Fix typos in riscv register save/restore.
[official-gcc.git] / gcc / ada / sem_ch8.adb
blob045b8580c8d8c1aafb6106dff3f33eb7091d6940
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 8 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Debug; use Debug;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Disp; use Exp_Disp;
32 with Exp_Tss; use Exp_Tss;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Ghost; use Ghost;
36 with Impunit; use Impunit;
37 with Lib; use Lib;
38 with Lib.Load; use Lib.Load;
39 with Lib.Xref; use Lib.Xref;
40 with Namet; use Namet;
41 with Namet.Sp; use Namet.Sp;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Output; use Output;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Cat; use Sem_Cat;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch4; use Sem_Ch4;
54 with Sem_Ch6; use Sem_Ch6;
55 with Sem_Ch12; use Sem_Ch12;
56 with Sem_Ch13; use Sem_Ch13;
57 with Sem_Dim; use Sem_Dim;
58 with Sem_Disp; use Sem_Disp;
59 with Sem_Dist; use Sem_Dist;
60 with Sem_Elab; use Sem_Elab;
61 with Sem_Eval; use Sem_Eval;
62 with Sem_Prag; use Sem_Prag;
63 with Sem_Res; use Sem_Res;
64 with Sem_Util; use Sem_Util;
65 with Sem_Type; use Sem_Type;
66 with Stand; use Stand;
67 with Sinfo; use Sinfo;
68 with Sinfo.CN; use Sinfo.CN;
69 with Snames; use Snames;
70 with Style;
71 with Table;
72 with Tbuild; use Tbuild;
73 with Uintp; use Uintp;
75 package body Sem_Ch8 is
77 ------------------------------------
78 -- Visibility and Name Resolution --
79 ------------------------------------
81 -- This package handles name resolution and the collection of possible
82 -- interpretations for overloaded names, prior to overload resolution.
84 -- Name resolution is the process that establishes a mapping between source
85 -- identifiers and the entities they denote at each point in the program.
86 -- Each entity is represented by a defining occurrence. Each identifier
87 -- that denotes an entity points to the corresponding defining occurrence.
88 -- This is the entity of the applied occurrence. Each occurrence holds
89 -- an index into the names table, where source identifiers are stored.
91 -- Each entry in the names table for an identifier or designator uses the
92 -- Info pointer to hold a link to the currently visible entity that has
93 -- this name (see subprograms Get_Name_Entity_Id and Set_Name_Entity_Id
94 -- in package Sem_Util). The visibility is initialized at the beginning of
95 -- semantic processing to make entities in package Standard immediately
96 -- visible. The visibility table is used in a more subtle way when
97 -- compiling subunits (see below).
99 -- Entities that have the same name (i.e. homonyms) are chained. In the
100 -- case of overloaded entities, this chain holds all the possible meanings
101 -- of a given identifier. The process of overload resolution uses type
102 -- information to select from this chain the unique meaning of a given
103 -- identifier.
105 -- Entities are also chained in their scope, through the Next_Entity link.
106 -- As a consequence, the name space is organized as a sparse matrix, where
107 -- each row corresponds to a scope, and each column to a source identifier.
108 -- Open scopes, that is to say scopes currently being compiled, have their
109 -- corresponding rows of entities in order, innermost scope first.
111 -- The scopes of packages that are mentioned in context clauses appear in
112 -- no particular order, interspersed among open scopes. This is because
113 -- in the course of analyzing the context of a compilation, a package
114 -- declaration is first an open scope, and subsequently an element of the
115 -- context. If subunits or child units are present, a parent unit may
116 -- appear under various guises at various times in the compilation.
118 -- When the compilation of the innermost scope is complete, the entities
119 -- defined therein are no longer visible. If the scope is not a package
120 -- declaration, these entities are never visible subsequently, and can be
121 -- removed from visibility chains. If the scope is a package declaration,
122 -- its visible declarations may still be accessible. Therefore the entities
123 -- defined in such a scope are left on the visibility chains, and only
124 -- their visibility (immediately visibility or potential use-visibility)
125 -- is affected.
127 -- The ordering of homonyms on their chain does not necessarily follow
128 -- the order of their corresponding scopes on the scope stack. For
129 -- example, if package P and the enclosing scope both contain entities
130 -- named E, then when compiling the package body the chain for E will
131 -- hold the global entity first, and the local one (corresponding to
132 -- the current inner scope) next. As a result, name resolution routines
133 -- do not assume any relative ordering of the homonym chains, either
134 -- for scope nesting or to order of appearance of context clauses.
136 -- When compiling a child unit, entities in the parent scope are always
137 -- immediately visible. When compiling the body of a child unit, private
138 -- entities in the parent must also be made immediately visible. There
139 -- are separate routines to make the visible and private declarations
140 -- visible at various times (see package Sem_Ch7).
142 -- +--------+ +-----+
143 -- | In use |-------->| EU1 |-------------------------->
144 -- +--------+ +-----+
145 -- | |
146 -- +--------+ +-----+ +-----+
147 -- | Stand. |---------------->| ES1 |--------------->| ES2 |--->
148 -- +--------+ +-----+ +-----+
149 -- | |
150 -- +---------+ | +-----+
151 -- | with'ed |------------------------------>| EW2 |--->
152 -- +---------+ | +-----+
153 -- | |
154 -- +--------+ +-----+ +-----+
155 -- | Scope2 |---------------->| E12 |--------------->| E22 |--->
156 -- +--------+ +-----+ +-----+
157 -- | |
158 -- +--------+ +-----+ +-----+
159 -- | Scope1 |---------------->| E11 |--------------->| E12 |--->
160 -- +--------+ +-----+ +-----+
161 -- ^ | |
162 -- | | |
163 -- | +---------+ | |
164 -- | | with'ed |----------------------------------------->
165 -- | +---------+ | |
166 -- | | |
167 -- Scope stack | |
168 -- (innermost first) | |
169 -- +----------------------------+
170 -- Names table => | Id1 | | | | Id2 |
171 -- +----------------------------+
173 -- Name resolution must deal with several syntactic forms: simple names,
174 -- qualified names, indexed names, and various forms of calls.
176 -- Each identifier points to an entry in the names table. The resolution
177 -- of a simple name consists in traversing the homonym chain, starting
178 -- from the names table. If an entry is immediately visible, it is the one
179 -- designated by the identifier. If only potentially use-visible entities
180 -- are on the chain, we must verify that they do not hide each other. If
181 -- the entity we find is overloadable, we collect all other overloadable
182 -- entities on the chain as long as they are not hidden.
184 -- To resolve expanded names, we must find the entity at the intersection
185 -- of the entity chain for the scope (the prefix) and the homonym chain
186 -- for the selector. In general, homonym chains will be much shorter than
187 -- entity chains, so it is preferable to start from the names table as
188 -- well. If the entity found is overloadable, we must collect all other
189 -- interpretations that are defined in the scope denoted by the prefix.
191 -- For records, protected types, and tasks, their local entities are
192 -- removed from visibility chains on exit from the corresponding scope.
193 -- From the outside, these entities are always accessed by selected
194 -- notation, and the entity chain for the record type, protected type,
195 -- etc. is traversed sequentially in order to find the designated entity.
197 -- The discriminants of a type and the operations of a protected type or
198 -- task are unchained on exit from the first view of the type, (such as
199 -- a private or incomplete type declaration, or a protected type speci-
200 -- fication) and re-chained when compiling the second view.
202 -- In the case of operators, we do not make operators on derived types
203 -- explicit. As a result, the notation P."+" may denote either a user-
204 -- defined function with name "+", or else an implicit declaration of the
205 -- operator "+" in package P. The resolution of expanded names always
206 -- tries to resolve an operator name as such an implicitly defined entity,
207 -- in addition to looking for explicit declarations.
209 -- All forms of names that denote entities (simple names, expanded names,
210 -- character literals in some cases) have a Entity attribute, which
211 -- identifies the entity denoted by the name.
213 ---------------------
214 -- The Scope Stack --
215 ---------------------
217 -- The Scope stack keeps track of the scopes currently been compiled.
218 -- Every entity that contains declarations (including records) is placed
219 -- on the scope stack while it is being processed, and removed at the end.
220 -- Whenever a non-package scope is exited, the entities defined therein
221 -- are removed from the visibility table, so that entities in outer scopes
222 -- become visible (see previous description). On entry to Sem, the scope
223 -- stack only contains the package Standard. As usual, subunits complicate
224 -- this picture ever so slightly.
226 -- The Rtsfind mechanism can force a call to Semantics while another
227 -- compilation is in progress. The unit retrieved by Rtsfind must be
228 -- compiled in its own context, and has no access to the visibility of
229 -- the unit currently being compiled. The procedures Save_Scope_Stack and
230 -- Restore_Scope_Stack make entities in current open scopes invisible
231 -- before compiling the retrieved unit, and restore the compilation
232 -- environment afterwards.
234 ------------------------
235 -- Compiling subunits --
236 ------------------------
238 -- Subunits must be compiled in the environment of the corresponding stub,
239 -- that is to say with the same visibility into the parent (and its
240 -- context) that is available at the point of the stub declaration, but
241 -- with the additional visibility provided by the context clause of the
242 -- subunit itself. As a result, compilation of a subunit forces compilation
243 -- of the parent (see description in lib-). At the point of the stub
244 -- declaration, Analyze is called recursively to compile the proper body of
245 -- the subunit, but without reinitializing the names table, nor the scope
246 -- stack (i.e. standard is not pushed on the stack). In this fashion the
247 -- context of the subunit is added to the context of the parent, and the
248 -- subunit is compiled in the correct environment. Note that in the course
249 -- of processing the context of a subunit, Standard will appear twice on
250 -- the scope stack: once for the parent of the subunit, and once for the
251 -- unit in the context clause being compiled. However, the two sets of
252 -- entities are not linked by homonym chains, so that the compilation of
253 -- any context unit happens in a fresh visibility environment.
255 -------------------------------
256 -- Processing of USE Clauses --
257 -------------------------------
259 -- Every defining occurrence has a flag indicating if it is potentially use
260 -- visible. Resolution of simple names examines this flag. The processing
261 -- of use clauses consists in setting this flag on all visible entities
262 -- defined in the corresponding package. On exit from the scope of the use
263 -- clause, the corresponding flag must be reset. However, a package may
264 -- appear in several nested use clauses (pathological but legal, alas)
265 -- which forces us to use a slightly more involved scheme:
267 -- a) The defining occurrence for a package holds a flag -In_Use- to
268 -- indicate that it is currently in the scope of a use clause. If a
269 -- redundant use clause is encountered, then the corresponding occurrence
270 -- of the package name is flagged -Redundant_Use-.
272 -- b) On exit from a scope, the use clauses in its declarative part are
273 -- scanned. The visibility flag is reset in all entities declared in
274 -- package named in a use clause, as long as the package is not flagged
275 -- as being in a redundant use clause (in which case the outer use
276 -- clause is still in effect, and the direct visibility of its entities
277 -- must be retained).
279 -- Note that entities are not removed from their homonym chains on exit
280 -- from the package specification. A subsequent use clause does not need
281 -- to rechain the visible entities, but only to establish their direct
282 -- visibility.
284 -----------------------------------
285 -- Handling private declarations --
286 -----------------------------------
288 -- The principle that each entity has a single defining occurrence clashes
289 -- with the presence of two separate definitions for private types: the
290 -- first is the private type declaration, and second is the full type
291 -- declaration. It is important that all references to the type point to
292 -- the same defining occurrence, namely the first one. To enforce the two
293 -- separate views of the entity, the corresponding information is swapped
294 -- between the two declarations. Outside of the package, the defining
295 -- occurrence only contains the private declaration information, while in
296 -- the private part and the body of the package the defining occurrence
297 -- contains the full declaration. To simplify the swap, the defining
298 -- occurrence that currently holds the private declaration points to the
299 -- full declaration. During semantic processing the defining occurrence
300 -- also points to a list of private dependents, that is to say access types
301 -- or composite types whose designated types or component types are
302 -- subtypes or derived types of the private type in question. After the
303 -- full declaration has been seen, the private dependents are updated to
304 -- indicate that they have full definitions.
306 ------------------------------------
307 -- Handling of Undefined Messages --
308 ------------------------------------
310 -- In normal mode, only the first use of an undefined identifier generates
311 -- a message. The table Urefs is used to record error messages that have
312 -- been issued so that second and subsequent ones do not generate further
313 -- messages. However, the second reference causes text to be added to the
314 -- original undefined message noting "(more references follow)". The
315 -- full error list option (-gnatf) forces messages to be generated for
316 -- every reference and disconnects the use of this table.
318 type Uref_Entry is record
319 Node : Node_Id;
320 -- Node for identifier for which original message was posted. The
321 -- Chars field of this identifier is used to detect later references
322 -- to the same identifier.
324 Err : Error_Msg_Id;
325 -- Records error message Id of original undefined message. Reset to
326 -- No_Error_Msg after the second occurrence, where it is used to add
327 -- text to the original message as described above.
329 Nvis : Boolean;
330 -- Set if the message is not visible rather than undefined
332 Loc : Source_Ptr;
333 -- Records location of error message. Used to make sure that we do
334 -- not consider a, b : undefined as two separate instances, which
335 -- would otherwise happen, since the parser converts this sequence
336 -- to a : undefined; b : undefined.
338 end record;
340 package Urefs is new Table.Table (
341 Table_Component_Type => Uref_Entry,
342 Table_Index_Type => Nat,
343 Table_Low_Bound => 1,
344 Table_Initial => 10,
345 Table_Increment => 100,
346 Table_Name => "Urefs");
348 Candidate_Renaming : Entity_Id;
349 -- Holds a candidate interpretation that appears in a subprogram renaming
350 -- declaration and does not match the given specification, but matches at
351 -- least on the first formal. Allows better error message when given
352 -- specification omits defaulted parameters, a common error.
354 -----------------------
355 -- Local Subprograms --
356 -----------------------
358 procedure Analyze_Generic_Renaming
359 (N : Node_Id;
360 K : Entity_Kind);
361 -- Common processing for all three kinds of generic renaming declarations.
362 -- Enter new name and indicate that it renames the generic unit.
364 procedure Analyze_Renamed_Character
365 (N : Node_Id;
366 New_S : Entity_Id;
367 Is_Body : Boolean);
368 -- Renamed entity is given by a character literal, which must belong
369 -- to the return type of the new entity. Is_Body indicates whether the
370 -- declaration is a renaming_as_body. If the original declaration has
371 -- already been frozen (because of an intervening body, e.g.) the body of
372 -- the function must be built now. The same applies to the following
373 -- various renaming procedures.
375 procedure Analyze_Renamed_Dereference
376 (N : Node_Id;
377 New_S : Entity_Id;
378 Is_Body : Boolean);
379 -- Renamed entity is given by an explicit dereference. Prefix must be a
380 -- conformant access_to_subprogram type.
382 procedure Analyze_Renamed_Entry
383 (N : Node_Id;
384 New_S : Entity_Id;
385 Is_Body : Boolean);
386 -- If the renamed entity in a subprogram renaming is an entry or protected
387 -- subprogram, build a body for the new entity whose only statement is a
388 -- call to the renamed entity.
390 procedure Analyze_Renamed_Family_Member
391 (N : Node_Id;
392 New_S : Entity_Id;
393 Is_Body : Boolean);
394 -- Used when the renamed entity is an indexed component. The prefix must
395 -- denote an entry family.
397 procedure Analyze_Renamed_Primitive_Operation
398 (N : Node_Id;
399 New_S : Entity_Id;
400 Is_Body : Boolean);
401 -- If the renamed entity in a subprogram renaming is a primitive operation
402 -- or a class-wide operation in prefix form, save the target object,
403 -- which must be added to the list of actuals in any subsequent call.
404 -- The renaming operation is intrinsic because the compiler must in
405 -- fact generate a wrapper for it (6.3.1 (10 1/2)).
407 procedure Attribute_Renaming (N : Node_Id);
408 -- Analyze renaming of attribute as subprogram. The renaming declaration N
409 -- is rewritten as a subprogram body that returns the attribute reference
410 -- applied to the formals of the function.
412 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id);
413 -- Set Entity, with style check if need be. For a discriminant reference,
414 -- replace by the corresponding discriminal, i.e. the parameter of the
415 -- initialization procedure that corresponds to the discriminant.
417 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id);
418 -- A renaming_as_body may occur after the entity of the original decla-
419 -- ration has been frozen. In that case, the body of the new entity must
420 -- be built now, because the usual mechanism of building the renamed
421 -- body at the point of freezing will not work. Subp is the subprogram
422 -- for which N provides the Renaming_As_Body.
424 procedure Check_In_Previous_With_Clause
425 (N : Node_Id;
426 Nam : Node_Id);
427 -- N is a use_package clause and Nam the package name, or N is a use_type
428 -- clause and Nam is the prefix of the type name. In either case, verify
429 -- that the package is visible at that point in the context: either it
430 -- appears in a previous with_clause, or because it is a fully qualified
431 -- name and the root ancestor appears in a previous with_clause.
433 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id);
434 -- Verify that the entity in a renaming declaration that is a library unit
435 -- is itself a library unit and not a nested unit or subunit. Also check
436 -- that if the renaming is a child unit of a generic parent, then the
437 -- renamed unit must also be a child unit of that parent. Finally, verify
438 -- that a renamed generic unit is not an implicit child declared within
439 -- an instance of the parent.
441 procedure Chain_Use_Clause (N : Node_Id);
442 -- Chain use clause onto list of uses clauses headed by First_Use_Clause in
443 -- the proper scope table entry. This is usually the current scope, but it
444 -- will be an inner scope when installing the use clauses of the private
445 -- declarations of a parent unit prior to compiling the private part of a
446 -- child unit. This chain is traversed when installing/removing use clauses
447 -- when compiling a subunit or instantiating a generic body on the fly,
448 -- when it is necessary to save and restore full environments.
450 function Enclosing_Instance return Entity_Id;
451 -- In an instance nested within another one, several semantic checks are
452 -- unnecessary because the legality of the nested instance has been checked
453 -- in the enclosing generic unit. This applies in particular to legality
454 -- checks on actuals for formal subprograms of the inner instance, which
455 -- are checked as subprogram renamings, and may be complicated by confusion
456 -- in private/full views. This function returns the instance enclosing the
457 -- current one if there is such, else it returns Empty.
459 -- If the renaming determines the entity for the default of a formal
460 -- subprogram nested within another instance, choose the innermost
461 -- candidate. This is because if the formal has a box, and we are within
462 -- an enclosing instance where some candidate interpretations are local
463 -- to this enclosing instance, we know that the default was properly
464 -- resolved when analyzing the generic, so we prefer the local
465 -- candidates to those that are external. This is not always the case
466 -- but is a reasonable heuristic on the use of nested generics. The
467 -- proper solution requires a full renaming model.
469 function Entity_Of_Unit (U : Node_Id) return Entity_Id;
470 -- Return the appropriate entity for determining which unit has a deeper
471 -- scope: the defining entity for U, unless U is a package instance, in
472 -- which case we retrieve the entity of the instance spec.
474 procedure Find_Expanded_Name (N : Node_Id);
475 -- The input is a selected component known to be an expanded name. Verify
476 -- legality of selector given the scope denoted by prefix, and change node
477 -- N into a expanded name with a properly set Entity field.
479 function Find_Most_Prev (Use_Clause : Node_Id) return Node_Id;
480 -- Find the most previous use clause (that is, the first one to appear in
481 -- the source) by traversing the previous clause chain that exists in both
482 -- N_Use_Package_Clause nodes and N_Use_Type_Clause nodes.
483 -- ??? a better subprogram name is in order
485 function Find_Renamed_Entity
486 (N : Node_Id;
487 Nam : Node_Id;
488 New_S : Entity_Id;
489 Is_Actual : Boolean := False) return Entity_Id;
490 -- Find the renamed entity that corresponds to the given parameter profile
491 -- in a subprogram renaming declaration. The renamed entity may be an
492 -- operator, a subprogram, an entry, or a protected operation. Is_Actual
493 -- indicates that the renaming is the one generated for an actual subpro-
494 -- gram in an instance, for which special visibility checks apply.
496 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean;
497 -- Find a type derived from Character or Wide_Character in the prefix of N.
498 -- Used to resolved qualified names whose selector is a character literal.
500 function Has_Private_With (E : Entity_Id) return Boolean;
501 -- Ada 2005 (AI-262): Determines if the current compilation unit has a
502 -- private with on E.
504 function Has_Implicit_Operator (N : Node_Id) return Boolean;
505 -- N is an expanded name whose selector is an operator name (e.g. P."+").
506 -- declarative part contains an implicit declaration of an operator if it
507 -- has a declaration of a type to which one of the predefined operators
508 -- apply. The existence of this routine is an implementation artifact. A
509 -- more straightforward but more space-consuming choice would be to make
510 -- all inherited operators explicit in the symbol table.
512 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id);
513 -- A subprogram defined by a renaming declaration inherits the parameter
514 -- profile of the renamed entity. The subtypes given in the subprogram
515 -- specification are discarded and replaced with those of the renamed
516 -- subprogram, which are then used to recheck the default values.
518 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean;
519 -- True if it is of a task type, a protected type, or else an access to one
520 -- of these types.
522 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean;
523 -- Prefix is appropriate for record if it is of a record type, or an access
524 -- to such.
526 function Most_Descendant_Use_Clause
527 (Clause1 : Entity_Id;
528 Clause2 : Entity_Id) return Entity_Id;
529 -- Determine which use clause parameter is the most descendant in terms of
530 -- scope.
531 -- ??? a better subprogram name is in order
533 procedure Premature_Usage (N : Node_Id);
534 -- Diagnose usage of an entity before it is visible
536 procedure Use_One_Package
537 (N : Node_Id;
538 Pack_Name : Entity_Id := Empty;
539 Force : Boolean := False);
540 -- Make visible entities declared in package P potentially use-visible
541 -- in the current context. Also used in the analysis of subunits, when
542 -- re-installing use clauses of parent units. N is the use_clause that
543 -- names P (and possibly other packages).
545 procedure Use_One_Type
546 (Id : Node_Id;
547 Installed : Boolean := False;
548 Force : Boolean := False);
549 -- Id is the subtype mark from a use_type_clause. This procedure makes
550 -- the primitive operators of the type potentially use-visible. The
551 -- boolean flag Installed indicates that the clause is being reinstalled
552 -- after previous analysis, and primitive operations are already chained
553 -- on the Used_Operations list of the clause.
555 procedure Write_Info;
556 -- Write debugging information on entities declared in current scope
558 --------------------------------
559 -- Analyze_Exception_Renaming --
560 --------------------------------
562 -- The language only allows a single identifier, but the tree holds an
563 -- identifier list. The parser has already issued an error message if
564 -- there is more than one element in the list.
566 procedure Analyze_Exception_Renaming (N : Node_Id) is
567 Id : constant Entity_Id := Defining_Entity (N);
568 Nam : constant Node_Id := Name (N);
570 begin
571 Check_SPARK_05_Restriction ("exception renaming is not allowed", N);
573 Enter_Name (Id);
574 Analyze (Nam);
576 Set_Ekind (Id, E_Exception);
577 Set_Etype (Id, Standard_Exception_Type);
578 Set_Is_Pure (Id, Is_Pure (Current_Scope));
580 if Is_Entity_Name (Nam)
581 and then Present (Entity (Nam))
582 and then Ekind (Entity (Nam)) = E_Exception
583 then
584 if Present (Renamed_Object (Entity (Nam))) then
585 Set_Renamed_Object (Id, Renamed_Object (Entity (Nam)));
586 else
587 Set_Renamed_Object (Id, Entity (Nam));
588 end if;
590 -- The exception renaming declaration may become Ghost if it renames
591 -- a Ghost entity.
593 Mark_Ghost_Renaming (N, Entity (Nam));
594 else
595 Error_Msg_N ("invalid exception name in renaming", Nam);
596 end if;
598 -- Implementation-defined aspect specifications can appear in a renaming
599 -- declaration, but not language-defined ones. The call to procedure
600 -- Analyze_Aspect_Specifications will take care of this error check.
602 if Has_Aspects (N) then
603 Analyze_Aspect_Specifications (N, Id);
604 end if;
605 end Analyze_Exception_Renaming;
607 ---------------------------
608 -- Analyze_Expanded_Name --
609 ---------------------------
611 procedure Analyze_Expanded_Name (N : Node_Id) is
612 begin
613 -- If the entity pointer is already set, this is an internal node, or a
614 -- node that is analyzed more than once, after a tree modification. In
615 -- such a case there is no resolution to perform, just set the type. In
616 -- either case, start by analyzing the prefix.
618 Analyze (Prefix (N));
620 if Present (Entity (N)) then
621 if Is_Type (Entity (N)) then
622 Set_Etype (N, Entity (N));
623 else
624 Set_Etype (N, Etype (Entity (N)));
625 end if;
627 else
628 Find_Expanded_Name (N);
629 end if;
631 -- In either case, propagate dimension of entity to expanded name
633 Analyze_Dimension (N);
634 end Analyze_Expanded_Name;
636 ---------------------------------------
637 -- Analyze_Generic_Function_Renaming --
638 ---------------------------------------
640 procedure Analyze_Generic_Function_Renaming (N : Node_Id) is
641 begin
642 Analyze_Generic_Renaming (N, E_Generic_Function);
643 end Analyze_Generic_Function_Renaming;
645 --------------------------------------
646 -- Analyze_Generic_Package_Renaming --
647 --------------------------------------
649 procedure Analyze_Generic_Package_Renaming (N : Node_Id) is
650 begin
651 -- Test for the Text_IO special unit case here, since we may be renaming
652 -- one of the subpackages of Text_IO, then join common routine.
654 Check_Text_IO_Special_Unit (Name (N));
656 Analyze_Generic_Renaming (N, E_Generic_Package);
657 end Analyze_Generic_Package_Renaming;
659 ----------------------------------------
660 -- Analyze_Generic_Procedure_Renaming --
661 ----------------------------------------
663 procedure Analyze_Generic_Procedure_Renaming (N : Node_Id) is
664 begin
665 Analyze_Generic_Renaming (N, E_Generic_Procedure);
666 end Analyze_Generic_Procedure_Renaming;
668 ------------------------------
669 -- Analyze_Generic_Renaming --
670 ------------------------------
672 procedure Analyze_Generic_Renaming
673 (N : Node_Id;
674 K : Entity_Kind)
676 New_P : constant Entity_Id := Defining_Entity (N);
677 Inst : Boolean := False;
678 Old_P : Entity_Id;
680 begin
681 if Name (N) = Error then
682 return;
683 end if;
685 Check_SPARK_05_Restriction ("generic renaming is not allowed", N);
687 Generate_Definition (New_P);
689 if Current_Scope /= Standard_Standard then
690 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
691 end if;
693 if Nkind (Name (N)) = N_Selected_Component then
694 Check_Generic_Child_Unit (Name (N), Inst);
695 else
696 Analyze (Name (N));
697 end if;
699 if not Is_Entity_Name (Name (N)) then
700 Error_Msg_N ("expect entity name in renaming declaration", Name (N));
701 Old_P := Any_Id;
702 else
703 Old_P := Entity (Name (N));
704 end if;
706 Enter_Name (New_P);
707 Set_Ekind (New_P, K);
709 if Etype (Old_P) = Any_Type then
710 null;
712 elsif Ekind (Old_P) /= K then
713 Error_Msg_N ("invalid generic unit name", Name (N));
715 else
716 if Present (Renamed_Object (Old_P)) then
717 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
718 else
719 Set_Renamed_Object (New_P, Old_P);
720 end if;
722 -- The generic renaming declaration may become Ghost if it renames a
723 -- Ghost entity.
725 Mark_Ghost_Renaming (N, Old_P);
727 Set_Is_Pure (New_P, Is_Pure (Old_P));
728 Set_Is_Preelaborated (New_P, Is_Preelaborated (Old_P));
730 Set_Etype (New_P, Etype (Old_P));
731 Set_Has_Completion (New_P);
733 if In_Open_Scopes (Old_P) then
734 Error_Msg_N ("within its scope, generic denotes its instance", N);
735 end if;
737 -- For subprograms, propagate the Intrinsic flag, to allow, e.g.
738 -- renamings and subsequent instantiations of Unchecked_Conversion.
740 if Ekind_In (Old_P, E_Generic_Function, E_Generic_Procedure) then
741 Set_Is_Intrinsic_Subprogram
742 (New_P, Is_Intrinsic_Subprogram (Old_P));
743 end if;
745 Check_Library_Unit_Renaming (N, Old_P);
746 end if;
748 -- Implementation-defined aspect specifications can appear in a renaming
749 -- declaration, but not language-defined ones. The call to procedure
750 -- Analyze_Aspect_Specifications will take care of this error check.
752 if Has_Aspects (N) then
753 Analyze_Aspect_Specifications (N, New_P);
754 end if;
755 end Analyze_Generic_Renaming;
757 -----------------------------
758 -- Analyze_Object_Renaming --
759 -----------------------------
761 procedure Analyze_Object_Renaming (N : Node_Id) is
762 Id : constant Entity_Id := Defining_Identifier (N);
763 Loc : constant Source_Ptr := Sloc (N);
764 Nam : constant Node_Id := Name (N);
765 Dec : Node_Id;
766 T : Entity_Id;
767 T2 : Entity_Id;
769 procedure Check_Constrained_Object;
770 -- If the nominal type is unconstrained but the renamed object is
771 -- constrained, as can happen with renaming an explicit dereference or
772 -- a function return, build a constrained subtype from the object. If
773 -- the renaming is for a formal in an accept statement, the analysis
774 -- has already established its actual subtype. This is only relevant
775 -- if the renamed object is an explicit dereference.
777 ------------------------------
778 -- Check_Constrained_Object --
779 ------------------------------
781 procedure Check_Constrained_Object is
782 Typ : constant Entity_Id := Etype (Nam);
783 Subt : Entity_Id;
785 begin
786 if Nkind_In (Nam, N_Function_Call, N_Explicit_Dereference)
787 and then Is_Composite_Type (Etype (Nam))
788 and then not Is_Constrained (Etype (Nam))
789 and then not Has_Unknown_Discriminants (Etype (Nam))
790 and then Expander_Active
791 then
792 -- If Actual_Subtype is already set, nothing to do
794 if Ekind_In (Id, E_Variable, E_Constant)
795 and then Present (Actual_Subtype (Id))
796 then
797 null;
799 -- A renaming of an unchecked union has no actual subtype
801 elsif Is_Unchecked_Union (Typ) then
802 null;
804 -- If a record is limited its size is invariant. This is the case
805 -- in particular with record types with an access discirminant
806 -- that are used in iterators. This is an optimization, but it
807 -- also prevents typing anomalies when the prefix is further
808 -- expanded. Limited types with discriminants are included.
810 elsif Is_Limited_Record (Typ)
811 or else
812 (Ekind (Typ) = E_Limited_Private_Type
813 and then Has_Discriminants (Typ)
814 and then Is_Access_Type (Etype (First_Discriminant (Typ))))
815 then
816 null;
818 else
819 Subt := Make_Temporary (Loc, 'T');
820 Remove_Side_Effects (Nam);
821 Insert_Action (N,
822 Make_Subtype_Declaration (Loc,
823 Defining_Identifier => Subt,
824 Subtype_Indication =>
825 Make_Subtype_From_Expr (Nam, Typ)));
826 Rewrite (Subtype_Mark (N), New_Occurrence_Of (Subt, Loc));
827 Set_Etype (Nam, Subt);
829 -- Freeze subtype at once, to prevent order of elaboration
830 -- issues in the backend. The renamed object exists, so its
831 -- type is already frozen in any case.
833 Freeze_Before (N, Subt);
834 end if;
835 end if;
836 end Check_Constrained_Object;
838 -- Start of processing for Analyze_Object_Renaming
840 begin
841 if Nam = Error then
842 return;
843 end if;
845 Check_SPARK_05_Restriction ("object renaming is not allowed", N);
847 Set_Is_Pure (Id, Is_Pure (Current_Scope));
848 Enter_Name (Id);
850 -- The renaming of a component that depends on a discriminant requires
851 -- an actual subtype, because in subsequent use of the object Gigi will
852 -- be unable to locate the actual bounds. This explicit step is required
853 -- when the renaming is generated in removing side effects of an
854 -- already-analyzed expression.
856 if Nkind (Nam) = N_Selected_Component and then Analyzed (Nam) then
858 -- The object renaming declaration may become Ghost if it renames a
859 -- Ghost entity.
861 if Is_Entity_Name (Nam) then
862 Mark_Ghost_Renaming (N, Entity (Nam));
863 end if;
865 T := Etype (Nam);
866 Dec := Build_Actual_Subtype_Of_Component (Etype (Nam), Nam);
868 if Present (Dec) then
869 Insert_Action (N, Dec);
870 T := Defining_Identifier (Dec);
871 Set_Etype (Nam, T);
872 end if;
874 -- Complete analysis of the subtype mark in any case, for ASIS use
876 if Present (Subtype_Mark (N)) then
877 Find_Type (Subtype_Mark (N));
878 end if;
880 elsif Present (Subtype_Mark (N)) then
881 Find_Type (Subtype_Mark (N));
882 T := Entity (Subtype_Mark (N));
883 Analyze (Nam);
885 -- The object renaming declaration may become Ghost if it renames a
886 -- Ghost entity.
888 if Is_Entity_Name (Nam) then
889 Mark_Ghost_Renaming (N, Entity (Nam));
890 end if;
892 -- Reject renamings of conversions unless the type is tagged, or
893 -- the conversion is implicit (which can occur for cases of anonymous
894 -- access types in Ada 2012).
896 if Nkind (Nam) = N_Type_Conversion
897 and then Comes_From_Source (Nam)
898 and then not Is_Tagged_Type (T)
899 then
900 Error_Msg_N
901 ("renaming of conversion only allowed for tagged types", Nam);
902 end if;
904 Resolve (Nam, T);
906 -- If the renamed object is a function call of a limited type,
907 -- the expansion of the renaming is complicated by the presence
908 -- of various temporaries and subtypes that capture constraints
909 -- of the renamed object. Rewrite node as an object declaration,
910 -- whose expansion is simpler. Given that the object is limited
911 -- there is no copy involved and no performance hit.
913 if Nkind (Nam) = N_Function_Call
914 and then Is_Limited_View (Etype (Nam))
915 and then not Is_Constrained (Etype (Nam))
916 and then Comes_From_Source (N)
917 then
918 Set_Etype (Id, T);
919 Set_Ekind (Id, E_Constant);
920 Rewrite (N,
921 Make_Object_Declaration (Loc,
922 Defining_Identifier => Id,
923 Constant_Present => True,
924 Object_Definition => New_Occurrence_Of (Etype (Nam), Loc),
925 Expression => Relocate_Node (Nam)));
926 return;
927 end if;
929 -- Ada 2012 (AI05-149): Reject renaming of an anonymous access object
930 -- when renaming declaration has a named access type. The Ada 2012
931 -- coverage rules allow an anonymous access type in the context of
932 -- an expected named general access type, but the renaming rules
933 -- require the types to be the same. (An exception is when the type
934 -- of the renaming is also an anonymous access type, which can only
935 -- happen due to a renaming created by the expander.)
937 if Nkind (Nam) = N_Type_Conversion
938 and then not Comes_From_Source (Nam)
939 and then Ekind (Etype (Expression (Nam))) = E_Anonymous_Access_Type
940 and then Ekind (T) /= E_Anonymous_Access_Type
941 then
942 Wrong_Type (Expression (Nam), T); -- Should we give better error???
943 end if;
945 -- Check that a class-wide object is not being renamed as an object
946 -- of a specific type. The test for access types is needed to exclude
947 -- cases where the renamed object is a dynamically tagged access
948 -- result, such as occurs in certain expansions.
950 if Is_Tagged_Type (T) then
951 Check_Dynamically_Tagged_Expression
952 (Expr => Nam,
953 Typ => T,
954 Related_Nod => N);
955 end if;
957 -- Ada 2005 (AI-230/AI-254): Access renaming
959 else pragma Assert (Present (Access_Definition (N)));
960 T :=
961 Access_Definition
962 (Related_Nod => N,
963 N => Access_Definition (N));
965 Analyze (Nam);
967 -- The object renaming declaration may become Ghost if it renames a
968 -- Ghost entity.
970 if Is_Entity_Name (Nam) then
971 Mark_Ghost_Renaming (N, Entity (Nam));
972 end if;
974 -- Ada 2005 AI05-105: if the declaration has an anonymous access
975 -- type, the renamed object must also have an anonymous type, and
976 -- this is a name resolution rule. This was implicit in the last part
977 -- of the first sentence in 8.5.1(3/2), and is made explicit by this
978 -- recent AI.
980 if not Is_Overloaded (Nam) then
981 if Ekind (Etype (Nam)) /= Ekind (T) then
982 Error_Msg_N
983 ("expect anonymous access type in object renaming", N);
984 end if;
986 else
987 declare
988 I : Interp_Index;
989 It : Interp;
990 Typ : Entity_Id := Empty;
991 Seen : Boolean := False;
993 begin
994 Get_First_Interp (Nam, I, It);
995 while Present (It.Typ) loop
997 -- Renaming is ambiguous if more than one candidate
998 -- interpretation is type-conformant with the context.
1000 if Ekind (It.Typ) = Ekind (T) then
1001 if Ekind (T) = E_Anonymous_Access_Subprogram_Type
1002 and then
1003 Type_Conformant
1004 (Designated_Type (T), Designated_Type (It.Typ))
1005 then
1006 if not Seen then
1007 Seen := True;
1008 else
1009 Error_Msg_N
1010 ("ambiguous expression in renaming", Nam);
1011 end if;
1013 elsif Ekind (T) = E_Anonymous_Access_Type
1014 and then
1015 Covers (Designated_Type (T), Designated_Type (It.Typ))
1016 then
1017 if not Seen then
1018 Seen := True;
1019 else
1020 Error_Msg_N
1021 ("ambiguous expression in renaming", Nam);
1022 end if;
1023 end if;
1025 if Covers (T, It.Typ) then
1026 Typ := It.Typ;
1027 Set_Etype (Nam, Typ);
1028 Set_Is_Overloaded (Nam, False);
1029 end if;
1030 end if;
1032 Get_Next_Interp (I, It);
1033 end loop;
1034 end;
1035 end if;
1037 Resolve (Nam, T);
1039 -- Do not perform the legality checks below when the resolution of
1040 -- the renaming name failed because the associated type is Any_Type.
1042 if Etype (Nam) = Any_Type then
1043 null;
1045 -- Ada 2005 (AI-231): In the case where the type is defined by an
1046 -- access_definition, the renamed entity shall be of an access-to-
1047 -- constant type if and only if the access_definition defines an
1048 -- access-to-constant type. ARM 8.5.1(4)
1050 elsif Constant_Present (Access_Definition (N))
1051 and then not Is_Access_Constant (Etype (Nam))
1052 then
1053 Error_Msg_N
1054 ("(Ada 2005): the renamed object is not access-to-constant "
1055 & "(RM 8.5.1(6))", N);
1057 elsif not Constant_Present (Access_Definition (N))
1058 and then Is_Access_Constant (Etype (Nam))
1059 then
1060 Error_Msg_N
1061 ("(Ada 2005): the renamed object is not access-to-variable "
1062 & "(RM 8.5.1(6))", N);
1063 end if;
1065 if Is_Access_Subprogram_Type (Etype (Nam)) then
1066 Check_Subtype_Conformant
1067 (Designated_Type (T), Designated_Type (Etype (Nam)));
1069 elsif not Subtypes_Statically_Match
1070 (Designated_Type (T),
1071 Available_View (Designated_Type (Etype (Nam))))
1072 then
1073 Error_Msg_N
1074 ("subtype of renamed object does not statically match", N);
1075 end if;
1076 end if;
1078 -- Special processing for renaming function return object. Some errors
1079 -- and warnings are produced only for calls that come from source.
1081 if Nkind (Nam) = N_Function_Call then
1082 case Ada_Version is
1084 -- Usage is illegal in Ada 83, but renamings are also introduced
1085 -- during expansion, and error does not apply to those.
1087 when Ada_83 =>
1088 if Comes_From_Source (N) then
1089 Error_Msg_N
1090 ("(Ada 83) cannot rename function return object", Nam);
1091 end if;
1093 -- In Ada 95, warn for odd case of renaming parameterless function
1094 -- call if this is not a limited type (where this is useful).
1096 when others =>
1097 if Warn_On_Object_Renames_Function
1098 and then No (Parameter_Associations (Nam))
1099 and then not Is_Limited_Type (Etype (Nam))
1100 and then Comes_From_Source (Nam)
1101 then
1102 Error_Msg_N
1103 ("renaming function result object is suspicious?R?", Nam);
1104 Error_Msg_NE
1105 ("\function & will be called only once?R?", Nam,
1106 Entity (Name (Nam)));
1107 Error_Msg_N -- CODEFIX
1108 ("\suggest using an initialized constant object "
1109 & "instead?R?", Nam);
1110 end if;
1111 end case;
1112 end if;
1114 Check_Constrained_Object;
1116 -- An object renaming requires an exact match of the type. Class-wide
1117 -- matching is not allowed.
1119 if Is_Class_Wide_Type (T)
1120 and then Base_Type (Etype (Nam)) /= Base_Type (T)
1121 then
1122 Wrong_Type (Nam, T);
1123 end if;
1125 T2 := Etype (Nam);
1127 -- Ada 2005 (AI-326): Handle wrong use of incomplete type
1129 if Nkind (Nam) = N_Explicit_Dereference
1130 and then Ekind (Etype (T2)) = E_Incomplete_Type
1131 then
1132 Error_Msg_NE ("invalid use of incomplete type&", Id, T2);
1133 return;
1135 elsif Ekind (Etype (T)) = E_Incomplete_Type then
1136 Error_Msg_NE ("invalid use of incomplete type&", Id, T);
1137 return;
1138 end if;
1140 -- Ada 2005 (AI-327)
1142 if Ada_Version >= Ada_2005
1143 and then Nkind (Nam) = N_Attribute_Reference
1144 and then Attribute_Name (Nam) = Name_Priority
1145 then
1146 null;
1148 elsif Ada_Version >= Ada_2005 and then Nkind (Nam) in N_Has_Entity then
1149 declare
1150 Nam_Decl : Node_Id;
1151 Nam_Ent : Entity_Id;
1153 begin
1154 if Nkind (Nam) = N_Attribute_Reference then
1155 Nam_Ent := Entity (Prefix (Nam));
1156 else
1157 Nam_Ent := Entity (Nam);
1158 end if;
1160 Nam_Decl := Parent (Nam_Ent);
1162 if Has_Null_Exclusion (N)
1163 and then not Has_Null_Exclusion (Nam_Decl)
1164 then
1165 -- Ada 2005 (AI-423): If the object name denotes a generic
1166 -- formal object of a generic unit G, and the object renaming
1167 -- declaration occurs within the body of G or within the body
1168 -- of a generic unit declared within the declarative region
1169 -- of G, then the declaration of the formal object of G must
1170 -- have a null exclusion or a null-excluding subtype.
1172 if Is_Formal_Object (Nam_Ent)
1173 and then In_Generic_Scope (Id)
1174 then
1175 if not Can_Never_Be_Null (Etype (Nam_Ent)) then
1176 Error_Msg_N
1177 ("renamed formal does not exclude `NULL` "
1178 & "(RM 8.5.1(4.6/2))", N);
1180 elsif In_Package_Body (Scope (Id)) then
1181 Error_Msg_N
1182 ("formal object does not have a null exclusion"
1183 & "(RM 8.5.1(4.6/2))", N);
1184 end if;
1186 -- Ada 2005 (AI-423): Otherwise, the subtype of the object name
1187 -- shall exclude null.
1189 elsif not Can_Never_Be_Null (Etype (Nam_Ent)) then
1190 Error_Msg_N
1191 ("renamed object does not exclude `NULL` "
1192 & "(RM 8.5.1(4.6/2))", N);
1194 -- An instance is illegal if it contains a renaming that
1195 -- excludes null, and the actual does not. The renaming
1196 -- declaration has already indicated that the declaration
1197 -- of the renamed actual in the instance will raise
1198 -- constraint_error.
1200 elsif Nkind (Nam_Decl) = N_Object_Declaration
1201 and then In_Instance
1202 and then
1203 Present (Corresponding_Generic_Association (Nam_Decl))
1204 and then Nkind (Expression (Nam_Decl)) =
1205 N_Raise_Constraint_Error
1206 then
1207 Error_Msg_N
1208 ("renamed actual does not exclude `NULL` "
1209 & "(RM 8.5.1(4.6/2))", N);
1211 -- Finally, if there is a null exclusion, the subtype mark
1212 -- must not be null-excluding.
1214 elsif No (Access_Definition (N))
1215 and then Can_Never_Be_Null (T)
1216 then
1217 Error_Msg_NE
1218 ("`NOT NULL` not allowed (& already excludes null)",
1219 N, T);
1221 end if;
1223 elsif Can_Never_Be_Null (T)
1224 and then not Can_Never_Be_Null (Etype (Nam_Ent))
1225 then
1226 Error_Msg_N
1227 ("renamed object does not exclude `NULL` "
1228 & "(RM 8.5.1(4.6/2))", N);
1230 elsif Has_Null_Exclusion (N)
1231 and then No (Access_Definition (N))
1232 and then Can_Never_Be_Null (T)
1233 then
1234 Error_Msg_NE
1235 ("`NOT NULL` not allowed (& already excludes null)", N, T);
1236 end if;
1237 end;
1238 end if;
1240 -- Set the Ekind of the entity, unless it has been set already, as is
1241 -- the case for the iteration object over a container with no variable
1242 -- indexing. In that case it's been marked as a constant, and we do not
1243 -- want to change it to a variable.
1245 if Ekind (Id) /= E_Constant then
1246 Set_Ekind (Id, E_Variable);
1247 end if;
1249 -- Initialize the object size and alignment. Note that we used to call
1250 -- Init_Size_Align here, but that's wrong for objects which have only
1251 -- an Esize, not an RM_Size field.
1253 Init_Object_Size_Align (Id);
1255 if T = Any_Type or else Etype (Nam) = Any_Type then
1256 return;
1258 -- Verify that the renamed entity is an object or a function call. It
1259 -- may have been rewritten in several ways.
1261 elsif Is_Object_Reference (Nam) then
1262 if Comes_From_Source (N) then
1263 if Is_Dependent_Component_Of_Mutable_Object (Nam) then
1264 Error_Msg_N
1265 ("illegal renaming of discriminant-dependent component", Nam);
1266 end if;
1268 -- If the renaming comes from source and the renamed object is a
1269 -- dereference, then mark the prefix as needing debug information,
1270 -- since it might have been rewritten hence internally generated
1271 -- and Debug_Renaming_Declaration will link the renaming to it.
1273 if Nkind (Nam) = N_Explicit_Dereference
1274 and then Is_Entity_Name (Prefix (Nam))
1275 then
1276 Set_Debug_Info_Needed (Entity (Prefix (Nam)));
1277 end if;
1278 end if;
1280 -- A static function call may have been folded into a literal
1282 elsif Nkind (Original_Node (Nam)) = N_Function_Call
1284 -- When expansion is disabled, attribute reference is not rewritten
1285 -- as function call. Otherwise it may be rewritten as a conversion,
1286 -- so check original node.
1288 or else (Nkind (Original_Node (Nam)) = N_Attribute_Reference
1289 and then Is_Function_Attribute_Name
1290 (Attribute_Name (Original_Node (Nam))))
1292 -- Weird but legal, equivalent to renaming a function call. Illegal
1293 -- if the literal is the result of constant-folding an attribute
1294 -- reference that is not a function.
1296 or else (Is_Entity_Name (Nam)
1297 and then Ekind (Entity (Nam)) = E_Enumeration_Literal
1298 and then
1299 Nkind (Original_Node (Nam)) /= N_Attribute_Reference)
1301 or else (Nkind (Nam) = N_Type_Conversion
1302 and then Is_Tagged_Type (Entity (Subtype_Mark (Nam))))
1303 then
1304 null;
1306 elsif Nkind (Nam) = N_Type_Conversion then
1307 Error_Msg_N
1308 ("renaming of conversion only allowed for tagged types", Nam);
1310 -- Ada 2005 (AI-327)
1312 elsif Ada_Version >= Ada_2005
1313 and then Nkind (Nam) = N_Attribute_Reference
1314 and then Attribute_Name (Nam) = Name_Priority
1315 then
1316 null;
1318 -- Allow internally generated x'Ref resulting in N_Reference node
1320 elsif Nkind (Nam) = N_Reference then
1321 null;
1323 else
1324 Error_Msg_N ("expect object name in renaming", Nam);
1325 end if;
1327 Set_Etype (Id, T2);
1329 if not Is_Variable (Nam) then
1330 Set_Ekind (Id, E_Constant);
1331 Set_Never_Set_In_Source (Id, True);
1332 Set_Is_True_Constant (Id, True);
1333 end if;
1335 -- The entity of the renaming declaration needs to reflect whether the
1336 -- renamed object is volatile. Is_Volatile is set if the renamed object
1337 -- is volatile in the RM legality sense.
1339 Set_Is_Volatile (Id, Is_Volatile_Object (Nam));
1341 -- Also copy settings of Atomic/Independent/Volatile_Full_Access
1343 if Is_Entity_Name (Nam) then
1344 Set_Is_Atomic (Id, Is_Atomic (Entity (Nam)));
1345 Set_Is_Independent (Id, Is_Independent (Entity (Nam)));
1346 Set_Is_Volatile_Full_Access (Id,
1347 Is_Volatile_Full_Access (Entity (Nam)));
1348 end if;
1350 -- Treat as volatile if we just set the Volatile flag
1352 if Is_Volatile (Id)
1354 -- Or if we are renaming an entity which was marked this way
1356 -- Are there more cases, e.g. X(J) where X is Treat_As_Volatile ???
1358 or else (Is_Entity_Name (Nam)
1359 and then Treat_As_Volatile (Entity (Nam)))
1360 then
1361 Set_Treat_As_Volatile (Id, True);
1362 end if;
1364 -- Now make the link to the renamed object
1366 Set_Renamed_Object (Id, Nam);
1368 -- Implementation-defined aspect specifications can appear in a renaming
1369 -- declaration, but not language-defined ones. The call to procedure
1370 -- Analyze_Aspect_Specifications will take care of this error check.
1372 if Has_Aspects (N) then
1373 Analyze_Aspect_Specifications (N, Id);
1374 end if;
1376 -- Deal with dimensions
1378 Analyze_Dimension (N);
1379 end Analyze_Object_Renaming;
1381 ------------------------------
1382 -- Analyze_Package_Renaming --
1383 ------------------------------
1385 procedure Analyze_Package_Renaming (N : Node_Id) is
1386 New_P : constant Entity_Id := Defining_Entity (N);
1387 Old_P : Entity_Id;
1388 Spec : Node_Id;
1390 begin
1391 if Name (N) = Error then
1392 return;
1393 end if;
1395 -- Check for Text_IO special unit (we may be renaming a Text_IO child)
1397 Check_Text_IO_Special_Unit (Name (N));
1399 if Current_Scope /= Standard_Standard then
1400 Set_Is_Pure (New_P, Is_Pure (Current_Scope));
1401 end if;
1403 Enter_Name (New_P);
1404 Analyze (Name (N));
1406 if Is_Entity_Name (Name (N)) then
1407 Old_P := Entity (Name (N));
1408 else
1409 Old_P := Any_Id;
1410 end if;
1412 if Etype (Old_P) = Any_Type then
1413 Error_Msg_N ("expect package name in renaming", Name (N));
1415 elsif Ekind (Old_P) /= E_Package
1416 and then not (Ekind (Old_P) = E_Generic_Package
1417 and then In_Open_Scopes (Old_P))
1418 then
1419 if Ekind (Old_P) = E_Generic_Package then
1420 Error_Msg_N
1421 ("generic package cannot be renamed as a package", Name (N));
1422 else
1423 Error_Msg_Sloc := Sloc (Old_P);
1424 Error_Msg_NE
1425 ("expect package name in renaming, found& declared#",
1426 Name (N), Old_P);
1427 end if;
1429 -- Set basic attributes to minimize cascaded errors
1431 Set_Ekind (New_P, E_Package);
1432 Set_Etype (New_P, Standard_Void_Type);
1434 -- Here for OK package renaming
1436 else
1437 -- Entities in the old package are accessible through the renaming
1438 -- entity. The simplest implementation is to have both packages share
1439 -- the entity list.
1441 Set_Ekind (New_P, E_Package);
1442 Set_Etype (New_P, Standard_Void_Type);
1444 if Present (Renamed_Object (Old_P)) then
1445 Set_Renamed_Object (New_P, Renamed_Object (Old_P));
1446 else
1447 Set_Renamed_Object (New_P, Old_P);
1448 end if;
1450 -- The package renaming declaration may become Ghost if it renames a
1451 -- Ghost entity.
1453 Mark_Ghost_Renaming (N, Old_P);
1455 Set_Has_Completion (New_P);
1456 Set_First_Entity (New_P, First_Entity (Old_P));
1457 Set_Last_Entity (New_P, Last_Entity (Old_P));
1458 Set_First_Private_Entity (New_P, First_Private_Entity (Old_P));
1459 Check_Library_Unit_Renaming (N, Old_P);
1460 Generate_Reference (Old_P, Name (N));
1462 -- If the renaming is in the visible part of a package, then we set
1463 -- Renamed_In_Spec for the renamed package, to prevent giving
1464 -- warnings about no entities referenced. Such a warning would be
1465 -- overenthusiastic, since clients can see entities in the renamed
1466 -- package via the visible package renaming.
1468 declare
1469 Ent : constant Entity_Id := Cunit_Entity (Current_Sem_Unit);
1470 begin
1471 if Ekind (Ent) = E_Package
1472 and then not In_Private_Part (Ent)
1473 and then In_Extended_Main_Source_Unit (N)
1474 and then Ekind (Old_P) = E_Package
1475 then
1476 Set_Renamed_In_Spec (Old_P);
1477 end if;
1478 end;
1480 -- If this is the renaming declaration of a package instantiation
1481 -- within itself, it is the declaration that ends the list of actuals
1482 -- for the instantiation. At this point, the subtypes that rename
1483 -- the actuals are flagged as generic, to avoid spurious ambiguities
1484 -- if the actuals for two distinct formals happen to coincide. If
1485 -- the actual is a private type, the subtype has a private completion
1486 -- that is flagged in the same fashion.
1488 -- Resolution is identical to what is was in the original generic.
1489 -- On exit from the generic instance, these are turned into regular
1490 -- subtypes again, so they are compatible with types in their class.
1492 if not Is_Generic_Instance (Old_P) then
1493 return;
1494 else
1495 Spec := Specification (Unit_Declaration_Node (Old_P));
1496 end if;
1498 if Nkind (Spec) = N_Package_Specification
1499 and then Present (Generic_Parent (Spec))
1500 and then Old_P = Current_Scope
1501 and then Chars (New_P) = Chars (Generic_Parent (Spec))
1502 then
1503 declare
1504 E : Entity_Id;
1506 begin
1507 E := First_Entity (Old_P);
1508 while Present (E) and then E /= New_P loop
1509 if Is_Type (E)
1510 and then Nkind (Parent (E)) = N_Subtype_Declaration
1511 then
1512 Set_Is_Generic_Actual_Type (E);
1514 if Is_Private_Type (E)
1515 and then Present (Full_View (E))
1516 then
1517 Set_Is_Generic_Actual_Type (Full_View (E));
1518 end if;
1519 end if;
1521 Next_Entity (E);
1522 end loop;
1523 end;
1524 end if;
1525 end if;
1527 -- Implementation-defined aspect specifications can appear in a renaming
1528 -- declaration, but not language-defined ones. The call to procedure
1529 -- Analyze_Aspect_Specifications will take care of this error check.
1531 if Has_Aspects (N) then
1532 Analyze_Aspect_Specifications (N, New_P);
1533 end if;
1534 end Analyze_Package_Renaming;
1536 -------------------------------
1537 -- Analyze_Renamed_Character --
1538 -------------------------------
1540 procedure Analyze_Renamed_Character
1541 (N : Node_Id;
1542 New_S : Entity_Id;
1543 Is_Body : Boolean)
1545 C : constant Node_Id := Name (N);
1547 begin
1548 if Ekind (New_S) = E_Function then
1549 Resolve (C, Etype (New_S));
1551 if Is_Body then
1552 Check_Frozen_Renaming (N, New_S);
1553 end if;
1555 else
1556 Error_Msg_N ("character literal can only be renamed as function", N);
1557 end if;
1558 end Analyze_Renamed_Character;
1560 ---------------------------------
1561 -- Analyze_Renamed_Dereference --
1562 ---------------------------------
1564 procedure Analyze_Renamed_Dereference
1565 (N : Node_Id;
1566 New_S : Entity_Id;
1567 Is_Body : Boolean)
1569 Nam : constant Node_Id := Name (N);
1570 P : constant Node_Id := Prefix (Nam);
1571 Typ : Entity_Id;
1572 Ind : Interp_Index;
1573 It : Interp;
1575 begin
1576 if not Is_Overloaded (P) then
1577 if Ekind (Etype (Nam)) /= E_Subprogram_Type
1578 or else not Type_Conformant (Etype (Nam), New_S)
1579 then
1580 Error_Msg_N ("designated type does not match specification", P);
1581 else
1582 Resolve (P);
1583 end if;
1585 return;
1587 else
1588 Typ := Any_Type;
1589 Get_First_Interp (Nam, Ind, It);
1591 while Present (It.Nam) loop
1593 if Ekind (It.Nam) = E_Subprogram_Type
1594 and then Type_Conformant (It.Nam, New_S)
1595 then
1596 if Typ /= Any_Id then
1597 Error_Msg_N ("ambiguous renaming", P);
1598 return;
1599 else
1600 Typ := It.Nam;
1601 end if;
1602 end if;
1604 Get_Next_Interp (Ind, It);
1605 end loop;
1607 if Typ = Any_Type then
1608 Error_Msg_N ("designated type does not match specification", P);
1609 else
1610 Resolve (N, Typ);
1612 if Is_Body then
1613 Check_Frozen_Renaming (N, New_S);
1614 end if;
1615 end if;
1616 end if;
1617 end Analyze_Renamed_Dereference;
1619 ---------------------------
1620 -- Analyze_Renamed_Entry --
1621 ---------------------------
1623 procedure Analyze_Renamed_Entry
1624 (N : Node_Id;
1625 New_S : Entity_Id;
1626 Is_Body : Boolean)
1628 Nam : constant Node_Id := Name (N);
1629 Sel : constant Node_Id := Selector_Name (Nam);
1630 Is_Actual : constant Boolean := Present (Corresponding_Formal_Spec (N));
1631 Old_S : Entity_Id;
1633 begin
1634 if Entity (Sel) = Any_Id then
1636 -- Selector is undefined on prefix. Error emitted already
1638 Set_Has_Completion (New_S);
1639 return;
1640 end if;
1642 -- Otherwise find renamed entity and build body of New_S as a call to it
1644 Old_S := Find_Renamed_Entity (N, Selector_Name (Nam), New_S);
1646 if Old_S = Any_Id then
1647 Error_Msg_N (" no subprogram or entry matches specification", N);
1648 else
1649 if Is_Body then
1650 Check_Subtype_Conformant (New_S, Old_S, N);
1651 Generate_Reference (New_S, Defining_Entity (N), 'b');
1652 Style.Check_Identifier (Defining_Entity (N), New_S);
1654 else
1655 -- Only mode conformance required for a renaming_as_declaration
1657 Check_Mode_Conformant (New_S, Old_S, N);
1658 end if;
1660 Inherit_Renamed_Profile (New_S, Old_S);
1662 -- The prefix can be an arbitrary expression that yields a task or
1663 -- protected object, so it must be resolved.
1665 Resolve (Prefix (Nam), Scope (Old_S));
1666 end if;
1668 Set_Convention (New_S, Convention (Old_S));
1669 Set_Has_Completion (New_S, Inside_A_Generic);
1671 -- AI05-0225: If the renamed entity is a procedure or entry of a
1672 -- protected object, the target object must be a variable.
1674 if Ekind (Scope (Old_S)) in Protected_Kind
1675 and then Ekind (New_S) = E_Procedure
1676 and then not Is_Variable (Prefix (Nam))
1677 then
1678 if Is_Actual then
1679 Error_Msg_N
1680 ("target object of protected operation used as actual for "
1681 & "formal procedure must be a variable", Nam);
1682 else
1683 Error_Msg_N
1684 ("target object of protected operation renamed as procedure, "
1685 & "must be a variable", Nam);
1686 end if;
1687 end if;
1689 if Is_Body then
1690 Check_Frozen_Renaming (N, New_S);
1691 end if;
1692 end Analyze_Renamed_Entry;
1694 -----------------------------------
1695 -- Analyze_Renamed_Family_Member --
1696 -----------------------------------
1698 procedure Analyze_Renamed_Family_Member
1699 (N : Node_Id;
1700 New_S : Entity_Id;
1701 Is_Body : Boolean)
1703 Nam : constant Node_Id := Name (N);
1704 P : constant Node_Id := Prefix (Nam);
1705 Old_S : Entity_Id;
1707 begin
1708 if (Is_Entity_Name (P) and then Ekind (Entity (P)) = E_Entry_Family)
1709 or else (Nkind (P) = N_Selected_Component
1710 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family)
1711 then
1712 if Is_Entity_Name (P) then
1713 Old_S := Entity (P);
1714 else
1715 Old_S := Entity (Selector_Name (P));
1716 end if;
1718 if not Entity_Matches_Spec (Old_S, New_S) then
1719 Error_Msg_N ("entry family does not match specification", N);
1721 elsif Is_Body then
1722 Check_Subtype_Conformant (New_S, Old_S, N);
1723 Generate_Reference (New_S, Defining_Entity (N), 'b');
1724 Style.Check_Identifier (Defining_Entity (N), New_S);
1725 end if;
1727 else
1728 Error_Msg_N ("no entry family matches specification", N);
1729 end if;
1731 Set_Has_Completion (New_S, Inside_A_Generic);
1733 if Is_Body then
1734 Check_Frozen_Renaming (N, New_S);
1735 end if;
1736 end Analyze_Renamed_Family_Member;
1738 -----------------------------------------
1739 -- Analyze_Renamed_Primitive_Operation --
1740 -----------------------------------------
1742 procedure Analyze_Renamed_Primitive_Operation
1743 (N : Node_Id;
1744 New_S : Entity_Id;
1745 Is_Body : Boolean)
1747 Old_S : Entity_Id;
1749 function Conforms
1750 (Subp : Entity_Id;
1751 Ctyp : Conformance_Type) return Boolean;
1752 -- Verify that the signatures of the renamed entity and the new entity
1753 -- match. The first formal of the renamed entity is skipped because it
1754 -- is the target object in any subsequent call.
1756 --------------
1757 -- Conforms --
1758 --------------
1760 function Conforms
1761 (Subp : Entity_Id;
1762 Ctyp : Conformance_Type) return Boolean
1764 Old_F : Entity_Id;
1765 New_F : Entity_Id;
1767 begin
1768 if Ekind (Subp) /= Ekind (New_S) then
1769 return False;
1770 end if;
1772 Old_F := Next_Formal (First_Formal (Subp));
1773 New_F := First_Formal (New_S);
1774 while Present (Old_F) and then Present (New_F) loop
1775 if not Conforming_Types (Etype (Old_F), Etype (New_F), Ctyp) then
1776 return False;
1777 end if;
1779 if Ctyp >= Mode_Conformant
1780 and then Ekind (Old_F) /= Ekind (New_F)
1781 then
1782 return False;
1783 end if;
1785 Next_Formal (New_F);
1786 Next_Formal (Old_F);
1787 end loop;
1789 return True;
1790 end Conforms;
1792 -- Start of processing for Analyze_Renamed_Primitive_Operation
1794 begin
1795 if not Is_Overloaded (Selector_Name (Name (N))) then
1796 Old_S := Entity (Selector_Name (Name (N)));
1798 if not Conforms (Old_S, Type_Conformant) then
1799 Old_S := Any_Id;
1800 end if;
1802 else
1803 -- Find the operation that matches the given signature
1805 declare
1806 It : Interp;
1807 Ind : Interp_Index;
1809 begin
1810 Old_S := Any_Id;
1811 Get_First_Interp (Selector_Name (Name (N)), Ind, It);
1813 while Present (It.Nam) loop
1814 if Conforms (It.Nam, Type_Conformant) then
1815 Old_S := It.Nam;
1816 end if;
1818 Get_Next_Interp (Ind, It);
1819 end loop;
1820 end;
1821 end if;
1823 if Old_S = Any_Id then
1824 Error_Msg_N (" no subprogram or entry matches specification", N);
1826 else
1827 if Is_Body then
1828 if not Conforms (Old_S, Subtype_Conformant) then
1829 Error_Msg_N ("subtype conformance error in renaming", N);
1830 end if;
1832 Generate_Reference (New_S, Defining_Entity (N), 'b');
1833 Style.Check_Identifier (Defining_Entity (N), New_S);
1835 else
1836 -- Only mode conformance required for a renaming_as_declaration
1838 if not Conforms (Old_S, Mode_Conformant) then
1839 Error_Msg_N ("mode conformance error in renaming", N);
1840 end if;
1842 -- Enforce the rule given in (RM 6.3.1 (10.1/2)): a prefixed
1843 -- view of a subprogram is intrinsic, because the compiler has
1844 -- to generate a wrapper for any call to it. If the name in a
1845 -- subprogram renaming is a prefixed view, the entity is thus
1846 -- intrinsic, and 'Access cannot be applied to it.
1848 Set_Convention (New_S, Convention_Intrinsic);
1849 end if;
1851 -- Inherit_Renamed_Profile (New_S, Old_S);
1853 -- The prefix can be an arbitrary expression that yields an
1854 -- object, so it must be resolved.
1856 Resolve (Prefix (Name (N)));
1857 end if;
1858 end Analyze_Renamed_Primitive_Operation;
1860 ---------------------------------
1861 -- Analyze_Subprogram_Renaming --
1862 ---------------------------------
1864 procedure Analyze_Subprogram_Renaming (N : Node_Id) is
1865 Formal_Spec : constant Entity_Id := Corresponding_Formal_Spec (N);
1866 Is_Actual : constant Boolean := Present (Formal_Spec);
1867 Nam : constant Node_Id := Name (N);
1868 Save_AV : constant Ada_Version_Type := Ada_Version;
1869 Save_AVP : constant Node_Id := Ada_Version_Pragma;
1870 Save_AV_Exp : constant Ada_Version_Type := Ada_Version_Explicit;
1871 Spec : constant Node_Id := Specification (N);
1873 Old_S : Entity_Id := Empty;
1874 Rename_Spec : Entity_Id;
1876 procedure Build_Class_Wide_Wrapper
1877 (Ren_Id : out Entity_Id;
1878 Wrap_Id : out Entity_Id);
1879 -- Ada 2012 (AI05-0071): A generic/instance scenario involving a formal
1880 -- type with unknown discriminants and a generic primitive operation of
1881 -- the said type with a box require special processing when the actual
1882 -- is a class-wide type:
1884 -- generic
1885 -- type Formal_Typ (<>) is private;
1886 -- with procedure Prim_Op (Param : Formal_Typ) is <>;
1887 -- package Gen is ...
1889 -- package Inst is new Gen (Actual_Typ'Class);
1891 -- In this case the general renaming mechanism used in the prologue of
1892 -- an instance no longer applies:
1894 -- procedure Prim_Op (Param : Formal_Typ) renames Prim_Op;
1896 -- The above is replaced the following wrapper/renaming combination:
1898 -- procedure Wrapper (Param : Formal_Typ) is -- wrapper
1899 -- begin
1900 -- Prim_Op (Param); -- primitive
1901 -- end Wrapper;
1903 -- procedure Prim_Op (Param : Formal_Typ) renames Wrapper;
1905 -- This transformation applies only if there is no explicit visible
1906 -- class-wide operation at the point of the instantiation. Ren_Id is
1907 -- the entity of the renaming declaration. When the transformation
1908 -- applies, Wrap_Id is the entity of the generated class-wide wrapper
1909 -- (or Any_Id). Otherwise, Wrap_Id is the entity of the class-wide
1910 -- operation.
1912 procedure Check_Null_Exclusion
1913 (Ren : Entity_Id;
1914 Sub : Entity_Id);
1915 -- Ada 2005 (AI-423): Given renaming Ren of subprogram Sub, check the
1916 -- following AI rules:
1918 -- If Ren is a renaming of a formal subprogram and one of its
1919 -- parameters has a null exclusion, then the corresponding formal
1920 -- in Sub must also have one. Otherwise the subtype of the Sub's
1921 -- formal parameter must exclude null.
1923 -- If Ren is a renaming of a formal function and its return
1924 -- profile has a null exclusion, then Sub's return profile must
1925 -- have one. Otherwise the subtype of Sub's return profile must
1926 -- exclude null.
1928 procedure Check_SPARK_Primitive_Operation (Subp_Id : Entity_Id);
1929 -- Ensure that a SPARK renaming denoted by its entity Subp_Id does not
1930 -- declare a primitive operation of a tagged type (SPARK RM 6.1.1(3)).
1932 procedure Freeze_Actual_Profile;
1933 -- In Ada 2012, enforce the freezing rule concerning formal incomplete
1934 -- types: a callable entity freezes its profile, unless it has an
1935 -- incomplete untagged formal (RM 13.14(10.2/3)).
1937 function Has_Class_Wide_Actual return Boolean;
1938 -- Ada 2012 (AI05-071, AI05-0131): True if N is the renaming for a
1939 -- defaulted formal subprogram where the actual for the controlling
1940 -- formal type is class-wide.
1942 function Original_Subprogram (Subp : Entity_Id) return Entity_Id;
1943 -- Find renamed entity when the declaration is a renaming_as_body and
1944 -- the renamed entity may itself be a renaming_as_body. Used to enforce
1945 -- rule that a renaming_as_body is illegal if the declaration occurs
1946 -- before the subprogram it completes is frozen, and renaming indirectly
1947 -- renames the subprogram itself.(Defect Report 8652/0027).
1949 ------------------------------
1950 -- Build_Class_Wide_Wrapper --
1951 ------------------------------
1953 procedure Build_Class_Wide_Wrapper
1954 (Ren_Id : out Entity_Id;
1955 Wrap_Id : out Entity_Id)
1957 Loc : constant Source_Ptr := Sloc (N);
1959 function Build_Call
1960 (Subp_Id : Entity_Id;
1961 Params : List_Id) return Node_Id;
1962 -- Create a dispatching call to invoke routine Subp_Id with actuals
1963 -- built from the parameter specifications of list Params.
1965 function Build_Expr_Fun_Call
1966 (Subp_Id : Entity_Id;
1967 Params : List_Id) return Node_Id;
1968 -- Create a dispatching call to invoke function Subp_Id with actuals
1969 -- built from the parameter specifications of list Params. Return
1970 -- directly the call, so that it can be used inside an expression
1971 -- function. This is a specificity of the GNATprove mode.
1973 function Build_Spec (Subp_Id : Entity_Id) return Node_Id;
1974 -- Create a subprogram specification based on the subprogram profile
1975 -- of Subp_Id.
1977 function Find_Primitive (Typ : Entity_Id) return Entity_Id;
1978 -- Find a primitive subprogram of type Typ which matches the profile
1979 -- of the renaming declaration.
1981 procedure Interpretation_Error (Subp_Id : Entity_Id);
1982 -- Emit a continuation error message suggesting subprogram Subp_Id as
1983 -- a possible interpretation.
1985 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean;
1986 -- Determine whether subprogram Subp_Id denotes the intrinsic "="
1987 -- operator.
1989 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean;
1990 -- Determine whether subprogram Subp_Id is a suitable candidate for
1991 -- the role of a wrapped subprogram.
1993 ----------------
1994 -- Build_Call --
1995 ----------------
1997 function Build_Call
1998 (Subp_Id : Entity_Id;
1999 Params : List_Id) return Node_Id
2001 Actuals : constant List_Id := New_List;
2002 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
2003 Formal : Node_Id;
2005 begin
2006 -- Build the actual parameters of the call
2008 Formal := First (Params);
2009 while Present (Formal) loop
2010 Append_To (Actuals,
2011 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
2012 Next (Formal);
2013 end loop;
2015 -- Generate:
2016 -- return Subp_Id (Actuals);
2018 if Ekind_In (Subp_Id, E_Function, E_Operator) then
2019 return
2020 Make_Simple_Return_Statement (Loc,
2021 Expression =>
2022 Make_Function_Call (Loc,
2023 Name => Call_Ref,
2024 Parameter_Associations => Actuals));
2026 -- Generate:
2027 -- Subp_Id (Actuals);
2029 else
2030 return
2031 Make_Procedure_Call_Statement (Loc,
2032 Name => Call_Ref,
2033 Parameter_Associations => Actuals);
2034 end if;
2035 end Build_Call;
2037 -------------------------
2038 -- Build_Expr_Fun_Call --
2039 -------------------------
2041 function Build_Expr_Fun_Call
2042 (Subp_Id : Entity_Id;
2043 Params : List_Id) return Node_Id
2045 Actuals : constant List_Id := New_List;
2046 Call_Ref : constant Node_Id := New_Occurrence_Of (Subp_Id, Loc);
2047 Formal : Node_Id;
2049 begin
2050 pragma Assert (Ekind_In (Subp_Id, E_Function, E_Operator));
2052 -- Build the actual parameters of the call
2054 Formal := First (Params);
2055 while Present (Formal) loop
2056 Append_To (Actuals,
2057 Make_Identifier (Loc, Chars (Defining_Identifier (Formal))));
2058 Next (Formal);
2059 end loop;
2061 -- Generate:
2062 -- Subp_Id (Actuals);
2064 return
2065 Make_Function_Call (Loc,
2066 Name => Call_Ref,
2067 Parameter_Associations => Actuals);
2068 end Build_Expr_Fun_Call;
2070 ----------------
2071 -- Build_Spec --
2072 ----------------
2074 function Build_Spec (Subp_Id : Entity_Id) return Node_Id is
2075 Params : constant List_Id := Copy_Parameter_List (Subp_Id);
2076 Spec_Id : constant Entity_Id :=
2077 Make_Defining_Identifier (Loc,
2078 Chars => New_External_Name (Chars (Subp_Id), 'R'));
2080 begin
2081 if Ekind (Formal_Spec) = E_Procedure then
2082 return
2083 Make_Procedure_Specification (Loc,
2084 Defining_Unit_Name => Spec_Id,
2085 Parameter_Specifications => Params);
2086 else
2087 return
2088 Make_Function_Specification (Loc,
2089 Defining_Unit_Name => Spec_Id,
2090 Parameter_Specifications => Params,
2091 Result_Definition =>
2092 New_Copy_Tree (Result_Definition (Spec)));
2093 end if;
2094 end Build_Spec;
2096 --------------------
2097 -- Find_Primitive --
2098 --------------------
2100 function Find_Primitive (Typ : Entity_Id) return Entity_Id is
2101 procedure Replace_Parameter_Types (Spec : Node_Id);
2102 -- Given a specification Spec, replace all class-wide parameter
2103 -- types with reference to type Typ.
2105 -----------------------------
2106 -- Replace_Parameter_Types --
2107 -----------------------------
2109 procedure Replace_Parameter_Types (Spec : Node_Id) is
2110 Formal : Node_Id;
2111 Formal_Id : Entity_Id;
2112 Formal_Typ : Node_Id;
2114 begin
2115 Formal := First (Parameter_Specifications (Spec));
2116 while Present (Formal) loop
2117 Formal_Id := Defining_Identifier (Formal);
2118 Formal_Typ := Parameter_Type (Formal);
2120 -- Create a new entity for each class-wide formal to prevent
2121 -- aliasing with the original renaming. Replace the type of
2122 -- such a parameter with the candidate type.
2124 if Nkind (Formal_Typ) = N_Identifier
2125 and then Is_Class_Wide_Type (Etype (Formal_Typ))
2126 then
2127 Set_Defining_Identifier (Formal,
2128 Make_Defining_Identifier (Loc, Chars (Formal_Id)));
2130 Set_Parameter_Type (Formal, New_Occurrence_Of (Typ, Loc));
2131 end if;
2133 Next (Formal);
2134 end loop;
2135 end Replace_Parameter_Types;
2137 -- Local variables
2139 Alt_Ren : constant Node_Id := New_Copy_Tree (N);
2140 Alt_Nam : constant Node_Id := Name (Alt_Ren);
2141 Alt_Spec : constant Node_Id := Specification (Alt_Ren);
2142 Subp_Id : Entity_Id;
2144 -- Start of processing for Find_Primitive
2146 begin
2147 -- Each attempt to find a suitable primitive of a particular type
2148 -- operates on its own copy of the original renaming. As a result
2149 -- the original renaming is kept decoration and side-effect free.
2151 -- Inherit the overloaded status of the renamed subprogram name
2153 if Is_Overloaded (Nam) then
2154 Set_Is_Overloaded (Alt_Nam);
2155 Save_Interps (Nam, Alt_Nam);
2156 end if;
2158 -- The copied renaming is hidden from visibility to prevent the
2159 -- pollution of the enclosing context.
2161 Set_Defining_Unit_Name (Alt_Spec, Make_Temporary (Loc, 'R'));
2163 -- The types of all class-wide parameters must be changed to the
2164 -- candidate type.
2166 Replace_Parameter_Types (Alt_Spec);
2168 -- Try to find a suitable primitive which matches the altered
2169 -- profile of the renaming specification.
2171 Subp_Id :=
2172 Find_Renamed_Entity
2173 (N => Alt_Ren,
2174 Nam => Name (Alt_Ren),
2175 New_S => Analyze_Subprogram_Specification (Alt_Spec),
2176 Is_Actual => Is_Actual);
2178 -- Do not return Any_Id if the resolion of the altered profile
2179 -- failed as this complicates further checks on the caller side,
2180 -- return Empty instead.
2182 if Subp_Id = Any_Id then
2183 return Empty;
2184 else
2185 return Subp_Id;
2186 end if;
2187 end Find_Primitive;
2189 --------------------------
2190 -- Interpretation_Error --
2191 --------------------------
2193 procedure Interpretation_Error (Subp_Id : Entity_Id) is
2194 begin
2195 Error_Msg_Sloc := Sloc (Subp_Id);
2197 if Is_Internal (Subp_Id) then
2198 Error_Msg_NE
2199 ("\\possible interpretation: predefined & #",
2200 Spec, Formal_Spec);
2201 else
2202 Error_Msg_NE
2203 ("\\possible interpretation: & defined #", Spec, Formal_Spec);
2204 end if;
2205 end Interpretation_Error;
2207 ---------------------------
2208 -- Is_Intrinsic_Equality --
2209 ---------------------------
2211 function Is_Intrinsic_Equality (Subp_Id : Entity_Id) return Boolean is
2212 begin
2213 return
2214 Ekind (Subp_Id) = E_Operator
2215 and then Chars (Subp_Id) = Name_Op_Eq
2216 and then Is_Intrinsic_Subprogram (Subp_Id);
2217 end Is_Intrinsic_Equality;
2219 ---------------------------
2220 -- Is_Suitable_Candidate --
2221 ---------------------------
2223 function Is_Suitable_Candidate (Subp_Id : Entity_Id) return Boolean is
2224 begin
2225 if No (Subp_Id) then
2226 return False;
2228 -- An intrinsic subprogram is never a good candidate. This is an
2229 -- indication of a missing primitive, either defined directly or
2230 -- inherited from a parent tagged type.
2232 elsif Is_Intrinsic_Subprogram (Subp_Id) then
2233 return False;
2235 else
2236 return True;
2237 end if;
2238 end Is_Suitable_Candidate;
2240 -- Local variables
2242 Actual_Typ : Entity_Id := Empty;
2243 -- The actual class-wide type for Formal_Typ
2245 CW_Prim_OK : Boolean;
2246 CW_Prim_Op : Entity_Id;
2247 -- The class-wide subprogram (if available) which corresponds to the
2248 -- renamed generic formal subprogram.
2250 Formal_Typ : Entity_Id := Empty;
2251 -- The generic formal type with unknown discriminants
2253 Root_Prim_OK : Boolean;
2254 Root_Prim_Op : Entity_Id;
2255 -- The root type primitive (if available) which corresponds to the
2256 -- renamed generic formal subprogram.
2258 Root_Typ : Entity_Id := Empty;
2259 -- The root type of Actual_Typ
2261 Body_Decl : Node_Id;
2262 Formal : Node_Id;
2263 Prim_Op : Entity_Id;
2264 Spec_Decl : Node_Id;
2265 New_Spec : Node_Id;
2267 -- Start of processing for Build_Class_Wide_Wrapper
2269 begin
2270 -- Analyze the specification of the renaming in case the generation
2271 -- of the class-wide wrapper fails.
2273 Ren_Id := Analyze_Subprogram_Specification (Spec);
2274 Wrap_Id := Any_Id;
2276 -- Do not attempt to build a wrapper if the renaming is in error
2278 if Error_Posted (Nam) then
2279 return;
2280 end if;
2282 -- Analyze the renamed name, but do not resolve it. The resolution is
2283 -- completed once a suitable subprogram is found.
2285 Analyze (Nam);
2287 -- When the renamed name denotes the intrinsic operator equals, the
2288 -- name must be treated as overloaded. This allows for a potential
2289 -- match against the root type's predefined equality function.
2291 if Is_Intrinsic_Equality (Entity (Nam)) then
2292 Set_Is_Overloaded (Nam);
2293 Collect_Interps (Nam);
2294 end if;
2296 -- Step 1: Find the generic formal type with unknown discriminants
2297 -- and its corresponding class-wide actual type from the renamed
2298 -- generic formal subprogram.
2300 Formal := First_Formal (Formal_Spec);
2301 while Present (Formal) loop
2302 if Has_Unknown_Discriminants (Etype (Formal))
2303 and then not Is_Class_Wide_Type (Etype (Formal))
2304 and then Is_Class_Wide_Type (Get_Instance_Of (Etype (Formal)))
2305 then
2306 Formal_Typ := Etype (Formal);
2307 Actual_Typ := Get_Instance_Of (Formal_Typ);
2308 Root_Typ := Etype (Actual_Typ);
2309 exit;
2310 end if;
2312 Next_Formal (Formal);
2313 end loop;
2315 -- The specification of the generic formal subprogram should always
2316 -- contain a formal type with unknown discriminants whose actual is
2317 -- a class-wide type, otherwise this indicates a failure in routine
2318 -- Has_Class_Wide_Actual.
2320 pragma Assert (Present (Formal_Typ));
2322 -- Step 2: Find the proper class-wide subprogram or primitive which
2323 -- corresponds to the renamed generic formal subprogram.
2325 CW_Prim_Op := Find_Primitive (Actual_Typ);
2326 CW_Prim_OK := Is_Suitable_Candidate (CW_Prim_Op);
2327 Root_Prim_Op := Find_Primitive (Root_Typ);
2328 Root_Prim_OK := Is_Suitable_Candidate (Root_Prim_Op);
2330 -- The class-wide actual type has two subprograms which correspond to
2331 -- the renamed generic formal subprogram:
2333 -- with procedure Prim_Op (Param : Formal_Typ);
2335 -- procedure Prim_Op (Param : Actual_Typ); -- may be inherited
2336 -- procedure Prim_Op (Param : Actual_Typ'Class);
2338 -- Even though the declaration of the two subprograms is legal, a
2339 -- call to either one is ambiguous and therefore illegal.
2341 if CW_Prim_OK and Root_Prim_OK then
2343 -- A user-defined primitive has precedence over a predefined one
2345 if Is_Internal (CW_Prim_Op)
2346 and then not Is_Internal (Root_Prim_Op)
2347 then
2348 Prim_Op := Root_Prim_Op;
2350 elsif Is_Internal (Root_Prim_Op)
2351 and then not Is_Internal (CW_Prim_Op)
2352 then
2353 Prim_Op := CW_Prim_Op;
2355 elsif CW_Prim_Op = Root_Prim_Op then
2356 Prim_Op := Root_Prim_Op;
2358 -- Otherwise both candidate subprograms are user-defined and
2359 -- ambiguous.
2361 else
2362 Error_Msg_NE
2363 ("ambiguous actual for generic subprogram &",
2364 Spec, Formal_Spec);
2365 Interpretation_Error (Root_Prim_Op);
2366 Interpretation_Error (CW_Prim_Op);
2367 return;
2368 end if;
2370 elsif CW_Prim_OK and not Root_Prim_OK then
2371 Prim_Op := CW_Prim_Op;
2373 elsif not CW_Prim_OK and Root_Prim_OK then
2374 Prim_Op := Root_Prim_Op;
2376 -- An intrinsic equality may act as a suitable candidate in the case
2377 -- of a null type extension where the parent's equality is hidden. A
2378 -- call to an intrinsic equality is expanded as dispatching.
2380 elsif Present (Root_Prim_Op)
2381 and then Is_Intrinsic_Equality (Root_Prim_Op)
2382 then
2383 Prim_Op := Root_Prim_Op;
2385 -- Otherwise there are no candidate subprograms. Let the caller
2386 -- diagnose the error.
2388 else
2389 return;
2390 end if;
2392 -- At this point resolution has taken place and the name is no longer
2393 -- overloaded. Mark the primitive as referenced.
2395 Set_Is_Overloaded (Name (N), False);
2396 Set_Referenced (Prim_Op);
2398 -- Do not generate a wrapper when the only candidate is a class-wide
2399 -- subprogram. Instead modify the renaming to directly map the actual
2400 -- to the generic formal.
2402 if CW_Prim_OK and then Prim_Op = CW_Prim_Op then
2403 Wrap_Id := Prim_Op;
2404 Rewrite (Nam, New_Occurrence_Of (Prim_Op, Loc));
2405 return;
2406 end if;
2408 -- Step 3: Create the declaration and the body of the wrapper, insert
2409 -- all the pieces into the tree.
2411 -- In GNATprove mode, create a function wrapper in the form of an
2412 -- expression function, so that an implicit postcondition relating
2413 -- the result of calling the wrapper function and the result of the
2414 -- dispatching call to the wrapped function is known during proof.
2416 if GNATprove_Mode
2417 and then Ekind_In (Ren_Id, E_Function, E_Operator)
2418 then
2419 New_Spec := Build_Spec (Ren_Id);
2420 Body_Decl :=
2421 Make_Expression_Function (Loc,
2422 Specification => New_Spec,
2423 Expression =>
2424 Build_Expr_Fun_Call
2425 (Subp_Id => Prim_Op,
2426 Params => Parameter_Specifications (New_Spec)));
2428 Wrap_Id := Defining_Entity (Body_Decl);
2430 -- Otherwise, create separate spec and body for the subprogram
2432 else
2433 Spec_Decl :=
2434 Make_Subprogram_Declaration (Loc,
2435 Specification => Build_Spec (Ren_Id));
2436 Insert_Before_And_Analyze (N, Spec_Decl);
2438 Wrap_Id := Defining_Entity (Spec_Decl);
2440 Body_Decl :=
2441 Make_Subprogram_Body (Loc,
2442 Specification => Build_Spec (Ren_Id),
2443 Declarations => New_List,
2444 Handled_Statement_Sequence =>
2445 Make_Handled_Sequence_Of_Statements (Loc,
2446 Statements => New_List (
2447 Build_Call
2448 (Subp_Id => Prim_Op,
2449 Params =>
2450 Parameter_Specifications
2451 (Specification (Spec_Decl))))));
2453 Set_Corresponding_Body (Spec_Decl, Defining_Entity (Body_Decl));
2454 end if;
2456 -- If the operator carries an Eliminated pragma, indicate that the
2457 -- wrapper is also to be eliminated, to prevent spurious error when
2458 -- using gnatelim on programs that include box-initialization of
2459 -- equality operators.
2461 Set_Is_Eliminated (Wrap_Id, Is_Eliminated (Prim_Op));
2463 -- In GNATprove mode, insert the body in the tree for analysis
2465 if GNATprove_Mode then
2466 Insert_Before_And_Analyze (N, Body_Decl);
2467 end if;
2469 -- The generated body does not freeze and must be analyzed when the
2470 -- class-wide wrapper is frozen. The body is only needed if expansion
2471 -- is enabled.
2473 if Expander_Active then
2474 Append_Freeze_Action (Wrap_Id, Body_Decl);
2475 end if;
2477 -- Step 4: The subprogram renaming aliases the wrapper
2479 Rewrite (Nam, New_Occurrence_Of (Wrap_Id, Loc));
2480 end Build_Class_Wide_Wrapper;
2482 --------------------------
2483 -- Check_Null_Exclusion --
2484 --------------------------
2486 procedure Check_Null_Exclusion
2487 (Ren : Entity_Id;
2488 Sub : Entity_Id)
2490 Ren_Formal : Entity_Id;
2491 Sub_Formal : Entity_Id;
2493 begin
2494 -- Parameter check
2496 Ren_Formal := First_Formal (Ren);
2497 Sub_Formal := First_Formal (Sub);
2498 while Present (Ren_Formal) and then Present (Sub_Formal) loop
2499 if Has_Null_Exclusion (Parent (Ren_Formal))
2500 and then
2501 not (Has_Null_Exclusion (Parent (Sub_Formal))
2502 or else Can_Never_Be_Null (Etype (Sub_Formal)))
2503 then
2504 Error_Msg_NE
2505 ("`NOT NULL` required for parameter &",
2506 Parent (Sub_Formal), Sub_Formal);
2507 end if;
2509 Next_Formal (Ren_Formal);
2510 Next_Formal (Sub_Formal);
2511 end loop;
2513 -- Return profile check
2515 if Nkind (Parent (Ren)) = N_Function_Specification
2516 and then Nkind (Parent (Sub)) = N_Function_Specification
2517 and then Has_Null_Exclusion (Parent (Ren))
2518 and then not (Has_Null_Exclusion (Parent (Sub))
2519 or else Can_Never_Be_Null (Etype (Sub)))
2520 then
2521 Error_Msg_N
2522 ("return must specify `NOT NULL`",
2523 Result_Definition (Parent (Sub)));
2524 end if;
2525 end Check_Null_Exclusion;
2527 -------------------------------------
2528 -- Check_SPARK_Primitive_Operation --
2529 -------------------------------------
2531 procedure Check_SPARK_Primitive_Operation (Subp_Id : Entity_Id) is
2532 Prag : constant Node_Id := SPARK_Pragma (Subp_Id);
2533 Typ : Entity_Id;
2535 begin
2536 -- Nothing to do when the subprogram is not subject to SPARK_Mode On
2537 -- because this check applies to SPARK code only.
2539 if not (Present (Prag)
2540 and then Get_SPARK_Mode_From_Annotation (Prag) = On)
2541 then
2542 return;
2544 -- Nothing to do when the subprogram is not a primitive operation
2546 elsif not Is_Primitive (Subp_Id) then
2547 return;
2548 end if;
2550 Typ := Find_Dispatching_Type (Subp_Id);
2552 -- Nothing to do when the subprogram is a primitive operation of an
2553 -- untagged type.
2555 if No (Typ) then
2556 return;
2557 end if;
2559 -- At this point a renaming declaration introduces a new primitive
2560 -- operation for a tagged type.
2562 Error_Msg_Node_2 := Typ;
2563 Error_Msg_NE
2564 ("subprogram renaming & cannot declare primitive for type & "
2565 & "(SPARK RM 6.1.1(3))", N, Subp_Id);
2566 end Check_SPARK_Primitive_Operation;
2568 ---------------------------
2569 -- Freeze_Actual_Profile --
2570 ---------------------------
2572 procedure Freeze_Actual_Profile is
2573 F : Entity_Id;
2574 Has_Untagged_Inc : Boolean;
2575 Instantiation_Node : constant Node_Id := Parent (N);
2577 begin
2578 if Ada_Version >= Ada_2012 then
2579 F := First_Formal (Formal_Spec);
2580 Has_Untagged_Inc := False;
2581 while Present (F) loop
2582 if Ekind (Etype (F)) = E_Incomplete_Type
2583 and then not Is_Tagged_Type (Etype (F))
2584 then
2585 Has_Untagged_Inc := True;
2586 exit;
2587 end if;
2589 F := Next_Formal (F);
2590 end loop;
2592 if Ekind (Formal_Spec) = E_Function
2593 and then not Is_Tagged_Type (Etype (Formal_Spec))
2594 then
2595 Has_Untagged_Inc := True;
2596 end if;
2598 if not Has_Untagged_Inc then
2599 F := First_Formal (Old_S);
2600 while Present (F) loop
2601 Freeze_Before (Instantiation_Node, Etype (F));
2603 if Is_Incomplete_Or_Private_Type (Etype (F))
2604 and then No (Underlying_Type (Etype (F)))
2605 then
2606 -- Exclude generic types, or types derived from them.
2607 -- They will be frozen in the enclosing instance.
2609 if Is_Generic_Type (Etype (F))
2610 or else Is_Generic_Type (Root_Type (Etype (F)))
2611 then
2612 null;
2614 -- A limited view of a type declared elsewhere needs no
2615 -- freezing actions.
2617 elsif From_Limited_With (Etype (F)) then
2618 null;
2620 else
2621 Error_Msg_NE
2622 ("type& must be frozen before this point",
2623 Instantiation_Node, Etype (F));
2624 end if;
2625 end if;
2627 F := Next_Formal (F);
2628 end loop;
2629 end if;
2630 end if;
2631 end Freeze_Actual_Profile;
2633 ---------------------------
2634 -- Has_Class_Wide_Actual --
2635 ---------------------------
2637 function Has_Class_Wide_Actual return Boolean is
2638 Formal : Entity_Id;
2639 Formal_Typ : Entity_Id;
2641 begin
2642 if Is_Actual then
2643 Formal := First_Formal (Formal_Spec);
2644 while Present (Formal) loop
2645 Formal_Typ := Etype (Formal);
2647 if Has_Unknown_Discriminants (Formal_Typ)
2648 and then not Is_Class_Wide_Type (Formal_Typ)
2649 and then Is_Class_Wide_Type (Get_Instance_Of (Formal_Typ))
2650 then
2651 return True;
2652 end if;
2654 Next_Formal (Formal);
2655 end loop;
2656 end if;
2658 return False;
2659 end Has_Class_Wide_Actual;
2661 -------------------------
2662 -- Original_Subprogram --
2663 -------------------------
2665 function Original_Subprogram (Subp : Entity_Id) return Entity_Id is
2666 Orig_Decl : Node_Id;
2667 Orig_Subp : Entity_Id;
2669 begin
2670 -- First case: renamed entity is itself a renaming
2672 if Present (Alias (Subp)) then
2673 return Alias (Subp);
2675 elsif Nkind (Unit_Declaration_Node (Subp)) = N_Subprogram_Declaration
2676 and then Present (Corresponding_Body (Unit_Declaration_Node (Subp)))
2677 then
2678 -- Check if renamed entity is a renaming_as_body
2680 Orig_Decl :=
2681 Unit_Declaration_Node
2682 (Corresponding_Body (Unit_Declaration_Node (Subp)));
2684 if Nkind (Orig_Decl) = N_Subprogram_Renaming_Declaration then
2685 Orig_Subp := Entity (Name (Orig_Decl));
2687 if Orig_Subp = Rename_Spec then
2689 -- Circularity detected
2691 return Orig_Subp;
2693 else
2694 return (Original_Subprogram (Orig_Subp));
2695 end if;
2696 else
2697 return Subp;
2698 end if;
2699 else
2700 return Subp;
2701 end if;
2702 end Original_Subprogram;
2704 -- Local variables
2706 CW_Actual : constant Boolean := Has_Class_Wide_Actual;
2707 -- Ada 2012 (AI05-071, AI05-0131): True if the renaming is for a
2708 -- defaulted formal subprogram when the actual for a related formal
2709 -- type is class-wide.
2711 Inst_Node : Node_Id := Empty;
2712 New_S : Entity_Id;
2714 -- Start of processing for Analyze_Subprogram_Renaming
2716 begin
2717 -- We must test for the attribute renaming case before the Analyze
2718 -- call because otherwise Sem_Attr will complain that the attribute
2719 -- is missing an argument when it is analyzed.
2721 if Nkind (Nam) = N_Attribute_Reference then
2723 -- In the case of an abstract formal subprogram association, rewrite
2724 -- an actual given by a stream attribute as the name of the
2725 -- corresponding stream primitive of the type.
2727 -- In a generic context the stream operations are not generated, and
2728 -- this must be treated as a normal attribute reference, to be
2729 -- expanded in subsequent instantiations.
2731 if Is_Actual
2732 and then Is_Abstract_Subprogram (Formal_Spec)
2733 and then Expander_Active
2734 then
2735 declare
2736 Prefix_Type : constant Entity_Id := Entity (Prefix (Nam));
2737 Stream_Prim : Entity_Id;
2739 begin
2740 -- The class-wide forms of the stream attributes are not
2741 -- primitive dispatching operations (even though they
2742 -- internally dispatch to a stream attribute).
2744 if Is_Class_Wide_Type (Prefix_Type) then
2745 Error_Msg_N
2746 ("attribute must be a primitive dispatching operation",
2747 Nam);
2748 return;
2749 end if;
2751 -- Retrieve the primitive subprogram associated with the
2752 -- attribute. This can only be a stream attribute, since those
2753 -- are the only ones that are dispatching (and the actual for
2754 -- an abstract formal subprogram must be dispatching
2755 -- operation).
2757 case Attribute_Name (Nam) is
2758 when Name_Input =>
2759 Stream_Prim :=
2760 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Input);
2762 when Name_Output =>
2763 Stream_Prim :=
2764 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Output);
2766 when Name_Read =>
2767 Stream_Prim :=
2768 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Read);
2770 when Name_Write =>
2771 Stream_Prim :=
2772 Find_Optional_Prim_Op (Prefix_Type, TSS_Stream_Write);
2774 when others =>
2775 Error_Msg_N
2776 ("attribute must be a primitive dispatching operation",
2777 Nam);
2778 return;
2779 end case;
2781 -- If no operation was found, and the type is limited, the user
2782 -- should have defined one.
2784 if No (Stream_Prim) then
2785 if Is_Limited_Type (Prefix_Type) then
2786 Error_Msg_NE
2787 ("stream operation not defined for type&",
2788 N, Prefix_Type);
2789 return;
2791 -- Otherwise, compiler should have generated default
2793 else
2794 raise Program_Error;
2795 end if;
2796 end if;
2798 -- Rewrite the attribute into the name of its corresponding
2799 -- primitive dispatching subprogram. We can then proceed with
2800 -- the usual processing for subprogram renamings.
2802 declare
2803 Prim_Name : constant Node_Id :=
2804 Make_Identifier (Sloc (Nam),
2805 Chars => Chars (Stream_Prim));
2806 begin
2807 Set_Entity (Prim_Name, Stream_Prim);
2808 Rewrite (Nam, Prim_Name);
2809 Analyze (Nam);
2810 end;
2811 end;
2813 -- Normal processing for a renaming of an attribute
2815 else
2816 Attribute_Renaming (N);
2817 return;
2818 end if;
2819 end if;
2821 -- Check whether this declaration corresponds to the instantiation of a
2822 -- formal subprogram.
2824 -- If this is an instantiation, the corresponding actual is frozen and
2825 -- error messages can be made more precise. If this is a default
2826 -- subprogram, the entity is already established in the generic, and is
2827 -- not retrieved by visibility. If it is a default with a box, the
2828 -- candidate interpretations, if any, have been collected when building
2829 -- the renaming declaration. If overloaded, the proper interpretation is
2830 -- determined in Find_Renamed_Entity. If the entity is an operator,
2831 -- Find_Renamed_Entity applies additional visibility checks.
2833 if Is_Actual then
2834 Inst_Node := Unit_Declaration_Node (Formal_Spec);
2836 -- Check whether the renaming is for a defaulted actual subprogram
2837 -- with a class-wide actual.
2839 -- The class-wide wrapper is not needed in GNATprove_Mode and there
2840 -- is an external axiomatization on the package.
2842 if CW_Actual
2843 and then Box_Present (Inst_Node)
2844 and then not
2845 (GNATprove_Mode
2846 and then
2847 Present (Containing_Package_With_Ext_Axioms (Formal_Spec)))
2848 then
2849 Build_Class_Wide_Wrapper (New_S, Old_S);
2851 elsif Is_Entity_Name (Nam)
2852 and then Present (Entity (Nam))
2853 and then not Comes_From_Source (Nam)
2854 and then not Is_Overloaded (Nam)
2855 then
2856 Old_S := Entity (Nam);
2858 -- The subprogram renaming declaration may become Ghost if it
2859 -- renames a Ghost entity.
2861 Mark_Ghost_Renaming (N, Old_S);
2863 New_S := Analyze_Subprogram_Specification (Spec);
2865 -- Operator case
2867 if Ekind (Old_S) = E_Operator then
2869 -- Box present
2871 if Box_Present (Inst_Node) then
2872 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
2874 -- If there is an immediately visible homonym of the operator
2875 -- and the declaration has a default, this is worth a warning
2876 -- because the user probably did not intend to get the pre-
2877 -- defined operator, visible in the generic declaration. To
2878 -- find if there is an intended candidate, analyze the renaming
2879 -- again in the current context.
2881 elsif Scope (Old_S) = Standard_Standard
2882 and then Present (Default_Name (Inst_Node))
2883 then
2884 declare
2885 Decl : constant Node_Id := New_Copy_Tree (N);
2886 Hidden : Entity_Id;
2888 begin
2889 Set_Entity (Name (Decl), Empty);
2890 Analyze (Name (Decl));
2891 Hidden :=
2892 Find_Renamed_Entity (Decl, Name (Decl), New_S, True);
2894 if Present (Hidden)
2895 and then In_Open_Scopes (Scope (Hidden))
2896 and then Is_Immediately_Visible (Hidden)
2897 and then Comes_From_Source (Hidden)
2898 and then Hidden /= Old_S
2899 then
2900 Error_Msg_Sloc := Sloc (Hidden);
2901 Error_Msg_N
2902 ("default subprogram is resolved in the generic "
2903 & "declaration (RM 12.6(17))??", N);
2904 Error_Msg_NE ("\and will not use & #??", N, Hidden);
2905 end if;
2906 end;
2907 end if;
2908 end if;
2910 else
2911 Analyze (Nam);
2913 -- The subprogram renaming declaration may become Ghost if it
2914 -- renames a Ghost entity.
2916 if Is_Entity_Name (Nam) then
2917 Mark_Ghost_Renaming (N, Entity (Nam));
2918 end if;
2920 New_S := Analyze_Subprogram_Specification (Spec);
2921 end if;
2923 else
2924 -- Renamed entity must be analyzed first, to avoid being hidden by
2925 -- new name (which might be the same in a generic instance).
2927 Analyze (Nam);
2929 -- The subprogram renaming declaration may become Ghost if it renames
2930 -- a Ghost entity.
2932 if Is_Entity_Name (Nam) then
2933 Mark_Ghost_Renaming (N, Entity (Nam));
2934 end if;
2936 -- The renaming defines a new overloaded entity, which is analyzed
2937 -- like a subprogram declaration.
2939 New_S := Analyze_Subprogram_Specification (Spec);
2940 end if;
2942 if Current_Scope /= Standard_Standard then
2943 Set_Is_Pure (New_S, Is_Pure (Current_Scope));
2944 end if;
2946 -- Set SPARK mode from current context
2948 Set_SPARK_Pragma (New_S, SPARK_Mode_Pragma);
2949 Set_SPARK_Pragma_Inherited (New_S);
2951 Rename_Spec := Find_Corresponding_Spec (N);
2953 -- Case of Renaming_As_Body
2955 if Present (Rename_Spec) then
2956 Check_Previous_Null_Procedure (N, Rename_Spec);
2958 -- Renaming declaration is the completion of the declaration of
2959 -- Rename_Spec. We build an actual body for it at the freezing point.
2961 Set_Corresponding_Spec (N, Rename_Spec);
2963 -- Deal with special case of stream functions of abstract types
2964 -- and interfaces.
2966 if Nkind (Unit_Declaration_Node (Rename_Spec)) =
2967 N_Abstract_Subprogram_Declaration
2968 then
2969 -- Input stream functions are abstract if the object type is
2970 -- abstract. Similarly, all default stream functions for an
2971 -- interface type are abstract. However, these subprograms may
2972 -- receive explicit declarations in representation clauses, making
2973 -- the attribute subprograms usable as defaults in subsequent
2974 -- type extensions.
2975 -- In this case we rewrite the declaration to make the subprogram
2976 -- non-abstract. We remove the previous declaration, and insert
2977 -- the new one at the point of the renaming, to prevent premature
2978 -- access to unfrozen types. The new declaration reuses the
2979 -- specification of the previous one, and must not be analyzed.
2981 pragma Assert
2982 (Is_Primitive (Entity (Nam))
2983 and then
2984 Is_Abstract_Type (Find_Dispatching_Type (Entity (Nam))));
2985 declare
2986 Old_Decl : constant Node_Id :=
2987 Unit_Declaration_Node (Rename_Spec);
2988 New_Decl : constant Node_Id :=
2989 Make_Subprogram_Declaration (Sloc (N),
2990 Specification =>
2991 Relocate_Node (Specification (Old_Decl)));
2992 begin
2993 Remove (Old_Decl);
2994 Insert_After (N, New_Decl);
2995 Set_Is_Abstract_Subprogram (Rename_Spec, False);
2996 Set_Analyzed (New_Decl);
2997 end;
2998 end if;
3000 Set_Corresponding_Body (Unit_Declaration_Node (Rename_Spec), New_S);
3002 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3003 Error_Msg_N ("(Ada 83) renaming cannot serve as a body", N);
3004 end if;
3006 Set_Convention (New_S, Convention (Rename_Spec));
3007 Check_Fully_Conformant (New_S, Rename_Spec);
3008 Set_Public_Status (New_S);
3010 if No_Return (Rename_Spec)
3011 and then not No_Return (Entity (Nam))
3012 then
3013 Error_Msg_N ("renaming completes a No_Return procedure", N);
3014 Error_Msg_N
3015 ("\renamed procedure must be nonreturning (RM 6.5.1 (7/2))", N);
3016 end if;
3018 -- The specification does not introduce new formals, but only
3019 -- repeats the formals of the original subprogram declaration.
3020 -- For cross-reference purposes, and for refactoring tools, we
3021 -- treat the formals of the renaming declaration as body formals.
3023 Reference_Body_Formals (Rename_Spec, New_S);
3025 -- Indicate that the entity in the declaration functions like the
3026 -- corresponding body, and is not a new entity. The body will be
3027 -- constructed later at the freeze point, so indicate that the
3028 -- completion has not been seen yet.
3030 Set_Ekind (New_S, E_Subprogram_Body);
3031 New_S := Rename_Spec;
3032 Set_Has_Completion (Rename_Spec, False);
3034 -- Ada 2005: check overriding indicator
3036 if Present (Overridden_Operation (Rename_Spec)) then
3037 if Must_Not_Override (Specification (N)) then
3038 Error_Msg_NE
3039 ("subprogram& overrides inherited operation",
3040 N, Rename_Spec);
3042 elsif Style_Check
3043 and then not Must_Override (Specification (N))
3044 then
3045 Style.Missing_Overriding (N, Rename_Spec);
3046 end if;
3048 elsif Must_Override (Specification (N)) then
3049 Error_Msg_NE ("subprogram& is not overriding", N, Rename_Spec);
3050 end if;
3052 -- Normal subprogram renaming (not renaming as body)
3054 else
3055 Generate_Definition (New_S);
3056 New_Overloaded_Entity (New_S);
3058 if not (Is_Entity_Name (Nam)
3059 and then Is_Intrinsic_Subprogram (Entity (Nam)))
3060 then
3061 Check_Delayed_Subprogram (New_S);
3062 end if;
3064 -- Verify that a SPARK renaming does not declare a primitive
3065 -- operation of a tagged type.
3067 Check_SPARK_Primitive_Operation (New_S);
3068 end if;
3070 -- There is no need for elaboration checks on the new entity, which may
3071 -- be called before the next freezing point where the body will appear.
3072 -- Elaboration checks refer to the real entity, not the one created by
3073 -- the renaming declaration.
3075 Set_Kill_Elaboration_Checks (New_S, True);
3077 -- If we had a previous error, indicate a completely is present to stop
3078 -- junk cascaded messages, but don't take any further action.
3080 if Etype (Nam) = Any_Type then
3081 Set_Has_Completion (New_S);
3082 return;
3084 -- Case where name has the form of a selected component
3086 elsif Nkind (Nam) = N_Selected_Component then
3088 -- A name which has the form A.B can designate an entry of task A, a
3089 -- protected operation of protected object A, or finally a primitive
3090 -- operation of object A. In the later case, A is an object of some
3091 -- tagged type, or an access type that denotes one such. To further
3092 -- distinguish these cases, note that the scope of a task entry or
3093 -- protected operation is type of the prefix.
3095 -- The prefix could be an overloaded function call that returns both
3096 -- kinds of operations. This overloading pathology is left to the
3097 -- dedicated reader ???
3099 declare
3100 T : constant Entity_Id := Etype (Prefix (Nam));
3102 begin
3103 if Present (T)
3104 and then
3105 (Is_Tagged_Type (T)
3106 or else
3107 (Is_Access_Type (T)
3108 and then Is_Tagged_Type (Designated_Type (T))))
3109 and then Scope (Entity (Selector_Name (Nam))) /= T
3110 then
3111 Analyze_Renamed_Primitive_Operation
3112 (N, New_S, Present (Rename_Spec));
3113 return;
3115 else
3116 -- Renamed entity is an entry or protected operation. For those
3117 -- cases an explicit body is built (at the point of freezing of
3118 -- this entity) that contains a call to the renamed entity.
3120 -- This is not allowed for renaming as body if the renamed
3121 -- spec is already frozen (see RM 8.5.4(5) for details).
3123 if Present (Rename_Spec) and then Is_Frozen (Rename_Spec) then
3124 Error_Msg_N
3125 ("renaming-as-body cannot rename entry as subprogram", N);
3126 Error_Msg_NE
3127 ("\since & is already frozen (RM 8.5.4(5))",
3128 N, Rename_Spec);
3129 else
3130 Analyze_Renamed_Entry (N, New_S, Present (Rename_Spec));
3131 end if;
3133 return;
3134 end if;
3135 end;
3137 -- Case where name is an explicit dereference X.all
3139 elsif Nkind (Nam) = N_Explicit_Dereference then
3141 -- Renamed entity is designated by access_to_subprogram expression.
3142 -- Must build body to encapsulate call, as in the entry case.
3144 Analyze_Renamed_Dereference (N, New_S, Present (Rename_Spec));
3145 return;
3147 -- Indexed component
3149 elsif Nkind (Nam) = N_Indexed_Component then
3150 Analyze_Renamed_Family_Member (N, New_S, Present (Rename_Spec));
3151 return;
3153 -- Character literal
3155 elsif Nkind (Nam) = N_Character_Literal then
3156 Analyze_Renamed_Character (N, New_S, Present (Rename_Spec));
3157 return;
3159 -- Only remaining case is where we have a non-entity name, or a renaming
3160 -- of some other non-overloadable entity.
3162 elsif not Is_Entity_Name (Nam)
3163 or else not Is_Overloadable (Entity (Nam))
3164 then
3165 -- Do not mention the renaming if it comes from an instance
3167 if not Is_Actual then
3168 Error_Msg_N ("expect valid subprogram name in renaming", N);
3169 else
3170 Error_Msg_NE ("no visible subprogram for formal&", N, Nam);
3171 end if;
3173 return;
3174 end if;
3176 -- Find the renamed entity that matches the given specification. Disable
3177 -- Ada_83 because there is no requirement of full conformance between
3178 -- renamed entity and new entity, even though the same circuit is used.
3180 -- This is a bit of an odd case, which introduces a really irregular use
3181 -- of Ada_Version[_Explicit]. Would be nice to find cleaner way to do
3182 -- this. ???
3184 Ada_Version := Ada_Version_Type'Max (Ada_Version, Ada_95);
3185 Ada_Version_Pragma := Empty;
3186 Ada_Version_Explicit := Ada_Version;
3188 if No (Old_S) then
3189 Old_S := Find_Renamed_Entity (N, Name (N), New_S, Is_Actual);
3191 -- The visible operation may be an inherited abstract operation that
3192 -- was overridden in the private part, in which case a call will
3193 -- dispatch to the overriding operation. Use the overriding one in
3194 -- the renaming declaration, to prevent spurious errors below.
3196 if Is_Overloadable (Old_S)
3197 and then Is_Abstract_Subprogram (Old_S)
3198 and then No (DTC_Entity (Old_S))
3199 and then Present (Alias (Old_S))
3200 and then not Is_Abstract_Subprogram (Alias (Old_S))
3201 and then Present (Overridden_Operation (Alias (Old_S)))
3202 then
3203 Old_S := Alias (Old_S);
3204 end if;
3206 -- When the renamed subprogram is overloaded and used as an actual
3207 -- of a generic, its entity is set to the first available homonym.
3208 -- We must first disambiguate the name, then set the proper entity.
3210 if Is_Actual and then Is_Overloaded (Nam) then
3211 Set_Entity (Nam, Old_S);
3212 end if;
3213 end if;
3215 -- Most common case: subprogram renames subprogram. No body is generated
3216 -- in this case, so we must indicate the declaration is complete as is.
3217 -- and inherit various attributes of the renamed subprogram.
3219 if No (Rename_Spec) then
3220 Set_Has_Completion (New_S);
3221 Set_Is_Imported (New_S, Is_Imported (Entity (Nam)));
3222 Set_Is_Pure (New_S, Is_Pure (Entity (Nam)));
3223 Set_Is_Preelaborated (New_S, Is_Preelaborated (Entity (Nam)));
3225 -- Ada 2005 (AI-423): Check the consistency of null exclusions
3226 -- between a subprogram and its correct renaming.
3228 -- Note: the Any_Id check is a guard that prevents compiler crashes
3229 -- when performing a null exclusion check between a renaming and a
3230 -- renamed subprogram that has been found to be illegal.
3232 if Ada_Version >= Ada_2005 and then Entity (Nam) /= Any_Id then
3233 Check_Null_Exclusion
3234 (Ren => New_S,
3235 Sub => Entity (Nam));
3236 end if;
3238 -- Enforce the Ada 2005 rule that the renamed entity cannot require
3239 -- overriding. The flag Requires_Overriding is set very selectively
3240 -- and misses some other illegal cases. The additional conditions
3241 -- checked below are sufficient but not necessary ???
3243 -- The rule does not apply to the renaming generated for an actual
3244 -- subprogram in an instance.
3246 if Is_Actual then
3247 null;
3249 -- Guard against previous errors, and omit renamings of predefined
3250 -- operators.
3252 elsif not Ekind_In (Old_S, E_Function, E_Procedure) then
3253 null;
3255 elsif Requires_Overriding (Old_S)
3256 or else
3257 (Is_Abstract_Subprogram (Old_S)
3258 and then Present (Find_Dispatching_Type (Old_S))
3259 and then not Is_Abstract_Type (Find_Dispatching_Type (Old_S)))
3260 then
3261 Error_Msg_N
3262 ("renamed entity cannot be subprogram that requires overriding "
3263 & "(RM 8.5.4 (5.1))", N);
3264 end if;
3266 declare
3267 Prev : constant Entity_Id := Overridden_Operation (New_S);
3268 begin
3269 if Present (Prev)
3270 and then
3271 (Has_Non_Trivial_Precondition (Prev)
3272 or else Has_Non_Trivial_Precondition (Old_S))
3273 then
3274 Error_Msg_NE
3275 ("conflicting inherited classwide preconditions in renaming "
3276 & "of& (RM 6.1.1 (17)", N, Old_S);
3277 end if;
3278 end;
3279 end if;
3281 if Old_S /= Any_Id then
3282 if Is_Actual and then From_Default (N) then
3284 -- This is an implicit reference to the default actual
3286 Generate_Reference (Old_S, Nam, Typ => 'i', Force => True);
3288 else
3289 Generate_Reference (Old_S, Nam);
3290 end if;
3292 Check_Internal_Protected_Use (N, Old_S);
3294 -- For a renaming-as-body, require subtype conformance, but if the
3295 -- declaration being completed has not been frozen, then inherit the
3296 -- convention of the renamed subprogram prior to checking conformance
3297 -- (unless the renaming has an explicit convention established; the
3298 -- rule stated in the RM doesn't seem to address this ???).
3300 if Present (Rename_Spec) then
3301 Generate_Reference (Rename_Spec, Defining_Entity (Spec), 'b');
3302 Style.Check_Identifier (Defining_Entity (Spec), Rename_Spec);
3304 if not Is_Frozen (Rename_Spec) then
3305 if not Has_Convention_Pragma (Rename_Spec) then
3306 Set_Convention (New_S, Convention (Old_S));
3307 end if;
3309 if Ekind (Old_S) /= E_Operator then
3310 Check_Mode_Conformant (New_S, Old_S, Spec);
3311 end if;
3313 if Original_Subprogram (Old_S) = Rename_Spec then
3314 Error_Msg_N ("unfrozen subprogram cannot rename itself ", N);
3315 end if;
3316 else
3317 Check_Subtype_Conformant (New_S, Old_S, Spec);
3318 end if;
3320 Check_Frozen_Renaming (N, Rename_Spec);
3322 -- Check explicitly that renamed entity is not intrinsic, because
3323 -- in a generic the renamed body is not built. In this case,
3324 -- the renaming_as_body is a completion.
3326 if Inside_A_Generic then
3327 if Is_Frozen (Rename_Spec)
3328 and then Is_Intrinsic_Subprogram (Old_S)
3329 then
3330 Error_Msg_N
3331 ("subprogram in renaming_as_body cannot be intrinsic",
3332 Name (N));
3333 end if;
3335 Set_Has_Completion (Rename_Spec);
3336 end if;
3338 elsif Ekind (Old_S) /= E_Operator then
3340 -- If this a defaulted subprogram for a class-wide actual there is
3341 -- no check for mode conformance, given that the signatures don't
3342 -- match (the source mentions T but the actual mentions T'Class).
3344 if CW_Actual then
3345 null;
3346 elsif not Is_Actual or else No (Enclosing_Instance) then
3347 Check_Mode_Conformant (New_S, Old_S);
3348 end if;
3350 if Is_Actual and then Error_Posted (New_S) then
3351 Error_Msg_NE ("invalid actual subprogram: & #!", N, Old_S);
3352 end if;
3353 end if;
3355 if No (Rename_Spec) then
3357 -- The parameter profile of the new entity is that of the renamed
3358 -- entity: the subtypes given in the specification are irrelevant.
3360 Inherit_Renamed_Profile (New_S, Old_S);
3362 -- A call to the subprogram is transformed into a call to the
3363 -- renamed entity. This is transitive if the renamed entity is
3364 -- itself a renaming.
3366 if Present (Alias (Old_S)) then
3367 Set_Alias (New_S, Alias (Old_S));
3368 else
3369 Set_Alias (New_S, Old_S);
3370 end if;
3372 -- Note that we do not set Is_Intrinsic_Subprogram if we have a
3373 -- renaming as body, since the entity in this case is not an
3374 -- intrinsic (it calls an intrinsic, but we have a real body for
3375 -- this call, and it is in this body that the required intrinsic
3376 -- processing will take place).
3378 -- Also, if this is a renaming of inequality, the renamed operator
3379 -- is intrinsic, but what matters is the corresponding equality
3380 -- operator, which may be user-defined.
3382 Set_Is_Intrinsic_Subprogram
3383 (New_S,
3384 Is_Intrinsic_Subprogram (Old_S)
3385 and then
3386 (Chars (Old_S) /= Name_Op_Ne
3387 or else Ekind (Old_S) = E_Operator
3388 or else Is_Intrinsic_Subprogram
3389 (Corresponding_Equality (Old_S))));
3391 if Ekind (Alias (New_S)) = E_Operator then
3392 Set_Has_Delayed_Freeze (New_S, False);
3393 end if;
3395 -- If the renaming corresponds to an association for an abstract
3396 -- formal subprogram, then various attributes must be set to
3397 -- indicate that the renaming is an abstract dispatching operation
3398 -- with a controlling type.
3400 if Is_Actual and then Is_Abstract_Subprogram (Formal_Spec) then
3402 -- Mark the renaming as abstract here, so Find_Dispatching_Type
3403 -- see it as corresponding to a generic association for a
3404 -- formal abstract subprogram
3406 Set_Is_Abstract_Subprogram (New_S);
3408 declare
3409 New_S_Ctrl_Type : constant Entity_Id :=
3410 Find_Dispatching_Type (New_S);
3411 Old_S_Ctrl_Type : constant Entity_Id :=
3412 Find_Dispatching_Type (Old_S);
3414 begin
3416 -- The actual must match the (instance of the) formal,
3417 -- and must be a controlling type.
3419 if Old_S_Ctrl_Type /= New_S_Ctrl_Type
3420 or else No (New_S_Ctrl_Type)
3421 then
3422 Error_Msg_NE
3423 ("actual must be dispatching subprogram for type&",
3424 Nam, New_S_Ctrl_Type);
3426 else
3427 Set_Is_Dispatching_Operation (New_S);
3428 Check_Controlling_Formals (New_S_Ctrl_Type, New_S);
3430 -- If the actual in the formal subprogram is itself a
3431 -- formal abstract subprogram association, there's no
3432 -- dispatch table component or position to inherit.
3434 if Present (DTC_Entity (Old_S)) then
3435 Set_DTC_Entity (New_S, DTC_Entity (Old_S));
3436 Set_DT_Position_Value (New_S, DT_Position (Old_S));
3437 end if;
3438 end if;
3439 end;
3440 end if;
3441 end if;
3443 if Is_Actual then
3444 null;
3446 -- The following is illegal, because F hides whatever other F may
3447 -- be around:
3448 -- function F (...) renames F;
3450 elsif Old_S = New_S
3451 or else (Nkind (Nam) /= N_Expanded_Name
3452 and then Chars (Old_S) = Chars (New_S))
3453 then
3454 Error_Msg_N ("subprogram cannot rename itself", N);
3456 -- This is illegal even if we use a selector:
3457 -- function F (...) renames Pkg.F;
3458 -- because F is still hidden.
3460 elsif Nkind (Nam) = N_Expanded_Name
3461 and then Entity (Prefix (Nam)) = Current_Scope
3462 and then Chars (Selector_Name (Nam)) = Chars (New_S)
3463 then
3464 -- This is an error, but we overlook the error and accept the
3465 -- renaming if the special Overriding_Renamings mode is in effect.
3467 if not Overriding_Renamings then
3468 Error_Msg_NE
3469 ("implicit operation& is not visible (RM 8.3 (15))",
3470 Nam, Old_S);
3471 end if;
3472 end if;
3474 Set_Convention (New_S, Convention (Old_S));
3476 if Is_Abstract_Subprogram (Old_S) then
3477 if Present (Rename_Spec) then
3478 Error_Msg_N
3479 ("a renaming-as-body cannot rename an abstract subprogram",
3481 Set_Has_Completion (Rename_Spec);
3482 else
3483 Set_Is_Abstract_Subprogram (New_S);
3484 end if;
3485 end if;
3487 Check_Library_Unit_Renaming (N, Old_S);
3489 -- Pathological case: procedure renames entry in the scope of its
3490 -- task. Entry is given by simple name, but body must be built for
3491 -- procedure. Of course if called it will deadlock.
3493 if Ekind (Old_S) = E_Entry then
3494 Set_Has_Completion (New_S, False);
3495 Set_Alias (New_S, Empty);
3496 end if;
3498 -- Do not freeze the renaming nor the renamed entity when the context
3499 -- is an enclosing generic. Freezing is an expansion activity, and in
3500 -- addition the renamed entity may depend on the generic formals of
3501 -- the enclosing generic.
3503 if Is_Actual and not Inside_A_Generic then
3504 Freeze_Before (N, Old_S);
3505 Freeze_Actual_Profile;
3506 Set_Has_Delayed_Freeze (New_S, False);
3507 Freeze_Before (N, New_S);
3509 -- An abstract subprogram is only allowed as an actual in the case
3510 -- where the formal subprogram is also abstract.
3512 if (Ekind (Old_S) = E_Procedure or else Ekind (Old_S) = E_Function)
3513 and then Is_Abstract_Subprogram (Old_S)
3514 and then not Is_Abstract_Subprogram (Formal_Spec)
3515 then
3516 Error_Msg_N
3517 ("abstract subprogram not allowed as generic actual", Nam);
3518 end if;
3519 end if;
3521 else
3522 -- A common error is to assume that implicit operators for types are
3523 -- defined in Standard, or in the scope of a subtype. In those cases
3524 -- where the renamed entity is given with an expanded name, it is
3525 -- worth mentioning that operators for the type are not declared in
3526 -- the scope given by the prefix.
3528 if Nkind (Nam) = N_Expanded_Name
3529 and then Nkind (Selector_Name (Nam)) = N_Operator_Symbol
3530 and then Scope (Entity (Nam)) = Standard_Standard
3531 then
3532 declare
3533 T : constant Entity_Id :=
3534 Base_Type (Etype (First_Formal (New_S)));
3535 begin
3536 Error_Msg_Node_2 := Prefix (Nam);
3537 Error_Msg_NE
3538 ("operator for type& is not declared in&", Prefix (Nam), T);
3539 end;
3541 else
3542 Error_Msg_NE
3543 ("no visible subprogram matches the specification for&",
3544 Spec, New_S);
3545 end if;
3547 if Present (Candidate_Renaming) then
3548 declare
3549 F1 : Entity_Id;
3550 F2 : Entity_Id;
3551 T1 : Entity_Id;
3553 begin
3554 F1 := First_Formal (Candidate_Renaming);
3555 F2 := First_Formal (New_S);
3556 T1 := First_Subtype (Etype (F1));
3557 while Present (F1) and then Present (F2) loop
3558 Next_Formal (F1);
3559 Next_Formal (F2);
3560 end loop;
3562 if Present (F1) and then Present (Default_Value (F1)) then
3563 if Present (Next_Formal (F1)) then
3564 Error_Msg_NE
3565 ("\missing specification for & and other formals with "
3566 & "defaults", Spec, F1);
3567 else
3568 Error_Msg_NE ("\missing specification for &", Spec, F1);
3569 end if;
3570 end if;
3572 if Nkind (Nam) = N_Operator_Symbol
3573 and then From_Default (N)
3574 then
3575 Error_Msg_Node_2 := T1;
3576 Error_Msg_NE
3577 ("default & on & is not directly visible", Nam, Nam);
3578 end if;
3579 end;
3580 end if;
3581 end if;
3583 -- Ada 2005 AI 404: if the new subprogram is dispatching, verify that
3584 -- controlling access parameters are known non-null for the renamed
3585 -- subprogram. Test also applies to a subprogram instantiation that
3586 -- is dispatching. Test is skipped if some previous error was detected
3587 -- that set Old_S to Any_Id.
3589 if Ada_Version >= Ada_2005
3590 and then Old_S /= Any_Id
3591 and then not Is_Dispatching_Operation (Old_S)
3592 and then Is_Dispatching_Operation (New_S)
3593 then
3594 declare
3595 Old_F : Entity_Id;
3596 New_F : Entity_Id;
3598 begin
3599 Old_F := First_Formal (Old_S);
3600 New_F := First_Formal (New_S);
3601 while Present (Old_F) loop
3602 if Ekind (Etype (Old_F)) = E_Anonymous_Access_Type
3603 and then Is_Controlling_Formal (New_F)
3604 and then not Can_Never_Be_Null (Old_F)
3605 then
3606 Error_Msg_N ("access parameter is controlling,", New_F);
3607 Error_Msg_NE
3608 ("\corresponding parameter of& must be explicitly null "
3609 & "excluding", New_F, Old_S);
3610 end if;
3612 Next_Formal (Old_F);
3613 Next_Formal (New_F);
3614 end loop;
3615 end;
3616 end if;
3618 -- A useful warning, suggested by Ada Bug Finder (Ada-Europe 2005)
3619 -- is to warn if an operator is being renamed as a different operator.
3620 -- If the operator is predefined, examine the kind of the entity, not
3621 -- the abbreviated declaration in Standard.
3623 if Comes_From_Source (N)
3624 and then Present (Old_S)
3625 and then (Nkind (Old_S) = N_Defining_Operator_Symbol
3626 or else Ekind (Old_S) = E_Operator)
3627 and then Nkind (New_S) = N_Defining_Operator_Symbol
3628 and then Chars (Old_S) /= Chars (New_S)
3629 then
3630 Error_Msg_NE
3631 ("& is being renamed as a different operator??", N, Old_S);
3632 end if;
3634 -- Check for renaming of obsolescent subprogram
3636 Check_Obsolescent_2005_Entity (Entity (Nam), Nam);
3638 -- Another warning or some utility: if the new subprogram as the same
3639 -- name as the old one, the old one is not hidden by an outer homograph,
3640 -- the new one is not a public symbol, and the old one is otherwise
3641 -- directly visible, the renaming is superfluous.
3643 if Chars (Old_S) = Chars (New_S)
3644 and then Comes_From_Source (N)
3645 and then Scope (Old_S) /= Standard_Standard
3646 and then Warn_On_Redundant_Constructs
3647 and then (Is_Immediately_Visible (Old_S)
3648 or else Is_Potentially_Use_Visible (Old_S))
3649 and then Is_Overloadable (Current_Scope)
3650 and then Chars (Current_Scope) /= Chars (Old_S)
3651 then
3652 Error_Msg_N
3653 ("redundant renaming, entity is directly visible?r?", Name (N));
3654 end if;
3656 -- Implementation-defined aspect specifications can appear in a renaming
3657 -- declaration, but not language-defined ones. The call to procedure
3658 -- Analyze_Aspect_Specifications will take care of this error check.
3660 if Has_Aspects (N) then
3661 Analyze_Aspect_Specifications (N, New_S);
3662 end if;
3664 Ada_Version := Save_AV;
3665 Ada_Version_Pragma := Save_AVP;
3666 Ada_Version_Explicit := Save_AV_Exp;
3668 -- In GNATprove mode, the renamings of actual subprograms are replaced
3669 -- with wrapper functions that make it easier to propagate axioms to the
3670 -- points of call within an instance. Wrappers are generated if formal
3671 -- subprogram is subject to axiomatization.
3673 -- The types in the wrapper profiles are obtained from (instances of)
3674 -- the types of the formal subprogram.
3676 if Is_Actual
3677 and then GNATprove_Mode
3678 and then Present (Containing_Package_With_Ext_Axioms (Formal_Spec))
3679 and then not Inside_A_Generic
3680 then
3681 if Ekind (Old_S) = E_Function then
3682 Rewrite (N, Build_Function_Wrapper (Formal_Spec, Old_S));
3683 Analyze (N);
3685 elsif Ekind (Old_S) = E_Operator then
3686 Rewrite (N, Build_Operator_Wrapper (Formal_Spec, Old_S));
3687 Analyze (N);
3688 end if;
3689 end if;
3691 -- Check if we are looking at an Ada 2012 defaulted formal subprogram
3692 -- and mark any use_package_clauses that affect the visibility of the
3693 -- implicit generic actual.
3695 if Is_Generic_Actual_Subprogram (New_S)
3696 and then (Is_Intrinsic_Subprogram (New_S) or else From_Default (N))
3697 then
3698 Mark_Use_Clauses (New_S);
3700 -- Handle overloaded subprograms
3702 if Present (Alias (New_S)) then
3703 Mark_Use_Clauses (Alias (New_S));
3704 end if;
3705 end if;
3706 end Analyze_Subprogram_Renaming;
3708 -------------------------
3709 -- Analyze_Use_Package --
3710 -------------------------
3712 -- Resolve the package names in the use clause, and make all the visible
3713 -- entities defined in the package potentially use-visible. If the package
3714 -- is already in use from a previous use clause, its visible entities are
3715 -- already use-visible. In that case, mark the occurrence as a redundant
3716 -- use. If the package is an open scope, i.e. if the use clause occurs
3717 -- within the package itself, ignore it.
3719 procedure Analyze_Use_Package (N : Node_Id; Chain : Boolean := True) is
3720 procedure Analyze_Package_Name (Clause : Node_Id);
3721 -- Perform analysis on a package name from a use_package_clause
3723 procedure Analyze_Package_Name_List (Head_Clause : Node_Id);
3724 -- Similar to Analyze_Package_Name but iterates over all the names
3725 -- in a use clause.
3727 --------------------------
3728 -- Analyze_Package_Name --
3729 --------------------------
3731 procedure Analyze_Package_Name (Clause : Node_Id) is
3732 Pack : constant Node_Id := Name (Clause);
3733 Pref : Node_Id;
3735 begin
3736 pragma Assert (Nkind (Clause) = N_Use_Package_Clause);
3737 Analyze (Pack);
3739 -- Verify that the package standard is not directly named in a
3740 -- use_package_clause.
3742 if Nkind (Parent (Clause)) = N_Compilation_Unit
3743 and then Nkind (Pack) = N_Expanded_Name
3744 then
3745 Pref := Prefix (Pack);
3747 while Nkind (Pref) = N_Expanded_Name loop
3748 Pref := Prefix (Pref);
3749 end loop;
3751 if Entity (Pref) = Standard_Standard then
3752 Error_Msg_N
3753 ("predefined package Standard cannot appear in a context "
3754 & "clause", Pref);
3755 end if;
3756 end if;
3757 end Analyze_Package_Name;
3759 -------------------------------
3760 -- Analyze_Package_Name_List --
3761 -------------------------------
3763 procedure Analyze_Package_Name_List (Head_Clause : Node_Id) is
3764 Curr : Node_Id;
3766 begin
3767 -- Due to the way source use clauses are split during parsing we are
3768 -- forced to simply iterate through all entities in scope until the
3769 -- clause representing the last name in the list is found.
3771 Curr := Head_Clause;
3772 while Present (Curr) loop
3773 Analyze_Package_Name (Curr);
3775 -- Stop iterating over the names in the use clause when we are at
3776 -- the last one.
3778 exit when not More_Ids (Curr) and then Prev_Ids (Curr);
3779 Next (Curr);
3780 end loop;
3781 end Analyze_Package_Name_List;
3783 -- Local variables
3785 Ghost_Id : Entity_Id := Empty;
3786 Living_Id : Entity_Id := Empty;
3787 Pack : Entity_Id;
3789 -- Start of processing for Analyze_Use_Package
3791 begin
3792 Check_SPARK_05_Restriction ("use clause is not allowed", N);
3794 Set_Hidden_By_Use_Clause (N, No_Elist);
3796 -- Use clause not allowed in a spec of a predefined package declaration
3797 -- except that packages whose file name starts a-n are OK (these are
3798 -- children of Ada.Numerics, which are never loaded by Rtsfind).
3800 if Is_Predefined_Unit (Current_Sem_Unit)
3801 and then Get_Name_String
3802 (Unit_File_Name (Current_Sem_Unit)) (1 .. 3) /= "a-n"
3803 and then Nkind (Unit (Cunit (Current_Sem_Unit))) =
3804 N_Package_Declaration
3805 then
3806 Error_Msg_N ("use clause not allowed in predefined spec", N);
3807 end if;
3809 -- Loop through all package names from the original use clause in
3810 -- order to analyze referenced packages. A use_package_clause with only
3811 -- one name does not have More_Ids or Prev_Ids set, while a clause with
3812 -- More_Ids only starts the chain produced by the parser.
3814 if not More_Ids (N) and then not Prev_Ids (N) then
3815 Analyze_Package_Name (N);
3817 elsif More_Ids (N) and then not Prev_Ids (N) then
3818 Analyze_Package_Name_List (N);
3819 end if;
3821 if not Is_Entity_Name (Name (N)) then
3822 Error_Msg_N ("& is not a package", Name (N));
3824 return;
3825 end if;
3827 if Chain then
3828 Chain_Use_Clause (N);
3829 end if;
3831 Pack := Entity (Name (N));
3833 -- There are many cases where scopes are manipulated during analysis, so
3834 -- check that Pack's current use clause has not already been chained
3835 -- before setting its previous use clause.
3837 if Ekind (Pack) = E_Package
3838 and then Present (Current_Use_Clause (Pack))
3839 and then Current_Use_Clause (Pack) /= N
3840 and then No (Prev_Use_Clause (N))
3841 and then Prev_Use_Clause (Current_Use_Clause (Pack)) /= N
3842 then
3843 Set_Prev_Use_Clause (N, Current_Use_Clause (Pack));
3844 end if;
3846 -- Mark all entities as potentially use visible.
3848 if Ekind (Pack) /= E_Package and then Etype (Pack) /= Any_Type then
3849 if Ekind (Pack) = E_Generic_Package then
3850 Error_Msg_N -- CODEFIX
3851 ("a generic package is not allowed in a use clause", Name (N));
3853 elsif Ekind_In (Pack, E_Generic_Function, E_Generic_Package)
3854 then
3855 Error_Msg_N -- CODEFIX
3856 ("a generic subprogram is not allowed in a use clause",
3857 Name (N));
3859 elsif Ekind_In (Pack, E_Function, E_Procedure, E_Operator) then
3860 Error_Msg_N -- CODEFIX
3861 ("a subprogram is not allowed in a use clause", Name (N));
3863 else
3864 Error_Msg_N ("& is not allowed in a use clause", Name (N));
3865 end if;
3867 else
3868 if Nkind (Parent (N)) = N_Compilation_Unit then
3869 Check_In_Previous_With_Clause (N, Name (N));
3870 end if;
3872 Use_One_Package (N, Name (N));
3874 -- Capture the first Ghost package and the first living package
3876 if Is_Entity_Name (Name (N)) then
3877 Pack := Entity (Name (N));
3879 if Is_Ghost_Entity (Pack) then
3880 if No (Ghost_Id) then
3881 Ghost_Id := Pack;
3882 end if;
3884 elsif No (Living_Id) then
3885 Living_Id := Pack;
3886 end if;
3887 end if;
3888 end if;
3889 end Analyze_Use_Package;
3891 ----------------------
3892 -- Analyze_Use_Type --
3893 ----------------------
3895 procedure Analyze_Use_Type (N : Node_Id; Chain : Boolean := True) is
3896 E : Entity_Id;
3897 Id : Node_Id;
3899 begin
3900 Set_Hidden_By_Use_Clause (N, No_Elist);
3902 -- Chain clause to list of use clauses in current scope when flagged
3904 if Chain then
3905 Chain_Use_Clause (N);
3906 end if;
3908 -- Obtain the base type of the type denoted within the use_type_clause's
3909 -- subtype mark.
3911 Id := Subtype_Mark (N);
3912 Find_Type (Id);
3913 E := Base_Type (Entity (Id));
3915 -- There are many cases where a use_type_clause may be reanalyzed due to
3916 -- manipulation of the scope stack so we much guard against those cases
3917 -- here, otherwise, we must add the new use_type_clause to the previous
3918 -- use_type_clause chain in order to mark redundant use_type_clauses as
3919 -- used.
3921 if Present (Current_Use_Clause (E))
3922 and then Current_Use_Clause (E) /= N
3923 and then No (Prev_Use_Clause (N))
3924 then
3925 Set_Prev_Use_Clause (N, Current_Use_Clause (E));
3926 end if;
3928 -- If the Used_Operations list is already initialized, the clause has
3929 -- been analyzed previously, and it is being reinstalled, for example
3930 -- when the clause appears in a package spec and we are compiling the
3931 -- corresponding package body. In that case, make the entities on the
3932 -- existing list use_visible, and mark the corresponding types In_Use.
3934 if Present (Used_Operations (N)) then
3935 declare
3936 Elmt : Elmt_Id;
3938 begin
3939 Use_One_Type (Subtype_Mark (N), Installed => True);
3941 Elmt := First_Elmt (Used_Operations (N));
3942 while Present (Elmt) loop
3943 Set_Is_Potentially_Use_Visible (Node (Elmt));
3944 Next_Elmt (Elmt);
3945 end loop;
3946 end;
3948 return;
3949 end if;
3951 -- Otherwise, create new list and attach to it the operations that are
3952 -- made use-visible by the clause.
3954 Set_Used_Operations (N, New_Elmt_List);
3955 E := Entity (Id);
3957 if E /= Any_Type then
3958 Use_One_Type (Id);
3960 if Nkind (Parent (N)) = N_Compilation_Unit then
3961 if Nkind (Id) = N_Identifier then
3962 Error_Msg_N ("type is not directly visible", Id);
3964 elsif Is_Child_Unit (Scope (E))
3965 and then Scope (E) /= System_Aux_Id
3966 then
3967 Check_In_Previous_With_Clause (N, Prefix (Id));
3968 end if;
3969 end if;
3971 else
3972 -- If the use_type_clause appears in a compilation unit context,
3973 -- check whether it comes from a unit that may appear in a
3974 -- limited_with_clause, for a better error message.
3976 if Nkind (Parent (N)) = N_Compilation_Unit
3977 and then Nkind (Id) /= N_Identifier
3978 then
3979 declare
3980 Item : Node_Id;
3981 Pref : Node_Id;
3983 function Mentioned (Nam : Node_Id) return Boolean;
3984 -- Check whether the prefix of expanded name for the type
3985 -- appears in the prefix of some limited_with_clause.
3987 ---------------
3988 -- Mentioned --
3989 ---------------
3991 function Mentioned (Nam : Node_Id) return Boolean is
3992 begin
3993 return Nkind (Name (Item)) = N_Selected_Component
3994 and then Chars (Prefix (Name (Item))) = Chars (Nam);
3995 end Mentioned;
3997 begin
3998 Pref := Prefix (Id);
3999 Item := First (Context_Items (Parent (N)));
4000 while Present (Item) and then Item /= N loop
4001 if Nkind (Item) = N_With_Clause
4002 and then Limited_Present (Item)
4003 and then Mentioned (Pref)
4004 then
4005 Change_Error_Text
4006 (Get_Msg_Id, "premature usage of incomplete type");
4007 end if;
4009 Next (Item);
4010 end loop;
4011 end;
4012 end if;
4013 end if;
4015 Mark_Ghost_Clause (N);
4016 end Analyze_Use_Type;
4018 ------------------------
4019 -- Attribute_Renaming --
4020 ------------------------
4022 procedure Attribute_Renaming (N : Node_Id) is
4023 Loc : constant Source_Ptr := Sloc (N);
4024 Nam : constant Node_Id := Name (N);
4025 Spec : constant Node_Id := Specification (N);
4026 New_S : constant Entity_Id := Defining_Unit_Name (Spec);
4027 Aname : constant Name_Id := Attribute_Name (Nam);
4029 Form_Num : Nat := 0;
4030 Expr_List : List_Id := No_List;
4032 Attr_Node : Node_Id;
4033 Body_Node : Node_Id;
4034 Param_Spec : Node_Id;
4036 begin
4037 Generate_Definition (New_S);
4039 -- This procedure is called in the context of subprogram renaming, and
4040 -- thus the attribute must be one that is a subprogram. All of those
4041 -- have at least one formal parameter, with the exceptions of the GNAT
4042 -- attribute 'Img, which GNAT treats as renameable.
4044 if not Is_Non_Empty_List (Parameter_Specifications (Spec)) then
4045 if Aname /= Name_Img then
4046 Error_Msg_N
4047 ("subprogram renaming an attribute must have formals", N);
4048 return;
4049 end if;
4051 else
4052 Param_Spec := First (Parameter_Specifications (Spec));
4053 while Present (Param_Spec) loop
4054 Form_Num := Form_Num + 1;
4056 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
4057 Find_Type (Parameter_Type (Param_Spec));
4059 -- The profile of the new entity denotes the base type (s) of
4060 -- the types given in the specification. For access parameters
4061 -- there are no subtypes involved.
4063 Rewrite (Parameter_Type (Param_Spec),
4064 New_Occurrence_Of
4065 (Base_Type (Entity (Parameter_Type (Param_Spec))), Loc));
4066 end if;
4068 if No (Expr_List) then
4069 Expr_List := New_List;
4070 end if;
4072 Append_To (Expr_List,
4073 Make_Identifier (Loc,
4074 Chars => Chars (Defining_Identifier (Param_Spec))));
4076 -- The expressions in the attribute reference are not freeze
4077 -- points. Neither is the attribute as a whole, see below.
4079 Set_Must_Not_Freeze (Last (Expr_List));
4080 Next (Param_Spec);
4081 end loop;
4082 end if;
4084 -- Immediate error if too many formals. Other mismatches in number or
4085 -- types of parameters are detected when we analyze the body of the
4086 -- subprogram that we construct.
4088 if Form_Num > 2 then
4089 Error_Msg_N ("too many formals for attribute", N);
4091 -- Error if the attribute reference has expressions that look like
4092 -- formal parameters.
4094 elsif Present (Expressions (Nam)) then
4095 Error_Msg_N ("illegal expressions in attribute reference", Nam);
4097 elsif
4098 Nam_In (Aname, Name_Compose, Name_Exponent, Name_Leading_Part,
4099 Name_Pos, Name_Round, Name_Scaling,
4100 Name_Val)
4101 then
4102 if Nkind (N) = N_Subprogram_Renaming_Declaration
4103 and then Present (Corresponding_Formal_Spec (N))
4104 then
4105 Error_Msg_N
4106 ("generic actual cannot be attribute involving universal type",
4107 Nam);
4108 else
4109 Error_Msg_N
4110 ("attribute involving a universal type cannot be renamed",
4111 Nam);
4112 end if;
4113 end if;
4115 -- Rewrite attribute node to have a list of expressions corresponding to
4116 -- the subprogram formals. A renaming declaration is not a freeze point,
4117 -- and the analysis of the attribute reference should not freeze the
4118 -- type of the prefix. We use the original node in the renaming so that
4119 -- its source location is preserved, and checks on stream attributes are
4120 -- properly applied.
4122 Attr_Node := Relocate_Node (Nam);
4123 Set_Expressions (Attr_Node, Expr_List);
4125 Set_Must_Not_Freeze (Attr_Node);
4126 Set_Must_Not_Freeze (Prefix (Nam));
4128 -- Case of renaming a function
4130 if Nkind (Spec) = N_Function_Specification then
4131 if Is_Procedure_Attribute_Name (Aname) then
4132 Error_Msg_N ("attribute can only be renamed as procedure", Nam);
4133 return;
4134 end if;
4136 Find_Type (Result_Definition (Spec));
4137 Rewrite (Result_Definition (Spec),
4138 New_Occurrence_Of
4139 (Base_Type (Entity (Result_Definition (Spec))), Loc));
4141 Body_Node :=
4142 Make_Subprogram_Body (Loc,
4143 Specification => Spec,
4144 Declarations => New_List,
4145 Handled_Statement_Sequence =>
4146 Make_Handled_Sequence_Of_Statements (Loc,
4147 Statements => New_List (
4148 Make_Simple_Return_Statement (Loc,
4149 Expression => Attr_Node))));
4151 -- Case of renaming a procedure
4153 else
4154 if not Is_Procedure_Attribute_Name (Aname) then
4155 Error_Msg_N ("attribute can only be renamed as function", Nam);
4156 return;
4157 end if;
4159 Body_Node :=
4160 Make_Subprogram_Body (Loc,
4161 Specification => Spec,
4162 Declarations => New_List,
4163 Handled_Statement_Sequence =>
4164 Make_Handled_Sequence_Of_Statements (Loc,
4165 Statements => New_List (Attr_Node)));
4166 end if;
4168 -- Signal the ABE mechanism that the generated subprogram body has not
4169 -- ABE ramifications.
4171 Set_Was_Attribute_Reference (Body_Node);
4173 -- In case of tagged types we add the body of the generated function to
4174 -- the freezing actions of the type (because in the general case such
4175 -- type is still not frozen). We exclude from this processing generic
4176 -- formal subprograms found in instantiations.
4178 -- We must exclude restricted run-time libraries because
4179 -- entity AST_Handler is defined in package System.Aux_Dec which is not
4180 -- available in those platforms. Note that we cannot use the function
4181 -- Restricted_Profile (instead of Configurable_Run_Time_Mode) because
4182 -- the ZFP run-time library is not defined as a profile, and we do not
4183 -- want to deal with AST_Handler in ZFP mode.
4185 if not Configurable_Run_Time_Mode
4186 and then not Present (Corresponding_Formal_Spec (N))
4187 and then Etype (Nam) /= RTE (RE_AST_Handler)
4188 then
4189 declare
4190 P : constant Node_Id := Prefix (Nam);
4192 begin
4193 -- The prefix of 'Img is an object that is evaluated for each call
4194 -- of the function that renames it.
4196 if Aname = Name_Img then
4197 Preanalyze_And_Resolve (P);
4199 -- For all other attribute renamings, the prefix is a subtype
4201 else
4202 Find_Type (P);
4203 end if;
4205 -- If the target type is not yet frozen, add the body to the
4206 -- actions to be elaborated at freeze time.
4208 if Is_Tagged_Type (Etype (P))
4209 and then In_Open_Scopes (Scope (Etype (P)))
4210 then
4211 Ensure_Freeze_Node (Etype (P));
4212 Append_Freeze_Action (Etype (P), Body_Node);
4213 else
4214 Rewrite (N, Body_Node);
4215 Analyze (N);
4216 Set_Etype (New_S, Base_Type (Etype (New_S)));
4217 end if;
4218 end;
4220 -- Generic formal subprograms or AST_Handler renaming
4222 else
4223 Rewrite (N, Body_Node);
4224 Analyze (N);
4225 Set_Etype (New_S, Base_Type (Etype (New_S)));
4226 end if;
4228 if Is_Compilation_Unit (New_S) then
4229 Error_Msg_N
4230 ("a library unit can only rename another library unit", N);
4231 end if;
4232 end Attribute_Renaming;
4234 ----------------------
4235 -- Chain_Use_Clause --
4236 ----------------------
4238 procedure Chain_Use_Clause (N : Node_Id) is
4239 Level : Int := Scope_Stack.Last;
4240 Pack : Entity_Id;
4242 begin
4243 -- Common case
4245 if not Is_Compilation_Unit (Current_Scope)
4246 or else not Is_Child_Unit (Current_Scope)
4247 then
4248 null;
4250 -- Common case for compilation unit
4252 elsif Defining_Entity (N => Parent (N),
4253 Empty_On_Errors => True) = Current_Scope
4254 then
4255 null;
4257 else
4258 -- If declaration appears in some other scope, it must be in some
4259 -- parent unit when compiling a child.
4261 Pack := Defining_Entity (Parent (N), Empty_On_Errors => True);
4263 if not In_Open_Scopes (Pack) then
4264 null;
4266 -- If the use clause appears in an ancestor and we are in the
4267 -- private part of the immediate parent, the use clauses are
4268 -- already installed.
4270 elsif Pack /= Scope (Current_Scope)
4271 and then In_Private_Part (Scope (Current_Scope))
4272 then
4273 null;
4275 else
4276 -- Find entry for parent unit in scope stack
4278 while Scope_Stack.Table (Level).Entity /= Pack loop
4279 Level := Level - 1;
4280 end loop;
4281 end if;
4282 end if;
4284 Set_Next_Use_Clause (N,
4285 Scope_Stack.Table (Level).First_Use_Clause);
4286 Scope_Stack.Table (Level).First_Use_Clause := N;
4287 end Chain_Use_Clause;
4289 ---------------------------
4290 -- Check_Frozen_Renaming --
4291 ---------------------------
4293 procedure Check_Frozen_Renaming (N : Node_Id; Subp : Entity_Id) is
4294 B_Node : Node_Id;
4295 Old_S : Entity_Id;
4297 begin
4298 if Is_Frozen (Subp) and then not Has_Completion (Subp) then
4299 B_Node :=
4300 Build_Renamed_Body
4301 (Parent (Declaration_Node (Subp)), Defining_Entity (N));
4303 if Is_Entity_Name (Name (N)) then
4304 Old_S := Entity (Name (N));
4306 if not Is_Frozen (Old_S)
4307 and then Operating_Mode /= Check_Semantics
4308 then
4309 Append_Freeze_Action (Old_S, B_Node);
4310 else
4311 Insert_After (N, B_Node);
4312 Analyze (B_Node);
4313 end if;
4315 if Is_Intrinsic_Subprogram (Old_S) and then not In_Instance then
4316 Error_Msg_N
4317 ("subprogram used in renaming_as_body cannot be intrinsic",
4318 Name (N));
4319 end if;
4321 else
4322 Insert_After (N, B_Node);
4323 Analyze (B_Node);
4324 end if;
4325 end if;
4326 end Check_Frozen_Renaming;
4328 -------------------------------
4329 -- Set_Entity_Or_Discriminal --
4330 -------------------------------
4332 procedure Set_Entity_Or_Discriminal (N : Node_Id; E : Entity_Id) is
4333 P : Node_Id;
4335 begin
4336 -- If the entity is not a discriminant, or else expansion is disabled,
4337 -- simply set the entity.
4339 if not In_Spec_Expression
4340 or else Ekind (E) /= E_Discriminant
4341 or else Inside_A_Generic
4342 then
4343 Set_Entity_With_Checks (N, E);
4345 -- The replacement of a discriminant by the corresponding discriminal
4346 -- is not done for a task discriminant that appears in a default
4347 -- expression of an entry parameter. See Exp_Ch2.Expand_Discriminant
4348 -- for details on their handling.
4350 elsif Is_Concurrent_Type (Scope (E)) then
4351 P := Parent (N);
4352 while Present (P)
4353 and then not Nkind_In (P, N_Parameter_Specification,
4354 N_Component_Declaration)
4355 loop
4356 P := Parent (P);
4357 end loop;
4359 if Present (P)
4360 and then Nkind (P) = N_Parameter_Specification
4361 then
4362 null;
4364 else
4365 Set_Entity (N, Discriminal (E));
4366 end if;
4368 -- Otherwise, this is a discriminant in a context in which
4369 -- it is a reference to the corresponding parameter of the
4370 -- init proc for the enclosing type.
4372 else
4373 Set_Entity (N, Discriminal (E));
4374 end if;
4375 end Set_Entity_Or_Discriminal;
4377 -----------------------------------
4378 -- Check_In_Previous_With_Clause --
4379 -----------------------------------
4381 procedure Check_In_Previous_With_Clause
4382 (N : Node_Id;
4383 Nam : Entity_Id)
4385 Pack : constant Entity_Id := Entity (Original_Node (Nam));
4386 Item : Node_Id;
4387 Par : Node_Id;
4389 begin
4390 Item := First (Context_Items (Parent (N)));
4391 while Present (Item) and then Item /= N loop
4392 if Nkind (Item) = N_With_Clause
4394 -- Protect the frontend against previous critical errors
4396 and then Nkind (Name (Item)) /= N_Selected_Component
4397 and then Entity (Name (Item)) = Pack
4398 then
4399 Par := Nam;
4401 -- Find root library unit in with_clause
4403 while Nkind (Par) = N_Expanded_Name loop
4404 Par := Prefix (Par);
4405 end loop;
4407 if Is_Child_Unit (Entity (Original_Node (Par))) then
4408 Error_Msg_NE ("& is not directly visible", Par, Entity (Par));
4409 else
4410 return;
4411 end if;
4412 end if;
4414 Next (Item);
4415 end loop;
4417 -- On exit, package is not mentioned in a previous with_clause.
4418 -- Check if its prefix is.
4420 if Nkind (Nam) = N_Expanded_Name then
4421 Check_In_Previous_With_Clause (N, Prefix (Nam));
4423 elsif Pack /= Any_Id then
4424 Error_Msg_NE ("& is not visible", Nam, Pack);
4425 end if;
4426 end Check_In_Previous_With_Clause;
4428 ---------------------------------
4429 -- Check_Library_Unit_Renaming --
4430 ---------------------------------
4432 procedure Check_Library_Unit_Renaming (N : Node_Id; Old_E : Entity_Id) is
4433 New_E : Entity_Id;
4435 begin
4436 if Nkind (Parent (N)) /= N_Compilation_Unit then
4437 return;
4439 -- Check for library unit. Note that we used to check for the scope
4440 -- being Standard here, but that was wrong for Standard itself.
4442 elsif not Is_Compilation_Unit (Old_E)
4443 and then not Is_Child_Unit (Old_E)
4444 then
4445 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4447 -- Entities defined in Standard (operators and boolean literals) cannot
4448 -- be renamed as library units.
4450 elsif Scope (Old_E) = Standard_Standard
4451 and then Sloc (Old_E) = Standard_Location
4452 then
4453 Error_Msg_N ("renamed unit must be a library unit", Name (N));
4455 elsif Present (Parent_Spec (N))
4456 and then Nkind (Unit (Parent_Spec (N))) = N_Generic_Package_Declaration
4457 and then not Is_Child_Unit (Old_E)
4458 then
4459 Error_Msg_N
4460 ("renamed unit must be a child unit of generic parent", Name (N));
4462 elsif Nkind (N) in N_Generic_Renaming_Declaration
4463 and then Nkind (Name (N)) = N_Expanded_Name
4464 and then Is_Generic_Instance (Entity (Prefix (Name (N))))
4465 and then Is_Generic_Unit (Old_E)
4466 then
4467 Error_Msg_N
4468 ("renamed generic unit must be a library unit", Name (N));
4470 elsif Is_Package_Or_Generic_Package (Old_E) then
4472 -- Inherit categorization flags
4474 New_E := Defining_Entity (N);
4475 Set_Is_Pure (New_E, Is_Pure (Old_E));
4476 Set_Is_Preelaborated (New_E, Is_Preelaborated (Old_E));
4477 Set_Is_Remote_Call_Interface (New_E,
4478 Is_Remote_Call_Interface (Old_E));
4479 Set_Is_Remote_Types (New_E, Is_Remote_Types (Old_E));
4480 Set_Is_Shared_Passive (New_E, Is_Shared_Passive (Old_E));
4481 end if;
4482 end Check_Library_Unit_Renaming;
4484 ------------------------
4485 -- Enclosing_Instance --
4486 ------------------------
4488 function Enclosing_Instance return Entity_Id is
4489 S : Entity_Id;
4491 begin
4492 if not Is_Generic_Instance (Current_Scope) then
4493 return Empty;
4494 end if;
4496 S := Scope (Current_Scope);
4497 while S /= Standard_Standard loop
4498 if Is_Generic_Instance (S) then
4499 return S;
4500 end if;
4502 S := Scope (S);
4503 end loop;
4505 return Empty;
4506 end Enclosing_Instance;
4508 ---------------
4509 -- End_Scope --
4510 ---------------
4512 procedure End_Scope is
4513 Id : Entity_Id;
4514 Prev : Entity_Id;
4515 Outer : Entity_Id;
4517 begin
4518 Id := First_Entity (Current_Scope);
4519 while Present (Id) loop
4520 -- An entity in the current scope is not necessarily the first one
4521 -- on its homonym chain. Find its predecessor if any,
4522 -- If it is an internal entity, it will not be in the visibility
4523 -- chain altogether, and there is nothing to unchain.
4525 if Id /= Current_Entity (Id) then
4526 Prev := Current_Entity (Id);
4527 while Present (Prev)
4528 and then Present (Homonym (Prev))
4529 and then Homonym (Prev) /= Id
4530 loop
4531 Prev := Homonym (Prev);
4532 end loop;
4534 -- Skip to end of loop if Id is not in the visibility chain
4536 if No (Prev) or else Homonym (Prev) /= Id then
4537 goto Next_Ent;
4538 end if;
4540 else
4541 Prev := Empty;
4542 end if;
4544 Set_Is_Immediately_Visible (Id, False);
4546 Outer := Homonym (Id);
4547 while Present (Outer) and then Scope (Outer) = Current_Scope loop
4548 Outer := Homonym (Outer);
4549 end loop;
4551 -- Reset homonym link of other entities, but do not modify link
4552 -- between entities in current scope, so that the back-end can have
4553 -- a proper count of local overloadings.
4555 if No (Prev) then
4556 Set_Name_Entity_Id (Chars (Id), Outer);
4558 elsif Scope (Prev) /= Scope (Id) then
4559 Set_Homonym (Prev, Outer);
4560 end if;
4562 <<Next_Ent>>
4563 Next_Entity (Id);
4564 end loop;
4566 -- If the scope generated freeze actions, place them before the
4567 -- current declaration and analyze them. Type declarations and
4568 -- the bodies of initialization procedures can generate such nodes.
4569 -- We follow the parent chain until we reach a list node, which is
4570 -- the enclosing list of declarations. If the list appears within
4571 -- a protected definition, move freeze nodes outside the protected
4572 -- type altogether.
4574 if Present
4575 (Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions)
4576 then
4577 declare
4578 Decl : Node_Id;
4579 L : constant List_Id := Scope_Stack.Table
4580 (Scope_Stack.Last).Pending_Freeze_Actions;
4582 begin
4583 if Is_Itype (Current_Scope) then
4584 Decl := Associated_Node_For_Itype (Current_Scope);
4585 else
4586 Decl := Parent (Current_Scope);
4587 end if;
4589 Pop_Scope;
4591 while not (Is_List_Member (Decl))
4592 or else Nkind_In (Parent (Decl), N_Protected_Definition,
4593 N_Task_Definition)
4594 loop
4595 Decl := Parent (Decl);
4596 end loop;
4598 Insert_List_Before_And_Analyze (Decl, L);
4599 end;
4601 else
4602 Pop_Scope;
4603 end if;
4604 end End_Scope;
4606 ---------------------
4607 -- End_Use_Clauses --
4608 ---------------------
4610 procedure End_Use_Clauses (Clause : Node_Id) is
4611 U : Node_Id;
4613 begin
4614 -- Remove use_type_clauses first, because they affect the visibility of
4615 -- operators in subsequent used packages.
4617 U := Clause;
4618 while Present (U) loop
4619 if Nkind (U) = N_Use_Type_Clause then
4620 End_Use_Type (U);
4621 end if;
4623 Next_Use_Clause (U);
4624 end loop;
4626 U := Clause;
4627 while Present (U) loop
4628 if Nkind (U) = N_Use_Package_Clause then
4629 End_Use_Package (U);
4630 end if;
4632 Next_Use_Clause (U);
4633 end loop;
4634 end End_Use_Clauses;
4636 ---------------------
4637 -- End_Use_Package --
4638 ---------------------
4640 procedure End_Use_Package (N : Node_Id) is
4641 Pack : Entity_Id;
4642 Pack_Name : Node_Id;
4643 Id : Entity_Id;
4644 Elmt : Elmt_Id;
4646 function Is_Primitive_Operator_In_Use
4647 (Op : Entity_Id;
4648 F : Entity_Id) return Boolean;
4649 -- Check whether Op is a primitive operator of a use-visible type
4651 ----------------------------------
4652 -- Is_Primitive_Operator_In_Use --
4653 ----------------------------------
4655 function Is_Primitive_Operator_In_Use
4656 (Op : Entity_Id;
4657 F : Entity_Id) return Boolean
4659 T : constant Entity_Id := Base_Type (Etype (F));
4660 begin
4661 return In_Use (T) and then Scope (T) = Scope (Op);
4662 end Is_Primitive_Operator_In_Use;
4664 -- Start of processing for End_Use_Package
4666 begin
4667 Pack_Name := Name (N);
4669 -- Test that Pack_Name actually denotes a package before processing
4671 if Is_Entity_Name (Pack_Name)
4672 and then Ekind (Entity (Pack_Name)) = E_Package
4673 then
4674 Pack := Entity (Pack_Name);
4676 if In_Open_Scopes (Pack) then
4677 null;
4679 elsif not Redundant_Use (Pack_Name) then
4680 Set_In_Use (Pack, False);
4681 Set_Current_Use_Clause (Pack, Empty);
4683 Id := First_Entity (Pack);
4684 while Present (Id) loop
4686 -- Preserve use-visibility of operators that are primitive
4687 -- operators of a type that is use-visible through an active
4688 -- use_type_clause.
4690 if Nkind (Id) = N_Defining_Operator_Symbol
4691 and then
4692 (Is_Primitive_Operator_In_Use (Id, First_Formal (Id))
4693 or else
4694 (Present (Next_Formal (First_Formal (Id)))
4695 and then
4696 Is_Primitive_Operator_In_Use
4697 (Id, Next_Formal (First_Formal (Id)))))
4698 then
4699 null;
4700 else
4701 Set_Is_Potentially_Use_Visible (Id, False);
4702 end if;
4704 if Is_Private_Type (Id)
4705 and then Present (Full_View (Id))
4706 then
4707 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4708 end if;
4710 Next_Entity (Id);
4711 end loop;
4713 if Present (Renamed_Object (Pack)) then
4714 Set_In_Use (Renamed_Object (Pack), False);
4715 Set_Current_Use_Clause (Renamed_Object (Pack), Empty);
4716 end if;
4718 if Chars (Pack) = Name_System
4719 and then Scope (Pack) = Standard_Standard
4720 and then Present_System_Aux
4721 then
4722 Id := First_Entity (System_Aux_Id);
4723 while Present (Id) loop
4724 Set_Is_Potentially_Use_Visible (Id, False);
4726 if Is_Private_Type (Id)
4727 and then Present (Full_View (Id))
4728 then
4729 Set_Is_Potentially_Use_Visible (Full_View (Id), False);
4730 end if;
4732 Next_Entity (Id);
4733 end loop;
4735 Set_In_Use (System_Aux_Id, False);
4736 end if;
4737 else
4738 Set_Redundant_Use (Pack_Name, False);
4739 end if;
4740 end if;
4742 if Present (Hidden_By_Use_Clause (N)) then
4743 Elmt := First_Elmt (Hidden_By_Use_Clause (N));
4744 while Present (Elmt) loop
4745 declare
4746 E : constant Entity_Id := Node (Elmt);
4748 begin
4749 -- Reset either Use_Visibility or Direct_Visibility, depending
4750 -- on how the entity was hidden by the use clause.
4752 if In_Use (Scope (E))
4753 and then Used_As_Generic_Actual (Scope (E))
4754 then
4755 Set_Is_Potentially_Use_Visible (Node (Elmt));
4756 else
4757 Set_Is_Immediately_Visible (Node (Elmt));
4758 end if;
4760 Next_Elmt (Elmt);
4761 end;
4762 end loop;
4764 Set_Hidden_By_Use_Clause (N, No_Elist);
4765 end if;
4766 end End_Use_Package;
4768 ------------------
4769 -- End_Use_Type --
4770 ------------------
4772 procedure End_Use_Type (N : Node_Id) is
4773 Elmt : Elmt_Id;
4774 Id : Entity_Id;
4775 T : Entity_Id;
4777 -- Start of processing for End_Use_Type
4779 begin
4780 Id := Subtype_Mark (N);
4782 -- A call to Rtsfind may occur while analyzing a use_type_clause, in
4783 -- which case the type marks are not resolved yet, so guard against that
4784 -- here.
4786 if Is_Entity_Name (Id) and then Present (Entity (Id)) then
4787 T := Entity (Id);
4789 if T = Any_Type or else From_Limited_With (T) then
4790 null;
4792 -- Note that the use_type_clause may mention a subtype of the type
4793 -- whose primitive operations have been made visible. Here as
4794 -- elsewhere, it is the base type that matters for visibility.
4796 elsif In_Open_Scopes (Scope (Base_Type (T))) then
4797 null;
4799 elsif not Redundant_Use (Id) then
4800 Set_In_Use (T, False);
4801 Set_In_Use (Base_Type (T), False);
4802 Set_Current_Use_Clause (T, Empty);
4803 Set_Current_Use_Clause (Base_Type (T), Empty);
4804 end if;
4805 end if;
4807 if Is_Empty_Elmt_List (Used_Operations (N)) then
4808 return;
4810 else
4811 Elmt := First_Elmt (Used_Operations (N));
4812 while Present (Elmt) loop
4813 Set_Is_Potentially_Use_Visible (Node (Elmt), False);
4814 Next_Elmt (Elmt);
4815 end loop;
4816 end if;
4817 end End_Use_Type;
4819 --------------------
4820 -- Entity_Of_Unit --
4821 --------------------
4823 function Entity_Of_Unit (U : Node_Id) return Entity_Id is
4824 begin
4825 if Nkind (U) = N_Package_Instantiation and then Analyzed (U) then
4826 return Defining_Entity (Instance_Spec (U));
4827 else
4828 return Defining_Entity (U);
4829 end if;
4830 end Entity_Of_Unit;
4832 ----------------------
4833 -- Find_Direct_Name --
4834 ----------------------
4836 procedure Find_Direct_Name (N : Node_Id) is
4837 E : Entity_Id;
4838 E2 : Entity_Id;
4839 Msg : Boolean;
4841 Homonyms : Entity_Id;
4842 -- Saves start of homonym chain
4844 Inst : Entity_Id := Empty;
4845 -- Enclosing instance, if any
4847 Nvis_Entity : Boolean;
4848 -- Set True to indicate that there is at least one entity on the homonym
4849 -- chain which, while not visible, is visible enough from the user point
4850 -- of view to warrant an error message of "not visible" rather than
4851 -- undefined.
4853 Nvis_Is_Private_Subprg : Boolean := False;
4854 -- Ada 2005 (AI-262): Set True to indicate that a form of Beaujolais
4855 -- effect concerning library subprograms has been detected. Used to
4856 -- generate the precise error message.
4858 function From_Actual_Package (E : Entity_Id) return Boolean;
4859 -- Returns true if the entity is an actual for a package that is itself
4860 -- an actual for a formal package of the current instance. Such an
4861 -- entity requires special handling because it may be use-visible but
4862 -- hides directly visible entities defined outside the instance, because
4863 -- the corresponding formal did so in the generic.
4865 function Is_Actual_Parameter return Boolean;
4866 -- This function checks if the node N is an identifier that is an actual
4867 -- parameter of a procedure call. If so it returns True, otherwise it
4868 -- return False. The reason for this check is that at this stage we do
4869 -- not know what procedure is being called if the procedure might be
4870 -- overloaded, so it is premature to go setting referenced flags or
4871 -- making calls to Generate_Reference. We will wait till Resolve_Actuals
4872 -- for that processing
4874 function Known_But_Invisible (E : Entity_Id) return Boolean;
4875 -- This function determines whether a reference to the entity E, which
4876 -- is not visible, can reasonably be considered to be known to the
4877 -- writer of the reference. This is a heuristic test, used only for
4878 -- the purposes of figuring out whether we prefer to complain that an
4879 -- entity is undefined or invisible (and identify the declaration of
4880 -- the invisible entity in the latter case). The point here is that we
4881 -- don't want to complain that something is invisible and then point to
4882 -- something entirely mysterious to the writer.
4884 procedure Nvis_Messages;
4885 -- Called if there are no visible entries for N, but there is at least
4886 -- one non-directly visible, or hidden declaration. This procedure
4887 -- outputs an appropriate set of error messages.
4889 procedure Undefined (Nvis : Boolean);
4890 -- This function is called if the current node has no corresponding
4891 -- visible entity or entities. The value set in Msg indicates whether
4892 -- an error message was generated (multiple error messages for the
4893 -- same variable are generally suppressed, see body for details).
4894 -- Msg is True if an error message was generated, False if not. This
4895 -- value is used by the caller to determine whether or not to output
4896 -- additional messages where appropriate. The parameter is set False
4897 -- to get the message "X is undefined", and True to get the message
4898 -- "X is not visible".
4900 -------------------------
4901 -- From_Actual_Package --
4902 -------------------------
4904 function From_Actual_Package (E : Entity_Id) return Boolean is
4905 Scop : constant Entity_Id := Scope (E);
4906 -- Declared scope of candidate entity
4908 function Declared_In_Actual (Pack : Entity_Id) return Boolean;
4909 -- Recursive function that does the work and examines actuals of
4910 -- actual packages of current instance.
4912 ------------------------
4913 -- Declared_In_Actual --
4914 ------------------------
4916 function Declared_In_Actual (Pack : Entity_Id) return Boolean is
4917 Act : Entity_Id;
4919 begin
4920 if No (Associated_Formal_Package (Pack)) then
4921 return False;
4923 else
4924 Act := First_Entity (Pack);
4925 while Present (Act) loop
4926 if Renamed_Object (Pack) = Scop then
4927 return True;
4929 -- Check for end of list of actuals
4931 elsif Ekind (Act) = E_Package
4932 and then Renamed_Object (Act) = Pack
4933 then
4934 return False;
4936 elsif Ekind (Act) = E_Package
4937 and then Declared_In_Actual (Act)
4938 then
4939 return True;
4940 end if;
4942 Next_Entity (Act);
4943 end loop;
4945 return False;
4946 end if;
4947 end Declared_In_Actual;
4949 -- Local variables
4951 Act : Entity_Id;
4953 -- Start of processing for From_Actual_Package
4955 begin
4956 if not In_Instance then
4957 return False;
4959 else
4960 Inst := Current_Scope;
4961 while Present (Inst)
4962 and then Ekind (Inst) /= E_Package
4963 and then not Is_Generic_Instance (Inst)
4964 loop
4965 Inst := Scope (Inst);
4966 end loop;
4968 if No (Inst) then
4969 return False;
4970 end if;
4972 Act := First_Entity (Inst);
4973 while Present (Act) loop
4974 if Ekind (Act) = E_Package
4975 and then Declared_In_Actual (Act)
4976 then
4977 return True;
4978 end if;
4980 Next_Entity (Act);
4981 end loop;
4983 return False;
4984 end if;
4985 end From_Actual_Package;
4987 -------------------------
4988 -- Is_Actual_Parameter --
4989 -------------------------
4991 function Is_Actual_Parameter return Boolean is
4992 begin
4993 return
4994 Nkind (N) = N_Identifier
4995 and then
4996 (Nkind (Parent (N)) = N_Procedure_Call_Statement
4997 or else
4998 (Nkind (Parent (N)) = N_Parameter_Association
4999 and then N = Explicit_Actual_Parameter (Parent (N))
5000 and then Nkind (Parent (Parent (N))) =
5001 N_Procedure_Call_Statement));
5002 end Is_Actual_Parameter;
5004 -------------------------
5005 -- Known_But_Invisible --
5006 -------------------------
5008 function Known_But_Invisible (E : Entity_Id) return Boolean is
5009 Fname : File_Name_Type;
5011 begin
5012 -- Entities in Standard are always considered to be known
5014 if Sloc (E) <= Standard_Location then
5015 return True;
5017 -- An entity that does not come from source is always considered
5018 -- to be unknown, since it is an artifact of code expansion.
5020 elsif not Comes_From_Source (E) then
5021 return False;
5023 -- In gnat internal mode, we consider all entities known. The
5024 -- historical reason behind this discrepancy is not known??? But the
5025 -- only effect is to modify the error message given, so it is not
5026 -- critical. Since it only affects the exact wording of error
5027 -- messages in illegal programs, we do not mention this as an
5028 -- effect of -gnatg, since it is not a language modification.
5030 elsif GNAT_Mode then
5031 return True;
5032 end if;
5034 -- Here we have an entity that is not from package Standard, and
5035 -- which comes from Source. See if it comes from an internal file.
5037 Fname := Unit_File_Name (Get_Source_Unit (E));
5039 -- Case of from internal file
5041 if In_Internal_Unit (E) then
5043 -- Private part entities in internal files are never considered
5044 -- to be known to the writer of normal application code.
5046 if Is_Hidden (E) then
5047 return False;
5048 end if;
5050 -- Entities from System packages other than System and
5051 -- System.Storage_Elements are not considered to be known.
5052 -- System.Auxxxx files are also considered known to the user.
5054 -- Should refine this at some point to generally distinguish
5055 -- between known and unknown internal files ???
5057 Get_Name_String (Fname);
5059 return
5060 Name_Len < 2
5061 or else
5062 Name_Buffer (1 .. 2) /= "s-"
5063 or else
5064 Name_Buffer (3 .. 8) = "stoele"
5065 or else
5066 Name_Buffer (3 .. 5) = "aux";
5068 -- If not an internal file, then entity is definitely known, even if
5069 -- it is in a private part (the message generated will note that it
5070 -- is in a private part).
5072 else
5073 return True;
5074 end if;
5075 end Known_But_Invisible;
5077 -------------------
5078 -- Nvis_Messages --
5079 -------------------
5081 procedure Nvis_Messages is
5082 Comp_Unit : Node_Id;
5083 Ent : Entity_Id;
5084 Found : Boolean := False;
5085 Hidden : Boolean := False;
5086 Item : Node_Id;
5088 begin
5089 -- Ada 2005 (AI-262): Generate a precise error concerning the
5090 -- Beaujolais effect that was previously detected
5092 if Nvis_Is_Private_Subprg then
5094 pragma Assert (Nkind (E2) = N_Defining_Identifier
5095 and then Ekind (E2) = E_Function
5096 and then Scope (E2) = Standard_Standard
5097 and then Has_Private_With (E2));
5099 -- Find the sloc corresponding to the private with'ed unit
5101 Comp_Unit := Cunit (Current_Sem_Unit);
5102 Error_Msg_Sloc := No_Location;
5104 Item := First (Context_Items (Comp_Unit));
5105 while Present (Item) loop
5106 if Nkind (Item) = N_With_Clause
5107 and then Private_Present (Item)
5108 and then Entity (Name (Item)) = E2
5109 then
5110 Error_Msg_Sloc := Sloc (Item);
5111 exit;
5112 end if;
5114 Next (Item);
5115 end loop;
5117 pragma Assert (Error_Msg_Sloc /= No_Location);
5119 Error_Msg_N ("(Ada 2005): hidden by private with clause #", N);
5120 return;
5121 end if;
5123 Undefined (Nvis => True);
5125 if Msg then
5127 -- First loop does hidden declarations
5129 Ent := Homonyms;
5130 while Present (Ent) loop
5131 if Is_Potentially_Use_Visible (Ent) then
5132 if not Hidden then
5133 Error_Msg_N -- CODEFIX
5134 ("multiple use clauses cause hiding!", N);
5135 Hidden := True;
5136 end if;
5138 Error_Msg_Sloc := Sloc (Ent);
5139 Error_Msg_N -- CODEFIX
5140 ("hidden declaration#!", N);
5141 end if;
5143 Ent := Homonym (Ent);
5144 end loop;
5146 -- If we found hidden declarations, then that's enough, don't
5147 -- bother looking for non-visible declarations as well.
5149 if Hidden then
5150 return;
5151 end if;
5153 -- Second loop does non-directly visible declarations
5155 Ent := Homonyms;
5156 while Present (Ent) loop
5157 if not Is_Potentially_Use_Visible (Ent) then
5159 -- Do not bother the user with unknown entities
5161 if not Known_But_Invisible (Ent) then
5162 goto Continue;
5163 end if;
5165 Error_Msg_Sloc := Sloc (Ent);
5167 -- Output message noting that there is a non-visible
5168 -- declaration, distinguishing the private part case.
5170 if Is_Hidden (Ent) then
5171 Error_Msg_N ("non-visible (private) declaration#!", N);
5173 -- If the entity is declared in a generic package, it
5174 -- cannot be visible, so there is no point in adding it
5175 -- to the list of candidates if another homograph from a
5176 -- non-generic package has been seen.
5178 elsif Ekind (Scope (Ent)) = E_Generic_Package
5179 and then Found
5180 then
5181 null;
5183 else
5184 Error_Msg_N -- CODEFIX
5185 ("non-visible declaration#!", N);
5187 if Ekind (Scope (Ent)) /= E_Generic_Package then
5188 Found := True;
5189 end if;
5191 if Is_Compilation_Unit (Ent)
5192 and then
5193 Nkind (Parent (Parent (N))) = N_Use_Package_Clause
5194 then
5195 Error_Msg_Qual_Level := 99;
5196 Error_Msg_NE -- CODEFIX
5197 ("\\missing `WITH &;`", N, Ent);
5198 Error_Msg_Qual_Level := 0;
5199 end if;
5201 if Ekind (Ent) = E_Discriminant
5202 and then Present (Corresponding_Discriminant (Ent))
5203 and then Scope (Corresponding_Discriminant (Ent)) =
5204 Etype (Scope (Ent))
5205 then
5206 Error_Msg_N
5207 ("inherited discriminant not allowed here" &
5208 " (RM 3.8 (12), 3.8.1 (6))!", N);
5209 end if;
5210 end if;
5212 -- Set entity and its containing package as referenced. We
5213 -- can't be sure of this, but this seems a better choice
5214 -- to avoid unused entity messages.
5216 if Comes_From_Source (Ent) then
5217 Set_Referenced (Ent);
5218 Set_Referenced (Cunit_Entity (Get_Source_Unit (Ent)));
5219 end if;
5220 end if;
5222 <<Continue>>
5223 Ent := Homonym (Ent);
5224 end loop;
5225 end if;
5226 end Nvis_Messages;
5228 ---------------
5229 -- Undefined --
5230 ---------------
5232 procedure Undefined (Nvis : Boolean) is
5233 Emsg : Error_Msg_Id;
5235 begin
5236 -- We should never find an undefined internal name. If we do, then
5237 -- see if we have previous errors. If so, ignore on the grounds that
5238 -- it is probably a cascaded message (e.g. a block label from a badly
5239 -- formed block). If no previous errors, then we have a real internal
5240 -- error of some kind so raise an exception.
5242 if Is_Internal_Name (Chars (N)) then
5243 if Total_Errors_Detected /= 0 then
5244 return;
5245 else
5246 raise Program_Error;
5247 end if;
5248 end if;
5250 -- A very specialized error check, if the undefined variable is
5251 -- a case tag, and the case type is an enumeration type, check
5252 -- for a possible misspelling, and if so, modify the identifier
5254 -- Named aggregate should also be handled similarly ???
5256 if Nkind (N) = N_Identifier
5257 and then Nkind (Parent (N)) = N_Case_Statement_Alternative
5258 then
5259 declare
5260 Case_Stm : constant Node_Id := Parent (Parent (N));
5261 Case_Typ : constant Entity_Id := Etype (Expression (Case_Stm));
5263 Lit : Node_Id;
5265 begin
5266 if Is_Enumeration_Type (Case_Typ)
5267 and then not Is_Standard_Character_Type (Case_Typ)
5268 then
5269 Lit := First_Literal (Case_Typ);
5270 Get_Name_String (Chars (Lit));
5272 if Chars (Lit) /= Chars (N)
5273 and then Is_Bad_Spelling_Of (Chars (N), Chars (Lit))
5274 then
5275 Error_Msg_Node_2 := Lit;
5276 Error_Msg_N -- CODEFIX
5277 ("& is undefined, assume misspelling of &", N);
5278 Rewrite (N, New_Occurrence_Of (Lit, Sloc (N)));
5279 return;
5280 end if;
5282 Lit := Next_Literal (Lit);
5283 end if;
5284 end;
5285 end if;
5287 -- Normal processing
5289 Set_Entity (N, Any_Id);
5290 Set_Etype (N, Any_Type);
5292 -- We use the table Urefs to keep track of entities for which we
5293 -- have issued errors for undefined references. Multiple errors
5294 -- for a single name are normally suppressed, however we modify
5295 -- the error message to alert the programmer to this effect.
5297 for J in Urefs.First .. Urefs.Last loop
5298 if Chars (N) = Chars (Urefs.Table (J).Node) then
5299 if Urefs.Table (J).Err /= No_Error_Msg
5300 and then Sloc (N) /= Urefs.Table (J).Loc
5301 then
5302 Error_Msg_Node_1 := Urefs.Table (J).Node;
5304 if Urefs.Table (J).Nvis then
5305 Change_Error_Text (Urefs.Table (J).Err,
5306 "& is not visible (more references follow)");
5307 else
5308 Change_Error_Text (Urefs.Table (J).Err,
5309 "& is undefined (more references follow)");
5310 end if;
5312 Urefs.Table (J).Err := No_Error_Msg;
5313 end if;
5315 -- Although we will set Msg False, and thus suppress the
5316 -- message, we also set Error_Posted True, to avoid any
5317 -- cascaded messages resulting from the undefined reference.
5319 Msg := False;
5320 Set_Error_Posted (N, True);
5321 return;
5322 end if;
5323 end loop;
5325 -- If entry not found, this is first undefined occurrence
5327 if Nvis then
5328 Error_Msg_N ("& is not visible!", N);
5329 Emsg := Get_Msg_Id;
5331 else
5332 Error_Msg_N ("& is undefined!", N);
5333 Emsg := Get_Msg_Id;
5335 -- A very bizarre special check, if the undefined identifier
5336 -- is put or put_line, then add a special error message (since
5337 -- this is a very common error for beginners to make).
5339 if Nam_In (Chars (N), Name_Put, Name_Put_Line) then
5340 Error_Msg_N -- CODEFIX
5341 ("\\possible missing `WITH Ada.Text_'I'O; " &
5342 "USE Ada.Text_'I'O`!", N);
5344 -- Another special check if N is the prefix of a selected
5345 -- component which is a known unit, add message complaining
5346 -- about missing with for this unit.
5348 elsif Nkind (Parent (N)) = N_Selected_Component
5349 and then N = Prefix (Parent (N))
5350 and then Is_Known_Unit (Parent (N))
5351 then
5352 Error_Msg_Node_2 := Selector_Name (Parent (N));
5353 Error_Msg_N -- CODEFIX
5354 ("\\missing `WITH &.&;`", Prefix (Parent (N)));
5355 end if;
5357 -- Now check for possible misspellings
5359 declare
5360 E : Entity_Id;
5361 Ematch : Entity_Id := Empty;
5363 Last_Name_Id : constant Name_Id :=
5364 Name_Id (Nat (First_Name_Id) +
5365 Name_Entries_Count - 1);
5367 begin
5368 for Nam in First_Name_Id .. Last_Name_Id loop
5369 E := Get_Name_Entity_Id (Nam);
5371 if Present (E)
5372 and then (Is_Immediately_Visible (E)
5373 or else
5374 Is_Potentially_Use_Visible (E))
5375 then
5376 if Is_Bad_Spelling_Of (Chars (N), Nam) then
5377 Ematch := E;
5378 exit;
5379 end if;
5380 end if;
5381 end loop;
5383 if Present (Ematch) then
5384 Error_Msg_NE -- CODEFIX
5385 ("\possible misspelling of&", N, Ematch);
5386 end if;
5387 end;
5388 end if;
5390 -- Make entry in undefined references table unless the full errors
5391 -- switch is set, in which case by refraining from generating the
5392 -- table entry, we guarantee that we get an error message for every
5393 -- undefined reference. The entry is not added if we are ignoring
5394 -- errors.
5396 if not All_Errors_Mode and then Ignore_Errors_Enable = 0 then
5397 Urefs.Append (
5398 (Node => N,
5399 Err => Emsg,
5400 Nvis => Nvis,
5401 Loc => Sloc (N)));
5402 end if;
5404 Msg := True;
5405 end Undefined;
5407 -- Local variables
5409 Is_Assignment_LHS : constant Boolean := Is_LHS (N) = Yes;
5411 Nested_Inst : Entity_Id := Empty;
5412 -- The entity of a nested instance which appears within Inst (if any)
5414 -- Start of processing for Find_Direct_Name
5416 begin
5417 -- If the entity pointer is already set, this is an internal node, or
5418 -- a node that is analyzed more than once, after a tree modification.
5419 -- In such a case there is no resolution to perform, just set the type.
5421 if Present (Entity (N)) then
5422 if Is_Type (Entity (N)) then
5423 Set_Etype (N, Entity (N));
5425 else
5426 declare
5427 Entyp : constant Entity_Id := Etype (Entity (N));
5429 begin
5430 -- One special case here. If the Etype field is already set,
5431 -- and references the packed array type corresponding to the
5432 -- etype of the referenced entity, then leave it alone. This
5433 -- happens for trees generated from Exp_Pakd, where expressions
5434 -- can be deliberately "mis-typed" to the packed array type.
5436 if Is_Array_Type (Entyp)
5437 and then Is_Packed (Entyp)
5438 and then Present (Etype (N))
5439 and then Etype (N) = Packed_Array_Impl_Type (Entyp)
5440 then
5441 null;
5443 -- If not that special case, then just reset the Etype
5445 else
5446 Set_Etype (N, Etype (Entity (N)));
5447 end if;
5448 end;
5449 end if;
5451 -- Although the marking of use clauses happens at the end of
5452 -- Find_Direct_Name, a certain case where a generic actual satisfies
5453 -- a use clause must be checked here due to how the generic machinery
5454 -- handles the analysis of said actuals.
5456 if In_Instance
5457 and then Nkind (Parent (N)) = N_Generic_Association
5458 then
5459 Mark_Use_Clauses (Entity (N));
5460 end if;
5462 return;
5463 end if;
5465 -- Preserve relevant elaboration-related attributes of the context which
5466 -- are no longer available or very expensive to recompute once analysis,
5467 -- resolution, and expansion are over.
5469 if Nkind (N) = N_Identifier then
5470 Mark_Elaboration_Attributes
5471 (N_Id => N,
5472 Modes => True);
5473 end if;
5475 -- Here if Entity pointer was not set, we need full visibility analysis
5476 -- First we generate debugging output if the debug E flag is set.
5478 if Debug_Flag_E then
5479 Write_Str ("Looking for ");
5480 Write_Name (Chars (N));
5481 Write_Eol;
5482 end if;
5484 Homonyms := Current_Entity (N);
5485 Nvis_Entity := False;
5487 E := Homonyms;
5488 while Present (E) loop
5490 -- If entity is immediately visible or potentially use visible, then
5491 -- process the entity and we are done.
5493 if Is_Immediately_Visible (E) then
5494 goto Immediately_Visible_Entity;
5496 elsif Is_Potentially_Use_Visible (E) then
5497 goto Potentially_Use_Visible_Entity;
5499 -- Note if a known but invisible entity encountered
5501 elsif Known_But_Invisible (E) then
5502 Nvis_Entity := True;
5503 end if;
5505 -- Move to next entity in chain and continue search
5507 E := Homonym (E);
5508 end loop;
5510 -- If no entries on homonym chain that were potentially visible,
5511 -- and no entities reasonably considered as non-visible, then
5512 -- we have a plain undefined reference, with no additional
5513 -- explanation required.
5515 if not Nvis_Entity then
5516 Undefined (Nvis => False);
5518 -- Otherwise there is at least one entry on the homonym chain that
5519 -- is reasonably considered as being known and non-visible.
5521 else
5522 Nvis_Messages;
5523 end if;
5525 goto Done;
5527 -- Processing for a potentially use visible entry found. We must search
5528 -- the rest of the homonym chain for two reasons. First, if there is a
5529 -- directly visible entry, then none of the potentially use-visible
5530 -- entities are directly visible (RM 8.4(10)). Second, we need to check
5531 -- for the case of multiple potentially use-visible entries hiding one
5532 -- another and as a result being non-directly visible (RM 8.4(11)).
5534 <<Potentially_Use_Visible_Entity>> declare
5535 Only_One_Visible : Boolean := True;
5536 All_Overloadable : Boolean := Is_Overloadable (E);
5538 begin
5539 E2 := Homonym (E);
5540 while Present (E2) loop
5541 if Is_Immediately_Visible (E2) then
5543 -- If the use-visible entity comes from the actual for a
5544 -- formal package, it hides a directly visible entity from
5545 -- outside the instance.
5547 if From_Actual_Package (E)
5548 and then Scope_Depth (E2) < Scope_Depth (Inst)
5549 then
5550 goto Found;
5551 else
5552 E := E2;
5553 goto Immediately_Visible_Entity;
5554 end if;
5556 elsif Is_Potentially_Use_Visible (E2) then
5557 Only_One_Visible := False;
5558 All_Overloadable := All_Overloadable and Is_Overloadable (E2);
5560 -- Ada 2005 (AI-262): Protect against a form of Beaujolais effect
5561 -- that can occur in private_with clauses. Example:
5563 -- with A;
5564 -- private with B; package A is
5565 -- package C is function B return Integer;
5566 -- use A; end A;
5567 -- V1 : Integer := B;
5568 -- private function B return Integer;
5569 -- V2 : Integer := B;
5570 -- end C;
5572 -- V1 resolves to A.B, but V2 resolves to library unit B
5574 elsif Ekind (E2) = E_Function
5575 and then Scope (E2) = Standard_Standard
5576 and then Has_Private_With (E2)
5577 then
5578 Only_One_Visible := False;
5579 All_Overloadable := False;
5580 Nvis_Is_Private_Subprg := True;
5581 exit;
5582 end if;
5584 E2 := Homonym (E2);
5585 end loop;
5587 -- On falling through this loop, we have checked that there are no
5588 -- immediately visible entities. Only_One_Visible is set if exactly
5589 -- one potentially use visible entity exists. All_Overloadable is
5590 -- set if all the potentially use visible entities are overloadable.
5591 -- The condition for legality is that either there is one potentially
5592 -- use visible entity, or if there is more than one, then all of them
5593 -- are overloadable.
5595 if Only_One_Visible or All_Overloadable then
5596 goto Found;
5598 -- If there is more than one potentially use-visible entity and at
5599 -- least one of them non-overloadable, we have an error (RM 8.4(11)).
5600 -- Note that E points to the first such entity on the homonym list.
5602 else
5603 -- If one of the entities is declared in an actual package, it
5604 -- was visible in the generic, and takes precedence over other
5605 -- entities that are potentially use-visible. The same applies
5606 -- if the entity is declared in a local instantiation of the
5607 -- current instance.
5609 if In_Instance then
5611 -- Find the current instance
5613 Inst := Current_Scope;
5614 while Present (Inst) and then Inst /= Standard_Standard loop
5615 if Is_Generic_Instance (Inst) then
5616 exit;
5617 end if;
5619 Inst := Scope (Inst);
5620 end loop;
5622 -- Reexamine the candidate entities, giving priority to those
5623 -- that were visible within the generic.
5625 E2 := E;
5626 while Present (E2) loop
5627 Nested_Inst := Nearest_Enclosing_Instance (E2);
5629 -- The entity is declared within an actual package, or in a
5630 -- nested instance. The ">=" accounts for the case where the
5631 -- current instance and the nested instance are the same.
5633 if From_Actual_Package (E2)
5634 or else (Present (Nested_Inst)
5635 and then Scope_Depth (Nested_Inst) >=
5636 Scope_Depth (Inst))
5637 then
5638 E := E2;
5639 goto Found;
5640 end if;
5642 E2 := Homonym (E2);
5643 end loop;
5645 Nvis_Messages;
5646 goto Done;
5648 elsif Is_Predefined_Unit (Current_Sem_Unit) then
5649 -- A use clause in the body of a system file creates conflict
5650 -- with some entity in a user scope, while rtsfind is active.
5651 -- Keep only the entity coming from another predefined unit.
5653 E2 := E;
5654 while Present (E2) loop
5655 if In_Predefined_Unit (E2) then
5656 E := E2;
5657 goto Found;
5658 end if;
5660 E2 := Homonym (E2);
5661 end loop;
5663 -- Entity must exist because predefined unit is correct
5665 raise Program_Error;
5667 else
5668 Nvis_Messages;
5669 goto Done;
5670 end if;
5671 end if;
5672 end;
5674 -- Come here with E set to the first immediately visible entity on
5675 -- the homonym chain. This is the one we want unless there is another
5676 -- immediately visible entity further on in the chain for an inner
5677 -- scope (RM 8.3(8)).
5679 <<Immediately_Visible_Entity>> declare
5680 Level : Int;
5681 Scop : Entity_Id;
5683 begin
5684 -- Find scope level of initial entity. When compiling through
5685 -- Rtsfind, the previous context is not completely invisible, and
5686 -- an outer entity may appear on the chain, whose scope is below
5687 -- the entry for Standard that delimits the current scope stack.
5688 -- Indicate that the level for this spurious entry is outside of
5689 -- the current scope stack.
5691 Level := Scope_Stack.Last;
5692 loop
5693 Scop := Scope_Stack.Table (Level).Entity;
5694 exit when Scop = Scope (E);
5695 Level := Level - 1;
5696 exit when Scop = Standard_Standard;
5697 end loop;
5699 -- Now search remainder of homonym chain for more inner entry
5700 -- If the entity is Standard itself, it has no scope, and we
5701 -- compare it with the stack entry directly.
5703 E2 := Homonym (E);
5704 while Present (E2) loop
5705 if Is_Immediately_Visible (E2) then
5707 -- If a generic package contains a local declaration that
5708 -- has the same name as the generic, there may be a visibility
5709 -- conflict in an instance, where the local declaration must
5710 -- also hide the name of the corresponding package renaming.
5711 -- We check explicitly for a package declared by a renaming,
5712 -- whose renamed entity is an instance that is on the scope
5713 -- stack, and that contains a homonym in the same scope. Once
5714 -- we have found it, we know that the package renaming is not
5715 -- immediately visible, and that the identifier denotes the
5716 -- other entity (and its homonyms if overloaded).
5718 if Scope (E) = Scope (E2)
5719 and then Ekind (E) = E_Package
5720 and then Present (Renamed_Object (E))
5721 and then Is_Generic_Instance (Renamed_Object (E))
5722 and then In_Open_Scopes (Renamed_Object (E))
5723 and then Comes_From_Source (N)
5724 then
5725 Set_Is_Immediately_Visible (E, False);
5726 E := E2;
5728 else
5729 for J in Level + 1 .. Scope_Stack.Last loop
5730 if Scope_Stack.Table (J).Entity = Scope (E2)
5731 or else Scope_Stack.Table (J).Entity = E2
5732 then
5733 Level := J;
5734 E := E2;
5735 exit;
5736 end if;
5737 end loop;
5738 end if;
5739 end if;
5741 E2 := Homonym (E2);
5742 end loop;
5744 -- At the end of that loop, E is the innermost immediately
5745 -- visible entity, so we are all set.
5746 end;
5748 -- Come here with entity found, and stored in E
5750 <<Found>> begin
5752 -- Check violation of No_Wide_Characters restriction
5754 Check_Wide_Character_Restriction (E, N);
5756 -- When distribution features are available (Get_PCS_Name /=
5757 -- Name_No_DSA), a remote access-to-subprogram type is converted
5758 -- into a record type holding whatever information is needed to
5759 -- perform a remote call on an RCI subprogram. In that case we
5760 -- rewrite any occurrence of the RAS type into the equivalent record
5761 -- type here. 'Access attribute references and RAS dereferences are
5762 -- then implemented using specific TSSs. However when distribution is
5763 -- not available (case of Get_PCS_Name = Name_No_DSA), we bypass the
5764 -- generation of these TSSs, and we must keep the RAS type in its
5765 -- original access-to-subprogram form (since all calls through a
5766 -- value of such type will be local anyway in the absence of a PCS).
5768 if Comes_From_Source (N)
5769 and then Is_Remote_Access_To_Subprogram_Type (E)
5770 and then Ekind (E) = E_Access_Subprogram_Type
5771 and then Expander_Active
5772 and then Get_PCS_Name /= Name_No_DSA
5773 then
5774 Rewrite (N, New_Occurrence_Of (Equivalent_Type (E), Sloc (N)));
5775 goto Done;
5776 end if;
5778 -- Set the entity. Note that the reason we call Set_Entity for the
5779 -- overloadable case, as opposed to Set_Entity_With_Checks is
5780 -- that in the overloaded case, the initial call can set the wrong
5781 -- homonym. The call that sets the right homonym is in Sem_Res and
5782 -- that call does use Set_Entity_With_Checks, so we don't miss
5783 -- a style check.
5785 if Is_Overloadable (E) then
5786 Set_Entity (N, E);
5787 else
5788 Set_Entity_With_Checks (N, E);
5789 end if;
5791 if Is_Type (E) then
5792 Set_Etype (N, E);
5793 else
5794 Set_Etype (N, Get_Full_View (Etype (E)));
5795 end if;
5797 if Debug_Flag_E then
5798 Write_Str (" found ");
5799 Write_Entity_Info (E, " ");
5800 end if;
5802 -- If the Ekind of the entity is Void, it means that all homonyms
5803 -- are hidden from all visibility (RM 8.3(5,14-20)). However, this
5804 -- test is skipped if the current scope is a record and the name is
5805 -- a pragma argument expression (case of Atomic and Volatile pragmas
5806 -- and possibly other similar pragmas added later, which are allowed
5807 -- to reference components in the current record).
5809 if Ekind (E) = E_Void
5810 and then
5811 (not Is_Record_Type (Current_Scope)
5812 or else Nkind (Parent (N)) /= N_Pragma_Argument_Association)
5813 then
5814 Premature_Usage (N);
5816 -- If the entity is overloadable, collect all interpretations of the
5817 -- name for subsequent overload resolution. We optimize a bit here to
5818 -- do this only if we have an overloadable entity that is not on its
5819 -- own on the homonym chain.
5821 elsif Is_Overloadable (E)
5822 and then (Present (Homonym (E)) or else Current_Entity (N) /= E)
5823 then
5824 Collect_Interps (N);
5826 -- If no homonyms were visible, the entity is unambiguous
5828 if not Is_Overloaded (N) then
5829 if not Is_Actual_Parameter then
5830 Generate_Reference (E, N);
5831 end if;
5832 end if;
5834 -- Case of non-overloadable entity, set the entity providing that
5835 -- we do not have the case of a discriminant reference within a
5836 -- default expression. Such references are replaced with the
5837 -- corresponding discriminal, which is the formal corresponding to
5838 -- to the discriminant in the initialization procedure.
5840 else
5841 -- Entity is unambiguous, indicate that it is referenced here
5843 -- For a renaming of an object, always generate simple reference,
5844 -- we don't try to keep track of assignments in this case, except
5845 -- in SPARK mode where renamings are traversed for generating
5846 -- local effects of subprograms.
5848 if Is_Object (E)
5849 and then Present (Renamed_Object (E))
5850 and then not GNATprove_Mode
5851 then
5852 Generate_Reference (E, N);
5854 -- If the renamed entity is a private protected component,
5855 -- reference the original component as well. This needs to be
5856 -- done because the private renamings are installed before any
5857 -- analysis has occurred. Reference to a private component will
5858 -- resolve to the renaming and the original component will be
5859 -- left unreferenced, hence the following.
5861 if Is_Prival (E) then
5862 Generate_Reference (Prival_Link (E), N);
5863 end if;
5865 -- One odd case is that we do not want to set the Referenced flag
5866 -- if the entity is a label, and the identifier is the label in
5867 -- the source, since this is not a reference from the point of
5868 -- view of the user.
5870 elsif Nkind (Parent (N)) = N_Label then
5871 declare
5872 R : constant Boolean := Referenced (E);
5874 begin
5875 -- Generate reference unless this is an actual parameter
5876 -- (see comment below)
5878 if Is_Actual_Parameter then
5879 Generate_Reference (E, N);
5880 Set_Referenced (E, R);
5881 end if;
5882 end;
5884 -- Normal case, not a label: generate reference
5886 else
5887 if not Is_Actual_Parameter then
5889 -- Package or generic package is always a simple reference
5891 if Ekind_In (E, E_Package, E_Generic_Package) then
5892 Generate_Reference (E, N, 'r');
5894 -- Else see if we have a left hand side
5896 else
5897 case Is_LHS (N) is
5898 when Yes =>
5899 Generate_Reference (E, N, 'm');
5901 when No =>
5902 Generate_Reference (E, N, 'r');
5904 -- If we don't know now, generate reference later
5906 when Unknown =>
5907 Deferred_References.Append ((E, N));
5908 end case;
5909 end if;
5910 end if;
5911 end if;
5913 Set_Entity_Or_Discriminal (N, E);
5915 -- The name may designate a generalized reference, in which case
5916 -- the dereference interpretation will be included. Context is
5917 -- one in which a name is legal.
5919 if Ada_Version >= Ada_2012
5920 and then
5921 (Nkind (Parent (N)) in N_Subexpr
5922 or else Nkind_In (Parent (N), N_Assignment_Statement,
5923 N_Object_Declaration,
5924 N_Parameter_Association))
5925 then
5926 Check_Implicit_Dereference (N, Etype (E));
5927 end if;
5928 end if;
5929 end;
5931 -- Mark relevant use-type and use-package clauses as effective if the
5932 -- node in question is not overloaded and therefore does not require
5933 -- resolution.
5935 -- Note: Generic actual subprograms do not follow the normal resolution
5936 -- path, so ignore the fact that they are overloaded and mark them
5937 -- anyway.
5939 if Nkind (N) not in N_Subexpr or else not Is_Overloaded (N) then
5940 Mark_Use_Clauses (N);
5941 end if;
5943 -- Come here with entity set
5945 <<Done>>
5946 Check_Restriction_No_Use_Of_Entity (N);
5948 -- Annotate the tree by creating a variable reference marker in case the
5949 -- original variable reference is folded or optimized away. The variable
5950 -- reference marker is automatically saved for later examination by the
5951 -- ABE Processing phase. Variable references which act as actuals in a
5952 -- call require special processing and are left to Resolve_Actuals. The
5953 -- reference is a write when it appears on the left hand side of an
5954 -- assignment.
5956 if not Within_Subprogram_Call (N) then
5957 Build_Variable_Reference_Marker
5958 (N => N,
5959 Read => not Is_Assignment_LHS,
5960 Write => Is_Assignment_LHS);
5961 end if;
5962 end Find_Direct_Name;
5964 ------------------------
5965 -- Find_Expanded_Name --
5966 ------------------------
5968 -- This routine searches the homonym chain of the entity until it finds
5969 -- an entity declared in the scope denoted by the prefix. If the entity
5970 -- is private, it may nevertheless be immediately visible, if we are in
5971 -- the scope of its declaration.
5973 procedure Find_Expanded_Name (N : Node_Id) is
5974 function In_Abstract_View_Pragma (Nod : Node_Id) return Boolean;
5975 -- Determine whether expanded name Nod appears within a pragma which is
5976 -- a suitable context for an abstract view of a state or variable. The
5977 -- following pragmas fall in this category:
5978 -- Depends
5979 -- Global
5980 -- Initializes
5981 -- Refined_Depends
5982 -- Refined_Global
5984 -- In addition, pragma Abstract_State is also considered suitable even
5985 -- though it is an illegal context for an abstract view as this allows
5986 -- for proper resolution of abstract views of variables. This illegal
5987 -- context is later flagged in the analysis of indicator Part_Of.
5989 -----------------------------
5990 -- In_Abstract_View_Pragma --
5991 -----------------------------
5993 function In_Abstract_View_Pragma (Nod : Node_Id) return Boolean is
5994 Par : Node_Id;
5996 begin
5997 -- Climb the parent chain looking for a pragma
5999 Par := Nod;
6000 while Present (Par) loop
6001 if Nkind (Par) = N_Pragma then
6002 if Nam_In (Pragma_Name_Unmapped (Par),
6003 Name_Abstract_State,
6004 Name_Depends,
6005 Name_Global,
6006 Name_Initializes,
6007 Name_Refined_Depends,
6008 Name_Refined_Global)
6009 then
6010 return True;
6012 -- Otherwise the pragma is not a legal context for an abstract
6013 -- view.
6015 else
6016 exit;
6017 end if;
6019 -- Prevent the search from going too far
6021 elsif Is_Body_Or_Package_Declaration (Par) then
6022 exit;
6023 end if;
6025 Par := Parent (Par);
6026 end loop;
6028 return False;
6029 end In_Abstract_View_Pragma;
6031 -- Local variables
6033 Is_Assignment_LHS : constant Boolean := Is_LHS (N) = Yes;
6034 Selector : constant Node_Id := Selector_Name (N);
6036 Candidate : Entity_Id := Empty;
6037 P_Name : Entity_Id;
6038 Id : Entity_Id;
6040 -- Start of processing for Find_Expanded_Name
6042 begin
6043 P_Name := Entity (Prefix (N));
6045 -- If the prefix is a renamed package, look for the entity in the
6046 -- original package.
6048 if Ekind (P_Name) = E_Package
6049 and then Present (Renamed_Object (P_Name))
6050 then
6051 P_Name := Renamed_Object (P_Name);
6053 -- Rewrite node with entity field pointing to renamed object
6055 Rewrite (Prefix (N), New_Copy (Prefix (N)));
6056 Set_Entity (Prefix (N), P_Name);
6058 -- If the prefix is an object of a concurrent type, look for
6059 -- the entity in the associated task or protected type.
6061 elsif Is_Concurrent_Type (Etype (P_Name)) then
6062 P_Name := Etype (P_Name);
6063 end if;
6065 Id := Current_Entity (Selector);
6067 declare
6068 Is_New_Candidate : Boolean;
6070 begin
6071 while Present (Id) loop
6072 if Scope (Id) = P_Name then
6073 Candidate := Id;
6074 Is_New_Candidate := True;
6076 -- Handle abstract views of states and variables. These are
6077 -- acceptable candidates only when the reference to the view
6078 -- appears in certain pragmas.
6080 if Ekind (Id) = E_Abstract_State
6081 and then From_Limited_With (Id)
6082 and then Present (Non_Limited_View (Id))
6083 then
6084 if In_Abstract_View_Pragma (N) then
6085 Candidate := Non_Limited_View (Id);
6086 Is_New_Candidate := True;
6088 -- Hide the candidate because it is not used in a proper
6089 -- context.
6091 else
6092 Candidate := Empty;
6093 Is_New_Candidate := False;
6094 end if;
6095 end if;
6097 -- Ada 2005 (AI-217): Handle shadow entities associated with
6098 -- types declared in limited-withed nested packages. We don't need
6099 -- to handle E_Incomplete_Subtype entities because the entities
6100 -- in the limited view are always E_Incomplete_Type and
6101 -- E_Class_Wide_Type entities (see Build_Limited_Views).
6103 -- Regarding the expression used to evaluate the scope, it
6104 -- is important to note that the limited view also has shadow
6105 -- entities associated nested packages. For this reason the
6106 -- correct scope of the entity is the scope of the real entity.
6107 -- The non-limited view may itself be incomplete, in which case
6108 -- get the full view if available.
6110 elsif Ekind_In (Id, E_Incomplete_Type, E_Class_Wide_Type)
6111 and then From_Limited_With (Id)
6112 and then Present (Non_Limited_View (Id))
6113 and then Scope (Non_Limited_View (Id)) = P_Name
6114 then
6115 Candidate := Get_Full_View (Non_Limited_View (Id));
6116 Is_New_Candidate := True;
6118 -- An unusual case arises with a fully qualified name for an
6119 -- entity local to a generic child unit package, within an
6120 -- instantiation of that package. The name of the unit now
6121 -- denotes the renaming created within the instance. This is
6122 -- only relevant in an instance body, see below.
6124 elsif Is_Generic_Instance (Scope (Id))
6125 and then In_Open_Scopes (Scope (Id))
6126 and then In_Instance_Body
6127 and then Ekind (Scope (Id)) = E_Package
6128 and then Ekind (Id) = E_Package
6129 and then Renamed_Entity (Id) = Scope (Id)
6130 and then Is_Immediately_Visible (P_Name)
6131 then
6132 Is_New_Candidate := True;
6134 else
6135 Is_New_Candidate := False;
6136 end if;
6138 if Is_New_Candidate then
6140 -- If entity is a child unit, either it is a visible child of
6141 -- the prefix, or we are in the body of a generic prefix, as
6142 -- will happen when a child unit is instantiated in the body
6143 -- of a generic parent. This is because the instance body does
6144 -- not restore the full compilation context, given that all
6145 -- non-local references have been captured.
6147 if Is_Child_Unit (Id) or else P_Name = Standard_Standard then
6148 exit when Is_Visible_Lib_Unit (Id)
6149 or else (Is_Child_Unit (Id)
6150 and then In_Open_Scopes (Scope (Id))
6151 and then In_Instance_Body);
6152 else
6153 exit when not Is_Hidden (Id);
6154 end if;
6156 exit when Is_Immediately_Visible (Id);
6157 end if;
6159 Id := Homonym (Id);
6160 end loop;
6161 end;
6163 if No (Id)
6164 and then Ekind_In (P_Name, E_Procedure, E_Function)
6165 and then Is_Generic_Instance (P_Name)
6166 then
6167 -- Expanded name denotes entity in (instance of) generic subprogram.
6168 -- The entity may be in the subprogram instance, or may denote one of
6169 -- the formals, which is declared in the enclosing wrapper package.
6171 P_Name := Scope (P_Name);
6173 Id := Current_Entity (Selector);
6174 while Present (Id) loop
6175 exit when Scope (Id) = P_Name;
6176 Id := Homonym (Id);
6177 end loop;
6178 end if;
6180 if No (Id) or else Chars (Id) /= Chars (Selector) then
6181 Set_Etype (N, Any_Type);
6183 -- If we are looking for an entity defined in System, try to find it
6184 -- in the child package that may have been provided as an extension
6185 -- to System. The Extend_System pragma will have supplied the name of
6186 -- the extension, which may have to be loaded.
6188 if Chars (P_Name) = Name_System
6189 and then Scope (P_Name) = Standard_Standard
6190 and then Present (System_Extend_Unit)
6191 and then Present_System_Aux (N)
6192 then
6193 Set_Entity (Prefix (N), System_Aux_Id);
6194 Find_Expanded_Name (N);
6195 return;
6197 -- There is an implicit instance of the predefined operator in
6198 -- the given scope. The operator entity is defined in Standard.
6199 -- Has_Implicit_Operator makes the node into an Expanded_Name.
6201 elsif Nkind (Selector) = N_Operator_Symbol
6202 and then Has_Implicit_Operator (N)
6203 then
6204 return;
6206 -- If there is no literal defined in the scope denoted by the
6207 -- prefix, the literal may belong to (a type derived from)
6208 -- Standard_Character, for which we have no explicit literals.
6210 elsif Nkind (Selector) = N_Character_Literal
6211 and then Has_Implicit_Character_Literal (N)
6212 then
6213 return;
6215 else
6216 -- If the prefix is a single concurrent object, use its name in
6217 -- the error message, rather than that of the anonymous type.
6219 if Is_Concurrent_Type (P_Name)
6220 and then Is_Internal_Name (Chars (P_Name))
6221 then
6222 Error_Msg_Node_2 := Entity (Prefix (N));
6223 else
6224 Error_Msg_Node_2 := P_Name;
6225 end if;
6227 if P_Name = System_Aux_Id then
6228 P_Name := Scope (P_Name);
6229 Set_Entity (Prefix (N), P_Name);
6230 end if;
6232 if Present (Candidate) then
6234 -- If we know that the unit is a child unit we can give a more
6235 -- accurate error message.
6237 if Is_Child_Unit (Candidate) then
6239 -- If the candidate is a private child unit and we are in
6240 -- the visible part of a public unit, specialize the error
6241 -- message. There might be a private with_clause for it,
6242 -- but it is not currently active.
6244 if Is_Private_Descendant (Candidate)
6245 and then Ekind (Current_Scope) = E_Package
6246 and then not In_Private_Part (Current_Scope)
6247 and then not Is_Private_Descendant (Current_Scope)
6248 then
6249 Error_Msg_N
6250 ("private child unit& is not visible here", Selector);
6252 -- Normal case where we have a missing with for a child unit
6254 else
6255 Error_Msg_Qual_Level := 99;
6256 Error_Msg_NE -- CODEFIX
6257 ("missing `WITH &;`", Selector, Candidate);
6258 Error_Msg_Qual_Level := 0;
6259 end if;
6261 -- Here we don't know that this is a child unit
6263 else
6264 Error_Msg_NE ("& is not a visible entity of&", N, Selector);
6265 end if;
6267 else
6268 -- Within the instantiation of a child unit, the prefix may
6269 -- denote the parent instance, but the selector has the name
6270 -- of the original child. That is to say, when A.B appears
6271 -- within an instantiation of generic child unit B, the scope
6272 -- stack includes an instance of A (P_Name) and an instance
6273 -- of B under some other name. We scan the scope to find this
6274 -- child instance, which is the desired entity.
6275 -- Note that the parent may itself be a child instance, if
6276 -- the reference is of the form A.B.C, in which case A.B has
6277 -- already been rewritten with the proper entity.
6279 if In_Open_Scopes (P_Name)
6280 and then Is_Generic_Instance (P_Name)
6281 then
6282 declare
6283 Gen_Par : constant Entity_Id :=
6284 Generic_Parent (Specification
6285 (Unit_Declaration_Node (P_Name)));
6286 S : Entity_Id := Current_Scope;
6287 P : Entity_Id;
6289 begin
6290 for J in reverse 0 .. Scope_Stack.Last loop
6291 S := Scope_Stack.Table (J).Entity;
6293 exit when S = Standard_Standard;
6295 if Ekind_In (S, E_Function,
6296 E_Package,
6297 E_Procedure)
6298 then
6299 P :=
6300 Generic_Parent (Specification
6301 (Unit_Declaration_Node (S)));
6303 -- Check that P is a generic child of the generic
6304 -- parent of the prefix.
6306 if Present (P)
6307 and then Chars (P) = Chars (Selector)
6308 and then Scope (P) = Gen_Par
6309 then
6310 Id := S;
6311 goto Found;
6312 end if;
6313 end if;
6315 end loop;
6316 end;
6317 end if;
6319 -- If this is a selection from Ada, System or Interfaces, then
6320 -- we assume a missing with for the corresponding package.
6322 if Is_Known_Unit (N) then
6323 if not Error_Posted (N) then
6324 Error_Msg_Node_2 := Selector;
6325 Error_Msg_N -- CODEFIX
6326 ("missing `WITH &.&;`", Prefix (N));
6327 end if;
6329 -- If this is a selection from a dummy package, then suppress
6330 -- the error message, of course the entity is missing if the
6331 -- package is missing.
6333 elsif Sloc (Error_Msg_Node_2) = No_Location then
6334 null;
6336 -- Here we have the case of an undefined component
6338 else
6339 -- The prefix may hide a homonym in the context that
6340 -- declares the desired entity. This error can use a
6341 -- specialized message.
6343 if In_Open_Scopes (P_Name) then
6344 declare
6345 H : constant Entity_Id := Homonym (P_Name);
6347 begin
6348 if Present (H)
6349 and then Is_Compilation_Unit (H)
6350 and then
6351 (Is_Immediately_Visible (H)
6352 or else Is_Visible_Lib_Unit (H))
6353 then
6354 Id := First_Entity (H);
6355 while Present (Id) loop
6356 if Chars (Id) = Chars (Selector) then
6357 Error_Msg_Qual_Level := 99;
6358 Error_Msg_Name_1 := Chars (Selector);
6359 Error_Msg_NE
6360 ("% not declared in&", N, P_Name);
6361 Error_Msg_NE
6362 ("\use fully qualified name starting with "
6363 & "Standard to make& visible", N, H);
6364 Error_Msg_Qual_Level := 0;
6365 goto Done;
6366 end if;
6368 Next_Entity (Id);
6369 end loop;
6370 end if;
6372 -- If not found, standard error message
6374 Error_Msg_NE ("& not declared in&", N, Selector);
6376 <<Done>> null;
6377 end;
6379 else
6380 -- Might be worth specializing the case when the prefix
6381 -- is a limited view.
6382 -- ... not declared in limited view of...
6384 Error_Msg_NE ("& not declared in&", N, Selector);
6385 end if;
6387 -- Check for misspelling of some entity in prefix
6389 Id := First_Entity (P_Name);
6390 while Present (Id) loop
6391 if Is_Bad_Spelling_Of (Chars (Id), Chars (Selector))
6392 and then not Is_Internal_Name (Chars (Id))
6393 then
6394 Error_Msg_NE -- CODEFIX
6395 ("possible misspelling of&", Selector, Id);
6396 exit;
6397 end if;
6399 Next_Entity (Id);
6400 end loop;
6402 -- Specialize the message if this may be an instantiation
6403 -- of a child unit that was not mentioned in the context.
6405 if Nkind (Parent (N)) = N_Package_Instantiation
6406 and then Is_Generic_Instance (Entity (Prefix (N)))
6407 and then Is_Compilation_Unit
6408 (Generic_Parent (Parent (Entity (Prefix (N)))))
6409 then
6410 Error_Msg_Node_2 := Selector;
6411 Error_Msg_N -- CODEFIX
6412 ("\missing `WITH &.&;`", Prefix (N));
6413 end if;
6414 end if;
6415 end if;
6417 Id := Any_Id;
6418 end if;
6419 end if;
6421 <<Found>>
6422 if Comes_From_Source (N)
6423 and then Is_Remote_Access_To_Subprogram_Type (Id)
6424 and then Ekind (Id) = E_Access_Subprogram_Type
6425 and then Present (Equivalent_Type (Id))
6426 then
6427 -- If we are not actually generating distribution code (i.e. the
6428 -- current PCS is the dummy non-distributed version), then the
6429 -- Equivalent_Type will be missing, and Id should be treated as
6430 -- a regular access-to-subprogram type.
6432 Id := Equivalent_Type (Id);
6433 Set_Chars (Selector, Chars (Id));
6434 end if;
6436 -- Ada 2005 (AI-50217): Check usage of entities in limited withed units
6438 if Ekind (P_Name) = E_Package and then From_Limited_With (P_Name) then
6439 if From_Limited_With (Id)
6440 or else Is_Type (Id)
6441 or else Ekind (Id) = E_Package
6442 then
6443 null;
6444 else
6445 Error_Msg_N
6446 ("limited withed package can only be used to access incomplete "
6447 & "types", N);
6448 end if;
6449 end if;
6451 if Is_Task_Type (P_Name)
6452 and then ((Ekind (Id) = E_Entry
6453 and then Nkind (Parent (N)) /= N_Attribute_Reference)
6454 or else
6455 (Ekind (Id) = E_Entry_Family
6456 and then
6457 Nkind (Parent (Parent (N))) /= N_Attribute_Reference))
6458 then
6459 -- If both the task type and the entry are in scope, this may still
6460 -- be the expanded name of an entry formal.
6462 if In_Open_Scopes (Id)
6463 and then Nkind (Parent (N)) = N_Selected_Component
6464 then
6465 null;
6467 else
6468 -- It is an entry call after all, either to the current task
6469 -- (which will deadlock) or to an enclosing task.
6471 Analyze_Selected_Component (N);
6472 return;
6473 end if;
6474 end if;
6476 Change_Selected_Component_To_Expanded_Name (N);
6478 -- Preserve relevant elaboration-related attributes of the context which
6479 -- are no longer available or very expensive to recompute once analysis,
6480 -- resolution, and expansion are over.
6482 Mark_Elaboration_Attributes
6483 (N_Id => N,
6484 Modes => True);
6486 -- Set appropriate type
6488 if Is_Type (Id) then
6489 Set_Etype (N, Id);
6490 else
6491 Set_Etype (N, Get_Full_View (Etype (Id)));
6492 end if;
6494 -- Do style check and generate reference, but skip both steps if this
6495 -- entity has homonyms, since we may not have the right homonym set yet.
6496 -- The proper homonym will be set during the resolve phase.
6498 if Has_Homonym (Id) then
6499 Set_Entity (N, Id);
6501 else
6502 Set_Entity_Or_Discriminal (N, Id);
6504 case Is_LHS (N) is
6505 when Yes =>
6506 Generate_Reference (Id, N, 'm');
6508 when No =>
6509 Generate_Reference (Id, N, 'r');
6511 when Unknown =>
6512 Deferred_References.Append ((Id, N));
6513 end case;
6514 end if;
6516 -- Check for violation of No_Wide_Characters
6518 Check_Wide_Character_Restriction (Id, N);
6520 -- If the Ekind of the entity is Void, it means that all homonyms are
6521 -- hidden from all visibility (RM 8.3(5,14-20)).
6523 if Ekind (Id) = E_Void then
6524 Premature_Usage (N);
6526 elsif Is_Overloadable (Id) and then Present (Homonym (Id)) then
6527 declare
6528 H : Entity_Id := Homonym (Id);
6530 begin
6531 while Present (H) loop
6532 if Scope (H) = Scope (Id)
6533 and then (not Is_Hidden (H)
6534 or else Is_Immediately_Visible (H))
6535 then
6536 Collect_Interps (N);
6537 exit;
6538 end if;
6540 H := Homonym (H);
6541 end loop;
6543 -- If an extension of System is present, collect possible explicit
6544 -- overloadings declared in the extension.
6546 if Chars (P_Name) = Name_System
6547 and then Scope (P_Name) = Standard_Standard
6548 and then Present (System_Extend_Unit)
6549 and then Present_System_Aux (N)
6550 then
6551 H := Current_Entity (Id);
6553 while Present (H) loop
6554 if Scope (H) = System_Aux_Id then
6555 Add_One_Interp (N, H, Etype (H));
6556 end if;
6558 H := Homonym (H);
6559 end loop;
6560 end if;
6561 end;
6562 end if;
6564 if Nkind (Selector_Name (N)) = N_Operator_Symbol
6565 and then Scope (Id) /= Standard_Standard
6566 then
6567 -- In addition to user-defined operators in the given scope, there
6568 -- may be an implicit instance of the predefined operator. The
6569 -- operator (defined in Standard) is found in Has_Implicit_Operator,
6570 -- and added to the interpretations. Procedure Add_One_Interp will
6571 -- determine which hides which.
6573 if Has_Implicit_Operator (N) then
6574 null;
6575 end if;
6576 end if;
6578 -- If there is a single interpretation for N we can generate a
6579 -- reference to the unique entity found.
6581 if Is_Overloadable (Id) and then not Is_Overloaded (N) then
6582 Generate_Reference (Id, N);
6583 end if;
6585 -- Mark relevant use-type and use-package clauses as effective if the
6586 -- node in question is not overloaded and therefore does not require
6587 -- resolution.
6589 if Nkind (N) not in N_Subexpr or else not Is_Overloaded (N) then
6590 Mark_Use_Clauses (N);
6591 end if;
6593 Check_Restriction_No_Use_Of_Entity (N);
6595 -- Annotate the tree by creating a variable reference marker in case the
6596 -- original variable reference is folded or optimized away. The variable
6597 -- reference marker is automatically saved for later examination by the
6598 -- ABE Processing phase. Variable references which act as actuals in a
6599 -- call require special processing and are left to Resolve_Actuals. The
6600 -- reference is a write when it appears on the left hand side of an
6601 -- assignment.
6603 if not Within_Subprogram_Call (N) then
6604 Build_Variable_Reference_Marker
6605 (N => N,
6606 Read => not Is_Assignment_LHS,
6607 Write => Is_Assignment_LHS);
6608 end if;
6609 end Find_Expanded_Name;
6611 --------------------
6612 -- Find_Most_Prev --
6613 --------------------
6615 function Find_Most_Prev (Use_Clause : Node_Id) return Node_Id is
6616 Curr : Node_Id;
6618 begin
6619 -- Loop through the Prev_Use_Clause chain
6621 Curr := Use_Clause;
6622 while Present (Prev_Use_Clause (Curr)) loop
6623 Curr := Prev_Use_Clause (Curr);
6624 end loop;
6626 return Curr;
6627 end Find_Most_Prev;
6629 -------------------------
6630 -- Find_Renamed_Entity --
6631 -------------------------
6633 function Find_Renamed_Entity
6634 (N : Node_Id;
6635 Nam : Node_Id;
6636 New_S : Entity_Id;
6637 Is_Actual : Boolean := False) return Entity_Id
6639 Ind : Interp_Index;
6640 I1 : Interp_Index := 0; -- Suppress junk warnings
6641 It : Interp;
6642 It1 : Interp;
6643 Old_S : Entity_Id;
6644 Inst : Entity_Id;
6646 function Is_Visible_Operation (Op : Entity_Id) return Boolean;
6647 -- If the renamed entity is an implicit operator, check whether it is
6648 -- visible because its operand type is properly visible. This check
6649 -- applies to explicit renamed entities that appear in the source in a
6650 -- renaming declaration or a formal subprogram instance, but not to
6651 -- default generic actuals with a name.
6653 function Report_Overload return Entity_Id;
6654 -- List possible interpretations, and specialize message in the
6655 -- case of a generic actual.
6657 function Within (Inner, Outer : Entity_Id) return Boolean;
6658 -- Determine whether a candidate subprogram is defined within the
6659 -- enclosing instance. If yes, it has precedence over outer candidates.
6661 --------------------------
6662 -- Is_Visible_Operation --
6663 --------------------------
6665 function Is_Visible_Operation (Op : Entity_Id) return Boolean is
6666 Scop : Entity_Id;
6667 Typ : Entity_Id;
6668 Btyp : Entity_Id;
6670 begin
6671 if Ekind (Op) /= E_Operator
6672 or else Scope (Op) /= Standard_Standard
6673 or else (In_Instance
6674 and then (not Is_Actual
6675 or else Present (Enclosing_Instance)))
6676 then
6677 return True;
6679 else
6680 -- For a fixed point type operator, check the resulting type,
6681 -- because it may be a mixed mode integer * fixed operation.
6683 if Present (Next_Formal (First_Formal (New_S)))
6684 and then Is_Fixed_Point_Type (Etype (New_S))
6685 then
6686 Typ := Etype (New_S);
6687 else
6688 Typ := Etype (First_Formal (New_S));
6689 end if;
6691 Btyp := Base_Type (Typ);
6693 if Nkind (Nam) /= N_Expanded_Name then
6694 return (In_Open_Scopes (Scope (Btyp))
6695 or else Is_Potentially_Use_Visible (Btyp)
6696 or else In_Use (Btyp)
6697 or else In_Use (Scope (Btyp)));
6699 else
6700 Scop := Entity (Prefix (Nam));
6702 if Ekind (Scop) = E_Package
6703 and then Present (Renamed_Object (Scop))
6704 then
6705 Scop := Renamed_Object (Scop);
6706 end if;
6708 -- Operator is visible if prefix of expanded name denotes
6709 -- scope of type, or else type is defined in System_Aux
6710 -- and the prefix denotes System.
6712 return Scope (Btyp) = Scop
6713 or else (Scope (Btyp) = System_Aux_Id
6714 and then Scope (Scope (Btyp)) = Scop);
6715 end if;
6716 end if;
6717 end Is_Visible_Operation;
6719 ------------
6720 -- Within --
6721 ------------
6723 function Within (Inner, Outer : Entity_Id) return Boolean is
6724 Sc : Entity_Id;
6726 begin
6727 Sc := Scope (Inner);
6728 while Sc /= Standard_Standard loop
6729 if Sc = Outer then
6730 return True;
6731 else
6732 Sc := Scope (Sc);
6733 end if;
6734 end loop;
6736 return False;
6737 end Within;
6739 ---------------------
6740 -- Report_Overload --
6741 ---------------------
6743 function Report_Overload return Entity_Id is
6744 begin
6745 if Is_Actual then
6746 Error_Msg_NE -- CODEFIX
6747 ("ambiguous actual subprogram&, " &
6748 "possible interpretations:", N, Nam);
6749 else
6750 Error_Msg_N -- CODEFIX
6751 ("ambiguous subprogram, " &
6752 "possible interpretations:", N);
6753 end if;
6755 List_Interps (Nam, N);
6756 return Old_S;
6757 end Report_Overload;
6759 -- Start of processing for Find_Renamed_Entity
6761 begin
6762 Old_S := Any_Id;
6763 Candidate_Renaming := Empty;
6765 if Is_Overloaded (Nam) then
6766 Get_First_Interp (Nam, Ind, It);
6767 while Present (It.Nam) loop
6768 if Entity_Matches_Spec (It.Nam, New_S)
6769 and then Is_Visible_Operation (It.Nam)
6770 then
6771 if Old_S /= Any_Id then
6773 -- Note: The call to Disambiguate only happens if a
6774 -- previous interpretation was found, in which case I1
6775 -- has received a value.
6777 It1 := Disambiguate (Nam, I1, Ind, Etype (Old_S));
6779 if It1 = No_Interp then
6780 Inst := Enclosing_Instance;
6782 if Present (Inst) then
6783 if Within (It.Nam, Inst) then
6784 if Within (Old_S, Inst) then
6786 -- Choose the innermost subprogram, which would
6787 -- have hidden the outer one in the generic.
6789 if Scope_Depth (It.Nam) <
6790 Scope_Depth (Old_S)
6791 then
6792 return Old_S;
6793 else
6794 return It.Nam;
6795 end if;
6796 end if;
6798 elsif Within (Old_S, Inst) then
6799 return (Old_S);
6801 else
6802 return Report_Overload;
6803 end if;
6805 -- If not within an instance, ambiguity is real
6807 else
6808 return Report_Overload;
6809 end if;
6811 else
6812 Old_S := It1.Nam;
6813 exit;
6814 end if;
6816 else
6817 I1 := Ind;
6818 Old_S := It.Nam;
6819 end if;
6821 elsif
6822 Present (First_Formal (It.Nam))
6823 and then Present (First_Formal (New_S))
6824 and then (Base_Type (Etype (First_Formal (It.Nam))) =
6825 Base_Type (Etype (First_Formal (New_S))))
6826 then
6827 Candidate_Renaming := It.Nam;
6828 end if;
6830 Get_Next_Interp (Ind, It);
6831 end loop;
6833 Set_Entity (Nam, Old_S);
6835 if Old_S /= Any_Id then
6836 Set_Is_Overloaded (Nam, False);
6837 end if;
6839 -- Non-overloaded case
6841 else
6842 if Is_Actual
6843 and then Present (Enclosing_Instance)
6844 and then Entity_Matches_Spec (Entity (Nam), New_S)
6845 then
6846 Old_S := Entity (Nam);
6848 elsif Entity_Matches_Spec (Entity (Nam), New_S) then
6849 Candidate_Renaming := New_S;
6851 if Is_Visible_Operation (Entity (Nam)) then
6852 Old_S := Entity (Nam);
6853 end if;
6855 elsif Present (First_Formal (Entity (Nam)))
6856 and then Present (First_Formal (New_S))
6857 and then (Base_Type (Etype (First_Formal (Entity (Nam)))) =
6858 Base_Type (Etype (First_Formal (New_S))))
6859 then
6860 Candidate_Renaming := Entity (Nam);
6861 end if;
6862 end if;
6864 return Old_S;
6865 end Find_Renamed_Entity;
6867 -----------------------------
6868 -- Find_Selected_Component --
6869 -----------------------------
6871 procedure Find_Selected_Component (N : Node_Id) is
6872 P : constant Node_Id := Prefix (N);
6874 P_Name : Entity_Id;
6875 -- Entity denoted by prefix
6877 P_Type : Entity_Id;
6878 -- and its type
6880 Nam : Node_Id;
6882 function Available_Subtype return Boolean;
6883 -- A small optimization: if the prefix is constrained and the component
6884 -- is an array type we may already have a usable subtype for it, so we
6885 -- can use it rather than generating a new one, because the bounds
6886 -- will be the values of the discriminants and not discriminant refs.
6887 -- This simplifies value tracing in GNATProve. For consistency, both
6888 -- the entity name and the subtype come from the constrained component.
6890 -- This is only used in GNATProve mode: when generating code it may be
6891 -- necessary to create an itype in the scope of use of the selected
6892 -- component, e.g. in the context of a expanded record equality.
6894 function Is_Reference_In_Subunit return Boolean;
6895 -- In a subunit, the scope depth is not a proper measure of hiding,
6896 -- because the context of the proper body may itself hide entities in
6897 -- parent units. This rare case requires inspecting the tree directly
6898 -- because the proper body is inserted in the main unit and its context
6899 -- is simply added to that of the parent.
6901 -----------------------
6902 -- Available_Subtype --
6903 -----------------------
6905 function Available_Subtype return Boolean is
6906 Comp : Entity_Id;
6908 begin
6909 if GNATprove_Mode then
6910 Comp := First_Entity (Etype (P));
6911 while Present (Comp) loop
6912 if Chars (Comp) = Chars (Selector_Name (N)) then
6913 Set_Etype (N, Etype (Comp));
6914 Set_Entity (Selector_Name (N), Comp);
6915 Set_Etype (Selector_Name (N), Etype (Comp));
6916 return True;
6917 end if;
6919 Next_Component (Comp);
6920 end loop;
6921 end if;
6923 return False;
6924 end Available_Subtype;
6926 -----------------------------
6927 -- Is_Reference_In_Subunit --
6928 -----------------------------
6930 function Is_Reference_In_Subunit return Boolean is
6931 Clause : Node_Id;
6932 Comp_Unit : Node_Id;
6934 begin
6935 Comp_Unit := N;
6936 while Present (Comp_Unit)
6937 and then Nkind (Comp_Unit) /= N_Compilation_Unit
6938 loop
6939 Comp_Unit := Parent (Comp_Unit);
6940 end loop;
6942 if No (Comp_Unit) or else Nkind (Unit (Comp_Unit)) /= N_Subunit then
6943 return False;
6944 end if;
6946 -- Now check whether the package is in the context of the subunit
6948 Clause := First (Context_Items (Comp_Unit));
6949 while Present (Clause) loop
6950 if Nkind (Clause) = N_With_Clause
6951 and then Entity (Name (Clause)) = P_Name
6952 then
6953 return True;
6954 end if;
6956 Clause := Next (Clause);
6957 end loop;
6959 return False;
6960 end Is_Reference_In_Subunit;
6962 -- Start of processing for Find_Selected_Component
6964 begin
6965 Analyze (P);
6967 if Nkind (P) = N_Error then
6968 return;
6969 end if;
6971 -- Selector name cannot be a character literal or an operator symbol in
6972 -- SPARK, except for the operator symbol in a renaming.
6974 if Restriction_Check_Required (SPARK_05) then
6975 if Nkind (Selector_Name (N)) = N_Character_Literal then
6976 Check_SPARK_05_Restriction
6977 ("character literal cannot be prefixed", N);
6978 elsif Nkind (Selector_Name (N)) = N_Operator_Symbol
6979 and then Nkind (Parent (N)) /= N_Subprogram_Renaming_Declaration
6980 then
6981 Check_SPARK_05_Restriction
6982 ("operator symbol cannot be prefixed", N);
6983 end if;
6984 end if;
6986 -- If the selector already has an entity, the node has been constructed
6987 -- in the course of expansion, and is known to be valid. Do not verify
6988 -- that it is defined for the type (it may be a private component used
6989 -- in the expansion of record equality).
6991 if Present (Entity (Selector_Name (N))) then
6992 if No (Etype (N)) or else Etype (N) = Any_Type then
6993 declare
6994 Sel_Name : constant Node_Id := Selector_Name (N);
6995 Selector : constant Entity_Id := Entity (Sel_Name);
6996 C_Etype : Node_Id;
6998 begin
6999 Set_Etype (Sel_Name, Etype (Selector));
7001 if not Is_Entity_Name (P) then
7002 Resolve (P);
7003 end if;
7005 -- Build an actual subtype except for the first parameter
7006 -- of an init proc, where this actual subtype is by
7007 -- definition incorrect, since the object is uninitialized
7008 -- (and does not even have defined discriminants etc.)
7010 if Is_Entity_Name (P)
7011 and then Ekind (Entity (P)) = E_Function
7012 then
7013 Nam := New_Copy (P);
7015 if Is_Overloaded (P) then
7016 Save_Interps (P, Nam);
7017 end if;
7019 Rewrite (P, Make_Function_Call (Sloc (P), Name => Nam));
7020 Analyze_Call (P);
7021 Analyze_Selected_Component (N);
7022 return;
7024 elsif Ekind (Selector) = E_Component
7025 and then (not Is_Entity_Name (P)
7026 or else Chars (Entity (P)) /= Name_uInit)
7027 then
7028 -- Check if we already have an available subtype we can use
7030 if Ekind (Etype (P)) = E_Record_Subtype
7031 and then Nkind (Parent (Etype (P))) = N_Subtype_Declaration
7032 and then Is_Array_Type (Etype (Selector))
7033 and then not Is_Packed (Etype (Selector))
7034 and then Available_Subtype
7035 then
7036 return;
7038 -- Do not build the subtype when referencing components of
7039 -- dispatch table wrappers. Required to avoid generating
7040 -- elaboration code with HI runtimes.
7042 elsif RTU_Loaded (Ada_Tags)
7043 and then
7044 ((RTE_Available (RE_Dispatch_Table_Wrapper)
7045 and then Scope (Selector) =
7046 RTE (RE_Dispatch_Table_Wrapper))
7047 or else
7048 (RTE_Available (RE_No_Dispatch_Table_Wrapper)
7049 and then Scope (Selector) =
7050 RTE (RE_No_Dispatch_Table_Wrapper)))
7051 then
7052 C_Etype := Empty;
7053 else
7054 C_Etype :=
7055 Build_Actual_Subtype_Of_Component
7056 (Etype (Selector), N);
7057 end if;
7059 else
7060 C_Etype := Empty;
7061 end if;
7063 if No (C_Etype) then
7064 C_Etype := Etype (Selector);
7065 else
7066 Insert_Action (N, C_Etype);
7067 C_Etype := Defining_Identifier (C_Etype);
7068 end if;
7070 Set_Etype (N, C_Etype);
7071 end;
7073 -- If this is the name of an entry or protected operation, and
7074 -- the prefix is an access type, insert an explicit dereference,
7075 -- so that entry calls are treated uniformly.
7077 if Is_Access_Type (Etype (P))
7078 and then Is_Concurrent_Type (Designated_Type (Etype (P)))
7079 then
7080 declare
7081 New_P : constant Node_Id :=
7082 Make_Explicit_Dereference (Sloc (P),
7083 Prefix => Relocate_Node (P));
7084 begin
7085 Rewrite (P, New_P);
7086 Set_Etype (P, Designated_Type (Etype (Prefix (P))));
7087 end;
7088 end if;
7090 -- If the selected component appears within a default expression
7091 -- and it has an actual subtype, the pre-analysis has not yet
7092 -- completed its analysis, because Insert_Actions is disabled in
7093 -- that context. Within the init proc of the enclosing type we
7094 -- must complete this analysis, if an actual subtype was created.
7096 elsif Inside_Init_Proc then
7097 declare
7098 Typ : constant Entity_Id := Etype (N);
7099 Decl : constant Node_Id := Declaration_Node (Typ);
7100 begin
7101 if Nkind (Decl) = N_Subtype_Declaration
7102 and then not Analyzed (Decl)
7103 and then Is_List_Member (Decl)
7104 and then No (Parent (Decl))
7105 then
7106 Remove (Decl);
7107 Insert_Action (N, Decl);
7108 end if;
7109 end;
7110 end if;
7112 return;
7114 elsif Is_Entity_Name (P) then
7115 P_Name := Entity (P);
7117 -- The prefix may denote an enclosing type which is the completion
7118 -- of an incomplete type declaration.
7120 if Is_Type (P_Name) then
7121 Set_Entity (P, Get_Full_View (P_Name));
7122 Set_Etype (P, Entity (P));
7123 P_Name := Entity (P);
7124 end if;
7126 P_Type := Base_Type (Etype (P));
7128 if Debug_Flag_E then
7129 Write_Str ("Found prefix type to be ");
7130 Write_Entity_Info (P_Type, " "); Write_Eol;
7131 end if;
7133 -- The designated type may be a limited view with no components.
7134 -- Check whether the non-limited view is available, because in some
7135 -- cases this will not be set when installing the context. Rewrite
7136 -- the node by introducing an explicit dereference at once, and
7137 -- setting the type of the rewritten prefix to the non-limited view
7138 -- of the original designated type.
7140 if Is_Access_Type (P_Type) then
7141 declare
7142 Desig_Typ : constant Entity_Id :=
7143 Directly_Designated_Type (P_Type);
7145 begin
7146 if Is_Incomplete_Type (Desig_Typ)
7147 and then From_Limited_With (Desig_Typ)
7148 and then Present (Non_Limited_View (Desig_Typ))
7149 then
7150 Rewrite (P,
7151 Make_Explicit_Dereference (Sloc (P),
7152 Prefix => Relocate_Node (P)));
7154 Set_Etype (P, Get_Full_View (Non_Limited_View (Desig_Typ)));
7155 P_Type := Etype (P);
7156 end if;
7157 end;
7158 end if;
7160 -- First check for components of a record object (not the
7161 -- result of a call, which is handled below).
7163 if Is_Appropriate_For_Record (P_Type)
7164 and then not Is_Overloadable (P_Name)
7165 and then not Is_Type (P_Name)
7166 then
7167 -- Selected component of record. Type checking will validate
7168 -- name of selector.
7170 -- ??? Could we rewrite an implicit dereference into an explicit
7171 -- one here?
7173 Analyze_Selected_Component (N);
7175 -- Reference to type name in predicate/invariant expression
7177 elsif Is_Appropriate_For_Entry_Prefix (P_Type)
7178 and then not In_Open_Scopes (P_Name)
7179 and then (not Is_Concurrent_Type (Etype (P_Name))
7180 or else not In_Open_Scopes (Etype (P_Name)))
7181 then
7182 -- Call to protected operation or entry. Type checking is
7183 -- needed on the prefix.
7185 Analyze_Selected_Component (N);
7187 elsif (In_Open_Scopes (P_Name)
7188 and then Ekind (P_Name) /= E_Void
7189 and then not Is_Overloadable (P_Name))
7190 or else (Is_Concurrent_Type (Etype (P_Name))
7191 and then In_Open_Scopes (Etype (P_Name)))
7192 then
7193 -- Prefix denotes an enclosing loop, block, or task, i.e. an
7194 -- enclosing construct that is not a subprogram or accept.
7196 -- A special case: a protected body may call an operation
7197 -- on an external object of the same type, in which case it
7198 -- is not an expanded name. If the prefix is the type itself,
7199 -- or the context is a single synchronized object it can only
7200 -- be interpreted as an expanded name.
7202 if Is_Concurrent_Type (Etype (P_Name)) then
7203 if Is_Type (P_Name)
7204 or else Present (Anonymous_Object (Etype (P_Name)))
7205 then
7206 Find_Expanded_Name (N);
7208 else
7209 Analyze_Selected_Component (N);
7210 return;
7211 end if;
7213 else
7214 Find_Expanded_Name (N);
7215 end if;
7217 elsif Ekind (P_Name) = E_Package then
7218 Find_Expanded_Name (N);
7220 elsif Is_Overloadable (P_Name) then
7222 -- The subprogram may be a renaming (of an enclosing scope) as
7223 -- in the case of the name of the generic within an instantiation.
7225 if Ekind_In (P_Name, E_Procedure, E_Function)
7226 and then Present (Alias (P_Name))
7227 and then Is_Generic_Instance (Alias (P_Name))
7228 then
7229 P_Name := Alias (P_Name);
7230 end if;
7232 if Is_Overloaded (P) then
7234 -- The prefix must resolve to a unique enclosing construct
7236 declare
7237 Found : Boolean := False;
7238 Ind : Interp_Index;
7239 It : Interp;
7241 begin
7242 Get_First_Interp (P, Ind, It);
7243 while Present (It.Nam) loop
7244 if In_Open_Scopes (It.Nam) then
7245 if Found then
7246 Error_Msg_N (
7247 "prefix must be unique enclosing scope", N);
7248 Set_Entity (N, Any_Id);
7249 Set_Etype (N, Any_Type);
7250 return;
7252 else
7253 Found := True;
7254 P_Name := It.Nam;
7255 end if;
7256 end if;
7258 Get_Next_Interp (Ind, It);
7259 end loop;
7260 end;
7261 end if;
7263 if In_Open_Scopes (P_Name) then
7264 Set_Entity (P, P_Name);
7265 Set_Is_Overloaded (P, False);
7266 Find_Expanded_Name (N);
7268 else
7269 -- If no interpretation as an expanded name is possible, it
7270 -- must be a selected component of a record returned by a
7271 -- function call. Reformat prefix as a function call, the rest
7272 -- is done by type resolution.
7274 -- Error if the prefix is procedure or entry, as is P.X
7276 if Ekind (P_Name) /= E_Function
7277 and then
7278 (not Is_Overloaded (P)
7279 or else Nkind (Parent (N)) = N_Procedure_Call_Statement)
7280 then
7281 -- Prefix may mention a package that is hidden by a local
7282 -- declaration: let the user know. Scan the full homonym
7283 -- chain, the candidate package may be anywhere on it.
7285 if Present (Homonym (Current_Entity (P_Name))) then
7286 P_Name := Current_Entity (P_Name);
7288 while Present (P_Name) loop
7289 exit when Ekind (P_Name) = E_Package;
7290 P_Name := Homonym (P_Name);
7291 end loop;
7293 if Present (P_Name) then
7294 if not Is_Reference_In_Subunit then
7295 Error_Msg_Sloc := Sloc (Entity (Prefix (N)));
7296 Error_Msg_NE
7297 ("package& is hidden by declaration#", N, P_Name);
7298 end if;
7300 Set_Entity (Prefix (N), P_Name);
7301 Find_Expanded_Name (N);
7302 return;
7304 else
7305 P_Name := Entity (Prefix (N));
7306 end if;
7307 end if;
7309 Error_Msg_NE
7310 ("invalid prefix in selected component&", N, P_Name);
7311 Change_Selected_Component_To_Expanded_Name (N);
7312 Set_Entity (N, Any_Id);
7313 Set_Etype (N, Any_Type);
7315 -- Here we have a function call, so do the reformatting
7317 else
7318 Nam := New_Copy (P);
7319 Save_Interps (P, Nam);
7321 -- We use Replace here because this is one of those cases
7322 -- where the parser has missclassified the node, and we fix
7323 -- things up and then do the semantic analysis on the fixed
7324 -- up node. Normally we do this using one of the Sinfo.CN
7325 -- routines, but this is too tricky for that.
7327 -- Note that using Rewrite would be wrong, because we would
7328 -- have a tree where the original node is unanalyzed, and
7329 -- this violates the required interface for ASIS.
7331 Replace (P,
7332 Make_Function_Call (Sloc (P), Name => Nam));
7334 -- Now analyze the reformatted node
7336 Analyze_Call (P);
7338 -- If the prefix is illegal after this transformation, there
7339 -- may be visibility errors on the prefix. The safest is to
7340 -- treat the selected component as an error.
7342 if Error_Posted (P) then
7343 Set_Etype (N, Any_Type);
7344 return;
7346 else
7347 Analyze_Selected_Component (N);
7348 end if;
7349 end if;
7350 end if;
7352 -- Remaining cases generate various error messages
7354 else
7355 -- Format node as expanded name, to avoid cascaded errors
7357 -- If the limited_with transformation was applied earlier, restore
7358 -- source for proper error reporting.
7360 if not Comes_From_Source (P)
7361 and then Nkind (P) = N_Explicit_Dereference
7362 then
7363 Rewrite (P, Prefix (P));
7364 P_Type := Etype (P);
7365 end if;
7367 Change_Selected_Component_To_Expanded_Name (N);
7368 Set_Entity (N, Any_Id);
7369 Set_Etype (N, Any_Type);
7371 -- Issue error message, but avoid this if error issued already.
7372 -- Use identifier of prefix if one is available.
7374 if P_Name = Any_Id then
7375 null;
7377 -- It is not an error if the prefix is the current instance of
7378 -- type name, e.g. the expression of a type aspect, when it is
7379 -- analyzed for ASIS use.
7381 elsif Is_Entity_Name (P) and then Is_Current_Instance (P) then
7382 null;
7384 elsif Ekind (P_Name) = E_Void then
7385 Premature_Usage (P);
7387 elsif Nkind (P) /= N_Attribute_Reference then
7389 -- This may have been meant as a prefixed call to a primitive
7390 -- of an untagged type. If it is a function call check type of
7391 -- its first formal and add explanation.
7393 declare
7394 F : constant Entity_Id :=
7395 Current_Entity (Selector_Name (N));
7396 begin
7397 if Present (F)
7398 and then Is_Overloadable (F)
7399 and then Present (First_Entity (F))
7400 and then not Is_Tagged_Type (Etype (First_Entity (F)))
7401 then
7402 Error_Msg_N
7403 ("prefixed call is only allowed for objects of a "
7404 & "tagged type", N);
7405 end if;
7406 end;
7408 Error_Msg_N ("invalid prefix in selected component&", P);
7410 if Is_Access_Type (P_Type)
7411 and then Ekind (Designated_Type (P_Type)) = E_Incomplete_Type
7412 then
7413 Error_Msg_N
7414 ("\dereference must not be of an incomplete type "
7415 & "(RM 3.10.1)", P);
7416 end if;
7418 else
7419 Error_Msg_N ("invalid prefix in selected component", P);
7420 end if;
7421 end if;
7423 -- Selector name is restricted in SPARK
7425 if Nkind (N) = N_Expanded_Name
7426 and then Restriction_Check_Required (SPARK_05)
7427 then
7428 if Is_Subprogram (P_Name) then
7429 Check_SPARK_05_Restriction
7430 ("prefix of expanded name cannot be a subprogram", P);
7431 elsif Ekind (P_Name) = E_Loop then
7432 Check_SPARK_05_Restriction
7433 ("prefix of expanded name cannot be a loop statement", P);
7434 end if;
7435 end if;
7437 else
7438 -- If prefix is not the name of an entity, it must be an expression,
7439 -- whose type is appropriate for a record. This is determined by
7440 -- type resolution.
7442 Analyze_Selected_Component (N);
7443 end if;
7445 Analyze_Dimension (N);
7446 end Find_Selected_Component;
7448 ---------------
7449 -- Find_Type --
7450 ---------------
7452 procedure Find_Type (N : Node_Id) is
7453 C : Entity_Id;
7454 Typ : Entity_Id;
7455 T : Entity_Id;
7456 T_Name : Entity_Id;
7458 begin
7459 if N = Error then
7460 return;
7462 elsif Nkind (N) = N_Attribute_Reference then
7464 -- Class attribute. This is not valid in Ada 83 mode, but we do not
7465 -- need to enforce that at this point, since the declaration of the
7466 -- tagged type in the prefix would have been flagged already.
7468 if Attribute_Name (N) = Name_Class then
7469 Check_Restriction (No_Dispatch, N);
7470 Find_Type (Prefix (N));
7472 -- Propagate error from bad prefix
7474 if Etype (Prefix (N)) = Any_Type then
7475 Set_Entity (N, Any_Type);
7476 Set_Etype (N, Any_Type);
7477 return;
7478 end if;
7480 T := Base_Type (Entity (Prefix (N)));
7482 -- Case where type is not known to be tagged. Its appearance in
7483 -- the prefix of the 'Class attribute indicates that the full view
7484 -- will be tagged.
7486 if not Is_Tagged_Type (T) then
7487 if Ekind (T) = E_Incomplete_Type then
7489 -- It is legal to denote the class type of an incomplete
7490 -- type. The full type will have to be tagged, of course.
7491 -- In Ada 2005 this usage is declared obsolescent, so we
7492 -- warn accordingly. This usage is only legal if the type
7493 -- is completed in the current scope, and not for a limited
7494 -- view of a type.
7496 if Ada_Version >= Ada_2005 then
7498 -- Test whether the Available_View of a limited type view
7499 -- is tagged, since the limited view may not be marked as
7500 -- tagged if the type itself has an untagged incomplete
7501 -- type view in its package.
7503 if From_Limited_With (T)
7504 and then not Is_Tagged_Type (Available_View (T))
7505 then
7506 Error_Msg_N
7507 ("prefix of Class attribute must be tagged", N);
7508 Set_Etype (N, Any_Type);
7509 Set_Entity (N, Any_Type);
7510 return;
7512 -- ??? This test is temporarily disabled (always
7513 -- False) because it causes an unwanted warning on
7514 -- GNAT sources (built with -gnatg, which includes
7515 -- Warn_On_Obsolescent_ Feature). Once this issue
7516 -- is cleared in the sources, it can be enabled.
7518 elsif Warn_On_Obsolescent_Feature and then False then
7519 Error_Msg_N
7520 ("applying 'Class to an untagged incomplete type"
7521 & " is an obsolescent feature (RM J.11)?r?", N);
7522 end if;
7523 end if;
7525 Set_Is_Tagged_Type (T);
7526 Set_Direct_Primitive_Operations (T, New_Elmt_List);
7527 Make_Class_Wide_Type (T);
7528 Set_Entity (N, Class_Wide_Type (T));
7529 Set_Etype (N, Class_Wide_Type (T));
7531 elsif Ekind (T) = E_Private_Type
7532 and then not Is_Generic_Type (T)
7533 and then In_Private_Part (Scope (T))
7534 then
7535 -- The Class attribute can be applied to an untagged private
7536 -- type fulfilled by a tagged type prior to the full type
7537 -- declaration (but only within the parent package's private
7538 -- part). Create the class-wide type now and check that the
7539 -- full type is tagged later during its analysis. Note that
7540 -- we do not mark the private type as tagged, unlike the
7541 -- case of incomplete types, because the type must still
7542 -- appear untagged to outside units.
7544 if No (Class_Wide_Type (T)) then
7545 Make_Class_Wide_Type (T);
7546 end if;
7548 Set_Entity (N, Class_Wide_Type (T));
7549 Set_Etype (N, Class_Wide_Type (T));
7551 else
7552 -- Should we introduce a type Any_Tagged and use Wrong_Type
7553 -- here, it would be a bit more consistent???
7555 Error_Msg_NE
7556 ("tagged type required, found}",
7557 Prefix (N), First_Subtype (T));
7558 Set_Entity (N, Any_Type);
7559 return;
7560 end if;
7562 -- Case of tagged type
7564 else
7565 if Is_Concurrent_Type (T) then
7566 if No (Corresponding_Record_Type (Entity (Prefix (N)))) then
7568 -- Previous error. Create a class-wide type for the
7569 -- synchronized type itself, with minimal semantic
7570 -- attributes, to catch other errors in some ACATS tests.
7572 pragma Assert (Serious_Errors_Detected /= 0);
7573 Make_Class_Wide_Type (T);
7574 C := Class_Wide_Type (T);
7575 Set_First_Entity (C, First_Entity (T));
7577 else
7578 C := Class_Wide_Type
7579 (Corresponding_Record_Type (Entity (Prefix (N))));
7580 end if;
7582 else
7583 C := Class_Wide_Type (Entity (Prefix (N)));
7584 end if;
7586 Set_Entity_With_Checks (N, C);
7587 Generate_Reference (C, N);
7588 Set_Etype (N, C);
7589 end if;
7591 -- Base attribute, not allowed in Ada 83
7593 elsif Attribute_Name (N) = Name_Base then
7594 Error_Msg_Name_1 := Name_Base;
7595 Check_SPARK_05_Restriction
7596 ("attribute% is only allowed as prefix of another attribute", N);
7598 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
7599 Error_Msg_N
7600 ("(Ada 83) Base attribute not allowed in subtype mark", N);
7602 else
7603 Find_Type (Prefix (N));
7604 Typ := Entity (Prefix (N));
7606 if Ada_Version >= Ada_95
7607 and then not Is_Scalar_Type (Typ)
7608 and then not Is_Generic_Type (Typ)
7609 then
7610 Error_Msg_N
7611 ("prefix of Base attribute must be scalar type",
7612 Prefix (N));
7614 elsif Warn_On_Redundant_Constructs
7615 and then Base_Type (Typ) = Typ
7616 then
7617 Error_Msg_NE -- CODEFIX
7618 ("redundant attribute, & is its own base type?r?", N, Typ);
7619 end if;
7621 T := Base_Type (Typ);
7623 -- Rewrite attribute reference with type itself (see similar
7624 -- processing in Analyze_Attribute, case Base). Preserve prefix
7625 -- if present, for other legality checks.
7627 if Nkind (Prefix (N)) = N_Expanded_Name then
7628 Rewrite (N,
7629 Make_Expanded_Name (Sloc (N),
7630 Chars => Chars (T),
7631 Prefix => New_Copy (Prefix (Prefix (N))),
7632 Selector_Name => New_Occurrence_Of (T, Sloc (N))));
7634 else
7635 Rewrite (N, New_Occurrence_Of (T, Sloc (N)));
7636 end if;
7638 Set_Entity (N, T);
7639 Set_Etype (N, T);
7640 end if;
7642 elsif Attribute_Name (N) = Name_Stub_Type then
7644 -- This is handled in Analyze_Attribute
7646 Analyze (N);
7648 -- All other attributes are invalid in a subtype mark
7650 else
7651 Error_Msg_N ("invalid attribute in subtype mark", N);
7652 end if;
7654 else
7655 Analyze (N);
7657 if Is_Entity_Name (N) then
7658 T_Name := Entity (N);
7659 else
7660 Error_Msg_N ("subtype mark required in this context", N);
7661 Set_Etype (N, Any_Type);
7662 return;
7663 end if;
7665 if T_Name = Any_Id or else Etype (N) = Any_Type then
7667 -- Undefined id. Make it into a valid type
7669 Set_Entity (N, Any_Type);
7671 elsif not Is_Type (T_Name)
7672 and then T_Name /= Standard_Void_Type
7673 then
7674 Error_Msg_Sloc := Sloc (T_Name);
7675 Error_Msg_N ("subtype mark required in this context", N);
7676 Error_Msg_NE ("\\found & declared#", N, T_Name);
7677 Set_Entity (N, Any_Type);
7679 else
7680 -- If the type is an incomplete type created to handle
7681 -- anonymous access components of a record type, then the
7682 -- incomplete type is the visible entity and subsequent
7683 -- references will point to it. Mark the original full
7684 -- type as referenced, to prevent spurious warnings.
7686 if Is_Incomplete_Type (T_Name)
7687 and then Present (Full_View (T_Name))
7688 and then not Comes_From_Source (T_Name)
7689 then
7690 Set_Referenced (Full_View (T_Name));
7691 end if;
7693 T_Name := Get_Full_View (T_Name);
7695 -- Ada 2005 (AI-251, AI-50217): Handle interfaces visible through
7696 -- limited-with clauses
7698 if From_Limited_With (T_Name)
7699 and then Ekind (T_Name) in Incomplete_Kind
7700 and then Present (Non_Limited_View (T_Name))
7701 and then Is_Interface (Non_Limited_View (T_Name))
7702 then
7703 T_Name := Non_Limited_View (T_Name);
7704 end if;
7706 if In_Open_Scopes (T_Name) then
7707 if Ekind (Base_Type (T_Name)) = E_Task_Type then
7709 -- In Ada 2005, a task name can be used in an access
7710 -- definition within its own body. It cannot be used
7711 -- in the discriminant part of the task declaration,
7712 -- nor anywhere else in the declaration because entries
7713 -- cannot have access parameters.
7715 if Ada_Version >= Ada_2005
7716 and then Nkind (Parent (N)) = N_Access_Definition
7717 then
7718 Set_Entity (N, T_Name);
7719 Set_Etype (N, T_Name);
7721 if Has_Completion (T_Name) then
7722 return;
7724 else
7725 Error_Msg_N
7726 ("task type cannot be used as type mark " &
7727 "within its own declaration", N);
7728 end if;
7730 else
7731 Error_Msg_N
7732 ("task type cannot be used as type mark " &
7733 "within its own spec or body", N);
7734 end if;
7736 elsif Ekind (Base_Type (T_Name)) = E_Protected_Type then
7738 -- In Ada 2005, a protected name can be used in an access
7739 -- definition within its own body.
7741 if Ada_Version >= Ada_2005
7742 and then Nkind (Parent (N)) = N_Access_Definition
7743 then
7744 Set_Entity (N, T_Name);
7745 Set_Etype (N, T_Name);
7746 return;
7748 else
7749 Error_Msg_N
7750 ("protected type cannot be used as type mark " &
7751 "within its own spec or body", N);
7752 end if;
7754 else
7755 Error_Msg_N ("type declaration cannot refer to itself", N);
7756 end if;
7758 Set_Etype (N, Any_Type);
7759 Set_Entity (N, Any_Type);
7760 Set_Error_Posted (T_Name);
7761 return;
7762 end if;
7764 Set_Entity (N, T_Name);
7765 Set_Etype (N, T_Name);
7766 end if;
7767 end if;
7769 if Present (Etype (N)) and then Comes_From_Source (N) then
7770 if Is_Fixed_Point_Type (Etype (N)) then
7771 Check_Restriction (No_Fixed_Point, N);
7772 elsif Is_Floating_Point_Type (Etype (N)) then
7773 Check_Restriction (No_Floating_Point, N);
7774 end if;
7776 -- A Ghost type must appear in a specific context
7778 if Is_Ghost_Entity (Etype (N)) then
7779 Check_Ghost_Context (Etype (N), N);
7780 end if;
7781 end if;
7782 end Find_Type;
7784 ------------------------------------
7785 -- Has_Implicit_Character_Literal --
7786 ------------------------------------
7788 function Has_Implicit_Character_Literal (N : Node_Id) return Boolean is
7789 Id : Entity_Id;
7790 Found : Boolean := False;
7791 P : constant Entity_Id := Entity (Prefix (N));
7792 Priv_Id : Entity_Id := Empty;
7794 begin
7795 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7796 Priv_Id := First_Private_Entity (P);
7797 end if;
7799 if P = Standard_Standard then
7800 Change_Selected_Component_To_Expanded_Name (N);
7801 Rewrite (N, Selector_Name (N));
7802 Analyze (N);
7803 Set_Etype (Original_Node (N), Standard_Character);
7804 return True;
7805 end if;
7807 Id := First_Entity (P);
7808 while Present (Id) and then Id /= Priv_Id loop
7809 if Is_Standard_Character_Type (Id) and then Is_Base_Type (Id) then
7811 -- We replace the node with the literal itself, resolve as a
7812 -- character, and set the type correctly.
7814 if not Found then
7815 Change_Selected_Component_To_Expanded_Name (N);
7816 Rewrite (N, Selector_Name (N));
7817 Analyze (N);
7818 Set_Etype (N, Id);
7819 Set_Etype (Original_Node (N), Id);
7820 Found := True;
7822 else
7823 -- More than one type derived from Character in given scope.
7824 -- Collect all possible interpretations.
7826 Add_One_Interp (N, Id, Id);
7827 end if;
7828 end if;
7830 Next_Entity (Id);
7831 end loop;
7833 return Found;
7834 end Has_Implicit_Character_Literal;
7836 ----------------------
7837 -- Has_Private_With --
7838 ----------------------
7840 function Has_Private_With (E : Entity_Id) return Boolean is
7841 Comp_Unit : constant Node_Id := Cunit (Current_Sem_Unit);
7842 Item : Node_Id;
7844 begin
7845 Item := First (Context_Items (Comp_Unit));
7846 while Present (Item) loop
7847 if Nkind (Item) = N_With_Clause
7848 and then Private_Present (Item)
7849 and then Entity (Name (Item)) = E
7850 then
7851 return True;
7852 end if;
7854 Next (Item);
7855 end loop;
7857 return False;
7858 end Has_Private_With;
7860 ---------------------------
7861 -- Has_Implicit_Operator --
7862 ---------------------------
7864 function Has_Implicit_Operator (N : Node_Id) return Boolean is
7865 Op_Id : constant Name_Id := Chars (Selector_Name (N));
7866 P : constant Entity_Id := Entity (Prefix (N));
7867 Id : Entity_Id;
7868 Priv_Id : Entity_Id := Empty;
7870 procedure Add_Implicit_Operator
7871 (T : Entity_Id;
7872 Op_Type : Entity_Id := Empty);
7873 -- Add implicit interpretation to node N, using the type for which a
7874 -- predefined operator exists. If the operator yields a boolean type,
7875 -- the Operand_Type is implicitly referenced by the operator, and a
7876 -- reference to it must be generated.
7878 ---------------------------
7879 -- Add_Implicit_Operator --
7880 ---------------------------
7882 procedure Add_Implicit_Operator
7883 (T : Entity_Id;
7884 Op_Type : Entity_Id := Empty)
7886 Predef_Op : Entity_Id;
7888 begin
7889 Predef_Op := Current_Entity (Selector_Name (N));
7890 while Present (Predef_Op)
7891 and then Scope (Predef_Op) /= Standard_Standard
7892 loop
7893 Predef_Op := Homonym (Predef_Op);
7894 end loop;
7896 if Nkind (N) = N_Selected_Component then
7897 Change_Selected_Component_To_Expanded_Name (N);
7898 end if;
7900 -- If the context is an unanalyzed function call, determine whether
7901 -- a binary or unary interpretation is required.
7903 if Nkind (Parent (N)) = N_Indexed_Component then
7904 declare
7905 Is_Binary_Call : constant Boolean :=
7906 Present
7907 (Next (First (Expressions (Parent (N)))));
7908 Is_Binary_Op : constant Boolean :=
7909 First_Entity
7910 (Predef_Op) /= Last_Entity (Predef_Op);
7911 Predef_Op2 : constant Entity_Id := Homonym (Predef_Op);
7913 begin
7914 if Is_Binary_Call then
7915 if Is_Binary_Op then
7916 Add_One_Interp (N, Predef_Op, T);
7917 else
7918 Add_One_Interp (N, Predef_Op2, T);
7919 end if;
7921 else
7922 if not Is_Binary_Op then
7923 Add_One_Interp (N, Predef_Op, T);
7924 else
7925 Add_One_Interp (N, Predef_Op2, T);
7926 end if;
7927 end if;
7928 end;
7930 else
7931 Add_One_Interp (N, Predef_Op, T);
7933 -- For operators with unary and binary interpretations, if
7934 -- context is not a call, add both
7936 if Present (Homonym (Predef_Op)) then
7937 Add_One_Interp (N, Homonym (Predef_Op), T);
7938 end if;
7939 end if;
7941 -- The node is a reference to a predefined operator, and
7942 -- an implicit reference to the type of its operands.
7944 if Present (Op_Type) then
7945 Generate_Operator_Reference (N, Op_Type);
7946 else
7947 Generate_Operator_Reference (N, T);
7948 end if;
7949 end Add_Implicit_Operator;
7951 -- Start of processing for Has_Implicit_Operator
7953 begin
7954 if Ekind (P) = E_Package and then not In_Open_Scopes (P) then
7955 Priv_Id := First_Private_Entity (P);
7956 end if;
7958 Id := First_Entity (P);
7960 case Op_Id is
7962 -- Boolean operators: an implicit declaration exists if the scope
7963 -- contains a declaration for a derived Boolean type, or for an
7964 -- array of Boolean type.
7966 when Name_Op_And
7967 | Name_Op_Not
7968 | Name_Op_Or
7969 | Name_Op_Xor
7971 while Id /= Priv_Id loop
7972 if Valid_Boolean_Arg (Id) and then Is_Base_Type (Id) then
7973 Add_Implicit_Operator (Id);
7974 return True;
7975 end if;
7977 Next_Entity (Id);
7978 end loop;
7980 -- Equality: look for any non-limited type (result is Boolean)
7982 when Name_Op_Eq
7983 | Name_Op_Ne
7985 while Id /= Priv_Id loop
7986 if Is_Type (Id)
7987 and then not Is_Limited_Type (Id)
7988 and then Is_Base_Type (Id)
7989 then
7990 Add_Implicit_Operator (Standard_Boolean, Id);
7991 return True;
7992 end if;
7994 Next_Entity (Id);
7995 end loop;
7997 -- Comparison operators: scalar type, or array of scalar
7999 when Name_Op_Ge
8000 | Name_Op_Gt
8001 | Name_Op_Le
8002 | Name_Op_Lt
8004 while Id /= Priv_Id loop
8005 if (Is_Scalar_Type (Id)
8006 or else (Is_Array_Type (Id)
8007 and then Is_Scalar_Type (Component_Type (Id))))
8008 and then Is_Base_Type (Id)
8009 then
8010 Add_Implicit_Operator (Standard_Boolean, Id);
8011 return True;
8012 end if;
8014 Next_Entity (Id);
8015 end loop;
8017 -- Arithmetic operators: any numeric type
8019 when Name_Op_Abs
8020 | Name_Op_Add
8021 | Name_Op_Divide
8022 | Name_Op_Expon
8023 | Name_Op_Mod
8024 | Name_Op_Multiply
8025 | Name_Op_Rem
8026 | Name_Op_Subtract
8028 while Id /= Priv_Id loop
8029 if Is_Numeric_Type (Id) and then Is_Base_Type (Id) then
8030 Add_Implicit_Operator (Id);
8031 return True;
8032 end if;
8034 Next_Entity (Id);
8035 end loop;
8037 -- Concatenation: any one-dimensional array type
8039 when Name_Op_Concat =>
8040 while Id /= Priv_Id loop
8041 if Is_Array_Type (Id)
8042 and then Number_Dimensions (Id) = 1
8043 and then Is_Base_Type (Id)
8044 then
8045 Add_Implicit_Operator (Id);
8046 return True;
8047 end if;
8049 Next_Entity (Id);
8050 end loop;
8052 -- What is the others condition here? Should we be using a
8053 -- subtype of Name_Id that would restrict to operators ???
8055 when others =>
8056 null;
8057 end case;
8059 -- If we fall through, then we do not have an implicit operator
8061 return False;
8062 end Has_Implicit_Operator;
8064 -----------------------------------
8065 -- Has_Loop_In_Inner_Open_Scopes --
8066 -----------------------------------
8068 function Has_Loop_In_Inner_Open_Scopes (S : Entity_Id) return Boolean is
8069 begin
8070 -- Several scope stacks are maintained by Scope_Stack. The base of the
8071 -- currently active scope stack is denoted by the Is_Active_Stack_Base
8072 -- flag in the scope stack entry. Note that the scope stacks used to
8073 -- simply be delimited implicitly by the presence of Standard_Standard
8074 -- at their base, but there now are cases where this is not sufficient
8075 -- because Standard_Standard actually may appear in the middle of the
8076 -- active set of scopes.
8078 for J in reverse 0 .. Scope_Stack.Last loop
8080 -- S was reached without seing a loop scope first
8082 if Scope_Stack.Table (J).Entity = S then
8083 return False;
8085 -- S was not yet reached, so it contains at least one inner loop
8087 elsif Ekind (Scope_Stack.Table (J).Entity) = E_Loop then
8088 return True;
8089 end if;
8091 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
8092 -- cases where Standard_Standard appears in the middle of the active
8093 -- set of scopes. This affects the declaration and overriding of
8094 -- private inherited operations in instantiations of generic child
8095 -- units.
8097 pragma Assert (not Scope_Stack.Table (J).Is_Active_Stack_Base);
8098 end loop;
8100 raise Program_Error; -- unreachable
8101 end Has_Loop_In_Inner_Open_Scopes;
8103 --------------------
8104 -- In_Open_Scopes --
8105 --------------------
8107 function In_Open_Scopes (S : Entity_Id) return Boolean is
8108 begin
8109 -- Several scope stacks are maintained by Scope_Stack. The base of the
8110 -- currently active scope stack is denoted by the Is_Active_Stack_Base
8111 -- flag in the scope stack entry. Note that the scope stacks used to
8112 -- simply be delimited implicitly by the presence of Standard_Standard
8113 -- at their base, but there now are cases where this is not sufficient
8114 -- because Standard_Standard actually may appear in the middle of the
8115 -- active set of scopes.
8117 for J in reverse 0 .. Scope_Stack.Last loop
8118 if Scope_Stack.Table (J).Entity = S then
8119 return True;
8120 end if;
8122 -- Check Is_Active_Stack_Base to tell us when to stop, as there are
8123 -- cases where Standard_Standard appears in the middle of the active
8124 -- set of scopes. This affects the declaration and overriding of
8125 -- private inherited operations in instantiations of generic child
8126 -- units.
8128 exit when Scope_Stack.Table (J).Is_Active_Stack_Base;
8129 end loop;
8131 return False;
8132 end In_Open_Scopes;
8134 -----------------------------
8135 -- Inherit_Renamed_Profile --
8136 -----------------------------
8138 procedure Inherit_Renamed_Profile (New_S : Entity_Id; Old_S : Entity_Id) is
8139 New_F : Entity_Id;
8140 Old_F : Entity_Id;
8141 Old_T : Entity_Id;
8142 New_T : Entity_Id;
8144 begin
8145 if Ekind (Old_S) = E_Operator then
8146 New_F := First_Formal (New_S);
8148 while Present (New_F) loop
8149 Set_Etype (New_F, Base_Type (Etype (New_F)));
8150 Next_Formal (New_F);
8151 end loop;
8153 Set_Etype (New_S, Base_Type (Etype (New_S)));
8155 else
8156 New_F := First_Formal (New_S);
8157 Old_F := First_Formal (Old_S);
8159 while Present (New_F) loop
8160 New_T := Etype (New_F);
8161 Old_T := Etype (Old_F);
8163 -- If the new type is a renaming of the old one, as is the case
8164 -- for actuals in instances, retain its name, to simplify later
8165 -- disambiguation.
8167 if Nkind (Parent (New_T)) = N_Subtype_Declaration
8168 and then Is_Entity_Name (Subtype_Indication (Parent (New_T)))
8169 and then Entity (Subtype_Indication (Parent (New_T))) = Old_T
8170 then
8171 null;
8172 else
8173 Set_Etype (New_F, Old_T);
8174 end if;
8176 Next_Formal (New_F);
8177 Next_Formal (Old_F);
8178 end loop;
8180 pragma Assert (No (Old_F));
8182 if Ekind_In (Old_S, E_Function, E_Enumeration_Literal) then
8183 Set_Etype (New_S, Etype (Old_S));
8184 end if;
8185 end if;
8186 end Inherit_Renamed_Profile;
8188 ----------------
8189 -- Initialize --
8190 ----------------
8192 procedure Initialize is
8193 begin
8194 Urefs.Init;
8195 end Initialize;
8197 -------------------------
8198 -- Install_Use_Clauses --
8199 -------------------------
8201 procedure Install_Use_Clauses
8202 (Clause : Node_Id;
8203 Force_Installation : Boolean := False)
8205 U : Node_Id;
8207 begin
8208 U := Clause;
8209 while Present (U) loop
8211 -- Case of USE package
8213 if Nkind (U) = N_Use_Package_Clause then
8214 Use_One_Package (U, Name (U), True);
8216 -- Case of USE TYPE
8218 else
8219 Use_One_Type (Subtype_Mark (U), Force => Force_Installation);
8221 end if;
8223 Next_Use_Clause (U);
8224 end loop;
8225 end Install_Use_Clauses;
8227 -------------------------------------
8228 -- Is_Appropriate_For_Entry_Prefix --
8229 -------------------------------------
8231 function Is_Appropriate_For_Entry_Prefix (T : Entity_Id) return Boolean is
8232 P_Type : Entity_Id := T;
8234 begin
8235 if Is_Access_Type (P_Type) then
8236 P_Type := Designated_Type (P_Type);
8237 end if;
8239 return Is_Task_Type (P_Type) or else Is_Protected_Type (P_Type);
8240 end Is_Appropriate_For_Entry_Prefix;
8242 -------------------------------
8243 -- Is_Appropriate_For_Record --
8244 -------------------------------
8246 function Is_Appropriate_For_Record (T : Entity_Id) return Boolean is
8248 function Has_Components (T1 : Entity_Id) return Boolean;
8249 -- Determine if given type has components (i.e. is either a record
8250 -- type or a type that has discriminants).
8252 --------------------
8253 -- Has_Components --
8254 --------------------
8256 function Has_Components (T1 : Entity_Id) return Boolean is
8257 begin
8258 return Is_Record_Type (T1)
8259 or else (Is_Private_Type (T1) and then Has_Discriminants (T1))
8260 or else (Is_Task_Type (T1) and then Has_Discriminants (T1))
8261 or else (Is_Incomplete_Type (T1)
8262 and then From_Limited_With (T1)
8263 and then Present (Non_Limited_View (T1))
8264 and then Is_Record_Type
8265 (Get_Full_View (Non_Limited_View (T1))));
8266 end Has_Components;
8268 -- Start of processing for Is_Appropriate_For_Record
8270 begin
8271 return
8272 Present (T)
8273 and then (Has_Components (T)
8274 or else (Is_Access_Type (T)
8275 and then Has_Components (Designated_Type (T))));
8276 end Is_Appropriate_For_Record;
8278 ----------------------
8279 -- Mark_Use_Clauses --
8280 ----------------------
8282 procedure Mark_Use_Clauses (Id : Node_Or_Entity_Id) is
8283 procedure Mark_Parameters (Call : Entity_Id);
8284 -- Perform use_type_clause marking for all parameters in a subprogram
8285 -- or operator call.
8287 procedure Mark_Use_Package (Pak : Entity_Id);
8288 -- Move up the Prev_Use_Clause chain for packages denoted by Pak -
8289 -- marking each clause in the chain as effective in the process.
8291 procedure Mark_Use_Type (E : Entity_Id);
8292 -- Similar to Do_Use_Package_Marking except we move up the
8293 -- Prev_Use_Clause chain for the type denoted by E.
8295 ---------------------
8296 -- Mark_Parameters --
8297 ---------------------
8299 procedure Mark_Parameters (Call : Entity_Id) is
8300 Curr : Node_Id;
8302 begin
8303 -- Move through all of the formals
8305 Curr := First_Formal (Call);
8306 while Present (Curr) loop
8307 Mark_Use_Type (Curr);
8309 Curr := Next_Formal (Curr);
8310 end loop;
8312 -- Handle the return type
8314 Mark_Use_Type (Call);
8315 end Mark_Parameters;
8317 ----------------------
8318 -- Mark_Use_Package --
8319 ----------------------
8321 procedure Mark_Use_Package (Pak : Entity_Id) is
8322 Curr : Node_Id;
8324 begin
8325 -- Ignore cases where the scope of the type is not a package (e.g.
8326 -- Standard_Standard).
8328 if Ekind (Pak) /= E_Package then
8329 return;
8330 end if;
8332 Curr := Current_Use_Clause (Pak);
8333 while Present (Curr)
8334 and then not Is_Effective_Use_Clause (Curr)
8335 loop
8336 -- We need to mark the previous use clauses as effective, but
8337 -- each use clause may in turn render other use_package_clauses
8338 -- effective. Additionally, it is possible to have a parent
8339 -- package renamed as a child of itself so we must check the
8340 -- prefix entity is not the same as the package we are marking.
8342 if Nkind (Name (Curr)) /= N_Identifier
8343 and then Present (Prefix (Name (Curr)))
8344 and then Entity (Prefix (Name (Curr))) /= Pak
8345 then
8346 Mark_Use_Package (Entity (Prefix (Name (Curr))));
8348 -- It is also possible to have a child package without a prefix
8349 -- that relies on a previous use_package_clause.
8351 elsif Nkind (Name (Curr)) = N_Identifier
8352 and then Is_Child_Unit (Entity (Name (Curr)))
8353 then
8354 Mark_Use_Package (Scope (Entity (Name (Curr))));
8355 end if;
8357 -- Mark the use_package_clause as effective and move up the chain
8359 Set_Is_Effective_Use_Clause (Curr);
8361 Curr := Prev_Use_Clause (Curr);
8362 end loop;
8363 end Mark_Use_Package;
8365 -------------------
8366 -- Mark_Use_Type --
8367 -------------------
8369 procedure Mark_Use_Type (E : Entity_Id) is
8370 Curr : Node_Id;
8371 Base : Entity_Id;
8373 begin
8374 -- Ignore void types and unresolved string literals and primitives
8376 if Nkind (E) = N_String_Literal
8377 or else Nkind (Etype (E)) not in N_Entity
8378 or else not Is_Type (Etype (E))
8379 then
8380 return;
8381 end if;
8383 -- Primitives with class-wide operands might additionally render
8384 -- their base type's use_clauses effective - so do a recursive check
8385 -- here.
8387 Base := Base_Type (Etype (E));
8389 if Ekind (Base) = E_Class_Wide_Type then
8390 Mark_Use_Type (Base);
8391 end if;
8393 -- The package containing the type or operator function being used
8394 -- may be in use as well, so mark any use_package_clauses for it as
8395 -- effective. There are also additional sanity checks performed here
8396 -- for ignoring previous errors.
8398 Mark_Use_Package (Scope (Base));
8400 if Nkind (E) in N_Op
8401 and then Present (Entity (E))
8402 and then Present (Scope (Entity (E)))
8403 then
8404 Mark_Use_Package (Scope (Entity (E)));
8405 end if;
8407 Curr := Current_Use_Clause (Base);
8408 while Present (Curr)
8409 and then not Is_Effective_Use_Clause (Curr)
8410 loop
8411 -- Current use_type_clause may render other use_package_clauses
8412 -- effective.
8414 if Nkind (Subtype_Mark (Curr)) /= N_Identifier
8415 and then Present (Prefix (Subtype_Mark (Curr)))
8416 then
8417 Mark_Use_Package (Entity (Prefix (Subtype_Mark (Curr))));
8418 end if;
8420 -- Mark the use_type_clause as effective and move up the chain
8422 Set_Is_Effective_Use_Clause (Curr);
8424 Curr := Prev_Use_Clause (Curr);
8425 end loop;
8426 end Mark_Use_Type;
8428 -- Start of processing for Mark_Use_Clauses
8430 begin
8431 -- Use clauses in and of themselves do not count as a "use" of a
8432 -- package.
8434 if Nkind_In (Parent (Id), N_Use_Package_Clause, N_Use_Type_Clause) then
8435 return;
8436 end if;
8438 -- Handle entities
8440 if Nkind (Id) in N_Entity then
8442 -- Mark the entity's package
8444 if Is_Potentially_Use_Visible (Id) then
8445 Mark_Use_Package (Scope (Id));
8446 end if;
8448 -- Mark enumeration literals
8450 if Ekind (Id) = E_Enumeration_Literal then
8451 Mark_Use_Type (Id);
8453 -- Mark primitives
8455 elsif (Ekind (Id) in Overloadable_Kind
8456 or else Ekind_In (Id, E_Generic_Function,
8457 E_Generic_Procedure))
8458 and then (Is_Potentially_Use_Visible (Id)
8459 or else Is_Intrinsic_Subprogram (Id)
8460 or else (Ekind_In (Id, E_Function, E_Procedure)
8461 and then Is_Generic_Actual_Subprogram (Id)))
8462 then
8463 Mark_Parameters (Id);
8464 end if;
8466 -- Handle nodes
8468 else
8469 -- Mark operators
8471 if Nkind (Id) in N_Op then
8473 -- At this point the left operand may not be resolved if we are
8474 -- encountering multiple operators next to eachother in an
8475 -- expression.
8477 if Nkind (Id) in N_Binary_Op
8478 and then not (Nkind (Left_Opnd (Id)) in N_Op)
8479 then
8480 Mark_Use_Type (Left_Opnd (Id));
8481 end if;
8483 Mark_Use_Type (Right_Opnd (Id));
8484 Mark_Use_Type (Id);
8486 -- Mark entity identifiers
8488 elsif Nkind (Id) in N_Has_Entity
8489 and then (Is_Potentially_Use_Visible (Entity (Id))
8490 or else (Is_Generic_Instance (Entity (Id))
8491 and then Is_Immediately_Visible (Entity (Id))))
8492 then
8493 -- Ignore fully qualified names as they do not count as a "use" of
8494 -- a package.
8496 if Nkind_In (Id, N_Identifier, N_Operator_Symbol)
8497 or else (Present (Prefix (Id))
8498 and then Scope (Entity (Id)) /= Entity (Prefix (Id)))
8499 then
8500 Mark_Use_Clauses (Entity (Id));
8501 end if;
8502 end if;
8503 end if;
8504 end Mark_Use_Clauses;
8506 --------------------------------
8507 -- Most_Descendant_Use_Clause --
8508 --------------------------------
8510 function Most_Descendant_Use_Clause
8511 (Clause1 : Entity_Id;
8512 Clause2 : Entity_Id) return Entity_Id
8514 Scope1, Scope2 : Entity_Id;
8516 begin
8517 if Clause1 = Clause2 then
8518 return Clause1;
8519 end if;
8521 -- We determine which one is the most descendant by the scope distance
8522 -- to the ultimate parent unit.
8524 Scope1 := Entity_Of_Unit (Unit (Parent (Clause1)));
8525 Scope2 := Entity_Of_Unit (Unit (Parent (Clause2)));
8526 while Scope1 /= Standard_Standard
8527 and then Scope2 /= Standard_Standard
8528 loop
8529 Scope1 := Scope (Scope1);
8530 Scope2 := Scope (Scope2);
8532 if not Present (Scope1) then
8533 return Clause1;
8534 elsif not Present (Scope2) then
8535 return Clause2;
8536 end if;
8537 end loop;
8539 if Scope1 = Standard_Standard then
8540 return Clause1;
8541 end if;
8543 return Clause2;
8544 end Most_Descendant_Use_Clause;
8546 ---------------
8547 -- Pop_Scope --
8548 ---------------
8550 procedure Pop_Scope is
8551 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8552 S : constant Entity_Id := SST.Entity;
8554 begin
8555 if Debug_Flag_E then
8556 Write_Info;
8557 end if;
8559 -- Set Default_Storage_Pool field of the library unit if necessary
8561 if Ekind_In (S, E_Package, E_Generic_Package)
8562 and then
8563 Nkind (Parent (Unit_Declaration_Node (S))) = N_Compilation_Unit
8564 then
8565 declare
8566 Aux : constant Node_Id :=
8567 Aux_Decls_Node (Parent (Unit_Declaration_Node (S)));
8568 begin
8569 if No (Default_Storage_Pool (Aux)) then
8570 Set_Default_Storage_Pool (Aux, Default_Pool);
8571 end if;
8572 end;
8573 end if;
8575 Scope_Suppress := SST.Save_Scope_Suppress;
8576 Local_Suppress_Stack_Top := SST.Save_Local_Suppress_Stack_Top;
8577 Check_Policy_List := SST.Save_Check_Policy_List;
8578 Default_Pool := SST.Save_Default_Storage_Pool;
8579 No_Tagged_Streams := SST.Save_No_Tagged_Streams;
8580 SPARK_Mode := SST.Save_SPARK_Mode;
8581 SPARK_Mode_Pragma := SST.Save_SPARK_Mode_Pragma;
8582 Default_SSO := SST.Save_Default_SSO;
8583 Uneval_Old := SST.Save_Uneval_Old;
8585 if Debug_Flag_W then
8586 Write_Str ("<-- exiting scope: ");
8587 Write_Name (Chars (Current_Scope));
8588 Write_Str (", Depth=");
8589 Write_Int (Int (Scope_Stack.Last));
8590 Write_Eol;
8591 end if;
8593 End_Use_Clauses (SST.First_Use_Clause);
8595 -- If the actions to be wrapped are still there they will get lost
8596 -- causing incomplete code to be generated. It is better to abort in
8597 -- this case (and we do the abort even with assertions off since the
8598 -- penalty is incorrect code generation).
8600 if SST.Actions_To_Be_Wrapped /= Scope_Actions'(others => No_List) then
8601 raise Program_Error;
8602 end if;
8604 -- Free last subprogram name if allocated, and pop scope
8606 Free (SST.Last_Subprogram_Name);
8607 Scope_Stack.Decrement_Last;
8608 end Pop_Scope;
8610 ----------------
8611 -- Push_Scope --
8612 ----------------
8614 procedure Push_Scope (S : Entity_Id) is
8615 E : constant Entity_Id := Scope (S);
8617 begin
8618 if Ekind (S) = E_Void then
8619 null;
8621 -- Set scope depth if not a non-concurrent type, and we have not yet set
8622 -- the scope depth. This means that we have the first occurrence of the
8623 -- scope, and this is where the depth is set.
8625 elsif (not Is_Type (S) or else Is_Concurrent_Type (S))
8626 and then not Scope_Depth_Set (S)
8627 then
8628 if S = Standard_Standard then
8629 Set_Scope_Depth_Value (S, Uint_0);
8631 elsif Is_Child_Unit (S) then
8632 Set_Scope_Depth_Value (S, Uint_1);
8634 elsif not Is_Record_Type (Current_Scope) then
8635 if Ekind (S) = E_Loop then
8636 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope));
8637 else
8638 Set_Scope_Depth_Value (S, Scope_Depth (Current_Scope) + 1);
8639 end if;
8640 end if;
8641 end if;
8643 Scope_Stack.Increment_Last;
8645 declare
8646 SST : Scope_Stack_Entry renames Scope_Stack.Table (Scope_Stack.Last);
8648 begin
8649 SST.Entity := S;
8650 SST.Save_Scope_Suppress := Scope_Suppress;
8651 SST.Save_Local_Suppress_Stack_Top := Local_Suppress_Stack_Top;
8652 SST.Save_Check_Policy_List := Check_Policy_List;
8653 SST.Save_Default_Storage_Pool := Default_Pool;
8654 SST.Save_No_Tagged_Streams := No_Tagged_Streams;
8655 SST.Save_SPARK_Mode := SPARK_Mode;
8656 SST.Save_SPARK_Mode_Pragma := SPARK_Mode_Pragma;
8657 SST.Save_Default_SSO := Default_SSO;
8658 SST.Save_Uneval_Old := Uneval_Old;
8660 -- Each new scope pushed onto the scope stack inherits the component
8661 -- alignment of the previous scope. This emulates the "visibility"
8662 -- semantics of pragma Component_Alignment.
8664 if Scope_Stack.Last > Scope_Stack.First then
8665 SST.Component_Alignment_Default :=
8666 Scope_Stack.Table
8667 (Scope_Stack.Last - 1). Component_Alignment_Default;
8669 -- Otherwise, this is the first scope being pushed on the scope
8670 -- stack. Inherit the component alignment from the configuration
8671 -- form of pragma Component_Alignment (if any).
8673 else
8674 SST.Component_Alignment_Default :=
8675 Configuration_Component_Alignment;
8676 end if;
8678 SST.Last_Subprogram_Name := null;
8679 SST.Is_Transient := False;
8680 SST.Node_To_Be_Wrapped := Empty;
8681 SST.Pending_Freeze_Actions := No_List;
8682 SST.Actions_To_Be_Wrapped := (others => No_List);
8683 SST.First_Use_Clause := Empty;
8684 SST.Is_Active_Stack_Base := False;
8685 SST.Previous_Visibility := False;
8686 SST.Locked_Shared_Objects := No_Elist;
8687 end;
8689 if Debug_Flag_W then
8690 Write_Str ("--> new scope: ");
8691 Write_Name (Chars (Current_Scope));
8692 Write_Str (", Id=");
8693 Write_Int (Int (Current_Scope));
8694 Write_Str (", Depth=");
8695 Write_Int (Int (Scope_Stack.Last));
8696 Write_Eol;
8697 end if;
8699 -- Deal with copying flags from the previous scope to this one. This is
8700 -- not necessary if either scope is standard, or if the new scope is a
8701 -- child unit.
8703 if S /= Standard_Standard
8704 and then Scope (S) /= Standard_Standard
8705 and then not Is_Child_Unit (S)
8706 then
8707 if Nkind (E) not in N_Entity then
8708 return;
8709 end if;
8711 -- Copy categorization flags from Scope (S) to S, this is not done
8712 -- when Scope (S) is Standard_Standard since propagation is from
8713 -- library unit entity inwards. Copy other relevant attributes as
8714 -- well (Discard_Names in particular).
8716 -- We only propagate inwards for library level entities,
8717 -- inner level subprograms do not inherit the categorization.
8719 if Is_Library_Level_Entity (S) then
8720 Set_Is_Preelaborated (S, Is_Preelaborated (E));
8721 Set_Is_Shared_Passive (S, Is_Shared_Passive (E));
8722 Set_Discard_Names (S, Discard_Names (E));
8723 Set_Suppress_Value_Tracking_On_Call
8724 (S, Suppress_Value_Tracking_On_Call (E));
8725 Set_Categorization_From_Scope (E => S, Scop => E);
8726 end if;
8727 end if;
8729 if Is_Child_Unit (S)
8730 and then Present (E)
8731 and then Ekind_In (E, E_Package, E_Generic_Package)
8732 and then
8733 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
8734 then
8735 declare
8736 Aux : constant Node_Id :=
8737 Aux_Decls_Node (Parent (Unit_Declaration_Node (E)));
8738 begin
8739 if Present (Default_Storage_Pool (Aux)) then
8740 Default_Pool := Default_Storage_Pool (Aux);
8741 end if;
8742 end;
8743 end if;
8744 end Push_Scope;
8746 ---------------------
8747 -- Premature_Usage --
8748 ---------------------
8750 procedure Premature_Usage (N : Node_Id) is
8751 Kind : constant Node_Kind := Nkind (Parent (Entity (N)));
8752 E : Entity_Id := Entity (N);
8754 begin
8755 -- Within an instance, the analysis of the actual for a formal object
8756 -- does not see the name of the object itself. This is significant only
8757 -- if the object is an aggregate, where its analysis does not do any
8758 -- name resolution on component associations. (see 4717-008). In such a
8759 -- case, look for the visible homonym on the chain.
8761 if In_Instance and then Present (Homonym (E)) then
8762 E := Homonym (E);
8763 while Present (E) and then not In_Open_Scopes (Scope (E)) loop
8764 E := Homonym (E);
8765 end loop;
8767 if Present (E) then
8768 Set_Entity (N, E);
8769 Set_Etype (N, Etype (E));
8770 return;
8771 end if;
8772 end if;
8774 if Kind = N_Component_Declaration then
8775 Error_Msg_N
8776 ("component&! cannot be used before end of record declaration", N);
8778 elsif Kind = N_Parameter_Specification then
8779 Error_Msg_N
8780 ("formal parameter&! cannot be used before end of specification",
8783 elsif Kind = N_Discriminant_Specification then
8784 Error_Msg_N
8785 ("discriminant&! cannot be used before end of discriminant part",
8788 elsif Kind = N_Procedure_Specification
8789 or else Kind = N_Function_Specification
8790 then
8791 Error_Msg_N
8792 ("subprogram&! cannot be used before end of its declaration",
8795 elsif Kind = N_Full_Type_Declaration then
8796 Error_Msg_N
8797 ("type& cannot be used before end of its declaration!", N);
8799 else
8800 Error_Msg_N
8801 ("object& cannot be used before end of its declaration!", N);
8803 -- If the premature reference appears as the expression in its own
8804 -- declaration, rewrite it to prevent compiler loops in subsequent
8805 -- uses of this mangled declaration in address clauses.
8807 if Nkind (Parent (N)) = N_Object_Declaration then
8808 Set_Entity (N, Any_Id);
8809 end if;
8810 end if;
8811 end Premature_Usage;
8813 ------------------------
8814 -- Present_System_Aux --
8815 ------------------------
8817 function Present_System_Aux (N : Node_Id := Empty) return Boolean is
8818 Loc : Source_Ptr;
8819 Aux_Name : Unit_Name_Type;
8820 Unum : Unit_Number_Type;
8821 Withn : Node_Id;
8822 With_Sys : Node_Id;
8823 The_Unit : Node_Id;
8825 function Find_System (C_Unit : Node_Id) return Entity_Id;
8826 -- Scan context clause of compilation unit to find with_clause
8827 -- for System.
8829 -----------------
8830 -- Find_System --
8831 -----------------
8833 function Find_System (C_Unit : Node_Id) return Entity_Id is
8834 With_Clause : Node_Id;
8836 begin
8837 With_Clause := First (Context_Items (C_Unit));
8838 while Present (With_Clause) loop
8839 if (Nkind (With_Clause) = N_With_Clause
8840 and then Chars (Name (With_Clause)) = Name_System)
8841 and then Comes_From_Source (With_Clause)
8842 then
8843 return With_Clause;
8844 end if;
8846 Next (With_Clause);
8847 end loop;
8849 return Empty;
8850 end Find_System;
8852 -- Start of processing for Present_System_Aux
8854 begin
8855 -- The child unit may have been loaded and analyzed already
8857 if Present (System_Aux_Id) then
8858 return True;
8860 -- If no previous pragma for System.Aux, nothing to load
8862 elsif No (System_Extend_Unit) then
8863 return False;
8865 -- Use the unit name given in the pragma to retrieve the unit.
8866 -- Verify that System itself appears in the context clause of the
8867 -- current compilation. If System is not present, an error will
8868 -- have been reported already.
8870 else
8871 With_Sys := Find_System (Cunit (Current_Sem_Unit));
8873 The_Unit := Unit (Cunit (Current_Sem_Unit));
8875 if No (With_Sys)
8876 and then
8877 (Nkind (The_Unit) = N_Package_Body
8878 or else (Nkind (The_Unit) = N_Subprogram_Body
8879 and then not Acts_As_Spec (Cunit (Current_Sem_Unit))))
8880 then
8881 With_Sys := Find_System (Library_Unit (Cunit (Current_Sem_Unit)));
8882 end if;
8884 if No (With_Sys) and then Present (N) then
8886 -- If we are compiling a subunit, we need to examine its
8887 -- context as well (Current_Sem_Unit is the parent unit);
8889 The_Unit := Parent (N);
8890 while Nkind (The_Unit) /= N_Compilation_Unit loop
8891 The_Unit := Parent (The_Unit);
8892 end loop;
8894 if Nkind (Unit (The_Unit)) = N_Subunit then
8895 With_Sys := Find_System (The_Unit);
8896 end if;
8897 end if;
8899 if No (With_Sys) then
8900 return False;
8901 end if;
8903 Loc := Sloc (With_Sys);
8904 Get_Name_String (Chars (Expression (System_Extend_Unit)));
8905 Name_Buffer (8 .. Name_Len + 7) := Name_Buffer (1 .. Name_Len);
8906 Name_Buffer (1 .. 7) := "system.";
8907 Name_Buffer (Name_Len + 8) := '%';
8908 Name_Buffer (Name_Len + 9) := 's';
8909 Name_Len := Name_Len + 9;
8910 Aux_Name := Name_Find;
8912 Unum :=
8913 Load_Unit
8914 (Load_Name => Aux_Name,
8915 Required => False,
8916 Subunit => False,
8917 Error_Node => With_Sys);
8919 if Unum /= No_Unit then
8920 Semantics (Cunit (Unum));
8921 System_Aux_Id :=
8922 Defining_Entity (Specification (Unit (Cunit (Unum))));
8924 Withn :=
8925 Make_With_Clause (Loc,
8926 Name =>
8927 Make_Expanded_Name (Loc,
8928 Chars => Chars (System_Aux_Id),
8929 Prefix => New_Occurrence_Of (Scope (System_Aux_Id), Loc),
8930 Selector_Name => New_Occurrence_Of (System_Aux_Id, Loc)));
8932 Set_Entity (Name (Withn), System_Aux_Id);
8934 Set_Library_Unit (Withn, Cunit (Unum));
8935 Set_Corresponding_Spec (Withn, System_Aux_Id);
8936 Set_First_Name (Withn, True);
8937 Set_Implicit_With (Withn, True);
8939 Insert_After (With_Sys, Withn);
8940 Mark_Rewrite_Insertion (Withn);
8941 Set_Context_Installed (Withn);
8943 return True;
8945 -- Here if unit load failed
8947 else
8948 Error_Msg_Name_1 := Name_System;
8949 Error_Msg_Name_2 := Chars (Expression (System_Extend_Unit));
8950 Error_Msg_N
8951 ("extension package `%.%` does not exist",
8952 Opt.System_Extend_Unit);
8953 return False;
8954 end if;
8955 end if;
8956 end Present_System_Aux;
8958 -------------------------
8959 -- Restore_Scope_Stack --
8960 -------------------------
8962 procedure Restore_Scope_Stack
8963 (List : Elist_Id;
8964 Handle_Use : Boolean := True)
8966 SS_Last : constant Int := Scope_Stack.Last;
8967 Elmt : Elmt_Id;
8969 begin
8970 -- Restore visibility of previous scope stack, if any, using the list
8971 -- we saved (we use Remove, since this list will not be used again).
8973 loop
8974 Elmt := Last_Elmt (List);
8975 exit when Elmt = No_Elmt;
8976 Set_Is_Immediately_Visible (Node (Elmt));
8977 Remove_Last_Elmt (List);
8978 end loop;
8980 -- Restore use clauses
8982 if SS_Last >= Scope_Stack.First
8983 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
8984 and then Handle_Use
8985 then
8986 Install_Use_Clauses
8987 (Scope_Stack.Table (SS_Last).First_Use_Clause,
8988 Force_Installation => True);
8989 end if;
8990 end Restore_Scope_Stack;
8992 ----------------------
8993 -- Save_Scope_Stack --
8994 ----------------------
8996 -- Save_Scope_Stack/Restore_Scope_Stack were originally designed to avoid
8997 -- consuming any memory. That is, Save_Scope_Stack took care of removing
8998 -- from immediate visibility entities and Restore_Scope_Stack took care
8999 -- of restoring their visibility analyzing the context of each entity. The
9000 -- problem of such approach is that it was fragile and caused unexpected
9001 -- visibility problems, and indeed one test was found where there was a
9002 -- real problem.
9004 -- Furthermore, the following experiment was carried out:
9006 -- - Save_Scope_Stack was modified to store in an Elist1 all those
9007 -- entities whose attribute Is_Immediately_Visible is modified
9008 -- from True to False.
9010 -- - Restore_Scope_Stack was modified to store in another Elist2
9011 -- all the entities whose attribute Is_Immediately_Visible is
9012 -- modified from False to True.
9014 -- - Extra code was added to verify that all the elements of Elist1
9015 -- are found in Elist2
9017 -- This test shows that there may be more occurrences of this problem which
9018 -- have not yet been detected. As a result, we replaced that approach by
9019 -- the current one in which Save_Scope_Stack returns the list of entities
9020 -- whose visibility is changed, and that list is passed to Restore_Scope_
9021 -- Stack to undo that change. This approach is simpler and safer, although
9022 -- it consumes more memory.
9024 function Save_Scope_Stack (Handle_Use : Boolean := True) return Elist_Id is
9025 Result : constant Elist_Id := New_Elmt_List;
9026 E : Entity_Id;
9027 S : Entity_Id;
9028 SS_Last : constant Int := Scope_Stack.Last;
9030 procedure Remove_From_Visibility (E : Entity_Id);
9031 -- If E is immediately visible then append it to the result and remove
9032 -- it temporarily from visibility.
9034 ----------------------------
9035 -- Remove_From_Visibility --
9036 ----------------------------
9038 procedure Remove_From_Visibility (E : Entity_Id) is
9039 begin
9040 if Is_Immediately_Visible (E) then
9041 Append_Elmt (E, Result);
9042 Set_Is_Immediately_Visible (E, False);
9043 end if;
9044 end Remove_From_Visibility;
9046 -- Start of processing for Save_Scope_Stack
9048 begin
9049 if SS_Last >= Scope_Stack.First
9050 and then Scope_Stack.Table (SS_Last).Entity /= Standard_Standard
9051 then
9052 if Handle_Use then
9053 End_Use_Clauses (Scope_Stack.Table (SS_Last).First_Use_Clause);
9054 end if;
9056 -- If the call is from within a compilation unit, as when called from
9057 -- Rtsfind, make current entries in scope stack invisible while we
9058 -- analyze the new unit.
9060 for J in reverse 0 .. SS_Last loop
9061 exit when Scope_Stack.Table (J).Entity = Standard_Standard
9062 or else No (Scope_Stack.Table (J).Entity);
9064 S := Scope_Stack.Table (J).Entity;
9066 Remove_From_Visibility (S);
9068 E := First_Entity (S);
9069 while Present (E) loop
9070 Remove_From_Visibility (E);
9071 Next_Entity (E);
9072 end loop;
9073 end loop;
9075 end if;
9077 return Result;
9078 end Save_Scope_Stack;
9080 -------------
9081 -- Set_Use --
9082 -------------
9084 procedure Set_Use (L : List_Id) is
9085 Decl : Node_Id;
9087 begin
9088 if Present (L) then
9089 Decl := First (L);
9090 while Present (Decl) loop
9091 if Nkind (Decl) = N_Use_Package_Clause then
9092 Chain_Use_Clause (Decl);
9093 Use_One_Package (Decl, Name (Decl));
9095 elsif Nkind (Decl) = N_Use_Type_Clause then
9096 Chain_Use_Clause (Decl);
9097 Use_One_Type (Subtype_Mark (Decl));
9099 end if;
9101 Next (Decl);
9102 end loop;
9103 end if;
9104 end Set_Use;
9106 -----------------------------
9107 -- Update_Use_Clause_Chain --
9108 -----------------------------
9110 procedure Update_Use_Clause_Chain is
9111 procedure Update_Chain_In_Scope (Level : Int);
9112 -- Iterate through one level in the scope stack verifying each use-type
9113 -- clause within said level is used then reset the Current_Use_Clause
9114 -- to a redundant use clause outside of the current ending scope if such
9115 -- a clause exists.
9117 ---------------------------
9118 -- Update_Chain_In_Scope --
9119 ---------------------------
9121 procedure Update_Chain_In_Scope (Level : Int) is
9122 Curr : Node_Id;
9123 N : Node_Id;
9125 begin
9126 -- Loop through all use clauses within the scope dictated by Level
9128 Curr := Scope_Stack.Table (Level).First_Use_Clause;
9129 while Present (Curr) loop
9131 -- Retrieve the subtype mark or name within the current current
9132 -- use clause.
9134 if Nkind (Curr) = N_Use_Type_Clause then
9135 N := Subtype_Mark (Curr);
9136 else
9137 N := Name (Curr);
9138 end if;
9140 -- If warnings for unreferenced entities are enabled and the
9141 -- current use clause has not been marked effective.
9143 if Check_Unreferenced
9144 and then Comes_From_Source (Curr)
9145 and then not Is_Effective_Use_Clause (Curr)
9146 and then not In_Instance
9147 and then not In_Inlined_Body
9148 then
9149 -- We are dealing with a potentially unused use_package_clause
9151 if Nkind (Curr) = N_Use_Package_Clause then
9153 -- Renamings and formal subprograms may cause the associated
9154 -- to be marked as effective instead of the original.
9156 if not (Present (Associated_Node (N))
9157 and then Present
9158 (Current_Use_Clause
9159 (Associated_Node (N)))
9160 and then Is_Effective_Use_Clause
9161 (Current_Use_Clause
9162 (Associated_Node (N))))
9163 then
9164 Error_Msg_Node_1 := Entity (N);
9165 Error_Msg_NE
9166 ("use clause for package & has no effect?u?",
9167 Curr, Entity (N));
9168 end if;
9170 -- We are dealing with an unused use_type_clause
9172 else
9173 Error_Msg_Node_1 := Etype (N);
9174 Error_Msg_NE
9175 ("use clause for } has no effect?u?", Curr, Etype (N));
9176 end if;
9177 end if;
9179 -- Verify that we haven't already processed a redundant
9180 -- use_type_clause within the same scope before we move the
9181 -- current use clause up to a previous one for type T.
9183 if Present (Prev_Use_Clause (Curr)) then
9184 Set_Current_Use_Clause (Entity (N), Prev_Use_Clause (Curr));
9185 end if;
9187 Curr := Next_Use_Clause (Curr);
9188 end loop;
9189 end Update_Chain_In_Scope;
9191 -- Start of processing for Update_Use_Clause_Chain
9193 begin
9194 Update_Chain_In_Scope (Scope_Stack.Last);
9196 -- Deal with use clauses within the context area if the current
9197 -- scope is a compilation unit.
9199 if Is_Compilation_Unit (Current_Scope)
9200 and then Sloc (Scope_Stack.Table
9201 (Scope_Stack.Last - 1).Entity) = Standard_Location
9202 then
9203 Update_Chain_In_Scope (Scope_Stack.Last - 1);
9204 end if;
9205 end Update_Use_Clause_Chain;
9207 ---------------------
9208 -- Use_One_Package --
9209 ---------------------
9211 procedure Use_One_Package
9212 (N : Node_Id;
9213 Pack_Name : Entity_Id := Empty;
9214 Force : Boolean := False)
9216 procedure Note_Redundant_Use (Clause : Node_Id);
9217 -- Mark the name in a use clause as redundant if the corresponding
9218 -- entity is already use-visible. Emit a warning if the use clause comes
9219 -- from source and the proper warnings are enabled.
9221 ------------------------
9222 -- Note_Redundant_Use --
9223 ------------------------
9225 procedure Note_Redundant_Use (Clause : Node_Id) is
9226 Decl : constant Node_Id := Parent (Clause);
9227 Pack_Name : constant Entity_Id := Entity (Clause);
9229 Cur_Use : Node_Id := Current_Use_Clause (Pack_Name);
9230 Prev_Use : Node_Id := Empty;
9231 Redundant : Node_Id := Empty;
9232 -- The Use_Clause which is actually redundant. In the simplest case
9233 -- it is Pack itself, but when we compile a body we install its
9234 -- context before that of its spec, in which case it is the
9235 -- use_clause in the spec that will appear to be redundant, and we
9236 -- want the warning to be placed on the body. Similar complications
9237 -- appear when the redundancy is between a child unit and one of its
9238 -- ancestors.
9240 begin
9241 -- Could be renamed...
9243 if No (Cur_Use) then
9244 Cur_Use := Current_Use_Clause (Renamed_Entity (Pack_Name));
9245 end if;
9247 Set_Redundant_Use (Clause, True);
9249 if not Comes_From_Source (Clause)
9250 or else In_Instance
9251 or else not Warn_On_Redundant_Constructs
9252 then
9253 return;
9254 end if;
9256 if not Is_Compilation_Unit (Current_Scope) then
9258 -- If the use_clause is in an inner scope, it is made redundant by
9259 -- some clause in the current context, with one exception: If we
9260 -- are compiling a nested package body, and the use_clause comes
9261 -- from then corresponding spec, the clause is not necessarily
9262 -- fully redundant, so we should not warn. If a warning was
9263 -- warranted, it would have been given when the spec was
9264 -- processed.
9266 if Nkind (Parent (Decl)) = N_Package_Specification then
9267 declare
9268 Package_Spec_Entity : constant Entity_Id :=
9269 Defining_Unit_Name (Parent (Decl));
9270 begin
9271 if In_Package_Body (Package_Spec_Entity) then
9272 return;
9273 end if;
9274 end;
9275 end if;
9277 Redundant := Clause;
9278 Prev_Use := Cur_Use;
9280 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
9281 declare
9282 Cur_Unit : constant Unit_Number_Type :=
9283 Get_Source_Unit (Cur_Use);
9284 New_Unit : constant Unit_Number_Type :=
9285 Get_Source_Unit (Clause);
9287 Scop : Entity_Id;
9289 begin
9290 if Cur_Unit = New_Unit then
9292 -- Redundant clause in same body
9294 Redundant := Clause;
9295 Prev_Use := Cur_Use;
9297 elsif Cur_Unit = Current_Sem_Unit then
9299 -- If the new clause is not in the current unit it has been
9300 -- analyzed first, and it makes the other one redundant.
9301 -- However, if the new clause appears in a subunit, Cur_Unit
9302 -- is still the parent, and in that case the redundant one
9303 -- is the one appearing in the subunit.
9305 if Nkind (Unit (Cunit (New_Unit))) = N_Subunit then
9306 Redundant := Clause;
9307 Prev_Use := Cur_Use;
9309 -- Most common case: redundant clause in body, original
9310 -- clause in spec. Current scope is spec entity.
9312 elsif Current_Scope = Cunit_Entity (Current_Sem_Unit) then
9313 Redundant := Cur_Use;
9314 Prev_Use := Clause;
9316 else
9317 -- The new clause may appear in an unrelated unit, when
9318 -- the parents of a generic are being installed prior to
9319 -- instantiation. In this case there must be no warning.
9320 -- We detect this case by checking whether the current
9321 -- top of the stack is related to the current
9322 -- compilation.
9324 Scop := Current_Scope;
9325 while Present (Scop)
9326 and then Scop /= Standard_Standard
9327 loop
9328 if Is_Compilation_Unit (Scop)
9329 and then not Is_Child_Unit (Scop)
9330 then
9331 return;
9333 elsif Scop = Cunit_Entity (Current_Sem_Unit) then
9334 exit;
9335 end if;
9337 Scop := Scope (Scop);
9338 end loop;
9340 Redundant := Cur_Use;
9341 Prev_Use := Clause;
9342 end if;
9344 elsif New_Unit = Current_Sem_Unit then
9345 Redundant := Clause;
9346 Prev_Use := Cur_Use;
9348 else
9349 -- Neither is the current unit, so they appear in parent or
9350 -- sibling units. Warning will be emitted elsewhere.
9352 return;
9353 end if;
9354 end;
9356 elsif Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Declaration
9357 and then Present (Parent_Spec (Unit (Cunit (Current_Sem_Unit))))
9358 then
9359 -- Use_clause is in child unit of current unit, and the child unit
9360 -- appears in the context of the body of the parent, so it has
9361 -- been installed first, even though it is the redundant one.
9362 -- Depending on their placement in the context, the visible or the
9363 -- private parts of the two units, either might appear as
9364 -- redundant, but the message has to be on the current unit.
9366 if Get_Source_Unit (Cur_Use) = Current_Sem_Unit then
9367 Redundant := Cur_Use;
9368 Prev_Use := Clause;
9369 else
9370 Redundant := Clause;
9371 Prev_Use := Cur_Use;
9372 end if;
9374 -- If the new use clause appears in the private part of a parent
9375 -- unit it may appear to be redundant w.r.t. a use clause in a
9376 -- child unit, but the previous use clause was needed in the
9377 -- visible part of the child, and no warning should be emitted.
9379 if Nkind (Parent (Decl)) = N_Package_Specification
9380 and then List_Containing (Decl) =
9381 Private_Declarations (Parent (Decl))
9382 then
9383 declare
9384 Par : constant Entity_Id := Defining_Entity (Parent (Decl));
9385 Spec : constant Node_Id :=
9386 Specification (Unit (Cunit (Current_Sem_Unit)));
9388 begin
9389 if Is_Compilation_Unit (Par)
9390 and then Par /= Cunit_Entity (Current_Sem_Unit)
9391 and then Parent (Cur_Use) = Spec
9392 and then List_Containing (Cur_Use) =
9393 Visible_Declarations (Spec)
9394 then
9395 return;
9396 end if;
9397 end;
9398 end if;
9400 -- Finally, if the current use clause is in the context then the
9401 -- clause is redundant when it is nested within the unit.
9403 elsif Nkind (Parent (Cur_Use)) = N_Compilation_Unit
9404 and then Nkind (Parent (Parent (Clause))) /= N_Compilation_Unit
9405 and then Get_Source_Unit (Cur_Use) = Get_Source_Unit (Clause)
9406 then
9407 Redundant := Clause;
9408 Prev_Use := Cur_Use;
9410 end if;
9412 if Present (Redundant) and then Parent (Redundant) /= Prev_Use then
9414 -- Make sure we are looking at most-descendant use_package_clause
9415 -- by traversing the chain with Find_Most_Prev and then verifying
9416 -- there is no scope manipulation via Most_Descendant_Use_Clause.
9418 if Nkind (Prev_Use) = N_Use_Package_Clause
9419 and then
9420 (Nkind (Parent (Prev_Use)) /= N_Compilation_Unit
9421 or else Most_Descendant_Use_Clause
9422 (Prev_Use, Find_Most_Prev (Prev_Use)) /= Prev_Use)
9423 then
9424 Prev_Use := Find_Most_Prev (Prev_Use);
9425 end if;
9427 Error_Msg_Sloc := Sloc (Prev_Use);
9428 Error_Msg_NE -- CODEFIX
9429 ("& is already use-visible through previous use_clause #??",
9430 Redundant, Pack_Name);
9431 end if;
9432 end Note_Redundant_Use;
9434 -- Local variables
9436 Current_Instance : Entity_Id := Empty;
9437 Id : Entity_Id;
9438 P : Entity_Id;
9439 Prev : Entity_Id;
9440 Private_With_OK : Boolean := False;
9441 Real_P : Entity_Id;
9443 -- Start of processing for Use_One_Package
9445 begin
9446 -- Use_One_Package may have been called recursively to handle an
9447 -- implicit use for a auxiliary system package, so set P accordingly
9448 -- and skip redundancy checks.
9450 if No (Pack_Name) and then Present_System_Aux (N) then
9451 P := System_Aux_Id;
9453 -- Check for redundant use_package_clauses
9455 else
9456 -- Ignore cases where we are dealing with a non user defined package
9457 -- like Standard_Standard or something other than a valid package.
9459 if not Is_Entity_Name (Pack_Name)
9460 or else No (Entity (Pack_Name))
9461 or else Ekind (Entity (Pack_Name)) /= E_Package
9462 then
9463 return;
9464 end if;
9466 -- When a renaming exists we must check it for redundancy. The
9467 -- original package would have already been seen at this point.
9469 if Present (Renamed_Object (Entity (Pack_Name))) then
9470 P := Renamed_Object (Entity (Pack_Name));
9471 else
9472 P := Entity (Pack_Name);
9473 end if;
9475 -- Check for redundant clauses then set the current use clause for
9476 -- P if were are not "forcing" an installation from a scope
9477 -- reinstallation that is done throughout analysis for various
9478 -- reasons.
9480 if In_Use (P) then
9481 Note_Redundant_Use (Pack_Name);
9483 if not Force then
9484 Set_Current_Use_Clause (P, N);
9485 end if;
9487 return;
9489 -- Warn about detected redundant clauses
9491 elsif not Force
9492 and then In_Open_Scopes (P)
9493 and then not Is_Hidden_Open_Scope (P)
9494 then
9495 if Warn_On_Redundant_Constructs and then P = Current_Scope then
9496 Error_Msg_NE -- CODEFIX
9497 ("& is already use-visible within itself?r?",
9498 Pack_Name, P);
9499 end if;
9501 return;
9502 end if;
9504 -- Set P back to the non-renamed package so that visiblilty of the
9505 -- entities within the package can be properly set below.
9507 P := Entity (Pack_Name);
9508 end if;
9510 Set_In_Use (P);
9511 Set_Current_Use_Clause (P, N);
9513 -- Ada 2005 (AI-50217): Check restriction
9515 if From_Limited_With (P) then
9516 Error_Msg_N ("limited withed package cannot appear in use clause", N);
9517 end if;
9519 -- Find enclosing instance, if any
9521 if In_Instance then
9522 Current_Instance := Current_Scope;
9523 while not Is_Generic_Instance (Current_Instance) loop
9524 Current_Instance := Scope (Current_Instance);
9525 end loop;
9527 if No (Hidden_By_Use_Clause (N)) then
9528 Set_Hidden_By_Use_Clause (N, New_Elmt_List);
9529 end if;
9530 end if;
9532 -- If unit is a package renaming, indicate that the renamed package is
9533 -- also in use (the flags on both entities must remain consistent, and a
9534 -- subsequent use of either of them should be recognized as redundant).
9536 if Present (Renamed_Object (P)) then
9537 Set_In_Use (Renamed_Object (P));
9538 Set_Current_Use_Clause (Renamed_Object (P), N);
9539 Real_P := Renamed_Object (P);
9540 else
9541 Real_P := P;
9542 end if;
9544 -- Ada 2005 (AI-262): Check the use_clause of a private withed package
9545 -- found in the private part of a package specification
9547 if In_Private_Part (Current_Scope)
9548 and then Has_Private_With (P)
9549 and then Is_Child_Unit (Current_Scope)
9550 and then Is_Child_Unit (P)
9551 and then Is_Ancestor_Package (Scope (Current_Scope), P)
9552 then
9553 Private_With_OK := True;
9554 end if;
9556 -- Loop through entities in one package making them potentially
9557 -- use-visible.
9559 Id := First_Entity (P);
9560 while Present (Id)
9561 and then (Id /= First_Private_Entity (P)
9562 or else Private_With_OK) -- Ada 2005 (AI-262)
9563 loop
9564 Prev := Current_Entity (Id);
9565 while Present (Prev) loop
9566 if Is_Immediately_Visible (Prev)
9567 and then (not Is_Overloadable (Prev)
9568 or else not Is_Overloadable (Id)
9569 or else (Type_Conformant (Id, Prev)))
9570 then
9571 if No (Current_Instance) then
9573 -- Potentially use-visible entity remains hidden
9575 goto Next_Usable_Entity;
9577 -- A use clause within an instance hides outer global entities,
9578 -- which are not used to resolve local entities in the
9579 -- instance. Note that the predefined entities in Standard
9580 -- could not have been hidden in the generic by a use clause,
9581 -- and therefore remain visible. Other compilation units whose
9582 -- entities appear in Standard must be hidden in an instance.
9584 -- To determine whether an entity is external to the instance
9585 -- we compare the scope depth of its scope with that of the
9586 -- current instance. However, a generic actual of a subprogram
9587 -- instance is declared in the wrapper package but will not be
9588 -- hidden by a use-visible entity. similarly, an entity that is
9589 -- declared in an enclosing instance will not be hidden by an
9590 -- an entity declared in a generic actual, which can only have
9591 -- been use-visible in the generic and will not have hidden the
9592 -- entity in the generic parent.
9594 -- If Id is called Standard, the predefined package with the
9595 -- same name is in the homonym chain. It has to be ignored
9596 -- because it has no defined scope (being the only entity in
9597 -- the system with this mandated behavior).
9599 elsif not Is_Hidden (Id)
9600 and then Present (Scope (Prev))
9601 and then not Is_Wrapper_Package (Scope (Prev))
9602 and then Scope_Depth (Scope (Prev)) <
9603 Scope_Depth (Current_Instance)
9604 and then (Scope (Prev) /= Standard_Standard
9605 or else Sloc (Prev) > Standard_Location)
9606 then
9607 if In_Open_Scopes (Scope (Prev))
9608 and then Is_Generic_Instance (Scope (Prev))
9609 and then Present (Associated_Formal_Package (P))
9610 then
9611 null;
9613 else
9614 Set_Is_Potentially_Use_Visible (Id);
9615 Set_Is_Immediately_Visible (Prev, False);
9616 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
9617 end if;
9618 end if;
9620 -- A user-defined operator is not use-visible if the predefined
9621 -- operator for the type is immediately visible, which is the case
9622 -- if the type of the operand is in an open scope. This does not
9623 -- apply to user-defined operators that have operands of different
9624 -- types, because the predefined mixed mode operations (multiply
9625 -- and divide) apply to universal types and do not hide anything.
9627 elsif Ekind (Prev) = E_Operator
9628 and then Operator_Matches_Spec (Prev, Id)
9629 and then In_Open_Scopes
9630 (Scope (Base_Type (Etype (First_Formal (Id)))))
9631 and then (No (Next_Formal (First_Formal (Id)))
9632 or else Etype (First_Formal (Id)) =
9633 Etype (Next_Formal (First_Formal (Id)))
9634 or else Chars (Prev) = Name_Op_Expon)
9635 then
9636 goto Next_Usable_Entity;
9638 -- In an instance, two homonyms may become use_visible through the
9639 -- actuals of distinct formal packages. In the generic, only the
9640 -- current one would have been visible, so make the other one
9641 -- not use_visible.
9643 elsif Present (Current_Instance)
9644 and then Is_Potentially_Use_Visible (Prev)
9645 and then not Is_Overloadable (Prev)
9646 and then Scope (Id) /= Scope (Prev)
9647 and then Used_As_Generic_Actual (Scope (Prev))
9648 and then Used_As_Generic_Actual (Scope (Id))
9649 and then not In_Same_List (Current_Use_Clause (Scope (Prev)),
9650 Current_Use_Clause (Scope (Id)))
9651 then
9652 Set_Is_Potentially_Use_Visible (Prev, False);
9653 Append_Elmt (Prev, Hidden_By_Use_Clause (N));
9654 end if;
9656 Prev := Homonym (Prev);
9657 end loop;
9659 -- On exit, we know entity is not hidden, unless it is private
9661 if not Is_Hidden (Id)
9662 and then ((not Is_Child_Unit (Id)) or else Is_Visible_Lib_Unit (Id))
9663 then
9664 Set_Is_Potentially_Use_Visible (Id);
9666 if Is_Private_Type (Id) and then Present (Full_View (Id)) then
9667 Set_Is_Potentially_Use_Visible (Full_View (Id));
9668 end if;
9669 end if;
9671 <<Next_Usable_Entity>>
9672 Next_Entity (Id);
9673 end loop;
9675 -- Child units are also made use-visible by a use clause, but they may
9676 -- appear after all visible declarations in the parent entity list.
9678 while Present (Id) loop
9679 if Is_Child_Unit (Id) and then Is_Visible_Lib_Unit (Id) then
9680 Set_Is_Potentially_Use_Visible (Id);
9681 end if;
9683 Next_Entity (Id);
9684 end loop;
9686 if Chars (Real_P) = Name_System
9687 and then Scope (Real_P) = Standard_Standard
9688 and then Present_System_Aux (N)
9689 then
9690 Use_One_Package (N);
9691 end if;
9692 end Use_One_Package;
9694 ------------------
9695 -- Use_One_Type --
9696 ------------------
9698 procedure Use_One_Type
9699 (Id : Node_Id;
9700 Installed : Boolean := False;
9701 Force : Boolean := False)
9703 function Spec_Reloaded_For_Body return Boolean;
9704 -- Determine whether the compilation unit is a package body and the use
9705 -- type clause is in the spec of the same package. Even though the spec
9706 -- was analyzed first, its context is reloaded when analysing the body.
9708 procedure Use_Class_Wide_Operations (Typ : Entity_Id);
9709 -- AI05-150: if the use_type_clause carries the "all" qualifier,
9710 -- class-wide operations of ancestor types are use-visible if the
9711 -- ancestor type is visible.
9713 ----------------------------
9714 -- Spec_Reloaded_For_Body --
9715 ----------------------------
9717 function Spec_Reloaded_For_Body return Boolean is
9718 begin
9719 if Nkind (Unit (Cunit (Current_Sem_Unit))) = N_Package_Body then
9720 declare
9721 Spec : constant Node_Id :=
9722 Parent (List_Containing (Parent (Id)));
9724 begin
9725 -- Check whether type is declared in a package specification,
9726 -- and current unit is the corresponding package body. The
9727 -- use clauses themselves may be within a nested package.
9729 return
9730 Nkind (Spec) = N_Package_Specification
9731 and then In_Same_Source_Unit
9732 (Corresponding_Body (Parent (Spec)),
9733 Cunit_Entity (Current_Sem_Unit));
9734 end;
9735 end if;
9737 return False;
9738 end Spec_Reloaded_For_Body;
9740 -------------------------------
9741 -- Use_Class_Wide_Operations --
9742 -------------------------------
9744 procedure Use_Class_Wide_Operations (Typ : Entity_Id) is
9745 function Is_Class_Wide_Operation_Of
9746 (Op : Entity_Id;
9747 T : Entity_Id) return Boolean;
9748 -- Determine whether a subprogram has a class-wide parameter or
9749 -- result that is T'Class.
9751 ---------------------------------
9752 -- Is_Class_Wide_Operation_Of --
9753 ---------------------------------
9755 function Is_Class_Wide_Operation_Of
9756 (Op : Entity_Id;
9757 T : Entity_Id) return Boolean
9759 Formal : Entity_Id;
9761 begin
9762 Formal := First_Formal (Op);
9763 while Present (Formal) loop
9764 if Etype (Formal) = Class_Wide_Type (T) then
9765 return True;
9766 end if;
9768 Next_Formal (Formal);
9769 end loop;
9771 if Etype (Op) = Class_Wide_Type (T) then
9772 return True;
9773 end if;
9775 return False;
9776 end Is_Class_Wide_Operation_Of;
9778 -- Local variables
9780 Ent : Entity_Id;
9781 Scop : Entity_Id;
9783 -- Start of processing for Use_Class_Wide_Operations
9785 begin
9786 Scop := Scope (Typ);
9787 if not Is_Hidden (Scop) then
9788 Ent := First_Entity (Scop);
9789 while Present (Ent) loop
9790 if Is_Overloadable (Ent)
9791 and then Is_Class_Wide_Operation_Of (Ent, Typ)
9792 and then not Is_Potentially_Use_Visible (Ent)
9793 then
9794 Set_Is_Potentially_Use_Visible (Ent);
9795 Append_Elmt (Ent, Used_Operations (Parent (Id)));
9796 end if;
9798 Next_Entity (Ent);
9799 end loop;
9800 end if;
9802 if Is_Derived_Type (Typ) then
9803 Use_Class_Wide_Operations (Etype (Base_Type (Typ)));
9804 end if;
9805 end Use_Class_Wide_Operations;
9807 -- Local variables
9809 Elmt : Elmt_Id;
9810 Is_Known_Used : Boolean;
9811 Op_List : Elist_Id;
9812 T : Entity_Id;
9814 -- Start of processing for Use_One_Type
9816 begin
9817 if Entity (Id) = Any_Type then
9818 return;
9819 end if;
9821 -- It is the type determined by the subtype mark (8.4(8)) whose
9822 -- operations become potentially use-visible.
9824 T := Base_Type (Entity (Id));
9826 -- Either the type itself is used, the package where it is declared is
9827 -- in use or the entity is declared in the current package, thus
9828 -- use-visible.
9830 Is_Known_Used :=
9831 (In_Use (T)
9832 and then ((Present (Current_Use_Clause (T))
9833 and then All_Present (Current_Use_Clause (T)))
9834 or else not All_Present (Parent (Id))))
9835 or else In_Use (Scope (T))
9836 or else Scope (T) = Current_Scope;
9838 Set_Redundant_Use (Id,
9839 Is_Known_Used or else Is_Potentially_Use_Visible (T));
9841 if Ekind (T) = E_Incomplete_Type then
9842 Error_Msg_N ("premature usage of incomplete type", Id);
9844 elsif In_Open_Scopes (Scope (T)) then
9845 null;
9847 -- A limited view cannot appear in a use_type_clause. However, an access
9848 -- type whose designated type is limited has the flag but is not itself
9849 -- a limited view unless we only have a limited view of its enclosing
9850 -- package.
9852 elsif From_Limited_With (T) and then From_Limited_With (Scope (T)) then
9853 Error_Msg_N
9854 ("incomplete type from limited view cannot appear in use clause",
9855 Id);
9857 -- If the use clause is redundant, Used_Operations will usually be
9858 -- empty, but we need to set it to empty here in one case: If we are
9859 -- instantiating a generic library unit, then we install the ancestors
9860 -- of that unit in the scope stack, which involves reprocessing use
9861 -- clauses in those ancestors. Such a use clause will typically have a
9862 -- nonempty Used_Operations unless it was redundant in the generic unit,
9863 -- even if it is redundant at the place of the instantiation.
9865 elsif Redundant_Use (Id) then
9867 -- We must avoid incorrectly setting the Current_Use_Clause when we
9868 -- are working with a redundant clause that has already been linked
9869 -- in the Prev_Use_Clause chain, otherwise the chain will break.
9871 if Present (Current_Use_Clause (T))
9872 and then Present (Prev_Use_Clause (Current_Use_Clause (T)))
9873 and then Parent (Id) = Prev_Use_Clause (Current_Use_Clause (T))
9874 then
9875 null;
9876 else
9877 Set_Current_Use_Clause (T, Parent (Id));
9878 end if;
9880 Set_Used_Operations (Parent (Id), New_Elmt_List);
9882 -- If the subtype mark designates a subtype in a different package,
9883 -- we have to check that the parent type is visible, otherwise the
9884 -- use_type_clause is a no-op. Not clear how to do that???
9886 else
9887 Set_Current_Use_Clause (T, Parent (Id));
9888 Set_In_Use (T);
9890 -- If T is tagged, primitive operators on class-wide operands are
9891 -- also available.
9893 if Is_Tagged_Type (T) then
9894 Set_In_Use (Class_Wide_Type (T));
9895 end if;
9897 -- Iterate over primitive operations of the type. If an operation is
9898 -- already use_visible, it is the result of a previous use_clause,
9899 -- and already appears on the corresponding entity chain. If the
9900 -- clause is being reinstalled, operations are already use-visible.
9902 if Installed then
9903 null;
9905 else
9906 Op_List := Collect_Primitive_Operations (T);
9907 Elmt := First_Elmt (Op_List);
9908 while Present (Elmt) loop
9909 if (Nkind (Node (Elmt)) = N_Defining_Operator_Symbol
9910 or else Chars (Node (Elmt)) in Any_Operator_Name)
9911 and then not Is_Hidden (Node (Elmt))
9912 and then not Is_Potentially_Use_Visible (Node (Elmt))
9913 then
9914 Set_Is_Potentially_Use_Visible (Node (Elmt));
9915 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
9917 elsif Ada_Version >= Ada_2012
9918 and then All_Present (Parent (Id))
9919 and then not Is_Hidden (Node (Elmt))
9920 and then not Is_Potentially_Use_Visible (Node (Elmt))
9921 then
9922 Set_Is_Potentially_Use_Visible (Node (Elmt));
9923 Append_Elmt (Node (Elmt), Used_Operations (Parent (Id)));
9924 end if;
9926 Next_Elmt (Elmt);
9927 end loop;
9928 end if;
9930 if Ada_Version >= Ada_2012
9931 and then All_Present (Parent (Id))
9932 and then Is_Tagged_Type (T)
9933 then
9934 Use_Class_Wide_Operations (T);
9935 end if;
9936 end if;
9938 -- If warning on redundant constructs, check for unnecessary WITH
9940 if not Force
9941 and then Warn_On_Redundant_Constructs
9942 and then Is_Known_Used
9944 -- with P; with P; use P;
9945 -- package P is package X is package body X is
9946 -- type T ... use P.T;
9948 -- The compilation unit is the body of X. GNAT first compiles the
9949 -- spec of X, then proceeds to the body. At that point P is marked
9950 -- as use visible. The analysis then reinstalls the spec along with
9951 -- its context. The use clause P.T is now recognized as redundant,
9952 -- but in the wrong context. Do not emit a warning in such cases.
9953 -- Do not emit a warning either if we are in an instance, there is
9954 -- no redundancy between an outer use_clause and one that appears
9955 -- within the generic.
9957 and then not Spec_Reloaded_For_Body
9958 and then not In_Instance
9959 and then not In_Inlined_Body
9960 then
9961 -- The type already has a use clause
9963 if In_Use (T) then
9965 -- Case where we know the current use clause for the type
9967 if Present (Current_Use_Clause (T)) then
9968 Use_Clause_Known : declare
9969 Clause1 : constant Node_Id :=
9970 Find_Most_Prev (Current_Use_Clause (T));
9971 Clause2 : constant Node_Id := Parent (Id);
9972 Ent1 : Entity_Id;
9973 Ent2 : Entity_Id;
9974 Err_No : Node_Id;
9975 Unit1 : Node_Id;
9976 Unit2 : Node_Id;
9978 -- Start of processing for Use_Clause_Known
9980 begin
9981 -- If both current use_type_clause and the use_type_clause
9982 -- for the type are at the compilation unit level, one of
9983 -- the units must be an ancestor of the other, and the
9984 -- warning belongs on the descendant.
9986 if Nkind (Parent (Clause1)) = N_Compilation_Unit
9987 and then
9988 Nkind (Parent (Clause2)) = N_Compilation_Unit
9989 then
9990 -- If the unit is a subprogram body that acts as spec,
9991 -- the context clause is shared with the constructed
9992 -- subprogram spec. Clearly there is no redundancy.
9994 if Clause1 = Clause2 then
9995 return;
9996 end if;
9998 Unit1 := Unit (Parent (Clause1));
9999 Unit2 := Unit (Parent (Clause2));
10001 -- If both clauses are on same unit, or one is the body
10002 -- of the other, or one of them is in a subunit, report
10003 -- redundancy on the later one.
10005 if Unit1 = Unit2 or else Nkind (Unit1) = N_Subunit then
10006 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
10007 Error_Msg_NE -- CODEFIX
10008 ("& is already use-visible through previous "
10009 & "use_type_clause #??", Clause1, T);
10010 return;
10012 elsif Nkind_In (Unit2, N_Package_Body, N_Subprogram_Body)
10013 and then Nkind (Unit1) /= Nkind (Unit2)
10014 and then Nkind (Unit1) /= N_Subunit
10015 then
10016 Error_Msg_Sloc := Sloc (Clause1);
10017 Error_Msg_NE -- CODEFIX
10018 ("& is already use-visible through previous "
10019 & "use_type_clause #??", Current_Use_Clause (T), T);
10020 return;
10021 end if;
10023 -- There is a redundant use_type_clause in a child unit.
10024 -- Determine which of the units is more deeply nested.
10025 -- If a unit is a package instance, retrieve the entity
10026 -- and its scope from the instance spec.
10028 Ent1 := Entity_Of_Unit (Unit1);
10029 Ent2 := Entity_Of_Unit (Unit2);
10031 if Scope (Ent2) = Standard_Standard then
10032 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
10033 Err_No := Clause1;
10035 elsif Scope (Ent1) = Standard_Standard then
10036 Error_Msg_Sloc := Sloc (Id);
10037 Err_No := Clause2;
10039 -- If both units are child units, we determine which one
10040 -- is the descendant by the scope distance to the
10041 -- ultimate parent unit.
10043 else
10044 declare
10045 S1 : Entity_Id;
10046 S2 : Entity_Id;
10048 begin
10049 S1 := Scope (Ent1);
10050 S2 := Scope (Ent2);
10051 while Present (S1)
10052 and then Present (S2)
10053 and then S1 /= Standard_Standard
10054 and then S2 /= Standard_Standard
10055 loop
10056 S1 := Scope (S1);
10057 S2 := Scope (S2);
10058 end loop;
10060 if S1 = Standard_Standard then
10061 Error_Msg_Sloc := Sloc (Id);
10062 Err_No := Clause2;
10063 else
10064 Error_Msg_Sloc := Sloc (Current_Use_Clause (T));
10065 Err_No := Clause1;
10066 end if;
10067 end;
10068 end if;
10070 if Parent (Id) /= Err_No then
10071 if Most_Descendant_Use_Clause
10072 (Err_No, Parent (Id)) = Parent (Id)
10073 then
10074 Error_Msg_Sloc := Sloc (Err_No);
10075 Err_No := Parent (Id);
10076 end if;
10078 Error_Msg_NE -- CODEFIX
10079 ("& is already use-visible through previous "
10080 & "use_type_clause #??", Err_No, Id);
10081 end if;
10083 -- Case where current use_type_clause and use_type_clause
10084 -- for the type are not both at the compilation unit level.
10085 -- In this case we don't have location information.
10087 else
10088 Error_Msg_NE -- CODEFIX
10089 ("& is already use-visible through previous "
10090 & "use_type_clause??", Id, T);
10091 end if;
10092 end Use_Clause_Known;
10094 -- Here if Current_Use_Clause is not set for T, another case where
10095 -- we do not have the location information available.
10097 else
10098 Error_Msg_NE -- CODEFIX
10099 ("& is already use-visible through previous "
10100 & "use_type_clause??", Id, T);
10101 end if;
10103 -- The package where T is declared is already used
10105 elsif In_Use (Scope (T)) then
10106 Error_Msg_Sloc :=
10107 Sloc (Find_Most_Prev (Current_Use_Clause (Scope (T))));
10108 Error_Msg_NE -- CODEFIX
10109 ("& is already use-visible through package use clause #??",
10110 Id, T);
10112 -- The current scope is the package where T is declared
10114 else
10115 Error_Msg_Node_2 := Scope (T);
10116 Error_Msg_NE -- CODEFIX
10117 ("& is already use-visible inside package &??", Id, T);
10118 end if;
10119 end if;
10120 end Use_One_Type;
10122 ----------------
10123 -- Write_Info --
10124 ----------------
10126 procedure Write_Info is
10127 Id : Entity_Id := First_Entity (Current_Scope);
10129 begin
10130 -- No point in dumping standard entities
10132 if Current_Scope = Standard_Standard then
10133 return;
10134 end if;
10136 Write_Str ("========================================================");
10137 Write_Eol;
10138 Write_Str (" Defined Entities in ");
10139 Write_Name (Chars (Current_Scope));
10140 Write_Eol;
10141 Write_Str ("========================================================");
10142 Write_Eol;
10144 if No (Id) then
10145 Write_Str ("-- none --");
10146 Write_Eol;
10148 else
10149 while Present (Id) loop
10150 Write_Entity_Info (Id, " ");
10151 Next_Entity (Id);
10152 end loop;
10153 end if;
10155 if Scope (Current_Scope) = Standard_Standard then
10157 -- Print information on the current unit itself
10159 Write_Entity_Info (Current_Scope, " ");
10160 end if;
10162 Write_Eol;
10163 end Write_Info;
10165 --------
10166 -- ws --
10167 --------
10169 procedure ws is
10170 S : Entity_Id;
10171 begin
10172 for J in reverse 1 .. Scope_Stack.Last loop
10173 S := Scope_Stack.Table (J).Entity;
10174 Write_Int (Int (S));
10175 Write_Str (" === ");
10176 Write_Name (Chars (S));
10177 Write_Eol;
10178 end loop;
10179 end ws;
10181 --------
10182 -- we --
10183 --------
10185 procedure we (S : Entity_Id) is
10186 E : Entity_Id;
10187 begin
10188 E := First_Entity (S);
10189 while Present (E) loop
10190 Write_Int (Int (E));
10191 Write_Str (" === ");
10192 Write_Name (Chars (E));
10193 Write_Eol;
10194 Next_Entity (E);
10195 end loop;
10196 end we;
10197 end Sem_Ch8;