2018-12-06 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / ada / inline.adb
blob9dbc8ab8aaed7a6de9dae6ab78e0c103d7159f6c
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- I N L I N E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Debug; use Debug;
29 with Einfo; use Einfo;
30 with Elists; use Elists;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Ch6; use Exp_Ch6;
34 with Exp_Ch7; use Exp_Ch7;
35 with Exp_Tss; use Exp_Tss;
36 with Exp_Util; use Exp_Util;
37 with Fname; use Fname;
38 with Fname.UF; use Fname.UF;
39 with Lib; use Lib;
40 with Namet; use Namet;
41 with Nmake; use Nmake;
42 with Nlists; use Nlists;
43 with Output; use Output;
44 with Sem_Aux; use Sem_Aux;
45 with Sem_Ch8; use Sem_Ch8;
46 with Sem_Ch10; use Sem_Ch10;
47 with Sem_Ch12; use Sem_Ch12;
48 with Sem_Prag; use Sem_Prag;
49 with Sem_Util; use Sem_Util;
50 with Sinfo; use Sinfo;
51 with Sinput; use Sinput;
52 with Snames; use Snames;
53 with Stand; use Stand;
54 with Uname; use Uname;
55 with Tbuild; use Tbuild;
57 package body Inline is
59 Check_Inlining_Restrictions : constant Boolean := True;
60 -- In the following cases the frontend rejects inlining because they
61 -- are not handled well by the backend. This variable facilitates
62 -- disabling these restrictions to evaluate future versions of the
63 -- GCC backend in which some of the restrictions may be supported.
65 -- - subprograms that have:
66 -- - nested subprograms
67 -- - instantiations
68 -- - package declarations
69 -- - task or protected object declarations
70 -- - some of the following statements:
71 -- - abort
72 -- - asynchronous-select
73 -- - conditional-entry-call
74 -- - delay-relative
75 -- - delay-until
76 -- - selective-accept
77 -- - timed-entry-call
79 Inlined_Calls : Elist_Id;
80 -- List of frontend inlined calls
82 Backend_Calls : Elist_Id;
83 -- List of inline calls passed to the backend
85 Backend_Inlined_Subps : Elist_Id;
86 -- List of subprograms inlined by the backend
88 Backend_Not_Inlined_Subps : Elist_Id;
89 -- List of subprograms that cannot be inlined by the backend
91 --------------------
92 -- Inlined Bodies --
93 --------------------
95 -- Inlined functions are actually placed in line by the backend if the
96 -- corresponding bodies are available (i.e. compiled). Whenever we find
97 -- a call to an inlined subprogram, we add the name of the enclosing
98 -- compilation unit to a worklist. After all compilation, and after
99 -- expansion of generic bodies, we traverse the list of pending bodies
100 -- and compile them as well.
102 package Inlined_Bodies is new Table.Table (
103 Table_Component_Type => Entity_Id,
104 Table_Index_Type => Int,
105 Table_Low_Bound => 0,
106 Table_Initial => Alloc.Inlined_Bodies_Initial,
107 Table_Increment => Alloc.Inlined_Bodies_Increment,
108 Table_Name => "Inlined_Bodies");
110 -----------------------
111 -- Inline Processing --
112 -----------------------
114 -- For each call to an inlined subprogram, we make entries in a table
115 -- that stores caller and callee, and indicates the call direction from
116 -- one to the other. We also record the compilation unit that contains
117 -- the callee. After analyzing the bodies of all such compilation units,
118 -- we compute the transitive closure of inlined subprograms called from
119 -- the main compilation unit and make it available to the code generator
120 -- in no particular order, thus allowing cycles in the call graph.
122 Last_Inlined : Entity_Id := Empty;
124 -- For each entry in the table we keep a list of successors in topological
125 -- order, i.e. callers of the current subprogram.
127 type Subp_Index is new Nat;
128 No_Subp : constant Subp_Index := 0;
130 -- The subprogram entities are hashed into the Inlined table
132 Num_Hash_Headers : constant := 512;
134 Hash_Headers : array (Subp_Index range 0 .. Num_Hash_Headers - 1)
135 of Subp_Index;
137 type Succ_Index is new Nat;
138 No_Succ : constant Succ_Index := 0;
140 type Succ_Info is record
141 Subp : Subp_Index;
142 Next : Succ_Index;
143 end record;
145 -- The following table stores list elements for the successor lists. These
146 -- lists cannot be chained directly through entries in the Inlined table,
147 -- because a given subprogram can appear in several such lists.
149 package Successors is new Table.Table (
150 Table_Component_Type => Succ_Info,
151 Table_Index_Type => Succ_Index,
152 Table_Low_Bound => 1,
153 Table_Initial => Alloc.Successors_Initial,
154 Table_Increment => Alloc.Successors_Increment,
155 Table_Name => "Successors");
157 type Subp_Info is record
158 Name : Entity_Id := Empty;
159 Next : Subp_Index := No_Subp;
160 First_Succ : Succ_Index := No_Succ;
161 Main_Call : Boolean := False;
162 Processed : Boolean := False;
163 end record;
165 package Inlined is new Table.Table (
166 Table_Component_Type => Subp_Info,
167 Table_Index_Type => Subp_Index,
168 Table_Low_Bound => 1,
169 Table_Initial => Alloc.Inlined_Initial,
170 Table_Increment => Alloc.Inlined_Increment,
171 Table_Name => "Inlined");
173 -----------------------
174 -- Local Subprograms --
175 -----------------------
177 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty);
178 -- Make two entries in Inlined table, for an inlined subprogram being
179 -- called, and for the inlined subprogram that contains the call. If
180 -- the call is in the main compilation unit, Caller is Empty.
182 procedure Add_Inlined_Subprogram (E : Entity_Id);
183 -- Add subprogram E to the list of inlined subprogram for the unit
185 function Add_Subp (E : Entity_Id) return Subp_Index;
186 -- Make entry in Inlined table for subprogram E, or return table index
187 -- that already holds E.
189 function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id;
190 pragma Inline (Get_Code_Unit_Entity);
191 -- Return the entity node for the unit containing E. Always return the spec
192 -- for a package.
194 function Has_Initialized_Type (E : Entity_Id) return Boolean;
195 -- If a candidate for inlining contains type declarations for types with
196 -- nontrivial initialization procedures, they are not worth inlining.
198 function Has_Single_Return (N : Node_Id) return Boolean;
199 -- In general we cannot inline functions that return unconstrained type.
200 -- However, we can handle such functions if all return statements return
201 -- a local variable that is the first declaration in the body of the
202 -- function. In that case the call can be replaced by that local
203 -- variable as is done for other inlined calls.
205 function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean;
206 -- Return True if E is in the main unit or its spec or in a subunit
208 function Is_Nested (E : Entity_Id) return Boolean;
209 -- If the function is nested inside some other function, it will always
210 -- be compiled if that function is, so don't add it to the inline list.
211 -- We cannot compile a nested function outside the scope of the containing
212 -- function anyway. This is also the case if the function is defined in a
213 -- task body or within an entry (for example, an initialization procedure).
215 procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id);
216 -- Remove all aspects and/or pragmas that have no meaning in inlined body
217 -- Body_Decl. The analysis of these items is performed on the non-inlined
218 -- body. The items currently removed are:
219 -- Contract_Cases
220 -- Global
221 -- Depends
222 -- Postcondition
223 -- Precondition
224 -- Refined_Global
225 -- Refined_Depends
226 -- Refined_Post
227 -- Test_Case
228 -- Unmodified
229 -- Unreferenced
231 ------------------------------
232 -- Deferred Cleanup Actions --
233 ------------------------------
235 -- The cleanup actions for scopes that contain instantiations is delayed
236 -- until after expansion of those instantiations, because they may contain
237 -- finalizable objects or tasks that affect the cleanup code. A scope
238 -- that contains instantiations only needs to be finalized once, even
239 -- if it contains more than one instance. We keep a list of scopes
240 -- that must still be finalized, and call cleanup_actions after all
241 -- the instantiations have been completed.
243 To_Clean : Elist_Id;
245 procedure Add_Scope_To_Clean (Inst : Entity_Id);
246 -- Build set of scopes on which cleanup actions must be performed
248 procedure Cleanup_Scopes;
249 -- Complete cleanup actions on scopes that need it
251 --------------
252 -- Add_Call --
253 --------------
255 procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty) is
256 P1 : constant Subp_Index := Add_Subp (Called);
257 P2 : Subp_Index;
258 J : Succ_Index;
260 begin
261 if Present (Caller) then
262 P2 := Add_Subp (Caller);
264 -- Add P1 to the list of successors of P2, if not already there.
265 -- Note that P2 may contain more than one call to P1, and only
266 -- one needs to be recorded.
268 J := Inlined.Table (P2).First_Succ;
269 while J /= No_Succ loop
270 if Successors.Table (J).Subp = P1 then
271 return;
272 end if;
274 J := Successors.Table (J).Next;
275 end loop;
277 -- On exit, make a successor entry for P1
279 Successors.Increment_Last;
280 Successors.Table (Successors.Last).Subp := P1;
281 Successors.Table (Successors.Last).Next :=
282 Inlined.Table (P2).First_Succ;
283 Inlined.Table (P2).First_Succ := Successors.Last;
284 else
285 Inlined.Table (P1).Main_Call := True;
286 end if;
287 end Add_Call;
289 ----------------------
290 -- Add_Inlined_Body --
291 ----------------------
293 procedure Add_Inlined_Body (E : Entity_Id; N : Node_Id) is
295 type Inline_Level_Type is (Dont_Inline, Inline_Call, Inline_Package);
296 -- Level of inlining for the call: Dont_Inline means no inlining,
297 -- Inline_Call means that only the call is considered for inlining,
298 -- Inline_Package means that the call is considered for inlining and
299 -- its package compiled and scanned for more inlining opportunities.
301 function Is_Non_Loading_Expression_Function
302 (Id : Entity_Id) return Boolean;
303 -- Determine whether arbitrary entity Id denotes a subprogram which is
304 -- either
306 -- * An expression function
308 -- * A function completed by an expression function where both the
309 -- spec and body are in the same context.
311 function Must_Inline return Inline_Level_Type;
312 -- Inlining is only done if the call statement N is in the main unit,
313 -- or within the body of another inlined subprogram.
315 ----------------------------------------
316 -- Is_Non_Loading_Expression_Function --
317 ----------------------------------------
319 function Is_Non_Loading_Expression_Function
320 (Id : Entity_Id) return Boolean
322 Body_Decl : Node_Id;
323 Body_Id : Entity_Id;
324 Spec_Decl : Node_Id;
326 begin
327 -- A stand-alone expression function is transformed into a spec-body
328 -- pair in-place. Since both the spec and body are in the same list,
329 -- the inlining of such an expression function does not need to load
330 -- anything extra.
332 if Is_Expression_Function (Id) then
333 return True;
335 -- A function may be completed by an expression function
337 elsif Ekind (Id) = E_Function then
338 Spec_Decl := Unit_Declaration_Node (Id);
340 if Nkind (Spec_Decl) = N_Subprogram_Declaration then
341 Body_Id := Corresponding_Body (Spec_Decl);
343 if Present (Body_Id) then
344 Body_Decl := Unit_Declaration_Node (Body_Id);
346 -- The inlining of a completing expression function does
347 -- not need to load anything extra when both the spec and
348 -- body are in the same context.
350 return
351 Was_Expression_Function (Body_Decl)
352 and then Parent (Spec_Decl) = Parent (Body_Decl);
353 end if;
354 end if;
355 end if;
357 return False;
358 end Is_Non_Loading_Expression_Function;
360 -----------------
361 -- Must_Inline --
362 -----------------
364 function Must_Inline return Inline_Level_Type is
365 Scop : Entity_Id;
366 Comp : Node_Id;
368 begin
369 -- Check if call is in main unit
371 Scop := Current_Scope;
373 -- Do not try to inline if scope is standard. This could happen, for
374 -- example, for a call to Add_Global_Declaration, and it causes
375 -- trouble to try to inline at this level.
377 if Scop = Standard_Standard then
378 return Dont_Inline;
379 end if;
381 -- Otherwise lookup scope stack to outer scope
383 while Scope (Scop) /= Standard_Standard
384 and then not Is_Child_Unit (Scop)
385 loop
386 Scop := Scope (Scop);
387 end loop;
389 Comp := Parent (Scop);
390 while Nkind (Comp) /= N_Compilation_Unit loop
391 Comp := Parent (Comp);
392 end loop;
394 -- If the call is in the main unit, inline the call and compile the
395 -- package of the subprogram to find more calls to be inlined.
397 if Comp = Cunit (Main_Unit)
398 or else Comp = Library_Unit (Cunit (Main_Unit))
399 then
400 Add_Call (E);
401 return Inline_Package;
402 end if;
404 -- The call is not in the main unit. See if it is in some subprogram
405 -- that can be inlined outside its unit. If so, inline the call and,
406 -- if the inlining level is set to 1, stop there; otherwise also
407 -- compile the package as above.
409 Scop := Current_Scope;
410 while Scope (Scop) /= Standard_Standard
411 and then not Is_Child_Unit (Scop)
412 loop
413 if Is_Overloadable (Scop)
414 and then Is_Inlined (Scop)
415 and then not Is_Nested (Scop)
416 then
417 Add_Call (E, Scop);
419 if Inline_Level = 1 then
420 return Inline_Call;
421 else
422 return Inline_Package;
423 end if;
424 end if;
426 Scop := Scope (Scop);
427 end loop;
429 return Dont_Inline;
430 end Must_Inline;
432 Level : Inline_Level_Type;
434 -- Start of processing for Add_Inlined_Body
436 begin
437 Append_New_Elmt (N, To => Backend_Calls);
439 -- Skip subprograms that cannot be inlined outside their unit
441 if Is_Abstract_Subprogram (E)
442 or else Convention (E) = Convention_Protected
443 or else Is_Nested (E)
444 then
445 return;
446 end if;
448 -- Find out whether the call must be inlined. Unless the result is
449 -- Dont_Inline, Must_Inline also creates an edge for the call in the
450 -- callgraph; however, it will not be activated until after Is_Called
451 -- is set on the subprogram.
453 Level := Must_Inline;
455 if Level = Dont_Inline then
456 return;
457 end if;
459 -- If the call was generated by the compiler and is to a subprogram in
460 -- a run-time unit, we need to suppress debugging information for it,
461 -- so that the code that is eventually inlined will not affect the
462 -- debugging of the program. We do not do it if the call comes from
463 -- source because, even if the call is inlined, the user may expect it
464 -- to be present in the debugging information.
466 if not Comes_From_Source (N)
467 and then In_Extended_Main_Source_Unit (N)
468 and then Is_Predefined_Unit (Get_Source_Unit (E))
469 then
470 Set_Needs_Debug_Info (E, False);
471 end if;
473 -- If the subprogram is an expression function, or is completed by one
474 -- where both the spec and body are in the same context, then there is
475 -- no need to load any package body since the body of the function is
476 -- in the spec.
478 if Is_Non_Loading_Expression_Function (E) then
479 Set_Is_Called (E);
480 return;
481 end if;
483 -- Find unit containing E, and add to list of inlined bodies if needed.
484 -- If the body is already present, no need to load any other unit. This
485 -- is the case for an initialization procedure, which appears in the
486 -- package declaration that contains the type. It is also the case if
487 -- the body has already been analyzed. Finally, if the unit enclosing
488 -- E is an instance, the instance body will be analyzed in any case,
489 -- and there is no need to add the enclosing unit (whose body might not
490 -- be available).
492 -- Library-level functions must be handled specially, because there is
493 -- no enclosing package to retrieve. In this case, it is the body of
494 -- the function that will have to be loaded.
496 declare
497 Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
499 begin
500 if Pack = E then
501 Set_Is_Called (E);
502 Inlined_Bodies.Increment_Last;
503 Inlined_Bodies.Table (Inlined_Bodies.Last) := E;
505 elsif Ekind (Pack) = E_Package then
506 Set_Is_Called (E);
508 if Is_Generic_Instance (Pack) then
509 null;
511 -- Do not inline the package if the subprogram is an init proc
512 -- or other internally generated subprogram, because in that
513 -- case the subprogram body appears in the same unit that
514 -- declares the type, and that body is visible to the back end.
515 -- Do not inline it either if it is in the main unit.
516 -- Extend the -gnatn2 processing to -gnatn1 for Inline_Always
517 -- calls if the back-end takes care of inlining the call.
518 -- Note that Level in Inline_Package | Inline_Call here.
520 elsif ((Level = Inline_Call
521 and then Has_Pragma_Inline_Always (E)
522 and then Back_End_Inlining)
523 or else Level = Inline_Package)
524 and then not Is_Inlined (Pack)
525 and then not Is_Internal (E)
526 and then not In_Main_Unit_Or_Subunit (Pack)
527 then
528 Set_Is_Inlined (Pack);
529 Inlined_Bodies.Increment_Last;
530 Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
531 end if;
532 end if;
534 -- Ensure that Analyze_Inlined_Bodies will be invoked after
535 -- completing the analysis of the current unit.
537 Inline_Processing_Required := True;
538 end;
539 end Add_Inlined_Body;
541 ----------------------------
542 -- Add_Inlined_Subprogram --
543 ----------------------------
545 procedure Add_Inlined_Subprogram (E : Entity_Id) is
546 Decl : constant Node_Id := Parent (Declaration_Node (E));
547 Pack : constant Entity_Id := Get_Code_Unit_Entity (E);
549 procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id);
550 -- Append Subp to the list of subprograms inlined by the backend
552 procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id);
553 -- Append Subp to the list of subprograms that cannot be inlined by
554 -- the backend.
556 -----------------------------------------
557 -- Register_Backend_Inlined_Subprogram --
558 -----------------------------------------
560 procedure Register_Backend_Inlined_Subprogram (Subp : Entity_Id) is
561 begin
562 Append_New_Elmt (Subp, To => Backend_Inlined_Subps);
563 end Register_Backend_Inlined_Subprogram;
565 ---------------------------------------------
566 -- Register_Backend_Not_Inlined_Subprogram --
567 ---------------------------------------------
569 procedure Register_Backend_Not_Inlined_Subprogram (Subp : Entity_Id) is
570 begin
571 Append_New_Elmt (Subp, To => Backend_Not_Inlined_Subps);
572 end Register_Backend_Not_Inlined_Subprogram;
574 -- Start of processing for Add_Inlined_Subprogram
576 begin
577 -- If the subprogram is to be inlined, and if its unit is known to be
578 -- inlined or is an instance whose body will be analyzed anyway or the
579 -- subprogram was generated as a body by the compiler (for example an
580 -- initialization procedure) or its declaration was provided along with
581 -- the body (for example an expression function), and if it is declared
582 -- at the library level not in the main unit, and if it can be inlined
583 -- by the back-end, then insert it in the list of inlined subprograms.
585 if Is_Inlined (E)
586 and then (Is_Inlined (Pack)
587 or else Is_Generic_Instance (Pack)
588 or else Nkind (Decl) = N_Subprogram_Body
589 or else Present (Corresponding_Body (Decl)))
590 and then not In_Main_Unit_Or_Subunit (E)
591 and then not Is_Nested (E)
592 and then not Has_Initialized_Type (E)
593 then
594 Register_Backend_Inlined_Subprogram (E);
596 if No (Last_Inlined) then
597 Set_First_Inlined_Subprogram (Cunit (Main_Unit), E);
598 else
599 Set_Next_Inlined_Subprogram (Last_Inlined, E);
600 end if;
602 Last_Inlined := E;
604 else
605 Register_Backend_Not_Inlined_Subprogram (E);
606 end if;
607 end Add_Inlined_Subprogram;
609 ------------------------
610 -- Add_Scope_To_Clean --
611 ------------------------
613 procedure Add_Scope_To_Clean (Inst : Entity_Id) is
614 Scop : constant Entity_Id := Enclosing_Dynamic_Scope (Inst);
615 Elmt : Elmt_Id;
617 begin
618 -- If the instance appears in a library-level package declaration,
619 -- all finalization is global, and nothing needs doing here.
621 if Scop = Standard_Standard then
622 return;
623 end if;
625 -- If the instance is within a generic unit, no finalization code
626 -- can be generated. Note that at this point all bodies have been
627 -- analyzed, and the scope stack itself is not present, and the flag
628 -- Inside_A_Generic is not set.
630 declare
631 S : Entity_Id;
633 begin
634 S := Scope (Inst);
635 while Present (S) and then S /= Standard_Standard loop
636 if Is_Generic_Unit (S) then
637 return;
638 end if;
640 S := Scope (S);
641 end loop;
642 end;
644 Elmt := First_Elmt (To_Clean);
645 while Present (Elmt) loop
646 if Node (Elmt) = Scop then
647 return;
648 end if;
650 Elmt := Next_Elmt (Elmt);
651 end loop;
653 Append_Elmt (Scop, To_Clean);
654 end Add_Scope_To_Clean;
656 --------------
657 -- Add_Subp --
658 --------------
660 function Add_Subp (E : Entity_Id) return Subp_Index is
661 Index : Subp_Index := Subp_Index (E) mod Num_Hash_Headers;
662 J : Subp_Index;
664 procedure New_Entry;
665 -- Initialize entry in Inlined table
667 procedure New_Entry is
668 begin
669 Inlined.Increment_Last;
670 Inlined.Table (Inlined.Last).Name := E;
671 Inlined.Table (Inlined.Last).Next := No_Subp;
672 Inlined.Table (Inlined.Last).First_Succ := No_Succ;
673 Inlined.Table (Inlined.Last).Main_Call := False;
674 Inlined.Table (Inlined.Last).Processed := False;
675 end New_Entry;
677 -- Start of processing for Add_Subp
679 begin
680 if Hash_Headers (Index) = No_Subp then
681 New_Entry;
682 Hash_Headers (Index) := Inlined.Last;
683 return Inlined.Last;
685 else
686 J := Hash_Headers (Index);
687 while J /= No_Subp loop
688 if Inlined.Table (J).Name = E then
689 return J;
690 else
691 Index := J;
692 J := Inlined.Table (J).Next;
693 end if;
694 end loop;
696 -- On exit, subprogram was not found. Enter in table. Index is
697 -- the current last entry on the hash chain.
699 New_Entry;
700 Inlined.Table (Index).Next := Inlined.Last;
701 return Inlined.Last;
702 end if;
703 end Add_Subp;
705 ----------------------------
706 -- Analyze_Inlined_Bodies --
707 ----------------------------
709 procedure Analyze_Inlined_Bodies is
710 Comp_Unit : Node_Id;
711 J : Int;
712 Pack : Entity_Id;
713 Subp : Subp_Index;
714 S : Succ_Index;
716 type Pending_Index is new Nat;
718 package Pending_Inlined is new Table.Table (
719 Table_Component_Type => Subp_Index,
720 Table_Index_Type => Pending_Index,
721 Table_Low_Bound => 1,
722 Table_Initial => Alloc.Inlined_Initial,
723 Table_Increment => Alloc.Inlined_Increment,
724 Table_Name => "Pending_Inlined");
725 -- The workpile used to compute the transitive closure
727 -- Start of processing for Analyze_Inlined_Bodies
729 begin
730 if Serious_Errors_Detected = 0 then
731 Push_Scope (Standard_Standard);
733 J := 0;
734 while J <= Inlined_Bodies.Last
735 and then Serious_Errors_Detected = 0
736 loop
737 Pack := Inlined_Bodies.Table (J);
738 while Present (Pack)
739 and then Scope (Pack) /= Standard_Standard
740 and then not Is_Child_Unit (Pack)
741 loop
742 Pack := Scope (Pack);
743 end loop;
745 Comp_Unit := Parent (Pack);
746 while Present (Comp_Unit)
747 and then Nkind (Comp_Unit) /= N_Compilation_Unit
748 loop
749 Comp_Unit := Parent (Comp_Unit);
750 end loop;
752 -- Load the body if it exists and contains inlineable entities,
753 -- unless it is the main unit, or is an instance whose body has
754 -- already been analyzed.
756 if Present (Comp_Unit)
757 and then Comp_Unit /= Cunit (Main_Unit)
758 and then Body_Required (Comp_Unit)
759 and then
760 (Nkind (Unit (Comp_Unit)) /= N_Package_Declaration
761 or else
762 (No (Corresponding_Body (Unit (Comp_Unit)))
763 and then Body_Needed_For_Inlining
764 (Defining_Entity (Unit (Comp_Unit)))))
765 then
766 declare
767 Bname : constant Unit_Name_Type :=
768 Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
770 OK : Boolean;
772 begin
773 if not Is_Loaded (Bname) then
774 Style_Check := False;
775 Load_Needed_Body (Comp_Unit, OK);
777 if not OK then
779 -- Warn that a body was not available for inlining
780 -- by the back-end.
782 Error_Msg_Unit_1 := Bname;
783 Error_Msg_N
784 ("one or more inlined subprograms accessed in $!??",
785 Comp_Unit);
786 Error_Msg_File_1 :=
787 Get_File_Name (Bname, Subunit => False);
788 Error_Msg_N ("\but file{ was not found!??", Comp_Unit);
789 end if;
790 end if;
791 end;
792 end if;
794 J := J + 1;
796 if J > Inlined_Bodies.Last then
798 -- The analysis of required bodies may have produced additional
799 -- generic instantiations. To obtain further inlining, we need
800 -- to perform another round of generic body instantiations.
802 Instantiate_Bodies;
804 -- Symmetrically, the instantiation of required generic bodies
805 -- may have caused additional bodies to be inlined. To obtain
806 -- further inlining, we keep looping over the inlined bodies.
807 end if;
808 end loop;
810 -- The list of inlined subprograms is an overestimate, because it
811 -- includes inlined functions called from functions that are compiled
812 -- as part of an inlined package, but are not themselves called. An
813 -- accurate computation of just those subprograms that are needed
814 -- requires that we perform a transitive closure over the call graph,
815 -- starting from calls in the main compilation unit.
817 for Index in Inlined.First .. Inlined.Last loop
818 if not Is_Called (Inlined.Table (Index).Name) then
820 -- This means that Add_Inlined_Body added the subprogram to the
821 -- table but wasn't able to handle its code unit. Do nothing.
823 Inlined.Table (Index).Processed := True;
825 elsif Inlined.Table (Index).Main_Call then
826 Pending_Inlined.Increment_Last;
827 Pending_Inlined.Table (Pending_Inlined.Last) := Index;
828 Inlined.Table (Index).Processed := True;
830 else
831 Set_Is_Called (Inlined.Table (Index).Name, False);
832 end if;
833 end loop;
835 -- Iterate over the workpile until it is emptied, propagating the
836 -- Is_Called flag to the successors of the processed subprogram.
838 while Pending_Inlined.Last >= Pending_Inlined.First loop
839 Subp := Pending_Inlined.Table (Pending_Inlined.Last);
840 Pending_Inlined.Decrement_Last;
842 S := Inlined.Table (Subp).First_Succ;
844 while S /= No_Succ loop
845 Subp := Successors.Table (S).Subp;
847 if not Inlined.Table (Subp).Processed then
848 Set_Is_Called (Inlined.Table (Subp).Name);
849 Pending_Inlined.Increment_Last;
850 Pending_Inlined.Table (Pending_Inlined.Last) := Subp;
851 Inlined.Table (Subp).Processed := True;
852 end if;
854 S := Successors.Table (S).Next;
855 end loop;
856 end loop;
858 -- Finally add the called subprograms to the list of inlined
859 -- subprograms for the unit.
861 for Index in Inlined.First .. Inlined.Last loop
862 if Is_Called (Inlined.Table (Index).Name) then
863 Add_Inlined_Subprogram (Inlined.Table (Index).Name);
864 end if;
865 end loop;
867 Pop_Scope;
868 end if;
869 end Analyze_Inlined_Bodies;
871 --------------------------
872 -- Build_Body_To_Inline --
873 --------------------------
875 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
876 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
877 Analysis_Status : constant Boolean := Full_Analysis;
878 Original_Body : Node_Id;
879 Body_To_Analyze : Node_Id;
880 Max_Size : constant := 10;
882 function Has_Extended_Return return Boolean;
883 -- This function returns True if the subprogram has an extended return
884 -- statement.
886 function Has_Pending_Instantiation return Boolean;
887 -- If some enclosing body contains instantiations that appear before
888 -- the corresponding generic body, the enclosing body has a freeze node
889 -- so that it can be elaborated after the generic itself. This might
890 -- conflict with subsequent inlinings, so that it is unsafe to try to
891 -- inline in such a case.
893 function Has_Single_Return_In_GNATprove_Mode return Boolean;
894 -- This function is called only in GNATprove mode, and it returns
895 -- True if the subprogram has no return statement or a single return
896 -- statement as last statement. It returns False for subprogram with
897 -- a single return as last statement inside one or more blocks, as
898 -- inlining would generate gotos in that case as well (although the
899 -- goto is useless in that case).
901 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean;
902 -- If the body of the subprogram includes a call that returns an
903 -- unconstrained type, the secondary stack is involved, and it is
904 -- not worth inlining.
906 -------------------------
907 -- Has_Extended_Return --
908 -------------------------
910 function Has_Extended_Return return Boolean is
911 Body_To_Inline : constant Node_Id := N;
913 function Check_Return (N : Node_Id) return Traverse_Result;
914 -- Returns OK on node N if this is not an extended return statement
916 ------------------
917 -- Check_Return --
918 ------------------
920 function Check_Return (N : Node_Id) return Traverse_Result is
921 begin
922 case Nkind (N) is
923 when N_Extended_Return_Statement =>
924 return Abandon;
926 -- Skip locally declared subprogram bodies inside the body to
927 -- inline, as the return statements inside those do not count.
929 when N_Subprogram_Body =>
930 if N = Body_To_Inline then
931 return OK;
932 else
933 return Skip;
934 end if;
936 when others =>
937 return OK;
938 end case;
939 end Check_Return;
941 function Check_All_Returns is new Traverse_Func (Check_Return);
943 -- Start of processing for Has_Extended_Return
945 begin
946 return Check_All_Returns (N) /= OK;
947 end Has_Extended_Return;
949 -------------------------------
950 -- Has_Pending_Instantiation --
951 -------------------------------
953 function Has_Pending_Instantiation return Boolean is
954 S : Entity_Id;
956 begin
957 S := Current_Scope;
958 while Present (S) loop
959 if Is_Compilation_Unit (S)
960 or else Is_Child_Unit (S)
961 then
962 return False;
964 elsif Ekind (S) = E_Package
965 and then Has_Forward_Instantiation (S)
966 then
967 return True;
968 end if;
970 S := Scope (S);
971 end loop;
973 return False;
974 end Has_Pending_Instantiation;
976 -----------------------------------------
977 -- Has_Single_Return_In_GNATprove_Mode --
978 -----------------------------------------
980 function Has_Single_Return_In_GNATprove_Mode return Boolean is
981 Body_To_Inline : constant Node_Id := N;
982 Last_Statement : Node_Id := Empty;
984 function Check_Return (N : Node_Id) return Traverse_Result;
985 -- Returns OK on node N if this is not a return statement different
986 -- from the last statement in the subprogram.
988 ------------------
989 -- Check_Return --
990 ------------------
992 function Check_Return (N : Node_Id) return Traverse_Result is
993 begin
994 case Nkind (N) is
995 when N_Extended_Return_Statement
996 | N_Simple_Return_Statement
998 if N = Last_Statement then
999 return OK;
1000 else
1001 return Abandon;
1002 end if;
1004 -- Skip locally declared subprogram bodies inside the body to
1005 -- inline, as the return statements inside those do not count.
1007 when N_Subprogram_Body =>
1008 if N = Body_To_Inline then
1009 return OK;
1010 else
1011 return Skip;
1012 end if;
1014 when others =>
1015 return OK;
1016 end case;
1017 end Check_Return;
1019 function Check_All_Returns is new Traverse_Func (Check_Return);
1021 -- Start of processing for Has_Single_Return_In_GNATprove_Mode
1023 begin
1024 -- Retrieve the last statement
1026 Last_Statement := Last (Statements (Handled_Statement_Sequence (N)));
1028 -- Check that the last statement is the only possible return
1029 -- statement in the subprogram.
1031 return Check_All_Returns (N) = OK;
1032 end Has_Single_Return_In_GNATprove_Mode;
1034 --------------------------
1035 -- Uses_Secondary_Stack --
1036 --------------------------
1038 function Uses_Secondary_Stack (Bod : Node_Id) return Boolean is
1039 function Check_Call (N : Node_Id) return Traverse_Result;
1040 -- Look for function calls that return an unconstrained type
1042 ----------------
1043 -- Check_Call --
1044 ----------------
1046 function Check_Call (N : Node_Id) return Traverse_Result is
1047 begin
1048 if Nkind (N) = N_Function_Call
1049 and then Is_Entity_Name (Name (N))
1050 and then Is_Composite_Type (Etype (Entity (Name (N))))
1051 and then not Is_Constrained (Etype (Entity (Name (N))))
1052 then
1053 Cannot_Inline
1054 ("cannot inline & (call returns unconstrained type)?",
1055 N, Spec_Id);
1056 return Abandon;
1057 else
1058 return OK;
1059 end if;
1060 end Check_Call;
1062 function Check_Calls is new Traverse_Func (Check_Call);
1064 begin
1065 return Check_Calls (Bod) = Abandon;
1066 end Uses_Secondary_Stack;
1068 -- Start of processing for Build_Body_To_Inline
1070 begin
1071 -- Return immediately if done already
1073 if Nkind (Decl) = N_Subprogram_Declaration
1074 and then Present (Body_To_Inline (Decl))
1075 then
1076 return;
1078 -- Subprograms that have return statements in the middle of the body are
1079 -- inlined with gotos. GNATprove does not currently support gotos, so
1080 -- we prevent such inlining.
1082 elsif GNATprove_Mode
1083 and then not Has_Single_Return_In_GNATprove_Mode
1084 then
1085 Cannot_Inline ("cannot inline & (multiple returns)?", N, Spec_Id);
1086 return;
1088 -- Functions that return controlled types cannot currently be inlined
1089 -- because they require secondary stack handling; controlled actions
1090 -- may also interfere in complex ways with inlining.
1092 elsif Ekind (Spec_Id) = E_Function
1093 and then Needs_Finalization (Etype (Spec_Id))
1094 then
1095 Cannot_Inline
1096 ("cannot inline & (controlled return type)?", N, Spec_Id);
1097 return;
1098 end if;
1100 if Present (Declarations (N))
1101 and then Has_Excluded_Declaration (Spec_Id, Declarations (N))
1102 then
1103 return;
1104 end if;
1106 if Present (Handled_Statement_Sequence (N)) then
1107 if Present (Exception_Handlers (Handled_Statement_Sequence (N))) then
1108 Cannot_Inline
1109 ("cannot inline& (exception handler)?",
1110 First (Exception_Handlers (Handled_Statement_Sequence (N))),
1111 Spec_Id);
1112 return;
1114 elsif Has_Excluded_Statement
1115 (Spec_Id, Statements (Handled_Statement_Sequence (N)))
1116 then
1117 return;
1118 end if;
1119 end if;
1121 -- We do not inline a subprogram that is too large, unless it is marked
1122 -- Inline_Always or we are in GNATprove mode. This pragma does not
1123 -- suppress the other checks on inlining (forbidden declarations,
1124 -- handlers, etc).
1126 if not (Has_Pragma_Inline_Always (Spec_Id) or else GNATprove_Mode)
1127 and then List_Length
1128 (Statements (Handled_Statement_Sequence (N))) > Max_Size
1129 then
1130 Cannot_Inline ("cannot inline& (body too large)?", N, Spec_Id);
1131 return;
1132 end if;
1134 if Has_Pending_Instantiation then
1135 Cannot_Inline
1136 ("cannot inline& (forward instance within enclosing body)?",
1137 N, Spec_Id);
1138 return;
1139 end if;
1141 -- Within an instance, the body to inline must be treated as a nested
1142 -- generic, so that the proper global references are preserved.
1144 -- Note that we do not do this at the library level, because it is not
1145 -- needed, and furthermore this causes trouble if front-end inlining
1146 -- is activated (-gnatN).
1148 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
1149 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
1150 Original_Body := Copy_Generic_Node (N, Empty, Instantiating => True);
1151 else
1152 Original_Body := Copy_Separate_Tree (N);
1153 end if;
1155 -- We need to capture references to the formals in order to substitute
1156 -- the actuals at the point of inlining, i.e. instantiation. To treat
1157 -- the formals as globals to the body to inline, we nest it within a
1158 -- dummy parameterless subprogram, declared within the real one. To
1159 -- avoid generating an internal name (which is never public, and which
1160 -- affects serial numbers of other generated names), we use an internal
1161 -- symbol that cannot conflict with user declarations.
1163 Set_Parameter_Specifications (Specification (Original_Body), No_List);
1164 Set_Defining_Unit_Name
1165 (Specification (Original_Body),
1166 Make_Defining_Identifier (Sloc (N), Name_uParent));
1167 Set_Corresponding_Spec (Original_Body, Empty);
1169 -- Remove all aspects/pragmas that have no meaning in an inlined body
1171 Remove_Aspects_And_Pragmas (Original_Body);
1173 Body_To_Analyze :=
1174 Copy_Generic_Node (Original_Body, Empty, Instantiating => False);
1176 -- Set return type of function, which is also global and does not need
1177 -- to be resolved.
1179 if Ekind (Spec_Id) = E_Function then
1180 Set_Result_Definition
1181 (Specification (Body_To_Analyze),
1182 New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
1183 end if;
1185 if No (Declarations (N)) then
1186 Set_Declarations (N, New_List (Body_To_Analyze));
1187 else
1188 Append (Body_To_Analyze, Declarations (N));
1189 end if;
1191 -- The body to inline is preanalyzed. In GNATprove mode we must disable
1192 -- full analysis as well so that light expansion does not take place
1193 -- either, and name resolution is unaffected.
1195 Expander_Mode_Save_And_Set (False);
1196 Full_Analysis := False;
1198 Analyze (Body_To_Analyze);
1199 Push_Scope (Defining_Entity (Body_To_Analyze));
1200 Save_Global_References (Original_Body);
1201 End_Scope;
1202 Remove (Body_To_Analyze);
1204 Expander_Mode_Restore;
1205 Full_Analysis := Analysis_Status;
1207 -- Restore environment if previously saved
1209 if In_Instance and then Scope (Current_Scope) /= Standard_Standard then
1210 Restore_Env;
1211 end if;
1213 -- Functions that return unconstrained composite types require
1214 -- secondary stack handling, and cannot currently be inlined, unless
1215 -- all return statements return a local variable that is the first
1216 -- local declaration in the body. We had to delay this check until
1217 -- the body of the function is analyzed since Has_Single_Return()
1218 -- requires a minimum decoration.
1220 if Ekind (Spec_Id) = E_Function
1221 and then not Is_Scalar_Type (Etype (Spec_Id))
1222 and then not Is_Access_Type (Etype (Spec_Id))
1223 and then not Is_Constrained (Etype (Spec_Id))
1224 then
1225 if not Has_Single_Return (Body_To_Analyze)
1227 -- Skip inlining if the function returns an unconstrained type
1228 -- using an extended return statement, since this part of the
1229 -- new inlining model is not yet supported by the current
1230 -- implementation. ???
1232 or else (Returns_Unconstrained_Type (Spec_Id)
1233 and then Has_Extended_Return)
1234 then
1235 Cannot_Inline
1236 ("cannot inline & (unconstrained return type)?", N, Spec_Id);
1237 return;
1238 end if;
1240 -- If secondary stack is used, there is no point in inlining. We have
1241 -- already issued the warning in this case, so nothing to do.
1243 elsif Uses_Secondary_Stack (Body_To_Analyze) then
1244 return;
1245 end if;
1247 Set_Body_To_Inline (Decl, Original_Body);
1248 Set_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
1249 Set_Is_Inlined (Spec_Id);
1250 end Build_Body_To_Inline;
1252 -------------------------------------------
1253 -- Call_Can_Be_Inlined_In_GNATprove_Mode --
1254 -------------------------------------------
1256 function Call_Can_Be_Inlined_In_GNATprove_Mode
1257 (N : Node_Id;
1258 Subp : Entity_Id) return Boolean
1260 F : Entity_Id;
1261 A : Node_Id;
1263 begin
1264 F := First_Formal (Subp);
1265 A := First_Actual (N);
1266 while Present (F) loop
1267 if Ekind (F) /= E_Out_Parameter
1268 and then not Same_Type (Etype (F), Etype (A))
1269 and then
1270 (Is_By_Reference_Type (Etype (A))
1271 or else Is_Limited_Type (Etype (A)))
1272 then
1273 return False;
1274 end if;
1276 Next_Formal (F);
1277 Next_Actual (A);
1278 end loop;
1280 return True;
1281 end Call_Can_Be_Inlined_In_GNATprove_Mode;
1283 --------------------------------------
1284 -- Can_Be_Inlined_In_GNATprove_Mode --
1285 --------------------------------------
1287 function Can_Be_Inlined_In_GNATprove_Mode
1288 (Spec_Id : Entity_Id;
1289 Body_Id : Entity_Id) return Boolean
1291 function Has_Formal_With_Discriminant_Dependent_Fields
1292 (Id : Entity_Id) return Boolean;
1293 -- Returns true if the subprogram has at least one formal parameter of
1294 -- an unconstrained record type with per-object constraints on component
1295 -- types.
1297 function Has_Some_Contract (Id : Entity_Id) return Boolean;
1298 -- Return True if subprogram Id has any contract. The presence of
1299 -- Extensions_Visible or Volatile_Function is also considered as a
1300 -- contract here.
1302 function Is_Unit_Subprogram (Id : Entity_Id) return Boolean;
1303 -- Return True if subprogram Id defines a compilation unit
1304 -- Shouldn't this be in Sem_Aux???
1306 function In_Package_Spec (Id : Entity_Id) return Boolean;
1307 -- Return True if subprogram Id is defined in the package specification,
1308 -- either its visible or private part.
1310 ---------------------------------------------------
1311 -- Has_Formal_With_Discriminant_Dependent_Fields --
1312 ---------------------------------------------------
1314 function Has_Formal_With_Discriminant_Dependent_Fields
1315 (Id : Entity_Id) return Boolean
1317 function Has_Discriminant_Dependent_Component
1318 (Typ : Entity_Id) return Boolean;
1319 -- Determine whether unconstrained record type Typ has at least one
1320 -- component that depends on a discriminant.
1322 ------------------------------------------
1323 -- Has_Discriminant_Dependent_Component --
1324 ------------------------------------------
1326 function Has_Discriminant_Dependent_Component
1327 (Typ : Entity_Id) return Boolean
1329 Comp : Entity_Id;
1331 begin
1332 -- Inspect all components of the record type looking for one that
1333 -- depends on a discriminant.
1335 Comp := First_Component (Typ);
1336 while Present (Comp) loop
1337 if Has_Discriminant_Dependent_Constraint (Comp) then
1338 return True;
1339 end if;
1341 Next_Component (Comp);
1342 end loop;
1344 return False;
1345 end Has_Discriminant_Dependent_Component;
1347 -- Local variables
1349 Subp_Id : constant Entity_Id := Ultimate_Alias (Id);
1350 Formal : Entity_Id;
1351 Formal_Typ : Entity_Id;
1353 -- Start of processing for
1354 -- Has_Formal_With_Discriminant_Dependent_Fields
1356 begin
1357 -- Inspect all parameters of the subprogram looking for a formal
1358 -- of an unconstrained record type with at least one discriminant
1359 -- dependent component.
1361 Formal := First_Formal (Subp_Id);
1362 while Present (Formal) loop
1363 Formal_Typ := Etype (Formal);
1365 if Is_Record_Type (Formal_Typ)
1366 and then not Is_Constrained (Formal_Typ)
1367 and then Has_Discriminant_Dependent_Component (Formal_Typ)
1368 then
1369 return True;
1370 end if;
1372 Next_Formal (Formal);
1373 end loop;
1375 return False;
1376 end Has_Formal_With_Discriminant_Dependent_Fields;
1378 -----------------------
1379 -- Has_Some_Contract --
1380 -----------------------
1382 function Has_Some_Contract (Id : Entity_Id) return Boolean is
1383 Items : Node_Id;
1385 begin
1386 -- A call to an expression function may precede the actual body which
1387 -- is inserted at the end of the enclosing declarations. Ensure that
1388 -- the related entity is decorated before inspecting the contract.
1390 if Is_Subprogram_Or_Generic_Subprogram (Id) then
1391 Items := Contract (Id);
1393 -- Note that Classifications is not Empty when Extensions_Visible
1394 -- or Volatile_Function is present, which causes such subprograms
1395 -- to be considered to have a contract here. This is fine as we
1396 -- want to avoid inlining these too.
1398 return Present (Items)
1399 and then (Present (Pre_Post_Conditions (Items)) or else
1400 Present (Contract_Test_Cases (Items)) or else
1401 Present (Classifications (Items)));
1402 end if;
1404 return False;
1405 end Has_Some_Contract;
1407 ---------------------
1408 -- In_Package_Spec --
1409 ---------------------
1411 function In_Package_Spec (Id : Entity_Id) return Boolean is
1412 P : constant Node_Id := Parent (Subprogram_Spec (Id));
1413 -- Parent of the subprogram's declaration
1415 begin
1416 return Nkind (Enclosing_Declaration (P)) = N_Package_Declaration;
1417 end In_Package_Spec;
1419 ------------------------
1420 -- Is_Unit_Subprogram --
1421 ------------------------
1423 function Is_Unit_Subprogram (Id : Entity_Id) return Boolean is
1424 Decl : Node_Id := Parent (Parent (Id));
1425 begin
1426 if Nkind (Parent (Id)) = N_Defining_Program_Unit_Name then
1427 Decl := Parent (Decl);
1428 end if;
1430 return Nkind (Parent (Decl)) = N_Compilation_Unit;
1431 end Is_Unit_Subprogram;
1433 -- Local declarations
1435 Id : Entity_Id;
1436 -- Procedure or function entity for the subprogram
1438 -- Start of processing for Can_Be_Inlined_In_GNATprove_Mode
1440 begin
1441 pragma Assert (Present (Spec_Id) or else Present (Body_Id));
1443 if Present (Spec_Id) then
1444 Id := Spec_Id;
1445 else
1446 Id := Body_Id;
1447 end if;
1449 -- Only local subprograms without contracts are inlined in GNATprove
1450 -- mode, as these are the subprograms which a user is not interested in
1451 -- analyzing in isolation, but rather in the context of their call. This
1452 -- is a convenient convention, that could be changed for an explicit
1453 -- pragma/aspect one day.
1455 -- In a number of special cases, inlining is not desirable or not
1456 -- possible, see below.
1458 -- Do not inline unit-level subprograms
1460 if Is_Unit_Subprogram (Id) then
1461 return False;
1463 -- Do not inline subprograms declared in package specs, because they are
1464 -- not local, i.e. can be called either from anywhere (if declared in
1465 -- visible part) or from the child units (if declared in private part).
1467 elsif In_Package_Spec (Id) then
1468 return False;
1470 -- Do not inline subprograms declared in other units. This is important
1471 -- in particular for subprograms defined in the private part of a
1472 -- package spec, when analyzing one of its child packages, as otherwise
1473 -- we issue spurious messages about the impossibility to inline such
1474 -- calls.
1476 elsif not In_Extended_Main_Code_Unit (Id) then
1477 return False;
1479 -- Do not inline subprograms marked No_Return, possibly used for
1480 -- signaling errors, which GNATprove handles specially.
1482 elsif No_Return (Id) then
1483 return False;
1485 -- Do not inline subprograms that have a contract on the spec or the
1486 -- body. Use the contract(s) instead in GNATprove. This also prevents
1487 -- inlining of subprograms with Extensions_Visible or Volatile_Function.
1489 elsif (Present (Spec_Id) and then Has_Some_Contract (Spec_Id))
1490 or else
1491 (Present (Body_Id) and then Has_Some_Contract (Body_Id))
1492 then
1493 return False;
1495 -- Do not inline expression functions, which are directly inlined at the
1496 -- prover level.
1498 elsif (Present (Spec_Id) and then Is_Expression_Function (Spec_Id))
1499 or else
1500 (Present (Body_Id) and then Is_Expression_Function (Body_Id))
1501 then
1502 return False;
1504 -- Do not inline generic subprogram instances. The visibility rules of
1505 -- generic instances plays badly with inlining.
1507 elsif Is_Generic_Instance (Spec_Id) then
1508 return False;
1510 -- Only inline subprograms whose spec is marked SPARK_Mode On. For
1511 -- the subprogram body, a similar check is performed after the body
1512 -- is analyzed, as this is where a pragma SPARK_Mode might be inserted.
1514 elsif Present (Spec_Id)
1515 and then
1516 (No (SPARK_Pragma (Spec_Id))
1517 or else
1518 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) /= On)
1519 then
1520 return False;
1522 -- Subprograms in generic instances are currently not inlined, to avoid
1523 -- problems with inlining of standard library subprograms.
1525 elsif Instantiation_Location (Sloc (Id)) /= No_Location then
1526 return False;
1528 -- Do not inline subprograms and entries defined inside protected types,
1529 -- which typically are not helper subprograms, which also avoids getting
1530 -- spurious messages on calls that cannot be inlined.
1532 elsif Within_Protected_Type (Id) then
1533 return False;
1535 -- Do not inline predicate functions (treated specially by GNATprove)
1537 elsif Is_Predicate_Function (Id) then
1538 return False;
1540 -- Do not inline subprograms with a parameter of an unconstrained
1541 -- record type if it has discrimiant dependent fields. Indeed, with
1542 -- such parameters, the frontend cannot always ensure type compliance
1543 -- in record component accesses (in particular with records containing
1544 -- packed arrays).
1546 elsif Has_Formal_With_Discriminant_Dependent_Fields (Id) then
1547 return False;
1549 -- Otherwise, this is a subprogram declared inside the private part of a
1550 -- package, or inside a package body, or locally in a subprogram, and it
1551 -- does not have any contract. Inline it.
1553 else
1554 return True;
1555 end if;
1556 end Can_Be_Inlined_In_GNATprove_Mode;
1558 -------------------
1559 -- Cannot_Inline --
1560 -------------------
1562 procedure Cannot_Inline
1563 (Msg : String;
1564 N : Node_Id;
1565 Subp : Entity_Id;
1566 Is_Serious : Boolean := False)
1568 begin
1569 -- In GNATprove mode, inlining is the technical means by which the
1570 -- higher-level goal of contextual analysis is reached, so issue
1571 -- messages about failure to apply contextual analysis to a
1572 -- subprogram, rather than failure to inline it.
1574 if GNATprove_Mode
1575 and then Msg (Msg'First .. Msg'First + 12) = "cannot inline"
1576 then
1577 declare
1578 Len1 : constant Positive :=
1579 String (String'("cannot inline"))'Length;
1580 Len2 : constant Positive :=
1581 String (String'("info: no contextual analysis of"))'Length;
1583 New_Msg : String (1 .. Msg'Length + Len2 - Len1);
1585 begin
1586 New_Msg (1 .. Len2) := "info: no contextual analysis of";
1587 New_Msg (Len2 + 1 .. Msg'Length + Len2 - Len1) :=
1588 Msg (Msg'First + Len1 .. Msg'Last);
1589 Cannot_Inline (New_Msg, N, Subp, Is_Serious);
1590 return;
1591 end;
1592 end if;
1594 pragma Assert (Msg (Msg'Last) = '?');
1596 -- Legacy front-end inlining model
1598 if not Back_End_Inlining then
1600 -- Do not emit warning if this is a predefined unit which is not
1601 -- the main unit. With validity checks enabled, some predefined
1602 -- subprograms may contain nested subprograms and become ineligible
1603 -- for inlining.
1605 if Is_Predefined_Unit (Get_Source_Unit (Subp))
1606 and then not In_Extended_Main_Source_Unit (Subp)
1607 then
1608 null;
1610 -- In GNATprove mode, issue a warning when -gnatd_f is set, and
1611 -- indicate that the subprogram is not always inlined by setting
1612 -- flag Is_Inlined_Always to False.
1614 elsif GNATprove_Mode then
1615 Set_Is_Inlined_Always (Subp, False);
1617 if Debug_Flag_Underscore_F then
1618 Error_Msg_NE (Msg, N, Subp);
1619 end if;
1621 elsif Has_Pragma_Inline_Always (Subp) then
1623 -- Remove last character (question mark) to make this into an
1624 -- error, because the Inline_Always pragma cannot be obeyed.
1626 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
1628 elsif Ineffective_Inline_Warnings then
1629 Error_Msg_NE (Msg & "p?", N, Subp);
1630 end if;
1632 -- New semantics relying on back-end inlining
1634 elsif Is_Serious then
1636 -- Remove last character (question mark) to make this into an error.
1638 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
1640 -- In GNATprove mode, issue a warning when -gnatd_f is set, and
1641 -- indicate that the subprogram is not always inlined by setting
1642 -- flag Is_Inlined_Always to False.
1644 elsif GNATprove_Mode then
1645 Set_Is_Inlined_Always (Subp, False);
1647 if Debug_Flag_Underscore_F then
1648 Error_Msg_NE (Msg, N, Subp);
1649 end if;
1651 else
1653 -- Do not emit warning if this is a predefined unit which is not
1654 -- the main unit. This behavior is currently provided for backward
1655 -- compatibility but it will be removed when we enforce the
1656 -- strictness of the new rules.
1658 if Is_Predefined_Unit (Get_Source_Unit (Subp))
1659 and then not In_Extended_Main_Source_Unit (Subp)
1660 then
1661 null;
1663 elsif Has_Pragma_Inline_Always (Subp) then
1665 -- Emit a warning if this is a call to a runtime subprogram
1666 -- which is located inside a generic. Previously this call
1667 -- was silently skipped.
1669 if Is_Generic_Instance (Subp) then
1670 declare
1671 Gen_P : constant Entity_Id := Generic_Parent (Parent (Subp));
1672 begin
1673 if Is_Predefined_Unit (Get_Source_Unit (Gen_P)) then
1674 Set_Is_Inlined (Subp, False);
1675 Error_Msg_NE (Msg & "p?", N, Subp);
1676 return;
1677 end if;
1678 end;
1679 end if;
1681 -- Remove last character (question mark) to make this into an
1682 -- error, because the Inline_Always pragma cannot be obeyed.
1684 Error_Msg_NE (Msg (Msg'First .. Msg'Last - 1), N, Subp);
1686 else
1687 Set_Is_Inlined (Subp, False);
1689 if Ineffective_Inline_Warnings then
1690 Error_Msg_NE (Msg & "p?", N, Subp);
1691 end if;
1692 end if;
1693 end if;
1694 end Cannot_Inline;
1696 --------------------------------------------
1697 -- Check_And_Split_Unconstrained_Function --
1698 --------------------------------------------
1700 procedure Check_And_Split_Unconstrained_Function
1701 (N : Node_Id;
1702 Spec_Id : Entity_Id;
1703 Body_Id : Entity_Id)
1705 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id);
1706 -- Use generic machinery to build an unexpanded body for the subprogram.
1707 -- This body is subsequently used for inline expansions at call sites.
1709 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean;
1710 -- Return true if we generate code for the function body N, the function
1711 -- body N has no local declarations and its unique statement is a single
1712 -- extended return statement with a handled statements sequence.
1714 procedure Split_Unconstrained_Function
1715 (N : Node_Id;
1716 Spec_Id : Entity_Id);
1717 -- N is an inlined function body that returns an unconstrained type and
1718 -- has a single extended return statement. Split N in two subprograms:
1719 -- a procedure P' and a function F'. The formals of P' duplicate the
1720 -- formals of N plus an extra formal which is used to return a value;
1721 -- its body is composed by the declarations and list of statements
1722 -- of the extended return statement of N.
1724 --------------------------
1725 -- Build_Body_To_Inline --
1726 --------------------------
1728 procedure Build_Body_To_Inline (N : Node_Id; Spec_Id : Entity_Id) is
1729 procedure Generate_Subprogram_Body
1730 (N : Node_Id;
1731 Body_To_Inline : out Node_Id);
1732 -- Generate a parameterless duplicate of subprogram body N. Note that
1733 -- occurrences of pragmas referencing the formals are removed since
1734 -- they have no meaning when the body is inlined and the formals are
1735 -- rewritten (the analysis of the non-inlined body will handle these
1736 -- pragmas). A new internal name is associated with Body_To_Inline.
1738 ------------------------------
1739 -- Generate_Subprogram_Body --
1740 ------------------------------
1742 procedure Generate_Subprogram_Body
1743 (N : Node_Id;
1744 Body_To_Inline : out Node_Id)
1746 begin
1747 -- Within an instance, the body to inline must be treated as a
1748 -- nested generic so that proper global references are preserved.
1750 -- Note that we do not do this at the library level, because it
1751 -- is not needed, and furthermore this causes trouble if front
1752 -- end inlining is activated (-gnatN).
1754 if In_Instance
1755 and then Scope (Current_Scope) /= Standard_Standard
1756 then
1757 Body_To_Inline :=
1758 Copy_Generic_Node (N, Empty, Instantiating => True);
1759 else
1760 Body_To_Inline := Copy_Separate_Tree (N);
1761 end if;
1763 -- Remove aspects/pragmas that have no meaning in an inlined body
1765 Remove_Aspects_And_Pragmas (Body_To_Inline);
1767 -- We need to capture references to the formals in order
1768 -- to substitute the actuals at the point of inlining, i.e.
1769 -- instantiation. To treat the formals as globals to the body to
1770 -- inline, we nest it within a dummy parameterless subprogram,
1771 -- declared within the real one.
1773 Set_Parameter_Specifications
1774 (Specification (Body_To_Inline), No_List);
1776 -- A new internal name is associated with Body_To_Inline to avoid
1777 -- conflicts when the non-inlined body N is analyzed.
1779 Set_Defining_Unit_Name (Specification (Body_To_Inline),
1780 Make_Defining_Identifier (Sloc (N), New_Internal_Name ('P')));
1781 Set_Corresponding_Spec (Body_To_Inline, Empty);
1782 end Generate_Subprogram_Body;
1784 -- Local variables
1786 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
1787 Original_Body : Node_Id;
1788 Body_To_Analyze : Node_Id;
1790 begin
1791 pragma Assert (Current_Scope = Spec_Id);
1793 -- Within an instance, the body to inline must be treated as a nested
1794 -- generic, so that the proper global references are preserved. We
1795 -- do not do this at the library level, because it is not needed, and
1796 -- furthermore this causes trouble if front-end inlining is activated
1797 -- (-gnatN).
1799 if In_Instance
1800 and then Scope (Current_Scope) /= Standard_Standard
1801 then
1802 Save_Env (Scope (Current_Scope), Scope (Current_Scope));
1803 end if;
1805 -- Capture references to formals in order to substitute the actuals
1806 -- at the point of inlining or instantiation. To treat the formals
1807 -- as globals to the body to inline, nest the body within a dummy
1808 -- parameterless subprogram, declared within the real one.
1810 Generate_Subprogram_Body (N, Original_Body);
1811 Body_To_Analyze :=
1812 Copy_Generic_Node (Original_Body, Empty, Instantiating => False);
1814 -- Set return type of function, which is also global and does not
1815 -- need to be resolved.
1817 if Ekind (Spec_Id) = E_Function then
1818 Set_Result_Definition (Specification (Body_To_Analyze),
1819 New_Occurrence_Of (Etype (Spec_Id), Sloc (N)));
1820 end if;
1822 if No (Declarations (N)) then
1823 Set_Declarations (N, New_List (Body_To_Analyze));
1824 else
1825 Append_To (Declarations (N), Body_To_Analyze);
1826 end if;
1828 Preanalyze (Body_To_Analyze);
1830 Push_Scope (Defining_Entity (Body_To_Analyze));
1831 Save_Global_References (Original_Body);
1832 End_Scope;
1833 Remove (Body_To_Analyze);
1835 -- Restore environment if previously saved
1837 if In_Instance
1838 and then Scope (Current_Scope) /= Standard_Standard
1839 then
1840 Restore_Env;
1841 end if;
1843 pragma Assert (No (Body_To_Inline (Decl)));
1844 Set_Body_To_Inline (Decl, Original_Body);
1845 Set_Ekind (Defining_Entity (Original_Body), Ekind (Spec_Id));
1846 end Build_Body_To_Inline;
1848 --------------------------------------
1849 -- Can_Split_Unconstrained_Function --
1850 --------------------------------------
1852 function Can_Split_Unconstrained_Function (N : Node_Id) return Boolean is
1853 Ret_Node : constant Node_Id :=
1854 First (Statements (Handled_Statement_Sequence (N)));
1855 D : Node_Id;
1857 begin
1858 -- No user defined declarations allowed in the function except inside
1859 -- the unique return statement; implicit labels are the only allowed
1860 -- declarations.
1862 if not Is_Empty_List (Declarations (N)) then
1863 D := First (Declarations (N));
1864 while Present (D) loop
1865 if Nkind (D) /= N_Implicit_Label_Declaration then
1866 return False;
1867 end if;
1869 Next (D);
1870 end loop;
1871 end if;
1873 -- We only split the inlined function when we are generating the code
1874 -- of its body; otherwise we leave duplicated split subprograms in
1875 -- the tree which (if referenced) generate wrong references at link
1876 -- time.
1878 return In_Extended_Main_Code_Unit (N)
1879 and then Present (Ret_Node)
1880 and then Nkind (Ret_Node) = N_Extended_Return_Statement
1881 and then No (Next (Ret_Node))
1882 and then Present (Handled_Statement_Sequence (Ret_Node));
1883 end Can_Split_Unconstrained_Function;
1885 ----------------------------------
1886 -- Split_Unconstrained_Function --
1887 ----------------------------------
1889 procedure Split_Unconstrained_Function
1890 (N : Node_Id;
1891 Spec_Id : Entity_Id)
1893 Loc : constant Source_Ptr := Sloc (N);
1894 Ret_Node : constant Node_Id :=
1895 First (Statements (Handled_Statement_Sequence (N)));
1896 Ret_Obj : constant Node_Id :=
1897 First (Return_Object_Declarations (Ret_Node));
1899 procedure Build_Procedure
1900 (Proc_Id : out Entity_Id;
1901 Decl_List : out List_Id);
1902 -- Build a procedure containing the statements found in the extended
1903 -- return statement of the unconstrained function body N.
1905 ---------------------
1906 -- Build_Procedure --
1907 ---------------------
1909 procedure Build_Procedure
1910 (Proc_Id : out Entity_Id;
1911 Decl_List : out List_Id)
1913 Formal : Entity_Id;
1914 Formal_List : constant List_Id := New_List;
1915 Proc_Spec : Node_Id;
1916 Proc_Body : Node_Id;
1917 Subp_Name : constant Name_Id := New_Internal_Name ('F');
1918 Body_Decl_List : List_Id := No_List;
1919 Param_Type : Node_Id;
1921 begin
1922 if Nkind (Object_Definition (Ret_Obj)) = N_Identifier then
1923 Param_Type :=
1924 New_Copy (Object_Definition (Ret_Obj));
1925 else
1926 Param_Type :=
1927 New_Copy (Subtype_Mark (Object_Definition (Ret_Obj)));
1928 end if;
1930 Append_To (Formal_List,
1931 Make_Parameter_Specification (Loc,
1932 Defining_Identifier =>
1933 Make_Defining_Identifier (Loc,
1934 Chars => Chars (Defining_Identifier (Ret_Obj))),
1935 In_Present => False,
1936 Out_Present => True,
1937 Null_Exclusion_Present => False,
1938 Parameter_Type => Param_Type));
1940 Formal := First_Formal (Spec_Id);
1942 -- Note that we copy the parameter type rather than creating
1943 -- a reference to it, because it may be a class-wide entity
1944 -- that will not be retrieved by name.
1946 while Present (Formal) loop
1947 Append_To (Formal_List,
1948 Make_Parameter_Specification (Loc,
1949 Defining_Identifier =>
1950 Make_Defining_Identifier (Sloc (Formal),
1951 Chars => Chars (Formal)),
1952 In_Present => In_Present (Parent (Formal)),
1953 Out_Present => Out_Present (Parent (Formal)),
1954 Null_Exclusion_Present =>
1955 Null_Exclusion_Present (Parent (Formal)),
1956 Parameter_Type =>
1957 New_Copy_Tree (Parameter_Type (Parent (Formal))),
1958 Expression =>
1959 Copy_Separate_Tree (Expression (Parent (Formal)))));
1961 Next_Formal (Formal);
1962 end loop;
1964 Proc_Id := Make_Defining_Identifier (Loc, Chars => Subp_Name);
1966 Proc_Spec :=
1967 Make_Procedure_Specification (Loc,
1968 Defining_Unit_Name => Proc_Id,
1969 Parameter_Specifications => Formal_List);
1971 Decl_List := New_List;
1973 Append_To (Decl_List,
1974 Make_Subprogram_Declaration (Loc, Proc_Spec));
1976 -- Can_Convert_Unconstrained_Function checked that the function
1977 -- has no local declarations except implicit label declarations.
1978 -- Copy these declarations to the built procedure.
1980 if Present (Declarations (N)) then
1981 Body_Decl_List := New_List;
1983 declare
1984 D : Node_Id;
1985 New_D : Node_Id;
1987 begin
1988 D := First (Declarations (N));
1989 while Present (D) loop
1990 pragma Assert (Nkind (D) = N_Implicit_Label_Declaration);
1992 New_D :=
1993 Make_Implicit_Label_Declaration (Loc,
1994 Make_Defining_Identifier (Loc,
1995 Chars => Chars (Defining_Identifier (D))),
1996 Label_Construct => Empty);
1997 Append_To (Body_Decl_List, New_D);
1999 Next (D);
2000 end loop;
2001 end;
2002 end if;
2004 pragma Assert (Present (Handled_Statement_Sequence (Ret_Node)));
2006 Proc_Body :=
2007 Make_Subprogram_Body (Loc,
2008 Specification => Copy_Separate_Tree (Proc_Spec),
2009 Declarations => Body_Decl_List,
2010 Handled_Statement_Sequence =>
2011 Copy_Separate_Tree (Handled_Statement_Sequence (Ret_Node)));
2013 Set_Defining_Unit_Name (Specification (Proc_Body),
2014 Make_Defining_Identifier (Loc, Subp_Name));
2016 Append_To (Decl_List, Proc_Body);
2017 end Build_Procedure;
2019 -- Local variables
2021 New_Obj : constant Node_Id := Copy_Separate_Tree (Ret_Obj);
2022 Blk_Stmt : Node_Id;
2023 Proc_Id : Entity_Id;
2024 Proc_Call : Node_Id;
2026 -- Start of processing for Split_Unconstrained_Function
2028 begin
2029 -- Build the associated procedure, analyze it and insert it before
2030 -- the function body N.
2032 declare
2033 Scope : constant Entity_Id := Current_Scope;
2034 Decl_List : List_Id;
2035 begin
2036 Pop_Scope;
2037 Build_Procedure (Proc_Id, Decl_List);
2038 Insert_Actions (N, Decl_List);
2039 Set_Is_Inlined (Proc_Id);
2040 Push_Scope (Scope);
2041 end;
2043 -- Build the call to the generated procedure
2045 declare
2046 Actual_List : constant List_Id := New_List;
2047 Formal : Entity_Id;
2049 begin
2050 Append_To (Actual_List,
2051 New_Occurrence_Of (Defining_Identifier (New_Obj), Loc));
2053 Formal := First_Formal (Spec_Id);
2054 while Present (Formal) loop
2055 Append_To (Actual_List, New_Occurrence_Of (Formal, Loc));
2057 -- Avoid spurious warning on unreferenced formals
2059 Set_Referenced (Formal);
2060 Next_Formal (Formal);
2061 end loop;
2063 Proc_Call :=
2064 Make_Procedure_Call_Statement (Loc,
2065 Name => New_Occurrence_Of (Proc_Id, Loc),
2066 Parameter_Associations => Actual_List);
2067 end;
2069 -- Generate:
2071 -- declare
2072 -- New_Obj : ...
2073 -- begin
2074 -- Proc (New_Obj, ...);
2075 -- return New_Obj;
2076 -- end;
2078 Blk_Stmt :=
2079 Make_Block_Statement (Loc,
2080 Declarations => New_List (New_Obj),
2081 Handled_Statement_Sequence =>
2082 Make_Handled_Sequence_Of_Statements (Loc,
2083 Statements => New_List (
2085 Proc_Call,
2087 Make_Simple_Return_Statement (Loc,
2088 Expression =>
2089 New_Occurrence_Of
2090 (Defining_Identifier (New_Obj), Loc)))));
2092 Rewrite (Ret_Node, Blk_Stmt);
2093 end Split_Unconstrained_Function;
2095 -- Local variables
2097 Decl : constant Node_Id := Unit_Declaration_Node (Spec_Id);
2099 -- Start of processing for Check_And_Split_Unconstrained_Function
2101 begin
2102 pragma Assert (Back_End_Inlining
2103 and then Ekind (Spec_Id) = E_Function
2104 and then Returns_Unconstrained_Type (Spec_Id)
2105 and then Comes_From_Source (Body_Id)
2106 and then (Has_Pragma_Inline_Always (Spec_Id)
2107 or else Optimization_Level > 0));
2109 -- This routine must not be used in GNATprove mode since GNATprove
2110 -- relies on frontend inlining
2112 pragma Assert (not GNATprove_Mode);
2114 -- No need to split the function if we cannot generate the code
2116 if Serious_Errors_Detected /= 0 then
2117 return;
2118 end if;
2120 -- No action needed in stubs since the attribute Body_To_Inline
2121 -- is not available
2123 if Nkind (Decl) = N_Subprogram_Body_Stub then
2124 return;
2126 -- Cannot build the body to inline if the attribute is already set.
2127 -- This attribute may have been set if this is a subprogram renaming
2128 -- declarations (see Freeze.Build_Renamed_Body).
2130 elsif Present (Body_To_Inline (Decl)) then
2131 return;
2133 -- Check excluded declarations
2135 elsif Present (Declarations (N))
2136 and then Has_Excluded_Declaration (Spec_Id, Declarations (N))
2137 then
2138 return;
2140 -- Check excluded statements. There is no need to protect us against
2141 -- exception handlers since they are supported by the GCC backend.
2143 elsif Present (Handled_Statement_Sequence (N))
2144 and then Has_Excluded_Statement
2145 (Spec_Id, Statements (Handled_Statement_Sequence (N)))
2146 then
2147 return;
2148 end if;
2150 -- Build the body to inline only if really needed
2152 if Can_Split_Unconstrained_Function (N) then
2153 Split_Unconstrained_Function (N, Spec_Id);
2154 Build_Body_To_Inline (N, Spec_Id);
2155 Set_Is_Inlined (Spec_Id);
2156 end if;
2157 end Check_And_Split_Unconstrained_Function;
2159 -------------------------------------
2160 -- Check_Package_Body_For_Inlining --
2161 -------------------------------------
2163 procedure Check_Package_Body_For_Inlining (N : Node_Id; P : Entity_Id) is
2164 Bname : Unit_Name_Type;
2165 E : Entity_Id;
2166 OK : Boolean;
2168 begin
2169 -- Legacy implementation (relying on frontend inlining)
2171 if not Back_End_Inlining
2172 and then Is_Compilation_Unit (P)
2173 and then not Is_Generic_Instance (P)
2174 then
2175 Bname := Get_Body_Name (Get_Unit_Name (Unit (N)));
2177 E := First_Entity (P);
2178 while Present (E) loop
2179 if Has_Pragma_Inline_Always (E)
2180 or else (Has_Pragma_Inline (E) and Front_End_Inlining)
2181 then
2182 if not Is_Loaded (Bname) then
2183 Load_Needed_Body (N, OK);
2185 if OK then
2187 -- Check we are not trying to inline a parent whose body
2188 -- depends on a child, when we are compiling the body of
2189 -- the child. Otherwise we have a potential elaboration
2190 -- circularity with inlined subprograms and with
2191 -- Taft-Amendment types.
2193 declare
2194 Comp : Node_Id; -- Body just compiled
2195 Child_Spec : Entity_Id; -- Spec of main unit
2196 Ent : Entity_Id; -- For iteration
2197 With_Clause : Node_Id; -- Context of body.
2199 begin
2200 if Nkind (Unit (Cunit (Main_Unit))) = N_Package_Body
2201 and then Present (Body_Entity (P))
2202 then
2203 Child_Spec :=
2204 Defining_Entity
2205 ((Unit (Library_Unit (Cunit (Main_Unit)))));
2207 Comp :=
2208 Parent (Unit_Declaration_Node (Body_Entity (P)));
2210 -- Check whether the context of the body just
2211 -- compiled includes a child of itself, and that
2212 -- child is the spec of the main compilation.
2214 With_Clause := First (Context_Items (Comp));
2215 while Present (With_Clause) loop
2216 if Nkind (With_Clause) = N_With_Clause
2217 and then
2218 Scope (Entity (Name (With_Clause))) = P
2219 and then
2220 Entity (Name (With_Clause)) = Child_Spec
2221 then
2222 Error_Msg_Node_2 := Child_Spec;
2223 Error_Msg_NE
2224 ("body of & depends on child unit&??",
2225 With_Clause, P);
2226 Error_Msg_N
2227 ("\subprograms in body cannot be inlined??",
2228 With_Clause);
2230 -- Disable further inlining from this unit,
2231 -- and keep Taft-amendment types incomplete.
2233 Ent := First_Entity (P);
2234 while Present (Ent) loop
2235 if Is_Type (Ent)
2236 and then Has_Completion_In_Body (Ent)
2237 then
2238 Set_Full_View (Ent, Empty);
2240 elsif Is_Subprogram (Ent) then
2241 Set_Is_Inlined (Ent, False);
2242 end if;
2244 Next_Entity (Ent);
2245 end loop;
2247 return;
2248 end if;
2250 Next (With_Clause);
2251 end loop;
2252 end if;
2253 end;
2255 elsif Ineffective_Inline_Warnings then
2256 Error_Msg_Unit_1 := Bname;
2257 Error_Msg_N
2258 ("unable to inline subprograms defined in $??", P);
2259 Error_Msg_N ("\body not found??", P);
2260 return;
2261 end if;
2262 end if;
2264 return;
2265 end if;
2267 Next_Entity (E);
2268 end loop;
2269 end if;
2270 end Check_Package_Body_For_Inlining;
2272 --------------------
2273 -- Cleanup_Scopes --
2274 --------------------
2276 procedure Cleanup_Scopes is
2277 Elmt : Elmt_Id;
2278 Decl : Node_Id;
2279 Scop : Entity_Id;
2281 begin
2282 Elmt := First_Elmt (To_Clean);
2283 while Present (Elmt) loop
2284 Scop := Node (Elmt);
2286 if Ekind (Scop) = E_Entry then
2287 Scop := Protected_Body_Subprogram (Scop);
2289 elsif Is_Subprogram (Scop)
2290 and then Is_Protected_Type (Scope (Scop))
2291 and then Present (Protected_Body_Subprogram (Scop))
2292 then
2293 -- If a protected operation contains an instance, its cleanup
2294 -- operations have been delayed, and the subprogram has been
2295 -- rewritten in the expansion of the enclosing protected body. It
2296 -- is the corresponding subprogram that may require the cleanup
2297 -- operations, so propagate the information that triggers cleanup
2298 -- activity.
2300 Set_Uses_Sec_Stack
2301 (Protected_Body_Subprogram (Scop),
2302 Uses_Sec_Stack (Scop));
2304 Scop := Protected_Body_Subprogram (Scop);
2305 end if;
2307 if Ekind (Scop) = E_Block then
2308 Decl := Parent (Block_Node (Scop));
2310 else
2311 Decl := Unit_Declaration_Node (Scop);
2313 if Nkind_In (Decl, N_Subprogram_Declaration,
2314 N_Task_Type_Declaration,
2315 N_Subprogram_Body_Stub)
2316 then
2317 Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
2318 end if;
2319 end if;
2321 Push_Scope (Scop);
2322 Expand_Cleanup_Actions (Decl);
2323 End_Scope;
2325 Elmt := Next_Elmt (Elmt);
2326 end loop;
2327 end Cleanup_Scopes;
2329 -------------------------
2330 -- Expand_Inlined_Call --
2331 -------------------------
2333 procedure Expand_Inlined_Call
2334 (N : Node_Id;
2335 Subp : Entity_Id;
2336 Orig_Subp : Entity_Id)
2338 Decls : constant List_Id := New_List;
2339 Is_Predef : constant Boolean :=
2340 Is_Predefined_Unit (Get_Source_Unit (Subp));
2341 Loc : constant Source_Ptr := Sloc (N);
2342 Orig_Bod : constant Node_Id :=
2343 Body_To_Inline (Unit_Declaration_Node (Subp));
2345 Uses_Back_End : constant Boolean :=
2346 Back_End_Inlining and then Optimization_Level > 0;
2347 -- The back-end expansion is used if the target supports back-end
2348 -- inlining and some level of optimixation is required; otherwise
2349 -- the inlining takes place fully as a tree expansion.
2351 Blk : Node_Id;
2352 Decl : Node_Id;
2353 Exit_Lab : Entity_Id := Empty;
2354 F : Entity_Id;
2355 A : Node_Id;
2356 Lab_Decl : Node_Id := Empty;
2357 Lab_Id : Node_Id;
2358 New_A : Node_Id;
2359 Num_Ret : Nat := 0;
2360 Ret_Type : Entity_Id;
2361 Temp : Entity_Id;
2362 Temp_Typ : Entity_Id;
2364 Is_Unc : Boolean;
2365 Is_Unc_Decl : Boolean;
2366 -- If the type returned by the function is unconstrained and the call
2367 -- can be inlined, special processing is required.
2369 Return_Object : Entity_Id := Empty;
2370 -- Entity in declaration in an extended_return_statement
2372 Targ : Node_Id := Empty;
2373 -- The target of the call. If context is an assignment statement then
2374 -- this is the left-hand side of the assignment, else it is a temporary
2375 -- to which the return value is assigned prior to rewriting the call.
2377 Targ1 : Node_Id := Empty;
2378 -- A separate target used when the return type is unconstrained
2380 procedure Declare_Postconditions_Result;
2381 -- When generating C code, declare _Result, which may be used in the
2382 -- inlined _Postconditions procedure to verify the return value.
2384 procedure Make_Exit_Label;
2385 -- Build declaration for exit label to be used in Return statements,
2386 -- sets Exit_Lab (the label node) and Lab_Decl (corresponding implicit
2387 -- declaration). Does nothing if Exit_Lab already set.
2389 function Process_Formals (N : Node_Id) return Traverse_Result;
2390 -- Replace occurrence of a formal with the corresponding actual, or the
2391 -- thunk generated for it. Replace a return statement with an assignment
2392 -- to the target of the call, with appropriate conversions if needed.
2394 function Process_Sloc (Nod : Node_Id) return Traverse_Result;
2395 -- If the call being expanded is that of an internal subprogram, set the
2396 -- sloc of the generated block to that of the call itself, so that the
2397 -- expansion is skipped by the "next" command in gdb. Same processing
2398 -- for a subprogram in a predefined file, e.g. Ada.Tags. If
2399 -- Debug_Generated_Code is true, suppress this change to simplify our
2400 -- own development. Same in GNATprove mode, to ensure that warnings and
2401 -- diagnostics point to the proper location.
2403 procedure Reset_Dispatching_Calls (N : Node_Id);
2404 -- In subtree N search for occurrences of dispatching calls that use the
2405 -- Ada 2005 Object.Operation notation and the object is a formal of the
2406 -- inlined subprogram. Reset the entity associated with Operation in all
2407 -- the found occurrences.
2409 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id);
2410 -- If the function body is a single expression, replace call with
2411 -- expression, else insert block appropriately.
2413 procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id);
2414 -- If procedure body has no local variables, inline body without
2415 -- creating block, otherwise rewrite call with block.
2417 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean;
2418 -- Determine whether a formal parameter is used only once in Orig_Bod
2420 -----------------------------------
2421 -- Declare_Postconditions_Result --
2422 -----------------------------------
2424 procedure Declare_Postconditions_Result is
2425 Enclosing_Subp : constant Entity_Id := Scope (Subp);
2427 begin
2428 pragma Assert
2429 (Modify_Tree_For_C
2430 and then Is_Subprogram (Enclosing_Subp)
2431 and then Present (Postconditions_Proc (Enclosing_Subp)));
2433 if Ekind (Enclosing_Subp) = E_Function then
2434 if Nkind (First (Parameter_Associations (N))) in
2435 N_Numeric_Or_String_Literal
2436 then
2437 Append_To (Declarations (Blk),
2438 Make_Object_Declaration (Loc,
2439 Defining_Identifier =>
2440 Make_Defining_Identifier (Loc, Name_uResult),
2441 Constant_Present => True,
2442 Object_Definition =>
2443 New_Occurrence_Of (Etype (Enclosing_Subp), Loc),
2444 Expression =>
2445 New_Copy_Tree (First (Parameter_Associations (N)))));
2446 else
2447 Append_To (Declarations (Blk),
2448 Make_Object_Renaming_Declaration (Loc,
2449 Defining_Identifier =>
2450 Make_Defining_Identifier (Loc, Name_uResult),
2451 Subtype_Mark =>
2452 New_Occurrence_Of (Etype (Enclosing_Subp), Loc),
2453 Name =>
2454 New_Copy_Tree (First (Parameter_Associations (N)))));
2455 end if;
2456 end if;
2457 end Declare_Postconditions_Result;
2459 ---------------------
2460 -- Make_Exit_Label --
2461 ---------------------
2463 procedure Make_Exit_Label is
2464 Lab_Ent : Entity_Id;
2465 begin
2466 if No (Exit_Lab) then
2467 Lab_Ent := Make_Temporary (Loc, 'L');
2468 Lab_Id := New_Occurrence_Of (Lab_Ent, Loc);
2469 Exit_Lab := Make_Label (Loc, Lab_Id);
2470 Lab_Decl :=
2471 Make_Implicit_Label_Declaration (Loc,
2472 Defining_Identifier => Lab_Ent,
2473 Label_Construct => Exit_Lab);
2474 end if;
2475 end Make_Exit_Label;
2477 ---------------------
2478 -- Process_Formals --
2479 ---------------------
2481 function Process_Formals (N : Node_Id) return Traverse_Result is
2482 A : Entity_Id;
2483 E : Entity_Id;
2484 Ret : Node_Id;
2486 begin
2487 if Is_Entity_Name (N) and then Present (Entity (N)) then
2488 E := Entity (N);
2490 if Is_Formal (E) and then Scope (E) = Subp then
2491 A := Renamed_Object (E);
2493 -- Rewrite the occurrence of the formal into an occurrence of
2494 -- the actual. Also establish visibility on the proper view of
2495 -- the actual's subtype for the body's context (if the actual's
2496 -- subtype is private at the call point but its full view is
2497 -- visible to the body, then the inlined tree here must be
2498 -- analyzed with the full view).
2500 if Is_Entity_Name (A) then
2501 Rewrite (N, New_Occurrence_Of (Entity (A), Sloc (N)));
2502 Check_Private_View (N);
2504 elsif Nkind (A) = N_Defining_Identifier then
2505 Rewrite (N, New_Occurrence_Of (A, Sloc (N)));
2506 Check_Private_View (N);
2508 -- Numeric literal
2510 else
2511 Rewrite (N, New_Copy (A));
2512 end if;
2513 end if;
2515 return Skip;
2517 elsif Is_Entity_Name (N)
2518 and then Present (Return_Object)
2519 and then Chars (N) = Chars (Return_Object)
2520 then
2521 -- Occurrence within an extended return statement. The return
2522 -- object is local to the body been inlined, and thus the generic
2523 -- copy is not analyzed yet, so we match by name, and replace it
2524 -- with target of call.
2526 if Nkind (Targ) = N_Defining_Identifier then
2527 Rewrite (N, New_Occurrence_Of (Targ, Loc));
2528 else
2529 Rewrite (N, New_Copy_Tree (Targ));
2530 end if;
2532 return Skip;
2534 elsif Nkind (N) = N_Simple_Return_Statement then
2535 if No (Expression (N)) then
2536 Num_Ret := Num_Ret + 1;
2537 Make_Exit_Label;
2538 Rewrite (N,
2539 Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
2541 else
2542 if Nkind (Parent (N)) = N_Handled_Sequence_Of_Statements
2543 and then Nkind (Parent (Parent (N))) = N_Subprogram_Body
2544 then
2545 -- Function body is a single expression. No need for
2546 -- exit label.
2548 null;
2550 else
2551 Num_Ret := Num_Ret + 1;
2552 Make_Exit_Label;
2553 end if;
2555 -- Because of the presence of private types, the views of the
2556 -- expression and the context may be different, so place
2557 -- a type conversion to the context type to avoid spurious
2558 -- errors, e.g. when the expression is a numeric literal and
2559 -- the context is private. If the expression is an aggregate,
2560 -- use a qualified expression, because an aggregate is not a
2561 -- legal argument of a conversion. Ditto for numeric, character
2562 -- and string literals, and attributes that yield a universal
2563 -- type, because those must be resolved to a specific type.
2565 if Nkind_In (Expression (N), N_Aggregate,
2566 N_Character_Literal,
2567 N_Null,
2568 N_String_Literal)
2569 or else Yields_Universal_Type (Expression (N))
2570 then
2571 Ret :=
2572 Make_Qualified_Expression (Sloc (N),
2573 Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
2574 Expression => Relocate_Node (Expression (N)));
2576 -- Use an unchecked type conversion between access types, for
2577 -- which a type conversion would not always be valid, as no
2578 -- check may result from the conversion.
2580 elsif Is_Access_Type (Ret_Type) then
2581 Ret :=
2582 Unchecked_Convert_To
2583 (Ret_Type, Relocate_Node (Expression (N)));
2585 -- Otherwise use a type conversion, which may trigger a check
2587 else
2588 Ret :=
2589 Make_Type_Conversion (Sloc (N),
2590 Subtype_Mark => New_Occurrence_Of (Ret_Type, Sloc (N)),
2591 Expression => Relocate_Node (Expression (N)));
2592 end if;
2594 if Nkind (Targ) = N_Defining_Identifier then
2595 Rewrite (N,
2596 Make_Assignment_Statement (Loc,
2597 Name => New_Occurrence_Of (Targ, Loc),
2598 Expression => Ret));
2599 else
2600 Rewrite (N,
2601 Make_Assignment_Statement (Loc,
2602 Name => New_Copy (Targ),
2603 Expression => Ret));
2604 end if;
2606 Set_Assignment_OK (Name (N));
2608 if Present (Exit_Lab) then
2609 Insert_After (N,
2610 Make_Goto_Statement (Loc, Name => New_Copy (Lab_Id)));
2611 end if;
2612 end if;
2614 return OK;
2616 -- An extended return becomes a block whose first statement is the
2617 -- assignment of the initial expression of the return object to the
2618 -- target of the call itself.
2620 elsif Nkind (N) = N_Extended_Return_Statement then
2621 declare
2622 Return_Decl : constant Entity_Id :=
2623 First (Return_Object_Declarations (N));
2624 Assign : Node_Id;
2626 begin
2627 Return_Object := Defining_Identifier (Return_Decl);
2629 if Present (Expression (Return_Decl)) then
2630 if Nkind (Targ) = N_Defining_Identifier then
2631 Assign :=
2632 Make_Assignment_Statement (Loc,
2633 Name => New_Occurrence_Of (Targ, Loc),
2634 Expression => Expression (Return_Decl));
2635 else
2636 Assign :=
2637 Make_Assignment_Statement (Loc,
2638 Name => New_Copy (Targ),
2639 Expression => Expression (Return_Decl));
2640 end if;
2642 Set_Assignment_OK (Name (Assign));
2644 if No (Handled_Statement_Sequence (N)) then
2645 Set_Handled_Statement_Sequence (N,
2646 Make_Handled_Sequence_Of_Statements (Loc,
2647 Statements => New_List));
2648 end if;
2650 Prepend (Assign,
2651 Statements (Handled_Statement_Sequence (N)));
2652 end if;
2654 Rewrite (N,
2655 Make_Block_Statement (Loc,
2656 Handled_Statement_Sequence =>
2657 Handled_Statement_Sequence (N)));
2659 return OK;
2660 end;
2662 -- Remove pragma Unreferenced since it may refer to formals that
2663 -- are not visible in the inlined body, and in any case we will
2664 -- not be posting warnings on the inlined body so it is unneeded.
2666 elsif Nkind (N) = N_Pragma
2667 and then Pragma_Name (N) = Name_Unreferenced
2668 then
2669 Rewrite (N, Make_Null_Statement (Sloc (N)));
2670 return OK;
2672 else
2673 return OK;
2674 end if;
2675 end Process_Formals;
2677 procedure Replace_Formals is new Traverse_Proc (Process_Formals);
2679 ------------------
2680 -- Process_Sloc --
2681 ------------------
2683 function Process_Sloc (Nod : Node_Id) return Traverse_Result is
2684 begin
2685 if not Debug_Generated_Code then
2686 Set_Sloc (Nod, Sloc (N));
2687 Set_Comes_From_Source (Nod, False);
2688 end if;
2690 return OK;
2691 end Process_Sloc;
2693 procedure Reset_Slocs is new Traverse_Proc (Process_Sloc);
2695 ------------------------------
2696 -- Reset_Dispatching_Calls --
2697 ------------------------------
2699 procedure Reset_Dispatching_Calls (N : Node_Id) is
2701 function Do_Reset (N : Node_Id) return Traverse_Result;
2702 -- Comment required ???
2704 --------------
2705 -- Do_Reset --
2706 --------------
2708 function Do_Reset (N : Node_Id) return Traverse_Result is
2709 begin
2710 if Nkind (N) = N_Procedure_Call_Statement
2711 and then Nkind (Name (N)) = N_Selected_Component
2712 and then Nkind (Prefix (Name (N))) = N_Identifier
2713 and then Is_Formal (Entity (Prefix (Name (N))))
2714 and then Is_Dispatching_Operation
2715 (Entity (Selector_Name (Name (N))))
2716 then
2717 Set_Entity (Selector_Name (Name (N)), Empty);
2718 end if;
2720 return OK;
2721 end Do_Reset;
2723 function Do_Reset_Calls is new Traverse_Func (Do_Reset);
2725 -- Local variables
2727 Dummy : constant Traverse_Result := Do_Reset_Calls (N);
2728 pragma Unreferenced (Dummy);
2730 -- Start of processing for Reset_Dispatching_Calls
2732 begin
2733 null;
2734 end Reset_Dispatching_Calls;
2736 ---------------------------
2737 -- Rewrite_Function_Call --
2738 ---------------------------
2740 procedure Rewrite_Function_Call (N : Node_Id; Blk : Node_Id) is
2741 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
2742 Fst : constant Node_Id := First (Statements (HSS));
2744 begin
2745 -- Optimize simple case: function body is a single return statement,
2746 -- which has been expanded into an assignment.
2748 if Is_Empty_List (Declarations (Blk))
2749 and then Nkind (Fst) = N_Assignment_Statement
2750 and then No (Next (Fst))
2751 then
2752 -- The function call may have been rewritten as the temporary
2753 -- that holds the result of the call, in which case remove the
2754 -- now useless declaration.
2756 if Nkind (N) = N_Identifier
2757 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
2758 then
2759 Rewrite (Parent (Entity (N)), Make_Null_Statement (Loc));
2760 end if;
2762 Rewrite (N, Expression (Fst));
2764 elsif Nkind (N) = N_Identifier
2765 and then Nkind (Parent (Entity (N))) = N_Object_Declaration
2766 then
2767 -- The block assigns the result of the call to the temporary
2769 Insert_After (Parent (Entity (N)), Blk);
2771 -- If the context is an assignment, and the left-hand side is free of
2772 -- side-effects, the replacement is also safe.
2773 -- Can this be generalized further???
2775 elsif Nkind (Parent (N)) = N_Assignment_Statement
2776 and then
2777 (Is_Entity_Name (Name (Parent (N)))
2778 or else
2779 (Nkind (Name (Parent (N))) = N_Explicit_Dereference
2780 and then Is_Entity_Name (Prefix (Name (Parent (N)))))
2782 or else
2783 (Nkind (Name (Parent (N))) = N_Selected_Component
2784 and then Is_Entity_Name (Prefix (Name (Parent (N))))))
2785 then
2786 -- Replace assignment with the block
2788 declare
2789 Original_Assignment : constant Node_Id := Parent (N);
2791 begin
2792 -- Preserve the original assignment node to keep the complete
2793 -- assignment subtree consistent enough for Analyze_Assignment
2794 -- to proceed (specifically, the original Lhs node must still
2795 -- have an assignment statement as its parent).
2797 -- We cannot rely on Original_Node to go back from the block
2798 -- node to the assignment node, because the assignment might
2799 -- already be a rewrite substitution.
2801 Discard_Node (Relocate_Node (Original_Assignment));
2802 Rewrite (Original_Assignment, Blk);
2803 end;
2805 elsif Nkind (Parent (N)) = N_Object_Declaration then
2807 -- A call to a function which returns an unconstrained type
2808 -- found in the expression initializing an object-declaration is
2809 -- expanded into a procedure call which must be added after the
2810 -- object declaration.
2812 if Is_Unc_Decl and Back_End_Inlining then
2813 Insert_Action_After (Parent (N), Blk);
2814 else
2815 Set_Expression (Parent (N), Empty);
2816 Insert_After (Parent (N), Blk);
2817 end if;
2819 elsif Is_Unc and then not Back_End_Inlining then
2820 Insert_Before (Parent (N), Blk);
2821 end if;
2822 end Rewrite_Function_Call;
2824 ----------------------------
2825 -- Rewrite_Procedure_Call --
2826 ----------------------------
2828 procedure Rewrite_Procedure_Call (N : Node_Id; Blk : Node_Id) is
2829 HSS : constant Node_Id := Handled_Statement_Sequence (Blk);
2831 begin
2832 -- If there is a transient scope for N, this will be the scope of the
2833 -- actions for N, and the statements in Blk need to be within this
2834 -- scope. For example, they need to have visibility on the constant
2835 -- declarations created for the formals.
2837 -- If N needs no transient scope, and if there are no declarations in
2838 -- the inlined body, we can do a little optimization and insert the
2839 -- statements for the body directly after N, and rewrite N to a
2840 -- null statement, instead of rewriting N into a full-blown block
2841 -- statement.
2843 if not Scope_Is_Transient
2844 and then Is_Empty_List (Declarations (Blk))
2845 then
2846 Insert_List_After (N, Statements (HSS));
2847 Rewrite (N, Make_Null_Statement (Loc));
2848 else
2849 Rewrite (N, Blk);
2850 end if;
2851 end Rewrite_Procedure_Call;
2853 -------------------------
2854 -- Formal_Is_Used_Once --
2855 -------------------------
2857 function Formal_Is_Used_Once (Formal : Entity_Id) return Boolean is
2858 Use_Counter : Int := 0;
2860 function Count_Uses (N : Node_Id) return Traverse_Result;
2861 -- Traverse the tree and count the uses of the formal parameter.
2862 -- In this case, for optimization purposes, we do not need to
2863 -- continue the traversal once more than one use is encountered.
2865 ----------------
2866 -- Count_Uses --
2867 ----------------
2869 function Count_Uses (N : Node_Id) return Traverse_Result is
2870 begin
2871 -- The original node is an identifier
2873 if Nkind (N) = N_Identifier
2874 and then Present (Entity (N))
2876 -- Original node's entity points to the one in the copied body
2878 and then Nkind (Entity (N)) = N_Identifier
2879 and then Present (Entity (Entity (N)))
2881 -- The entity of the copied node is the formal parameter
2883 and then Entity (Entity (N)) = Formal
2884 then
2885 Use_Counter := Use_Counter + 1;
2887 if Use_Counter > 1 then
2889 -- Denote more than one use and abandon the traversal
2891 Use_Counter := 2;
2892 return Abandon;
2894 end if;
2895 end if;
2897 return OK;
2898 end Count_Uses;
2900 procedure Count_Formal_Uses is new Traverse_Proc (Count_Uses);
2902 -- Start of processing for Formal_Is_Used_Once
2904 begin
2905 Count_Formal_Uses (Orig_Bod);
2906 return Use_Counter = 1;
2907 end Formal_Is_Used_Once;
2909 -- Start of processing for Expand_Inlined_Call
2911 begin
2912 -- Initializations for old/new semantics
2914 if not Uses_Back_End then
2915 Is_Unc := Is_Array_Type (Etype (Subp))
2916 and then not Is_Constrained (Etype (Subp));
2917 Is_Unc_Decl := False;
2918 else
2919 Is_Unc := Returns_Unconstrained_Type (Subp)
2920 and then Optimization_Level > 0;
2921 Is_Unc_Decl := Nkind (Parent (N)) = N_Object_Declaration
2922 and then Is_Unc;
2923 end if;
2925 -- Check for an illegal attempt to inline a recursive procedure. If the
2926 -- subprogram has parameters this is detected when trying to supply a
2927 -- binding for parameters that already have one. For parameterless
2928 -- subprograms this must be done explicitly.
2930 if In_Open_Scopes (Subp) then
2931 Cannot_Inline
2932 ("cannot inline call to recursive subprogram?", N, Subp);
2933 Set_Is_Inlined (Subp, False);
2934 return;
2936 -- Skip inlining if this is not a true inlining since the attribute
2937 -- Body_To_Inline is also set for renamings (see sinfo.ads). For a
2938 -- true inlining, Orig_Bod has code rather than being an entity.
2940 elsif Nkind (Orig_Bod) in N_Entity then
2941 return;
2942 end if;
2944 if Nkind (Orig_Bod) = N_Defining_Identifier
2945 or else Nkind (Orig_Bod) = N_Defining_Operator_Symbol
2946 then
2947 -- Subprogram is renaming_as_body. Calls occurring after the renaming
2948 -- can be replaced with calls to the renamed entity directly, because
2949 -- the subprograms are subtype conformant. If the renamed subprogram
2950 -- is an inherited operation, we must redo the expansion because
2951 -- implicit conversions may be needed. Similarly, if the renamed
2952 -- entity is inlined, expand the call for further optimizations.
2954 Set_Name (N, New_Occurrence_Of (Orig_Bod, Loc));
2956 if Present (Alias (Orig_Bod)) or else Is_Inlined (Orig_Bod) then
2957 Expand_Call (N);
2958 end if;
2960 return;
2961 end if;
2963 -- Register the call in the list of inlined calls
2965 Append_New_Elmt (N, To => Inlined_Calls);
2967 -- Use generic machinery to copy body of inlined subprogram, as if it
2968 -- were an instantiation, resetting source locations appropriately, so
2969 -- that nested inlined calls appear in the main unit.
2971 Save_Env (Subp, Empty);
2972 Set_Copied_Sloc_For_Inlined_Body (N, Defining_Entity (Orig_Bod));
2974 -- Old semantics
2976 if not Uses_Back_End then
2977 declare
2978 Bod : Node_Id;
2980 begin
2981 Bod := Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
2982 Blk :=
2983 Make_Block_Statement (Loc,
2984 Declarations => Declarations (Bod),
2985 Handled_Statement_Sequence =>
2986 Handled_Statement_Sequence (Bod));
2988 if No (Declarations (Bod)) then
2989 Set_Declarations (Blk, New_List);
2990 end if;
2992 -- When generating C code, declare _Result, which may be used to
2993 -- verify the return value.
2995 if Modify_Tree_For_C
2996 and then Nkind (N) = N_Procedure_Call_Statement
2997 and then Chars (Name (N)) = Name_uPostconditions
2998 then
2999 Declare_Postconditions_Result;
3000 end if;
3002 -- For the unconstrained case, capture the name of the local
3003 -- variable that holds the result. This must be the first
3004 -- declaration in the block, because its bounds cannot depend
3005 -- on local variables. Otherwise there is no way to declare the
3006 -- result outside of the block. Needless to say, in general the
3007 -- bounds will depend on the actuals in the call.
3009 -- If the context is an assignment statement, as is the case
3010 -- for the expansion of an extended return, the left-hand side
3011 -- provides bounds even if the return type is unconstrained.
3013 if Is_Unc then
3014 declare
3015 First_Decl : Node_Id;
3017 begin
3018 First_Decl := First (Declarations (Blk));
3020 -- If the body is a single extended return statement,the
3021 -- resulting block is a nested block.
3023 if No (First_Decl) then
3024 First_Decl :=
3025 First (Statements (Handled_Statement_Sequence (Blk)));
3027 if Nkind (First_Decl) = N_Block_Statement then
3028 First_Decl := First (Declarations (First_Decl));
3029 end if;
3030 end if;
3032 -- No front-end inlining possible
3034 if Nkind (First_Decl) /= N_Object_Declaration then
3035 return;
3036 end if;
3038 if Nkind (Parent (N)) /= N_Assignment_Statement then
3039 Targ1 := Defining_Identifier (First_Decl);
3040 else
3041 Targ1 := Name (Parent (N));
3042 end if;
3043 end;
3044 end if;
3045 end;
3047 -- New semantics
3049 else
3050 declare
3051 Bod : Node_Id;
3053 begin
3054 -- General case
3056 if not Is_Unc then
3057 Bod :=
3058 Copy_Generic_Node (Orig_Bod, Empty, Instantiating => True);
3059 Blk :=
3060 Make_Block_Statement (Loc,
3061 Declarations => Declarations (Bod),
3062 Handled_Statement_Sequence =>
3063 Handled_Statement_Sequence (Bod));
3065 -- Inline a call to a function that returns an unconstrained type.
3066 -- The semantic analyzer checked that frontend-inlined functions
3067 -- returning unconstrained types have no declarations and have
3068 -- a single extended return statement. As part of its processing
3069 -- the function was split into two subprograms: a procedure P' and
3070 -- a function F' that has a block with a call to procedure P' (see
3071 -- Split_Unconstrained_Function).
3073 else
3074 pragma Assert
3075 (Nkind
3076 (First
3077 (Statements (Handled_Statement_Sequence (Orig_Bod)))) =
3078 N_Block_Statement);
3080 declare
3081 Blk_Stmt : constant Node_Id :=
3082 First (Statements (Handled_Statement_Sequence (Orig_Bod)));
3083 First_Stmt : constant Node_Id :=
3084 First (Statements (Handled_Statement_Sequence (Blk_Stmt)));
3085 Second_Stmt : constant Node_Id := Next (First_Stmt);
3087 begin
3088 pragma Assert
3089 (Nkind (First_Stmt) = N_Procedure_Call_Statement
3090 and then Nkind (Second_Stmt) = N_Simple_Return_Statement
3091 and then No (Next (Second_Stmt)));
3093 Bod :=
3094 Copy_Generic_Node
3095 (First
3096 (Statements (Handled_Statement_Sequence (Orig_Bod))),
3097 Empty, Instantiating => True);
3098 Blk := Bod;
3100 -- Capture the name of the local variable that holds the
3101 -- result. This must be the first declaration in the block,
3102 -- because its bounds cannot depend on local variables.
3103 -- Otherwise there is no way to declare the result outside
3104 -- of the block. Needless to say, in general the bounds will
3105 -- depend on the actuals in the call.
3107 if Nkind (Parent (N)) /= N_Assignment_Statement then
3108 Targ1 := Defining_Identifier (First (Declarations (Blk)));
3110 -- If the context is an assignment statement, as is the case
3111 -- for the expansion of an extended return, the left-hand
3112 -- side provides bounds even if the return type is
3113 -- unconstrained.
3115 else
3116 Targ1 := Name (Parent (N));
3117 end if;
3118 end;
3119 end if;
3121 if No (Declarations (Bod)) then
3122 Set_Declarations (Blk, New_List);
3123 end if;
3124 end;
3125 end if;
3127 -- If this is a derived function, establish the proper return type
3129 if Present (Orig_Subp) and then Orig_Subp /= Subp then
3130 Ret_Type := Etype (Orig_Subp);
3131 else
3132 Ret_Type := Etype (Subp);
3133 end if;
3135 -- Create temporaries for the actuals that are expressions, or that are
3136 -- scalars and require copying to preserve semantics.
3138 F := First_Formal (Subp);
3139 A := First_Actual (N);
3140 while Present (F) loop
3141 if Present (Renamed_Object (F)) then
3143 -- If expander is active, it is an error to try to inline a
3144 -- recursive program. In GNATprove mode, just indicate that the
3145 -- inlining will not happen, and mark the subprogram as not always
3146 -- inlined.
3148 if GNATprove_Mode then
3149 Cannot_Inline
3150 ("cannot inline call to recursive subprogram?", N, Subp);
3151 Set_Is_Inlined_Always (Subp, False);
3152 else
3153 Error_Msg_N
3154 ("cannot inline call to recursive subprogram", N);
3155 end if;
3157 return;
3158 end if;
3160 -- Reset Last_Assignment for any parameters of mode out or in out, to
3161 -- prevent spurious warnings about overwriting for assignments to the
3162 -- formal in the inlined code.
3164 if Is_Entity_Name (A) and then Ekind (F) /= E_In_Parameter then
3165 Set_Last_Assignment (Entity (A), Empty);
3166 end if;
3168 -- If the argument may be a controlling argument in a call within
3169 -- the inlined body, we must preserve its classwide nature to insure
3170 -- that dynamic dispatching take place subsequently. If the formal
3171 -- has a constraint it must be preserved to retain the semantics of
3172 -- the body.
3174 if Is_Class_Wide_Type (Etype (F))
3175 or else (Is_Access_Type (Etype (F))
3176 and then Is_Class_Wide_Type (Designated_Type (Etype (F))))
3177 then
3178 Temp_Typ := Etype (F);
3180 elsif Base_Type (Etype (F)) = Base_Type (Etype (A))
3181 and then Etype (F) /= Base_Type (Etype (F))
3182 and then Is_Constrained (Etype (F))
3183 then
3184 Temp_Typ := Etype (F);
3186 else
3187 Temp_Typ := Etype (A);
3188 end if;
3190 -- If the actual is a simple name or a literal, no need to
3191 -- create a temporary, object can be used directly.
3193 -- If the actual is a literal and the formal has its address taken,
3194 -- we cannot pass the literal itself as an argument, so its value
3195 -- must be captured in a temporary. Skip this optimization in
3196 -- GNATprove mode, to make sure any check on a type conversion
3197 -- will be issued.
3199 if (Is_Entity_Name (A)
3200 and then
3201 (not Is_Scalar_Type (Etype (A))
3202 or else Ekind (Entity (A)) = E_Enumeration_Literal)
3203 and then not GNATprove_Mode)
3205 -- When the actual is an identifier and the corresponding formal is
3206 -- used only once in the original body, the formal can be substituted
3207 -- directly with the actual parameter. Skip this optimization in
3208 -- GNATprove mode, to make sure any check on a type conversion
3209 -- will be issued.
3211 or else
3212 (Nkind (A) = N_Identifier
3213 and then Formal_Is_Used_Once (F)
3214 and then not GNATprove_Mode)
3216 or else
3217 (Nkind_In (A, N_Real_Literal,
3218 N_Integer_Literal,
3219 N_Character_Literal)
3220 and then not Address_Taken (F))
3221 then
3222 if Etype (F) /= Etype (A) then
3223 Set_Renamed_Object
3224 (F, Unchecked_Convert_To (Etype (F), Relocate_Node (A)));
3225 else
3226 Set_Renamed_Object (F, A);
3227 end if;
3229 else
3230 Temp := Make_Temporary (Loc, 'C');
3232 -- If the actual for an in/in-out parameter is a view conversion,
3233 -- make it into an unchecked conversion, given that an untagged
3234 -- type conversion is not a proper object for a renaming.
3236 -- In-out conversions that involve real conversions have already
3237 -- been transformed in Expand_Actuals.
3239 if Nkind (A) = N_Type_Conversion
3240 and then Ekind (F) /= E_In_Parameter
3241 then
3242 New_A :=
3243 Make_Unchecked_Type_Conversion (Loc,
3244 Subtype_Mark => New_Occurrence_Of (Etype (F), Loc),
3245 Expression => Relocate_Node (Expression (A)));
3247 -- In GNATprove mode, keep the most precise type of the actual for
3248 -- the temporary variable, when the formal type is unconstrained.
3249 -- Otherwise, the AST may contain unexpected assignment statements
3250 -- to a temporary variable of unconstrained type renaming a local
3251 -- variable of constrained type, which is not expected by
3252 -- GNATprove.
3254 elsif Etype (F) /= Etype (A)
3255 and then (not GNATprove_Mode or else Is_Constrained (Etype (F)))
3256 then
3257 New_A := Unchecked_Convert_To (Etype (F), Relocate_Node (A));
3258 Temp_Typ := Etype (F);
3260 else
3261 New_A := Relocate_Node (A);
3262 end if;
3264 Set_Sloc (New_A, Sloc (N));
3266 -- If the actual has a by-reference type, it cannot be copied,
3267 -- so its value is captured in a renaming declaration. Otherwise
3268 -- declare a local constant initialized with the actual.
3270 -- We also use a renaming declaration for expressions of an array
3271 -- type that is not bit-packed, both for efficiency reasons and to
3272 -- respect the semantics of the call: in most cases the original
3273 -- call will pass the parameter by reference, and thus the inlined
3274 -- code will have the same semantics.
3276 -- Finally, we need a renaming declaration in the case of limited
3277 -- types for which initialization cannot be by copy either.
3279 if Ekind (F) = E_In_Parameter
3280 and then not Is_By_Reference_Type (Etype (A))
3281 and then not Is_Limited_Type (Etype (A))
3282 and then
3283 (not Is_Array_Type (Etype (A))
3284 or else not Is_Object_Reference (A)
3285 or else Is_Bit_Packed_Array (Etype (A)))
3286 then
3287 Decl :=
3288 Make_Object_Declaration (Loc,
3289 Defining_Identifier => Temp,
3290 Constant_Present => True,
3291 Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
3292 Expression => New_A);
3294 else
3295 -- In GNATprove mode, make an explicit copy of input
3296 -- parameters when formal and actual types differ, to make
3297 -- sure any check on the type conversion will be issued.
3298 -- The legality of the copy is ensured by calling first
3299 -- Call_Can_Be_Inlined_In_GNATprove_Mode.
3301 if GNATprove_Mode
3302 and then Ekind (F) /= E_Out_Parameter
3303 and then not Same_Type (Etype (F), Etype (A))
3304 then
3305 pragma Assert (not Is_By_Reference_Type (Etype (A)));
3306 pragma Assert (not Is_Limited_Type (Etype (A)));
3308 Append_To (Decls,
3309 Make_Object_Declaration (Loc,
3310 Defining_Identifier => Make_Temporary (Loc, 'C'),
3311 Constant_Present => True,
3312 Object_Definition => New_Occurrence_Of (Temp_Typ, Loc),
3313 Expression => New_Copy_Tree (New_A)));
3314 end if;
3316 Decl :=
3317 Make_Object_Renaming_Declaration (Loc,
3318 Defining_Identifier => Temp,
3319 Subtype_Mark => New_Occurrence_Of (Temp_Typ, Loc),
3320 Name => New_A);
3321 end if;
3323 Append (Decl, Decls);
3324 Set_Renamed_Object (F, Temp);
3325 end if;
3327 Next_Formal (F);
3328 Next_Actual (A);
3329 end loop;
3331 -- Establish target of function call. If context is not assignment or
3332 -- declaration, create a temporary as a target. The declaration for the
3333 -- temporary may be subsequently optimized away if the body is a single
3334 -- expression, or if the left-hand side of the assignment is simple
3335 -- enough, i.e. an entity or an explicit dereference of one.
3337 if Ekind (Subp) = E_Function then
3338 if Nkind (Parent (N)) = N_Assignment_Statement
3339 and then Is_Entity_Name (Name (Parent (N)))
3340 then
3341 Targ := Name (Parent (N));
3343 elsif Nkind (Parent (N)) = N_Assignment_Statement
3344 and then Nkind (Name (Parent (N))) = N_Explicit_Dereference
3345 and then Is_Entity_Name (Prefix (Name (Parent (N))))
3346 then
3347 Targ := Name (Parent (N));
3349 elsif Nkind (Parent (N)) = N_Assignment_Statement
3350 and then Nkind (Name (Parent (N))) = N_Selected_Component
3351 and then Is_Entity_Name (Prefix (Name (Parent (N))))
3352 then
3353 Targ := New_Copy_Tree (Name (Parent (N)));
3355 elsif Nkind (Parent (N)) = N_Object_Declaration
3356 and then Is_Limited_Type (Etype (Subp))
3357 then
3358 Targ := Defining_Identifier (Parent (N));
3360 -- New semantics: In an object declaration avoid an extra copy
3361 -- of the result of a call to an inlined function that returns
3362 -- an unconstrained type
3364 elsif Uses_Back_End
3365 and then Nkind (Parent (N)) = N_Object_Declaration
3366 and then Is_Unc
3367 then
3368 Targ := Defining_Identifier (Parent (N));
3370 else
3371 -- Replace call with temporary and create its declaration
3373 Temp := Make_Temporary (Loc, 'C');
3374 Set_Is_Internal (Temp);
3376 -- For the unconstrained case, the generated temporary has the
3377 -- same constrained declaration as the result variable. It may
3378 -- eventually be possible to remove that temporary and use the
3379 -- result variable directly.
3381 if Is_Unc and then Nkind (Parent (N)) /= N_Assignment_Statement
3382 then
3383 Decl :=
3384 Make_Object_Declaration (Loc,
3385 Defining_Identifier => Temp,
3386 Object_Definition =>
3387 New_Copy_Tree (Object_Definition (Parent (Targ1))));
3389 Replace_Formals (Decl);
3391 else
3392 Decl :=
3393 Make_Object_Declaration (Loc,
3394 Defining_Identifier => Temp,
3395 Object_Definition => New_Occurrence_Of (Ret_Type, Loc));
3397 Set_Etype (Temp, Ret_Type);
3398 end if;
3400 Set_No_Initialization (Decl);
3401 Append (Decl, Decls);
3402 Rewrite (N, New_Occurrence_Of (Temp, Loc));
3403 Targ := Temp;
3404 end if;
3405 end if;
3407 Insert_Actions (N, Decls);
3409 if Is_Unc_Decl then
3411 -- Special management for inlining a call to a function that returns
3412 -- an unconstrained type and initializes an object declaration: we
3413 -- avoid generating undesired extra calls and goto statements.
3415 -- Given:
3416 -- function Func (...) return String is
3417 -- begin
3418 -- declare
3419 -- Result : String (1 .. 4);
3420 -- begin
3421 -- Proc (Result, ...);
3422 -- return Result;
3423 -- end;
3424 -- end Func;
3426 -- Result : String := Func (...);
3428 -- Replace this object declaration by:
3430 -- Result : String (1 .. 4);
3431 -- Proc (Result, ...);
3433 Remove_Homonym (Targ);
3435 Decl :=
3436 Make_Object_Declaration
3437 (Loc,
3438 Defining_Identifier => Targ,
3439 Object_Definition =>
3440 New_Copy_Tree (Object_Definition (Parent (Targ1))));
3441 Replace_Formals (Decl);
3442 Rewrite (Parent (N), Decl);
3443 Analyze (Parent (N));
3445 -- Avoid spurious warnings since we know that this declaration is
3446 -- referenced by the procedure call.
3448 Set_Never_Set_In_Source (Targ, False);
3450 -- Remove the local declaration of the extended return stmt from the
3451 -- inlined code
3453 Remove (Parent (Targ1));
3455 -- Update the reference to the result (since we have rewriten the
3456 -- object declaration)
3458 declare
3459 Blk_Call_Stmt : Node_Id;
3461 begin
3462 -- Capture the call to the procedure
3464 Blk_Call_Stmt :=
3465 First (Statements (Handled_Statement_Sequence (Blk)));
3466 pragma Assert
3467 (Nkind (Blk_Call_Stmt) = N_Procedure_Call_Statement);
3469 Remove (First (Parameter_Associations (Blk_Call_Stmt)));
3470 Prepend_To (Parameter_Associations (Blk_Call_Stmt),
3471 New_Occurrence_Of (Targ, Loc));
3472 end;
3474 -- Remove the return statement
3476 pragma Assert
3477 (Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
3478 N_Simple_Return_Statement);
3480 Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
3481 end if;
3483 -- Traverse the tree and replace formals with actuals or their thunks.
3484 -- Attach block to tree before analysis and rewriting.
3486 Replace_Formals (Blk);
3487 Set_Parent (Blk, N);
3489 if GNATprove_Mode then
3490 null;
3492 elsif not Comes_From_Source (Subp) or else Is_Predef then
3493 Reset_Slocs (Blk);
3494 end if;
3496 if Is_Unc_Decl then
3498 -- No action needed since return statement has been already removed
3500 null;
3502 elsif Present (Exit_Lab) then
3504 -- If there's a single return statement at the end of the subprogram,
3505 -- the corresponding goto statement and the corresponding label are
3506 -- useless.
3508 if Num_Ret = 1
3509 and then
3510 Nkind (Last (Statements (Handled_Statement_Sequence (Blk)))) =
3511 N_Goto_Statement
3512 then
3513 Remove (Last (Statements (Handled_Statement_Sequence (Blk))));
3514 else
3515 Append (Lab_Decl, (Declarations (Blk)));
3516 Append (Exit_Lab, Statements (Handled_Statement_Sequence (Blk)));
3517 end if;
3518 end if;
3520 -- Analyze Blk with In_Inlined_Body set, to avoid spurious errors
3521 -- on conflicting private views that Gigi would ignore. If this is a
3522 -- predefined unit, analyze with checks off, as is done in the non-
3523 -- inlined run-time units.
3525 declare
3526 I_Flag : constant Boolean := In_Inlined_Body;
3528 begin
3529 In_Inlined_Body := True;
3531 if Is_Predef then
3532 declare
3533 Style : constant Boolean := Style_Check;
3535 begin
3536 Style_Check := False;
3538 -- Search for dispatching calls that use the Object.Operation
3539 -- notation using an Object that is a parameter of the inlined
3540 -- function. We reset the decoration of Operation to force
3541 -- the reanalysis of the inlined dispatching call because
3542 -- the actual object has been inlined.
3544 Reset_Dispatching_Calls (Blk);
3546 Analyze (Blk, Suppress => All_Checks);
3547 Style_Check := Style;
3548 end;
3550 else
3551 Analyze (Blk);
3552 end if;
3554 In_Inlined_Body := I_Flag;
3555 end;
3557 if Ekind (Subp) = E_Procedure then
3558 Rewrite_Procedure_Call (N, Blk);
3560 else
3561 Rewrite_Function_Call (N, Blk);
3563 if Is_Unc_Decl then
3564 null;
3566 -- For the unconstrained case, the replacement of the call has been
3567 -- made prior to the complete analysis of the generated declarations.
3568 -- Propagate the proper type now.
3570 elsif Is_Unc then
3571 if Nkind (N) = N_Identifier then
3572 Set_Etype (N, Etype (Entity (N)));
3573 else
3574 Set_Etype (N, Etype (Targ1));
3575 end if;
3576 end if;
3577 end if;
3579 Restore_Env;
3581 -- Cleanup mapping between formals and actuals for other expansions
3583 F := First_Formal (Subp);
3584 while Present (F) loop
3585 Set_Renamed_Object (F, Empty);
3586 Next_Formal (F);
3587 end loop;
3588 end Expand_Inlined_Call;
3590 --------------------------
3591 -- Get_Code_Unit_Entity --
3592 --------------------------
3594 function Get_Code_Unit_Entity (E : Entity_Id) return Entity_Id is
3595 Unit : Entity_Id := Cunit_Entity (Get_Code_Unit (E));
3597 begin
3598 if Ekind (Unit) = E_Package_Body then
3599 Unit := Spec_Entity (Unit);
3600 end if;
3602 return Unit;
3603 end Get_Code_Unit_Entity;
3605 ------------------------------
3606 -- Has_Excluded_Declaration --
3607 ------------------------------
3609 function Has_Excluded_Declaration
3610 (Subp : Entity_Id;
3611 Decls : List_Id) return Boolean
3613 D : Node_Id;
3615 function Is_Unchecked_Conversion (D : Node_Id) return Boolean;
3616 -- Nested subprograms make a given body ineligible for inlining, but
3617 -- we make an exception for instantiations of unchecked conversion.
3618 -- The body has not been analyzed yet, so check the name, and verify
3619 -- that the visible entity with that name is the predefined unit.
3621 -----------------------------
3622 -- Is_Unchecked_Conversion --
3623 -----------------------------
3625 function Is_Unchecked_Conversion (D : Node_Id) return Boolean is
3626 Id : constant Node_Id := Name (D);
3627 Conv : Entity_Id;
3629 begin
3630 if Nkind (Id) = N_Identifier
3631 and then Chars (Id) = Name_Unchecked_Conversion
3632 then
3633 Conv := Current_Entity (Id);
3635 elsif Nkind_In (Id, N_Selected_Component, N_Expanded_Name)
3636 and then Chars (Selector_Name (Id)) = Name_Unchecked_Conversion
3637 then
3638 Conv := Current_Entity (Selector_Name (Id));
3639 else
3640 return False;
3641 end if;
3643 return Present (Conv)
3644 and then Is_Predefined_Unit (Get_Source_Unit (Conv))
3645 and then Is_Intrinsic_Subprogram (Conv);
3646 end Is_Unchecked_Conversion;
3648 -- Start of processing for Has_Excluded_Declaration
3650 begin
3651 -- No action needed if the check is not needed
3653 if not Check_Inlining_Restrictions then
3654 return False;
3655 end if;
3657 D := First (Decls);
3658 while Present (D) loop
3660 -- First declarations universally excluded
3662 if Nkind (D) = N_Package_Declaration then
3663 Cannot_Inline
3664 ("cannot inline & (nested package declaration)?", D, Subp);
3665 return True;
3667 elsif Nkind (D) = N_Package_Instantiation then
3668 Cannot_Inline
3669 ("cannot inline & (nested package instantiation)?", D, Subp);
3670 return True;
3671 end if;
3673 -- Then declarations excluded only for front-end inlining
3675 if Back_End_Inlining then
3676 null;
3678 elsif Nkind (D) = N_Task_Type_Declaration
3679 or else Nkind (D) = N_Single_Task_Declaration
3680 then
3681 Cannot_Inline
3682 ("cannot inline & (nested task type declaration)?", D, Subp);
3683 return True;
3685 elsif Nkind (D) = N_Protected_Type_Declaration
3686 or else Nkind (D) = N_Single_Protected_Declaration
3687 then
3688 Cannot_Inline
3689 ("cannot inline & (nested protected type declaration)?",
3690 D, Subp);
3691 return True;
3693 elsif Nkind (D) = N_Subprogram_Body then
3694 Cannot_Inline
3695 ("cannot inline & (nested subprogram)?", D, Subp);
3696 return True;
3698 elsif Nkind (D) = N_Function_Instantiation
3699 and then not Is_Unchecked_Conversion (D)
3700 then
3701 Cannot_Inline
3702 ("cannot inline & (nested function instantiation)?", D, Subp);
3703 return True;
3705 elsif Nkind (D) = N_Procedure_Instantiation then
3706 Cannot_Inline
3707 ("cannot inline & (nested procedure instantiation)?", D, Subp);
3708 return True;
3710 -- Subtype declarations with predicates will generate predicate
3711 -- functions, i.e. nested subprogram bodies, so inlining is not
3712 -- possible.
3714 elsif Nkind (D) = N_Subtype_Declaration
3715 and then Present (Aspect_Specifications (D))
3716 then
3717 declare
3718 A : Node_Id;
3719 A_Id : Aspect_Id;
3721 begin
3722 A := First (Aspect_Specifications (D));
3723 while Present (A) loop
3724 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3726 if A_Id = Aspect_Predicate
3727 or else A_Id = Aspect_Static_Predicate
3728 or else A_Id = Aspect_Dynamic_Predicate
3729 then
3730 Cannot_Inline
3731 ("cannot inline & (subtype declaration with "
3732 & "predicate)?", D, Subp);
3733 return True;
3734 end if;
3736 Next (A);
3737 end loop;
3738 end;
3739 end if;
3741 Next (D);
3742 end loop;
3744 return False;
3745 end Has_Excluded_Declaration;
3747 ----------------------------
3748 -- Has_Excluded_Statement --
3749 ----------------------------
3751 function Has_Excluded_Statement
3752 (Subp : Entity_Id;
3753 Stats : List_Id) return Boolean
3755 S : Node_Id;
3756 E : Node_Id;
3758 begin
3759 -- No action needed if the check is not needed
3761 if not Check_Inlining_Restrictions then
3762 return False;
3763 end if;
3765 S := First (Stats);
3766 while Present (S) loop
3767 if Nkind_In (S, N_Abort_Statement,
3768 N_Asynchronous_Select,
3769 N_Conditional_Entry_Call,
3770 N_Delay_Relative_Statement,
3771 N_Delay_Until_Statement,
3772 N_Selective_Accept,
3773 N_Timed_Entry_Call)
3774 then
3775 Cannot_Inline
3776 ("cannot inline & (non-allowed statement)?", S, Subp);
3777 return True;
3779 elsif Nkind (S) = N_Block_Statement then
3780 if Present (Declarations (S))
3781 and then Has_Excluded_Declaration (Subp, Declarations (S))
3782 then
3783 return True;
3785 elsif Present (Handled_Statement_Sequence (S)) then
3786 if not Back_End_Inlining
3787 and then
3788 Present
3789 (Exception_Handlers (Handled_Statement_Sequence (S)))
3790 then
3791 Cannot_Inline
3792 ("cannot inline& (exception handler)?",
3793 First (Exception_Handlers
3794 (Handled_Statement_Sequence (S))),
3795 Subp);
3796 return True;
3798 elsif Has_Excluded_Statement
3799 (Subp, Statements (Handled_Statement_Sequence (S)))
3800 then
3801 return True;
3802 end if;
3803 end if;
3805 elsif Nkind (S) = N_Case_Statement then
3806 E := First (Alternatives (S));
3807 while Present (E) loop
3808 if Has_Excluded_Statement (Subp, Statements (E)) then
3809 return True;
3810 end if;
3812 Next (E);
3813 end loop;
3815 elsif Nkind (S) = N_If_Statement then
3816 if Has_Excluded_Statement (Subp, Then_Statements (S)) then
3817 return True;
3818 end if;
3820 if Present (Elsif_Parts (S)) then
3821 E := First (Elsif_Parts (S));
3822 while Present (E) loop
3823 if Has_Excluded_Statement (Subp, Then_Statements (E)) then
3824 return True;
3825 end if;
3827 Next (E);
3828 end loop;
3829 end if;
3831 if Present (Else_Statements (S))
3832 and then Has_Excluded_Statement (Subp, Else_Statements (S))
3833 then
3834 return True;
3835 end if;
3837 elsif Nkind (S) = N_Loop_Statement
3838 and then Has_Excluded_Statement (Subp, Statements (S))
3839 then
3840 return True;
3842 elsif Nkind (S) = N_Extended_Return_Statement then
3843 if Present (Handled_Statement_Sequence (S))
3844 and then
3845 Has_Excluded_Statement
3846 (Subp, Statements (Handled_Statement_Sequence (S)))
3847 then
3848 return True;
3850 elsif not Back_End_Inlining
3851 and then Present (Handled_Statement_Sequence (S))
3852 and then
3853 Present (Exception_Handlers
3854 (Handled_Statement_Sequence (S)))
3855 then
3856 Cannot_Inline
3857 ("cannot inline& (exception handler)?",
3858 First (Exception_Handlers (Handled_Statement_Sequence (S))),
3859 Subp);
3860 return True;
3861 end if;
3862 end if;
3864 Next (S);
3865 end loop;
3867 return False;
3868 end Has_Excluded_Statement;
3870 --------------------------
3871 -- Has_Initialized_Type --
3872 --------------------------
3874 function Has_Initialized_Type (E : Entity_Id) return Boolean is
3875 E_Body : constant Node_Id := Subprogram_Body (E);
3876 Decl : Node_Id;
3878 begin
3879 if No (E_Body) then -- imported subprogram
3880 return False;
3882 else
3883 Decl := First (Declarations (E_Body));
3884 while Present (Decl) loop
3885 if Nkind (Decl) = N_Full_Type_Declaration
3886 and then Present (Init_Proc (Defining_Identifier (Decl)))
3887 then
3888 return True;
3889 end if;
3891 Next (Decl);
3892 end loop;
3893 end if;
3895 return False;
3896 end Has_Initialized_Type;
3898 -----------------------
3899 -- Has_Single_Return --
3900 -----------------------
3902 function Has_Single_Return (N : Node_Id) return Boolean is
3903 Return_Statement : Node_Id := Empty;
3905 function Check_Return (N : Node_Id) return Traverse_Result;
3907 ------------------
3908 -- Check_Return --
3909 ------------------
3911 function Check_Return (N : Node_Id) return Traverse_Result is
3912 begin
3913 if Nkind (N) = N_Simple_Return_Statement then
3914 if Present (Expression (N))
3915 and then Is_Entity_Name (Expression (N))
3916 then
3917 pragma Assert (Present (Entity (Expression (N))));
3919 if No (Return_Statement) then
3920 Return_Statement := N;
3921 return OK;
3923 else
3924 pragma Assert
3925 (Present (Entity (Expression (Return_Statement))));
3927 if Entity (Expression (N)) =
3928 Entity (Expression (Return_Statement))
3929 then
3930 return OK;
3931 else
3932 return Abandon;
3933 end if;
3934 end if;
3936 -- A return statement within an extended return is a noop after
3937 -- inlining.
3939 elsif No (Expression (N))
3940 and then Nkind (Parent (Parent (N))) =
3941 N_Extended_Return_Statement
3942 then
3943 return OK;
3945 else
3946 -- Expression has wrong form
3948 return Abandon;
3949 end if;
3951 -- We can only inline a build-in-place function if it has a single
3952 -- extended return.
3954 elsif Nkind (N) = N_Extended_Return_Statement then
3955 if No (Return_Statement) then
3956 Return_Statement := N;
3957 return OK;
3959 else
3960 return Abandon;
3961 end if;
3963 else
3964 return OK;
3965 end if;
3966 end Check_Return;
3968 function Check_All_Returns is new Traverse_Func (Check_Return);
3970 -- Start of processing for Has_Single_Return
3972 begin
3973 if Check_All_Returns (N) /= OK then
3974 return False;
3976 elsif Nkind (Return_Statement) = N_Extended_Return_Statement then
3977 return True;
3979 else
3980 return
3981 Present (Declarations (N))
3982 and then Present (First (Declarations (N)))
3983 and then Entity (Expression (Return_Statement)) =
3984 Defining_Identifier (First (Declarations (N)));
3985 end if;
3986 end Has_Single_Return;
3988 -----------------------------
3989 -- In_Main_Unit_Or_Subunit --
3990 -----------------------------
3992 function In_Main_Unit_Or_Subunit (E : Entity_Id) return Boolean is
3993 Comp : Node_Id := Cunit (Get_Code_Unit (E));
3995 begin
3996 -- Check whether the subprogram or package to inline is within the main
3997 -- unit or its spec or within a subunit. In either case there are no
3998 -- additional bodies to process. If the subprogram appears in a parent
3999 -- of the current unit, the check on whether inlining is possible is
4000 -- done in Analyze_Inlined_Bodies.
4002 while Nkind (Unit (Comp)) = N_Subunit loop
4003 Comp := Library_Unit (Comp);
4004 end loop;
4006 return Comp = Cunit (Main_Unit)
4007 or else Comp = Library_Unit (Cunit (Main_Unit));
4008 end In_Main_Unit_Or_Subunit;
4010 ----------------
4011 -- Initialize --
4012 ----------------
4014 procedure Initialize is
4015 begin
4016 Pending_Descriptor.Init;
4017 Pending_Instantiations.Init;
4018 Inlined_Bodies.Init;
4019 Successors.Init;
4020 Inlined.Init;
4022 for J in Hash_Headers'Range loop
4023 Hash_Headers (J) := No_Subp;
4024 end loop;
4026 Inlined_Calls := No_Elist;
4027 Backend_Calls := No_Elist;
4028 Backend_Inlined_Subps := No_Elist;
4029 Backend_Not_Inlined_Subps := No_Elist;
4030 end Initialize;
4032 ------------------------
4033 -- Instantiate_Bodies --
4034 ------------------------
4036 -- Generic bodies contain all the non-local references, so an
4037 -- instantiation does not need any more context than Standard
4038 -- itself, even if the instantiation appears in an inner scope.
4039 -- Generic associations have verified that the contract model is
4040 -- satisfied, so that any error that may occur in the analysis of
4041 -- the body is an internal error.
4043 procedure Instantiate_Bodies is
4044 J : Nat;
4045 Info : Pending_Body_Info;
4047 begin
4048 if Serious_Errors_Detected = 0 then
4049 Expander_Active := (Operating_Mode = Opt.Generate_Code);
4050 Push_Scope (Standard_Standard);
4051 To_Clean := New_Elmt_List;
4053 if Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
4054 Start_Generic;
4055 end if;
4057 -- A body instantiation may generate additional instantiations, so
4058 -- the following loop must scan to the end of a possibly expanding
4059 -- set (that's why we can't simply use a FOR loop here).
4061 J := 0;
4062 while J <= Pending_Instantiations.Last
4063 and then Serious_Errors_Detected = 0
4064 loop
4065 Info := Pending_Instantiations.Table (J);
4067 -- If the instantiation node is absent, it has been removed
4068 -- as part of unreachable code.
4070 if No (Info.Inst_Node) then
4071 null;
4073 elsif Nkind (Info.Act_Decl) = N_Package_Declaration then
4074 Instantiate_Package_Body (Info);
4075 Add_Scope_To_Clean (Defining_Entity (Info.Act_Decl));
4077 else
4078 Instantiate_Subprogram_Body (Info);
4079 end if;
4081 J := J + 1;
4082 end loop;
4084 -- Reset the table of instantiations. Additional instantiations
4085 -- may be added through inlining, when additional bodies are
4086 -- analyzed.
4088 Pending_Instantiations.Init;
4090 -- We can now complete the cleanup actions of scopes that contain
4091 -- pending instantiations (skipped for generic units, since we
4092 -- never need any cleanups in generic units).
4094 if Expander_Active
4095 and then not Is_Generic_Unit (Main_Unit_Entity)
4096 then
4097 Cleanup_Scopes;
4098 elsif Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
4099 End_Generic;
4100 end if;
4102 Pop_Scope;
4103 end if;
4104 end Instantiate_Bodies;
4106 ---------------
4107 -- Is_Nested --
4108 ---------------
4110 function Is_Nested (E : Entity_Id) return Boolean is
4111 Scop : Entity_Id;
4113 begin
4114 Scop := Scope (E);
4115 while Scop /= Standard_Standard loop
4116 if Ekind (Scop) in Subprogram_Kind then
4117 return True;
4119 elsif Ekind (Scop) = E_Task_Type
4120 or else Ekind (Scop) = E_Entry
4121 or else Ekind (Scop) = E_Entry_Family
4122 then
4123 return True;
4124 end if;
4126 Scop := Scope (Scop);
4127 end loop;
4129 return False;
4130 end Is_Nested;
4132 ------------------------
4133 -- List_Inlining_Info --
4134 ------------------------
4136 procedure List_Inlining_Info is
4137 Elmt : Elmt_Id;
4138 Nod : Node_Id;
4139 Count : Nat;
4141 begin
4142 if not Debug_Flag_Dot_J then
4143 return;
4144 end if;
4146 -- Generate listing of calls inlined by the frontend
4148 if Present (Inlined_Calls) then
4149 Count := 0;
4150 Elmt := First_Elmt (Inlined_Calls);
4151 while Present (Elmt) loop
4152 Nod := Node (Elmt);
4154 if In_Extended_Main_Code_Unit (Nod) then
4155 Count := Count + 1;
4157 if Count = 1 then
4158 Write_Str ("List of calls inlined by the frontend");
4159 Write_Eol;
4160 end if;
4162 Write_Str (" ");
4163 Write_Int (Count);
4164 Write_Str (":");
4165 Write_Location (Sloc (Nod));
4166 Write_Str (":");
4167 Output.Write_Eol;
4168 end if;
4170 Next_Elmt (Elmt);
4171 end loop;
4172 end if;
4174 -- Generate listing of calls passed to the backend
4176 if Present (Backend_Calls) then
4177 Count := 0;
4179 Elmt := First_Elmt (Backend_Calls);
4180 while Present (Elmt) loop
4181 Nod := Node (Elmt);
4183 if In_Extended_Main_Code_Unit (Nod) then
4184 Count := Count + 1;
4186 if Count = 1 then
4187 Write_Str ("List of inlined calls passed to the backend");
4188 Write_Eol;
4189 end if;
4191 Write_Str (" ");
4192 Write_Int (Count);
4193 Write_Str (":");
4194 Write_Location (Sloc (Nod));
4195 Output.Write_Eol;
4196 end if;
4198 Next_Elmt (Elmt);
4199 end loop;
4200 end if;
4202 -- Generate listing of subprograms passed to the backend
4204 if Present (Backend_Inlined_Subps) and then Back_End_Inlining then
4205 Count := 0;
4207 Elmt := First_Elmt (Backend_Inlined_Subps);
4208 while Present (Elmt) loop
4209 Nod := Node (Elmt);
4211 Count := Count + 1;
4213 if Count = 1 then
4214 Write_Str
4215 ("List of inlined subprograms passed to the backend");
4216 Write_Eol;
4217 end if;
4219 Write_Str (" ");
4220 Write_Int (Count);
4221 Write_Str (":");
4222 Write_Name (Chars (Nod));
4223 Write_Str (" (");
4224 Write_Location (Sloc (Nod));
4225 Write_Str (")");
4226 Output.Write_Eol;
4228 Next_Elmt (Elmt);
4229 end loop;
4230 end if;
4232 -- Generate listing of subprograms that cannot be inlined by the backend
4234 if Present (Backend_Not_Inlined_Subps) and then Back_End_Inlining then
4235 Count := 0;
4237 Elmt := First_Elmt (Backend_Not_Inlined_Subps);
4238 while Present (Elmt) loop
4239 Nod := Node (Elmt);
4241 Count := Count + 1;
4243 if Count = 1 then
4244 Write_Str
4245 ("List of subprograms that cannot be inlined by the backend");
4246 Write_Eol;
4247 end if;
4249 Write_Str (" ");
4250 Write_Int (Count);
4251 Write_Str (":");
4252 Write_Name (Chars (Nod));
4253 Write_Str (" (");
4254 Write_Location (Sloc (Nod));
4255 Write_Str (")");
4256 Output.Write_Eol;
4258 Next_Elmt (Elmt);
4259 end loop;
4260 end if;
4261 end List_Inlining_Info;
4263 ----------
4264 -- Lock --
4265 ----------
4267 procedure Lock is
4268 begin
4269 Pending_Instantiations.Release;
4270 Pending_Instantiations.Locked := True;
4271 Inlined_Bodies.Release;
4272 Inlined_Bodies.Locked := True;
4273 Successors.Release;
4274 Successors.Locked := True;
4275 Inlined.Release;
4276 Inlined.Locked := True;
4277 end Lock;
4279 --------------------------------
4280 -- Remove_Aspects_And_Pragmas --
4281 --------------------------------
4283 procedure Remove_Aspects_And_Pragmas (Body_Decl : Node_Id) is
4284 procedure Remove_Items (List : List_Id);
4285 -- Remove all useless aspects/pragmas from a particular list
4287 ------------------
4288 -- Remove_Items --
4289 ------------------
4291 procedure Remove_Items (List : List_Id) is
4292 Item : Node_Id;
4293 Item_Id : Node_Id;
4294 Next_Item : Node_Id;
4296 begin
4297 -- Traverse the list looking for an aspect specification or a pragma
4299 Item := First (List);
4300 while Present (Item) loop
4301 Next_Item := Next (Item);
4303 if Nkind (Item) = N_Aspect_Specification then
4304 Item_Id := Identifier (Item);
4305 elsif Nkind (Item) = N_Pragma then
4306 Item_Id := Pragma_Identifier (Item);
4307 else
4308 Item_Id := Empty;
4309 end if;
4311 if Present (Item_Id)
4312 and then Nam_In (Chars (Item_Id), Name_Contract_Cases,
4313 Name_Global,
4314 Name_Depends,
4315 Name_Postcondition,
4316 Name_Precondition,
4317 Name_Refined_Global,
4318 Name_Refined_Depends,
4319 Name_Refined_Post,
4320 Name_Test_Case,
4321 Name_Unmodified,
4322 Name_Unreferenced,
4323 Name_Unused)
4324 then
4325 Remove (Item);
4326 end if;
4328 Item := Next_Item;
4329 end loop;
4330 end Remove_Items;
4332 -- Start of processing for Remove_Aspects_And_Pragmas
4334 begin
4335 Remove_Items (Aspect_Specifications (Body_Decl));
4336 Remove_Items (Declarations (Body_Decl));
4338 -- Pragmas Unmodified, Unreferenced, and Unused may additionally appear
4339 -- in the body of the subprogram.
4341 Remove_Items (Statements (Handled_Statement_Sequence (Body_Decl)));
4342 end Remove_Aspects_And_Pragmas;
4344 --------------------------
4345 -- Remove_Dead_Instance --
4346 --------------------------
4348 procedure Remove_Dead_Instance (N : Node_Id) is
4349 J : Int;
4351 begin
4352 J := 0;
4353 while J <= Pending_Instantiations.Last loop
4354 if Pending_Instantiations.Table (J).Inst_Node = N then
4355 Pending_Instantiations.Table (J).Inst_Node := Empty;
4356 return;
4357 end if;
4359 J := J + 1;
4360 end loop;
4361 end Remove_Dead_Instance;
4363 end Inline;