1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Expander
; use Expander
;
33 with Exp_Ch6
; use Exp_Ch6
;
34 with Exp_Ch7
; use Exp_Ch7
;
35 with Exp_Tss
; use Exp_Tss
;
36 with Exp_Util
; use Exp_Util
;
37 with Fname
; use Fname
;
38 with Fname
.UF
; use Fname
.UF
;
40 with Namet
; use Namet
;
41 with Nmake
; use Nmake
;
42 with Nlists
; use Nlists
;
43 with Output
; use Output
;
44 with Sem_Aux
; use Sem_Aux
;
45 with Sem_Ch8
; use Sem_Ch8
;
46 with Sem_Ch10
; use Sem_Ch10
;
47 with Sem_Ch12
; use Sem_Ch12
;
48 with Sem_Prag
; use Sem_Prag
;
49 with Sem_Util
; use Sem_Util
;
50 with Sinfo
; use Sinfo
;
51 with Sinput
; use Sinput
;
52 with Snames
; use Snames
;
53 with Stand
; use Stand
;
54 with Uname
; use Uname
;
55 with Tbuild
; use Tbuild
;
57 package body Inline
is
59 Check_Inlining_Restrictions
: constant Boolean := True;
60 -- In the following cases the frontend rejects inlining because they
61 -- are not handled well by the backend. This variable facilitates
62 -- disabling these restrictions to evaluate future versions of the
63 -- GCC backend in which some of the restrictions may be supported.
65 -- - subprograms that have:
66 -- - nested subprograms
68 -- - package declarations
69 -- - task or protected object declarations
70 -- - some of the following statements:
72 -- - asynchronous-select
73 -- - conditional-entry-call
79 Inlined_Calls
: Elist_Id
;
80 -- List of frontend inlined calls
82 Backend_Calls
: Elist_Id
;
83 -- List of inline calls passed to the backend
85 Backend_Inlined_Subps
: Elist_Id
;
86 -- List of subprograms inlined by the backend
88 Backend_Not_Inlined_Subps
: Elist_Id
;
89 -- List of subprograms that cannot be inlined by the backend
95 -- Inlined functions are actually placed in line by the backend if the
96 -- corresponding bodies are available (i.e. compiled). Whenever we find
97 -- a call to an inlined subprogram, we add the name of the enclosing
98 -- compilation unit to a worklist. After all compilation, and after
99 -- expansion of generic bodies, we traverse the list of pending bodies
100 -- and compile them as well.
102 package Inlined_Bodies
is new Table
.Table
(
103 Table_Component_Type
=> Entity_Id
,
104 Table_Index_Type
=> Int
,
105 Table_Low_Bound
=> 0,
106 Table_Initial
=> Alloc
.Inlined_Bodies_Initial
,
107 Table_Increment
=> Alloc
.Inlined_Bodies_Increment
,
108 Table_Name
=> "Inlined_Bodies");
110 -----------------------
111 -- Inline Processing --
112 -----------------------
114 -- For each call to an inlined subprogram, we make entries in a table
115 -- that stores caller and callee, and indicates the call direction from
116 -- one to the other. We also record the compilation unit that contains
117 -- the callee. After analyzing the bodies of all such compilation units,
118 -- we compute the transitive closure of inlined subprograms called from
119 -- the main compilation unit and make it available to the code generator
120 -- in no particular order, thus allowing cycles in the call graph.
122 Last_Inlined
: Entity_Id
:= Empty
;
124 -- For each entry in the table we keep a list of successors in topological
125 -- order, i.e. callers of the current subprogram.
127 type Subp_Index
is new Nat
;
128 No_Subp
: constant Subp_Index
:= 0;
130 -- The subprogram entities are hashed into the Inlined table
132 Num_Hash_Headers
: constant := 512;
134 Hash_Headers
: array (Subp_Index
range 0 .. Num_Hash_Headers
- 1)
137 type Succ_Index
is new Nat
;
138 No_Succ
: constant Succ_Index
:= 0;
140 type Succ_Info
is record
145 -- The following table stores list elements for the successor lists. These
146 -- lists cannot be chained directly through entries in the Inlined table,
147 -- because a given subprogram can appear in several such lists.
149 package Successors
is new Table
.Table
(
150 Table_Component_Type
=> Succ_Info
,
151 Table_Index_Type
=> Succ_Index
,
152 Table_Low_Bound
=> 1,
153 Table_Initial
=> Alloc
.Successors_Initial
,
154 Table_Increment
=> Alloc
.Successors_Increment
,
155 Table_Name
=> "Successors");
157 type Subp_Info
is record
158 Name
: Entity_Id
:= Empty
;
159 Next
: Subp_Index
:= No_Subp
;
160 First_Succ
: Succ_Index
:= No_Succ
;
161 Main_Call
: Boolean := False;
162 Processed
: Boolean := False;
165 package Inlined
is new Table
.Table
(
166 Table_Component_Type
=> Subp_Info
,
167 Table_Index_Type
=> Subp_Index
,
168 Table_Low_Bound
=> 1,
169 Table_Initial
=> Alloc
.Inlined_Initial
,
170 Table_Increment
=> Alloc
.Inlined_Increment
,
171 Table_Name
=> "Inlined");
173 -----------------------
174 -- Local Subprograms --
175 -----------------------
177 procedure Add_Call
(Called
: Entity_Id
; Caller
: Entity_Id
:= Empty
);
178 -- Make two entries in Inlined table, for an inlined subprogram being
179 -- called, and for the inlined subprogram that contains the call. If
180 -- the call is in the main compilation unit, Caller is Empty.
182 procedure Add_Inlined_Subprogram
(E
: Entity_Id
);
183 -- Add subprogram E to the list of inlined subprogram for the unit
185 function Add_Subp
(E
: Entity_Id
) return Subp_Index
;
186 -- Make entry in Inlined table for subprogram E, or return table index
187 -- that already holds E.
189 function Get_Code_Unit_Entity
(E
: Entity_Id
) return Entity_Id
;
190 pragma Inline
(Get_Code_Unit_Entity
);
191 -- Return the entity node for the unit containing E. Always return the spec
194 function Has_Initialized_Type
(E
: Entity_Id
) return Boolean;
195 -- If a candidate for inlining contains type declarations for types with
196 -- nontrivial initialization procedures, they are not worth inlining.
198 function Has_Single_Return
(N
: Node_Id
) return Boolean;
199 -- In general we cannot inline functions that return unconstrained type.
200 -- However, we can handle such functions if all return statements return
201 -- a local variable that is the first declaration in the body of the
202 -- function. In that case the call can be replaced by that local
203 -- variable as is done for other inlined calls.
205 function In_Main_Unit_Or_Subunit
(E
: Entity_Id
) return Boolean;
206 -- Return True if E is in the main unit or its spec or in a subunit
208 function Is_Nested
(E
: Entity_Id
) return Boolean;
209 -- If the function is nested inside some other function, it will always
210 -- be compiled if that function is, so don't add it to the inline list.
211 -- We cannot compile a nested function outside the scope of the containing
212 -- function anyway. This is also the case if the function is defined in a
213 -- task body or within an entry (for example, an initialization procedure).
215 procedure Remove_Aspects_And_Pragmas
(Body_Decl
: Node_Id
);
216 -- Remove all aspects and/or pragmas that have no meaning in inlined body
217 -- Body_Decl. The analysis of these items is performed on the non-inlined
218 -- body. The items currently removed are:
231 ------------------------------
232 -- Deferred Cleanup Actions --
233 ------------------------------
235 -- The cleanup actions for scopes that contain instantiations is delayed
236 -- until after expansion of those instantiations, because they may contain
237 -- finalizable objects or tasks that affect the cleanup code. A scope
238 -- that contains instantiations only needs to be finalized once, even
239 -- if it contains more than one instance. We keep a list of scopes
240 -- that must still be finalized, and call cleanup_actions after all
241 -- the instantiations have been completed.
245 procedure Add_Scope_To_Clean
(Inst
: Entity_Id
);
246 -- Build set of scopes on which cleanup actions must be performed
248 procedure Cleanup_Scopes
;
249 -- Complete cleanup actions on scopes that need it
255 procedure Add_Call
(Called
: Entity_Id
; Caller
: Entity_Id
:= Empty
) is
256 P1
: constant Subp_Index
:= Add_Subp
(Called
);
261 if Present
(Caller
) then
262 P2
:= Add_Subp
(Caller
);
264 -- Add P1 to the list of successors of P2, if not already there.
265 -- Note that P2 may contain more than one call to P1, and only
266 -- one needs to be recorded.
268 J
:= Inlined
.Table
(P2
).First_Succ
;
269 while J
/= No_Succ
loop
270 if Successors
.Table
(J
).Subp
= P1
then
274 J
:= Successors
.Table
(J
).Next
;
277 -- On exit, make a successor entry for P1
279 Successors
.Increment_Last
;
280 Successors
.Table
(Successors
.Last
).Subp
:= P1
;
281 Successors
.Table
(Successors
.Last
).Next
:=
282 Inlined
.Table
(P2
).First_Succ
;
283 Inlined
.Table
(P2
).First_Succ
:= Successors
.Last
;
285 Inlined
.Table
(P1
).Main_Call
:= True;
289 ----------------------
290 -- Add_Inlined_Body --
291 ----------------------
293 procedure Add_Inlined_Body
(E
: Entity_Id
; N
: Node_Id
) is
295 type Inline_Level_Type
is (Dont_Inline
, Inline_Call
, Inline_Package
);
296 -- Level of inlining for the call: Dont_Inline means no inlining,
297 -- Inline_Call means that only the call is considered for inlining,
298 -- Inline_Package means that the call is considered for inlining and
299 -- its package compiled and scanned for more inlining opportunities.
301 function Is_Non_Loading_Expression_Function
302 (Id
: Entity_Id
) return Boolean;
303 -- Determine whether arbitrary entity Id denotes a subprogram which is
306 -- * An expression function
308 -- * A function completed by an expression function where both the
309 -- spec and body are in the same context.
311 function Must_Inline
return Inline_Level_Type
;
312 -- Inlining is only done if the call statement N is in the main unit,
313 -- or within the body of another inlined subprogram.
315 ----------------------------------------
316 -- Is_Non_Loading_Expression_Function --
317 ----------------------------------------
319 function Is_Non_Loading_Expression_Function
320 (Id
: Entity_Id
) return Boolean
327 -- A stand-alone expression function is transformed into a spec-body
328 -- pair in-place. Since both the spec and body are in the same list,
329 -- the inlining of such an expression function does not need to load
332 if Is_Expression_Function
(Id
) then
335 -- A function may be completed by an expression function
337 elsif Ekind
(Id
) = E_Function
then
338 Spec_Decl
:= Unit_Declaration_Node
(Id
);
340 if Nkind
(Spec_Decl
) = N_Subprogram_Declaration
then
341 Body_Id
:= Corresponding_Body
(Spec_Decl
);
343 if Present
(Body_Id
) then
344 Body_Decl
:= Unit_Declaration_Node
(Body_Id
);
346 -- The inlining of a completing expression function does
347 -- not need to load anything extra when both the spec and
348 -- body are in the same context.
351 Was_Expression_Function
(Body_Decl
)
352 and then Parent
(Spec_Decl
) = Parent
(Body_Decl
);
358 end Is_Non_Loading_Expression_Function
;
364 function Must_Inline
return Inline_Level_Type
is
369 -- Check if call is in main unit
371 Scop
:= Current_Scope
;
373 -- Do not try to inline if scope is standard. This could happen, for
374 -- example, for a call to Add_Global_Declaration, and it causes
375 -- trouble to try to inline at this level.
377 if Scop
= Standard_Standard
then
381 -- Otherwise lookup scope stack to outer scope
383 while Scope
(Scop
) /= Standard_Standard
384 and then not Is_Child_Unit
(Scop
)
386 Scop
:= Scope
(Scop
);
389 Comp
:= Parent
(Scop
);
390 while Nkind
(Comp
) /= N_Compilation_Unit
loop
391 Comp
:= Parent
(Comp
);
394 -- If the call is in the main unit, inline the call and compile the
395 -- package of the subprogram to find more calls to be inlined.
397 if Comp
= Cunit
(Main_Unit
)
398 or else Comp
= Library_Unit
(Cunit
(Main_Unit
))
401 return Inline_Package
;
404 -- The call is not in the main unit. See if it is in some subprogram
405 -- that can be inlined outside its unit. If so, inline the call and,
406 -- if the inlining level is set to 1, stop there; otherwise also
407 -- compile the package as above.
409 Scop
:= Current_Scope
;
410 while Scope
(Scop
) /= Standard_Standard
411 and then not Is_Child_Unit
(Scop
)
413 if Is_Overloadable
(Scop
)
414 and then Is_Inlined
(Scop
)
415 and then not Is_Nested
(Scop
)
419 if Inline_Level
= 1 then
422 return Inline_Package
;
426 Scop
:= Scope
(Scop
);
432 Level
: Inline_Level_Type
;
434 -- Start of processing for Add_Inlined_Body
437 Append_New_Elmt
(N
, To
=> Backend_Calls
);
439 -- Skip subprograms that cannot be inlined outside their unit
441 if Is_Abstract_Subprogram
(E
)
442 or else Convention
(E
) = Convention_Protected
443 or else Is_Nested
(E
)
448 -- Find out whether the call must be inlined. Unless the result is
449 -- Dont_Inline, Must_Inline also creates an edge for the call in the
450 -- callgraph; however, it will not be activated until after Is_Called
451 -- is set on the subprogram.
453 Level
:= Must_Inline
;
455 if Level
= Dont_Inline
then
459 -- If the call was generated by the compiler and is to a subprogram in
460 -- a run-time unit, we need to suppress debugging information for it,
461 -- so that the code that is eventually inlined will not affect the
462 -- debugging of the program. We do not do it if the call comes from
463 -- source because, even if the call is inlined, the user may expect it
464 -- to be present in the debugging information.
466 if not Comes_From_Source
(N
)
467 and then In_Extended_Main_Source_Unit
(N
)
468 and then Is_Predefined_Unit
(Get_Source_Unit
(E
))
470 Set_Needs_Debug_Info
(E
, False);
473 -- If the subprogram is an expression function, or is completed by one
474 -- where both the spec and body are in the same context, then there is
475 -- no need to load any package body since the body of the function is
478 if Is_Non_Loading_Expression_Function
(E
) then
483 -- Find unit containing E, and add to list of inlined bodies if needed.
484 -- If the body is already present, no need to load any other unit. This
485 -- is the case for an initialization procedure, which appears in the
486 -- package declaration that contains the type. It is also the case if
487 -- the body has already been analyzed. Finally, if the unit enclosing
488 -- E is an instance, the instance body will be analyzed in any case,
489 -- and there is no need to add the enclosing unit (whose body might not
492 -- Library-level functions must be handled specially, because there is
493 -- no enclosing package to retrieve. In this case, it is the body of
494 -- the function that will have to be loaded.
497 Pack
: constant Entity_Id
:= Get_Code_Unit_Entity
(E
);
502 Inlined_Bodies
.Increment_Last
;
503 Inlined_Bodies
.Table
(Inlined_Bodies
.Last
) := E
;
505 elsif Ekind
(Pack
) = E_Package
then
508 if Is_Generic_Instance
(Pack
) then
511 -- Do not inline the package if the subprogram is an init proc
512 -- or other internally generated subprogram, because in that
513 -- case the subprogram body appears in the same unit that
514 -- declares the type, and that body is visible to the back end.
515 -- Do not inline it either if it is in the main unit.
516 -- Extend the -gnatn2 processing to -gnatn1 for Inline_Always
517 -- calls if the back-end takes care of inlining the call.
518 -- Note that Level in Inline_Package | Inline_Call here.
520 elsif ((Level
= Inline_Call
521 and then Has_Pragma_Inline_Always
(E
)
522 and then Back_End_Inlining
)
523 or else Level
= Inline_Package
)
524 and then not Is_Inlined
(Pack
)
525 and then not Is_Internal
(E
)
526 and then not In_Main_Unit_Or_Subunit
(Pack
)
528 Set_Is_Inlined
(Pack
);
529 Inlined_Bodies
.Increment_Last
;
530 Inlined_Bodies
.Table
(Inlined_Bodies
.Last
) := Pack
;
534 -- Ensure that Analyze_Inlined_Bodies will be invoked after
535 -- completing the analysis of the current unit.
537 Inline_Processing_Required
:= True;
539 end Add_Inlined_Body
;
541 ----------------------------
542 -- Add_Inlined_Subprogram --
543 ----------------------------
545 procedure Add_Inlined_Subprogram
(E
: Entity_Id
) is
546 Decl
: constant Node_Id
:= Parent
(Declaration_Node
(E
));
547 Pack
: constant Entity_Id
:= Get_Code_Unit_Entity
(E
);
549 procedure Register_Backend_Inlined_Subprogram
(Subp
: Entity_Id
);
550 -- Append Subp to the list of subprograms inlined by the backend
552 procedure Register_Backend_Not_Inlined_Subprogram
(Subp
: Entity_Id
);
553 -- Append Subp to the list of subprograms that cannot be inlined by
556 -----------------------------------------
557 -- Register_Backend_Inlined_Subprogram --
558 -----------------------------------------
560 procedure Register_Backend_Inlined_Subprogram
(Subp
: Entity_Id
) is
562 Append_New_Elmt
(Subp
, To
=> Backend_Inlined_Subps
);
563 end Register_Backend_Inlined_Subprogram
;
565 ---------------------------------------------
566 -- Register_Backend_Not_Inlined_Subprogram --
567 ---------------------------------------------
569 procedure Register_Backend_Not_Inlined_Subprogram
(Subp
: Entity_Id
) is
571 Append_New_Elmt
(Subp
, To
=> Backend_Not_Inlined_Subps
);
572 end Register_Backend_Not_Inlined_Subprogram
;
574 -- Start of processing for Add_Inlined_Subprogram
577 -- If the subprogram is to be inlined, and if its unit is known to be
578 -- inlined or is an instance whose body will be analyzed anyway or the
579 -- subprogram was generated as a body by the compiler (for example an
580 -- initialization procedure) or its declaration was provided along with
581 -- the body (for example an expression function), and if it is declared
582 -- at the library level not in the main unit, and if it can be inlined
583 -- by the back-end, then insert it in the list of inlined subprograms.
586 and then (Is_Inlined
(Pack
)
587 or else Is_Generic_Instance
(Pack
)
588 or else Nkind
(Decl
) = N_Subprogram_Body
589 or else Present
(Corresponding_Body
(Decl
)))
590 and then not In_Main_Unit_Or_Subunit
(E
)
591 and then not Is_Nested
(E
)
592 and then not Has_Initialized_Type
(E
)
594 Register_Backend_Inlined_Subprogram
(E
);
596 if No
(Last_Inlined
) then
597 Set_First_Inlined_Subprogram
(Cunit
(Main_Unit
), E
);
599 Set_Next_Inlined_Subprogram
(Last_Inlined
, E
);
605 Register_Backend_Not_Inlined_Subprogram
(E
);
607 end Add_Inlined_Subprogram
;
609 ------------------------
610 -- Add_Scope_To_Clean --
611 ------------------------
613 procedure Add_Scope_To_Clean
(Inst
: Entity_Id
) is
614 Scop
: constant Entity_Id
:= Enclosing_Dynamic_Scope
(Inst
);
618 -- If the instance appears in a library-level package declaration,
619 -- all finalization is global, and nothing needs doing here.
621 if Scop
= Standard_Standard
then
625 -- If the instance is within a generic unit, no finalization code
626 -- can be generated. Note that at this point all bodies have been
627 -- analyzed, and the scope stack itself is not present, and the flag
628 -- Inside_A_Generic is not set.
635 while Present
(S
) and then S
/= Standard_Standard
loop
636 if Is_Generic_Unit
(S
) then
644 Elmt
:= First_Elmt
(To_Clean
);
645 while Present
(Elmt
) loop
646 if Node
(Elmt
) = Scop
then
650 Elmt
:= Next_Elmt
(Elmt
);
653 Append_Elmt
(Scop
, To_Clean
);
654 end Add_Scope_To_Clean
;
660 function Add_Subp
(E
: Entity_Id
) return Subp_Index
is
661 Index
: Subp_Index
:= Subp_Index
(E
) mod Num_Hash_Headers
;
665 -- Initialize entry in Inlined table
667 procedure New_Entry
is
669 Inlined
.Increment_Last
;
670 Inlined
.Table
(Inlined
.Last
).Name
:= E
;
671 Inlined
.Table
(Inlined
.Last
).Next
:= No_Subp
;
672 Inlined
.Table
(Inlined
.Last
).First_Succ
:= No_Succ
;
673 Inlined
.Table
(Inlined
.Last
).Main_Call
:= False;
674 Inlined
.Table
(Inlined
.Last
).Processed
:= False;
677 -- Start of processing for Add_Subp
680 if Hash_Headers
(Index
) = No_Subp
then
682 Hash_Headers
(Index
) := Inlined
.Last
;
686 J
:= Hash_Headers
(Index
);
687 while J
/= No_Subp
loop
688 if Inlined
.Table
(J
).Name
= E
then
692 J
:= Inlined
.Table
(J
).Next
;
696 -- On exit, subprogram was not found. Enter in table. Index is
697 -- the current last entry on the hash chain.
700 Inlined
.Table
(Index
).Next
:= Inlined
.Last
;
705 ----------------------------
706 -- Analyze_Inlined_Bodies --
707 ----------------------------
709 procedure Analyze_Inlined_Bodies
is
716 type Pending_Index
is new Nat
;
718 package Pending_Inlined
is new Table
.Table
(
719 Table_Component_Type
=> Subp_Index
,
720 Table_Index_Type
=> Pending_Index
,
721 Table_Low_Bound
=> 1,
722 Table_Initial
=> Alloc
.Inlined_Initial
,
723 Table_Increment
=> Alloc
.Inlined_Increment
,
724 Table_Name
=> "Pending_Inlined");
725 -- The workpile used to compute the transitive closure
727 -- Start of processing for Analyze_Inlined_Bodies
730 if Serious_Errors_Detected
= 0 then
731 Push_Scope
(Standard_Standard
);
734 while J
<= Inlined_Bodies
.Last
735 and then Serious_Errors_Detected
= 0
737 Pack
:= Inlined_Bodies
.Table
(J
);
739 and then Scope
(Pack
) /= Standard_Standard
740 and then not Is_Child_Unit
(Pack
)
742 Pack
:= Scope
(Pack
);
745 Comp_Unit
:= Parent
(Pack
);
746 while Present
(Comp_Unit
)
747 and then Nkind
(Comp_Unit
) /= N_Compilation_Unit
749 Comp_Unit
:= Parent
(Comp_Unit
);
752 -- Load the body if it exists and contains inlineable entities,
753 -- unless it is the main unit, or is an instance whose body has
754 -- already been analyzed.
756 if Present
(Comp_Unit
)
757 and then Comp_Unit
/= Cunit
(Main_Unit
)
758 and then Body_Required
(Comp_Unit
)
760 (Nkind
(Unit
(Comp_Unit
)) /= N_Package_Declaration
762 (No
(Corresponding_Body
(Unit
(Comp_Unit
)))
763 and then Body_Needed_For_Inlining
764 (Defining_Entity
(Unit
(Comp_Unit
)))))
767 Bname
: constant Unit_Name_Type
:=
768 Get_Body_Name
(Get_Unit_Name
(Unit
(Comp_Unit
)));
773 if not Is_Loaded
(Bname
) then
774 Style_Check
:= False;
775 Load_Needed_Body
(Comp_Unit
, OK
);
779 -- Warn that a body was not available for inlining
782 Error_Msg_Unit_1
:= Bname
;
784 ("one or more inlined subprograms accessed in $!??",
787 Get_File_Name
(Bname
, Subunit
=> False);
788 Error_Msg_N
("\but file{ was not found!??", Comp_Unit
);
796 if J
> Inlined_Bodies
.Last
then
798 -- The analysis of required bodies may have produced additional
799 -- generic instantiations. To obtain further inlining, we need
800 -- to perform another round of generic body instantiations.
804 -- Symmetrically, the instantiation of required generic bodies
805 -- may have caused additional bodies to be inlined. To obtain
806 -- further inlining, we keep looping over the inlined bodies.
810 -- The list of inlined subprograms is an overestimate, because it
811 -- includes inlined functions called from functions that are compiled
812 -- as part of an inlined package, but are not themselves called. An
813 -- accurate computation of just those subprograms that are needed
814 -- requires that we perform a transitive closure over the call graph,
815 -- starting from calls in the main compilation unit.
817 for Index
in Inlined
.First
.. Inlined
.Last
loop
818 if not Is_Called
(Inlined
.Table
(Index
).Name
) then
820 -- This means that Add_Inlined_Body added the subprogram to the
821 -- table but wasn't able to handle its code unit. Do nothing.
823 Inlined
.Table
(Index
).Processed
:= True;
825 elsif Inlined
.Table
(Index
).Main_Call
then
826 Pending_Inlined
.Increment_Last
;
827 Pending_Inlined
.Table
(Pending_Inlined
.Last
) := Index
;
828 Inlined
.Table
(Index
).Processed
:= True;
831 Set_Is_Called
(Inlined
.Table
(Index
).Name
, False);
835 -- Iterate over the workpile until it is emptied, propagating the
836 -- Is_Called flag to the successors of the processed subprogram.
838 while Pending_Inlined
.Last
>= Pending_Inlined
.First
loop
839 Subp
:= Pending_Inlined
.Table
(Pending_Inlined
.Last
);
840 Pending_Inlined
.Decrement_Last
;
842 S
:= Inlined
.Table
(Subp
).First_Succ
;
844 while S
/= No_Succ
loop
845 Subp
:= Successors
.Table
(S
).Subp
;
847 if not Inlined
.Table
(Subp
).Processed
then
848 Set_Is_Called
(Inlined
.Table
(Subp
).Name
);
849 Pending_Inlined
.Increment_Last
;
850 Pending_Inlined
.Table
(Pending_Inlined
.Last
) := Subp
;
851 Inlined
.Table
(Subp
).Processed
:= True;
854 S
:= Successors
.Table
(S
).Next
;
858 -- Finally add the called subprograms to the list of inlined
859 -- subprograms for the unit.
861 for Index
in Inlined
.First
.. Inlined
.Last
loop
862 if Is_Called
(Inlined
.Table
(Index
).Name
) then
863 Add_Inlined_Subprogram
(Inlined
.Table
(Index
).Name
);
869 end Analyze_Inlined_Bodies
;
871 --------------------------
872 -- Build_Body_To_Inline --
873 --------------------------
875 procedure Build_Body_To_Inline
(N
: Node_Id
; Spec_Id
: Entity_Id
) is
876 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Spec_Id
);
877 Analysis_Status
: constant Boolean := Full_Analysis
;
878 Original_Body
: Node_Id
;
879 Body_To_Analyze
: Node_Id
;
880 Max_Size
: constant := 10;
882 function Has_Extended_Return
return Boolean;
883 -- This function returns True if the subprogram has an extended return
886 function Has_Pending_Instantiation
return Boolean;
887 -- If some enclosing body contains instantiations that appear before
888 -- the corresponding generic body, the enclosing body has a freeze node
889 -- so that it can be elaborated after the generic itself. This might
890 -- conflict with subsequent inlinings, so that it is unsafe to try to
891 -- inline in such a case.
893 function Has_Single_Return_In_GNATprove_Mode
return Boolean;
894 -- This function is called only in GNATprove mode, and it returns
895 -- True if the subprogram has no return statement or a single return
896 -- statement as last statement. It returns False for subprogram with
897 -- a single return as last statement inside one or more blocks, as
898 -- inlining would generate gotos in that case as well (although the
899 -- goto is useless in that case).
901 function Uses_Secondary_Stack
(Bod
: Node_Id
) return Boolean;
902 -- If the body of the subprogram includes a call that returns an
903 -- unconstrained type, the secondary stack is involved, and it is
904 -- not worth inlining.
906 -------------------------
907 -- Has_Extended_Return --
908 -------------------------
910 function Has_Extended_Return
return Boolean is
911 Body_To_Inline
: constant Node_Id
:= N
;
913 function Check_Return
(N
: Node_Id
) return Traverse_Result
;
914 -- Returns OK on node N if this is not an extended return statement
920 function Check_Return
(N
: Node_Id
) return Traverse_Result
is
923 when N_Extended_Return_Statement
=>
926 -- Skip locally declared subprogram bodies inside the body to
927 -- inline, as the return statements inside those do not count.
929 when N_Subprogram_Body
=>
930 if N
= Body_To_Inline
then
941 function Check_All_Returns
is new Traverse_Func
(Check_Return
);
943 -- Start of processing for Has_Extended_Return
946 return Check_All_Returns
(N
) /= OK
;
947 end Has_Extended_Return
;
949 -------------------------------
950 -- Has_Pending_Instantiation --
951 -------------------------------
953 function Has_Pending_Instantiation
return Boolean is
958 while Present
(S
) loop
959 if Is_Compilation_Unit
(S
)
960 or else Is_Child_Unit
(S
)
964 elsif Ekind
(S
) = E_Package
965 and then Has_Forward_Instantiation
(S
)
974 end Has_Pending_Instantiation
;
976 -----------------------------------------
977 -- Has_Single_Return_In_GNATprove_Mode --
978 -----------------------------------------
980 function Has_Single_Return_In_GNATprove_Mode
return Boolean is
981 Body_To_Inline
: constant Node_Id
:= N
;
982 Last_Statement
: Node_Id
:= Empty
;
984 function Check_Return
(N
: Node_Id
) return Traverse_Result
;
985 -- Returns OK on node N if this is not a return statement different
986 -- from the last statement in the subprogram.
992 function Check_Return
(N
: Node_Id
) return Traverse_Result
is
995 when N_Extended_Return_Statement
996 | N_Simple_Return_Statement
998 if N
= Last_Statement
then
1004 -- Skip locally declared subprogram bodies inside the body to
1005 -- inline, as the return statements inside those do not count.
1007 when N_Subprogram_Body
=>
1008 if N
= Body_To_Inline
then
1019 function Check_All_Returns
is new Traverse_Func
(Check_Return
);
1021 -- Start of processing for Has_Single_Return_In_GNATprove_Mode
1024 -- Retrieve the last statement
1026 Last_Statement
:= Last
(Statements
(Handled_Statement_Sequence
(N
)));
1028 -- Check that the last statement is the only possible return
1029 -- statement in the subprogram.
1031 return Check_All_Returns
(N
) = OK
;
1032 end Has_Single_Return_In_GNATprove_Mode
;
1034 --------------------------
1035 -- Uses_Secondary_Stack --
1036 --------------------------
1038 function Uses_Secondary_Stack
(Bod
: Node_Id
) return Boolean is
1039 function Check_Call
(N
: Node_Id
) return Traverse_Result
;
1040 -- Look for function calls that return an unconstrained type
1046 function Check_Call
(N
: Node_Id
) return Traverse_Result
is
1048 if Nkind
(N
) = N_Function_Call
1049 and then Is_Entity_Name
(Name
(N
))
1050 and then Is_Composite_Type
(Etype
(Entity
(Name
(N
))))
1051 and then not Is_Constrained
(Etype
(Entity
(Name
(N
))))
1054 ("cannot inline & (call returns unconstrained type)?",
1062 function Check_Calls
is new Traverse_Func
(Check_Call
);
1065 return Check_Calls
(Bod
) = Abandon
;
1066 end Uses_Secondary_Stack
;
1068 -- Start of processing for Build_Body_To_Inline
1071 -- Return immediately if done already
1073 if Nkind
(Decl
) = N_Subprogram_Declaration
1074 and then Present
(Body_To_Inline
(Decl
))
1078 -- Subprograms that have return statements in the middle of the body are
1079 -- inlined with gotos. GNATprove does not currently support gotos, so
1080 -- we prevent such inlining.
1082 elsif GNATprove_Mode
1083 and then not Has_Single_Return_In_GNATprove_Mode
1085 Cannot_Inline
("cannot inline & (multiple returns)?", N
, Spec_Id
);
1088 -- Functions that return controlled types cannot currently be inlined
1089 -- because they require secondary stack handling; controlled actions
1090 -- may also interfere in complex ways with inlining.
1092 elsif Ekind
(Spec_Id
) = E_Function
1093 and then Needs_Finalization
(Etype
(Spec_Id
))
1096 ("cannot inline & (controlled return type)?", N
, Spec_Id
);
1100 if Present
(Declarations
(N
))
1101 and then Has_Excluded_Declaration
(Spec_Id
, Declarations
(N
))
1106 if Present
(Handled_Statement_Sequence
(N
)) then
1107 if Present
(Exception_Handlers
(Handled_Statement_Sequence
(N
))) then
1109 ("cannot inline& (exception handler)?",
1110 First
(Exception_Handlers
(Handled_Statement_Sequence
(N
))),
1114 elsif Has_Excluded_Statement
1115 (Spec_Id
, Statements
(Handled_Statement_Sequence
(N
)))
1121 -- We do not inline a subprogram that is too large, unless it is marked
1122 -- Inline_Always or we are in GNATprove mode. This pragma does not
1123 -- suppress the other checks on inlining (forbidden declarations,
1126 if not (Has_Pragma_Inline_Always
(Spec_Id
) or else GNATprove_Mode
)
1127 and then List_Length
1128 (Statements
(Handled_Statement_Sequence
(N
))) > Max_Size
1130 Cannot_Inline
("cannot inline& (body too large)?", N
, Spec_Id
);
1134 if Has_Pending_Instantiation
then
1136 ("cannot inline& (forward instance within enclosing body)?",
1141 -- Within an instance, the body to inline must be treated as a nested
1142 -- generic, so that the proper global references are preserved.
1144 -- Note that we do not do this at the library level, because it is not
1145 -- needed, and furthermore this causes trouble if front-end inlining
1146 -- is activated (-gnatN).
1148 if In_Instance
and then Scope
(Current_Scope
) /= Standard_Standard
then
1149 Save_Env
(Scope
(Current_Scope
), Scope
(Current_Scope
));
1150 Original_Body
:= Copy_Generic_Node
(N
, Empty
, Instantiating
=> True);
1152 Original_Body
:= Copy_Separate_Tree
(N
);
1155 -- We need to capture references to the formals in order to substitute
1156 -- the actuals at the point of inlining, i.e. instantiation. To treat
1157 -- the formals as globals to the body to inline, we nest it within a
1158 -- dummy parameterless subprogram, declared within the real one. To
1159 -- avoid generating an internal name (which is never public, and which
1160 -- affects serial numbers of other generated names), we use an internal
1161 -- symbol that cannot conflict with user declarations.
1163 Set_Parameter_Specifications
(Specification
(Original_Body
), No_List
);
1164 Set_Defining_Unit_Name
1165 (Specification
(Original_Body
),
1166 Make_Defining_Identifier
(Sloc
(N
), Name_uParent
));
1167 Set_Corresponding_Spec
(Original_Body
, Empty
);
1169 -- Remove all aspects/pragmas that have no meaning in an inlined body
1171 Remove_Aspects_And_Pragmas
(Original_Body
);
1174 Copy_Generic_Node
(Original_Body
, Empty
, Instantiating
=> False);
1176 -- Set return type of function, which is also global and does not need
1179 if Ekind
(Spec_Id
) = E_Function
then
1180 Set_Result_Definition
1181 (Specification
(Body_To_Analyze
),
1182 New_Occurrence_Of
(Etype
(Spec_Id
), Sloc
(N
)));
1185 if No
(Declarations
(N
)) then
1186 Set_Declarations
(N
, New_List
(Body_To_Analyze
));
1188 Append
(Body_To_Analyze
, Declarations
(N
));
1191 -- The body to inline is preanalyzed. In GNATprove mode we must disable
1192 -- full analysis as well so that light expansion does not take place
1193 -- either, and name resolution is unaffected.
1195 Expander_Mode_Save_And_Set
(False);
1196 Full_Analysis
:= False;
1198 Analyze
(Body_To_Analyze
);
1199 Push_Scope
(Defining_Entity
(Body_To_Analyze
));
1200 Save_Global_References
(Original_Body
);
1202 Remove
(Body_To_Analyze
);
1204 Expander_Mode_Restore
;
1205 Full_Analysis
:= Analysis_Status
;
1207 -- Restore environment if previously saved
1209 if In_Instance
and then Scope
(Current_Scope
) /= Standard_Standard
then
1213 -- Functions that return unconstrained composite types require
1214 -- secondary stack handling, and cannot currently be inlined, unless
1215 -- all return statements return a local variable that is the first
1216 -- local declaration in the body. We had to delay this check until
1217 -- the body of the function is analyzed since Has_Single_Return()
1218 -- requires a minimum decoration.
1220 if Ekind
(Spec_Id
) = E_Function
1221 and then not Is_Scalar_Type
(Etype
(Spec_Id
))
1222 and then not Is_Access_Type
(Etype
(Spec_Id
))
1223 and then not Is_Constrained
(Etype
(Spec_Id
))
1225 if not Has_Single_Return
(Body_To_Analyze
)
1227 -- Skip inlining if the function returns an unconstrained type
1228 -- using an extended return statement, since this part of the
1229 -- new inlining model is not yet supported by the current
1230 -- implementation. ???
1232 or else (Returns_Unconstrained_Type
(Spec_Id
)
1233 and then Has_Extended_Return
)
1236 ("cannot inline & (unconstrained return type)?", N
, Spec_Id
);
1240 -- If secondary stack is used, there is no point in inlining. We have
1241 -- already issued the warning in this case, so nothing to do.
1243 elsif Uses_Secondary_Stack
(Body_To_Analyze
) then
1247 Set_Body_To_Inline
(Decl
, Original_Body
);
1248 Set_Ekind
(Defining_Entity
(Original_Body
), Ekind
(Spec_Id
));
1249 Set_Is_Inlined
(Spec_Id
);
1250 end Build_Body_To_Inline
;
1252 -------------------------------------------
1253 -- Call_Can_Be_Inlined_In_GNATprove_Mode --
1254 -------------------------------------------
1256 function Call_Can_Be_Inlined_In_GNATprove_Mode
1258 Subp
: Entity_Id
) return Boolean
1264 F
:= First_Formal
(Subp
);
1265 A
:= First_Actual
(N
);
1266 while Present
(F
) loop
1267 if Ekind
(F
) /= E_Out_Parameter
1268 and then not Same_Type
(Etype
(F
), Etype
(A
))
1270 (Is_By_Reference_Type
(Etype
(A
))
1271 or else Is_Limited_Type
(Etype
(A
)))
1281 end Call_Can_Be_Inlined_In_GNATprove_Mode
;
1283 --------------------------------------
1284 -- Can_Be_Inlined_In_GNATprove_Mode --
1285 --------------------------------------
1287 function Can_Be_Inlined_In_GNATprove_Mode
1288 (Spec_Id
: Entity_Id
;
1289 Body_Id
: Entity_Id
) return Boolean
1291 function Has_Formal_With_Discriminant_Dependent_Fields
1292 (Id
: Entity_Id
) return Boolean;
1293 -- Returns true if the subprogram has at least one formal parameter of
1294 -- an unconstrained record type with per-object constraints on component
1297 function Has_Some_Contract
(Id
: Entity_Id
) return Boolean;
1298 -- Return True if subprogram Id has any contract. The presence of
1299 -- Extensions_Visible or Volatile_Function is also considered as a
1302 function Is_Unit_Subprogram
(Id
: Entity_Id
) return Boolean;
1303 -- Return True if subprogram Id defines a compilation unit
1304 -- Shouldn't this be in Sem_Aux???
1306 function In_Package_Spec
(Id
: Entity_Id
) return Boolean;
1307 -- Return True if subprogram Id is defined in the package specification,
1308 -- either its visible or private part.
1310 ---------------------------------------------------
1311 -- Has_Formal_With_Discriminant_Dependent_Fields --
1312 ---------------------------------------------------
1314 function Has_Formal_With_Discriminant_Dependent_Fields
1315 (Id
: Entity_Id
) return Boolean
1317 function Has_Discriminant_Dependent_Component
1318 (Typ
: Entity_Id
) return Boolean;
1319 -- Determine whether unconstrained record type Typ has at least one
1320 -- component that depends on a discriminant.
1322 ------------------------------------------
1323 -- Has_Discriminant_Dependent_Component --
1324 ------------------------------------------
1326 function Has_Discriminant_Dependent_Component
1327 (Typ
: Entity_Id
) return Boolean
1332 -- Inspect all components of the record type looking for one that
1333 -- depends on a discriminant.
1335 Comp
:= First_Component
(Typ
);
1336 while Present
(Comp
) loop
1337 if Has_Discriminant_Dependent_Constraint
(Comp
) then
1341 Next_Component
(Comp
);
1345 end Has_Discriminant_Dependent_Component
;
1349 Subp_Id
: constant Entity_Id
:= Ultimate_Alias
(Id
);
1351 Formal_Typ
: Entity_Id
;
1353 -- Start of processing for
1354 -- Has_Formal_With_Discriminant_Dependent_Fields
1357 -- Inspect all parameters of the subprogram looking for a formal
1358 -- of an unconstrained record type with at least one discriminant
1359 -- dependent component.
1361 Formal
:= First_Formal
(Subp_Id
);
1362 while Present
(Formal
) loop
1363 Formal_Typ
:= Etype
(Formal
);
1365 if Is_Record_Type
(Formal_Typ
)
1366 and then not Is_Constrained
(Formal_Typ
)
1367 and then Has_Discriminant_Dependent_Component
(Formal_Typ
)
1372 Next_Formal
(Formal
);
1376 end Has_Formal_With_Discriminant_Dependent_Fields
;
1378 -----------------------
1379 -- Has_Some_Contract --
1380 -----------------------
1382 function Has_Some_Contract
(Id
: Entity_Id
) return Boolean is
1386 -- A call to an expression function may precede the actual body which
1387 -- is inserted at the end of the enclosing declarations. Ensure that
1388 -- the related entity is decorated before inspecting the contract.
1390 if Is_Subprogram_Or_Generic_Subprogram
(Id
) then
1391 Items
:= Contract
(Id
);
1393 -- Note that Classifications is not Empty when Extensions_Visible
1394 -- or Volatile_Function is present, which causes such subprograms
1395 -- to be considered to have a contract here. This is fine as we
1396 -- want to avoid inlining these too.
1398 return Present
(Items
)
1399 and then (Present
(Pre_Post_Conditions
(Items
)) or else
1400 Present
(Contract_Test_Cases
(Items
)) or else
1401 Present
(Classifications
(Items
)));
1405 end Has_Some_Contract
;
1407 ---------------------
1408 -- In_Package_Spec --
1409 ---------------------
1411 function In_Package_Spec
(Id
: Entity_Id
) return Boolean is
1412 P
: constant Node_Id
:= Parent
(Subprogram_Spec
(Id
));
1413 -- Parent of the subprogram's declaration
1416 return Nkind
(Enclosing_Declaration
(P
)) = N_Package_Declaration
;
1417 end In_Package_Spec
;
1419 ------------------------
1420 -- Is_Unit_Subprogram --
1421 ------------------------
1423 function Is_Unit_Subprogram
(Id
: Entity_Id
) return Boolean is
1424 Decl
: Node_Id
:= Parent
(Parent
(Id
));
1426 if Nkind
(Parent
(Id
)) = N_Defining_Program_Unit_Name
then
1427 Decl
:= Parent
(Decl
);
1430 return Nkind
(Parent
(Decl
)) = N_Compilation_Unit
;
1431 end Is_Unit_Subprogram
;
1433 -- Local declarations
1436 -- Procedure or function entity for the subprogram
1438 -- Start of processing for Can_Be_Inlined_In_GNATprove_Mode
1441 pragma Assert
(Present
(Spec_Id
) or else Present
(Body_Id
));
1443 if Present
(Spec_Id
) then
1449 -- Only local subprograms without contracts are inlined in GNATprove
1450 -- mode, as these are the subprograms which a user is not interested in
1451 -- analyzing in isolation, but rather in the context of their call. This
1452 -- is a convenient convention, that could be changed for an explicit
1453 -- pragma/aspect one day.
1455 -- In a number of special cases, inlining is not desirable or not
1456 -- possible, see below.
1458 -- Do not inline unit-level subprograms
1460 if Is_Unit_Subprogram
(Id
) then
1463 -- Do not inline subprograms declared in package specs, because they are
1464 -- not local, i.e. can be called either from anywhere (if declared in
1465 -- visible part) or from the child units (if declared in private part).
1467 elsif In_Package_Spec
(Id
) then
1470 -- Do not inline subprograms declared in other units. This is important
1471 -- in particular for subprograms defined in the private part of a
1472 -- package spec, when analyzing one of its child packages, as otherwise
1473 -- we issue spurious messages about the impossibility to inline such
1476 elsif not In_Extended_Main_Code_Unit
(Id
) then
1479 -- Do not inline subprograms marked No_Return, possibly used for
1480 -- signaling errors, which GNATprove handles specially.
1482 elsif No_Return
(Id
) then
1485 -- Do not inline subprograms that have a contract on the spec or the
1486 -- body. Use the contract(s) instead in GNATprove. This also prevents
1487 -- inlining of subprograms with Extensions_Visible or Volatile_Function.
1489 elsif (Present
(Spec_Id
) and then Has_Some_Contract
(Spec_Id
))
1491 (Present
(Body_Id
) and then Has_Some_Contract
(Body_Id
))
1495 -- Do not inline expression functions, which are directly inlined at the
1498 elsif (Present
(Spec_Id
) and then Is_Expression_Function
(Spec_Id
))
1500 (Present
(Body_Id
) and then Is_Expression_Function
(Body_Id
))
1504 -- Do not inline generic subprogram instances. The visibility rules of
1505 -- generic instances plays badly with inlining.
1507 elsif Is_Generic_Instance
(Spec_Id
) then
1510 -- Only inline subprograms whose spec is marked SPARK_Mode On. For
1511 -- the subprogram body, a similar check is performed after the body
1512 -- is analyzed, as this is where a pragma SPARK_Mode might be inserted.
1514 elsif Present
(Spec_Id
)
1516 (No
(SPARK_Pragma
(Spec_Id
))
1518 Get_SPARK_Mode_From_Annotation
(SPARK_Pragma
(Spec_Id
)) /= On
)
1522 -- Subprograms in generic instances are currently not inlined, to avoid
1523 -- problems with inlining of standard library subprograms.
1525 elsif Instantiation_Location
(Sloc
(Id
)) /= No_Location
then
1528 -- Do not inline subprograms and entries defined inside protected types,
1529 -- which typically are not helper subprograms, which also avoids getting
1530 -- spurious messages on calls that cannot be inlined.
1532 elsif Within_Protected_Type
(Id
) then
1535 -- Do not inline predicate functions (treated specially by GNATprove)
1537 elsif Is_Predicate_Function
(Id
) then
1540 -- Do not inline subprograms with a parameter of an unconstrained
1541 -- record type if it has discrimiant dependent fields. Indeed, with
1542 -- such parameters, the frontend cannot always ensure type compliance
1543 -- in record component accesses (in particular with records containing
1546 elsif Has_Formal_With_Discriminant_Dependent_Fields
(Id
) then
1549 -- Otherwise, this is a subprogram declared inside the private part of a
1550 -- package, or inside a package body, or locally in a subprogram, and it
1551 -- does not have any contract. Inline it.
1556 end Can_Be_Inlined_In_GNATprove_Mode
;
1562 procedure Cannot_Inline
1566 Is_Serious
: Boolean := False)
1569 -- In GNATprove mode, inlining is the technical means by which the
1570 -- higher-level goal of contextual analysis is reached, so issue
1571 -- messages about failure to apply contextual analysis to a
1572 -- subprogram, rather than failure to inline it.
1575 and then Msg
(Msg
'First .. Msg
'First + 12) = "cannot inline"
1578 Len1
: constant Positive :=
1579 String (String'("cannot inline"))'Length;
1580 Len2 : constant Positive :=
1581 String (String'("info: no contextual analysis of"))'Length;
1583 New_Msg
: String (1 .. Msg
'Length + Len2
- Len1
);
1586 New_Msg
(1 .. Len2
) := "info: no contextual analysis of";
1587 New_Msg
(Len2
+ 1 .. Msg
'Length + Len2
- Len1
) :=
1588 Msg
(Msg
'First + Len1
.. Msg
'Last);
1589 Cannot_Inline
(New_Msg
, N
, Subp
, Is_Serious
);
1594 pragma Assert
(Msg
(Msg
'Last) = '?');
1596 -- Legacy front-end inlining model
1598 if not Back_End_Inlining
then
1600 -- Do not emit warning if this is a predefined unit which is not
1601 -- the main unit. With validity checks enabled, some predefined
1602 -- subprograms may contain nested subprograms and become ineligible
1605 if Is_Predefined_Unit
(Get_Source_Unit
(Subp
))
1606 and then not In_Extended_Main_Source_Unit
(Subp
)
1610 -- In GNATprove mode, issue a warning when -gnatd_f is set, and
1611 -- indicate that the subprogram is not always inlined by setting
1612 -- flag Is_Inlined_Always to False.
1614 elsif GNATprove_Mode
then
1615 Set_Is_Inlined_Always
(Subp
, False);
1617 if Debug_Flag_Underscore_F
then
1618 Error_Msg_NE
(Msg
, N
, Subp
);
1621 elsif Has_Pragma_Inline_Always
(Subp
) then
1623 -- Remove last character (question mark) to make this into an
1624 -- error, because the Inline_Always pragma cannot be obeyed.
1626 Error_Msg_NE
(Msg
(Msg
'First .. Msg
'Last - 1), N
, Subp
);
1628 elsif Ineffective_Inline_Warnings
then
1629 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
1632 -- New semantics relying on back-end inlining
1634 elsif Is_Serious
then
1636 -- Remove last character (question mark) to make this into an error.
1638 Error_Msg_NE
(Msg
(Msg
'First .. Msg
'Last - 1), N
, Subp
);
1640 -- In GNATprove mode, issue a warning when -gnatd_f is set, and
1641 -- indicate that the subprogram is not always inlined by setting
1642 -- flag Is_Inlined_Always to False.
1644 elsif GNATprove_Mode
then
1645 Set_Is_Inlined_Always
(Subp
, False);
1647 if Debug_Flag_Underscore_F
then
1648 Error_Msg_NE
(Msg
, N
, Subp
);
1653 -- Do not emit warning if this is a predefined unit which is not
1654 -- the main unit. This behavior is currently provided for backward
1655 -- compatibility but it will be removed when we enforce the
1656 -- strictness of the new rules.
1658 if Is_Predefined_Unit
(Get_Source_Unit
(Subp
))
1659 and then not In_Extended_Main_Source_Unit
(Subp
)
1663 elsif Has_Pragma_Inline_Always
(Subp
) then
1665 -- Emit a warning if this is a call to a runtime subprogram
1666 -- which is located inside a generic. Previously this call
1667 -- was silently skipped.
1669 if Is_Generic_Instance
(Subp
) then
1671 Gen_P
: constant Entity_Id
:= Generic_Parent
(Parent
(Subp
));
1673 if Is_Predefined_Unit
(Get_Source_Unit
(Gen_P
)) then
1674 Set_Is_Inlined
(Subp
, False);
1675 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
1681 -- Remove last character (question mark) to make this into an
1682 -- error, because the Inline_Always pragma cannot be obeyed.
1684 Error_Msg_NE
(Msg
(Msg
'First .. Msg
'Last - 1), N
, Subp
);
1687 Set_Is_Inlined
(Subp
, False);
1689 if Ineffective_Inline_Warnings
then
1690 Error_Msg_NE
(Msg
& "p?", N
, Subp
);
1696 --------------------------------------------
1697 -- Check_And_Split_Unconstrained_Function --
1698 --------------------------------------------
1700 procedure Check_And_Split_Unconstrained_Function
1702 Spec_Id
: Entity_Id
;
1703 Body_Id
: Entity_Id
)
1705 procedure Build_Body_To_Inline
(N
: Node_Id
; Spec_Id
: Entity_Id
);
1706 -- Use generic machinery to build an unexpanded body for the subprogram.
1707 -- This body is subsequently used for inline expansions at call sites.
1709 function Can_Split_Unconstrained_Function
(N
: Node_Id
) return Boolean;
1710 -- Return true if we generate code for the function body N, the function
1711 -- body N has no local declarations and its unique statement is a single
1712 -- extended return statement with a handled statements sequence.
1714 procedure Split_Unconstrained_Function
1716 Spec_Id
: Entity_Id
);
1717 -- N is an inlined function body that returns an unconstrained type and
1718 -- has a single extended return statement. Split N in two subprograms:
1719 -- a procedure P' and a function F'. The formals of P' duplicate the
1720 -- formals of N plus an extra formal which is used to return a value;
1721 -- its body is composed by the declarations and list of statements
1722 -- of the extended return statement of N.
1724 --------------------------
1725 -- Build_Body_To_Inline --
1726 --------------------------
1728 procedure Build_Body_To_Inline
(N
: Node_Id
; Spec_Id
: Entity_Id
) is
1729 procedure Generate_Subprogram_Body
1731 Body_To_Inline
: out Node_Id
);
1732 -- Generate a parameterless duplicate of subprogram body N. Note that
1733 -- occurrences of pragmas referencing the formals are removed since
1734 -- they have no meaning when the body is inlined and the formals are
1735 -- rewritten (the analysis of the non-inlined body will handle these
1736 -- pragmas). A new internal name is associated with Body_To_Inline.
1738 ------------------------------
1739 -- Generate_Subprogram_Body --
1740 ------------------------------
1742 procedure Generate_Subprogram_Body
1744 Body_To_Inline
: out Node_Id
)
1747 -- Within an instance, the body to inline must be treated as a
1748 -- nested generic so that proper global references are preserved.
1750 -- Note that we do not do this at the library level, because it
1751 -- is not needed, and furthermore this causes trouble if front
1752 -- end inlining is activated (-gnatN).
1755 and then Scope
(Current_Scope
) /= Standard_Standard
1758 Copy_Generic_Node
(N
, Empty
, Instantiating
=> True);
1760 Body_To_Inline
:= Copy_Separate_Tree
(N
);
1763 -- Remove aspects/pragmas that have no meaning in an inlined body
1765 Remove_Aspects_And_Pragmas
(Body_To_Inline
);
1767 -- We need to capture references to the formals in order
1768 -- to substitute the actuals at the point of inlining, i.e.
1769 -- instantiation. To treat the formals as globals to the body to
1770 -- inline, we nest it within a dummy parameterless subprogram,
1771 -- declared within the real one.
1773 Set_Parameter_Specifications
1774 (Specification
(Body_To_Inline
), No_List
);
1776 -- A new internal name is associated with Body_To_Inline to avoid
1777 -- conflicts when the non-inlined body N is analyzed.
1779 Set_Defining_Unit_Name
(Specification
(Body_To_Inline
),
1780 Make_Defining_Identifier
(Sloc
(N
), New_Internal_Name
('P')));
1781 Set_Corresponding_Spec
(Body_To_Inline
, Empty
);
1782 end Generate_Subprogram_Body
;
1786 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Spec_Id
);
1787 Original_Body
: Node_Id
;
1788 Body_To_Analyze
: Node_Id
;
1791 pragma Assert
(Current_Scope
= Spec_Id
);
1793 -- Within an instance, the body to inline must be treated as a nested
1794 -- generic, so that the proper global references are preserved. We
1795 -- do not do this at the library level, because it is not needed, and
1796 -- furthermore this causes trouble if front-end inlining is activated
1800 and then Scope
(Current_Scope
) /= Standard_Standard
1802 Save_Env
(Scope
(Current_Scope
), Scope
(Current_Scope
));
1805 -- Capture references to formals in order to substitute the actuals
1806 -- at the point of inlining or instantiation. To treat the formals
1807 -- as globals to the body to inline, nest the body within a dummy
1808 -- parameterless subprogram, declared within the real one.
1810 Generate_Subprogram_Body
(N
, Original_Body
);
1812 Copy_Generic_Node
(Original_Body
, Empty
, Instantiating
=> False);
1814 -- Set return type of function, which is also global and does not
1815 -- need to be resolved.
1817 if Ekind
(Spec_Id
) = E_Function
then
1818 Set_Result_Definition
(Specification
(Body_To_Analyze
),
1819 New_Occurrence_Of
(Etype
(Spec_Id
), Sloc
(N
)));
1822 if No
(Declarations
(N
)) then
1823 Set_Declarations
(N
, New_List
(Body_To_Analyze
));
1825 Append_To
(Declarations
(N
), Body_To_Analyze
);
1828 Preanalyze
(Body_To_Analyze
);
1830 Push_Scope
(Defining_Entity
(Body_To_Analyze
));
1831 Save_Global_References
(Original_Body
);
1833 Remove
(Body_To_Analyze
);
1835 -- Restore environment if previously saved
1838 and then Scope
(Current_Scope
) /= Standard_Standard
1843 pragma Assert
(No
(Body_To_Inline
(Decl
)));
1844 Set_Body_To_Inline
(Decl
, Original_Body
);
1845 Set_Ekind
(Defining_Entity
(Original_Body
), Ekind
(Spec_Id
));
1846 end Build_Body_To_Inline
;
1848 --------------------------------------
1849 -- Can_Split_Unconstrained_Function --
1850 --------------------------------------
1852 function Can_Split_Unconstrained_Function
(N
: Node_Id
) return Boolean is
1853 Ret_Node
: constant Node_Id
:=
1854 First
(Statements
(Handled_Statement_Sequence
(N
)));
1858 -- No user defined declarations allowed in the function except inside
1859 -- the unique return statement; implicit labels are the only allowed
1862 if not Is_Empty_List
(Declarations
(N
)) then
1863 D
:= First
(Declarations
(N
));
1864 while Present
(D
) loop
1865 if Nkind
(D
) /= N_Implicit_Label_Declaration
then
1873 -- We only split the inlined function when we are generating the code
1874 -- of its body; otherwise we leave duplicated split subprograms in
1875 -- the tree which (if referenced) generate wrong references at link
1878 return In_Extended_Main_Code_Unit
(N
)
1879 and then Present
(Ret_Node
)
1880 and then Nkind
(Ret_Node
) = N_Extended_Return_Statement
1881 and then No
(Next
(Ret_Node
))
1882 and then Present
(Handled_Statement_Sequence
(Ret_Node
));
1883 end Can_Split_Unconstrained_Function
;
1885 ----------------------------------
1886 -- Split_Unconstrained_Function --
1887 ----------------------------------
1889 procedure Split_Unconstrained_Function
1891 Spec_Id
: Entity_Id
)
1893 Loc
: constant Source_Ptr
:= Sloc
(N
);
1894 Ret_Node
: constant Node_Id
:=
1895 First
(Statements
(Handled_Statement_Sequence
(N
)));
1896 Ret_Obj
: constant Node_Id
:=
1897 First
(Return_Object_Declarations
(Ret_Node
));
1899 procedure Build_Procedure
1900 (Proc_Id
: out Entity_Id
;
1901 Decl_List
: out List_Id
);
1902 -- Build a procedure containing the statements found in the extended
1903 -- return statement of the unconstrained function body N.
1905 ---------------------
1906 -- Build_Procedure --
1907 ---------------------
1909 procedure Build_Procedure
1910 (Proc_Id
: out Entity_Id
;
1911 Decl_List
: out List_Id
)
1914 Formal_List
: constant List_Id
:= New_List
;
1915 Proc_Spec
: Node_Id
;
1916 Proc_Body
: Node_Id
;
1917 Subp_Name
: constant Name_Id
:= New_Internal_Name
('F');
1918 Body_Decl_List
: List_Id
:= No_List
;
1919 Param_Type
: Node_Id
;
1922 if Nkind
(Object_Definition
(Ret_Obj
)) = N_Identifier
then
1924 New_Copy
(Object_Definition
(Ret_Obj
));
1927 New_Copy
(Subtype_Mark
(Object_Definition
(Ret_Obj
)));
1930 Append_To
(Formal_List
,
1931 Make_Parameter_Specification
(Loc
,
1932 Defining_Identifier
=>
1933 Make_Defining_Identifier
(Loc
,
1934 Chars
=> Chars
(Defining_Identifier
(Ret_Obj
))),
1935 In_Present
=> False,
1936 Out_Present
=> True,
1937 Null_Exclusion_Present
=> False,
1938 Parameter_Type
=> Param_Type
));
1940 Formal
:= First_Formal
(Spec_Id
);
1942 -- Note that we copy the parameter type rather than creating
1943 -- a reference to it, because it may be a class-wide entity
1944 -- that will not be retrieved by name.
1946 while Present
(Formal
) loop
1947 Append_To
(Formal_List
,
1948 Make_Parameter_Specification
(Loc
,
1949 Defining_Identifier
=>
1950 Make_Defining_Identifier
(Sloc
(Formal
),
1951 Chars
=> Chars
(Formal
)),
1952 In_Present
=> In_Present
(Parent
(Formal
)),
1953 Out_Present
=> Out_Present
(Parent
(Formal
)),
1954 Null_Exclusion_Present
=>
1955 Null_Exclusion_Present
(Parent
(Formal
)),
1957 New_Copy_Tree
(Parameter_Type
(Parent
(Formal
))),
1959 Copy_Separate_Tree
(Expression
(Parent
(Formal
)))));
1961 Next_Formal
(Formal
);
1964 Proc_Id
:= Make_Defining_Identifier
(Loc
, Chars
=> Subp_Name
);
1967 Make_Procedure_Specification
(Loc
,
1968 Defining_Unit_Name
=> Proc_Id
,
1969 Parameter_Specifications
=> Formal_List
);
1971 Decl_List
:= New_List
;
1973 Append_To
(Decl_List
,
1974 Make_Subprogram_Declaration
(Loc
, Proc_Spec
));
1976 -- Can_Convert_Unconstrained_Function checked that the function
1977 -- has no local declarations except implicit label declarations.
1978 -- Copy these declarations to the built procedure.
1980 if Present
(Declarations
(N
)) then
1981 Body_Decl_List
:= New_List
;
1988 D
:= First
(Declarations
(N
));
1989 while Present
(D
) loop
1990 pragma Assert
(Nkind
(D
) = N_Implicit_Label_Declaration
);
1993 Make_Implicit_Label_Declaration
(Loc
,
1994 Make_Defining_Identifier
(Loc
,
1995 Chars
=> Chars
(Defining_Identifier
(D
))),
1996 Label_Construct
=> Empty
);
1997 Append_To
(Body_Decl_List
, New_D
);
2004 pragma Assert
(Present
(Handled_Statement_Sequence
(Ret_Node
)));
2007 Make_Subprogram_Body
(Loc
,
2008 Specification
=> Copy_Separate_Tree
(Proc_Spec
),
2009 Declarations
=> Body_Decl_List
,
2010 Handled_Statement_Sequence
=>
2011 Copy_Separate_Tree
(Handled_Statement_Sequence
(Ret_Node
)));
2013 Set_Defining_Unit_Name
(Specification
(Proc_Body
),
2014 Make_Defining_Identifier
(Loc
, Subp_Name
));
2016 Append_To
(Decl_List
, Proc_Body
);
2017 end Build_Procedure
;
2021 New_Obj
: constant Node_Id
:= Copy_Separate_Tree
(Ret_Obj
);
2023 Proc_Id
: Entity_Id
;
2024 Proc_Call
: Node_Id
;
2026 -- Start of processing for Split_Unconstrained_Function
2029 -- Build the associated procedure, analyze it and insert it before
2030 -- the function body N.
2033 Scope
: constant Entity_Id
:= Current_Scope
;
2034 Decl_List
: List_Id
;
2037 Build_Procedure
(Proc_Id
, Decl_List
);
2038 Insert_Actions
(N
, Decl_List
);
2039 Set_Is_Inlined
(Proc_Id
);
2043 -- Build the call to the generated procedure
2046 Actual_List
: constant List_Id
:= New_List
;
2050 Append_To
(Actual_List
,
2051 New_Occurrence_Of
(Defining_Identifier
(New_Obj
), Loc
));
2053 Formal
:= First_Formal
(Spec_Id
);
2054 while Present
(Formal
) loop
2055 Append_To
(Actual_List
, New_Occurrence_Of
(Formal
, Loc
));
2057 -- Avoid spurious warning on unreferenced formals
2059 Set_Referenced
(Formal
);
2060 Next_Formal
(Formal
);
2064 Make_Procedure_Call_Statement
(Loc
,
2065 Name
=> New_Occurrence_Of
(Proc_Id
, Loc
),
2066 Parameter_Associations
=> Actual_List
);
2074 -- Proc (New_Obj, ...);
2079 Make_Block_Statement
(Loc
,
2080 Declarations
=> New_List
(New_Obj
),
2081 Handled_Statement_Sequence
=>
2082 Make_Handled_Sequence_Of_Statements
(Loc
,
2083 Statements
=> New_List
(
2087 Make_Simple_Return_Statement
(Loc
,
2090 (Defining_Identifier
(New_Obj
), Loc
)))));
2092 Rewrite
(Ret_Node
, Blk_Stmt
);
2093 end Split_Unconstrained_Function
;
2097 Decl
: constant Node_Id
:= Unit_Declaration_Node
(Spec_Id
);
2099 -- Start of processing for Check_And_Split_Unconstrained_Function
2102 pragma Assert
(Back_End_Inlining
2103 and then Ekind
(Spec_Id
) = E_Function
2104 and then Returns_Unconstrained_Type
(Spec_Id
)
2105 and then Comes_From_Source
(Body_Id
)
2106 and then (Has_Pragma_Inline_Always
(Spec_Id
)
2107 or else Optimization_Level
> 0));
2109 -- This routine must not be used in GNATprove mode since GNATprove
2110 -- relies on frontend inlining
2112 pragma Assert
(not GNATprove_Mode
);
2114 -- No need to split the function if we cannot generate the code
2116 if Serious_Errors_Detected
/= 0 then
2120 -- No action needed in stubs since the attribute Body_To_Inline
2123 if Nkind
(Decl
) = N_Subprogram_Body_Stub
then
2126 -- Cannot build the body to inline if the attribute is already set.
2127 -- This attribute may have been set if this is a subprogram renaming
2128 -- declarations (see Freeze.Build_Renamed_Body).
2130 elsif Present
(Body_To_Inline
(Decl
)) then
2133 -- Check excluded declarations
2135 elsif Present
(Declarations
(N
))
2136 and then Has_Excluded_Declaration
(Spec_Id
, Declarations
(N
))
2140 -- Check excluded statements. There is no need to protect us against
2141 -- exception handlers since they are supported by the GCC backend.
2143 elsif Present
(Handled_Statement_Sequence
(N
))
2144 and then Has_Excluded_Statement
2145 (Spec_Id
, Statements
(Handled_Statement_Sequence
(N
)))
2150 -- Build the body to inline only if really needed
2152 if Can_Split_Unconstrained_Function
(N
) then
2153 Split_Unconstrained_Function
(N
, Spec_Id
);
2154 Build_Body_To_Inline
(N
, Spec_Id
);
2155 Set_Is_Inlined
(Spec_Id
);
2157 end Check_And_Split_Unconstrained_Function
;
2159 -------------------------------------
2160 -- Check_Package_Body_For_Inlining --
2161 -------------------------------------
2163 procedure Check_Package_Body_For_Inlining
(N
: Node_Id
; P
: Entity_Id
) is
2164 Bname
: Unit_Name_Type
;
2169 -- Legacy implementation (relying on frontend inlining)
2171 if not Back_End_Inlining
2172 and then Is_Compilation_Unit
(P
)
2173 and then not Is_Generic_Instance
(P
)
2175 Bname
:= Get_Body_Name
(Get_Unit_Name
(Unit
(N
)));
2177 E
:= First_Entity
(P
);
2178 while Present
(E
) loop
2179 if Has_Pragma_Inline_Always
(E
)
2180 or else (Has_Pragma_Inline
(E
) and Front_End_Inlining
)
2182 if not Is_Loaded
(Bname
) then
2183 Load_Needed_Body
(N
, OK
);
2187 -- Check we are not trying to inline a parent whose body
2188 -- depends on a child, when we are compiling the body of
2189 -- the child. Otherwise we have a potential elaboration
2190 -- circularity with inlined subprograms and with
2191 -- Taft-Amendment types.
2194 Comp
: Node_Id
; -- Body just compiled
2195 Child_Spec
: Entity_Id
; -- Spec of main unit
2196 Ent
: Entity_Id
; -- For iteration
2197 With_Clause
: Node_Id
; -- Context of body.
2200 if Nkind
(Unit
(Cunit
(Main_Unit
))) = N_Package_Body
2201 and then Present
(Body_Entity
(P
))
2205 ((Unit
(Library_Unit
(Cunit
(Main_Unit
)))));
2208 Parent
(Unit_Declaration_Node
(Body_Entity
(P
)));
2210 -- Check whether the context of the body just
2211 -- compiled includes a child of itself, and that
2212 -- child is the spec of the main compilation.
2214 With_Clause
:= First
(Context_Items
(Comp
));
2215 while Present
(With_Clause
) loop
2216 if Nkind
(With_Clause
) = N_With_Clause
2218 Scope
(Entity
(Name
(With_Clause
))) = P
2220 Entity
(Name
(With_Clause
)) = Child_Spec
2222 Error_Msg_Node_2
:= Child_Spec
;
2224 ("body of & depends on child unit&??",
2227 ("\subprograms in body cannot be inlined??",
2230 -- Disable further inlining from this unit,
2231 -- and keep Taft-amendment types incomplete.
2233 Ent
:= First_Entity
(P
);
2234 while Present
(Ent
) loop
2236 and then Has_Completion_In_Body
(Ent
)
2238 Set_Full_View
(Ent
, Empty
);
2240 elsif Is_Subprogram
(Ent
) then
2241 Set_Is_Inlined
(Ent
, False);
2255 elsif Ineffective_Inline_Warnings
then
2256 Error_Msg_Unit_1
:= Bname
;
2258 ("unable to inline subprograms defined in $??", P
);
2259 Error_Msg_N
("\body not found??", P
);
2270 end Check_Package_Body_For_Inlining
;
2272 --------------------
2273 -- Cleanup_Scopes --
2274 --------------------
2276 procedure Cleanup_Scopes
is
2282 Elmt
:= First_Elmt
(To_Clean
);
2283 while Present
(Elmt
) loop
2284 Scop
:= Node
(Elmt
);
2286 if Ekind
(Scop
) = E_Entry
then
2287 Scop
:= Protected_Body_Subprogram
(Scop
);
2289 elsif Is_Subprogram
(Scop
)
2290 and then Is_Protected_Type
(Scope
(Scop
))
2291 and then Present
(Protected_Body_Subprogram
(Scop
))
2293 -- If a protected operation contains an instance, its cleanup
2294 -- operations have been delayed, and the subprogram has been
2295 -- rewritten in the expansion of the enclosing protected body. It
2296 -- is the corresponding subprogram that may require the cleanup
2297 -- operations, so propagate the information that triggers cleanup
2301 (Protected_Body_Subprogram
(Scop
),
2302 Uses_Sec_Stack
(Scop
));
2304 Scop
:= Protected_Body_Subprogram
(Scop
);
2307 if Ekind
(Scop
) = E_Block
then
2308 Decl
:= Parent
(Block_Node
(Scop
));
2311 Decl
:= Unit_Declaration_Node
(Scop
);
2313 if Nkind_In
(Decl
, N_Subprogram_Declaration
,
2314 N_Task_Type_Declaration
,
2315 N_Subprogram_Body_Stub
)
2317 Decl
:= Unit_Declaration_Node
(Corresponding_Body
(Decl
));
2322 Expand_Cleanup_Actions
(Decl
);
2325 Elmt
:= Next_Elmt
(Elmt
);
2329 -------------------------
2330 -- Expand_Inlined_Call --
2331 -------------------------
2333 procedure Expand_Inlined_Call
2336 Orig_Subp
: Entity_Id
)
2338 Decls
: constant List_Id
:= New_List
;
2339 Is_Predef
: constant Boolean :=
2340 Is_Predefined_Unit
(Get_Source_Unit
(Subp
));
2341 Loc
: constant Source_Ptr
:= Sloc
(N
);
2342 Orig_Bod
: constant Node_Id
:=
2343 Body_To_Inline
(Unit_Declaration_Node
(Subp
));
2345 Uses_Back_End
: constant Boolean :=
2346 Back_End_Inlining
and then Optimization_Level
> 0;
2347 -- The back-end expansion is used if the target supports back-end
2348 -- inlining and some level of optimixation is required; otherwise
2349 -- the inlining takes place fully as a tree expansion.
2353 Exit_Lab
: Entity_Id
:= Empty
;
2356 Lab_Decl
: Node_Id
:= Empty
;
2360 Ret_Type
: Entity_Id
;
2362 Temp_Typ
: Entity_Id
;
2365 Is_Unc_Decl
: Boolean;
2366 -- If the type returned by the function is unconstrained and the call
2367 -- can be inlined, special processing is required.
2369 Return_Object
: Entity_Id
:= Empty
;
2370 -- Entity in declaration in an extended_return_statement
2372 Targ
: Node_Id
:= Empty
;
2373 -- The target of the call. If context is an assignment statement then
2374 -- this is the left-hand side of the assignment, else it is a temporary
2375 -- to which the return value is assigned prior to rewriting the call.
2377 Targ1
: Node_Id
:= Empty
;
2378 -- A separate target used when the return type is unconstrained
2380 procedure Declare_Postconditions_Result
;
2381 -- When generating C code, declare _Result, which may be used in the
2382 -- inlined _Postconditions procedure to verify the return value.
2384 procedure Make_Exit_Label
;
2385 -- Build declaration for exit label to be used in Return statements,
2386 -- sets Exit_Lab (the label node) and Lab_Decl (corresponding implicit
2387 -- declaration). Does nothing if Exit_Lab already set.
2389 function Process_Formals
(N
: Node_Id
) return Traverse_Result
;
2390 -- Replace occurrence of a formal with the corresponding actual, or the
2391 -- thunk generated for it. Replace a return statement with an assignment
2392 -- to the target of the call, with appropriate conversions if needed.
2394 function Process_Sloc
(Nod
: Node_Id
) return Traverse_Result
;
2395 -- If the call being expanded is that of an internal subprogram, set the
2396 -- sloc of the generated block to that of the call itself, so that the
2397 -- expansion is skipped by the "next" command in gdb. Same processing
2398 -- for a subprogram in a predefined file, e.g. Ada.Tags. If
2399 -- Debug_Generated_Code is true, suppress this change to simplify our
2400 -- own development. Same in GNATprove mode, to ensure that warnings and
2401 -- diagnostics point to the proper location.
2403 procedure Reset_Dispatching_Calls
(N
: Node_Id
);
2404 -- In subtree N search for occurrences of dispatching calls that use the
2405 -- Ada 2005 Object.Operation notation and the object is a formal of the
2406 -- inlined subprogram. Reset the entity associated with Operation in all
2407 -- the found occurrences.
2409 procedure Rewrite_Function_Call
(N
: Node_Id
; Blk
: Node_Id
);
2410 -- If the function body is a single expression, replace call with
2411 -- expression, else insert block appropriately.
2413 procedure Rewrite_Procedure_Call
(N
: Node_Id
; Blk
: Node_Id
);
2414 -- If procedure body has no local variables, inline body without
2415 -- creating block, otherwise rewrite call with block.
2417 function Formal_Is_Used_Once
(Formal
: Entity_Id
) return Boolean;
2418 -- Determine whether a formal parameter is used only once in Orig_Bod
2420 -----------------------------------
2421 -- Declare_Postconditions_Result --
2422 -----------------------------------
2424 procedure Declare_Postconditions_Result
is
2425 Enclosing_Subp
: constant Entity_Id
:= Scope
(Subp
);
2430 and then Is_Subprogram
(Enclosing_Subp
)
2431 and then Present
(Postconditions_Proc
(Enclosing_Subp
)));
2433 if Ekind
(Enclosing_Subp
) = E_Function
then
2434 if Nkind
(First
(Parameter_Associations
(N
))) in
2435 N_Numeric_Or_String_Literal
2437 Append_To
(Declarations
(Blk
),
2438 Make_Object_Declaration
(Loc
,
2439 Defining_Identifier
=>
2440 Make_Defining_Identifier
(Loc
, Name_uResult
),
2441 Constant_Present
=> True,
2442 Object_Definition
=>
2443 New_Occurrence_Of
(Etype
(Enclosing_Subp
), Loc
),
2445 New_Copy_Tree
(First
(Parameter_Associations
(N
)))));
2447 Append_To
(Declarations
(Blk
),
2448 Make_Object_Renaming_Declaration
(Loc
,
2449 Defining_Identifier
=>
2450 Make_Defining_Identifier
(Loc
, Name_uResult
),
2452 New_Occurrence_Of
(Etype
(Enclosing_Subp
), Loc
),
2454 New_Copy_Tree
(First
(Parameter_Associations
(N
)))));
2457 end Declare_Postconditions_Result
;
2459 ---------------------
2460 -- Make_Exit_Label --
2461 ---------------------
2463 procedure Make_Exit_Label
is
2464 Lab_Ent
: Entity_Id
;
2466 if No
(Exit_Lab
) then
2467 Lab_Ent
:= Make_Temporary
(Loc
, 'L');
2468 Lab_Id
:= New_Occurrence_Of
(Lab_Ent
, Loc
);
2469 Exit_Lab
:= Make_Label
(Loc
, Lab_Id
);
2471 Make_Implicit_Label_Declaration
(Loc
,
2472 Defining_Identifier
=> Lab_Ent
,
2473 Label_Construct
=> Exit_Lab
);
2475 end Make_Exit_Label
;
2477 ---------------------
2478 -- Process_Formals --
2479 ---------------------
2481 function Process_Formals
(N
: Node_Id
) return Traverse_Result
is
2487 if Is_Entity_Name
(N
) and then Present
(Entity
(N
)) then
2490 if Is_Formal
(E
) and then Scope
(E
) = Subp
then
2491 A
:= Renamed_Object
(E
);
2493 -- Rewrite the occurrence of the formal into an occurrence of
2494 -- the actual. Also establish visibility on the proper view of
2495 -- the actual's subtype for the body's context (if the actual's
2496 -- subtype is private at the call point but its full view is
2497 -- visible to the body, then the inlined tree here must be
2498 -- analyzed with the full view).
2500 if Is_Entity_Name
(A
) then
2501 Rewrite
(N
, New_Occurrence_Of
(Entity
(A
), Sloc
(N
)));
2502 Check_Private_View
(N
);
2504 elsif Nkind
(A
) = N_Defining_Identifier
then
2505 Rewrite
(N
, New_Occurrence_Of
(A
, Sloc
(N
)));
2506 Check_Private_View
(N
);
2511 Rewrite
(N
, New_Copy
(A
));
2517 elsif Is_Entity_Name
(N
)
2518 and then Present
(Return_Object
)
2519 and then Chars
(N
) = Chars
(Return_Object
)
2521 -- Occurrence within an extended return statement. The return
2522 -- object is local to the body been inlined, and thus the generic
2523 -- copy is not analyzed yet, so we match by name, and replace it
2524 -- with target of call.
2526 if Nkind
(Targ
) = N_Defining_Identifier
then
2527 Rewrite
(N
, New_Occurrence_Of
(Targ
, Loc
));
2529 Rewrite
(N
, New_Copy_Tree
(Targ
));
2534 elsif Nkind
(N
) = N_Simple_Return_Statement
then
2535 if No
(Expression
(N
)) then
2536 Num_Ret
:= Num_Ret
+ 1;
2539 Make_Goto_Statement
(Loc
, Name
=> New_Copy
(Lab_Id
)));
2542 if Nkind
(Parent
(N
)) = N_Handled_Sequence_Of_Statements
2543 and then Nkind
(Parent
(Parent
(N
))) = N_Subprogram_Body
2545 -- Function body is a single expression. No need for
2551 Num_Ret
:= Num_Ret
+ 1;
2555 -- Because of the presence of private types, the views of the
2556 -- expression and the context may be different, so place
2557 -- a type conversion to the context type to avoid spurious
2558 -- errors, e.g. when the expression is a numeric literal and
2559 -- the context is private. If the expression is an aggregate,
2560 -- use a qualified expression, because an aggregate is not a
2561 -- legal argument of a conversion. Ditto for numeric, character
2562 -- and string literals, and attributes that yield a universal
2563 -- type, because those must be resolved to a specific type.
2565 if Nkind_In
(Expression
(N
), N_Aggregate
,
2566 N_Character_Literal
,
2569 or else Yields_Universal_Type
(Expression
(N
))
2572 Make_Qualified_Expression
(Sloc
(N
),
2573 Subtype_Mark
=> New_Occurrence_Of
(Ret_Type
, Sloc
(N
)),
2574 Expression
=> Relocate_Node
(Expression
(N
)));
2576 -- Use an unchecked type conversion between access types, for
2577 -- which a type conversion would not always be valid, as no
2578 -- check may result from the conversion.
2580 elsif Is_Access_Type
(Ret_Type
) then
2582 Unchecked_Convert_To
2583 (Ret_Type
, Relocate_Node
(Expression
(N
)));
2585 -- Otherwise use a type conversion, which may trigger a check
2589 Make_Type_Conversion
(Sloc
(N
),
2590 Subtype_Mark
=> New_Occurrence_Of
(Ret_Type
, Sloc
(N
)),
2591 Expression
=> Relocate_Node
(Expression
(N
)));
2594 if Nkind
(Targ
) = N_Defining_Identifier
then
2596 Make_Assignment_Statement
(Loc
,
2597 Name
=> New_Occurrence_Of
(Targ
, Loc
),
2598 Expression
=> Ret
));
2601 Make_Assignment_Statement
(Loc
,
2602 Name
=> New_Copy
(Targ
),
2603 Expression
=> Ret
));
2606 Set_Assignment_OK
(Name
(N
));
2608 if Present
(Exit_Lab
) then
2610 Make_Goto_Statement
(Loc
, Name
=> New_Copy
(Lab_Id
)));
2616 -- An extended return becomes a block whose first statement is the
2617 -- assignment of the initial expression of the return object to the
2618 -- target of the call itself.
2620 elsif Nkind
(N
) = N_Extended_Return_Statement
then
2622 Return_Decl
: constant Entity_Id
:=
2623 First
(Return_Object_Declarations
(N
));
2627 Return_Object
:= Defining_Identifier
(Return_Decl
);
2629 if Present
(Expression
(Return_Decl
)) then
2630 if Nkind
(Targ
) = N_Defining_Identifier
then
2632 Make_Assignment_Statement
(Loc
,
2633 Name
=> New_Occurrence_Of
(Targ
, Loc
),
2634 Expression
=> Expression
(Return_Decl
));
2637 Make_Assignment_Statement
(Loc
,
2638 Name
=> New_Copy
(Targ
),
2639 Expression
=> Expression
(Return_Decl
));
2642 Set_Assignment_OK
(Name
(Assign
));
2644 if No
(Handled_Statement_Sequence
(N
)) then
2645 Set_Handled_Statement_Sequence
(N
,
2646 Make_Handled_Sequence_Of_Statements
(Loc
,
2647 Statements
=> New_List
));
2651 Statements
(Handled_Statement_Sequence
(N
)));
2655 Make_Block_Statement
(Loc
,
2656 Handled_Statement_Sequence
=>
2657 Handled_Statement_Sequence
(N
)));
2662 -- Remove pragma Unreferenced since it may refer to formals that
2663 -- are not visible in the inlined body, and in any case we will
2664 -- not be posting warnings on the inlined body so it is unneeded.
2666 elsif Nkind
(N
) = N_Pragma
2667 and then Pragma_Name
(N
) = Name_Unreferenced
2669 Rewrite
(N
, Make_Null_Statement
(Sloc
(N
)));
2675 end Process_Formals
;
2677 procedure Replace_Formals
is new Traverse_Proc
(Process_Formals
);
2683 function Process_Sloc
(Nod
: Node_Id
) return Traverse_Result
is
2685 if not Debug_Generated_Code
then
2686 Set_Sloc
(Nod
, Sloc
(N
));
2687 Set_Comes_From_Source
(Nod
, False);
2693 procedure Reset_Slocs
is new Traverse_Proc
(Process_Sloc
);
2695 ------------------------------
2696 -- Reset_Dispatching_Calls --
2697 ------------------------------
2699 procedure Reset_Dispatching_Calls
(N
: Node_Id
) is
2701 function Do_Reset
(N
: Node_Id
) return Traverse_Result
;
2702 -- Comment required ???
2708 function Do_Reset
(N
: Node_Id
) return Traverse_Result
is
2710 if Nkind
(N
) = N_Procedure_Call_Statement
2711 and then Nkind
(Name
(N
)) = N_Selected_Component
2712 and then Nkind
(Prefix
(Name
(N
))) = N_Identifier
2713 and then Is_Formal
(Entity
(Prefix
(Name
(N
))))
2714 and then Is_Dispatching_Operation
2715 (Entity
(Selector_Name
(Name
(N
))))
2717 Set_Entity
(Selector_Name
(Name
(N
)), Empty
);
2723 function Do_Reset_Calls
is new Traverse_Func
(Do_Reset
);
2727 Dummy
: constant Traverse_Result
:= Do_Reset_Calls
(N
);
2728 pragma Unreferenced
(Dummy
);
2730 -- Start of processing for Reset_Dispatching_Calls
2734 end Reset_Dispatching_Calls
;
2736 ---------------------------
2737 -- Rewrite_Function_Call --
2738 ---------------------------
2740 procedure Rewrite_Function_Call
(N
: Node_Id
; Blk
: Node_Id
) is
2741 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(Blk
);
2742 Fst
: constant Node_Id
:= First
(Statements
(HSS
));
2745 -- Optimize simple case: function body is a single return statement,
2746 -- which has been expanded into an assignment.
2748 if Is_Empty_List
(Declarations
(Blk
))
2749 and then Nkind
(Fst
) = N_Assignment_Statement
2750 and then No
(Next
(Fst
))
2752 -- The function call may have been rewritten as the temporary
2753 -- that holds the result of the call, in which case remove the
2754 -- now useless declaration.
2756 if Nkind
(N
) = N_Identifier
2757 and then Nkind
(Parent
(Entity
(N
))) = N_Object_Declaration
2759 Rewrite
(Parent
(Entity
(N
)), Make_Null_Statement
(Loc
));
2762 Rewrite
(N
, Expression
(Fst
));
2764 elsif Nkind
(N
) = N_Identifier
2765 and then Nkind
(Parent
(Entity
(N
))) = N_Object_Declaration
2767 -- The block assigns the result of the call to the temporary
2769 Insert_After
(Parent
(Entity
(N
)), Blk
);
2771 -- If the context is an assignment, and the left-hand side is free of
2772 -- side-effects, the replacement is also safe.
2773 -- Can this be generalized further???
2775 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
2777 (Is_Entity_Name
(Name
(Parent
(N
)))
2779 (Nkind
(Name
(Parent
(N
))) = N_Explicit_Dereference
2780 and then Is_Entity_Name
(Prefix
(Name
(Parent
(N
)))))
2783 (Nkind
(Name
(Parent
(N
))) = N_Selected_Component
2784 and then Is_Entity_Name
(Prefix
(Name
(Parent
(N
))))))
2786 -- Replace assignment with the block
2789 Original_Assignment
: constant Node_Id
:= Parent
(N
);
2792 -- Preserve the original assignment node to keep the complete
2793 -- assignment subtree consistent enough for Analyze_Assignment
2794 -- to proceed (specifically, the original Lhs node must still
2795 -- have an assignment statement as its parent).
2797 -- We cannot rely on Original_Node to go back from the block
2798 -- node to the assignment node, because the assignment might
2799 -- already be a rewrite substitution.
2801 Discard_Node
(Relocate_Node
(Original_Assignment
));
2802 Rewrite
(Original_Assignment
, Blk
);
2805 elsif Nkind
(Parent
(N
)) = N_Object_Declaration
then
2807 -- A call to a function which returns an unconstrained type
2808 -- found in the expression initializing an object-declaration is
2809 -- expanded into a procedure call which must be added after the
2810 -- object declaration.
2812 if Is_Unc_Decl
and Back_End_Inlining
then
2813 Insert_Action_After
(Parent
(N
), Blk
);
2815 Set_Expression
(Parent
(N
), Empty
);
2816 Insert_After
(Parent
(N
), Blk
);
2819 elsif Is_Unc
and then not Back_End_Inlining
then
2820 Insert_Before
(Parent
(N
), Blk
);
2822 end Rewrite_Function_Call
;
2824 ----------------------------
2825 -- Rewrite_Procedure_Call --
2826 ----------------------------
2828 procedure Rewrite_Procedure_Call
(N
: Node_Id
; Blk
: Node_Id
) is
2829 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(Blk
);
2832 -- If there is a transient scope for N, this will be the scope of the
2833 -- actions for N, and the statements in Blk need to be within this
2834 -- scope. For example, they need to have visibility on the constant
2835 -- declarations created for the formals.
2837 -- If N needs no transient scope, and if there are no declarations in
2838 -- the inlined body, we can do a little optimization and insert the
2839 -- statements for the body directly after N, and rewrite N to a
2840 -- null statement, instead of rewriting N into a full-blown block
2843 if not Scope_Is_Transient
2844 and then Is_Empty_List
(Declarations
(Blk
))
2846 Insert_List_After
(N
, Statements
(HSS
));
2847 Rewrite
(N
, Make_Null_Statement
(Loc
));
2851 end Rewrite_Procedure_Call
;
2853 -------------------------
2854 -- Formal_Is_Used_Once --
2855 -------------------------
2857 function Formal_Is_Used_Once
(Formal
: Entity_Id
) return Boolean is
2858 Use_Counter
: Int
:= 0;
2860 function Count_Uses
(N
: Node_Id
) return Traverse_Result
;
2861 -- Traverse the tree and count the uses of the formal parameter.
2862 -- In this case, for optimization purposes, we do not need to
2863 -- continue the traversal once more than one use is encountered.
2869 function Count_Uses
(N
: Node_Id
) return Traverse_Result
is
2871 -- The original node is an identifier
2873 if Nkind
(N
) = N_Identifier
2874 and then Present
(Entity
(N
))
2876 -- Original node's entity points to the one in the copied body
2878 and then Nkind
(Entity
(N
)) = N_Identifier
2879 and then Present
(Entity
(Entity
(N
)))
2881 -- The entity of the copied node is the formal parameter
2883 and then Entity
(Entity
(N
)) = Formal
2885 Use_Counter
:= Use_Counter
+ 1;
2887 if Use_Counter
> 1 then
2889 -- Denote more than one use and abandon the traversal
2900 procedure Count_Formal_Uses
is new Traverse_Proc
(Count_Uses
);
2902 -- Start of processing for Formal_Is_Used_Once
2905 Count_Formal_Uses
(Orig_Bod
);
2906 return Use_Counter
= 1;
2907 end Formal_Is_Used_Once
;
2909 -- Start of processing for Expand_Inlined_Call
2912 -- Initializations for old/new semantics
2914 if not Uses_Back_End
then
2915 Is_Unc
:= Is_Array_Type
(Etype
(Subp
))
2916 and then not Is_Constrained
(Etype
(Subp
));
2917 Is_Unc_Decl
:= False;
2919 Is_Unc
:= Returns_Unconstrained_Type
(Subp
)
2920 and then Optimization_Level
> 0;
2921 Is_Unc_Decl
:= Nkind
(Parent
(N
)) = N_Object_Declaration
2925 -- Check for an illegal attempt to inline a recursive procedure. If the
2926 -- subprogram has parameters this is detected when trying to supply a
2927 -- binding for parameters that already have one. For parameterless
2928 -- subprograms this must be done explicitly.
2930 if In_Open_Scopes
(Subp
) then
2932 ("cannot inline call to recursive subprogram?", N
, Subp
);
2933 Set_Is_Inlined
(Subp
, False);
2936 -- Skip inlining if this is not a true inlining since the attribute
2937 -- Body_To_Inline is also set for renamings (see sinfo.ads). For a
2938 -- true inlining, Orig_Bod has code rather than being an entity.
2940 elsif Nkind
(Orig_Bod
) in N_Entity
then
2944 if Nkind
(Orig_Bod
) = N_Defining_Identifier
2945 or else Nkind
(Orig_Bod
) = N_Defining_Operator_Symbol
2947 -- Subprogram is renaming_as_body. Calls occurring after the renaming
2948 -- can be replaced with calls to the renamed entity directly, because
2949 -- the subprograms are subtype conformant. If the renamed subprogram
2950 -- is an inherited operation, we must redo the expansion because
2951 -- implicit conversions may be needed. Similarly, if the renamed
2952 -- entity is inlined, expand the call for further optimizations.
2954 Set_Name
(N
, New_Occurrence_Of
(Orig_Bod
, Loc
));
2956 if Present
(Alias
(Orig_Bod
)) or else Is_Inlined
(Orig_Bod
) then
2963 -- Register the call in the list of inlined calls
2965 Append_New_Elmt
(N
, To
=> Inlined_Calls
);
2967 -- Use generic machinery to copy body of inlined subprogram, as if it
2968 -- were an instantiation, resetting source locations appropriately, so
2969 -- that nested inlined calls appear in the main unit.
2971 Save_Env
(Subp
, Empty
);
2972 Set_Copied_Sloc_For_Inlined_Body
(N
, Defining_Entity
(Orig_Bod
));
2976 if not Uses_Back_End
then
2981 Bod
:= Copy_Generic_Node
(Orig_Bod
, Empty
, Instantiating
=> True);
2983 Make_Block_Statement
(Loc
,
2984 Declarations
=> Declarations
(Bod
),
2985 Handled_Statement_Sequence
=>
2986 Handled_Statement_Sequence
(Bod
));
2988 if No
(Declarations
(Bod
)) then
2989 Set_Declarations
(Blk
, New_List
);
2992 -- When generating C code, declare _Result, which may be used to
2993 -- verify the return value.
2995 if Modify_Tree_For_C
2996 and then Nkind
(N
) = N_Procedure_Call_Statement
2997 and then Chars
(Name
(N
)) = Name_uPostconditions
2999 Declare_Postconditions_Result
;
3002 -- For the unconstrained case, capture the name of the local
3003 -- variable that holds the result. This must be the first
3004 -- declaration in the block, because its bounds cannot depend
3005 -- on local variables. Otherwise there is no way to declare the
3006 -- result outside of the block. Needless to say, in general the
3007 -- bounds will depend on the actuals in the call.
3009 -- If the context is an assignment statement, as is the case
3010 -- for the expansion of an extended return, the left-hand side
3011 -- provides bounds even if the return type is unconstrained.
3015 First_Decl
: Node_Id
;
3018 First_Decl
:= First
(Declarations
(Blk
));
3020 -- If the body is a single extended return statement,the
3021 -- resulting block is a nested block.
3023 if No
(First_Decl
) then
3025 First
(Statements
(Handled_Statement_Sequence
(Blk
)));
3027 if Nkind
(First_Decl
) = N_Block_Statement
then
3028 First_Decl
:= First
(Declarations
(First_Decl
));
3032 -- No front-end inlining possible
3034 if Nkind
(First_Decl
) /= N_Object_Declaration
then
3038 if Nkind
(Parent
(N
)) /= N_Assignment_Statement
then
3039 Targ1
:= Defining_Identifier
(First_Decl
);
3041 Targ1
:= Name
(Parent
(N
));
3058 Copy_Generic_Node
(Orig_Bod
, Empty
, Instantiating
=> True);
3060 Make_Block_Statement
(Loc
,
3061 Declarations
=> Declarations
(Bod
),
3062 Handled_Statement_Sequence
=>
3063 Handled_Statement_Sequence
(Bod
));
3065 -- Inline a call to a function that returns an unconstrained type.
3066 -- The semantic analyzer checked that frontend-inlined functions
3067 -- returning unconstrained types have no declarations and have
3068 -- a single extended return statement. As part of its processing
3069 -- the function was split into two subprograms: a procedure P' and
3070 -- a function F' that has a block with a call to procedure P' (see
3071 -- Split_Unconstrained_Function).
3077 (Statements
(Handled_Statement_Sequence
(Orig_Bod
)))) =
3081 Blk_Stmt
: constant Node_Id
:=
3082 First
(Statements
(Handled_Statement_Sequence
(Orig_Bod
)));
3083 First_Stmt
: constant Node_Id
:=
3084 First
(Statements
(Handled_Statement_Sequence
(Blk_Stmt
)));
3085 Second_Stmt
: constant Node_Id
:= Next
(First_Stmt
);
3089 (Nkind
(First_Stmt
) = N_Procedure_Call_Statement
3090 and then Nkind
(Second_Stmt
) = N_Simple_Return_Statement
3091 and then No
(Next
(Second_Stmt
)));
3096 (Statements
(Handled_Statement_Sequence
(Orig_Bod
))),
3097 Empty
, Instantiating
=> True);
3100 -- Capture the name of the local variable that holds the
3101 -- result. This must be the first declaration in the block,
3102 -- because its bounds cannot depend on local variables.
3103 -- Otherwise there is no way to declare the result outside
3104 -- of the block. Needless to say, in general the bounds will
3105 -- depend on the actuals in the call.
3107 if Nkind
(Parent
(N
)) /= N_Assignment_Statement
then
3108 Targ1
:= Defining_Identifier
(First
(Declarations
(Blk
)));
3110 -- If the context is an assignment statement, as is the case
3111 -- for the expansion of an extended return, the left-hand
3112 -- side provides bounds even if the return type is
3116 Targ1
:= Name
(Parent
(N
));
3121 if No
(Declarations
(Bod
)) then
3122 Set_Declarations
(Blk
, New_List
);
3127 -- If this is a derived function, establish the proper return type
3129 if Present
(Orig_Subp
) and then Orig_Subp
/= Subp
then
3130 Ret_Type
:= Etype
(Orig_Subp
);
3132 Ret_Type
:= Etype
(Subp
);
3135 -- Create temporaries for the actuals that are expressions, or that are
3136 -- scalars and require copying to preserve semantics.
3138 F
:= First_Formal
(Subp
);
3139 A
:= First_Actual
(N
);
3140 while Present
(F
) loop
3141 if Present
(Renamed_Object
(F
)) then
3143 -- If expander is active, it is an error to try to inline a
3144 -- recursive program. In GNATprove mode, just indicate that the
3145 -- inlining will not happen, and mark the subprogram as not always
3148 if GNATprove_Mode
then
3150 ("cannot inline call to recursive subprogram?", N
, Subp
);
3151 Set_Is_Inlined_Always
(Subp
, False);
3154 ("cannot inline call to recursive subprogram", N
);
3160 -- Reset Last_Assignment for any parameters of mode out or in out, to
3161 -- prevent spurious warnings about overwriting for assignments to the
3162 -- formal in the inlined code.
3164 if Is_Entity_Name
(A
) and then Ekind
(F
) /= E_In_Parameter
then
3165 Set_Last_Assignment
(Entity
(A
), Empty
);
3168 -- If the argument may be a controlling argument in a call within
3169 -- the inlined body, we must preserve its classwide nature to insure
3170 -- that dynamic dispatching take place subsequently. If the formal
3171 -- has a constraint it must be preserved to retain the semantics of
3174 if Is_Class_Wide_Type
(Etype
(F
))
3175 or else (Is_Access_Type
(Etype
(F
))
3176 and then Is_Class_Wide_Type
(Designated_Type
(Etype
(F
))))
3178 Temp_Typ
:= Etype
(F
);
3180 elsif Base_Type
(Etype
(F
)) = Base_Type
(Etype
(A
))
3181 and then Etype
(F
) /= Base_Type
(Etype
(F
))
3182 and then Is_Constrained
(Etype
(F
))
3184 Temp_Typ
:= Etype
(F
);
3187 Temp_Typ
:= Etype
(A
);
3190 -- If the actual is a simple name or a literal, no need to
3191 -- create a temporary, object can be used directly.
3193 -- If the actual is a literal and the formal has its address taken,
3194 -- we cannot pass the literal itself as an argument, so its value
3195 -- must be captured in a temporary. Skip this optimization in
3196 -- GNATprove mode, to make sure any check on a type conversion
3199 if (Is_Entity_Name
(A
)
3201 (not Is_Scalar_Type
(Etype
(A
))
3202 or else Ekind
(Entity
(A
)) = E_Enumeration_Literal
)
3203 and then not GNATprove_Mode
)
3205 -- When the actual is an identifier and the corresponding formal is
3206 -- used only once in the original body, the formal can be substituted
3207 -- directly with the actual parameter. Skip this optimization in
3208 -- GNATprove mode, to make sure any check on a type conversion
3212 (Nkind
(A
) = N_Identifier
3213 and then Formal_Is_Used_Once
(F
)
3214 and then not GNATprove_Mode
)
3217 (Nkind_In
(A
, N_Real_Literal
,
3219 N_Character_Literal
)
3220 and then not Address_Taken
(F
))
3222 if Etype
(F
) /= Etype
(A
) then
3224 (F
, Unchecked_Convert_To
(Etype
(F
), Relocate_Node
(A
)));
3226 Set_Renamed_Object
(F
, A
);
3230 Temp
:= Make_Temporary
(Loc
, 'C');
3232 -- If the actual for an in/in-out parameter is a view conversion,
3233 -- make it into an unchecked conversion, given that an untagged
3234 -- type conversion is not a proper object for a renaming.
3236 -- In-out conversions that involve real conversions have already
3237 -- been transformed in Expand_Actuals.
3239 if Nkind
(A
) = N_Type_Conversion
3240 and then Ekind
(F
) /= E_In_Parameter
3243 Make_Unchecked_Type_Conversion
(Loc
,
3244 Subtype_Mark
=> New_Occurrence_Of
(Etype
(F
), Loc
),
3245 Expression
=> Relocate_Node
(Expression
(A
)));
3247 -- In GNATprove mode, keep the most precise type of the actual for
3248 -- the temporary variable, when the formal type is unconstrained.
3249 -- Otherwise, the AST may contain unexpected assignment statements
3250 -- to a temporary variable of unconstrained type renaming a local
3251 -- variable of constrained type, which is not expected by
3254 elsif Etype
(F
) /= Etype
(A
)
3255 and then (not GNATprove_Mode
or else Is_Constrained
(Etype
(F
)))
3257 New_A
:= Unchecked_Convert_To
(Etype
(F
), Relocate_Node
(A
));
3258 Temp_Typ
:= Etype
(F
);
3261 New_A
:= Relocate_Node
(A
);
3264 Set_Sloc
(New_A
, Sloc
(N
));
3266 -- If the actual has a by-reference type, it cannot be copied,
3267 -- so its value is captured in a renaming declaration. Otherwise
3268 -- declare a local constant initialized with the actual.
3270 -- We also use a renaming declaration for expressions of an array
3271 -- type that is not bit-packed, both for efficiency reasons and to
3272 -- respect the semantics of the call: in most cases the original
3273 -- call will pass the parameter by reference, and thus the inlined
3274 -- code will have the same semantics.
3276 -- Finally, we need a renaming declaration in the case of limited
3277 -- types for which initialization cannot be by copy either.
3279 if Ekind
(F
) = E_In_Parameter
3280 and then not Is_By_Reference_Type
(Etype
(A
))
3281 and then not Is_Limited_Type
(Etype
(A
))
3283 (not Is_Array_Type
(Etype
(A
))
3284 or else not Is_Object_Reference
(A
)
3285 or else Is_Bit_Packed_Array
(Etype
(A
)))
3288 Make_Object_Declaration
(Loc
,
3289 Defining_Identifier
=> Temp
,
3290 Constant_Present
=> True,
3291 Object_Definition
=> New_Occurrence_Of
(Temp_Typ
, Loc
),
3292 Expression
=> New_A
);
3295 -- In GNATprove mode, make an explicit copy of input
3296 -- parameters when formal and actual types differ, to make
3297 -- sure any check on the type conversion will be issued.
3298 -- The legality of the copy is ensured by calling first
3299 -- Call_Can_Be_Inlined_In_GNATprove_Mode.
3302 and then Ekind
(F
) /= E_Out_Parameter
3303 and then not Same_Type
(Etype
(F
), Etype
(A
))
3305 pragma Assert
(not Is_By_Reference_Type
(Etype
(A
)));
3306 pragma Assert
(not Is_Limited_Type
(Etype
(A
)));
3309 Make_Object_Declaration
(Loc
,
3310 Defining_Identifier
=> Make_Temporary
(Loc
, 'C'),
3311 Constant_Present
=> True,
3312 Object_Definition
=> New_Occurrence_Of
(Temp_Typ
, Loc
),
3313 Expression
=> New_Copy_Tree
(New_A
)));
3317 Make_Object_Renaming_Declaration
(Loc
,
3318 Defining_Identifier
=> Temp
,
3319 Subtype_Mark
=> New_Occurrence_Of
(Temp_Typ
, Loc
),
3323 Append
(Decl
, Decls
);
3324 Set_Renamed_Object
(F
, Temp
);
3331 -- Establish target of function call. If context is not assignment or
3332 -- declaration, create a temporary as a target. The declaration for the
3333 -- temporary may be subsequently optimized away if the body is a single
3334 -- expression, or if the left-hand side of the assignment is simple
3335 -- enough, i.e. an entity or an explicit dereference of one.
3337 if Ekind
(Subp
) = E_Function
then
3338 if Nkind
(Parent
(N
)) = N_Assignment_Statement
3339 and then Is_Entity_Name
(Name
(Parent
(N
)))
3341 Targ
:= Name
(Parent
(N
));
3343 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
3344 and then Nkind
(Name
(Parent
(N
))) = N_Explicit_Dereference
3345 and then Is_Entity_Name
(Prefix
(Name
(Parent
(N
))))
3347 Targ
:= Name
(Parent
(N
));
3349 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
3350 and then Nkind
(Name
(Parent
(N
))) = N_Selected_Component
3351 and then Is_Entity_Name
(Prefix
(Name
(Parent
(N
))))
3353 Targ
:= New_Copy_Tree
(Name
(Parent
(N
)));
3355 elsif Nkind
(Parent
(N
)) = N_Object_Declaration
3356 and then Is_Limited_Type
(Etype
(Subp
))
3358 Targ
:= Defining_Identifier
(Parent
(N
));
3360 -- New semantics: In an object declaration avoid an extra copy
3361 -- of the result of a call to an inlined function that returns
3362 -- an unconstrained type
3365 and then Nkind
(Parent
(N
)) = N_Object_Declaration
3368 Targ
:= Defining_Identifier
(Parent
(N
));
3371 -- Replace call with temporary and create its declaration
3373 Temp
:= Make_Temporary
(Loc
, 'C');
3374 Set_Is_Internal
(Temp
);
3376 -- For the unconstrained case, the generated temporary has the
3377 -- same constrained declaration as the result variable. It may
3378 -- eventually be possible to remove that temporary and use the
3379 -- result variable directly.
3381 if Is_Unc
and then Nkind
(Parent
(N
)) /= N_Assignment_Statement
3384 Make_Object_Declaration
(Loc
,
3385 Defining_Identifier
=> Temp
,
3386 Object_Definition
=>
3387 New_Copy_Tree
(Object_Definition
(Parent
(Targ1
))));
3389 Replace_Formals
(Decl
);
3393 Make_Object_Declaration
(Loc
,
3394 Defining_Identifier
=> Temp
,
3395 Object_Definition
=> New_Occurrence_Of
(Ret_Type
, Loc
));
3397 Set_Etype
(Temp
, Ret_Type
);
3400 Set_No_Initialization
(Decl
);
3401 Append
(Decl
, Decls
);
3402 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
3407 Insert_Actions
(N
, Decls
);
3411 -- Special management for inlining a call to a function that returns
3412 -- an unconstrained type and initializes an object declaration: we
3413 -- avoid generating undesired extra calls and goto statements.
3416 -- function Func (...) return String is
3419 -- Result : String (1 .. 4);
3421 -- Proc (Result, ...);
3426 -- Result : String := Func (...);
3428 -- Replace this object declaration by:
3430 -- Result : String (1 .. 4);
3431 -- Proc (Result, ...);
3433 Remove_Homonym
(Targ
);
3436 Make_Object_Declaration
3438 Defining_Identifier
=> Targ
,
3439 Object_Definition
=>
3440 New_Copy_Tree
(Object_Definition
(Parent
(Targ1
))));
3441 Replace_Formals
(Decl
);
3442 Rewrite
(Parent
(N
), Decl
);
3443 Analyze
(Parent
(N
));
3445 -- Avoid spurious warnings since we know that this declaration is
3446 -- referenced by the procedure call.
3448 Set_Never_Set_In_Source
(Targ
, False);
3450 -- Remove the local declaration of the extended return stmt from the
3453 Remove
(Parent
(Targ1
));
3455 -- Update the reference to the result (since we have rewriten the
3456 -- object declaration)
3459 Blk_Call_Stmt
: Node_Id
;
3462 -- Capture the call to the procedure
3465 First
(Statements
(Handled_Statement_Sequence
(Blk
)));
3467 (Nkind
(Blk_Call_Stmt
) = N_Procedure_Call_Statement
);
3469 Remove
(First
(Parameter_Associations
(Blk_Call_Stmt
)));
3470 Prepend_To
(Parameter_Associations
(Blk_Call_Stmt
),
3471 New_Occurrence_Of
(Targ
, Loc
));
3474 -- Remove the return statement
3477 (Nkind
(Last
(Statements
(Handled_Statement_Sequence
(Blk
)))) =
3478 N_Simple_Return_Statement
);
3480 Remove
(Last
(Statements
(Handled_Statement_Sequence
(Blk
))));
3483 -- Traverse the tree and replace formals with actuals or their thunks.
3484 -- Attach block to tree before analysis and rewriting.
3486 Replace_Formals
(Blk
);
3487 Set_Parent
(Blk
, N
);
3489 if GNATprove_Mode
then
3492 elsif not Comes_From_Source
(Subp
) or else Is_Predef
then
3498 -- No action needed since return statement has been already removed
3502 elsif Present
(Exit_Lab
) then
3504 -- If there's a single return statement at the end of the subprogram,
3505 -- the corresponding goto statement and the corresponding label are
3510 Nkind
(Last
(Statements
(Handled_Statement_Sequence
(Blk
)))) =
3513 Remove
(Last
(Statements
(Handled_Statement_Sequence
(Blk
))));
3515 Append
(Lab_Decl
, (Declarations
(Blk
)));
3516 Append
(Exit_Lab
, Statements
(Handled_Statement_Sequence
(Blk
)));
3520 -- Analyze Blk with In_Inlined_Body set, to avoid spurious errors
3521 -- on conflicting private views that Gigi would ignore. If this is a
3522 -- predefined unit, analyze with checks off, as is done in the non-
3523 -- inlined run-time units.
3526 I_Flag
: constant Boolean := In_Inlined_Body
;
3529 In_Inlined_Body
:= True;
3533 Style
: constant Boolean := Style_Check
;
3536 Style_Check
:= False;
3538 -- Search for dispatching calls that use the Object.Operation
3539 -- notation using an Object that is a parameter of the inlined
3540 -- function. We reset the decoration of Operation to force
3541 -- the reanalysis of the inlined dispatching call because
3542 -- the actual object has been inlined.
3544 Reset_Dispatching_Calls
(Blk
);
3546 Analyze
(Blk
, Suppress
=> All_Checks
);
3547 Style_Check
:= Style
;
3554 In_Inlined_Body
:= I_Flag
;
3557 if Ekind
(Subp
) = E_Procedure
then
3558 Rewrite_Procedure_Call
(N
, Blk
);
3561 Rewrite_Function_Call
(N
, Blk
);
3566 -- For the unconstrained case, the replacement of the call has been
3567 -- made prior to the complete analysis of the generated declarations.
3568 -- Propagate the proper type now.
3571 if Nkind
(N
) = N_Identifier
then
3572 Set_Etype
(N
, Etype
(Entity
(N
)));
3574 Set_Etype
(N
, Etype
(Targ1
));
3581 -- Cleanup mapping between formals and actuals for other expansions
3583 F
:= First_Formal
(Subp
);
3584 while Present
(F
) loop
3585 Set_Renamed_Object
(F
, Empty
);
3588 end Expand_Inlined_Call
;
3590 --------------------------
3591 -- Get_Code_Unit_Entity --
3592 --------------------------
3594 function Get_Code_Unit_Entity
(E
: Entity_Id
) return Entity_Id
is
3595 Unit
: Entity_Id
:= Cunit_Entity
(Get_Code_Unit
(E
));
3598 if Ekind
(Unit
) = E_Package_Body
then
3599 Unit
:= Spec_Entity
(Unit
);
3603 end Get_Code_Unit_Entity
;
3605 ------------------------------
3606 -- Has_Excluded_Declaration --
3607 ------------------------------
3609 function Has_Excluded_Declaration
3611 Decls
: List_Id
) return Boolean
3615 function Is_Unchecked_Conversion
(D
: Node_Id
) return Boolean;
3616 -- Nested subprograms make a given body ineligible for inlining, but
3617 -- we make an exception for instantiations of unchecked conversion.
3618 -- The body has not been analyzed yet, so check the name, and verify
3619 -- that the visible entity with that name is the predefined unit.
3621 -----------------------------
3622 -- Is_Unchecked_Conversion --
3623 -----------------------------
3625 function Is_Unchecked_Conversion
(D
: Node_Id
) return Boolean is
3626 Id
: constant Node_Id
:= Name
(D
);
3630 if Nkind
(Id
) = N_Identifier
3631 and then Chars
(Id
) = Name_Unchecked_Conversion
3633 Conv
:= Current_Entity
(Id
);
3635 elsif Nkind_In
(Id
, N_Selected_Component
, N_Expanded_Name
)
3636 and then Chars
(Selector_Name
(Id
)) = Name_Unchecked_Conversion
3638 Conv
:= Current_Entity
(Selector_Name
(Id
));
3643 return Present
(Conv
)
3644 and then Is_Predefined_Unit
(Get_Source_Unit
(Conv
))
3645 and then Is_Intrinsic_Subprogram
(Conv
);
3646 end Is_Unchecked_Conversion
;
3648 -- Start of processing for Has_Excluded_Declaration
3651 -- No action needed if the check is not needed
3653 if not Check_Inlining_Restrictions
then
3658 while Present
(D
) loop
3660 -- First declarations universally excluded
3662 if Nkind
(D
) = N_Package_Declaration
then
3664 ("cannot inline & (nested package declaration)?", D
, Subp
);
3667 elsif Nkind
(D
) = N_Package_Instantiation
then
3669 ("cannot inline & (nested package instantiation)?", D
, Subp
);
3673 -- Then declarations excluded only for front-end inlining
3675 if Back_End_Inlining
then
3678 elsif Nkind
(D
) = N_Task_Type_Declaration
3679 or else Nkind
(D
) = N_Single_Task_Declaration
3682 ("cannot inline & (nested task type declaration)?", D
, Subp
);
3685 elsif Nkind
(D
) = N_Protected_Type_Declaration
3686 or else Nkind
(D
) = N_Single_Protected_Declaration
3689 ("cannot inline & (nested protected type declaration)?",
3693 elsif Nkind
(D
) = N_Subprogram_Body
then
3695 ("cannot inline & (nested subprogram)?", D
, Subp
);
3698 elsif Nkind
(D
) = N_Function_Instantiation
3699 and then not Is_Unchecked_Conversion
(D
)
3702 ("cannot inline & (nested function instantiation)?", D
, Subp
);
3705 elsif Nkind
(D
) = N_Procedure_Instantiation
then
3707 ("cannot inline & (nested procedure instantiation)?", D
, Subp
);
3710 -- Subtype declarations with predicates will generate predicate
3711 -- functions, i.e. nested subprogram bodies, so inlining is not
3714 elsif Nkind
(D
) = N_Subtype_Declaration
3715 and then Present
(Aspect_Specifications
(D
))
3722 A
:= First
(Aspect_Specifications
(D
));
3723 while Present
(A
) loop
3724 A_Id
:= Get_Aspect_Id
(Chars
(Identifier
(A
)));
3726 if A_Id
= Aspect_Predicate
3727 or else A_Id
= Aspect_Static_Predicate
3728 or else A_Id
= Aspect_Dynamic_Predicate
3731 ("cannot inline & (subtype declaration with "
3732 & "predicate)?", D
, Subp
);
3745 end Has_Excluded_Declaration
;
3747 ----------------------------
3748 -- Has_Excluded_Statement --
3749 ----------------------------
3751 function Has_Excluded_Statement
3753 Stats
: List_Id
) return Boolean
3759 -- No action needed if the check is not needed
3761 if not Check_Inlining_Restrictions
then
3766 while Present
(S
) loop
3767 if Nkind_In
(S
, N_Abort_Statement
,
3768 N_Asynchronous_Select
,
3769 N_Conditional_Entry_Call
,
3770 N_Delay_Relative_Statement
,
3771 N_Delay_Until_Statement
,
3776 ("cannot inline & (non-allowed statement)?", S
, Subp
);
3779 elsif Nkind
(S
) = N_Block_Statement
then
3780 if Present
(Declarations
(S
))
3781 and then Has_Excluded_Declaration
(Subp
, Declarations
(S
))
3785 elsif Present
(Handled_Statement_Sequence
(S
)) then
3786 if not Back_End_Inlining
3789 (Exception_Handlers
(Handled_Statement_Sequence
(S
)))
3792 ("cannot inline& (exception handler)?",
3793 First
(Exception_Handlers
3794 (Handled_Statement_Sequence
(S
))),
3798 elsif Has_Excluded_Statement
3799 (Subp
, Statements
(Handled_Statement_Sequence
(S
)))
3805 elsif Nkind
(S
) = N_Case_Statement
then
3806 E
:= First
(Alternatives
(S
));
3807 while Present
(E
) loop
3808 if Has_Excluded_Statement
(Subp
, Statements
(E
)) then
3815 elsif Nkind
(S
) = N_If_Statement
then
3816 if Has_Excluded_Statement
(Subp
, Then_Statements
(S
)) then
3820 if Present
(Elsif_Parts
(S
)) then
3821 E
:= First
(Elsif_Parts
(S
));
3822 while Present
(E
) loop
3823 if Has_Excluded_Statement
(Subp
, Then_Statements
(E
)) then
3831 if Present
(Else_Statements
(S
))
3832 and then Has_Excluded_Statement
(Subp
, Else_Statements
(S
))
3837 elsif Nkind
(S
) = N_Loop_Statement
3838 and then Has_Excluded_Statement
(Subp
, Statements
(S
))
3842 elsif Nkind
(S
) = N_Extended_Return_Statement
then
3843 if Present
(Handled_Statement_Sequence
(S
))
3845 Has_Excluded_Statement
3846 (Subp
, Statements
(Handled_Statement_Sequence
(S
)))
3850 elsif not Back_End_Inlining
3851 and then Present
(Handled_Statement_Sequence
(S
))
3853 Present
(Exception_Handlers
3854 (Handled_Statement_Sequence
(S
)))
3857 ("cannot inline& (exception handler)?",
3858 First
(Exception_Handlers
(Handled_Statement_Sequence
(S
))),
3868 end Has_Excluded_Statement
;
3870 --------------------------
3871 -- Has_Initialized_Type --
3872 --------------------------
3874 function Has_Initialized_Type
(E
: Entity_Id
) return Boolean is
3875 E_Body
: constant Node_Id
:= Subprogram_Body
(E
);
3879 if No
(E_Body
) then -- imported subprogram
3883 Decl
:= First
(Declarations
(E_Body
));
3884 while Present
(Decl
) loop
3885 if Nkind
(Decl
) = N_Full_Type_Declaration
3886 and then Present
(Init_Proc
(Defining_Identifier
(Decl
)))
3896 end Has_Initialized_Type
;
3898 -----------------------
3899 -- Has_Single_Return --
3900 -----------------------
3902 function Has_Single_Return
(N
: Node_Id
) return Boolean is
3903 Return_Statement
: Node_Id
:= Empty
;
3905 function Check_Return
(N
: Node_Id
) return Traverse_Result
;
3911 function Check_Return
(N
: Node_Id
) return Traverse_Result
is
3913 if Nkind
(N
) = N_Simple_Return_Statement
then
3914 if Present
(Expression
(N
))
3915 and then Is_Entity_Name
(Expression
(N
))
3917 pragma Assert
(Present
(Entity
(Expression
(N
))));
3919 if No
(Return_Statement
) then
3920 Return_Statement
:= N
;
3925 (Present
(Entity
(Expression
(Return_Statement
))));
3927 if Entity
(Expression
(N
)) =
3928 Entity
(Expression
(Return_Statement
))
3936 -- A return statement within an extended return is a noop after
3939 elsif No
(Expression
(N
))
3940 and then Nkind
(Parent
(Parent
(N
))) =
3941 N_Extended_Return_Statement
3946 -- Expression has wrong form
3951 -- We can only inline a build-in-place function if it has a single
3954 elsif Nkind
(N
) = N_Extended_Return_Statement
then
3955 if No
(Return_Statement
) then
3956 Return_Statement
:= N
;
3968 function Check_All_Returns
is new Traverse_Func
(Check_Return
);
3970 -- Start of processing for Has_Single_Return
3973 if Check_All_Returns
(N
) /= OK
then
3976 elsif Nkind
(Return_Statement
) = N_Extended_Return_Statement
then
3981 Present
(Declarations
(N
))
3982 and then Present
(First
(Declarations
(N
)))
3983 and then Entity
(Expression
(Return_Statement
)) =
3984 Defining_Identifier
(First
(Declarations
(N
)));
3986 end Has_Single_Return
;
3988 -----------------------------
3989 -- In_Main_Unit_Or_Subunit --
3990 -----------------------------
3992 function In_Main_Unit_Or_Subunit
(E
: Entity_Id
) return Boolean is
3993 Comp
: Node_Id
:= Cunit
(Get_Code_Unit
(E
));
3996 -- Check whether the subprogram or package to inline is within the main
3997 -- unit or its spec or within a subunit. In either case there are no
3998 -- additional bodies to process. If the subprogram appears in a parent
3999 -- of the current unit, the check on whether inlining is possible is
4000 -- done in Analyze_Inlined_Bodies.
4002 while Nkind
(Unit
(Comp
)) = N_Subunit
loop
4003 Comp
:= Library_Unit
(Comp
);
4006 return Comp
= Cunit
(Main_Unit
)
4007 or else Comp
= Library_Unit
(Cunit
(Main_Unit
));
4008 end In_Main_Unit_Or_Subunit
;
4014 procedure Initialize
is
4016 Pending_Descriptor
.Init
;
4017 Pending_Instantiations
.Init
;
4018 Inlined_Bodies
.Init
;
4022 for J
in Hash_Headers
'Range loop
4023 Hash_Headers
(J
) := No_Subp
;
4026 Inlined_Calls
:= No_Elist
;
4027 Backend_Calls
:= No_Elist
;
4028 Backend_Inlined_Subps
:= No_Elist
;
4029 Backend_Not_Inlined_Subps
:= No_Elist
;
4032 ------------------------
4033 -- Instantiate_Bodies --
4034 ------------------------
4036 -- Generic bodies contain all the non-local references, so an
4037 -- instantiation does not need any more context than Standard
4038 -- itself, even if the instantiation appears in an inner scope.
4039 -- Generic associations have verified that the contract model is
4040 -- satisfied, so that any error that may occur in the analysis of
4041 -- the body is an internal error.
4043 procedure Instantiate_Bodies
is
4045 Info
: Pending_Body_Info
;
4048 if Serious_Errors_Detected
= 0 then
4049 Expander_Active
:= (Operating_Mode
= Opt
.Generate_Code
);
4050 Push_Scope
(Standard_Standard
);
4051 To_Clean
:= New_Elmt_List
;
4053 if Is_Generic_Unit
(Cunit_Entity
(Main_Unit
)) then
4057 -- A body instantiation may generate additional instantiations, so
4058 -- the following loop must scan to the end of a possibly expanding
4059 -- set (that's why we can't simply use a FOR loop here).
4062 while J
<= Pending_Instantiations
.Last
4063 and then Serious_Errors_Detected
= 0
4065 Info
:= Pending_Instantiations
.Table
(J
);
4067 -- If the instantiation node is absent, it has been removed
4068 -- as part of unreachable code.
4070 if No
(Info
.Inst_Node
) then
4073 elsif Nkind
(Info
.Act_Decl
) = N_Package_Declaration
then
4074 Instantiate_Package_Body
(Info
);
4075 Add_Scope_To_Clean
(Defining_Entity
(Info
.Act_Decl
));
4078 Instantiate_Subprogram_Body
(Info
);
4084 -- Reset the table of instantiations. Additional instantiations
4085 -- may be added through inlining, when additional bodies are
4088 Pending_Instantiations
.Init
;
4090 -- We can now complete the cleanup actions of scopes that contain
4091 -- pending instantiations (skipped for generic units, since we
4092 -- never need any cleanups in generic units).
4095 and then not Is_Generic_Unit
(Main_Unit_Entity
)
4098 elsif Is_Generic_Unit
(Cunit_Entity
(Main_Unit
)) then
4104 end Instantiate_Bodies
;
4110 function Is_Nested
(E
: Entity_Id
) return Boolean is
4115 while Scop
/= Standard_Standard
loop
4116 if Ekind
(Scop
) in Subprogram_Kind
then
4119 elsif Ekind
(Scop
) = E_Task_Type
4120 or else Ekind
(Scop
) = E_Entry
4121 or else Ekind
(Scop
) = E_Entry_Family
4126 Scop
:= Scope
(Scop
);
4132 ------------------------
4133 -- List_Inlining_Info --
4134 ------------------------
4136 procedure List_Inlining_Info
is
4142 if not Debug_Flag_Dot_J
then
4146 -- Generate listing of calls inlined by the frontend
4148 if Present
(Inlined_Calls
) then
4150 Elmt
:= First_Elmt
(Inlined_Calls
);
4151 while Present
(Elmt
) loop
4154 if In_Extended_Main_Code_Unit
(Nod
) then
4158 Write_Str
("List of calls inlined by the frontend");
4165 Write_Location
(Sloc
(Nod
));
4174 -- Generate listing of calls passed to the backend
4176 if Present
(Backend_Calls
) then
4179 Elmt
:= First_Elmt
(Backend_Calls
);
4180 while Present
(Elmt
) loop
4183 if In_Extended_Main_Code_Unit
(Nod
) then
4187 Write_Str
("List of inlined calls passed to the backend");
4194 Write_Location
(Sloc
(Nod
));
4202 -- Generate listing of subprograms passed to the backend
4204 if Present
(Backend_Inlined_Subps
) and then Back_End_Inlining
then
4207 Elmt
:= First_Elmt
(Backend_Inlined_Subps
);
4208 while Present
(Elmt
) loop
4215 ("List of inlined subprograms passed to the backend");
4222 Write_Name
(Chars
(Nod
));
4224 Write_Location
(Sloc
(Nod
));
4232 -- Generate listing of subprograms that cannot be inlined by the backend
4234 if Present
(Backend_Not_Inlined_Subps
) and then Back_End_Inlining
then
4237 Elmt
:= First_Elmt
(Backend_Not_Inlined_Subps
);
4238 while Present
(Elmt
) loop
4245 ("List of subprograms that cannot be inlined by the backend");
4252 Write_Name
(Chars
(Nod
));
4254 Write_Location
(Sloc
(Nod
));
4261 end List_Inlining_Info
;
4269 Pending_Instantiations
.Release
;
4270 Pending_Instantiations
.Locked
:= True;
4271 Inlined_Bodies
.Release
;
4272 Inlined_Bodies
.Locked
:= True;
4274 Successors
.Locked
:= True;
4276 Inlined
.Locked
:= True;
4279 --------------------------------
4280 -- Remove_Aspects_And_Pragmas --
4281 --------------------------------
4283 procedure Remove_Aspects_And_Pragmas
(Body_Decl
: Node_Id
) is
4284 procedure Remove_Items
(List
: List_Id
);
4285 -- Remove all useless aspects/pragmas from a particular list
4291 procedure Remove_Items
(List
: List_Id
) is
4294 Next_Item
: Node_Id
;
4297 -- Traverse the list looking for an aspect specification or a pragma
4299 Item
:= First
(List
);
4300 while Present
(Item
) loop
4301 Next_Item
:= Next
(Item
);
4303 if Nkind
(Item
) = N_Aspect_Specification
then
4304 Item_Id
:= Identifier
(Item
);
4305 elsif Nkind
(Item
) = N_Pragma
then
4306 Item_Id
:= Pragma_Identifier
(Item
);
4311 if Present
(Item_Id
)
4312 and then Nam_In
(Chars
(Item_Id
), Name_Contract_Cases
,
4317 Name_Refined_Global
,
4318 Name_Refined_Depends
,
4332 -- Start of processing for Remove_Aspects_And_Pragmas
4335 Remove_Items
(Aspect_Specifications
(Body_Decl
));
4336 Remove_Items
(Declarations
(Body_Decl
));
4338 -- Pragmas Unmodified, Unreferenced, and Unused may additionally appear
4339 -- in the body of the subprogram.
4341 Remove_Items
(Statements
(Handled_Statement_Sequence
(Body_Decl
)));
4342 end Remove_Aspects_And_Pragmas
;
4344 --------------------------
4345 -- Remove_Dead_Instance --
4346 --------------------------
4348 procedure Remove_Dead_Instance
(N
: Node_Id
) is
4353 while J
<= Pending_Instantiations
.Last
loop
4354 if Pending_Instantiations
.Table
(J
).Inst_Node
= N
then
4355 Pending_Instantiations
.Table
(J
).Inst_Node
:= Empty
;
4361 end Remove_Dead_Instance
;