1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Expander
; use Expander
;
33 with Exp_Util
; use Exp_Util
;
34 with Exp_Ch3
; use Exp_Ch3
;
35 with Exp_Ch6
; use Exp_Ch6
;
36 with Exp_Ch7
; use Exp_Ch7
;
37 with Exp_Ch9
; use Exp_Ch9
;
38 with Exp_Disp
; use Exp_Disp
;
39 with Exp_Tss
; use Exp_Tss
;
40 with Freeze
; use Freeze
;
41 with Itypes
; use Itypes
;
43 with Namet
; use Namet
;
44 with Nmake
; use Nmake
;
45 with Nlists
; use Nlists
;
47 with Restrict
; use Restrict
;
48 with Rident
; use Rident
;
49 with Rtsfind
; use Rtsfind
;
50 with Ttypes
; use Ttypes
;
52 with Sem_Aggr
; use Sem_Aggr
;
53 with Sem_Aux
; use Sem_Aux
;
54 with Sem_Ch3
; use Sem_Ch3
;
55 with Sem_Eval
; use Sem_Eval
;
56 with Sem_Res
; use Sem_Res
;
57 with Sem_Util
; use Sem_Util
;
58 with Sinfo
; use Sinfo
;
59 with Snames
; use Snames
;
60 with Stand
; use Stand
;
61 with Stringt
; use Stringt
;
62 with Tbuild
; use Tbuild
;
63 with Uintp
; use Uintp
;
64 with Urealp
; use Urealp
;
66 package body Exp_Aggr
is
68 type Case_Bounds
is record
71 Choice_Node
: Node_Id
;
74 type Case_Table_Type
is array (Nat
range <>) of Case_Bounds
;
75 -- Table type used by Check_Case_Choices procedure
77 procedure Collect_Initialization_Statements
80 Node_After
: Node_Id
);
81 -- If Obj is not frozen, collect actions inserted after N until, but not
82 -- including, Node_After, for initialization of Obj, and move them to an
83 -- expression with actions, which becomes the Initialization_Statements for
86 procedure Expand_Delta_Array_Aggregate
(N
: Node_Id
; Deltas
: List_Id
);
87 procedure Expand_Delta_Record_Aggregate
(N
: Node_Id
; Deltas
: List_Id
);
89 function Has_Default_Init_Comps
(N
: Node_Id
) return Boolean;
90 -- N is an aggregate (record or array). Checks the presence of default
91 -- initialization (<>) in any component (Ada 2005: AI-287).
93 function In_Object_Declaration
(N
: Node_Id
) return Boolean;
94 -- Return True if N is part of an object declaration, False otherwise
96 function Is_Static_Dispatch_Table_Aggregate
(N
: Node_Id
) return Boolean;
97 -- Returns true if N is an aggregate used to initialize the components
98 -- of a statically allocated dispatch table.
100 function Late_Expansion
103 Target
: Node_Id
) return List_Id
;
104 -- This routine implements top-down expansion of nested aggregates. In
105 -- doing so, it avoids the generation of temporaries at each level. N is
106 -- a nested record or array aggregate with the Expansion_Delayed flag.
107 -- Typ is the expected type of the aggregate. Target is a (duplicatable)
108 -- expression that will hold the result of the aggregate expansion.
110 function Make_OK_Assignment_Statement
113 Expression
: Node_Id
) return Node_Id
;
114 -- This is like Make_Assignment_Statement, except that Assignment_OK
115 -- is set in the left operand. All assignments built by this unit use
116 -- this routine. This is needed to deal with assignments to initialized
117 -- constants that are done in place.
120 (Obj_Type
: Entity_Id
;
121 Typ
: Entity_Id
) return Boolean;
122 -- A static array aggregate in an object declaration can in most cases be
123 -- expanded in place. The one exception is when the aggregate is given
124 -- with component associations that specify different bounds from those of
125 -- the type definition in the object declaration. In this pathological
126 -- case the aggregate must slide, and we must introduce an intermediate
127 -- temporary to hold it.
129 -- The same holds in an assignment to one-dimensional array of arrays,
130 -- when a component may be given with bounds that differ from those of the
133 function Number_Of_Choices
(N
: Node_Id
) return Nat
;
134 -- Returns the number of discrete choices (not including the others choice
135 -- if present) contained in (sub-)aggregate N.
137 procedure Process_Transient_Component
139 Comp_Typ
: Entity_Id
;
141 Fin_Call
: out Node_Id
;
142 Hook_Clear
: out Node_Id
;
143 Aggr
: Node_Id
:= Empty
;
144 Stmts
: List_Id
:= No_List
);
145 -- Subsidiary to the expansion of array and record aggregates. Generate
146 -- part of the necessary code to finalize a transient component. Comp_Typ
147 -- is the component type. Init_Expr is the initialization expression of the
148 -- component which is always a function call. Fin_Call is the finalization
149 -- call used to clean up the transient function result. Hook_Clear is the
150 -- hook reset statement. Aggr and Stmts both control the placement of the
151 -- generated code. Aggr is the related aggregate. If present, all code is
152 -- inserted prior to Aggr using Insert_Action. Stmts is the initialization
153 -- statements of the component. If present, all code is added to Stmts.
155 procedure Process_Transient_Component_Completion
159 Hook_Clear
: Node_Id
;
161 -- Subsidiary to the expansion of array and record aggregates. Generate
162 -- part of the necessary code to finalize a transient component. Aggr is
163 -- the related aggregate. Fin_Clear is the finalization call used to clean
164 -- up the transient component. Hook_Clear is the hook reset statment. Stmts
165 -- is the initialization statement list for the component. All generated
166 -- code is added to Stmts.
168 procedure Sort_Case_Table
(Case_Table
: in out Case_Table_Type
);
169 -- Sort the Case Table using the Lower Bound of each Choice as the key.
170 -- A simple insertion sort is used since the number of choices in a case
171 -- statement of variant part will usually be small and probably in near
174 ------------------------------------------------------
175 -- Local subprograms for Record Aggregate Expansion --
176 ------------------------------------------------------
178 function Is_Build_In_Place_Aggregate_Return
(N
: Node_Id
) return Boolean;
179 -- True if N is an aggregate (possibly qualified or converted) that is
180 -- being returned from a build-in-place function.
182 function Build_Record_Aggr_Code
185 Lhs
: Node_Id
) return List_Id
;
186 -- N is an N_Aggregate or an N_Extension_Aggregate. Typ is the type of the
187 -- aggregate. Target is an expression containing the location on which the
188 -- component by component assignments will take place. Returns the list of
189 -- assignments plus all other adjustments needed for tagged and controlled
192 procedure Convert_To_Assignments
(N
: Node_Id
; Typ
: Entity_Id
);
193 -- Transform a record aggregate into a sequence of assignments performed
194 -- component by component. N is an N_Aggregate or N_Extension_Aggregate.
195 -- Typ is the type of the record aggregate.
197 procedure Expand_Record_Aggregate
199 Orig_Tag
: Node_Id
:= Empty
;
200 Parent_Expr
: Node_Id
:= Empty
);
201 -- This is the top level procedure for record aggregate expansion.
202 -- Expansion for record aggregates needs expand aggregates for tagged
203 -- record types. Specifically Expand_Record_Aggregate adds the Tag
204 -- field in front of the Component_Association list that was created
205 -- during resolution by Resolve_Record_Aggregate.
207 -- N is the record aggregate node.
208 -- Orig_Tag is the value of the Tag that has to be provided for this
209 -- specific aggregate. It carries the tag corresponding to the type
210 -- of the outermost aggregate during the recursive expansion
211 -- Parent_Expr is the ancestor part of the original extension
214 function Has_Mutable_Components
(Typ
: Entity_Id
) return Boolean;
215 -- Return true if one of the components is of a discriminated type with
216 -- defaults. An aggregate for a type with mutable components must be
217 -- expanded into individual assignments.
219 procedure Initialize_Discriminants
(N
: Node_Id
; Typ
: Entity_Id
);
220 -- If the type of the aggregate is a type extension with renamed discrimi-
221 -- nants, we must initialize the hidden discriminants of the parent.
222 -- Otherwise, the target object must not be initialized. The discriminants
223 -- are initialized by calling the initialization procedure for the type.
224 -- This is incorrect if the initialization of other components has any
225 -- side effects. We restrict this call to the case where the parent type
226 -- has a variant part, because this is the only case where the hidden
227 -- discriminants are accessed, namely when calling discriminant checking
228 -- functions of the parent type, and when applying a stream attribute to
229 -- an object of the derived type.
231 -----------------------------------------------------
232 -- Local Subprograms for Array Aggregate Expansion --
233 -----------------------------------------------------
235 function Aggr_Size_OK
(N
: Node_Id
; Typ
: Entity_Id
) return Boolean;
236 -- Very large static aggregates present problems to the back-end, and are
237 -- transformed into assignments and loops. This function verifies that the
238 -- total number of components of an aggregate is acceptable for rewriting
239 -- into a purely positional static form. Aggr_Size_OK must be called before
242 -- This function also detects and warns about one-component aggregates that
243 -- appear in a non-static context. Even if the component value is static,
244 -- such an aggregate must be expanded into an assignment.
246 function Backend_Processing_Possible
(N
: Node_Id
) return Boolean;
247 -- This function checks if array aggregate N can be processed directly
248 -- by the backend. If this is the case, True is returned.
250 function Build_Array_Aggr_Code
255 Scalar_Comp
: Boolean;
256 Indexes
: List_Id
:= No_List
) return List_Id
;
257 -- This recursive routine returns a list of statements containing the
258 -- loops and assignments that are needed for the expansion of the array
261 -- N is the (sub-)aggregate node to be expanded into code. This node has
262 -- been fully analyzed, and its Etype is properly set.
264 -- Index is the index node corresponding to the array subaggregate N
266 -- Into is the target expression into which we are copying the aggregate.
267 -- Note that this node may not have been analyzed yet, and so the Etype
268 -- field may not be set.
270 -- Scalar_Comp is True if the component type of the aggregate is scalar
272 -- Indexes is the current list of expressions used to index the object we
275 procedure Convert_Array_Aggr_In_Allocator
279 -- If the aggregate appears within an allocator and can be expanded in
280 -- place, this routine generates the individual assignments to components
281 -- of the designated object. This is an optimization over the general
282 -- case, where a temporary is first created on the stack and then used to
283 -- construct the allocated object on the heap.
285 procedure Convert_To_Positional
287 Max_Others_Replicate
: Nat
:= 5;
288 Handle_Bit_Packed
: Boolean := False);
289 -- If possible, convert named notation to positional notation. This
290 -- conversion is possible only in some static cases. If the conversion is
291 -- possible, then N is rewritten with the analyzed converted aggregate.
292 -- The parameter Max_Others_Replicate controls the maximum number of
293 -- values corresponding to an others choice that will be converted to
294 -- positional notation (the default of 5 is the normal limit, and reflects
295 -- the fact that normally the loop is better than a lot of separate
296 -- assignments). Note that this limit gets overridden in any case if
297 -- either of the restrictions No_Elaboration_Code or No_Implicit_Loops is
298 -- set. The parameter Handle_Bit_Packed is usually set False (since we do
299 -- not expect the back end to handle bit packed arrays, so the normal case
300 -- of conversion is pointless), but in the special case of a call from
301 -- Packed_Array_Aggregate_Handled, we set this parameter to True, since
302 -- these are cases we handle in there.
304 -- It would seem useful to have a higher default for Max_Others_Replicate,
305 -- but aggregates in the compiler make this impossible: the compiler
306 -- bootstrap fails if Max_Others_Replicate is greater than 25. This
309 procedure Expand_Array_Aggregate
(N
: Node_Id
);
310 -- This is the top-level routine to perform array aggregate expansion.
311 -- N is the N_Aggregate node to be expanded.
313 function Is_Two_Dim_Packed_Array
(Typ
: Entity_Id
) return Boolean;
314 -- For two-dimensional packed aggregates with constant bounds and constant
315 -- components, it is preferable to pack the inner aggregates because the
316 -- whole matrix can then be presented to the back-end as a one-dimensional
317 -- list of literals. This is much more efficient than expanding into single
318 -- component assignments. This function determines if the type Typ is for
319 -- an array that is suitable for this optimization: it returns True if Typ
320 -- is a two dimensional bit packed array with component size 1, 2, or 4.
322 function Packed_Array_Aggregate_Handled
(N
: Node_Id
) return Boolean;
323 -- Given an array aggregate, this function handles the case of a packed
324 -- array aggregate with all constant values, where the aggregate can be
325 -- evaluated at compile time. If this is possible, then N is rewritten
326 -- to be its proper compile time value with all the components properly
327 -- assembled. The expression is analyzed and resolved and True is returned.
328 -- If this transformation is not possible, N is unchanged and False is
331 function Two_Dim_Packed_Array_Handled
(N
: Node_Id
) return Boolean;
332 -- If the type of the aggregate is a two-dimensional bit_packed array
333 -- it may be transformed into an array of bytes with constant values,
334 -- and presented to the back-end as a static value. The function returns
335 -- false if this transformation cannot be performed. THis is similar to,
336 -- and reuses part of the machinery in Packed_Array_Aggregate_Handled.
342 function Aggr_Size_OK
(N
: Node_Id
; Typ
: Entity_Id
) return Boolean is
351 -- Determines the maximum size of an array aggregate produced by
352 -- converting named to positional notation (e.g. from others clauses).
353 -- This avoids running away with attempts to convert huge aggregates,
354 -- which hit memory limits in the backend.
356 function Component_Count
(T
: Entity_Id
) return Nat
;
357 -- The limit is applied to the total number of subcomponents that the
358 -- aggregate will have, which is the number of static expressions
359 -- that will appear in the flattened array. This requires a recursive
360 -- computation of the number of scalar components of the structure.
362 ---------------------
363 -- Component_Count --
364 ---------------------
366 function Component_Count
(T
: Entity_Id
) return Nat
is
371 if Is_Scalar_Type
(T
) then
374 elsif Is_Record_Type
(T
) then
375 Comp
:= First_Component
(T
);
376 while Present
(Comp
) loop
377 Res
:= Res
+ Component_Count
(Etype
(Comp
));
378 Next_Component
(Comp
);
383 elsif Is_Array_Type
(T
) then
385 Lo
: constant Node_Id
:=
386 Type_Low_Bound
(Etype
(First_Index
(T
)));
387 Hi
: constant Node_Id
:=
388 Type_High_Bound
(Etype
(First_Index
(T
)));
390 Siz
: constant Nat
:= Component_Count
(Component_Type
(T
));
393 -- Check for superflat arrays, i.e. arrays with such bounds
394 -- as 4 .. 2, to insure that this function never returns a
395 -- meaningless negative value.
397 if not Compile_Time_Known_Value
(Lo
)
398 or else not Compile_Time_Known_Value
(Hi
)
399 or else Expr_Value
(Hi
) < Expr_Value
(Lo
)
404 -- If the number of components is greater than Int'Last,
405 -- then return Int'Last, so caller will return False (Aggr
406 -- size is not OK). Otherwise, UI_To_Int will crash.
409 UI
: constant Uint
:=
410 Expr_Value
(Hi
) - Expr_Value
(Lo
) + 1;
412 if UI_Is_In_Int_Range
(UI
) then
413 return Siz
* UI_To_Int
(UI
);
422 -- Can only be a null for an access type
428 -- Start of processing for Aggr_Size_OK
431 -- The normal aggregate limit is 500000, but we increase this limit to
432 -- 2**24 (about 16 million) if Restrictions (No_Elaboration_Code) or
433 -- Restrictions (No_Implicit_Loops) is specified, since in either case
434 -- we are at risk of declaring the program illegal because of this
435 -- limit. We also increase the limit when Static_Elaboration_Desired,
436 -- given that this means that objects are intended to be placed in data
439 -- We also increase the limit if the aggregate is for a packed two-
440 -- dimensional array, because if components are static it is much more
441 -- efficient to construct a one-dimensional equivalent array with static
444 -- Conversely, we decrease the maximum size if none of the above
445 -- requirements apply, and if the aggregate has a single component
446 -- association, which will be more efficient if implemented with a loop.
448 -- Finally, we use a small limit in CodePeer mode where we favor loops
449 -- instead of thousands of single assignments (from large aggregates).
451 Max_Aggr_Size
:= 500000;
453 if CodePeer_Mode
then
454 Max_Aggr_Size
:= 100;
456 elsif Restriction_Active
(No_Elaboration_Code
)
457 or else Restriction_Active
(No_Implicit_Loops
)
458 or else Is_Two_Dim_Packed_Array
(Typ
)
459 or else (Ekind
(Current_Scope
) = E_Package
460 and then Static_Elaboration_Desired
(Current_Scope
))
462 Max_Aggr_Size
:= 2 ** 24;
464 elsif No
(Expressions
(N
))
465 and then No
(Next
(First
(Component_Associations
(N
))))
467 Max_Aggr_Size
:= 5000;
470 Siz
:= Component_Count
(Component_Type
(Typ
));
472 Indx
:= First_Index
(Typ
);
473 while Present
(Indx
) loop
474 Lo
:= Type_Low_Bound
(Etype
(Indx
));
475 Hi
:= Type_High_Bound
(Etype
(Indx
));
477 -- Bounds need to be known at compile time
479 if not Compile_Time_Known_Value
(Lo
)
480 or else not Compile_Time_Known_Value
(Hi
)
485 Lov
:= Expr_Value
(Lo
);
486 Hiv
:= Expr_Value
(Hi
);
488 -- A flat array is always safe
494 -- One-component aggregates are suspicious, and if the context type
495 -- is an object declaration with non-static bounds it will trip gcc;
496 -- such an aggregate must be expanded into a single assignment.
498 if Hiv
= Lov
and then Nkind
(Parent
(N
)) = N_Object_Declaration
then
500 Index_Type
: constant Entity_Id
:=
502 (First_Index
(Etype
(Defining_Identifier
(Parent
(N
)))));
506 if not Compile_Time_Known_Value
(Type_Low_Bound
(Index_Type
))
507 or else not Compile_Time_Known_Value
508 (Type_High_Bound
(Index_Type
))
510 if Present
(Component_Associations
(N
)) then
513 (Choice_List
(First
(Component_Associations
(N
))));
515 if Is_Entity_Name
(Indx
)
516 and then not Is_Type
(Entity
(Indx
))
519 ("single component aggregate in "
520 & "non-static context??", Indx
);
521 Error_Msg_N
("\maybe subtype name was meant??", Indx
);
531 Rng
: constant Uint
:= Hiv
- Lov
+ 1;
534 -- Check if size is too large
536 if not UI_Is_In_Int_Range
(Rng
) then
540 Siz
:= Siz
* UI_To_Int
(Rng
);
544 or else Siz
> Max_Aggr_Size
549 -- Bounds must be in integer range, for later array construction
551 if not UI_Is_In_Int_Range
(Lov
)
553 not UI_Is_In_Int_Range
(Hiv
)
564 ---------------------------------
565 -- Backend_Processing_Possible --
566 ---------------------------------
568 -- Backend processing by Gigi/gcc is possible only if all the following
569 -- conditions are met:
571 -- 1. N is fully positional
573 -- 2. N is not a bit-packed array aggregate;
575 -- 3. The size of N's array type must be known at compile time. Note
576 -- that this implies that the component size is also known
578 -- 4. The array type of N does not follow the Fortran layout convention
579 -- or if it does it must be 1 dimensional.
581 -- 5. The array component type may not be tagged (which could necessitate
582 -- reassignment of proper tags).
584 -- 6. The array component type must not have unaligned bit components
586 -- 7. None of the components of the aggregate may be bit unaligned
589 -- 8. There cannot be delayed components, since we do not know enough
590 -- at this stage to know if back end processing is possible.
592 -- 9. There cannot be any discriminated record components, since the
593 -- back end cannot handle this complex case.
595 -- 10. No controlled actions need to be generated for components
597 -- 11. When generating C code, N must be part of a N_Object_Declaration
599 -- 12. When generating C code, N must not include function calls
601 function Backend_Processing_Possible
(N
: Node_Id
) return Boolean is
602 Typ
: constant Entity_Id
:= Etype
(N
);
603 -- Typ is the correct constrained array subtype of the aggregate
605 function Component_Check
(N
: Node_Id
; Index
: Node_Id
) return Boolean;
606 -- This routine checks components of aggregate N, enforcing checks
607 -- 1, 7, 8, 9, 11, and 12. In the multidimensional case, these checks
608 -- are performed on subaggregates. The Index value is the current index
609 -- being checked in the multidimensional case.
611 ---------------------
612 -- Component_Check --
613 ---------------------
615 function Component_Check
(N
: Node_Id
; Index
: Node_Id
) return Boolean is
616 function Ultimate_Original_Expression
(N
: Node_Id
) return Node_Id
;
617 -- Given a type conversion or an unchecked type conversion N, return
618 -- its innermost original expression.
620 ----------------------------------
621 -- Ultimate_Original_Expression --
622 ----------------------------------
624 function Ultimate_Original_Expression
(N
: Node_Id
) return Node_Id
is
625 Expr
: Node_Id
:= Original_Node
(N
);
628 while Nkind_In
(Expr
, N_Type_Conversion
,
629 N_Unchecked_Type_Conversion
)
631 Expr
:= Original_Node
(Expression
(Expr
));
635 end Ultimate_Original_Expression
;
641 -- Start of processing for Component_Check
644 -- Checks 1: (no component associations)
646 if Present
(Component_Associations
(N
)) then
650 -- Checks 11: The C code generator cannot handle aggregates that are
651 -- not part of an object declaration.
653 if Modify_Tree_For_C
then
655 Par
: Node_Id
:= Parent
(N
);
658 -- Skip enclosing nested aggregates and their qualified
661 while Nkind
(Par
) = N_Aggregate
662 or else Nkind
(Par
) = N_Qualified_Expression
667 if Nkind
(Par
) /= N_Object_Declaration
then
673 -- Checks on components
675 -- Recurse to check subaggregates, which may appear in qualified
676 -- expressions. If delayed, the front-end will have to expand.
677 -- If the component is a discriminated record, treat as non-static,
678 -- as the back-end cannot handle this properly.
680 Expr
:= First
(Expressions
(N
));
681 while Present
(Expr
) loop
683 -- Checks 8: (no delayed components)
685 if Is_Delayed_Aggregate
(Expr
) then
689 -- Checks 9: (no discriminated records)
691 if Present
(Etype
(Expr
))
692 and then Is_Record_Type
(Etype
(Expr
))
693 and then Has_Discriminants
(Etype
(Expr
))
698 -- Checks 7. Component must not be bit aligned component
700 if Possible_Bit_Aligned_Component
(Expr
) then
704 -- Checks 12: (no function call)
708 Nkind
(Ultimate_Original_Expression
(Expr
)) = N_Function_Call
713 -- Recursion to following indexes for multiple dimension case
715 if Present
(Next_Index
(Index
))
716 and then not Component_Check
(Expr
, Next_Index
(Index
))
721 -- All checks for that component finished, on to next
729 -- Start of processing for Backend_Processing_Possible
732 -- Checks 2 (array not bit packed) and 10 (no controlled actions)
734 if Is_Bit_Packed_Array
(Typ
) or else Needs_Finalization
(Typ
) then
738 -- If component is limited, aggregate must be expanded because each
739 -- component assignment must be built in place.
741 if Is_Limited_View
(Component_Type
(Typ
)) then
745 -- Checks 4 (array must not be multidimensional Fortran case)
747 if Convention
(Typ
) = Convention_Fortran
748 and then Number_Dimensions
(Typ
) > 1
753 -- Checks 3 (size of array must be known at compile time)
755 if not Size_Known_At_Compile_Time
(Typ
) then
759 -- Checks on components
761 if not Component_Check
(N
, First_Index
(Typ
)) then
765 -- Checks 5 (if the component type is tagged, then we may need to do
766 -- tag adjustments. Perhaps this should be refined to check for any
767 -- component associations that actually need tag adjustment, similar
768 -- to the test in Component_OK_For_Backend for record aggregates with
769 -- tagged components, but not clear whether it's worthwhile ???; in the
770 -- case of virtual machines (no Tagged_Type_Expansion), object tags are
771 -- handled implicitly).
773 if Is_Tagged_Type
(Component_Type
(Typ
))
774 and then Tagged_Type_Expansion
779 -- Checks 6 (component type must not have bit aligned components)
781 if Type_May_Have_Bit_Aligned_Components
(Component_Type
(Typ
)) then
785 -- Backend processing is possible
787 Set_Size_Known_At_Compile_Time
(Etype
(N
), True);
789 end Backend_Processing_Possible
;
791 ---------------------------
792 -- Build_Array_Aggr_Code --
793 ---------------------------
795 -- The code that we generate from a one dimensional aggregate is
797 -- 1. If the subaggregate contains discrete choices we
799 -- (a) Sort the discrete choices
801 -- (b) Otherwise for each discrete choice that specifies a range we
802 -- emit a loop. If a range specifies a maximum of three values, or
803 -- we are dealing with an expression we emit a sequence of
804 -- assignments instead of a loop.
806 -- (c) Generate the remaining loops to cover the others choice if any
808 -- 2. If the aggregate contains positional elements we
810 -- (a) translate the positional elements in a series of assignments
812 -- (b) Generate a final loop to cover the others choice if any.
813 -- Note that this final loop has to be a while loop since the case
815 -- L : Integer := Integer'Last;
816 -- H : Integer := Integer'Last;
817 -- A : array (L .. H) := (1, others =>0);
819 -- cannot be handled by a for loop. Thus for the following
821 -- array (L .. H) := (.. positional elements.., others =>E);
823 -- we always generate something like:
825 -- J : Index_Type := Index_Of_Last_Positional_Element;
827 -- J := Index_Base'Succ (J)
831 function Build_Array_Aggr_Code
836 Scalar_Comp
: Boolean;
837 Indexes
: List_Id
:= No_List
) return List_Id
839 Loc
: constant Source_Ptr
:= Sloc
(N
);
840 Index_Base
: constant Entity_Id
:= Base_Type
(Etype
(Index
));
841 Index_Base_L
: constant Node_Id
:= Type_Low_Bound
(Index_Base
);
842 Index_Base_H
: constant Node_Id
:= Type_High_Bound
(Index_Base
);
844 function Add
(Val
: Int
; To
: Node_Id
) return Node_Id
;
845 -- Returns an expression where Val is added to expression To, unless
846 -- To+Val is provably out of To's base type range. To must be an
847 -- already analyzed expression.
849 function Empty_Range
(L
, H
: Node_Id
) return Boolean;
850 -- Returns True if the range defined by L .. H is certainly empty
852 function Equal
(L
, H
: Node_Id
) return Boolean;
853 -- Returns True if L = H for sure
855 function Index_Base_Name
return Node_Id
;
856 -- Returns a new reference to the index type name
861 In_Loop
: Boolean := False) return List_Id
;
862 -- Ind must be a side-effect-free expression. If the input aggregate N
863 -- to Build_Loop contains no subaggregates, then this function returns
864 -- the assignment statement:
866 -- Into (Indexes, Ind) := Expr;
868 -- Otherwise we call Build_Code recursively. Flag In_Loop should be set
869 -- when the assignment appears within a generated loop.
871 -- Ada 2005 (AI-287): In case of default initialized component, Expr
872 -- is empty and we generate a call to the corresponding IP subprogram.
874 function Gen_Loop
(L
, H
: Node_Id
; Expr
: Node_Id
) return List_Id
;
875 -- Nodes L and H must be side-effect-free expressions. If the input
876 -- aggregate N to Build_Loop contains no subaggregates, this routine
877 -- returns the for loop statement:
879 -- for J in Index_Base'(L) .. Index_Base'(H) loop
880 -- Into (Indexes, J) := Expr;
883 -- Otherwise we call Build_Code recursively. As an optimization if the
884 -- loop covers 3 or fewer scalar elements we generate a sequence of
886 -- If the component association that generates the loop comes from an
887 -- Iterated_Component_Association, the loop parameter has the name of
888 -- the corresponding parameter in the original construct.
890 function Gen_While
(L
, H
: Node_Id
; Expr
: Node_Id
) return List_Id
;
891 -- Nodes L and H must be side-effect-free expressions. If the input
892 -- aggregate N to Build_Loop contains no subaggregates, this routine
893 -- returns the while loop statement:
895 -- J : Index_Base := L;
897 -- J := Index_Base'Succ (J);
898 -- Into (Indexes, J) := Expr;
901 -- Otherwise we call Build_Code recursively
903 function Get_Assoc_Expr
(Assoc
: Node_Id
) return Node_Id
;
904 -- For an association with a box, use value given by aspect
905 -- Default_Component_Value of array type if specified, else use
906 -- value given by aspect Default_Value for component type itself
907 -- if specified, else return Empty.
909 function Local_Compile_Time_Known_Value
(E
: Node_Id
) return Boolean;
910 function Local_Expr_Value
(E
: Node_Id
) return Uint
;
911 -- These two Local routines are used to replace the corresponding ones
912 -- in sem_eval because while processing the bounds of an aggregate with
913 -- discrete choices whose index type is an enumeration, we build static
914 -- expressions not recognized by Compile_Time_Known_Value as such since
915 -- they have not yet been analyzed and resolved. All the expressions in
916 -- question are things like Index_Base_Name'Val (Const) which we can
917 -- easily recognize as being constant.
923 function Add
(Val
: Int
; To
: Node_Id
) return Node_Id
is
928 U_Val
: constant Uint
:= UI_From_Int
(Val
);
931 -- Note: do not try to optimize the case of Val = 0, because
932 -- we need to build a new node with the proper Sloc value anyway.
934 -- First test if we can do constant folding
936 if Local_Compile_Time_Known_Value
(To
) then
937 U_To
:= Local_Expr_Value
(To
) + Val
;
939 -- Determine if our constant is outside the range of the index.
940 -- If so return an Empty node. This empty node will be caught
941 -- by Empty_Range below.
943 if Compile_Time_Known_Value
(Index_Base_L
)
944 and then U_To
< Expr_Value
(Index_Base_L
)
948 elsif Compile_Time_Known_Value
(Index_Base_H
)
949 and then U_To
> Expr_Value
(Index_Base_H
)
954 Expr_Pos
:= Make_Integer_Literal
(Loc
, U_To
);
955 Set_Is_Static_Expression
(Expr_Pos
);
957 if not Is_Enumeration_Type
(Index_Base
) then
960 -- If we are dealing with enumeration return
961 -- Index_Base'Val (Expr_Pos)
965 Make_Attribute_Reference
967 Prefix
=> Index_Base_Name
,
968 Attribute_Name
=> Name_Val
,
969 Expressions
=> New_List
(Expr_Pos
));
975 -- If we are here no constant folding possible
977 if not Is_Enumeration_Type
(Index_Base
) then
980 Left_Opnd
=> Duplicate_Subexpr
(To
),
981 Right_Opnd
=> Make_Integer_Literal
(Loc
, U_Val
));
983 -- If we are dealing with enumeration return
984 -- Index_Base'Val (Index_Base'Pos (To) + Val)
988 Make_Attribute_Reference
990 Prefix
=> Index_Base_Name
,
991 Attribute_Name
=> Name_Pos
,
992 Expressions
=> New_List
(Duplicate_Subexpr
(To
)));
997 Right_Opnd
=> Make_Integer_Literal
(Loc
, U_Val
));
1000 Make_Attribute_Reference
1002 Prefix
=> Index_Base_Name
,
1003 Attribute_Name
=> Name_Val
,
1004 Expressions
=> New_List
(Expr_Pos
));
1014 function Empty_Range
(L
, H
: Node_Id
) return Boolean is
1015 Is_Empty
: Boolean := False;
1020 -- First check if L or H were already detected as overflowing the
1021 -- index base range type by function Add above. If this is so Add
1022 -- returns the empty node.
1024 if No
(L
) or else No
(H
) then
1028 for J
in 1 .. 3 loop
1031 -- L > H range is empty
1037 -- B_L > H range must be empty
1040 Low
:= Index_Base_L
;
1043 -- L > B_H range must be empty
1047 High
:= Index_Base_H
;
1050 if Local_Compile_Time_Known_Value
(Low
)
1052 Local_Compile_Time_Known_Value
(High
)
1055 UI_Gt
(Local_Expr_Value
(Low
), Local_Expr_Value
(High
));
1068 function Equal
(L
, H
: Node_Id
) return Boolean is
1073 elsif Local_Compile_Time_Known_Value
(L
)
1075 Local_Compile_Time_Known_Value
(H
)
1077 return UI_Eq
(Local_Expr_Value
(L
), Local_Expr_Value
(H
));
1090 In_Loop
: Boolean := False) return List_Id
1092 function Add_Loop_Actions
(Lis
: List_Id
) return List_Id
;
1093 -- Collect insert_actions generated in the construction of a loop,
1094 -- and prepend them to the sequence of assignments to complete the
1095 -- eventual body of the loop.
1097 procedure Initialize_Array_Component
1098 (Arr_Comp
: Node_Id
;
1100 Init_Expr
: Node_Id
;
1102 -- Perform the initialization of array component Arr_Comp with
1103 -- expected type Comp_Typ. Init_Expr denotes the initialization
1104 -- expression of the array component. All generated code is added
1107 procedure Initialize_Ctrl_Array_Component
1108 (Arr_Comp
: Node_Id
;
1109 Comp_Typ
: Entity_Id
;
1110 Init_Expr
: Node_Id
;
1112 -- Perform the initialization of array component Arr_Comp when its
1113 -- expected type Comp_Typ needs finalization actions. Init_Expr is
1114 -- the initialization expression of the array component. All hook-
1115 -- related declarations are inserted prior to aggregate N. Remaining
1116 -- code is added to list Stmts.
1118 ----------------------
1119 -- Add_Loop_Actions --
1120 ----------------------
1122 function Add_Loop_Actions
(Lis
: List_Id
) return List_Id
is
1126 -- Ada 2005 (AI-287): Do nothing else in case of default
1127 -- initialized component.
1132 elsif Nkind
(Parent
(Expr
)) = N_Component_Association
1133 and then Present
(Loop_Actions
(Parent
(Expr
)))
1135 Append_List
(Lis
, Loop_Actions
(Parent
(Expr
)));
1136 Res
:= Loop_Actions
(Parent
(Expr
));
1137 Set_Loop_Actions
(Parent
(Expr
), No_List
);
1143 end Add_Loop_Actions
;
1145 --------------------------------
1146 -- Initialize_Array_Component --
1147 --------------------------------
1149 procedure Initialize_Array_Component
1150 (Arr_Comp
: Node_Id
;
1152 Init_Expr
: Node_Id
;
1155 Exceptions_OK
: constant Boolean :=
1156 not Restriction_Active
1157 (No_Exception_Propagation
);
1159 Finalization_OK
: constant Boolean :=
1161 and then Needs_Finalization
(Comp_Typ
);
1163 Full_Typ
: constant Entity_Id
:= Underlying_Type
(Comp_Typ
);
1165 Blk_Stmts
: List_Id
;
1166 Init_Stmt
: Node_Id
;
1169 -- Protect the initialization statements from aborts. Generate:
1173 if Finalization_OK
and Abort_Allowed
then
1174 if Exceptions_OK
then
1175 Blk_Stmts
:= New_List
;
1180 Append_To
(Blk_Stmts
, Build_Runtime_Call
(Loc
, RE_Abort_Defer
));
1182 -- Otherwise aborts are not allowed. All generated code is added
1183 -- directly to the input list.
1189 -- Initialize the array element. Generate:
1191 -- Arr_Comp := Init_Expr;
1193 -- Note that the initialization expression is replicated because
1194 -- it has to be reevaluated within a generated loop.
1197 Make_OK_Assignment_Statement
(Loc
,
1198 Name
=> New_Copy_Tree
(Arr_Comp
),
1199 Expression
=> New_Copy_Tree
(Init_Expr
));
1200 Set_No_Ctrl_Actions
(Init_Stmt
);
1202 -- If this is an aggregate for an array of arrays, each
1203 -- subaggregate will be expanded as well, and even with
1204 -- No_Ctrl_Actions the assignments of inner components will
1205 -- require attachment in their assignments to temporaries. These
1206 -- temporaries must be finalized for each subaggregate. Generate:
1209 -- Arr_Comp := Init_Expr;
1212 if Finalization_OK
and then Is_Array_Type
(Comp_Typ
) then
1214 Make_Block_Statement
(Loc
,
1215 Handled_Statement_Sequence
=>
1216 Make_Handled_Sequence_Of_Statements
(Loc
,
1217 Statements
=> New_List
(Init_Stmt
)));
1220 Append_To
(Blk_Stmts
, Init_Stmt
);
1222 -- Adjust the tag due to a possible view conversion. Generate:
1224 -- Arr_Comp._tag := Full_TypP;
1226 if Tagged_Type_Expansion
1227 and then Present
(Comp_Typ
)
1228 and then Is_Tagged_Type
(Comp_Typ
)
1230 Append_To
(Blk_Stmts
,
1231 Make_OK_Assignment_Statement
(Loc
,
1233 Make_Selected_Component
(Loc
,
1234 Prefix
=> New_Copy_Tree
(Arr_Comp
),
1237 (First_Tag_Component
(Full_Typ
), Loc
)),
1240 Unchecked_Convert_To
(RTE
(RE_Tag
),
1242 (Node
(First_Elmt
(Access_Disp_Table
(Full_Typ
))),
1246 -- Adjust the array component. Controlled subaggregates are not
1247 -- considered because each of their individual elements will
1248 -- receive an adjustment of its own. Generate:
1250 -- [Deep_]Adjust (Arr_Comp);
1253 and then not Is_Limited_Type
(Comp_Typ
)
1254 and then not Is_Build_In_Place_Function_Call
(Init_Expr
)
1256 (Is_Array_Type
(Comp_Typ
)
1257 and then Is_Controlled
(Component_Type
(Comp_Typ
))
1258 and then Nkind
(Expr
) = N_Aggregate
)
1262 (Obj_Ref
=> New_Copy_Tree
(Arr_Comp
),
1265 -- Guard against a missing [Deep_]Adjust when the component
1266 -- type was not frozen properly.
1268 if Present
(Adj_Call
) then
1269 Append_To
(Blk_Stmts
, Adj_Call
);
1273 -- Complete the protection of the initialization statements
1275 if Finalization_OK
and Abort_Allowed
then
1277 -- Wrap the initialization statements in a block to catch a
1278 -- potential exception. Generate:
1282 -- Arr_Comp := Init_Expr;
1283 -- Arr_Comp._tag := Full_TypP;
1284 -- [Deep_]Adjust (Arr_Comp);
1286 -- Abort_Undefer_Direct;
1289 if Exceptions_OK
then
1291 Build_Abort_Undefer_Block
(Loc
,
1295 -- Otherwise exceptions are not propagated. Generate:
1298 -- Arr_Comp := Init_Expr;
1299 -- Arr_Comp._tag := Full_TypP;
1300 -- [Deep_]Adjust (Arr_Comp);
1304 Append_To
(Blk_Stmts
,
1305 Build_Runtime_Call
(Loc
, RE_Abort_Undefer
));
1308 end Initialize_Array_Component
;
1310 -------------------------------------
1311 -- Initialize_Ctrl_Array_Component --
1312 -------------------------------------
1314 procedure Initialize_Ctrl_Array_Component
1315 (Arr_Comp
: Node_Id
;
1316 Comp_Typ
: Entity_Id
;
1317 Init_Expr
: Node_Id
;
1321 Act_Stmts
: List_Id
;
1324 Hook_Clear
: Node_Id
;
1326 In_Place_Expansion
: Boolean;
1327 -- Flag set when a nonlimited controlled function call requires
1328 -- in-place expansion.
1331 -- Duplicate the initialization expression in case the context is
1332 -- a multi choice list or an "others" choice which plugs various
1333 -- holes in the aggregate. As a result the expression is no longer
1334 -- shared between the various components and is reevaluated for
1335 -- each such component.
1337 Expr
:= New_Copy_Tree
(Init_Expr
);
1338 Set_Parent
(Expr
, Parent
(Init_Expr
));
1340 -- Perform a preliminary analysis and resolution to determine what
1341 -- the initialization expression denotes. An unanalyzed function
1342 -- call may appear as an identifier or an indexed component.
1344 if Nkind_In
(Expr
, N_Function_Call
,
1346 N_Indexed_Component
)
1347 and then not Analyzed
(Expr
)
1349 Preanalyze_And_Resolve
(Expr
, Comp_Typ
);
1352 In_Place_Expansion
:=
1353 Nkind
(Expr
) = N_Function_Call
1354 and then not Is_Build_In_Place_Result_Type
(Comp_Typ
);
1356 -- The initialization expression is a controlled function call.
1357 -- Perform in-place removal of side effects to avoid creating a
1358 -- transient scope, which leads to premature finalization.
1360 -- This in-place expansion is not performed for limited transient
1361 -- objects because the initialization is already done in-place.
1363 if In_Place_Expansion
then
1365 -- Suppress the removal of side effects by general analysis
1366 -- because this behavior is emulated here. This avoids the
1367 -- generation of a transient scope, which leads to out-of-order
1368 -- adjustment and finalization.
1370 Set_No_Side_Effect_Removal
(Expr
);
1372 -- When the transient component initialization is related to a
1373 -- range or an "others", keep all generated statements within
1374 -- the enclosing loop. This way the controlled function call
1375 -- will be evaluated at each iteration, and its result will be
1376 -- finalized at the end of each iteration.
1382 -- Otherwise this is a single component initialization. Hook-
1383 -- related statements are inserted prior to the aggregate.
1387 Act_Stmts
:= No_List
;
1390 -- Install all hook-related declarations and prepare the clean
1393 Process_Transient_Component
1395 Comp_Typ
=> Comp_Typ
,
1397 Fin_Call
=> Fin_Call
,
1398 Hook_Clear
=> Hook_Clear
,
1400 Stmts
=> Act_Stmts
);
1403 -- Use the noncontrolled component initialization circuitry to
1404 -- assign the result of the function call to the array element.
1405 -- This also performs subaggregate wrapping, tag adjustment, and
1406 -- [deep] adjustment of the array element.
1408 Initialize_Array_Component
1409 (Arr_Comp
=> Arr_Comp
,
1410 Comp_Typ
=> Comp_Typ
,
1414 -- At this point the array element is fully initialized. Complete
1415 -- the processing of the controlled array component by finalizing
1416 -- the transient function result.
1418 if In_Place_Expansion
then
1419 Process_Transient_Component_Completion
1422 Fin_Call
=> Fin_Call
,
1423 Hook_Clear
=> Hook_Clear
,
1426 end Initialize_Ctrl_Array_Component
;
1430 Stmts
: constant List_Id
:= New_List
;
1432 Comp_Typ
: Entity_Id
:= Empty
;
1434 Indexed_Comp
: Node_Id
;
1435 Init_Call
: Node_Id
;
1436 New_Indexes
: List_Id
;
1438 -- Start of processing for Gen_Assign
1441 if No
(Indexes
) then
1442 New_Indexes
:= New_List
;
1444 New_Indexes
:= New_Copy_List_Tree
(Indexes
);
1447 Append_To
(New_Indexes
, Ind
);
1449 if Present
(Next_Index
(Index
)) then
1452 Build_Array_Aggr_Code
1455 Index
=> Next_Index
(Index
),
1457 Scalar_Comp
=> Scalar_Comp
,
1458 Indexes
=> New_Indexes
));
1461 -- If we get here then we are at a bottom-level (sub-)aggregate
1465 (Make_Indexed_Component
(Loc
,
1466 Prefix
=> New_Copy_Tree
(Into
),
1467 Expressions
=> New_Indexes
));
1469 Set_Assignment_OK
(Indexed_Comp
);
1471 -- Ada 2005 (AI-287): In case of default initialized component, Expr
1472 -- is not present (and therefore we also initialize Expr_Q to empty).
1476 elsif Nkind
(Expr
) = N_Qualified_Expression
then
1477 Expr_Q
:= Expression
(Expr
);
1482 if Present
(Etype
(N
)) and then Etype
(N
) /= Any_Composite
then
1483 Comp_Typ
:= Component_Type
(Etype
(N
));
1484 pragma Assert
(Comp_Typ
= Ctype
); -- AI-287
1486 elsif Present
(Next
(First
(New_Indexes
))) then
1488 -- Ada 2005 (AI-287): Do nothing in case of default initialized
1489 -- component because we have received the component type in
1490 -- the formal parameter Ctype.
1492 -- ??? Some assert pragmas have been added to check if this new
1493 -- formal can be used to replace this code in all cases.
1495 if Present
(Expr
) then
1497 -- This is a multidimensional array. Recover the component type
1498 -- from the outermost aggregate, because subaggregates do not
1499 -- have an assigned type.
1506 while Present
(P
) loop
1507 if Nkind
(P
) = N_Aggregate
1508 and then Present
(Etype
(P
))
1510 Comp_Typ
:= Component_Type
(Etype
(P
));
1518 pragma Assert
(Comp_Typ
= Ctype
); -- AI-287
1523 -- Ada 2005 (AI-287): We only analyze the expression in case of non-
1524 -- default initialized components (otherwise Expr_Q is not present).
1527 and then Nkind_In
(Expr_Q
, N_Aggregate
, N_Extension_Aggregate
)
1529 -- At this stage the Expression may not have been analyzed yet
1530 -- because the array aggregate code has not been updated to use
1531 -- the Expansion_Delayed flag and avoid analysis altogether to
1532 -- solve the same problem (see Resolve_Aggr_Expr). So let us do
1533 -- the analysis of non-array aggregates now in order to get the
1534 -- value of Expansion_Delayed flag for the inner aggregate ???
1536 if Present
(Comp_Typ
) and then not Is_Array_Type
(Comp_Typ
) then
1537 Analyze_And_Resolve
(Expr_Q
, Comp_Typ
);
1540 if Is_Delayed_Aggregate
(Expr_Q
) then
1542 -- This is either a subaggregate of a multidimensional array,
1543 -- or a component of an array type whose component type is
1544 -- also an array. In the latter case, the expression may have
1545 -- component associations that provide different bounds from
1546 -- those of the component type, and sliding must occur. Instead
1547 -- of decomposing the current aggregate assignment, force the
1548 -- reanalysis of the assignment, so that a temporary will be
1549 -- generated in the usual fashion, and sliding will take place.
1551 if Nkind
(Parent
(N
)) = N_Assignment_Statement
1552 and then Is_Array_Type
(Comp_Typ
)
1553 and then Present
(Component_Associations
(Expr_Q
))
1554 and then Must_Slide
(Comp_Typ
, Etype
(Expr_Q
))
1556 Set_Expansion_Delayed
(Expr_Q
, False);
1557 Set_Analyzed
(Expr_Q
, False);
1562 Late_Expansion
(Expr_Q
, Etype
(Expr_Q
), Indexed_Comp
));
1567 if Present
(Expr
) then
1569 -- Handle an initialization expression of a controlled type in
1570 -- case it denotes a function call. In general such a scenario
1571 -- will produce a transient scope, but this will lead to wrong
1572 -- order of initialization, adjustment, and finalization in the
1573 -- context of aggregates.
1575 -- Target (1) := Ctrl_Func_Call;
1578 -- Trans_Obj : ... := Ctrl_Func_Call; -- object
1579 -- Target (1) := Trans_Obj;
1580 -- Finalize (Trans_Obj);
1582 -- Target (1)._tag := ...;
1583 -- Adjust (Target (1));
1585 -- In the example above, the call to Finalize occurs too early
1586 -- and as a result it may leave the array component in a bad
1587 -- state. Finalization of the transient object should really
1588 -- happen after adjustment.
1590 -- To avoid this scenario, perform in-place side-effect removal
1591 -- of the function call. This eliminates the transient property
1592 -- of the function result and ensures correct order of actions.
1594 -- Res : ... := Ctrl_Func_Call;
1595 -- Target (1) := Res;
1596 -- Target (1)._tag := ...;
1597 -- Adjust (Target (1));
1600 if Present
(Comp_Typ
)
1601 and then Needs_Finalization
(Comp_Typ
)
1602 and then Nkind
(Expr
) /= N_Aggregate
1604 Initialize_Ctrl_Array_Component
1605 (Arr_Comp
=> Indexed_Comp
,
1606 Comp_Typ
=> Comp_Typ
,
1610 -- Otherwise perform simple component initialization
1613 Initialize_Array_Component
1614 (Arr_Comp
=> Indexed_Comp
,
1615 Comp_Typ
=> Comp_Typ
,
1620 -- Ada 2005 (AI-287): In case of default initialized component, call
1621 -- the initialization subprogram associated with the component type.
1622 -- If the component type is an access type, add an explicit null
1623 -- assignment, because for the back-end there is an initialization
1624 -- present for the whole aggregate, and no default initialization
1627 -- In addition, if the component type is controlled, we must call
1628 -- its Initialize procedure explicitly, because there is no explicit
1629 -- object creation that will invoke it otherwise.
1632 if Present
(Base_Init_Proc
(Base_Type
(Ctype
)))
1633 or else Has_Task
(Base_Type
(Ctype
))
1635 Append_List_To
(Stmts
,
1636 Build_Initialization_Call
(Loc
,
1637 Id_Ref
=> Indexed_Comp
,
1639 With_Default_Init
=> True));
1641 -- If the component type has invariants, add an invariant
1642 -- check after the component is default-initialized. It will
1643 -- be analyzed and resolved before the code for initialization
1644 -- of other components.
1646 if Has_Invariants
(Ctype
) then
1647 Set_Etype
(Indexed_Comp
, Ctype
);
1648 Append_To
(Stmts
, Make_Invariant_Call
(Indexed_Comp
));
1651 elsif Is_Access_Type
(Ctype
) then
1653 Make_Assignment_Statement
(Loc
,
1654 Name
=> New_Copy_Tree
(Indexed_Comp
),
1655 Expression
=> Make_Null
(Loc
)));
1658 if Needs_Finalization
(Ctype
) then
1661 (Obj_Ref
=> New_Copy_Tree
(Indexed_Comp
),
1664 -- Guard against a missing [Deep_]Initialize when the component
1665 -- type was not properly frozen.
1667 if Present
(Init_Call
) then
1668 Append_To
(Stmts
, Init_Call
);
1673 return Add_Loop_Actions
(Stmts
);
1680 function Gen_Loop
(L
, H
: Node_Id
; Expr
: Node_Id
) return List_Id
is
1681 Is_Iterated_Component
: constant Boolean :=
1682 Nkind
(Parent
(Expr
)) = N_Iterated_Component_Association
;
1693 -- Index_Base'(L) .. Index_Base'(H)
1695 L_Iteration_Scheme
: Node_Id
;
1696 -- L_J in Index_Base'(L) .. Index_Base'(H)
1699 -- The statements to execute in the loop
1701 S
: constant List_Id
:= New_List
;
1702 -- List of statements
1705 -- Copy of expression tree, used for checking purposes
1708 -- If loop bounds define an empty range return the null statement
1710 if Empty_Range
(L
, H
) then
1711 Append_To
(S
, Make_Null_Statement
(Loc
));
1713 -- Ada 2005 (AI-287): Nothing else need to be done in case of
1714 -- default initialized component.
1720 -- The expression must be type-checked even though no component
1721 -- of the aggregate will have this value. This is done only for
1722 -- actual components of the array, not for subaggregates. Do
1723 -- the check on a copy, because the expression may be shared
1724 -- among several choices, some of which might be non-null.
1726 if Present
(Etype
(N
))
1727 and then Is_Array_Type
(Etype
(N
))
1728 and then No
(Next_Index
(Index
))
1730 Expander_Mode_Save_And_Set
(False);
1731 Tcopy
:= New_Copy_Tree
(Expr
);
1732 Set_Parent
(Tcopy
, N
);
1733 Analyze_And_Resolve
(Tcopy
, Component_Type
(Etype
(N
)));
1734 Expander_Mode_Restore
;
1740 -- If loop bounds are the same then generate an assignment, unless
1741 -- the parent construct is an Iterated_Component_Association.
1743 elsif Equal
(L
, H
) and then not Is_Iterated_Component
then
1744 return Gen_Assign
(New_Copy_Tree
(L
), Expr
);
1746 -- If H - L <= 2 then generate a sequence of assignments when we are
1747 -- processing the bottom most aggregate and it contains scalar
1750 elsif No
(Next_Index
(Index
))
1751 and then Scalar_Comp
1752 and then Local_Compile_Time_Known_Value
(L
)
1753 and then Local_Compile_Time_Known_Value
(H
)
1754 and then Local_Expr_Value
(H
) - Local_Expr_Value
(L
) <= 2
1755 and then not Is_Iterated_Component
1757 Append_List_To
(S
, Gen_Assign
(New_Copy_Tree
(L
), Expr
));
1758 Append_List_To
(S
, Gen_Assign
(Add
(1, To
=> L
), Expr
));
1760 if Local_Expr_Value
(H
) - Local_Expr_Value
(L
) = 2 then
1761 Append_List_To
(S
, Gen_Assign
(Add
(2, To
=> L
), Expr
));
1767 -- Otherwise construct the loop, starting with the loop index L_J
1769 if Is_Iterated_Component
then
1771 Make_Defining_Identifier
(Loc
,
1772 Chars
=> (Chars
(Defining_Identifier
(Parent
(Expr
)))));
1775 L_J
:= Make_Temporary
(Loc
, 'J', L
);
1778 -- Construct "L .. H" in Index_Base. We use a qualified expression
1779 -- for the bound to convert to the index base, but we don't need
1780 -- to do that if we already have the base type at hand.
1782 if Etype
(L
) = Index_Base
then
1786 Make_Qualified_Expression
(Loc
,
1787 Subtype_Mark
=> Index_Base_Name
,
1788 Expression
=> New_Copy_Tree
(L
));
1791 if Etype
(H
) = Index_Base
then
1795 Make_Qualified_Expression
(Loc
,
1796 Subtype_Mark
=> Index_Base_Name
,
1797 Expression
=> New_Copy_Tree
(H
));
1805 -- Construct "for L_J in Index_Base range L .. H"
1807 L_Iteration_Scheme
:=
1808 Make_Iteration_Scheme
1810 Loop_Parameter_Specification
=>
1811 Make_Loop_Parameter_Specification
1813 Defining_Identifier
=> L_J
,
1814 Discrete_Subtype_Definition
=> L_Range
));
1816 -- Construct the statements to execute in the loop body
1819 Gen_Assign
(New_Occurrence_Of
(L_J
, Loc
), Expr
, In_Loop
=> True);
1821 -- Construct the final loop
1824 Make_Implicit_Loop_Statement
1826 Identifier
=> Empty
,
1827 Iteration_Scheme
=> L_Iteration_Scheme
,
1828 Statements
=> L_Body
));
1830 -- A small optimization: if the aggregate is initialized with a box
1831 -- and the component type has no initialization procedure, remove the
1832 -- useless empty loop.
1834 if Nkind
(First
(S
)) = N_Loop_Statement
1835 and then Is_Empty_List
(Statements
(First
(S
)))
1837 return New_List
(Make_Null_Statement
(Loc
));
1847 -- The code built is
1849 -- W_J : Index_Base := L;
1850 -- while W_J < H loop
1851 -- W_J := Index_Base'Succ (W);
1855 function Gen_While
(L
, H
: Node_Id
; Expr
: Node_Id
) return List_Id
is
1859 -- W_J : Base_Type := L;
1861 W_Iteration_Scheme
: Node_Id
;
1864 W_Index_Succ
: Node_Id
;
1865 -- Index_Base'Succ (J)
1867 W_Increment
: Node_Id
;
1868 -- W_J := Index_Base'Succ (W)
1870 W_Body
: constant List_Id
:= New_List
;
1871 -- The statements to execute in the loop
1873 S
: constant List_Id
:= New_List
;
1874 -- list of statement
1877 -- If loop bounds define an empty range or are equal return null
1879 if Empty_Range
(L
, H
) or else Equal
(L
, H
) then
1880 Append_To
(S
, Make_Null_Statement
(Loc
));
1884 -- Build the decl of W_J
1886 W_J
:= Make_Temporary
(Loc
, 'J', L
);
1888 Make_Object_Declaration
1890 Defining_Identifier
=> W_J
,
1891 Object_Definition
=> Index_Base_Name
,
1894 -- Theoretically we should do a New_Copy_Tree (L) here, but we know
1895 -- that in this particular case L is a fresh Expr generated by
1896 -- Add which we are the only ones to use.
1898 Append_To
(S
, W_Decl
);
1900 -- Construct " while W_J < H"
1902 W_Iteration_Scheme
:=
1903 Make_Iteration_Scheme
1905 Condition
=> Make_Op_Lt
1907 Left_Opnd
=> New_Occurrence_Of
(W_J
, Loc
),
1908 Right_Opnd
=> New_Copy_Tree
(H
)));
1910 -- Construct the statements to execute in the loop body
1913 Make_Attribute_Reference
1915 Prefix
=> Index_Base_Name
,
1916 Attribute_Name
=> Name_Succ
,
1917 Expressions
=> New_List
(New_Occurrence_Of
(W_J
, Loc
)));
1920 Make_OK_Assignment_Statement
1922 Name
=> New_Occurrence_Of
(W_J
, Loc
),
1923 Expression
=> W_Index_Succ
);
1925 Append_To
(W_Body
, W_Increment
);
1927 Append_List_To
(W_Body
,
1928 Gen_Assign
(New_Occurrence_Of
(W_J
, Loc
), Expr
, In_Loop
=> True));
1930 -- Construct the final loop
1933 Make_Implicit_Loop_Statement
1935 Identifier
=> Empty
,
1936 Iteration_Scheme
=> W_Iteration_Scheme
,
1937 Statements
=> W_Body
));
1942 --------------------
1943 -- Get_Assoc_Expr --
1944 --------------------
1946 function Get_Assoc_Expr
(Assoc
: Node_Id
) return Node_Id
is
1947 Typ
: constant Entity_Id
:= Base_Type
(Etype
(N
));
1950 if Box_Present
(Assoc
) then
1951 if Is_Scalar_Type
(Ctype
) then
1952 if Present
(Default_Aspect_Component_Value
(Typ
)) then
1953 return Default_Aspect_Component_Value
(Typ
);
1954 elsif Present
(Default_Aspect_Value
(Ctype
)) then
1955 return Default_Aspect_Value
(Ctype
);
1965 return Expression
(Assoc
);
1969 ---------------------
1970 -- Index_Base_Name --
1971 ---------------------
1973 function Index_Base_Name
return Node_Id
is
1975 return New_Occurrence_Of
(Index_Base
, Sloc
(N
));
1976 end Index_Base_Name
;
1978 ------------------------------------
1979 -- Local_Compile_Time_Known_Value --
1980 ------------------------------------
1982 function Local_Compile_Time_Known_Value
(E
: Node_Id
) return Boolean is
1984 return Compile_Time_Known_Value
(E
)
1986 (Nkind
(E
) = N_Attribute_Reference
1987 and then Attribute_Name
(E
) = Name_Val
1988 and then Compile_Time_Known_Value
(First
(Expressions
(E
))));
1989 end Local_Compile_Time_Known_Value
;
1991 ----------------------
1992 -- Local_Expr_Value --
1993 ----------------------
1995 function Local_Expr_Value
(E
: Node_Id
) return Uint
is
1997 if Compile_Time_Known_Value
(E
) then
1998 return Expr_Value
(E
);
2000 return Expr_Value
(First
(Expressions
(E
)));
2002 end Local_Expr_Value
;
2006 New_Code
: constant List_Id
:= New_List
;
2008 Aggr_L
: constant Node_Id
:= Low_Bound
(Aggregate_Bounds
(N
));
2009 Aggr_H
: constant Node_Id
:= High_Bound
(Aggregate_Bounds
(N
));
2010 -- The aggregate bounds of this specific subaggregate. Note that if the
2011 -- code generated by Build_Array_Aggr_Code is executed then these bounds
2012 -- are OK. Otherwise a Constraint_Error would have been raised.
2014 Aggr_Low
: constant Node_Id
:= Duplicate_Subexpr_No_Checks
(Aggr_L
);
2015 Aggr_High
: constant Node_Id
:= Duplicate_Subexpr_No_Checks
(Aggr_H
);
2016 -- After Duplicate_Subexpr these are side-effect free
2025 Nb_Choices
: Nat
:= 0;
2026 Table
: Case_Table_Type
(1 .. Number_Of_Choices
(N
));
2027 -- Used to sort all the different choice values
2030 -- Number of elements in the positional aggregate
2032 Others_Assoc
: Node_Id
:= Empty
;
2034 -- Start of processing for Build_Array_Aggr_Code
2037 -- First before we start, a special case. if we have a bit packed
2038 -- array represented as a modular type, then clear the value to
2039 -- zero first, to ensure that unused bits are properly cleared.
2044 and then Is_Bit_Packed_Array
(Typ
)
2045 and then Is_Modular_Integer_Type
(Packed_Array_Impl_Type
(Typ
))
2047 Append_To
(New_Code
,
2048 Make_Assignment_Statement
(Loc
,
2049 Name
=> New_Copy_Tree
(Into
),
2051 Unchecked_Convert_To
(Typ
,
2052 Make_Integer_Literal
(Loc
, Uint_0
))));
2055 -- If the component type contains tasks, we need to build a Master
2056 -- entity in the current scope, because it will be needed if build-
2057 -- in-place functions are called in the expanded code.
2059 if Nkind
(Parent
(N
)) = N_Object_Declaration
and then Has_Task
(Typ
) then
2060 Build_Master_Entity
(Defining_Identifier
(Parent
(N
)));
2063 -- STEP 1: Process component associations
2065 -- For those associations that may generate a loop, initialize
2066 -- Loop_Actions to collect inserted actions that may be crated.
2068 -- Skip this if no component associations
2070 if No
(Expressions
(N
)) then
2072 -- STEP 1 (a): Sort the discrete choices
2074 Assoc
:= First
(Component_Associations
(N
));
2075 while Present
(Assoc
) loop
2076 Choice
:= First
(Choice_List
(Assoc
));
2077 while Present
(Choice
) loop
2078 if Nkind
(Choice
) = N_Others_Choice
then
2079 Set_Loop_Actions
(Assoc
, New_List
);
2080 Others_Assoc
:= Assoc
;
2084 Get_Index_Bounds
(Choice
, Low
, High
);
2087 Set_Loop_Actions
(Assoc
, New_List
);
2090 Nb_Choices
:= Nb_Choices
+ 1;
2092 Table
(Nb_Choices
) :=
2095 Choice_Node
=> Get_Assoc_Expr
(Assoc
));
2103 -- If there is more than one set of choices these must be static
2104 -- and we can therefore sort them. Remember that Nb_Choices does not
2105 -- account for an others choice.
2107 if Nb_Choices
> 1 then
2108 Sort_Case_Table
(Table
);
2111 -- STEP 1 (b): take care of the whole set of discrete choices
2113 for J
in 1 .. Nb_Choices
loop
2114 Low
:= Table
(J
).Choice_Lo
;
2115 High
:= Table
(J
).Choice_Hi
;
2116 Expr
:= Table
(J
).Choice_Node
;
2117 Append_List
(Gen_Loop
(Low
, High
, Expr
), To
=> New_Code
);
2120 -- STEP 1 (c): generate the remaining loops to cover others choice
2121 -- We don't need to generate loops over empty gaps, but if there is
2122 -- a single empty range we must analyze the expression for semantics
2124 if Present
(Others_Assoc
) then
2126 First
: Boolean := True;
2129 for J
in 0 .. Nb_Choices
loop
2133 Low
:= Add
(1, To
=> Table
(J
).Choice_Hi
);
2136 if J
= Nb_Choices
then
2139 High
:= Add
(-1, To
=> Table
(J
+ 1).Choice_Lo
);
2142 -- If this is an expansion within an init proc, make
2143 -- sure that discriminant references are replaced by
2144 -- the corresponding discriminal.
2146 if Inside_Init_Proc
then
2147 if Is_Entity_Name
(Low
)
2148 and then Ekind
(Entity
(Low
)) = E_Discriminant
2150 Set_Entity
(Low
, Discriminal
(Entity
(Low
)));
2153 if Is_Entity_Name
(High
)
2154 and then Ekind
(Entity
(High
)) = E_Discriminant
2156 Set_Entity
(High
, Discriminal
(Entity
(High
)));
2161 or else not Empty_Range
(Low
, High
)
2165 (Gen_Loop
(Low
, High
,
2166 Get_Assoc_Expr
(Others_Assoc
)), To
=> New_Code
);
2172 -- STEP 2: Process positional components
2175 -- STEP 2 (a): Generate the assignments for each positional element
2176 -- Note that here we have to use Aggr_L rather than Aggr_Low because
2177 -- Aggr_L is analyzed and Add wants an analyzed expression.
2179 Expr
:= First
(Expressions
(N
));
2181 while Present
(Expr
) loop
2182 Nb_Elements
:= Nb_Elements
+ 1;
2183 Append_List
(Gen_Assign
(Add
(Nb_Elements
, To
=> Aggr_L
), Expr
),
2188 -- STEP 2 (b): Generate final loop if an others choice is present
2189 -- Here Nb_Elements gives the offset of the last positional element.
2191 if Present
(Component_Associations
(N
)) then
2192 Assoc
:= Last
(Component_Associations
(N
));
2194 -- Ada 2005 (AI-287)
2196 Append_List
(Gen_While
(Add
(Nb_Elements
, To
=> Aggr_L
),
2198 Get_Assoc_Expr
(Assoc
)), -- AI-287
2204 end Build_Array_Aggr_Code
;
2206 ----------------------------
2207 -- Build_Record_Aggr_Code --
2208 ----------------------------
2210 function Build_Record_Aggr_Code
2213 Lhs
: Node_Id
) return List_Id
2215 Loc
: constant Source_Ptr
:= Sloc
(N
);
2216 L
: constant List_Id
:= New_List
;
2217 N_Typ
: constant Entity_Id
:= Etype
(N
);
2223 Comp_Type
: Entity_Id
;
2224 Selector
: Entity_Id
;
2225 Comp_Expr
: Node_Id
;
2228 -- If this is an internal aggregate, the External_Final_List is an
2229 -- expression for the controller record of the enclosing type.
2231 -- If the current aggregate has several controlled components, this
2232 -- expression will appear in several calls to attach to the finali-
2233 -- zation list, and it must not be shared.
2235 Ancestor_Is_Expression
: Boolean := False;
2236 Ancestor_Is_Subtype_Mark
: Boolean := False;
2238 Init_Typ
: Entity_Id
:= Empty
;
2240 Finalization_Done
: Boolean := False;
2241 -- True if Generate_Finalization_Actions has already been called; calls
2242 -- after the first do nothing.
2244 function Ancestor_Discriminant_Value
(Disc
: Entity_Id
) return Node_Id
;
2245 -- Returns the value that the given discriminant of an ancestor type
2246 -- should receive (in the absence of a conflict with the value provided
2247 -- by an ancestor part of an extension aggregate).
2249 procedure Check_Ancestor_Discriminants
(Anc_Typ
: Entity_Id
);
2250 -- Check that each of the discriminant values defined by the ancestor
2251 -- part of an extension aggregate match the corresponding values
2252 -- provided by either an association of the aggregate or by the
2253 -- constraint imposed by a parent type (RM95-4.3.2(8)).
2255 function Compatible_Int_Bounds
2256 (Agg_Bounds
: Node_Id
;
2257 Typ_Bounds
: Node_Id
) return Boolean;
2258 -- Return true if Agg_Bounds are equal or within Typ_Bounds. It is
2259 -- assumed that both bounds are integer ranges.
2261 procedure Generate_Finalization_Actions
;
2262 -- Deal with the various controlled type data structure initializations
2263 -- (but only if it hasn't been done already).
2265 function Get_Constraint_Association
(T
: Entity_Id
) return Node_Id
;
2266 -- Returns the first discriminant association in the constraint
2267 -- associated with T, if any, otherwise returns Empty.
2269 function Get_Explicit_Discriminant_Value
(D
: Entity_Id
) return Node_Id
;
2270 -- If the ancestor part is an unconstrained type and further ancestors
2271 -- do not provide discriminants for it, check aggregate components for
2272 -- values of the discriminants.
2274 procedure Init_Hidden_Discriminants
(Typ
: Entity_Id
; List
: List_Id
);
2275 -- If Typ is derived, and constrains discriminants of the parent type,
2276 -- these discriminants are not components of the aggregate, and must be
2277 -- initialized. The assignments are appended to List. The same is done
2278 -- if Typ derives fron an already constrained subtype of a discriminated
2281 procedure Init_Stored_Discriminants
;
2282 -- If the type is derived and has inherited discriminants, generate
2283 -- explicit assignments for each, using the store constraint of the
2284 -- type. Note that both visible and stored discriminants must be
2285 -- initialized in case the derived type has some renamed and some
2286 -- constrained discriminants.
2288 procedure Init_Visible_Discriminants
;
2289 -- If type has discriminants, retrieve their values from aggregate,
2290 -- and generate explicit assignments for each. This does not include
2291 -- discriminants inherited from ancestor, which are handled above.
2292 -- The type of the aggregate is a subtype created ealier using the
2293 -- given values of the discriminant components of the aggregate.
2295 procedure Initialize_Ctrl_Record_Component
2296 (Rec_Comp
: Node_Id
;
2297 Comp_Typ
: Entity_Id
;
2298 Init_Expr
: Node_Id
;
2300 -- Perform the initialization of controlled record component Rec_Comp.
2301 -- Comp_Typ is the component type. Init_Expr is the initialization
2302 -- expression for the record component. Hook-related declarations are
2303 -- inserted prior to aggregate N using Insert_Action. All remaining
2304 -- generated code is added to list Stmts.
2306 procedure Initialize_Record_Component
2307 (Rec_Comp
: Node_Id
;
2308 Comp_Typ
: Entity_Id
;
2309 Init_Expr
: Node_Id
;
2311 -- Perform the initialization of record component Rec_Comp. Comp_Typ
2312 -- is the component type. Init_Expr is the initialization expression
2313 -- of the record component. All generated code is added to list Stmts.
2315 function Is_Int_Range_Bounds
(Bounds
: Node_Id
) return Boolean;
2316 -- Check whether Bounds is a range node and its lower and higher bounds
2317 -- are integers literals.
2319 function Replace_Type
(Expr
: Node_Id
) return Traverse_Result
;
2320 -- If the aggregate contains a self-reference, traverse each expression
2321 -- to replace a possible self-reference with a reference to the proper
2322 -- component of the target of the assignment.
2324 function Rewrite_Discriminant
(Expr
: Node_Id
) return Traverse_Result
;
2325 -- If default expression of a component mentions a discriminant of the
2326 -- type, it must be rewritten as the discriminant of the target object.
2328 ---------------------------------
2329 -- Ancestor_Discriminant_Value --
2330 ---------------------------------
2332 function Ancestor_Discriminant_Value
(Disc
: Entity_Id
) return Node_Id
is
2334 Assoc_Elmt
: Elmt_Id
;
2335 Aggr_Comp
: Entity_Id
;
2336 Corresp_Disc
: Entity_Id
;
2337 Current_Typ
: Entity_Id
:= Base_Type
(Typ
);
2338 Parent_Typ
: Entity_Id
;
2339 Parent_Disc
: Entity_Id
;
2340 Save_Assoc
: Node_Id
:= Empty
;
2343 -- First check any discriminant associations to see if any of them
2344 -- provide a value for the discriminant.
2346 if Present
(Discriminant_Specifications
(Parent
(Current_Typ
))) then
2347 Assoc
:= First
(Component_Associations
(N
));
2348 while Present
(Assoc
) loop
2349 Aggr_Comp
:= Entity
(First
(Choices
(Assoc
)));
2351 if Ekind
(Aggr_Comp
) = E_Discriminant
then
2352 Save_Assoc
:= Expression
(Assoc
);
2354 Corresp_Disc
:= Corresponding_Discriminant
(Aggr_Comp
);
2355 while Present
(Corresp_Disc
) loop
2357 -- If found a corresponding discriminant then return the
2358 -- value given in the aggregate. (Note: this is not
2359 -- correct in the presence of side effects. ???)
2361 if Disc
= Corresp_Disc
then
2362 return Duplicate_Subexpr
(Expression
(Assoc
));
2365 Corresp_Disc
:= Corresponding_Discriminant
(Corresp_Disc
);
2373 -- No match found in aggregate, so chain up parent types to find
2374 -- a constraint that defines the value of the discriminant.
2376 Parent_Typ
:= Etype
(Current_Typ
);
2377 while Current_Typ
/= Parent_Typ
loop
2378 if Has_Discriminants
(Parent_Typ
)
2379 and then not Has_Unknown_Discriminants
(Parent_Typ
)
2381 Parent_Disc
:= First_Discriminant
(Parent_Typ
);
2383 -- We either get the association from the subtype indication
2384 -- of the type definition itself, or from the discriminant
2385 -- constraint associated with the type entity (which is
2386 -- preferable, but it's not always present ???)
2388 if Is_Empty_Elmt_List
(Discriminant_Constraint
(Current_Typ
))
2390 Assoc
:= Get_Constraint_Association
(Current_Typ
);
2391 Assoc_Elmt
:= No_Elmt
;
2394 First_Elmt
(Discriminant_Constraint
(Current_Typ
));
2395 Assoc
:= Node
(Assoc_Elmt
);
2398 -- Traverse the discriminants of the parent type looking
2399 -- for one that corresponds.
2401 while Present
(Parent_Disc
) and then Present
(Assoc
) loop
2402 Corresp_Disc
:= Parent_Disc
;
2403 while Present
(Corresp_Disc
)
2404 and then Disc
/= Corresp_Disc
2406 Corresp_Disc
:= Corresponding_Discriminant
(Corresp_Disc
);
2409 if Disc
= Corresp_Disc
then
2410 if Nkind
(Assoc
) = N_Discriminant_Association
then
2411 Assoc
:= Expression
(Assoc
);
2414 -- If the located association directly denotes
2415 -- a discriminant, then use the value of a saved
2416 -- association of the aggregate. This is an approach
2417 -- used to handle certain cases involving multiple
2418 -- discriminants mapped to a single discriminant of
2419 -- a descendant. It's not clear how to locate the
2420 -- appropriate discriminant value for such cases. ???
2422 if Is_Entity_Name
(Assoc
)
2423 and then Ekind
(Entity
(Assoc
)) = E_Discriminant
2425 Assoc
:= Save_Assoc
;
2428 return Duplicate_Subexpr
(Assoc
);
2431 Next_Discriminant
(Parent_Disc
);
2433 if No
(Assoc_Elmt
) then
2437 Next_Elmt
(Assoc_Elmt
);
2439 if Present
(Assoc_Elmt
) then
2440 Assoc
:= Node
(Assoc_Elmt
);
2448 Current_Typ
:= Parent_Typ
;
2449 Parent_Typ
:= Etype
(Current_Typ
);
2452 -- In some cases there's no ancestor value to locate (such as
2453 -- when an ancestor part given by an expression defines the
2454 -- discriminant value).
2457 end Ancestor_Discriminant_Value
;
2459 ----------------------------------
2460 -- Check_Ancestor_Discriminants --
2461 ----------------------------------
2463 procedure Check_Ancestor_Discriminants
(Anc_Typ
: Entity_Id
) is
2465 Disc_Value
: Node_Id
;
2469 Discr
:= First_Discriminant
(Base_Type
(Anc_Typ
));
2470 while Present
(Discr
) loop
2471 Disc_Value
:= Ancestor_Discriminant_Value
(Discr
);
2473 if Present
(Disc_Value
) then
2474 Cond
:= Make_Op_Ne
(Loc
,
2476 Make_Selected_Component
(Loc
,
2477 Prefix
=> New_Copy_Tree
(Target
),
2478 Selector_Name
=> New_Occurrence_Of
(Discr
, Loc
)),
2479 Right_Opnd
=> Disc_Value
);
2482 Make_Raise_Constraint_Error
(Loc
,
2484 Reason
=> CE_Discriminant_Check_Failed
));
2487 Next_Discriminant
(Discr
);
2489 end Check_Ancestor_Discriminants
;
2491 ---------------------------
2492 -- Compatible_Int_Bounds --
2493 ---------------------------
2495 function Compatible_Int_Bounds
2496 (Agg_Bounds
: Node_Id
;
2497 Typ_Bounds
: Node_Id
) return Boolean
2499 Agg_Lo
: constant Uint
:= Intval
(Low_Bound
(Agg_Bounds
));
2500 Agg_Hi
: constant Uint
:= Intval
(High_Bound
(Agg_Bounds
));
2501 Typ_Lo
: constant Uint
:= Intval
(Low_Bound
(Typ_Bounds
));
2502 Typ_Hi
: constant Uint
:= Intval
(High_Bound
(Typ_Bounds
));
2504 return Typ_Lo
<= Agg_Lo
and then Agg_Hi
<= Typ_Hi
;
2505 end Compatible_Int_Bounds
;
2507 -----------------------------------
2508 -- Generate_Finalization_Actions --
2509 -----------------------------------
2511 procedure Generate_Finalization_Actions
is
2513 -- Do the work only the first time this is called
2515 if Finalization_Done
then
2519 Finalization_Done
:= True;
2521 -- Determine the external finalization list. It is either the
2522 -- finalization list of the outer scope or the one coming from an
2523 -- outer aggregate. When the target is not a temporary, the proper
2524 -- scope is the scope of the target rather than the potentially
2525 -- transient current scope.
2527 if Is_Controlled
(Typ
) and then Ancestor_Is_Subtype_Mark
then
2528 Ref
:= Convert_To
(Init_Typ
, New_Copy_Tree
(Target
));
2529 Set_Assignment_OK
(Ref
);
2532 Make_Procedure_Call_Statement
(Loc
,
2535 (Find_Prim_Op
(Init_Typ
, Name_Initialize
), Loc
),
2536 Parameter_Associations
=> New_List
(New_Copy_Tree
(Ref
))));
2538 end Generate_Finalization_Actions
;
2540 --------------------------------
2541 -- Get_Constraint_Association --
2542 --------------------------------
2544 function Get_Constraint_Association
(T
: Entity_Id
) return Node_Id
is
2551 -- If type is private, get constraint from full view. This was
2552 -- previously done in an instance context, but is needed whenever
2553 -- the ancestor part has a discriminant, possibly inherited through
2554 -- multiple derivations.
2556 if Is_Private_Type
(Typ
) and then Present
(Full_View
(Typ
)) then
2557 Typ
:= Full_View
(Typ
);
2560 Indic
:= Subtype_Indication
(Type_Definition
(Parent
(Typ
)));
2562 -- Verify that the subtype indication carries a constraint
2564 if Nkind
(Indic
) = N_Subtype_Indication
2565 and then Present
(Constraint
(Indic
))
2567 return First
(Constraints
(Constraint
(Indic
)));
2571 end Get_Constraint_Association
;
2573 -------------------------------------
2574 -- Get_Explicit_Discriminant_Value --
2575 -------------------------------------
2577 function Get_Explicit_Discriminant_Value
2578 (D
: Entity_Id
) return Node_Id
2585 -- The aggregate has been normalized and all associations have a
2588 Assoc
:= First
(Component_Associations
(N
));
2589 while Present
(Assoc
) loop
2590 Choice
:= First
(Choices
(Assoc
));
2592 if Chars
(Choice
) = Chars
(D
) then
2593 Val
:= Expression
(Assoc
);
2602 end Get_Explicit_Discriminant_Value
;
2604 -------------------------------
2605 -- Init_Hidden_Discriminants --
2606 -------------------------------
2608 procedure Init_Hidden_Discriminants
(Typ
: Entity_Id
; List
: List_Id
) is
2609 function Is_Completely_Hidden_Discriminant
2610 (Discr
: Entity_Id
) return Boolean;
2611 -- Determine whether Discr is a completely hidden discriminant of
2614 ---------------------------------------
2615 -- Is_Completely_Hidden_Discriminant --
2616 ---------------------------------------
2618 function Is_Completely_Hidden_Discriminant
2619 (Discr
: Entity_Id
) return Boolean
2624 -- Use First/Next_Entity as First/Next_Discriminant do not yield
2625 -- completely hidden discriminants.
2627 Item
:= First_Entity
(Typ
);
2628 while Present
(Item
) loop
2629 if Ekind
(Item
) = E_Discriminant
2630 and then Is_Completely_Hidden
(Item
)
2631 and then Chars
(Original_Record_Component
(Item
)) =
2641 end Is_Completely_Hidden_Discriminant
;
2645 Base_Typ
: Entity_Id
;
2647 Discr_Constr
: Elmt_Id
;
2648 Discr_Init
: Node_Id
;
2649 Discr_Val
: Node_Id
;
2650 In_Aggr_Type
: Boolean;
2651 Par_Typ
: Entity_Id
;
2653 -- Start of processing for Init_Hidden_Discriminants
2656 -- The constraints on the hidden discriminants, if present, are kept
2657 -- in the Stored_Constraint list of the type itself, or in that of
2658 -- the base type. If not in the constraints of the aggregate itself,
2659 -- we examine ancestors to find discriminants that are not renamed
2660 -- by other discriminants but constrained explicitly.
2662 In_Aggr_Type
:= True;
2664 Base_Typ
:= Base_Type
(Typ
);
2665 while Is_Derived_Type
(Base_Typ
)
2667 (Present
(Stored_Constraint
(Base_Typ
))
2669 (In_Aggr_Type
and then Present
(Stored_Constraint
(Typ
))))
2671 Par_Typ
:= Etype
(Base_Typ
);
2673 if not Has_Discriminants
(Par_Typ
) then
2677 Discr
:= First_Discriminant
(Par_Typ
);
2679 -- We know that one of the stored-constraint lists is present
2681 if Present
(Stored_Constraint
(Base_Typ
)) then
2682 Discr_Constr
:= First_Elmt
(Stored_Constraint
(Base_Typ
));
2684 -- For private extension, stored constraint may be on full view
2686 elsif Is_Private_Type
(Base_Typ
)
2687 and then Present
(Full_View
(Base_Typ
))
2688 and then Present
(Stored_Constraint
(Full_View
(Base_Typ
)))
2691 First_Elmt
(Stored_Constraint
(Full_View
(Base_Typ
)));
2694 Discr_Constr
:= First_Elmt
(Stored_Constraint
(Typ
));
2697 while Present
(Discr
) and then Present
(Discr_Constr
) loop
2698 Discr_Val
:= Node
(Discr_Constr
);
2700 -- The parent discriminant is renamed in the derived type,
2701 -- nothing to initialize.
2703 -- type Deriv_Typ (Discr : ...)
2704 -- is new Parent_Typ (Discr => Discr);
2706 if Is_Entity_Name
(Discr_Val
)
2707 and then Ekind
(Entity
(Discr_Val
)) = E_Discriminant
2711 -- When the parent discriminant is constrained at the type
2712 -- extension level, it does not appear in the derived type.
2714 -- type Deriv_Typ (Discr : ...)
2715 -- is new Parent_Typ (Discr => Discr,
2716 -- Hidden_Discr => Expression);
2718 elsif Is_Completely_Hidden_Discriminant
(Discr
) then
2721 -- Otherwise initialize the discriminant
2725 Make_OK_Assignment_Statement
(Loc
,
2727 Make_Selected_Component
(Loc
,
2728 Prefix
=> New_Copy_Tree
(Target
),
2729 Selector_Name
=> New_Occurrence_Of
(Discr
, Loc
)),
2730 Expression
=> New_Copy_Tree
(Discr_Val
));
2732 Append_To
(List
, Discr_Init
);
2735 Next_Elmt
(Discr_Constr
);
2736 Next_Discriminant
(Discr
);
2739 In_Aggr_Type
:= False;
2740 Base_Typ
:= Base_Type
(Par_Typ
);
2742 end Init_Hidden_Discriminants
;
2744 --------------------------------
2745 -- Init_Visible_Discriminants --
2746 --------------------------------
2748 procedure Init_Visible_Discriminants
is
2749 Discriminant
: Entity_Id
;
2750 Discriminant_Value
: Node_Id
;
2753 Discriminant
:= First_Discriminant
(Typ
);
2754 while Present
(Discriminant
) loop
2756 Make_Selected_Component
(Loc
,
2757 Prefix
=> New_Copy_Tree
(Target
),
2758 Selector_Name
=> New_Occurrence_Of
(Discriminant
, Loc
));
2760 Discriminant_Value
:=
2761 Get_Discriminant_Value
2762 (Discriminant
, Typ
, Discriminant_Constraint
(N_Typ
));
2765 Make_OK_Assignment_Statement
(Loc
,
2767 Expression
=> New_Copy_Tree
(Discriminant_Value
));
2769 Append_To
(L
, Instr
);
2771 Next_Discriminant
(Discriminant
);
2773 end Init_Visible_Discriminants
;
2775 -------------------------------
2776 -- Init_Stored_Discriminants --
2777 -------------------------------
2779 procedure Init_Stored_Discriminants
is
2780 Discriminant
: Entity_Id
;
2781 Discriminant_Value
: Node_Id
;
2784 Discriminant
:= First_Stored_Discriminant
(Typ
);
2785 while Present
(Discriminant
) loop
2787 Make_Selected_Component
(Loc
,
2788 Prefix
=> New_Copy_Tree
(Target
),
2789 Selector_Name
=> New_Occurrence_Of
(Discriminant
, Loc
));
2791 Discriminant_Value
:=
2792 Get_Discriminant_Value
2793 (Discriminant
, N_Typ
, Discriminant_Constraint
(N_Typ
));
2796 Make_OK_Assignment_Statement
(Loc
,
2798 Expression
=> New_Copy_Tree
(Discriminant_Value
));
2800 Append_To
(L
, Instr
);
2802 Next_Stored_Discriminant
(Discriminant
);
2804 end Init_Stored_Discriminants
;
2806 --------------------------------------
2807 -- Initialize_Ctrl_Record_Component --
2808 --------------------------------------
2810 procedure Initialize_Ctrl_Record_Component
2811 (Rec_Comp
: Node_Id
;
2812 Comp_Typ
: Entity_Id
;
2813 Init_Expr
: Node_Id
;
2817 Hook_Clear
: Node_Id
;
2819 In_Place_Expansion
: Boolean;
2820 -- Flag set when a nonlimited controlled function call requires
2821 -- in-place expansion.
2824 -- Perform a preliminary analysis and resolution to determine what
2825 -- the initialization expression denotes. Unanalyzed function calls
2826 -- may appear as identifiers or indexed components.
2828 if Nkind_In
(Init_Expr
, N_Function_Call
,
2830 N_Indexed_Component
)
2831 and then not Analyzed
(Init_Expr
)
2833 Preanalyze_And_Resolve
(Init_Expr
, Comp_Typ
);
2836 In_Place_Expansion
:=
2837 Nkind
(Init_Expr
) = N_Function_Call
2838 and then not Is_Build_In_Place_Result_Type
(Comp_Typ
);
2840 -- The initialization expression is a controlled function call.
2841 -- Perform in-place removal of side effects to avoid creating a
2844 -- This in-place expansion is not performed for limited transient
2845 -- objects because the initialization is already done in place.
2847 if In_Place_Expansion
then
2849 -- Suppress the removal of side effects by general analysis
2850 -- because this behavior is emulated here. This avoids the
2851 -- generation of a transient scope, which leads to out-of-order
2852 -- adjustment and finalization.
2854 Set_No_Side_Effect_Removal
(Init_Expr
);
2856 -- Install all hook-related declarations and prepare the clean up
2859 Process_Transient_Component
2861 Comp_Typ
=> Comp_Typ
,
2862 Init_Expr
=> Init_Expr
,
2863 Fin_Call
=> Fin_Call
,
2864 Hook_Clear
=> Hook_Clear
,
2868 -- Use the noncontrolled component initialization circuitry to
2869 -- assign the result of the function call to the record component.
2870 -- This also performs tag adjustment and [deep] adjustment of the
2871 -- record component.
2873 Initialize_Record_Component
2874 (Rec_Comp
=> Rec_Comp
,
2875 Comp_Typ
=> Comp_Typ
,
2876 Init_Expr
=> Init_Expr
,
2879 -- At this point the record component is fully initialized. Complete
2880 -- the processing of the controlled record component by finalizing
2881 -- the transient function result.
2883 if In_Place_Expansion
then
2884 Process_Transient_Component_Completion
2887 Fin_Call
=> Fin_Call
,
2888 Hook_Clear
=> Hook_Clear
,
2891 end Initialize_Ctrl_Record_Component
;
2893 ---------------------------------
2894 -- Initialize_Record_Component --
2895 ---------------------------------
2897 procedure Initialize_Record_Component
2898 (Rec_Comp
: Node_Id
;
2899 Comp_Typ
: Entity_Id
;
2900 Init_Expr
: Node_Id
;
2903 Exceptions_OK
: constant Boolean :=
2904 not Restriction_Active
(No_Exception_Propagation
);
2906 Finalization_OK
: constant Boolean := Needs_Finalization
(Comp_Typ
);
2908 Full_Typ
: constant Entity_Id
:= Underlying_Type
(Comp_Typ
);
2910 Blk_Stmts
: List_Id
;
2911 Init_Stmt
: Node_Id
;
2914 -- Protect the initialization statements from aborts. Generate:
2918 if Finalization_OK
and Abort_Allowed
then
2919 if Exceptions_OK
then
2920 Blk_Stmts
:= New_List
;
2925 Append_To
(Blk_Stmts
, Build_Runtime_Call
(Loc
, RE_Abort_Defer
));
2927 -- Otherwise aborts are not allowed. All generated code is added
2928 -- directly to the input list.
2934 -- Initialize the record component. Generate:
2936 -- Rec_Comp := Init_Expr;
2938 -- Note that the initialization expression is NOT replicated because
2939 -- only a single component may be initialized by it.
2942 Make_OK_Assignment_Statement
(Loc
,
2943 Name
=> New_Copy_Tree
(Rec_Comp
),
2944 Expression
=> Init_Expr
);
2945 Set_No_Ctrl_Actions
(Init_Stmt
);
2947 Append_To
(Blk_Stmts
, Init_Stmt
);
2949 -- Adjust the tag due to a possible view conversion. Generate:
2951 -- Rec_Comp._tag := Full_TypeP;
2953 if Tagged_Type_Expansion
and then Is_Tagged_Type
(Comp_Typ
) then
2954 Append_To
(Blk_Stmts
,
2955 Make_OK_Assignment_Statement
(Loc
,
2957 Make_Selected_Component
(Loc
,
2958 Prefix
=> New_Copy_Tree
(Rec_Comp
),
2961 (First_Tag_Component
(Full_Typ
), Loc
)),
2964 Unchecked_Convert_To
(RTE
(RE_Tag
),
2966 (Node
(First_Elmt
(Access_Disp_Table
(Full_Typ
))),
2970 -- Adjust the component. Generate:
2972 -- [Deep_]Adjust (Rec_Comp);
2975 and then not Is_Limited_Type
(Comp_Typ
)
2976 and then not Is_Build_In_Place_Function_Call
(Init_Expr
)
2980 (Obj_Ref
=> New_Copy_Tree
(Rec_Comp
),
2983 -- Guard against a missing [Deep_]Adjust when the component type
2984 -- was not properly frozen.
2986 if Present
(Adj_Call
) then
2987 Append_To
(Blk_Stmts
, Adj_Call
);
2991 -- Complete the protection of the initialization statements
2993 if Finalization_OK
and Abort_Allowed
then
2995 -- Wrap the initialization statements in a block to catch a
2996 -- potential exception. Generate:
3000 -- Rec_Comp := Init_Expr;
3001 -- Rec_Comp._tag := Full_TypP;
3002 -- [Deep_]Adjust (Rec_Comp);
3004 -- Abort_Undefer_Direct;
3007 if Exceptions_OK
then
3009 Build_Abort_Undefer_Block
(Loc
,
3013 -- Otherwise exceptions are not propagated. Generate:
3016 -- Rec_Comp := Init_Expr;
3017 -- Rec_Comp._tag := Full_TypP;
3018 -- [Deep_]Adjust (Rec_Comp);
3022 Append_To
(Blk_Stmts
,
3023 Build_Runtime_Call
(Loc
, RE_Abort_Undefer
));
3026 end Initialize_Record_Component
;
3028 -------------------------
3029 -- Is_Int_Range_Bounds --
3030 -------------------------
3032 function Is_Int_Range_Bounds
(Bounds
: Node_Id
) return Boolean is
3034 return Nkind
(Bounds
) = N_Range
3035 and then Nkind
(Low_Bound
(Bounds
)) = N_Integer_Literal
3036 and then Nkind
(High_Bound
(Bounds
)) = N_Integer_Literal
;
3037 end Is_Int_Range_Bounds
;
3043 function Replace_Type
(Expr
: Node_Id
) return Traverse_Result
is
3045 -- Note regarding the Root_Type test below: Aggregate components for
3046 -- self-referential types include attribute references to the current
3047 -- instance, of the form: Typ'access, etc.. These references are
3048 -- rewritten as references to the target of the aggregate: the
3049 -- left-hand side of an assignment, the entity in a declaration,
3050 -- or a temporary. Without this test, we would improperly extended
3051 -- this rewriting to attribute references whose prefix was not the
3052 -- type of the aggregate.
3054 if Nkind
(Expr
) = N_Attribute_Reference
3055 and then Is_Entity_Name
(Prefix
(Expr
))
3056 and then Is_Type
(Entity
(Prefix
(Expr
)))
3057 and then Root_Type
(Etype
(N
)) = Root_Type
(Entity
(Prefix
(Expr
)))
3059 if Is_Entity_Name
(Lhs
) then
3060 Rewrite
(Prefix
(Expr
), New_Occurrence_Of
(Entity
(Lhs
), Loc
));
3064 Make_Attribute_Reference
(Loc
,
3065 Attribute_Name
=> Name_Unrestricted_Access
,
3066 Prefix
=> New_Copy_Tree
(Lhs
)));
3067 Set_Analyzed
(Parent
(Expr
), False);
3074 --------------------------
3075 -- Rewrite_Discriminant --
3076 --------------------------
3078 function Rewrite_Discriminant
(Expr
: Node_Id
) return Traverse_Result
is
3080 if Is_Entity_Name
(Expr
)
3081 and then Present
(Entity
(Expr
))
3082 and then Ekind
(Entity
(Expr
)) = E_In_Parameter
3083 and then Present
(Discriminal_Link
(Entity
(Expr
)))
3084 and then Scope
(Discriminal_Link
(Entity
(Expr
))) =
3085 Base_Type
(Etype
(N
))
3088 Make_Selected_Component
(Loc
,
3089 Prefix
=> New_Copy_Tree
(Lhs
),
3090 Selector_Name
=> Make_Identifier
(Loc
, Chars
(Expr
))));
3094 end Rewrite_Discriminant
;
3096 procedure Replace_Discriminants
is
3097 new Traverse_Proc
(Rewrite_Discriminant
);
3099 procedure Replace_Self_Reference
is
3100 new Traverse_Proc
(Replace_Type
);
3102 -- Start of processing for Build_Record_Aggr_Code
3105 if Has_Self_Reference
(N
) then
3106 Replace_Self_Reference
(N
);
3109 -- If the target of the aggregate is class-wide, we must convert it
3110 -- to the actual type of the aggregate, so that the proper components
3111 -- are visible. We know already that the types are compatible.
3113 if Present
(Etype
(Lhs
))
3114 and then Is_Class_Wide_Type
(Etype
(Lhs
))
3116 Target
:= Unchecked_Convert_To
(Typ
, Lhs
);
3121 -- Deal with the ancestor part of extension aggregates or with the
3122 -- discriminants of the root type.
3124 if Nkind
(N
) = N_Extension_Aggregate
then
3126 Ancestor
: constant Node_Id
:= Ancestor_Part
(N
);
3131 -- If the ancestor part is a subtype mark "T", we generate
3133 -- init-proc (T (tmp)); if T is constrained and
3134 -- init-proc (S (tmp)); where S applies an appropriate
3135 -- constraint if T is unconstrained
3137 if Is_Entity_Name
(Ancestor
)
3138 and then Is_Type
(Entity
(Ancestor
))
3140 Ancestor_Is_Subtype_Mark
:= True;
3142 if Is_Constrained
(Entity
(Ancestor
)) then
3143 Init_Typ
:= Entity
(Ancestor
);
3145 -- For an ancestor part given by an unconstrained type mark,
3146 -- create a subtype constrained by appropriate corresponding
3147 -- discriminant values coming from either associations of the
3148 -- aggregate or a constraint on a parent type. The subtype will
3149 -- be used to generate the correct default value for the
3152 elsif Has_Discriminants
(Entity
(Ancestor
)) then
3154 Anc_Typ
: constant Entity_Id
:= Entity
(Ancestor
);
3155 Anc_Constr
: constant List_Id
:= New_List
;
3156 Discrim
: Entity_Id
;
3157 Disc_Value
: Node_Id
;
3158 New_Indic
: Node_Id
;
3159 Subt_Decl
: Node_Id
;
3162 Discrim
:= First_Discriminant
(Anc_Typ
);
3163 while Present
(Discrim
) loop
3164 Disc_Value
:= Ancestor_Discriminant_Value
(Discrim
);
3166 -- If no usable discriminant in ancestors, check
3167 -- whether aggregate has an explicit value for it.
3169 if No
(Disc_Value
) then
3171 Get_Explicit_Discriminant_Value
(Discrim
);
3174 Append_To
(Anc_Constr
, Disc_Value
);
3175 Next_Discriminant
(Discrim
);
3179 Make_Subtype_Indication
(Loc
,
3180 Subtype_Mark
=> New_Occurrence_Of
(Anc_Typ
, Loc
),
3182 Make_Index_Or_Discriminant_Constraint
(Loc
,
3183 Constraints
=> Anc_Constr
));
3185 Init_Typ
:= Create_Itype
(Ekind
(Anc_Typ
), N
);
3188 Make_Subtype_Declaration
(Loc
,
3189 Defining_Identifier
=> Init_Typ
,
3190 Subtype_Indication
=> New_Indic
);
3192 -- Itypes must be analyzed with checks off Declaration
3193 -- must have a parent for proper handling of subsidiary
3196 Set_Parent
(Subt_Decl
, N
);
3197 Analyze
(Subt_Decl
, Suppress
=> All_Checks
);
3201 Ref
:= Convert_To
(Init_Typ
, New_Copy_Tree
(Target
));
3202 Set_Assignment_OK
(Ref
);
3204 if not Is_Interface
(Init_Typ
) then
3206 Build_Initialization_Call
(Loc
,
3209 In_Init_Proc
=> Within_Init_Proc
,
3210 With_Default_Init
=> Has_Default_Init_Comps
(N
)
3212 Has_Task
(Base_Type
(Init_Typ
))));
3214 if Is_Constrained
(Entity
(Ancestor
))
3215 and then Has_Discriminants
(Entity
(Ancestor
))
3217 Check_Ancestor_Discriminants
(Entity
(Ancestor
));
3221 -- Handle calls to C++ constructors
3223 elsif Is_CPP_Constructor_Call
(Ancestor
) then
3224 Init_Typ
:= Etype
(Ancestor
);
3225 Ref
:= Convert_To
(Init_Typ
, New_Copy_Tree
(Target
));
3226 Set_Assignment_OK
(Ref
);
3229 Build_Initialization_Call
(Loc
,
3232 In_Init_Proc
=> Within_Init_Proc
,
3233 With_Default_Init
=> Has_Default_Init_Comps
(N
),
3234 Constructor_Ref
=> Ancestor
));
3236 -- Ada 2005 (AI-287): If the ancestor part is an aggregate of
3237 -- limited type, a recursive call expands the ancestor. Note that
3238 -- in the limited case, the ancestor part must be either a
3239 -- function call (possibly qualified) or aggregate (definitely
3242 elsif Is_Limited_Type
(Etype
(Ancestor
))
3243 and then Nkind_In
(Unqualify
(Ancestor
), N_Aggregate
,
3244 N_Extension_Aggregate
)
3246 Ancestor_Is_Expression
:= True;
3248 -- Set up finalization data for enclosing record, because
3249 -- controlled subcomponents of the ancestor part will be
3252 Generate_Finalization_Actions
;
3255 Build_Record_Aggr_Code
3256 (N
=> Unqualify
(Ancestor
),
3257 Typ
=> Etype
(Unqualify
(Ancestor
)),
3260 -- If the ancestor part is an expression "E", we generate
3264 -- In Ada 2005, this includes the case of a (possibly qualified)
3265 -- limited function call. The assignment will turn into a
3266 -- build-in-place function call (for further details, see
3267 -- Make_Build_In_Place_Call_In_Assignment).
3270 Ancestor_Is_Expression
:= True;
3271 Init_Typ
:= Etype
(Ancestor
);
3273 -- If the ancestor part is an aggregate, force its full
3274 -- expansion, which was delayed.
3276 if Nkind_In
(Unqualify
(Ancestor
), N_Aggregate
,
3277 N_Extension_Aggregate
)
3279 Set_Analyzed
(Ancestor
, False);
3280 Set_Analyzed
(Expression
(Ancestor
), False);
3283 Ref
:= Convert_To
(Init_Typ
, New_Copy_Tree
(Target
));
3284 Set_Assignment_OK
(Ref
);
3286 -- Make the assignment without usual controlled actions, since
3287 -- we only want to Adjust afterwards, but not to Finalize
3288 -- beforehand. Add manual Adjust when necessary.
3290 Assign
:= New_List
(
3291 Make_OK_Assignment_Statement
(Loc
,
3293 Expression
=> Ancestor
));
3294 Set_No_Ctrl_Actions
(First
(Assign
));
3296 -- Assign the tag now to make sure that the dispatching call in
3297 -- the subsequent deep_adjust works properly (unless
3298 -- Tagged_Type_Expansion where tags are implicit).
3300 if Tagged_Type_Expansion
then
3302 Make_OK_Assignment_Statement
(Loc
,
3304 Make_Selected_Component
(Loc
,
3305 Prefix
=> New_Copy_Tree
(Target
),
3308 (First_Tag_Component
(Base_Type
(Typ
)), Loc
)),
3311 Unchecked_Convert_To
(RTE
(RE_Tag
),
3314 (Access_Disp_Table
(Base_Type
(Typ
)))),
3317 Set_Assignment_OK
(Name
(Instr
));
3318 Append_To
(Assign
, Instr
);
3320 -- Ada 2005 (AI-251): If tagged type has progenitors we must
3321 -- also initialize tags of the secondary dispatch tables.
3323 if Has_Interfaces
(Base_Type
(Typ
)) then
3325 (Typ
=> Base_Type
(Typ
),
3327 Stmts_List
=> Assign
,
3328 Init_Tags_List
=> Assign
);
3332 -- Call Adjust manually
3334 if Needs_Finalization
(Etype
(Ancestor
))
3335 and then not Is_Limited_Type
(Etype
(Ancestor
))
3336 and then not Is_Build_In_Place_Function_Call
(Ancestor
)
3340 (Obj_Ref
=> New_Copy_Tree
(Ref
),
3341 Typ
=> Etype
(Ancestor
));
3343 -- Guard against a missing [Deep_]Adjust when the ancestor
3344 -- type was not properly frozen.
3346 if Present
(Adj_Call
) then
3347 Append_To
(Assign
, Adj_Call
);
3352 Make_Unsuppress_Block
(Loc
, Name_Discriminant_Check
, Assign
));
3354 if Has_Discriminants
(Init_Typ
) then
3355 Check_Ancestor_Discriminants
(Init_Typ
);
3359 pragma Assert
(Nkind
(N
) = N_Extension_Aggregate
);
3361 (not (Ancestor_Is_Expression
and Ancestor_Is_Subtype_Mark
));
3364 -- Generate assignments of hidden discriminants. If the base type is
3365 -- an unchecked union, the discriminants are unknown to the back-end
3366 -- and absent from a value of the type, so assignments for them are
3369 if Has_Discriminants
(Typ
)
3370 and then not Is_Unchecked_Union
(Base_Type
(Typ
))
3372 Init_Hidden_Discriminants
(Typ
, L
);
3375 -- Normal case (not an extension aggregate)
3378 -- Generate the discriminant expressions, component by component.
3379 -- If the base type is an unchecked union, the discriminants are
3380 -- unknown to the back-end and absent from a value of the type, so
3381 -- assignments for them are not emitted.
3383 if Has_Discriminants
(Typ
)
3384 and then not Is_Unchecked_Union
(Base_Type
(Typ
))
3386 Init_Hidden_Discriminants
(Typ
, L
);
3388 -- Generate discriminant init values for the visible discriminants
3390 Init_Visible_Discriminants
;
3392 if Is_Derived_Type
(N_Typ
) then
3393 Init_Stored_Discriminants
;
3398 -- For CPP types we generate an implicit call to the C++ default
3399 -- constructor to ensure the proper initialization of the _Tag
3402 if Is_CPP_Class
(Root_Type
(Typ
)) and then CPP_Num_Prims
(Typ
) > 0 then
3403 Invoke_Constructor
: declare
3404 CPP_Parent
: constant Entity_Id
:= Enclosing_CPP_Parent
(Typ
);
3406 procedure Invoke_IC_Proc
(T
: Entity_Id
);
3407 -- Recursive routine used to climb to parents. Required because
3408 -- parents must be initialized before descendants to ensure
3409 -- propagation of inherited C++ slots.
3411 --------------------
3412 -- Invoke_IC_Proc --
3413 --------------------
3415 procedure Invoke_IC_Proc
(T
: Entity_Id
) is
3417 -- Avoid generating extra calls. Initialization required
3418 -- only for types defined from the level of derivation of
3419 -- type of the constructor and the type of the aggregate.
3421 if T
= CPP_Parent
then
3425 Invoke_IC_Proc
(Etype
(T
));
3427 -- Generate call to the IC routine
3429 if Present
(CPP_Init_Proc
(T
)) then
3431 Make_Procedure_Call_Statement
(Loc
,
3432 Name
=> New_Occurrence_Of
(CPP_Init_Proc
(T
), Loc
)));
3436 -- Start of processing for Invoke_Constructor
3439 -- Implicit invocation of the C++ constructor
3441 if Nkind
(N
) = N_Aggregate
then
3443 Make_Procedure_Call_Statement
(Loc
,
3445 New_Occurrence_Of
(Base_Init_Proc
(CPP_Parent
), Loc
),
3446 Parameter_Associations
=> New_List
(
3447 Unchecked_Convert_To
(CPP_Parent
,
3448 New_Copy_Tree
(Lhs
)))));
3451 Invoke_IC_Proc
(Typ
);
3452 end Invoke_Constructor
;
3455 -- Generate the assignments, component by component
3457 -- tmp.comp1 := Expr1_From_Aggr;
3458 -- tmp.comp2 := Expr2_From_Aggr;
3461 Comp
:= First
(Component_Associations
(N
));
3462 while Present
(Comp
) loop
3463 Selector
:= Entity
(First
(Choices
(Comp
)));
3467 if Is_CPP_Constructor_Call
(Expression
(Comp
)) then
3469 Build_Initialization_Call
(Loc
,
3471 Make_Selected_Component
(Loc
,
3472 Prefix
=> New_Copy_Tree
(Target
),
3473 Selector_Name
=> New_Occurrence_Of
(Selector
, Loc
)),
3474 Typ
=> Etype
(Selector
),
3476 With_Default_Init
=> True,
3477 Constructor_Ref
=> Expression
(Comp
)));
3479 -- Ada 2005 (AI-287): For each default-initialized component generate
3480 -- a call to the corresponding IP subprogram if available.
3482 elsif Box_Present
(Comp
)
3483 and then Has_Non_Null_Base_Init_Proc
(Etype
(Selector
))
3485 if Ekind
(Selector
) /= E_Discriminant
then
3486 Generate_Finalization_Actions
;
3489 -- Ada 2005 (AI-287): If the component type has tasks then
3490 -- generate the activation chain and master entities (except
3491 -- in case of an allocator because in that case these entities
3492 -- are generated by Build_Task_Allocate_Block_With_Init_Stmts).
3495 Ctype
: constant Entity_Id
:= Etype
(Selector
);
3496 Inside_Allocator
: Boolean := False;
3497 P
: Node_Id
:= Parent
(N
);
3500 if Is_Task_Type
(Ctype
) or else Has_Task
(Ctype
) then
3501 while Present
(P
) loop
3502 if Nkind
(P
) = N_Allocator
then
3503 Inside_Allocator
:= True;
3510 if not Inside_Init_Proc
and not Inside_Allocator
then
3511 Build_Activation_Chain_Entity
(N
);
3517 Build_Initialization_Call
(Loc
,
3518 Id_Ref
=> Make_Selected_Component
(Loc
,
3519 Prefix
=> New_Copy_Tree
(Target
),
3521 New_Occurrence_Of
(Selector
, Loc
)),
3522 Typ
=> Etype
(Selector
),
3524 With_Default_Init
=> True));
3526 -- Prepare for component assignment
3528 elsif Ekind
(Selector
) /= E_Discriminant
3529 or else Nkind
(N
) = N_Extension_Aggregate
3531 -- All the discriminants have now been assigned
3533 -- This is now a good moment to initialize and attach all the
3534 -- controllers. Their position may depend on the discriminants.
3536 if Ekind
(Selector
) /= E_Discriminant
then
3537 Generate_Finalization_Actions
;
3540 Comp_Type
:= Underlying_Type
(Etype
(Selector
));
3542 Make_Selected_Component
(Loc
,
3543 Prefix
=> New_Copy_Tree
(Target
),
3544 Selector_Name
=> New_Occurrence_Of
(Selector
, Loc
));
3546 if Nkind
(Expression
(Comp
)) = N_Qualified_Expression
then
3547 Expr_Q
:= Expression
(Expression
(Comp
));
3549 Expr_Q
:= Expression
(Comp
);
3552 -- Now either create the assignment or generate the code for the
3553 -- inner aggregate top-down.
3555 if Is_Delayed_Aggregate
(Expr_Q
) then
3557 -- We have the following case of aggregate nesting inside
3558 -- an object declaration:
3560 -- type Arr_Typ is array (Integer range <>) of ...;
3562 -- type Rec_Typ (...) is record
3563 -- Obj_Arr_Typ : Arr_Typ (A .. B);
3566 -- Obj_Rec_Typ : Rec_Typ := (...,
3567 -- Obj_Arr_Typ => (X => (...), Y => (...)));
3569 -- The length of the ranges of the aggregate and Obj_Add_Typ
3570 -- are equal (B - A = Y - X), but they do not coincide (X /=
3571 -- A and B /= Y). This case requires array sliding which is
3572 -- performed in the following manner:
3574 -- subtype Arr_Sub is Arr_Typ (X .. Y);
3576 -- Temp (X) := (...);
3578 -- Temp (Y) := (...);
3579 -- Obj_Rec_Typ.Obj_Arr_Typ := Temp;
3581 if Ekind
(Comp_Type
) = E_Array_Subtype
3582 and then Is_Int_Range_Bounds
(Aggregate_Bounds
(Expr_Q
))
3583 and then Is_Int_Range_Bounds
(First_Index
(Comp_Type
))
3585 Compatible_Int_Bounds
3586 (Agg_Bounds
=> Aggregate_Bounds
(Expr_Q
),
3587 Typ_Bounds
=> First_Index
(Comp_Type
))
3589 -- Create the array subtype with bounds equal to those of
3590 -- the corresponding aggregate.
3593 SubE
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
3595 SubD
: constant Node_Id
:=
3596 Make_Subtype_Declaration
(Loc
,
3597 Defining_Identifier
=> SubE
,
3598 Subtype_Indication
=>
3599 Make_Subtype_Indication
(Loc
,
3601 New_Occurrence_Of
(Etype
(Comp_Type
), Loc
),
3603 Make_Index_Or_Discriminant_Constraint
3605 Constraints
=> New_List
(
3607 (Aggregate_Bounds
(Expr_Q
))))));
3609 -- Create a temporary array of the above subtype which
3610 -- will be used to capture the aggregate assignments.
3612 TmpE
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A', N
);
3614 TmpD
: constant Node_Id
:=
3615 Make_Object_Declaration
(Loc
,
3616 Defining_Identifier
=> TmpE
,
3617 Object_Definition
=> New_Occurrence_Of
(SubE
, Loc
));
3620 Set_No_Initialization
(TmpD
);
3621 Append_To
(L
, SubD
);
3622 Append_To
(L
, TmpD
);
3624 -- Expand aggregate into assignments to the temp array
3627 Late_Expansion
(Expr_Q
, Comp_Type
,
3628 New_Occurrence_Of
(TmpE
, Loc
)));
3633 Make_Assignment_Statement
(Loc
,
3634 Name
=> New_Copy_Tree
(Comp_Expr
),
3635 Expression
=> New_Occurrence_Of
(TmpE
, Loc
)));
3638 -- Normal case (sliding not required)
3642 Late_Expansion
(Expr_Q
, Comp_Type
, Comp_Expr
));
3645 -- Expr_Q is not delayed aggregate
3648 if Has_Discriminants
(Typ
) then
3649 Replace_Discriminants
(Expr_Q
);
3651 -- If the component is an array type that depends on
3652 -- discriminants, and the expression is a single Others
3653 -- clause, create an explicit subtype for it because the
3654 -- backend has troubles recovering the actual bounds.
3656 if Nkind
(Expr_Q
) = N_Aggregate
3657 and then Is_Array_Type
(Comp_Type
)
3658 and then Present
(Component_Associations
(Expr_Q
))
3661 Assoc
: constant Node_Id
:=
3662 First
(Component_Associations
(Expr_Q
));
3666 if Nkind
(First
(Choices
(Assoc
))) = N_Others_Choice
3669 Build_Actual_Subtype_Of_Component
3670 (Comp_Type
, Comp_Expr
);
3672 -- If the component type does not in fact depend on
3673 -- discriminants, the subtype declaration is empty.
3675 if Present
(Decl
) then
3676 Append_To
(L
, Decl
);
3677 Set_Etype
(Comp_Expr
, Defining_Entity
(Decl
));
3684 if Modify_Tree_For_C
3685 and then Nkind
(Expr_Q
) = N_Aggregate
3686 and then Is_Array_Type
(Etype
(Expr_Q
))
3687 and then Present
(First_Index
(Etype
(Expr_Q
)))
3690 Expr_Q_Type
: constant Node_Id
:= Etype
(Expr_Q
);
3693 Build_Array_Aggr_Code
3695 Ctype
=> Component_Type
(Expr_Q_Type
),
3696 Index
=> First_Index
(Expr_Q_Type
),
3699 Is_Scalar_Type
(Component_Type
(Expr_Q_Type
))));
3703 -- Handle an initialization expression of a controlled type
3704 -- in case it denotes a function call. In general such a
3705 -- scenario will produce a transient scope, but this will
3706 -- lead to wrong order of initialization, adjustment, and
3707 -- finalization in the context of aggregates.
3709 -- Target.Comp := Ctrl_Func_Call;
3712 -- Trans_Obj : ... := Ctrl_Func_Call; -- object
3713 -- Target.Comp := Trans_Obj;
3714 -- Finalize (Trans_Obj);
3716 -- Target.Comp._tag := ...;
3717 -- Adjust (Target.Comp);
3719 -- In the example above, the call to Finalize occurs too
3720 -- early and as a result it may leave the record component
3721 -- in a bad state. Finalization of the transient object
3722 -- should really happen after adjustment.
3724 -- To avoid this scenario, perform in-place side-effect
3725 -- removal of the function call. This eliminates the
3726 -- transient property of the function result and ensures
3727 -- correct order of actions.
3729 -- Res : ... := Ctrl_Func_Call;
3730 -- Target.Comp := Res;
3731 -- Target.Comp._tag := ...;
3732 -- Adjust (Target.Comp);
3735 if Needs_Finalization
(Comp_Type
)
3736 and then Nkind
(Expr_Q
) /= N_Aggregate
3738 Initialize_Ctrl_Record_Component
3739 (Rec_Comp
=> Comp_Expr
,
3740 Comp_Typ
=> Etype
(Selector
),
3741 Init_Expr
=> Expr_Q
,
3744 -- Otherwise perform single component initialization
3747 Initialize_Record_Component
3748 (Rec_Comp
=> Comp_Expr
,
3749 Comp_Typ
=> Etype
(Selector
),
3750 Init_Expr
=> Expr_Q
,
3756 -- comment would be good here ???
3758 elsif Ekind
(Selector
) = E_Discriminant
3759 and then Nkind
(N
) /= N_Extension_Aggregate
3760 and then Nkind
(Parent
(N
)) = N_Component_Association
3761 and then Is_Constrained
(Typ
)
3763 -- We must check that the discriminant value imposed by the
3764 -- context is the same as the value given in the subaggregate,
3765 -- because after the expansion into assignments there is no
3766 -- record on which to perform a regular discriminant check.
3773 D_Val
:= First_Elmt
(Discriminant_Constraint
(Typ
));
3774 Disc
:= First_Discriminant
(Typ
);
3775 while Chars
(Disc
) /= Chars
(Selector
) loop
3776 Next_Discriminant
(Disc
);
3780 pragma Assert
(Present
(D_Val
));
3782 -- This check cannot performed for components that are
3783 -- constrained by a current instance, because this is not a
3784 -- value that can be compared with the actual constraint.
3786 if Nkind
(Node
(D_Val
)) /= N_Attribute_Reference
3787 or else not Is_Entity_Name
(Prefix
(Node
(D_Val
)))
3788 or else not Is_Type
(Entity
(Prefix
(Node
(D_Val
))))
3791 Make_Raise_Constraint_Error
(Loc
,
3794 Left_Opnd
=> New_Copy_Tree
(Node
(D_Val
)),
3795 Right_Opnd
=> Expression
(Comp
)),
3796 Reason
=> CE_Discriminant_Check_Failed
));
3799 -- Find self-reference in previous discriminant assignment,
3800 -- and replace with proper expression.
3807 while Present
(Ass
) loop
3808 if Nkind
(Ass
) = N_Assignment_Statement
3809 and then Nkind
(Name
(Ass
)) = N_Selected_Component
3810 and then Chars
(Selector_Name
(Name
(Ass
))) =
3814 (Ass
, New_Copy_Tree
(Expression
(Comp
)));
3827 -- If the type is tagged, the tag needs to be initialized (unless we
3828 -- are in VM-mode where tags are implicit). It is done late in the
3829 -- initialization process because in some cases, we call the init
3830 -- proc of an ancestor which will not leave out the right tag.
3832 if Ancestor_Is_Expression
then
3835 -- For CPP types we generated a call to the C++ default constructor
3836 -- before the components have been initialized to ensure the proper
3837 -- initialization of the _Tag component (see above).
3839 elsif Is_CPP_Class
(Typ
) then
3842 elsif Is_Tagged_Type
(Typ
) and then Tagged_Type_Expansion
then
3844 Make_OK_Assignment_Statement
(Loc
,
3846 Make_Selected_Component
(Loc
,
3847 Prefix
=> New_Copy_Tree
(Target
),
3850 (First_Tag_Component
(Base_Type
(Typ
)), Loc
)),
3853 Unchecked_Convert_To
(RTE
(RE_Tag
),
3855 (Node
(First_Elmt
(Access_Disp_Table
(Base_Type
(Typ
)))),
3858 Append_To
(L
, Instr
);
3860 -- Ada 2005 (AI-251): If the tagged type has been derived from an
3861 -- abstract interfaces we must also initialize the tags of the
3862 -- secondary dispatch tables.
3864 if Has_Interfaces
(Base_Type
(Typ
)) then
3866 (Typ
=> Base_Type
(Typ
),
3869 Init_Tags_List
=> L
);
3873 -- If the controllers have not been initialized yet (by lack of non-
3874 -- discriminant components), let's do it now.
3876 Generate_Finalization_Actions
;
3879 end Build_Record_Aggr_Code
;
3881 ---------------------------------------
3882 -- Collect_Initialization_Statements --
3883 ---------------------------------------
3885 procedure Collect_Initialization_Statements
3888 Node_After
: Node_Id
)
3890 Loc
: constant Source_Ptr
:= Sloc
(N
);
3891 Init_Actions
: constant List_Id
:= New_List
;
3892 Init_Node
: Node_Id
;
3893 Comp_Stmt
: Node_Id
;
3896 -- Nothing to do if Obj is already frozen, as in this case we known we
3897 -- won't need to move the initialization statements about later on.
3899 if Is_Frozen
(Obj
) then
3904 while Next
(Init_Node
) /= Node_After
loop
3905 Append_To
(Init_Actions
, Remove_Next
(Init_Node
));
3908 if not Is_Empty_List
(Init_Actions
) then
3909 Comp_Stmt
:= Make_Compound_Statement
(Loc
, Actions
=> Init_Actions
);
3910 Insert_Action_After
(Init_Node
, Comp_Stmt
);
3911 Set_Initialization_Statements
(Obj
, Comp_Stmt
);
3913 end Collect_Initialization_Statements
;
3915 -------------------------------
3916 -- Convert_Aggr_In_Allocator --
3917 -------------------------------
3919 procedure Convert_Aggr_In_Allocator
3924 Loc
: constant Source_Ptr
:= Sloc
(Aggr
);
3925 Typ
: constant Entity_Id
:= Etype
(Aggr
);
3926 Temp
: constant Entity_Id
:= Defining_Identifier
(Decl
);
3928 Occ
: constant Node_Id
:=
3929 Unchecked_Convert_To
(Typ
,
3930 Make_Explicit_Dereference
(Loc
, New_Occurrence_Of
(Temp
, Loc
)));
3933 if Is_Array_Type
(Typ
) then
3934 Convert_Array_Aggr_In_Allocator
(Decl
, Aggr
, Occ
);
3936 elsif Has_Default_Init_Comps
(Aggr
) then
3938 L
: constant List_Id
:= New_List
;
3939 Init_Stmts
: List_Id
;
3942 Init_Stmts
:= Late_Expansion
(Aggr
, Typ
, Occ
);
3944 if Has_Task
(Typ
) then
3945 Build_Task_Allocate_Block_With_Init_Stmts
(L
, Aggr
, Init_Stmts
);
3946 Insert_Actions
(Alloc
, L
);
3948 Insert_Actions
(Alloc
, Init_Stmts
);
3953 Insert_Actions
(Alloc
, Late_Expansion
(Aggr
, Typ
, Occ
));
3955 end Convert_Aggr_In_Allocator
;
3957 --------------------------------
3958 -- Convert_Aggr_In_Assignment --
3959 --------------------------------
3961 procedure Convert_Aggr_In_Assignment
(N
: Node_Id
) is
3962 Aggr
: Node_Id
:= Expression
(N
);
3963 Typ
: constant Entity_Id
:= Etype
(Aggr
);
3964 Occ
: constant Node_Id
:= New_Copy_Tree
(Name
(N
));
3967 if Nkind
(Aggr
) = N_Qualified_Expression
then
3968 Aggr
:= Expression
(Aggr
);
3971 Insert_Actions_After
(N
, Late_Expansion
(Aggr
, Typ
, Occ
));
3972 end Convert_Aggr_In_Assignment
;
3974 ---------------------------------
3975 -- Convert_Aggr_In_Object_Decl --
3976 ---------------------------------
3978 procedure Convert_Aggr_In_Object_Decl
(N
: Node_Id
) is
3979 Obj
: constant Entity_Id
:= Defining_Identifier
(N
);
3980 Aggr
: Node_Id
:= Expression
(N
);
3981 Loc
: constant Source_Ptr
:= Sloc
(Aggr
);
3982 Typ
: constant Entity_Id
:= Etype
(Aggr
);
3983 Occ
: constant Node_Id
:= New_Occurrence_Of
(Obj
, Loc
);
3985 function Discriminants_Ok
return Boolean;
3986 -- If the object type is constrained, the discriminants in the
3987 -- aggregate must be checked against the discriminants of the subtype.
3988 -- This cannot be done using Apply_Discriminant_Checks because after
3989 -- expansion there is no aggregate left to check.
3991 ----------------------
3992 -- Discriminants_Ok --
3993 ----------------------
3995 function Discriminants_Ok
return Boolean is
3996 Cond
: Node_Id
:= Empty
;
4005 D
:= First_Discriminant
(Typ
);
4006 Disc1
:= First_Elmt
(Discriminant_Constraint
(Typ
));
4007 Disc2
:= First_Elmt
(Discriminant_Constraint
(Etype
(Obj
)));
4008 while Present
(Disc1
) and then Present
(Disc2
) loop
4009 Val1
:= Node
(Disc1
);
4010 Val2
:= Node
(Disc2
);
4012 if not Is_OK_Static_Expression
(Val1
)
4013 or else not Is_OK_Static_Expression
(Val2
)
4015 Check
:= Make_Op_Ne
(Loc
,
4016 Left_Opnd
=> Duplicate_Subexpr
(Val1
),
4017 Right_Opnd
=> Duplicate_Subexpr
(Val2
));
4023 Cond
:= Make_Or_Else
(Loc
,
4025 Right_Opnd
=> Check
);
4028 elsif Expr_Value
(Val1
) /= Expr_Value
(Val2
) then
4029 Apply_Compile_Time_Constraint_Error
(Aggr
,
4030 Msg
=> "incorrect value for discriminant&??",
4031 Reason
=> CE_Discriminant_Check_Failed
,
4036 Next_Discriminant
(D
);
4041 -- If any discriminant constraint is non-static, emit a check
4043 if Present
(Cond
) then
4045 Make_Raise_Constraint_Error
(Loc
,
4047 Reason
=> CE_Discriminant_Check_Failed
));
4051 end Discriminants_Ok
;
4053 -- Start of processing for Convert_Aggr_In_Object_Decl
4056 Set_Assignment_OK
(Occ
);
4058 if Nkind
(Aggr
) = N_Qualified_Expression
then
4059 Aggr
:= Expression
(Aggr
);
4062 if Has_Discriminants
(Typ
)
4063 and then Typ
/= Etype
(Obj
)
4064 and then Is_Constrained
(Etype
(Obj
))
4065 and then not Discriminants_Ok
4070 -- If the context is an extended return statement, it has its own
4071 -- finalization machinery (i.e. works like a transient scope) and
4072 -- we do not want to create an additional one, because objects on
4073 -- the finalization list of the return must be moved to the caller's
4074 -- finalization list to complete the return.
4076 -- However, if the aggregate is limited, it is built in place, and the
4077 -- controlled components are not assigned to intermediate temporaries
4078 -- so there is no need for a transient scope in this case either.
4080 if Requires_Transient_Scope
(Typ
)
4081 and then Ekind
(Current_Scope
) /= E_Return_Statement
4082 and then not Is_Limited_Type
(Typ
)
4084 Establish_Transient_Scope
(Aggr
, Sec_Stack
=> False);
4088 Node_After
: constant Node_Id
:= Next
(N
);
4090 Insert_Actions_After
(N
, Late_Expansion
(Aggr
, Typ
, Occ
));
4091 Collect_Initialization_Statements
(Obj
, N
, Node_After
);
4093 Set_No_Initialization
(N
);
4094 Initialize_Discriminants
(N
, Typ
);
4095 end Convert_Aggr_In_Object_Decl
;
4097 -------------------------------------
4098 -- Convert_Array_Aggr_In_Allocator --
4099 -------------------------------------
4101 procedure Convert_Array_Aggr_In_Allocator
4106 Aggr_Code
: List_Id
;
4107 Typ
: constant Entity_Id
:= Etype
(Aggr
);
4108 Ctyp
: constant Entity_Id
:= Component_Type
(Typ
);
4111 -- The target is an explicit dereference of the allocated object.
4112 -- Generate component assignments to it, as for an aggregate that
4113 -- appears on the right-hand side of an assignment statement.
4116 Build_Array_Aggr_Code
(Aggr
,
4118 Index
=> First_Index
(Typ
),
4120 Scalar_Comp
=> Is_Scalar_Type
(Ctyp
));
4122 Insert_Actions_After
(Decl
, Aggr_Code
);
4123 end Convert_Array_Aggr_In_Allocator
;
4125 ----------------------------
4126 -- Convert_To_Assignments --
4127 ----------------------------
4129 procedure Convert_To_Assignments
(N
: Node_Id
; Typ
: Entity_Id
) is
4130 Loc
: constant Source_Ptr
:= Sloc
(N
);
4134 Aggr_Code
: List_Id
;
4136 Target_Expr
: Node_Id
;
4137 Parent_Kind
: Node_Kind
;
4138 Unc_Decl
: Boolean := False;
4139 Parent_Node
: Node_Id
;
4142 pragma Assert
(Nkind_In
(N
, N_Aggregate
, N_Extension_Aggregate
));
4143 pragma Assert
(not Is_Static_Dispatch_Table_Aggregate
(N
));
4144 pragma Assert
(Is_Record_Type
(Typ
));
4146 Parent_Node
:= Parent
(N
);
4147 Parent_Kind
:= Nkind
(Parent_Node
);
4149 if Parent_Kind
= N_Qualified_Expression
then
4150 -- Check if we are in an unconstrained declaration because in this
4151 -- case the current delayed expansion mechanism doesn't work when
4152 -- the declared object size depends on the initializing expr.
4154 Parent_Node
:= Parent
(Parent_Node
);
4155 Parent_Kind
:= Nkind
(Parent_Node
);
4157 if Parent_Kind
= N_Object_Declaration
then
4159 not Is_Entity_Name
(Object_Definition
(Parent_Node
))
4160 or else (Nkind
(N
) = N_Aggregate
4163 (Entity
(Object_Definition
(Parent_Node
))))
4164 or else Is_Class_Wide_Type
4165 (Entity
(Object_Definition
(Parent_Node
)));
4169 -- Just set the Delay flag in the cases where the transformation will be
4170 -- done top down from above.
4174 -- Internal aggregate (transformed when expanding the parent)
4176 or else Parent_Kind
= N_Aggregate
4177 or else Parent_Kind
= N_Extension_Aggregate
4178 or else Parent_Kind
= N_Component_Association
4180 -- Allocator (see Convert_Aggr_In_Allocator)
4182 or else Parent_Kind
= N_Allocator
4184 -- Object declaration (see Convert_Aggr_In_Object_Decl)
4186 or else (Parent_Kind
= N_Object_Declaration
and then not Unc_Decl
)
4188 -- Safe assignment (see Convert_Aggr_Assignments). So far only the
4189 -- assignments in init procs are taken into account.
4191 or else (Parent_Kind
= N_Assignment_Statement
4192 and then Inside_Init_Proc
)
4194 -- (Ada 2005) An inherently limited type in a return statement, which
4195 -- will be handled in a build-in-place fashion, and may be rewritten
4196 -- as an extended return and have its own finalization machinery.
4197 -- In the case of a simple return, the aggregate needs to be delayed
4198 -- until the scope for the return statement has been created, so
4199 -- that any finalization chain will be associated with that scope.
4200 -- For extended returns, we delay expansion to avoid the creation
4201 -- of an unwanted transient scope that could result in premature
4202 -- finalization of the return object (which is built in place
4203 -- within the caller's scope).
4205 or else Is_Build_In_Place_Aggregate_Return
(N
)
4207 Set_Expansion_Delayed
(N
);
4211 -- Otherwise, if a transient scope is required, create it now. If we
4212 -- are within an initialization procedure do not create such, because
4213 -- the target of the assignment must not be declared within a local
4214 -- block, and because cleanup will take place on return from the
4215 -- initialization procedure.
4217 -- Should the condition be more restrictive ???
4219 if Requires_Transient_Scope
(Typ
) and then not Inside_Init_Proc
then
4220 Establish_Transient_Scope
(N
, Sec_Stack
=> False);
4223 -- If the aggregate is nonlimited, create a temporary. If it is limited
4224 -- and context is an assignment, this is a subaggregate for an enclosing
4225 -- aggregate being expanded. It must be built in place, so use target of
4226 -- the current assignment.
4228 if Is_Limited_Type
(Typ
)
4229 and then Nkind
(Parent
(N
)) = N_Assignment_Statement
4231 Target_Expr
:= New_Copy_Tree
(Name
(Parent
(N
)));
4232 Insert_Actions
(Parent
(N
),
4233 Build_Record_Aggr_Code
(N
, Typ
, Target_Expr
));
4234 Rewrite
(Parent
(N
), Make_Null_Statement
(Loc
));
4237 Temp
:= Make_Temporary
(Loc
, 'A', N
);
4239 -- If the type inherits unknown discriminants, use the view with
4240 -- known discriminants if available.
4242 if Has_Unknown_Discriminants
(Typ
)
4243 and then Present
(Underlying_Record_View
(Typ
))
4245 T
:= Underlying_Record_View
(Typ
);
4251 Make_Object_Declaration
(Loc
,
4252 Defining_Identifier
=> Temp
,
4253 Object_Definition
=> New_Occurrence_Of
(T
, Loc
));
4255 Set_No_Initialization
(Instr
);
4256 Insert_Action
(N
, Instr
);
4257 Initialize_Discriminants
(Instr
, T
);
4259 Target_Expr
:= New_Occurrence_Of
(Temp
, Loc
);
4260 Aggr_Code
:= Build_Record_Aggr_Code
(N
, T
, Target_Expr
);
4262 -- Save the last assignment statement associated with the aggregate
4263 -- when building a controlled object. This reference is utilized by
4264 -- the finalization machinery when marking an object as successfully
4267 if Needs_Finalization
(T
) then
4268 Set_Last_Aggregate_Assignment
(Temp
, Last
(Aggr_Code
));
4271 Insert_Actions
(N
, Aggr_Code
);
4272 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
4273 Analyze_And_Resolve
(N
, T
);
4275 end Convert_To_Assignments
;
4277 ---------------------------
4278 -- Convert_To_Positional --
4279 ---------------------------
4281 procedure Convert_To_Positional
4283 Max_Others_Replicate
: Nat
:= 5;
4284 Handle_Bit_Packed
: Boolean := False)
4286 Typ
: constant Entity_Id
:= Etype
(N
);
4288 Static_Components
: Boolean := True;
4290 procedure Check_Static_Components
;
4291 -- Check whether all components of the aggregate are compile-time known
4292 -- values, and can be passed as is to the back-end without further
4294 -- An Iterated_Component_Association is treated as non-static, but there
4295 -- are possibilities for optimization here.
4300 Ixb
: Node_Id
) return Boolean;
4301 -- Convert the aggregate into a purely positional form if possible. On
4302 -- entry the bounds of all dimensions are known to be static, and the
4303 -- total number of components is safe enough to expand.
4305 function Is_Flat
(N
: Node_Id
; Dims
: Int
) return Boolean;
4306 -- Return True iff the array N is flat (which is not trivial in the case
4307 -- of multidimensional aggregates).
4309 -----------------------------
4310 -- Check_Static_Components --
4311 -----------------------------
4313 -- Could use some comments in this body ???
4315 procedure Check_Static_Components
is
4319 Static_Components
:= True;
4321 if Nkind
(N
) = N_String_Literal
then
4324 elsif Present
(Expressions
(N
)) then
4325 Expr
:= First
(Expressions
(N
));
4326 while Present
(Expr
) loop
4327 if Nkind
(Expr
) /= N_Aggregate
4328 or else not Compile_Time_Known_Aggregate
(Expr
)
4329 or else Expansion_Delayed
(Expr
)
4331 Static_Components
:= False;
4339 if Nkind
(N
) = N_Aggregate
4340 and then Present
(Component_Associations
(N
))
4342 Expr
:= First
(Component_Associations
(N
));
4343 while Present
(Expr
) loop
4344 if Nkind_In
(Expression
(Expr
), N_Integer_Literal
,
4349 elsif Is_Entity_Name
(Expression
(Expr
))
4350 and then Present
(Entity
(Expression
(Expr
)))
4351 and then Ekind
(Entity
(Expression
(Expr
))) =
4352 E_Enumeration_Literal
4356 elsif Nkind
(Expression
(Expr
)) /= N_Aggregate
4357 or else not Compile_Time_Known_Aggregate
(Expression
(Expr
))
4358 or else Expansion_Delayed
(Expression
(Expr
))
4359 or else Nkind
(Expr
) = N_Iterated_Component_Association
4361 Static_Components
:= False;
4368 end Check_Static_Components
;
4377 Ixb
: Node_Id
) return Boolean
4379 Loc
: constant Source_Ptr
:= Sloc
(N
);
4380 Blo
: constant Node_Id
:= Type_Low_Bound
(Etype
(Ixb
));
4381 Lo
: constant Node_Id
:= Type_Low_Bound
(Etype
(Ix
));
4382 Hi
: constant Node_Id
:= Type_High_Bound
(Etype
(Ix
));
4386 Others_Present
: Boolean := False;
4389 if Nkind
(Original_Node
(N
)) = N_String_Literal
then
4393 if not Compile_Time_Known_Value
(Lo
)
4394 or else not Compile_Time_Known_Value
(Hi
)
4399 Lov
:= Expr_Value
(Lo
);
4400 Hiv
:= Expr_Value
(Hi
);
4402 -- Check if there is an others choice
4404 if Present
(Component_Associations
(N
)) then
4410 Assoc
:= First
(Component_Associations
(N
));
4411 while Present
(Assoc
) loop
4413 -- If this is a box association, flattening is in general
4414 -- not possible because at this point we cannot tell if the
4415 -- default is static or even exists.
4417 if Box_Present
(Assoc
) then
4420 elsif Nkind
(Assoc
) = N_Iterated_Component_Association
then
4424 Choice
:= First
(Choice_List
(Assoc
));
4426 while Present
(Choice
) loop
4427 if Nkind
(Choice
) = N_Others_Choice
then
4428 Others_Present
:= True;
4439 -- If the low bound is not known at compile time and others is not
4440 -- present we can proceed since the bounds can be obtained from the
4444 or else (not Compile_Time_Known_Value
(Blo
) and then Others_Present
)
4449 -- Determine if set of alternatives is suitable for conversion and
4450 -- build an array containing the values in sequence.
4453 Vals
: array (UI_To_Int
(Lov
) .. UI_To_Int
(Hiv
))
4454 of Node_Id
:= (others => Empty
);
4455 -- The values in the aggregate sorted appropriately
4458 -- Same data as Vals in list form
4461 -- Used to validate Max_Others_Replicate limit
4464 Num
: Int
:= UI_To_Int
(Lov
);
4470 if Present
(Expressions
(N
)) then
4471 Elmt
:= First
(Expressions
(N
));
4472 while Present
(Elmt
) loop
4473 if Nkind
(Elmt
) = N_Aggregate
4474 and then Present
(Next_Index
(Ix
))
4476 not Flatten
(Elmt
, Next_Index
(Ix
), Next_Index
(Ixb
))
4481 Vals
(Num
) := Relocate_Node
(Elmt
);
4488 if No
(Component_Associations
(N
)) then
4492 Elmt
:= First
(Component_Associations
(N
));
4494 if Nkind
(Expression
(Elmt
)) = N_Aggregate
then
4495 if Present
(Next_Index
(Ix
))
4498 (Expression
(Elmt
), Next_Index
(Ix
), Next_Index
(Ixb
))
4504 Component_Loop
: while Present
(Elmt
) loop
4505 Choice
:= First
(Choice_List
(Elmt
));
4506 Choice_Loop
: while Present
(Choice
) loop
4508 -- If we have an others choice, fill in the missing elements
4509 -- subject to the limit established by Max_Others_Replicate.
4511 if Nkind
(Choice
) = N_Others_Choice
then
4514 for J
in Vals
'Range loop
4515 if No
(Vals
(J
)) then
4516 Vals
(J
) := New_Copy_Tree
(Expression
(Elmt
));
4517 Rep_Count
:= Rep_Count
+ 1;
4519 -- Check for maximum others replication. Note that
4520 -- we skip this test if either of the restrictions
4521 -- No_Elaboration_Code or No_Implicit_Loops is
4522 -- active, if this is a preelaborable unit or
4523 -- a predefined unit, or if the unit must be
4524 -- placed in data memory. This also ensures that
4525 -- predefined units get the same level of constant
4526 -- folding in Ada 95 and Ada 2005, where their
4527 -- categorization has changed.
4530 P
: constant Entity_Id
:=
4531 Cunit_Entity
(Current_Sem_Unit
);
4534 -- Check if duplication OK and if so continue
4537 if Restriction_Active
(No_Elaboration_Code
)
4538 or else Restriction_Active
(No_Implicit_Loops
)
4540 (Ekind
(Current_Scope
) = E_Package
4541 and then Static_Elaboration_Desired
4543 or else Is_Preelaborated
(P
)
4544 or else (Ekind
(P
) = E_Package_Body
4546 Is_Preelaborated
(Spec_Entity
(P
)))
4548 Is_Predefined_Unit
(Get_Source_Unit
(P
))
4552 -- If duplication not OK, then we return False
4553 -- if the replication count is too high
4555 elsif Rep_Count
> Max_Others_Replicate
then
4558 -- Continue on if duplication not OK, but the
4559 -- replication count is not excessive.
4568 exit Component_Loop
;
4570 -- Case of a subtype mark, identifier or expanded name
4572 elsif Is_Entity_Name
(Choice
)
4573 and then Is_Type
(Entity
(Choice
))
4575 Lo
:= Type_Low_Bound
(Etype
(Choice
));
4576 Hi
:= Type_High_Bound
(Etype
(Choice
));
4578 -- Case of subtype indication
4580 elsif Nkind
(Choice
) = N_Subtype_Indication
then
4581 Lo
:= Low_Bound
(Range_Expression
(Constraint
(Choice
)));
4582 Hi
:= High_Bound
(Range_Expression
(Constraint
(Choice
)));
4586 elsif Nkind
(Choice
) = N_Range
then
4587 Lo
:= Low_Bound
(Choice
);
4588 Hi
:= High_Bound
(Choice
);
4590 -- Normal subexpression case
4592 else pragma Assert
(Nkind
(Choice
) in N_Subexpr
);
4593 if not Compile_Time_Known_Value
(Choice
) then
4597 Choice_Index
:= UI_To_Int
(Expr_Value
(Choice
));
4599 if Choice_Index
in Vals
'Range then
4600 Vals
(Choice_Index
) :=
4601 New_Copy_Tree
(Expression
(Elmt
));
4604 -- Choice is statically out-of-range, will be
4605 -- rewritten to raise Constraint_Error.
4613 -- Range cases merge with Lo,Hi set
4615 if not Compile_Time_Known_Value
(Lo
)
4617 not Compile_Time_Known_Value
(Hi
)
4622 for J
in UI_To_Int
(Expr_Value
(Lo
)) ..
4623 UI_To_Int
(Expr_Value
(Hi
))
4625 Vals
(J
) := New_Copy_Tree
(Expression
(Elmt
));
4631 end loop Choice_Loop
;
4634 end loop Component_Loop
;
4636 -- If we get here the conversion is possible
4639 for J
in Vals
'Range loop
4640 Append
(Vals
(J
), Vlist
);
4643 Rewrite
(N
, Make_Aggregate
(Loc
, Expressions
=> Vlist
));
4644 Set_Aggregate_Bounds
(N
, Aggregate_Bounds
(Original_Node
(N
)));
4653 function Is_Flat
(N
: Node_Id
; Dims
: Int
) return Boolean is
4660 elsif Nkind
(N
) = N_Aggregate
then
4661 if Present
(Component_Associations
(N
)) then
4665 Elmt
:= First
(Expressions
(N
));
4666 while Present
(Elmt
) loop
4667 if not Is_Flat
(Elmt
, Dims
- 1) then
4681 -- Start of processing for Convert_To_Positional
4684 -- Only convert to positional when generating C in case of an
4685 -- object declaration, this is the only case where aggregates are
4688 if Modify_Tree_For_C
and then not In_Object_Declaration
(N
) then
4692 -- Ada 2005 (AI-287): Do not convert in case of default initialized
4693 -- components because in this case will need to call the corresponding
4696 if Has_Default_Init_Comps
(N
) then
4700 if Is_Flat
(N
, Number_Dimensions
(Typ
)) then
4704 if Is_Bit_Packed_Array
(Typ
) and then not Handle_Bit_Packed
then
4708 -- Do not convert to positional if controlled components are involved
4709 -- since these require special processing
4711 if Has_Controlled_Component
(Typ
) then
4715 Check_Static_Components
;
4717 -- If the size is known, or all the components are static, try to
4718 -- build a fully positional aggregate.
4720 -- The size of the type may not be known for an aggregate with
4721 -- discriminated array components, but if the components are static
4722 -- it is still possible to verify statically that the length is
4723 -- compatible with the upper bound of the type, and therefore it is
4724 -- worth flattening such aggregates as well.
4726 -- For now the back-end expands these aggregates into individual
4727 -- assignments to the target anyway, but it is conceivable that
4728 -- it will eventually be able to treat such aggregates statically???
4730 if Aggr_Size_OK
(N
, Typ
)
4731 and then Flatten
(N
, First_Index
(Typ
), First_Index
(Base_Type
(Typ
)))
4733 if Static_Components
then
4734 Set_Compile_Time_Known_Aggregate
(N
);
4735 Set_Expansion_Delayed
(N
, False);
4738 Analyze_And_Resolve
(N
, Typ
);
4741 -- If Static_Elaboration_Desired has been specified, diagnose aggregates
4742 -- that will still require initialization code.
4744 if (Ekind
(Current_Scope
) = E_Package
4745 and then Static_Elaboration_Desired
(Current_Scope
))
4746 and then Nkind
(Parent
(N
)) = N_Object_Declaration
4752 if Nkind
(N
) = N_Aggregate
and then Present
(Expressions
(N
)) then
4753 Expr
:= First
(Expressions
(N
));
4754 while Present
(Expr
) loop
4755 if Nkind_In
(Expr
, N_Integer_Literal
, N_Real_Literal
)
4757 (Is_Entity_Name
(Expr
)
4758 and then Ekind
(Entity
(Expr
)) = E_Enumeration_Literal
)
4764 ("non-static object requires elaboration code??", N
);
4771 if Present
(Component_Associations
(N
)) then
4772 Error_Msg_N
("object requires elaboration code??", N
);
4777 end Convert_To_Positional
;
4779 ----------------------------
4780 -- Expand_Array_Aggregate --
4781 ----------------------------
4783 -- Array aggregate expansion proceeds as follows:
4785 -- 1. If requested we generate code to perform all the array aggregate
4786 -- bound checks, specifically
4788 -- (a) Check that the index range defined by aggregate bounds is
4789 -- compatible with corresponding index subtype.
4791 -- (b) If an others choice is present check that no aggregate
4792 -- index is outside the bounds of the index constraint.
4794 -- (c) For multidimensional arrays make sure that all subaggregates
4795 -- corresponding to the same dimension have the same bounds.
4797 -- 2. Check for packed array aggregate which can be converted to a
4798 -- constant so that the aggregate disappears completely.
4800 -- 3. Check case of nested aggregate. Generally nested aggregates are
4801 -- handled during the processing of the parent aggregate.
4803 -- 4. Check if the aggregate can be statically processed. If this is the
4804 -- case pass it as is to Gigi. Note that a necessary condition for
4805 -- static processing is that the aggregate be fully positional.
4807 -- 5. If in place aggregate expansion is possible (i.e. no need to create
4808 -- a temporary) then mark the aggregate as such and return. Otherwise
4809 -- create a new temporary and generate the appropriate initialization
4812 procedure Expand_Array_Aggregate
(N
: Node_Id
) is
4813 Loc
: constant Source_Ptr
:= Sloc
(N
);
4815 Typ
: constant Entity_Id
:= Etype
(N
);
4816 Ctyp
: constant Entity_Id
:= Component_Type
(Typ
);
4817 -- Typ is the correct constrained array subtype of the aggregate
4818 -- Ctyp is the corresponding component type.
4820 Aggr_Dimension
: constant Pos
:= Number_Dimensions
(Typ
);
4821 -- Number of aggregate index dimensions
4823 Aggr_Low
: array (1 .. Aggr_Dimension
) of Node_Id
;
4824 Aggr_High
: array (1 .. Aggr_Dimension
) of Node_Id
;
4825 -- Low and High bounds of the constraint for each aggregate index
4827 Aggr_Index_Typ
: array (1 .. Aggr_Dimension
) of Entity_Id
;
4828 -- The type of each index
4830 In_Place_Assign_OK_For_Declaration
: Boolean := False;
4831 -- True if we are to generate an in place assignment for a declaration
4833 Maybe_In_Place_OK
: Boolean;
4834 -- If the type is neither controlled nor packed and the aggregate
4835 -- is the expression in an assignment, assignment in place may be
4836 -- possible, provided other conditions are met on the LHS.
4838 Others_Present
: array (1 .. Aggr_Dimension
) of Boolean :=
4840 -- If Others_Present (J) is True, then there is an others choice in one
4841 -- of the subaggregates of N at dimension J.
4843 function Aggr_Assignment_OK_For_Backend
(N
: Node_Id
) return Boolean;
4844 -- Returns true if an aggregate assignment can be done by the back end
4846 procedure Build_Constrained_Type
(Positional
: Boolean);
4847 -- If the subtype is not static or unconstrained, build a constrained
4848 -- type using the computable sizes of the aggregate and its sub-
4851 procedure Check_Bounds
(Aggr_Bounds
: Node_Id
; Index_Bounds
: Node_Id
);
4852 -- Checks that the bounds of Aggr_Bounds are within the bounds defined
4855 procedure Check_Same_Aggr_Bounds
(Sub_Aggr
: Node_Id
; Dim
: Pos
);
4856 -- Checks that in a multidimensional array aggregate all subaggregates
4857 -- corresponding to the same dimension have the same bounds. Sub_Aggr is
4858 -- an array subaggregate. Dim is the dimension corresponding to the
4861 procedure Compute_Others_Present
(Sub_Aggr
: Node_Id
; Dim
: Pos
);
4862 -- Computes the values of array Others_Present. Sub_Aggr is the array
4863 -- subaggregate we start the computation from. Dim is the dimension
4864 -- corresponding to the subaggregate.
4866 function In_Place_Assign_OK
return Boolean;
4867 -- Simple predicate to determine whether an aggregate assignment can
4868 -- be done in place, because none of the new values can depend on the
4869 -- components of the target of the assignment.
4871 procedure Others_Check
(Sub_Aggr
: Node_Id
; Dim
: Pos
);
4872 -- Checks that if an others choice is present in any subaggregate, no
4873 -- aggregate index is outside the bounds of the index constraint.
4874 -- Sub_Aggr is an array subaggregate. Dim is the dimension corresponding
4875 -- to the subaggregate.
4877 function Safe_Left_Hand_Side
(N
: Node_Id
) return Boolean;
4878 -- In addition to Maybe_In_Place_OK, in order for an aggregate to be
4879 -- built directly into the target of the assignment it must be free
4882 ------------------------------------
4883 -- Aggr_Assignment_OK_For_Backend --
4884 ------------------------------------
4886 -- Backend processing by Gigi/gcc is possible only if all the following
4887 -- conditions are met:
4889 -- 1. N consists of a single OTHERS choice, possibly recursively
4891 -- 2. The array type is not packed
4893 -- 3. The array type has no atomic components
4895 -- 4. The array type has no null ranges (the purpose of this is to
4896 -- avoid a bogus warning for an out-of-range value).
4898 -- 5. The component type is elementary
4900 -- 6. The component size is Storage_Unit or the value is of the form
4901 -- M * (1 + A**1 + A**2 + .. A**(K-1)) where A = 2**(Storage_Unit)
4902 -- and M in 1 .. A-1. This can also be viewed as K occurrences of
4903 -- the 8-bit value M, concatenated together.
4905 -- The ultimate goal is to generate a call to a fast memset routine
4906 -- specifically optimized for the target.
4908 function Aggr_Assignment_OK_For_Backend
(N
: Node_Id
) return Boolean is
4911 Expr
: Node_Id
:= N
;
4919 -- Recurse as far as possible to find the innermost component type
4922 while Is_Array_Type
(Ctyp
) loop
4923 if Nkind
(Expr
) /= N_Aggregate
4924 or else not Is_Others_Aggregate
(Expr
)
4929 if Present
(Packed_Array_Impl_Type
(Ctyp
)) then
4933 if Has_Atomic_Components
(Ctyp
) then
4937 Index
:= First_Index
(Ctyp
);
4938 while Present
(Index
) loop
4939 Get_Index_Bounds
(Index
, Low
, High
);
4941 if Is_Null_Range
(Low
, High
) then
4948 Expr
:= Expression
(First
(Component_Associations
(Expr
)));
4950 for J
in 1 .. Number_Dimensions
(Ctyp
) - 1 loop
4951 if Nkind
(Expr
) /= N_Aggregate
4952 or else not Is_Others_Aggregate
(Expr
)
4957 Expr
:= Expression
(First
(Component_Associations
(Expr
)));
4960 Ctyp
:= Component_Type
(Ctyp
);
4962 if Is_Atomic_Or_VFA
(Ctyp
) then
4967 -- An Iterated_Component_Association involves a loop (in most cases)
4968 -- and is never static.
4970 if Nkind
(Parent
(Expr
)) = N_Iterated_Component_Association
then
4974 -- All elementary types are supported
4976 if not Is_Elementary_Type
(Ctyp
) then
4980 -- However access types need to be dealt with specially
4982 if Is_Access_Type
(Ctyp
) then
4984 -- Fat pointers are rejected as they are not really elementary
4987 if Esize
(Ctyp
) /= System_Address_Size
then
4991 -- The supported expressions are NULL and constants, others are
4992 -- rejected upfront to avoid being analyzed below, which can be
4993 -- problematic for some of them, for example allocators.
4995 if Nkind
(Expr
) /= N_Null
and then not Is_Entity_Name
(Expr
) then
5000 -- The expression needs to be analyzed if True is returned
5002 Analyze_And_Resolve
(Expr
, Ctyp
);
5004 -- The back end uses the Esize as the precision of the type
5006 Nunits
:= UI_To_Int
(Esize
(Ctyp
)) / System_Storage_Unit
;
5012 if not Compile_Time_Known_Value
(Expr
) then
5016 -- The only supported value for floating point is 0.0
5018 if Is_Floating_Point_Type
(Ctyp
) then
5019 return Expr_Value_R
(Expr
) = Ureal_0
;
5022 -- For other types, we can look into the value as an integer
5024 Value
:= Expr_Value
(Expr
);
5026 if Has_Biased_Representation
(Ctyp
) then
5027 Value
:= Value
- Expr_Value
(Type_Low_Bound
(Ctyp
));
5030 -- Values 0 and -1 immediately satisfy the last check
5032 if Value
= Uint_0
or else Value
= Uint_Minus_1
then
5036 -- We need to work with an unsigned value
5039 Value
:= Value
+ 2**(System_Storage_Unit
* Nunits
);
5042 Remainder
:= Value
rem 2**System_Storage_Unit
;
5044 for J
in 1 .. Nunits
- 1 loop
5045 Value
:= Value
/ 2**System_Storage_Unit
;
5047 if Value
rem 2**System_Storage_Unit
/= Remainder
then
5053 end Aggr_Assignment_OK_For_Backend
;
5055 ----------------------------
5056 -- Build_Constrained_Type --
5057 ----------------------------
5059 procedure Build_Constrained_Type
(Positional
: Boolean) is
5060 Loc
: constant Source_Ptr
:= Sloc
(N
);
5061 Agg_Type
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
5064 Typ
: constant Entity_Id
:= Etype
(N
);
5065 Indexes
: constant List_Id
:= New_List
;
5070 -- If the aggregate is purely positional, all its subaggregates
5071 -- have the same size. We collect the dimensions from the first
5072 -- subaggregate at each level.
5077 for D
in 1 .. Number_Dimensions
(Typ
) loop
5078 Sub_Agg
:= First
(Expressions
(Sub_Agg
));
5082 while Present
(Comp
) loop
5089 Low_Bound
=> Make_Integer_Literal
(Loc
, 1),
5090 High_Bound
=> Make_Integer_Literal
(Loc
, Num
)));
5094 -- We know the aggregate type is unconstrained and the aggregate
5095 -- is not processable by the back end, therefore not necessarily
5096 -- positional. Retrieve each dimension bounds (computed earlier).
5098 for D
in 1 .. Number_Dimensions
(Typ
) loop
5101 Low_Bound
=> Aggr_Low
(D
),
5102 High_Bound
=> Aggr_High
(D
)));
5107 Make_Full_Type_Declaration
(Loc
,
5108 Defining_Identifier
=> Agg_Type
,
5110 Make_Constrained_Array_Definition
(Loc
,
5111 Discrete_Subtype_Definitions
=> Indexes
,
5112 Component_Definition
=>
5113 Make_Component_Definition
(Loc
,
5114 Aliased_Present
=> False,
5115 Subtype_Indication
=>
5116 New_Occurrence_Of
(Component_Type
(Typ
), Loc
))));
5118 Insert_Action
(N
, Decl
);
5120 Set_Etype
(N
, Agg_Type
);
5121 Set_Is_Itype
(Agg_Type
);
5122 Freeze_Itype
(Agg_Type
, N
);
5123 end Build_Constrained_Type
;
5129 procedure Check_Bounds
(Aggr_Bounds
: Node_Id
; Index_Bounds
: Node_Id
) is
5136 Cond
: Node_Id
:= Empty
;
5139 Get_Index_Bounds
(Aggr_Bounds
, Aggr_Lo
, Aggr_Hi
);
5140 Get_Index_Bounds
(Index_Bounds
, Ind_Lo
, Ind_Hi
);
5142 -- Generate the following test:
5144 -- [constraint_error when
5145 -- Aggr_Lo <= Aggr_Hi and then
5146 -- (Aggr_Lo < Ind_Lo or else Aggr_Hi > Ind_Hi)]
5148 -- As an optimization try to see if some tests are trivially vacuous
5149 -- because we are comparing an expression against itself.
5151 if Aggr_Lo
= Ind_Lo
and then Aggr_Hi
= Ind_Hi
then
5154 elsif Aggr_Hi
= Ind_Hi
then
5157 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Aggr_Lo
),
5158 Right_Opnd
=> Duplicate_Subexpr_Move_Checks
(Ind_Lo
));
5160 elsif Aggr_Lo
= Ind_Lo
then
5163 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Aggr_Hi
),
5164 Right_Opnd
=> Duplicate_Subexpr_Move_Checks
(Ind_Hi
));
5171 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Aggr_Lo
),
5172 Right_Opnd
=> Duplicate_Subexpr_Move_Checks
(Ind_Lo
)),
5176 Left_Opnd
=> Duplicate_Subexpr
(Aggr_Hi
),
5177 Right_Opnd
=> Duplicate_Subexpr
(Ind_Hi
)));
5180 if Present
(Cond
) then
5185 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Aggr_Lo
),
5186 Right_Opnd
=> Duplicate_Subexpr_Move_Checks
(Aggr_Hi
)),
5188 Right_Opnd
=> Cond
);
5190 Set_Analyzed
(Left_Opnd
(Left_Opnd
(Cond
)), False);
5191 Set_Analyzed
(Right_Opnd
(Left_Opnd
(Cond
)), False);
5193 Make_Raise_Constraint_Error
(Loc
,
5195 Reason
=> CE_Range_Check_Failed
));
5199 ----------------------------
5200 -- Check_Same_Aggr_Bounds --
5201 ----------------------------
5203 procedure Check_Same_Aggr_Bounds
(Sub_Aggr
: Node_Id
; Dim
: Pos
) is
5204 Sub_Lo
: constant Node_Id
:= Low_Bound
(Aggregate_Bounds
(Sub_Aggr
));
5205 Sub_Hi
: constant Node_Id
:= High_Bound
(Aggregate_Bounds
(Sub_Aggr
));
5206 -- The bounds of this specific subaggregate
5208 Aggr_Lo
: constant Node_Id
:= Aggr_Low
(Dim
);
5209 Aggr_Hi
: constant Node_Id
:= Aggr_High
(Dim
);
5210 -- The bounds of the aggregate for this dimension
5212 Ind_Typ
: constant Entity_Id
:= Aggr_Index_Typ
(Dim
);
5213 -- The index type for this dimension.xxx
5215 Cond
: Node_Id
:= Empty
;
5220 -- If index checks are on generate the test
5222 -- [constraint_error when
5223 -- Aggr_Lo /= Sub_Lo or else Aggr_Hi /= Sub_Hi]
5225 -- As an optimization try to see if some tests are trivially vacuos
5226 -- because we are comparing an expression against itself. Also for
5227 -- the first dimension the test is trivially vacuous because there
5228 -- is just one aggregate for dimension 1.
5230 if Index_Checks_Suppressed
(Ind_Typ
) then
5233 elsif Dim
= 1 or else (Aggr_Lo
= Sub_Lo
and then Aggr_Hi
= Sub_Hi
)
5237 elsif Aggr_Hi
= Sub_Hi
then
5240 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Aggr_Lo
),
5241 Right_Opnd
=> Duplicate_Subexpr_Move_Checks
(Sub_Lo
));
5243 elsif Aggr_Lo
= Sub_Lo
then
5246 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Aggr_Hi
),
5247 Right_Opnd
=> Duplicate_Subexpr_Move_Checks
(Sub_Hi
));
5254 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Aggr_Lo
),
5255 Right_Opnd
=> Duplicate_Subexpr_Move_Checks
(Sub_Lo
)),
5259 Left_Opnd
=> Duplicate_Subexpr
(Aggr_Hi
),
5260 Right_Opnd
=> Duplicate_Subexpr
(Sub_Hi
)));
5263 if Present
(Cond
) then
5265 Make_Raise_Constraint_Error
(Loc
,
5267 Reason
=> CE_Length_Check_Failed
));
5270 -- Now look inside the subaggregate to see if there is more work
5272 if Dim
< Aggr_Dimension
then
5274 -- Process positional components
5276 if Present
(Expressions
(Sub_Aggr
)) then
5277 Expr
:= First
(Expressions
(Sub_Aggr
));
5278 while Present
(Expr
) loop
5279 Check_Same_Aggr_Bounds
(Expr
, Dim
+ 1);
5284 -- Process component associations
5286 if Present
(Component_Associations
(Sub_Aggr
)) then
5287 Assoc
:= First
(Component_Associations
(Sub_Aggr
));
5288 while Present
(Assoc
) loop
5289 Expr
:= Expression
(Assoc
);
5290 Check_Same_Aggr_Bounds
(Expr
, Dim
+ 1);
5295 end Check_Same_Aggr_Bounds
;
5297 ----------------------------
5298 -- Compute_Others_Present --
5299 ----------------------------
5301 procedure Compute_Others_Present
(Sub_Aggr
: Node_Id
; Dim
: Pos
) is
5306 if Present
(Component_Associations
(Sub_Aggr
)) then
5307 Assoc
:= Last
(Component_Associations
(Sub_Aggr
));
5309 if Nkind
(First
(Choice_List
(Assoc
))) = N_Others_Choice
then
5310 Others_Present
(Dim
) := True;
5314 -- Now look inside the subaggregate to see if there is more work
5316 if Dim
< Aggr_Dimension
then
5318 -- Process positional components
5320 if Present
(Expressions
(Sub_Aggr
)) then
5321 Expr
:= First
(Expressions
(Sub_Aggr
));
5322 while Present
(Expr
) loop
5323 Compute_Others_Present
(Expr
, Dim
+ 1);
5328 -- Process component associations
5330 if Present
(Component_Associations
(Sub_Aggr
)) then
5331 Assoc
:= First
(Component_Associations
(Sub_Aggr
));
5332 while Present
(Assoc
) loop
5333 Expr
:= Expression
(Assoc
);
5334 Compute_Others_Present
(Expr
, Dim
+ 1);
5339 end Compute_Others_Present
;
5341 ------------------------
5342 -- In_Place_Assign_OK --
5343 ------------------------
5345 function In_Place_Assign_OK
return Boolean is
5353 function Safe_Aggregate
(Aggr
: Node_Id
) return Boolean;
5354 -- Check recursively that each component of a (sub)aggregate does not
5355 -- depend on the variable being assigned to.
5357 function Safe_Component
(Expr
: Node_Id
) return Boolean;
5358 -- Verify that an expression cannot depend on the variable being
5359 -- assigned to. Room for improvement here (but less than before).
5361 --------------------
5362 -- Safe_Aggregate --
5363 --------------------
5365 function Safe_Aggregate
(Aggr
: Node_Id
) return Boolean is
5369 if Present
(Expressions
(Aggr
)) then
5370 Expr
:= First
(Expressions
(Aggr
));
5371 while Present
(Expr
) loop
5372 if Nkind
(Expr
) = N_Aggregate
then
5373 if not Safe_Aggregate
(Expr
) then
5377 elsif not Safe_Component
(Expr
) then
5385 if Present
(Component_Associations
(Aggr
)) then
5386 Expr
:= First
(Component_Associations
(Aggr
));
5387 while Present
(Expr
) loop
5388 if Nkind
(Expression
(Expr
)) = N_Aggregate
then
5389 if not Safe_Aggregate
(Expression
(Expr
)) then
5393 -- If association has a box, no way to determine yet
5394 -- whether default can be assigned in place.
5396 elsif Box_Present
(Expr
) then
5399 elsif not Safe_Component
(Expression
(Expr
)) then
5410 --------------------
5411 -- Safe_Component --
5412 --------------------
5414 function Safe_Component
(Expr
: Node_Id
) return Boolean is
5415 Comp
: Node_Id
:= Expr
;
5417 function Check_Component
(Comp
: Node_Id
) return Boolean;
5418 -- Do the recursive traversal, after copy
5420 ---------------------
5421 -- Check_Component --
5422 ---------------------
5424 function Check_Component
(Comp
: Node_Id
) return Boolean is
5426 if Is_Overloaded
(Comp
) then
5430 return Compile_Time_Known_Value
(Comp
)
5432 or else (Is_Entity_Name
(Comp
)
5433 and then Present
(Entity
(Comp
))
5434 and then No
(Renamed_Object
(Entity
(Comp
))))
5436 or else (Nkind
(Comp
) = N_Attribute_Reference
5437 and then Check_Component
(Prefix
(Comp
)))
5439 or else (Nkind
(Comp
) in N_Binary_Op
5440 and then Check_Component
(Left_Opnd
(Comp
))
5441 and then Check_Component
(Right_Opnd
(Comp
)))
5443 or else (Nkind
(Comp
) in N_Unary_Op
5444 and then Check_Component
(Right_Opnd
(Comp
)))
5446 or else (Nkind
(Comp
) = N_Selected_Component
5447 and then Check_Component
(Prefix
(Comp
)))
5449 or else (Nkind
(Comp
) = N_Unchecked_Type_Conversion
5450 and then Check_Component
(Expression
(Comp
)));
5451 end Check_Component
;
5453 -- Start of processing for Safe_Component
5456 -- If the component appears in an association that may correspond
5457 -- to more than one element, it is not analyzed before expansion
5458 -- into assignments, to avoid side effects. We analyze, but do not
5459 -- resolve the copy, to obtain sufficient entity information for
5460 -- the checks that follow. If component is overloaded we assume
5461 -- an unsafe function call.
5463 if not Analyzed
(Comp
) then
5464 if Is_Overloaded
(Expr
) then
5467 elsif Nkind
(Expr
) = N_Aggregate
5468 and then not Is_Others_Aggregate
(Expr
)
5472 elsif Nkind
(Expr
) = N_Allocator
then
5474 -- For now, too complex to analyze
5479 Comp
:= New_Copy_Tree
(Expr
);
5480 Set_Parent
(Comp
, Parent
(Expr
));
5484 if Nkind
(Comp
) = N_Aggregate
then
5485 return Safe_Aggregate
(Comp
);
5487 return Check_Component
(Comp
);
5491 -- Start of processing for In_Place_Assign_OK
5494 if Present
(Component_Associations
(N
)) then
5496 -- On assignment, sliding can take place, so we cannot do the
5497 -- assignment in place unless the bounds of the aggregate are
5498 -- statically equal to those of the target.
5500 -- If the aggregate is given by an others choice, the bounds are
5501 -- derived from the left-hand side, and the assignment is safe if
5502 -- the expression is.
5504 if Is_Others_Aggregate
(N
) then
5507 (Expression
(First
(Component_Associations
(N
))));
5510 Aggr_In
:= First_Index
(Etype
(N
));
5512 if Nkind
(Parent
(N
)) = N_Assignment_Statement
then
5513 Obj_In
:= First_Index
(Etype
(Name
(Parent
(N
))));
5516 -- Context is an allocator. Check bounds of aggregate against
5517 -- given type in qualified expression.
5519 pragma Assert
(Nkind
(Parent
(Parent
(N
))) = N_Allocator
);
5521 First_Index
(Etype
(Entity
(Subtype_Mark
(Parent
(N
)))));
5524 while Present
(Aggr_In
) loop
5525 Get_Index_Bounds
(Aggr_In
, Aggr_Lo
, Aggr_Hi
);
5526 Get_Index_Bounds
(Obj_In
, Obj_Lo
, Obj_Hi
);
5528 if not Compile_Time_Known_Value
(Aggr_Lo
)
5529 or else not Compile_Time_Known_Value
(Aggr_Hi
)
5530 or else not Compile_Time_Known_Value
(Obj_Lo
)
5531 or else not Compile_Time_Known_Value
(Obj_Hi
)
5532 or else Expr_Value
(Aggr_Lo
) /= Expr_Value
(Obj_Lo
)
5533 or else Expr_Value
(Aggr_Hi
) /= Expr_Value
(Obj_Hi
)
5538 Next_Index
(Aggr_In
);
5539 Next_Index
(Obj_In
);
5543 -- Now check the component values themselves
5545 return Safe_Aggregate
(N
);
5546 end In_Place_Assign_OK
;
5552 procedure Others_Check
(Sub_Aggr
: Node_Id
; Dim
: Pos
) is
5553 Aggr_Lo
: constant Node_Id
:= Aggr_Low
(Dim
);
5554 Aggr_Hi
: constant Node_Id
:= Aggr_High
(Dim
);
5555 -- The bounds of the aggregate for this dimension
5557 Ind_Typ
: constant Entity_Id
:= Aggr_Index_Typ
(Dim
);
5558 -- The index type for this dimension
5560 Need_To_Check
: Boolean := False;
5562 Choices_Lo
: Node_Id
:= Empty
;
5563 Choices_Hi
: Node_Id
:= Empty
;
5564 -- The lowest and highest discrete choices for a named subaggregate
5566 Nb_Choices
: Int
:= -1;
5567 -- The number of discrete non-others choices in this subaggregate
5569 Nb_Elements
: Uint
:= Uint_0
;
5570 -- The number of elements in a positional aggregate
5572 Cond
: Node_Id
:= Empty
;
5579 -- Check if we have an others choice. If we do make sure that this
5580 -- subaggregate contains at least one element in addition to the
5583 if Range_Checks_Suppressed
(Ind_Typ
) then
5584 Need_To_Check
:= False;
5586 elsif Present
(Expressions
(Sub_Aggr
))
5587 and then Present
(Component_Associations
(Sub_Aggr
))
5589 Need_To_Check
:= True;
5591 elsif Present
(Component_Associations
(Sub_Aggr
)) then
5592 Assoc
:= Last
(Component_Associations
(Sub_Aggr
));
5594 if Nkind
(First
(Choice_List
(Assoc
))) /= N_Others_Choice
then
5595 Need_To_Check
:= False;
5598 -- Count the number of discrete choices. Start with -1 because
5599 -- the others choice does not count.
5601 -- Is there some reason we do not use List_Length here ???
5604 Assoc
:= First
(Component_Associations
(Sub_Aggr
));
5605 while Present
(Assoc
) loop
5606 Choice
:= First
(Choice_List
(Assoc
));
5607 while Present
(Choice
) loop
5608 Nb_Choices
:= Nb_Choices
+ 1;
5615 -- If there is only an others choice nothing to do
5617 Need_To_Check
:= (Nb_Choices
> 0);
5621 Need_To_Check
:= False;
5624 -- If we are dealing with a positional subaggregate with an others
5625 -- choice then compute the number or positional elements.
5627 if Need_To_Check
and then Present
(Expressions
(Sub_Aggr
)) then
5628 Expr
:= First
(Expressions
(Sub_Aggr
));
5629 Nb_Elements
:= Uint_0
;
5630 while Present
(Expr
) loop
5631 Nb_Elements
:= Nb_Elements
+ 1;
5635 -- If the aggregate contains discrete choices and an others choice
5636 -- compute the smallest and largest discrete choice values.
5638 elsif Need_To_Check
then
5639 Compute_Choices_Lo_And_Choices_Hi
: declare
5641 Table
: Case_Table_Type
(1 .. Nb_Choices
);
5642 -- Used to sort all the different choice values
5649 Assoc
:= First
(Component_Associations
(Sub_Aggr
));
5650 while Present
(Assoc
) loop
5651 Choice
:= First
(Choice_List
(Assoc
));
5652 while Present
(Choice
) loop
5653 if Nkind
(Choice
) = N_Others_Choice
then
5657 Get_Index_Bounds
(Choice
, Low
, High
);
5658 Table
(J
).Choice_Lo
:= Low
;
5659 Table
(J
).Choice_Hi
:= High
;
5668 -- Sort the discrete choices
5670 Sort_Case_Table
(Table
);
5672 Choices_Lo
:= Table
(1).Choice_Lo
;
5673 Choices_Hi
:= Table
(Nb_Choices
).Choice_Hi
;
5674 end Compute_Choices_Lo_And_Choices_Hi
;
5677 -- If no others choice in this subaggregate, or the aggregate
5678 -- comprises only an others choice, nothing to do.
5680 if not Need_To_Check
then
5683 -- If we are dealing with an aggregate containing an others choice
5684 -- and positional components, we generate the following test:
5686 -- if Ind_Typ'Pos (Aggr_Lo) + (Nb_Elements - 1) >
5687 -- Ind_Typ'Pos (Aggr_Hi)
5689 -- raise Constraint_Error;
5692 elsif Nb_Elements
> Uint_0
then
5698 Make_Attribute_Reference
(Loc
,
5699 Prefix
=> New_Occurrence_Of
(Ind_Typ
, Loc
),
5700 Attribute_Name
=> Name_Pos
,
5703 (Duplicate_Subexpr_Move_Checks
(Aggr_Lo
))),
5704 Right_Opnd
=> Make_Integer_Literal
(Loc
, Nb_Elements
- 1)),
5707 Make_Attribute_Reference
(Loc
,
5708 Prefix
=> New_Occurrence_Of
(Ind_Typ
, Loc
),
5709 Attribute_Name
=> Name_Pos
,
5710 Expressions
=> New_List
(
5711 Duplicate_Subexpr_Move_Checks
(Aggr_Hi
))));
5713 -- If we are dealing with an aggregate containing an others choice
5714 -- and discrete choices we generate the following test:
5716 -- [constraint_error when
5717 -- Choices_Lo < Aggr_Lo or else Choices_Hi > Aggr_Hi];
5724 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Choices_Lo
),
5725 Right_Opnd
=> Duplicate_Subexpr_Move_Checks
(Aggr_Lo
)),
5729 Left_Opnd
=> Duplicate_Subexpr
(Choices_Hi
),
5730 Right_Opnd
=> Duplicate_Subexpr
(Aggr_Hi
)));
5733 if Present
(Cond
) then
5735 Make_Raise_Constraint_Error
(Loc
,
5737 Reason
=> CE_Length_Check_Failed
));
5738 -- Questionable reason code, shouldn't that be a
5739 -- CE_Range_Check_Failed ???
5742 -- Now look inside the subaggregate to see if there is more work
5744 if Dim
< Aggr_Dimension
then
5746 -- Process positional components
5748 if Present
(Expressions
(Sub_Aggr
)) then
5749 Expr
:= First
(Expressions
(Sub_Aggr
));
5750 while Present
(Expr
) loop
5751 Others_Check
(Expr
, Dim
+ 1);
5756 -- Process component associations
5758 if Present
(Component_Associations
(Sub_Aggr
)) then
5759 Assoc
:= First
(Component_Associations
(Sub_Aggr
));
5760 while Present
(Assoc
) loop
5761 Expr
:= Expression
(Assoc
);
5762 Others_Check
(Expr
, Dim
+ 1);
5769 -------------------------
5770 -- Safe_Left_Hand_Side --
5771 -------------------------
5773 function Safe_Left_Hand_Side
(N
: Node_Id
) return Boolean is
5774 function Is_Safe_Index
(Indx
: Node_Id
) return Boolean;
5775 -- If the left-hand side includes an indexed component, check that
5776 -- the indexes are free of side effects.
5782 function Is_Safe_Index
(Indx
: Node_Id
) return Boolean is
5784 if Is_Entity_Name
(Indx
) then
5787 elsif Nkind
(Indx
) = N_Integer_Literal
then
5790 elsif Nkind
(Indx
) = N_Function_Call
5791 and then Is_Entity_Name
(Name
(Indx
))
5792 and then Has_Pragma_Pure_Function
(Entity
(Name
(Indx
)))
5796 elsif Nkind
(Indx
) = N_Type_Conversion
5797 and then Is_Safe_Index
(Expression
(Indx
))
5806 -- Start of processing for Safe_Left_Hand_Side
5809 if Is_Entity_Name
(N
) then
5812 elsif Nkind_In
(N
, N_Explicit_Dereference
, N_Selected_Component
)
5813 and then Safe_Left_Hand_Side
(Prefix
(N
))
5817 elsif Nkind
(N
) = N_Indexed_Component
5818 and then Safe_Left_Hand_Side
(Prefix
(N
))
5819 and then Is_Safe_Index
(First
(Expressions
(N
)))
5823 elsif Nkind
(N
) = N_Unchecked_Type_Conversion
then
5824 return Safe_Left_Hand_Side
(Expression
(N
));
5829 end Safe_Left_Hand_Side
;
5834 -- Holds the temporary aggregate value
5837 -- Holds the declaration of Tmp
5839 Aggr_Code
: List_Id
;
5840 Parent_Node
: Node_Id
;
5841 Parent_Kind
: Node_Kind
;
5843 -- Start of processing for Expand_Array_Aggregate
5846 -- Do not touch the special aggregates of attributes used for Asm calls
5848 if Is_RTE
(Ctyp
, RE_Asm_Input_Operand
)
5849 or else Is_RTE
(Ctyp
, RE_Asm_Output_Operand
)
5853 -- Do not expand an aggregate for an array type which contains tasks if
5854 -- the aggregate is associated with an unexpanded return statement of a
5855 -- build-in-place function. The aggregate is expanded when the related
5856 -- return statement (rewritten into an extended return) is processed.
5857 -- This delay ensures that any temporaries and initialization code
5858 -- generated for the aggregate appear in the proper return block and
5859 -- use the correct _chain and _master.
5861 elsif Has_Task
(Base_Type
(Etype
(N
)))
5862 and then Nkind
(Parent
(N
)) = N_Simple_Return_Statement
5863 and then Is_Build_In_Place_Function
5864 (Return_Applies_To
(Return_Statement_Entity
(Parent
(N
))))
5868 -- Do not attempt expansion if error already detected. We may reach this
5869 -- point in spite of previous errors when compiling with -gnatq, to
5870 -- force all possible errors (this is the usual ACATS mode).
5872 elsif Error_Posted
(N
) then
5876 -- If the semantic analyzer has determined that aggregate N will raise
5877 -- Constraint_Error at run time, then the aggregate node has been
5878 -- replaced with an N_Raise_Constraint_Error node and we should
5881 pragma Assert
(not Raises_Constraint_Error
(N
));
5885 -- Check that the index range defined by aggregate bounds is
5886 -- compatible with corresponding index subtype.
5888 Index_Compatibility_Check
: declare
5889 Aggr_Index_Range
: Node_Id
:= First_Index
(Typ
);
5890 -- The current aggregate index range
5892 Index_Constraint
: Node_Id
:= First_Index
(Etype
(Typ
));
5893 -- The corresponding index constraint against which we have to
5894 -- check the above aggregate index range.
5897 Compute_Others_Present
(N
, 1);
5899 for J
in 1 .. Aggr_Dimension
loop
5900 -- There is no need to emit a check if an others choice is present
5901 -- for this array aggregate dimension since in this case one of
5902 -- N's subaggregates has taken its bounds from the context and
5903 -- these bounds must have been checked already. In addition all
5904 -- subaggregates corresponding to the same dimension must all have
5905 -- the same bounds (checked in (c) below).
5907 if not Range_Checks_Suppressed
(Etype
(Index_Constraint
))
5908 and then not Others_Present
(J
)
5910 -- We don't use Checks.Apply_Range_Check here because it emits
5911 -- a spurious check. Namely it checks that the range defined by
5912 -- the aggregate bounds is nonempty. But we know this already
5915 Check_Bounds
(Aggr_Index_Range
, Index_Constraint
);
5918 -- Save the low and high bounds of the aggregate index as well as
5919 -- the index type for later use in checks (b) and (c) below.
5921 Aggr_Low
(J
) := Low_Bound
(Aggr_Index_Range
);
5922 Aggr_High
(J
) := High_Bound
(Aggr_Index_Range
);
5924 Aggr_Index_Typ
(J
) := Etype
(Index_Constraint
);
5926 Next_Index
(Aggr_Index_Range
);
5927 Next_Index
(Index_Constraint
);
5929 end Index_Compatibility_Check
;
5933 -- If an others choice is present check that no aggregate index is
5934 -- outside the bounds of the index constraint.
5936 Others_Check
(N
, 1);
5940 -- For multidimensional arrays make sure that all subaggregates
5941 -- corresponding to the same dimension have the same bounds.
5943 if Aggr_Dimension
> 1 then
5944 Check_Same_Aggr_Bounds
(N
, 1);
5949 -- If we have a default component value, or simple initialization is
5950 -- required for the component type, then we replace <> in component
5951 -- associations by the required default value.
5954 Default_Val
: Node_Id
;
5958 if (Present
(Default_Aspect_Component_Value
(Typ
))
5959 or else Needs_Simple_Initialization
(Ctyp
))
5960 and then Present
(Component_Associations
(N
))
5962 Assoc
:= First
(Component_Associations
(N
));
5963 while Present
(Assoc
) loop
5964 if Nkind
(Assoc
) = N_Component_Association
5965 and then Box_Present
(Assoc
)
5967 Set_Box_Present
(Assoc
, False);
5969 if Present
(Default_Aspect_Component_Value
(Typ
)) then
5970 Default_Val
:= Default_Aspect_Component_Value
(Typ
);
5972 Default_Val
:= Get_Simple_Init_Val
(Ctyp
, N
);
5975 Set_Expression
(Assoc
, New_Copy_Tree
(Default_Val
));
5976 Analyze_And_Resolve
(Expression
(Assoc
), Ctyp
);
5986 -- Here we test for is packed array aggregate that we can handle at
5987 -- compile time. If so, return with transformation done. Note that we do
5988 -- this even if the aggregate is nested, because once we have done this
5989 -- processing, there is no more nested aggregate.
5991 if Packed_Array_Aggregate_Handled
(N
) then
5995 -- At this point we try to convert to positional form
5997 if Ekind
(Current_Scope
) = E_Package
5998 and then Static_Elaboration_Desired
(Current_Scope
)
6000 Convert_To_Positional
(N
, Max_Others_Replicate
=> 100);
6002 Convert_To_Positional
(N
);
6005 -- if the result is no longer an aggregate (e.g. it may be a string
6006 -- literal, or a temporary which has the needed value), then we are
6007 -- done, since there is no longer a nested aggregate.
6009 if Nkind
(N
) /= N_Aggregate
then
6012 -- We are also done if the result is an analyzed aggregate, indicating
6013 -- that Convert_To_Positional succeeded and reanalyzed the rewritten
6016 elsif Analyzed
(N
) and then N
/= Original_Node
(N
) then
6020 -- If all aggregate components are compile-time known and the aggregate
6021 -- has been flattened, nothing left to do. The same occurs if the
6022 -- aggregate is used to initialize the components of a statically
6023 -- allocated dispatch table.
6025 if Compile_Time_Known_Aggregate
(N
)
6026 or else Is_Static_Dispatch_Table_Aggregate
(N
)
6028 Set_Expansion_Delayed
(N
, False);
6032 -- Now see if back end processing is possible
6034 if Backend_Processing_Possible
(N
) then
6036 -- If the aggregate is static but the constraints are not, build
6037 -- a static subtype for the aggregate, so that Gigi can place it
6038 -- in static memory. Perform an unchecked_conversion to the non-
6039 -- static type imposed by the context.
6042 Itype
: constant Entity_Id
:= Etype
(N
);
6044 Needs_Type
: Boolean := False;
6047 Index
:= First_Index
(Itype
);
6048 while Present
(Index
) loop
6049 if not Is_OK_Static_Subtype
(Etype
(Index
)) then
6058 Build_Constrained_Type
(Positional
=> True);
6059 Rewrite
(N
, Unchecked_Convert_To
(Itype
, N
));
6069 -- Delay expansion for nested aggregates: it will be taken care of when
6070 -- the parent aggregate is expanded.
6072 Parent_Node
:= Parent
(N
);
6073 Parent_Kind
:= Nkind
(Parent_Node
);
6075 if Parent_Kind
= N_Qualified_Expression
then
6076 Parent_Node
:= Parent
(Parent_Node
);
6077 Parent_Kind
:= Nkind
(Parent_Node
);
6080 if Parent_Kind
= N_Aggregate
6081 or else Parent_Kind
= N_Extension_Aggregate
6082 or else Parent_Kind
= N_Component_Association
6083 or else (Parent_Kind
= N_Object_Declaration
6084 and then Needs_Finalization
(Typ
))
6085 or else (Parent_Kind
= N_Assignment_Statement
6086 and then Inside_Init_Proc
)
6088 if Static_Array_Aggregate
(N
)
6089 or else Compile_Time_Known_Aggregate
(N
)
6091 Set_Expansion_Delayed
(N
, False);
6094 Set_Expansion_Delayed
(N
);
6101 -- Look if in place aggregate expansion is possible
6103 -- For object declarations we build the aggregate in place, unless
6104 -- the array is bit-packed or the component is controlled.
6106 -- For assignments we do the assignment in place if all the component
6107 -- associations have compile-time known values. For other cases we
6108 -- create a temporary. The analysis for safety of on-line assignment
6109 -- is delicate, i.e. we don't know how to do it fully yet ???
6111 -- For allocators we assign to the designated object in place if the
6112 -- aggregate meets the same conditions as other in-place assignments.
6113 -- In this case the aggregate may not come from source but was created
6114 -- for default initialization, e.g. with Initialize_Scalars.
6116 if Requires_Transient_Scope
(Typ
) then
6117 Establish_Transient_Scope
(N
, Sec_Stack
=> False);
6120 if Has_Default_Init_Comps
(N
) then
6121 Maybe_In_Place_OK
:= False;
6123 elsif Is_Bit_Packed_Array
(Typ
)
6124 or else Has_Controlled_Component
(Typ
)
6126 Maybe_In_Place_OK
:= False;
6129 Maybe_In_Place_OK
:=
6130 (Nkind
(Parent
(N
)) = N_Assignment_Statement
6131 and then In_Place_Assign_OK
)
6134 (Nkind
(Parent
(Parent
(N
))) = N_Allocator
6135 and then In_Place_Assign_OK
);
6138 -- If this is an array of tasks, it will be expanded into build-in-place
6139 -- assignments. Build an activation chain for the tasks now.
6141 if Has_Task
(Etype
(N
)) then
6142 Build_Activation_Chain_Entity
(N
);
6145 -- Perform in-place expansion of aggregate in an object declaration.
6146 -- Note: actions generated for the aggregate will be captured in an
6147 -- expression-with-actions statement so that they can be transferred
6148 -- to freeze actions later if there is an address clause for the
6149 -- object. (Note: we don't use a block statement because this would
6150 -- cause generated freeze nodes to be elaborated in the wrong scope).
6152 -- Do not perform in-place expansion for SPARK 05 because aggregates are
6153 -- expected to appear in qualified form. In-place expansion eliminates
6154 -- the qualification and eventually violates this SPARK 05 restiction.
6156 -- Should document the rest of the guards ???
6158 if not Has_Default_Init_Comps
(N
)
6159 and then Comes_From_Source
(Parent_Node
)
6160 and then Parent_Kind
= N_Object_Declaration
6161 and then Present
(Expression
(Parent_Node
))
6163 Must_Slide
(Etype
(Defining_Identifier
(Parent_Node
)), Typ
)
6164 and then not Has_Controlled_Component
(Typ
)
6165 and then not Is_Bit_Packed_Array
(Typ
)
6166 and then not Restriction_Check_Required
(SPARK_05
)
6168 In_Place_Assign_OK_For_Declaration
:= True;
6169 Tmp
:= Defining_Identifier
(Parent_Node
);
6170 Set_No_Initialization
(Parent_Node
);
6171 Set_Expression
(Parent_Node
, Empty
);
6173 -- Set kind and type of the entity, for use in the analysis
6174 -- of the subsequent assignments. If the nominal type is not
6175 -- constrained, build a subtype from the known bounds of the
6176 -- aggregate. If the declaration has a subtype mark, use it,
6177 -- otherwise use the itype of the aggregate.
6179 Set_Ekind
(Tmp
, E_Variable
);
6181 if not Is_Constrained
(Typ
) then
6182 Build_Constrained_Type
(Positional
=> False);
6184 elsif Is_Entity_Name
(Object_Definition
(Parent_Node
))
6185 and then Is_Constrained
(Entity
(Object_Definition
(Parent_Node
)))
6187 Set_Etype
(Tmp
, Entity
(Object_Definition
(Parent_Node
)));
6190 Set_Size_Known_At_Compile_Time
(Typ
, False);
6191 Set_Etype
(Tmp
, Typ
);
6194 elsif Maybe_In_Place_OK
6195 and then Nkind
(Parent
(N
)) = N_Qualified_Expression
6196 and then Nkind
(Parent
(Parent
(N
))) = N_Allocator
6198 Set_Expansion_Delayed
(N
);
6201 -- In the remaining cases the aggregate is the RHS of an assignment
6203 elsif Maybe_In_Place_OK
6204 and then Safe_Left_Hand_Side
(Name
(Parent
(N
)))
6206 Tmp
:= Name
(Parent
(N
));
6208 if Etype
(Tmp
) /= Etype
(N
) then
6209 Apply_Length_Check
(N
, Etype
(Tmp
));
6211 if Nkind
(N
) = N_Raise_Constraint_Error
then
6213 -- Static error, nothing further to expand
6219 -- If a slice assignment has an aggregate with a single others_choice,
6220 -- the assignment can be done in place even if bounds are not static,
6221 -- by converting it into a loop over the discrete range of the slice.
6223 elsif Maybe_In_Place_OK
6224 and then Nkind
(Name
(Parent
(N
))) = N_Slice
6225 and then Is_Others_Aggregate
(N
)
6227 Tmp
:= Name
(Parent
(N
));
6229 -- Set type of aggregate to be type of lhs in assignment, in order
6230 -- to suppress redundant length checks.
6232 Set_Etype
(N
, Etype
(Tmp
));
6236 -- In place aggregate expansion is not possible
6239 Maybe_In_Place_OK
:= False;
6240 Tmp
:= Make_Temporary
(Loc
, 'A', N
);
6242 Make_Object_Declaration
(Loc
,
6243 Defining_Identifier
=> Tmp
,
6244 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
));
6245 Set_No_Initialization
(Tmp_Decl
, True);
6247 -- If we are within a loop, the temporary will be pushed on the
6248 -- stack at each iteration. If the aggregate is the expression for an
6249 -- allocator, it will be immediately copied to the heap and can
6250 -- be reclaimed at once. We create a transient scope around the
6251 -- aggregate for this purpose.
6253 if Ekind
(Current_Scope
) = E_Loop
6254 and then Nkind
(Parent
(Parent
(N
))) = N_Allocator
6256 Establish_Transient_Scope
(N
, Sec_Stack
=> False);
6259 Insert_Action
(N
, Tmp_Decl
);
6262 -- Construct and insert the aggregate code. We can safely suppress index
6263 -- checks because this code is guaranteed not to raise CE on index
6264 -- checks. However we should *not* suppress all checks.
6270 if Nkind
(Tmp
) = N_Defining_Identifier
then
6271 Target
:= New_Occurrence_Of
(Tmp
, Loc
);
6274 if Has_Default_Init_Comps
(N
) then
6276 -- Ada 2005 (AI-287): This case has not been analyzed???
6278 raise Program_Error
;
6281 -- Name in assignment is explicit dereference
6283 Target
:= New_Copy
(Tmp
);
6286 -- If we are to generate an in place assignment for a declaration or
6287 -- an assignment statement, and the assignment can be done directly
6288 -- by the back end, then do not expand further.
6290 -- ??? We can also do that if in place expansion is not possible but
6291 -- then we could go into an infinite recursion.
6293 if (In_Place_Assign_OK_For_Declaration
or else Maybe_In_Place_OK
)
6294 and then not CodePeer_Mode
6295 and then not Modify_Tree_For_C
6296 and then not Possible_Bit_Aligned_Component
(Target
)
6297 and then not Is_Possibly_Unaligned_Slice
(Target
)
6298 and then Aggr_Assignment_OK_For_Backend
(N
)
6300 if Maybe_In_Place_OK
then
6306 Make_Assignment_Statement
(Loc
,
6308 Expression
=> New_Copy_Tree
(N
)));
6312 Build_Array_Aggr_Code
(N
,
6314 Index
=> First_Index
(Typ
),
6316 Scalar_Comp
=> Is_Scalar_Type
(Ctyp
));
6319 -- Save the last assignment statement associated with the aggregate
6320 -- when building a controlled object. This reference is utilized by
6321 -- the finalization machinery when marking an object as successfully
6324 if Needs_Finalization
(Typ
)
6325 and then Is_Entity_Name
(Target
)
6326 and then Present
(Entity
(Target
))
6327 and then Ekind_In
(Entity
(Target
), E_Constant
, E_Variable
)
6329 Set_Last_Aggregate_Assignment
(Entity
(Target
), Last
(Aggr_Code
));
6333 -- If the aggregate is the expression in a declaration, the expanded
6334 -- code must be inserted after it. The defining entity might not come
6335 -- from source if this is part of an inlined body, but the declaration
6338 if Comes_From_Source
(Tmp
)
6340 (Nkind
(Parent
(N
)) = N_Object_Declaration
6341 and then Comes_From_Source
(Parent
(N
))
6342 and then Tmp
= Defining_Entity
(Parent
(N
)))
6345 Node_After
: constant Node_Id
:= Next
(Parent_Node
);
6348 Insert_Actions_After
(Parent_Node
, Aggr_Code
);
6350 if Parent_Kind
= N_Object_Declaration
then
6351 Collect_Initialization_Statements
6352 (Obj
=> Tmp
, N
=> Parent_Node
, Node_After
=> Node_After
);
6357 Insert_Actions
(N
, Aggr_Code
);
6360 -- If the aggregate has been assigned in place, remove the original
6363 if Nkind
(Parent
(N
)) = N_Assignment_Statement
6364 and then Maybe_In_Place_OK
6366 Rewrite
(Parent
(N
), Make_Null_Statement
(Loc
));
6368 elsif Nkind
(Parent
(N
)) /= N_Object_Declaration
6369 or else Tmp
/= Defining_Identifier
(Parent
(N
))
6371 Rewrite
(N
, New_Occurrence_Of
(Tmp
, Loc
));
6372 Analyze_And_Resolve
(N
, Typ
);
6374 end Expand_Array_Aggregate
;
6376 ------------------------
6377 -- Expand_N_Aggregate --
6378 ------------------------
6380 procedure Expand_N_Aggregate
(N
: Node_Id
) is
6382 -- Record aggregate case
6384 if Is_Record_Type
(Etype
(N
)) then
6385 Expand_Record_Aggregate
(N
);
6387 -- Array aggregate case
6390 -- A special case, if we have a string subtype with bounds 1 .. N,
6391 -- where N is known at compile time, and the aggregate is of the
6392 -- form (others => 'x'), with a single choice and no expressions,
6393 -- and N is less than 80 (an arbitrary limit for now), then replace
6394 -- the aggregate by the equivalent string literal (but do not mark
6395 -- it as static since it is not).
6397 -- Note: this entire circuit is redundant with respect to code in
6398 -- Expand_Array_Aggregate that collapses others choices to positional
6399 -- form, but there are two problems with that circuit:
6401 -- a) It is limited to very small cases due to ill-understood
6402 -- interactions with bootstrapping. That limit is removed by
6403 -- use of the No_Implicit_Loops restriction.
6405 -- b) It incorrectly ends up with the resulting expressions being
6406 -- considered static when they are not. For example, the
6407 -- following test should fail:
6409 -- pragma Restrictions (No_Implicit_Loops);
6410 -- package NonSOthers4 is
6411 -- B : constant String (1 .. 6) := (others => 'A');
6412 -- DH : constant String (1 .. 8) := B & "BB";
6414 -- pragma Export (C, X, Link_Name => DH);
6417 -- But it succeeds (DH looks static to pragma Export)
6419 -- To be sorted out ???
6421 if Present
(Component_Associations
(N
)) then
6423 CA
: constant Node_Id
:= First
(Component_Associations
(N
));
6424 MX
: constant := 80;
6427 if Nkind
(First
(Choice_List
(CA
))) = N_Others_Choice
6428 and then Nkind
(Expression
(CA
)) = N_Character_Literal
6429 and then No
(Expressions
(N
))
6432 T
: constant Entity_Id
:= Etype
(N
);
6433 X
: constant Node_Id
:= First_Index
(T
);
6434 EC
: constant Node_Id
:= Expression
(CA
);
6435 CV
: constant Uint
:= Char_Literal_Value
(EC
);
6436 CC
: constant Int
:= UI_To_Int
(CV
);
6439 if Nkind
(X
) = N_Range
6440 and then Compile_Time_Known_Value
(Low_Bound
(X
))
6441 and then Expr_Value
(Low_Bound
(X
)) = 1
6442 and then Compile_Time_Known_Value
(High_Bound
(X
))
6445 Hi
: constant Uint
:= Expr_Value
(High_Bound
(X
));
6451 for J
in 1 .. UI_To_Int
(Hi
) loop
6452 Store_String_Char
(Char_Code
(CC
));
6456 Make_String_Literal
(Sloc
(N
),
6457 Strval
=> End_String
));
6459 if CC
>= Int
(2 ** 16) then
6460 Set_Has_Wide_Wide_Character
(N
);
6461 elsif CC
>= Int
(2 ** 8) then
6462 Set_Has_Wide_Character
(N
);
6465 Analyze_And_Resolve
(N
, T
);
6466 Set_Is_Static_Expression
(N
, False);
6476 -- Not that special case, so normal expansion of array aggregate
6478 Expand_Array_Aggregate
(N
);
6482 when RE_Not_Available
=>
6484 end Expand_N_Aggregate
;
6486 ------------------------------
6487 -- Expand_N_Delta_Aggregate --
6488 ------------------------------
6490 procedure Expand_N_Delta_Aggregate
(N
: Node_Id
) is
6491 Loc
: constant Source_Ptr
:= Sloc
(N
);
6492 Typ
: constant Entity_Id
:= Etype
(N
);
6497 Make_Object_Declaration
(Loc
,
6498 Defining_Identifier
=> Make_Temporary
(Loc
, 'T'),
6499 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
6500 Expression
=> New_Copy_Tree
(Expression
(N
)));
6502 if Is_Array_Type
(Etype
(N
)) then
6503 Expand_Delta_Array_Aggregate
(N
, New_List
(Decl
));
6505 Expand_Delta_Record_Aggregate
(N
, New_List
(Decl
));
6507 end Expand_N_Delta_Aggregate
;
6509 ----------------------------------
6510 -- Expand_Delta_Array_Aggregate --
6511 ----------------------------------
6513 procedure Expand_Delta_Array_Aggregate
(N
: Node_Id
; Deltas
: List_Id
) is
6514 Loc
: constant Source_Ptr
:= Sloc
(N
);
6515 Temp
: constant Entity_Id
:= Defining_Identifier
(First
(Deltas
));
6518 function Generate_Loop
(C
: Node_Id
) return Node_Id
;
6519 -- Generate a loop containing individual component assignments for
6520 -- choices that are ranges, subtype indications, subtype names, and
6521 -- iterated component associations.
6527 function Generate_Loop
(C
: Node_Id
) return Node_Id
is
6528 Sl
: constant Source_Ptr
:= Sloc
(C
);
6532 if Nkind
(Parent
(C
)) = N_Iterated_Component_Association
then
6534 Make_Defining_Identifier
(Loc
,
6535 Chars
=> (Chars
(Defining_Identifier
(Parent
(C
)))));
6537 Ix
:= Make_Temporary
(Sl
, 'I');
6541 Make_Loop_Statement
(Loc
,
6543 Make_Iteration_Scheme
(Sl
,
6544 Loop_Parameter_Specification
=>
6545 Make_Loop_Parameter_Specification
(Sl
,
6546 Defining_Identifier
=> Ix
,
6547 Discrete_Subtype_Definition
=> New_Copy_Tree
(C
))),
6549 Statements
=> New_List
(
6550 Make_Assignment_Statement
(Sl
,
6552 Make_Indexed_Component
(Sl
,
6553 Prefix
=> New_Occurrence_Of
(Temp
, Sl
),
6554 Expressions
=> New_List
(New_Occurrence_Of
(Ix
, Sl
))),
6555 Expression
=> New_Copy_Tree
(Expression
(Assoc
)))),
6556 End_Label
=> Empty
);
6563 -- Start of processing for Expand_Delta_Array_Aggregate
6566 Assoc
:= First
(Component_Associations
(N
));
6567 while Present
(Assoc
) loop
6568 Choice
:= First
(Choice_List
(Assoc
));
6569 if Nkind
(Assoc
) = N_Iterated_Component_Association
then
6570 while Present
(Choice
) loop
6571 Append_To
(Deltas
, Generate_Loop
(Choice
));
6576 while Present
(Choice
) loop
6578 -- Choice can be given by a range, a subtype indication, a
6579 -- subtype name, a scalar value, or an entity.
6581 if Nkind
(Choice
) = N_Range
6582 or else (Is_Entity_Name
(Choice
)
6583 and then Is_Type
(Entity
(Choice
)))
6585 Append_To
(Deltas
, Generate_Loop
(Choice
));
6587 elsif Nkind
(Choice
) = N_Subtype_Indication
then
6589 Generate_Loop
(Range_Expression
(Constraint
(Choice
))));
6593 Make_Assignment_Statement
(Sloc
(Choice
),
6595 Make_Indexed_Component
(Sloc
(Choice
),
6596 Prefix
=> New_Occurrence_Of
(Temp
, Loc
),
6597 Expressions
=> New_List
(New_Copy_Tree
(Choice
))),
6598 Expression
=> New_Copy_Tree
(Expression
(Assoc
))));
6608 Insert_Actions
(N
, Deltas
);
6609 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
6610 end Expand_Delta_Array_Aggregate
;
6612 -----------------------------------
6613 -- Expand_Delta_Record_Aggregate --
6614 -----------------------------------
6616 procedure Expand_Delta_Record_Aggregate
(N
: Node_Id
; Deltas
: List_Id
) is
6617 Loc
: constant Source_Ptr
:= Sloc
(N
);
6618 Temp
: constant Entity_Id
:= Defining_Identifier
(First
(Deltas
));
6623 Assoc
:= First
(Component_Associations
(N
));
6625 while Present
(Assoc
) loop
6626 Choice
:= First
(Choice_List
(Assoc
));
6627 while Present
(Choice
) loop
6629 Make_Assignment_Statement
(Sloc
(Choice
),
6631 Make_Selected_Component
(Sloc
(Choice
),
6632 Prefix
=> New_Occurrence_Of
(Temp
, Loc
),
6633 Selector_Name
=> Make_Identifier
(Loc
, Chars
(Choice
))),
6634 Expression
=> New_Copy_Tree
(Expression
(Assoc
))));
6641 Insert_Actions
(N
, Deltas
);
6642 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
6643 end Expand_Delta_Record_Aggregate
;
6645 ----------------------------------
6646 -- Expand_N_Extension_Aggregate --
6647 ----------------------------------
6649 -- If the ancestor part is an expression, add a component association for
6650 -- the parent field. If the type of the ancestor part is not the direct
6651 -- parent of the expected type, build recursively the needed ancestors.
6652 -- If the ancestor part is a subtype_mark, replace aggregate with a
6653 -- declaration for a temporary of the expected type, followed by
6654 -- individual assignments to the given components.
6656 procedure Expand_N_Extension_Aggregate
(N
: Node_Id
) is
6657 A
: constant Node_Id
:= Ancestor_Part
(N
);
6658 Loc
: constant Source_Ptr
:= Sloc
(N
);
6659 Typ
: constant Entity_Id
:= Etype
(N
);
6662 -- If the ancestor is a subtype mark, an init proc must be called
6663 -- on the resulting object which thus has to be materialized in
6666 if Is_Entity_Name
(A
) and then Is_Type
(Entity
(A
)) then
6667 Convert_To_Assignments
(N
, Typ
);
6669 -- The extension aggregate is transformed into a record aggregate
6670 -- of the following form (c1 and c2 are inherited components)
6672 -- (Exp with c3 => a, c4 => b)
6673 -- ==> (c1 => Exp.c1, c2 => Exp.c2, c3 => a, c4 => b)
6678 if Tagged_Type_Expansion
then
6679 Expand_Record_Aggregate
(N
,
6682 (Node
(First_Elmt
(Access_Disp_Table
(Typ
))), Loc
),
6685 -- No tag is needed in the case of a VM
6688 Expand_Record_Aggregate
(N
, Parent_Expr
=> A
);
6693 when RE_Not_Available
=>
6695 end Expand_N_Extension_Aggregate
;
6697 -----------------------------
6698 -- Expand_Record_Aggregate --
6699 -----------------------------
6701 procedure Expand_Record_Aggregate
6703 Orig_Tag
: Node_Id
:= Empty
;
6704 Parent_Expr
: Node_Id
:= Empty
)
6706 Loc
: constant Source_Ptr
:= Sloc
(N
);
6707 Comps
: constant List_Id
:= Component_Associations
(N
);
6708 Typ
: constant Entity_Id
:= Etype
(N
);
6709 Base_Typ
: constant Entity_Id
:= Base_Type
(Typ
);
6711 Static_Components
: Boolean := True;
6712 -- Flag to indicate whether all components are compile-time known,
6713 -- and the aggregate can be constructed statically and handled by
6714 -- the back-end. Set to False by Component_OK_For_Backend.
6716 procedure Build_Back_End_Aggregate
;
6717 -- Build a proper aggregate to be handled by the back-end
6719 function Compile_Time_Known_Composite_Value
(N
: Node_Id
) return Boolean;
6720 -- Returns true if N is an expression of composite type which can be
6721 -- fully evaluated at compile time without raising constraint error.
6722 -- Such expressions can be passed as is to Gigi without any expansion.
6724 -- This returns true for N_Aggregate with Compile_Time_Known_Aggregate
6725 -- set and constants whose expression is such an aggregate, recursively.
6727 function Component_OK_For_Backend
return Boolean;
6728 -- Check for presence of a component which makes it impossible for the
6729 -- backend to process the aggregate, thus requiring the use of a series
6730 -- of assignment statements. Cases checked for are a nested aggregate
6731 -- needing Late_Expansion, the presence of a tagged component which may
6732 -- need tag adjustment, and a bit unaligned component reference.
6734 -- We also force expansion into assignments if a component is of a
6735 -- mutable type (including a private type with discriminants) because
6736 -- in that case the size of the component to be copied may be smaller
6737 -- than the side of the target, and there is no simple way for gigi
6738 -- to compute the size of the object to be copied.
6740 -- NOTE: This is part of the ongoing work to define precisely the
6741 -- interface between front-end and back-end handling of aggregates.
6742 -- In general it is desirable to pass aggregates as they are to gigi,
6743 -- in order to minimize elaboration code. This is one case where the
6744 -- semantics of Ada complicate the analysis and lead to anomalies in
6745 -- the gcc back-end if the aggregate is not expanded into assignments.
6747 -- NOTE: This sets the global Static_Components to False in most, but
6748 -- not all, cases when it returns False.
6750 function Has_Per_Object_Constraint
(L
: List_Id
) return Boolean;
6751 -- Return True if any element of L has Has_Per_Object_Constraint set.
6752 -- L should be the Choices component of an N_Component_Association.
6754 function Has_Visible_Private_Ancestor
(Id
: E
) return Boolean;
6755 -- If any ancestor of the current type is private, the aggregate
6756 -- cannot be built in place. We cannot rely on Has_Private_Ancestor,
6757 -- because it will not be set when type and its parent are in the
6758 -- same scope, and the parent component needs expansion.
6760 function Top_Level_Aggregate
(N
: Node_Id
) return Node_Id
;
6761 -- For nested aggregates return the ultimate enclosing aggregate; for
6762 -- non-nested aggregates return N.
6764 ------------------------------
6765 -- Build_Back_End_Aggregate --
6766 ------------------------------
6768 procedure Build_Back_End_Aggregate
is
6771 Tag_Value
: Node_Id
;
6774 if Nkind
(N
) = N_Aggregate
then
6776 -- If the aggregate is static and can be handled by the back-end,
6777 -- nothing left to do.
6779 if Static_Components
then
6780 Set_Compile_Time_Known_Aggregate
(N
);
6781 Set_Expansion_Delayed
(N
, False);
6785 -- If no discriminants, nothing special to do
6787 if not Has_Discriminants
(Typ
) then
6790 -- Case of discriminants present
6792 elsif Is_Derived_Type
(Typ
) then
6794 -- For untagged types, non-stored discriminants are replaced with
6795 -- stored discriminants, which are the ones that gigi uses to
6796 -- describe the type and its components.
6798 Generate_Aggregate_For_Derived_Type
: declare
6799 procedure Prepend_Stored_Values
(T
: Entity_Id
);
6800 -- Scan the list of stored discriminants of the type, and add
6801 -- their values to the aggregate being built.
6803 ---------------------------
6804 -- Prepend_Stored_Values --
6805 ---------------------------
6807 procedure Prepend_Stored_Values
(T
: Entity_Id
) is
6809 First_Comp
: Node_Id
:= Empty
;
6812 Discr
:= First_Stored_Discriminant
(T
);
6813 while Present
(Discr
) loop
6815 Make_Component_Association
(Loc
,
6816 Choices
=> New_List
(
6817 New_Occurrence_Of
(Discr
, Loc
)),
6820 (Get_Discriminant_Value
6823 Discriminant_Constraint
(Typ
))));
6825 if No
(First_Comp
) then
6826 Prepend_To
(Component_Associations
(N
), New_Comp
);
6828 Insert_After
(First_Comp
, New_Comp
);
6831 First_Comp
:= New_Comp
;
6832 Next_Stored_Discriminant
(Discr
);
6834 end Prepend_Stored_Values
;
6838 Constraints
: constant List_Id
:= New_List
;
6842 Num_Disc
: Nat
:= 0;
6843 Num_Gird
: Nat
:= 0;
6845 -- Start of processing for Generate_Aggregate_For_Derived_Type
6848 -- Remove the associations for the discriminant of derived type
6851 First_Comp
: Node_Id
;
6854 First_Comp
:= First
(Component_Associations
(N
));
6855 while Present
(First_Comp
) loop
6859 if Ekind
(Entity
(First
(Choices
(Comp
)))) =
6863 Num_Disc
:= Num_Disc
+ 1;
6868 -- Insert stored discriminant associations in the correct
6869 -- order. If there are more stored discriminants than new
6870 -- discriminants, there is at least one new discriminant that
6871 -- constrains more than one of the stored discriminants. In
6872 -- this case we need to construct a proper subtype of the
6873 -- parent type, in order to supply values to all the
6874 -- components. Otherwise there is one-one correspondence
6875 -- between the constraints and the stored discriminants.
6877 Discr
:= First_Stored_Discriminant
(Base_Type
(Typ
));
6878 while Present
(Discr
) loop
6879 Num_Gird
:= Num_Gird
+ 1;
6880 Next_Stored_Discriminant
(Discr
);
6883 -- Case of more stored discriminants than new discriminants
6885 if Num_Gird
> Num_Disc
then
6887 -- Create a proper subtype of the parent type, which is the
6888 -- proper implementation type for the aggregate, and convert
6889 -- it to the intended target type.
6891 Discr
:= First_Stored_Discriminant
(Base_Type
(Typ
));
6892 while Present
(Discr
) loop
6895 (Get_Discriminant_Value
6898 Discriminant_Constraint
(Typ
)));
6900 Append
(New_Comp
, Constraints
);
6901 Next_Stored_Discriminant
(Discr
);
6905 Make_Subtype_Declaration
(Loc
,
6906 Defining_Identifier
=> Make_Temporary
(Loc
, 'T'),
6907 Subtype_Indication
=>
6908 Make_Subtype_Indication
(Loc
,
6910 New_Occurrence_Of
(Etype
(Base_Type
(Typ
)), Loc
),
6912 Make_Index_Or_Discriminant_Constraint
6913 (Loc
, Constraints
)));
6915 Insert_Action
(N
, Decl
);
6916 Prepend_Stored_Values
(Base_Type
(Typ
));
6918 Set_Etype
(N
, Defining_Identifier
(Decl
));
6921 Rewrite
(N
, Unchecked_Convert_To
(Typ
, N
));
6924 -- Case where we do not have fewer new discriminants than
6925 -- stored discriminants, so in this case we can simply use the
6926 -- stored discriminants of the subtype.
6929 Prepend_Stored_Values
(Typ
);
6931 end Generate_Aggregate_For_Derived_Type
;
6934 if Is_Tagged_Type
(Typ
) then
6936 -- In the tagged case, _parent and _tag component must be created
6938 -- Reset Null_Present unconditionally. Tagged records always have
6939 -- at least one field (the tag or the parent).
6941 Set_Null_Record_Present
(N
, False);
6943 -- When the current aggregate comes from the expansion of an
6944 -- extension aggregate, the parent expr is replaced by an
6945 -- aggregate formed by selected components of this expr.
6947 if Present
(Parent_Expr
) and then Is_Empty_List
(Comps
) then
6948 Comp
:= First_Component_Or_Discriminant
(Typ
);
6949 while Present
(Comp
) loop
6951 -- Skip all expander-generated components
6953 if not Comes_From_Source
(Original_Record_Component
(Comp
))
6959 Make_Selected_Component
(Loc
,
6961 Unchecked_Convert_To
(Typ
,
6962 Duplicate_Subexpr
(Parent_Expr
, True)),
6963 Selector_Name
=> New_Occurrence_Of
(Comp
, Loc
));
6966 Make_Component_Association
(Loc
,
6967 Choices
=> New_List
(
6968 New_Occurrence_Of
(Comp
, Loc
)),
6969 Expression
=> New_Comp
));
6971 Analyze_And_Resolve
(New_Comp
, Etype
(Comp
));
6974 Next_Component_Or_Discriminant
(Comp
);
6978 -- Compute the value for the Tag now, if the type is a root it
6979 -- will be included in the aggregate right away, otherwise it will
6980 -- be propagated to the parent aggregate.
6982 if Present
(Orig_Tag
) then
6983 Tag_Value
:= Orig_Tag
;
6985 elsif not Tagged_Type_Expansion
then
6991 (Node
(First_Elmt
(Access_Disp_Table
(Typ
))), Loc
);
6994 -- For a derived type, an aggregate for the parent is formed with
6995 -- all the inherited components.
6997 if Is_Derived_Type
(Typ
) then
6999 First_Comp
: Node_Id
;
7000 Parent_Comps
: List_Id
;
7001 Parent_Aggr
: Node_Id
;
7002 Parent_Name
: Node_Id
;
7005 -- Remove the inherited component association from the
7006 -- aggregate and store them in the parent aggregate
7008 First_Comp
:= First
(Component_Associations
(N
));
7009 Parent_Comps
:= New_List
;
7010 while Present
(First_Comp
)
7012 Scope
(Original_Record_Component
7013 (Entity
(First
(Choices
(First_Comp
))))) /=
7019 Append
(Comp
, Parent_Comps
);
7023 Make_Aggregate
(Loc
,
7024 Component_Associations
=> Parent_Comps
);
7025 Set_Etype
(Parent_Aggr
, Etype
(Base_Type
(Typ
)));
7027 -- Find the _parent component
7029 Comp
:= First_Component
(Typ
);
7030 while Chars
(Comp
) /= Name_uParent
loop
7031 Comp
:= Next_Component
(Comp
);
7034 Parent_Name
:= New_Occurrence_Of
(Comp
, Loc
);
7036 -- Insert the parent aggregate
7038 Prepend_To
(Component_Associations
(N
),
7039 Make_Component_Association
(Loc
,
7040 Choices
=> New_List
(Parent_Name
),
7041 Expression
=> Parent_Aggr
));
7043 -- Expand recursively the parent propagating the right Tag
7045 Expand_Record_Aggregate
7046 (Parent_Aggr
, Tag_Value
, Parent_Expr
);
7048 -- The ancestor part may be a nested aggregate that has
7049 -- delayed expansion: recheck now.
7051 if not Component_OK_For_Backend
then
7052 Convert_To_Assignments
(N
, Typ
);
7056 -- For a root type, the tag component is added (unless compiling
7057 -- for the VMs, where tags are implicit).
7059 elsif Tagged_Type_Expansion
then
7061 Tag_Name
: constant Node_Id
:=
7063 (First_Tag_Component
(Typ
), Loc
);
7064 Typ_Tag
: constant Entity_Id
:= RTE
(RE_Tag
);
7065 Conv_Node
: constant Node_Id
:=
7066 Unchecked_Convert_To
(Typ_Tag
, Tag_Value
);
7069 Set_Etype
(Conv_Node
, Typ_Tag
);
7070 Prepend_To
(Component_Associations
(N
),
7071 Make_Component_Association
(Loc
,
7072 Choices
=> New_List
(Tag_Name
),
7073 Expression
=> Conv_Node
));
7077 end Build_Back_End_Aggregate
;
7079 ----------------------------------------
7080 -- Compile_Time_Known_Composite_Value --
7081 ----------------------------------------
7083 function Compile_Time_Known_Composite_Value
7084 (N
: Node_Id
) return Boolean
7087 -- If we have an entity name, then see if it is the name of a
7088 -- constant and if so, test the corresponding constant value.
7090 if Is_Entity_Name
(N
) then
7092 E
: constant Entity_Id
:= Entity
(N
);
7095 if Ekind
(E
) /= E_Constant
then
7098 V
:= Constant_Value
(E
);
7100 and then Compile_Time_Known_Composite_Value
(V
);
7104 -- We have a value, see if it is compile time known
7107 if Nkind
(N
) = N_Aggregate
then
7108 return Compile_Time_Known_Aggregate
(N
);
7111 -- All other types of values are not known at compile time
7116 end Compile_Time_Known_Composite_Value
;
7118 ------------------------------
7119 -- Component_OK_For_Backend --
7120 ------------------------------
7122 function Component_OK_For_Backend
return Boolean is
7132 while Present
(C
) loop
7134 -- If the component has box initialization, expansion is needed
7135 -- and component is not ready for backend.
7137 if Box_Present
(C
) then
7141 if Nkind
(Expression
(C
)) = N_Qualified_Expression
then
7142 Expr_Q
:= Expression
(Expression
(C
));
7144 Expr_Q
:= Expression
(C
);
7147 -- Return False if the aggregate has any associations for tagged
7148 -- components that may require tag adjustment.
7150 -- These are cases where the source expression may have a tag that
7151 -- could differ from the component tag (e.g., can occur for type
7152 -- conversions and formal parameters). (Tag adjustment not needed
7153 -- if Tagged_Type_Expansion because object tags are implicit in
7156 if Is_Tagged_Type
(Etype
(Expr_Q
))
7157 and then (Nkind
(Expr_Q
) = N_Type_Conversion
7158 or else (Is_Entity_Name
(Expr_Q
)
7160 Ekind
(Entity
(Expr_Q
)) in Formal_Kind
))
7161 and then Tagged_Type_Expansion
7163 Static_Components
:= False;
7166 elsif Is_Delayed_Aggregate
(Expr_Q
) then
7167 Static_Components
:= False;
7170 elsif Possible_Bit_Aligned_Component
(Expr_Q
) then
7171 Static_Components
:= False;
7174 elsif Modify_Tree_For_C
7175 and then Nkind
(C
) = N_Component_Association
7176 and then Has_Per_Object_Constraint
(Choices
(C
))
7178 Static_Components
:= False;
7181 elsif Modify_Tree_For_C
7182 and then Nkind
(Expr_Q
) = N_Identifier
7183 and then Is_Array_Type
(Etype
(Expr_Q
))
7185 Static_Components
:= False;
7188 elsif Modify_Tree_For_C
7189 and then Nkind
(Expr_Q
) = N_Type_Conversion
7190 and then Is_Array_Type
(Etype
(Expr_Q
))
7192 Static_Components
:= False;
7196 if Is_Elementary_Type
(Etype
(Expr_Q
)) then
7197 if not Compile_Time_Known_Value
(Expr_Q
) then
7198 Static_Components
:= False;
7201 elsif not Compile_Time_Known_Composite_Value
(Expr_Q
) then
7202 Static_Components
:= False;
7204 if Is_Private_Type
(Etype
(Expr_Q
))
7205 and then Has_Discriminants
(Etype
(Expr_Q
))
7215 end Component_OK_For_Backend
;
7217 -------------------------------
7218 -- Has_Per_Object_Constraint --
7219 -------------------------------
7221 function Has_Per_Object_Constraint
(L
: List_Id
) return Boolean is
7222 N
: Node_Id
:= First
(L
);
7224 while Present
(N
) loop
7225 if Is_Entity_Name
(N
)
7226 and then Present
(Entity
(N
))
7227 and then Has_Per_Object_Constraint
(Entity
(N
))
7236 end Has_Per_Object_Constraint
;
7238 -----------------------------------
7239 -- Has_Visible_Private_Ancestor --
7240 -----------------------------------
7242 function Has_Visible_Private_Ancestor
(Id
: E
) return Boolean is
7243 R
: constant Entity_Id
:= Root_Type
(Id
);
7244 T1
: Entity_Id
:= Id
;
7248 if Is_Private_Type
(T1
) then
7258 end Has_Visible_Private_Ancestor
;
7260 -------------------------
7261 -- Top_Level_Aggregate --
7262 -------------------------
7264 function Top_Level_Aggregate
(N
: Node_Id
) return Node_Id
is
7269 while Present
(Parent
(Aggr
))
7270 and then Nkind_In
(Parent
(Aggr
), N_Aggregate
,
7271 N_Component_Association
)
7273 Aggr
:= Parent
(Aggr
);
7277 end Top_Level_Aggregate
;
7281 Top_Level_Aggr
: constant Node_Id
:= Top_Level_Aggregate
(N
);
7283 -- Start of processing for Expand_Record_Aggregate
7286 -- If the aggregate is to be assigned to an atomic/VFA variable, we have
7287 -- to prevent a piecemeal assignment even if the aggregate is to be
7288 -- expanded. We create a temporary for the aggregate, and assign the
7289 -- temporary instead, so that the back end can generate an atomic move
7292 if Is_Atomic_VFA_Aggregate
(N
) then
7295 -- No special management required for aggregates used to initialize
7296 -- statically allocated dispatch tables
7298 elsif Is_Static_Dispatch_Table_Aggregate
(N
) then
7302 -- Ada 2005 (AI-318-2): We need to convert to assignments if components
7303 -- are build-in-place function calls. The assignments will each turn
7304 -- into a build-in-place function call. If components are all static,
7305 -- we can pass the aggregate to the back end regardless of limitedness.
7307 -- Extension aggregates, aggregates in extended return statements, and
7308 -- aggregates for C++ imported types must be expanded.
7310 if Ada_Version
>= Ada_2005
and then Is_Limited_View
(Typ
) then
7311 if not Nkind_In
(Parent
(N
), N_Component_Association
,
7312 N_Object_Declaration
)
7314 Convert_To_Assignments
(N
, Typ
);
7316 elsif Nkind
(N
) = N_Extension_Aggregate
7317 or else Convention
(Typ
) = Convention_CPP
7319 Convert_To_Assignments
(N
, Typ
);
7321 elsif not Size_Known_At_Compile_Time
(Typ
)
7322 or else not Component_OK_For_Backend
7323 or else not Static_Components
7325 Convert_To_Assignments
(N
, Typ
);
7327 -- In all other cases, build a proper aggregate to be handled by
7331 Build_Back_End_Aggregate
;
7334 -- Gigi doesn't properly handle temporaries of variable size so we
7335 -- generate it in the front-end
7337 elsif not Size_Known_At_Compile_Time
(Typ
)
7338 and then Tagged_Type_Expansion
7340 Convert_To_Assignments
(N
, Typ
);
7342 -- An aggregate used to initialize a controlled object must be turned
7343 -- into component assignments as the components themselves may require
7344 -- finalization actions such as adjustment.
7346 elsif Needs_Finalization
(Typ
) then
7347 Convert_To_Assignments
(N
, Typ
);
7349 -- Ada 2005 (AI-287): In case of default initialized components we
7350 -- convert the aggregate into assignments.
7352 elsif Has_Default_Init_Comps
(N
) then
7353 Convert_To_Assignments
(N
, Typ
);
7357 elsif not Component_OK_For_Backend
then
7358 Convert_To_Assignments
(N
, Typ
);
7360 -- If an ancestor is private, some components are not inherited and we
7361 -- cannot expand into a record aggregate.
7363 elsif Has_Visible_Private_Ancestor
(Typ
) then
7364 Convert_To_Assignments
(N
, Typ
);
7366 -- ??? The following was done to compile fxacc00.ads in the ACVCs. Gigi
7367 -- is not able to handle the aggregate for Late_Request.
7369 elsif Is_Tagged_Type
(Typ
) and then Has_Discriminants
(Typ
) then
7370 Convert_To_Assignments
(N
, Typ
);
7372 -- If the tagged types covers interface types we need to initialize all
7373 -- hidden components containing pointers to secondary dispatch tables.
7375 elsif Is_Tagged_Type
(Typ
) and then Has_Interfaces
(Typ
) then
7376 Convert_To_Assignments
(N
, Typ
);
7378 -- If some components are mutable, the size of the aggregate component
7379 -- may be distinct from the default size of the type component, so
7380 -- we need to expand to insure that the back-end copies the proper
7381 -- size of the data. However, if the aggregate is the initial value of
7382 -- a constant, the target is immutable and might be built statically
7383 -- if components are appropriate.
7385 elsif Has_Mutable_Components
(Typ
)
7387 (Nkind
(Parent
(Top_Level_Aggr
)) /= N_Object_Declaration
7388 or else not Constant_Present
(Parent
(Top_Level_Aggr
))
7389 or else not Static_Components
)
7391 Convert_To_Assignments
(N
, Typ
);
7393 -- If the type involved has bit aligned components, then we are not sure
7394 -- that the back end can handle this case correctly.
7396 elsif Type_May_Have_Bit_Aligned_Components
(Typ
) then
7397 Convert_To_Assignments
(N
, Typ
);
7399 -- When generating C, only generate an aggregate when declaring objects
7400 -- since C does not support aggregates in e.g. assignment statements.
7402 elsif Modify_Tree_For_C
and then not In_Object_Declaration
(N
) then
7403 Convert_To_Assignments
(N
, Typ
);
7405 -- In all other cases, build a proper aggregate to be handled by gigi
7408 Build_Back_End_Aggregate
;
7410 end Expand_Record_Aggregate
;
7412 ----------------------------
7413 -- Has_Default_Init_Comps --
7414 ----------------------------
7416 function Has_Default_Init_Comps
(N
: Node_Id
) return Boolean is
7417 Comps
: constant List_Id
:= Component_Associations
(N
);
7422 pragma Assert
(Nkind_In
(N
, N_Aggregate
, N_Extension_Aggregate
));
7428 if Has_Self_Reference
(N
) then
7432 -- Check if any direct component has default initialized components
7435 while Present
(C
) loop
7436 if Box_Present
(C
) then
7443 -- Recursive call in case of aggregate expression
7446 while Present
(C
) loop
7447 Expr
:= Expression
(C
);
7450 and then Nkind_In
(Expr
, N_Aggregate
, N_Extension_Aggregate
)
7451 and then Has_Default_Init_Comps
(Expr
)
7460 end Has_Default_Init_Comps
;
7462 ----------------------------------------
7463 -- Is_Build_In_Place_Aggregate_Return --
7464 ----------------------------------------
7466 function Is_Build_In_Place_Aggregate_Return
(N
: Node_Id
) return Boolean is
7467 P
: Node_Id
:= Parent
(N
);
7470 while Nkind
(P
) = N_Qualified_Expression
loop
7474 if Nkind
(P
) = N_Simple_Return_Statement
then
7477 elsif Nkind
(Parent
(P
)) = N_Extended_Return_Statement
then
7485 Is_Build_In_Place_Function
7486 (Return_Applies_To
(Return_Statement_Entity
(P
)));
7487 end Is_Build_In_Place_Aggregate_Return
;
7489 --------------------------
7490 -- Is_Delayed_Aggregate --
7491 --------------------------
7493 function Is_Delayed_Aggregate
(N
: Node_Id
) return Boolean is
7494 Node
: Node_Id
:= N
;
7495 Kind
: Node_Kind
:= Nkind
(Node
);
7498 if Kind
= N_Qualified_Expression
then
7499 Node
:= Expression
(Node
);
7500 Kind
:= Nkind
(Node
);
7503 if not Nkind_In
(Kind
, N_Aggregate
, N_Extension_Aggregate
) then
7506 return Expansion_Delayed
(Node
);
7508 end Is_Delayed_Aggregate
;
7510 ---------------------------
7511 -- In_Object_Declaration --
7512 ---------------------------
7514 function In_Object_Declaration
(N
: Node_Id
) return Boolean is
7515 P
: Node_Id
:= Parent
(N
);
7517 while Present
(P
) loop
7518 if Nkind
(P
) = N_Object_Declaration
then
7526 end In_Object_Declaration
;
7528 ----------------------------------------
7529 -- Is_Static_Dispatch_Table_Aggregate --
7530 ----------------------------------------
7532 function Is_Static_Dispatch_Table_Aggregate
(N
: Node_Id
) return Boolean is
7533 Typ
: constant Entity_Id
:= Base_Type
(Etype
(N
));
7536 return Building_Static_Dispatch_Tables
7537 and then Tagged_Type_Expansion
7538 and then RTU_Loaded
(Ada_Tags
)
7540 -- Avoid circularity when rebuilding the compiler
7542 and then Cunit_Entity
(Get_Source_Unit
(N
)) /= RTU_Entity
(Ada_Tags
)
7543 and then (Typ
= RTE
(RE_Dispatch_Table_Wrapper
)
7545 Typ
= RTE
(RE_Address_Array
)
7547 Typ
= RTE
(RE_Type_Specific_Data
)
7549 Typ
= RTE
(RE_Tag_Table
)
7551 (RTE_Available
(RE_Interface_Data
)
7552 and then Typ
= RTE
(RE_Interface_Data
))
7554 (RTE_Available
(RE_Interfaces_Array
)
7555 and then Typ
= RTE
(RE_Interfaces_Array
))
7557 (RTE_Available
(RE_Interface_Data_Element
)
7558 and then Typ
= RTE
(RE_Interface_Data_Element
)));
7559 end Is_Static_Dispatch_Table_Aggregate
;
7561 -----------------------------
7562 -- Is_Two_Dim_Packed_Array --
7563 -----------------------------
7565 function Is_Two_Dim_Packed_Array
(Typ
: Entity_Id
) return Boolean is
7566 C
: constant Int
:= UI_To_Int
(Component_Size
(Typ
));
7568 return Number_Dimensions
(Typ
) = 2
7569 and then Is_Bit_Packed_Array
(Typ
)
7570 and then (C
= 1 or else C
= 2 or else C
= 4);
7571 end Is_Two_Dim_Packed_Array
;
7573 --------------------
7574 -- Late_Expansion --
7575 --------------------
7577 function Late_Expansion
7580 Target
: Node_Id
) return List_Id
7582 Aggr_Code
: List_Id
;
7585 if Is_Array_Type
(Etype
(N
)) then
7587 Build_Array_Aggr_Code
7589 Ctype
=> Component_Type
(Etype
(N
)),
7590 Index
=> First_Index
(Typ
),
7592 Scalar_Comp
=> Is_Scalar_Type
(Component_Type
(Typ
)),
7593 Indexes
=> No_List
);
7595 -- Directly or indirectly (e.g. access protected procedure) a record
7598 Aggr_Code
:= Build_Record_Aggr_Code
(N
, Typ
, Target
);
7601 -- Save the last assignment statement associated with the aggregate
7602 -- when building a controlled object. This reference is utilized by
7603 -- the finalization machinery when marking an object as successfully
7606 if Needs_Finalization
(Typ
)
7607 and then Is_Entity_Name
(Target
)
7608 and then Present
(Entity
(Target
))
7609 and then Ekind_In
(Entity
(Target
), E_Constant
, E_Variable
)
7611 Set_Last_Aggregate_Assignment
(Entity
(Target
), Last
(Aggr_Code
));
7617 ----------------------------------
7618 -- Make_OK_Assignment_Statement --
7619 ----------------------------------
7621 function Make_OK_Assignment_Statement
7624 Expression
: Node_Id
) return Node_Id
7627 Set_Assignment_OK
(Name
);
7628 return Make_Assignment_Statement
(Sloc
, Name
, Expression
);
7629 end Make_OK_Assignment_Statement
;
7631 -----------------------
7632 -- Number_Of_Choices --
7633 -----------------------
7635 function Number_Of_Choices
(N
: Node_Id
) return Nat
is
7639 Nb_Choices
: Nat
:= 0;
7642 if Present
(Expressions
(N
)) then
7646 Assoc
:= First
(Component_Associations
(N
));
7647 while Present
(Assoc
) loop
7648 Choice
:= First
(Choice_List
(Assoc
));
7649 while Present
(Choice
) loop
7650 if Nkind
(Choice
) /= N_Others_Choice
then
7651 Nb_Choices
:= Nb_Choices
+ 1;
7661 end Number_Of_Choices
;
7663 ------------------------------------
7664 -- Packed_Array_Aggregate_Handled --
7665 ------------------------------------
7667 -- The current version of this procedure will handle at compile time
7668 -- any array aggregate that meets these conditions:
7670 -- One and two dimensional, bit packed
7671 -- Underlying packed type is modular type
7672 -- Bounds are within 32-bit Int range
7673 -- All bounds and values are static
7675 -- Note: for now, in the 2-D case, we only handle component sizes of
7676 -- 1, 2, 4 (cases where an integral number of elements occupies a byte).
7678 function Packed_Array_Aggregate_Handled
(N
: Node_Id
) return Boolean is
7679 Loc
: constant Source_Ptr
:= Sloc
(N
);
7680 Typ
: constant Entity_Id
:= Etype
(N
);
7681 Ctyp
: constant Entity_Id
:= Component_Type
(Typ
);
7683 Not_Handled
: exception;
7684 -- Exception raised if this aggregate cannot be handled
7687 -- Handle one- or two dimensional bit packed array
7689 if not Is_Bit_Packed_Array
(Typ
)
7690 or else Number_Dimensions
(Typ
) > 2
7695 -- If two-dimensional, check whether it can be folded, and transformed
7696 -- into a one-dimensional aggregate for the Packed_Array_Impl_Type of
7697 -- the original type.
7699 if Number_Dimensions
(Typ
) = 2 then
7700 return Two_Dim_Packed_Array_Handled
(N
);
7703 if not Is_Modular_Integer_Type
(Packed_Array_Impl_Type
(Typ
)) then
7707 if not Is_Scalar_Type
(Component_Type
(Typ
))
7708 and then Has_Non_Standard_Rep
(Component_Type
(Typ
))
7714 Csiz
: constant Nat
:= UI_To_Int
(Component_Size
(Typ
));
7718 -- Bounds of index type
7722 -- Values of bounds if compile time known
7724 function Get_Component_Val
(N
: Node_Id
) return Uint
;
7725 -- Given a expression value N of the component type Ctyp, returns a
7726 -- value of Csiz (component size) bits representing this value. If
7727 -- the value is non-static or any other reason exists why the value
7728 -- cannot be returned, then Not_Handled is raised.
7730 -----------------------
7731 -- Get_Component_Val --
7732 -----------------------
7734 function Get_Component_Val
(N
: Node_Id
) return Uint
is
7738 -- We have to analyze the expression here before doing any further
7739 -- processing here. The analysis of such expressions is deferred
7740 -- till expansion to prevent some problems of premature analysis.
7742 Analyze_And_Resolve
(N
, Ctyp
);
7744 -- Must have a compile time value. String literals have to be
7745 -- converted into temporaries as well, because they cannot easily
7746 -- be converted into their bit representation.
7748 if not Compile_Time_Known_Value
(N
)
7749 or else Nkind
(N
) = N_String_Literal
7754 Val
:= Expr_Rep_Value
(N
);
7756 -- Adjust for bias, and strip proper number of bits
7758 if Has_Biased_Representation
(Ctyp
) then
7759 Val
:= Val
- Expr_Value
(Type_Low_Bound
(Ctyp
));
7762 return Val
mod Uint_2
** Csiz
;
7763 end Get_Component_Val
;
7765 -- Here we know we have a one dimensional bit packed array
7768 Get_Index_Bounds
(First_Index
(Typ
), Lo
, Hi
);
7770 -- Cannot do anything if bounds are dynamic
7772 if not Compile_Time_Known_Value
(Lo
)
7774 not Compile_Time_Known_Value
(Hi
)
7779 -- Or are silly out of range of int bounds
7781 Lob
:= Expr_Value
(Lo
);
7782 Hib
:= Expr_Value
(Hi
);
7784 if not UI_Is_In_Int_Range
(Lob
)
7786 not UI_Is_In_Int_Range
(Hib
)
7791 -- At this stage we have a suitable aggregate for handling at compile
7792 -- time. The only remaining checks are that the values of expressions
7793 -- in the aggregate are compile-time known (checks are performed by
7794 -- Get_Component_Val), and that any subtypes or ranges are statically
7797 -- If the aggregate is not fully positional at this stage, then
7798 -- convert it to positional form. Either this will fail, in which
7799 -- case we can do nothing, or it will succeed, in which case we have
7800 -- succeeded in handling the aggregate and transforming it into a
7801 -- modular value, or it will stay an aggregate, in which case we
7802 -- have failed to create a packed value for it.
7804 if Present
(Component_Associations
(N
)) then
7805 Convert_To_Positional
7806 (N
, Max_Others_Replicate
=> 64, Handle_Bit_Packed
=> True);
7807 return Nkind
(N
) /= N_Aggregate
;
7810 -- Otherwise we are all positional, so convert to proper value
7813 Lov
: constant Int
:= UI_To_Int
(Lob
);
7814 Hiv
: constant Int
:= UI_To_Int
(Hib
);
7816 Len
: constant Nat
:= Int
'Max (0, Hiv
- Lov
+ 1);
7817 -- The length of the array (number of elements)
7819 Aggregate_Val
: Uint
;
7820 -- Value of aggregate. The value is set in the low order bits of
7821 -- this value. For the little-endian case, the values are stored
7822 -- from low-order to high-order and for the big-endian case the
7823 -- values are stored from high-order to low-order. Note that gigi
7824 -- will take care of the conversions to left justify the value in
7825 -- the big endian case (because of left justified modular type
7826 -- processing), so we do not have to worry about that here.
7829 -- Integer literal for resulting constructed value
7832 -- Shift count from low order for next value
7835 -- Shift increment for loop
7838 -- Next expression from positional parameters of aggregate
7840 Left_Justified
: Boolean;
7841 -- Set True if we are filling the high order bits of the target
7842 -- value (i.e. the value is left justified).
7845 -- For little endian, we fill up the low order bits of the target
7846 -- value. For big endian we fill up the high order bits of the
7847 -- target value (which is a left justified modular value).
7849 Left_Justified
:= Bytes_Big_Endian
;
7851 -- Switch justification if using -gnatd8
7853 if Debug_Flag_8
then
7854 Left_Justified
:= not Left_Justified
;
7857 -- Switch justfification if reverse storage order
7859 if Reverse_Storage_Order
(Base_Type
(Typ
)) then
7860 Left_Justified
:= not Left_Justified
;
7863 if Left_Justified
then
7864 Shift
:= Csiz
* (Len
- 1);
7871 -- Loop to set the values
7874 Aggregate_Val
:= Uint_0
;
7876 Expr
:= First
(Expressions
(N
));
7877 Aggregate_Val
:= Get_Component_Val
(Expr
) * Uint_2
** Shift
;
7879 for J
in 2 .. Len
loop
7880 Shift
:= Shift
+ Incr
;
7883 Aggregate_Val
+ Get_Component_Val
(Expr
) * Uint_2
** Shift
;
7887 -- Now we can rewrite with the proper value
7889 Lit
:= Make_Integer_Literal
(Loc
, Intval
=> Aggregate_Val
);
7890 Set_Print_In_Hex
(Lit
);
7892 -- Construct the expression using this literal. Note that it is
7893 -- important to qualify the literal with its proper modular type
7894 -- since universal integer does not have the required range and
7895 -- also this is a left justified modular type, which is important
7896 -- in the big-endian case.
7899 Unchecked_Convert_To
(Typ
,
7900 Make_Qualified_Expression
(Loc
,
7902 New_Occurrence_Of
(Packed_Array_Impl_Type
(Typ
), Loc
),
7903 Expression
=> Lit
)));
7905 Analyze_And_Resolve
(N
, Typ
);
7913 end Packed_Array_Aggregate_Handled
;
7915 ----------------------------
7916 -- Has_Mutable_Components --
7917 ----------------------------
7919 function Has_Mutable_Components
(Typ
: Entity_Id
) return Boolean is
7923 Comp
:= First_Component
(Typ
);
7924 while Present
(Comp
) loop
7925 if Is_Record_Type
(Etype
(Comp
))
7926 and then Has_Discriminants
(Etype
(Comp
))
7927 and then not Is_Constrained
(Etype
(Comp
))
7932 Next_Component
(Comp
);
7936 end Has_Mutable_Components
;
7938 ------------------------------
7939 -- Initialize_Discriminants --
7940 ------------------------------
7942 procedure Initialize_Discriminants
(N
: Node_Id
; Typ
: Entity_Id
) is
7943 Loc
: constant Source_Ptr
:= Sloc
(N
);
7944 Bas
: constant Entity_Id
:= Base_Type
(Typ
);
7945 Par
: constant Entity_Id
:= Etype
(Bas
);
7946 Decl
: constant Node_Id
:= Parent
(Par
);
7950 if Is_Tagged_Type
(Bas
)
7951 and then Is_Derived_Type
(Bas
)
7952 and then Has_Discriminants
(Par
)
7953 and then Has_Discriminants
(Bas
)
7954 and then Number_Discriminants
(Bas
) /= Number_Discriminants
(Par
)
7955 and then Nkind
(Decl
) = N_Full_Type_Declaration
7956 and then Nkind
(Type_Definition
(Decl
)) = N_Record_Definition
7958 Present
(Variant_Part
(Component_List
(Type_Definition
(Decl
))))
7959 and then Nkind
(N
) /= N_Extension_Aggregate
7962 -- Call init proc to set discriminants.
7963 -- There should eventually be a special procedure for this ???
7965 Ref
:= New_Occurrence_Of
(Defining_Identifier
(N
), Loc
);
7966 Insert_Actions_After
(N
,
7967 Build_Initialization_Call
(Sloc
(N
), Ref
, Typ
));
7969 end Initialize_Discriminants
;
7976 (Obj_Type
: Entity_Id
;
7977 Typ
: Entity_Id
) return Boolean
7979 L1
, L2
, H1
, H2
: Node_Id
;
7982 -- No sliding if the type of the object is not established yet, if it is
7983 -- an unconstrained type whose actual subtype comes from the aggregate,
7984 -- or if the two types are identical.
7986 if not Is_Array_Type
(Obj_Type
) then
7989 elsif not Is_Constrained
(Obj_Type
) then
7992 elsif Typ
= Obj_Type
then
7996 -- Sliding can only occur along the first dimension
7998 Get_Index_Bounds
(First_Index
(Typ
), L1
, H1
);
7999 Get_Index_Bounds
(First_Index
(Obj_Type
), L2
, H2
);
8001 if not Is_OK_Static_Expression
(L1
) or else
8002 not Is_OK_Static_Expression
(L2
) or else
8003 not Is_OK_Static_Expression
(H1
) or else
8004 not Is_OK_Static_Expression
(H2
)
8008 return Expr_Value
(L1
) /= Expr_Value
(L2
)
8010 Expr_Value
(H1
) /= Expr_Value
(H2
);
8015 ---------------------------------
8016 -- Process_Transient_Component --
8017 ---------------------------------
8019 procedure Process_Transient_Component
8021 Comp_Typ
: Entity_Id
;
8022 Init_Expr
: Node_Id
;
8023 Fin_Call
: out Node_Id
;
8024 Hook_Clear
: out Node_Id
;
8025 Aggr
: Node_Id
:= Empty
;
8026 Stmts
: List_Id
:= No_List
)
8028 procedure Add_Item
(Item
: Node_Id
);
8029 -- Insert arbitrary node Item into the tree depending on the values of
8036 procedure Add_Item
(Item
: Node_Id
) is
8038 if Present
(Aggr
) then
8039 Insert_Action
(Aggr
, Item
);
8041 pragma Assert
(Present
(Stmts
));
8042 Append_To
(Stmts
, Item
);
8048 Hook_Assign
: Node_Id
;
8049 Hook_Decl
: Node_Id
;
8053 Res_Typ
: Entity_Id
;
8055 -- Start of processing for Process_Transient_Component
8058 -- Add the access type, which provides a reference to the function
8059 -- result. Generate:
8061 -- type Res_Typ is access all Comp_Typ;
8063 Res_Typ
:= Make_Temporary
(Loc
, 'A');
8064 Set_Ekind
(Res_Typ
, E_General_Access_Type
);
8065 Set_Directly_Designated_Type
(Res_Typ
, Comp_Typ
);
8068 (Make_Full_Type_Declaration
(Loc
,
8069 Defining_Identifier
=> Res_Typ
,
8071 Make_Access_To_Object_Definition
(Loc
,
8072 All_Present
=> True,
8073 Subtype_Indication
=> New_Occurrence_Of
(Comp_Typ
, Loc
))));
8075 -- Add the temporary which captures the result of the function call.
8078 -- Res : constant Res_Typ := Init_Expr'Reference;
8080 -- Note that this temporary is effectively a transient object because
8081 -- its lifetime is bounded by the current array or record component.
8083 Res_Id
:= Make_Temporary
(Loc
, 'R');
8084 Set_Ekind
(Res_Id
, E_Constant
);
8085 Set_Etype
(Res_Id
, Res_Typ
);
8087 -- Mark the transient object as successfully processed to avoid double
8090 Set_Is_Finalized_Transient
(Res_Id
);
8092 -- Signal the general finalization machinery that this transient object
8093 -- should not be considered for finalization actions because its cleanup
8094 -- will be performed by Process_Transient_Component_Completion.
8096 Set_Is_Ignored_Transient
(Res_Id
);
8099 Make_Object_Declaration
(Loc
,
8100 Defining_Identifier
=> Res_Id
,
8101 Constant_Present
=> True,
8102 Object_Definition
=> New_Occurrence_Of
(Res_Typ
, Loc
),
8104 Make_Reference
(Loc
, New_Copy_Tree
(Init_Expr
)));
8106 Add_Item
(Res_Decl
);
8108 -- Construct all pieces necessary to hook and finalize the transient
8111 Build_Transient_Object_Statements
8112 (Obj_Decl
=> Res_Decl
,
8113 Fin_Call
=> Fin_Call
,
8114 Hook_Assign
=> Hook_Assign
,
8115 Hook_Clear
=> Hook_Clear
,
8116 Hook_Decl
=> Hook_Decl
,
8117 Ptr_Decl
=> Ptr_Decl
);
8119 -- Add the access type which provides a reference to the transient
8120 -- result. Generate:
8122 -- type Ptr_Typ is access all Comp_Typ;
8124 Add_Item
(Ptr_Decl
);
8126 -- Add the temporary which acts as a hook to the transient result.
8129 -- Hook : Ptr_Typ := null;
8131 Add_Item
(Hook_Decl
);
8133 -- Attach the transient result to the hook. Generate:
8135 -- Hook := Ptr_Typ (Res);
8137 Add_Item
(Hook_Assign
);
8139 -- The original initialization expression now references the value of
8140 -- the temporary function result. Generate:
8145 Make_Explicit_Dereference
(Loc
,
8146 Prefix
=> New_Occurrence_Of
(Res_Id
, Loc
)));
8147 end Process_Transient_Component
;
8149 --------------------------------------------
8150 -- Process_Transient_Component_Completion --
8151 --------------------------------------------
8153 procedure Process_Transient_Component_Completion
8157 Hook_Clear
: Node_Id
;
8160 Exceptions_OK
: constant Boolean :=
8161 not Restriction_Active
(No_Exception_Propagation
);
8164 pragma Assert
(Present
(Hook_Clear
));
8166 -- Generate the following code if exception propagation is allowed:
8169 -- Abort : constant Boolean := Triggered_By_Abort;
8171 -- Abort : constant Boolean := False; -- no abort
8173 -- E : Exception_Occurrence;
8174 -- Raised : Boolean := False;
8181 -- [Deep_]Finalize (Res.all);
8185 -- if not Raised then
8187 -- Save_Occurrence (E,
8188 -- Get_Curent_Excep.all.all);
8194 -- if Raised and then not Abort then
8195 -- Raise_From_Controlled_Operation (E);
8199 if Exceptions_OK
then
8200 Abort_And_Exception
: declare
8201 Blk_Decls
: constant List_Id
:= New_List
;
8202 Blk_Stmts
: constant List_Id
:= New_List
;
8203 Fin_Stmts
: constant List_Id
:= New_List
;
8205 Fin_Data
: Finalization_Exception_Data
;
8208 -- Create the declarations of the two flags and the exception
8211 Build_Object_Declarations
(Fin_Data
, Blk_Decls
, Loc
);
8216 if Abort_Allowed
then
8217 Append_To
(Blk_Stmts
,
8218 Build_Runtime_Call
(Loc
, RE_Abort_Defer
));
8221 -- Wrap the hook clear and the finalization call in order to trap
8222 -- a potential exception.
8224 Append_To
(Fin_Stmts
, Hook_Clear
);
8226 if Present
(Fin_Call
) then
8227 Append_To
(Fin_Stmts
, Fin_Call
);
8230 Append_To
(Blk_Stmts
,
8231 Make_Block_Statement
(Loc
,
8232 Handled_Statement_Sequence
=>
8233 Make_Handled_Sequence_Of_Statements
(Loc
,
8234 Statements
=> Fin_Stmts
,
8235 Exception_Handlers
=> New_List
(
8236 Build_Exception_Handler
(Fin_Data
)))));
8241 if Abort_Allowed
then
8242 Append_To
(Blk_Stmts
,
8243 Build_Runtime_Call
(Loc
, RE_Abort_Undefer
));
8246 -- Reraise the potential exception with a proper "upgrade" to
8247 -- Program_Error if needed.
8249 Append_To
(Blk_Stmts
, Build_Raise_Statement
(Fin_Data
));
8251 -- Wrap everything in a block
8254 Make_Block_Statement
(Loc
,
8255 Declarations
=> Blk_Decls
,
8256 Handled_Statement_Sequence
=>
8257 Make_Handled_Sequence_Of_Statements
(Loc
,
8258 Statements
=> Blk_Stmts
)));
8259 end Abort_And_Exception
;
8261 -- Generate the following code if exception propagation is not allowed
8262 -- and aborts are allowed:
8267 -- [Deep_]Finalize (Res.all);
8269 -- Abort_Undefer_Direct;
8272 elsif Abort_Allowed
then
8273 Abort_Only
: declare
8274 Blk_Stmts
: constant List_Id
:= New_List
;
8277 Append_To
(Blk_Stmts
, Build_Runtime_Call
(Loc
, RE_Abort_Defer
));
8278 Append_To
(Blk_Stmts
, Hook_Clear
);
8280 if Present
(Fin_Call
) then
8281 Append_To
(Blk_Stmts
, Fin_Call
);
8285 Build_Abort_Undefer_Block
(Loc
,
8290 -- Otherwise generate:
8293 -- [Deep_]Finalize (Res.all);
8296 Append_To
(Stmts
, Hook_Clear
);
8298 if Present
(Fin_Call
) then
8299 Append_To
(Stmts
, Fin_Call
);
8302 end Process_Transient_Component_Completion
;
8304 ---------------------
8305 -- Sort_Case_Table --
8306 ---------------------
8308 procedure Sort_Case_Table
(Case_Table
: in out Case_Table_Type
) is
8309 L
: constant Int
:= Case_Table
'First;
8310 U
: constant Int
:= Case_Table
'Last;
8318 T
:= Case_Table
(K
+ 1);
8322 and then Expr_Value
(Case_Table
(J
- 1).Choice_Lo
) >
8323 Expr_Value
(T
.Choice_Lo
)
8325 Case_Table
(J
) := Case_Table
(J
- 1);
8329 Case_Table
(J
) := T
;
8332 end Sort_Case_Table
;
8334 ----------------------------
8335 -- Static_Array_Aggregate --
8336 ----------------------------
8338 function Static_Array_Aggregate
(N
: Node_Id
) return Boolean is
8339 Bounds
: constant Node_Id
:= Aggregate_Bounds
(N
);
8341 Typ
: constant Entity_Id
:= Etype
(N
);
8342 Comp_Type
: constant Entity_Id
:= Component_Type
(Typ
);
8349 if Is_Tagged_Type
(Typ
)
8350 or else Is_Controlled
(Typ
)
8351 or else Is_Packed
(Typ
)
8357 and then Nkind
(Bounds
) = N_Range
8358 and then Nkind
(Low_Bound
(Bounds
)) = N_Integer_Literal
8359 and then Nkind
(High_Bound
(Bounds
)) = N_Integer_Literal
8361 Lo
:= Low_Bound
(Bounds
);
8362 Hi
:= High_Bound
(Bounds
);
8364 if No
(Component_Associations
(N
)) then
8366 -- Verify that all components are static integers
8368 Expr
:= First
(Expressions
(N
));
8369 while Present
(Expr
) loop
8370 if Nkind
(Expr
) /= N_Integer_Literal
then
8380 -- We allow only a single named association, either a static
8381 -- range or an others_clause, with a static expression.
8383 Expr
:= First
(Component_Associations
(N
));
8385 if Present
(Expressions
(N
)) then
8388 elsif Present
(Next
(Expr
)) then
8391 elsif Present
(Next
(First
(Choice_List
(Expr
)))) then
8395 -- The aggregate is static if all components are literals,
8396 -- or else all its components are static aggregates for the
8397 -- component type. We also limit the size of a static aggregate
8398 -- to prevent runaway static expressions.
8400 if Is_Array_Type
(Comp_Type
)
8401 or else Is_Record_Type
(Comp_Type
)
8403 if Nkind
(Expression
(Expr
)) /= N_Aggregate
8405 not Compile_Time_Known_Aggregate
(Expression
(Expr
))
8410 elsif Nkind
(Expression
(Expr
)) /= N_Integer_Literal
then
8414 if not Aggr_Size_OK
(N
, Typ
) then
8418 -- Create a positional aggregate with the right number of
8419 -- copies of the expression.
8421 Agg
:= Make_Aggregate
(Sloc
(N
), New_List
, No_List
);
8423 for I
in UI_To_Int
(Intval
(Lo
)) .. UI_To_Int
(Intval
(Hi
))
8425 Append_To
(Expressions
(Agg
), New_Copy
(Expression
(Expr
)));
8427 -- The copied expression must be analyzed and resolved.
8428 -- Besides setting the type, this ensures that static
8429 -- expressions are appropriately marked as such.
8432 (Last
(Expressions
(Agg
)), Component_Type
(Typ
));
8435 Set_Aggregate_Bounds
(Agg
, Bounds
);
8436 Set_Etype
(Agg
, Typ
);
8439 Set_Compile_Time_Known_Aggregate
(N
);
8448 end Static_Array_Aggregate
;
8450 ----------------------------------
8451 -- Two_Dim_Packed_Array_Handled --
8452 ----------------------------------
8454 function Two_Dim_Packed_Array_Handled
(N
: Node_Id
) return Boolean is
8455 Loc
: constant Source_Ptr
:= Sloc
(N
);
8456 Typ
: constant Entity_Id
:= Etype
(N
);
8457 Ctyp
: constant Entity_Id
:= Component_Type
(Typ
);
8458 Comp_Size
: constant Int
:= UI_To_Int
(Component_Size
(Typ
));
8459 Packed_Array
: constant Entity_Id
:=
8460 Packed_Array_Impl_Type
(Base_Type
(Typ
));
8463 -- Expression in original aggregate
8466 -- One-dimensional subaggregate
8470 -- For now, only deal with cases where an integral number of elements
8471 -- fit in a single byte. This includes the most common boolean case.
8473 if not (Comp_Size
= 1 or else
8474 Comp_Size
= 2 or else
8480 Convert_To_Positional
8481 (N
, Max_Others_Replicate
=> 64, Handle_Bit_Packed
=> True);
8483 -- Verify that all components are static
8485 if Nkind
(N
) = N_Aggregate
8486 and then Compile_Time_Known_Aggregate
(N
)
8490 -- The aggregate may have been reanalyzed and converted already
8492 elsif Nkind
(N
) /= N_Aggregate
then
8495 -- If component associations remain, the aggregate is not static
8497 elsif Present
(Component_Associations
(N
)) then
8501 One_Dim
:= First
(Expressions
(N
));
8502 while Present
(One_Dim
) loop
8503 if Present
(Component_Associations
(One_Dim
)) then
8507 One_Comp
:= First
(Expressions
(One_Dim
));
8508 while Present
(One_Comp
) loop
8509 if not Is_OK_Static_Expression
(One_Comp
) then
8520 -- Two-dimensional aggregate is now fully positional so pack one
8521 -- dimension to create a static one-dimensional array, and rewrite
8522 -- as an unchecked conversion to the original type.
8525 Byte_Size
: constant Int
:= UI_To_Int
(Component_Size
(Packed_Array
));
8526 -- The packed array type is a byte array
8529 -- Number of components accumulated in current byte
8532 -- Assembled list of packed values for equivalent aggregate
8535 -- Integer value of component
8538 -- Step size for packing
8541 -- Endian-dependent start position for packing
8544 -- Current insertion position
8547 -- Component of packed array being assembled
8554 -- Account for endianness. See corresponding comment in
8555 -- Packed_Array_Aggregate_Handled concerning the following.
8559 xor Reverse_Storage_Order
(Base_Type
(Typ
))
8561 Init_Shift
:= Byte_Size
- Comp_Size
;
8568 -- Iterate over each subaggregate
8570 Shift
:= Init_Shift
;
8571 One_Dim
:= First
(Expressions
(N
));
8572 while Present
(One_Dim
) loop
8573 One_Comp
:= First
(Expressions
(One_Dim
));
8574 while Present
(One_Comp
) loop
8575 if Packed_Num
= Byte_Size
/ Comp_Size
then
8577 -- Byte is complete, add to list of expressions
8579 Append
(Make_Integer_Literal
(Sloc
(One_Dim
), Val
), Comps
);
8581 Shift
:= Init_Shift
;
8585 Comp_Val
:= Expr_Rep_Value
(One_Comp
);
8587 -- Adjust for bias, and strip proper number of bits
8589 if Has_Biased_Representation
(Ctyp
) then
8590 Comp_Val
:= Comp_Val
- Expr_Value
(Type_Low_Bound
(Ctyp
));
8593 Comp_Val
:= Comp_Val
mod Uint_2
** Comp_Size
;
8594 Val
:= UI_To_Int
(Val
+ Comp_Val
* Uint_2
** Shift
);
8595 Shift
:= Shift
+ Incr
;
8596 One_Comp
:= Next
(One_Comp
);
8597 Packed_Num
:= Packed_Num
+ 1;
8601 One_Dim
:= Next
(One_Dim
);
8604 if Packed_Num
> 0 then
8606 -- Add final incomplete byte if present
8608 Append
(Make_Integer_Literal
(Sloc
(One_Dim
), Val
), Comps
);
8612 Unchecked_Convert_To
(Typ
,
8613 Make_Qualified_Expression
(Loc
,
8614 Subtype_Mark
=> New_Occurrence_Of
(Packed_Array
, Loc
),
8615 Expression
=> Make_Aggregate
(Loc
, Expressions
=> Comps
))));
8616 Analyze_And_Resolve
(N
);
8619 end Two_Dim_Packed_Array_Handled
;