Fix typos in riscv register save/restore.
[official-gcc.git] / gcc / ada / sem_ch13.adb
blobb501e14f31ed682dac5322dd8af0e8d3f983b33a
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Expander; use Expander;
34 with Exp_Disp; use Exp_Disp;
35 with Exp_Tss; use Exp_Tss;
36 with Exp_Util; use Exp_Util;
37 with Freeze; use Freeze;
38 with Ghost; use Ghost;
39 with Lib; use Lib;
40 with Lib.Xref; use Lib.Xref;
41 with Namet; use Namet;
42 with Nlists; use Nlists;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Par_SCO; use Par_SCO;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Case; use Sem_Case;
52 with Sem_Ch3; use Sem_Ch3;
53 with Sem_Ch6; use Sem_Ch6;
54 with Sem_Ch7; use Sem_Ch7;
55 with Sem_Ch8; use Sem_Ch8;
56 with Sem_Dim; use Sem_Dim;
57 with Sem_Disp; use Sem_Disp;
58 with Sem_Eval; use Sem_Eval;
59 with Sem_Prag; use Sem_Prag;
60 with Sem_Res; use Sem_Res;
61 with Sem_Type; use Sem_Type;
62 with Sem_Util; use Sem_Util;
63 with Sem_Warn; use Sem_Warn;
64 with Sinfo; use Sinfo;
65 with Sinput; use Sinput;
66 with Snames; use Snames;
67 with Stand; use Stand;
68 with Targparm; use Targparm;
69 with Ttypes; use Ttypes;
70 with Tbuild; use Tbuild;
71 with Urealp; use Urealp;
72 with Warnsw; use Warnsw;
74 with GNAT.Heap_Sort_G;
76 package body Sem_Ch13 is
78 SSU : constant Pos := System_Storage_Unit;
79 -- Convenient short hand for commonly used constant
81 -----------------------
82 -- Local Subprograms --
83 -----------------------
85 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id);
86 -- Helper routine providing the original (pre-AI95-0133) behavior for
87 -- Adjust_Record_For_Reverse_Bit_Order.
89 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint);
90 -- This routine is called after setting one of the sizes of type entity
91 -- Typ to Size. The purpose is to deal with the situation of a derived
92 -- type whose inherited alignment is no longer appropriate for the new
93 -- size value. In this case, we reset the Alignment to unknown.
95 procedure Build_Discrete_Static_Predicate
96 (Typ : Entity_Id;
97 Expr : Node_Id;
98 Nam : Name_Id);
99 -- Given a predicated type Typ, where Typ is a discrete static subtype,
100 -- whose predicate expression is Expr, tests if Expr is a static predicate,
101 -- and if so, builds the predicate range list. Nam is the name of the one
102 -- argument to the predicate function. Occurrences of the type name in the
103 -- predicate expression have been replaced by identifier references to this
104 -- name, which is unique, so any identifier with Chars matching Nam must be
105 -- a reference to the type. If the predicate is non-static, this procedure
106 -- returns doing nothing. If the predicate is static, then the predicate
107 -- list is stored in Static_Discrete_Predicate (Typ), and the Expr is
108 -- rewritten as a canonicalized membership operation.
110 function Build_Export_Import_Pragma
111 (Asp : Node_Id;
112 Id : Entity_Id) return Node_Id;
113 -- Create the corresponding pragma for aspect Export or Import denoted by
114 -- Asp. Id is the related entity subject to the aspect. Return Empty when
115 -- the expression of aspect Asp evaluates to False or is erroneous.
117 function Build_Predicate_Function_Declaration
118 (Typ : Entity_Id) return Node_Id;
119 -- Build the declaration for a predicate function. The declaration is built
120 -- at the end of the declarative part containing the type definition, which
121 -- may be before the freeze point of the type. The predicate expression is
122 -- pre-analyzed at this point, to catch visibility errors.
124 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id);
125 -- If Typ has predicates (indicated by Has_Predicates being set for Typ),
126 -- then either there are pragma Predicate entries on the rep chain for the
127 -- type (note that Predicate aspects are converted to pragma Predicate), or
128 -- there are inherited aspects from a parent type, or ancestor subtypes.
129 -- This procedure builds body for the Predicate function that tests these
130 -- predicates. N is the freeze node for the type. The spec of the function
131 -- is inserted before the freeze node, and the body of the function is
132 -- inserted after the freeze node. If the predicate expression has a least
133 -- one Raise_Expression, then this procedure also builds the M version of
134 -- the predicate function for use in membership tests.
136 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id);
137 -- Called if both Storage_Pool and Storage_Size attribute definition
138 -- clauses (SP and SS) are present for entity Ent. Issue error message.
140 procedure Freeze_Entity_Checks (N : Node_Id);
141 -- Called from Analyze_Freeze_Entity and Analyze_Generic_Freeze Entity
142 -- to generate appropriate semantic checks that are delayed until this
143 -- point (they had to be delayed this long for cases of delayed aspects,
144 -- e.g. analysis of statically predicated subtypes in choices, for which
145 -- we have to be sure the subtypes in question are frozen before checking).
147 function Get_Alignment_Value (Expr : Node_Id) return Uint;
148 -- Given the expression for an alignment value, returns the corresponding
149 -- Uint value. If the value is inappropriate, then error messages are
150 -- posted as required, and a value of No_Uint is returned.
152 function Is_Operational_Item (N : Node_Id) return Boolean;
153 -- A specification for a stream attribute is allowed before the full type
154 -- is declared, as explained in AI-00137 and the corrigendum. Attributes
155 -- that do not specify a representation characteristic are operational
156 -- attributes.
158 function Is_Predicate_Static
159 (Expr : Node_Id;
160 Nam : Name_Id) return Boolean;
161 -- Given predicate expression Expr, tests if Expr is predicate-static in
162 -- the sense of the rules in (RM 3.2.4 (15-24)). Occurrences of the type
163 -- name in the predicate expression have been replaced by references to
164 -- an identifier whose Chars field is Nam. This name is unique, so any
165 -- identifier with Chars matching Nam must be a reference to the type.
166 -- Returns True if the expression is predicate-static and False otherwise,
167 -- but is not in the business of setting flags or issuing error messages.
169 -- Only scalar types can have static predicates, so False is always
170 -- returned for non-scalar types.
172 -- Note: the RM seems to suggest that string types can also have static
173 -- predicates. But that really makes lttle sense as very few useful
174 -- predicates can be constructed for strings. Remember that:
176 -- "ABC" < "DEF"
178 -- is not a static expression. So even though the clearly faulty RM wording
179 -- allows the following:
181 -- subtype S is String with Static_Predicate => S < "DEF"
183 -- We can't allow this, otherwise we have predicate-static applying to a
184 -- larger class than static expressions, which was never intended.
186 procedure New_Stream_Subprogram
187 (N : Node_Id;
188 Ent : Entity_Id;
189 Subp : Entity_Id;
190 Nam : TSS_Name_Type);
191 -- Create a subprogram renaming of a given stream attribute to the
192 -- designated subprogram and then in the tagged case, provide this as a
193 -- primitive operation, or in the untagged case make an appropriate TSS
194 -- entry. This is more properly an expansion activity than just semantics,
195 -- but the presence of user-defined stream functions for limited types
196 -- is a legality check, which is why this takes place here rather than in
197 -- exp_ch13, where it was previously. Nam indicates the name of the TSS
198 -- function to be generated.
200 -- To avoid elaboration anomalies with freeze nodes, for untagged types
201 -- we generate both a subprogram declaration and a subprogram renaming
202 -- declaration, so that the attribute specification is handled as a
203 -- renaming_as_body. For tagged types, the specification is one of the
204 -- primitive specs.
206 procedure Register_Address_Clause_Check
207 (N : Node_Id;
208 X : Entity_Id;
209 A : Uint;
210 Y : Entity_Id;
211 Off : Boolean);
212 -- Register a check for the address clause N. The rest of the parameters
213 -- are in keeping with the components of Address_Clause_Check_Record below.
215 procedure Resolve_Iterable_Operation
216 (N : Node_Id;
217 Cursor : Entity_Id;
218 Typ : Entity_Id;
219 Nam : Name_Id);
220 -- If the name of a primitive operation for an Iterable aspect is
221 -- overloaded, resolve according to required signature.
223 procedure Set_Biased
224 (E : Entity_Id;
225 N : Node_Id;
226 Msg : String;
227 Biased : Boolean := True);
228 -- If Biased is True, sets Has_Biased_Representation flag for E, and
229 -- outputs a warning message at node N if Warn_On_Biased_Representation is
230 -- is True. This warning inserts the string Msg to describe the construct
231 -- causing biasing.
233 ---------------------------------------------------
234 -- Table for Validate_Compile_Time_Warning_Error --
235 ---------------------------------------------------
237 -- The following table collects pragmas Compile_Time_Error and Compile_
238 -- Time_Warning for validation. Entries are made by calls to subprogram
239 -- Validate_Compile_Time_Warning_Error, and the call to the procedure
240 -- Validate_Compile_Time_Warning_Errors does the actual error checking
241 -- and posting of warning and error messages. The reason for this delayed
242 -- processing is to take advantage of back-annotations of attributes size
243 -- and alignment values performed by the back end.
245 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
246 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
247 -- already have modified all Sloc values if the -gnatD option is set.
249 type CTWE_Entry is record
250 Eloc : Source_Ptr;
251 -- Source location used in warnings and error messages
253 Prag : Node_Id;
254 -- Pragma Compile_Time_Error or Compile_Time_Warning
256 Scope : Node_Id;
257 -- The scope which encloses the pragma
258 end record;
260 package Compile_Time_Warnings_Errors is new Table.Table (
261 Table_Component_Type => CTWE_Entry,
262 Table_Index_Type => Int,
263 Table_Low_Bound => 1,
264 Table_Initial => 50,
265 Table_Increment => 200,
266 Table_Name => "Compile_Time_Warnings_Errors");
268 ----------------------------------------------
269 -- Table for Validate_Unchecked_Conversions --
270 ----------------------------------------------
272 -- The following table collects unchecked conversions for validation.
273 -- Entries are made by Validate_Unchecked_Conversion and then the call
274 -- to Validate_Unchecked_Conversions does the actual error checking and
275 -- posting of warnings. The reason for this delayed processing is to take
276 -- advantage of back-annotations of size and alignment values performed by
277 -- the back end.
279 -- Note: the reason we store a Source_Ptr value instead of a Node_Id is
280 -- that by the time Validate_Unchecked_Conversions is called, Sprint will
281 -- already have modified all Sloc values if the -gnatD option is set.
283 type UC_Entry is record
284 Eloc : Source_Ptr; -- node used for posting warnings
285 Source : Entity_Id; -- source type for unchecked conversion
286 Target : Entity_Id; -- target type for unchecked conversion
287 Act_Unit : Entity_Id; -- actual function instantiated
288 end record;
290 package Unchecked_Conversions is new Table.Table (
291 Table_Component_Type => UC_Entry,
292 Table_Index_Type => Int,
293 Table_Low_Bound => 1,
294 Table_Initial => 50,
295 Table_Increment => 200,
296 Table_Name => "Unchecked_Conversions");
298 ----------------------------------------
299 -- Table for Validate_Address_Clauses --
300 ----------------------------------------
302 -- If an address clause has the form
304 -- for X'Address use Expr
306 -- where Expr has a value known at compile time or is of the form Y'Address
307 -- or recursively is a reference to a constant initialized with either of
308 -- these forms, and the value of Expr is not a multiple of X's alignment,
309 -- or if Y has a smaller alignment than X, then that merits a warning about
310 -- possible bad alignment. The following table collects address clauses of
311 -- this kind. We put these in a table so that they can be checked after the
312 -- back end has completed annotation of the alignments of objects, since we
313 -- can catch more cases that way.
315 type Address_Clause_Check_Record is record
316 N : Node_Id;
317 -- The address clause
319 X : Entity_Id;
320 -- The entity of the object subject to the address clause
322 A : Uint;
323 -- The value of the address in the first case
325 Y : Entity_Id;
326 -- The entity of the object being overlaid in the second case
328 Off : Boolean;
329 -- Whether the address is offset within Y in the second case
331 Alignment_Checks_Suppressed : Boolean;
332 -- Whether alignment checks are suppressed by an active scope suppress
333 -- setting. We need to save the value in order to be able to reuse it
334 -- after the back end has been run.
335 end record;
337 package Address_Clause_Checks is new Table.Table (
338 Table_Component_Type => Address_Clause_Check_Record,
339 Table_Index_Type => Int,
340 Table_Low_Bound => 1,
341 Table_Initial => 20,
342 Table_Increment => 200,
343 Table_Name => "Address_Clause_Checks");
345 function Alignment_Checks_Suppressed
346 (ACCR : Address_Clause_Check_Record) return Boolean;
347 -- Return whether the alignment check generated for the address clause
348 -- is suppressed.
350 ---------------------------------
351 -- Alignment_Checks_Suppressed --
352 ---------------------------------
354 function Alignment_Checks_Suppressed
355 (ACCR : Address_Clause_Check_Record) return Boolean
357 begin
358 if Checks_May_Be_Suppressed (ACCR.X) then
359 return Is_Check_Suppressed (ACCR.X, Alignment_Check);
360 else
361 return ACCR.Alignment_Checks_Suppressed;
362 end if;
363 end Alignment_Checks_Suppressed;
365 -----------------------------------------
366 -- Adjust_Record_For_Reverse_Bit_Order --
367 -----------------------------------------
369 procedure Adjust_Record_For_Reverse_Bit_Order (R : Entity_Id) is
370 Max_Machine_Scalar_Size : constant Uint :=
371 UI_From_Int
372 (Standard_Long_Long_Integer_Size);
373 -- We use this as the maximum machine scalar size
375 SSU : constant Uint := UI_From_Int (System_Storage_Unit);
377 CC : Node_Id;
378 Comp : Node_Id;
379 Num_CC : Natural;
381 begin
382 -- Processing here used to depend on Ada version: the behavior was
383 -- changed by AI95-0133. However this AI is a Binding interpretation,
384 -- so we now implement it even in Ada 95 mode. The original behavior
385 -- from unamended Ada 95 is still available for compatibility under
386 -- debugging switch -gnatd.
388 if Ada_Version < Ada_2005 and then Debug_Flag_Dot_P then
389 Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R);
390 return;
391 end if;
393 -- For Ada 2005, we do machine scalar processing, as fully described In
394 -- AI-133. This involves gathering all components which start at the
395 -- same byte offset and processing them together. Same approach is still
396 -- valid in later versions including Ada 2012.
398 -- This first loop through components does two things. First it deals
399 -- with the case of components with component clauses whose length is
400 -- greater than the maximum machine scalar size (either accepting them
401 -- or rejecting as needed). Second, it counts the number of components
402 -- with component clauses whose length does not exceed this maximum for
403 -- later processing.
405 Num_CC := 0;
406 Comp := First_Component_Or_Discriminant (R);
407 while Present (Comp) loop
408 CC := Component_Clause (Comp);
410 if Present (CC) then
411 declare
412 Fbit : constant Uint := Static_Integer (First_Bit (CC));
413 Lbit : constant Uint := Static_Integer (Last_Bit (CC));
415 begin
416 -- Case of component with last bit >= max machine scalar
418 if Lbit >= Max_Machine_Scalar_Size then
420 -- This is allowed only if first bit is zero, and last bit
421 -- + 1 is a multiple of storage unit size.
423 if Fbit = 0 and then (Lbit + 1) mod SSU = 0 then
425 -- This is the case to give a warning if enabled
427 if Warn_On_Reverse_Bit_Order then
428 Error_Msg_N
429 ("info: multi-byte field specified with "
430 & "non-standard Bit_Order?V?", CC);
432 if Bytes_Big_Endian then
433 Error_Msg_N
434 ("\bytes are not reversed "
435 & "(component is big-endian)?V?", CC);
436 else
437 Error_Msg_N
438 ("\bytes are not reversed "
439 & "(component is little-endian)?V?", CC);
440 end if;
441 end if;
443 -- Give error message for RM 13.5.1(10) violation
445 else
446 Error_Msg_FE
447 ("machine scalar rules not followed for&",
448 First_Bit (CC), Comp);
450 Error_Msg_Uint_1 := Lbit + 1;
451 Error_Msg_Uint_2 := Max_Machine_Scalar_Size;
452 Error_Msg_F
453 ("\last bit + 1 (^) exceeds maximum machine scalar "
454 & "size (^)", First_Bit (CC));
456 if (Lbit + 1) mod SSU /= 0 then
457 Error_Msg_Uint_1 := SSU;
458 Error_Msg_F
459 ("\and is not a multiple of Storage_Unit (^) "
460 & "(RM 13.5.1(10))", First_Bit (CC));
462 else
463 Error_Msg_Uint_1 := Fbit;
464 Error_Msg_F
465 ("\and first bit (^) is non-zero "
466 & "(RM 13.4.1(10))", First_Bit (CC));
467 end if;
468 end if;
470 -- OK case of machine scalar related component clause. For now,
471 -- just count them.
473 else
474 Num_CC := Num_CC + 1;
475 end if;
476 end;
477 end if;
479 Next_Component_Or_Discriminant (Comp);
480 end loop;
482 -- We need to sort the component clauses on the basis of the Position
483 -- values in the clause, so we can group clauses with the same Position
484 -- together to determine the relevant machine scalar size.
486 Sort_CC : declare
487 Comps : array (0 .. Num_CC) of Entity_Id;
488 -- Array to collect component and discriminant entities. The data
489 -- starts at index 1, the 0'th entry is for the sort routine.
491 function CP_Lt (Op1, Op2 : Natural) return Boolean;
492 -- Compare routine for Sort
494 procedure CP_Move (From : Natural; To : Natural);
495 -- Move routine for Sort
497 package Sorting is new GNAT.Heap_Sort_G (CP_Move, CP_Lt);
499 MaxL : Uint;
500 -- Maximum last bit value of any component in this set
502 MSS : Uint;
503 -- Corresponding machine scalar size
505 Start : Natural;
506 Stop : Natural;
507 -- Start and stop positions in the component list of the set of
508 -- components with the same starting position (that constitute
509 -- components in a single machine scalar).
511 -----------
512 -- CP_Lt --
513 -----------
515 function CP_Lt (Op1, Op2 : Natural) return Boolean is
516 begin
517 return
518 Position (Component_Clause (Comps (Op1))) <
519 Position (Component_Clause (Comps (Op2)));
520 end CP_Lt;
522 -------------
523 -- CP_Move --
524 -------------
526 procedure CP_Move (From : Natural; To : Natural) is
527 begin
528 Comps (To) := Comps (From);
529 end CP_Move;
531 -- Start of processing for Sort_CC
533 begin
534 -- Collect the machine scalar relevant component clauses
536 Num_CC := 0;
537 Comp := First_Component_Or_Discriminant (R);
538 while Present (Comp) loop
539 declare
540 CC : constant Node_Id := Component_Clause (Comp);
542 begin
543 -- Collect only component clauses whose last bit is less than
544 -- machine scalar size. Any component clause whose last bit
545 -- exceeds this value does not take part in machine scalar
546 -- layout considerations. The test for Error_Posted makes sure
547 -- we exclude component clauses for which we already posted an
548 -- error.
550 if Present (CC)
551 and then not Error_Posted (Last_Bit (CC))
552 and then Static_Integer (Last_Bit (CC)) <
553 Max_Machine_Scalar_Size
554 then
555 Num_CC := Num_CC + 1;
556 Comps (Num_CC) := Comp;
557 end if;
558 end;
560 Next_Component_Or_Discriminant (Comp);
561 end loop;
563 -- Sort by ascending position number
565 Sorting.Sort (Num_CC);
567 -- We now have all the components whose size does not exceed the max
568 -- machine scalar value, sorted by starting position. In this loop we
569 -- gather groups of clauses starting at the same position, to process
570 -- them in accordance with AI-133.
572 Stop := 0;
573 while Stop < Num_CC loop
574 Start := Stop + 1;
575 Stop := Start;
576 MaxL :=
577 Static_Integer
578 (Last_Bit (Component_Clause (Comps (Start))));
579 while Stop < Num_CC loop
580 if Static_Integer
581 (Position (Component_Clause (Comps (Stop + 1)))) =
582 Static_Integer
583 (Position (Component_Clause (Comps (Stop))))
584 then
585 Stop := Stop + 1;
586 MaxL :=
587 UI_Max
588 (MaxL,
589 Static_Integer
590 (Last_Bit
591 (Component_Clause (Comps (Stop)))));
592 else
593 exit;
594 end if;
595 end loop;
597 -- Now we have a group of component clauses from Start to Stop
598 -- whose positions are identical, and MaxL is the maximum last
599 -- bit value of any of these components.
601 -- We need to determine the corresponding machine scalar size.
602 -- This loop assumes that machine scalar sizes are even, and that
603 -- each possible machine scalar has twice as many bits as the next
604 -- smaller one.
606 MSS := Max_Machine_Scalar_Size;
607 while MSS mod 2 = 0
608 and then (MSS / 2) >= SSU
609 and then (MSS / 2) > MaxL
610 loop
611 MSS := MSS / 2;
612 end loop;
614 -- Here is where we fix up the Component_Bit_Offset value to
615 -- account for the reverse bit order. Some examples of what needs
616 -- to be done for the case of a machine scalar size of 8 are:
618 -- First_Bit .. Last_Bit Component_Bit_Offset
619 -- old new old new
621 -- 0 .. 0 7 .. 7 0 7
622 -- 0 .. 1 6 .. 7 0 6
623 -- 0 .. 2 5 .. 7 0 5
624 -- 0 .. 7 0 .. 7 0 4
626 -- 1 .. 1 6 .. 6 1 6
627 -- 1 .. 4 3 .. 6 1 3
628 -- 4 .. 7 0 .. 3 4 0
630 -- The rule is that the first bit is obtained by subtracting the
631 -- old ending bit from machine scalar size - 1.
633 for C in Start .. Stop loop
634 declare
635 Comp : constant Entity_Id := Comps (C);
636 CC : constant Node_Id := Component_Clause (Comp);
638 LB : constant Uint := Static_Integer (Last_Bit (CC));
639 NFB : constant Uint := MSS - Uint_1 - LB;
640 NLB : constant Uint := NFB + Esize (Comp) - 1;
641 Pos : constant Uint := Static_Integer (Position (CC));
643 begin
644 if Warn_On_Reverse_Bit_Order then
645 Error_Msg_Uint_1 := MSS;
646 Error_Msg_N
647 ("info: reverse bit order in machine scalar of "
648 & "length^?V?", First_Bit (CC));
649 Error_Msg_Uint_1 := NFB;
650 Error_Msg_Uint_2 := NLB;
652 if Bytes_Big_Endian then
653 Error_Msg_NE
654 ("\big-endian range for component & is ^ .. ^?V?",
655 First_Bit (CC), Comp);
656 else
657 Error_Msg_NE
658 ("\little-endian range for component & is ^ .. ^?V?",
659 First_Bit (CC), Comp);
660 end if;
661 end if;
663 Set_Component_Bit_Offset (Comp, Pos * SSU + NFB);
664 Set_Normalized_Position (Comp, Pos + NFB / SSU);
665 Set_Normalized_First_Bit (Comp, NFB mod SSU);
666 end;
667 end loop;
668 end loop;
669 end Sort_CC;
670 end Adjust_Record_For_Reverse_Bit_Order;
672 ------------------------------------------------
673 -- Adjust_Record_For_Reverse_Bit_Order_Ada_95 --
674 ------------------------------------------------
676 procedure Adjust_Record_For_Reverse_Bit_Order_Ada_95 (R : Entity_Id) is
677 CC : Node_Id;
678 Comp : Node_Id;
680 begin
681 -- For Ada 95, we just renumber bits within a storage unit. We do the
682 -- same for Ada 83 mode, since we recognize the Bit_Order attribute in
683 -- Ada 83, and are free to add this extension.
685 Comp := First_Component_Or_Discriminant (R);
686 while Present (Comp) loop
687 CC := Component_Clause (Comp);
689 -- If component clause is present, then deal with the non-default
690 -- bit order case for Ada 95 mode.
692 -- We only do this processing for the base type, and in fact that
693 -- is important, since otherwise if there are record subtypes, we
694 -- could reverse the bits once for each subtype, which is wrong.
696 if Present (CC) and then Ekind (R) = E_Record_Type then
697 declare
698 CFB : constant Uint := Component_Bit_Offset (Comp);
699 CSZ : constant Uint := Esize (Comp);
700 CLC : constant Node_Id := Component_Clause (Comp);
701 Pos : constant Node_Id := Position (CLC);
702 FB : constant Node_Id := First_Bit (CLC);
704 Storage_Unit_Offset : constant Uint :=
705 CFB / System_Storage_Unit;
707 Start_Bit : constant Uint :=
708 CFB mod System_Storage_Unit;
710 begin
711 -- Cases where field goes over storage unit boundary
713 if Start_Bit + CSZ > System_Storage_Unit then
715 -- Allow multi-byte field but generate warning
717 if Start_Bit mod System_Storage_Unit = 0
718 and then CSZ mod System_Storage_Unit = 0
719 then
720 Error_Msg_N
721 ("info: multi-byte field specified with non-standard "
722 & "Bit_Order?V?", CLC);
724 if Bytes_Big_Endian then
725 Error_Msg_N
726 ("\bytes are not reversed "
727 & "(component is big-endian)?V?", CLC);
728 else
729 Error_Msg_N
730 ("\bytes are not reversed "
731 & "(component is little-endian)?V?", CLC);
732 end if;
734 -- Do not allow non-contiguous field
736 else
737 Error_Msg_N
738 ("attempt to specify non-contiguous field not "
739 & "permitted", CLC);
740 Error_Msg_N
741 ("\caused by non-standard Bit_Order specified in "
742 & "legacy Ada 95 mode", CLC);
743 end if;
745 -- Case where field fits in one storage unit
747 else
748 -- Give warning if suspicious component clause
750 if Intval (FB) >= System_Storage_Unit
751 and then Warn_On_Reverse_Bit_Order
752 then
753 Error_Msg_N
754 ("info: Bit_Order clause does not affect byte "
755 & "ordering?V?", Pos);
756 Error_Msg_Uint_1 :=
757 Intval (Pos) + Intval (FB) /
758 System_Storage_Unit;
759 Error_Msg_N
760 ("info: position normalized to ^ before bit order "
761 & "interpreted?V?", Pos);
762 end if;
764 -- Here is where we fix up the Component_Bit_Offset value
765 -- to account for the reverse bit order. Some examples of
766 -- what needs to be done are:
768 -- First_Bit .. Last_Bit Component_Bit_Offset
769 -- old new old new
771 -- 0 .. 0 7 .. 7 0 7
772 -- 0 .. 1 6 .. 7 0 6
773 -- 0 .. 2 5 .. 7 0 5
774 -- 0 .. 7 0 .. 7 0 4
776 -- 1 .. 1 6 .. 6 1 6
777 -- 1 .. 4 3 .. 6 1 3
778 -- 4 .. 7 0 .. 3 4 0
780 -- The rule is that the first bit is is obtained by
781 -- subtracting the old ending bit from storage_unit - 1.
783 Set_Component_Bit_Offset (Comp,
784 (Storage_Unit_Offset * System_Storage_Unit) +
785 (System_Storage_Unit - 1) -
786 (Start_Bit + CSZ - 1));
788 Set_Normalized_Position (Comp,
789 Component_Bit_Offset (Comp) / System_Storage_Unit);
791 Set_Normalized_First_Bit (Comp,
792 Component_Bit_Offset (Comp) mod System_Storage_Unit);
793 end if;
794 end;
795 end if;
797 Next_Component_Or_Discriminant (Comp);
798 end loop;
799 end Adjust_Record_For_Reverse_Bit_Order_Ada_95;
801 -------------------------------------
802 -- Alignment_Check_For_Size_Change --
803 -------------------------------------
805 procedure Alignment_Check_For_Size_Change (Typ : Entity_Id; Size : Uint) is
806 begin
807 -- If the alignment is known, and not set by a rep clause, and is
808 -- inconsistent with the size being set, then reset it to unknown,
809 -- we assume in this case that the size overrides the inherited
810 -- alignment, and that the alignment must be recomputed.
812 if Known_Alignment (Typ)
813 and then not Has_Alignment_Clause (Typ)
814 and then Size mod (Alignment (Typ) * SSU) /= 0
815 then
816 Init_Alignment (Typ);
817 end if;
818 end Alignment_Check_For_Size_Change;
820 -------------------------------------
821 -- Analyze_Aspects_At_Freeze_Point --
822 -------------------------------------
824 procedure Analyze_Aspects_At_Freeze_Point (E : Entity_Id) is
825 procedure Analyze_Aspect_Default_Value (ASN : Node_Id);
826 -- This routine analyzes an Aspect_Default_[Component_]Value denoted by
827 -- the aspect specification node ASN.
829 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id);
830 -- As discussed in the spec of Aspects (see Aspect_Delay declaration),
831 -- a derived type can inherit aspects from its parent which have been
832 -- specified at the time of the derivation using an aspect, as in:
834 -- type A is range 1 .. 10
835 -- with Size => Not_Defined_Yet;
836 -- ..
837 -- type B is new A;
838 -- ..
839 -- Not_Defined_Yet : constant := 64;
841 -- In this example, the Size of A is considered to be specified prior
842 -- to the derivation, and thus inherited, even though the value is not
843 -- known at the time of derivation. To deal with this, we use two entity
844 -- flags. The flag Has_Derived_Rep_Aspects is set in the parent type (A
845 -- here), and then the flag May_Inherit_Delayed_Rep_Aspects is set in
846 -- the derived type (B here). If this flag is set when the derived type
847 -- is frozen, then this procedure is called to ensure proper inheritance
848 -- of all delayed aspects from the parent type. The derived type is E,
849 -- the argument to Analyze_Aspects_At_Freeze_Point. ASN is the first
850 -- aspect specification node in the Rep_Item chain for the parent type.
852 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id);
853 -- Given an aspect specification node ASN whose expression is an
854 -- optional Boolean, this routines creates the corresponding pragma
855 -- at the freezing point.
857 ----------------------------------
858 -- Analyze_Aspect_Default_Value --
859 ----------------------------------
861 procedure Analyze_Aspect_Default_Value (ASN : Node_Id) is
862 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
863 Ent : constant Entity_Id := Entity (ASN);
864 Expr : constant Node_Id := Expression (ASN);
865 Id : constant Node_Id := Identifier (ASN);
867 begin
868 Error_Msg_Name_1 := Chars (Id);
870 if not Is_Type (Ent) then
871 Error_Msg_N ("aspect% can only apply to a type", Id);
872 return;
874 elsif not Is_First_Subtype (Ent) then
875 Error_Msg_N ("aspect% cannot apply to subtype", Id);
876 return;
878 elsif A_Id = Aspect_Default_Value
879 and then not Is_Scalar_Type (Ent)
880 then
881 Error_Msg_N ("aspect% can only be applied to scalar type", Id);
882 return;
884 elsif A_Id = Aspect_Default_Component_Value then
885 if not Is_Array_Type (Ent) then
886 Error_Msg_N ("aspect% can only be applied to array type", Id);
887 return;
889 elsif not Is_Scalar_Type (Component_Type (Ent)) then
890 Error_Msg_N ("aspect% requires scalar components", Id);
891 return;
892 end if;
893 end if;
895 Set_Has_Default_Aspect (Base_Type (Ent));
897 if Is_Scalar_Type (Ent) then
898 Set_Default_Aspect_Value (Base_Type (Ent), Expr);
899 else
900 Set_Default_Aspect_Component_Value (Base_Type (Ent), Expr);
901 end if;
902 end Analyze_Aspect_Default_Value;
904 ---------------------------------
905 -- Inherit_Delayed_Rep_Aspects --
906 ---------------------------------
908 procedure Inherit_Delayed_Rep_Aspects (ASN : Node_Id) is
909 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
910 P : constant Entity_Id := Entity (ASN);
911 -- Entithy for parent type
913 N : Node_Id;
914 -- Item from Rep_Item chain
916 A : Aspect_Id;
918 begin
919 -- Loop through delayed aspects for the parent type
921 N := ASN;
922 while Present (N) loop
923 if Nkind (N) = N_Aspect_Specification then
924 exit when Entity (N) /= P;
926 if Is_Delayed_Aspect (N) then
927 A := Get_Aspect_Id (Chars (Identifier (N)));
929 -- Process delayed rep aspect. For Boolean attributes it is
930 -- not possible to cancel an attribute once set (the attempt
931 -- to use an aspect with xxx => False is an error) for a
932 -- derived type. So for those cases, we do not have to check
933 -- if a clause has been given for the derived type, since it
934 -- is harmless to set it again if it is already set.
936 case A is
938 -- Alignment
940 when Aspect_Alignment =>
941 if not Has_Alignment_Clause (E) then
942 Set_Alignment (E, Alignment (P));
943 end if;
945 -- Atomic
947 when Aspect_Atomic =>
948 if Is_Atomic (P) then
949 Set_Is_Atomic (E);
950 end if;
952 -- Atomic_Components
954 when Aspect_Atomic_Components =>
955 if Has_Atomic_Components (P) then
956 Set_Has_Atomic_Components (Base_Type (E));
957 end if;
959 -- Bit_Order
961 when Aspect_Bit_Order =>
962 if Is_Record_Type (E)
963 and then No (Get_Attribute_Definition_Clause
964 (E, Attribute_Bit_Order))
965 and then Reverse_Bit_Order (P)
966 then
967 Set_Reverse_Bit_Order (Base_Type (E));
968 end if;
970 -- Component_Size
972 when Aspect_Component_Size =>
973 if Is_Array_Type (E)
974 and then not Has_Component_Size_Clause (E)
975 then
976 Set_Component_Size
977 (Base_Type (E), Component_Size (P));
978 end if;
980 -- Machine_Radix
982 when Aspect_Machine_Radix =>
983 if Is_Decimal_Fixed_Point_Type (E)
984 and then not Has_Machine_Radix_Clause (E)
985 then
986 Set_Machine_Radix_10 (E, Machine_Radix_10 (P));
987 end if;
989 -- Object_Size (also Size which also sets Object_Size)
991 when Aspect_Object_Size
992 | Aspect_Size
994 if not Has_Size_Clause (E)
995 and then
996 No (Get_Attribute_Definition_Clause
997 (E, Attribute_Object_Size))
998 then
999 Set_Esize (E, Esize (P));
1000 end if;
1002 -- Pack
1004 when Aspect_Pack =>
1005 if not Is_Packed (E) then
1006 Set_Is_Packed (Base_Type (E));
1008 if Is_Bit_Packed_Array (P) then
1009 Set_Is_Bit_Packed_Array (Base_Type (E));
1010 Set_Packed_Array_Impl_Type
1011 (E, Packed_Array_Impl_Type (P));
1012 end if;
1013 end if;
1015 -- Scalar_Storage_Order
1017 when Aspect_Scalar_Storage_Order =>
1018 if (Is_Record_Type (E) or else Is_Array_Type (E))
1019 and then No (Get_Attribute_Definition_Clause
1020 (E, Attribute_Scalar_Storage_Order))
1021 and then Reverse_Storage_Order (P)
1022 then
1023 Set_Reverse_Storage_Order (Base_Type (E));
1025 -- Clear default SSO indications, since the aspect
1026 -- overrides the default.
1028 Set_SSO_Set_Low_By_Default (Base_Type (E), False);
1029 Set_SSO_Set_High_By_Default (Base_Type (E), False);
1030 end if;
1032 -- Small
1034 when Aspect_Small =>
1035 if Is_Fixed_Point_Type (E)
1036 and then not Has_Small_Clause (E)
1037 then
1038 Set_Small_Value (E, Small_Value (P));
1039 end if;
1041 -- Storage_Size
1043 when Aspect_Storage_Size =>
1044 if (Is_Access_Type (E) or else Is_Task_Type (E))
1045 and then not Has_Storage_Size_Clause (E)
1046 then
1047 Set_Storage_Size_Variable
1048 (Base_Type (E), Storage_Size_Variable (P));
1049 end if;
1051 -- Value_Size
1053 when Aspect_Value_Size =>
1055 -- Value_Size is never inherited, it is either set by
1056 -- default, or it is explicitly set for the derived
1057 -- type. So nothing to do here.
1059 null;
1061 -- Volatile
1063 when Aspect_Volatile =>
1064 if Is_Volatile (P) then
1065 Set_Is_Volatile (E);
1066 end if;
1068 -- Volatile_Full_Access
1070 when Aspect_Volatile_Full_Access =>
1071 if Is_Volatile_Full_Access (P) then
1072 Set_Is_Volatile_Full_Access (E);
1073 end if;
1075 -- Volatile_Components
1077 when Aspect_Volatile_Components =>
1078 if Has_Volatile_Components (P) then
1079 Set_Has_Volatile_Components (Base_Type (E));
1080 end if;
1082 -- That should be all the Rep Aspects
1084 when others =>
1085 pragma Assert (Aspect_Delay (A_Id) /= Rep_Aspect);
1086 null;
1087 end case;
1088 end if;
1089 end if;
1091 N := Next_Rep_Item (N);
1092 end loop;
1093 end Inherit_Delayed_Rep_Aspects;
1095 -------------------------------------
1096 -- Make_Pragma_From_Boolean_Aspect --
1097 -------------------------------------
1099 procedure Make_Pragma_From_Boolean_Aspect (ASN : Node_Id) is
1100 Ident : constant Node_Id := Identifier (ASN);
1101 A_Name : constant Name_Id := Chars (Ident);
1102 A_Id : constant Aspect_Id := Get_Aspect_Id (A_Name);
1103 Ent : constant Entity_Id := Entity (ASN);
1104 Expr : constant Node_Id := Expression (ASN);
1105 Loc : constant Source_Ptr := Sloc (ASN);
1107 procedure Check_False_Aspect_For_Derived_Type;
1108 -- This procedure checks for the case of a false aspect for a derived
1109 -- type, which improperly tries to cancel an aspect inherited from
1110 -- the parent.
1112 -----------------------------------------
1113 -- Check_False_Aspect_For_Derived_Type --
1114 -----------------------------------------
1116 procedure Check_False_Aspect_For_Derived_Type is
1117 Par : Node_Id;
1119 begin
1120 -- We are only checking derived types
1122 if not Is_Derived_Type (E) then
1123 return;
1124 end if;
1126 Par := Nearest_Ancestor (E);
1128 case A_Id is
1129 when Aspect_Atomic
1130 | Aspect_Shared
1132 if not Is_Atomic (Par) then
1133 return;
1134 end if;
1136 when Aspect_Atomic_Components =>
1137 if not Has_Atomic_Components (Par) then
1138 return;
1139 end if;
1141 when Aspect_Discard_Names =>
1142 if not Discard_Names (Par) then
1143 return;
1144 end if;
1146 when Aspect_Pack =>
1147 if not Is_Packed (Par) then
1148 return;
1149 end if;
1151 when Aspect_Unchecked_Union =>
1152 if not Is_Unchecked_Union (Par) then
1153 return;
1154 end if;
1156 when Aspect_Volatile =>
1157 if not Is_Volatile (Par) then
1158 return;
1159 end if;
1161 when Aspect_Volatile_Components =>
1162 if not Has_Volatile_Components (Par) then
1163 return;
1164 end if;
1166 when Aspect_Volatile_Full_Access =>
1167 if not Is_Volatile_Full_Access (Par) then
1168 return;
1169 end if;
1171 when others =>
1172 return;
1173 end case;
1175 -- Fall through means we are canceling an inherited aspect
1177 Error_Msg_Name_1 := A_Name;
1178 Error_Msg_NE
1179 ("derived type& inherits aspect%, cannot cancel", Expr, E);
1180 end Check_False_Aspect_For_Derived_Type;
1182 -- Local variables
1184 Prag : Node_Id;
1186 -- Start of processing for Make_Pragma_From_Boolean_Aspect
1188 begin
1189 -- Note that we know Expr is present, because for a missing Expr
1190 -- argument, we knew it was True and did not need to delay the
1191 -- evaluation to the freeze point.
1193 if Is_False (Static_Boolean (Expr)) then
1194 Check_False_Aspect_For_Derived_Type;
1196 else
1197 Prag :=
1198 Make_Pragma (Loc,
1199 Pragma_Identifier =>
1200 Make_Identifier (Sloc (Ident), Chars (Ident)),
1201 Pragma_Argument_Associations => New_List (
1202 Make_Pragma_Argument_Association (Sloc (Ident),
1203 Expression => New_Occurrence_Of (Ent, Sloc (Ident)))));
1205 Set_From_Aspect_Specification (Prag, True);
1206 Set_Corresponding_Aspect (Prag, ASN);
1207 Set_Aspect_Rep_Item (ASN, Prag);
1208 Set_Is_Delayed_Aspect (Prag);
1209 Set_Parent (Prag, ASN);
1210 end if;
1211 end Make_Pragma_From_Boolean_Aspect;
1213 -- Local variables
1215 A_Id : Aspect_Id;
1216 ASN : Node_Id;
1217 Ritem : Node_Id;
1219 -- Start of processing for Analyze_Aspects_At_Freeze_Point
1221 begin
1222 -- Must be visible in current scope, but if this is a type from a nested
1223 -- package it may be frozen from an object declaration in the enclosing
1224 -- scope, so install the package declarations to complete the analysis
1225 -- of the aspects, if any. If the package itself is frozen the type will
1226 -- have been frozen as well.
1228 if not Scope_Within_Or_Same (Current_Scope, Scope (E)) then
1229 if Is_Type (E) and then From_Nested_Package (E) then
1230 declare
1231 Pack : constant Entity_Id := Scope (E);
1233 begin
1234 Push_Scope (Pack);
1235 Install_Visible_Declarations (Pack);
1236 Install_Private_Declarations (Pack);
1237 Analyze_Aspects_At_Freeze_Point (E);
1239 if Is_Private_Type (E)
1240 and then Present (Full_View (E))
1241 then
1242 Analyze_Aspects_At_Freeze_Point (Full_View (E));
1243 end if;
1245 End_Package_Scope (Pack);
1246 return;
1247 end;
1249 -- Aspects from other entities in different contexts are analyzed
1250 -- elsewhere.
1252 else
1253 return;
1254 end if;
1255 end if;
1257 -- Look for aspect specification entries for this entity
1259 ASN := First_Rep_Item (E);
1260 while Present (ASN) loop
1261 if Nkind (ASN) = N_Aspect_Specification then
1262 exit when Entity (ASN) /= E;
1264 if Is_Delayed_Aspect (ASN) then
1265 A_Id := Get_Aspect_Id (ASN);
1267 case A_Id is
1269 -- For aspects whose expression is an optional Boolean, make
1270 -- the corresponding pragma at the freeze point.
1272 when Boolean_Aspects
1273 | Library_Unit_Aspects
1275 -- Aspects Export and Import require special handling.
1276 -- Both are by definition Boolean and may benefit from
1277 -- forward references, however their expressions are
1278 -- treated as static. In addition, the syntax of their
1279 -- corresponding pragmas requires extra "pieces" which
1280 -- may also contain forward references. To account for
1281 -- all of this, the corresponding pragma is created by
1282 -- Analyze_Aspect_Export_Import, but is not analyzed as
1283 -- the complete analysis must happen now.
1285 if A_Id = Aspect_Export or else A_Id = Aspect_Import then
1286 null;
1288 -- Otherwise create a corresponding pragma
1290 else
1291 Make_Pragma_From_Boolean_Aspect (ASN);
1292 end if;
1294 -- Special handling for aspects that don't correspond to
1295 -- pragmas/attributes.
1297 when Aspect_Default_Value
1298 | Aspect_Default_Component_Value
1300 -- Do not inherit aspect for anonymous base type of a
1301 -- scalar or array type, because they apply to the first
1302 -- subtype of the type, and will be processed when that
1303 -- first subtype is frozen.
1305 if Is_Derived_Type (E)
1306 and then not Comes_From_Source (E)
1307 and then E /= First_Subtype (E)
1308 then
1309 null;
1310 else
1311 Analyze_Aspect_Default_Value (ASN);
1312 end if;
1314 -- Ditto for iterator aspects, because the corresponding
1315 -- attributes may not have been analyzed yet.
1317 when Aspect_Constant_Indexing
1318 | Aspect_Default_Iterator
1319 | Aspect_Iterator_Element
1320 | Aspect_Variable_Indexing
1322 Analyze (Expression (ASN));
1324 if Etype (Expression (ASN)) = Any_Type then
1325 Error_Msg_NE
1326 ("\aspect must be fully defined before & is frozen",
1327 ASN, E);
1328 end if;
1330 when Aspect_Iterable =>
1331 Validate_Iterable_Aspect (E, ASN);
1333 when others =>
1334 null;
1335 end case;
1337 Ritem := Aspect_Rep_Item (ASN);
1339 if Present (Ritem) then
1340 Analyze (Ritem);
1341 end if;
1342 end if;
1343 end if;
1345 Next_Rep_Item (ASN);
1346 end loop;
1348 -- This is where we inherit delayed rep aspects from our parent. Note
1349 -- that if we fell out of the above loop with ASN non-empty, it means
1350 -- we hit an aspect for an entity other than E, and it must be the
1351 -- type from which we were derived.
1353 if May_Inherit_Delayed_Rep_Aspects (E) then
1354 Inherit_Delayed_Rep_Aspects (ASN);
1355 end if;
1356 end Analyze_Aspects_At_Freeze_Point;
1358 -----------------------------------
1359 -- Analyze_Aspect_Specifications --
1360 -----------------------------------
1362 procedure Analyze_Aspect_Specifications (N : Node_Id; E : Entity_Id) is
1363 pragma Assert (Present (E));
1365 procedure Decorate (Asp : Node_Id; Prag : Node_Id);
1366 -- Establish linkages between an aspect and its corresponding pragma
1368 procedure Insert_Pragma
1369 (Prag : Node_Id;
1370 Is_Instance : Boolean := False);
1371 -- Subsidiary to the analysis of aspects
1372 -- Abstract_State
1373 -- Attach_Handler
1374 -- Contract_Cases
1375 -- Depends
1376 -- Ghost
1377 -- Global
1378 -- Initial_Condition
1379 -- Initializes
1380 -- Post
1381 -- Pre
1382 -- Refined_Depends
1383 -- Refined_Global
1384 -- Refined_State
1385 -- SPARK_Mode
1386 -- Warnings
1387 -- Insert pragma Prag such that it mimics the placement of a source
1388 -- pragma of the same kind. Flag Is_Generic should be set when the
1389 -- context denotes a generic instance.
1391 --------------
1392 -- Decorate --
1393 --------------
1395 procedure Decorate (Asp : Node_Id; Prag : Node_Id) is
1396 begin
1397 Set_Aspect_Rep_Item (Asp, Prag);
1398 Set_Corresponding_Aspect (Prag, Asp);
1399 Set_From_Aspect_Specification (Prag);
1400 Set_Parent (Prag, Asp);
1401 end Decorate;
1403 -------------------
1404 -- Insert_Pragma --
1405 -------------------
1407 procedure Insert_Pragma
1408 (Prag : Node_Id;
1409 Is_Instance : Boolean := False)
1411 Aux : Node_Id;
1412 Decl : Node_Id;
1413 Decls : List_Id;
1414 Def : Node_Id;
1415 Inserted : Boolean := False;
1417 begin
1418 -- When the aspect appears on an entry, package, protected unit,
1419 -- subprogram, or task unit body, insert the generated pragma at the
1420 -- top of the body declarations to emulate the behavior of a source
1421 -- pragma.
1423 -- package body Pack with Aspect is
1425 -- package body Pack is
1426 -- pragma Prag;
1428 if Nkind_In (N, N_Entry_Body,
1429 N_Package_Body,
1430 N_Protected_Body,
1431 N_Subprogram_Body,
1432 N_Task_Body)
1433 then
1434 Decls := Declarations (N);
1436 if No (Decls) then
1437 Decls := New_List;
1438 Set_Declarations (N, Decls);
1439 end if;
1441 Prepend_To (Decls, Prag);
1443 -- When the aspect is associated with a [generic] package declaration
1444 -- insert the generated pragma at the top of the visible declarations
1445 -- to emulate the behavior of a source pragma.
1447 -- package Pack with Aspect is
1449 -- package Pack is
1450 -- pragma Prag;
1452 elsif Nkind_In (N, N_Generic_Package_Declaration,
1453 N_Package_Declaration)
1454 then
1455 Decls := Visible_Declarations (Specification (N));
1457 if No (Decls) then
1458 Decls := New_List;
1459 Set_Visible_Declarations (Specification (N), Decls);
1460 end if;
1462 -- The visible declarations of a generic instance have the
1463 -- following structure:
1465 -- <renamings of generic formals>
1466 -- <renamings of internally-generated spec and body>
1467 -- <first source declaration>
1469 -- Insert the pragma before the first source declaration by
1470 -- skipping the instance "header" to ensure proper visibility of
1471 -- all formals.
1473 if Is_Instance then
1474 Decl := First (Decls);
1475 while Present (Decl) loop
1476 if Comes_From_Source (Decl) then
1477 Insert_Before (Decl, Prag);
1478 Inserted := True;
1479 exit;
1480 else
1481 Next (Decl);
1482 end if;
1483 end loop;
1485 -- The pragma is placed after the instance "header"
1487 if not Inserted then
1488 Append_To (Decls, Prag);
1489 end if;
1491 -- Otherwise this is not a generic instance
1493 else
1494 Prepend_To (Decls, Prag);
1495 end if;
1497 -- When the aspect is associated with a protected unit declaration,
1498 -- insert the generated pragma at the top of the visible declarations
1499 -- the emulate the behavior of a source pragma.
1501 -- protected [type] Prot with Aspect is
1503 -- protected [type] Prot is
1504 -- pragma Prag;
1506 elsif Nkind (N) = N_Protected_Type_Declaration then
1507 Def := Protected_Definition (N);
1509 if No (Def) then
1510 Def :=
1511 Make_Protected_Definition (Sloc (N),
1512 Visible_Declarations => New_List,
1513 End_Label => Empty);
1515 Set_Protected_Definition (N, Def);
1516 end if;
1518 Decls := Visible_Declarations (Def);
1520 if No (Decls) then
1521 Decls := New_List;
1522 Set_Visible_Declarations (Def, Decls);
1523 end if;
1525 Prepend_To (Decls, Prag);
1527 -- When the aspect is associated with a task unit declaration, insert
1528 -- insert the generated pragma at the top of the visible declarations
1529 -- the emulate the behavior of a source pragma.
1531 -- task [type] Prot with Aspect is
1533 -- task [type] Prot is
1534 -- pragma Prag;
1536 elsif Nkind (N) = N_Task_Type_Declaration then
1537 Def := Task_Definition (N);
1539 if No (Def) then
1540 Def :=
1541 Make_Task_Definition (Sloc (N),
1542 Visible_Declarations => New_List,
1543 End_Label => Empty);
1545 Set_Task_Definition (N, Def);
1546 end if;
1548 Decls := Visible_Declarations (Def);
1550 if No (Decls) then
1551 Decls := New_List;
1552 Set_Visible_Declarations (Def, Decls);
1553 end if;
1555 Prepend_To (Decls, Prag);
1557 -- When the context is a library unit, the pragma is added to the
1558 -- Pragmas_After list.
1560 elsif Nkind (Parent (N)) = N_Compilation_Unit then
1561 Aux := Aux_Decls_Node (Parent (N));
1563 if No (Pragmas_After (Aux)) then
1564 Set_Pragmas_After (Aux, New_List);
1565 end if;
1567 Prepend (Prag, Pragmas_After (Aux));
1569 -- Default, the pragma is inserted after the context
1571 else
1572 Insert_After (N, Prag);
1573 end if;
1574 end Insert_Pragma;
1576 -- Local variables
1578 Aspect : Node_Id;
1579 Aitem : Node_Id;
1580 Ent : Node_Id;
1582 L : constant List_Id := Aspect_Specifications (N);
1583 pragma Assert (Present (L));
1585 Ins_Node : Node_Id := N;
1586 -- Insert pragmas/attribute definition clause after this node when no
1587 -- delayed analysis is required.
1589 -- Start of processing for Analyze_Aspect_Specifications
1591 begin
1592 -- The general processing involves building an attribute definition
1593 -- clause or a pragma node that corresponds to the aspect. Then in order
1594 -- to delay the evaluation of this aspect to the freeze point, we attach
1595 -- the corresponding pragma/attribute definition clause to the aspect
1596 -- specification node, which is then placed in the Rep Item chain. In
1597 -- this case we mark the entity by setting the flag Has_Delayed_Aspects
1598 -- and we evaluate the rep item at the freeze point. When the aspect
1599 -- doesn't have a corresponding pragma/attribute definition clause, then
1600 -- its analysis is simply delayed at the freeze point.
1602 -- Some special cases don't require delay analysis, thus the aspect is
1603 -- analyzed right now.
1605 -- Note that there is a special handling for Pre, Post, Test_Case,
1606 -- Contract_Cases aspects. In these cases, we do not have to worry
1607 -- about delay issues, since the pragmas themselves deal with delay
1608 -- of visibility for the expression analysis. Thus, we just insert
1609 -- the pragma after the node N.
1611 -- Loop through aspects
1613 Aspect := First (L);
1614 Aspect_Loop : while Present (Aspect) loop
1615 Analyze_One_Aspect : declare
1616 Expr : constant Node_Id := Expression (Aspect);
1617 Id : constant Node_Id := Identifier (Aspect);
1618 Loc : constant Source_Ptr := Sloc (Aspect);
1619 Nam : constant Name_Id := Chars (Id);
1620 A_Id : constant Aspect_Id := Get_Aspect_Id (Nam);
1621 Anod : Node_Id;
1623 Delay_Required : Boolean;
1624 -- Set False if delay is not required
1626 Eloc : Source_Ptr := No_Location;
1627 -- Source location of expression, modified when we split PPC's. It
1628 -- is set below when Expr is present.
1630 procedure Analyze_Aspect_Convention;
1631 -- Perform analysis of aspect Convention
1633 procedure Analyze_Aspect_Disable_Controlled;
1634 -- Perform analysis of aspect Disable_Controlled
1636 procedure Analyze_Aspect_Export_Import;
1637 -- Perform analysis of aspects Export or Import
1639 procedure Analyze_Aspect_External_Link_Name;
1640 -- Perform analysis of aspects External_Name or Link_Name
1642 procedure Analyze_Aspect_Implicit_Dereference;
1643 -- Perform analysis of the Implicit_Dereference aspects
1645 procedure Make_Aitem_Pragma
1646 (Pragma_Argument_Associations : List_Id;
1647 Pragma_Name : Name_Id);
1648 -- This is a wrapper for Make_Pragma used for converting aspects
1649 -- to pragmas. It takes care of Sloc (set from Loc) and building
1650 -- the pragma identifier from the given name. In addition the
1651 -- flags Class_Present and Split_PPC are set from the aspect
1652 -- node, as well as Is_Ignored. This routine also sets the
1653 -- From_Aspect_Specification in the resulting pragma node to
1654 -- True, and sets Corresponding_Aspect to point to the aspect.
1655 -- The resulting pragma is assigned to Aitem.
1657 -------------------------------
1658 -- Analyze_Aspect_Convention --
1659 -------------------------------
1661 procedure Analyze_Aspect_Convention is
1662 Conv : Node_Id;
1663 Dummy_1 : Node_Id;
1664 Dummy_2 : Node_Id;
1665 Dummy_3 : Node_Id;
1666 Expo : Node_Id;
1667 Imp : Node_Id;
1669 begin
1670 -- Obtain all interfacing aspects that apply to the related
1671 -- entity.
1673 Get_Interfacing_Aspects
1674 (Iface_Asp => Aspect,
1675 Conv_Asp => Dummy_1,
1676 EN_Asp => Dummy_2,
1677 Expo_Asp => Expo,
1678 Imp_Asp => Imp,
1679 LN_Asp => Dummy_3,
1680 Do_Checks => True);
1682 -- The related entity is subject to aspect Export or Import.
1683 -- Do not process Convention now because it must be analysed
1684 -- as part of Export or Import.
1686 if Present (Expo) or else Present (Imp) then
1687 return;
1689 -- Otherwise Convention appears by itself
1691 else
1692 -- The aspect specifies a particular convention
1694 if Present (Expr) then
1695 Conv := New_Copy_Tree (Expr);
1697 -- Otherwise assume convention Ada
1699 else
1700 Conv := Make_Identifier (Loc, Name_Ada);
1701 end if;
1703 -- Generate:
1704 -- pragma Convention (<Conv>, <E>);
1706 Make_Aitem_Pragma
1707 (Pragma_Name => Name_Convention,
1708 Pragma_Argument_Associations => New_List (
1709 Make_Pragma_Argument_Association (Loc,
1710 Expression => Conv),
1711 Make_Pragma_Argument_Association (Loc,
1712 Expression => New_Occurrence_Of (E, Loc))));
1714 Decorate (Aspect, Aitem);
1715 Insert_Pragma (Aitem);
1716 end if;
1717 end Analyze_Aspect_Convention;
1719 ---------------------------------------
1720 -- Analyze_Aspect_Disable_Controlled --
1721 ---------------------------------------
1723 procedure Analyze_Aspect_Disable_Controlled is
1724 begin
1725 -- The aspect applies only to controlled records
1727 if not (Ekind (E) = E_Record_Type
1728 and then Is_Controlled_Active (E))
1729 then
1730 Error_Msg_N
1731 ("aspect % requires controlled record type", Aspect);
1732 return;
1733 end if;
1735 -- Preanalyze the expression (if any) when the aspect resides
1736 -- in a generic unit.
1738 if Inside_A_Generic then
1739 if Present (Expr) then
1740 Preanalyze_And_Resolve (Expr, Any_Boolean);
1741 end if;
1743 -- Otherwise the aspect resides in a nongeneric context
1745 else
1746 -- A controlled record type loses its controlled semantics
1747 -- when the expression statically evaluates to True.
1749 if Present (Expr) then
1750 Analyze_And_Resolve (Expr, Any_Boolean);
1752 if Is_OK_Static_Expression (Expr) then
1753 if Is_True (Static_Boolean (Expr)) then
1754 Set_Disable_Controlled (E);
1755 end if;
1757 -- Otherwise the expression is not static
1759 else
1760 Error_Msg_N
1761 ("expression of aspect % must be static", Aspect);
1762 end if;
1764 -- Otherwise the aspect appears without an expression and
1765 -- defaults to True.
1767 else
1768 Set_Disable_Controlled (E);
1769 end if;
1770 end if;
1771 end Analyze_Aspect_Disable_Controlled;
1773 ----------------------------------
1774 -- Analyze_Aspect_Export_Import --
1775 ----------------------------------
1777 procedure Analyze_Aspect_Export_Import is
1778 Dummy_1 : Node_Id;
1779 Dummy_2 : Node_Id;
1780 Dummy_3 : Node_Id;
1781 Expo : Node_Id;
1782 Imp : Node_Id;
1784 begin
1785 -- Obtain all interfacing aspects that apply to the related
1786 -- entity.
1788 Get_Interfacing_Aspects
1789 (Iface_Asp => Aspect,
1790 Conv_Asp => Dummy_1,
1791 EN_Asp => Dummy_2,
1792 Expo_Asp => Expo,
1793 Imp_Asp => Imp,
1794 LN_Asp => Dummy_3,
1795 Do_Checks => True);
1797 -- The related entity cannot be subject to both aspects Export
1798 -- and Import.
1800 if Present (Expo) and then Present (Imp) then
1801 Error_Msg_N
1802 ("incompatible interfacing aspects given for &", E);
1803 Error_Msg_Sloc := Sloc (Expo);
1804 Error_Msg_N ("\aspect `Export` #", E);
1805 Error_Msg_Sloc := Sloc (Imp);
1806 Error_Msg_N ("\aspect `Import` #", E);
1807 end if;
1809 -- A variable is most likely modified from the outside. Take
1810 -- the optimistic approach to avoid spurious errors.
1812 if Ekind (E) = E_Variable then
1813 Set_Never_Set_In_Source (E, False);
1814 end if;
1816 -- Resolve the expression of an Import or Export here, and
1817 -- require it to be of type Boolean and static. This is not
1818 -- quite right, because in general this should be delayed,
1819 -- but that seems tricky for these, because normally Boolean
1820 -- aspects are replaced with pragmas at the freeze point in
1821 -- Make_Pragma_From_Boolean_Aspect.
1823 if not Present (Expr)
1824 or else Is_True (Static_Boolean (Expr))
1825 then
1826 if A_Id = Aspect_Import then
1827 Set_Has_Completion (E);
1828 Set_Is_Imported (E);
1830 -- An imported object cannot be explicitly initialized
1832 if Nkind (N) = N_Object_Declaration
1833 and then Present (Expression (N))
1834 then
1835 Error_Msg_N
1836 ("imported entities cannot be initialized "
1837 & "(RM B.1(24))", Expression (N));
1838 end if;
1840 else
1841 pragma Assert (A_Id = Aspect_Export);
1842 Set_Is_Exported (E);
1843 end if;
1845 -- Create the proper form of pragma Export or Import taking
1846 -- into account Conversion, External_Name, and Link_Name.
1848 Aitem := Build_Export_Import_Pragma (Aspect, E);
1850 -- Otherwise the expression is either False or erroneous. There
1851 -- is no corresponding pragma.
1853 else
1854 Aitem := Empty;
1855 end if;
1856 end Analyze_Aspect_Export_Import;
1858 ---------------------------------------
1859 -- Analyze_Aspect_External_Link_Name --
1860 ---------------------------------------
1862 procedure Analyze_Aspect_External_Link_Name is
1863 Dummy_1 : Node_Id;
1864 Dummy_2 : Node_Id;
1865 Dummy_3 : Node_Id;
1866 Expo : Node_Id;
1867 Imp : Node_Id;
1869 begin
1870 -- Obtain all interfacing aspects that apply to the related
1871 -- entity.
1873 Get_Interfacing_Aspects
1874 (Iface_Asp => Aspect,
1875 Conv_Asp => Dummy_1,
1876 EN_Asp => Dummy_2,
1877 Expo_Asp => Expo,
1878 Imp_Asp => Imp,
1879 LN_Asp => Dummy_3,
1880 Do_Checks => True);
1882 -- Ensure that aspect External_Name applies to aspect Export or
1883 -- Import.
1885 if A_Id = Aspect_External_Name then
1886 if No (Expo) and then No (Imp) then
1887 Error_Msg_N
1888 ("aspect `External_Name` requires aspect `Import` or "
1889 & "`Export`", Aspect);
1890 end if;
1892 -- Otherwise ensure that aspect Link_Name applies to aspect
1893 -- Export or Import.
1895 else
1896 pragma Assert (A_Id = Aspect_Link_Name);
1897 if No (Expo) and then No (Imp) then
1898 Error_Msg_N
1899 ("aspect `Link_Name` requires aspect `Import` or "
1900 & "`Export`", Aspect);
1901 end if;
1902 end if;
1903 end Analyze_Aspect_External_Link_Name;
1905 -----------------------------------------
1906 -- Analyze_Aspect_Implicit_Dereference --
1907 -----------------------------------------
1909 procedure Analyze_Aspect_Implicit_Dereference is
1910 begin
1911 if not Is_Type (E) or else not Has_Discriminants (E) then
1912 Error_Msg_N
1913 ("aspect must apply to a type with discriminants", Expr);
1915 elsif not Is_Entity_Name (Expr) then
1916 Error_Msg_N
1917 ("aspect must name a discriminant of current type", Expr);
1919 else
1920 -- Discriminant type be an anonymous access type or an
1921 -- anonymous access to subprogram.
1923 -- Missing synchronized types???
1925 declare
1926 Disc : Entity_Id := First_Discriminant (E);
1927 begin
1928 while Present (Disc) loop
1929 if Chars (Expr) = Chars (Disc)
1930 and then Ekind_In
1931 (Etype (Disc),
1932 E_Anonymous_Access_Subprogram_Type,
1933 E_Anonymous_Access_Type)
1934 then
1935 Set_Has_Implicit_Dereference (E);
1936 Set_Has_Implicit_Dereference (Disc);
1937 exit;
1938 end if;
1940 Next_Discriminant (Disc);
1941 end loop;
1943 -- Error if no proper access discriminant
1945 if Present (Disc) then
1946 -- For a type extension, check whether parent has
1947 -- a reference discriminant, to verify that use is
1948 -- proper.
1950 if Is_Derived_Type (E)
1951 and then Has_Discriminants (Etype (E))
1952 then
1953 declare
1954 Parent_Disc : constant Entity_Id :=
1955 Get_Reference_Discriminant (Etype (E));
1956 begin
1957 if Present (Parent_Disc)
1958 and then Corresponding_Discriminant (Disc) /=
1959 Parent_Disc
1960 then
1961 Error_Msg_N
1962 ("reference discriminant does not match "
1963 & "discriminant of parent type", Expr);
1964 end if;
1965 end;
1966 end if;
1968 else
1969 Error_Msg_NE
1970 ("not an access discriminant of&", Expr, E);
1971 end if;
1972 end;
1973 end if;
1975 end Analyze_Aspect_Implicit_Dereference;
1977 -----------------------
1978 -- Make_Aitem_Pragma --
1979 -----------------------
1981 procedure Make_Aitem_Pragma
1982 (Pragma_Argument_Associations : List_Id;
1983 Pragma_Name : Name_Id)
1985 Args : List_Id := Pragma_Argument_Associations;
1987 begin
1988 -- We should never get here if aspect was disabled
1990 pragma Assert (not Is_Disabled (Aspect));
1992 -- Certain aspects allow for an optional name or expression. Do
1993 -- not generate a pragma with empty argument association list.
1995 if No (Args) or else No (Expression (First (Args))) then
1996 Args := No_List;
1997 end if;
1999 -- Build the pragma
2001 Aitem :=
2002 Make_Pragma (Loc,
2003 Pragma_Argument_Associations => Args,
2004 Pragma_Identifier =>
2005 Make_Identifier (Sloc (Id), Pragma_Name),
2006 Class_Present => Class_Present (Aspect),
2007 Split_PPC => Split_PPC (Aspect));
2009 -- Set additional semantic fields
2011 if Is_Ignored (Aspect) then
2012 Set_Is_Ignored (Aitem);
2013 elsif Is_Checked (Aspect) then
2014 Set_Is_Checked (Aitem);
2015 end if;
2017 Set_Corresponding_Aspect (Aitem, Aspect);
2018 Set_From_Aspect_Specification (Aitem);
2019 end Make_Aitem_Pragma;
2021 -- Start of processing for Analyze_One_Aspect
2023 begin
2024 -- Skip aspect if already analyzed, to avoid looping in some cases
2026 if Analyzed (Aspect) then
2027 goto Continue;
2028 end if;
2030 -- Skip looking at aspect if it is totally disabled. Just mark it
2031 -- as such for later reference in the tree. This also sets the
2032 -- Is_Ignored and Is_Checked flags appropriately.
2034 Check_Applicable_Policy (Aspect);
2036 if Is_Disabled (Aspect) then
2037 goto Continue;
2038 end if;
2040 -- Set the source location of expression, used in the case of
2041 -- a failed precondition/postcondition or invariant. Note that
2042 -- the source location of the expression is not usually the best
2043 -- choice here. For example, it gets located on the last AND
2044 -- keyword in a chain of boolean expressiond AND'ed together.
2045 -- It is best to put the message on the first character of the
2046 -- assertion, which is the effect of the First_Node call here.
2048 if Present (Expr) then
2049 Eloc := Sloc (First_Node (Expr));
2050 end if;
2052 -- Check restriction No_Implementation_Aspect_Specifications
2054 if Implementation_Defined_Aspect (A_Id) then
2055 Check_Restriction
2056 (No_Implementation_Aspect_Specifications, Aspect);
2057 end if;
2059 -- Check restriction No_Specification_Of_Aspect
2061 Check_Restriction_No_Specification_Of_Aspect (Aspect);
2063 -- Mark aspect analyzed (actual analysis is delayed till later)
2065 Set_Analyzed (Aspect);
2066 Set_Entity (Aspect, E);
2068 -- Build the reference to E that will be used in the built pragmas
2070 Ent := New_Occurrence_Of (E, Sloc (Id));
2072 if A_Id = Aspect_Attach_Handler
2073 or else A_Id = Aspect_Interrupt_Handler
2074 then
2076 -- Treat the specification as a reference to the protected
2077 -- operation, which might otherwise appear unreferenced and
2078 -- generate spurious warnings.
2080 Generate_Reference (E, Id);
2081 end if;
2083 -- Check for duplicate aspect. Note that the Comes_From_Source
2084 -- test allows duplicate Pre/Post's that we generate internally
2085 -- to escape being flagged here.
2087 if No_Duplicates_Allowed (A_Id) then
2088 Anod := First (L);
2089 while Anod /= Aspect loop
2090 if Comes_From_Source (Aspect)
2091 and then Same_Aspect (A_Id, Get_Aspect_Id (Anod))
2092 then
2093 Error_Msg_Name_1 := Nam;
2094 Error_Msg_Sloc := Sloc (Anod);
2096 -- Case of same aspect specified twice
2098 if Class_Present (Anod) = Class_Present (Aspect) then
2099 if not Class_Present (Anod) then
2100 Error_Msg_NE
2101 ("aspect% for & previously given#",
2102 Id, E);
2103 else
2104 Error_Msg_NE
2105 ("aspect `%''Class` for & previously given#",
2106 Id, E);
2107 end if;
2108 end if;
2109 end if;
2111 Next (Anod);
2112 end loop;
2113 end if;
2115 -- Check some general restrictions on language defined aspects
2117 if not Implementation_Defined_Aspect (A_Id) then
2118 Error_Msg_Name_1 := Nam;
2120 -- Not allowed for renaming declarations. Examine the original
2121 -- node because a subprogram renaming may have been rewritten
2122 -- as a body.
2124 if Nkind (Original_Node (N)) in N_Renaming_Declaration then
2125 Error_Msg_N
2126 ("aspect % not allowed for renaming declaration",
2127 Aspect);
2128 end if;
2130 -- Not allowed for formal type declarations
2132 if Nkind (N) = N_Formal_Type_Declaration then
2133 Error_Msg_N
2134 ("aspect % not allowed for formal type declaration",
2135 Aspect);
2136 end if;
2137 end if;
2139 -- Copy expression for later processing by the procedures
2140 -- Check_Aspect_At_[Freeze_Point | End_Of_Declarations]
2142 Set_Entity (Id, New_Copy_Tree (Expr));
2144 -- Set Delay_Required as appropriate to aspect
2146 case Aspect_Delay (A_Id) is
2147 when Always_Delay =>
2148 Delay_Required := True;
2150 when Never_Delay =>
2151 Delay_Required := False;
2153 when Rep_Aspect =>
2155 -- If expression has the form of an integer literal, then
2156 -- do not delay, since we know the value cannot change.
2157 -- This optimization catches most rep clause cases.
2159 -- For Boolean aspects, don't delay if no expression
2161 if A_Id in Boolean_Aspects and then No (Expr) then
2162 Delay_Required := False;
2164 -- For non-Boolean aspects, don't delay if integer literal,
2165 -- unless the aspect is Alignment, which affects the
2166 -- freezing of an initialized object.
2168 elsif A_Id not in Boolean_Aspects
2169 and then A_Id /= Aspect_Alignment
2170 and then Present (Expr)
2171 and then Nkind (Expr) = N_Integer_Literal
2172 then
2173 Delay_Required := False;
2175 -- All other cases are delayed
2177 else
2178 Delay_Required := True;
2179 Set_Has_Delayed_Rep_Aspects (E);
2180 end if;
2181 end case;
2183 -- Processing based on specific aspect
2185 case A_Id is
2186 when Aspect_Unimplemented =>
2187 null; -- ??? temp for now
2189 -- No_Aspect should be impossible
2191 when No_Aspect =>
2192 raise Program_Error;
2194 -- Case 1: Aspects corresponding to attribute definition
2195 -- clauses.
2197 when Aspect_Address
2198 | Aspect_Alignment
2199 | Aspect_Bit_Order
2200 | Aspect_Component_Size
2201 | Aspect_Constant_Indexing
2202 | Aspect_Default_Iterator
2203 | Aspect_Dispatching_Domain
2204 | Aspect_External_Tag
2205 | Aspect_Input
2206 | Aspect_Iterable
2207 | Aspect_Iterator_Element
2208 | Aspect_Machine_Radix
2209 | Aspect_Object_Size
2210 | Aspect_Output
2211 | Aspect_Read
2212 | Aspect_Scalar_Storage_Order
2213 | Aspect_Secondary_Stack_Size
2214 | Aspect_Simple_Storage_Pool
2215 | Aspect_Size
2216 | Aspect_Small
2217 | Aspect_Storage_Pool
2218 | Aspect_Stream_Size
2219 | Aspect_Value_Size
2220 | Aspect_Variable_Indexing
2221 | Aspect_Write
2223 -- Indexing aspects apply only to tagged type
2225 if (A_Id = Aspect_Constant_Indexing
2226 or else
2227 A_Id = Aspect_Variable_Indexing)
2228 and then not (Is_Type (E)
2229 and then Is_Tagged_Type (E))
2230 then
2231 Error_Msg_N
2232 ("indexing aspect can only apply to a tagged type",
2233 Aspect);
2234 goto Continue;
2235 end if;
2237 -- For the case of aspect Address, we don't consider that we
2238 -- know the entity is never set in the source, since it is
2239 -- is likely aliasing is occurring.
2241 -- Note: one might think that the analysis of the resulting
2242 -- attribute definition clause would take care of that, but
2243 -- that's not the case since it won't be from source.
2245 if A_Id = Aspect_Address then
2246 Set_Never_Set_In_Source (E, False);
2247 end if;
2249 -- Correctness of the profile of a stream operation is
2250 -- verified at the freeze point, but we must detect the
2251 -- illegal specification of this aspect for a subtype now,
2252 -- to prevent malformed rep_item chains.
2254 if A_Id = Aspect_Input or else
2255 A_Id = Aspect_Output or else
2256 A_Id = Aspect_Read or else
2257 A_Id = Aspect_Write
2258 then
2259 if not Is_First_Subtype (E) then
2260 Error_Msg_N
2261 ("local name must be a first subtype", Aspect);
2262 goto Continue;
2264 -- If stream aspect applies to the class-wide type,
2265 -- the generated attribute definition applies to the
2266 -- class-wide type as well.
2268 elsif Class_Present (Aspect) then
2269 Ent :=
2270 Make_Attribute_Reference (Loc,
2271 Prefix => Ent,
2272 Attribute_Name => Name_Class);
2273 end if;
2274 end if;
2276 -- Construct the attribute_definition_clause. The expression
2277 -- in the aspect specification is simply shared with the
2278 -- constructed attribute, because it will be fully analyzed
2279 -- when the attribute is processed. However, in ASIS mode
2280 -- the aspect expression itself is preanalyzed and resolved
2281 -- to catch visibility errors that are otherwise caught
2282 -- later, and we create a separate copy of the expression
2283 -- to prevent analysis of a malformed tree (e.g. a function
2284 -- call with parameter associations).
2286 if ASIS_Mode then
2287 Aitem :=
2288 Make_Attribute_Definition_Clause (Loc,
2289 Name => Ent,
2290 Chars => Chars (Id),
2291 Expression => New_Copy_Tree (Expr));
2292 else
2293 Aitem :=
2294 Make_Attribute_Definition_Clause (Loc,
2295 Name => Ent,
2296 Chars => Chars (Id),
2297 Expression => Relocate_Node (Expr));
2298 end if;
2300 -- If the address is specified, then we treat the entity as
2301 -- referenced, to avoid spurious warnings. This is analogous
2302 -- to what is done with an attribute definition clause, but
2303 -- here we don't want to generate a reference because this
2304 -- is the point of definition of the entity.
2306 if A_Id = Aspect_Address then
2307 Set_Referenced (E);
2308 end if;
2310 -- Case 2: Aspects corresponding to pragmas
2312 -- Case 2a: Aspects corresponding to pragmas with two
2313 -- arguments, where the first argument is a local name
2314 -- referring to the entity, and the second argument is the
2315 -- aspect definition expression.
2317 -- Linker_Section/Suppress/Unsuppress
2319 when Aspect_Linker_Section
2320 | Aspect_Suppress
2321 | Aspect_Unsuppress
2323 Make_Aitem_Pragma
2324 (Pragma_Argument_Associations => New_List (
2325 Make_Pragma_Argument_Association (Loc,
2326 Expression => New_Occurrence_Of (E, Loc)),
2327 Make_Pragma_Argument_Association (Sloc (Expr),
2328 Expression => Relocate_Node (Expr))),
2329 Pragma_Name => Chars (Id));
2331 -- Linker_Section does not need delaying, as its argument
2332 -- must be a static string. Furthermore, if applied to
2333 -- an object with an explicit initialization, the object
2334 -- must be frozen in order to elaborate the initialization
2335 -- code. (This is already done for types with implicit
2336 -- initialization, such as protected types.)
2338 if A_Id = Aspect_Linker_Section
2339 and then Nkind (N) = N_Object_Declaration
2340 and then Has_Init_Expression (N)
2341 then
2342 Delay_Required := False;
2343 end if;
2345 -- Synchronization
2347 -- Corresponds to pragma Implemented, construct the pragma
2349 when Aspect_Synchronization =>
2350 Make_Aitem_Pragma
2351 (Pragma_Argument_Associations => New_List (
2352 Make_Pragma_Argument_Association (Loc,
2353 Expression => New_Occurrence_Of (E, Loc)),
2354 Make_Pragma_Argument_Association (Sloc (Expr),
2355 Expression => Relocate_Node (Expr))),
2356 Pragma_Name => Name_Implemented);
2358 -- Attach_Handler
2360 when Aspect_Attach_Handler =>
2361 Make_Aitem_Pragma
2362 (Pragma_Argument_Associations => New_List (
2363 Make_Pragma_Argument_Association (Sloc (Ent),
2364 Expression => Ent),
2365 Make_Pragma_Argument_Association (Sloc (Expr),
2366 Expression => Relocate_Node (Expr))),
2367 Pragma_Name => Name_Attach_Handler);
2369 -- We need to insert this pragma into the tree to get proper
2370 -- processing and to look valid from a placement viewpoint.
2372 Insert_Pragma (Aitem);
2373 goto Continue;
2375 -- Dynamic_Predicate, Predicate, Static_Predicate
2377 when Aspect_Dynamic_Predicate
2378 | Aspect_Predicate
2379 | Aspect_Static_Predicate
2381 -- These aspects apply only to subtypes
2383 if not Is_Type (E) then
2384 Error_Msg_N
2385 ("predicate can only be specified for a subtype",
2386 Aspect);
2387 goto Continue;
2389 elsif Is_Incomplete_Type (E) then
2390 Error_Msg_N
2391 ("predicate cannot apply to incomplete view", Aspect);
2392 goto Continue;
2393 end if;
2395 -- Construct the pragma (always a pragma Predicate, with
2396 -- flags recording whether it is static/dynamic). We also
2397 -- set flags recording this in the type itself.
2399 Make_Aitem_Pragma
2400 (Pragma_Argument_Associations => New_List (
2401 Make_Pragma_Argument_Association (Sloc (Ent),
2402 Expression => Ent),
2403 Make_Pragma_Argument_Association (Sloc (Expr),
2404 Expression => Relocate_Node (Expr))),
2405 Pragma_Name => Name_Predicate);
2407 -- Mark type has predicates, and remember what kind of
2408 -- aspect lead to this predicate (we need this to access
2409 -- the right set of check policies later on).
2411 Set_Has_Predicates (E);
2413 if A_Id = Aspect_Dynamic_Predicate then
2414 Set_Has_Dynamic_Predicate_Aspect (E);
2416 -- If the entity has a dynamic predicate, any inherited
2417 -- static predicate becomes dynamic as well, and the
2418 -- predicate function includes the conjunction of both.
2420 Set_Has_Static_Predicate_Aspect (E, False);
2422 elsif A_Id = Aspect_Static_Predicate then
2423 Set_Has_Static_Predicate_Aspect (E);
2424 end if;
2426 -- If the type is private, indicate that its completion
2427 -- has a freeze node, because that is the one that will
2428 -- be visible at freeze time.
2430 if Is_Private_Type (E) and then Present (Full_View (E)) then
2431 Set_Has_Predicates (Full_View (E));
2433 if A_Id = Aspect_Dynamic_Predicate then
2434 Set_Has_Dynamic_Predicate_Aspect (Full_View (E));
2435 elsif A_Id = Aspect_Static_Predicate then
2436 Set_Has_Static_Predicate_Aspect (Full_View (E));
2437 end if;
2439 Set_Has_Delayed_Aspects (Full_View (E));
2440 Ensure_Freeze_Node (Full_View (E));
2441 end if;
2443 -- Predicate_Failure
2445 when Aspect_Predicate_Failure =>
2447 -- This aspect applies only to subtypes
2449 if not Is_Type (E) then
2450 Error_Msg_N
2451 ("predicate can only be specified for a subtype",
2452 Aspect);
2453 goto Continue;
2455 elsif Is_Incomplete_Type (E) then
2456 Error_Msg_N
2457 ("predicate cannot apply to incomplete view", Aspect);
2458 goto Continue;
2459 end if;
2461 -- Construct the pragma
2463 Make_Aitem_Pragma
2464 (Pragma_Argument_Associations => New_List (
2465 Make_Pragma_Argument_Association (Sloc (Ent),
2466 Expression => Ent),
2467 Make_Pragma_Argument_Association (Sloc (Expr),
2468 Expression => Relocate_Node (Expr))),
2469 Pragma_Name => Name_Predicate_Failure);
2471 Set_Has_Predicates (E);
2473 -- If the type is private, indicate that its completion
2474 -- has a freeze node, because that is the one that will
2475 -- be visible at freeze time.
2477 if Is_Private_Type (E) and then Present (Full_View (E)) then
2478 Set_Has_Predicates (Full_View (E));
2479 Set_Has_Delayed_Aspects (Full_View (E));
2480 Ensure_Freeze_Node (Full_View (E));
2481 end if;
2483 -- Case 2b: Aspects corresponding to pragmas with two
2484 -- arguments, where the second argument is a local name
2485 -- referring to the entity, and the first argument is the
2486 -- aspect definition expression.
2488 -- Convention
2490 when Aspect_Convention =>
2491 Analyze_Aspect_Convention;
2492 goto Continue;
2494 -- External_Name, Link_Name
2496 when Aspect_External_Name
2497 | Aspect_Link_Name
2499 Analyze_Aspect_External_Link_Name;
2500 goto Continue;
2502 -- CPU, Interrupt_Priority, Priority
2504 -- These three aspects can be specified for a subprogram spec
2505 -- or body, in which case we analyze the expression and export
2506 -- the value of the aspect.
2508 -- Previously, we generated an equivalent pragma for bodies
2509 -- (note that the specs cannot contain these pragmas). The
2510 -- pragma was inserted ahead of local declarations, rather than
2511 -- after the body. This leads to a certain duplication between
2512 -- the processing performed for the aspect and the pragma, but
2513 -- given the straightforward handling required it is simpler
2514 -- to duplicate than to translate the aspect in the spec into
2515 -- a pragma in the declarative part of the body.
2517 when Aspect_CPU
2518 | Aspect_Interrupt_Priority
2519 | Aspect_Priority
2521 if Nkind_In (N, N_Subprogram_Body,
2522 N_Subprogram_Declaration)
2523 then
2524 -- Analyze the aspect expression
2526 Analyze_And_Resolve (Expr, Standard_Integer);
2528 -- Interrupt_Priority aspect not allowed for main
2529 -- subprograms. RM D.1 does not forbid this explicitly,
2530 -- but RM J.15.11(6/3) does not permit pragma
2531 -- Interrupt_Priority for subprograms.
2533 if A_Id = Aspect_Interrupt_Priority then
2534 Error_Msg_N
2535 ("Interrupt_Priority aspect cannot apply to "
2536 & "subprogram", Expr);
2538 -- The expression must be static
2540 elsif not Is_OK_Static_Expression (Expr) then
2541 Flag_Non_Static_Expr
2542 ("aspect requires static expression!", Expr);
2544 -- Check whether this is the main subprogram. Issue a
2545 -- warning only if it is obviously not a main program
2546 -- (when it has parameters or when the subprogram is
2547 -- within a package).
2549 elsif Present (Parameter_Specifications
2550 (Specification (N)))
2551 or else not Is_Compilation_Unit (Defining_Entity (N))
2552 then
2553 -- See RM D.1(14/3) and D.16(12/3)
2555 Error_Msg_N
2556 ("aspect applied to subprogram other than the "
2557 & "main subprogram has no effect??", Expr);
2559 -- Otherwise check in range and export the value
2561 -- For the CPU aspect
2563 elsif A_Id = Aspect_CPU then
2564 if Is_In_Range (Expr, RTE (RE_CPU_Range)) then
2566 -- Value is correct so we export the value to make
2567 -- it available at execution time.
2569 Set_Main_CPU
2570 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2572 else
2573 Error_Msg_N
2574 ("main subprogram CPU is out of range", Expr);
2575 end if;
2577 -- For the Priority aspect
2579 elsif A_Id = Aspect_Priority then
2580 if Is_In_Range (Expr, RTE (RE_Priority)) then
2582 -- Value is correct so we export the value to make
2583 -- it available at execution time.
2585 Set_Main_Priority
2586 (Main_Unit, UI_To_Int (Expr_Value (Expr)));
2588 -- Ignore pragma if Relaxed_RM_Semantics to support
2589 -- other targets/non GNAT compilers.
2591 elsif not Relaxed_RM_Semantics then
2592 Error_Msg_N
2593 ("main subprogram priority is out of range",
2594 Expr);
2595 end if;
2596 end if;
2598 -- Load an arbitrary entity from System.Tasking.Stages
2599 -- or System.Tasking.Restricted.Stages (depending on
2600 -- the supported profile) to make sure that one of these
2601 -- packages is implicitly with'ed, since we need to have
2602 -- the tasking run time active for the pragma Priority to
2603 -- have any effect. Previously we with'ed the package
2604 -- System.Tasking, but this package does not trigger the
2605 -- required initialization of the run-time library.
2607 declare
2608 Discard : Entity_Id;
2609 begin
2610 if Restricted_Profile then
2611 Discard := RTE (RE_Activate_Restricted_Tasks);
2612 else
2613 Discard := RTE (RE_Activate_Tasks);
2614 end if;
2615 end;
2617 -- Handling for these aspects in subprograms is complete
2619 goto Continue;
2621 -- For task and protected types pass the aspect as an
2622 -- attribute.
2624 else
2625 Aitem :=
2626 Make_Attribute_Definition_Clause (Loc,
2627 Name => Ent,
2628 Chars => Chars (Id),
2629 Expression => Relocate_Node (Expr));
2630 end if;
2632 -- Warnings
2634 when Aspect_Warnings =>
2635 Make_Aitem_Pragma
2636 (Pragma_Argument_Associations => New_List (
2637 Make_Pragma_Argument_Association (Sloc (Expr),
2638 Expression => Relocate_Node (Expr)),
2639 Make_Pragma_Argument_Association (Loc,
2640 Expression => New_Occurrence_Of (E, Loc))),
2641 Pragma_Name => Chars (Id));
2643 Decorate (Aspect, Aitem);
2644 Insert_Pragma (Aitem);
2645 goto Continue;
2647 -- Case 2c: Aspects corresponding to pragmas with three
2648 -- arguments.
2650 -- Invariant aspects have a first argument that references the
2651 -- entity, a second argument that is the expression and a third
2652 -- argument that is an appropriate message.
2654 -- Invariant, Type_Invariant
2656 when Aspect_Invariant
2657 | Aspect_Type_Invariant
2659 -- Analysis of the pragma will verify placement legality:
2660 -- an invariant must apply to a private type, or appear in
2661 -- the private part of a spec and apply to a completion.
2663 Make_Aitem_Pragma
2664 (Pragma_Argument_Associations => New_List (
2665 Make_Pragma_Argument_Association (Sloc (Ent),
2666 Expression => Ent),
2667 Make_Pragma_Argument_Association (Sloc (Expr),
2668 Expression => Relocate_Node (Expr))),
2669 Pragma_Name => Name_Invariant);
2671 -- Add message unless exception messages are suppressed
2673 if not Opt.Exception_Locations_Suppressed then
2674 Append_To (Pragma_Argument_Associations (Aitem),
2675 Make_Pragma_Argument_Association (Eloc,
2676 Chars => Name_Message,
2677 Expression =>
2678 Make_String_Literal (Eloc,
2679 Strval => "failed invariant from "
2680 & Build_Location_String (Eloc))));
2681 end if;
2683 -- For Invariant case, insert immediately after the entity
2684 -- declaration. We do not have to worry about delay issues
2685 -- since the pragma processing takes care of this.
2687 Delay_Required := False;
2689 -- Case 2d : Aspects that correspond to a pragma with one
2690 -- argument.
2692 -- Abstract_State
2694 -- Aspect Abstract_State introduces implicit declarations for
2695 -- all state abstraction entities it defines. To emulate this
2696 -- behavior, insert the pragma at the beginning of the visible
2697 -- declarations of the related package so that it is analyzed
2698 -- immediately.
2700 when Aspect_Abstract_State => Abstract_State : declare
2701 Context : Node_Id := N;
2703 begin
2704 -- When aspect Abstract_State appears on a generic package,
2705 -- it is propageted to the package instance. The context in
2706 -- this case is the instance spec.
2708 if Nkind (Context) = N_Package_Instantiation then
2709 Context := Instance_Spec (Context);
2710 end if;
2712 if Nkind_In (Context, N_Generic_Package_Declaration,
2713 N_Package_Declaration)
2714 then
2715 Make_Aitem_Pragma
2716 (Pragma_Argument_Associations => New_List (
2717 Make_Pragma_Argument_Association (Loc,
2718 Expression => Relocate_Node (Expr))),
2719 Pragma_Name => Name_Abstract_State);
2721 Decorate (Aspect, Aitem);
2722 Insert_Pragma
2723 (Prag => Aitem,
2724 Is_Instance =>
2725 Is_Generic_Instance (Defining_Entity (Context)));
2727 else
2728 Error_Msg_NE
2729 ("aspect & must apply to a package declaration",
2730 Aspect, Id);
2731 end if;
2733 goto Continue;
2734 end Abstract_State;
2736 -- Aspect Async_Readers is never delayed because it is
2737 -- equivalent to a source pragma which appears after the
2738 -- related object declaration.
2740 when Aspect_Async_Readers =>
2741 Make_Aitem_Pragma
2742 (Pragma_Argument_Associations => New_List (
2743 Make_Pragma_Argument_Association (Loc,
2744 Expression => Relocate_Node (Expr))),
2745 Pragma_Name => Name_Async_Readers);
2747 Decorate (Aspect, Aitem);
2748 Insert_Pragma (Aitem);
2749 goto Continue;
2751 -- Aspect Async_Writers is never delayed because it is
2752 -- equivalent to a source pragma which appears after the
2753 -- related object declaration.
2755 when Aspect_Async_Writers =>
2756 Make_Aitem_Pragma
2757 (Pragma_Argument_Associations => New_List (
2758 Make_Pragma_Argument_Association (Loc,
2759 Expression => Relocate_Node (Expr))),
2760 Pragma_Name => Name_Async_Writers);
2762 Decorate (Aspect, Aitem);
2763 Insert_Pragma (Aitem);
2764 goto Continue;
2766 -- Aspect Constant_After_Elaboration is never delayed because
2767 -- it is equivalent to a source pragma which appears after the
2768 -- related object declaration.
2770 when Aspect_Constant_After_Elaboration =>
2771 Make_Aitem_Pragma
2772 (Pragma_Argument_Associations => New_List (
2773 Make_Pragma_Argument_Association (Loc,
2774 Expression => Relocate_Node (Expr))),
2775 Pragma_Name =>
2776 Name_Constant_After_Elaboration);
2778 Decorate (Aspect, Aitem);
2779 Insert_Pragma (Aitem);
2780 goto Continue;
2782 -- Aspect Default_Internal_Condition is never delayed because
2783 -- it is equivalent to a source pragma which appears after the
2784 -- related private type. To deal with forward references, the
2785 -- generated pragma is stored in the rep chain of the related
2786 -- private type as types do not carry contracts. The pragma is
2787 -- wrapped inside of a procedure at the freeze point of the
2788 -- private type's full view.
2790 when Aspect_Default_Initial_Condition =>
2791 Make_Aitem_Pragma
2792 (Pragma_Argument_Associations => New_List (
2793 Make_Pragma_Argument_Association (Loc,
2794 Expression => Relocate_Node (Expr))),
2795 Pragma_Name =>
2796 Name_Default_Initial_Condition);
2798 Decorate (Aspect, Aitem);
2799 Insert_Pragma (Aitem);
2800 goto Continue;
2802 -- Default_Storage_Pool
2804 when Aspect_Default_Storage_Pool =>
2805 Make_Aitem_Pragma
2806 (Pragma_Argument_Associations => New_List (
2807 Make_Pragma_Argument_Association (Loc,
2808 Expression => Relocate_Node (Expr))),
2809 Pragma_Name =>
2810 Name_Default_Storage_Pool);
2812 Decorate (Aspect, Aitem);
2813 Insert_Pragma (Aitem);
2814 goto Continue;
2816 -- Depends
2818 -- Aspect Depends is never delayed because it is equivalent to
2819 -- a source pragma which appears after the related subprogram.
2820 -- To deal with forward references, the generated pragma is
2821 -- stored in the contract of the related subprogram and later
2822 -- analyzed at the end of the declarative region. See routine
2823 -- Analyze_Depends_In_Decl_Part for details.
2825 when Aspect_Depends =>
2826 Make_Aitem_Pragma
2827 (Pragma_Argument_Associations => New_List (
2828 Make_Pragma_Argument_Association (Loc,
2829 Expression => Relocate_Node (Expr))),
2830 Pragma_Name => Name_Depends);
2832 Decorate (Aspect, Aitem);
2833 Insert_Pragma (Aitem);
2834 goto Continue;
2836 -- Aspect Effecitve_Reads is never delayed because it is
2837 -- equivalent to a source pragma which appears after the
2838 -- related object declaration.
2840 when Aspect_Effective_Reads =>
2841 Make_Aitem_Pragma
2842 (Pragma_Argument_Associations => New_List (
2843 Make_Pragma_Argument_Association (Loc,
2844 Expression => Relocate_Node (Expr))),
2845 Pragma_Name => Name_Effective_Reads);
2847 Decorate (Aspect, Aitem);
2848 Insert_Pragma (Aitem);
2849 goto Continue;
2851 -- Aspect Effective_Writes is never delayed because it is
2852 -- equivalent to a source pragma which appears after the
2853 -- related object declaration.
2855 when Aspect_Effective_Writes =>
2856 Make_Aitem_Pragma
2857 (Pragma_Argument_Associations => New_List (
2858 Make_Pragma_Argument_Association (Loc,
2859 Expression => Relocate_Node (Expr))),
2860 Pragma_Name => Name_Effective_Writes);
2862 Decorate (Aspect, Aitem);
2863 Insert_Pragma (Aitem);
2864 goto Continue;
2866 -- Aspect Extensions_Visible is never delayed because it is
2867 -- equivalent to a source pragma which appears after the
2868 -- related subprogram.
2870 when Aspect_Extensions_Visible =>
2871 Make_Aitem_Pragma
2872 (Pragma_Argument_Associations => New_List (
2873 Make_Pragma_Argument_Association (Loc,
2874 Expression => Relocate_Node (Expr))),
2875 Pragma_Name => Name_Extensions_Visible);
2877 Decorate (Aspect, Aitem);
2878 Insert_Pragma (Aitem);
2879 goto Continue;
2881 -- Aspect Ghost is never delayed because it is equivalent to a
2882 -- source pragma which appears at the top of [generic] package
2883 -- declarations or after an object, a [generic] subprogram, or
2884 -- a type declaration.
2886 when Aspect_Ghost =>
2887 Make_Aitem_Pragma
2888 (Pragma_Argument_Associations => New_List (
2889 Make_Pragma_Argument_Association (Loc,
2890 Expression => Relocate_Node (Expr))),
2891 Pragma_Name => Name_Ghost);
2893 Decorate (Aspect, Aitem);
2894 Insert_Pragma (Aitem);
2895 goto Continue;
2897 -- Global
2899 -- Aspect Global is never delayed because it is equivalent to
2900 -- a source pragma which appears after the related subprogram.
2901 -- To deal with forward references, the generated pragma is
2902 -- stored in the contract of the related subprogram and later
2903 -- analyzed at the end of the declarative region. See routine
2904 -- Analyze_Global_In_Decl_Part for details.
2906 when Aspect_Global =>
2907 Make_Aitem_Pragma
2908 (Pragma_Argument_Associations => New_List (
2909 Make_Pragma_Argument_Association (Loc,
2910 Expression => Relocate_Node (Expr))),
2911 Pragma_Name => Name_Global);
2913 Decorate (Aspect, Aitem);
2914 Insert_Pragma (Aitem);
2915 goto Continue;
2917 -- Initial_Condition
2919 -- Aspect Initial_Condition is never delayed because it is
2920 -- equivalent to a source pragma which appears after the
2921 -- related package. To deal with forward references, the
2922 -- generated pragma is stored in the contract of the related
2923 -- package and later analyzed at the end of the declarative
2924 -- region. See routine Analyze_Initial_Condition_In_Decl_Part
2925 -- for details.
2927 when Aspect_Initial_Condition => Initial_Condition : declare
2928 Context : Node_Id := N;
2930 begin
2931 -- When aspect Initial_Condition appears on a generic
2932 -- package, it is propageted to the package instance. The
2933 -- context in this case is the instance spec.
2935 if Nkind (Context) = N_Package_Instantiation then
2936 Context := Instance_Spec (Context);
2937 end if;
2939 if Nkind_In (Context, N_Generic_Package_Declaration,
2940 N_Package_Declaration)
2941 then
2942 Make_Aitem_Pragma
2943 (Pragma_Argument_Associations => New_List (
2944 Make_Pragma_Argument_Association (Loc,
2945 Expression => Relocate_Node (Expr))),
2946 Pragma_Name =>
2947 Name_Initial_Condition);
2949 Decorate (Aspect, Aitem);
2950 Insert_Pragma
2951 (Prag => Aitem,
2952 Is_Instance =>
2953 Is_Generic_Instance (Defining_Entity (Context)));
2955 -- Otherwise the context is illegal
2957 else
2958 Error_Msg_NE
2959 ("aspect & must apply to a package declaration",
2960 Aspect, Id);
2961 end if;
2963 goto Continue;
2964 end Initial_Condition;
2966 -- Initializes
2968 -- Aspect Initializes is never delayed because it is equivalent
2969 -- to a source pragma appearing after the related package. To
2970 -- deal with forward references, the generated pragma is stored
2971 -- in the contract of the related package and later analyzed at
2972 -- the end of the declarative region. For details, see routine
2973 -- Analyze_Initializes_In_Decl_Part.
2975 when Aspect_Initializes => Initializes : declare
2976 Context : Node_Id := N;
2978 begin
2979 -- When aspect Initializes appears on a generic package,
2980 -- it is propageted to the package instance. The context
2981 -- in this case is the instance spec.
2983 if Nkind (Context) = N_Package_Instantiation then
2984 Context := Instance_Spec (Context);
2985 end if;
2987 if Nkind_In (Context, N_Generic_Package_Declaration,
2988 N_Package_Declaration)
2989 then
2990 Make_Aitem_Pragma
2991 (Pragma_Argument_Associations => New_List (
2992 Make_Pragma_Argument_Association (Loc,
2993 Expression => Relocate_Node (Expr))),
2994 Pragma_Name => Name_Initializes);
2996 Decorate (Aspect, Aitem);
2997 Insert_Pragma
2998 (Prag => Aitem,
2999 Is_Instance =>
3000 Is_Generic_Instance (Defining_Entity (Context)));
3002 -- Otherwise the context is illegal
3004 else
3005 Error_Msg_NE
3006 ("aspect & must apply to a package declaration",
3007 Aspect, Id);
3008 end if;
3010 goto Continue;
3011 end Initializes;
3013 -- Max_Queue_Length
3015 when Aspect_Max_Queue_Length =>
3016 Make_Aitem_Pragma
3017 (Pragma_Argument_Associations => New_List (
3018 Make_Pragma_Argument_Association (Loc,
3019 Expression => Relocate_Node (Expr))),
3020 Pragma_Name => Name_Max_Queue_Length);
3022 Decorate (Aspect, Aitem);
3023 Insert_Pragma (Aitem);
3024 goto Continue;
3026 -- Obsolescent
3028 when Aspect_Obsolescent => declare
3029 Args : List_Id;
3031 begin
3032 if No (Expr) then
3033 Args := No_List;
3034 else
3035 Args := New_List (
3036 Make_Pragma_Argument_Association (Sloc (Expr),
3037 Expression => Relocate_Node (Expr)));
3038 end if;
3040 Make_Aitem_Pragma
3041 (Pragma_Argument_Associations => Args,
3042 Pragma_Name => Chars (Id));
3043 end;
3045 -- Part_Of
3047 when Aspect_Part_Of =>
3048 if Nkind_In (N, N_Object_Declaration,
3049 N_Package_Instantiation)
3050 or else Is_Single_Concurrent_Type_Declaration (N)
3051 then
3052 Make_Aitem_Pragma
3053 (Pragma_Argument_Associations => New_List (
3054 Make_Pragma_Argument_Association (Loc,
3055 Expression => Relocate_Node (Expr))),
3056 Pragma_Name => Name_Part_Of);
3058 Decorate (Aspect, Aitem);
3059 Insert_Pragma (Aitem);
3061 else
3062 Error_Msg_NE
3063 ("aspect & must apply to package instantiation, "
3064 & "object, single protected type or single task type",
3065 Aspect, Id);
3066 end if;
3068 goto Continue;
3070 -- SPARK_Mode
3072 when Aspect_SPARK_Mode =>
3073 Make_Aitem_Pragma
3074 (Pragma_Argument_Associations => New_List (
3075 Make_Pragma_Argument_Association (Loc,
3076 Expression => Relocate_Node (Expr))),
3077 Pragma_Name => Name_SPARK_Mode);
3079 Decorate (Aspect, Aitem);
3080 Insert_Pragma (Aitem);
3081 goto Continue;
3083 -- Refined_Depends
3085 -- Aspect Refined_Depends is never delayed because it is
3086 -- equivalent to a source pragma which appears in the
3087 -- declarations of the related subprogram body. To deal with
3088 -- forward references, the generated pragma is stored in the
3089 -- contract of the related subprogram body and later analyzed
3090 -- at the end of the declarative region. For details, see
3091 -- routine Analyze_Refined_Depends_In_Decl_Part.
3093 when Aspect_Refined_Depends =>
3094 Make_Aitem_Pragma
3095 (Pragma_Argument_Associations => New_List (
3096 Make_Pragma_Argument_Association (Loc,
3097 Expression => Relocate_Node (Expr))),
3098 Pragma_Name => Name_Refined_Depends);
3100 Decorate (Aspect, Aitem);
3101 Insert_Pragma (Aitem);
3102 goto Continue;
3104 -- Refined_Global
3106 -- Aspect Refined_Global is never delayed because it is
3107 -- equivalent to a source pragma which appears in the
3108 -- declarations of the related subprogram body. To deal with
3109 -- forward references, the generated pragma is stored in the
3110 -- contract of the related subprogram body and later analyzed
3111 -- at the end of the declarative region. For details, see
3112 -- routine Analyze_Refined_Global_In_Decl_Part.
3114 when Aspect_Refined_Global =>
3115 Make_Aitem_Pragma
3116 (Pragma_Argument_Associations => New_List (
3117 Make_Pragma_Argument_Association (Loc,
3118 Expression => Relocate_Node (Expr))),
3119 Pragma_Name => Name_Refined_Global);
3121 Decorate (Aspect, Aitem);
3122 Insert_Pragma (Aitem);
3123 goto Continue;
3125 -- Refined_Post
3127 when Aspect_Refined_Post =>
3128 Make_Aitem_Pragma
3129 (Pragma_Argument_Associations => New_List (
3130 Make_Pragma_Argument_Association (Loc,
3131 Expression => Relocate_Node (Expr))),
3132 Pragma_Name => Name_Refined_Post);
3134 Decorate (Aspect, Aitem);
3135 Insert_Pragma (Aitem);
3136 goto Continue;
3138 -- Refined_State
3140 when Aspect_Refined_State =>
3142 -- The corresponding pragma for Refined_State is inserted in
3143 -- the declarations of the related package body. This action
3144 -- synchronizes both the source and from-aspect versions of
3145 -- the pragma.
3147 if Nkind (N) = N_Package_Body then
3148 Make_Aitem_Pragma
3149 (Pragma_Argument_Associations => New_List (
3150 Make_Pragma_Argument_Association (Loc,
3151 Expression => Relocate_Node (Expr))),
3152 Pragma_Name => Name_Refined_State);
3154 Decorate (Aspect, Aitem);
3155 Insert_Pragma (Aitem);
3157 -- Otherwise the context is illegal
3159 else
3160 Error_Msg_NE
3161 ("aspect & must apply to a package body", Aspect, Id);
3162 end if;
3164 goto Continue;
3166 -- Relative_Deadline
3168 when Aspect_Relative_Deadline =>
3169 Make_Aitem_Pragma
3170 (Pragma_Argument_Associations => New_List (
3171 Make_Pragma_Argument_Association (Loc,
3172 Expression => Relocate_Node (Expr))),
3173 Pragma_Name => Name_Relative_Deadline);
3175 -- If the aspect applies to a task, the corresponding pragma
3176 -- must appear within its declarations, not after.
3178 if Nkind (N) = N_Task_Type_Declaration then
3179 declare
3180 Def : Node_Id;
3181 V : List_Id;
3183 begin
3184 if No (Task_Definition (N)) then
3185 Set_Task_Definition (N,
3186 Make_Task_Definition (Loc,
3187 Visible_Declarations => New_List,
3188 End_Label => Empty));
3189 end if;
3191 Def := Task_Definition (N);
3192 V := Visible_Declarations (Def);
3193 if not Is_Empty_List (V) then
3194 Insert_Before (First (V), Aitem);
3196 else
3197 Set_Visible_Declarations (Def, New_List (Aitem));
3198 end if;
3200 goto Continue;
3201 end;
3202 end if;
3204 -- Aspect Volatile_Function is never delayed because it is
3205 -- equivalent to a source pragma which appears after the
3206 -- related subprogram.
3208 when Aspect_Volatile_Function =>
3209 Make_Aitem_Pragma
3210 (Pragma_Argument_Associations => New_List (
3211 Make_Pragma_Argument_Association (Loc,
3212 Expression => Relocate_Node (Expr))),
3213 Pragma_Name => Name_Volatile_Function);
3215 Decorate (Aspect, Aitem);
3216 Insert_Pragma (Aitem);
3217 goto Continue;
3219 -- Case 2e: Annotate aspect
3221 when Aspect_Annotate =>
3222 declare
3223 Args : List_Id;
3224 Pargs : List_Id;
3225 Arg : Node_Id;
3227 begin
3228 -- The argument can be a single identifier
3230 if Nkind (Expr) = N_Identifier then
3232 -- One level of parens is allowed
3234 if Paren_Count (Expr) > 1 then
3235 Error_Msg_F ("extra parentheses ignored", Expr);
3236 end if;
3238 Set_Paren_Count (Expr, 0);
3240 -- Add the single item to the list
3242 Args := New_List (Expr);
3244 -- Otherwise we must have an aggregate
3246 elsif Nkind (Expr) = N_Aggregate then
3248 -- Must be positional
3250 if Present (Component_Associations (Expr)) then
3251 Error_Msg_F
3252 ("purely positional aggregate required", Expr);
3253 goto Continue;
3254 end if;
3256 -- Must not be parenthesized
3258 if Paren_Count (Expr) /= 0 then
3259 Error_Msg_F ("extra parentheses ignored", Expr);
3260 end if;
3262 -- List of arguments is list of aggregate expressions
3264 Args := Expressions (Expr);
3266 -- Anything else is illegal
3268 else
3269 Error_Msg_F ("wrong form for Annotate aspect", Expr);
3270 goto Continue;
3271 end if;
3273 -- Prepare pragma arguments
3275 Pargs := New_List;
3276 Arg := First (Args);
3277 while Present (Arg) loop
3278 Append_To (Pargs,
3279 Make_Pragma_Argument_Association (Sloc (Arg),
3280 Expression => Relocate_Node (Arg)));
3281 Next (Arg);
3282 end loop;
3284 Append_To (Pargs,
3285 Make_Pragma_Argument_Association (Sloc (Ent),
3286 Chars => Name_Entity,
3287 Expression => Ent));
3289 Make_Aitem_Pragma
3290 (Pragma_Argument_Associations => Pargs,
3291 Pragma_Name => Name_Annotate);
3292 end;
3294 -- Case 3 : Aspects that don't correspond to pragma/attribute
3295 -- definition clause.
3297 -- Case 3a: The aspects listed below don't correspond to
3298 -- pragmas/attributes but do require delayed analysis.
3300 -- Default_Value can only apply to a scalar type
3302 when Aspect_Default_Value =>
3303 if not Is_Scalar_Type (E) then
3304 Error_Msg_N
3305 ("aspect Default_Value must apply to a scalar type", N);
3306 end if;
3308 Aitem := Empty;
3310 -- Default_Component_Value can only apply to an array type
3311 -- with scalar components.
3313 when Aspect_Default_Component_Value =>
3314 if not (Is_Array_Type (E)
3315 and then Is_Scalar_Type (Component_Type (E)))
3316 then
3317 Error_Msg_N
3318 ("aspect Default_Component_Value can only apply to an "
3319 & "array of scalar components", N);
3320 end if;
3322 Aitem := Empty;
3324 -- Case 3b: The aspects listed below don't correspond to
3325 -- pragmas/attributes and don't need delayed analysis.
3327 -- Implicit_Dereference
3329 -- For Implicit_Dereference, External_Name and Link_Name, only
3330 -- the legality checks are done during the analysis, thus no
3331 -- delay is required.
3333 when Aspect_Implicit_Dereference =>
3334 Analyze_Aspect_Implicit_Dereference;
3335 goto Continue;
3337 -- Dimension
3339 when Aspect_Dimension =>
3340 Analyze_Aspect_Dimension (N, Id, Expr);
3341 goto Continue;
3343 -- Dimension_System
3345 when Aspect_Dimension_System =>
3346 Analyze_Aspect_Dimension_System (N, Id, Expr);
3347 goto Continue;
3349 -- Case 4: Aspects requiring special handling
3351 -- Pre/Post/Test_Case/Contract_Cases whose corresponding
3352 -- pragmas take care of the delay.
3354 -- Pre/Post
3356 -- Aspects Pre/Post generate Precondition/Postcondition pragmas
3357 -- with a first argument that is the expression, and a second
3358 -- argument that is an informative message if the test fails.
3359 -- This is inserted right after the declaration, to get the
3360 -- required pragma placement. The processing for the pragmas
3361 -- takes care of the required delay.
3363 when Pre_Post_Aspects => Pre_Post : declare
3364 Pname : Name_Id;
3366 begin
3367 if A_Id = Aspect_Pre or else A_Id = Aspect_Precondition then
3368 Pname := Name_Precondition;
3369 else
3370 Pname := Name_Postcondition;
3371 end if;
3373 -- Check that the class-wide predicate cannot be applied to
3374 -- an operation of a synchronized type. AI12-0182 forbids
3375 -- these altogether, while earlier language semantics made
3376 -- them legal on tagged synchronized types.
3378 -- Other legality checks are performed when analyzing the
3379 -- contract of the operation.
3381 if Class_Present (Aspect)
3382 and then Is_Concurrent_Type (Current_Scope)
3383 and then Ekind_In (E, E_Entry, E_Function, E_Procedure)
3384 then
3385 Error_Msg_Name_1 := Original_Aspect_Pragma_Name (Aspect);
3386 Error_Msg_N
3387 ("aspect % can only be specified for a primitive "
3388 & "operation of a tagged type", Aspect);
3390 goto Continue;
3391 end if;
3393 -- If the expressions is of the form A and then B, then
3394 -- we generate separate Pre/Post aspects for the separate
3395 -- clauses. Since we allow multiple pragmas, there is no
3396 -- problem in allowing multiple Pre/Post aspects internally.
3397 -- These should be treated in reverse order (B first and
3398 -- A second) since they are later inserted just after N in
3399 -- the order they are treated. This way, the pragma for A
3400 -- ends up preceding the pragma for B, which may have an
3401 -- importance for the error raised (either constraint error
3402 -- or precondition error).
3404 -- We do not do this for Pre'Class, since we have to put
3405 -- these conditions together in a complex OR expression.
3407 -- We do not do this in ASIS mode, as ASIS relies on the
3408 -- original node representing the complete expression, when
3409 -- retrieving it through the source aspect table.
3411 if not ASIS_Mode
3412 and then (Pname = Name_Postcondition
3413 or else not Class_Present (Aspect))
3414 then
3415 while Nkind (Expr) = N_And_Then loop
3416 Insert_After (Aspect,
3417 Make_Aspect_Specification (Sloc (Left_Opnd (Expr)),
3418 Identifier => Identifier (Aspect),
3419 Expression => Relocate_Node (Left_Opnd (Expr)),
3420 Class_Present => Class_Present (Aspect),
3421 Split_PPC => True));
3422 Rewrite (Expr, Relocate_Node (Right_Opnd (Expr)));
3423 Eloc := Sloc (Expr);
3424 end loop;
3425 end if;
3427 -- Build the precondition/postcondition pragma
3429 -- Add note about why we do NOT need Copy_Tree here???
3431 Make_Aitem_Pragma
3432 (Pragma_Argument_Associations => New_List (
3433 Make_Pragma_Argument_Association (Eloc,
3434 Chars => Name_Check,
3435 Expression => Relocate_Node (Expr))),
3436 Pragma_Name => Pname);
3438 -- Add message unless exception messages are suppressed
3440 if not Opt.Exception_Locations_Suppressed then
3441 Append_To (Pragma_Argument_Associations (Aitem),
3442 Make_Pragma_Argument_Association (Eloc,
3443 Chars => Name_Message,
3444 Expression =>
3445 Make_String_Literal (Eloc,
3446 Strval => "failed "
3447 & Get_Name_String (Pname)
3448 & " from "
3449 & Build_Location_String (Eloc))));
3450 end if;
3452 Set_Is_Delayed_Aspect (Aspect);
3454 -- For Pre/Post cases, insert immediately after the entity
3455 -- declaration, since that is the required pragma placement.
3456 -- Note that for these aspects, we do not have to worry
3457 -- about delay issues, since the pragmas themselves deal
3458 -- with delay of visibility for the expression analysis.
3460 Insert_Pragma (Aitem);
3462 goto Continue;
3463 end Pre_Post;
3465 -- Test_Case
3467 when Aspect_Test_Case => Test_Case : declare
3468 Args : List_Id;
3469 Comp_Expr : Node_Id;
3470 Comp_Assn : Node_Id;
3471 New_Expr : Node_Id;
3473 begin
3474 Args := New_List;
3476 if Nkind (Parent (N)) = N_Compilation_Unit then
3477 Error_Msg_Name_1 := Nam;
3478 Error_Msg_N ("incorrect placement of aspect `%`", E);
3479 goto Continue;
3480 end if;
3482 if Nkind (Expr) /= N_Aggregate then
3483 Error_Msg_Name_1 := Nam;
3484 Error_Msg_NE
3485 ("wrong syntax for aspect `%` for &", Id, E);
3486 goto Continue;
3487 end if;
3489 -- Make pragma expressions refer to the original aspect
3490 -- expressions through the Original_Node link. This is used
3491 -- in semantic analysis for ASIS mode, so that the original
3492 -- expression also gets analyzed.
3494 Comp_Expr := First (Expressions (Expr));
3495 while Present (Comp_Expr) loop
3496 New_Expr := Relocate_Node (Comp_Expr);
3497 Append_To (Args,
3498 Make_Pragma_Argument_Association (Sloc (Comp_Expr),
3499 Expression => New_Expr));
3500 Next (Comp_Expr);
3501 end loop;
3503 Comp_Assn := First (Component_Associations (Expr));
3504 while Present (Comp_Assn) loop
3505 if List_Length (Choices (Comp_Assn)) /= 1
3506 or else
3507 Nkind (First (Choices (Comp_Assn))) /= N_Identifier
3508 then
3509 Error_Msg_Name_1 := Nam;
3510 Error_Msg_NE
3511 ("wrong syntax for aspect `%` for &", Id, E);
3512 goto Continue;
3513 end if;
3515 Append_To (Args,
3516 Make_Pragma_Argument_Association (Sloc (Comp_Assn),
3517 Chars => Chars (First (Choices (Comp_Assn))),
3518 Expression =>
3519 Relocate_Node (Expression (Comp_Assn))));
3520 Next (Comp_Assn);
3521 end loop;
3523 -- Build the test-case pragma
3525 Make_Aitem_Pragma
3526 (Pragma_Argument_Associations => Args,
3527 Pragma_Name => Nam);
3528 end Test_Case;
3530 -- Contract_Cases
3532 when Aspect_Contract_Cases =>
3533 Make_Aitem_Pragma
3534 (Pragma_Argument_Associations => New_List (
3535 Make_Pragma_Argument_Association (Loc,
3536 Expression => Relocate_Node (Expr))),
3537 Pragma_Name => Nam);
3539 Decorate (Aspect, Aitem);
3540 Insert_Pragma (Aitem);
3541 goto Continue;
3543 -- Case 5: Special handling for aspects with an optional
3544 -- boolean argument.
3546 -- In the delayed case, the corresponding pragma cannot be
3547 -- generated yet because the evaluation of the boolean needs
3548 -- to be delayed till the freeze point.
3550 when Boolean_Aspects
3551 | Library_Unit_Aspects
3553 Set_Is_Boolean_Aspect (Aspect);
3555 -- Lock_Free aspect only apply to protected objects
3557 if A_Id = Aspect_Lock_Free then
3558 if Ekind (E) /= E_Protected_Type then
3559 Error_Msg_Name_1 := Nam;
3560 Error_Msg_N
3561 ("aspect % only applies to a protected object",
3562 Aspect);
3564 else
3565 -- Set the Uses_Lock_Free flag to True if there is no
3566 -- expression or if the expression is True. The
3567 -- evaluation of this aspect should be delayed to the
3568 -- freeze point (why???)
3570 if No (Expr)
3571 or else Is_True (Static_Boolean (Expr))
3572 then
3573 Set_Uses_Lock_Free (E);
3574 end if;
3576 Record_Rep_Item (E, Aspect);
3577 end if;
3579 goto Continue;
3581 elsif A_Id = Aspect_Export or else A_Id = Aspect_Import then
3582 Analyze_Aspect_Export_Import;
3584 -- Disable_Controlled
3586 elsif A_Id = Aspect_Disable_Controlled then
3587 Analyze_Aspect_Disable_Controlled;
3588 goto Continue;
3589 end if;
3591 -- Library unit aspects require special handling in the case
3592 -- of a package declaration, the pragma needs to be inserted
3593 -- in the list of declarations for the associated package.
3594 -- There is no issue of visibility delay for these aspects.
3596 if A_Id in Library_Unit_Aspects
3597 and then
3598 Nkind_In (N, N_Package_Declaration,
3599 N_Generic_Package_Declaration)
3600 and then Nkind (Parent (N)) /= N_Compilation_Unit
3602 -- Aspect is legal on a local instantiation of a library-
3603 -- level generic unit.
3605 and then not Is_Generic_Instance (Defining_Entity (N))
3606 then
3607 Error_Msg_N
3608 ("incorrect context for library unit aspect&", Id);
3609 goto Continue;
3610 end if;
3612 -- Cases where we do not delay, includes all cases where the
3613 -- expression is missing other than the above cases.
3615 if not Delay_Required or else No (Expr) then
3617 -- Exclude aspects Export and Import because their pragma
3618 -- syntax does not map directly to a Boolean aspect.
3620 if A_Id /= Aspect_Export
3621 and then A_Id /= Aspect_Import
3622 then
3623 Make_Aitem_Pragma
3624 (Pragma_Argument_Associations => New_List (
3625 Make_Pragma_Argument_Association (Sloc (Ent),
3626 Expression => Ent)),
3627 Pragma_Name => Chars (Id));
3628 end if;
3630 Delay_Required := False;
3632 -- In general cases, the corresponding pragma/attribute
3633 -- definition clause will be inserted later at the freezing
3634 -- point, and we do not need to build it now.
3636 else
3637 Aitem := Empty;
3638 end if;
3640 -- Storage_Size
3642 -- This is special because for access types we need to generate
3643 -- an attribute definition clause. This also works for single
3644 -- task declarations, but it does not work for task type
3645 -- declarations, because we have the case where the expression
3646 -- references a discriminant of the task type. That can't use
3647 -- an attribute definition clause because we would not have
3648 -- visibility on the discriminant. For that case we must
3649 -- generate a pragma in the task definition.
3651 when Aspect_Storage_Size =>
3653 -- Task type case
3655 if Ekind (E) = E_Task_Type then
3656 declare
3657 Decl : constant Node_Id := Declaration_Node (E);
3659 begin
3660 pragma Assert (Nkind (Decl) = N_Task_Type_Declaration);
3662 -- If no task definition, create one
3664 if No (Task_Definition (Decl)) then
3665 Set_Task_Definition (Decl,
3666 Make_Task_Definition (Loc,
3667 Visible_Declarations => Empty_List,
3668 End_Label => Empty));
3669 end if;
3671 -- Create a pragma and put it at the start of the task
3672 -- definition for the task type declaration.
3674 Make_Aitem_Pragma
3675 (Pragma_Argument_Associations => New_List (
3676 Make_Pragma_Argument_Association (Loc,
3677 Expression => Relocate_Node (Expr))),
3678 Pragma_Name => Name_Storage_Size);
3680 Prepend
3681 (Aitem,
3682 Visible_Declarations (Task_Definition (Decl)));
3683 goto Continue;
3684 end;
3686 -- All other cases, generate attribute definition
3688 else
3689 Aitem :=
3690 Make_Attribute_Definition_Clause (Loc,
3691 Name => Ent,
3692 Chars => Chars (Id),
3693 Expression => Relocate_Node (Expr));
3694 end if;
3695 end case;
3697 -- Attach the corresponding pragma/attribute definition clause to
3698 -- the aspect specification node.
3700 if Present (Aitem) then
3701 Set_From_Aspect_Specification (Aitem);
3702 end if;
3704 -- In the context of a compilation unit, we directly put the
3705 -- pragma in the Pragmas_After list of the N_Compilation_Unit_Aux
3706 -- node (no delay is required here) except for aspects on a
3707 -- subprogram body (see below) and a generic package, for which we
3708 -- need to introduce the pragma before building the generic copy
3709 -- (see sem_ch12), and for package instantiations, where the
3710 -- library unit pragmas are better handled early.
3712 if Nkind (Parent (N)) = N_Compilation_Unit
3713 and then (Present (Aitem) or else Is_Boolean_Aspect (Aspect))
3714 then
3715 declare
3716 Aux : constant Node_Id := Aux_Decls_Node (Parent (N));
3718 begin
3719 pragma Assert (Nkind (Aux) = N_Compilation_Unit_Aux);
3721 -- For a Boolean aspect, create the corresponding pragma if
3722 -- no expression or if the value is True.
3724 if Is_Boolean_Aspect (Aspect) and then No (Aitem) then
3725 if Is_True (Static_Boolean (Expr)) then
3726 Make_Aitem_Pragma
3727 (Pragma_Argument_Associations => New_List (
3728 Make_Pragma_Argument_Association (Sloc (Ent),
3729 Expression => Ent)),
3730 Pragma_Name => Chars (Id));
3732 Set_From_Aspect_Specification (Aitem, True);
3733 Set_Corresponding_Aspect (Aitem, Aspect);
3735 else
3736 goto Continue;
3737 end if;
3738 end if;
3740 -- If the aspect is on a subprogram body (relevant aspect
3741 -- is Inline), add the pragma in front of the declarations.
3743 if Nkind (N) = N_Subprogram_Body then
3744 if No (Declarations (N)) then
3745 Set_Declarations (N, New_List);
3746 end if;
3748 Prepend (Aitem, Declarations (N));
3750 elsif Nkind (N) = N_Generic_Package_Declaration then
3751 if No (Visible_Declarations (Specification (N))) then
3752 Set_Visible_Declarations (Specification (N), New_List);
3753 end if;
3755 Prepend (Aitem,
3756 Visible_Declarations (Specification (N)));
3758 elsif Nkind (N) = N_Package_Instantiation then
3759 declare
3760 Spec : constant Node_Id :=
3761 Specification (Instance_Spec (N));
3762 begin
3763 if No (Visible_Declarations (Spec)) then
3764 Set_Visible_Declarations (Spec, New_List);
3765 end if;
3767 Prepend (Aitem, Visible_Declarations (Spec));
3768 end;
3770 else
3771 if No (Pragmas_After (Aux)) then
3772 Set_Pragmas_After (Aux, New_List);
3773 end if;
3775 Append (Aitem, Pragmas_After (Aux));
3776 end if;
3778 goto Continue;
3779 end;
3780 end if;
3782 -- The evaluation of the aspect is delayed to the freezing point.
3783 -- The pragma or attribute clause if there is one is then attached
3784 -- to the aspect specification which is put in the rep item list.
3786 if Delay_Required then
3787 if Present (Aitem) then
3788 Set_Is_Delayed_Aspect (Aitem);
3789 Set_Aspect_Rep_Item (Aspect, Aitem);
3790 Set_Parent (Aitem, Aspect);
3791 end if;
3793 Set_Is_Delayed_Aspect (Aspect);
3795 -- In the case of Default_Value, link the aspect to base type
3796 -- as well, even though it appears on a first subtype. This is
3797 -- mandated by the semantics of the aspect. Do not establish
3798 -- the link when processing the base type itself as this leads
3799 -- to a rep item circularity. Verify that we are dealing with
3800 -- a scalar type to prevent cascaded errors.
3802 if A_Id = Aspect_Default_Value
3803 and then Is_Scalar_Type (E)
3804 and then Base_Type (E) /= E
3805 then
3806 Set_Has_Delayed_Aspects (Base_Type (E));
3807 Record_Rep_Item (Base_Type (E), Aspect);
3808 end if;
3810 Set_Has_Delayed_Aspects (E);
3811 Record_Rep_Item (E, Aspect);
3813 -- When delay is not required and the context is a package or a
3814 -- subprogram body, insert the pragma in the body declarations.
3816 elsif Nkind_In (N, N_Package_Body, N_Subprogram_Body) then
3817 if No (Declarations (N)) then
3818 Set_Declarations (N, New_List);
3819 end if;
3821 -- The pragma is added before source declarations
3823 Prepend_To (Declarations (N), Aitem);
3825 -- When delay is not required and the context is not a compilation
3826 -- unit, we simply insert the pragma/attribute definition clause
3827 -- in sequence.
3829 elsif Present (Aitem) then
3830 Insert_After (Ins_Node, Aitem);
3831 Ins_Node := Aitem;
3832 end if;
3833 end Analyze_One_Aspect;
3835 <<Continue>>
3836 Next (Aspect);
3837 end loop Aspect_Loop;
3839 if Has_Delayed_Aspects (E) then
3840 Ensure_Freeze_Node (E);
3841 end if;
3842 end Analyze_Aspect_Specifications;
3844 ---------------------------------------------------
3845 -- Analyze_Aspect_Specifications_On_Body_Or_Stub --
3846 ---------------------------------------------------
3848 procedure Analyze_Aspect_Specifications_On_Body_Or_Stub (N : Node_Id) is
3849 Body_Id : constant Entity_Id := Defining_Entity (N);
3851 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id);
3852 -- Body [stub] N has aspects, but they are not properly placed. Emit an
3853 -- error message depending on the aspects involved. Spec_Id denotes the
3854 -- entity of the corresponding spec.
3856 --------------------------------
3857 -- Diagnose_Misplaced_Aspects --
3858 --------------------------------
3860 procedure Diagnose_Misplaced_Aspects (Spec_Id : Entity_Id) is
3861 procedure Misplaced_Aspect_Error
3862 (Asp : Node_Id;
3863 Ref_Nam : Name_Id);
3864 -- Emit an error message concerning misplaced aspect Asp. Ref_Nam is
3865 -- the name of the refined version of the aspect.
3867 ----------------------------
3868 -- Misplaced_Aspect_Error --
3869 ----------------------------
3871 procedure Misplaced_Aspect_Error
3872 (Asp : Node_Id;
3873 Ref_Nam : Name_Id)
3875 Asp_Nam : constant Name_Id := Chars (Identifier (Asp));
3876 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp_Nam);
3878 begin
3879 -- The corresponding spec already contains the aspect in question
3880 -- and the one appearing on the body must be the refined form:
3882 -- procedure P with Global ...;
3883 -- procedure P with Global ... is ... end P;
3884 -- ^
3885 -- Refined_Global
3887 if Has_Aspect (Spec_Id, Asp_Id) then
3888 Error_Msg_Name_1 := Asp_Nam;
3890 -- Subunits cannot carry aspects that apply to a subprogram
3891 -- declaration.
3893 if Nkind (Parent (N)) = N_Subunit then
3894 Error_Msg_N ("aspect % cannot apply to a subunit", Asp);
3896 -- Otherwise suggest the refined form
3898 else
3899 Error_Msg_Name_2 := Ref_Nam;
3900 Error_Msg_N ("aspect % should be %", Asp);
3901 end if;
3903 -- Otherwise the aspect must appear on the spec, not on the body
3905 -- procedure P;
3906 -- procedure P with Global ... is ... end P;
3908 else
3909 Error_Msg_N
3910 ("aspect specification must appear on initial declaration",
3911 Asp);
3912 end if;
3913 end Misplaced_Aspect_Error;
3915 -- Local variables
3917 Asp : Node_Id;
3918 Asp_Nam : Name_Id;
3920 -- Start of processing for Diagnose_Misplaced_Aspects
3922 begin
3923 -- Iterate over the aspect specifications and emit specific errors
3924 -- where applicable.
3926 Asp := First (Aspect_Specifications (N));
3927 while Present (Asp) loop
3928 Asp_Nam := Chars (Identifier (Asp));
3930 -- Do not emit errors on aspects that can appear on a subprogram
3931 -- body. This scenario occurs when the aspect specification list
3932 -- contains both misplaced and properly placed aspects.
3934 if Aspect_On_Body_Or_Stub_OK (Get_Aspect_Id (Asp_Nam)) then
3935 null;
3937 -- Special diagnostics for SPARK aspects
3939 elsif Asp_Nam = Name_Depends then
3940 Misplaced_Aspect_Error (Asp, Name_Refined_Depends);
3942 elsif Asp_Nam = Name_Global then
3943 Misplaced_Aspect_Error (Asp, Name_Refined_Global);
3945 elsif Asp_Nam = Name_Post then
3946 Misplaced_Aspect_Error (Asp, Name_Refined_Post);
3948 -- Otherwise a language-defined aspect is misplaced
3950 else
3951 Error_Msg_N
3952 ("aspect specification must appear on initial declaration",
3953 Asp);
3954 end if;
3956 Next (Asp);
3957 end loop;
3958 end Diagnose_Misplaced_Aspects;
3960 -- Local variables
3962 Spec_Id : constant Entity_Id := Unique_Defining_Entity (N);
3964 -- Start of processing for Analyze_Aspects_On_Body_Or_Stub
3966 begin
3967 -- Language-defined aspects cannot be associated with a subprogram body
3968 -- [stub] if the subprogram has a spec. Certain implementation defined
3969 -- aspects are allowed to break this rule (for all applicable cases, see
3970 -- table Aspects.Aspect_On_Body_Or_Stub_OK).
3972 if Spec_Id /= Body_Id and then not Aspects_On_Body_Or_Stub_OK (N) then
3973 Diagnose_Misplaced_Aspects (Spec_Id);
3974 else
3975 Analyze_Aspect_Specifications (N, Body_Id);
3976 end if;
3977 end Analyze_Aspect_Specifications_On_Body_Or_Stub;
3979 -----------------------
3980 -- Analyze_At_Clause --
3981 -----------------------
3983 -- An at clause is replaced by the corresponding Address attribute
3984 -- definition clause that is the preferred approach in Ada 95.
3986 procedure Analyze_At_Clause (N : Node_Id) is
3987 CS : constant Boolean := Comes_From_Source (N);
3989 begin
3990 -- This is an obsolescent feature
3992 Check_Restriction (No_Obsolescent_Features, N);
3994 if Warn_On_Obsolescent_Feature then
3995 Error_Msg_N
3996 ("?j?at clause is an obsolescent feature (RM J.7(2))", N);
3997 Error_Msg_N
3998 ("\?j?use address attribute definition clause instead", N);
3999 end if;
4001 -- Rewrite as address clause
4003 Rewrite (N,
4004 Make_Attribute_Definition_Clause (Sloc (N),
4005 Name => Identifier (N),
4006 Chars => Name_Address,
4007 Expression => Expression (N)));
4009 -- We preserve Comes_From_Source, since logically the clause still comes
4010 -- from the source program even though it is changed in form.
4012 Set_Comes_From_Source (N, CS);
4014 -- Analyze rewritten clause
4016 Analyze_Attribute_Definition_Clause (N);
4017 end Analyze_At_Clause;
4019 -----------------------------------------
4020 -- Analyze_Attribute_Definition_Clause --
4021 -----------------------------------------
4023 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
4024 Loc : constant Source_Ptr := Sloc (N);
4025 Nam : constant Node_Id := Name (N);
4026 Attr : constant Name_Id := Chars (N);
4027 Expr : constant Node_Id := Expression (N);
4028 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
4030 Ent : Entity_Id;
4031 -- The entity of Nam after it is analyzed. In the case of an incomplete
4032 -- type, this is the underlying type.
4034 U_Ent : Entity_Id;
4035 -- The underlying entity to which the attribute applies. Generally this
4036 -- is the Underlying_Type of Ent, except in the case where the clause
4037 -- applies to the full view of an incomplete or private type, in which
4038 -- case U_Ent is just a copy of Ent.
4040 FOnly : Boolean := False;
4041 -- Reset to True for subtype specific attribute (Alignment, Size)
4042 -- and for stream attributes, i.e. those cases where in the call to
4043 -- Rep_Item_Too_Late, FOnly is set True so that only the freezing rules
4044 -- are checked. Note that the case of stream attributes is not clear
4045 -- from the RM, but see AI95-00137. Also, the RM seems to disallow
4046 -- Storage_Size for derived task types, but that is also clearly
4047 -- unintentional.
4049 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
4050 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
4051 -- definition clauses.
4053 function Duplicate_Clause return Boolean;
4054 -- This routine checks if the aspect for U_Ent being given by attribute
4055 -- definition clause N is for an aspect that has already been specified,
4056 -- and if so gives an error message. If there is a duplicate, True is
4057 -- returned, otherwise if there is no error, False is returned.
4059 procedure Check_Indexing_Functions;
4060 -- Check that the function in Constant_Indexing or Variable_Indexing
4061 -- attribute has the proper type structure. If the name is overloaded,
4062 -- check that some interpretation is legal.
4064 procedure Check_Iterator_Functions;
4065 -- Check that there is a single function in Default_Iterator attribute
4066 -- that has the proper type structure.
4068 function Check_Primitive_Function (Subp : Entity_Id) return Boolean;
4069 -- Common legality check for the previous two
4071 -----------------------------------
4072 -- Analyze_Stream_TSS_Definition --
4073 -----------------------------------
4075 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
4076 Subp : Entity_Id := Empty;
4077 I : Interp_Index;
4078 It : Interp;
4079 Pnam : Entity_Id;
4081 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
4082 -- True for Read attribute, False for other attributes
4084 function Has_Good_Profile
4085 (Subp : Entity_Id;
4086 Report : Boolean := False) return Boolean;
4087 -- Return true if the entity is a subprogram with an appropriate
4088 -- profile for the attribute being defined. If result is False and
4089 -- Report is True, function emits appropriate error.
4091 ----------------------
4092 -- Has_Good_Profile --
4093 ----------------------
4095 function Has_Good_Profile
4096 (Subp : Entity_Id;
4097 Report : Boolean := False) return Boolean
4099 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
4100 (False => E_Procedure, True => E_Function);
4101 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
4102 F : Entity_Id;
4103 Typ : Entity_Id;
4105 begin
4106 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
4107 return False;
4108 end if;
4110 F := First_Formal (Subp);
4112 if No (F)
4113 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
4114 or else Designated_Type (Etype (F)) /=
4115 Class_Wide_Type (RTE (RE_Root_Stream_Type))
4116 then
4117 return False;
4118 end if;
4120 if not Is_Function then
4121 Next_Formal (F);
4123 declare
4124 Expected_Mode : constant array (Boolean) of Entity_Kind :=
4125 (False => E_In_Parameter,
4126 True => E_Out_Parameter);
4127 begin
4128 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
4129 return False;
4130 end if;
4131 end;
4133 Typ := Etype (F);
4135 -- If the attribute specification comes from an aspect
4136 -- specification for a class-wide stream, the parameter must be
4137 -- a class-wide type of the entity to which the aspect applies.
4139 if From_Aspect_Specification (N)
4140 and then Class_Present (Parent (N))
4141 and then Is_Class_Wide_Type (Typ)
4142 then
4143 Typ := Etype (Typ);
4144 end if;
4146 else
4147 Typ := Etype (Subp);
4148 end if;
4150 -- Verify that the prefix of the attribute and the local name for
4151 -- the type of the formal match, or one is the class-wide of the
4152 -- other, in the case of a class-wide stream operation.
4154 if Base_Type (Typ) = Base_Type (Ent)
4155 or else (Is_Class_Wide_Type (Typ)
4156 and then Typ = Class_Wide_Type (Base_Type (Ent)))
4157 or else (Is_Class_Wide_Type (Ent)
4158 and then Ent = Class_Wide_Type (Base_Type (Typ)))
4159 then
4160 null;
4161 else
4162 return False;
4163 end if;
4165 if Present (Next_Formal (F)) then
4166 return False;
4168 elsif not Is_Scalar_Type (Typ)
4169 and then not Is_First_Subtype (Typ)
4170 and then not Is_Class_Wide_Type (Typ)
4171 then
4172 if Report and not Is_First_Subtype (Typ) then
4173 Error_Msg_N
4174 ("subtype of formal in stream operation must be a first "
4175 & "subtype", Parameter_Type (Parent (F)));
4176 end if;
4178 return False;
4180 else
4181 return True;
4182 end if;
4183 end Has_Good_Profile;
4185 -- Start of processing for Analyze_Stream_TSS_Definition
4187 begin
4188 FOnly := True;
4190 if not Is_Type (U_Ent) then
4191 Error_Msg_N ("local name must be a subtype", Nam);
4192 return;
4194 elsif not Is_First_Subtype (U_Ent) then
4195 Error_Msg_N ("local name must be a first subtype", Nam);
4196 return;
4197 end if;
4199 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
4201 -- If Pnam is present, it can be either inherited from an ancestor
4202 -- type (in which case it is legal to redefine it for this type), or
4203 -- be a previous definition of the attribute for the same type (in
4204 -- which case it is illegal).
4206 -- In the first case, it will have been analyzed already, and we
4207 -- can check that its profile does not match the expected profile
4208 -- for a stream attribute of U_Ent. In the second case, either Pnam
4209 -- has been analyzed (and has the expected profile), or it has not
4210 -- been analyzed yet (case of a type that has not been frozen yet
4211 -- and for which the stream attribute has been set using Set_TSS).
4213 if Present (Pnam)
4214 and then (No (First_Entity (Pnam)) or else Has_Good_Profile (Pnam))
4215 then
4216 Error_Msg_Sloc := Sloc (Pnam);
4217 Error_Msg_Name_1 := Attr;
4218 Error_Msg_N ("% attribute already defined #", Nam);
4219 return;
4220 end if;
4222 Analyze (Expr);
4224 if Is_Entity_Name (Expr) then
4225 if not Is_Overloaded (Expr) then
4226 if Has_Good_Profile (Entity (Expr), Report => True) then
4227 Subp := Entity (Expr);
4228 end if;
4230 else
4231 Get_First_Interp (Expr, I, It);
4232 while Present (It.Nam) loop
4233 if Has_Good_Profile (It.Nam) then
4234 Subp := It.Nam;
4235 exit;
4236 end if;
4238 Get_Next_Interp (I, It);
4239 end loop;
4240 end if;
4241 end if;
4243 if Present (Subp) then
4244 if Is_Abstract_Subprogram (Subp) then
4245 Error_Msg_N ("stream subprogram must not be abstract", Expr);
4246 return;
4248 -- A stream subprogram for an interface type must be a null
4249 -- procedure (RM 13.13.2 (38/3)). Note that the class-wide type
4250 -- of an interface is not an interface type (3.9.4 (6.b/2)).
4252 elsif Is_Interface (U_Ent)
4253 and then not Is_Class_Wide_Type (U_Ent)
4254 and then not Inside_A_Generic
4255 and then
4256 (Ekind (Subp) = E_Function
4257 or else
4258 not Null_Present
4259 (Specification
4260 (Unit_Declaration_Node (Ultimate_Alias (Subp)))))
4261 then
4262 Error_Msg_N
4263 ("stream subprogram for interface type must be null "
4264 & "procedure", Expr);
4265 end if;
4267 Set_Entity (Expr, Subp);
4268 Set_Etype (Expr, Etype (Subp));
4270 New_Stream_Subprogram (N, U_Ent, Subp, TSS_Nam);
4272 else
4273 Error_Msg_Name_1 := Attr;
4274 Error_Msg_N ("incorrect expression for% attribute", Expr);
4275 end if;
4276 end Analyze_Stream_TSS_Definition;
4278 ------------------------------
4279 -- Check_Indexing_Functions --
4280 ------------------------------
4282 procedure Check_Indexing_Functions is
4283 Indexing_Found : Boolean := False;
4285 procedure Check_Inherited_Indexing;
4286 -- For a derived type, check that no indexing aspect is specified
4287 -- for the type if it is also inherited
4289 procedure Check_One_Function (Subp : Entity_Id);
4290 -- Check one possible interpretation. Sets Indexing_Found True if a
4291 -- legal indexing function is found.
4293 procedure Illegal_Indexing (Msg : String);
4294 -- Diagnose illegal indexing function if not overloaded. In the
4295 -- overloaded case indicate that no legal interpretation exists.
4297 ------------------------------
4298 -- Check_Inherited_Indexing --
4299 ------------------------------
4301 procedure Check_Inherited_Indexing is
4302 Inherited : Node_Id;
4304 begin
4305 if Attr = Name_Constant_Indexing then
4306 Inherited :=
4307 Find_Aspect (Etype (Ent), Aspect_Constant_Indexing);
4308 else pragma Assert (Attr = Name_Variable_Indexing);
4309 Inherited :=
4310 Find_Aspect (Etype (Ent), Aspect_Variable_Indexing);
4311 end if;
4313 if Present (Inherited) then
4314 if Debug_Flag_Dot_XX then
4315 null;
4317 -- OK if current attribute_definition_clause is expansion of
4318 -- inherited aspect.
4320 elsif Aspect_Rep_Item (Inherited) = N then
4321 null;
4323 -- Indicate the operation that must be overridden, rather than
4324 -- redefining the indexing aspect.
4326 else
4327 Illegal_Indexing
4328 ("indexing function already inherited from parent type");
4329 Error_Msg_NE
4330 ("!override & instead",
4331 N, Entity (Expression (Inherited)));
4332 end if;
4333 end if;
4334 end Check_Inherited_Indexing;
4336 ------------------------
4337 -- Check_One_Function --
4338 ------------------------
4340 procedure Check_One_Function (Subp : Entity_Id) is
4341 Default_Element : Node_Id;
4342 Ret_Type : constant Entity_Id := Etype (Subp);
4344 begin
4345 if not Is_Overloadable (Subp) then
4346 Illegal_Indexing ("illegal indexing function for type&");
4347 return;
4349 elsif Scope (Subp) /= Scope (Ent) then
4350 if Nkind (Expr) = N_Expanded_Name then
4352 -- Indexing function can't be declared elsewhere
4354 Illegal_Indexing
4355 ("indexing function must be declared in scope of type&");
4356 end if;
4358 return;
4360 elsif No (First_Formal (Subp)) then
4361 Illegal_Indexing
4362 ("Indexing requires a function that applies to type&");
4363 return;
4365 elsif No (Next_Formal (First_Formal (Subp))) then
4366 Illegal_Indexing
4367 ("indexing function must have at least two parameters");
4368 return;
4370 elsif Is_Derived_Type (Ent) then
4371 Check_Inherited_Indexing;
4372 end if;
4374 if not Check_Primitive_Function (Subp) then
4375 Illegal_Indexing
4376 ("Indexing aspect requires a function that applies to type&");
4377 return;
4378 end if;
4380 -- If partial declaration exists, verify that it is not tagged.
4382 if Ekind (Current_Scope) = E_Package
4383 and then Has_Private_Declaration (Ent)
4384 and then From_Aspect_Specification (N)
4385 and then
4386 List_Containing (Parent (Ent)) =
4387 Private_Declarations
4388 (Specification (Unit_Declaration_Node (Current_Scope)))
4389 and then Nkind (N) = N_Attribute_Definition_Clause
4390 then
4391 declare
4392 Decl : Node_Id;
4394 begin
4395 Decl :=
4396 First (Visible_Declarations
4397 (Specification
4398 (Unit_Declaration_Node (Current_Scope))));
4400 while Present (Decl) loop
4401 if Nkind (Decl) = N_Private_Type_Declaration
4402 and then Ent = Full_View (Defining_Identifier (Decl))
4403 and then Tagged_Present (Decl)
4404 and then No (Aspect_Specifications (Decl))
4405 then
4406 Illegal_Indexing
4407 ("Indexing aspect cannot be specified on full view "
4408 & "if partial view is tagged");
4409 return;
4410 end if;
4412 Next (Decl);
4413 end loop;
4414 end;
4415 end if;
4417 -- An indexing function must return either the default element of
4418 -- the container, or a reference type. For variable indexing it
4419 -- must be the latter.
4421 Default_Element :=
4422 Find_Value_Of_Aspect
4423 (Etype (First_Formal (Subp)), Aspect_Iterator_Element);
4425 if Present (Default_Element) then
4426 Analyze (Default_Element);
4427 end if;
4429 -- For variable_indexing the return type must be a reference type
4431 if Attr = Name_Variable_Indexing then
4432 if not Has_Implicit_Dereference (Ret_Type) then
4433 Illegal_Indexing
4434 ("variable indexing must return a reference type");
4435 return;
4437 elsif Is_Access_Constant
4438 (Etype (First_Discriminant (Ret_Type)))
4439 then
4440 Illegal_Indexing
4441 ("variable indexing must return an access to variable");
4442 return;
4443 end if;
4445 else
4446 if Has_Implicit_Dereference (Ret_Type)
4447 and then not
4448 Is_Access_Constant (Etype (First_Discriminant (Ret_Type)))
4449 then
4450 Illegal_Indexing
4451 ("constant indexing must return an access to constant");
4452 return;
4454 elsif Is_Access_Type (Etype (First_Formal (Subp)))
4455 and then not Is_Access_Constant (Etype (First_Formal (Subp)))
4456 then
4457 Illegal_Indexing
4458 ("constant indexing must apply to an access to constant");
4459 return;
4460 end if;
4461 end if;
4463 -- All checks succeeded.
4465 Indexing_Found := True;
4466 end Check_One_Function;
4468 -----------------------
4469 -- Illegal_Indexing --
4470 -----------------------
4472 procedure Illegal_Indexing (Msg : String) is
4473 begin
4474 Error_Msg_NE (Msg, N, Ent);
4475 end Illegal_Indexing;
4477 -- Start of processing for Check_Indexing_Functions
4479 begin
4480 if In_Instance then
4481 Check_Inherited_Indexing;
4482 end if;
4484 Analyze (Expr);
4486 if not Is_Overloaded (Expr) then
4487 Check_One_Function (Entity (Expr));
4489 else
4490 declare
4491 I : Interp_Index;
4492 It : Interp;
4494 begin
4495 Indexing_Found := False;
4496 Get_First_Interp (Expr, I, It);
4497 while Present (It.Nam) loop
4499 -- Note that analysis will have added the interpretation
4500 -- that corresponds to the dereference. We only check the
4501 -- subprogram itself. Ignore homonyms that may come from
4502 -- derived types in the context.
4504 if Is_Overloadable (It.Nam)
4505 and then Comes_From_Source (It.Nam)
4506 then
4507 Check_One_Function (It.Nam);
4508 end if;
4510 Get_Next_Interp (I, It);
4511 end loop;
4512 end;
4513 end if;
4515 if not Indexing_Found and then not Error_Posted (N) then
4516 Error_Msg_NE
4517 ("aspect Indexing requires a local function that applies to "
4518 & "type&", Expr, Ent);
4519 end if;
4520 end Check_Indexing_Functions;
4522 ------------------------------
4523 -- Check_Iterator_Functions --
4524 ------------------------------
4526 procedure Check_Iterator_Functions is
4527 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean;
4528 -- Check one possible interpretation for validity
4530 ----------------------------
4531 -- Valid_Default_Iterator --
4532 ----------------------------
4534 function Valid_Default_Iterator (Subp : Entity_Id) return Boolean is
4535 Root_T : constant Entity_Id := Root_Type (Etype (Etype (Subp)));
4536 Formal : Entity_Id;
4538 begin
4539 if not Check_Primitive_Function (Subp) then
4540 return False;
4542 -- The return type must be derived from a type in an instance
4543 -- of Iterator.Interfaces, and thus its root type must have a
4544 -- predefined name.
4546 elsif Chars (Root_T) /= Name_Forward_Iterator
4547 and then Chars (Root_T) /= Name_Reversible_Iterator
4548 then
4549 return False;
4551 else
4552 Formal := First_Formal (Subp);
4553 end if;
4555 -- False if any subsequent formal has no default expression
4557 Formal := Next_Formal (Formal);
4558 while Present (Formal) loop
4559 if No (Expression (Parent (Formal))) then
4560 return False;
4561 end if;
4563 Next_Formal (Formal);
4564 end loop;
4566 -- True if all subsequent formals have default expressions
4568 return True;
4569 end Valid_Default_Iterator;
4571 -- Start of processing for Check_Iterator_Functions
4573 begin
4574 Analyze (Expr);
4576 if not Is_Entity_Name (Expr) then
4577 Error_Msg_N ("aspect Iterator must be a function name", Expr);
4578 end if;
4580 if not Is_Overloaded (Expr) then
4581 if not Check_Primitive_Function (Entity (Expr)) then
4582 Error_Msg_NE
4583 ("aspect Indexing requires a function that applies to type&",
4584 Entity (Expr), Ent);
4585 end if;
4587 -- Flag the default_iterator as well as the denoted function.
4589 if not Valid_Default_Iterator (Entity (Expr)) then
4590 Error_Msg_N ("improper function for default iterator!", Expr);
4591 end if;
4593 else
4594 declare
4595 Default : Entity_Id := Empty;
4596 I : Interp_Index;
4597 It : Interp;
4599 begin
4600 Get_First_Interp (Expr, I, It);
4601 while Present (It.Nam) loop
4602 if not Check_Primitive_Function (It.Nam)
4603 or else not Valid_Default_Iterator (It.Nam)
4604 then
4605 Remove_Interp (I);
4607 elsif Present (Default) then
4609 -- An explicit one should override an implicit one
4611 if Comes_From_Source (Default) =
4612 Comes_From_Source (It.Nam)
4613 then
4614 Error_Msg_N ("default iterator must be unique", Expr);
4615 Error_Msg_Sloc := Sloc (Default);
4616 Error_Msg_N ("\\possible interpretation#", Expr);
4617 Error_Msg_Sloc := Sloc (It.Nam);
4618 Error_Msg_N ("\\possible interpretation#", Expr);
4620 elsif Comes_From_Source (It.Nam) then
4621 Default := It.Nam;
4622 end if;
4623 else
4624 Default := It.Nam;
4625 end if;
4627 Get_Next_Interp (I, It);
4628 end loop;
4630 if Present (Default) then
4631 Set_Entity (Expr, Default);
4632 Set_Is_Overloaded (Expr, False);
4633 else
4634 Error_Msg_N
4635 ("no interpretation is a valid default iterator!", Expr);
4636 end if;
4637 end;
4638 end if;
4639 end Check_Iterator_Functions;
4641 -------------------------------
4642 -- Check_Primitive_Function --
4643 -------------------------------
4645 function Check_Primitive_Function (Subp : Entity_Id) return Boolean is
4646 Ctrl : Entity_Id;
4648 begin
4649 if Ekind (Subp) /= E_Function then
4650 return False;
4651 end if;
4653 if No (First_Formal (Subp)) then
4654 return False;
4655 else
4656 Ctrl := Etype (First_Formal (Subp));
4657 end if;
4659 -- To be a primitive operation subprogram has to be in same scope.
4661 if Scope (Ctrl) /= Scope (Subp) then
4662 return False;
4663 end if;
4665 -- Type of formal may be the class-wide type, an access to such,
4666 -- or an incomplete view.
4668 if Ctrl = Ent
4669 or else Ctrl = Class_Wide_Type (Ent)
4670 or else
4671 (Ekind (Ctrl) = E_Anonymous_Access_Type
4672 and then (Designated_Type (Ctrl) = Ent
4673 or else
4674 Designated_Type (Ctrl) = Class_Wide_Type (Ent)))
4675 or else
4676 (Ekind (Ctrl) = E_Incomplete_Type
4677 and then Full_View (Ctrl) = Ent)
4678 then
4679 null;
4680 else
4681 return False;
4682 end if;
4684 return True;
4685 end Check_Primitive_Function;
4687 ----------------------
4688 -- Duplicate_Clause --
4689 ----------------------
4691 function Duplicate_Clause return Boolean is
4692 A : Node_Id;
4694 begin
4695 -- Nothing to do if this attribute definition clause comes from
4696 -- an aspect specification, since we could not be duplicating an
4697 -- explicit clause, and we dealt with the case of duplicated aspects
4698 -- in Analyze_Aspect_Specifications.
4700 if From_Aspect_Specification (N) then
4701 return False;
4702 end if;
4704 -- Otherwise current clause may duplicate previous clause, or a
4705 -- previously given pragma or aspect specification for the same
4706 -- aspect.
4708 A := Get_Rep_Item (U_Ent, Chars (N), Check_Parents => False);
4710 if Present (A) then
4711 Error_Msg_Name_1 := Chars (N);
4712 Error_Msg_Sloc := Sloc (A);
4714 Error_Msg_NE ("aspect% for & previously given#", N, U_Ent);
4715 return True;
4716 end if;
4718 return False;
4719 end Duplicate_Clause;
4721 -- Start of processing for Analyze_Attribute_Definition_Clause
4723 begin
4724 -- The following code is a defense against recursion. Not clear that
4725 -- this can happen legitimately, but perhaps some error situations can
4726 -- cause it, and we did see this recursion during testing.
4728 if Analyzed (N) then
4729 return;
4730 else
4731 Set_Analyzed (N, True);
4732 end if;
4734 Check_Restriction_No_Use_Of_Attribute (N);
4736 -- Ignore some selected attributes in CodePeer mode since they are not
4737 -- relevant in this context.
4739 if CodePeer_Mode then
4740 case Id is
4742 -- Ignore Component_Size in CodePeer mode, to avoid changing the
4743 -- internal representation of types by implicitly packing them.
4745 when Attribute_Component_Size =>
4746 Rewrite (N, Make_Null_Statement (Sloc (N)));
4747 return;
4749 when others =>
4750 null;
4751 end case;
4752 end if;
4754 -- Process Ignore_Rep_Clauses option
4756 if Ignore_Rep_Clauses then
4757 case Id is
4759 -- The following should be ignored. They do not affect legality
4760 -- and may be target dependent. The basic idea of -gnatI is to
4761 -- ignore any rep clauses that may be target dependent but do not
4762 -- affect legality (except possibly to be rejected because they
4763 -- are incompatible with the compilation target).
4765 when Attribute_Alignment
4766 | Attribute_Bit_Order
4767 | Attribute_Component_Size
4768 | Attribute_Default_Scalar_Storage_Order
4769 | Attribute_Machine_Radix
4770 | Attribute_Object_Size
4771 | Attribute_Scalar_Storage_Order
4772 | Attribute_Size
4773 | Attribute_Small
4774 | Attribute_Stream_Size
4775 | Attribute_Value_Size
4777 Kill_Rep_Clause (N);
4778 return;
4780 -- The following should not be ignored, because in the first place
4781 -- they are reasonably portable, and should not cause problems
4782 -- in compiling code from another target, and also they do affect
4783 -- legality, e.g. failing to provide a stream attribute for a type
4784 -- may make a program illegal.
4786 when Attribute_External_Tag
4787 | Attribute_Input
4788 | Attribute_Output
4789 | Attribute_Read
4790 | Attribute_Simple_Storage_Pool
4791 | Attribute_Storage_Pool
4792 | Attribute_Storage_Size
4793 | Attribute_Write
4795 null;
4797 -- We do not do anything here with address clauses, they will be
4798 -- removed by Freeze later on, but for now, it works better to
4799 -- keep them in the tree.
4801 when Attribute_Address =>
4802 null;
4804 -- Other cases are errors ("attribute& cannot be set with
4805 -- definition clause"), which will be caught below.
4807 when others =>
4808 null;
4809 end case;
4810 end if;
4812 Analyze (Nam);
4813 Ent := Entity (Nam);
4815 if Rep_Item_Too_Early (Ent, N) then
4816 return;
4817 end if;
4819 -- Rep clause applies to full view of incomplete type or private type if
4820 -- we have one (if not, this is a premature use of the type). However,
4821 -- certain semantic checks need to be done on the specified entity (i.e.
4822 -- the private view), so we save it in Ent.
4824 if Is_Private_Type (Ent)
4825 and then Is_Derived_Type (Ent)
4826 and then not Is_Tagged_Type (Ent)
4827 and then No (Full_View (Ent))
4828 then
4829 -- If this is a private type whose completion is a derivation from
4830 -- another private type, there is no full view, and the attribute
4831 -- belongs to the type itself, not its underlying parent.
4833 U_Ent := Ent;
4835 elsif Ekind (Ent) = E_Incomplete_Type then
4837 -- The attribute applies to the full view, set the entity of the
4838 -- attribute definition accordingly.
4840 Ent := Underlying_Type (Ent);
4841 U_Ent := Ent;
4842 Set_Entity (Nam, Ent);
4844 else
4845 U_Ent := Underlying_Type (Ent);
4846 end if;
4848 -- Avoid cascaded error
4850 if Etype (Nam) = Any_Type then
4851 return;
4853 -- Must be declared in current scope or in case of an aspect
4854 -- specification, must be visible in current scope.
4856 elsif Scope (Ent) /= Current_Scope
4857 and then
4858 not (From_Aspect_Specification (N)
4859 and then Scope_Within_Or_Same (Current_Scope, Scope (Ent)))
4860 then
4861 Error_Msg_N ("entity must be declared in this scope", Nam);
4862 return;
4864 -- Must not be a source renaming (we do have some cases where the
4865 -- expander generates a renaming, and those cases are OK, in such
4866 -- cases any attribute applies to the renamed object as well).
4868 elsif Is_Object (Ent)
4869 and then Present (Renamed_Object (Ent))
4870 then
4871 -- Case of renamed object from source, this is an error
4873 if Comes_From_Source (Renamed_Object (Ent)) then
4874 Get_Name_String (Chars (N));
4875 Error_Msg_Strlen := Name_Len;
4876 Error_Msg_String (1 .. Name_Len) := Name_Buffer (1 .. Name_Len);
4877 Error_Msg_N
4878 ("~ clause not allowed for a renaming declaration "
4879 & "(RM 13.1(6))", Nam);
4880 return;
4882 -- For the case of a compiler generated renaming, the attribute
4883 -- definition clause applies to the renamed object created by the
4884 -- expander. The easiest general way to handle this is to create a
4885 -- copy of the attribute definition clause for this object.
4887 elsif Is_Entity_Name (Renamed_Object (Ent)) then
4888 Insert_Action (N,
4889 Make_Attribute_Definition_Clause (Loc,
4890 Name =>
4891 New_Occurrence_Of (Entity (Renamed_Object (Ent)), Loc),
4892 Chars => Chars (N),
4893 Expression => Duplicate_Subexpr (Expression (N))));
4895 -- If the renamed object is not an entity, it must be a dereference
4896 -- of an unconstrained function call, and we must introduce a new
4897 -- declaration to capture the expression. This is needed in the case
4898 -- of 'Alignment, where the original declaration must be rewritten.
4900 else
4901 pragma Assert
4902 (Nkind (Renamed_Object (Ent)) = N_Explicit_Dereference);
4903 null;
4904 end if;
4906 -- If no underlying entity, use entity itself, applies to some
4907 -- previously detected error cases ???
4909 elsif No (U_Ent) then
4910 U_Ent := Ent;
4912 -- Cannot specify for a subtype (exception Object/Value_Size)
4914 elsif Is_Type (U_Ent)
4915 and then not Is_First_Subtype (U_Ent)
4916 and then Id /= Attribute_Object_Size
4917 and then Id /= Attribute_Value_Size
4918 and then not From_At_Mod (N)
4919 then
4920 Error_Msg_N ("cannot specify attribute for subtype", Nam);
4921 return;
4922 end if;
4924 Set_Entity (N, U_Ent);
4926 -- Switch on particular attribute
4928 case Id is
4930 -------------
4931 -- Address --
4932 -------------
4934 -- Address attribute definition clause
4936 when Attribute_Address => Address : begin
4938 -- A little error check, catch for X'Address use X'Address;
4940 if Nkind (Nam) = N_Identifier
4941 and then Nkind (Expr) = N_Attribute_Reference
4942 and then Attribute_Name (Expr) = Name_Address
4943 and then Nkind (Prefix (Expr)) = N_Identifier
4944 and then Chars (Nam) = Chars (Prefix (Expr))
4945 then
4946 Error_Msg_NE
4947 ("address for & is self-referencing", Prefix (Expr), Ent);
4948 return;
4949 end if;
4951 -- Not that special case, carry on with analysis of expression
4953 Analyze_And_Resolve (Expr, RTE (RE_Address));
4955 -- Even when ignoring rep clauses we need to indicate that the
4956 -- entity has an address clause and thus it is legal to declare
4957 -- it imported. Freeze will get rid of the address clause later.
4958 -- Also call Set_Address_Taken to indicate that an address clause
4959 -- was present, even if we are about to remove it.
4961 if Ignore_Rep_Clauses then
4962 Set_Address_Taken (U_Ent);
4964 if Ekind_In (U_Ent, E_Variable, E_Constant) then
4965 Record_Rep_Item (U_Ent, N);
4966 end if;
4968 return;
4969 end if;
4971 if Duplicate_Clause then
4972 null;
4974 -- Case of address clause for subprogram
4976 elsif Is_Subprogram (U_Ent) then
4977 if Has_Homonym (U_Ent) then
4978 Error_Msg_N
4979 ("address clause cannot be given for overloaded "
4980 & "subprogram", Nam);
4981 return;
4982 end if;
4984 -- For subprograms, all address clauses are permitted, and we
4985 -- mark the subprogram as having a deferred freeze so that Gigi
4986 -- will not elaborate it too soon.
4988 -- Above needs more comments, what is too soon about???
4990 Set_Has_Delayed_Freeze (U_Ent);
4992 -- Case of address clause for entry
4994 elsif Ekind (U_Ent) = E_Entry then
4995 if Nkind (Parent (N)) = N_Task_Body then
4996 Error_Msg_N
4997 ("entry address must be specified in task spec", Nam);
4998 return;
4999 end if;
5001 -- For entries, we require a constant address
5003 Check_Constant_Address_Clause (Expr, U_Ent);
5005 -- Special checks for task types
5007 if Is_Task_Type (Scope (U_Ent))
5008 and then Comes_From_Source (Scope (U_Ent))
5009 then
5010 Error_Msg_N
5011 ("??entry address declared for entry in task type", N);
5012 Error_Msg_N
5013 ("\??only one task can be declared of this type", N);
5014 end if;
5016 -- Entry address clauses are obsolescent
5018 Check_Restriction (No_Obsolescent_Features, N);
5020 if Warn_On_Obsolescent_Feature then
5021 Error_Msg_N
5022 ("?j?attaching interrupt to task entry is an obsolescent "
5023 & "feature (RM J.7.1)", N);
5024 Error_Msg_N
5025 ("\?j?use interrupt procedure instead", N);
5026 end if;
5028 -- Case of an address clause for a class-wide object, which is
5029 -- considered erroneous.
5031 elsif Is_Class_Wide_Type (Etype (U_Ent)) then
5032 Error_Msg_NE
5033 ("??class-wide object & must not be overlaid", Nam, U_Ent);
5034 Error_Msg_N
5035 ("\??Program_Error will be raised at run time", Nam);
5036 Insert_Action (Declaration_Node (U_Ent),
5037 Make_Raise_Program_Error (Loc,
5038 Reason => PE_Overlaid_Controlled_Object));
5039 return;
5041 -- Case of address clause for an object
5043 elsif Ekind_In (U_Ent, E_Constant, E_Variable) then
5044 declare
5045 Expr : constant Node_Id := Expression (N);
5046 O_Ent : Entity_Id;
5047 Off : Boolean;
5049 begin
5050 -- Exported variables cannot have an address clause, because
5051 -- this cancels the effect of the pragma Export.
5053 if Is_Exported (U_Ent) then
5054 Error_Msg_N
5055 ("cannot export object with address clause", Nam);
5056 return;
5057 end if;
5059 Find_Overlaid_Entity (N, O_Ent, Off);
5061 if Present (O_Ent) then
5063 -- If the object overlays a constant object, mark it so
5065 if Is_Constant_Object (O_Ent) then
5066 Set_Overlays_Constant (U_Ent);
5067 end if;
5069 -- If the address clause is of the form:
5071 -- for X'Address use Y'Address;
5073 -- or
5075 -- C : constant Address := Y'Address;
5076 -- ...
5077 -- for X'Address use C;
5079 -- then we make an entry in the table to check the size
5080 -- and alignment of the overlaying variable. But we defer
5081 -- this check till after code generation to take full
5082 -- advantage of the annotation done by the back end.
5084 -- If the entity has a generic type, the check will be
5085 -- performed in the instance if the actual type justifies
5086 -- it, and we do not insert the clause in the table to
5087 -- prevent spurious warnings.
5089 -- Note: we used to test Comes_From_Source and only give
5090 -- this warning for source entities, but we have removed
5091 -- this test. It really seems bogus to generate overlays
5092 -- that would trigger this warning in generated code.
5093 -- Furthermore, by removing the test, we handle the
5094 -- aspect case properly.
5096 if Is_Object (O_Ent)
5097 and then not Is_Generic_Type (Etype (U_Ent))
5098 and then Address_Clause_Overlay_Warnings
5099 then
5100 Register_Address_Clause_Check
5101 (N, U_Ent, No_Uint, O_Ent, Off);
5102 end if;
5104 -- If the overlay changes the storage order, mark the
5105 -- entity as being volatile to block any optimization
5106 -- for it since the construct is not really supported
5107 -- by the back end.
5109 if (Is_Record_Type (Etype (U_Ent))
5110 or else Is_Array_Type (Etype (U_Ent)))
5111 and then (Is_Record_Type (Etype (O_Ent))
5112 or else Is_Array_Type (Etype (O_Ent)))
5113 and then Reverse_Storage_Order (Etype (U_Ent)) /=
5114 Reverse_Storage_Order (Etype (O_Ent))
5115 then
5116 Set_Treat_As_Volatile (U_Ent);
5117 end if;
5119 else
5120 -- If this is not an overlay, mark a variable as being
5121 -- volatile to prevent unwanted optimizations. It's a
5122 -- conservative interpretation of RM 13.3(19) for the
5123 -- cases where the compiler cannot detect potential
5124 -- aliasing issues easily and it also covers the case
5125 -- of an absolute address where the volatile aspect is
5126 -- kind of implicit.
5128 if Ekind (U_Ent) = E_Variable then
5129 Set_Treat_As_Volatile (U_Ent);
5130 end if;
5132 -- Make an entry in the table for an absolute address as
5133 -- above to check that the value is compatible with the
5134 -- alignment of the object.
5136 declare
5137 Addr : constant Node_Id := Address_Value (Expr);
5138 begin
5139 if Compile_Time_Known_Value (Addr)
5140 and then Address_Clause_Overlay_Warnings
5141 then
5142 Register_Address_Clause_Check
5143 (N, U_Ent, Expr_Value (Addr), Empty, False);
5144 end if;
5145 end;
5146 end if;
5148 -- Issue an unconditional warning for a constant overlaying
5149 -- a variable. For the reverse case, we will issue it only
5150 -- if the variable is modified.
5152 if Ekind (U_Ent) = E_Constant
5153 and then Present (O_Ent)
5154 and then not Overlays_Constant (U_Ent)
5155 and then Address_Clause_Overlay_Warnings
5156 then
5157 Error_Msg_N ("??constant overlays a variable", Expr);
5159 -- Imported variables can have an address clause, but then
5160 -- the import is pretty meaningless except to suppress
5161 -- initializations, so we do not need such variables to
5162 -- be statically allocated (and in fact it causes trouble
5163 -- if the address clause is a local value).
5165 elsif Is_Imported (U_Ent) then
5166 Set_Is_Statically_Allocated (U_Ent, False);
5167 end if;
5169 -- We mark a possible modification of a variable with an
5170 -- address clause, since it is likely aliasing is occurring.
5172 Note_Possible_Modification (Nam, Sure => False);
5174 -- Legality checks on the address clause for initialized
5175 -- objects is deferred until the freeze point, because
5176 -- a subsequent pragma might indicate that the object
5177 -- is imported and thus not initialized. Also, the address
5178 -- clause might involve entities that have yet to be
5179 -- elaborated.
5181 Set_Has_Delayed_Freeze (U_Ent);
5183 -- If an initialization call has been generated for this
5184 -- object, it needs to be deferred to after the freeze node
5185 -- we have just now added, otherwise GIGI will see a
5186 -- reference to the variable (as actual to the IP call)
5187 -- before its definition.
5189 declare
5190 Init_Call : constant Node_Id :=
5191 Remove_Init_Call (U_Ent, N);
5193 begin
5194 if Present (Init_Call) then
5195 Append_Freeze_Action (U_Ent, Init_Call);
5197 -- Reset Initialization_Statements pointer so that
5198 -- if there is a pragma Import further down, it can
5199 -- clear any default initialization.
5201 Set_Initialization_Statements (U_Ent, Init_Call);
5202 end if;
5203 end;
5205 -- Entity has delayed freeze, so we will generate an
5206 -- alignment check at the freeze point unless suppressed.
5208 if not Range_Checks_Suppressed (U_Ent)
5209 and then not Alignment_Checks_Suppressed (U_Ent)
5210 then
5211 Set_Check_Address_Alignment (N);
5212 end if;
5214 -- Kill the size check code, since we are not allocating
5215 -- the variable, it is somewhere else.
5217 Kill_Size_Check_Code (U_Ent);
5218 end;
5220 -- Not a valid entity for an address clause
5222 else
5223 Error_Msg_N ("address cannot be given for &", Nam);
5224 end if;
5225 end Address;
5227 ---------------
5228 -- Alignment --
5229 ---------------
5231 -- Alignment attribute definition clause
5233 when Attribute_Alignment => Alignment : declare
5234 Align : constant Uint := Get_Alignment_Value (Expr);
5235 Max_Align : constant Uint := UI_From_Int (Maximum_Alignment);
5237 begin
5238 FOnly := True;
5240 if not Is_Type (U_Ent)
5241 and then Ekind (U_Ent) /= E_Variable
5242 and then Ekind (U_Ent) /= E_Constant
5243 then
5244 Error_Msg_N ("alignment cannot be given for &", Nam);
5246 elsif Duplicate_Clause then
5247 null;
5249 elsif Align /= No_Uint then
5250 Set_Has_Alignment_Clause (U_Ent);
5252 -- Tagged type case, check for attempt to set alignment to a
5253 -- value greater than Max_Align, and reset if so. This error
5254 -- is suppressed in ASIS mode to allow for different ASIS
5255 -- back ends or ASIS-based tools to query the illegal clause.
5257 if Is_Tagged_Type (U_Ent)
5258 and then Align > Max_Align
5259 and then not ASIS_Mode
5260 then
5261 Error_Msg_N
5262 ("alignment for & set to Maximum_Aligment??", Nam);
5263 Set_Alignment (U_Ent, Max_Align);
5265 -- All other cases
5267 else
5268 Set_Alignment (U_Ent, Align);
5269 end if;
5271 -- For an array type, U_Ent is the first subtype. In that case,
5272 -- also set the alignment of the anonymous base type so that
5273 -- other subtypes (such as the itypes for aggregates of the
5274 -- type) also receive the expected alignment.
5276 if Is_Array_Type (U_Ent) then
5277 Set_Alignment (Base_Type (U_Ent), Align);
5278 end if;
5279 end if;
5280 end Alignment;
5282 ---------------
5283 -- Bit_Order --
5284 ---------------
5286 -- Bit_Order attribute definition clause
5288 when Attribute_Bit_Order =>
5289 if not Is_Record_Type (U_Ent) then
5290 Error_Msg_N
5291 ("Bit_Order can only be defined for record type", Nam);
5293 elsif Duplicate_Clause then
5294 null;
5296 else
5297 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5299 if Etype (Expr) = Any_Type then
5300 return;
5302 elsif not Is_OK_Static_Expression (Expr) then
5303 Flag_Non_Static_Expr
5304 ("Bit_Order requires static expression!", Expr);
5306 else
5307 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5308 Set_Reverse_Bit_Order (Base_Type (U_Ent), True);
5309 end if;
5310 end if;
5311 end if;
5313 --------------------
5314 -- Component_Size --
5315 --------------------
5317 -- Component_Size attribute definition clause
5319 when Attribute_Component_Size => Component_Size_Case : declare
5320 Csize : constant Uint := Static_Integer (Expr);
5321 Ctyp : Entity_Id;
5322 Btype : Entity_Id;
5323 Biased : Boolean;
5324 New_Ctyp : Entity_Id;
5325 Decl : Node_Id;
5327 begin
5328 if not Is_Array_Type (U_Ent) then
5329 Error_Msg_N ("component size requires array type", Nam);
5330 return;
5331 end if;
5333 Btype := Base_Type (U_Ent);
5334 Ctyp := Component_Type (Btype);
5336 if Duplicate_Clause then
5337 null;
5339 elsif Rep_Item_Too_Early (Btype, N) then
5340 null;
5342 elsif Csize /= No_Uint then
5343 Check_Size (Expr, Ctyp, Csize, Biased);
5345 -- For the biased case, build a declaration for a subtype that
5346 -- will be used to represent the biased subtype that reflects
5347 -- the biased representation of components. We need the subtype
5348 -- to get proper conversions on referencing elements of the
5349 -- array.
5351 if Biased then
5352 New_Ctyp :=
5353 Make_Defining_Identifier (Loc,
5354 Chars =>
5355 New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
5357 Decl :=
5358 Make_Subtype_Declaration (Loc,
5359 Defining_Identifier => New_Ctyp,
5360 Subtype_Indication =>
5361 New_Occurrence_Of (Component_Type (Btype), Loc));
5363 Set_Parent (Decl, N);
5364 Analyze (Decl, Suppress => All_Checks);
5366 Set_Has_Delayed_Freeze (New_Ctyp, False);
5367 Set_Esize (New_Ctyp, Csize);
5368 Set_RM_Size (New_Ctyp, Csize);
5369 Init_Alignment (New_Ctyp);
5370 Set_Is_Itype (New_Ctyp, True);
5371 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
5373 Set_Component_Type (Btype, New_Ctyp);
5374 Set_Biased (New_Ctyp, N, "component size clause");
5375 end if;
5377 Set_Component_Size (Btype, Csize);
5379 -- Deal with warning on overridden size
5381 if Warn_On_Overridden_Size
5382 and then Has_Size_Clause (Ctyp)
5383 and then RM_Size (Ctyp) /= Csize
5384 then
5385 Error_Msg_NE
5386 ("component size overrides size clause for&?S?", N, Ctyp);
5387 end if;
5389 Set_Has_Component_Size_Clause (Btype, True);
5390 Set_Has_Non_Standard_Rep (Btype, True);
5391 end if;
5392 end Component_Size_Case;
5394 -----------------------
5395 -- Constant_Indexing --
5396 -----------------------
5398 when Attribute_Constant_Indexing =>
5399 Check_Indexing_Functions;
5401 ---------
5402 -- CPU --
5403 ---------
5405 when Attribute_CPU =>
5407 -- CPU attribute definition clause not allowed except from aspect
5408 -- specification.
5410 if From_Aspect_Specification (N) then
5411 if not Is_Task_Type (U_Ent) then
5412 Error_Msg_N ("CPU can only be defined for task", Nam);
5414 elsif Duplicate_Clause then
5415 null;
5417 else
5418 -- The expression must be analyzed in the special manner
5419 -- described in "Handling of Default and Per-Object
5420 -- Expressions" in sem.ads.
5422 -- The visibility to the discriminants must be restored
5424 Push_Scope_And_Install_Discriminants (U_Ent);
5425 Preanalyze_Spec_Expression (Expr, RTE (RE_CPU_Range));
5426 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5428 if not Is_OK_Static_Expression (Expr) then
5429 Check_Restriction (Static_Priorities, Expr);
5430 end if;
5431 end if;
5433 else
5434 Error_Msg_N
5435 ("attribute& cannot be set with definition clause", N);
5436 end if;
5438 ----------------------
5439 -- Default_Iterator --
5440 ----------------------
5442 when Attribute_Default_Iterator => Default_Iterator : declare
5443 Func : Entity_Id;
5444 Typ : Entity_Id;
5446 begin
5447 -- If target type is untagged, further checks are irrelevant
5449 if not Is_Tagged_Type (U_Ent) then
5450 Error_Msg_N
5451 ("aspect Default_Iterator applies to tagged type", Nam);
5452 return;
5453 end if;
5455 Check_Iterator_Functions;
5457 Analyze (Expr);
5459 if not Is_Entity_Name (Expr)
5460 or else Ekind (Entity (Expr)) /= E_Function
5461 then
5462 Error_Msg_N ("aspect Iterator must be a function", Expr);
5463 return;
5464 else
5465 Func := Entity (Expr);
5466 end if;
5468 -- The type of the first parameter must be T, T'class, or a
5469 -- corresponding access type (5.5.1 (8/3). If function is
5470 -- parameterless label type accordingly.
5472 if No (First_Formal (Func)) then
5473 Typ := Any_Type;
5474 else
5475 Typ := Etype (First_Formal (Func));
5476 end if;
5478 if Typ = U_Ent
5479 or else Typ = Class_Wide_Type (U_Ent)
5480 or else (Is_Access_Type (Typ)
5481 and then Designated_Type (Typ) = U_Ent)
5482 or else (Is_Access_Type (Typ)
5483 and then Designated_Type (Typ) =
5484 Class_Wide_Type (U_Ent))
5485 then
5486 null;
5488 else
5489 Error_Msg_NE
5490 ("Default Iterator must be a primitive of&", Func, U_Ent);
5491 end if;
5492 end Default_Iterator;
5494 ------------------------
5495 -- Dispatching_Domain --
5496 ------------------------
5498 when Attribute_Dispatching_Domain =>
5500 -- Dispatching_Domain attribute definition clause not allowed
5501 -- except from aspect specification.
5503 if From_Aspect_Specification (N) then
5504 if not Is_Task_Type (U_Ent) then
5505 Error_Msg_N
5506 ("Dispatching_Domain can only be defined for task", Nam);
5508 elsif Duplicate_Clause then
5509 null;
5511 else
5512 -- The expression must be analyzed in the special manner
5513 -- described in "Handling of Default and Per-Object
5514 -- Expressions" in sem.ads.
5516 -- The visibility to the discriminants must be restored
5518 Push_Scope_And_Install_Discriminants (U_Ent);
5520 Preanalyze_Spec_Expression
5521 (Expr, RTE (RE_Dispatching_Domain));
5523 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5524 end if;
5526 else
5527 Error_Msg_N
5528 ("attribute& cannot be set with definition clause", N);
5529 end if;
5531 ------------------
5532 -- External_Tag --
5533 ------------------
5535 when Attribute_External_Tag =>
5536 if not Is_Tagged_Type (U_Ent) then
5537 Error_Msg_N ("should be a tagged type", Nam);
5538 end if;
5540 if Duplicate_Clause then
5541 null;
5543 else
5544 Analyze_And_Resolve (Expr, Standard_String);
5546 if not Is_OK_Static_Expression (Expr) then
5547 Flag_Non_Static_Expr
5548 ("static string required for tag name!", Nam);
5549 end if;
5551 if not Is_Library_Level_Entity (U_Ent) then
5552 Error_Msg_NE
5553 ("??non-unique external tag supplied for &", N, U_Ent);
5554 Error_Msg_N
5555 ("\??same external tag applies to all subprogram calls",
5557 Error_Msg_N
5558 ("\??corresponding internal tag cannot be obtained", N);
5559 end if;
5560 end if;
5562 --------------------------
5563 -- Implicit_Dereference --
5564 --------------------------
5566 when Attribute_Implicit_Dereference =>
5568 -- Legality checks already performed at the point of the type
5569 -- declaration, aspect is not delayed.
5571 null;
5573 -----------
5574 -- Input --
5575 -----------
5577 when Attribute_Input =>
5578 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
5579 Set_Has_Specified_Stream_Input (Ent);
5581 ------------------------
5582 -- Interrupt_Priority --
5583 ------------------------
5585 when Attribute_Interrupt_Priority =>
5587 -- Interrupt_Priority attribute definition clause not allowed
5588 -- except from aspect specification.
5590 if From_Aspect_Specification (N) then
5591 if not Is_Concurrent_Type (U_Ent) then
5592 Error_Msg_N
5593 ("Interrupt_Priority can only be defined for task and "
5594 & "protected object", Nam);
5596 elsif Duplicate_Clause then
5597 null;
5599 else
5600 -- The expression must be analyzed in the special manner
5601 -- described in "Handling of Default and Per-Object
5602 -- Expressions" in sem.ads.
5604 -- The visibility to the discriminants must be restored
5606 Push_Scope_And_Install_Discriminants (U_Ent);
5608 Preanalyze_Spec_Expression
5609 (Expr, RTE (RE_Interrupt_Priority));
5611 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5613 -- Check the No_Task_At_Interrupt_Priority restriction
5615 if Is_Task_Type (U_Ent) then
5616 Check_Restriction (No_Task_At_Interrupt_Priority, N);
5617 end if;
5618 end if;
5620 else
5621 Error_Msg_N
5622 ("attribute& cannot be set with definition clause", N);
5623 end if;
5625 --------------
5626 -- Iterable --
5627 --------------
5629 when Attribute_Iterable =>
5630 Analyze (Expr);
5632 if Nkind (Expr) /= N_Aggregate then
5633 Error_Msg_N ("aspect Iterable must be an aggregate", Expr);
5634 end if;
5636 declare
5637 Assoc : Node_Id;
5639 begin
5640 Assoc := First (Component_Associations (Expr));
5641 while Present (Assoc) loop
5642 if not Is_Entity_Name (Expression (Assoc)) then
5643 Error_Msg_N ("value must be a function", Assoc);
5644 end if;
5646 Next (Assoc);
5647 end loop;
5648 end;
5650 ----------------------
5651 -- Iterator_Element --
5652 ----------------------
5654 when Attribute_Iterator_Element =>
5655 Analyze (Expr);
5657 if not Is_Entity_Name (Expr)
5658 or else not Is_Type (Entity (Expr))
5659 then
5660 Error_Msg_N ("aspect Iterator_Element must be a type", Expr);
5661 end if;
5663 -------------------
5664 -- Machine_Radix --
5665 -------------------
5667 -- Machine radix attribute definition clause
5669 when Attribute_Machine_Radix => Machine_Radix : declare
5670 Radix : constant Uint := Static_Integer (Expr);
5672 begin
5673 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
5674 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
5676 elsif Duplicate_Clause then
5677 null;
5679 elsif Radix /= No_Uint then
5680 Set_Has_Machine_Radix_Clause (U_Ent);
5681 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
5683 if Radix = 2 then
5684 null;
5686 elsif Radix = 10 then
5687 Set_Machine_Radix_10 (U_Ent);
5689 -- The following error is suppressed in ASIS mode to allow for
5690 -- different ASIS back ends or ASIS-based tools to query the
5691 -- illegal clause.
5693 elsif not ASIS_Mode then
5694 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
5695 end if;
5696 end if;
5697 end Machine_Radix;
5699 -----------------
5700 -- Object_Size --
5701 -----------------
5703 -- Object_Size attribute definition clause
5705 when Attribute_Object_Size => Object_Size : declare
5706 Size : constant Uint := Static_Integer (Expr);
5708 Biased : Boolean;
5709 pragma Warnings (Off, Biased);
5711 begin
5712 if not Is_Type (U_Ent) then
5713 Error_Msg_N ("Object_Size cannot be given for &", Nam);
5715 elsif Duplicate_Clause then
5716 null;
5718 else
5719 Check_Size (Expr, U_Ent, Size, Biased);
5721 -- The following errors are suppressed in ASIS mode to allow
5722 -- for different ASIS back ends or ASIS-based tools to query
5723 -- the illegal clause.
5725 if ASIS_Mode then
5726 null;
5728 elsif Is_Scalar_Type (U_Ent) then
5729 if Size /= 8 and then Size /= 16 and then Size /= 32
5730 and then UI_Mod (Size, 64) /= 0
5731 then
5732 Error_Msg_N
5733 ("Object_Size must be 8, 16, 32, or multiple of 64",
5734 Expr);
5735 end if;
5737 elsif Size mod 8 /= 0 then
5738 Error_Msg_N ("Object_Size must be a multiple of 8", Expr);
5739 end if;
5741 Set_Esize (U_Ent, Size);
5742 Set_Has_Object_Size_Clause (U_Ent);
5743 Alignment_Check_For_Size_Change (U_Ent, Size);
5744 end if;
5745 end Object_Size;
5747 ------------
5748 -- Output --
5749 ------------
5751 when Attribute_Output =>
5752 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
5753 Set_Has_Specified_Stream_Output (Ent);
5755 --------------
5756 -- Priority --
5757 --------------
5759 when Attribute_Priority =>
5761 -- Priority attribute definition clause not allowed except from
5762 -- aspect specification.
5764 if From_Aspect_Specification (N) then
5765 if not (Is_Concurrent_Type (U_Ent)
5766 or else Ekind (U_Ent) = E_Procedure)
5767 then
5768 Error_Msg_N
5769 ("Priority can only be defined for task and protected "
5770 & "object", Nam);
5772 elsif Duplicate_Clause then
5773 null;
5775 else
5776 -- The expression must be analyzed in the special manner
5777 -- described in "Handling of Default and Per-Object
5778 -- Expressions" in sem.ads.
5780 -- The visibility to the discriminants must be restored
5782 Push_Scope_And_Install_Discriminants (U_Ent);
5783 Preanalyze_Spec_Expression (Expr, Standard_Integer);
5784 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5786 if not Is_OK_Static_Expression (Expr) then
5787 Check_Restriction (Static_Priorities, Expr);
5788 end if;
5789 end if;
5791 else
5792 Error_Msg_N
5793 ("attribute& cannot be set with definition clause", N);
5794 end if;
5796 ----------
5797 -- Read --
5798 ----------
5800 when Attribute_Read =>
5801 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
5802 Set_Has_Specified_Stream_Read (Ent);
5804 --------------------------
5805 -- Scalar_Storage_Order --
5806 --------------------------
5808 -- Scalar_Storage_Order attribute definition clause
5810 when Attribute_Scalar_Storage_Order =>
5811 if not (Is_Record_Type (U_Ent) or else Is_Array_Type (U_Ent)) then
5812 Error_Msg_N
5813 ("Scalar_Storage_Order can only be defined for record or "
5814 & "array type", Nam);
5816 elsif Duplicate_Clause then
5817 null;
5819 else
5820 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
5822 if Etype (Expr) = Any_Type then
5823 return;
5825 elsif not Is_OK_Static_Expression (Expr) then
5826 Flag_Non_Static_Expr
5827 ("Scalar_Storage_Order requires static expression!", Expr);
5829 elsif (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
5831 -- Here for the case of a non-default (i.e. non-confirming)
5832 -- Scalar_Storage_Order attribute definition.
5834 if Support_Nondefault_SSO_On_Target then
5835 Set_Reverse_Storage_Order (Base_Type (U_Ent), True);
5836 else
5837 Error_Msg_N
5838 ("non-default Scalar_Storage_Order not supported on "
5839 & "target", Expr);
5840 end if;
5841 end if;
5843 -- Clear SSO default indications since explicit setting of the
5844 -- order overrides the defaults.
5846 Set_SSO_Set_Low_By_Default (Base_Type (U_Ent), False);
5847 Set_SSO_Set_High_By_Default (Base_Type (U_Ent), False);
5848 end if;
5850 --------------------------
5851 -- Secondary_Stack_Size --
5852 --------------------------
5854 when Attribute_Secondary_Stack_Size =>
5856 -- Secondary_Stack_Size attribute definition clause not allowed
5857 -- except from aspect specification.
5859 if From_Aspect_Specification (N) then
5860 if not Is_Task_Type (U_Ent) then
5861 Error_Msg_N
5862 ("Secondary Stack Size can only be defined for task", Nam);
5864 elsif Duplicate_Clause then
5865 null;
5867 else
5868 Check_Restriction (No_Secondary_Stack, Expr);
5870 -- The expression must be analyzed in the special manner
5871 -- described in "Handling of Default and Per-Object
5872 -- Expressions" in sem.ads.
5874 -- The visibility to the discriminants must be restored
5876 Push_Scope_And_Install_Discriminants (U_Ent);
5877 Preanalyze_Spec_Expression (Expr, Any_Integer);
5878 Uninstall_Discriminants_And_Pop_Scope (U_Ent);
5880 if not Is_OK_Static_Expression (Expr) then
5881 Check_Restriction (Static_Storage_Size, Expr);
5882 end if;
5883 end if;
5885 else
5886 Error_Msg_N
5887 ("attribute& cannot be set with definition clause", N);
5888 end if;
5890 ----------
5891 -- Size --
5892 ----------
5894 -- Size attribute definition clause
5896 when Attribute_Size => Size : declare
5897 Size : constant Uint := Static_Integer (Expr);
5898 Etyp : Entity_Id;
5899 Biased : Boolean;
5901 begin
5902 FOnly := True;
5904 if Duplicate_Clause then
5905 null;
5907 elsif not Is_Type (U_Ent)
5908 and then Ekind (U_Ent) /= E_Variable
5909 and then Ekind (U_Ent) /= E_Constant
5910 then
5911 Error_Msg_N ("size cannot be given for &", Nam);
5913 elsif Is_Array_Type (U_Ent)
5914 and then not Is_Constrained (U_Ent)
5915 then
5916 Error_Msg_N
5917 ("size cannot be given for unconstrained array", Nam);
5919 elsif Size /= No_Uint then
5920 if Is_Type (U_Ent) then
5921 Etyp := U_Ent;
5922 else
5923 Etyp := Etype (U_Ent);
5924 end if;
5926 -- Check size, note that Gigi is in charge of checking that the
5927 -- size of an array or record type is OK. Also we do not check
5928 -- the size in the ordinary fixed-point case, since it is too
5929 -- early to do so (there may be subsequent small clause that
5930 -- affects the size). We can check the size if a small clause
5931 -- has already been given.
5933 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
5934 or else Has_Small_Clause (U_Ent)
5935 then
5936 Check_Size (Expr, Etyp, Size, Biased);
5937 Set_Biased (U_Ent, N, "size clause", Biased);
5938 end if;
5940 -- For types set RM_Size and Esize if possible
5942 if Is_Type (U_Ent) then
5943 Set_RM_Size (U_Ent, Size);
5945 -- For elementary types, increase Object_Size to power of 2,
5946 -- but not less than a storage unit in any case (normally
5947 -- this means it will be byte addressable).
5949 -- For all other types, nothing else to do, we leave Esize
5950 -- (object size) unset, the back end will set it from the
5951 -- size and alignment in an appropriate manner.
5953 -- In both cases, we check whether the alignment must be
5954 -- reset in the wake of the size change.
5956 if Is_Elementary_Type (U_Ent) then
5957 if Size <= System_Storage_Unit then
5958 Init_Esize (U_Ent, System_Storage_Unit);
5959 elsif Size <= 16 then
5960 Init_Esize (U_Ent, 16);
5961 elsif Size <= 32 then
5962 Init_Esize (U_Ent, 32);
5963 else
5964 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
5965 end if;
5967 Alignment_Check_For_Size_Change (U_Ent, Esize (U_Ent));
5968 else
5969 Alignment_Check_For_Size_Change (U_Ent, Size);
5970 end if;
5972 -- For objects, set Esize only
5974 else
5975 -- The following error is suppressed in ASIS mode to allow
5976 -- for different ASIS back ends or ASIS-based tools to query
5977 -- the illegal clause.
5979 if Is_Elementary_Type (Etyp)
5980 and then Size /= System_Storage_Unit
5981 and then Size /= System_Storage_Unit * 2
5982 and then Size /= System_Storage_Unit * 4
5983 and then Size /= System_Storage_Unit * 8
5984 and then not ASIS_Mode
5985 then
5986 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
5987 Error_Msg_Uint_2 := Error_Msg_Uint_1 * 8;
5988 Error_Msg_N
5989 ("size for primitive object must be a power of 2 in "
5990 & "the range ^-^", N);
5991 end if;
5993 Set_Esize (U_Ent, Size);
5994 end if;
5996 Set_Has_Size_Clause (U_Ent);
5997 end if;
5998 end Size;
6000 -----------
6001 -- Small --
6002 -----------
6004 -- Small attribute definition clause
6006 when Attribute_Small => Small : declare
6007 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
6008 Small : Ureal;
6010 begin
6011 Analyze_And_Resolve (Expr, Any_Real);
6013 if Etype (Expr) = Any_Type then
6014 return;
6016 elsif not Is_OK_Static_Expression (Expr) then
6017 Flag_Non_Static_Expr
6018 ("small requires static expression!", Expr);
6019 return;
6021 else
6022 Small := Expr_Value_R (Expr);
6024 if Small <= Ureal_0 then
6025 Error_Msg_N ("small value must be greater than zero", Expr);
6026 return;
6027 end if;
6029 end if;
6031 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
6032 Error_Msg_N
6033 ("small requires an ordinary fixed point type", Nam);
6035 elsif Has_Small_Clause (U_Ent) then
6036 Error_Msg_N ("small already given for &", Nam);
6038 elsif Small > Delta_Value (U_Ent) then
6039 Error_Msg_N
6040 ("small value must not be greater than delta value", Nam);
6042 else
6043 Set_Small_Value (U_Ent, Small);
6044 Set_Small_Value (Implicit_Base, Small);
6045 Set_Has_Small_Clause (U_Ent);
6046 Set_Has_Small_Clause (Implicit_Base);
6047 Set_Has_Non_Standard_Rep (Implicit_Base);
6048 end if;
6049 end Small;
6051 ------------------
6052 -- Storage_Pool --
6053 ------------------
6055 -- Storage_Pool attribute definition clause
6057 when Attribute_Simple_Storage_Pool
6058 | Attribute_Storage_Pool
6060 Storage_Pool : declare
6061 Pool : Entity_Id;
6062 T : Entity_Id;
6064 begin
6065 if Ekind (U_Ent) = E_Access_Subprogram_Type then
6066 Error_Msg_N
6067 ("storage pool cannot be given for access-to-subprogram type",
6068 Nam);
6069 return;
6071 elsif not Ekind_In (U_Ent, E_Access_Type, E_General_Access_Type)
6072 then
6073 Error_Msg_N
6074 ("storage pool can only be given for access types", Nam);
6075 return;
6077 elsif Is_Derived_Type (U_Ent) then
6078 Error_Msg_N
6079 ("storage pool cannot be given for a derived access type",
6080 Nam);
6082 elsif Duplicate_Clause then
6083 return;
6085 elsif Present (Associated_Storage_Pool (U_Ent)) then
6086 Error_Msg_N ("storage pool already given for &", Nam);
6087 return;
6088 end if;
6090 -- Check for Storage_Size previously given
6092 declare
6093 SS : constant Node_Id :=
6094 Get_Attribute_Definition_Clause
6095 (U_Ent, Attribute_Storage_Size);
6096 begin
6097 if Present (SS) then
6098 Check_Pool_Size_Clash (U_Ent, N, SS);
6099 end if;
6100 end;
6102 -- Storage_Pool case
6104 if Id = Attribute_Storage_Pool then
6105 Analyze_And_Resolve
6106 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
6108 -- In the Simple_Storage_Pool case, we allow a variable of any
6109 -- simple storage pool type, so we Resolve without imposing an
6110 -- expected type.
6112 else
6113 Analyze_And_Resolve (Expr);
6115 if not Present (Get_Rep_Pragma
6116 (Etype (Expr), Name_Simple_Storage_Pool_Type))
6117 then
6118 Error_Msg_N
6119 ("expression must be of a simple storage pool type", Expr);
6120 end if;
6121 end if;
6123 if not Denotes_Variable (Expr) then
6124 Error_Msg_N ("storage pool must be a variable", Expr);
6125 return;
6126 end if;
6128 if Nkind (Expr) = N_Type_Conversion then
6129 T := Etype (Expression (Expr));
6130 else
6131 T := Etype (Expr);
6132 end if;
6134 -- The Stack_Bounded_Pool is used internally for implementing
6135 -- access types with a Storage_Size. Since it only work properly
6136 -- when used on one specific type, we need to check that it is not
6137 -- hijacked improperly:
6139 -- type T is access Integer;
6140 -- for T'Storage_Size use n;
6141 -- type Q is access Float;
6142 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
6144 if RTE_Available (RE_Stack_Bounded_Pool)
6145 and then Base_Type (T) = RTE (RE_Stack_Bounded_Pool)
6146 then
6147 Error_Msg_N ("non-shareable internal Pool", Expr);
6148 return;
6149 end if;
6151 -- If the argument is a name that is not an entity name, then
6152 -- we construct a renaming operation to define an entity of
6153 -- type storage pool.
6155 if not Is_Entity_Name (Expr)
6156 and then Is_Object_Reference (Expr)
6157 then
6158 Pool := Make_Temporary (Loc, 'P', Expr);
6160 declare
6161 Rnode : constant Node_Id :=
6162 Make_Object_Renaming_Declaration (Loc,
6163 Defining_Identifier => Pool,
6164 Subtype_Mark =>
6165 New_Occurrence_Of (Etype (Expr), Loc),
6166 Name => Expr);
6168 begin
6169 -- If the attribute definition clause comes from an aspect
6170 -- clause, then insert the renaming before the associated
6171 -- entity's declaration, since the attribute clause has
6172 -- not yet been appended to the declaration list.
6174 if From_Aspect_Specification (N) then
6175 Insert_Before (Parent (Entity (N)), Rnode);
6176 else
6177 Insert_Before (N, Rnode);
6178 end if;
6180 Analyze (Rnode);
6181 Set_Associated_Storage_Pool (U_Ent, Pool);
6182 end;
6184 elsif Is_Entity_Name (Expr) then
6185 Pool := Entity (Expr);
6187 -- If pool is a renamed object, get original one. This can
6188 -- happen with an explicit renaming, and within instances.
6190 while Present (Renamed_Object (Pool))
6191 and then Is_Entity_Name (Renamed_Object (Pool))
6192 loop
6193 Pool := Entity (Renamed_Object (Pool));
6194 end loop;
6196 if Present (Renamed_Object (Pool))
6197 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
6198 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
6199 then
6200 Pool := Entity (Expression (Renamed_Object (Pool)));
6201 end if;
6203 Set_Associated_Storage_Pool (U_Ent, Pool);
6205 elsif Nkind (Expr) = N_Type_Conversion
6206 and then Is_Entity_Name (Expression (Expr))
6207 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
6208 then
6209 Pool := Entity (Expression (Expr));
6210 Set_Associated_Storage_Pool (U_Ent, Pool);
6212 else
6213 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
6214 return;
6215 end if;
6216 end Storage_Pool;
6218 ------------------
6219 -- Storage_Size --
6220 ------------------
6222 -- Storage_Size attribute definition clause
6224 when Attribute_Storage_Size => Storage_Size : declare
6225 Btype : constant Entity_Id := Base_Type (U_Ent);
6227 begin
6228 if Is_Task_Type (U_Ent) then
6230 -- Check obsolescent (but never obsolescent if from aspect)
6232 if not From_Aspect_Specification (N) then
6233 Check_Restriction (No_Obsolescent_Features, N);
6235 if Warn_On_Obsolescent_Feature then
6236 Error_Msg_N
6237 ("?j?storage size clause for task is an obsolescent "
6238 & "feature (RM J.9)", N);
6239 Error_Msg_N ("\?j?use Storage_Size pragma instead", N);
6240 end if;
6241 end if;
6243 FOnly := True;
6244 end if;
6246 if not Is_Access_Type (U_Ent)
6247 and then Ekind (U_Ent) /= E_Task_Type
6248 then
6249 Error_Msg_N ("storage size cannot be given for &", Nam);
6251 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
6252 Error_Msg_N
6253 ("storage size cannot be given for a derived access type",
6254 Nam);
6256 elsif Duplicate_Clause then
6257 null;
6259 else
6260 Analyze_And_Resolve (Expr, Any_Integer);
6262 if Is_Access_Type (U_Ent) then
6264 -- Check for Storage_Pool previously given
6266 declare
6267 SP : constant Node_Id :=
6268 Get_Attribute_Definition_Clause
6269 (U_Ent, Attribute_Storage_Pool);
6271 begin
6272 if Present (SP) then
6273 Check_Pool_Size_Clash (U_Ent, SP, N);
6274 end if;
6275 end;
6277 -- Special case of for x'Storage_Size use 0
6279 if Is_OK_Static_Expression (Expr)
6280 and then Expr_Value (Expr) = 0
6281 then
6282 Set_No_Pool_Assigned (Btype);
6283 end if;
6284 end if;
6286 Set_Has_Storage_Size_Clause (Btype);
6287 end if;
6288 end Storage_Size;
6290 -----------------
6291 -- Stream_Size --
6292 -----------------
6294 when Attribute_Stream_Size => Stream_Size : declare
6295 Size : constant Uint := Static_Integer (Expr);
6297 begin
6298 if Ada_Version <= Ada_95 then
6299 Check_Restriction (No_Implementation_Attributes, N);
6300 end if;
6302 if Duplicate_Clause then
6303 null;
6305 elsif Is_Elementary_Type (U_Ent) then
6307 -- The following errors are suppressed in ASIS mode to allow
6308 -- for different ASIS back ends or ASIS-based tools to query
6309 -- the illegal clause.
6311 if ASIS_Mode then
6312 null;
6314 elsif Size /= System_Storage_Unit
6315 and then Size /= System_Storage_Unit * 2
6316 and then Size /= System_Storage_Unit * 4
6317 and then Size /= System_Storage_Unit * 8
6318 then
6319 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
6320 Error_Msg_N
6321 ("stream size for elementary type must be a power of 2 "
6322 & "and at least ^", N);
6324 elsif RM_Size (U_Ent) > Size then
6325 Error_Msg_Uint_1 := RM_Size (U_Ent);
6326 Error_Msg_N
6327 ("stream size for elementary type must be a power of 2 "
6328 & "and at least ^", N);
6329 end if;
6331 Set_Has_Stream_Size_Clause (U_Ent);
6333 else
6334 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
6335 end if;
6336 end Stream_Size;
6338 ----------------
6339 -- Value_Size --
6340 ----------------
6342 -- Value_Size attribute definition clause
6344 when Attribute_Value_Size => Value_Size : declare
6345 Size : constant Uint := Static_Integer (Expr);
6346 Biased : Boolean;
6348 begin
6349 if not Is_Type (U_Ent) then
6350 Error_Msg_N ("Value_Size cannot be given for &", Nam);
6352 elsif Duplicate_Clause then
6353 null;
6355 elsif Is_Array_Type (U_Ent)
6356 and then not Is_Constrained (U_Ent)
6357 then
6358 Error_Msg_N
6359 ("Value_Size cannot be given for unconstrained array", Nam);
6361 else
6362 if Is_Elementary_Type (U_Ent) then
6363 Check_Size (Expr, U_Ent, Size, Biased);
6364 Set_Biased (U_Ent, N, "value size clause", Biased);
6365 end if;
6367 Set_RM_Size (U_Ent, Size);
6368 end if;
6369 end Value_Size;
6371 -----------------------
6372 -- Variable_Indexing --
6373 -----------------------
6375 when Attribute_Variable_Indexing =>
6376 Check_Indexing_Functions;
6378 -----------
6379 -- Write --
6380 -----------
6382 when Attribute_Write =>
6383 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
6384 Set_Has_Specified_Stream_Write (Ent);
6386 -- All other attributes cannot be set
6388 when others =>
6389 Error_Msg_N
6390 ("attribute& cannot be set with definition clause", N);
6391 end case;
6393 -- The test for the type being frozen must be performed after any
6394 -- expression the clause has been analyzed since the expression itself
6395 -- might cause freezing that makes the clause illegal.
6397 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
6398 return;
6399 end if;
6400 end Analyze_Attribute_Definition_Clause;
6402 ----------------------------
6403 -- Analyze_Code_Statement --
6404 ----------------------------
6406 procedure Analyze_Code_Statement (N : Node_Id) is
6407 HSS : constant Node_Id := Parent (N);
6408 SBody : constant Node_Id := Parent (HSS);
6409 Subp : constant Entity_Id := Current_Scope;
6410 Stmt : Node_Id;
6411 Decl : Node_Id;
6412 StmtO : Node_Id;
6413 DeclO : Node_Id;
6415 begin
6416 -- Accept foreign code statements for CodePeer. The analysis is skipped
6417 -- to avoid rejecting unrecognized constructs.
6419 if CodePeer_Mode then
6420 Set_Analyzed (N);
6421 return;
6422 end if;
6424 -- Analyze and check we get right type, note that this implements the
6425 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that is
6426 -- the only way that Asm_Insn could possibly be visible.
6428 Analyze_And_Resolve (Expression (N));
6430 if Etype (Expression (N)) = Any_Type then
6431 return;
6432 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
6433 Error_Msg_N ("incorrect type for code statement", N);
6434 return;
6435 end if;
6437 Check_Code_Statement (N);
6439 -- Make sure we appear in the handled statement sequence of a subprogram
6440 -- (RM 13.8(3)).
6442 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
6443 or else Nkind (SBody) /= N_Subprogram_Body
6444 then
6445 Error_Msg_N
6446 ("code statement can only appear in body of subprogram", N);
6447 return;
6448 end if;
6450 -- Do remaining checks (RM 13.8(3)) if not already done
6452 if not Is_Machine_Code_Subprogram (Subp) then
6453 Set_Is_Machine_Code_Subprogram (Subp);
6455 -- No exception handlers allowed
6457 if Present (Exception_Handlers (HSS)) then
6458 Error_Msg_N
6459 ("exception handlers not permitted in machine code subprogram",
6460 First (Exception_Handlers (HSS)));
6461 end if;
6463 -- No declarations other than use clauses and pragmas (we allow
6464 -- certain internally generated declarations as well).
6466 Decl := First (Declarations (SBody));
6467 while Present (Decl) loop
6468 DeclO := Original_Node (Decl);
6469 if Comes_From_Source (DeclO)
6470 and not Nkind_In (DeclO, N_Pragma,
6471 N_Use_Package_Clause,
6472 N_Use_Type_Clause,
6473 N_Implicit_Label_Declaration)
6474 then
6475 Error_Msg_N
6476 ("this declaration not allowed in machine code subprogram",
6477 DeclO);
6478 end if;
6480 Next (Decl);
6481 end loop;
6483 -- No statements other than code statements, pragmas, and labels.
6484 -- Again we allow certain internally generated statements.
6486 -- In Ada 2012, qualified expressions are names, and the code
6487 -- statement is initially parsed as a procedure call.
6489 Stmt := First (Statements (HSS));
6490 while Present (Stmt) loop
6491 StmtO := Original_Node (Stmt);
6493 -- A procedure call transformed into a code statement is OK
6495 if Ada_Version >= Ada_2012
6496 and then Nkind (StmtO) = N_Procedure_Call_Statement
6497 and then Nkind (Name (StmtO)) = N_Qualified_Expression
6498 then
6499 null;
6501 elsif Comes_From_Source (StmtO)
6502 and then not Nkind_In (StmtO, N_Pragma,
6503 N_Label,
6504 N_Code_Statement)
6505 then
6506 Error_Msg_N
6507 ("this statement is not allowed in machine code subprogram",
6508 StmtO);
6509 end if;
6511 Next (Stmt);
6512 end loop;
6513 end if;
6514 end Analyze_Code_Statement;
6516 -----------------------------------------------
6517 -- Analyze_Enumeration_Representation_Clause --
6518 -----------------------------------------------
6520 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
6521 Ident : constant Node_Id := Identifier (N);
6522 Aggr : constant Node_Id := Array_Aggregate (N);
6523 Enumtype : Entity_Id;
6524 Elit : Entity_Id;
6525 Expr : Node_Id;
6526 Assoc : Node_Id;
6527 Choice : Node_Id;
6528 Val : Uint;
6530 Err : Boolean := False;
6531 -- Set True to avoid cascade errors and crashes on incorrect source code
6533 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
6534 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
6535 -- Allowed range of universal integer (= allowed range of enum lit vals)
6537 Min : Uint;
6538 Max : Uint;
6539 -- Minimum and maximum values of entries
6541 Max_Node : Node_Id := Empty; -- init to avoid warning
6542 -- Pointer to node for literal providing max value
6544 begin
6545 if Ignore_Rep_Clauses then
6546 Kill_Rep_Clause (N);
6547 return;
6548 end if;
6550 -- Ignore enumeration rep clauses by default in CodePeer mode,
6551 -- unless -gnatd.I is specified, as a work around for potential false
6552 -- positive messages.
6554 if CodePeer_Mode and not Debug_Flag_Dot_II then
6555 return;
6556 end if;
6558 -- First some basic error checks
6560 Find_Type (Ident);
6561 Enumtype := Entity (Ident);
6563 if Enumtype = Any_Type
6564 or else Rep_Item_Too_Early (Enumtype, N)
6565 then
6566 return;
6567 else
6568 Enumtype := Underlying_Type (Enumtype);
6569 end if;
6571 if not Is_Enumeration_Type (Enumtype) then
6572 Error_Msg_NE
6573 ("enumeration type required, found}",
6574 Ident, First_Subtype (Enumtype));
6575 return;
6576 end if;
6578 -- Ignore rep clause on generic actual type. This will already have
6579 -- been flagged on the template as an error, and this is the safest
6580 -- way to ensure we don't get a junk cascaded message in the instance.
6582 if Is_Generic_Actual_Type (Enumtype) then
6583 return;
6585 -- Type must be in current scope
6587 elsif Scope (Enumtype) /= Current_Scope then
6588 Error_Msg_N ("type must be declared in this scope", Ident);
6589 return;
6591 -- Type must be a first subtype
6593 elsif not Is_First_Subtype (Enumtype) then
6594 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
6595 return;
6597 -- Ignore duplicate rep clause
6599 elsif Has_Enumeration_Rep_Clause (Enumtype) then
6600 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
6601 return;
6603 -- Don't allow rep clause for standard [wide_[wide_]]character
6605 elsif Is_Standard_Character_Type (Enumtype) then
6606 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
6607 return;
6609 -- Check that the expression is a proper aggregate (no parentheses)
6611 elsif Paren_Count (Aggr) /= 0 then
6612 Error_Msg
6613 ("extra parentheses surrounding aggregate not allowed",
6614 First_Sloc (Aggr));
6615 return;
6617 -- All tests passed, so set rep clause in place
6619 else
6620 Set_Has_Enumeration_Rep_Clause (Enumtype);
6621 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
6622 end if;
6624 -- Now we process the aggregate. Note that we don't use the normal
6625 -- aggregate code for this purpose, because we don't want any of the
6626 -- normal expansion activities, and a number of special semantic
6627 -- rules apply (including the component type being any integer type)
6629 Elit := First_Literal (Enumtype);
6631 -- First the positional entries if any
6633 if Present (Expressions (Aggr)) then
6634 Expr := First (Expressions (Aggr));
6635 while Present (Expr) loop
6636 if No (Elit) then
6637 Error_Msg_N ("too many entries in aggregate", Expr);
6638 return;
6639 end if;
6641 Val := Static_Integer (Expr);
6643 -- Err signals that we found some incorrect entries processing
6644 -- the list. The final checks for completeness and ordering are
6645 -- skipped in this case.
6647 if Val = No_Uint then
6648 Err := True;
6650 elsif Val < Lo or else Hi < Val then
6651 Error_Msg_N ("value outside permitted range", Expr);
6652 Err := True;
6653 end if;
6655 Set_Enumeration_Rep (Elit, Val);
6656 Set_Enumeration_Rep_Expr (Elit, Expr);
6657 Next (Expr);
6658 Next (Elit);
6659 end loop;
6660 end if;
6662 -- Now process the named entries if present
6664 if Present (Component_Associations (Aggr)) then
6665 Assoc := First (Component_Associations (Aggr));
6666 while Present (Assoc) loop
6667 Choice := First (Choices (Assoc));
6669 if Present (Next (Choice)) then
6670 Error_Msg_N
6671 ("multiple choice not allowed here", Next (Choice));
6672 Err := True;
6673 end if;
6675 if Nkind (Choice) = N_Others_Choice then
6676 Error_Msg_N ("others choice not allowed here", Choice);
6677 Err := True;
6679 elsif Nkind (Choice) = N_Range then
6681 -- ??? should allow zero/one element range here
6683 Error_Msg_N ("range not allowed here", Choice);
6684 Err := True;
6686 else
6687 Analyze_And_Resolve (Choice, Enumtype);
6689 if Error_Posted (Choice) then
6690 Err := True;
6691 end if;
6693 if not Err then
6694 if Is_Entity_Name (Choice)
6695 and then Is_Type (Entity (Choice))
6696 then
6697 Error_Msg_N ("subtype name not allowed here", Choice);
6698 Err := True;
6700 -- ??? should allow static subtype with zero/one entry
6702 elsif Etype (Choice) = Base_Type (Enumtype) then
6703 if not Is_OK_Static_Expression (Choice) then
6704 Flag_Non_Static_Expr
6705 ("non-static expression used for choice!", Choice);
6706 Err := True;
6708 else
6709 Elit := Expr_Value_E (Choice);
6711 if Present (Enumeration_Rep_Expr (Elit)) then
6712 Error_Msg_Sloc :=
6713 Sloc (Enumeration_Rep_Expr (Elit));
6714 Error_Msg_NE
6715 ("representation for& previously given#",
6716 Choice, Elit);
6717 Err := True;
6718 end if;
6720 Set_Enumeration_Rep_Expr (Elit, Expression (Assoc));
6722 Expr := Expression (Assoc);
6723 Val := Static_Integer (Expr);
6725 if Val = No_Uint then
6726 Err := True;
6728 elsif Val < Lo or else Hi < Val then
6729 Error_Msg_N ("value outside permitted range", Expr);
6730 Err := True;
6731 end if;
6733 Set_Enumeration_Rep (Elit, Val);
6734 end if;
6735 end if;
6736 end if;
6737 end if;
6739 Next (Assoc);
6740 end loop;
6741 end if;
6743 -- Aggregate is fully processed. Now we check that a full set of
6744 -- representations was given, and that they are in range and in order.
6745 -- These checks are only done if no other errors occurred.
6747 if not Err then
6748 Min := No_Uint;
6749 Max := No_Uint;
6751 Elit := First_Literal (Enumtype);
6752 while Present (Elit) loop
6753 if No (Enumeration_Rep_Expr (Elit)) then
6754 Error_Msg_NE ("missing representation for&!", N, Elit);
6756 else
6757 Val := Enumeration_Rep (Elit);
6759 if Min = No_Uint then
6760 Min := Val;
6761 end if;
6763 if Val /= No_Uint then
6764 if Max /= No_Uint and then Val <= Max then
6765 Error_Msg_NE
6766 ("enumeration value for& not ordered!",
6767 Enumeration_Rep_Expr (Elit), Elit);
6768 end if;
6770 Max_Node := Enumeration_Rep_Expr (Elit);
6771 Max := Val;
6772 end if;
6774 -- If there is at least one literal whose representation is not
6775 -- equal to the Pos value, then note that this enumeration type
6776 -- has a non-standard representation.
6778 if Val /= Enumeration_Pos (Elit) then
6779 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
6780 end if;
6781 end if;
6783 Next (Elit);
6784 end loop;
6786 -- Now set proper size information
6788 declare
6789 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
6791 begin
6792 if Has_Size_Clause (Enumtype) then
6794 -- All OK, if size is OK now
6796 if RM_Size (Enumtype) >= Minsize then
6797 null;
6799 else
6800 -- Try if we can get by with biasing
6802 Minsize :=
6803 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
6805 -- Error message if even biasing does not work
6807 if RM_Size (Enumtype) < Minsize then
6808 Error_Msg_Uint_1 := RM_Size (Enumtype);
6809 Error_Msg_Uint_2 := Max;
6810 Error_Msg_N
6811 ("previously given size (^) is too small "
6812 & "for this value (^)", Max_Node);
6814 -- If biasing worked, indicate that we now have biased rep
6816 else
6817 Set_Biased
6818 (Enumtype, Size_Clause (Enumtype), "size clause");
6819 end if;
6820 end if;
6822 else
6823 Set_RM_Size (Enumtype, Minsize);
6824 Set_Enum_Esize (Enumtype);
6825 end if;
6827 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
6828 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
6829 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
6830 end;
6831 end if;
6833 -- We repeat the too late test in case it froze itself
6835 if Rep_Item_Too_Late (Enumtype, N) then
6836 null;
6837 end if;
6838 end Analyze_Enumeration_Representation_Clause;
6840 ----------------------------
6841 -- Analyze_Free_Statement --
6842 ----------------------------
6844 procedure Analyze_Free_Statement (N : Node_Id) is
6845 begin
6846 Analyze (Expression (N));
6847 end Analyze_Free_Statement;
6849 ---------------------------
6850 -- Analyze_Freeze_Entity --
6851 ---------------------------
6853 procedure Analyze_Freeze_Entity (N : Node_Id) is
6854 begin
6855 Freeze_Entity_Checks (N);
6856 end Analyze_Freeze_Entity;
6858 -----------------------------------
6859 -- Analyze_Freeze_Generic_Entity --
6860 -----------------------------------
6862 procedure Analyze_Freeze_Generic_Entity (N : Node_Id) is
6863 E : constant Entity_Id := Entity (N);
6865 begin
6866 if not Is_Frozen (E) and then Has_Delayed_Aspects (E) then
6867 Analyze_Aspects_At_Freeze_Point (E);
6868 end if;
6870 Freeze_Entity_Checks (N);
6871 end Analyze_Freeze_Generic_Entity;
6873 ------------------------------------------
6874 -- Analyze_Record_Representation_Clause --
6875 ------------------------------------------
6877 -- Note: we check as much as we can here, but we can't do any checks
6878 -- based on the position values (e.g. overlap checks) until freeze time
6879 -- because especially in Ada 2005 (machine scalar mode), the processing
6880 -- for non-standard bit order can substantially change the positions.
6881 -- See procedure Check_Record_Representation_Clause (called from Freeze)
6882 -- for the remainder of this processing.
6884 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
6885 Ident : constant Node_Id := Identifier (N);
6886 Biased : Boolean;
6887 CC : Node_Id;
6888 Comp : Entity_Id;
6889 Fbit : Uint;
6890 Hbit : Uint := Uint_0;
6891 Lbit : Uint;
6892 Ocomp : Entity_Id;
6893 Posit : Uint;
6894 Rectype : Entity_Id;
6895 Recdef : Node_Id;
6897 function Is_Inherited (Comp : Entity_Id) return Boolean;
6898 -- True if Comp is an inherited component in a record extension
6900 ------------------
6901 -- Is_Inherited --
6902 ------------------
6904 function Is_Inherited (Comp : Entity_Id) return Boolean is
6905 Comp_Base : Entity_Id;
6907 begin
6908 if Ekind (Rectype) = E_Record_Subtype then
6909 Comp_Base := Original_Record_Component (Comp);
6910 else
6911 Comp_Base := Comp;
6912 end if;
6914 return Comp_Base /= Original_Record_Component (Comp_Base);
6915 end Is_Inherited;
6917 -- Local variables
6919 Is_Record_Extension : Boolean;
6920 -- True if Rectype is a record extension
6922 CR_Pragma : Node_Id := Empty;
6923 -- Points to N_Pragma node if Complete_Representation pragma present
6925 -- Start of processing for Analyze_Record_Representation_Clause
6927 begin
6928 if Ignore_Rep_Clauses then
6929 Kill_Rep_Clause (N);
6930 return;
6931 end if;
6933 Find_Type (Ident);
6934 Rectype := Entity (Ident);
6936 if Rectype = Any_Type or else Rep_Item_Too_Early (Rectype, N) then
6937 return;
6938 else
6939 Rectype := Underlying_Type (Rectype);
6940 end if;
6942 -- First some basic error checks
6944 if not Is_Record_Type (Rectype) then
6945 Error_Msg_NE
6946 ("record type required, found}", Ident, First_Subtype (Rectype));
6947 return;
6949 elsif Scope (Rectype) /= Current_Scope then
6950 Error_Msg_N ("type must be declared in this scope", N);
6951 return;
6953 elsif not Is_First_Subtype (Rectype) then
6954 Error_Msg_N ("cannot give record rep clause for subtype", N);
6955 return;
6957 elsif Has_Record_Rep_Clause (Rectype) then
6958 Error_Msg_N ("duplicate record rep clause ignored", N);
6959 return;
6961 elsif Rep_Item_Too_Late (Rectype, N) then
6962 return;
6963 end if;
6965 -- We know we have a first subtype, now possibly go to the anonymous
6966 -- base type to determine whether Rectype is a record extension.
6968 Recdef := Type_Definition (Declaration_Node (Base_Type (Rectype)));
6969 Is_Record_Extension :=
6970 Nkind (Recdef) = N_Derived_Type_Definition
6971 and then Present (Record_Extension_Part (Recdef));
6973 if Present (Mod_Clause (N)) then
6974 declare
6975 Loc : constant Source_Ptr := Sloc (N);
6976 M : constant Node_Id := Mod_Clause (N);
6977 P : constant List_Id := Pragmas_Before (M);
6978 AtM_Nod : Node_Id;
6980 Mod_Val : Uint;
6981 pragma Warnings (Off, Mod_Val);
6983 begin
6984 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
6986 if Warn_On_Obsolescent_Feature then
6987 Error_Msg_N
6988 ("?j?mod clause is an obsolescent feature (RM J.8)", N);
6989 Error_Msg_N
6990 ("\?j?use alignment attribute definition clause instead", N);
6991 end if;
6993 if Present (P) then
6994 Analyze_List (P);
6995 end if;
6997 -- In ASIS_Mode mode, expansion is disabled, but we must convert
6998 -- the Mod clause into an alignment clause anyway, so that the
6999 -- back end can compute and back-annotate properly the size and
7000 -- alignment of types that may include this record.
7002 -- This seems dubious, this destroys the source tree in a manner
7003 -- not detectable by ASIS ???
7005 if Operating_Mode = Check_Semantics and then ASIS_Mode then
7006 AtM_Nod :=
7007 Make_Attribute_Definition_Clause (Loc,
7008 Name => New_Occurrence_Of (Base_Type (Rectype), Loc),
7009 Chars => Name_Alignment,
7010 Expression => Relocate_Node (Expression (M)));
7012 Set_From_At_Mod (AtM_Nod);
7013 Insert_After (N, AtM_Nod);
7014 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
7015 Set_Mod_Clause (N, Empty);
7017 else
7018 -- Get the alignment value to perform error checking
7020 Mod_Val := Get_Alignment_Value (Expression (M));
7021 end if;
7022 end;
7023 end if;
7025 -- For untagged types, clear any existing component clauses for the
7026 -- type. If the type is derived, this is what allows us to override
7027 -- a rep clause for the parent. For type extensions, the representation
7028 -- of the inherited components is inherited, so we want to keep previous
7029 -- component clauses for completeness.
7031 if not Is_Tagged_Type (Rectype) then
7032 Comp := First_Component_Or_Discriminant (Rectype);
7033 while Present (Comp) loop
7034 Set_Component_Clause (Comp, Empty);
7035 Next_Component_Or_Discriminant (Comp);
7036 end loop;
7037 end if;
7039 -- All done if no component clauses
7041 CC := First (Component_Clauses (N));
7043 if No (CC) then
7044 return;
7045 end if;
7047 -- A representation like this applies to the base type
7049 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
7050 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
7051 Set_Has_Specified_Layout (Base_Type (Rectype));
7053 -- Process the component clauses
7055 while Present (CC) loop
7057 -- Pragma
7059 if Nkind (CC) = N_Pragma then
7060 Analyze (CC);
7062 -- The only pragma of interest is Complete_Representation
7064 if Pragma_Name (CC) = Name_Complete_Representation then
7065 CR_Pragma := CC;
7066 end if;
7068 -- Processing for real component clause
7070 else
7071 Posit := Static_Integer (Position (CC));
7072 Fbit := Static_Integer (First_Bit (CC));
7073 Lbit := Static_Integer (Last_Bit (CC));
7075 if Posit /= No_Uint
7076 and then Fbit /= No_Uint
7077 and then Lbit /= No_Uint
7078 then
7079 if Posit < 0 then
7080 Error_Msg_N ("position cannot be negative", Position (CC));
7082 elsif Fbit < 0 then
7083 Error_Msg_N ("first bit cannot be negative", First_Bit (CC));
7085 -- The Last_Bit specified in a component clause must not be
7086 -- less than the First_Bit minus one (RM-13.5.1(10)).
7088 elsif Lbit < Fbit - 1 then
7089 Error_Msg_N
7090 ("last bit cannot be less than first bit minus one",
7091 Last_Bit (CC));
7093 -- Values look OK, so find the corresponding record component
7094 -- Even though the syntax allows an attribute reference for
7095 -- implementation-defined components, GNAT does not allow the
7096 -- tag to get an explicit position.
7098 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
7099 if Attribute_Name (Component_Name (CC)) = Name_Tag then
7100 Error_Msg_N ("position of tag cannot be specified", CC);
7101 else
7102 Error_Msg_N ("illegal component name", CC);
7103 end if;
7105 else
7106 Comp := First_Entity (Rectype);
7107 while Present (Comp) loop
7108 exit when Chars (Comp) = Chars (Component_Name (CC));
7109 Next_Entity (Comp);
7110 end loop;
7112 if No (Comp) then
7114 -- Maybe component of base type that is absent from
7115 -- statically constrained first subtype.
7117 Comp := First_Entity (Base_Type (Rectype));
7118 while Present (Comp) loop
7119 exit when Chars (Comp) = Chars (Component_Name (CC));
7120 Next_Entity (Comp);
7121 end loop;
7122 end if;
7124 if No (Comp) then
7125 Error_Msg_N
7126 ("component clause is for non-existent field", CC);
7128 -- Ada 2012 (AI05-0026): Any name that denotes a
7129 -- discriminant of an object of an unchecked union type
7130 -- shall not occur within a record_representation_clause.
7132 -- The general restriction of using record rep clauses on
7133 -- Unchecked_Union types has now been lifted. Since it is
7134 -- possible to introduce a record rep clause which mentions
7135 -- the discriminant of an Unchecked_Union in non-Ada 2012
7136 -- code, this check is applied to all versions of the
7137 -- language.
7139 elsif Ekind (Comp) = E_Discriminant
7140 and then Is_Unchecked_Union (Rectype)
7141 then
7142 Error_Msg_N
7143 ("cannot reference discriminant of unchecked union",
7144 Component_Name (CC));
7146 elsif Is_Record_Extension and then Is_Inherited (Comp) then
7147 Error_Msg_NE
7148 ("component clause not allowed for inherited "
7149 & "component&", CC, Comp);
7151 elsif Present (Component_Clause (Comp)) then
7153 -- Diagnose duplicate rep clause, or check consistency
7154 -- if this is an inherited component. In a double fault,
7155 -- there may be a duplicate inconsistent clause for an
7156 -- inherited component.
7158 if Scope (Original_Record_Component (Comp)) = Rectype
7159 or else Parent (Component_Clause (Comp)) = N
7160 then
7161 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
7162 Error_Msg_N ("component clause previously given#", CC);
7164 else
7165 declare
7166 Rep1 : constant Node_Id := Component_Clause (Comp);
7167 begin
7168 if Intval (Position (Rep1)) /=
7169 Intval (Position (CC))
7170 or else Intval (First_Bit (Rep1)) /=
7171 Intval (First_Bit (CC))
7172 or else Intval (Last_Bit (Rep1)) /=
7173 Intval (Last_Bit (CC))
7174 then
7175 Error_Msg_N
7176 ("component clause inconsistent with "
7177 & "representation of ancestor", CC);
7179 elsif Warn_On_Redundant_Constructs then
7180 Error_Msg_N
7181 ("?r?redundant confirming component clause "
7182 & "for component!", CC);
7183 end if;
7184 end;
7185 end if;
7187 -- Normal case where this is the first component clause we
7188 -- have seen for this entity, so set it up properly.
7190 else
7191 -- Make reference for field in record rep clause and set
7192 -- appropriate entity field in the field identifier.
7194 Generate_Reference
7195 (Comp, Component_Name (CC), Set_Ref => False);
7196 Set_Entity (Component_Name (CC), Comp);
7198 -- Update Fbit and Lbit to the actual bit number
7200 Fbit := Fbit + UI_From_Int (SSU) * Posit;
7201 Lbit := Lbit + UI_From_Int (SSU) * Posit;
7203 if Has_Size_Clause (Rectype)
7204 and then RM_Size (Rectype) <= Lbit
7205 then
7206 Error_Msg_N
7207 ("bit number out of range of specified size",
7208 Last_Bit (CC));
7209 else
7210 Set_Component_Clause (Comp, CC);
7211 Set_Component_Bit_Offset (Comp, Fbit);
7212 Set_Esize (Comp, 1 + (Lbit - Fbit));
7213 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
7214 Set_Normalized_Position (Comp, Fbit / SSU);
7216 if Warn_On_Overridden_Size
7217 and then Has_Size_Clause (Etype (Comp))
7218 and then RM_Size (Etype (Comp)) /= Esize (Comp)
7219 then
7220 Error_Msg_NE
7221 ("?S?component size overrides size clause for&",
7222 Component_Name (CC), Etype (Comp));
7223 end if;
7225 -- This information is also set in the corresponding
7226 -- component of the base type, found by accessing the
7227 -- Original_Record_Component link if it is present.
7229 Ocomp := Original_Record_Component (Comp);
7231 if Hbit < Lbit then
7232 Hbit := Lbit;
7233 end if;
7235 Check_Size
7236 (Component_Name (CC),
7237 Etype (Comp),
7238 Esize (Comp),
7239 Biased);
7241 Set_Biased
7242 (Comp, First_Node (CC), "component clause", Biased);
7244 if Present (Ocomp) then
7245 Set_Component_Clause (Ocomp, CC);
7246 Set_Component_Bit_Offset (Ocomp, Fbit);
7247 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
7248 Set_Normalized_Position (Ocomp, Fbit / SSU);
7249 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
7251 Set_Normalized_Position_Max
7252 (Ocomp, Normalized_Position (Ocomp));
7254 -- Note: we don't use Set_Biased here, because we
7255 -- already gave a warning above if needed, and we
7256 -- would get a duplicate for the same name here.
7258 Set_Has_Biased_Representation
7259 (Ocomp, Has_Biased_Representation (Comp));
7260 end if;
7262 if Esize (Comp) < 0 then
7263 Error_Msg_N ("component size is negative", CC);
7264 end if;
7265 end if;
7266 end if;
7267 end if;
7268 end if;
7269 end if;
7271 Next (CC);
7272 end loop;
7274 -- Check missing components if Complete_Representation pragma appeared
7276 if Present (CR_Pragma) then
7277 Comp := First_Component_Or_Discriminant (Rectype);
7278 while Present (Comp) loop
7279 if No (Component_Clause (Comp)) then
7280 Error_Msg_NE
7281 ("missing component clause for &", CR_Pragma, Comp);
7282 end if;
7284 Next_Component_Or_Discriminant (Comp);
7285 end loop;
7287 -- Give missing components warning if required
7289 elsif Warn_On_Unrepped_Components then
7290 declare
7291 Num_Repped_Components : Nat := 0;
7292 Num_Unrepped_Components : Nat := 0;
7294 begin
7295 -- First count number of repped and unrepped components
7297 Comp := First_Component_Or_Discriminant (Rectype);
7298 while Present (Comp) loop
7299 if Present (Component_Clause (Comp)) then
7300 Num_Repped_Components := Num_Repped_Components + 1;
7301 else
7302 Num_Unrepped_Components := Num_Unrepped_Components + 1;
7303 end if;
7305 Next_Component_Or_Discriminant (Comp);
7306 end loop;
7308 -- We are only interested in the case where there is at least one
7309 -- unrepped component, and at least half the components have rep
7310 -- clauses. We figure that if less than half have them, then the
7311 -- partial rep clause is really intentional. If the component
7312 -- type has no underlying type set at this point (as for a generic
7313 -- formal type), we don't know enough to give a warning on the
7314 -- component.
7316 if Num_Unrepped_Components > 0
7317 and then Num_Unrepped_Components < Num_Repped_Components
7318 then
7319 Comp := First_Component_Or_Discriminant (Rectype);
7320 while Present (Comp) loop
7321 if No (Component_Clause (Comp))
7322 and then Comes_From_Source (Comp)
7323 and then Present (Underlying_Type (Etype (Comp)))
7324 and then (Is_Scalar_Type (Underlying_Type (Etype (Comp)))
7325 or else Size_Known_At_Compile_Time
7326 (Underlying_Type (Etype (Comp))))
7327 and then not Has_Warnings_Off (Rectype)
7329 -- Ignore discriminant in unchecked union, since it is
7330 -- not there, and cannot have a component clause.
7332 and then (not Is_Unchecked_Union (Rectype)
7333 or else Ekind (Comp) /= E_Discriminant)
7334 then
7335 Error_Msg_Sloc := Sloc (Comp);
7336 Error_Msg_NE
7337 ("?C?no component clause given for & declared #",
7338 N, Comp);
7339 end if;
7341 Next_Component_Or_Discriminant (Comp);
7342 end loop;
7343 end if;
7344 end;
7345 end if;
7346 end Analyze_Record_Representation_Clause;
7348 -------------------------------------
7349 -- Build_Discrete_Static_Predicate --
7350 -------------------------------------
7352 procedure Build_Discrete_Static_Predicate
7353 (Typ : Entity_Id;
7354 Expr : Node_Id;
7355 Nam : Name_Id)
7357 Loc : constant Source_Ptr := Sloc (Expr);
7359 Non_Static : exception;
7360 -- Raised if something non-static is found
7362 Btyp : constant Entity_Id := Base_Type (Typ);
7364 BLo : constant Uint := Expr_Value (Type_Low_Bound (Btyp));
7365 BHi : constant Uint := Expr_Value (Type_High_Bound (Btyp));
7366 -- Low bound and high bound value of base type of Typ
7368 TLo : Uint;
7369 THi : Uint;
7370 -- Bounds for constructing the static predicate. We use the bound of the
7371 -- subtype if it is static, otherwise the corresponding base type bound.
7372 -- Note: a non-static subtype can have a static predicate.
7374 type REnt is record
7375 Lo, Hi : Uint;
7376 end record;
7377 -- One entry in a Rlist value, a single REnt (range entry) value denotes
7378 -- one range from Lo to Hi. To represent a single value range Lo = Hi =
7379 -- value.
7381 type RList is array (Nat range <>) of REnt;
7382 -- A list of ranges. The ranges are sorted in increasing order, and are
7383 -- disjoint (there is a gap of at least one value between each range in
7384 -- the table). A value is in the set of ranges in Rlist if it lies
7385 -- within one of these ranges.
7387 False_Range : constant RList :=
7388 RList'(1 .. 0 => REnt'(No_Uint, No_Uint));
7389 -- An empty set of ranges represents a range list that can never be
7390 -- satisfied, since there are no ranges in which the value could lie,
7391 -- so it does not lie in any of them. False_Range is a canonical value
7392 -- for this empty set, but general processing should test for an Rlist
7393 -- with length zero (see Is_False predicate), since other null ranges
7394 -- may appear which must be treated as False.
7396 True_Range : constant RList := RList'(1 => REnt'(BLo, BHi));
7397 -- Range representing True, value must be in the base range
7399 function "and" (Left : RList; Right : RList) return RList;
7400 -- And's together two range lists, returning a range list. This is a set
7401 -- intersection operation.
7403 function "or" (Left : RList; Right : RList) return RList;
7404 -- Or's together two range lists, returning a range list. This is a set
7405 -- union operation.
7407 function "not" (Right : RList) return RList;
7408 -- Returns complement of a given range list, i.e. a range list
7409 -- representing all the values in TLo .. THi that are not in the input
7410 -- operand Right.
7412 function Build_Val (V : Uint) return Node_Id;
7413 -- Return an analyzed N_Identifier node referencing this value, suitable
7414 -- for use as an entry in the Static_Discrte_Predicate list. This node
7415 -- is typed with the base type.
7417 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id;
7418 -- Return an analyzed N_Range node referencing this range, suitable for
7419 -- use as an entry in the Static_Discrete_Predicate list. This node is
7420 -- typed with the base type.
7422 function Get_RList (Exp : Node_Id) return RList;
7423 -- This is a recursive routine that converts the given expression into a
7424 -- list of ranges, suitable for use in building the static predicate.
7426 function Is_False (R : RList) return Boolean;
7427 pragma Inline (Is_False);
7428 -- Returns True if the given range list is empty, and thus represents a
7429 -- False list of ranges that can never be satisfied.
7431 function Is_True (R : RList) return Boolean;
7432 -- Returns True if R trivially represents the True predicate by having a
7433 -- single range from BLo to BHi.
7435 function Is_Type_Ref (N : Node_Id) return Boolean;
7436 pragma Inline (Is_Type_Ref);
7437 -- Returns if True if N is a reference to the type for the predicate in
7438 -- the expression (i.e. if it is an identifier whose Chars field matches
7439 -- the Nam given in the call). N must not be parenthesized, if the type
7440 -- name appears in parens, this routine will return False.
7442 function Lo_Val (N : Node_Id) return Uint;
7443 -- Given an entry from a Static_Discrete_Predicate list that is either
7444 -- a static expression or static range, gets either the expression value
7445 -- or the low bound of the range.
7447 function Hi_Val (N : Node_Id) return Uint;
7448 -- Given an entry from a Static_Discrete_Predicate list that is either
7449 -- a static expression or static range, gets either the expression value
7450 -- or the high bound of the range.
7452 function Membership_Entry (N : Node_Id) return RList;
7453 -- Given a single membership entry (range, value, or subtype), returns
7454 -- the corresponding range list. Raises Static_Error if not static.
7456 function Membership_Entries (N : Node_Id) return RList;
7457 -- Given an element on an alternatives list of a membership operation,
7458 -- returns the range list corresponding to this entry and all following
7459 -- entries (i.e. returns the "or" of this list of values).
7461 function Stat_Pred (Typ : Entity_Id) return RList;
7462 -- Given a type, if it has a static predicate, then return the predicate
7463 -- as a range list, otherwise raise Non_Static.
7465 -----------
7466 -- "and" --
7467 -----------
7469 function "and" (Left : RList; Right : RList) return RList is
7470 FEnt : REnt;
7471 -- First range of result
7473 SLeft : Nat := Left'First;
7474 -- Start of rest of left entries
7476 SRight : Nat := Right'First;
7477 -- Start of rest of right entries
7479 begin
7480 -- If either range is True, return the other
7482 if Is_True (Left) then
7483 return Right;
7484 elsif Is_True (Right) then
7485 return Left;
7486 end if;
7488 -- If either range is False, return False
7490 if Is_False (Left) or else Is_False (Right) then
7491 return False_Range;
7492 end if;
7494 -- Loop to remove entries at start that are disjoint, and thus just
7495 -- get discarded from the result entirely.
7497 loop
7498 -- If no operands left in either operand, result is false
7500 if SLeft > Left'Last or else SRight > Right'Last then
7501 return False_Range;
7503 -- Discard first left operand entry if disjoint with right
7505 elsif Left (SLeft).Hi < Right (SRight).Lo then
7506 SLeft := SLeft + 1;
7508 -- Discard first right operand entry if disjoint with left
7510 elsif Right (SRight).Hi < Left (SLeft).Lo then
7511 SRight := SRight + 1;
7513 -- Otherwise we have an overlapping entry
7515 else
7516 exit;
7517 end if;
7518 end loop;
7520 -- Now we have two non-null operands, and first entries overlap. The
7521 -- first entry in the result will be the overlapping part of these
7522 -- two entries.
7524 FEnt := REnt'(Lo => UI_Max (Left (SLeft).Lo, Right (SRight).Lo),
7525 Hi => UI_Min (Left (SLeft).Hi, Right (SRight).Hi));
7527 -- Now we can remove the entry that ended at a lower value, since its
7528 -- contribution is entirely contained in Fent.
7530 if Left (SLeft).Hi <= Right (SRight).Hi then
7531 SLeft := SLeft + 1;
7532 else
7533 SRight := SRight + 1;
7534 end if;
7536 -- Compute result by concatenating this first entry with the "and" of
7537 -- the remaining parts of the left and right operands. Note that if
7538 -- either of these is empty, "and" will yield empty, so that we will
7539 -- end up with just Fent, which is what we want in that case.
7541 return
7542 FEnt & (Left (SLeft .. Left'Last) and Right (SRight .. Right'Last));
7543 end "and";
7545 -----------
7546 -- "not" --
7547 -----------
7549 function "not" (Right : RList) return RList is
7550 begin
7551 -- Return True if False range
7553 if Is_False (Right) then
7554 return True_Range;
7555 end if;
7557 -- Return False if True range
7559 if Is_True (Right) then
7560 return False_Range;
7561 end if;
7563 -- Here if not trivial case
7565 declare
7566 Result : RList (1 .. Right'Length + 1);
7567 -- May need one more entry for gap at beginning and end
7569 Count : Nat := 0;
7570 -- Number of entries stored in Result
7572 begin
7573 -- Gap at start
7575 if Right (Right'First).Lo > TLo then
7576 Count := Count + 1;
7577 Result (Count) := REnt'(TLo, Right (Right'First).Lo - 1);
7578 end if;
7580 -- Gaps between ranges
7582 for J in Right'First .. Right'Last - 1 loop
7583 Count := Count + 1;
7584 Result (Count) := REnt'(Right (J).Hi + 1, Right (J + 1).Lo - 1);
7585 end loop;
7587 -- Gap at end
7589 if Right (Right'Last).Hi < THi then
7590 Count := Count + 1;
7591 Result (Count) := REnt'(Right (Right'Last).Hi + 1, THi);
7592 end if;
7594 return Result (1 .. Count);
7595 end;
7596 end "not";
7598 ----------
7599 -- "or" --
7600 ----------
7602 function "or" (Left : RList; Right : RList) return RList is
7603 FEnt : REnt;
7604 -- First range of result
7606 SLeft : Nat := Left'First;
7607 -- Start of rest of left entries
7609 SRight : Nat := Right'First;
7610 -- Start of rest of right entries
7612 begin
7613 -- If either range is True, return True
7615 if Is_True (Left) or else Is_True (Right) then
7616 return True_Range;
7617 end if;
7619 -- If either range is False (empty), return the other
7621 if Is_False (Left) then
7622 return Right;
7623 elsif Is_False (Right) then
7624 return Left;
7625 end if;
7627 -- Initialize result first entry from left or right operand depending
7628 -- on which starts with the lower range.
7630 if Left (SLeft).Lo < Right (SRight).Lo then
7631 FEnt := Left (SLeft);
7632 SLeft := SLeft + 1;
7633 else
7634 FEnt := Right (SRight);
7635 SRight := SRight + 1;
7636 end if;
7638 -- This loop eats ranges from left and right operands that are
7639 -- contiguous with the first range we are gathering.
7641 loop
7642 -- Eat first entry in left operand if contiguous or overlapped by
7643 -- gathered first operand of result.
7645 if SLeft <= Left'Last
7646 and then Left (SLeft).Lo <= FEnt.Hi + 1
7647 then
7648 FEnt.Hi := UI_Max (FEnt.Hi, Left (SLeft).Hi);
7649 SLeft := SLeft + 1;
7651 -- Eat first entry in right operand if contiguous or overlapped by
7652 -- gathered right operand of result.
7654 elsif SRight <= Right'Last
7655 and then Right (SRight).Lo <= FEnt.Hi + 1
7656 then
7657 FEnt.Hi := UI_Max (FEnt.Hi, Right (SRight).Hi);
7658 SRight := SRight + 1;
7660 -- All done if no more entries to eat
7662 else
7663 exit;
7664 end if;
7665 end loop;
7667 -- Obtain result as the first entry we just computed, concatenated
7668 -- to the "or" of the remaining results (if one operand is empty,
7669 -- this will just concatenate with the other
7671 return
7672 FEnt & (Left (SLeft .. Left'Last) or Right (SRight .. Right'Last));
7673 end "or";
7675 -----------------
7676 -- Build_Range --
7677 -----------------
7679 function Build_Range (Lo : Uint; Hi : Uint) return Node_Id is
7680 Result : Node_Id;
7681 begin
7682 Result :=
7683 Make_Range (Loc,
7684 Low_Bound => Build_Val (Lo),
7685 High_Bound => Build_Val (Hi));
7686 Set_Etype (Result, Btyp);
7687 Set_Analyzed (Result);
7688 return Result;
7689 end Build_Range;
7691 ---------------
7692 -- Build_Val --
7693 ---------------
7695 function Build_Val (V : Uint) return Node_Id is
7696 Result : Node_Id;
7698 begin
7699 if Is_Enumeration_Type (Typ) then
7700 Result := Get_Enum_Lit_From_Pos (Typ, V, Loc);
7701 else
7702 Result := Make_Integer_Literal (Loc, V);
7703 end if;
7705 Set_Etype (Result, Btyp);
7706 Set_Is_Static_Expression (Result);
7707 Set_Analyzed (Result);
7708 return Result;
7709 end Build_Val;
7711 ---------------
7712 -- Get_RList --
7713 ---------------
7715 function Get_RList (Exp : Node_Id) return RList is
7716 Op : Node_Kind;
7717 Val : Uint;
7719 begin
7720 -- Static expression can only be true or false
7722 if Is_OK_Static_Expression (Exp) then
7723 if Expr_Value (Exp) = 0 then
7724 return False_Range;
7725 else
7726 return True_Range;
7727 end if;
7728 end if;
7730 -- Otherwise test node type
7732 Op := Nkind (Exp);
7734 case Op is
7736 -- And
7738 when N_And_Then
7739 | N_Op_And
7741 return Get_RList (Left_Opnd (Exp))
7743 Get_RList (Right_Opnd (Exp));
7745 -- Or
7747 when N_Op_Or
7748 | N_Or_Else
7750 return Get_RList (Left_Opnd (Exp))
7752 Get_RList (Right_Opnd (Exp));
7754 -- Not
7756 when N_Op_Not =>
7757 return not Get_RList (Right_Opnd (Exp));
7759 -- Comparisons of type with static value
7761 when N_Op_Compare =>
7763 -- Type is left operand
7765 if Is_Type_Ref (Left_Opnd (Exp))
7766 and then Is_OK_Static_Expression (Right_Opnd (Exp))
7767 then
7768 Val := Expr_Value (Right_Opnd (Exp));
7770 -- Typ is right operand
7772 elsif Is_Type_Ref (Right_Opnd (Exp))
7773 and then Is_OK_Static_Expression (Left_Opnd (Exp))
7774 then
7775 Val := Expr_Value (Left_Opnd (Exp));
7777 -- Invert sense of comparison
7779 case Op is
7780 when N_Op_Gt => Op := N_Op_Lt;
7781 when N_Op_Lt => Op := N_Op_Gt;
7782 when N_Op_Ge => Op := N_Op_Le;
7783 when N_Op_Le => Op := N_Op_Ge;
7784 when others => null;
7785 end case;
7787 -- Other cases are non-static
7789 else
7790 raise Non_Static;
7791 end if;
7793 -- Construct range according to comparison operation
7795 case Op is
7796 when N_Op_Eq =>
7797 return RList'(1 => REnt'(Val, Val));
7799 when N_Op_Ge =>
7800 return RList'(1 => REnt'(Val, BHi));
7802 when N_Op_Gt =>
7803 return RList'(1 => REnt'(Val + 1, BHi));
7805 when N_Op_Le =>
7806 return RList'(1 => REnt'(BLo, Val));
7808 when N_Op_Lt =>
7809 return RList'(1 => REnt'(BLo, Val - 1));
7811 when N_Op_Ne =>
7812 return RList'(REnt'(BLo, Val - 1), REnt'(Val + 1, BHi));
7814 when others =>
7815 raise Program_Error;
7816 end case;
7818 -- Membership (IN)
7820 when N_In =>
7821 if not Is_Type_Ref (Left_Opnd (Exp)) then
7822 raise Non_Static;
7823 end if;
7825 if Present (Right_Opnd (Exp)) then
7826 return Membership_Entry (Right_Opnd (Exp));
7827 else
7828 return Membership_Entries (First (Alternatives (Exp)));
7829 end if;
7831 -- Negative membership (NOT IN)
7833 when N_Not_In =>
7834 if not Is_Type_Ref (Left_Opnd (Exp)) then
7835 raise Non_Static;
7836 end if;
7838 if Present (Right_Opnd (Exp)) then
7839 return not Membership_Entry (Right_Opnd (Exp));
7840 else
7841 return not Membership_Entries (First (Alternatives (Exp)));
7842 end if;
7844 -- Function call, may be call to static predicate
7846 when N_Function_Call =>
7847 if Is_Entity_Name (Name (Exp)) then
7848 declare
7849 Ent : constant Entity_Id := Entity (Name (Exp));
7850 begin
7851 if Is_Predicate_Function (Ent)
7852 or else
7853 Is_Predicate_Function_M (Ent)
7854 then
7855 return Stat_Pred (Etype (First_Formal (Ent)));
7856 end if;
7857 end;
7858 end if;
7860 -- Other function call cases are non-static
7862 raise Non_Static;
7864 -- Qualified expression, dig out the expression
7866 when N_Qualified_Expression =>
7867 return Get_RList (Expression (Exp));
7869 when N_Case_Expression =>
7870 declare
7871 Alt : Node_Id;
7872 Choices : List_Id;
7873 Dep : Node_Id;
7875 begin
7876 if not Is_Entity_Name (Expression (Expr))
7877 or else Etype (Expression (Expr)) /= Typ
7878 then
7879 Error_Msg_N
7880 ("expression must denaote subtype", Expression (Expr));
7881 return False_Range;
7882 end if;
7884 -- Collect discrete choices in all True alternatives
7886 Choices := New_List;
7887 Alt := First (Alternatives (Exp));
7888 while Present (Alt) loop
7889 Dep := Expression (Alt);
7891 if not Is_OK_Static_Expression (Dep) then
7892 raise Non_Static;
7894 elsif Is_True (Expr_Value (Dep)) then
7895 Append_List_To (Choices,
7896 New_Copy_List (Discrete_Choices (Alt)));
7897 end if;
7899 Next (Alt);
7900 end loop;
7902 return Membership_Entries (First (Choices));
7903 end;
7905 -- Expression with actions: if no actions, dig out expression
7907 when N_Expression_With_Actions =>
7908 if Is_Empty_List (Actions (Exp)) then
7909 return Get_RList (Expression (Exp));
7910 else
7911 raise Non_Static;
7912 end if;
7914 -- Xor operator
7916 when N_Op_Xor =>
7917 return (Get_RList (Left_Opnd (Exp))
7918 and not Get_RList (Right_Opnd (Exp)))
7919 or (Get_RList (Right_Opnd (Exp))
7920 and not Get_RList (Left_Opnd (Exp)));
7922 -- Any other node type is non-static
7924 when others =>
7925 raise Non_Static;
7926 end case;
7927 end Get_RList;
7929 ------------
7930 -- Hi_Val --
7931 ------------
7933 function Hi_Val (N : Node_Id) return Uint is
7934 begin
7935 if Is_OK_Static_Expression (N) then
7936 return Expr_Value (N);
7937 else
7938 pragma Assert (Nkind (N) = N_Range);
7939 return Expr_Value (High_Bound (N));
7940 end if;
7941 end Hi_Val;
7943 --------------
7944 -- Is_False --
7945 --------------
7947 function Is_False (R : RList) return Boolean is
7948 begin
7949 return R'Length = 0;
7950 end Is_False;
7952 -------------
7953 -- Is_True --
7954 -------------
7956 function Is_True (R : RList) return Boolean is
7957 begin
7958 return R'Length = 1
7959 and then R (R'First).Lo = BLo
7960 and then R (R'First).Hi = BHi;
7961 end Is_True;
7963 -----------------
7964 -- Is_Type_Ref --
7965 -----------------
7967 function Is_Type_Ref (N : Node_Id) return Boolean is
7968 begin
7969 return Nkind (N) = N_Identifier
7970 and then Chars (N) = Nam
7971 and then Paren_Count (N) = 0;
7972 end Is_Type_Ref;
7974 ------------
7975 -- Lo_Val --
7976 ------------
7978 function Lo_Val (N : Node_Id) return Uint is
7979 begin
7980 if Is_OK_Static_Expression (N) then
7981 return Expr_Value (N);
7982 else
7983 pragma Assert (Nkind (N) = N_Range);
7984 return Expr_Value (Low_Bound (N));
7985 end if;
7986 end Lo_Val;
7988 ------------------------
7989 -- Membership_Entries --
7990 ------------------------
7992 function Membership_Entries (N : Node_Id) return RList is
7993 begin
7994 if No (Next (N)) then
7995 return Membership_Entry (N);
7996 else
7997 return Membership_Entry (N) or Membership_Entries (Next (N));
7998 end if;
7999 end Membership_Entries;
8001 ----------------------
8002 -- Membership_Entry --
8003 ----------------------
8005 function Membership_Entry (N : Node_Id) return RList is
8006 Val : Uint;
8007 SLo : Uint;
8008 SHi : Uint;
8010 begin
8011 -- Range case
8013 if Nkind (N) = N_Range then
8014 if not Is_OK_Static_Expression (Low_Bound (N))
8015 or else
8016 not Is_OK_Static_Expression (High_Bound (N))
8017 then
8018 raise Non_Static;
8019 else
8020 SLo := Expr_Value (Low_Bound (N));
8021 SHi := Expr_Value (High_Bound (N));
8022 return RList'(1 => REnt'(SLo, SHi));
8023 end if;
8025 -- Static expression case
8027 elsif Is_OK_Static_Expression (N) then
8028 Val := Expr_Value (N);
8029 return RList'(1 => REnt'(Val, Val));
8031 -- Identifier (other than static expression) case
8033 else pragma Assert (Nkind (N) = N_Identifier);
8035 -- Type case
8037 if Is_Type (Entity (N)) then
8039 -- If type has predicates, process them
8041 if Has_Predicates (Entity (N)) then
8042 return Stat_Pred (Entity (N));
8044 -- For static subtype without predicates, get range
8046 elsif Is_OK_Static_Subtype (Entity (N)) then
8047 SLo := Expr_Value (Type_Low_Bound (Entity (N)));
8048 SHi := Expr_Value (Type_High_Bound (Entity (N)));
8049 return RList'(1 => REnt'(SLo, SHi));
8051 -- Any other type makes us non-static
8053 else
8054 raise Non_Static;
8055 end if;
8057 -- Any other kind of identifier in predicate (e.g. a non-static
8058 -- expression value) means this is not a static predicate.
8060 else
8061 raise Non_Static;
8062 end if;
8063 end if;
8064 end Membership_Entry;
8066 ---------------
8067 -- Stat_Pred --
8068 ---------------
8070 function Stat_Pred (Typ : Entity_Id) return RList is
8071 begin
8072 -- Not static if type does not have static predicates
8074 if not Has_Static_Predicate (Typ) then
8075 raise Non_Static;
8076 end if;
8078 -- Otherwise we convert the predicate list to a range list
8080 declare
8081 Spred : constant List_Id := Static_Discrete_Predicate (Typ);
8082 Result : RList (1 .. List_Length (Spred));
8083 P : Node_Id;
8085 begin
8086 P := First (Static_Discrete_Predicate (Typ));
8087 for J in Result'Range loop
8088 Result (J) := REnt'(Lo_Val (P), Hi_Val (P));
8089 Next (P);
8090 end loop;
8092 return Result;
8093 end;
8094 end Stat_Pred;
8096 -- Start of processing for Build_Discrete_Static_Predicate
8098 begin
8099 -- Establish bounds for the predicate
8101 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
8102 TLo := Expr_Value (Type_Low_Bound (Typ));
8103 else
8104 TLo := BLo;
8105 end if;
8107 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
8108 THi := Expr_Value (Type_High_Bound (Typ));
8109 else
8110 THi := BHi;
8111 end if;
8113 -- Analyze the expression to see if it is a static predicate
8115 declare
8116 Ranges : constant RList := Get_RList (Expr);
8117 -- Range list from expression if it is static
8119 Plist : List_Id;
8121 begin
8122 -- Convert range list into a form for the static predicate. In the
8123 -- Ranges array, we just have raw ranges, these must be converted
8124 -- to properly typed and analyzed static expressions or range nodes.
8126 -- Note: here we limit ranges to the ranges of the subtype, so that
8127 -- a predicate is always false for values outside the subtype. That
8128 -- seems fine, such values are invalid anyway, and considering them
8129 -- to fail the predicate seems allowed and friendly, and furthermore
8130 -- simplifies processing for case statements and loops.
8132 Plist := New_List;
8134 for J in Ranges'Range loop
8135 declare
8136 Lo : Uint := Ranges (J).Lo;
8137 Hi : Uint := Ranges (J).Hi;
8139 begin
8140 -- Ignore completely out of range entry
8142 if Hi < TLo or else Lo > THi then
8143 null;
8145 -- Otherwise process entry
8147 else
8148 -- Adjust out of range value to subtype range
8150 if Lo < TLo then
8151 Lo := TLo;
8152 end if;
8154 if Hi > THi then
8155 Hi := THi;
8156 end if;
8158 -- Convert range into required form
8160 Append_To (Plist, Build_Range (Lo, Hi));
8161 end if;
8162 end;
8163 end loop;
8165 -- Processing was successful and all entries were static, so now we
8166 -- can store the result as the predicate list.
8168 Set_Static_Discrete_Predicate (Typ, Plist);
8170 -- The processing for static predicates put the expression into
8171 -- canonical form as a series of ranges. It also eliminated
8172 -- duplicates and collapsed and combined ranges. We might as well
8173 -- replace the alternatives list of the right operand of the
8174 -- membership test with the static predicate list, which will
8175 -- usually be more efficient.
8177 declare
8178 New_Alts : constant List_Id := New_List;
8179 Old_Node : Node_Id;
8180 New_Node : Node_Id;
8182 begin
8183 Old_Node := First (Plist);
8184 while Present (Old_Node) loop
8185 New_Node := New_Copy (Old_Node);
8187 if Nkind (New_Node) = N_Range then
8188 Set_Low_Bound (New_Node, New_Copy (Low_Bound (Old_Node)));
8189 Set_High_Bound (New_Node, New_Copy (High_Bound (Old_Node)));
8190 end if;
8192 Append_To (New_Alts, New_Node);
8193 Next (Old_Node);
8194 end loop;
8196 -- If empty list, replace by False
8198 if Is_Empty_List (New_Alts) then
8199 Rewrite (Expr, New_Occurrence_Of (Standard_False, Loc));
8201 -- Else replace by set membership test
8203 else
8204 Rewrite (Expr,
8205 Make_In (Loc,
8206 Left_Opnd => Make_Identifier (Loc, Nam),
8207 Right_Opnd => Empty,
8208 Alternatives => New_Alts));
8210 -- Resolve new expression in function context
8212 Install_Formals (Predicate_Function (Typ));
8213 Push_Scope (Predicate_Function (Typ));
8214 Analyze_And_Resolve (Expr, Standard_Boolean);
8215 Pop_Scope;
8216 end if;
8217 end;
8218 end;
8220 -- If non-static, return doing nothing
8222 exception
8223 when Non_Static =>
8224 return;
8225 end Build_Discrete_Static_Predicate;
8227 --------------------------------
8228 -- Build_Export_Import_Pragma --
8229 --------------------------------
8231 function Build_Export_Import_Pragma
8232 (Asp : Node_Id;
8233 Id : Entity_Id) return Node_Id
8235 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
8236 Expr : constant Node_Id := Expression (Asp);
8237 Loc : constant Source_Ptr := Sloc (Asp);
8239 Args : List_Id;
8240 Conv : Node_Id;
8241 Conv_Arg : Node_Id;
8242 Dummy_1 : Node_Id;
8243 Dummy_2 : Node_Id;
8244 EN : Node_Id;
8245 LN : Node_Id;
8246 Prag : Node_Id;
8248 Create_Pragma : Boolean := False;
8249 -- This flag is set when the aspect form is such that it warrants the
8250 -- creation of a corresponding pragma.
8252 begin
8253 if Present (Expr) then
8254 if Error_Posted (Expr) then
8255 null;
8257 elsif Is_True (Expr_Value (Expr)) then
8258 Create_Pragma := True;
8259 end if;
8261 -- Otherwise the aspect defaults to True
8263 else
8264 Create_Pragma := True;
8265 end if;
8267 -- Nothing to do when the expression is False or is erroneous
8269 if not Create_Pragma then
8270 return Empty;
8271 end if;
8273 -- Obtain all interfacing aspects that apply to the related entity
8275 Get_Interfacing_Aspects
8276 (Iface_Asp => Asp,
8277 Conv_Asp => Conv,
8278 EN_Asp => EN,
8279 Expo_Asp => Dummy_1,
8280 Imp_Asp => Dummy_2,
8281 LN_Asp => LN);
8283 Args := New_List;
8285 -- Handle the convention argument
8287 if Present (Conv) then
8288 Conv_Arg := New_Copy_Tree (Expression (Conv));
8290 -- Assume convention "Ada' when aspect Convention is missing
8292 else
8293 Conv_Arg := Make_Identifier (Loc, Name_Ada);
8294 end if;
8296 Append_To (Args,
8297 Make_Pragma_Argument_Association (Loc,
8298 Chars => Name_Convention,
8299 Expression => Conv_Arg));
8301 -- Handle the entity argument
8303 Append_To (Args,
8304 Make_Pragma_Argument_Association (Loc,
8305 Chars => Name_Entity,
8306 Expression => New_Occurrence_Of (Id, Loc)));
8308 -- Handle the External_Name argument
8310 if Present (EN) then
8311 Append_To (Args,
8312 Make_Pragma_Argument_Association (Loc,
8313 Chars => Name_External_Name,
8314 Expression => New_Copy_Tree (Expression (EN))));
8315 end if;
8317 -- Handle the Link_Name argument
8319 if Present (LN) then
8320 Append_To (Args,
8321 Make_Pragma_Argument_Association (Loc,
8322 Chars => Name_Link_Name,
8323 Expression => New_Copy_Tree (Expression (LN))));
8324 end if;
8326 -- Generate:
8327 -- pragma Export/Import
8328 -- (Convention => <Conv>/Ada,
8329 -- Entity => <Id>,
8330 -- [External_Name => <EN>,]
8331 -- [Link_Name => <LN>]);
8333 Prag :=
8334 Make_Pragma (Loc,
8335 Pragma_Identifier =>
8336 Make_Identifier (Loc, Chars (Identifier (Asp))),
8337 Pragma_Argument_Associations => Args);
8339 -- Decorate the relevant aspect and the pragma
8341 Set_Aspect_Rep_Item (Asp, Prag);
8343 Set_Corresponding_Aspect (Prag, Asp);
8344 Set_From_Aspect_Specification (Prag);
8345 Set_Parent (Prag, Asp);
8347 if Asp_Id = Aspect_Import and then Is_Subprogram (Id) then
8348 Set_Import_Pragma (Id, Prag);
8349 end if;
8351 return Prag;
8352 end Build_Export_Import_Pragma;
8354 -------------------------------
8355 -- Build_Predicate_Functions --
8356 -------------------------------
8358 -- The procedures that are constructed here have the form:
8360 -- function typPredicate (Ixxx : typ) return Boolean is
8361 -- begin
8362 -- return
8363 -- typ1Predicate (typ1 (Ixxx))
8364 -- and then typ2Predicate (typ2 (Ixxx))
8365 -- and then ...;
8366 -- exp1 and then exp2 and then ...
8367 -- end typPredicate;
8369 -- Here exp1, and exp2 are expressions from Predicate pragmas. Note that
8370 -- this is the point at which these expressions get analyzed, providing the
8371 -- required delay, and typ1, typ2, are entities from which predicates are
8372 -- inherited. Note that we do NOT generate Check pragmas, that's because we
8373 -- use this function even if checks are off, e.g. for membership tests.
8375 -- Note that the inherited predicates are evaluated first, as required by
8376 -- AI12-0071-1.
8378 -- Note that Sem_Eval.Real_Or_String_Static_Predicate_Matches depends on
8379 -- the form of this return expression.
8381 -- If the expression has at least one Raise_Expression, then we also build
8382 -- the typPredicateM version of the function, in which any occurrence of a
8383 -- Raise_Expression is converted to "return False".
8385 -- WARNING: This routine manages Ghost regions. Return statements must be
8386 -- replaced by gotos which jump to the end of the routine and restore the
8387 -- Ghost mode.
8389 procedure Build_Predicate_Functions (Typ : Entity_Id; N : Node_Id) is
8390 Loc : constant Source_Ptr := Sloc (Typ);
8392 Expr : Node_Id;
8393 -- This is the expression for the result of the function. It is
8394 -- is build by connecting the component predicates with AND THEN.
8396 Expr_M : Node_Id := Empty; -- init to avoid warning
8397 -- This is the corresponding return expression for the Predicate_M
8398 -- function. It differs in that raise expressions are marked for
8399 -- special expansion (see Process_REs).
8401 Object_Name : Name_Id;
8402 -- Name for argument of Predicate procedure. Note that we use the same
8403 -- name for both predicate functions. That way the reference within the
8404 -- predicate expression is the same in both functions.
8406 Object_Entity : Entity_Id;
8407 -- Entity for argument of Predicate procedure
8409 Object_Entity_M : Entity_Id;
8410 -- Entity for argument of separate Predicate procedure when exceptions
8411 -- are present in expression.
8413 FDecl : Node_Id;
8414 -- The function declaration
8416 SId : Entity_Id;
8417 -- Its entity
8419 Raise_Expression_Present : Boolean := False;
8420 -- Set True if Expr has at least one Raise_Expression
8422 procedure Add_Condition (Cond : Node_Id);
8423 -- Append Cond to Expr using "and then" (or just copy Cond to Expr if
8424 -- Expr is empty).
8426 procedure Add_Predicates;
8427 -- Appends expressions for any Predicate pragmas in the rep item chain
8428 -- Typ to Expr. Note that we look only at items for this exact entity.
8429 -- Inheritance of predicates for the parent type is done by calling the
8430 -- Predicate_Function of the parent type, using Add_Call above.
8432 procedure Add_Call (T : Entity_Id);
8433 -- Includes a call to the predicate function for type T in Expr if T
8434 -- has predicates and Predicate_Function (T) is non-empty.
8436 function Process_RE (N : Node_Id) return Traverse_Result;
8437 -- Used in Process REs, tests if node N is a raise expression, and if
8438 -- so, marks it to be converted to return False.
8440 procedure Process_REs is new Traverse_Proc (Process_RE);
8441 -- Marks any raise expressions in Expr_M to return False
8443 function Test_RE (N : Node_Id) return Traverse_Result;
8444 -- Used in Test_REs, tests one node for being a raise expression, and if
8445 -- so sets Raise_Expression_Present True.
8447 procedure Test_REs is new Traverse_Proc (Test_RE);
8448 -- Tests to see if Expr contains any raise expressions
8450 --------------
8451 -- Add_Call --
8452 --------------
8454 procedure Add_Call (T : Entity_Id) is
8455 Exp : Node_Id;
8457 begin
8458 if Present (T) and then Present (Predicate_Function (T)) then
8459 Set_Has_Predicates (Typ);
8461 -- Build the call to the predicate function of T. The type may be
8462 -- derived, so use an unchecked conversion for the actual.
8464 Exp :=
8465 Make_Predicate_Call
8466 (Typ => T,
8467 Expr =>
8468 Unchecked_Convert_To (T,
8469 Make_Identifier (Loc, Object_Name)));
8471 -- "and"-in the call to evolving expression
8473 Add_Condition (Exp);
8475 -- Output info message on inheritance if required. Note we do not
8476 -- give this information for generic actual types, since it is
8477 -- unwelcome noise in that case in instantiations. We also
8478 -- generally suppress the message in instantiations, and also
8479 -- if it involves internal names.
8481 if Opt.List_Inherited_Aspects
8482 and then not Is_Generic_Actual_Type (Typ)
8483 and then Instantiation_Depth (Sloc (Typ)) = 0
8484 and then not Is_Internal_Name (Chars (T))
8485 and then not Is_Internal_Name (Chars (Typ))
8486 then
8487 Error_Msg_Sloc := Sloc (Predicate_Function (T));
8488 Error_Msg_Node_2 := T;
8489 Error_Msg_N ("info: & inherits predicate from & #?L?", Typ);
8490 end if;
8491 end if;
8492 end Add_Call;
8494 -------------------
8495 -- Add_Condition --
8496 -------------------
8498 procedure Add_Condition (Cond : Node_Id) is
8499 begin
8500 -- This is the first predicate expression
8502 if No (Expr) then
8503 Expr := Cond;
8505 -- Otherwise concatenate to the existing predicate expressions by
8506 -- using "and then".
8508 else
8509 Expr :=
8510 Make_And_Then (Loc,
8511 Left_Opnd => Relocate_Node (Expr),
8512 Right_Opnd => Cond);
8513 end if;
8514 end Add_Condition;
8516 --------------------
8517 -- Add_Predicates --
8518 --------------------
8520 procedure Add_Predicates is
8521 procedure Add_Predicate (Prag : Node_Id);
8522 -- Concatenate the expression of predicate pragma Prag to Expr by
8523 -- using a short circuit "and then" operator.
8525 -------------------
8526 -- Add_Predicate --
8527 -------------------
8529 procedure Add_Predicate (Prag : Node_Id) is
8530 procedure Replace_Type_Reference (N : Node_Id);
8531 -- Replace a single occurrence N of the subtype name with a
8532 -- reference to the formal of the predicate function. N can be an
8533 -- identifier referencing the subtype, or a selected component,
8534 -- representing an appropriately qualified occurrence of the
8535 -- subtype name.
8537 procedure Replace_Type_References is
8538 new Replace_Type_References_Generic (Replace_Type_Reference);
8539 -- Traverse an expression changing every occurrence of an
8540 -- identifier whose name matches the name of the subtype with a
8541 -- reference to the formal parameter of the predicate function.
8543 ----------------------------
8544 -- Replace_Type_Reference --
8545 ----------------------------
8547 procedure Replace_Type_Reference (N : Node_Id) is
8548 begin
8549 Rewrite (N, Make_Identifier (Sloc (N), Object_Name));
8550 -- Use the Sloc of the usage name, not the defining name
8552 Set_Etype (N, Typ);
8553 Set_Entity (N, Object_Entity);
8555 -- We want to treat the node as if it comes from source, so
8556 -- that ASIS will not ignore it.
8558 Set_Comes_From_Source (N, True);
8559 end Replace_Type_Reference;
8561 -- Local variables
8563 Asp : constant Node_Id := Corresponding_Aspect (Prag);
8564 Arg1 : Node_Id;
8565 Arg2 : Node_Id;
8567 -- Start of processing for Add_Predicate
8569 begin
8570 -- Mark corresponding SCO as enabled
8572 Set_SCO_Pragma_Enabled (Sloc (Prag));
8574 -- Extract the arguments of the pragma. The expression itself
8575 -- is copied for use in the predicate function, to preserve the
8576 -- original version for ASIS use.
8578 Arg1 := First (Pragma_Argument_Associations (Prag));
8579 Arg2 := Next (Arg1);
8581 Arg1 := Get_Pragma_Arg (Arg1);
8582 Arg2 := New_Copy_Tree (Get_Pragma_Arg (Arg2));
8584 -- When the predicate pragma applies to the current type or its
8585 -- full view, replace all occurrences of the subtype name with
8586 -- references to the formal parameter of the predicate function.
8588 if Entity (Arg1) = Typ
8589 or else Full_View (Entity (Arg1)) = Typ
8590 then
8591 Replace_Type_References (Arg2, Typ);
8593 -- If the predicate pragma comes from an aspect, replace the
8594 -- saved expression because we need the subtype references
8595 -- replaced for the calls to Preanalyze_Spec_Expression in
8596 -- Check_Aspect_At_xxx routines.
8598 if Present (Asp) then
8599 Set_Entity (Identifier (Asp), New_Copy_Tree (Arg2));
8600 end if;
8602 -- "and"-in the Arg2 condition to evolving expression
8604 Add_Condition (Relocate_Node (Arg2));
8605 end if;
8606 end Add_Predicate;
8608 -- Local variables
8610 Ritem : Node_Id;
8612 -- Start of processing for Add_Predicates
8614 begin
8615 Ritem := First_Rep_Item (Typ);
8617 -- If the type is private, check whether full view has inherited
8618 -- predicates.
8620 if Is_Private_Type (Typ) and then No (Ritem) then
8621 Ritem := First_Rep_Item (Full_View (Typ));
8622 end if;
8624 while Present (Ritem) loop
8625 if Nkind (Ritem) = N_Pragma
8626 and then Pragma_Name (Ritem) = Name_Predicate
8627 then
8628 Add_Predicate (Ritem);
8630 -- If the type is declared in an inner package it may be frozen
8631 -- outside of the package, and the generated pragma has not been
8632 -- analyzed yet, so capture the expression for the predicate
8633 -- function at this point.
8635 elsif Nkind (Ritem) = N_Aspect_Specification
8636 and then Present (Aspect_Rep_Item (Ritem))
8637 and then Scope (Typ) /= Current_Scope
8638 then
8639 declare
8640 Prag : constant Node_Id := Aspect_Rep_Item (Ritem);
8642 begin
8643 if Nkind (Prag) = N_Pragma
8644 and then Pragma_Name (Prag) = Name_Predicate
8645 then
8646 Add_Predicate (Prag);
8647 end if;
8648 end;
8649 end if;
8651 Next_Rep_Item (Ritem);
8652 end loop;
8653 end Add_Predicates;
8655 ----------------
8656 -- Process_RE --
8657 ----------------
8659 function Process_RE (N : Node_Id) return Traverse_Result is
8660 begin
8661 if Nkind (N) = N_Raise_Expression then
8662 Set_Convert_To_Return_False (N);
8663 return Skip;
8664 else
8665 return OK;
8666 end if;
8667 end Process_RE;
8669 -------------
8670 -- Test_RE --
8671 -------------
8673 function Test_RE (N : Node_Id) return Traverse_Result is
8674 begin
8675 if Nkind (N) = N_Raise_Expression then
8676 Raise_Expression_Present := True;
8677 return Abandon;
8678 else
8679 return OK;
8680 end if;
8681 end Test_RE;
8683 -- Local variables
8685 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
8686 -- Save the Ghost mode to restore on exit
8688 -- Start of processing for Build_Predicate_Functions
8690 begin
8691 -- Return if already built or if type does not have predicates
8693 SId := Predicate_Function (Typ);
8694 if not Has_Predicates (Typ)
8695 or else (Present (SId) and then Has_Completion (SId))
8696 then
8697 return;
8698 end if;
8700 -- The related type may be subject to pragma Ghost. Set the mode now to
8701 -- ensure that the predicate functions are properly marked as Ghost.
8703 Set_Ghost_Mode (Typ);
8705 -- Prepare to construct predicate expression
8707 Expr := Empty;
8709 if Present (SId) then
8710 FDecl := Unit_Declaration_Node (SId);
8712 else
8713 FDecl := Build_Predicate_Function_Declaration (Typ);
8714 SId := Defining_Entity (FDecl);
8715 end if;
8717 -- Recover name of formal parameter of function that replaces references
8718 -- to the type in predicate expressions.
8720 Object_Entity :=
8721 Defining_Identifier
8722 (First (Parameter_Specifications (Specification (FDecl))));
8724 Object_Name := Chars (Object_Entity);
8725 Object_Entity_M := Make_Defining_Identifier (Loc, Chars => Object_Name);
8727 -- Add predicates for ancestor if present. These must come before the
8728 -- ones for the current type, as required by AI12-0071-1.
8730 declare
8731 Atyp : Entity_Id;
8732 begin
8733 Atyp := Nearest_Ancestor (Typ);
8735 -- The type may be private but the full view may inherit predicates
8737 if No (Atyp) and then Is_Private_Type (Typ) then
8738 Atyp := Nearest_Ancestor (Full_View (Typ));
8739 end if;
8741 if Present (Atyp) then
8742 Add_Call (Atyp);
8743 end if;
8744 end;
8746 -- Add Predicates for the current type
8748 Add_Predicates;
8750 -- Case where predicates are present
8752 if Present (Expr) then
8754 -- Test for raise expression present
8756 Test_REs (Expr);
8758 -- If raise expression is present, capture a copy of Expr for use
8759 -- in building the predicateM function version later on. For this
8760 -- copy we replace references to Object_Entity by Object_Entity_M.
8762 if Raise_Expression_Present then
8763 declare
8764 Map : constant Elist_Id := New_Elmt_List;
8765 New_V : Entity_Id := Empty;
8767 -- The unanalyzed expression will be copied and appear in
8768 -- both functions. Normally expressions do not declare new
8769 -- entities, but quantified expressions do, so we need to
8770 -- create new entities for their bound variables, to prevent
8771 -- multiple definitions in gigi.
8773 function Reset_Loop_Variable (N : Node_Id)
8774 return Traverse_Result;
8776 procedure Collect_Loop_Variables is
8777 new Traverse_Proc (Reset_Loop_Variable);
8779 ------------------------
8780 -- Reset_Loop_Variable --
8781 ------------------------
8783 function Reset_Loop_Variable (N : Node_Id)
8784 return Traverse_Result
8786 begin
8787 if Nkind (N) = N_Iterator_Specification then
8788 New_V := Make_Defining_Identifier
8789 (Sloc (N), Chars (Defining_Identifier (N)));
8791 Set_Defining_Identifier (N, New_V);
8792 end if;
8794 return OK;
8795 end Reset_Loop_Variable;
8797 begin
8798 Append_Elmt (Object_Entity, Map);
8799 Append_Elmt (Object_Entity_M, Map);
8800 Expr_M := New_Copy_Tree (Expr, Map => Map);
8801 Collect_Loop_Variables (Expr_M);
8802 end;
8803 end if;
8805 -- Build the main predicate function
8807 declare
8808 SIdB : constant Entity_Id :=
8809 Make_Defining_Identifier (Loc,
8810 Chars => New_External_Name (Chars (Typ), "Predicate"));
8811 -- The entity for the function body
8813 Spec : Node_Id;
8814 FBody : Node_Id;
8816 begin
8817 Set_Ekind (SIdB, E_Function);
8818 Set_Is_Predicate_Function (SIdB);
8820 -- The predicate function is shared between views of a type
8822 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8823 Set_Predicate_Function (Full_View (Typ), SId);
8824 end if;
8826 -- Build function body
8828 Spec :=
8829 Make_Function_Specification (Loc,
8830 Defining_Unit_Name => SIdB,
8831 Parameter_Specifications => New_List (
8832 Make_Parameter_Specification (Loc,
8833 Defining_Identifier =>
8834 Make_Defining_Identifier (Loc, Object_Name),
8835 Parameter_Type =>
8836 New_Occurrence_Of (Typ, Loc))),
8837 Result_Definition =>
8838 New_Occurrence_Of (Standard_Boolean, Loc));
8840 FBody :=
8841 Make_Subprogram_Body (Loc,
8842 Specification => Spec,
8843 Declarations => Empty_List,
8844 Handled_Statement_Sequence =>
8845 Make_Handled_Sequence_Of_Statements (Loc,
8846 Statements => New_List (
8847 Make_Simple_Return_Statement (Loc,
8848 Expression => Expr))));
8850 -- If declaration has not been analyzed yet, Insert declaration
8851 -- before freeze node. Insert body itself after freeze node.
8853 if not Analyzed (FDecl) then
8854 Insert_Before_And_Analyze (N, FDecl);
8855 end if;
8857 Insert_After_And_Analyze (N, FBody);
8859 -- Static predicate functions are always side-effect free, and
8860 -- in most cases dynamic predicate functions are as well. Mark
8861 -- them as such whenever possible, so redundant predicate checks
8862 -- can be optimized. If there is a variable reference within the
8863 -- expression, the function is not pure.
8865 if Expander_Active then
8866 Set_Is_Pure (SId,
8867 Side_Effect_Free (Expr, Variable_Ref => True));
8868 Set_Is_Inlined (SId);
8869 end if;
8870 end;
8872 -- Test for raise expressions present and if so build M version
8874 if Raise_Expression_Present then
8875 declare
8876 SId : constant Entity_Id :=
8877 Make_Defining_Identifier (Loc,
8878 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8879 -- The entity for the function spec
8881 SIdB : constant Entity_Id :=
8882 Make_Defining_Identifier (Loc,
8883 Chars => New_External_Name (Chars (Typ), "PredicateM"));
8884 -- The entity for the function body
8886 Spec : Node_Id;
8887 FBody : Node_Id;
8888 FDecl : Node_Id;
8889 BTemp : Entity_Id;
8891 begin
8892 -- Mark any raise expressions for special expansion
8894 Process_REs (Expr_M);
8896 -- Build function declaration
8898 Set_Ekind (SId, E_Function);
8899 Set_Is_Predicate_Function_M (SId);
8900 Set_Predicate_Function_M (Typ, SId);
8902 -- The predicate function is shared between views of a type
8904 if Is_Private_Type (Typ) and then Present (Full_View (Typ)) then
8905 Set_Predicate_Function_M (Full_View (Typ), SId);
8906 end if;
8908 Spec :=
8909 Make_Function_Specification (Loc,
8910 Defining_Unit_Name => SId,
8911 Parameter_Specifications => New_List (
8912 Make_Parameter_Specification (Loc,
8913 Defining_Identifier => Object_Entity_M,
8914 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
8915 Result_Definition =>
8916 New_Occurrence_Of (Standard_Boolean, Loc));
8918 FDecl :=
8919 Make_Subprogram_Declaration (Loc,
8920 Specification => Spec);
8922 -- Build function body
8924 Spec :=
8925 Make_Function_Specification (Loc,
8926 Defining_Unit_Name => SIdB,
8927 Parameter_Specifications => New_List (
8928 Make_Parameter_Specification (Loc,
8929 Defining_Identifier =>
8930 Make_Defining_Identifier (Loc, Object_Name),
8931 Parameter_Type =>
8932 New_Occurrence_Of (Typ, Loc))),
8933 Result_Definition =>
8934 New_Occurrence_Of (Standard_Boolean, Loc));
8936 -- Build the body, we declare the boolean expression before
8937 -- doing the return, because we are not really confident of
8938 -- what happens if a return appears within a return.
8940 BTemp :=
8941 Make_Defining_Identifier (Loc,
8942 Chars => New_Internal_Name ('B'));
8944 FBody :=
8945 Make_Subprogram_Body (Loc,
8946 Specification => Spec,
8948 Declarations => New_List (
8949 Make_Object_Declaration (Loc,
8950 Defining_Identifier => BTemp,
8951 Constant_Present => True,
8952 Object_Definition =>
8953 New_Occurrence_Of (Standard_Boolean, Loc),
8954 Expression => Expr_M)),
8956 Handled_Statement_Sequence =>
8957 Make_Handled_Sequence_Of_Statements (Loc,
8958 Statements => New_List (
8959 Make_Simple_Return_Statement (Loc,
8960 Expression => New_Occurrence_Of (BTemp, Loc)))));
8962 -- Insert declaration before freeze node and body after
8964 Insert_Before_And_Analyze (N, FDecl);
8965 Insert_After_And_Analyze (N, FBody);
8966 end;
8967 end if;
8969 -- See if we have a static predicate. Note that the answer may be
8970 -- yes even if we have an explicit Dynamic_Predicate present.
8972 declare
8973 PS : Boolean;
8974 EN : Node_Id;
8976 begin
8977 if not Is_Scalar_Type (Typ) and then not Is_String_Type (Typ) then
8978 PS := False;
8979 else
8980 PS := Is_Predicate_Static (Expr, Object_Name);
8981 end if;
8983 -- Case where we have a predicate-static aspect
8985 if PS then
8987 -- We don't set Has_Static_Predicate_Aspect, since we can have
8988 -- any of the three cases (Predicate, Dynamic_Predicate, or
8989 -- Static_Predicate) generating a predicate with an expression
8990 -- that is predicate-static. We just indicate that we have a
8991 -- predicate that can be treated as static.
8993 Set_Has_Static_Predicate (Typ);
8995 -- For discrete subtype, build the static predicate list
8997 if Is_Discrete_Type (Typ) then
8998 Build_Discrete_Static_Predicate (Typ, Expr, Object_Name);
9000 -- If we don't get a static predicate list, it means that we
9001 -- have a case where this is not possible, most typically in
9002 -- the case where we inherit a dynamic predicate. We do not
9003 -- consider this an error, we just leave the predicate as
9004 -- dynamic. But if we do succeed in building the list, then
9005 -- we mark the predicate as static.
9007 if No (Static_Discrete_Predicate (Typ)) then
9008 Set_Has_Static_Predicate (Typ, False);
9009 end if;
9011 -- For real or string subtype, save predicate expression
9013 elsif Is_Real_Type (Typ) or else Is_String_Type (Typ) then
9014 Set_Static_Real_Or_String_Predicate (Typ, Expr);
9015 end if;
9017 -- Case of dynamic predicate (expression is not predicate-static)
9019 else
9020 -- Again, we don't set Has_Dynamic_Predicate_Aspect, since that
9021 -- is only set if we have an explicit Dynamic_Predicate aspect
9022 -- given. Here we may simply have a Predicate aspect where the
9023 -- expression happens not to be predicate-static.
9025 -- Emit an error when the predicate is categorized as static
9026 -- but its expression is not predicate-static.
9028 -- First a little fiddling to get a nice location for the
9029 -- message. If the expression is of the form (A and then B),
9030 -- where A is an inherited predicate, then use the right
9031 -- operand for the Sloc. This avoids getting confused by a call
9032 -- to an inherited predicate with a less convenient source
9033 -- location.
9035 EN := Expr;
9036 while Nkind (EN) = N_And_Then
9037 and then Nkind (Left_Opnd (EN)) = N_Function_Call
9038 and then Is_Predicate_Function
9039 (Entity (Name (Left_Opnd (EN))))
9040 loop
9041 EN := Right_Opnd (EN);
9042 end loop;
9044 -- Now post appropriate message
9046 if Has_Static_Predicate_Aspect (Typ) then
9047 if Is_Scalar_Type (Typ) or else Is_String_Type (Typ) then
9048 Error_Msg_F
9049 ("expression is not predicate-static (RM 3.2.4(16-22))",
9050 EN);
9051 else
9052 Error_Msg_F
9053 ("static predicate requires scalar or string type", EN);
9054 end if;
9055 end if;
9056 end if;
9057 end;
9058 end if;
9060 Restore_Ghost_Mode (Saved_GM);
9061 end Build_Predicate_Functions;
9063 ------------------------------------------
9064 -- Build_Predicate_Function_Declaration --
9065 ------------------------------------------
9067 -- WARNING: This routine manages Ghost regions. Return statements must be
9068 -- replaced by gotos which jump to the end of the routine and restore the
9069 -- Ghost mode.
9071 function Build_Predicate_Function_Declaration
9072 (Typ : Entity_Id) return Node_Id
9074 Loc : constant Source_Ptr := Sloc (Typ);
9076 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
9077 -- Save the Ghost mode to restore on exit
9079 Func_Decl : Node_Id;
9080 Func_Id : Entity_Id;
9081 Spec : Node_Id;
9083 begin
9084 -- The related type may be subject to pragma Ghost. Set the mode now to
9085 -- ensure that the predicate functions are properly marked as Ghost.
9087 Set_Ghost_Mode (Typ);
9089 Func_Id :=
9090 Make_Defining_Identifier (Loc,
9091 Chars => New_External_Name (Chars (Typ), "Predicate"));
9093 -- The predicate function requires debug info when the predicates are
9094 -- subject to Source Coverage Obligations.
9096 if Opt.Generate_SCO then
9097 Set_Debug_Info_Needed (Func_Id);
9098 end if;
9100 Spec :=
9101 Make_Function_Specification (Loc,
9102 Defining_Unit_Name => Func_Id,
9103 Parameter_Specifications => New_List (
9104 Make_Parameter_Specification (Loc,
9105 Defining_Identifier => Make_Temporary (Loc, 'I'),
9106 Parameter_Type => New_Occurrence_Of (Typ, Loc))),
9107 Result_Definition =>
9108 New_Occurrence_Of (Standard_Boolean, Loc));
9110 Func_Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
9112 Set_Ekind (Func_Id, E_Function);
9113 Set_Etype (Func_Id, Standard_Boolean);
9114 Set_Is_Internal (Func_Id);
9115 Set_Is_Predicate_Function (Func_Id);
9116 Set_Predicate_Function (Typ, Func_Id);
9118 Insert_After (Parent (Typ), Func_Decl);
9119 Analyze (Func_Decl);
9121 Restore_Ghost_Mode (Saved_GM);
9123 return Func_Decl;
9124 end Build_Predicate_Function_Declaration;
9126 -----------------------------------------
9127 -- Check_Aspect_At_End_Of_Declarations --
9128 -----------------------------------------
9130 procedure Check_Aspect_At_End_Of_Declarations (ASN : Node_Id) is
9131 Ent : constant Entity_Id := Entity (ASN);
9132 Ident : constant Node_Id := Identifier (ASN);
9133 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9135 End_Decl_Expr : constant Node_Id := Entity (Ident);
9136 -- Expression to be analyzed at end of declarations
9138 Freeze_Expr : constant Node_Id := Expression (ASN);
9139 -- Expression from call to Check_Aspect_At_Freeze_Point.
9141 T : constant Entity_Id := Etype (Original_Node (Freeze_Expr));
9142 -- Type required for preanalyze call. We use the original expression to
9143 -- get the proper type, to prevent cascaded errors when the expression
9144 -- is constant-folded.
9146 Err : Boolean;
9147 -- Set False if error
9149 -- On entry to this procedure, Entity (Ident) contains a copy of the
9150 -- original expression from the aspect, saved for this purpose, and
9151 -- but Expression (Ident) is a preanalyzed copy of the expression,
9152 -- preanalyzed just after the freeze point.
9154 procedure Check_Overloaded_Name;
9155 -- For aspects whose expression is simply a name, this routine checks if
9156 -- the name is overloaded or not. If so, it verifies there is an
9157 -- interpretation that matches the entity obtained at the freeze point,
9158 -- otherwise the compiler complains.
9160 ---------------------------
9161 -- Check_Overloaded_Name --
9162 ---------------------------
9164 procedure Check_Overloaded_Name is
9165 begin
9166 if not Is_Overloaded (End_Decl_Expr) then
9167 Err := not Is_Entity_Name (End_Decl_Expr)
9168 or else Entity (End_Decl_Expr) /= Entity (Freeze_Expr);
9170 else
9171 Err := True;
9173 declare
9174 Index : Interp_Index;
9175 It : Interp;
9177 begin
9178 Get_First_Interp (End_Decl_Expr, Index, It);
9179 while Present (It.Typ) loop
9180 if It.Nam = Entity (Freeze_Expr) then
9181 Err := False;
9182 exit;
9183 end if;
9185 Get_Next_Interp (Index, It);
9186 end loop;
9187 end;
9188 end if;
9189 end Check_Overloaded_Name;
9191 -- Start of processing for Check_Aspect_At_End_Of_Declarations
9193 begin
9194 -- In an instance we do not perform the consistency check between freeze
9195 -- point and end of declarations, because it was done already in the
9196 -- analysis of the generic. Furthermore, the delayed analysis of an
9197 -- aspect of the instance may produce spurious errors when the generic
9198 -- is a child unit that references entities in the parent (which might
9199 -- not be in scope at the freeze point of the instance).
9201 if In_Instance then
9202 return;
9204 -- The enclosing scope may have been rewritten during expansion (.e.g. a
9205 -- task body is rewritten as a procedure) after this conformance check
9206 -- has been performed, so do not perform it again (it may not easily be
9207 -- done if full visibility of local entities is not available).
9209 elsif not Comes_From_Source (Current_Scope) then
9210 return;
9212 -- Case of aspects Dimension, Dimension_System and Synchronization
9214 elsif A_Id = Aspect_Synchronization then
9215 return;
9217 -- Case of stream attributes, just have to compare entities. However,
9218 -- the expression is just a name (possibly overloaded), and there may
9219 -- be stream operations declared for unrelated types, so we just need
9220 -- to verify that one of these interpretations is the one available at
9221 -- at the freeze point.
9223 elsif A_Id = Aspect_Input or else
9224 A_Id = Aspect_Output or else
9225 A_Id = Aspect_Read or else
9226 A_Id = Aspect_Write
9227 then
9228 Analyze (End_Decl_Expr);
9229 Check_Overloaded_Name;
9231 elsif A_Id = Aspect_Variable_Indexing or else
9232 A_Id = Aspect_Constant_Indexing or else
9233 A_Id = Aspect_Default_Iterator or else
9234 A_Id = Aspect_Iterator_Element
9235 then
9236 -- Make type unfrozen before analysis, to prevent spurious errors
9237 -- about late attributes.
9239 Set_Is_Frozen (Ent, False);
9240 Analyze (End_Decl_Expr);
9241 Set_Is_Frozen (Ent, True);
9243 -- If the end of declarations comes before any other freeze
9244 -- point, the Freeze_Expr is not analyzed: no check needed.
9246 if Analyzed (Freeze_Expr) and then not In_Instance then
9247 Check_Overloaded_Name;
9248 else
9249 Err := False;
9250 end if;
9252 -- All other cases
9254 else
9255 -- Indicate that the expression comes from an aspect specification,
9256 -- which is used in subsequent analysis even if expansion is off.
9258 Set_Parent (End_Decl_Expr, ASN);
9260 -- In a generic context the aspect expressions have not been
9261 -- preanalyzed, so do it now. There are no conformance checks
9262 -- to perform in this case.
9264 if No (T) then
9265 Check_Aspect_At_Freeze_Point (ASN);
9266 return;
9268 -- The default values attributes may be defined in the private part,
9269 -- and the analysis of the expression may take place when only the
9270 -- partial view is visible. The expression must be scalar, so use
9271 -- the full view to resolve.
9273 elsif (A_Id = Aspect_Default_Value
9274 or else
9275 A_Id = Aspect_Default_Component_Value)
9276 and then Is_Private_Type (T)
9277 then
9278 Preanalyze_Spec_Expression (End_Decl_Expr, Full_View (T));
9280 else
9281 Preanalyze_Spec_Expression (End_Decl_Expr, T);
9282 end if;
9284 Err := not Fully_Conformant_Expressions (End_Decl_Expr, Freeze_Expr);
9285 end if;
9287 -- Output error message if error. Force error on aspect specification
9288 -- even if there is an error on the expression itself.
9290 if Err then
9291 Error_Msg_NE
9292 ("!visibility of aspect for& changes after freeze point",
9293 ASN, Ent);
9294 Error_Msg_NE
9295 ("info: & is frozen here, aspects evaluated at this point??",
9296 Freeze_Node (Ent), Ent);
9297 end if;
9298 end Check_Aspect_At_End_Of_Declarations;
9300 ----------------------------------
9301 -- Check_Aspect_At_Freeze_Point --
9302 ----------------------------------
9304 procedure Check_Aspect_At_Freeze_Point (ASN : Node_Id) is
9305 Ident : constant Node_Id := Identifier (ASN);
9306 -- Identifier (use Entity field to save expression)
9308 A_Id : constant Aspect_Id := Get_Aspect_Id (Chars (Ident));
9310 T : Entity_Id := Empty;
9311 -- Type required for preanalyze call
9313 begin
9314 -- On entry to this procedure, Entity (Ident) contains a copy of the
9315 -- original expression from the aspect, saved for this purpose.
9317 -- On exit from this procedure Entity (Ident) is unchanged, still
9318 -- containing that copy, but Expression (Ident) is a preanalyzed copy
9319 -- of the expression, preanalyzed just after the freeze point.
9321 -- Make a copy of the expression to be preanalyzed
9323 Set_Expression (ASN, New_Copy_Tree (Entity (Ident)));
9325 -- Find type for preanalyze call
9327 case A_Id is
9329 -- No_Aspect should be impossible
9331 when No_Aspect =>
9332 raise Program_Error;
9334 -- Aspects taking an optional boolean argument
9336 when Boolean_Aspects
9337 | Library_Unit_Aspects
9339 T := Standard_Boolean;
9341 -- Aspects corresponding to attribute definition clauses
9343 when Aspect_Address =>
9344 T := RTE (RE_Address);
9346 when Aspect_Attach_Handler =>
9347 T := RTE (RE_Interrupt_ID);
9349 when Aspect_Bit_Order
9350 | Aspect_Scalar_Storage_Order
9352 T := RTE (RE_Bit_Order);
9354 when Aspect_Convention =>
9355 return;
9357 when Aspect_CPU =>
9358 T := RTE (RE_CPU_Range);
9360 -- Default_Component_Value is resolved with the component type
9362 when Aspect_Default_Component_Value =>
9363 T := Component_Type (Entity (ASN));
9365 when Aspect_Default_Storage_Pool =>
9366 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9368 -- Default_Value is resolved with the type entity in question
9370 when Aspect_Default_Value =>
9371 T := Entity (ASN);
9373 when Aspect_Dispatching_Domain =>
9374 T := RTE (RE_Dispatching_Domain);
9376 when Aspect_External_Tag =>
9377 T := Standard_String;
9379 when Aspect_External_Name =>
9380 T := Standard_String;
9382 when Aspect_Link_Name =>
9383 T := Standard_String;
9385 when Aspect_Interrupt_Priority
9386 | Aspect_Priority
9388 T := Standard_Integer;
9390 when Aspect_Relative_Deadline =>
9391 T := RTE (RE_Time_Span);
9393 when Aspect_Secondary_Stack_Size =>
9394 T := Standard_Integer;
9396 when Aspect_Small =>
9398 -- Note that the expression can be of any real type (not just a
9399 -- real universal literal) as long as it is a static constant.
9401 T := Any_Real;
9403 -- For a simple storage pool, we have to retrieve the type of the
9404 -- pool object associated with the aspect's corresponding attribute
9405 -- definition clause.
9407 when Aspect_Simple_Storage_Pool =>
9408 T := Etype (Expression (Aspect_Rep_Item (ASN)));
9410 when Aspect_Storage_Pool =>
9411 T := Class_Wide_Type (RTE (RE_Root_Storage_Pool));
9413 when Aspect_Alignment
9414 | Aspect_Component_Size
9415 | Aspect_Machine_Radix
9416 | Aspect_Object_Size
9417 | Aspect_Size
9418 | Aspect_Storage_Size
9419 | Aspect_Stream_Size
9420 | Aspect_Value_Size
9422 T := Any_Integer;
9424 when Aspect_Linker_Section =>
9425 T := Standard_String;
9427 when Aspect_Synchronization =>
9428 return;
9430 -- Special case, the expression of these aspects is just an entity
9431 -- that does not need any resolution, so just analyze.
9433 when Aspect_Input
9434 | Aspect_Output
9435 | Aspect_Read
9436 | Aspect_Suppress
9437 | Aspect_Unsuppress
9438 | Aspect_Warnings
9439 | Aspect_Write
9441 Analyze (Expression (ASN));
9442 return;
9444 -- Same for Iterator aspects, where the expression is a function
9445 -- name. Legality rules are checked separately.
9447 when Aspect_Constant_Indexing
9448 | Aspect_Default_Iterator
9449 | Aspect_Iterator_Element
9450 | Aspect_Variable_Indexing
9452 Analyze (Expression (ASN));
9453 return;
9455 -- Ditto for Iterable, legality checks in Validate_Iterable_Aspect.
9457 when Aspect_Iterable =>
9458 T := Entity (ASN);
9460 declare
9461 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, T);
9462 Assoc : Node_Id;
9463 Expr : Node_Id;
9465 begin
9466 if Cursor = Any_Type then
9467 return;
9468 end if;
9470 Assoc := First (Component_Associations (Expression (ASN)));
9471 while Present (Assoc) loop
9472 Expr := Expression (Assoc);
9473 Analyze (Expr);
9475 if not Error_Posted (Expr) then
9476 Resolve_Iterable_Operation
9477 (Expr, Cursor, T, Chars (First (Choices (Assoc))));
9478 end if;
9480 Next (Assoc);
9481 end loop;
9482 end;
9484 return;
9486 -- Invariant/Predicate take boolean expressions
9488 when Aspect_Dynamic_Predicate
9489 | Aspect_Invariant
9490 | Aspect_Predicate
9491 | Aspect_Static_Predicate
9492 | Aspect_Type_Invariant
9494 T := Standard_Boolean;
9496 when Aspect_Predicate_Failure =>
9497 T := Standard_String;
9499 -- Here is the list of aspects that don't require delay analysis
9501 when Aspect_Abstract_State
9502 | Aspect_Annotate
9503 | Aspect_Async_Readers
9504 | Aspect_Async_Writers
9505 | Aspect_Constant_After_Elaboration
9506 | Aspect_Contract_Cases
9507 | Aspect_Default_Initial_Condition
9508 | Aspect_Depends
9509 | Aspect_Dimension
9510 | Aspect_Dimension_System
9511 | Aspect_Effective_Reads
9512 | Aspect_Effective_Writes
9513 | Aspect_Extensions_Visible
9514 | Aspect_Ghost
9515 | Aspect_Global
9516 | Aspect_Implicit_Dereference
9517 | Aspect_Initial_Condition
9518 | Aspect_Initializes
9519 | Aspect_Max_Queue_Length
9520 | Aspect_Obsolescent
9521 | Aspect_Part_Of
9522 | Aspect_Post
9523 | Aspect_Postcondition
9524 | Aspect_Pre
9525 | Aspect_Precondition
9526 | Aspect_Refined_Depends
9527 | Aspect_Refined_Global
9528 | Aspect_Refined_Post
9529 | Aspect_Refined_State
9530 | Aspect_SPARK_Mode
9531 | Aspect_Test_Case
9532 | Aspect_Unimplemented
9533 | Aspect_Volatile_Function
9535 raise Program_Error;
9537 end case;
9539 -- Do the preanalyze call
9541 Preanalyze_Spec_Expression (Expression (ASN), T);
9542 end Check_Aspect_At_Freeze_Point;
9544 -----------------------------------
9545 -- Check_Constant_Address_Clause --
9546 -----------------------------------
9548 procedure Check_Constant_Address_Clause
9549 (Expr : Node_Id;
9550 U_Ent : Entity_Id)
9552 procedure Check_At_Constant_Address (Nod : Node_Id);
9553 -- Checks that the given node N represents a name whose 'Address is
9554 -- constant (in the same sense as OK_Constant_Address_Clause, i.e. the
9555 -- address value is the same at the point of declaration of U_Ent and at
9556 -- the time of elaboration of the address clause.
9558 procedure Check_Expr_Constants (Nod : Node_Id);
9559 -- Checks that Nod meets the requirements for a constant address clause
9560 -- in the sense of the enclosing procedure.
9562 procedure Check_List_Constants (Lst : List_Id);
9563 -- Check that all elements of list Lst meet the requirements for a
9564 -- constant address clause in the sense of the enclosing procedure.
9566 -------------------------------
9567 -- Check_At_Constant_Address --
9568 -------------------------------
9570 procedure Check_At_Constant_Address (Nod : Node_Id) is
9571 begin
9572 if Is_Entity_Name (Nod) then
9573 if Present (Address_Clause (Entity ((Nod)))) then
9574 Error_Msg_NE
9575 ("invalid address clause for initialized object &!",
9576 Nod, U_Ent);
9577 Error_Msg_NE
9578 ("address for& cannot depend on another address clause! "
9579 & "(RM 13.1(22))!", Nod, U_Ent);
9581 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
9582 and then Sloc (U_Ent) < Sloc (Entity (Nod))
9583 then
9584 Error_Msg_NE
9585 ("invalid address clause for initialized object &!",
9586 Nod, U_Ent);
9587 Error_Msg_Node_2 := U_Ent;
9588 Error_Msg_NE
9589 ("\& must be defined before & (RM 13.1(22))!",
9590 Nod, Entity (Nod));
9591 end if;
9593 elsif Nkind (Nod) = N_Selected_Component then
9594 declare
9595 T : constant Entity_Id := Etype (Prefix (Nod));
9597 begin
9598 if (Is_Record_Type (T)
9599 and then Has_Discriminants (T))
9600 or else
9601 (Is_Access_Type (T)
9602 and then Is_Record_Type (Designated_Type (T))
9603 and then Has_Discriminants (Designated_Type (T)))
9604 then
9605 Error_Msg_NE
9606 ("invalid address clause for initialized object &!",
9607 Nod, U_Ent);
9608 Error_Msg_N
9609 ("\address cannot depend on component of discriminated "
9610 & "record (RM 13.1(22))!", Nod);
9611 else
9612 Check_At_Constant_Address (Prefix (Nod));
9613 end if;
9614 end;
9616 elsif Nkind (Nod) = N_Indexed_Component then
9617 Check_At_Constant_Address (Prefix (Nod));
9618 Check_List_Constants (Expressions (Nod));
9620 else
9621 Check_Expr_Constants (Nod);
9622 end if;
9623 end Check_At_Constant_Address;
9625 --------------------------
9626 -- Check_Expr_Constants --
9627 --------------------------
9629 procedure Check_Expr_Constants (Nod : Node_Id) is
9630 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
9631 Ent : Entity_Id := Empty;
9633 begin
9634 if Nkind (Nod) in N_Has_Etype
9635 and then Etype (Nod) = Any_Type
9636 then
9637 return;
9638 end if;
9640 case Nkind (Nod) is
9641 when N_Empty
9642 | N_Error
9644 return;
9646 when N_Expanded_Name
9647 | N_Identifier
9649 Ent := Entity (Nod);
9651 -- We need to look at the original node if it is different
9652 -- from the node, since we may have rewritten things and
9653 -- substituted an identifier representing the rewrite.
9655 if Original_Node (Nod) /= Nod then
9656 Check_Expr_Constants (Original_Node (Nod));
9658 -- If the node is an object declaration without initial
9659 -- value, some code has been expanded, and the expression
9660 -- is not constant, even if the constituents might be
9661 -- acceptable, as in A'Address + offset.
9663 if Ekind (Ent) = E_Variable
9664 and then
9665 Nkind (Declaration_Node (Ent)) = N_Object_Declaration
9666 and then
9667 No (Expression (Declaration_Node (Ent)))
9668 then
9669 Error_Msg_NE
9670 ("invalid address clause for initialized object &!",
9671 Nod, U_Ent);
9673 -- If entity is constant, it may be the result of expanding
9674 -- a check. We must verify that its declaration appears
9675 -- before the object in question, else we also reject the
9676 -- address clause.
9678 elsif Ekind (Ent) = E_Constant
9679 and then In_Same_Source_Unit (Ent, U_Ent)
9680 and then Sloc (Ent) > Loc_U_Ent
9681 then
9682 Error_Msg_NE
9683 ("invalid address clause for initialized object &!",
9684 Nod, U_Ent);
9685 end if;
9687 return;
9688 end if;
9690 -- Otherwise look at the identifier and see if it is OK
9692 if Ekind_In (Ent, E_Named_Integer, E_Named_Real)
9693 or else Is_Type (Ent)
9694 then
9695 return;
9697 elsif Ekind_In (Ent, E_Constant, E_In_Parameter) then
9699 -- This is the case where we must have Ent defined before
9700 -- U_Ent. Clearly if they are in different units this
9701 -- requirement is met since the unit containing Ent is
9702 -- already processed.
9704 if not In_Same_Source_Unit (Ent, U_Ent) then
9705 return;
9707 -- Otherwise location of Ent must be before the location
9708 -- of U_Ent, that's what prior defined means.
9710 elsif Sloc (Ent) < Loc_U_Ent then
9711 return;
9713 else
9714 Error_Msg_NE
9715 ("invalid address clause for initialized object &!",
9716 Nod, U_Ent);
9717 Error_Msg_Node_2 := U_Ent;
9718 Error_Msg_NE
9719 ("\& must be defined before & (RM 13.1(22))!",
9720 Nod, Ent);
9721 end if;
9723 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
9724 Check_Expr_Constants (Original_Node (Nod));
9726 else
9727 Error_Msg_NE
9728 ("invalid address clause for initialized object &!",
9729 Nod, U_Ent);
9731 if Comes_From_Source (Ent) then
9732 Error_Msg_NE
9733 ("\reference to variable& not allowed"
9734 & " (RM 13.1(22))!", Nod, Ent);
9735 else
9736 Error_Msg_N
9737 ("non-static expression not allowed"
9738 & " (RM 13.1(22))!", Nod);
9739 end if;
9740 end if;
9742 when N_Integer_Literal =>
9744 -- If this is a rewritten unchecked conversion, in a system
9745 -- where Address is an integer type, always use the base type
9746 -- for a literal value. This is user-friendly and prevents
9747 -- order-of-elaboration issues with instances of unchecked
9748 -- conversion.
9750 if Nkind (Original_Node (Nod)) = N_Function_Call then
9751 Set_Etype (Nod, Base_Type (Etype (Nod)));
9752 end if;
9754 when N_Character_Literal
9755 | N_Real_Literal
9756 | N_String_Literal
9758 return;
9760 when N_Range =>
9761 Check_Expr_Constants (Low_Bound (Nod));
9762 Check_Expr_Constants (High_Bound (Nod));
9764 when N_Explicit_Dereference =>
9765 Check_Expr_Constants (Prefix (Nod));
9767 when N_Indexed_Component =>
9768 Check_Expr_Constants (Prefix (Nod));
9769 Check_List_Constants (Expressions (Nod));
9771 when N_Slice =>
9772 Check_Expr_Constants (Prefix (Nod));
9773 Check_Expr_Constants (Discrete_Range (Nod));
9775 when N_Selected_Component =>
9776 Check_Expr_Constants (Prefix (Nod));
9778 when N_Attribute_Reference =>
9779 if Nam_In (Attribute_Name (Nod), Name_Address,
9780 Name_Access,
9781 Name_Unchecked_Access,
9782 Name_Unrestricted_Access)
9783 then
9784 Check_At_Constant_Address (Prefix (Nod));
9786 -- Normally, System'To_Address will have been transformed into
9787 -- an Unchecked_Conversion, but in -gnatc mode, it will not,
9788 -- and we don't want to give an error, because the whole point
9789 -- of 'To_Address is that it is static.
9791 elsif Attribute_Name (Nod) = Name_To_Address then
9792 pragma Assert (Operating_Mode = Check_Semantics);
9793 null;
9795 else
9796 Check_Expr_Constants (Prefix (Nod));
9797 Check_List_Constants (Expressions (Nod));
9798 end if;
9800 when N_Aggregate =>
9801 Check_List_Constants (Component_Associations (Nod));
9802 Check_List_Constants (Expressions (Nod));
9804 when N_Component_Association =>
9805 Check_Expr_Constants (Expression (Nod));
9807 when N_Extension_Aggregate =>
9808 Check_Expr_Constants (Ancestor_Part (Nod));
9809 Check_List_Constants (Component_Associations (Nod));
9810 Check_List_Constants (Expressions (Nod));
9812 when N_Null =>
9813 return;
9815 when N_Binary_Op
9816 | N_Membership_Test
9817 | N_Short_Circuit
9819 Check_Expr_Constants (Left_Opnd (Nod));
9820 Check_Expr_Constants (Right_Opnd (Nod));
9822 when N_Unary_Op =>
9823 Check_Expr_Constants (Right_Opnd (Nod));
9825 when N_Allocator
9826 | N_Qualified_Expression
9827 | N_Type_Conversion
9828 | N_Unchecked_Type_Conversion
9830 Check_Expr_Constants (Expression (Nod));
9832 when N_Function_Call =>
9833 if not Is_Pure (Entity (Name (Nod))) then
9834 Error_Msg_NE
9835 ("invalid address clause for initialized object &!",
9836 Nod, U_Ent);
9838 Error_Msg_NE
9839 ("\function & is not pure (RM 13.1(22))!",
9840 Nod, Entity (Name (Nod)));
9842 else
9843 Check_List_Constants (Parameter_Associations (Nod));
9844 end if;
9846 when N_Parameter_Association =>
9847 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
9849 when others =>
9850 Error_Msg_NE
9851 ("invalid address clause for initialized object &!",
9852 Nod, U_Ent);
9853 Error_Msg_NE
9854 ("\must be constant defined before& (RM 13.1(22))!",
9855 Nod, U_Ent);
9856 end case;
9857 end Check_Expr_Constants;
9859 --------------------------
9860 -- Check_List_Constants --
9861 --------------------------
9863 procedure Check_List_Constants (Lst : List_Id) is
9864 Nod1 : Node_Id;
9866 begin
9867 if Present (Lst) then
9868 Nod1 := First (Lst);
9869 while Present (Nod1) loop
9870 Check_Expr_Constants (Nod1);
9871 Next (Nod1);
9872 end loop;
9873 end if;
9874 end Check_List_Constants;
9876 -- Start of processing for Check_Constant_Address_Clause
9878 begin
9879 -- If rep_clauses are to be ignored, no need for legality checks. In
9880 -- particular, no need to pester user about rep clauses that violate the
9881 -- rule on constant addresses, given that these clauses will be removed
9882 -- by Freeze before they reach the back end. Similarly in CodePeer mode,
9883 -- we want to relax these checks.
9885 if not Ignore_Rep_Clauses and not CodePeer_Mode then
9886 Check_Expr_Constants (Expr);
9887 end if;
9888 end Check_Constant_Address_Clause;
9890 ---------------------------
9891 -- Check_Pool_Size_Clash --
9892 ---------------------------
9894 procedure Check_Pool_Size_Clash (Ent : Entity_Id; SP, SS : Node_Id) is
9895 Post : Node_Id;
9897 begin
9898 -- We need to find out which one came first. Note that in the case of
9899 -- aspects mixed with pragmas there are cases where the processing order
9900 -- is reversed, which is why we do the check here.
9902 if Sloc (SP) < Sloc (SS) then
9903 Error_Msg_Sloc := Sloc (SP);
9904 Post := SS;
9905 Error_Msg_NE ("Storage_Pool previously given for&#", Post, Ent);
9907 else
9908 Error_Msg_Sloc := Sloc (SS);
9909 Post := SP;
9910 Error_Msg_NE ("Storage_Size previously given for&#", Post, Ent);
9911 end if;
9913 Error_Msg_N
9914 ("\cannot have Storage_Size and Storage_Pool (RM 13.11(3))", Post);
9915 end Check_Pool_Size_Clash;
9917 ----------------------------------------
9918 -- Check_Record_Representation_Clause --
9919 ----------------------------------------
9921 procedure Check_Record_Representation_Clause (N : Node_Id) is
9922 Loc : constant Source_Ptr := Sloc (N);
9923 Ident : constant Node_Id := Identifier (N);
9924 Rectype : Entity_Id;
9925 Fent : Entity_Id;
9926 CC : Node_Id;
9927 Fbit : Uint;
9928 Lbit : Uint;
9929 Hbit : Uint := Uint_0;
9930 Comp : Entity_Id;
9931 Pcomp : Entity_Id;
9933 Max_Bit_So_Far : Uint;
9934 -- Records the maximum bit position so far. If all field positions
9935 -- are monotonically increasing, then we can skip the circuit for
9936 -- checking for overlap, since no overlap is possible.
9938 Tagged_Parent : Entity_Id := Empty;
9939 -- This is set in the case of an extension for which we have either a
9940 -- size clause or Is_Fully_Repped_Tagged_Type True (indicating that all
9941 -- components are positioned by record representation clauses) on the
9942 -- parent type. In this case we check for overlap between components of
9943 -- this tagged type and the parent component. Tagged_Parent will point
9944 -- to this parent type. For all other cases, Tagged_Parent is Empty.
9946 Parent_Last_Bit : Uint := No_Uint; -- init to avoid warning
9947 -- Relevant only if Tagged_Parent is set, Parent_Last_Bit indicates the
9948 -- last bit position for any field in the parent type. We only need to
9949 -- check overlap for fields starting below this point.
9951 Overlap_Check_Required : Boolean;
9952 -- Used to keep track of whether or not an overlap check is required
9954 Overlap_Detected : Boolean := False;
9955 -- Set True if an overlap is detected
9957 Ccount : Natural := 0;
9958 -- Number of component clauses in record rep clause
9960 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
9961 -- Given two entities for record components or discriminants, checks
9962 -- if they have overlapping component clauses and issues errors if so.
9964 procedure Find_Component;
9965 -- Finds component entity corresponding to current component clause (in
9966 -- CC), and sets Comp to the entity, and Fbit/Lbit to the zero origin
9967 -- start/stop bits for the field. If there is no matching component or
9968 -- if the matching component does not have a component clause, then
9969 -- that's an error and Comp is set to Empty, but no error message is
9970 -- issued, since the message was already given. Comp is also set to
9971 -- Empty if the current "component clause" is in fact a pragma.
9973 -----------------------------
9974 -- Check_Component_Overlap --
9975 -----------------------------
9977 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
9978 CC1 : constant Node_Id := Component_Clause (C1_Ent);
9979 CC2 : constant Node_Id := Component_Clause (C2_Ent);
9981 begin
9982 if Present (CC1) and then Present (CC2) then
9984 -- Exclude odd case where we have two tag components in the same
9985 -- record, both at location zero. This seems a bit strange, but
9986 -- it seems to happen in some circumstances, perhaps on an error.
9988 if Nam_In (Chars (C1_Ent), Name_uTag, Name_uTag) then
9989 return;
9990 end if;
9992 -- Here we check if the two fields overlap
9994 declare
9995 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
9996 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
9997 E1 : constant Uint := S1 + Esize (C1_Ent);
9998 E2 : constant Uint := S2 + Esize (C2_Ent);
10000 begin
10001 if E2 <= S1 or else E1 <= S2 then
10002 null;
10003 else
10004 Error_Msg_Node_2 := Component_Name (CC2);
10005 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
10006 Error_Msg_Node_1 := Component_Name (CC1);
10007 Error_Msg_N
10008 ("component& overlaps & #", Component_Name (CC1));
10009 Overlap_Detected := True;
10010 end if;
10011 end;
10012 end if;
10013 end Check_Component_Overlap;
10015 --------------------
10016 -- Find_Component --
10017 --------------------
10019 procedure Find_Component is
10021 procedure Search_Component (R : Entity_Id);
10022 -- Search components of R for a match. If found, Comp is set
10024 ----------------------
10025 -- Search_Component --
10026 ----------------------
10028 procedure Search_Component (R : Entity_Id) is
10029 begin
10030 Comp := First_Component_Or_Discriminant (R);
10031 while Present (Comp) loop
10033 -- Ignore error of attribute name for component name (we
10034 -- already gave an error message for this, so no need to
10035 -- complain here)
10037 if Nkind (Component_Name (CC)) = N_Attribute_Reference then
10038 null;
10039 else
10040 exit when Chars (Comp) = Chars (Component_Name (CC));
10041 end if;
10043 Next_Component_Or_Discriminant (Comp);
10044 end loop;
10045 end Search_Component;
10047 -- Start of processing for Find_Component
10049 begin
10050 -- Return with Comp set to Empty if we have a pragma
10052 if Nkind (CC) = N_Pragma then
10053 Comp := Empty;
10054 return;
10055 end if;
10057 -- Search current record for matching component
10059 Search_Component (Rectype);
10061 -- If not found, maybe component of base type discriminant that is
10062 -- absent from statically constrained first subtype.
10064 if No (Comp) then
10065 Search_Component (Base_Type (Rectype));
10066 end if;
10068 -- If no component, or the component does not reference the component
10069 -- clause in question, then there was some previous error for which
10070 -- we already gave a message, so just return with Comp Empty.
10072 if No (Comp) or else Component_Clause (Comp) /= CC then
10073 Check_Error_Detected;
10074 Comp := Empty;
10076 -- Normal case where we have a component clause
10078 else
10079 Fbit := Component_Bit_Offset (Comp);
10080 Lbit := Fbit + Esize (Comp) - 1;
10081 end if;
10082 end Find_Component;
10084 -- Start of processing for Check_Record_Representation_Clause
10086 begin
10087 Find_Type (Ident);
10088 Rectype := Entity (Ident);
10090 if Rectype = Any_Type then
10091 return;
10092 end if;
10094 Rectype := Underlying_Type (Rectype);
10096 -- See if we have a fully repped derived tagged type
10098 declare
10099 PS : constant Entity_Id := Parent_Subtype (Rectype);
10101 begin
10102 if Present (PS) and then Known_Static_RM_Size (PS) then
10103 Tagged_Parent := PS;
10104 Parent_Last_Bit := RM_Size (PS) - 1;
10106 elsif Present (PS) and then Is_Fully_Repped_Tagged_Type (PS) then
10107 Tagged_Parent := PS;
10109 -- Find maximum bit of any component of the parent type
10111 Parent_Last_Bit := UI_From_Int (System_Address_Size - 1);
10112 Pcomp := First_Entity (Tagged_Parent);
10113 while Present (Pcomp) loop
10114 if Ekind_In (Pcomp, E_Discriminant, E_Component) then
10115 if Component_Bit_Offset (Pcomp) /= No_Uint
10116 and then Known_Static_Esize (Pcomp)
10117 then
10118 Parent_Last_Bit :=
10119 UI_Max
10120 (Parent_Last_Bit,
10121 Component_Bit_Offset (Pcomp) + Esize (Pcomp) - 1);
10122 end if;
10123 else
10125 -- Skip anonymous types generated for constrained array
10126 -- or record components.
10128 null;
10129 end if;
10131 Next_Entity (Pcomp);
10132 end loop;
10133 end if;
10134 end;
10136 -- All done if no component clauses
10138 CC := First (Component_Clauses (N));
10140 if No (CC) then
10141 return;
10142 end if;
10144 -- If a tag is present, then create a component clause that places it
10145 -- at the start of the record (otherwise gigi may place it after other
10146 -- fields that have rep clauses).
10148 Fent := First_Entity (Rectype);
10150 if Nkind (Fent) = N_Defining_Identifier
10151 and then Chars (Fent) = Name_uTag
10152 then
10153 Set_Component_Bit_Offset (Fent, Uint_0);
10154 Set_Normalized_Position (Fent, Uint_0);
10155 Set_Normalized_First_Bit (Fent, Uint_0);
10156 Set_Normalized_Position_Max (Fent, Uint_0);
10157 Init_Esize (Fent, System_Address_Size);
10159 Set_Component_Clause (Fent,
10160 Make_Component_Clause (Loc,
10161 Component_Name => Make_Identifier (Loc, Name_uTag),
10163 Position => Make_Integer_Literal (Loc, Uint_0),
10164 First_Bit => Make_Integer_Literal (Loc, Uint_0),
10165 Last_Bit =>
10166 Make_Integer_Literal (Loc,
10167 UI_From_Int (System_Address_Size))));
10169 Ccount := Ccount + 1;
10170 end if;
10172 Max_Bit_So_Far := Uint_Minus_1;
10173 Overlap_Check_Required := False;
10175 -- Process the component clauses
10177 while Present (CC) loop
10178 Find_Component;
10180 if Present (Comp) then
10181 Ccount := Ccount + 1;
10183 -- We need a full overlap check if record positions non-monotonic
10185 if Fbit <= Max_Bit_So_Far then
10186 Overlap_Check_Required := True;
10187 end if;
10189 Max_Bit_So_Far := Lbit;
10191 -- Check bit position out of range of specified size
10193 if Has_Size_Clause (Rectype)
10194 and then RM_Size (Rectype) <= Lbit
10195 then
10196 Error_Msg_N
10197 ("bit number out of range of specified size",
10198 Last_Bit (CC));
10200 -- Check for overlap with tag or parent component
10202 else
10203 if Is_Tagged_Type (Rectype)
10204 and then Fbit < System_Address_Size
10205 then
10206 Error_Msg_NE
10207 ("component overlaps tag field of&",
10208 Component_Name (CC), Rectype);
10209 Overlap_Detected := True;
10211 elsif Present (Tagged_Parent)
10212 and then Fbit <= Parent_Last_Bit
10213 then
10214 Error_Msg_NE
10215 ("component overlaps parent field of&",
10216 Component_Name (CC), Rectype);
10217 Overlap_Detected := True;
10218 end if;
10220 if Hbit < Lbit then
10221 Hbit := Lbit;
10222 end if;
10223 end if;
10224 end if;
10226 Next (CC);
10227 end loop;
10229 -- Now that we have processed all the component clauses, check for
10230 -- overlap. We have to leave this till last, since the components can
10231 -- appear in any arbitrary order in the representation clause.
10233 -- We do not need this check if all specified ranges were monotonic,
10234 -- as recorded by Overlap_Check_Required being False at this stage.
10236 -- This first section checks if there are any overlapping entries at
10237 -- all. It does this by sorting all entries and then seeing if there are
10238 -- any overlaps. If there are none, then that is decisive, but if there
10239 -- are overlaps, they may still be OK (they may result from fields in
10240 -- different variants).
10242 if Overlap_Check_Required then
10243 Overlap_Check1 : declare
10245 OC_Fbit : array (0 .. Ccount) of Uint;
10246 -- First-bit values for component clauses, the value is the offset
10247 -- of the first bit of the field from start of record. The zero
10248 -- entry is for use in sorting.
10250 OC_Lbit : array (0 .. Ccount) of Uint;
10251 -- Last-bit values for component clauses, the value is the offset
10252 -- of the last bit of the field from start of record. The zero
10253 -- entry is for use in sorting.
10255 OC_Count : Natural := 0;
10256 -- Count of entries in OC_Fbit and OC_Lbit
10258 function OC_Lt (Op1, Op2 : Natural) return Boolean;
10259 -- Compare routine for Sort
10261 procedure OC_Move (From : Natural; To : Natural);
10262 -- Move routine for Sort
10264 package Sorting is new GNAT.Heap_Sort_G (OC_Move, OC_Lt);
10266 -----------
10267 -- OC_Lt --
10268 -----------
10270 function OC_Lt (Op1, Op2 : Natural) return Boolean is
10271 begin
10272 return OC_Fbit (Op1) < OC_Fbit (Op2);
10273 end OC_Lt;
10275 -------------
10276 -- OC_Move --
10277 -------------
10279 procedure OC_Move (From : Natural; To : Natural) is
10280 begin
10281 OC_Fbit (To) := OC_Fbit (From);
10282 OC_Lbit (To) := OC_Lbit (From);
10283 end OC_Move;
10285 -- Start of processing for Overlap_Check
10287 begin
10288 CC := First (Component_Clauses (N));
10289 while Present (CC) loop
10291 -- Exclude component clause already marked in error
10293 if not Error_Posted (CC) then
10294 Find_Component;
10296 if Present (Comp) then
10297 OC_Count := OC_Count + 1;
10298 OC_Fbit (OC_Count) := Fbit;
10299 OC_Lbit (OC_Count) := Lbit;
10300 end if;
10301 end if;
10303 Next (CC);
10304 end loop;
10306 Sorting.Sort (OC_Count);
10308 Overlap_Check_Required := False;
10309 for J in 1 .. OC_Count - 1 loop
10310 if OC_Lbit (J) >= OC_Fbit (J + 1) then
10311 Overlap_Check_Required := True;
10312 exit;
10313 end if;
10314 end loop;
10315 end Overlap_Check1;
10316 end if;
10318 -- If Overlap_Check_Required is still True, then we have to do the full
10319 -- scale overlap check, since we have at least two fields that do
10320 -- overlap, and we need to know if that is OK since they are in
10321 -- different variant, or whether we have a definite problem.
10323 if Overlap_Check_Required then
10324 Overlap_Check2 : declare
10325 C1_Ent, C2_Ent : Entity_Id;
10326 -- Entities of components being checked for overlap
10328 Clist : Node_Id;
10329 -- Component_List node whose Component_Items are being checked
10331 Citem : Node_Id;
10332 -- Component declaration for component being checked
10334 begin
10335 C1_Ent := First_Entity (Base_Type (Rectype));
10337 -- Loop through all components in record. For each component check
10338 -- for overlap with any of the preceding elements on the component
10339 -- list containing the component and also, if the component is in
10340 -- a variant, check against components outside the case structure.
10341 -- This latter test is repeated recursively up the variant tree.
10343 Main_Component_Loop : while Present (C1_Ent) loop
10344 if not Ekind_In (C1_Ent, E_Component, E_Discriminant) then
10345 goto Continue_Main_Component_Loop;
10346 end if;
10348 -- Skip overlap check if entity has no declaration node. This
10349 -- happens with discriminants in constrained derived types.
10350 -- Possibly we are missing some checks as a result, but that
10351 -- does not seem terribly serious.
10353 if No (Declaration_Node (C1_Ent)) then
10354 goto Continue_Main_Component_Loop;
10355 end if;
10357 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
10359 -- Loop through component lists that need checking. Check the
10360 -- current component list and all lists in variants above us.
10362 Component_List_Loop : loop
10364 -- If derived type definition, go to full declaration
10365 -- If at outer level, check discriminants if there are any.
10367 if Nkind (Clist) = N_Derived_Type_Definition then
10368 Clist := Parent (Clist);
10369 end if;
10371 -- Outer level of record definition, check discriminants
10373 if Nkind_In (Clist, N_Full_Type_Declaration,
10374 N_Private_Type_Declaration)
10375 then
10376 if Has_Discriminants (Defining_Identifier (Clist)) then
10377 C2_Ent :=
10378 First_Discriminant (Defining_Identifier (Clist));
10379 while Present (C2_Ent) loop
10380 exit when C1_Ent = C2_Ent;
10381 Check_Component_Overlap (C1_Ent, C2_Ent);
10382 Next_Discriminant (C2_Ent);
10383 end loop;
10384 end if;
10386 -- Record extension case
10388 elsif Nkind (Clist) = N_Derived_Type_Definition then
10389 Clist := Empty;
10391 -- Otherwise check one component list
10393 else
10394 Citem := First (Component_Items (Clist));
10395 while Present (Citem) loop
10396 if Nkind (Citem) = N_Component_Declaration then
10397 C2_Ent := Defining_Identifier (Citem);
10398 exit when C1_Ent = C2_Ent;
10399 Check_Component_Overlap (C1_Ent, C2_Ent);
10400 end if;
10402 Next (Citem);
10403 end loop;
10404 end if;
10406 -- Check for variants above us (the parent of the Clist can
10407 -- be a variant, in which case its parent is a variant part,
10408 -- and the parent of the variant part is a component list
10409 -- whose components must all be checked against the current
10410 -- component for overlap).
10412 if Nkind (Parent (Clist)) = N_Variant then
10413 Clist := Parent (Parent (Parent (Clist)));
10415 -- Check for possible discriminant part in record, this
10416 -- is treated essentially as another level in the
10417 -- recursion. For this case the parent of the component
10418 -- list is the record definition, and its parent is the
10419 -- full type declaration containing the discriminant
10420 -- specifications.
10422 elsif Nkind (Parent (Clist)) = N_Record_Definition then
10423 Clist := Parent (Parent ((Clist)));
10425 -- If neither of these two cases, we are at the top of
10426 -- the tree.
10428 else
10429 exit Component_List_Loop;
10430 end if;
10431 end loop Component_List_Loop;
10433 <<Continue_Main_Component_Loop>>
10434 Next_Entity (C1_Ent);
10436 end loop Main_Component_Loop;
10437 end Overlap_Check2;
10438 end if;
10440 -- The following circuit deals with warning on record holes (gaps). We
10441 -- skip this check if overlap was detected, since it makes sense for the
10442 -- programmer to fix this illegality before worrying about warnings.
10444 if not Overlap_Detected and Warn_On_Record_Holes then
10445 Record_Hole_Check : declare
10446 Decl : constant Node_Id := Declaration_Node (Base_Type (Rectype));
10447 -- Full declaration of record type
10449 procedure Check_Component_List
10450 (CL : Node_Id;
10451 Sbit : Uint;
10452 DS : List_Id);
10453 -- Check component list CL for holes. The starting bit should be
10454 -- Sbit. which is zero for the main record component list and set
10455 -- appropriately for recursive calls for variants. DS is set to
10456 -- a list of discriminant specifications to be included in the
10457 -- consideration of components. It is No_List if none to consider.
10459 --------------------------
10460 -- Check_Component_List --
10461 --------------------------
10463 procedure Check_Component_List
10464 (CL : Node_Id;
10465 Sbit : Uint;
10466 DS : List_Id)
10468 Compl : Integer;
10470 begin
10471 Compl := Integer (List_Length (Component_Items (CL)));
10473 if DS /= No_List then
10474 Compl := Compl + Integer (List_Length (DS));
10475 end if;
10477 declare
10478 Comps : array (Natural range 0 .. Compl) of Entity_Id;
10479 -- Gather components (zero entry is for sort routine)
10481 Ncomps : Natural := 0;
10482 -- Number of entries stored in Comps (starting at Comps (1))
10484 Citem : Node_Id;
10485 -- One component item or discriminant specification
10487 Nbit : Uint;
10488 -- Starting bit for next component
10490 CEnt : Entity_Id;
10491 -- Component entity
10493 Variant : Node_Id;
10494 -- One variant
10496 function Lt (Op1, Op2 : Natural) return Boolean;
10497 -- Compare routine for Sort
10499 procedure Move (From : Natural; To : Natural);
10500 -- Move routine for Sort
10502 package Sorting is new GNAT.Heap_Sort_G (Move, Lt);
10504 --------
10505 -- Lt --
10506 --------
10508 function Lt (Op1, Op2 : Natural) return Boolean is
10509 begin
10510 return Component_Bit_Offset (Comps (Op1))
10512 Component_Bit_Offset (Comps (Op2));
10513 end Lt;
10515 ----------
10516 -- Move --
10517 ----------
10519 procedure Move (From : Natural; To : Natural) is
10520 begin
10521 Comps (To) := Comps (From);
10522 end Move;
10524 begin
10525 -- Gather discriminants into Comp
10527 if DS /= No_List then
10528 Citem := First (DS);
10529 while Present (Citem) loop
10530 if Nkind (Citem) = N_Discriminant_Specification then
10531 declare
10532 Ent : constant Entity_Id :=
10533 Defining_Identifier (Citem);
10534 begin
10535 if Ekind (Ent) = E_Discriminant then
10536 Ncomps := Ncomps + 1;
10537 Comps (Ncomps) := Ent;
10538 end if;
10539 end;
10540 end if;
10542 Next (Citem);
10543 end loop;
10544 end if;
10546 -- Gather component entities into Comp
10548 Citem := First (Component_Items (CL));
10549 while Present (Citem) loop
10550 if Nkind (Citem) = N_Component_Declaration then
10551 Ncomps := Ncomps + 1;
10552 Comps (Ncomps) := Defining_Identifier (Citem);
10553 end if;
10555 Next (Citem);
10556 end loop;
10558 -- Now sort the component entities based on the first bit.
10559 -- Note we already know there are no overlapping components.
10561 Sorting.Sort (Ncomps);
10563 -- Loop through entries checking for holes
10565 Nbit := Sbit;
10566 for J in 1 .. Ncomps loop
10567 CEnt := Comps (J);
10569 declare
10570 CBO : constant Uint := Component_Bit_Offset (CEnt);
10572 begin
10573 -- Skip components with unknown offsets
10575 if CBO /= No_Uint and then CBO >= 0 then
10576 Error_Msg_Uint_1 := CBO - Nbit;
10578 if Error_Msg_Uint_1 > 0 then
10579 Error_Msg_NE
10580 ("?H?^-bit gap before component&",
10581 Component_Name (Component_Clause (CEnt)),
10582 CEnt);
10583 end if;
10585 Nbit := CBO + Esize (CEnt);
10586 end if;
10587 end;
10588 end loop;
10590 -- Process variant parts recursively if present
10592 if Present (Variant_Part (CL)) then
10593 Variant := First (Variants (Variant_Part (CL)));
10594 while Present (Variant) loop
10595 Check_Component_List
10596 (Component_List (Variant), Nbit, No_List);
10597 Next (Variant);
10598 end loop;
10599 end if;
10600 end;
10601 end Check_Component_List;
10603 -- Start of processing for Record_Hole_Check
10605 begin
10606 declare
10607 Sbit : Uint;
10609 begin
10610 if Is_Tagged_Type (Rectype) then
10611 Sbit := UI_From_Int (System_Address_Size);
10612 else
10613 Sbit := Uint_0;
10614 end if;
10616 if Nkind (Decl) = N_Full_Type_Declaration
10617 and then Nkind (Type_Definition (Decl)) = N_Record_Definition
10618 then
10619 Check_Component_List
10620 (Component_List (Type_Definition (Decl)),
10621 Sbit,
10622 Discriminant_Specifications (Decl));
10623 end if;
10624 end;
10625 end Record_Hole_Check;
10626 end if;
10628 -- For records that have component clauses for all components, and whose
10629 -- size is less than or equal to 32, we need to know the size in the
10630 -- front end to activate possible packed array processing where the
10631 -- component type is a record.
10633 -- At this stage Hbit + 1 represents the first unused bit from all the
10634 -- component clauses processed, so if the component clauses are
10635 -- complete, then this is the length of the record.
10637 -- For records longer than System.Storage_Unit, and for those where not
10638 -- all components have component clauses, the back end determines the
10639 -- length (it may for example be appropriate to round up the size
10640 -- to some convenient boundary, based on alignment considerations, etc).
10642 if Unknown_RM_Size (Rectype) and then Hbit + 1 <= 32 then
10644 -- Nothing to do if at least one component has no component clause
10646 Comp := First_Component_Or_Discriminant (Rectype);
10647 while Present (Comp) loop
10648 exit when No (Component_Clause (Comp));
10649 Next_Component_Or_Discriminant (Comp);
10650 end loop;
10652 -- If we fall out of loop, all components have component clauses
10653 -- and so we can set the size to the maximum value.
10655 if No (Comp) then
10656 Set_RM_Size (Rectype, Hbit + 1);
10657 end if;
10658 end if;
10659 end Check_Record_Representation_Clause;
10661 ----------------
10662 -- Check_Size --
10663 ----------------
10665 procedure Check_Size
10666 (N : Node_Id;
10667 T : Entity_Id;
10668 Siz : Uint;
10669 Biased : out Boolean)
10671 procedure Size_Too_Small_Error (Min_Siz : Uint);
10672 -- Emit an error concerning illegal size Siz. Min_Siz denotes the
10673 -- minimum size.
10675 --------------------------
10676 -- Size_Too_Small_Error --
10677 --------------------------
10679 procedure Size_Too_Small_Error (Min_Siz : Uint) is
10680 begin
10681 -- This error is suppressed in ASIS mode to allow for different ASIS
10682 -- back ends or ASIS-based tools to query the illegal clause.
10684 if not ASIS_Mode then
10685 Error_Msg_Uint_1 := Min_Siz;
10686 Error_Msg_NE ("size for& too small, minimum allowed is ^", N, T);
10687 end if;
10688 end Size_Too_Small_Error;
10690 -- Local variables
10692 UT : constant Entity_Id := Underlying_Type (T);
10693 M : Uint;
10695 -- Start of processing for Check_Size
10697 begin
10698 Biased := False;
10700 -- Reject patently improper size values
10702 if Is_Elementary_Type (T)
10703 and then Siz > UI_From_Int (Int'Last)
10704 then
10705 Error_Msg_N ("Size value too large for elementary type", N);
10707 if Nkind (Original_Node (N)) = N_Op_Expon then
10708 Error_Msg_N
10709 ("\maybe '* was meant, rather than '*'*", Original_Node (N));
10710 end if;
10711 end if;
10713 -- Dismiss generic types
10715 if Is_Generic_Type (T)
10716 or else
10717 Is_Generic_Type (UT)
10718 or else
10719 Is_Generic_Type (Root_Type (UT))
10720 then
10721 return;
10723 -- Guard against previous errors
10725 elsif No (UT) or else UT = Any_Type then
10726 Check_Error_Detected;
10727 return;
10729 -- Check case of bit packed array
10731 elsif Is_Array_Type (UT)
10732 and then Known_Static_Component_Size (UT)
10733 and then Is_Bit_Packed_Array (UT)
10734 then
10735 declare
10736 Asiz : Uint;
10737 Indx : Node_Id;
10738 Ityp : Entity_Id;
10740 begin
10741 Asiz := Component_Size (UT);
10742 Indx := First_Index (UT);
10743 loop
10744 Ityp := Etype (Indx);
10746 -- If non-static bound, then we are not in the business of
10747 -- trying to check the length, and indeed an error will be
10748 -- issued elsewhere, since sizes of non-static array types
10749 -- cannot be set implicitly or explicitly.
10751 if not Is_OK_Static_Subtype (Ityp) then
10752 return;
10753 end if;
10755 -- Otherwise accumulate next dimension
10757 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
10758 Expr_Value (Type_Low_Bound (Ityp)) +
10759 Uint_1);
10761 Next_Index (Indx);
10762 exit when No (Indx);
10763 end loop;
10765 if Asiz <= Siz then
10766 return;
10768 else
10769 Size_Too_Small_Error (Asiz);
10770 Set_Esize (T, Asiz);
10771 Set_RM_Size (T, Asiz);
10772 end if;
10773 end;
10775 -- All other composite types are ignored
10777 elsif Is_Composite_Type (UT) then
10778 return;
10780 -- For fixed-point types, don't check minimum if type is not frozen,
10781 -- since we don't know all the characteristics of the type that can
10782 -- affect the size (e.g. a specified small) till freeze time.
10784 elsif Is_Fixed_Point_Type (UT) and then not Is_Frozen (UT) then
10785 null;
10787 -- Cases for which a minimum check is required
10789 else
10790 -- Ignore if specified size is correct for the type
10792 if Known_Esize (UT) and then Siz = Esize (UT) then
10793 return;
10794 end if;
10796 -- Otherwise get minimum size
10798 M := UI_From_Int (Minimum_Size (UT));
10800 if Siz < M then
10802 -- Size is less than minimum size, but one possibility remains
10803 -- that we can manage with the new size if we bias the type.
10805 M := UI_From_Int (Minimum_Size (UT, Biased => True));
10807 if Siz < M then
10808 Size_Too_Small_Error (M);
10809 Set_Esize (T, M);
10810 Set_RM_Size (T, M);
10811 else
10812 Biased := True;
10813 end if;
10814 end if;
10815 end if;
10816 end Check_Size;
10818 --------------------------
10819 -- Freeze_Entity_Checks --
10820 --------------------------
10822 procedure Freeze_Entity_Checks (N : Node_Id) is
10823 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id);
10824 -- Inspect the primitive operations of type Typ and hide all pairs of
10825 -- implicitly declared non-overridden non-fully conformant homographs
10826 -- (Ada RM 8.3 12.3/2).
10828 -------------------------------------
10829 -- Hide_Non_Overridden_Subprograms --
10830 -------------------------------------
10832 procedure Hide_Non_Overridden_Subprograms (Typ : Entity_Id) is
10833 procedure Hide_Matching_Homographs
10834 (Subp_Id : Entity_Id;
10835 Start_Elmt : Elmt_Id);
10836 -- Inspect a list of primitive operations starting with Start_Elmt
10837 -- and find matching implicitly declared non-overridden non-fully
10838 -- conformant homographs of Subp_Id. If found, all matches along
10839 -- with Subp_Id are hidden from all visibility.
10841 function Is_Non_Overridden_Or_Null_Procedure
10842 (Subp_Id : Entity_Id) return Boolean;
10843 -- Determine whether subprogram Subp_Id is implicitly declared non-
10844 -- overridden subprogram or an implicitly declared null procedure.
10846 ------------------------------
10847 -- Hide_Matching_Homographs --
10848 ------------------------------
10850 procedure Hide_Matching_Homographs
10851 (Subp_Id : Entity_Id;
10852 Start_Elmt : Elmt_Id)
10854 Prim : Entity_Id;
10855 Prim_Elmt : Elmt_Id;
10857 begin
10858 Prim_Elmt := Start_Elmt;
10859 while Present (Prim_Elmt) loop
10860 Prim := Node (Prim_Elmt);
10862 -- The current primitive is implicitly declared non-overridden
10863 -- non-fully conformant homograph of Subp_Id. Both subprograms
10864 -- must be hidden from visibility.
10866 if Chars (Prim) = Chars (Subp_Id)
10867 and then Is_Non_Overridden_Or_Null_Procedure (Prim)
10868 and then not Fully_Conformant (Prim, Subp_Id)
10869 then
10870 Set_Is_Hidden_Non_Overridden_Subpgm (Prim);
10871 Set_Is_Immediately_Visible (Prim, False);
10872 Set_Is_Potentially_Use_Visible (Prim, False);
10874 Set_Is_Hidden_Non_Overridden_Subpgm (Subp_Id);
10875 Set_Is_Immediately_Visible (Subp_Id, False);
10876 Set_Is_Potentially_Use_Visible (Subp_Id, False);
10877 end if;
10879 Next_Elmt (Prim_Elmt);
10880 end loop;
10881 end Hide_Matching_Homographs;
10883 -----------------------------------------
10884 -- Is_Non_Overridden_Or_Null_Procedure --
10885 -----------------------------------------
10887 function Is_Non_Overridden_Or_Null_Procedure
10888 (Subp_Id : Entity_Id) return Boolean
10890 Alias_Id : Entity_Id;
10892 begin
10893 -- The subprogram is inherited (implicitly declared), it does not
10894 -- override and does not cover a primitive of an interface.
10896 if Ekind_In (Subp_Id, E_Function, E_Procedure)
10897 and then Present (Alias (Subp_Id))
10898 and then No (Interface_Alias (Subp_Id))
10899 and then No (Overridden_Operation (Subp_Id))
10900 then
10901 Alias_Id := Alias (Subp_Id);
10903 if Requires_Overriding (Alias_Id) then
10904 return True;
10906 elsif Nkind (Parent (Alias_Id)) = N_Procedure_Specification
10907 and then Null_Present (Parent (Alias_Id))
10908 then
10909 return True;
10910 end if;
10911 end if;
10913 return False;
10914 end Is_Non_Overridden_Or_Null_Procedure;
10916 -- Local variables
10918 Prim_Ops : constant Elist_Id := Direct_Primitive_Operations (Typ);
10919 Prim : Entity_Id;
10920 Prim_Elmt : Elmt_Id;
10922 -- Start of processing for Hide_Non_Overridden_Subprograms
10924 begin
10925 -- Inspect the list of primitives looking for non-overridden
10926 -- subprograms.
10928 if Present (Prim_Ops) then
10929 Prim_Elmt := First_Elmt (Prim_Ops);
10930 while Present (Prim_Elmt) loop
10931 Prim := Node (Prim_Elmt);
10932 Next_Elmt (Prim_Elmt);
10934 if Is_Non_Overridden_Or_Null_Procedure (Prim) then
10935 Hide_Matching_Homographs
10936 (Subp_Id => Prim,
10937 Start_Elmt => Prim_Elmt);
10938 end if;
10939 end loop;
10940 end if;
10941 end Hide_Non_Overridden_Subprograms;
10943 -- Local variables
10945 E : constant Entity_Id := Entity (N);
10947 Nongeneric_Case : constant Boolean := Nkind (N) = N_Freeze_Entity;
10948 -- True in nongeneric case. Some of the processing here is skipped
10949 -- for the generic case since it is not needed. Basically in the
10950 -- generic case, we only need to do stuff that might generate error
10951 -- messages or warnings.
10953 -- Start of processing for Freeze_Entity_Checks
10955 begin
10956 -- Remember that we are processing a freezing entity. Required to
10957 -- ensure correct decoration of internal entities associated with
10958 -- interfaces (see New_Overloaded_Entity).
10960 Inside_Freezing_Actions := Inside_Freezing_Actions + 1;
10962 -- For tagged types covering interfaces add internal entities that link
10963 -- the primitives of the interfaces with the primitives that cover them.
10964 -- Note: These entities were originally generated only when generating
10965 -- code because their main purpose was to provide support to initialize
10966 -- the secondary dispatch tables. They are now generated also when
10967 -- compiling with no code generation to provide ASIS the relationship
10968 -- between interface primitives and tagged type primitives. They are
10969 -- also used to locate primitives covering interfaces when processing
10970 -- generics (see Derive_Subprograms).
10972 -- This is not needed in the generic case
10974 if Ada_Version >= Ada_2005
10975 and then Nongeneric_Case
10976 and then Ekind (E) = E_Record_Type
10977 and then Is_Tagged_Type (E)
10978 and then not Is_Interface (E)
10979 and then Has_Interfaces (E)
10980 then
10981 -- This would be a good common place to call the routine that checks
10982 -- overriding of interface primitives (and thus factorize calls to
10983 -- Check_Abstract_Overriding located at different contexts in the
10984 -- compiler). However, this is not possible because it causes
10985 -- spurious errors in case of late overriding.
10987 Add_Internal_Interface_Entities (E);
10988 end if;
10990 -- After all forms of overriding have been resolved, a tagged type may
10991 -- be left with a set of implicitly declared and possibly erroneous
10992 -- abstract subprograms, null procedures and subprograms that require
10993 -- overriding. If this set contains fully conformant homographs, then
10994 -- one is chosen arbitrarily (already done during resolution), otherwise
10995 -- all remaining non-fully conformant homographs are hidden from
10996 -- visibility (Ada RM 8.3 12.3/2).
10998 if Is_Tagged_Type (E) then
10999 Hide_Non_Overridden_Subprograms (E);
11000 end if;
11002 -- Check CPP types
11004 if Ekind (E) = E_Record_Type
11005 and then Is_CPP_Class (E)
11006 and then Is_Tagged_Type (E)
11007 and then Tagged_Type_Expansion
11008 then
11009 if CPP_Num_Prims (E) = 0 then
11011 -- If the CPP type has user defined components then it must import
11012 -- primitives from C++. This is required because if the C++ class
11013 -- has no primitives then the C++ compiler does not added the _tag
11014 -- component to the type.
11016 if First_Entity (E) /= Last_Entity (E) then
11017 Error_Msg_N
11018 ("'C'P'P type must import at least one primitive from C++??",
11020 end if;
11021 end if;
11023 -- Check that all its primitives are abstract or imported from C++.
11024 -- Check also availability of the C++ constructor.
11026 declare
11027 Has_Constructors : constant Boolean := Has_CPP_Constructors (E);
11028 Elmt : Elmt_Id;
11029 Error_Reported : Boolean := False;
11030 Prim : Node_Id;
11032 begin
11033 Elmt := First_Elmt (Primitive_Operations (E));
11034 while Present (Elmt) loop
11035 Prim := Node (Elmt);
11037 if Comes_From_Source (Prim) then
11038 if Is_Abstract_Subprogram (Prim) then
11039 null;
11041 elsif not Is_Imported (Prim)
11042 or else Convention (Prim) /= Convention_CPP
11043 then
11044 Error_Msg_N
11045 ("primitives of 'C'P'P types must be imported from C++ "
11046 & "or abstract??", Prim);
11048 elsif not Has_Constructors
11049 and then not Error_Reported
11050 then
11051 Error_Msg_Name_1 := Chars (E);
11052 Error_Msg_N
11053 ("??'C'P'P constructor required for type %", Prim);
11054 Error_Reported := True;
11055 end if;
11056 end if;
11058 Next_Elmt (Elmt);
11059 end loop;
11060 end;
11061 end if;
11063 -- Check Ada derivation of CPP type
11065 if Expander_Active -- why? losing errors in -gnatc mode???
11066 and then Present (Etype (E)) -- defend against errors
11067 and then Tagged_Type_Expansion
11068 and then Ekind (E) = E_Record_Type
11069 and then Etype (E) /= E
11070 and then Is_CPP_Class (Etype (E))
11071 and then CPP_Num_Prims (Etype (E)) > 0
11072 and then not Is_CPP_Class (E)
11073 and then not Has_CPP_Constructors (Etype (E))
11074 then
11075 -- If the parent has C++ primitives but it has no constructor then
11076 -- check that all the primitives are overridden in this derivation;
11077 -- otherwise the constructor of the parent is needed to build the
11078 -- dispatch table.
11080 declare
11081 Elmt : Elmt_Id;
11082 Prim : Node_Id;
11084 begin
11085 Elmt := First_Elmt (Primitive_Operations (E));
11086 while Present (Elmt) loop
11087 Prim := Node (Elmt);
11089 if not Is_Abstract_Subprogram (Prim)
11090 and then No (Interface_Alias (Prim))
11091 and then Find_Dispatching_Type (Ultimate_Alias (Prim)) /= E
11092 then
11093 Error_Msg_Name_1 := Chars (Etype (E));
11094 Error_Msg_N
11095 ("'C'P'P constructor required for parent type %", E);
11096 exit;
11097 end if;
11099 Next_Elmt (Elmt);
11100 end loop;
11101 end;
11102 end if;
11104 Inside_Freezing_Actions := Inside_Freezing_Actions - 1;
11106 -- If we have a type with predicates, build predicate function. This is
11107 -- not needed in the generic case, nor within TSS subprograms and other
11108 -- predefined primitives.
11110 if Is_Type (E)
11111 and then Nongeneric_Case
11112 and then not Within_Internal_Subprogram
11113 and then Has_Predicates (E)
11114 then
11115 Build_Predicate_Functions (E, N);
11116 end if;
11118 -- If type has delayed aspects, this is where we do the preanalysis at
11119 -- the freeze point, as part of the consistent visibility check. Note
11120 -- that this must be done after calling Build_Predicate_Functions or
11121 -- Build_Invariant_Procedure since these subprograms fix occurrences of
11122 -- the subtype name in the saved expression so that they will not cause
11123 -- trouble in the preanalysis.
11125 -- This is also not needed in the generic case
11127 if Nongeneric_Case
11128 and then Has_Delayed_Aspects (E)
11129 and then Scope (E) = Current_Scope
11130 then
11131 -- Retrieve the visibility to the discriminants in order to properly
11132 -- analyze the aspects.
11134 Push_Scope_And_Install_Discriminants (E);
11136 declare
11137 Ritem : Node_Id;
11139 begin
11140 -- Look for aspect specification entries for this entity
11142 Ritem := First_Rep_Item (E);
11143 while Present (Ritem) loop
11144 if Nkind (Ritem) = N_Aspect_Specification
11145 and then Entity (Ritem) = E
11146 and then Is_Delayed_Aspect (Ritem)
11147 then
11148 Check_Aspect_At_Freeze_Point (Ritem);
11149 end if;
11151 Next_Rep_Item (Ritem);
11152 end loop;
11153 end;
11155 Uninstall_Discriminants_And_Pop_Scope (E);
11156 end if;
11158 -- For a record type, deal with variant parts. This has to be delayed
11159 -- to this point, because of the issue of statically predicated
11160 -- subtypes, which we have to ensure are frozen before checking
11161 -- choices, since we need to have the static choice list set.
11163 if Is_Record_Type (E) then
11164 Check_Variant_Part : declare
11165 D : constant Node_Id := Declaration_Node (E);
11166 T : Node_Id;
11167 C : Node_Id;
11168 VP : Node_Id;
11170 Others_Present : Boolean;
11171 pragma Warnings (Off, Others_Present);
11172 -- Indicates others present, not used in this case
11174 procedure Non_Static_Choice_Error (Choice : Node_Id);
11175 -- Error routine invoked by the generic instantiation below when
11176 -- the variant part has a non static choice.
11178 procedure Process_Declarations (Variant : Node_Id);
11179 -- Processes declarations associated with a variant. We analyzed
11180 -- the declarations earlier (in Sem_Ch3.Analyze_Variant_Part),
11181 -- but we still need the recursive call to Check_Choices for any
11182 -- nested variant to get its choices properly processed. This is
11183 -- also where we expand out the choices if expansion is active.
11185 package Variant_Choices_Processing is new
11186 Generic_Check_Choices
11187 (Process_Empty_Choice => No_OP,
11188 Process_Non_Static_Choice => Non_Static_Choice_Error,
11189 Process_Associated_Node => Process_Declarations);
11190 use Variant_Choices_Processing;
11192 -----------------------------
11193 -- Non_Static_Choice_Error --
11194 -----------------------------
11196 procedure Non_Static_Choice_Error (Choice : Node_Id) is
11197 begin
11198 Flag_Non_Static_Expr
11199 ("choice given in variant part is not static!", Choice);
11200 end Non_Static_Choice_Error;
11202 --------------------------
11203 -- Process_Declarations --
11204 --------------------------
11206 procedure Process_Declarations (Variant : Node_Id) is
11207 CL : constant Node_Id := Component_List (Variant);
11208 VP : Node_Id;
11210 begin
11211 -- Check for static predicate present in this variant
11213 if Has_SP_Choice (Variant) then
11215 -- Here we expand. You might expect to find this call in
11216 -- Expand_N_Variant_Part, but that is called when we first
11217 -- see the variant part, and we cannot do this expansion
11218 -- earlier than the freeze point, since for statically
11219 -- predicated subtypes, the predicate is not known till
11220 -- the freeze point.
11222 -- Furthermore, we do this expansion even if the expander
11223 -- is not active, because other semantic processing, e.g.
11224 -- for aggregates, requires the expanded list of choices.
11226 -- If the expander is not active, then we can't just clobber
11227 -- the list since it would invalidate the ASIS -gnatct tree.
11228 -- So we have to rewrite the variant part with a Rewrite
11229 -- call that replaces it with a copy and clobber the copy.
11231 if not Expander_Active then
11232 declare
11233 NewV : constant Node_Id := New_Copy (Variant);
11234 begin
11235 Set_Discrete_Choices
11236 (NewV, New_Copy_List (Discrete_Choices (Variant)));
11237 Rewrite (Variant, NewV);
11238 end;
11239 end if;
11241 Expand_Static_Predicates_In_Choices (Variant);
11242 end if;
11244 -- We don't need to worry about the declarations in the variant
11245 -- (since they were analyzed by Analyze_Choices when we first
11246 -- encountered the variant), but we do need to take care of
11247 -- expansion of any nested variants.
11249 if not Null_Present (CL) then
11250 VP := Variant_Part (CL);
11252 if Present (VP) then
11253 Check_Choices
11254 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
11255 end if;
11256 end if;
11257 end Process_Declarations;
11259 -- Start of processing for Check_Variant_Part
11261 begin
11262 -- Find component list
11264 C := Empty;
11266 if Nkind (D) = N_Full_Type_Declaration then
11267 T := Type_Definition (D);
11269 if Nkind (T) = N_Record_Definition then
11270 C := Component_List (T);
11272 elsif Nkind (T) = N_Derived_Type_Definition
11273 and then Present (Record_Extension_Part (T))
11274 then
11275 C := Component_List (Record_Extension_Part (T));
11276 end if;
11277 end if;
11279 -- Case of variant part present
11281 if Present (C) and then Present (Variant_Part (C)) then
11282 VP := Variant_Part (C);
11284 -- Check choices
11286 Check_Choices
11287 (VP, Variants (VP), Etype (Name (VP)), Others_Present);
11289 -- If the last variant does not contain the Others choice,
11290 -- replace it with an N_Others_Choice node since Gigi always
11291 -- wants an Others. Note that we do not bother to call Analyze
11292 -- on the modified variant part, since its only effect would be
11293 -- to compute the Others_Discrete_Choices node laboriously, and
11294 -- of course we already know the list of choices corresponding
11295 -- to the others choice (it's the list we're replacing).
11297 -- We only want to do this if the expander is active, since
11298 -- we do not want to clobber the ASIS tree.
11300 if Expander_Active then
11301 declare
11302 Last_Var : constant Node_Id :=
11303 Last_Non_Pragma (Variants (VP));
11305 Others_Node : Node_Id;
11307 begin
11308 if Nkind (First (Discrete_Choices (Last_Var))) /=
11309 N_Others_Choice
11310 then
11311 Others_Node := Make_Others_Choice (Sloc (Last_Var));
11312 Set_Others_Discrete_Choices
11313 (Others_Node, Discrete_Choices (Last_Var));
11314 Set_Discrete_Choices
11315 (Last_Var, New_List (Others_Node));
11316 end if;
11317 end;
11318 end if;
11319 end if;
11320 end Check_Variant_Part;
11321 end if;
11322 end Freeze_Entity_Checks;
11324 -------------------------
11325 -- Get_Alignment_Value --
11326 -------------------------
11328 function Get_Alignment_Value (Expr : Node_Id) return Uint is
11329 Align : constant Uint := Static_Integer (Expr);
11331 begin
11332 if Align = No_Uint then
11333 return No_Uint;
11335 elsif Align <= 0 then
11337 -- This error is suppressed in ASIS mode to allow for different ASIS
11338 -- back ends or ASIS-based tools to query the illegal clause.
11340 if not ASIS_Mode then
11341 Error_Msg_N ("alignment value must be positive", Expr);
11342 end if;
11344 return No_Uint;
11346 else
11347 for J in Int range 0 .. 64 loop
11348 declare
11349 M : constant Uint := Uint_2 ** J;
11351 begin
11352 exit when M = Align;
11354 if M > Align then
11356 -- This error is suppressed in ASIS mode to allow for
11357 -- different ASIS back ends or ASIS-based tools to query the
11358 -- illegal clause.
11360 if not ASIS_Mode then
11361 Error_Msg_N ("alignment value must be power of 2", Expr);
11362 end if;
11364 return No_Uint;
11365 end if;
11366 end;
11367 end loop;
11369 return Align;
11370 end if;
11371 end Get_Alignment_Value;
11373 -------------------------------------
11374 -- Inherit_Aspects_At_Freeze_Point --
11375 -------------------------------------
11377 procedure Inherit_Aspects_At_Freeze_Point (Typ : Entity_Id) is
11378 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11379 (Rep_Item : Node_Id) return Boolean;
11380 -- This routine checks if Rep_Item is either a pragma or an aspect
11381 -- specification node whose correponding pragma (if any) is present in
11382 -- the Rep Item chain of the entity it has been specified to.
11384 --------------------------------------------------
11385 -- Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item --
11386 --------------------------------------------------
11388 function Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11389 (Rep_Item : Node_Id) return Boolean
11391 begin
11392 return
11393 Nkind (Rep_Item) = N_Pragma
11394 or else Present_In_Rep_Item
11395 (Entity (Rep_Item), Aspect_Rep_Item (Rep_Item));
11396 end Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item;
11398 -- Start of processing for Inherit_Aspects_At_Freeze_Point
11400 begin
11401 -- A representation item is either subtype-specific (Size and Alignment
11402 -- clauses) or type-related (all others). Subtype-specific aspects may
11403 -- differ for different subtypes of the same type (RM 13.1.8).
11405 -- A derived type inherits each type-related representation aspect of
11406 -- its parent type that was directly specified before the declaration of
11407 -- the derived type (RM 13.1.15).
11409 -- A derived subtype inherits each subtype-specific representation
11410 -- aspect of its parent subtype that was directly specified before the
11411 -- declaration of the derived type (RM 13.1.15).
11413 -- The general processing involves inheriting a representation aspect
11414 -- from a parent type whenever the first rep item (aspect specification,
11415 -- attribute definition clause, pragma) corresponding to the given
11416 -- representation aspect in the rep item chain of Typ, if any, isn't
11417 -- directly specified to Typ but to one of its parents.
11419 -- ??? Note that, for now, just a limited number of representation
11420 -- aspects have been inherited here so far. Many of them are
11421 -- still inherited in Sem_Ch3. This will be fixed soon. Here is
11422 -- a non- exhaustive list of aspects that likely also need to
11423 -- be moved to this routine: Alignment, Component_Alignment,
11424 -- Component_Size, Machine_Radix, Object_Size, Pack, Predicates,
11425 -- Preelaborable_Initialization, RM_Size and Small.
11427 -- In addition, Convention must be propagated from base type to subtype,
11428 -- because the subtype may have been declared on an incomplete view.
11430 if Nkind (Parent (Typ)) = N_Private_Extension_Declaration then
11431 return;
11432 end if;
11434 -- Ada_05/Ada_2005
11436 if not Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005, False)
11437 and then Has_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005)
11438 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11439 (Get_Rep_Item (Typ, Name_Ada_05, Name_Ada_2005))
11440 then
11441 Set_Is_Ada_2005_Only (Typ);
11442 end if;
11444 -- Ada_12/Ada_2012
11446 if not Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012, False)
11447 and then Has_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012)
11448 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11449 (Get_Rep_Item (Typ, Name_Ada_12, Name_Ada_2012))
11450 then
11451 Set_Is_Ada_2012_Only (Typ);
11452 end if;
11454 -- Atomic/Shared
11456 if not Has_Rep_Item (Typ, Name_Atomic, Name_Shared, False)
11457 and then Has_Rep_Pragma (Typ, Name_Atomic, Name_Shared)
11458 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11459 (Get_Rep_Item (Typ, Name_Atomic, Name_Shared))
11460 then
11461 Set_Is_Atomic (Typ);
11462 Set_Is_Volatile (Typ);
11463 Set_Treat_As_Volatile (Typ);
11464 end if;
11466 -- Convention
11468 if Is_Record_Type (Typ)
11469 and then Typ /= Base_Type (Typ) and then Is_Frozen (Base_Type (Typ))
11470 then
11471 Set_Convention (Typ, Convention (Base_Type (Typ)));
11472 end if;
11474 -- Default_Component_Value
11476 -- Verify that there is no rep_item declared for the type, and there
11477 -- is one coming from an ancestor.
11479 if Is_Array_Type (Typ)
11480 and then Is_Base_Type (Typ)
11481 and then not Has_Rep_Item (Typ, Name_Default_Component_Value, False)
11482 and then Has_Rep_Item (Typ, Name_Default_Component_Value)
11483 then
11484 Set_Default_Aspect_Component_Value (Typ,
11485 Default_Aspect_Component_Value
11486 (Entity (Get_Rep_Item (Typ, Name_Default_Component_Value))));
11487 end if;
11489 -- Default_Value
11491 if Is_Scalar_Type (Typ)
11492 and then Is_Base_Type (Typ)
11493 and then not Has_Rep_Item (Typ, Name_Default_Value, False)
11494 and then Has_Rep_Item (Typ, Name_Default_Value)
11495 then
11496 Set_Has_Default_Aspect (Typ);
11497 Set_Default_Aspect_Value (Typ,
11498 Default_Aspect_Value
11499 (Entity (Get_Rep_Item (Typ, Name_Default_Value))));
11500 end if;
11502 -- Discard_Names
11504 if not Has_Rep_Item (Typ, Name_Discard_Names, False)
11505 and then Has_Rep_Item (Typ, Name_Discard_Names)
11506 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11507 (Get_Rep_Item (Typ, Name_Discard_Names))
11508 then
11509 Set_Discard_Names (Typ);
11510 end if;
11512 -- Volatile
11514 if not Has_Rep_Item (Typ, Name_Volatile, False)
11515 and then Has_Rep_Item (Typ, Name_Volatile)
11516 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11517 (Get_Rep_Item (Typ, Name_Volatile))
11518 then
11519 Set_Is_Volatile (Typ);
11520 Set_Treat_As_Volatile (Typ);
11521 end if;
11523 -- Volatile_Full_Access
11525 if not Has_Rep_Item (Typ, Name_Volatile_Full_Access, False)
11526 and then Has_Rep_Pragma (Typ, Name_Volatile_Full_Access)
11527 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11528 (Get_Rep_Item (Typ, Name_Volatile_Full_Access))
11529 then
11530 Set_Is_Volatile_Full_Access (Typ);
11531 Set_Is_Volatile (Typ);
11532 Set_Treat_As_Volatile (Typ);
11533 end if;
11535 -- Inheritance for derived types only
11537 if Is_Derived_Type (Typ) then
11538 declare
11539 Bas_Typ : constant Entity_Id := Base_Type (Typ);
11540 Imp_Bas_Typ : constant Entity_Id := Implementation_Base_Type (Typ);
11542 begin
11543 -- Atomic_Components
11545 if not Has_Rep_Item (Typ, Name_Atomic_Components, False)
11546 and then Has_Rep_Item (Typ, Name_Atomic_Components)
11547 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11548 (Get_Rep_Item (Typ, Name_Atomic_Components))
11549 then
11550 Set_Has_Atomic_Components (Imp_Bas_Typ);
11551 end if;
11553 -- Volatile_Components
11555 if not Has_Rep_Item (Typ, Name_Volatile_Components, False)
11556 and then Has_Rep_Item (Typ, Name_Volatile_Components)
11557 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11558 (Get_Rep_Item (Typ, Name_Volatile_Components))
11559 then
11560 Set_Has_Volatile_Components (Imp_Bas_Typ);
11561 end if;
11563 -- Finalize_Storage_Only
11565 if not Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only, False)
11566 and then Has_Rep_Pragma (Typ, Name_Finalize_Storage_Only)
11567 then
11568 Set_Finalize_Storage_Only (Bas_Typ);
11569 end if;
11571 -- Universal_Aliasing
11573 if not Has_Rep_Item (Typ, Name_Universal_Aliasing, False)
11574 and then Has_Rep_Item (Typ, Name_Universal_Aliasing)
11575 and then Is_Pragma_Or_Corr_Pragma_Present_In_Rep_Item
11576 (Get_Rep_Item (Typ, Name_Universal_Aliasing))
11577 then
11578 Set_Universal_Aliasing (Imp_Bas_Typ);
11579 end if;
11581 -- Bit_Order
11583 if Is_Record_Type (Typ) then
11584 if not Has_Rep_Item (Typ, Name_Bit_Order, False)
11585 and then Has_Rep_Item (Typ, Name_Bit_Order)
11586 then
11587 Set_Reverse_Bit_Order (Bas_Typ,
11588 Reverse_Bit_Order (Entity (Name
11589 (Get_Rep_Item (Typ, Name_Bit_Order)))));
11590 end if;
11591 end if;
11593 -- Scalar_Storage_Order
11595 -- Note: the aspect is specified on a first subtype, but recorded
11596 -- in a flag of the base type!
11598 if (Is_Record_Type (Typ) or else Is_Array_Type (Typ))
11599 and then Typ = Bas_Typ
11600 then
11601 -- For a type extension, always inherit from parent; otherwise
11602 -- inherit if no default applies. Note: we do not check for
11603 -- an explicit rep item on the parent type when inheriting,
11604 -- because the parent SSO may itself have been set by default.
11606 if not Has_Rep_Item (First_Subtype (Typ),
11607 Name_Scalar_Storage_Order, False)
11608 and then (Is_Tagged_Type (Bas_Typ)
11609 or else not (SSO_Set_Low_By_Default (Bas_Typ)
11610 or else
11611 SSO_Set_High_By_Default (Bas_Typ)))
11612 then
11613 Set_Reverse_Storage_Order (Bas_Typ,
11614 Reverse_Storage_Order
11615 (Implementation_Base_Type (Etype (Bas_Typ))));
11617 -- Clear default SSO indications, since the inherited aspect
11618 -- which was set explicitly overrides the default.
11620 Set_SSO_Set_Low_By_Default (Bas_Typ, False);
11621 Set_SSO_Set_High_By_Default (Bas_Typ, False);
11622 end if;
11623 end if;
11624 end;
11625 end if;
11626 end Inherit_Aspects_At_Freeze_Point;
11628 ----------------
11629 -- Initialize --
11630 ----------------
11632 procedure Initialize is
11633 begin
11634 Address_Clause_Checks.Init;
11635 Compile_Time_Warnings_Errors.Init;
11636 Unchecked_Conversions.Init;
11638 -- ??? Might be needed in the future for some non GCC back-ends
11639 -- if AAMP_On_Target then
11640 -- Independence_Checks.Init;
11641 -- end if;
11642 end Initialize;
11644 ---------------------------
11645 -- Install_Discriminants --
11646 ---------------------------
11648 procedure Install_Discriminants (E : Entity_Id) is
11649 Disc : Entity_Id;
11650 Prev : Entity_Id;
11651 begin
11652 Disc := First_Discriminant (E);
11653 while Present (Disc) loop
11654 Prev := Current_Entity (Disc);
11655 Set_Current_Entity (Disc);
11656 Set_Is_Immediately_Visible (Disc);
11657 Set_Homonym (Disc, Prev);
11658 Next_Discriminant (Disc);
11659 end loop;
11660 end Install_Discriminants;
11662 -------------------------
11663 -- Is_Operational_Item --
11664 -------------------------
11666 function Is_Operational_Item (N : Node_Id) return Boolean is
11667 begin
11668 if Nkind (N) /= N_Attribute_Definition_Clause then
11669 return False;
11671 else
11672 declare
11673 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
11674 begin
11676 -- List of operational items is given in AARM 13.1(8.mm/1).
11677 -- It is clearly incomplete, as it does not include iterator
11678 -- aspects, among others.
11680 return Id = Attribute_Constant_Indexing
11681 or else Id = Attribute_Default_Iterator
11682 or else Id = Attribute_Implicit_Dereference
11683 or else Id = Attribute_Input
11684 or else Id = Attribute_Iterator_Element
11685 or else Id = Attribute_Iterable
11686 or else Id = Attribute_Output
11687 or else Id = Attribute_Read
11688 or else Id = Attribute_Variable_Indexing
11689 or else Id = Attribute_Write
11690 or else Id = Attribute_External_Tag;
11691 end;
11692 end if;
11693 end Is_Operational_Item;
11695 -------------------------
11696 -- Is_Predicate_Static --
11697 -------------------------
11699 -- Note: the basic legality of the expression has already been checked, so
11700 -- we don't need to worry about cases or ranges on strings for example.
11702 function Is_Predicate_Static
11703 (Expr : Node_Id;
11704 Nam : Name_Id) return Boolean
11706 function All_Static_Case_Alternatives (L : List_Id) return Boolean;
11707 -- Given a list of case expression alternatives, returns True if all
11708 -- the alternatives are static (have all static choices, and a static
11709 -- expression).
11711 function All_Static_Choices (L : List_Id) return Boolean;
11712 -- Returns true if all elements of the list are OK static choices
11713 -- as defined below for Is_Static_Choice. Used for case expression
11714 -- alternatives and for the right operand of a membership test. An
11715 -- others_choice is static if the corresponding expression is static.
11716 -- The staticness of the bounds is checked separately.
11718 function Is_Static_Choice (N : Node_Id) return Boolean;
11719 -- Returns True if N represents a static choice (static subtype, or
11720 -- static subtype indication, or static expression, or static range).
11722 -- Note that this is a bit more inclusive than we actually need
11723 -- (in particular membership tests do not allow the use of subtype
11724 -- indications). But that doesn't matter, we have already checked
11725 -- that the construct is legal to get this far.
11727 function Is_Type_Ref (N : Node_Id) return Boolean;
11728 pragma Inline (Is_Type_Ref);
11729 -- Returns True if N is a reference to the type for the predicate in the
11730 -- expression (i.e. if it is an identifier whose Chars field matches the
11731 -- Nam given in the call). N must not be parenthesized, if the type name
11732 -- appears in parens, this routine will return False.
11734 -- The routine also returns True for function calls generated during the
11735 -- expansion of comparison operators on strings, which are intended to
11736 -- be legal in static predicates, and are converted into calls to array
11737 -- comparison routines in the body of the corresponding predicate
11738 -- function.
11740 ----------------------------------
11741 -- All_Static_Case_Alternatives --
11742 ----------------------------------
11744 function All_Static_Case_Alternatives (L : List_Id) return Boolean is
11745 N : Node_Id;
11747 begin
11748 N := First (L);
11749 while Present (N) loop
11750 if not (All_Static_Choices (Discrete_Choices (N))
11751 and then Is_OK_Static_Expression (Expression (N)))
11752 then
11753 return False;
11754 end if;
11756 Next (N);
11757 end loop;
11759 return True;
11760 end All_Static_Case_Alternatives;
11762 ------------------------
11763 -- All_Static_Choices --
11764 ------------------------
11766 function All_Static_Choices (L : List_Id) return Boolean is
11767 N : Node_Id;
11769 begin
11770 N := First (L);
11771 while Present (N) loop
11772 if not Is_Static_Choice (N) then
11773 return False;
11774 end if;
11776 Next (N);
11777 end loop;
11779 return True;
11780 end All_Static_Choices;
11782 ----------------------
11783 -- Is_Static_Choice --
11784 ----------------------
11786 function Is_Static_Choice (N : Node_Id) return Boolean is
11787 begin
11788 return Nkind (N) = N_Others_Choice
11789 or else Is_OK_Static_Expression (N)
11790 or else (Is_Entity_Name (N) and then Is_Type (Entity (N))
11791 and then Is_OK_Static_Subtype (Entity (N)))
11792 or else (Nkind (N) = N_Subtype_Indication
11793 and then Is_OK_Static_Subtype (Entity (N)))
11794 or else (Nkind (N) = N_Range and then Is_OK_Static_Range (N));
11795 end Is_Static_Choice;
11797 -----------------
11798 -- Is_Type_Ref --
11799 -----------------
11801 function Is_Type_Ref (N : Node_Id) return Boolean is
11802 begin
11803 return (Nkind (N) = N_Identifier
11804 and then Chars (N) = Nam
11805 and then Paren_Count (N) = 0)
11806 or else Nkind (N) = N_Function_Call;
11807 end Is_Type_Ref;
11809 -- Start of processing for Is_Predicate_Static
11811 begin
11812 -- Predicate_Static means one of the following holds. Numbers are the
11813 -- corresponding paragraph numbers in (RM 3.2.4(16-22)).
11815 -- 16: A static expression
11817 if Is_OK_Static_Expression (Expr) then
11818 return True;
11820 -- 17: A membership test whose simple_expression is the current
11821 -- instance, and whose membership_choice_list meets the requirements
11822 -- for a static membership test.
11824 elsif Nkind (Expr) in N_Membership_Test
11825 and then ((Present (Right_Opnd (Expr))
11826 and then Is_Static_Choice (Right_Opnd (Expr)))
11827 or else
11828 (Present (Alternatives (Expr))
11829 and then All_Static_Choices (Alternatives (Expr))))
11830 then
11831 return True;
11833 -- 18. A case_expression whose selecting_expression is the current
11834 -- instance, and whose dependent expressions are static expressions.
11836 elsif Nkind (Expr) = N_Case_Expression
11837 and then Is_Type_Ref (Expression (Expr))
11838 and then All_Static_Case_Alternatives (Alternatives (Expr))
11839 then
11840 return True;
11842 -- 19. A call to a predefined equality or ordering operator, where one
11843 -- operand is the current instance, and the other is a static
11844 -- expression.
11846 -- Note: the RM is clearly wrong here in not excluding string types.
11847 -- Without this exclusion, we would allow expressions like X > "ABC"
11848 -- to be considered as predicate-static, which is clearly not intended,
11849 -- since the idea is for predicate-static to be a subset of normal
11850 -- static expressions (and "DEF" > "ABC" is not a static expression).
11852 -- However, we do allow internally generated (not from source) equality
11853 -- and inequality operations to be valid on strings (this helps deal
11854 -- with cases where we transform A in "ABC" to A = "ABC).
11856 -- In fact, it appears that the intent of the ARG is to extend static
11857 -- predicates to strings, and that the extension should probably apply
11858 -- to static expressions themselves. The code below accepts comparison
11859 -- operators that apply to static strings.
11861 elsif Nkind (Expr) in N_Op_Compare
11862 and then ((Is_Type_Ref (Left_Opnd (Expr))
11863 and then Is_OK_Static_Expression (Right_Opnd (Expr)))
11864 or else
11865 (Is_Type_Ref (Right_Opnd (Expr))
11866 and then Is_OK_Static_Expression (Left_Opnd (Expr))))
11867 then
11868 return True;
11870 -- 20. A call to a predefined boolean logical operator, where each
11871 -- operand is predicate-static.
11873 elsif (Nkind_In (Expr, N_Op_And, N_Op_Or, N_Op_Xor)
11874 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11875 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11876 or else
11877 (Nkind (Expr) = N_Op_Not
11878 and then Is_Predicate_Static (Right_Opnd (Expr), Nam))
11879 then
11880 return True;
11882 -- 21. A short-circuit control form where both operands are
11883 -- predicate-static.
11885 elsif Nkind (Expr) in N_Short_Circuit
11886 and then Is_Predicate_Static (Left_Opnd (Expr), Nam)
11887 and then Is_Predicate_Static (Right_Opnd (Expr), Nam)
11888 then
11889 return True;
11891 -- 22. A parenthesized predicate-static expression. This does not
11892 -- require any special test, since we just ignore paren levels in
11893 -- all the cases above.
11895 -- One more test that is an implementation artifact caused by the fact
11896 -- that we are analyzing not the original expression, but the generated
11897 -- expression in the body of the predicate function. This can include
11898 -- references to inherited predicates, so that the expression we are
11899 -- processing looks like:
11901 -- xxPredicate (typ (Inns)) and then expression
11903 -- Where the call is to a Predicate function for an inherited predicate.
11904 -- We simply ignore such a call, which could be to either a dynamic or
11905 -- a static predicate. Note that if the parent predicate is dynamic then
11906 -- eventually this type will be marked as dynamic, but you are allowed
11907 -- to specify a static predicate for a subtype which is inheriting a
11908 -- dynamic predicate, so the static predicate validation here ignores
11909 -- the inherited predicate even if it is dynamic.
11910 -- In all cases, a static predicate can only apply to a scalar type.
11912 elsif Nkind (Expr) = N_Function_Call
11913 and then Is_Predicate_Function (Entity (Name (Expr)))
11914 and then Is_Scalar_Type (Etype (First_Entity (Entity (Name (Expr)))))
11915 then
11916 return True;
11918 -- That's an exhaustive list of tests, all other cases are not
11919 -- predicate-static, so we return False.
11921 else
11922 return False;
11923 end if;
11924 end Is_Predicate_Static;
11926 ---------------------
11927 -- Kill_Rep_Clause --
11928 ---------------------
11930 procedure Kill_Rep_Clause (N : Node_Id) is
11931 begin
11932 pragma Assert (Ignore_Rep_Clauses);
11934 -- Note: we use Replace rather than Rewrite, because we don't want
11935 -- ASIS to be able to use Original_Node to dig out the (undecorated)
11936 -- rep clause that is being replaced.
11938 Replace (N, Make_Null_Statement (Sloc (N)));
11940 -- The null statement must be marked as not coming from source. This is
11941 -- so that ASIS ignores it, and also the back end does not expect bogus
11942 -- "from source" null statements in weird places (e.g. in declarative
11943 -- regions where such null statements are not allowed).
11945 Set_Comes_From_Source (N, False);
11946 end Kill_Rep_Clause;
11948 ------------------
11949 -- Minimum_Size --
11950 ------------------
11952 function Minimum_Size
11953 (T : Entity_Id;
11954 Biased : Boolean := False) return Nat
11956 Lo : Uint := No_Uint;
11957 Hi : Uint := No_Uint;
11958 LoR : Ureal := No_Ureal;
11959 HiR : Ureal := No_Ureal;
11960 LoSet : Boolean := False;
11961 HiSet : Boolean := False;
11962 B : Uint;
11963 S : Nat;
11964 Ancest : Entity_Id;
11965 R_Typ : constant Entity_Id := Root_Type (T);
11967 begin
11968 -- If bad type, return 0
11970 if T = Any_Type then
11971 return 0;
11973 -- For generic types, just return zero. There cannot be any legitimate
11974 -- need to know such a size, but this routine may be called with a
11975 -- generic type as part of normal processing.
11977 elsif Is_Generic_Type (R_Typ) or else R_Typ = Any_Type then
11978 return 0;
11980 -- Access types (cannot have size smaller than System.Address)
11982 elsif Is_Access_Type (T) then
11983 return System_Address_Size;
11985 -- Floating-point types
11987 elsif Is_Floating_Point_Type (T) then
11988 return UI_To_Int (Esize (R_Typ));
11990 -- Discrete types
11992 elsif Is_Discrete_Type (T) then
11994 -- The following loop is looking for the nearest compile time known
11995 -- bounds following the ancestor subtype chain. The idea is to find
11996 -- the most restrictive known bounds information.
11998 Ancest := T;
11999 loop
12000 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
12001 return 0;
12002 end if;
12004 if not LoSet then
12005 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
12006 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
12007 LoSet := True;
12008 exit when HiSet;
12009 end if;
12010 end if;
12012 if not HiSet then
12013 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
12014 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
12015 HiSet := True;
12016 exit when LoSet;
12017 end if;
12018 end if;
12020 Ancest := Ancestor_Subtype (Ancest);
12022 if No (Ancest) then
12023 Ancest := Base_Type (T);
12025 if Is_Generic_Type (Ancest) then
12026 return 0;
12027 end if;
12028 end if;
12029 end loop;
12031 -- Fixed-point types. We can't simply use Expr_Value to get the
12032 -- Corresponding_Integer_Value values of the bounds, since these do not
12033 -- get set till the type is frozen, and this routine can be called
12034 -- before the type is frozen. Similarly the test for bounds being static
12035 -- needs to include the case where we have unanalyzed real literals for
12036 -- the same reason.
12038 elsif Is_Fixed_Point_Type (T) then
12040 -- The following loop is looking for the nearest compile time known
12041 -- bounds following the ancestor subtype chain. The idea is to find
12042 -- the most restrictive known bounds information.
12044 Ancest := T;
12045 loop
12046 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
12047 return 0;
12048 end if;
12050 -- Note: In the following two tests for LoSet and HiSet, it may
12051 -- seem redundant to test for N_Real_Literal here since normally
12052 -- one would assume that the test for the value being known at
12053 -- compile time includes this case. However, there is a glitch.
12054 -- If the real literal comes from folding a non-static expression,
12055 -- then we don't consider any non- static expression to be known
12056 -- at compile time if we are in configurable run time mode (needed
12057 -- in some cases to give a clearer definition of what is and what
12058 -- is not accepted). So the test is indeed needed. Without it, we
12059 -- would set neither Lo_Set nor Hi_Set and get an infinite loop.
12061 if not LoSet then
12062 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
12063 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
12064 then
12065 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
12066 LoSet := True;
12067 exit when HiSet;
12068 end if;
12069 end if;
12071 if not HiSet then
12072 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
12073 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
12074 then
12075 HiR := Expr_Value_R (Type_High_Bound (Ancest));
12076 HiSet := True;
12077 exit when LoSet;
12078 end if;
12079 end if;
12081 Ancest := Ancestor_Subtype (Ancest);
12083 if No (Ancest) then
12084 Ancest := Base_Type (T);
12086 if Is_Generic_Type (Ancest) then
12087 return 0;
12088 end if;
12089 end if;
12090 end loop;
12092 Lo := UR_To_Uint (LoR / Small_Value (T));
12093 Hi := UR_To_Uint (HiR / Small_Value (T));
12095 -- No other types allowed
12097 else
12098 raise Program_Error;
12099 end if;
12101 -- Fall through with Hi and Lo set. Deal with biased case
12103 if (Biased
12104 and then not Is_Fixed_Point_Type (T)
12105 and then not (Is_Enumeration_Type (T)
12106 and then Has_Non_Standard_Rep (T)))
12107 or else Has_Biased_Representation (T)
12108 then
12109 Hi := Hi - Lo;
12110 Lo := Uint_0;
12111 end if;
12113 -- Null range case, size is always zero. We only do this in the discrete
12114 -- type case, since that's the odd case that came up. Probably we should
12115 -- also do this in the fixed-point case, but doing so causes peculiar
12116 -- gigi failures, and it is not worth worrying about this incredibly
12117 -- marginal case (explicit null-range fixed-point type declarations)???
12119 if Lo > Hi and then Is_Discrete_Type (T) then
12120 S := 0;
12122 -- Signed case. Note that we consider types like range 1 .. -1 to be
12123 -- signed for the purpose of computing the size, since the bounds have
12124 -- to be accommodated in the base type.
12126 elsif Lo < 0 or else Hi < 0 then
12127 S := 1;
12128 B := Uint_1;
12130 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
12131 -- Note that we accommodate the case where the bounds cross. This
12132 -- can happen either because of the way the bounds are declared
12133 -- or because of the algorithm in Freeze_Fixed_Point_Type.
12135 while Lo < -B
12136 or else Hi < -B
12137 or else Lo >= B
12138 or else Hi >= B
12139 loop
12140 B := Uint_2 ** S;
12141 S := S + 1;
12142 end loop;
12144 -- Unsigned case
12146 else
12147 -- If both bounds are positive, make sure that both are represen-
12148 -- table in the case where the bounds are crossed. This can happen
12149 -- either because of the way the bounds are declared, or because of
12150 -- the algorithm in Freeze_Fixed_Point_Type.
12152 if Lo > Hi then
12153 Hi := Lo;
12154 end if;
12156 -- S = size, (can accommodate 0 .. (2**size - 1))
12158 S := 0;
12159 while Hi >= Uint_2 ** S loop
12160 S := S + 1;
12161 end loop;
12162 end if;
12164 return S;
12165 end Minimum_Size;
12167 ---------------------------
12168 -- New_Stream_Subprogram --
12169 ---------------------------
12171 procedure New_Stream_Subprogram
12172 (N : Node_Id;
12173 Ent : Entity_Id;
12174 Subp : Entity_Id;
12175 Nam : TSS_Name_Type)
12177 Loc : constant Source_Ptr := Sloc (N);
12178 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
12179 Subp_Id : Entity_Id;
12180 Subp_Decl : Node_Id;
12181 F : Entity_Id;
12182 Etyp : Entity_Id;
12184 Defer_Declaration : constant Boolean :=
12185 Is_Tagged_Type (Ent) or else Is_Private_Type (Ent);
12186 -- For a tagged type, there is a declaration for each stream attribute
12187 -- at the freeze point, and we must generate only a completion of this
12188 -- declaration. We do the same for private types, because the full view
12189 -- might be tagged. Otherwise we generate a declaration at the point of
12190 -- the attribute definition clause. If the attribute definition comes
12191 -- from an aspect specification the declaration is part of the freeze
12192 -- actions of the type.
12194 function Build_Spec return Node_Id;
12195 -- Used for declaration and renaming declaration, so that this is
12196 -- treated as a renaming_as_body.
12198 ----------------
12199 -- Build_Spec --
12200 ----------------
12202 function Build_Spec return Node_Id is
12203 Out_P : constant Boolean := (Nam = TSS_Stream_Read);
12204 Formals : List_Id;
12205 Spec : Node_Id;
12206 T_Ref : constant Node_Id := New_Occurrence_Of (Etyp, Loc);
12208 begin
12209 Subp_Id := Make_Defining_Identifier (Loc, Sname);
12211 -- S : access Root_Stream_Type'Class
12213 Formals := New_List (
12214 Make_Parameter_Specification (Loc,
12215 Defining_Identifier =>
12216 Make_Defining_Identifier (Loc, Name_S),
12217 Parameter_Type =>
12218 Make_Access_Definition (Loc,
12219 Subtype_Mark =>
12220 New_Occurrence_Of (
12221 Designated_Type (Etype (F)), Loc))));
12223 if Nam = TSS_Stream_Input then
12224 Spec :=
12225 Make_Function_Specification (Loc,
12226 Defining_Unit_Name => Subp_Id,
12227 Parameter_Specifications => Formals,
12228 Result_Definition => T_Ref);
12229 else
12230 -- V : [out] T
12232 Append_To (Formals,
12233 Make_Parameter_Specification (Loc,
12234 Defining_Identifier => Make_Defining_Identifier (Loc, Name_V),
12235 Out_Present => Out_P,
12236 Parameter_Type => T_Ref));
12238 Spec :=
12239 Make_Procedure_Specification (Loc,
12240 Defining_Unit_Name => Subp_Id,
12241 Parameter_Specifications => Formals);
12242 end if;
12244 return Spec;
12245 end Build_Spec;
12247 -- Start of processing for New_Stream_Subprogram
12249 begin
12250 F := First_Formal (Subp);
12252 if Ekind (Subp) = E_Procedure then
12253 Etyp := Etype (Next_Formal (F));
12254 else
12255 Etyp := Etype (Subp);
12256 end if;
12258 -- Prepare subprogram declaration and insert it as an action on the
12259 -- clause node. The visibility for this entity is used to test for
12260 -- visibility of the attribute definition clause (in the sense of
12261 -- 8.3(23) as amended by AI-195).
12263 if not Defer_Declaration then
12264 Subp_Decl :=
12265 Make_Subprogram_Declaration (Loc,
12266 Specification => Build_Spec);
12268 -- For a tagged type, there is always a visible declaration for each
12269 -- stream TSS (it is a predefined primitive operation), and the
12270 -- completion of this declaration occurs at the freeze point, which is
12271 -- not always visible at places where the attribute definition clause is
12272 -- visible. So, we create a dummy entity here for the purpose of
12273 -- tracking the visibility of the attribute definition clause itself.
12275 else
12276 Subp_Id :=
12277 Make_Defining_Identifier (Loc, New_External_Name (Sname, 'V'));
12278 Subp_Decl :=
12279 Make_Object_Declaration (Loc,
12280 Defining_Identifier => Subp_Id,
12281 Object_Definition => New_Occurrence_Of (Standard_Boolean, Loc));
12282 end if;
12284 if not Defer_Declaration
12285 and then From_Aspect_Specification (N)
12286 and then Has_Delayed_Freeze (Ent)
12287 then
12288 Append_Freeze_Action (Ent, Subp_Decl);
12290 else
12291 Insert_Action (N, Subp_Decl);
12292 Set_Entity (N, Subp_Id);
12293 end if;
12295 Subp_Decl :=
12296 Make_Subprogram_Renaming_Declaration (Loc,
12297 Specification => Build_Spec,
12298 Name => New_Occurrence_Of (Subp, Loc));
12300 if Defer_Declaration then
12301 Set_TSS (Base_Type (Ent), Subp_Id);
12303 else
12304 if From_Aspect_Specification (N) then
12305 Append_Freeze_Action (Ent, Subp_Decl);
12306 else
12307 Insert_Action (N, Subp_Decl);
12308 end if;
12310 Copy_TSS (Subp_Id, Base_Type (Ent));
12311 end if;
12312 end New_Stream_Subprogram;
12314 ------------------------------------------
12315 -- Push_Scope_And_Install_Discriminants --
12316 ------------------------------------------
12318 procedure Push_Scope_And_Install_Discriminants (E : Entity_Id) is
12319 begin
12320 if Has_Discriminants (E) then
12321 Push_Scope (E);
12323 -- Make the discriminants visible for type declarations and protected
12324 -- type declarations, not for subtype declarations (RM 13.1.1 (12/3))
12326 if Nkind (Parent (E)) /= N_Subtype_Declaration then
12327 Install_Discriminants (E);
12328 end if;
12329 end if;
12330 end Push_Scope_And_Install_Discriminants;
12332 -----------------------------------
12333 -- Register_Address_Clause_Check --
12334 -----------------------------------
12336 procedure Register_Address_Clause_Check
12337 (N : Node_Id;
12338 X : Entity_Id;
12339 A : Uint;
12340 Y : Entity_Id;
12341 Off : Boolean)
12343 ACS : constant Boolean := Scope_Suppress.Suppress (Alignment_Check);
12344 begin
12345 Address_Clause_Checks.Append ((N, X, A, Y, Off, ACS));
12346 end Register_Address_Clause_Check;
12348 ------------------------
12349 -- Rep_Item_Too_Early --
12350 ------------------------
12352 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
12353 begin
12354 -- Cannot apply non-operational rep items to generic types
12356 if Is_Operational_Item (N) then
12357 return False;
12359 elsif Is_Type (T)
12360 and then Is_Generic_Type (Root_Type (T))
12361 and then (Nkind (N) /= N_Pragma
12362 or else Get_Pragma_Id (N) /= Pragma_Convention)
12363 then
12364 Error_Msg_N ("representation item not allowed for generic type", N);
12365 return True;
12366 end if;
12368 -- Otherwise check for incomplete type
12370 if Is_Incomplete_Or_Private_Type (T)
12371 and then No (Underlying_Type (T))
12372 and then
12373 (Nkind (N) /= N_Pragma
12374 or else Get_Pragma_Id (N) /= Pragma_Import)
12375 then
12376 Error_Msg_N
12377 ("representation item must be after full type declaration", N);
12378 return True;
12380 -- If the type has incomplete components, a representation clause is
12381 -- illegal but stream attributes and Convention pragmas are correct.
12383 elsif Has_Private_Component (T) then
12384 if Nkind (N) = N_Pragma then
12385 return False;
12387 else
12388 Error_Msg_N
12389 ("representation item must appear after type is fully defined",
12391 return True;
12392 end if;
12393 else
12394 return False;
12395 end if;
12396 end Rep_Item_Too_Early;
12398 -----------------------
12399 -- Rep_Item_Too_Late --
12400 -----------------------
12402 function Rep_Item_Too_Late
12403 (T : Entity_Id;
12404 N : Node_Id;
12405 FOnly : Boolean := False) return Boolean
12407 S : Entity_Id;
12408 Parent_Type : Entity_Id;
12410 procedure No_Type_Rep_Item;
12411 -- Output message indicating that no type-related aspects can be
12412 -- specified due to some property of the parent type.
12414 procedure Too_Late;
12415 -- Output message for an aspect being specified too late
12417 -- Note that neither of the above errors is considered a serious one,
12418 -- since the effect is simply that we ignore the representation clause
12419 -- in these cases.
12420 -- Is this really true? In any case if we make this change we must
12421 -- document the requirement in the spec of Rep_Item_Too_Late that
12422 -- if True is returned, then the rep item must be completely ignored???
12424 ----------------------
12425 -- No_Type_Rep_Item --
12426 ----------------------
12428 procedure No_Type_Rep_Item is
12429 begin
12430 Error_Msg_N ("|type-related representation item not permitted!", N);
12431 end No_Type_Rep_Item;
12433 --------------
12434 -- Too_Late --
12435 --------------
12437 procedure Too_Late is
12438 begin
12439 -- Other compilers seem more relaxed about rep items appearing too
12440 -- late. Since analysis tools typically don't care about rep items
12441 -- anyway, no reason to be too strict about this.
12443 if not Relaxed_RM_Semantics then
12444 Error_Msg_N ("|representation item appears too late!", N);
12445 end if;
12446 end Too_Late;
12448 -- Start of processing for Rep_Item_Too_Late
12450 begin
12451 -- First make sure entity is not frozen (RM 13.1(9))
12453 if Is_Frozen (T)
12455 -- Exclude imported types, which may be frozen if they appear in a
12456 -- representation clause for a local type.
12458 and then not From_Limited_With (T)
12460 -- Exclude generated entities (not coming from source). The common
12461 -- case is when we generate a renaming which prematurely freezes the
12462 -- renamed internal entity, but we still want to be able to set copies
12463 -- of attribute values such as Size/Alignment.
12465 and then Comes_From_Source (T)
12466 then
12467 -- A self-referential aspect is illegal if it forces freezing the
12468 -- entity before the corresponding pragma has been analyzed.
12470 if Nkind_In (N, N_Attribute_Definition_Clause, N_Pragma)
12471 and then From_Aspect_Specification (N)
12472 then
12473 Error_Msg_NE
12474 ("aspect specification causes premature freezing of&", N, T);
12475 Set_Has_Delayed_Freeze (T, False);
12476 return True;
12477 end if;
12479 Too_Late;
12480 S := First_Subtype (T);
12482 if Present (Freeze_Node (S)) then
12483 if not Relaxed_RM_Semantics then
12484 Error_Msg_NE
12485 ("??no more representation items for }", Freeze_Node (S), S);
12486 end if;
12487 end if;
12489 return True;
12491 -- Check for case of untagged derived type whose parent either has
12492 -- primitive operations, or is a by reference type (RM 13.1(10)). In
12493 -- this case we do not output a Too_Late message, since there is no
12494 -- earlier point where the rep item could be placed to make it legal.
12496 elsif Is_Type (T)
12497 and then not FOnly
12498 and then Is_Derived_Type (T)
12499 and then not Is_Tagged_Type (T)
12500 then
12501 Parent_Type := Etype (Base_Type (T));
12503 if Has_Primitive_Operations (Parent_Type) then
12504 No_Type_Rep_Item;
12506 if not Relaxed_RM_Semantics then
12507 Error_Msg_NE
12508 ("\parent type & has primitive operations!", N, Parent_Type);
12509 end if;
12511 return True;
12513 elsif Is_By_Reference_Type (Parent_Type) then
12514 No_Type_Rep_Item;
12516 if not Relaxed_RM_Semantics then
12517 Error_Msg_NE
12518 ("\parent type & is a by reference type!", N, Parent_Type);
12519 end if;
12521 return True;
12522 end if;
12523 end if;
12525 -- No error, but one more warning to consider. The RM (surprisingly)
12526 -- allows this pattern:
12528 -- type S is ...
12529 -- primitive operations for S
12530 -- type R is new S;
12531 -- rep clause for S
12533 -- Meaning that calls on the primitive operations of S for values of
12534 -- type R may require possibly expensive implicit conversion operations.
12535 -- This is not an error, but is worth a warning.
12537 if not Relaxed_RM_Semantics and then Is_Type (T) then
12538 declare
12539 DTL : constant Entity_Id := Derived_Type_Link (Base_Type (T));
12541 begin
12542 if Present (DTL)
12543 and then Has_Primitive_Operations (Base_Type (T))
12545 -- For now, do not generate this warning for the case of aspect
12546 -- specification using Ada 2012 syntax, since we get wrong
12547 -- messages we do not understand. The whole business of derived
12548 -- types and rep items seems a bit confused when aspects are
12549 -- used, since the aspects are not evaluated till freeze time.
12551 and then not From_Aspect_Specification (N)
12552 then
12553 Error_Msg_Sloc := Sloc (DTL);
12554 Error_Msg_N
12555 ("representation item for& appears after derived type "
12556 & "declaration#??", N);
12557 Error_Msg_NE
12558 ("\may result in implicit conversions for primitive "
12559 & "operations of&??", N, T);
12560 Error_Msg_NE
12561 ("\to change representations when called with arguments "
12562 & "of type&??", N, DTL);
12563 end if;
12564 end;
12565 end if;
12567 -- No error, link item into head of chain of rep items for the entity,
12568 -- but avoid chaining if we have an overloadable entity, and the pragma
12569 -- is one that can apply to multiple overloaded entities.
12571 if Is_Overloadable (T) and then Nkind (N) = N_Pragma then
12572 declare
12573 Pname : constant Name_Id := Pragma_Name (N);
12574 begin
12575 if Nam_In (Pname, Name_Convention, Name_Import, Name_Export,
12576 Name_External, Name_Interface)
12577 then
12578 return False;
12579 end if;
12580 end;
12581 end if;
12583 Record_Rep_Item (T, N);
12584 return False;
12585 end Rep_Item_Too_Late;
12587 -------------------------------------
12588 -- Replace_Type_References_Generic --
12589 -------------------------------------
12591 procedure Replace_Type_References_Generic (N : Node_Id; T : Entity_Id) is
12592 TName : constant Name_Id := Chars (T);
12594 function Replace_Type_Ref (N : Node_Id) return Traverse_Result;
12595 -- Processes a single node in the traversal procedure below, checking
12596 -- if node N should be replaced, and if so, doing the replacement.
12598 function Visible_Component (Comp : Name_Id) return Entity_Id;
12599 -- Given an identifier in the expression, check whether there is a
12600 -- discriminant or component of the type that is directy visible, and
12601 -- rewrite it as the corresponding selected component of the formal of
12602 -- the subprogram. The entity is located by a sequential search, which
12603 -- seems acceptable given the typical size of component lists and check
12604 -- expressions. Possible optimization ???
12606 ----------------------
12607 -- Replace_Type_Ref --
12608 ----------------------
12610 function Replace_Type_Ref (N : Node_Id) return Traverse_Result is
12611 Loc : constant Source_Ptr := Sloc (N);
12613 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id);
12614 -- Add the proper prefix to a reference to a component of the type
12615 -- when it is not already a selected component.
12617 ----------------
12618 -- Add_Prefix --
12619 ----------------
12621 procedure Add_Prefix (Ref : Node_Id; Comp : Entity_Id) is
12622 begin
12623 Rewrite (Ref,
12624 Make_Selected_Component (Loc,
12625 Prefix => New_Occurrence_Of (T, Loc),
12626 Selector_Name => New_Occurrence_Of (Comp, Loc)));
12627 Replace_Type_Reference (Prefix (Ref));
12628 end Add_Prefix;
12630 -- Local variables
12632 Comp : Entity_Id;
12633 Pref : Node_Id;
12634 Scop : Entity_Id;
12636 -- Start of processing for Replace_Type_Ref
12638 begin
12639 if Nkind (N) = N_Identifier then
12641 -- If not the type name, check whether it is a reference to some
12642 -- other type, which must be frozen before the predicate function
12643 -- is analyzed, i.e. before the freeze node of the type to which
12644 -- the predicate applies.
12646 if Chars (N) /= TName then
12647 if Present (Current_Entity (N))
12648 and then Is_Type (Current_Entity (N))
12649 then
12650 Freeze_Before (Freeze_Node (T), Current_Entity (N));
12651 end if;
12653 -- The components of the type are directly visible and can
12654 -- be referenced without a prefix.
12656 if Nkind (Parent (N)) = N_Selected_Component then
12657 null;
12659 -- In expression C (I), C may be a directly visible function
12660 -- or a visible component that has an array type. Disambiguate
12661 -- by examining the component type.
12663 elsif Nkind (Parent (N)) = N_Indexed_Component
12664 and then N = Prefix (Parent (N))
12665 then
12666 Comp := Visible_Component (Chars (N));
12668 if Present (Comp) and then Is_Array_Type (Etype (Comp)) then
12669 Add_Prefix (N, Comp);
12670 end if;
12672 else
12673 Comp := Visible_Component (Chars (N));
12675 if Present (Comp) then
12676 Add_Prefix (N, Comp);
12677 end if;
12678 end if;
12680 return Skip;
12682 -- Otherwise do the replacement if this is not a qualified
12683 -- reference to a homograph of the type itself. Note that the
12684 -- current instance could not appear in such a context, e.g.
12685 -- the prefix of a type conversion.
12687 else
12688 if Nkind (Parent (N)) /= N_Selected_Component
12689 or else N /= Selector_Name (Parent (N))
12690 then
12691 Replace_Type_Reference (N);
12692 end if;
12694 return Skip;
12695 end if;
12697 -- Case of selected component (which is what a qualification looks
12698 -- like in the unanalyzed tree, which is what we have.
12700 elsif Nkind (N) = N_Selected_Component then
12702 -- If selector name is not our type, keep going (we might still
12703 -- have an occurrence of the type in the prefix).
12705 if Nkind (Selector_Name (N)) /= N_Identifier
12706 or else Chars (Selector_Name (N)) /= TName
12707 then
12708 return OK;
12710 -- Selector name is our type, check qualification
12712 else
12713 -- Loop through scopes and prefixes, doing comparison
12715 Scop := Current_Scope;
12716 Pref := Prefix (N);
12717 loop
12718 -- Continue if no more scopes or scope with no name
12720 if No (Scop) or else Nkind (Scop) not in N_Has_Chars then
12721 return OK;
12722 end if;
12724 -- Do replace if prefix is an identifier matching the scope
12725 -- that we are currently looking at.
12727 if Nkind (Pref) = N_Identifier
12728 and then Chars (Pref) = Chars (Scop)
12729 then
12730 Replace_Type_Reference (N);
12731 return Skip;
12732 end if;
12734 -- Go check scope above us if prefix is itself of the form
12735 -- of a selected component, whose selector matches the scope
12736 -- we are currently looking at.
12738 if Nkind (Pref) = N_Selected_Component
12739 and then Nkind (Selector_Name (Pref)) = N_Identifier
12740 and then Chars (Selector_Name (Pref)) = Chars (Scop)
12741 then
12742 Scop := Scope (Scop);
12743 Pref := Prefix (Pref);
12745 -- For anything else, we don't have a match, so keep on
12746 -- going, there are still some weird cases where we may
12747 -- still have a replacement within the prefix.
12749 else
12750 return OK;
12751 end if;
12752 end loop;
12753 end if;
12755 -- Continue for any other node kind
12757 else
12758 return OK;
12759 end if;
12760 end Replace_Type_Ref;
12762 procedure Replace_Type_Refs is new Traverse_Proc (Replace_Type_Ref);
12764 -----------------------
12765 -- Visible_Component --
12766 -----------------------
12768 function Visible_Component (Comp : Name_Id) return Entity_Id is
12769 E : Entity_Id;
12771 begin
12772 -- Types with nameable components are records and discriminated
12773 -- private types.
12775 if Ekind (T) = E_Record_Type
12776 or else (Is_Private_Type (T) and then Has_Discriminants (T))
12777 then
12778 E := First_Entity (T);
12779 while Present (E) loop
12780 if Comes_From_Source (E) and then Chars (E) = Comp then
12781 return E;
12782 end if;
12784 Next_Entity (E);
12785 end loop;
12786 end if;
12788 -- Nothing by that name, or the type has no components
12790 return Empty;
12791 end Visible_Component;
12793 -- Start of processing for Replace_Type_References_Generic
12795 begin
12796 Replace_Type_Refs (N);
12797 end Replace_Type_References_Generic;
12799 --------------------------------
12800 -- Resolve_Aspect_Expressions --
12801 --------------------------------
12803 procedure Resolve_Aspect_Expressions (E : Entity_Id) is
12804 function Resolve_Name (N : Node_Id) return Traverse_Result;
12805 -- Verify that all identifiers in the expression, with the exception
12806 -- of references to the current entity, denote visible entities. This
12807 -- is done only to detect visibility errors, as the expression will be
12808 -- properly analyzed/expanded during analysis of the predicate function
12809 -- body. We omit quantified expressions from this test, given that they
12810 -- introduce a local identifier that would require proper expansion to
12811 -- handle properly.
12813 -- In ASIS_Mode we preserve the entity in the source because there is
12814 -- no subsequent expansion to decorate the tree.
12816 ------------------
12817 -- Resolve_Name --
12818 ------------------
12820 function Resolve_Name (N : Node_Id) return Traverse_Result is
12821 Dummy : Traverse_Result;
12823 begin
12824 if Nkind (N) = N_Selected_Component then
12825 if Nkind (Prefix (N)) = N_Identifier
12826 and then Chars (Prefix (N)) /= Chars (E)
12827 then
12828 Find_Selected_Component (N);
12829 end if;
12831 return Skip;
12833 -- Resolve identifiers that are not selectors in parameter
12834 -- associations (these are never resolved by visibility).
12836 elsif Nkind (N) = N_Identifier
12837 and then Chars (N) /= Chars (E)
12838 and then (Nkind (Parent (N)) /= N_Parameter_Association
12839 or else N /= Selector_Name (Parent (N)))
12840 then
12841 Find_Direct_Name (N);
12843 -- In ASIS mode we must analyze overloaded identifiers to ensure
12844 -- their correct decoration because expansion is disabled (and
12845 -- the expansion of freeze nodes takes care of resolving aspect
12846 -- expressions).
12848 if ASIS_Mode then
12849 if Is_Overloaded (N) then
12850 Analyze (Parent (N));
12851 end if;
12852 else
12853 Set_Entity (N, Empty);
12854 end if;
12856 -- The name is component association needs no resolution.
12858 elsif Nkind (N) = N_Component_Association then
12859 Dummy := Resolve_Name (Expression (N));
12860 return Skip;
12862 elsif Nkind (N) = N_Quantified_Expression then
12863 return Skip;
12864 end if;
12866 return OK;
12867 end Resolve_Name;
12869 procedure Resolve_Aspect_Expression is new Traverse_Proc (Resolve_Name);
12871 -- Local variables
12873 ASN : Node_Id := First_Rep_Item (E);
12875 -- Start of processing for Resolve_Aspect_Expressions
12877 begin
12878 -- Need to make sure discriminants, if any, are directly visible
12880 Push_Scope_And_Install_Discriminants (E);
12882 while Present (ASN) loop
12883 if Nkind (ASN) = N_Aspect_Specification and then Entity (ASN) = E then
12884 declare
12885 A_Id : constant Aspect_Id := Get_Aspect_Id (ASN);
12886 Expr : constant Node_Id := Expression (ASN);
12888 begin
12889 case A_Id is
12891 -- For now we only deal with aspects that do not generate
12892 -- subprograms, or that may mention current instances of
12893 -- types. These will require special handling (???TBD).
12895 when Aspect_Invariant
12896 | Aspect_Predicate
12897 | Aspect_Predicate_Failure
12899 null;
12901 when Aspect_Dynamic_Predicate
12902 | Aspect_Static_Predicate
12904 -- Build predicate function specification and preanalyze
12905 -- expression after type replacement. The function
12906 -- declaration must be analyzed in the scope of the
12907 -- type, but the expression must see components.
12909 if No (Predicate_Function (E)) then
12910 Uninstall_Discriminants_And_Pop_Scope (E);
12911 declare
12912 FDecl : constant Node_Id :=
12913 Build_Predicate_Function_Declaration (E);
12914 pragma Unreferenced (FDecl);
12916 begin
12917 Push_Scope_And_Install_Discriminants (E);
12918 Resolve_Aspect_Expression (Expr);
12919 end;
12920 end if;
12922 when Pre_Post_Aspects =>
12923 null;
12925 when Aspect_Iterable =>
12926 if Nkind (Expr) = N_Aggregate then
12927 declare
12928 Assoc : Node_Id;
12930 begin
12931 Assoc := First (Component_Associations (Expr));
12932 while Present (Assoc) loop
12933 Find_Direct_Name (Expression (Assoc));
12934 Next (Assoc);
12935 end loop;
12936 end;
12937 end if;
12939 -- The expression for Default_Value is a static expression
12940 -- of the type, but this expression does not freeze the
12941 -- type, so it can still appear in a representation clause
12942 -- before the actual freeze point.
12944 when Aspect_Default_Value =>
12945 Set_Must_Not_Freeze (Expr);
12946 Preanalyze_Spec_Expression (Expr, E);
12948 -- Ditto for Storage_Size. Any other aspects that carry
12949 -- expressions that should not freeze ??? This is only
12950 -- relevant to the misuse of deferred constants.
12952 when Aspect_Storage_Size =>
12953 Set_Must_Not_Freeze (Expr);
12954 Preanalyze_Spec_Expression (Expr, Any_Integer);
12956 when others =>
12957 if Present (Expr) then
12958 case Aspect_Argument (A_Id) is
12959 when Expression
12960 | Optional_Expression
12962 Analyze_And_Resolve (Expr);
12964 when Name
12965 | Optional_Name
12967 if Nkind (Expr) = N_Identifier then
12968 Find_Direct_Name (Expr);
12970 elsif Nkind (Expr) = N_Selected_Component then
12971 Find_Selected_Component (Expr);
12972 end if;
12973 end case;
12974 end if;
12975 end case;
12976 end;
12977 end if;
12979 ASN := Next_Rep_Item (ASN);
12980 end loop;
12982 Uninstall_Discriminants_And_Pop_Scope (E);
12983 end Resolve_Aspect_Expressions;
12985 -------------------------
12986 -- Same_Representation --
12987 -------------------------
12989 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
12990 T1 : constant Entity_Id := Underlying_Type (Typ1);
12991 T2 : constant Entity_Id := Underlying_Type (Typ2);
12993 begin
12994 -- A quick check, if base types are the same, then we definitely have
12995 -- the same representation, because the subtype specific representation
12996 -- attributes (Size and Alignment) do not affect representation from
12997 -- the point of view of this test.
12999 if Base_Type (T1) = Base_Type (T2) then
13000 return True;
13002 elsif Is_Private_Type (Base_Type (T2))
13003 and then Base_Type (T1) = Full_View (Base_Type (T2))
13004 then
13005 return True;
13006 end if;
13008 -- Tagged types always have the same representation, because it is not
13009 -- possible to specify different representations for common fields.
13011 if Is_Tagged_Type (T1) then
13012 return True;
13013 end if;
13015 -- Representations are definitely different if conventions differ
13017 if Convention (T1) /= Convention (T2) then
13018 return False;
13019 end if;
13021 -- Representations are different if component alignments or scalar
13022 -- storage orders differ.
13024 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
13025 and then
13026 (Is_Record_Type (T2) or else Is_Array_Type (T2))
13027 and then
13028 (Component_Alignment (T1) /= Component_Alignment (T2)
13029 or else Reverse_Storage_Order (T1) /= Reverse_Storage_Order (T2))
13030 then
13031 return False;
13032 end if;
13034 -- For arrays, the only real issue is component size. If we know the
13035 -- component size for both arrays, and it is the same, then that's
13036 -- good enough to know we don't have a change of representation.
13038 if Is_Array_Type (T1) then
13039 if Known_Component_Size (T1)
13040 and then Known_Component_Size (T2)
13041 and then Component_Size (T1) = Component_Size (T2)
13042 then
13043 return True;
13044 end if;
13045 end if;
13047 -- For records, representations are different if reorderings differ
13049 if Is_Record_Type (T1)
13050 and then Is_Record_Type (T2)
13051 and then No_Reordering (T1) /= No_Reordering (T2)
13052 then
13053 return False;
13054 end if;
13056 -- Types definitely have same representation if neither has non-standard
13057 -- representation since default representations are always consistent.
13058 -- If only one has non-standard representation, and the other does not,
13059 -- then we consider that they do not have the same representation. They
13060 -- might, but there is no way of telling early enough.
13062 if Has_Non_Standard_Rep (T1) then
13063 if not Has_Non_Standard_Rep (T2) then
13064 return False;
13065 end if;
13066 else
13067 return not Has_Non_Standard_Rep (T2);
13068 end if;
13070 -- Here the two types both have non-standard representation, and we need
13071 -- to determine if they have the same non-standard representation.
13073 -- For arrays, we simply need to test if the component sizes are the
13074 -- same. Pragma Pack is reflected in modified component sizes, so this
13075 -- check also deals with pragma Pack.
13077 if Is_Array_Type (T1) then
13078 return Component_Size (T1) = Component_Size (T2);
13080 -- Case of record types
13082 elsif Is_Record_Type (T1) then
13084 -- Packed status must conform
13086 if Is_Packed (T1) /= Is_Packed (T2) then
13087 return False;
13089 -- Otherwise we must check components. Typ2 maybe a constrained
13090 -- subtype with fewer components, so we compare the components
13091 -- of the base types.
13093 else
13094 Record_Case : declare
13095 CD1, CD2 : Entity_Id;
13097 function Same_Rep return Boolean;
13098 -- CD1 and CD2 are either components or discriminants. This
13099 -- function tests whether they have the same representation.
13101 --------------
13102 -- Same_Rep --
13103 --------------
13105 function Same_Rep return Boolean is
13106 begin
13107 if No (Component_Clause (CD1)) then
13108 return No (Component_Clause (CD2));
13109 else
13110 -- Note: at this point, component clauses have been
13111 -- normalized to the default bit order, so that the
13112 -- comparison of Component_Bit_Offsets is meaningful.
13114 return
13115 Present (Component_Clause (CD2))
13116 and then
13117 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
13118 and then
13119 Esize (CD1) = Esize (CD2);
13120 end if;
13121 end Same_Rep;
13123 -- Start of processing for Record_Case
13125 begin
13126 if Has_Discriminants (T1) then
13128 -- The number of discriminants may be different if the
13129 -- derived type has fewer (constrained by values). The
13130 -- invisible discriminants retain the representation of
13131 -- the original, so the discrepancy does not per se
13132 -- indicate a different representation.
13134 CD1 := First_Discriminant (T1);
13135 CD2 := First_Discriminant (T2);
13136 while Present (CD1) and then Present (CD2) loop
13137 if not Same_Rep then
13138 return False;
13139 else
13140 Next_Discriminant (CD1);
13141 Next_Discriminant (CD2);
13142 end if;
13143 end loop;
13144 end if;
13146 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
13147 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
13148 while Present (CD1) loop
13149 if not Same_Rep then
13150 return False;
13151 else
13152 Next_Component (CD1);
13153 Next_Component (CD2);
13154 end if;
13155 end loop;
13157 return True;
13158 end Record_Case;
13159 end if;
13161 -- For enumeration types, we must check each literal to see if the
13162 -- representation is the same. Note that we do not permit enumeration
13163 -- representation clauses for Character and Wide_Character, so these
13164 -- cases were already dealt with.
13166 elsif Is_Enumeration_Type (T1) then
13167 Enumeration_Case : declare
13168 L1, L2 : Entity_Id;
13170 begin
13171 L1 := First_Literal (T1);
13172 L2 := First_Literal (T2);
13173 while Present (L1) loop
13174 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
13175 return False;
13176 else
13177 Next_Literal (L1);
13178 Next_Literal (L2);
13179 end if;
13180 end loop;
13182 return True;
13183 end Enumeration_Case;
13185 -- Any other types have the same representation for these purposes
13187 else
13188 return True;
13189 end if;
13190 end Same_Representation;
13192 --------------------------------
13193 -- Resolve_Iterable_Operation --
13194 --------------------------------
13196 procedure Resolve_Iterable_Operation
13197 (N : Node_Id;
13198 Cursor : Entity_Id;
13199 Typ : Entity_Id;
13200 Nam : Name_Id)
13202 Ent : Entity_Id;
13203 F1 : Entity_Id;
13204 F2 : Entity_Id;
13206 begin
13207 if not Is_Overloaded (N) then
13208 if not Is_Entity_Name (N)
13209 or else Ekind (Entity (N)) /= E_Function
13210 or else Scope (Entity (N)) /= Scope (Typ)
13211 or else No (First_Formal (Entity (N)))
13212 or else Etype (First_Formal (Entity (N))) /= Typ
13213 then
13214 Error_Msg_N
13215 ("iterable primitive must be local function name whose first "
13216 & "formal is an iterable type", N);
13217 return;
13218 end if;
13220 Ent := Entity (N);
13221 F1 := First_Formal (Ent);
13223 if Nam = Name_First or else Nam = Name_Last then
13225 -- First or Last (Container) => Cursor
13227 if Etype (Ent) /= Cursor then
13228 Error_Msg_N ("primitive for First must yield a curosr", N);
13229 end if;
13231 elsif Nam = Name_Next then
13233 -- Next (Container, Cursor) => Cursor
13235 F2 := Next_Formal (F1);
13237 if Etype (F2) /= Cursor
13238 or else Etype (Ent) /= Cursor
13239 or else Present (Next_Formal (F2))
13240 then
13241 Error_Msg_N ("no match for Next iterable primitive", N);
13242 end if;
13244 elsif Nam = Name_Previous then
13246 -- Previous (Container, Cursor) => Cursor
13248 F2 := Next_Formal (F1);
13250 if Etype (F2) /= Cursor
13251 or else Etype (Ent) /= Cursor
13252 or else Present (Next_Formal (F2))
13253 then
13254 Error_Msg_N ("no match for Previous iterable primitive", N);
13255 end if;
13257 elsif Nam = Name_Has_Element then
13259 -- Has_Element (Container, Cursor) => Boolean
13261 F2 := Next_Formal (F1);
13263 if Etype (F2) /= Cursor
13264 or else Etype (Ent) /= Standard_Boolean
13265 or else Present (Next_Formal (F2))
13266 then
13267 Error_Msg_N ("no match for Has_Element iterable primitive", N);
13268 end if;
13270 elsif Nam = Name_Element then
13271 F2 := Next_Formal (F1);
13273 if No (F2)
13274 or else Etype (F2) /= Cursor
13275 or else Present (Next_Formal (F2))
13276 then
13277 Error_Msg_N ("no match for Element iterable primitive", N);
13278 end if;
13280 else
13281 raise Program_Error;
13282 end if;
13284 else
13285 -- Overloaded case: find subprogram with proper signature. Caller
13286 -- will report error if no match is found.
13288 declare
13289 I : Interp_Index;
13290 It : Interp;
13292 begin
13293 Get_First_Interp (N, I, It);
13294 while Present (It.Typ) loop
13295 if Ekind (It.Nam) = E_Function
13296 and then Scope (It.Nam) = Scope (Typ)
13297 and then Etype (First_Formal (It.Nam)) = Typ
13298 then
13299 F1 := First_Formal (It.Nam);
13301 if Nam = Name_First then
13302 if Etype (It.Nam) = Cursor
13303 and then No (Next_Formal (F1))
13304 then
13305 Set_Entity (N, It.Nam);
13306 exit;
13307 end if;
13309 elsif Nam = Name_Next then
13310 F2 := Next_Formal (F1);
13312 if Present (F2)
13313 and then No (Next_Formal (F2))
13314 and then Etype (F2) = Cursor
13315 and then Etype (It.Nam) = Cursor
13316 then
13317 Set_Entity (N, It.Nam);
13318 exit;
13319 end if;
13321 elsif Nam = Name_Has_Element then
13322 F2 := Next_Formal (F1);
13324 if Present (F2)
13325 and then No (Next_Formal (F2))
13326 and then Etype (F2) = Cursor
13327 and then Etype (It.Nam) = Standard_Boolean
13328 then
13329 Set_Entity (N, It.Nam);
13330 F2 := Next_Formal (F1);
13331 exit;
13332 end if;
13334 elsif Nam = Name_Element then
13335 F2 := Next_Formal (F1);
13337 if Present (F2)
13338 and then No (Next_Formal (F2))
13339 and then Etype (F2) = Cursor
13340 then
13341 Set_Entity (N, It.Nam);
13342 exit;
13343 end if;
13344 end if;
13345 end if;
13347 Get_Next_Interp (I, It);
13348 end loop;
13349 end;
13350 end if;
13351 end Resolve_Iterable_Operation;
13353 ----------------
13354 -- Set_Biased --
13355 ----------------
13357 procedure Set_Biased
13358 (E : Entity_Id;
13359 N : Node_Id;
13360 Msg : String;
13361 Biased : Boolean := True)
13363 begin
13364 if Biased then
13365 Set_Has_Biased_Representation (E);
13367 if Warn_On_Biased_Representation then
13368 Error_Msg_NE
13369 ("?B?" & Msg & " forces biased representation for&", N, E);
13370 end if;
13371 end if;
13372 end Set_Biased;
13374 --------------------
13375 -- Set_Enum_Esize --
13376 --------------------
13378 procedure Set_Enum_Esize (T : Entity_Id) is
13379 Lo : Uint;
13380 Hi : Uint;
13381 Sz : Nat;
13383 begin
13384 Init_Alignment (T);
13386 -- Find the minimum standard size (8,16,32,64) that fits
13388 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
13389 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
13391 if Lo < 0 then
13392 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
13393 Sz := Standard_Character_Size; -- May be > 8 on some targets
13395 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
13396 Sz := 16;
13398 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
13399 Sz := 32;
13401 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
13402 Sz := 64;
13403 end if;
13405 else
13406 if Hi < Uint_2**08 then
13407 Sz := Standard_Character_Size; -- May be > 8 on some targets
13409 elsif Hi < Uint_2**16 then
13410 Sz := 16;
13412 elsif Hi < Uint_2**32 then
13413 Sz := 32;
13415 else pragma Assert (Hi < Uint_2**63);
13416 Sz := 64;
13417 end if;
13418 end if;
13420 -- That minimum is the proper size unless we have a foreign convention
13421 -- and the size required is 32 or less, in which case we bump the size
13422 -- up to 32. This is required for C and C++ and seems reasonable for
13423 -- all other foreign conventions.
13425 if Has_Foreign_Convention (T)
13426 and then Esize (T) < Standard_Integer_Size
13428 -- Don't do this if Short_Enums on target
13430 and then not Target_Short_Enums
13431 then
13432 Init_Esize (T, Standard_Integer_Size);
13433 else
13434 Init_Esize (T, Sz);
13435 end if;
13436 end Set_Enum_Esize;
13438 -----------------------------
13439 -- Uninstall_Discriminants --
13440 -----------------------------
13442 procedure Uninstall_Discriminants (E : Entity_Id) is
13443 Disc : Entity_Id;
13444 Prev : Entity_Id;
13445 Outer : Entity_Id;
13447 begin
13448 -- Discriminants have been made visible for type declarations and
13449 -- protected type declarations, not for subtype declarations.
13451 if Nkind (Parent (E)) /= N_Subtype_Declaration then
13452 Disc := First_Discriminant (E);
13453 while Present (Disc) loop
13454 if Disc /= Current_Entity (Disc) then
13455 Prev := Current_Entity (Disc);
13456 while Present (Prev)
13457 and then Present (Homonym (Prev))
13458 and then Homonym (Prev) /= Disc
13459 loop
13460 Prev := Homonym (Prev);
13461 end loop;
13462 else
13463 Prev := Empty;
13464 end if;
13466 Set_Is_Immediately_Visible (Disc, False);
13468 Outer := Homonym (Disc);
13469 while Present (Outer) and then Scope (Outer) = E loop
13470 Outer := Homonym (Outer);
13471 end loop;
13473 -- Reset homonym link of other entities, but do not modify link
13474 -- between entities in current scope, so that the back end can
13475 -- have a proper count of local overloadings.
13477 if No (Prev) then
13478 Set_Name_Entity_Id (Chars (Disc), Outer);
13480 elsif Scope (Prev) /= Scope (Disc) then
13481 Set_Homonym (Prev, Outer);
13482 end if;
13484 Next_Discriminant (Disc);
13485 end loop;
13486 end if;
13487 end Uninstall_Discriminants;
13489 -------------------------------------------
13490 -- Uninstall_Discriminants_And_Pop_Scope --
13491 -------------------------------------------
13493 procedure Uninstall_Discriminants_And_Pop_Scope (E : Entity_Id) is
13494 begin
13495 if Has_Discriminants (E) then
13496 Uninstall_Discriminants (E);
13497 Pop_Scope;
13498 end if;
13499 end Uninstall_Discriminants_And_Pop_Scope;
13501 ------------------------------
13502 -- Validate_Address_Clauses --
13503 ------------------------------
13505 procedure Validate_Address_Clauses is
13506 function Offset_Value (Expr : Node_Id) return Uint;
13507 -- Given an Address attribute reference, return the value in bits of its
13508 -- offset from the first bit of the underlying entity, or 0 if it is not
13509 -- known at compile time.
13511 ------------------
13512 -- Offset_Value --
13513 ------------------
13515 function Offset_Value (Expr : Node_Id) return Uint is
13516 N : Node_Id := Prefix (Expr);
13517 Off : Uint;
13518 Val : Uint := Uint_0;
13520 begin
13521 -- Climb the prefix chain and compute the cumulative offset
13523 loop
13524 if Is_Entity_Name (N) then
13525 return Val;
13527 elsif Nkind (N) = N_Selected_Component then
13528 Off := Component_Bit_Offset (Entity (Selector_Name (N)));
13529 if Off /= No_Uint and then Off >= Uint_0 then
13530 Val := Val + Off;
13531 N := Prefix (N);
13532 else
13533 return Uint_0;
13534 end if;
13536 elsif Nkind (N) = N_Indexed_Component then
13537 Off := Indexed_Component_Bit_Offset (N);
13538 if Off /= No_Uint then
13539 Val := Val + Off;
13540 N := Prefix (N);
13541 else
13542 return Uint_0;
13543 end if;
13545 else
13546 return Uint_0;
13547 end if;
13548 end loop;
13549 end Offset_Value;
13551 -- Start of processing for Validate_Address_Clauses
13553 begin
13554 for J in Address_Clause_Checks.First .. Address_Clause_Checks.Last loop
13555 declare
13556 ACCR : Address_Clause_Check_Record
13557 renames Address_Clause_Checks.Table (J);
13559 Expr : Node_Id;
13561 X_Alignment : Uint;
13562 Y_Alignment : Uint := Uint_0;
13564 X_Size : Uint;
13565 Y_Size : Uint := Uint_0;
13567 X_Offs : Uint;
13569 begin
13570 -- Skip processing of this entry if warning already posted
13572 if not Address_Warning_Posted (ACCR.N) then
13573 Expr := Original_Node (Expression (ACCR.N));
13575 -- Get alignments, sizes and offset, if any
13577 X_Alignment := Alignment (ACCR.X);
13578 X_Size := Esize (ACCR.X);
13580 if Present (ACCR.Y) then
13581 Y_Alignment := Alignment (ACCR.Y);
13582 Y_Size := Esize (ACCR.Y);
13583 end if;
13585 if ACCR.Off
13586 and then Nkind (Expr) = N_Attribute_Reference
13587 and then Attribute_Name (Expr) = Name_Address
13588 then
13589 X_Offs := Offset_Value (Expr);
13590 else
13591 X_Offs := Uint_0;
13592 end if;
13594 -- Check for known value not multiple of alignment
13596 if No (ACCR.Y) then
13597 if not Alignment_Checks_Suppressed (ACCR)
13598 and then X_Alignment /= 0
13599 and then ACCR.A mod X_Alignment /= 0
13600 then
13601 Error_Msg_NE
13602 ("??specified address for& is inconsistent with "
13603 & "alignment", ACCR.N, ACCR.X);
13604 Error_Msg_N
13605 ("\??program execution may be erroneous (RM 13.3(27))",
13606 ACCR.N);
13608 Error_Msg_Uint_1 := X_Alignment;
13609 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
13610 end if;
13612 -- Check for large object overlaying smaller one
13614 elsif Y_Size > Uint_0
13615 and then X_Size > Uint_0
13616 and then X_Offs + X_Size > Y_Size
13617 then
13618 Error_Msg_NE ("??& overlays smaller object", ACCR.N, ACCR.X);
13619 Error_Msg_N
13620 ("\??program execution may be erroneous", ACCR.N);
13622 Error_Msg_Uint_1 := X_Size;
13623 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.X);
13625 Error_Msg_Uint_1 := Y_Size;
13626 Error_Msg_NE ("\??size of & is ^", ACCR.N, ACCR.Y);
13628 if Y_Size >= X_Size then
13629 Error_Msg_Uint_1 := X_Offs;
13630 Error_Msg_NE ("\??but offset of & is ^", ACCR.N, ACCR.X);
13631 end if;
13633 -- Check for inadequate alignment, both of the base object
13634 -- and of the offset, if any. We only do this check if the
13635 -- run-time Alignment_Check is active. No point in warning
13636 -- if this check has been suppressed (or is suppressed by
13637 -- default in the non-strict alignment machine case).
13639 -- Note: we do not check the alignment if we gave a size
13640 -- warning, since it would likely be redundant.
13642 elsif not Alignment_Checks_Suppressed (ACCR)
13643 and then Y_Alignment /= Uint_0
13644 and then
13645 (Y_Alignment < X_Alignment
13646 or else
13647 (ACCR.Off
13648 and then Nkind (Expr) = N_Attribute_Reference
13649 and then Attribute_Name (Expr) = Name_Address
13650 and then Has_Compatible_Alignment
13651 (ACCR.X, Prefix (Expr), True) /=
13652 Known_Compatible))
13653 then
13654 Error_Msg_NE
13655 ("??specified address for& may be inconsistent with "
13656 & "alignment", ACCR.N, ACCR.X);
13657 Error_Msg_N
13658 ("\??program execution may be erroneous (RM 13.3(27))",
13659 ACCR.N);
13661 Error_Msg_Uint_1 := X_Alignment;
13662 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.X);
13664 Error_Msg_Uint_1 := Y_Alignment;
13665 Error_Msg_NE ("\??alignment of & is ^", ACCR.N, ACCR.Y);
13667 if Y_Alignment >= X_Alignment then
13668 Error_Msg_N
13669 ("\??but offset is not multiple of alignment", ACCR.N);
13670 end if;
13671 end if;
13672 end if;
13673 end;
13674 end loop;
13675 end Validate_Address_Clauses;
13677 -----------------------------------------
13678 -- Validate_Compile_Time_Warning_Error --
13679 -----------------------------------------
13681 procedure Validate_Compile_Time_Warning_Error (N : Node_Id) is
13682 begin
13683 Compile_Time_Warnings_Errors.Append
13684 (New_Val => CTWE_Entry'(Eloc => Sloc (N),
13685 Scope => Current_Scope,
13686 Prag => N));
13687 end Validate_Compile_Time_Warning_Error;
13689 ------------------------------------------
13690 -- Validate_Compile_Time_Warning_Errors --
13691 ------------------------------------------
13693 procedure Validate_Compile_Time_Warning_Errors is
13694 procedure Set_Scope (S : Entity_Id);
13695 -- Install all enclosing scopes of S along with S itself
13697 procedure Unset_Scope (S : Entity_Id);
13698 -- Uninstall all enclosing scopes of S along with S itself
13700 ---------------
13701 -- Set_Scope --
13702 ---------------
13704 procedure Set_Scope (S : Entity_Id) is
13705 begin
13706 if S /= Standard_Standard then
13707 Set_Scope (Scope (S));
13708 end if;
13710 Push_Scope (S);
13711 end Set_Scope;
13713 -----------------
13714 -- Unset_Scope --
13715 -----------------
13717 procedure Unset_Scope (S : Entity_Id) is
13718 begin
13719 if S /= Standard_Standard then
13720 Unset_Scope (Scope (S));
13721 end if;
13723 Pop_Scope;
13724 end Unset_Scope;
13726 -- Start of processing for Validate_Compile_Time_Warning_Errors
13728 begin
13729 Expander_Mode_Save_And_Set (False);
13730 In_Compile_Time_Warning_Or_Error := True;
13732 for N in Compile_Time_Warnings_Errors.First ..
13733 Compile_Time_Warnings_Errors.Last
13734 loop
13735 declare
13736 T : CTWE_Entry renames Compile_Time_Warnings_Errors.Table (N);
13738 begin
13739 Set_Scope (T.Scope);
13740 Reset_Analyzed_Flags (T.Prag);
13741 Process_Compile_Time_Warning_Or_Error (T.Prag, T.Eloc);
13742 Unset_Scope (T.Scope);
13743 end;
13744 end loop;
13746 In_Compile_Time_Warning_Or_Error := False;
13747 Expander_Mode_Restore;
13748 end Validate_Compile_Time_Warning_Errors;
13750 ---------------------------
13751 -- Validate_Independence --
13752 ---------------------------
13754 procedure Validate_Independence is
13755 SU : constant Uint := UI_From_Int (System_Storage_Unit);
13756 N : Node_Id;
13757 E : Entity_Id;
13758 IC : Boolean;
13759 Comp : Entity_Id;
13760 Addr : Node_Id;
13761 P : Node_Id;
13763 procedure Check_Array_Type (Atyp : Entity_Id);
13764 -- Checks if the array type Atyp has independent components, and
13765 -- if not, outputs an appropriate set of error messages.
13767 procedure No_Independence;
13768 -- Output message that independence cannot be guaranteed
13770 function OK_Component (C : Entity_Id) return Boolean;
13771 -- Checks one component to see if it is independently accessible, and
13772 -- if so yields True, otherwise yields False if independent access
13773 -- cannot be guaranteed. This is a conservative routine, it only
13774 -- returns True if it knows for sure, it returns False if it knows
13775 -- there is a problem, or it cannot be sure there is no problem.
13777 procedure Reason_Bad_Component (C : Entity_Id);
13778 -- Outputs continuation message if a reason can be determined for
13779 -- the component C being bad.
13781 ----------------------
13782 -- Check_Array_Type --
13783 ----------------------
13785 procedure Check_Array_Type (Atyp : Entity_Id) is
13786 Ctyp : constant Entity_Id := Component_Type (Atyp);
13788 begin
13789 -- OK if no alignment clause, no pack, and no component size
13791 if not Has_Component_Size_Clause (Atyp)
13792 and then not Has_Alignment_Clause (Atyp)
13793 and then not Is_Packed (Atyp)
13794 then
13795 return;
13796 end if;
13798 -- Case of component size is greater than or equal to 64 and the
13799 -- alignment of the array is at least as large as the alignment
13800 -- of the component. We are definitely OK in this situation.
13802 if Known_Component_Size (Atyp)
13803 and then Component_Size (Atyp) >= 64
13804 and then Known_Alignment (Atyp)
13805 and then Known_Alignment (Ctyp)
13806 and then Alignment (Atyp) >= Alignment (Ctyp)
13807 then
13808 return;
13809 end if;
13811 -- Check actual component size
13813 if not Known_Component_Size (Atyp)
13814 or else not (Addressable (Component_Size (Atyp))
13815 and then Component_Size (Atyp) < 64)
13816 or else Component_Size (Atyp) mod Esize (Ctyp) /= 0
13817 then
13818 No_Independence;
13820 -- Bad component size, check reason
13822 if Has_Component_Size_Clause (Atyp) then
13823 P := Get_Attribute_Definition_Clause
13824 (Atyp, Attribute_Component_Size);
13826 if Present (P) then
13827 Error_Msg_Sloc := Sloc (P);
13828 Error_Msg_N ("\because of Component_Size clause#", N);
13829 return;
13830 end if;
13831 end if;
13833 if Is_Packed (Atyp) then
13834 P := Get_Rep_Pragma (Atyp, Name_Pack);
13836 if Present (P) then
13837 Error_Msg_Sloc := Sloc (P);
13838 Error_Msg_N ("\because of pragma Pack#", N);
13839 return;
13840 end if;
13841 end if;
13843 -- No reason found, just return
13845 return;
13846 end if;
13848 -- Array type is OK independence-wise
13850 return;
13851 end Check_Array_Type;
13853 ---------------------
13854 -- No_Independence --
13855 ---------------------
13857 procedure No_Independence is
13858 begin
13859 if Pragma_Name (N) = Name_Independent then
13860 Error_Msg_NE ("independence cannot be guaranteed for&", N, E);
13861 else
13862 Error_Msg_NE
13863 ("independent components cannot be guaranteed for&", N, E);
13864 end if;
13865 end No_Independence;
13867 ------------------
13868 -- OK_Component --
13869 ------------------
13871 function OK_Component (C : Entity_Id) return Boolean is
13872 Rec : constant Entity_Id := Scope (C);
13873 Ctyp : constant Entity_Id := Etype (C);
13875 begin
13876 -- OK if no component clause, no Pack, and no alignment clause
13878 if No (Component_Clause (C))
13879 and then not Is_Packed (Rec)
13880 and then not Has_Alignment_Clause (Rec)
13881 then
13882 return True;
13883 end if;
13885 -- Here we look at the actual component layout. A component is
13886 -- addressable if its size is a multiple of the Esize of the
13887 -- component type, and its starting position in the record has
13888 -- appropriate alignment, and the record itself has appropriate
13889 -- alignment to guarantee the component alignment.
13891 -- Make sure sizes are static, always assume the worst for any
13892 -- cases where we cannot check static values.
13894 if not (Known_Static_Esize (C)
13895 and then
13896 Known_Static_Esize (Ctyp))
13897 then
13898 return False;
13899 end if;
13901 -- Size of component must be addressable or greater than 64 bits
13902 -- and a multiple of bytes.
13904 if not Addressable (Esize (C)) and then Esize (C) < Uint_64 then
13905 return False;
13906 end if;
13908 -- Check size is proper multiple
13910 if Esize (C) mod Esize (Ctyp) /= 0 then
13911 return False;
13912 end if;
13914 -- Check alignment of component is OK
13916 if not Known_Component_Bit_Offset (C)
13917 or else Component_Bit_Offset (C) < Uint_0
13918 or else Component_Bit_Offset (C) mod Esize (Ctyp) /= 0
13919 then
13920 return False;
13921 end if;
13923 -- Check alignment of record type is OK
13925 if not Known_Alignment (Rec)
13926 or else (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13927 then
13928 return False;
13929 end if;
13931 -- All tests passed, component is addressable
13933 return True;
13934 end OK_Component;
13936 --------------------------
13937 -- Reason_Bad_Component --
13938 --------------------------
13940 procedure Reason_Bad_Component (C : Entity_Id) is
13941 Rec : constant Entity_Id := Scope (C);
13942 Ctyp : constant Entity_Id := Etype (C);
13944 begin
13945 -- If component clause present assume that's the problem
13947 if Present (Component_Clause (C)) then
13948 Error_Msg_Sloc := Sloc (Component_Clause (C));
13949 Error_Msg_N ("\because of Component_Clause#", N);
13950 return;
13951 end if;
13953 -- If pragma Pack clause present, assume that's the problem
13955 if Is_Packed (Rec) then
13956 P := Get_Rep_Pragma (Rec, Name_Pack);
13958 if Present (P) then
13959 Error_Msg_Sloc := Sloc (P);
13960 Error_Msg_N ("\because of pragma Pack#", N);
13961 return;
13962 end if;
13963 end if;
13965 -- See if record has bad alignment clause
13967 if Has_Alignment_Clause (Rec)
13968 and then Known_Alignment (Rec)
13969 and then (Alignment (Rec) * SU) mod Esize (Ctyp) /= 0
13970 then
13971 P := Get_Attribute_Definition_Clause (Rec, Attribute_Alignment);
13973 if Present (P) then
13974 Error_Msg_Sloc := Sloc (P);
13975 Error_Msg_N ("\because of Alignment clause#", N);
13976 end if;
13977 end if;
13979 -- Couldn't find a reason, so return without a message
13981 return;
13982 end Reason_Bad_Component;
13984 -- Start of processing for Validate_Independence
13986 begin
13987 for J in Independence_Checks.First .. Independence_Checks.Last loop
13988 N := Independence_Checks.Table (J).N;
13989 E := Independence_Checks.Table (J).E;
13990 IC := Pragma_Name (N) = Name_Independent_Components;
13992 -- Deal with component case
13994 if Ekind (E) = E_Discriminant or else Ekind (E) = E_Component then
13995 if not OK_Component (E) then
13996 No_Independence;
13997 Reason_Bad_Component (E);
13998 goto Continue;
13999 end if;
14000 end if;
14002 -- Deal with record with Independent_Components
14004 if IC and then Is_Record_Type (E) then
14005 Comp := First_Component_Or_Discriminant (E);
14006 while Present (Comp) loop
14007 if not OK_Component (Comp) then
14008 No_Independence;
14009 Reason_Bad_Component (Comp);
14010 goto Continue;
14011 end if;
14013 Next_Component_Or_Discriminant (Comp);
14014 end loop;
14015 end if;
14017 -- Deal with address clause case
14019 if Is_Object (E) then
14020 Addr := Address_Clause (E);
14022 if Present (Addr) then
14023 No_Independence;
14024 Error_Msg_Sloc := Sloc (Addr);
14025 Error_Msg_N ("\because of Address clause#", N);
14026 goto Continue;
14027 end if;
14028 end if;
14030 -- Deal with independent components for array type
14032 if IC and then Is_Array_Type (E) then
14033 Check_Array_Type (E);
14034 end if;
14036 -- Deal with independent components for array object
14038 if IC and then Is_Object (E) and then Is_Array_Type (Etype (E)) then
14039 Check_Array_Type (Etype (E));
14040 end if;
14042 <<Continue>> null;
14043 end loop;
14044 end Validate_Independence;
14046 ------------------------------
14047 -- Validate_Iterable_Aspect --
14048 ------------------------------
14050 procedure Validate_Iterable_Aspect (Typ : Entity_Id; ASN : Node_Id) is
14051 Assoc : Node_Id;
14052 Expr : Node_Id;
14054 Prim : Node_Id;
14055 Cursor : constant Entity_Id := Get_Cursor_Type (ASN, Typ);
14057 First_Id : Entity_Id;
14058 Last_Id : Entity_Id;
14059 Next_Id : Entity_Id;
14060 Has_Element_Id : Entity_Id;
14061 Element_Id : Entity_Id;
14063 begin
14064 -- If previous error aspect is unusable
14066 if Cursor = Any_Type then
14067 return;
14068 end if;
14070 First_Id := Empty;
14071 Last_Id := Empty;
14072 Next_Id := Empty;
14073 Has_Element_Id := Empty;
14074 Element_Id := Empty;
14076 -- Each expression must resolve to a function with the proper signature
14078 Assoc := First (Component_Associations (Expression (ASN)));
14079 while Present (Assoc) loop
14080 Expr := Expression (Assoc);
14081 Analyze (Expr);
14083 Prim := First (Choices (Assoc));
14085 if Nkind (Prim) /= N_Identifier or else Present (Next (Prim)) then
14086 Error_Msg_N ("illegal name in association", Prim);
14088 elsif Chars (Prim) = Name_First then
14089 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_First);
14090 First_Id := Entity (Expr);
14092 elsif Chars (Prim) = Name_Last then
14093 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Last);
14094 Last_Id := Entity (Expr);
14096 elsif Chars (Prim) = Name_Previous then
14097 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Previous);
14098 Last_Id := Entity (Expr);
14100 elsif Chars (Prim) = Name_Next then
14101 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Next);
14102 Next_Id := Entity (Expr);
14104 elsif Chars (Prim) = Name_Has_Element then
14105 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Has_Element);
14106 Has_Element_Id := Entity (Expr);
14108 elsif Chars (Prim) = Name_Element then
14109 Resolve_Iterable_Operation (Expr, Cursor, Typ, Name_Element);
14110 Element_Id := Entity (Expr);
14112 else
14113 Error_Msg_N ("invalid name for iterable function", Prim);
14114 end if;
14116 Next (Assoc);
14117 end loop;
14119 if No (First_Id) then
14120 Error_Msg_N ("match for First primitive not found", ASN);
14122 elsif No (Next_Id) then
14123 Error_Msg_N ("match for Next primitive not found", ASN);
14125 elsif No (Has_Element_Id) then
14126 Error_Msg_N ("match for Has_Element primitive not found", ASN);
14128 elsif No (Element_Id) or else No (Last_Id) then
14129 null; -- optional
14130 end if;
14131 end Validate_Iterable_Aspect;
14133 -----------------------------------
14134 -- Validate_Unchecked_Conversion --
14135 -----------------------------------
14137 procedure Validate_Unchecked_Conversion
14138 (N : Node_Id;
14139 Act_Unit : Entity_Id)
14141 Source : Entity_Id;
14142 Target : Entity_Id;
14143 Vnode : Node_Id;
14145 begin
14146 -- Obtain source and target types. Note that we call Ancestor_Subtype
14147 -- here because the processing for generic instantiation always makes
14148 -- subtypes, and we want the original frozen actual types.
14150 -- If we are dealing with private types, then do the check on their
14151 -- fully declared counterparts if the full declarations have been
14152 -- encountered (they don't have to be visible, but they must exist).
14154 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
14156 if Is_Private_Type (Source)
14157 and then Present (Underlying_Type (Source))
14158 then
14159 Source := Underlying_Type (Source);
14160 end if;
14162 Target := Ancestor_Subtype (Etype (Act_Unit));
14164 -- If either type is generic, the instantiation happens within a generic
14165 -- unit, and there is nothing to check. The proper check will happen
14166 -- when the enclosing generic is instantiated.
14168 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
14169 return;
14170 end if;
14172 if Is_Private_Type (Target)
14173 and then Present (Underlying_Type (Target))
14174 then
14175 Target := Underlying_Type (Target);
14176 end if;
14178 -- Source may be unconstrained array, but not target, except in relaxed
14179 -- semantics mode.
14181 if Is_Array_Type (Target)
14182 and then not Is_Constrained (Target)
14183 and then not Relaxed_RM_Semantics
14184 then
14185 Error_Msg_N
14186 ("unchecked conversion to unconstrained array not allowed", N);
14187 return;
14188 end if;
14190 -- Warn if conversion between two different convention pointers
14192 if Is_Access_Type (Target)
14193 and then Is_Access_Type (Source)
14194 and then Convention (Target) /= Convention (Source)
14195 and then Warn_On_Unchecked_Conversion
14196 then
14197 -- Give warnings for subprogram pointers only on most targets
14199 if Is_Access_Subprogram_Type (Target)
14200 or else Is_Access_Subprogram_Type (Source)
14201 then
14202 Error_Msg_N
14203 ("?z?conversion between pointers with different conventions!",
14205 end if;
14206 end if;
14208 -- Warn if one of the operands is Ada.Calendar.Time. Do not emit a
14209 -- warning when compiling GNAT-related sources.
14211 if Warn_On_Unchecked_Conversion
14212 and then not In_Predefined_Unit (N)
14213 and then RTU_Loaded (Ada_Calendar)
14214 and then (Chars (Source) = Name_Time
14215 or else
14216 Chars (Target) = Name_Time)
14217 then
14218 -- If Ada.Calendar is loaded and the name of one of the operands is
14219 -- Time, there is a good chance that this is Ada.Calendar.Time.
14221 declare
14222 Calendar_Time : constant Entity_Id := Full_View (RTE (RO_CA_Time));
14223 begin
14224 pragma Assert (Present (Calendar_Time));
14226 if Source = Calendar_Time or else Target = Calendar_Time then
14227 Error_Msg_N
14228 ("?z?representation of 'Time values may change between "
14229 & "'G'N'A'T versions", N);
14230 end if;
14231 end;
14232 end if;
14234 -- Make entry in unchecked conversion table for later processing by
14235 -- Validate_Unchecked_Conversions, which will check sizes and alignments
14236 -- (using values set by the back end where possible). This is only done
14237 -- if the appropriate warning is active.
14239 if Warn_On_Unchecked_Conversion then
14240 Unchecked_Conversions.Append
14241 (New_Val => UC_Entry'(Eloc => Sloc (N),
14242 Source => Source,
14243 Target => Target,
14244 Act_Unit => Act_Unit));
14246 -- If both sizes are known statically now, then back-end annotation
14247 -- is not required to do a proper check but if either size is not
14248 -- known statically, then we need the annotation.
14250 if Known_Static_RM_Size (Source)
14251 and then
14252 Known_Static_RM_Size (Target)
14253 then
14254 null;
14255 else
14256 Back_Annotate_Rep_Info := True;
14257 end if;
14258 end if;
14260 -- If unchecked conversion to access type, and access type is declared
14261 -- in the same unit as the unchecked conversion, then set the flag
14262 -- No_Strict_Aliasing (no strict aliasing is implicit here)
14264 if Is_Access_Type (Target) and then
14265 In_Same_Source_Unit (Target, N)
14266 then
14267 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
14268 end if;
14270 -- Generate N_Validate_Unchecked_Conversion node for back end in case
14271 -- the back end needs to perform special validation checks.
14273 -- Shouldn't this be in Exp_Ch13, since the check only gets done if we
14274 -- have full expansion and the back end is called ???
14276 Vnode :=
14277 Make_Validate_Unchecked_Conversion (Sloc (N));
14278 Set_Source_Type (Vnode, Source);
14279 Set_Target_Type (Vnode, Target);
14281 -- If the unchecked conversion node is in a list, just insert before it.
14282 -- If not we have some strange case, not worth bothering about.
14284 if Is_List_Member (N) then
14285 Insert_After (N, Vnode);
14286 end if;
14287 end Validate_Unchecked_Conversion;
14289 ------------------------------------
14290 -- Validate_Unchecked_Conversions --
14291 ------------------------------------
14293 procedure Validate_Unchecked_Conversions is
14294 begin
14295 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
14296 declare
14297 T : UC_Entry renames Unchecked_Conversions.Table (N);
14299 Act_Unit : constant Entity_Id := T.Act_Unit;
14300 Eloc : constant Source_Ptr := T.Eloc;
14301 Source : constant Entity_Id := T.Source;
14302 Target : constant Entity_Id := T.Target;
14304 Source_Siz : Uint;
14305 Target_Siz : Uint;
14307 begin
14308 -- Skip if function marked as warnings off
14310 if Warnings_Off (Act_Unit) then
14311 goto Continue;
14312 end if;
14314 -- This validation check, which warns if we have unequal sizes for
14315 -- unchecked conversion, and thus potentially implementation
14316 -- dependent semantics, is one of the few occasions on which we
14317 -- use the official RM size instead of Esize. See description in
14318 -- Einfo "Handling of Type'Size Values" for details.
14320 if Serious_Errors_Detected = 0
14321 and then Known_Static_RM_Size (Source)
14322 and then Known_Static_RM_Size (Target)
14324 -- Don't do the check if warnings off for either type, note the
14325 -- deliberate use of OR here instead of OR ELSE to get the flag
14326 -- Warnings_Off_Used set for both types if appropriate.
14328 and then not (Has_Warnings_Off (Source)
14330 Has_Warnings_Off (Target))
14331 then
14332 Source_Siz := RM_Size (Source);
14333 Target_Siz := RM_Size (Target);
14335 if Source_Siz /= Target_Siz then
14336 Error_Msg
14337 ("?z?types for unchecked conversion have different sizes!",
14338 Eloc, Act_Unit);
14340 if All_Errors_Mode then
14341 Error_Msg_Name_1 := Chars (Source);
14342 Error_Msg_Uint_1 := Source_Siz;
14343 Error_Msg_Name_2 := Chars (Target);
14344 Error_Msg_Uint_2 := Target_Siz;
14345 Error_Msg ("\size of % is ^, size of % is ^?z?", Eloc);
14347 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
14349 if Is_Discrete_Type (Source)
14350 and then
14351 Is_Discrete_Type (Target)
14352 then
14353 if Source_Siz > Target_Siz then
14354 Error_Msg
14355 ("\?z?^ high order bits of source will "
14356 & "be ignored!", Eloc);
14358 elsif Is_Unsigned_Type (Source) then
14359 Error_Msg
14360 ("\?z?source will be extended with ^ high order "
14361 & "zero bits!", Eloc);
14363 else
14364 Error_Msg
14365 ("\?z?source will be extended with ^ high order "
14366 & "sign bits!", Eloc);
14367 end if;
14369 elsif Source_Siz < Target_Siz then
14370 if Is_Discrete_Type (Target) then
14371 if Bytes_Big_Endian then
14372 Error_Msg
14373 ("\?z?target value will include ^ undefined "
14374 & "low order bits!", Eloc, Act_Unit);
14375 else
14376 Error_Msg
14377 ("\?z?target value will include ^ undefined "
14378 & "high order bits!", Eloc, Act_Unit);
14379 end if;
14381 else
14382 Error_Msg
14383 ("\?z?^ trailing bits of target value will be "
14384 & "undefined!", Eloc, Act_Unit);
14385 end if;
14387 else pragma Assert (Source_Siz > Target_Siz);
14388 if Is_Discrete_Type (Source) then
14389 if Bytes_Big_Endian then
14390 Error_Msg
14391 ("\?z?^ low order bits of source will be "
14392 & "ignored!", Eloc, Act_Unit);
14393 else
14394 Error_Msg
14395 ("\?z?^ high order bits of source will be "
14396 & "ignored!", Eloc, Act_Unit);
14397 end if;
14399 else
14400 Error_Msg
14401 ("\?z?^ trailing bits of source will be "
14402 & "ignored!", Eloc, Act_Unit);
14403 end if;
14404 end if;
14405 end if;
14406 end if;
14407 end if;
14409 -- If both types are access types, we need to check the alignment.
14410 -- If the alignment of both is specified, we can do it here.
14412 if Serious_Errors_Detected = 0
14413 and then Is_Access_Type (Source)
14414 and then Is_Access_Type (Target)
14415 and then Target_Strict_Alignment
14416 and then Present (Designated_Type (Source))
14417 and then Present (Designated_Type (Target))
14418 then
14419 declare
14420 D_Source : constant Entity_Id := Designated_Type (Source);
14421 D_Target : constant Entity_Id := Designated_Type (Target);
14423 begin
14424 if Known_Alignment (D_Source)
14425 and then
14426 Known_Alignment (D_Target)
14427 then
14428 declare
14429 Source_Align : constant Uint := Alignment (D_Source);
14430 Target_Align : constant Uint := Alignment (D_Target);
14432 begin
14433 if Source_Align < Target_Align
14434 and then not Is_Tagged_Type (D_Source)
14436 -- Suppress warning if warnings suppressed on either
14437 -- type or either designated type. Note the use of
14438 -- OR here instead of OR ELSE. That is intentional,
14439 -- we would like to set flag Warnings_Off_Used in
14440 -- all types for which warnings are suppressed.
14442 and then not (Has_Warnings_Off (D_Source)
14444 Has_Warnings_Off (D_Target)
14446 Has_Warnings_Off (Source)
14448 Has_Warnings_Off (Target))
14449 then
14450 Error_Msg_Uint_1 := Target_Align;
14451 Error_Msg_Uint_2 := Source_Align;
14452 Error_Msg_Node_1 := D_Target;
14453 Error_Msg_Node_2 := D_Source;
14454 Error_Msg
14455 ("?z?alignment of & (^) is stricter than "
14456 & "alignment of & (^)!", Eloc, Act_Unit);
14457 Error_Msg
14458 ("\?z?resulting access value may have invalid "
14459 & "alignment!", Eloc, Act_Unit);
14460 end if;
14461 end;
14462 end if;
14463 end;
14464 end if;
14465 end;
14467 <<Continue>>
14468 null;
14469 end loop;
14470 end Validate_Unchecked_Conversions;
14472 end Sem_Ch13;