == IOR
6414 || GET_CODE (XEXP (t, 0)) == XOR)
6415 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6416 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6417 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6418 && (num_sign_bit_copies (f, GET_MODE (f))
6419 > (unsigned int)
6420 (GET_MODE_PRECISION (mode)
6421 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6423 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6424 extend_op = SIGN_EXTEND;
6425 m = GET_MODE (XEXP (t, 0));
6427 else if (GET_CODE (t) == ZERO_EXTEND
6428 && (GET_CODE (XEXP (t, 0)) == PLUS
6429 || GET_CODE (XEXP (t, 0)) == MINUS
6430 || GET_CODE (XEXP (t, 0)) == IOR
6431 || GET_CODE (XEXP (t, 0)) == XOR
6432 || GET_CODE (XEXP (t, 0)) == ASHIFT
6433 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6434 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6435 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6436 && HWI_COMPUTABLE_MODE_P (mode)
6437 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6438 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6439 && ((nonzero_bits (f, GET_MODE (f))
6440 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6441 == 0))
6443 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6444 extend_op = ZERO_EXTEND;
6445 m = GET_MODE (XEXP (t, 0));
6447 else if (GET_CODE (t) == ZERO_EXTEND
6448 && (GET_CODE (XEXP (t, 0)) == PLUS
6449 || GET_CODE (XEXP (t, 0)) == IOR
6450 || GET_CODE (XEXP (t, 0)) == XOR)
6451 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6452 && HWI_COMPUTABLE_MODE_P (mode)
6453 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6454 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6455 && ((nonzero_bits (f, GET_MODE (f))
6456 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6457 == 0))
6459 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6460 extend_op = ZERO_EXTEND;
6461 m = GET_MODE (XEXP (t, 0));
6464 if (z)
6466 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6467 cond_op0, cond_op1),
6468 pc_rtx, pc_rtx, 0, 0, 0);
6469 temp = simplify_gen_binary (MULT, m, temp,
6470 simplify_gen_binary (MULT, m, c1,
6471 const_true_rtx));
6472 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6473 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6475 if (extend_op != UNKNOWN)
6476 temp = simplify_gen_unary (extend_op, mode, temp, m);
6478 return temp;
6482 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6483 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6484 negation of a single bit, we can convert this operation to a shift. We
6485 can actually do this more generally, but it doesn't seem worth it. */
6487 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6488 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6489 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6490 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6491 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6492 == GET_MODE_PRECISION (mode))
6493 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6494 return
6495 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6496 gen_lowpart (mode, XEXP (cond, 0)), i);
6498 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6499 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6500 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6501 && GET_MODE (XEXP (cond, 0)) == mode
6502 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6503 == nonzero_bits (XEXP (cond, 0), mode)
6504 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6505 return XEXP (cond, 0);
6507 return x;
6510 /* Simplify X, a SET expression. Return the new expression. */
6512 static rtx
6513 simplify_set (rtx x)
6515 rtx src = SET_SRC (x);
6516 rtx dest = SET_DEST (x);
6517 machine_mode mode
6518 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6519 rtx_insn *other_insn;
6520 rtx *cc_use;
6522 /* (set (pc) (return)) gets written as (return). */
6523 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6524 return src;
6526 /* Now that we know for sure which bits of SRC we are using, see if we can
6527 simplify the expression for the object knowing that we only need the
6528 low-order bits. */
6530 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6532 src = force_to_mode (src, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
6533 SUBST (SET_SRC (x), src);
6536 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6537 the comparison result and try to simplify it unless we already have used
6538 undobuf.other_insn. */
6539 if ((GET_MODE_CLASS (mode) == MODE_CC
6540 || GET_CODE (src) == COMPARE
6541 || CC0_P (dest))
6542 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6543 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6544 && COMPARISON_P (*cc_use)
6545 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6547 enum rtx_code old_code = GET_CODE (*cc_use);
6548 enum rtx_code new_code;
6549 rtx op0, op1, tmp;
6550 int other_changed = 0;
6551 rtx inner_compare = NULL_RTX;
6552 machine_mode compare_mode = GET_MODE (dest);
6554 if (GET_CODE (src) == COMPARE)
6556 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6557 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6559 inner_compare = op0;
6560 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6563 else
6564 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6566 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6567 op0, op1);
6568 if (!tmp)
6569 new_code = old_code;
6570 else if (!CONSTANT_P (tmp))
6572 new_code = GET_CODE (tmp);
6573 op0 = XEXP (tmp, 0);
6574 op1 = XEXP (tmp, 1);
6576 else
6578 rtx pat = PATTERN (other_insn);
6579 undobuf.other_insn = other_insn;
6580 SUBST (*cc_use, tmp);
6582 /* Attempt to simplify CC user. */
6583 if (GET_CODE (pat) == SET)
6585 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6586 if (new_rtx != NULL_RTX)
6587 SUBST (SET_SRC (pat), new_rtx);
6590 /* Convert X into a no-op move. */
6591 SUBST (SET_DEST (x), pc_rtx);
6592 SUBST (SET_SRC (x), pc_rtx);
6593 return x;
6596 /* Simplify our comparison, if possible. */
6597 new_code = simplify_comparison (new_code, &op0, &op1);
6599 #ifdef SELECT_CC_MODE
6600 /* If this machine has CC modes other than CCmode, check to see if we
6601 need to use a different CC mode here. */
6602 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6603 compare_mode = GET_MODE (op0);
6604 else if (inner_compare
6605 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6606 && new_code == old_code
6607 && op0 == XEXP (inner_compare, 0)
6608 && op1 == XEXP (inner_compare, 1))
6609 compare_mode = GET_MODE (inner_compare);
6610 else
6611 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6613 /* If the mode changed, we have to change SET_DEST, the mode in the
6614 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6615 a hard register, just build new versions with the proper mode. If it
6616 is a pseudo, we lose unless it is only time we set the pseudo, in
6617 which case we can safely change its mode. */
6618 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6620 if (can_change_dest_mode (dest, 0, compare_mode))
6622 unsigned int regno = REGNO (dest);
6623 rtx new_dest;
6625 if (regno < FIRST_PSEUDO_REGISTER)
6626 new_dest = gen_rtx_REG (compare_mode, regno);
6627 else
6629 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6630 new_dest = regno_reg_rtx[regno];
6633 SUBST (SET_DEST (x), new_dest);
6634 SUBST (XEXP (*cc_use, 0), new_dest);
6635 other_changed = 1;
6637 dest = new_dest;
6640 #endif /* SELECT_CC_MODE */
6642 /* If the code changed, we have to build a new comparison in
6643 undobuf.other_insn. */
6644 if (new_code != old_code)
6646 int other_changed_previously = other_changed;
6647 unsigned HOST_WIDE_INT mask;
6648 rtx old_cc_use = *cc_use;
6650 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6651 dest, const0_rtx));
6652 other_changed = 1;
6654 /* If the only change we made was to change an EQ into an NE or
6655 vice versa, OP0 has only one bit that might be nonzero, and OP1
6656 is zero, check if changing the user of the condition code will
6657 produce a valid insn. If it won't, we can keep the original code
6658 in that insn by surrounding our operation with an XOR. */
6660 if (((old_code == NE && new_code == EQ)
6661 || (old_code == EQ && new_code == NE))
6662 && ! other_changed_previously && op1 == const0_rtx
6663 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6664 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
6666 rtx pat = PATTERN (other_insn), note = 0;
6668 if ((recog_for_combine (&pat, other_insn, &note) < 0
6669 && ! check_asm_operands (pat)))
6671 *cc_use = old_cc_use;
6672 other_changed = 0;
6674 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6675 gen_int_mode (mask,
6676 GET_MODE (op0)));
6681 if (other_changed)
6682 undobuf.other_insn = other_insn;
6684 /* Don't generate a compare of a CC with 0, just use that CC. */
6685 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6687 SUBST (SET_SRC (x), op0);
6688 src = SET_SRC (x);
6690 /* Otherwise, if we didn't previously have the same COMPARE we
6691 want, create it from scratch. */
6692 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6693 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6695 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6696 src = SET_SRC (x);
6699 else
6701 /* Get SET_SRC in a form where we have placed back any
6702 compound expressions. Then do the checks below. */
6703 src = make_compound_operation (src, SET);
6704 SUBST (SET_SRC (x), src);
6707 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6708 and X being a REG or (subreg (reg)), we may be able to convert this to
6709 (set (subreg:m2 x) (op)).
6711 We can always do this if M1 is narrower than M2 because that means that
6712 we only care about the low bits of the result.
6714 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6715 perform a narrower operation than requested since the high-order bits will
6716 be undefined. On machine where it is defined, this transformation is safe
6717 as long as M1 and M2 have the same number of words. */
6719 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6720 && !OBJECT_P (SUBREG_REG (src))
6721 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6722 / UNITS_PER_WORD)
6723 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6724 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6725 && (WORD_REGISTER_OPERATIONS
6726 || (GET_MODE_SIZE (GET_MODE (src))
6727 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
6728 #ifdef CANNOT_CHANGE_MODE_CLASS
6729 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6730 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6731 GET_MODE (SUBREG_REG (src)),
6732 GET_MODE (src)))
6733 #endif
6734 && (REG_P (dest)
6735 || (GET_CODE (dest) == SUBREG
6736 && REG_P (SUBREG_REG (dest)))))
6738 SUBST (SET_DEST (x),
6739 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6740 dest));
6741 SUBST (SET_SRC (x), SUBREG_REG (src));
6743 src = SET_SRC (x), dest = SET_DEST (x);
6746 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6747 in SRC. */
6748 if (dest == cc0_rtx
6749 && GET_CODE (src) == SUBREG
6750 && subreg_lowpart_p (src)
6751 && (GET_MODE_PRECISION (GET_MODE (src))
6752 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6754 rtx inner = SUBREG_REG (src);
6755 machine_mode inner_mode = GET_MODE (inner);
6757 /* Here we make sure that we don't have a sign bit on. */
6758 if (val_signbit_known_clear_p (GET_MODE (src),
6759 nonzero_bits (inner, inner_mode)))
6761 SUBST (SET_SRC (x), inner);
6762 src = SET_SRC (x);
6766 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6767 would require a paradoxical subreg. Replace the subreg with a
6768 zero_extend to avoid the reload that would otherwise be required. */
6770 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6771 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
6772 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
6773 && SUBREG_BYTE (src) == 0
6774 && paradoxical_subreg_p (src)
6775 && MEM_P (SUBREG_REG (src)))
6777 SUBST (SET_SRC (x),
6778 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
6779 GET_MODE (src), SUBREG_REG (src)));
6781 src = SET_SRC (x);
6784 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6785 are comparing an item known to be 0 or -1 against 0, use a logical
6786 operation instead. Check for one of the arms being an IOR of the other
6787 arm with some value. We compute three terms to be IOR'ed together. In
6788 practice, at most two will be nonzero. Then we do the IOR's. */
6790 if (GET_CODE (dest) != PC
6791 && GET_CODE (src) == IF_THEN_ELSE
6792 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6793 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6794 && XEXP (XEXP (src, 0), 1) == const0_rtx
6795 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6796 && (!HAVE_conditional_move
6797 || ! can_conditionally_move_p (GET_MODE (src)))
6798 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6799 GET_MODE (XEXP (XEXP (src, 0), 0)))
6800 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6801 && ! side_effects_p (src))
6803 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6804 ? XEXP (src, 1) : XEXP (src, 2));
6805 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6806 ? XEXP (src, 2) : XEXP (src, 1));
6807 rtx term1 = const0_rtx, term2, term3;
6809 if (GET_CODE (true_rtx) == IOR
6810 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6811 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6812 else if (GET_CODE (true_rtx) == IOR
6813 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6814 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6815 else if (GET_CODE (false_rtx) == IOR
6816 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6817 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6818 else if (GET_CODE (false_rtx) == IOR
6819 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6820 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6822 term2 = simplify_gen_binary (AND, GET_MODE (src),
6823 XEXP (XEXP (src, 0), 0), true_rtx);
6824 term3 = simplify_gen_binary (AND, GET_MODE (src),
6825 simplify_gen_unary (NOT, GET_MODE (src),
6826 XEXP (XEXP (src, 0), 0),
6827 GET_MODE (src)),
6828 false_rtx);
6830 SUBST (SET_SRC (x),
6831 simplify_gen_binary (IOR, GET_MODE (src),
6832 simplify_gen_binary (IOR, GET_MODE (src),
6833 term1, term2),
6834 term3));
6836 src = SET_SRC (x);
6839 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6840 whole thing fail. */
6841 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6842 return src;
6843 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6844 return dest;
6845 else
6846 /* Convert this into a field assignment operation, if possible. */
6847 return make_field_assignment (x);
6850 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6851 result. */
6853 static rtx
6854 simplify_logical (rtx x)
6856 machine_mode mode = GET_MODE (x);
6857 rtx op0 = XEXP (x, 0);
6858 rtx op1 = XEXP (x, 1);
6860 switch (GET_CODE (x))
6862 case AND:
6863 /* We can call simplify_and_const_int only if we don't lose
6864 any (sign) bits when converting INTVAL (op1) to
6865 "unsigned HOST_WIDE_INT". */
6866 if (CONST_INT_P (op1)
6867 && (HWI_COMPUTABLE_MODE_P (mode)
6868 || INTVAL (op1) > 0))
6870 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6871 if (GET_CODE (x) != AND)
6872 return x;
6874 op0 = XEXP (x, 0);
6875 op1 = XEXP (x, 1);
6878 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6879 apply the distributive law and then the inverse distributive
6880 law to see if things simplify. */
6881 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6883 rtx result = distribute_and_simplify_rtx (x, 0);
6884 if (result)
6885 return result;
6887 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6889 rtx result = distribute_and_simplify_rtx (x, 1);
6890 if (result)
6891 return result;
6893 break;
6895 case IOR:
6896 /* If we have (ior (and A B) C), apply the distributive law and then
6897 the inverse distributive law to see if things simplify. */
6899 if (GET_CODE (op0) == AND)
6901 rtx result = distribute_and_simplify_rtx (x, 0);
6902 if (result)
6903 return result;
6906 if (GET_CODE (op1) == AND)
6908 rtx result = distribute_and_simplify_rtx (x, 1);
6909 if (result)
6910 return result;
6912 break;
6914 default:
6915 gcc_unreachable ();
6918 return x;
6921 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6922 operations" because they can be replaced with two more basic operations.
6923 ZERO_EXTEND is also considered "compound" because it can be replaced with
6924 an AND operation, which is simpler, though only one operation.
6926 The function expand_compound_operation is called with an rtx expression
6927 and will convert it to the appropriate shifts and AND operations,
6928 simplifying at each stage.
6930 The function make_compound_operation is called to convert an expression
6931 consisting of shifts and ANDs into the equivalent compound expression.
6932 It is the inverse of this function, loosely speaking. */
6934 static rtx
6935 expand_compound_operation (rtx x)
6937 unsigned HOST_WIDE_INT pos = 0, len;
6938 int unsignedp = 0;
6939 unsigned int modewidth;
6940 rtx tem;
6942 switch (GET_CODE (x))
6944 case ZERO_EXTEND:
6945 unsignedp = 1;
6946 case SIGN_EXTEND:
6947 /* We can't necessarily use a const_int for a multiword mode;
6948 it depends on implicitly extending the value.
6949 Since we don't know the right way to extend it,
6950 we can't tell whether the implicit way is right.
6952 Even for a mode that is no wider than a const_int,
6953 we can't win, because we need to sign extend one of its bits through
6954 the rest of it, and we don't know which bit. */
6955 if (CONST_INT_P (XEXP (x, 0)))
6956 return x;
6958 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6959 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6960 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6961 reloaded. If not for that, MEM's would very rarely be safe.
6963 Reject MODEs bigger than a word, because we might not be able
6964 to reference a two-register group starting with an arbitrary register
6965 (and currently gen_lowpart might crash for a SUBREG). */
6967 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6968 return x;
6970 /* Reject MODEs that aren't scalar integers because turning vector
6971 or complex modes into shifts causes problems. */
6973 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6974 return x;
6976 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
6977 /* If the inner object has VOIDmode (the only way this can happen
6978 is if it is an ASM_OPERANDS), we can't do anything since we don't
6979 know how much masking to do. */
6980 if (len == 0)
6981 return x;
6983 break;
6985 case ZERO_EXTRACT:
6986 unsignedp = 1;
6988 /* ... fall through ... */
6990 case SIGN_EXTRACT:
6991 /* If the operand is a CLOBBER, just return it. */
6992 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6993 return XEXP (x, 0);
6995 if (!CONST_INT_P (XEXP (x, 1))
6996 || !CONST_INT_P (XEXP (x, 2))
6997 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6998 return x;
7000 /* Reject MODEs that aren't scalar integers because turning vector
7001 or complex modes into shifts causes problems. */
7003 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7004 return x;
7006 len = INTVAL (XEXP (x, 1));
7007 pos = INTVAL (XEXP (x, 2));
7009 /* This should stay within the object being extracted, fail otherwise. */
7010 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7011 return x;
7013 if (BITS_BIG_ENDIAN)
7014 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7016 break;
7018 default:
7019 return x;
7021 /* Convert sign extension to zero extension, if we know that the high
7022 bit is not set, as this is easier to optimize. It will be converted
7023 back to cheaper alternative in make_extraction. */
7024 if (GET_CODE (x) == SIGN_EXTEND
7025 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7026 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7027 & ~(((unsigned HOST_WIDE_INT)
7028 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7029 >> 1))
7030 == 0)))
7032 machine_mode mode = GET_MODE (x);
7033 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7034 rtx temp2 = expand_compound_operation (temp);
7036 /* Make sure this is a profitable operation. */
7037 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7038 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7039 return temp2;
7040 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7041 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7042 return temp;
7043 else
7044 return x;
7047 /* We can optimize some special cases of ZERO_EXTEND. */
7048 if (GET_CODE (x) == ZERO_EXTEND)
7050 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7051 know that the last value didn't have any inappropriate bits
7052 set. */
7053 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7054 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7055 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7056 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7057 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7058 return XEXP (XEXP (x, 0), 0);
7060 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7061 if (GET_CODE (XEXP (x, 0)) == SUBREG
7062 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7063 && subreg_lowpart_p (XEXP (x, 0))
7064 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7065 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7066 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7067 return SUBREG_REG (XEXP (x, 0));
7069 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7070 is a comparison and STORE_FLAG_VALUE permits. This is like
7071 the first case, but it works even when GET_MODE (x) is larger
7072 than HOST_WIDE_INT. */
7073 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7074 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7075 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7076 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7077 <= HOST_BITS_PER_WIDE_INT)
7078 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7079 return XEXP (XEXP (x, 0), 0);
7081 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7082 if (GET_CODE (XEXP (x, 0)) == SUBREG
7083 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7084 && subreg_lowpart_p (XEXP (x, 0))
7085 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7086 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7087 <= HOST_BITS_PER_WIDE_INT)
7088 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7089 return SUBREG_REG (XEXP (x, 0));
7093 /* If we reach here, we want to return a pair of shifts. The inner
7094 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7095 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7096 logical depending on the value of UNSIGNEDP.
7098 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7099 converted into an AND of a shift.
7101 We must check for the case where the left shift would have a negative
7102 count. This can happen in a case like (x >> 31) & 255 on machines
7103 that can't shift by a constant. On those machines, we would first
7104 combine the shift with the AND to produce a variable-position
7105 extraction. Then the constant of 31 would be substituted in
7106 to produce such a position. */
7108 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7109 if (modewidth >= pos + len)
7111 machine_mode mode = GET_MODE (x);
7112 tem = gen_lowpart (mode, XEXP (x, 0));
7113 if (!tem || GET_CODE (tem) == CLOBBER)
7114 return x;
7115 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7116 tem, modewidth - pos - len);
7117 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7118 mode, tem, modewidth - len);
7120 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7121 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7122 simplify_shift_const (NULL_RTX, LSHIFTRT,
7123 GET_MODE (x),
7124 XEXP (x, 0), pos),
7125 ((unsigned HOST_WIDE_INT) 1 << len) - 1);
7126 else
7127 /* Any other cases we can't handle. */
7128 return x;
7130 /* If we couldn't do this for some reason, return the original
7131 expression. */
7132 if (GET_CODE (tem) == CLOBBER)
7133 return x;
7135 return tem;
7138 /* X is a SET which contains an assignment of one object into
7139 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7140 or certain SUBREGS). If possible, convert it into a series of
7141 logical operations.
7143 We half-heartedly support variable positions, but do not at all
7144 support variable lengths. */
7146 static const_rtx
7147 expand_field_assignment (const_rtx x)
7149 rtx inner;
7150 rtx pos; /* Always counts from low bit. */
7151 int len;
7152 rtx mask, cleared, masked;
7153 machine_mode compute_mode;
7155 /* Loop until we find something we can't simplify. */
7156 while (1)
7158 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7159 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7161 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7162 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7163 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7165 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7166 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7168 inner = XEXP (SET_DEST (x), 0);
7169 len = INTVAL (XEXP (SET_DEST (x), 1));
7170 pos = XEXP (SET_DEST (x), 2);
7172 /* A constant position should stay within the width of INNER. */
7173 if (CONST_INT_P (pos)
7174 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7175 break;
7177 if (BITS_BIG_ENDIAN)
7179 if (CONST_INT_P (pos))
7180 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7181 - INTVAL (pos));
7182 else if (GET_CODE (pos) == MINUS
7183 && CONST_INT_P (XEXP (pos, 1))
7184 && (INTVAL (XEXP (pos, 1))
7185 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7186 /* If position is ADJUST - X, new position is X. */
7187 pos = XEXP (pos, 0);
7188 else
7190 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7191 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7192 gen_int_mode (prec - len,
7193 GET_MODE (pos)),
7194 pos);
7199 /* A SUBREG between two modes that occupy the same numbers of words
7200 can be done by moving the SUBREG to the source. */
7201 else if (GET_CODE (SET_DEST (x)) == SUBREG
7202 /* We need SUBREGs to compute nonzero_bits properly. */
7203 && nonzero_sign_valid
7204 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7205 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7206 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7207 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7209 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7210 gen_lowpart
7211 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7212 SET_SRC (x)));
7213 continue;
7215 else
7216 break;
7218 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7219 inner = SUBREG_REG (inner);
7221 compute_mode = GET_MODE (inner);
7223 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7224 if (! SCALAR_INT_MODE_P (compute_mode))
7226 machine_mode imode;
7228 /* Don't do anything for vector or complex integral types. */
7229 if (! FLOAT_MODE_P (compute_mode))
7230 break;
7232 /* Try to find an integral mode to pun with. */
7233 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7234 if (imode == BLKmode)
7235 break;
7237 compute_mode = imode;
7238 inner = gen_lowpart (imode, inner);
7241 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7242 if (len >= HOST_BITS_PER_WIDE_INT)
7243 break;
7245 /* Now compute the equivalent expression. Make a copy of INNER
7246 for the SET_DEST in case it is a MEM into which we will substitute;
7247 we don't want shared RTL in that case. */
7248 mask = gen_int_mode (((unsigned HOST_WIDE_INT) 1 << len) - 1,
7249 compute_mode);
7250 cleared = simplify_gen_binary (AND, compute_mode,
7251 simplify_gen_unary (NOT, compute_mode,
7252 simplify_gen_binary (ASHIFT,
7253 compute_mode,
7254 mask, pos),
7255 compute_mode),
7256 inner);
7257 masked = simplify_gen_binary (ASHIFT, compute_mode,
7258 simplify_gen_binary (
7259 AND, compute_mode,
7260 gen_lowpart (compute_mode, SET_SRC (x)),
7261 mask),
7262 pos);
7264 x = gen_rtx_SET (copy_rtx (inner),
7265 simplify_gen_binary (IOR, compute_mode,
7266 cleared, masked));
7269 return x;
7272 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7273 it is an RTX that represents the (variable) starting position; otherwise,
7274 POS is the (constant) starting bit position. Both are counted from the LSB.
7276 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7278 IN_DEST is nonzero if this is a reference in the destination of a SET.
7279 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7280 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7281 be used.
7283 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7284 ZERO_EXTRACT should be built even for bits starting at bit 0.
7286 MODE is the desired mode of the result (if IN_DEST == 0).
7288 The result is an RTX for the extraction or NULL_RTX if the target
7289 can't handle it. */
7291 static rtx
7292 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7293 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7294 int in_dest, int in_compare)
7296 /* This mode describes the size of the storage area
7297 to fetch the overall value from. Within that, we
7298 ignore the POS lowest bits, etc. */
7299 machine_mode is_mode = GET_MODE (inner);
7300 machine_mode inner_mode;
7301 machine_mode wanted_inner_mode;
7302 machine_mode wanted_inner_reg_mode = word_mode;
7303 machine_mode pos_mode = word_mode;
7304 machine_mode extraction_mode = word_mode;
7305 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7306 rtx new_rtx = 0;
7307 rtx orig_pos_rtx = pos_rtx;
7308 HOST_WIDE_INT orig_pos;
7310 if (pos_rtx && CONST_INT_P (pos_rtx))
7311 pos = INTVAL (pos_rtx), pos_rtx = 0;
7313 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7315 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7316 consider just the QI as the memory to extract from.
7317 The subreg adds or removes high bits; its mode is
7318 irrelevant to the meaning of this extraction,
7319 since POS and LEN count from the lsb. */
7320 if (MEM_P (SUBREG_REG (inner)))
7321 is_mode = GET_MODE (SUBREG_REG (inner));
7322 inner = SUBREG_REG (inner);
7324 else if (GET_CODE (inner) == ASHIFT
7325 && CONST_INT_P (XEXP (inner, 1))
7326 && pos_rtx == 0 && pos == 0
7327 && len > UINTVAL (XEXP (inner, 1)))
7329 /* We're extracting the least significant bits of an rtx
7330 (ashift X (const_int C)), where LEN > C. Extract the
7331 least significant (LEN - C) bits of X, giving an rtx
7332 whose mode is MODE, then shift it left C times. */
7333 new_rtx = make_extraction (mode, XEXP (inner, 0),
7334 0, 0, len - INTVAL (XEXP (inner, 1)),
7335 unsignedp, in_dest, in_compare);
7336 if (new_rtx != 0)
7337 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7339 else if (GET_CODE (inner) == TRUNCATE)
7340 inner = XEXP (inner, 0);
7342 inner_mode = GET_MODE (inner);
7344 /* See if this can be done without an extraction. We never can if the
7345 width of the field is not the same as that of some integer mode. For
7346 registers, we can only avoid the extraction if the position is at the
7347 low-order bit and this is either not in the destination or we have the
7348 appropriate STRICT_LOW_PART operation available.
7350 For MEM, we can avoid an extract if the field starts on an appropriate
7351 boundary and we can change the mode of the memory reference. */
7353 if (tmode != BLKmode
7354 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7355 && !MEM_P (inner)
7356 && (inner_mode == tmode
7357 || !REG_P (inner)
7358 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7359 || reg_truncated_to_mode (tmode, inner))
7360 && (! in_dest
7361 || (REG_P (inner)
7362 && have_insn_for (STRICT_LOW_PART, tmode))))
7363 || (MEM_P (inner) && pos_rtx == 0
7364 && (pos
7365 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7366 : BITS_PER_UNIT)) == 0
7367 /* We can't do this if we are widening INNER_MODE (it
7368 may not be aligned, for one thing). */
7369 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7370 && (inner_mode == tmode
7371 || (! mode_dependent_address_p (XEXP (inner, 0),
7372 MEM_ADDR_SPACE (inner))
7373 && ! MEM_VOLATILE_P (inner))))))
7375 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7376 field. If the original and current mode are the same, we need not
7377 adjust the offset. Otherwise, we do if bytes big endian.
7379 If INNER is not a MEM, get a piece consisting of just the field
7380 of interest (in this case POS % BITS_PER_WORD must be 0). */
7382 if (MEM_P (inner))
7384 HOST_WIDE_INT offset;
7386 /* POS counts from lsb, but make OFFSET count in memory order. */
7387 if (BYTES_BIG_ENDIAN)
7388 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7389 else
7390 offset = pos / BITS_PER_UNIT;
7392 new_rtx = adjust_address_nv (inner, tmode, offset);
7394 else if (REG_P (inner))
7396 if (tmode != inner_mode)
7398 /* We can't call gen_lowpart in a DEST since we
7399 always want a SUBREG (see below) and it would sometimes
7400 return a new hard register. */
7401 if (pos || in_dest)
7403 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7405 if (WORDS_BIG_ENDIAN
7406 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7407 final_word = ((GET_MODE_SIZE (inner_mode)
7408 - GET_MODE_SIZE (tmode))
7409 / UNITS_PER_WORD) - final_word;
7411 final_word *= UNITS_PER_WORD;
7412 if (BYTES_BIG_ENDIAN &&
7413 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7414 final_word += (GET_MODE_SIZE (inner_mode)
7415 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7417 /* Avoid creating invalid subregs, for example when
7418 simplifying (x>>32)&255. */
7419 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7420 return NULL_RTX;
7422 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7424 else
7425 new_rtx = gen_lowpart (tmode, inner);
7427 else
7428 new_rtx = inner;
7430 else
7431 new_rtx = force_to_mode (inner, tmode,
7432 len >= HOST_BITS_PER_WIDE_INT
7433 ? ~(unsigned HOST_WIDE_INT) 0
7434 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7437 /* If this extraction is going into the destination of a SET,
7438 make a STRICT_LOW_PART unless we made a MEM. */
7440 if (in_dest)
7441 return (MEM_P (new_rtx) ? new_rtx
7442 : (GET_CODE (new_rtx) != SUBREG
7443 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7444 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7446 if (mode == tmode)
7447 return new_rtx;
7449 if (CONST_SCALAR_INT_P (new_rtx))
7450 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7451 mode, new_rtx, tmode);
7453 /* If we know that no extraneous bits are set, and that the high
7454 bit is not set, convert the extraction to the cheaper of
7455 sign and zero extension, that are equivalent in these cases. */
7456 if (flag_expensive_optimizations
7457 && (HWI_COMPUTABLE_MODE_P (tmode)
7458 && ((nonzero_bits (new_rtx, tmode)
7459 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7460 == 0)))
7462 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7463 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7465 /* Prefer ZERO_EXTENSION, since it gives more information to
7466 backends. */
7467 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7468 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7469 return temp;
7470 return temp1;
7473 /* Otherwise, sign- or zero-extend unless we already are in the
7474 proper mode. */
7476 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7477 mode, new_rtx));
7480 /* Unless this is a COMPARE or we have a funny memory reference,
7481 don't do anything with zero-extending field extracts starting at
7482 the low-order bit since they are simple AND operations. */
7483 if (pos_rtx == 0 && pos == 0 && ! in_dest
7484 && ! in_compare && unsignedp)
7485 return 0;
7487 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7488 if the position is not a constant and the length is not 1. In all
7489 other cases, we would only be going outside our object in cases when
7490 an original shift would have been undefined. */
7491 if (MEM_P (inner)
7492 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7493 || (pos_rtx != 0 && len != 1)))
7494 return 0;
7496 enum extraction_pattern pattern = (in_dest ? EP_insv
7497 : unsignedp ? EP_extzv : EP_extv);
7499 /* If INNER is not from memory, we want it to have the mode of a register
7500 extraction pattern's structure operand, or word_mode if there is no
7501 such pattern. The same applies to extraction_mode and pos_mode
7502 and their respective operands.
7504 For memory, assume that the desired extraction_mode and pos_mode
7505 are the same as for a register operation, since at present we don't
7506 have named patterns for aligned memory structures. */
7507 struct extraction_insn insn;
7508 if (get_best_reg_extraction_insn (&insn, pattern,
7509 GET_MODE_BITSIZE (inner_mode), mode))
7511 wanted_inner_reg_mode = insn.struct_mode;
7512 pos_mode = insn.pos_mode;
7513 extraction_mode = insn.field_mode;
7516 /* Never narrow an object, since that might not be safe. */
7518 if (mode != VOIDmode
7519 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7520 extraction_mode = mode;
7522 if (!MEM_P (inner))
7523 wanted_inner_mode = wanted_inner_reg_mode;
7524 else
7526 /* Be careful not to go beyond the extracted object and maintain the
7527 natural alignment of the memory. */
7528 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7529 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7530 > GET_MODE_BITSIZE (wanted_inner_mode))
7532 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7533 gcc_assert (wanted_inner_mode != VOIDmode);
7537 orig_pos = pos;
7539 if (BITS_BIG_ENDIAN)
7541 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7542 BITS_BIG_ENDIAN style. If position is constant, compute new
7543 position. Otherwise, build subtraction.
7544 Note that POS is relative to the mode of the original argument.
7545 If it's a MEM we need to recompute POS relative to that.
7546 However, if we're extracting from (or inserting into) a register,
7547 we want to recompute POS relative to wanted_inner_mode. */
7548 int width = (MEM_P (inner)
7549 ? GET_MODE_BITSIZE (is_mode)
7550 : GET_MODE_BITSIZE (wanted_inner_mode));
7552 if (pos_rtx == 0)
7553 pos = width - len - pos;
7554 else
7555 pos_rtx
7556 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7557 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7558 pos_rtx);
7559 /* POS may be less than 0 now, but we check for that below.
7560 Note that it can only be less than 0 if !MEM_P (inner). */
7563 /* If INNER has a wider mode, and this is a constant extraction, try to
7564 make it smaller and adjust the byte to point to the byte containing
7565 the value. */
7566 if (wanted_inner_mode != VOIDmode
7567 && inner_mode != wanted_inner_mode
7568 && ! pos_rtx
7569 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7570 && MEM_P (inner)
7571 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7572 && ! MEM_VOLATILE_P (inner))
7574 int offset = 0;
7576 /* The computations below will be correct if the machine is big
7577 endian in both bits and bytes or little endian in bits and bytes.
7578 If it is mixed, we must adjust. */
7580 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7581 adjust OFFSET to compensate. */
7582 if (BYTES_BIG_ENDIAN
7583 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7584 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7586 /* We can now move to the desired byte. */
7587 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7588 * GET_MODE_SIZE (wanted_inner_mode);
7589 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7591 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7592 && is_mode != wanted_inner_mode)
7593 offset = (GET_MODE_SIZE (is_mode)
7594 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7596 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7599 /* If INNER is not memory, get it into the proper mode. If we are changing
7600 its mode, POS must be a constant and smaller than the size of the new
7601 mode. */
7602 else if (!MEM_P (inner))
7604 /* On the LHS, don't create paradoxical subregs implicitely truncating
7605 the register unless TRULY_NOOP_TRUNCATION. */
7606 if (in_dest
7607 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7608 wanted_inner_mode))
7609 return NULL_RTX;
7611 if (GET_MODE (inner) != wanted_inner_mode
7612 && (pos_rtx != 0
7613 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7614 return NULL_RTX;
7616 if (orig_pos < 0)
7617 return NULL_RTX;
7619 inner = force_to_mode (inner, wanted_inner_mode,
7620 pos_rtx
7621 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7622 ? ~(unsigned HOST_WIDE_INT) 0
7623 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
7624 << orig_pos),
7628 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7629 have to zero extend. Otherwise, we can just use a SUBREG. */
7630 if (pos_rtx != 0
7631 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7633 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7634 GET_MODE (pos_rtx));
7636 /* If we know that no extraneous bits are set, and that the high
7637 bit is not set, convert extraction to cheaper one - either
7638 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7639 cases. */
7640 if (flag_expensive_optimizations
7641 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7642 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7643 & ~(((unsigned HOST_WIDE_INT)
7644 GET_MODE_MASK (GET_MODE (pos_rtx)))
7645 >> 1))
7646 == 0)))
7648 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7649 GET_MODE (pos_rtx));
7651 /* Prefer ZERO_EXTENSION, since it gives more information to
7652 backends. */
7653 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7654 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7655 temp = temp1;
7657 pos_rtx = temp;
7660 /* Make POS_RTX unless we already have it and it is correct. If we don't
7661 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7662 be a CONST_INT. */
7663 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7664 pos_rtx = orig_pos_rtx;
7666 else if (pos_rtx == 0)
7667 pos_rtx = GEN_INT (pos);
7669 /* Make the required operation. See if we can use existing rtx. */
7670 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7671 extraction_mode, inner, GEN_INT (len), pos_rtx);
7672 if (! in_dest)
7673 new_rtx = gen_lowpart (mode, new_rtx);
7675 return new_rtx;
7678 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7679 with any other operations in X. Return X without that shift if so. */
7681 static rtx
7682 extract_left_shift (rtx x, int count)
7684 enum rtx_code code = GET_CODE (x);
7685 machine_mode mode = GET_MODE (x);
7686 rtx tem;
7688 switch (code)
7690 case ASHIFT:
7691 /* This is the shift itself. If it is wide enough, we will return
7692 either the value being shifted if the shift count is equal to
7693 COUNT or a shift for the difference. */
7694 if (CONST_INT_P (XEXP (x, 1))
7695 && INTVAL (XEXP (x, 1)) >= count)
7696 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7697 INTVAL (XEXP (x, 1)) - count);
7698 break;
7700 case NEG: case NOT:
7701 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7702 return simplify_gen_unary (code, mode, tem, mode);
7704 break;
7706 case PLUS: case IOR: case XOR: case AND:
7707 /* If we can safely shift this constant and we find the inner shift,
7708 make a new operation. */
7709 if (CONST_INT_P (XEXP (x, 1))
7710 && (UINTVAL (XEXP (x, 1))
7711 & ((((unsigned HOST_WIDE_INT) 1 << count)) - 1)) == 0
7712 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7714 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7715 return simplify_gen_binary (code, mode, tem,
7716 gen_int_mode (val, mode));
7718 break;
7720 default:
7721 break;
7724 return 0;
7727 /* Look at the expression rooted at X. Look for expressions
7728 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7729 Form these expressions.
7731 Return the new rtx, usually just X.
7733 Also, for machines like the VAX that don't have logical shift insns,
7734 try to convert logical to arithmetic shift operations in cases where
7735 they are equivalent. This undoes the canonicalizations to logical
7736 shifts done elsewhere.
7738 We try, as much as possible, to re-use rtl expressions to save memory.
7740 IN_CODE says what kind of expression we are processing. Normally, it is
7741 SET. In a memory address it is MEM. When processing the arguments of
7742 a comparison or a COMPARE against zero, it is COMPARE. */
7745 make_compound_operation (rtx x, enum rtx_code in_code)
7747 enum rtx_code code = GET_CODE (x);
7748 machine_mode mode = GET_MODE (x);
7749 int mode_width = GET_MODE_PRECISION (mode);
7750 rtx rhs, lhs;
7751 enum rtx_code next_code;
7752 int i, j;
7753 rtx new_rtx = 0;
7754 rtx tem;
7755 const char *fmt;
7757 /* Select the code to be used in recursive calls. Once we are inside an
7758 address, we stay there. If we have a comparison, set to COMPARE,
7759 but once inside, go back to our default of SET. */
7761 next_code = (code == MEM ? MEM
7762 : ((code == COMPARE || COMPARISON_P (x))
7763 && XEXP (x, 1) == const0_rtx) ? COMPARE
7764 : in_code == COMPARE ? SET : in_code);
7766 /* Process depending on the code of this operation. If NEW is set
7767 nonzero, it will be returned. */
7769 switch (code)
7771 case ASHIFT:
7772 /* Convert shifts by constants into multiplications if inside
7773 an address. */
7774 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7775 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7776 && INTVAL (XEXP (x, 1)) >= 0
7777 && SCALAR_INT_MODE_P (mode))
7779 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7780 HOST_WIDE_INT multval = (HOST_WIDE_INT) 1 << count;
7782 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7783 if (GET_CODE (new_rtx) == NEG)
7785 new_rtx = XEXP (new_rtx, 0);
7786 multval = -multval;
7788 multval = trunc_int_for_mode (multval, mode);
7789 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7791 break;
7793 case PLUS:
7794 lhs = XEXP (x, 0);
7795 rhs = XEXP (x, 1);
7796 lhs = make_compound_operation (lhs, next_code);
7797 rhs = make_compound_operation (rhs, next_code);
7798 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG
7799 && SCALAR_INT_MODE_P (mode))
7801 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7802 XEXP (lhs, 1));
7803 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7805 else if (GET_CODE (lhs) == MULT
7806 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7808 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7809 simplify_gen_unary (NEG, mode,
7810 XEXP (lhs, 1),
7811 mode));
7812 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7814 else
7816 SUBST (XEXP (x, 0), lhs);
7817 SUBST (XEXP (x, 1), rhs);
7818 goto maybe_swap;
7820 x = gen_lowpart (mode, new_rtx);
7821 goto maybe_swap;
7823 case MINUS:
7824 lhs = XEXP (x, 0);
7825 rhs = XEXP (x, 1);
7826 lhs = make_compound_operation (lhs, next_code);
7827 rhs = make_compound_operation (rhs, next_code);
7828 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG
7829 && SCALAR_INT_MODE_P (mode))
7831 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7832 XEXP (rhs, 1));
7833 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7835 else if (GET_CODE (rhs) == MULT
7836 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7838 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7839 simplify_gen_unary (NEG, mode,
7840 XEXP (rhs, 1),
7841 mode));
7842 new_rtx = simplify_gen_binary (PLUS, mode, tem, lhs);
7844 else
7846 SUBST (XEXP (x, 0), lhs);
7847 SUBST (XEXP (x, 1), rhs);
7848 return x;
7850 return gen_lowpart (mode, new_rtx);
7852 case AND:
7853 /* If the second operand is not a constant, we can't do anything
7854 with it. */
7855 if (!CONST_INT_P (XEXP (x, 1)))
7856 break;
7858 /* If the constant is a power of two minus one and the first operand
7859 is a logical right shift, make an extraction. */
7860 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7861 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7863 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7864 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7865 0, in_code == COMPARE);
7868 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7869 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7870 && subreg_lowpart_p (XEXP (x, 0))
7871 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7872 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7874 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
7875 next_code);
7876 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
7877 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
7878 0, in_code == COMPARE);
7880 /* If that didn't give anything, see if the AND simplifies on
7881 its own. */
7882 if (!new_rtx && i >= 0)
7884 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7885 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
7886 0, in_code == COMPARE);
7889 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7890 else if ((GET_CODE (XEXP (x, 0)) == XOR
7891 || GET_CODE (XEXP (x, 0)) == IOR)
7892 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7893 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7894 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7896 /* Apply the distributive law, and then try to make extractions. */
7897 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7898 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7899 XEXP (x, 1)),
7900 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7901 XEXP (x, 1)));
7902 new_rtx = make_compound_operation (new_rtx, in_code);
7905 /* If we are have (and (rotate X C) M) and C is larger than the number
7906 of bits in M, this is an extraction. */
7908 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7909 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7910 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7911 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7913 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7914 new_rtx = make_extraction (mode, new_rtx,
7915 (GET_MODE_PRECISION (mode)
7916 - INTVAL (XEXP (XEXP (x, 0), 1))),
7917 NULL_RTX, i, 1, 0, in_code == COMPARE);
7920 /* On machines without logical shifts, if the operand of the AND is
7921 a logical shift and our mask turns off all the propagated sign
7922 bits, we can replace the logical shift with an arithmetic shift. */
7923 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7924 && !have_insn_for (LSHIFTRT, mode)
7925 && have_insn_for (ASHIFTRT, mode)
7926 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7927 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7928 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7929 && mode_width <= HOST_BITS_PER_WIDE_INT)
7931 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
7933 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
7934 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
7935 SUBST (XEXP (x, 0),
7936 gen_rtx_ASHIFTRT (mode,
7937 make_compound_operation
7938 (XEXP (XEXP (x, 0), 0), next_code),
7939 XEXP (XEXP (x, 0), 1)));
7942 /* If the constant is one less than a power of two, this might be
7943 representable by an extraction even if no shift is present.
7944 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7945 we are in a COMPARE. */
7946 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7947 new_rtx = make_extraction (mode,
7948 make_compound_operation (XEXP (x, 0),
7949 next_code),
7950 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
7952 /* If we are in a comparison and this is an AND with a power of two,
7953 convert this into the appropriate bit extract. */
7954 else if (in_code == COMPARE
7955 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
7956 new_rtx = make_extraction (mode,
7957 make_compound_operation (XEXP (x, 0),
7958 next_code),
7959 i, NULL_RTX, 1, 1, 0, 1);
7961 break;
7963 case LSHIFTRT:
7964 /* If the sign bit is known to be zero, replace this with an
7965 arithmetic shift. */
7966 if (have_insn_for (ASHIFTRT, mode)
7967 && ! have_insn_for (LSHIFTRT, mode)
7968 && mode_width <= HOST_BITS_PER_WIDE_INT
7969 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
7971 new_rtx = gen_rtx_ASHIFTRT (mode,
7972 make_compound_operation (XEXP (x, 0),
7973 next_code),
7974 XEXP (x, 1));
7975 break;
7978 /* ... fall through ... */
7980 case ASHIFTRT:
7981 lhs = XEXP (x, 0);
7982 rhs = XEXP (x, 1);
7984 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7985 this is a SIGN_EXTRACT. */
7986 if (CONST_INT_P (rhs)
7987 && GET_CODE (lhs) == ASHIFT
7988 && CONST_INT_P (XEXP (lhs, 1))
7989 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7990 && INTVAL (XEXP (lhs, 1)) >= 0
7991 && INTVAL (rhs) < mode_width)
7993 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7994 new_rtx = make_extraction (mode, new_rtx,
7995 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7996 NULL_RTX, mode_width - INTVAL (rhs),
7997 code == LSHIFTRT, 0, in_code == COMPARE);
7998 break;
8001 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8002 If so, try to merge the shifts into a SIGN_EXTEND. We could
8003 also do this for some cases of SIGN_EXTRACT, but it doesn't
8004 seem worth the effort; the case checked for occurs on Alpha. */
8006 if (!OBJECT_P (lhs)
8007 && ! (GET_CODE (lhs) == SUBREG
8008 && (OBJECT_P (SUBREG_REG (lhs))))
8009 && CONST_INT_P (rhs)
8010 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8011 && INTVAL (rhs) < mode_width
8012 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8013 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8014 0, NULL_RTX, mode_width - INTVAL (rhs),
8015 code == LSHIFTRT, 0, in_code == COMPARE);
8017 break;
8019 case SUBREG:
8020 /* Call ourselves recursively on the inner expression. If we are
8021 narrowing the object and it has a different RTL code from
8022 what it originally did, do this SUBREG as a force_to_mode. */
8024 rtx inner = SUBREG_REG (x), simplified;
8025 enum rtx_code subreg_code = in_code;
8027 /* If in_code is COMPARE, it isn't always safe to pass it through
8028 to the recursive make_compound_operation call. */
8029 if (subreg_code == COMPARE
8030 && (!subreg_lowpart_p (x)
8031 || GET_CODE (inner) == SUBREG
8032 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8033 is (const_int 0), rather than
8034 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
8035 || (GET_CODE (inner) == AND
8036 && CONST_INT_P (XEXP (inner, 1))
8037 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8038 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8039 >= GET_MODE_BITSIZE (mode))))
8040 subreg_code = SET;
8042 tem = make_compound_operation (inner, subreg_code);
8044 simplified
8045 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8046 if (simplified)
8047 tem = simplified;
8049 if (GET_CODE (tem) != GET_CODE (inner)
8050 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8051 && subreg_lowpart_p (x))
8053 rtx newer
8054 = force_to_mode (tem, mode, ~(unsigned HOST_WIDE_INT) 0, 0);
8056 /* If we have something other than a SUBREG, we might have
8057 done an expansion, so rerun ourselves. */
8058 if (GET_CODE (newer) != SUBREG)
8059 newer = make_compound_operation (newer, in_code);
8061 /* force_to_mode can expand compounds. If it just re-expanded the
8062 compound, use gen_lowpart to convert to the desired mode. */
8063 if (rtx_equal_p (newer, x)
8064 /* Likewise if it re-expanded the compound only partially.
8065 This happens for SUBREG of ZERO_EXTRACT if they extract
8066 the same number of bits. */
8067 || (GET_CODE (newer) == SUBREG
8068 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8069 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8070 && GET_CODE (inner) == AND
8071 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8072 return gen_lowpart (GET_MODE (x), tem);
8074 return newer;
8077 if (simplified)
8078 return tem;
8080 break;
8082 default:
8083 break;
8086 if (new_rtx)
8088 x = gen_lowpart (mode, new_rtx);
8089 code = GET_CODE (x);
8092 /* Now recursively process each operand of this operation. We need to
8093 handle ZERO_EXTEND specially so that we don't lose track of the
8094 inner mode. */
8095 if (GET_CODE (x) == ZERO_EXTEND)
8097 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8098 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8099 new_rtx, GET_MODE (XEXP (x, 0)));
8100 if (tem)
8101 return tem;
8102 SUBST (XEXP (x, 0), new_rtx);
8103 return x;
8106 fmt = GET_RTX_FORMAT (code);
8107 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8108 if (fmt[i] == 'e')
8110 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8111 SUBST (XEXP (x, i), new_rtx);
8113 else if (fmt[i] == 'E')
8114 for (j = 0; j < XVECLEN (x, i); j++)
8116 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8117 SUBST (XVECEXP (x, i, j), new_rtx);
8120 maybe_swap:
8121 /* If this is a commutative operation, the changes to the operands
8122 may have made it noncanonical. */
8123 if (COMMUTATIVE_ARITH_P (x)
8124 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
8126 tem = XEXP (x, 0);
8127 SUBST (XEXP (x, 0), XEXP (x, 1));
8128 SUBST (XEXP (x, 1), tem);
8131 return x;
8134 /* Given M see if it is a value that would select a field of bits
8135 within an item, but not the entire word. Return -1 if not.
8136 Otherwise, return the starting position of the field, where 0 is the
8137 low-order bit.
8139 *PLEN is set to the length of the field. */
8141 static int
8142 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8144 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8145 int pos = m ? ctz_hwi (m) : -1;
8146 int len = 0;
8148 if (pos >= 0)
8149 /* Now shift off the low-order zero bits and see if we have a
8150 power of two minus 1. */
8151 len = exact_log2 ((m >> pos) + 1);
8153 if (len <= 0)
8154 pos = -1;
8156 *plen = len;
8157 return pos;
8160 /* If X refers to a register that equals REG in value, replace these
8161 references with REG. */
8162 static rtx
8163 canon_reg_for_combine (rtx x, rtx reg)
8165 rtx op0, op1, op2;
8166 const char *fmt;
8167 int i;
8168 bool copied;
8170 enum rtx_code code = GET_CODE (x);
8171 switch (GET_RTX_CLASS (code))
8173 case RTX_UNARY:
8174 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8175 if (op0 != XEXP (x, 0))
8176 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8177 GET_MODE (reg));
8178 break;
8180 case RTX_BIN_ARITH:
8181 case RTX_COMM_ARITH:
8182 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8183 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8184 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8185 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8186 break;
8188 case RTX_COMPARE:
8189 case RTX_COMM_COMPARE:
8190 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8191 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8192 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8193 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8194 GET_MODE (op0), op0, op1);
8195 break;
8197 case RTX_TERNARY:
8198 case RTX_BITFIELD_OPS:
8199 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8200 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8201 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8202 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8203 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8204 GET_MODE (op0), op0, op1, op2);
8206 case RTX_OBJ:
8207 if (REG_P (x))
8209 if (rtx_equal_p (get_last_value (reg), x)
8210 || rtx_equal_p (reg, get_last_value (x)))
8211 return reg;
8212 else
8213 break;
8216 /* fall through */
8218 default:
8219 fmt = GET_RTX_FORMAT (code);
8220 copied = false;
8221 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8222 if (fmt[i] == 'e')
8224 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8225 if (op != XEXP (x, i))
8227 if (!copied)
8229 copied = true;
8230 x = copy_rtx (x);
8232 XEXP (x, i) = op;
8235 else if (fmt[i] == 'E')
8237 int j;
8238 for (j = 0; j < XVECLEN (x, i); j++)
8240 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8241 if (op != XVECEXP (x, i, j))
8243 if (!copied)
8245 copied = true;
8246 x = copy_rtx (x);
8248 XVECEXP (x, i, j) = op;
8253 break;
8256 return x;
8259 /* Return X converted to MODE. If the value is already truncated to
8260 MODE we can just return a subreg even though in the general case we
8261 would need an explicit truncation. */
8263 static rtx
8264 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8266 if (!CONST_INT_P (x)
8267 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8268 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8269 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8271 /* Bit-cast X into an integer mode. */
8272 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8273 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8274 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8275 x, GET_MODE (x));
8278 return gen_lowpart (mode, x);
8281 /* See if X can be simplified knowing that we will only refer to it in
8282 MODE and will only refer to those bits that are nonzero in MASK.
8283 If other bits are being computed or if masking operations are done
8284 that select a superset of the bits in MASK, they can sometimes be
8285 ignored.
8287 Return a possibly simplified expression, but always convert X to
8288 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8290 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8291 are all off in X. This is used when X will be complemented, by either
8292 NOT, NEG, or XOR. */
8294 static rtx
8295 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8296 int just_select)
8298 enum rtx_code code = GET_CODE (x);
8299 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8300 machine_mode op_mode;
8301 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8302 rtx op0, op1, temp;
8304 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8305 code below will do the wrong thing since the mode of such an
8306 expression is VOIDmode.
8308 Also do nothing if X is a CLOBBER; this can happen if X was
8309 the return value from a call to gen_lowpart. */
8310 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8311 return x;
8313 /* We want to perform the operation in its present mode unless we know
8314 that the operation is valid in MODE, in which case we do the operation
8315 in MODE. */
8316 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8317 && have_insn_for (code, mode))
8318 ? mode : GET_MODE (x));
8320 /* It is not valid to do a right-shift in a narrower mode
8321 than the one it came in with. */
8322 if ((code == LSHIFTRT || code == ASHIFTRT)
8323 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8324 op_mode = GET_MODE (x);
8326 /* Truncate MASK to fit OP_MODE. */
8327 if (op_mode)
8328 mask &= GET_MODE_MASK (op_mode);
8330 /* When we have an arithmetic operation, or a shift whose count we
8331 do not know, we need to assume that all bits up to the highest-order
8332 bit in MASK will be needed. This is how we form such a mask. */
8333 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
8334 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
8335 else
8336 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
8337 - 1);
8339 /* Determine what bits of X are guaranteed to be (non)zero. */
8340 nonzero = nonzero_bits (x, mode);
8342 /* If none of the bits in X are needed, return a zero. */
8343 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8344 x = const0_rtx;
8346 /* If X is a CONST_INT, return a new one. Do this here since the
8347 test below will fail. */
8348 if (CONST_INT_P (x))
8350 if (SCALAR_INT_MODE_P (mode))
8351 return gen_int_mode (INTVAL (x) & mask, mode);
8352 else
8354 x = GEN_INT (INTVAL (x) & mask);
8355 return gen_lowpart_common (mode, x);
8359 /* If X is narrower than MODE and we want all the bits in X's mode, just
8360 get X in the proper mode. */
8361 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8362 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8363 return gen_lowpart (mode, x);
8365 /* We can ignore the effect of a SUBREG if it narrows the mode or
8366 if the constant masks to zero all the bits the mode doesn't have. */
8367 if (GET_CODE (x) == SUBREG
8368 && subreg_lowpart_p (x)
8369 && ((GET_MODE_SIZE (GET_MODE (x))
8370 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8371 || (0 == (mask
8372 & GET_MODE_MASK (GET_MODE (x))
8373 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8374 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8376 /* The arithmetic simplifications here only work for scalar integer modes. */
8377 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8378 return gen_lowpart_or_truncate (mode, x);
8380 switch (code)
8382 case CLOBBER:
8383 /* If X is a (clobber (const_int)), return it since we know we are
8384 generating something that won't match. */
8385 return x;
8387 case SIGN_EXTEND:
8388 case ZERO_EXTEND:
8389 case ZERO_EXTRACT:
8390 case SIGN_EXTRACT:
8391 x = expand_compound_operation (x);
8392 if (GET_CODE (x) != code)
8393 return force_to_mode (x, mode, mask, next_select);
8394 break;
8396 case TRUNCATE:
8397 /* Similarly for a truncate. */
8398 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8400 case AND:
8401 /* If this is an AND with a constant, convert it into an AND
8402 whose constant is the AND of that constant with MASK. If it
8403 remains an AND of MASK, delete it since it is redundant. */
8405 if (CONST_INT_P (XEXP (x, 1)))
8407 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8408 mask & INTVAL (XEXP (x, 1)));
8410 /* If X is still an AND, see if it is an AND with a mask that
8411 is just some low-order bits. If so, and it is MASK, we don't
8412 need it. */
8414 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8415 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8416 == mask))
8417 x = XEXP (x, 0);
8419 /* If it remains an AND, try making another AND with the bits
8420 in the mode mask that aren't in MASK turned on. If the
8421 constant in the AND is wide enough, this might make a
8422 cheaper constant. */
8424 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8425 && GET_MODE_MASK (GET_MODE (x)) != mask
8426 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8428 unsigned HOST_WIDE_INT cval
8429 = UINTVAL (XEXP (x, 1))
8430 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8431 rtx y;
8433 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8434 gen_int_mode (cval, GET_MODE (x)));
8435 if (set_src_cost (y, GET_MODE (x), optimize_this_for_speed_p)
8436 < set_src_cost (x, GET_MODE (x), optimize_this_for_speed_p))
8437 x = y;
8440 break;
8443 goto binop;
8445 case PLUS:
8446 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8447 low-order bits (as in an alignment operation) and FOO is already
8448 aligned to that boundary, mask C1 to that boundary as well.
8449 This may eliminate that PLUS and, later, the AND. */
8452 unsigned int width = GET_MODE_PRECISION (mode);
8453 unsigned HOST_WIDE_INT smask = mask;
8455 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8456 number, sign extend it. */
8458 if (width < HOST_BITS_PER_WIDE_INT
8459 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8460 smask |= HOST_WIDE_INT_M1U << width;
8462 if (CONST_INT_P (XEXP (x, 1))
8463 && exact_log2 (- smask) >= 0
8464 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8465 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8466 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8467 (INTVAL (XEXP (x, 1)) & smask)),
8468 mode, smask, next_select);
8471 /* ... fall through ... */
8473 case MULT:
8474 /* Substituting into the operands of a widening MULT is not likely to
8475 create RTL matching a machine insn. */
8476 if (code == MULT
8477 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8478 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8479 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8480 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8481 && REG_P (XEXP (XEXP (x, 0), 0))
8482 && REG_P (XEXP (XEXP (x, 1), 0)))
8483 return gen_lowpart_or_truncate (mode, x);
8485 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8486 most significant bit in MASK since carries from those bits will
8487 affect the bits we are interested in. */
8488 mask = fuller_mask;
8489 goto binop;
8491 case MINUS:
8492 /* If X is (minus C Y) where C's least set bit is larger than any bit
8493 in the mask, then we may replace with (neg Y). */
8494 if (CONST_INT_P (XEXP (x, 0))
8495 && ((UINTVAL (XEXP (x, 0)) & -UINTVAL (XEXP (x, 0))) > mask))
8497 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8498 GET_MODE (x));
8499 return force_to_mode (x, mode, mask, next_select);
8502 /* Similarly, if C contains every bit in the fuller_mask, then we may
8503 replace with (not Y). */
8504 if (CONST_INT_P (XEXP (x, 0))
8505 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8507 x = simplify_gen_unary (NOT, GET_MODE (x),
8508 XEXP (x, 1), GET_MODE (x));
8509 return force_to_mode (x, mode, mask, next_select);
8512 mask = fuller_mask;
8513 goto binop;
8515 case IOR:
8516 case XOR:
8517 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8518 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8519 operation which may be a bitfield extraction. Ensure that the
8520 constant we form is not wider than the mode of X. */
8522 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8523 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8524 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8525 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8526 && CONST_INT_P (XEXP (x, 1))
8527 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8528 + floor_log2 (INTVAL (XEXP (x, 1))))
8529 < GET_MODE_PRECISION (GET_MODE (x)))
8530 && (UINTVAL (XEXP (x, 1))
8531 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8533 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8534 << INTVAL (XEXP (XEXP (x, 0), 1)),
8535 GET_MODE (x));
8536 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8537 XEXP (XEXP (x, 0), 0), temp);
8538 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8539 XEXP (XEXP (x, 0), 1));
8540 return force_to_mode (x, mode, mask, next_select);
8543 binop:
8544 /* For most binary operations, just propagate into the operation and
8545 change the mode if we have an operation of that mode. */
8547 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8548 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8550 /* If we ended up truncating both operands, truncate the result of the
8551 operation instead. */
8552 if (GET_CODE (op0) == TRUNCATE
8553 && GET_CODE (op1) == TRUNCATE)
8555 op0 = XEXP (op0, 0);
8556 op1 = XEXP (op1, 0);
8559 op0 = gen_lowpart_or_truncate (op_mode, op0);
8560 op1 = gen_lowpart_or_truncate (op_mode, op1);
8562 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8563 x = simplify_gen_binary (code, op_mode, op0, op1);
8564 break;
8566 case ASHIFT:
8567 /* For left shifts, do the same, but just for the first operand.
8568 However, we cannot do anything with shifts where we cannot
8569 guarantee that the counts are smaller than the size of the mode
8570 because such a count will have a different meaning in a
8571 wider mode. */
8573 if (! (CONST_INT_P (XEXP (x, 1))
8574 && INTVAL (XEXP (x, 1)) >= 0
8575 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8576 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8577 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8578 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8579 break;
8581 /* If the shift count is a constant and we can do arithmetic in
8582 the mode of the shift, refine which bits we need. Otherwise, use the
8583 conservative form of the mask. */
8584 if (CONST_INT_P (XEXP (x, 1))
8585 && INTVAL (XEXP (x, 1)) >= 0
8586 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8587 && HWI_COMPUTABLE_MODE_P (op_mode))
8588 mask >>= INTVAL (XEXP (x, 1));
8589 else
8590 mask = fuller_mask;
8592 op0 = gen_lowpart_or_truncate (op_mode,
8593 force_to_mode (XEXP (x, 0), op_mode,
8594 mask, next_select));
8596 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8597 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8598 break;
8600 case LSHIFTRT:
8601 /* Here we can only do something if the shift count is a constant,
8602 this shift constant is valid for the host, and we can do arithmetic
8603 in OP_MODE. */
8605 if (CONST_INT_P (XEXP (x, 1))
8606 && INTVAL (XEXP (x, 1)) >= 0
8607 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8608 && HWI_COMPUTABLE_MODE_P (op_mode))
8610 rtx inner = XEXP (x, 0);
8611 unsigned HOST_WIDE_INT inner_mask;
8613 /* Select the mask of the bits we need for the shift operand. */
8614 inner_mask = mask << INTVAL (XEXP (x, 1));
8616 /* We can only change the mode of the shift if we can do arithmetic
8617 in the mode of the shift and INNER_MASK is no wider than the
8618 width of X's mode. */
8619 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8620 op_mode = GET_MODE (x);
8622 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8624 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8625 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8628 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8629 shift and AND produces only copies of the sign bit (C2 is one less
8630 than a power of two), we can do this with just a shift. */
8632 if (GET_CODE (x) == LSHIFTRT
8633 && CONST_INT_P (XEXP (x, 1))
8634 /* The shift puts one of the sign bit copies in the least significant
8635 bit. */
8636 && ((INTVAL (XEXP (x, 1))
8637 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8638 >= GET_MODE_PRECISION (GET_MODE (x)))
8639 && exact_log2 (mask + 1) >= 0
8640 /* Number of bits left after the shift must be more than the mask
8641 needs. */
8642 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8643 <= GET_MODE_PRECISION (GET_MODE (x)))
8644 /* Must be more sign bit copies than the mask needs. */
8645 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8646 >= exact_log2 (mask + 1)))
8647 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8648 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8649 - exact_log2 (mask + 1)));
8651 goto shiftrt;
8653 case ASHIFTRT:
8654 /* If we are just looking for the sign bit, we don't need this shift at
8655 all, even if it has a variable count. */
8656 if (val_signbit_p (GET_MODE (x), mask))
8657 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8659 /* If this is a shift by a constant, get a mask that contains those bits
8660 that are not copies of the sign bit. We then have two cases: If
8661 MASK only includes those bits, this can be a logical shift, which may
8662 allow simplifications. If MASK is a single-bit field not within
8663 those bits, we are requesting a copy of the sign bit and hence can
8664 shift the sign bit to the appropriate location. */
8666 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8667 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8669 int i;
8671 /* If the considered data is wider than HOST_WIDE_INT, we can't
8672 represent a mask for all its bits in a single scalar.
8673 But we only care about the lower bits, so calculate these. */
8675 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8677 nonzero = ~(unsigned HOST_WIDE_INT) 0;
8679 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8680 is the number of bits a full-width mask would have set.
8681 We need only shift if these are fewer than nonzero can
8682 hold. If not, we must keep all bits set in nonzero. */
8684 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8685 < HOST_BITS_PER_WIDE_INT)
8686 nonzero >>= INTVAL (XEXP (x, 1))
8687 + HOST_BITS_PER_WIDE_INT
8688 - GET_MODE_PRECISION (GET_MODE (x)) ;
8690 else
8692 nonzero = GET_MODE_MASK (GET_MODE (x));
8693 nonzero >>= INTVAL (XEXP (x, 1));
8696 if ((mask & ~nonzero) == 0)
8698 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8699 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8700 if (GET_CODE (x) != ASHIFTRT)
8701 return force_to_mode (x, mode, mask, next_select);
8704 else if ((i = exact_log2 (mask)) >= 0)
8706 x = simplify_shift_const
8707 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8708 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8710 if (GET_CODE (x) != ASHIFTRT)
8711 return force_to_mode (x, mode, mask, next_select);
8715 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8716 even if the shift count isn't a constant. */
8717 if (mask == 1)
8718 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8719 XEXP (x, 0), XEXP (x, 1));
8721 shiftrt:
8723 /* If this is a zero- or sign-extension operation that just affects bits
8724 we don't care about, remove it. Be sure the call above returned
8725 something that is still a shift. */
8727 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8728 && CONST_INT_P (XEXP (x, 1))
8729 && INTVAL (XEXP (x, 1)) >= 0
8730 && (INTVAL (XEXP (x, 1))
8731 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8732 && GET_CODE (XEXP (x, 0)) == ASHIFT
8733 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8734 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8735 next_select);
8737 break;
8739 case ROTATE:
8740 case ROTATERT:
8741 /* If the shift count is constant and we can do computations
8742 in the mode of X, compute where the bits we care about are.
8743 Otherwise, we can't do anything. Don't change the mode of
8744 the shift or propagate MODE into the shift, though. */
8745 if (CONST_INT_P (XEXP (x, 1))
8746 && INTVAL (XEXP (x, 1)) >= 0)
8748 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8749 GET_MODE (x),
8750 gen_int_mode (mask, GET_MODE (x)),
8751 XEXP (x, 1));
8752 if (temp && CONST_INT_P (temp))
8753 x = simplify_gen_binary (code, GET_MODE (x),
8754 force_to_mode (XEXP (x, 0), GET_MODE (x),
8755 INTVAL (temp), next_select),
8756 XEXP (x, 1));
8758 break;
8760 case NEG:
8761 /* If we just want the low-order bit, the NEG isn't needed since it
8762 won't change the low-order bit. */
8763 if (mask == 1)
8764 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8766 /* We need any bits less significant than the most significant bit in
8767 MASK since carries from those bits will affect the bits we are
8768 interested in. */
8769 mask = fuller_mask;
8770 goto unop;
8772 case NOT:
8773 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8774 same as the XOR case above. Ensure that the constant we form is not
8775 wider than the mode of X. */
8777 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8778 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8779 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8780 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8781 < GET_MODE_PRECISION (GET_MODE (x)))
8782 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8784 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8785 GET_MODE (x));
8786 temp = simplify_gen_binary (XOR, GET_MODE (x),
8787 XEXP (XEXP (x, 0), 0), temp);
8788 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8789 temp, XEXP (XEXP (x, 0), 1));
8791 return force_to_mode (x, mode, mask, next_select);
8794 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8795 use the full mask inside the NOT. */
8796 mask = fuller_mask;
8798 unop:
8799 op0 = gen_lowpart_or_truncate (op_mode,
8800 force_to_mode (XEXP (x, 0), mode, mask,
8801 next_select));
8802 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8803 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8804 break;
8806 case NE:
8807 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8808 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8809 which is equal to STORE_FLAG_VALUE. */
8810 if ((mask & ~STORE_FLAG_VALUE) == 0
8811 && XEXP (x, 1) == const0_rtx
8812 && GET_MODE (XEXP (x, 0)) == mode
8813 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
8814 && (nonzero_bits (XEXP (x, 0), mode)
8815 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8816 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8818 break;
8820 case IF_THEN_ELSE:
8821 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8822 written in a narrower mode. We play it safe and do not do so. */
8824 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8825 force_to_mode (XEXP (x, 1), mode,
8826 mask, next_select));
8827 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8828 force_to_mode (XEXP (x, 2), mode,
8829 mask, next_select));
8830 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8831 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8832 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
8833 op0, op1);
8834 break;
8836 default:
8837 break;
8840 /* Ensure we return a value of the proper mode. */
8841 return gen_lowpart_or_truncate (mode, x);
8844 /* Return nonzero if X is an expression that has one of two values depending on
8845 whether some other value is zero or nonzero. In that case, we return the
8846 value that is being tested, *PTRUE is set to the value if the rtx being
8847 returned has a nonzero value, and *PFALSE is set to the other alternative.
8849 If we return zero, we set *PTRUE and *PFALSE to X. */
8851 static rtx
8852 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
8854 machine_mode mode = GET_MODE (x);
8855 enum rtx_code code = GET_CODE (x);
8856 rtx cond0, cond1, true0, true1, false0, false1;
8857 unsigned HOST_WIDE_INT nz;
8859 /* If we are comparing a value against zero, we are done. */
8860 if ((code == NE || code == EQ)
8861 && XEXP (x, 1) == const0_rtx)
8863 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
8864 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
8865 return XEXP (x, 0);
8868 /* If this is a unary operation whose operand has one of two values, apply
8869 our opcode to compute those values. */
8870 else if (UNARY_P (x)
8871 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
8873 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
8874 *pfalse = simplify_gen_unary (code, mode, false0,
8875 GET_MODE (XEXP (x, 0)));
8876 return cond0;
8879 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8880 make can't possibly match and would suppress other optimizations. */
8881 else if (code == COMPARE)
8884 /* If this is a binary operation, see if either side has only one of two
8885 values. If either one does or if both do and they are conditional on
8886 the same value, compute the new true and false values. */
8887 else if (BINARY_P (x))
8889 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
8890 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
8892 if ((cond0 != 0 || cond1 != 0)
8893 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
8895 /* If if_then_else_cond returned zero, then true/false are the
8896 same rtl. We must copy one of them to prevent invalid rtl
8897 sharing. */
8898 if (cond0 == 0)
8899 true0 = copy_rtx (true0);
8900 else if (cond1 == 0)
8901 true1 = copy_rtx (true1);
8903 if (COMPARISON_P (x))
8905 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
8906 true0, true1);
8907 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
8908 false0, false1);
8910 else
8912 *ptrue = simplify_gen_binary (code, mode, true0, true1);
8913 *pfalse = simplify_gen_binary (code, mode, false0, false1);
8916 return cond0 ? cond0 : cond1;
8919 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8920 operands is zero when the other is nonzero, and vice-versa,
8921 and STORE_FLAG_VALUE is 1 or -1. */
8923 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8924 && (code == PLUS || code == IOR || code == XOR || code == MINUS
8925 || code == UMAX)
8926 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8928 rtx op0 = XEXP (XEXP (x, 0), 1);
8929 rtx op1 = XEXP (XEXP (x, 1), 1);
8931 cond0 = XEXP (XEXP (x, 0), 0);
8932 cond1 = XEXP (XEXP (x, 1), 0);
8934 if (COMPARISON_P (cond0)
8935 && COMPARISON_P (cond1)
8936 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8937 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8938 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8939 || ((swap_condition (GET_CODE (cond0))
8940 == reversed_comparison_code (cond1, NULL))
8941 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8942 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8943 && ! side_effects_p (x))
8945 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
8946 *pfalse = simplify_gen_binary (MULT, mode,
8947 (code == MINUS
8948 ? simplify_gen_unary (NEG, mode,
8949 op1, mode)
8950 : op1),
8951 const_true_rtx);
8952 return cond0;
8956 /* Similarly for MULT, AND and UMIN, except that for these the result
8957 is always zero. */
8958 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8959 && (code == MULT || code == AND || code == UMIN)
8960 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
8962 cond0 = XEXP (XEXP (x, 0), 0);
8963 cond1 = XEXP (XEXP (x, 1), 0);
8965 if (COMPARISON_P (cond0)
8966 && COMPARISON_P (cond1)
8967 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
8968 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
8969 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
8970 || ((swap_condition (GET_CODE (cond0))
8971 == reversed_comparison_code (cond1, NULL))
8972 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
8973 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
8974 && ! side_effects_p (x))
8976 *ptrue = *pfalse = const0_rtx;
8977 return cond0;
8982 else if (code == IF_THEN_ELSE)
8984 /* If we have IF_THEN_ELSE already, extract the condition and
8985 canonicalize it if it is NE or EQ. */
8986 cond0 = XEXP (x, 0);
8987 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
8988 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
8989 return XEXP (cond0, 0);
8990 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
8992 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
8993 return XEXP (cond0, 0);
8995 else
8996 return cond0;
8999 /* If X is a SUBREG, we can narrow both the true and false values
9000 if the inner expression, if there is a condition. */
9001 else if (code == SUBREG
9002 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9003 &true0, &false0)))
9005 true0 = simplify_gen_subreg (mode, true0,
9006 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9007 false0 = simplify_gen_subreg (mode, false0,
9008 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9009 if (true0 && false0)
9011 *ptrue = true0;
9012 *pfalse = false0;
9013 return cond0;
9017 /* If X is a constant, this isn't special and will cause confusions
9018 if we treat it as such. Likewise if it is equivalent to a constant. */
9019 else if (CONSTANT_P (x)
9020 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9023 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9024 will be least confusing to the rest of the compiler. */
9025 else if (mode == BImode)
9027 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9028 return x;
9031 /* If X is known to be either 0 or -1, those are the true and
9032 false values when testing X. */
9033 else if (x == constm1_rtx || x == const0_rtx
9034 || (mode != VOIDmode
9035 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9037 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9038 return x;
9041 /* Likewise for 0 or a single bit. */
9042 else if (HWI_COMPUTABLE_MODE_P (mode)
9043 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
9045 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9046 return x;
9049 /* Otherwise fail; show no condition with true and false values the same. */
9050 *ptrue = *pfalse = x;
9051 return 0;
9054 /* Return the value of expression X given the fact that condition COND
9055 is known to be true when applied to REG as its first operand and VAL
9056 as its second. X is known to not be shared and so can be modified in
9057 place.
9059 We only handle the simplest cases, and specifically those cases that
9060 arise with IF_THEN_ELSE expressions. */
9062 static rtx
9063 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9065 enum rtx_code code = GET_CODE (x);
9066 const char *fmt;
9067 int i, j;
9069 if (side_effects_p (x))
9070 return x;
9072 /* If either operand of the condition is a floating point value,
9073 then we have to avoid collapsing an EQ comparison. */
9074 if (cond == EQ
9075 && rtx_equal_p (x, reg)
9076 && ! FLOAT_MODE_P (GET_MODE (x))
9077 && ! FLOAT_MODE_P (GET_MODE (val)))
9078 return val;
9080 if (cond == UNEQ && rtx_equal_p (x, reg))
9081 return val;
9083 /* If X is (abs REG) and we know something about REG's relationship
9084 with zero, we may be able to simplify this. */
9086 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9087 switch (cond)
9089 case GE: case GT: case EQ:
9090 return XEXP (x, 0);
9091 case LT: case LE:
9092 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9093 XEXP (x, 0),
9094 GET_MODE (XEXP (x, 0)));
9095 default:
9096 break;
9099 /* The only other cases we handle are MIN, MAX, and comparisons if the
9100 operands are the same as REG and VAL. */
9102 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9104 if (rtx_equal_p (XEXP (x, 0), val))
9106 std::swap (val, reg);
9107 cond = swap_condition (cond);
9110 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9112 if (COMPARISON_P (x))
9114 if (comparison_dominates_p (cond, code))
9115 return const_true_rtx;
9117 code = reversed_comparison_code (x, NULL);
9118 if (code != UNKNOWN
9119 && comparison_dominates_p (cond, code))
9120 return const0_rtx;
9121 else
9122 return x;
9124 else if (code == SMAX || code == SMIN
9125 || code == UMIN || code == UMAX)
9127 int unsignedp = (code == UMIN || code == UMAX);
9129 /* Do not reverse the condition when it is NE or EQ.
9130 This is because we cannot conclude anything about
9131 the value of 'SMAX (x, y)' when x is not equal to y,
9132 but we can when x equals y. */
9133 if ((code == SMAX || code == UMAX)
9134 && ! (cond == EQ || cond == NE))
9135 cond = reverse_condition (cond);
9137 switch (cond)
9139 case GE: case GT:
9140 return unsignedp ? x : XEXP (x, 1);
9141 case LE: case LT:
9142 return unsignedp ? x : XEXP (x, 0);
9143 case GEU: case GTU:
9144 return unsignedp ? XEXP (x, 1) : x;
9145 case LEU: case LTU:
9146 return unsignedp ? XEXP (x, 0) : x;
9147 default:
9148 break;
9153 else if (code == SUBREG)
9155 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9156 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9158 if (SUBREG_REG (x) != r)
9160 /* We must simplify subreg here, before we lose track of the
9161 original inner_mode. */
9162 new_rtx = simplify_subreg (GET_MODE (x), r,
9163 inner_mode, SUBREG_BYTE (x));
9164 if (new_rtx)
9165 return new_rtx;
9166 else
9167 SUBST (SUBREG_REG (x), r);
9170 return x;
9172 /* We don't have to handle SIGN_EXTEND here, because even in the
9173 case of replacing something with a modeless CONST_INT, a
9174 CONST_INT is already (supposed to be) a valid sign extension for
9175 its narrower mode, which implies it's already properly
9176 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9177 story is different. */
9178 else if (code == ZERO_EXTEND)
9180 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9181 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9183 if (XEXP (x, 0) != r)
9185 /* We must simplify the zero_extend here, before we lose
9186 track of the original inner_mode. */
9187 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9188 r, inner_mode);
9189 if (new_rtx)
9190 return new_rtx;
9191 else
9192 SUBST (XEXP (x, 0), r);
9195 return x;
9198 fmt = GET_RTX_FORMAT (code);
9199 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9201 if (fmt[i] == 'e')
9202 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9203 else if (fmt[i] == 'E')
9204 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9205 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9206 cond, reg, val));
9209 return x;
9212 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9213 assignment as a field assignment. */
9215 static int
9216 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9218 if (widen_x && GET_MODE (x) != GET_MODE (y))
9220 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9221 return 0;
9222 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9223 return 0;
9224 /* For big endian, adjust the memory offset. */
9225 if (BYTES_BIG_ENDIAN)
9226 x = adjust_address_nv (x, GET_MODE (y),
9227 -subreg_lowpart_offset (GET_MODE (x),
9228 GET_MODE (y)));
9229 else
9230 x = adjust_address_nv (x, GET_MODE (y), 0);
9233 if (x == y || rtx_equal_p (x, y))
9234 return 1;
9236 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9237 return 0;
9239 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9240 Note that all SUBREGs of MEM are paradoxical; otherwise they
9241 would have been rewritten. */
9242 if (MEM_P (x) && GET_CODE (y) == SUBREG
9243 && MEM_P (SUBREG_REG (y))
9244 && rtx_equal_p (SUBREG_REG (y),
9245 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9246 return 1;
9248 if (MEM_P (y) && GET_CODE (x) == SUBREG
9249 && MEM_P (SUBREG_REG (x))
9250 && rtx_equal_p (SUBREG_REG (x),
9251 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9252 return 1;
9254 /* We used to see if get_last_value of X and Y were the same but that's
9255 not correct. In one direction, we'll cause the assignment to have
9256 the wrong destination and in the case, we'll import a register into this
9257 insn that might have already have been dead. So fail if none of the
9258 above cases are true. */
9259 return 0;
9262 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9263 Return that assignment if so.
9265 We only handle the most common cases. */
9267 static rtx
9268 make_field_assignment (rtx x)
9270 rtx dest = SET_DEST (x);
9271 rtx src = SET_SRC (x);
9272 rtx assign;
9273 rtx rhs, lhs;
9274 HOST_WIDE_INT c1;
9275 HOST_WIDE_INT pos;
9276 unsigned HOST_WIDE_INT len;
9277 rtx other;
9278 machine_mode mode;
9280 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9281 a clear of a one-bit field. We will have changed it to
9282 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9283 for a SUBREG. */
9285 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9286 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9287 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9288 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9290 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9291 1, 1, 1, 0);
9292 if (assign != 0)
9293 return gen_rtx_SET (assign, const0_rtx);
9294 return x;
9297 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9298 && subreg_lowpart_p (XEXP (src, 0))
9299 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9300 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9301 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9302 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9303 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9304 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9306 assign = make_extraction (VOIDmode, dest, 0,
9307 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9308 1, 1, 1, 0);
9309 if (assign != 0)
9310 return gen_rtx_SET (assign, const0_rtx);
9311 return x;
9314 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9315 one-bit field. */
9316 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9317 && XEXP (XEXP (src, 0), 0) == const1_rtx
9318 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9320 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9321 1, 1, 1, 0);
9322 if (assign != 0)
9323 return gen_rtx_SET (assign, const1_rtx);
9324 return x;
9327 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9328 SRC is an AND with all bits of that field set, then we can discard
9329 the AND. */
9330 if (GET_CODE (dest) == ZERO_EXTRACT
9331 && CONST_INT_P (XEXP (dest, 1))
9332 && GET_CODE (src) == AND
9333 && CONST_INT_P (XEXP (src, 1)))
9335 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9336 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9337 unsigned HOST_WIDE_INT ze_mask;
9339 if (width >= HOST_BITS_PER_WIDE_INT)
9340 ze_mask = -1;
9341 else
9342 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9344 /* Complete overlap. We can remove the source AND. */
9345 if ((and_mask & ze_mask) == ze_mask)
9346 return gen_rtx_SET (dest, XEXP (src, 0));
9348 /* Partial overlap. We can reduce the source AND. */
9349 if ((and_mask & ze_mask) != and_mask)
9351 mode = GET_MODE (src);
9352 src = gen_rtx_AND (mode, XEXP (src, 0),
9353 gen_int_mode (and_mask & ze_mask, mode));
9354 return gen_rtx_SET (dest, src);
9358 /* The other case we handle is assignments into a constant-position
9359 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9360 a mask that has all one bits except for a group of zero bits and
9361 OTHER is known to have zeros where C1 has ones, this is such an
9362 assignment. Compute the position and length from C1. Shift OTHER
9363 to the appropriate position, force it to the required mode, and
9364 make the extraction. Check for the AND in both operands. */
9366 /* One or more SUBREGs might obscure the constant-position field
9367 assignment. The first one we are likely to encounter is an outer
9368 narrowing SUBREG, which we can just strip for the purposes of
9369 identifying the constant-field assignment. */
9370 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9371 src = SUBREG_REG (src);
9373 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9374 return x;
9376 rhs = expand_compound_operation (XEXP (src, 0));
9377 lhs = expand_compound_operation (XEXP (src, 1));
9379 if (GET_CODE (rhs) == AND
9380 && CONST_INT_P (XEXP (rhs, 1))
9381 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9382 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9383 /* The second SUBREG that might get in the way is a paradoxical
9384 SUBREG around the first operand of the AND. We want to
9385 pretend the operand is as wide as the destination here. We
9386 do this by adjusting the MEM to wider mode for the sole
9387 purpose of the call to rtx_equal_for_field_assignment_p. Also
9388 note this trick only works for MEMs. */
9389 else if (GET_CODE (rhs) == AND
9390 && paradoxical_subreg_p (XEXP (rhs, 0))
9391 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9392 && CONST_INT_P (XEXP (rhs, 1))
9393 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9394 dest, true))
9395 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9396 else if (GET_CODE (lhs) == AND
9397 && CONST_INT_P (XEXP (lhs, 1))
9398 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9399 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9400 /* The second SUBREG that might get in the way is a paradoxical
9401 SUBREG around the first operand of the AND. We want to
9402 pretend the operand is as wide as the destination here. We
9403 do this by adjusting the MEM to wider mode for the sole
9404 purpose of the call to rtx_equal_for_field_assignment_p. Also
9405 note this trick only works for MEMs. */
9406 else if (GET_CODE (lhs) == AND
9407 && paradoxical_subreg_p (XEXP (lhs, 0))
9408 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9409 && CONST_INT_P (XEXP (lhs, 1))
9410 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9411 dest, true))
9412 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9413 else
9414 return x;
9416 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9417 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9418 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9419 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9420 return x;
9422 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9423 if (assign == 0)
9424 return x;
9426 /* The mode to use for the source is the mode of the assignment, or of
9427 what is inside a possible STRICT_LOW_PART. */
9428 mode = (GET_CODE (assign) == STRICT_LOW_PART
9429 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9431 /* Shift OTHER right POS places and make it the source, restricting it
9432 to the proper length and mode. */
9434 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9435 GET_MODE (src),
9436 other, pos),
9437 dest);
9438 src = force_to_mode (src, mode,
9439 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9440 ? ~(unsigned HOST_WIDE_INT) 0
9441 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
9444 /* If SRC is masked by an AND that does not make a difference in
9445 the value being stored, strip it. */
9446 if (GET_CODE (assign) == ZERO_EXTRACT
9447 && CONST_INT_P (XEXP (assign, 1))
9448 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9449 && GET_CODE (src) == AND
9450 && CONST_INT_P (XEXP (src, 1))
9451 && UINTVAL (XEXP (src, 1))
9452 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1)
9453 src = XEXP (src, 0);
9455 return gen_rtx_SET (assign, src);
9458 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9459 if so. */
9461 static rtx
9462 apply_distributive_law (rtx x)
9464 enum rtx_code code = GET_CODE (x);
9465 enum rtx_code inner_code;
9466 rtx lhs, rhs, other;
9467 rtx tem;
9469 /* Distributivity is not true for floating point as it can change the
9470 value. So we don't do it unless -funsafe-math-optimizations. */
9471 if (FLOAT_MODE_P (GET_MODE (x))
9472 && ! flag_unsafe_math_optimizations)
9473 return x;
9475 /* The outer operation can only be one of the following: */
9476 if (code != IOR && code != AND && code != XOR
9477 && code != PLUS && code != MINUS)
9478 return x;
9480 lhs = XEXP (x, 0);
9481 rhs = XEXP (x, 1);
9483 /* If either operand is a primitive we can't do anything, so get out
9484 fast. */
9485 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9486 return x;
9488 lhs = expand_compound_operation (lhs);
9489 rhs = expand_compound_operation (rhs);
9490 inner_code = GET_CODE (lhs);
9491 if (inner_code != GET_CODE (rhs))
9492 return x;
9494 /* See if the inner and outer operations distribute. */
9495 switch (inner_code)
9497 case LSHIFTRT:
9498 case ASHIFTRT:
9499 case AND:
9500 case IOR:
9501 /* These all distribute except over PLUS. */
9502 if (code == PLUS || code == MINUS)
9503 return x;
9504 break;
9506 case MULT:
9507 if (code != PLUS && code != MINUS)
9508 return x;
9509 break;
9511 case ASHIFT:
9512 /* This is also a multiply, so it distributes over everything. */
9513 break;
9515 /* This used to handle SUBREG, but this turned out to be counter-
9516 productive, since (subreg (op ...)) usually is not handled by
9517 insn patterns, and this "optimization" therefore transformed
9518 recognizable patterns into unrecognizable ones. Therefore the
9519 SUBREG case was removed from here.
9521 It is possible that distributing SUBREG over arithmetic operations
9522 leads to an intermediate result than can then be optimized further,
9523 e.g. by moving the outer SUBREG to the other side of a SET as done
9524 in simplify_set. This seems to have been the original intent of
9525 handling SUBREGs here.
9527 However, with current GCC this does not appear to actually happen,
9528 at least on major platforms. If some case is found where removing
9529 the SUBREG case here prevents follow-on optimizations, distributing
9530 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9532 default:
9533 return x;
9536 /* Set LHS and RHS to the inner operands (A and B in the example
9537 above) and set OTHER to the common operand (C in the example).
9538 There is only one way to do this unless the inner operation is
9539 commutative. */
9540 if (COMMUTATIVE_ARITH_P (lhs)
9541 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9542 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9543 else if (COMMUTATIVE_ARITH_P (lhs)
9544 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9545 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9546 else if (COMMUTATIVE_ARITH_P (lhs)
9547 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9548 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9549 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9550 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9551 else
9552 return x;
9554 /* Form the new inner operation, seeing if it simplifies first. */
9555 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9557 /* There is one exception to the general way of distributing:
9558 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9559 if (code == XOR && inner_code == IOR)
9561 inner_code = AND;
9562 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9565 /* We may be able to continuing distributing the result, so call
9566 ourselves recursively on the inner operation before forming the
9567 outer operation, which we return. */
9568 return simplify_gen_binary (inner_code, GET_MODE (x),
9569 apply_distributive_law (tem), other);
9572 /* See if X is of the form (* (+ A B) C), and if so convert to
9573 (+ (* A C) (* B C)) and try to simplify.
9575 Most of the time, this results in no change. However, if some of
9576 the operands are the same or inverses of each other, simplifications
9577 will result.
9579 For example, (and (ior A B) (not B)) can occur as the result of
9580 expanding a bit field assignment. When we apply the distributive
9581 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9582 which then simplifies to (and (A (not B))).
9584 Note that no checks happen on the validity of applying the inverse
9585 distributive law. This is pointless since we can do it in the
9586 few places where this routine is called.
9588 N is the index of the term that is decomposed (the arithmetic operation,
9589 i.e. (+ A B) in the first example above). !N is the index of the term that
9590 is distributed, i.e. of C in the first example above. */
9591 static rtx
9592 distribute_and_simplify_rtx (rtx x, int n)
9594 machine_mode mode;
9595 enum rtx_code outer_code, inner_code;
9596 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9598 /* Distributivity is not true for floating point as it can change the
9599 value. So we don't do it unless -funsafe-math-optimizations. */
9600 if (FLOAT_MODE_P (GET_MODE (x))
9601 && ! flag_unsafe_math_optimizations)
9602 return NULL_RTX;
9604 decomposed = XEXP (x, n);
9605 if (!ARITHMETIC_P (decomposed))
9606 return NULL_RTX;
9608 mode = GET_MODE (x);
9609 outer_code = GET_CODE (x);
9610 distributed = XEXP (x, !n);
9612 inner_code = GET_CODE (decomposed);
9613 inner_op0 = XEXP (decomposed, 0);
9614 inner_op1 = XEXP (decomposed, 1);
9616 /* Special case (and (xor B C) (not A)), which is equivalent to
9617 (xor (ior A B) (ior A C)) */
9618 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9620 distributed = XEXP (distributed, 0);
9621 outer_code = IOR;
9624 if (n == 0)
9626 /* Distribute the second term. */
9627 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9628 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9630 else
9632 /* Distribute the first term. */
9633 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9634 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9637 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9638 new_op0, new_op1));
9639 if (GET_CODE (tmp) != outer_code
9640 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9641 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9642 return tmp;
9644 return NULL_RTX;
9647 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9648 in MODE. Return an equivalent form, if different from (and VAROP
9649 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9651 static rtx
9652 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9653 unsigned HOST_WIDE_INT constop)
9655 unsigned HOST_WIDE_INT nonzero;
9656 unsigned HOST_WIDE_INT orig_constop;
9657 rtx orig_varop;
9658 int i;
9660 orig_varop = varop;
9661 orig_constop = constop;
9662 if (GET_CODE (varop) == CLOBBER)
9663 return NULL_RTX;
9665 /* Simplify VAROP knowing that we will be only looking at some of the
9666 bits in it.
9668 Note by passing in CONSTOP, we guarantee that the bits not set in
9669 CONSTOP are not significant and will never be examined. We must
9670 ensure that is the case by explicitly masking out those bits
9671 before returning. */
9672 varop = force_to_mode (varop, mode, constop, 0);
9674 /* If VAROP is a CLOBBER, we will fail so return it. */
9675 if (GET_CODE (varop) == CLOBBER)
9676 return varop;
9678 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9679 to VAROP and return the new constant. */
9680 if (CONST_INT_P (varop))
9681 return gen_int_mode (INTVAL (varop) & constop, mode);
9683 /* See what bits may be nonzero in VAROP. Unlike the general case of
9684 a call to nonzero_bits, here we don't care about bits outside
9685 MODE. */
9687 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9689 /* Turn off all bits in the constant that are known to already be zero.
9690 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9691 which is tested below. */
9693 constop &= nonzero;
9695 /* If we don't have any bits left, return zero. */
9696 if (constop == 0)
9697 return const0_rtx;
9699 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9700 a power of two, we can replace this with an ASHIFT. */
9701 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9702 && (i = exact_log2 (constop)) >= 0)
9703 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9705 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9706 or XOR, then try to apply the distributive law. This may eliminate
9707 operations if either branch can be simplified because of the AND.
9708 It may also make some cases more complex, but those cases probably
9709 won't match a pattern either with or without this. */
9711 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9712 return
9713 gen_lowpart
9714 (mode,
9715 apply_distributive_law
9716 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9717 simplify_and_const_int (NULL_RTX,
9718 GET_MODE (varop),
9719 XEXP (varop, 0),
9720 constop),
9721 simplify_and_const_int (NULL_RTX,
9722 GET_MODE (varop),
9723 XEXP (varop, 1),
9724 constop))));
9726 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9727 the AND and see if one of the operands simplifies to zero. If so, we
9728 may eliminate it. */
9730 if (GET_CODE (varop) == PLUS
9731 && exact_log2 (constop + 1) >= 0)
9733 rtx o0, o1;
9735 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9736 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9737 if (o0 == const0_rtx)
9738 return o1;
9739 if (o1 == const0_rtx)
9740 return o0;
9743 /* Make a SUBREG if necessary. If we can't make it, fail. */
9744 varop = gen_lowpart (mode, varop);
9745 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9746 return NULL_RTX;
9748 /* If we are only masking insignificant bits, return VAROP. */
9749 if (constop == nonzero)
9750 return varop;
9752 if (varop == orig_varop && constop == orig_constop)
9753 return NULL_RTX;
9755 /* Otherwise, return an AND. */
9756 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9760 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9761 in MODE.
9763 Return an equivalent form, if different from X. Otherwise, return X. If
9764 X is zero, we are to always construct the equivalent form. */
9766 static rtx
9767 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9768 unsigned HOST_WIDE_INT constop)
9770 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9771 if (tem)
9772 return tem;
9774 if (!x)
9775 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9776 gen_int_mode (constop, mode));
9777 if (GET_MODE (x) != mode)
9778 x = gen_lowpart (mode, x);
9779 return x;
9782 /* Given a REG, X, compute which bits in X can be nonzero.
9783 We don't care about bits outside of those defined in MODE.
9785 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9786 a shift, AND, or zero_extract, we can do better. */
9788 static rtx
9789 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9790 const_rtx known_x ATTRIBUTE_UNUSED,
9791 machine_mode known_mode ATTRIBUTE_UNUSED,
9792 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9793 unsigned HOST_WIDE_INT *nonzero)
9795 rtx tem;
9796 reg_stat_type *rsp;
9798 /* If X is a register whose nonzero bits value is current, use it.
9799 Otherwise, if X is a register whose value we can find, use that
9800 value. Otherwise, use the previously-computed global nonzero bits
9801 for this register. */
9803 rsp = &reg_stat[REGNO (x)];
9804 if (rsp->last_set_value != 0
9805 && (rsp->last_set_mode == mode
9806 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9807 && GET_MODE_CLASS (mode) == MODE_INT))
9808 && ((rsp->last_set_label >= label_tick_ebb_start
9809 && rsp->last_set_label < label_tick)
9810 || (rsp->last_set_label == label_tick
9811 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9812 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9813 && REGNO (x) < reg_n_sets_max
9814 && REG_N_SETS (REGNO (x)) == 1
9815 && !REGNO_REG_SET_P
9816 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9817 REGNO (x)))))
9819 unsigned HOST_WIDE_INT mask = rsp->last_set_nonzero_bits;
9821 if (GET_MODE_PRECISION (rsp->last_set_mode) < GET_MODE_PRECISION (mode))
9822 /* We don't know anything about the upper bits. */
9823 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (rsp->last_set_mode);
9825 *nonzero &= mask;
9826 return NULL;
9829 tem = get_last_value (x);
9831 if (tem)
9833 if (SHORT_IMMEDIATES_SIGN_EXTEND)
9834 tem = sign_extend_short_imm (tem, GET_MODE (x),
9835 GET_MODE_PRECISION (mode));
9837 return tem;
9839 else if (nonzero_sign_valid && rsp->nonzero_bits)
9841 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
9843 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
9844 /* We don't know anything about the upper bits. */
9845 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
9847 *nonzero &= mask;
9850 return NULL;
9853 /* Return the number of bits at the high-order end of X that are known to
9854 be equal to the sign bit. X will be used in mode MODE; if MODE is
9855 VOIDmode, X will be used in its own mode. The returned value will always
9856 be between 1 and the number of bits in MODE. */
9858 static rtx
9859 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
9860 const_rtx known_x ATTRIBUTE_UNUSED,
9861 machine_mode known_mode
9862 ATTRIBUTE_UNUSED,
9863 unsigned int known_ret ATTRIBUTE_UNUSED,
9864 unsigned int *result)
9866 rtx tem;
9867 reg_stat_type *rsp;
9869 rsp = &reg_stat[REGNO (x)];
9870 if (rsp->last_set_value != 0
9871 && rsp->last_set_mode == mode
9872 && ((rsp->last_set_label >= label_tick_ebb_start
9873 && rsp->last_set_label < label_tick)
9874 || (rsp->last_set_label == label_tick
9875 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9876 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9877 && REGNO (x) < reg_n_sets_max
9878 && REG_N_SETS (REGNO (x)) == 1
9879 && !REGNO_REG_SET_P
9880 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
9881 REGNO (x)))))
9883 *result = rsp->last_set_sign_bit_copies;
9884 return NULL;
9887 tem = get_last_value (x);
9888 if (tem != 0)
9889 return tem;
9891 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
9892 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
9893 *result = rsp->sign_bit_copies;
9895 return NULL;
9898 /* Return the number of "extended" bits there are in X, when interpreted
9899 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9900 unsigned quantities, this is the number of high-order zero bits.
9901 For signed quantities, this is the number of copies of the sign bit
9902 minus 1. In both case, this function returns the number of "spare"
9903 bits. For example, if two quantities for which this function returns
9904 at least 1 are added, the addition is known not to overflow.
9906 This function will always return 0 unless called during combine, which
9907 implies that it must be called from a define_split. */
9909 unsigned int
9910 extended_count (const_rtx x, machine_mode mode, int unsignedp)
9912 if (nonzero_sign_valid == 0)
9913 return 0;
9915 return (unsignedp
9916 ? (HWI_COMPUTABLE_MODE_P (mode)
9917 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
9918 - floor_log2 (nonzero_bits (x, mode)))
9919 : 0)
9920 : num_sign_bit_copies (x, mode) - 1);
9923 /* This function is called from `simplify_shift_const' to merge two
9924 outer operations. Specifically, we have already found that we need
9925 to perform operation *POP0 with constant *PCONST0 at the outermost
9926 position. We would now like to also perform OP1 with constant CONST1
9927 (with *POP0 being done last).
9929 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9930 the resulting operation. *PCOMP_P is set to 1 if we would need to
9931 complement the innermost operand, otherwise it is unchanged.
9933 MODE is the mode in which the operation will be done. No bits outside
9934 the width of this mode matter. It is assumed that the width of this mode
9935 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9937 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9938 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9939 result is simply *PCONST0.
9941 If the resulting operation cannot be expressed as one operation, we
9942 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9944 static int
9945 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
9947 enum rtx_code op0 = *pop0;
9948 HOST_WIDE_INT const0 = *pconst0;
9950 const0 &= GET_MODE_MASK (mode);
9951 const1 &= GET_MODE_MASK (mode);
9953 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9954 if (op0 == AND)
9955 const1 &= const0;
9957 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9958 if OP0 is SET. */
9960 if (op1 == UNKNOWN || op0 == SET)
9961 return 1;
9963 else if (op0 == UNKNOWN)
9964 op0 = op1, const0 = const1;
9966 else if (op0 == op1)
9968 switch (op0)
9970 case AND:
9971 const0 &= const1;
9972 break;
9973 case IOR:
9974 const0 |= const1;
9975 break;
9976 case XOR:
9977 const0 ^= const1;
9978 break;
9979 case PLUS:
9980 const0 += const1;
9981 break;
9982 case NEG:
9983 op0 = UNKNOWN;
9984 break;
9985 default:
9986 break;
9990 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9991 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
9992 return 0;
9994 /* If the two constants aren't the same, we can't do anything. The
9995 remaining six cases can all be done. */
9996 else if (const0 != const1)
9997 return 0;
9999 else
10000 switch (op0)
10002 case IOR:
10003 if (op1 == AND)
10004 /* (a & b) | b == b */
10005 op0 = SET;
10006 else /* op1 == XOR */
10007 /* (a ^ b) | b == a | b */
10009 break;
10011 case XOR:
10012 if (op1 == AND)
10013 /* (a & b) ^ b == (~a) & b */
10014 op0 = AND, *pcomp_p = 1;
10015 else /* op1 == IOR */
10016 /* (a | b) ^ b == a & ~b */
10017 op0 = AND, const0 = ~const0;
10018 break;
10020 case AND:
10021 if (op1 == IOR)
10022 /* (a | b) & b == b */
10023 op0 = SET;
10024 else /* op1 == XOR */
10025 /* (a ^ b) & b) == (~a) & b */
10026 *pcomp_p = 1;
10027 break;
10028 default:
10029 break;
10032 /* Check for NO-OP cases. */
10033 const0 &= GET_MODE_MASK (mode);
10034 if (const0 == 0
10035 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10036 op0 = UNKNOWN;
10037 else if (const0 == 0 && op0 == AND)
10038 op0 = SET;
10039 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10040 && op0 == AND)
10041 op0 = UNKNOWN;
10043 *pop0 = op0;
10045 /* ??? Slightly redundant with the above mask, but not entirely.
10046 Moving this above means we'd have to sign-extend the mode mask
10047 for the final test. */
10048 if (op0 != UNKNOWN && op0 != NEG)
10049 *pconst0 = trunc_int_for_mode (const0, mode);
10051 return 1;
10054 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10055 the shift in. The original shift operation CODE is performed on OP in
10056 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10057 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10058 result of the shift is subject to operation OUTER_CODE with operand
10059 OUTER_CONST. */
10061 static machine_mode
10062 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10063 machine_mode orig_mode, machine_mode mode,
10064 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10066 if (orig_mode == mode)
10067 return mode;
10068 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10070 /* In general we can't perform in wider mode for right shift and rotate. */
10071 switch (code)
10073 case ASHIFTRT:
10074 /* We can still widen if the bits brought in from the left are identical
10075 to the sign bit of ORIG_MODE. */
10076 if (num_sign_bit_copies (op, mode)
10077 > (unsigned) (GET_MODE_PRECISION (mode)
10078 - GET_MODE_PRECISION (orig_mode)))
10079 return mode;
10080 return orig_mode;
10082 case LSHIFTRT:
10083 /* Similarly here but with zero bits. */
10084 if (HWI_COMPUTABLE_MODE_P (mode)
10085 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10086 return mode;
10088 /* We can also widen if the bits brought in will be masked off. This
10089 operation is performed in ORIG_MODE. */
10090 if (outer_code == AND)
10092 int care_bits = low_bitmask_len (orig_mode, outer_const);
10094 if (care_bits >= 0
10095 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10096 return mode;
10098 /* fall through */
10100 case ROTATE:
10101 return orig_mode;
10103 case ROTATERT:
10104 gcc_unreachable ();
10106 default:
10107 return mode;
10111 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10112 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10113 if we cannot simplify it. Otherwise, return a simplified value.
10115 The shift is normally computed in the widest mode we find in VAROP, as
10116 long as it isn't a different number of words than RESULT_MODE. Exceptions
10117 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10119 static rtx
10120 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10121 rtx varop, int orig_count)
10123 enum rtx_code orig_code = code;
10124 rtx orig_varop = varop;
10125 int count;
10126 machine_mode mode = result_mode;
10127 machine_mode shift_mode, tmode;
10128 unsigned int mode_words
10129 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10130 /* We form (outer_op (code varop count) (outer_const)). */
10131 enum rtx_code outer_op = UNKNOWN;
10132 HOST_WIDE_INT outer_const = 0;
10133 int complement_p = 0;
10134 rtx new_rtx, x;
10136 /* Make sure and truncate the "natural" shift on the way in. We don't
10137 want to do this inside the loop as it makes it more difficult to
10138 combine shifts. */
10139 if (SHIFT_COUNT_TRUNCATED)
10140 orig_count &= GET_MODE_BITSIZE (mode) - 1;
10142 /* If we were given an invalid count, don't do anything except exactly
10143 what was requested. */
10145 if (orig_count < 0 || orig_count >= (int) GET_MODE_PRECISION (mode))
10146 return NULL_RTX;
10148 count = orig_count;
10150 /* Unless one of the branches of the `if' in this loop does a `continue',
10151 we will `break' the loop after the `if'. */
10153 while (count != 0)
10155 /* If we have an operand of (clobber (const_int 0)), fail. */
10156 if (GET_CODE (varop) == CLOBBER)
10157 return NULL_RTX;
10159 /* Convert ROTATERT to ROTATE. */
10160 if (code == ROTATERT)
10162 unsigned int bitsize = GET_MODE_PRECISION (result_mode);
10163 code = ROTATE;
10164 if (VECTOR_MODE_P (result_mode))
10165 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
10166 else
10167 count = bitsize - count;
10170 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10171 mode, outer_op, outer_const);
10173 /* Handle cases where the count is greater than the size of the mode
10174 minus 1. For ASHIFT, use the size minus one as the count (this can
10175 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10176 take the count modulo the size. For other shifts, the result is
10177 zero.
10179 Since these shifts are being produced by the compiler by combining
10180 multiple operations, each of which are defined, we know what the
10181 result is supposed to be. */
10183 if (count > (GET_MODE_PRECISION (shift_mode) - 1))
10185 if (code == ASHIFTRT)
10186 count = GET_MODE_PRECISION (shift_mode) - 1;
10187 else if (code == ROTATE || code == ROTATERT)
10188 count %= GET_MODE_PRECISION (shift_mode);
10189 else
10191 /* We can't simply return zero because there may be an
10192 outer op. */
10193 varop = const0_rtx;
10194 count = 0;
10195 break;
10199 /* If we discovered we had to complement VAROP, leave. Making a NOT
10200 here would cause an infinite loop. */
10201 if (complement_p)
10202 break;
10204 /* An arithmetic right shift of a quantity known to be -1 or 0
10205 is a no-op. */
10206 if (code == ASHIFTRT
10207 && (num_sign_bit_copies (varop, shift_mode)
10208 == GET_MODE_PRECISION (shift_mode)))
10210 count = 0;
10211 break;
10214 /* If we are doing an arithmetic right shift and discarding all but
10215 the sign bit copies, this is equivalent to doing a shift by the
10216 bitsize minus one. Convert it into that shift because it will often
10217 allow other simplifications. */
10219 if (code == ASHIFTRT
10220 && (count + num_sign_bit_copies (varop, shift_mode)
10221 >= GET_MODE_PRECISION (shift_mode)))
10222 count = GET_MODE_PRECISION (shift_mode) - 1;
10224 /* We simplify the tests below and elsewhere by converting
10225 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10226 `make_compound_operation' will convert it to an ASHIFTRT for
10227 those machines (such as VAX) that don't have an LSHIFTRT. */
10228 if (code == ASHIFTRT
10229 && val_signbit_known_clear_p (shift_mode,
10230 nonzero_bits (varop, shift_mode)))
10231 code = LSHIFTRT;
10233 if (((code == LSHIFTRT
10234 && HWI_COMPUTABLE_MODE_P (shift_mode)
10235 && !(nonzero_bits (varop, shift_mode) >> count))
10236 || (code == ASHIFT
10237 && HWI_COMPUTABLE_MODE_P (shift_mode)
10238 && !((nonzero_bits (varop, shift_mode) << count)
10239 & GET_MODE_MASK (shift_mode))))
10240 && !side_effects_p (varop))
10241 varop = const0_rtx;
10243 switch (GET_CODE (varop))
10245 case SIGN_EXTEND:
10246 case ZERO_EXTEND:
10247 case SIGN_EXTRACT:
10248 case ZERO_EXTRACT:
10249 new_rtx = expand_compound_operation (varop);
10250 if (new_rtx != varop)
10252 varop = new_rtx;
10253 continue;
10255 break;
10257 case MEM:
10258 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10259 minus the width of a smaller mode, we can do this with a
10260 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10261 if ((code == ASHIFTRT || code == LSHIFTRT)
10262 && ! mode_dependent_address_p (XEXP (varop, 0),
10263 MEM_ADDR_SPACE (varop))
10264 && ! MEM_VOLATILE_P (varop)
10265 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10266 MODE_INT, 1)) != BLKmode)
10268 new_rtx = adjust_address_nv (varop, tmode,
10269 BYTES_BIG_ENDIAN ? 0
10270 : count / BITS_PER_UNIT);
10272 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10273 : ZERO_EXTEND, mode, new_rtx);
10274 count = 0;
10275 continue;
10277 break;
10279 case SUBREG:
10280 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10281 the same number of words as what we've seen so far. Then store
10282 the widest mode in MODE. */
10283 if (subreg_lowpart_p (varop)
10284 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10285 > GET_MODE_SIZE (GET_MODE (varop)))
10286 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10287 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10288 == mode_words
10289 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10290 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10292 varop = SUBREG_REG (varop);
10293 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10294 mode = GET_MODE (varop);
10295 continue;
10297 break;
10299 case MULT:
10300 /* Some machines use MULT instead of ASHIFT because MULT
10301 is cheaper. But it is still better on those machines to
10302 merge two shifts into one. */
10303 if (CONST_INT_P (XEXP (varop, 1))
10304 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10306 varop
10307 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10308 XEXP (varop, 0),
10309 GEN_INT (exact_log2 (
10310 UINTVAL (XEXP (varop, 1)))));
10311 continue;
10313 break;
10315 case UDIV:
10316 /* Similar, for when divides are cheaper. */
10317 if (CONST_INT_P (XEXP (varop, 1))
10318 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10320 varop
10321 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10322 XEXP (varop, 0),
10323 GEN_INT (exact_log2 (
10324 UINTVAL (XEXP (varop, 1)))));
10325 continue;
10327 break;
10329 case ASHIFTRT:
10330 /* If we are extracting just the sign bit of an arithmetic
10331 right shift, that shift is not needed. However, the sign
10332 bit of a wider mode may be different from what would be
10333 interpreted as the sign bit in a narrower mode, so, if
10334 the result is narrower, don't discard the shift. */
10335 if (code == LSHIFTRT
10336 && count == (GET_MODE_BITSIZE (result_mode) - 1)
10337 && (GET_MODE_BITSIZE (result_mode)
10338 >= GET_MODE_BITSIZE (GET_MODE (varop))))
10340 varop = XEXP (varop, 0);
10341 continue;
10344 /* ... fall through ... */
10346 case LSHIFTRT:
10347 case ASHIFT:
10348 case ROTATE:
10349 /* Here we have two nested shifts. The result is usually the
10350 AND of a new shift with a mask. We compute the result below. */
10351 if (CONST_INT_P (XEXP (varop, 1))
10352 && INTVAL (XEXP (varop, 1)) >= 0
10353 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10354 && HWI_COMPUTABLE_MODE_P (result_mode)
10355 && HWI_COMPUTABLE_MODE_P (mode)
10356 && !VECTOR_MODE_P (result_mode))
10358 enum rtx_code first_code = GET_CODE (varop);
10359 unsigned int first_count = INTVAL (XEXP (varop, 1));
10360 unsigned HOST_WIDE_INT mask;
10361 rtx mask_rtx;
10363 /* We have one common special case. We can't do any merging if
10364 the inner code is an ASHIFTRT of a smaller mode. However, if
10365 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10366 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10367 we can convert it to
10368 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10369 This simplifies certain SIGN_EXTEND operations. */
10370 if (code == ASHIFT && first_code == ASHIFTRT
10371 && count == (GET_MODE_PRECISION (result_mode)
10372 - GET_MODE_PRECISION (GET_MODE (varop))))
10374 /* C3 has the low-order C1 bits zero. */
10376 mask = GET_MODE_MASK (mode)
10377 & ~(((unsigned HOST_WIDE_INT) 1 << first_count) - 1);
10379 varop = simplify_and_const_int (NULL_RTX, result_mode,
10380 XEXP (varop, 0), mask);
10381 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10382 varop, count);
10383 count = first_count;
10384 code = ASHIFTRT;
10385 continue;
10388 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10389 than C1 high-order bits equal to the sign bit, we can convert
10390 this to either an ASHIFT or an ASHIFTRT depending on the
10391 two counts.
10393 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10395 if (code == ASHIFTRT && first_code == ASHIFT
10396 && GET_MODE (varop) == shift_mode
10397 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10398 > first_count))
10400 varop = XEXP (varop, 0);
10401 count -= first_count;
10402 if (count < 0)
10404 count = -count;
10405 code = ASHIFT;
10408 continue;
10411 /* There are some cases we can't do. If CODE is ASHIFTRT,
10412 we can only do this if FIRST_CODE is also ASHIFTRT.
10414 We can't do the case when CODE is ROTATE and FIRST_CODE is
10415 ASHIFTRT.
10417 If the mode of this shift is not the mode of the outer shift,
10418 we can't do this if either shift is a right shift or ROTATE.
10420 Finally, we can't do any of these if the mode is too wide
10421 unless the codes are the same.
10423 Handle the case where the shift codes are the same
10424 first. */
10426 if (code == first_code)
10428 if (GET_MODE (varop) != result_mode
10429 && (code == ASHIFTRT || code == LSHIFTRT
10430 || code == ROTATE))
10431 break;
10433 count += first_count;
10434 varop = XEXP (varop, 0);
10435 continue;
10438 if (code == ASHIFTRT
10439 || (code == ROTATE && first_code == ASHIFTRT)
10440 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10441 || (GET_MODE (varop) != result_mode
10442 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10443 || first_code == ROTATE
10444 || code == ROTATE)))
10445 break;
10447 /* To compute the mask to apply after the shift, shift the
10448 nonzero bits of the inner shift the same way the
10449 outer shift will. */
10451 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10452 result_mode);
10454 mask_rtx
10455 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10456 GEN_INT (count));
10458 /* Give up if we can't compute an outer operation to use. */
10459 if (mask_rtx == 0
10460 || !CONST_INT_P (mask_rtx)
10461 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10462 INTVAL (mask_rtx),
10463 result_mode, &complement_p))
10464 break;
10466 /* If the shifts are in the same direction, we add the
10467 counts. Otherwise, we subtract them. */
10468 if ((code == ASHIFTRT || code == LSHIFTRT)
10469 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10470 count += first_count;
10471 else
10472 count -= first_count;
10474 /* If COUNT is positive, the new shift is usually CODE,
10475 except for the two exceptions below, in which case it is
10476 FIRST_CODE. If the count is negative, FIRST_CODE should
10477 always be used */
10478 if (count > 0
10479 && ((first_code == ROTATE && code == ASHIFT)
10480 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10481 code = first_code;
10482 else if (count < 0)
10483 code = first_code, count = -count;
10485 varop = XEXP (varop, 0);
10486 continue;
10489 /* If we have (A << B << C) for any shift, we can convert this to
10490 (A << C << B). This wins if A is a constant. Only try this if
10491 B is not a constant. */
10493 else if (GET_CODE (varop) == code
10494 && CONST_INT_P (XEXP (varop, 0))
10495 && !CONST_INT_P (XEXP (varop, 1)))
10497 rtx new_rtx = simplify_const_binary_operation (code, mode,
10498 XEXP (varop, 0),
10499 GEN_INT (count));
10500 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10501 count = 0;
10502 continue;
10504 break;
10506 case NOT:
10507 if (VECTOR_MODE_P (mode))
10508 break;
10510 /* Make this fit the case below. */
10511 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10512 continue;
10514 case IOR:
10515 case AND:
10516 case XOR:
10517 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10518 with C the size of VAROP - 1 and the shift is logical if
10519 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10520 we have an (le X 0) operation. If we have an arithmetic shift
10521 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10522 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10524 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10525 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10526 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10527 && (code == LSHIFTRT || code == ASHIFTRT)
10528 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10529 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10531 count = 0;
10532 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10533 const0_rtx);
10535 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10536 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10538 continue;
10541 /* If we have (shift (logical)), move the logical to the outside
10542 to allow it to possibly combine with another logical and the
10543 shift to combine with another shift. This also canonicalizes to
10544 what a ZERO_EXTRACT looks like. Also, some machines have
10545 (and (shift)) insns. */
10547 if (CONST_INT_P (XEXP (varop, 1))
10548 /* We can't do this if we have (ashiftrt (xor)) and the
10549 constant has its sign bit set in shift_mode with shift_mode
10550 wider than result_mode. */
10551 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10552 && result_mode != shift_mode
10553 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10554 shift_mode))
10555 && (new_rtx = simplify_const_binary_operation
10556 (code, result_mode,
10557 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10558 GEN_INT (count))) != 0
10559 && CONST_INT_P (new_rtx)
10560 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10561 INTVAL (new_rtx), result_mode, &complement_p))
10563 varop = XEXP (varop, 0);
10564 continue;
10567 /* If we can't do that, try to simplify the shift in each arm of the
10568 logical expression, make a new logical expression, and apply
10569 the inverse distributive law. This also can't be done for
10570 (ashiftrt (xor)) where we've widened the shift and the constant
10571 changes the sign bit. */
10572 if (CONST_INT_P (XEXP (varop, 1))
10573 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10574 && result_mode != shift_mode
10575 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10576 shift_mode)))
10578 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10579 XEXP (varop, 0), count);
10580 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10581 XEXP (varop, 1), count);
10583 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10584 lhs, rhs);
10585 varop = apply_distributive_law (varop);
10587 count = 0;
10588 continue;
10590 break;
10592 case EQ:
10593 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10594 says that the sign bit can be tested, FOO has mode MODE, C is
10595 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10596 that may be nonzero. */
10597 if (code == LSHIFTRT
10598 && XEXP (varop, 1) == const0_rtx
10599 && GET_MODE (XEXP (varop, 0)) == result_mode
10600 && count == (GET_MODE_PRECISION (result_mode) - 1)
10601 && HWI_COMPUTABLE_MODE_P (result_mode)
10602 && STORE_FLAG_VALUE == -1
10603 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10604 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10605 &complement_p))
10607 varop = XEXP (varop, 0);
10608 count = 0;
10609 continue;
10611 break;
10613 case NEG:
10614 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10615 than the number of bits in the mode is equivalent to A. */
10616 if (code == LSHIFTRT
10617 && count == (GET_MODE_PRECISION (result_mode) - 1)
10618 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10620 varop = XEXP (varop, 0);
10621 count = 0;
10622 continue;
10625 /* NEG commutes with ASHIFT since it is multiplication. Move the
10626 NEG outside to allow shifts to combine. */
10627 if (code == ASHIFT
10628 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10629 &complement_p))
10631 varop = XEXP (varop, 0);
10632 continue;
10634 break;
10636 case PLUS:
10637 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10638 is one less than the number of bits in the mode is
10639 equivalent to (xor A 1). */
10640 if (code == LSHIFTRT
10641 && count == (GET_MODE_PRECISION (result_mode) - 1)
10642 && XEXP (varop, 1) == constm1_rtx
10643 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10644 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10645 &complement_p))
10647 count = 0;
10648 varop = XEXP (varop, 0);
10649 continue;
10652 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10653 that might be nonzero in BAR are those being shifted out and those
10654 bits are known zero in FOO, we can replace the PLUS with FOO.
10655 Similarly in the other operand order. This code occurs when
10656 we are computing the size of a variable-size array. */
10658 if ((code == ASHIFTRT || code == LSHIFTRT)
10659 && count < HOST_BITS_PER_WIDE_INT
10660 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10661 && (nonzero_bits (XEXP (varop, 1), result_mode)
10662 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10664 varop = XEXP (varop, 0);
10665 continue;
10667 else if ((code == ASHIFTRT || code == LSHIFTRT)
10668 && count < HOST_BITS_PER_WIDE_INT
10669 && HWI_COMPUTABLE_MODE_P (result_mode)
10670 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10671 >> count)
10672 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10673 & nonzero_bits (XEXP (varop, 1),
10674 result_mode)))
10676 varop = XEXP (varop, 1);
10677 continue;
10680 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10681 if (code == ASHIFT
10682 && CONST_INT_P (XEXP (varop, 1))
10683 && (new_rtx = simplify_const_binary_operation
10684 (ASHIFT, result_mode,
10685 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10686 GEN_INT (count))) != 0
10687 && CONST_INT_P (new_rtx)
10688 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10689 INTVAL (new_rtx), result_mode, &complement_p))
10691 varop = XEXP (varop, 0);
10692 continue;
10695 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10696 signbit', and attempt to change the PLUS to an XOR and move it to
10697 the outer operation as is done above in the AND/IOR/XOR case
10698 leg for shift(logical). See details in logical handling above
10699 for reasoning in doing so. */
10700 if (code == LSHIFTRT
10701 && CONST_INT_P (XEXP (varop, 1))
10702 && mode_signbit_p (result_mode, XEXP (varop, 1))
10703 && (new_rtx = simplify_const_binary_operation
10704 (code, result_mode,
10705 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10706 GEN_INT (count))) != 0
10707 && CONST_INT_P (new_rtx)
10708 && merge_outer_ops (&outer_op, &outer_const, XOR,
10709 INTVAL (new_rtx), result_mode, &complement_p))
10711 varop = XEXP (varop, 0);
10712 continue;
10715 break;
10717 case MINUS:
10718 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10719 with C the size of VAROP - 1 and the shift is logical if
10720 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10721 we have a (gt X 0) operation. If the shift is arithmetic with
10722 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10723 we have a (neg (gt X 0)) operation. */
10725 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10726 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10727 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10728 && (code == LSHIFTRT || code == ASHIFTRT)
10729 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10730 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10731 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10733 count = 0;
10734 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10735 const0_rtx);
10737 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10738 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10740 continue;
10742 break;
10744 case TRUNCATE:
10745 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10746 if the truncate does not affect the value. */
10747 if (code == LSHIFTRT
10748 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10749 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10750 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10751 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop, 0)))
10752 - GET_MODE_PRECISION (GET_MODE (varop)))))
10754 rtx varop_inner = XEXP (varop, 0);
10756 varop_inner
10757 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10758 XEXP (varop_inner, 0),
10759 GEN_INT
10760 (count + INTVAL (XEXP (varop_inner, 1))));
10761 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10762 count = 0;
10763 continue;
10765 break;
10767 default:
10768 break;
10771 break;
10774 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
10775 outer_op, outer_const);
10777 /* We have now finished analyzing the shift. The result should be
10778 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10779 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10780 to the result of the shift. OUTER_CONST is the relevant constant,
10781 but we must turn off all bits turned off in the shift. */
10783 if (outer_op == UNKNOWN
10784 && orig_code == code && orig_count == count
10785 && varop == orig_varop
10786 && shift_mode == GET_MODE (varop))
10787 return NULL_RTX;
10789 /* Make a SUBREG if necessary. If we can't make it, fail. */
10790 varop = gen_lowpart (shift_mode, varop);
10791 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10792 return NULL_RTX;
10794 /* If we have an outer operation and we just made a shift, it is
10795 possible that we could have simplified the shift were it not
10796 for the outer operation. So try to do the simplification
10797 recursively. */
10799 if (outer_op != UNKNOWN)
10800 x = simplify_shift_const_1 (code, shift_mode, varop, count);
10801 else
10802 x = NULL_RTX;
10804 if (x == NULL_RTX)
10805 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
10807 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10808 turn off all the bits that the shift would have turned off. */
10809 if (orig_code == LSHIFTRT && result_mode != shift_mode)
10810 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
10811 GET_MODE_MASK (result_mode) >> orig_count);
10813 /* Do the remainder of the processing in RESULT_MODE. */
10814 x = gen_lowpart_or_truncate (result_mode, x);
10816 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10817 operation. */
10818 if (complement_p)
10819 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
10821 if (outer_op != UNKNOWN)
10823 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
10824 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
10825 outer_const = trunc_int_for_mode (outer_const, result_mode);
10827 if (outer_op == AND)
10828 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
10829 else if (outer_op == SET)
10831 /* This means that we have determined that the result is
10832 equivalent to a constant. This should be rare. */
10833 if (!side_effects_p (x))
10834 x = GEN_INT (outer_const);
10836 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
10837 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
10838 else
10839 x = simplify_gen_binary (outer_op, result_mode, x,
10840 GEN_INT (outer_const));
10843 return x;
10846 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10847 The result of the shift is RESULT_MODE. If we cannot simplify it,
10848 return X or, if it is NULL, synthesize the expression with
10849 simplify_gen_binary. Otherwise, return a simplified value.
10851 The shift is normally computed in the widest mode we find in VAROP, as
10852 long as it isn't a different number of words than RESULT_MODE. Exceptions
10853 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10855 static rtx
10856 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
10857 rtx varop, int count)
10859 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
10860 if (tem)
10861 return tem;
10863 if (!x)
10864 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
10865 if (GET_MODE (x) != result_mode)
10866 x = gen_lowpart (result_mode, x);
10867 return x;
10871 /* A subroutine of recog_for_combine. See there for arguments and
10872 return value. */
10874 static int
10875 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
10877 rtx pat = *pnewpat;
10878 rtx pat_without_clobbers;
10879 int insn_code_number;
10880 int num_clobbers_to_add = 0;
10881 int i;
10882 rtx notes = NULL_RTX;
10883 rtx old_notes, old_pat;
10884 int old_icode;
10886 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10887 we use to indicate that something didn't match. If we find such a
10888 thing, force rejection. */
10889 if (GET_CODE (pat) == PARALLEL)
10890 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
10891 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
10892 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
10893 return -1;
10895 old_pat = PATTERN (insn);
10896 old_notes = REG_NOTES (insn);
10897 PATTERN (insn) = pat;
10898 REG_NOTES (insn) = NULL_RTX;
10900 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10901 if (dump_file && (dump_flags & TDF_DETAILS))
10903 if (insn_code_number < 0)
10904 fputs ("Failed to match this instruction:\n", dump_file);
10905 else
10906 fputs ("Successfully matched this instruction:\n", dump_file);
10907 print_rtl_single (dump_file, pat);
10910 /* If it isn't, there is the possibility that we previously had an insn
10911 that clobbered some register as a side effect, but the combined
10912 insn doesn't need to do that. So try once more without the clobbers
10913 unless this represents an ASM insn. */
10915 if (insn_code_number < 0 && ! check_asm_operands (pat)
10916 && GET_CODE (pat) == PARALLEL)
10918 int pos;
10920 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
10921 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
10923 if (i != pos)
10924 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
10925 pos++;
10928 SUBST_INT (XVECLEN (pat, 0), pos);
10930 if (pos == 1)
10931 pat = XVECEXP (pat, 0, 0);
10933 PATTERN (insn) = pat;
10934 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
10935 if (dump_file && (dump_flags & TDF_DETAILS))
10937 if (insn_code_number < 0)
10938 fputs ("Failed to match this instruction:\n", dump_file);
10939 else
10940 fputs ("Successfully matched this instruction:\n", dump_file);
10941 print_rtl_single (dump_file, pat);
10945 pat_without_clobbers = pat;
10947 PATTERN (insn) = old_pat;
10948 REG_NOTES (insn) = old_notes;
10950 /* Recognize all noop sets, these will be killed by followup pass. */
10951 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
10952 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
10954 /* If we had any clobbers to add, make a new pattern than contains
10955 them. Then check to make sure that all of them are dead. */
10956 if (num_clobbers_to_add)
10958 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
10959 rtvec_alloc (GET_CODE (pat) == PARALLEL
10960 ? (XVECLEN (pat, 0)
10961 + num_clobbers_to_add)
10962 : num_clobbers_to_add + 1));
10964 if (GET_CODE (pat) == PARALLEL)
10965 for (i = 0; i < XVECLEN (pat, 0); i++)
10966 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
10967 else
10968 XVECEXP (newpat, 0, 0) = pat;
10970 add_clobbers (newpat, insn_code_number);
10972 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
10973 i < XVECLEN (newpat, 0); i++)
10975 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
10976 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
10977 return -1;
10978 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
10980 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
10981 notes = alloc_reg_note (REG_UNUSED,
10982 XEXP (XVECEXP (newpat, 0, i), 0), notes);
10985 pat = newpat;
10988 if (insn_code_number >= 0
10989 && insn_code_number != NOOP_MOVE_INSN_CODE)
10991 old_pat = PATTERN (insn);
10992 old_notes = REG_NOTES (insn);
10993 old_icode = INSN_CODE (insn);
10994 PATTERN (insn) = pat;
10995 REG_NOTES (insn) = notes;
10997 /* Allow targets to reject combined insn. */
10998 if (!targetm.legitimate_combined_insn (insn))
11000 if (dump_file && (dump_flags & TDF_DETAILS))
11001 fputs ("Instruction not appropriate for target.",
11002 dump_file);
11004 /* Callers expect recog_for_combine to strip
11005 clobbers from the pattern on failure. */
11006 pat = pat_without_clobbers;
11007 notes = NULL_RTX;
11009 insn_code_number = -1;
11012 PATTERN (insn) = old_pat;
11013 REG_NOTES (insn) = old_notes;
11014 INSN_CODE (insn) = old_icode;
11017 *pnewpat = pat;
11018 *pnotes = notes;
11020 return insn_code_number;
11023 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11024 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11025 Return whether anything was so changed. */
11027 static bool
11028 change_zero_ext (rtx *src)
11030 bool changed = false;
11032 subrtx_ptr_iterator::array_type array;
11033 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11035 rtx x = **iter;
11036 machine_mode mode = GET_MODE (x);
11037 int size;
11039 if (GET_CODE (x) == ZERO_EXTRACT
11040 && CONST_INT_P (XEXP (x, 1))
11041 && CONST_INT_P (XEXP (x, 2))
11042 && GET_MODE (XEXP (x, 0)) == mode)
11044 size = INTVAL (XEXP (x, 1));
11046 int start = INTVAL (XEXP (x, 2));
11047 if (BITS_BIG_ENDIAN)
11048 start = GET_MODE_PRECISION (mode) - size - start;
11050 x = gen_rtx_LSHIFTRT (mode, XEXP (x, 0), GEN_INT (start));
11052 else if (GET_CODE (x) == ZERO_EXTEND
11053 && GET_CODE (XEXP (x, 0)) == SUBREG
11054 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
11055 && subreg_lowpart_p (XEXP (x, 0)))
11057 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11058 x = SUBREG_REG (XEXP (x, 0));
11060 else
11061 continue;
11063 unsigned HOST_WIDE_INT mask = 1;
11064 mask <<= size;
11065 mask--;
11067 x = gen_rtx_AND (mode, x, GEN_INT (mask));
11069 SUBST (**iter, x);
11070 changed = true;
11073 return changed;
11076 /* Like recog, but we receive the address of a pointer to a new pattern.
11077 We try to match the rtx that the pointer points to.
11078 If that fails, we may try to modify or replace the pattern,
11079 storing the replacement into the same pointer object.
11081 Modifications include deletion or addition of CLOBBERs. If the
11082 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11083 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11084 (and undo if that fails).
11086 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11087 the CLOBBERs are placed.
11089 The value is the final insn code from the pattern ultimately matched,
11090 or -1. */
11092 static int
11093 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11095 rtx pat = PATTERN (insn);
11096 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11097 if (insn_code_number >= 0 || check_asm_operands (pat))
11098 return insn_code_number;
11100 void *marker = get_undo_marker ();
11101 bool changed = false;
11103 if (GET_CODE (pat) == SET)
11104 changed = change_zero_ext (&SET_SRC (pat));
11105 else if (GET_CODE (pat) == PARALLEL)
11107 int i;
11108 for (i = 0; i < XVECLEN (pat, 0); i++)
11110 rtx set = XVECEXP (pat, 0, i);
11111 if (GET_CODE (set) == SET)
11112 changed |= change_zero_ext (&SET_SRC (set));
11116 if (changed)
11118 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11120 if (insn_code_number < 0)
11121 undo_to_marker (marker);
11124 return insn_code_number;
11127 /* Like gen_lowpart_general but for use by combine. In combine it
11128 is not possible to create any new pseudoregs. However, it is
11129 safe to create invalid memory addresses, because combine will
11130 try to recognize them and all they will do is make the combine
11131 attempt fail.
11133 If for some reason this cannot do its job, an rtx
11134 (clobber (const_int 0)) is returned.
11135 An insn containing that will not be recognized. */
11137 static rtx
11138 gen_lowpart_for_combine (machine_mode omode, rtx x)
11140 machine_mode imode = GET_MODE (x);
11141 unsigned int osize = GET_MODE_SIZE (omode);
11142 unsigned int isize = GET_MODE_SIZE (imode);
11143 rtx result;
11145 if (omode == imode)
11146 return x;
11148 /* We can only support MODE being wider than a word if X is a
11149 constant integer or has a mode the same size. */
11150 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11151 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11152 goto fail;
11154 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11155 won't know what to do. So we will strip off the SUBREG here and
11156 process normally. */
11157 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11159 x = SUBREG_REG (x);
11161 /* For use in case we fall down into the address adjustments
11162 further below, we need to adjust the known mode and size of
11163 x; imode and isize, since we just adjusted x. */
11164 imode = GET_MODE (x);
11166 if (imode == omode)
11167 return x;
11169 isize = GET_MODE_SIZE (imode);
11172 result = gen_lowpart_common (omode, x);
11174 if (result)
11175 return result;
11177 if (MEM_P (x))
11179 int offset = 0;
11181 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11182 address. */
11183 if (MEM_VOLATILE_P (x)
11184 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11185 goto fail;
11187 /* If we want to refer to something bigger than the original memref,
11188 generate a paradoxical subreg instead. That will force a reload
11189 of the original memref X. */
11190 if (isize < osize)
11191 return gen_rtx_SUBREG (omode, x, 0);
11193 if (WORDS_BIG_ENDIAN)
11194 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11196 /* Adjust the address so that the address-after-the-data is
11197 unchanged. */
11198 if (BYTES_BIG_ENDIAN)
11199 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11201 return adjust_address_nv (x, omode, offset);
11204 /* If X is a comparison operator, rewrite it in a new mode. This
11205 probably won't match, but may allow further simplifications. */
11206 else if (COMPARISON_P (x))
11207 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11209 /* If we couldn't simplify X any other way, just enclose it in a
11210 SUBREG. Normally, this SUBREG won't match, but some patterns may
11211 include an explicit SUBREG or we may simplify it further in combine. */
11212 else
11214 rtx res;
11216 if (imode == VOIDmode)
11218 imode = int_mode_for_mode (omode);
11219 x = gen_lowpart_common (imode, x);
11220 if (x == NULL)
11221 goto fail;
11223 res = lowpart_subreg (omode, x, imode);
11224 if (res)
11225 return res;
11228 fail:
11229 return gen_rtx_CLOBBER (omode, const0_rtx);
11232 /* Try to simplify a comparison between OP0 and a constant OP1,
11233 where CODE is the comparison code that will be tested, into a
11234 (CODE OP0 const0_rtx) form.
11236 The result is a possibly different comparison code to use.
11237 *POP1 may be updated. */
11239 static enum rtx_code
11240 simplify_compare_const (enum rtx_code code, machine_mode mode,
11241 rtx op0, rtx *pop1)
11243 unsigned int mode_width = GET_MODE_PRECISION (mode);
11244 HOST_WIDE_INT const_op = INTVAL (*pop1);
11246 /* Get the constant we are comparing against and turn off all bits
11247 not on in our mode. */
11248 if (mode != VOIDmode)
11249 const_op = trunc_int_for_mode (const_op, mode);
11251 /* If we are comparing against a constant power of two and the value
11252 being compared can only have that single bit nonzero (e.g., it was
11253 `and'ed with that bit), we can replace this with a comparison
11254 with zero. */
11255 if (const_op
11256 && (code == EQ || code == NE || code == GE || code == GEU
11257 || code == LT || code == LTU)
11258 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11259 && exact_log2 (const_op & GET_MODE_MASK (mode)) >= 0
11260 && (nonzero_bits (op0, mode)
11261 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11263 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11264 const_op = 0;
11267 /* Similarly, if we are comparing a value known to be either -1 or
11268 0 with -1, change it to the opposite comparison against zero. */
11269 if (const_op == -1
11270 && (code == EQ || code == NE || code == GT || code == LE
11271 || code == GEU || code == LTU)
11272 && num_sign_bit_copies (op0, mode) == mode_width)
11274 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11275 const_op = 0;
11278 /* Do some canonicalizations based on the comparison code. We prefer
11279 comparisons against zero and then prefer equality comparisons.
11280 If we can reduce the size of a constant, we will do that too. */
11281 switch (code)
11283 case LT:
11284 /* < C is equivalent to <= (C - 1) */
11285 if (const_op > 0)
11287 const_op -= 1;
11288 code = LE;
11289 /* ... fall through to LE case below. */
11291 else
11292 break;
11294 case LE:
11295 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11296 if (const_op < 0)
11298 const_op += 1;
11299 code = LT;
11302 /* If we are doing a <= 0 comparison on a value known to have
11303 a zero sign bit, we can replace this with == 0. */
11304 else if (const_op == 0
11305 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11306 && (nonzero_bits (op0, mode)
11307 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11308 == 0)
11309 code = EQ;
11310 break;
11312 case GE:
11313 /* >= C is equivalent to > (C - 1). */
11314 if (const_op > 0)
11316 const_op -= 1;
11317 code = GT;
11318 /* ... fall through to GT below. */
11320 else
11321 break;
11323 case GT:
11324 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11325 if (const_op < 0)
11327 const_op += 1;
11328 code = GE;
11331 /* If we are doing a > 0 comparison on a value known to have
11332 a zero sign bit, we can replace this with != 0. */
11333 else if (const_op == 0
11334 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11335 && (nonzero_bits (op0, mode)
11336 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11337 == 0)
11338 code = NE;
11339 break;
11341 case LTU:
11342 /* < C is equivalent to <= (C - 1). */
11343 if (const_op > 0)
11345 const_op -= 1;
11346 code = LEU;
11347 /* ... fall through ... */
11349 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11350 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11351 && (unsigned HOST_WIDE_INT) const_op
11352 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11354 const_op = 0;
11355 code = GE;
11356 break;
11358 else
11359 break;
11361 case LEU:
11362 /* unsigned <= 0 is equivalent to == 0 */
11363 if (const_op == 0)
11364 code = EQ;
11365 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11366 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11367 && (unsigned HOST_WIDE_INT) const_op
11368 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11370 const_op = 0;
11371 code = GE;
11373 break;
11375 case GEU:
11376 /* >= C is equivalent to > (C - 1). */
11377 if (const_op > 1)
11379 const_op -= 1;
11380 code = GTU;
11381 /* ... fall through ... */
11384 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11385 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11386 && (unsigned HOST_WIDE_INT) const_op
11387 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1))
11389 const_op = 0;
11390 code = LT;
11391 break;
11393 else
11394 break;
11396 case GTU:
11397 /* unsigned > 0 is equivalent to != 0 */
11398 if (const_op == 0)
11399 code = NE;
11400 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11401 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11402 && (unsigned HOST_WIDE_INT) const_op
11403 == ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)) - 1)
11405 const_op = 0;
11406 code = LT;
11408 break;
11410 default:
11411 break;
11414 *pop1 = GEN_INT (const_op);
11415 return code;
11418 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11419 comparison code that will be tested.
11421 The result is a possibly different comparison code to use. *POP0 and
11422 *POP1 may be updated.
11424 It is possible that we might detect that a comparison is either always
11425 true or always false. However, we do not perform general constant
11426 folding in combine, so this knowledge isn't useful. Such tautologies
11427 should have been detected earlier. Hence we ignore all such cases. */
11429 static enum rtx_code
11430 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11432 rtx op0 = *pop0;
11433 rtx op1 = *pop1;
11434 rtx tem, tem1;
11435 int i;
11436 machine_mode mode, tmode;
11438 /* Try a few ways of applying the same transformation to both operands. */
11439 while (1)
11441 #if !WORD_REGISTER_OPERATIONS
11442 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11443 so check specially. */
11444 if (code != GTU && code != GEU && code != LTU && code != LEU
11445 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11446 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11447 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11448 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11449 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11450 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11451 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11452 && CONST_INT_P (XEXP (op0, 1))
11453 && XEXP (op0, 1) == XEXP (op1, 1)
11454 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11455 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11456 && (INTVAL (XEXP (op0, 1))
11457 == (GET_MODE_PRECISION (GET_MODE (op0))
11458 - (GET_MODE_PRECISION
11459 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11461 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11462 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11464 #endif
11466 /* If both operands are the same constant shift, see if we can ignore the
11467 shift. We can if the shift is a rotate or if the bits shifted out of
11468 this shift are known to be zero for both inputs and if the type of
11469 comparison is compatible with the shift. */
11470 if (GET_CODE (op0) == GET_CODE (op1)
11471 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11472 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11473 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11474 && (code != GT && code != LT && code != GE && code != LE))
11475 || (GET_CODE (op0) == ASHIFTRT
11476 && (code != GTU && code != LTU
11477 && code != GEU && code != LEU)))
11478 && CONST_INT_P (XEXP (op0, 1))
11479 && INTVAL (XEXP (op0, 1)) >= 0
11480 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11481 && XEXP (op0, 1) == XEXP (op1, 1))
11483 machine_mode mode = GET_MODE (op0);
11484 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11485 int shift_count = INTVAL (XEXP (op0, 1));
11487 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11488 mask &= (mask >> shift_count) << shift_count;
11489 else if (GET_CODE (op0) == ASHIFT)
11490 mask = (mask & (mask << shift_count)) >> shift_count;
11492 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11493 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11494 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11495 else
11496 break;
11499 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11500 SUBREGs are of the same mode, and, in both cases, the AND would
11501 be redundant if the comparison was done in the narrower mode,
11502 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11503 and the operand's possibly nonzero bits are 0xffffff01; in that case
11504 if we only care about QImode, we don't need the AND). This case
11505 occurs if the output mode of an scc insn is not SImode and
11506 STORE_FLAG_VALUE == 1 (e.g., the 386).
11508 Similarly, check for a case where the AND's are ZERO_EXTEND
11509 operations from some narrower mode even though a SUBREG is not
11510 present. */
11512 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11513 && CONST_INT_P (XEXP (op0, 1))
11514 && CONST_INT_P (XEXP (op1, 1)))
11516 rtx inner_op0 = XEXP (op0, 0);
11517 rtx inner_op1 = XEXP (op1, 0);
11518 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11519 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11520 int changed = 0;
11522 if (paradoxical_subreg_p (inner_op0)
11523 && GET_CODE (inner_op1) == SUBREG
11524 && (GET_MODE (SUBREG_REG (inner_op0))
11525 == GET_MODE (SUBREG_REG (inner_op1)))
11526 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11527 <= HOST_BITS_PER_WIDE_INT)
11528 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11529 GET_MODE (SUBREG_REG (inner_op0)))))
11530 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11531 GET_MODE (SUBREG_REG (inner_op1))))))
11533 op0 = SUBREG_REG (inner_op0);
11534 op1 = SUBREG_REG (inner_op1);
11536 /* The resulting comparison is always unsigned since we masked
11537 off the original sign bit. */
11538 code = unsigned_condition (code);
11540 changed = 1;
11543 else if (c0 == c1)
11544 for (tmode = GET_CLASS_NARROWEST_MODE
11545 (GET_MODE_CLASS (GET_MODE (op0)));
11546 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11547 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11549 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
11550 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
11551 code = unsigned_condition (code);
11552 changed = 1;
11553 break;
11556 if (! changed)
11557 break;
11560 /* If both operands are NOT, we can strip off the outer operation
11561 and adjust the comparison code for swapped operands; similarly for
11562 NEG, except that this must be an equality comparison. */
11563 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11564 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11565 && (code == EQ || code == NE)))
11566 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11568 else
11569 break;
11572 /* If the first operand is a constant, swap the operands and adjust the
11573 comparison code appropriately, but don't do this if the second operand
11574 is already a constant integer. */
11575 if (swap_commutative_operands_p (op0, op1))
11577 std::swap (op0, op1);
11578 code = swap_condition (code);
11581 /* We now enter a loop during which we will try to simplify the comparison.
11582 For the most part, we only are concerned with comparisons with zero,
11583 but some things may really be comparisons with zero but not start
11584 out looking that way. */
11586 while (CONST_INT_P (op1))
11588 machine_mode mode = GET_MODE (op0);
11589 unsigned int mode_width = GET_MODE_PRECISION (mode);
11590 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11591 int equality_comparison_p;
11592 int sign_bit_comparison_p;
11593 int unsigned_comparison_p;
11594 HOST_WIDE_INT const_op;
11596 /* We only want to handle integral modes. This catches VOIDmode,
11597 CCmode, and the floating-point modes. An exception is that we
11598 can handle VOIDmode if OP0 is a COMPARE or a comparison
11599 operation. */
11601 if (GET_MODE_CLASS (mode) != MODE_INT
11602 && ! (mode == VOIDmode
11603 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11604 break;
11606 /* Try to simplify the compare to constant, possibly changing the
11607 comparison op, and/or changing op1 to zero. */
11608 code = simplify_compare_const (code, mode, op0, &op1);
11609 const_op = INTVAL (op1);
11611 /* Compute some predicates to simplify code below. */
11613 equality_comparison_p = (code == EQ || code == NE);
11614 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11615 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11616 || code == GEU);
11618 /* If this is a sign bit comparison and we can do arithmetic in
11619 MODE, say that we will only be needing the sign bit of OP0. */
11620 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11621 op0 = force_to_mode (op0, mode,
11622 (unsigned HOST_WIDE_INT) 1
11623 << (GET_MODE_PRECISION (mode) - 1),
11626 /* Now try cases based on the opcode of OP0. If none of the cases
11627 does a "continue", we exit this loop immediately after the
11628 switch. */
11630 switch (GET_CODE (op0))
11632 case ZERO_EXTRACT:
11633 /* If we are extracting a single bit from a variable position in
11634 a constant that has only a single bit set and are comparing it
11635 with zero, we can convert this into an equality comparison
11636 between the position and the location of the single bit. */
11637 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11638 have already reduced the shift count modulo the word size. */
11639 if (!SHIFT_COUNT_TRUNCATED
11640 && CONST_INT_P (XEXP (op0, 0))
11641 && XEXP (op0, 1) == const1_rtx
11642 && equality_comparison_p && const_op == 0
11643 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11645 if (BITS_BIG_ENDIAN)
11646 i = BITS_PER_WORD - 1 - i;
11648 op0 = XEXP (op0, 2);
11649 op1 = GEN_INT (i);
11650 const_op = i;
11652 /* Result is nonzero iff shift count is equal to I. */
11653 code = reverse_condition (code);
11654 continue;
11657 /* ... fall through ... */
11659 case SIGN_EXTRACT:
11660 tem = expand_compound_operation (op0);
11661 if (tem != op0)
11663 op0 = tem;
11664 continue;
11666 break;
11668 case NOT:
11669 /* If testing for equality, we can take the NOT of the constant. */
11670 if (equality_comparison_p
11671 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11673 op0 = XEXP (op0, 0);
11674 op1 = tem;
11675 continue;
11678 /* If just looking at the sign bit, reverse the sense of the
11679 comparison. */
11680 if (sign_bit_comparison_p)
11682 op0 = XEXP (op0, 0);
11683 code = (code == GE ? LT : GE);
11684 continue;
11686 break;
11688 case NEG:
11689 /* If testing for equality, we can take the NEG of the constant. */
11690 if (equality_comparison_p
11691 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11693 op0 = XEXP (op0, 0);
11694 op1 = tem;
11695 continue;
11698 /* The remaining cases only apply to comparisons with zero. */
11699 if (const_op != 0)
11700 break;
11702 /* When X is ABS or is known positive,
11703 (neg X) is < 0 if and only if X != 0. */
11705 if (sign_bit_comparison_p
11706 && (GET_CODE (XEXP (op0, 0)) == ABS
11707 || (mode_width <= HOST_BITS_PER_WIDE_INT
11708 && (nonzero_bits (XEXP (op0, 0), mode)
11709 & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
11710 == 0)))
11712 op0 = XEXP (op0, 0);
11713 code = (code == LT ? NE : EQ);
11714 continue;
11717 /* If we have NEG of something whose two high-order bits are the
11718 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11719 if (num_sign_bit_copies (op0, mode) >= 2)
11721 op0 = XEXP (op0, 0);
11722 code = swap_condition (code);
11723 continue;
11725 break;
11727 case ROTATE:
11728 /* If we are testing equality and our count is a constant, we
11729 can perform the inverse operation on our RHS. */
11730 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
11731 && (tem = simplify_binary_operation (ROTATERT, mode,
11732 op1, XEXP (op0, 1))) != 0)
11734 op0 = XEXP (op0, 0);
11735 op1 = tem;
11736 continue;
11739 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11740 a particular bit. Convert it to an AND of a constant of that
11741 bit. This will be converted into a ZERO_EXTRACT. */
11742 if (const_op == 0 && sign_bit_comparison_p
11743 && CONST_INT_P (XEXP (op0, 1))
11744 && mode_width <= HOST_BITS_PER_WIDE_INT)
11746 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
11747 ((unsigned HOST_WIDE_INT) 1
11748 << (mode_width - 1
11749 - INTVAL (XEXP (op0, 1)))));
11750 code = (code == LT ? NE : EQ);
11751 continue;
11754 /* Fall through. */
11756 case ABS:
11757 /* ABS is ignorable inside an equality comparison with zero. */
11758 if (const_op == 0 && equality_comparison_p)
11760 op0 = XEXP (op0, 0);
11761 continue;
11763 break;
11765 case SIGN_EXTEND:
11766 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11767 (compare FOO CONST) if CONST fits in FOO's mode and we
11768 are either testing inequality or have an unsigned
11769 comparison with ZERO_EXTEND or a signed comparison with
11770 SIGN_EXTEND. But don't do it if we don't have a compare
11771 insn of the given mode, since we'd have to revert it
11772 later on, and then we wouldn't know whether to sign- or
11773 zero-extend. */
11774 mode = GET_MODE (XEXP (op0, 0));
11775 if (GET_MODE_CLASS (mode) == MODE_INT
11776 && ! unsigned_comparison_p
11777 && HWI_COMPUTABLE_MODE_P (mode)
11778 && trunc_int_for_mode (const_op, mode) == const_op
11779 && have_insn_for (COMPARE, mode))
11781 op0 = XEXP (op0, 0);
11782 continue;
11784 break;
11786 case SUBREG:
11787 /* Check for the case where we are comparing A - C1 with C2, that is
11789 (subreg:MODE (plus (A) (-C1))) op (C2)
11791 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11792 comparison in the wider mode. One of the following two conditions
11793 must be true in order for this to be valid:
11795 1. The mode extension results in the same bit pattern being added
11796 on both sides and the comparison is equality or unsigned. As
11797 C2 has been truncated to fit in MODE, the pattern can only be
11798 all 0s or all 1s.
11800 2. The mode extension results in the sign bit being copied on
11801 each side.
11803 The difficulty here is that we have predicates for A but not for
11804 (A - C1) so we need to check that C1 is within proper bounds so
11805 as to perturbate A as little as possible. */
11807 if (mode_width <= HOST_BITS_PER_WIDE_INT
11808 && subreg_lowpart_p (op0)
11809 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
11810 && GET_CODE (SUBREG_REG (op0)) == PLUS
11811 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
11813 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
11814 rtx a = XEXP (SUBREG_REG (op0), 0);
11815 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
11817 if ((c1 > 0
11818 && (unsigned HOST_WIDE_INT) c1
11819 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
11820 && (equality_comparison_p || unsigned_comparison_p)
11821 /* (A - C1) zero-extends if it is positive and sign-extends
11822 if it is negative, C2 both zero- and sign-extends. */
11823 && ((0 == (nonzero_bits (a, inner_mode)
11824 & ~GET_MODE_MASK (mode))
11825 && const_op >= 0)
11826 /* (A - C1) sign-extends if it is positive and 1-extends
11827 if it is negative, C2 both sign- and 1-extends. */
11828 || (num_sign_bit_copies (a, inner_mode)
11829 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11830 - mode_width)
11831 && const_op < 0)))
11832 || ((unsigned HOST_WIDE_INT) c1
11833 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
11834 /* (A - C1) always sign-extends, like C2. */
11835 && num_sign_bit_copies (a, inner_mode)
11836 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
11837 - (mode_width - 1))))
11839 op0 = SUBREG_REG (op0);
11840 continue;
11844 /* If the inner mode is narrower and we are extracting the low part,
11845 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11846 if (subreg_lowpart_p (op0)
11847 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
11848 /* Fall through */ ;
11849 else
11850 break;
11852 /* ... fall through ... */
11854 case ZERO_EXTEND:
11855 mode = GET_MODE (XEXP (op0, 0));
11856 if (GET_MODE_CLASS (mode) == MODE_INT
11857 && (unsigned_comparison_p || equality_comparison_p)
11858 && HWI_COMPUTABLE_MODE_P (mode)
11859 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
11860 && const_op >= 0
11861 && have_insn_for (COMPARE, mode))
11863 op0 = XEXP (op0, 0);
11864 continue;
11866 break;
11868 case PLUS:
11869 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11870 this for equality comparisons due to pathological cases involving
11871 overflows. */
11872 if (equality_comparison_p
11873 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11874 op1, XEXP (op0, 1))))
11876 op0 = XEXP (op0, 0);
11877 op1 = tem;
11878 continue;
11881 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11882 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
11883 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
11885 op0 = XEXP (XEXP (op0, 0), 0);
11886 code = (code == LT ? EQ : NE);
11887 continue;
11889 break;
11891 case MINUS:
11892 /* We used to optimize signed comparisons against zero, but that
11893 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11894 arrive here as equality comparisons, or (GEU, LTU) are
11895 optimized away. No need to special-case them. */
11897 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11898 (eq B (minus A C)), whichever simplifies. We can only do
11899 this for equality comparisons due to pathological cases involving
11900 overflows. */
11901 if (equality_comparison_p
11902 && 0 != (tem = simplify_binary_operation (PLUS, mode,
11903 XEXP (op0, 1), op1)))
11905 op0 = XEXP (op0, 0);
11906 op1 = tem;
11907 continue;
11910 if (equality_comparison_p
11911 && 0 != (tem = simplify_binary_operation (MINUS, mode,
11912 XEXP (op0, 0), op1)))
11914 op0 = XEXP (op0, 1);
11915 op1 = tem;
11916 continue;
11919 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11920 of bits in X minus 1, is one iff X > 0. */
11921 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
11922 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
11923 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
11924 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11926 op0 = XEXP (op0, 1);
11927 code = (code == GE ? LE : GT);
11928 continue;
11930 break;
11932 case XOR:
11933 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11934 if C is zero or B is a constant. */
11935 if (equality_comparison_p
11936 && 0 != (tem = simplify_binary_operation (XOR, mode,
11937 XEXP (op0, 1), op1)))
11939 op0 = XEXP (op0, 0);
11940 op1 = tem;
11941 continue;
11943 break;
11945 case EQ: case NE:
11946 case UNEQ: case LTGT:
11947 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
11948 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
11949 case UNORDERED: case ORDERED:
11950 /* We can't do anything if OP0 is a condition code value, rather
11951 than an actual data value. */
11952 if (const_op != 0
11953 || CC0_P (XEXP (op0, 0))
11954 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
11955 break;
11957 /* Get the two operands being compared. */
11958 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
11959 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
11960 else
11961 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
11963 /* Check for the cases where we simply want the result of the
11964 earlier test or the opposite of that result. */
11965 if (code == NE || code == EQ
11966 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
11967 && (code == LT || code == GE)))
11969 enum rtx_code new_code;
11970 if (code == LT || code == NE)
11971 new_code = GET_CODE (op0);
11972 else
11973 new_code = reversed_comparison_code (op0, NULL);
11975 if (new_code != UNKNOWN)
11977 code = new_code;
11978 op0 = tem;
11979 op1 = tem1;
11980 continue;
11983 break;
11985 case IOR:
11986 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11987 iff X <= 0. */
11988 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
11989 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
11990 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
11992 op0 = XEXP (op0, 1);
11993 code = (code == GE ? GT : LE);
11994 continue;
11996 break;
11998 case AND:
11999 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12000 will be converted to a ZERO_EXTRACT later. */
12001 if (const_op == 0 && equality_comparison_p
12002 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12003 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12005 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12006 XEXP (XEXP (op0, 0), 1));
12007 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12008 continue;
12011 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12012 zero and X is a comparison and C1 and C2 describe only bits set
12013 in STORE_FLAG_VALUE, we can compare with X. */
12014 if (const_op == 0 && equality_comparison_p
12015 && mode_width <= HOST_BITS_PER_WIDE_INT
12016 && CONST_INT_P (XEXP (op0, 1))
12017 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12018 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12019 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12020 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12022 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12023 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12024 if ((~STORE_FLAG_VALUE & mask) == 0
12025 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12026 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12027 && COMPARISON_P (tem))))
12029 op0 = XEXP (XEXP (op0, 0), 0);
12030 continue;
12034 /* If we are doing an equality comparison of an AND of a bit equal
12035 to the sign bit, replace this with a LT or GE comparison of
12036 the underlying value. */
12037 if (equality_comparison_p
12038 && const_op == 0
12039 && CONST_INT_P (XEXP (op0, 1))
12040 && mode_width <= HOST_BITS_PER_WIDE_INT
12041 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12042 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
12044 op0 = XEXP (op0, 0);
12045 code = (code == EQ ? GE : LT);
12046 continue;
12049 /* If this AND operation is really a ZERO_EXTEND from a narrower
12050 mode, the constant fits within that mode, and this is either an
12051 equality or unsigned comparison, try to do this comparison in
12052 the narrower mode.
12054 Note that in:
12056 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12057 -> (ne:DI (reg:SI 4) (const_int 0))
12059 unless TRULY_NOOP_TRUNCATION allows it or the register is
12060 known to hold a value of the required mode the
12061 transformation is invalid. */
12062 if ((equality_comparison_p || unsigned_comparison_p)
12063 && CONST_INT_P (XEXP (op0, 1))
12064 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12065 & GET_MODE_MASK (mode))
12066 + 1)) >= 0
12067 && const_op >> i == 0
12068 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
12070 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12071 continue;
12074 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12075 fits in both M1 and M2 and the SUBREG is either paradoxical
12076 or represents the low part, permute the SUBREG and the AND
12077 and try again. */
12078 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12079 && CONST_INT_P (XEXP (op0, 1)))
12081 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12082 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12083 /* Require an integral mode, to avoid creating something like
12084 (AND:SF ...). */
12085 if (SCALAR_INT_MODE_P (tmode)
12086 /* It is unsafe to commute the AND into the SUBREG if the
12087 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12088 not defined. As originally written the upper bits
12089 have a defined value due to the AND operation.
12090 However, if we commute the AND inside the SUBREG then
12091 they no longer have defined values and the meaning of
12092 the code has been changed.
12093 Also C1 should not change value in the smaller mode,
12094 see PR67028 (a positive C1 can become negative in the
12095 smaller mode, so that the AND does no longer mask the
12096 upper bits). */
12097 && ((WORD_REGISTER_OPERATIONS
12098 && mode_width > GET_MODE_PRECISION (tmode)
12099 && mode_width <= BITS_PER_WORD
12100 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12101 || (mode_width <= GET_MODE_PRECISION (tmode)
12102 && subreg_lowpart_p (XEXP (op0, 0))))
12103 && mode_width <= HOST_BITS_PER_WIDE_INT
12104 && HWI_COMPUTABLE_MODE_P (tmode)
12105 && (c1 & ~mask) == 0
12106 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12107 && c1 != mask
12108 && c1 != GET_MODE_MASK (tmode))
12110 op0 = simplify_gen_binary (AND, tmode,
12111 SUBREG_REG (XEXP (op0, 0)),
12112 gen_int_mode (c1, tmode));
12113 op0 = gen_lowpart (mode, op0);
12114 continue;
12118 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12119 if (const_op == 0 && equality_comparison_p
12120 && XEXP (op0, 1) == const1_rtx
12121 && GET_CODE (XEXP (op0, 0)) == NOT)
12123 op0 = simplify_and_const_int (NULL_RTX, mode,
12124 XEXP (XEXP (op0, 0), 0), 1);
12125 code = (code == NE ? EQ : NE);
12126 continue;
12129 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12130 (eq (and (lshiftrt X) 1) 0).
12131 Also handle the case where (not X) is expressed using xor. */
12132 if (const_op == 0 && equality_comparison_p
12133 && XEXP (op0, 1) == const1_rtx
12134 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12136 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12137 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12139 if (GET_CODE (shift_op) == NOT
12140 || (GET_CODE (shift_op) == XOR
12141 && CONST_INT_P (XEXP (shift_op, 1))
12142 && CONST_INT_P (shift_count)
12143 && HWI_COMPUTABLE_MODE_P (mode)
12144 && (UINTVAL (XEXP (shift_op, 1))
12145 == (unsigned HOST_WIDE_INT) 1
12146 << INTVAL (shift_count))))
12149 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12150 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12151 code = (code == NE ? EQ : NE);
12152 continue;
12155 break;
12157 case ASHIFT:
12158 /* If we have (compare (ashift FOO N) (const_int C)) and
12159 the high order N bits of FOO (N+1 if an inequality comparison)
12160 are known to be zero, we can do this by comparing FOO with C
12161 shifted right N bits so long as the low-order N bits of C are
12162 zero. */
12163 if (CONST_INT_P (XEXP (op0, 1))
12164 && INTVAL (XEXP (op0, 1)) >= 0
12165 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12166 < HOST_BITS_PER_WIDE_INT)
12167 && (((unsigned HOST_WIDE_INT) const_op
12168 & (((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1)))
12169 - 1)) == 0)
12170 && mode_width <= HOST_BITS_PER_WIDE_INT
12171 && (nonzero_bits (XEXP (op0, 0), mode)
12172 & ~(mask >> (INTVAL (XEXP (op0, 1))
12173 + ! equality_comparison_p))) == 0)
12175 /* We must perform a logical shift, not an arithmetic one,
12176 as we want the top N bits of C to be zero. */
12177 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12179 temp >>= INTVAL (XEXP (op0, 1));
12180 op1 = gen_int_mode (temp, mode);
12181 op0 = XEXP (op0, 0);
12182 continue;
12185 /* If we are doing a sign bit comparison, it means we are testing
12186 a particular bit. Convert it to the appropriate AND. */
12187 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12188 && mode_width <= HOST_BITS_PER_WIDE_INT)
12190 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12191 ((unsigned HOST_WIDE_INT) 1
12192 << (mode_width - 1
12193 - INTVAL (XEXP (op0, 1)))));
12194 code = (code == LT ? NE : EQ);
12195 continue;
12198 /* If this an equality comparison with zero and we are shifting
12199 the low bit to the sign bit, we can convert this to an AND of the
12200 low-order bit. */
12201 if (const_op == 0 && equality_comparison_p
12202 && CONST_INT_P (XEXP (op0, 1))
12203 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12205 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12206 continue;
12208 break;
12210 case ASHIFTRT:
12211 /* If this is an equality comparison with zero, we can do this
12212 as a logical shift, which might be much simpler. */
12213 if (equality_comparison_p && const_op == 0
12214 && CONST_INT_P (XEXP (op0, 1)))
12216 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12217 XEXP (op0, 0),
12218 INTVAL (XEXP (op0, 1)));
12219 continue;
12222 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12223 do the comparison in a narrower mode. */
12224 if (! unsigned_comparison_p
12225 && CONST_INT_P (XEXP (op0, 1))
12226 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12227 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12228 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12229 MODE_INT, 1)) != BLKmode
12230 && (((unsigned HOST_WIDE_INT) const_op
12231 + (GET_MODE_MASK (tmode) >> 1) + 1)
12232 <= GET_MODE_MASK (tmode)))
12234 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12235 continue;
12238 /* Likewise if OP0 is a PLUS of a sign extension with a
12239 constant, which is usually represented with the PLUS
12240 between the shifts. */
12241 if (! unsigned_comparison_p
12242 && CONST_INT_P (XEXP (op0, 1))
12243 && GET_CODE (XEXP (op0, 0)) == PLUS
12244 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12245 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12246 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12247 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12248 MODE_INT, 1)) != BLKmode
12249 && (((unsigned HOST_WIDE_INT) const_op
12250 + (GET_MODE_MASK (tmode) >> 1) + 1)
12251 <= GET_MODE_MASK (tmode)))
12253 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12254 rtx add_const = XEXP (XEXP (op0, 0), 1);
12255 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12256 add_const, XEXP (op0, 1));
12258 op0 = simplify_gen_binary (PLUS, tmode,
12259 gen_lowpart (tmode, inner),
12260 new_const);
12261 continue;
12264 /* ... fall through ... */
12265 case LSHIFTRT:
12266 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12267 the low order N bits of FOO are known to be zero, we can do this
12268 by comparing FOO with C shifted left N bits so long as no
12269 overflow occurs. Even if the low order N bits of FOO aren't known
12270 to be zero, if the comparison is >= or < we can use the same
12271 optimization and for > or <= by setting all the low
12272 order N bits in the comparison constant. */
12273 if (CONST_INT_P (XEXP (op0, 1))
12274 && INTVAL (XEXP (op0, 1)) > 0
12275 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12276 && mode_width <= HOST_BITS_PER_WIDE_INT
12277 && (((unsigned HOST_WIDE_INT) const_op
12278 + (GET_CODE (op0) != LSHIFTRT
12279 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12280 + 1)
12281 : 0))
12282 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12284 unsigned HOST_WIDE_INT low_bits
12285 = (nonzero_bits (XEXP (op0, 0), mode)
12286 & (((unsigned HOST_WIDE_INT) 1
12287 << INTVAL (XEXP (op0, 1))) - 1));
12288 if (low_bits == 0 || !equality_comparison_p)
12290 /* If the shift was logical, then we must make the condition
12291 unsigned. */
12292 if (GET_CODE (op0) == LSHIFTRT)
12293 code = unsigned_condition (code);
12295 const_op <<= INTVAL (XEXP (op0, 1));
12296 if (low_bits != 0
12297 && (code == GT || code == GTU
12298 || code == LE || code == LEU))
12299 const_op
12300 |= (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1);
12301 op1 = GEN_INT (const_op);
12302 op0 = XEXP (op0, 0);
12303 continue;
12307 /* If we are using this shift to extract just the sign bit, we
12308 can replace this with an LT or GE comparison. */
12309 if (const_op == 0
12310 && (equality_comparison_p || sign_bit_comparison_p)
12311 && CONST_INT_P (XEXP (op0, 1))
12312 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12314 op0 = XEXP (op0, 0);
12315 code = (code == NE || code == GT ? LT : GE);
12316 continue;
12318 break;
12320 default:
12321 break;
12324 break;
12327 /* Now make any compound operations involved in this comparison. Then,
12328 check for an outmost SUBREG on OP0 that is not doing anything or is
12329 paradoxical. The latter transformation must only be performed when
12330 it is known that the "extra" bits will be the same in op0 and op1 or
12331 that they don't matter. There are three cases to consider:
12333 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12334 care bits and we can assume they have any convenient value. So
12335 making the transformation is safe.
12337 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
12338 In this case the upper bits of op0 are undefined. We should not make
12339 the simplification in that case as we do not know the contents of
12340 those bits.
12342 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
12343 UNKNOWN. In that case we know those bits are zeros or ones. We must
12344 also be sure that they are the same as the upper bits of op1.
12346 We can never remove a SUBREG for a non-equality comparison because
12347 the sign bit is in a different place in the underlying object. */
12349 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
12350 op1 = make_compound_operation (op1, SET);
12352 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12353 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12354 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12355 && (code == NE || code == EQ))
12357 if (paradoxical_subreg_p (op0))
12359 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12360 implemented. */
12361 if (REG_P (SUBREG_REG (op0)))
12363 op0 = SUBREG_REG (op0);
12364 op1 = gen_lowpart (GET_MODE (op0), op1);
12367 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12368 <= HOST_BITS_PER_WIDE_INT)
12369 && (nonzero_bits (SUBREG_REG (op0),
12370 GET_MODE (SUBREG_REG (op0)))
12371 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12373 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12375 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12376 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12377 op0 = SUBREG_REG (op0), op1 = tem;
12381 /* We now do the opposite procedure: Some machines don't have compare
12382 insns in all modes. If OP0's mode is an integer mode smaller than a
12383 word and we can't do a compare in that mode, see if there is a larger
12384 mode for which we can do the compare. There are a number of cases in
12385 which we can use the wider mode. */
12387 mode = GET_MODE (op0);
12388 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12389 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12390 && ! have_insn_for (COMPARE, mode))
12391 for (tmode = GET_MODE_WIDER_MODE (mode);
12392 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12393 tmode = GET_MODE_WIDER_MODE (tmode))
12394 if (have_insn_for (COMPARE, tmode))
12396 int zero_extended;
12398 /* If this is a test for negative, we can make an explicit
12399 test of the sign bit. Test this first so we can use
12400 a paradoxical subreg to extend OP0. */
12402 if (op1 == const0_rtx && (code == LT || code == GE)
12403 && HWI_COMPUTABLE_MODE_P (mode))
12405 unsigned HOST_WIDE_INT sign
12406 = (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1);
12407 op0 = simplify_gen_binary (AND, tmode,
12408 gen_lowpart (tmode, op0),
12409 gen_int_mode (sign, tmode));
12410 code = (code == LT) ? NE : EQ;
12411 break;
12414 /* If the only nonzero bits in OP0 and OP1 are those in the
12415 narrower mode and this is an equality or unsigned comparison,
12416 we can use the wider mode. Similarly for sign-extended
12417 values, in which case it is true for all comparisons. */
12418 zero_extended = ((code == EQ || code == NE
12419 || code == GEU || code == GTU
12420 || code == LEU || code == LTU)
12421 && (nonzero_bits (op0, tmode)
12422 & ~GET_MODE_MASK (mode)) == 0
12423 && ((CONST_INT_P (op1)
12424 || (nonzero_bits (op1, tmode)
12425 & ~GET_MODE_MASK (mode)) == 0)));
12427 if (zero_extended
12428 || ((num_sign_bit_copies (op0, tmode)
12429 > (unsigned int) (GET_MODE_PRECISION (tmode)
12430 - GET_MODE_PRECISION (mode)))
12431 && (num_sign_bit_copies (op1, tmode)
12432 > (unsigned int) (GET_MODE_PRECISION (tmode)
12433 - GET_MODE_PRECISION (mode)))))
12435 /* If OP0 is an AND and we don't have an AND in MODE either,
12436 make a new AND in the proper mode. */
12437 if (GET_CODE (op0) == AND
12438 && !have_insn_for (AND, mode))
12439 op0 = simplify_gen_binary (AND, tmode,
12440 gen_lowpart (tmode,
12441 XEXP (op0, 0)),
12442 gen_lowpart (tmode,
12443 XEXP (op0, 1)));
12444 else
12446 if (zero_extended)
12448 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12449 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12451 else
12453 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12454 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12456 break;
12461 /* We may have changed the comparison operands. Re-canonicalize. */
12462 if (swap_commutative_operands_p (op0, op1))
12464 std::swap (op0, op1);
12465 code = swap_condition (code);
12468 /* If this machine only supports a subset of valid comparisons, see if we
12469 can convert an unsupported one into a supported one. */
12470 target_canonicalize_comparison (&code, &op0, &op1, 0);
12472 *pop0 = op0;
12473 *pop1 = op1;
12475 return code;
12478 /* Utility function for record_value_for_reg. Count number of
12479 rtxs in X. */
12480 static int
12481 count_rtxs (rtx x)
12483 enum rtx_code code = GET_CODE (x);
12484 const char *fmt;
12485 int i, j, ret = 1;
12487 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12488 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12490 rtx x0 = XEXP (x, 0);
12491 rtx x1 = XEXP (x, 1);
12493 if (x0 == x1)
12494 return 1 + 2 * count_rtxs (x0);
12496 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12497 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12498 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12499 return 2 + 2 * count_rtxs (x0)
12500 + count_rtxs (x == XEXP (x1, 0)
12501 ? XEXP (x1, 1) : XEXP (x1, 0));
12503 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12504 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12505 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12506 return 2 + 2 * count_rtxs (x1)
12507 + count_rtxs (x == XEXP (x0, 0)
12508 ? XEXP (x0, 1) : XEXP (x0, 0));
12511 fmt = GET_RTX_FORMAT (code);
12512 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12513 if (fmt[i] == 'e')
12514 ret += count_rtxs (XEXP (x, i));
12515 else if (fmt[i] == 'E')
12516 for (j = 0; j < XVECLEN (x, i); j++)
12517 ret += count_rtxs (XVECEXP (x, i, j));
12519 return ret;
12522 /* Utility function for following routine. Called when X is part of a value
12523 being stored into last_set_value. Sets last_set_table_tick
12524 for each register mentioned. Similar to mention_regs in cse.c */
12526 static void
12527 update_table_tick (rtx x)
12529 enum rtx_code code = GET_CODE (x);
12530 const char *fmt = GET_RTX_FORMAT (code);
12531 int i, j;
12533 if (code == REG)
12535 unsigned int regno = REGNO (x);
12536 unsigned int endregno = END_REGNO (x);
12537 unsigned int r;
12539 for (r = regno; r < endregno; r++)
12541 reg_stat_type *rsp = &reg_stat[r];
12542 rsp->last_set_table_tick = label_tick;
12545 return;
12548 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12549 if (fmt[i] == 'e')
12551 /* Check for identical subexpressions. If x contains
12552 identical subexpression we only have to traverse one of
12553 them. */
12554 if (i == 0 && ARITHMETIC_P (x))
12556 /* Note that at this point x1 has already been
12557 processed. */
12558 rtx x0 = XEXP (x, 0);
12559 rtx x1 = XEXP (x, 1);
12561 /* If x0 and x1 are identical then there is no need to
12562 process x0. */
12563 if (x0 == x1)
12564 break;
12566 /* If x0 is identical to a subexpression of x1 then while
12567 processing x1, x0 has already been processed. Thus we
12568 are done with x. */
12569 if (ARITHMETIC_P (x1)
12570 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12571 break;
12573 /* If x1 is identical to a subexpression of x0 then we
12574 still have to process the rest of x0. */
12575 if (ARITHMETIC_P (x0)
12576 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12578 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12579 break;
12583 update_table_tick (XEXP (x, i));
12585 else if (fmt[i] == 'E')
12586 for (j = 0; j < XVECLEN (x, i); j++)
12587 update_table_tick (XVECEXP (x, i, j));
12590 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12591 are saying that the register is clobbered and we no longer know its
12592 value. If INSN is zero, don't update reg_stat[].last_set; this is
12593 only permitted with VALUE also zero and is used to invalidate the
12594 register. */
12596 static void
12597 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12599 unsigned int regno = REGNO (reg);
12600 unsigned int endregno = END_REGNO (reg);
12601 unsigned int i;
12602 reg_stat_type *rsp;
12604 /* If VALUE contains REG and we have a previous value for REG, substitute
12605 the previous value. */
12606 if (value && insn && reg_overlap_mentioned_p (reg, value))
12608 rtx tem;
12610 /* Set things up so get_last_value is allowed to see anything set up to
12611 our insn. */
12612 subst_low_luid = DF_INSN_LUID (insn);
12613 tem = get_last_value (reg);
12615 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12616 it isn't going to be useful and will take a lot of time to process,
12617 so just use the CLOBBER. */
12619 if (tem)
12621 if (ARITHMETIC_P (tem)
12622 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12623 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12624 tem = XEXP (tem, 0);
12625 else if (count_occurrences (value, reg, 1) >= 2)
12627 /* If there are two or more occurrences of REG in VALUE,
12628 prevent the value from growing too much. */
12629 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12630 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12633 value = replace_rtx (copy_rtx (value), reg, tem);
12637 /* For each register modified, show we don't know its value, that
12638 we don't know about its bitwise content, that its value has been
12639 updated, and that we don't know the location of the death of the
12640 register. */
12641 for (i = regno; i < endregno; i++)
12643 rsp = &reg_stat[i];
12645 if (insn)
12646 rsp->last_set = insn;
12648 rsp->last_set_value = 0;
12649 rsp->last_set_mode = VOIDmode;
12650 rsp->last_set_nonzero_bits = 0;
12651 rsp->last_set_sign_bit_copies = 0;
12652 rsp->last_death = 0;
12653 rsp->truncated_to_mode = VOIDmode;
12656 /* Mark registers that are being referenced in this value. */
12657 if (value)
12658 update_table_tick (value);
12660 /* Now update the status of each register being set.
12661 If someone is using this register in this block, set this register
12662 to invalid since we will get confused between the two lives in this
12663 basic block. This makes using this register always invalid. In cse, we
12664 scan the table to invalidate all entries using this register, but this
12665 is too much work for us. */
12667 for (i = regno; i < endregno; i++)
12669 rsp = &reg_stat[i];
12670 rsp->last_set_label = label_tick;
12671 if (!insn
12672 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12673 rsp->last_set_invalid = 1;
12674 else
12675 rsp->last_set_invalid = 0;
12678 /* The value being assigned might refer to X (like in "x++;"). In that
12679 case, we must replace it with (clobber (const_int 0)) to prevent
12680 infinite loops. */
12681 rsp = &reg_stat[regno];
12682 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
12684 value = copy_rtx (value);
12685 if (!get_last_value_validate (&value, insn, label_tick, 1))
12686 value = 0;
12689 /* For the main register being modified, update the value, the mode, the
12690 nonzero bits, and the number of sign bit copies. */
12692 rsp->last_set_value = value;
12694 if (value)
12696 machine_mode mode = GET_MODE (reg);
12697 subst_low_luid = DF_INSN_LUID (insn);
12698 rsp->last_set_mode = mode;
12699 if (GET_MODE_CLASS (mode) == MODE_INT
12700 && HWI_COMPUTABLE_MODE_P (mode))
12701 mode = nonzero_bits_mode;
12702 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
12703 rsp->last_set_sign_bit_copies
12704 = num_sign_bit_copies (value, GET_MODE (reg));
12708 /* Called via note_stores from record_dead_and_set_regs to handle one
12709 SET or CLOBBER in an insn. DATA is the instruction in which the
12710 set is occurring. */
12712 static void
12713 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
12715 rtx_insn *record_dead_insn = (rtx_insn *) data;
12717 if (GET_CODE (dest) == SUBREG)
12718 dest = SUBREG_REG (dest);
12720 if (!record_dead_insn)
12722 if (REG_P (dest))
12723 record_value_for_reg (dest, NULL, NULL_RTX);
12724 return;
12727 if (REG_P (dest))
12729 /* If we are setting the whole register, we know its value. Otherwise
12730 show that we don't know the value. We can handle SUBREG in
12731 some cases. */
12732 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
12733 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
12734 else if (GET_CODE (setter) == SET
12735 && GET_CODE (SET_DEST (setter)) == SUBREG
12736 && SUBREG_REG (SET_DEST (setter)) == dest
12737 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
12738 && subreg_lowpart_p (SET_DEST (setter)))
12739 record_value_for_reg (dest, record_dead_insn,
12740 gen_lowpart (GET_MODE (dest),
12741 SET_SRC (setter)));
12742 else
12743 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
12745 else if (MEM_P (dest)
12746 /* Ignore pushes, they clobber nothing. */
12747 && ! push_operand (dest, GET_MODE (dest)))
12748 mem_last_set = DF_INSN_LUID (record_dead_insn);
12751 /* Update the records of when each REG was most recently set or killed
12752 for the things done by INSN. This is the last thing done in processing
12753 INSN in the combiner loop.
12755 We update reg_stat[], in particular fields last_set, last_set_value,
12756 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12757 last_death, and also the similar information mem_last_set (which insn
12758 most recently modified memory) and last_call_luid (which insn was the
12759 most recent subroutine call). */
12761 static void
12762 record_dead_and_set_regs (rtx_insn *insn)
12764 rtx link;
12765 unsigned int i;
12767 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
12769 if (REG_NOTE_KIND (link) == REG_DEAD
12770 && REG_P (XEXP (link, 0)))
12772 unsigned int regno = REGNO (XEXP (link, 0));
12773 unsigned int endregno = END_REGNO (XEXP (link, 0));
12775 for (i = regno; i < endregno; i++)
12777 reg_stat_type *rsp;
12779 rsp = &reg_stat[i];
12780 rsp->last_death = insn;
12783 else if (REG_NOTE_KIND (link) == REG_INC)
12784 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
12787 if (CALL_P (insn))
12789 hard_reg_set_iterator hrsi;
12790 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
12792 reg_stat_type *rsp;
12794 rsp = &reg_stat[i];
12795 rsp->last_set_invalid = 1;
12796 rsp->last_set = insn;
12797 rsp->last_set_value = 0;
12798 rsp->last_set_mode = VOIDmode;
12799 rsp->last_set_nonzero_bits = 0;
12800 rsp->last_set_sign_bit_copies = 0;
12801 rsp->last_death = 0;
12802 rsp->truncated_to_mode = VOIDmode;
12805 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
12807 /* We can't combine into a call pattern. Remember, though, that
12808 the return value register is set at this LUID. We could
12809 still replace a register with the return value from the
12810 wrong subroutine call! */
12811 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
12813 else
12814 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
12817 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12818 register present in the SUBREG, so for each such SUBREG go back and
12819 adjust nonzero and sign bit information of the registers that are
12820 known to have some zero/sign bits set.
12822 This is needed because when combine blows the SUBREGs away, the
12823 information on zero/sign bits is lost and further combines can be
12824 missed because of that. */
12826 static void
12827 record_promoted_value (rtx_insn *insn, rtx subreg)
12829 struct insn_link *links;
12830 rtx set;
12831 unsigned int regno = REGNO (SUBREG_REG (subreg));
12832 machine_mode mode = GET_MODE (subreg);
12834 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
12835 return;
12837 for (links = LOG_LINKS (insn); links;)
12839 reg_stat_type *rsp;
12841 insn = links->insn;
12842 set = single_set (insn);
12844 if (! set || !REG_P (SET_DEST (set))
12845 || REGNO (SET_DEST (set)) != regno
12846 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
12848 links = links->next;
12849 continue;
12852 rsp = &reg_stat[regno];
12853 if (rsp->last_set == insn)
12855 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
12856 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
12859 if (REG_P (SET_SRC (set)))
12861 regno = REGNO (SET_SRC (set));
12862 links = LOG_LINKS (insn);
12864 else
12865 break;
12869 /* Check if X, a register, is known to contain a value already
12870 truncated to MODE. In this case we can use a subreg to refer to
12871 the truncated value even though in the generic case we would need
12872 an explicit truncation. */
12874 static bool
12875 reg_truncated_to_mode (machine_mode mode, const_rtx x)
12877 reg_stat_type *rsp = &reg_stat[REGNO (x)];
12878 machine_mode truncated = rsp->truncated_to_mode;
12880 if (truncated == 0
12881 || rsp->truncation_label < label_tick_ebb_start)
12882 return false;
12883 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
12884 return true;
12885 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
12886 return true;
12887 return false;
12890 /* If X is a hard reg or a subreg record the mode that the register is
12891 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
12892 to turn a truncate into a subreg using this information. Return true
12893 if traversing X is complete. */
12895 static bool
12896 record_truncated_value (rtx x)
12898 machine_mode truncated_mode;
12899 reg_stat_type *rsp;
12901 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
12903 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
12904 truncated_mode = GET_MODE (x);
12906 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
12907 return true;
12909 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
12910 return true;
12912 x = SUBREG_REG (x);
12914 /* ??? For hard-regs we now record everything. We might be able to
12915 optimize this using last_set_mode. */
12916 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
12917 truncated_mode = GET_MODE (x);
12918 else
12919 return false;
12921 rsp = &reg_stat[REGNO (x)];
12922 if (rsp->truncated_to_mode == 0
12923 || rsp->truncation_label < label_tick_ebb_start
12924 || (GET_MODE_SIZE (truncated_mode)
12925 < GET_MODE_SIZE (rsp->truncated_to_mode)))
12927 rsp->truncated_to_mode = truncated_mode;
12928 rsp->truncation_label = label_tick;
12931 return true;
12934 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12935 the modes they are used in. This can help truning TRUNCATEs into
12936 SUBREGs. */
12938 static void
12939 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
12941 subrtx_var_iterator::array_type array;
12942 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
12943 if (record_truncated_value (*iter))
12944 iter.skip_subrtxes ();
12947 /* Scan X for promoted SUBREGs. For each one found,
12948 note what it implies to the registers used in it. */
12950 static void
12951 check_promoted_subreg (rtx_insn *insn, rtx x)
12953 if (GET_CODE (x) == SUBREG
12954 && SUBREG_PROMOTED_VAR_P (x)
12955 && REG_P (SUBREG_REG (x)))
12956 record_promoted_value (insn, x);
12957 else
12959 const char *format = GET_RTX_FORMAT (GET_CODE (x));
12960 int i, j;
12962 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
12963 switch (format[i])
12965 case 'e':
12966 check_promoted_subreg (insn, XEXP (x, i));
12967 break;
12968 case 'V':
12969 case 'E':
12970 if (XVEC (x, i) != 0)
12971 for (j = 0; j < XVECLEN (x, i); j++)
12972 check_promoted_subreg (insn, XVECEXP (x, i, j));
12973 break;
12978 /* Verify that all the registers and memory references mentioned in *LOC are
12979 still valid. *LOC was part of a value set in INSN when label_tick was
12980 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12981 the invalid references with (clobber (const_int 0)) and return 1. This
12982 replacement is useful because we often can get useful information about
12983 the form of a value (e.g., if it was produced by a shift that always
12984 produces -1 or 0) even though we don't know exactly what registers it
12985 was produced from. */
12987 static int
12988 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
12990 rtx x = *loc;
12991 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
12992 int len = GET_RTX_LENGTH (GET_CODE (x));
12993 int i, j;
12995 if (REG_P (x))
12997 unsigned int regno = REGNO (x);
12998 unsigned int endregno = END_REGNO (x);
12999 unsigned int j;
13001 for (j = regno; j < endregno; j++)
13003 reg_stat_type *rsp = &reg_stat[j];
13004 if (rsp->last_set_invalid
13005 /* If this is a pseudo-register that was only set once and not
13006 live at the beginning of the function, it is always valid. */
13007 || (! (regno >= FIRST_PSEUDO_REGISTER
13008 && regno < reg_n_sets_max
13009 && REG_N_SETS (regno) == 1
13010 && (!REGNO_REG_SET_P
13011 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13012 regno)))
13013 && rsp->last_set_label > tick))
13015 if (replace)
13016 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13017 return replace;
13021 return 1;
13023 /* If this is a memory reference, make sure that there were no stores after
13024 it that might have clobbered the value. We don't have alias info, so we
13025 assume any store invalidates it. Moreover, we only have local UIDs, so
13026 we also assume that there were stores in the intervening basic blocks. */
13027 else if (MEM_P (x) && !MEM_READONLY_P (x)
13028 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13030 if (replace)
13031 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13032 return replace;
13035 for (i = 0; i < len; i++)
13037 if (fmt[i] == 'e')
13039 /* Check for identical subexpressions. If x contains
13040 identical subexpression we only have to traverse one of
13041 them. */
13042 if (i == 1 && ARITHMETIC_P (x))
13044 /* Note that at this point x0 has already been checked
13045 and found valid. */
13046 rtx x0 = XEXP (x, 0);
13047 rtx x1 = XEXP (x, 1);
13049 /* If x0 and x1 are identical then x is also valid. */
13050 if (x0 == x1)
13051 return 1;
13053 /* If x1 is identical to a subexpression of x0 then
13054 while checking x0, x1 has already been checked. Thus
13055 it is valid and so as x. */
13056 if (ARITHMETIC_P (x0)
13057 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13058 return 1;
13060 /* If x0 is identical to a subexpression of x1 then x is
13061 valid iff the rest of x1 is valid. */
13062 if (ARITHMETIC_P (x1)
13063 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13064 return
13065 get_last_value_validate (&XEXP (x1,
13066 x0 == XEXP (x1, 0) ? 1 : 0),
13067 insn, tick, replace);
13070 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13071 replace) == 0)
13072 return 0;
13074 else if (fmt[i] == 'E')
13075 for (j = 0; j < XVECLEN (x, i); j++)
13076 if (get_last_value_validate (&XVECEXP (x, i, j),
13077 insn, tick, replace) == 0)
13078 return 0;
13081 /* If we haven't found a reason for it to be invalid, it is valid. */
13082 return 1;
13085 /* Get the last value assigned to X, if known. Some registers
13086 in the value may be replaced with (clobber (const_int 0)) if their value
13087 is known longer known reliably. */
13089 static rtx
13090 get_last_value (const_rtx x)
13092 unsigned int regno;
13093 rtx value;
13094 reg_stat_type *rsp;
13096 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13097 then convert it to the desired mode. If this is a paradoxical SUBREG,
13098 we cannot predict what values the "extra" bits might have. */
13099 if (GET_CODE (x) == SUBREG
13100 && subreg_lowpart_p (x)
13101 && !paradoxical_subreg_p (x)
13102 && (value = get_last_value (SUBREG_REG (x))) != 0)
13103 return gen_lowpart (GET_MODE (x), value);
13105 if (!REG_P (x))
13106 return 0;
13108 regno = REGNO (x);
13109 rsp = &reg_stat[regno];
13110 value = rsp->last_set_value;
13112 /* If we don't have a value, or if it isn't for this basic block and
13113 it's either a hard register, set more than once, or it's a live
13114 at the beginning of the function, return 0.
13116 Because if it's not live at the beginning of the function then the reg
13117 is always set before being used (is never used without being set).
13118 And, if it's set only once, and it's always set before use, then all
13119 uses must have the same last value, even if it's not from this basic
13120 block. */
13122 if (value == 0
13123 || (rsp->last_set_label < label_tick_ebb_start
13124 && (regno < FIRST_PSEUDO_REGISTER
13125 || regno >= reg_n_sets_max
13126 || REG_N_SETS (regno) != 1
13127 || REGNO_REG_SET_P
13128 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13129 return 0;
13131 /* If the value was set in a later insn than the ones we are processing,
13132 we can't use it even if the register was only set once. */
13133 if (rsp->last_set_label == label_tick
13134 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13135 return 0;
13137 /* If the value has all its registers valid, return it. */
13138 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13139 return value;
13141 /* Otherwise, make a copy and replace any invalid register with
13142 (clobber (const_int 0)). If that fails for some reason, return 0. */
13144 value = copy_rtx (value);
13145 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13146 return value;
13148 return 0;
13151 /* Return nonzero if expression X refers to a REG or to memory
13152 that is set in an instruction more recent than FROM_LUID. */
13154 static int
13155 use_crosses_set_p (const_rtx x, int from_luid)
13157 const char *fmt;
13158 int i;
13159 enum rtx_code code = GET_CODE (x);
13161 if (code == REG)
13163 unsigned int regno = REGNO (x);
13164 unsigned endreg = END_REGNO (x);
13166 #ifdef PUSH_ROUNDING
13167 /* Don't allow uses of the stack pointer to be moved,
13168 because we don't know whether the move crosses a push insn. */
13169 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13170 return 1;
13171 #endif
13172 for (; regno < endreg; regno++)
13174 reg_stat_type *rsp = &reg_stat[regno];
13175 if (rsp->last_set
13176 && rsp->last_set_label == label_tick
13177 && DF_INSN_LUID (rsp->last_set) > from_luid)
13178 return 1;
13180 return 0;
13183 if (code == MEM && mem_last_set > from_luid)
13184 return 1;
13186 fmt = GET_RTX_FORMAT (code);
13188 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13190 if (fmt[i] == 'E')
13192 int j;
13193 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13194 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13195 return 1;
13197 else if (fmt[i] == 'e'
13198 && use_crosses_set_p (XEXP (x, i), from_luid))
13199 return 1;
13201 return 0;
13204 /* Define three variables used for communication between the following
13205 routines. */
13207 static unsigned int reg_dead_regno, reg_dead_endregno;
13208 static int reg_dead_flag;
13210 /* Function called via note_stores from reg_dead_at_p.
13212 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13213 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13215 static void
13216 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13218 unsigned int regno, endregno;
13220 if (!REG_P (dest))
13221 return;
13223 regno = REGNO (dest);
13224 endregno = END_REGNO (dest);
13225 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13226 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13229 /* Return nonzero if REG is known to be dead at INSN.
13231 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13232 referencing REG, it is dead. If we hit a SET referencing REG, it is
13233 live. Otherwise, see if it is live or dead at the start of the basic
13234 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13235 must be assumed to be always live. */
13237 static int
13238 reg_dead_at_p (rtx reg, rtx_insn *insn)
13240 basic_block block;
13241 unsigned int i;
13243 /* Set variables for reg_dead_at_p_1. */
13244 reg_dead_regno = REGNO (reg);
13245 reg_dead_endregno = END_REGNO (reg);
13247 reg_dead_flag = 0;
13249 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13250 we allow the machine description to decide whether use-and-clobber
13251 patterns are OK. */
13252 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13254 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13255 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13256 return 0;
13259 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13260 beginning of basic block. */
13261 block = BLOCK_FOR_INSN (insn);
13262 for (;;)
13264 if (INSN_P (insn))
13266 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13267 return 1;
13269 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13270 if (reg_dead_flag)
13271 return reg_dead_flag == 1 ? 1 : 0;
13273 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13274 return 1;
13277 if (insn == BB_HEAD (block))
13278 break;
13280 insn = PREV_INSN (insn);
13283 /* Look at live-in sets for the basic block that we were in. */
13284 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13285 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13286 return 0;
13288 return 1;
13291 /* Note hard registers in X that are used. */
13293 static void
13294 mark_used_regs_combine (rtx x)
13296 RTX_CODE code = GET_CODE (x);
13297 unsigned int regno;
13298 int i;
13300 switch (code)
13302 case LABEL_REF:
13303 case SYMBOL_REF:
13304 case CONST:
13305 CASE_CONST_ANY:
13306 case PC:
13307 case ADDR_VEC:
13308 case ADDR_DIFF_VEC:
13309 case ASM_INPUT:
13310 /* CC0 must die in the insn after it is set, so we don't need to take
13311 special note of it here. */
13312 case CC0:
13313 return;
13315 case CLOBBER:
13316 /* If we are clobbering a MEM, mark any hard registers inside the
13317 address as used. */
13318 if (MEM_P (XEXP (x, 0)))
13319 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13320 return;
13322 case REG:
13323 regno = REGNO (x);
13324 /* A hard reg in a wide mode may really be multiple registers.
13325 If so, mark all of them just like the first. */
13326 if (regno < FIRST_PSEUDO_REGISTER)
13328 /* None of this applies to the stack, frame or arg pointers. */
13329 if (regno == STACK_POINTER_REGNUM
13330 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13331 && regno == HARD_FRAME_POINTER_REGNUM)
13332 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13333 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13334 || regno == FRAME_POINTER_REGNUM)
13335 return;
13337 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13339 return;
13341 case SET:
13343 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13344 the address. */
13345 rtx testreg = SET_DEST (x);
13347 while (GET_CODE (testreg) == SUBREG
13348 || GET_CODE (testreg) == ZERO_EXTRACT
13349 || GET_CODE (testreg) == STRICT_LOW_PART)
13350 testreg = XEXP (testreg, 0);
13352 if (MEM_P (testreg))
13353 mark_used_regs_combine (XEXP (testreg, 0));
13355 mark_used_regs_combine (SET_SRC (x));
13357 return;
13359 default:
13360 break;
13363 /* Recursively scan the operands of this expression. */
13366 const char *fmt = GET_RTX_FORMAT (code);
13368 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13370 if (fmt[i] == 'e')
13371 mark_used_regs_combine (XEXP (x, i));
13372 else if (fmt[i] == 'E')
13374 int j;
13376 for (j = 0; j < XVECLEN (x, i); j++)
13377 mark_used_regs_combine (XVECEXP (x, i, j));
13383 /* Remove register number REGNO from the dead registers list of INSN.
13385 Return the note used to record the death, if there was one. */
13388 remove_death (unsigned int regno, rtx_insn *insn)
13390 rtx note = find_regno_note (insn, REG_DEAD, regno);
13392 if (note)
13393 remove_note (insn, note);
13395 return note;
13398 /* For each register (hardware or pseudo) used within expression X, if its
13399 death is in an instruction with luid between FROM_LUID (inclusive) and
13400 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13401 list headed by PNOTES.
13403 That said, don't move registers killed by maybe_kill_insn.
13405 This is done when X is being merged by combination into TO_INSN. These
13406 notes will then be distributed as needed. */
13408 static void
13409 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13410 rtx *pnotes)
13412 const char *fmt;
13413 int len, i;
13414 enum rtx_code code = GET_CODE (x);
13416 if (code == REG)
13418 unsigned int regno = REGNO (x);
13419 rtx_insn *where_dead = reg_stat[regno].last_death;
13421 /* Don't move the register if it gets killed in between from and to. */
13422 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13423 && ! reg_referenced_p (x, maybe_kill_insn))
13424 return;
13426 if (where_dead
13427 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13428 && DF_INSN_LUID (where_dead) >= from_luid
13429 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13431 rtx note = remove_death (regno, where_dead);
13433 /* It is possible for the call above to return 0. This can occur
13434 when last_death points to I2 or I1 that we combined with.
13435 In that case make a new note.
13437 We must also check for the case where X is a hard register
13438 and NOTE is a death note for a range of hard registers
13439 including X. In that case, we must put REG_DEAD notes for
13440 the remaining registers in place of NOTE. */
13442 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13443 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13444 > GET_MODE_SIZE (GET_MODE (x))))
13446 unsigned int deadregno = REGNO (XEXP (note, 0));
13447 unsigned int deadend = END_REGNO (XEXP (note, 0));
13448 unsigned int ourend = END_REGNO (x);
13449 unsigned int i;
13451 for (i = deadregno; i < deadend; i++)
13452 if (i < regno || i >= ourend)
13453 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13456 /* If we didn't find any note, or if we found a REG_DEAD note that
13457 covers only part of the given reg, and we have a multi-reg hard
13458 register, then to be safe we must check for REG_DEAD notes
13459 for each register other than the first. They could have
13460 their own REG_DEAD notes lying around. */
13461 else if ((note == 0
13462 || (note != 0
13463 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13464 < GET_MODE_SIZE (GET_MODE (x)))))
13465 && regno < FIRST_PSEUDO_REGISTER
13466 && REG_NREGS (x) > 1)
13468 unsigned int ourend = END_REGNO (x);
13469 unsigned int i, offset;
13470 rtx oldnotes = 0;
13472 if (note)
13473 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13474 else
13475 offset = 1;
13477 for (i = regno + offset; i < ourend; i++)
13478 move_deaths (regno_reg_rtx[i],
13479 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13482 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13484 XEXP (note, 1) = *pnotes;
13485 *pnotes = note;
13487 else
13488 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13491 return;
13494 else if (GET_CODE (x) == SET)
13496 rtx dest = SET_DEST (x);
13498 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13500 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13501 that accesses one word of a multi-word item, some
13502 piece of everything register in the expression is used by
13503 this insn, so remove any old death. */
13504 /* ??? So why do we test for equality of the sizes? */
13506 if (GET_CODE (dest) == ZERO_EXTRACT
13507 || GET_CODE (dest) == STRICT_LOW_PART
13508 || (GET_CODE (dest) == SUBREG
13509 && (((GET_MODE_SIZE (GET_MODE (dest))
13510 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13511 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13512 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13514 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13515 return;
13518 /* If this is some other SUBREG, we know it replaces the entire
13519 value, so use that as the destination. */
13520 if (GET_CODE (dest) == SUBREG)
13521 dest = SUBREG_REG (dest);
13523 /* If this is a MEM, adjust deaths of anything used in the address.
13524 For a REG (the only other possibility), the entire value is
13525 being replaced so the old value is not used in this insn. */
13527 if (MEM_P (dest))
13528 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13529 to_insn, pnotes);
13530 return;
13533 else if (GET_CODE (x) == CLOBBER)
13534 return;
13536 len = GET_RTX_LENGTH (code);
13537 fmt = GET_RTX_FORMAT (code);
13539 for (i = 0; i < len; i++)
13541 if (fmt[i] == 'E')
13543 int j;
13544 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13545 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13546 to_insn, pnotes);
13548 else if (fmt[i] == 'e')
13549 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13553 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13554 pattern of an insn. X must be a REG. */
13556 static int
13557 reg_bitfield_target_p (rtx x, rtx body)
13559 int i;
13561 if (GET_CODE (body) == SET)
13563 rtx dest = SET_DEST (body);
13564 rtx target;
13565 unsigned int regno, tregno, endregno, endtregno;
13567 if (GET_CODE (dest) == ZERO_EXTRACT)
13568 target = XEXP (dest, 0);
13569 else if (GET_CODE (dest) == STRICT_LOW_PART)
13570 target = SUBREG_REG (XEXP (dest, 0));
13571 else
13572 return 0;
13574 if (GET_CODE (target) == SUBREG)
13575 target = SUBREG_REG (target);
13577 if (!REG_P (target))
13578 return 0;
13580 tregno = REGNO (target), regno = REGNO (x);
13581 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13582 return target == x;
13584 endtregno = end_hard_regno (GET_MODE (target), tregno);
13585 endregno = end_hard_regno (GET_MODE (x), regno);
13587 return endregno > tregno && regno < endtregno;
13590 else if (GET_CODE (body) == PARALLEL)
13591 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13592 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13593 return 1;
13595 return 0;
13598 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13599 as appropriate. I3 and I2 are the insns resulting from the combination
13600 insns including FROM (I2 may be zero).
13602 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13603 not need REG_DEAD notes because they are being substituted for. This
13604 saves searching in the most common cases.
13606 Each note in the list is either ignored or placed on some insns, depending
13607 on the type of note. */
13609 static void
13610 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13611 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13613 rtx note, next_note;
13614 rtx tem_note;
13615 rtx_insn *tem_insn;
13617 for (note = notes; note; note = next_note)
13619 rtx_insn *place = 0, *place2 = 0;
13621 next_note = XEXP (note, 1);
13622 switch (REG_NOTE_KIND (note))
13624 case REG_BR_PROB:
13625 case REG_BR_PRED:
13626 /* Doesn't matter much where we put this, as long as it's somewhere.
13627 It is preferable to keep these notes on branches, which is most
13628 likely to be i3. */
13629 place = i3;
13630 break;
13632 case REG_NON_LOCAL_GOTO:
13633 if (JUMP_P (i3))
13634 place = i3;
13635 else
13637 gcc_assert (i2 && JUMP_P (i2));
13638 place = i2;
13640 break;
13642 case REG_EH_REGION:
13643 /* These notes must remain with the call or trapping instruction. */
13644 if (CALL_P (i3))
13645 place = i3;
13646 else if (i2 && CALL_P (i2))
13647 place = i2;
13648 else
13650 gcc_assert (cfun->can_throw_non_call_exceptions);
13651 if (may_trap_p (i3))
13652 place = i3;
13653 else if (i2 && may_trap_p (i2))
13654 place = i2;
13655 /* ??? Otherwise assume we've combined things such that we
13656 can now prove that the instructions can't trap. Drop the
13657 note in this case. */
13659 break;
13661 case REG_ARGS_SIZE:
13662 /* ??? How to distribute between i3-i1. Assume i3 contains the
13663 entire adjustment. Assert i3 contains at least some adjust. */
13664 if (!noop_move_p (i3))
13666 int old_size, args_size = INTVAL (XEXP (note, 0));
13667 /* fixup_args_size_notes looks at REG_NORETURN note,
13668 so ensure the note is placed there first. */
13669 if (CALL_P (i3))
13671 rtx *np;
13672 for (np = &next_note; *np; np = &XEXP (*np, 1))
13673 if (REG_NOTE_KIND (*np) == REG_NORETURN)
13675 rtx n = *np;
13676 *np = XEXP (n, 1);
13677 XEXP (n, 1) = REG_NOTES (i3);
13678 REG_NOTES (i3) = n;
13679 break;
13682 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
13683 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13684 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13685 gcc_assert (old_size != args_size
13686 || (CALL_P (i3)
13687 && !ACCUMULATE_OUTGOING_ARGS
13688 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
13690 break;
13692 case REG_NORETURN:
13693 case REG_SETJMP:
13694 case REG_TM:
13695 case REG_CALL_DECL:
13696 /* These notes must remain with the call. It should not be
13697 possible for both I2 and I3 to be a call. */
13698 if (CALL_P (i3))
13699 place = i3;
13700 else
13702 gcc_assert (i2 && CALL_P (i2));
13703 place = i2;
13705 break;
13707 case REG_UNUSED:
13708 /* Any clobbers for i3 may still exist, and so we must process
13709 REG_UNUSED notes from that insn.
13711 Any clobbers from i2 or i1 can only exist if they were added by
13712 recog_for_combine. In that case, recog_for_combine created the
13713 necessary REG_UNUSED notes. Trying to keep any original
13714 REG_UNUSED notes from these insns can cause incorrect output
13715 if it is for the same register as the original i3 dest.
13716 In that case, we will notice that the register is set in i3,
13717 and then add a REG_UNUSED note for the destination of i3, which
13718 is wrong. However, it is possible to have REG_UNUSED notes from
13719 i2 or i1 for register which were both used and clobbered, so
13720 we keep notes from i2 or i1 if they will turn into REG_DEAD
13721 notes. */
13723 /* If this register is set or clobbered in I3, put the note there
13724 unless there is one already. */
13725 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
13727 if (from_insn != i3)
13728 break;
13730 if (! (REG_P (XEXP (note, 0))
13731 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
13732 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
13733 place = i3;
13735 /* Otherwise, if this register is used by I3, then this register
13736 now dies here, so we must put a REG_DEAD note here unless there
13737 is one already. */
13738 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
13739 && ! (REG_P (XEXP (note, 0))
13740 ? find_regno_note (i3, REG_DEAD,
13741 REGNO (XEXP (note, 0)))
13742 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
13744 PUT_REG_NOTE_KIND (note, REG_DEAD);
13745 place = i3;
13747 break;
13749 case REG_EQUAL:
13750 case REG_EQUIV:
13751 case REG_NOALIAS:
13752 /* These notes say something about results of an insn. We can
13753 only support them if they used to be on I3 in which case they
13754 remain on I3. Otherwise they are ignored.
13756 If the note refers to an expression that is not a constant, we
13757 must also ignore the note since we cannot tell whether the
13758 equivalence is still true. It might be possible to do
13759 slightly better than this (we only have a problem if I2DEST
13760 or I1DEST is present in the expression), but it doesn't
13761 seem worth the trouble. */
13763 if (from_insn == i3
13764 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
13765 place = i3;
13766 break;
13768 case REG_INC:
13769 /* These notes say something about how a register is used. They must
13770 be present on any use of the register in I2 or I3. */
13771 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
13772 place = i3;
13774 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
13776 if (place)
13777 place2 = i2;
13778 else
13779 place = i2;
13781 break;
13783 case REG_LABEL_TARGET:
13784 case REG_LABEL_OPERAND:
13785 /* This can show up in several ways -- either directly in the
13786 pattern, or hidden off in the constant pool with (or without?)
13787 a REG_EQUAL note. */
13788 /* ??? Ignore the without-reg_equal-note problem for now. */
13789 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
13790 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
13791 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13792 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0)))
13793 place = i3;
13795 if (i2
13796 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
13797 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
13798 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
13799 && LABEL_REF_LABEL (XEXP (tem_note, 0)) == XEXP (note, 0))))
13801 if (place)
13802 place2 = i2;
13803 else
13804 place = i2;
13807 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13808 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13809 there. */
13810 if (place && JUMP_P (place)
13811 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13812 && (JUMP_LABEL (place) == NULL
13813 || JUMP_LABEL (place) == XEXP (note, 0)))
13815 rtx label = JUMP_LABEL (place);
13817 if (!label)
13818 JUMP_LABEL (place) = XEXP (note, 0);
13819 else if (LABEL_P (label))
13820 LABEL_NUSES (label)--;
13823 if (place2 && JUMP_P (place2)
13824 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
13825 && (JUMP_LABEL (place2) == NULL
13826 || JUMP_LABEL (place2) == XEXP (note, 0)))
13828 rtx label = JUMP_LABEL (place2);
13830 if (!label)
13831 JUMP_LABEL (place2) = XEXP (note, 0);
13832 else if (LABEL_P (label))
13833 LABEL_NUSES (label)--;
13834 place2 = 0;
13836 break;
13838 case REG_NONNEG:
13839 /* This note says something about the value of a register prior
13840 to the execution of an insn. It is too much trouble to see
13841 if the note is still correct in all situations. It is better
13842 to simply delete it. */
13843 break;
13845 case REG_DEAD:
13846 /* If we replaced the right hand side of FROM_INSN with a
13847 REG_EQUAL note, the original use of the dying register
13848 will not have been combined into I3 and I2. In such cases,
13849 FROM_INSN is guaranteed to be the first of the combined
13850 instructions, so we simply need to search back before
13851 FROM_INSN for the previous use or set of this register,
13852 then alter the notes there appropriately.
13854 If the register is used as an input in I3, it dies there.
13855 Similarly for I2, if it is nonzero and adjacent to I3.
13857 If the register is not used as an input in either I3 or I2
13858 and it is not one of the registers we were supposed to eliminate,
13859 there are two possibilities. We might have a non-adjacent I2
13860 or we might have somehow eliminated an additional register
13861 from a computation. For example, we might have had A & B where
13862 we discover that B will always be zero. In this case we will
13863 eliminate the reference to A.
13865 In both cases, we must search to see if we can find a previous
13866 use of A and put the death note there. */
13868 if (from_insn
13869 && from_insn == i2mod
13870 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
13871 tem_insn = from_insn;
13872 else
13874 if (from_insn
13875 && CALL_P (from_insn)
13876 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
13877 place = from_insn;
13878 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
13879 place = i3;
13880 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
13881 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
13882 place = i2;
13883 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
13884 && !(i2mod
13885 && reg_overlap_mentioned_p (XEXP (note, 0),
13886 i2mod_old_rhs)))
13887 || rtx_equal_p (XEXP (note, 0), elim_i1)
13888 || rtx_equal_p (XEXP (note, 0), elim_i0))
13889 break;
13890 tem_insn = i3;
13891 /* If the new I2 sets the same register that is marked dead
13892 in the note, the note now should not be put on I2, as the
13893 note refers to a previous incarnation of the reg. */
13894 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
13895 tem_insn = i2;
13898 if (place == 0)
13900 basic_block bb = this_basic_block;
13902 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
13904 if (!NONDEBUG_INSN_P (tem_insn))
13906 if (tem_insn == BB_HEAD (bb))
13907 break;
13908 continue;
13911 /* If the register is being set at TEM_INSN, see if that is all
13912 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
13913 into a REG_UNUSED note instead. Don't delete sets to
13914 global register vars. */
13915 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
13916 || !global_regs[REGNO (XEXP (note, 0))])
13917 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
13919 rtx set = single_set (tem_insn);
13920 rtx inner_dest = 0;
13921 rtx_insn *cc0_setter = NULL;
13923 if (set != 0)
13924 for (inner_dest = SET_DEST (set);
13925 (GET_CODE (inner_dest) == STRICT_LOW_PART
13926 || GET_CODE (inner_dest) == SUBREG
13927 || GET_CODE (inner_dest) == ZERO_EXTRACT);
13928 inner_dest = XEXP (inner_dest, 0))
13931 /* Verify that it was the set, and not a clobber that
13932 modified the register.
13934 CC0 targets must be careful to maintain setter/user
13935 pairs. If we cannot delete the setter due to side
13936 effects, mark the user with an UNUSED note instead
13937 of deleting it. */
13939 if (set != 0 && ! side_effects_p (SET_SRC (set))
13940 && rtx_equal_p (XEXP (note, 0), inner_dest)
13941 && (!HAVE_cc0
13942 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
13943 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
13944 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
13946 /* Move the notes and links of TEM_INSN elsewhere.
13947 This might delete other dead insns recursively.
13948 First set the pattern to something that won't use
13949 any register. */
13950 rtx old_notes = REG_NOTES (tem_insn);
13952 PATTERN (tem_insn) = pc_rtx;
13953 REG_NOTES (tem_insn) = NULL;
13955 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
13956 NULL_RTX, NULL_RTX, NULL_RTX);
13957 distribute_links (LOG_LINKS (tem_insn));
13959 SET_INSN_DELETED (tem_insn);
13960 if (tem_insn == i2)
13961 i2 = NULL;
13963 /* Delete the setter too. */
13964 if (cc0_setter)
13966 PATTERN (cc0_setter) = pc_rtx;
13967 old_notes = REG_NOTES (cc0_setter);
13968 REG_NOTES (cc0_setter) = NULL;
13970 distribute_notes (old_notes, cc0_setter,
13971 cc0_setter, NULL,
13972 NULL_RTX, NULL_RTX, NULL_RTX);
13973 distribute_links (LOG_LINKS (cc0_setter));
13975 SET_INSN_DELETED (cc0_setter);
13976 if (cc0_setter == i2)
13977 i2 = NULL;
13980 else
13982 PUT_REG_NOTE_KIND (note, REG_UNUSED);
13984 /* If there isn't already a REG_UNUSED note, put one
13985 here. Do not place a REG_DEAD note, even if
13986 the register is also used here; that would not
13987 match the algorithm used in lifetime analysis
13988 and can cause the consistency check in the
13989 scheduler to fail. */
13990 if (! find_regno_note (tem_insn, REG_UNUSED,
13991 REGNO (XEXP (note, 0))))
13992 place = tem_insn;
13993 break;
13996 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
13997 || (CALL_P (tem_insn)
13998 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14000 place = tem_insn;
14002 /* If we are doing a 3->2 combination, and we have a
14003 register which formerly died in i3 and was not used
14004 by i2, which now no longer dies in i3 and is used in
14005 i2 but does not die in i2, and place is between i2
14006 and i3, then we may need to move a link from place to
14007 i2. */
14008 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14009 && from_insn
14010 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14011 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14013 struct insn_link *links = LOG_LINKS (place);
14014 LOG_LINKS (place) = NULL;
14015 distribute_links (links);
14017 break;
14020 if (tem_insn == BB_HEAD (bb))
14021 break;
14026 /* If the register is set or already dead at PLACE, we needn't do
14027 anything with this note if it is still a REG_DEAD note.
14028 We check here if it is set at all, not if is it totally replaced,
14029 which is what `dead_or_set_p' checks, so also check for it being
14030 set partially. */
14032 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14034 unsigned int regno = REGNO (XEXP (note, 0));
14035 reg_stat_type *rsp = &reg_stat[regno];
14037 if (dead_or_set_p (place, XEXP (note, 0))
14038 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14040 /* Unless the register previously died in PLACE, clear
14041 last_death. [I no longer understand why this is
14042 being done.] */
14043 if (rsp->last_death != place)
14044 rsp->last_death = 0;
14045 place = 0;
14047 else
14048 rsp->last_death = place;
14050 /* If this is a death note for a hard reg that is occupying
14051 multiple registers, ensure that we are still using all
14052 parts of the object. If we find a piece of the object
14053 that is unused, we must arrange for an appropriate REG_DEAD
14054 note to be added for it. However, we can't just emit a USE
14055 and tag the note to it, since the register might actually
14056 be dead; so we recourse, and the recursive call then finds
14057 the previous insn that used this register. */
14059 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14061 unsigned int endregno = END_REGNO (XEXP (note, 0));
14062 bool all_used = true;
14063 unsigned int i;
14065 for (i = regno; i < endregno; i++)
14066 if ((! refers_to_regno_p (i, PATTERN (place))
14067 && ! find_regno_fusage (place, USE, i))
14068 || dead_or_set_regno_p (place, i))
14070 all_used = false;
14071 break;
14074 if (! all_used)
14076 /* Put only REG_DEAD notes for pieces that are
14077 not already dead or set. */
14079 for (i = regno; i < endregno;
14080 i += hard_regno_nregs[i][reg_raw_mode[i]])
14082 rtx piece = regno_reg_rtx[i];
14083 basic_block bb = this_basic_block;
14085 if (! dead_or_set_p (place, piece)
14086 && ! reg_bitfield_target_p (piece,
14087 PATTERN (place)))
14089 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14090 NULL_RTX);
14092 distribute_notes (new_note, place, place,
14093 NULL, NULL_RTX, NULL_RTX,
14094 NULL_RTX);
14096 else if (! refers_to_regno_p (i, PATTERN (place))
14097 && ! find_regno_fusage (place, USE, i))
14098 for (tem_insn = PREV_INSN (place); ;
14099 tem_insn = PREV_INSN (tem_insn))
14101 if (!NONDEBUG_INSN_P (tem_insn))
14103 if (tem_insn == BB_HEAD (bb))
14104 break;
14105 continue;
14107 if (dead_or_set_p (tem_insn, piece)
14108 || reg_bitfield_target_p (piece,
14109 PATTERN (tem_insn)))
14111 add_reg_note (tem_insn, REG_UNUSED, piece);
14112 break;
14117 place = 0;
14121 break;
14123 default:
14124 /* Any other notes should not be present at this point in the
14125 compilation. */
14126 gcc_unreachable ();
14129 if (place)
14131 XEXP (note, 1) = REG_NOTES (place);
14132 REG_NOTES (place) = note;
14135 if (place2)
14136 add_shallow_copy_of_reg_note (place2, note);
14140 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14141 I3, I2, and I1 to new locations. This is also called to add a link
14142 pointing at I3 when I3's destination is changed. */
14144 static void
14145 distribute_links (struct insn_link *links)
14147 struct insn_link *link, *next_link;
14149 for (link = links; link; link = next_link)
14151 rtx_insn *place = 0;
14152 rtx_insn *insn;
14153 rtx set, reg;
14155 next_link = link->next;
14157 /* If the insn that this link points to is a NOTE, ignore it. */
14158 if (NOTE_P (link->insn))
14159 continue;
14161 set = 0;
14162 rtx pat = PATTERN (link->insn);
14163 if (GET_CODE (pat) == SET)
14164 set = pat;
14165 else if (GET_CODE (pat) == PARALLEL)
14167 int i;
14168 for (i = 0; i < XVECLEN (pat, 0); i++)
14170 set = XVECEXP (pat, 0, i);
14171 if (GET_CODE (set) != SET)
14172 continue;
14174 reg = SET_DEST (set);
14175 while (GET_CODE (reg) == ZERO_EXTRACT
14176 || GET_CODE (reg) == STRICT_LOW_PART
14177 || GET_CODE (reg) == SUBREG)
14178 reg = XEXP (reg, 0);
14180 if (!REG_P (reg))
14181 continue;
14183 if (REGNO (reg) == link->regno)
14184 break;
14186 if (i == XVECLEN (pat, 0))
14187 continue;
14189 else
14190 continue;
14192 reg = SET_DEST (set);
14194 while (GET_CODE (reg) == ZERO_EXTRACT
14195 || GET_CODE (reg) == STRICT_LOW_PART
14196 || GET_CODE (reg) == SUBREG)
14197 reg = XEXP (reg, 0);
14199 /* A LOG_LINK is defined as being placed on the first insn that uses
14200 a register and points to the insn that sets the register. Start
14201 searching at the next insn after the target of the link and stop
14202 when we reach a set of the register or the end of the basic block.
14204 Note that this correctly handles the link that used to point from
14205 I3 to I2. Also note that not much searching is typically done here
14206 since most links don't point very far away. */
14208 for (insn = NEXT_INSN (link->insn);
14209 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14210 || BB_HEAD (this_basic_block->next_bb) != insn));
14211 insn = NEXT_INSN (insn))
14212 if (DEBUG_INSN_P (insn))
14213 continue;
14214 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14216 if (reg_referenced_p (reg, PATTERN (insn)))
14217 place = insn;
14218 break;
14220 else if (CALL_P (insn)
14221 && find_reg_fusage (insn, USE, reg))
14223 place = insn;
14224 break;
14226 else if (INSN_P (insn) && reg_set_p (reg, insn))
14227 break;
14229 /* If we found a place to put the link, place it there unless there
14230 is already a link to the same insn as LINK at that point. */
14232 if (place)
14234 struct insn_link *link2;
14236 FOR_EACH_LOG_LINK (link2, place)
14237 if (link2->insn == link->insn && link2->regno == link->regno)
14238 break;
14240 if (link2 == NULL)
14242 link->next = LOG_LINKS (place);
14243 LOG_LINKS (place) = link;
14245 /* Set added_links_insn to the earliest insn we added a
14246 link to. */
14247 if (added_links_insn == 0
14248 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14249 added_links_insn = place;
14255 /* Check for any register or memory mentioned in EQUIV that is not
14256 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14257 of EXPR where some registers may have been replaced by constants. */
14259 static bool
14260 unmentioned_reg_p (rtx equiv, rtx expr)
14262 subrtx_iterator::array_type array;
14263 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14265 const_rtx x = *iter;
14266 if ((REG_P (x) || MEM_P (x))
14267 && !reg_mentioned_p (x, expr))
14268 return true;
14270 return false;
14273 DEBUG_FUNCTION void
14274 dump_combine_stats (FILE *file)
14276 fprintf
14277 (file,
14278 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14279 combine_attempts, combine_merges, combine_extras, combine_successes);
14282 void
14283 dump_combine_total_stats (FILE *file)
14285 fprintf
14286 (file,
14287 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14288 total_attempts, total_merges, total_extras, total_successes);
14291 /* Try combining insns through substitution. */
14292 static unsigned int
14293 rest_of_handle_combine (void)
14295 int rebuild_jump_labels_after_combine;
14297 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14298 df_note_add_problem ();
14299 df_analyze ();
14301 regstat_init_n_sets_and_refs ();
14302 reg_n_sets_max = max_reg_num ();
14304 rebuild_jump_labels_after_combine
14305 = combine_instructions (get_insns (), max_reg_num ());
14307 /* Combining insns may have turned an indirect jump into a
14308 direct jump. Rebuild the JUMP_LABEL fields of jumping
14309 instructions. */
14310 if (rebuild_jump_labels_after_combine)
14312 timevar_push (TV_JUMP);
14313 rebuild_jump_labels (get_insns ());
14314 cleanup_cfg (0);
14315 timevar_pop (TV_JUMP);
14318 regstat_free_n_sets_and_refs ();
14319 return 0;
14322 namespace {
14324 const pass_data pass_data_combine =
14326 RTL_PASS, /* type */
14327 "combine", /* name */
14328 OPTGROUP_NONE, /* optinfo_flags */
14329 TV_COMBINE, /* tv_id */
14330 PROP_cfglayout, /* properties_required */
14331 0, /* properties_provided */
14332 0, /* properties_destroyed */
14333 0, /* todo_flags_start */
14334 TODO_df_finish, /* todo_flags_finish */
14337 class pass_combine : public rtl_opt_pass
14339 public:
14340 pass_combine (gcc::context *ctxt)
14341 : rtl_opt_pass (pass_data_combine, ctxt)
14344 /* opt_pass methods: */
14345 virtual bool gate (function *) { return (optimize > 0); }
14346 virtual unsigned int execute (function *)
14348 return rest_of_handle_combine ();
14351 }; // class pass_combine
14353 } // anon namespace
14355 rtl_opt_pass *
14356 make_pass_combine (gcc::context *ctxt)
14358 return new pass_combine (ctxt);