Fix typos in riscv register save/restore.
[official-gcc.git] / gcc / ada / sem_res.adb
blob434879386b465e0d78ed12b98de9939d1ebea1e7
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Freeze; use Freeze;
39 with Ghost; use Ghost;
40 with Inline; use Inline;
41 with Itypes; use Itypes;
42 with Lib; use Lib;
43 with Lib.Xref; use Lib.Xref;
44 with Namet; use Namet;
45 with Nmake; use Nmake;
46 with Nlists; use Nlists;
47 with Opt; use Opt;
48 with Output; use Output;
49 with Par_SCO; use Par_SCO;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Aggr; use Sem_Aggr;
56 with Sem_Attr; use Sem_Attr;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch4; use Sem_Ch4;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch6; use Sem_Ch6;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch13; use Sem_Ch13;
63 with Sem_Dim; use Sem_Dim;
64 with Sem_Disp; use Sem_Disp;
65 with Sem_Dist; use Sem_Dist;
66 with Sem_Elab; use Sem_Elab;
67 with Sem_Elim; use Sem_Elim;
68 with Sem_Eval; use Sem_Eval;
69 with Sem_Intr; use Sem_Intr;
70 with Sem_Util; use Sem_Util;
71 with Targparm; use Targparm;
72 with Sem_Type; use Sem_Type;
73 with Sem_Warn; use Sem_Warn;
74 with Sinfo; use Sinfo;
75 with Sinfo.CN; use Sinfo.CN;
76 with Snames; use Snames;
77 with Stand; use Stand;
78 with Stringt; use Stringt;
79 with Style; use Style;
80 with Tbuild; use Tbuild;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
84 package body Sem_Res is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 -- Second pass (top-down) type checking and overload resolution procedures
91 -- Typ is the type required by context. These procedures propagate the
92 -- type information recursively to the descendants of N. If the node is not
93 -- overloaded, its Etype is established in the first pass. If overloaded,
94 -- the Resolve routines set the correct type. For arithmetic operators, the
95 -- Etype is the base type of the context.
97 -- Note that Resolve_Attribute is separated off in Sem_Attr
99 procedure Check_Discriminant_Use (N : Node_Id);
100 -- Enforce the restrictions on the use of discriminants when constraining
101 -- a component of a discriminated type (record or concurrent type).
103 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
104 -- Given a node for an operator associated with type T, check that the
105 -- operator is visible. Operators all of whose operands are universal must
106 -- be checked for visibility during resolution because their type is not
107 -- determinable based on their operands.
109 procedure Check_Fully_Declared_Prefix
110 (Typ : Entity_Id;
111 Pref : Node_Id);
112 -- Check that the type of the prefix of a dereference is not incomplete
114 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
115 -- Given a call node, N, which is known to occur immediately within the
116 -- subprogram being called, determines whether it is a detectable case of
117 -- an infinite recursion, and if so, outputs appropriate messages. Returns
118 -- True if an infinite recursion is detected, and False otherwise.
120 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id);
121 -- If the type of the object being initialized uses the secondary stack
122 -- directly or indirectly, create a transient scope for the call to the
123 -- init proc. This is because we do not create transient scopes for the
124 -- initialization of individual components within the init proc itself.
125 -- Could be optimized away perhaps?
127 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
128 -- N is the node for a logical operator. If the operator is predefined, and
129 -- the root type of the operands is Standard.Boolean, then a check is made
130 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
131 -- the style check for Style_Check_Boolean_And_Or.
133 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
134 -- N is either an indexed component or a selected component. This function
135 -- returns true if the prefix refers to an object that has an address
136 -- clause (the case in which we may want to issue a warning).
138 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
139 -- Determine whether E is an access type declared by an access declaration,
140 -- and not an (anonymous) allocator type.
142 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
143 -- Utility to check whether the entity for an operator is a predefined
144 -- operator, in which case the expression is left as an operator in the
145 -- tree (else it is rewritten into a call). An instance of an intrinsic
146 -- conversion operation may be given an operator name, but is not treated
147 -- like an operator. Note that an operator that is an imported back-end
148 -- builtin has convention Intrinsic, but is expected to be rewritten into
149 -- a call, so such an operator is not treated as predefined by this
150 -- predicate.
152 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
153 -- If a default expression in entry call N depends on the discriminants
154 -- of the task, it must be replaced with a reference to the discriminant
155 -- of the task being called.
157 procedure Resolve_Op_Concat_Arg
158 (N : Node_Id;
159 Arg : Node_Id;
160 Typ : Entity_Id;
161 Is_Comp : Boolean);
162 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
163 -- concatenation operator. The operand is either of the array type or of
164 -- the component type. If the operand is an aggregate, and the component
165 -- type is composite, this is ambiguous if component type has aggregates.
167 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
168 -- Does the first part of the work of Resolve_Op_Concat
170 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
171 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
172 -- has been resolved. See Resolve_Op_Concat for details.
174 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
175 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
209 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
211 function Operator_Kind
212 (Op_Name : Name_Id;
213 Is_Binary : Boolean) return Node_Kind;
214 -- Utility to map the name of an operator into the corresponding Node. Used
215 -- by other node rewriting procedures.
217 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
218 -- Resolve actuals of call, and add default expressions for missing ones.
219 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
220 -- called subprogram.
222 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
223 -- Called from Resolve_Call, when the prefix denotes an entry or element
224 -- of entry family. Actuals are resolved as for subprograms, and the node
225 -- is rebuilt as an entry call. Also called for protected operations. Typ
226 -- is the context type, which is used when the operation is a protected
227 -- function with no arguments, and the return value is indexed.
229 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
230 -- A call to a user-defined intrinsic operator is rewritten as a call to
231 -- the corresponding predefined operator, with suitable conversions. Note
232 -- that this applies only for intrinsic operators that denote predefined
233 -- operators, not ones that are intrinsic imports of back-end builtins.
235 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
236 -- Ditto, for arithmetic unary operators
238 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
239 -- If an operator node resolves to a call to a user-defined operator,
240 -- rewrite the node as a function call.
242 procedure Make_Call_Into_Operator
243 (N : Node_Id;
244 Typ : Entity_Id;
245 Op_Id : Entity_Id);
246 -- Inverse transformation: if an operator is given in functional notation,
247 -- then after resolving the node, transform into an operator node, so that
248 -- operands are resolved properly. Recall that predefined operators do not
249 -- have a full signature and special resolution rules apply.
251 procedure Rewrite_Renamed_Operator
252 (N : Node_Id;
253 Op : Entity_Id;
254 Typ : Entity_Id);
255 -- An operator can rename another, e.g. in an instantiation. In that
256 -- case, the proper operator node must be constructed and resolved.
258 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
259 -- The String_Literal_Subtype is built for all strings that are not
260 -- operands of a static concatenation operation. If the argument is not
261 -- a N_String_Literal node, then the call has no effect.
263 procedure Set_Slice_Subtype (N : Node_Id);
264 -- Build subtype of array type, with the range specified by the slice
266 procedure Simplify_Type_Conversion (N : Node_Id);
267 -- Called after N has been resolved and evaluated, but before range checks
268 -- have been applied. Currently simplifies a combination of floating-point
269 -- to integer conversion and Rounding or Truncation attribute.
271 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
272 -- A universal_fixed expression in an universal context is unambiguous if
273 -- there is only one applicable fixed point type. Determining whether there
274 -- is only one requires a search over all visible entities, and happens
275 -- only in very pathological cases (see 6115-006).
277 -------------------------
278 -- Ambiguous_Character --
279 -------------------------
281 procedure Ambiguous_Character (C : Node_Id) is
282 E : Entity_Id;
284 begin
285 if Nkind (C) = N_Character_Literal then
286 Error_Msg_N ("ambiguous character literal", C);
288 -- First the ones in Standard
290 Error_Msg_N ("\\possible interpretation: Character!", C);
291 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
293 -- Include Wide_Wide_Character in Ada 2005 mode
295 if Ada_Version >= Ada_2005 then
296 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
297 end if;
299 -- Now any other types that match
301 E := Current_Entity (C);
302 while Present (E) loop
303 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
304 E := Homonym (E);
305 end loop;
306 end if;
307 end Ambiguous_Character;
309 -------------------------
310 -- Analyze_And_Resolve --
311 -------------------------
313 procedure Analyze_And_Resolve (N : Node_Id) is
314 begin
315 Analyze (N);
316 Resolve (N);
317 end Analyze_And_Resolve;
319 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
320 begin
321 Analyze (N);
322 Resolve (N, Typ);
323 end Analyze_And_Resolve;
325 -- Versions with check(s) suppressed
327 procedure Analyze_And_Resolve
328 (N : Node_Id;
329 Typ : Entity_Id;
330 Suppress : Check_Id)
332 Scop : constant Entity_Id := Current_Scope;
334 begin
335 if Suppress = All_Checks then
336 declare
337 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
338 begin
339 Scope_Suppress.Suppress := (others => True);
340 Analyze_And_Resolve (N, Typ);
341 Scope_Suppress.Suppress := Sva;
342 end;
344 else
345 declare
346 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
347 begin
348 Scope_Suppress.Suppress (Suppress) := True;
349 Analyze_And_Resolve (N, Typ);
350 Scope_Suppress.Suppress (Suppress) := Svg;
351 end;
352 end if;
354 if Current_Scope /= Scop
355 and then Scope_Is_Transient
356 then
357 -- This can only happen if a transient scope was created for an inner
358 -- expression, which will be removed upon completion of the analysis
359 -- of an enclosing construct. The transient scope must have the
360 -- suppress status of the enclosing environment, not of this Analyze
361 -- call.
363 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
364 Scope_Suppress;
365 end if;
366 end Analyze_And_Resolve;
368 procedure Analyze_And_Resolve
369 (N : Node_Id;
370 Suppress : Check_Id)
372 Scop : constant Entity_Id := Current_Scope;
374 begin
375 if Suppress = All_Checks then
376 declare
377 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
378 begin
379 Scope_Suppress.Suppress := (others => True);
380 Analyze_And_Resolve (N);
381 Scope_Suppress.Suppress := Sva;
382 end;
384 else
385 declare
386 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
387 begin
388 Scope_Suppress.Suppress (Suppress) := True;
389 Analyze_And_Resolve (N);
390 Scope_Suppress.Suppress (Suppress) := Svg;
391 end;
392 end if;
394 if Current_Scope /= Scop and then Scope_Is_Transient then
395 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
396 Scope_Suppress;
397 end if;
398 end Analyze_And_Resolve;
400 ----------------------------
401 -- Check_Discriminant_Use --
402 ----------------------------
404 procedure Check_Discriminant_Use (N : Node_Id) is
405 PN : constant Node_Id := Parent (N);
406 Disc : constant Entity_Id := Entity (N);
407 P : Node_Id;
408 D : Node_Id;
410 begin
411 -- Any use in a spec-expression is legal
413 if In_Spec_Expression then
414 null;
416 elsif Nkind (PN) = N_Range then
418 -- Discriminant cannot be used to constrain a scalar type
420 P := Parent (PN);
422 if Nkind (P) = N_Range_Constraint
423 and then Nkind (Parent (P)) = N_Subtype_Indication
424 and then Nkind (Parent (Parent (P))) = N_Component_Definition
425 then
426 Error_Msg_N ("discriminant cannot constrain scalar type", N);
428 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
430 -- The following check catches the unusual case where a
431 -- discriminant appears within an index constraint that is part
432 -- of a larger expression within a constraint on a component,
433 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
434 -- check case of record components, and note that a similar check
435 -- should also apply in the case of discriminant constraints
436 -- below. ???
438 -- Note that the check for N_Subtype_Declaration below is to
439 -- detect the valid use of discriminants in the constraints of a
440 -- subtype declaration when this subtype declaration appears
441 -- inside the scope of a record type (which is syntactically
442 -- illegal, but which may be created as part of derived type
443 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
444 -- for more info.
446 if Ekind (Current_Scope) = E_Record_Type
447 and then Scope (Disc) = Current_Scope
448 and then not
449 (Nkind (Parent (P)) = N_Subtype_Indication
450 and then
451 Nkind_In (Parent (Parent (P)), N_Component_Definition,
452 N_Subtype_Declaration)
453 and then Paren_Count (N) = 0)
454 then
455 Error_Msg_N
456 ("discriminant must appear alone in component constraint", N);
457 return;
458 end if;
460 -- Detect a common error:
462 -- type R (D : Positive := 100) is record
463 -- Name : String (1 .. D);
464 -- end record;
466 -- The default value causes an object of type R to be allocated
467 -- with room for Positive'Last characters. The RM does not mandate
468 -- the allocation of the maximum size, but that is what GNAT does
469 -- so we should warn the programmer that there is a problem.
471 Check_Large : declare
472 SI : Node_Id;
473 T : Entity_Id;
474 TB : Node_Id;
475 CB : Entity_Id;
477 function Large_Storage_Type (T : Entity_Id) return Boolean;
478 -- Return True if type T has a large enough range that any
479 -- array whose index type covered the whole range of the type
480 -- would likely raise Storage_Error.
482 ------------------------
483 -- Large_Storage_Type --
484 ------------------------
486 function Large_Storage_Type (T : Entity_Id) return Boolean is
487 begin
488 -- The type is considered large if its bounds are known at
489 -- compile time and if it requires at least as many bits as
490 -- a Positive to store the possible values.
492 return Compile_Time_Known_Value (Type_Low_Bound (T))
493 and then Compile_Time_Known_Value (Type_High_Bound (T))
494 and then
495 Minimum_Size (T, Biased => True) >=
496 RM_Size (Standard_Positive);
497 end Large_Storage_Type;
499 -- Start of processing for Check_Large
501 begin
502 -- Check that the Disc has a large range
504 if not Large_Storage_Type (Etype (Disc)) then
505 goto No_Danger;
506 end if;
508 -- If the enclosing type is limited, we allocate only the
509 -- default value, not the maximum, and there is no need for
510 -- a warning.
512 if Is_Limited_Type (Scope (Disc)) then
513 goto No_Danger;
514 end if;
516 -- Check that it is the high bound
518 if N /= High_Bound (PN)
519 or else No (Discriminant_Default_Value (Disc))
520 then
521 goto No_Danger;
522 end if;
524 -- Check the array allows a large range at this bound. First
525 -- find the array
527 SI := Parent (P);
529 if Nkind (SI) /= N_Subtype_Indication then
530 goto No_Danger;
531 end if;
533 T := Entity (Subtype_Mark (SI));
535 if not Is_Array_Type (T) then
536 goto No_Danger;
537 end if;
539 -- Next, find the dimension
541 TB := First_Index (T);
542 CB := First (Constraints (P));
543 while True
544 and then Present (TB)
545 and then Present (CB)
546 and then CB /= PN
547 loop
548 Next_Index (TB);
549 Next (CB);
550 end loop;
552 if CB /= PN then
553 goto No_Danger;
554 end if;
556 -- Now, check the dimension has a large range
558 if not Large_Storage_Type (Etype (TB)) then
559 goto No_Danger;
560 end if;
562 -- Warn about the danger
564 Error_Msg_N
565 ("??creation of & object may raise Storage_Error!",
566 Scope (Disc));
568 <<No_Danger>>
569 null;
571 end Check_Large;
572 end if;
574 -- Legal case is in index or discriminant constraint
576 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
577 N_Discriminant_Association)
578 then
579 if Paren_Count (N) > 0 then
580 Error_Msg_N
581 ("discriminant in constraint must appear alone", N);
583 elsif Nkind (N) = N_Expanded_Name
584 and then Comes_From_Source (N)
585 then
586 Error_Msg_N
587 ("discriminant must appear alone as a direct name", N);
588 end if;
590 return;
592 -- Otherwise, context is an expression. It should not be within (i.e. a
593 -- subexpression of) a constraint for a component.
595 else
596 D := PN;
597 P := Parent (PN);
598 while not Nkind_In (P, N_Component_Declaration,
599 N_Subtype_Indication,
600 N_Entry_Declaration)
601 loop
602 D := P;
603 P := Parent (P);
604 exit when No (P);
605 end loop;
607 -- If the discriminant is used in an expression that is a bound of a
608 -- scalar type, an Itype is created and the bounds are attached to
609 -- its range, not to the original subtype indication. Such use is of
610 -- course a double fault.
612 if (Nkind (P) = N_Subtype_Indication
613 and then Nkind_In (Parent (P), N_Component_Definition,
614 N_Derived_Type_Definition)
615 and then D = Constraint (P))
617 -- The constraint itself may be given by a subtype indication,
618 -- rather than by a more common discrete range.
620 or else (Nkind (P) = N_Subtype_Indication
621 and then
622 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
623 or else Nkind (P) = N_Entry_Declaration
624 or else Nkind (D) = N_Defining_Identifier
625 then
626 Error_Msg_N
627 ("discriminant in constraint must appear alone", N);
628 end if;
629 end if;
630 end Check_Discriminant_Use;
632 --------------------------------
633 -- Check_For_Visible_Operator --
634 --------------------------------
636 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
637 begin
638 if Is_Invisible_Operator (N, T) then
639 Error_Msg_NE -- CODEFIX
640 ("operator for} is not directly visible!", N, First_Subtype (T));
641 Error_Msg_N -- CODEFIX
642 ("use clause would make operation legal!", N);
643 end if;
644 end Check_For_Visible_Operator;
646 ----------------------------------
647 -- Check_Fully_Declared_Prefix --
648 ----------------------------------
650 procedure Check_Fully_Declared_Prefix
651 (Typ : Entity_Id;
652 Pref : Node_Id)
654 begin
655 -- Check that the designated type of the prefix of a dereference is
656 -- not an incomplete type. This cannot be done unconditionally, because
657 -- dereferences of private types are legal in default expressions. This
658 -- case is taken care of in Check_Fully_Declared, called below. There
659 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
661 -- This consideration also applies to similar checks for allocators,
662 -- qualified expressions, and type conversions.
664 -- An additional exception concerns other per-object expressions that
665 -- are not directly related to component declarations, in particular
666 -- representation pragmas for tasks. These will be per-object
667 -- expressions if they depend on discriminants or some global entity.
668 -- If the task has access discriminants, the designated type may be
669 -- incomplete at the point the expression is resolved. This resolution
670 -- takes place within the body of the initialization procedure, where
671 -- the discriminant is replaced by its discriminal.
673 if Is_Entity_Name (Pref)
674 and then Ekind (Entity (Pref)) = E_In_Parameter
675 then
676 null;
678 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
679 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
680 -- Analyze_Object_Renaming, and Freeze_Entity.
682 elsif Ada_Version >= Ada_2005
683 and then Is_Entity_Name (Pref)
684 and then Is_Access_Type (Etype (Pref))
685 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
686 E_Incomplete_Type
687 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
688 then
689 null;
690 else
691 Check_Fully_Declared (Typ, Parent (Pref));
692 end if;
693 end Check_Fully_Declared_Prefix;
695 ------------------------------
696 -- Check_Infinite_Recursion --
697 ------------------------------
699 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
700 P : Node_Id;
701 C : Node_Id;
703 function Same_Argument_List return Boolean;
704 -- Check whether list of actuals is identical to list of formals of
705 -- called function (which is also the enclosing scope).
707 ------------------------
708 -- Same_Argument_List --
709 ------------------------
711 function Same_Argument_List return Boolean is
712 A : Node_Id;
713 F : Entity_Id;
714 Subp : Entity_Id;
716 begin
717 if not Is_Entity_Name (Name (N)) then
718 return False;
719 else
720 Subp := Entity (Name (N));
721 end if;
723 F := First_Formal (Subp);
724 A := First_Actual (N);
725 while Present (F) and then Present (A) loop
726 if not Is_Entity_Name (A) or else Entity (A) /= F then
727 return False;
728 end if;
730 Next_Actual (A);
731 Next_Formal (F);
732 end loop;
734 return True;
735 end Same_Argument_List;
737 -- Start of processing for Check_Infinite_Recursion
739 begin
740 -- Special case, if this is a procedure call and is a call to the
741 -- current procedure with the same argument list, then this is for
742 -- sure an infinite recursion and we insert a call to raise SE.
744 if Is_List_Member (N)
745 and then List_Length (List_Containing (N)) = 1
746 and then Same_Argument_List
747 then
748 declare
749 P : constant Node_Id := Parent (N);
750 begin
751 if Nkind (P) = N_Handled_Sequence_Of_Statements
752 and then Nkind (Parent (P)) = N_Subprogram_Body
753 and then Is_Empty_List (Declarations (Parent (P)))
754 then
755 Error_Msg_Warn := SPARK_Mode /= On;
756 Error_Msg_N ("!infinite recursion<<", N);
757 Error_Msg_N ("\!Storage_Error [<<", N);
758 Insert_Action (N,
759 Make_Raise_Storage_Error (Sloc (N),
760 Reason => SE_Infinite_Recursion));
761 return True;
762 end if;
763 end;
764 end if;
766 -- If not that special case, search up tree, quitting if we reach a
767 -- construct (e.g. a conditional) that tells us that this is not a
768 -- case for an infinite recursion warning.
770 C := N;
771 loop
772 P := Parent (C);
774 -- If no parent, then we were not inside a subprogram, this can for
775 -- example happen when processing certain pragmas in a spec. Just
776 -- return False in this case.
778 if No (P) then
779 return False;
780 end if;
782 -- Done if we get to subprogram body, this is definitely an infinite
783 -- recursion case if we did not find anything to stop us.
785 exit when Nkind (P) = N_Subprogram_Body;
787 -- If appearing in conditional, result is false
789 if Nkind_In (P, N_Or_Else,
790 N_And_Then,
791 N_Case_Expression,
792 N_Case_Statement,
793 N_If_Expression,
794 N_If_Statement)
795 then
796 return False;
798 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
799 and then C /= First (Statements (P))
800 then
801 -- If the call is the expression of a return statement and the
802 -- actuals are identical to the formals, it's worth a warning.
803 -- However, we skip this if there is an immediately preceding
804 -- raise statement, since the call is never executed.
806 -- Furthermore, this corresponds to a common idiom:
808 -- function F (L : Thing) return Boolean is
809 -- begin
810 -- raise Program_Error;
811 -- return F (L);
812 -- end F;
814 -- for generating a stub function
816 if Nkind (Parent (N)) = N_Simple_Return_Statement
817 and then Same_Argument_List
818 then
819 exit when not Is_List_Member (Parent (N));
821 -- OK, return statement is in a statement list, look for raise
823 declare
824 Nod : Node_Id;
826 begin
827 -- Skip past N_Freeze_Entity nodes generated by expansion
829 Nod := Prev (Parent (N));
830 while Present (Nod)
831 and then Nkind (Nod) = N_Freeze_Entity
832 loop
833 Prev (Nod);
834 end loop;
836 -- If no raise statement, give warning. We look at the
837 -- original node, because in the case of "raise ... with
838 -- ...", the node has been transformed into a call.
840 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
841 and then
842 (Nkind (Nod) not in N_Raise_xxx_Error
843 or else Present (Condition (Nod)));
844 end;
845 end if;
847 return False;
849 else
850 C := P;
851 end if;
852 end loop;
854 Error_Msg_Warn := SPARK_Mode /= On;
855 Error_Msg_N ("!possible infinite recursion<<", N);
856 Error_Msg_N ("\!??Storage_Error ]<<", N);
858 return True;
859 end Check_Infinite_Recursion;
861 -------------------------------
862 -- Check_Initialization_Call --
863 -------------------------------
865 procedure Check_Initialization_Call (N : Entity_Id; Nam : Entity_Id) is
866 Typ : constant Entity_Id := Etype (First_Formal (Nam));
868 function Uses_SS (T : Entity_Id) return Boolean;
869 -- Check whether the creation of an object of the type will involve
870 -- use of the secondary stack. If T is a record type, this is true
871 -- if the expression for some component uses the secondary stack, e.g.
872 -- through a call to a function that returns an unconstrained value.
873 -- False if T is controlled, because cleanups occur elsewhere.
875 -------------
876 -- Uses_SS --
877 -------------
879 function Uses_SS (T : Entity_Id) return Boolean is
880 Comp : Entity_Id;
881 Expr : Node_Id;
882 Full_Type : Entity_Id := Underlying_Type (T);
884 begin
885 -- Normally we want to use the underlying type, but if it's not set
886 -- then continue with T.
888 if not Present (Full_Type) then
889 Full_Type := T;
890 end if;
892 if Is_Controlled (Full_Type) then
893 return False;
895 elsif Is_Array_Type (Full_Type) then
896 return Uses_SS (Component_Type (Full_Type));
898 elsif Is_Record_Type (Full_Type) then
899 Comp := First_Component (Full_Type);
900 while Present (Comp) loop
901 if Ekind (Comp) = E_Component
902 and then Nkind (Parent (Comp)) = N_Component_Declaration
903 then
904 -- The expression for a dynamic component may be rewritten
905 -- as a dereference, so retrieve original node.
907 Expr := Original_Node (Expression (Parent (Comp)));
909 -- Return True if the expression is a call to a function
910 -- (including an attribute function such as Image, or a
911 -- user-defined operator) with a result that requires a
912 -- transient scope.
914 if (Nkind (Expr) = N_Function_Call
915 or else Nkind (Expr) in N_Op
916 or else (Nkind (Expr) = N_Attribute_Reference
917 and then Present (Expressions (Expr))))
918 and then Requires_Transient_Scope (Etype (Expr))
919 then
920 return True;
922 elsif Uses_SS (Etype (Comp)) then
923 return True;
924 end if;
925 end if;
927 Next_Component (Comp);
928 end loop;
930 return False;
932 else
933 return False;
934 end if;
935 end Uses_SS;
937 -- Start of processing for Check_Initialization_Call
939 begin
940 -- Establish a transient scope if the type needs it
942 if Uses_SS (Typ) then
943 Establish_Transient_Scope (First_Actual (N), Sec_Stack => True);
944 end if;
945 end Check_Initialization_Call;
947 ---------------------------------------
948 -- Check_No_Direct_Boolean_Operators --
949 ---------------------------------------
951 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
952 begin
953 if Scope (Entity (N)) = Standard_Standard
954 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
955 then
956 -- Restriction only applies to original source code
958 if Comes_From_Source (N) then
959 Check_Restriction (No_Direct_Boolean_Operators, N);
960 end if;
961 end if;
963 -- Do style check (but skip if in instance, error is on template)
965 if Style_Check then
966 if not In_Instance then
967 Check_Boolean_Operator (N);
968 end if;
969 end if;
970 end Check_No_Direct_Boolean_Operators;
972 ------------------------------
973 -- Check_Parameterless_Call --
974 ------------------------------
976 procedure Check_Parameterless_Call (N : Node_Id) is
977 Nam : Node_Id;
979 function Prefix_Is_Access_Subp return Boolean;
980 -- If the prefix is of an access_to_subprogram type, the node must be
981 -- rewritten as a call. Ditto if the prefix is overloaded and all its
982 -- interpretations are access to subprograms.
984 ---------------------------
985 -- Prefix_Is_Access_Subp --
986 ---------------------------
988 function Prefix_Is_Access_Subp return Boolean is
989 I : Interp_Index;
990 It : Interp;
992 begin
993 -- If the context is an attribute reference that can apply to
994 -- functions, this is never a parameterless call (RM 4.1.4(6)).
996 if Nkind (Parent (N)) = N_Attribute_Reference
997 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
998 Name_Code_Address,
999 Name_Access)
1000 then
1001 return False;
1002 end if;
1004 if not Is_Overloaded (N) then
1005 return
1006 Ekind (Etype (N)) = E_Subprogram_Type
1007 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
1008 else
1009 Get_First_Interp (N, I, It);
1010 while Present (It.Typ) loop
1011 if Ekind (It.Typ) /= E_Subprogram_Type
1012 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
1013 then
1014 return False;
1015 end if;
1017 Get_Next_Interp (I, It);
1018 end loop;
1020 return True;
1021 end if;
1022 end Prefix_Is_Access_Subp;
1024 -- Start of processing for Check_Parameterless_Call
1026 begin
1027 -- Defend against junk stuff if errors already detected
1029 if Total_Errors_Detected /= 0 then
1030 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
1031 return;
1032 elsif Nkind (N) in N_Has_Chars
1033 and then not Is_Valid_Name (Chars (N))
1034 then
1035 return;
1036 end if;
1038 Require_Entity (N);
1039 end if;
1041 -- If the context expects a value, and the name is a procedure, this is
1042 -- most likely a missing 'Access. Don't try to resolve the parameterless
1043 -- call, error will be caught when the outer call is analyzed.
1045 if Is_Entity_Name (N)
1046 and then Ekind (Entity (N)) = E_Procedure
1047 and then not Is_Overloaded (N)
1048 and then
1049 Nkind_In (Parent (N), N_Parameter_Association,
1050 N_Function_Call,
1051 N_Procedure_Call_Statement)
1052 then
1053 return;
1054 end if;
1056 -- Rewrite as call if overloadable entity that is (or could be, in the
1057 -- overloaded case) a function call. If we know for sure that the entity
1058 -- is an enumeration literal, we do not rewrite it.
1060 -- If the entity is the name of an operator, it cannot be a call because
1061 -- operators cannot have default parameters. In this case, this must be
1062 -- a string whose contents coincide with an operator name. Set the kind
1063 -- of the node appropriately.
1065 if (Is_Entity_Name (N)
1066 and then Nkind (N) /= N_Operator_Symbol
1067 and then Is_Overloadable (Entity (N))
1068 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
1069 or else Is_Overloaded (N)))
1071 -- Rewrite as call if it is an explicit dereference of an expression of
1072 -- a subprogram access type, and the subprogram type is not that of a
1073 -- procedure or entry.
1075 or else
1076 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
1078 -- Rewrite as call if it is a selected component which is a function,
1079 -- this is the case of a call to a protected function (which may be
1080 -- overloaded with other protected operations).
1082 or else
1083 (Nkind (N) = N_Selected_Component
1084 and then (Ekind (Entity (Selector_Name (N))) = E_Function
1085 or else
1086 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1087 E_Procedure)
1088 and then Is_Overloaded (Selector_Name (N)))))
1090 -- If one of the above three conditions is met, rewrite as call. Apply
1091 -- the rewriting only once.
1093 then
1094 if Nkind (Parent (N)) /= N_Function_Call
1095 or else N /= Name (Parent (N))
1096 then
1098 -- This may be a prefixed call that was not fully analyzed, e.g.
1099 -- an actual in an instance.
1101 if Ada_Version >= Ada_2005
1102 and then Nkind (N) = N_Selected_Component
1103 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1104 then
1105 Analyze_Selected_Component (N);
1107 if Nkind (N) /= N_Selected_Component then
1108 return;
1109 end if;
1110 end if;
1112 -- The node is the name of the parameterless call. Preserve its
1113 -- descendants, which may be complex expressions.
1115 Nam := Relocate_Node (N);
1117 -- If overloaded, overload set belongs to new copy
1119 Save_Interps (N, Nam);
1121 -- Change node to parameterless function call (note that the
1122 -- Parameter_Associations associations field is left set to Empty,
1123 -- its normal default value since there are no parameters)
1125 Change_Node (N, N_Function_Call);
1126 Set_Name (N, Nam);
1127 Set_Sloc (N, Sloc (Nam));
1128 Analyze_Call (N);
1129 end if;
1131 elsif Nkind (N) = N_Parameter_Association then
1132 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1134 elsif Nkind (N) = N_Operator_Symbol then
1135 Change_Operator_Symbol_To_String_Literal (N);
1136 Set_Is_Overloaded (N, False);
1137 Set_Etype (N, Any_String);
1138 end if;
1139 end Check_Parameterless_Call;
1141 --------------------------------
1142 -- Is_Atomic_Ref_With_Address --
1143 --------------------------------
1145 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1146 Pref : constant Node_Id := Prefix (N);
1148 begin
1149 if not Is_Entity_Name (Pref) then
1150 return False;
1152 else
1153 declare
1154 Pent : constant Entity_Id := Entity (Pref);
1155 Ptyp : constant Entity_Id := Etype (Pent);
1156 begin
1157 return not Is_Access_Type (Ptyp)
1158 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1159 and then Present (Address_Clause (Pent));
1160 end;
1161 end if;
1162 end Is_Atomic_Ref_With_Address;
1164 -----------------------------
1165 -- Is_Definite_Access_Type --
1166 -----------------------------
1168 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1169 Btyp : constant Entity_Id := Base_Type (E);
1170 begin
1171 return Ekind (Btyp) = E_Access_Type
1172 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1173 and then Comes_From_Source (Btyp));
1174 end Is_Definite_Access_Type;
1176 ----------------------
1177 -- Is_Predefined_Op --
1178 ----------------------
1180 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1181 begin
1182 -- Predefined operators are intrinsic subprograms
1184 if not Is_Intrinsic_Subprogram (Nam) then
1185 return False;
1186 end if;
1188 -- A call to a back-end builtin is never a predefined operator
1190 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1191 return False;
1192 end if;
1194 return not Is_Generic_Instance (Nam)
1195 and then Chars (Nam) in Any_Operator_Name
1196 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1197 end Is_Predefined_Op;
1199 -----------------------------
1200 -- Make_Call_Into_Operator --
1201 -----------------------------
1203 procedure Make_Call_Into_Operator
1204 (N : Node_Id;
1205 Typ : Entity_Id;
1206 Op_Id : Entity_Id)
1208 Op_Name : constant Name_Id := Chars (Op_Id);
1209 Act1 : Node_Id := First_Actual (N);
1210 Act2 : Node_Id := Next_Actual (Act1);
1211 Error : Boolean := False;
1212 Func : constant Entity_Id := Entity (Name (N));
1213 Is_Binary : constant Boolean := Present (Act2);
1214 Op_Node : Node_Id;
1215 Opnd_Type : Entity_Id := Empty;
1216 Orig_Type : Entity_Id := Empty;
1217 Pack : Entity_Id;
1219 type Kind_Test is access function (E : Entity_Id) return Boolean;
1221 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1222 -- If the operand is not universal, and the operator is given by an
1223 -- expanded name, verify that the operand has an interpretation with a
1224 -- type defined in the given scope of the operator.
1226 function Type_In_P (Test : Kind_Test) return Entity_Id;
1227 -- Find a type of the given class in package Pack that contains the
1228 -- operator.
1230 ---------------------------
1231 -- Operand_Type_In_Scope --
1232 ---------------------------
1234 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1235 Nod : constant Node_Id := Right_Opnd (Op_Node);
1236 I : Interp_Index;
1237 It : Interp;
1239 begin
1240 if not Is_Overloaded (Nod) then
1241 return Scope (Base_Type (Etype (Nod))) = S;
1243 else
1244 Get_First_Interp (Nod, I, It);
1245 while Present (It.Typ) loop
1246 if Scope (Base_Type (It.Typ)) = S then
1247 return True;
1248 end if;
1250 Get_Next_Interp (I, It);
1251 end loop;
1253 return False;
1254 end if;
1255 end Operand_Type_In_Scope;
1257 ---------------
1258 -- Type_In_P --
1259 ---------------
1261 function Type_In_P (Test : Kind_Test) return Entity_Id is
1262 E : Entity_Id;
1264 function In_Decl return Boolean;
1265 -- Verify that node is not part of the type declaration for the
1266 -- candidate type, which would otherwise be invisible.
1268 -------------
1269 -- In_Decl --
1270 -------------
1272 function In_Decl return Boolean is
1273 Decl_Node : constant Node_Id := Parent (E);
1274 N2 : Node_Id;
1276 begin
1277 N2 := N;
1279 if Etype (E) = Any_Type then
1280 return True;
1282 elsif No (Decl_Node) then
1283 return False;
1285 else
1286 while Present (N2)
1287 and then Nkind (N2) /= N_Compilation_Unit
1288 loop
1289 if N2 = Decl_Node then
1290 return True;
1291 else
1292 N2 := Parent (N2);
1293 end if;
1294 end loop;
1296 return False;
1297 end if;
1298 end In_Decl;
1300 -- Start of processing for Type_In_P
1302 begin
1303 -- If the context type is declared in the prefix package, this is the
1304 -- desired base type.
1306 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1307 return Base_Type (Typ);
1309 else
1310 E := First_Entity (Pack);
1311 while Present (E) loop
1312 if Test (E) and then not In_Decl then
1313 return E;
1314 end if;
1316 Next_Entity (E);
1317 end loop;
1319 return Empty;
1320 end if;
1321 end Type_In_P;
1323 -- Start of processing for Make_Call_Into_Operator
1325 begin
1326 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1328 -- Ensure that the corresponding operator has the same parent as the
1329 -- original call. This guarantees that parent traversals performed by
1330 -- the ABE mechanism succeed.
1332 Set_Parent (Op_Node, Parent (N));
1334 -- Binary operator
1336 if Is_Binary then
1337 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1338 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1339 Save_Interps (Act1, Left_Opnd (Op_Node));
1340 Save_Interps (Act2, Right_Opnd (Op_Node));
1341 Act1 := Left_Opnd (Op_Node);
1342 Act2 := Right_Opnd (Op_Node);
1344 -- Unary operator
1346 else
1347 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1348 Save_Interps (Act1, Right_Opnd (Op_Node));
1349 Act1 := Right_Opnd (Op_Node);
1350 end if;
1352 -- If the operator is denoted by an expanded name, and the prefix is
1353 -- not Standard, but the operator is a predefined one whose scope is
1354 -- Standard, then this is an implicit_operator, inserted as an
1355 -- interpretation by the procedure of the same name. This procedure
1356 -- overestimates the presence of implicit operators, because it does
1357 -- not examine the type of the operands. Verify now that the operand
1358 -- type appears in the given scope. If right operand is universal,
1359 -- check the other operand. In the case of concatenation, either
1360 -- argument can be the component type, so check the type of the result.
1361 -- If both arguments are literals, look for a type of the right kind
1362 -- defined in the given scope. This elaborate nonsense is brought to
1363 -- you courtesy of b33302a. The type itself must be frozen, so we must
1364 -- find the type of the proper class in the given scope.
1366 -- A final wrinkle is the multiplication operator for fixed point types,
1367 -- which is defined in Standard only, and not in the scope of the
1368 -- fixed point type itself.
1370 if Nkind (Name (N)) = N_Expanded_Name then
1371 Pack := Entity (Prefix (Name (N)));
1373 -- If this is a package renaming, get renamed entity, which will be
1374 -- the scope of the operands if operaton is type-correct.
1376 if Present (Renamed_Entity (Pack)) then
1377 Pack := Renamed_Entity (Pack);
1378 end if;
1380 -- If the entity being called is defined in the given package, it is
1381 -- a renaming of a predefined operator, and known to be legal.
1383 if Scope (Entity (Name (N))) = Pack
1384 and then Pack /= Standard_Standard
1385 then
1386 null;
1388 -- Visibility does not need to be checked in an instance: if the
1389 -- operator was not visible in the generic it has been diagnosed
1390 -- already, else there is an implicit copy of it in the instance.
1392 elsif In_Instance then
1393 null;
1395 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1396 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1397 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1398 then
1399 if Pack /= Standard_Standard then
1400 Error := True;
1401 end if;
1403 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1404 -- available.
1406 elsif Ada_Version >= Ada_2005
1407 and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1408 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1409 then
1410 null;
1412 else
1413 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1415 if Op_Name = Name_Op_Concat then
1416 Opnd_Type := Base_Type (Typ);
1418 elsif (Scope (Opnd_Type) = Standard_Standard
1419 and then Is_Binary)
1420 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1421 and then Is_Binary
1422 and then not Comes_From_Source (Opnd_Type))
1423 then
1424 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1425 end if;
1427 if Scope (Opnd_Type) = Standard_Standard then
1429 -- Verify that the scope contains a type that corresponds to
1430 -- the given literal. Optimize the case where Pack is Standard.
1432 if Pack /= Standard_Standard then
1433 if Opnd_Type = Universal_Integer then
1434 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1436 elsif Opnd_Type = Universal_Real then
1437 Orig_Type := Type_In_P (Is_Real_Type'Access);
1439 elsif Opnd_Type = Any_String then
1440 Orig_Type := Type_In_P (Is_String_Type'Access);
1442 elsif Opnd_Type = Any_Access then
1443 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1445 elsif Opnd_Type = Any_Composite then
1446 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1448 if Present (Orig_Type) then
1449 if Has_Private_Component (Orig_Type) then
1450 Orig_Type := Empty;
1451 else
1452 Set_Etype (Act1, Orig_Type);
1454 if Is_Binary then
1455 Set_Etype (Act2, Orig_Type);
1456 end if;
1457 end if;
1458 end if;
1460 else
1461 Orig_Type := Empty;
1462 end if;
1464 Error := No (Orig_Type);
1465 end if;
1467 elsif Ekind (Opnd_Type) = E_Allocator_Type
1468 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1469 then
1470 Error := True;
1472 -- If the type is defined elsewhere, and the operator is not
1473 -- defined in the given scope (by a renaming declaration, e.g.)
1474 -- then this is an error as well. If an extension of System is
1475 -- present, and the type may be defined there, Pack must be
1476 -- System itself.
1478 elsif Scope (Opnd_Type) /= Pack
1479 and then Scope (Op_Id) /= Pack
1480 and then (No (System_Aux_Id)
1481 or else Scope (Opnd_Type) /= System_Aux_Id
1482 or else Pack /= Scope (System_Aux_Id))
1483 then
1484 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1485 Error := True;
1486 else
1487 Error := not Operand_Type_In_Scope (Pack);
1488 end if;
1490 elsif Pack = Standard_Standard
1491 and then not Operand_Type_In_Scope (Standard_Standard)
1492 then
1493 Error := True;
1494 end if;
1495 end if;
1497 if Error then
1498 Error_Msg_Node_2 := Pack;
1499 Error_Msg_NE
1500 ("& not declared in&", N, Selector_Name (Name (N)));
1501 Set_Etype (N, Any_Type);
1502 return;
1504 -- Detect a mismatch between the context type and the result type
1505 -- in the named package, which is otherwise not detected if the
1506 -- operands are universal. Check is only needed if source entity is
1507 -- an operator, not a function that renames an operator.
1509 elsif Nkind (Parent (N)) /= N_Type_Conversion
1510 and then Ekind (Entity (Name (N))) = E_Operator
1511 and then Is_Numeric_Type (Typ)
1512 and then not Is_Universal_Numeric_Type (Typ)
1513 and then Scope (Base_Type (Typ)) /= Pack
1514 and then not In_Instance
1515 then
1516 if Is_Fixed_Point_Type (Typ)
1517 and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1518 then
1519 -- Already checked above
1521 null;
1523 -- Operator may be defined in an extension of System
1525 elsif Present (System_Aux_Id)
1526 and then Present (Opnd_Type)
1527 and then Scope (Opnd_Type) = System_Aux_Id
1528 then
1529 null;
1531 else
1532 -- Could we use Wrong_Type here??? (this would require setting
1533 -- Etype (N) to the actual type found where Typ was expected).
1535 Error_Msg_NE ("expect }", N, Typ);
1536 end if;
1537 end if;
1538 end if;
1540 Set_Chars (Op_Node, Op_Name);
1542 if not Is_Private_Type (Etype (N)) then
1543 Set_Etype (Op_Node, Base_Type (Etype (N)));
1544 else
1545 Set_Etype (Op_Node, Etype (N));
1546 end if;
1548 -- If this is a call to a function that renames a predefined equality,
1549 -- the renaming declaration provides a type that must be used to
1550 -- resolve the operands. This must be done now because resolution of
1551 -- the equality node will not resolve any remaining ambiguity, and it
1552 -- assumes that the first operand is not overloaded.
1554 if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1555 and then Ekind (Func) = E_Function
1556 and then Is_Overloaded (Act1)
1557 then
1558 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1559 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1560 end if;
1562 Set_Entity (Op_Node, Op_Id);
1563 Generate_Reference (Op_Id, N, ' ');
1565 -- Do rewrite setting Comes_From_Source on the result if the original
1566 -- call came from source. Although it is not strictly the case that the
1567 -- operator as such comes from the source, logically it corresponds
1568 -- exactly to the function call in the source, so it should be marked
1569 -- this way (e.g. to make sure that validity checks work fine).
1571 declare
1572 CS : constant Boolean := Comes_From_Source (N);
1573 begin
1574 Rewrite (N, Op_Node);
1575 Set_Comes_From_Source (N, CS);
1576 end;
1578 -- If this is an arithmetic operator and the result type is private,
1579 -- the operands and the result must be wrapped in conversion to
1580 -- expose the underlying numeric type and expand the proper checks,
1581 -- e.g. on division.
1583 if Is_Private_Type (Typ) then
1584 case Nkind (N) is
1585 when N_Op_Add
1586 | N_Op_Divide
1587 | N_Op_Expon
1588 | N_Op_Mod
1589 | N_Op_Multiply
1590 | N_Op_Rem
1591 | N_Op_Subtract
1593 Resolve_Intrinsic_Operator (N, Typ);
1595 when N_Op_Abs
1596 | N_Op_Minus
1597 | N_Op_Plus
1599 Resolve_Intrinsic_Unary_Operator (N, Typ);
1601 when others =>
1602 Resolve (N, Typ);
1603 end case;
1604 else
1605 Resolve (N, Typ);
1606 end if;
1608 -- If in ASIS_Mode, propagate operand types to original actuals of
1609 -- function call, which would otherwise not be fully resolved. If
1610 -- the call has already been constant-folded, nothing to do. We
1611 -- relocate the operand nodes rather than copy them, to preserve
1612 -- original_node pointers, given that the operands themselves may
1613 -- have been rewritten. If the call was itself a rewriting of an
1614 -- operator node, nothing to do.
1616 if ASIS_Mode
1617 and then Nkind (N) in N_Op
1618 and then Nkind (Original_Node (N)) = N_Function_Call
1619 then
1620 declare
1621 L : Node_Id;
1622 R : constant Node_Id := Right_Opnd (N);
1624 Old_First : constant Node_Id :=
1625 First (Parameter_Associations (Original_Node (N)));
1626 Old_Sec : Node_Id;
1628 begin
1629 if Is_Binary then
1630 L := Left_Opnd (N);
1631 Old_Sec := Next (Old_First);
1633 -- If the original call has named associations, replace the
1634 -- explicit actual parameter in the association with the proper
1635 -- resolved operand.
1637 if Nkind (Old_First) = N_Parameter_Association then
1638 if Chars (Selector_Name (Old_First)) =
1639 Chars (First_Entity (Op_Id))
1640 then
1641 Rewrite (Explicit_Actual_Parameter (Old_First),
1642 Relocate_Node (L));
1643 else
1644 Rewrite (Explicit_Actual_Parameter (Old_First),
1645 Relocate_Node (R));
1646 end if;
1648 else
1649 Rewrite (Old_First, Relocate_Node (L));
1650 end if;
1652 if Nkind (Old_Sec) = N_Parameter_Association then
1653 if Chars (Selector_Name (Old_Sec)) =
1654 Chars (First_Entity (Op_Id))
1655 then
1656 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1657 Relocate_Node (L));
1658 else
1659 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1660 Relocate_Node (R));
1661 end if;
1663 else
1664 Rewrite (Old_Sec, Relocate_Node (R));
1665 end if;
1667 else
1668 if Nkind (Old_First) = N_Parameter_Association then
1669 Rewrite (Explicit_Actual_Parameter (Old_First),
1670 Relocate_Node (R));
1671 else
1672 Rewrite (Old_First, Relocate_Node (R));
1673 end if;
1674 end if;
1675 end;
1677 Set_Parent (Original_Node (N), Parent (N));
1678 end if;
1679 end Make_Call_Into_Operator;
1681 -------------------
1682 -- Operator_Kind --
1683 -------------------
1685 function Operator_Kind
1686 (Op_Name : Name_Id;
1687 Is_Binary : Boolean) return Node_Kind
1689 Kind : Node_Kind;
1691 begin
1692 -- Use CASE statement or array???
1694 if Is_Binary then
1695 if Op_Name = Name_Op_And then
1696 Kind := N_Op_And;
1697 elsif Op_Name = Name_Op_Or then
1698 Kind := N_Op_Or;
1699 elsif Op_Name = Name_Op_Xor then
1700 Kind := N_Op_Xor;
1701 elsif Op_Name = Name_Op_Eq then
1702 Kind := N_Op_Eq;
1703 elsif Op_Name = Name_Op_Ne then
1704 Kind := N_Op_Ne;
1705 elsif Op_Name = Name_Op_Lt then
1706 Kind := N_Op_Lt;
1707 elsif Op_Name = Name_Op_Le then
1708 Kind := N_Op_Le;
1709 elsif Op_Name = Name_Op_Gt then
1710 Kind := N_Op_Gt;
1711 elsif Op_Name = Name_Op_Ge then
1712 Kind := N_Op_Ge;
1713 elsif Op_Name = Name_Op_Add then
1714 Kind := N_Op_Add;
1715 elsif Op_Name = Name_Op_Subtract then
1716 Kind := N_Op_Subtract;
1717 elsif Op_Name = Name_Op_Concat then
1718 Kind := N_Op_Concat;
1719 elsif Op_Name = Name_Op_Multiply then
1720 Kind := N_Op_Multiply;
1721 elsif Op_Name = Name_Op_Divide then
1722 Kind := N_Op_Divide;
1723 elsif Op_Name = Name_Op_Mod then
1724 Kind := N_Op_Mod;
1725 elsif Op_Name = Name_Op_Rem then
1726 Kind := N_Op_Rem;
1727 elsif Op_Name = Name_Op_Expon then
1728 Kind := N_Op_Expon;
1729 else
1730 raise Program_Error;
1731 end if;
1733 -- Unary operators
1735 else
1736 if Op_Name = Name_Op_Add then
1737 Kind := N_Op_Plus;
1738 elsif Op_Name = Name_Op_Subtract then
1739 Kind := N_Op_Minus;
1740 elsif Op_Name = Name_Op_Abs then
1741 Kind := N_Op_Abs;
1742 elsif Op_Name = Name_Op_Not then
1743 Kind := N_Op_Not;
1744 else
1745 raise Program_Error;
1746 end if;
1747 end if;
1749 return Kind;
1750 end Operator_Kind;
1752 ----------------------------
1753 -- Preanalyze_And_Resolve --
1754 ----------------------------
1756 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1757 Save_Full_Analysis : constant Boolean := Full_Analysis;
1759 begin
1760 Full_Analysis := False;
1761 Expander_Mode_Save_And_Set (False);
1763 -- Normally, we suppress all checks for this preanalysis. There is no
1764 -- point in processing them now, since they will be applied properly
1765 -- and in the proper location when the default expressions reanalyzed
1766 -- and reexpanded later on. We will also have more information at that
1767 -- point for possible suppression of individual checks.
1769 -- However, in SPARK mode, most expansion is suppressed, and this
1770 -- later reanalysis and reexpansion may not occur. SPARK mode does
1771 -- require the setting of checking flags for proof purposes, so we
1772 -- do the SPARK preanalysis without suppressing checks.
1774 -- This special handling for SPARK mode is required for example in the
1775 -- case of Ada 2012 constructs such as quantified expressions, which are
1776 -- expanded in two separate steps.
1778 if GNATprove_Mode then
1779 Analyze_And_Resolve (N, T);
1780 else
1781 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1782 end if;
1784 Expander_Mode_Restore;
1785 Full_Analysis := Save_Full_Analysis;
1786 end Preanalyze_And_Resolve;
1788 -- Version without context type
1790 procedure Preanalyze_And_Resolve (N : Node_Id) is
1791 Save_Full_Analysis : constant Boolean := Full_Analysis;
1793 begin
1794 Full_Analysis := False;
1795 Expander_Mode_Save_And_Set (False);
1797 Analyze (N);
1798 Resolve (N, Etype (N), Suppress => All_Checks);
1800 Expander_Mode_Restore;
1801 Full_Analysis := Save_Full_Analysis;
1802 end Preanalyze_And_Resolve;
1804 ----------------------------------
1805 -- Replace_Actual_Discriminants --
1806 ----------------------------------
1808 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1809 Loc : constant Source_Ptr := Sloc (N);
1810 Tsk : Node_Id := Empty;
1812 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1813 -- Comment needed???
1815 -------------------
1816 -- Process_Discr --
1817 -------------------
1819 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1820 Ent : Entity_Id;
1822 begin
1823 if Nkind (Nod) = N_Identifier then
1824 Ent := Entity (Nod);
1826 if Present (Ent)
1827 and then Ekind (Ent) = E_Discriminant
1828 then
1829 Rewrite (Nod,
1830 Make_Selected_Component (Loc,
1831 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1832 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1834 Set_Etype (Nod, Etype (Ent));
1835 end if;
1837 end if;
1839 return OK;
1840 end Process_Discr;
1842 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1844 -- Start of processing for Replace_Actual_Discriminants
1846 begin
1847 if Expander_Active then
1848 null;
1850 -- Allow the replacement of concurrent discriminants in GNATprove even
1851 -- though this is a light expansion activity. Note that generic units
1852 -- are not modified.
1854 elsif GNATprove_Mode and not Inside_A_Generic then
1855 null;
1857 else
1858 return;
1859 end if;
1861 if Nkind (Name (N)) = N_Selected_Component then
1862 Tsk := Prefix (Name (N));
1864 elsif Nkind (Name (N)) = N_Indexed_Component then
1865 Tsk := Prefix (Prefix (Name (N)));
1866 end if;
1868 if Present (Tsk) then
1869 Replace_Discrs (Default);
1870 end if;
1871 end Replace_Actual_Discriminants;
1873 -------------
1874 -- Resolve --
1875 -------------
1877 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1878 Ambiguous : Boolean := False;
1879 Ctx_Type : Entity_Id := Typ;
1880 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1881 Err_Type : Entity_Id := Empty;
1882 Found : Boolean := False;
1883 From_Lib : Boolean;
1884 I : Interp_Index;
1885 I1 : Interp_Index := 0; -- prevent junk warning
1886 It : Interp;
1887 It1 : Interp;
1888 Seen : Entity_Id := Empty; -- prevent junk warning
1890 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1891 -- Determine whether a node comes from a predefined library unit or
1892 -- Standard.
1894 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1895 -- Try and fix up a literal so that it matches its expected type. New
1896 -- literals are manufactured if necessary to avoid cascaded errors.
1898 procedure Report_Ambiguous_Argument;
1899 -- Additional diagnostics when an ambiguous call has an ambiguous
1900 -- argument (typically a controlling actual).
1902 procedure Resolution_Failed;
1903 -- Called when attempt at resolving current expression fails
1905 ------------------------------------
1906 -- Comes_From_Predefined_Lib_Unit --
1907 -------------------------------------
1909 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1910 begin
1911 return
1912 Sloc (Nod) = Standard_Location or else In_Predefined_Unit (Nod);
1913 end Comes_From_Predefined_Lib_Unit;
1915 --------------------
1916 -- Patch_Up_Value --
1917 --------------------
1919 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1920 begin
1921 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1922 Rewrite (N,
1923 Make_Real_Literal (Sloc (N),
1924 Realval => UR_From_Uint (Intval (N))));
1925 Set_Etype (N, Universal_Real);
1926 Set_Is_Static_Expression (N);
1928 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1929 Rewrite (N,
1930 Make_Integer_Literal (Sloc (N),
1931 Intval => UR_To_Uint (Realval (N))));
1932 Set_Etype (N, Universal_Integer);
1933 Set_Is_Static_Expression (N);
1935 elsif Nkind (N) = N_String_Literal
1936 and then Is_Character_Type (Typ)
1937 then
1938 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1939 Rewrite (N,
1940 Make_Character_Literal (Sloc (N),
1941 Chars => Name_Find,
1942 Char_Literal_Value =>
1943 UI_From_Int (Character'Pos ('A'))));
1944 Set_Etype (N, Any_Character);
1945 Set_Is_Static_Expression (N);
1947 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1948 Rewrite (N,
1949 Make_String_Literal (Sloc (N),
1950 Strval => End_String));
1952 elsif Nkind (N) = N_Range then
1953 Patch_Up_Value (Low_Bound (N), Typ);
1954 Patch_Up_Value (High_Bound (N), Typ);
1955 end if;
1956 end Patch_Up_Value;
1958 -------------------------------
1959 -- Report_Ambiguous_Argument --
1960 -------------------------------
1962 procedure Report_Ambiguous_Argument is
1963 Arg : constant Node_Id := First (Parameter_Associations (N));
1964 I : Interp_Index;
1965 It : Interp;
1967 begin
1968 if Nkind (Arg) = N_Function_Call
1969 and then Is_Entity_Name (Name (Arg))
1970 and then Is_Overloaded (Name (Arg))
1971 then
1972 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1974 -- Could use comments on what is going on here???
1976 Get_First_Interp (Name (Arg), I, It);
1977 while Present (It.Nam) loop
1978 Error_Msg_Sloc := Sloc (It.Nam);
1980 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1981 Error_Msg_N ("interpretation (inherited) #!", Arg);
1982 else
1983 Error_Msg_N ("interpretation #!", Arg);
1984 end if;
1986 Get_Next_Interp (I, It);
1987 end loop;
1988 end if;
1989 end Report_Ambiguous_Argument;
1991 -----------------------
1992 -- Resolution_Failed --
1993 -----------------------
1995 procedure Resolution_Failed is
1996 begin
1997 Patch_Up_Value (N, Typ);
1999 -- Set the type to the desired one to minimize cascaded errors. Note
2000 -- that this is an approximation and does not work in all cases.
2002 Set_Etype (N, Typ);
2004 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
2005 Set_Is_Overloaded (N, False);
2007 -- The caller will return without calling the expander, so we need
2008 -- to set the analyzed flag. Note that it is fine to set Analyzed
2009 -- to True even if we are in the middle of a shallow analysis,
2010 -- (see the spec of sem for more details) since this is an error
2011 -- situation anyway, and there is no point in repeating the
2012 -- analysis later (indeed it won't work to repeat it later, since
2013 -- we haven't got a clear resolution of which entity is being
2014 -- referenced.)
2016 Set_Analyzed (N, True);
2017 return;
2018 end Resolution_Failed;
2020 -- Start of processing for Resolve
2022 begin
2023 if N = Error then
2024 return;
2025 end if;
2027 -- Access attribute on remote subprogram cannot be used for a non-remote
2028 -- access-to-subprogram type.
2030 if Nkind (N) = N_Attribute_Reference
2031 and then Nam_In (Attribute_Name (N), Name_Access,
2032 Name_Unrestricted_Access,
2033 Name_Unchecked_Access)
2034 and then Comes_From_Source (N)
2035 and then Is_Entity_Name (Prefix (N))
2036 and then Is_Subprogram (Entity (Prefix (N)))
2037 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
2038 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
2039 then
2040 Error_Msg_N
2041 ("prefix must statically denote a non-remote subprogram", N);
2042 end if;
2044 From_Lib := Comes_From_Predefined_Lib_Unit (N);
2046 -- If the context is a Remote_Access_To_Subprogram, access attributes
2047 -- must be resolved with the corresponding fat pointer. There is no need
2048 -- to check for the attribute name since the return type of an
2049 -- attribute is never a remote type.
2051 if Nkind (N) = N_Attribute_Reference
2052 and then Comes_From_Source (N)
2053 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2054 then
2055 declare
2056 Attr : constant Attribute_Id :=
2057 Get_Attribute_Id (Attribute_Name (N));
2058 Pref : constant Node_Id := Prefix (N);
2059 Decl : Node_Id;
2060 Spec : Node_Id;
2061 Is_Remote : Boolean := True;
2063 begin
2064 -- Check that Typ is a remote access-to-subprogram type
2066 if Is_Remote_Access_To_Subprogram_Type (Typ) then
2068 -- Prefix (N) must statically denote a remote subprogram
2069 -- declared in a package specification.
2071 if Attr = Attribute_Access or else
2072 Attr = Attribute_Unchecked_Access or else
2073 Attr = Attribute_Unrestricted_Access
2074 then
2075 Decl := Unit_Declaration_Node (Entity (Pref));
2077 if Nkind (Decl) = N_Subprogram_Body then
2078 Spec := Corresponding_Spec (Decl);
2080 if Present (Spec) then
2081 Decl := Unit_Declaration_Node (Spec);
2082 end if;
2083 end if;
2085 Spec := Parent (Decl);
2087 if not Is_Entity_Name (Prefix (N))
2088 or else Nkind (Spec) /= N_Package_Specification
2089 or else
2090 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2091 then
2092 Is_Remote := False;
2093 Error_Msg_N
2094 ("prefix must statically denote a remote subprogram ",
2096 end if;
2098 -- If we are generating code in distributed mode, perform
2099 -- semantic checks against corresponding remote entities.
2101 if Expander_Active
2102 and then Get_PCS_Name /= Name_No_DSA
2103 then
2104 Check_Subtype_Conformant
2105 (New_Id => Entity (Prefix (N)),
2106 Old_Id => Designated_Type
2107 (Corresponding_Remote_Type (Typ)),
2108 Err_Loc => N);
2110 if Is_Remote then
2111 Process_Remote_AST_Attribute (N, Typ);
2112 end if;
2113 end if;
2114 end if;
2115 end if;
2116 end;
2117 end if;
2119 Debug_A_Entry ("resolving ", N);
2121 if Debug_Flag_V then
2122 Write_Overloads (N);
2123 end if;
2125 if Comes_From_Source (N) then
2126 if Is_Fixed_Point_Type (Typ) then
2127 Check_Restriction (No_Fixed_Point, N);
2129 elsif Is_Floating_Point_Type (Typ)
2130 and then Typ /= Universal_Real
2131 and then Typ /= Any_Real
2132 then
2133 Check_Restriction (No_Floating_Point, N);
2134 end if;
2135 end if;
2137 -- Return if already analyzed
2139 if Analyzed (N) then
2140 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2141 Analyze_Dimension (N);
2142 return;
2144 -- Any case of Any_Type as the Etype value means that we had a
2145 -- previous error.
2147 elsif Etype (N) = Any_Type then
2148 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2149 return;
2150 end if;
2152 Check_Parameterless_Call (N);
2154 -- The resolution of an Expression_With_Actions is determined by
2155 -- its Expression.
2157 if Nkind (N) = N_Expression_With_Actions then
2158 Resolve (Expression (N), Typ);
2160 Found := True;
2161 Expr_Type := Etype (Expression (N));
2163 -- If not overloaded, then we know the type, and all that needs doing
2164 -- is to check that this type is compatible with the context.
2166 elsif not Is_Overloaded (N) then
2167 Found := Covers (Typ, Etype (N));
2168 Expr_Type := Etype (N);
2170 -- In the overloaded case, we must select the interpretation that
2171 -- is compatible with the context (i.e. the type passed to Resolve)
2173 else
2174 -- Loop through possible interpretations
2176 Get_First_Interp (N, I, It);
2177 Interp_Loop : while Present (It.Typ) loop
2178 if Debug_Flag_V then
2179 Write_Str ("Interp: ");
2180 Write_Interp (It);
2181 end if;
2183 -- We are only interested in interpretations that are compatible
2184 -- with the expected type, any other interpretations are ignored.
2186 if not Covers (Typ, It.Typ) then
2187 if Debug_Flag_V then
2188 Write_Str (" interpretation incompatible with context");
2189 Write_Eol;
2190 end if;
2192 else
2193 -- Skip the current interpretation if it is disabled by an
2194 -- abstract operator. This action is performed only when the
2195 -- type against which we are resolving is the same as the
2196 -- type of the interpretation.
2198 if Ada_Version >= Ada_2005
2199 and then It.Typ = Typ
2200 and then Typ /= Universal_Integer
2201 and then Typ /= Universal_Real
2202 and then Present (It.Abstract_Op)
2203 then
2204 if Debug_Flag_V then
2205 Write_Line ("Skip.");
2206 end if;
2208 goto Continue;
2209 end if;
2211 -- First matching interpretation
2213 if not Found then
2214 Found := True;
2215 I1 := I;
2216 Seen := It.Nam;
2217 Expr_Type := It.Typ;
2219 -- Matching interpretation that is not the first, maybe an
2220 -- error, but there are some cases where preference rules are
2221 -- used to choose between the two possibilities. These and
2222 -- some more obscure cases are handled in Disambiguate.
2224 else
2225 -- If the current statement is part of a predefined library
2226 -- unit, then all interpretations which come from user level
2227 -- packages should not be considered. Check previous and
2228 -- current one.
2230 if From_Lib then
2231 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2232 goto Continue;
2234 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2236 -- Previous interpretation must be discarded
2238 I1 := I;
2239 Seen := It.Nam;
2240 Expr_Type := It.Typ;
2241 Set_Entity (N, Seen);
2242 goto Continue;
2243 end if;
2244 end if;
2246 -- Otherwise apply further disambiguation steps
2248 Error_Msg_Sloc := Sloc (Seen);
2249 It1 := Disambiguate (N, I1, I, Typ);
2251 -- Disambiguation has succeeded. Skip the remaining
2252 -- interpretations.
2254 if It1 /= No_Interp then
2255 Seen := It1.Nam;
2256 Expr_Type := It1.Typ;
2258 while Present (It.Typ) loop
2259 Get_Next_Interp (I, It);
2260 end loop;
2262 else
2263 -- Before we issue an ambiguity complaint, check for the
2264 -- case of a subprogram call where at least one of the
2265 -- arguments is Any_Type, and if so suppress the message,
2266 -- since it is a cascaded error. This can also happen for
2267 -- a generalized indexing operation.
2269 if Nkind (N) in N_Subprogram_Call
2270 or else (Nkind (N) = N_Indexed_Component
2271 and then Present (Generalized_Indexing (N)))
2272 then
2273 declare
2274 A : Node_Id;
2275 E : Node_Id;
2277 begin
2278 if Nkind (N) = N_Indexed_Component then
2279 Rewrite (N, Generalized_Indexing (N));
2280 end if;
2282 A := First_Actual (N);
2283 while Present (A) loop
2284 E := A;
2286 if Nkind (E) = N_Parameter_Association then
2287 E := Explicit_Actual_Parameter (E);
2288 end if;
2290 if Etype (E) = Any_Type then
2291 if Debug_Flag_V then
2292 Write_Str ("Any_Type in call");
2293 Write_Eol;
2294 end if;
2296 exit Interp_Loop;
2297 end if;
2299 Next_Actual (A);
2300 end loop;
2301 end;
2303 elsif Nkind (N) in N_Binary_Op
2304 and then (Etype (Left_Opnd (N)) = Any_Type
2305 or else Etype (Right_Opnd (N)) = Any_Type)
2306 then
2307 exit Interp_Loop;
2309 elsif Nkind (N) in N_Unary_Op
2310 and then Etype (Right_Opnd (N)) = Any_Type
2311 then
2312 exit Interp_Loop;
2313 end if;
2315 -- Not that special case, so issue message using the flag
2316 -- Ambiguous to control printing of the header message
2317 -- only at the start of an ambiguous set.
2319 if not Ambiguous then
2320 if Nkind (N) = N_Function_Call
2321 and then Nkind (Name (N)) = N_Explicit_Dereference
2322 then
2323 Error_Msg_N
2324 ("ambiguous expression (cannot resolve indirect "
2325 & "call)!", N);
2326 else
2327 Error_Msg_NE -- CODEFIX
2328 ("ambiguous expression (cannot resolve&)!",
2329 N, It.Nam);
2330 end if;
2332 Ambiguous := True;
2334 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2335 Error_Msg_N
2336 ("\\possible interpretation (inherited)#!", N);
2337 else
2338 Error_Msg_N -- CODEFIX
2339 ("\\possible interpretation#!", N);
2340 end if;
2342 if Nkind (N) in N_Subprogram_Call
2343 and then Present (Parameter_Associations (N))
2344 then
2345 Report_Ambiguous_Argument;
2346 end if;
2347 end if;
2349 Error_Msg_Sloc := Sloc (It.Nam);
2351 -- By default, the error message refers to the candidate
2352 -- interpretation. But if it is a predefined operator, it
2353 -- is implicitly declared at the declaration of the type
2354 -- of the operand. Recover the sloc of that declaration
2355 -- for the error message.
2357 if Nkind (N) in N_Op
2358 and then Scope (It.Nam) = Standard_Standard
2359 and then not Is_Overloaded (Right_Opnd (N))
2360 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2361 Standard_Standard
2362 then
2363 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2365 if Comes_From_Source (Err_Type)
2366 and then Present (Parent (Err_Type))
2367 then
2368 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2369 end if;
2371 elsif Nkind (N) in N_Binary_Op
2372 and then Scope (It.Nam) = Standard_Standard
2373 and then not Is_Overloaded (Left_Opnd (N))
2374 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2375 Standard_Standard
2376 then
2377 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2379 if Comes_From_Source (Err_Type)
2380 and then Present (Parent (Err_Type))
2381 then
2382 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2383 end if;
2385 -- If this is an indirect call, use the subprogram_type
2386 -- in the message, to have a meaningful location. Also
2387 -- indicate if this is an inherited operation, created
2388 -- by a type declaration.
2390 elsif Nkind (N) = N_Function_Call
2391 and then Nkind (Name (N)) = N_Explicit_Dereference
2392 and then Is_Type (It.Nam)
2393 then
2394 Err_Type := It.Nam;
2395 Error_Msg_Sloc :=
2396 Sloc (Associated_Node_For_Itype (Err_Type));
2397 else
2398 Err_Type := Empty;
2399 end if;
2401 if Nkind (N) in N_Op
2402 and then Scope (It.Nam) = Standard_Standard
2403 and then Present (Err_Type)
2404 then
2405 -- Special-case the message for universal_fixed
2406 -- operators, which are not declared with the type
2407 -- of the operand, but appear forever in Standard.
2409 if It.Typ = Universal_Fixed
2410 and then Scope (It.Nam) = Standard_Standard
2411 then
2412 Error_Msg_N
2413 ("\\possible interpretation as universal_fixed "
2414 & "operation (RM 4.5.5 (19))", N);
2415 else
2416 Error_Msg_N
2417 ("\\possible interpretation (predefined)#!", N);
2418 end if;
2420 elsif
2421 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2422 then
2423 Error_Msg_N
2424 ("\\possible interpretation (inherited)#!", N);
2425 else
2426 Error_Msg_N -- CODEFIX
2427 ("\\possible interpretation#!", N);
2428 end if;
2430 end if;
2431 end if;
2433 -- We have a matching interpretation, Expr_Type is the type
2434 -- from this interpretation, and Seen is the entity.
2436 -- For an operator, just set the entity name. The type will be
2437 -- set by the specific operator resolution routine.
2439 if Nkind (N) in N_Op then
2440 Set_Entity (N, Seen);
2441 Generate_Reference (Seen, N);
2443 elsif Nkind_In (N, N_Case_Expression,
2444 N_Character_Literal,
2445 N_Delta_Aggregate,
2446 N_If_Expression)
2447 then
2448 Set_Etype (N, Expr_Type);
2450 -- AI05-0139-2: Expression is overloaded because type has
2451 -- implicit dereference. If type matches context, no implicit
2452 -- dereference is involved. If the expression is an entity,
2453 -- generate a reference to it, as this is not done for an
2454 -- overloaded construct during analysis.
2456 elsif Has_Implicit_Dereference (Expr_Type) then
2457 Set_Etype (N, Expr_Type);
2458 Set_Is_Overloaded (N, False);
2460 if Is_Entity_Name (N) then
2461 Generate_Reference (Entity (N), N);
2462 end if;
2464 exit Interp_Loop;
2466 elsif Is_Overloaded (N)
2467 and then Present (It.Nam)
2468 and then Ekind (It.Nam) = E_Discriminant
2469 and then Has_Implicit_Dereference (It.Nam)
2470 then
2471 -- If the node is a general indexing, the dereference is
2472 -- is inserted when resolving the rewritten form, else
2473 -- insert it now.
2475 if Nkind (N) /= N_Indexed_Component
2476 or else No (Generalized_Indexing (N))
2477 then
2478 Build_Explicit_Dereference (N, It.Nam);
2479 end if;
2481 -- For an explicit dereference, attribute reference, range,
2482 -- short-circuit form (which is not an operator node), or call
2483 -- with a name that is an explicit dereference, there is
2484 -- nothing to be done at this point.
2486 elsif Nkind_In (N, N_Attribute_Reference,
2487 N_And_Then,
2488 N_Explicit_Dereference,
2489 N_Identifier,
2490 N_Indexed_Component,
2491 N_Or_Else,
2492 N_Range,
2493 N_Selected_Component,
2494 N_Slice)
2495 or else Nkind (Name (N)) = N_Explicit_Dereference
2496 then
2497 null;
2499 -- For procedure or function calls, set the type of the name,
2500 -- and also the entity pointer for the prefix.
2502 elsif Nkind (N) in N_Subprogram_Call
2503 and then Is_Entity_Name (Name (N))
2504 then
2505 Set_Etype (Name (N), Expr_Type);
2506 Set_Entity (Name (N), Seen);
2507 Generate_Reference (Seen, Name (N));
2509 elsif Nkind (N) = N_Function_Call
2510 and then Nkind (Name (N)) = N_Selected_Component
2511 then
2512 Set_Etype (Name (N), Expr_Type);
2513 Set_Entity (Selector_Name (Name (N)), Seen);
2514 Generate_Reference (Seen, Selector_Name (Name (N)));
2516 -- For all other cases, just set the type of the Name
2518 else
2519 Set_Etype (Name (N), Expr_Type);
2520 end if;
2522 end if;
2524 <<Continue>>
2526 -- Move to next interpretation
2528 exit Interp_Loop when No (It.Typ);
2530 Get_Next_Interp (I, It);
2531 end loop Interp_Loop;
2532 end if;
2534 -- At this stage Found indicates whether or not an acceptable
2535 -- interpretation exists. If not, then we have an error, except that if
2536 -- the context is Any_Type as a result of some other error, then we
2537 -- suppress the error report.
2539 if not Found then
2540 if Typ /= Any_Type then
2542 -- If type we are looking for is Void, then this is the procedure
2543 -- call case, and the error is simply that what we gave is not a
2544 -- procedure name (we think of procedure calls as expressions with
2545 -- types internally, but the user doesn't think of them this way).
2547 if Typ = Standard_Void_Type then
2549 -- Special case message if function used as a procedure
2551 if Nkind (N) = N_Procedure_Call_Statement
2552 and then Is_Entity_Name (Name (N))
2553 and then Ekind (Entity (Name (N))) = E_Function
2554 then
2555 Error_Msg_NE
2556 ("cannot use call to function & as a statement",
2557 Name (N), Entity (Name (N)));
2558 Error_Msg_N
2559 ("\return value of a function call cannot be ignored",
2560 Name (N));
2562 -- Otherwise give general message (not clear what cases this
2563 -- covers, but no harm in providing for them).
2565 else
2566 Error_Msg_N ("expect procedure name in procedure call", N);
2567 end if;
2569 Found := True;
2571 -- Otherwise we do have a subexpression with the wrong type
2573 -- Check for the case of an allocator which uses an access type
2574 -- instead of the designated type. This is a common error and we
2575 -- specialize the message, posting an error on the operand of the
2576 -- allocator, complaining that we expected the designated type of
2577 -- the allocator.
2579 elsif Nkind (N) = N_Allocator
2580 and then Is_Access_Type (Typ)
2581 and then Is_Access_Type (Etype (N))
2582 and then Designated_Type (Etype (N)) = Typ
2583 then
2584 Wrong_Type (Expression (N), Designated_Type (Typ));
2585 Found := True;
2587 -- Check for view mismatch on Null in instances, for which the
2588 -- view-swapping mechanism has no identifier.
2590 elsif (In_Instance or else In_Inlined_Body)
2591 and then (Nkind (N) = N_Null)
2592 and then Is_Private_Type (Typ)
2593 and then Is_Access_Type (Full_View (Typ))
2594 then
2595 Resolve (N, Full_View (Typ));
2596 Set_Etype (N, Typ);
2597 return;
2599 -- Check for an aggregate. Sometimes we can get bogus aggregates
2600 -- from misuse of parentheses, and we are about to complain about
2601 -- the aggregate without even looking inside it.
2603 -- Instead, if we have an aggregate of type Any_Composite, then
2604 -- analyze and resolve the component fields, and then only issue
2605 -- another message if we get no errors doing this (otherwise
2606 -- assume that the errors in the aggregate caused the problem).
2608 elsif Nkind (N) = N_Aggregate
2609 and then Etype (N) = Any_Composite
2610 then
2611 -- Disable expansion in any case. If there is a type mismatch
2612 -- it may be fatal to try to expand the aggregate. The flag
2613 -- would otherwise be set to false when the error is posted.
2615 Expander_Active := False;
2617 declare
2618 procedure Check_Aggr (Aggr : Node_Id);
2619 -- Check one aggregate, and set Found to True if we have a
2620 -- definite error in any of its elements
2622 procedure Check_Elmt (Aelmt : Node_Id);
2623 -- Check one element of aggregate and set Found to True if
2624 -- we definitely have an error in the element.
2626 ----------------
2627 -- Check_Aggr --
2628 ----------------
2630 procedure Check_Aggr (Aggr : Node_Id) is
2631 Elmt : Node_Id;
2633 begin
2634 if Present (Expressions (Aggr)) then
2635 Elmt := First (Expressions (Aggr));
2636 while Present (Elmt) loop
2637 Check_Elmt (Elmt);
2638 Next (Elmt);
2639 end loop;
2640 end if;
2642 if Present (Component_Associations (Aggr)) then
2643 Elmt := First (Component_Associations (Aggr));
2644 while Present (Elmt) loop
2646 -- If this is a default-initialized component, then
2647 -- there is nothing to check. The box will be
2648 -- replaced by the appropriate call during late
2649 -- expansion.
2651 if Nkind (Elmt) /= N_Iterated_Component_Association
2652 and then not Box_Present (Elmt)
2653 then
2654 Check_Elmt (Expression (Elmt));
2655 end if;
2657 Next (Elmt);
2658 end loop;
2659 end if;
2660 end Check_Aggr;
2662 ----------------
2663 -- Check_Elmt --
2664 ----------------
2666 procedure Check_Elmt (Aelmt : Node_Id) is
2667 begin
2668 -- If we have a nested aggregate, go inside it (to
2669 -- attempt a naked analyze-resolve of the aggregate can
2670 -- cause undesirable cascaded errors). Do not resolve
2671 -- expression if it needs a type from context, as for
2672 -- integer * fixed expression.
2674 if Nkind (Aelmt) = N_Aggregate then
2675 Check_Aggr (Aelmt);
2677 else
2678 Analyze (Aelmt);
2680 if not Is_Overloaded (Aelmt)
2681 and then Etype (Aelmt) /= Any_Fixed
2682 then
2683 Resolve (Aelmt);
2684 end if;
2686 if Etype (Aelmt) = Any_Type then
2687 Found := True;
2688 end if;
2689 end if;
2690 end Check_Elmt;
2692 begin
2693 Check_Aggr (N);
2694 end;
2695 end if;
2697 -- Looks like we have a type error, but check for special case
2698 -- of Address wanted, integer found, with the configuration pragma
2699 -- Allow_Integer_Address active. If we have this case, introduce
2700 -- an unchecked conversion to allow the integer expression to be
2701 -- treated as an Address. The reverse case of integer wanted,
2702 -- Address found, is treated in an analogous manner.
2704 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2705 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2706 Analyze_And_Resolve (N, Typ);
2707 return;
2709 -- Under relaxed RM semantics silently replace occurrences of null
2710 -- by System.Address_Null.
2712 elsif Null_To_Null_Address_Convert_OK (N, Typ) then
2713 Replace_Null_By_Null_Address (N);
2714 Analyze_And_Resolve (N, Typ);
2715 return;
2716 end if;
2718 -- That special Allow_Integer_Address check did not apply, so we
2719 -- have a real type error. If an error message was issued already,
2720 -- Found got reset to True, so if it's still False, issue standard
2721 -- Wrong_Type message.
2723 if not Found then
2724 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2725 declare
2726 Subp_Name : Node_Id;
2728 begin
2729 if Is_Entity_Name (Name (N)) then
2730 Subp_Name := Name (N);
2732 elsif Nkind (Name (N)) = N_Selected_Component then
2734 -- Protected operation: retrieve operation name
2736 Subp_Name := Selector_Name (Name (N));
2738 else
2739 raise Program_Error;
2740 end if;
2742 Error_Msg_Node_2 := Typ;
2743 Error_Msg_NE
2744 ("no visible interpretation of& matches expected type&",
2745 N, Subp_Name);
2746 end;
2748 if All_Errors_Mode then
2749 declare
2750 Index : Interp_Index;
2751 It : Interp;
2753 begin
2754 Error_Msg_N ("\\possible interpretations:", N);
2756 Get_First_Interp (Name (N), Index, It);
2757 while Present (It.Nam) loop
2758 Error_Msg_Sloc := Sloc (It.Nam);
2759 Error_Msg_Node_2 := It.Nam;
2760 Error_Msg_NE
2761 ("\\ type& for & declared#", N, It.Typ);
2762 Get_Next_Interp (Index, It);
2763 end loop;
2764 end;
2766 else
2767 Error_Msg_N ("\use -gnatf for details", N);
2768 end if;
2770 else
2771 Wrong_Type (N, Typ);
2772 end if;
2773 end if;
2774 end if;
2776 Resolution_Failed;
2777 return;
2779 -- Test if we have more than one interpretation for the context
2781 elsif Ambiguous then
2782 Resolution_Failed;
2783 return;
2785 -- Only one intepretation
2787 else
2788 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2789 -- the "+" on T is abstract, and the operands are of universal type,
2790 -- the above code will have (incorrectly) resolved the "+" to the
2791 -- universal one in Standard. Therefore check for this case and give
2792 -- an error. We can't do this earlier, because it would cause legal
2793 -- cases to get errors (when some other type has an abstract "+").
2795 if Ada_Version >= Ada_2005
2796 and then Nkind (N) in N_Op
2797 and then Is_Overloaded (N)
2798 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2799 then
2800 Get_First_Interp (N, I, It);
2801 while Present (It.Typ) loop
2802 if Present (It.Abstract_Op) and then
2803 Etype (It.Abstract_Op) = Typ
2804 then
2805 Error_Msg_NE
2806 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2807 return;
2808 end if;
2810 Get_Next_Interp (I, It);
2811 end loop;
2812 end if;
2814 -- Here we have an acceptable interpretation for the context
2816 -- Propagate type information and normalize tree for various
2817 -- predefined operations. If the context only imposes a class of
2818 -- types, rather than a specific type, propagate the actual type
2819 -- downward.
2821 if Typ = Any_Integer or else
2822 Typ = Any_Boolean or else
2823 Typ = Any_Modular or else
2824 Typ = Any_Real or else
2825 Typ = Any_Discrete
2826 then
2827 Ctx_Type := Expr_Type;
2829 -- Any_Fixed is legal in a real context only if a specific fixed-
2830 -- point type is imposed. If Norman Cohen can be confused by this,
2831 -- it deserves a separate message.
2833 if Typ = Any_Real
2834 and then Expr_Type = Any_Fixed
2835 then
2836 Error_Msg_N ("illegal context for mixed mode operation", N);
2837 Set_Etype (N, Universal_Real);
2838 Ctx_Type := Universal_Real;
2839 end if;
2840 end if;
2842 -- A user-defined operator is transformed into a function call at
2843 -- this point, so that further processing knows that operators are
2844 -- really operators (i.e. are predefined operators). User-defined
2845 -- operators that are intrinsic are just renamings of the predefined
2846 -- ones, and need not be turned into calls either, but if they rename
2847 -- a different operator, we must transform the node accordingly.
2848 -- Instantiations of Unchecked_Conversion are intrinsic but are
2849 -- treated as functions, even if given an operator designator.
2851 if Nkind (N) in N_Op
2852 and then Present (Entity (N))
2853 and then Ekind (Entity (N)) /= E_Operator
2854 then
2855 if not Is_Predefined_Op (Entity (N)) then
2856 Rewrite_Operator_As_Call (N, Entity (N));
2858 elsif Present (Alias (Entity (N)))
2859 and then
2860 Nkind (Parent (Parent (Entity (N)))) =
2861 N_Subprogram_Renaming_Declaration
2862 then
2863 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2865 -- If the node is rewritten, it will be fully resolved in
2866 -- Rewrite_Renamed_Operator.
2868 if Analyzed (N) then
2869 return;
2870 end if;
2871 end if;
2872 end if;
2874 case N_Subexpr'(Nkind (N)) is
2875 when N_Aggregate =>
2876 Resolve_Aggregate (N, Ctx_Type);
2878 when N_Allocator =>
2879 Resolve_Allocator (N, Ctx_Type);
2881 when N_Short_Circuit =>
2882 Resolve_Short_Circuit (N, Ctx_Type);
2884 when N_Attribute_Reference =>
2885 Resolve_Attribute (N, Ctx_Type);
2887 when N_Case_Expression =>
2888 Resolve_Case_Expression (N, Ctx_Type);
2890 when N_Character_Literal =>
2891 Resolve_Character_Literal (N, Ctx_Type);
2893 when N_Delta_Aggregate =>
2894 Resolve_Delta_Aggregate (N, Ctx_Type);
2896 when N_Expanded_Name =>
2897 Resolve_Entity_Name (N, Ctx_Type);
2899 when N_Explicit_Dereference =>
2900 Resolve_Explicit_Dereference (N, Ctx_Type);
2902 when N_Expression_With_Actions =>
2903 Resolve_Expression_With_Actions (N, Ctx_Type);
2905 when N_Extension_Aggregate =>
2906 Resolve_Extension_Aggregate (N, Ctx_Type);
2908 when N_Function_Call =>
2909 Resolve_Call (N, Ctx_Type);
2911 when N_Identifier =>
2912 Resolve_Entity_Name (N, Ctx_Type);
2914 when N_If_Expression =>
2915 Resolve_If_Expression (N, Ctx_Type);
2917 when N_Indexed_Component =>
2918 Resolve_Indexed_Component (N, Ctx_Type);
2920 when N_Integer_Literal =>
2921 Resolve_Integer_Literal (N, Ctx_Type);
2923 when N_Membership_Test =>
2924 Resolve_Membership_Op (N, Ctx_Type);
2926 when N_Null =>
2927 Resolve_Null (N, Ctx_Type);
2929 when N_Op_And
2930 | N_Op_Or
2931 | N_Op_Xor
2933 Resolve_Logical_Op (N, Ctx_Type);
2935 when N_Op_Eq
2936 | N_Op_Ne
2938 Resolve_Equality_Op (N, Ctx_Type);
2940 when N_Op_Ge
2941 | N_Op_Gt
2942 | N_Op_Le
2943 | N_Op_Lt
2945 Resolve_Comparison_Op (N, Ctx_Type);
2947 when N_Op_Not =>
2948 Resolve_Op_Not (N, Ctx_Type);
2950 when N_Op_Add
2951 | N_Op_Divide
2952 | N_Op_Mod
2953 | N_Op_Multiply
2954 | N_Op_Rem
2955 | N_Op_Subtract
2957 Resolve_Arithmetic_Op (N, Ctx_Type);
2959 when N_Op_Concat =>
2960 Resolve_Op_Concat (N, Ctx_Type);
2962 when N_Op_Expon =>
2963 Resolve_Op_Expon (N, Ctx_Type);
2965 when N_Op_Abs
2966 | N_Op_Minus
2967 | N_Op_Plus
2969 Resolve_Unary_Op (N, Ctx_Type);
2971 when N_Op_Shift =>
2972 Resolve_Shift (N, Ctx_Type);
2974 when N_Procedure_Call_Statement =>
2975 Resolve_Call (N, Ctx_Type);
2977 when N_Operator_Symbol =>
2978 Resolve_Operator_Symbol (N, Ctx_Type);
2980 when N_Qualified_Expression =>
2981 Resolve_Qualified_Expression (N, Ctx_Type);
2983 -- Why is the following null, needs a comment ???
2985 when N_Quantified_Expression =>
2986 null;
2988 when N_Raise_Expression =>
2989 Resolve_Raise_Expression (N, Ctx_Type);
2991 when N_Raise_xxx_Error =>
2992 Set_Etype (N, Ctx_Type);
2994 when N_Range =>
2995 Resolve_Range (N, Ctx_Type);
2997 when N_Real_Literal =>
2998 Resolve_Real_Literal (N, Ctx_Type);
3000 when N_Reference =>
3001 Resolve_Reference (N, Ctx_Type);
3003 when N_Selected_Component =>
3004 Resolve_Selected_Component (N, Ctx_Type);
3006 when N_Slice =>
3007 Resolve_Slice (N, Ctx_Type);
3009 when N_String_Literal =>
3010 Resolve_String_Literal (N, Ctx_Type);
3012 when N_Target_Name =>
3013 Resolve_Target_Name (N, Ctx_Type);
3015 when N_Type_Conversion =>
3016 Resolve_Type_Conversion (N, Ctx_Type);
3018 when N_Unchecked_Expression =>
3019 Resolve_Unchecked_Expression (N, Ctx_Type);
3021 when N_Unchecked_Type_Conversion =>
3022 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
3023 end case;
3025 -- Mark relevant use-type and use-package clauses as effective using
3026 -- the original node because constant folding may have occured and
3027 -- removed references that need to be examined.
3029 if Nkind (Original_Node (N)) in N_Op then
3030 Mark_Use_Clauses (Original_Node (N));
3031 end if;
3033 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
3034 -- expression of an anonymous access type that occurs in the context
3035 -- of a named general access type, except when the expression is that
3036 -- of a membership test. This ensures proper legality checking in
3037 -- terms of allowed conversions (expressions that would be illegal to
3038 -- convert implicitly are allowed in membership tests).
3040 if Ada_Version >= Ada_2012
3041 and then Ekind (Ctx_Type) = E_General_Access_Type
3042 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
3043 and then Nkind (Parent (N)) not in N_Membership_Test
3044 then
3045 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
3046 Analyze_And_Resolve (N, Ctx_Type);
3047 end if;
3049 -- If the subexpression was replaced by a non-subexpression, then
3050 -- all we do is to expand it. The only legitimate case we know of
3051 -- is converting procedure call statement to entry call statements,
3052 -- but there may be others, so we are making this test general.
3054 if Nkind (N) not in N_Subexpr then
3055 Debug_A_Exit ("resolving ", N, " (done)");
3056 Expand (N);
3057 return;
3058 end if;
3060 -- The expression is definitely NOT overloaded at this point, so
3061 -- we reset the Is_Overloaded flag to avoid any confusion when
3062 -- reanalyzing the node.
3064 Set_Is_Overloaded (N, False);
3066 -- Freeze expression type, entity if it is a name, and designated
3067 -- type if it is an allocator (RM 13.14(10,11,13)).
3069 -- Now that the resolution of the type of the node is complete, and
3070 -- we did not detect an error, we can expand this node. We skip the
3071 -- expand call if we are in a default expression, see section
3072 -- "Handling of Default Expressions" in Sem spec.
3074 Debug_A_Exit ("resolving ", N, " (done)");
3076 -- We unconditionally freeze the expression, even if we are in
3077 -- default expression mode (the Freeze_Expression routine tests this
3078 -- flag and only freezes static types if it is set).
3080 -- Ada 2012 (AI05-177): The declaration of an expression function
3081 -- does not cause freezing, but we never reach here in that case.
3082 -- Here we are resolving the corresponding expanded body, so we do
3083 -- need to perform normal freezing.
3085 -- As elsewhere we do not emit freeze node within a generic. We make
3086 -- an exception for entities that are expressions, only to detect
3087 -- misuses of deferred constants and preserve the output of various
3088 -- tests.
3090 if not Inside_A_Generic or else Is_Entity_Name (N) then
3091 Freeze_Expression (N);
3092 end if;
3094 -- Now we can do the expansion
3096 Expand (N);
3097 end if;
3098 end Resolve;
3100 -------------
3101 -- Resolve --
3102 -------------
3104 -- Version with check(s) suppressed
3106 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3107 begin
3108 if Suppress = All_Checks then
3109 declare
3110 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3111 begin
3112 Scope_Suppress.Suppress := (others => True);
3113 Resolve (N, Typ);
3114 Scope_Suppress.Suppress := Sva;
3115 end;
3117 else
3118 declare
3119 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3120 begin
3121 Scope_Suppress.Suppress (Suppress) := True;
3122 Resolve (N, Typ);
3123 Scope_Suppress.Suppress (Suppress) := Svg;
3124 end;
3125 end if;
3126 end Resolve;
3128 -------------
3129 -- Resolve --
3130 -------------
3132 -- Version with implicit type
3134 procedure Resolve (N : Node_Id) is
3135 begin
3136 Resolve (N, Etype (N));
3137 end Resolve;
3139 ---------------------
3140 -- Resolve_Actuals --
3141 ---------------------
3143 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3144 Loc : constant Source_Ptr := Sloc (N);
3145 A : Node_Id;
3146 A_Id : Entity_Id;
3147 A_Typ : Entity_Id := Empty; -- init to avoid warning
3148 F : Entity_Id;
3149 F_Typ : Entity_Id;
3150 Prev : Node_Id := Empty;
3151 Orig_A : Node_Id;
3152 Real_F : Entity_Id := Empty; -- init to avoid warning
3154 Real_Subp : Entity_Id;
3155 -- If the subprogram being called is an inherited operation for
3156 -- a formal derived type in an instance, Real_Subp is the subprogram
3157 -- that will be called. It may have different formal names than the
3158 -- operation of the formal in the generic, so after actual is resolved
3159 -- the name of the actual in a named association must carry the name
3160 -- of the actual of the subprogram being called.
3162 procedure Check_Aliased_Parameter;
3163 -- Check rules on aliased parameters and related accessibility rules
3164 -- in (RM 3.10.2 (10.2-10.4)).
3166 procedure Check_Argument_Order;
3167 -- Performs a check for the case where the actuals are all simple
3168 -- identifiers that correspond to the formal names, but in the wrong
3169 -- order, which is considered suspicious and cause for a warning.
3171 procedure Check_Prefixed_Call;
3172 -- If the original node is an overloaded call in prefix notation,
3173 -- insert an 'Access or a dereference as needed over the first actual.
3174 -- Try_Object_Operation has already verified that there is a valid
3175 -- interpretation, but the form of the actual can only be determined
3176 -- once the primitive operation is identified.
3178 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id);
3179 -- Emit an error concerning the illegal usage of an effectively volatile
3180 -- object in interfering context (SPARK RM 7.13(12)).
3182 procedure Insert_Default;
3183 -- If the actual is missing in a call, insert in the actuals list
3184 -- an instance of the default expression. The insertion is always
3185 -- a named association.
3187 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3188 -- Check whether T1 and T2, or their full views, are derived from a
3189 -- common type. Used to enforce the restrictions on array conversions
3190 -- of AI95-00246.
3192 function Static_Concatenation (N : Node_Id) return Boolean;
3193 -- Predicate to determine whether an actual that is a concatenation
3194 -- will be evaluated statically and does not need a transient scope.
3195 -- This must be determined before the actual is resolved and expanded
3196 -- because if needed the transient scope must be introduced earlier.
3198 -----------------------------
3199 -- Check_Aliased_Parameter --
3200 -----------------------------
3202 procedure Check_Aliased_Parameter is
3203 Nominal_Subt : Entity_Id;
3205 begin
3206 if Is_Aliased (F) then
3207 if Is_Tagged_Type (A_Typ) then
3208 null;
3210 elsif Is_Aliased_View (A) then
3211 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3212 Nominal_Subt := Base_Type (A_Typ);
3213 else
3214 Nominal_Subt := A_Typ;
3215 end if;
3217 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3218 null;
3220 -- In a generic body assume the worst for generic formals:
3221 -- they can have a constrained partial view (AI05-041).
3223 elsif Has_Discriminants (F_Typ)
3224 and then not Is_Constrained (F_Typ)
3225 and then not Has_Constrained_Partial_View (F_Typ)
3226 and then not Is_Generic_Type (F_Typ)
3227 then
3228 null;
3230 else
3231 Error_Msg_NE ("untagged actual does not match "
3232 & "aliased formal&", A, F);
3233 end if;
3235 else
3236 Error_Msg_NE ("actual for aliased formal& must be "
3237 & "aliased object", A, F);
3238 end if;
3240 if Ekind (Nam) = E_Procedure then
3241 null;
3243 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3244 if Nkind (Parent (N)) = N_Type_Conversion
3245 and then Type_Access_Level (Etype (Parent (N))) <
3246 Object_Access_Level (A)
3247 then
3248 Error_Msg_N ("aliased actual has wrong accessibility", A);
3249 end if;
3251 elsif Nkind (Parent (N)) = N_Qualified_Expression
3252 and then Nkind (Parent (Parent (N))) = N_Allocator
3253 and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3254 Object_Access_Level (A)
3255 then
3256 Error_Msg_N
3257 ("aliased actual in allocator has wrong accessibility", A);
3258 end if;
3259 end if;
3260 end Check_Aliased_Parameter;
3262 --------------------------
3263 -- Check_Argument_Order --
3264 --------------------------
3266 procedure Check_Argument_Order is
3267 begin
3268 -- Nothing to do if no parameters, or original node is neither a
3269 -- function call nor a procedure call statement (happens in the
3270 -- operator-transformed-to-function call case), or the call does
3271 -- not come from source, or this warning is off.
3273 if not Warn_On_Parameter_Order
3274 or else No (Parameter_Associations (N))
3275 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3276 or else not Comes_From_Source (N)
3277 then
3278 return;
3279 end if;
3281 declare
3282 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3284 begin
3285 -- Nothing to do if only one parameter
3287 if Nargs < 2 then
3288 return;
3289 end if;
3291 -- Here if at least two arguments
3293 declare
3294 Actuals : array (1 .. Nargs) of Node_Id;
3295 Actual : Node_Id;
3296 Formal : Node_Id;
3298 Wrong_Order : Boolean := False;
3299 -- Set True if an out of order case is found
3301 begin
3302 -- Collect identifier names of actuals, fail if any actual is
3303 -- not a simple identifier, and record max length of name.
3305 Actual := First (Parameter_Associations (N));
3306 for J in Actuals'Range loop
3307 if Nkind (Actual) /= N_Identifier then
3308 return;
3309 else
3310 Actuals (J) := Actual;
3311 Next (Actual);
3312 end if;
3313 end loop;
3315 -- If we got this far, all actuals are identifiers and the list
3316 -- of their names is stored in the Actuals array.
3318 Formal := First_Formal (Nam);
3319 for J in Actuals'Range loop
3321 -- If we ran out of formals, that's odd, probably an error
3322 -- which will be detected elsewhere, but abandon the search.
3324 if No (Formal) then
3325 return;
3326 end if;
3328 -- If name matches and is in order OK
3330 if Chars (Formal) = Chars (Actuals (J)) then
3331 null;
3333 else
3334 -- If no match, see if it is elsewhere in list and if so
3335 -- flag potential wrong order if type is compatible.
3337 for K in Actuals'Range loop
3338 if Chars (Formal) = Chars (Actuals (K))
3339 and then
3340 Has_Compatible_Type (Actuals (K), Etype (Formal))
3341 then
3342 Wrong_Order := True;
3343 goto Continue;
3344 end if;
3345 end loop;
3347 -- No match
3349 return;
3350 end if;
3352 <<Continue>> Next_Formal (Formal);
3353 end loop;
3355 -- If Formals left over, also probably an error, skip warning
3357 if Present (Formal) then
3358 return;
3359 end if;
3361 -- Here we give the warning if something was out of order
3363 if Wrong_Order then
3364 Error_Msg_N
3365 ("?P?actuals for this call may be in wrong order", N);
3366 end if;
3367 end;
3368 end;
3369 end Check_Argument_Order;
3371 -------------------------
3372 -- Check_Prefixed_Call --
3373 -------------------------
3375 procedure Check_Prefixed_Call is
3376 Act : constant Node_Id := First_Actual (N);
3377 A_Type : constant Entity_Id := Etype (Act);
3378 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3379 Orig : constant Node_Id := Original_Node (N);
3380 New_A : Node_Id;
3382 begin
3383 -- Check whether the call is a prefixed call, with or without
3384 -- additional actuals.
3386 if Nkind (Orig) = N_Selected_Component
3387 or else
3388 (Nkind (Orig) = N_Indexed_Component
3389 and then Nkind (Prefix (Orig)) = N_Selected_Component
3390 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3391 and then Is_Entity_Name (Act)
3392 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3393 then
3394 if Is_Access_Type (A_Type)
3395 and then not Is_Access_Type (F_Type)
3396 then
3397 -- Introduce dereference on object in prefix
3399 New_A :=
3400 Make_Explicit_Dereference (Sloc (Act),
3401 Prefix => Relocate_Node (Act));
3402 Rewrite (Act, New_A);
3403 Analyze (Act);
3405 elsif Is_Access_Type (F_Type)
3406 and then not Is_Access_Type (A_Type)
3407 then
3408 -- Introduce an implicit 'Access in prefix
3410 if not Is_Aliased_View (Act) then
3411 Error_Msg_NE
3412 ("object in prefixed call to& must be aliased "
3413 & "(RM 4.1.3 (13 1/2))",
3414 Prefix (Act), Nam);
3415 end if;
3417 Rewrite (Act,
3418 Make_Attribute_Reference (Loc,
3419 Attribute_Name => Name_Access,
3420 Prefix => Relocate_Node (Act)));
3421 end if;
3423 Analyze (Act);
3424 end if;
3425 end Check_Prefixed_Call;
3427 ---------------------------------------
3428 -- Flag_Effectively_Volatile_Objects --
3429 ---------------------------------------
3431 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id) is
3432 function Flag_Object (N : Node_Id) return Traverse_Result;
3433 -- Determine whether arbitrary node N denotes an effectively volatile
3434 -- object and if it does, emit an error.
3436 -----------------
3437 -- Flag_Object --
3438 -----------------
3440 function Flag_Object (N : Node_Id) return Traverse_Result is
3441 Id : Entity_Id;
3443 begin
3444 -- Do not consider nested function calls because they have already
3445 -- been processed during their own resolution.
3447 if Nkind (N) = N_Function_Call then
3448 return Skip;
3450 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
3451 Id := Entity (N);
3453 if Is_Object (Id)
3454 and then Is_Effectively_Volatile (Id)
3455 and then (Async_Writers_Enabled (Id)
3456 or else Effective_Reads_Enabled (Id))
3457 then
3458 Error_Msg_N
3459 ("volatile object cannot appear in this context (SPARK "
3460 & "RM 7.1.3(11))", N);
3461 return Skip;
3462 end if;
3463 end if;
3465 return OK;
3466 end Flag_Object;
3468 procedure Flag_Objects is new Traverse_Proc (Flag_Object);
3470 -- Start of processing for Flag_Effectively_Volatile_Objects
3472 begin
3473 Flag_Objects (Expr);
3474 end Flag_Effectively_Volatile_Objects;
3476 --------------------
3477 -- Insert_Default --
3478 --------------------
3480 procedure Insert_Default is
3481 Actval : Node_Id;
3482 Assoc : Node_Id;
3484 begin
3485 -- Missing argument in call, nothing to insert
3487 if No (Default_Value (F)) then
3488 return;
3490 else
3491 -- Note that we do a full New_Copy_Tree, so that any associated
3492 -- Itypes are properly copied. This may not be needed any more,
3493 -- but it does no harm as a safety measure. Defaults of a generic
3494 -- formal may be out of bounds of the corresponding actual (see
3495 -- cc1311b) and an additional check may be required.
3497 Actval :=
3498 New_Copy_Tree
3499 (Default_Value (F),
3500 New_Scope => Current_Scope,
3501 New_Sloc => Loc);
3503 -- Propagate dimension information, if any.
3505 Copy_Dimensions (Default_Value (F), Actval);
3507 if Is_Concurrent_Type (Scope (Nam))
3508 and then Has_Discriminants (Scope (Nam))
3509 then
3510 Replace_Actual_Discriminants (N, Actval);
3511 end if;
3513 if Is_Overloadable (Nam)
3514 and then Present (Alias (Nam))
3515 then
3516 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3517 and then not Is_Tagged_Type (Etype (F))
3518 then
3519 -- If default is a real literal, do not introduce a
3520 -- conversion whose effect may depend on the run-time
3521 -- size of universal real.
3523 if Nkind (Actval) = N_Real_Literal then
3524 Set_Etype (Actval, Base_Type (Etype (F)));
3525 else
3526 Actval := Unchecked_Convert_To (Etype (F), Actval);
3527 end if;
3528 end if;
3530 if Is_Scalar_Type (Etype (F)) then
3531 Enable_Range_Check (Actval);
3532 end if;
3534 Set_Parent (Actval, N);
3536 -- Resolve aggregates with their base type, to avoid scope
3537 -- anomalies: the subtype was first built in the subprogram
3538 -- declaration, and the current call may be nested.
3540 if Nkind (Actval) = N_Aggregate then
3541 Analyze_And_Resolve (Actval, Etype (F));
3542 else
3543 Analyze_And_Resolve (Actval, Etype (Actval));
3544 end if;
3546 else
3547 Set_Parent (Actval, N);
3549 -- See note above concerning aggregates
3551 if Nkind (Actval) = N_Aggregate
3552 and then Has_Discriminants (Etype (Actval))
3553 then
3554 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3556 -- Resolve entities with their own type, which may differ from
3557 -- the type of a reference in a generic context (the view
3558 -- swapping mechanism did not anticipate the re-analysis of
3559 -- default values in calls).
3561 elsif Is_Entity_Name (Actval) then
3562 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3564 else
3565 Analyze_And_Resolve (Actval, Etype (Actval));
3566 end if;
3567 end if;
3569 -- If default is a tag indeterminate function call, propagate tag
3570 -- to obtain proper dispatching.
3572 if Is_Controlling_Formal (F)
3573 and then Nkind (Default_Value (F)) = N_Function_Call
3574 then
3575 Set_Is_Controlling_Actual (Actval);
3576 end if;
3577 end if;
3579 -- If the default expression raises constraint error, then just
3580 -- silently replace it with an N_Raise_Constraint_Error node, since
3581 -- we already gave the warning on the subprogram spec. If node is
3582 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3583 -- the warnings removal machinery.
3585 if Raises_Constraint_Error (Actval)
3586 and then Nkind (Actval) /= N_Raise_Constraint_Error
3587 then
3588 Rewrite (Actval,
3589 Make_Raise_Constraint_Error (Loc,
3590 Reason => CE_Range_Check_Failed));
3592 Set_Raises_Constraint_Error (Actval);
3593 Set_Etype (Actval, Etype (F));
3594 end if;
3596 Assoc :=
3597 Make_Parameter_Association (Loc,
3598 Explicit_Actual_Parameter => Actval,
3599 Selector_Name => Make_Identifier (Loc, Chars (F)));
3601 -- Case of insertion is first named actual
3603 if No (Prev)
3604 or else Nkind (Parent (Prev)) /= N_Parameter_Association
3605 then
3606 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3607 Set_First_Named_Actual (N, Actval);
3609 if No (Prev) then
3610 if No (Parameter_Associations (N)) then
3611 Set_Parameter_Associations (N, New_List (Assoc));
3612 else
3613 Append (Assoc, Parameter_Associations (N));
3614 end if;
3616 else
3617 Insert_After (Prev, Assoc);
3618 end if;
3620 -- Case of insertion is not first named actual
3622 else
3623 Set_Next_Named_Actual
3624 (Assoc, Next_Named_Actual (Parent (Prev)));
3625 Set_Next_Named_Actual (Parent (Prev), Actval);
3626 Append (Assoc, Parameter_Associations (N));
3627 end if;
3629 Mark_Rewrite_Insertion (Assoc);
3630 Mark_Rewrite_Insertion (Actval);
3632 Prev := Actval;
3633 end Insert_Default;
3635 -------------------
3636 -- Same_Ancestor --
3637 -------------------
3639 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3640 FT1 : Entity_Id := T1;
3641 FT2 : Entity_Id := T2;
3643 begin
3644 if Is_Private_Type (T1)
3645 and then Present (Full_View (T1))
3646 then
3647 FT1 := Full_View (T1);
3648 end if;
3650 if Is_Private_Type (T2)
3651 and then Present (Full_View (T2))
3652 then
3653 FT2 := Full_View (T2);
3654 end if;
3656 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3657 end Same_Ancestor;
3659 --------------------------
3660 -- Static_Concatenation --
3661 --------------------------
3663 function Static_Concatenation (N : Node_Id) return Boolean is
3664 begin
3665 case Nkind (N) is
3666 when N_String_Literal =>
3667 return True;
3669 when N_Op_Concat =>
3671 -- Concatenation is static when both operands are static and
3672 -- the concatenation operator is a predefined one.
3674 return Scope (Entity (N)) = Standard_Standard
3675 and then
3676 Static_Concatenation (Left_Opnd (N))
3677 and then
3678 Static_Concatenation (Right_Opnd (N));
3680 when others =>
3681 if Is_Entity_Name (N) then
3682 declare
3683 Ent : constant Entity_Id := Entity (N);
3684 begin
3685 return Ekind (Ent) = E_Constant
3686 and then Present (Constant_Value (Ent))
3687 and then
3688 Is_OK_Static_Expression (Constant_Value (Ent));
3689 end;
3691 else
3692 return False;
3693 end if;
3694 end case;
3695 end Static_Concatenation;
3697 -- Start of processing for Resolve_Actuals
3699 begin
3700 Check_Argument_Order;
3702 if Is_Overloadable (Nam)
3703 and then Is_Inherited_Operation (Nam)
3704 and then In_Instance
3705 and then Present (Alias (Nam))
3706 and then Present (Overridden_Operation (Alias (Nam)))
3707 then
3708 Real_Subp := Alias (Nam);
3709 else
3710 Real_Subp := Empty;
3711 end if;
3713 if Present (First_Actual (N)) then
3714 Check_Prefixed_Call;
3715 end if;
3717 A := First_Actual (N);
3718 F := First_Formal (Nam);
3720 if Present (Real_Subp) then
3721 Real_F := First_Formal (Real_Subp);
3722 end if;
3724 while Present (F) loop
3725 if No (A) and then Needs_No_Actuals (Nam) then
3726 null;
3728 -- If we have an error in any actual or formal, indicated by a type
3729 -- of Any_Type, then abandon resolution attempt, and set result type
3730 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3731 -- type is imposed from context.
3733 elsif (Present (A) and then Etype (A) = Any_Type)
3734 or else Etype (F) = Any_Type
3735 then
3736 if Nkind (A) /= N_Raise_Expression then
3737 Set_Etype (N, Any_Type);
3738 return;
3739 end if;
3740 end if;
3742 -- Case where actual is present
3744 -- If the actual is an entity, generate a reference to it now. We
3745 -- do this before the actual is resolved, because a formal of some
3746 -- protected subprogram, or a task discriminant, will be rewritten
3747 -- during expansion, and the source entity reference may be lost.
3749 if Present (A)
3750 and then Is_Entity_Name (A)
3751 and then Comes_From_Source (A)
3752 then
3753 -- Annotate the tree by creating a variable reference marker when
3754 -- the actual denotes a variable reference, in case the reference
3755 -- is folded or optimized away. The variable reference marker is
3756 -- automatically saved for later examination by the ABE Processing
3757 -- phase. The status of the reference is set as follows:
3759 -- status mode
3760 -- read IN, IN OUT
3761 -- write IN OUT, OUT
3763 Build_Variable_Reference_Marker
3764 (N => A,
3765 Read => Ekind (F) /= E_Out_Parameter,
3766 Write => Ekind (F) /= E_In_Parameter);
3768 Orig_A := Entity (A);
3770 if Present (Orig_A) then
3771 if Is_Formal (Orig_A)
3772 and then Ekind (F) /= E_In_Parameter
3773 then
3774 Generate_Reference (Orig_A, A, 'm');
3776 elsif not Is_Overloaded (A) then
3777 if Ekind (F) /= E_Out_Parameter then
3778 Generate_Reference (Orig_A, A);
3780 -- RM 6.4.1(12): For an out parameter that is passed by
3781 -- copy, the formal parameter object is created, and:
3783 -- * For an access type, the formal parameter is initialized
3784 -- from the value of the actual, without checking that the
3785 -- value satisfies any constraint, any predicate, or any
3786 -- exclusion of the null value.
3788 -- * For a scalar type that has the Default_Value aspect
3789 -- specified, the formal parameter is initialized from the
3790 -- value of the actual, without checking that the value
3791 -- satisfies any constraint or any predicate.
3792 -- I do not understand why this case is included??? this is
3793 -- not a case where an OUT parameter is treated as IN OUT.
3795 -- * For a composite type with discriminants or that has
3796 -- implicit initial values for any subcomponents, the
3797 -- behavior is as for an in out parameter passed by copy.
3799 -- Hence for these cases we generate the read reference now
3800 -- (the write reference will be generated later by
3801 -- Note_Possible_Modification).
3803 elsif Is_By_Copy_Type (Etype (F))
3804 and then
3805 (Is_Access_Type (Etype (F))
3806 or else
3807 (Is_Scalar_Type (Etype (F))
3808 and then
3809 Present (Default_Aspect_Value (Etype (F))))
3810 or else
3811 (Is_Composite_Type (Etype (F))
3812 and then (Has_Discriminants (Etype (F))
3813 or else Is_Partially_Initialized_Type
3814 (Etype (F)))))
3815 then
3816 Generate_Reference (Orig_A, A);
3817 end if;
3818 end if;
3819 end if;
3820 end if;
3822 if Present (A)
3823 and then (Nkind (Parent (A)) /= N_Parameter_Association
3824 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3825 then
3826 -- If style checking mode on, check match of formal name
3828 if Style_Check then
3829 if Nkind (Parent (A)) = N_Parameter_Association then
3830 Check_Identifier (Selector_Name (Parent (A)), F);
3831 end if;
3832 end if;
3834 -- If the formal is Out or In_Out, do not resolve and expand the
3835 -- conversion, because it is subsequently expanded into explicit
3836 -- temporaries and assignments. However, the object of the
3837 -- conversion can be resolved. An exception is the case of tagged
3838 -- type conversion with a class-wide actual. In that case we want
3839 -- the tag check to occur and no temporary will be needed (no
3840 -- representation change can occur) and the parameter is passed by
3841 -- reference, so we go ahead and resolve the type conversion.
3842 -- Another exception is the case of reference to component or
3843 -- subcomponent of a bit-packed array, in which case we want to
3844 -- defer expansion to the point the in and out assignments are
3845 -- performed.
3847 if Ekind (F) /= E_In_Parameter
3848 and then Nkind (A) = N_Type_Conversion
3849 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3850 then
3851 if Ekind (F) = E_In_Out_Parameter
3852 and then Is_Array_Type (Etype (F))
3853 then
3854 -- In a view conversion, the conversion must be legal in
3855 -- both directions, and thus both component types must be
3856 -- aliased, or neither (4.6 (8)).
3858 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3859 -- the privacy requirement should not apply to generic
3860 -- types, and should be checked in an instance. ARG query
3861 -- is in order ???
3863 if Has_Aliased_Components (Etype (Expression (A))) /=
3864 Has_Aliased_Components (Etype (F))
3865 then
3866 Error_Msg_N
3867 ("both component types in a view conversion must be"
3868 & " aliased, or neither", A);
3870 -- Comment here??? what set of cases???
3872 elsif
3873 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3874 then
3875 -- Check view conv between unrelated by ref array types
3877 if Is_By_Reference_Type (Etype (F))
3878 or else Is_By_Reference_Type (Etype (Expression (A)))
3879 then
3880 Error_Msg_N
3881 ("view conversion between unrelated by reference "
3882 & "array types not allowed (\'A'I-00246)", A);
3884 -- In Ada 2005 mode, check view conversion component
3885 -- type cannot be private, tagged, or volatile. Note
3886 -- that we only apply this to source conversions. The
3887 -- generated code can contain conversions which are
3888 -- not subject to this test, and we cannot extract the
3889 -- component type in such cases since it is not present.
3891 elsif Comes_From_Source (A)
3892 and then Ada_Version >= Ada_2005
3893 then
3894 declare
3895 Comp_Type : constant Entity_Id :=
3896 Component_Type
3897 (Etype (Expression (A)));
3898 begin
3899 if (Is_Private_Type (Comp_Type)
3900 and then not Is_Generic_Type (Comp_Type))
3901 or else Is_Tagged_Type (Comp_Type)
3902 or else Is_Volatile (Comp_Type)
3903 then
3904 Error_Msg_N
3905 ("component type of a view conversion cannot"
3906 & " be private, tagged, or volatile"
3907 & " (RM 4.6 (24))",
3908 Expression (A));
3909 end if;
3910 end;
3911 end if;
3912 end if;
3913 end if;
3915 -- Resolve expression if conversion is all OK
3917 if (Conversion_OK (A)
3918 or else Valid_Conversion (A, Etype (A), Expression (A)))
3919 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3920 then
3921 Resolve (Expression (A));
3922 end if;
3924 -- If the actual is a function call that returns a limited
3925 -- unconstrained object that needs finalization, create a
3926 -- transient scope for it, so that it can receive the proper
3927 -- finalization list.
3929 elsif Nkind (A) = N_Function_Call
3930 and then Is_Limited_Record (Etype (F))
3931 and then not Is_Constrained (Etype (F))
3932 and then Expander_Active
3933 and then (Is_Controlled (Etype (F)) or else Has_Task (Etype (F)))
3934 then
3935 Establish_Transient_Scope (A, Sec_Stack => False);
3936 Resolve (A, Etype (F));
3938 -- A small optimization: if one of the actuals is a concatenation
3939 -- create a block around a procedure call to recover stack space.
3940 -- This alleviates stack usage when several procedure calls in
3941 -- the same statement list use concatenation. We do not perform
3942 -- this wrapping for code statements, where the argument is a
3943 -- static string, and we want to preserve warnings involving
3944 -- sequences of such statements.
3946 elsif Nkind (A) = N_Op_Concat
3947 and then Nkind (N) = N_Procedure_Call_Statement
3948 and then Expander_Active
3949 and then
3950 not (Is_Intrinsic_Subprogram (Nam)
3951 and then Chars (Nam) = Name_Asm)
3952 and then not Static_Concatenation (A)
3953 then
3954 Establish_Transient_Scope (A, Sec_Stack => False);
3955 Resolve (A, Etype (F));
3957 else
3958 if Nkind (A) = N_Type_Conversion
3959 and then Is_Array_Type (Etype (F))
3960 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3961 and then
3962 (Is_Limited_Type (Etype (F))
3963 or else Is_Limited_Type (Etype (Expression (A))))
3964 then
3965 Error_Msg_N
3966 ("conversion between unrelated limited array types "
3967 & "not allowed ('A'I-00246)", A);
3969 if Is_Limited_Type (Etype (F)) then
3970 Explain_Limited_Type (Etype (F), A);
3971 end if;
3973 if Is_Limited_Type (Etype (Expression (A))) then
3974 Explain_Limited_Type (Etype (Expression (A)), A);
3975 end if;
3976 end if;
3978 -- (Ada 2005: AI-251): If the actual is an allocator whose
3979 -- directly designated type is a class-wide interface, we build
3980 -- an anonymous access type to use it as the type of the
3981 -- allocator. Later, when the subprogram call is expanded, if
3982 -- the interface has a secondary dispatch table the expander
3983 -- will add a type conversion to force the correct displacement
3984 -- of the pointer.
3986 if Nkind (A) = N_Allocator then
3987 declare
3988 DDT : constant Entity_Id :=
3989 Directly_Designated_Type (Base_Type (Etype (F)));
3991 New_Itype : Entity_Id;
3993 begin
3994 if Is_Class_Wide_Type (DDT)
3995 and then Is_Interface (DDT)
3996 then
3997 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3998 Set_Etype (New_Itype, Etype (A));
3999 Set_Directly_Designated_Type
4000 (New_Itype, Directly_Designated_Type (Etype (A)));
4001 Set_Etype (A, New_Itype);
4002 end if;
4004 -- Ada 2005, AI-162:If the actual is an allocator, the
4005 -- innermost enclosing statement is the master of the
4006 -- created object. This needs to be done with expansion
4007 -- enabled only, otherwise the transient scope will not
4008 -- be removed in the expansion of the wrapped construct.
4010 if (Is_Controlled (DDT) or else Has_Task (DDT))
4011 and then Expander_Active
4012 then
4013 Establish_Transient_Scope (A, Sec_Stack => False);
4014 end if;
4015 end;
4017 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4018 Check_Restriction (No_Access_Parameter_Allocators, A);
4019 end if;
4020 end if;
4022 -- (Ada 2005): The call may be to a primitive operation of a
4023 -- tagged synchronized type, declared outside of the type. In
4024 -- this case the controlling actual must be converted to its
4025 -- corresponding record type, which is the formal type. The
4026 -- actual may be a subtype, either because of a constraint or
4027 -- because it is a generic actual, so use base type to locate
4028 -- concurrent type.
4030 F_Typ := Base_Type (Etype (F));
4032 if Is_Tagged_Type (F_Typ)
4033 and then (Is_Concurrent_Type (F_Typ)
4034 or else Is_Concurrent_Record_Type (F_Typ))
4035 then
4036 -- If the actual is overloaded, look for an interpretation
4037 -- that has a synchronized type.
4039 if not Is_Overloaded (A) then
4040 A_Typ := Base_Type (Etype (A));
4042 else
4043 declare
4044 Index : Interp_Index;
4045 It : Interp;
4047 begin
4048 Get_First_Interp (A, Index, It);
4049 while Present (It.Typ) loop
4050 if Is_Concurrent_Type (It.Typ)
4051 or else Is_Concurrent_Record_Type (It.Typ)
4052 then
4053 A_Typ := Base_Type (It.Typ);
4054 exit;
4055 end if;
4057 Get_Next_Interp (Index, It);
4058 end loop;
4059 end;
4060 end if;
4062 declare
4063 Full_A_Typ : Entity_Id;
4065 begin
4066 if Present (Full_View (A_Typ)) then
4067 Full_A_Typ := Base_Type (Full_View (A_Typ));
4068 else
4069 Full_A_Typ := A_Typ;
4070 end if;
4072 -- Tagged synchronized type (case 1): the actual is a
4073 -- concurrent type.
4075 if Is_Concurrent_Type (A_Typ)
4076 and then Corresponding_Record_Type (A_Typ) = F_Typ
4077 then
4078 Rewrite (A,
4079 Unchecked_Convert_To
4080 (Corresponding_Record_Type (A_Typ), A));
4081 Resolve (A, Etype (F));
4083 -- Tagged synchronized type (case 2): the formal is a
4084 -- concurrent type.
4086 elsif Ekind (Full_A_Typ) = E_Record_Type
4087 and then Present
4088 (Corresponding_Concurrent_Type (Full_A_Typ))
4089 and then Is_Concurrent_Type (F_Typ)
4090 and then Present (Corresponding_Record_Type (F_Typ))
4091 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
4092 then
4093 Resolve (A, Corresponding_Record_Type (F_Typ));
4095 -- Common case
4097 else
4098 Resolve (A, Etype (F));
4099 end if;
4100 end;
4102 -- Not a synchronized operation
4104 else
4105 Resolve (A, Etype (F));
4106 end if;
4107 end if;
4109 A_Typ := Etype (A);
4110 F_Typ := Etype (F);
4112 -- An actual cannot be an untagged formal incomplete type
4114 if Ekind (A_Typ) = E_Incomplete_Type
4115 and then not Is_Tagged_Type (A_Typ)
4116 and then Is_Generic_Type (A_Typ)
4117 then
4118 Error_Msg_N
4119 ("invalid use of untagged formal incomplete type", A);
4120 end if;
4122 if Comes_From_Source (Original_Node (N))
4123 and then Nkind_In (Original_Node (N), N_Function_Call,
4124 N_Procedure_Call_Statement)
4125 then
4126 -- In formal mode, check that actual parameters matching
4127 -- formals of tagged types are objects (or ancestor type
4128 -- conversions of objects), not general expressions.
4130 if Is_Actual_Tagged_Parameter (A) then
4131 if Is_SPARK_05_Object_Reference (A) then
4132 null;
4134 elsif Nkind (A) = N_Type_Conversion then
4135 declare
4136 Operand : constant Node_Id := Expression (A);
4137 Operand_Typ : constant Entity_Id := Etype (Operand);
4138 Target_Typ : constant Entity_Id := A_Typ;
4140 begin
4141 if not Is_SPARK_05_Object_Reference (Operand) then
4142 Check_SPARK_05_Restriction
4143 ("object required", Operand);
4145 -- In formal mode, the only view conversions are those
4146 -- involving ancestor conversion of an extended type.
4148 elsif not
4149 (Is_Tagged_Type (Target_Typ)
4150 and then not Is_Class_Wide_Type (Target_Typ)
4151 and then Is_Tagged_Type (Operand_Typ)
4152 and then not Is_Class_Wide_Type (Operand_Typ)
4153 and then Is_Ancestor (Target_Typ, Operand_Typ))
4154 then
4155 if Ekind_In
4156 (F, E_Out_Parameter, E_In_Out_Parameter)
4157 then
4158 Check_SPARK_05_Restriction
4159 ("ancestor conversion is the only permitted "
4160 & "view conversion", A);
4161 else
4162 Check_SPARK_05_Restriction
4163 ("ancestor conversion required", A);
4164 end if;
4166 else
4167 null;
4168 end if;
4169 end;
4171 else
4172 Check_SPARK_05_Restriction ("object required", A);
4173 end if;
4175 -- In formal mode, the only view conversions are those
4176 -- involving ancestor conversion of an extended type.
4178 elsif Nkind (A) = N_Type_Conversion
4179 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4180 then
4181 Check_SPARK_05_Restriction
4182 ("ancestor conversion is the only permitted view "
4183 & "conversion", A);
4184 end if;
4185 end if;
4187 -- has warnings suppressed, then we reset Never_Set_In_Source for
4188 -- the calling entity. The reason for this is to catch cases like
4189 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4190 -- uses trickery to modify an IN parameter.
4192 if Ekind (F) = E_In_Parameter
4193 and then Is_Entity_Name (A)
4194 and then Present (Entity (A))
4195 and then Ekind (Entity (A)) = E_Variable
4196 and then Has_Warnings_Off (F_Typ)
4197 then
4198 Set_Never_Set_In_Source (Entity (A), False);
4199 end if;
4201 -- Perform error checks for IN and IN OUT parameters
4203 if Ekind (F) /= E_Out_Parameter then
4205 -- Check unset reference. For scalar parameters, it is clearly
4206 -- wrong to pass an uninitialized value as either an IN or
4207 -- IN-OUT parameter. For composites, it is also clearly an
4208 -- error to pass a completely uninitialized value as an IN
4209 -- parameter, but the case of IN OUT is trickier. We prefer
4210 -- not to give a warning here. For example, suppose there is
4211 -- a routine that sets some component of a record to False.
4212 -- It is perfectly reasonable to make this IN-OUT and allow
4213 -- either initialized or uninitialized records to be passed
4214 -- in this case.
4216 -- For partially initialized composite values, we also avoid
4217 -- warnings, since it is quite likely that we are passing a
4218 -- partially initialized value and only the initialized fields
4219 -- will in fact be read in the subprogram.
4221 if Is_Scalar_Type (A_Typ)
4222 or else (Ekind (F) = E_In_Parameter
4223 and then not Is_Partially_Initialized_Type (A_Typ))
4224 then
4225 Check_Unset_Reference (A);
4226 end if;
4228 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4229 -- actual to a nested call, since this constitutes a reading of
4230 -- the parameter, which is not allowed.
4232 if Ada_Version = Ada_83
4233 and then Is_Entity_Name (A)
4234 and then Ekind (Entity (A)) = E_Out_Parameter
4235 then
4236 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4237 end if;
4238 end if;
4240 -- In -gnatd.q mode, forget that a given array is constant when
4241 -- it is passed as an IN parameter to a foreign-convention
4242 -- subprogram. This is in case the subprogram evilly modifies the
4243 -- object. Of course, correct code would use IN OUT.
4245 if Debug_Flag_Dot_Q
4246 and then Ekind (F) = E_In_Parameter
4247 and then Has_Foreign_Convention (Nam)
4248 and then Is_Array_Type (F_Typ)
4249 and then Nkind (A) in N_Has_Entity
4250 and then Present (Entity (A))
4251 then
4252 Set_Is_True_Constant (Entity (A), False);
4253 end if;
4255 -- Case of OUT or IN OUT parameter
4257 if Ekind (F) /= E_In_Parameter then
4259 -- For an Out parameter, check for useless assignment. Note
4260 -- that we can't set Last_Assignment this early, because we may
4261 -- kill current values in Resolve_Call, and that call would
4262 -- clobber the Last_Assignment field.
4264 -- Note: call Warn_On_Useless_Assignment before doing the check
4265 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4266 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4267 -- reflects the last assignment, not this one.
4269 if Ekind (F) = E_Out_Parameter then
4270 if Warn_On_Modified_As_Out_Parameter (F)
4271 and then Is_Entity_Name (A)
4272 and then Present (Entity (A))
4273 and then Comes_From_Source (N)
4274 then
4275 Warn_On_Useless_Assignment (Entity (A), A);
4276 end if;
4277 end if;
4279 -- Validate the form of the actual. Note that the call to
4280 -- Is_OK_Variable_For_Out_Formal generates the required
4281 -- reference in this case.
4283 -- A call to an initialization procedure for an aggregate
4284 -- component may initialize a nested component of a constant
4285 -- designated object. In this context the object is variable.
4287 if not Is_OK_Variable_For_Out_Formal (A)
4288 and then not Is_Init_Proc (Nam)
4289 then
4290 Error_Msg_NE ("actual for& must be a variable", A, F);
4292 if Is_Subprogram (Current_Scope) then
4293 if Is_Invariant_Procedure (Current_Scope)
4294 or else Is_Partial_Invariant_Procedure (Current_Scope)
4295 then
4296 Error_Msg_N
4297 ("function used in invariant cannot modify its "
4298 & "argument", F);
4300 elsif Is_Predicate_Function (Current_Scope) then
4301 Error_Msg_N
4302 ("function used in predicate cannot modify its "
4303 & "argument", F);
4304 end if;
4305 end if;
4306 end if;
4308 -- What's the following about???
4310 if Is_Entity_Name (A) then
4311 Kill_Checks (Entity (A));
4312 else
4313 Kill_All_Checks;
4314 end if;
4315 end if;
4317 if Etype (A) = Any_Type then
4318 Set_Etype (N, Any_Type);
4319 return;
4320 end if;
4322 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4324 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4326 -- Apply predicate tests except in certain special cases. Note
4327 -- that it might be more consistent to apply these only when
4328 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4329 -- for the outbound predicate tests ??? In any case indicate
4330 -- the function being called, for better warnings if the call
4331 -- leads to an infinite recursion.
4333 if Predicate_Tests_On_Arguments (Nam) then
4334 Apply_Predicate_Check (A, F_Typ, Nam);
4335 end if;
4337 -- Apply required constraint checks
4339 -- Gigi looks at the check flag and uses the appropriate types.
4340 -- For now since one flag is used there is an optimization
4341 -- which might not be done in the IN OUT case since Gigi does
4342 -- not do any analysis. More thought required about this ???
4344 -- In fact is this comment obsolete??? doesn't the expander now
4345 -- generate all these tests anyway???
4347 if Is_Scalar_Type (Etype (A)) then
4348 Apply_Scalar_Range_Check (A, F_Typ);
4350 elsif Is_Array_Type (Etype (A)) then
4351 Apply_Length_Check (A, F_Typ);
4353 elsif Is_Record_Type (F_Typ)
4354 and then Has_Discriminants (F_Typ)
4355 and then Is_Constrained (F_Typ)
4356 and then (not Is_Derived_Type (F_Typ)
4357 or else Comes_From_Source (Nam))
4358 then
4359 Apply_Discriminant_Check (A, F_Typ);
4361 -- For view conversions of a discriminated object, apply
4362 -- check to object itself, the conversion alreay has the
4363 -- proper type.
4365 if Nkind (A) = N_Type_Conversion
4366 and then Is_Constrained (Etype (Expression (A)))
4367 then
4368 Apply_Discriminant_Check (Expression (A), F_Typ);
4369 end if;
4371 elsif Is_Access_Type (F_Typ)
4372 and then Is_Array_Type (Designated_Type (F_Typ))
4373 and then Is_Constrained (Designated_Type (F_Typ))
4374 then
4375 Apply_Length_Check (A, F_Typ);
4377 elsif Is_Access_Type (F_Typ)
4378 and then Has_Discriminants (Designated_Type (F_Typ))
4379 and then Is_Constrained (Designated_Type (F_Typ))
4380 then
4381 Apply_Discriminant_Check (A, F_Typ);
4383 else
4384 Apply_Range_Check (A, F_Typ);
4385 end if;
4387 -- Ada 2005 (AI-231): Note that the controlling parameter case
4388 -- already existed in Ada 95, which is partially checked
4389 -- elsewhere (see Checks), and we don't want the warning
4390 -- message to differ.
4392 if Is_Access_Type (F_Typ)
4393 and then Can_Never_Be_Null (F_Typ)
4394 and then Known_Null (A)
4395 then
4396 if Is_Controlling_Formal (F) then
4397 Apply_Compile_Time_Constraint_Error
4398 (N => A,
4399 Msg => "null value not allowed here??",
4400 Reason => CE_Access_Check_Failed);
4402 elsif Ada_Version >= Ada_2005 then
4403 Apply_Compile_Time_Constraint_Error
4404 (N => A,
4405 Msg => "(Ada 2005) null not allowed in "
4406 & "null-excluding formal??",
4407 Reason => CE_Null_Not_Allowed);
4408 end if;
4409 end if;
4410 end if;
4412 -- Checks for OUT parameters and IN OUT parameters
4414 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4416 -- If there is a type conversion, make sure the return value
4417 -- meets the constraints of the variable before the conversion.
4419 if Nkind (A) = N_Type_Conversion then
4420 if Is_Scalar_Type (A_Typ) then
4421 Apply_Scalar_Range_Check
4422 (Expression (A), Etype (Expression (A)), A_Typ);
4424 -- In addition, the returned value of the parameter must
4425 -- satisfy the bounds of the object type (see comment
4426 -- below).
4428 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4430 else
4431 Apply_Range_Check
4432 (Expression (A), Etype (Expression (A)), A_Typ);
4433 end if;
4435 -- If no conversion, apply scalar range checks and length check
4436 -- based on the subtype of the actual (NOT that of the formal).
4437 -- This indicates that the check takes place on return from the
4438 -- call. During expansion the required constraint checks are
4439 -- inserted. In GNATprove mode, in the absence of expansion,
4440 -- the flag indicates that the returned value is valid.
4442 else
4443 if Is_Scalar_Type (F_Typ) then
4444 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4446 elsif Is_Array_Type (F_Typ)
4447 and then Ekind (F) = E_Out_Parameter
4448 then
4449 Apply_Length_Check (A, F_Typ);
4450 else
4451 Apply_Range_Check (A, A_Typ, F_Typ);
4452 end if;
4453 end if;
4455 -- Note: we do not apply the predicate checks for the case of
4456 -- OUT and IN OUT parameters. They are instead applied in the
4457 -- Expand_Actuals routine in Exp_Ch6.
4458 end if;
4460 -- An actual associated with an access parameter is implicitly
4461 -- converted to the anonymous access type of the formal and must
4462 -- satisfy the legality checks for access conversions.
4464 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4465 if not Valid_Conversion (A, F_Typ, A) then
4466 Error_Msg_N
4467 ("invalid implicit conversion for access parameter", A);
4468 end if;
4470 -- If the actual is an access selected component of a variable,
4471 -- the call may modify its designated object. It is reasonable
4472 -- to treat this as a potential modification of the enclosing
4473 -- record, to prevent spurious warnings that it should be
4474 -- declared as a constant, because intuitively programmers
4475 -- regard the designated subcomponent as part of the record.
4477 if Nkind (A) = N_Selected_Component
4478 and then Is_Entity_Name (Prefix (A))
4479 and then not Is_Constant_Object (Entity (Prefix (A)))
4480 then
4481 Note_Possible_Modification (A, Sure => False);
4482 end if;
4483 end if;
4485 -- Check bad case of atomic/volatile argument (RM C.6(12))
4487 if Is_By_Reference_Type (Etype (F))
4488 and then Comes_From_Source (N)
4489 then
4490 if Is_Atomic_Object (A)
4491 and then not Is_Atomic (Etype (F))
4492 then
4493 Error_Msg_NE
4494 ("cannot pass atomic argument to non-atomic formal&",
4495 A, F);
4497 elsif Is_Volatile_Object (A)
4498 and then not Is_Volatile (Etype (F))
4499 then
4500 Error_Msg_NE
4501 ("cannot pass volatile argument to non-volatile formal&",
4502 A, F);
4503 end if;
4504 end if;
4506 -- Check that subprograms don't have improper controlling
4507 -- arguments (RM 3.9.2 (9)).
4509 -- A primitive operation may have an access parameter of an
4510 -- incomplete tagged type, but a dispatching call is illegal
4511 -- if the type is still incomplete.
4513 if Is_Controlling_Formal (F) then
4514 Set_Is_Controlling_Actual (A);
4516 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4517 declare
4518 Desig : constant Entity_Id := Designated_Type (Etype (F));
4519 begin
4520 if Ekind (Desig) = E_Incomplete_Type
4521 and then No (Full_View (Desig))
4522 and then No (Non_Limited_View (Desig))
4523 then
4524 Error_Msg_NE
4525 ("premature use of incomplete type& "
4526 & "in dispatching call", A, Desig);
4527 end if;
4528 end;
4529 end if;
4531 elsif Nkind (A) = N_Explicit_Dereference then
4532 Validate_Remote_Access_To_Class_Wide_Type (A);
4533 end if;
4535 -- Apply legality rule 3.9.2 (9/1)
4537 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4538 and then not Is_Class_Wide_Type (F_Typ)
4539 and then not Is_Controlling_Formal (F)
4540 and then not In_Instance
4541 then
4542 Error_Msg_N ("class-wide argument not allowed here!", A);
4544 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4545 Error_Msg_Node_2 := F_Typ;
4546 Error_Msg_NE
4547 ("& is not a dispatching operation of &!", A, Nam);
4548 end if;
4550 -- Apply the checks described in 3.10.2(27): if the context is a
4551 -- specific access-to-object, the actual cannot be class-wide.
4552 -- Use base type to exclude access_to_subprogram cases.
4554 elsif Is_Access_Type (A_Typ)
4555 and then Is_Access_Type (F_Typ)
4556 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4557 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4558 or else (Nkind (A) = N_Attribute_Reference
4559 and then
4560 Is_Class_Wide_Type (Etype (Prefix (A)))))
4561 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4562 and then not Is_Controlling_Formal (F)
4564 -- Disable these checks for call to imported C++ subprograms
4566 and then not
4567 (Is_Entity_Name (Name (N))
4568 and then Is_Imported (Entity (Name (N)))
4569 and then Convention (Entity (Name (N))) = Convention_CPP)
4570 then
4571 Error_Msg_N
4572 ("access to class-wide argument not allowed here!", A);
4574 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4575 Error_Msg_Node_2 := Designated_Type (F_Typ);
4576 Error_Msg_NE
4577 ("& is not a dispatching operation of &!", A, Nam);
4578 end if;
4579 end if;
4581 Check_Aliased_Parameter;
4583 Eval_Actual (A);
4585 -- If it is a named association, treat the selector_name as a
4586 -- proper identifier, and mark the corresponding entity.
4588 if Nkind (Parent (A)) = N_Parameter_Association
4590 -- Ignore reference in SPARK mode, as it refers to an entity not
4591 -- in scope at the point of reference, so the reference should
4592 -- be ignored for computing effects of subprograms.
4594 and then not GNATprove_Mode
4595 then
4596 -- If subprogram is overridden, use name of formal that
4597 -- is being called.
4599 if Present (Real_Subp) then
4600 Set_Entity (Selector_Name (Parent (A)), Real_F);
4601 Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4603 else
4604 Set_Entity (Selector_Name (Parent (A)), F);
4605 Generate_Reference (F, Selector_Name (Parent (A)));
4606 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4607 Generate_Reference (F_Typ, N, ' ');
4608 end if;
4609 end if;
4611 Prev := A;
4613 if Ekind (F) /= E_Out_Parameter then
4614 Check_Unset_Reference (A);
4615 end if;
4617 -- The following checks are only relevant when SPARK_Mode is on as
4618 -- they are not standard Ada legality rule. Internally generated
4619 -- temporaries are ignored.
4621 if SPARK_Mode = On and then Comes_From_Source (A) then
4623 -- An effectively volatile object may act as an actual when the
4624 -- corresponding formal is of a non-scalar effectively volatile
4625 -- type (SPARK RM 7.1.3(11)).
4627 if not Is_Scalar_Type (Etype (F))
4628 and then Is_Effectively_Volatile (Etype (F))
4629 then
4630 null;
4632 -- An effectively volatile object may act as an actual in a
4633 -- call to an instance of Unchecked_Conversion.
4634 -- (SPARK RM 7.1.3(11)).
4636 elsif Is_Unchecked_Conversion_Instance (Nam) then
4637 null;
4639 -- The actual denotes an object
4641 elsif Is_Effectively_Volatile_Object (A) then
4642 Error_Msg_N
4643 ("volatile object cannot act as actual in a call (SPARK "
4644 & "RM 7.1.3(11))", A);
4646 -- Otherwise the actual denotes an expression. Inspect the
4647 -- expression and flag each effectively volatile object with
4648 -- enabled property Async_Writers or Effective_Reads as illegal
4649 -- because it apprears within an interfering context. Note that
4650 -- this is usually done in Resolve_Entity_Name, but when the
4651 -- effectively volatile object appears as an actual in a call,
4652 -- the call must be resolved first.
4654 else
4655 Flag_Effectively_Volatile_Objects (A);
4656 end if;
4658 -- An effectively volatile variable cannot act as an actual
4659 -- parameter in a procedure call when the variable has enabled
4660 -- property Effective_Reads and the corresponding formal is of
4661 -- mode IN (SPARK RM 7.1.3(10)).
4663 if Ekind (Nam) = E_Procedure
4664 and then Ekind (F) = E_In_Parameter
4665 and then Is_Entity_Name (A)
4666 then
4667 A_Id := Entity (A);
4669 if Ekind (A_Id) = E_Variable
4670 and then Is_Effectively_Volatile (Etype (A_Id))
4671 and then Effective_Reads_Enabled (A_Id)
4672 then
4673 Error_Msg_NE
4674 ("effectively volatile variable & cannot appear as "
4675 & "actual in procedure call", A, A_Id);
4677 Error_Msg_Name_1 := Name_Effective_Reads;
4678 Error_Msg_N ("\\variable has enabled property %", A);
4679 Error_Msg_N ("\\corresponding formal has mode IN", A);
4680 end if;
4681 end if;
4682 end if;
4684 -- A formal parameter of a specific tagged type whose related
4685 -- subprogram is subject to pragma Extensions_Visible with value
4686 -- "False" cannot act as an actual in a subprogram with value
4687 -- "True" (SPARK RM 6.1.7(3)).
4689 if Is_EVF_Expression (A)
4690 and then Extensions_Visible_Status (Nam) =
4691 Extensions_Visible_True
4692 then
4693 Error_Msg_N
4694 ("formal parameter cannot act as actual parameter when "
4695 & "Extensions_Visible is False", A);
4696 Error_Msg_NE
4697 ("\subprogram & has Extensions_Visible True", A, Nam);
4698 end if;
4700 -- The actual parameter of a Ghost subprogram whose formal is of
4701 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4703 if Comes_From_Source (Nam)
4704 and then Is_Ghost_Entity (Nam)
4705 and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4706 and then Is_Entity_Name (A)
4707 and then Present (Entity (A))
4708 and then not Is_Ghost_Entity (Entity (A))
4709 then
4710 Error_Msg_NE
4711 ("non-ghost variable & cannot appear as actual in call to "
4712 & "ghost procedure", A, Entity (A));
4714 if Ekind (F) = E_In_Out_Parameter then
4715 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4716 else
4717 Error_Msg_N ("\corresponding formal has mode OUT", A);
4718 end if;
4719 end if;
4721 Next_Actual (A);
4723 -- Case where actual is not present
4725 else
4726 Insert_Default;
4727 end if;
4729 Next_Formal (F);
4731 if Present (Real_Subp) then
4732 Next_Formal (Real_F);
4733 end if;
4734 end loop;
4735 end Resolve_Actuals;
4737 -----------------------
4738 -- Resolve_Allocator --
4739 -----------------------
4741 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4742 Desig_T : constant Entity_Id := Designated_Type (Typ);
4743 E : constant Node_Id := Expression (N);
4744 Subtyp : Entity_Id;
4745 Discrim : Entity_Id;
4746 Constr : Node_Id;
4747 Aggr : Node_Id;
4748 Assoc : Node_Id := Empty;
4749 Disc_Exp : Node_Id;
4751 procedure Check_Allocator_Discrim_Accessibility
4752 (Disc_Exp : Node_Id;
4753 Alloc_Typ : Entity_Id);
4754 -- Check that accessibility level associated with an access discriminant
4755 -- initialized in an allocator by the expression Disc_Exp is not deeper
4756 -- than the level of the allocator type Alloc_Typ. An error message is
4757 -- issued if this condition is violated. Specialized checks are done for
4758 -- the cases of a constraint expression which is an access attribute or
4759 -- an access discriminant.
4761 function In_Dispatching_Context return Boolean;
4762 -- If the allocator is an actual in a call, it is allowed to be class-
4763 -- wide when the context is not because it is a controlling actual.
4765 -------------------------------------------
4766 -- Check_Allocator_Discrim_Accessibility --
4767 -------------------------------------------
4769 procedure Check_Allocator_Discrim_Accessibility
4770 (Disc_Exp : Node_Id;
4771 Alloc_Typ : Entity_Id)
4773 begin
4774 if Type_Access_Level (Etype (Disc_Exp)) >
4775 Deepest_Type_Access_Level (Alloc_Typ)
4776 then
4777 Error_Msg_N
4778 ("operand type has deeper level than allocator type", Disc_Exp);
4780 -- When the expression is an Access attribute the level of the prefix
4781 -- object must not be deeper than that of the allocator's type.
4783 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4784 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4785 Attribute_Access
4786 and then Object_Access_Level (Prefix (Disc_Exp)) >
4787 Deepest_Type_Access_Level (Alloc_Typ)
4788 then
4789 Error_Msg_N
4790 ("prefix of attribute has deeper level than allocator type",
4791 Disc_Exp);
4793 -- When the expression is an access discriminant the check is against
4794 -- the level of the prefix object.
4796 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4797 and then Nkind (Disc_Exp) = N_Selected_Component
4798 and then Object_Access_Level (Prefix (Disc_Exp)) >
4799 Deepest_Type_Access_Level (Alloc_Typ)
4800 then
4801 Error_Msg_N
4802 ("access discriminant has deeper level than allocator type",
4803 Disc_Exp);
4805 -- All other cases are legal
4807 else
4808 null;
4809 end if;
4810 end Check_Allocator_Discrim_Accessibility;
4812 ----------------------------
4813 -- In_Dispatching_Context --
4814 ----------------------------
4816 function In_Dispatching_Context return Boolean is
4817 Par : constant Node_Id := Parent (N);
4819 begin
4820 return Nkind (Par) in N_Subprogram_Call
4821 and then Is_Entity_Name (Name (Par))
4822 and then Is_Dispatching_Operation (Entity (Name (Par)));
4823 end In_Dispatching_Context;
4825 -- Start of processing for Resolve_Allocator
4827 begin
4828 -- Replace general access with specific type
4830 if Ekind (Etype (N)) = E_Allocator_Type then
4831 Set_Etype (N, Base_Type (Typ));
4832 end if;
4834 if Is_Abstract_Type (Typ) then
4835 Error_Msg_N ("type of allocator cannot be abstract", N);
4836 end if;
4838 -- For qualified expression, resolve the expression using the given
4839 -- subtype (nothing to do for type mark, subtype indication)
4841 if Nkind (E) = N_Qualified_Expression then
4842 if Is_Class_Wide_Type (Etype (E))
4843 and then not Is_Class_Wide_Type (Desig_T)
4844 and then not In_Dispatching_Context
4845 then
4846 Error_Msg_N
4847 ("class-wide allocator not allowed for this access type", N);
4848 end if;
4850 Resolve (Expression (E), Etype (E));
4851 Check_Non_Static_Context (Expression (E));
4852 Check_Unset_Reference (Expression (E));
4854 -- Allocators generated by the build-in-place expansion mechanism
4855 -- are explicitly marked as coming from source but do not need to be
4856 -- checked for limited initialization. To exclude this case, ensure
4857 -- that the parent of the allocator is a source node.
4858 -- The return statement constructed for an Expression_Function does
4859 -- not come from source but requires a limited check.
4861 if Is_Limited_Type (Etype (E))
4862 and then Comes_From_Source (N)
4863 and then
4864 (Comes_From_Source (Parent (N))
4865 or else
4866 (Ekind (Current_Scope) = E_Function
4867 and then Nkind (Original_Node (Unit_Declaration_Node
4868 (Current_Scope))) = N_Expression_Function))
4869 and then not In_Instance_Body
4870 then
4871 if not OK_For_Limited_Init (Etype (E), Expression (E)) then
4872 if Nkind (Parent (N)) = N_Assignment_Statement then
4873 Error_Msg_N
4874 ("illegal expression for initialized allocator of a "
4875 & "limited type (RM 7.5 (2.7/2))", N);
4876 else
4877 Error_Msg_N
4878 ("initialization not allowed for limited types", N);
4879 end if;
4881 Explain_Limited_Type (Etype (E), N);
4882 end if;
4883 end if;
4885 -- A qualified expression requires an exact match of the type. Class-
4886 -- wide matching is not allowed.
4888 if (Is_Class_Wide_Type (Etype (Expression (E)))
4889 or else Is_Class_Wide_Type (Etype (E)))
4890 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4891 then
4892 Wrong_Type (Expression (E), Etype (E));
4893 end if;
4895 -- Calls to build-in-place functions are not currently supported in
4896 -- allocators for access types associated with a simple storage pool.
4897 -- Supporting such allocators may require passing additional implicit
4898 -- parameters to build-in-place functions (or a significant revision
4899 -- of the current b-i-p implementation to unify the handling for
4900 -- multiple kinds of storage pools). ???
4902 if Is_Limited_View (Desig_T)
4903 and then Nkind (Expression (E)) = N_Function_Call
4904 then
4905 declare
4906 Pool : constant Entity_Id :=
4907 Associated_Storage_Pool (Root_Type (Typ));
4908 begin
4909 if Present (Pool)
4910 and then
4911 Present (Get_Rep_Pragma
4912 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4913 then
4914 Error_Msg_N
4915 ("limited function calls not yet supported in simple "
4916 & "storage pool allocators", Expression (E));
4917 end if;
4918 end;
4919 end if;
4921 -- A special accessibility check is needed for allocators that
4922 -- constrain access discriminants. The level of the type of the
4923 -- expression used to constrain an access discriminant cannot be
4924 -- deeper than the type of the allocator (in contrast to access
4925 -- parameters, where the level of the actual can be arbitrary).
4927 -- We can't use Valid_Conversion to perform this check because in
4928 -- general the type of the allocator is unrelated to the type of
4929 -- the access discriminant.
4931 if Ekind (Typ) /= E_Anonymous_Access_Type
4932 or else Is_Local_Anonymous_Access (Typ)
4933 then
4934 Subtyp := Entity (Subtype_Mark (E));
4936 Aggr := Original_Node (Expression (E));
4938 if Has_Discriminants (Subtyp)
4939 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4940 then
4941 Discrim := First_Discriminant (Base_Type (Subtyp));
4943 -- Get the first component expression of the aggregate
4945 if Present (Expressions (Aggr)) then
4946 Disc_Exp := First (Expressions (Aggr));
4948 elsif Present (Component_Associations (Aggr)) then
4949 Assoc := First (Component_Associations (Aggr));
4951 if Present (Assoc) then
4952 Disc_Exp := Expression (Assoc);
4953 else
4954 Disc_Exp := Empty;
4955 end if;
4957 else
4958 Disc_Exp := Empty;
4959 end if;
4961 while Present (Discrim) and then Present (Disc_Exp) loop
4962 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4963 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4964 end if;
4966 Next_Discriminant (Discrim);
4968 if Present (Discrim) then
4969 if Present (Assoc) then
4970 Next (Assoc);
4971 Disc_Exp := Expression (Assoc);
4973 elsif Present (Next (Disc_Exp)) then
4974 Next (Disc_Exp);
4976 else
4977 Assoc := First (Component_Associations (Aggr));
4979 if Present (Assoc) then
4980 Disc_Exp := Expression (Assoc);
4981 else
4982 Disc_Exp := Empty;
4983 end if;
4984 end if;
4985 end if;
4986 end loop;
4987 end if;
4988 end if;
4990 -- For a subtype mark or subtype indication, freeze the subtype
4992 else
4993 Freeze_Expression (E);
4995 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4996 Error_Msg_N
4997 ("initialization required for access-to-constant allocator", N);
4998 end if;
5000 -- A special accessibility check is needed for allocators that
5001 -- constrain access discriminants. The level of the type of the
5002 -- expression used to constrain an access discriminant cannot be
5003 -- deeper than the type of the allocator (in contrast to access
5004 -- parameters, where the level of the actual can be arbitrary).
5005 -- We can't use Valid_Conversion to perform this check because
5006 -- in general the type of the allocator is unrelated to the type
5007 -- of the access discriminant.
5009 if Nkind (Original_Node (E)) = N_Subtype_Indication
5010 and then (Ekind (Typ) /= E_Anonymous_Access_Type
5011 or else Is_Local_Anonymous_Access (Typ))
5012 then
5013 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
5015 if Has_Discriminants (Subtyp) then
5016 Discrim := First_Discriminant (Base_Type (Subtyp));
5017 Constr := First (Constraints (Constraint (Original_Node (E))));
5018 while Present (Discrim) and then Present (Constr) loop
5019 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
5020 if Nkind (Constr) = N_Discriminant_Association then
5021 Disc_Exp := Original_Node (Expression (Constr));
5022 else
5023 Disc_Exp := Original_Node (Constr);
5024 end if;
5026 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
5027 end if;
5029 Next_Discriminant (Discrim);
5030 Next (Constr);
5031 end loop;
5032 end if;
5033 end if;
5034 end if;
5036 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
5037 -- check that the level of the type of the created object is not deeper
5038 -- than the level of the allocator's access type, since extensions can
5039 -- now occur at deeper levels than their ancestor types. This is a
5040 -- static accessibility level check; a run-time check is also needed in
5041 -- the case of an initialized allocator with a class-wide argument (see
5042 -- Expand_Allocator_Expression).
5044 if Ada_Version >= Ada_2005
5045 and then Is_Class_Wide_Type (Desig_T)
5046 then
5047 declare
5048 Exp_Typ : Entity_Id;
5050 begin
5051 if Nkind (E) = N_Qualified_Expression then
5052 Exp_Typ := Etype (E);
5053 elsif Nkind (E) = N_Subtype_Indication then
5054 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
5055 else
5056 Exp_Typ := Entity (E);
5057 end if;
5059 if Type_Access_Level (Exp_Typ) >
5060 Deepest_Type_Access_Level (Typ)
5061 then
5062 if In_Instance_Body then
5063 Error_Msg_Warn := SPARK_Mode /= On;
5064 Error_Msg_N
5065 ("type in allocator has deeper level than "
5066 & "designated class-wide type<<", E);
5067 Error_Msg_N ("\Program_Error [<<", E);
5068 Rewrite (N,
5069 Make_Raise_Program_Error (Sloc (N),
5070 Reason => PE_Accessibility_Check_Failed));
5071 Set_Etype (N, Typ);
5073 -- Do not apply Ada 2005 accessibility checks on a class-wide
5074 -- allocator if the type given in the allocator is a formal
5075 -- type. A run-time check will be performed in the instance.
5077 elsif not Is_Generic_Type (Exp_Typ) then
5078 Error_Msg_N ("type in allocator has deeper level than "
5079 & "designated class-wide type", E);
5080 end if;
5081 end if;
5082 end;
5083 end if;
5085 -- Check for allocation from an empty storage pool
5087 if No_Pool_Assigned (Typ) then
5088 Error_Msg_N ("allocation from empty storage pool!", N);
5090 -- If the context is an unchecked conversion, as may happen within an
5091 -- inlined subprogram, the allocator is being resolved with its own
5092 -- anonymous type. In that case, if the target type has a specific
5093 -- storage pool, it must be inherited explicitly by the allocator type.
5095 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
5096 and then No (Associated_Storage_Pool (Typ))
5097 then
5098 Set_Associated_Storage_Pool
5099 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
5100 end if;
5102 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
5103 Check_Restriction (No_Anonymous_Allocators, N);
5104 end if;
5106 -- Check that an allocator with task parts isn't for a nested access
5107 -- type when restriction No_Task_Hierarchy applies.
5109 if not Is_Library_Level_Entity (Base_Type (Typ))
5110 and then Has_Task (Base_Type (Desig_T))
5111 then
5112 Check_Restriction (No_Task_Hierarchy, N);
5113 end if;
5115 -- An illegal allocator may be rewritten as a raise Program_Error
5116 -- statement.
5118 if Nkind (N) = N_Allocator then
5120 -- An anonymous access discriminant is the definition of a
5121 -- coextension.
5123 if Ekind (Typ) = E_Anonymous_Access_Type
5124 and then Nkind (Associated_Node_For_Itype (Typ)) =
5125 N_Discriminant_Specification
5126 then
5127 declare
5128 Discr : constant Entity_Id :=
5129 Defining_Identifier (Associated_Node_For_Itype (Typ));
5131 begin
5132 Check_Restriction (No_Coextensions, N);
5134 -- Ada 2012 AI05-0052: If the designated type of the allocator
5135 -- is limited, then the allocator shall not be used to define
5136 -- the value of an access discriminant unless the discriminated
5137 -- type is immutably limited.
5139 if Ada_Version >= Ada_2012
5140 and then Is_Limited_Type (Desig_T)
5141 and then not Is_Limited_View (Scope (Discr))
5142 then
5143 Error_Msg_N
5144 ("only immutably limited types can have anonymous "
5145 & "access discriminants designating a limited type", N);
5146 end if;
5147 end;
5149 -- Avoid marking an allocator as a dynamic coextension if it is
5150 -- within a static construct.
5152 if not Is_Static_Coextension (N) then
5153 Set_Is_Dynamic_Coextension (N);
5155 -- ??? We currently do not handle finalization and deallocation
5156 -- of coextensions properly so let's at least warn the user
5157 -- about it.
5159 if Is_Controlled (Desig_T) then
5160 Error_Msg_N
5161 ("??coextension will not be finalized when its "
5162 & "associated owner is deallocated or finalized", N);
5163 else
5164 Error_Msg_N
5165 ("??coextension will not be deallocated when its "
5166 & "associated owner is deallocated", N);
5167 end if;
5168 end if;
5170 -- Cleanup for potential static coextensions
5172 else
5173 Set_Is_Dynamic_Coextension (N, False);
5174 Set_Is_Static_Coextension (N, False);
5176 -- ??? It seems we also do not properly finalize anonymous
5177 -- access-to-controlled objects within their declared scope and
5178 -- instead finalize them with their associated unit. Warn the
5179 -- user about it here.
5181 if Ekind (Typ) = E_Anonymous_Access_Type
5182 and then Is_Controlled_Active (Desig_T)
5183 then
5184 Error_Msg_N
5185 ("??object designated by anonymous access object might not "
5186 & "be finalized until its enclosing library unit goes out "
5187 & "of scope", N);
5188 Error_Msg_N ("\use named access type instead", N);
5189 end if;
5190 end if;
5191 end if;
5193 -- Report a simple error: if the designated object is a local task,
5194 -- its body has not been seen yet, and its activation will fail an
5195 -- elaboration check.
5197 if Is_Task_Type (Desig_T)
5198 and then Scope (Base_Type (Desig_T)) = Current_Scope
5199 and then Is_Compilation_Unit (Current_Scope)
5200 and then Ekind (Current_Scope) = E_Package
5201 and then not In_Package_Body (Current_Scope)
5202 then
5203 Error_Msg_Warn := SPARK_Mode /= On;
5204 Error_Msg_N ("cannot activate task before body seen<<", N);
5205 Error_Msg_N ("\Program_Error [<<", N);
5206 end if;
5208 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5209 -- type with a task component on a subpool. This action must raise
5210 -- Program_Error at runtime.
5212 if Ada_Version >= Ada_2012
5213 and then Nkind (N) = N_Allocator
5214 and then Present (Subpool_Handle_Name (N))
5215 and then Has_Task (Desig_T)
5216 then
5217 Error_Msg_Warn := SPARK_Mode /= On;
5218 Error_Msg_N ("cannot allocate task on subpool<<", N);
5219 Error_Msg_N ("\Program_Error [<<", N);
5221 Rewrite (N,
5222 Make_Raise_Program_Error (Sloc (N),
5223 Reason => PE_Explicit_Raise));
5224 Set_Etype (N, Typ);
5225 end if;
5226 end Resolve_Allocator;
5228 ---------------------------
5229 -- Resolve_Arithmetic_Op --
5230 ---------------------------
5232 -- Used for resolving all arithmetic operators except exponentiation
5234 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5235 L : constant Node_Id := Left_Opnd (N);
5236 R : constant Node_Id := Right_Opnd (N);
5237 TL : constant Entity_Id := Base_Type (Etype (L));
5238 TR : constant Entity_Id := Base_Type (Etype (R));
5239 T : Entity_Id;
5240 Rop : Node_Id;
5242 B_Typ : constant Entity_Id := Base_Type (Typ);
5243 -- We do the resolution using the base type, because intermediate values
5244 -- in expressions always are of the base type, not a subtype of it.
5246 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5247 -- Returns True if N is in a context that expects "any real type"
5249 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5250 -- Return True iff given type is Integer or universal real/integer
5252 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5253 -- Choose type of integer literal in fixed-point operation to conform
5254 -- to available fixed-point type. T is the type of the other operand,
5255 -- which is needed to determine the expected type of N.
5257 procedure Set_Operand_Type (N : Node_Id);
5258 -- Set operand type to T if universal
5260 -------------------------------
5261 -- Expected_Type_Is_Any_Real --
5262 -------------------------------
5264 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5265 begin
5266 -- N is the expression after "delta" in a fixed_point_definition;
5267 -- see RM-3.5.9(6):
5269 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5270 N_Decimal_Fixed_Point_Definition,
5272 -- N is one of the bounds in a real_range_specification;
5273 -- see RM-3.5.7(5):
5275 N_Real_Range_Specification,
5277 -- N is the expression of a delta_constraint;
5278 -- see RM-J.3(3):
5280 N_Delta_Constraint);
5281 end Expected_Type_Is_Any_Real;
5283 -----------------------------
5284 -- Is_Integer_Or_Universal --
5285 -----------------------------
5287 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5288 T : Entity_Id;
5289 Index : Interp_Index;
5290 It : Interp;
5292 begin
5293 if not Is_Overloaded (N) then
5294 T := Etype (N);
5295 return Base_Type (T) = Base_Type (Standard_Integer)
5296 or else T = Universal_Integer
5297 or else T = Universal_Real;
5298 else
5299 Get_First_Interp (N, Index, It);
5300 while Present (It.Typ) loop
5301 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5302 or else It.Typ = Universal_Integer
5303 or else It.Typ = Universal_Real
5304 then
5305 return True;
5306 end if;
5308 Get_Next_Interp (Index, It);
5309 end loop;
5310 end if;
5312 return False;
5313 end Is_Integer_Or_Universal;
5315 ----------------------------
5316 -- Set_Mixed_Mode_Operand --
5317 ----------------------------
5319 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5320 Index : Interp_Index;
5321 It : Interp;
5323 begin
5324 if Universal_Interpretation (N) = Universal_Integer then
5326 -- A universal integer literal is resolved as standard integer
5327 -- except in the case of a fixed-point result, where we leave it
5328 -- as universal (to be handled by Exp_Fixd later on)
5330 if Is_Fixed_Point_Type (T) then
5331 Resolve (N, Universal_Integer);
5332 else
5333 Resolve (N, Standard_Integer);
5334 end if;
5336 elsif Universal_Interpretation (N) = Universal_Real
5337 and then (T = Base_Type (Standard_Integer)
5338 or else T = Universal_Integer
5339 or else T = Universal_Real)
5340 then
5341 -- A universal real can appear in a fixed-type context. We resolve
5342 -- the literal with that context, even though this might raise an
5343 -- exception prematurely (the other operand may be zero).
5345 Resolve (N, B_Typ);
5347 elsif Etype (N) = Base_Type (Standard_Integer)
5348 and then T = Universal_Real
5349 and then Is_Overloaded (N)
5350 then
5351 -- Integer arg in mixed-mode operation. Resolve with universal
5352 -- type, in case preference rule must be applied.
5354 Resolve (N, Universal_Integer);
5356 elsif Etype (N) = T
5357 and then B_Typ /= Universal_Fixed
5358 then
5359 -- Not a mixed-mode operation, resolve with context
5361 Resolve (N, B_Typ);
5363 elsif Etype (N) = Any_Fixed then
5365 -- N may itself be a mixed-mode operation, so use context type
5367 Resolve (N, B_Typ);
5369 elsif Is_Fixed_Point_Type (T)
5370 and then B_Typ = Universal_Fixed
5371 and then Is_Overloaded (N)
5372 then
5373 -- Must be (fixed * fixed) operation, operand must have one
5374 -- compatible interpretation.
5376 Resolve (N, Any_Fixed);
5378 elsif Is_Fixed_Point_Type (B_Typ)
5379 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5380 and then Is_Overloaded (N)
5381 then
5382 -- C * F(X) in a fixed context, where C is a real literal or a
5383 -- fixed-point expression. F must have either a fixed type
5384 -- interpretation or an integer interpretation, but not both.
5386 Get_First_Interp (N, Index, It);
5387 while Present (It.Typ) loop
5388 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5389 if Analyzed (N) then
5390 Error_Msg_N ("ambiguous operand in fixed operation", N);
5391 else
5392 Resolve (N, Standard_Integer);
5393 end if;
5395 elsif Is_Fixed_Point_Type (It.Typ) then
5396 if Analyzed (N) then
5397 Error_Msg_N ("ambiguous operand in fixed operation", N);
5398 else
5399 Resolve (N, It.Typ);
5400 end if;
5401 end if;
5403 Get_Next_Interp (Index, It);
5404 end loop;
5406 -- Reanalyze the literal with the fixed type of the context. If
5407 -- context is Universal_Fixed, we are within a conversion, leave
5408 -- the literal as a universal real because there is no usable
5409 -- fixed type, and the target of the conversion plays no role in
5410 -- the resolution.
5412 declare
5413 Op2 : Node_Id;
5414 T2 : Entity_Id;
5416 begin
5417 if N = L then
5418 Op2 := R;
5419 else
5420 Op2 := L;
5421 end if;
5423 if B_Typ = Universal_Fixed
5424 and then Nkind (Op2) = N_Real_Literal
5425 then
5426 T2 := Universal_Real;
5427 else
5428 T2 := B_Typ;
5429 end if;
5431 Set_Analyzed (Op2, False);
5432 Resolve (Op2, T2);
5433 end;
5435 -- A universal real conditional expression can appear in a fixed-type
5436 -- context and must be resolved with that context to facilitate the
5437 -- code generation to the backend.
5439 elsif Nkind_In (N, N_Case_Expression, N_If_Expression)
5440 and then Etype (N) = Universal_Real
5441 and then Is_Fixed_Point_Type (B_Typ)
5442 then
5443 Resolve (N, B_Typ);
5445 else
5446 Resolve (N);
5447 end if;
5448 end Set_Mixed_Mode_Operand;
5450 ----------------------
5451 -- Set_Operand_Type --
5452 ----------------------
5454 procedure Set_Operand_Type (N : Node_Id) is
5455 begin
5456 if Etype (N) = Universal_Integer
5457 or else Etype (N) = Universal_Real
5458 then
5459 Set_Etype (N, T);
5460 end if;
5461 end Set_Operand_Type;
5463 -- Start of processing for Resolve_Arithmetic_Op
5465 begin
5466 if Comes_From_Source (N)
5467 and then Ekind (Entity (N)) = E_Function
5468 and then Is_Imported (Entity (N))
5469 and then Is_Intrinsic_Subprogram (Entity (N))
5470 then
5471 Resolve_Intrinsic_Operator (N, Typ);
5472 return;
5474 -- Special-case for mixed-mode universal expressions or fixed point type
5475 -- operation: each argument is resolved separately. The same treatment
5476 -- is required if one of the operands of a fixed point operation is
5477 -- universal real, since in this case we don't do a conversion to a
5478 -- specific fixed-point type (instead the expander handles the case).
5480 -- Set the type of the node to its universal interpretation because
5481 -- legality checks on an exponentiation operand need the context.
5483 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5484 and then Present (Universal_Interpretation (L))
5485 and then Present (Universal_Interpretation (R))
5486 then
5487 Set_Etype (N, B_Typ);
5488 Resolve (L, Universal_Interpretation (L));
5489 Resolve (R, Universal_Interpretation (R));
5491 elsif (B_Typ = Universal_Real
5492 or else Etype (N) = Universal_Fixed
5493 or else (Etype (N) = Any_Fixed
5494 and then Is_Fixed_Point_Type (B_Typ))
5495 or else (Is_Fixed_Point_Type (B_Typ)
5496 and then (Is_Integer_Or_Universal (L)
5497 or else
5498 Is_Integer_Or_Universal (R))))
5499 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5500 then
5501 if TL = Universal_Integer or else TR = Universal_Integer then
5502 Check_For_Visible_Operator (N, B_Typ);
5503 end if;
5505 -- If context is a fixed type and one operand is integer, the other
5506 -- is resolved with the type of the context.
5508 if Is_Fixed_Point_Type (B_Typ)
5509 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5510 or else TL = Universal_Integer)
5511 then
5512 Resolve (R, B_Typ);
5513 Resolve (L, TL);
5515 elsif Is_Fixed_Point_Type (B_Typ)
5516 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5517 or else TR = Universal_Integer)
5518 then
5519 Resolve (L, B_Typ);
5520 Resolve (R, TR);
5522 -- If both operands are universal and the context is a floating
5523 -- point type, the operands are resolved to the type of the context.
5525 elsif Is_Floating_Point_Type (B_Typ) then
5526 Resolve (L, B_Typ);
5527 Resolve (R, B_Typ);
5529 else
5530 Set_Mixed_Mode_Operand (L, TR);
5531 Set_Mixed_Mode_Operand (R, TL);
5532 end if;
5534 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5535 -- multiplying operators from being used when the expected type is
5536 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5537 -- some cases where the expected type is actually Any_Real;
5538 -- Expected_Type_Is_Any_Real takes care of that case.
5540 if Etype (N) = Universal_Fixed
5541 or else Etype (N) = Any_Fixed
5542 then
5543 if B_Typ = Universal_Fixed
5544 and then not Expected_Type_Is_Any_Real (N)
5545 and then not Nkind_In (Parent (N), N_Type_Conversion,
5546 N_Unchecked_Type_Conversion)
5547 then
5548 Error_Msg_N ("type cannot be determined from context!", N);
5549 Error_Msg_N ("\explicit conversion to result type required", N);
5551 Set_Etype (L, Any_Type);
5552 Set_Etype (R, Any_Type);
5554 else
5555 if Ada_Version = Ada_83
5556 and then Etype (N) = Universal_Fixed
5557 and then not
5558 Nkind_In (Parent (N), N_Type_Conversion,
5559 N_Unchecked_Type_Conversion)
5560 then
5561 Error_Msg_N
5562 ("(Ada 83) fixed-point operation needs explicit "
5563 & "conversion", N);
5564 end if;
5566 -- The expected type is "any real type" in contexts like
5568 -- type T is delta <universal_fixed-expression> ...
5570 -- in which case we need to set the type to Universal_Real
5571 -- so that static expression evaluation will work properly.
5573 if Expected_Type_Is_Any_Real (N) then
5574 Set_Etype (N, Universal_Real);
5575 else
5576 Set_Etype (N, B_Typ);
5577 end if;
5578 end if;
5580 elsif Is_Fixed_Point_Type (B_Typ)
5581 and then (Is_Integer_Or_Universal (L)
5582 or else Nkind (L) = N_Real_Literal
5583 or else Nkind (R) = N_Real_Literal
5584 or else Is_Integer_Or_Universal (R))
5585 then
5586 Set_Etype (N, B_Typ);
5588 elsif Etype (N) = Any_Fixed then
5590 -- If no previous errors, this is only possible if one operand is
5591 -- overloaded and the context is universal. Resolve as such.
5593 Set_Etype (N, B_Typ);
5594 end if;
5596 else
5597 if (TL = Universal_Integer or else TL = Universal_Real)
5598 and then
5599 (TR = Universal_Integer or else TR = Universal_Real)
5600 then
5601 Check_For_Visible_Operator (N, B_Typ);
5602 end if;
5604 -- If the context is Universal_Fixed and the operands are also
5605 -- universal fixed, this is an error, unless there is only one
5606 -- applicable fixed_point type (usually Duration).
5608 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5609 T := Unique_Fixed_Point_Type (N);
5611 if T = Any_Type then
5612 Set_Etype (N, T);
5613 return;
5614 else
5615 Resolve (L, T);
5616 Resolve (R, T);
5617 end if;
5619 else
5620 Resolve (L, B_Typ);
5621 Resolve (R, B_Typ);
5622 end if;
5624 -- If one of the arguments was resolved to a non-universal type.
5625 -- label the result of the operation itself with the same type.
5626 -- Do the same for the universal argument, if any.
5628 T := Intersect_Types (L, R);
5629 Set_Etype (N, Base_Type (T));
5630 Set_Operand_Type (L);
5631 Set_Operand_Type (R);
5632 end if;
5634 Generate_Operator_Reference (N, Typ);
5635 Analyze_Dimension (N);
5636 Eval_Arithmetic_Op (N);
5638 -- In SPARK, a multiplication or division with operands of fixed point
5639 -- types must be qualified or explicitly converted to identify the
5640 -- result type.
5642 if (Is_Fixed_Point_Type (Etype (L))
5643 or else Is_Fixed_Point_Type (Etype (R)))
5644 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5645 and then
5646 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5647 then
5648 Check_SPARK_05_Restriction
5649 ("operation should be qualified or explicitly converted", N);
5650 end if;
5652 -- Set overflow and division checking bit
5654 if Nkind (N) in N_Op then
5655 if not Overflow_Checks_Suppressed (Etype (N)) then
5656 Enable_Overflow_Check (N);
5657 end if;
5659 -- Give warning if explicit division by zero
5661 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5662 and then not Division_Checks_Suppressed (Etype (N))
5663 then
5664 Rop := Right_Opnd (N);
5666 if Compile_Time_Known_Value (Rop)
5667 and then ((Is_Integer_Type (Etype (Rop))
5668 and then Expr_Value (Rop) = Uint_0)
5669 or else
5670 (Is_Real_Type (Etype (Rop))
5671 and then Expr_Value_R (Rop) = Ureal_0))
5672 then
5673 -- Specialize the warning message according to the operation.
5674 -- When SPARK_Mode is On, force a warning instead of an error
5675 -- in that case, as this likely corresponds to deactivated
5676 -- code. The following warnings are for the case
5678 case Nkind (N) is
5679 when N_Op_Divide =>
5681 -- For division, we have two cases, for float division
5682 -- of an unconstrained float type, on a machine where
5683 -- Machine_Overflows is false, we don't get an exception
5684 -- at run-time, but rather an infinity or Nan. The Nan
5685 -- case is pretty obscure, so just warn about infinities.
5687 if Is_Floating_Point_Type (Typ)
5688 and then not Is_Constrained (Typ)
5689 and then not Machine_Overflows_On_Target
5690 then
5691 Error_Msg_N
5692 ("float division by zero, may generate "
5693 & "'+'/'- infinity??", Right_Opnd (N));
5695 -- For all other cases, we get a Constraint_Error
5697 else
5698 Apply_Compile_Time_Constraint_Error
5699 (N, "division by zero??", CE_Divide_By_Zero,
5700 Loc => Sloc (Right_Opnd (N)),
5701 Warn => SPARK_Mode = On);
5702 end if;
5704 when N_Op_Rem =>
5705 Apply_Compile_Time_Constraint_Error
5706 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5707 Loc => Sloc (Right_Opnd (N)),
5708 Warn => SPARK_Mode = On);
5710 when N_Op_Mod =>
5711 Apply_Compile_Time_Constraint_Error
5712 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5713 Loc => Sloc (Right_Opnd (N)),
5714 Warn => SPARK_Mode = On);
5716 -- Division by zero can only happen with division, rem,
5717 -- and mod operations.
5719 when others =>
5720 raise Program_Error;
5721 end case;
5723 -- In GNATprove mode, we enable the division check so that
5724 -- GNATprove will issue a message if it cannot be proved.
5726 if GNATprove_Mode then
5727 Activate_Division_Check (N);
5728 end if;
5730 -- Otherwise just set the flag to check at run time
5732 else
5733 Activate_Division_Check (N);
5734 end if;
5735 end if;
5737 -- If Restriction No_Implicit_Conditionals is active, then it is
5738 -- violated if either operand can be negative for mod, or for rem
5739 -- if both operands can be negative.
5741 if Restriction_Check_Required (No_Implicit_Conditionals)
5742 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5743 then
5744 declare
5745 Lo : Uint;
5746 Hi : Uint;
5747 OK : Boolean;
5749 LNeg : Boolean;
5750 RNeg : Boolean;
5751 -- Set if corresponding operand might be negative
5753 begin
5754 Determine_Range
5755 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5756 LNeg := (not OK) or else Lo < 0;
5758 Determine_Range
5759 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5760 RNeg := (not OK) or else Lo < 0;
5762 -- Check if we will be generating conditionals. There are two
5763 -- cases where that can happen, first for REM, the only case
5764 -- is largest negative integer mod -1, where the division can
5765 -- overflow, but we still have to give the right result. The
5766 -- front end generates a test for this annoying case. Here we
5767 -- just test if both operands can be negative (that's what the
5768 -- expander does, so we match its logic here).
5770 -- The second case is mod where either operand can be negative.
5771 -- In this case, the back end has to generate additional tests.
5773 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5774 or else
5775 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5776 then
5777 Check_Restriction (No_Implicit_Conditionals, N);
5778 end if;
5779 end;
5780 end if;
5781 end if;
5783 Check_Unset_Reference (L);
5784 Check_Unset_Reference (R);
5785 end Resolve_Arithmetic_Op;
5787 ------------------
5788 -- Resolve_Call --
5789 ------------------
5791 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5792 function Same_Or_Aliased_Subprograms
5793 (S : Entity_Id;
5794 E : Entity_Id) return Boolean;
5795 -- Returns True if the subprogram entity S is the same as E or else
5796 -- S is an alias of E.
5798 ---------------------------------
5799 -- Same_Or_Aliased_Subprograms --
5800 ---------------------------------
5802 function Same_Or_Aliased_Subprograms
5803 (S : Entity_Id;
5804 E : Entity_Id) return Boolean
5806 Subp_Alias : constant Entity_Id := Alias (S);
5807 begin
5808 return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5809 end Same_Or_Aliased_Subprograms;
5811 -- Local variables
5813 Loc : constant Source_Ptr := Sloc (N);
5814 Subp : constant Node_Id := Name (N);
5815 Body_Id : Entity_Id;
5816 I : Interp_Index;
5817 It : Interp;
5818 Nam : Entity_Id;
5819 Nam_Decl : Node_Id;
5820 Nam_UA : Entity_Id;
5821 Norm_OK : Boolean;
5822 Rtype : Entity_Id;
5823 Scop : Entity_Id;
5825 -- Start of processing for Resolve_Call
5827 begin
5828 -- Preserve relevant elaboration-related attributes of the context which
5829 -- are no longer available or very expensive to recompute once analysis,
5830 -- resolution, and expansion are over.
5832 Mark_Elaboration_Attributes
5833 (N_Id => N,
5834 Checks => True,
5835 Modes => True,
5836 Warnings => True);
5838 -- The context imposes a unique interpretation with type Typ on a
5839 -- procedure or function call. Find the entity of the subprogram that
5840 -- yields the expected type, and propagate the corresponding formal
5841 -- constraints on the actuals. The caller has established that an
5842 -- interpretation exists, and emitted an error if not unique.
5844 -- First deal with the case of a call to an access-to-subprogram,
5845 -- dereference made explicit in Analyze_Call.
5847 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5848 if not Is_Overloaded (Subp) then
5849 Nam := Etype (Subp);
5851 else
5852 -- Find the interpretation whose type (a subprogram type) has a
5853 -- return type that is compatible with the context. Analysis of
5854 -- the node has established that one exists.
5856 Nam := Empty;
5858 Get_First_Interp (Subp, I, It);
5859 while Present (It.Typ) loop
5860 if Covers (Typ, Etype (It.Typ)) then
5861 Nam := It.Typ;
5862 exit;
5863 end if;
5865 Get_Next_Interp (I, It);
5866 end loop;
5868 if No (Nam) then
5869 raise Program_Error;
5870 end if;
5871 end if;
5873 -- If the prefix is not an entity, then resolve it
5875 if not Is_Entity_Name (Subp) then
5876 Resolve (Subp, Nam);
5877 end if;
5879 -- For an indirect call, we always invalidate checks, since we do not
5880 -- know whether the subprogram is local or global. Yes we could do
5881 -- better here, e.g. by knowing that there are no local subprograms,
5882 -- but it does not seem worth the effort. Similarly, we kill all
5883 -- knowledge of current constant values.
5885 Kill_Current_Values;
5887 -- If this is a procedure call which is really an entry call, do
5888 -- the conversion of the procedure call to an entry call. Protected
5889 -- operations use the same circuitry because the name in the call
5890 -- can be an arbitrary expression with special resolution rules.
5892 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5893 or else (Is_Entity_Name (Subp)
5894 and then Ekind_In (Entity (Subp), E_Entry, E_Entry_Family))
5895 then
5896 Resolve_Entry_Call (N, Typ);
5898 -- Annotate the tree by creating a call marker in case the original
5899 -- call is transformed by expansion. The call marker is automatically
5900 -- saved for later examination by the ABE Processing phase.
5902 Build_Call_Marker (N);
5904 -- Kill checks and constant values, as above for indirect case
5905 -- Who knows what happens when another task is activated?
5907 Kill_Current_Values;
5908 return;
5910 -- Normal subprogram call with name established in Resolve
5912 elsif not (Is_Type (Entity (Subp))) then
5913 Nam := Entity (Subp);
5914 Set_Entity_With_Checks (Subp, Nam);
5916 -- Otherwise we must have the case of an overloaded call
5918 else
5919 pragma Assert (Is_Overloaded (Subp));
5921 -- Initialize Nam to prevent warning (we know it will be assigned
5922 -- in the loop below, but the compiler does not know that).
5924 Nam := Empty;
5926 Get_First_Interp (Subp, I, It);
5927 while Present (It.Typ) loop
5928 if Covers (Typ, It.Typ) then
5929 Nam := It.Nam;
5930 Set_Entity_With_Checks (Subp, Nam);
5931 exit;
5932 end if;
5934 Get_Next_Interp (I, It);
5935 end loop;
5936 end if;
5938 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5939 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5940 and then Nkind (Subp) /= N_Explicit_Dereference
5941 and then Present (Parameter_Associations (N))
5942 then
5943 -- The prefix is a parameterless function call that returns an access
5944 -- to subprogram. If parameters are present in the current call, add
5945 -- add an explicit dereference. We use the base type here because
5946 -- within an instance these may be subtypes.
5948 -- The dereference is added either in Analyze_Call or here. Should
5949 -- be consolidated ???
5951 Set_Is_Overloaded (Subp, False);
5952 Set_Etype (Subp, Etype (Nam));
5953 Insert_Explicit_Dereference (Subp);
5954 Nam := Designated_Type (Etype (Nam));
5955 Resolve (Subp, Nam);
5956 end if;
5958 -- Check that a call to Current_Task does not occur in an entry body
5960 if Is_RTE (Nam, RE_Current_Task) then
5961 declare
5962 P : Node_Id;
5964 begin
5965 P := N;
5966 loop
5967 P := Parent (P);
5969 -- Exclude calls that occur within the default of a formal
5970 -- parameter of the entry, since those are evaluated outside
5971 -- of the body.
5973 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5975 if Nkind (P) = N_Entry_Body
5976 or else (Nkind (P) = N_Subprogram_Body
5977 and then Is_Entry_Barrier_Function (P))
5978 then
5979 Rtype := Etype (N);
5980 Error_Msg_Warn := SPARK_Mode /= On;
5981 Error_Msg_NE
5982 ("& should not be used in entry body (RM C.7(17))<<",
5983 N, Nam);
5984 Error_Msg_NE ("\Program_Error [<<", N, Nam);
5985 Rewrite (N,
5986 Make_Raise_Program_Error (Loc,
5987 Reason => PE_Current_Task_In_Entry_Body));
5988 Set_Etype (N, Rtype);
5989 return;
5990 end if;
5991 end loop;
5992 end;
5993 end if;
5995 -- Check that a procedure call does not occur in the context of the
5996 -- entry call statement of a conditional or timed entry call. Note that
5997 -- the case of a call to a subprogram renaming of an entry will also be
5998 -- rejected. The test for N not being an N_Entry_Call_Statement is
5999 -- defensive, covering the possibility that the processing of entry
6000 -- calls might reach this point due to later modifications of the code
6001 -- above.
6003 if Nkind (Parent (N)) = N_Entry_Call_Alternative
6004 and then Nkind (N) /= N_Entry_Call_Statement
6005 and then Entry_Call_Statement (Parent (N)) = N
6006 then
6007 if Ada_Version < Ada_2005 then
6008 Error_Msg_N ("entry call required in select statement", N);
6010 -- Ada 2005 (AI-345): If a procedure_call_statement is used
6011 -- for a procedure_or_entry_call, the procedure_name or
6012 -- procedure_prefix of the procedure_call_statement shall denote
6013 -- an entry renamed by a procedure, or (a view of) a primitive
6014 -- subprogram of a limited interface whose first parameter is
6015 -- a controlling parameter.
6017 elsif Nkind (N) = N_Procedure_Call_Statement
6018 and then not Is_Renamed_Entry (Nam)
6019 and then not Is_Controlling_Limited_Procedure (Nam)
6020 then
6021 Error_Msg_N
6022 ("entry call or dispatching primitive of interface required", N);
6023 end if;
6024 end if;
6026 -- If the SPARK_05 restriction is active, we are not allowed
6027 -- to have a call to a subprogram before we see its completion.
6029 if not Has_Completion (Nam)
6030 and then Restriction_Check_Required (SPARK_05)
6032 -- Don't flag strange internal calls
6034 and then Comes_From_Source (N)
6035 and then Comes_From_Source (Nam)
6037 -- Only flag calls in extended main source
6039 and then In_Extended_Main_Source_Unit (Nam)
6040 and then In_Extended_Main_Source_Unit (N)
6042 -- Exclude enumeration literals from this processing
6044 and then Ekind (Nam) /= E_Enumeration_Literal
6045 then
6046 Check_SPARK_05_Restriction
6047 ("call to subprogram cannot appear before its body", N);
6048 end if;
6050 -- Check that this is not a call to a protected procedure or entry from
6051 -- within a protected function.
6053 Check_Internal_Protected_Use (N, Nam);
6055 -- Freeze the subprogram name if not in a spec-expression. Note that
6056 -- we freeze procedure calls as well as function calls. Procedure calls
6057 -- are not frozen according to the rules (RM 13.14(14)) because it is
6058 -- impossible to have a procedure call to a non-frozen procedure in
6059 -- pure Ada, but in the code that we generate in the expander, this
6060 -- rule needs extending because we can generate procedure calls that
6061 -- need freezing.
6063 -- In Ada 2012, expression functions may be called within pre/post
6064 -- conditions of subsequent functions or expression functions. Such
6065 -- calls do not freeze when they appear within generated bodies,
6066 -- (including the body of another expression function) which would
6067 -- place the freeze node in the wrong scope. An expression function
6068 -- is frozen in the usual fashion, by the appearance of a real body,
6069 -- or at the end of a declarative part.
6071 if Is_Entity_Name (Subp)
6072 and then not In_Spec_Expression
6073 and then not Is_Expression_Function_Or_Completion (Current_Scope)
6074 and then
6075 (not Is_Expression_Function_Or_Completion (Entity (Subp))
6076 or else Scope (Entity (Subp)) = Current_Scope)
6077 then
6078 Freeze_Expression (Subp);
6079 end if;
6081 -- For a predefined operator, the type of the result is the type imposed
6082 -- by context, except for a predefined operation on universal fixed.
6083 -- Otherwise The type of the call is the type returned by the subprogram
6084 -- being called.
6086 if Is_Predefined_Op (Nam) then
6087 if Etype (N) /= Universal_Fixed then
6088 Set_Etype (N, Typ);
6089 end if;
6091 -- If the subprogram returns an array type, and the context requires the
6092 -- component type of that array type, the node is really an indexing of
6093 -- the parameterless call. Resolve as such. A pathological case occurs
6094 -- when the type of the component is an access to the array type. In
6095 -- this case the call is truly ambiguous. If the call is to an intrinsic
6096 -- subprogram, it can't be an indexed component. This check is necessary
6097 -- because if it's Unchecked_Conversion, and we have "type T_Ptr is
6098 -- access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of
6099 -- pointers to the same array), the compiler gets confused and does an
6100 -- infinite recursion.
6102 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
6103 and then
6104 ((Is_Array_Type (Etype (Nam))
6105 and then Covers (Typ, Component_Type (Etype (Nam))))
6106 or else
6107 (Is_Access_Type (Etype (Nam))
6108 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6109 and then
6110 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))
6111 and then not Is_Intrinsic_Subprogram (Entity (Subp))))
6112 then
6113 declare
6114 Index_Node : Node_Id;
6115 New_Subp : Node_Id;
6116 Ret_Type : constant Entity_Id := Etype (Nam);
6118 begin
6119 if Is_Access_Type (Ret_Type)
6120 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
6121 then
6122 Error_Msg_N
6123 ("cannot disambiguate function call and indexing", N);
6124 else
6125 New_Subp := Relocate_Node (Subp);
6127 -- The called entity may be an explicit dereference, in which
6128 -- case there is no entity to set.
6130 if Nkind (New_Subp) /= N_Explicit_Dereference then
6131 Set_Entity (Subp, Nam);
6132 end if;
6134 if (Is_Array_Type (Ret_Type)
6135 and then Component_Type (Ret_Type) /= Any_Type)
6136 or else
6137 (Is_Access_Type (Ret_Type)
6138 and then
6139 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
6140 then
6141 if Needs_No_Actuals (Nam) then
6143 -- Indexed call to a parameterless function
6145 Index_Node :=
6146 Make_Indexed_Component (Loc,
6147 Prefix =>
6148 Make_Function_Call (Loc, Name => New_Subp),
6149 Expressions => Parameter_Associations (N));
6150 else
6151 -- An Ada 2005 prefixed call to a primitive operation
6152 -- whose first parameter is the prefix. This prefix was
6153 -- prepended to the parameter list, which is actually a
6154 -- list of indexes. Remove the prefix in order to build
6155 -- the proper indexed component.
6157 Index_Node :=
6158 Make_Indexed_Component (Loc,
6159 Prefix =>
6160 Make_Function_Call (Loc,
6161 Name => New_Subp,
6162 Parameter_Associations =>
6163 New_List
6164 (Remove_Head (Parameter_Associations (N)))),
6165 Expressions => Parameter_Associations (N));
6166 end if;
6168 -- Preserve the parenthesis count of the node
6170 Set_Paren_Count (Index_Node, Paren_Count (N));
6172 -- Since we are correcting a node classification error made
6173 -- by the parser, we call Replace rather than Rewrite.
6175 Replace (N, Index_Node);
6177 Set_Etype (Prefix (N), Ret_Type);
6178 Set_Etype (N, Typ);
6179 Resolve_Indexed_Component (N, Typ);
6181 -- Annotate the tree by creating a call marker in case
6182 -- the original call is transformed by expansion. The call
6183 -- marker is automatically saved for later examination by
6184 -- the ABE Processing phase.
6186 Build_Call_Marker (Prefix (N));
6187 end if;
6188 end if;
6190 return;
6191 end;
6193 else
6194 -- If the called function is not declared in the main unit and it
6195 -- returns the limited view of type then use the available view (as
6196 -- is done in Try_Object_Operation) to prevent back-end confusion;
6197 -- for the function entity itself. The call must appear in a context
6198 -- where the nonlimited view is available. If the function entity is
6199 -- in the extended main unit then no action is needed, because the
6200 -- back end handles this case. In either case the type of the call
6201 -- is the nonlimited view.
6203 if From_Limited_With (Etype (Nam))
6204 and then Present (Available_View (Etype (Nam)))
6205 then
6206 Set_Etype (N, Available_View (Etype (Nam)));
6208 if not In_Extended_Main_Code_Unit (Nam) then
6209 Set_Etype (Nam, Available_View (Etype (Nam)));
6210 end if;
6212 else
6213 Set_Etype (N, Etype (Nam));
6214 end if;
6215 end if;
6217 -- In the case where the call is to an overloaded subprogram, Analyze
6218 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6219 -- such a case Normalize_Actuals needs to be called once more to order
6220 -- the actuals correctly. Otherwise the call will have the ordering
6221 -- given by the last overloaded subprogram whether this is the correct
6222 -- one being called or not.
6224 if Is_Overloaded (Subp) then
6225 Normalize_Actuals (N, Nam, False, Norm_OK);
6226 pragma Assert (Norm_OK);
6227 end if;
6229 -- In any case, call is fully resolved now. Reset Overload flag, to
6230 -- prevent subsequent overload resolution if node is analyzed again
6232 Set_Is_Overloaded (Subp, False);
6233 Set_Is_Overloaded (N, False);
6235 -- A Ghost entity must appear in a specific context
6237 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
6238 Check_Ghost_Context (Nam, N);
6239 end if;
6241 -- If we are calling the current subprogram from immediately within its
6242 -- body, then that is the case where we can sometimes detect cases of
6243 -- infinite recursion statically. Do not try this in case restriction
6244 -- No_Recursion is in effect anyway, and do it only for source calls.
6246 if Comes_From_Source (N) then
6247 Scop := Current_Scope;
6249 -- Check violation of SPARK_05 restriction which does not permit
6250 -- a subprogram body to contain a call to the subprogram directly.
6252 if Restriction_Check_Required (SPARK_05)
6253 and then Same_Or_Aliased_Subprograms (Nam, Scop)
6254 then
6255 Check_SPARK_05_Restriction
6256 ("subprogram may not contain direct call to itself", N);
6257 end if;
6259 -- Issue warning for possible infinite recursion in the absence
6260 -- of the No_Recursion restriction.
6262 if Same_Or_Aliased_Subprograms (Nam, Scop)
6263 and then not Restriction_Active (No_Recursion)
6264 and then Check_Infinite_Recursion (N)
6265 then
6266 -- Here we detected and flagged an infinite recursion, so we do
6267 -- not need to test the case below for further warnings. Also we
6268 -- are all done if we now have a raise SE node.
6270 if Nkind (N) = N_Raise_Storage_Error then
6271 return;
6272 end if;
6274 -- If call is to immediately containing subprogram, then check for
6275 -- the case of a possible run-time detectable infinite recursion.
6277 else
6278 Scope_Loop : while Scop /= Standard_Standard loop
6279 if Same_Or_Aliased_Subprograms (Nam, Scop) then
6281 -- Although in general case, recursion is not statically
6282 -- checkable, the case of calling an immediately containing
6283 -- subprogram is easy to catch.
6285 Check_Restriction (No_Recursion, N);
6287 -- If the recursive call is to a parameterless subprogram,
6288 -- then even if we can't statically detect infinite
6289 -- recursion, this is pretty suspicious, and we output a
6290 -- warning. Furthermore, we will try later to detect some
6291 -- cases here at run time by expanding checking code (see
6292 -- Detect_Infinite_Recursion in package Exp_Ch6).
6294 -- If the recursive call is within a handler, do not emit a
6295 -- warning, because this is a common idiom: loop until input
6296 -- is correct, catch illegal input in handler and restart.
6298 if No (First_Formal (Nam))
6299 and then Etype (Nam) = Standard_Void_Type
6300 and then not Error_Posted (N)
6301 and then Nkind (Parent (N)) /= N_Exception_Handler
6302 then
6303 -- For the case of a procedure call. We give the message
6304 -- only if the call is the first statement in a sequence
6305 -- of statements, or if all previous statements are
6306 -- simple assignments. This is simply a heuristic to
6307 -- decrease false positives, without losing too many good
6308 -- warnings. The idea is that these previous statements
6309 -- may affect global variables the procedure depends on.
6310 -- We also exclude raise statements, that may arise from
6311 -- constraint checks and are probably unrelated to the
6312 -- intended control flow.
6314 if Nkind (N) = N_Procedure_Call_Statement
6315 and then Is_List_Member (N)
6316 then
6317 declare
6318 P : Node_Id;
6319 begin
6320 P := Prev (N);
6321 while Present (P) loop
6322 if not Nkind_In (P, N_Assignment_Statement,
6323 N_Raise_Constraint_Error)
6324 then
6325 exit Scope_Loop;
6326 end if;
6328 Prev (P);
6329 end loop;
6330 end;
6331 end if;
6333 -- Do not give warning if we are in a conditional context
6335 declare
6336 K : constant Node_Kind := Nkind (Parent (N));
6337 begin
6338 if (K = N_Loop_Statement
6339 and then Present (Iteration_Scheme (Parent (N))))
6340 or else K = N_If_Statement
6341 or else K = N_Elsif_Part
6342 or else K = N_Case_Statement_Alternative
6343 then
6344 exit Scope_Loop;
6345 end if;
6346 end;
6348 -- Here warning is to be issued
6350 Set_Has_Recursive_Call (Nam);
6351 Error_Msg_Warn := SPARK_Mode /= On;
6352 Error_Msg_N ("possible infinite recursion<<!", N);
6353 Error_Msg_N ("\Storage_Error ]<<!", N);
6354 end if;
6356 exit Scope_Loop;
6357 end if;
6359 Scop := Scope (Scop);
6360 end loop Scope_Loop;
6361 end if;
6362 end if;
6364 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6366 Check_Obsolescent_2005_Entity (Nam, Subp);
6368 -- If subprogram name is a predefined operator, it was given in
6369 -- functional notation. Replace call node with operator node, so
6370 -- that actuals can be resolved appropriately.
6372 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6373 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6374 return;
6376 elsif Present (Alias (Nam))
6377 and then Is_Predefined_Op (Alias (Nam))
6378 then
6379 Resolve_Actuals (N, Nam);
6380 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6381 return;
6382 end if;
6384 -- Create a transient scope if the resulting type requires it
6386 -- There are several notable exceptions:
6388 -- a) In init procs, the transient scope overhead is not needed, and is
6389 -- even incorrect when the call is a nested initialization call for a
6390 -- component whose expansion may generate adjust calls. However, if the
6391 -- call is some other procedure call within an initialization procedure
6392 -- (for example a call to Create_Task in the init_proc of the task
6393 -- run-time record) a transient scope must be created around this call.
6395 -- b) Enumeration literal pseudo-calls need no transient scope
6397 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6398 -- functions) do not use the secondary stack even though the return
6399 -- type may be unconstrained.
6401 -- d) Calls to a build-in-place function, since such functions may
6402 -- allocate their result directly in a target object, and cases where
6403 -- the result does get allocated in the secondary stack are checked for
6404 -- within the specialized Exp_Ch6 procedures for expanding those
6405 -- build-in-place calls.
6407 -- e) Calls to inlinable expression functions do not use the secondary
6408 -- stack (since the call will be replaced by its returned object).
6410 -- f) If the subprogram is marked Inline_Always, then even if it returns
6411 -- an unconstrained type the call does not require use of the secondary
6412 -- stack. However, inlining will only take place if the body to inline
6413 -- is already present. It may not be available if e.g. the subprogram is
6414 -- declared in a child instance.
6416 -- If this is an initialization call for a type whose construction
6417 -- uses the secondary stack, and it is not a nested call to initialize
6418 -- a component, we do need to create a transient scope for it. We
6419 -- check for this by traversing the type in Check_Initialization_Call.
6421 if Is_Inlined (Nam)
6422 and then Has_Pragma_Inline (Nam)
6423 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6424 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6425 then
6426 null;
6428 elsif Ekind (Nam) = E_Enumeration_Literal
6429 or else Is_Build_In_Place_Function (Nam)
6430 or else Is_Intrinsic_Subprogram (Nam)
6431 or else Is_Inlinable_Expression_Function (Nam)
6432 then
6433 null;
6435 elsif Expander_Active
6436 and then Is_Type (Etype (Nam))
6437 and then Requires_Transient_Scope (Etype (Nam))
6438 and then
6439 (not Within_Init_Proc
6440 or else
6441 (not Is_Init_Proc (Nam) and then Ekind (Nam) /= E_Function))
6442 then
6443 Establish_Transient_Scope (N, Sec_Stack => True);
6445 -- If the call appears within the bounds of a loop, it will
6446 -- be rewritten and reanalyzed, nothing left to do here.
6448 if Nkind (N) /= N_Function_Call then
6449 return;
6450 end if;
6452 elsif Is_Init_Proc (Nam)
6453 and then not Within_Init_Proc
6454 then
6455 Check_Initialization_Call (N, Nam);
6456 end if;
6458 -- A protected function cannot be called within the definition of the
6459 -- enclosing protected type, unless it is part of a pre/postcondition
6460 -- on another protected operation. This may appear in the entry wrapper
6461 -- created for an entry with preconditions.
6463 if Is_Protected_Type (Scope (Nam))
6464 and then In_Open_Scopes (Scope (Nam))
6465 and then not Has_Completion (Scope (Nam))
6466 and then not In_Spec_Expression
6467 and then not Is_Entry_Wrapper (Current_Scope)
6468 then
6469 Error_Msg_NE
6470 ("& cannot be called before end of protected definition", N, Nam);
6471 end if;
6473 -- Propagate interpretation to actuals, and add default expressions
6474 -- where needed.
6476 if Present (First_Formal (Nam)) then
6477 Resolve_Actuals (N, Nam);
6479 -- Overloaded literals are rewritten as function calls, for purpose of
6480 -- resolution. After resolution, we can replace the call with the
6481 -- literal itself.
6483 elsif Ekind (Nam) = E_Enumeration_Literal then
6484 Copy_Node (Subp, N);
6485 Resolve_Entity_Name (N, Typ);
6487 -- Avoid validation, since it is a static function call
6489 Generate_Reference (Nam, Subp);
6490 return;
6491 end if;
6493 -- If the subprogram is not global, then kill all saved values and
6494 -- checks. This is a bit conservative, since in many cases we could do
6495 -- better, but it is not worth the effort. Similarly, we kill constant
6496 -- values. However we do not need to do this for internal entities
6497 -- (unless they are inherited user-defined subprograms), since they
6498 -- are not in the business of molesting local values.
6500 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6501 -- kill all checks and values for calls to global subprograms. This
6502 -- takes care of the case where an access to a local subprogram is
6503 -- taken, and could be passed directly or indirectly and then called
6504 -- from almost any context.
6506 -- Note: we do not do this step till after resolving the actuals. That
6507 -- way we still take advantage of the current value information while
6508 -- scanning the actuals.
6510 -- We suppress killing values if we are processing the nodes associated
6511 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6512 -- type kills all the values as part of analyzing the code that
6513 -- initializes the dispatch tables.
6515 if Inside_Freezing_Actions = 0
6516 and then (not Is_Library_Level_Entity (Nam)
6517 or else Suppress_Value_Tracking_On_Call
6518 (Nearest_Dynamic_Scope (Current_Scope)))
6519 and then (Comes_From_Source (Nam)
6520 or else (Present (Alias (Nam))
6521 and then Comes_From_Source (Alias (Nam))))
6522 then
6523 Kill_Current_Values;
6524 end if;
6526 -- If we are warning about unread OUT parameters, this is the place to
6527 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6528 -- after the above call to Kill_Current_Values (since that call clears
6529 -- the Last_Assignment field of all local variables).
6531 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6532 and then Comes_From_Source (N)
6533 and then In_Extended_Main_Source_Unit (N)
6534 then
6535 declare
6536 F : Entity_Id;
6537 A : Node_Id;
6539 begin
6540 F := First_Formal (Nam);
6541 A := First_Actual (N);
6542 while Present (F) and then Present (A) loop
6543 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6544 and then Warn_On_Modified_As_Out_Parameter (F)
6545 and then Is_Entity_Name (A)
6546 and then Present (Entity (A))
6547 and then Comes_From_Source (N)
6548 and then Safe_To_Capture_Value (N, Entity (A))
6549 then
6550 Set_Last_Assignment (Entity (A), A);
6551 end if;
6553 Next_Formal (F);
6554 Next_Actual (A);
6555 end loop;
6556 end;
6557 end if;
6559 -- If the subprogram is a primitive operation, check whether or not
6560 -- it is a correct dispatching call.
6562 if Is_Overloadable (Nam)
6563 and then Is_Dispatching_Operation (Nam)
6564 then
6565 Check_Dispatching_Call (N);
6567 elsif Ekind (Nam) /= E_Subprogram_Type
6568 and then Is_Abstract_Subprogram (Nam)
6569 and then not In_Instance
6570 then
6571 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6572 end if;
6574 -- If this is a dispatching call, generate the appropriate reference,
6575 -- for better source navigation in GPS.
6577 if Is_Overloadable (Nam)
6578 and then Present (Controlling_Argument (N))
6579 then
6580 Generate_Reference (Nam, Subp, 'R');
6582 -- Normal case, not a dispatching call: generate a call reference
6584 else
6585 Generate_Reference (Nam, Subp, 's');
6586 end if;
6588 if Is_Intrinsic_Subprogram (Nam) then
6589 Check_Intrinsic_Call (N);
6590 end if;
6592 -- Check for violation of restriction No_Specific_Termination_Handlers
6593 -- and warn on a potentially blocking call to Abort_Task.
6595 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6596 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6597 or else
6598 Is_RTE (Nam, RE_Specific_Handler))
6599 then
6600 Check_Restriction (No_Specific_Termination_Handlers, N);
6602 elsif Is_RTE (Nam, RE_Abort_Task) then
6603 Check_Potentially_Blocking_Operation (N);
6604 end if;
6606 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6607 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6608 -- need to check the second argument to determine whether it is an
6609 -- absolute or relative timing event.
6611 if Restriction_Check_Required (No_Relative_Delay)
6612 and then Is_RTE (Nam, RE_Set_Handler)
6613 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6614 then
6615 Check_Restriction (No_Relative_Delay, N);
6616 end if;
6618 -- Issue an error for a call to an eliminated subprogram. This routine
6619 -- will not perform the check if the call appears within a default
6620 -- expression.
6622 Check_For_Eliminated_Subprogram (Subp, Nam);
6624 -- In formal mode, the primitive operations of a tagged type or type
6625 -- extension do not include functions that return the tagged type.
6627 if Nkind (N) = N_Function_Call
6628 and then Is_Tagged_Type (Etype (N))
6629 and then Is_Entity_Name (Name (N))
6630 and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6631 then
6632 Check_SPARK_05_Restriction ("function not inherited", N);
6633 end if;
6635 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6636 -- class-wide and the call dispatches on result in a context that does
6637 -- not provide a tag, the call raises Program_Error.
6639 if Nkind (N) = N_Function_Call
6640 and then In_Instance
6641 and then Is_Generic_Actual_Type (Typ)
6642 and then Is_Class_Wide_Type (Typ)
6643 and then Has_Controlling_Result (Nam)
6644 and then Nkind (Parent (N)) = N_Object_Declaration
6645 then
6646 -- Verify that none of the formals are controlling
6648 declare
6649 Call_OK : Boolean := False;
6650 F : Entity_Id;
6652 begin
6653 F := First_Formal (Nam);
6654 while Present (F) loop
6655 if Is_Controlling_Formal (F) then
6656 Call_OK := True;
6657 exit;
6658 end if;
6660 Next_Formal (F);
6661 end loop;
6663 if not Call_OK then
6664 Error_Msg_Warn := SPARK_Mode /= On;
6665 Error_Msg_N ("!cannot determine tag of result<<", N);
6666 Error_Msg_N ("\Program_Error [<<!", N);
6667 Insert_Action (N,
6668 Make_Raise_Program_Error (Sloc (N),
6669 Reason => PE_Explicit_Raise));
6670 end if;
6671 end;
6672 end if;
6674 -- Check for calling a function with OUT or IN OUT parameter when the
6675 -- calling context (us right now) is not Ada 2012, so does not allow
6676 -- OUT or IN OUT parameters in function calls. Functions declared in
6677 -- a predefined unit are OK, as they may be called indirectly from a
6678 -- user-declared instantiation.
6680 if Ada_Version < Ada_2012
6681 and then Ekind (Nam) = E_Function
6682 and then Has_Out_Or_In_Out_Parameter (Nam)
6683 and then not In_Predefined_Unit (Nam)
6684 then
6685 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6686 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6687 end if;
6689 -- Check the dimensions of the actuals in the call. For function calls,
6690 -- propagate the dimensions from the returned type to N.
6692 Analyze_Dimension_Call (N, Nam);
6694 -- All done, evaluate call and deal with elaboration issues
6696 Eval_Call (N);
6698 -- Annotate the tree by creating a call marker in case the original call
6699 -- is transformed by expansion. The call marker is automatically saved
6700 -- for later examination by the ABE Processing phase.
6702 Build_Call_Marker (N);
6704 -- In GNATprove mode, expansion is disabled, but we want to inline some
6705 -- subprograms to facilitate formal verification. Indirect calls through
6706 -- a subprogram type or within a generic cannot be inlined. Inlining is
6707 -- performed only for calls subject to SPARK_Mode on.
6709 if GNATprove_Mode
6710 and then SPARK_Mode = On
6711 and then Is_Overloadable (Nam)
6712 and then not Inside_A_Generic
6713 then
6714 Nam_UA := Ultimate_Alias (Nam);
6715 Nam_Decl := Unit_Declaration_Node (Nam_UA);
6717 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6718 Body_Id := Corresponding_Body (Nam_Decl);
6720 -- Nothing to do if the subprogram is not eligible for inlining in
6721 -- GNATprove mode, or inlining is disabled with switch -gnatdm
6723 if not Is_Inlined_Always (Nam_UA)
6724 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6725 or else Debug_Flag_M
6726 then
6727 null;
6729 -- Calls cannot be inlined inside assertions, as GNATprove treats
6730 -- assertions as logic expressions. Only issue a message when the
6731 -- body has been seen, otherwise this leads to spurious messages
6732 -- on expression functions.
6734 elsif In_Assertion_Expr /= 0 then
6735 if Present (Body_Id) then
6736 Cannot_Inline
6737 ("cannot inline & (in assertion expression)?", N, Nam_UA);
6738 end if;
6740 -- Calls cannot be inlined inside default expressions
6742 elsif In_Default_Expr then
6743 Cannot_Inline
6744 ("cannot inline & (in default expression)?", N, Nam_UA);
6746 -- Inlining should not be performed during pre-analysis
6748 elsif Full_Analysis then
6750 -- Do not inline calls inside expression functions, as this
6751 -- would prevent interpreting them as logical formulas in
6752 -- GNATprove. Only issue a message when the body has been seen,
6753 -- otherwise this leads to spurious messages on callees that
6754 -- are themselves expression functions.
6756 if Present (Current_Subprogram)
6757 and then Is_Expression_Function_Or_Completion
6758 (Current_Subprogram)
6759 then
6760 if Present (Body_Id)
6761 and then Present (Body_To_Inline (Nam_Decl))
6762 then
6763 Cannot_Inline
6764 ("cannot inline & (inside expression function)?",
6765 N, Nam_UA);
6766 end if;
6768 -- With the one-pass inlining technique, a call cannot be
6769 -- inlined if the corresponding body has not been seen yet.
6771 elsif No (Body_Id) then
6772 Cannot_Inline
6773 ("cannot inline & (body not seen yet)?", N, Nam_UA);
6775 -- Nothing to do if there is no body to inline, indicating that
6776 -- the subprogram is not suitable for inlining in GNATprove
6777 -- mode.
6779 elsif No (Body_To_Inline (Nam_Decl)) then
6780 null;
6782 -- Calls cannot be inlined inside potentially unevaluated
6783 -- expressions, as this would create complex actions inside
6784 -- expressions, that are not handled by GNATprove.
6786 elsif Is_Potentially_Unevaluated (N) then
6787 Cannot_Inline
6788 ("cannot inline & (in potentially unevaluated context)?",
6789 N, Nam_UA);
6791 -- Do not inline calls which would possibly lead to missing a
6792 -- type conversion check on an input parameter.
6794 elsif not Call_Can_Be_Inlined_In_GNATprove_Mode (N, Nam) then
6795 Cannot_Inline
6796 ("cannot inline & (possible check on input parameters)?",
6797 N, Nam_UA);
6799 -- Otherwise, inline the call
6801 else
6802 Expand_Inlined_Call (N, Nam_UA, Nam);
6803 end if;
6804 end if;
6805 end if;
6806 end if;
6808 Mark_Use_Clauses (Subp);
6810 Warn_On_Overlapping_Actuals (Nam, N);
6811 end Resolve_Call;
6813 -----------------------------
6814 -- Resolve_Case_Expression --
6815 -----------------------------
6817 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6818 Alt : Node_Id;
6819 Alt_Expr : Node_Id;
6820 Alt_Typ : Entity_Id;
6821 Is_Dyn : Boolean;
6823 begin
6824 Alt := First (Alternatives (N));
6825 while Present (Alt) loop
6826 Alt_Expr := Expression (Alt);
6828 if Error_Posted (Alt_Expr) then
6829 return;
6830 end if;
6832 Resolve (Alt_Expr, Typ);
6833 Alt_Typ := Etype (Alt_Expr);
6835 -- When the expression is of a scalar subtype different from the
6836 -- result subtype, then insert a conversion to ensure the generation
6837 -- of a constraint check.
6839 if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then
6840 Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr));
6841 Analyze_And_Resolve (Alt_Expr, Typ);
6842 end if;
6844 Next (Alt);
6845 end loop;
6847 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6848 -- dynamically tagged must be known statically.
6850 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6851 Alt := First (Alternatives (N));
6852 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6854 while Present (Alt) loop
6855 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6856 Error_Msg_N
6857 ("all or none of the dependent expressions can be "
6858 & "dynamically tagged", N);
6859 end if;
6861 Next (Alt);
6862 end loop;
6863 end if;
6865 Set_Etype (N, Typ);
6866 Eval_Case_Expression (N);
6867 Analyze_Dimension (N);
6868 end Resolve_Case_Expression;
6870 -------------------------------
6871 -- Resolve_Character_Literal --
6872 -------------------------------
6874 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6875 B_Typ : constant Entity_Id := Base_Type (Typ);
6876 C : Entity_Id;
6878 begin
6879 -- Verify that the character does belong to the type of the context
6881 Set_Etype (N, B_Typ);
6882 Eval_Character_Literal (N);
6884 -- Wide_Wide_Character literals must always be defined, since the set
6885 -- of wide wide character literals is complete, i.e. if a character
6886 -- literal is accepted by the parser, then it is OK for wide wide
6887 -- character (out of range character literals are rejected).
6889 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6890 return;
6892 -- Always accept character literal for type Any_Character, which
6893 -- occurs in error situations and in comparisons of literals, both
6894 -- of which should accept all literals.
6896 elsif B_Typ = Any_Character then
6897 return;
6899 -- For Standard.Character or a type derived from it, check that the
6900 -- literal is in range.
6902 elsif Root_Type (B_Typ) = Standard_Character then
6903 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6904 return;
6905 end if;
6907 -- For Standard.Wide_Character or a type derived from it, check that the
6908 -- literal is in range.
6910 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6911 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6912 return;
6913 end if;
6915 -- If the entity is already set, this has already been resolved in a
6916 -- generic context, or comes from expansion. Nothing else to do.
6918 elsif Present (Entity (N)) then
6919 return;
6921 -- Otherwise we have a user defined character type, and we can use the
6922 -- standard visibility mechanisms to locate the referenced entity.
6924 else
6925 C := Current_Entity (N);
6926 while Present (C) loop
6927 if Etype (C) = B_Typ then
6928 Set_Entity_With_Checks (N, C);
6929 Generate_Reference (C, N);
6930 return;
6931 end if;
6933 C := Homonym (C);
6934 end loop;
6935 end if;
6937 -- If we fall through, then the literal does not match any of the
6938 -- entries of the enumeration type. This isn't just a constraint error
6939 -- situation, it is an illegality (see RM 4.2).
6941 Error_Msg_NE
6942 ("character not defined for }", N, First_Subtype (B_Typ));
6943 end Resolve_Character_Literal;
6945 ---------------------------
6946 -- Resolve_Comparison_Op --
6947 ---------------------------
6949 -- Context requires a boolean type, and plays no role in resolution.
6950 -- Processing identical to that for equality operators. The result type is
6951 -- the base type, which matters when pathological subtypes of booleans with
6952 -- limited ranges are used.
6954 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
6955 L : constant Node_Id := Left_Opnd (N);
6956 R : constant Node_Id := Right_Opnd (N);
6957 T : Entity_Id;
6959 begin
6960 -- If this is an intrinsic operation which is not predefined, use the
6961 -- types of its declared arguments to resolve the possibly overloaded
6962 -- operands. Otherwise the operands are unambiguous and specify the
6963 -- expected type.
6965 if Scope (Entity (N)) /= Standard_Standard then
6966 T := Etype (First_Entity (Entity (N)));
6968 else
6969 T := Find_Unique_Type (L, R);
6971 if T = Any_Fixed then
6972 T := Unique_Fixed_Point_Type (L);
6973 end if;
6974 end if;
6976 Set_Etype (N, Base_Type (Typ));
6977 Generate_Reference (T, N, ' ');
6979 -- Skip remaining processing if already set to Any_Type
6981 if T = Any_Type then
6982 return;
6983 end if;
6985 -- Deal with other error cases
6987 if T = Any_String or else
6988 T = Any_Composite or else
6989 T = Any_Character
6990 then
6991 if T = Any_Character then
6992 Ambiguous_Character (L);
6993 else
6994 Error_Msg_N ("ambiguous operands for comparison", N);
6995 end if;
6997 Set_Etype (N, Any_Type);
6998 return;
6999 end if;
7001 -- Resolve the operands if types OK
7003 Resolve (L, T);
7004 Resolve (R, T);
7005 Check_Unset_Reference (L);
7006 Check_Unset_Reference (R);
7007 Generate_Operator_Reference (N, T);
7008 Check_Low_Bound_Tested (N);
7010 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
7011 -- types or array types except String.
7013 if Is_Boolean_Type (T) then
7014 Check_SPARK_05_Restriction
7015 ("comparison is not defined on Boolean type", N);
7017 elsif Is_Array_Type (T)
7018 and then Base_Type (T) /= Standard_String
7019 then
7020 Check_SPARK_05_Restriction
7021 ("comparison is not defined on array types other than String", N);
7022 end if;
7024 -- Check comparison on unordered enumeration
7026 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
7027 Error_Msg_Sloc := Sloc (Etype (L));
7028 Error_Msg_NE
7029 ("comparison on unordered enumeration type& declared#?U?",
7030 N, Etype (L));
7031 end if;
7033 Analyze_Dimension (N);
7035 -- Evaluate the relation (note we do this after the above check since
7036 -- this Eval call may change N to True/False. Skip this evaluation
7037 -- inside assertions, in order to keep assertions as written by users
7038 -- for tools that rely on these, e.g. GNATprove for loop invariants.
7039 -- Except evaluation is still performed even inside assertions for
7040 -- comparisons between values of universal type, which are useless
7041 -- for static analysis tools, and not supported even by GNATprove.
7043 if In_Assertion_Expr = 0
7044 or else (Is_Universal_Numeric_Type (Etype (L))
7045 and then
7046 Is_Universal_Numeric_Type (Etype (R)))
7047 then
7048 Eval_Relational_Op (N);
7049 end if;
7050 end Resolve_Comparison_Op;
7052 -----------------------------------------
7053 -- Resolve_Discrete_Subtype_Indication --
7054 -----------------------------------------
7056 procedure Resolve_Discrete_Subtype_Indication
7057 (N : Node_Id;
7058 Typ : Entity_Id)
7060 R : Node_Id;
7061 S : Entity_Id;
7063 begin
7064 Analyze (Subtype_Mark (N));
7065 S := Entity (Subtype_Mark (N));
7067 if Nkind (Constraint (N)) /= N_Range_Constraint then
7068 Error_Msg_N ("expect range constraint for discrete type", N);
7069 Set_Etype (N, Any_Type);
7071 else
7072 R := Range_Expression (Constraint (N));
7074 if R = Error then
7075 return;
7076 end if;
7078 Analyze (R);
7080 if Base_Type (S) /= Base_Type (Typ) then
7081 Error_Msg_NE
7082 ("expect subtype of }", N, First_Subtype (Typ));
7084 -- Rewrite the constraint as a range of Typ
7085 -- to allow compilation to proceed further.
7087 Set_Etype (N, Typ);
7088 Rewrite (Low_Bound (R),
7089 Make_Attribute_Reference (Sloc (Low_Bound (R)),
7090 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7091 Attribute_Name => Name_First));
7092 Rewrite (High_Bound (R),
7093 Make_Attribute_Reference (Sloc (High_Bound (R)),
7094 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7095 Attribute_Name => Name_First));
7097 else
7098 Resolve (R, Typ);
7099 Set_Etype (N, Etype (R));
7101 -- Additionally, we must check that the bounds are compatible
7102 -- with the given subtype, which might be different from the
7103 -- type of the context.
7105 Apply_Range_Check (R, S);
7107 -- ??? If the above check statically detects a Constraint_Error
7108 -- it replaces the offending bound(s) of the range R with a
7109 -- Constraint_Error node. When the itype which uses these bounds
7110 -- is frozen the resulting call to Duplicate_Subexpr generates
7111 -- a new temporary for the bounds.
7113 -- Unfortunately there are other itypes that are also made depend
7114 -- on these bounds, so when Duplicate_Subexpr is called they get
7115 -- a forward reference to the newly created temporaries and Gigi
7116 -- aborts on such forward references. This is probably sign of a
7117 -- more fundamental problem somewhere else in either the order of
7118 -- itype freezing or the way certain itypes are constructed.
7120 -- To get around this problem we call Remove_Side_Effects right
7121 -- away if either bounds of R are a Constraint_Error.
7123 declare
7124 L : constant Node_Id := Low_Bound (R);
7125 H : constant Node_Id := High_Bound (R);
7127 begin
7128 if Nkind (L) = N_Raise_Constraint_Error then
7129 Remove_Side_Effects (L);
7130 end if;
7132 if Nkind (H) = N_Raise_Constraint_Error then
7133 Remove_Side_Effects (H);
7134 end if;
7135 end;
7137 Check_Unset_Reference (Low_Bound (R));
7138 Check_Unset_Reference (High_Bound (R));
7139 end if;
7140 end if;
7141 end Resolve_Discrete_Subtype_Indication;
7143 -------------------------
7144 -- Resolve_Entity_Name --
7145 -------------------------
7147 -- Used to resolve identifiers and expanded names
7149 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
7150 function Is_Assignment_Or_Object_Expression
7151 (Context : Node_Id;
7152 Expr : Node_Id) return Boolean;
7153 -- Determine whether node Context denotes an assignment statement or an
7154 -- object declaration whose expression is node Expr.
7156 ----------------------------------------
7157 -- Is_Assignment_Or_Object_Expression --
7158 ----------------------------------------
7160 function Is_Assignment_Or_Object_Expression
7161 (Context : Node_Id;
7162 Expr : Node_Id) return Boolean
7164 begin
7165 if Nkind_In (Context, N_Assignment_Statement,
7166 N_Object_Declaration)
7167 and then Expression (Context) = Expr
7168 then
7169 return True;
7171 -- Check whether a construct that yields a name is the expression of
7172 -- an assignment statement or an object declaration.
7174 elsif (Nkind_In (Context, N_Attribute_Reference,
7175 N_Explicit_Dereference,
7176 N_Indexed_Component,
7177 N_Selected_Component,
7178 N_Slice)
7179 and then Prefix (Context) = Expr)
7180 or else
7181 (Nkind_In (Context, N_Type_Conversion,
7182 N_Unchecked_Type_Conversion)
7183 and then Expression (Context) = Expr)
7184 then
7185 return
7186 Is_Assignment_Or_Object_Expression
7187 (Context => Parent (Context),
7188 Expr => Context);
7190 -- Otherwise the context is not an assignment statement or an object
7191 -- declaration.
7193 else
7194 return False;
7195 end if;
7196 end Is_Assignment_Or_Object_Expression;
7198 -- Local variables
7200 E : constant Entity_Id := Entity (N);
7201 Par : Node_Id;
7203 -- Start of processing for Resolve_Entity_Name
7205 begin
7206 -- If garbage from errors, set to Any_Type and return
7208 if No (E) and then Total_Errors_Detected /= 0 then
7209 Set_Etype (N, Any_Type);
7210 return;
7211 end if;
7213 -- Replace named numbers by corresponding literals. Note that this is
7214 -- the one case where Resolve_Entity_Name must reset the Etype, since
7215 -- it is currently marked as universal.
7217 if Ekind (E) = E_Named_Integer then
7218 Set_Etype (N, Typ);
7219 Eval_Named_Integer (N);
7221 elsif Ekind (E) = E_Named_Real then
7222 Set_Etype (N, Typ);
7223 Eval_Named_Real (N);
7225 -- For enumeration literals, we need to make sure that a proper style
7226 -- check is done, since such literals are overloaded, and thus we did
7227 -- not do a style check during the first phase of analysis.
7229 elsif Ekind (E) = E_Enumeration_Literal then
7230 Set_Entity_With_Checks (N, E);
7231 Eval_Entity_Name (N);
7233 -- Case of (sub)type name appearing in a context where an expression
7234 -- is expected. This is legal if occurrence is a current instance.
7235 -- See RM 8.6 (17/3).
7237 elsif Is_Type (E) then
7238 if Is_Current_Instance (N) then
7239 null;
7241 -- Any other use is an error
7243 else
7244 Error_Msg_N
7245 ("invalid use of subtype mark in expression or call", N);
7246 end if;
7248 -- Check discriminant use if entity is discriminant in current scope,
7249 -- i.e. discriminant of record or concurrent type currently being
7250 -- analyzed. Uses in corresponding body are unrestricted.
7252 elsif Ekind (E) = E_Discriminant
7253 and then Scope (E) = Current_Scope
7254 and then not Has_Completion (Current_Scope)
7255 then
7256 Check_Discriminant_Use (N);
7258 -- A parameterless generic function cannot appear in a context that
7259 -- requires resolution.
7261 elsif Ekind (E) = E_Generic_Function then
7262 Error_Msg_N ("illegal use of generic function", N);
7264 -- In Ada 83 an OUT parameter cannot be read, but attributes of
7265 -- array types (i.e. bounds and length) are legal.
7267 elsif Ekind (E) = E_Out_Parameter
7268 and then (Nkind (Parent (N)) /= N_Attribute_Reference
7269 or else Is_Scalar_Type (Etype (E)))
7271 and then (Nkind (Parent (N)) in N_Op
7272 or else Nkind (Parent (N)) = N_Explicit_Dereference
7273 or else Is_Assignment_Or_Object_Expression
7274 (Context => Parent (N),
7275 Expr => N))
7276 then
7277 if Ada_Version = Ada_83 then
7278 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7279 end if;
7281 -- In all other cases, just do the possible static evaluation
7283 else
7284 -- A deferred constant that appears in an expression must have a
7285 -- completion, unless it has been removed by in-place expansion of
7286 -- an aggregate. A constant that is a renaming does not need
7287 -- initialization.
7289 if Ekind (E) = E_Constant
7290 and then Comes_From_Source (E)
7291 and then No (Constant_Value (E))
7292 and then Is_Frozen (Etype (E))
7293 and then not In_Spec_Expression
7294 and then not Is_Imported (E)
7295 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7296 then
7297 if No_Initialization (Parent (E))
7298 or else (Present (Full_View (E))
7299 and then No_Initialization (Parent (Full_View (E))))
7300 then
7301 null;
7302 else
7303 Error_Msg_N
7304 ("deferred constant is frozen before completion", N);
7305 end if;
7306 end if;
7308 Eval_Entity_Name (N);
7309 end if;
7311 Par := Parent (N);
7313 -- When the entity appears in a parameter association, retrieve the
7314 -- related subprogram call.
7316 if Nkind (Par) = N_Parameter_Association then
7317 Par := Parent (Par);
7318 end if;
7320 if Comes_From_Source (N) then
7322 -- The following checks are only relevant when SPARK_Mode is on as
7323 -- they are not standard Ada legality rules.
7325 if SPARK_Mode = On then
7327 -- An effectively volatile object subject to enabled properties
7328 -- Async_Writers or Effective_Reads must appear in non-interfering
7329 -- context (SPARK RM 7.1.3(12)).
7331 if Is_Object (E)
7332 and then Is_Effectively_Volatile (E)
7333 and then (Async_Writers_Enabled (E)
7334 or else Effective_Reads_Enabled (E))
7335 and then not Is_OK_Volatile_Context (Par, N)
7336 then
7337 SPARK_Msg_N
7338 ("volatile object cannot appear in this context "
7339 & "(SPARK RM 7.1.3(12))", N);
7340 end if;
7342 -- The variable may eventually become a constituent of a single
7343 -- protected/task type. Record the reference now and verify its
7344 -- legality when analyzing the contract of the variable
7345 -- (SPARK RM 9.3).
7347 if Ekind (E) = E_Variable then
7348 Record_Possible_Part_Of_Reference (E, N);
7349 end if;
7350 end if;
7352 -- A Ghost entity must appear in a specific context
7354 if Is_Ghost_Entity (E) then
7355 Check_Ghost_Context (E, N);
7356 end if;
7357 end if;
7359 Mark_Use_Clauses (E);
7360 end Resolve_Entity_Name;
7362 -------------------
7363 -- Resolve_Entry --
7364 -------------------
7366 procedure Resolve_Entry (Entry_Name : Node_Id) is
7367 Loc : constant Source_Ptr := Sloc (Entry_Name);
7368 Nam : Entity_Id;
7369 New_N : Node_Id;
7370 S : Entity_Id;
7371 Tsk : Entity_Id;
7372 E_Name : Node_Id;
7373 Index : Node_Id;
7375 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7376 -- If the bounds of the entry family being called depend on task
7377 -- discriminants, build a new index subtype where a discriminant is
7378 -- replaced with the value of the discriminant of the target task.
7379 -- The target task is the prefix of the entry name in the call.
7381 -----------------------
7382 -- Actual_Index_Type --
7383 -----------------------
7385 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7386 Typ : constant Entity_Id := Entry_Index_Type (E);
7387 Tsk : constant Entity_Id := Scope (E);
7388 Lo : constant Node_Id := Type_Low_Bound (Typ);
7389 Hi : constant Node_Id := Type_High_Bound (Typ);
7390 New_T : Entity_Id;
7392 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7393 -- If the bound is given by a discriminant, replace with a reference
7394 -- to the discriminant of the same name in the target task. If the
7395 -- entry name is the target of a requeue statement and the entry is
7396 -- in the current protected object, the bound to be used is the
7397 -- discriminal of the object (see Apply_Range_Checks for details of
7398 -- the transformation).
7400 -----------------------------
7401 -- Actual_Discriminant_Ref --
7402 -----------------------------
7404 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7405 Typ : constant Entity_Id := Etype (Bound);
7406 Ref : Node_Id;
7408 begin
7409 Remove_Side_Effects (Bound);
7411 if not Is_Entity_Name (Bound)
7412 or else Ekind (Entity (Bound)) /= E_Discriminant
7413 then
7414 return Bound;
7416 elsif Is_Protected_Type (Tsk)
7417 and then In_Open_Scopes (Tsk)
7418 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7419 then
7420 -- Note: here Bound denotes a discriminant of the corresponding
7421 -- record type tskV, whose discriminal is a formal of the
7422 -- init-proc tskVIP. What we want is the body discriminal,
7423 -- which is associated to the discriminant of the original
7424 -- concurrent type tsk.
7426 return New_Occurrence_Of
7427 (Find_Body_Discriminal (Entity (Bound)), Loc);
7429 else
7430 Ref :=
7431 Make_Selected_Component (Loc,
7432 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7433 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7434 Analyze (Ref);
7435 Resolve (Ref, Typ);
7436 return Ref;
7437 end if;
7438 end Actual_Discriminant_Ref;
7440 -- Start of processing for Actual_Index_Type
7442 begin
7443 if not Has_Discriminants (Tsk)
7444 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7445 then
7446 return Entry_Index_Type (E);
7448 else
7449 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7450 Set_Etype (New_T, Base_Type (Typ));
7451 Set_Size_Info (New_T, Typ);
7452 Set_RM_Size (New_T, RM_Size (Typ));
7453 Set_Scalar_Range (New_T,
7454 Make_Range (Sloc (Entry_Name),
7455 Low_Bound => Actual_Discriminant_Ref (Lo),
7456 High_Bound => Actual_Discriminant_Ref (Hi)));
7458 return New_T;
7459 end if;
7460 end Actual_Index_Type;
7462 -- Start of processing for Resolve_Entry
7464 begin
7465 -- Find name of entry being called, and resolve prefix of name with its
7466 -- own type. The prefix can be overloaded, and the name and signature of
7467 -- the entry must be taken into account.
7469 if Nkind (Entry_Name) = N_Indexed_Component then
7471 -- Case of dealing with entry family within the current tasks
7473 E_Name := Prefix (Entry_Name);
7475 else
7476 E_Name := Entry_Name;
7477 end if;
7479 if Is_Entity_Name (E_Name) then
7481 -- Entry call to an entry (or entry family) in the current task. This
7482 -- is legal even though the task will deadlock. Rewrite as call to
7483 -- current task.
7485 -- This can also be a call to an entry in an enclosing task. If this
7486 -- is a single task, we have to retrieve its name, because the scope
7487 -- of the entry is the task type, not the object. If the enclosing
7488 -- task is a task type, the identity of the task is given by its own
7489 -- self variable.
7491 -- Finally this can be a requeue on an entry of the same task or
7492 -- protected object.
7494 S := Scope (Entity (E_Name));
7496 for J in reverse 0 .. Scope_Stack.Last loop
7497 if Is_Task_Type (Scope_Stack.Table (J).Entity)
7498 and then not Comes_From_Source (S)
7499 then
7500 -- S is an enclosing task or protected object. The concurrent
7501 -- declaration has been converted into a type declaration, and
7502 -- the object itself has an object declaration that follows
7503 -- the type in the same declarative part.
7505 Tsk := Next_Entity (S);
7506 while Etype (Tsk) /= S loop
7507 Next_Entity (Tsk);
7508 end loop;
7510 S := Tsk;
7511 exit;
7513 elsif S = Scope_Stack.Table (J).Entity then
7515 -- Call to current task. Will be transformed into call to Self
7517 exit;
7519 end if;
7520 end loop;
7522 New_N :=
7523 Make_Selected_Component (Loc,
7524 Prefix => New_Occurrence_Of (S, Loc),
7525 Selector_Name =>
7526 New_Occurrence_Of (Entity (E_Name), Loc));
7527 Rewrite (E_Name, New_N);
7528 Analyze (E_Name);
7530 elsif Nkind (Entry_Name) = N_Selected_Component
7531 and then Is_Overloaded (Prefix (Entry_Name))
7532 then
7533 -- Use the entry name (which must be unique at this point) to find
7534 -- the prefix that returns the corresponding task/protected type.
7536 declare
7537 Pref : constant Node_Id := Prefix (Entry_Name);
7538 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7539 I : Interp_Index;
7540 It : Interp;
7542 begin
7543 Get_First_Interp (Pref, I, It);
7544 while Present (It.Typ) loop
7545 if Scope (Ent) = It.Typ then
7546 Set_Etype (Pref, It.Typ);
7547 exit;
7548 end if;
7550 Get_Next_Interp (I, It);
7551 end loop;
7552 end;
7553 end if;
7555 if Nkind (Entry_Name) = N_Selected_Component then
7556 Resolve (Prefix (Entry_Name));
7558 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7559 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7560 Resolve (Prefix (Prefix (Entry_Name)));
7561 Index := First (Expressions (Entry_Name));
7562 Resolve (Index, Entry_Index_Type (Nam));
7564 -- Generate a reference for the index when it denotes an entity
7566 if Is_Entity_Name (Index) then
7567 Generate_Reference (Entity (Index), Nam);
7568 end if;
7570 -- Up to this point the expression could have been the actual in a
7571 -- simple entry call, and be given by a named association.
7573 if Nkind (Index) = N_Parameter_Association then
7574 Error_Msg_N ("expect expression for entry index", Index);
7575 else
7576 Apply_Range_Check (Index, Actual_Index_Type (Nam));
7577 end if;
7578 end if;
7579 end Resolve_Entry;
7581 ------------------------
7582 -- Resolve_Entry_Call --
7583 ------------------------
7585 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7586 Entry_Name : constant Node_Id := Name (N);
7587 Loc : constant Source_Ptr := Sloc (Entry_Name);
7589 Nam : Entity_Id;
7590 Norm_OK : Boolean;
7591 Obj : Node_Id;
7592 Was_Over : Boolean;
7594 begin
7595 -- We kill all checks here, because it does not seem worth the effort to
7596 -- do anything better, an entry call is a big operation.
7598 Kill_All_Checks;
7600 -- Processing of the name is similar for entry calls and protected
7601 -- operation calls. Once the entity is determined, we can complete
7602 -- the resolution of the actuals.
7604 -- The selector may be overloaded, in the case of a protected object
7605 -- with overloaded functions. The type of the context is used for
7606 -- resolution.
7608 if Nkind (Entry_Name) = N_Selected_Component
7609 and then Is_Overloaded (Selector_Name (Entry_Name))
7610 and then Typ /= Standard_Void_Type
7611 then
7612 declare
7613 I : Interp_Index;
7614 It : Interp;
7616 begin
7617 Get_First_Interp (Selector_Name (Entry_Name), I, It);
7618 while Present (It.Typ) loop
7619 if Covers (Typ, It.Typ) then
7620 Set_Entity (Selector_Name (Entry_Name), It.Nam);
7621 Set_Etype (Entry_Name, It.Typ);
7623 Generate_Reference (It.Typ, N, ' ');
7624 end if;
7626 Get_Next_Interp (I, It);
7627 end loop;
7628 end;
7629 end if;
7631 Resolve_Entry (Entry_Name);
7633 if Nkind (Entry_Name) = N_Selected_Component then
7635 -- Simple entry or protected operation call
7637 Nam := Entity (Selector_Name (Entry_Name));
7638 Obj := Prefix (Entry_Name);
7640 if Is_Subprogram (Nam) then
7641 Check_For_Eliminated_Subprogram (Entry_Name, Nam);
7642 end if;
7644 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7646 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7648 -- Call to member of entry family
7650 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7651 Obj := Prefix (Prefix (Entry_Name));
7652 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7653 end if;
7655 -- We cannot in general check the maximum depth of protected entry calls
7656 -- at compile time. But we can tell that any protected entry call at all
7657 -- violates a specified nesting depth of zero.
7659 if Is_Protected_Type (Scope (Nam)) then
7660 Check_Restriction (Max_Entry_Queue_Length, N);
7661 end if;
7663 -- Use context type to disambiguate a protected function that can be
7664 -- called without actuals and that returns an array type, and where the
7665 -- argument list may be an indexing of the returned value.
7667 if Ekind (Nam) = E_Function
7668 and then Needs_No_Actuals (Nam)
7669 and then Present (Parameter_Associations (N))
7670 and then
7671 ((Is_Array_Type (Etype (Nam))
7672 and then Covers (Typ, Component_Type (Etype (Nam))))
7674 or else (Is_Access_Type (Etype (Nam))
7675 and then Is_Array_Type (Designated_Type (Etype (Nam)))
7676 and then
7677 Covers
7678 (Typ,
7679 Component_Type (Designated_Type (Etype (Nam))))))
7680 then
7681 declare
7682 Index_Node : Node_Id;
7684 begin
7685 Index_Node :=
7686 Make_Indexed_Component (Loc,
7687 Prefix =>
7688 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7689 Expressions => Parameter_Associations (N));
7691 -- Since we are correcting a node classification error made by the
7692 -- parser, we call Replace rather than Rewrite.
7694 Replace (N, Index_Node);
7695 Set_Etype (Prefix (N), Etype (Nam));
7696 Set_Etype (N, Typ);
7697 Resolve_Indexed_Component (N, Typ);
7698 return;
7699 end;
7700 end if;
7702 if Ekind_In (Nam, E_Entry, E_Entry_Family)
7703 and then Present (Contract_Wrapper (Nam))
7704 and then Current_Scope /= Contract_Wrapper (Nam)
7705 then
7706 -- Note the entity being called before rewriting the call, so that
7707 -- it appears used at this point.
7709 Generate_Reference (Nam, Entry_Name, 'r');
7711 -- Rewrite as call to the precondition wrapper, adding the task
7712 -- object to the list of actuals. If the call is to a member of an
7713 -- entry family, include the index as well.
7715 declare
7716 New_Call : Node_Id;
7717 New_Actuals : List_Id;
7719 begin
7720 New_Actuals := New_List (Obj);
7722 if Nkind (Entry_Name) = N_Indexed_Component then
7723 Append_To (New_Actuals,
7724 New_Copy_Tree (First (Expressions (Entry_Name))));
7725 end if;
7727 Append_List (Parameter_Associations (N), New_Actuals);
7728 New_Call :=
7729 Make_Procedure_Call_Statement (Loc,
7730 Name =>
7731 New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
7732 Parameter_Associations => New_Actuals);
7733 Rewrite (N, New_Call);
7735 -- Preanalyze and resolve new call. Current procedure is called
7736 -- from Resolve_Call, after which expansion will take place.
7738 Preanalyze_And_Resolve (N);
7739 return;
7740 end;
7741 end if;
7743 -- The operation name may have been overloaded. Order the actuals
7744 -- according to the formals of the resolved entity, and set the return
7745 -- type to that of the operation.
7747 if Was_Over then
7748 Normalize_Actuals (N, Nam, False, Norm_OK);
7749 pragma Assert (Norm_OK);
7750 Set_Etype (N, Etype (Nam));
7752 -- Reset the Is_Overloaded flag, since resolution is now completed
7754 -- Simple entry call
7756 if Nkind (Entry_Name) = N_Selected_Component then
7757 Set_Is_Overloaded (Selector_Name (Entry_Name), False);
7759 -- Call to a member of an entry family
7761 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7762 Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False);
7763 end if;
7764 end if;
7766 Resolve_Actuals (N, Nam);
7767 Check_Internal_Protected_Use (N, Nam);
7769 -- Create a call reference to the entry
7771 Generate_Reference (Nam, Entry_Name, 's');
7773 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7774 Check_Potentially_Blocking_Operation (N);
7775 end if;
7777 -- Verify that a procedure call cannot masquerade as an entry
7778 -- call where an entry call is expected.
7780 if Ekind (Nam) = E_Procedure then
7781 if Nkind (Parent (N)) = N_Entry_Call_Alternative
7782 and then N = Entry_Call_Statement (Parent (N))
7783 then
7784 Error_Msg_N ("entry call required in select statement", N);
7786 elsif Nkind (Parent (N)) = N_Triggering_Alternative
7787 and then N = Triggering_Statement (Parent (N))
7788 then
7789 Error_Msg_N ("triggering statement cannot be procedure call", N);
7791 elsif Ekind (Scope (Nam)) = E_Task_Type
7792 and then not In_Open_Scopes (Scope (Nam))
7793 then
7794 Error_Msg_N ("task has no entry with this name", Entry_Name);
7795 end if;
7796 end if;
7798 -- After resolution, entry calls and protected procedure calls are
7799 -- changed into entry calls, for expansion. The structure of the node
7800 -- does not change, so it can safely be done in place. Protected
7801 -- function calls must keep their structure because they are
7802 -- subexpressions.
7804 if Ekind (Nam) /= E_Function then
7806 -- A protected operation that is not a function may modify the
7807 -- corresponding object, and cannot apply to a constant. If this
7808 -- is an internal call, the prefix is the type itself.
7810 if Is_Protected_Type (Scope (Nam))
7811 and then not Is_Variable (Obj)
7812 and then (not Is_Entity_Name (Obj)
7813 or else not Is_Type (Entity (Obj)))
7814 then
7815 Error_Msg_N
7816 ("prefix of protected procedure or entry call must be variable",
7817 Entry_Name);
7818 end if;
7820 declare
7821 Entry_Call : Node_Id;
7823 begin
7824 Entry_Call :=
7825 Make_Entry_Call_Statement (Loc,
7826 Name => Entry_Name,
7827 Parameter_Associations => Parameter_Associations (N));
7829 -- Inherit relevant attributes from the original call
7831 Set_First_Named_Actual
7832 (Entry_Call, First_Named_Actual (N));
7834 Set_Is_Elaboration_Checks_OK_Node
7835 (Entry_Call, Is_Elaboration_Checks_OK_Node (N));
7837 Set_Is_Elaboration_Warnings_OK_Node
7838 (Entry_Call, Is_Elaboration_Warnings_OK_Node (N));
7840 Set_Is_SPARK_Mode_On_Node
7841 (Entry_Call, Is_SPARK_Mode_On_Node (N));
7843 Rewrite (N, Entry_Call);
7844 Set_Analyzed (N, True);
7845 end;
7847 -- Protected functions can return on the secondary stack, in which
7848 -- case we must trigger the transient scope mechanism.
7850 elsif Expander_Active
7851 and then Requires_Transient_Scope (Etype (Nam))
7852 then
7853 Establish_Transient_Scope (N, Sec_Stack => True);
7854 end if;
7855 end Resolve_Entry_Call;
7857 -------------------------
7858 -- Resolve_Equality_Op --
7859 -------------------------
7861 -- Both arguments must have the same type, and the boolean context does
7862 -- not participate in the resolution. The first pass verifies that the
7863 -- interpretation is not ambiguous, and the type of the left argument is
7864 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7865 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7866 -- though they carry a single (universal) type. Diagnose this case here.
7868 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7869 L : constant Node_Id := Left_Opnd (N);
7870 R : constant Node_Id := Right_Opnd (N);
7871 T : Entity_Id := Find_Unique_Type (L, R);
7873 procedure Check_If_Expression (Cond : Node_Id);
7874 -- The resolution rule for if expressions requires that each such must
7875 -- have a unique type. This means that if several dependent expressions
7876 -- are of a non-null anonymous access type, and the context does not
7877 -- impose an expected type (as can be the case in an equality operation)
7878 -- the expression must be rejected.
7880 procedure Explain_Redundancy (N : Node_Id);
7881 -- Attempt to explain the nature of a redundant comparison with True. If
7882 -- the expression N is too complex, this routine issues a general error
7883 -- message.
7885 function Find_Unique_Access_Type return Entity_Id;
7886 -- In the case of allocators and access attributes, the context must
7887 -- provide an indication of the specific access type to be used. If
7888 -- one operand is of such a "generic" access type, check whether there
7889 -- is a specific visible access type that has the same designated type.
7890 -- This is semantically dubious, and of no interest to any real code,
7891 -- but c48008a makes it all worthwhile.
7893 -------------------------
7894 -- Check_If_Expression --
7895 -------------------------
7897 procedure Check_If_Expression (Cond : Node_Id) is
7898 Then_Expr : Node_Id;
7899 Else_Expr : Node_Id;
7901 begin
7902 if Nkind (Cond) = N_If_Expression then
7903 Then_Expr := Next (First (Expressions (Cond)));
7904 Else_Expr := Next (Then_Expr);
7906 if Nkind (Then_Expr) /= N_Null
7907 and then Nkind (Else_Expr) /= N_Null
7908 then
7909 Error_Msg_N ("cannot determine type of if expression", Cond);
7910 end if;
7911 end if;
7912 end Check_If_Expression;
7914 ------------------------
7915 -- Explain_Redundancy --
7916 ------------------------
7918 procedure Explain_Redundancy (N : Node_Id) is
7919 Error : Name_Id;
7920 Val : Node_Id;
7921 Val_Id : Entity_Id;
7923 begin
7924 Val := N;
7926 -- Strip the operand down to an entity
7928 loop
7929 if Nkind (Val) = N_Selected_Component then
7930 Val := Selector_Name (Val);
7931 else
7932 exit;
7933 end if;
7934 end loop;
7936 -- The construct denotes an entity
7938 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
7939 Val_Id := Entity (Val);
7941 -- Do not generate an error message when the comparison is done
7942 -- against the enumeration literal Standard.True.
7944 if Ekind (Val_Id) /= E_Enumeration_Literal then
7946 -- Build a customized error message
7948 Name_Len := 0;
7949 Add_Str_To_Name_Buffer ("?r?");
7951 if Ekind (Val_Id) = E_Component then
7952 Add_Str_To_Name_Buffer ("component ");
7954 elsif Ekind (Val_Id) = E_Constant then
7955 Add_Str_To_Name_Buffer ("constant ");
7957 elsif Ekind (Val_Id) = E_Discriminant then
7958 Add_Str_To_Name_Buffer ("discriminant ");
7960 elsif Is_Formal (Val_Id) then
7961 Add_Str_To_Name_Buffer ("parameter ");
7963 elsif Ekind (Val_Id) = E_Variable then
7964 Add_Str_To_Name_Buffer ("variable ");
7965 end if;
7967 Add_Str_To_Name_Buffer ("& is always True!");
7968 Error := Name_Find;
7970 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
7971 end if;
7973 -- The construct is too complex to disect, issue a general message
7975 else
7976 Error_Msg_N ("?r?expression is always True!", Val);
7977 end if;
7978 end Explain_Redundancy;
7980 -----------------------------
7981 -- Find_Unique_Access_Type --
7982 -----------------------------
7984 function Find_Unique_Access_Type return Entity_Id is
7985 Acc : Entity_Id;
7986 E : Entity_Id;
7987 S : Entity_Id;
7989 begin
7990 if Ekind_In (Etype (R), E_Allocator_Type,
7991 E_Access_Attribute_Type)
7992 then
7993 Acc := Designated_Type (Etype (R));
7995 elsif Ekind_In (Etype (L), E_Allocator_Type,
7996 E_Access_Attribute_Type)
7997 then
7998 Acc := Designated_Type (Etype (L));
7999 else
8000 return Empty;
8001 end if;
8003 S := Current_Scope;
8004 while S /= Standard_Standard loop
8005 E := First_Entity (S);
8006 while Present (E) loop
8007 if Is_Type (E)
8008 and then Is_Access_Type (E)
8009 and then Ekind (E) /= E_Allocator_Type
8010 and then Designated_Type (E) = Base_Type (Acc)
8011 then
8012 return E;
8013 end if;
8015 Next_Entity (E);
8016 end loop;
8018 S := Scope (S);
8019 end loop;
8021 return Empty;
8022 end Find_Unique_Access_Type;
8024 -- Start of processing for Resolve_Equality_Op
8026 begin
8027 Set_Etype (N, Base_Type (Typ));
8028 Generate_Reference (T, N, ' ');
8030 if T = Any_Fixed then
8031 T := Unique_Fixed_Point_Type (L);
8032 end if;
8034 if T /= Any_Type then
8035 if T = Any_String or else
8036 T = Any_Composite or else
8037 T = Any_Character
8038 then
8039 if T = Any_Character then
8040 Ambiguous_Character (L);
8041 else
8042 Error_Msg_N ("ambiguous operands for equality", N);
8043 end if;
8045 Set_Etype (N, Any_Type);
8046 return;
8048 elsif T = Any_Access
8049 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
8050 then
8051 T := Find_Unique_Access_Type;
8053 if No (T) then
8054 Error_Msg_N ("ambiguous operands for equality", N);
8055 Set_Etype (N, Any_Type);
8056 return;
8057 end if;
8059 -- If expressions must have a single type, and if the context does
8060 -- not impose one the dependent expressions cannot be anonymous
8061 -- access types.
8063 -- Why no similar processing for case expressions???
8065 elsif Ada_Version >= Ada_2012
8066 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
8067 E_Anonymous_Access_Subprogram_Type)
8068 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
8069 E_Anonymous_Access_Subprogram_Type)
8070 then
8071 Check_If_Expression (L);
8072 Check_If_Expression (R);
8073 end if;
8075 Resolve (L, T);
8076 Resolve (R, T);
8078 -- In SPARK, equality operators = and /= for array types other than
8079 -- String are only defined when, for each index position, the
8080 -- operands have equal static bounds.
8082 if Is_Array_Type (T) then
8084 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8085 -- operation if not needed.
8087 if Restriction_Check_Required (SPARK_05)
8088 and then Base_Type (T) /= Standard_String
8089 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
8090 and then Etype (L) /= Any_Composite -- or else L in error
8091 and then Etype (R) /= Any_Composite -- or else R in error
8092 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
8093 then
8094 Check_SPARK_05_Restriction
8095 ("array types should have matching static bounds", N);
8096 end if;
8097 end if;
8099 -- If the unique type is a class-wide type then it will be expanded
8100 -- into a dispatching call to the predefined primitive. Therefore we
8101 -- check here for potential violation of such restriction.
8103 if Is_Class_Wide_Type (T) then
8104 Check_Restriction (No_Dispatching_Calls, N);
8105 end if;
8107 -- Only warn for redundant equality comparison to True for objects
8108 -- (e.g. "X = True") and operations (e.g. "(X < Y) = True"). For
8109 -- other expressions, it may be a matter of preference to write
8110 -- "Expr = True" or "Expr".
8112 if Warn_On_Redundant_Constructs
8113 and then Comes_From_Source (N)
8114 and then Comes_From_Source (R)
8115 and then Is_Entity_Name (R)
8116 and then Entity (R) = Standard_True
8117 and then
8118 ((Is_Entity_Name (L) and then Is_Object (Entity (L)))
8119 or else
8120 Nkind (L) in N_Op)
8121 then
8122 Error_Msg_N -- CODEFIX
8123 ("?r?comparison with True is redundant!", N);
8124 Explain_Redundancy (Original_Node (R));
8125 end if;
8127 Check_Unset_Reference (L);
8128 Check_Unset_Reference (R);
8129 Generate_Operator_Reference (N, T);
8130 Check_Low_Bound_Tested (N);
8132 -- If this is an inequality, it may be the implicit inequality
8133 -- created for a user-defined operation, in which case the corres-
8134 -- ponding equality operation is not intrinsic, and the operation
8135 -- cannot be constant-folded. Else fold.
8137 if Nkind (N) = N_Op_Eq
8138 or else Comes_From_Source (Entity (N))
8139 or else Ekind (Entity (N)) = E_Operator
8140 or else Is_Intrinsic_Subprogram
8141 (Corresponding_Equality (Entity (N)))
8142 then
8143 Analyze_Dimension (N);
8144 Eval_Relational_Op (N);
8146 elsif Nkind (N) = N_Op_Ne
8147 and then Is_Abstract_Subprogram (Entity (N))
8148 then
8149 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
8150 end if;
8152 -- Ada 2005: If one operand is an anonymous access type, convert the
8153 -- other operand to it, to ensure that the underlying types match in
8154 -- the back-end. Same for access_to_subprogram, and the conversion
8155 -- verifies that the types are subtype conformant.
8157 -- We apply the same conversion in the case one of the operands is a
8158 -- private subtype of the type of the other.
8160 -- Why the Expander_Active test here ???
8162 if Expander_Active
8163 and then
8164 (Ekind_In (T, E_Anonymous_Access_Type,
8165 E_Anonymous_Access_Subprogram_Type)
8166 or else Is_Private_Type (T))
8167 then
8168 if Etype (L) /= T then
8169 Rewrite (L,
8170 Make_Unchecked_Type_Conversion (Sloc (L),
8171 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
8172 Expression => Relocate_Node (L)));
8173 Analyze_And_Resolve (L, T);
8174 end if;
8176 if (Etype (R)) /= T then
8177 Rewrite (R,
8178 Make_Unchecked_Type_Conversion (Sloc (R),
8179 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
8180 Expression => Relocate_Node (R)));
8181 Analyze_And_Resolve (R, T);
8182 end if;
8183 end if;
8184 end if;
8185 end Resolve_Equality_Op;
8187 ----------------------------------
8188 -- Resolve_Explicit_Dereference --
8189 ----------------------------------
8191 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
8192 Loc : constant Source_Ptr := Sloc (N);
8193 New_N : Node_Id;
8194 P : constant Node_Id := Prefix (N);
8196 P_Typ : Entity_Id;
8197 -- The candidate prefix type, if overloaded
8199 I : Interp_Index;
8200 It : Interp;
8202 begin
8203 Check_Fully_Declared_Prefix (Typ, P);
8204 P_Typ := Empty;
8206 -- A useful optimization: check whether the dereference denotes an
8207 -- element of a container, and if so rewrite it as a call to the
8208 -- corresponding Element function.
8210 -- Disabled for now, on advice of ARG. A more restricted form of the
8211 -- predicate might be acceptable ???
8213 -- if Is_Container_Element (N) then
8214 -- return;
8215 -- end if;
8217 if Is_Overloaded (P) then
8219 -- Use the context type to select the prefix that has the correct
8220 -- designated type. Keep the first match, which will be the inner-
8221 -- most.
8223 Get_First_Interp (P, I, It);
8225 while Present (It.Typ) loop
8226 if Is_Access_Type (It.Typ)
8227 and then Covers (Typ, Designated_Type (It.Typ))
8228 then
8229 if No (P_Typ) then
8230 P_Typ := It.Typ;
8231 end if;
8233 -- Remove access types that do not match, but preserve access
8234 -- to subprogram interpretations, in case a further dereference
8235 -- is needed (see below).
8237 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
8238 Remove_Interp (I);
8239 end if;
8241 Get_Next_Interp (I, It);
8242 end loop;
8244 if Present (P_Typ) then
8245 Resolve (P, P_Typ);
8246 Set_Etype (N, Designated_Type (P_Typ));
8248 else
8249 -- If no interpretation covers the designated type of the prefix,
8250 -- this is the pathological case where not all implementations of
8251 -- the prefix allow the interpretation of the node as a call. Now
8252 -- that the expected type is known, Remove other interpretations
8253 -- from prefix, rewrite it as a call, and resolve again, so that
8254 -- the proper call node is generated.
8256 Get_First_Interp (P, I, It);
8257 while Present (It.Typ) loop
8258 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
8259 Remove_Interp (I);
8260 end if;
8262 Get_Next_Interp (I, It);
8263 end loop;
8265 New_N :=
8266 Make_Function_Call (Loc,
8267 Name =>
8268 Make_Explicit_Dereference (Loc,
8269 Prefix => P),
8270 Parameter_Associations => New_List);
8272 Save_Interps (N, New_N);
8273 Rewrite (N, New_N);
8274 Analyze_And_Resolve (N, Typ);
8275 return;
8276 end if;
8278 -- If not overloaded, resolve P with its own type
8280 else
8281 Resolve (P);
8282 end if;
8284 -- If the prefix might be null, add an access check
8286 if Is_Access_Type (Etype (P))
8287 and then not Can_Never_Be_Null (Etype (P))
8288 then
8289 Apply_Access_Check (N);
8290 end if;
8292 -- If the designated type is a packed unconstrained array type, and the
8293 -- explicit dereference is not in the context of an attribute reference,
8294 -- then we must compute and set the actual subtype, since it is needed
8295 -- by Gigi. The reason we exclude the attribute case is that this is
8296 -- handled fine by Gigi, and in fact we use such attributes to build the
8297 -- actual subtype. We also exclude generated code (which builds actual
8298 -- subtypes directly if they are needed).
8300 if Is_Array_Type (Etype (N))
8301 and then Is_Packed (Etype (N))
8302 and then not Is_Constrained (Etype (N))
8303 and then Nkind (Parent (N)) /= N_Attribute_Reference
8304 and then Comes_From_Source (N)
8305 then
8306 Set_Etype (N, Get_Actual_Subtype (N));
8307 end if;
8309 Analyze_Dimension (N);
8311 -- Note: No Eval processing is required for an explicit dereference,
8312 -- because such a name can never be static.
8314 end Resolve_Explicit_Dereference;
8316 -------------------------------------
8317 -- Resolve_Expression_With_Actions --
8318 -------------------------------------
8320 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8321 begin
8322 Set_Etype (N, Typ);
8324 -- If N has no actions, and its expression has been constant folded,
8325 -- then rewrite N as just its expression. Note, we can't do this in
8326 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8327 -- Expression (N) to be expanded again.
8329 if Is_Empty_List (Actions (N))
8330 and then Compile_Time_Known_Value (Expression (N))
8331 then
8332 Rewrite (N, Expression (N));
8333 end if;
8334 end Resolve_Expression_With_Actions;
8336 ----------------------------------
8337 -- Resolve_Generalized_Indexing --
8338 ----------------------------------
8340 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8341 Indexing : constant Node_Id := Generalized_Indexing (N);
8342 Call : Node_Id;
8343 Indexes : List_Id;
8344 Pref : Node_Id;
8346 begin
8347 -- In ASIS mode, propagate the information about the indexes back to
8348 -- to the original indexing node. The generalized indexing is either
8349 -- a function call, or a dereference of one. The actuals include the
8350 -- prefix of the original node, which is the container expression.
8352 if ASIS_Mode then
8353 Resolve (Indexing, Typ);
8354 Set_Etype (N, Etype (Indexing));
8355 Set_Is_Overloaded (N, False);
8357 Call := Indexing;
8358 while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8359 loop
8360 Call := Prefix (Call);
8361 end loop;
8363 if Nkind (Call) = N_Function_Call then
8364 Indexes := New_Copy_List (Parameter_Associations (Call));
8365 Pref := Remove_Head (Indexes);
8366 Set_Expressions (N, Indexes);
8368 -- If expression is to be reanalyzed, reset Generalized_Indexing
8369 -- to recreate call node, as is the case when the expression is
8370 -- part of an expression function.
8372 if In_Spec_Expression then
8373 Set_Generalized_Indexing (N, Empty);
8374 end if;
8376 Set_Prefix (N, Pref);
8377 end if;
8379 else
8380 Rewrite (N, Indexing);
8381 Resolve (N, Typ);
8382 end if;
8383 end Resolve_Generalized_Indexing;
8385 ---------------------------
8386 -- Resolve_If_Expression --
8387 ---------------------------
8389 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8390 Condition : constant Node_Id := First (Expressions (N));
8391 Then_Expr : Node_Id;
8392 Else_Expr : Node_Id;
8393 Else_Typ : Entity_Id;
8394 Then_Typ : Entity_Id;
8396 begin
8397 -- Defend against malformed expressions
8399 if No (Condition) then
8400 return;
8401 end if;
8403 Then_Expr := Next (Condition);
8405 if No (Then_Expr) then
8406 return;
8407 end if;
8409 Else_Expr := Next (Then_Expr);
8411 Resolve (Condition, Any_Boolean);
8412 Resolve (Then_Expr, Typ);
8413 Then_Typ := Etype (Then_Expr);
8415 -- When the "then" expression is of a scalar subtype different from the
8416 -- result subtype, then insert a conversion to ensure the generation of
8417 -- a constraint check. The same is done for the else part below, again
8418 -- comparing subtypes rather than base types.
8420 if Is_Scalar_Type (Then_Typ) and then Then_Typ /= Typ then
8421 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8422 Analyze_And_Resolve (Then_Expr, Typ);
8423 end if;
8425 -- If ELSE expression present, just resolve using the determined type
8426 -- If type is universal, resolve to any member of the class.
8428 if Present (Else_Expr) then
8429 if Typ = Universal_Integer then
8430 Resolve (Else_Expr, Any_Integer);
8432 elsif Typ = Universal_Real then
8433 Resolve (Else_Expr, Any_Real);
8435 else
8436 Resolve (Else_Expr, Typ);
8437 end if;
8439 Else_Typ := Etype (Else_Expr);
8441 if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8442 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8443 Analyze_And_Resolve (Else_Expr, Typ);
8445 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8446 -- dynamically tagged must be known statically.
8448 elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8449 if Is_Dynamically_Tagged (Then_Expr) /=
8450 Is_Dynamically_Tagged (Else_Expr)
8451 then
8452 Error_Msg_N ("all or none of the dependent expressions "
8453 & "can be dynamically tagged", N);
8454 end if;
8455 end if;
8457 -- If no ELSE expression is present, root type must be Standard.Boolean
8458 -- and we provide a Standard.True result converted to the appropriate
8459 -- Boolean type (in case it is a derived boolean type).
8461 elsif Root_Type (Typ) = Standard_Boolean then
8462 Else_Expr :=
8463 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8464 Analyze_And_Resolve (Else_Expr, Typ);
8465 Append_To (Expressions (N), Else_Expr);
8467 else
8468 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8469 Append_To (Expressions (N), Error);
8470 end if;
8472 Set_Etype (N, Typ);
8474 if not Error_Posted (N) then
8475 Eval_If_Expression (N);
8476 end if;
8478 Analyze_Dimension (N);
8479 end Resolve_If_Expression;
8481 -------------------------------
8482 -- Resolve_Indexed_Component --
8483 -------------------------------
8485 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8486 Name : constant Node_Id := Prefix (N);
8487 Expr : Node_Id;
8488 Array_Type : Entity_Id := Empty; -- to prevent junk warning
8489 Index : Node_Id;
8491 begin
8492 if Present (Generalized_Indexing (N)) then
8493 Resolve_Generalized_Indexing (N, Typ);
8494 return;
8495 end if;
8497 if Is_Overloaded (Name) then
8499 -- Use the context type to select the prefix that yields the correct
8500 -- component type.
8502 declare
8503 I : Interp_Index;
8504 It : Interp;
8505 I1 : Interp_Index := 0;
8506 P : constant Node_Id := Prefix (N);
8507 Found : Boolean := False;
8509 begin
8510 Get_First_Interp (P, I, It);
8511 while Present (It.Typ) loop
8512 if (Is_Array_Type (It.Typ)
8513 and then Covers (Typ, Component_Type (It.Typ)))
8514 or else (Is_Access_Type (It.Typ)
8515 and then Is_Array_Type (Designated_Type (It.Typ))
8516 and then
8517 Covers
8518 (Typ,
8519 Component_Type (Designated_Type (It.Typ))))
8520 then
8521 if Found then
8522 It := Disambiguate (P, I1, I, Any_Type);
8524 if It = No_Interp then
8525 Error_Msg_N ("ambiguous prefix for indexing", N);
8526 Set_Etype (N, Typ);
8527 return;
8529 else
8530 Found := True;
8531 Array_Type := It.Typ;
8532 I1 := I;
8533 end if;
8535 else
8536 Found := True;
8537 Array_Type := It.Typ;
8538 I1 := I;
8539 end if;
8540 end if;
8542 Get_Next_Interp (I, It);
8543 end loop;
8544 end;
8546 else
8547 Array_Type := Etype (Name);
8548 end if;
8550 Resolve (Name, Array_Type);
8551 Array_Type := Get_Actual_Subtype_If_Available (Name);
8553 -- If prefix is access type, dereference to get real array type.
8554 -- Note: we do not apply an access check because the expander always
8555 -- introduces an explicit dereference, and the check will happen there.
8557 if Is_Access_Type (Array_Type) then
8558 Array_Type := Designated_Type (Array_Type);
8559 end if;
8561 -- If name was overloaded, set component type correctly now
8562 -- If a misplaced call to an entry family (which has no index types)
8563 -- return. Error will be diagnosed from calling context.
8565 if Is_Array_Type (Array_Type) then
8566 Set_Etype (N, Component_Type (Array_Type));
8567 else
8568 return;
8569 end if;
8571 Index := First_Index (Array_Type);
8572 Expr := First (Expressions (N));
8574 -- The prefix may have resolved to a string literal, in which case its
8575 -- etype has a special representation. This is only possible currently
8576 -- if the prefix is a static concatenation, written in functional
8577 -- notation.
8579 if Ekind (Array_Type) = E_String_Literal_Subtype then
8580 Resolve (Expr, Standard_Positive);
8582 else
8583 while Present (Index) and Present (Expr) loop
8584 Resolve (Expr, Etype (Index));
8585 Check_Unset_Reference (Expr);
8587 if Is_Scalar_Type (Etype (Expr)) then
8588 Apply_Scalar_Range_Check (Expr, Etype (Index));
8589 else
8590 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8591 end if;
8593 Next_Index (Index);
8594 Next (Expr);
8595 end loop;
8596 end if;
8598 Analyze_Dimension (N);
8600 -- Do not generate the warning on suspicious index if we are analyzing
8601 -- package Ada.Tags; otherwise we will report the warning with the
8602 -- Prims_Ptr field of the dispatch table.
8604 if Scope (Etype (Prefix (N))) = Standard_Standard
8605 or else not
8606 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8607 Ada_Tags)
8608 then
8609 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8610 Eval_Indexed_Component (N);
8611 end if;
8613 -- If the array type is atomic, and the component is not atomic, then
8614 -- this is worth a warning, since we have a situation where the access
8615 -- to the component may cause extra read/writes of the atomic array
8616 -- object, or partial word accesses, which could be unexpected.
8618 if Nkind (N) = N_Indexed_Component
8619 and then Is_Atomic_Ref_With_Address (N)
8620 and then not (Has_Atomic_Components (Array_Type)
8621 or else (Is_Entity_Name (Prefix (N))
8622 and then Has_Atomic_Components
8623 (Entity (Prefix (N)))))
8624 and then not Is_Atomic (Component_Type (Array_Type))
8625 then
8626 Error_Msg_N
8627 ("??access to non-atomic component of atomic array", Prefix (N));
8628 Error_Msg_N
8629 ("??\may cause unexpected accesses to atomic object", Prefix (N));
8630 end if;
8631 end Resolve_Indexed_Component;
8633 -----------------------------
8634 -- Resolve_Integer_Literal --
8635 -----------------------------
8637 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8638 begin
8639 Set_Etype (N, Typ);
8640 Eval_Integer_Literal (N);
8641 end Resolve_Integer_Literal;
8643 --------------------------------
8644 -- Resolve_Intrinsic_Operator --
8645 --------------------------------
8647 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
8648 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8649 Op : Entity_Id;
8650 Arg1 : Node_Id;
8651 Arg2 : Node_Id;
8653 function Convert_Operand (Opnd : Node_Id) return Node_Id;
8654 -- If the operand is a literal, it cannot be the expression in a
8655 -- conversion. Use a qualified expression instead.
8657 ---------------------
8658 -- Convert_Operand --
8659 ---------------------
8661 function Convert_Operand (Opnd : Node_Id) return Node_Id is
8662 Loc : constant Source_Ptr := Sloc (Opnd);
8663 Res : Node_Id;
8665 begin
8666 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8667 Res :=
8668 Make_Qualified_Expression (Loc,
8669 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8670 Expression => Relocate_Node (Opnd));
8671 Analyze (Res);
8673 else
8674 Res := Unchecked_Convert_To (Btyp, Opnd);
8675 end if;
8677 return Res;
8678 end Convert_Operand;
8680 -- Start of processing for Resolve_Intrinsic_Operator
8682 begin
8683 -- We must preserve the original entity in a generic setting, so that
8684 -- the legality of the operation can be verified in an instance.
8686 if not Expander_Active then
8687 return;
8688 end if;
8690 Op := Entity (N);
8691 while Scope (Op) /= Standard_Standard loop
8692 Op := Homonym (Op);
8693 pragma Assert (Present (Op));
8694 end loop;
8696 Set_Entity (N, Op);
8697 Set_Is_Overloaded (N, False);
8699 -- If the result or operand types are private, rewrite with unchecked
8700 -- conversions on the operands and the result, to expose the proper
8701 -- underlying numeric type.
8703 if Is_Private_Type (Typ)
8704 or else Is_Private_Type (Etype (Left_Opnd (N)))
8705 or else Is_Private_Type (Etype (Right_Opnd (N)))
8706 then
8707 Arg1 := Convert_Operand (Left_Opnd (N));
8709 if Nkind (N) = N_Op_Expon then
8710 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8711 else
8712 Arg2 := Convert_Operand (Right_Opnd (N));
8713 end if;
8715 if Nkind (Arg1) = N_Type_Conversion then
8716 Save_Interps (Left_Opnd (N), Expression (Arg1));
8717 end if;
8719 if Nkind (Arg2) = N_Type_Conversion then
8720 Save_Interps (Right_Opnd (N), Expression (Arg2));
8721 end if;
8723 Set_Left_Opnd (N, Arg1);
8724 Set_Right_Opnd (N, Arg2);
8726 Set_Etype (N, Btyp);
8727 Rewrite (N, Unchecked_Convert_To (Typ, N));
8728 Resolve (N, Typ);
8730 elsif Typ /= Etype (Left_Opnd (N))
8731 or else Typ /= Etype (Right_Opnd (N))
8732 then
8733 -- Add explicit conversion where needed, and save interpretations in
8734 -- case operands are overloaded.
8736 Arg1 := Convert_To (Typ, Left_Opnd (N));
8737 Arg2 := Convert_To (Typ, Right_Opnd (N));
8739 if Nkind (Arg1) = N_Type_Conversion then
8740 Save_Interps (Left_Opnd (N), Expression (Arg1));
8741 else
8742 Save_Interps (Left_Opnd (N), Arg1);
8743 end if;
8745 if Nkind (Arg2) = N_Type_Conversion then
8746 Save_Interps (Right_Opnd (N), Expression (Arg2));
8747 else
8748 Save_Interps (Right_Opnd (N), Arg2);
8749 end if;
8751 Rewrite (Left_Opnd (N), Arg1);
8752 Rewrite (Right_Opnd (N), Arg2);
8753 Analyze (Arg1);
8754 Analyze (Arg2);
8755 Resolve_Arithmetic_Op (N, Typ);
8757 else
8758 Resolve_Arithmetic_Op (N, Typ);
8759 end if;
8760 end Resolve_Intrinsic_Operator;
8762 --------------------------------------
8763 -- Resolve_Intrinsic_Unary_Operator --
8764 --------------------------------------
8766 procedure Resolve_Intrinsic_Unary_Operator
8767 (N : Node_Id;
8768 Typ : Entity_Id)
8770 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8771 Op : Entity_Id;
8772 Arg2 : Node_Id;
8774 begin
8775 Op := Entity (N);
8776 while Scope (Op) /= Standard_Standard loop
8777 Op := Homonym (Op);
8778 pragma Assert (Present (Op));
8779 end loop;
8781 Set_Entity (N, Op);
8783 if Is_Private_Type (Typ) then
8784 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8785 Save_Interps (Right_Opnd (N), Expression (Arg2));
8787 Set_Right_Opnd (N, Arg2);
8789 Set_Etype (N, Btyp);
8790 Rewrite (N, Unchecked_Convert_To (Typ, N));
8791 Resolve (N, Typ);
8793 else
8794 Resolve_Unary_Op (N, Typ);
8795 end if;
8796 end Resolve_Intrinsic_Unary_Operator;
8798 ------------------------
8799 -- Resolve_Logical_Op --
8800 ------------------------
8802 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8803 B_Typ : Entity_Id;
8805 begin
8806 Check_No_Direct_Boolean_Operators (N);
8808 -- Predefined operations on scalar types yield the base type. On the
8809 -- other hand, logical operations on arrays yield the type of the
8810 -- arguments (and the context).
8812 if Is_Array_Type (Typ) then
8813 B_Typ := Typ;
8814 else
8815 B_Typ := Base_Type (Typ);
8816 end if;
8818 -- The following test is required because the operands of the operation
8819 -- may be literals, in which case the resulting type appears to be
8820 -- compatible with a signed integer type, when in fact it is compatible
8821 -- only with modular types. If the context itself is universal, the
8822 -- operation is illegal.
8824 if not Valid_Boolean_Arg (Typ) then
8825 Error_Msg_N ("invalid context for logical operation", N);
8826 Set_Etype (N, Any_Type);
8827 return;
8829 elsif Typ = Any_Modular then
8830 Error_Msg_N
8831 ("no modular type available in this context", N);
8832 Set_Etype (N, Any_Type);
8833 return;
8835 elsif Is_Modular_Integer_Type (Typ)
8836 and then Etype (Left_Opnd (N)) = Universal_Integer
8837 and then Etype (Right_Opnd (N)) = Universal_Integer
8838 then
8839 Check_For_Visible_Operator (N, B_Typ);
8840 end if;
8842 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8843 -- is active and the result type is standard Boolean (do not mess with
8844 -- ops that return a nonstandard Boolean type, because something strange
8845 -- is going on).
8847 -- Note: you might expect this replacement to be done during expansion,
8848 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8849 -- is used, no part of the right operand of an "and" or "or" operator
8850 -- should be executed if the left operand would short-circuit the
8851 -- evaluation of the corresponding "and then" or "or else". If we left
8852 -- the replacement to expansion time, then run-time checks associated
8853 -- with such operands would be evaluated unconditionally, due to being
8854 -- before the condition prior to the rewriting as short-circuit forms
8855 -- during expansion.
8857 if Short_Circuit_And_Or
8858 and then B_Typ = Standard_Boolean
8859 and then Nkind_In (N, N_Op_And, N_Op_Or)
8860 then
8861 -- Mark the corresponding putative SCO operator as truly a logical
8862 -- (and short-circuit) operator.
8864 if Generate_SCO and then Comes_From_Source (N) then
8865 Set_SCO_Logical_Operator (N);
8866 end if;
8868 if Nkind (N) = N_Op_And then
8869 Rewrite (N,
8870 Make_And_Then (Sloc (N),
8871 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8872 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8873 Analyze_And_Resolve (N, B_Typ);
8875 -- Case of OR changed to OR ELSE
8877 else
8878 Rewrite (N,
8879 Make_Or_Else (Sloc (N),
8880 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8881 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8882 Analyze_And_Resolve (N, B_Typ);
8883 end if;
8885 -- Return now, since analysis of the rewritten ops will take care of
8886 -- other reference bookkeeping and expression folding.
8888 return;
8889 end if;
8891 Resolve (Left_Opnd (N), B_Typ);
8892 Resolve (Right_Opnd (N), B_Typ);
8894 Check_Unset_Reference (Left_Opnd (N));
8895 Check_Unset_Reference (Right_Opnd (N));
8897 Set_Etype (N, B_Typ);
8898 Generate_Operator_Reference (N, B_Typ);
8899 Eval_Logical_Op (N);
8901 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8902 -- only when both operands have same static lower and higher bounds. Of
8903 -- course the types have to match, so only check if operands are
8904 -- compatible and the node itself has no errors.
8906 if Is_Array_Type (B_Typ)
8907 and then Nkind (N) in N_Binary_Op
8908 then
8909 declare
8910 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
8911 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8913 begin
8914 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8915 -- operation if not needed.
8917 if Restriction_Check_Required (SPARK_05)
8918 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8919 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
8920 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
8921 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8922 then
8923 Check_SPARK_05_Restriction
8924 ("array types should have matching static bounds", N);
8925 end if;
8926 end;
8927 end if;
8928 end Resolve_Logical_Op;
8930 ---------------------------
8931 -- Resolve_Membership_Op --
8932 ---------------------------
8934 -- The context can only be a boolean type, and does not determine the
8935 -- arguments. Arguments should be unambiguous, but the preference rule for
8936 -- universal types applies.
8938 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
8939 pragma Warnings (Off, Typ);
8941 L : constant Node_Id := Left_Opnd (N);
8942 R : constant Node_Id := Right_Opnd (N);
8943 T : Entity_Id;
8945 procedure Resolve_Set_Membership;
8946 -- Analysis has determined a unique type for the left operand. Use it to
8947 -- resolve the disjuncts.
8949 ----------------------------
8950 -- Resolve_Set_Membership --
8951 ----------------------------
8953 procedure Resolve_Set_Membership is
8954 Alt : Node_Id;
8955 Ltyp : Entity_Id;
8957 begin
8958 -- If the left operand is overloaded, find type compatible with not
8959 -- overloaded alternative of the right operand.
8961 if Is_Overloaded (L) then
8962 Ltyp := Empty;
8963 Alt := First (Alternatives (N));
8964 while Present (Alt) loop
8965 if not Is_Overloaded (Alt) then
8966 Ltyp := Intersect_Types (L, Alt);
8967 exit;
8968 else
8969 Next (Alt);
8970 end if;
8971 end loop;
8973 -- Unclear how to resolve expression if all alternatives are also
8974 -- overloaded.
8976 if No (Ltyp) then
8977 Error_Msg_N ("ambiguous expression", N);
8978 end if;
8980 else
8981 Ltyp := Etype (L);
8982 end if;
8984 Resolve (L, Ltyp);
8986 Alt := First (Alternatives (N));
8987 while Present (Alt) loop
8989 -- Alternative is an expression, a range
8990 -- or a subtype mark.
8992 if not Is_Entity_Name (Alt)
8993 or else not Is_Type (Entity (Alt))
8994 then
8995 Resolve (Alt, Ltyp);
8996 end if;
8998 Next (Alt);
8999 end loop;
9001 -- Check for duplicates for discrete case
9003 if Is_Discrete_Type (Ltyp) then
9004 declare
9005 type Ent is record
9006 Alt : Node_Id;
9007 Val : Uint;
9008 end record;
9010 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
9011 Nalts : Nat;
9013 begin
9014 -- Loop checking duplicates. This is quadratic, but giant sets
9015 -- are unlikely in this context so it's a reasonable choice.
9017 Nalts := 0;
9018 Alt := First (Alternatives (N));
9019 while Present (Alt) loop
9020 if Is_OK_Static_Expression (Alt)
9021 and then (Nkind_In (Alt, N_Integer_Literal,
9022 N_Character_Literal)
9023 or else Nkind (Alt) in N_Has_Entity)
9024 then
9025 Nalts := Nalts + 1;
9026 Alts (Nalts) := (Alt, Expr_Value (Alt));
9028 for J in 1 .. Nalts - 1 loop
9029 if Alts (J).Val = Alts (Nalts).Val then
9030 Error_Msg_Sloc := Sloc (Alts (J).Alt);
9031 Error_Msg_N ("duplicate of value given#??", Alt);
9032 end if;
9033 end loop;
9034 end if;
9036 Alt := Next (Alt);
9037 end loop;
9038 end;
9039 end if;
9040 end Resolve_Set_Membership;
9042 -- Start of processing for Resolve_Membership_Op
9044 begin
9045 if L = Error or else R = Error then
9046 return;
9047 end if;
9049 if Present (Alternatives (N)) then
9050 Resolve_Set_Membership;
9051 goto SM_Exit;
9053 elsif not Is_Overloaded (R)
9054 and then
9055 (Etype (R) = Universal_Integer
9056 or else
9057 Etype (R) = Universal_Real)
9058 and then Is_Overloaded (L)
9059 then
9060 T := Etype (R);
9062 -- Ada 2005 (AI-251): Support the following case:
9064 -- type I is interface;
9065 -- type T is tagged ...
9067 -- function Test (O : I'Class) is
9068 -- begin
9069 -- return O in T'Class.
9070 -- end Test;
9072 -- In this case we have nothing else to do. The membership test will be
9073 -- done at run time.
9075 elsif Ada_Version >= Ada_2005
9076 and then Is_Class_Wide_Type (Etype (L))
9077 and then Is_Interface (Etype (L))
9078 and then Is_Class_Wide_Type (Etype (R))
9079 and then not Is_Interface (Etype (R))
9080 then
9081 return;
9082 else
9083 T := Intersect_Types (L, R);
9084 end if;
9086 -- If mixed-mode operations are present and operands are all literal,
9087 -- the only interpretation involves Duration, which is probably not
9088 -- the intention of the programmer.
9090 if T = Any_Fixed then
9091 T := Unique_Fixed_Point_Type (N);
9093 if T = Any_Type then
9094 return;
9095 end if;
9096 end if;
9098 Resolve (L, T);
9099 Check_Unset_Reference (L);
9101 if Nkind (R) = N_Range
9102 and then not Is_Scalar_Type (T)
9103 then
9104 Error_Msg_N ("scalar type required for range", R);
9105 end if;
9107 if Is_Entity_Name (R) then
9108 Freeze_Expression (R);
9109 else
9110 Resolve (R, T);
9111 Check_Unset_Reference (R);
9112 end if;
9114 -- Here after resolving membership operation
9116 <<SM_Exit>>
9118 Eval_Membership_Op (N);
9119 end Resolve_Membership_Op;
9121 ------------------
9122 -- Resolve_Null --
9123 ------------------
9125 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
9126 Loc : constant Source_Ptr := Sloc (N);
9128 begin
9129 -- Handle restriction against anonymous null access values This
9130 -- restriction can be turned off using -gnatdj.
9132 -- Ada 2005 (AI-231): Remove restriction
9134 if Ada_Version < Ada_2005
9135 and then not Debug_Flag_J
9136 and then Ekind (Typ) = E_Anonymous_Access_Type
9137 and then Comes_From_Source (N)
9138 then
9139 -- In the common case of a call which uses an explicitly null value
9140 -- for an access parameter, give specialized error message.
9142 if Nkind (Parent (N)) in N_Subprogram_Call then
9143 Error_Msg_N
9144 ("null is not allowed as argument for an access parameter", N);
9146 -- Standard message for all other cases (are there any?)
9148 else
9149 Error_Msg_N
9150 ("null cannot be of an anonymous access type", N);
9151 end if;
9152 end if;
9154 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
9155 -- assignment to a null-excluding object
9157 if Ada_Version >= Ada_2005
9158 and then Can_Never_Be_Null (Typ)
9159 and then Nkind (Parent (N)) = N_Assignment_Statement
9160 then
9161 if not Inside_Init_Proc then
9162 Insert_Action
9163 (Compile_Time_Constraint_Error (N,
9164 "(Ada 2005) null not allowed in null-excluding objects??"),
9165 Make_Raise_Constraint_Error (Loc,
9166 Reason => CE_Access_Check_Failed));
9167 else
9168 Insert_Action (N,
9169 Make_Raise_Constraint_Error (Loc,
9170 Reason => CE_Access_Check_Failed));
9171 end if;
9172 end if;
9174 -- In a distributed context, null for a remote access to subprogram may
9175 -- need to be replaced with a special record aggregate. In this case,
9176 -- return after having done the transformation.
9178 if (Ekind (Typ) = E_Record_Type
9179 or else Is_Remote_Access_To_Subprogram_Type (Typ))
9180 and then Remote_AST_Null_Value (N, Typ)
9181 then
9182 return;
9183 end if;
9185 -- The null literal takes its type from the context
9187 Set_Etype (N, Typ);
9188 end Resolve_Null;
9190 -----------------------
9191 -- Resolve_Op_Concat --
9192 -----------------------
9194 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
9196 -- We wish to avoid deep recursion, because concatenations are often
9197 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
9198 -- operands nonrecursively until we find something that is not a simple
9199 -- concatenation (A in this case). We resolve that, and then walk back
9200 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
9201 -- to do the rest of the work at each level. The Parent pointers allow
9202 -- us to avoid recursion, and thus avoid running out of memory. See also
9203 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
9205 NN : Node_Id := N;
9206 Op1 : Node_Id;
9208 begin
9209 -- The following code is equivalent to:
9211 -- Resolve_Op_Concat_First (NN, Typ);
9212 -- Resolve_Op_Concat_Arg (N, ...);
9213 -- Resolve_Op_Concat_Rest (N, Typ);
9215 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
9216 -- operand is a concatenation.
9218 -- Walk down left operands
9220 loop
9221 Resolve_Op_Concat_First (NN, Typ);
9222 Op1 := Left_Opnd (NN);
9223 exit when not (Nkind (Op1) = N_Op_Concat
9224 and then not Is_Array_Type (Component_Type (Typ))
9225 and then Entity (Op1) = Entity (NN));
9226 NN := Op1;
9227 end loop;
9229 -- Now (given the above example) NN is A&B and Op1 is A
9231 -- First resolve Op1 ...
9233 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
9235 -- ... then walk NN back up until we reach N (where we started), calling
9236 -- Resolve_Op_Concat_Rest along the way.
9238 loop
9239 Resolve_Op_Concat_Rest (NN, Typ);
9240 exit when NN = N;
9241 NN := Parent (NN);
9242 end loop;
9244 if Base_Type (Etype (N)) /= Standard_String then
9245 Check_SPARK_05_Restriction
9246 ("result of concatenation should have type String", N);
9247 end if;
9248 end Resolve_Op_Concat;
9250 ---------------------------
9251 -- Resolve_Op_Concat_Arg --
9252 ---------------------------
9254 procedure Resolve_Op_Concat_Arg
9255 (N : Node_Id;
9256 Arg : Node_Id;
9257 Typ : Entity_Id;
9258 Is_Comp : Boolean)
9260 Btyp : constant Entity_Id := Base_Type (Typ);
9261 Ctyp : constant Entity_Id := Component_Type (Typ);
9263 begin
9264 if In_Instance then
9265 if Is_Comp
9266 or else (not Is_Overloaded (Arg)
9267 and then Etype (Arg) /= Any_Composite
9268 and then Covers (Ctyp, Etype (Arg)))
9269 then
9270 Resolve (Arg, Ctyp);
9271 else
9272 Resolve (Arg, Btyp);
9273 end if;
9275 -- If both Array & Array and Array & Component are visible, there is a
9276 -- potential ambiguity that must be reported.
9278 elsif Has_Compatible_Type (Arg, Ctyp) then
9279 if Nkind (Arg) = N_Aggregate
9280 and then Is_Composite_Type (Ctyp)
9281 then
9282 if Is_Private_Type (Ctyp) then
9283 Resolve (Arg, Btyp);
9285 -- If the operation is user-defined and not overloaded use its
9286 -- profile. The operation may be a renaming, in which case it has
9287 -- been rewritten, and we want the original profile.
9289 elsif not Is_Overloaded (N)
9290 and then Comes_From_Source (Entity (Original_Node (N)))
9291 and then Ekind (Entity (Original_Node (N))) = E_Function
9292 then
9293 Resolve (Arg,
9294 Etype
9295 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
9296 return;
9298 -- Otherwise an aggregate may match both the array type and the
9299 -- component type.
9301 else
9302 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
9303 Set_Etype (Arg, Any_Type);
9304 end if;
9306 else
9307 if Is_Overloaded (Arg)
9308 and then Has_Compatible_Type (Arg, Typ)
9309 and then Etype (Arg) /= Any_Type
9310 then
9311 declare
9312 I : Interp_Index;
9313 It : Interp;
9314 Func : Entity_Id;
9316 begin
9317 Get_First_Interp (Arg, I, It);
9318 Func := It.Nam;
9319 Get_Next_Interp (I, It);
9321 -- Special-case the error message when the overloading is
9322 -- caused by a function that yields an array and can be
9323 -- called without parameters.
9325 if It.Nam = Func then
9326 Error_Msg_Sloc := Sloc (Func);
9327 Error_Msg_N ("ambiguous call to function#", Arg);
9328 Error_Msg_NE
9329 ("\\interpretation as call yields&", Arg, Typ);
9330 Error_Msg_NE
9331 ("\\interpretation as indexing of call yields&",
9332 Arg, Component_Type (Typ));
9334 else
9335 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
9337 Get_First_Interp (Arg, I, It);
9338 while Present (It.Nam) loop
9339 Error_Msg_Sloc := Sloc (It.Nam);
9341 if Base_Type (It.Typ) = Btyp
9342 or else
9343 Base_Type (It.Typ) = Base_Type (Ctyp)
9344 then
9345 Error_Msg_N -- CODEFIX
9346 ("\\possible interpretation#", Arg);
9347 end if;
9349 Get_Next_Interp (I, It);
9350 end loop;
9351 end if;
9352 end;
9353 end if;
9355 Resolve (Arg, Component_Type (Typ));
9357 if Nkind (Arg) = N_String_Literal then
9358 Set_Etype (Arg, Component_Type (Typ));
9359 end if;
9361 if Arg = Left_Opnd (N) then
9362 Set_Is_Component_Left_Opnd (N);
9363 else
9364 Set_Is_Component_Right_Opnd (N);
9365 end if;
9366 end if;
9368 else
9369 Resolve (Arg, Btyp);
9370 end if;
9372 -- Concatenation is restricted in SPARK: each operand must be either a
9373 -- string literal, the name of a string constant, a static character or
9374 -- string expression, or another concatenation. Arg cannot be a
9375 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9376 -- separately on each final operand, past concatenation operations.
9378 if Is_Character_Type (Etype (Arg)) then
9379 if not Is_OK_Static_Expression (Arg) then
9380 Check_SPARK_05_Restriction
9381 ("character operand for concatenation should be static", Arg);
9382 end if;
9384 elsif Is_String_Type (Etype (Arg)) then
9385 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9386 and then Is_Constant_Object (Entity (Arg)))
9387 and then not Is_OK_Static_Expression (Arg)
9388 then
9389 Check_SPARK_05_Restriction
9390 ("string operand for concatenation should be static", Arg);
9391 end if;
9393 -- Do not issue error on an operand that is neither a character nor a
9394 -- string, as the error is issued in Resolve_Op_Concat.
9396 else
9397 null;
9398 end if;
9400 Check_Unset_Reference (Arg);
9401 end Resolve_Op_Concat_Arg;
9403 -----------------------------
9404 -- Resolve_Op_Concat_First --
9405 -----------------------------
9407 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9408 Btyp : constant Entity_Id := Base_Type (Typ);
9409 Op1 : constant Node_Id := Left_Opnd (N);
9410 Op2 : constant Node_Id := Right_Opnd (N);
9412 begin
9413 -- The parser folds an enormous sequence of concatenations of string
9414 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9415 -- in the right operand. If the expression resolves to a predefined "&"
9416 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9417 -- we give an error. See P_Simple_Expression in Par.Ch4.
9419 if Nkind (Op2) = N_String_Literal
9420 and then Is_Folded_In_Parser (Op2)
9421 and then Ekind (Entity (N)) = E_Function
9422 then
9423 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
9424 and then String_Length (Strval (Op1)) = 0);
9425 Error_Msg_N ("too many user-defined concatenations", N);
9426 return;
9427 end if;
9429 Set_Etype (N, Btyp);
9431 if Is_Limited_Composite (Btyp) then
9432 Error_Msg_N ("concatenation not available for limited array", N);
9433 Explain_Limited_Type (Btyp, N);
9434 end if;
9435 end Resolve_Op_Concat_First;
9437 ----------------------------
9438 -- Resolve_Op_Concat_Rest --
9439 ----------------------------
9441 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9442 Op1 : constant Node_Id := Left_Opnd (N);
9443 Op2 : constant Node_Id := Right_Opnd (N);
9445 begin
9446 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
9448 Generate_Operator_Reference (N, Typ);
9450 if Is_String_Type (Typ) then
9451 Eval_Concatenation (N);
9452 end if;
9454 -- If this is not a static concatenation, but the result is a string
9455 -- type (and not an array of strings) ensure that static string operands
9456 -- have their subtypes properly constructed.
9458 if Nkind (N) /= N_String_Literal
9459 and then Is_Character_Type (Component_Type (Typ))
9460 then
9461 Set_String_Literal_Subtype (Op1, Typ);
9462 Set_String_Literal_Subtype (Op2, Typ);
9463 end if;
9464 end Resolve_Op_Concat_Rest;
9466 ----------------------
9467 -- Resolve_Op_Expon --
9468 ----------------------
9470 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9471 B_Typ : constant Entity_Id := Base_Type (Typ);
9473 begin
9474 -- Catch attempts to do fixed-point exponentiation with universal
9475 -- operands, which is a case where the illegality is not caught during
9476 -- normal operator analysis. This is not done in preanalysis mode
9477 -- since the tree is not fully decorated during preanalysis.
9479 if Full_Analysis then
9480 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9481 Error_Msg_N ("exponentiation not available for fixed point", N);
9482 return;
9484 elsif Nkind (Parent (N)) in N_Op
9485 and then Present (Etype (Parent (N)))
9486 and then Is_Fixed_Point_Type (Etype (Parent (N)))
9487 and then Etype (N) = Universal_Real
9488 and then Comes_From_Source (N)
9489 then
9490 Error_Msg_N ("exponentiation not available for fixed point", N);
9491 return;
9492 end if;
9493 end if;
9495 if Comes_From_Source (N)
9496 and then Ekind (Entity (N)) = E_Function
9497 and then Is_Imported (Entity (N))
9498 and then Is_Intrinsic_Subprogram (Entity (N))
9499 then
9500 Resolve_Intrinsic_Operator (N, Typ);
9501 return;
9502 end if;
9504 if Etype (Left_Opnd (N)) = Universal_Integer
9505 or else Etype (Left_Opnd (N)) = Universal_Real
9506 then
9507 Check_For_Visible_Operator (N, B_Typ);
9508 end if;
9510 -- We do the resolution using the base type, because intermediate values
9511 -- in expressions are always of the base type, not a subtype of it.
9513 Resolve (Left_Opnd (N), B_Typ);
9514 Resolve (Right_Opnd (N), Standard_Integer);
9516 -- For integer types, right argument must be in Natural range
9518 if Is_Integer_Type (Typ) then
9519 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9520 end if;
9522 Check_Unset_Reference (Left_Opnd (N));
9523 Check_Unset_Reference (Right_Opnd (N));
9525 Set_Etype (N, B_Typ);
9526 Generate_Operator_Reference (N, B_Typ);
9528 Analyze_Dimension (N);
9530 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9531 -- Evaluate the exponentiation operator for dimensioned type
9533 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9534 else
9535 Eval_Op_Expon (N);
9536 end if;
9538 -- Set overflow checking bit. Much cleverer code needed here eventually
9539 -- and perhaps the Resolve routines should be separated for the various
9540 -- arithmetic operations, since they will need different processing. ???
9542 if Nkind (N) in N_Op then
9543 if not Overflow_Checks_Suppressed (Etype (N)) then
9544 Enable_Overflow_Check (N);
9545 end if;
9546 end if;
9547 end Resolve_Op_Expon;
9549 --------------------
9550 -- Resolve_Op_Not --
9551 --------------------
9553 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9554 B_Typ : Entity_Id;
9556 function Parent_Is_Boolean return Boolean;
9557 -- This function determines if the parent node is a boolean operator or
9558 -- operation (comparison op, membership test, or short circuit form) and
9559 -- the not in question is the left operand of this operation. Note that
9560 -- if the not is in parens, then false is returned.
9562 -----------------------
9563 -- Parent_Is_Boolean --
9564 -----------------------
9566 function Parent_Is_Boolean return Boolean is
9567 begin
9568 if Paren_Count (N) /= 0 then
9569 return False;
9571 else
9572 case Nkind (Parent (N)) is
9573 when N_And_Then
9574 | N_In
9575 | N_Not_In
9576 | N_Op_And
9577 | N_Op_Eq
9578 | N_Op_Ge
9579 | N_Op_Gt
9580 | N_Op_Le
9581 | N_Op_Lt
9582 | N_Op_Ne
9583 | N_Op_Or
9584 | N_Op_Xor
9585 | N_Or_Else
9587 return Left_Opnd (Parent (N)) = N;
9589 when others =>
9590 return False;
9591 end case;
9592 end if;
9593 end Parent_Is_Boolean;
9595 -- Start of processing for Resolve_Op_Not
9597 begin
9598 -- Predefined operations on scalar types yield the base type. On the
9599 -- other hand, logical operations on arrays yield the type of the
9600 -- arguments (and the context).
9602 if Is_Array_Type (Typ) then
9603 B_Typ := Typ;
9604 else
9605 B_Typ := Base_Type (Typ);
9606 end if;
9608 -- Straightforward case of incorrect arguments
9610 if not Valid_Boolean_Arg (Typ) then
9611 Error_Msg_N ("invalid operand type for operator&", N);
9612 Set_Etype (N, Any_Type);
9613 return;
9615 -- Special case of probable missing parens
9617 elsif Typ = Universal_Integer or else Typ = Any_Modular then
9618 if Parent_Is_Boolean then
9619 Error_Msg_N
9620 ("operand of not must be enclosed in parentheses",
9621 Right_Opnd (N));
9622 else
9623 Error_Msg_N
9624 ("no modular type available in this context", N);
9625 end if;
9627 Set_Etype (N, Any_Type);
9628 return;
9630 -- OK resolution of NOT
9632 else
9633 -- Warn if non-boolean types involved. This is a case like not a < b
9634 -- where a and b are modular, where we will get (not a) < b and most
9635 -- likely not (a < b) was intended.
9637 if Warn_On_Questionable_Missing_Parens
9638 and then not Is_Boolean_Type (Typ)
9639 and then Parent_Is_Boolean
9640 then
9641 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9642 end if;
9644 -- Warn on double negation if checking redundant constructs
9646 if Warn_On_Redundant_Constructs
9647 and then Comes_From_Source (N)
9648 and then Comes_From_Source (Right_Opnd (N))
9649 and then Root_Type (Typ) = Standard_Boolean
9650 and then Nkind (Right_Opnd (N)) = N_Op_Not
9651 then
9652 Error_Msg_N ("redundant double negation?r?", N);
9653 end if;
9655 -- Complete resolution and evaluation of NOT
9657 Resolve (Right_Opnd (N), B_Typ);
9658 Check_Unset_Reference (Right_Opnd (N));
9659 Set_Etype (N, B_Typ);
9660 Generate_Operator_Reference (N, B_Typ);
9661 Eval_Op_Not (N);
9662 end if;
9663 end Resolve_Op_Not;
9665 -----------------------------
9666 -- Resolve_Operator_Symbol --
9667 -----------------------------
9669 -- Nothing to be done, all resolved already
9671 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9672 pragma Warnings (Off, N);
9673 pragma Warnings (Off, Typ);
9675 begin
9676 null;
9677 end Resolve_Operator_Symbol;
9679 ----------------------------------
9680 -- Resolve_Qualified_Expression --
9681 ----------------------------------
9683 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9684 pragma Warnings (Off, Typ);
9686 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9687 Expr : constant Node_Id := Expression (N);
9689 begin
9690 Resolve (Expr, Target_Typ);
9692 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9693 -- operation if not needed.
9695 if Restriction_Check_Required (SPARK_05)
9696 and then Is_Array_Type (Target_Typ)
9697 and then Is_Array_Type (Etype (Expr))
9698 and then Etype (Expr) /= Any_Composite -- or else Expr in error
9699 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9700 then
9701 Check_SPARK_05_Restriction
9702 ("array types should have matching static bounds", N);
9703 end if;
9705 -- A qualified expression requires an exact match of the type, class-
9706 -- wide matching is not allowed. However, if the qualifying type is
9707 -- specific and the expression has a class-wide type, it may still be
9708 -- okay, since it can be the result of the expansion of a call to a
9709 -- dispatching function, so we also have to check class-wideness of the
9710 -- type of the expression's original node.
9712 if (Is_Class_Wide_Type (Target_Typ)
9713 or else
9714 (Is_Class_Wide_Type (Etype (Expr))
9715 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9716 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9717 then
9718 Wrong_Type (Expr, Target_Typ);
9719 end if;
9721 -- If the target type is unconstrained, then we reset the type of the
9722 -- result from the type of the expression. For other cases, the actual
9723 -- subtype of the expression is the target type.
9725 if Is_Composite_Type (Target_Typ)
9726 and then not Is_Constrained (Target_Typ)
9727 then
9728 Set_Etype (N, Etype (Expr));
9729 end if;
9731 Analyze_Dimension (N);
9732 Eval_Qualified_Expression (N);
9734 -- If we still have a qualified expression after the static evaluation,
9735 -- then apply a scalar range check if needed. The reason that we do this
9736 -- after the Eval call is that otherwise, the application of the range
9737 -- check may convert an illegal static expression and result in warning
9738 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9740 if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9741 Apply_Scalar_Range_Check (Expr, Typ);
9742 end if;
9744 -- Finally, check whether a predicate applies to the target type. This
9745 -- comes from AI12-0100. As for type conversions, check the enclosing
9746 -- context to prevent an infinite expansion.
9748 if Has_Predicates (Target_Typ) then
9749 if Nkind (Parent (N)) = N_Function_Call
9750 and then Present (Name (Parent (N)))
9751 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
9752 or else
9753 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
9754 then
9755 null;
9757 -- In the case of a qualified expression in an allocator, the check
9758 -- is applied when expanding the allocator, so avoid redundant check.
9760 elsif Nkind (N) = N_Qualified_Expression
9761 and then Nkind (Parent (N)) /= N_Allocator
9762 then
9763 Apply_Predicate_Check (N, Target_Typ);
9764 end if;
9765 end if;
9766 end Resolve_Qualified_Expression;
9768 ------------------------------
9769 -- Resolve_Raise_Expression --
9770 ------------------------------
9772 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9773 begin
9774 if Typ = Raise_Type then
9775 Error_Msg_N ("cannot find unique type for raise expression", N);
9776 Set_Etype (N, Any_Type);
9777 else
9778 Set_Etype (N, Typ);
9779 end if;
9780 end Resolve_Raise_Expression;
9782 -------------------
9783 -- Resolve_Range --
9784 -------------------
9786 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9787 L : constant Node_Id := Low_Bound (N);
9788 H : constant Node_Id := High_Bound (N);
9790 function First_Last_Ref return Boolean;
9791 -- Returns True if N is of the form X'First .. X'Last where X is the
9792 -- same entity for both attributes.
9794 --------------------
9795 -- First_Last_Ref --
9796 --------------------
9798 function First_Last_Ref return Boolean is
9799 Lorig : constant Node_Id := Original_Node (L);
9800 Horig : constant Node_Id := Original_Node (H);
9802 begin
9803 if Nkind (Lorig) = N_Attribute_Reference
9804 and then Nkind (Horig) = N_Attribute_Reference
9805 and then Attribute_Name (Lorig) = Name_First
9806 and then Attribute_Name (Horig) = Name_Last
9807 then
9808 declare
9809 PL : constant Node_Id := Prefix (Lorig);
9810 PH : constant Node_Id := Prefix (Horig);
9811 begin
9812 if Is_Entity_Name (PL)
9813 and then Is_Entity_Name (PH)
9814 and then Entity (PL) = Entity (PH)
9815 then
9816 return True;
9817 end if;
9818 end;
9819 end if;
9821 return False;
9822 end First_Last_Ref;
9824 -- Start of processing for Resolve_Range
9826 begin
9827 Set_Etype (N, Typ);
9829 -- The lower bound should be in Typ. The higher bound can be in Typ's
9830 -- base type if the range is null. It may still be invalid if it is
9831 -- higher than the lower bound. This is checked later in the context in
9832 -- which the range appears.
9834 Resolve (L, Typ);
9835 Resolve (H, Base_Type (Typ));
9837 -- Check for inappropriate range on unordered enumeration type
9839 if Bad_Unordered_Enumeration_Reference (N, Typ)
9841 -- Exclude X'First .. X'Last if X is the same entity for both
9843 and then not First_Last_Ref
9844 then
9845 Error_Msg_Sloc := Sloc (Typ);
9846 Error_Msg_NE
9847 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9848 end if;
9850 Check_Unset_Reference (L);
9851 Check_Unset_Reference (H);
9853 -- We have to check the bounds for being within the base range as
9854 -- required for a non-static context. Normally this is automatic and
9855 -- done as part of evaluating expressions, but the N_Range node is an
9856 -- exception, since in GNAT we consider this node to be a subexpression,
9857 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9858 -- this, but that would put the test on the main evaluation path for
9859 -- expressions.
9861 Check_Non_Static_Context (L);
9862 Check_Non_Static_Context (H);
9864 -- Check for an ambiguous range over character literals. This will
9865 -- happen with a membership test involving only literals.
9867 if Typ = Any_Character then
9868 Ambiguous_Character (L);
9869 Set_Etype (N, Any_Type);
9870 return;
9871 end if;
9873 -- If bounds are static, constant-fold them, so size computations are
9874 -- identical between front-end and back-end. Do not perform this
9875 -- transformation while analyzing generic units, as type information
9876 -- would be lost when reanalyzing the constant node in the instance.
9878 if Is_Discrete_Type (Typ) and then Expander_Active then
9879 if Is_OK_Static_Expression (L) then
9880 Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9881 end if;
9883 if Is_OK_Static_Expression (H) then
9884 Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
9885 end if;
9886 end if;
9887 end Resolve_Range;
9889 --------------------------
9890 -- Resolve_Real_Literal --
9891 --------------------------
9893 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
9894 Actual_Typ : constant Entity_Id := Etype (N);
9896 begin
9897 -- Special processing for fixed-point literals to make sure that the
9898 -- value is an exact multiple of small where this is required. We skip
9899 -- this for the universal real case, and also for generic types.
9901 if Is_Fixed_Point_Type (Typ)
9902 and then Typ /= Universal_Fixed
9903 and then Typ /= Any_Fixed
9904 and then not Is_Generic_Type (Typ)
9905 then
9906 declare
9907 Val : constant Ureal := Realval (N);
9908 Cintr : constant Ureal := Val / Small_Value (Typ);
9909 Cint : constant Uint := UR_Trunc (Cintr);
9910 Den : constant Uint := Norm_Den (Cintr);
9911 Stat : Boolean;
9913 begin
9914 -- Case of literal is not an exact multiple of the Small
9916 if Den /= 1 then
9918 -- For a source program literal for a decimal fixed-point type,
9919 -- this is statically illegal (RM 4.9(36)).
9921 if Is_Decimal_Fixed_Point_Type (Typ)
9922 and then Actual_Typ = Universal_Real
9923 and then Comes_From_Source (N)
9924 then
9925 Error_Msg_N ("value has extraneous low order digits", N);
9926 end if;
9928 -- Generate a warning if literal from source
9930 if Is_OK_Static_Expression (N)
9931 and then Warn_On_Bad_Fixed_Value
9932 then
9933 Error_Msg_N
9934 ("?b?static fixed-point value is not a multiple of Small!",
9936 end if;
9938 -- Replace literal by a value that is the exact representation
9939 -- of a value of the type, i.e. a multiple of the small value,
9940 -- by truncation, since Machine_Rounds is false for all GNAT
9941 -- fixed-point types (RM 4.9(38)).
9943 Stat := Is_OK_Static_Expression (N);
9944 Rewrite (N,
9945 Make_Real_Literal (Sloc (N),
9946 Realval => Small_Value (Typ) * Cint));
9948 Set_Is_Static_Expression (N, Stat);
9949 end if;
9951 -- In all cases, set the corresponding integer field
9953 Set_Corresponding_Integer_Value (N, Cint);
9954 end;
9955 end if;
9957 -- Now replace the actual type by the expected type as usual
9959 Set_Etype (N, Typ);
9960 Eval_Real_Literal (N);
9961 end Resolve_Real_Literal;
9963 -----------------------
9964 -- Resolve_Reference --
9965 -----------------------
9967 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
9968 P : constant Node_Id := Prefix (N);
9970 begin
9971 -- Replace general access with specific type
9973 if Ekind (Etype (N)) = E_Allocator_Type then
9974 Set_Etype (N, Base_Type (Typ));
9975 end if;
9977 Resolve (P, Designated_Type (Etype (N)));
9979 -- If we are taking the reference of a volatile entity, then treat it as
9980 -- a potential modification of this entity. This is too conservative,
9981 -- but necessary because remove side effects can cause transformations
9982 -- of normal assignments into reference sequences that otherwise fail to
9983 -- notice the modification.
9985 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
9986 Note_Possible_Modification (P, Sure => False);
9987 end if;
9988 end Resolve_Reference;
9990 --------------------------------
9991 -- Resolve_Selected_Component --
9992 --------------------------------
9994 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
9995 Comp : Entity_Id;
9996 Comp1 : Entity_Id := Empty; -- prevent junk warning
9997 P : constant Node_Id := Prefix (N);
9998 S : constant Node_Id := Selector_Name (N);
9999 T : Entity_Id := Etype (P);
10000 I : Interp_Index;
10001 I1 : Interp_Index := 0; -- prevent junk warning
10002 It : Interp;
10003 It1 : Interp;
10004 Found : Boolean;
10006 function Init_Component return Boolean;
10007 -- Check whether this is the initialization of a component within an
10008 -- init proc (by assignment or call to another init proc). If true,
10009 -- there is no need for a discriminant check.
10011 --------------------
10012 -- Init_Component --
10013 --------------------
10015 function Init_Component return Boolean is
10016 begin
10017 return Inside_Init_Proc
10018 and then Nkind (Prefix (N)) = N_Identifier
10019 and then Chars (Prefix (N)) = Name_uInit
10020 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
10021 end Init_Component;
10023 -- Start of processing for Resolve_Selected_Component
10025 begin
10026 if Is_Overloaded (P) then
10028 -- Use the context type to select the prefix that has a selector
10029 -- of the correct name and type.
10031 Found := False;
10032 Get_First_Interp (P, I, It);
10034 Search : while Present (It.Typ) loop
10035 if Is_Access_Type (It.Typ) then
10036 T := Designated_Type (It.Typ);
10037 else
10038 T := It.Typ;
10039 end if;
10041 -- Locate selected component. For a private prefix the selector
10042 -- can denote a discriminant.
10044 if Is_Record_Type (T) or else Is_Private_Type (T) then
10046 -- The visible components of a class-wide type are those of
10047 -- the root type.
10049 if Is_Class_Wide_Type (T) then
10050 T := Etype (T);
10051 end if;
10053 Comp := First_Entity (T);
10054 while Present (Comp) loop
10055 if Chars (Comp) = Chars (S)
10056 and then Covers (Typ, Etype (Comp))
10057 then
10058 if not Found then
10059 Found := True;
10060 I1 := I;
10061 It1 := It;
10062 Comp1 := Comp;
10064 else
10065 It := Disambiguate (P, I1, I, Any_Type);
10067 if It = No_Interp then
10068 Error_Msg_N
10069 ("ambiguous prefix for selected component", N);
10070 Set_Etype (N, Typ);
10071 return;
10073 else
10074 It1 := It;
10076 -- There may be an implicit dereference. Retrieve
10077 -- designated record type.
10079 if Is_Access_Type (It1.Typ) then
10080 T := Designated_Type (It1.Typ);
10081 else
10082 T := It1.Typ;
10083 end if;
10085 if Scope (Comp1) /= T then
10087 -- Resolution chooses the new interpretation.
10088 -- Find the component with the right name.
10090 Comp1 := First_Entity (T);
10091 while Present (Comp1)
10092 and then Chars (Comp1) /= Chars (S)
10093 loop
10094 Comp1 := Next_Entity (Comp1);
10095 end loop;
10096 end if;
10098 exit Search;
10099 end if;
10100 end if;
10101 end if;
10103 Comp := Next_Entity (Comp);
10104 end loop;
10105 end if;
10107 Get_Next_Interp (I, It);
10108 end loop Search;
10110 -- There must be a legal interpretation at this point
10112 pragma Assert (Found);
10113 Resolve (P, It1.Typ);
10114 Set_Etype (N, Typ);
10115 Set_Entity_With_Checks (S, Comp1);
10117 else
10118 -- Resolve prefix with its type
10120 Resolve (P, T);
10121 end if;
10123 -- Generate cross-reference. We needed to wait until full overloading
10124 -- resolution was complete to do this, since otherwise we can't tell if
10125 -- we are an lvalue or not.
10127 if May_Be_Lvalue (N) then
10128 Generate_Reference (Entity (S), S, 'm');
10129 else
10130 Generate_Reference (Entity (S), S, 'r');
10131 end if;
10133 -- If prefix is an access type, the node will be transformed into an
10134 -- explicit dereference during expansion. The type of the node is the
10135 -- designated type of that of the prefix.
10137 if Is_Access_Type (Etype (P)) then
10138 T := Designated_Type (Etype (P));
10139 Check_Fully_Declared_Prefix (T, P);
10140 else
10141 T := Etype (P);
10142 end if;
10144 -- Set flag for expander if discriminant check required on a component
10145 -- appearing within a variant.
10147 if Has_Discriminants (T)
10148 and then Ekind (Entity (S)) = E_Component
10149 and then Present (Original_Record_Component (Entity (S)))
10150 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
10151 and then
10152 Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
10153 and then not Discriminant_Checks_Suppressed (T)
10154 and then not Init_Component
10155 then
10156 Set_Do_Discriminant_Check (N);
10157 end if;
10159 if Ekind (Entity (S)) = E_Void then
10160 Error_Msg_N ("premature use of component", S);
10161 end if;
10163 -- If the prefix is a record conversion, this may be a renamed
10164 -- discriminant whose bounds differ from those of the original
10165 -- one, so we must ensure that a range check is performed.
10167 if Nkind (P) = N_Type_Conversion
10168 and then Ekind (Entity (S)) = E_Discriminant
10169 and then Is_Discrete_Type (Typ)
10170 then
10171 Set_Etype (N, Base_Type (Typ));
10172 end if;
10174 -- Note: No Eval processing is required, because the prefix is of a
10175 -- record type, or protected type, and neither can possibly be static.
10177 -- If the record type is atomic, and the component is non-atomic, then
10178 -- this is worth a warning, since we have a situation where the access
10179 -- to the component may cause extra read/writes of the atomic array
10180 -- object, or partial word accesses, both of which may be unexpected.
10182 if Nkind (N) = N_Selected_Component
10183 and then Is_Atomic_Ref_With_Address (N)
10184 and then not Is_Atomic (Entity (S))
10185 and then not Is_Atomic (Etype (Entity (S)))
10186 then
10187 Error_Msg_N
10188 ("??access to non-atomic component of atomic record",
10189 Prefix (N));
10190 Error_Msg_N
10191 ("\??may cause unexpected accesses to atomic object",
10192 Prefix (N));
10193 end if;
10195 Analyze_Dimension (N);
10196 end Resolve_Selected_Component;
10198 -------------------
10199 -- Resolve_Shift --
10200 -------------------
10202 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
10203 B_Typ : constant Entity_Id := Base_Type (Typ);
10204 L : constant Node_Id := Left_Opnd (N);
10205 R : constant Node_Id := Right_Opnd (N);
10207 begin
10208 -- We do the resolution using the base type, because intermediate values
10209 -- in expressions always are of the base type, not a subtype of it.
10211 Resolve (L, B_Typ);
10212 Resolve (R, Standard_Natural);
10214 Check_Unset_Reference (L);
10215 Check_Unset_Reference (R);
10217 Set_Etype (N, B_Typ);
10218 Generate_Operator_Reference (N, B_Typ);
10219 Eval_Shift (N);
10220 end Resolve_Shift;
10222 ---------------------------
10223 -- Resolve_Short_Circuit --
10224 ---------------------------
10226 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
10227 B_Typ : constant Entity_Id := Base_Type (Typ);
10228 L : constant Node_Id := Left_Opnd (N);
10229 R : constant Node_Id := Right_Opnd (N);
10231 begin
10232 -- Ensure all actions associated with the left operand (e.g.
10233 -- finalization of transient objects) are fully evaluated locally within
10234 -- an expression with actions. This is particularly helpful for coverage
10235 -- analysis. However this should not happen in generics or if option
10236 -- Minimize_Expression_With_Actions is set.
10238 if Expander_Active and not Minimize_Expression_With_Actions then
10239 declare
10240 Reloc_L : constant Node_Id := Relocate_Node (L);
10241 begin
10242 Save_Interps (Old_N => L, New_N => Reloc_L);
10244 Rewrite (L,
10245 Make_Expression_With_Actions (Sloc (L),
10246 Actions => New_List,
10247 Expression => Reloc_L));
10249 -- Set Comes_From_Source on L to preserve warnings for unset
10250 -- reference.
10252 Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
10253 end;
10254 end if;
10256 Resolve (L, B_Typ);
10257 Resolve (R, B_Typ);
10259 -- Check for issuing warning for always False assert/check, this happens
10260 -- when assertions are turned off, in which case the pragma Assert/Check
10261 -- was transformed into:
10263 -- if False and then <condition> then ...
10265 -- and we detect this pattern
10267 if Warn_On_Assertion_Failure
10268 and then Is_Entity_Name (R)
10269 and then Entity (R) = Standard_False
10270 and then Nkind (Parent (N)) = N_If_Statement
10271 and then Nkind (N) = N_And_Then
10272 and then Is_Entity_Name (L)
10273 and then Entity (L) = Standard_False
10274 then
10275 declare
10276 Orig : constant Node_Id := Original_Node (Parent (N));
10278 begin
10279 -- Special handling of Asssert pragma
10281 if Nkind (Orig) = N_Pragma
10282 and then Pragma_Name (Orig) = Name_Assert
10283 then
10284 declare
10285 Expr : constant Node_Id :=
10286 Original_Node
10287 (Expression
10288 (First (Pragma_Argument_Associations (Orig))));
10290 begin
10291 -- Don't warn if original condition is explicit False,
10292 -- since obviously the failure is expected in this case.
10294 if Is_Entity_Name (Expr)
10295 and then Entity (Expr) = Standard_False
10296 then
10297 null;
10299 -- Issue warning. We do not want the deletion of the
10300 -- IF/AND-THEN to take this message with it. We achieve this
10301 -- by making sure that the expanded code points to the Sloc
10302 -- of the expression, not the original pragma.
10304 else
10305 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
10306 -- The source location of the expression is not usually
10307 -- the best choice here. For example, it gets located on
10308 -- the last AND keyword in a chain of boolean expressiond
10309 -- AND'ed together. It is best to put the message on the
10310 -- first character of the assertion, which is the effect
10311 -- of the First_Node call here.
10313 Error_Msg_F
10314 ("?A?assertion would fail at run time!",
10315 Expression
10316 (First (Pragma_Argument_Associations (Orig))));
10317 end if;
10318 end;
10320 -- Similar processing for Check pragma
10322 elsif Nkind (Orig) = N_Pragma
10323 and then Pragma_Name (Orig) = Name_Check
10324 then
10325 -- Don't want to warn if original condition is explicit False
10327 declare
10328 Expr : constant Node_Id :=
10329 Original_Node
10330 (Expression
10331 (Next (First (Pragma_Argument_Associations (Orig)))));
10332 begin
10333 if Is_Entity_Name (Expr)
10334 and then Entity (Expr) = Standard_False
10335 then
10336 null;
10338 -- Post warning
10340 else
10341 -- Again use Error_Msg_F rather than Error_Msg_N, see
10342 -- comment above for an explanation of why we do this.
10344 Error_Msg_F
10345 ("?A?check would fail at run time!",
10346 Expression
10347 (Last (Pragma_Argument_Associations (Orig))));
10348 end if;
10349 end;
10350 end if;
10351 end;
10352 end if;
10354 -- Continue with processing of short circuit
10356 Check_Unset_Reference (L);
10357 Check_Unset_Reference (R);
10359 Set_Etype (N, B_Typ);
10360 Eval_Short_Circuit (N);
10361 end Resolve_Short_Circuit;
10363 -------------------
10364 -- Resolve_Slice --
10365 -------------------
10367 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
10368 Drange : constant Node_Id := Discrete_Range (N);
10369 Name : constant Node_Id := Prefix (N);
10370 Array_Type : Entity_Id := Empty;
10371 Dexpr : Node_Id := Empty;
10372 Index_Type : Entity_Id;
10374 begin
10375 if Is_Overloaded (Name) then
10377 -- Use the context type to select the prefix that yields the correct
10378 -- array type.
10380 declare
10381 I : Interp_Index;
10382 I1 : Interp_Index := 0;
10383 It : Interp;
10384 P : constant Node_Id := Prefix (N);
10385 Found : Boolean := False;
10387 begin
10388 Get_First_Interp (P, I, It);
10389 while Present (It.Typ) loop
10390 if (Is_Array_Type (It.Typ)
10391 and then Covers (Typ, It.Typ))
10392 or else (Is_Access_Type (It.Typ)
10393 and then Is_Array_Type (Designated_Type (It.Typ))
10394 and then Covers (Typ, Designated_Type (It.Typ)))
10395 then
10396 if Found then
10397 It := Disambiguate (P, I1, I, Any_Type);
10399 if It = No_Interp then
10400 Error_Msg_N ("ambiguous prefix for slicing", N);
10401 Set_Etype (N, Typ);
10402 return;
10403 else
10404 Found := True;
10405 Array_Type := It.Typ;
10406 I1 := I;
10407 end if;
10408 else
10409 Found := True;
10410 Array_Type := It.Typ;
10411 I1 := I;
10412 end if;
10413 end if;
10415 Get_Next_Interp (I, It);
10416 end loop;
10417 end;
10419 else
10420 Array_Type := Etype (Name);
10421 end if;
10423 Resolve (Name, Array_Type);
10425 if Is_Access_Type (Array_Type) then
10426 Apply_Access_Check (N);
10427 Array_Type := Designated_Type (Array_Type);
10429 -- If the prefix is an access to an unconstrained array, we must use
10430 -- the actual subtype of the object to perform the index checks. The
10431 -- object denoted by the prefix is implicit in the node, so we build
10432 -- an explicit representation for it in order to compute the actual
10433 -- subtype.
10435 if not Is_Constrained (Array_Type) then
10436 Remove_Side_Effects (Prefix (N));
10438 declare
10439 Obj : constant Node_Id :=
10440 Make_Explicit_Dereference (Sloc (N),
10441 Prefix => New_Copy_Tree (Prefix (N)));
10442 begin
10443 Set_Etype (Obj, Array_Type);
10444 Set_Parent (Obj, Parent (N));
10445 Array_Type := Get_Actual_Subtype (Obj);
10446 end;
10447 end if;
10449 elsif Is_Entity_Name (Name)
10450 or else Nkind (Name) = N_Explicit_Dereference
10451 or else (Nkind (Name) = N_Function_Call
10452 and then not Is_Constrained (Etype (Name)))
10453 then
10454 Array_Type := Get_Actual_Subtype (Name);
10456 -- If the name is a selected component that depends on discriminants,
10457 -- build an actual subtype for it. This can happen only when the name
10458 -- itself is overloaded; otherwise the actual subtype is created when
10459 -- the selected component is analyzed.
10461 elsif Nkind (Name) = N_Selected_Component
10462 and then Full_Analysis
10463 and then Depends_On_Discriminant (First_Index (Array_Type))
10464 then
10465 declare
10466 Act_Decl : constant Node_Id :=
10467 Build_Actual_Subtype_Of_Component (Array_Type, Name);
10468 begin
10469 Insert_Action (N, Act_Decl);
10470 Array_Type := Defining_Identifier (Act_Decl);
10471 end;
10473 -- Maybe this should just be "else", instead of checking for the
10474 -- specific case of slice??? This is needed for the case where the
10475 -- prefix is an Image attribute, which gets expanded to a slice, and so
10476 -- has a constrained subtype which we want to use for the slice range
10477 -- check applied below (the range check won't get done if the
10478 -- unconstrained subtype of the 'Image is used).
10480 elsif Nkind (Name) = N_Slice then
10481 Array_Type := Etype (Name);
10482 end if;
10484 -- Obtain the type of the array index
10486 if Ekind (Array_Type) = E_String_Literal_Subtype then
10487 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10488 else
10489 Index_Type := Etype (First_Index (Array_Type));
10490 end if;
10492 -- If name was overloaded, set slice type correctly now
10494 Set_Etype (N, Array_Type);
10496 -- Handle the generation of a range check that compares the array index
10497 -- against the discrete_range. The check is not applied to internally
10498 -- built nodes associated with the expansion of dispatch tables. Check
10499 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10500 -- the unit.
10502 if Tagged_Type_Expansion
10503 and then RTU_Loaded (Ada_Tags)
10504 and then Nkind (Prefix (N)) = N_Selected_Component
10505 and then Present (Entity (Selector_Name (Prefix (N))))
10506 and then Entity (Selector_Name (Prefix (N))) =
10507 RTE_Record_Component (RE_Prims_Ptr)
10508 then
10509 null;
10511 -- The discrete_range is specified by a subtype indication. Create a
10512 -- shallow copy and inherit the type, parent and source location from
10513 -- the discrete_range. This ensures that the range check is inserted
10514 -- relative to the slice and that the runtime exception points to the
10515 -- proper construct.
10517 elsif Is_Entity_Name (Drange) then
10518 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10520 Set_Etype (Dexpr, Etype (Drange));
10521 Set_Parent (Dexpr, Parent (Drange));
10522 Set_Sloc (Dexpr, Sloc (Drange));
10524 -- The discrete_range is a regular range. Resolve the bounds and remove
10525 -- their side effects.
10527 else
10528 Resolve (Drange, Base_Type (Index_Type));
10530 if Nkind (Drange) = N_Range then
10531 Force_Evaluation (Low_Bound (Drange));
10532 Force_Evaluation (High_Bound (Drange));
10534 Dexpr := Drange;
10535 end if;
10536 end if;
10538 if Present (Dexpr) then
10539 Apply_Range_Check (Dexpr, Index_Type);
10540 end if;
10542 Set_Slice_Subtype (N);
10544 -- Check bad use of type with predicates
10546 declare
10547 Subt : Entity_Id;
10549 begin
10550 if Nkind (Drange) = N_Subtype_Indication
10551 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10552 then
10553 Subt := Entity (Subtype_Mark (Drange));
10554 else
10555 Subt := Etype (Drange);
10556 end if;
10558 if Has_Predicates (Subt) then
10559 Bad_Predicated_Subtype_Use
10560 ("subtype& has predicate, not allowed in slice", Drange, Subt);
10561 end if;
10562 end;
10564 -- Otherwise here is where we check suspicious indexes
10566 if Nkind (Drange) = N_Range then
10567 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
10568 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10569 end if;
10571 Analyze_Dimension (N);
10572 Eval_Slice (N);
10573 end Resolve_Slice;
10575 ----------------------------
10576 -- Resolve_String_Literal --
10577 ----------------------------
10579 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10580 C_Typ : constant Entity_Id := Component_Type (Typ);
10581 R_Typ : constant Entity_Id := Root_Type (C_Typ);
10582 Loc : constant Source_Ptr := Sloc (N);
10583 Str : constant String_Id := Strval (N);
10584 Strlen : constant Nat := String_Length (Str);
10585 Subtype_Id : Entity_Id;
10586 Need_Check : Boolean;
10588 begin
10589 -- For a string appearing in a concatenation, defer creation of the
10590 -- string_literal_subtype until the end of the resolution of the
10591 -- concatenation, because the literal may be constant-folded away. This
10592 -- is a useful optimization for long concatenation expressions.
10594 -- If the string is an aggregate built for a single character (which
10595 -- happens in a non-static context) or a is null string to which special
10596 -- checks may apply, we build the subtype. Wide strings must also get a
10597 -- string subtype if they come from a one character aggregate. Strings
10598 -- generated by attributes might be static, but it is often hard to
10599 -- determine whether the enclosing context is static, so we generate
10600 -- subtypes for them as well, thus losing some rarer optimizations ???
10601 -- Same for strings that come from a static conversion.
10603 Need_Check :=
10604 (Strlen = 0 and then Typ /= Standard_String)
10605 or else Nkind (Parent (N)) /= N_Op_Concat
10606 or else (N /= Left_Opnd (Parent (N))
10607 and then N /= Right_Opnd (Parent (N)))
10608 or else ((Typ = Standard_Wide_String
10609 or else Typ = Standard_Wide_Wide_String)
10610 and then Nkind (Original_Node (N)) /= N_String_Literal);
10612 -- If the resolving type is itself a string literal subtype, we can just
10613 -- reuse it, since there is no point in creating another.
10615 if Ekind (Typ) = E_String_Literal_Subtype then
10616 Subtype_Id := Typ;
10618 elsif Nkind (Parent (N)) = N_Op_Concat
10619 and then not Need_Check
10620 and then not Nkind_In (Original_Node (N), N_Character_Literal,
10621 N_Attribute_Reference,
10622 N_Qualified_Expression,
10623 N_Type_Conversion)
10624 then
10625 Subtype_Id := Typ;
10627 -- Do not generate a string literal subtype for the default expression
10628 -- of a formal parameter in GNATprove mode. This is because the string
10629 -- subtype is associated with the freezing actions of the subprogram,
10630 -- however freezing is disabled in GNATprove mode and as a result the
10631 -- subtype is unavailable.
10633 elsif GNATprove_Mode
10634 and then Nkind (Parent (N)) = N_Parameter_Specification
10635 then
10636 Subtype_Id := Typ;
10638 -- Otherwise we must create a string literal subtype. Note that the
10639 -- whole idea of string literal subtypes is simply to avoid the need
10640 -- for building a full fledged array subtype for each literal.
10642 else
10643 Set_String_Literal_Subtype (N, Typ);
10644 Subtype_Id := Etype (N);
10645 end if;
10647 if Nkind (Parent (N)) /= N_Op_Concat
10648 or else Need_Check
10649 then
10650 Set_Etype (N, Subtype_Id);
10651 Eval_String_Literal (N);
10652 end if;
10654 if Is_Limited_Composite (Typ)
10655 or else Is_Private_Composite (Typ)
10656 then
10657 Error_Msg_N ("string literal not available for private array", N);
10658 Set_Etype (N, Any_Type);
10659 return;
10660 end if;
10662 -- The validity of a null string has been checked in the call to
10663 -- Eval_String_Literal.
10665 if Strlen = 0 then
10666 return;
10668 -- Always accept string literal with component type Any_Character, which
10669 -- occurs in error situations and in comparisons of literals, both of
10670 -- which should accept all literals.
10672 elsif R_Typ = Any_Character then
10673 return;
10675 -- If the type is bit-packed, then we always transform the string
10676 -- literal into a full fledged aggregate.
10678 elsif Is_Bit_Packed_Array (Typ) then
10679 null;
10681 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10683 else
10684 -- For Standard.Wide_Wide_String, or any other type whose component
10685 -- type is Standard.Wide_Wide_Character, we know that all the
10686 -- characters in the string must be acceptable, since the parser
10687 -- accepted the characters as valid character literals.
10689 if R_Typ = Standard_Wide_Wide_Character then
10690 null;
10692 -- For the case of Standard.String, or any other type whose component
10693 -- type is Standard.Character, we must make sure that there are no
10694 -- wide characters in the string, i.e. that it is entirely composed
10695 -- of characters in range of type Character.
10697 -- If the string literal is the result of a static concatenation, the
10698 -- test has already been performed on the components, and need not be
10699 -- repeated.
10701 elsif R_Typ = Standard_Character
10702 and then Nkind (Original_Node (N)) /= N_Op_Concat
10703 then
10704 for J in 1 .. Strlen loop
10705 if not In_Character_Range (Get_String_Char (Str, J)) then
10707 -- If we are out of range, post error. This is one of the
10708 -- very few places that we place the flag in the middle of
10709 -- a token, right under the offending wide character. Not
10710 -- quite clear if this is right wrt wide character encoding
10711 -- sequences, but it's only an error message.
10713 Error_Msg
10714 ("literal out of range of type Standard.Character",
10715 Source_Ptr (Int (Loc) + J));
10716 return;
10717 end if;
10718 end loop;
10720 -- For the case of Standard.Wide_String, or any other type whose
10721 -- component type is Standard.Wide_Character, we must make sure that
10722 -- there are no wide characters in the string, i.e. that it is
10723 -- entirely composed of characters in range of type Wide_Character.
10725 -- If the string literal is the result of a static concatenation,
10726 -- the test has already been performed on the components, and need
10727 -- not be repeated.
10729 elsif R_Typ = Standard_Wide_Character
10730 and then Nkind (Original_Node (N)) /= N_Op_Concat
10731 then
10732 for J in 1 .. Strlen loop
10733 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10735 -- If we are out of range, post error. This is one of the
10736 -- very few places that we place the flag in the middle of
10737 -- a token, right under the offending wide character.
10739 -- This is not quite right, because characters in general
10740 -- will take more than one character position ???
10742 Error_Msg
10743 ("literal out of range of type Standard.Wide_Character",
10744 Source_Ptr (Int (Loc) + J));
10745 return;
10746 end if;
10747 end loop;
10749 -- If the root type is not a standard character, then we will convert
10750 -- the string into an aggregate and will let the aggregate code do
10751 -- the checking. Standard Wide_Wide_Character is also OK here.
10753 else
10754 null;
10755 end if;
10757 -- See if the component type of the array corresponding to the string
10758 -- has compile time known bounds. If yes we can directly check
10759 -- whether the evaluation of the string will raise constraint error.
10760 -- Otherwise we need to transform the string literal into the
10761 -- corresponding character aggregate and let the aggregate code do
10762 -- the checking.
10764 if Is_Standard_Character_Type (R_Typ) then
10766 -- Check for the case of full range, where we are definitely OK
10768 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10769 return;
10770 end if;
10772 -- Here the range is not the complete base type range, so check
10774 declare
10775 Comp_Typ_Lo : constant Node_Id :=
10776 Type_Low_Bound (Component_Type (Typ));
10777 Comp_Typ_Hi : constant Node_Id :=
10778 Type_High_Bound (Component_Type (Typ));
10780 Char_Val : Uint;
10782 begin
10783 if Compile_Time_Known_Value (Comp_Typ_Lo)
10784 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10785 then
10786 for J in 1 .. Strlen loop
10787 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10789 if Char_Val < Expr_Value (Comp_Typ_Lo)
10790 or else Char_Val > Expr_Value (Comp_Typ_Hi)
10791 then
10792 Apply_Compile_Time_Constraint_Error
10793 (N, "character out of range??",
10794 CE_Range_Check_Failed,
10795 Loc => Source_Ptr (Int (Loc) + J));
10796 end if;
10797 end loop;
10799 return;
10800 end if;
10801 end;
10802 end if;
10803 end if;
10805 -- If we got here we meed to transform the string literal into the
10806 -- equivalent qualified positional array aggregate. This is rather
10807 -- heavy artillery for this situation, but it is hard work to avoid.
10809 declare
10810 Lits : constant List_Id := New_List;
10811 P : Source_Ptr := Loc + 1;
10812 C : Char_Code;
10814 begin
10815 -- Build the character literals, we give them source locations that
10816 -- correspond to the string positions, which is a bit tricky given
10817 -- the possible presence of wide character escape sequences.
10819 for J in 1 .. Strlen loop
10820 C := Get_String_Char (Str, J);
10821 Set_Character_Literal_Name (C);
10823 Append_To (Lits,
10824 Make_Character_Literal (P,
10825 Chars => Name_Find,
10826 Char_Literal_Value => UI_From_CC (C)));
10828 if In_Character_Range (C) then
10829 P := P + 1;
10831 -- Should we have a call to Skip_Wide here ???
10833 -- ??? else
10834 -- Skip_Wide (P);
10836 end if;
10837 end loop;
10839 Rewrite (N,
10840 Make_Qualified_Expression (Loc,
10841 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10842 Expression =>
10843 Make_Aggregate (Loc, Expressions => Lits)));
10845 Analyze_And_Resolve (N, Typ);
10846 end;
10847 end Resolve_String_Literal;
10849 -------------------------
10850 -- Resolve_Target_Name --
10851 -------------------------
10853 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id) is
10854 begin
10855 Set_Etype (N, Typ);
10856 end Resolve_Target_Name;
10858 -----------------------------
10859 -- Resolve_Type_Conversion --
10860 -----------------------------
10862 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10863 Conv_OK : constant Boolean := Conversion_OK (N);
10864 Operand : constant Node_Id := Expression (N);
10865 Operand_Typ : constant Entity_Id := Etype (Operand);
10866 Target_Typ : constant Entity_Id := Etype (N);
10867 Rop : Node_Id;
10868 Orig_N : Node_Id;
10869 Orig_T : Node_Id;
10871 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
10872 -- Set to False to suppress cases where we want to suppress the test
10873 -- for redundancy to avoid possible false positives on this warning.
10875 begin
10876 if not Conv_OK
10877 and then not Valid_Conversion (N, Target_Typ, Operand)
10878 then
10879 return;
10880 end if;
10882 -- If the Operand Etype is Universal_Fixed, then the conversion is
10883 -- never redundant. We need this check because by the time we have
10884 -- finished the rather complex transformation, the conversion looks
10885 -- redundant when it is not.
10887 if Operand_Typ = Universal_Fixed then
10888 Test_Redundant := False;
10890 -- If the operand is marked as Any_Fixed, then special processing is
10891 -- required. This is also a case where we suppress the test for a
10892 -- redundant conversion, since most certainly it is not redundant.
10894 elsif Operand_Typ = Any_Fixed then
10895 Test_Redundant := False;
10897 -- Mixed-mode operation involving a literal. Context must be a fixed
10898 -- type which is applied to the literal subsequently.
10900 -- Multiplication and division involving two fixed type operands must
10901 -- yield a universal real because the result is computed in arbitrary
10902 -- precision.
10904 if Is_Fixed_Point_Type (Typ)
10905 and then Nkind_In (Operand, N_Op_Divide, N_Op_Multiply)
10906 and then Etype (Left_Opnd (Operand)) = Any_Fixed
10907 and then Etype (Right_Opnd (Operand)) = Any_Fixed
10908 then
10909 Set_Etype (Operand, Universal_Real);
10911 elsif Is_Numeric_Type (Typ)
10912 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
10913 and then (Etype (Right_Opnd (Operand)) = Universal_Real
10914 or else
10915 Etype (Left_Opnd (Operand)) = Universal_Real)
10916 then
10917 -- Return if expression is ambiguous
10919 if Unique_Fixed_Point_Type (N) = Any_Type then
10920 return;
10922 -- If nothing else, the available fixed type is Duration
10924 else
10925 Set_Etype (Operand, Standard_Duration);
10926 end if;
10928 -- Resolve the real operand with largest available precision
10930 if Etype (Right_Opnd (Operand)) = Universal_Real then
10931 Rop := New_Copy_Tree (Right_Opnd (Operand));
10932 else
10933 Rop := New_Copy_Tree (Left_Opnd (Operand));
10934 end if;
10936 Resolve (Rop, Universal_Real);
10938 -- If the operand is a literal (it could be a non-static and
10939 -- illegal exponentiation) check whether the use of Duration
10940 -- is potentially inaccurate.
10942 if Nkind (Rop) = N_Real_Literal
10943 and then Realval (Rop) /= Ureal_0
10944 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
10945 then
10946 Error_Msg_N
10947 ("??universal real operand can only "
10948 & "be interpreted as Duration!", Rop);
10949 Error_Msg_N
10950 ("\??precision will be lost in the conversion!", Rop);
10951 end if;
10953 elsif Is_Numeric_Type (Typ)
10954 and then Nkind (Operand) in N_Op
10955 and then Unique_Fixed_Point_Type (N) /= Any_Type
10956 then
10957 Set_Etype (Operand, Standard_Duration);
10959 else
10960 Error_Msg_N ("invalid context for mixed mode operation", N);
10961 Set_Etype (Operand, Any_Type);
10962 return;
10963 end if;
10964 end if;
10966 Resolve (Operand);
10968 -- In SPARK, a type conversion between array types should be restricted
10969 -- to types which have matching static bounds.
10971 -- Protect call to Matching_Static_Array_Bounds to avoid costly
10972 -- operation if not needed.
10974 if Restriction_Check_Required (SPARK_05)
10975 and then Is_Array_Type (Target_Typ)
10976 and then Is_Array_Type (Operand_Typ)
10977 and then Operand_Typ /= Any_Composite -- or else Operand in error
10978 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
10979 then
10980 Check_SPARK_05_Restriction
10981 ("array types should have matching static bounds", N);
10982 end if;
10984 -- In formal mode, the operand of an ancestor type conversion must be an
10985 -- object (not an expression).
10987 if Is_Tagged_Type (Target_Typ)
10988 and then not Is_Class_Wide_Type (Target_Typ)
10989 and then Is_Tagged_Type (Operand_Typ)
10990 and then not Is_Class_Wide_Type (Operand_Typ)
10991 and then Is_Ancestor (Target_Typ, Operand_Typ)
10992 and then not Is_SPARK_05_Object_Reference (Operand)
10993 then
10994 Check_SPARK_05_Restriction ("object required", Operand);
10995 end if;
10997 Analyze_Dimension (N);
10999 -- Note: we do the Eval_Type_Conversion call before applying the
11000 -- required checks for a subtype conversion. This is important, since
11001 -- both are prepared under certain circumstances to change the type
11002 -- conversion to a constraint error node, but in the case of
11003 -- Eval_Type_Conversion this may reflect an illegality in the static
11004 -- case, and we would miss the illegality (getting only a warning
11005 -- message), if we applied the type conversion checks first.
11007 Eval_Type_Conversion (N);
11009 -- Even when evaluation is not possible, we may be able to simplify the
11010 -- conversion or its expression. This needs to be done before applying
11011 -- checks, since otherwise the checks may use the original expression
11012 -- and defeat the simplifications. This is specifically the case for
11013 -- elimination of the floating-point Truncation attribute in
11014 -- float-to-int conversions.
11016 Simplify_Type_Conversion (N);
11018 -- If after evaluation we still have a type conversion, then we may need
11019 -- to apply checks required for a subtype conversion.
11021 -- Skip these type conversion checks if universal fixed operands
11022 -- operands involved, since range checks are handled separately for
11023 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
11025 if Nkind (N) = N_Type_Conversion
11026 and then not Is_Generic_Type (Root_Type (Target_Typ))
11027 and then Target_Typ /= Universal_Fixed
11028 and then Operand_Typ /= Universal_Fixed
11029 then
11030 Apply_Type_Conversion_Checks (N);
11031 end if;
11033 -- Issue warning for conversion of simple object to its own type. We
11034 -- have to test the original nodes, since they may have been rewritten
11035 -- by various optimizations.
11037 Orig_N := Original_Node (N);
11039 -- Here we test for a redundant conversion if the warning mode is
11040 -- active (and was not locally reset), and we have a type conversion
11041 -- from source not appearing in a generic instance.
11043 if Test_Redundant
11044 and then Nkind (Orig_N) = N_Type_Conversion
11045 and then Comes_From_Source (Orig_N)
11046 and then not In_Instance
11047 then
11048 Orig_N := Original_Node (Expression (Orig_N));
11049 Orig_T := Target_Typ;
11051 -- If the node is part of a larger expression, the Target_Type
11052 -- may not be the original type of the node if the context is a
11053 -- condition. Recover original type to see if conversion is needed.
11055 if Is_Boolean_Type (Orig_T)
11056 and then Nkind (Parent (N)) in N_Op
11057 then
11058 Orig_T := Etype (Parent (N));
11059 end if;
11061 -- If we have an entity name, then give the warning if the entity
11062 -- is the right type, or if it is a loop parameter covered by the
11063 -- original type (that's needed because loop parameters have an
11064 -- odd subtype coming from the bounds).
11066 if (Is_Entity_Name (Orig_N)
11067 and then
11068 (Etype (Entity (Orig_N)) = Orig_T
11069 or else
11070 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
11071 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
11073 -- If not an entity, then type of expression must match
11075 or else Etype (Orig_N) = Orig_T
11076 then
11077 -- One more check, do not give warning if the analyzed conversion
11078 -- has an expression with non-static bounds, and the bounds of the
11079 -- target are static. This avoids junk warnings in cases where the
11080 -- conversion is necessary to establish staticness, for example in
11081 -- a case statement.
11083 if not Is_OK_Static_Subtype (Operand_Typ)
11084 and then Is_OK_Static_Subtype (Target_Typ)
11085 then
11086 null;
11088 -- Finally, if this type conversion occurs in a context requiring
11089 -- a prefix, and the expression is a qualified expression then the
11090 -- type conversion is not redundant, since a qualified expression
11091 -- is not a prefix, whereas a type conversion is. For example, "X
11092 -- := T'(Funx(...)).Y;" is illegal because a selected component
11093 -- requires a prefix, but a type conversion makes it legal: "X :=
11094 -- T(T'(Funx(...))).Y;"
11096 -- In Ada 2012, a qualified expression is a name, so this idiom is
11097 -- no longer needed, but we still suppress the warning because it
11098 -- seems unfriendly for warnings to pop up when you switch to the
11099 -- newer language version.
11101 elsif Nkind (Orig_N) = N_Qualified_Expression
11102 and then Nkind_In (Parent (N), N_Attribute_Reference,
11103 N_Indexed_Component,
11104 N_Selected_Component,
11105 N_Slice,
11106 N_Explicit_Dereference)
11107 then
11108 null;
11110 -- Never warn on conversion to Long_Long_Integer'Base since
11111 -- that is most likely an artifact of the extended overflow
11112 -- checking and comes from complex expanded code.
11114 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
11115 null;
11117 -- Here we give the redundant conversion warning. If it is an
11118 -- entity, give the name of the entity in the message. If not,
11119 -- just mention the expression.
11121 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
11123 else
11124 if Is_Entity_Name (Orig_N) then
11125 Error_Msg_Node_2 := Orig_T;
11126 Error_Msg_NE -- CODEFIX
11127 ("??redundant conversion, & is of type &!",
11128 N, Entity (Orig_N));
11129 else
11130 Error_Msg_NE
11131 ("??redundant conversion, expression is of type&!",
11132 N, Orig_T);
11133 end if;
11134 end if;
11135 end if;
11136 end if;
11138 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
11139 -- No need to perform any interface conversion if the type of the
11140 -- expression coincides with the target type.
11142 if Ada_Version >= Ada_2005
11143 and then Expander_Active
11144 and then Operand_Typ /= Target_Typ
11145 then
11146 declare
11147 Opnd : Entity_Id := Operand_Typ;
11148 Target : Entity_Id := Target_Typ;
11150 begin
11151 -- If the type of the operand is a limited view, use nonlimited
11152 -- view when available. If it is a class-wide type, recover the
11153 -- class-wide type of the nonlimited view.
11155 if From_Limited_With (Opnd)
11156 and then Has_Non_Limited_View (Opnd)
11157 then
11158 Opnd := Non_Limited_View (Opnd);
11159 Set_Etype (Expression (N), Opnd);
11160 end if;
11162 if Is_Access_Type (Opnd) then
11163 Opnd := Designated_Type (Opnd);
11164 end if;
11166 if Is_Access_Type (Target_Typ) then
11167 Target := Designated_Type (Target);
11168 end if;
11170 if Opnd = Target then
11171 null;
11173 -- Conversion from interface type
11175 elsif Is_Interface (Opnd) then
11177 -- Ada 2005 (AI-217): Handle entities from limited views
11179 if From_Limited_With (Opnd) then
11180 Error_Msg_Qual_Level := 99;
11181 Error_Msg_NE -- CODEFIX
11182 ("missing WITH clause on package &", N,
11183 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
11184 Error_Msg_N
11185 ("type conversions require visibility of the full view",
11188 elsif From_Limited_With (Target)
11189 and then not
11190 (Is_Access_Type (Target_Typ)
11191 and then Present (Non_Limited_View (Etype (Target))))
11192 then
11193 Error_Msg_Qual_Level := 99;
11194 Error_Msg_NE -- CODEFIX
11195 ("missing WITH clause on package &", N,
11196 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
11197 Error_Msg_N
11198 ("type conversions require visibility of the full view",
11201 else
11202 Expand_Interface_Conversion (N);
11203 end if;
11205 -- Conversion to interface type
11207 elsif Is_Interface (Target) then
11209 -- Handle subtypes
11211 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
11212 Opnd := Etype (Opnd);
11213 end if;
11215 if Is_Class_Wide_Type (Opnd)
11216 or else Interface_Present_In_Ancestor
11217 (Typ => Opnd,
11218 Iface => Target)
11219 then
11220 Expand_Interface_Conversion (N);
11221 else
11222 Error_Msg_Name_1 := Chars (Etype (Target));
11223 Error_Msg_Name_2 := Chars (Opnd);
11224 Error_Msg_N
11225 ("wrong interface conversion (% is not a progenitor "
11226 & "of %)", N);
11227 end if;
11228 end if;
11229 end;
11230 end if;
11232 -- Ada 2012: once the type conversion is resolved, check whether the
11233 -- operand statisfies the static predicate of the target type.
11235 if Has_Predicates (Target_Typ) then
11236 Check_Expression_Against_Static_Predicate (N, Target_Typ);
11237 end if;
11239 -- If at this stage we have a real to integer conversion, make sure that
11240 -- the Do_Range_Check flag is set, because such conversions in general
11241 -- need a range check. We only need this if expansion is off.
11242 -- In GNATprove mode, we only do that when converting from fixed-point
11243 -- (as floating-point to integer conversions are now handled in
11244 -- GNATprove mode).
11246 if Nkind (N) = N_Type_Conversion
11247 and then not Expander_Active
11248 and then Is_Integer_Type (Target_Typ)
11249 and then (Is_Fixed_Point_Type (Operand_Typ)
11250 or else (not GNATprove_Mode
11251 and then Is_Floating_Point_Type (Operand_Typ)))
11252 then
11253 Set_Do_Range_Check (Operand);
11254 end if;
11256 -- Generating C code a type conversion of an access to constrained
11257 -- array type to access to unconstrained array type involves building
11258 -- a fat pointer which in general cannot be generated on the fly. We
11259 -- remove side effects in order to store the result of the conversion
11260 -- into a temporary.
11262 if Modify_Tree_For_C
11263 and then Nkind (N) = N_Type_Conversion
11264 and then Nkind (Parent (N)) /= N_Object_Declaration
11265 and then Is_Access_Type (Etype (N))
11266 and then Is_Array_Type (Designated_Type (Etype (N)))
11267 and then not Is_Constrained (Designated_Type (Etype (N)))
11268 and then Is_Constrained (Designated_Type (Etype (Expression (N))))
11269 then
11270 Remove_Side_Effects (N);
11271 end if;
11272 end Resolve_Type_Conversion;
11274 ----------------------
11275 -- Resolve_Unary_Op --
11276 ----------------------
11278 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
11279 B_Typ : constant Entity_Id := Base_Type (Typ);
11280 R : constant Node_Id := Right_Opnd (N);
11281 OK : Boolean;
11282 Lo : Uint;
11283 Hi : Uint;
11285 begin
11286 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
11287 Error_Msg_Name_1 := Chars (Typ);
11288 Check_SPARK_05_Restriction
11289 ("unary operator not defined for modular type%", N);
11290 end if;
11292 -- Deal with intrinsic unary operators
11294 if Comes_From_Source (N)
11295 and then Ekind (Entity (N)) = E_Function
11296 and then Is_Imported (Entity (N))
11297 and then Is_Intrinsic_Subprogram (Entity (N))
11298 then
11299 Resolve_Intrinsic_Unary_Operator (N, Typ);
11300 return;
11301 end if;
11303 -- Deal with universal cases
11305 if Etype (R) = Universal_Integer
11306 or else
11307 Etype (R) = Universal_Real
11308 then
11309 Check_For_Visible_Operator (N, B_Typ);
11310 end if;
11312 Set_Etype (N, B_Typ);
11313 Resolve (R, B_Typ);
11315 -- Generate warning for expressions like abs (x mod 2)
11317 if Warn_On_Redundant_Constructs
11318 and then Nkind (N) = N_Op_Abs
11319 then
11320 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
11322 if OK and then Hi >= Lo and then Lo >= 0 then
11323 Error_Msg_N -- CODEFIX
11324 ("?r?abs applied to known non-negative value has no effect", N);
11325 end if;
11326 end if;
11328 -- Deal with reference generation
11330 Check_Unset_Reference (R);
11331 Generate_Operator_Reference (N, B_Typ);
11332 Analyze_Dimension (N);
11333 Eval_Unary_Op (N);
11335 -- Set overflow checking bit. Much cleverer code needed here eventually
11336 -- and perhaps the Resolve routines should be separated for the various
11337 -- arithmetic operations, since they will need different processing ???
11339 if Nkind (N) in N_Op then
11340 if not Overflow_Checks_Suppressed (Etype (N)) then
11341 Enable_Overflow_Check (N);
11342 end if;
11343 end if;
11345 -- Generate warning for expressions like -5 mod 3 for integers. No need
11346 -- to worry in the floating-point case, since parens do not affect the
11347 -- result so there is no point in giving in a warning.
11349 declare
11350 Norig : constant Node_Id := Original_Node (N);
11351 Rorig : Node_Id;
11352 Val : Uint;
11353 HB : Uint;
11354 LB : Uint;
11355 Lval : Uint;
11356 Opnd : Node_Id;
11358 begin
11359 if Warn_On_Questionable_Missing_Parens
11360 and then Comes_From_Source (Norig)
11361 and then Is_Integer_Type (Typ)
11362 and then Nkind (Norig) = N_Op_Minus
11363 then
11364 Rorig := Original_Node (Right_Opnd (Norig));
11366 -- We are looking for cases where the right operand is not
11367 -- parenthesized, and is a binary operator, multiply, divide, or
11368 -- mod. These are the cases where the grouping can affect results.
11370 if Paren_Count (Rorig) = 0
11371 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
11372 then
11373 -- For mod, we always give the warning, since the value is
11374 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11375 -- -(5 mod 315)). But for the other cases, the only concern is
11376 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
11377 -- overflows, but (-2) * 64 does not). So we try to give the
11378 -- message only when overflow is possible.
11380 if Nkind (Rorig) /= N_Op_Mod
11381 and then Compile_Time_Known_Value (R)
11382 then
11383 Val := Expr_Value (R);
11385 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
11386 HB := Expr_Value (Type_High_Bound (Typ));
11387 else
11388 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
11389 end if;
11391 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
11392 LB := Expr_Value (Type_Low_Bound (Typ));
11393 else
11394 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
11395 end if;
11397 -- Note that the test below is deliberately excluding the
11398 -- largest negative number, since that is a potentially
11399 -- troublesome case (e.g. -2 * x, where the result is the
11400 -- largest negative integer has an overflow with 2 * x).
11402 if Val > LB and then Val <= HB then
11403 return;
11404 end if;
11405 end if;
11407 -- For the multiplication case, the only case we have to worry
11408 -- about is when (-a)*b is exactly the largest negative number
11409 -- so that -(a*b) can cause overflow. This can only happen if
11410 -- a is a power of 2, and more generally if any operand is a
11411 -- constant that is not a power of 2, then the parentheses
11412 -- cannot affect whether overflow occurs. We only bother to
11413 -- test the left most operand
11415 -- Loop looking at left operands for one that has known value
11417 Opnd := Rorig;
11418 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11419 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11420 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11422 -- Operand value of 0 or 1 skips warning
11424 if Lval <= 1 then
11425 return;
11427 -- Otherwise check power of 2, if power of 2, warn, if
11428 -- anything else, skip warning.
11430 else
11431 while Lval /= 2 loop
11432 if Lval mod 2 = 1 then
11433 return;
11434 else
11435 Lval := Lval / 2;
11436 end if;
11437 end loop;
11439 exit Opnd_Loop;
11440 end if;
11441 end if;
11443 -- Keep looking at left operands
11445 Opnd := Left_Opnd (Opnd);
11446 end loop Opnd_Loop;
11448 -- For rem or "/" we can only have a problematic situation
11449 -- if the divisor has a value of minus one or one. Otherwise
11450 -- overflow is impossible (divisor > 1) or we have a case of
11451 -- division by zero in any case.
11453 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11454 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11455 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11456 then
11457 return;
11458 end if;
11460 -- If we fall through warning should be issued
11462 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11464 Error_Msg_N
11465 ("??unary minus expression should be parenthesized here!", N);
11466 end if;
11467 end if;
11468 end;
11469 end Resolve_Unary_Op;
11471 ----------------------------------
11472 -- Resolve_Unchecked_Expression --
11473 ----------------------------------
11475 procedure Resolve_Unchecked_Expression
11476 (N : Node_Id;
11477 Typ : Entity_Id)
11479 begin
11480 Resolve (Expression (N), Typ, Suppress => All_Checks);
11481 Set_Etype (N, Typ);
11482 end Resolve_Unchecked_Expression;
11484 ---------------------------------------
11485 -- Resolve_Unchecked_Type_Conversion --
11486 ---------------------------------------
11488 procedure Resolve_Unchecked_Type_Conversion
11489 (N : Node_Id;
11490 Typ : Entity_Id)
11492 pragma Warnings (Off, Typ);
11494 Operand : constant Node_Id := Expression (N);
11495 Opnd_Type : constant Entity_Id := Etype (Operand);
11497 begin
11498 -- Resolve operand using its own type
11500 Resolve (Operand, Opnd_Type);
11502 -- In an inlined context, the unchecked conversion may be applied
11503 -- to a literal, in which case its type is the type of the context.
11504 -- (In other contexts conversions cannot apply to literals).
11506 if In_Inlined_Body
11507 and then (Opnd_Type = Any_Character or else
11508 Opnd_Type = Any_Integer or else
11509 Opnd_Type = Any_Real)
11510 then
11511 Set_Etype (Operand, Typ);
11512 end if;
11514 Analyze_Dimension (N);
11515 Eval_Unchecked_Conversion (N);
11516 end Resolve_Unchecked_Type_Conversion;
11518 ------------------------------
11519 -- Rewrite_Operator_As_Call --
11520 ------------------------------
11522 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11523 Loc : constant Source_Ptr := Sloc (N);
11524 Actuals : constant List_Id := New_List;
11525 New_N : Node_Id;
11527 begin
11528 if Nkind (N) in N_Binary_Op then
11529 Append (Left_Opnd (N), Actuals);
11530 end if;
11532 Append (Right_Opnd (N), Actuals);
11534 New_N :=
11535 Make_Function_Call (Sloc => Loc,
11536 Name => New_Occurrence_Of (Nam, Loc),
11537 Parameter_Associations => Actuals);
11539 Preserve_Comes_From_Source (New_N, N);
11540 Preserve_Comes_From_Source (Name (New_N), N);
11541 Rewrite (N, New_N);
11542 Set_Etype (N, Etype (Nam));
11543 end Rewrite_Operator_As_Call;
11545 ------------------------------
11546 -- Rewrite_Renamed_Operator --
11547 ------------------------------
11549 procedure Rewrite_Renamed_Operator
11550 (N : Node_Id;
11551 Op : Entity_Id;
11552 Typ : Entity_Id)
11554 Nam : constant Name_Id := Chars (Op);
11555 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11556 Op_Node : Node_Id;
11558 begin
11559 -- Do not perform this transformation within a pre/postcondition,
11560 -- because the expression will be reanalyzed, and the transformation
11561 -- might affect the visibility of the operator, e.g. in an instance.
11562 -- Note that fully analyzed and expanded pre/postconditions appear as
11563 -- pragma Check equivalents.
11565 if In_Pre_Post_Condition (N) then
11566 return;
11567 end if;
11569 -- Likewise when an expression function is being preanalyzed, since the
11570 -- expression will be reanalyzed as part of the generated body.
11572 if In_Spec_Expression then
11573 declare
11574 S : constant Entity_Id := Current_Scope_No_Loops;
11575 begin
11576 if Ekind (S) = E_Function
11577 and then Nkind (Original_Node (Unit_Declaration_Node (S))) =
11578 N_Expression_Function
11579 then
11580 return;
11581 end if;
11582 end;
11583 end if;
11585 -- Rewrite the operator node using the real operator, not its renaming.
11586 -- Exclude user-defined intrinsic operations of the same name, which are
11587 -- treated separately and rewritten as calls.
11589 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11590 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11591 Set_Chars (Op_Node, Nam);
11592 Set_Etype (Op_Node, Etype (N));
11593 Set_Entity (Op_Node, Op);
11594 Set_Right_Opnd (Op_Node, Right_Opnd (N));
11596 -- Indicate that both the original entity and its renaming are
11597 -- referenced at this point.
11599 Generate_Reference (Entity (N), N);
11600 Generate_Reference (Op, N);
11602 if Is_Binary then
11603 Set_Left_Opnd (Op_Node, Left_Opnd (N));
11604 end if;
11606 Rewrite (N, Op_Node);
11608 -- If the context type is private, add the appropriate conversions so
11609 -- that the operator is applied to the full view. This is done in the
11610 -- routines that resolve intrinsic operators.
11612 if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then
11613 case Nkind (N) is
11614 when N_Op_Add
11615 | N_Op_Divide
11616 | N_Op_Expon
11617 | N_Op_Mod
11618 | N_Op_Multiply
11619 | N_Op_Rem
11620 | N_Op_Subtract
11622 Resolve_Intrinsic_Operator (N, Typ);
11624 when N_Op_Abs
11625 | N_Op_Minus
11626 | N_Op_Plus
11628 Resolve_Intrinsic_Unary_Operator (N, Typ);
11630 when others =>
11631 Resolve (N, Typ);
11632 end case;
11633 end if;
11635 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11637 -- Operator renames a user-defined operator of the same name. Use the
11638 -- original operator in the node, which is the one Gigi knows about.
11640 Set_Entity (N, Op);
11641 Set_Is_Overloaded (N, False);
11642 end if;
11643 end Rewrite_Renamed_Operator;
11645 -----------------------
11646 -- Set_Slice_Subtype --
11647 -----------------------
11649 -- Build an implicit subtype declaration to represent the type delivered by
11650 -- the slice. This is an abbreviated version of an array subtype. We define
11651 -- an index subtype for the slice, using either the subtype name or the
11652 -- discrete range of the slice. To be consistent with index usage elsewhere
11653 -- we create a list header to hold the single index. This list is not
11654 -- otherwise attached to the syntax tree.
11656 procedure Set_Slice_Subtype (N : Node_Id) is
11657 Loc : constant Source_Ptr := Sloc (N);
11658 Index_List : constant List_Id := New_List;
11659 Index : Node_Id;
11660 Index_Subtype : Entity_Id;
11661 Index_Type : Entity_Id;
11662 Slice_Subtype : Entity_Id;
11663 Drange : constant Node_Id := Discrete_Range (N);
11665 begin
11666 Index_Type := Base_Type (Etype (Drange));
11668 if Is_Entity_Name (Drange) then
11669 Index_Subtype := Entity (Drange);
11671 else
11672 -- We force the evaluation of a range. This is definitely needed in
11673 -- the renamed case, and seems safer to do unconditionally. Note in
11674 -- any case that since we will create and insert an Itype referring
11675 -- to this range, we must make sure any side effect removal actions
11676 -- are inserted before the Itype definition.
11678 if Nkind (Drange) = N_Range then
11679 Force_Evaluation (Low_Bound (Drange));
11680 Force_Evaluation (High_Bound (Drange));
11682 -- If the discrete range is given by a subtype indication, the
11683 -- type of the slice is the base of the subtype mark.
11685 elsif Nkind (Drange) = N_Subtype_Indication then
11686 declare
11687 R : constant Node_Id := Range_Expression (Constraint (Drange));
11688 begin
11689 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11690 Force_Evaluation (Low_Bound (R));
11691 Force_Evaluation (High_Bound (R));
11692 end;
11693 end if;
11695 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11697 -- Take a new copy of Drange (where bounds have been rewritten to
11698 -- reference side-effect-free names). Using a separate tree ensures
11699 -- that further expansion (e.g. while rewriting a slice assignment
11700 -- into a FOR loop) does not attempt to remove side effects on the
11701 -- bounds again (which would cause the bounds in the index subtype
11702 -- definition to refer to temporaries before they are defined) (the
11703 -- reason is that some names are considered side effect free here
11704 -- for the subtype, but not in the context of a loop iteration
11705 -- scheme).
11707 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11708 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
11709 Set_Etype (Index_Subtype, Index_Type);
11710 Set_Size_Info (Index_Subtype, Index_Type);
11711 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11712 end if;
11714 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11716 Index := New_Occurrence_Of (Index_Subtype, Loc);
11717 Set_Etype (Index, Index_Subtype);
11718 Append (Index, Index_List);
11720 Set_First_Index (Slice_Subtype, Index);
11721 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
11722 Set_Is_Constrained (Slice_Subtype, True);
11724 Check_Compile_Time_Size (Slice_Subtype);
11726 -- The Etype of the existing Slice node is reset to this slice subtype.
11727 -- Its bounds are obtained from its first index.
11729 Set_Etype (N, Slice_Subtype);
11731 -- For bit-packed slice subtypes, freeze immediately (except in the case
11732 -- of being in a "spec expression" where we never freeze when we first
11733 -- see the expression).
11735 if Is_Bit_Packed_Array (Slice_Subtype) and not In_Spec_Expression then
11736 Freeze_Itype (Slice_Subtype, N);
11738 -- For all other cases insert an itype reference in the slice's actions
11739 -- so that the itype is frozen at the proper place in the tree (i.e. at
11740 -- the point where actions for the slice are analyzed). Note that this
11741 -- is different from freezing the itype immediately, which might be
11742 -- premature (e.g. if the slice is within a transient scope). This needs
11743 -- to be done only if expansion is enabled.
11745 elsif Expander_Active then
11746 Ensure_Defined (Typ => Slice_Subtype, N => N);
11747 end if;
11748 end Set_Slice_Subtype;
11750 --------------------------------
11751 -- Set_String_Literal_Subtype --
11752 --------------------------------
11754 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11755 Loc : constant Source_Ptr := Sloc (N);
11756 Low_Bound : constant Node_Id :=
11757 Type_Low_Bound (Etype (First_Index (Typ)));
11758 Subtype_Id : Entity_Id;
11760 begin
11761 if Nkind (N) /= N_String_Literal then
11762 return;
11763 end if;
11765 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11766 Set_String_Literal_Length (Subtype_Id, UI_From_Int
11767 (String_Length (Strval (N))));
11768 Set_Etype (Subtype_Id, Base_Type (Typ));
11769 Set_Is_Constrained (Subtype_Id);
11770 Set_Etype (N, Subtype_Id);
11772 -- The low bound is set from the low bound of the corresponding index
11773 -- type. Note that we do not store the high bound in the string literal
11774 -- subtype, but it can be deduced if necessary from the length and the
11775 -- low bound.
11777 if Is_OK_Static_Expression (Low_Bound) then
11778 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11780 -- If the lower bound is not static we create a range for the string
11781 -- literal, using the index type and the known length of the literal.
11782 -- The index type is not necessarily Positive, so the upper bound is
11783 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11785 else
11786 declare
11787 Index_List : constant List_Id := New_List;
11788 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11789 High_Bound : constant Node_Id :=
11790 Make_Attribute_Reference (Loc,
11791 Attribute_Name => Name_Val,
11792 Prefix =>
11793 New_Occurrence_Of (Index_Type, Loc),
11794 Expressions => New_List (
11795 Make_Op_Add (Loc,
11796 Left_Opnd =>
11797 Make_Attribute_Reference (Loc,
11798 Attribute_Name => Name_Pos,
11799 Prefix =>
11800 New_Occurrence_Of (Index_Type, Loc),
11801 Expressions =>
11802 New_List (New_Copy_Tree (Low_Bound))),
11803 Right_Opnd =>
11804 Make_Integer_Literal (Loc,
11805 String_Length (Strval (N)) - 1))));
11807 Array_Subtype : Entity_Id;
11808 Drange : Node_Id;
11809 Index : Node_Id;
11810 Index_Subtype : Entity_Id;
11812 begin
11813 if Is_Integer_Type (Index_Type) then
11814 Set_String_Literal_Low_Bound
11815 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11817 else
11818 -- If the index type is an enumeration type, build bounds
11819 -- expression with attributes.
11821 Set_String_Literal_Low_Bound
11822 (Subtype_Id,
11823 Make_Attribute_Reference (Loc,
11824 Attribute_Name => Name_First,
11825 Prefix =>
11826 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11827 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11828 end if;
11830 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11832 -- Build bona fide subtype for the string, and wrap it in an
11833 -- unchecked conversion, because the backend expects the
11834 -- String_Literal_Subtype to have a static lower bound.
11836 Index_Subtype :=
11837 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11838 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11839 Set_Scalar_Range (Index_Subtype, Drange);
11840 Set_Parent (Drange, N);
11841 Analyze_And_Resolve (Drange, Index_Type);
11843 -- In the context, the Index_Type may already have a constraint,
11844 -- so use common base type on string subtype. The base type may
11845 -- be used when generating attributes of the string, for example
11846 -- in the context of a slice assignment.
11848 Set_Etype (Index_Subtype, Base_Type (Index_Type));
11849 Set_Size_Info (Index_Subtype, Index_Type);
11850 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11852 Array_Subtype := Create_Itype (E_Array_Subtype, N);
11854 Index := New_Occurrence_Of (Index_Subtype, Loc);
11855 Set_Etype (Index, Index_Subtype);
11856 Append (Index, Index_List);
11858 Set_First_Index (Array_Subtype, Index);
11859 Set_Etype (Array_Subtype, Base_Type (Typ));
11860 Set_Is_Constrained (Array_Subtype, True);
11862 Rewrite (N,
11863 Make_Unchecked_Type_Conversion (Loc,
11864 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11865 Expression => Relocate_Node (N)));
11866 Set_Etype (N, Array_Subtype);
11867 end;
11868 end if;
11869 end Set_String_Literal_Subtype;
11871 ------------------------------
11872 -- Simplify_Type_Conversion --
11873 ------------------------------
11875 procedure Simplify_Type_Conversion (N : Node_Id) is
11876 begin
11877 if Nkind (N) = N_Type_Conversion then
11878 declare
11879 Operand : constant Node_Id := Expression (N);
11880 Target_Typ : constant Entity_Id := Etype (N);
11881 Opnd_Typ : constant Entity_Id := Etype (Operand);
11883 begin
11884 -- Special processing if the conversion is the expression of a
11885 -- Rounding or Truncation attribute reference. In this case we
11886 -- replace:
11888 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
11890 -- by
11892 -- ityp (x)
11894 -- with the Float_Truncate flag set to False or True respectively,
11895 -- which is more efficient.
11897 if Is_Floating_Point_Type (Opnd_Typ)
11898 and then
11899 (Is_Integer_Type (Target_Typ)
11900 or else (Is_Fixed_Point_Type (Target_Typ)
11901 and then Conversion_OK (N)))
11902 and then Nkind (Operand) = N_Attribute_Reference
11903 and then Nam_In (Attribute_Name (Operand), Name_Rounding,
11904 Name_Truncation)
11905 then
11906 declare
11907 Truncate : constant Boolean :=
11908 Attribute_Name (Operand) = Name_Truncation;
11909 begin
11910 Rewrite (Operand,
11911 Relocate_Node (First (Expressions (Operand))));
11912 Set_Float_Truncate (N, Truncate);
11913 end;
11914 end if;
11915 end;
11916 end if;
11917 end Simplify_Type_Conversion;
11919 -----------------------------
11920 -- Unique_Fixed_Point_Type --
11921 -----------------------------
11923 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
11924 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id);
11925 -- Give error messages for true ambiguity. Messages are posted on node
11926 -- N, and entities T1, T2 are the possible interpretations.
11928 -----------------------
11929 -- Fixed_Point_Error --
11930 -----------------------
11932 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id) is
11933 begin
11934 Error_Msg_N ("ambiguous universal_fixed_expression", N);
11935 Error_Msg_NE ("\\possible interpretation as}", N, T1);
11936 Error_Msg_NE ("\\possible interpretation as}", N, T2);
11937 end Fixed_Point_Error;
11939 -- Local variables
11941 ErrN : Node_Id;
11942 Item : Node_Id;
11943 Scop : Entity_Id;
11944 T1 : Entity_Id;
11945 T2 : Entity_Id;
11947 -- Start of processing for Unique_Fixed_Point_Type
11949 begin
11950 -- The operations on Duration are visible, so Duration is always a
11951 -- possible interpretation.
11953 T1 := Standard_Duration;
11955 -- Look for fixed-point types in enclosing scopes
11957 Scop := Current_Scope;
11958 while Scop /= Standard_Standard loop
11959 T2 := First_Entity (Scop);
11960 while Present (T2) loop
11961 if Is_Fixed_Point_Type (T2)
11962 and then Current_Entity (T2) = T2
11963 and then Scope (Base_Type (T2)) = Scop
11964 then
11965 if Present (T1) then
11966 Fixed_Point_Error (T1, T2);
11967 return Any_Type;
11968 else
11969 T1 := T2;
11970 end if;
11971 end if;
11973 Next_Entity (T2);
11974 end loop;
11976 Scop := Scope (Scop);
11977 end loop;
11979 -- Look for visible fixed type declarations in the context
11981 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
11982 while Present (Item) loop
11983 if Nkind (Item) = N_With_Clause then
11984 Scop := Entity (Name (Item));
11985 T2 := First_Entity (Scop);
11986 while Present (T2) loop
11987 if Is_Fixed_Point_Type (T2)
11988 and then Scope (Base_Type (T2)) = Scop
11989 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
11990 then
11991 if Present (T1) then
11992 Fixed_Point_Error (T1, T2);
11993 return Any_Type;
11994 else
11995 T1 := T2;
11996 end if;
11997 end if;
11999 Next_Entity (T2);
12000 end loop;
12001 end if;
12003 Next (Item);
12004 end loop;
12006 if Nkind (N) = N_Real_Literal then
12007 Error_Msg_NE ("??real literal interpreted as }!", N, T1);
12009 else
12010 -- When the context is a type conversion, issue the warning on the
12011 -- expression of the conversion because it is the actual operation.
12013 if Nkind_In (N, N_Type_Conversion, N_Unchecked_Type_Conversion) then
12014 ErrN := Expression (N);
12015 else
12016 ErrN := N;
12017 end if;
12019 Error_Msg_NE
12020 ("??universal_fixed expression interpreted as }!", ErrN, T1);
12021 end if;
12023 return T1;
12024 end Unique_Fixed_Point_Type;
12026 ----------------------
12027 -- Valid_Conversion --
12028 ----------------------
12030 function Valid_Conversion
12031 (N : Node_Id;
12032 Target : Entity_Id;
12033 Operand : Node_Id;
12034 Report_Errs : Boolean := True) return Boolean
12036 Target_Type : constant Entity_Id := Base_Type (Target);
12037 Opnd_Type : Entity_Id := Etype (Operand);
12038 Inc_Ancestor : Entity_Id;
12040 function Conversion_Check
12041 (Valid : Boolean;
12042 Msg : String) return Boolean;
12043 -- Little routine to post Msg if Valid is False, returns Valid value
12045 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
12046 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
12048 procedure Conversion_Error_NE
12049 (Msg : String;
12050 N : Node_Or_Entity_Id;
12051 E : Node_Or_Entity_Id);
12052 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
12054 function In_Instance_Code return Boolean;
12055 -- Return True if expression is within an instance but is not in one of
12056 -- the actuals of the instantiation. Type conversions within an instance
12057 -- are not rechecked because type visbility may lead to spurious errors,
12058 -- but conversions in an actual for a formal object must be checked.
12060 function Valid_Tagged_Conversion
12061 (Target_Type : Entity_Id;
12062 Opnd_Type : Entity_Id) return Boolean;
12063 -- Specifically test for validity of tagged conversions
12065 function Valid_Array_Conversion return Boolean;
12066 -- Check index and component conformance, and accessibility levels if
12067 -- the component types are anonymous access types (Ada 2005).
12069 ----------------------
12070 -- Conversion_Check --
12071 ----------------------
12073 function Conversion_Check
12074 (Valid : Boolean;
12075 Msg : String) return Boolean
12077 begin
12078 if not Valid
12080 -- A generic unit has already been analyzed and we have verified
12081 -- that a particular conversion is OK in that context. Since the
12082 -- instance is reanalyzed without relying on the relationships
12083 -- established during the analysis of the generic, it is possible
12084 -- to end up with inconsistent views of private types. Do not emit
12085 -- the error message in such cases. The rest of the machinery in
12086 -- Valid_Conversion still ensures the proper compatibility of
12087 -- target and operand types.
12089 and then not In_Instance_Code
12090 then
12091 Conversion_Error_N (Msg, Operand);
12092 end if;
12094 return Valid;
12095 end Conversion_Check;
12097 ------------------------
12098 -- Conversion_Error_N --
12099 ------------------------
12101 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
12102 begin
12103 if Report_Errs then
12104 Error_Msg_N (Msg, N);
12105 end if;
12106 end Conversion_Error_N;
12108 -------------------------
12109 -- Conversion_Error_NE --
12110 -------------------------
12112 procedure Conversion_Error_NE
12113 (Msg : String;
12114 N : Node_Or_Entity_Id;
12115 E : Node_Or_Entity_Id)
12117 begin
12118 if Report_Errs then
12119 Error_Msg_NE (Msg, N, E);
12120 end if;
12121 end Conversion_Error_NE;
12123 ----------------------
12124 -- In_Instance_Code --
12125 ----------------------
12127 function In_Instance_Code return Boolean is
12128 Par : Node_Id;
12130 begin
12131 if not In_Instance then
12132 return False;
12134 else
12135 Par := Parent (N);
12136 while Present (Par) loop
12138 -- The expression is part of an actual object if it appears in
12139 -- the generated object declaration in the instance.
12141 if Nkind (Par) = N_Object_Declaration
12142 and then Present (Corresponding_Generic_Association (Par))
12143 then
12144 return False;
12146 else
12147 exit when
12148 Nkind (Par) in N_Statement_Other_Than_Procedure_Call
12149 or else Nkind (Par) in N_Subprogram_Call
12150 or else Nkind (Par) in N_Declaration;
12151 end if;
12153 Par := Parent (Par);
12154 end loop;
12156 -- Otherwise the expression appears within the instantiated unit
12158 return True;
12159 end if;
12160 end In_Instance_Code;
12162 ----------------------------
12163 -- Valid_Array_Conversion --
12164 ----------------------------
12166 function Valid_Array_Conversion return Boolean is
12167 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
12168 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
12170 Opnd_Index : Node_Id;
12171 Opnd_Index_Type : Entity_Id;
12173 Target_Comp_Type : constant Entity_Id :=
12174 Component_Type (Target_Type);
12175 Target_Comp_Base : constant Entity_Id :=
12176 Base_Type (Target_Comp_Type);
12178 Target_Index : Node_Id;
12179 Target_Index_Type : Entity_Id;
12181 begin
12182 -- Error if wrong number of dimensions
12185 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
12186 then
12187 Conversion_Error_N
12188 ("incompatible number of dimensions for conversion", Operand);
12189 return False;
12191 -- Number of dimensions matches
12193 else
12194 -- Loop through indexes of the two arrays
12196 Target_Index := First_Index (Target_Type);
12197 Opnd_Index := First_Index (Opnd_Type);
12198 while Present (Target_Index) and then Present (Opnd_Index) loop
12199 Target_Index_Type := Etype (Target_Index);
12200 Opnd_Index_Type := Etype (Opnd_Index);
12202 -- Error if index types are incompatible
12204 if not (Is_Integer_Type (Target_Index_Type)
12205 and then Is_Integer_Type (Opnd_Index_Type))
12206 and then (Root_Type (Target_Index_Type)
12207 /= Root_Type (Opnd_Index_Type))
12208 then
12209 Conversion_Error_N
12210 ("incompatible index types for array conversion",
12211 Operand);
12212 return False;
12213 end if;
12215 Next_Index (Target_Index);
12216 Next_Index (Opnd_Index);
12217 end loop;
12219 -- If component types have same base type, all set
12221 if Target_Comp_Base = Opnd_Comp_Base then
12222 null;
12224 -- Here if base types of components are not the same. The only
12225 -- time this is allowed is if we have anonymous access types.
12227 -- The conversion of arrays of anonymous access types can lead
12228 -- to dangling pointers. AI-392 formalizes the accessibility
12229 -- checks that must be applied to such conversions to prevent
12230 -- out-of-scope references.
12232 elsif Ekind_In
12233 (Target_Comp_Base, E_Anonymous_Access_Type,
12234 E_Anonymous_Access_Subprogram_Type)
12235 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
12236 and then
12237 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
12238 then
12239 if Type_Access_Level (Target_Type) <
12240 Deepest_Type_Access_Level (Opnd_Type)
12241 then
12242 if In_Instance_Body then
12243 Error_Msg_Warn := SPARK_Mode /= On;
12244 Conversion_Error_N
12245 ("source array type has deeper accessibility "
12246 & "level than target<<", Operand);
12247 Conversion_Error_N ("\Program_Error [<<", Operand);
12248 Rewrite (N,
12249 Make_Raise_Program_Error (Sloc (N),
12250 Reason => PE_Accessibility_Check_Failed));
12251 Set_Etype (N, Target_Type);
12252 return False;
12254 -- Conversion not allowed because of accessibility levels
12256 else
12257 Conversion_Error_N
12258 ("source array type has deeper accessibility "
12259 & "level than target", Operand);
12260 return False;
12261 end if;
12263 else
12264 null;
12265 end if;
12267 -- All other cases where component base types do not match
12269 else
12270 Conversion_Error_N
12271 ("incompatible component types for array conversion",
12272 Operand);
12273 return False;
12274 end if;
12276 -- Check that component subtypes statically match. For numeric
12277 -- types this means that both must be either constrained or
12278 -- unconstrained. For enumeration types the bounds must match.
12279 -- All of this is checked in Subtypes_Statically_Match.
12281 if not Subtypes_Statically_Match
12282 (Target_Comp_Type, Opnd_Comp_Type)
12283 then
12284 Conversion_Error_N
12285 ("component subtypes must statically match", Operand);
12286 return False;
12287 end if;
12288 end if;
12290 return True;
12291 end Valid_Array_Conversion;
12293 -----------------------------
12294 -- Valid_Tagged_Conversion --
12295 -----------------------------
12297 function Valid_Tagged_Conversion
12298 (Target_Type : Entity_Id;
12299 Opnd_Type : Entity_Id) return Boolean
12301 begin
12302 -- Upward conversions are allowed (RM 4.6(22))
12304 if Covers (Target_Type, Opnd_Type)
12305 or else Is_Ancestor (Target_Type, Opnd_Type)
12306 then
12307 return True;
12309 -- Downward conversion are allowed if the operand is class-wide
12310 -- (RM 4.6(23)).
12312 elsif Is_Class_Wide_Type (Opnd_Type)
12313 and then Covers (Opnd_Type, Target_Type)
12314 then
12315 return True;
12317 elsif Covers (Opnd_Type, Target_Type)
12318 or else Is_Ancestor (Opnd_Type, Target_Type)
12319 then
12320 return
12321 Conversion_Check (False,
12322 "downward conversion of tagged objects not allowed");
12324 -- Ada 2005 (AI-251): The conversion to/from interface types is
12325 -- always valid. The types involved may be class-wide (sub)types.
12327 elsif Is_Interface (Etype (Base_Type (Target_Type)))
12328 or else Is_Interface (Etype (Base_Type (Opnd_Type)))
12329 then
12330 return True;
12332 -- If the operand is a class-wide type obtained through a limited_
12333 -- with clause, and the context includes the nonlimited view, use
12334 -- it to determine whether the conversion is legal.
12336 elsif Is_Class_Wide_Type (Opnd_Type)
12337 and then From_Limited_With (Opnd_Type)
12338 and then Present (Non_Limited_View (Etype (Opnd_Type)))
12339 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
12340 then
12341 return True;
12343 elsif Is_Access_Type (Opnd_Type)
12344 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
12345 then
12346 return True;
12348 else
12349 Conversion_Error_NE
12350 ("invalid tagged conversion, not compatible with}",
12351 N, First_Subtype (Opnd_Type));
12352 return False;
12353 end if;
12354 end Valid_Tagged_Conversion;
12356 -- Start of processing for Valid_Conversion
12358 begin
12359 Check_Parameterless_Call (Operand);
12361 if Is_Overloaded (Operand) then
12362 declare
12363 I : Interp_Index;
12364 I1 : Interp_Index;
12365 It : Interp;
12366 It1 : Interp;
12367 N1 : Entity_Id;
12368 T1 : Entity_Id;
12370 begin
12371 -- Remove procedure calls, which syntactically cannot appear in
12372 -- this context, but which cannot be removed by type checking,
12373 -- because the context does not impose a type.
12375 -- The node may be labelled overloaded, but still contain only one
12376 -- interpretation because others were discarded earlier. If this
12377 -- is the case, retain the single interpretation if legal.
12379 Get_First_Interp (Operand, I, It);
12380 Opnd_Type := It.Typ;
12381 Get_Next_Interp (I, It);
12383 if Present (It.Typ)
12384 and then Opnd_Type /= Standard_Void_Type
12385 then
12386 -- More than one candidate interpretation is available
12388 Get_First_Interp (Operand, I, It);
12389 while Present (It.Typ) loop
12390 if It.Typ = Standard_Void_Type then
12391 Remove_Interp (I);
12392 end if;
12394 -- When compiling for a system where Address is of a visible
12395 -- integer type, spurious ambiguities can be produced when
12396 -- arithmetic operations have a literal operand and return
12397 -- System.Address or a descendant of it. These ambiguities
12398 -- are usually resolved by the context, but for conversions
12399 -- there is no context type and the removal of the spurious
12400 -- operations must be done explicitly here.
12402 if not Address_Is_Private
12403 and then Is_Descendant_Of_Address (It.Typ)
12404 then
12405 Remove_Interp (I);
12406 end if;
12408 Get_Next_Interp (I, It);
12409 end loop;
12410 end if;
12412 Get_First_Interp (Operand, I, It);
12413 I1 := I;
12414 It1 := It;
12416 if No (It.Typ) then
12417 Conversion_Error_N ("illegal operand in conversion", Operand);
12418 return False;
12419 end if;
12421 Get_Next_Interp (I, It);
12423 if Present (It.Typ) then
12424 N1 := It1.Nam;
12425 T1 := It1.Typ;
12426 It1 := Disambiguate (Operand, I1, I, Any_Type);
12428 if It1 = No_Interp then
12429 Conversion_Error_N
12430 ("ambiguous operand in conversion", Operand);
12432 -- If the interpretation involves a standard operator, use
12433 -- the location of the type, which may be user-defined.
12435 if Sloc (It.Nam) = Standard_Location then
12436 Error_Msg_Sloc := Sloc (It.Typ);
12437 else
12438 Error_Msg_Sloc := Sloc (It.Nam);
12439 end if;
12441 Conversion_Error_N -- CODEFIX
12442 ("\\possible interpretation#!", Operand);
12444 if Sloc (N1) = Standard_Location then
12445 Error_Msg_Sloc := Sloc (T1);
12446 else
12447 Error_Msg_Sloc := Sloc (N1);
12448 end if;
12450 Conversion_Error_N -- CODEFIX
12451 ("\\possible interpretation#!", Operand);
12453 return False;
12454 end if;
12455 end if;
12457 Set_Etype (Operand, It1.Typ);
12458 Opnd_Type := It1.Typ;
12459 end;
12460 end if;
12462 -- Deal with conversion of integer type to address if the pragma
12463 -- Allow_Integer_Address is in effect. We convert the conversion to
12464 -- an unchecked conversion in this case and we are all done.
12466 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
12467 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
12468 Analyze_And_Resolve (N, Target_Type);
12469 return True;
12470 end if;
12472 -- If we are within a child unit, check whether the type of the
12473 -- expression has an ancestor in a parent unit, in which case it
12474 -- belongs to its derivation class even if the ancestor is private.
12475 -- See RM 7.3.1 (5.2/3).
12477 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
12479 -- Numeric types
12481 if Is_Numeric_Type (Target_Type) then
12483 -- A universal fixed expression can be converted to any numeric type
12485 if Opnd_Type = Universal_Fixed then
12486 return True;
12488 -- Also no need to check when in an instance or inlined body, because
12489 -- the legality has been established when the template was analyzed.
12490 -- Furthermore, numeric conversions may occur where only a private
12491 -- view of the operand type is visible at the instantiation point.
12492 -- This results in a spurious error if we check that the operand type
12493 -- is a numeric type.
12495 -- Note: in a previous version of this unit, the following tests were
12496 -- applied only for generated code (Comes_From_Source set to False),
12497 -- but in fact the test is required for source code as well, since
12498 -- this situation can arise in source code.
12500 elsif In_Instance_Code or else In_Inlined_Body then
12501 return True;
12503 -- Otherwise we need the conversion check
12505 else
12506 return Conversion_Check
12507 (Is_Numeric_Type (Opnd_Type)
12508 or else
12509 (Present (Inc_Ancestor)
12510 and then Is_Numeric_Type (Inc_Ancestor)),
12511 "illegal operand for numeric conversion");
12512 end if;
12514 -- Array types
12516 elsif Is_Array_Type (Target_Type) then
12517 if not Is_Array_Type (Opnd_Type)
12518 or else Opnd_Type = Any_Composite
12519 or else Opnd_Type = Any_String
12520 then
12521 Conversion_Error_N
12522 ("illegal operand for array conversion", Operand);
12523 return False;
12525 else
12526 return Valid_Array_Conversion;
12527 end if;
12529 -- Ada 2005 (AI-251): Internally generated conversions of access to
12530 -- interface types added to force the displacement of the pointer to
12531 -- reference the corresponding dispatch table.
12533 elsif not Comes_From_Source (N)
12534 and then Is_Access_Type (Target_Type)
12535 and then Is_Interface (Designated_Type (Target_Type))
12536 then
12537 return True;
12539 -- Ada 2005 (AI-251): Anonymous access types where target references an
12540 -- interface type.
12542 elsif Is_Access_Type (Opnd_Type)
12543 and then Ekind_In (Target_Type, E_General_Access_Type,
12544 E_Anonymous_Access_Type)
12545 and then Is_Interface (Directly_Designated_Type (Target_Type))
12546 then
12547 -- Check the static accessibility rule of 4.6(17). Note that the
12548 -- check is not enforced when within an instance body, since the
12549 -- RM requires such cases to be caught at run time.
12551 -- If the operand is a rewriting of an allocator no check is needed
12552 -- because there are no accessibility issues.
12554 if Nkind (Original_Node (N)) = N_Allocator then
12555 null;
12557 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12558 if Type_Access_Level (Opnd_Type) >
12559 Deepest_Type_Access_Level (Target_Type)
12560 then
12561 -- In an instance, this is a run-time check, but one we know
12562 -- will fail, so generate an appropriate warning. The raise
12563 -- will be generated by Expand_N_Type_Conversion.
12565 if In_Instance_Body then
12566 Error_Msg_Warn := SPARK_Mode /= On;
12567 Conversion_Error_N
12568 ("cannot convert local pointer to non-local access type<<",
12569 Operand);
12570 Conversion_Error_N ("\Program_Error [<<", Operand);
12572 else
12573 Conversion_Error_N
12574 ("cannot convert local pointer to non-local access type",
12575 Operand);
12576 return False;
12577 end if;
12579 -- Special accessibility checks are needed in the case of access
12580 -- discriminants declared for a limited type.
12582 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12583 and then not Is_Local_Anonymous_Access (Opnd_Type)
12584 then
12585 -- When the operand is a selected access discriminant the check
12586 -- needs to be made against the level of the object denoted by
12587 -- the prefix of the selected name (Object_Access_Level handles
12588 -- checking the prefix of the operand for this case).
12590 if Nkind (Operand) = N_Selected_Component
12591 and then Object_Access_Level (Operand) >
12592 Deepest_Type_Access_Level (Target_Type)
12593 then
12594 -- In an instance, this is a run-time check, but one we know
12595 -- will fail, so generate an appropriate warning. The raise
12596 -- will be generated by Expand_N_Type_Conversion.
12598 if In_Instance_Body then
12599 Error_Msg_Warn := SPARK_Mode /= On;
12600 Conversion_Error_N
12601 ("cannot convert access discriminant to non-local "
12602 & "access type<<", Operand);
12603 Conversion_Error_N ("\Program_Error [<<", Operand);
12605 -- Real error if not in instance body
12607 else
12608 Conversion_Error_N
12609 ("cannot convert access discriminant to non-local "
12610 & "access type", Operand);
12611 return False;
12612 end if;
12613 end if;
12615 -- The case of a reference to an access discriminant from
12616 -- within a limited type declaration (which will appear as
12617 -- a discriminal) is always illegal because the level of the
12618 -- discriminant is considered to be deeper than any (nameable)
12619 -- access type.
12621 if Is_Entity_Name (Operand)
12622 and then not Is_Local_Anonymous_Access (Opnd_Type)
12623 and then
12624 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12625 and then Present (Discriminal_Link (Entity (Operand)))
12626 then
12627 Conversion_Error_N
12628 ("discriminant has deeper accessibility level than target",
12629 Operand);
12630 return False;
12631 end if;
12632 end if;
12633 end if;
12635 return True;
12637 -- General and anonymous access types
12639 elsif Ekind_In (Target_Type, E_General_Access_Type,
12640 E_Anonymous_Access_Type)
12641 and then
12642 Conversion_Check
12643 (Is_Access_Type (Opnd_Type)
12644 and then not
12645 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12646 E_Access_Protected_Subprogram_Type),
12647 "must be an access-to-object type")
12648 then
12649 if Is_Access_Constant (Opnd_Type)
12650 and then not Is_Access_Constant (Target_Type)
12651 then
12652 Conversion_Error_N
12653 ("access-to-constant operand type not allowed", Operand);
12654 return False;
12655 end if;
12657 -- Check the static accessibility rule of 4.6(17). Note that the
12658 -- check is not enforced when within an instance body, since the RM
12659 -- requires such cases to be caught at run time.
12661 if Ekind (Target_Type) /= E_Anonymous_Access_Type
12662 or else Is_Local_Anonymous_Access (Target_Type)
12663 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12664 N_Object_Declaration
12665 then
12666 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12667 -- conversions from an anonymous access type to a named general
12668 -- access type. Such conversions are not allowed in the case of
12669 -- access parameters and stand-alone objects of an anonymous
12670 -- access type. The implicit conversion case is recognized by
12671 -- testing that Comes_From_Source is False and that it's been
12672 -- rewritten. The Comes_From_Source test isn't sufficient because
12673 -- nodes in inlined calls to predefined library routines can have
12674 -- Comes_From_Source set to False. (Is there a better way to test
12675 -- for implicit conversions???)
12677 if Ada_Version >= Ada_2012
12678 and then not Comes_From_Source (N)
12679 and then N /= Original_Node (N)
12680 and then Ekind (Target_Type) = E_General_Access_Type
12681 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12682 then
12683 if Is_Itype (Opnd_Type) then
12685 -- Implicit conversions aren't allowed for objects of an
12686 -- anonymous access type, since such objects have nonstatic
12687 -- levels in Ada 2012.
12689 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12690 N_Object_Declaration
12691 then
12692 Conversion_Error_N
12693 ("implicit conversion of stand-alone anonymous "
12694 & "access object not allowed", Operand);
12695 return False;
12697 -- Implicit conversions aren't allowed for anonymous access
12698 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12699 -- is done to exclude anonymous access results.
12701 elsif not Is_Local_Anonymous_Access (Opnd_Type)
12702 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12703 N_Function_Specification,
12704 N_Procedure_Specification)
12705 then
12706 Conversion_Error_N
12707 ("implicit conversion of anonymous access formal "
12708 & "not allowed", Operand);
12709 return False;
12711 -- This is a case where there's an enclosing object whose
12712 -- to which the "statically deeper than" relationship does
12713 -- not apply (such as an access discriminant selected from
12714 -- a dereference of an access parameter).
12716 elsif Object_Access_Level (Operand)
12717 = Scope_Depth (Standard_Standard)
12718 then
12719 Conversion_Error_N
12720 ("implicit conversion of anonymous access value "
12721 & "not allowed", Operand);
12722 return False;
12724 -- In other cases, the level of the operand's type must be
12725 -- statically less deep than that of the target type, else
12726 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12728 elsif Type_Access_Level (Opnd_Type) >
12729 Deepest_Type_Access_Level (Target_Type)
12730 then
12731 Conversion_Error_N
12732 ("implicit conversion of anonymous access value "
12733 & "violates accessibility", Operand);
12734 return False;
12735 end if;
12736 end if;
12738 elsif Type_Access_Level (Opnd_Type) >
12739 Deepest_Type_Access_Level (Target_Type)
12740 then
12741 -- In an instance, this is a run-time check, but one we know
12742 -- will fail, so generate an appropriate warning. The raise
12743 -- will be generated by Expand_N_Type_Conversion.
12745 if In_Instance_Body then
12746 Error_Msg_Warn := SPARK_Mode /= On;
12747 Conversion_Error_N
12748 ("cannot convert local pointer to non-local access type<<",
12749 Operand);
12750 Conversion_Error_N ("\Program_Error [<<", Operand);
12752 -- If not in an instance body, this is a real error
12754 else
12755 -- Avoid generation of spurious error message
12757 if not Error_Posted (N) then
12758 Conversion_Error_N
12759 ("cannot convert local pointer to non-local access type",
12760 Operand);
12761 end if;
12763 return False;
12764 end if;
12766 -- Special accessibility checks are needed in the case of access
12767 -- discriminants declared for a limited type.
12769 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12770 and then not Is_Local_Anonymous_Access (Opnd_Type)
12771 then
12772 -- When the operand is a selected access discriminant the check
12773 -- needs to be made against the level of the object denoted by
12774 -- the prefix of the selected name (Object_Access_Level handles
12775 -- checking the prefix of the operand for this case).
12777 if Nkind (Operand) = N_Selected_Component
12778 and then Object_Access_Level (Operand) >
12779 Deepest_Type_Access_Level (Target_Type)
12780 then
12781 -- In an instance, this is a run-time check, but one we know
12782 -- will fail, so generate an appropriate warning. The raise
12783 -- will be generated by Expand_N_Type_Conversion.
12785 if In_Instance_Body then
12786 Error_Msg_Warn := SPARK_Mode /= On;
12787 Conversion_Error_N
12788 ("cannot convert access discriminant to non-local "
12789 & "access type<<", Operand);
12790 Conversion_Error_N ("\Program_Error [<<", Operand);
12792 -- If not in an instance body, this is a real error
12794 else
12795 Conversion_Error_N
12796 ("cannot convert access discriminant to non-local "
12797 & "access type", Operand);
12798 return False;
12799 end if;
12800 end if;
12802 -- The case of a reference to an access discriminant from
12803 -- within a limited type declaration (which will appear as
12804 -- a discriminal) is always illegal because the level of the
12805 -- discriminant is considered to be deeper than any (nameable)
12806 -- access type.
12808 if Is_Entity_Name (Operand)
12809 and then
12810 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12811 and then Present (Discriminal_Link (Entity (Operand)))
12812 then
12813 Conversion_Error_N
12814 ("discriminant has deeper accessibility level than target",
12815 Operand);
12816 return False;
12817 end if;
12818 end if;
12819 end if;
12821 -- In the presence of limited_with clauses we have to use nonlimited
12822 -- views, if available.
12824 Check_Limited : declare
12825 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12826 -- Helper function to handle limited views
12828 --------------------------
12829 -- Full_Designated_Type --
12830 --------------------------
12832 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12833 Desig : constant Entity_Id := Designated_Type (T);
12835 begin
12836 -- Handle the limited view of a type
12838 if From_Limited_With (Desig)
12839 and then Has_Non_Limited_View (Desig)
12840 then
12841 return Available_View (Desig);
12842 else
12843 return Desig;
12844 end if;
12845 end Full_Designated_Type;
12847 -- Local Declarations
12849 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12850 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12852 Same_Base : constant Boolean :=
12853 Base_Type (Target) = Base_Type (Opnd);
12855 -- Start of processing for Check_Limited
12857 begin
12858 if Is_Tagged_Type (Target) then
12859 return Valid_Tagged_Conversion (Target, Opnd);
12861 else
12862 if not Same_Base then
12863 Conversion_Error_NE
12864 ("target designated type not compatible with }",
12865 N, Base_Type (Opnd));
12866 return False;
12868 -- Ada 2005 AI-384: legality rule is symmetric in both
12869 -- designated types. The conversion is legal (with possible
12870 -- constraint check) if either designated type is
12871 -- unconstrained.
12873 elsif Subtypes_Statically_Match (Target, Opnd)
12874 or else
12875 (Has_Discriminants (Target)
12876 and then
12877 (not Is_Constrained (Opnd)
12878 or else not Is_Constrained (Target)))
12879 then
12880 -- Special case, if Value_Size has been used to make the
12881 -- sizes different, the conversion is not allowed even
12882 -- though the subtypes statically match.
12884 if Known_Static_RM_Size (Target)
12885 and then Known_Static_RM_Size (Opnd)
12886 and then RM_Size (Target) /= RM_Size (Opnd)
12887 then
12888 Conversion_Error_NE
12889 ("target designated subtype not compatible with }",
12890 N, Opnd);
12891 Conversion_Error_NE
12892 ("\because sizes of the two designated subtypes differ",
12893 N, Opnd);
12894 return False;
12896 -- Normal case where conversion is allowed
12898 else
12899 return True;
12900 end if;
12902 else
12903 Error_Msg_NE
12904 ("target designated subtype not compatible with }",
12905 N, Opnd);
12906 return False;
12907 end if;
12908 end if;
12909 end Check_Limited;
12911 -- Access to subprogram types. If the operand is an access parameter,
12912 -- the type has a deeper accessibility that any master, and cannot be
12913 -- assigned. We must make an exception if the conversion is part of an
12914 -- assignment and the target is the return object of an extended return
12915 -- statement, because in that case the accessibility check takes place
12916 -- after the return.
12918 elsif Is_Access_Subprogram_Type (Target_Type)
12920 -- Note: this test of Opnd_Type is there to prevent entering this
12921 -- branch in the case of a remote access to subprogram type, which
12922 -- is internally represented as an E_Record_Type.
12924 and then Is_Access_Type (Opnd_Type)
12925 then
12926 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
12927 and then Is_Entity_Name (Operand)
12928 and then Ekind (Entity (Operand)) = E_In_Parameter
12929 and then
12930 (Nkind (Parent (N)) /= N_Assignment_Statement
12931 or else not Is_Entity_Name (Name (Parent (N)))
12932 or else not Is_Return_Object (Entity (Name (Parent (N)))))
12933 then
12934 Conversion_Error_N
12935 ("illegal attempt to store anonymous access to subprogram",
12936 Operand);
12937 Conversion_Error_N
12938 ("\value has deeper accessibility than any master "
12939 & "(RM 3.10.2 (13))",
12940 Operand);
12942 Error_Msg_NE
12943 ("\use named access type for& instead of access parameter",
12944 Operand, Entity (Operand));
12945 end if;
12947 -- Check that the designated types are subtype conformant
12949 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
12950 Old_Id => Designated_Type (Opnd_Type),
12951 Err_Loc => N);
12953 -- Check the static accessibility rule of 4.6(20)
12955 if Type_Access_Level (Opnd_Type) >
12956 Deepest_Type_Access_Level (Target_Type)
12957 then
12958 Conversion_Error_N
12959 ("operand type has deeper accessibility level than target",
12960 Operand);
12962 -- Check that if the operand type is declared in a generic body,
12963 -- then the target type must be declared within that same body
12964 -- (enforces last sentence of 4.6(20)).
12966 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
12967 declare
12968 O_Gen : constant Node_Id :=
12969 Enclosing_Generic_Body (Opnd_Type);
12971 T_Gen : Node_Id;
12973 begin
12974 T_Gen := Enclosing_Generic_Body (Target_Type);
12975 while Present (T_Gen) and then T_Gen /= O_Gen loop
12976 T_Gen := Enclosing_Generic_Body (T_Gen);
12977 end loop;
12979 if T_Gen /= O_Gen then
12980 Conversion_Error_N
12981 ("target type must be declared in same generic body "
12982 & "as operand type", N);
12983 end if;
12984 end;
12985 end if;
12987 return True;
12989 -- Remote access to subprogram types
12991 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
12992 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
12993 then
12994 -- It is valid to convert from one RAS type to another provided
12995 -- that their specification statically match.
12997 -- Note: at this point, remote access to subprogram types have been
12998 -- expanded to their E_Record_Type representation, and we need to
12999 -- go back to the original access type definition using the
13000 -- Corresponding_Remote_Type attribute in order to check that the
13001 -- designated profiles match.
13003 pragma Assert (Ekind (Target_Type) = E_Record_Type);
13004 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
13006 Check_Subtype_Conformant
13007 (New_Id =>
13008 Designated_Type (Corresponding_Remote_Type (Target_Type)),
13009 Old_Id =>
13010 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
13011 Err_Loc =>
13013 return True;
13015 -- If it was legal in the generic, it's legal in the instance
13017 elsif In_Instance_Body then
13018 return True;
13020 -- If both are tagged types, check legality of view conversions
13022 elsif Is_Tagged_Type (Target_Type)
13023 and then
13024 Is_Tagged_Type (Opnd_Type)
13025 then
13026 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
13028 -- Types derived from the same root type are convertible
13030 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
13031 return True;
13033 -- In an instance or an inlined body, there may be inconsistent views of
13034 -- the same type, or of types derived from a common root.
13036 elsif (In_Instance or In_Inlined_Body)
13037 and then
13038 Root_Type (Underlying_Type (Target_Type)) =
13039 Root_Type (Underlying_Type (Opnd_Type))
13040 then
13041 return True;
13043 -- Special check for common access type error case
13045 elsif Ekind (Target_Type) = E_Access_Type
13046 and then Is_Access_Type (Opnd_Type)
13047 then
13048 Conversion_Error_N ("target type must be general access type!", N);
13049 Conversion_Error_NE -- CODEFIX
13050 ("add ALL to }!", N, Target_Type);
13051 return False;
13053 -- Here we have a real conversion error
13055 else
13056 Conversion_Error_NE
13057 ("invalid conversion, not compatible with }", N, Opnd_Type);
13058 return False;
13059 end if;
13060 end Valid_Conversion;
13062 end Sem_Res;