Add missing include for std::__addressof
[official-gcc.git] / gcc / var-tracking.c
blob5e59f828199e551d9ea040282cd88a81b33e871a
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "backend.h"
92 #include "target.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "cfghooks.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "tm_p.h"
99 #include "insn-config.h"
100 #include "regs.h"
101 #include "emit-rtl.h"
102 #include "recog.h"
103 #include "diagnostic.h"
104 #include "varasm.h"
105 #include "stor-layout.h"
106 #include "cfgrtl.h"
107 #include "cfganal.h"
108 #include "reload.h"
109 #include "calls.h"
110 #include "tree-dfa.h"
111 #include "tree-ssa.h"
112 #include "cselib.h"
113 #include "params.h"
114 #include "tree-pretty-print.h"
115 #include "rtl-iter.h"
116 #include "fibonacci_heap.h"
118 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
119 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
121 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
122 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
123 Currently the value is the same as IDENTIFIER_NODE, which has such
124 a property. If this compile time assertion ever fails, make sure that
125 the new tree code that equals (int) VALUE has the same property. */
126 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
128 /* Type of micro operation. */
129 enum micro_operation_type
131 MO_USE, /* Use location (REG or MEM). */
132 MO_USE_NO_VAR,/* Use location which is not associated with a variable
133 or the variable is not trackable. */
134 MO_VAL_USE, /* Use location which is associated with a value. */
135 MO_VAL_LOC, /* Use location which appears in a debug insn. */
136 MO_VAL_SET, /* Set location associated with a value. */
137 MO_SET, /* Set location. */
138 MO_COPY, /* Copy the same portion of a variable from one
139 location to another. */
140 MO_CLOBBER, /* Clobber location. */
141 MO_CALL, /* Call insn. */
142 MO_ADJUST /* Adjust stack pointer. */
146 static const char * const ATTRIBUTE_UNUSED
147 micro_operation_type_name[] = {
148 "MO_USE",
149 "MO_USE_NO_VAR",
150 "MO_VAL_USE",
151 "MO_VAL_LOC",
152 "MO_VAL_SET",
153 "MO_SET",
154 "MO_COPY",
155 "MO_CLOBBER",
156 "MO_CALL",
157 "MO_ADJUST"
160 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
161 Notes emitted as AFTER_CALL are to take effect during the call,
162 rather than after the call. */
163 enum emit_note_where
165 EMIT_NOTE_BEFORE_INSN,
166 EMIT_NOTE_AFTER_INSN,
167 EMIT_NOTE_AFTER_CALL_INSN
170 /* Structure holding information about micro operation. */
171 struct micro_operation
173 /* Type of micro operation. */
174 enum micro_operation_type type;
176 /* The instruction which the micro operation is in, for MO_USE,
177 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
178 instruction or note in the original flow (before any var-tracking
179 notes are inserted, to simplify emission of notes), for MO_SET
180 and MO_CLOBBER. */
181 rtx_insn *insn;
183 union {
184 /* Location. For MO_SET and MO_COPY, this is the SET that
185 performs the assignment, if known, otherwise it is the target
186 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
187 CONCAT of the VALUE and the LOC associated with it. For
188 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
189 associated with it. */
190 rtx loc;
192 /* Stack adjustment. */
193 HOST_WIDE_INT adjust;
194 } u;
198 /* A declaration of a variable, or an RTL value being handled like a
199 declaration. */
200 typedef void *decl_or_value;
202 /* Return true if a decl_or_value DV is a DECL or NULL. */
203 static inline bool
204 dv_is_decl_p (decl_or_value dv)
206 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
209 /* Return true if a decl_or_value is a VALUE rtl. */
210 static inline bool
211 dv_is_value_p (decl_or_value dv)
213 return dv && !dv_is_decl_p (dv);
216 /* Return the decl in the decl_or_value. */
217 static inline tree
218 dv_as_decl (decl_or_value dv)
220 gcc_checking_assert (dv_is_decl_p (dv));
221 return (tree) dv;
224 /* Return the value in the decl_or_value. */
225 static inline rtx
226 dv_as_value (decl_or_value dv)
228 gcc_checking_assert (dv_is_value_p (dv));
229 return (rtx)dv;
232 /* Return the opaque pointer in the decl_or_value. */
233 static inline void *
234 dv_as_opaque (decl_or_value dv)
236 return dv;
240 /* Description of location of a part of a variable. The content of a physical
241 register is described by a chain of these structures.
242 The chains are pretty short (usually 1 or 2 elements) and thus
243 chain is the best data structure. */
244 struct attrs
246 /* Pointer to next member of the list. */
247 attrs *next;
249 /* The rtx of register. */
250 rtx loc;
252 /* The declaration corresponding to LOC. */
253 decl_or_value dv;
255 /* Offset from start of DECL. */
256 HOST_WIDE_INT offset;
259 /* Structure for chaining the locations. */
260 struct location_chain
262 /* Next element in the chain. */
263 location_chain *next;
265 /* The location (REG, MEM or VALUE). */
266 rtx loc;
268 /* The "value" stored in this location. */
269 rtx set_src;
271 /* Initialized? */
272 enum var_init_status init;
275 /* A vector of loc_exp_dep holds the active dependencies of a one-part
276 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
277 location of DV. Each entry is also part of VALUE' s linked-list of
278 backlinks back to DV. */
279 struct loc_exp_dep
281 /* The dependent DV. */
282 decl_or_value dv;
283 /* The dependency VALUE or DECL_DEBUG. */
284 rtx value;
285 /* The next entry in VALUE's backlinks list. */
286 struct loc_exp_dep *next;
287 /* A pointer to the pointer to this entry (head or prev's next) in
288 the doubly-linked list. */
289 struct loc_exp_dep **pprev;
293 /* This data structure holds information about the depth of a variable
294 expansion. */
295 struct expand_depth
297 /* This measures the complexity of the expanded expression. It
298 grows by one for each level of expansion that adds more than one
299 operand. */
300 int complexity;
301 /* This counts the number of ENTRY_VALUE expressions in an
302 expansion. We want to minimize their use. */
303 int entryvals;
306 /* This data structure is allocated for one-part variables at the time
307 of emitting notes. */
308 struct onepart_aux
310 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
311 computation used the expansion of this variable, and that ought
312 to be notified should this variable change. If the DV's cur_loc
313 expanded to NULL, all components of the loc list are regarded as
314 active, so that any changes in them give us a chance to get a
315 location. Otherwise, only components of the loc that expanded to
316 non-NULL are regarded as active dependencies. */
317 loc_exp_dep *backlinks;
318 /* This holds the LOC that was expanded into cur_loc. We need only
319 mark a one-part variable as changed if the FROM loc is removed,
320 or if it has no known location and a loc is added, or if it gets
321 a change notification from any of its active dependencies. */
322 rtx from;
323 /* The depth of the cur_loc expression. */
324 expand_depth depth;
325 /* Dependencies actively used when expand FROM into cur_loc. */
326 vec<loc_exp_dep, va_heap, vl_embed> deps;
329 /* Structure describing one part of variable. */
330 struct variable_part
332 /* Chain of locations of the part. */
333 location_chain *loc_chain;
335 /* Location which was last emitted to location list. */
336 rtx cur_loc;
338 union variable_aux
340 /* The offset in the variable, if !var->onepart. */
341 HOST_WIDE_INT offset;
343 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
344 struct onepart_aux *onepaux;
345 } aux;
348 /* Maximum number of location parts. */
349 #define MAX_VAR_PARTS 16
351 /* Enumeration type used to discriminate various types of one-part
352 variables. */
353 enum onepart_enum
355 /* Not a one-part variable. */
356 NOT_ONEPART = 0,
357 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
358 ONEPART_VDECL = 1,
359 /* A DEBUG_EXPR_DECL. */
360 ONEPART_DEXPR = 2,
361 /* A VALUE. */
362 ONEPART_VALUE = 3
365 /* Structure describing where the variable is located. */
366 struct variable
368 /* The declaration of the variable, or an RTL value being handled
369 like a declaration. */
370 decl_or_value dv;
372 /* Reference count. */
373 int refcount;
375 /* Number of variable parts. */
376 char n_var_parts;
378 /* What type of DV this is, according to enum onepart_enum. */
379 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
381 /* True if this variable_def struct is currently in the
382 changed_variables hash table. */
383 bool in_changed_variables;
385 /* The variable parts. */
386 variable_part var_part[1];
389 /* Pointer to the BB's information specific to variable tracking pass. */
390 #define VTI(BB) ((variable_tracking_info *) (BB)->aux)
392 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
393 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
395 #if CHECKING_P && (GCC_VERSION >= 2007)
397 /* Access VAR's Ith part's offset, checking that it's not a one-part
398 variable. */
399 #define VAR_PART_OFFSET(var, i) __extension__ \
400 (*({ variable *const __v = (var); \
401 gcc_checking_assert (!__v->onepart); \
402 &__v->var_part[(i)].aux.offset; }))
404 /* Access VAR's one-part auxiliary data, checking that it is a
405 one-part variable. */
406 #define VAR_LOC_1PAUX(var) __extension__ \
407 (*({ variable *const __v = (var); \
408 gcc_checking_assert (__v->onepart); \
409 &__v->var_part[0].aux.onepaux; }))
411 #else
412 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
413 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
414 #endif
416 /* These are accessor macros for the one-part auxiliary data. When
417 convenient for users, they're guarded by tests that the data was
418 allocated. */
419 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
420 ? VAR_LOC_1PAUX (var)->backlinks \
421 : NULL)
422 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
423 ? &VAR_LOC_1PAUX (var)->backlinks \
424 : NULL)
425 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
426 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
427 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
428 ? &VAR_LOC_1PAUX (var)->deps \
429 : NULL)
433 typedef unsigned int dvuid;
435 /* Return the uid of DV. */
437 static inline dvuid
438 dv_uid (decl_or_value dv)
440 if (dv_is_value_p (dv))
441 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
442 else
443 return DECL_UID (dv_as_decl (dv));
446 /* Compute the hash from the uid. */
448 static inline hashval_t
449 dv_uid2hash (dvuid uid)
451 return uid;
454 /* The hash function for a mask table in a shared_htab chain. */
456 static inline hashval_t
457 dv_htab_hash (decl_or_value dv)
459 return dv_uid2hash (dv_uid (dv));
462 static void variable_htab_free (void *);
464 /* Variable hashtable helpers. */
466 struct variable_hasher : pointer_hash <variable>
468 typedef void *compare_type;
469 static inline hashval_t hash (const variable *);
470 static inline bool equal (const variable *, const void *);
471 static inline void remove (variable *);
474 /* The hash function for variable_htab, computes the hash value
475 from the declaration of variable X. */
477 inline hashval_t
478 variable_hasher::hash (const variable *v)
480 return dv_htab_hash (v->dv);
483 /* Compare the declaration of variable X with declaration Y. */
485 inline bool
486 variable_hasher::equal (const variable *v, const void *y)
488 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
490 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
493 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
495 inline void
496 variable_hasher::remove (variable *var)
498 variable_htab_free (var);
501 typedef hash_table<variable_hasher> variable_table_type;
502 typedef variable_table_type::iterator variable_iterator_type;
504 /* Structure for passing some other parameters to function
505 emit_note_insn_var_location. */
506 struct emit_note_data
508 /* The instruction which the note will be emitted before/after. */
509 rtx_insn *insn;
511 /* Where the note will be emitted (before/after insn)? */
512 enum emit_note_where where;
514 /* The variables and values active at this point. */
515 variable_table_type *vars;
518 /* Structure holding a refcounted hash table. If refcount > 1,
519 it must be first unshared before modified. */
520 struct shared_hash
522 /* Reference count. */
523 int refcount;
525 /* Actual hash table. */
526 variable_table_type *htab;
529 /* Structure holding the IN or OUT set for a basic block. */
530 struct dataflow_set
532 /* Adjustment of stack offset. */
533 HOST_WIDE_INT stack_adjust;
535 /* Attributes for registers (lists of attrs). */
536 attrs *regs[FIRST_PSEUDO_REGISTER];
538 /* Variable locations. */
539 shared_hash *vars;
541 /* Vars that is being traversed. */
542 shared_hash *traversed_vars;
545 /* The structure (one for each basic block) containing the information
546 needed for variable tracking. */
547 struct variable_tracking_info
549 /* The vector of micro operations. */
550 vec<micro_operation> mos;
552 /* The IN and OUT set for dataflow analysis. */
553 dataflow_set in;
554 dataflow_set out;
556 /* The permanent-in dataflow set for this block. This is used to
557 hold values for which we had to compute entry values. ??? This
558 should probably be dynamically allocated, to avoid using more
559 memory in non-debug builds. */
560 dataflow_set *permp;
562 /* Has the block been visited in DFS? */
563 bool visited;
565 /* Has the block been flooded in VTA? */
566 bool flooded;
570 /* Alloc pool for struct attrs_def. */
571 object_allocator<attrs> attrs_pool ("attrs pool");
573 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
575 static pool_allocator var_pool
576 ("variable_def pool", sizeof (variable) +
577 (MAX_VAR_PARTS - 1) * sizeof (((variable *)NULL)->var_part[0]));
579 /* Alloc pool for struct variable_def with a single var_part entry. */
580 static pool_allocator valvar_pool
581 ("small variable_def pool", sizeof (variable));
583 /* Alloc pool for struct location_chain. */
584 static object_allocator<location_chain> location_chain_pool
585 ("location_chain pool");
587 /* Alloc pool for struct shared_hash. */
588 static object_allocator<shared_hash> shared_hash_pool ("shared_hash pool");
590 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
591 object_allocator<loc_exp_dep> loc_exp_dep_pool ("loc_exp_dep pool");
593 /* Changed variables, notes will be emitted for them. */
594 static variable_table_type *changed_variables;
596 /* Shall notes be emitted? */
597 static bool emit_notes;
599 /* Values whose dynamic location lists have gone empty, but whose
600 cselib location lists are still usable. Use this to hold the
601 current location, the backlinks, etc, during emit_notes. */
602 static variable_table_type *dropped_values;
604 /* Empty shared hashtable. */
605 static shared_hash *empty_shared_hash;
607 /* Scratch register bitmap used by cselib_expand_value_rtx. */
608 static bitmap scratch_regs = NULL;
610 #ifdef HAVE_window_save
611 struct GTY(()) parm_reg {
612 rtx outgoing;
613 rtx incoming;
617 /* Vector of windowed parameter registers, if any. */
618 static vec<parm_reg, va_gc> *windowed_parm_regs = NULL;
619 #endif
621 /* Variable used to tell whether cselib_process_insn called our hook. */
622 static bool cselib_hook_called;
624 /* Local function prototypes. */
625 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
626 HOST_WIDE_INT *);
627 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
628 HOST_WIDE_INT *);
629 static bool vt_stack_adjustments (void);
631 static void init_attrs_list_set (attrs **);
632 static void attrs_list_clear (attrs **);
633 static attrs *attrs_list_member (attrs *, decl_or_value, HOST_WIDE_INT);
634 static void attrs_list_insert (attrs **, decl_or_value, HOST_WIDE_INT, rtx);
635 static void attrs_list_copy (attrs **, attrs *);
636 static void attrs_list_union (attrs **, attrs *);
638 static variable **unshare_variable (dataflow_set *set, variable **slot,
639 variable *var, enum var_init_status);
640 static void vars_copy (variable_table_type *, variable_table_type *);
641 static tree var_debug_decl (tree);
642 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
643 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
644 enum var_init_status, rtx);
645 static void var_reg_delete (dataflow_set *, rtx, bool);
646 static void var_regno_delete (dataflow_set *, int);
647 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
648 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
649 enum var_init_status, rtx);
650 static void var_mem_delete (dataflow_set *, rtx, bool);
652 static void dataflow_set_init (dataflow_set *);
653 static void dataflow_set_clear (dataflow_set *);
654 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
655 static int variable_union_info_cmp_pos (const void *, const void *);
656 static void dataflow_set_union (dataflow_set *, dataflow_set *);
657 static location_chain *find_loc_in_1pdv (rtx, variable *,
658 variable_table_type *);
659 static bool canon_value_cmp (rtx, rtx);
660 static int loc_cmp (rtx, rtx);
661 static bool variable_part_different_p (variable_part *, variable_part *);
662 static bool onepart_variable_different_p (variable *, variable *);
663 static bool variable_different_p (variable *, variable *);
664 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
665 static void dataflow_set_destroy (dataflow_set *);
667 static bool track_expr_p (tree, bool);
668 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
669 static void add_uses_1 (rtx *, void *);
670 static void add_stores (rtx, const_rtx, void *);
671 static bool compute_bb_dataflow (basic_block);
672 static bool vt_find_locations (void);
674 static void dump_attrs_list (attrs *);
675 static void dump_var (variable *);
676 static void dump_vars (variable_table_type *);
677 static void dump_dataflow_set (dataflow_set *);
678 static void dump_dataflow_sets (void);
680 static void set_dv_changed (decl_or_value, bool);
681 static void variable_was_changed (variable *, dataflow_set *);
682 static variable **set_slot_part (dataflow_set *, rtx, variable **,
683 decl_or_value, HOST_WIDE_INT,
684 enum var_init_status, rtx);
685 static void set_variable_part (dataflow_set *, rtx,
686 decl_or_value, HOST_WIDE_INT,
687 enum var_init_status, rtx, enum insert_option);
688 static variable **clobber_slot_part (dataflow_set *, rtx,
689 variable **, HOST_WIDE_INT, rtx);
690 static void clobber_variable_part (dataflow_set *, rtx,
691 decl_or_value, HOST_WIDE_INT, rtx);
692 static variable **delete_slot_part (dataflow_set *, rtx, variable **,
693 HOST_WIDE_INT);
694 static void delete_variable_part (dataflow_set *, rtx,
695 decl_or_value, HOST_WIDE_INT);
696 static void emit_notes_in_bb (basic_block, dataflow_set *);
697 static void vt_emit_notes (void);
699 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
700 static void vt_add_function_parameters (void);
701 static bool vt_initialize (void);
702 static void vt_finalize (void);
704 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
706 static int
707 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
708 void *arg)
710 if (dest != stack_pointer_rtx)
711 return 0;
713 switch (GET_CODE (op))
715 case PRE_INC:
716 case PRE_DEC:
717 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
718 return 0;
719 case POST_INC:
720 case POST_DEC:
721 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
722 return 0;
723 case PRE_MODIFY:
724 case POST_MODIFY:
725 /* We handle only adjustments by constant amount. */
726 gcc_assert (GET_CODE (src) == PLUS
727 && CONST_INT_P (XEXP (src, 1))
728 && XEXP (src, 0) == stack_pointer_rtx);
729 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
730 -= INTVAL (XEXP (src, 1));
731 return 0;
732 default:
733 gcc_unreachable ();
737 /* Given a SET, calculate the amount of stack adjustment it contains
738 PRE- and POST-modifying stack pointer.
739 This function is similar to stack_adjust_offset. */
741 static void
742 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
743 HOST_WIDE_INT *post)
745 rtx src = SET_SRC (pattern);
746 rtx dest = SET_DEST (pattern);
747 enum rtx_code code;
749 if (dest == stack_pointer_rtx)
751 /* (set (reg sp) (plus (reg sp) (const_int))) */
752 code = GET_CODE (src);
753 if (! (code == PLUS || code == MINUS)
754 || XEXP (src, 0) != stack_pointer_rtx
755 || !CONST_INT_P (XEXP (src, 1)))
756 return;
758 if (code == MINUS)
759 *post += INTVAL (XEXP (src, 1));
760 else
761 *post -= INTVAL (XEXP (src, 1));
762 return;
764 HOST_WIDE_INT res[2] = { 0, 0 };
765 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
766 *pre += res[0];
767 *post += res[1];
770 /* Given an INSN, calculate the amount of stack adjustment it contains
771 PRE- and POST-modifying stack pointer. */
773 static void
774 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
775 HOST_WIDE_INT *post)
777 rtx pattern;
779 *pre = 0;
780 *post = 0;
782 pattern = PATTERN (insn);
783 if (RTX_FRAME_RELATED_P (insn))
785 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
786 if (expr)
787 pattern = XEXP (expr, 0);
790 if (GET_CODE (pattern) == SET)
791 stack_adjust_offset_pre_post (pattern, pre, post);
792 else if (GET_CODE (pattern) == PARALLEL
793 || GET_CODE (pattern) == SEQUENCE)
795 int i;
797 /* There may be stack adjustments inside compound insns. Search
798 for them. */
799 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
800 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
801 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
805 /* Compute stack adjustments for all blocks by traversing DFS tree.
806 Return true when the adjustments on all incoming edges are consistent.
807 Heavily borrowed from pre_and_rev_post_order_compute. */
809 static bool
810 vt_stack_adjustments (void)
812 edge_iterator *stack;
813 int sp;
815 /* Initialize entry block. */
816 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
817 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
818 = INCOMING_FRAME_SP_OFFSET;
819 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
820 = INCOMING_FRAME_SP_OFFSET;
822 /* Allocate stack for back-tracking up CFG. */
823 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
824 sp = 0;
826 /* Push the first edge on to the stack. */
827 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
829 while (sp)
831 edge_iterator ei;
832 basic_block src;
833 basic_block dest;
835 /* Look at the edge on the top of the stack. */
836 ei = stack[sp - 1];
837 src = ei_edge (ei)->src;
838 dest = ei_edge (ei)->dest;
840 /* Check if the edge destination has been visited yet. */
841 if (!VTI (dest)->visited)
843 rtx_insn *insn;
844 HOST_WIDE_INT pre, post, offset;
845 VTI (dest)->visited = true;
846 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
848 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
849 for (insn = BB_HEAD (dest);
850 insn != NEXT_INSN (BB_END (dest));
851 insn = NEXT_INSN (insn))
852 if (INSN_P (insn))
854 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
855 offset += pre + post;
858 VTI (dest)->out.stack_adjust = offset;
860 if (EDGE_COUNT (dest->succs) > 0)
861 /* Since the DEST node has been visited for the first
862 time, check its successors. */
863 stack[sp++] = ei_start (dest->succs);
865 else
867 /* We can end up with different stack adjustments for the exit block
868 of a shrink-wrapped function if stack_adjust_offset_pre_post
869 doesn't understand the rtx pattern used to restore the stack
870 pointer in the epilogue. For example, on s390(x), the stack
871 pointer is often restored via a load-multiple instruction
872 and so no stack_adjust offset is recorded for it. This means
873 that the stack offset at the end of the epilogue block is the
874 the same as the offset before the epilogue, whereas other paths
875 to the exit block will have the correct stack_adjust.
877 It is safe to ignore these differences because (a) we never
878 use the stack_adjust for the exit block in this pass and
879 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
880 function are correct.
882 We must check whether the adjustments on other edges are
883 the same though. */
884 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
885 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
887 free (stack);
888 return false;
891 if (! ei_one_before_end_p (ei))
892 /* Go to the next edge. */
893 ei_next (&stack[sp - 1]);
894 else
895 /* Return to previous level if there are no more edges. */
896 sp--;
900 free (stack);
901 return true;
904 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
905 hard_frame_pointer_rtx is being mapped to it and offset for it. */
906 static rtx cfa_base_rtx;
907 static HOST_WIDE_INT cfa_base_offset;
909 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
910 or hard_frame_pointer_rtx. */
912 static inline rtx
913 compute_cfa_pointer (HOST_WIDE_INT adjustment)
915 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
918 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
919 or -1 if the replacement shouldn't be done. */
920 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
922 /* Data for adjust_mems callback. */
924 struct adjust_mem_data
926 bool store;
927 machine_mode mem_mode;
928 HOST_WIDE_INT stack_adjust;
929 rtx_expr_list *side_effects;
932 /* Helper for adjust_mems. Return true if X is suitable for
933 transformation of wider mode arithmetics to narrower mode. */
935 static bool
936 use_narrower_mode_test (rtx x, const_rtx subreg)
938 subrtx_var_iterator::array_type array;
939 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
941 rtx x = *iter;
942 if (CONSTANT_P (x))
943 iter.skip_subrtxes ();
944 else
945 switch (GET_CODE (x))
947 case REG:
948 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
949 return false;
950 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
951 subreg_lowpart_offset (GET_MODE (subreg),
952 GET_MODE (x))))
953 return false;
954 break;
955 case PLUS:
956 case MINUS:
957 case MULT:
958 break;
959 case ASHIFT:
960 iter.substitute (XEXP (x, 0));
961 break;
962 default:
963 return false;
966 return true;
969 /* Transform X into narrower mode MODE from wider mode WMODE. */
971 static rtx
972 use_narrower_mode (rtx x, machine_mode mode, machine_mode wmode)
974 rtx op0, op1;
975 if (CONSTANT_P (x))
976 return lowpart_subreg (mode, x, wmode);
977 switch (GET_CODE (x))
979 case REG:
980 return lowpart_subreg (mode, x, wmode);
981 case PLUS:
982 case MINUS:
983 case MULT:
984 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
985 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
986 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
987 case ASHIFT:
988 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
989 op1 = XEXP (x, 1);
990 /* Ensure shift amount is not wider than mode. */
991 if (GET_MODE (op1) == VOIDmode)
992 op1 = lowpart_subreg (mode, op1, wmode);
993 else if (GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (op1)))
994 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
995 return simplify_gen_binary (ASHIFT, mode, op0, op1);
996 default:
997 gcc_unreachable ();
1001 /* Helper function for adjusting used MEMs. */
1003 static rtx
1004 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1006 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1007 rtx mem, addr = loc, tem;
1008 machine_mode mem_mode_save;
1009 bool store_save;
1010 switch (GET_CODE (loc))
1012 case REG:
1013 /* Don't do any sp or fp replacements outside of MEM addresses
1014 on the LHS. */
1015 if (amd->mem_mode == VOIDmode && amd->store)
1016 return loc;
1017 if (loc == stack_pointer_rtx
1018 && !frame_pointer_needed
1019 && cfa_base_rtx)
1020 return compute_cfa_pointer (amd->stack_adjust);
1021 else if (loc == hard_frame_pointer_rtx
1022 && frame_pointer_needed
1023 && hard_frame_pointer_adjustment != -1
1024 && cfa_base_rtx)
1025 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1026 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1027 return loc;
1028 case MEM:
1029 mem = loc;
1030 if (!amd->store)
1032 mem = targetm.delegitimize_address (mem);
1033 if (mem != loc && !MEM_P (mem))
1034 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1037 addr = XEXP (mem, 0);
1038 mem_mode_save = amd->mem_mode;
1039 amd->mem_mode = GET_MODE (mem);
1040 store_save = amd->store;
1041 amd->store = false;
1042 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1043 amd->store = store_save;
1044 amd->mem_mode = mem_mode_save;
1045 if (mem == loc)
1046 addr = targetm.delegitimize_address (addr);
1047 if (addr != XEXP (mem, 0))
1048 mem = replace_equiv_address_nv (mem, addr);
1049 if (!amd->store)
1050 mem = avoid_constant_pool_reference (mem);
1051 return mem;
1052 case PRE_INC:
1053 case PRE_DEC:
1054 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1055 gen_int_mode (GET_CODE (loc) == PRE_INC
1056 ? GET_MODE_SIZE (amd->mem_mode)
1057 : -GET_MODE_SIZE (amd->mem_mode),
1058 GET_MODE (loc)));
1059 case POST_INC:
1060 case POST_DEC:
1061 if (addr == loc)
1062 addr = XEXP (loc, 0);
1063 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1064 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1065 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1066 gen_int_mode ((GET_CODE (loc) == PRE_INC
1067 || GET_CODE (loc) == POST_INC)
1068 ? GET_MODE_SIZE (amd->mem_mode)
1069 : -GET_MODE_SIZE (amd->mem_mode),
1070 GET_MODE (loc)));
1071 store_save = amd->store;
1072 amd->store = false;
1073 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1074 amd->store = store_save;
1075 amd->side_effects = alloc_EXPR_LIST (0,
1076 gen_rtx_SET (XEXP (loc, 0), tem),
1077 amd->side_effects);
1078 return addr;
1079 case PRE_MODIFY:
1080 addr = XEXP (loc, 1);
1081 case POST_MODIFY:
1082 if (addr == loc)
1083 addr = XEXP (loc, 0);
1084 gcc_assert (amd->mem_mode != VOIDmode);
1085 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1086 store_save = amd->store;
1087 amd->store = false;
1088 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1089 adjust_mems, data);
1090 amd->store = store_save;
1091 amd->side_effects = alloc_EXPR_LIST (0,
1092 gen_rtx_SET (XEXP (loc, 0), tem),
1093 amd->side_effects);
1094 return addr;
1095 case SUBREG:
1096 /* First try without delegitimization of whole MEMs and
1097 avoid_constant_pool_reference, which is more likely to succeed. */
1098 store_save = amd->store;
1099 amd->store = true;
1100 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1101 data);
1102 amd->store = store_save;
1103 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1104 if (mem == SUBREG_REG (loc))
1106 tem = loc;
1107 goto finish_subreg;
1109 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1110 GET_MODE (SUBREG_REG (loc)),
1111 SUBREG_BYTE (loc));
1112 if (tem)
1113 goto finish_subreg;
1114 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1115 GET_MODE (SUBREG_REG (loc)),
1116 SUBREG_BYTE (loc));
1117 if (tem == NULL_RTX)
1118 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1119 finish_subreg:
1120 if (MAY_HAVE_DEBUG_INSNS
1121 && GET_CODE (tem) == SUBREG
1122 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1123 || GET_CODE (SUBREG_REG (tem)) == MINUS
1124 || GET_CODE (SUBREG_REG (tem)) == MULT
1125 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1126 && (GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1127 || GET_MODE_CLASS (GET_MODE (tem)) == MODE_PARTIAL_INT)
1128 && (GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1129 || GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_PARTIAL_INT)
1130 && GET_MODE_PRECISION (GET_MODE (tem))
1131 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (tem)))
1132 && subreg_lowpart_p (tem)
1133 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1134 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1135 GET_MODE (SUBREG_REG (tem)));
1136 return tem;
1137 case ASM_OPERANDS:
1138 /* Don't do any replacements in second and following
1139 ASM_OPERANDS of inline-asm with multiple sets.
1140 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1141 and ASM_OPERANDS_LABEL_VEC need to be equal between
1142 all the ASM_OPERANDs in the insn and adjust_insn will
1143 fix this up. */
1144 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1145 return loc;
1146 break;
1147 default:
1148 break;
1150 return NULL_RTX;
1153 /* Helper function for replacement of uses. */
1155 static void
1156 adjust_mem_uses (rtx *x, void *data)
1158 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1159 if (new_x != *x)
1160 validate_change (NULL_RTX, x, new_x, true);
1163 /* Helper function for replacement of stores. */
1165 static void
1166 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1168 if (MEM_P (loc))
1170 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1171 adjust_mems, data);
1172 if (new_dest != SET_DEST (expr))
1174 rtx xexpr = CONST_CAST_RTX (expr);
1175 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1180 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1181 replace them with their value in the insn and add the side-effects
1182 as other sets to the insn. */
1184 static void
1185 adjust_insn (basic_block bb, rtx_insn *insn)
1187 struct adjust_mem_data amd;
1188 rtx set;
1190 #ifdef HAVE_window_save
1191 /* If the target machine has an explicit window save instruction, the
1192 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1193 if (RTX_FRAME_RELATED_P (insn)
1194 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1196 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1197 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1198 parm_reg *p;
1200 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1202 XVECEXP (rtl, 0, i * 2)
1203 = gen_rtx_SET (p->incoming, p->outgoing);
1204 /* Do not clobber the attached DECL, but only the REG. */
1205 XVECEXP (rtl, 0, i * 2 + 1)
1206 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1207 gen_raw_REG (GET_MODE (p->outgoing),
1208 REGNO (p->outgoing)));
1211 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1212 return;
1214 #endif
1216 amd.mem_mode = VOIDmode;
1217 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1218 amd.side_effects = NULL;
1220 amd.store = true;
1221 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1223 amd.store = false;
1224 if (GET_CODE (PATTERN (insn)) == PARALLEL
1225 && asm_noperands (PATTERN (insn)) > 0
1226 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1228 rtx body, set0;
1229 int i;
1231 /* inline-asm with multiple sets is tiny bit more complicated,
1232 because the 3 vectors in ASM_OPERANDS need to be shared between
1233 all ASM_OPERANDS in the instruction. adjust_mems will
1234 not touch ASM_OPERANDS other than the first one, asm_noperands
1235 test above needs to be called before that (otherwise it would fail)
1236 and afterwards this code fixes it up. */
1237 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1238 body = PATTERN (insn);
1239 set0 = XVECEXP (body, 0, 0);
1240 gcc_checking_assert (GET_CODE (set0) == SET
1241 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1242 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1243 for (i = 1; i < XVECLEN (body, 0); i++)
1244 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1245 break;
1246 else
1248 set = XVECEXP (body, 0, i);
1249 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1250 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1251 == i);
1252 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1253 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1254 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1255 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1256 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1257 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1259 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1260 ASM_OPERANDS_INPUT_VEC (newsrc)
1261 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1262 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1263 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1264 ASM_OPERANDS_LABEL_VEC (newsrc)
1265 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1266 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1270 else
1271 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1273 /* For read-only MEMs containing some constant, prefer those
1274 constants. */
1275 set = single_set (insn);
1276 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1278 rtx note = find_reg_equal_equiv_note (insn);
1280 if (note && CONSTANT_P (XEXP (note, 0)))
1281 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1284 if (amd.side_effects)
1286 rtx *pat, new_pat, s;
1287 int i, oldn, newn;
1289 pat = &PATTERN (insn);
1290 if (GET_CODE (*pat) == COND_EXEC)
1291 pat = &COND_EXEC_CODE (*pat);
1292 if (GET_CODE (*pat) == PARALLEL)
1293 oldn = XVECLEN (*pat, 0);
1294 else
1295 oldn = 1;
1296 for (s = amd.side_effects, newn = 0; s; newn++)
1297 s = XEXP (s, 1);
1298 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1299 if (GET_CODE (*pat) == PARALLEL)
1300 for (i = 0; i < oldn; i++)
1301 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1302 else
1303 XVECEXP (new_pat, 0, 0) = *pat;
1304 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1305 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1306 free_EXPR_LIST_list (&amd.side_effects);
1307 validate_change (NULL_RTX, pat, new_pat, true);
1311 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1312 static inline rtx
1313 dv_as_rtx (decl_or_value dv)
1315 tree decl;
1317 if (dv_is_value_p (dv))
1318 return dv_as_value (dv);
1320 decl = dv_as_decl (dv);
1322 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1323 return DECL_RTL_KNOWN_SET (decl);
1326 /* Return nonzero if a decl_or_value must not have more than one
1327 variable part. The returned value discriminates among various
1328 kinds of one-part DVs ccording to enum onepart_enum. */
1329 static inline onepart_enum
1330 dv_onepart_p (decl_or_value dv)
1332 tree decl;
1334 if (!MAY_HAVE_DEBUG_INSNS)
1335 return NOT_ONEPART;
1337 if (dv_is_value_p (dv))
1338 return ONEPART_VALUE;
1340 decl = dv_as_decl (dv);
1342 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1343 return ONEPART_DEXPR;
1345 if (target_for_debug_bind (decl) != NULL_TREE)
1346 return ONEPART_VDECL;
1348 return NOT_ONEPART;
1351 /* Return the variable pool to be used for a dv of type ONEPART. */
1352 static inline pool_allocator &
1353 onepart_pool (onepart_enum onepart)
1355 return onepart ? valvar_pool : var_pool;
1358 /* Allocate a variable_def from the corresponding variable pool. */
1359 static inline variable *
1360 onepart_pool_allocate (onepart_enum onepart)
1362 return (variable*) onepart_pool (onepart).allocate ();
1365 /* Build a decl_or_value out of a decl. */
1366 static inline decl_or_value
1367 dv_from_decl (tree decl)
1369 decl_or_value dv;
1370 dv = decl;
1371 gcc_checking_assert (dv_is_decl_p (dv));
1372 return dv;
1375 /* Build a decl_or_value out of a value. */
1376 static inline decl_or_value
1377 dv_from_value (rtx value)
1379 decl_or_value dv;
1380 dv = value;
1381 gcc_checking_assert (dv_is_value_p (dv));
1382 return dv;
1385 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1386 static inline decl_or_value
1387 dv_from_rtx (rtx x)
1389 decl_or_value dv;
1391 switch (GET_CODE (x))
1393 case DEBUG_EXPR:
1394 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1395 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1396 break;
1398 case VALUE:
1399 dv = dv_from_value (x);
1400 break;
1402 default:
1403 gcc_unreachable ();
1406 return dv;
1409 extern void debug_dv (decl_or_value dv);
1411 DEBUG_FUNCTION void
1412 debug_dv (decl_or_value dv)
1414 if (dv_is_value_p (dv))
1415 debug_rtx (dv_as_value (dv));
1416 else
1417 debug_generic_stmt (dv_as_decl (dv));
1420 static void loc_exp_dep_clear (variable *var);
1422 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1424 static void
1425 variable_htab_free (void *elem)
1427 int i;
1428 variable *var = (variable *) elem;
1429 location_chain *node, *next;
1431 gcc_checking_assert (var->refcount > 0);
1433 var->refcount--;
1434 if (var->refcount > 0)
1435 return;
1437 for (i = 0; i < var->n_var_parts; i++)
1439 for (node = var->var_part[i].loc_chain; node; node = next)
1441 next = node->next;
1442 delete node;
1444 var->var_part[i].loc_chain = NULL;
1446 if (var->onepart && VAR_LOC_1PAUX (var))
1448 loc_exp_dep_clear (var);
1449 if (VAR_LOC_DEP_LST (var))
1450 VAR_LOC_DEP_LST (var)->pprev = NULL;
1451 XDELETE (VAR_LOC_1PAUX (var));
1452 /* These may be reused across functions, so reset
1453 e.g. NO_LOC_P. */
1454 if (var->onepart == ONEPART_DEXPR)
1455 set_dv_changed (var->dv, true);
1457 onepart_pool (var->onepart).remove (var);
1460 /* Initialize the set (array) SET of attrs to empty lists. */
1462 static void
1463 init_attrs_list_set (attrs **set)
1465 int i;
1467 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1468 set[i] = NULL;
1471 /* Make the list *LISTP empty. */
1473 static void
1474 attrs_list_clear (attrs **listp)
1476 attrs *list, *next;
1478 for (list = *listp; list; list = next)
1480 next = list->next;
1481 delete list;
1483 *listp = NULL;
1486 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1488 static attrs *
1489 attrs_list_member (attrs *list, decl_or_value dv, HOST_WIDE_INT offset)
1491 for (; list; list = list->next)
1492 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1493 return list;
1494 return NULL;
1497 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1499 static void
1500 attrs_list_insert (attrs **listp, decl_or_value dv,
1501 HOST_WIDE_INT offset, rtx loc)
1503 attrs *list = new attrs;
1504 list->loc = loc;
1505 list->dv = dv;
1506 list->offset = offset;
1507 list->next = *listp;
1508 *listp = list;
1511 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1513 static void
1514 attrs_list_copy (attrs **dstp, attrs *src)
1516 attrs_list_clear (dstp);
1517 for (; src; src = src->next)
1519 attrs *n = new attrs;
1520 n->loc = src->loc;
1521 n->dv = src->dv;
1522 n->offset = src->offset;
1523 n->next = *dstp;
1524 *dstp = n;
1528 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1530 static void
1531 attrs_list_union (attrs **dstp, attrs *src)
1533 for (; src; src = src->next)
1535 if (!attrs_list_member (*dstp, src->dv, src->offset))
1536 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1540 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1541 *DSTP. */
1543 static void
1544 attrs_list_mpdv_union (attrs **dstp, attrs *src, attrs *src2)
1546 gcc_assert (!*dstp);
1547 for (; src; src = src->next)
1549 if (!dv_onepart_p (src->dv))
1550 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1552 for (src = src2; src; src = src->next)
1554 if (!dv_onepart_p (src->dv)
1555 && !attrs_list_member (*dstp, src->dv, src->offset))
1556 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1560 /* Shared hashtable support. */
1562 /* Return true if VARS is shared. */
1564 static inline bool
1565 shared_hash_shared (shared_hash *vars)
1567 return vars->refcount > 1;
1570 /* Return the hash table for VARS. */
1572 static inline variable_table_type *
1573 shared_hash_htab (shared_hash *vars)
1575 return vars->htab;
1578 /* Return true if VAR is shared, or maybe because VARS is shared. */
1580 static inline bool
1581 shared_var_p (variable *var, shared_hash *vars)
1583 /* Don't count an entry in the changed_variables table as a duplicate. */
1584 return ((var->refcount > 1 + (int) var->in_changed_variables)
1585 || shared_hash_shared (vars));
1588 /* Copy variables into a new hash table. */
1590 static shared_hash *
1591 shared_hash_unshare (shared_hash *vars)
1593 shared_hash *new_vars = new shared_hash;
1594 gcc_assert (vars->refcount > 1);
1595 new_vars->refcount = 1;
1596 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1597 vars_copy (new_vars->htab, vars->htab);
1598 vars->refcount--;
1599 return new_vars;
1602 /* Increment reference counter on VARS and return it. */
1604 static inline shared_hash *
1605 shared_hash_copy (shared_hash *vars)
1607 vars->refcount++;
1608 return vars;
1611 /* Decrement reference counter and destroy hash table if not shared
1612 anymore. */
1614 static void
1615 shared_hash_destroy (shared_hash *vars)
1617 gcc_checking_assert (vars->refcount > 0);
1618 if (--vars->refcount == 0)
1620 delete vars->htab;
1621 delete vars;
1625 /* Unshare *PVARS if shared and return slot for DV. If INS is
1626 INSERT, insert it if not already present. */
1628 static inline variable **
1629 shared_hash_find_slot_unshare_1 (shared_hash **pvars, decl_or_value dv,
1630 hashval_t dvhash, enum insert_option ins)
1632 if (shared_hash_shared (*pvars))
1633 *pvars = shared_hash_unshare (*pvars);
1634 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1637 static inline variable **
1638 shared_hash_find_slot_unshare (shared_hash **pvars, decl_or_value dv,
1639 enum insert_option ins)
1641 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1644 /* Return slot for DV, if it is already present in the hash table.
1645 If it is not present, insert it only VARS is not shared, otherwise
1646 return NULL. */
1648 static inline variable **
1649 shared_hash_find_slot_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1651 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1652 shared_hash_shared (vars)
1653 ? NO_INSERT : INSERT);
1656 static inline variable **
1657 shared_hash_find_slot (shared_hash *vars, decl_or_value dv)
1659 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1662 /* Return slot for DV only if it is already present in the hash table. */
1664 static inline variable **
1665 shared_hash_find_slot_noinsert_1 (shared_hash *vars, decl_or_value dv,
1666 hashval_t dvhash)
1668 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1671 static inline variable **
1672 shared_hash_find_slot_noinsert (shared_hash *vars, decl_or_value dv)
1674 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1677 /* Return variable for DV or NULL if not already present in the hash
1678 table. */
1680 static inline variable *
1681 shared_hash_find_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1683 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1686 static inline variable *
1687 shared_hash_find (shared_hash *vars, decl_or_value dv)
1689 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1692 /* Return true if TVAL is better than CVAL as a canonival value. We
1693 choose lowest-numbered VALUEs, using the RTX address as a
1694 tie-breaker. The idea is to arrange them into a star topology,
1695 such that all of them are at most one step away from the canonical
1696 value, and the canonical value has backlinks to all of them, in
1697 addition to all the actual locations. We don't enforce this
1698 topology throughout the entire dataflow analysis, though.
1701 static inline bool
1702 canon_value_cmp (rtx tval, rtx cval)
1704 return !cval
1705 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1708 static bool dst_can_be_shared;
1710 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1712 static variable **
1713 unshare_variable (dataflow_set *set, variable **slot, variable *var,
1714 enum var_init_status initialized)
1716 variable *new_var;
1717 int i;
1719 new_var = onepart_pool_allocate (var->onepart);
1720 new_var->dv = var->dv;
1721 new_var->refcount = 1;
1722 var->refcount--;
1723 new_var->n_var_parts = var->n_var_parts;
1724 new_var->onepart = var->onepart;
1725 new_var->in_changed_variables = false;
1727 if (! flag_var_tracking_uninit)
1728 initialized = VAR_INIT_STATUS_INITIALIZED;
1730 for (i = 0; i < var->n_var_parts; i++)
1732 location_chain *node;
1733 location_chain **nextp;
1735 if (i == 0 && var->onepart)
1737 /* One-part auxiliary data is only used while emitting
1738 notes, so propagate it to the new variable in the active
1739 dataflow set. If we're not emitting notes, this will be
1740 a no-op. */
1741 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1742 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1743 VAR_LOC_1PAUX (var) = NULL;
1745 else
1746 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1747 nextp = &new_var->var_part[i].loc_chain;
1748 for (node = var->var_part[i].loc_chain; node; node = node->next)
1750 location_chain *new_lc;
1752 new_lc = new location_chain;
1753 new_lc->next = NULL;
1754 if (node->init > initialized)
1755 new_lc->init = node->init;
1756 else
1757 new_lc->init = initialized;
1758 if (node->set_src && !(MEM_P (node->set_src)))
1759 new_lc->set_src = node->set_src;
1760 else
1761 new_lc->set_src = NULL;
1762 new_lc->loc = node->loc;
1764 *nextp = new_lc;
1765 nextp = &new_lc->next;
1768 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1771 dst_can_be_shared = false;
1772 if (shared_hash_shared (set->vars))
1773 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1774 else if (set->traversed_vars && set->vars != set->traversed_vars)
1775 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1776 *slot = new_var;
1777 if (var->in_changed_variables)
1779 variable **cslot
1780 = changed_variables->find_slot_with_hash (var->dv,
1781 dv_htab_hash (var->dv),
1782 NO_INSERT);
1783 gcc_assert (*cslot == (void *) var);
1784 var->in_changed_variables = false;
1785 variable_htab_free (var);
1786 *cslot = new_var;
1787 new_var->in_changed_variables = true;
1789 return slot;
1792 /* Copy all variables from hash table SRC to hash table DST. */
1794 static void
1795 vars_copy (variable_table_type *dst, variable_table_type *src)
1797 variable_iterator_type hi;
1798 variable *var;
1800 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1802 variable **dstp;
1803 var->refcount++;
1804 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1805 INSERT);
1806 *dstp = var;
1810 /* Map a decl to its main debug decl. */
1812 static inline tree
1813 var_debug_decl (tree decl)
1815 if (decl && TREE_CODE (decl) == VAR_DECL
1816 && DECL_HAS_DEBUG_EXPR_P (decl))
1818 tree debugdecl = DECL_DEBUG_EXPR (decl);
1819 if (DECL_P (debugdecl))
1820 decl = debugdecl;
1823 return decl;
1826 /* Set the register LOC to contain DV, OFFSET. */
1828 static void
1829 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1830 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1831 enum insert_option iopt)
1833 attrs *node;
1834 bool decl_p = dv_is_decl_p (dv);
1836 if (decl_p)
1837 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1839 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1840 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1841 && node->offset == offset)
1842 break;
1843 if (!node)
1844 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1845 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1848 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1850 static void
1851 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1852 rtx set_src)
1854 tree decl = REG_EXPR (loc);
1855 HOST_WIDE_INT offset = REG_OFFSET (loc);
1857 var_reg_decl_set (set, loc, initialized,
1858 dv_from_decl (decl), offset, set_src, INSERT);
1861 static enum var_init_status
1862 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1864 variable *var;
1865 int i;
1866 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1868 if (! flag_var_tracking_uninit)
1869 return VAR_INIT_STATUS_INITIALIZED;
1871 var = shared_hash_find (set->vars, dv);
1872 if (var)
1874 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1876 location_chain *nextp;
1877 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1878 if (rtx_equal_p (nextp->loc, loc))
1880 ret_val = nextp->init;
1881 break;
1886 return ret_val;
1889 /* Delete current content of register LOC in dataflow set SET and set
1890 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1891 MODIFY is true, any other live copies of the same variable part are
1892 also deleted from the dataflow set, otherwise the variable part is
1893 assumed to be copied from another location holding the same
1894 part. */
1896 static void
1897 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1898 enum var_init_status initialized, rtx set_src)
1900 tree decl = REG_EXPR (loc);
1901 HOST_WIDE_INT offset = REG_OFFSET (loc);
1902 attrs *node, *next;
1903 attrs **nextp;
1905 decl = var_debug_decl (decl);
1907 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1908 initialized = get_init_value (set, loc, dv_from_decl (decl));
1910 nextp = &set->regs[REGNO (loc)];
1911 for (node = *nextp; node; node = next)
1913 next = node->next;
1914 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1916 delete_variable_part (set, node->loc, node->dv, node->offset);
1917 delete node;
1918 *nextp = next;
1920 else
1922 node->loc = loc;
1923 nextp = &node->next;
1926 if (modify)
1927 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1928 var_reg_set (set, loc, initialized, set_src);
1931 /* Delete the association of register LOC in dataflow set SET with any
1932 variables that aren't onepart. If CLOBBER is true, also delete any
1933 other live copies of the same variable part, and delete the
1934 association with onepart dvs too. */
1936 static void
1937 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1939 attrs **nextp = &set->regs[REGNO (loc)];
1940 attrs *node, *next;
1942 if (clobber)
1944 tree decl = REG_EXPR (loc);
1945 HOST_WIDE_INT offset = REG_OFFSET (loc);
1947 decl = var_debug_decl (decl);
1949 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1952 for (node = *nextp; node; node = next)
1954 next = node->next;
1955 if (clobber || !dv_onepart_p (node->dv))
1957 delete_variable_part (set, node->loc, node->dv, node->offset);
1958 delete node;
1959 *nextp = next;
1961 else
1962 nextp = &node->next;
1966 /* Delete content of register with number REGNO in dataflow set SET. */
1968 static void
1969 var_regno_delete (dataflow_set *set, int regno)
1971 attrs **reg = &set->regs[regno];
1972 attrs *node, *next;
1974 for (node = *reg; node; node = next)
1976 next = node->next;
1977 delete_variable_part (set, node->loc, node->dv, node->offset);
1978 delete node;
1980 *reg = NULL;
1983 /* Return true if I is the negated value of a power of two. */
1984 static bool
1985 negative_power_of_two_p (HOST_WIDE_INT i)
1987 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
1988 return x == (x & -x);
1991 /* Strip constant offsets and alignments off of LOC. Return the base
1992 expression. */
1994 static rtx
1995 vt_get_canonicalize_base (rtx loc)
1997 while ((GET_CODE (loc) == PLUS
1998 || GET_CODE (loc) == AND)
1999 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2000 && (GET_CODE (loc) != AND
2001 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2002 loc = XEXP (loc, 0);
2004 return loc;
2007 /* This caches canonicalized addresses for VALUEs, computed using
2008 information in the global cselib table. */
2009 static hash_map<rtx, rtx> *global_get_addr_cache;
2011 /* This caches canonicalized addresses for VALUEs, computed using
2012 information from the global cache and information pertaining to a
2013 basic block being analyzed. */
2014 static hash_map<rtx, rtx> *local_get_addr_cache;
2016 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2018 /* Return the canonical address for LOC, that must be a VALUE, using a
2019 cached global equivalence or computing it and storing it in the
2020 global cache. */
2022 static rtx
2023 get_addr_from_global_cache (rtx const loc)
2025 rtx x;
2027 gcc_checking_assert (GET_CODE (loc) == VALUE);
2029 bool existed;
2030 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2031 if (existed)
2032 return *slot;
2034 x = canon_rtx (get_addr (loc));
2036 /* Tentative, avoiding infinite recursion. */
2037 *slot = x;
2039 if (x != loc)
2041 rtx nx = vt_canonicalize_addr (NULL, x);
2042 if (nx != x)
2044 /* The table may have moved during recursion, recompute
2045 SLOT. */
2046 *global_get_addr_cache->get (loc) = x = nx;
2050 return x;
2053 /* Return the canonical address for LOC, that must be a VALUE, using a
2054 cached local equivalence or computing it and storing it in the
2055 local cache. */
2057 static rtx
2058 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2060 rtx x;
2061 decl_or_value dv;
2062 variable *var;
2063 location_chain *l;
2065 gcc_checking_assert (GET_CODE (loc) == VALUE);
2067 bool existed;
2068 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2069 if (existed)
2070 return *slot;
2072 x = get_addr_from_global_cache (loc);
2074 /* Tentative, avoiding infinite recursion. */
2075 *slot = x;
2077 /* Recurse to cache local expansion of X, or if we need to search
2078 for a VALUE in the expansion. */
2079 if (x != loc)
2081 rtx nx = vt_canonicalize_addr (set, x);
2082 if (nx != x)
2084 slot = local_get_addr_cache->get (loc);
2085 *slot = x = nx;
2087 return x;
2090 dv = dv_from_rtx (x);
2091 var = shared_hash_find (set->vars, dv);
2092 if (!var)
2093 return x;
2095 /* Look for an improved equivalent expression. */
2096 for (l = var->var_part[0].loc_chain; l; l = l->next)
2098 rtx base = vt_get_canonicalize_base (l->loc);
2099 if (GET_CODE (base) == VALUE
2100 && canon_value_cmp (base, loc))
2102 rtx nx = vt_canonicalize_addr (set, l->loc);
2103 if (x != nx)
2105 slot = local_get_addr_cache->get (loc);
2106 *slot = x = nx;
2108 break;
2112 return x;
2115 /* Canonicalize LOC using equivalences from SET in addition to those
2116 in the cselib static table. It expects a VALUE-based expression,
2117 and it will only substitute VALUEs with other VALUEs or
2118 function-global equivalences, so that, if two addresses have base
2119 VALUEs that are locally or globally related in ways that
2120 memrefs_conflict_p cares about, they will both canonicalize to
2121 expressions that have the same base VALUE.
2123 The use of VALUEs as canonical base addresses enables the canonical
2124 RTXs to remain unchanged globally, if they resolve to a constant,
2125 or throughout a basic block otherwise, so that they can be cached
2126 and the cache needs not be invalidated when REGs, MEMs or such
2127 change. */
2129 static rtx
2130 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2132 HOST_WIDE_INT ofst = 0;
2133 machine_mode mode = GET_MODE (oloc);
2134 rtx loc = oloc;
2135 rtx x;
2136 bool retry = true;
2138 while (retry)
2140 while (GET_CODE (loc) == PLUS
2141 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2143 ofst += INTVAL (XEXP (loc, 1));
2144 loc = XEXP (loc, 0);
2147 /* Alignment operations can't normally be combined, so just
2148 canonicalize the base and we're done. We'll normally have
2149 only one stack alignment anyway. */
2150 if (GET_CODE (loc) == AND
2151 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2152 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2154 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2155 if (x != XEXP (loc, 0))
2156 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2157 retry = false;
2160 if (GET_CODE (loc) == VALUE)
2162 if (set)
2163 loc = get_addr_from_local_cache (set, loc);
2164 else
2165 loc = get_addr_from_global_cache (loc);
2167 /* Consolidate plus_constants. */
2168 while (ofst && GET_CODE (loc) == PLUS
2169 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2171 ofst += INTVAL (XEXP (loc, 1));
2172 loc = XEXP (loc, 0);
2175 retry = false;
2177 else
2179 x = canon_rtx (loc);
2180 if (retry)
2181 retry = (x != loc);
2182 loc = x;
2186 /* Add OFST back in. */
2187 if (ofst)
2189 /* Don't build new RTL if we can help it. */
2190 if (GET_CODE (oloc) == PLUS
2191 && XEXP (oloc, 0) == loc
2192 && INTVAL (XEXP (oloc, 1)) == ofst)
2193 return oloc;
2195 loc = plus_constant (mode, loc, ofst);
2198 return loc;
2201 /* Return true iff there's a true dependence between MLOC and LOC.
2202 MADDR must be a canonicalized version of MLOC's address. */
2204 static inline bool
2205 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2207 if (GET_CODE (loc) != MEM)
2208 return false;
2210 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2211 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2212 return false;
2214 return true;
2217 /* Hold parameters for the hashtab traversal function
2218 drop_overlapping_mem_locs, see below. */
2220 struct overlapping_mems
2222 dataflow_set *set;
2223 rtx loc, addr;
2226 /* Remove all MEMs that overlap with COMS->LOC from the location list
2227 of a hash table entry for a value. COMS->ADDR must be a
2228 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2229 canonicalized itself. */
2232 drop_overlapping_mem_locs (variable **slot, overlapping_mems *coms)
2234 dataflow_set *set = coms->set;
2235 rtx mloc = coms->loc, addr = coms->addr;
2236 variable *var = *slot;
2238 if (var->onepart == ONEPART_VALUE)
2240 location_chain *loc, **locp;
2241 bool changed = false;
2242 rtx cur_loc;
2244 gcc_assert (var->n_var_parts == 1);
2246 if (shared_var_p (var, set->vars))
2248 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2249 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2250 break;
2252 if (!loc)
2253 return 1;
2255 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2256 var = *slot;
2257 gcc_assert (var->n_var_parts == 1);
2260 if (VAR_LOC_1PAUX (var))
2261 cur_loc = VAR_LOC_FROM (var);
2262 else
2263 cur_loc = var->var_part[0].cur_loc;
2265 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2266 loc; loc = *locp)
2268 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2270 locp = &loc->next;
2271 continue;
2274 *locp = loc->next;
2275 /* If we have deleted the location which was last emitted
2276 we have to emit new location so add the variable to set
2277 of changed variables. */
2278 if (cur_loc == loc->loc)
2280 changed = true;
2281 var->var_part[0].cur_loc = NULL;
2282 if (VAR_LOC_1PAUX (var))
2283 VAR_LOC_FROM (var) = NULL;
2285 delete loc;
2288 if (!var->var_part[0].loc_chain)
2290 var->n_var_parts--;
2291 changed = true;
2293 if (changed)
2294 variable_was_changed (var, set);
2297 return 1;
2300 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2302 static void
2303 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2305 struct overlapping_mems coms;
2307 gcc_checking_assert (GET_CODE (loc) == MEM);
2309 coms.set = set;
2310 coms.loc = canon_rtx (loc);
2311 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2313 set->traversed_vars = set->vars;
2314 shared_hash_htab (set->vars)
2315 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2316 set->traversed_vars = NULL;
2319 /* Set the location of DV, OFFSET as the MEM LOC. */
2321 static void
2322 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2323 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2324 enum insert_option iopt)
2326 if (dv_is_decl_p (dv))
2327 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2329 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2332 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2333 SET to LOC.
2334 Adjust the address first if it is stack pointer based. */
2336 static void
2337 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2338 rtx set_src)
2340 tree decl = MEM_EXPR (loc);
2341 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2343 var_mem_decl_set (set, loc, initialized,
2344 dv_from_decl (decl), offset, set_src, INSERT);
2347 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2348 dataflow set SET to LOC. If MODIFY is true, any other live copies
2349 of the same variable part are also deleted from the dataflow set,
2350 otherwise the variable part is assumed to be copied from another
2351 location holding the same part.
2352 Adjust the address first if it is stack pointer based. */
2354 static void
2355 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2356 enum var_init_status initialized, rtx set_src)
2358 tree decl = MEM_EXPR (loc);
2359 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2361 clobber_overlapping_mems (set, loc);
2362 decl = var_debug_decl (decl);
2364 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2365 initialized = get_init_value (set, loc, dv_from_decl (decl));
2367 if (modify)
2368 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2369 var_mem_set (set, loc, initialized, set_src);
2372 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2373 true, also delete any other live copies of the same variable part.
2374 Adjust the address first if it is stack pointer based. */
2376 static void
2377 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2379 tree decl = MEM_EXPR (loc);
2380 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2382 clobber_overlapping_mems (set, loc);
2383 decl = var_debug_decl (decl);
2384 if (clobber)
2385 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2386 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2389 /* Return true if LOC should not be expanded for location expressions,
2390 or used in them. */
2392 static inline bool
2393 unsuitable_loc (rtx loc)
2395 switch (GET_CODE (loc))
2397 case PC:
2398 case SCRATCH:
2399 case CC0:
2400 case ASM_INPUT:
2401 case ASM_OPERANDS:
2402 return true;
2404 default:
2405 return false;
2409 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2410 bound to it. */
2412 static inline void
2413 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2415 if (REG_P (loc))
2417 if (modified)
2418 var_regno_delete (set, REGNO (loc));
2419 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2420 dv_from_value (val), 0, NULL_RTX, INSERT);
2422 else if (MEM_P (loc))
2424 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2426 if (modified)
2427 clobber_overlapping_mems (set, loc);
2429 if (l && GET_CODE (l->loc) == VALUE)
2430 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2432 /* If this MEM is a global constant, we don't need it in the
2433 dynamic tables. ??? We should test this before emitting the
2434 micro-op in the first place. */
2435 while (l)
2436 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2437 break;
2438 else
2439 l = l->next;
2441 if (!l)
2442 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2443 dv_from_value (val), 0, NULL_RTX, INSERT);
2445 else
2447 /* Other kinds of equivalences are necessarily static, at least
2448 so long as we do not perform substitutions while merging
2449 expressions. */
2450 gcc_unreachable ();
2451 set_variable_part (set, loc, dv_from_value (val), 0,
2452 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2456 /* Bind a value to a location it was just stored in. If MODIFIED
2457 holds, assume the location was modified, detaching it from any
2458 values bound to it. */
2460 static void
2461 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2462 bool modified)
2464 cselib_val *v = CSELIB_VAL_PTR (val);
2466 gcc_assert (cselib_preserved_value_p (v));
2468 if (dump_file)
2470 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2471 print_inline_rtx (dump_file, loc, 0);
2472 fprintf (dump_file, " evaluates to ");
2473 print_inline_rtx (dump_file, val, 0);
2474 if (v->locs)
2476 struct elt_loc_list *l;
2477 for (l = v->locs; l; l = l->next)
2479 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2480 print_inline_rtx (dump_file, l->loc, 0);
2483 fprintf (dump_file, "\n");
2486 gcc_checking_assert (!unsuitable_loc (loc));
2488 val_bind (set, val, loc, modified);
2491 /* Clear (canonical address) slots that reference X. */
2493 bool
2494 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2496 if (vt_get_canonicalize_base (*slot) == x)
2497 *slot = NULL;
2498 return true;
2501 /* Reset this node, detaching all its equivalences. Return the slot
2502 in the variable hash table that holds dv, if there is one. */
2504 static void
2505 val_reset (dataflow_set *set, decl_or_value dv)
2507 variable *var = shared_hash_find (set->vars, dv) ;
2508 location_chain *node;
2509 rtx cval;
2511 if (!var || !var->n_var_parts)
2512 return;
2514 gcc_assert (var->n_var_parts == 1);
2516 if (var->onepart == ONEPART_VALUE)
2518 rtx x = dv_as_value (dv);
2520 /* Relationships in the global cache don't change, so reset the
2521 local cache entry only. */
2522 rtx *slot = local_get_addr_cache->get (x);
2523 if (slot)
2525 /* If the value resolved back to itself, odds are that other
2526 values may have cached it too. These entries now refer
2527 to the old X, so detach them too. Entries that used the
2528 old X but resolved to something else remain ok as long as
2529 that something else isn't also reset. */
2530 if (*slot == x)
2531 local_get_addr_cache
2532 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2533 *slot = NULL;
2537 cval = NULL;
2538 for (node = var->var_part[0].loc_chain; node; node = node->next)
2539 if (GET_CODE (node->loc) == VALUE
2540 && canon_value_cmp (node->loc, cval))
2541 cval = node->loc;
2543 for (node = var->var_part[0].loc_chain; node; node = node->next)
2544 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2546 /* Redirect the equivalence link to the new canonical
2547 value, or simply remove it if it would point at
2548 itself. */
2549 if (cval)
2550 set_variable_part (set, cval, dv_from_value (node->loc),
2551 0, node->init, node->set_src, NO_INSERT);
2552 delete_variable_part (set, dv_as_value (dv),
2553 dv_from_value (node->loc), 0);
2556 if (cval)
2558 decl_or_value cdv = dv_from_value (cval);
2560 /* Keep the remaining values connected, accummulating links
2561 in the canonical value. */
2562 for (node = var->var_part[0].loc_chain; node; node = node->next)
2564 if (node->loc == cval)
2565 continue;
2566 else if (GET_CODE (node->loc) == REG)
2567 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2568 node->set_src, NO_INSERT);
2569 else if (GET_CODE (node->loc) == MEM)
2570 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2571 node->set_src, NO_INSERT);
2572 else
2573 set_variable_part (set, node->loc, cdv, 0,
2574 node->init, node->set_src, NO_INSERT);
2578 /* We remove this last, to make sure that the canonical value is not
2579 removed to the point of requiring reinsertion. */
2580 if (cval)
2581 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2583 clobber_variable_part (set, NULL, dv, 0, NULL);
2586 /* Find the values in a given location and map the val to another
2587 value, if it is unique, or add the location as one holding the
2588 value. */
2590 static void
2591 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2593 decl_or_value dv = dv_from_value (val);
2595 if (dump_file && (dump_flags & TDF_DETAILS))
2597 if (insn)
2598 fprintf (dump_file, "%i: ", INSN_UID (insn));
2599 else
2600 fprintf (dump_file, "head: ");
2601 print_inline_rtx (dump_file, val, 0);
2602 fputs (" is at ", dump_file);
2603 print_inline_rtx (dump_file, loc, 0);
2604 fputc ('\n', dump_file);
2607 val_reset (set, dv);
2609 gcc_checking_assert (!unsuitable_loc (loc));
2611 if (REG_P (loc))
2613 attrs *node, *found = NULL;
2615 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2616 if (dv_is_value_p (node->dv)
2617 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2619 found = node;
2621 /* Map incoming equivalences. ??? Wouldn't it be nice if
2622 we just started sharing the location lists? Maybe a
2623 circular list ending at the value itself or some
2624 such. */
2625 set_variable_part (set, dv_as_value (node->dv),
2626 dv_from_value (val), node->offset,
2627 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2628 set_variable_part (set, val, node->dv, node->offset,
2629 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2632 /* If we didn't find any equivalence, we need to remember that
2633 this value is held in the named register. */
2634 if (found)
2635 return;
2637 /* ??? Attempt to find and merge equivalent MEMs or other
2638 expressions too. */
2640 val_bind (set, val, loc, false);
2643 /* Initialize dataflow set SET to be empty.
2644 VARS_SIZE is the initial size of hash table VARS. */
2646 static void
2647 dataflow_set_init (dataflow_set *set)
2649 init_attrs_list_set (set->regs);
2650 set->vars = shared_hash_copy (empty_shared_hash);
2651 set->stack_adjust = 0;
2652 set->traversed_vars = NULL;
2655 /* Delete the contents of dataflow set SET. */
2657 static void
2658 dataflow_set_clear (dataflow_set *set)
2660 int i;
2662 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2663 attrs_list_clear (&set->regs[i]);
2665 shared_hash_destroy (set->vars);
2666 set->vars = shared_hash_copy (empty_shared_hash);
2669 /* Copy the contents of dataflow set SRC to DST. */
2671 static void
2672 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2674 int i;
2676 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2677 attrs_list_copy (&dst->regs[i], src->regs[i]);
2679 shared_hash_destroy (dst->vars);
2680 dst->vars = shared_hash_copy (src->vars);
2681 dst->stack_adjust = src->stack_adjust;
2684 /* Information for merging lists of locations for a given offset of variable.
2686 struct variable_union_info
2688 /* Node of the location chain. */
2689 location_chain *lc;
2691 /* The sum of positions in the input chains. */
2692 int pos;
2694 /* The position in the chain of DST dataflow set. */
2695 int pos_dst;
2698 /* Buffer for location list sorting and its allocated size. */
2699 static struct variable_union_info *vui_vec;
2700 static int vui_allocated;
2702 /* Compare function for qsort, order the structures by POS element. */
2704 static int
2705 variable_union_info_cmp_pos (const void *n1, const void *n2)
2707 const struct variable_union_info *const i1 =
2708 (const struct variable_union_info *) n1;
2709 const struct variable_union_info *const i2 =
2710 ( const struct variable_union_info *) n2;
2712 if (i1->pos != i2->pos)
2713 return i1->pos - i2->pos;
2715 return (i1->pos_dst - i2->pos_dst);
2718 /* Compute union of location parts of variable *SLOT and the same variable
2719 from hash table DATA. Compute "sorted" union of the location chains
2720 for common offsets, i.e. the locations of a variable part are sorted by
2721 a priority where the priority is the sum of the positions in the 2 chains
2722 (if a location is only in one list the position in the second list is
2723 defined to be larger than the length of the chains).
2724 When we are updating the location parts the newest location is in the
2725 beginning of the chain, so when we do the described "sorted" union
2726 we keep the newest locations in the beginning. */
2728 static int
2729 variable_union (variable *src, dataflow_set *set)
2731 variable *dst;
2732 variable **dstp;
2733 int i, j, k;
2735 dstp = shared_hash_find_slot (set->vars, src->dv);
2736 if (!dstp || !*dstp)
2738 src->refcount++;
2740 dst_can_be_shared = false;
2741 if (!dstp)
2742 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2744 *dstp = src;
2746 /* Continue traversing the hash table. */
2747 return 1;
2749 else
2750 dst = *dstp;
2752 gcc_assert (src->n_var_parts);
2753 gcc_checking_assert (src->onepart == dst->onepart);
2755 /* We can combine one-part variables very efficiently, because their
2756 entries are in canonical order. */
2757 if (src->onepart)
2759 location_chain **nodep, *dnode, *snode;
2761 gcc_assert (src->n_var_parts == 1
2762 && dst->n_var_parts == 1);
2764 snode = src->var_part[0].loc_chain;
2765 gcc_assert (snode);
2767 restart_onepart_unshared:
2768 nodep = &dst->var_part[0].loc_chain;
2769 dnode = *nodep;
2770 gcc_assert (dnode);
2772 while (snode)
2774 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2776 if (r > 0)
2778 location_chain *nnode;
2780 if (shared_var_p (dst, set->vars))
2782 dstp = unshare_variable (set, dstp, dst,
2783 VAR_INIT_STATUS_INITIALIZED);
2784 dst = *dstp;
2785 goto restart_onepart_unshared;
2788 *nodep = nnode = new location_chain;
2789 nnode->loc = snode->loc;
2790 nnode->init = snode->init;
2791 if (!snode->set_src || MEM_P (snode->set_src))
2792 nnode->set_src = NULL;
2793 else
2794 nnode->set_src = snode->set_src;
2795 nnode->next = dnode;
2796 dnode = nnode;
2798 else if (r == 0)
2799 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2801 if (r >= 0)
2802 snode = snode->next;
2804 nodep = &dnode->next;
2805 dnode = *nodep;
2808 return 1;
2811 gcc_checking_assert (!src->onepart);
2813 /* Count the number of location parts, result is K. */
2814 for (i = 0, j = 0, k = 0;
2815 i < src->n_var_parts && j < dst->n_var_parts; k++)
2817 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2819 i++;
2820 j++;
2822 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2823 i++;
2824 else
2825 j++;
2827 k += src->n_var_parts - i;
2828 k += dst->n_var_parts - j;
2830 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2831 thus there are at most MAX_VAR_PARTS different offsets. */
2832 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2834 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2836 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2837 dst = *dstp;
2840 i = src->n_var_parts - 1;
2841 j = dst->n_var_parts - 1;
2842 dst->n_var_parts = k;
2844 for (k--; k >= 0; k--)
2846 location_chain *node, *node2;
2848 if (i >= 0 && j >= 0
2849 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2851 /* Compute the "sorted" union of the chains, i.e. the locations which
2852 are in both chains go first, they are sorted by the sum of
2853 positions in the chains. */
2854 int dst_l, src_l;
2855 int ii, jj, n;
2856 struct variable_union_info *vui;
2858 /* If DST is shared compare the location chains.
2859 If they are different we will modify the chain in DST with
2860 high probability so make a copy of DST. */
2861 if (shared_var_p (dst, set->vars))
2863 for (node = src->var_part[i].loc_chain,
2864 node2 = dst->var_part[j].loc_chain; node && node2;
2865 node = node->next, node2 = node2->next)
2867 if (!((REG_P (node2->loc)
2868 && REG_P (node->loc)
2869 && REGNO (node2->loc) == REGNO (node->loc))
2870 || rtx_equal_p (node2->loc, node->loc)))
2872 if (node2->init < node->init)
2873 node2->init = node->init;
2874 break;
2877 if (node || node2)
2879 dstp = unshare_variable (set, dstp, dst,
2880 VAR_INIT_STATUS_UNKNOWN);
2881 dst = (variable *)*dstp;
2885 src_l = 0;
2886 for (node = src->var_part[i].loc_chain; node; node = node->next)
2887 src_l++;
2888 dst_l = 0;
2889 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2890 dst_l++;
2892 if (dst_l == 1)
2894 /* The most common case, much simpler, no qsort is needed. */
2895 location_chain *dstnode = dst->var_part[j].loc_chain;
2896 dst->var_part[k].loc_chain = dstnode;
2897 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2898 node2 = dstnode;
2899 for (node = src->var_part[i].loc_chain; node; node = node->next)
2900 if (!((REG_P (dstnode->loc)
2901 && REG_P (node->loc)
2902 && REGNO (dstnode->loc) == REGNO (node->loc))
2903 || rtx_equal_p (dstnode->loc, node->loc)))
2905 location_chain *new_node;
2907 /* Copy the location from SRC. */
2908 new_node = new location_chain;
2909 new_node->loc = node->loc;
2910 new_node->init = node->init;
2911 if (!node->set_src || MEM_P (node->set_src))
2912 new_node->set_src = NULL;
2913 else
2914 new_node->set_src = node->set_src;
2915 node2->next = new_node;
2916 node2 = new_node;
2918 node2->next = NULL;
2920 else
2922 if (src_l + dst_l > vui_allocated)
2924 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2925 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2926 vui_allocated);
2928 vui = vui_vec;
2930 /* Fill in the locations from DST. */
2931 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2932 node = node->next, jj++)
2934 vui[jj].lc = node;
2935 vui[jj].pos_dst = jj;
2937 /* Pos plus value larger than a sum of 2 valid positions. */
2938 vui[jj].pos = jj + src_l + dst_l;
2941 /* Fill in the locations from SRC. */
2942 n = dst_l;
2943 for (node = src->var_part[i].loc_chain, ii = 0; node;
2944 node = node->next, ii++)
2946 /* Find location from NODE. */
2947 for (jj = 0; jj < dst_l; jj++)
2949 if ((REG_P (vui[jj].lc->loc)
2950 && REG_P (node->loc)
2951 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2952 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2954 vui[jj].pos = jj + ii;
2955 break;
2958 if (jj >= dst_l) /* The location has not been found. */
2960 location_chain *new_node;
2962 /* Copy the location from SRC. */
2963 new_node = new location_chain;
2964 new_node->loc = node->loc;
2965 new_node->init = node->init;
2966 if (!node->set_src || MEM_P (node->set_src))
2967 new_node->set_src = NULL;
2968 else
2969 new_node->set_src = node->set_src;
2970 vui[n].lc = new_node;
2971 vui[n].pos_dst = src_l + dst_l;
2972 vui[n].pos = ii + src_l + dst_l;
2973 n++;
2977 if (dst_l == 2)
2979 /* Special case still very common case. For dst_l == 2
2980 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2981 vui[i].pos == i + src_l + dst_l. */
2982 if (vui[0].pos > vui[1].pos)
2984 /* Order should be 1, 0, 2... */
2985 dst->var_part[k].loc_chain = vui[1].lc;
2986 vui[1].lc->next = vui[0].lc;
2987 if (n >= 3)
2989 vui[0].lc->next = vui[2].lc;
2990 vui[n - 1].lc->next = NULL;
2992 else
2993 vui[0].lc->next = NULL;
2994 ii = 3;
2996 else
2998 dst->var_part[k].loc_chain = vui[0].lc;
2999 if (n >= 3 && vui[2].pos < vui[1].pos)
3001 /* Order should be 0, 2, 1, 3... */
3002 vui[0].lc->next = vui[2].lc;
3003 vui[2].lc->next = vui[1].lc;
3004 if (n >= 4)
3006 vui[1].lc->next = vui[3].lc;
3007 vui[n - 1].lc->next = NULL;
3009 else
3010 vui[1].lc->next = NULL;
3011 ii = 4;
3013 else
3015 /* Order should be 0, 1, 2... */
3016 ii = 1;
3017 vui[n - 1].lc->next = NULL;
3020 for (; ii < n; ii++)
3021 vui[ii - 1].lc->next = vui[ii].lc;
3023 else
3025 qsort (vui, n, sizeof (struct variable_union_info),
3026 variable_union_info_cmp_pos);
3028 /* Reconnect the nodes in sorted order. */
3029 for (ii = 1; ii < n; ii++)
3030 vui[ii - 1].lc->next = vui[ii].lc;
3031 vui[n - 1].lc->next = NULL;
3032 dst->var_part[k].loc_chain = vui[0].lc;
3035 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3037 i--;
3038 j--;
3040 else if ((i >= 0 && j >= 0
3041 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3042 || i < 0)
3044 dst->var_part[k] = dst->var_part[j];
3045 j--;
3047 else if ((i >= 0 && j >= 0
3048 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3049 || j < 0)
3051 location_chain **nextp;
3053 /* Copy the chain from SRC. */
3054 nextp = &dst->var_part[k].loc_chain;
3055 for (node = src->var_part[i].loc_chain; node; node = node->next)
3057 location_chain *new_lc;
3059 new_lc = new location_chain;
3060 new_lc->next = NULL;
3061 new_lc->init = node->init;
3062 if (!node->set_src || MEM_P (node->set_src))
3063 new_lc->set_src = NULL;
3064 else
3065 new_lc->set_src = node->set_src;
3066 new_lc->loc = node->loc;
3068 *nextp = new_lc;
3069 nextp = &new_lc->next;
3072 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3073 i--;
3075 dst->var_part[k].cur_loc = NULL;
3078 if (flag_var_tracking_uninit)
3079 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3081 location_chain *node, *node2;
3082 for (node = src->var_part[i].loc_chain; node; node = node->next)
3083 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3084 if (rtx_equal_p (node->loc, node2->loc))
3086 if (node->init > node2->init)
3087 node2->init = node->init;
3091 /* Continue traversing the hash table. */
3092 return 1;
3095 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3097 static void
3098 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3100 int i;
3102 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3103 attrs_list_union (&dst->regs[i], src->regs[i]);
3105 if (dst->vars == empty_shared_hash)
3107 shared_hash_destroy (dst->vars);
3108 dst->vars = shared_hash_copy (src->vars);
3110 else
3112 variable_iterator_type hi;
3113 variable *var;
3115 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3116 var, variable, hi)
3117 variable_union (var, dst);
3121 /* Whether the value is currently being expanded. */
3122 #define VALUE_RECURSED_INTO(x) \
3123 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3125 /* Whether no expansion was found, saving useless lookups.
3126 It must only be set when VALUE_CHANGED is clear. */
3127 #define NO_LOC_P(x) \
3128 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3130 /* Whether cur_loc in the value needs to be (re)computed. */
3131 #define VALUE_CHANGED(x) \
3132 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3133 /* Whether cur_loc in the decl needs to be (re)computed. */
3134 #define DECL_CHANGED(x) TREE_VISITED (x)
3136 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3137 user DECLs, this means they're in changed_variables. Values and
3138 debug exprs may be left with this flag set if no user variable
3139 requires them to be evaluated. */
3141 static inline void
3142 set_dv_changed (decl_or_value dv, bool newv)
3144 switch (dv_onepart_p (dv))
3146 case ONEPART_VALUE:
3147 if (newv)
3148 NO_LOC_P (dv_as_value (dv)) = false;
3149 VALUE_CHANGED (dv_as_value (dv)) = newv;
3150 break;
3152 case ONEPART_DEXPR:
3153 if (newv)
3154 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3155 /* Fall through... */
3157 default:
3158 DECL_CHANGED (dv_as_decl (dv)) = newv;
3159 break;
3163 /* Return true if DV needs to have its cur_loc recomputed. */
3165 static inline bool
3166 dv_changed_p (decl_or_value dv)
3168 return (dv_is_value_p (dv)
3169 ? VALUE_CHANGED (dv_as_value (dv))
3170 : DECL_CHANGED (dv_as_decl (dv)));
3173 /* Return a location list node whose loc is rtx_equal to LOC, in the
3174 location list of a one-part variable or value VAR, or in that of
3175 any values recursively mentioned in the location lists. VARS must
3176 be in star-canonical form. */
3178 static location_chain *
3179 find_loc_in_1pdv (rtx loc, variable *var, variable_table_type *vars)
3181 location_chain *node;
3182 enum rtx_code loc_code;
3184 if (!var)
3185 return NULL;
3187 gcc_checking_assert (var->onepart);
3189 if (!var->n_var_parts)
3190 return NULL;
3192 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3194 loc_code = GET_CODE (loc);
3195 for (node = var->var_part[0].loc_chain; node; node = node->next)
3197 decl_or_value dv;
3198 variable *rvar;
3200 if (GET_CODE (node->loc) != loc_code)
3202 if (GET_CODE (node->loc) != VALUE)
3203 continue;
3205 else if (loc == node->loc)
3206 return node;
3207 else if (loc_code != VALUE)
3209 if (rtx_equal_p (loc, node->loc))
3210 return node;
3211 continue;
3214 /* Since we're in star-canonical form, we don't need to visit
3215 non-canonical nodes: one-part variables and non-canonical
3216 values would only point back to the canonical node. */
3217 if (dv_is_value_p (var->dv)
3218 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3220 /* Skip all subsequent VALUEs. */
3221 while (node->next && GET_CODE (node->next->loc) == VALUE)
3223 node = node->next;
3224 gcc_checking_assert (!canon_value_cmp (node->loc,
3225 dv_as_value (var->dv)));
3226 if (loc == node->loc)
3227 return node;
3229 continue;
3232 gcc_checking_assert (node == var->var_part[0].loc_chain);
3233 gcc_checking_assert (!node->next);
3235 dv = dv_from_value (node->loc);
3236 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3237 return find_loc_in_1pdv (loc, rvar, vars);
3240 /* ??? Gotta look in cselib_val locations too. */
3242 return NULL;
3245 /* Hash table iteration argument passed to variable_merge. */
3246 struct dfset_merge
3248 /* The set in which the merge is to be inserted. */
3249 dataflow_set *dst;
3250 /* The set that we're iterating in. */
3251 dataflow_set *cur;
3252 /* The set that may contain the other dv we are to merge with. */
3253 dataflow_set *src;
3254 /* Number of onepart dvs in src. */
3255 int src_onepart_cnt;
3258 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3259 loc_cmp order, and it is maintained as such. */
3261 static void
3262 insert_into_intersection (location_chain **nodep, rtx loc,
3263 enum var_init_status status)
3265 location_chain *node;
3266 int r;
3268 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3269 if ((r = loc_cmp (node->loc, loc)) == 0)
3271 node->init = MIN (node->init, status);
3272 return;
3274 else if (r > 0)
3275 break;
3277 node = new location_chain;
3279 node->loc = loc;
3280 node->set_src = NULL;
3281 node->init = status;
3282 node->next = *nodep;
3283 *nodep = node;
3286 /* Insert in DEST the intersection of the locations present in both
3287 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3288 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3289 DSM->dst. */
3291 static void
3292 intersect_loc_chains (rtx val, location_chain **dest, struct dfset_merge *dsm,
3293 location_chain *s1node, variable *s2var)
3295 dataflow_set *s1set = dsm->cur;
3296 dataflow_set *s2set = dsm->src;
3297 location_chain *found;
3299 if (s2var)
3301 location_chain *s2node;
3303 gcc_checking_assert (s2var->onepart);
3305 if (s2var->n_var_parts)
3307 s2node = s2var->var_part[0].loc_chain;
3309 for (; s1node && s2node;
3310 s1node = s1node->next, s2node = s2node->next)
3311 if (s1node->loc != s2node->loc)
3312 break;
3313 else if (s1node->loc == val)
3314 continue;
3315 else
3316 insert_into_intersection (dest, s1node->loc,
3317 MIN (s1node->init, s2node->init));
3321 for (; s1node; s1node = s1node->next)
3323 if (s1node->loc == val)
3324 continue;
3326 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3327 shared_hash_htab (s2set->vars))))
3329 insert_into_intersection (dest, s1node->loc,
3330 MIN (s1node->init, found->init));
3331 continue;
3334 if (GET_CODE (s1node->loc) == VALUE
3335 && !VALUE_RECURSED_INTO (s1node->loc))
3337 decl_or_value dv = dv_from_value (s1node->loc);
3338 variable *svar = shared_hash_find (s1set->vars, dv);
3339 if (svar)
3341 if (svar->n_var_parts == 1)
3343 VALUE_RECURSED_INTO (s1node->loc) = true;
3344 intersect_loc_chains (val, dest, dsm,
3345 svar->var_part[0].loc_chain,
3346 s2var);
3347 VALUE_RECURSED_INTO (s1node->loc) = false;
3352 /* ??? gotta look in cselib_val locations too. */
3354 /* ??? if the location is equivalent to any location in src,
3355 searched recursively
3357 add to dst the values needed to represent the equivalence
3359 telling whether locations S is equivalent to another dv's
3360 location list:
3362 for each location D in the list
3364 if S and D satisfy rtx_equal_p, then it is present
3366 else if D is a value, recurse without cycles
3368 else if S and D have the same CODE and MODE
3370 for each operand oS and the corresponding oD
3372 if oS and oD are not equivalent, then S an D are not equivalent
3374 else if they are RTX vectors
3376 if any vector oS element is not equivalent to its respective oD,
3377 then S and D are not equivalent
3385 /* Return -1 if X should be before Y in a location list for a 1-part
3386 variable, 1 if Y should be before X, and 0 if they're equivalent
3387 and should not appear in the list. */
3389 static int
3390 loc_cmp (rtx x, rtx y)
3392 int i, j, r;
3393 RTX_CODE code = GET_CODE (x);
3394 const char *fmt;
3396 if (x == y)
3397 return 0;
3399 if (REG_P (x))
3401 if (!REG_P (y))
3402 return -1;
3403 gcc_assert (GET_MODE (x) == GET_MODE (y));
3404 if (REGNO (x) == REGNO (y))
3405 return 0;
3406 else if (REGNO (x) < REGNO (y))
3407 return -1;
3408 else
3409 return 1;
3412 if (REG_P (y))
3413 return 1;
3415 if (MEM_P (x))
3417 if (!MEM_P (y))
3418 return -1;
3419 gcc_assert (GET_MODE (x) == GET_MODE (y));
3420 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3423 if (MEM_P (y))
3424 return 1;
3426 if (GET_CODE (x) == VALUE)
3428 if (GET_CODE (y) != VALUE)
3429 return -1;
3430 /* Don't assert the modes are the same, that is true only
3431 when not recursing. (subreg:QI (value:SI 1:1) 0)
3432 and (subreg:QI (value:DI 2:2) 0) can be compared,
3433 even when the modes are different. */
3434 if (canon_value_cmp (x, y))
3435 return -1;
3436 else
3437 return 1;
3440 if (GET_CODE (y) == VALUE)
3441 return 1;
3443 /* Entry value is the least preferable kind of expression. */
3444 if (GET_CODE (x) == ENTRY_VALUE)
3446 if (GET_CODE (y) != ENTRY_VALUE)
3447 return 1;
3448 gcc_assert (GET_MODE (x) == GET_MODE (y));
3449 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3452 if (GET_CODE (y) == ENTRY_VALUE)
3453 return -1;
3455 if (GET_CODE (x) == GET_CODE (y))
3456 /* Compare operands below. */;
3457 else if (GET_CODE (x) < GET_CODE (y))
3458 return -1;
3459 else
3460 return 1;
3462 gcc_assert (GET_MODE (x) == GET_MODE (y));
3464 if (GET_CODE (x) == DEBUG_EXPR)
3466 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3467 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3468 return -1;
3469 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3470 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3471 return 1;
3474 fmt = GET_RTX_FORMAT (code);
3475 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3476 switch (fmt[i])
3478 case 'w':
3479 if (XWINT (x, i) == XWINT (y, i))
3480 break;
3481 else if (XWINT (x, i) < XWINT (y, i))
3482 return -1;
3483 else
3484 return 1;
3486 case 'n':
3487 case 'i':
3488 if (XINT (x, i) == XINT (y, i))
3489 break;
3490 else if (XINT (x, i) < XINT (y, i))
3491 return -1;
3492 else
3493 return 1;
3495 case 'V':
3496 case 'E':
3497 /* Compare the vector length first. */
3498 if (XVECLEN (x, i) == XVECLEN (y, i))
3499 /* Compare the vectors elements. */;
3500 else if (XVECLEN (x, i) < XVECLEN (y, i))
3501 return -1;
3502 else
3503 return 1;
3505 for (j = 0; j < XVECLEN (x, i); j++)
3506 if ((r = loc_cmp (XVECEXP (x, i, j),
3507 XVECEXP (y, i, j))))
3508 return r;
3509 break;
3511 case 'e':
3512 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3513 return r;
3514 break;
3516 case 'S':
3517 case 's':
3518 if (XSTR (x, i) == XSTR (y, i))
3519 break;
3520 if (!XSTR (x, i))
3521 return -1;
3522 if (!XSTR (y, i))
3523 return 1;
3524 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3525 break;
3526 else if (r < 0)
3527 return -1;
3528 else
3529 return 1;
3531 case 'u':
3532 /* These are just backpointers, so they don't matter. */
3533 break;
3535 case '0':
3536 case 't':
3537 break;
3539 /* It is believed that rtx's at this level will never
3540 contain anything but integers and other rtx's,
3541 except for within LABEL_REFs and SYMBOL_REFs. */
3542 default:
3543 gcc_unreachable ();
3545 if (CONST_WIDE_INT_P (x))
3547 /* Compare the vector length first. */
3548 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3549 return 1;
3550 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3551 return -1;
3553 /* Compare the vectors elements. */;
3554 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3556 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3557 return -1;
3558 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3559 return 1;
3563 return 0;
3566 /* Check the order of entries in one-part variables. */
3569 canonicalize_loc_order_check (variable **slot,
3570 dataflow_set *data ATTRIBUTE_UNUSED)
3572 variable *var = *slot;
3573 location_chain *node, *next;
3575 #ifdef ENABLE_RTL_CHECKING
3576 int i;
3577 for (i = 0; i < var->n_var_parts; i++)
3578 gcc_assert (var->var_part[0].cur_loc == NULL);
3579 gcc_assert (!var->in_changed_variables);
3580 #endif
3582 if (!var->onepart)
3583 return 1;
3585 gcc_assert (var->n_var_parts == 1);
3586 node = var->var_part[0].loc_chain;
3587 gcc_assert (node);
3589 while ((next = node->next))
3591 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3592 node = next;
3595 return 1;
3598 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3599 more likely to be chosen as canonical for an equivalence set.
3600 Ensure less likely values can reach more likely neighbors, making
3601 the connections bidirectional. */
3604 canonicalize_values_mark (variable **slot, dataflow_set *set)
3606 variable *var = *slot;
3607 decl_or_value dv = var->dv;
3608 rtx val;
3609 location_chain *node;
3611 if (!dv_is_value_p (dv))
3612 return 1;
3614 gcc_checking_assert (var->n_var_parts == 1);
3616 val = dv_as_value (dv);
3618 for (node = var->var_part[0].loc_chain; node; node = node->next)
3619 if (GET_CODE (node->loc) == VALUE)
3621 if (canon_value_cmp (node->loc, val))
3622 VALUE_RECURSED_INTO (val) = true;
3623 else
3625 decl_or_value odv = dv_from_value (node->loc);
3626 variable **oslot;
3627 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3629 set_slot_part (set, val, oslot, odv, 0,
3630 node->init, NULL_RTX);
3632 VALUE_RECURSED_INTO (node->loc) = true;
3636 return 1;
3639 /* Remove redundant entries from equivalence lists in onepart
3640 variables, canonicalizing equivalence sets into star shapes. */
3643 canonicalize_values_star (variable **slot, dataflow_set *set)
3645 variable *var = *slot;
3646 decl_or_value dv = var->dv;
3647 location_chain *node;
3648 decl_or_value cdv;
3649 rtx val, cval;
3650 variable **cslot;
3651 bool has_value;
3652 bool has_marks;
3654 if (!var->onepart)
3655 return 1;
3657 gcc_checking_assert (var->n_var_parts == 1);
3659 if (dv_is_value_p (dv))
3661 cval = dv_as_value (dv);
3662 if (!VALUE_RECURSED_INTO (cval))
3663 return 1;
3664 VALUE_RECURSED_INTO (cval) = false;
3666 else
3667 cval = NULL_RTX;
3669 restart:
3670 val = cval;
3671 has_value = false;
3672 has_marks = false;
3674 gcc_assert (var->n_var_parts == 1);
3676 for (node = var->var_part[0].loc_chain; node; node = node->next)
3677 if (GET_CODE (node->loc) == VALUE)
3679 has_value = true;
3680 if (VALUE_RECURSED_INTO (node->loc))
3681 has_marks = true;
3682 if (canon_value_cmp (node->loc, cval))
3683 cval = node->loc;
3686 if (!has_value)
3687 return 1;
3689 if (cval == val)
3691 if (!has_marks || dv_is_decl_p (dv))
3692 return 1;
3694 /* Keep it marked so that we revisit it, either after visiting a
3695 child node, or after visiting a new parent that might be
3696 found out. */
3697 VALUE_RECURSED_INTO (val) = true;
3699 for (node = var->var_part[0].loc_chain; node; node = node->next)
3700 if (GET_CODE (node->loc) == VALUE
3701 && VALUE_RECURSED_INTO (node->loc))
3703 cval = node->loc;
3704 restart_with_cval:
3705 VALUE_RECURSED_INTO (cval) = false;
3706 dv = dv_from_value (cval);
3707 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3708 if (!slot)
3710 gcc_assert (dv_is_decl_p (var->dv));
3711 /* The canonical value was reset and dropped.
3712 Remove it. */
3713 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3714 return 1;
3716 var = *slot;
3717 gcc_assert (dv_is_value_p (var->dv));
3718 if (var->n_var_parts == 0)
3719 return 1;
3720 gcc_assert (var->n_var_parts == 1);
3721 goto restart;
3724 VALUE_RECURSED_INTO (val) = false;
3726 return 1;
3729 /* Push values to the canonical one. */
3730 cdv = dv_from_value (cval);
3731 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3733 for (node = var->var_part[0].loc_chain; node; node = node->next)
3734 if (node->loc != cval)
3736 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3737 node->init, NULL_RTX);
3738 if (GET_CODE (node->loc) == VALUE)
3740 decl_or_value ndv = dv_from_value (node->loc);
3742 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3743 NO_INSERT);
3745 if (canon_value_cmp (node->loc, val))
3747 /* If it could have been a local minimum, it's not any more,
3748 since it's now neighbor to cval, so it may have to push
3749 to it. Conversely, if it wouldn't have prevailed over
3750 val, then whatever mark it has is fine: if it was to
3751 push, it will now push to a more canonical node, but if
3752 it wasn't, then it has already pushed any values it might
3753 have to. */
3754 VALUE_RECURSED_INTO (node->loc) = true;
3755 /* Make sure we visit node->loc by ensuring we cval is
3756 visited too. */
3757 VALUE_RECURSED_INTO (cval) = true;
3759 else if (!VALUE_RECURSED_INTO (node->loc))
3760 /* If we have no need to "recurse" into this node, it's
3761 already "canonicalized", so drop the link to the old
3762 parent. */
3763 clobber_variable_part (set, cval, ndv, 0, NULL);
3765 else if (GET_CODE (node->loc) == REG)
3767 attrs *list = set->regs[REGNO (node->loc)], **listp;
3769 /* Change an existing attribute referring to dv so that it
3770 refers to cdv, removing any duplicate this might
3771 introduce, and checking that no previous duplicates
3772 existed, all in a single pass. */
3774 while (list)
3776 if (list->offset == 0
3777 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3778 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3779 break;
3781 list = list->next;
3784 gcc_assert (list);
3785 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3787 list->dv = cdv;
3788 for (listp = &list->next; (list = *listp); listp = &list->next)
3790 if (list->offset)
3791 continue;
3793 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3795 *listp = list->next;
3796 delete list;
3797 list = *listp;
3798 break;
3801 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3804 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3806 for (listp = &list->next; (list = *listp); listp = &list->next)
3808 if (list->offset)
3809 continue;
3811 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3813 *listp = list->next;
3814 delete list;
3815 list = *listp;
3816 break;
3819 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3822 else
3823 gcc_unreachable ();
3825 if (flag_checking)
3826 while (list)
3828 if (list->offset == 0
3829 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3830 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3831 gcc_unreachable ();
3833 list = list->next;
3838 if (val)
3839 set_slot_part (set, val, cslot, cdv, 0,
3840 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3842 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3844 /* Variable may have been unshared. */
3845 var = *slot;
3846 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3847 && var->var_part[0].loc_chain->next == NULL);
3849 if (VALUE_RECURSED_INTO (cval))
3850 goto restart_with_cval;
3852 return 1;
3855 /* Bind one-part variables to the canonical value in an equivalence
3856 set. Not doing this causes dataflow convergence failure in rare
3857 circumstances, see PR42873. Unfortunately we can't do this
3858 efficiently as part of canonicalize_values_star, since we may not
3859 have determined or even seen the canonical value of a set when we
3860 get to a variable that references another member of the set. */
3863 canonicalize_vars_star (variable **slot, dataflow_set *set)
3865 variable *var = *slot;
3866 decl_or_value dv = var->dv;
3867 location_chain *node;
3868 rtx cval;
3869 decl_or_value cdv;
3870 variable **cslot;
3871 variable *cvar;
3872 location_chain *cnode;
3874 if (!var->onepart || var->onepart == ONEPART_VALUE)
3875 return 1;
3877 gcc_assert (var->n_var_parts == 1);
3879 node = var->var_part[0].loc_chain;
3881 if (GET_CODE (node->loc) != VALUE)
3882 return 1;
3884 gcc_assert (!node->next);
3885 cval = node->loc;
3887 /* Push values to the canonical one. */
3888 cdv = dv_from_value (cval);
3889 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3890 if (!cslot)
3891 return 1;
3892 cvar = *cslot;
3893 gcc_assert (cvar->n_var_parts == 1);
3895 cnode = cvar->var_part[0].loc_chain;
3897 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3898 that are not “more canonical” than it. */
3899 if (GET_CODE (cnode->loc) != VALUE
3900 || !canon_value_cmp (cnode->loc, cval))
3901 return 1;
3903 /* CVAL was found to be non-canonical. Change the variable to point
3904 to the canonical VALUE. */
3905 gcc_assert (!cnode->next);
3906 cval = cnode->loc;
3908 slot = set_slot_part (set, cval, slot, dv, 0,
3909 node->init, node->set_src);
3910 clobber_slot_part (set, cval, slot, 0, node->set_src);
3912 return 1;
3915 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3916 corresponding entry in DSM->src. Multi-part variables are combined
3917 with variable_union, whereas onepart dvs are combined with
3918 intersection. */
3920 static int
3921 variable_merge_over_cur (variable *s1var, struct dfset_merge *dsm)
3923 dataflow_set *dst = dsm->dst;
3924 variable **dstslot;
3925 variable *s2var, *dvar = NULL;
3926 decl_or_value dv = s1var->dv;
3927 onepart_enum onepart = s1var->onepart;
3928 rtx val;
3929 hashval_t dvhash;
3930 location_chain *node, **nodep;
3932 /* If the incoming onepart variable has an empty location list, then
3933 the intersection will be just as empty. For other variables,
3934 it's always union. */
3935 gcc_checking_assert (s1var->n_var_parts
3936 && s1var->var_part[0].loc_chain);
3938 if (!onepart)
3939 return variable_union (s1var, dst);
3941 gcc_checking_assert (s1var->n_var_parts == 1);
3943 dvhash = dv_htab_hash (dv);
3944 if (dv_is_value_p (dv))
3945 val = dv_as_value (dv);
3946 else
3947 val = NULL;
3949 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3950 if (!s2var)
3952 dst_can_be_shared = false;
3953 return 1;
3956 dsm->src_onepart_cnt--;
3957 gcc_assert (s2var->var_part[0].loc_chain
3958 && s2var->onepart == onepart
3959 && s2var->n_var_parts == 1);
3961 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3962 if (dstslot)
3964 dvar = *dstslot;
3965 gcc_assert (dvar->refcount == 1
3966 && dvar->onepart == onepart
3967 && dvar->n_var_parts == 1);
3968 nodep = &dvar->var_part[0].loc_chain;
3970 else
3972 nodep = &node;
3973 node = NULL;
3976 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3978 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3979 dvhash, INSERT);
3980 *dstslot = dvar = s2var;
3981 dvar->refcount++;
3983 else
3985 dst_can_be_shared = false;
3987 intersect_loc_chains (val, nodep, dsm,
3988 s1var->var_part[0].loc_chain, s2var);
3990 if (!dstslot)
3992 if (node)
3994 dvar = onepart_pool_allocate (onepart);
3995 dvar->dv = dv;
3996 dvar->refcount = 1;
3997 dvar->n_var_parts = 1;
3998 dvar->onepart = onepart;
3999 dvar->in_changed_variables = false;
4000 dvar->var_part[0].loc_chain = node;
4001 dvar->var_part[0].cur_loc = NULL;
4002 if (onepart)
4003 VAR_LOC_1PAUX (dvar) = NULL;
4004 else
4005 VAR_PART_OFFSET (dvar, 0) = 0;
4007 dstslot
4008 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4009 INSERT);
4010 gcc_assert (!*dstslot);
4011 *dstslot = dvar;
4013 else
4014 return 1;
4018 nodep = &dvar->var_part[0].loc_chain;
4019 while ((node = *nodep))
4021 location_chain **nextp = &node->next;
4023 if (GET_CODE (node->loc) == REG)
4025 attrs *list;
4027 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4028 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4029 && dv_is_value_p (list->dv))
4030 break;
4032 if (!list)
4033 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4034 dv, 0, node->loc);
4035 /* If this value became canonical for another value that had
4036 this register, we want to leave it alone. */
4037 else if (dv_as_value (list->dv) != val)
4039 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4040 dstslot, dv, 0,
4041 node->init, NULL_RTX);
4042 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4044 /* Since nextp points into the removed node, we can't
4045 use it. The pointer to the next node moved to nodep.
4046 However, if the variable we're walking is unshared
4047 during our walk, we'll keep walking the location list
4048 of the previously-shared variable, in which case the
4049 node won't have been removed, and we'll want to skip
4050 it. That's why we test *nodep here. */
4051 if (*nodep != node)
4052 nextp = nodep;
4055 else
4056 /* Canonicalization puts registers first, so we don't have to
4057 walk it all. */
4058 break;
4059 nodep = nextp;
4062 if (dvar != *dstslot)
4063 dvar = *dstslot;
4064 nodep = &dvar->var_part[0].loc_chain;
4066 if (val)
4068 /* Mark all referenced nodes for canonicalization, and make sure
4069 we have mutual equivalence links. */
4070 VALUE_RECURSED_INTO (val) = true;
4071 for (node = *nodep; node; node = node->next)
4072 if (GET_CODE (node->loc) == VALUE)
4074 VALUE_RECURSED_INTO (node->loc) = true;
4075 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4076 node->init, NULL, INSERT);
4079 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4080 gcc_assert (*dstslot == dvar);
4081 canonicalize_values_star (dstslot, dst);
4082 gcc_checking_assert (dstslot
4083 == shared_hash_find_slot_noinsert_1 (dst->vars,
4084 dv, dvhash));
4085 dvar = *dstslot;
4087 else
4089 bool has_value = false, has_other = false;
4091 /* If we have one value and anything else, we're going to
4092 canonicalize this, so make sure all values have an entry in
4093 the table and are marked for canonicalization. */
4094 for (node = *nodep; node; node = node->next)
4096 if (GET_CODE (node->loc) == VALUE)
4098 /* If this was marked during register canonicalization,
4099 we know we have to canonicalize values. */
4100 if (has_value)
4101 has_other = true;
4102 has_value = true;
4103 if (has_other)
4104 break;
4106 else
4108 has_other = true;
4109 if (has_value)
4110 break;
4114 if (has_value && has_other)
4116 for (node = *nodep; node; node = node->next)
4118 if (GET_CODE (node->loc) == VALUE)
4120 decl_or_value dv = dv_from_value (node->loc);
4121 variable **slot = NULL;
4123 if (shared_hash_shared (dst->vars))
4124 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4125 if (!slot)
4126 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4127 INSERT);
4128 if (!*slot)
4130 variable *var = onepart_pool_allocate (ONEPART_VALUE);
4131 var->dv = dv;
4132 var->refcount = 1;
4133 var->n_var_parts = 1;
4134 var->onepart = ONEPART_VALUE;
4135 var->in_changed_variables = false;
4136 var->var_part[0].loc_chain = NULL;
4137 var->var_part[0].cur_loc = NULL;
4138 VAR_LOC_1PAUX (var) = NULL;
4139 *slot = var;
4142 VALUE_RECURSED_INTO (node->loc) = true;
4146 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4147 gcc_assert (*dstslot == dvar);
4148 canonicalize_values_star (dstslot, dst);
4149 gcc_checking_assert (dstslot
4150 == shared_hash_find_slot_noinsert_1 (dst->vars,
4151 dv, dvhash));
4152 dvar = *dstslot;
4156 if (!onepart_variable_different_p (dvar, s2var))
4158 variable_htab_free (dvar);
4159 *dstslot = dvar = s2var;
4160 dvar->refcount++;
4162 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4164 variable_htab_free (dvar);
4165 *dstslot = dvar = s1var;
4166 dvar->refcount++;
4167 dst_can_be_shared = false;
4169 else
4170 dst_can_be_shared = false;
4172 return 1;
4175 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4176 multi-part variable. Unions of multi-part variables and
4177 intersections of one-part ones will be handled in
4178 variable_merge_over_cur(). */
4180 static int
4181 variable_merge_over_src (variable *s2var, struct dfset_merge *dsm)
4183 dataflow_set *dst = dsm->dst;
4184 decl_or_value dv = s2var->dv;
4186 if (!s2var->onepart)
4188 variable **dstp = shared_hash_find_slot (dst->vars, dv);
4189 *dstp = s2var;
4190 s2var->refcount++;
4191 return 1;
4194 dsm->src_onepart_cnt++;
4195 return 1;
4198 /* Combine dataflow set information from SRC2 into DST, using PDST
4199 to carry over information across passes. */
4201 static void
4202 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4204 dataflow_set cur = *dst;
4205 dataflow_set *src1 = &cur;
4206 struct dfset_merge dsm;
4207 int i;
4208 size_t src1_elems, src2_elems;
4209 variable_iterator_type hi;
4210 variable *var;
4212 src1_elems = shared_hash_htab (src1->vars)->elements ();
4213 src2_elems = shared_hash_htab (src2->vars)->elements ();
4214 dataflow_set_init (dst);
4215 dst->stack_adjust = cur.stack_adjust;
4216 shared_hash_destroy (dst->vars);
4217 dst->vars = new shared_hash;
4218 dst->vars->refcount = 1;
4219 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4221 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4222 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4224 dsm.dst = dst;
4225 dsm.src = src2;
4226 dsm.cur = src1;
4227 dsm.src_onepart_cnt = 0;
4229 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4230 var, variable, hi)
4231 variable_merge_over_src (var, &dsm);
4232 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4233 var, variable, hi)
4234 variable_merge_over_cur (var, &dsm);
4236 if (dsm.src_onepart_cnt)
4237 dst_can_be_shared = false;
4239 dataflow_set_destroy (src1);
4242 /* Mark register equivalences. */
4244 static void
4245 dataflow_set_equiv_regs (dataflow_set *set)
4247 int i;
4248 attrs *list, **listp;
4250 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4252 rtx canon[NUM_MACHINE_MODES];
4254 /* If the list is empty or one entry, no need to canonicalize
4255 anything. */
4256 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4257 continue;
4259 memset (canon, 0, sizeof (canon));
4261 for (list = set->regs[i]; list; list = list->next)
4262 if (list->offset == 0 && dv_is_value_p (list->dv))
4264 rtx val = dv_as_value (list->dv);
4265 rtx *cvalp = &canon[(int)GET_MODE (val)];
4266 rtx cval = *cvalp;
4268 if (canon_value_cmp (val, cval))
4269 *cvalp = val;
4272 for (list = set->regs[i]; list; list = list->next)
4273 if (list->offset == 0 && dv_onepart_p (list->dv))
4275 rtx cval = canon[(int)GET_MODE (list->loc)];
4277 if (!cval)
4278 continue;
4280 if (dv_is_value_p (list->dv))
4282 rtx val = dv_as_value (list->dv);
4284 if (val == cval)
4285 continue;
4287 VALUE_RECURSED_INTO (val) = true;
4288 set_variable_part (set, val, dv_from_value (cval), 0,
4289 VAR_INIT_STATUS_INITIALIZED,
4290 NULL, NO_INSERT);
4293 VALUE_RECURSED_INTO (cval) = true;
4294 set_variable_part (set, cval, list->dv, 0,
4295 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4298 for (listp = &set->regs[i]; (list = *listp);
4299 listp = list ? &list->next : listp)
4300 if (list->offset == 0 && dv_onepart_p (list->dv))
4302 rtx cval = canon[(int)GET_MODE (list->loc)];
4303 variable **slot;
4305 if (!cval)
4306 continue;
4308 if (dv_is_value_p (list->dv))
4310 rtx val = dv_as_value (list->dv);
4311 if (!VALUE_RECURSED_INTO (val))
4312 continue;
4315 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4316 canonicalize_values_star (slot, set);
4317 if (*listp != list)
4318 list = NULL;
4323 /* Remove any redundant values in the location list of VAR, which must
4324 be unshared and 1-part. */
4326 static void
4327 remove_duplicate_values (variable *var)
4329 location_chain *node, **nodep;
4331 gcc_assert (var->onepart);
4332 gcc_assert (var->n_var_parts == 1);
4333 gcc_assert (var->refcount == 1);
4335 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4337 if (GET_CODE (node->loc) == VALUE)
4339 if (VALUE_RECURSED_INTO (node->loc))
4341 /* Remove duplicate value node. */
4342 *nodep = node->next;
4343 delete node;
4344 continue;
4346 else
4347 VALUE_RECURSED_INTO (node->loc) = true;
4349 nodep = &node->next;
4352 for (node = var->var_part[0].loc_chain; node; node = node->next)
4353 if (GET_CODE (node->loc) == VALUE)
4355 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4356 VALUE_RECURSED_INTO (node->loc) = false;
4361 /* Hash table iteration argument passed to variable_post_merge. */
4362 struct dfset_post_merge
4364 /* The new input set for the current block. */
4365 dataflow_set *set;
4366 /* Pointer to the permanent input set for the current block, or
4367 NULL. */
4368 dataflow_set **permp;
4371 /* Create values for incoming expressions associated with one-part
4372 variables that don't have value numbers for them. */
4375 variable_post_merge_new_vals (variable **slot, dfset_post_merge *dfpm)
4377 dataflow_set *set = dfpm->set;
4378 variable *var = *slot;
4379 location_chain *node;
4381 if (!var->onepart || !var->n_var_parts)
4382 return 1;
4384 gcc_assert (var->n_var_parts == 1);
4386 if (dv_is_decl_p (var->dv))
4388 bool check_dupes = false;
4390 restart:
4391 for (node = var->var_part[0].loc_chain; node; node = node->next)
4393 if (GET_CODE (node->loc) == VALUE)
4394 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4395 else if (GET_CODE (node->loc) == REG)
4397 attrs *att, **attp, **curp = NULL;
4399 if (var->refcount != 1)
4401 slot = unshare_variable (set, slot, var,
4402 VAR_INIT_STATUS_INITIALIZED);
4403 var = *slot;
4404 goto restart;
4407 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4408 attp = &att->next)
4409 if (att->offset == 0
4410 && GET_MODE (att->loc) == GET_MODE (node->loc))
4412 if (dv_is_value_p (att->dv))
4414 rtx cval = dv_as_value (att->dv);
4415 node->loc = cval;
4416 check_dupes = true;
4417 break;
4419 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4420 curp = attp;
4423 if (!curp)
4425 curp = attp;
4426 while (*curp)
4427 if ((*curp)->offset == 0
4428 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4429 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4430 break;
4431 else
4432 curp = &(*curp)->next;
4433 gcc_assert (*curp);
4436 if (!att)
4438 decl_or_value cdv;
4439 rtx cval;
4441 if (!*dfpm->permp)
4443 *dfpm->permp = XNEW (dataflow_set);
4444 dataflow_set_init (*dfpm->permp);
4447 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4448 att; att = att->next)
4449 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4451 gcc_assert (att->offset == 0
4452 && dv_is_value_p (att->dv));
4453 val_reset (set, att->dv);
4454 break;
4457 if (att)
4459 cdv = att->dv;
4460 cval = dv_as_value (cdv);
4462 else
4464 /* Create a unique value to hold this register,
4465 that ought to be found and reused in
4466 subsequent rounds. */
4467 cselib_val *v;
4468 gcc_assert (!cselib_lookup (node->loc,
4469 GET_MODE (node->loc), 0,
4470 VOIDmode));
4471 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4472 VOIDmode);
4473 cselib_preserve_value (v);
4474 cselib_invalidate_rtx (node->loc);
4475 cval = v->val_rtx;
4476 cdv = dv_from_value (cval);
4477 if (dump_file)
4478 fprintf (dump_file,
4479 "Created new value %u:%u for reg %i\n",
4480 v->uid, v->hash, REGNO (node->loc));
4483 var_reg_decl_set (*dfpm->permp, node->loc,
4484 VAR_INIT_STATUS_INITIALIZED,
4485 cdv, 0, NULL, INSERT);
4487 node->loc = cval;
4488 check_dupes = true;
4491 /* Remove attribute referring to the decl, which now
4492 uses the value for the register, already existing or
4493 to be added when we bring perm in. */
4494 att = *curp;
4495 *curp = att->next;
4496 delete att;
4500 if (check_dupes)
4501 remove_duplicate_values (var);
4504 return 1;
4507 /* Reset values in the permanent set that are not associated with the
4508 chosen expression. */
4511 variable_post_merge_perm_vals (variable **pslot, dfset_post_merge *dfpm)
4513 dataflow_set *set = dfpm->set;
4514 variable *pvar = *pslot, *var;
4515 location_chain *pnode;
4516 decl_or_value dv;
4517 attrs *att;
4519 gcc_assert (dv_is_value_p (pvar->dv)
4520 && pvar->n_var_parts == 1);
4521 pnode = pvar->var_part[0].loc_chain;
4522 gcc_assert (pnode
4523 && !pnode->next
4524 && REG_P (pnode->loc));
4526 dv = pvar->dv;
4528 var = shared_hash_find (set->vars, dv);
4529 if (var)
4531 /* Although variable_post_merge_new_vals may have made decls
4532 non-star-canonical, values that pre-existed in canonical form
4533 remain canonical, and newly-created values reference a single
4534 REG, so they are canonical as well. Since VAR has the
4535 location list for a VALUE, using find_loc_in_1pdv for it is
4536 fine, since VALUEs don't map back to DECLs. */
4537 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4538 return 1;
4539 val_reset (set, dv);
4542 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4543 if (att->offset == 0
4544 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4545 && dv_is_value_p (att->dv))
4546 break;
4548 /* If there is a value associated with this register already, create
4549 an equivalence. */
4550 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4552 rtx cval = dv_as_value (att->dv);
4553 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4554 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4555 NULL, INSERT);
4557 else if (!att)
4559 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4560 dv, 0, pnode->loc);
4561 variable_union (pvar, set);
4564 return 1;
4567 /* Just checking stuff and registering register attributes for
4568 now. */
4570 static void
4571 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4573 struct dfset_post_merge dfpm;
4575 dfpm.set = set;
4576 dfpm.permp = permp;
4578 shared_hash_htab (set->vars)
4579 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4580 if (*permp)
4581 shared_hash_htab ((*permp)->vars)
4582 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4583 shared_hash_htab (set->vars)
4584 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4585 shared_hash_htab (set->vars)
4586 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4589 /* Return a node whose loc is a MEM that refers to EXPR in the
4590 location list of a one-part variable or value VAR, or in that of
4591 any values recursively mentioned in the location lists. */
4593 static location_chain *
4594 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4596 location_chain *node;
4597 decl_or_value dv;
4598 variable *var;
4599 location_chain *where = NULL;
4601 if (!val)
4602 return NULL;
4604 gcc_assert (GET_CODE (val) == VALUE
4605 && !VALUE_RECURSED_INTO (val));
4607 dv = dv_from_value (val);
4608 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4610 if (!var)
4611 return NULL;
4613 gcc_assert (var->onepart);
4615 if (!var->n_var_parts)
4616 return NULL;
4618 VALUE_RECURSED_INTO (val) = true;
4620 for (node = var->var_part[0].loc_chain; node; node = node->next)
4621 if (MEM_P (node->loc)
4622 && MEM_EXPR (node->loc) == expr
4623 && INT_MEM_OFFSET (node->loc) == 0)
4625 where = node;
4626 break;
4628 else if (GET_CODE (node->loc) == VALUE
4629 && !VALUE_RECURSED_INTO (node->loc)
4630 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4631 break;
4633 VALUE_RECURSED_INTO (val) = false;
4635 return where;
4638 /* Return TRUE if the value of MEM may vary across a call. */
4640 static bool
4641 mem_dies_at_call (rtx mem)
4643 tree expr = MEM_EXPR (mem);
4644 tree decl;
4646 if (!expr)
4647 return true;
4649 decl = get_base_address (expr);
4651 if (!decl)
4652 return true;
4654 if (!DECL_P (decl))
4655 return true;
4657 return (may_be_aliased (decl)
4658 || (!TREE_READONLY (decl) && is_global_var (decl)));
4661 /* Remove all MEMs from the location list of a hash table entry for a
4662 one-part variable, except those whose MEM attributes map back to
4663 the variable itself, directly or within a VALUE. */
4666 dataflow_set_preserve_mem_locs (variable **slot, dataflow_set *set)
4668 variable *var = *slot;
4670 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4672 tree decl = dv_as_decl (var->dv);
4673 location_chain *loc, **locp;
4674 bool changed = false;
4676 if (!var->n_var_parts)
4677 return 1;
4679 gcc_assert (var->n_var_parts == 1);
4681 if (shared_var_p (var, set->vars))
4683 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4685 /* We want to remove dying MEMs that doesn't refer to DECL. */
4686 if (GET_CODE (loc->loc) == MEM
4687 && (MEM_EXPR (loc->loc) != decl
4688 || INT_MEM_OFFSET (loc->loc) != 0)
4689 && !mem_dies_at_call (loc->loc))
4690 break;
4691 /* We want to move here MEMs that do refer to DECL. */
4692 else if (GET_CODE (loc->loc) == VALUE
4693 && find_mem_expr_in_1pdv (decl, loc->loc,
4694 shared_hash_htab (set->vars)))
4695 break;
4698 if (!loc)
4699 return 1;
4701 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4702 var = *slot;
4703 gcc_assert (var->n_var_parts == 1);
4706 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4707 loc; loc = *locp)
4709 rtx old_loc = loc->loc;
4710 if (GET_CODE (old_loc) == VALUE)
4712 location_chain *mem_node
4713 = find_mem_expr_in_1pdv (decl, loc->loc,
4714 shared_hash_htab (set->vars));
4716 /* ??? This picks up only one out of multiple MEMs that
4717 refer to the same variable. Do we ever need to be
4718 concerned about dealing with more than one, or, given
4719 that they should all map to the same variable
4720 location, their addresses will have been merged and
4721 they will be regarded as equivalent? */
4722 if (mem_node)
4724 loc->loc = mem_node->loc;
4725 loc->set_src = mem_node->set_src;
4726 loc->init = MIN (loc->init, mem_node->init);
4730 if (GET_CODE (loc->loc) != MEM
4731 || (MEM_EXPR (loc->loc) == decl
4732 && INT_MEM_OFFSET (loc->loc) == 0)
4733 || !mem_dies_at_call (loc->loc))
4735 if (old_loc != loc->loc && emit_notes)
4737 if (old_loc == var->var_part[0].cur_loc)
4739 changed = true;
4740 var->var_part[0].cur_loc = NULL;
4743 locp = &loc->next;
4744 continue;
4747 if (emit_notes)
4749 if (old_loc == var->var_part[0].cur_loc)
4751 changed = true;
4752 var->var_part[0].cur_loc = NULL;
4755 *locp = loc->next;
4756 delete loc;
4759 if (!var->var_part[0].loc_chain)
4761 var->n_var_parts--;
4762 changed = true;
4764 if (changed)
4765 variable_was_changed (var, set);
4768 return 1;
4771 /* Remove all MEMs from the location list of a hash table entry for a
4772 value. */
4775 dataflow_set_remove_mem_locs (variable **slot, dataflow_set *set)
4777 variable *var = *slot;
4779 if (var->onepart == ONEPART_VALUE)
4781 location_chain *loc, **locp;
4782 bool changed = false;
4783 rtx cur_loc;
4785 gcc_assert (var->n_var_parts == 1);
4787 if (shared_var_p (var, set->vars))
4789 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4790 if (GET_CODE (loc->loc) == MEM
4791 && mem_dies_at_call (loc->loc))
4792 break;
4794 if (!loc)
4795 return 1;
4797 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4798 var = *slot;
4799 gcc_assert (var->n_var_parts == 1);
4802 if (VAR_LOC_1PAUX (var))
4803 cur_loc = VAR_LOC_FROM (var);
4804 else
4805 cur_loc = var->var_part[0].cur_loc;
4807 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4808 loc; loc = *locp)
4810 if (GET_CODE (loc->loc) != MEM
4811 || !mem_dies_at_call (loc->loc))
4813 locp = &loc->next;
4814 continue;
4817 *locp = loc->next;
4818 /* If we have deleted the location which was last emitted
4819 we have to emit new location so add the variable to set
4820 of changed variables. */
4821 if (cur_loc == loc->loc)
4823 changed = true;
4824 var->var_part[0].cur_loc = NULL;
4825 if (VAR_LOC_1PAUX (var))
4826 VAR_LOC_FROM (var) = NULL;
4828 delete loc;
4831 if (!var->var_part[0].loc_chain)
4833 var->n_var_parts--;
4834 changed = true;
4836 if (changed)
4837 variable_was_changed (var, set);
4840 return 1;
4843 /* Remove all variable-location information about call-clobbered
4844 registers, as well as associations between MEMs and VALUEs. */
4846 static void
4847 dataflow_set_clear_at_call (dataflow_set *set, rtx_insn *call_insn)
4849 unsigned int r;
4850 hard_reg_set_iterator hrsi;
4851 HARD_REG_SET invalidated_regs;
4853 get_call_reg_set_usage (call_insn, &invalidated_regs,
4854 regs_invalidated_by_call);
4856 EXECUTE_IF_SET_IN_HARD_REG_SET (invalidated_regs, 0, r, hrsi)
4857 var_regno_delete (set, r);
4859 if (MAY_HAVE_DEBUG_INSNS)
4861 set->traversed_vars = set->vars;
4862 shared_hash_htab (set->vars)
4863 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4864 set->traversed_vars = set->vars;
4865 shared_hash_htab (set->vars)
4866 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4867 set->traversed_vars = NULL;
4871 static bool
4872 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4874 location_chain *lc1, *lc2;
4876 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4878 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4880 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4882 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4883 break;
4885 if (rtx_equal_p (lc1->loc, lc2->loc))
4886 break;
4888 if (!lc2)
4889 return true;
4891 return false;
4894 /* Return true if one-part variables VAR1 and VAR2 are different.
4895 They must be in canonical order. */
4897 static bool
4898 onepart_variable_different_p (variable *var1, variable *var2)
4900 location_chain *lc1, *lc2;
4902 if (var1 == var2)
4903 return false;
4905 gcc_assert (var1->n_var_parts == 1
4906 && var2->n_var_parts == 1);
4908 lc1 = var1->var_part[0].loc_chain;
4909 lc2 = var2->var_part[0].loc_chain;
4911 gcc_assert (lc1 && lc2);
4913 while (lc1 && lc2)
4915 if (loc_cmp (lc1->loc, lc2->loc))
4916 return true;
4917 lc1 = lc1->next;
4918 lc2 = lc2->next;
4921 return lc1 != lc2;
4924 /* Return true if variables VAR1 and VAR2 are different. */
4926 static bool
4927 variable_different_p (variable *var1, variable *var2)
4929 int i;
4931 if (var1 == var2)
4932 return false;
4934 if (var1->onepart != var2->onepart)
4935 return true;
4937 if (var1->n_var_parts != var2->n_var_parts)
4938 return true;
4940 if (var1->onepart && var1->n_var_parts)
4942 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4943 && var1->n_var_parts == 1);
4944 /* One-part values have locations in a canonical order. */
4945 return onepart_variable_different_p (var1, var2);
4948 for (i = 0; i < var1->n_var_parts; i++)
4950 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4951 return true;
4952 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4953 return true;
4954 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4955 return true;
4957 return false;
4960 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4962 static bool
4963 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4965 variable_iterator_type hi;
4966 variable *var1;
4968 if (old_set->vars == new_set->vars)
4969 return false;
4971 if (shared_hash_htab (old_set->vars)->elements ()
4972 != shared_hash_htab (new_set->vars)->elements ())
4973 return true;
4975 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
4976 var1, variable, hi)
4978 variable_table_type *htab = shared_hash_htab (new_set->vars);
4979 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
4980 if (!var2)
4982 if (dump_file && (dump_flags & TDF_DETAILS))
4984 fprintf (dump_file, "dataflow difference found: removal of:\n");
4985 dump_var (var1);
4987 return true;
4990 if (variable_different_p (var1, var2))
4992 if (dump_file && (dump_flags & TDF_DETAILS))
4994 fprintf (dump_file, "dataflow difference found: "
4995 "old and new follow:\n");
4996 dump_var (var1);
4997 dump_var (var2);
4999 return true;
5003 /* No need to traverse the second hashtab, if both have the same number
5004 of elements and the second one had all entries found in the first one,
5005 then it can't have any extra entries. */
5006 return false;
5009 /* Free the contents of dataflow set SET. */
5011 static void
5012 dataflow_set_destroy (dataflow_set *set)
5014 int i;
5016 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5017 attrs_list_clear (&set->regs[i]);
5019 shared_hash_destroy (set->vars);
5020 set->vars = NULL;
5023 /* Return true if T is a tracked parameter with non-degenerate record type. */
5025 static bool
5026 tracked_record_parameter_p (tree t)
5028 if (TREE_CODE (t) != PARM_DECL)
5029 return false;
5031 if (DECL_MODE (t) == BLKmode)
5032 return false;
5034 tree type = TREE_TYPE (t);
5035 if (TREE_CODE (type) != RECORD_TYPE)
5036 return false;
5038 if (DECL_CHAIN (TYPE_FIELDS (type)) == NULL_TREE)
5039 return false;
5041 return true;
5044 /* Shall EXPR be tracked? */
5046 static bool
5047 track_expr_p (tree expr, bool need_rtl)
5049 rtx decl_rtl;
5050 tree realdecl;
5052 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5053 return DECL_RTL_SET_P (expr);
5055 /* If EXPR is not a parameter or a variable do not track it. */
5056 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5057 return 0;
5059 /* It also must have a name... */
5060 if (!DECL_NAME (expr) && need_rtl)
5061 return 0;
5063 /* ... and a RTL assigned to it. */
5064 decl_rtl = DECL_RTL_IF_SET (expr);
5065 if (!decl_rtl && need_rtl)
5066 return 0;
5068 /* If this expression is really a debug alias of some other declaration, we
5069 don't need to track this expression if the ultimate declaration is
5070 ignored. */
5071 realdecl = expr;
5072 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5074 realdecl = DECL_DEBUG_EXPR (realdecl);
5075 if (!DECL_P (realdecl))
5077 if (handled_component_p (realdecl)
5078 || (TREE_CODE (realdecl) == MEM_REF
5079 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5081 HOST_WIDE_INT bitsize, bitpos, maxsize;
5082 bool reverse;
5083 tree innerdecl
5084 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5085 &maxsize, &reverse);
5086 if (!DECL_P (innerdecl)
5087 || DECL_IGNORED_P (innerdecl)
5088 /* Do not track declarations for parts of tracked record
5089 parameters since we want to track them as a whole. */
5090 || tracked_record_parameter_p (innerdecl)
5091 || TREE_STATIC (innerdecl)
5092 || bitsize <= 0
5093 || bitpos + bitsize > 256
5094 || bitsize != maxsize)
5095 return 0;
5096 else
5097 realdecl = expr;
5099 else
5100 return 0;
5104 /* Do not track EXPR if REALDECL it should be ignored for debugging
5105 purposes. */
5106 if (DECL_IGNORED_P (realdecl))
5107 return 0;
5109 /* Do not track global variables until we are able to emit correct location
5110 list for them. */
5111 if (TREE_STATIC (realdecl))
5112 return 0;
5114 /* When the EXPR is a DECL for alias of some variable (see example)
5115 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5116 DECL_RTL contains SYMBOL_REF.
5118 Example:
5119 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5120 char **_dl_argv;
5122 if (decl_rtl && MEM_P (decl_rtl)
5123 && contains_symbol_ref_p (XEXP (decl_rtl, 0)))
5124 return 0;
5126 /* If RTX is a memory it should not be very large (because it would be
5127 an array or struct). */
5128 if (decl_rtl && MEM_P (decl_rtl))
5130 /* Do not track structures and arrays. */
5131 if (GET_MODE (decl_rtl) == BLKmode
5132 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5133 return 0;
5134 if (MEM_SIZE_KNOWN_P (decl_rtl)
5135 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5136 return 0;
5139 DECL_CHANGED (expr) = 0;
5140 DECL_CHANGED (realdecl) = 0;
5141 return 1;
5144 /* Determine whether a given LOC refers to the same variable part as
5145 EXPR+OFFSET. */
5147 static bool
5148 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5150 tree expr2;
5151 HOST_WIDE_INT offset2;
5153 if (! DECL_P (expr))
5154 return false;
5156 if (REG_P (loc))
5158 expr2 = REG_EXPR (loc);
5159 offset2 = REG_OFFSET (loc);
5161 else if (MEM_P (loc))
5163 expr2 = MEM_EXPR (loc);
5164 offset2 = INT_MEM_OFFSET (loc);
5166 else
5167 return false;
5169 if (! expr2 || ! DECL_P (expr2))
5170 return false;
5172 expr = var_debug_decl (expr);
5173 expr2 = var_debug_decl (expr2);
5175 return (expr == expr2 && offset == offset2);
5178 /* LOC is a REG or MEM that we would like to track if possible.
5179 If EXPR is null, we don't know what expression LOC refers to,
5180 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5181 LOC is an lvalue register.
5183 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5184 is something we can track. When returning true, store the mode of
5185 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5186 from EXPR in *OFFSET_OUT (if nonnull). */
5188 static bool
5189 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5190 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5192 machine_mode mode;
5194 if (expr == NULL || !track_expr_p (expr, true))
5195 return false;
5197 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5198 whole subreg, but only the old inner part is really relevant. */
5199 mode = GET_MODE (loc);
5200 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5202 machine_mode pseudo_mode;
5204 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5205 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5207 offset += byte_lowpart_offset (pseudo_mode, mode);
5208 mode = pseudo_mode;
5212 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5213 Do the same if we are storing to a register and EXPR occupies
5214 the whole of register LOC; in that case, the whole of EXPR is
5215 being changed. We exclude complex modes from the second case
5216 because the real and imaginary parts are represented as separate
5217 pseudo registers, even if the whole complex value fits into one
5218 hard register. */
5219 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5220 || (store_reg_p
5221 && !COMPLEX_MODE_P (DECL_MODE (expr))
5222 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5223 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5225 mode = DECL_MODE (expr);
5226 offset = 0;
5229 if (offset < 0 || offset >= MAX_VAR_PARTS)
5230 return false;
5232 if (mode_out)
5233 *mode_out = mode;
5234 if (offset_out)
5235 *offset_out = offset;
5236 return true;
5239 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5240 want to track. When returning nonnull, make sure that the attributes
5241 on the returned value are updated. */
5243 static rtx
5244 var_lowpart (machine_mode mode, rtx loc)
5246 unsigned int offset, reg_offset, regno;
5248 if (GET_MODE (loc) == mode)
5249 return loc;
5251 if (!REG_P (loc) && !MEM_P (loc))
5252 return NULL;
5254 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5256 if (MEM_P (loc))
5257 return adjust_address_nv (loc, mode, offset);
5259 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5260 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5261 reg_offset, mode);
5262 return gen_rtx_REG_offset (loc, mode, regno, offset);
5265 /* Carry information about uses and stores while walking rtx. */
5267 struct count_use_info
5269 /* The insn where the RTX is. */
5270 rtx_insn *insn;
5272 /* The basic block where insn is. */
5273 basic_block bb;
5275 /* The array of n_sets sets in the insn, as determined by cselib. */
5276 struct cselib_set *sets;
5277 int n_sets;
5279 /* True if we're counting stores, false otherwise. */
5280 bool store_p;
5283 /* Find a VALUE corresponding to X. */
5285 static inline cselib_val *
5286 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5288 int i;
5290 if (cui->sets)
5292 /* This is called after uses are set up and before stores are
5293 processed by cselib, so it's safe to look up srcs, but not
5294 dsts. So we look up expressions that appear in srcs or in
5295 dest expressions, but we search the sets array for dests of
5296 stores. */
5297 if (cui->store_p)
5299 /* Some targets represent memset and memcpy patterns
5300 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5301 (set (mem:BLK ...) (const_int ...)) or
5302 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5303 in that case, otherwise we end up with mode mismatches. */
5304 if (mode == BLKmode && MEM_P (x))
5305 return NULL;
5306 for (i = 0; i < cui->n_sets; i++)
5307 if (cui->sets[i].dest == x)
5308 return cui->sets[i].src_elt;
5310 else
5311 return cselib_lookup (x, mode, 0, VOIDmode);
5314 return NULL;
5317 /* Replace all registers and addresses in an expression with VALUE
5318 expressions that map back to them, unless the expression is a
5319 register. If no mapping is or can be performed, returns NULL. */
5321 static rtx
5322 replace_expr_with_values (rtx loc)
5324 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5325 return NULL;
5326 else if (MEM_P (loc))
5328 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5329 get_address_mode (loc), 0,
5330 GET_MODE (loc));
5331 if (addr)
5332 return replace_equiv_address_nv (loc, addr->val_rtx);
5333 else
5334 return NULL;
5336 else
5337 return cselib_subst_to_values (loc, VOIDmode);
5340 /* Return true if X contains a DEBUG_EXPR. */
5342 static bool
5343 rtx_debug_expr_p (const_rtx x)
5345 subrtx_iterator::array_type array;
5346 FOR_EACH_SUBRTX (iter, array, x, ALL)
5347 if (GET_CODE (*iter) == DEBUG_EXPR)
5348 return true;
5349 return false;
5352 /* Determine what kind of micro operation to choose for a USE. Return
5353 MO_CLOBBER if no micro operation is to be generated. */
5355 static enum micro_operation_type
5356 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5358 tree expr;
5360 if (cui && cui->sets)
5362 if (GET_CODE (loc) == VAR_LOCATION)
5364 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5366 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5367 if (! VAR_LOC_UNKNOWN_P (ploc))
5369 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5370 VOIDmode);
5372 /* ??? flag_float_store and volatile mems are never
5373 given values, but we could in theory use them for
5374 locations. */
5375 gcc_assert (val || 1);
5377 return MO_VAL_LOC;
5379 else
5380 return MO_CLOBBER;
5383 if (REG_P (loc) || MEM_P (loc))
5385 if (modep)
5386 *modep = GET_MODE (loc);
5387 if (cui->store_p)
5389 if (REG_P (loc)
5390 || (find_use_val (loc, GET_MODE (loc), cui)
5391 && cselib_lookup (XEXP (loc, 0),
5392 get_address_mode (loc), 0,
5393 GET_MODE (loc))))
5394 return MO_VAL_SET;
5396 else
5398 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5400 if (val && !cselib_preserved_value_p (val))
5401 return MO_VAL_USE;
5406 if (REG_P (loc))
5408 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5410 if (loc == cfa_base_rtx)
5411 return MO_CLOBBER;
5412 expr = REG_EXPR (loc);
5414 if (!expr)
5415 return MO_USE_NO_VAR;
5416 else if (target_for_debug_bind (var_debug_decl (expr)))
5417 return MO_CLOBBER;
5418 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5419 false, modep, NULL))
5420 return MO_USE;
5421 else
5422 return MO_USE_NO_VAR;
5424 else if (MEM_P (loc))
5426 expr = MEM_EXPR (loc);
5428 if (!expr)
5429 return MO_CLOBBER;
5430 else if (target_for_debug_bind (var_debug_decl (expr)))
5431 return MO_CLOBBER;
5432 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5433 false, modep, NULL)
5434 /* Multi-part variables shouldn't refer to one-part
5435 variable names such as VALUEs (never happens) or
5436 DEBUG_EXPRs (only happens in the presence of debug
5437 insns). */
5438 && (!MAY_HAVE_DEBUG_INSNS
5439 || !rtx_debug_expr_p (XEXP (loc, 0))))
5440 return MO_USE;
5441 else
5442 return MO_CLOBBER;
5445 return MO_CLOBBER;
5448 /* Log to OUT information about micro-operation MOPT involving X in
5449 INSN of BB. */
5451 static inline void
5452 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5453 enum micro_operation_type mopt, FILE *out)
5455 fprintf (out, "bb %i op %i insn %i %s ",
5456 bb->index, VTI (bb)->mos.length (),
5457 INSN_UID (insn), micro_operation_type_name[mopt]);
5458 print_inline_rtx (out, x, 2);
5459 fputc ('\n', out);
5462 /* Tell whether the CONCAT used to holds a VALUE and its location
5463 needs value resolution, i.e., an attempt of mapping the location
5464 back to other incoming values. */
5465 #define VAL_NEEDS_RESOLUTION(x) \
5466 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5467 /* Whether the location in the CONCAT is a tracked expression, that
5468 should also be handled like a MO_USE. */
5469 #define VAL_HOLDS_TRACK_EXPR(x) \
5470 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5471 /* Whether the location in the CONCAT should be handled like a MO_COPY
5472 as well. */
5473 #define VAL_EXPR_IS_COPIED(x) \
5474 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5475 /* Whether the location in the CONCAT should be handled like a
5476 MO_CLOBBER as well. */
5477 #define VAL_EXPR_IS_CLOBBERED(x) \
5478 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5480 /* All preserved VALUEs. */
5481 static vec<rtx> preserved_values;
5483 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5485 static void
5486 preserve_value (cselib_val *val)
5488 cselib_preserve_value (val);
5489 preserved_values.safe_push (val->val_rtx);
5492 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5493 any rtxes not suitable for CONST use not replaced by VALUEs
5494 are discovered. */
5496 static bool
5497 non_suitable_const (const_rtx x)
5499 subrtx_iterator::array_type array;
5500 FOR_EACH_SUBRTX (iter, array, x, ALL)
5502 const_rtx x = *iter;
5503 switch (GET_CODE (x))
5505 case REG:
5506 case DEBUG_EXPR:
5507 case PC:
5508 case SCRATCH:
5509 case CC0:
5510 case ASM_INPUT:
5511 case ASM_OPERANDS:
5512 return true;
5513 case MEM:
5514 if (!MEM_READONLY_P (x))
5515 return true;
5516 break;
5517 default:
5518 break;
5521 return false;
5524 /* Add uses (register and memory references) LOC which will be tracked
5525 to VTI (bb)->mos. */
5527 static void
5528 add_uses (rtx loc, struct count_use_info *cui)
5530 machine_mode mode = VOIDmode;
5531 enum micro_operation_type type = use_type (loc, cui, &mode);
5533 if (type != MO_CLOBBER)
5535 basic_block bb = cui->bb;
5536 micro_operation mo;
5538 mo.type = type;
5539 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5540 mo.insn = cui->insn;
5542 if (type == MO_VAL_LOC)
5544 rtx oloc = loc;
5545 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5546 cselib_val *val;
5548 gcc_assert (cui->sets);
5550 if (MEM_P (vloc)
5551 && !REG_P (XEXP (vloc, 0))
5552 && !MEM_P (XEXP (vloc, 0)))
5554 rtx mloc = vloc;
5555 machine_mode address_mode = get_address_mode (mloc);
5556 cselib_val *val
5557 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5558 GET_MODE (mloc));
5560 if (val && !cselib_preserved_value_p (val))
5561 preserve_value (val);
5564 if (CONSTANT_P (vloc)
5565 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5566 /* For constants don't look up any value. */;
5567 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5568 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5570 machine_mode mode2;
5571 enum micro_operation_type type2;
5572 rtx nloc = NULL;
5573 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5575 if (resolvable)
5576 nloc = replace_expr_with_values (vloc);
5578 if (nloc)
5580 oloc = shallow_copy_rtx (oloc);
5581 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5584 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5586 type2 = use_type (vloc, 0, &mode2);
5588 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5589 || type2 == MO_CLOBBER);
5591 if (type2 == MO_CLOBBER
5592 && !cselib_preserved_value_p (val))
5594 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5595 preserve_value (val);
5598 else if (!VAR_LOC_UNKNOWN_P (vloc))
5600 oloc = shallow_copy_rtx (oloc);
5601 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5604 mo.u.loc = oloc;
5606 else if (type == MO_VAL_USE)
5608 machine_mode mode2 = VOIDmode;
5609 enum micro_operation_type type2;
5610 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5611 rtx vloc, oloc = loc, nloc;
5613 gcc_assert (cui->sets);
5615 if (MEM_P (oloc)
5616 && !REG_P (XEXP (oloc, 0))
5617 && !MEM_P (XEXP (oloc, 0)))
5619 rtx mloc = oloc;
5620 machine_mode address_mode = get_address_mode (mloc);
5621 cselib_val *val
5622 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5623 GET_MODE (mloc));
5625 if (val && !cselib_preserved_value_p (val))
5626 preserve_value (val);
5629 type2 = use_type (loc, 0, &mode2);
5631 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5632 || type2 == MO_CLOBBER);
5634 if (type2 == MO_USE)
5635 vloc = var_lowpart (mode2, loc);
5636 else
5637 vloc = oloc;
5639 /* The loc of a MO_VAL_USE may have two forms:
5641 (concat val src): val is at src, a value-based
5642 representation.
5644 (concat (concat val use) src): same as above, with use as
5645 the MO_USE tracked value, if it differs from src.
5649 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5650 nloc = replace_expr_with_values (loc);
5651 if (!nloc)
5652 nloc = oloc;
5654 if (vloc != nloc)
5655 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5656 else
5657 oloc = val->val_rtx;
5659 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5661 if (type2 == MO_USE)
5662 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5663 if (!cselib_preserved_value_p (val))
5665 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5666 preserve_value (val);
5669 else
5670 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5672 if (dump_file && (dump_flags & TDF_DETAILS))
5673 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5674 VTI (bb)->mos.safe_push (mo);
5678 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5680 static void
5681 add_uses_1 (rtx *x, void *cui)
5683 subrtx_var_iterator::array_type array;
5684 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5685 add_uses (*iter, (struct count_use_info *) cui);
5688 /* This is the value used during expansion of locations. We want it
5689 to be unbounded, so that variables expanded deep in a recursion
5690 nest are fully evaluated, so that their values are cached
5691 correctly. We avoid recursion cycles through other means, and we
5692 don't unshare RTL, so excess complexity is not a problem. */
5693 #define EXPR_DEPTH (INT_MAX)
5694 /* We use this to keep too-complex expressions from being emitted as
5695 location notes, and then to debug information. Users can trade
5696 compile time for ridiculously complex expressions, although they're
5697 seldom useful, and they may often have to be discarded as not
5698 representable anyway. */
5699 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5701 /* Attempt to reverse the EXPR operation in the debug info and record
5702 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5703 no longer live we can express its value as VAL - 6. */
5705 static void
5706 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5708 rtx src, arg, ret;
5709 cselib_val *v;
5710 struct elt_loc_list *l;
5711 enum rtx_code code;
5712 int count;
5714 if (GET_CODE (expr) != SET)
5715 return;
5717 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5718 return;
5720 src = SET_SRC (expr);
5721 switch (GET_CODE (src))
5723 case PLUS:
5724 case MINUS:
5725 case XOR:
5726 case NOT:
5727 case NEG:
5728 if (!REG_P (XEXP (src, 0)))
5729 return;
5730 break;
5731 case SIGN_EXTEND:
5732 case ZERO_EXTEND:
5733 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5734 return;
5735 break;
5736 default:
5737 return;
5740 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5741 return;
5743 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5744 if (!v || !cselib_preserved_value_p (v))
5745 return;
5747 /* Use canonical V to avoid creating multiple redundant expressions
5748 for different VALUES equivalent to V. */
5749 v = canonical_cselib_val (v);
5751 /* Adding a reverse op isn't useful if V already has an always valid
5752 location. Ignore ENTRY_VALUE, while it is always constant, we should
5753 prefer non-ENTRY_VALUE locations whenever possible. */
5754 for (l = v->locs, count = 0; l; l = l->next, count++)
5755 if (CONSTANT_P (l->loc)
5756 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5757 return;
5758 /* Avoid creating too large locs lists. */
5759 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5760 return;
5762 switch (GET_CODE (src))
5764 case NOT:
5765 case NEG:
5766 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5767 return;
5768 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5769 break;
5770 case SIGN_EXTEND:
5771 case ZERO_EXTEND:
5772 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5773 break;
5774 case XOR:
5775 code = XOR;
5776 goto binary;
5777 case PLUS:
5778 code = MINUS;
5779 goto binary;
5780 case MINUS:
5781 code = PLUS;
5782 goto binary;
5783 binary:
5784 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5785 return;
5786 arg = XEXP (src, 1);
5787 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5789 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5790 if (arg == NULL_RTX)
5791 return;
5792 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5793 return;
5795 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5796 break;
5797 default:
5798 gcc_unreachable ();
5801 cselib_add_permanent_equiv (v, ret, insn);
5804 /* Add stores (register and memory references) LOC which will be tracked
5805 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5806 CUIP->insn is instruction which the LOC is part of. */
5808 static void
5809 add_stores (rtx loc, const_rtx expr, void *cuip)
5811 machine_mode mode = VOIDmode, mode2;
5812 struct count_use_info *cui = (struct count_use_info *)cuip;
5813 basic_block bb = cui->bb;
5814 micro_operation mo;
5815 rtx oloc = loc, nloc, src = NULL;
5816 enum micro_operation_type type = use_type (loc, cui, &mode);
5817 bool track_p = false;
5818 cselib_val *v;
5819 bool resolve, preserve;
5821 if (type == MO_CLOBBER)
5822 return;
5824 mode2 = mode;
5826 if (REG_P (loc))
5828 gcc_assert (loc != cfa_base_rtx);
5829 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5830 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5831 || GET_CODE (expr) == CLOBBER)
5833 mo.type = MO_CLOBBER;
5834 mo.u.loc = loc;
5835 if (GET_CODE (expr) == SET
5836 && SET_DEST (expr) == loc
5837 && !unsuitable_loc (SET_SRC (expr))
5838 && find_use_val (loc, mode, cui))
5840 gcc_checking_assert (type == MO_VAL_SET);
5841 mo.u.loc = gen_rtx_SET (loc, SET_SRC (expr));
5844 else
5846 if (GET_CODE (expr) == SET
5847 && SET_DEST (expr) == loc
5848 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5849 src = var_lowpart (mode2, SET_SRC (expr));
5850 loc = var_lowpart (mode2, loc);
5852 if (src == NULL)
5854 mo.type = MO_SET;
5855 mo.u.loc = loc;
5857 else
5859 rtx xexpr = gen_rtx_SET (loc, src);
5860 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5862 /* If this is an instruction copying (part of) a parameter
5863 passed by invisible reference to its register location,
5864 pretend it's a SET so that the initial memory location
5865 is discarded, as the parameter register can be reused
5866 for other purposes and we do not track locations based
5867 on generic registers. */
5868 if (MEM_P (src)
5869 && REG_EXPR (loc)
5870 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5871 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5872 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5873 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5874 != arg_pointer_rtx)
5875 mo.type = MO_SET;
5876 else
5877 mo.type = MO_COPY;
5879 else
5880 mo.type = MO_SET;
5881 mo.u.loc = xexpr;
5884 mo.insn = cui->insn;
5886 else if (MEM_P (loc)
5887 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5888 || cui->sets))
5890 if (MEM_P (loc) && type == MO_VAL_SET
5891 && !REG_P (XEXP (loc, 0))
5892 && !MEM_P (XEXP (loc, 0)))
5894 rtx mloc = loc;
5895 machine_mode address_mode = get_address_mode (mloc);
5896 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5897 address_mode, 0,
5898 GET_MODE (mloc));
5900 if (val && !cselib_preserved_value_p (val))
5901 preserve_value (val);
5904 if (GET_CODE (expr) == CLOBBER || !track_p)
5906 mo.type = MO_CLOBBER;
5907 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5909 else
5911 if (GET_CODE (expr) == SET
5912 && SET_DEST (expr) == loc
5913 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5914 src = var_lowpart (mode2, SET_SRC (expr));
5915 loc = var_lowpart (mode2, loc);
5917 if (src == NULL)
5919 mo.type = MO_SET;
5920 mo.u.loc = loc;
5922 else
5924 rtx xexpr = gen_rtx_SET (loc, src);
5925 if (same_variable_part_p (SET_SRC (xexpr),
5926 MEM_EXPR (loc),
5927 INT_MEM_OFFSET (loc)))
5928 mo.type = MO_COPY;
5929 else
5930 mo.type = MO_SET;
5931 mo.u.loc = xexpr;
5934 mo.insn = cui->insn;
5936 else
5937 return;
5939 if (type != MO_VAL_SET)
5940 goto log_and_return;
5942 v = find_use_val (oloc, mode, cui);
5944 if (!v)
5945 goto log_and_return;
5947 resolve = preserve = !cselib_preserved_value_p (v);
5949 /* We cannot track values for multiple-part variables, so we track only
5950 locations for tracked record parameters. */
5951 if (track_p
5952 && REG_P (loc)
5953 && REG_EXPR (loc)
5954 && tracked_record_parameter_p (REG_EXPR (loc)))
5956 /* Although we don't use the value here, it could be used later by the
5957 mere virtue of its existence as the operand of the reverse operation
5958 that gave rise to it (typically extension/truncation). Make sure it
5959 is preserved as required by vt_expand_var_loc_chain. */
5960 if (preserve)
5961 preserve_value (v);
5962 goto log_and_return;
5965 if (loc == stack_pointer_rtx
5966 && hard_frame_pointer_adjustment != -1
5967 && preserve)
5968 cselib_set_value_sp_based (v);
5970 nloc = replace_expr_with_values (oloc);
5971 if (nloc)
5972 oloc = nloc;
5974 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
5976 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
5978 if (oval == v)
5979 return;
5980 gcc_assert (REG_P (oloc) || MEM_P (oloc));
5982 if (oval && !cselib_preserved_value_p (oval))
5984 micro_operation moa;
5986 preserve_value (oval);
5988 moa.type = MO_VAL_USE;
5989 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
5990 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
5991 moa.insn = cui->insn;
5993 if (dump_file && (dump_flags & TDF_DETAILS))
5994 log_op_type (moa.u.loc, cui->bb, cui->insn,
5995 moa.type, dump_file);
5996 VTI (bb)->mos.safe_push (moa);
5999 resolve = false;
6001 else if (resolve && GET_CODE (mo.u.loc) == SET)
6003 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6004 nloc = replace_expr_with_values (SET_SRC (expr));
6005 else
6006 nloc = NULL_RTX;
6008 /* Avoid the mode mismatch between oexpr and expr. */
6009 if (!nloc && mode != mode2)
6011 nloc = SET_SRC (expr);
6012 gcc_assert (oloc == SET_DEST (expr));
6015 if (nloc && nloc != SET_SRC (mo.u.loc))
6016 oloc = gen_rtx_SET (oloc, nloc);
6017 else
6019 if (oloc == SET_DEST (mo.u.loc))
6020 /* No point in duplicating. */
6021 oloc = mo.u.loc;
6022 if (!REG_P (SET_SRC (mo.u.loc)))
6023 resolve = false;
6026 else if (!resolve)
6028 if (GET_CODE (mo.u.loc) == SET
6029 && oloc == SET_DEST (mo.u.loc))
6030 /* No point in duplicating. */
6031 oloc = mo.u.loc;
6033 else
6034 resolve = false;
6036 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6038 if (mo.u.loc != oloc)
6039 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6041 /* The loc of a MO_VAL_SET may have various forms:
6043 (concat val dst): dst now holds val
6045 (concat val (set dst src)): dst now holds val, copied from src
6047 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6048 after replacing mems and non-top-level regs with values.
6050 (concat (concat val dstv) (set dst src)): dst now holds val,
6051 copied from src. dstv is a value-based representation of dst, if
6052 it differs from dst. If resolution is needed, src is a REG, and
6053 its mode is the same as that of val.
6055 (concat (concat val (set dstv srcv)) (set dst src)): src
6056 copied to dst, holding val. dstv and srcv are value-based
6057 representations of dst and src, respectively.
6061 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6062 reverse_op (v->val_rtx, expr, cui->insn);
6064 mo.u.loc = loc;
6066 if (track_p)
6067 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6068 if (preserve)
6070 VAL_NEEDS_RESOLUTION (loc) = resolve;
6071 preserve_value (v);
6073 if (mo.type == MO_CLOBBER)
6074 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6075 if (mo.type == MO_COPY)
6076 VAL_EXPR_IS_COPIED (loc) = 1;
6078 mo.type = MO_VAL_SET;
6080 log_and_return:
6081 if (dump_file && (dump_flags & TDF_DETAILS))
6082 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6083 VTI (bb)->mos.safe_push (mo);
6086 /* Arguments to the call. */
6087 static rtx call_arguments;
6089 /* Compute call_arguments. */
6091 static void
6092 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6094 rtx link, x, call;
6095 rtx prev, cur, next;
6096 rtx this_arg = NULL_RTX;
6097 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6098 tree obj_type_ref = NULL_TREE;
6099 CUMULATIVE_ARGS args_so_far_v;
6100 cumulative_args_t args_so_far;
6102 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6103 args_so_far = pack_cumulative_args (&args_so_far_v);
6104 call = get_call_rtx_from (insn);
6105 if (call)
6107 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6109 rtx symbol = XEXP (XEXP (call, 0), 0);
6110 if (SYMBOL_REF_DECL (symbol))
6111 fndecl = SYMBOL_REF_DECL (symbol);
6113 if (fndecl == NULL_TREE)
6114 fndecl = MEM_EXPR (XEXP (call, 0));
6115 if (fndecl
6116 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6117 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6118 fndecl = NULL_TREE;
6119 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6120 type = TREE_TYPE (fndecl);
6121 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6123 if (TREE_CODE (fndecl) == INDIRECT_REF
6124 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6125 obj_type_ref = TREE_OPERAND (fndecl, 0);
6126 fndecl = NULL_TREE;
6128 if (type)
6130 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6131 t = TREE_CHAIN (t))
6132 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6133 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6134 break;
6135 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6136 type = NULL;
6137 else
6139 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6140 link = CALL_INSN_FUNCTION_USAGE (insn);
6141 #ifndef PCC_STATIC_STRUCT_RETURN
6142 if (aggregate_value_p (TREE_TYPE (type), type)
6143 && targetm.calls.struct_value_rtx (type, 0) == 0)
6145 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6146 machine_mode mode = TYPE_MODE (struct_addr);
6147 rtx reg;
6148 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6149 nargs + 1);
6150 reg = targetm.calls.function_arg (args_so_far, mode,
6151 struct_addr, true);
6152 targetm.calls.function_arg_advance (args_so_far, mode,
6153 struct_addr, true);
6154 if (reg == NULL_RTX)
6156 for (; link; link = XEXP (link, 1))
6157 if (GET_CODE (XEXP (link, 0)) == USE
6158 && MEM_P (XEXP (XEXP (link, 0), 0)))
6160 link = XEXP (link, 1);
6161 break;
6165 else
6166 #endif
6167 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6168 nargs);
6169 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6171 machine_mode mode;
6172 t = TYPE_ARG_TYPES (type);
6173 mode = TYPE_MODE (TREE_VALUE (t));
6174 this_arg = targetm.calls.function_arg (args_so_far, mode,
6175 TREE_VALUE (t), true);
6176 if (this_arg && !REG_P (this_arg))
6177 this_arg = NULL_RTX;
6178 else if (this_arg == NULL_RTX)
6180 for (; link; link = XEXP (link, 1))
6181 if (GET_CODE (XEXP (link, 0)) == USE
6182 && MEM_P (XEXP (XEXP (link, 0), 0)))
6184 this_arg = XEXP (XEXP (link, 0), 0);
6185 break;
6192 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6194 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6195 if (GET_CODE (XEXP (link, 0)) == USE)
6197 rtx item = NULL_RTX;
6198 x = XEXP (XEXP (link, 0), 0);
6199 if (GET_MODE (link) == VOIDmode
6200 || GET_MODE (link) == BLKmode
6201 || (GET_MODE (link) != GET_MODE (x)
6202 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6203 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6204 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6205 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6206 /* Can't do anything for these, if the original type mode
6207 isn't known or can't be converted. */;
6208 else if (REG_P (x))
6210 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6211 if (val && cselib_preserved_value_p (val))
6212 item = val->val_rtx;
6213 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
6214 || GET_MODE_CLASS (GET_MODE (x)) == MODE_PARTIAL_INT)
6216 machine_mode mode = GET_MODE (x);
6218 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6219 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6221 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6223 if (reg == NULL_RTX || !REG_P (reg))
6224 continue;
6225 val = cselib_lookup (reg, mode, 0, VOIDmode);
6226 if (val && cselib_preserved_value_p (val))
6228 item = val->val_rtx;
6229 break;
6234 else if (MEM_P (x))
6236 rtx mem = x;
6237 cselib_val *val;
6239 if (!frame_pointer_needed)
6241 struct adjust_mem_data amd;
6242 amd.mem_mode = VOIDmode;
6243 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6244 amd.side_effects = NULL;
6245 amd.store = true;
6246 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6247 &amd);
6248 gcc_assert (amd.side_effects == NULL_RTX);
6250 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6251 if (val && cselib_preserved_value_p (val))
6252 item = val->val_rtx;
6253 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6254 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6256 /* For non-integer stack argument see also if they weren't
6257 initialized by integers. */
6258 machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6259 if (imode != GET_MODE (mem) && imode != BLKmode)
6261 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6262 imode, 0, VOIDmode);
6263 if (val && cselib_preserved_value_p (val))
6264 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6265 imode);
6269 if (item)
6271 rtx x2 = x;
6272 if (GET_MODE (item) != GET_MODE (link))
6273 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6274 if (GET_MODE (x2) != GET_MODE (link))
6275 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6276 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6277 call_arguments
6278 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6280 if (t && t != void_list_node)
6282 tree argtype = TREE_VALUE (t);
6283 machine_mode mode = TYPE_MODE (argtype);
6284 rtx reg;
6285 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6287 argtype = build_pointer_type (argtype);
6288 mode = TYPE_MODE (argtype);
6290 reg = targetm.calls.function_arg (args_so_far, mode,
6291 argtype, true);
6292 if (TREE_CODE (argtype) == REFERENCE_TYPE
6293 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6294 && reg
6295 && REG_P (reg)
6296 && GET_MODE (reg) == mode
6297 && (GET_MODE_CLASS (mode) == MODE_INT
6298 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6299 && REG_P (x)
6300 && REGNO (x) == REGNO (reg)
6301 && GET_MODE (x) == mode
6302 && item)
6304 machine_mode indmode
6305 = TYPE_MODE (TREE_TYPE (argtype));
6306 rtx mem = gen_rtx_MEM (indmode, x);
6307 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6308 if (val && cselib_preserved_value_p (val))
6310 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6311 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6312 call_arguments);
6314 else
6316 struct elt_loc_list *l;
6317 tree initial;
6319 /* Try harder, when passing address of a constant
6320 pool integer it can be easily read back. */
6321 item = XEXP (item, 1);
6322 if (GET_CODE (item) == SUBREG)
6323 item = SUBREG_REG (item);
6324 gcc_assert (GET_CODE (item) == VALUE);
6325 val = CSELIB_VAL_PTR (item);
6326 for (l = val->locs; l; l = l->next)
6327 if (GET_CODE (l->loc) == SYMBOL_REF
6328 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6329 && SYMBOL_REF_DECL (l->loc)
6330 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6332 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6333 if (tree_fits_shwi_p (initial))
6335 item = GEN_INT (tree_to_shwi (initial));
6336 item = gen_rtx_CONCAT (indmode, mem, item);
6337 call_arguments
6338 = gen_rtx_EXPR_LIST (VOIDmode, item,
6339 call_arguments);
6341 break;
6345 targetm.calls.function_arg_advance (args_so_far, mode,
6346 argtype, true);
6347 t = TREE_CHAIN (t);
6351 /* Add debug arguments. */
6352 if (fndecl
6353 && TREE_CODE (fndecl) == FUNCTION_DECL
6354 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6356 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6357 if (debug_args)
6359 unsigned int ix;
6360 tree param;
6361 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6363 rtx item;
6364 tree dtemp = (**debug_args)[ix + 1];
6365 machine_mode mode = DECL_MODE (dtemp);
6366 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6367 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6368 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6369 call_arguments);
6374 /* Reverse call_arguments chain. */
6375 prev = NULL_RTX;
6376 for (cur = call_arguments; cur; cur = next)
6378 next = XEXP (cur, 1);
6379 XEXP (cur, 1) = prev;
6380 prev = cur;
6382 call_arguments = prev;
6384 x = get_call_rtx_from (insn);
6385 if (x)
6387 x = XEXP (XEXP (x, 0), 0);
6388 if (GET_CODE (x) == SYMBOL_REF)
6389 /* Don't record anything. */;
6390 else if (CONSTANT_P (x))
6392 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6393 pc_rtx, x);
6394 call_arguments
6395 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6397 else
6399 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6400 if (val && cselib_preserved_value_p (val))
6402 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6403 call_arguments
6404 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6408 if (this_arg)
6410 machine_mode mode
6411 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6412 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6413 HOST_WIDE_INT token
6414 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6415 if (token)
6416 clobbered = plus_constant (mode, clobbered,
6417 token * GET_MODE_SIZE (mode));
6418 clobbered = gen_rtx_MEM (mode, clobbered);
6419 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6420 call_arguments
6421 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6425 /* Callback for cselib_record_sets_hook, that records as micro
6426 operations uses and stores in an insn after cselib_record_sets has
6427 analyzed the sets in an insn, but before it modifies the stored
6428 values in the internal tables, unless cselib_record_sets doesn't
6429 call it directly (perhaps because we're not doing cselib in the
6430 first place, in which case sets and n_sets will be 0). */
6432 static void
6433 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6435 basic_block bb = BLOCK_FOR_INSN (insn);
6436 int n1, n2;
6437 struct count_use_info cui;
6438 micro_operation *mos;
6440 cselib_hook_called = true;
6442 cui.insn = insn;
6443 cui.bb = bb;
6444 cui.sets = sets;
6445 cui.n_sets = n_sets;
6447 n1 = VTI (bb)->mos.length ();
6448 cui.store_p = false;
6449 note_uses (&PATTERN (insn), add_uses_1, &cui);
6450 n2 = VTI (bb)->mos.length () - 1;
6451 mos = VTI (bb)->mos.address ();
6453 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6454 MO_VAL_LOC last. */
6455 while (n1 < n2)
6457 while (n1 < n2 && mos[n1].type == MO_USE)
6458 n1++;
6459 while (n1 < n2 && mos[n2].type != MO_USE)
6460 n2--;
6461 if (n1 < n2)
6462 std::swap (mos[n1], mos[n2]);
6465 n2 = VTI (bb)->mos.length () - 1;
6466 while (n1 < n2)
6468 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6469 n1++;
6470 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6471 n2--;
6472 if (n1 < n2)
6473 std::swap (mos[n1], mos[n2]);
6476 if (CALL_P (insn))
6478 micro_operation mo;
6480 mo.type = MO_CALL;
6481 mo.insn = insn;
6482 mo.u.loc = call_arguments;
6483 call_arguments = NULL_RTX;
6485 if (dump_file && (dump_flags & TDF_DETAILS))
6486 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6487 VTI (bb)->mos.safe_push (mo);
6490 n1 = VTI (bb)->mos.length ();
6491 /* This will record NEXT_INSN (insn), such that we can
6492 insert notes before it without worrying about any
6493 notes that MO_USEs might emit after the insn. */
6494 cui.store_p = true;
6495 note_stores (PATTERN (insn), add_stores, &cui);
6496 n2 = VTI (bb)->mos.length () - 1;
6497 mos = VTI (bb)->mos.address ();
6499 /* Order the MO_VAL_USEs first (note_stores does nothing
6500 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6501 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6502 while (n1 < n2)
6504 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6505 n1++;
6506 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6507 n2--;
6508 if (n1 < n2)
6509 std::swap (mos[n1], mos[n2]);
6512 n2 = VTI (bb)->mos.length () - 1;
6513 while (n1 < n2)
6515 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6516 n1++;
6517 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6518 n2--;
6519 if (n1 < n2)
6520 std::swap (mos[n1], mos[n2]);
6524 static enum var_init_status
6525 find_src_status (dataflow_set *in, rtx src)
6527 tree decl = NULL_TREE;
6528 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6530 if (! flag_var_tracking_uninit)
6531 status = VAR_INIT_STATUS_INITIALIZED;
6533 if (src && REG_P (src))
6534 decl = var_debug_decl (REG_EXPR (src));
6535 else if (src && MEM_P (src))
6536 decl = var_debug_decl (MEM_EXPR (src));
6538 if (src && decl)
6539 status = get_init_value (in, src, dv_from_decl (decl));
6541 return status;
6544 /* SRC is the source of an assignment. Use SET to try to find what
6545 was ultimately assigned to SRC. Return that value if known,
6546 otherwise return SRC itself. */
6548 static rtx
6549 find_src_set_src (dataflow_set *set, rtx src)
6551 tree decl = NULL_TREE; /* The variable being copied around. */
6552 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6553 variable *var;
6554 location_chain *nextp;
6555 int i;
6556 bool found;
6558 if (src && REG_P (src))
6559 decl = var_debug_decl (REG_EXPR (src));
6560 else if (src && MEM_P (src))
6561 decl = var_debug_decl (MEM_EXPR (src));
6563 if (src && decl)
6565 decl_or_value dv = dv_from_decl (decl);
6567 var = shared_hash_find (set->vars, dv);
6568 if (var)
6570 found = false;
6571 for (i = 0; i < var->n_var_parts && !found; i++)
6572 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6573 nextp = nextp->next)
6574 if (rtx_equal_p (nextp->loc, src))
6576 set_src = nextp->set_src;
6577 found = true;
6583 return set_src;
6586 /* Compute the changes of variable locations in the basic block BB. */
6588 static bool
6589 compute_bb_dataflow (basic_block bb)
6591 unsigned int i;
6592 micro_operation *mo;
6593 bool changed;
6594 dataflow_set old_out;
6595 dataflow_set *in = &VTI (bb)->in;
6596 dataflow_set *out = &VTI (bb)->out;
6598 dataflow_set_init (&old_out);
6599 dataflow_set_copy (&old_out, out);
6600 dataflow_set_copy (out, in);
6602 if (MAY_HAVE_DEBUG_INSNS)
6603 local_get_addr_cache = new hash_map<rtx, rtx>;
6605 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6607 rtx_insn *insn = mo->insn;
6609 switch (mo->type)
6611 case MO_CALL:
6612 dataflow_set_clear_at_call (out, insn);
6613 break;
6615 case MO_USE:
6617 rtx loc = mo->u.loc;
6619 if (REG_P (loc))
6620 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6621 else if (MEM_P (loc))
6622 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6624 break;
6626 case MO_VAL_LOC:
6628 rtx loc = mo->u.loc;
6629 rtx val, vloc;
6630 tree var;
6632 if (GET_CODE (loc) == CONCAT)
6634 val = XEXP (loc, 0);
6635 vloc = XEXP (loc, 1);
6637 else
6639 val = NULL_RTX;
6640 vloc = loc;
6643 var = PAT_VAR_LOCATION_DECL (vloc);
6645 clobber_variable_part (out, NULL_RTX,
6646 dv_from_decl (var), 0, NULL_RTX);
6647 if (val)
6649 if (VAL_NEEDS_RESOLUTION (loc))
6650 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6651 set_variable_part (out, val, dv_from_decl (var), 0,
6652 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6653 INSERT);
6655 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6656 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6657 dv_from_decl (var), 0,
6658 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6659 INSERT);
6661 break;
6663 case MO_VAL_USE:
6665 rtx loc = mo->u.loc;
6666 rtx val, vloc, uloc;
6668 vloc = uloc = XEXP (loc, 1);
6669 val = XEXP (loc, 0);
6671 if (GET_CODE (val) == CONCAT)
6673 uloc = XEXP (val, 1);
6674 val = XEXP (val, 0);
6677 if (VAL_NEEDS_RESOLUTION (loc))
6678 val_resolve (out, val, vloc, insn);
6679 else
6680 val_store (out, val, uloc, insn, false);
6682 if (VAL_HOLDS_TRACK_EXPR (loc))
6684 if (GET_CODE (uloc) == REG)
6685 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6686 NULL);
6687 else if (GET_CODE (uloc) == MEM)
6688 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6689 NULL);
6692 break;
6694 case MO_VAL_SET:
6696 rtx loc = mo->u.loc;
6697 rtx val, vloc, uloc;
6698 rtx dstv, srcv;
6700 vloc = loc;
6701 uloc = XEXP (vloc, 1);
6702 val = XEXP (vloc, 0);
6703 vloc = uloc;
6705 if (GET_CODE (uloc) == SET)
6707 dstv = SET_DEST (uloc);
6708 srcv = SET_SRC (uloc);
6710 else
6712 dstv = uloc;
6713 srcv = NULL;
6716 if (GET_CODE (val) == CONCAT)
6718 dstv = vloc = XEXP (val, 1);
6719 val = XEXP (val, 0);
6722 if (GET_CODE (vloc) == SET)
6724 srcv = SET_SRC (vloc);
6726 gcc_assert (val != srcv);
6727 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6729 dstv = vloc = SET_DEST (vloc);
6731 if (VAL_NEEDS_RESOLUTION (loc))
6732 val_resolve (out, val, srcv, insn);
6734 else if (VAL_NEEDS_RESOLUTION (loc))
6736 gcc_assert (GET_CODE (uloc) == SET
6737 && GET_CODE (SET_SRC (uloc)) == REG);
6738 val_resolve (out, val, SET_SRC (uloc), insn);
6741 if (VAL_HOLDS_TRACK_EXPR (loc))
6743 if (VAL_EXPR_IS_CLOBBERED (loc))
6745 if (REG_P (uloc))
6746 var_reg_delete (out, uloc, true);
6747 else if (MEM_P (uloc))
6749 gcc_assert (MEM_P (dstv));
6750 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6751 var_mem_delete (out, dstv, true);
6754 else
6756 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6757 rtx src = NULL, dst = uloc;
6758 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6760 if (GET_CODE (uloc) == SET)
6762 src = SET_SRC (uloc);
6763 dst = SET_DEST (uloc);
6766 if (copied_p)
6768 if (flag_var_tracking_uninit)
6770 status = find_src_status (in, src);
6772 if (status == VAR_INIT_STATUS_UNKNOWN)
6773 status = find_src_status (out, src);
6776 src = find_src_set_src (in, src);
6779 if (REG_P (dst))
6780 var_reg_delete_and_set (out, dst, !copied_p,
6781 status, srcv);
6782 else if (MEM_P (dst))
6784 gcc_assert (MEM_P (dstv));
6785 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6786 var_mem_delete_and_set (out, dstv, !copied_p,
6787 status, srcv);
6791 else if (REG_P (uloc))
6792 var_regno_delete (out, REGNO (uloc));
6793 else if (MEM_P (uloc))
6795 gcc_checking_assert (GET_CODE (vloc) == MEM);
6796 gcc_checking_assert (dstv == vloc);
6797 if (dstv != vloc)
6798 clobber_overlapping_mems (out, vloc);
6801 val_store (out, val, dstv, insn, true);
6803 break;
6805 case MO_SET:
6807 rtx loc = mo->u.loc;
6808 rtx set_src = NULL;
6810 if (GET_CODE (loc) == SET)
6812 set_src = SET_SRC (loc);
6813 loc = SET_DEST (loc);
6816 if (REG_P (loc))
6817 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6818 set_src);
6819 else if (MEM_P (loc))
6820 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6821 set_src);
6823 break;
6825 case MO_COPY:
6827 rtx loc = mo->u.loc;
6828 enum var_init_status src_status;
6829 rtx set_src = NULL;
6831 if (GET_CODE (loc) == SET)
6833 set_src = SET_SRC (loc);
6834 loc = SET_DEST (loc);
6837 if (! flag_var_tracking_uninit)
6838 src_status = VAR_INIT_STATUS_INITIALIZED;
6839 else
6841 src_status = find_src_status (in, set_src);
6843 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6844 src_status = find_src_status (out, set_src);
6847 set_src = find_src_set_src (in, set_src);
6849 if (REG_P (loc))
6850 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6851 else if (MEM_P (loc))
6852 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6854 break;
6856 case MO_USE_NO_VAR:
6858 rtx loc = mo->u.loc;
6860 if (REG_P (loc))
6861 var_reg_delete (out, loc, false);
6862 else if (MEM_P (loc))
6863 var_mem_delete (out, loc, false);
6865 break;
6867 case MO_CLOBBER:
6869 rtx loc = mo->u.loc;
6871 if (REG_P (loc))
6872 var_reg_delete (out, loc, true);
6873 else if (MEM_P (loc))
6874 var_mem_delete (out, loc, true);
6876 break;
6878 case MO_ADJUST:
6879 out->stack_adjust += mo->u.adjust;
6880 break;
6884 if (MAY_HAVE_DEBUG_INSNS)
6886 delete local_get_addr_cache;
6887 local_get_addr_cache = NULL;
6889 dataflow_set_equiv_regs (out);
6890 shared_hash_htab (out->vars)
6891 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
6892 shared_hash_htab (out->vars)
6893 ->traverse <dataflow_set *, canonicalize_values_star> (out);
6894 if (flag_checking)
6895 shared_hash_htab (out->vars)
6896 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6898 changed = dataflow_set_different (&old_out, out);
6899 dataflow_set_destroy (&old_out);
6900 return changed;
6903 /* Find the locations of variables in the whole function. */
6905 static bool
6906 vt_find_locations (void)
6908 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
6909 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
6910 sbitmap visited, in_worklist, in_pending;
6911 basic_block bb;
6912 edge e;
6913 int *bb_order;
6914 int *rc_order;
6915 int i;
6916 int htabsz = 0;
6917 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6918 bool success = true;
6920 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6921 /* Compute reverse completion order of depth first search of the CFG
6922 so that the data-flow runs faster. */
6923 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
6924 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6925 pre_and_rev_post_order_compute (NULL, rc_order, false);
6926 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
6927 bb_order[rc_order[i]] = i;
6928 free (rc_order);
6930 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
6931 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
6932 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
6933 bitmap_clear (in_worklist);
6935 FOR_EACH_BB_FN (bb, cfun)
6936 pending->insert (bb_order[bb->index], bb);
6937 bitmap_ones (in_pending);
6939 while (success && !pending->empty ())
6941 std::swap (worklist, pending);
6942 std::swap (in_worklist, in_pending);
6944 bitmap_clear (visited);
6946 while (!worklist->empty ())
6948 bb = worklist->extract_min ();
6949 bitmap_clear_bit (in_worklist, bb->index);
6950 gcc_assert (!bitmap_bit_p (visited, bb->index));
6951 if (!bitmap_bit_p (visited, bb->index))
6953 bool changed;
6954 edge_iterator ei;
6955 int oldinsz, oldoutsz;
6957 bitmap_set_bit (visited, bb->index);
6959 if (VTI (bb)->in.vars)
6961 htabsz
6962 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
6963 + shared_hash_htab (VTI (bb)->out.vars)->size ();
6964 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
6965 oldoutsz
6966 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
6968 else
6969 oldinsz = oldoutsz = 0;
6971 if (MAY_HAVE_DEBUG_INSNS)
6973 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
6974 bool first = true, adjust = false;
6976 /* Calculate the IN set as the intersection of
6977 predecessor OUT sets. */
6979 dataflow_set_clear (in);
6980 dst_can_be_shared = true;
6982 FOR_EACH_EDGE (e, ei, bb->preds)
6983 if (!VTI (e->src)->flooded)
6984 gcc_assert (bb_order[bb->index]
6985 <= bb_order[e->src->index]);
6986 else if (first)
6988 dataflow_set_copy (in, &VTI (e->src)->out);
6989 first_out = &VTI (e->src)->out;
6990 first = false;
6992 else
6994 dataflow_set_merge (in, &VTI (e->src)->out);
6995 adjust = true;
6998 if (adjust)
7000 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7002 if (flag_checking)
7003 /* Merge and merge_adjust should keep entries in
7004 canonical order. */
7005 shared_hash_htab (in->vars)
7006 ->traverse <dataflow_set *,
7007 canonicalize_loc_order_check> (in);
7009 if (dst_can_be_shared)
7011 shared_hash_destroy (in->vars);
7012 in->vars = shared_hash_copy (first_out->vars);
7016 VTI (bb)->flooded = true;
7018 else
7020 /* Calculate the IN set as union of predecessor OUT sets. */
7021 dataflow_set_clear (&VTI (bb)->in);
7022 FOR_EACH_EDGE (e, ei, bb->preds)
7023 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7026 changed = compute_bb_dataflow (bb);
7027 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7028 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7030 if (htabmax && htabsz > htabmax)
7032 if (MAY_HAVE_DEBUG_INSNS)
7033 inform (DECL_SOURCE_LOCATION (cfun->decl),
7034 "variable tracking size limit exceeded with "
7035 "-fvar-tracking-assignments, retrying without");
7036 else
7037 inform (DECL_SOURCE_LOCATION (cfun->decl),
7038 "variable tracking size limit exceeded");
7039 success = false;
7040 break;
7043 if (changed)
7045 FOR_EACH_EDGE (e, ei, bb->succs)
7047 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7048 continue;
7050 if (bitmap_bit_p (visited, e->dest->index))
7052 if (!bitmap_bit_p (in_pending, e->dest->index))
7054 /* Send E->DEST to next round. */
7055 bitmap_set_bit (in_pending, e->dest->index);
7056 pending->insert (bb_order[e->dest->index],
7057 e->dest);
7060 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7062 /* Add E->DEST to current round. */
7063 bitmap_set_bit (in_worklist, e->dest->index);
7064 worklist->insert (bb_order[e->dest->index],
7065 e->dest);
7070 if (dump_file)
7071 fprintf (dump_file,
7072 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7073 bb->index,
7074 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7075 oldinsz,
7076 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7077 oldoutsz,
7078 (int)worklist->nodes (), (int)pending->nodes (),
7079 htabsz);
7081 if (dump_file && (dump_flags & TDF_DETAILS))
7083 fprintf (dump_file, "BB %i IN:\n", bb->index);
7084 dump_dataflow_set (&VTI (bb)->in);
7085 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7086 dump_dataflow_set (&VTI (bb)->out);
7092 if (success && MAY_HAVE_DEBUG_INSNS)
7093 FOR_EACH_BB_FN (bb, cfun)
7094 gcc_assert (VTI (bb)->flooded);
7096 free (bb_order);
7097 delete worklist;
7098 delete pending;
7099 sbitmap_free (visited);
7100 sbitmap_free (in_worklist);
7101 sbitmap_free (in_pending);
7103 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7104 return success;
7107 /* Print the content of the LIST to dump file. */
7109 static void
7110 dump_attrs_list (attrs *list)
7112 for (; list; list = list->next)
7114 if (dv_is_decl_p (list->dv))
7115 print_mem_expr (dump_file, dv_as_decl (list->dv));
7116 else
7117 print_rtl_single (dump_file, dv_as_value (list->dv));
7118 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7120 fprintf (dump_file, "\n");
7123 /* Print the information about variable *SLOT to dump file. */
7126 dump_var_tracking_slot (variable **slot, void *data ATTRIBUTE_UNUSED)
7128 variable *var = *slot;
7130 dump_var (var);
7132 /* Continue traversing the hash table. */
7133 return 1;
7136 /* Print the information about variable VAR to dump file. */
7138 static void
7139 dump_var (variable *var)
7141 int i;
7142 location_chain *node;
7144 if (dv_is_decl_p (var->dv))
7146 const_tree decl = dv_as_decl (var->dv);
7148 if (DECL_NAME (decl))
7150 fprintf (dump_file, " name: %s",
7151 IDENTIFIER_POINTER (DECL_NAME (decl)));
7152 if (dump_flags & TDF_UID)
7153 fprintf (dump_file, "D.%u", DECL_UID (decl));
7155 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7156 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7157 else
7158 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7159 fprintf (dump_file, "\n");
7161 else
7163 fputc (' ', dump_file);
7164 print_rtl_single (dump_file, dv_as_value (var->dv));
7167 for (i = 0; i < var->n_var_parts; i++)
7169 fprintf (dump_file, " offset %ld\n",
7170 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7171 for (node = var->var_part[i].loc_chain; node; node = node->next)
7173 fprintf (dump_file, " ");
7174 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7175 fprintf (dump_file, "[uninit]");
7176 print_rtl_single (dump_file, node->loc);
7181 /* Print the information about variables from hash table VARS to dump file. */
7183 static void
7184 dump_vars (variable_table_type *vars)
7186 if (vars->elements () > 0)
7188 fprintf (dump_file, "Variables:\n");
7189 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7193 /* Print the dataflow set SET to dump file. */
7195 static void
7196 dump_dataflow_set (dataflow_set *set)
7198 int i;
7200 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7201 set->stack_adjust);
7202 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7204 if (set->regs[i])
7206 fprintf (dump_file, "Reg %d:", i);
7207 dump_attrs_list (set->regs[i]);
7210 dump_vars (shared_hash_htab (set->vars));
7211 fprintf (dump_file, "\n");
7214 /* Print the IN and OUT sets for each basic block to dump file. */
7216 static void
7217 dump_dataflow_sets (void)
7219 basic_block bb;
7221 FOR_EACH_BB_FN (bb, cfun)
7223 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7224 fprintf (dump_file, "IN:\n");
7225 dump_dataflow_set (&VTI (bb)->in);
7226 fprintf (dump_file, "OUT:\n");
7227 dump_dataflow_set (&VTI (bb)->out);
7231 /* Return the variable for DV in dropped_values, inserting one if
7232 requested with INSERT. */
7234 static inline variable *
7235 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7237 variable **slot;
7238 variable *empty_var;
7239 onepart_enum onepart;
7241 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7243 if (!slot)
7244 return NULL;
7246 if (*slot)
7247 return *slot;
7249 gcc_checking_assert (insert == INSERT);
7251 onepart = dv_onepart_p (dv);
7253 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7255 empty_var = onepart_pool_allocate (onepart);
7256 empty_var->dv = dv;
7257 empty_var->refcount = 1;
7258 empty_var->n_var_parts = 0;
7259 empty_var->onepart = onepart;
7260 empty_var->in_changed_variables = false;
7261 empty_var->var_part[0].loc_chain = NULL;
7262 empty_var->var_part[0].cur_loc = NULL;
7263 VAR_LOC_1PAUX (empty_var) = NULL;
7264 set_dv_changed (dv, true);
7266 *slot = empty_var;
7268 return empty_var;
7271 /* Recover the one-part aux from dropped_values. */
7273 static struct onepart_aux *
7274 recover_dropped_1paux (variable *var)
7276 variable *dvar;
7278 gcc_checking_assert (var->onepart);
7280 if (VAR_LOC_1PAUX (var))
7281 return VAR_LOC_1PAUX (var);
7283 if (var->onepart == ONEPART_VDECL)
7284 return NULL;
7286 dvar = variable_from_dropped (var->dv, NO_INSERT);
7288 if (!dvar)
7289 return NULL;
7291 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7292 VAR_LOC_1PAUX (dvar) = NULL;
7294 return VAR_LOC_1PAUX (var);
7297 /* Add variable VAR to the hash table of changed variables and
7298 if it has no locations delete it from SET's hash table. */
7300 static void
7301 variable_was_changed (variable *var, dataflow_set *set)
7303 hashval_t hash = dv_htab_hash (var->dv);
7305 if (emit_notes)
7307 variable **slot;
7309 /* Remember this decl or VALUE has been added to changed_variables. */
7310 set_dv_changed (var->dv, true);
7312 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7314 if (*slot)
7316 variable *old_var = *slot;
7317 gcc_assert (old_var->in_changed_variables);
7318 old_var->in_changed_variables = false;
7319 if (var != old_var && var->onepart)
7321 /* Restore the auxiliary info from an empty variable
7322 previously created for changed_variables, so it is
7323 not lost. */
7324 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7325 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7326 VAR_LOC_1PAUX (old_var) = NULL;
7328 variable_htab_free (*slot);
7331 if (set && var->n_var_parts == 0)
7333 onepart_enum onepart = var->onepart;
7334 variable *empty_var = NULL;
7335 variable **dslot = NULL;
7337 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7339 dslot = dropped_values->find_slot_with_hash (var->dv,
7340 dv_htab_hash (var->dv),
7341 INSERT);
7342 empty_var = *dslot;
7344 if (empty_var)
7346 gcc_checking_assert (!empty_var->in_changed_variables);
7347 if (!VAR_LOC_1PAUX (var))
7349 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7350 VAR_LOC_1PAUX (empty_var) = NULL;
7352 else
7353 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7357 if (!empty_var)
7359 empty_var = onepart_pool_allocate (onepart);
7360 empty_var->dv = var->dv;
7361 empty_var->refcount = 1;
7362 empty_var->n_var_parts = 0;
7363 empty_var->onepart = onepart;
7364 if (dslot)
7366 empty_var->refcount++;
7367 *dslot = empty_var;
7370 else
7371 empty_var->refcount++;
7372 empty_var->in_changed_variables = true;
7373 *slot = empty_var;
7374 if (onepart)
7376 empty_var->var_part[0].loc_chain = NULL;
7377 empty_var->var_part[0].cur_loc = NULL;
7378 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7379 VAR_LOC_1PAUX (var) = NULL;
7381 goto drop_var;
7383 else
7385 if (var->onepart && !VAR_LOC_1PAUX (var))
7386 recover_dropped_1paux (var);
7387 var->refcount++;
7388 var->in_changed_variables = true;
7389 *slot = var;
7392 else
7394 gcc_assert (set);
7395 if (var->n_var_parts == 0)
7397 variable **slot;
7399 drop_var:
7400 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7401 if (slot)
7403 if (shared_hash_shared (set->vars))
7404 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7405 NO_INSERT);
7406 shared_hash_htab (set->vars)->clear_slot (slot);
7412 /* Look for the index in VAR->var_part corresponding to OFFSET.
7413 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7414 referenced int will be set to the index that the part has or should
7415 have, if it should be inserted. */
7417 static inline int
7418 find_variable_location_part (variable *var, HOST_WIDE_INT offset,
7419 int *insertion_point)
7421 int pos, low, high;
7423 if (var->onepart)
7425 if (offset != 0)
7426 return -1;
7428 if (insertion_point)
7429 *insertion_point = 0;
7431 return var->n_var_parts - 1;
7434 /* Find the location part. */
7435 low = 0;
7436 high = var->n_var_parts;
7437 while (low != high)
7439 pos = (low + high) / 2;
7440 if (VAR_PART_OFFSET (var, pos) < offset)
7441 low = pos + 1;
7442 else
7443 high = pos;
7445 pos = low;
7447 if (insertion_point)
7448 *insertion_point = pos;
7450 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7451 return pos;
7453 return -1;
7456 static variable **
7457 set_slot_part (dataflow_set *set, rtx loc, variable **slot,
7458 decl_or_value dv, HOST_WIDE_INT offset,
7459 enum var_init_status initialized, rtx set_src)
7461 int pos;
7462 location_chain *node, *next;
7463 location_chain **nextp;
7464 variable *var;
7465 onepart_enum onepart;
7467 var = *slot;
7469 if (var)
7470 onepart = var->onepart;
7471 else
7472 onepart = dv_onepart_p (dv);
7474 gcc_checking_assert (offset == 0 || !onepart);
7475 gcc_checking_assert (loc != dv_as_opaque (dv));
7477 if (! flag_var_tracking_uninit)
7478 initialized = VAR_INIT_STATUS_INITIALIZED;
7480 if (!var)
7482 /* Create new variable information. */
7483 var = onepart_pool_allocate (onepart);
7484 var->dv = dv;
7485 var->refcount = 1;
7486 var->n_var_parts = 1;
7487 var->onepart = onepart;
7488 var->in_changed_variables = false;
7489 if (var->onepart)
7490 VAR_LOC_1PAUX (var) = NULL;
7491 else
7492 VAR_PART_OFFSET (var, 0) = offset;
7493 var->var_part[0].loc_chain = NULL;
7494 var->var_part[0].cur_loc = NULL;
7495 *slot = var;
7496 pos = 0;
7497 nextp = &var->var_part[0].loc_chain;
7499 else if (onepart)
7501 int r = -1, c = 0;
7503 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7505 pos = 0;
7507 if (GET_CODE (loc) == VALUE)
7509 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7510 nextp = &node->next)
7511 if (GET_CODE (node->loc) == VALUE)
7513 if (node->loc == loc)
7515 r = 0;
7516 break;
7518 if (canon_value_cmp (node->loc, loc))
7519 c++;
7520 else
7522 r = 1;
7523 break;
7526 else if (REG_P (node->loc) || MEM_P (node->loc))
7527 c++;
7528 else
7530 r = 1;
7531 break;
7534 else if (REG_P (loc))
7536 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7537 nextp = &node->next)
7538 if (REG_P (node->loc))
7540 if (REGNO (node->loc) < REGNO (loc))
7541 c++;
7542 else
7544 if (REGNO (node->loc) == REGNO (loc))
7545 r = 0;
7546 else
7547 r = 1;
7548 break;
7551 else
7553 r = 1;
7554 break;
7557 else if (MEM_P (loc))
7559 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7560 nextp = &node->next)
7561 if (REG_P (node->loc))
7562 c++;
7563 else if (MEM_P (node->loc))
7565 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7566 break;
7567 else
7568 c++;
7570 else
7572 r = 1;
7573 break;
7576 else
7577 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7578 nextp = &node->next)
7579 if ((r = loc_cmp (node->loc, loc)) >= 0)
7580 break;
7581 else
7582 c++;
7584 if (r == 0)
7585 return slot;
7587 if (shared_var_p (var, set->vars))
7589 slot = unshare_variable (set, slot, var, initialized);
7590 var = *slot;
7591 for (nextp = &var->var_part[0].loc_chain; c;
7592 nextp = &(*nextp)->next)
7593 c--;
7594 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7597 else
7599 int inspos = 0;
7601 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7603 pos = find_variable_location_part (var, offset, &inspos);
7605 if (pos >= 0)
7607 node = var->var_part[pos].loc_chain;
7609 if (node
7610 && ((REG_P (node->loc) && REG_P (loc)
7611 && REGNO (node->loc) == REGNO (loc))
7612 || rtx_equal_p (node->loc, loc)))
7614 /* LOC is in the beginning of the chain so we have nothing
7615 to do. */
7616 if (node->init < initialized)
7617 node->init = initialized;
7618 if (set_src != NULL)
7619 node->set_src = set_src;
7621 return slot;
7623 else
7625 /* We have to make a copy of a shared variable. */
7626 if (shared_var_p (var, set->vars))
7628 slot = unshare_variable (set, slot, var, initialized);
7629 var = *slot;
7633 else
7635 /* We have not found the location part, new one will be created. */
7637 /* We have to make a copy of the shared variable. */
7638 if (shared_var_p (var, set->vars))
7640 slot = unshare_variable (set, slot, var, initialized);
7641 var = *slot;
7644 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7645 thus there are at most MAX_VAR_PARTS different offsets. */
7646 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7647 && (!var->n_var_parts || !onepart));
7649 /* We have to move the elements of array starting at index
7650 inspos to the next position. */
7651 for (pos = var->n_var_parts; pos > inspos; pos--)
7652 var->var_part[pos] = var->var_part[pos - 1];
7654 var->n_var_parts++;
7655 gcc_checking_assert (!onepart);
7656 VAR_PART_OFFSET (var, pos) = offset;
7657 var->var_part[pos].loc_chain = NULL;
7658 var->var_part[pos].cur_loc = NULL;
7661 /* Delete the location from the list. */
7662 nextp = &var->var_part[pos].loc_chain;
7663 for (node = var->var_part[pos].loc_chain; node; node = next)
7665 next = node->next;
7666 if ((REG_P (node->loc) && REG_P (loc)
7667 && REGNO (node->loc) == REGNO (loc))
7668 || rtx_equal_p (node->loc, loc))
7670 /* Save these values, to assign to the new node, before
7671 deleting this one. */
7672 if (node->init > initialized)
7673 initialized = node->init;
7674 if (node->set_src != NULL && set_src == NULL)
7675 set_src = node->set_src;
7676 if (var->var_part[pos].cur_loc == node->loc)
7677 var->var_part[pos].cur_loc = NULL;
7678 delete node;
7679 *nextp = next;
7680 break;
7682 else
7683 nextp = &node->next;
7686 nextp = &var->var_part[pos].loc_chain;
7689 /* Add the location to the beginning. */
7690 node = new location_chain;
7691 node->loc = loc;
7692 node->init = initialized;
7693 node->set_src = set_src;
7694 node->next = *nextp;
7695 *nextp = node;
7697 /* If no location was emitted do so. */
7698 if (var->var_part[pos].cur_loc == NULL)
7699 variable_was_changed (var, set);
7701 return slot;
7704 /* Set the part of variable's location in the dataflow set SET. The
7705 variable part is specified by variable's declaration in DV and
7706 offset OFFSET and the part's location by LOC. IOPT should be
7707 NO_INSERT if the variable is known to be in SET already and the
7708 variable hash table must not be resized, and INSERT otherwise. */
7710 static void
7711 set_variable_part (dataflow_set *set, rtx loc,
7712 decl_or_value dv, HOST_WIDE_INT offset,
7713 enum var_init_status initialized, rtx set_src,
7714 enum insert_option iopt)
7716 variable **slot;
7718 if (iopt == NO_INSERT)
7719 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7720 else
7722 slot = shared_hash_find_slot (set->vars, dv);
7723 if (!slot)
7724 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7726 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7729 /* Remove all recorded register locations for the given variable part
7730 from dataflow set SET, except for those that are identical to loc.
7731 The variable part is specified by variable's declaration or value
7732 DV and offset OFFSET. */
7734 static variable **
7735 clobber_slot_part (dataflow_set *set, rtx loc, variable **slot,
7736 HOST_WIDE_INT offset, rtx set_src)
7738 variable *var = *slot;
7739 int pos = find_variable_location_part (var, offset, NULL);
7741 if (pos >= 0)
7743 location_chain *node, *next;
7745 /* Remove the register locations from the dataflow set. */
7746 next = var->var_part[pos].loc_chain;
7747 for (node = next; node; node = next)
7749 next = node->next;
7750 if (node->loc != loc
7751 && (!flag_var_tracking_uninit
7752 || !set_src
7753 || MEM_P (set_src)
7754 || !rtx_equal_p (set_src, node->set_src)))
7756 if (REG_P (node->loc))
7758 attrs *anode, *anext;
7759 attrs **anextp;
7761 /* Remove the variable part from the register's
7762 list, but preserve any other variable parts
7763 that might be regarded as live in that same
7764 register. */
7765 anextp = &set->regs[REGNO (node->loc)];
7766 for (anode = *anextp; anode; anode = anext)
7768 anext = anode->next;
7769 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7770 && anode->offset == offset)
7772 delete anode;
7773 *anextp = anext;
7775 else
7776 anextp = &anode->next;
7780 slot = delete_slot_part (set, node->loc, slot, offset);
7785 return slot;
7788 /* Remove all recorded register locations for the given variable part
7789 from dataflow set SET, except for those that are identical to loc.
7790 The variable part is specified by variable's declaration or value
7791 DV and offset OFFSET. */
7793 static void
7794 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7795 HOST_WIDE_INT offset, rtx set_src)
7797 variable **slot;
7799 if (!dv_as_opaque (dv)
7800 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7801 return;
7803 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7804 if (!slot)
7805 return;
7807 clobber_slot_part (set, loc, slot, offset, set_src);
7810 /* Delete the part of variable's location from dataflow set SET. The
7811 variable part is specified by its SET->vars slot SLOT and offset
7812 OFFSET and the part's location by LOC. */
7814 static variable **
7815 delete_slot_part (dataflow_set *set, rtx loc, variable **slot,
7816 HOST_WIDE_INT offset)
7818 variable *var = *slot;
7819 int pos = find_variable_location_part (var, offset, NULL);
7821 if (pos >= 0)
7823 location_chain *node, *next;
7824 location_chain **nextp;
7825 bool changed;
7826 rtx cur_loc;
7828 if (shared_var_p (var, set->vars))
7830 /* If the variable contains the location part we have to
7831 make a copy of the variable. */
7832 for (node = var->var_part[pos].loc_chain; node;
7833 node = node->next)
7835 if ((REG_P (node->loc) && REG_P (loc)
7836 && REGNO (node->loc) == REGNO (loc))
7837 || rtx_equal_p (node->loc, loc))
7839 slot = unshare_variable (set, slot, var,
7840 VAR_INIT_STATUS_UNKNOWN);
7841 var = *slot;
7842 break;
7847 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7848 cur_loc = VAR_LOC_FROM (var);
7849 else
7850 cur_loc = var->var_part[pos].cur_loc;
7852 /* Delete the location part. */
7853 changed = false;
7854 nextp = &var->var_part[pos].loc_chain;
7855 for (node = *nextp; node; node = next)
7857 next = node->next;
7858 if ((REG_P (node->loc) && REG_P (loc)
7859 && REGNO (node->loc) == REGNO (loc))
7860 || rtx_equal_p (node->loc, loc))
7862 /* If we have deleted the location which was last emitted
7863 we have to emit new location so add the variable to set
7864 of changed variables. */
7865 if (cur_loc == node->loc)
7867 changed = true;
7868 var->var_part[pos].cur_loc = NULL;
7869 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7870 VAR_LOC_FROM (var) = NULL;
7872 delete node;
7873 *nextp = next;
7874 break;
7876 else
7877 nextp = &node->next;
7880 if (var->var_part[pos].loc_chain == NULL)
7882 changed = true;
7883 var->n_var_parts--;
7884 while (pos < var->n_var_parts)
7886 var->var_part[pos] = var->var_part[pos + 1];
7887 pos++;
7890 if (changed)
7891 variable_was_changed (var, set);
7894 return slot;
7897 /* Delete the part of variable's location from dataflow set SET. The
7898 variable part is specified by variable's declaration or value DV
7899 and offset OFFSET and the part's location by LOC. */
7901 static void
7902 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7903 HOST_WIDE_INT offset)
7905 variable **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7906 if (!slot)
7907 return;
7909 delete_slot_part (set, loc, slot, offset);
7913 /* Structure for passing some other parameters to function
7914 vt_expand_loc_callback. */
7915 struct expand_loc_callback_data
7917 /* The variables and values active at this point. */
7918 variable_table_type *vars;
7920 /* Stack of values and debug_exprs under expansion, and their
7921 children. */
7922 auto_vec<rtx, 4> expanding;
7924 /* Stack of values and debug_exprs whose expansion hit recursion
7925 cycles. They will have VALUE_RECURSED_INTO marked when added to
7926 this list. This flag will be cleared if any of its dependencies
7927 resolves to a valid location. So, if the flag remains set at the
7928 end of the search, we know no valid location for this one can
7929 possibly exist. */
7930 auto_vec<rtx, 4> pending;
7932 /* The maximum depth among the sub-expressions under expansion.
7933 Zero indicates no expansion so far. */
7934 expand_depth depth;
7937 /* Allocate the one-part auxiliary data structure for VAR, with enough
7938 room for COUNT dependencies. */
7940 static void
7941 loc_exp_dep_alloc (variable *var, int count)
7943 size_t allocsize;
7945 gcc_checking_assert (var->onepart);
7947 /* We can be called with COUNT == 0 to allocate the data structure
7948 without any dependencies, e.g. for the backlinks only. However,
7949 if we are specifying a COUNT, then the dependency list must have
7950 been emptied before. It would be possible to adjust pointers or
7951 force it empty here, but this is better done at an earlier point
7952 in the algorithm, so we instead leave an assertion to catch
7953 errors. */
7954 gcc_checking_assert (!count
7955 || VAR_LOC_DEP_VEC (var) == NULL
7956 || VAR_LOC_DEP_VEC (var)->is_empty ());
7958 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
7959 return;
7961 allocsize = offsetof (struct onepart_aux, deps)
7962 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
7964 if (VAR_LOC_1PAUX (var))
7966 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
7967 VAR_LOC_1PAUX (var), allocsize);
7968 /* If the reallocation moves the onepaux structure, the
7969 back-pointer to BACKLINKS in the first list member will still
7970 point to its old location. Adjust it. */
7971 if (VAR_LOC_DEP_LST (var))
7972 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
7974 else
7976 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
7977 *VAR_LOC_DEP_LSTP (var) = NULL;
7978 VAR_LOC_FROM (var) = NULL;
7979 VAR_LOC_DEPTH (var).complexity = 0;
7980 VAR_LOC_DEPTH (var).entryvals = 0;
7982 VAR_LOC_DEP_VEC (var)->embedded_init (count);
7985 /* Remove all entries from the vector of active dependencies of VAR,
7986 removing them from the back-links lists too. */
7988 static void
7989 loc_exp_dep_clear (variable *var)
7991 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
7993 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
7994 if (led->next)
7995 led->next->pprev = led->pprev;
7996 if (led->pprev)
7997 *led->pprev = led->next;
7998 VAR_LOC_DEP_VEC (var)->pop ();
8002 /* Insert an active dependency from VAR on X to the vector of
8003 dependencies, and add the corresponding back-link to X's list of
8004 back-links in VARS. */
8006 static void
8007 loc_exp_insert_dep (variable *var, rtx x, variable_table_type *vars)
8009 decl_or_value dv;
8010 variable *xvar;
8011 loc_exp_dep *led;
8013 dv = dv_from_rtx (x);
8015 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8016 an additional look up? */
8017 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8019 if (!xvar)
8021 xvar = variable_from_dropped (dv, NO_INSERT);
8022 gcc_checking_assert (xvar);
8025 /* No point in adding the same backlink more than once. This may
8026 arise if say the same value appears in two complex expressions in
8027 the same loc_list, or even more than once in a single
8028 expression. */
8029 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8030 return;
8032 if (var->onepart == NOT_ONEPART)
8033 led = new loc_exp_dep;
8034 else
8036 loc_exp_dep empty;
8037 memset (&empty, 0, sizeof (empty));
8038 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8039 led = &VAR_LOC_DEP_VEC (var)->last ();
8041 led->dv = var->dv;
8042 led->value = x;
8044 loc_exp_dep_alloc (xvar, 0);
8045 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8046 led->next = *led->pprev;
8047 if (led->next)
8048 led->next->pprev = &led->next;
8049 *led->pprev = led;
8052 /* Create active dependencies of VAR on COUNT values starting at
8053 VALUE, and corresponding back-links to the entries in VARS. Return
8054 true if we found any pending-recursion results. */
8056 static bool
8057 loc_exp_dep_set (variable *var, rtx result, rtx *value, int count,
8058 variable_table_type *vars)
8060 bool pending_recursion = false;
8062 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8063 || VAR_LOC_DEP_VEC (var)->is_empty ());
8065 /* Set up all dependencies from last_child (as set up at the end of
8066 the loop above) to the end. */
8067 loc_exp_dep_alloc (var, count);
8069 while (count--)
8071 rtx x = *value++;
8073 if (!pending_recursion)
8074 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8076 loc_exp_insert_dep (var, x, vars);
8079 return pending_recursion;
8082 /* Notify the back-links of IVAR that are pending recursion that we
8083 have found a non-NIL value for it, so they are cleared for another
8084 attempt to compute a current location. */
8086 static void
8087 notify_dependents_of_resolved_value (variable *ivar, variable_table_type *vars)
8089 loc_exp_dep *led, *next;
8091 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8093 decl_or_value dv = led->dv;
8094 variable *var;
8096 next = led->next;
8098 if (dv_is_value_p (dv))
8100 rtx value = dv_as_value (dv);
8102 /* If we have already resolved it, leave it alone. */
8103 if (!VALUE_RECURSED_INTO (value))
8104 continue;
8106 /* Check that VALUE_RECURSED_INTO, true from the test above,
8107 implies NO_LOC_P. */
8108 gcc_checking_assert (NO_LOC_P (value));
8110 /* We won't notify variables that are being expanded,
8111 because their dependency list is cleared before
8112 recursing. */
8113 NO_LOC_P (value) = false;
8114 VALUE_RECURSED_INTO (value) = false;
8116 gcc_checking_assert (dv_changed_p (dv));
8118 else
8120 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8121 if (!dv_changed_p (dv))
8122 continue;
8125 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8127 if (!var)
8128 var = variable_from_dropped (dv, NO_INSERT);
8130 if (var)
8131 notify_dependents_of_resolved_value (var, vars);
8133 if (next)
8134 next->pprev = led->pprev;
8135 if (led->pprev)
8136 *led->pprev = next;
8137 led->next = NULL;
8138 led->pprev = NULL;
8142 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8143 int max_depth, void *data);
8145 /* Return the combined depth, when one sub-expression evaluated to
8146 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8148 static inline expand_depth
8149 update_depth (expand_depth saved_depth, expand_depth best_depth)
8151 /* If we didn't find anything, stick with what we had. */
8152 if (!best_depth.complexity)
8153 return saved_depth;
8155 /* If we found hadn't found anything, use the depth of the current
8156 expression. Do NOT add one extra level, we want to compute the
8157 maximum depth among sub-expressions. We'll increment it later,
8158 if appropriate. */
8159 if (!saved_depth.complexity)
8160 return best_depth;
8162 /* Combine the entryval count so that regardless of which one we
8163 return, the entryval count is accurate. */
8164 best_depth.entryvals = saved_depth.entryvals
8165 = best_depth.entryvals + saved_depth.entryvals;
8167 if (saved_depth.complexity < best_depth.complexity)
8168 return best_depth;
8169 else
8170 return saved_depth;
8173 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8174 DATA for cselib expand callback. If PENDRECP is given, indicate in
8175 it whether any sub-expression couldn't be fully evaluated because
8176 it is pending recursion resolution. */
8178 static inline rtx
8179 vt_expand_var_loc_chain (variable *var, bitmap regs, void *data,
8180 bool *pendrecp)
8182 struct expand_loc_callback_data *elcd
8183 = (struct expand_loc_callback_data *) data;
8184 location_chain *loc, *next;
8185 rtx result = NULL;
8186 int first_child, result_first_child, last_child;
8187 bool pending_recursion;
8188 rtx loc_from = NULL;
8189 struct elt_loc_list *cloc = NULL;
8190 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8191 int wanted_entryvals, found_entryvals = 0;
8193 /* Clear all backlinks pointing at this, so that we're not notified
8194 while we're active. */
8195 loc_exp_dep_clear (var);
8197 retry:
8198 if (var->onepart == ONEPART_VALUE)
8200 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8202 gcc_checking_assert (cselib_preserved_value_p (val));
8204 cloc = val->locs;
8207 first_child = result_first_child = last_child
8208 = elcd->expanding.length ();
8210 wanted_entryvals = found_entryvals;
8212 /* Attempt to expand each available location in turn. */
8213 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8214 loc || cloc; loc = next)
8216 result_first_child = last_child;
8218 if (!loc)
8220 loc_from = cloc->loc;
8221 next = loc;
8222 cloc = cloc->next;
8223 if (unsuitable_loc (loc_from))
8224 continue;
8226 else
8228 loc_from = loc->loc;
8229 next = loc->next;
8232 gcc_checking_assert (!unsuitable_loc (loc_from));
8234 elcd->depth.complexity = elcd->depth.entryvals = 0;
8235 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8236 vt_expand_loc_callback, data);
8237 last_child = elcd->expanding.length ();
8239 if (result)
8241 depth = elcd->depth;
8243 gcc_checking_assert (depth.complexity
8244 || result_first_child == last_child);
8246 if (last_child - result_first_child != 1)
8248 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8249 depth.entryvals++;
8250 depth.complexity++;
8253 if (depth.complexity <= EXPR_USE_DEPTH)
8255 if (depth.entryvals <= wanted_entryvals)
8256 break;
8257 else if (!found_entryvals || depth.entryvals < found_entryvals)
8258 found_entryvals = depth.entryvals;
8261 result = NULL;
8264 /* Set it up in case we leave the loop. */
8265 depth.complexity = depth.entryvals = 0;
8266 loc_from = NULL;
8267 result_first_child = first_child;
8270 if (!loc_from && wanted_entryvals < found_entryvals)
8272 /* We found entries with ENTRY_VALUEs and skipped them. Since
8273 we could not find any expansions without ENTRY_VALUEs, but we
8274 found at least one with them, go back and get an entry with
8275 the minimum number ENTRY_VALUE count that we found. We could
8276 avoid looping, but since each sub-loc is already resolved,
8277 the re-expansion should be trivial. ??? Should we record all
8278 attempted locs as dependencies, so that we retry the
8279 expansion should any of them change, in the hope it can give
8280 us a new entry without an ENTRY_VALUE? */
8281 elcd->expanding.truncate (first_child);
8282 goto retry;
8285 /* Register all encountered dependencies as active. */
8286 pending_recursion = loc_exp_dep_set
8287 (var, result, elcd->expanding.address () + result_first_child,
8288 last_child - result_first_child, elcd->vars);
8290 elcd->expanding.truncate (first_child);
8292 /* Record where the expansion came from. */
8293 gcc_checking_assert (!result || !pending_recursion);
8294 VAR_LOC_FROM (var) = loc_from;
8295 VAR_LOC_DEPTH (var) = depth;
8297 gcc_checking_assert (!depth.complexity == !result);
8299 elcd->depth = update_depth (saved_depth, depth);
8301 /* Indicate whether any of the dependencies are pending recursion
8302 resolution. */
8303 if (pendrecp)
8304 *pendrecp = pending_recursion;
8306 if (!pendrecp || !pending_recursion)
8307 var->var_part[0].cur_loc = result;
8309 return result;
8312 /* Callback for cselib_expand_value, that looks for expressions
8313 holding the value in the var-tracking hash tables. Return X for
8314 standard processing, anything else is to be used as-is. */
8316 static rtx
8317 vt_expand_loc_callback (rtx x, bitmap regs,
8318 int max_depth ATTRIBUTE_UNUSED,
8319 void *data)
8321 struct expand_loc_callback_data *elcd
8322 = (struct expand_loc_callback_data *) data;
8323 decl_or_value dv;
8324 variable *var;
8325 rtx result, subreg;
8326 bool pending_recursion = false;
8327 bool from_empty = false;
8329 switch (GET_CODE (x))
8331 case SUBREG:
8332 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8333 EXPR_DEPTH,
8334 vt_expand_loc_callback, data);
8336 if (!subreg)
8337 return NULL;
8339 result = simplify_gen_subreg (GET_MODE (x), subreg,
8340 GET_MODE (SUBREG_REG (x)),
8341 SUBREG_BYTE (x));
8343 /* Invalid SUBREGs are ok in debug info. ??? We could try
8344 alternate expansions for the VALUE as well. */
8345 if (!result)
8346 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8348 return result;
8350 case DEBUG_EXPR:
8351 case VALUE:
8352 dv = dv_from_rtx (x);
8353 break;
8355 default:
8356 return x;
8359 elcd->expanding.safe_push (x);
8361 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8362 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8364 if (NO_LOC_P (x))
8366 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8367 return NULL;
8370 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8372 if (!var)
8374 from_empty = true;
8375 var = variable_from_dropped (dv, INSERT);
8378 gcc_checking_assert (var);
8380 if (!dv_changed_p (dv))
8382 gcc_checking_assert (!NO_LOC_P (x));
8383 gcc_checking_assert (var->var_part[0].cur_loc);
8384 gcc_checking_assert (VAR_LOC_1PAUX (var));
8385 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8387 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8389 return var->var_part[0].cur_loc;
8392 VALUE_RECURSED_INTO (x) = true;
8393 /* This is tentative, but it makes some tests simpler. */
8394 NO_LOC_P (x) = true;
8396 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8398 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8400 if (pending_recursion)
8402 gcc_checking_assert (!result);
8403 elcd->pending.safe_push (x);
8405 else
8407 NO_LOC_P (x) = !result;
8408 VALUE_RECURSED_INTO (x) = false;
8409 set_dv_changed (dv, false);
8411 if (result)
8412 notify_dependents_of_resolved_value (var, elcd->vars);
8415 return result;
8418 /* While expanding variables, we may encounter recursion cycles
8419 because of mutual (possibly indirect) dependencies between two
8420 particular variables (or values), say A and B. If we're trying to
8421 expand A when we get to B, which in turn attempts to expand A, if
8422 we can't find any other expansion for B, we'll add B to this
8423 pending-recursion stack, and tentatively return NULL for its
8424 location. This tentative value will be used for any other
8425 occurrences of B, unless A gets some other location, in which case
8426 it will notify B that it is worth another try at computing a
8427 location for it, and it will use the location computed for A then.
8428 At the end of the expansion, the tentative NULL locations become
8429 final for all members of PENDING that didn't get a notification.
8430 This function performs this finalization of NULL locations. */
8432 static void
8433 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8435 while (!pending->is_empty ())
8437 rtx x = pending->pop ();
8438 decl_or_value dv;
8440 if (!VALUE_RECURSED_INTO (x))
8441 continue;
8443 gcc_checking_assert (NO_LOC_P (x));
8444 VALUE_RECURSED_INTO (x) = false;
8445 dv = dv_from_rtx (x);
8446 gcc_checking_assert (dv_changed_p (dv));
8447 set_dv_changed (dv, false);
8451 /* Initialize expand_loc_callback_data D with variable hash table V.
8452 It must be a macro because of alloca (vec stack). */
8453 #define INIT_ELCD(d, v) \
8454 do \
8456 (d).vars = (v); \
8457 (d).depth.complexity = (d).depth.entryvals = 0; \
8459 while (0)
8460 /* Finalize expand_loc_callback_data D, resolved to location L. */
8461 #define FINI_ELCD(d, l) \
8462 do \
8464 resolve_expansions_pending_recursion (&(d).pending); \
8465 (d).pending.release (); \
8466 (d).expanding.release (); \
8468 if ((l) && MEM_P (l)) \
8469 (l) = targetm.delegitimize_address (l); \
8471 while (0)
8473 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8474 equivalences in VARS, updating their CUR_LOCs in the process. */
8476 static rtx
8477 vt_expand_loc (rtx loc, variable_table_type *vars)
8479 struct expand_loc_callback_data data;
8480 rtx result;
8482 if (!MAY_HAVE_DEBUG_INSNS)
8483 return loc;
8485 INIT_ELCD (data, vars);
8487 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8488 vt_expand_loc_callback, &data);
8490 FINI_ELCD (data, result);
8492 return result;
8495 /* Expand the one-part VARiable to a location, using the equivalences
8496 in VARS, updating their CUR_LOCs in the process. */
8498 static rtx
8499 vt_expand_1pvar (variable *var, variable_table_type *vars)
8501 struct expand_loc_callback_data data;
8502 rtx loc;
8504 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8506 if (!dv_changed_p (var->dv))
8507 return var->var_part[0].cur_loc;
8509 INIT_ELCD (data, vars);
8511 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8513 gcc_checking_assert (data.expanding.is_empty ());
8515 FINI_ELCD (data, loc);
8517 return loc;
8520 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8521 additional parameters: WHERE specifies whether the note shall be emitted
8522 before or after instruction INSN. */
8525 emit_note_insn_var_location (variable **varp, emit_note_data *data)
8527 variable *var = *varp;
8528 rtx_insn *insn = data->insn;
8529 enum emit_note_where where = data->where;
8530 variable_table_type *vars = data->vars;
8531 rtx_note *note;
8532 rtx note_vl;
8533 int i, j, n_var_parts;
8534 bool complete;
8535 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8536 HOST_WIDE_INT last_limit;
8537 tree type_size_unit;
8538 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8539 rtx loc[MAX_VAR_PARTS];
8540 tree decl;
8541 location_chain *lc;
8543 gcc_checking_assert (var->onepart == NOT_ONEPART
8544 || var->onepart == ONEPART_VDECL);
8546 decl = dv_as_decl (var->dv);
8548 complete = true;
8549 last_limit = 0;
8550 n_var_parts = 0;
8551 if (!var->onepart)
8552 for (i = 0; i < var->n_var_parts; i++)
8553 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8554 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8555 for (i = 0; i < var->n_var_parts; i++)
8557 machine_mode mode, wider_mode;
8558 rtx loc2;
8559 HOST_WIDE_INT offset;
8561 if (i == 0 && var->onepart)
8563 gcc_checking_assert (var->n_var_parts == 1);
8564 offset = 0;
8565 initialized = VAR_INIT_STATUS_INITIALIZED;
8566 loc2 = vt_expand_1pvar (var, vars);
8568 else
8570 if (last_limit < VAR_PART_OFFSET (var, i))
8572 complete = false;
8573 break;
8575 else if (last_limit > VAR_PART_OFFSET (var, i))
8576 continue;
8577 offset = VAR_PART_OFFSET (var, i);
8578 loc2 = var->var_part[i].cur_loc;
8579 if (loc2 && GET_CODE (loc2) == MEM
8580 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8582 rtx depval = XEXP (loc2, 0);
8584 loc2 = vt_expand_loc (loc2, vars);
8586 if (loc2)
8587 loc_exp_insert_dep (var, depval, vars);
8589 if (!loc2)
8591 complete = false;
8592 continue;
8594 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8595 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8596 if (var->var_part[i].cur_loc == lc->loc)
8598 initialized = lc->init;
8599 break;
8601 gcc_assert (lc);
8604 offsets[n_var_parts] = offset;
8605 if (!loc2)
8607 complete = false;
8608 continue;
8610 loc[n_var_parts] = loc2;
8611 mode = GET_MODE (var->var_part[i].cur_loc);
8612 if (mode == VOIDmode && var->onepart)
8613 mode = DECL_MODE (decl);
8614 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8616 /* Attempt to merge adjacent registers or memory. */
8617 wider_mode = GET_MODE_WIDER_MODE (mode);
8618 for (j = i + 1; j < var->n_var_parts; j++)
8619 if (last_limit <= VAR_PART_OFFSET (var, j))
8620 break;
8621 if (j < var->n_var_parts
8622 && wider_mode != VOIDmode
8623 && var->var_part[j].cur_loc
8624 && mode == GET_MODE (var->var_part[j].cur_loc)
8625 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8626 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8627 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8628 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8630 rtx new_loc = NULL;
8632 if (REG_P (loc[n_var_parts])
8633 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8634 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8635 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8636 == REGNO (loc2))
8638 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8639 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8640 mode, 0);
8641 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8642 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8643 if (new_loc)
8645 if (!REG_P (new_loc)
8646 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8647 new_loc = NULL;
8648 else
8649 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8652 else if (MEM_P (loc[n_var_parts])
8653 && GET_CODE (XEXP (loc2, 0)) == PLUS
8654 && REG_P (XEXP (XEXP (loc2, 0), 0))
8655 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8657 if ((REG_P (XEXP (loc[n_var_parts], 0))
8658 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8659 XEXP (XEXP (loc2, 0), 0))
8660 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8661 == GET_MODE_SIZE (mode))
8662 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8663 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8664 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8665 XEXP (XEXP (loc2, 0), 0))
8666 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8667 + GET_MODE_SIZE (mode)
8668 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8669 new_loc = adjust_address_nv (loc[n_var_parts],
8670 wider_mode, 0);
8673 if (new_loc)
8675 loc[n_var_parts] = new_loc;
8676 mode = wider_mode;
8677 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8678 i = j;
8681 ++n_var_parts;
8683 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8684 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8685 complete = false;
8687 if (! flag_var_tracking_uninit)
8688 initialized = VAR_INIT_STATUS_INITIALIZED;
8690 note_vl = NULL_RTX;
8691 if (!complete)
8692 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8693 else if (n_var_parts == 1)
8695 rtx expr_list;
8697 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8698 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8699 else
8700 expr_list = loc[0];
8702 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8704 else if (n_var_parts)
8706 rtx parallel;
8708 for (i = 0; i < n_var_parts; i++)
8709 loc[i]
8710 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8712 parallel = gen_rtx_PARALLEL (VOIDmode,
8713 gen_rtvec_v (n_var_parts, loc));
8714 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8715 parallel, initialized);
8718 if (where != EMIT_NOTE_BEFORE_INSN)
8720 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8721 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8722 NOTE_DURING_CALL_P (note) = true;
8724 else
8726 /* Make sure that the call related notes come first. */
8727 while (NEXT_INSN (insn)
8728 && NOTE_P (insn)
8729 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8730 && NOTE_DURING_CALL_P (insn))
8731 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8732 insn = NEXT_INSN (insn);
8733 if (NOTE_P (insn)
8734 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8735 && NOTE_DURING_CALL_P (insn))
8736 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8737 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8738 else
8739 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8741 NOTE_VAR_LOCATION (note) = note_vl;
8743 set_dv_changed (var->dv, false);
8744 gcc_assert (var->in_changed_variables);
8745 var->in_changed_variables = false;
8746 changed_variables->clear_slot (varp);
8748 /* Continue traversing the hash table. */
8749 return 1;
8752 /* While traversing changed_variables, push onto DATA (a stack of RTX
8753 values) entries that aren't user variables. */
8756 var_track_values_to_stack (variable **slot,
8757 vec<rtx, va_heap> *changed_values_stack)
8759 variable *var = *slot;
8761 if (var->onepart == ONEPART_VALUE)
8762 changed_values_stack->safe_push (dv_as_value (var->dv));
8763 else if (var->onepart == ONEPART_DEXPR)
8764 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8766 return 1;
8769 /* Remove from changed_variables the entry whose DV corresponds to
8770 value or debug_expr VAL. */
8771 static void
8772 remove_value_from_changed_variables (rtx val)
8774 decl_or_value dv = dv_from_rtx (val);
8775 variable **slot;
8776 variable *var;
8778 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8779 NO_INSERT);
8780 var = *slot;
8781 var->in_changed_variables = false;
8782 changed_variables->clear_slot (slot);
8785 /* If VAL (a value or debug_expr) has backlinks to variables actively
8786 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8787 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8788 have dependencies of their own to notify. */
8790 static void
8791 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8792 vec<rtx, va_heap> *changed_values_stack)
8794 variable **slot;
8795 variable *var;
8796 loc_exp_dep *led;
8797 decl_or_value dv = dv_from_rtx (val);
8799 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8800 NO_INSERT);
8801 if (!slot)
8802 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8803 if (!slot)
8804 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8805 NO_INSERT);
8806 var = *slot;
8808 while ((led = VAR_LOC_DEP_LST (var)))
8810 decl_or_value ldv = led->dv;
8811 variable *ivar;
8813 /* Deactivate and remove the backlink, as it was “used up”. It
8814 makes no sense to attempt to notify the same entity again:
8815 either it will be recomputed and re-register an active
8816 dependency, or it will still have the changed mark. */
8817 if (led->next)
8818 led->next->pprev = led->pprev;
8819 if (led->pprev)
8820 *led->pprev = led->next;
8821 led->next = NULL;
8822 led->pprev = NULL;
8824 if (dv_changed_p (ldv))
8825 continue;
8827 switch (dv_onepart_p (ldv))
8829 case ONEPART_VALUE:
8830 case ONEPART_DEXPR:
8831 set_dv_changed (ldv, true);
8832 changed_values_stack->safe_push (dv_as_rtx (ldv));
8833 break;
8835 case ONEPART_VDECL:
8836 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8837 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8838 variable_was_changed (ivar, NULL);
8839 break;
8841 case NOT_ONEPART:
8842 delete led;
8843 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8844 if (ivar)
8846 int i = ivar->n_var_parts;
8847 while (i--)
8849 rtx loc = ivar->var_part[i].cur_loc;
8851 if (loc && GET_CODE (loc) == MEM
8852 && XEXP (loc, 0) == val)
8854 variable_was_changed (ivar, NULL);
8855 break;
8859 break;
8861 default:
8862 gcc_unreachable ();
8867 /* Take out of changed_variables any entries that don't refer to use
8868 variables. Back-propagate change notifications from values and
8869 debug_exprs to their active dependencies in HTAB or in
8870 CHANGED_VARIABLES. */
8872 static void
8873 process_changed_values (variable_table_type *htab)
8875 int i, n;
8876 rtx val;
8877 auto_vec<rtx, 20> changed_values_stack;
8879 /* Move values from changed_variables to changed_values_stack. */
8880 changed_variables
8881 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8882 (&changed_values_stack);
8884 /* Back-propagate change notifications in values while popping
8885 them from the stack. */
8886 for (n = i = changed_values_stack.length ();
8887 i > 0; i = changed_values_stack.length ())
8889 val = changed_values_stack.pop ();
8890 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8892 /* This condition will hold when visiting each of the entries
8893 originally in changed_variables. We can't remove them
8894 earlier because this could drop the backlinks before we got a
8895 chance to use them. */
8896 if (i == n)
8898 remove_value_from_changed_variables (val);
8899 n--;
8904 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8905 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8906 the notes shall be emitted before of after instruction INSN. */
8908 static void
8909 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
8910 shared_hash *vars)
8912 emit_note_data data;
8913 variable_table_type *htab = shared_hash_htab (vars);
8915 if (!changed_variables->elements ())
8916 return;
8918 if (MAY_HAVE_DEBUG_INSNS)
8919 process_changed_values (htab);
8921 data.insn = insn;
8922 data.where = where;
8923 data.vars = htab;
8925 changed_variables
8926 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
8929 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8930 same variable in hash table DATA or is not there at all. */
8933 emit_notes_for_differences_1 (variable **slot, variable_table_type *new_vars)
8935 variable *old_var, *new_var;
8937 old_var = *slot;
8938 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
8940 if (!new_var)
8942 /* Variable has disappeared. */
8943 variable *empty_var = NULL;
8945 if (old_var->onepart == ONEPART_VALUE
8946 || old_var->onepart == ONEPART_DEXPR)
8948 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
8949 if (empty_var)
8951 gcc_checking_assert (!empty_var->in_changed_variables);
8952 if (!VAR_LOC_1PAUX (old_var))
8954 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
8955 VAR_LOC_1PAUX (empty_var) = NULL;
8957 else
8958 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
8962 if (!empty_var)
8964 empty_var = onepart_pool_allocate (old_var->onepart);
8965 empty_var->dv = old_var->dv;
8966 empty_var->refcount = 0;
8967 empty_var->n_var_parts = 0;
8968 empty_var->onepart = old_var->onepart;
8969 empty_var->in_changed_variables = false;
8972 if (empty_var->onepart)
8974 /* Propagate the auxiliary data to (ultimately)
8975 changed_variables. */
8976 empty_var->var_part[0].loc_chain = NULL;
8977 empty_var->var_part[0].cur_loc = NULL;
8978 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
8979 VAR_LOC_1PAUX (old_var) = NULL;
8981 variable_was_changed (empty_var, NULL);
8982 /* Continue traversing the hash table. */
8983 return 1;
8985 /* Update cur_loc and one-part auxiliary data, before new_var goes
8986 through variable_was_changed. */
8987 if (old_var != new_var && new_var->onepart)
8989 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
8990 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
8991 VAR_LOC_1PAUX (old_var) = NULL;
8992 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
8994 if (variable_different_p (old_var, new_var))
8995 variable_was_changed (new_var, NULL);
8997 /* Continue traversing the hash table. */
8998 return 1;
9001 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9002 table DATA. */
9005 emit_notes_for_differences_2 (variable **slot, variable_table_type *old_vars)
9007 variable *old_var, *new_var;
9009 new_var = *slot;
9010 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9011 if (!old_var)
9013 int i;
9014 for (i = 0; i < new_var->n_var_parts; i++)
9015 new_var->var_part[i].cur_loc = NULL;
9016 variable_was_changed (new_var, NULL);
9019 /* Continue traversing the hash table. */
9020 return 1;
9023 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9024 NEW_SET. */
9026 static void
9027 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9028 dataflow_set *new_set)
9030 shared_hash_htab (old_set->vars)
9031 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9032 (shared_hash_htab (new_set->vars));
9033 shared_hash_htab (new_set->vars)
9034 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9035 (shared_hash_htab (old_set->vars));
9036 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9039 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9041 static rtx_insn *
9042 next_non_note_insn_var_location (rtx_insn *insn)
9044 while (insn)
9046 insn = NEXT_INSN (insn);
9047 if (insn == 0
9048 || !NOTE_P (insn)
9049 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9050 break;
9053 return insn;
9056 /* Emit the notes for changes of location parts in the basic block BB. */
9058 static void
9059 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9061 unsigned int i;
9062 micro_operation *mo;
9064 dataflow_set_clear (set);
9065 dataflow_set_copy (set, &VTI (bb)->in);
9067 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9069 rtx_insn *insn = mo->insn;
9070 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9072 switch (mo->type)
9074 case MO_CALL:
9075 dataflow_set_clear_at_call (set, insn);
9076 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9078 rtx arguments = mo->u.loc, *p = &arguments;
9079 rtx_note *note;
9080 while (*p)
9082 XEXP (XEXP (*p, 0), 1)
9083 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9084 shared_hash_htab (set->vars));
9085 /* If expansion is successful, keep it in the list. */
9086 if (XEXP (XEXP (*p, 0), 1))
9087 p = &XEXP (*p, 1);
9088 /* Otherwise, if the following item is data_value for it,
9089 drop it too too. */
9090 else if (XEXP (*p, 1)
9091 && REG_P (XEXP (XEXP (*p, 0), 0))
9092 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9093 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9095 && REGNO (XEXP (XEXP (*p, 0), 0))
9096 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9097 0), 0)))
9098 *p = XEXP (XEXP (*p, 1), 1);
9099 /* Just drop this item. */
9100 else
9101 *p = XEXP (*p, 1);
9103 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9104 NOTE_VAR_LOCATION (note) = arguments;
9106 break;
9108 case MO_USE:
9110 rtx loc = mo->u.loc;
9112 if (REG_P (loc))
9113 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9114 else
9115 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9117 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9119 break;
9121 case MO_VAL_LOC:
9123 rtx loc = mo->u.loc;
9124 rtx val, vloc;
9125 tree var;
9127 if (GET_CODE (loc) == CONCAT)
9129 val = XEXP (loc, 0);
9130 vloc = XEXP (loc, 1);
9132 else
9134 val = NULL_RTX;
9135 vloc = loc;
9138 var = PAT_VAR_LOCATION_DECL (vloc);
9140 clobber_variable_part (set, NULL_RTX,
9141 dv_from_decl (var), 0, NULL_RTX);
9142 if (val)
9144 if (VAL_NEEDS_RESOLUTION (loc))
9145 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9146 set_variable_part (set, val, dv_from_decl (var), 0,
9147 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9148 INSERT);
9150 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9151 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9152 dv_from_decl (var), 0,
9153 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9154 INSERT);
9156 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9158 break;
9160 case MO_VAL_USE:
9162 rtx loc = mo->u.loc;
9163 rtx val, vloc, uloc;
9165 vloc = uloc = XEXP (loc, 1);
9166 val = XEXP (loc, 0);
9168 if (GET_CODE (val) == CONCAT)
9170 uloc = XEXP (val, 1);
9171 val = XEXP (val, 0);
9174 if (VAL_NEEDS_RESOLUTION (loc))
9175 val_resolve (set, val, vloc, insn);
9176 else
9177 val_store (set, val, uloc, insn, false);
9179 if (VAL_HOLDS_TRACK_EXPR (loc))
9181 if (GET_CODE (uloc) == REG)
9182 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9183 NULL);
9184 else if (GET_CODE (uloc) == MEM)
9185 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9186 NULL);
9189 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9191 break;
9193 case MO_VAL_SET:
9195 rtx loc = mo->u.loc;
9196 rtx val, vloc, uloc;
9197 rtx dstv, srcv;
9199 vloc = loc;
9200 uloc = XEXP (vloc, 1);
9201 val = XEXP (vloc, 0);
9202 vloc = uloc;
9204 if (GET_CODE (uloc) == SET)
9206 dstv = SET_DEST (uloc);
9207 srcv = SET_SRC (uloc);
9209 else
9211 dstv = uloc;
9212 srcv = NULL;
9215 if (GET_CODE (val) == CONCAT)
9217 dstv = vloc = XEXP (val, 1);
9218 val = XEXP (val, 0);
9221 if (GET_CODE (vloc) == SET)
9223 srcv = SET_SRC (vloc);
9225 gcc_assert (val != srcv);
9226 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9228 dstv = vloc = SET_DEST (vloc);
9230 if (VAL_NEEDS_RESOLUTION (loc))
9231 val_resolve (set, val, srcv, insn);
9233 else if (VAL_NEEDS_RESOLUTION (loc))
9235 gcc_assert (GET_CODE (uloc) == SET
9236 && GET_CODE (SET_SRC (uloc)) == REG);
9237 val_resolve (set, val, SET_SRC (uloc), insn);
9240 if (VAL_HOLDS_TRACK_EXPR (loc))
9242 if (VAL_EXPR_IS_CLOBBERED (loc))
9244 if (REG_P (uloc))
9245 var_reg_delete (set, uloc, true);
9246 else if (MEM_P (uloc))
9248 gcc_assert (MEM_P (dstv));
9249 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9250 var_mem_delete (set, dstv, true);
9253 else
9255 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9256 rtx src = NULL, dst = uloc;
9257 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9259 if (GET_CODE (uloc) == SET)
9261 src = SET_SRC (uloc);
9262 dst = SET_DEST (uloc);
9265 if (copied_p)
9267 status = find_src_status (set, src);
9269 src = find_src_set_src (set, src);
9272 if (REG_P (dst))
9273 var_reg_delete_and_set (set, dst, !copied_p,
9274 status, srcv);
9275 else if (MEM_P (dst))
9277 gcc_assert (MEM_P (dstv));
9278 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9279 var_mem_delete_and_set (set, dstv, !copied_p,
9280 status, srcv);
9284 else if (REG_P (uloc))
9285 var_regno_delete (set, REGNO (uloc));
9286 else if (MEM_P (uloc))
9288 gcc_checking_assert (GET_CODE (vloc) == MEM);
9289 gcc_checking_assert (vloc == dstv);
9290 if (vloc != dstv)
9291 clobber_overlapping_mems (set, vloc);
9294 val_store (set, val, dstv, insn, true);
9296 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9297 set->vars);
9299 break;
9301 case MO_SET:
9303 rtx loc = mo->u.loc;
9304 rtx set_src = NULL;
9306 if (GET_CODE (loc) == SET)
9308 set_src = SET_SRC (loc);
9309 loc = SET_DEST (loc);
9312 if (REG_P (loc))
9313 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9314 set_src);
9315 else
9316 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9317 set_src);
9319 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9320 set->vars);
9322 break;
9324 case MO_COPY:
9326 rtx loc = mo->u.loc;
9327 enum var_init_status src_status;
9328 rtx set_src = NULL;
9330 if (GET_CODE (loc) == SET)
9332 set_src = SET_SRC (loc);
9333 loc = SET_DEST (loc);
9336 src_status = find_src_status (set, set_src);
9337 set_src = find_src_set_src (set, set_src);
9339 if (REG_P (loc))
9340 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9341 else
9342 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9344 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9345 set->vars);
9347 break;
9349 case MO_USE_NO_VAR:
9351 rtx loc = mo->u.loc;
9353 if (REG_P (loc))
9354 var_reg_delete (set, loc, false);
9355 else
9356 var_mem_delete (set, loc, false);
9358 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9360 break;
9362 case MO_CLOBBER:
9364 rtx loc = mo->u.loc;
9366 if (REG_P (loc))
9367 var_reg_delete (set, loc, true);
9368 else
9369 var_mem_delete (set, loc, true);
9371 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9372 set->vars);
9374 break;
9376 case MO_ADJUST:
9377 set->stack_adjust += mo->u.adjust;
9378 break;
9383 /* Emit notes for the whole function. */
9385 static void
9386 vt_emit_notes (void)
9388 basic_block bb;
9389 dataflow_set cur;
9391 gcc_assert (!changed_variables->elements ());
9393 /* Free memory occupied by the out hash tables, as they aren't used
9394 anymore. */
9395 FOR_EACH_BB_FN (bb, cfun)
9396 dataflow_set_clear (&VTI (bb)->out);
9398 /* Enable emitting notes by functions (mainly by set_variable_part and
9399 delete_variable_part). */
9400 emit_notes = true;
9402 if (MAY_HAVE_DEBUG_INSNS)
9404 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9407 dataflow_set_init (&cur);
9409 FOR_EACH_BB_FN (bb, cfun)
9411 /* Emit the notes for changes of variable locations between two
9412 subsequent basic blocks. */
9413 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9415 if (MAY_HAVE_DEBUG_INSNS)
9416 local_get_addr_cache = new hash_map<rtx, rtx>;
9418 /* Emit the notes for the changes in the basic block itself. */
9419 emit_notes_in_bb (bb, &cur);
9421 if (MAY_HAVE_DEBUG_INSNS)
9422 delete local_get_addr_cache;
9423 local_get_addr_cache = NULL;
9425 /* Free memory occupied by the in hash table, we won't need it
9426 again. */
9427 dataflow_set_clear (&VTI (bb)->in);
9430 if (flag_checking)
9431 shared_hash_htab (cur.vars)
9432 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9433 (shared_hash_htab (empty_shared_hash));
9435 dataflow_set_destroy (&cur);
9437 if (MAY_HAVE_DEBUG_INSNS)
9438 delete dropped_values;
9439 dropped_values = NULL;
9441 emit_notes = false;
9444 /* If there is a declaration and offset associated with register/memory RTL
9445 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9447 static bool
9448 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9450 if (REG_P (rtl))
9452 if (REG_ATTRS (rtl))
9454 *declp = REG_EXPR (rtl);
9455 *offsetp = REG_OFFSET (rtl);
9456 return true;
9459 else if (GET_CODE (rtl) == PARALLEL)
9461 tree decl = NULL_TREE;
9462 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9463 int len = XVECLEN (rtl, 0), i;
9465 for (i = 0; i < len; i++)
9467 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9468 if (!REG_P (reg) || !REG_ATTRS (reg))
9469 break;
9470 if (!decl)
9471 decl = REG_EXPR (reg);
9472 if (REG_EXPR (reg) != decl)
9473 break;
9474 if (REG_OFFSET (reg) < offset)
9475 offset = REG_OFFSET (reg);
9478 if (i == len)
9480 *declp = decl;
9481 *offsetp = offset;
9482 return true;
9485 else if (MEM_P (rtl))
9487 if (MEM_ATTRS (rtl))
9489 *declp = MEM_EXPR (rtl);
9490 *offsetp = INT_MEM_OFFSET (rtl);
9491 return true;
9494 return false;
9497 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9498 of VAL. */
9500 static void
9501 record_entry_value (cselib_val *val, rtx rtl)
9503 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9505 ENTRY_VALUE_EXP (ev) = rtl;
9507 cselib_add_permanent_equiv (val, ev, get_insns ());
9510 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9512 static void
9513 vt_add_function_parameter (tree parm)
9515 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9516 rtx incoming = DECL_INCOMING_RTL (parm);
9517 tree decl;
9518 machine_mode mode;
9519 HOST_WIDE_INT offset;
9520 dataflow_set *out;
9521 decl_or_value dv;
9523 if (TREE_CODE (parm) != PARM_DECL)
9524 return;
9526 if (!decl_rtl || !incoming)
9527 return;
9529 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9530 return;
9532 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9533 rewrite the incoming location of parameters passed on the stack
9534 into MEMs based on the argument pointer, so that incoming doesn't
9535 depend on a pseudo. */
9536 if (MEM_P (incoming)
9537 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9538 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9539 && XEXP (XEXP (incoming, 0), 0)
9540 == crtl->args.internal_arg_pointer
9541 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9543 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9544 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9545 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9546 incoming
9547 = replace_equiv_address_nv (incoming,
9548 plus_constant (Pmode,
9549 arg_pointer_rtx, off));
9552 #ifdef HAVE_window_save
9553 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9554 If the target machine has an explicit window save instruction, the
9555 actual entry value is the corresponding OUTGOING_REGNO instead. */
9556 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9558 if (REG_P (incoming)
9559 && HARD_REGISTER_P (incoming)
9560 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9562 parm_reg p;
9563 p.incoming = incoming;
9564 incoming
9565 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9566 OUTGOING_REGNO (REGNO (incoming)), 0);
9567 p.outgoing = incoming;
9568 vec_safe_push (windowed_parm_regs, p);
9570 else if (GET_CODE (incoming) == PARALLEL)
9572 rtx outgoing
9573 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9574 int i;
9576 for (i = 0; i < XVECLEN (incoming, 0); i++)
9578 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9579 parm_reg p;
9580 p.incoming = reg;
9581 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9582 OUTGOING_REGNO (REGNO (reg)), 0);
9583 p.outgoing = reg;
9584 XVECEXP (outgoing, 0, i)
9585 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9586 XEXP (XVECEXP (incoming, 0, i), 1));
9587 vec_safe_push (windowed_parm_regs, p);
9590 incoming = outgoing;
9592 else if (MEM_P (incoming)
9593 && REG_P (XEXP (incoming, 0))
9594 && HARD_REGISTER_P (XEXP (incoming, 0)))
9596 rtx reg = XEXP (incoming, 0);
9597 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9599 parm_reg p;
9600 p.incoming = reg;
9601 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9602 p.outgoing = reg;
9603 vec_safe_push (windowed_parm_regs, p);
9604 incoming = replace_equiv_address_nv (incoming, reg);
9608 #endif
9610 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9612 if (MEM_P (incoming))
9614 /* This means argument is passed by invisible reference. */
9615 offset = 0;
9616 decl = parm;
9618 else
9620 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9621 return;
9622 offset += byte_lowpart_offset (GET_MODE (incoming),
9623 GET_MODE (decl_rtl));
9627 if (!decl)
9628 return;
9630 if (parm != decl)
9632 /* If that DECL_RTL wasn't a pseudo that got spilled to
9633 memory, bail out. Otherwise, the spill slot sharing code
9634 will force the memory to reference spill_slot_decl (%sfp),
9635 so we don't match above. That's ok, the pseudo must have
9636 referenced the entire parameter, so just reset OFFSET. */
9637 if (decl != get_spill_slot_decl (false))
9638 return;
9639 offset = 0;
9642 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9643 return;
9645 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9647 dv = dv_from_decl (parm);
9649 if (target_for_debug_bind (parm)
9650 /* We can't deal with these right now, because this kind of
9651 variable is single-part. ??? We could handle parallels
9652 that describe multiple locations for the same single
9653 value, but ATM we don't. */
9654 && GET_CODE (incoming) != PARALLEL)
9656 cselib_val *val;
9657 rtx lowpart;
9659 /* ??? We shouldn't ever hit this, but it may happen because
9660 arguments passed by invisible reference aren't dealt with
9661 above: incoming-rtl will have Pmode rather than the
9662 expected mode for the type. */
9663 if (offset)
9664 return;
9666 lowpart = var_lowpart (mode, incoming);
9667 if (!lowpart)
9668 return;
9670 val = cselib_lookup_from_insn (lowpart, mode, true,
9671 VOIDmode, get_insns ());
9673 /* ??? Float-typed values in memory are not handled by
9674 cselib. */
9675 if (val)
9677 preserve_value (val);
9678 set_variable_part (out, val->val_rtx, dv, offset,
9679 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9680 dv = dv_from_value (val->val_rtx);
9683 if (MEM_P (incoming))
9685 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9686 VOIDmode, get_insns ());
9687 if (val)
9689 preserve_value (val);
9690 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9695 if (REG_P (incoming))
9697 incoming = var_lowpart (mode, incoming);
9698 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9699 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9700 incoming);
9701 set_variable_part (out, incoming, dv, offset,
9702 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9703 if (dv_is_value_p (dv))
9705 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9706 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9707 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9709 machine_mode indmode
9710 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9711 rtx mem = gen_rtx_MEM (indmode, incoming);
9712 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9713 VOIDmode,
9714 get_insns ());
9715 if (val)
9717 preserve_value (val);
9718 record_entry_value (val, mem);
9719 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9720 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9725 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9727 int i;
9729 for (i = 0; i < XVECLEN (incoming, 0); i++)
9731 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9732 offset = REG_OFFSET (reg);
9733 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9734 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9735 set_variable_part (out, reg, dv, offset,
9736 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9739 else if (MEM_P (incoming))
9741 incoming = var_lowpart (mode, incoming);
9742 set_variable_part (out, incoming, dv, offset,
9743 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9747 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9749 static void
9750 vt_add_function_parameters (void)
9752 tree parm;
9754 for (parm = DECL_ARGUMENTS (current_function_decl);
9755 parm; parm = DECL_CHAIN (parm))
9756 if (!POINTER_BOUNDS_P (parm))
9757 vt_add_function_parameter (parm);
9759 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9761 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9763 if (TREE_CODE (vexpr) == INDIRECT_REF)
9764 vexpr = TREE_OPERAND (vexpr, 0);
9766 if (TREE_CODE (vexpr) == PARM_DECL
9767 && DECL_ARTIFICIAL (vexpr)
9768 && !DECL_IGNORED_P (vexpr)
9769 && DECL_NAMELESS (vexpr))
9770 vt_add_function_parameter (vexpr);
9774 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9775 ensure it isn't flushed during cselib_reset_table.
9776 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9777 has been eliminated. */
9779 static void
9780 vt_init_cfa_base (void)
9782 cselib_val *val;
9784 #ifdef FRAME_POINTER_CFA_OFFSET
9785 cfa_base_rtx = frame_pointer_rtx;
9786 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9787 #else
9788 cfa_base_rtx = arg_pointer_rtx;
9789 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9790 #endif
9791 if (cfa_base_rtx == hard_frame_pointer_rtx
9792 || !fixed_regs[REGNO (cfa_base_rtx)])
9794 cfa_base_rtx = NULL_RTX;
9795 return;
9797 if (!MAY_HAVE_DEBUG_INSNS)
9798 return;
9800 /* Tell alias analysis that cfa_base_rtx should share
9801 find_base_term value with stack pointer or hard frame pointer. */
9802 if (!frame_pointer_needed)
9803 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9804 else if (!crtl->stack_realign_tried)
9805 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9807 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9808 VOIDmode, get_insns ());
9809 preserve_value (val);
9810 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9813 /* Allocate and initialize the data structures for variable tracking
9814 and parse the RTL to get the micro operations. */
9816 static bool
9817 vt_initialize (void)
9819 basic_block bb;
9820 HOST_WIDE_INT fp_cfa_offset = -1;
9822 alloc_aux_for_blocks (sizeof (variable_tracking_info));
9824 empty_shared_hash = shared_hash_pool.allocate ();
9825 empty_shared_hash->refcount = 1;
9826 empty_shared_hash->htab = new variable_table_type (1);
9827 changed_variables = new variable_table_type (10);
9829 /* Init the IN and OUT sets. */
9830 FOR_ALL_BB_FN (bb, cfun)
9832 VTI (bb)->visited = false;
9833 VTI (bb)->flooded = false;
9834 dataflow_set_init (&VTI (bb)->in);
9835 dataflow_set_init (&VTI (bb)->out);
9836 VTI (bb)->permp = NULL;
9839 if (MAY_HAVE_DEBUG_INSNS)
9841 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9842 scratch_regs = BITMAP_ALLOC (NULL);
9843 preserved_values.create (256);
9844 global_get_addr_cache = new hash_map<rtx, rtx>;
9846 else
9848 scratch_regs = NULL;
9849 global_get_addr_cache = NULL;
9852 if (MAY_HAVE_DEBUG_INSNS)
9854 rtx reg, expr;
9855 int ofst;
9856 cselib_val *val;
9858 #ifdef FRAME_POINTER_CFA_OFFSET
9859 reg = frame_pointer_rtx;
9860 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9861 #else
9862 reg = arg_pointer_rtx;
9863 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9864 #endif
9866 ofst -= INCOMING_FRAME_SP_OFFSET;
9868 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9869 VOIDmode, get_insns ());
9870 preserve_value (val);
9871 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9872 cselib_preserve_cfa_base_value (val, REGNO (reg));
9873 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9874 stack_pointer_rtx, -ofst);
9875 cselib_add_permanent_equiv (val, expr, get_insns ());
9877 if (ofst)
9879 val = cselib_lookup_from_insn (stack_pointer_rtx,
9880 GET_MODE (stack_pointer_rtx), 1,
9881 VOIDmode, get_insns ());
9882 preserve_value (val);
9883 expr = plus_constant (GET_MODE (reg), reg, ofst);
9884 cselib_add_permanent_equiv (val, expr, get_insns ());
9888 /* In order to factor out the adjustments made to the stack pointer or to
9889 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9890 instead of individual location lists, we're going to rewrite MEMs based
9891 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9892 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9893 resp. arg_pointer_rtx. We can do this either when there is no frame
9894 pointer in the function and stack adjustments are consistent for all
9895 basic blocks or when there is a frame pointer and no stack realignment.
9896 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9897 has been eliminated. */
9898 if (!frame_pointer_needed)
9900 rtx reg, elim;
9902 if (!vt_stack_adjustments ())
9903 return false;
9905 #ifdef FRAME_POINTER_CFA_OFFSET
9906 reg = frame_pointer_rtx;
9907 #else
9908 reg = arg_pointer_rtx;
9909 #endif
9910 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9911 if (elim != reg)
9913 if (GET_CODE (elim) == PLUS)
9914 elim = XEXP (elim, 0);
9915 if (elim == stack_pointer_rtx)
9916 vt_init_cfa_base ();
9919 else if (!crtl->stack_realign_tried)
9921 rtx reg, elim;
9923 #ifdef FRAME_POINTER_CFA_OFFSET
9924 reg = frame_pointer_rtx;
9925 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9926 #else
9927 reg = arg_pointer_rtx;
9928 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
9929 #endif
9930 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9931 if (elim != reg)
9933 if (GET_CODE (elim) == PLUS)
9935 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
9936 elim = XEXP (elim, 0);
9938 if (elim != hard_frame_pointer_rtx)
9939 fp_cfa_offset = -1;
9941 else
9942 fp_cfa_offset = -1;
9945 /* If the stack is realigned and a DRAP register is used, we're going to
9946 rewrite MEMs based on it representing incoming locations of parameters
9947 passed on the stack into MEMs based on the argument pointer. Although
9948 we aren't going to rewrite other MEMs, we still need to initialize the
9949 virtual CFA pointer in order to ensure that the argument pointer will
9950 be seen as a constant throughout the function.
9952 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
9953 else if (stack_realign_drap)
9955 rtx reg, elim;
9957 #ifdef FRAME_POINTER_CFA_OFFSET
9958 reg = frame_pointer_rtx;
9959 #else
9960 reg = arg_pointer_rtx;
9961 #endif
9962 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9963 if (elim != reg)
9965 if (GET_CODE (elim) == PLUS)
9966 elim = XEXP (elim, 0);
9967 if (elim == hard_frame_pointer_rtx)
9968 vt_init_cfa_base ();
9972 hard_frame_pointer_adjustment = -1;
9974 vt_add_function_parameters ();
9976 FOR_EACH_BB_FN (bb, cfun)
9978 rtx_insn *insn;
9979 HOST_WIDE_INT pre, post = 0;
9980 basic_block first_bb, last_bb;
9982 if (MAY_HAVE_DEBUG_INSNS)
9984 cselib_record_sets_hook = add_with_sets;
9985 if (dump_file && (dump_flags & TDF_DETAILS))
9986 fprintf (dump_file, "first value: %i\n",
9987 cselib_get_next_uid ());
9990 first_bb = bb;
9991 for (;;)
9993 edge e;
9994 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
9995 || ! single_pred_p (bb->next_bb))
9996 break;
9997 e = find_edge (bb, bb->next_bb);
9998 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
9999 break;
10000 bb = bb->next_bb;
10002 last_bb = bb;
10004 /* Add the micro-operations to the vector. */
10005 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10007 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10008 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10009 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10010 insn = NEXT_INSN (insn))
10012 if (INSN_P (insn))
10014 if (!frame_pointer_needed)
10016 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10017 if (pre)
10019 micro_operation mo;
10020 mo.type = MO_ADJUST;
10021 mo.u.adjust = pre;
10022 mo.insn = insn;
10023 if (dump_file && (dump_flags & TDF_DETAILS))
10024 log_op_type (PATTERN (insn), bb, insn,
10025 MO_ADJUST, dump_file);
10026 VTI (bb)->mos.safe_push (mo);
10027 VTI (bb)->out.stack_adjust += pre;
10031 cselib_hook_called = false;
10032 adjust_insn (bb, insn);
10033 if (MAY_HAVE_DEBUG_INSNS)
10035 if (CALL_P (insn))
10036 prepare_call_arguments (bb, insn);
10037 cselib_process_insn (insn);
10038 if (dump_file && (dump_flags & TDF_DETAILS))
10040 print_rtl_single (dump_file, insn);
10041 dump_cselib_table (dump_file);
10044 if (!cselib_hook_called)
10045 add_with_sets (insn, 0, 0);
10046 cancel_changes (0);
10048 if (!frame_pointer_needed && post)
10050 micro_operation mo;
10051 mo.type = MO_ADJUST;
10052 mo.u.adjust = post;
10053 mo.insn = insn;
10054 if (dump_file && (dump_flags & TDF_DETAILS))
10055 log_op_type (PATTERN (insn), bb, insn,
10056 MO_ADJUST, dump_file);
10057 VTI (bb)->mos.safe_push (mo);
10058 VTI (bb)->out.stack_adjust += post;
10061 if (fp_cfa_offset != -1
10062 && hard_frame_pointer_adjustment == -1
10063 && fp_setter_insn (insn))
10065 vt_init_cfa_base ();
10066 hard_frame_pointer_adjustment = fp_cfa_offset;
10067 /* Disassociate sp from fp now. */
10068 if (MAY_HAVE_DEBUG_INSNS)
10070 cselib_val *v;
10071 cselib_invalidate_rtx (stack_pointer_rtx);
10072 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10073 VOIDmode);
10074 if (v && !cselib_preserved_value_p (v))
10076 cselib_set_value_sp_based (v);
10077 preserve_value (v);
10083 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10086 bb = last_bb;
10088 if (MAY_HAVE_DEBUG_INSNS)
10090 cselib_preserve_only_values ();
10091 cselib_reset_table (cselib_get_next_uid ());
10092 cselib_record_sets_hook = NULL;
10096 hard_frame_pointer_adjustment = -1;
10097 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10098 cfa_base_rtx = NULL_RTX;
10099 return true;
10102 /* This is *not* reset after each function. It gives each
10103 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10104 a unique label number. */
10106 static int debug_label_num = 1;
10108 /* Get rid of all debug insns from the insn stream. */
10110 static void
10111 delete_debug_insns (void)
10113 basic_block bb;
10114 rtx_insn *insn, *next;
10116 if (!MAY_HAVE_DEBUG_INSNS)
10117 return;
10119 FOR_EACH_BB_FN (bb, cfun)
10121 FOR_BB_INSNS_SAFE (bb, insn, next)
10122 if (DEBUG_INSN_P (insn))
10124 tree decl = INSN_VAR_LOCATION_DECL (insn);
10125 if (TREE_CODE (decl) == LABEL_DECL
10126 && DECL_NAME (decl)
10127 && !DECL_RTL_SET_P (decl))
10129 PUT_CODE (insn, NOTE);
10130 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10131 NOTE_DELETED_LABEL_NAME (insn)
10132 = IDENTIFIER_POINTER (DECL_NAME (decl));
10133 SET_DECL_RTL (decl, insn);
10134 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10136 else
10137 delete_insn (insn);
10142 /* Run a fast, BB-local only version of var tracking, to take care of
10143 information that we don't do global analysis on, such that not all
10144 information is lost. If SKIPPED holds, we're skipping the global
10145 pass entirely, so we should try to use information it would have
10146 handled as well.. */
10148 static void
10149 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10151 /* ??? Just skip it all for now. */
10152 delete_debug_insns ();
10155 /* Free the data structures needed for variable tracking. */
10157 static void
10158 vt_finalize (void)
10160 basic_block bb;
10162 FOR_EACH_BB_FN (bb, cfun)
10164 VTI (bb)->mos.release ();
10167 FOR_ALL_BB_FN (bb, cfun)
10169 dataflow_set_destroy (&VTI (bb)->in);
10170 dataflow_set_destroy (&VTI (bb)->out);
10171 if (VTI (bb)->permp)
10173 dataflow_set_destroy (VTI (bb)->permp);
10174 XDELETE (VTI (bb)->permp);
10177 free_aux_for_blocks ();
10178 delete empty_shared_hash->htab;
10179 empty_shared_hash->htab = NULL;
10180 delete changed_variables;
10181 changed_variables = NULL;
10182 attrs_pool.release ();
10183 var_pool.release ();
10184 location_chain_pool.release ();
10185 shared_hash_pool.release ();
10187 if (MAY_HAVE_DEBUG_INSNS)
10189 if (global_get_addr_cache)
10190 delete global_get_addr_cache;
10191 global_get_addr_cache = NULL;
10192 loc_exp_dep_pool.release ();
10193 valvar_pool.release ();
10194 preserved_values.release ();
10195 cselib_finish ();
10196 BITMAP_FREE (scratch_regs);
10197 scratch_regs = NULL;
10200 #ifdef HAVE_window_save
10201 vec_free (windowed_parm_regs);
10202 #endif
10204 if (vui_vec)
10205 XDELETEVEC (vui_vec);
10206 vui_vec = NULL;
10207 vui_allocated = 0;
10210 /* The entry point to variable tracking pass. */
10212 static inline unsigned int
10213 variable_tracking_main_1 (void)
10215 bool success;
10217 if (flag_var_tracking_assignments < 0
10218 /* Var-tracking right now assumes the IR doesn't contain
10219 any pseudos at this point. */
10220 || targetm.no_register_allocation)
10222 delete_debug_insns ();
10223 return 0;
10226 if (n_basic_blocks_for_fn (cfun) > 500 &&
10227 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10229 vt_debug_insns_local (true);
10230 return 0;
10233 mark_dfs_back_edges ();
10234 if (!vt_initialize ())
10236 vt_finalize ();
10237 vt_debug_insns_local (true);
10238 return 0;
10241 success = vt_find_locations ();
10243 if (!success && flag_var_tracking_assignments > 0)
10245 vt_finalize ();
10247 delete_debug_insns ();
10249 /* This is later restored by our caller. */
10250 flag_var_tracking_assignments = 0;
10252 success = vt_initialize ();
10253 gcc_assert (success);
10255 success = vt_find_locations ();
10258 if (!success)
10260 vt_finalize ();
10261 vt_debug_insns_local (false);
10262 return 0;
10265 if (dump_file && (dump_flags & TDF_DETAILS))
10267 dump_dataflow_sets ();
10268 dump_reg_info (dump_file);
10269 dump_flow_info (dump_file, dump_flags);
10272 timevar_push (TV_VAR_TRACKING_EMIT);
10273 vt_emit_notes ();
10274 timevar_pop (TV_VAR_TRACKING_EMIT);
10276 vt_finalize ();
10277 vt_debug_insns_local (false);
10278 return 0;
10281 unsigned int
10282 variable_tracking_main (void)
10284 unsigned int ret;
10285 int save = flag_var_tracking_assignments;
10287 ret = variable_tracking_main_1 ();
10289 flag_var_tracking_assignments = save;
10291 return ret;
10294 namespace {
10296 const pass_data pass_data_variable_tracking =
10298 RTL_PASS, /* type */
10299 "vartrack", /* name */
10300 OPTGROUP_NONE, /* optinfo_flags */
10301 TV_VAR_TRACKING, /* tv_id */
10302 0, /* properties_required */
10303 0, /* properties_provided */
10304 0, /* properties_destroyed */
10305 0, /* todo_flags_start */
10306 0, /* todo_flags_finish */
10309 class pass_variable_tracking : public rtl_opt_pass
10311 public:
10312 pass_variable_tracking (gcc::context *ctxt)
10313 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10316 /* opt_pass methods: */
10317 virtual bool gate (function *)
10319 return (flag_var_tracking && !targetm.delay_vartrack);
10322 virtual unsigned int execute (function *)
10324 return variable_tracking_main ();
10327 }; // class pass_variable_tracking
10329 } // anon namespace
10331 rtl_opt_pass *
10332 make_pass_variable_tracking (gcc::context *ctxt)
10334 return new pass_variable_tracking (ctxt);