1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Debug
; use Debug
;
30 with Einfo
; use Einfo
;
31 with Elists
; use Elists
;
32 with Errout
; use Errout
;
33 with Expander
; use Expander
;
34 with Exp_Disp
; use Exp_Disp
;
35 with Exp_Tss
; use Exp_Tss
;
36 with Exp_Util
; use Exp_Util
;
37 with Freeze
; use Freeze
;
38 with Ghost
; use Ghost
;
40 with Lib
.Xref
; use Lib
.Xref
;
41 with Namet
; use Namet
;
42 with Nlists
; use Nlists
;
43 with Nmake
; use Nmake
;
45 with Par_SCO
; use Par_SCO
;
46 with Restrict
; use Restrict
;
47 with Rident
; use Rident
;
48 with Rtsfind
; use Rtsfind
;
50 with Sem_Aux
; use Sem_Aux
;
51 with Sem_Case
; use Sem_Case
;
52 with Sem_Ch3
; use Sem_Ch3
;
53 with Sem_Ch6
; use Sem_Ch6
;
54 with Sem_Ch7
; use Sem_Ch7
;
55 with Sem_Ch8
; use Sem_Ch8
;
56 with Sem_Dim
; use Sem_Dim
;
57 with Sem_Disp
; use Sem_Disp
;
58 with Sem_Eval
; use Sem_Eval
;
59 with Sem_Prag
; use Sem_Prag
;
60 with Sem_Res
; use Sem_Res
;
61 with Sem_Type
; use Sem_Type
;
62 with Sem_Util
; use Sem_Util
;
63 with Sem_Warn
; use Sem_Warn
;
64 with Sinfo
; use Sinfo
;
65 with Sinput
; use Sinput
;
66 with Snames
; use Snames
;
67 with Stand
; use Stand
;
68 with Targparm
; use Targparm
;
69 with Ttypes
; use Ttypes
;
70 with Tbuild
; use Tbuild
;
71 with Urealp
; use Urealp
;
72 with Warnsw
; use Warnsw
;
74 with GNAT
.Heap_Sort_G
;
76 package body Sem_Ch13
is
78 SSU
: constant Pos
:= System_Storage_Unit
;
79 -- Convenient short hand for commonly used constant
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95
(R
: Entity_Id
);
86 -- Helper routine providing the original (pre-AI95-0133) behavior for
87 -- Adjust_Record_For_Reverse_Bit_Order.
89 procedure Alignment_Check_For_Size_Change
(Typ
: Entity_Id
; Size
: Uint
);
90 -- This routine is called after setting one of the sizes of type entity
91 -- Typ to Size. The purpose is to deal with the situation of a derived
92 -- type whose inherited alignment is no longer appropriate for the new
93 -- size value. In this case, we reset the Alignment to unknown.
95 procedure Build_Discrete_Static_Predicate
99 -- Given a predicated type Typ, where Typ is a discrete static subtype,
100 -- whose predicate expression is Expr, tests if Expr is a static predicate,
101 -- and if so, builds the predicate range list. Nam is the name of the one
102 -- argument to the predicate function. Occurrences of the type name in the
103 -- predicate expression have been replaced by identifier references to this
104 -- name, which is unique, so any identifier with Chars matching Nam must be
105 -- a reference to the type. If the predicate is non-static, this procedure
106 -- returns doing nothing. If the predicate is static, then the predicate
107 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
108 -- rewritten as a canonicalized membership operation.
110 function Build_Export_Import_Pragma
112 Id
: Entity_Id
) return Node_Id
;
113 -- Create the corresponding pragma for aspect Export or Import denoted by
114 -- Asp. Id is the related entity subject to the aspect. Return Empty when
115 -- the expression of aspect Asp evaluates to False or is erroneous.
117 function Build_Predicate_Function_Declaration
118 (Typ
: Entity_Id
) return Node_Id
;
119 -- Build the declaration for a predicate function. The declaration is built
120 -- at the end of the declarative part containing the type definition, which
121 -- may be before the freeze point of the type. The predicate expression is
122 -- pre-analyzed at this point, to catch visibility errors.
124 procedure Build_Predicate_Functions
(Typ
: Entity_Id
; N
: Node_Id
);
125 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
126 -- then either there are pragma Predicate entries on the rep chain for the
127 -- type (note that Predicate aspects are converted to pragma Predicate), or
128 -- there are inherited aspects from a parent type, or ancestor subtypes.
129 -- This procedure builds body for the Predicate function that tests these
130 -- predicates. N is the freeze node for the type. The spec of the function
131 -- is inserted before the freeze node, and the body of the function is
132 -- inserted after the freeze node. If the predicate expression has a least
133 -- one Raise_Expression, then this procedure also builds the M version of
134 -- the predicate function for use in membership tests.
136 procedure Check_Pool_Size_Clash
(Ent
: Entity_Id
; SP
, SS
: Node_Id
);
137 -- Called if both Storage_Pool and Storage_Size attribute definition
138 -- clauses (SP and SS) are present for entity Ent. Issue error message.
140 procedure Freeze_Entity_Checks
(N
: Node_Id
);
141 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
142 -- to generate appropriate semantic checks that are delayed until this
143 -- point (they had to be delayed this long for cases of delayed aspects,
144 -- e.g. analysis of statically predicated subtypes in choices, for which
145 -- we have to be sure the subtypes in question are frozen before checking).
147 function Get_Alignment_Value
(Expr
: Node_Id
) return Uint
;
148 -- Given the expression for an alignment value, returns the corresponding
149 -- Uint value. If the value is inappropriate, then error messages are
150 -- posted as required, and a value of No_Uint is returned.
152 function Is_Operational_Item
(N
: Node_Id
) return Boolean;
153 -- A specification for a stream attribute is allowed before the full type
154 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
155 -- that do not specify a representation characteristic are operational
158 function Is_Predicate_Static
160 Nam
: Name_Id
) return Boolean;
161 -- Given predicate expression Expr, tests if Expr is predicate-static in
162 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
163 -- name in the predicate expression have been replaced by references to
164 -- an identifier whose Chars field is Nam. This name is unique, so any
165 -- identifier with Chars matching Nam must be a reference to the type.
166 -- Returns True if the expression is predicate-static and False otherwise,
167 -- but is not in the business of setting flags or issuing error messages.
169 -- Only scalar types can have static predicates, so False is always
170 -- returned for non-scalar types.
172 -- Note: the RM seems to suggest that string types can also have static
173 -- predicates. But that really makes lttle sense as very few useful
174 -- predicates can be constructed for strings. Remember that:
178 -- is not a static expression. So even though the clearly faulty RM wording
179 -- allows the following:
181 -- subtype S is String with Static_Predicate => S < "DEF"
183 -- We can't allow this, otherwise we have predicate-static applying to a
184 -- larger class than static expressions, which was never intended.
186 procedure New_Stream_Subprogram
190 Nam
: TSS_Name_Type
);
191 -- Create a subprogram renaming of a given stream attribute to the
192 -- designated subprogram and then in the tagged case, provide this as a
193 -- primitive operation, or in the untagged case make an appropriate TSS
194 -- entry. This is more properly an expansion activity than just semantics,
195 -- but the presence of user-defined stream functions for limited types
196 -- is a legality check, which is why this takes place here rather than in
197 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
198 -- function to be generated.
200 -- To avoid elaboration anomalies with freeze nodes, for untagged types
201 -- we generate both a subprogram declaration and a subprogram renaming
202 -- declaration, so that the attribute specification is handled as a
203 -- renaming_as_body. For tagged types, the specification is one of the
206 procedure Register_Address_Clause_Check
212 -- Register a check for the address clause N. The rest of the parameters
213 -- are in keeping with the components of Address_Clause_Check_Record below.
215 procedure Resolve_Iterable_Operation
220 -- If the name of a primitive operation for an Iterable aspect is
221 -- overloaded, resolve according to required signature.
227 Biased
: Boolean := True);
228 -- If Biased is True, sets Has_Biased_Representation flag for E, and
229 -- outputs a warning message at node N if Warn_On_Biased_Representation is
230 -- is True. This warning inserts the string Msg to describe the construct
233 ---------------------------------------------------
234 -- Table for Validate_Compile_Time_Warning_Error --
235 ---------------------------------------------------
237 -- The following table collects pragmas Compile_Time_Error and Compile_
238 -- Time_Warning for validation. Entries are made by calls to subprogram
239 -- Validate_Compile_Time_Warning_Error, and the call to the procedure
240 -- Validate_Compile_Time_Warning_Errors does the actual error checking
241 -- and posting of warning and error messages. The reason for this delayed
242 -- processing is to take advantage of back-annotations of attributes size
243 -- and alignment values performed by the back end.
245 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
246 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
247 -- already have modified all Sloc values if the -gnatD option is set.
249 type CTWE_Entry
is record
251 -- Source location used in warnings and error messages
254 -- Pragma Compile_Time_Error or Compile_Time_Warning
257 -- The scope which encloses the pragma
260 package Compile_Time_Warnings_Errors
is new Table
.Table
(
261 Table_Component_Type
=> CTWE_Entry
,
262 Table_Index_Type
=> Int
,
263 Table_Low_Bound
=> 1,
265 Table_Increment
=> 200,
266 Table_Name
=> "Compile_Time_Warnings_Errors");
268 ----------------------------------------------
269 -- Table for Validate_Unchecked_Conversions --
270 ----------------------------------------------
272 -- The following table collects unchecked conversions for validation.
273 -- Entries are made by Validate_Unchecked_Conversion and then the call
274 -- to Validate_Unchecked_Conversions does the actual error checking and
275 -- posting of warnings. The reason for this delayed processing is to take
276 -- advantage of back-annotations of size and alignment values performed by
279 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
280 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
281 -- already have modified all Sloc values if the -gnatD option is set.
283 type UC_Entry
is record
284 Eloc
: Source_Ptr
; -- node used for posting warnings
285 Source
: Entity_Id
; -- source type for unchecked conversion
286 Target
: Entity_Id
; -- target type for unchecked conversion
287 Act_Unit
: Entity_Id
; -- actual function instantiated
290 package Unchecked_Conversions
is new Table
.Table
(
291 Table_Component_Type
=> UC_Entry
,
292 Table_Index_Type
=> Int
,
293 Table_Low_Bound
=> 1,
295 Table_Increment
=> 200,
296 Table_Name
=> "Unchecked_Conversions");
298 ----------------------------------------
299 -- Table for Validate_Address_Clauses --
300 ----------------------------------------
302 -- If an address clause has the form
304 -- for X'Address use Expr
306 -- where Expr has a value known at compile time or is of the form Y'Address
307 -- or recursively is a reference to a constant initialized with either of
308 -- these forms, and the value of Expr is not a multiple of X's alignment,
309 -- or if Y has a smaller alignment than X, then that merits a warning about
310 -- possible bad alignment. The following table collects address clauses of
311 -- this kind. We put these in a table so that they can be checked after the
312 -- back end has completed annotation of the alignments of objects, since we
313 -- can catch more cases that way.
315 type Address_Clause_Check_Record
is record
317 -- The address clause
320 -- The entity of the object subject to the address clause
323 -- The value of the address in the first case
326 -- The entity of the object being overlaid in the second case
329 -- Whether the address is offset within Y in the second case
331 Alignment_Checks_Suppressed
: Boolean;
332 -- Whether alignment checks are suppressed by an active scope suppress
333 -- setting. We need to save the value in order to be able to reuse it
334 -- after the back end has been run.
337 package Address_Clause_Checks
is new Table
.Table
(
338 Table_Component_Type
=> Address_Clause_Check_Record
,
339 Table_Index_Type
=> Int
,
340 Table_Low_Bound
=> 1,
342 Table_Increment
=> 200,
343 Table_Name
=> "Address_Clause_Checks");
345 function Alignment_Checks_Suppressed
346 (ACCR
: Address_Clause_Check_Record
) return Boolean;
347 -- Return whether the alignment check generated for the address clause
350 ---------------------------------
351 -- Alignment_Checks_Suppressed --
352 ---------------------------------
354 function Alignment_Checks_Suppressed
355 (ACCR
: Address_Clause_Check_Record
) return Boolean
358 if Checks_May_Be_Suppressed
(ACCR
.X
) then
359 return Is_Check_Suppressed
(ACCR
.X
, Alignment_Check
);
361 return ACCR
.Alignment_Checks_Suppressed
;
363 end Alignment_Checks_Suppressed
;
365 -----------------------------------------
366 -- Adjust_Record_For_Reverse_Bit_Order --
367 -----------------------------------------
369 procedure Adjust_Record_For_Reverse_Bit_Order
(R
: Entity_Id
) is
370 Max_Machine_Scalar_Size
: constant Uint
:=
372 (Standard_Long_Long_Integer_Size
);
373 -- We use this as the maximum machine scalar size
375 SSU
: constant Uint
:= UI_From_Int
(System_Storage_Unit
);
382 -- Processing here used to depend on Ada version: the behavior was
383 -- changed by AI95-0133. However this AI is a Binding interpretation,
384 -- so we now implement it even in Ada 95 mode. The original behavior
385 -- from unamended Ada 95 is still available for compatibility under
386 -- debugging switch -gnatd.
388 if Ada_Version
< Ada_2005
and then Debug_Flag_Dot_P
then
389 Adjust_Record_For_Reverse_Bit_Order_Ada_95
(R
);
393 -- For Ada 2005, we do machine scalar processing, as fully described In
394 -- AI-133. This involves gathering all components which start at the
395 -- same byte offset and processing them together. Same approach is still
396 -- valid in later versions including Ada 2012.
398 -- This first loop through components does two things. First it deals
399 -- with the case of components with component clauses whose length is
400 -- greater than the maximum machine scalar size (either accepting them
401 -- or rejecting as needed). Second, it counts the number of components
402 -- with component clauses whose length does not exceed this maximum for
406 Comp
:= First_Component_Or_Discriminant
(R
);
407 while Present
(Comp
) loop
408 CC
:= Component_Clause
(Comp
);
412 Fbit
: constant Uint
:= Static_Integer
(First_Bit
(CC
));
413 Lbit
: constant Uint
:= Static_Integer
(Last_Bit
(CC
));
416 -- Case of component with last bit >= max machine scalar
418 if Lbit
>= Max_Machine_Scalar_Size
then
420 -- This is allowed only if first bit is zero, and last bit
421 -- + 1 is a multiple of storage unit size.
423 if Fbit
= 0 and then (Lbit
+ 1) mod SSU
= 0 then
425 -- This is the case to give a warning if enabled
427 if Warn_On_Reverse_Bit_Order
then
429 ("info: multi-byte field specified with "
430 & "non-standard Bit_Order?V?", CC
);
432 if Bytes_Big_Endian
then
434 ("\bytes are not reversed "
435 & "(component is big-endian)?V?", CC
);
438 ("\bytes are not reversed "
439 & "(component is little-endian)?V?", CC
);
443 -- Give error message for RM 13.5.1(10) violation
447 ("machine scalar rules not followed for&",
448 First_Bit
(CC
), Comp
);
450 Error_Msg_Uint_1
:= Lbit
+ 1;
451 Error_Msg_Uint_2
:= Max_Machine_Scalar_Size
;
453 ("\last bit + 1 (^) exceeds maximum machine scalar "
454 & "size (^)", First_Bit
(CC
));
456 if (Lbit
+ 1) mod SSU
/= 0 then
457 Error_Msg_Uint_1
:= SSU
;
459 ("\and is not a multiple of Storage_Unit (^) "
460 & "(RM 13.5.1(10))", First_Bit
(CC
));
463 Error_Msg_Uint_1
:= Fbit
;
465 ("\and first bit (^) is non-zero "
466 & "(RM 13.4.1(10))", First_Bit
(CC
));
470 -- OK case of machine scalar related component clause. For now,
474 Num_CC
:= Num_CC
+ 1;
479 Next_Component_Or_Discriminant
(Comp
);
482 -- We need to sort the component clauses on the basis of the Position
483 -- values in the clause, so we can group clauses with the same Position
484 -- together to determine the relevant machine scalar size.
487 Comps
: array (0 .. Num_CC
) of Entity_Id
;
488 -- Array to collect component and discriminant entities. The data
489 -- starts at index 1, the 0'th entry is for the sort routine.
491 function CP_Lt
(Op1
, Op2
: Natural) return Boolean;
492 -- Compare routine for Sort
494 procedure CP_Move
(From
: Natural; To
: Natural);
495 -- Move routine for Sort
497 package Sorting
is new GNAT
.Heap_Sort_G
(CP_Move
, CP_Lt
);
500 -- Maximum last bit value of any component in this set
503 -- Corresponding machine scalar size
507 -- Start and stop positions in the component list of the set of
508 -- components with the same starting position (that constitute
509 -- components in a single machine scalar).
515 function CP_Lt
(Op1
, Op2
: Natural) return Boolean is
518 Position
(Component_Clause
(Comps
(Op1
))) <
519 Position
(Component_Clause
(Comps
(Op2
)));
526 procedure CP_Move
(From
: Natural; To
: Natural) is
528 Comps
(To
) := Comps
(From
);
531 -- Start of processing for Sort_CC
534 -- Collect the machine scalar relevant component clauses
537 Comp
:= First_Component_Or_Discriminant
(R
);
538 while Present
(Comp
) loop
540 CC
: constant Node_Id
:= Component_Clause
(Comp
);
543 -- Collect only component clauses whose last bit is less than
544 -- machine scalar size. Any component clause whose last bit
545 -- exceeds this value does not take part in machine scalar
546 -- layout considerations. The test for Error_Posted makes sure
547 -- we exclude component clauses for which we already posted an
551 and then not Error_Posted
(Last_Bit
(CC
))
552 and then Static_Integer
(Last_Bit
(CC
)) <
553 Max_Machine_Scalar_Size
555 Num_CC
:= Num_CC
+ 1;
556 Comps
(Num_CC
) := Comp
;
560 Next_Component_Or_Discriminant
(Comp
);
563 -- Sort by ascending position number
565 Sorting
.Sort
(Num_CC
);
567 -- We now have all the components whose size does not exceed the max
568 -- machine scalar value, sorted by starting position. In this loop we
569 -- gather groups of clauses starting at the same position, to process
570 -- them in accordance with AI-133.
573 while Stop
< Num_CC
loop
578 (Last_Bit
(Component_Clause
(Comps
(Start
))));
579 while Stop
< Num_CC
loop
581 (Position
(Component_Clause
(Comps
(Stop
+ 1)))) =
583 (Position
(Component_Clause
(Comps
(Stop
))))
591 (Component_Clause
(Comps
(Stop
)))));
597 -- Now we have a group of component clauses from Start to Stop
598 -- whose positions are identical, and MaxL is the maximum last
599 -- bit value of any of these components.
601 -- We need to determine the corresponding machine scalar size.
602 -- This loop assumes that machine scalar sizes are even, and that
603 -- each possible machine scalar has twice as many bits as the next
606 MSS
:= Max_Machine_Scalar_Size
;
608 and then (MSS
/ 2) >= SSU
609 and then (MSS
/ 2) > MaxL
614 -- Here is where we fix up the Component_Bit_Offset value to
615 -- account for the reverse bit order. Some examples of what needs
616 -- to be done for the case of a machine scalar size of 8 are:
618 -- First_Bit .. Last_Bit Component_Bit_Offset
630 -- The rule is that the first bit is obtained by subtracting the
631 -- old ending bit from machine scalar size - 1.
633 for C
in Start
.. Stop
loop
635 Comp
: constant Entity_Id
:= Comps
(C
);
636 CC
: constant Node_Id
:= Component_Clause
(Comp
);
638 LB
: constant Uint
:= Static_Integer
(Last_Bit
(CC
));
639 NFB
: constant Uint
:= MSS
- Uint_1
- LB
;
640 NLB
: constant Uint
:= NFB
+ Esize
(Comp
) - 1;
641 Pos
: constant Uint
:= Static_Integer
(Position
(CC
));
644 if Warn_On_Reverse_Bit_Order
then
645 Error_Msg_Uint_1
:= MSS
;
647 ("info: reverse bit order in machine scalar of "
648 & "length^?V?", First_Bit
(CC
));
649 Error_Msg_Uint_1
:= NFB
;
650 Error_Msg_Uint_2
:= NLB
;
652 if Bytes_Big_Endian
then
654 ("\big-endian range for component & is ^ .. ^?V?",
655 First_Bit
(CC
), Comp
);
658 ("\little-endian range for component & is ^ .. ^?V?",
659 First_Bit
(CC
), Comp
);
663 Set_Component_Bit_Offset
(Comp
, Pos
* SSU
+ NFB
);
664 Set_Normalized_Position
(Comp
, Pos
+ NFB
/ SSU
);
665 Set_Normalized_First_Bit
(Comp
, NFB
mod SSU
);
670 end Adjust_Record_For_Reverse_Bit_Order
;
672 ------------------------------------------------
673 -- Adjust_Record_For_Reverse_Bit_Order_Ada_95 --
674 ------------------------------------------------
676 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95
(R
: Entity_Id
) is
681 -- For Ada 95, we just renumber bits within a storage unit. We do the
682 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
683 -- Ada 83, and are free to add this extension.
685 Comp
:= First_Component_Or_Discriminant
(R
);
686 while Present
(Comp
) loop
687 CC
:= Component_Clause
(Comp
);
689 -- If component clause is present, then deal with the non-default
690 -- bit order case for Ada 95 mode.
692 -- We only do this processing for the base type, and in fact that
693 -- is important, since otherwise if there are record subtypes, we
694 -- could reverse the bits once for each subtype, which is wrong.
696 if Present
(CC
) and then Ekind
(R
) = E_Record_Type
then
698 CFB
: constant Uint
:= Component_Bit_Offset
(Comp
);
699 CSZ
: constant Uint
:= Esize
(Comp
);
700 CLC
: constant Node_Id
:= Component_Clause
(Comp
);
701 Pos
: constant Node_Id
:= Position
(CLC
);
702 FB
: constant Node_Id
:= First_Bit
(CLC
);
704 Storage_Unit_Offset
: constant Uint
:=
705 CFB
/ System_Storage_Unit
;
707 Start_Bit
: constant Uint
:=
708 CFB
mod System_Storage_Unit
;
711 -- Cases where field goes over storage unit boundary
713 if Start_Bit
+ CSZ
> System_Storage_Unit
then
715 -- Allow multi-byte field but generate warning
717 if Start_Bit
mod System_Storage_Unit
= 0
718 and then CSZ
mod System_Storage_Unit
= 0
721 ("info: multi-byte field specified with non-standard "
722 & "Bit_Order?V?", CLC
);
724 if Bytes_Big_Endian
then
726 ("\bytes are not reversed "
727 & "(component is big-endian)?V?", CLC
);
730 ("\bytes are not reversed "
731 & "(component is little-endian)?V?", CLC
);
734 -- Do not allow non-contiguous field
738 ("attempt to specify non-contiguous field not "
741 ("\caused by non-standard Bit_Order specified in "
742 & "legacy Ada 95 mode", CLC
);
745 -- Case where field fits in one storage unit
748 -- Give warning if suspicious component clause
750 if Intval
(FB
) >= System_Storage_Unit
751 and then Warn_On_Reverse_Bit_Order
754 ("info: Bit_Order clause does not affect byte "
755 & "ordering?V?", Pos
);
757 Intval
(Pos
) + Intval
(FB
) /
760 ("info: position normalized to ^ before bit order "
761 & "interpreted?V?", Pos
);
764 -- Here is where we fix up the Component_Bit_Offset value
765 -- to account for the reverse bit order. Some examples of
766 -- what needs to be done are:
768 -- First_Bit .. Last_Bit Component_Bit_Offset
780 -- The rule is that the first bit is is obtained by
781 -- subtracting the old ending bit from storage_unit - 1.
783 Set_Component_Bit_Offset
(Comp
,
784 (Storage_Unit_Offset
* System_Storage_Unit
) +
785 (System_Storage_Unit
- 1) -
786 (Start_Bit
+ CSZ
- 1));
788 Set_Normalized_Position
(Comp
,
789 Component_Bit_Offset
(Comp
) / System_Storage_Unit
);
791 Set_Normalized_First_Bit
(Comp
,
792 Component_Bit_Offset
(Comp
) mod System_Storage_Unit
);
797 Next_Component_Or_Discriminant
(Comp
);
799 end Adjust_Record_For_Reverse_Bit_Order_Ada_95
;
801 -------------------------------------
802 -- Alignment_Check_For_Size_Change --
803 -------------------------------------
805 procedure Alignment_Check_For_Size_Change
(Typ
: Entity_Id
; Size
: Uint
) is
807 -- If the alignment is known, and not set by a rep clause, and is
808 -- inconsistent with the size being set, then reset it to unknown,
809 -- we assume in this case that the size overrides the inherited
810 -- alignment, and that the alignment must be recomputed.
812 if Known_Alignment
(Typ
)
813 and then not Has_Alignment_Clause
(Typ
)
814 and then Size
mod (Alignment
(Typ
) * SSU
) /= 0
816 Init_Alignment
(Typ
);
818 end Alignment_Check_For_Size_Change
;
820 -------------------------------------
821 -- Analyze_Aspects_At_Freeze_Point --
822 -------------------------------------
824 procedure Analyze_Aspects_At_Freeze_Point
(E
: Entity_Id
) is
825 procedure Analyze_Aspect_Default_Value
(ASN
: Node_Id
);
826 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
827 -- the aspect specification node ASN.
829 procedure Inherit_Delayed_Rep_Aspects
(ASN
: Node_Id
);
830 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
831 -- a derived type can inherit aspects from its parent which have been
832 -- specified at the time of the derivation using an aspect, as in:
834 -- type A is range 1 .. 10
835 -- with Size => Not_Defined_Yet;
839 -- Not_Defined_Yet : constant := 64;
841 -- In this example, the Size of A is considered to be specified prior
842 -- to the derivation, and thus inherited, even though the value is not
843 -- known at the time of derivation. To deal with this, we use two entity
844 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
845 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
846 -- the derived type (B here). If this flag is set when the derived type
847 -- is frozen, then this procedure is called to ensure proper inheritance
848 -- of all delayed aspects from the parent type. The derived type is E,
849 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
850 -- aspect specification node in the Rep_Item chain for the parent type.
852 procedure Make_Pragma_From_Boolean_Aspect
(ASN
: Node_Id
);
853 -- Given an aspect specification node ASN whose expression is an
854 -- optional Boolean, this routines creates the corresponding pragma
855 -- at the freezing point.
857 ----------------------------------
858 -- Analyze_Aspect_Default_Value --
859 ----------------------------------
861 procedure Analyze_Aspect_Default_Value
(ASN
: Node_Id
) is
862 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(ASN
);
863 Ent
: constant Entity_Id
:= Entity
(ASN
);
864 Expr
: constant Node_Id
:= Expression
(ASN
);
865 Id
: constant Node_Id
:= Identifier
(ASN
);
868 Error_Msg_Name_1
:= Chars
(Id
);
870 if not Is_Type
(Ent
) then
871 Error_Msg_N
("aspect% can only apply to a type", Id
);
874 elsif not Is_First_Subtype
(Ent
) then
875 Error_Msg_N
("aspect% cannot apply to subtype", Id
);
878 elsif A_Id
= Aspect_Default_Value
879 and then not Is_Scalar_Type
(Ent
)
881 Error_Msg_N
("aspect% can only be applied to scalar type", Id
);
884 elsif A_Id
= Aspect_Default_Component_Value
then
885 if not Is_Array_Type
(Ent
) then
886 Error_Msg_N
("aspect% can only be applied to array type", Id
);
889 elsif not Is_Scalar_Type
(Component_Type
(Ent
)) then
890 Error_Msg_N
("aspect% requires scalar components", Id
);
895 Set_Has_Default_Aspect
(Base_Type
(Ent
));
897 if Is_Scalar_Type
(Ent
) then
898 Set_Default_Aspect_Value
(Base_Type
(Ent
), Expr
);
900 Set_Default_Aspect_Component_Value
(Base_Type
(Ent
), Expr
);
902 end Analyze_Aspect_Default_Value
;
904 ---------------------------------
905 -- Inherit_Delayed_Rep_Aspects --
906 ---------------------------------
908 procedure Inherit_Delayed_Rep_Aspects
(ASN
: Node_Id
) is
909 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(ASN
);
910 P
: constant Entity_Id
:= Entity
(ASN
);
911 -- Entithy for parent type
914 -- Item from Rep_Item chain
919 -- Loop through delayed aspects for the parent type
922 while Present
(N
) loop
923 if Nkind
(N
) = N_Aspect_Specification
then
924 exit when Entity
(N
) /= P
;
926 if Is_Delayed_Aspect
(N
) then
927 A
:= Get_Aspect_Id
(Chars
(Identifier
(N
)));
929 -- Process delayed rep aspect. For Boolean attributes it is
930 -- not possible to cancel an attribute once set (the attempt
931 -- to use an aspect with xxx => False is an error) for a
932 -- derived type. So for those cases, we do not have to check
933 -- if a clause has been given for the derived type, since it
934 -- is harmless to set it again if it is already set.
940 when Aspect_Alignment
=>
941 if not Has_Alignment_Clause
(E
) then
942 Set_Alignment
(E
, Alignment
(P
));
947 when Aspect_Atomic
=>
948 if Is_Atomic
(P
) then
954 when Aspect_Atomic_Components
=>
955 if Has_Atomic_Components
(P
) then
956 Set_Has_Atomic_Components
(Base_Type
(E
));
961 when Aspect_Bit_Order
=>
962 if Is_Record_Type
(E
)
963 and then No
(Get_Attribute_Definition_Clause
964 (E
, Attribute_Bit_Order
))
965 and then Reverse_Bit_Order
(P
)
967 Set_Reverse_Bit_Order
(Base_Type
(E
));
972 when Aspect_Component_Size
=>
974 and then not Has_Component_Size_Clause
(E
)
977 (Base_Type
(E
), Component_Size
(P
));
982 when Aspect_Machine_Radix
=>
983 if Is_Decimal_Fixed_Point_Type
(E
)
984 and then not Has_Machine_Radix_Clause
(E
)
986 Set_Machine_Radix_10
(E
, Machine_Radix_10
(P
));
989 -- Object_Size (also Size which also sets Object_Size)
991 when Aspect_Object_Size
994 if not Has_Size_Clause
(E
)
996 No
(Get_Attribute_Definition_Clause
997 (E
, Attribute_Object_Size
))
999 Set_Esize
(E
, Esize
(P
));
1005 if not Is_Packed
(E
) then
1006 Set_Is_Packed
(Base_Type
(E
));
1008 if Is_Bit_Packed_Array
(P
) then
1009 Set_Is_Bit_Packed_Array
(Base_Type
(E
));
1010 Set_Packed_Array_Impl_Type
1011 (E
, Packed_Array_Impl_Type
(P
));
1015 -- Scalar_Storage_Order
1017 when Aspect_Scalar_Storage_Order
=>
1018 if (Is_Record_Type
(E
) or else Is_Array_Type
(E
))
1019 and then No
(Get_Attribute_Definition_Clause
1020 (E
, Attribute_Scalar_Storage_Order
))
1021 and then Reverse_Storage_Order
(P
)
1023 Set_Reverse_Storage_Order
(Base_Type
(E
));
1025 -- Clear default SSO indications, since the aspect
1026 -- overrides the default.
1028 Set_SSO_Set_Low_By_Default
(Base_Type
(E
), False);
1029 Set_SSO_Set_High_By_Default
(Base_Type
(E
), False);
1034 when Aspect_Small
=>
1035 if Is_Fixed_Point_Type
(E
)
1036 and then not Has_Small_Clause
(E
)
1038 Set_Small_Value
(E
, Small_Value
(P
));
1043 when Aspect_Storage_Size
=>
1044 if (Is_Access_Type
(E
) or else Is_Task_Type
(E
))
1045 and then not Has_Storage_Size_Clause
(E
)
1047 Set_Storage_Size_Variable
1048 (Base_Type
(E
), Storage_Size_Variable
(P
));
1053 when Aspect_Value_Size
=>
1055 -- Value_Size is never inherited, it is either set by
1056 -- default, or it is explicitly set for the derived
1057 -- type. So nothing to do here.
1063 when Aspect_Volatile
=>
1064 if Is_Volatile
(P
) then
1065 Set_Is_Volatile
(E
);
1068 -- Volatile_Full_Access
1070 when Aspect_Volatile_Full_Access
=>
1071 if Is_Volatile_Full_Access
(P
) then
1072 Set_Is_Volatile_Full_Access
(E
);
1075 -- Volatile_Components
1077 when Aspect_Volatile_Components
=>
1078 if Has_Volatile_Components
(P
) then
1079 Set_Has_Volatile_Components
(Base_Type
(E
));
1082 -- That should be all the Rep Aspects
1085 pragma Assert
(Aspect_Delay
(A_Id
) /= Rep_Aspect
);
1091 N
:= Next_Rep_Item
(N
);
1093 end Inherit_Delayed_Rep_Aspects
;
1095 -------------------------------------
1096 -- Make_Pragma_From_Boolean_Aspect --
1097 -------------------------------------
1099 procedure Make_Pragma_From_Boolean_Aspect
(ASN
: Node_Id
) is
1100 Ident
: constant Node_Id
:= Identifier
(ASN
);
1101 A_Name
: constant Name_Id
:= Chars
(Ident
);
1102 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(A_Name
);
1103 Ent
: constant Entity_Id
:= Entity
(ASN
);
1104 Expr
: constant Node_Id
:= Expression
(ASN
);
1105 Loc
: constant Source_Ptr
:= Sloc
(ASN
);
1107 procedure Check_False_Aspect_For_Derived_Type
;
1108 -- This procedure checks for the case of a false aspect for a derived
1109 -- type, which improperly tries to cancel an aspect inherited from
1112 -----------------------------------------
1113 -- Check_False_Aspect_For_Derived_Type --
1114 -----------------------------------------
1116 procedure Check_False_Aspect_For_Derived_Type
is
1120 -- We are only checking derived types
1122 if not Is_Derived_Type
(E
) then
1126 Par
:= Nearest_Ancestor
(E
);
1132 if not Is_Atomic
(Par
) then
1136 when Aspect_Atomic_Components
=>
1137 if not Has_Atomic_Components
(Par
) then
1141 when Aspect_Discard_Names
=>
1142 if not Discard_Names
(Par
) then
1147 if not Is_Packed
(Par
) then
1151 when Aspect_Unchecked_Union
=>
1152 if not Is_Unchecked_Union
(Par
) then
1156 when Aspect_Volatile
=>
1157 if not Is_Volatile
(Par
) then
1161 when Aspect_Volatile_Components
=>
1162 if not Has_Volatile_Components
(Par
) then
1166 when Aspect_Volatile_Full_Access
=>
1167 if not Is_Volatile_Full_Access
(Par
) then
1175 -- Fall through means we are canceling an inherited aspect
1177 Error_Msg_Name_1
:= A_Name
;
1179 ("derived type& inherits aspect%, cannot cancel", Expr
, E
);
1180 end Check_False_Aspect_For_Derived_Type
;
1186 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1189 -- Note that we know Expr is present, because for a missing Expr
1190 -- argument, we knew it was True and did not need to delay the
1191 -- evaluation to the freeze point.
1193 if Is_False
(Static_Boolean
(Expr
)) then
1194 Check_False_Aspect_For_Derived_Type
;
1199 Pragma_Identifier
=>
1200 Make_Identifier
(Sloc
(Ident
), Chars
(Ident
)),
1201 Pragma_Argument_Associations
=> New_List
(
1202 Make_Pragma_Argument_Association
(Sloc
(Ident
),
1203 Expression
=> New_Occurrence_Of
(Ent
, Sloc
(Ident
)))));
1205 Set_From_Aspect_Specification
(Prag
, True);
1206 Set_Corresponding_Aspect
(Prag
, ASN
);
1207 Set_Aspect_Rep_Item
(ASN
, Prag
);
1208 Set_Is_Delayed_Aspect
(Prag
);
1209 Set_Parent
(Prag
, ASN
);
1211 end Make_Pragma_From_Boolean_Aspect
;
1219 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1222 -- Must be visible in current scope, but if this is a type from a nested
1223 -- package it may be frozen from an object declaration in the enclosing
1224 -- scope, so install the package declarations to complete the analysis
1225 -- of the aspects, if any. If the package itself is frozen the type will
1226 -- have been frozen as well.
1228 if not Scope_Within_Or_Same
(Current_Scope
, Scope
(E
)) then
1229 if Is_Type
(E
) and then From_Nested_Package
(E
) then
1231 Pack
: constant Entity_Id
:= Scope
(E
);
1235 Install_Visible_Declarations
(Pack
);
1236 Install_Private_Declarations
(Pack
);
1237 Analyze_Aspects_At_Freeze_Point
(E
);
1239 if Is_Private_Type
(E
)
1240 and then Present
(Full_View
(E
))
1242 Analyze_Aspects_At_Freeze_Point
(Full_View
(E
));
1245 End_Package_Scope
(Pack
);
1249 -- Aspects from other entities in different contexts are analyzed
1257 -- Look for aspect specification entries for this entity
1259 ASN
:= First_Rep_Item
(E
);
1260 while Present
(ASN
) loop
1261 if Nkind
(ASN
) = N_Aspect_Specification
then
1262 exit when Entity
(ASN
) /= E
;
1264 if Is_Delayed_Aspect
(ASN
) then
1265 A_Id
:= Get_Aspect_Id
(ASN
);
1269 -- For aspects whose expression is an optional Boolean, make
1270 -- the corresponding pragma at the freeze point.
1272 when Boolean_Aspects
1273 | Library_Unit_Aspects
1275 -- Aspects Export and Import require special handling.
1276 -- Both are by definition Boolean and may benefit from
1277 -- forward references, however their expressions are
1278 -- treated as static. In addition, the syntax of their
1279 -- corresponding pragmas requires extra "pieces" which
1280 -- may also contain forward references. To account for
1281 -- all of this, the corresponding pragma is created by
1282 -- Analyze_Aspect_Export_Import, but is not analyzed as
1283 -- the complete analysis must happen now.
1285 if A_Id
= Aspect_Export
or else A_Id
= Aspect_Import
then
1288 -- Otherwise create a corresponding pragma
1291 Make_Pragma_From_Boolean_Aspect
(ASN
);
1294 -- Special handling for aspects that don't correspond to
1295 -- pragmas/attributes.
1297 when Aspect_Default_Value
1298 | Aspect_Default_Component_Value
1300 -- Do not inherit aspect for anonymous base type of a
1301 -- scalar or array type, because they apply to the first
1302 -- subtype of the type, and will be processed when that
1303 -- first subtype is frozen.
1305 if Is_Derived_Type
(E
)
1306 and then not Comes_From_Source
(E
)
1307 and then E
/= First_Subtype
(E
)
1311 Analyze_Aspect_Default_Value
(ASN
);
1314 -- Ditto for iterator aspects, because the corresponding
1315 -- attributes may not have been analyzed yet.
1317 when Aspect_Constant_Indexing
1318 | Aspect_Default_Iterator
1319 | Aspect_Iterator_Element
1320 | Aspect_Variable_Indexing
1322 Analyze
(Expression
(ASN
));
1324 if Etype
(Expression
(ASN
)) = Any_Type
then
1326 ("\aspect must be fully defined before & is frozen",
1330 when Aspect_Iterable
=>
1331 Validate_Iterable_Aspect
(E
, ASN
);
1337 Ritem
:= Aspect_Rep_Item
(ASN
);
1339 if Present
(Ritem
) then
1345 Next_Rep_Item
(ASN
);
1348 -- This is where we inherit delayed rep aspects from our parent. Note
1349 -- that if we fell out of the above loop with ASN non-empty, it means
1350 -- we hit an aspect for an entity other than E, and it must be the
1351 -- type from which we were derived.
1353 if May_Inherit_Delayed_Rep_Aspects
(E
) then
1354 Inherit_Delayed_Rep_Aspects
(ASN
);
1356 end Analyze_Aspects_At_Freeze_Point
;
1358 -----------------------------------
1359 -- Analyze_Aspect_Specifications --
1360 -----------------------------------
1362 procedure Analyze_Aspect_Specifications
(N
: Node_Id
; E
: Entity_Id
) is
1363 pragma Assert
(Present
(E
));
1365 procedure Decorate
(Asp
: Node_Id
; Prag
: Node_Id
);
1366 -- Establish linkages between an aspect and its corresponding pragma
1368 procedure Insert_Pragma
1370 Is_Instance
: Boolean := False);
1371 -- Subsidiary to the analysis of aspects
1378 -- Initial_Condition
1387 -- Insert pragma Prag such that it mimics the placement of a source
1388 -- pragma of the same kind. Flag Is_Generic should be set when the
1389 -- context denotes a generic instance.
1395 procedure Decorate
(Asp
: Node_Id
; Prag
: Node_Id
) is
1397 Set_Aspect_Rep_Item
(Asp
, Prag
);
1398 Set_Corresponding_Aspect
(Prag
, Asp
);
1399 Set_From_Aspect_Specification
(Prag
);
1400 Set_Parent
(Prag
, Asp
);
1407 procedure Insert_Pragma
1409 Is_Instance
: Boolean := False)
1415 Inserted
: Boolean := False;
1418 -- When the aspect appears on an entry, package, protected unit,
1419 -- subprogram, or task unit body, insert the generated pragma at the
1420 -- top of the body declarations to emulate the behavior of a source
1423 -- package body Pack with Aspect is
1425 -- package body Pack is
1428 if Nkind_In
(N
, N_Entry_Body
,
1434 Decls
:= Declarations
(N
);
1438 Set_Declarations
(N
, Decls
);
1441 Prepend_To
(Decls
, Prag
);
1443 -- When the aspect is associated with a [generic] package declaration
1444 -- insert the generated pragma at the top of the visible declarations
1445 -- to emulate the behavior of a source pragma.
1447 -- package Pack with Aspect is
1452 elsif Nkind_In
(N
, N_Generic_Package_Declaration
,
1453 N_Package_Declaration
)
1455 Decls
:= Visible_Declarations
(Specification
(N
));
1459 Set_Visible_Declarations
(Specification
(N
), Decls
);
1462 -- The visible declarations of a generic instance have the
1463 -- following structure:
1465 -- <renamings of generic formals>
1466 -- <renamings of internally-generated spec and body>
1467 -- <first source declaration>
1469 -- Insert the pragma before the first source declaration by
1470 -- skipping the instance "header" to ensure proper visibility of
1474 Decl
:= First
(Decls
);
1475 while Present
(Decl
) loop
1476 if Comes_From_Source
(Decl
) then
1477 Insert_Before
(Decl
, Prag
);
1485 -- The pragma is placed after the instance "header"
1487 if not Inserted
then
1488 Append_To
(Decls
, Prag
);
1491 -- Otherwise this is not a generic instance
1494 Prepend_To
(Decls
, Prag
);
1497 -- When the aspect is associated with a protected unit declaration,
1498 -- insert the generated pragma at the top of the visible declarations
1499 -- the emulate the behavior of a source pragma.
1501 -- protected [type] Prot with Aspect is
1503 -- protected [type] Prot is
1506 elsif Nkind
(N
) = N_Protected_Type_Declaration
then
1507 Def
:= Protected_Definition
(N
);
1511 Make_Protected_Definition
(Sloc
(N
),
1512 Visible_Declarations
=> New_List
,
1513 End_Label
=> Empty
);
1515 Set_Protected_Definition
(N
, Def
);
1518 Decls
:= Visible_Declarations
(Def
);
1522 Set_Visible_Declarations
(Def
, Decls
);
1525 Prepend_To
(Decls
, Prag
);
1527 -- When the aspect is associated with a task unit declaration, insert
1528 -- insert the generated pragma at the top of the visible declarations
1529 -- the emulate the behavior of a source pragma.
1531 -- task [type] Prot with Aspect is
1533 -- task [type] Prot is
1536 elsif Nkind
(N
) = N_Task_Type_Declaration
then
1537 Def
:= Task_Definition
(N
);
1541 Make_Task_Definition
(Sloc
(N
),
1542 Visible_Declarations
=> New_List
,
1543 End_Label
=> Empty
);
1545 Set_Task_Definition
(N
, Def
);
1548 Decls
:= Visible_Declarations
(Def
);
1552 Set_Visible_Declarations
(Def
, Decls
);
1555 Prepend_To
(Decls
, Prag
);
1557 -- When the context is a library unit, the pragma is added to the
1558 -- Pragmas_After list.
1560 elsif Nkind
(Parent
(N
)) = N_Compilation_Unit
then
1561 Aux
:= Aux_Decls_Node
(Parent
(N
));
1563 if No
(Pragmas_After
(Aux
)) then
1564 Set_Pragmas_After
(Aux
, New_List
);
1567 Prepend
(Prag
, Pragmas_After
(Aux
));
1569 -- Default, the pragma is inserted after the context
1572 Insert_After
(N
, Prag
);
1582 L
: constant List_Id
:= Aspect_Specifications
(N
);
1583 pragma Assert
(Present
(L
));
1585 Ins_Node
: Node_Id
:= N
;
1586 -- Insert pragmas/attribute definition clause after this node when no
1587 -- delayed analysis is required.
1589 -- Start of processing for Analyze_Aspect_Specifications
1592 -- The general processing involves building an attribute definition
1593 -- clause or a pragma node that corresponds to the aspect. Then in order
1594 -- to delay the evaluation of this aspect to the freeze point, we attach
1595 -- the corresponding pragma/attribute definition clause to the aspect
1596 -- specification node, which is then placed in the Rep Item chain. In
1597 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1598 -- and we evaluate the rep item at the freeze point. When the aspect
1599 -- doesn't have a corresponding pragma/attribute definition clause, then
1600 -- its analysis is simply delayed at the freeze point.
1602 -- Some special cases don't require delay analysis, thus the aspect is
1603 -- analyzed right now.
1605 -- Note that there is a special handling for Pre, Post, Test_Case,
1606 -- Contract_Cases aspects. In these cases, we do not have to worry
1607 -- about delay issues, since the pragmas themselves deal with delay
1608 -- of visibility for the expression analysis. Thus, we just insert
1609 -- the pragma after the node N.
1611 -- Loop through aspects
1613 Aspect
:= First
(L
);
1614 Aspect_Loop
: while Present
(Aspect
) loop
1615 Analyze_One_Aspect
: declare
1616 Expr
: constant Node_Id
:= Expression
(Aspect
);
1617 Id
: constant Node_Id
:= Identifier
(Aspect
);
1618 Loc
: constant Source_Ptr
:= Sloc
(Aspect
);
1619 Nam
: constant Name_Id
:= Chars
(Id
);
1620 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Nam
);
1623 Delay_Required
: Boolean;
1624 -- Set False if delay is not required
1626 Eloc
: Source_Ptr
:= No_Location
;
1627 -- Source location of expression, modified when we split PPC's. It
1628 -- is set below when Expr is present.
1630 procedure Analyze_Aspect_Convention
;
1631 -- Perform analysis of aspect Convention
1633 procedure Analyze_Aspect_Disable_Controlled
;
1634 -- Perform analysis of aspect Disable_Controlled
1636 procedure Analyze_Aspect_Export_Import
;
1637 -- Perform analysis of aspects Export or Import
1639 procedure Analyze_Aspect_External_Link_Name
;
1640 -- Perform analysis of aspects External_Name or Link_Name
1642 procedure Analyze_Aspect_Implicit_Dereference
;
1643 -- Perform analysis of the Implicit_Dereference aspects
1645 procedure Make_Aitem_Pragma
1646 (Pragma_Argument_Associations
: List_Id
;
1647 Pragma_Name
: Name_Id
);
1648 -- This is a wrapper for Make_Pragma used for converting aspects
1649 -- to pragmas. It takes care of Sloc (set from Loc) and building
1650 -- the pragma identifier from the given name. In addition the
1651 -- flags Class_Present and Split_PPC are set from the aspect
1652 -- node, as well as Is_Ignored. This routine also sets the
1653 -- From_Aspect_Specification in the resulting pragma node to
1654 -- True, and sets Corresponding_Aspect to point to the aspect.
1655 -- The resulting pragma is assigned to Aitem.
1657 -------------------------------
1658 -- Analyze_Aspect_Convention --
1659 -------------------------------
1661 procedure Analyze_Aspect_Convention
is
1670 -- Obtain all interfacing aspects that apply to the related
1673 Get_Interfacing_Aspects
1674 (Iface_Asp
=> Aspect
,
1675 Conv_Asp
=> Dummy_1
,
1682 -- The related entity is subject to aspect Export or Import.
1683 -- Do not process Convention now because it must be analysed
1684 -- as part of Export or Import.
1686 if Present
(Expo
) or else Present
(Imp
) then
1689 -- Otherwise Convention appears by itself
1692 -- The aspect specifies a particular convention
1694 if Present
(Expr
) then
1695 Conv
:= New_Copy_Tree
(Expr
);
1697 -- Otherwise assume convention Ada
1700 Conv
:= Make_Identifier
(Loc
, Name_Ada
);
1704 -- pragma Convention (<Conv>, <E>);
1707 (Pragma_Name
=> Name_Convention
,
1708 Pragma_Argument_Associations
=> New_List
(
1709 Make_Pragma_Argument_Association
(Loc
,
1710 Expression
=> Conv
),
1711 Make_Pragma_Argument_Association
(Loc
,
1712 Expression
=> New_Occurrence_Of
(E
, Loc
))));
1714 Decorate
(Aspect
, Aitem
);
1715 Insert_Pragma
(Aitem
);
1717 end Analyze_Aspect_Convention
;
1719 ---------------------------------------
1720 -- Analyze_Aspect_Disable_Controlled --
1721 ---------------------------------------
1723 procedure Analyze_Aspect_Disable_Controlled
is
1725 -- The aspect applies only to controlled records
1727 if not (Ekind
(E
) = E_Record_Type
1728 and then Is_Controlled_Active
(E
))
1731 ("aspect % requires controlled record type", Aspect
);
1735 -- Preanalyze the expression (if any) when the aspect resides
1736 -- in a generic unit.
1738 if Inside_A_Generic
then
1739 if Present
(Expr
) then
1740 Preanalyze_And_Resolve
(Expr
, Any_Boolean
);
1743 -- Otherwise the aspect resides in a nongeneric context
1746 -- A controlled record type loses its controlled semantics
1747 -- when the expression statically evaluates to True.
1749 if Present
(Expr
) then
1750 Analyze_And_Resolve
(Expr
, Any_Boolean
);
1752 if Is_OK_Static_Expression
(Expr
) then
1753 if Is_True
(Static_Boolean
(Expr
)) then
1754 Set_Disable_Controlled
(E
);
1757 -- Otherwise the expression is not static
1761 ("expression of aspect % must be static", Aspect
);
1764 -- Otherwise the aspect appears without an expression and
1765 -- defaults to True.
1768 Set_Disable_Controlled
(E
);
1771 end Analyze_Aspect_Disable_Controlled
;
1773 ----------------------------------
1774 -- Analyze_Aspect_Export_Import --
1775 ----------------------------------
1777 procedure Analyze_Aspect_Export_Import
is
1785 -- Obtain all interfacing aspects that apply to the related
1788 Get_Interfacing_Aspects
1789 (Iface_Asp
=> Aspect
,
1790 Conv_Asp
=> Dummy_1
,
1797 -- The related entity cannot be subject to both aspects Export
1800 if Present
(Expo
) and then Present
(Imp
) then
1802 ("incompatible interfacing aspects given for &", E
);
1803 Error_Msg_Sloc
:= Sloc
(Expo
);
1804 Error_Msg_N
("\aspect `Export` #", E
);
1805 Error_Msg_Sloc
:= Sloc
(Imp
);
1806 Error_Msg_N
("\aspect `Import` #", E
);
1809 -- A variable is most likely modified from the outside. Take
1810 -- the optimistic approach to avoid spurious errors.
1812 if Ekind
(E
) = E_Variable
then
1813 Set_Never_Set_In_Source
(E
, False);
1816 -- Resolve the expression of an Import or Export here, and
1817 -- require it to be of type Boolean and static. This is not
1818 -- quite right, because in general this should be delayed,
1819 -- but that seems tricky for these, because normally Boolean
1820 -- aspects are replaced with pragmas at the freeze point in
1821 -- Make_Pragma_From_Boolean_Aspect.
1823 if not Present
(Expr
)
1824 or else Is_True
(Static_Boolean
(Expr
))
1826 if A_Id
= Aspect_Import
then
1827 Set_Has_Completion
(E
);
1828 Set_Is_Imported
(E
);
1830 -- An imported object cannot be explicitly initialized
1832 if Nkind
(N
) = N_Object_Declaration
1833 and then Present
(Expression
(N
))
1836 ("imported entities cannot be initialized "
1837 & "(RM B.1(24))", Expression
(N
));
1841 pragma Assert
(A_Id
= Aspect_Export
);
1842 Set_Is_Exported
(E
);
1845 -- Create the proper form of pragma Export or Import taking
1846 -- into account Conversion, External_Name, and Link_Name.
1848 Aitem
:= Build_Export_Import_Pragma
(Aspect
, E
);
1850 -- Otherwise the expression is either False or erroneous. There
1851 -- is no corresponding pragma.
1856 end Analyze_Aspect_Export_Import
;
1858 ---------------------------------------
1859 -- Analyze_Aspect_External_Link_Name --
1860 ---------------------------------------
1862 procedure Analyze_Aspect_External_Link_Name
is
1870 -- Obtain all interfacing aspects that apply to the related
1873 Get_Interfacing_Aspects
1874 (Iface_Asp
=> Aspect
,
1875 Conv_Asp
=> Dummy_1
,
1882 -- Ensure that aspect External_Name applies to aspect Export or
1885 if A_Id
= Aspect_External_Name
then
1886 if No
(Expo
) and then No
(Imp
) then
1888 ("aspect `External_Name` requires aspect `Import` or "
1889 & "`Export`", Aspect
);
1892 -- Otherwise ensure that aspect Link_Name applies to aspect
1893 -- Export or Import.
1896 pragma Assert
(A_Id
= Aspect_Link_Name
);
1897 if No
(Expo
) and then No
(Imp
) then
1899 ("aspect `Link_Name` requires aspect `Import` or "
1900 & "`Export`", Aspect
);
1903 end Analyze_Aspect_External_Link_Name
;
1905 -----------------------------------------
1906 -- Analyze_Aspect_Implicit_Dereference --
1907 -----------------------------------------
1909 procedure Analyze_Aspect_Implicit_Dereference
is
1911 if not Is_Type
(E
) or else not Has_Discriminants
(E
) then
1913 ("aspect must apply to a type with discriminants", Expr
);
1915 elsif not Is_Entity_Name
(Expr
) then
1917 ("aspect must name a discriminant of current type", Expr
);
1920 -- Discriminant type be an anonymous access type or an
1921 -- anonymous access to subprogram.
1923 -- Missing synchronized types???
1926 Disc
: Entity_Id
:= First_Discriminant
(E
);
1928 while Present
(Disc
) loop
1929 if Chars
(Expr
) = Chars
(Disc
)
1932 E_Anonymous_Access_Subprogram_Type
,
1933 E_Anonymous_Access_Type
)
1935 Set_Has_Implicit_Dereference
(E
);
1936 Set_Has_Implicit_Dereference
(Disc
);
1940 Next_Discriminant
(Disc
);
1943 -- Error if no proper access discriminant
1945 if Present
(Disc
) then
1946 -- For a type extension, check whether parent has
1947 -- a reference discriminant, to verify that use is
1950 if Is_Derived_Type
(E
)
1951 and then Has_Discriminants
(Etype
(E
))
1954 Parent_Disc
: constant Entity_Id
:=
1955 Get_Reference_Discriminant
(Etype
(E
));
1957 if Present
(Parent_Disc
)
1958 and then Corresponding_Discriminant
(Disc
) /=
1962 ("reference discriminant does not match "
1963 & "discriminant of parent type", Expr
);
1970 ("not an access discriminant of&", Expr
, E
);
1975 end Analyze_Aspect_Implicit_Dereference
;
1977 -----------------------
1978 -- Make_Aitem_Pragma --
1979 -----------------------
1981 procedure Make_Aitem_Pragma
1982 (Pragma_Argument_Associations
: List_Id
;
1983 Pragma_Name
: Name_Id
)
1985 Args
: List_Id
:= Pragma_Argument_Associations
;
1988 -- We should never get here if aspect was disabled
1990 pragma Assert
(not Is_Disabled
(Aspect
));
1992 -- Certain aspects allow for an optional name or expression. Do
1993 -- not generate a pragma with empty argument association list.
1995 if No
(Args
) or else No
(Expression
(First
(Args
))) then
2003 Pragma_Argument_Associations
=> Args
,
2004 Pragma_Identifier
=>
2005 Make_Identifier
(Sloc
(Id
), Pragma_Name
),
2006 Class_Present
=> Class_Present
(Aspect
),
2007 Split_PPC
=> Split_PPC
(Aspect
));
2009 -- Set additional semantic fields
2011 if Is_Ignored
(Aspect
) then
2012 Set_Is_Ignored
(Aitem
);
2013 elsif Is_Checked
(Aspect
) then
2014 Set_Is_Checked
(Aitem
);
2017 Set_Corresponding_Aspect
(Aitem
, Aspect
);
2018 Set_From_Aspect_Specification
(Aitem
);
2019 end Make_Aitem_Pragma
;
2021 -- Start of processing for Analyze_One_Aspect
2024 -- Skip aspect if already analyzed, to avoid looping in some cases
2026 if Analyzed
(Aspect
) then
2030 -- Skip looking at aspect if it is totally disabled. Just mark it
2031 -- as such for later reference in the tree. This also sets the
2032 -- Is_Ignored and Is_Checked flags appropriately.
2034 Check_Applicable_Policy
(Aspect
);
2036 if Is_Disabled
(Aspect
) then
2040 -- Set the source location of expression, used in the case of
2041 -- a failed precondition/postcondition or invariant. Note that
2042 -- the source location of the expression is not usually the best
2043 -- choice here. For example, it gets located on the last AND
2044 -- keyword in a chain of boolean expressiond AND'ed together.
2045 -- It is best to put the message on the first character of the
2046 -- assertion, which is the effect of the First_Node call here.
2048 if Present
(Expr
) then
2049 Eloc
:= Sloc
(First_Node
(Expr
));
2052 -- Check restriction No_Implementation_Aspect_Specifications
2054 if Implementation_Defined_Aspect
(A_Id
) then
2056 (No_Implementation_Aspect_Specifications
, Aspect
);
2059 -- Check restriction No_Specification_Of_Aspect
2061 Check_Restriction_No_Specification_Of_Aspect
(Aspect
);
2063 -- Mark aspect analyzed (actual analysis is delayed till later)
2065 Set_Analyzed
(Aspect
);
2066 Set_Entity
(Aspect
, E
);
2068 -- Build the reference to E that will be used in the built pragmas
2070 Ent
:= New_Occurrence_Of
(E
, Sloc
(Id
));
2072 if A_Id
= Aspect_Attach_Handler
2073 or else A_Id
= Aspect_Interrupt_Handler
2076 -- Treat the specification as a reference to the protected
2077 -- operation, which might otherwise appear unreferenced and
2078 -- generate spurious warnings.
2080 Generate_Reference
(E
, Id
);
2083 -- Check for duplicate aspect. Note that the Comes_From_Source
2084 -- test allows duplicate Pre/Post's that we generate internally
2085 -- to escape being flagged here.
2087 if No_Duplicates_Allowed
(A_Id
) then
2089 while Anod
/= Aspect
loop
2090 if Comes_From_Source
(Aspect
)
2091 and then Same_Aspect
(A_Id
, Get_Aspect_Id
(Anod
))
2093 Error_Msg_Name_1
:= Nam
;
2094 Error_Msg_Sloc
:= Sloc
(Anod
);
2096 -- Case of same aspect specified twice
2098 if Class_Present
(Anod
) = Class_Present
(Aspect
) then
2099 if not Class_Present
(Anod
) then
2101 ("aspect% for & previously given#",
2105 ("aspect `%''Class` for & previously given#",
2115 -- Check some general restrictions on language defined aspects
2117 if not Implementation_Defined_Aspect
(A_Id
) then
2118 Error_Msg_Name_1
:= Nam
;
2120 -- Not allowed for renaming declarations. Examine the original
2121 -- node because a subprogram renaming may have been rewritten
2124 if Nkind
(Original_Node
(N
)) in N_Renaming_Declaration
then
2126 ("aspect % not allowed for renaming declaration",
2130 -- Not allowed for formal type declarations
2132 if Nkind
(N
) = N_Formal_Type_Declaration
then
2134 ("aspect % not allowed for formal type declaration",
2139 -- Copy expression for later processing by the procedures
2140 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
2142 Set_Entity
(Id
, New_Copy_Tree
(Expr
));
2144 -- Set Delay_Required as appropriate to aspect
2146 case Aspect_Delay
(A_Id
) is
2147 when Always_Delay
=>
2148 Delay_Required
:= True;
2151 Delay_Required
:= False;
2155 -- If expression has the form of an integer literal, then
2156 -- do not delay, since we know the value cannot change.
2157 -- This optimization catches most rep clause cases.
2159 -- For Boolean aspects, don't delay if no expression
2161 if A_Id
in Boolean_Aspects
and then No
(Expr
) then
2162 Delay_Required
:= False;
2164 -- For non-Boolean aspects, don't delay if integer literal,
2165 -- unless the aspect is Alignment, which affects the
2166 -- freezing of an initialized object.
2168 elsif A_Id
not in Boolean_Aspects
2169 and then A_Id
/= Aspect_Alignment
2170 and then Present
(Expr
)
2171 and then Nkind
(Expr
) = N_Integer_Literal
2173 Delay_Required
:= False;
2175 -- All other cases are delayed
2178 Delay_Required
:= True;
2179 Set_Has_Delayed_Rep_Aspects
(E
);
2183 -- Processing based on specific aspect
2186 when Aspect_Unimplemented
=>
2187 null; -- ??? temp for now
2189 -- No_Aspect should be impossible
2192 raise Program_Error
;
2194 -- Case 1: Aspects corresponding to attribute definition
2200 | Aspect_Component_Size
2201 | Aspect_Constant_Indexing
2202 | Aspect_Default_Iterator
2203 | Aspect_Dispatching_Domain
2204 | Aspect_External_Tag
2207 | Aspect_Iterator_Element
2208 | Aspect_Machine_Radix
2209 | Aspect_Object_Size
2212 | Aspect_Scalar_Storage_Order
2213 | Aspect_Secondary_Stack_Size
2214 | Aspect_Simple_Storage_Pool
2217 | Aspect_Storage_Pool
2218 | Aspect_Stream_Size
2220 | Aspect_Variable_Indexing
2223 -- Indexing aspects apply only to tagged type
2225 if (A_Id
= Aspect_Constant_Indexing
2227 A_Id
= Aspect_Variable_Indexing
)
2228 and then not (Is_Type
(E
)
2229 and then Is_Tagged_Type
(E
))
2232 ("indexing aspect can only apply to a tagged type",
2237 -- For the case of aspect Address, we don't consider that we
2238 -- know the entity is never set in the source, since it is
2239 -- is likely aliasing is occurring.
2241 -- Note: one might think that the analysis of the resulting
2242 -- attribute definition clause would take care of that, but
2243 -- that's not the case since it won't be from source.
2245 if A_Id
= Aspect_Address
then
2246 Set_Never_Set_In_Source
(E
, False);
2249 -- Correctness of the profile of a stream operation is
2250 -- verified at the freeze point, but we must detect the
2251 -- illegal specification of this aspect for a subtype now,
2252 -- to prevent malformed rep_item chains.
2254 if A_Id
= Aspect_Input
or else
2255 A_Id
= Aspect_Output
or else
2256 A_Id
= Aspect_Read
or else
2259 if not Is_First_Subtype
(E
) then
2261 ("local name must be a first subtype", Aspect
);
2264 -- If stream aspect applies to the class-wide type,
2265 -- the generated attribute definition applies to the
2266 -- class-wide type as well.
2268 elsif Class_Present
(Aspect
) then
2270 Make_Attribute_Reference
(Loc
,
2272 Attribute_Name
=> Name_Class
);
2276 -- Construct the attribute_definition_clause. The expression
2277 -- in the aspect specification is simply shared with the
2278 -- constructed attribute, because it will be fully analyzed
2279 -- when the attribute is processed. However, in ASIS mode
2280 -- the aspect expression itself is preanalyzed and resolved
2281 -- to catch visibility errors that are otherwise caught
2282 -- later, and we create a separate copy of the expression
2283 -- to prevent analysis of a malformed tree (e.g. a function
2284 -- call with parameter associations).
2288 Make_Attribute_Definition_Clause
(Loc
,
2290 Chars
=> Chars
(Id
),
2291 Expression
=> New_Copy_Tree
(Expr
));
2294 Make_Attribute_Definition_Clause
(Loc
,
2296 Chars
=> Chars
(Id
),
2297 Expression
=> Relocate_Node
(Expr
));
2300 -- If the address is specified, then we treat the entity as
2301 -- referenced, to avoid spurious warnings. This is analogous
2302 -- to what is done with an attribute definition clause, but
2303 -- here we don't want to generate a reference because this
2304 -- is the point of definition of the entity.
2306 if A_Id
= Aspect_Address
then
2310 -- Case 2: Aspects corresponding to pragmas
2312 -- Case 2a: Aspects corresponding to pragmas with two
2313 -- arguments, where the first argument is a local name
2314 -- referring to the entity, and the second argument is the
2315 -- aspect definition expression.
2317 -- Linker_Section/Suppress/Unsuppress
2319 when Aspect_Linker_Section
2324 (Pragma_Argument_Associations
=> New_List
(
2325 Make_Pragma_Argument_Association
(Loc
,
2326 Expression
=> New_Occurrence_Of
(E
, Loc
)),
2327 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2328 Expression
=> Relocate_Node
(Expr
))),
2329 Pragma_Name
=> Chars
(Id
));
2331 -- Linker_Section does not need delaying, as its argument
2332 -- must be a static string. Furthermore, if applied to
2333 -- an object with an explicit initialization, the object
2334 -- must be frozen in order to elaborate the initialization
2335 -- code. (This is already done for types with implicit
2336 -- initialization, such as protected types.)
2338 if A_Id
= Aspect_Linker_Section
2339 and then Nkind
(N
) = N_Object_Declaration
2340 and then Has_Init_Expression
(N
)
2342 Delay_Required
:= False;
2347 -- Corresponds to pragma Implemented, construct the pragma
2349 when Aspect_Synchronization
=>
2351 (Pragma_Argument_Associations
=> New_List
(
2352 Make_Pragma_Argument_Association
(Loc
,
2353 Expression
=> New_Occurrence_Of
(E
, Loc
)),
2354 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2355 Expression
=> Relocate_Node
(Expr
))),
2356 Pragma_Name
=> Name_Implemented
);
2360 when Aspect_Attach_Handler
=>
2362 (Pragma_Argument_Associations
=> New_List
(
2363 Make_Pragma_Argument_Association
(Sloc
(Ent
),
2365 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2366 Expression
=> Relocate_Node
(Expr
))),
2367 Pragma_Name
=> Name_Attach_Handler
);
2369 -- We need to insert this pragma into the tree to get proper
2370 -- processing and to look valid from a placement viewpoint.
2372 Insert_Pragma
(Aitem
);
2375 -- Dynamic_Predicate, Predicate, Static_Predicate
2377 when Aspect_Dynamic_Predicate
2379 | Aspect_Static_Predicate
2381 -- These aspects apply only to subtypes
2383 if not Is_Type
(E
) then
2385 ("predicate can only be specified for a subtype",
2389 elsif Is_Incomplete_Type
(E
) then
2391 ("predicate cannot apply to incomplete view", Aspect
);
2395 -- Construct the pragma (always a pragma Predicate, with
2396 -- flags recording whether it is static/dynamic). We also
2397 -- set flags recording this in the type itself.
2400 (Pragma_Argument_Associations
=> New_List
(
2401 Make_Pragma_Argument_Association
(Sloc
(Ent
),
2403 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2404 Expression
=> Relocate_Node
(Expr
))),
2405 Pragma_Name
=> Name_Predicate
);
2407 -- Mark type has predicates, and remember what kind of
2408 -- aspect lead to this predicate (we need this to access
2409 -- the right set of check policies later on).
2411 Set_Has_Predicates
(E
);
2413 if A_Id
= Aspect_Dynamic_Predicate
then
2414 Set_Has_Dynamic_Predicate_Aspect
(E
);
2416 -- If the entity has a dynamic predicate, any inherited
2417 -- static predicate becomes dynamic as well, and the
2418 -- predicate function includes the conjunction of both.
2420 Set_Has_Static_Predicate_Aspect
(E
, False);
2422 elsif A_Id
= Aspect_Static_Predicate
then
2423 Set_Has_Static_Predicate_Aspect
(E
);
2426 -- If the type is private, indicate that its completion
2427 -- has a freeze node, because that is the one that will
2428 -- be visible at freeze time.
2430 if Is_Private_Type
(E
) and then Present
(Full_View
(E
)) then
2431 Set_Has_Predicates
(Full_View
(E
));
2433 if A_Id
= Aspect_Dynamic_Predicate
then
2434 Set_Has_Dynamic_Predicate_Aspect
(Full_View
(E
));
2435 elsif A_Id
= Aspect_Static_Predicate
then
2436 Set_Has_Static_Predicate_Aspect
(Full_View
(E
));
2439 Set_Has_Delayed_Aspects
(Full_View
(E
));
2440 Ensure_Freeze_Node
(Full_View
(E
));
2443 -- Predicate_Failure
2445 when Aspect_Predicate_Failure
=>
2447 -- This aspect applies only to subtypes
2449 if not Is_Type
(E
) then
2451 ("predicate can only be specified for a subtype",
2455 elsif Is_Incomplete_Type
(E
) then
2457 ("predicate cannot apply to incomplete view", Aspect
);
2461 -- Construct the pragma
2464 (Pragma_Argument_Associations
=> New_List
(
2465 Make_Pragma_Argument_Association
(Sloc
(Ent
),
2467 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2468 Expression
=> Relocate_Node
(Expr
))),
2469 Pragma_Name
=> Name_Predicate_Failure
);
2471 Set_Has_Predicates
(E
);
2473 -- If the type is private, indicate that its completion
2474 -- has a freeze node, because that is the one that will
2475 -- be visible at freeze time.
2477 if Is_Private_Type
(E
) and then Present
(Full_View
(E
)) then
2478 Set_Has_Predicates
(Full_View
(E
));
2479 Set_Has_Delayed_Aspects
(Full_View
(E
));
2480 Ensure_Freeze_Node
(Full_View
(E
));
2483 -- Case 2b: Aspects corresponding to pragmas with two
2484 -- arguments, where the second argument is a local name
2485 -- referring to the entity, and the first argument is the
2486 -- aspect definition expression.
2490 when Aspect_Convention
=>
2491 Analyze_Aspect_Convention
;
2494 -- External_Name, Link_Name
2496 when Aspect_External_Name
2499 Analyze_Aspect_External_Link_Name
;
2502 -- CPU, Interrupt_Priority, Priority
2504 -- These three aspects can be specified for a subprogram spec
2505 -- or body, in which case we analyze the expression and export
2506 -- the value of the aspect.
2508 -- Previously, we generated an equivalent pragma for bodies
2509 -- (note that the specs cannot contain these pragmas). The
2510 -- pragma was inserted ahead of local declarations, rather than
2511 -- after the body. This leads to a certain duplication between
2512 -- the processing performed for the aspect and the pragma, but
2513 -- given the straightforward handling required it is simpler
2514 -- to duplicate than to translate the aspect in the spec into
2515 -- a pragma in the declarative part of the body.
2518 | Aspect_Interrupt_Priority
2521 if Nkind_In
(N
, N_Subprogram_Body
,
2522 N_Subprogram_Declaration
)
2524 -- Analyze the aspect expression
2526 Analyze_And_Resolve
(Expr
, Standard_Integer
);
2528 -- Interrupt_Priority aspect not allowed for main
2529 -- subprograms. RM D.1 does not forbid this explicitly,
2530 -- but RM J.15.11(6/3) does not permit pragma
2531 -- Interrupt_Priority for subprograms.
2533 if A_Id
= Aspect_Interrupt_Priority
then
2535 ("Interrupt_Priority aspect cannot apply to "
2536 & "subprogram", Expr
);
2538 -- The expression must be static
2540 elsif not Is_OK_Static_Expression
(Expr
) then
2541 Flag_Non_Static_Expr
2542 ("aspect requires static expression!", Expr
);
2544 -- Check whether this is the main subprogram. Issue a
2545 -- warning only if it is obviously not a main program
2546 -- (when it has parameters or when the subprogram is
2547 -- within a package).
2549 elsif Present
(Parameter_Specifications
2550 (Specification
(N
)))
2551 or else not Is_Compilation_Unit
(Defining_Entity
(N
))
2553 -- See RM D.1(14/3) and D.16(12/3)
2556 ("aspect applied to subprogram other than the "
2557 & "main subprogram has no effect??", Expr
);
2559 -- Otherwise check in range and export the value
2561 -- For the CPU aspect
2563 elsif A_Id
= Aspect_CPU
then
2564 if Is_In_Range
(Expr
, RTE
(RE_CPU_Range
)) then
2566 -- Value is correct so we export the value to make
2567 -- it available at execution time.
2570 (Main_Unit
, UI_To_Int
(Expr_Value
(Expr
)));
2574 ("main subprogram CPU is out of range", Expr
);
2577 -- For the Priority aspect
2579 elsif A_Id
= Aspect_Priority
then
2580 if Is_In_Range
(Expr
, RTE
(RE_Priority
)) then
2582 -- Value is correct so we export the value to make
2583 -- it available at execution time.
2586 (Main_Unit
, UI_To_Int
(Expr_Value
(Expr
)));
2588 -- Ignore pragma if Relaxed_RM_Semantics to support
2589 -- other targets/non GNAT compilers.
2591 elsif not Relaxed_RM_Semantics
then
2593 ("main subprogram priority is out of range",
2598 -- Load an arbitrary entity from System.Tasking.Stages
2599 -- or System.Tasking.Restricted.Stages (depending on
2600 -- the supported profile) to make sure that one of these
2601 -- packages is implicitly with'ed, since we need to have
2602 -- the tasking run time active for the pragma Priority to
2603 -- have any effect. Previously we with'ed the package
2604 -- System.Tasking, but this package does not trigger the
2605 -- required initialization of the run-time library.
2608 Discard
: Entity_Id
;
2610 if Restricted_Profile
then
2611 Discard
:= RTE
(RE_Activate_Restricted_Tasks
);
2613 Discard
:= RTE
(RE_Activate_Tasks
);
2617 -- Handling for these aspects in subprograms is complete
2621 -- For task and protected types pass the aspect as an
2626 Make_Attribute_Definition_Clause
(Loc
,
2628 Chars
=> Chars
(Id
),
2629 Expression
=> Relocate_Node
(Expr
));
2634 when Aspect_Warnings
=>
2636 (Pragma_Argument_Associations
=> New_List
(
2637 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2638 Expression
=> Relocate_Node
(Expr
)),
2639 Make_Pragma_Argument_Association
(Loc
,
2640 Expression
=> New_Occurrence_Of
(E
, Loc
))),
2641 Pragma_Name
=> Chars
(Id
));
2643 Decorate
(Aspect
, Aitem
);
2644 Insert_Pragma
(Aitem
);
2647 -- Case 2c: Aspects corresponding to pragmas with three
2650 -- Invariant aspects have a first argument that references the
2651 -- entity, a second argument that is the expression and a third
2652 -- argument that is an appropriate message.
2654 -- Invariant, Type_Invariant
2656 when Aspect_Invariant
2657 | Aspect_Type_Invariant
2659 -- Analysis of the pragma will verify placement legality:
2660 -- an invariant must apply to a private type, or appear in
2661 -- the private part of a spec and apply to a completion.
2664 (Pragma_Argument_Associations
=> New_List
(
2665 Make_Pragma_Argument_Association
(Sloc
(Ent
),
2667 Make_Pragma_Argument_Association
(Sloc
(Expr
),
2668 Expression
=> Relocate_Node
(Expr
))),
2669 Pragma_Name
=> Name_Invariant
);
2671 -- Add message unless exception messages are suppressed
2673 if not Opt
.Exception_Locations_Suppressed
then
2674 Append_To
(Pragma_Argument_Associations
(Aitem
),
2675 Make_Pragma_Argument_Association
(Eloc
,
2676 Chars
=> Name_Message
,
2678 Make_String_Literal
(Eloc
,
2679 Strval
=> "failed invariant from "
2680 & Build_Location_String
(Eloc
))));
2683 -- For Invariant case, insert immediately after the entity
2684 -- declaration. We do not have to worry about delay issues
2685 -- since the pragma processing takes care of this.
2687 Delay_Required
:= False;
2689 -- Case 2d : Aspects that correspond to a pragma with one
2694 -- Aspect Abstract_State introduces implicit declarations for
2695 -- all state abstraction entities it defines. To emulate this
2696 -- behavior, insert the pragma at the beginning of the visible
2697 -- declarations of the related package so that it is analyzed
2700 when Aspect_Abstract_State
=> Abstract_State
: declare
2701 Context
: Node_Id
:= N
;
2704 -- When aspect Abstract_State appears on a generic package,
2705 -- it is propageted to the package instance. The context in
2706 -- this case is the instance spec.
2708 if Nkind
(Context
) = N_Package_Instantiation
then
2709 Context
:= Instance_Spec
(Context
);
2712 if Nkind_In
(Context
, N_Generic_Package_Declaration
,
2713 N_Package_Declaration
)
2716 (Pragma_Argument_Associations
=> New_List
(
2717 Make_Pragma_Argument_Association
(Loc
,
2718 Expression
=> Relocate_Node
(Expr
))),
2719 Pragma_Name
=> Name_Abstract_State
);
2721 Decorate
(Aspect
, Aitem
);
2725 Is_Generic_Instance
(Defining_Entity
(Context
)));
2729 ("aspect & must apply to a package declaration",
2736 -- Aspect Async_Readers is never delayed because it is
2737 -- equivalent to a source pragma which appears after the
2738 -- related object declaration.
2740 when Aspect_Async_Readers
=>
2742 (Pragma_Argument_Associations
=> New_List
(
2743 Make_Pragma_Argument_Association
(Loc
,
2744 Expression
=> Relocate_Node
(Expr
))),
2745 Pragma_Name
=> Name_Async_Readers
);
2747 Decorate
(Aspect
, Aitem
);
2748 Insert_Pragma
(Aitem
);
2751 -- Aspect Async_Writers is never delayed because it is
2752 -- equivalent to a source pragma which appears after the
2753 -- related object declaration.
2755 when Aspect_Async_Writers
=>
2757 (Pragma_Argument_Associations
=> New_List
(
2758 Make_Pragma_Argument_Association
(Loc
,
2759 Expression
=> Relocate_Node
(Expr
))),
2760 Pragma_Name
=> Name_Async_Writers
);
2762 Decorate
(Aspect
, Aitem
);
2763 Insert_Pragma
(Aitem
);
2766 -- Aspect Constant_After_Elaboration is never delayed because
2767 -- it is equivalent to a source pragma which appears after the
2768 -- related object declaration.
2770 when Aspect_Constant_After_Elaboration
=>
2772 (Pragma_Argument_Associations
=> New_List
(
2773 Make_Pragma_Argument_Association
(Loc
,
2774 Expression
=> Relocate_Node
(Expr
))),
2776 Name_Constant_After_Elaboration
);
2778 Decorate
(Aspect
, Aitem
);
2779 Insert_Pragma
(Aitem
);
2782 -- Aspect Default_Internal_Condition is never delayed because
2783 -- it is equivalent to a source pragma which appears after the
2784 -- related private type. To deal with forward references, the
2785 -- generated pragma is stored in the rep chain of the related
2786 -- private type as types do not carry contracts. The pragma is
2787 -- wrapped inside of a procedure at the freeze point of the
2788 -- private type's full view.
2790 when Aspect_Default_Initial_Condition
=>
2792 (Pragma_Argument_Associations
=> New_List
(
2793 Make_Pragma_Argument_Association
(Loc
,
2794 Expression
=> Relocate_Node
(Expr
))),
2796 Name_Default_Initial_Condition
);
2798 Decorate
(Aspect
, Aitem
);
2799 Insert_Pragma
(Aitem
);
2802 -- Default_Storage_Pool
2804 when Aspect_Default_Storage_Pool
=>
2806 (Pragma_Argument_Associations
=> New_List
(
2807 Make_Pragma_Argument_Association
(Loc
,
2808 Expression
=> Relocate_Node
(Expr
))),
2810 Name_Default_Storage_Pool
);
2812 Decorate
(Aspect
, Aitem
);
2813 Insert_Pragma
(Aitem
);
2818 -- Aspect Depends is never delayed because it is equivalent to
2819 -- a source pragma which appears after the related subprogram.
2820 -- To deal with forward references, the generated pragma is
2821 -- stored in the contract of the related subprogram and later
2822 -- analyzed at the end of the declarative region. See routine
2823 -- Analyze_Depends_In_Decl_Part for details.
2825 when Aspect_Depends
=>
2827 (Pragma_Argument_Associations
=> New_List
(
2828 Make_Pragma_Argument_Association
(Loc
,
2829 Expression
=> Relocate_Node
(Expr
))),
2830 Pragma_Name
=> Name_Depends
);
2832 Decorate
(Aspect
, Aitem
);
2833 Insert_Pragma
(Aitem
);
2836 -- Aspect Effecitve_Reads is never delayed because it is
2837 -- equivalent to a source pragma which appears after the
2838 -- related object declaration.
2840 when Aspect_Effective_Reads
=>
2842 (Pragma_Argument_Associations
=> New_List
(
2843 Make_Pragma_Argument_Association
(Loc
,
2844 Expression
=> Relocate_Node
(Expr
))),
2845 Pragma_Name
=> Name_Effective_Reads
);
2847 Decorate
(Aspect
, Aitem
);
2848 Insert_Pragma
(Aitem
);
2851 -- Aspect Effective_Writes is never delayed because it is
2852 -- equivalent to a source pragma which appears after the
2853 -- related object declaration.
2855 when Aspect_Effective_Writes
=>
2857 (Pragma_Argument_Associations
=> New_List
(
2858 Make_Pragma_Argument_Association
(Loc
,
2859 Expression
=> Relocate_Node
(Expr
))),
2860 Pragma_Name
=> Name_Effective_Writes
);
2862 Decorate
(Aspect
, Aitem
);
2863 Insert_Pragma
(Aitem
);
2866 -- Aspect Extensions_Visible is never delayed because it is
2867 -- equivalent to a source pragma which appears after the
2868 -- related subprogram.
2870 when Aspect_Extensions_Visible
=>
2872 (Pragma_Argument_Associations
=> New_List
(
2873 Make_Pragma_Argument_Association
(Loc
,
2874 Expression
=> Relocate_Node
(Expr
))),
2875 Pragma_Name
=> Name_Extensions_Visible
);
2877 Decorate
(Aspect
, Aitem
);
2878 Insert_Pragma
(Aitem
);
2881 -- Aspect Ghost is never delayed because it is equivalent to a
2882 -- source pragma which appears at the top of [generic] package
2883 -- declarations or after an object, a [generic] subprogram, or
2884 -- a type declaration.
2886 when Aspect_Ghost
=>
2888 (Pragma_Argument_Associations
=> New_List
(
2889 Make_Pragma_Argument_Association
(Loc
,
2890 Expression
=> Relocate_Node
(Expr
))),
2891 Pragma_Name
=> Name_Ghost
);
2893 Decorate
(Aspect
, Aitem
);
2894 Insert_Pragma
(Aitem
);
2899 -- Aspect Global is never delayed because it is equivalent to
2900 -- a source pragma which appears after the related subprogram.
2901 -- To deal with forward references, the generated pragma is
2902 -- stored in the contract of the related subprogram and later
2903 -- analyzed at the end of the declarative region. See routine
2904 -- Analyze_Global_In_Decl_Part for details.
2906 when Aspect_Global
=>
2908 (Pragma_Argument_Associations
=> New_List
(
2909 Make_Pragma_Argument_Association
(Loc
,
2910 Expression
=> Relocate_Node
(Expr
))),
2911 Pragma_Name
=> Name_Global
);
2913 Decorate
(Aspect
, Aitem
);
2914 Insert_Pragma
(Aitem
);
2917 -- Initial_Condition
2919 -- Aspect Initial_Condition is never delayed because it is
2920 -- equivalent to a source pragma which appears after the
2921 -- related package. To deal with forward references, the
2922 -- generated pragma is stored in the contract of the related
2923 -- package and later analyzed at the end of the declarative
2924 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2927 when Aspect_Initial_Condition
=> Initial_Condition
: declare
2928 Context
: Node_Id
:= N
;
2931 -- When aspect Initial_Condition appears on a generic
2932 -- package, it is propageted to the package instance. The
2933 -- context in this case is the instance spec.
2935 if Nkind
(Context
) = N_Package_Instantiation
then
2936 Context
:= Instance_Spec
(Context
);
2939 if Nkind_In
(Context
, N_Generic_Package_Declaration
,
2940 N_Package_Declaration
)
2943 (Pragma_Argument_Associations
=> New_List
(
2944 Make_Pragma_Argument_Association
(Loc
,
2945 Expression
=> Relocate_Node
(Expr
))),
2947 Name_Initial_Condition
);
2949 Decorate
(Aspect
, Aitem
);
2953 Is_Generic_Instance
(Defining_Entity
(Context
)));
2955 -- Otherwise the context is illegal
2959 ("aspect & must apply to a package declaration",
2964 end Initial_Condition
;
2968 -- Aspect Initializes is never delayed because it is equivalent
2969 -- to a source pragma appearing after the related package. To
2970 -- deal with forward references, the generated pragma is stored
2971 -- in the contract of the related package and later analyzed at
2972 -- the end of the declarative region. For details, see routine
2973 -- Analyze_Initializes_In_Decl_Part.
2975 when Aspect_Initializes
=> Initializes
: declare
2976 Context
: Node_Id
:= N
;
2979 -- When aspect Initializes appears on a generic package,
2980 -- it is propageted to the package instance. The context
2981 -- in this case is the instance spec.
2983 if Nkind
(Context
) = N_Package_Instantiation
then
2984 Context
:= Instance_Spec
(Context
);
2987 if Nkind_In
(Context
, N_Generic_Package_Declaration
,
2988 N_Package_Declaration
)
2991 (Pragma_Argument_Associations
=> New_List
(
2992 Make_Pragma_Argument_Association
(Loc
,
2993 Expression
=> Relocate_Node
(Expr
))),
2994 Pragma_Name
=> Name_Initializes
);
2996 Decorate
(Aspect
, Aitem
);
3000 Is_Generic_Instance
(Defining_Entity
(Context
)));
3002 -- Otherwise the context is illegal
3006 ("aspect & must apply to a package declaration",
3015 when Aspect_Max_Queue_Length
=>
3017 (Pragma_Argument_Associations
=> New_List
(
3018 Make_Pragma_Argument_Association
(Loc
,
3019 Expression
=> Relocate_Node
(Expr
))),
3020 Pragma_Name
=> Name_Max_Queue_Length
);
3022 Decorate
(Aspect
, Aitem
);
3023 Insert_Pragma
(Aitem
);
3028 when Aspect_Obsolescent
=> declare
3036 Make_Pragma_Argument_Association
(Sloc
(Expr
),
3037 Expression
=> Relocate_Node
(Expr
)));
3041 (Pragma_Argument_Associations
=> Args
,
3042 Pragma_Name
=> Chars
(Id
));
3047 when Aspect_Part_Of
=>
3048 if Nkind_In
(N
, N_Object_Declaration
,
3049 N_Package_Instantiation
)
3050 or else Is_Single_Concurrent_Type_Declaration
(N
)
3053 (Pragma_Argument_Associations
=> New_List
(
3054 Make_Pragma_Argument_Association
(Loc
,
3055 Expression
=> Relocate_Node
(Expr
))),
3056 Pragma_Name
=> Name_Part_Of
);
3058 Decorate
(Aspect
, Aitem
);
3059 Insert_Pragma
(Aitem
);
3063 ("aspect & must apply to package instantiation, "
3064 & "object, single protected type or single task type",
3072 when Aspect_SPARK_Mode
=>
3074 (Pragma_Argument_Associations
=> New_List
(
3075 Make_Pragma_Argument_Association
(Loc
,
3076 Expression
=> Relocate_Node
(Expr
))),
3077 Pragma_Name
=> Name_SPARK_Mode
);
3079 Decorate
(Aspect
, Aitem
);
3080 Insert_Pragma
(Aitem
);
3085 -- Aspect Refined_Depends is never delayed because it is
3086 -- equivalent to a source pragma which appears in the
3087 -- declarations of the related subprogram body. To deal with
3088 -- forward references, the generated pragma is stored in the
3089 -- contract of the related subprogram body and later analyzed
3090 -- at the end of the declarative region. For details, see
3091 -- routine Analyze_Refined_Depends_In_Decl_Part.
3093 when Aspect_Refined_Depends
=>
3095 (Pragma_Argument_Associations
=> New_List
(
3096 Make_Pragma_Argument_Association
(Loc
,
3097 Expression
=> Relocate_Node
(Expr
))),
3098 Pragma_Name
=> Name_Refined_Depends
);
3100 Decorate
(Aspect
, Aitem
);
3101 Insert_Pragma
(Aitem
);
3106 -- Aspect Refined_Global is never delayed because it is
3107 -- equivalent to a source pragma which appears in the
3108 -- declarations of the related subprogram body. To deal with
3109 -- forward references, the generated pragma is stored in the
3110 -- contract of the related subprogram body and later analyzed
3111 -- at the end of the declarative region. For details, see
3112 -- routine Analyze_Refined_Global_In_Decl_Part.
3114 when Aspect_Refined_Global
=>
3116 (Pragma_Argument_Associations
=> New_List
(
3117 Make_Pragma_Argument_Association
(Loc
,
3118 Expression
=> Relocate_Node
(Expr
))),
3119 Pragma_Name
=> Name_Refined_Global
);
3121 Decorate
(Aspect
, Aitem
);
3122 Insert_Pragma
(Aitem
);
3127 when Aspect_Refined_Post
=>
3129 (Pragma_Argument_Associations
=> New_List
(
3130 Make_Pragma_Argument_Association
(Loc
,
3131 Expression
=> Relocate_Node
(Expr
))),
3132 Pragma_Name
=> Name_Refined_Post
);
3134 Decorate
(Aspect
, Aitem
);
3135 Insert_Pragma
(Aitem
);
3140 when Aspect_Refined_State
=>
3142 -- The corresponding pragma for Refined_State is inserted in
3143 -- the declarations of the related package body. This action
3144 -- synchronizes both the source and from-aspect versions of
3147 if Nkind
(N
) = N_Package_Body
then
3149 (Pragma_Argument_Associations
=> New_List
(
3150 Make_Pragma_Argument_Association
(Loc
,
3151 Expression
=> Relocate_Node
(Expr
))),
3152 Pragma_Name
=> Name_Refined_State
);
3154 Decorate
(Aspect
, Aitem
);
3155 Insert_Pragma
(Aitem
);
3157 -- Otherwise the context is illegal
3161 ("aspect & must apply to a package body", Aspect
, Id
);
3166 -- Relative_Deadline
3168 when Aspect_Relative_Deadline
=>
3170 (Pragma_Argument_Associations
=> New_List
(
3171 Make_Pragma_Argument_Association
(Loc
,
3172 Expression
=> Relocate_Node
(Expr
))),
3173 Pragma_Name
=> Name_Relative_Deadline
);
3175 -- If the aspect applies to a task, the corresponding pragma
3176 -- must appear within its declarations, not after.
3178 if Nkind
(N
) = N_Task_Type_Declaration
then
3184 if No
(Task_Definition
(N
)) then
3185 Set_Task_Definition
(N
,
3186 Make_Task_Definition
(Loc
,
3187 Visible_Declarations
=> New_List
,
3188 End_Label
=> Empty
));
3191 Def
:= Task_Definition
(N
);
3192 V
:= Visible_Declarations
(Def
);
3193 if not Is_Empty_List
(V
) then
3194 Insert_Before
(First
(V
), Aitem
);
3197 Set_Visible_Declarations
(Def
, New_List
(Aitem
));
3204 -- Aspect Volatile_Function is never delayed because it is
3205 -- equivalent to a source pragma which appears after the
3206 -- related subprogram.
3208 when Aspect_Volatile_Function
=>
3210 (Pragma_Argument_Associations
=> New_List
(
3211 Make_Pragma_Argument_Association
(Loc
,
3212 Expression
=> Relocate_Node
(Expr
))),
3213 Pragma_Name
=> Name_Volatile_Function
);
3215 Decorate
(Aspect
, Aitem
);
3216 Insert_Pragma
(Aitem
);
3219 -- Case 2e: Annotate aspect
3221 when Aspect_Annotate
=>
3228 -- The argument can be a single identifier
3230 if Nkind
(Expr
) = N_Identifier
then
3232 -- One level of parens is allowed
3234 if Paren_Count
(Expr
) > 1 then
3235 Error_Msg_F
("extra parentheses ignored", Expr
);
3238 Set_Paren_Count
(Expr
, 0);
3240 -- Add the single item to the list
3242 Args
:= New_List
(Expr
);
3244 -- Otherwise we must have an aggregate
3246 elsif Nkind
(Expr
) = N_Aggregate
then
3248 -- Must be positional
3250 if Present
(Component_Associations
(Expr
)) then
3252 ("purely positional aggregate required", Expr
);
3256 -- Must not be parenthesized
3258 if Paren_Count
(Expr
) /= 0 then
3259 Error_Msg_F
("extra parentheses ignored", Expr
);
3262 -- List of arguments is list of aggregate expressions
3264 Args
:= Expressions
(Expr
);
3266 -- Anything else is illegal
3269 Error_Msg_F
("wrong form for Annotate aspect", Expr
);
3273 -- Prepare pragma arguments
3276 Arg
:= First
(Args
);
3277 while Present
(Arg
) loop
3279 Make_Pragma_Argument_Association
(Sloc
(Arg
),
3280 Expression
=> Relocate_Node
(Arg
)));
3285 Make_Pragma_Argument_Association
(Sloc
(Ent
),
3286 Chars
=> Name_Entity
,
3287 Expression
=> Ent
));
3290 (Pragma_Argument_Associations
=> Pargs
,
3291 Pragma_Name
=> Name_Annotate
);
3294 -- Case 3 : Aspects that don't correspond to pragma/attribute
3295 -- definition clause.
3297 -- Case 3a: The aspects listed below don't correspond to
3298 -- pragmas/attributes but do require delayed analysis.
3300 -- Default_Value can only apply to a scalar type
3302 when Aspect_Default_Value
=>
3303 if not Is_Scalar_Type
(E
) then
3305 ("aspect Default_Value must apply to a scalar type", N
);
3310 -- Default_Component_Value can only apply to an array type
3311 -- with scalar components.
3313 when Aspect_Default_Component_Value
=>
3314 if not (Is_Array_Type
(E
)
3315 and then Is_Scalar_Type
(Component_Type
(E
)))
3318 ("aspect Default_Component_Value can only apply to an "
3319 & "array of scalar components", N
);
3324 -- Case 3b: The aspects listed below don't correspond to
3325 -- pragmas/attributes and don't need delayed analysis.
3327 -- Implicit_Dereference
3329 -- For Implicit_Dereference, External_Name and Link_Name, only
3330 -- the legality checks are done during the analysis, thus no
3331 -- delay is required.
3333 when Aspect_Implicit_Dereference
=>
3334 Analyze_Aspect_Implicit_Dereference
;
3339 when Aspect_Dimension
=>
3340 Analyze_Aspect_Dimension
(N
, Id
, Expr
);
3345 when Aspect_Dimension_System
=>
3346 Analyze_Aspect_Dimension_System
(N
, Id
, Expr
);
3349 -- Case 4: Aspects requiring special handling
3351 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
3352 -- pragmas take care of the delay.
3356 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
3357 -- with a first argument that is the expression, and a second
3358 -- argument that is an informative message if the test fails.
3359 -- This is inserted right after the declaration, to get the
3360 -- required pragma placement. The processing for the pragmas
3361 -- takes care of the required delay.
3363 when Pre_Post_Aspects
=> Pre_Post
: declare
3367 if A_Id
= Aspect_Pre
or else A_Id
= Aspect_Precondition
then
3368 Pname
:= Name_Precondition
;
3370 Pname
:= Name_Postcondition
;
3373 -- Check that the class-wide predicate cannot be applied to
3374 -- an operation of a synchronized type. AI12-0182 forbids
3375 -- these altogether, while earlier language semantics made
3376 -- them legal on tagged synchronized types.
3378 -- Other legality checks are performed when analyzing the
3379 -- contract of the operation.
3381 if Class_Present
(Aspect
)
3382 and then Is_Concurrent_Type
(Current_Scope
)
3383 and then Ekind_In
(E
, E_Entry
, E_Function
, E_Procedure
)
3385 Error_Msg_Name_1
:= Original_Aspect_Pragma_Name
(Aspect
);
3387 ("aspect % can only be specified for a primitive "
3388 & "operation of a tagged type", Aspect
);
3393 -- If the expressions is of the form A and then B, then
3394 -- we generate separate Pre/Post aspects for the separate
3395 -- clauses. Since we allow multiple pragmas, there is no
3396 -- problem in allowing multiple Pre/Post aspects internally.
3397 -- These should be treated in reverse order (B first and
3398 -- A second) since they are later inserted just after N in
3399 -- the order they are treated. This way, the pragma for A
3400 -- ends up preceding the pragma for B, which may have an
3401 -- importance for the error raised (either constraint error
3402 -- or precondition error).
3404 -- We do not do this for Pre'Class, since we have to put
3405 -- these conditions together in a complex OR expression.
3407 -- We do not do this in ASIS mode, as ASIS relies on the
3408 -- original node representing the complete expression, when
3409 -- retrieving it through the source aspect table.
3412 and then (Pname
= Name_Postcondition
3413 or else not Class_Present
(Aspect
))
3415 while Nkind
(Expr
) = N_And_Then
loop
3416 Insert_After
(Aspect
,
3417 Make_Aspect_Specification
(Sloc
(Left_Opnd
(Expr
)),
3418 Identifier
=> Identifier
(Aspect
),
3419 Expression
=> Relocate_Node
(Left_Opnd
(Expr
)),
3420 Class_Present
=> Class_Present
(Aspect
),
3421 Split_PPC
=> True));
3422 Rewrite
(Expr
, Relocate_Node
(Right_Opnd
(Expr
)));
3423 Eloc
:= Sloc
(Expr
);
3427 -- Build the precondition/postcondition pragma
3429 -- Add note about why we do NOT need Copy_Tree here???
3432 (Pragma_Argument_Associations
=> New_List
(
3433 Make_Pragma_Argument_Association
(Eloc
,
3434 Chars
=> Name_Check
,
3435 Expression
=> Relocate_Node
(Expr
))),
3436 Pragma_Name
=> Pname
);
3438 -- Add message unless exception messages are suppressed
3440 if not Opt
.Exception_Locations_Suppressed
then
3441 Append_To
(Pragma_Argument_Associations
(Aitem
),
3442 Make_Pragma_Argument_Association
(Eloc
,
3443 Chars
=> Name_Message
,
3445 Make_String_Literal
(Eloc
,
3447 & Get_Name_String
(Pname
)
3449 & Build_Location_String
(Eloc
))));
3452 Set_Is_Delayed_Aspect
(Aspect
);
3454 -- For Pre/Post cases, insert immediately after the entity
3455 -- declaration, since that is the required pragma placement.
3456 -- Note that for these aspects, we do not have to worry
3457 -- about delay issues, since the pragmas themselves deal
3458 -- with delay of visibility for the expression analysis.
3460 Insert_Pragma
(Aitem
);
3467 when Aspect_Test_Case
=> Test_Case
: declare
3469 Comp_Expr
: Node_Id
;
3470 Comp_Assn
: Node_Id
;
3476 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
3477 Error_Msg_Name_1
:= Nam
;
3478 Error_Msg_N
("incorrect placement of aspect `%`", E
);
3482 if Nkind
(Expr
) /= N_Aggregate
then
3483 Error_Msg_Name_1
:= Nam
;
3485 ("wrong syntax for aspect `%` for &", Id
, E
);
3489 -- Make pragma expressions refer to the original aspect
3490 -- expressions through the Original_Node link. This is used
3491 -- in semantic analysis for ASIS mode, so that the original
3492 -- expression also gets analyzed.
3494 Comp_Expr
:= First
(Expressions
(Expr
));
3495 while Present
(Comp_Expr
) loop
3496 New_Expr
:= Relocate_Node
(Comp_Expr
);
3498 Make_Pragma_Argument_Association
(Sloc
(Comp_Expr
),
3499 Expression
=> New_Expr
));
3503 Comp_Assn
:= First
(Component_Associations
(Expr
));
3504 while Present
(Comp_Assn
) loop
3505 if List_Length
(Choices
(Comp_Assn
)) /= 1
3507 Nkind
(First
(Choices
(Comp_Assn
))) /= N_Identifier
3509 Error_Msg_Name_1
:= Nam
;
3511 ("wrong syntax for aspect `%` for &", Id
, E
);
3516 Make_Pragma_Argument_Association
(Sloc
(Comp_Assn
),
3517 Chars
=> Chars
(First
(Choices
(Comp_Assn
))),
3519 Relocate_Node
(Expression
(Comp_Assn
))));
3523 -- Build the test-case pragma
3526 (Pragma_Argument_Associations
=> Args
,
3527 Pragma_Name
=> Nam
);
3532 when Aspect_Contract_Cases
=>
3534 (Pragma_Argument_Associations
=> New_List
(
3535 Make_Pragma_Argument_Association
(Loc
,
3536 Expression
=> Relocate_Node
(Expr
))),
3537 Pragma_Name
=> Nam
);
3539 Decorate
(Aspect
, Aitem
);
3540 Insert_Pragma
(Aitem
);
3543 -- Case 5: Special handling for aspects with an optional
3544 -- boolean argument.
3546 -- In the delayed case, the corresponding pragma cannot be
3547 -- generated yet because the evaluation of the boolean needs
3548 -- to be delayed till the freeze point.
3550 when Boolean_Aspects
3551 | Library_Unit_Aspects
3553 Set_Is_Boolean_Aspect
(Aspect
);
3555 -- Lock_Free aspect only apply to protected objects
3557 if A_Id
= Aspect_Lock_Free
then
3558 if Ekind
(E
) /= E_Protected_Type
then
3559 Error_Msg_Name_1
:= Nam
;
3561 ("aspect % only applies to a protected object",
3565 -- Set the Uses_Lock_Free flag to True if there is no
3566 -- expression or if the expression is True. The
3567 -- evaluation of this aspect should be delayed to the
3568 -- freeze point (why???)
3571 or else Is_True
(Static_Boolean
(Expr
))
3573 Set_Uses_Lock_Free
(E
);
3576 Record_Rep_Item
(E
, Aspect
);
3581 elsif A_Id
= Aspect_Export
or else A_Id
= Aspect_Import
then
3582 Analyze_Aspect_Export_Import
;
3584 -- Disable_Controlled
3586 elsif A_Id
= Aspect_Disable_Controlled
then
3587 Analyze_Aspect_Disable_Controlled
;
3591 -- Library unit aspects require special handling in the case
3592 -- of a package declaration, the pragma needs to be inserted
3593 -- in the list of declarations for the associated package.
3594 -- There is no issue of visibility delay for these aspects.
3596 if A_Id
in Library_Unit_Aspects
3598 Nkind_In
(N
, N_Package_Declaration
,
3599 N_Generic_Package_Declaration
)
3600 and then Nkind
(Parent
(N
)) /= N_Compilation_Unit
3602 -- Aspect is legal on a local instantiation of a library-
3603 -- level generic unit.
3605 and then not Is_Generic_Instance
(Defining_Entity
(N
))
3608 ("incorrect context for library unit aspect&", Id
);
3612 -- Cases where we do not delay, includes all cases where the
3613 -- expression is missing other than the above cases.
3615 if not Delay_Required
or else No
(Expr
) then
3617 -- Exclude aspects Export and Import because their pragma
3618 -- syntax does not map directly to a Boolean aspect.
3620 if A_Id
/= Aspect_Export
3621 and then A_Id
/= Aspect_Import
3624 (Pragma_Argument_Associations
=> New_List
(
3625 Make_Pragma_Argument_Association
(Sloc
(Ent
),
3626 Expression
=> Ent
)),
3627 Pragma_Name
=> Chars
(Id
));
3630 Delay_Required
:= False;
3632 -- In general cases, the corresponding pragma/attribute
3633 -- definition clause will be inserted later at the freezing
3634 -- point, and we do not need to build it now.
3642 -- This is special because for access types we need to generate
3643 -- an attribute definition clause. This also works for single
3644 -- task declarations, but it does not work for task type
3645 -- declarations, because we have the case where the expression
3646 -- references a discriminant of the task type. That can't use
3647 -- an attribute definition clause because we would not have
3648 -- visibility on the discriminant. For that case we must
3649 -- generate a pragma in the task definition.
3651 when Aspect_Storage_Size
=>
3655 if Ekind
(E
) = E_Task_Type
then
3657 Decl
: constant Node_Id
:= Declaration_Node
(E
);
3660 pragma Assert
(Nkind
(Decl
) = N_Task_Type_Declaration
);
3662 -- If no task definition, create one
3664 if No
(Task_Definition
(Decl
)) then
3665 Set_Task_Definition
(Decl
,
3666 Make_Task_Definition
(Loc
,
3667 Visible_Declarations
=> Empty_List
,
3668 End_Label
=> Empty
));
3671 -- Create a pragma and put it at the start of the task
3672 -- definition for the task type declaration.
3675 (Pragma_Argument_Associations
=> New_List
(
3676 Make_Pragma_Argument_Association
(Loc
,
3677 Expression
=> Relocate_Node
(Expr
))),
3678 Pragma_Name
=> Name_Storage_Size
);
3682 Visible_Declarations
(Task_Definition
(Decl
)));
3686 -- All other cases, generate attribute definition
3690 Make_Attribute_Definition_Clause
(Loc
,
3692 Chars
=> Chars
(Id
),
3693 Expression
=> Relocate_Node
(Expr
));
3697 -- Attach the corresponding pragma/attribute definition clause to
3698 -- the aspect specification node.
3700 if Present
(Aitem
) then
3701 Set_From_Aspect_Specification
(Aitem
);
3704 -- In the context of a compilation unit, we directly put the
3705 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3706 -- node (no delay is required here) except for aspects on a
3707 -- subprogram body (see below) and a generic package, for which we
3708 -- need to introduce the pragma before building the generic copy
3709 -- (see sem_ch12), and for package instantiations, where the
3710 -- library unit pragmas are better handled early.
3712 if Nkind
(Parent
(N
)) = N_Compilation_Unit
3713 and then (Present
(Aitem
) or else Is_Boolean_Aspect
(Aspect
))
3716 Aux
: constant Node_Id
:= Aux_Decls_Node
(Parent
(N
));
3719 pragma Assert
(Nkind
(Aux
) = N_Compilation_Unit_Aux
);
3721 -- For a Boolean aspect, create the corresponding pragma if
3722 -- no expression or if the value is True.
3724 if Is_Boolean_Aspect
(Aspect
) and then No
(Aitem
) then
3725 if Is_True
(Static_Boolean
(Expr
)) then
3727 (Pragma_Argument_Associations
=> New_List
(
3728 Make_Pragma_Argument_Association
(Sloc
(Ent
),
3729 Expression
=> Ent
)),
3730 Pragma_Name
=> Chars
(Id
));
3732 Set_From_Aspect_Specification
(Aitem
, True);
3733 Set_Corresponding_Aspect
(Aitem
, Aspect
);
3740 -- If the aspect is on a subprogram body (relevant aspect
3741 -- is Inline), add the pragma in front of the declarations.
3743 if Nkind
(N
) = N_Subprogram_Body
then
3744 if No
(Declarations
(N
)) then
3745 Set_Declarations
(N
, New_List
);
3748 Prepend
(Aitem
, Declarations
(N
));
3750 elsif Nkind
(N
) = N_Generic_Package_Declaration
then
3751 if No
(Visible_Declarations
(Specification
(N
))) then
3752 Set_Visible_Declarations
(Specification
(N
), New_List
);
3756 Visible_Declarations
(Specification
(N
)));
3758 elsif Nkind
(N
) = N_Package_Instantiation
then
3760 Spec
: constant Node_Id
:=
3761 Specification
(Instance_Spec
(N
));
3763 if No
(Visible_Declarations
(Spec
)) then
3764 Set_Visible_Declarations
(Spec
, New_List
);
3767 Prepend
(Aitem
, Visible_Declarations
(Spec
));
3771 if No
(Pragmas_After
(Aux
)) then
3772 Set_Pragmas_After
(Aux
, New_List
);
3775 Append
(Aitem
, Pragmas_After
(Aux
));
3782 -- The evaluation of the aspect is delayed to the freezing point.
3783 -- The pragma or attribute clause if there is one is then attached
3784 -- to the aspect specification which is put in the rep item list.
3786 if Delay_Required
then
3787 if Present
(Aitem
) then
3788 Set_Is_Delayed_Aspect
(Aitem
);
3789 Set_Aspect_Rep_Item
(Aspect
, Aitem
);
3790 Set_Parent
(Aitem
, Aspect
);
3793 Set_Is_Delayed_Aspect
(Aspect
);
3795 -- In the case of Default_Value, link the aspect to base type
3796 -- as well, even though it appears on a first subtype. This is
3797 -- mandated by the semantics of the aspect. Do not establish
3798 -- the link when processing the base type itself as this leads
3799 -- to a rep item circularity. Verify that we are dealing with
3800 -- a scalar type to prevent cascaded errors.
3802 if A_Id
= Aspect_Default_Value
3803 and then Is_Scalar_Type
(E
)
3804 and then Base_Type
(E
) /= E
3806 Set_Has_Delayed_Aspects
(Base_Type
(E
));
3807 Record_Rep_Item
(Base_Type
(E
), Aspect
);
3810 Set_Has_Delayed_Aspects
(E
);
3811 Record_Rep_Item
(E
, Aspect
);
3813 -- When delay is not required and the context is a package or a
3814 -- subprogram body, insert the pragma in the body declarations.
3816 elsif Nkind_In
(N
, N_Package_Body
, N_Subprogram_Body
) then
3817 if No
(Declarations
(N
)) then
3818 Set_Declarations
(N
, New_List
);
3821 -- The pragma is added before source declarations
3823 Prepend_To
(Declarations
(N
), Aitem
);
3825 -- When delay is not required and the context is not a compilation
3826 -- unit, we simply insert the pragma/attribute definition clause
3829 elsif Present
(Aitem
) then
3830 Insert_After
(Ins_Node
, Aitem
);
3833 end Analyze_One_Aspect
;
3837 end loop Aspect_Loop
;
3839 if Has_Delayed_Aspects
(E
) then
3840 Ensure_Freeze_Node
(E
);
3842 end Analyze_Aspect_Specifications
;
3844 ---------------------------------------------------
3845 -- Analyze_Aspect_Specifications_On_Body_Or_Stub --
3846 ---------------------------------------------------
3848 procedure Analyze_Aspect_Specifications_On_Body_Or_Stub
(N
: Node_Id
) is
3849 Body_Id
: constant Entity_Id
:= Defining_Entity
(N
);
3851 procedure Diagnose_Misplaced_Aspects
(Spec_Id
: Entity_Id
);
3852 -- Body [stub] N has aspects, but they are not properly placed. Emit an
3853 -- error message depending on the aspects involved. Spec_Id denotes the
3854 -- entity of the corresponding spec.
3856 --------------------------------
3857 -- Diagnose_Misplaced_Aspects --
3858 --------------------------------
3860 procedure Diagnose_Misplaced_Aspects
(Spec_Id
: Entity_Id
) is
3861 procedure Misplaced_Aspect_Error
3864 -- Emit an error message concerning misplaced aspect Asp. Ref_Nam is
3865 -- the name of the refined version of the aspect.
3867 ----------------------------
3868 -- Misplaced_Aspect_Error --
3869 ----------------------------
3871 procedure Misplaced_Aspect_Error
3875 Asp_Nam
: constant Name_Id
:= Chars
(Identifier
(Asp
));
3876 Asp_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Asp_Nam
);
3879 -- The corresponding spec already contains the aspect in question
3880 -- and the one appearing on the body must be the refined form:
3882 -- procedure P with Global ...;
3883 -- procedure P with Global ... is ... end P;
3887 if Has_Aspect
(Spec_Id
, Asp_Id
) then
3888 Error_Msg_Name_1
:= Asp_Nam
;
3890 -- Subunits cannot carry aspects that apply to a subprogram
3893 if Nkind
(Parent
(N
)) = N_Subunit
then
3894 Error_Msg_N
("aspect % cannot apply to a subunit", Asp
);
3896 -- Otherwise suggest the refined form
3899 Error_Msg_Name_2
:= Ref_Nam
;
3900 Error_Msg_N
("aspect % should be %", Asp
);
3903 -- Otherwise the aspect must appear on the spec, not on the body
3906 -- procedure P with Global ... is ... end P;
3910 ("aspect specification must appear on initial declaration",
3913 end Misplaced_Aspect_Error
;
3920 -- Start of processing for Diagnose_Misplaced_Aspects
3923 -- Iterate over the aspect specifications and emit specific errors
3924 -- where applicable.
3926 Asp
:= First
(Aspect_Specifications
(N
));
3927 while Present
(Asp
) loop
3928 Asp_Nam
:= Chars
(Identifier
(Asp
));
3930 -- Do not emit errors on aspects that can appear on a subprogram
3931 -- body. This scenario occurs when the aspect specification list
3932 -- contains both misplaced and properly placed aspects.
3934 if Aspect_On_Body_Or_Stub_OK
(Get_Aspect_Id
(Asp_Nam
)) then
3937 -- Special diagnostics for SPARK aspects
3939 elsif Asp_Nam
= Name_Depends
then
3940 Misplaced_Aspect_Error
(Asp
, Name_Refined_Depends
);
3942 elsif Asp_Nam
= Name_Global
then
3943 Misplaced_Aspect_Error
(Asp
, Name_Refined_Global
);
3945 elsif Asp_Nam
= Name_Post
then
3946 Misplaced_Aspect_Error
(Asp
, Name_Refined_Post
);
3948 -- Otherwise a language-defined aspect is misplaced
3952 ("aspect specification must appear on initial declaration",
3958 end Diagnose_Misplaced_Aspects
;
3962 Spec_Id
: constant Entity_Id
:= Unique_Defining_Entity
(N
);
3964 -- Start of processing for Analyze_Aspects_On_Body_Or_Stub
3967 -- Language-defined aspects cannot be associated with a subprogram body
3968 -- [stub] if the subprogram has a spec. Certain implementation defined
3969 -- aspects are allowed to break this rule (for all applicable cases, see
3970 -- table Aspects.Aspect_On_Body_Or_Stub_OK).
3972 if Spec_Id
/= Body_Id
and then not Aspects_On_Body_Or_Stub_OK
(N
) then
3973 Diagnose_Misplaced_Aspects
(Spec_Id
);
3975 Analyze_Aspect_Specifications
(N
, Body_Id
);
3977 end Analyze_Aspect_Specifications_On_Body_Or_Stub
;
3979 -----------------------
3980 -- Analyze_At_Clause --
3981 -----------------------
3983 -- An at clause is replaced by the corresponding Address attribute
3984 -- definition clause that is the preferred approach in Ada 95.
3986 procedure Analyze_At_Clause
(N
: Node_Id
) is
3987 CS
: constant Boolean := Comes_From_Source
(N
);
3990 -- This is an obsolescent feature
3992 Check_Restriction
(No_Obsolescent_Features
, N
);
3994 if Warn_On_Obsolescent_Feature
then
3996 ("?j?at clause is an obsolescent feature (RM J.7(2))", N
);
3998 ("\?j?use address attribute definition clause instead", N
);
4001 -- Rewrite as address clause
4004 Make_Attribute_Definition_Clause
(Sloc
(N
),
4005 Name
=> Identifier
(N
),
4006 Chars
=> Name_Address
,
4007 Expression
=> Expression
(N
)));
4009 -- We preserve Comes_From_Source, since logically the clause still comes
4010 -- from the source program even though it is changed in form.
4012 Set_Comes_From_Source
(N
, CS
);
4014 -- Analyze rewritten clause
4016 Analyze_Attribute_Definition_Clause
(N
);
4017 end Analyze_At_Clause
;
4019 -----------------------------------------
4020 -- Analyze_Attribute_Definition_Clause --
4021 -----------------------------------------
4023 procedure Analyze_Attribute_Definition_Clause
(N
: Node_Id
) is
4024 Loc
: constant Source_Ptr
:= Sloc
(N
);
4025 Nam
: constant Node_Id
:= Name
(N
);
4026 Attr
: constant Name_Id
:= Chars
(N
);
4027 Expr
: constant Node_Id
:= Expression
(N
);
4028 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Attr
);
4031 -- The entity of Nam after it is analyzed. In the case of an incomplete
4032 -- type, this is the underlying type.
4035 -- The underlying entity to which the attribute applies. Generally this
4036 -- is the Underlying_Type of Ent, except in the case where the clause
4037 -- applies to the full view of an incomplete or private type, in which
4038 -- case U_Ent is just a copy of Ent.
4040 FOnly
: Boolean := False;
4041 -- Reset to True for subtype specific attribute (Alignment, Size)
4042 -- and for stream attributes, i.e. those cases where in the call to
4043 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
4044 -- are checked. Note that the case of stream attributes is not clear
4045 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
4046 -- Storage_Size for derived task types, but that is also clearly
4049 procedure Analyze_Stream_TSS_Definition
(TSS_Nam
: TSS_Name_Type
);
4050 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
4051 -- definition clauses.
4053 function Duplicate_Clause
return Boolean;
4054 -- This routine checks if the aspect for U_Ent being given by attribute
4055 -- definition clause N is for an aspect that has already been specified,
4056 -- and if so gives an error message. If there is a duplicate, True is
4057 -- returned, otherwise if there is no error, False is returned.
4059 procedure Check_Indexing_Functions
;
4060 -- Check that the function in Constant_Indexing or Variable_Indexing
4061 -- attribute has the proper type structure. If the name is overloaded,
4062 -- check that some interpretation is legal.
4064 procedure Check_Iterator_Functions
;
4065 -- Check that there is a single function in Default_Iterator attribute
4066 -- that has the proper type structure.
4068 function Check_Primitive_Function
(Subp
: Entity_Id
) return Boolean;
4069 -- Common legality check for the previous two
4071 -----------------------------------
4072 -- Analyze_Stream_TSS_Definition --
4073 -----------------------------------
4075 procedure Analyze_Stream_TSS_Definition
(TSS_Nam
: TSS_Name_Type
) is
4076 Subp
: Entity_Id
:= Empty
;
4081 Is_Read
: constant Boolean := (TSS_Nam
= TSS_Stream_Read
);
4082 -- True for Read attribute, False for other attributes
4084 function Has_Good_Profile
4086 Report
: Boolean := False) return Boolean;
4087 -- Return true if the entity is a subprogram with an appropriate
4088 -- profile for the attribute being defined. If result is False and
4089 -- Report is True, function emits appropriate error.
4091 ----------------------
4092 -- Has_Good_Profile --
4093 ----------------------
4095 function Has_Good_Profile
4097 Report
: Boolean := False) return Boolean
4099 Expected_Ekind
: constant array (Boolean) of Entity_Kind
:=
4100 (False => E_Procedure
, True => E_Function
);
4101 Is_Function
: constant Boolean := (TSS_Nam
= TSS_Stream_Input
);
4106 if Ekind
(Subp
) /= Expected_Ekind
(Is_Function
) then
4110 F
:= First_Formal
(Subp
);
4113 or else Ekind
(Etype
(F
)) /= E_Anonymous_Access_Type
4114 or else Designated_Type
(Etype
(F
)) /=
4115 Class_Wide_Type
(RTE
(RE_Root_Stream_Type
))
4120 if not Is_Function
then
4124 Expected_Mode
: constant array (Boolean) of Entity_Kind
:=
4125 (False => E_In_Parameter
,
4126 True => E_Out_Parameter
);
4128 if Parameter_Mode
(F
) /= Expected_Mode
(Is_Read
) then
4135 -- If the attribute specification comes from an aspect
4136 -- specification for a class-wide stream, the parameter must be
4137 -- a class-wide type of the entity to which the aspect applies.
4139 if From_Aspect_Specification
(N
)
4140 and then Class_Present
(Parent
(N
))
4141 and then Is_Class_Wide_Type
(Typ
)
4147 Typ
:= Etype
(Subp
);
4150 -- Verify that the prefix of the attribute and the local name for
4151 -- the type of the formal match, or one is the class-wide of the
4152 -- other, in the case of a class-wide stream operation.
4154 if Base_Type
(Typ
) = Base_Type
(Ent
)
4155 or else (Is_Class_Wide_Type
(Typ
)
4156 and then Typ
= Class_Wide_Type
(Base_Type
(Ent
)))
4157 or else (Is_Class_Wide_Type
(Ent
)
4158 and then Ent
= Class_Wide_Type
(Base_Type
(Typ
)))
4165 if Present
(Next_Formal
(F
)) then
4168 elsif not Is_Scalar_Type
(Typ
)
4169 and then not Is_First_Subtype
(Typ
)
4170 and then not Is_Class_Wide_Type
(Typ
)
4172 if Report
and not Is_First_Subtype
(Typ
) then
4174 ("subtype of formal in stream operation must be a first "
4175 & "subtype", Parameter_Type
(Parent
(F
)));
4183 end Has_Good_Profile
;
4185 -- Start of processing for Analyze_Stream_TSS_Definition
4190 if not Is_Type
(U_Ent
) then
4191 Error_Msg_N
("local name must be a subtype", Nam
);
4194 elsif not Is_First_Subtype
(U_Ent
) then
4195 Error_Msg_N
("local name must be a first subtype", Nam
);
4199 Pnam
:= TSS
(Base_Type
(U_Ent
), TSS_Nam
);
4201 -- If Pnam is present, it can be either inherited from an ancestor
4202 -- type (in which case it is legal to redefine it for this type), or
4203 -- be a previous definition of the attribute for the same type (in
4204 -- which case it is illegal).
4206 -- In the first case, it will have been analyzed already, and we
4207 -- can check that its profile does not match the expected profile
4208 -- for a stream attribute of U_Ent. In the second case, either Pnam
4209 -- has been analyzed (and has the expected profile), or it has not
4210 -- been analyzed yet (case of a type that has not been frozen yet
4211 -- and for which the stream attribute has been set using Set_TSS).
4214 and then (No
(First_Entity
(Pnam
)) or else Has_Good_Profile
(Pnam
))
4216 Error_Msg_Sloc
:= Sloc
(Pnam
);
4217 Error_Msg_Name_1
:= Attr
;
4218 Error_Msg_N
("% attribute already defined #", Nam
);
4224 if Is_Entity_Name
(Expr
) then
4225 if not Is_Overloaded
(Expr
) then
4226 if Has_Good_Profile
(Entity
(Expr
), Report
=> True) then
4227 Subp
:= Entity
(Expr
);
4231 Get_First_Interp
(Expr
, I
, It
);
4232 while Present
(It
.Nam
) loop
4233 if Has_Good_Profile
(It
.Nam
) then
4238 Get_Next_Interp
(I
, It
);
4243 if Present
(Subp
) then
4244 if Is_Abstract_Subprogram
(Subp
) then
4245 Error_Msg_N
("stream subprogram must not be abstract", Expr
);
4248 -- A stream subprogram for an interface type must be a null
4249 -- procedure (RM 13.13.2 (38/3)). Note that the class-wide type
4250 -- of an interface is not an interface type (3.9.4 (6.b/2)).
4252 elsif Is_Interface
(U_Ent
)
4253 and then not Is_Class_Wide_Type
(U_Ent
)
4254 and then not Inside_A_Generic
4256 (Ekind
(Subp
) = E_Function
4260 (Unit_Declaration_Node
(Ultimate_Alias
(Subp
)))))
4263 ("stream subprogram for interface type must be null "
4264 & "procedure", Expr
);
4267 Set_Entity
(Expr
, Subp
);
4268 Set_Etype
(Expr
, Etype
(Subp
));
4270 New_Stream_Subprogram
(N
, U_Ent
, Subp
, TSS_Nam
);
4273 Error_Msg_Name_1
:= Attr
;
4274 Error_Msg_N
("incorrect expression for% attribute", Expr
);
4276 end Analyze_Stream_TSS_Definition
;
4278 ------------------------------
4279 -- Check_Indexing_Functions --
4280 ------------------------------
4282 procedure Check_Indexing_Functions
is
4283 Indexing_Found
: Boolean := False;
4285 procedure Check_Inherited_Indexing
;
4286 -- For a derived type, check that no indexing aspect is specified
4287 -- for the type if it is also inherited
4289 procedure Check_One_Function
(Subp
: Entity_Id
);
4290 -- Check one possible interpretation. Sets Indexing_Found True if a
4291 -- legal indexing function is found.
4293 procedure Illegal_Indexing
(Msg
: String);
4294 -- Diagnose illegal indexing function if not overloaded. In the
4295 -- overloaded case indicate that no legal interpretation exists.
4297 ------------------------------
4298 -- Check_Inherited_Indexing --
4299 ------------------------------
4301 procedure Check_Inherited_Indexing
is
4302 Inherited
: Node_Id
;
4305 if Attr
= Name_Constant_Indexing
then
4307 Find_Aspect
(Etype
(Ent
), Aspect_Constant_Indexing
);
4308 else pragma Assert
(Attr
= Name_Variable_Indexing
);
4310 Find_Aspect
(Etype
(Ent
), Aspect_Variable_Indexing
);
4313 if Present
(Inherited
) then
4314 if Debug_Flag_Dot_XX
then
4317 -- OK if current attribute_definition_clause is expansion of
4318 -- inherited aspect.
4320 elsif Aspect_Rep_Item
(Inherited
) = N
then
4323 -- Indicate the operation that must be overridden, rather than
4324 -- redefining the indexing aspect.
4328 ("indexing function already inherited from parent type");
4330 ("!override & instead",
4331 N
, Entity
(Expression
(Inherited
)));
4334 end Check_Inherited_Indexing
;
4336 ------------------------
4337 -- Check_One_Function --
4338 ------------------------
4340 procedure Check_One_Function
(Subp
: Entity_Id
) is
4341 Default_Element
: Node_Id
;
4342 Ret_Type
: constant Entity_Id
:= Etype
(Subp
);
4345 if not Is_Overloadable
(Subp
) then
4346 Illegal_Indexing
("illegal indexing function for type&");
4349 elsif Scope
(Subp
) /= Scope
(Ent
) then
4350 if Nkind
(Expr
) = N_Expanded_Name
then
4352 -- Indexing function can't be declared elsewhere
4355 ("indexing function must be declared in scope of type&");
4360 elsif No
(First_Formal
(Subp
)) then
4362 ("Indexing requires a function that applies to type&");
4365 elsif No
(Next_Formal
(First_Formal
(Subp
))) then
4367 ("indexing function must have at least two parameters");
4370 elsif Is_Derived_Type
(Ent
) then
4371 Check_Inherited_Indexing
;
4374 if not Check_Primitive_Function
(Subp
) then
4376 ("Indexing aspect requires a function that applies to type&");
4380 -- If partial declaration exists, verify that it is not tagged.
4382 if Ekind
(Current_Scope
) = E_Package
4383 and then Has_Private_Declaration
(Ent
)
4384 and then From_Aspect_Specification
(N
)
4386 List_Containing
(Parent
(Ent
)) =
4387 Private_Declarations
4388 (Specification
(Unit_Declaration_Node
(Current_Scope
)))
4389 and then Nkind
(N
) = N_Attribute_Definition_Clause
4396 First
(Visible_Declarations
4398 (Unit_Declaration_Node
(Current_Scope
))));
4400 while Present
(Decl
) loop
4401 if Nkind
(Decl
) = N_Private_Type_Declaration
4402 and then Ent
= Full_View
(Defining_Identifier
(Decl
))
4403 and then Tagged_Present
(Decl
)
4404 and then No
(Aspect_Specifications
(Decl
))
4407 ("Indexing aspect cannot be specified on full view "
4408 & "if partial view is tagged");
4417 -- An indexing function must return either the default element of
4418 -- the container, or a reference type. For variable indexing it
4419 -- must be the latter.
4422 Find_Value_Of_Aspect
4423 (Etype
(First_Formal
(Subp
)), Aspect_Iterator_Element
);
4425 if Present
(Default_Element
) then
4426 Analyze
(Default_Element
);
4429 -- For variable_indexing the return type must be a reference type
4431 if Attr
= Name_Variable_Indexing
then
4432 if not Has_Implicit_Dereference
(Ret_Type
) then
4434 ("variable indexing must return a reference type");
4437 elsif Is_Access_Constant
4438 (Etype
(First_Discriminant
(Ret_Type
)))
4441 ("variable indexing must return an access to variable");
4446 if Has_Implicit_Dereference
(Ret_Type
)
4448 Is_Access_Constant
(Etype
(First_Discriminant
(Ret_Type
)))
4451 ("constant indexing must return an access to constant");
4454 elsif Is_Access_Type
(Etype
(First_Formal
(Subp
)))
4455 and then not Is_Access_Constant
(Etype
(First_Formal
(Subp
)))
4458 ("constant indexing must apply to an access to constant");
4463 -- All checks succeeded.
4465 Indexing_Found
:= True;
4466 end Check_One_Function
;
4468 -----------------------
4469 -- Illegal_Indexing --
4470 -----------------------
4472 procedure Illegal_Indexing
(Msg
: String) is
4474 Error_Msg_NE
(Msg
, N
, Ent
);
4475 end Illegal_Indexing
;
4477 -- Start of processing for Check_Indexing_Functions
4481 Check_Inherited_Indexing
;
4486 if not Is_Overloaded
(Expr
) then
4487 Check_One_Function
(Entity
(Expr
));
4495 Indexing_Found
:= False;
4496 Get_First_Interp
(Expr
, I
, It
);
4497 while Present
(It
.Nam
) loop
4499 -- Note that analysis will have added the interpretation
4500 -- that corresponds to the dereference. We only check the
4501 -- subprogram itself. Ignore homonyms that may come from
4502 -- derived types in the context.
4504 if Is_Overloadable
(It
.Nam
)
4505 and then Comes_From_Source
(It
.Nam
)
4507 Check_One_Function
(It
.Nam
);
4510 Get_Next_Interp
(I
, It
);
4515 if not Indexing_Found
and then not Error_Posted
(N
) then
4517 ("aspect Indexing requires a local function that applies to "
4518 & "type&", Expr
, Ent
);
4520 end Check_Indexing_Functions
;
4522 ------------------------------
4523 -- Check_Iterator_Functions --
4524 ------------------------------
4526 procedure Check_Iterator_Functions
is
4527 function Valid_Default_Iterator
(Subp
: Entity_Id
) return Boolean;
4528 -- Check one possible interpretation for validity
4530 ----------------------------
4531 -- Valid_Default_Iterator --
4532 ----------------------------
4534 function Valid_Default_Iterator
(Subp
: Entity_Id
) return Boolean is
4535 Root_T
: constant Entity_Id
:= Root_Type
(Etype
(Etype
(Subp
)));
4539 if not Check_Primitive_Function
(Subp
) then
4542 -- The return type must be derived from a type in an instance
4543 -- of Iterator.Interfaces, and thus its root type must have a
4546 elsif Chars
(Root_T
) /= Name_Forward_Iterator
4547 and then Chars
(Root_T
) /= Name_Reversible_Iterator
4552 Formal
:= First_Formal
(Subp
);
4555 -- False if any subsequent formal has no default expression
4557 Formal
:= Next_Formal
(Formal
);
4558 while Present
(Formal
) loop
4559 if No
(Expression
(Parent
(Formal
))) then
4563 Next_Formal
(Formal
);
4566 -- True if all subsequent formals have default expressions
4569 end Valid_Default_Iterator
;
4571 -- Start of processing for Check_Iterator_Functions
4576 if not Is_Entity_Name
(Expr
) then
4577 Error_Msg_N
("aspect Iterator must be a function name", Expr
);
4580 if not Is_Overloaded
(Expr
) then
4581 if not Check_Primitive_Function
(Entity
(Expr
)) then
4583 ("aspect Indexing requires a function that applies to type&",
4584 Entity
(Expr
), Ent
);
4587 -- Flag the default_iterator as well as the denoted function.
4589 if not Valid_Default_Iterator
(Entity
(Expr
)) then
4590 Error_Msg_N
("improper function for default iterator!", Expr
);
4595 Default
: Entity_Id
:= Empty
;
4600 Get_First_Interp
(Expr
, I
, It
);
4601 while Present
(It
.Nam
) loop
4602 if not Check_Primitive_Function
(It
.Nam
)
4603 or else not Valid_Default_Iterator
(It
.Nam
)
4607 elsif Present
(Default
) then
4609 -- An explicit one should override an implicit one
4611 if Comes_From_Source
(Default
) =
4612 Comes_From_Source
(It
.Nam
)
4614 Error_Msg_N
("default iterator must be unique", Expr
);
4615 Error_Msg_Sloc
:= Sloc
(Default
);
4616 Error_Msg_N
("\\possible interpretation#", Expr
);
4617 Error_Msg_Sloc
:= Sloc
(It
.Nam
);
4618 Error_Msg_N
("\\possible interpretation#", Expr
);
4620 elsif Comes_From_Source
(It
.Nam
) then
4627 Get_Next_Interp
(I
, It
);
4630 if Present
(Default
) then
4631 Set_Entity
(Expr
, Default
);
4632 Set_Is_Overloaded
(Expr
, False);
4635 ("no interpretation is a valid default iterator!", Expr
);
4639 end Check_Iterator_Functions
;
4641 -------------------------------
4642 -- Check_Primitive_Function --
4643 -------------------------------
4645 function Check_Primitive_Function
(Subp
: Entity_Id
) return Boolean is
4649 if Ekind
(Subp
) /= E_Function
then
4653 if No
(First_Formal
(Subp
)) then
4656 Ctrl
:= Etype
(First_Formal
(Subp
));
4659 -- To be a primitive operation subprogram has to be in same scope.
4661 if Scope
(Ctrl
) /= Scope
(Subp
) then
4665 -- Type of formal may be the class-wide type, an access to such,
4666 -- or an incomplete view.
4669 or else Ctrl
= Class_Wide_Type
(Ent
)
4671 (Ekind
(Ctrl
) = E_Anonymous_Access_Type
4672 and then (Designated_Type
(Ctrl
) = Ent
4674 Designated_Type
(Ctrl
) = Class_Wide_Type
(Ent
)))
4676 (Ekind
(Ctrl
) = E_Incomplete_Type
4677 and then Full_View
(Ctrl
) = Ent
)
4685 end Check_Primitive_Function
;
4687 ----------------------
4688 -- Duplicate_Clause --
4689 ----------------------
4691 function Duplicate_Clause
return Boolean is
4695 -- Nothing to do if this attribute definition clause comes from
4696 -- an aspect specification, since we could not be duplicating an
4697 -- explicit clause, and we dealt with the case of duplicated aspects
4698 -- in Analyze_Aspect_Specifications.
4700 if From_Aspect_Specification
(N
) then
4704 -- Otherwise current clause may duplicate previous clause, or a
4705 -- previously given pragma or aspect specification for the same
4708 A
:= Get_Rep_Item
(U_Ent
, Chars
(N
), Check_Parents
=> False);
4711 Error_Msg_Name_1
:= Chars
(N
);
4712 Error_Msg_Sloc
:= Sloc
(A
);
4714 Error_Msg_NE
("aspect% for & previously given#", N
, U_Ent
);
4719 end Duplicate_Clause
;
4721 -- Start of processing for Analyze_Attribute_Definition_Clause
4724 -- The following code is a defense against recursion. Not clear that
4725 -- this can happen legitimately, but perhaps some error situations can
4726 -- cause it, and we did see this recursion during testing.
4728 if Analyzed
(N
) then
4731 Set_Analyzed
(N
, True);
4734 Check_Restriction_No_Use_Of_Attribute
(N
);
4736 -- Ignore some selected attributes in CodePeer mode since they are not
4737 -- relevant in this context.
4739 if CodePeer_Mode
then
4742 -- Ignore Component_Size in CodePeer mode, to avoid changing the
4743 -- internal representation of types by implicitly packing them.
4745 when Attribute_Component_Size
=>
4746 Rewrite
(N
, Make_Null_Statement
(Sloc
(N
)));
4754 -- Process Ignore_Rep_Clauses option
4756 if Ignore_Rep_Clauses
then
4759 -- The following should be ignored. They do not affect legality
4760 -- and may be target dependent. The basic idea of -gnatI is to
4761 -- ignore any rep clauses that may be target dependent but do not
4762 -- affect legality (except possibly to be rejected because they
4763 -- are incompatible with the compilation target).
4765 when Attribute_Alignment
4766 | Attribute_Bit_Order
4767 | Attribute_Component_Size
4768 | Attribute_Default_Scalar_Storage_Order
4769 | Attribute_Machine_Radix
4770 | Attribute_Object_Size
4771 | Attribute_Scalar_Storage_Order
4774 | Attribute_Stream_Size
4775 | Attribute_Value_Size
4777 Kill_Rep_Clause
(N
);
4780 -- The following should not be ignored, because in the first place
4781 -- they are reasonably portable, and should not cause problems
4782 -- in compiling code from another target, and also they do affect
4783 -- legality, e.g. failing to provide a stream attribute for a type
4784 -- may make a program illegal.
4786 when Attribute_External_Tag
4790 | Attribute_Simple_Storage_Pool
4791 | Attribute_Storage_Pool
4792 | Attribute_Storage_Size
4797 -- We do not do anything here with address clauses, they will be
4798 -- removed by Freeze later on, but for now, it works better to
4799 -- keep them in the tree.
4801 when Attribute_Address
=>
4804 -- Other cases are errors ("attribute& cannot be set with
4805 -- definition clause"), which will be caught below.
4813 Ent
:= Entity
(Nam
);
4815 if Rep_Item_Too_Early
(Ent
, N
) then
4819 -- Rep clause applies to full view of incomplete type or private type if
4820 -- we have one (if not, this is a premature use of the type). However,
4821 -- certain semantic checks need to be done on the specified entity (i.e.
4822 -- the private view), so we save it in Ent.
4824 if Is_Private_Type
(Ent
)
4825 and then Is_Derived_Type
(Ent
)
4826 and then not Is_Tagged_Type
(Ent
)
4827 and then No
(Full_View
(Ent
))
4829 -- If this is a private type whose completion is a derivation from
4830 -- another private type, there is no full view, and the attribute
4831 -- belongs to the type itself, not its underlying parent.
4835 elsif Ekind
(Ent
) = E_Incomplete_Type
then
4837 -- The attribute applies to the full view, set the entity of the
4838 -- attribute definition accordingly.
4840 Ent
:= Underlying_Type
(Ent
);
4842 Set_Entity
(Nam
, Ent
);
4845 U_Ent
:= Underlying_Type
(Ent
);
4848 -- Avoid cascaded error
4850 if Etype
(Nam
) = Any_Type
then
4853 -- Must be declared in current scope or in case of an aspect
4854 -- specification, must be visible in current scope.
4856 elsif Scope
(Ent
) /= Current_Scope
4858 not (From_Aspect_Specification
(N
)
4859 and then Scope_Within_Or_Same
(Current_Scope
, Scope
(Ent
)))
4861 Error_Msg_N
("entity must be declared in this scope", Nam
);
4864 -- Must not be a source renaming (we do have some cases where the
4865 -- expander generates a renaming, and those cases are OK, in such
4866 -- cases any attribute applies to the renamed object as well).
4868 elsif Is_Object
(Ent
)
4869 and then Present
(Renamed_Object
(Ent
))
4871 -- Case of renamed object from source, this is an error
4873 if Comes_From_Source
(Renamed_Object
(Ent
)) then
4874 Get_Name_String
(Chars
(N
));
4875 Error_Msg_Strlen
:= Name_Len
;
4876 Error_Msg_String
(1 .. Name_Len
) := Name_Buffer
(1 .. Name_Len
);
4878 ("~ clause not allowed for a renaming declaration "
4879 & "(RM 13.1(6))", Nam
);
4882 -- For the case of a compiler generated renaming, the attribute
4883 -- definition clause applies to the renamed object created by the
4884 -- expander. The easiest general way to handle this is to create a
4885 -- copy of the attribute definition clause for this object.
4887 elsif Is_Entity_Name
(Renamed_Object
(Ent
)) then
4889 Make_Attribute_Definition_Clause
(Loc
,
4891 New_Occurrence_Of
(Entity
(Renamed_Object
(Ent
)), Loc
),
4893 Expression
=> Duplicate_Subexpr
(Expression
(N
))));
4895 -- If the renamed object is not an entity, it must be a dereference
4896 -- of an unconstrained function call, and we must introduce a new
4897 -- declaration to capture the expression. This is needed in the case
4898 -- of 'Alignment, where the original declaration must be rewritten.
4902 (Nkind
(Renamed_Object
(Ent
)) = N_Explicit_Dereference
);
4906 -- If no underlying entity, use entity itself, applies to some
4907 -- previously detected error cases ???
4909 elsif No
(U_Ent
) then
4912 -- Cannot specify for a subtype (exception Object/Value_Size)
4914 elsif Is_Type
(U_Ent
)
4915 and then not Is_First_Subtype
(U_Ent
)
4916 and then Id
/= Attribute_Object_Size
4917 and then Id
/= Attribute_Value_Size
4918 and then not From_At_Mod
(N
)
4920 Error_Msg_N
("cannot specify attribute for subtype", Nam
);
4924 Set_Entity
(N
, U_Ent
);
4926 -- Switch on particular attribute
4934 -- Address attribute definition clause
4936 when Attribute_Address
=> Address
: begin
4938 -- A little error check, catch for X'Address use X'Address;
4940 if Nkind
(Nam
) = N_Identifier
4941 and then Nkind
(Expr
) = N_Attribute_Reference
4942 and then Attribute_Name
(Expr
) = Name_Address
4943 and then Nkind
(Prefix
(Expr
)) = N_Identifier
4944 and then Chars
(Nam
) = Chars
(Prefix
(Expr
))
4947 ("address for & is self-referencing", Prefix
(Expr
), Ent
);
4951 -- Not that special case, carry on with analysis of expression
4953 Analyze_And_Resolve
(Expr
, RTE
(RE_Address
));
4955 -- Even when ignoring rep clauses we need to indicate that the
4956 -- entity has an address clause and thus it is legal to declare
4957 -- it imported. Freeze will get rid of the address clause later.
4958 -- Also call Set_Address_Taken to indicate that an address clause
4959 -- was present, even if we are about to remove it.
4961 if Ignore_Rep_Clauses
then
4962 Set_Address_Taken
(U_Ent
);
4964 if Ekind_In
(U_Ent
, E_Variable
, E_Constant
) then
4965 Record_Rep_Item
(U_Ent
, N
);
4971 if Duplicate_Clause
then
4974 -- Case of address clause for subprogram
4976 elsif Is_Subprogram
(U_Ent
) then
4977 if Has_Homonym
(U_Ent
) then
4979 ("address clause cannot be given for overloaded "
4980 & "subprogram", Nam
);
4984 -- For subprograms, all address clauses are permitted, and we
4985 -- mark the subprogram as having a deferred freeze so that Gigi
4986 -- will not elaborate it too soon.
4988 -- Above needs more comments, what is too soon about???
4990 Set_Has_Delayed_Freeze
(U_Ent
);
4992 -- Case of address clause for entry
4994 elsif Ekind
(U_Ent
) = E_Entry
then
4995 if Nkind
(Parent
(N
)) = N_Task_Body
then
4997 ("entry address must be specified in task spec", Nam
);
5001 -- For entries, we require a constant address
5003 Check_Constant_Address_Clause
(Expr
, U_Ent
);
5005 -- Special checks for task types
5007 if Is_Task_Type
(Scope
(U_Ent
))
5008 and then Comes_From_Source
(Scope
(U_Ent
))
5011 ("??entry address declared for entry in task type", N
);
5013 ("\??only one task can be declared of this type", N
);
5016 -- Entry address clauses are obsolescent
5018 Check_Restriction
(No_Obsolescent_Features
, N
);
5020 if Warn_On_Obsolescent_Feature
then
5022 ("?j?attaching interrupt to task entry is an obsolescent "
5023 & "feature (RM J.7.1)", N
);
5025 ("\?j?use interrupt procedure instead", N
);
5028 -- Case of an address clause for a class-wide object, which is
5029 -- considered erroneous.
5031 elsif Is_Class_Wide_Type
(Etype
(U_Ent
)) then
5033 ("??class-wide object & must not be overlaid", Nam
, U_Ent
);
5035 ("\??Program_Error will be raised at run time", Nam
);
5036 Insert_Action
(Declaration_Node
(U_Ent
),
5037 Make_Raise_Program_Error
(Loc
,
5038 Reason
=> PE_Overlaid_Controlled_Object
));
5041 -- Case of address clause for an object
5043 elsif Ekind_In
(U_Ent
, E_Constant
, E_Variable
) then
5045 Expr
: constant Node_Id
:= Expression
(N
);
5050 -- Exported variables cannot have an address clause, because
5051 -- this cancels the effect of the pragma Export.
5053 if Is_Exported
(U_Ent
) then
5055 ("cannot export object with address clause", Nam
);
5059 Find_Overlaid_Entity
(N
, O_Ent
, Off
);
5061 if Present
(O_Ent
) then
5063 -- If the object overlays a constant object, mark it so
5065 if Is_Constant_Object
(O_Ent
) then
5066 Set_Overlays_Constant
(U_Ent
);
5069 -- If the address clause is of the form:
5071 -- for X'Address use Y'Address;
5075 -- C : constant Address := Y'Address;
5077 -- for X'Address use C;
5079 -- then we make an entry in the table to check the size
5080 -- and alignment of the overlaying variable. But we defer
5081 -- this check till after code generation to take full
5082 -- advantage of the annotation done by the back end.
5084 -- If the entity has a generic type, the check will be
5085 -- performed in the instance if the actual type justifies
5086 -- it, and we do not insert the clause in the table to
5087 -- prevent spurious warnings.
5089 -- Note: we used to test Comes_From_Source and only give
5090 -- this warning for source entities, but we have removed
5091 -- this test. It really seems bogus to generate overlays
5092 -- that would trigger this warning in generated code.
5093 -- Furthermore, by removing the test, we handle the
5094 -- aspect case properly.
5096 if Is_Object
(O_Ent
)
5097 and then not Is_Generic_Type
(Etype
(U_Ent
))
5098 and then Address_Clause_Overlay_Warnings
5100 Register_Address_Clause_Check
5101 (N
, U_Ent
, No_Uint
, O_Ent
, Off
);
5104 -- If the overlay changes the storage order, mark the
5105 -- entity as being volatile to block any optimization
5106 -- for it since the construct is not really supported
5109 if (Is_Record_Type
(Etype
(U_Ent
))
5110 or else Is_Array_Type
(Etype
(U_Ent
)))
5111 and then (Is_Record_Type
(Etype
(O_Ent
))
5112 or else Is_Array_Type
(Etype
(O_Ent
)))
5113 and then Reverse_Storage_Order
(Etype
(U_Ent
)) /=
5114 Reverse_Storage_Order
(Etype
(O_Ent
))
5116 Set_Treat_As_Volatile
(U_Ent
);
5120 -- If this is not an overlay, mark a variable as being
5121 -- volatile to prevent unwanted optimizations. It's a
5122 -- conservative interpretation of RM 13.3(19) for the
5123 -- cases where the compiler cannot detect potential
5124 -- aliasing issues easily and it also covers the case
5125 -- of an absolute address where the volatile aspect is
5126 -- kind of implicit.
5128 if Ekind
(U_Ent
) = E_Variable
then
5129 Set_Treat_As_Volatile
(U_Ent
);
5132 -- Make an entry in the table for an absolute address as
5133 -- above to check that the value is compatible with the
5134 -- alignment of the object.
5137 Addr
: constant Node_Id
:= Address_Value
(Expr
);
5139 if Compile_Time_Known_Value
(Addr
)
5140 and then Address_Clause_Overlay_Warnings
5142 Register_Address_Clause_Check
5143 (N
, U_Ent
, Expr_Value
(Addr
), Empty
, False);
5148 -- Issue an unconditional warning for a constant overlaying
5149 -- a variable. For the reverse case, we will issue it only
5150 -- if the variable is modified.
5152 if Ekind
(U_Ent
) = E_Constant
5153 and then Present
(O_Ent
)
5154 and then not Overlays_Constant
(U_Ent
)
5155 and then Address_Clause_Overlay_Warnings
5157 Error_Msg_N
("??constant overlays a variable", Expr
);
5159 -- Imported variables can have an address clause, but then
5160 -- the import is pretty meaningless except to suppress
5161 -- initializations, so we do not need such variables to
5162 -- be statically allocated (and in fact it causes trouble
5163 -- if the address clause is a local value).
5165 elsif Is_Imported
(U_Ent
) then
5166 Set_Is_Statically_Allocated
(U_Ent
, False);
5169 -- We mark a possible modification of a variable with an
5170 -- address clause, since it is likely aliasing is occurring.
5172 Note_Possible_Modification
(Nam
, Sure
=> False);
5174 -- Legality checks on the address clause for initialized
5175 -- objects is deferred until the freeze point, because
5176 -- a subsequent pragma might indicate that the object
5177 -- is imported and thus not initialized. Also, the address
5178 -- clause might involve entities that have yet to be
5181 Set_Has_Delayed_Freeze
(U_Ent
);
5183 -- If an initialization call has been generated for this
5184 -- object, it needs to be deferred to after the freeze node
5185 -- we have just now added, otherwise GIGI will see a
5186 -- reference to the variable (as actual to the IP call)
5187 -- before its definition.
5190 Init_Call
: constant Node_Id
:=
5191 Remove_Init_Call
(U_Ent
, N
);
5194 if Present
(Init_Call
) then
5195 Append_Freeze_Action
(U_Ent
, Init_Call
);
5197 -- Reset Initialization_Statements pointer so that
5198 -- if there is a pragma Import further down, it can
5199 -- clear any default initialization.
5201 Set_Initialization_Statements
(U_Ent
, Init_Call
);
5205 -- Entity has delayed freeze, so we will generate an
5206 -- alignment check at the freeze point unless suppressed.
5208 if not Range_Checks_Suppressed
(U_Ent
)
5209 and then not Alignment_Checks_Suppressed
(U_Ent
)
5211 Set_Check_Address_Alignment
(N
);
5214 -- Kill the size check code, since we are not allocating
5215 -- the variable, it is somewhere else.
5217 Kill_Size_Check_Code
(U_Ent
);
5220 -- Not a valid entity for an address clause
5223 Error_Msg_N
("address cannot be given for &", Nam
);
5231 -- Alignment attribute definition clause
5233 when Attribute_Alignment
=> Alignment
: declare
5234 Align
: constant Uint
:= Get_Alignment_Value
(Expr
);
5235 Max_Align
: constant Uint
:= UI_From_Int
(Maximum_Alignment
);
5240 if not Is_Type
(U_Ent
)
5241 and then Ekind
(U_Ent
) /= E_Variable
5242 and then Ekind
(U_Ent
) /= E_Constant
5244 Error_Msg_N
("alignment cannot be given for &", Nam
);
5246 elsif Duplicate_Clause
then
5249 elsif Align
/= No_Uint
then
5250 Set_Has_Alignment_Clause
(U_Ent
);
5252 -- Tagged type case, check for attempt to set alignment to a
5253 -- value greater than Max_Align, and reset if so. This error
5254 -- is suppressed in ASIS mode to allow for different ASIS
5255 -- back ends or ASIS-based tools to query the illegal clause.
5257 if Is_Tagged_Type
(U_Ent
)
5258 and then Align
> Max_Align
5259 and then not ASIS_Mode
5262 ("alignment for & set to Maximum_Aligment??", Nam
);
5263 Set_Alignment
(U_Ent
, Max_Align
);
5268 Set_Alignment
(U_Ent
, Align
);
5271 -- For an array type, U_Ent is the first subtype. In that case,
5272 -- also set the alignment of the anonymous base type so that
5273 -- other subtypes (such as the itypes for aggregates of the
5274 -- type) also receive the expected alignment.
5276 if Is_Array_Type
(U_Ent
) then
5277 Set_Alignment
(Base_Type
(U_Ent
), Align
);
5286 -- Bit_Order attribute definition clause
5288 when Attribute_Bit_Order
=>
5289 if not Is_Record_Type
(U_Ent
) then
5291 ("Bit_Order can only be defined for record type", Nam
);
5293 elsif Duplicate_Clause
then
5297 Analyze_And_Resolve
(Expr
, RTE
(RE_Bit_Order
));
5299 if Etype
(Expr
) = Any_Type
then
5302 elsif not Is_OK_Static_Expression
(Expr
) then
5303 Flag_Non_Static_Expr
5304 ("Bit_Order requires static expression!", Expr
);
5307 if (Expr_Value
(Expr
) = 0) /= Bytes_Big_Endian
then
5308 Set_Reverse_Bit_Order
(Base_Type
(U_Ent
), True);
5313 --------------------
5314 -- Component_Size --
5315 --------------------
5317 -- Component_Size attribute definition clause
5319 when Attribute_Component_Size
=> Component_Size_Case
: declare
5320 Csize
: constant Uint
:= Static_Integer
(Expr
);
5324 New_Ctyp
: Entity_Id
;
5328 if not Is_Array_Type
(U_Ent
) then
5329 Error_Msg_N
("component size requires array type", Nam
);
5333 Btype
:= Base_Type
(U_Ent
);
5334 Ctyp
:= Component_Type
(Btype
);
5336 if Duplicate_Clause
then
5339 elsif Rep_Item_Too_Early
(Btype
, N
) then
5342 elsif Csize
/= No_Uint
then
5343 Check_Size
(Expr
, Ctyp
, Csize
, Biased
);
5345 -- For the biased case, build a declaration for a subtype that
5346 -- will be used to represent the biased subtype that reflects
5347 -- the biased representation of components. We need the subtype
5348 -- to get proper conversions on referencing elements of the
5353 Make_Defining_Identifier
(Loc
,
5355 New_External_Name
(Chars
(U_Ent
), 'C', 0, 'T'));
5358 Make_Subtype_Declaration
(Loc
,
5359 Defining_Identifier
=> New_Ctyp
,
5360 Subtype_Indication
=>
5361 New_Occurrence_Of
(Component_Type
(Btype
), Loc
));
5363 Set_Parent
(Decl
, N
);
5364 Analyze
(Decl
, Suppress
=> All_Checks
);
5366 Set_Has_Delayed_Freeze
(New_Ctyp
, False);
5367 Set_Esize
(New_Ctyp
, Csize
);
5368 Set_RM_Size
(New_Ctyp
, Csize
);
5369 Init_Alignment
(New_Ctyp
);
5370 Set_Is_Itype
(New_Ctyp
, True);
5371 Set_Associated_Node_For_Itype
(New_Ctyp
, U_Ent
);
5373 Set_Component_Type
(Btype
, New_Ctyp
);
5374 Set_Biased
(New_Ctyp
, N
, "component size clause");
5377 Set_Component_Size
(Btype
, Csize
);
5379 -- Deal with warning on overridden size
5381 if Warn_On_Overridden_Size
5382 and then Has_Size_Clause
(Ctyp
)
5383 and then RM_Size
(Ctyp
) /= Csize
5386 ("component size overrides size clause for&?S?", N
, Ctyp
);
5389 Set_Has_Component_Size_Clause
(Btype
, True);
5390 Set_Has_Non_Standard_Rep
(Btype
, True);
5392 end Component_Size_Case
;
5394 -----------------------
5395 -- Constant_Indexing --
5396 -----------------------
5398 when Attribute_Constant_Indexing
=>
5399 Check_Indexing_Functions
;
5405 when Attribute_CPU
=>
5407 -- CPU attribute definition clause not allowed except from aspect
5410 if From_Aspect_Specification
(N
) then
5411 if not Is_Task_Type
(U_Ent
) then
5412 Error_Msg_N
("CPU can only be defined for task", Nam
);
5414 elsif Duplicate_Clause
then
5418 -- The expression must be analyzed in the special manner
5419 -- described in "Handling of Default and Per-Object
5420 -- Expressions" in sem.ads.
5422 -- The visibility to the discriminants must be restored
5424 Push_Scope_And_Install_Discriminants
(U_Ent
);
5425 Preanalyze_Spec_Expression
(Expr
, RTE
(RE_CPU_Range
));
5426 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
5428 if not Is_OK_Static_Expression
(Expr
) then
5429 Check_Restriction
(Static_Priorities
, Expr
);
5435 ("attribute& cannot be set with definition clause", N
);
5438 ----------------------
5439 -- Default_Iterator --
5440 ----------------------
5442 when Attribute_Default_Iterator
=> Default_Iterator
: declare
5447 -- If target type is untagged, further checks are irrelevant
5449 if not Is_Tagged_Type
(U_Ent
) then
5451 ("aspect Default_Iterator applies to tagged type", Nam
);
5455 Check_Iterator_Functions
;
5459 if not Is_Entity_Name
(Expr
)
5460 or else Ekind
(Entity
(Expr
)) /= E_Function
5462 Error_Msg_N
("aspect Iterator must be a function", Expr
);
5465 Func
:= Entity
(Expr
);
5468 -- The type of the first parameter must be T, T'class, or a
5469 -- corresponding access type (5.5.1 (8/3). If function is
5470 -- parameterless label type accordingly.
5472 if No
(First_Formal
(Func
)) then
5475 Typ
:= Etype
(First_Formal
(Func
));
5479 or else Typ
= Class_Wide_Type
(U_Ent
)
5480 or else (Is_Access_Type
(Typ
)
5481 and then Designated_Type
(Typ
) = U_Ent
)
5482 or else (Is_Access_Type
(Typ
)
5483 and then Designated_Type
(Typ
) =
5484 Class_Wide_Type
(U_Ent
))
5490 ("Default Iterator must be a primitive of&", Func
, U_Ent
);
5492 end Default_Iterator
;
5494 ------------------------
5495 -- Dispatching_Domain --
5496 ------------------------
5498 when Attribute_Dispatching_Domain
=>
5500 -- Dispatching_Domain attribute definition clause not allowed
5501 -- except from aspect specification.
5503 if From_Aspect_Specification
(N
) then
5504 if not Is_Task_Type
(U_Ent
) then
5506 ("Dispatching_Domain can only be defined for task", Nam
);
5508 elsif Duplicate_Clause
then
5512 -- The expression must be analyzed in the special manner
5513 -- described in "Handling of Default and Per-Object
5514 -- Expressions" in sem.ads.
5516 -- The visibility to the discriminants must be restored
5518 Push_Scope_And_Install_Discriminants
(U_Ent
);
5520 Preanalyze_Spec_Expression
5521 (Expr
, RTE
(RE_Dispatching_Domain
));
5523 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
5528 ("attribute& cannot be set with definition clause", N
);
5535 when Attribute_External_Tag
=>
5536 if not Is_Tagged_Type
(U_Ent
) then
5537 Error_Msg_N
("should be a tagged type", Nam
);
5540 if Duplicate_Clause
then
5544 Analyze_And_Resolve
(Expr
, Standard_String
);
5546 if not Is_OK_Static_Expression
(Expr
) then
5547 Flag_Non_Static_Expr
5548 ("static string required for tag name!", Nam
);
5551 if not Is_Library_Level_Entity
(U_Ent
) then
5553 ("??non-unique external tag supplied for &", N
, U_Ent
);
5555 ("\??same external tag applies to all subprogram calls",
5558 ("\??corresponding internal tag cannot be obtained", N
);
5562 --------------------------
5563 -- Implicit_Dereference --
5564 --------------------------
5566 when Attribute_Implicit_Dereference
=>
5568 -- Legality checks already performed at the point of the type
5569 -- declaration, aspect is not delayed.
5577 when Attribute_Input
=>
5578 Analyze_Stream_TSS_Definition
(TSS_Stream_Input
);
5579 Set_Has_Specified_Stream_Input
(Ent
);
5581 ------------------------
5582 -- Interrupt_Priority --
5583 ------------------------
5585 when Attribute_Interrupt_Priority
=>
5587 -- Interrupt_Priority attribute definition clause not allowed
5588 -- except from aspect specification.
5590 if From_Aspect_Specification
(N
) then
5591 if not Is_Concurrent_Type
(U_Ent
) then
5593 ("Interrupt_Priority can only be defined for task and "
5594 & "protected object", Nam
);
5596 elsif Duplicate_Clause
then
5600 -- The expression must be analyzed in the special manner
5601 -- described in "Handling of Default and Per-Object
5602 -- Expressions" in sem.ads.
5604 -- The visibility to the discriminants must be restored
5606 Push_Scope_And_Install_Discriminants
(U_Ent
);
5608 Preanalyze_Spec_Expression
5609 (Expr
, RTE
(RE_Interrupt_Priority
));
5611 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
5613 -- Check the No_Task_At_Interrupt_Priority restriction
5615 if Is_Task_Type
(U_Ent
) then
5616 Check_Restriction
(No_Task_At_Interrupt_Priority
, N
);
5622 ("attribute& cannot be set with definition clause", N
);
5629 when Attribute_Iterable
=>
5632 if Nkind
(Expr
) /= N_Aggregate
then
5633 Error_Msg_N
("aspect Iterable must be an aggregate", Expr
);
5640 Assoc
:= First
(Component_Associations
(Expr
));
5641 while Present
(Assoc
) loop
5642 if not Is_Entity_Name
(Expression
(Assoc
)) then
5643 Error_Msg_N
("value must be a function", Assoc
);
5650 ----------------------
5651 -- Iterator_Element --
5652 ----------------------
5654 when Attribute_Iterator_Element
=>
5657 if not Is_Entity_Name
(Expr
)
5658 or else not Is_Type
(Entity
(Expr
))
5660 Error_Msg_N
("aspect Iterator_Element must be a type", Expr
);
5667 -- Machine radix attribute definition clause
5669 when Attribute_Machine_Radix
=> Machine_Radix
: declare
5670 Radix
: constant Uint
:= Static_Integer
(Expr
);
5673 if not Is_Decimal_Fixed_Point_Type
(U_Ent
) then
5674 Error_Msg_N
("decimal fixed-point type expected for &", Nam
);
5676 elsif Duplicate_Clause
then
5679 elsif Radix
/= No_Uint
then
5680 Set_Has_Machine_Radix_Clause
(U_Ent
);
5681 Set_Has_Non_Standard_Rep
(Base_Type
(U_Ent
));
5686 elsif Radix
= 10 then
5687 Set_Machine_Radix_10
(U_Ent
);
5689 -- The following error is suppressed in ASIS mode to allow for
5690 -- different ASIS back ends or ASIS-based tools to query the
5693 elsif not ASIS_Mode
then
5694 Error_Msg_N
("machine radix value must be 2 or 10", Expr
);
5703 -- Object_Size attribute definition clause
5705 when Attribute_Object_Size
=> Object_Size
: declare
5706 Size
: constant Uint
:= Static_Integer
(Expr
);
5709 pragma Warnings
(Off
, Biased
);
5712 if not Is_Type
(U_Ent
) then
5713 Error_Msg_N
("Object_Size cannot be given for &", Nam
);
5715 elsif Duplicate_Clause
then
5719 Check_Size
(Expr
, U_Ent
, Size
, Biased
);
5721 -- The following errors are suppressed in ASIS mode to allow
5722 -- for different ASIS back ends or ASIS-based tools to query
5723 -- the illegal clause.
5728 elsif Is_Scalar_Type
(U_Ent
) then
5729 if Size
/= 8 and then Size
/= 16 and then Size
/= 32
5730 and then UI_Mod
(Size
, 64) /= 0
5733 ("Object_Size must be 8, 16, 32, or multiple of 64",
5737 elsif Size
mod 8 /= 0 then
5738 Error_Msg_N
("Object_Size must be a multiple of 8", Expr
);
5741 Set_Esize
(U_Ent
, Size
);
5742 Set_Has_Object_Size_Clause
(U_Ent
);
5743 Alignment_Check_For_Size_Change
(U_Ent
, Size
);
5751 when Attribute_Output
=>
5752 Analyze_Stream_TSS_Definition
(TSS_Stream_Output
);
5753 Set_Has_Specified_Stream_Output
(Ent
);
5759 when Attribute_Priority
=>
5761 -- Priority attribute definition clause not allowed except from
5762 -- aspect specification.
5764 if From_Aspect_Specification
(N
) then
5765 if not (Is_Concurrent_Type
(U_Ent
)
5766 or else Ekind
(U_Ent
) = E_Procedure
)
5769 ("Priority can only be defined for task and protected "
5772 elsif Duplicate_Clause
then
5776 -- The expression must be analyzed in the special manner
5777 -- described in "Handling of Default and Per-Object
5778 -- Expressions" in sem.ads.
5780 -- The visibility to the discriminants must be restored
5782 Push_Scope_And_Install_Discriminants
(U_Ent
);
5783 Preanalyze_Spec_Expression
(Expr
, Standard_Integer
);
5784 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
5786 if not Is_OK_Static_Expression
(Expr
) then
5787 Check_Restriction
(Static_Priorities
, Expr
);
5793 ("attribute& cannot be set with definition clause", N
);
5800 when Attribute_Read
=>
5801 Analyze_Stream_TSS_Definition
(TSS_Stream_Read
);
5802 Set_Has_Specified_Stream_Read
(Ent
);
5804 --------------------------
5805 -- Scalar_Storage_Order --
5806 --------------------------
5808 -- Scalar_Storage_Order attribute definition clause
5810 when Attribute_Scalar_Storage_Order
=>
5811 if not (Is_Record_Type
(U_Ent
) or else Is_Array_Type
(U_Ent
)) then
5813 ("Scalar_Storage_Order can only be defined for record or "
5814 & "array type", Nam
);
5816 elsif Duplicate_Clause
then
5820 Analyze_And_Resolve
(Expr
, RTE
(RE_Bit_Order
));
5822 if Etype
(Expr
) = Any_Type
then
5825 elsif not Is_OK_Static_Expression
(Expr
) then
5826 Flag_Non_Static_Expr
5827 ("Scalar_Storage_Order requires static expression!", Expr
);
5829 elsif (Expr_Value
(Expr
) = 0) /= Bytes_Big_Endian
then
5831 -- Here for the case of a non-default (i.e. non-confirming)
5832 -- Scalar_Storage_Order attribute definition.
5834 if Support_Nondefault_SSO_On_Target
then
5835 Set_Reverse_Storage_Order
(Base_Type
(U_Ent
), True);
5838 ("non-default Scalar_Storage_Order not supported on "
5843 -- Clear SSO default indications since explicit setting of the
5844 -- order overrides the defaults.
5846 Set_SSO_Set_Low_By_Default
(Base_Type
(U_Ent
), False);
5847 Set_SSO_Set_High_By_Default
(Base_Type
(U_Ent
), False);
5850 --------------------------
5851 -- Secondary_Stack_Size --
5852 --------------------------
5854 when Attribute_Secondary_Stack_Size
=>
5856 -- Secondary_Stack_Size attribute definition clause not allowed
5857 -- except from aspect specification.
5859 if From_Aspect_Specification
(N
) then
5860 if not Is_Task_Type
(U_Ent
) then
5862 ("Secondary Stack Size can only be defined for task", Nam
);
5864 elsif Duplicate_Clause
then
5868 Check_Restriction
(No_Secondary_Stack
, Expr
);
5870 -- The expression must be analyzed in the special manner
5871 -- described in "Handling of Default and Per-Object
5872 -- Expressions" in sem.ads.
5874 -- The visibility to the discriminants must be restored
5876 Push_Scope_And_Install_Discriminants
(U_Ent
);
5877 Preanalyze_Spec_Expression
(Expr
, Any_Integer
);
5878 Uninstall_Discriminants_And_Pop_Scope
(U_Ent
);
5880 if not Is_OK_Static_Expression
(Expr
) then
5881 Check_Restriction
(Static_Storage_Size
, Expr
);
5887 ("attribute& cannot be set with definition clause", N
);
5894 -- Size attribute definition clause
5896 when Attribute_Size
=> Size
: declare
5897 Size
: constant Uint
:= Static_Integer
(Expr
);
5904 if Duplicate_Clause
then
5907 elsif not Is_Type
(U_Ent
)
5908 and then Ekind
(U_Ent
) /= E_Variable
5909 and then Ekind
(U_Ent
) /= E_Constant
5911 Error_Msg_N
("size cannot be given for &", Nam
);
5913 elsif Is_Array_Type
(U_Ent
)
5914 and then not Is_Constrained
(U_Ent
)
5917 ("size cannot be given for unconstrained array", Nam
);
5919 elsif Size
/= No_Uint
then
5920 if Is_Type
(U_Ent
) then
5923 Etyp
:= Etype
(U_Ent
);
5926 -- Check size, note that Gigi is in charge of checking that the
5927 -- size of an array or record type is OK. Also we do not check
5928 -- the size in the ordinary fixed-point case, since it is too
5929 -- early to do so (there may be subsequent small clause that
5930 -- affects the size). We can check the size if a small clause
5931 -- has already been given.
5933 if not Is_Ordinary_Fixed_Point_Type
(U_Ent
)
5934 or else Has_Small_Clause
(U_Ent
)
5936 Check_Size
(Expr
, Etyp
, Size
, Biased
);
5937 Set_Biased
(U_Ent
, N
, "size clause", Biased
);
5940 -- For types set RM_Size and Esize if possible
5942 if Is_Type
(U_Ent
) then
5943 Set_RM_Size
(U_Ent
, Size
);
5945 -- For elementary types, increase Object_Size to power of 2,
5946 -- but not less than a storage unit in any case (normally
5947 -- this means it will be byte addressable).
5949 -- For all other types, nothing else to do, we leave Esize
5950 -- (object size) unset, the back end will set it from the
5951 -- size and alignment in an appropriate manner.
5953 -- In both cases, we check whether the alignment must be
5954 -- reset in the wake of the size change.
5956 if Is_Elementary_Type
(U_Ent
) then
5957 if Size
<= System_Storage_Unit
then
5958 Init_Esize
(U_Ent
, System_Storage_Unit
);
5959 elsif Size
<= 16 then
5960 Init_Esize
(U_Ent
, 16);
5961 elsif Size
<= 32 then
5962 Init_Esize
(U_Ent
, 32);
5964 Set_Esize
(U_Ent
, (Size
+ 63) / 64 * 64);
5967 Alignment_Check_For_Size_Change
(U_Ent
, Esize
(U_Ent
));
5969 Alignment_Check_For_Size_Change
(U_Ent
, Size
);
5972 -- For objects, set Esize only
5975 -- The following error is suppressed in ASIS mode to allow
5976 -- for different ASIS back ends or ASIS-based tools to query
5977 -- the illegal clause.
5979 if Is_Elementary_Type
(Etyp
)
5980 and then Size
/= System_Storage_Unit
5981 and then Size
/= System_Storage_Unit
* 2
5982 and then Size
/= System_Storage_Unit
* 4
5983 and then Size
/= System_Storage_Unit
* 8
5984 and then not ASIS_Mode
5986 Error_Msg_Uint_1
:= UI_From_Int
(System_Storage_Unit
);
5987 Error_Msg_Uint_2
:= Error_Msg_Uint_1
* 8;
5989 ("size for primitive object must be a power of 2 in "
5990 & "the range ^-^", N
);
5993 Set_Esize
(U_Ent
, Size
);
5996 Set_Has_Size_Clause
(U_Ent
);
6004 -- Small attribute definition clause
6006 when Attribute_Small
=> Small
: declare
6007 Implicit_Base
: constant Entity_Id
:= Base_Type
(U_Ent
);
6011 Analyze_And_Resolve
(Expr
, Any_Real
);
6013 if Etype
(Expr
) = Any_Type
then
6016 elsif not Is_OK_Static_Expression
(Expr
) then
6017 Flag_Non_Static_Expr
6018 ("small requires static expression!", Expr
);
6022 Small
:= Expr_Value_R
(Expr
);
6024 if Small
<= Ureal_0
then
6025 Error_Msg_N
("small value must be greater than zero", Expr
);
6031 if not Is_Ordinary_Fixed_Point_Type
(U_Ent
) then
6033 ("small requires an ordinary fixed point type", Nam
);
6035 elsif Has_Small_Clause
(U_Ent
) then
6036 Error_Msg_N
("small already given for &", Nam
);
6038 elsif Small
> Delta_Value
(U_Ent
) then
6040 ("small value must not be greater than delta value", Nam
);
6043 Set_Small_Value
(U_Ent
, Small
);
6044 Set_Small_Value
(Implicit_Base
, Small
);
6045 Set_Has_Small_Clause
(U_Ent
);
6046 Set_Has_Small_Clause
(Implicit_Base
);
6047 Set_Has_Non_Standard_Rep
(Implicit_Base
);
6055 -- Storage_Pool attribute definition clause
6057 when Attribute_Simple_Storage_Pool
6058 | Attribute_Storage_Pool
6060 Storage_Pool
: declare
6065 if Ekind
(U_Ent
) = E_Access_Subprogram_Type
then
6067 ("storage pool cannot be given for access-to-subprogram type",
6071 elsif not Ekind_In
(U_Ent
, E_Access_Type
, E_General_Access_Type
)
6074 ("storage pool can only be given for access types", Nam
);
6077 elsif Is_Derived_Type
(U_Ent
) then
6079 ("storage pool cannot be given for a derived access type",
6082 elsif Duplicate_Clause
then
6085 elsif Present
(Associated_Storage_Pool
(U_Ent
)) then
6086 Error_Msg_N
("storage pool already given for &", Nam
);
6090 -- Check for Storage_Size previously given
6093 SS
: constant Node_Id
:=
6094 Get_Attribute_Definition_Clause
6095 (U_Ent
, Attribute_Storage_Size
);
6097 if Present
(SS
) then
6098 Check_Pool_Size_Clash
(U_Ent
, N
, SS
);
6102 -- Storage_Pool case
6104 if Id
= Attribute_Storage_Pool
then
6106 (Expr
, Class_Wide_Type
(RTE
(RE_Root_Storage_Pool
)));
6108 -- In the Simple_Storage_Pool case, we allow a variable of any
6109 -- simple storage pool type, so we Resolve without imposing an
6113 Analyze_And_Resolve
(Expr
);
6115 if not Present
(Get_Rep_Pragma
6116 (Etype
(Expr
), Name_Simple_Storage_Pool_Type
))
6119 ("expression must be of a simple storage pool type", Expr
);
6123 if not Denotes_Variable
(Expr
) then
6124 Error_Msg_N
("storage pool must be a variable", Expr
);
6128 if Nkind
(Expr
) = N_Type_Conversion
then
6129 T
:= Etype
(Expression
(Expr
));
6134 -- The Stack_Bounded_Pool is used internally for implementing
6135 -- access types with a Storage_Size. Since it only work properly
6136 -- when used on one specific type, we need to check that it is not
6137 -- hijacked improperly:
6139 -- type T is access Integer;
6140 -- for T'Storage_Size use n;
6141 -- type Q is access Float;
6142 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
6144 if RTE_Available
(RE_Stack_Bounded_Pool
)
6145 and then Base_Type
(T
) = RTE
(RE_Stack_Bounded_Pool
)
6147 Error_Msg_N
("non-shareable internal Pool", Expr
);
6151 -- If the argument is a name that is not an entity name, then
6152 -- we construct a renaming operation to define an entity of
6153 -- type storage pool.
6155 if not Is_Entity_Name
(Expr
)
6156 and then Is_Object_Reference
(Expr
)
6158 Pool
:= Make_Temporary
(Loc
, 'P', Expr
);
6161 Rnode
: constant Node_Id
:=
6162 Make_Object_Renaming_Declaration
(Loc
,
6163 Defining_Identifier
=> Pool
,
6165 New_Occurrence_Of
(Etype
(Expr
), Loc
),
6169 -- If the attribute definition clause comes from an aspect
6170 -- clause, then insert the renaming before the associated
6171 -- entity's declaration, since the attribute clause has
6172 -- not yet been appended to the declaration list.
6174 if From_Aspect_Specification
(N
) then
6175 Insert_Before
(Parent
(Entity
(N
)), Rnode
);
6177 Insert_Before
(N
, Rnode
);
6181 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
6184 elsif Is_Entity_Name
(Expr
) then
6185 Pool
:= Entity
(Expr
);
6187 -- If pool is a renamed object, get original one. This can
6188 -- happen with an explicit renaming, and within instances.
6190 while Present
(Renamed_Object
(Pool
))
6191 and then Is_Entity_Name
(Renamed_Object
(Pool
))
6193 Pool
:= Entity
(Renamed_Object
(Pool
));
6196 if Present
(Renamed_Object
(Pool
))
6197 and then Nkind
(Renamed_Object
(Pool
)) = N_Type_Conversion
6198 and then Is_Entity_Name
(Expression
(Renamed_Object
(Pool
)))
6200 Pool
:= Entity
(Expression
(Renamed_Object
(Pool
)));
6203 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
6205 elsif Nkind
(Expr
) = N_Type_Conversion
6206 and then Is_Entity_Name
(Expression
(Expr
))
6207 and then Nkind
(Original_Node
(Expr
)) = N_Attribute_Reference
6209 Pool
:= Entity
(Expression
(Expr
));
6210 Set_Associated_Storage_Pool
(U_Ent
, Pool
);
6213 Error_Msg_N
("incorrect reference to a Storage Pool", Expr
);
6222 -- Storage_Size attribute definition clause
6224 when Attribute_Storage_Size
=> Storage_Size
: declare
6225 Btype
: constant Entity_Id
:= Base_Type
(U_Ent
);
6228 if Is_Task_Type
(U_Ent
) then
6230 -- Check obsolescent (but never obsolescent if from aspect)
6232 if not From_Aspect_Specification
(N
) then
6233 Check_Restriction
(No_Obsolescent_Features
, N
);
6235 if Warn_On_Obsolescent_Feature
then
6237 ("?j?storage size clause for task is an obsolescent "
6238 & "feature (RM J.9)", N
);
6239 Error_Msg_N
("\?j?use Storage_Size pragma instead", N
);
6246 if not Is_Access_Type
(U_Ent
)
6247 and then Ekind
(U_Ent
) /= E_Task_Type
6249 Error_Msg_N
("storage size cannot be given for &", Nam
);
6251 elsif Is_Access_Type
(U_Ent
) and Is_Derived_Type
(U_Ent
) then
6253 ("storage size cannot be given for a derived access type",
6256 elsif Duplicate_Clause
then
6260 Analyze_And_Resolve
(Expr
, Any_Integer
);
6262 if Is_Access_Type
(U_Ent
) then
6264 -- Check for Storage_Pool previously given
6267 SP
: constant Node_Id
:=
6268 Get_Attribute_Definition_Clause
6269 (U_Ent
, Attribute_Storage_Pool
);
6272 if Present
(SP
) then
6273 Check_Pool_Size_Clash
(U_Ent
, SP
, N
);
6277 -- Special case of for x'Storage_Size use 0
6279 if Is_OK_Static_Expression
(Expr
)
6280 and then Expr_Value
(Expr
) = 0
6282 Set_No_Pool_Assigned
(Btype
);
6286 Set_Has_Storage_Size_Clause
(Btype
);
6294 when Attribute_Stream_Size
=> Stream_Size
: declare
6295 Size
: constant Uint
:= Static_Integer
(Expr
);
6298 if Ada_Version
<= Ada_95
then
6299 Check_Restriction
(No_Implementation_Attributes
, N
);
6302 if Duplicate_Clause
then
6305 elsif Is_Elementary_Type
(U_Ent
) then
6307 -- The following errors are suppressed in ASIS mode to allow
6308 -- for different ASIS back ends or ASIS-based tools to query
6309 -- the illegal clause.
6314 elsif Size
/= System_Storage_Unit
6315 and then Size
/= System_Storage_Unit
* 2
6316 and then Size
/= System_Storage_Unit
* 4
6317 and then Size
/= System_Storage_Unit
* 8
6319 Error_Msg_Uint_1
:= UI_From_Int
(System_Storage_Unit
);
6321 ("stream size for elementary type must be a power of 2 "
6322 & "and at least ^", N
);
6324 elsif RM_Size
(U_Ent
) > Size
then
6325 Error_Msg_Uint_1
:= RM_Size
(U_Ent
);
6327 ("stream size for elementary type must be a power of 2 "
6328 & "and at least ^", N
);
6331 Set_Has_Stream_Size_Clause
(U_Ent
);
6334 Error_Msg_N
("Stream_Size cannot be given for &", Nam
);
6342 -- Value_Size attribute definition clause
6344 when Attribute_Value_Size
=> Value_Size
: declare
6345 Size
: constant Uint
:= Static_Integer
(Expr
);
6349 if not Is_Type
(U_Ent
) then
6350 Error_Msg_N
("Value_Size cannot be given for &", Nam
);
6352 elsif Duplicate_Clause
then
6355 elsif Is_Array_Type
(U_Ent
)
6356 and then not Is_Constrained
(U_Ent
)
6359 ("Value_Size cannot be given for unconstrained array", Nam
);
6362 if Is_Elementary_Type
(U_Ent
) then
6363 Check_Size
(Expr
, U_Ent
, Size
, Biased
);
6364 Set_Biased
(U_Ent
, N
, "value size clause", Biased
);
6367 Set_RM_Size
(U_Ent
, Size
);
6371 -----------------------
6372 -- Variable_Indexing --
6373 -----------------------
6375 when Attribute_Variable_Indexing
=>
6376 Check_Indexing_Functions
;
6382 when Attribute_Write
=>
6383 Analyze_Stream_TSS_Definition
(TSS_Stream_Write
);
6384 Set_Has_Specified_Stream_Write
(Ent
);
6386 -- All other attributes cannot be set
6390 ("attribute& cannot be set with definition clause", N
);
6393 -- The test for the type being frozen must be performed after any
6394 -- expression the clause has been analyzed since the expression itself
6395 -- might cause freezing that makes the clause illegal.
6397 if Rep_Item_Too_Late
(U_Ent
, N
, FOnly
) then
6400 end Analyze_Attribute_Definition_Clause
;
6402 ----------------------------
6403 -- Analyze_Code_Statement --
6404 ----------------------------
6406 procedure Analyze_Code_Statement
(N
: Node_Id
) is
6407 HSS
: constant Node_Id
:= Parent
(N
);
6408 SBody
: constant Node_Id
:= Parent
(HSS
);
6409 Subp
: constant Entity_Id
:= Current_Scope
;
6416 -- Accept foreign code statements for CodePeer. The analysis is skipped
6417 -- to avoid rejecting unrecognized constructs.
6419 if CodePeer_Mode
then
6424 -- Analyze and check we get right type, note that this implements the
6425 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that is
6426 -- the only way that Asm_Insn could possibly be visible.
6428 Analyze_And_Resolve
(Expression
(N
));
6430 if Etype
(Expression
(N
)) = Any_Type
then
6432 elsif Etype
(Expression
(N
)) /= RTE
(RE_Asm_Insn
) then
6433 Error_Msg_N
("incorrect type for code statement", N
);
6437 Check_Code_Statement
(N
);
6439 -- Make sure we appear in the handled statement sequence of a subprogram
6442 if Nkind
(HSS
) /= N_Handled_Sequence_Of_Statements
6443 or else Nkind
(SBody
) /= N_Subprogram_Body
6446 ("code statement can only appear in body of subprogram", N
);
6450 -- Do remaining checks (RM 13.8(3)) if not already done
6452 if not Is_Machine_Code_Subprogram
(Subp
) then
6453 Set_Is_Machine_Code_Subprogram
(Subp
);
6455 -- No exception handlers allowed
6457 if Present
(Exception_Handlers
(HSS
)) then
6459 ("exception handlers not permitted in machine code subprogram",
6460 First
(Exception_Handlers
(HSS
)));
6463 -- No declarations other than use clauses and pragmas (we allow
6464 -- certain internally generated declarations as well).
6466 Decl
:= First
(Declarations
(SBody
));
6467 while Present
(Decl
) loop
6468 DeclO
:= Original_Node
(Decl
);
6469 if Comes_From_Source
(DeclO
)
6470 and not Nkind_In
(DeclO
, N_Pragma
,
6471 N_Use_Package_Clause
,
6473 N_Implicit_Label_Declaration
)
6476 ("this declaration not allowed in machine code subprogram",
6483 -- No statements other than code statements, pragmas, and labels.
6484 -- Again we allow certain internally generated statements.
6486 -- In Ada 2012, qualified expressions are names, and the code
6487 -- statement is initially parsed as a procedure call.
6489 Stmt
:= First
(Statements
(HSS
));
6490 while Present
(Stmt
) loop
6491 StmtO
:= Original_Node
(Stmt
);
6493 -- A procedure call transformed into a code statement is OK
6495 if Ada_Version
>= Ada_2012
6496 and then Nkind
(StmtO
) = N_Procedure_Call_Statement
6497 and then Nkind
(Name
(StmtO
)) = N_Qualified_Expression
6501 elsif Comes_From_Source
(StmtO
)
6502 and then not Nkind_In
(StmtO
, N_Pragma
,
6507 ("this statement is not allowed in machine code subprogram",
6514 end Analyze_Code_Statement
;
6516 -----------------------------------------------
6517 -- Analyze_Enumeration_Representation_Clause --
6518 -----------------------------------------------
6520 procedure Analyze_Enumeration_Representation_Clause
(N
: Node_Id
) is
6521 Ident
: constant Node_Id
:= Identifier
(N
);
6522 Aggr
: constant Node_Id
:= Array_Aggregate
(N
);
6523 Enumtype
: Entity_Id
;
6530 Err
: Boolean := False;
6531 -- Set True to avoid cascade errors and crashes on incorrect source code
6533 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(Universal_Integer
));
6534 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(Universal_Integer
));
6535 -- Allowed range of universal integer (= allowed range of enum lit vals)
6539 -- Minimum and maximum values of entries
6541 Max_Node
: Node_Id
:= Empty
; -- init to avoid warning
6542 -- Pointer to node for literal providing max value
6545 if Ignore_Rep_Clauses
then
6546 Kill_Rep_Clause
(N
);
6550 -- Ignore enumeration rep clauses by default in CodePeer mode,
6551 -- unless -gnatd.I is specified, as a work around for potential false
6552 -- positive messages.
6554 if CodePeer_Mode
and not Debug_Flag_Dot_II
then
6558 -- First some basic error checks
6561 Enumtype
:= Entity
(Ident
);
6563 if Enumtype
= Any_Type
6564 or else Rep_Item_Too_Early
(Enumtype
, N
)
6568 Enumtype
:= Underlying_Type
(Enumtype
);
6571 if not Is_Enumeration_Type
(Enumtype
) then
6573 ("enumeration type required, found}",
6574 Ident
, First_Subtype
(Enumtype
));
6578 -- Ignore rep clause on generic actual type. This will already have
6579 -- been flagged on the template as an error, and this is the safest
6580 -- way to ensure we don't get a junk cascaded message in the instance.
6582 if Is_Generic_Actual_Type
(Enumtype
) then
6585 -- Type must be in current scope
6587 elsif Scope
(Enumtype
) /= Current_Scope
then
6588 Error_Msg_N
("type must be declared in this scope", Ident
);
6591 -- Type must be a first subtype
6593 elsif not Is_First_Subtype
(Enumtype
) then
6594 Error_Msg_N
("cannot give enumeration rep clause for subtype", N
);
6597 -- Ignore duplicate rep clause
6599 elsif Has_Enumeration_Rep_Clause
(Enumtype
) then
6600 Error_Msg_N
("duplicate enumeration rep clause ignored", N
);
6603 -- Don't allow rep clause for standard [wide_[wide_]]character
6605 elsif Is_Standard_Character_Type
(Enumtype
) then
6606 Error_Msg_N
("enumeration rep clause not allowed for this type", N
);
6609 -- Check that the expression is a proper aggregate (no parentheses)
6611 elsif Paren_Count
(Aggr
) /= 0 then
6613 ("extra parentheses surrounding aggregate not allowed",
6617 -- All tests passed, so set rep clause in place
6620 Set_Has_Enumeration_Rep_Clause
(Enumtype
);
6621 Set_Has_Enumeration_Rep_Clause
(Base_Type
(Enumtype
));
6624 -- Now we process the aggregate. Note that we don't use the normal
6625 -- aggregate code for this purpose, because we don't want any of the
6626 -- normal expansion activities, and a number of special semantic
6627 -- rules apply (including the component type being any integer type)
6629 Elit
:= First_Literal
(Enumtype
);
6631 -- First the positional entries if any
6633 if Present
(Expressions
(Aggr
)) then
6634 Expr
:= First
(Expressions
(Aggr
));
6635 while Present
(Expr
) loop
6637 Error_Msg_N
("too many entries in aggregate", Expr
);
6641 Val
:= Static_Integer
(Expr
);
6643 -- Err signals that we found some incorrect entries processing
6644 -- the list. The final checks for completeness and ordering are
6645 -- skipped in this case.
6647 if Val
= No_Uint
then
6650 elsif Val
< Lo
or else Hi
< Val
then
6651 Error_Msg_N
("value outside permitted range", Expr
);
6655 Set_Enumeration_Rep
(Elit
, Val
);
6656 Set_Enumeration_Rep_Expr
(Elit
, Expr
);
6662 -- Now process the named entries if present
6664 if Present
(Component_Associations
(Aggr
)) then
6665 Assoc
:= First
(Component_Associations
(Aggr
));
6666 while Present
(Assoc
) loop
6667 Choice
:= First
(Choices
(Assoc
));
6669 if Present
(Next
(Choice
)) then
6671 ("multiple choice not allowed here", Next
(Choice
));
6675 if Nkind
(Choice
) = N_Others_Choice
then
6676 Error_Msg_N
("others choice not allowed here", Choice
);
6679 elsif Nkind
(Choice
) = N_Range
then
6681 -- ??? should allow zero/one element range here
6683 Error_Msg_N
("range not allowed here", Choice
);
6687 Analyze_And_Resolve
(Choice
, Enumtype
);
6689 if Error_Posted
(Choice
) then
6694 if Is_Entity_Name
(Choice
)
6695 and then Is_Type
(Entity
(Choice
))
6697 Error_Msg_N
("subtype name not allowed here", Choice
);
6700 -- ??? should allow static subtype with zero/one entry
6702 elsif Etype
(Choice
) = Base_Type
(Enumtype
) then
6703 if not Is_OK_Static_Expression
(Choice
) then
6704 Flag_Non_Static_Expr
6705 ("non-static expression used for choice!", Choice
);
6709 Elit
:= Expr_Value_E
(Choice
);
6711 if Present
(Enumeration_Rep_Expr
(Elit
)) then
6713 Sloc
(Enumeration_Rep_Expr
(Elit
));
6715 ("representation for& previously given#",
6720 Set_Enumeration_Rep_Expr
(Elit
, Expression
(Assoc
));
6722 Expr
:= Expression
(Assoc
);
6723 Val
:= Static_Integer
(Expr
);
6725 if Val
= No_Uint
then
6728 elsif Val
< Lo
or else Hi
< Val
then
6729 Error_Msg_N
("value outside permitted range", Expr
);
6733 Set_Enumeration_Rep
(Elit
, Val
);
6743 -- Aggregate is fully processed. Now we check that a full set of
6744 -- representations was given, and that they are in range and in order.
6745 -- These checks are only done if no other errors occurred.
6751 Elit
:= First_Literal
(Enumtype
);
6752 while Present
(Elit
) loop
6753 if No
(Enumeration_Rep_Expr
(Elit
)) then
6754 Error_Msg_NE
("missing representation for&!", N
, Elit
);
6757 Val
:= Enumeration_Rep
(Elit
);
6759 if Min
= No_Uint
then
6763 if Val
/= No_Uint
then
6764 if Max
/= No_Uint
and then Val
<= Max
then
6766 ("enumeration value for& not ordered!",
6767 Enumeration_Rep_Expr
(Elit
), Elit
);
6770 Max_Node
:= Enumeration_Rep_Expr
(Elit
);
6774 -- If there is at least one literal whose representation is not
6775 -- equal to the Pos value, then note that this enumeration type
6776 -- has a non-standard representation.
6778 if Val
/= Enumeration_Pos
(Elit
) then
6779 Set_Has_Non_Standard_Rep
(Base_Type
(Enumtype
));
6786 -- Now set proper size information
6789 Minsize
: Uint
:= UI_From_Int
(Minimum_Size
(Enumtype
));
6792 if Has_Size_Clause
(Enumtype
) then
6794 -- All OK, if size is OK now
6796 if RM_Size
(Enumtype
) >= Minsize
then
6800 -- Try if we can get by with biasing
6803 UI_From_Int
(Minimum_Size
(Enumtype
, Biased
=> True));
6805 -- Error message if even biasing does not work
6807 if RM_Size
(Enumtype
) < Minsize
then
6808 Error_Msg_Uint_1
:= RM_Size
(Enumtype
);
6809 Error_Msg_Uint_2
:= Max
;
6811 ("previously given size (^) is too small "
6812 & "for this value (^)", Max_Node
);
6814 -- If biasing worked, indicate that we now have biased rep
6818 (Enumtype
, Size_Clause
(Enumtype
), "size clause");
6823 Set_RM_Size
(Enumtype
, Minsize
);
6824 Set_Enum_Esize
(Enumtype
);
6827 Set_RM_Size
(Base_Type
(Enumtype
), RM_Size
(Enumtype
));
6828 Set_Esize
(Base_Type
(Enumtype
), Esize
(Enumtype
));
6829 Set_Alignment
(Base_Type
(Enumtype
), Alignment
(Enumtype
));
6833 -- We repeat the too late test in case it froze itself
6835 if Rep_Item_Too_Late
(Enumtype
, N
) then
6838 end Analyze_Enumeration_Representation_Clause
;
6840 ----------------------------
6841 -- Analyze_Free_Statement --
6842 ----------------------------
6844 procedure Analyze_Free_Statement
(N
: Node_Id
) is
6846 Analyze
(Expression
(N
));
6847 end Analyze_Free_Statement
;
6849 ---------------------------
6850 -- Analyze_Freeze_Entity --
6851 ---------------------------
6853 procedure Analyze_Freeze_Entity
(N
: Node_Id
) is
6855 Freeze_Entity_Checks
(N
);
6856 end Analyze_Freeze_Entity
;
6858 -----------------------------------
6859 -- Analyze_Freeze_Generic_Entity --
6860 -----------------------------------
6862 procedure Analyze_Freeze_Generic_Entity
(N
: Node_Id
) is
6863 E
: constant Entity_Id
:= Entity
(N
);
6866 if not Is_Frozen
(E
) and then Has_Delayed_Aspects
(E
) then
6867 Analyze_Aspects_At_Freeze_Point
(E
);
6870 Freeze_Entity_Checks
(N
);
6871 end Analyze_Freeze_Generic_Entity
;
6873 ------------------------------------------
6874 -- Analyze_Record_Representation_Clause --
6875 ------------------------------------------
6877 -- Note: we check as much as we can here, but we can't do any checks
6878 -- based on the position values (e.g. overlap checks) until freeze time
6879 -- because especially in Ada 2005 (machine scalar mode), the processing
6880 -- for non-standard bit order can substantially change the positions.
6881 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6882 -- for the remainder of this processing.
6884 procedure Analyze_Record_Representation_Clause
(N
: Node_Id
) is
6885 Ident
: constant Node_Id
:= Identifier
(N
);
6890 Hbit
: Uint
:= Uint_0
;
6894 Rectype
: Entity_Id
;
6897 function Is_Inherited
(Comp
: Entity_Id
) return Boolean;
6898 -- True if Comp is an inherited component in a record extension
6904 function Is_Inherited
(Comp
: Entity_Id
) return Boolean is
6905 Comp_Base
: Entity_Id
;
6908 if Ekind
(Rectype
) = E_Record_Subtype
then
6909 Comp_Base
:= Original_Record_Component
(Comp
);
6914 return Comp_Base
/= Original_Record_Component
(Comp_Base
);
6919 Is_Record_Extension
: Boolean;
6920 -- True if Rectype is a record extension
6922 CR_Pragma
: Node_Id
:= Empty
;
6923 -- Points to N_Pragma node if Complete_Representation pragma present
6925 -- Start of processing for Analyze_Record_Representation_Clause
6928 if Ignore_Rep_Clauses
then
6929 Kill_Rep_Clause
(N
);
6934 Rectype
:= Entity
(Ident
);
6936 if Rectype
= Any_Type
or else Rep_Item_Too_Early
(Rectype
, N
) then
6939 Rectype
:= Underlying_Type
(Rectype
);
6942 -- First some basic error checks
6944 if not Is_Record_Type
(Rectype
) then
6946 ("record type required, found}", Ident
, First_Subtype
(Rectype
));
6949 elsif Scope
(Rectype
) /= Current_Scope
then
6950 Error_Msg_N
("type must be declared in this scope", N
);
6953 elsif not Is_First_Subtype
(Rectype
) then
6954 Error_Msg_N
("cannot give record rep clause for subtype", N
);
6957 elsif Has_Record_Rep_Clause
(Rectype
) then
6958 Error_Msg_N
("duplicate record rep clause ignored", N
);
6961 elsif Rep_Item_Too_Late
(Rectype
, N
) then
6965 -- We know we have a first subtype, now possibly go to the anonymous
6966 -- base type to determine whether Rectype is a record extension.
6968 Recdef
:= Type_Definition
(Declaration_Node
(Base_Type
(Rectype
)));
6969 Is_Record_Extension
:=
6970 Nkind
(Recdef
) = N_Derived_Type_Definition
6971 and then Present
(Record_Extension_Part
(Recdef
));
6973 if Present
(Mod_Clause
(N
)) then
6975 Loc
: constant Source_Ptr
:= Sloc
(N
);
6976 M
: constant Node_Id
:= Mod_Clause
(N
);
6977 P
: constant List_Id
:= Pragmas_Before
(M
);
6981 pragma Warnings
(Off
, Mod_Val
);
6984 Check_Restriction
(No_Obsolescent_Features
, Mod_Clause
(N
));
6986 if Warn_On_Obsolescent_Feature
then
6988 ("?j?mod clause is an obsolescent feature (RM J.8)", N
);
6990 ("\?j?use alignment attribute definition clause instead", N
);
6997 -- In ASIS_Mode mode, expansion is disabled, but we must convert
6998 -- the Mod clause into an alignment clause anyway, so that the
6999 -- back end can compute and back-annotate properly the size and
7000 -- alignment of types that may include this record.
7002 -- This seems dubious, this destroys the source tree in a manner
7003 -- not detectable by ASIS ???
7005 if Operating_Mode
= Check_Semantics
and then ASIS_Mode
then
7007 Make_Attribute_Definition_Clause
(Loc
,
7008 Name
=> New_Occurrence_Of
(Base_Type
(Rectype
), Loc
),
7009 Chars
=> Name_Alignment
,
7010 Expression
=> Relocate_Node
(Expression
(M
)));
7012 Set_From_At_Mod
(AtM_Nod
);
7013 Insert_After
(N
, AtM_Nod
);
7014 Mod_Val
:= Get_Alignment_Value
(Expression
(AtM_Nod
));
7015 Set_Mod_Clause
(N
, Empty
);
7018 -- Get the alignment value to perform error checking
7020 Mod_Val
:= Get_Alignment_Value
(Expression
(M
));
7025 -- For untagged types, clear any existing component clauses for the
7026 -- type. If the type is derived, this is what allows us to override
7027 -- a rep clause for the parent. For type extensions, the representation
7028 -- of the inherited components is inherited, so we want to keep previous
7029 -- component clauses for completeness.
7031 if not Is_Tagged_Type
(Rectype
) then
7032 Comp
:= First_Component_Or_Discriminant
(Rectype
);
7033 while Present
(Comp
) loop
7034 Set_Component_Clause
(Comp
, Empty
);
7035 Next_Component_Or_Discriminant
(Comp
);
7039 -- All done if no component clauses
7041 CC
:= First
(Component_Clauses
(N
));
7047 -- A representation like this applies to the base type
7049 Set_Has_Record_Rep_Clause
(Base_Type
(Rectype
));
7050 Set_Has_Non_Standard_Rep
(Base_Type
(Rectype
));
7051 Set_Has_Specified_Layout
(Base_Type
(Rectype
));
7053 -- Process the component clauses
7055 while Present
(CC
) loop
7059 if Nkind
(CC
) = N_Pragma
then
7062 -- The only pragma of interest is Complete_Representation
7064 if Pragma_Name
(CC
) = Name_Complete_Representation
then
7068 -- Processing for real component clause
7071 Posit
:= Static_Integer
(Position
(CC
));
7072 Fbit
:= Static_Integer
(First_Bit
(CC
));
7073 Lbit
:= Static_Integer
(Last_Bit
(CC
));
7076 and then Fbit
/= No_Uint
7077 and then Lbit
/= No_Uint
7080 Error_Msg_N
("position cannot be negative", Position
(CC
));
7083 Error_Msg_N
("first bit cannot be negative", First_Bit
(CC
));
7085 -- The Last_Bit specified in a component clause must not be
7086 -- less than the First_Bit minus one (RM-13.5.1(10)).
7088 elsif Lbit
< Fbit
- 1 then
7090 ("last bit cannot be less than first bit minus one",
7093 -- Values look OK, so find the corresponding record component
7094 -- Even though the syntax allows an attribute reference for
7095 -- implementation-defined components, GNAT does not allow the
7096 -- tag to get an explicit position.
7098 elsif Nkind
(Component_Name
(CC
)) = N_Attribute_Reference
then
7099 if Attribute_Name
(Component_Name
(CC
)) = Name_Tag
then
7100 Error_Msg_N
("position of tag cannot be specified", CC
);
7102 Error_Msg_N
("illegal component name", CC
);
7106 Comp
:= First_Entity
(Rectype
);
7107 while Present
(Comp
) loop
7108 exit when Chars
(Comp
) = Chars
(Component_Name
(CC
));
7114 -- Maybe component of base type that is absent from
7115 -- statically constrained first subtype.
7117 Comp
:= First_Entity
(Base_Type
(Rectype
));
7118 while Present
(Comp
) loop
7119 exit when Chars
(Comp
) = Chars
(Component_Name
(CC
));
7126 ("component clause is for non-existent field", CC
);
7128 -- Ada 2012 (AI05-0026): Any name that denotes a
7129 -- discriminant of an object of an unchecked union type
7130 -- shall not occur within a record_representation_clause.
7132 -- The general restriction of using record rep clauses on
7133 -- Unchecked_Union types has now been lifted. Since it is
7134 -- possible to introduce a record rep clause which mentions
7135 -- the discriminant of an Unchecked_Union in non-Ada 2012
7136 -- code, this check is applied to all versions of the
7139 elsif Ekind
(Comp
) = E_Discriminant
7140 and then Is_Unchecked_Union
(Rectype
)
7143 ("cannot reference discriminant of unchecked union",
7144 Component_Name
(CC
));
7146 elsif Is_Record_Extension
and then Is_Inherited
(Comp
) then
7148 ("component clause not allowed for inherited "
7149 & "component&", CC
, Comp
);
7151 elsif Present
(Component_Clause
(Comp
)) then
7153 -- Diagnose duplicate rep clause, or check consistency
7154 -- if this is an inherited component. In a double fault,
7155 -- there may be a duplicate inconsistent clause for an
7156 -- inherited component.
7158 if Scope
(Original_Record_Component
(Comp
)) = Rectype
7159 or else Parent
(Component_Clause
(Comp
)) = N
7161 Error_Msg_Sloc
:= Sloc
(Component_Clause
(Comp
));
7162 Error_Msg_N
("component clause previously given#", CC
);
7166 Rep1
: constant Node_Id
:= Component_Clause
(Comp
);
7168 if Intval
(Position
(Rep1
)) /=
7169 Intval
(Position
(CC
))
7170 or else Intval
(First_Bit
(Rep1
)) /=
7171 Intval
(First_Bit
(CC
))
7172 or else Intval
(Last_Bit
(Rep1
)) /=
7173 Intval
(Last_Bit
(CC
))
7176 ("component clause inconsistent with "
7177 & "representation of ancestor", CC
);
7179 elsif Warn_On_Redundant_Constructs
then
7181 ("?r?redundant confirming component clause "
7182 & "for component!", CC
);
7187 -- Normal case where this is the first component clause we
7188 -- have seen for this entity, so set it up properly.
7191 -- Make reference for field in record rep clause and set
7192 -- appropriate entity field in the field identifier.
7195 (Comp
, Component_Name
(CC
), Set_Ref
=> False);
7196 Set_Entity
(Component_Name
(CC
), Comp
);
7198 -- Update Fbit and Lbit to the actual bit number
7200 Fbit
:= Fbit
+ UI_From_Int
(SSU
) * Posit
;
7201 Lbit
:= Lbit
+ UI_From_Int
(SSU
) * Posit
;
7203 if Has_Size_Clause
(Rectype
)
7204 and then RM_Size
(Rectype
) <= Lbit
7207 ("bit number out of range of specified size",
7210 Set_Component_Clause
(Comp
, CC
);
7211 Set_Component_Bit_Offset
(Comp
, Fbit
);
7212 Set_Esize
(Comp
, 1 + (Lbit
- Fbit
));
7213 Set_Normalized_First_Bit
(Comp
, Fbit
mod SSU
);
7214 Set_Normalized_Position
(Comp
, Fbit
/ SSU
);
7216 if Warn_On_Overridden_Size
7217 and then Has_Size_Clause
(Etype
(Comp
))
7218 and then RM_Size
(Etype
(Comp
)) /= Esize
(Comp
)
7221 ("?S?component size overrides size clause for&",
7222 Component_Name
(CC
), Etype
(Comp
));
7225 -- This information is also set in the corresponding
7226 -- component of the base type, found by accessing the
7227 -- Original_Record_Component link if it is present.
7229 Ocomp
:= Original_Record_Component
(Comp
);
7236 (Component_Name
(CC
),
7242 (Comp
, First_Node
(CC
), "component clause", Biased
);
7244 if Present
(Ocomp
) then
7245 Set_Component_Clause
(Ocomp
, CC
);
7246 Set_Component_Bit_Offset
(Ocomp
, Fbit
);
7247 Set_Normalized_First_Bit
(Ocomp
, Fbit
mod SSU
);
7248 Set_Normalized_Position
(Ocomp
, Fbit
/ SSU
);
7249 Set_Esize
(Ocomp
, 1 + (Lbit
- Fbit
));
7251 Set_Normalized_Position_Max
7252 (Ocomp
, Normalized_Position
(Ocomp
));
7254 -- Note: we don't use Set_Biased here, because we
7255 -- already gave a warning above if needed, and we
7256 -- would get a duplicate for the same name here.
7258 Set_Has_Biased_Representation
7259 (Ocomp
, Has_Biased_Representation
(Comp
));
7262 if Esize
(Comp
) < 0 then
7263 Error_Msg_N
("component size is negative", CC
);
7274 -- Check missing components if Complete_Representation pragma appeared
7276 if Present
(CR_Pragma
) then
7277 Comp
:= First_Component_Or_Discriminant
(Rectype
);
7278 while Present
(Comp
) loop
7279 if No
(Component_Clause
(Comp
)) then
7281 ("missing component clause for &", CR_Pragma
, Comp
);
7284 Next_Component_Or_Discriminant
(Comp
);
7287 -- Give missing components warning if required
7289 elsif Warn_On_Unrepped_Components
then
7291 Num_Repped_Components
: Nat
:= 0;
7292 Num_Unrepped_Components
: Nat
:= 0;
7295 -- First count number of repped and unrepped components
7297 Comp
:= First_Component_Or_Discriminant
(Rectype
);
7298 while Present
(Comp
) loop
7299 if Present
(Component_Clause
(Comp
)) then
7300 Num_Repped_Components
:= Num_Repped_Components
+ 1;
7302 Num_Unrepped_Components
:= Num_Unrepped_Components
+ 1;
7305 Next_Component_Or_Discriminant
(Comp
);
7308 -- We are only interested in the case where there is at least one
7309 -- unrepped component, and at least half the components have rep
7310 -- clauses. We figure that if less than half have them, then the
7311 -- partial rep clause is really intentional. If the component
7312 -- type has no underlying type set at this point (as for a generic
7313 -- formal type), we don't know enough to give a warning on the
7316 if Num_Unrepped_Components
> 0
7317 and then Num_Unrepped_Components
< Num_Repped_Components
7319 Comp
:= First_Component_Or_Discriminant
(Rectype
);
7320 while Present
(Comp
) loop
7321 if No
(Component_Clause
(Comp
))
7322 and then Comes_From_Source
(Comp
)
7323 and then Present
(Underlying_Type
(Etype
(Comp
)))
7324 and then (Is_Scalar_Type
(Underlying_Type
(Etype
(Comp
)))
7325 or else Size_Known_At_Compile_Time
7326 (Underlying_Type
(Etype
(Comp
))))
7327 and then not Has_Warnings_Off
(Rectype
)
7329 -- Ignore discriminant in unchecked union, since it is
7330 -- not there, and cannot have a component clause.
7332 and then (not Is_Unchecked_Union
(Rectype
)
7333 or else Ekind
(Comp
) /= E_Discriminant
)
7335 Error_Msg_Sloc
:= Sloc
(Comp
);
7337 ("?C?no component clause given for & declared #",
7341 Next_Component_Or_Discriminant
(Comp
);
7346 end Analyze_Record_Representation_Clause
;
7348 -------------------------------------
7349 -- Build_Discrete_Static_Predicate --
7350 -------------------------------------
7352 procedure Build_Discrete_Static_Predicate
7357 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
7359 Non_Static
: exception;
7360 -- Raised if something non-static is found
7362 Btyp
: constant Entity_Id
:= Base_Type
(Typ
);
7364 BLo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(Btyp
));
7365 BHi
: constant Uint
:= Expr_Value
(Type_High_Bound
(Btyp
));
7366 -- Low bound and high bound value of base type of Typ
7370 -- Bounds for constructing the static predicate. We use the bound of the
7371 -- subtype if it is static, otherwise the corresponding base type bound.
7372 -- Note: a non-static subtype can have a static predicate.
7377 -- One entry in a Rlist value, a single REnt (range entry) value denotes
7378 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
7381 type RList
is array (Nat
range <>) of REnt
;
7382 -- A list of ranges. The ranges are sorted in increasing order, and are
7383 -- disjoint (there is a gap of at least one value between each range in
7384 -- the table). A value is in the set of ranges in Rlist if it lies
7385 -- within one of these ranges.
7387 False_Range
: constant RList
:=
7388 RList
'(1 .. 0 => REnt'(No_Uint
, No_Uint
));
7389 -- An empty set of ranges represents a range list that can never be
7390 -- satisfied, since there are no ranges in which the value could lie,
7391 -- so it does not lie in any of them. False_Range is a canonical value
7392 -- for this empty set, but general processing should test for an Rlist
7393 -- with length zero (see Is_False predicate), since other null ranges
7394 -- may appear which must be treated as False.
7396 True_Range
: constant RList
:= RList
'(1 => REnt'(BLo
, BHi
));
7397 -- Range representing True, value must be in the base range
7399 function "and" (Left
: RList
; Right
: RList
) return RList
;
7400 -- And's together two range lists, returning a range list. This is a set
7401 -- intersection operation.
7403 function "or" (Left
: RList
; Right
: RList
) return RList
;
7404 -- Or's together two range lists, returning a range list. This is a set
7407 function "not" (Right
: RList
) return RList
;
7408 -- Returns complement of a given range list, i.e. a range list
7409 -- representing all the values in TLo .. THi that are not in the input
7412 function Build_Val
(V
: Uint
) return Node_Id
;
7413 -- Return an analyzed N_Identifier node referencing this value, suitable
7414 -- for use as an entry in the Static_Discrte_Predicate list. This node
7415 -- is typed with the base type.
7417 function Build_Range
(Lo
: Uint
; Hi
: Uint
) return Node_Id
;
7418 -- Return an analyzed N_Range node referencing this range, suitable for
7419 -- use as an entry in the Static_Discrete_Predicate list. This node is
7420 -- typed with the base type.
7422 function Get_RList
(Exp
: Node_Id
) return RList
;
7423 -- This is a recursive routine that converts the given expression into a
7424 -- list of ranges, suitable for use in building the static predicate.
7426 function Is_False
(R
: RList
) return Boolean;
7427 pragma Inline
(Is_False
);
7428 -- Returns True if the given range list is empty, and thus represents a
7429 -- False list of ranges that can never be satisfied.
7431 function Is_True
(R
: RList
) return Boolean;
7432 -- Returns True if R trivially represents the True predicate by having a
7433 -- single range from BLo to BHi.
7435 function Is_Type_Ref
(N
: Node_Id
) return Boolean;
7436 pragma Inline
(Is_Type_Ref
);
7437 -- Returns if True if N is a reference to the type for the predicate in
7438 -- the expression (i.e. if it is an identifier whose Chars field matches
7439 -- the Nam given in the call). N must not be parenthesized, if the type
7440 -- name appears in parens, this routine will return False.
7442 function Lo_Val
(N
: Node_Id
) return Uint
;
7443 -- Given an entry from a Static_Discrete_Predicate list that is either
7444 -- a static expression or static range, gets either the expression value
7445 -- or the low bound of the range.
7447 function Hi_Val
(N
: Node_Id
) return Uint
;
7448 -- Given an entry from a Static_Discrete_Predicate list that is either
7449 -- a static expression or static range, gets either the expression value
7450 -- or the high bound of the range.
7452 function Membership_Entry
(N
: Node_Id
) return RList
;
7453 -- Given a single membership entry (range, value, or subtype), returns
7454 -- the corresponding range list. Raises Static_Error if not static.
7456 function Membership_Entries
(N
: Node_Id
) return RList
;
7457 -- Given an element on an alternatives list of a membership operation,
7458 -- returns the range list corresponding to this entry and all following
7459 -- entries (i.e. returns the "or" of this list of values).
7461 function Stat_Pred
(Typ
: Entity_Id
) return RList
;
7462 -- Given a type, if it has a static predicate, then return the predicate
7463 -- as a range list, otherwise raise Non_Static.
7469 function "and" (Left
: RList
; Right
: RList
) return RList
is
7471 -- First range of result
7473 SLeft
: Nat
:= Left
'First;
7474 -- Start of rest of left entries
7476 SRight
: Nat
:= Right
'First;
7477 -- Start of rest of right entries
7480 -- If either range is True, return the other
7482 if Is_True
(Left
) then
7484 elsif Is_True
(Right
) then
7488 -- If either range is False, return False
7490 if Is_False
(Left
) or else Is_False
(Right
) then
7494 -- Loop to remove entries at start that are disjoint, and thus just
7495 -- get discarded from the result entirely.
7498 -- If no operands left in either operand, result is false
7500 if SLeft
> Left
'Last or else SRight
> Right
'Last then
7503 -- Discard first left operand entry if disjoint with right
7505 elsif Left
(SLeft
).Hi
< Right
(SRight
).Lo
then
7508 -- Discard first right operand entry if disjoint with left
7510 elsif Right
(SRight
).Hi
< Left
(SLeft
).Lo
then
7511 SRight
:= SRight
+ 1;
7513 -- Otherwise we have an overlapping entry
7520 -- Now we have two non-null operands, and first entries overlap. The
7521 -- first entry in the result will be the overlapping part of these
7524 FEnt
:= REnt
'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
7525 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
7527 -- Now we can remove the entry that ended at a lower value, since its
7528 -- contribution is entirely contained in Fent.
7530 if Left (SLeft).Hi <= Right (SRight).Hi then
7533 SRight := SRight + 1;
7536 -- Compute result by concatenating this first entry with the "and" of
7537 -- the remaining parts of the left and right operands. Note that if
7538 -- either of these is empty, "and" will yield empty, so that we will
7539 -- end up with just Fent, which is what we want in that case.
7542 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
7549 function "not" (Right : RList) return RList is
7551 -- Return True if False range
7553 if Is_False (Right) then
7557 -- Return False if True range
7559 if Is_True (Right) then
7563 -- Here if not trivial case
7566 Result : RList (1 .. Right'Length + 1);
7567 -- May need one more entry for gap at beginning and end
7570 -- Number of entries stored in Result
7575 if Right (Right'First).Lo > TLo then
7577 Result (Count) := REnt'(TLo
, Right
(Right
'First).Lo
- 1);
7580 -- Gaps between ranges
7582 for J
in Right
'First .. Right
'Last - 1 loop
7584 Result
(Count
) := REnt
'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
7589 if Right (Right'Last).Hi < THi then
7591 Result (Count) := REnt'(Right
(Right
'Last).Hi
+ 1, THi
);
7594 return Result
(1 .. Count
);
7602 function "or" (Left
: RList
; Right
: RList
) return RList
is
7604 -- First range of result
7606 SLeft
: Nat
:= Left
'First;
7607 -- Start of rest of left entries
7609 SRight
: Nat
:= Right
'First;
7610 -- Start of rest of right entries
7613 -- If either range is True, return True
7615 if Is_True
(Left
) or else Is_True
(Right
) then
7619 -- If either range is False (empty), return the other
7621 if Is_False
(Left
) then
7623 elsif Is_False
(Right
) then
7627 -- Initialize result first entry from left or right operand depending
7628 -- on which starts with the lower range.
7630 if Left
(SLeft
).Lo
< Right
(SRight
).Lo
then
7631 FEnt
:= Left
(SLeft
);
7634 FEnt
:= Right
(SRight
);
7635 SRight
:= SRight
+ 1;
7638 -- This loop eats ranges from left and right operands that are
7639 -- contiguous with the first range we are gathering.
7642 -- Eat first entry in left operand if contiguous or overlapped by
7643 -- gathered first operand of result.
7645 if SLeft
<= Left
'Last
7646 and then Left
(SLeft
).Lo
<= FEnt
.Hi
+ 1
7648 FEnt
.Hi
:= UI_Max
(FEnt
.Hi
, Left
(SLeft
).Hi
);
7651 -- Eat first entry in right operand if contiguous or overlapped by
7652 -- gathered right operand of result.
7654 elsif SRight
<= Right
'Last
7655 and then Right
(SRight
).Lo
<= FEnt
.Hi
+ 1
7657 FEnt
.Hi
:= UI_Max
(FEnt
.Hi
, Right
(SRight
).Hi
);
7658 SRight
:= SRight
+ 1;
7660 -- All done if no more entries to eat
7667 -- Obtain result as the first entry we just computed, concatenated
7668 -- to the "or" of the remaining results (if one operand is empty,
7669 -- this will just concatenate with the other
7672 FEnt
& (Left
(SLeft
.. Left
'Last) or Right
(SRight
.. Right
'Last));
7679 function Build_Range
(Lo
: Uint
; Hi
: Uint
) return Node_Id
is
7684 Low_Bound
=> Build_Val
(Lo
),
7685 High_Bound
=> Build_Val
(Hi
));
7686 Set_Etype
(Result
, Btyp
);
7687 Set_Analyzed
(Result
);
7695 function Build_Val
(V
: Uint
) return Node_Id
is
7699 if Is_Enumeration_Type
(Typ
) then
7700 Result
:= Get_Enum_Lit_From_Pos
(Typ
, V
, Loc
);
7702 Result
:= Make_Integer_Literal
(Loc
, V
);
7705 Set_Etype
(Result
, Btyp
);
7706 Set_Is_Static_Expression
(Result
);
7707 Set_Analyzed
(Result
);
7715 function Get_RList
(Exp
: Node_Id
) return RList
is
7720 -- Static expression can only be true or false
7722 if Is_OK_Static_Expression
(Exp
) then
7723 if Expr_Value
(Exp
) = 0 then
7730 -- Otherwise test node type
7741 return Get_RList
(Left_Opnd
(Exp
))
7743 Get_RList
(Right_Opnd
(Exp
));
7750 return Get_RList
(Left_Opnd
(Exp
))
7752 Get_RList
(Right_Opnd
(Exp
));
7757 return not Get_RList
(Right_Opnd
(Exp
));
7759 -- Comparisons of type with static value
7761 when N_Op_Compare
=>
7763 -- Type is left operand
7765 if Is_Type_Ref
(Left_Opnd
(Exp
))
7766 and then Is_OK_Static_Expression
(Right_Opnd
(Exp
))
7768 Val
:= Expr_Value
(Right_Opnd
(Exp
));
7770 -- Typ is right operand
7772 elsif Is_Type_Ref
(Right_Opnd
(Exp
))
7773 and then Is_OK_Static_Expression
(Left_Opnd
(Exp
))
7775 Val
:= Expr_Value
(Left_Opnd
(Exp
));
7777 -- Invert sense of comparison
7780 when N_Op_Gt
=> Op
:= N_Op_Lt
;
7781 when N_Op_Lt
=> Op
:= N_Op_Gt
;
7782 when N_Op_Ge
=> Op
:= N_Op_Le
;
7783 when N_Op_Le
=> Op
:= N_Op_Ge
;
7784 when others => null;
7787 -- Other cases are non-static
7793 -- Construct range according to comparison operation
7797 return RList
'(1 => REnt'(Val
, Val
));
7800 return RList
'(1 => REnt'(Val
, BHi
));
7803 return RList
'(1 => REnt'(Val
+ 1, BHi
));
7806 return RList
'(1 => REnt'(BLo
, Val
));
7809 return RList
'(1 => REnt'(BLo
, Val
- 1));
7812 return RList
'(REnt'(BLo
, Val
- 1), REnt
'(Val + 1, BHi));
7815 raise Program_Error;
7821 if not Is_Type_Ref (Left_Opnd (Exp)) then
7825 if Present (Right_Opnd (Exp)) then
7826 return Membership_Entry (Right_Opnd (Exp));
7828 return Membership_Entries (First (Alternatives (Exp)));
7831 -- Negative membership (NOT IN)
7834 if not Is_Type_Ref (Left_Opnd (Exp)) then
7838 if Present (Right_Opnd (Exp)) then
7839 return not Membership_Entry (Right_Opnd (Exp));
7841 return not Membership_Entries (First (Alternatives (Exp)));
7844 -- Function call, may be call to static predicate
7846 when N_Function_Call =>
7847 if Is_Entity_Name (Name (Exp)) then
7849 Ent : constant Entity_Id := Entity (Name (Exp));
7851 if Is_Predicate_Function (Ent)
7853 Is_Predicate_Function_M (Ent)
7855 return Stat_Pred (Etype (First_Formal (Ent)));
7860 -- Other function call cases are non-static
7864 -- Qualified expression, dig out the expression
7866 when N_Qualified_Expression =>
7867 return Get_RList (Expression (Exp));
7869 when N_Case_Expression =>
7876 if not Is_Entity_Name (Expression (Expr))
7877 or else Etype (Expression (Expr)) /= Typ
7880 ("expression must denaote subtype", Expression (Expr));
7884 -- Collect discrete choices in all True alternatives
7886 Choices := New_List;
7887 Alt := First (Alternatives (Exp));
7888 while Present (Alt) loop
7889 Dep := Expression (Alt);
7891 if not Is_OK_Static_Expression (Dep) then
7894 elsif Is_True (Expr_Value (Dep)) then
7895 Append_List_To (Choices,
7896 New_Copy_List (Discrete_Choices (Alt)));
7902 return Membership_Entries (First (Choices));
7905 -- Expression with actions: if no actions, dig out expression
7907 when N_Expression_With_Actions =>
7908 if Is_Empty_List (Actions (Exp)) then
7909 return Get_RList (Expression (Exp));
7917 return (Get_RList (Left_Opnd (Exp))
7918 and not Get_RList (Right_Opnd (Exp)))
7919 or (Get_RList (Right_Opnd (Exp))
7920 and not Get_RList (Left_Opnd (Exp)));
7922 -- Any other node type is non-static
7933 function Hi_Val (N : Node_Id) return Uint is
7935 if Is_OK_Static_Expression (N) then
7936 return Expr_Value (N);
7938 pragma Assert (Nkind (N) = N_Range);
7939 return Expr_Value (High_Bound (N));
7947 function Is_False (R : RList) return Boolean is
7949 return R'Length = 0;
7956 function Is_True (R : RList) return Boolean is
7959 and then R (R'First).Lo = BLo
7960 and then R (R'First).Hi = BHi;
7967 function Is_Type_Ref (N : Node_Id) return Boolean is
7969 return Nkind (N) = N_Identifier
7970 and then Chars (N) = Nam
7971 and then Paren_Count (N) = 0;
7978 function Lo_Val (N : Node_Id) return Uint is
7980 if Is_OK_Static_Expression (N) then
7981 return Expr_Value (N);
7983 pragma Assert (Nkind (N) = N_Range);
7984 return Expr_Value (Low_Bound (N));
7988 ------------------------
7989 -- Membership_Entries --
7990 ------------------------
7992 function Membership_Entries (N : Node_Id) return RList is
7994 if No (Next (N)) then
7995 return Membership_Entry (N);
7997 return Membership_Entry (N) or Membership_Entries (Next (N));
7999 end Membership_Entries;
8001 ----------------------
8002 -- Membership_Entry --
8003 ----------------------
8005 function Membership_Entry (N : Node_Id) return RList is
8013 if Nkind (N) = N_Range then
8014 if not Is_OK_Static_Expression (Low_Bound (N))
8016 not Is_OK_Static_Expression (High_Bound (N))
8020 SLo := Expr_Value (Low_Bound (N));
8021 SHi := Expr_Value (High_Bound (N));
8022 return RList'(1 => REnt
'(SLo, SHi));
8025 -- Static expression case
8027 elsif Is_OK_Static_Expression (N) then
8028 Val := Expr_Value (N);
8029 return RList'(1 => REnt
'(Val, Val));
8031 -- Identifier (other than static expression) case
8033 else pragma Assert (Nkind (N) = N_Identifier);
8037 if Is_Type (Entity (N)) then
8039 -- If type has predicates, process them
8041 if Has_Predicates (Entity (N)) then
8042 return Stat_Pred (Entity (N));
8044 -- For static subtype without predicates, get range
8046 elsif Is_OK_Static_Subtype (Entity (N)) then
8047 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
8048 SHi := Expr_Value (Type_High_Bound (Entity (N)));
8049 return RList'(1 => REnt
'(SLo, SHi));
8051 -- Any other type makes us non-static
8057 -- Any other kind of identifier in predicate (e.g. a non-static
8058 -- expression value) means this is not a static predicate.
8064 end Membership_Entry;
8070 function Stat_Pred (Typ : Entity_Id) return RList is
8072 -- Not static if type does not have static predicates
8074 if not Has_Static_Predicate (Typ) then
8078 -- Otherwise we convert the predicate list to a range list
8081 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
8082 Result : RList (1 .. List_Length (Spred));
8086 P := First (Static_Discrete_Predicate (Typ));
8087 for J in Result'Range loop
8088 Result (J) := REnt'(Lo_Val
(P
), Hi_Val
(P
));
8096 -- Start of processing for Build_Discrete_Static_Predicate
8099 -- Establish bounds for the predicate
8101 if Compile_Time_Known_Value
(Type_Low_Bound
(Typ
)) then
8102 TLo
:= Expr_Value
(Type_Low_Bound
(Typ
));
8107 if Compile_Time_Known_Value
(Type_High_Bound
(Typ
)) then
8108 THi
:= Expr_Value
(Type_High_Bound
(Typ
));
8113 -- Analyze the expression to see if it is a static predicate
8116 Ranges
: constant RList
:= Get_RList
(Expr
);
8117 -- Range list from expression if it is static
8122 -- Convert range list into a form for the static predicate. In the
8123 -- Ranges array, we just have raw ranges, these must be converted
8124 -- to properly typed and analyzed static expressions or range nodes.
8126 -- Note: here we limit ranges to the ranges of the subtype, so that
8127 -- a predicate is always false for values outside the subtype. That
8128 -- seems fine, such values are invalid anyway, and considering them
8129 -- to fail the predicate seems allowed and friendly, and furthermore
8130 -- simplifies processing for case statements and loops.
8134 for J
in Ranges
'Range loop
8136 Lo
: Uint
:= Ranges
(J
).Lo
;
8137 Hi
: Uint
:= Ranges
(J
).Hi
;
8140 -- Ignore completely out of range entry
8142 if Hi
< TLo
or else Lo
> THi
then
8145 -- Otherwise process entry
8148 -- Adjust out of range value to subtype range
8158 -- Convert range into required form
8160 Append_To
(Plist
, Build_Range
(Lo
, Hi
));
8165 -- Processing was successful and all entries were static, so now we
8166 -- can store the result as the predicate list.
8168 Set_Static_Discrete_Predicate
(Typ
, Plist
);
8170 -- The processing for static predicates put the expression into
8171 -- canonical form as a series of ranges. It also eliminated
8172 -- duplicates and collapsed and combined ranges. We might as well
8173 -- replace the alternatives list of the right operand of the
8174 -- membership test with the static predicate list, which will
8175 -- usually be more efficient.
8178 New_Alts
: constant List_Id
:= New_List
;
8183 Old_Node
:= First
(Plist
);
8184 while Present
(Old_Node
) loop
8185 New_Node
:= New_Copy
(Old_Node
);
8187 if Nkind
(New_Node
) = N_Range
then
8188 Set_Low_Bound
(New_Node
, New_Copy
(Low_Bound
(Old_Node
)));
8189 Set_High_Bound
(New_Node
, New_Copy
(High_Bound
(Old_Node
)));
8192 Append_To
(New_Alts
, New_Node
);
8196 -- If empty list, replace by False
8198 if Is_Empty_List
(New_Alts
) then
8199 Rewrite
(Expr
, New_Occurrence_Of
(Standard_False
, Loc
));
8201 -- Else replace by set membership test
8206 Left_Opnd
=> Make_Identifier
(Loc
, Nam
),
8207 Right_Opnd
=> Empty
,
8208 Alternatives
=> New_Alts
));
8210 -- Resolve new expression in function context
8212 Install_Formals
(Predicate_Function
(Typ
));
8213 Push_Scope
(Predicate_Function
(Typ
));
8214 Analyze_And_Resolve
(Expr
, Standard_Boolean
);
8220 -- If non-static, return doing nothing
8225 end Build_Discrete_Static_Predicate
;
8227 --------------------------------
8228 -- Build_Export_Import_Pragma --
8229 --------------------------------
8231 function Build_Export_Import_Pragma
8233 Id
: Entity_Id
) return Node_Id
8235 Asp_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Asp
);
8236 Expr
: constant Node_Id
:= Expression
(Asp
);
8237 Loc
: constant Source_Ptr
:= Sloc
(Asp
);
8248 Create_Pragma
: Boolean := False;
8249 -- This flag is set when the aspect form is such that it warrants the
8250 -- creation of a corresponding pragma.
8253 if Present
(Expr
) then
8254 if Error_Posted
(Expr
) then
8257 elsif Is_True
(Expr_Value
(Expr
)) then
8258 Create_Pragma
:= True;
8261 -- Otherwise the aspect defaults to True
8264 Create_Pragma
:= True;
8267 -- Nothing to do when the expression is False or is erroneous
8269 if not Create_Pragma
then
8273 -- Obtain all interfacing aspects that apply to the related entity
8275 Get_Interfacing_Aspects
8279 Expo_Asp
=> Dummy_1
,
8285 -- Handle the convention argument
8287 if Present
(Conv
) then
8288 Conv_Arg
:= New_Copy_Tree
(Expression
(Conv
));
8290 -- Assume convention "Ada' when aspect Convention is missing
8293 Conv_Arg
:= Make_Identifier
(Loc
, Name_Ada
);
8297 Make_Pragma_Argument_Association
(Loc
,
8298 Chars
=> Name_Convention
,
8299 Expression
=> Conv_Arg
));
8301 -- Handle the entity argument
8304 Make_Pragma_Argument_Association
(Loc
,
8305 Chars
=> Name_Entity
,
8306 Expression
=> New_Occurrence_Of
(Id
, Loc
)));
8308 -- Handle the External_Name argument
8310 if Present
(EN
) then
8312 Make_Pragma_Argument_Association
(Loc
,
8313 Chars
=> Name_External_Name
,
8314 Expression
=> New_Copy_Tree
(Expression
(EN
))));
8317 -- Handle the Link_Name argument
8319 if Present
(LN
) then
8321 Make_Pragma_Argument_Association
(Loc
,
8322 Chars
=> Name_Link_Name
,
8323 Expression
=> New_Copy_Tree
(Expression
(LN
))));
8327 -- pragma Export/Import
8328 -- (Convention => <Conv>/Ada,
8330 -- [External_Name => <EN>,]
8331 -- [Link_Name => <LN>]);
8335 Pragma_Identifier
=>
8336 Make_Identifier
(Loc
, Chars
(Identifier
(Asp
))),
8337 Pragma_Argument_Associations
=> Args
);
8339 -- Decorate the relevant aspect and the pragma
8341 Set_Aspect_Rep_Item
(Asp
, Prag
);
8343 Set_Corresponding_Aspect
(Prag
, Asp
);
8344 Set_From_Aspect_Specification
(Prag
);
8345 Set_Parent
(Prag
, Asp
);
8347 if Asp_Id
= Aspect_Import
and then Is_Subprogram
(Id
) then
8348 Set_Import_Pragma
(Id
, Prag
);
8352 end Build_Export_Import_Pragma
;
8354 -------------------------------
8355 -- Build_Predicate_Functions --
8356 -------------------------------
8358 -- The procedures that are constructed here have the form:
8360 -- function typPredicate (Ixxx : typ) return Boolean is
8363 -- typ1Predicate (typ1 (Ixxx))
8364 -- and then typ2Predicate (typ2 (Ixxx))
8366 -- exp1 and then exp2 and then ...
8367 -- end typPredicate;
8369 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
8370 -- this is the point at which these expressions get analyzed, providing the
8371 -- required delay, and typ1, typ2, are entities from which predicates are
8372 -- inherited. Note that we do NOT generate Check pragmas, that's because we
8373 -- use this function even if checks are off, e.g. for membership tests.
8375 -- Note that the inherited predicates are evaluated first, as required by
8378 -- Note that Sem_Eval.Real_Or_String_Static_Predicate_Matches depends on
8379 -- the form of this return expression.
8381 -- If the expression has at least one Raise_Expression, then we also build
8382 -- the typPredicateM version of the function, in which any occurrence of a
8383 -- Raise_Expression is converted to "return False".
8385 -- WARNING: This routine manages Ghost regions. Return statements must be
8386 -- replaced by gotos which jump to the end of the routine and restore the
8389 procedure Build_Predicate_Functions
(Typ
: Entity_Id
; N
: Node_Id
) is
8390 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
8393 -- This is the expression for the result of the function. It is
8394 -- is build by connecting the component predicates with AND THEN.
8396 Expr_M
: Node_Id
:= Empty
; -- init to avoid warning
8397 -- This is the corresponding return expression for the Predicate_M
8398 -- function. It differs in that raise expressions are marked for
8399 -- special expansion (see Process_REs).
8401 Object_Name
: Name_Id
;
8402 -- Name for argument of Predicate procedure. Note that we use the same
8403 -- name for both predicate functions. That way the reference within the
8404 -- predicate expression is the same in both functions.
8406 Object_Entity
: Entity_Id
;
8407 -- Entity for argument of Predicate procedure
8409 Object_Entity_M
: Entity_Id
;
8410 -- Entity for argument of separate Predicate procedure when exceptions
8411 -- are present in expression.
8414 -- The function declaration
8419 Raise_Expression_Present
: Boolean := False;
8420 -- Set True if Expr has at least one Raise_Expression
8422 procedure Add_Condition
(Cond
: Node_Id
);
8423 -- Append Cond to Expr using "and then" (or just copy Cond to Expr if
8426 procedure Add_Predicates
;
8427 -- Appends expressions for any Predicate pragmas in the rep item chain
8428 -- Typ to Expr. Note that we look only at items for this exact entity.
8429 -- Inheritance of predicates for the parent type is done by calling the
8430 -- Predicate_Function of the parent type, using Add_Call above.
8432 procedure Add_Call
(T
: Entity_Id
);
8433 -- Includes a call to the predicate function for type T in Expr if T
8434 -- has predicates and Predicate_Function (T) is non-empty.
8436 function Process_RE
(N
: Node_Id
) return Traverse_Result
;
8437 -- Used in Process REs, tests if node N is a raise expression, and if
8438 -- so, marks it to be converted to return False.
8440 procedure Process_REs
is new Traverse_Proc
(Process_RE
);
8441 -- Marks any raise expressions in Expr_M to return False
8443 function Test_RE
(N
: Node_Id
) return Traverse_Result
;
8444 -- Used in Test_REs, tests one node for being a raise expression, and if
8445 -- so sets Raise_Expression_Present True.
8447 procedure Test_REs
is new Traverse_Proc
(Test_RE
);
8448 -- Tests to see if Expr contains any raise expressions
8454 procedure Add_Call
(T
: Entity_Id
) is
8458 if Present
(T
) and then Present
(Predicate_Function
(T
)) then
8459 Set_Has_Predicates
(Typ
);
8461 -- Build the call to the predicate function of T. The type may be
8462 -- derived, so use an unchecked conversion for the actual.
8468 Unchecked_Convert_To
(T
,
8469 Make_Identifier
(Loc
, Object_Name
)));
8471 -- "and"-in the call to evolving expression
8473 Add_Condition
(Exp
);
8475 -- Output info message on inheritance if required. Note we do not
8476 -- give this information for generic actual types, since it is
8477 -- unwelcome noise in that case in instantiations. We also
8478 -- generally suppress the message in instantiations, and also
8479 -- if it involves internal names.
8481 if Opt
.List_Inherited_Aspects
8482 and then not Is_Generic_Actual_Type
(Typ
)
8483 and then Instantiation_Depth
(Sloc
(Typ
)) = 0
8484 and then not Is_Internal_Name
(Chars
(T
))
8485 and then not Is_Internal_Name
(Chars
(Typ
))
8487 Error_Msg_Sloc
:= Sloc
(Predicate_Function
(T
));
8488 Error_Msg_Node_2
:= T
;
8489 Error_Msg_N
("info: & inherits predicate from & #?L?", Typ
);
8498 procedure Add_Condition
(Cond
: Node_Id
) is
8500 -- This is the first predicate expression
8505 -- Otherwise concatenate to the existing predicate expressions by
8506 -- using "and then".
8511 Left_Opnd
=> Relocate_Node
(Expr
),
8512 Right_Opnd
=> Cond
);
8516 --------------------
8517 -- Add_Predicates --
8518 --------------------
8520 procedure Add_Predicates
is
8521 procedure Add_Predicate
(Prag
: Node_Id
);
8522 -- Concatenate the expression of predicate pragma Prag to Expr by
8523 -- using a short circuit "and then" operator.
8529 procedure Add_Predicate
(Prag
: Node_Id
) is
8530 procedure Replace_Type_Reference
(N
: Node_Id
);
8531 -- Replace a single occurrence N of the subtype name with a
8532 -- reference to the formal of the predicate function. N can be an
8533 -- identifier referencing the subtype, or a selected component,
8534 -- representing an appropriately qualified occurrence of the
8537 procedure Replace_Type_References
is
8538 new Replace_Type_References_Generic
(Replace_Type_Reference
);
8539 -- Traverse an expression changing every occurrence of an
8540 -- identifier whose name matches the name of the subtype with a
8541 -- reference to the formal parameter of the predicate function.
8543 ----------------------------
8544 -- Replace_Type_Reference --
8545 ----------------------------
8547 procedure Replace_Type_Reference
(N
: Node_Id
) is
8549 Rewrite
(N
, Make_Identifier
(Sloc
(N
), Object_Name
));
8550 -- Use the Sloc of the usage name, not the defining name
8553 Set_Entity
(N
, Object_Entity
);
8555 -- We want to treat the node as if it comes from source, so
8556 -- that ASIS will not ignore it.
8558 Set_Comes_From_Source
(N
, True);
8559 end Replace_Type_Reference
;
8563 Asp
: constant Node_Id
:= Corresponding_Aspect
(Prag
);
8567 -- Start of processing for Add_Predicate
8570 -- Mark corresponding SCO as enabled
8572 Set_SCO_Pragma_Enabled
(Sloc
(Prag
));
8574 -- Extract the arguments of the pragma. The expression itself
8575 -- is copied for use in the predicate function, to preserve the
8576 -- original version for ASIS use.
8578 Arg1
:= First
(Pragma_Argument_Associations
(Prag
));
8579 Arg2
:= Next
(Arg1
);
8581 Arg1
:= Get_Pragma_Arg
(Arg1
);
8582 Arg2
:= New_Copy_Tree
(Get_Pragma_Arg
(Arg2
));
8584 -- When the predicate pragma applies to the current type or its
8585 -- full view, replace all occurrences of the subtype name with
8586 -- references to the formal parameter of the predicate function.
8588 if Entity
(Arg1
) = Typ
8589 or else Full_View
(Entity
(Arg1
)) = Typ
8591 Replace_Type_References
(Arg2
, Typ
);
8593 -- If the predicate pragma comes from an aspect, replace the
8594 -- saved expression because we need the subtype references
8595 -- replaced for the calls to Preanalyze_Spec_Expression in
8596 -- Check_Aspect_At_xxx routines.
8598 if Present
(Asp
) then
8599 Set_Entity
(Identifier
(Asp
), New_Copy_Tree
(Arg2
));
8602 -- "and"-in the Arg2 condition to evolving expression
8604 Add_Condition
(Relocate_Node
(Arg2
));
8612 -- Start of processing for Add_Predicates
8615 Ritem
:= First_Rep_Item
(Typ
);
8617 -- If the type is private, check whether full view has inherited
8620 if Is_Private_Type
(Typ
) and then No
(Ritem
) then
8621 Ritem
:= First_Rep_Item
(Full_View
(Typ
));
8624 while Present
(Ritem
) loop
8625 if Nkind
(Ritem
) = N_Pragma
8626 and then Pragma_Name
(Ritem
) = Name_Predicate
8628 Add_Predicate
(Ritem
);
8630 -- If the type is declared in an inner package it may be frozen
8631 -- outside of the package, and the generated pragma has not been
8632 -- analyzed yet, so capture the expression for the predicate
8633 -- function at this point.
8635 elsif Nkind
(Ritem
) = N_Aspect_Specification
8636 and then Present
(Aspect_Rep_Item
(Ritem
))
8637 and then Scope
(Typ
) /= Current_Scope
8640 Prag
: constant Node_Id
:= Aspect_Rep_Item
(Ritem
);
8643 if Nkind
(Prag
) = N_Pragma
8644 and then Pragma_Name
(Prag
) = Name_Predicate
8646 Add_Predicate
(Prag
);
8651 Next_Rep_Item
(Ritem
);
8659 function Process_RE
(N
: Node_Id
) return Traverse_Result
is
8661 if Nkind
(N
) = N_Raise_Expression
then
8662 Set_Convert_To_Return_False
(N
);
8673 function Test_RE
(N
: Node_Id
) return Traverse_Result
is
8675 if Nkind
(N
) = N_Raise_Expression
then
8676 Raise_Expression_Present
:= True;
8685 Saved_GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
8686 -- Save the Ghost mode to restore on exit
8688 -- Start of processing for Build_Predicate_Functions
8691 -- Return if already built or if type does not have predicates
8693 SId
:= Predicate_Function
(Typ
);
8694 if not Has_Predicates
(Typ
)
8695 or else (Present
(SId
) and then Has_Completion
(SId
))
8700 -- The related type may be subject to pragma Ghost. Set the mode now to
8701 -- ensure that the predicate functions are properly marked as Ghost.
8703 Set_Ghost_Mode
(Typ
);
8705 -- Prepare to construct predicate expression
8709 if Present
(SId
) then
8710 FDecl
:= Unit_Declaration_Node
(SId
);
8713 FDecl
:= Build_Predicate_Function_Declaration
(Typ
);
8714 SId
:= Defining_Entity
(FDecl
);
8717 -- Recover name of formal parameter of function that replaces references
8718 -- to the type in predicate expressions.
8722 (First
(Parameter_Specifications
(Specification
(FDecl
))));
8724 Object_Name
:= Chars
(Object_Entity
);
8725 Object_Entity_M
:= Make_Defining_Identifier
(Loc
, Chars
=> Object_Name
);
8727 -- Add predicates for ancestor if present. These must come before the
8728 -- ones for the current type, as required by AI12-0071-1.
8733 Atyp
:= Nearest_Ancestor
(Typ
);
8735 -- The type may be private but the full view may inherit predicates
8737 if No
(Atyp
) and then Is_Private_Type
(Typ
) then
8738 Atyp
:= Nearest_Ancestor
(Full_View
(Typ
));
8741 if Present
(Atyp
) then
8746 -- Add Predicates for the current type
8750 -- Case where predicates are present
8752 if Present
(Expr
) then
8754 -- Test for raise expression present
8758 -- If raise expression is present, capture a copy of Expr for use
8759 -- in building the predicateM function version later on. For this
8760 -- copy we replace references to Object_Entity by Object_Entity_M.
8762 if Raise_Expression_Present
then
8764 Map
: constant Elist_Id
:= New_Elmt_List
;
8765 New_V
: Entity_Id
:= Empty
;
8767 -- The unanalyzed expression will be copied and appear in
8768 -- both functions. Normally expressions do not declare new
8769 -- entities, but quantified expressions do, so we need to
8770 -- create new entities for their bound variables, to prevent
8771 -- multiple definitions in gigi.
8773 function Reset_Loop_Variable
(N
: Node_Id
)
8774 return Traverse_Result
;
8776 procedure Collect_Loop_Variables
is
8777 new Traverse_Proc
(Reset_Loop_Variable
);
8779 ------------------------
8780 -- Reset_Loop_Variable --
8781 ------------------------
8783 function Reset_Loop_Variable
(N
: Node_Id
)
8784 return Traverse_Result
8787 if Nkind
(N
) = N_Iterator_Specification
then
8788 New_V
:= Make_Defining_Identifier
8789 (Sloc
(N
), Chars
(Defining_Identifier
(N
)));
8791 Set_Defining_Identifier
(N
, New_V
);
8795 end Reset_Loop_Variable
;
8798 Append_Elmt
(Object_Entity
, Map
);
8799 Append_Elmt
(Object_Entity_M
, Map
);
8800 Expr_M
:= New_Copy_Tree
(Expr
, Map
=> Map
);
8801 Collect_Loop_Variables
(Expr_M
);
8805 -- Build the main predicate function
8808 SIdB
: constant Entity_Id
:=
8809 Make_Defining_Identifier
(Loc
,
8810 Chars
=> New_External_Name
(Chars
(Typ
), "Predicate"));
8811 -- The entity for the function body
8817 Set_Ekind
(SIdB
, E_Function
);
8818 Set_Is_Predicate_Function
(SIdB
);
8820 -- The predicate function is shared between views of a type
8822 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
8823 Set_Predicate_Function
(Full_View
(Typ
), SId
);
8826 -- Build function body
8829 Make_Function_Specification
(Loc
,
8830 Defining_Unit_Name
=> SIdB
,
8831 Parameter_Specifications
=> New_List
(
8832 Make_Parameter_Specification
(Loc
,
8833 Defining_Identifier
=>
8834 Make_Defining_Identifier
(Loc
, Object_Name
),
8836 New_Occurrence_Of
(Typ
, Loc
))),
8837 Result_Definition
=>
8838 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8841 Make_Subprogram_Body
(Loc
,
8842 Specification
=> Spec
,
8843 Declarations
=> Empty_List
,
8844 Handled_Statement_Sequence
=>
8845 Make_Handled_Sequence_Of_Statements
(Loc
,
8846 Statements
=> New_List
(
8847 Make_Simple_Return_Statement
(Loc
,
8848 Expression
=> Expr
))));
8850 -- If declaration has not been analyzed yet, Insert declaration
8851 -- before freeze node. Insert body itself after freeze node.
8853 if not Analyzed
(FDecl
) then
8854 Insert_Before_And_Analyze
(N
, FDecl
);
8857 Insert_After_And_Analyze
(N
, FBody
);
8859 -- Static predicate functions are always side-effect free, and
8860 -- in most cases dynamic predicate functions are as well. Mark
8861 -- them as such whenever possible, so redundant predicate checks
8862 -- can be optimized. If there is a variable reference within the
8863 -- expression, the function is not pure.
8865 if Expander_Active
then
8867 Side_Effect_Free
(Expr
, Variable_Ref
=> True));
8868 Set_Is_Inlined
(SId
);
8872 -- Test for raise expressions present and if so build M version
8874 if Raise_Expression_Present
then
8876 SId
: constant Entity_Id
:=
8877 Make_Defining_Identifier
(Loc
,
8878 Chars
=> New_External_Name
(Chars
(Typ
), "PredicateM"));
8879 -- The entity for the function spec
8881 SIdB
: constant Entity_Id
:=
8882 Make_Defining_Identifier
(Loc
,
8883 Chars
=> New_External_Name
(Chars
(Typ
), "PredicateM"));
8884 -- The entity for the function body
8892 -- Mark any raise expressions for special expansion
8894 Process_REs
(Expr_M
);
8896 -- Build function declaration
8898 Set_Ekind
(SId
, E_Function
);
8899 Set_Is_Predicate_Function_M
(SId
);
8900 Set_Predicate_Function_M
(Typ
, SId
);
8902 -- The predicate function is shared between views of a type
8904 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
8905 Set_Predicate_Function_M
(Full_View
(Typ
), SId
);
8909 Make_Function_Specification
(Loc
,
8910 Defining_Unit_Name
=> SId
,
8911 Parameter_Specifications
=> New_List
(
8912 Make_Parameter_Specification
(Loc
,
8913 Defining_Identifier
=> Object_Entity_M
,
8914 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))),
8915 Result_Definition
=>
8916 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8919 Make_Subprogram_Declaration
(Loc
,
8920 Specification
=> Spec
);
8922 -- Build function body
8925 Make_Function_Specification
(Loc
,
8926 Defining_Unit_Name
=> SIdB
,
8927 Parameter_Specifications
=> New_List
(
8928 Make_Parameter_Specification
(Loc
,
8929 Defining_Identifier
=>
8930 Make_Defining_Identifier
(Loc
, Object_Name
),
8932 New_Occurrence_Of
(Typ
, Loc
))),
8933 Result_Definition
=>
8934 New_Occurrence_Of
(Standard_Boolean
, Loc
));
8936 -- Build the body, we declare the boolean expression before
8937 -- doing the return, because we are not really confident of
8938 -- what happens if a return appears within a return.
8941 Make_Defining_Identifier
(Loc
,
8942 Chars
=> New_Internal_Name
('B'));
8945 Make_Subprogram_Body
(Loc
,
8946 Specification
=> Spec
,
8948 Declarations
=> New_List
(
8949 Make_Object_Declaration
(Loc
,
8950 Defining_Identifier
=> BTemp
,
8951 Constant_Present
=> True,
8952 Object_Definition
=>
8953 New_Occurrence_Of
(Standard_Boolean
, Loc
),
8954 Expression
=> Expr_M
)),
8956 Handled_Statement_Sequence
=>
8957 Make_Handled_Sequence_Of_Statements
(Loc
,
8958 Statements
=> New_List
(
8959 Make_Simple_Return_Statement
(Loc
,
8960 Expression
=> New_Occurrence_Of
(BTemp
, Loc
)))));
8962 -- Insert declaration before freeze node and body after
8964 Insert_Before_And_Analyze
(N
, FDecl
);
8965 Insert_After_And_Analyze
(N
, FBody
);
8969 -- See if we have a static predicate. Note that the answer may be
8970 -- yes even if we have an explicit Dynamic_Predicate present.
8977 if not Is_Scalar_Type
(Typ
) and then not Is_String_Type
(Typ
) then
8980 PS
:= Is_Predicate_Static
(Expr
, Object_Name
);
8983 -- Case where we have a predicate-static aspect
8987 -- We don't set Has_Static_Predicate_Aspect, since we can have
8988 -- any of the three cases (Predicate, Dynamic_Predicate, or
8989 -- Static_Predicate) generating a predicate with an expression
8990 -- that is predicate-static. We just indicate that we have a
8991 -- predicate that can be treated as static.
8993 Set_Has_Static_Predicate
(Typ
);
8995 -- For discrete subtype, build the static predicate list
8997 if Is_Discrete_Type
(Typ
) then
8998 Build_Discrete_Static_Predicate
(Typ
, Expr
, Object_Name
);
9000 -- If we don't get a static predicate list, it means that we
9001 -- have a case where this is not possible, most typically in
9002 -- the case where we inherit a dynamic predicate. We do not
9003 -- consider this an error, we just leave the predicate as
9004 -- dynamic. But if we do succeed in building the list, then
9005 -- we mark the predicate as static.
9007 if No
(Static_Discrete_Predicate
(Typ
)) then
9008 Set_Has_Static_Predicate
(Typ
, False);
9011 -- For real or string subtype, save predicate expression
9013 elsif Is_Real_Type
(Typ
) or else Is_String_Type
(Typ
) then
9014 Set_Static_Real_Or_String_Predicate
(Typ
, Expr
);
9017 -- Case of dynamic predicate (expression is not predicate-static)
9020 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
9021 -- is only set if we have an explicit Dynamic_Predicate aspect
9022 -- given. Here we may simply have a Predicate aspect where the
9023 -- expression happens not to be predicate-static.
9025 -- Emit an error when the predicate is categorized as static
9026 -- but its expression is not predicate-static.
9028 -- First a little fiddling to get a nice location for the
9029 -- message. If the expression is of the form (A and then B),
9030 -- where A is an inherited predicate, then use the right
9031 -- operand for the Sloc. This avoids getting confused by a call
9032 -- to an inherited predicate with a less convenient source
9036 while Nkind
(EN
) = N_And_Then
9037 and then Nkind
(Left_Opnd
(EN
)) = N_Function_Call
9038 and then Is_Predicate_Function
9039 (Entity
(Name
(Left_Opnd
(EN
))))
9041 EN
:= Right_Opnd
(EN
);
9044 -- Now post appropriate message
9046 if Has_Static_Predicate_Aspect
(Typ
) then
9047 if Is_Scalar_Type
(Typ
) or else Is_String_Type
(Typ
) then
9049 ("expression is not predicate-static (RM 3.2.4(16-22))",
9053 ("static predicate requires scalar or string type", EN
);
9060 Restore_Ghost_Mode
(Saved_GM
);
9061 end Build_Predicate_Functions
;
9063 ------------------------------------------
9064 -- Build_Predicate_Function_Declaration --
9065 ------------------------------------------
9067 -- WARNING: This routine manages Ghost regions. Return statements must be
9068 -- replaced by gotos which jump to the end of the routine and restore the
9071 function Build_Predicate_Function_Declaration
9072 (Typ
: Entity_Id
) return Node_Id
9074 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
9076 Saved_GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
9077 -- Save the Ghost mode to restore on exit
9079 Func_Decl
: Node_Id
;
9080 Func_Id
: Entity_Id
;
9084 -- The related type may be subject to pragma Ghost. Set the mode now to
9085 -- ensure that the predicate functions are properly marked as Ghost.
9087 Set_Ghost_Mode
(Typ
);
9090 Make_Defining_Identifier
(Loc
,
9091 Chars
=> New_External_Name
(Chars
(Typ
), "Predicate"));
9093 -- The predicate function requires debug info when the predicates are
9094 -- subject to Source Coverage Obligations.
9096 if Opt
.Generate_SCO
then
9097 Set_Debug_Info_Needed
(Func_Id
);
9101 Make_Function_Specification
(Loc
,
9102 Defining_Unit_Name
=> Func_Id
,
9103 Parameter_Specifications
=> New_List
(
9104 Make_Parameter_Specification
(Loc
,
9105 Defining_Identifier
=> Make_Temporary
(Loc
, 'I'),
9106 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))),
9107 Result_Definition
=>
9108 New_Occurrence_Of
(Standard_Boolean
, Loc
));
9110 Func_Decl
:= Make_Subprogram_Declaration
(Loc
, Specification
=> Spec
);
9112 Set_Ekind
(Func_Id
, E_Function
);
9113 Set_Etype
(Func_Id
, Standard_Boolean
);
9114 Set_Is_Internal
(Func_Id
);
9115 Set_Is_Predicate_Function
(Func_Id
);
9116 Set_Predicate_Function
(Typ
, Func_Id
);
9118 Insert_After
(Parent
(Typ
), Func_Decl
);
9119 Analyze
(Func_Decl
);
9121 Restore_Ghost_Mode
(Saved_GM
);
9124 end Build_Predicate_Function_Declaration
;
9126 -----------------------------------------
9127 -- Check_Aspect_At_End_Of_Declarations --
9128 -----------------------------------------
9130 procedure Check_Aspect_At_End_Of_Declarations
(ASN
: Node_Id
) is
9131 Ent
: constant Entity_Id
:= Entity
(ASN
);
9132 Ident
: constant Node_Id
:= Identifier
(ASN
);
9133 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Chars
(Ident
));
9135 End_Decl_Expr
: constant Node_Id
:= Entity
(Ident
);
9136 -- Expression to be analyzed at end of declarations
9138 Freeze_Expr
: constant Node_Id
:= Expression
(ASN
);
9139 -- Expression from call to Check_Aspect_At_Freeze_Point.
9141 T
: constant Entity_Id
:= Etype
(Original_Node
(Freeze_Expr
));
9142 -- Type required for preanalyze call. We use the original expression to
9143 -- get the proper type, to prevent cascaded errors when the expression
9144 -- is constant-folded.
9147 -- Set False if error
9149 -- On entry to this procedure, Entity (Ident) contains a copy of the
9150 -- original expression from the aspect, saved for this purpose, and
9151 -- but Expression (Ident) is a preanalyzed copy of the expression,
9152 -- preanalyzed just after the freeze point.
9154 procedure Check_Overloaded_Name
;
9155 -- For aspects whose expression is simply a name, this routine checks if
9156 -- the name is overloaded or not. If so, it verifies there is an
9157 -- interpretation that matches the entity obtained at the freeze point,
9158 -- otherwise the compiler complains.
9160 ---------------------------
9161 -- Check_Overloaded_Name --
9162 ---------------------------
9164 procedure Check_Overloaded_Name
is
9166 if not Is_Overloaded
(End_Decl_Expr
) then
9167 Err
:= not Is_Entity_Name
(End_Decl_Expr
)
9168 or else Entity
(End_Decl_Expr
) /= Entity
(Freeze_Expr
);
9174 Index
: Interp_Index
;
9178 Get_First_Interp
(End_Decl_Expr
, Index
, It
);
9179 while Present
(It
.Typ
) loop
9180 if It
.Nam
= Entity
(Freeze_Expr
) then
9185 Get_Next_Interp
(Index
, It
);
9189 end Check_Overloaded_Name
;
9191 -- Start of processing for Check_Aspect_At_End_Of_Declarations
9194 -- In an instance we do not perform the consistency check between freeze
9195 -- point and end of declarations, because it was done already in the
9196 -- analysis of the generic. Furthermore, the delayed analysis of an
9197 -- aspect of the instance may produce spurious errors when the generic
9198 -- is a child unit that references entities in the parent (which might
9199 -- not be in scope at the freeze point of the instance).
9204 -- The enclosing scope may have been rewritten during expansion (.e.g. a
9205 -- task body is rewritten as a procedure) after this conformance check
9206 -- has been performed, so do not perform it again (it may not easily be
9207 -- done if full visibility of local entities is not available).
9209 elsif not Comes_From_Source
(Current_Scope
) then
9212 -- Case of aspects Dimension, Dimension_System and Synchronization
9214 elsif A_Id
= Aspect_Synchronization
then
9217 -- Case of stream attributes, just have to compare entities. However,
9218 -- the expression is just a name (possibly overloaded), and there may
9219 -- be stream operations declared for unrelated types, so we just need
9220 -- to verify that one of these interpretations is the one available at
9221 -- at the freeze point.
9223 elsif A_Id
= Aspect_Input
or else
9224 A_Id
= Aspect_Output
or else
9225 A_Id
= Aspect_Read
or else
9228 Analyze
(End_Decl_Expr
);
9229 Check_Overloaded_Name
;
9231 elsif A_Id
= Aspect_Variable_Indexing
or else
9232 A_Id
= Aspect_Constant_Indexing
or else
9233 A_Id
= Aspect_Default_Iterator
or else
9234 A_Id
= Aspect_Iterator_Element
9236 -- Make type unfrozen before analysis, to prevent spurious errors
9237 -- about late attributes.
9239 Set_Is_Frozen
(Ent
, False);
9240 Analyze
(End_Decl_Expr
);
9241 Set_Is_Frozen
(Ent
, True);
9243 -- If the end of declarations comes before any other freeze
9244 -- point, the Freeze_Expr is not analyzed: no check needed.
9246 if Analyzed
(Freeze_Expr
) and then not In_Instance
then
9247 Check_Overloaded_Name
;
9255 -- Indicate that the expression comes from an aspect specification,
9256 -- which is used in subsequent analysis even if expansion is off.
9258 Set_Parent
(End_Decl_Expr
, ASN
);
9260 -- In a generic context the aspect expressions have not been
9261 -- preanalyzed, so do it now. There are no conformance checks
9262 -- to perform in this case.
9265 Check_Aspect_At_Freeze_Point
(ASN
);
9268 -- The default values attributes may be defined in the private part,
9269 -- and the analysis of the expression may take place when only the
9270 -- partial view is visible. The expression must be scalar, so use
9271 -- the full view to resolve.
9273 elsif (A_Id
= Aspect_Default_Value
9275 A_Id
= Aspect_Default_Component_Value
)
9276 and then Is_Private_Type
(T
)
9278 Preanalyze_Spec_Expression
(End_Decl_Expr
, Full_View
(T
));
9281 Preanalyze_Spec_Expression
(End_Decl_Expr
, T
);
9284 Err
:= not Fully_Conformant_Expressions
(End_Decl_Expr
, Freeze_Expr
);
9287 -- Output error message if error. Force error on aspect specification
9288 -- even if there is an error on the expression itself.
9292 ("!visibility of aspect for& changes after freeze point",
9295 ("info: & is frozen here, aspects evaluated at this point??",
9296 Freeze_Node
(Ent
), Ent
);
9298 end Check_Aspect_At_End_Of_Declarations
;
9300 ----------------------------------
9301 -- Check_Aspect_At_Freeze_Point --
9302 ----------------------------------
9304 procedure Check_Aspect_At_Freeze_Point
(ASN
: Node_Id
) is
9305 Ident
: constant Node_Id
:= Identifier
(ASN
);
9306 -- Identifier (use Entity field to save expression)
9308 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Chars
(Ident
));
9310 T
: Entity_Id
:= Empty
;
9311 -- Type required for preanalyze call
9314 -- On entry to this procedure, Entity (Ident) contains a copy of the
9315 -- original expression from the aspect, saved for this purpose.
9317 -- On exit from this procedure Entity (Ident) is unchanged, still
9318 -- containing that copy, but Expression (Ident) is a preanalyzed copy
9319 -- of the expression, preanalyzed just after the freeze point.
9321 -- Make a copy of the expression to be preanalyzed
9323 Set_Expression
(ASN
, New_Copy_Tree
(Entity
(Ident
)));
9325 -- Find type for preanalyze call
9329 -- No_Aspect should be impossible
9332 raise Program_Error
;
9334 -- Aspects taking an optional boolean argument
9336 when Boolean_Aspects
9337 | Library_Unit_Aspects
9339 T
:= Standard_Boolean
;
9341 -- Aspects corresponding to attribute definition clauses
9343 when Aspect_Address
=>
9344 T
:= RTE
(RE_Address
);
9346 when Aspect_Attach_Handler
=>
9347 T
:= RTE
(RE_Interrupt_ID
);
9349 when Aspect_Bit_Order
9350 | Aspect_Scalar_Storage_Order
9352 T
:= RTE
(RE_Bit_Order
);
9354 when Aspect_Convention
=>
9358 T
:= RTE
(RE_CPU_Range
);
9360 -- Default_Component_Value is resolved with the component type
9362 when Aspect_Default_Component_Value
=>
9363 T
:= Component_Type
(Entity
(ASN
));
9365 when Aspect_Default_Storage_Pool
=>
9366 T
:= Class_Wide_Type
(RTE
(RE_Root_Storage_Pool
));
9368 -- Default_Value is resolved with the type entity in question
9370 when Aspect_Default_Value
=>
9373 when Aspect_Dispatching_Domain
=>
9374 T
:= RTE
(RE_Dispatching_Domain
);
9376 when Aspect_External_Tag
=>
9377 T
:= Standard_String
;
9379 when Aspect_External_Name
=>
9380 T
:= Standard_String
;
9382 when Aspect_Link_Name
=>
9383 T
:= Standard_String
;
9385 when Aspect_Interrupt_Priority
9388 T
:= Standard_Integer
;
9390 when Aspect_Relative_Deadline
=>
9391 T
:= RTE
(RE_Time_Span
);
9393 when Aspect_Secondary_Stack_Size
=>
9394 T
:= Standard_Integer
;
9396 when Aspect_Small
=>
9398 -- Note that the expression can be of any real type (not just a
9399 -- real universal literal) as long as it is a static constant.
9403 -- For a simple storage pool, we have to retrieve the type of the
9404 -- pool object associated with the aspect's corresponding attribute
9405 -- definition clause.
9407 when Aspect_Simple_Storage_Pool
=>
9408 T
:= Etype
(Expression
(Aspect_Rep_Item
(ASN
)));
9410 when Aspect_Storage_Pool
=>
9411 T
:= Class_Wide_Type
(RTE
(RE_Root_Storage_Pool
));
9413 when Aspect_Alignment
9414 | Aspect_Component_Size
9415 | Aspect_Machine_Radix
9416 | Aspect_Object_Size
9418 | Aspect_Storage_Size
9419 | Aspect_Stream_Size
9424 when Aspect_Linker_Section
=>
9425 T
:= Standard_String
;
9427 when Aspect_Synchronization
=>
9430 -- Special case, the expression of these aspects is just an entity
9431 -- that does not need any resolution, so just analyze.
9441 Analyze
(Expression
(ASN
));
9444 -- Same for Iterator aspects, where the expression is a function
9445 -- name. Legality rules are checked separately.
9447 when Aspect_Constant_Indexing
9448 | Aspect_Default_Iterator
9449 | Aspect_Iterator_Element
9450 | Aspect_Variable_Indexing
9452 Analyze
(Expression
(ASN
));
9455 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
9457 when Aspect_Iterable
=>
9461 Cursor
: constant Entity_Id
:= Get_Cursor_Type
(ASN
, T
);
9466 if Cursor
= Any_Type
then
9470 Assoc
:= First
(Component_Associations
(Expression
(ASN
)));
9471 while Present
(Assoc
) loop
9472 Expr
:= Expression
(Assoc
);
9475 if not Error_Posted
(Expr
) then
9476 Resolve_Iterable_Operation
9477 (Expr
, Cursor
, T
, Chars
(First
(Choices
(Assoc
))));
9486 -- Invariant/Predicate take boolean expressions
9488 when Aspect_Dynamic_Predicate
9491 | Aspect_Static_Predicate
9492 | Aspect_Type_Invariant
9494 T
:= Standard_Boolean
;
9496 when Aspect_Predicate_Failure
=>
9497 T
:= Standard_String
;
9499 -- Here is the list of aspects that don't require delay analysis
9501 when Aspect_Abstract_State
9503 | Aspect_Async_Readers
9504 | Aspect_Async_Writers
9505 | Aspect_Constant_After_Elaboration
9506 | Aspect_Contract_Cases
9507 | Aspect_Default_Initial_Condition
9510 | Aspect_Dimension_System
9511 | Aspect_Effective_Reads
9512 | Aspect_Effective_Writes
9513 | Aspect_Extensions_Visible
9516 | Aspect_Implicit_Dereference
9517 | Aspect_Initial_Condition
9518 | Aspect_Initializes
9519 | Aspect_Max_Queue_Length
9520 | Aspect_Obsolescent
9523 | Aspect_Postcondition
9525 | Aspect_Precondition
9526 | Aspect_Refined_Depends
9527 | Aspect_Refined_Global
9528 | Aspect_Refined_Post
9529 | Aspect_Refined_State
9532 | Aspect_Unimplemented
9533 | Aspect_Volatile_Function
9535 raise Program_Error
;
9539 -- Do the preanalyze call
9541 Preanalyze_Spec_Expression
(Expression
(ASN
), T
);
9542 end Check_Aspect_At_Freeze_Point
;
9544 -----------------------------------
9545 -- Check_Constant_Address_Clause --
9546 -----------------------------------
9548 procedure Check_Constant_Address_Clause
9552 procedure Check_At_Constant_Address
(Nod
: Node_Id
);
9553 -- Checks that the given node N represents a name whose 'Address is
9554 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
9555 -- address value is the same at the point of declaration of U_Ent and at
9556 -- the time of elaboration of the address clause.
9558 procedure Check_Expr_Constants
(Nod
: Node_Id
);
9559 -- Checks that Nod meets the requirements for a constant address clause
9560 -- in the sense of the enclosing procedure.
9562 procedure Check_List_Constants
(Lst
: List_Id
);
9563 -- Check that all elements of list Lst meet the requirements for a
9564 -- constant address clause in the sense of the enclosing procedure.
9566 -------------------------------
9567 -- Check_At_Constant_Address --
9568 -------------------------------
9570 procedure Check_At_Constant_Address
(Nod
: Node_Id
) is
9572 if Is_Entity_Name
(Nod
) then
9573 if Present
(Address_Clause
(Entity
((Nod
)))) then
9575 ("invalid address clause for initialized object &!",
9578 ("address for& cannot depend on another address clause! "
9579 & "(RM 13.1(22))!", Nod
, U_Ent
);
9581 elsif In_Same_Source_Unit
(Entity
(Nod
), U_Ent
)
9582 and then Sloc
(U_Ent
) < Sloc
(Entity
(Nod
))
9585 ("invalid address clause for initialized object &!",
9587 Error_Msg_Node_2
:= U_Ent
;
9589 ("\& must be defined before & (RM 13.1(22))!",
9593 elsif Nkind
(Nod
) = N_Selected_Component
then
9595 T
: constant Entity_Id
:= Etype
(Prefix
(Nod
));
9598 if (Is_Record_Type
(T
)
9599 and then Has_Discriminants
(T
))
9602 and then Is_Record_Type
(Designated_Type
(T
))
9603 and then Has_Discriminants
(Designated_Type
(T
)))
9606 ("invalid address clause for initialized object &!",
9609 ("\address cannot depend on component of discriminated "
9610 & "record (RM 13.1(22))!", Nod
);
9612 Check_At_Constant_Address
(Prefix
(Nod
));
9616 elsif Nkind
(Nod
) = N_Indexed_Component
then
9617 Check_At_Constant_Address
(Prefix
(Nod
));
9618 Check_List_Constants
(Expressions
(Nod
));
9621 Check_Expr_Constants
(Nod
);
9623 end Check_At_Constant_Address
;
9625 --------------------------
9626 -- Check_Expr_Constants --
9627 --------------------------
9629 procedure Check_Expr_Constants
(Nod
: Node_Id
) is
9630 Loc_U_Ent
: constant Source_Ptr
:= Sloc
(U_Ent
);
9631 Ent
: Entity_Id
:= Empty
;
9634 if Nkind
(Nod
) in N_Has_Etype
9635 and then Etype
(Nod
) = Any_Type
9646 when N_Expanded_Name
9649 Ent
:= Entity
(Nod
);
9651 -- We need to look at the original node if it is different
9652 -- from the node, since we may have rewritten things and
9653 -- substituted an identifier representing the rewrite.
9655 if Original_Node
(Nod
) /= Nod
then
9656 Check_Expr_Constants
(Original_Node
(Nod
));
9658 -- If the node is an object declaration without initial
9659 -- value, some code has been expanded, and the expression
9660 -- is not constant, even if the constituents might be
9661 -- acceptable, as in A'Address + offset.
9663 if Ekind
(Ent
) = E_Variable
9665 Nkind
(Declaration_Node
(Ent
)) = N_Object_Declaration
9667 No
(Expression
(Declaration_Node
(Ent
)))
9670 ("invalid address clause for initialized object &!",
9673 -- If entity is constant, it may be the result of expanding
9674 -- a check. We must verify that its declaration appears
9675 -- before the object in question, else we also reject the
9678 elsif Ekind
(Ent
) = E_Constant
9679 and then In_Same_Source_Unit
(Ent
, U_Ent
)
9680 and then Sloc
(Ent
) > Loc_U_Ent
9683 ("invalid address clause for initialized object &!",
9690 -- Otherwise look at the identifier and see if it is OK
9692 if Ekind_In
(Ent
, E_Named_Integer
, E_Named_Real
)
9693 or else Is_Type
(Ent
)
9697 elsif Ekind_In
(Ent
, E_Constant
, E_In_Parameter
) then
9699 -- This is the case where we must have Ent defined before
9700 -- U_Ent. Clearly if they are in different units this
9701 -- requirement is met since the unit containing Ent is
9702 -- already processed.
9704 if not In_Same_Source_Unit
(Ent
, U_Ent
) then
9707 -- Otherwise location of Ent must be before the location
9708 -- of U_Ent, that's what prior defined means.
9710 elsif Sloc
(Ent
) < Loc_U_Ent
then
9715 ("invalid address clause for initialized object &!",
9717 Error_Msg_Node_2
:= U_Ent
;
9719 ("\& must be defined before & (RM 13.1(22))!",
9723 elsif Nkind
(Original_Node
(Nod
)) = N_Function_Call
then
9724 Check_Expr_Constants
(Original_Node
(Nod
));
9728 ("invalid address clause for initialized object &!",
9731 if Comes_From_Source
(Ent
) then
9733 ("\reference to variable& not allowed"
9734 & " (RM 13.1(22))!", Nod
, Ent
);
9737 ("non-static expression not allowed"
9738 & " (RM 13.1(22))!", Nod
);
9742 when N_Integer_Literal
=>
9744 -- If this is a rewritten unchecked conversion, in a system
9745 -- where Address is an integer type, always use the base type
9746 -- for a literal value. This is user-friendly and prevents
9747 -- order-of-elaboration issues with instances of unchecked
9750 if Nkind
(Original_Node
(Nod
)) = N_Function_Call
then
9751 Set_Etype
(Nod
, Base_Type
(Etype
(Nod
)));
9754 when N_Character_Literal
9761 Check_Expr_Constants
(Low_Bound
(Nod
));
9762 Check_Expr_Constants
(High_Bound
(Nod
));
9764 when N_Explicit_Dereference
=>
9765 Check_Expr_Constants
(Prefix
(Nod
));
9767 when N_Indexed_Component
=>
9768 Check_Expr_Constants
(Prefix
(Nod
));
9769 Check_List_Constants
(Expressions
(Nod
));
9772 Check_Expr_Constants
(Prefix
(Nod
));
9773 Check_Expr_Constants
(Discrete_Range
(Nod
));
9775 when N_Selected_Component
=>
9776 Check_Expr_Constants
(Prefix
(Nod
));
9778 when N_Attribute_Reference
=>
9779 if Nam_In
(Attribute_Name
(Nod
), Name_Address
,
9781 Name_Unchecked_Access
,
9782 Name_Unrestricted_Access
)
9784 Check_At_Constant_Address
(Prefix
(Nod
));
9786 -- Normally, System'To_Address will have been transformed into
9787 -- an Unchecked_Conversion, but in -gnatc mode, it will not,
9788 -- and we don't want to give an error, because the whole point
9789 -- of 'To_Address is that it is static.
9791 elsif Attribute_Name
(Nod
) = Name_To_Address
then
9792 pragma Assert
(Operating_Mode
= Check_Semantics
);
9796 Check_Expr_Constants
(Prefix
(Nod
));
9797 Check_List_Constants
(Expressions
(Nod
));
9801 Check_List_Constants
(Component_Associations
(Nod
));
9802 Check_List_Constants
(Expressions
(Nod
));
9804 when N_Component_Association
=>
9805 Check_Expr_Constants
(Expression
(Nod
));
9807 when N_Extension_Aggregate
=>
9808 Check_Expr_Constants
(Ancestor_Part
(Nod
));
9809 Check_List_Constants
(Component_Associations
(Nod
));
9810 Check_List_Constants
(Expressions
(Nod
));
9819 Check_Expr_Constants
(Left_Opnd
(Nod
));
9820 Check_Expr_Constants
(Right_Opnd
(Nod
));
9823 Check_Expr_Constants
(Right_Opnd
(Nod
));
9826 | N_Qualified_Expression
9828 | N_Unchecked_Type_Conversion
9830 Check_Expr_Constants
(Expression
(Nod
));
9832 when N_Function_Call
=>
9833 if not Is_Pure
(Entity
(Name
(Nod
))) then
9835 ("invalid address clause for initialized object &!",
9839 ("\function & is not pure (RM 13.1(22))!",
9840 Nod
, Entity
(Name
(Nod
)));
9843 Check_List_Constants
(Parameter_Associations
(Nod
));
9846 when N_Parameter_Association
=>
9847 Check_Expr_Constants
(Explicit_Actual_Parameter
(Nod
));
9851 ("invalid address clause for initialized object &!",
9854 ("\must be constant defined before& (RM 13.1(22))!",
9857 end Check_Expr_Constants
;
9859 --------------------------
9860 -- Check_List_Constants --
9861 --------------------------
9863 procedure Check_List_Constants
(Lst
: List_Id
) is
9867 if Present
(Lst
) then
9868 Nod1
:= First
(Lst
);
9869 while Present
(Nod1
) loop
9870 Check_Expr_Constants
(Nod1
);
9874 end Check_List_Constants
;
9876 -- Start of processing for Check_Constant_Address_Clause
9879 -- If rep_clauses are to be ignored, no need for legality checks. In
9880 -- particular, no need to pester user about rep clauses that violate the
9881 -- rule on constant addresses, given that these clauses will be removed
9882 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
9883 -- we want to relax these checks.
9885 if not Ignore_Rep_Clauses
and not CodePeer_Mode
then
9886 Check_Expr_Constants
(Expr
);
9888 end Check_Constant_Address_Clause
;
9890 ---------------------------
9891 -- Check_Pool_Size_Clash --
9892 ---------------------------
9894 procedure Check_Pool_Size_Clash
(Ent
: Entity_Id
; SP
, SS
: Node_Id
) is
9898 -- We need to find out which one came first. Note that in the case of
9899 -- aspects mixed with pragmas there are cases where the processing order
9900 -- is reversed, which is why we do the check here.
9902 if Sloc
(SP
) < Sloc
(SS
) then
9903 Error_Msg_Sloc
:= Sloc
(SP
);
9905 Error_Msg_NE
("Storage_Pool previously given for&#", Post
, Ent
);
9908 Error_Msg_Sloc
:= Sloc
(SS
);
9910 Error_Msg_NE
("Storage_Size previously given for&#", Post
, Ent
);
9914 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post
);
9915 end Check_Pool_Size_Clash
;
9917 ----------------------------------------
9918 -- Check_Record_Representation_Clause --
9919 ----------------------------------------
9921 procedure Check_Record_Representation_Clause
(N
: Node_Id
) is
9922 Loc
: constant Source_Ptr
:= Sloc
(N
);
9923 Ident
: constant Node_Id
:= Identifier
(N
);
9924 Rectype
: Entity_Id
;
9929 Hbit
: Uint
:= Uint_0
;
9933 Max_Bit_So_Far
: Uint
;
9934 -- Records the maximum bit position so far. If all field positions
9935 -- are monotonically increasing, then we can skip the circuit for
9936 -- checking for overlap, since no overlap is possible.
9938 Tagged_Parent
: Entity_Id
:= Empty
;
9939 -- This is set in the case of an extension for which we have either a
9940 -- size clause or Is_Fully_Repped_Tagged_Type True (indicating that all
9941 -- components are positioned by record representation clauses) on the
9942 -- parent type. In this case we check for overlap between components of
9943 -- this tagged type and the parent component. Tagged_Parent will point
9944 -- to this parent type. For all other cases, Tagged_Parent is Empty.
9946 Parent_Last_Bit
: Uint
:= No_Uint
; -- init to avoid warning
9947 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
9948 -- last bit position for any field in the parent type. We only need to
9949 -- check overlap for fields starting below this point.
9951 Overlap_Check_Required
: Boolean;
9952 -- Used to keep track of whether or not an overlap check is required
9954 Overlap_Detected
: Boolean := False;
9955 -- Set True if an overlap is detected
9957 Ccount
: Natural := 0;
9958 -- Number of component clauses in record rep clause
9960 procedure Check_Component_Overlap
(C1_Ent
, C2_Ent
: Entity_Id
);
9961 -- Given two entities for record components or discriminants, checks
9962 -- if they have overlapping component clauses and issues errors if so.
9964 procedure Find_Component
;
9965 -- Finds component entity corresponding to current component clause (in
9966 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
9967 -- start/stop bits for the field. If there is no matching component or
9968 -- if the matching component does not have a component clause, then
9969 -- that's an error and Comp is set to Empty, but no error message is
9970 -- issued, since the message was already given. Comp is also set to
9971 -- Empty if the current "component clause" is in fact a pragma.
9973 -----------------------------
9974 -- Check_Component_Overlap --
9975 -----------------------------
9977 procedure Check_Component_Overlap
(C1_Ent
, C2_Ent
: Entity_Id
) is
9978 CC1
: constant Node_Id
:= Component_Clause
(C1_Ent
);
9979 CC2
: constant Node_Id
:= Component_Clause
(C2_Ent
);
9982 if Present
(CC1
) and then Present
(CC2
) then
9984 -- Exclude odd case where we have two tag components in the same
9985 -- record, both at location zero. This seems a bit strange, but
9986 -- it seems to happen in some circumstances, perhaps on an error.
9988 if Nam_In
(Chars
(C1_Ent
), Name_uTag
, Name_uTag
) then
9992 -- Here we check if the two fields overlap
9995 S1
: constant Uint
:= Component_Bit_Offset
(C1_Ent
);
9996 S2
: constant Uint
:= Component_Bit_Offset
(C2_Ent
);
9997 E1
: constant Uint
:= S1
+ Esize
(C1_Ent
);
9998 E2
: constant Uint
:= S2
+ Esize
(C2_Ent
);
10001 if E2
<= S1
or else E1
<= S2
then
10004 Error_Msg_Node_2
:= Component_Name
(CC2
);
10005 Error_Msg_Sloc
:= Sloc
(Error_Msg_Node_2
);
10006 Error_Msg_Node_1
:= Component_Name
(CC1
);
10008 ("component& overlaps & #", Component_Name
(CC1
));
10009 Overlap_Detected
:= True;
10013 end Check_Component_Overlap
;
10015 --------------------
10016 -- Find_Component --
10017 --------------------
10019 procedure Find_Component
is
10021 procedure Search_Component
(R
: Entity_Id
);
10022 -- Search components of R for a match. If found, Comp is set
10024 ----------------------
10025 -- Search_Component --
10026 ----------------------
10028 procedure Search_Component
(R
: Entity_Id
) is
10030 Comp
:= First_Component_Or_Discriminant
(R
);
10031 while Present
(Comp
) loop
10033 -- Ignore error of attribute name for component name (we
10034 -- already gave an error message for this, so no need to
10037 if Nkind
(Component_Name
(CC
)) = N_Attribute_Reference
then
10040 exit when Chars
(Comp
) = Chars
(Component_Name
(CC
));
10043 Next_Component_Or_Discriminant
(Comp
);
10045 end Search_Component
;
10047 -- Start of processing for Find_Component
10050 -- Return with Comp set to Empty if we have a pragma
10052 if Nkind
(CC
) = N_Pragma
then
10057 -- Search current record for matching component
10059 Search_Component
(Rectype
);
10061 -- If not found, maybe component of base type discriminant that is
10062 -- absent from statically constrained first subtype.
10065 Search_Component
(Base_Type
(Rectype
));
10068 -- If no component, or the component does not reference the component
10069 -- clause in question, then there was some previous error for which
10070 -- we already gave a message, so just return with Comp Empty.
10072 if No
(Comp
) or else Component_Clause
(Comp
) /= CC
then
10073 Check_Error_Detected
;
10076 -- Normal case where we have a component clause
10079 Fbit
:= Component_Bit_Offset
(Comp
);
10080 Lbit
:= Fbit
+ Esize
(Comp
) - 1;
10082 end Find_Component
;
10084 -- Start of processing for Check_Record_Representation_Clause
10088 Rectype
:= Entity
(Ident
);
10090 if Rectype
= Any_Type
then
10094 Rectype
:= Underlying_Type
(Rectype
);
10096 -- See if we have a fully repped derived tagged type
10099 PS
: constant Entity_Id
:= Parent_Subtype
(Rectype
);
10102 if Present
(PS
) and then Known_Static_RM_Size
(PS
) then
10103 Tagged_Parent
:= PS
;
10104 Parent_Last_Bit
:= RM_Size
(PS
) - 1;
10106 elsif Present
(PS
) and then Is_Fully_Repped_Tagged_Type
(PS
) then
10107 Tagged_Parent
:= PS
;
10109 -- Find maximum bit of any component of the parent type
10111 Parent_Last_Bit
:= UI_From_Int
(System_Address_Size
- 1);
10112 Pcomp
:= First_Entity
(Tagged_Parent
);
10113 while Present
(Pcomp
) loop
10114 if Ekind_In
(Pcomp
, E_Discriminant
, E_Component
) then
10115 if Component_Bit_Offset
(Pcomp
) /= No_Uint
10116 and then Known_Static_Esize
(Pcomp
)
10121 Component_Bit_Offset
(Pcomp
) + Esize
(Pcomp
) - 1);
10125 -- Skip anonymous types generated for constrained array
10126 -- or record components.
10131 Next_Entity
(Pcomp
);
10136 -- All done if no component clauses
10138 CC
:= First
(Component_Clauses
(N
));
10144 -- If a tag is present, then create a component clause that places it
10145 -- at the start of the record (otherwise gigi may place it after other
10146 -- fields that have rep clauses).
10148 Fent
:= First_Entity
(Rectype
);
10150 if Nkind
(Fent
) = N_Defining_Identifier
10151 and then Chars
(Fent
) = Name_uTag
10153 Set_Component_Bit_Offset
(Fent
, Uint_0
);
10154 Set_Normalized_Position
(Fent
, Uint_0
);
10155 Set_Normalized_First_Bit
(Fent
, Uint_0
);
10156 Set_Normalized_Position_Max
(Fent
, Uint_0
);
10157 Init_Esize
(Fent
, System_Address_Size
);
10159 Set_Component_Clause
(Fent
,
10160 Make_Component_Clause
(Loc
,
10161 Component_Name
=> Make_Identifier
(Loc
, Name_uTag
),
10163 Position
=> Make_Integer_Literal
(Loc
, Uint_0
),
10164 First_Bit
=> Make_Integer_Literal
(Loc
, Uint_0
),
10166 Make_Integer_Literal
(Loc
,
10167 UI_From_Int
(System_Address_Size
))));
10169 Ccount
:= Ccount
+ 1;
10172 Max_Bit_So_Far
:= Uint_Minus_1
;
10173 Overlap_Check_Required
:= False;
10175 -- Process the component clauses
10177 while Present
(CC
) loop
10180 if Present
(Comp
) then
10181 Ccount
:= Ccount
+ 1;
10183 -- We need a full overlap check if record positions non-monotonic
10185 if Fbit
<= Max_Bit_So_Far
then
10186 Overlap_Check_Required
:= True;
10189 Max_Bit_So_Far
:= Lbit
;
10191 -- Check bit position out of range of specified size
10193 if Has_Size_Clause
(Rectype
)
10194 and then RM_Size
(Rectype
) <= Lbit
10197 ("bit number out of range of specified size",
10200 -- Check for overlap with tag or parent component
10203 if Is_Tagged_Type
(Rectype
)
10204 and then Fbit
< System_Address_Size
10207 ("component overlaps tag field of&",
10208 Component_Name
(CC
), Rectype
);
10209 Overlap_Detected
:= True;
10211 elsif Present
(Tagged_Parent
)
10212 and then Fbit
<= Parent_Last_Bit
10215 ("component overlaps parent field of&",
10216 Component_Name
(CC
), Rectype
);
10217 Overlap_Detected
:= True;
10220 if Hbit
< Lbit
then
10229 -- Now that we have processed all the component clauses, check for
10230 -- overlap. We have to leave this till last, since the components can
10231 -- appear in any arbitrary order in the representation clause.
10233 -- We do not need this check if all specified ranges were monotonic,
10234 -- as recorded by Overlap_Check_Required being False at this stage.
10236 -- This first section checks if there are any overlapping entries at
10237 -- all. It does this by sorting all entries and then seeing if there are
10238 -- any overlaps. If there are none, then that is decisive, but if there
10239 -- are overlaps, they may still be OK (they may result from fields in
10240 -- different variants).
10242 if Overlap_Check_Required
then
10243 Overlap_Check1
: declare
10245 OC_Fbit
: array (0 .. Ccount
) of Uint
;
10246 -- First-bit values for component clauses, the value is the offset
10247 -- of the first bit of the field from start of record. The zero
10248 -- entry is for use in sorting.
10250 OC_Lbit
: array (0 .. Ccount
) of Uint
;
10251 -- Last-bit values for component clauses, the value is the offset
10252 -- of the last bit of the field from start of record. The zero
10253 -- entry is for use in sorting.
10255 OC_Count
: Natural := 0;
10256 -- Count of entries in OC_Fbit and OC_Lbit
10258 function OC_Lt
(Op1
, Op2
: Natural) return Boolean;
10259 -- Compare routine for Sort
10261 procedure OC_Move
(From
: Natural; To
: Natural);
10262 -- Move routine for Sort
10264 package Sorting
is new GNAT
.Heap_Sort_G
(OC_Move
, OC_Lt
);
10270 function OC_Lt
(Op1
, Op2
: Natural) return Boolean is
10272 return OC_Fbit
(Op1
) < OC_Fbit
(Op2
);
10279 procedure OC_Move
(From
: Natural; To
: Natural) is
10281 OC_Fbit
(To
) := OC_Fbit
(From
);
10282 OC_Lbit
(To
) := OC_Lbit
(From
);
10285 -- Start of processing for Overlap_Check
10288 CC
:= First
(Component_Clauses
(N
));
10289 while Present
(CC
) loop
10291 -- Exclude component clause already marked in error
10293 if not Error_Posted
(CC
) then
10296 if Present
(Comp
) then
10297 OC_Count
:= OC_Count
+ 1;
10298 OC_Fbit
(OC_Count
) := Fbit
;
10299 OC_Lbit
(OC_Count
) := Lbit
;
10306 Sorting
.Sort
(OC_Count
);
10308 Overlap_Check_Required
:= False;
10309 for J
in 1 .. OC_Count
- 1 loop
10310 if OC_Lbit
(J
) >= OC_Fbit
(J
+ 1) then
10311 Overlap_Check_Required
:= True;
10315 end Overlap_Check1
;
10318 -- If Overlap_Check_Required is still True, then we have to do the full
10319 -- scale overlap check, since we have at least two fields that do
10320 -- overlap, and we need to know if that is OK since they are in
10321 -- different variant, or whether we have a definite problem.
10323 if Overlap_Check_Required
then
10324 Overlap_Check2
: declare
10325 C1_Ent
, C2_Ent
: Entity_Id
;
10326 -- Entities of components being checked for overlap
10329 -- Component_List node whose Component_Items are being checked
10332 -- Component declaration for component being checked
10335 C1_Ent
:= First_Entity
(Base_Type
(Rectype
));
10337 -- Loop through all components in record. For each component check
10338 -- for overlap with any of the preceding elements on the component
10339 -- list containing the component and also, if the component is in
10340 -- a variant, check against components outside the case structure.
10341 -- This latter test is repeated recursively up the variant tree.
10343 Main_Component_Loop
: while Present
(C1_Ent
) loop
10344 if not Ekind_In
(C1_Ent
, E_Component
, E_Discriminant
) then
10345 goto Continue_Main_Component_Loop
;
10348 -- Skip overlap check if entity has no declaration node. This
10349 -- happens with discriminants in constrained derived types.
10350 -- Possibly we are missing some checks as a result, but that
10351 -- does not seem terribly serious.
10353 if No
(Declaration_Node
(C1_Ent
)) then
10354 goto Continue_Main_Component_Loop
;
10357 Clist
:= Parent
(List_Containing
(Declaration_Node
(C1_Ent
)));
10359 -- Loop through component lists that need checking. Check the
10360 -- current component list and all lists in variants above us.
10362 Component_List_Loop
: loop
10364 -- If derived type definition, go to full declaration
10365 -- If at outer level, check discriminants if there are any.
10367 if Nkind
(Clist
) = N_Derived_Type_Definition
then
10368 Clist
:= Parent
(Clist
);
10371 -- Outer level of record definition, check discriminants
10373 if Nkind_In
(Clist
, N_Full_Type_Declaration
,
10374 N_Private_Type_Declaration
)
10376 if Has_Discriminants
(Defining_Identifier
(Clist
)) then
10378 First_Discriminant
(Defining_Identifier
(Clist
));
10379 while Present
(C2_Ent
) loop
10380 exit when C1_Ent
= C2_Ent
;
10381 Check_Component_Overlap
(C1_Ent
, C2_Ent
);
10382 Next_Discriminant
(C2_Ent
);
10386 -- Record extension case
10388 elsif Nkind
(Clist
) = N_Derived_Type_Definition
then
10391 -- Otherwise check one component list
10394 Citem
:= First
(Component_Items
(Clist
));
10395 while Present
(Citem
) loop
10396 if Nkind
(Citem
) = N_Component_Declaration
then
10397 C2_Ent
:= Defining_Identifier
(Citem
);
10398 exit when C1_Ent
= C2_Ent
;
10399 Check_Component_Overlap
(C1_Ent
, C2_Ent
);
10406 -- Check for variants above us (the parent of the Clist can
10407 -- be a variant, in which case its parent is a variant part,
10408 -- and the parent of the variant part is a component list
10409 -- whose components must all be checked against the current
10410 -- component for overlap).
10412 if Nkind
(Parent
(Clist
)) = N_Variant
then
10413 Clist
:= Parent
(Parent
(Parent
(Clist
)));
10415 -- Check for possible discriminant part in record, this
10416 -- is treated essentially as another level in the
10417 -- recursion. For this case the parent of the component
10418 -- list is the record definition, and its parent is the
10419 -- full type declaration containing the discriminant
10422 elsif Nkind
(Parent
(Clist
)) = N_Record_Definition
then
10423 Clist
:= Parent
(Parent
((Clist
)));
10425 -- If neither of these two cases, we are at the top of
10429 exit Component_List_Loop
;
10431 end loop Component_List_Loop
;
10433 <<Continue_Main_Component_Loop
>>
10434 Next_Entity
(C1_Ent
);
10436 end loop Main_Component_Loop
;
10437 end Overlap_Check2
;
10440 -- The following circuit deals with warning on record holes (gaps). We
10441 -- skip this check if overlap was detected, since it makes sense for the
10442 -- programmer to fix this illegality before worrying about warnings.
10444 if not Overlap_Detected
and Warn_On_Record_Holes
then
10445 Record_Hole_Check
: declare
10446 Decl
: constant Node_Id
:= Declaration_Node
(Base_Type
(Rectype
));
10447 -- Full declaration of record type
10449 procedure Check_Component_List
10453 -- Check component list CL for holes. The starting bit should be
10454 -- Sbit. which is zero for the main record component list and set
10455 -- appropriately for recursive calls for variants. DS is set to
10456 -- a list of discriminant specifications to be included in the
10457 -- consideration of components. It is No_List if none to consider.
10459 --------------------------
10460 -- Check_Component_List --
10461 --------------------------
10463 procedure Check_Component_List
10471 Compl
:= Integer (List_Length
(Component_Items
(CL
)));
10473 if DS
/= No_List
then
10474 Compl
:= Compl
+ Integer (List_Length
(DS
));
10478 Comps
: array (Natural range 0 .. Compl
) of Entity_Id
;
10479 -- Gather components (zero entry is for sort routine)
10481 Ncomps
: Natural := 0;
10482 -- Number of entries stored in Comps (starting at Comps (1))
10485 -- One component item or discriminant specification
10488 -- Starting bit for next component
10491 -- Component entity
10496 function Lt
(Op1
, Op2
: Natural) return Boolean;
10497 -- Compare routine for Sort
10499 procedure Move
(From
: Natural; To
: Natural);
10500 -- Move routine for Sort
10502 package Sorting
is new GNAT
.Heap_Sort_G
(Move
, Lt
);
10508 function Lt
(Op1
, Op2
: Natural) return Boolean is
10510 return Component_Bit_Offset
(Comps
(Op1
))
10512 Component_Bit_Offset
(Comps
(Op2
));
10519 procedure Move
(From
: Natural; To
: Natural) is
10521 Comps
(To
) := Comps
(From
);
10525 -- Gather discriminants into Comp
10527 if DS
/= No_List
then
10528 Citem
:= First
(DS
);
10529 while Present
(Citem
) loop
10530 if Nkind
(Citem
) = N_Discriminant_Specification
then
10532 Ent
: constant Entity_Id
:=
10533 Defining_Identifier
(Citem
);
10535 if Ekind
(Ent
) = E_Discriminant
then
10536 Ncomps
:= Ncomps
+ 1;
10537 Comps
(Ncomps
) := Ent
;
10546 -- Gather component entities into Comp
10548 Citem
:= First
(Component_Items
(CL
));
10549 while Present
(Citem
) loop
10550 if Nkind
(Citem
) = N_Component_Declaration
then
10551 Ncomps
:= Ncomps
+ 1;
10552 Comps
(Ncomps
) := Defining_Identifier
(Citem
);
10558 -- Now sort the component entities based on the first bit.
10559 -- Note we already know there are no overlapping components.
10561 Sorting
.Sort
(Ncomps
);
10563 -- Loop through entries checking for holes
10566 for J
in 1 .. Ncomps
loop
10570 CBO
: constant Uint
:= Component_Bit_Offset
(CEnt
);
10573 -- Skip components with unknown offsets
10575 if CBO
/= No_Uint
and then CBO
>= 0 then
10576 Error_Msg_Uint_1
:= CBO
- Nbit
;
10578 if Error_Msg_Uint_1
> 0 then
10580 ("?H?^-bit gap before component&",
10581 Component_Name
(Component_Clause
(CEnt
)),
10585 Nbit
:= CBO
+ Esize
(CEnt
);
10590 -- Process variant parts recursively if present
10592 if Present
(Variant_Part
(CL
)) then
10593 Variant
:= First
(Variants
(Variant_Part
(CL
)));
10594 while Present
(Variant
) loop
10595 Check_Component_List
10596 (Component_List
(Variant
), Nbit
, No_List
);
10601 end Check_Component_List
;
10603 -- Start of processing for Record_Hole_Check
10610 if Is_Tagged_Type
(Rectype
) then
10611 Sbit
:= UI_From_Int
(System_Address_Size
);
10616 if Nkind
(Decl
) = N_Full_Type_Declaration
10617 and then Nkind
(Type_Definition
(Decl
)) = N_Record_Definition
10619 Check_Component_List
10620 (Component_List
(Type_Definition
(Decl
)),
10622 Discriminant_Specifications
(Decl
));
10625 end Record_Hole_Check
;
10628 -- For records that have component clauses for all components, and whose
10629 -- size is less than or equal to 32, we need to know the size in the
10630 -- front end to activate possible packed array processing where the
10631 -- component type is a record.
10633 -- At this stage Hbit + 1 represents the first unused bit from all the
10634 -- component clauses processed, so if the component clauses are
10635 -- complete, then this is the length of the record.
10637 -- For records longer than System.Storage_Unit, and for those where not
10638 -- all components have component clauses, the back end determines the
10639 -- length (it may for example be appropriate to round up the size
10640 -- to some convenient boundary, based on alignment considerations, etc).
10642 if Unknown_RM_Size
(Rectype
) and then Hbit
+ 1 <= 32 then
10644 -- Nothing to do if at least one component has no component clause
10646 Comp
:= First_Component_Or_Discriminant
(Rectype
);
10647 while Present
(Comp
) loop
10648 exit when No
(Component_Clause
(Comp
));
10649 Next_Component_Or_Discriminant
(Comp
);
10652 -- If we fall out of loop, all components have component clauses
10653 -- and so we can set the size to the maximum value.
10656 Set_RM_Size
(Rectype
, Hbit
+ 1);
10659 end Check_Record_Representation_Clause
;
10665 procedure Check_Size
10669 Biased
: out Boolean)
10671 procedure Size_Too_Small_Error
(Min_Siz
: Uint
);
10672 -- Emit an error concerning illegal size Siz. Min_Siz denotes the
10675 --------------------------
10676 -- Size_Too_Small_Error --
10677 --------------------------
10679 procedure Size_Too_Small_Error
(Min_Siz
: Uint
) is
10681 -- This error is suppressed in ASIS mode to allow for different ASIS
10682 -- back ends or ASIS-based tools to query the illegal clause.
10684 if not ASIS_Mode
then
10685 Error_Msg_Uint_1
:= Min_Siz
;
10686 Error_Msg_NE
("size for& too small, minimum allowed is ^", N
, T
);
10688 end Size_Too_Small_Error
;
10692 UT
: constant Entity_Id
:= Underlying_Type
(T
);
10695 -- Start of processing for Check_Size
10700 -- Reject patently improper size values
10702 if Is_Elementary_Type
(T
)
10703 and then Siz
> UI_From_Int
(Int
'Last)
10705 Error_Msg_N
("Size value too large for elementary type", N
);
10707 if Nkind
(Original_Node
(N
)) = N_Op_Expon
then
10709 ("\maybe '* was meant, rather than '*'*", Original_Node
(N
));
10713 -- Dismiss generic types
10715 if Is_Generic_Type
(T
)
10717 Is_Generic_Type
(UT
)
10719 Is_Generic_Type
(Root_Type
(UT
))
10723 -- Guard against previous errors
10725 elsif No
(UT
) or else UT
= Any_Type
then
10726 Check_Error_Detected
;
10729 -- Check case of bit packed array
10731 elsif Is_Array_Type
(UT
)
10732 and then Known_Static_Component_Size
(UT
)
10733 and then Is_Bit_Packed_Array
(UT
)
10741 Asiz
:= Component_Size
(UT
);
10742 Indx
:= First_Index
(UT
);
10744 Ityp
:= Etype
(Indx
);
10746 -- If non-static bound, then we are not in the business of
10747 -- trying to check the length, and indeed an error will be
10748 -- issued elsewhere, since sizes of non-static array types
10749 -- cannot be set implicitly or explicitly.
10751 if not Is_OK_Static_Subtype
(Ityp
) then
10755 -- Otherwise accumulate next dimension
10757 Asiz
:= Asiz
* (Expr_Value
(Type_High_Bound
(Ityp
)) -
10758 Expr_Value
(Type_Low_Bound
(Ityp
)) +
10762 exit when No
(Indx
);
10765 if Asiz
<= Siz
then
10769 Size_Too_Small_Error
(Asiz
);
10770 Set_Esize
(T
, Asiz
);
10771 Set_RM_Size
(T
, Asiz
);
10775 -- All other composite types are ignored
10777 elsif Is_Composite_Type
(UT
) then
10780 -- For fixed-point types, don't check minimum if type is not frozen,
10781 -- since we don't know all the characteristics of the type that can
10782 -- affect the size (e.g. a specified small) till freeze time.
10784 elsif Is_Fixed_Point_Type
(UT
) and then not Is_Frozen
(UT
) then
10787 -- Cases for which a minimum check is required
10790 -- Ignore if specified size is correct for the type
10792 if Known_Esize
(UT
) and then Siz
= Esize
(UT
) then
10796 -- Otherwise get minimum size
10798 M
:= UI_From_Int
(Minimum_Size
(UT
));
10802 -- Size is less than minimum size, but one possibility remains
10803 -- that we can manage with the new size if we bias the type.
10805 M
:= UI_From_Int
(Minimum_Size
(UT
, Biased
=> True));
10808 Size_Too_Small_Error
(M
);
10810 Set_RM_Size
(T
, M
);
10818 --------------------------
10819 -- Freeze_Entity_Checks --
10820 --------------------------
10822 procedure Freeze_Entity_Checks
(N
: Node_Id
) is
10823 procedure Hide_Non_Overridden_Subprograms
(Typ
: Entity_Id
);
10824 -- Inspect the primitive operations of type Typ and hide all pairs of
10825 -- implicitly declared non-overridden non-fully conformant homographs
10826 -- (Ada RM 8.3 12.3/2).
10828 -------------------------------------
10829 -- Hide_Non_Overridden_Subprograms --
10830 -------------------------------------
10832 procedure Hide_Non_Overridden_Subprograms
(Typ
: Entity_Id
) is
10833 procedure Hide_Matching_Homographs
10834 (Subp_Id
: Entity_Id
;
10835 Start_Elmt
: Elmt_Id
);
10836 -- Inspect a list of primitive operations starting with Start_Elmt
10837 -- and find matching implicitly declared non-overridden non-fully
10838 -- conformant homographs of Subp_Id. If found, all matches along
10839 -- with Subp_Id are hidden from all visibility.
10841 function Is_Non_Overridden_Or_Null_Procedure
10842 (Subp_Id
: Entity_Id
) return Boolean;
10843 -- Determine whether subprogram Subp_Id is implicitly declared non-
10844 -- overridden subprogram or an implicitly declared null procedure.
10846 ------------------------------
10847 -- Hide_Matching_Homographs --
10848 ------------------------------
10850 procedure Hide_Matching_Homographs
10851 (Subp_Id
: Entity_Id
;
10852 Start_Elmt
: Elmt_Id
)
10855 Prim_Elmt
: Elmt_Id
;
10858 Prim_Elmt
:= Start_Elmt
;
10859 while Present
(Prim_Elmt
) loop
10860 Prim
:= Node
(Prim_Elmt
);
10862 -- The current primitive is implicitly declared non-overridden
10863 -- non-fully conformant homograph of Subp_Id. Both subprograms
10864 -- must be hidden from visibility.
10866 if Chars
(Prim
) = Chars
(Subp_Id
)
10867 and then Is_Non_Overridden_Or_Null_Procedure
(Prim
)
10868 and then not Fully_Conformant
(Prim
, Subp_Id
)
10870 Set_Is_Hidden_Non_Overridden_Subpgm
(Prim
);
10871 Set_Is_Immediately_Visible
(Prim
, False);
10872 Set_Is_Potentially_Use_Visible
(Prim
, False);
10874 Set_Is_Hidden_Non_Overridden_Subpgm
(Subp_Id
);
10875 Set_Is_Immediately_Visible
(Subp_Id
, False);
10876 Set_Is_Potentially_Use_Visible
(Subp_Id
, False);
10879 Next_Elmt
(Prim_Elmt
);
10881 end Hide_Matching_Homographs
;
10883 -----------------------------------------
10884 -- Is_Non_Overridden_Or_Null_Procedure --
10885 -----------------------------------------
10887 function Is_Non_Overridden_Or_Null_Procedure
10888 (Subp_Id
: Entity_Id
) return Boolean
10890 Alias_Id
: Entity_Id
;
10893 -- The subprogram is inherited (implicitly declared), it does not
10894 -- override and does not cover a primitive of an interface.
10896 if Ekind_In
(Subp_Id
, E_Function
, E_Procedure
)
10897 and then Present
(Alias
(Subp_Id
))
10898 and then No
(Interface_Alias
(Subp_Id
))
10899 and then No
(Overridden_Operation
(Subp_Id
))
10901 Alias_Id
:= Alias
(Subp_Id
);
10903 if Requires_Overriding
(Alias_Id
) then
10906 elsif Nkind
(Parent
(Alias_Id
)) = N_Procedure_Specification
10907 and then Null_Present
(Parent
(Alias_Id
))
10914 end Is_Non_Overridden_Or_Null_Procedure
;
10918 Prim_Ops
: constant Elist_Id
:= Direct_Primitive_Operations
(Typ
);
10920 Prim_Elmt
: Elmt_Id
;
10922 -- Start of processing for Hide_Non_Overridden_Subprograms
10925 -- Inspect the list of primitives looking for non-overridden
10928 if Present
(Prim_Ops
) then
10929 Prim_Elmt
:= First_Elmt
(Prim_Ops
);
10930 while Present
(Prim_Elmt
) loop
10931 Prim
:= Node
(Prim_Elmt
);
10932 Next_Elmt
(Prim_Elmt
);
10934 if Is_Non_Overridden_Or_Null_Procedure
(Prim
) then
10935 Hide_Matching_Homographs
10937 Start_Elmt
=> Prim_Elmt
);
10941 end Hide_Non_Overridden_Subprograms
;
10945 E
: constant Entity_Id
:= Entity
(N
);
10947 Nongeneric_Case
: constant Boolean := Nkind
(N
) = N_Freeze_Entity
;
10948 -- True in nongeneric case. Some of the processing here is skipped
10949 -- for the generic case since it is not needed. Basically in the
10950 -- generic case, we only need to do stuff that might generate error
10951 -- messages or warnings.
10953 -- Start of processing for Freeze_Entity_Checks
10956 -- Remember that we are processing a freezing entity. Required to
10957 -- ensure correct decoration of internal entities associated with
10958 -- interfaces (see New_Overloaded_Entity).
10960 Inside_Freezing_Actions
:= Inside_Freezing_Actions
+ 1;
10962 -- For tagged types covering interfaces add internal entities that link
10963 -- the primitives of the interfaces with the primitives that cover them.
10964 -- Note: These entities were originally generated only when generating
10965 -- code because their main purpose was to provide support to initialize
10966 -- the secondary dispatch tables. They are now generated also when
10967 -- compiling with no code generation to provide ASIS the relationship
10968 -- between interface primitives and tagged type primitives. They are
10969 -- also used to locate primitives covering interfaces when processing
10970 -- generics (see Derive_Subprograms).
10972 -- This is not needed in the generic case
10974 if Ada_Version
>= Ada_2005
10975 and then Nongeneric_Case
10976 and then Ekind
(E
) = E_Record_Type
10977 and then Is_Tagged_Type
(E
)
10978 and then not Is_Interface
(E
)
10979 and then Has_Interfaces
(E
)
10981 -- This would be a good common place to call the routine that checks
10982 -- overriding of interface primitives (and thus factorize calls to
10983 -- Check_Abstract_Overriding located at different contexts in the
10984 -- compiler). However, this is not possible because it causes
10985 -- spurious errors in case of late overriding.
10987 Add_Internal_Interface_Entities
(E
);
10990 -- After all forms of overriding have been resolved, a tagged type may
10991 -- be left with a set of implicitly declared and possibly erroneous
10992 -- abstract subprograms, null procedures and subprograms that require
10993 -- overriding. If this set contains fully conformant homographs, then
10994 -- one is chosen arbitrarily (already done during resolution), otherwise
10995 -- all remaining non-fully conformant homographs are hidden from
10996 -- visibility (Ada RM 8.3 12.3/2).
10998 if Is_Tagged_Type
(E
) then
10999 Hide_Non_Overridden_Subprograms
(E
);
11004 if Ekind
(E
) = E_Record_Type
11005 and then Is_CPP_Class
(E
)
11006 and then Is_Tagged_Type
(E
)
11007 and then Tagged_Type_Expansion
11009 if CPP_Num_Prims
(E
) = 0 then
11011 -- If the CPP type has user defined components then it must import
11012 -- primitives from C++. This is required because if the C++ class
11013 -- has no primitives then the C++ compiler does not added the _tag
11014 -- component to the type.
11016 if First_Entity
(E
) /= Last_Entity
(E
) then
11018 ("'C'P'P type must import at least one primitive from C++??",
11023 -- Check that all its primitives are abstract or imported from C++.
11024 -- Check also availability of the C++ constructor.
11027 Has_Constructors
: constant Boolean := Has_CPP_Constructors
(E
);
11029 Error_Reported
: Boolean := False;
11033 Elmt
:= First_Elmt
(Primitive_Operations
(E
));
11034 while Present
(Elmt
) loop
11035 Prim
:= Node
(Elmt
);
11037 if Comes_From_Source
(Prim
) then
11038 if Is_Abstract_Subprogram
(Prim
) then
11041 elsif not Is_Imported
(Prim
)
11042 or else Convention
(Prim
) /= Convention_CPP
11045 ("primitives of 'C'P'P types must be imported from C++ "
11046 & "or abstract??", Prim
);
11048 elsif not Has_Constructors
11049 and then not Error_Reported
11051 Error_Msg_Name_1
:= Chars
(E
);
11053 ("??'C'P'P constructor required for type %", Prim
);
11054 Error_Reported
:= True;
11063 -- Check Ada derivation of CPP type
11065 if Expander_Active
-- why? losing errors in -gnatc mode???
11066 and then Present
(Etype
(E
)) -- defend against errors
11067 and then Tagged_Type_Expansion
11068 and then Ekind
(E
) = E_Record_Type
11069 and then Etype
(E
) /= E
11070 and then Is_CPP_Class
(Etype
(E
))
11071 and then CPP_Num_Prims
(Etype
(E
)) > 0
11072 and then not Is_CPP_Class
(E
)
11073 and then not Has_CPP_Constructors
(Etype
(E
))
11075 -- If the parent has C++ primitives but it has no constructor then
11076 -- check that all the primitives are overridden in this derivation;
11077 -- otherwise the constructor of the parent is needed to build the
11085 Elmt
:= First_Elmt
(Primitive_Operations
(E
));
11086 while Present
(Elmt
) loop
11087 Prim
:= Node
(Elmt
);
11089 if not Is_Abstract_Subprogram
(Prim
)
11090 and then No
(Interface_Alias
(Prim
))
11091 and then Find_Dispatching_Type
(Ultimate_Alias
(Prim
)) /= E
11093 Error_Msg_Name_1
:= Chars
(Etype
(E
));
11095 ("'C'P'P constructor required for parent type %", E
);
11104 Inside_Freezing_Actions
:= Inside_Freezing_Actions
- 1;
11106 -- If we have a type with predicates, build predicate function. This is
11107 -- not needed in the generic case, nor within TSS subprograms and other
11108 -- predefined primitives.
11111 and then Nongeneric_Case
11112 and then not Within_Internal_Subprogram
11113 and then Has_Predicates
(E
)
11115 Build_Predicate_Functions
(E
, N
);
11118 -- If type has delayed aspects, this is where we do the preanalysis at
11119 -- the freeze point, as part of the consistent visibility check. Note
11120 -- that this must be done after calling Build_Predicate_Functions or
11121 -- Build_Invariant_Procedure since these subprograms fix occurrences of
11122 -- the subtype name in the saved expression so that they will not cause
11123 -- trouble in the preanalysis.
11125 -- This is also not needed in the generic case
11128 and then Has_Delayed_Aspects
(E
)
11129 and then Scope
(E
) = Current_Scope
11131 -- Retrieve the visibility to the discriminants in order to properly
11132 -- analyze the aspects.
11134 Push_Scope_And_Install_Discriminants
(E
);
11140 -- Look for aspect specification entries for this entity
11142 Ritem
:= First_Rep_Item
(E
);
11143 while Present
(Ritem
) loop
11144 if Nkind
(Ritem
) = N_Aspect_Specification
11145 and then Entity
(Ritem
) = E
11146 and then Is_Delayed_Aspect
(Ritem
)
11148 Check_Aspect_At_Freeze_Point
(Ritem
);
11151 Next_Rep_Item
(Ritem
);
11155 Uninstall_Discriminants_And_Pop_Scope
(E
);
11158 -- For a record type, deal with variant parts. This has to be delayed
11159 -- to this point, because of the issue of statically predicated
11160 -- subtypes, which we have to ensure are frozen before checking
11161 -- choices, since we need to have the static choice list set.
11163 if Is_Record_Type
(E
) then
11164 Check_Variant_Part
: declare
11165 D
: constant Node_Id
:= Declaration_Node
(E
);
11170 Others_Present
: Boolean;
11171 pragma Warnings
(Off
, Others_Present
);
11172 -- Indicates others present, not used in this case
11174 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
11175 -- Error routine invoked by the generic instantiation below when
11176 -- the variant part has a non static choice.
11178 procedure Process_Declarations
(Variant
: Node_Id
);
11179 -- Processes declarations associated with a variant. We analyzed
11180 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
11181 -- but we still need the recursive call to Check_Choices for any
11182 -- nested variant to get its choices properly processed. This is
11183 -- also where we expand out the choices if expansion is active.
11185 package Variant_Choices_Processing
is new
11186 Generic_Check_Choices
11187 (Process_Empty_Choice
=> No_OP
,
11188 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
11189 Process_Associated_Node
=> Process_Declarations
);
11190 use Variant_Choices_Processing
;
11192 -----------------------------
11193 -- Non_Static_Choice_Error --
11194 -----------------------------
11196 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
11198 Flag_Non_Static_Expr
11199 ("choice given in variant part is not static!", Choice
);
11200 end Non_Static_Choice_Error
;
11202 --------------------------
11203 -- Process_Declarations --
11204 --------------------------
11206 procedure Process_Declarations
(Variant
: Node_Id
) is
11207 CL
: constant Node_Id
:= Component_List
(Variant
);
11211 -- Check for static predicate present in this variant
11213 if Has_SP_Choice
(Variant
) then
11215 -- Here we expand. You might expect to find this call in
11216 -- Expand_N_Variant_Part, but that is called when we first
11217 -- see the variant part, and we cannot do this expansion
11218 -- earlier than the freeze point, since for statically
11219 -- predicated subtypes, the predicate is not known till
11220 -- the freeze point.
11222 -- Furthermore, we do this expansion even if the expander
11223 -- is not active, because other semantic processing, e.g.
11224 -- for aggregates, requires the expanded list of choices.
11226 -- If the expander is not active, then we can't just clobber
11227 -- the list since it would invalidate the ASIS -gnatct tree.
11228 -- So we have to rewrite the variant part with a Rewrite
11229 -- call that replaces it with a copy and clobber the copy.
11231 if not Expander_Active
then
11233 NewV
: constant Node_Id
:= New_Copy
(Variant
);
11235 Set_Discrete_Choices
11236 (NewV
, New_Copy_List
(Discrete_Choices
(Variant
)));
11237 Rewrite
(Variant
, NewV
);
11241 Expand_Static_Predicates_In_Choices
(Variant
);
11244 -- We don't need to worry about the declarations in the variant
11245 -- (since they were analyzed by Analyze_Choices when we first
11246 -- encountered the variant), but we do need to take care of
11247 -- expansion of any nested variants.
11249 if not Null_Present
(CL
) then
11250 VP
:= Variant_Part
(CL
);
11252 if Present
(VP
) then
11254 (VP
, Variants
(VP
), Etype
(Name
(VP
)), Others_Present
);
11257 end Process_Declarations
;
11259 -- Start of processing for Check_Variant_Part
11262 -- Find component list
11266 if Nkind
(D
) = N_Full_Type_Declaration
then
11267 T
:= Type_Definition
(D
);
11269 if Nkind
(T
) = N_Record_Definition
then
11270 C
:= Component_List
(T
);
11272 elsif Nkind
(T
) = N_Derived_Type_Definition
11273 and then Present
(Record_Extension_Part
(T
))
11275 C
:= Component_List
(Record_Extension_Part
(T
));
11279 -- Case of variant part present
11281 if Present
(C
) and then Present
(Variant_Part
(C
)) then
11282 VP
:= Variant_Part
(C
);
11287 (VP
, Variants
(VP
), Etype
(Name
(VP
)), Others_Present
);
11289 -- If the last variant does not contain the Others choice,
11290 -- replace it with an N_Others_Choice node since Gigi always
11291 -- wants an Others. Note that we do not bother to call Analyze
11292 -- on the modified variant part, since its only effect would be
11293 -- to compute the Others_Discrete_Choices node laboriously, and
11294 -- of course we already know the list of choices corresponding
11295 -- to the others choice (it's the list we're replacing).
11297 -- We only want to do this if the expander is active, since
11298 -- we do not want to clobber the ASIS tree.
11300 if Expander_Active
then
11302 Last_Var
: constant Node_Id
:=
11303 Last_Non_Pragma
(Variants
(VP
));
11305 Others_Node
: Node_Id
;
11308 if Nkind
(First
(Discrete_Choices
(Last_Var
))) /=
11311 Others_Node
:= Make_Others_Choice
(Sloc
(Last_Var
));
11312 Set_Others_Discrete_Choices
11313 (Others_Node
, Discrete_Choices
(Last_Var
));
11314 Set_Discrete_Choices
11315 (Last_Var
, New_List
(Others_Node
));
11320 end Check_Variant_Part
;
11322 end Freeze_Entity_Checks
;
11324 -------------------------
11325 -- Get_Alignment_Value --
11326 -------------------------
11328 function Get_Alignment_Value
(Expr
: Node_Id
) return Uint
is
11329 Align
: constant Uint
:= Static_Integer
(Expr
);
11332 if Align
= No_Uint
then
11335 elsif Align
<= 0 then
11337 -- This error is suppressed in ASIS mode to allow for different ASIS
11338 -- back ends or ASIS-based tools to query the illegal clause.
11340 if not ASIS_Mode
then
11341 Error_Msg_N
("alignment value must be positive", Expr
);
11347 for J
in Int
range 0 .. 64 loop
11349 M
: constant Uint
:= Uint_2
** J
;
11352 exit when M
= Align
;
11356 -- This error is suppressed in ASIS mode to allow for
11357 -- different ASIS back ends or ASIS-based tools to query the
11360 if not ASIS_Mode
then
11361 Error_Msg_N
("alignment value must be power of 2", Expr
);
11371 end Get_Alignment_Value
;
11373 -------------------------------------
11374 -- Inherit_Aspects_At_Freeze_Point --
11375 -------------------------------------
11377 procedure Inherit_Aspects_At_Freeze_Point
(Typ
: Entity_Id
) is
11378 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11379 (Rep_Item
: Node_Id
) return Boolean;
11380 -- This routine checks if Rep_Item is either a pragma or an aspect
11381 -- specification node whose correponding pragma (if any) is present in
11382 -- the Rep Item chain of the entity it has been specified to.
11384 --------------------------------------------------
11385 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
11386 --------------------------------------------------
11388 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11389 (Rep_Item
: Node_Id
) return Boolean
11393 Nkind
(Rep_Item
) = N_Pragma
11394 or else Present_In_Rep_Item
11395 (Entity
(Rep_Item
), Aspect_Rep_Item
(Rep_Item
));
11396 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
;
11398 -- Start of processing for Inherit_Aspects_At_Freeze_Point
11401 -- A representation item is either subtype-specific (Size and Alignment
11402 -- clauses) or type-related (all others). Subtype-specific aspects may
11403 -- differ for different subtypes of the same type (RM 13.1.8).
11405 -- A derived type inherits each type-related representation aspect of
11406 -- its parent type that was directly specified before the declaration of
11407 -- the derived type (RM 13.1.15).
11409 -- A derived subtype inherits each subtype-specific representation
11410 -- aspect of its parent subtype that was directly specified before the
11411 -- declaration of the derived type (RM 13.1.15).
11413 -- The general processing involves inheriting a representation aspect
11414 -- from a parent type whenever the first rep item (aspect specification,
11415 -- attribute definition clause, pragma) corresponding to the given
11416 -- representation aspect in the rep item chain of Typ, if any, isn't
11417 -- directly specified to Typ but to one of its parents.
11419 -- ??? Note that, for now, just a limited number of representation
11420 -- aspects have been inherited here so far. Many of them are
11421 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
11422 -- a non- exhaustive list of aspects that likely also need to
11423 -- be moved to this routine: Alignment, Component_Alignment,
11424 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
11425 -- Preelaborable_Initialization, RM_Size and Small.
11427 -- In addition, Convention must be propagated from base type to subtype,
11428 -- because the subtype may have been declared on an incomplete view.
11430 if Nkind
(Parent
(Typ
)) = N_Private_Extension_Declaration
then
11436 if not Has_Rep_Item
(Typ
, Name_Ada_05
, Name_Ada_2005
, False)
11437 and then Has_Rep_Item
(Typ
, Name_Ada_05
, Name_Ada_2005
)
11438 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11439 (Get_Rep_Item
(Typ
, Name_Ada_05
, Name_Ada_2005
))
11441 Set_Is_Ada_2005_Only
(Typ
);
11446 if not Has_Rep_Item
(Typ
, Name_Ada_12
, Name_Ada_2012
, False)
11447 and then Has_Rep_Item
(Typ
, Name_Ada_12
, Name_Ada_2012
)
11448 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11449 (Get_Rep_Item
(Typ
, Name_Ada_12
, Name_Ada_2012
))
11451 Set_Is_Ada_2012_Only
(Typ
);
11456 if not Has_Rep_Item
(Typ
, Name_Atomic
, Name_Shared
, False)
11457 and then Has_Rep_Pragma
(Typ
, Name_Atomic
, Name_Shared
)
11458 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11459 (Get_Rep_Item
(Typ
, Name_Atomic
, Name_Shared
))
11461 Set_Is_Atomic
(Typ
);
11462 Set_Is_Volatile
(Typ
);
11463 Set_Treat_As_Volatile
(Typ
);
11468 if Is_Record_Type
(Typ
)
11469 and then Typ
/= Base_Type
(Typ
) and then Is_Frozen
(Base_Type
(Typ
))
11471 Set_Convention
(Typ
, Convention
(Base_Type
(Typ
)));
11474 -- Default_Component_Value
11476 -- Verify that there is no rep_item declared for the type, and there
11477 -- is one coming from an ancestor.
11479 if Is_Array_Type
(Typ
)
11480 and then Is_Base_Type
(Typ
)
11481 and then not Has_Rep_Item
(Typ
, Name_Default_Component_Value
, False)
11482 and then Has_Rep_Item
(Typ
, Name_Default_Component_Value
)
11484 Set_Default_Aspect_Component_Value
(Typ
,
11485 Default_Aspect_Component_Value
11486 (Entity
(Get_Rep_Item
(Typ
, Name_Default_Component_Value
))));
11491 if Is_Scalar_Type
(Typ
)
11492 and then Is_Base_Type
(Typ
)
11493 and then not Has_Rep_Item
(Typ
, Name_Default_Value
, False)
11494 and then Has_Rep_Item
(Typ
, Name_Default_Value
)
11496 Set_Has_Default_Aspect
(Typ
);
11497 Set_Default_Aspect_Value
(Typ
,
11498 Default_Aspect_Value
11499 (Entity
(Get_Rep_Item
(Typ
, Name_Default_Value
))));
11504 if not Has_Rep_Item
(Typ
, Name_Discard_Names
, False)
11505 and then Has_Rep_Item
(Typ
, Name_Discard_Names
)
11506 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11507 (Get_Rep_Item
(Typ
, Name_Discard_Names
))
11509 Set_Discard_Names
(Typ
);
11514 if not Has_Rep_Item
(Typ
, Name_Volatile
, False)
11515 and then Has_Rep_Item
(Typ
, Name_Volatile
)
11516 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11517 (Get_Rep_Item
(Typ
, Name_Volatile
))
11519 Set_Is_Volatile
(Typ
);
11520 Set_Treat_As_Volatile
(Typ
);
11523 -- Volatile_Full_Access
11525 if not Has_Rep_Item
(Typ
, Name_Volatile_Full_Access
, False)
11526 and then Has_Rep_Pragma
(Typ
, Name_Volatile_Full_Access
)
11527 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11528 (Get_Rep_Item
(Typ
, Name_Volatile_Full_Access
))
11530 Set_Is_Volatile_Full_Access
(Typ
);
11531 Set_Is_Volatile
(Typ
);
11532 Set_Treat_As_Volatile
(Typ
);
11535 -- Inheritance for derived types only
11537 if Is_Derived_Type
(Typ
) then
11539 Bas_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
11540 Imp_Bas_Typ
: constant Entity_Id
:= Implementation_Base_Type
(Typ
);
11543 -- Atomic_Components
11545 if not Has_Rep_Item
(Typ
, Name_Atomic_Components
, False)
11546 and then Has_Rep_Item
(Typ
, Name_Atomic_Components
)
11547 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11548 (Get_Rep_Item
(Typ
, Name_Atomic_Components
))
11550 Set_Has_Atomic_Components
(Imp_Bas_Typ
);
11553 -- Volatile_Components
11555 if not Has_Rep_Item
(Typ
, Name_Volatile_Components
, False)
11556 and then Has_Rep_Item
(Typ
, Name_Volatile_Components
)
11557 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11558 (Get_Rep_Item
(Typ
, Name_Volatile_Components
))
11560 Set_Has_Volatile_Components
(Imp_Bas_Typ
);
11563 -- Finalize_Storage_Only
11565 if not Has_Rep_Pragma
(Typ
, Name_Finalize_Storage_Only
, False)
11566 and then Has_Rep_Pragma
(Typ
, Name_Finalize_Storage_Only
)
11568 Set_Finalize_Storage_Only
(Bas_Typ
);
11571 -- Universal_Aliasing
11573 if not Has_Rep_Item
(Typ
, Name_Universal_Aliasing
, False)
11574 and then Has_Rep_Item
(Typ
, Name_Universal_Aliasing
)
11575 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11576 (Get_Rep_Item
(Typ
, Name_Universal_Aliasing
))
11578 Set_Universal_Aliasing
(Imp_Bas_Typ
);
11583 if Is_Record_Type
(Typ
) then
11584 if not Has_Rep_Item
(Typ
, Name_Bit_Order
, False)
11585 and then Has_Rep_Item
(Typ
, Name_Bit_Order
)
11587 Set_Reverse_Bit_Order
(Bas_Typ
,
11588 Reverse_Bit_Order
(Entity
(Name
11589 (Get_Rep_Item
(Typ
, Name_Bit_Order
)))));
11593 -- Scalar_Storage_Order
11595 -- Note: the aspect is specified on a first subtype, but recorded
11596 -- in a flag of the base type!
11598 if (Is_Record_Type
(Typ
) or else Is_Array_Type
(Typ
))
11599 and then Typ
= Bas_Typ
11601 -- For a type extension, always inherit from parent; otherwise
11602 -- inherit if no default applies. Note: we do not check for
11603 -- an explicit rep item on the parent type when inheriting,
11604 -- because the parent SSO may itself have been set by default.
11606 if not Has_Rep_Item
(First_Subtype
(Typ
),
11607 Name_Scalar_Storage_Order
, False)
11608 and then (Is_Tagged_Type
(Bas_Typ
)
11609 or else not (SSO_Set_Low_By_Default
(Bas_Typ
)
11611 SSO_Set_High_By_Default
(Bas_Typ
)))
11613 Set_Reverse_Storage_Order
(Bas_Typ
,
11614 Reverse_Storage_Order
11615 (Implementation_Base_Type
(Etype
(Bas_Typ
))));
11617 -- Clear default SSO indications, since the inherited aspect
11618 -- which was set explicitly overrides the default.
11620 Set_SSO_Set_Low_By_Default
(Bas_Typ
, False);
11621 Set_SSO_Set_High_By_Default
(Bas_Typ
, False);
11626 end Inherit_Aspects_At_Freeze_Point
;
11632 procedure Initialize
is
11634 Address_Clause_Checks
.Init
;
11635 Compile_Time_Warnings_Errors
.Init
;
11636 Unchecked_Conversions
.Init
;
11638 -- ??? Might be needed in the future for some non GCC back-ends
11639 -- if AAMP_On_Target then
11640 -- Independence_Checks.Init;
11644 ---------------------------
11645 -- Install_Discriminants --
11646 ---------------------------
11648 procedure Install_Discriminants
(E
: Entity_Id
) is
11652 Disc
:= First_Discriminant
(E
);
11653 while Present
(Disc
) loop
11654 Prev
:= Current_Entity
(Disc
);
11655 Set_Current_Entity
(Disc
);
11656 Set_Is_Immediately_Visible
(Disc
);
11657 Set_Homonym
(Disc
, Prev
);
11658 Next_Discriminant
(Disc
);
11660 end Install_Discriminants
;
11662 -------------------------
11663 -- Is_Operational_Item --
11664 -------------------------
11666 function Is_Operational_Item
(N
: Node_Id
) return Boolean is
11668 if Nkind
(N
) /= N_Attribute_Definition_Clause
then
11673 Id
: constant Attribute_Id
:= Get_Attribute_Id
(Chars
(N
));
11676 -- List of operational items is given in AARM 13.1(8.mm/1).
11677 -- It is clearly incomplete, as it does not include iterator
11678 -- aspects, among others.
11680 return Id
= Attribute_Constant_Indexing
11681 or else Id
= Attribute_Default_Iterator
11682 or else Id
= Attribute_Implicit_Dereference
11683 or else Id
= Attribute_Input
11684 or else Id
= Attribute_Iterator_Element
11685 or else Id
= Attribute_Iterable
11686 or else Id
= Attribute_Output
11687 or else Id
= Attribute_Read
11688 or else Id
= Attribute_Variable_Indexing
11689 or else Id
= Attribute_Write
11690 or else Id
= Attribute_External_Tag
;
11693 end Is_Operational_Item
;
11695 -------------------------
11696 -- Is_Predicate_Static --
11697 -------------------------
11699 -- Note: the basic legality of the expression has already been checked, so
11700 -- we don't need to worry about cases or ranges on strings for example.
11702 function Is_Predicate_Static
11704 Nam
: Name_Id
) return Boolean
11706 function All_Static_Case_Alternatives
(L
: List_Id
) return Boolean;
11707 -- Given a list of case expression alternatives, returns True if all
11708 -- the alternatives are static (have all static choices, and a static
11711 function All_Static_Choices
(L
: List_Id
) return Boolean;
11712 -- Returns true if all elements of the list are OK static choices
11713 -- as defined below for Is_Static_Choice. Used for case expression
11714 -- alternatives and for the right operand of a membership test. An
11715 -- others_choice is static if the corresponding expression is static.
11716 -- The staticness of the bounds is checked separately.
11718 function Is_Static_Choice
(N
: Node_Id
) return Boolean;
11719 -- Returns True if N represents a static choice (static subtype, or
11720 -- static subtype indication, or static expression, or static range).
11722 -- Note that this is a bit more inclusive than we actually need
11723 -- (in particular membership tests do not allow the use of subtype
11724 -- indications). But that doesn't matter, we have already checked
11725 -- that the construct is legal to get this far.
11727 function Is_Type_Ref
(N
: Node_Id
) return Boolean;
11728 pragma Inline
(Is_Type_Ref
);
11729 -- Returns True if N is a reference to the type for the predicate in the
11730 -- expression (i.e. if it is an identifier whose Chars field matches the
11731 -- Nam given in the call). N must not be parenthesized, if the type name
11732 -- appears in parens, this routine will return False.
11734 -- The routine also returns True for function calls generated during the
11735 -- expansion of comparison operators on strings, which are intended to
11736 -- be legal in static predicates, and are converted into calls to array
11737 -- comparison routines in the body of the corresponding predicate
11740 ----------------------------------
11741 -- All_Static_Case_Alternatives --
11742 ----------------------------------
11744 function All_Static_Case_Alternatives
(L
: List_Id
) return Boolean is
11749 while Present
(N
) loop
11750 if not (All_Static_Choices
(Discrete_Choices
(N
))
11751 and then Is_OK_Static_Expression
(Expression
(N
)))
11760 end All_Static_Case_Alternatives
;
11762 ------------------------
11763 -- All_Static_Choices --
11764 ------------------------
11766 function All_Static_Choices
(L
: List_Id
) return Boolean is
11771 while Present
(N
) loop
11772 if not Is_Static_Choice
(N
) then
11780 end All_Static_Choices
;
11782 ----------------------
11783 -- Is_Static_Choice --
11784 ----------------------
11786 function Is_Static_Choice
(N
: Node_Id
) return Boolean is
11788 return Nkind
(N
) = N_Others_Choice
11789 or else Is_OK_Static_Expression
(N
)
11790 or else (Is_Entity_Name
(N
) and then Is_Type
(Entity
(N
))
11791 and then Is_OK_Static_Subtype
(Entity
(N
)))
11792 or else (Nkind
(N
) = N_Subtype_Indication
11793 and then Is_OK_Static_Subtype
(Entity
(N
)))
11794 or else (Nkind
(N
) = N_Range
and then Is_OK_Static_Range
(N
));
11795 end Is_Static_Choice
;
11801 function Is_Type_Ref
(N
: Node_Id
) return Boolean is
11803 return (Nkind
(N
) = N_Identifier
11804 and then Chars
(N
) = Nam
11805 and then Paren_Count
(N
) = 0)
11806 or else Nkind
(N
) = N_Function_Call
;
11809 -- Start of processing for Is_Predicate_Static
11812 -- Predicate_Static means one of the following holds. Numbers are the
11813 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
11815 -- 16: A static expression
11817 if Is_OK_Static_Expression
(Expr
) then
11820 -- 17: A membership test whose simple_expression is the current
11821 -- instance, and whose membership_choice_list meets the requirements
11822 -- for a static membership test.
11824 elsif Nkind
(Expr
) in N_Membership_Test
11825 and then ((Present
(Right_Opnd
(Expr
))
11826 and then Is_Static_Choice
(Right_Opnd
(Expr
)))
11828 (Present
(Alternatives
(Expr
))
11829 and then All_Static_Choices
(Alternatives
(Expr
))))
11833 -- 18. A case_expression whose selecting_expression is the current
11834 -- instance, and whose dependent expressions are static expressions.
11836 elsif Nkind
(Expr
) = N_Case_Expression
11837 and then Is_Type_Ref
(Expression
(Expr
))
11838 and then All_Static_Case_Alternatives
(Alternatives
(Expr
))
11842 -- 19. A call to a predefined equality or ordering operator, where one
11843 -- operand is the current instance, and the other is a static
11846 -- Note: the RM is clearly wrong here in not excluding string types.
11847 -- Without this exclusion, we would allow expressions like X > "ABC"
11848 -- to be considered as predicate-static, which is clearly not intended,
11849 -- since the idea is for predicate-static to be a subset of normal
11850 -- static expressions (and "DEF" > "ABC" is not a static expression).
11852 -- However, we do allow internally generated (not from source) equality
11853 -- and inequality operations to be valid on strings (this helps deal
11854 -- with cases where we transform A in "ABC" to A = "ABC).
11856 -- In fact, it appears that the intent of the ARG is to extend static
11857 -- predicates to strings, and that the extension should probably apply
11858 -- to static expressions themselves. The code below accepts comparison
11859 -- operators that apply to static strings.
11861 elsif Nkind
(Expr
) in N_Op_Compare
11862 and then ((Is_Type_Ref
(Left_Opnd
(Expr
))
11863 and then Is_OK_Static_Expression
(Right_Opnd
(Expr
)))
11865 (Is_Type_Ref
(Right_Opnd
(Expr
))
11866 and then Is_OK_Static_Expression
(Left_Opnd
(Expr
))))
11870 -- 20. A call to a predefined boolean logical operator, where each
11871 -- operand is predicate-static.
11873 elsif (Nkind_In
(Expr
, N_Op_And
, N_Op_Or
, N_Op_Xor
)
11874 and then Is_Predicate_Static
(Left_Opnd
(Expr
), Nam
)
11875 and then Is_Predicate_Static
(Right_Opnd
(Expr
), Nam
))
11877 (Nkind
(Expr
) = N_Op_Not
11878 and then Is_Predicate_Static
(Right_Opnd
(Expr
), Nam
))
11882 -- 21. A short-circuit control form where both operands are
11883 -- predicate-static.
11885 elsif Nkind
(Expr
) in N_Short_Circuit
11886 and then Is_Predicate_Static
(Left_Opnd
(Expr
), Nam
)
11887 and then Is_Predicate_Static
(Right_Opnd
(Expr
), Nam
)
11891 -- 22. A parenthesized predicate-static expression. This does not
11892 -- require any special test, since we just ignore paren levels in
11893 -- all the cases above.
11895 -- One more test that is an implementation artifact caused by the fact
11896 -- that we are analyzing not the original expression, but the generated
11897 -- expression in the body of the predicate function. This can include
11898 -- references to inherited predicates, so that the expression we are
11899 -- processing looks like:
11901 -- xxPredicate (typ (Inns)) and then expression
11903 -- Where the call is to a Predicate function for an inherited predicate.
11904 -- We simply ignore such a call, which could be to either a dynamic or
11905 -- a static predicate. Note that if the parent predicate is dynamic then
11906 -- eventually this type will be marked as dynamic, but you are allowed
11907 -- to specify a static predicate for a subtype which is inheriting a
11908 -- dynamic predicate, so the static predicate validation here ignores
11909 -- the inherited predicate even if it is dynamic.
11910 -- In all cases, a static predicate can only apply to a scalar type.
11912 elsif Nkind
(Expr
) = N_Function_Call
11913 and then Is_Predicate_Function
(Entity
(Name
(Expr
)))
11914 and then Is_Scalar_Type
(Etype
(First_Entity
(Entity
(Name
(Expr
)))))
11918 -- That's an exhaustive list of tests, all other cases are not
11919 -- predicate-static, so we return False.
11924 end Is_Predicate_Static
;
11926 ---------------------
11927 -- Kill_Rep_Clause --
11928 ---------------------
11930 procedure Kill_Rep_Clause
(N
: Node_Id
) is
11932 pragma Assert
(Ignore_Rep_Clauses
);
11934 -- Note: we use Replace rather than Rewrite, because we don't want
11935 -- ASIS to be able to use Original_Node to dig out the (undecorated)
11936 -- rep clause that is being replaced.
11938 Replace
(N
, Make_Null_Statement
(Sloc
(N
)));
11940 -- The null statement must be marked as not coming from source. This is
11941 -- so that ASIS ignores it, and also the back end does not expect bogus
11942 -- "from source" null statements in weird places (e.g. in declarative
11943 -- regions where such null statements are not allowed).
11945 Set_Comes_From_Source
(N
, False);
11946 end Kill_Rep_Clause
;
11952 function Minimum_Size
11954 Biased
: Boolean := False) return Nat
11956 Lo
: Uint
:= No_Uint
;
11957 Hi
: Uint
:= No_Uint
;
11958 LoR
: Ureal
:= No_Ureal
;
11959 HiR
: Ureal
:= No_Ureal
;
11960 LoSet
: Boolean := False;
11961 HiSet
: Boolean := False;
11964 Ancest
: Entity_Id
;
11965 R_Typ
: constant Entity_Id
:= Root_Type
(T
);
11968 -- If bad type, return 0
11970 if T
= Any_Type
then
11973 -- For generic types, just return zero. There cannot be any legitimate
11974 -- need to know such a size, but this routine may be called with a
11975 -- generic type as part of normal processing.
11977 elsif Is_Generic_Type
(R_Typ
) or else R_Typ
= Any_Type
then
11980 -- Access types (cannot have size smaller than System.Address)
11982 elsif Is_Access_Type
(T
) then
11983 return System_Address_Size
;
11985 -- Floating-point types
11987 elsif Is_Floating_Point_Type
(T
) then
11988 return UI_To_Int
(Esize
(R_Typ
));
11992 elsif Is_Discrete_Type
(T
) then
11994 -- The following loop is looking for the nearest compile time known
11995 -- bounds following the ancestor subtype chain. The idea is to find
11996 -- the most restrictive known bounds information.
12000 if Ancest
= Any_Type
or else Etype
(Ancest
) = Any_Type
then
12005 if Compile_Time_Known_Value
(Type_Low_Bound
(Ancest
)) then
12006 Lo
:= Expr_Rep_Value
(Type_Low_Bound
(Ancest
));
12013 if Compile_Time_Known_Value
(Type_High_Bound
(Ancest
)) then
12014 Hi
:= Expr_Rep_Value
(Type_High_Bound
(Ancest
));
12020 Ancest
:= Ancestor_Subtype
(Ancest
);
12022 if No
(Ancest
) then
12023 Ancest
:= Base_Type
(T
);
12025 if Is_Generic_Type
(Ancest
) then
12031 -- Fixed-point types. We can't simply use Expr_Value to get the
12032 -- Corresponding_Integer_Value values of the bounds, since these do not
12033 -- get set till the type is frozen, and this routine can be called
12034 -- before the type is frozen. Similarly the test for bounds being static
12035 -- needs to include the case where we have unanalyzed real literals for
12036 -- the same reason.
12038 elsif Is_Fixed_Point_Type
(T
) then
12040 -- The following loop is looking for the nearest compile time known
12041 -- bounds following the ancestor subtype chain. The idea is to find
12042 -- the most restrictive known bounds information.
12046 if Ancest
= Any_Type
or else Etype
(Ancest
) = Any_Type
then
12050 -- Note: In the following two tests for LoSet and HiSet, it may
12051 -- seem redundant to test for N_Real_Literal here since normally
12052 -- one would assume that the test for the value being known at
12053 -- compile time includes this case. However, there is a glitch.
12054 -- If the real literal comes from folding a non-static expression,
12055 -- then we don't consider any non- static expression to be known
12056 -- at compile time if we are in configurable run time mode (needed
12057 -- in some cases to give a clearer definition of what is and what
12058 -- is not accepted). So the test is indeed needed. Without it, we
12059 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
12062 if Nkind
(Type_Low_Bound
(Ancest
)) = N_Real_Literal
12063 or else Compile_Time_Known_Value
(Type_Low_Bound
(Ancest
))
12065 LoR
:= Expr_Value_R
(Type_Low_Bound
(Ancest
));
12072 if Nkind
(Type_High_Bound
(Ancest
)) = N_Real_Literal
12073 or else Compile_Time_Known_Value
(Type_High_Bound
(Ancest
))
12075 HiR
:= Expr_Value_R
(Type_High_Bound
(Ancest
));
12081 Ancest
:= Ancestor_Subtype
(Ancest
);
12083 if No
(Ancest
) then
12084 Ancest
:= Base_Type
(T
);
12086 if Is_Generic_Type
(Ancest
) then
12092 Lo
:= UR_To_Uint
(LoR
/ Small_Value
(T
));
12093 Hi
:= UR_To_Uint
(HiR
/ Small_Value
(T
));
12095 -- No other types allowed
12098 raise Program_Error
;
12101 -- Fall through with Hi and Lo set. Deal with biased case
12104 and then not Is_Fixed_Point_Type
(T
)
12105 and then not (Is_Enumeration_Type
(T
)
12106 and then Has_Non_Standard_Rep
(T
)))
12107 or else Has_Biased_Representation
(T
)
12113 -- Null range case, size is always zero. We only do this in the discrete
12114 -- type case, since that's the odd case that came up. Probably we should
12115 -- also do this in the fixed-point case, but doing so causes peculiar
12116 -- gigi failures, and it is not worth worrying about this incredibly
12117 -- marginal case (explicit null-range fixed-point type declarations)???
12119 if Lo
> Hi
and then Is_Discrete_Type
(T
) then
12122 -- Signed case. Note that we consider types like range 1 .. -1 to be
12123 -- signed for the purpose of computing the size, since the bounds have
12124 -- to be accommodated in the base type.
12126 elsif Lo
< 0 or else Hi
< 0 then
12130 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
12131 -- Note that we accommodate the case where the bounds cross. This
12132 -- can happen either because of the way the bounds are declared
12133 -- or because of the algorithm in Freeze_Fixed_Point_Type.
12147 -- If both bounds are positive, make sure that both are represen-
12148 -- table in the case where the bounds are crossed. This can happen
12149 -- either because of the way the bounds are declared, or because of
12150 -- the algorithm in Freeze_Fixed_Point_Type.
12156 -- S = size, (can accommodate 0 .. (2**size - 1))
12159 while Hi
>= Uint_2
** S
loop
12167 ---------------------------
12168 -- New_Stream_Subprogram --
12169 ---------------------------
12171 procedure New_Stream_Subprogram
12175 Nam
: TSS_Name_Type
)
12177 Loc
: constant Source_Ptr
:= Sloc
(N
);
12178 Sname
: constant Name_Id
:= Make_TSS_Name
(Base_Type
(Ent
), Nam
);
12179 Subp_Id
: Entity_Id
;
12180 Subp_Decl
: Node_Id
;
12184 Defer_Declaration
: constant Boolean :=
12185 Is_Tagged_Type
(Ent
) or else Is_Private_Type
(Ent
);
12186 -- For a tagged type, there is a declaration for each stream attribute
12187 -- at the freeze point, and we must generate only a completion of this
12188 -- declaration. We do the same for private types, because the full view
12189 -- might be tagged. Otherwise we generate a declaration at the point of
12190 -- the attribute definition clause. If the attribute definition comes
12191 -- from an aspect specification the declaration is part of the freeze
12192 -- actions of the type.
12194 function Build_Spec
return Node_Id
;
12195 -- Used for declaration and renaming declaration, so that this is
12196 -- treated as a renaming_as_body.
12202 function Build_Spec
return Node_Id
is
12203 Out_P
: constant Boolean := (Nam
= TSS_Stream_Read
);
12206 T_Ref
: constant Node_Id
:= New_Occurrence_Of
(Etyp
, Loc
);
12209 Subp_Id
:= Make_Defining_Identifier
(Loc
, Sname
);
12211 -- S : access Root_Stream_Type'Class
12213 Formals
:= New_List
(
12214 Make_Parameter_Specification
(Loc
,
12215 Defining_Identifier
=>
12216 Make_Defining_Identifier
(Loc
, Name_S
),
12218 Make_Access_Definition
(Loc
,
12220 New_Occurrence_Of
(
12221 Designated_Type
(Etype
(F
)), Loc
))));
12223 if Nam
= TSS_Stream_Input
then
12225 Make_Function_Specification
(Loc
,
12226 Defining_Unit_Name
=> Subp_Id
,
12227 Parameter_Specifications
=> Formals
,
12228 Result_Definition
=> T_Ref
);
12232 Append_To
(Formals
,
12233 Make_Parameter_Specification
(Loc
,
12234 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_V
),
12235 Out_Present
=> Out_P
,
12236 Parameter_Type
=> T_Ref
));
12239 Make_Procedure_Specification
(Loc
,
12240 Defining_Unit_Name
=> Subp_Id
,
12241 Parameter_Specifications
=> Formals
);
12247 -- Start of processing for New_Stream_Subprogram
12250 F
:= First_Formal
(Subp
);
12252 if Ekind
(Subp
) = E_Procedure
then
12253 Etyp
:= Etype
(Next_Formal
(F
));
12255 Etyp
:= Etype
(Subp
);
12258 -- Prepare subprogram declaration and insert it as an action on the
12259 -- clause node. The visibility for this entity is used to test for
12260 -- visibility of the attribute definition clause (in the sense of
12261 -- 8.3(23) as amended by AI-195).
12263 if not Defer_Declaration
then
12265 Make_Subprogram_Declaration
(Loc
,
12266 Specification
=> Build_Spec
);
12268 -- For a tagged type, there is always a visible declaration for each
12269 -- stream TSS (it is a predefined primitive operation), and the
12270 -- completion of this declaration occurs at the freeze point, which is
12271 -- not always visible at places where the attribute definition clause is
12272 -- visible. So, we create a dummy entity here for the purpose of
12273 -- tracking the visibility of the attribute definition clause itself.
12277 Make_Defining_Identifier
(Loc
, New_External_Name
(Sname
, 'V'));
12279 Make_Object_Declaration
(Loc
,
12280 Defining_Identifier
=> Subp_Id
,
12281 Object_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
));
12284 if not Defer_Declaration
12285 and then From_Aspect_Specification
(N
)
12286 and then Has_Delayed_Freeze
(Ent
)
12288 Append_Freeze_Action
(Ent
, Subp_Decl
);
12291 Insert_Action
(N
, Subp_Decl
);
12292 Set_Entity
(N
, Subp_Id
);
12296 Make_Subprogram_Renaming_Declaration
(Loc
,
12297 Specification
=> Build_Spec
,
12298 Name
=> New_Occurrence_Of
(Subp
, Loc
));
12300 if Defer_Declaration
then
12301 Set_TSS
(Base_Type
(Ent
), Subp_Id
);
12304 if From_Aspect_Specification
(N
) then
12305 Append_Freeze_Action
(Ent
, Subp_Decl
);
12307 Insert_Action
(N
, Subp_Decl
);
12310 Copy_TSS
(Subp_Id
, Base_Type
(Ent
));
12312 end New_Stream_Subprogram
;
12314 ------------------------------------------
12315 -- Push_Scope_And_Install_Discriminants --
12316 ------------------------------------------
12318 procedure Push_Scope_And_Install_Discriminants
(E
: Entity_Id
) is
12320 if Has_Discriminants
(E
) then
12323 -- Make the discriminants visible for type declarations and protected
12324 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
12326 if Nkind
(Parent
(E
)) /= N_Subtype_Declaration
then
12327 Install_Discriminants
(E
);
12330 end Push_Scope_And_Install_Discriminants
;
12332 -----------------------------------
12333 -- Register_Address_Clause_Check --
12334 -----------------------------------
12336 procedure Register_Address_Clause_Check
12343 ACS
: constant Boolean := Scope_Suppress
.Suppress
(Alignment_Check
);
12345 Address_Clause_Checks
.Append
((N
, X
, A
, Y
, Off
, ACS
));
12346 end Register_Address_Clause_Check
;
12348 ------------------------
12349 -- Rep_Item_Too_Early --
12350 ------------------------
12352 function Rep_Item_Too_Early
(T
: Entity_Id
; N
: Node_Id
) return Boolean is
12354 -- Cannot apply non-operational rep items to generic types
12356 if Is_Operational_Item
(N
) then
12360 and then Is_Generic_Type
(Root_Type
(T
))
12361 and then (Nkind
(N
) /= N_Pragma
12362 or else Get_Pragma_Id
(N
) /= Pragma_Convention
)
12364 Error_Msg_N
("representation item not allowed for generic type", N
);
12368 -- Otherwise check for incomplete type
12370 if Is_Incomplete_Or_Private_Type
(T
)
12371 and then No
(Underlying_Type
(T
))
12373 (Nkind
(N
) /= N_Pragma
12374 or else Get_Pragma_Id
(N
) /= Pragma_Import
)
12377 ("representation item must be after full type declaration", N
);
12380 -- If the type has incomplete components, a representation clause is
12381 -- illegal but stream attributes and Convention pragmas are correct.
12383 elsif Has_Private_Component
(T
) then
12384 if Nkind
(N
) = N_Pragma
then
12389 ("representation item must appear after type is fully defined",
12396 end Rep_Item_Too_Early
;
12398 -----------------------
12399 -- Rep_Item_Too_Late --
12400 -----------------------
12402 function Rep_Item_Too_Late
12405 FOnly
: Boolean := False) return Boolean
12408 Parent_Type
: Entity_Id
;
12410 procedure No_Type_Rep_Item
;
12411 -- Output message indicating that no type-related aspects can be
12412 -- specified due to some property of the parent type.
12414 procedure Too_Late
;
12415 -- Output message for an aspect being specified too late
12417 -- Note that neither of the above errors is considered a serious one,
12418 -- since the effect is simply that we ignore the representation clause
12420 -- Is this really true? In any case if we make this change we must
12421 -- document the requirement in the spec of Rep_Item_Too_Late that
12422 -- if True is returned, then the rep item must be completely ignored???
12424 ----------------------
12425 -- No_Type_Rep_Item --
12426 ----------------------
12428 procedure No_Type_Rep_Item
is
12430 Error_Msg_N
("|type-related representation item not permitted!", N
);
12431 end No_Type_Rep_Item
;
12437 procedure Too_Late
is
12439 -- Other compilers seem more relaxed about rep items appearing too
12440 -- late. Since analysis tools typically don't care about rep items
12441 -- anyway, no reason to be too strict about this.
12443 if not Relaxed_RM_Semantics
then
12444 Error_Msg_N
("|representation item appears too late!", N
);
12448 -- Start of processing for Rep_Item_Too_Late
12451 -- First make sure entity is not frozen (RM 13.1(9))
12455 -- Exclude imported types, which may be frozen if they appear in a
12456 -- representation clause for a local type.
12458 and then not From_Limited_With
(T
)
12460 -- Exclude generated entities (not coming from source). The common
12461 -- case is when we generate a renaming which prematurely freezes the
12462 -- renamed internal entity, but we still want to be able to set copies
12463 -- of attribute values such as Size/Alignment.
12465 and then Comes_From_Source
(T
)
12467 -- A self-referential aspect is illegal if it forces freezing the
12468 -- entity before the corresponding pragma has been analyzed.
12470 if Nkind_In
(N
, N_Attribute_Definition_Clause
, N_Pragma
)
12471 and then From_Aspect_Specification
(N
)
12474 ("aspect specification causes premature freezing of&", N
, T
);
12475 Set_Has_Delayed_Freeze
(T
, False);
12480 S
:= First_Subtype
(T
);
12482 if Present
(Freeze_Node
(S
)) then
12483 if not Relaxed_RM_Semantics
then
12485 ("??no more representation items for }", Freeze_Node
(S
), S
);
12491 -- Check for case of untagged derived type whose parent either has
12492 -- primitive operations, or is a by reference type (RM 13.1(10)). In
12493 -- this case we do not output a Too_Late message, since there is no
12494 -- earlier point where the rep item could be placed to make it legal.
12498 and then Is_Derived_Type
(T
)
12499 and then not Is_Tagged_Type
(T
)
12501 Parent_Type
:= Etype
(Base_Type
(T
));
12503 if Has_Primitive_Operations
(Parent_Type
) then
12506 if not Relaxed_RM_Semantics
then
12508 ("\parent type & has primitive operations!", N
, Parent_Type
);
12513 elsif Is_By_Reference_Type
(Parent_Type
) then
12516 if not Relaxed_RM_Semantics
then
12518 ("\parent type & is a by reference type!", N
, Parent_Type
);
12525 -- No error, but one more warning to consider. The RM (surprisingly)
12526 -- allows this pattern:
12529 -- primitive operations for S
12530 -- type R is new S;
12531 -- rep clause for S
12533 -- Meaning that calls on the primitive operations of S for values of
12534 -- type R may require possibly expensive implicit conversion operations.
12535 -- This is not an error, but is worth a warning.
12537 if not Relaxed_RM_Semantics
and then Is_Type
(T
) then
12539 DTL
: constant Entity_Id
:= Derived_Type_Link
(Base_Type
(T
));
12543 and then Has_Primitive_Operations
(Base_Type
(T
))
12545 -- For now, do not generate this warning for the case of aspect
12546 -- specification using Ada 2012 syntax, since we get wrong
12547 -- messages we do not understand. The whole business of derived
12548 -- types and rep items seems a bit confused when aspects are
12549 -- used, since the aspects are not evaluated till freeze time.
12551 and then not From_Aspect_Specification
(N
)
12553 Error_Msg_Sloc
:= Sloc
(DTL
);
12555 ("representation item for& appears after derived type "
12556 & "declaration#??", N
);
12558 ("\may result in implicit conversions for primitive "
12559 & "operations of&??", N
, T
);
12561 ("\to change representations when called with arguments "
12562 & "of type&??", N
, DTL
);
12567 -- No error, link item into head of chain of rep items for the entity,
12568 -- but avoid chaining if we have an overloadable entity, and the pragma
12569 -- is one that can apply to multiple overloaded entities.
12571 if Is_Overloadable
(T
) and then Nkind
(N
) = N_Pragma
then
12573 Pname
: constant Name_Id
:= Pragma_Name
(N
);
12575 if Nam_In
(Pname
, Name_Convention
, Name_Import
, Name_Export
,
12576 Name_External
, Name_Interface
)
12583 Record_Rep_Item
(T
, N
);
12585 end Rep_Item_Too_Late
;
12587 -------------------------------------
12588 -- Replace_Type_References_Generic --
12589 -------------------------------------
12591 procedure Replace_Type_References_Generic
(N
: Node_Id
; T
: Entity_Id
) is
12592 TName
: constant Name_Id
:= Chars
(T
);
12594 function Replace_Type_Ref
(N
: Node_Id
) return Traverse_Result
;
12595 -- Processes a single node in the traversal procedure below, checking
12596 -- if node N should be replaced, and if so, doing the replacement.
12598 function Visible_Component
(Comp
: Name_Id
) return Entity_Id
;
12599 -- Given an identifier in the expression, check whether there is a
12600 -- discriminant or component of the type that is directy visible, and
12601 -- rewrite it as the corresponding selected component of the formal of
12602 -- the subprogram. The entity is located by a sequential search, which
12603 -- seems acceptable given the typical size of component lists and check
12604 -- expressions. Possible optimization ???
12606 ----------------------
12607 -- Replace_Type_Ref --
12608 ----------------------
12610 function Replace_Type_Ref
(N
: Node_Id
) return Traverse_Result
is
12611 Loc
: constant Source_Ptr
:= Sloc
(N
);
12613 procedure Add_Prefix
(Ref
: Node_Id
; Comp
: Entity_Id
);
12614 -- Add the proper prefix to a reference to a component of the type
12615 -- when it is not already a selected component.
12621 procedure Add_Prefix
(Ref
: Node_Id
; Comp
: Entity_Id
) is
12624 Make_Selected_Component
(Loc
,
12625 Prefix
=> New_Occurrence_Of
(T
, Loc
),
12626 Selector_Name
=> New_Occurrence_Of
(Comp
, Loc
)));
12627 Replace_Type_Reference
(Prefix
(Ref
));
12636 -- Start of processing for Replace_Type_Ref
12639 if Nkind
(N
) = N_Identifier
then
12641 -- If not the type name, check whether it is a reference to some
12642 -- other type, which must be frozen before the predicate function
12643 -- is analyzed, i.e. before the freeze node of the type to which
12644 -- the predicate applies.
12646 if Chars
(N
) /= TName
then
12647 if Present
(Current_Entity
(N
))
12648 and then Is_Type
(Current_Entity
(N
))
12650 Freeze_Before
(Freeze_Node
(T
), Current_Entity
(N
));
12653 -- The components of the type are directly visible and can
12654 -- be referenced without a prefix.
12656 if Nkind
(Parent
(N
)) = N_Selected_Component
then
12659 -- In expression C (I), C may be a directly visible function
12660 -- or a visible component that has an array type. Disambiguate
12661 -- by examining the component type.
12663 elsif Nkind
(Parent
(N
)) = N_Indexed_Component
12664 and then N
= Prefix
(Parent
(N
))
12666 Comp
:= Visible_Component
(Chars
(N
));
12668 if Present
(Comp
) and then Is_Array_Type
(Etype
(Comp
)) then
12669 Add_Prefix
(N
, Comp
);
12673 Comp
:= Visible_Component
(Chars
(N
));
12675 if Present
(Comp
) then
12676 Add_Prefix
(N
, Comp
);
12682 -- Otherwise do the replacement if this is not a qualified
12683 -- reference to a homograph of the type itself. Note that the
12684 -- current instance could not appear in such a context, e.g.
12685 -- the prefix of a type conversion.
12688 if Nkind
(Parent
(N
)) /= N_Selected_Component
12689 or else N
/= Selector_Name
(Parent
(N
))
12691 Replace_Type_Reference
(N
);
12697 -- Case of selected component (which is what a qualification looks
12698 -- like in the unanalyzed tree, which is what we have.
12700 elsif Nkind
(N
) = N_Selected_Component
then
12702 -- If selector name is not our type, keep going (we might still
12703 -- have an occurrence of the type in the prefix).
12705 if Nkind
(Selector_Name
(N
)) /= N_Identifier
12706 or else Chars
(Selector_Name
(N
)) /= TName
12710 -- Selector name is our type, check qualification
12713 -- Loop through scopes and prefixes, doing comparison
12715 Scop
:= Current_Scope
;
12716 Pref
:= Prefix
(N
);
12718 -- Continue if no more scopes or scope with no name
12720 if No
(Scop
) or else Nkind
(Scop
) not in N_Has_Chars
then
12724 -- Do replace if prefix is an identifier matching the scope
12725 -- that we are currently looking at.
12727 if Nkind
(Pref
) = N_Identifier
12728 and then Chars
(Pref
) = Chars
(Scop
)
12730 Replace_Type_Reference
(N
);
12734 -- Go check scope above us if prefix is itself of the form
12735 -- of a selected component, whose selector matches the scope
12736 -- we are currently looking at.
12738 if Nkind
(Pref
) = N_Selected_Component
12739 and then Nkind
(Selector_Name
(Pref
)) = N_Identifier
12740 and then Chars
(Selector_Name
(Pref
)) = Chars
(Scop
)
12742 Scop
:= Scope
(Scop
);
12743 Pref
:= Prefix
(Pref
);
12745 -- For anything else, we don't have a match, so keep on
12746 -- going, there are still some weird cases where we may
12747 -- still have a replacement within the prefix.
12755 -- Continue for any other node kind
12760 end Replace_Type_Ref
;
12762 procedure Replace_Type_Refs
is new Traverse_Proc
(Replace_Type_Ref
);
12764 -----------------------
12765 -- Visible_Component --
12766 -----------------------
12768 function Visible_Component
(Comp
: Name_Id
) return Entity_Id
is
12772 -- Types with nameable components are records and discriminated
12775 if Ekind
(T
) = E_Record_Type
12776 or else (Is_Private_Type
(T
) and then Has_Discriminants
(T
))
12778 E
:= First_Entity
(T
);
12779 while Present
(E
) loop
12780 if Comes_From_Source
(E
) and then Chars
(E
) = Comp
then
12788 -- Nothing by that name, or the type has no components
12791 end Visible_Component
;
12793 -- Start of processing for Replace_Type_References_Generic
12796 Replace_Type_Refs
(N
);
12797 end Replace_Type_References_Generic
;
12799 --------------------------------
12800 -- Resolve_Aspect_Expressions --
12801 --------------------------------
12803 procedure Resolve_Aspect_Expressions
(E
: Entity_Id
) is
12804 function Resolve_Name
(N
: Node_Id
) return Traverse_Result
;
12805 -- Verify that all identifiers in the expression, with the exception
12806 -- of references to the current entity, denote visible entities. This
12807 -- is done only to detect visibility errors, as the expression will be
12808 -- properly analyzed/expanded during analysis of the predicate function
12809 -- body. We omit quantified expressions from this test, given that they
12810 -- introduce a local identifier that would require proper expansion to
12811 -- handle properly.
12813 -- In ASIS_Mode we preserve the entity in the source because there is
12814 -- no subsequent expansion to decorate the tree.
12820 function Resolve_Name
(N
: Node_Id
) return Traverse_Result
is
12821 Dummy
: Traverse_Result
;
12824 if Nkind
(N
) = N_Selected_Component
then
12825 if Nkind
(Prefix
(N
)) = N_Identifier
12826 and then Chars
(Prefix
(N
)) /= Chars
(E
)
12828 Find_Selected_Component
(N
);
12833 -- Resolve identifiers that are not selectors in parameter
12834 -- associations (these are never resolved by visibility).
12836 elsif Nkind
(N
) = N_Identifier
12837 and then Chars
(N
) /= Chars
(E
)
12838 and then (Nkind
(Parent
(N
)) /= N_Parameter_Association
12839 or else N
/= Selector_Name
(Parent
(N
)))
12841 Find_Direct_Name
(N
);
12843 -- In ASIS mode we must analyze overloaded identifiers to ensure
12844 -- their correct decoration because expansion is disabled (and
12845 -- the expansion of freeze nodes takes care of resolving aspect
12849 if Is_Overloaded
(N
) then
12850 Analyze
(Parent
(N
));
12853 Set_Entity
(N
, Empty
);
12856 -- The name is component association needs no resolution.
12858 elsif Nkind
(N
) = N_Component_Association
then
12859 Dummy
:= Resolve_Name
(Expression
(N
));
12862 elsif Nkind
(N
) = N_Quantified_Expression
then
12869 procedure Resolve_Aspect_Expression
is new Traverse_Proc
(Resolve_Name
);
12873 ASN
: Node_Id
:= First_Rep_Item
(E
);
12875 -- Start of processing for Resolve_Aspect_Expressions
12878 -- Need to make sure discriminants, if any, are directly visible
12880 Push_Scope_And_Install_Discriminants
(E
);
12882 while Present
(ASN
) loop
12883 if Nkind
(ASN
) = N_Aspect_Specification
and then Entity
(ASN
) = E
then
12885 A_Id
: constant Aspect_Id
:= Get_Aspect_Id
(ASN
);
12886 Expr
: constant Node_Id
:= Expression
(ASN
);
12891 -- For now we only deal with aspects that do not generate
12892 -- subprograms, or that may mention current instances of
12893 -- types. These will require special handling (???TBD).
12895 when Aspect_Invariant
12897 | Aspect_Predicate_Failure
12901 when Aspect_Dynamic_Predicate
12902 | Aspect_Static_Predicate
12904 -- Build predicate function specification and preanalyze
12905 -- expression after type replacement. The function
12906 -- declaration must be analyzed in the scope of the
12907 -- type, but the expression must see components.
12909 if No
(Predicate_Function
(E
)) then
12910 Uninstall_Discriminants_And_Pop_Scope
(E
);
12912 FDecl
: constant Node_Id
:=
12913 Build_Predicate_Function_Declaration
(E
);
12914 pragma Unreferenced
(FDecl
);
12917 Push_Scope_And_Install_Discriminants
(E
);
12918 Resolve_Aspect_Expression
(Expr
);
12922 when Pre_Post_Aspects
=>
12925 when Aspect_Iterable
=>
12926 if Nkind
(Expr
) = N_Aggregate
then
12931 Assoc
:= First
(Component_Associations
(Expr
));
12932 while Present
(Assoc
) loop
12933 Find_Direct_Name
(Expression
(Assoc
));
12939 -- The expression for Default_Value is a static expression
12940 -- of the type, but this expression does not freeze the
12941 -- type, so it can still appear in a representation clause
12942 -- before the actual freeze point.
12944 when Aspect_Default_Value
=>
12945 Set_Must_Not_Freeze
(Expr
);
12946 Preanalyze_Spec_Expression
(Expr
, E
);
12948 -- Ditto for Storage_Size. Any other aspects that carry
12949 -- expressions that should not freeze ??? This is only
12950 -- relevant to the misuse of deferred constants.
12952 when Aspect_Storage_Size
=>
12953 Set_Must_Not_Freeze
(Expr
);
12954 Preanalyze_Spec_Expression
(Expr
, Any_Integer
);
12957 if Present
(Expr
) then
12958 case Aspect_Argument
(A_Id
) is
12960 | Optional_Expression
12962 Analyze_And_Resolve
(Expr
);
12967 if Nkind
(Expr
) = N_Identifier
then
12968 Find_Direct_Name
(Expr
);
12970 elsif Nkind
(Expr
) = N_Selected_Component
then
12971 Find_Selected_Component
(Expr
);
12979 ASN
:= Next_Rep_Item
(ASN
);
12982 Uninstall_Discriminants_And_Pop_Scope
(E
);
12983 end Resolve_Aspect_Expressions
;
12985 -------------------------
12986 -- Same_Representation --
12987 -------------------------
12989 function Same_Representation
(Typ1
, Typ2
: Entity_Id
) return Boolean is
12990 T1
: constant Entity_Id
:= Underlying_Type
(Typ1
);
12991 T2
: constant Entity_Id
:= Underlying_Type
(Typ2
);
12994 -- A quick check, if base types are the same, then we definitely have
12995 -- the same representation, because the subtype specific representation
12996 -- attributes (Size and Alignment) do not affect representation from
12997 -- the point of view of this test.
12999 if Base_Type
(T1
) = Base_Type
(T2
) then
13002 elsif Is_Private_Type
(Base_Type
(T2
))
13003 and then Base_Type
(T1
) = Full_View
(Base_Type
(T2
))
13008 -- Tagged types always have the same representation, because it is not
13009 -- possible to specify different representations for common fields.
13011 if Is_Tagged_Type
(T1
) then
13015 -- Representations are definitely different if conventions differ
13017 if Convention
(T1
) /= Convention
(T2
) then
13021 -- Representations are different if component alignments or scalar
13022 -- storage orders differ.
13024 if (Is_Record_Type
(T1
) or else Is_Array_Type
(T1
))
13026 (Is_Record_Type
(T2
) or else Is_Array_Type
(T2
))
13028 (Component_Alignment
(T1
) /= Component_Alignment
(T2
)
13029 or else Reverse_Storage_Order
(T1
) /= Reverse_Storage_Order
(T2
))
13034 -- For arrays, the only real issue is component size. If we know the
13035 -- component size for both arrays, and it is the same, then that's
13036 -- good enough to know we don't have a change of representation.
13038 if Is_Array_Type
(T1
) then
13039 if Known_Component_Size
(T1
)
13040 and then Known_Component_Size
(T2
)
13041 and then Component_Size
(T1
) = Component_Size
(T2
)
13047 -- For records, representations are different if reorderings differ
13049 if Is_Record_Type
(T1
)
13050 and then Is_Record_Type
(T2
)
13051 and then No_Reordering
(T1
) /= No_Reordering
(T2
)
13056 -- Types definitely have same representation if neither has non-standard
13057 -- representation since default representations are always consistent.
13058 -- If only one has non-standard representation, and the other does not,
13059 -- then we consider that they do not have the same representation. They
13060 -- might, but there is no way of telling early enough.
13062 if Has_Non_Standard_Rep
(T1
) then
13063 if not Has_Non_Standard_Rep
(T2
) then
13067 return not Has_Non_Standard_Rep
(T2
);
13070 -- Here the two types both have non-standard representation, and we need
13071 -- to determine if they have the same non-standard representation.
13073 -- For arrays, we simply need to test if the component sizes are the
13074 -- same. Pragma Pack is reflected in modified component sizes, so this
13075 -- check also deals with pragma Pack.
13077 if Is_Array_Type
(T1
) then
13078 return Component_Size
(T1
) = Component_Size
(T2
);
13080 -- Case of record types
13082 elsif Is_Record_Type
(T1
) then
13084 -- Packed status must conform
13086 if Is_Packed
(T1
) /= Is_Packed
(T2
) then
13089 -- Otherwise we must check components. Typ2 maybe a constrained
13090 -- subtype with fewer components, so we compare the components
13091 -- of the base types.
13094 Record_Case
: declare
13095 CD1
, CD2
: Entity_Id
;
13097 function Same_Rep
return Boolean;
13098 -- CD1 and CD2 are either components or discriminants. This
13099 -- function tests whether they have the same representation.
13105 function Same_Rep
return Boolean is
13107 if No
(Component_Clause
(CD1
)) then
13108 return No
(Component_Clause
(CD2
));
13110 -- Note: at this point, component clauses have been
13111 -- normalized to the default bit order, so that the
13112 -- comparison of Component_Bit_Offsets is meaningful.
13115 Present
(Component_Clause
(CD2
))
13117 Component_Bit_Offset
(CD1
) = Component_Bit_Offset
(CD2
)
13119 Esize
(CD1
) = Esize
(CD2
);
13123 -- Start of processing for Record_Case
13126 if Has_Discriminants
(T1
) then
13128 -- The number of discriminants may be different if the
13129 -- derived type has fewer (constrained by values). The
13130 -- invisible discriminants retain the representation of
13131 -- the original, so the discrepancy does not per se
13132 -- indicate a different representation.
13134 CD1
:= First_Discriminant
(T1
);
13135 CD2
:= First_Discriminant
(T2
);
13136 while Present
(CD1
) and then Present
(CD2
) loop
13137 if not Same_Rep
then
13140 Next_Discriminant
(CD1
);
13141 Next_Discriminant
(CD2
);
13146 CD1
:= First_Component
(Underlying_Type
(Base_Type
(T1
)));
13147 CD2
:= First_Component
(Underlying_Type
(Base_Type
(T2
)));
13148 while Present
(CD1
) loop
13149 if not Same_Rep
then
13152 Next_Component
(CD1
);
13153 Next_Component
(CD2
);
13161 -- For enumeration types, we must check each literal to see if the
13162 -- representation is the same. Note that we do not permit enumeration
13163 -- representation clauses for Character and Wide_Character, so these
13164 -- cases were already dealt with.
13166 elsif Is_Enumeration_Type
(T1
) then
13167 Enumeration_Case
: declare
13168 L1
, L2
: Entity_Id
;
13171 L1
:= First_Literal
(T1
);
13172 L2
:= First_Literal
(T2
);
13173 while Present
(L1
) loop
13174 if Enumeration_Rep
(L1
) /= Enumeration_Rep
(L2
) then
13183 end Enumeration_Case
;
13185 -- Any other types have the same representation for these purposes
13190 end Same_Representation
;
13192 --------------------------------
13193 -- Resolve_Iterable_Operation --
13194 --------------------------------
13196 procedure Resolve_Iterable_Operation
13198 Cursor
: Entity_Id
;
13207 if not Is_Overloaded
(N
) then
13208 if not Is_Entity_Name
(N
)
13209 or else Ekind
(Entity
(N
)) /= E_Function
13210 or else Scope
(Entity
(N
)) /= Scope
(Typ
)
13211 or else No
(First_Formal
(Entity
(N
)))
13212 or else Etype
(First_Formal
(Entity
(N
))) /= Typ
13215 ("iterable primitive must be local function name whose first "
13216 & "formal is an iterable type", N
);
13221 F1
:= First_Formal
(Ent
);
13223 if Nam
= Name_First
or else Nam
= Name_Last
then
13225 -- First or Last (Container) => Cursor
13227 if Etype
(Ent
) /= Cursor
then
13228 Error_Msg_N
("primitive for First must yield a curosr", N
);
13231 elsif Nam
= Name_Next
then
13233 -- Next (Container, Cursor) => Cursor
13235 F2
:= Next_Formal
(F1
);
13237 if Etype
(F2
) /= Cursor
13238 or else Etype
(Ent
) /= Cursor
13239 or else Present
(Next_Formal
(F2
))
13241 Error_Msg_N
("no match for Next iterable primitive", N
);
13244 elsif Nam
= Name_Previous
then
13246 -- Previous (Container, Cursor) => Cursor
13248 F2
:= Next_Formal
(F1
);
13250 if Etype
(F2
) /= Cursor
13251 or else Etype
(Ent
) /= Cursor
13252 or else Present
(Next_Formal
(F2
))
13254 Error_Msg_N
("no match for Previous iterable primitive", N
);
13257 elsif Nam
= Name_Has_Element
then
13259 -- Has_Element (Container, Cursor) => Boolean
13261 F2
:= Next_Formal
(F1
);
13263 if Etype
(F2
) /= Cursor
13264 or else Etype
(Ent
) /= Standard_Boolean
13265 or else Present
(Next_Formal
(F2
))
13267 Error_Msg_N
("no match for Has_Element iterable primitive", N
);
13270 elsif Nam
= Name_Element
then
13271 F2
:= Next_Formal
(F1
);
13274 or else Etype
(F2
) /= Cursor
13275 or else Present
(Next_Formal
(F2
))
13277 Error_Msg_N
("no match for Element iterable primitive", N
);
13281 raise Program_Error
;
13285 -- Overloaded case: find subprogram with proper signature. Caller
13286 -- will report error if no match is found.
13293 Get_First_Interp
(N
, I
, It
);
13294 while Present
(It
.Typ
) loop
13295 if Ekind
(It
.Nam
) = E_Function
13296 and then Scope
(It
.Nam
) = Scope
(Typ
)
13297 and then Etype
(First_Formal
(It
.Nam
)) = Typ
13299 F1
:= First_Formal
(It
.Nam
);
13301 if Nam
= Name_First
then
13302 if Etype
(It
.Nam
) = Cursor
13303 and then No
(Next_Formal
(F1
))
13305 Set_Entity
(N
, It
.Nam
);
13309 elsif Nam
= Name_Next
then
13310 F2
:= Next_Formal
(F1
);
13313 and then No
(Next_Formal
(F2
))
13314 and then Etype
(F2
) = Cursor
13315 and then Etype
(It
.Nam
) = Cursor
13317 Set_Entity
(N
, It
.Nam
);
13321 elsif Nam
= Name_Has_Element
then
13322 F2
:= Next_Formal
(F1
);
13325 and then No
(Next_Formal
(F2
))
13326 and then Etype
(F2
) = Cursor
13327 and then Etype
(It
.Nam
) = Standard_Boolean
13329 Set_Entity
(N
, It
.Nam
);
13330 F2
:= Next_Formal
(F1
);
13334 elsif Nam
= Name_Element
then
13335 F2
:= Next_Formal
(F1
);
13338 and then No
(Next_Formal
(F2
))
13339 and then Etype
(F2
) = Cursor
13341 Set_Entity
(N
, It
.Nam
);
13347 Get_Next_Interp
(I
, It
);
13351 end Resolve_Iterable_Operation
;
13357 procedure Set_Biased
13361 Biased
: Boolean := True)
13365 Set_Has_Biased_Representation
(E
);
13367 if Warn_On_Biased_Representation
then
13369 ("?B?" & Msg
& " forces biased representation for&", N
, E
);
13374 --------------------
13375 -- Set_Enum_Esize --
13376 --------------------
13378 procedure Set_Enum_Esize
(T
: Entity_Id
) is
13384 Init_Alignment
(T
);
13386 -- Find the minimum standard size (8,16,32,64) that fits
13388 Lo
:= Enumeration_Rep
(Entity
(Type_Low_Bound
(T
)));
13389 Hi
:= Enumeration_Rep
(Entity
(Type_High_Bound
(T
)));
13392 if Lo
>= -Uint_2
**07 and then Hi
< Uint_2
**07 then
13393 Sz
:= Standard_Character_Size
; -- May be > 8 on some targets
13395 elsif Lo
>= -Uint_2
**15 and then Hi
< Uint_2
**15 then
13398 elsif Lo
>= -Uint_2
**31 and then Hi
< Uint_2
**31 then
13401 else pragma Assert
(Lo
>= -Uint_2
**63 and then Hi
< Uint_2
**63);
13406 if Hi
< Uint_2
**08 then
13407 Sz
:= Standard_Character_Size
; -- May be > 8 on some targets
13409 elsif Hi
< Uint_2
**16 then
13412 elsif Hi
< Uint_2
**32 then
13415 else pragma Assert
(Hi
< Uint_2
**63);
13420 -- That minimum is the proper size unless we have a foreign convention
13421 -- and the size required is 32 or less, in which case we bump the size
13422 -- up to 32. This is required for C and C++ and seems reasonable for
13423 -- all other foreign conventions.
13425 if Has_Foreign_Convention
(T
)
13426 and then Esize
(T
) < Standard_Integer_Size
13428 -- Don't do this if Short_Enums on target
13430 and then not Target_Short_Enums
13432 Init_Esize
(T
, Standard_Integer_Size
);
13434 Init_Esize
(T
, Sz
);
13436 end Set_Enum_Esize
;
13438 -----------------------------
13439 -- Uninstall_Discriminants --
13440 -----------------------------
13442 procedure Uninstall_Discriminants
(E
: Entity_Id
) is
13448 -- Discriminants have been made visible for type declarations and
13449 -- protected type declarations, not for subtype declarations.
13451 if Nkind
(Parent
(E
)) /= N_Subtype_Declaration
then
13452 Disc
:= First_Discriminant
(E
);
13453 while Present
(Disc
) loop
13454 if Disc
/= Current_Entity
(Disc
) then
13455 Prev
:= Current_Entity
(Disc
);
13456 while Present
(Prev
)
13457 and then Present
(Homonym
(Prev
))
13458 and then Homonym
(Prev
) /= Disc
13460 Prev
:= Homonym
(Prev
);
13466 Set_Is_Immediately_Visible
(Disc
, False);
13468 Outer
:= Homonym
(Disc
);
13469 while Present
(Outer
) and then Scope
(Outer
) = E
loop
13470 Outer
:= Homonym
(Outer
);
13473 -- Reset homonym link of other entities, but do not modify link
13474 -- between entities in current scope, so that the back end can
13475 -- have a proper count of local overloadings.
13478 Set_Name_Entity_Id
(Chars
(Disc
), Outer
);
13480 elsif Scope
(Prev
) /= Scope
(Disc
) then
13481 Set_Homonym
(Prev
, Outer
);
13484 Next_Discriminant
(Disc
);
13487 end Uninstall_Discriminants
;
13489 -------------------------------------------
13490 -- Uninstall_Discriminants_And_Pop_Scope --
13491 -------------------------------------------
13493 procedure Uninstall_Discriminants_And_Pop_Scope
(E
: Entity_Id
) is
13495 if Has_Discriminants
(E
) then
13496 Uninstall_Discriminants
(E
);
13499 end Uninstall_Discriminants_And_Pop_Scope
;
13501 ------------------------------
13502 -- Validate_Address_Clauses --
13503 ------------------------------
13505 procedure Validate_Address_Clauses
is
13506 function Offset_Value
(Expr
: Node_Id
) return Uint
;
13507 -- Given an Address attribute reference, return the value in bits of its
13508 -- offset from the first bit of the underlying entity, or 0 if it is not
13509 -- known at compile time.
13515 function Offset_Value
(Expr
: Node_Id
) return Uint
is
13516 N
: Node_Id
:= Prefix
(Expr
);
13518 Val
: Uint
:= Uint_0
;
13521 -- Climb the prefix chain and compute the cumulative offset
13524 if Is_Entity_Name
(N
) then
13527 elsif Nkind
(N
) = N_Selected_Component
then
13528 Off
:= Component_Bit_Offset
(Entity
(Selector_Name
(N
)));
13529 if Off
/= No_Uint
and then Off
>= Uint_0
then
13536 elsif Nkind
(N
) = N_Indexed_Component
then
13537 Off
:= Indexed_Component_Bit_Offset
(N
);
13538 if Off
/= No_Uint
then
13551 -- Start of processing for Validate_Address_Clauses
13554 for J
in Address_Clause_Checks
.First
.. Address_Clause_Checks
.Last
loop
13556 ACCR
: Address_Clause_Check_Record
13557 renames Address_Clause_Checks
.Table
(J
);
13561 X_Alignment
: Uint
;
13562 Y_Alignment
: Uint
:= Uint_0
;
13565 Y_Size
: Uint
:= Uint_0
;
13570 -- Skip processing of this entry if warning already posted
13572 if not Address_Warning_Posted
(ACCR
.N
) then
13573 Expr
:= Original_Node
(Expression
(ACCR
.N
));
13575 -- Get alignments, sizes and offset, if any
13577 X_Alignment
:= Alignment
(ACCR
.X
);
13578 X_Size
:= Esize
(ACCR
.X
);
13580 if Present
(ACCR
.Y
) then
13581 Y_Alignment
:= Alignment
(ACCR
.Y
);
13582 Y_Size
:= Esize
(ACCR
.Y
);
13586 and then Nkind
(Expr
) = N_Attribute_Reference
13587 and then Attribute_Name
(Expr
) = Name_Address
13589 X_Offs
:= Offset_Value
(Expr
);
13594 -- Check for known value not multiple of alignment
13596 if No
(ACCR
.Y
) then
13597 if not Alignment_Checks_Suppressed
(ACCR
)
13598 and then X_Alignment
/= 0
13599 and then ACCR
.A
mod X_Alignment
/= 0
13602 ("??specified address for& is inconsistent with "
13603 & "alignment", ACCR
.N
, ACCR
.X
);
13605 ("\??program execution may be erroneous (RM 13.3(27))",
13608 Error_Msg_Uint_1
:= X_Alignment
;
13609 Error_Msg_NE
("\??alignment of & is ^", ACCR
.N
, ACCR
.X
);
13612 -- Check for large object overlaying smaller one
13614 elsif Y_Size
> Uint_0
13615 and then X_Size
> Uint_0
13616 and then X_Offs
+ X_Size
> Y_Size
13618 Error_Msg_NE
("??& overlays smaller object", ACCR
.N
, ACCR
.X
);
13620 ("\??program execution may be erroneous", ACCR
.N
);
13622 Error_Msg_Uint_1
:= X_Size
;
13623 Error_Msg_NE
("\??size of & is ^", ACCR
.N
, ACCR
.X
);
13625 Error_Msg_Uint_1
:= Y_Size
;
13626 Error_Msg_NE
("\??size of & is ^", ACCR
.N
, ACCR
.Y
);
13628 if Y_Size
>= X_Size
then
13629 Error_Msg_Uint_1
:= X_Offs
;
13630 Error_Msg_NE
("\??but offset of & is ^", ACCR
.N
, ACCR
.X
);
13633 -- Check for inadequate alignment, both of the base object
13634 -- and of the offset, if any. We only do this check if the
13635 -- run-time Alignment_Check is active. No point in warning
13636 -- if this check has been suppressed (or is suppressed by
13637 -- default in the non-strict alignment machine case).
13639 -- Note: we do not check the alignment if we gave a size
13640 -- warning, since it would likely be redundant.
13642 elsif not Alignment_Checks_Suppressed
(ACCR
)
13643 and then Y_Alignment
/= Uint_0
13645 (Y_Alignment
< X_Alignment
13648 and then Nkind
(Expr
) = N_Attribute_Reference
13649 and then Attribute_Name
(Expr
) = Name_Address
13650 and then Has_Compatible_Alignment
13651 (ACCR
.X
, Prefix
(Expr
), True) /=
13655 ("??specified address for& may be inconsistent with "
13656 & "alignment", ACCR
.N
, ACCR
.X
);
13658 ("\??program execution may be erroneous (RM 13.3(27))",
13661 Error_Msg_Uint_1
:= X_Alignment
;
13662 Error_Msg_NE
("\??alignment of & is ^", ACCR
.N
, ACCR
.X
);
13664 Error_Msg_Uint_1
:= Y_Alignment
;
13665 Error_Msg_NE
("\??alignment of & is ^", ACCR
.N
, ACCR
.Y
);
13667 if Y_Alignment
>= X_Alignment
then
13669 ("\??but offset is not multiple of alignment", ACCR
.N
);
13675 end Validate_Address_Clauses
;
13677 -----------------------------------------
13678 -- Validate_Compile_Time_Warning_Error --
13679 -----------------------------------------
13681 procedure Validate_Compile_Time_Warning_Error
(N
: Node_Id
) is
13683 Compile_Time_Warnings_Errors
.Append
13684 (New_Val
=> CTWE_Entry
'(Eloc => Sloc (N),
13685 Scope => Current_Scope,
13687 end Validate_Compile_Time_Warning_Error;
13689 ------------------------------------------
13690 -- Validate_Compile_Time_Warning_Errors --
13691 ------------------------------------------
13693 procedure Validate_Compile_Time_Warning_Errors is
13694 procedure Set_Scope (S : Entity_Id);
13695 -- Install all enclosing scopes of S along with S itself
13697 procedure Unset_Scope (S : Entity_Id);
13698 -- Uninstall all enclosing scopes of S along with S itself
13704 procedure Set_Scope (S : Entity_Id) is
13706 if S /= Standard_Standard then
13707 Set_Scope (Scope (S));
13717 procedure Unset_Scope (S : Entity_Id) is
13719 if S /= Standard_Standard then
13720 Unset_Scope (Scope (S));
13726 -- Start of processing for Validate_Compile_Time_Warning_Errors
13729 Expander_Mode_Save_And_Set (False);
13730 In_Compile_Time_Warning_Or_Error := True;
13732 for N in Compile_Time_Warnings_Errors.First ..
13733 Compile_Time_Warnings_Errors.Last
13736 T : CTWE_Entry renames Compile_Time_Warnings_Errors.Table (N);
13739 Set_Scope (T.Scope);
13740 Reset_Analyzed_Flags (T.Prag);
13741 Process_Compile_Time_Warning_Or_Error (T.Prag, T.Eloc);
13742 Unset_Scope (T.Scope);
13746 In_Compile_Time_Warning_Or_Error := False;
13747 Expander_Mode_Restore;
13748 end Validate_Compile_Time_Warning_Errors;
13750 ---------------------------
13751 -- Validate_Independence --
13752 ---------------------------
13754 procedure Validate_Independence is
13755 SU : constant Uint := UI_From_Int (System_Storage_Unit);
13763 procedure Check_Array_Type (Atyp : Entity_Id);
13764 -- Checks if the array type Atyp has independent components, and
13765 -- if not, outputs an appropriate set of error messages.
13767 procedure No_Independence;
13768 -- Output message that independence cannot be guaranteed
13770 function OK_Component (C : Entity_Id) return Boolean;
13771 -- Checks one component to see if it is independently accessible, and
13772 -- if so yields True, otherwise yields False if independent access
13773 -- cannot be guaranteed. This is a conservative routine, it only
13774 -- returns True if it knows for sure, it returns False if it knows
13775 -- there is a problem, or it cannot be sure there is no problem.
13777 procedure Reason_Bad_Component (C : Entity_Id);
13778 -- Outputs continuation message if a reason can be determined for
13779 -- the component C being bad.
13781 ----------------------
13782 -- Check_Array_Type --
13783 ----------------------
13785 procedure Check_Array_Type (Atyp : Entity_Id) is
13786 Ctyp : constant Entity_Id := Component_Type (Atyp);
13789 -- OK if no alignment clause, no pack, and no component size
13791 if not Has_Component_Size_Clause (Atyp)
13792 and then not Has_Alignment_Clause (Atyp)
13793 and then not Is_Packed (Atyp)
13798 -- Case of component size is greater than or equal to 64 and the
13799 -- alignment of the array is at least as large as the alignment
13800 -- of the component. We are definitely OK in this situation.
13802 if Known_Component_Size (Atyp)
13803 and then Component_Size (Atyp) >= 64
13804 and then Known_Alignment (Atyp)
13805 and then Known_Alignment (Ctyp)
13806 and then Alignment (Atyp) >= Alignment (Ctyp)
13811 -- Check actual component size
13813 if not Known_Component_Size (Atyp)
13814 or else not (Addressable (Component_Size (Atyp))
13815 and then Component_Size (Atyp) < 64)
13816 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
13820 -- Bad component size, check reason
13822 if Has_Component_Size_Clause (Atyp) then
13823 P := Get_Attribute_Definition_Clause
13824 (Atyp, Attribute_Component_Size);
13826 if Present (P) then
13827 Error_Msg_Sloc := Sloc (P);
13828 Error_Msg_N ("\because of Component_Size clause#", N);
13833 if Is_Packed (Atyp) then
13834 P := Get_Rep_Pragma (Atyp, Name_Pack);
13836 if Present (P) then
13837 Error_Msg_Sloc := Sloc (P);
13838 Error_Msg_N ("\because of pragma Pack#", N);
13843 -- No reason found, just return
13848 -- Array type is OK independence-wise
13851 end Check_Array_Type;
13853 ---------------------
13854 -- No_Independence --
13855 ---------------------
13857 procedure No_Independence is
13859 if Pragma_Name (N) = Name_Independent then
13860 Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
13863 ("independent components cannot be guaranteed for&", N, E);
13865 end No_Independence;
13871 function OK_Component (C : Entity_Id) return Boolean is
13872 Rec : constant Entity_Id := Scope (C);
13873 Ctyp : constant Entity_Id := Etype (C);
13876 -- OK if no component clause, no Pack, and no alignment clause
13878 if No (Component_Clause (C))
13879 and then not Is_Packed (Rec)
13880 and then not Has_Alignment_Clause (Rec)
13885 -- Here we look at the actual component layout. A component is
13886 -- addressable if its size is a multiple of the Esize of the
13887 -- component type, and its starting position in the record has
13888 -- appropriate alignment, and the record itself has appropriate
13889 -- alignment to guarantee the component alignment.
13891 -- Make sure sizes are static, always assume the worst for any
13892 -- cases where we cannot check static values.
13894 if not (Known_Static_Esize (C)
13896 Known_Static_Esize (Ctyp))
13901 -- Size of component must be addressable or greater than 64 bits
13902 -- and a multiple of bytes.
13904 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
13908 -- Check size is proper multiple
13910 if Esize (C) mod Esize (Ctyp) /= 0 then
13914 -- Check alignment of component is OK
13916 if not Known_Component_Bit_Offset (C)
13917 or else Component_Bit_Offset (C) < Uint_0
13918 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
13923 -- Check alignment of record type is OK
13925 if not Known_Alignment (Rec)
13926 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13931 -- All tests passed, component is addressable
13936 --------------------------
13937 -- Reason_Bad_Component --
13938 --------------------------
13940 procedure Reason_Bad_Component (C : Entity_Id) is
13941 Rec : constant Entity_Id := Scope (C);
13942 Ctyp : constant Entity_Id := Etype (C);
13945 -- If component clause present assume that's the problem
13947 if Present (Component_Clause (C)) then
13948 Error_Msg_Sloc := Sloc (Component_Clause (C));
13949 Error_Msg_N ("\because of Component_Clause#", N);
13953 -- If pragma Pack clause present, assume that's the problem
13955 if Is_Packed (Rec) then
13956 P := Get_Rep_Pragma (Rec, Name_Pack);
13958 if Present (P) then
13959 Error_Msg_Sloc := Sloc (P);
13960 Error_Msg_N ("\because of pragma Pack#", N);
13965 -- See if record has bad alignment clause
13967 if Has_Alignment_Clause (Rec)
13968 and then Known_Alignment (Rec)
13969 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13971 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
13973 if Present (P) then
13974 Error_Msg_Sloc := Sloc (P);
13975 Error_Msg_N ("\because of Alignment clause#", N);
13979 -- Couldn't find a reason, so return without a message
13982 end Reason_Bad_Component;
13984 -- Start of processing for Validate_Independence
13987 for J in Independence_Checks.First .. Independence_Checks.Last loop
13988 N := Independence_Checks.Table (J).N;
13989 E := Independence_Checks.Table (J).E;
13990 IC := Pragma_Name (N) = Name_Independent_Components;
13992 -- Deal with component case
13994 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
13995 if not OK_Component (E) then
13997 Reason_Bad_Component (E);
14002 -- Deal with record with Independent_Components
14004 if IC and then Is_Record_Type (E) then
14005 Comp := First_Component_Or_Discriminant (E);
14006 while Present (Comp) loop
14007 if not OK_Component (Comp) then
14009 Reason_Bad_Component (Comp);
14013 Next_Component_Or_Discriminant (Comp);
14017 -- Deal with address clause case
14019 if Is_Object (E) then
14020 Addr := Address_Clause (E);
14022 if Present (Addr) then
14024 Error_Msg_Sloc := Sloc (Addr);
14025 Error_Msg_N ("\because of Address clause#", N);
14030 -- Deal with independent components for array type
14032 if IC and then Is_Array_Type (E) then
14033 Check_Array_Type (E);
14036 -- Deal with independent components for array object
14038 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
14039 Check_Array_Type (Etype (E));
14044 end Validate_Independence;
14046 ------------------------------
14047 -- Validate_Iterable_Aspect --
14048 ------------------------------
14050 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
14055 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
14057 First_Id : Entity_Id;
14058 Last_Id : Entity_Id;
14059 Next_Id : Entity_Id;
14060 Has_Element_Id : Entity_Id;
14061 Element_Id : Entity_Id;
14064 -- If previous error aspect is unusable
14066 if Cursor = Any_Type then
14073 Has_Element_Id := Empty;
14074 Element_Id := Empty;
14076 -- Each expression must resolve to a function with the proper signature
14078 Assoc := First (Component_Associations (Expression (ASN)));
14079 while Present (Assoc) loop
14080 Expr := Expression (Assoc);
14083 Prim := First (Choices (Assoc));
14085 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
14086 Error_Msg_N ("illegal name in association", Prim);
14088 elsif Chars (Prim) = Name_First then
14089 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
14090 First_Id := Entity (Expr);
14092 elsif Chars (Prim) = Name_Last then
14093 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Last);
14094 Last_Id := Entity (Expr);
14096 elsif Chars (Prim) = Name_Previous then
14097 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Previous);
14098 Last_Id := Entity (Expr);
14100 elsif Chars (Prim) = Name_Next then
14101 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
14102 Next_Id := Entity (Expr);
14104 elsif Chars (Prim) = Name_Has_Element then
14105 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
14106 Has_Element_Id := Entity (Expr);
14108 elsif Chars (Prim) = Name_Element then
14109 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
14110 Element_Id := Entity (Expr);
14113 Error_Msg_N ("invalid name for iterable function", Prim);
14119 if No (First_Id) then
14120 Error_Msg_N ("match for First primitive not found", ASN);
14122 elsif No (Next_Id) then
14123 Error_Msg_N ("match for Next primitive not found", ASN);
14125 elsif No (Has_Element_Id) then
14126 Error_Msg_N ("match for Has_Element primitive not found", ASN);
14128 elsif No (Element_Id) or else No (Last_Id) then
14131 end Validate_Iterable_Aspect;
14133 -----------------------------------
14134 -- Validate_Unchecked_Conversion --
14135 -----------------------------------
14137 procedure Validate_Unchecked_Conversion
14139 Act_Unit : Entity_Id)
14141 Source : Entity_Id;
14142 Target : Entity_Id;
14146 -- Obtain source and target types. Note that we call Ancestor_Subtype
14147 -- here because the processing for generic instantiation always makes
14148 -- subtypes, and we want the original frozen actual types.
14150 -- If we are dealing with private types, then do the check on their
14151 -- fully declared counterparts if the full declarations have been
14152 -- encountered (they don't have to be visible, but they must exist).
14154 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
14156 if Is_Private_Type (Source)
14157 and then Present (Underlying_Type (Source))
14159 Source := Underlying_Type (Source);
14162 Target := Ancestor_Subtype (Etype (Act_Unit));
14164 -- If either type is generic, the instantiation happens within a generic
14165 -- unit, and there is nothing to check. The proper check will happen
14166 -- when the enclosing generic is instantiated.
14168 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
14172 if Is_Private_Type (Target)
14173 and then Present (Underlying_Type (Target))
14175 Target := Underlying_Type (Target);
14178 -- Source may be unconstrained array, but not target, except in relaxed
14181 if Is_Array_Type (Target)
14182 and then not Is_Constrained (Target)
14183 and then not Relaxed_RM_Semantics
14186 ("unchecked conversion to unconstrained array not allowed", N);
14190 -- Warn if conversion between two different convention pointers
14192 if Is_Access_Type (Target)
14193 and then Is_Access_Type (Source)
14194 and then Convention (Target) /= Convention (Source)
14195 and then Warn_On_Unchecked_Conversion
14197 -- Give warnings for subprogram pointers only on most targets
14199 if Is_Access_Subprogram_Type (Target)
14200 or else Is_Access_Subprogram_Type (Source)
14203 ("?z?conversion between pointers with different conventions!",
14208 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
14209 -- warning when compiling GNAT-related sources.
14211 if Warn_On_Unchecked_Conversion
14212 and then not In_Predefined_Unit (N)
14213 and then RTU_Loaded (Ada_Calendar)
14214 and then (Chars (Source) = Name_Time
14216 Chars (Target) = Name_Time)
14218 -- If Ada.Calendar is loaded and the name of one of the operands is
14219 -- Time, there is a good chance that this is Ada.Calendar.Time.
14222 Calendar_Time : constant Entity_Id := Full_View (RTE (RO_CA_Time));
14224 pragma Assert (Present (Calendar_Time));
14226 if Source = Calendar_Time or else Target = Calendar_Time then
14228 ("?z?representation of 'Time values may change between
"
14229 & "'G'N'A
'T versions
", N);
14234 -- Make entry in unchecked conversion table for later processing by
14235 -- Validate_Unchecked_Conversions, which will check sizes and alignments
14236 -- (using values set by the back end where possible). This is only done
14237 -- if the appropriate warning is active.
14239 if Warn_On_Unchecked_Conversion then
14240 Unchecked_Conversions.Append
14241 (New_Val => UC_Entry'(Eloc => Sloc (N),
14244 Act_Unit => Act_Unit));
14246 -- If both sizes are known statically now, then back-end annotation
14247 -- is not required to do a proper check but if either size is not
14248 -- known statically, then we need the annotation.
14250 if Known_Static_RM_Size (Source)
14252 Known_Static_RM_Size (Target)
14256 Back_Annotate_Rep_Info := True;
14260 -- If unchecked conversion to access type, and access type is declared
14261 -- in the same unit as the unchecked conversion, then set the flag
14262 -- No_Strict_Aliasing (no strict aliasing is implicit here)
14264 if Is_Access_Type (Target) and then
14265 In_Same_Source_Unit (Target, N)
14267 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
14270 -- Generate N_Validate_Unchecked_Conversion node for back end in case
14271 -- the back end needs to perform special validation checks.
14273 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
14274 -- have full expansion and the back end is called ???
14277 Make_Validate_Unchecked_Conversion (Sloc (N));
14278 Set_Source_Type (Vnode, Source);
14279 Set_Target_Type (Vnode, Target);
14281 -- If the unchecked conversion node is in a list, just insert before it.
14282 -- If not we have some strange case, not worth bothering about.
14284 if Is_List_Member (N) then
14285 Insert_After (N, Vnode);
14287 end Validate_Unchecked_Conversion;
14289 ------------------------------------
14290 -- Validate_Unchecked_Conversions --
14291 ------------------------------------
14293 procedure Validate_Unchecked_Conversions is
14295 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
14297 T : UC_Entry renames Unchecked_Conversions.Table (N);
14299 Act_Unit : constant Entity_Id := T.Act_Unit;
14300 Eloc : constant Source_Ptr := T.Eloc;
14301 Source : constant Entity_Id := T.Source;
14302 Target : constant Entity_Id := T.Target;
14308 -- Skip if function marked as warnings off
14310 if Warnings_Off (Act_Unit) then
14314 -- This validation check, which warns if we have unequal sizes for
14315 -- unchecked conversion, and thus potentially implementation
14316 -- dependent semantics, is one of the few occasions on which we
14317 -- use the official RM size instead of Esize. See description in
14318 -- Einfo "Handling
of Type'Size Values
" for details.
14320 if Serious_Errors_Detected = 0
14321 and then Known_Static_RM_Size (Source)
14322 and then Known_Static_RM_Size (Target)
14324 -- Don't do the check if warnings off for either type, note the
14325 -- deliberate use of OR here instead of OR ELSE to get the flag
14326 -- Warnings_Off_Used set for both types if appropriate.
14328 and then not (Has_Warnings_Off (Source)
14330 Has_Warnings_Off (Target))
14332 Source_Siz := RM_Size (Source);
14333 Target_Siz := RM_Size (Target);
14335 if Source_Siz /= Target_Siz then
14337 ("?z?types
for unchecked conversion have different sizes
!",
14340 if All_Errors_Mode then
14341 Error_Msg_Name_1 := Chars (Source);
14342 Error_Msg_Uint_1 := Source_Siz;
14343 Error_Msg_Name_2 := Chars (Target);
14344 Error_Msg_Uint_2 := Target_Siz;
14345 Error_Msg ("\size
of % is ^
, size
of % is ^?z?
", Eloc);
14347 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
14349 if Is_Discrete_Type (Source)
14351 Is_Discrete_Type (Target)
14353 if Source_Siz > Target_Siz then
14355 ("\?z?^ high order bits
of source will
"
14356 & "be ignored
!", Eloc);
14358 elsif Is_Unsigned_Type (Source) then
14360 ("\?z?source will be extended
with ^ high order
"
14361 & "zero bits
!", Eloc);
14365 ("\?z?source will be extended
with ^ high order
"
14366 & "sign bits
!", Eloc);
14369 elsif Source_Siz < Target_Siz then
14370 if Is_Discrete_Type (Target) then
14371 if Bytes_Big_Endian then
14373 ("\?z?target value will include ^ undefined
"
14374 & "low order bits
!", Eloc, Act_Unit);
14377 ("\?z?target value will include ^ undefined
"
14378 & "high order bits
!", Eloc, Act_Unit);
14383 ("\?z?^ trailing bits
of target value will be
"
14384 & "undefined
!", Eloc, Act_Unit);
14387 else pragma Assert (Source_Siz > Target_Siz);
14388 if Is_Discrete_Type (Source) then
14389 if Bytes_Big_Endian then
14391 ("\?z?^ low order bits
of source will be
"
14392 & "ignored
!", Eloc, Act_Unit);
14395 ("\?z?^ high order bits
of source will be
"
14396 & "ignored
!", Eloc, Act_Unit);
14401 ("\?z?^ trailing bits
of source will be
"
14402 & "ignored
!", Eloc, Act_Unit);
14409 -- If both types are access types, we need to check the alignment.
14410 -- If the alignment of both is specified, we can do it here.
14412 if Serious_Errors_Detected = 0
14413 and then Is_Access_Type (Source)
14414 and then Is_Access_Type (Target)
14415 and then Target_Strict_Alignment
14416 and then Present (Designated_Type (Source))
14417 and then Present (Designated_Type (Target))
14420 D_Source : constant Entity_Id := Designated_Type (Source);
14421 D_Target : constant Entity_Id := Designated_Type (Target);
14424 if Known_Alignment (D_Source)
14426 Known_Alignment (D_Target)
14429 Source_Align : constant Uint := Alignment (D_Source);
14430 Target_Align : constant Uint := Alignment (D_Target);
14433 if Source_Align < Target_Align
14434 and then not Is_Tagged_Type (D_Source)
14436 -- Suppress warning if warnings suppressed on either
14437 -- type or either designated type. Note the use of
14438 -- OR here instead of OR ELSE. That is intentional,
14439 -- we would like to set flag Warnings_Off_Used in
14440 -- all types for which warnings are suppressed.
14442 and then not (Has_Warnings_Off (D_Source)
14444 Has_Warnings_Off (D_Target)
14446 Has_Warnings_Off (Source)
14448 Has_Warnings_Off (Target))
14450 Error_Msg_Uint_1 := Target_Align;
14451 Error_Msg_Uint_2 := Source_Align;
14452 Error_Msg_Node_1 := D_Target;
14453 Error_Msg_Node_2 := D_Source;
14455 ("?z?alignment
of & (^
) is stricter than
"
14456 & "alignment
of & (^
)!", Eloc, Act_Unit);
14458 ("\?z?resulting
access value may have invalid
"
14459 & "alignment
!", Eloc, Act_Unit);
14470 end Validate_Unchecked_Conversions;