Fix regression when writing formatted sequential to a pipe.
[official-gcc.git] / gcc / sel-sched-ir.c
blob39dc52f66d91a65dc4896228b8228ee2fe5bd1cf
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "diagnostic-core.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "recog.h"
35 #include "params.h"
36 #include "target.h"
37 #include "sched-int.h"
38 #include "ggc.h"
39 #include "tree.h"
40 #include "vec.h"
41 #include "langhooks.h"
42 #include "rtlhooks-def.h"
43 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
45 #ifdef INSN_SCHEDULING
46 #include "sel-sched-ir.h"
47 /* We don't have to use it except for sel_print_insn. */
48 #include "sel-sched-dump.h"
50 /* A vector holding bb info for whole scheduling pass. */
51 vec<sel_global_bb_info_def>
52 sel_global_bb_info = vNULL;
54 /* A vector holding bb info. */
55 vec<sel_region_bb_info_def>
56 sel_region_bb_info = vNULL;
58 /* A pool for allocating all lists. */
59 alloc_pool sched_lists_pool;
61 /* This contains information about successors for compute_av_set. */
62 struct succs_info current_succs;
64 /* Data structure to describe interaction with the generic scheduler utils. */
65 static struct common_sched_info_def sel_common_sched_info;
67 /* The loop nest being pipelined. */
68 struct loop *current_loop_nest;
70 /* LOOP_NESTS is a vector containing the corresponding loop nest for
71 each region. */
72 static vec<loop_p> loop_nests = vNULL;
74 /* Saves blocks already in loop regions, indexed by bb->index. */
75 static sbitmap bbs_in_loop_rgns = NULL;
77 /* CFG hooks that are saved before changing create_basic_block hook. */
78 static struct cfg_hooks orig_cfg_hooks;
81 /* Array containing reverse topological index of function basic blocks,
82 indexed by BB->INDEX. */
83 static int *rev_top_order_index = NULL;
85 /* Length of the above array. */
86 static int rev_top_order_index_len = -1;
88 /* A regset pool structure. */
89 static struct
91 /* The stack to which regsets are returned. */
92 regset *v;
94 /* Its pointer. */
95 int n;
97 /* Its size. */
98 int s;
100 /* In VV we save all generated regsets so that, when destructing the
101 pool, we can compare it with V and check that every regset was returned
102 back to pool. */
103 regset *vv;
105 /* The pointer of VV stack. */
106 int nn;
108 /* Its size. */
109 int ss;
111 /* The difference between allocated and returned regsets. */
112 int diff;
113 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
115 /* This represents the nop pool. */
116 static struct
118 /* The vector which holds previously emitted nops. */
119 insn_t *v;
121 /* Its pointer. */
122 int n;
124 /* Its size. */
125 int s;
126 } nop_pool = { NULL, 0, 0 };
128 /* The pool for basic block notes. */
129 static rtx_vec_t bb_note_pool;
131 /* A NOP pattern used to emit placeholder insns. */
132 rtx nop_pattern = NULL_RTX;
133 /* A special instruction that resides in EXIT_BLOCK.
134 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
135 rtx exit_insn = NULL_RTX;
137 /* TRUE if while scheduling current region, which is loop, its preheader
138 was removed. */
139 bool preheader_removed = false;
142 /* Forward static declarations. */
143 static void fence_clear (fence_t);
145 static void deps_init_id (idata_t, insn_t, bool);
146 static void init_id_from_df (idata_t, insn_t, bool);
147 static expr_t set_insn_init (expr_t, vinsn_t, int);
149 static void cfg_preds (basic_block, insn_t **, int *);
150 static void prepare_insn_expr (insn_t, int);
151 static void free_history_vect (vec<expr_history_def> &);
153 static void move_bb_info (basic_block, basic_block);
154 static void remove_empty_bb (basic_block, bool);
155 static void sel_merge_blocks (basic_block, basic_block);
156 static void sel_remove_loop_preheader (void);
157 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
159 static bool insn_is_the_only_one_in_bb_p (insn_t);
160 static void create_initial_data_sets (basic_block);
162 static void free_av_set (basic_block);
163 static void invalidate_av_set (basic_block);
164 static void extend_insn_data (void);
165 static void sel_init_new_insn (insn_t, int);
166 static void finish_insns (void);
168 /* Various list functions. */
170 /* Copy an instruction list L. */
171 ilist_t
172 ilist_copy (ilist_t l)
174 ilist_t head = NULL, *tailp = &head;
176 while (l)
178 ilist_add (tailp, ILIST_INSN (l));
179 tailp = &ILIST_NEXT (*tailp);
180 l = ILIST_NEXT (l);
183 return head;
186 /* Invert an instruction list L. */
187 ilist_t
188 ilist_invert (ilist_t l)
190 ilist_t res = NULL;
192 while (l)
194 ilist_add (&res, ILIST_INSN (l));
195 l = ILIST_NEXT (l);
198 return res;
201 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
202 void
203 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
205 bnd_t bnd;
207 _list_add (lp);
208 bnd = BLIST_BND (*lp);
210 BND_TO (bnd) = to;
211 BND_PTR (bnd) = ptr;
212 BND_AV (bnd) = NULL;
213 BND_AV1 (bnd) = NULL;
214 BND_DC (bnd) = dc;
217 /* Remove the list note pointed to by LP. */
218 void
219 blist_remove (blist_t *lp)
221 bnd_t b = BLIST_BND (*lp);
223 av_set_clear (&BND_AV (b));
224 av_set_clear (&BND_AV1 (b));
225 ilist_clear (&BND_PTR (b));
227 _list_remove (lp);
230 /* Init a fence tail L. */
231 void
232 flist_tail_init (flist_tail_t l)
234 FLIST_TAIL_HEAD (l) = NULL;
235 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
238 /* Try to find fence corresponding to INSN in L. */
239 fence_t
240 flist_lookup (flist_t l, insn_t insn)
242 while (l)
244 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
245 return FLIST_FENCE (l);
247 l = FLIST_NEXT (l);
250 return NULL;
253 /* Init the fields of F before running fill_insns. */
254 static void
255 init_fence_for_scheduling (fence_t f)
257 FENCE_BNDS (f) = NULL;
258 FENCE_PROCESSED_P (f) = false;
259 FENCE_SCHEDULED_P (f) = false;
262 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
263 static void
264 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
265 insn_t last_scheduled_insn, vec<rtx, va_gc> *executing_insns,
266 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
267 int cycle, int cycle_issued_insns, int issue_more,
268 bool starts_cycle_p, bool after_stall_p)
270 fence_t f;
272 _list_add (lp);
273 f = FLIST_FENCE (*lp);
275 FENCE_INSN (f) = insn;
277 gcc_assert (state != NULL);
278 FENCE_STATE (f) = state;
280 FENCE_CYCLE (f) = cycle;
281 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
282 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
283 FENCE_AFTER_STALL_P (f) = after_stall_p;
285 gcc_assert (dc != NULL);
286 FENCE_DC (f) = dc;
288 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
289 FENCE_TC (f) = tc;
291 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
292 FENCE_ISSUE_MORE (f) = issue_more;
293 FENCE_EXECUTING_INSNS (f) = executing_insns;
294 FENCE_READY_TICKS (f) = ready_ticks;
295 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
296 FENCE_SCHED_NEXT (f) = sched_next;
298 init_fence_for_scheduling (f);
301 /* Remove the head node of the list pointed to by LP. */
302 static void
303 flist_remove (flist_t *lp)
305 if (FENCE_INSN (FLIST_FENCE (*lp)))
306 fence_clear (FLIST_FENCE (*lp));
307 _list_remove (lp);
310 /* Clear the fence list pointed to by LP. */
311 void
312 flist_clear (flist_t *lp)
314 while (*lp)
315 flist_remove (lp);
318 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
319 void
320 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
322 def_t d;
324 _list_add (dl);
325 d = DEF_LIST_DEF (*dl);
327 d->orig_insn = original_insn;
328 d->crosses_call = crosses_call;
332 /* Functions to work with target contexts. */
334 /* Bulk target context. It is convenient for debugging purposes to ensure
335 that there are no uninitialized (null) target contexts. */
336 static tc_t bulk_tc = (tc_t) 1;
338 /* Target hooks wrappers. In the future we can provide some default
339 implementations for them. */
341 /* Allocate a store for the target context. */
342 static tc_t
343 alloc_target_context (void)
345 return (targetm.sched.alloc_sched_context
346 ? targetm.sched.alloc_sched_context () : bulk_tc);
349 /* Init target context TC.
350 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
351 Overwise, copy current backend context to TC. */
352 static void
353 init_target_context (tc_t tc, bool clean_p)
355 if (targetm.sched.init_sched_context)
356 targetm.sched.init_sched_context (tc, clean_p);
359 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
360 int init_target_context (). */
361 tc_t
362 create_target_context (bool clean_p)
364 tc_t tc = alloc_target_context ();
366 init_target_context (tc, clean_p);
367 return tc;
370 /* Copy TC to the current backend context. */
371 void
372 set_target_context (tc_t tc)
374 if (targetm.sched.set_sched_context)
375 targetm.sched.set_sched_context (tc);
378 /* TC is about to be destroyed. Free any internal data. */
379 static void
380 clear_target_context (tc_t tc)
382 if (targetm.sched.clear_sched_context)
383 targetm.sched.clear_sched_context (tc);
386 /* Clear and free it. */
387 static void
388 delete_target_context (tc_t tc)
390 clear_target_context (tc);
392 if (targetm.sched.free_sched_context)
393 targetm.sched.free_sched_context (tc);
396 /* Make a copy of FROM in TO.
397 NB: May be this should be a hook. */
398 static void
399 copy_target_context (tc_t to, tc_t from)
401 tc_t tmp = create_target_context (false);
403 set_target_context (from);
404 init_target_context (to, false);
406 set_target_context (tmp);
407 delete_target_context (tmp);
410 /* Create a copy of TC. */
411 static tc_t
412 create_copy_of_target_context (tc_t tc)
414 tc_t copy = alloc_target_context ();
416 copy_target_context (copy, tc);
418 return copy;
421 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
422 is the same as in init_target_context (). */
423 void
424 reset_target_context (tc_t tc, bool clean_p)
426 clear_target_context (tc);
427 init_target_context (tc, clean_p);
430 /* Functions to work with dependence contexts.
431 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
432 context. It accumulates information about processed insns to decide if
433 current insn is dependent on the processed ones. */
435 /* Make a copy of FROM in TO. */
436 static void
437 copy_deps_context (deps_t to, deps_t from)
439 init_deps (to, false);
440 deps_join (to, from);
443 /* Allocate store for dep context. */
444 static deps_t
445 alloc_deps_context (void)
447 return XNEW (struct deps_desc);
450 /* Allocate and initialize dep context. */
451 static deps_t
452 create_deps_context (void)
454 deps_t dc = alloc_deps_context ();
456 init_deps (dc, false);
457 return dc;
460 /* Create a copy of FROM. */
461 static deps_t
462 create_copy_of_deps_context (deps_t from)
464 deps_t to = alloc_deps_context ();
466 copy_deps_context (to, from);
467 return to;
470 /* Clean up internal data of DC. */
471 static void
472 clear_deps_context (deps_t dc)
474 free_deps (dc);
477 /* Clear and free DC. */
478 static void
479 delete_deps_context (deps_t dc)
481 clear_deps_context (dc);
482 free (dc);
485 /* Clear and init DC. */
486 static void
487 reset_deps_context (deps_t dc)
489 clear_deps_context (dc);
490 init_deps (dc, false);
493 /* This structure describes the dependence analysis hooks for advancing
494 dependence context. */
495 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
497 NULL,
499 NULL, /* start_insn */
500 NULL, /* finish_insn */
501 NULL, /* start_lhs */
502 NULL, /* finish_lhs */
503 NULL, /* start_rhs */
504 NULL, /* finish_rhs */
505 haifa_note_reg_set,
506 haifa_note_reg_clobber,
507 haifa_note_reg_use,
508 NULL, /* note_mem_dep */
509 NULL, /* note_dep */
511 0, 0, 0
514 /* Process INSN and add its impact on DC. */
515 void
516 advance_deps_context (deps_t dc, insn_t insn)
518 sched_deps_info = &advance_deps_context_sched_deps_info;
519 deps_analyze_insn (dc, insn);
523 /* Functions to work with DFA states. */
525 /* Allocate store for a DFA state. */
526 static state_t
527 state_alloc (void)
529 return xmalloc (dfa_state_size);
532 /* Allocate and initialize DFA state. */
533 static state_t
534 state_create (void)
536 state_t state = state_alloc ();
538 state_reset (state);
539 advance_state (state);
540 return state;
543 /* Free DFA state. */
544 static void
545 state_free (state_t state)
547 free (state);
550 /* Make a copy of FROM in TO. */
551 static void
552 state_copy (state_t to, state_t from)
554 memcpy (to, from, dfa_state_size);
557 /* Create a copy of FROM. */
558 static state_t
559 state_create_copy (state_t from)
561 state_t to = state_alloc ();
563 state_copy (to, from);
564 return to;
568 /* Functions to work with fences. */
570 /* Clear the fence. */
571 static void
572 fence_clear (fence_t f)
574 state_t s = FENCE_STATE (f);
575 deps_t dc = FENCE_DC (f);
576 void *tc = FENCE_TC (f);
578 ilist_clear (&FENCE_BNDS (f));
580 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
581 || (s == NULL && dc == NULL && tc == NULL));
583 free (s);
585 if (dc != NULL)
586 delete_deps_context (dc);
588 if (tc != NULL)
589 delete_target_context (tc);
590 vec_free (FENCE_EXECUTING_INSNS (f));
591 free (FENCE_READY_TICKS (f));
592 FENCE_READY_TICKS (f) = NULL;
595 /* Init a list of fences with successors of OLD_FENCE. */
596 void
597 init_fences (insn_t old_fence)
599 insn_t succ;
600 succ_iterator si;
601 bool first = true;
602 int ready_ticks_size = get_max_uid () + 1;
604 FOR_EACH_SUCC_1 (succ, si, old_fence,
605 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
608 if (first)
609 first = false;
610 else
611 gcc_assert (flag_sel_sched_pipelining_outer_loops);
613 flist_add (&fences, succ,
614 state_create (),
615 create_deps_context () /* dc */,
616 create_target_context (true) /* tc */,
617 NULL_RTX /* last_scheduled_insn */,
618 NULL, /* executing_insns */
619 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
620 ready_ticks_size,
621 NULL_RTX /* sched_next */,
622 1 /* cycle */, 0 /* cycle_issued_insns */,
623 issue_rate, /* issue_more */
624 1 /* starts_cycle_p */, 0 /* after_stall_p */);
628 /* Merges two fences (filling fields of fence F with resulting values) by
629 following rules: 1) state, target context and last scheduled insn are
630 propagated from fallthrough edge if it is available;
631 2) deps context and cycle is propagated from more probable edge;
632 3) all other fields are set to corresponding constant values.
634 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
635 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
636 and AFTER_STALL_P are the corresponding fields of the second fence. */
637 static void
638 merge_fences (fence_t f, insn_t insn,
639 state_t state, deps_t dc, void *tc,
640 rtx last_scheduled_insn, vec<rtx, va_gc> *executing_insns,
641 int *ready_ticks, int ready_ticks_size,
642 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
644 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
646 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
647 && !sched_next && !FENCE_SCHED_NEXT (f));
649 /* Check if we can decide which path fences came.
650 If we can't (or don't want to) - reset all. */
651 if (last_scheduled_insn == NULL
652 || last_scheduled_insn_old == NULL
653 /* This is a case when INSN is reachable on several paths from
654 one insn (this can happen when pipelining of outer loops is on and
655 there are two edges: one going around of inner loop and the other -
656 right through it; in such case just reset everything). */
657 || last_scheduled_insn == last_scheduled_insn_old)
659 state_reset (FENCE_STATE (f));
660 state_free (state);
662 reset_deps_context (FENCE_DC (f));
663 delete_deps_context (dc);
665 reset_target_context (FENCE_TC (f), true);
666 delete_target_context (tc);
668 if (cycle > FENCE_CYCLE (f))
669 FENCE_CYCLE (f) = cycle;
671 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
672 FENCE_ISSUE_MORE (f) = issue_rate;
673 vec_free (executing_insns);
674 free (ready_ticks);
675 if (FENCE_EXECUTING_INSNS (f))
676 FENCE_EXECUTING_INSNS (f)->block_remove (0,
677 FENCE_EXECUTING_INSNS (f)->length ());
678 if (FENCE_READY_TICKS (f))
679 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
681 else
683 edge edge_old = NULL, edge_new = NULL;
684 edge candidate;
685 succ_iterator si;
686 insn_t succ;
688 /* Find fallthrough edge. */
689 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
690 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
692 if (!candidate
693 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
694 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
696 /* No fallthrough edge leading to basic block of INSN. */
697 state_reset (FENCE_STATE (f));
698 state_free (state);
700 reset_target_context (FENCE_TC (f), true);
701 delete_target_context (tc);
703 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
704 FENCE_ISSUE_MORE (f) = issue_rate;
706 else
707 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
709 /* Would be weird if same insn is successor of several fallthrough
710 edges. */
711 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
712 != BLOCK_FOR_INSN (last_scheduled_insn_old));
714 state_free (FENCE_STATE (f));
715 FENCE_STATE (f) = state;
717 delete_target_context (FENCE_TC (f));
718 FENCE_TC (f) = tc;
720 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
721 FENCE_ISSUE_MORE (f) = issue_more;
723 else
725 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
726 state_free (state);
727 delete_target_context (tc);
729 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
730 != BLOCK_FOR_INSN (last_scheduled_insn));
733 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
734 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
735 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
737 if (succ == insn)
739 /* No same successor allowed from several edges. */
740 gcc_assert (!edge_old);
741 edge_old = si.e1;
744 /* Find edge of second predecessor (last_scheduled_insn->insn). */
745 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
746 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
748 if (succ == insn)
750 /* No same successor allowed from several edges. */
751 gcc_assert (!edge_new);
752 edge_new = si.e1;
756 /* Check if we can choose most probable predecessor. */
757 if (edge_old == NULL || edge_new == NULL)
759 reset_deps_context (FENCE_DC (f));
760 delete_deps_context (dc);
761 vec_free (executing_insns);
762 free (ready_ticks);
764 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
765 if (FENCE_EXECUTING_INSNS (f))
766 FENCE_EXECUTING_INSNS (f)->block_remove (0,
767 FENCE_EXECUTING_INSNS (f)->length ());
768 if (FENCE_READY_TICKS (f))
769 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
771 else
772 if (edge_new->probability > edge_old->probability)
774 delete_deps_context (FENCE_DC (f));
775 FENCE_DC (f) = dc;
776 vec_free (FENCE_EXECUTING_INSNS (f));
777 FENCE_EXECUTING_INSNS (f) = executing_insns;
778 free (FENCE_READY_TICKS (f));
779 FENCE_READY_TICKS (f) = ready_ticks;
780 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
781 FENCE_CYCLE (f) = cycle;
783 else
785 /* Leave DC and CYCLE untouched. */
786 delete_deps_context (dc);
787 vec_free (executing_insns);
788 free (ready_ticks);
792 /* Fill remaining invariant fields. */
793 if (after_stall_p)
794 FENCE_AFTER_STALL_P (f) = 1;
796 FENCE_ISSUED_INSNS (f) = 0;
797 FENCE_STARTS_CYCLE_P (f) = 1;
798 FENCE_SCHED_NEXT (f) = NULL;
801 /* Add a new fence to NEW_FENCES list, initializing it from all
802 other parameters. */
803 static void
804 add_to_fences (flist_tail_t new_fences, insn_t insn,
805 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
806 vec<rtx, va_gc> *executing_insns, int *ready_ticks,
807 int ready_ticks_size, rtx sched_next, int cycle,
808 int cycle_issued_insns, int issue_rate,
809 bool starts_cycle_p, bool after_stall_p)
811 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
813 if (! f)
815 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
816 last_scheduled_insn, executing_insns, ready_ticks,
817 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
818 issue_rate, starts_cycle_p, after_stall_p);
820 FLIST_TAIL_TAILP (new_fences)
821 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
823 else
825 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
826 executing_insns, ready_ticks, ready_ticks_size,
827 sched_next, cycle, issue_rate, after_stall_p);
831 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
832 void
833 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
835 fence_t f, old;
836 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
838 old = FLIST_FENCE (old_fences);
839 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
840 FENCE_INSN (FLIST_FENCE (old_fences)));
841 if (f)
843 merge_fences (f, old->insn, old->state, old->dc, old->tc,
844 old->last_scheduled_insn, old->executing_insns,
845 old->ready_ticks, old->ready_ticks_size,
846 old->sched_next, old->cycle, old->issue_more,
847 old->after_stall_p);
849 else
851 _list_add (tailp);
852 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
853 *FLIST_FENCE (*tailp) = *old;
854 init_fence_for_scheduling (FLIST_FENCE (*tailp));
856 FENCE_INSN (old) = NULL;
859 /* Add a new fence to NEW_FENCES list and initialize most of its data
860 as a clean one. */
861 void
862 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
864 int ready_ticks_size = get_max_uid () + 1;
866 add_to_fences (new_fences,
867 succ, state_create (), create_deps_context (),
868 create_target_context (true),
869 NULL_RTX, NULL,
870 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
871 NULL_RTX, FENCE_CYCLE (fence) + 1,
872 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
875 /* Add a new fence to NEW_FENCES list and initialize all of its data
876 from FENCE and SUCC. */
877 void
878 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
880 int * new_ready_ticks
881 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
883 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
884 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
885 add_to_fences (new_fences,
886 succ, state_create_copy (FENCE_STATE (fence)),
887 create_copy_of_deps_context (FENCE_DC (fence)),
888 create_copy_of_target_context (FENCE_TC (fence)),
889 FENCE_LAST_SCHEDULED_INSN (fence),
890 vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
891 new_ready_ticks,
892 FENCE_READY_TICKS_SIZE (fence),
893 FENCE_SCHED_NEXT (fence),
894 FENCE_CYCLE (fence),
895 FENCE_ISSUED_INSNS (fence),
896 FENCE_ISSUE_MORE (fence),
897 FENCE_STARTS_CYCLE_P (fence),
898 FENCE_AFTER_STALL_P (fence));
902 /* Functions to work with regset and nop pools. */
904 /* Returns the new regset from pool. It might have some of the bits set
905 from the previous usage. */
906 regset
907 get_regset_from_pool (void)
909 regset rs;
911 if (regset_pool.n != 0)
912 rs = regset_pool.v[--regset_pool.n];
913 else
914 /* We need to create the regset. */
916 rs = ALLOC_REG_SET (&reg_obstack);
918 if (regset_pool.nn == regset_pool.ss)
919 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
920 (regset_pool.ss = 2 * regset_pool.ss + 1));
921 regset_pool.vv[regset_pool.nn++] = rs;
924 regset_pool.diff++;
926 return rs;
929 /* Same as above, but returns the empty regset. */
930 regset
931 get_clear_regset_from_pool (void)
933 regset rs = get_regset_from_pool ();
935 CLEAR_REG_SET (rs);
936 return rs;
939 /* Return regset RS to the pool for future use. */
940 void
941 return_regset_to_pool (regset rs)
943 gcc_assert (rs);
944 regset_pool.diff--;
946 if (regset_pool.n == regset_pool.s)
947 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
948 (regset_pool.s = 2 * regset_pool.s + 1));
949 regset_pool.v[regset_pool.n++] = rs;
952 #ifdef ENABLE_CHECKING
953 /* This is used as a qsort callback for sorting regset pool stacks.
954 X and XX are addresses of two regsets. They are never equal. */
955 static int
956 cmp_v_in_regset_pool (const void *x, const void *xx)
958 uintptr_t r1 = (uintptr_t) *((const regset *) x);
959 uintptr_t r2 = (uintptr_t) *((const regset *) xx);
960 if (r1 > r2)
961 return 1;
962 else if (r1 < r2)
963 return -1;
964 gcc_unreachable ();
966 #endif
968 /* Free the regset pool possibly checking for memory leaks. */
969 void
970 free_regset_pool (void)
972 #ifdef ENABLE_CHECKING
974 regset *v = regset_pool.v;
975 int i = 0;
976 int n = regset_pool.n;
978 regset *vv = regset_pool.vv;
979 int ii = 0;
980 int nn = regset_pool.nn;
982 int diff = 0;
984 gcc_assert (n <= nn);
986 /* Sort both vectors so it will be possible to compare them. */
987 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
988 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
990 while (ii < nn)
992 if (v[i] == vv[ii])
993 i++;
994 else
995 /* VV[II] was lost. */
996 diff++;
998 ii++;
1001 gcc_assert (diff == regset_pool.diff);
1003 #endif
1005 /* If not true - we have a memory leak. */
1006 gcc_assert (regset_pool.diff == 0);
1008 while (regset_pool.n)
1010 --regset_pool.n;
1011 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1014 free (regset_pool.v);
1015 regset_pool.v = NULL;
1016 regset_pool.s = 0;
1018 free (regset_pool.vv);
1019 regset_pool.vv = NULL;
1020 regset_pool.nn = 0;
1021 regset_pool.ss = 0;
1023 regset_pool.diff = 0;
1027 /* Functions to work with nop pools. NOP insns are used as temporary
1028 placeholders of the insns being scheduled to allow correct update of
1029 the data sets. When update is finished, NOPs are deleted. */
1031 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1032 nops sel-sched generates. */
1033 static vinsn_t nop_vinsn = NULL;
1035 /* Emit a nop before INSN, taking it from pool. */
1036 insn_t
1037 get_nop_from_pool (insn_t insn)
1039 insn_t nop;
1040 bool old_p = nop_pool.n != 0;
1041 int flags;
1043 if (old_p)
1044 nop = nop_pool.v[--nop_pool.n];
1045 else
1046 nop = nop_pattern;
1048 nop = emit_insn_before (nop, insn);
1050 if (old_p)
1051 flags = INSN_INIT_TODO_SSID;
1052 else
1053 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1055 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1056 sel_init_new_insn (nop, flags);
1058 return nop;
1061 /* Remove NOP from the instruction stream and return it to the pool. */
1062 void
1063 return_nop_to_pool (insn_t nop, bool full_tidying)
1065 gcc_assert (INSN_IN_STREAM_P (nop));
1066 sel_remove_insn (nop, false, full_tidying);
1068 if (nop_pool.n == nop_pool.s)
1069 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1070 (nop_pool.s = 2 * nop_pool.s + 1));
1071 nop_pool.v[nop_pool.n++] = nop;
1074 /* Free the nop pool. */
1075 void
1076 free_nop_pool (void)
1078 nop_pool.n = 0;
1079 nop_pool.s = 0;
1080 free (nop_pool.v);
1081 nop_pool.v = NULL;
1085 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1086 The callback is given two rtxes XX and YY and writes the new rtxes
1087 to NX and NY in case some needs to be skipped. */
1088 static int
1089 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1091 const_rtx x = *xx;
1092 const_rtx y = *yy;
1094 if (GET_CODE (x) == UNSPEC
1095 && (targetm.sched.skip_rtx_p == NULL
1096 || targetm.sched.skip_rtx_p (x)))
1098 *nx = XVECEXP (x, 0, 0);
1099 *ny = CONST_CAST_RTX (y);
1100 return 1;
1103 if (GET_CODE (y) == UNSPEC
1104 && (targetm.sched.skip_rtx_p == NULL
1105 || targetm.sched.skip_rtx_p (y)))
1107 *nx = CONST_CAST_RTX (x);
1108 *ny = XVECEXP (y, 0, 0);
1109 return 1;
1112 return 0;
1115 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1116 to support ia64 speculation. When changes are needed, new rtx X and new mode
1117 NMODE are written, and the callback returns true. */
1118 static int
1119 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1120 rtx *nx, enum machine_mode* nmode)
1122 if (GET_CODE (x) == UNSPEC
1123 && targetm.sched.skip_rtx_p
1124 && targetm.sched.skip_rtx_p (x))
1126 *nx = XVECEXP (x, 0 ,0);
1127 *nmode = VOIDmode;
1128 return 1;
1131 return 0;
1134 /* Returns LHS and RHS are ok to be scheduled separately. */
1135 static bool
1136 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1138 if (lhs == NULL || rhs == NULL)
1139 return false;
1141 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1142 to use reg, if const can be used. Moreover, scheduling const as rhs may
1143 lead to mode mismatch cause consts don't have modes but they could be
1144 merged from branches where the same const used in different modes. */
1145 if (CONSTANT_P (rhs))
1146 return false;
1148 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1149 if (COMPARISON_P (rhs))
1150 return false;
1152 /* Do not allow single REG to be an rhs. */
1153 if (REG_P (rhs))
1154 return false;
1156 /* See comment at find_used_regs_1 (*1) for explanation of this
1157 restriction. */
1158 /* FIXME: remove this later. */
1159 if (MEM_P (lhs))
1160 return false;
1162 /* This will filter all tricky things like ZERO_EXTRACT etc.
1163 For now we don't handle it. */
1164 if (!REG_P (lhs) && !MEM_P (lhs))
1165 return false;
1167 return true;
1170 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1171 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1172 used e.g. for insns from recovery blocks. */
1173 static void
1174 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1176 hash_rtx_callback_function hrcf;
1177 int insn_class;
1179 VINSN_INSN_RTX (vi) = insn;
1180 VINSN_COUNT (vi) = 0;
1181 vi->cost = -1;
1183 if (INSN_NOP_P (insn))
1184 return;
1186 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1187 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1188 else
1189 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1191 /* Hash vinsn depending on whether it is separable or not. */
1192 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1193 if (VINSN_SEPARABLE_P (vi))
1195 rtx rhs = VINSN_RHS (vi);
1197 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1198 NULL, NULL, false, hrcf);
1199 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1200 VOIDmode, NULL, NULL,
1201 false, hrcf);
1203 else
1205 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1206 NULL, NULL, false, hrcf);
1207 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1210 insn_class = haifa_classify_insn (insn);
1211 if (insn_class >= 2
1212 && (!targetm.sched.get_insn_spec_ds
1213 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1214 == 0)))
1215 VINSN_MAY_TRAP_P (vi) = true;
1216 else
1217 VINSN_MAY_TRAP_P (vi) = false;
1220 /* Indicate that VI has become the part of an rtx object. */
1221 void
1222 vinsn_attach (vinsn_t vi)
1224 /* Assert that VI is not pending for deletion. */
1225 gcc_assert (VINSN_INSN_RTX (vi));
1227 VINSN_COUNT (vi)++;
1230 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1231 VINSN_TYPE (VI). */
1232 static vinsn_t
1233 vinsn_create (insn_t insn, bool force_unique_p)
1235 vinsn_t vi = XCNEW (struct vinsn_def);
1237 vinsn_init (vi, insn, force_unique_p);
1238 return vi;
1241 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1242 the copy. */
1243 vinsn_t
1244 vinsn_copy (vinsn_t vi, bool reattach_p)
1246 rtx copy;
1247 bool unique = VINSN_UNIQUE_P (vi);
1248 vinsn_t new_vi;
1250 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1251 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1252 if (reattach_p)
1254 vinsn_detach (vi);
1255 vinsn_attach (new_vi);
1258 return new_vi;
1261 /* Delete the VI vinsn and free its data. */
1262 static void
1263 vinsn_delete (vinsn_t vi)
1265 gcc_assert (VINSN_COUNT (vi) == 0);
1267 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1269 return_regset_to_pool (VINSN_REG_SETS (vi));
1270 return_regset_to_pool (VINSN_REG_USES (vi));
1271 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1274 free (vi);
1277 /* Indicate that VI is no longer a part of some rtx object.
1278 Remove VI if it is no longer needed. */
1279 void
1280 vinsn_detach (vinsn_t vi)
1282 gcc_assert (VINSN_COUNT (vi) > 0);
1284 if (--VINSN_COUNT (vi) == 0)
1285 vinsn_delete (vi);
1288 /* Returns TRUE if VI is a branch. */
1289 bool
1290 vinsn_cond_branch_p (vinsn_t vi)
1292 insn_t insn;
1294 if (!VINSN_UNIQUE_P (vi))
1295 return false;
1297 insn = VINSN_INSN_RTX (vi);
1298 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1299 return false;
1301 return control_flow_insn_p (insn);
1304 /* Return latency of INSN. */
1305 static int
1306 sel_insn_rtx_cost (rtx insn)
1308 int cost;
1310 /* A USE insn, or something else we don't need to
1311 understand. We can't pass these directly to
1312 result_ready_cost or insn_default_latency because it will
1313 trigger a fatal error for unrecognizable insns. */
1314 if (recog_memoized (insn) < 0)
1315 cost = 0;
1316 else
1318 cost = insn_default_latency (insn);
1320 if (cost < 0)
1321 cost = 0;
1324 return cost;
1327 /* Return the cost of the VI.
1328 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1330 sel_vinsn_cost (vinsn_t vi)
1332 int cost = vi->cost;
1334 if (cost < 0)
1336 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1337 vi->cost = cost;
1340 return cost;
1344 /* Functions for insn emitting. */
1346 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1347 EXPR and SEQNO. */
1348 insn_t
1349 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1351 insn_t new_insn;
1353 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1355 new_insn = emit_insn_after (pattern, after);
1356 set_insn_init (expr, NULL, seqno);
1357 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1359 return new_insn;
1362 /* Force newly generated vinsns to be unique. */
1363 static bool init_insn_force_unique_p = false;
1365 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1366 initialize its data from EXPR and SEQNO. */
1367 insn_t
1368 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1369 insn_t after)
1371 insn_t insn;
1373 gcc_assert (!init_insn_force_unique_p);
1375 init_insn_force_unique_p = true;
1376 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1377 CANT_MOVE (insn) = 1;
1378 init_insn_force_unique_p = false;
1380 return insn;
1383 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1384 take it as a new vinsn instead of EXPR's vinsn.
1385 We simplify insns later, after scheduling region in
1386 simplify_changed_insns. */
1387 insn_t
1388 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1389 insn_t after)
1391 expr_t emit_expr;
1392 insn_t insn;
1393 int flags;
1395 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1396 seqno);
1397 insn = EXPR_INSN_RTX (emit_expr);
1398 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1400 flags = INSN_INIT_TODO_SSID;
1401 if (INSN_LUID (insn) == 0)
1402 flags |= INSN_INIT_TODO_LUID;
1403 sel_init_new_insn (insn, flags);
1405 return insn;
1408 /* Move insn from EXPR after AFTER. */
1409 insn_t
1410 sel_move_insn (expr_t expr, int seqno, insn_t after)
1412 insn_t insn = EXPR_INSN_RTX (expr);
1413 basic_block bb = BLOCK_FOR_INSN (after);
1414 insn_t next = NEXT_INSN (after);
1416 /* Assert that in move_op we disconnected this insn properly. */
1417 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1418 PREV_INSN (insn) = after;
1419 NEXT_INSN (insn) = next;
1421 NEXT_INSN (after) = insn;
1422 PREV_INSN (next) = insn;
1424 /* Update links from insn to bb and vice versa. */
1425 df_insn_change_bb (insn, bb);
1426 if (BB_END (bb) == after)
1427 BB_END (bb) = insn;
1429 prepare_insn_expr (insn, seqno);
1430 return insn;
1434 /* Functions to work with right-hand sides. */
1436 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1437 VECT and return true when found. Use NEW_VINSN for comparison only when
1438 COMPARE_VINSNS is true. Write to INDP the index on which
1439 the search has stopped, such that inserting the new element at INDP will
1440 retain VECT's sort order. */
1441 static bool
1442 find_in_history_vect_1 (vec<expr_history_def> vect,
1443 unsigned uid, vinsn_t new_vinsn,
1444 bool compare_vinsns, int *indp)
1446 expr_history_def *arr;
1447 int i, j, len = vect.length ();
1449 if (len == 0)
1451 *indp = 0;
1452 return false;
1455 arr = vect.address ();
1456 i = 0, j = len - 1;
1458 while (i <= j)
1460 unsigned auid = arr[i].uid;
1461 vinsn_t avinsn = arr[i].new_expr_vinsn;
1463 if (auid == uid
1464 /* When undoing transformation on a bookkeeping copy, the new vinsn
1465 may not be exactly equal to the one that is saved in the vector.
1466 This is because the insn whose copy we're checking was possibly
1467 substituted itself. */
1468 && (! compare_vinsns
1469 || vinsn_equal_p (avinsn, new_vinsn)))
1471 *indp = i;
1472 return true;
1474 else if (auid > uid)
1475 break;
1476 i++;
1479 *indp = i;
1480 return false;
1483 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1484 the position found or -1, if no such value is in vector.
1485 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1487 find_in_history_vect (vec<expr_history_def> vect, rtx insn,
1488 vinsn_t new_vinsn, bool originators_p)
1490 int ind;
1492 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1493 false, &ind))
1494 return ind;
1496 if (INSN_ORIGINATORS (insn) && originators_p)
1498 unsigned uid;
1499 bitmap_iterator bi;
1501 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1502 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1503 return ind;
1506 return -1;
1509 /* Insert new element in a sorted history vector pointed to by PVECT,
1510 if it is not there already. The element is searched using
1511 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1512 the history of a transformation. */
1513 void
1514 insert_in_history_vect (vec<expr_history_def> *pvect,
1515 unsigned uid, enum local_trans_type type,
1516 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1517 ds_t spec_ds)
1519 vec<expr_history_def> vect = *pvect;
1520 expr_history_def temp;
1521 bool res;
1522 int ind;
1524 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1526 if (res)
1528 expr_history_def *phist = &vect[ind];
1530 /* It is possible that speculation types of expressions that were
1531 propagated through different paths will be different here. In this
1532 case, merge the status to get the correct check later. */
1533 if (phist->spec_ds != spec_ds)
1534 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1535 return;
1538 temp.uid = uid;
1539 temp.old_expr_vinsn = old_expr_vinsn;
1540 temp.new_expr_vinsn = new_expr_vinsn;
1541 temp.spec_ds = spec_ds;
1542 temp.type = type;
1544 vinsn_attach (old_expr_vinsn);
1545 vinsn_attach (new_expr_vinsn);
1546 vect.safe_insert (ind, temp);
1547 *pvect = vect;
1550 /* Free history vector PVECT. */
1551 static void
1552 free_history_vect (vec<expr_history_def> &pvect)
1554 unsigned i;
1555 expr_history_def *phist;
1557 if (! pvect.exists ())
1558 return;
1560 for (i = 0; pvect.iterate (i, &phist); i++)
1562 vinsn_detach (phist->old_expr_vinsn);
1563 vinsn_detach (phist->new_expr_vinsn);
1566 pvect.release ();
1569 /* Merge vector FROM to PVECT. */
1570 static void
1571 merge_history_vect (vec<expr_history_def> *pvect,
1572 vec<expr_history_def> from)
1574 expr_history_def *phist;
1575 int i;
1577 /* We keep this vector sorted. */
1578 for (i = 0; from.iterate (i, &phist); i++)
1579 insert_in_history_vect (pvect, phist->uid, phist->type,
1580 phist->old_expr_vinsn, phist->new_expr_vinsn,
1581 phist->spec_ds);
1584 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1585 bool
1586 vinsn_equal_p (vinsn_t x, vinsn_t y)
1588 rtx_equal_p_callback_function repcf;
1590 if (x == y)
1591 return true;
1593 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1594 return false;
1596 if (VINSN_HASH (x) != VINSN_HASH (y))
1597 return false;
1599 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1600 if (VINSN_SEPARABLE_P (x))
1602 /* Compare RHSes of VINSNs. */
1603 gcc_assert (VINSN_RHS (x));
1604 gcc_assert (VINSN_RHS (y));
1606 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1609 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1613 /* Functions for working with expressions. */
1615 /* Initialize EXPR. */
1616 static void
1617 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1618 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1619 ds_t spec_to_check_ds, int orig_sched_cycle,
1620 vec<expr_history_def> history,
1621 signed char target_available,
1622 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1623 bool cant_move)
1625 vinsn_attach (vi);
1627 EXPR_VINSN (expr) = vi;
1628 EXPR_SPEC (expr) = spec;
1629 EXPR_USEFULNESS (expr) = use;
1630 EXPR_PRIORITY (expr) = priority;
1631 EXPR_PRIORITY_ADJ (expr) = 0;
1632 EXPR_SCHED_TIMES (expr) = sched_times;
1633 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1634 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1635 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1636 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1638 if (history.exists ())
1639 EXPR_HISTORY_OF_CHANGES (expr) = history;
1640 else
1641 EXPR_HISTORY_OF_CHANGES (expr).create (0);
1643 EXPR_TARGET_AVAILABLE (expr) = target_available;
1644 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1645 EXPR_WAS_RENAMED (expr) = was_renamed;
1646 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1647 EXPR_CANT_MOVE (expr) = cant_move;
1650 /* Make a copy of the expr FROM into the expr TO. */
1651 void
1652 copy_expr (expr_t to, expr_t from)
1654 vec<expr_history_def> temp = vNULL;
1656 if (EXPR_HISTORY_OF_CHANGES (from).exists ())
1658 unsigned i;
1659 expr_history_def *phist;
1661 temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
1662 for (i = 0;
1663 temp.iterate (i, &phist);
1664 i++)
1666 vinsn_attach (phist->old_expr_vinsn);
1667 vinsn_attach (phist->new_expr_vinsn);
1671 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1672 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1673 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1674 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1675 EXPR_ORIG_SCHED_CYCLE (from), temp,
1676 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1677 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1678 EXPR_CANT_MOVE (from));
1681 /* Same, but the final expr will not ever be in av sets, so don't copy
1682 "uninteresting" data such as bitmap cache. */
1683 void
1684 copy_expr_onside (expr_t to, expr_t from)
1686 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1687 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1688 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
1689 vNULL,
1690 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1691 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1692 EXPR_CANT_MOVE (from));
1695 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1696 initializing new insns. */
1697 static void
1698 prepare_insn_expr (insn_t insn, int seqno)
1700 expr_t expr = INSN_EXPR (insn);
1701 ds_t ds;
1703 INSN_SEQNO (insn) = seqno;
1704 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1705 EXPR_SPEC (expr) = 0;
1706 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1707 EXPR_WAS_SUBSTITUTED (expr) = 0;
1708 EXPR_WAS_RENAMED (expr) = 0;
1709 EXPR_TARGET_AVAILABLE (expr) = 1;
1710 INSN_LIVE_VALID_P (insn) = false;
1712 /* ??? If this expression is speculative, make its dependence
1713 as weak as possible. We can filter this expression later
1714 in process_spec_exprs, because we do not distinguish
1715 between the status we got during compute_av_set and the
1716 existing status. To be fixed. */
1717 ds = EXPR_SPEC_DONE_DS (expr);
1718 if (ds)
1719 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1721 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1724 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1725 is non-null when expressions are merged from different successors at
1726 a split point. */
1727 static void
1728 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1730 if (EXPR_TARGET_AVAILABLE (to) < 0
1731 || EXPR_TARGET_AVAILABLE (from) < 0)
1732 EXPR_TARGET_AVAILABLE (to) = -1;
1733 else
1735 /* We try to detect the case when one of the expressions
1736 can only be reached through another one. In this case,
1737 we can do better. */
1738 if (split_point == NULL)
1740 int toind, fromind;
1742 toind = EXPR_ORIG_BB_INDEX (to);
1743 fromind = EXPR_ORIG_BB_INDEX (from);
1745 if (toind && toind == fromind)
1746 /* Do nothing -- everything is done in
1747 merge_with_other_exprs. */
1749 else
1750 EXPR_TARGET_AVAILABLE (to) = -1;
1752 else if (EXPR_TARGET_AVAILABLE (from) == 0
1753 && EXPR_LHS (from)
1754 && REG_P (EXPR_LHS (from))
1755 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1756 EXPR_TARGET_AVAILABLE (to) = -1;
1757 else
1758 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1762 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1763 is non-null when expressions are merged from different successors at
1764 a split point. */
1765 static void
1766 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1768 ds_t old_to_ds, old_from_ds;
1770 old_to_ds = EXPR_SPEC_DONE_DS (to);
1771 old_from_ds = EXPR_SPEC_DONE_DS (from);
1773 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1774 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1775 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1777 /* When merging e.g. control & data speculative exprs, or a control
1778 speculative with a control&data speculative one, we really have
1779 to change vinsn too. Also, when speculative status is changed,
1780 we also need to record this as a transformation in expr's history. */
1781 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1783 old_to_ds = ds_get_speculation_types (old_to_ds);
1784 old_from_ds = ds_get_speculation_types (old_from_ds);
1786 if (old_to_ds != old_from_ds)
1788 ds_t record_ds;
1790 /* When both expressions are speculative, we need to change
1791 the vinsn first. */
1792 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1794 int res;
1796 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1797 gcc_assert (res >= 0);
1800 if (split_point != NULL)
1802 /* Record the change with proper status. */
1803 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1804 record_ds &= ~(old_to_ds & SPECULATIVE);
1805 record_ds &= ~(old_from_ds & SPECULATIVE);
1807 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1808 INSN_UID (split_point), TRANS_SPECULATION,
1809 EXPR_VINSN (from), EXPR_VINSN (to),
1810 record_ds);
1817 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1818 this is done along different paths. */
1819 void
1820 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1822 /* Choose the maximum of the specs of merged exprs. This is required
1823 for correctness of bookkeeping. */
1824 if (EXPR_SPEC (to) < EXPR_SPEC (from))
1825 EXPR_SPEC (to) = EXPR_SPEC (from);
1827 if (split_point)
1828 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1829 else
1830 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1831 EXPR_USEFULNESS (from));
1833 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1834 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1836 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1837 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1839 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1840 EXPR_ORIG_BB_INDEX (to) = 0;
1842 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1843 EXPR_ORIG_SCHED_CYCLE (from));
1845 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1846 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1847 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1849 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1850 EXPR_HISTORY_OF_CHANGES (from));
1851 update_target_availability (to, from, split_point);
1852 update_speculative_bits (to, from, split_point);
1855 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1856 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1857 are merged from different successors at a split point. */
1858 void
1859 merge_expr (expr_t to, expr_t from, insn_t split_point)
1861 vinsn_t to_vi = EXPR_VINSN (to);
1862 vinsn_t from_vi = EXPR_VINSN (from);
1864 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1866 /* Make sure that speculative pattern is propagated into exprs that
1867 have non-speculative one. This will provide us with consistent
1868 speculative bits and speculative patterns inside expr. */
1869 if (EXPR_SPEC_DONE_DS (to) == 0
1870 && EXPR_SPEC_DONE_DS (from) != 0)
1871 change_vinsn_in_expr (to, EXPR_VINSN (from));
1873 merge_expr_data (to, from, split_point);
1874 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1877 /* Clear the information of this EXPR. */
1878 void
1879 clear_expr (expr_t expr)
1882 vinsn_detach (EXPR_VINSN (expr));
1883 EXPR_VINSN (expr) = NULL;
1885 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1888 /* For a given LV_SET, mark EXPR having unavailable target register. */
1889 static void
1890 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1892 if (EXPR_SEPARABLE_P (expr))
1894 if (REG_P (EXPR_LHS (expr))
1895 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1897 /* If it's an insn like r1 = use (r1, ...), and it exists in
1898 different forms in each of the av_sets being merged, we can't say
1899 whether original destination register is available or not.
1900 However, this still works if destination register is not used
1901 in the original expression: if the branch at which LV_SET we're
1902 looking here is not actually 'other branch' in sense that same
1903 expression is available through it (but it can't be determined
1904 at computation stage because of transformations on one of the
1905 branches), it still won't affect the availability.
1906 Liveness of a register somewhere on a code motion path means
1907 it's either read somewhere on a codemotion path, live on
1908 'other' branch, live at the point immediately following
1909 the original operation, or is read by the original operation.
1910 The latter case is filtered out in the condition below.
1911 It still doesn't cover the case when register is defined and used
1912 somewhere within the code motion path, and in this case we could
1913 miss a unifying code motion along both branches using a renamed
1914 register, but it won't affect a code correctness since upon
1915 an actual code motion a bookkeeping code would be generated. */
1916 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1917 EXPR_LHS (expr)))
1918 EXPR_TARGET_AVAILABLE (expr) = -1;
1919 else
1920 EXPR_TARGET_AVAILABLE (expr) = false;
1923 else
1925 unsigned regno;
1926 reg_set_iterator rsi;
1928 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1929 0, regno, rsi)
1930 if (bitmap_bit_p (lv_set, regno))
1932 EXPR_TARGET_AVAILABLE (expr) = false;
1933 break;
1936 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1937 0, regno, rsi)
1938 if (bitmap_bit_p (lv_set, regno))
1940 EXPR_TARGET_AVAILABLE (expr) = false;
1941 break;
1946 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1947 or dependence status have changed, 2 when also the target register
1948 became unavailable, 0 if nothing had to be changed. */
1950 speculate_expr (expr_t expr, ds_t ds)
1952 int res;
1953 rtx orig_insn_rtx;
1954 rtx spec_pat;
1955 ds_t target_ds, current_ds;
1957 /* Obtain the status we need to put on EXPR. */
1958 target_ds = (ds & SPECULATIVE);
1959 current_ds = EXPR_SPEC_DONE_DS (expr);
1960 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1962 orig_insn_rtx = EXPR_INSN_RTX (expr);
1964 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1966 switch (res)
1968 case 0:
1969 EXPR_SPEC_DONE_DS (expr) = ds;
1970 return current_ds != ds ? 1 : 0;
1972 case 1:
1974 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1975 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1977 change_vinsn_in_expr (expr, spec_vinsn);
1978 EXPR_SPEC_DONE_DS (expr) = ds;
1979 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1981 /* Do not allow clobbering the address register of speculative
1982 insns. */
1983 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1984 expr_dest_reg (expr)))
1986 EXPR_TARGET_AVAILABLE (expr) = false;
1987 return 2;
1990 return 1;
1993 case -1:
1994 return -1;
1996 default:
1997 gcc_unreachable ();
1998 return -1;
2002 /* Return a destination register, if any, of EXPR. */
2004 expr_dest_reg (expr_t expr)
2006 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2008 if (dest != NULL_RTX && REG_P (dest))
2009 return dest;
2011 return NULL_RTX;
2014 /* Returns the REGNO of the R's destination. */
2015 unsigned
2016 expr_dest_regno (expr_t expr)
2018 rtx dest = expr_dest_reg (expr);
2020 gcc_assert (dest != NULL_RTX);
2021 return REGNO (dest);
2024 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2025 AV_SET having unavailable target register. */
2026 void
2027 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2029 expr_t expr;
2030 av_set_iterator avi;
2032 FOR_EACH_EXPR (expr, avi, join_set)
2033 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2034 set_unavailable_target_for_expr (expr, lv_set);
2038 /* Returns true if REG (at least partially) is present in REGS. */
2039 bool
2040 register_unavailable_p (regset regs, rtx reg)
2042 unsigned regno, end_regno;
2044 regno = REGNO (reg);
2045 if (bitmap_bit_p (regs, regno))
2046 return true;
2048 end_regno = END_REGNO (reg);
2050 while (++regno < end_regno)
2051 if (bitmap_bit_p (regs, regno))
2052 return true;
2054 return false;
2057 /* Av set functions. */
2059 /* Add a new element to av set SETP.
2060 Return the element added. */
2061 static av_set_t
2062 av_set_add_element (av_set_t *setp)
2064 /* Insert at the beginning of the list. */
2065 _list_add (setp);
2066 return *setp;
2069 /* Add EXPR to SETP. */
2070 void
2071 av_set_add (av_set_t *setp, expr_t expr)
2073 av_set_t elem;
2075 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2076 elem = av_set_add_element (setp);
2077 copy_expr (_AV_SET_EXPR (elem), expr);
2080 /* Same, but do not copy EXPR. */
2081 static void
2082 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2084 av_set_t elem;
2086 elem = av_set_add_element (setp);
2087 *_AV_SET_EXPR (elem) = *expr;
2090 /* Remove expr pointed to by IP from the av_set. */
2091 void
2092 av_set_iter_remove (av_set_iterator *ip)
2094 clear_expr (_AV_SET_EXPR (*ip->lp));
2095 _list_iter_remove (ip);
2098 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2099 sense of vinsn_equal_p function. Return NULL if no such expr is
2100 in SET was found. */
2101 expr_t
2102 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2104 expr_t expr;
2105 av_set_iterator i;
2107 FOR_EACH_EXPR (expr, i, set)
2108 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2109 return expr;
2110 return NULL;
2113 /* Same, but also remove the EXPR found. */
2114 static expr_t
2115 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2117 expr_t expr;
2118 av_set_iterator i;
2120 FOR_EACH_EXPR_1 (expr, i, setp)
2121 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2123 _list_iter_remove_nofree (&i);
2124 return expr;
2126 return NULL;
2129 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2130 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2131 Returns NULL if no such expr is in SET was found. */
2132 static expr_t
2133 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2135 expr_t cur_expr;
2136 av_set_iterator i;
2138 FOR_EACH_EXPR (cur_expr, i, set)
2140 if (cur_expr == expr)
2141 continue;
2142 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2143 return cur_expr;
2146 return NULL;
2149 /* If other expression is already in AVP, remove one of them. */
2150 expr_t
2151 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2153 expr_t expr2;
2155 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2156 if (expr2 != NULL)
2158 /* Reset target availability on merge, since taking it only from one
2159 of the exprs would be controversial for different code. */
2160 EXPR_TARGET_AVAILABLE (expr2) = -1;
2161 EXPR_USEFULNESS (expr2) = 0;
2163 merge_expr (expr2, expr, NULL);
2165 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2166 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2168 av_set_iter_remove (ip);
2169 return expr2;
2172 return expr;
2175 /* Return true if there is an expr that correlates to VI in SET. */
2176 bool
2177 av_set_is_in_p (av_set_t set, vinsn_t vi)
2179 return av_set_lookup (set, vi) != NULL;
2182 /* Return a copy of SET. */
2183 av_set_t
2184 av_set_copy (av_set_t set)
2186 expr_t expr;
2187 av_set_iterator i;
2188 av_set_t res = NULL;
2190 FOR_EACH_EXPR (expr, i, set)
2191 av_set_add (&res, expr);
2193 return res;
2196 /* Join two av sets that do not have common elements by attaching second set
2197 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2198 _AV_SET_NEXT of first set's last element). */
2199 static void
2200 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2202 gcc_assert (*to_tailp == NULL);
2203 *to_tailp = *fromp;
2204 *fromp = NULL;
2207 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2208 pointed to by FROMP afterwards. */
2209 void
2210 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2212 expr_t expr1;
2213 av_set_iterator i;
2215 /* Delete from TOP all exprs, that present in FROMP. */
2216 FOR_EACH_EXPR_1 (expr1, i, top)
2218 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2220 if (expr2)
2222 merge_expr (expr2, expr1, insn);
2223 av_set_iter_remove (&i);
2227 join_distinct_sets (i.lp, fromp);
2230 /* Same as above, but also update availability of target register in
2231 TOP judging by TO_LV_SET and FROM_LV_SET. */
2232 void
2233 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2234 regset from_lv_set, insn_t insn)
2236 expr_t expr1;
2237 av_set_iterator i;
2238 av_set_t *to_tailp, in_both_set = NULL;
2240 /* Delete from TOP all expres, that present in FROMP. */
2241 FOR_EACH_EXPR_1 (expr1, i, top)
2243 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2245 if (expr2)
2247 /* It may be that the expressions have different destination
2248 registers, in which case we need to check liveness here. */
2249 if (EXPR_SEPARABLE_P (expr1))
2251 int regno1 = (REG_P (EXPR_LHS (expr1))
2252 ? (int) expr_dest_regno (expr1) : -1);
2253 int regno2 = (REG_P (EXPR_LHS (expr2))
2254 ? (int) expr_dest_regno (expr2) : -1);
2256 /* ??? We don't have a way to check restrictions for
2257 *other* register on the current path, we did it only
2258 for the current target register. Give up. */
2259 if (regno1 != regno2)
2260 EXPR_TARGET_AVAILABLE (expr2) = -1;
2262 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2263 EXPR_TARGET_AVAILABLE (expr2) = -1;
2265 merge_expr (expr2, expr1, insn);
2266 av_set_add_nocopy (&in_both_set, expr2);
2267 av_set_iter_remove (&i);
2269 else
2270 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2271 FROM_LV_SET. */
2272 set_unavailable_target_for_expr (expr1, from_lv_set);
2274 to_tailp = i.lp;
2276 /* These expressions are not present in TOP. Check liveness
2277 restrictions on TO_LV_SET. */
2278 FOR_EACH_EXPR (expr1, i, *fromp)
2279 set_unavailable_target_for_expr (expr1, to_lv_set);
2281 join_distinct_sets (i.lp, &in_both_set);
2282 join_distinct_sets (to_tailp, fromp);
2285 /* Clear av_set pointed to by SETP. */
2286 void
2287 av_set_clear (av_set_t *setp)
2289 expr_t expr;
2290 av_set_iterator i;
2292 FOR_EACH_EXPR_1 (expr, i, setp)
2293 av_set_iter_remove (&i);
2295 gcc_assert (*setp == NULL);
2298 /* Leave only one non-speculative element in the SETP. */
2299 void
2300 av_set_leave_one_nonspec (av_set_t *setp)
2302 expr_t expr;
2303 av_set_iterator i;
2304 bool has_one_nonspec = false;
2306 /* Keep all speculative exprs, and leave one non-speculative
2307 (the first one). */
2308 FOR_EACH_EXPR_1 (expr, i, setp)
2310 if (!EXPR_SPEC_DONE_DS (expr))
2312 if (has_one_nonspec)
2313 av_set_iter_remove (&i);
2314 else
2315 has_one_nonspec = true;
2320 /* Return the N'th element of the SET. */
2321 expr_t
2322 av_set_element (av_set_t set, int n)
2324 expr_t expr;
2325 av_set_iterator i;
2327 FOR_EACH_EXPR (expr, i, set)
2328 if (n-- == 0)
2329 return expr;
2331 gcc_unreachable ();
2332 return NULL;
2335 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2336 void
2337 av_set_substract_cond_branches (av_set_t *avp)
2339 av_set_iterator i;
2340 expr_t expr;
2342 FOR_EACH_EXPR_1 (expr, i, avp)
2343 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2344 av_set_iter_remove (&i);
2347 /* Multiplies usefulness attribute of each member of av-set *AVP by
2348 value PROB / ALL_PROB. */
2349 void
2350 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2352 av_set_iterator i;
2353 expr_t expr;
2355 FOR_EACH_EXPR (expr, i, av)
2356 EXPR_USEFULNESS (expr) = (all_prob
2357 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2358 : 0);
2361 /* Leave in AVP only those expressions, which are present in AV,
2362 and return it, merging history expressions. */
2363 void
2364 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2366 av_set_iterator i;
2367 expr_t expr, expr2;
2369 FOR_EACH_EXPR_1 (expr, i, avp)
2370 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2371 av_set_iter_remove (&i);
2372 else
2373 /* When updating av sets in bookkeeping blocks, we can add more insns
2374 there which will be transformed but the upper av sets will not
2375 reflect those transformations. We then fail to undo those
2376 when searching for such insns. So merge the history saved
2377 in the av set of the block we are processing. */
2378 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2379 EXPR_HISTORY_OF_CHANGES (expr2));
2384 /* Dependence hooks to initialize insn data. */
2386 /* This is used in hooks callable from dependence analysis when initializing
2387 instruction's data. */
2388 static struct
2390 /* Where the dependence was found (lhs/rhs). */
2391 deps_where_t where;
2393 /* The actual data object to initialize. */
2394 idata_t id;
2396 /* True when the insn should not be made clonable. */
2397 bool force_unique_p;
2399 /* True when insn should be treated as of type USE, i.e. never renamed. */
2400 bool force_use_p;
2401 } deps_init_id_data;
2404 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2405 clonable. */
2406 static void
2407 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2409 int type;
2411 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2412 That clonable insns which can be separated into lhs and rhs have type SET.
2413 Other clonable insns have type USE. */
2414 type = GET_CODE (insn);
2416 /* Only regular insns could be cloned. */
2417 if (type == INSN && !force_unique_p)
2418 type = SET;
2419 else if (type == JUMP_INSN && simplejump_p (insn))
2420 type = PC;
2421 else if (type == DEBUG_INSN)
2422 type = !force_unique_p ? USE : INSN;
2424 IDATA_TYPE (id) = type;
2425 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2426 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2427 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2430 /* Start initializing insn data. */
2431 static void
2432 deps_init_id_start_insn (insn_t insn)
2434 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2436 setup_id_for_insn (deps_init_id_data.id, insn,
2437 deps_init_id_data.force_unique_p);
2438 deps_init_id_data.where = DEPS_IN_INSN;
2441 /* Start initializing lhs data. */
2442 static void
2443 deps_init_id_start_lhs (rtx lhs)
2445 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2446 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2448 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2450 IDATA_LHS (deps_init_id_data.id) = lhs;
2451 deps_init_id_data.where = DEPS_IN_LHS;
2455 /* Finish initializing lhs data. */
2456 static void
2457 deps_init_id_finish_lhs (void)
2459 deps_init_id_data.where = DEPS_IN_INSN;
2462 /* Note a set of REGNO. */
2463 static void
2464 deps_init_id_note_reg_set (int regno)
2466 haifa_note_reg_set (regno);
2468 if (deps_init_id_data.where == DEPS_IN_RHS)
2469 deps_init_id_data.force_use_p = true;
2471 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2472 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2474 #ifdef STACK_REGS
2475 /* Make instructions that set stack registers to be ineligible for
2476 renaming to avoid issues with find_used_regs. */
2477 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2478 deps_init_id_data.force_use_p = true;
2479 #endif
2482 /* Note a clobber of REGNO. */
2483 static void
2484 deps_init_id_note_reg_clobber (int regno)
2486 haifa_note_reg_clobber (regno);
2488 if (deps_init_id_data.where == DEPS_IN_RHS)
2489 deps_init_id_data.force_use_p = true;
2491 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2492 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2495 /* Note a use of REGNO. */
2496 static void
2497 deps_init_id_note_reg_use (int regno)
2499 haifa_note_reg_use (regno);
2501 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2502 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2505 /* Start initializing rhs data. */
2506 static void
2507 deps_init_id_start_rhs (rtx rhs)
2509 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2511 /* And there was no sel_deps_reset_to_insn (). */
2512 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2514 IDATA_RHS (deps_init_id_data.id) = rhs;
2515 deps_init_id_data.where = DEPS_IN_RHS;
2519 /* Finish initializing rhs data. */
2520 static void
2521 deps_init_id_finish_rhs (void)
2523 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2524 || deps_init_id_data.where == DEPS_IN_INSN);
2525 deps_init_id_data.where = DEPS_IN_INSN;
2528 /* Finish initializing insn data. */
2529 static void
2530 deps_init_id_finish_insn (void)
2532 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2534 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2536 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2537 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2539 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2540 || deps_init_id_data.force_use_p)
2542 /* This should be a USE, as we don't want to schedule its RHS
2543 separately. However, we still want to have them recorded
2544 for the purposes of substitution. That's why we don't
2545 simply call downgrade_to_use () here. */
2546 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2547 gcc_assert (!lhs == !rhs);
2549 IDATA_TYPE (deps_init_id_data.id) = USE;
2553 deps_init_id_data.where = DEPS_IN_NOWHERE;
2556 /* This is dependence info used for initializing insn's data. */
2557 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2559 /* This initializes most of the static part of the above structure. */
2560 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2562 NULL,
2564 deps_init_id_start_insn,
2565 deps_init_id_finish_insn,
2566 deps_init_id_start_lhs,
2567 deps_init_id_finish_lhs,
2568 deps_init_id_start_rhs,
2569 deps_init_id_finish_rhs,
2570 deps_init_id_note_reg_set,
2571 deps_init_id_note_reg_clobber,
2572 deps_init_id_note_reg_use,
2573 NULL, /* note_mem_dep */
2574 NULL, /* note_dep */
2576 0, /* use_cselib */
2577 0, /* use_deps_list */
2578 0 /* generate_spec_deps */
2581 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2582 we don't actually need information about lhs and rhs. */
2583 static void
2584 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2586 rtx pat = PATTERN (insn);
2588 if (NONJUMP_INSN_P (insn)
2589 && GET_CODE (pat) == SET
2590 && !force_unique_p)
2592 IDATA_RHS (id) = SET_SRC (pat);
2593 IDATA_LHS (id) = SET_DEST (pat);
2595 else
2596 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2599 /* Possibly downgrade INSN to USE. */
2600 static void
2601 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2603 bool must_be_use = false;
2604 unsigned uid = INSN_UID (insn);
2605 df_ref *rec;
2606 rtx lhs = IDATA_LHS (id);
2607 rtx rhs = IDATA_RHS (id);
2609 /* We downgrade only SETs. */
2610 if (IDATA_TYPE (id) != SET)
2611 return;
2613 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2615 IDATA_TYPE (id) = USE;
2616 return;
2619 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2621 df_ref def = *rec;
2623 if (DF_REF_INSN (def)
2624 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2625 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2627 must_be_use = true;
2628 break;
2631 #ifdef STACK_REGS
2632 /* Make instructions that set stack registers to be ineligible for
2633 renaming to avoid issues with find_used_regs. */
2634 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2636 must_be_use = true;
2637 break;
2639 #endif
2642 if (must_be_use)
2643 IDATA_TYPE (id) = USE;
2646 /* Setup register sets describing INSN in ID. */
2647 static void
2648 setup_id_reg_sets (idata_t id, insn_t insn)
2650 unsigned uid = INSN_UID (insn);
2651 df_ref *rec;
2652 regset tmp = get_clear_regset_from_pool ();
2654 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2656 df_ref def = *rec;
2657 unsigned int regno = DF_REF_REGNO (def);
2659 /* Post modifies are treated like clobbers by sched-deps.c. */
2660 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2661 | DF_REF_PRE_POST_MODIFY)))
2662 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2663 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2665 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2667 #ifdef STACK_REGS
2668 /* For stack registers, treat writes to them as writes
2669 to the first one to be consistent with sched-deps.c. */
2670 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2671 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2672 #endif
2674 /* Mark special refs that generate read/write def pair. */
2675 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2676 || regno == STACK_POINTER_REGNUM)
2677 bitmap_set_bit (tmp, regno);
2680 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2682 df_ref use = *rec;
2683 unsigned int regno = DF_REF_REGNO (use);
2685 /* When these refs are met for the first time, skip them, as
2686 these uses are just counterparts of some defs. */
2687 if (bitmap_bit_p (tmp, regno))
2688 bitmap_clear_bit (tmp, regno);
2689 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2691 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2693 #ifdef STACK_REGS
2694 /* For stack registers, treat reads from them as reads from
2695 the first one to be consistent with sched-deps.c. */
2696 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2697 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2698 #endif
2702 return_regset_to_pool (tmp);
2705 /* Initialize instruction data for INSN in ID using DF's data. */
2706 static void
2707 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2709 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2711 setup_id_for_insn (id, insn, force_unique_p);
2712 setup_id_lhs_rhs (id, insn, force_unique_p);
2714 if (INSN_NOP_P (insn))
2715 return;
2717 maybe_downgrade_id_to_use (id, insn);
2718 setup_id_reg_sets (id, insn);
2721 /* Initialize instruction data for INSN in ID. */
2722 static void
2723 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2725 struct deps_desc _dc, *dc = &_dc;
2727 deps_init_id_data.where = DEPS_IN_NOWHERE;
2728 deps_init_id_data.id = id;
2729 deps_init_id_data.force_unique_p = force_unique_p;
2730 deps_init_id_data.force_use_p = false;
2732 init_deps (dc, false);
2734 memcpy (&deps_init_id_sched_deps_info,
2735 &const_deps_init_id_sched_deps_info,
2736 sizeof (deps_init_id_sched_deps_info));
2738 if (spec_info != NULL)
2739 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2741 sched_deps_info = &deps_init_id_sched_deps_info;
2743 deps_analyze_insn (dc, insn);
2745 free_deps (dc);
2747 deps_init_id_data.id = NULL;
2751 struct sched_scan_info_def
2753 /* This hook notifies scheduler frontend to extend its internal per basic
2754 block data structures. This hook should be called once before a series of
2755 calls to bb_init (). */
2756 void (*extend_bb) (void);
2758 /* This hook makes scheduler frontend to initialize its internal data
2759 structures for the passed basic block. */
2760 void (*init_bb) (basic_block);
2762 /* This hook notifies scheduler frontend to extend its internal per insn data
2763 structures. This hook should be called once before a series of calls to
2764 insn_init (). */
2765 void (*extend_insn) (void);
2767 /* This hook makes scheduler frontend to initialize its internal data
2768 structures for the passed insn. */
2769 void (*init_insn) (rtx);
2772 /* A driver function to add a set of basic blocks (BBS) to the
2773 scheduling region. */
2774 static void
2775 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2777 unsigned i;
2778 basic_block bb;
2780 if (ssi->extend_bb)
2781 ssi->extend_bb ();
2783 if (ssi->init_bb)
2784 FOR_EACH_VEC_ELT (bbs, i, bb)
2785 ssi->init_bb (bb);
2787 if (ssi->extend_insn)
2788 ssi->extend_insn ();
2790 if (ssi->init_insn)
2791 FOR_EACH_VEC_ELT (bbs, i, bb)
2793 rtx insn;
2795 FOR_BB_INSNS (bb, insn)
2796 ssi->init_insn (insn);
2800 /* Implement hooks for collecting fundamental insn properties like if insn is
2801 an ASM or is within a SCHED_GROUP. */
2803 /* True when a "one-time init" data for INSN was already inited. */
2804 static bool
2805 first_time_insn_init (insn_t insn)
2807 return INSN_LIVE (insn) == NULL;
2810 /* Hash an entry in a transformed_insns hashtable. */
2811 static hashval_t
2812 hash_transformed_insns (const void *p)
2814 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2817 /* Compare the entries in a transformed_insns hashtable. */
2818 static int
2819 eq_transformed_insns (const void *p, const void *q)
2821 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2822 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2824 if (INSN_UID (i1) == INSN_UID (i2))
2825 return 1;
2826 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2829 /* Free an entry in a transformed_insns hashtable. */
2830 static void
2831 free_transformed_insns (void *p)
2833 struct transformed_insns *pti = (struct transformed_insns *) p;
2835 vinsn_detach (pti->vinsn_old);
2836 vinsn_detach (pti->vinsn_new);
2837 free (pti);
2840 /* Init the s_i_d data for INSN which should be inited just once, when
2841 we first see the insn. */
2842 static void
2843 init_first_time_insn_data (insn_t insn)
2845 /* This should not be set if this is the first time we init data for
2846 insn. */
2847 gcc_assert (first_time_insn_init (insn));
2849 /* These are needed for nops too. */
2850 INSN_LIVE (insn) = get_regset_from_pool ();
2851 INSN_LIVE_VALID_P (insn) = false;
2853 if (!INSN_NOP_P (insn))
2855 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2856 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2857 INSN_TRANSFORMED_INSNS (insn)
2858 = htab_create (16, hash_transformed_insns,
2859 eq_transformed_insns, free_transformed_insns);
2860 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2864 /* Free almost all above data for INSN that is scheduled already.
2865 Used for extra-large basic blocks. */
2866 void
2867 free_data_for_scheduled_insn (insn_t insn)
2869 gcc_assert (! first_time_insn_init (insn));
2871 if (! INSN_ANALYZED_DEPS (insn))
2872 return;
2874 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2875 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2876 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2878 /* This is allocated only for bookkeeping insns. */
2879 if (INSN_ORIGINATORS (insn))
2880 BITMAP_FREE (INSN_ORIGINATORS (insn));
2881 free_deps (&INSN_DEPS_CONTEXT (insn));
2883 INSN_ANALYZED_DEPS (insn) = NULL;
2885 /* Clear the readonly flag so we would ICE when trying to recalculate
2886 the deps context (as we believe that it should not happen). */
2887 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2890 /* Free the same data as above for INSN. */
2891 static void
2892 free_first_time_insn_data (insn_t insn)
2894 gcc_assert (! first_time_insn_init (insn));
2896 free_data_for_scheduled_insn (insn);
2897 return_regset_to_pool (INSN_LIVE (insn));
2898 INSN_LIVE (insn) = NULL;
2899 INSN_LIVE_VALID_P (insn) = false;
2902 /* Initialize region-scope data structures for basic blocks. */
2903 static void
2904 init_global_and_expr_for_bb (basic_block bb)
2906 if (sel_bb_empty_p (bb))
2907 return;
2909 invalidate_av_set (bb);
2912 /* Data for global dependency analysis (to initialize CANT_MOVE and
2913 SCHED_GROUP_P). */
2914 static struct
2916 /* Previous insn. */
2917 insn_t prev_insn;
2918 } init_global_data;
2920 /* Determine if INSN is in the sched_group, is an asm or should not be
2921 cloned. After that initialize its expr. */
2922 static void
2923 init_global_and_expr_for_insn (insn_t insn)
2925 if (LABEL_P (insn))
2926 return;
2928 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2930 init_global_data.prev_insn = NULL_RTX;
2931 return;
2934 gcc_assert (INSN_P (insn));
2936 if (SCHED_GROUP_P (insn))
2937 /* Setup a sched_group. */
2939 insn_t prev_insn = init_global_data.prev_insn;
2941 if (prev_insn)
2942 INSN_SCHED_NEXT (prev_insn) = insn;
2944 init_global_data.prev_insn = insn;
2946 else
2947 init_global_data.prev_insn = NULL_RTX;
2949 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2950 || asm_noperands (PATTERN (insn)) >= 0)
2951 /* Mark INSN as an asm. */
2952 INSN_ASM_P (insn) = true;
2955 bool force_unique_p;
2956 ds_t spec_done_ds;
2958 /* Certain instructions cannot be cloned, and frame related insns and
2959 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2960 their block. */
2961 if (prologue_epilogue_contains (insn))
2963 if (RTX_FRAME_RELATED_P (insn))
2964 CANT_MOVE (insn) = 1;
2965 else
2967 rtx note;
2968 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2969 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2970 && ((enum insn_note) INTVAL (XEXP (note, 0))
2971 == NOTE_INSN_EPILOGUE_BEG))
2973 CANT_MOVE (insn) = 1;
2974 break;
2977 force_unique_p = true;
2979 else
2980 if (CANT_MOVE (insn)
2981 || INSN_ASM_P (insn)
2982 || SCHED_GROUP_P (insn)
2983 || CALL_P (insn)
2984 /* Exception handling insns are always unique. */
2985 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2986 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2987 || control_flow_insn_p (insn)
2988 || volatile_insn_p (PATTERN (insn))
2989 || (targetm.cannot_copy_insn_p
2990 && targetm.cannot_copy_insn_p (insn)))
2991 force_unique_p = true;
2992 else
2993 force_unique_p = false;
2995 if (targetm.sched.get_insn_spec_ds)
2997 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2998 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3000 else
3001 spec_done_ds = 0;
3003 /* Initialize INSN's expr. */
3004 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3005 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3006 spec_done_ds, 0, 0, vNULL, true,
3007 false, false, false, CANT_MOVE (insn));
3010 init_first_time_insn_data (insn);
3013 /* Scan the region and initialize instruction data for basic blocks BBS. */
3014 void
3015 sel_init_global_and_expr (bb_vec_t bbs)
3017 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3018 const struct sched_scan_info_def ssi =
3020 NULL, /* extend_bb */
3021 init_global_and_expr_for_bb, /* init_bb */
3022 extend_insn_data, /* extend_insn */
3023 init_global_and_expr_for_insn /* init_insn */
3026 sched_scan (&ssi, bbs);
3029 /* Finalize region-scope data structures for basic blocks. */
3030 static void
3031 finish_global_and_expr_for_bb (basic_block bb)
3033 av_set_clear (&BB_AV_SET (bb));
3034 BB_AV_LEVEL (bb) = 0;
3037 /* Finalize INSN's data. */
3038 static void
3039 finish_global_and_expr_insn (insn_t insn)
3041 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3042 return;
3044 gcc_assert (INSN_P (insn));
3046 if (INSN_LUID (insn) > 0)
3048 free_first_time_insn_data (insn);
3049 INSN_WS_LEVEL (insn) = 0;
3050 CANT_MOVE (insn) = 0;
3052 /* We can no longer assert this, as vinsns of this insn could be
3053 easily live in other insn's caches. This should be changed to
3054 a counter-like approach among all vinsns. */
3055 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3056 clear_expr (INSN_EXPR (insn));
3060 /* Finalize per instruction data for the whole region. */
3061 void
3062 sel_finish_global_and_expr (void)
3065 bb_vec_t bbs;
3066 int i;
3068 bbs.create (current_nr_blocks);
3070 for (i = 0; i < current_nr_blocks; i++)
3071 bbs.quick_push (BASIC_BLOCK (BB_TO_BLOCK (i)));
3073 /* Clear AV_SETs and INSN_EXPRs. */
3075 const struct sched_scan_info_def ssi =
3077 NULL, /* extend_bb */
3078 finish_global_and_expr_for_bb, /* init_bb */
3079 NULL, /* extend_insn */
3080 finish_global_and_expr_insn /* init_insn */
3083 sched_scan (&ssi, bbs);
3086 bbs.release ();
3089 finish_insns ();
3093 /* In the below hooks, we merely calculate whether or not a dependence
3094 exists, and in what part of insn. However, we will need more data
3095 when we'll start caching dependence requests. */
3097 /* Container to hold information for dependency analysis. */
3098 static struct
3100 deps_t dc;
3102 /* A variable to track which part of rtx we are scanning in
3103 sched-deps.c: sched_analyze_insn (). */
3104 deps_where_t where;
3106 /* Current producer. */
3107 insn_t pro;
3109 /* Current consumer. */
3110 vinsn_t con;
3112 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3113 X is from { INSN, LHS, RHS }. */
3114 ds_t has_dep_p[DEPS_IN_NOWHERE];
3115 } has_dependence_data;
3117 /* Start analyzing dependencies of INSN. */
3118 static void
3119 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3121 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3123 has_dependence_data.where = DEPS_IN_INSN;
3126 /* Finish analyzing dependencies of an insn. */
3127 static void
3128 has_dependence_finish_insn (void)
3130 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3132 has_dependence_data.where = DEPS_IN_NOWHERE;
3135 /* Start analyzing dependencies of LHS. */
3136 static void
3137 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3139 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3141 if (VINSN_LHS (has_dependence_data.con) != NULL)
3142 has_dependence_data.where = DEPS_IN_LHS;
3145 /* Finish analyzing dependencies of an lhs. */
3146 static void
3147 has_dependence_finish_lhs (void)
3149 has_dependence_data.where = DEPS_IN_INSN;
3152 /* Start analyzing dependencies of RHS. */
3153 static void
3154 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3156 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3158 if (VINSN_RHS (has_dependence_data.con) != NULL)
3159 has_dependence_data.where = DEPS_IN_RHS;
3162 /* Start analyzing dependencies of an rhs. */
3163 static void
3164 has_dependence_finish_rhs (void)
3166 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3167 || has_dependence_data.where == DEPS_IN_INSN);
3169 has_dependence_data.where = DEPS_IN_INSN;
3172 /* Note a set of REGNO. */
3173 static void
3174 has_dependence_note_reg_set (int regno)
3176 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3178 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3179 VINSN_INSN_RTX
3180 (has_dependence_data.con)))
3182 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3184 if (reg_last->sets != NULL
3185 || reg_last->clobbers != NULL)
3186 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3188 if (reg_last->uses || reg_last->implicit_sets)
3189 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3193 /* Note a clobber of REGNO. */
3194 static void
3195 has_dependence_note_reg_clobber (int regno)
3197 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3199 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3200 VINSN_INSN_RTX
3201 (has_dependence_data.con)))
3203 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3205 if (reg_last->sets)
3206 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3208 if (reg_last->uses || reg_last->implicit_sets)
3209 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3213 /* Note a use of REGNO. */
3214 static void
3215 has_dependence_note_reg_use (int regno)
3217 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3219 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3220 VINSN_INSN_RTX
3221 (has_dependence_data.con)))
3223 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3225 if (reg_last->sets)
3226 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3228 if (reg_last->clobbers || reg_last->implicit_sets)
3229 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3231 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3232 is actually a check insn. We need to do this for any register
3233 read-read dependency with the check unless we track properly
3234 all registers written by BE_IN_SPEC-speculated insns, as
3235 we don't have explicit dependence lists. See PR 53975. */
3236 if (reg_last->uses)
3238 ds_t pro_spec_checked_ds;
3240 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3241 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3243 if (pro_spec_checked_ds != 0)
3244 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3245 NULL_RTX, NULL_RTX);
3250 /* Note a memory dependence. */
3251 static void
3252 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3253 rtx pending_mem ATTRIBUTE_UNUSED,
3254 insn_t pending_insn ATTRIBUTE_UNUSED,
3255 ds_t ds ATTRIBUTE_UNUSED)
3257 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3258 VINSN_INSN_RTX (has_dependence_data.con)))
3260 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3262 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3266 /* Note a dependence. */
3267 static void
3268 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3269 ds_t ds ATTRIBUTE_UNUSED)
3271 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3272 VINSN_INSN_RTX (has_dependence_data.con)))
3274 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3276 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3280 /* Mark the insn as having a hard dependence that prevents speculation. */
3281 void
3282 sel_mark_hard_insn (rtx insn)
3284 int i;
3286 /* Only work when we're in has_dependence_p mode.
3287 ??? This is a hack, this should actually be a hook. */
3288 if (!has_dependence_data.dc || !has_dependence_data.pro)
3289 return;
3291 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3292 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3294 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3295 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3298 /* This structure holds the hooks for the dependency analysis used when
3299 actually processing dependencies in the scheduler. */
3300 static struct sched_deps_info_def has_dependence_sched_deps_info;
3302 /* This initializes most of the fields of the above structure. */
3303 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3305 NULL,
3307 has_dependence_start_insn,
3308 has_dependence_finish_insn,
3309 has_dependence_start_lhs,
3310 has_dependence_finish_lhs,
3311 has_dependence_start_rhs,
3312 has_dependence_finish_rhs,
3313 has_dependence_note_reg_set,
3314 has_dependence_note_reg_clobber,
3315 has_dependence_note_reg_use,
3316 has_dependence_note_mem_dep,
3317 has_dependence_note_dep,
3319 0, /* use_cselib */
3320 0, /* use_deps_list */
3321 0 /* generate_spec_deps */
3324 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3325 static void
3326 setup_has_dependence_sched_deps_info (void)
3328 memcpy (&has_dependence_sched_deps_info,
3329 &const_has_dependence_sched_deps_info,
3330 sizeof (has_dependence_sched_deps_info));
3332 if (spec_info != NULL)
3333 has_dependence_sched_deps_info.generate_spec_deps = 1;
3335 sched_deps_info = &has_dependence_sched_deps_info;
3338 /* Remove all dependences found and recorded in has_dependence_data array. */
3339 void
3340 sel_clear_has_dependence (void)
3342 int i;
3344 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3345 has_dependence_data.has_dep_p[i] = 0;
3348 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3349 to the dependence information array in HAS_DEP_PP. */
3350 ds_t
3351 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3353 int i;
3354 ds_t ds;
3355 struct deps_desc *dc;
3357 if (INSN_SIMPLEJUMP_P (pred))
3358 /* Unconditional jump is just a transfer of control flow.
3359 Ignore it. */
3360 return false;
3362 dc = &INSN_DEPS_CONTEXT (pred);
3364 /* We init this field lazily. */
3365 if (dc->reg_last == NULL)
3366 init_deps_reg_last (dc);
3368 if (!dc->readonly)
3370 has_dependence_data.pro = NULL;
3371 /* Initialize empty dep context with information about PRED. */
3372 advance_deps_context (dc, pred);
3373 dc->readonly = 1;
3376 has_dependence_data.where = DEPS_IN_NOWHERE;
3377 has_dependence_data.pro = pred;
3378 has_dependence_data.con = EXPR_VINSN (expr);
3379 has_dependence_data.dc = dc;
3381 sel_clear_has_dependence ();
3383 /* Now catch all dependencies that would be generated between PRED and
3384 INSN. */
3385 setup_has_dependence_sched_deps_info ();
3386 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3387 has_dependence_data.dc = NULL;
3389 /* When a barrier was found, set DEPS_IN_INSN bits. */
3390 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3391 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3392 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3393 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3395 /* Do not allow stores to memory to move through checks. Currently
3396 we don't move this to sched-deps.c as the check doesn't have
3397 obvious places to which this dependence can be attached.
3398 FIMXE: this should go to a hook. */
3399 if (EXPR_LHS (expr)
3400 && MEM_P (EXPR_LHS (expr))
3401 && sel_insn_is_speculation_check (pred))
3402 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3404 *has_dep_pp = has_dependence_data.has_dep_p;
3405 ds = 0;
3406 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3407 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3408 NULL_RTX, NULL_RTX);
3410 return ds;
3414 /* Dependence hooks implementation that checks dependence latency constraints
3415 on the insns being scheduled. The entry point for these routines is
3416 tick_check_p predicate. */
3418 static struct
3420 /* An expr we are currently checking. */
3421 expr_t expr;
3423 /* A minimal cycle for its scheduling. */
3424 int cycle;
3426 /* Whether we have seen a true dependence while checking. */
3427 bool seen_true_dep_p;
3428 } tick_check_data;
3430 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3431 on PRO with status DS and weight DW. */
3432 static void
3433 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3435 expr_t con_expr = tick_check_data.expr;
3436 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3438 if (con_insn != pro_insn)
3440 enum reg_note dt;
3441 int tick;
3443 if (/* PROducer was removed from above due to pipelining. */
3444 !INSN_IN_STREAM_P (pro_insn)
3445 /* Or PROducer was originally on the next iteration regarding the
3446 CONsumer. */
3447 || (INSN_SCHED_TIMES (pro_insn)
3448 - EXPR_SCHED_TIMES (con_expr)) > 1)
3449 /* Don't count this dependence. */
3450 return;
3452 dt = ds_to_dt (ds);
3453 if (dt == REG_DEP_TRUE)
3454 tick_check_data.seen_true_dep_p = true;
3456 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3459 dep_def _dep, *dep = &_dep;
3461 init_dep (dep, pro_insn, con_insn, dt);
3463 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3466 /* When there are several kinds of dependencies between pro and con,
3467 only REG_DEP_TRUE should be taken into account. */
3468 if (tick > tick_check_data.cycle
3469 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3470 tick_check_data.cycle = tick;
3474 /* An implementation of note_dep hook. */
3475 static void
3476 tick_check_note_dep (insn_t pro, ds_t ds)
3478 tick_check_dep_with_dw (pro, ds, 0);
3481 /* An implementation of note_mem_dep hook. */
3482 static void
3483 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3485 dw_t dw;
3487 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3488 ? estimate_dep_weak (mem1, mem2)
3489 : 0);
3491 tick_check_dep_with_dw (pro, ds, dw);
3494 /* This structure contains hooks for dependence analysis used when determining
3495 whether an insn is ready for scheduling. */
3496 static struct sched_deps_info_def tick_check_sched_deps_info =
3498 NULL,
3500 NULL,
3501 NULL,
3502 NULL,
3503 NULL,
3504 NULL,
3505 NULL,
3506 haifa_note_reg_set,
3507 haifa_note_reg_clobber,
3508 haifa_note_reg_use,
3509 tick_check_note_mem_dep,
3510 tick_check_note_dep,
3512 0, 0, 0
3515 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3516 scheduled. Return 0 if all data from producers in DC is ready. */
3518 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3520 int cycles_left;
3521 /* Initialize variables. */
3522 tick_check_data.expr = expr;
3523 tick_check_data.cycle = 0;
3524 tick_check_data.seen_true_dep_p = false;
3525 sched_deps_info = &tick_check_sched_deps_info;
3527 gcc_assert (!dc->readonly);
3528 dc->readonly = 1;
3529 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3530 dc->readonly = 0;
3532 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3534 return cycles_left >= 0 ? cycles_left : 0;
3538 /* Functions to work with insns. */
3540 /* Returns true if LHS of INSN is the same as DEST of an insn
3541 being moved. */
3542 bool
3543 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3545 rtx lhs = INSN_LHS (insn);
3547 if (lhs == NULL || dest == NULL)
3548 return false;
3550 return rtx_equal_p (lhs, dest);
3553 /* Return s_i_d entry of INSN. Callable from debugger. */
3554 sel_insn_data_def
3555 insn_sid (insn_t insn)
3557 return *SID (insn);
3560 /* True when INSN is a speculative check. We can tell this by looking
3561 at the data structures of the selective scheduler, not by examining
3562 the pattern. */
3563 bool
3564 sel_insn_is_speculation_check (rtx insn)
3566 return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
3569 /* Extracts machine mode MODE and destination location DST_LOC
3570 for given INSN. */
3571 void
3572 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3574 rtx pat = PATTERN (insn);
3576 gcc_assert (dst_loc);
3577 gcc_assert (GET_CODE (pat) == SET);
3579 *dst_loc = SET_DEST (pat);
3581 gcc_assert (*dst_loc);
3582 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3584 if (mode)
3585 *mode = GET_MODE (*dst_loc);
3588 /* Returns true when moving through JUMP will result in bookkeeping
3589 creation. */
3590 bool
3591 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3593 insn_t succ;
3594 succ_iterator si;
3596 FOR_EACH_SUCC (succ, si, jump)
3597 if (sel_num_cfg_preds_gt_1 (succ))
3598 return true;
3600 return false;
3603 /* Return 'true' if INSN is the only one in its basic block. */
3604 static bool
3605 insn_is_the_only_one_in_bb_p (insn_t insn)
3607 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3610 #ifdef ENABLE_CHECKING
3611 /* Check that the region we're scheduling still has at most one
3612 backedge. */
3613 static void
3614 verify_backedges (void)
3616 if (pipelining_p)
3618 int i, n = 0;
3619 edge e;
3620 edge_iterator ei;
3622 for (i = 0; i < current_nr_blocks; i++)
3623 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3624 if (in_current_region_p (e->dest)
3625 && BLOCK_TO_BB (e->dest->index) < i)
3626 n++;
3628 gcc_assert (n <= 1);
3631 #endif
3634 /* Functions to work with control flow. */
3636 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3637 are sorted in topological order (it might have been invalidated by
3638 redirecting an edge). */
3639 static void
3640 sel_recompute_toporder (void)
3642 int i, n, rgn;
3643 int *postorder, n_blocks;
3645 postorder = XALLOCAVEC (int, n_basic_blocks);
3646 n_blocks = post_order_compute (postorder, false, false);
3648 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3649 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3650 if (CONTAINING_RGN (postorder[i]) == rgn)
3652 BLOCK_TO_BB (postorder[i]) = n;
3653 BB_TO_BLOCK (n) = postorder[i];
3654 n++;
3657 /* Assert that we updated info for all blocks. We may miss some blocks if
3658 this function is called when redirecting an edge made a block
3659 unreachable, but that block is not deleted yet. */
3660 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3663 /* Tidy the possibly empty block BB. */
3664 static bool
3665 maybe_tidy_empty_bb (basic_block bb)
3667 basic_block succ_bb, pred_bb, note_bb;
3668 vec<basic_block> dom_bbs;
3669 edge e;
3670 edge_iterator ei;
3671 bool rescan_p;
3673 /* Keep empty bb only if this block immediately precedes EXIT and
3674 has incoming non-fallthrough edge, or it has no predecessors or
3675 successors. Otherwise remove it. */
3676 if (!sel_bb_empty_p (bb)
3677 || (single_succ_p (bb)
3678 && single_succ (bb) == EXIT_BLOCK_PTR
3679 && (!single_pred_p (bb)
3680 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3681 || EDGE_COUNT (bb->preds) == 0
3682 || EDGE_COUNT (bb->succs) == 0)
3683 return false;
3685 /* Do not attempt to redirect complex edges. */
3686 FOR_EACH_EDGE (e, ei, bb->preds)
3687 if (e->flags & EDGE_COMPLEX)
3688 return false;
3689 else if (e->flags & EDGE_FALLTHRU)
3691 rtx note;
3692 /* If prev bb ends with asm goto, see if any of the
3693 ASM_OPERANDS_LABELs don't point to the fallthru
3694 label. Do not attempt to redirect it in that case. */
3695 if (JUMP_P (BB_END (e->src))
3696 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3698 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3700 for (i = 0; i < n; ++i)
3701 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3702 return false;
3706 free_data_sets (bb);
3708 /* Do not delete BB if it has more than one successor.
3709 That can occur when we moving a jump. */
3710 if (!single_succ_p (bb))
3712 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3713 sel_merge_blocks (bb->prev_bb, bb);
3714 return true;
3717 succ_bb = single_succ (bb);
3718 rescan_p = true;
3719 pred_bb = NULL;
3720 dom_bbs.create (0);
3722 /* Save a pred/succ from the current region to attach the notes to. */
3723 note_bb = NULL;
3724 FOR_EACH_EDGE (e, ei, bb->preds)
3725 if (in_current_region_p (e->src))
3727 note_bb = e->src;
3728 break;
3730 if (note_bb == NULL)
3731 note_bb = succ_bb;
3733 /* Redirect all non-fallthru edges to the next bb. */
3734 while (rescan_p)
3736 rescan_p = false;
3738 FOR_EACH_EDGE (e, ei, bb->preds)
3740 pred_bb = e->src;
3742 if (!(e->flags & EDGE_FALLTHRU))
3744 /* We can not invalidate computed topological order by moving
3745 the edge destination block (E->SUCC) along a fallthru edge.
3747 We will update dominators here only when we'll get
3748 an unreachable block when redirecting, otherwise
3749 sel_redirect_edge_and_branch will take care of it. */
3750 if (e->dest != bb
3751 && single_pred_p (e->dest))
3752 dom_bbs.safe_push (e->dest);
3753 sel_redirect_edge_and_branch (e, succ_bb);
3754 rescan_p = true;
3755 break;
3757 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3758 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3759 still have to adjust it. */
3760 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3762 /* If possible, try to remove the unneeded conditional jump. */
3763 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3764 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3766 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3767 tidy_fallthru_edge (e);
3769 else
3770 sel_redirect_edge_and_branch (e, succ_bb);
3771 rescan_p = true;
3772 break;
3777 if (can_merge_blocks_p (bb->prev_bb, bb))
3778 sel_merge_blocks (bb->prev_bb, bb);
3779 else
3781 /* This is a block without fallthru predecessor. Just delete it. */
3782 gcc_assert (note_bb);
3783 move_bb_info (note_bb, bb);
3784 remove_empty_bb (bb, true);
3787 if (!dom_bbs.is_empty ())
3789 dom_bbs.safe_push (succ_bb);
3790 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3791 dom_bbs.release ();
3794 return true;
3797 /* Tidy the control flow after we have removed original insn from
3798 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3799 is true, also try to optimize control flow on non-empty blocks. */
3800 bool
3801 tidy_control_flow (basic_block xbb, bool full_tidying)
3803 bool changed = true;
3804 insn_t first, last;
3806 /* First check whether XBB is empty. */
3807 changed = maybe_tidy_empty_bb (xbb);
3808 if (changed || !full_tidying)
3809 return changed;
3811 /* Check if there is a unnecessary jump after insn left. */
3812 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3813 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3814 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3816 if (sel_remove_insn (BB_END (xbb), false, false))
3817 return true;
3818 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3821 first = sel_bb_head (xbb);
3822 last = sel_bb_end (xbb);
3823 if (MAY_HAVE_DEBUG_INSNS)
3825 if (first != last && DEBUG_INSN_P (first))
3827 first = NEXT_INSN (first);
3828 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3830 if (first != last && DEBUG_INSN_P (last))
3832 last = PREV_INSN (last);
3833 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3835 /* Check if there is an unnecessary jump in previous basic block leading
3836 to next basic block left after removing INSN from stream.
3837 If it is so, remove that jump and redirect edge to current
3838 basic block (where there was INSN before deletion). This way
3839 when NOP will be deleted several instructions later with its
3840 basic block we will not get a jump to next instruction, which
3841 can be harmful. */
3842 if (first == last
3843 && !sel_bb_empty_p (xbb)
3844 && INSN_NOP_P (last)
3845 /* Flow goes fallthru from current block to the next. */
3846 && EDGE_COUNT (xbb->succs) == 1
3847 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3848 /* When successor is an EXIT block, it may not be the next block. */
3849 && single_succ (xbb) != EXIT_BLOCK_PTR
3850 /* And unconditional jump in previous basic block leads to
3851 next basic block of XBB and this jump can be safely removed. */
3852 && in_current_region_p (xbb->prev_bb)
3853 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3854 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3855 /* Also this jump is not at the scheduling boundary. */
3856 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3858 bool recompute_toporder_p;
3859 /* Clear data structures of jump - jump itself will be removed
3860 by sel_redirect_edge_and_branch. */
3861 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3862 recompute_toporder_p
3863 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3865 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3867 /* It can turn out that after removing unused jump, basic block
3868 that contained that jump, becomes empty too. In such case
3869 remove it too. */
3870 if (sel_bb_empty_p (xbb->prev_bb))
3871 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3872 if (recompute_toporder_p)
3873 sel_recompute_toporder ();
3876 #ifdef ENABLE_CHECKING
3877 verify_backedges ();
3878 verify_dominators (CDI_DOMINATORS);
3879 #endif
3881 return changed;
3884 /* Purge meaningless empty blocks in the middle of a region. */
3885 void
3886 purge_empty_blocks (void)
3888 int i;
3890 /* Do not attempt to delete the first basic block in the region. */
3891 for (i = 1; i < current_nr_blocks; )
3893 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3895 if (maybe_tidy_empty_bb (b))
3896 continue;
3898 i++;
3902 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3903 do not delete insn's data, because it will be later re-emitted.
3904 Return true if we have removed some blocks afterwards. */
3905 bool
3906 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3908 basic_block bb = BLOCK_FOR_INSN (insn);
3910 gcc_assert (INSN_IN_STREAM_P (insn));
3912 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3914 expr_t expr;
3915 av_set_iterator i;
3917 /* When we remove a debug insn that is head of a BB, it remains
3918 in the AV_SET of the block, but it shouldn't. */
3919 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3920 if (EXPR_INSN_RTX (expr) == insn)
3922 av_set_iter_remove (&i);
3923 break;
3927 if (only_disconnect)
3929 insn_t prev = PREV_INSN (insn);
3930 insn_t next = NEXT_INSN (insn);
3931 basic_block bb = BLOCK_FOR_INSN (insn);
3933 NEXT_INSN (prev) = next;
3934 PREV_INSN (next) = prev;
3936 if (BB_HEAD (bb) == insn)
3938 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3939 BB_HEAD (bb) = prev;
3941 if (BB_END (bb) == insn)
3942 BB_END (bb) = prev;
3944 else
3946 remove_insn (insn);
3947 clear_expr (INSN_EXPR (insn));
3950 /* It is necessary to null this fields before calling add_insn (). */
3951 PREV_INSN (insn) = NULL_RTX;
3952 NEXT_INSN (insn) = NULL_RTX;
3954 return tidy_control_flow (bb, full_tidying);
3957 /* Estimate number of the insns in BB. */
3958 static int
3959 sel_estimate_number_of_insns (basic_block bb)
3961 int res = 0;
3962 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3964 for (; insn != next_tail; insn = NEXT_INSN (insn))
3965 if (NONDEBUG_INSN_P (insn))
3966 res++;
3968 return res;
3971 /* We don't need separate luids for notes or labels. */
3972 static int
3973 sel_luid_for_non_insn (rtx x)
3975 gcc_assert (NOTE_P (x) || LABEL_P (x));
3977 return -1;
3980 /* Find the proper seqno for inserting at INSN by successors.
3981 Return -1 if no successors with positive seqno exist. */
3982 static int
3983 get_seqno_by_succs (rtx insn)
3985 basic_block bb = BLOCK_FOR_INSN (insn);
3986 rtx tmp = insn, end = BB_END (bb);
3987 int seqno;
3988 insn_t succ = NULL;
3989 succ_iterator si;
3991 while (tmp != end)
3993 tmp = NEXT_INSN (tmp);
3994 if (INSN_P (tmp))
3995 return INSN_SEQNO (tmp);
3998 seqno = INT_MAX;
4000 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
4001 if (INSN_SEQNO (succ) > 0)
4002 seqno = MIN (seqno, INSN_SEQNO (succ));
4004 if (seqno == INT_MAX)
4005 return -1;
4007 return seqno;
4010 /* Compute seqno for INSN by its preds or succs. */
4011 static int
4012 get_seqno_for_a_jump (insn_t insn)
4014 int seqno;
4016 gcc_assert (INSN_SIMPLEJUMP_P (insn));
4018 if (!sel_bb_head_p (insn))
4019 seqno = INSN_SEQNO (PREV_INSN (insn));
4020 else
4022 basic_block bb = BLOCK_FOR_INSN (insn);
4024 if (single_pred_p (bb)
4025 && !in_current_region_p (single_pred (bb)))
4027 /* We can have preds outside a region when splitting edges
4028 for pipelining of an outer loop. Use succ instead.
4029 There should be only one of them. */
4030 insn_t succ = NULL;
4031 succ_iterator si;
4032 bool first = true;
4034 gcc_assert (flag_sel_sched_pipelining_outer_loops
4035 && current_loop_nest);
4036 FOR_EACH_SUCC_1 (succ, si, insn,
4037 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4039 gcc_assert (first);
4040 first = false;
4043 gcc_assert (succ != NULL);
4044 seqno = INSN_SEQNO (succ);
4046 else
4048 insn_t *preds;
4049 int n;
4051 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4053 gcc_assert (n > 0);
4054 /* For one predecessor, use simple method. */
4055 if (n == 1)
4056 seqno = INSN_SEQNO (preds[0]);
4057 else
4058 seqno = get_seqno_by_preds (insn);
4060 free (preds);
4064 /* We were unable to find a good seqno among preds. */
4065 if (seqno < 0)
4066 seqno = get_seqno_by_succs (insn);
4068 gcc_assert (seqno >= 0);
4070 return seqno;
4073 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4074 with positive seqno exist. */
4076 get_seqno_by_preds (rtx insn)
4078 basic_block bb = BLOCK_FOR_INSN (insn);
4079 rtx tmp = insn, head = BB_HEAD (bb);
4080 insn_t *preds;
4081 int n, i, seqno;
4083 while (tmp != head)
4085 tmp = PREV_INSN (tmp);
4086 if (INSN_P (tmp))
4087 return INSN_SEQNO (tmp);
4090 cfg_preds (bb, &preds, &n);
4091 for (i = 0, seqno = -1; i < n; i++)
4092 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4094 return seqno;
4099 /* Extend pass-scope data structures for basic blocks. */
4100 void
4101 sel_extend_global_bb_info (void)
4103 sel_global_bb_info.safe_grow_cleared (last_basic_block);
4106 /* Extend region-scope data structures for basic blocks. */
4107 static void
4108 extend_region_bb_info (void)
4110 sel_region_bb_info.safe_grow_cleared (last_basic_block);
4113 /* Extend all data structures to fit for all basic blocks. */
4114 static void
4115 extend_bb_info (void)
4117 sel_extend_global_bb_info ();
4118 extend_region_bb_info ();
4121 /* Finalize pass-scope data structures for basic blocks. */
4122 void
4123 sel_finish_global_bb_info (void)
4125 sel_global_bb_info.release ();
4128 /* Finalize region-scope data structures for basic blocks. */
4129 static void
4130 finish_region_bb_info (void)
4132 sel_region_bb_info.release ();
4136 /* Data for each insn in current region. */
4137 vec<sel_insn_data_def> s_i_d = vNULL;
4139 /* Extend data structures for insns from current region. */
4140 static void
4141 extend_insn_data (void)
4143 int reserve;
4145 sched_extend_target ();
4146 sched_deps_init (false);
4148 /* Extend data structures for insns from current region. */
4149 reserve = (sched_max_luid + 1 - s_i_d.length ());
4150 if (reserve > 0 && ! s_i_d.space (reserve))
4152 int size;
4154 if (sched_max_luid / 2 > 1024)
4155 size = sched_max_luid + 1024;
4156 else
4157 size = 3 * sched_max_luid / 2;
4160 s_i_d.safe_grow_cleared (size);
4164 /* Finalize data structures for insns from current region. */
4165 static void
4166 finish_insns (void)
4168 unsigned i;
4170 /* Clear here all dependence contexts that may have left from insns that were
4171 removed during the scheduling. */
4172 for (i = 0; i < s_i_d.length (); i++)
4174 sel_insn_data_def *sid_entry = &s_i_d[i];
4176 if (sid_entry->live)
4177 return_regset_to_pool (sid_entry->live);
4178 if (sid_entry->analyzed_deps)
4180 BITMAP_FREE (sid_entry->analyzed_deps);
4181 BITMAP_FREE (sid_entry->found_deps);
4182 htab_delete (sid_entry->transformed_insns);
4183 free_deps (&sid_entry->deps_context);
4185 if (EXPR_VINSN (&sid_entry->expr))
4187 clear_expr (&sid_entry->expr);
4189 /* Also, clear CANT_MOVE bit here, because we really don't want it
4190 to be passed to the next region. */
4191 CANT_MOVE_BY_LUID (i) = 0;
4195 s_i_d.release ();
4198 /* A proxy to pass initialization data to init_insn (). */
4199 static sel_insn_data_def _insn_init_ssid;
4200 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4202 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4203 static bool insn_init_create_new_vinsn_p;
4205 /* Set all necessary data for initialization of the new insn[s]. */
4206 static expr_t
4207 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4209 expr_t x = &insn_init_ssid->expr;
4211 copy_expr_onside (x, expr);
4212 if (vi != NULL)
4214 insn_init_create_new_vinsn_p = false;
4215 change_vinsn_in_expr (x, vi);
4217 else
4218 insn_init_create_new_vinsn_p = true;
4220 insn_init_ssid->seqno = seqno;
4221 return x;
4224 /* Init data for INSN. */
4225 static void
4226 init_insn_data (insn_t insn)
4228 expr_t expr;
4229 sel_insn_data_t ssid = insn_init_ssid;
4231 /* The fields mentioned below are special and hence are not being
4232 propagated to the new insns. */
4233 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4234 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4235 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4237 expr = INSN_EXPR (insn);
4238 copy_expr (expr, &ssid->expr);
4239 prepare_insn_expr (insn, ssid->seqno);
4241 if (insn_init_create_new_vinsn_p)
4242 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4244 if (first_time_insn_init (insn))
4245 init_first_time_insn_data (insn);
4248 /* This is used to initialize spurious jumps generated by
4249 sel_redirect_edge (). */
4250 static void
4251 init_simplejump_data (insn_t insn)
4253 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4254 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
4255 vNULL, true, false, false,
4256 false, true);
4257 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn);
4258 init_first_time_insn_data (insn);
4261 /* Perform deferred initialization of insns. This is used to process
4262 a new jump that may be created by redirect_edge. */
4263 void
4264 sel_init_new_insn (insn_t insn, int flags)
4266 /* We create data structures for bb when the first insn is emitted in it. */
4267 if (INSN_P (insn)
4268 && INSN_IN_STREAM_P (insn)
4269 && insn_is_the_only_one_in_bb_p (insn))
4271 extend_bb_info ();
4272 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4275 if (flags & INSN_INIT_TODO_LUID)
4277 sched_extend_luids ();
4278 sched_init_insn_luid (insn);
4281 if (flags & INSN_INIT_TODO_SSID)
4283 extend_insn_data ();
4284 init_insn_data (insn);
4285 clear_expr (&insn_init_ssid->expr);
4288 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4290 extend_insn_data ();
4291 init_simplejump_data (insn);
4294 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4295 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4299 /* Functions to init/finish work with lv sets. */
4301 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4302 static void
4303 init_lv_set (basic_block bb)
4305 gcc_assert (!BB_LV_SET_VALID_P (bb));
4307 BB_LV_SET (bb) = get_regset_from_pool ();
4308 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4309 BB_LV_SET_VALID_P (bb) = true;
4312 /* Copy liveness information to BB from FROM_BB. */
4313 static void
4314 copy_lv_set_from (basic_block bb, basic_block from_bb)
4316 gcc_assert (!BB_LV_SET_VALID_P (bb));
4318 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4319 BB_LV_SET_VALID_P (bb) = true;
4322 /* Initialize lv set of all bb headers. */
4323 void
4324 init_lv_sets (void)
4326 basic_block bb;
4328 /* Initialize of LV sets. */
4329 FOR_EACH_BB (bb)
4330 init_lv_set (bb);
4332 /* Don't forget EXIT_BLOCK. */
4333 init_lv_set (EXIT_BLOCK_PTR);
4336 /* Release lv set of HEAD. */
4337 static void
4338 free_lv_set (basic_block bb)
4340 gcc_assert (BB_LV_SET (bb) != NULL);
4342 return_regset_to_pool (BB_LV_SET (bb));
4343 BB_LV_SET (bb) = NULL;
4344 BB_LV_SET_VALID_P (bb) = false;
4347 /* Finalize lv sets of all bb headers. */
4348 void
4349 free_lv_sets (void)
4351 basic_block bb;
4353 /* Don't forget EXIT_BLOCK. */
4354 free_lv_set (EXIT_BLOCK_PTR);
4356 /* Free LV sets. */
4357 FOR_EACH_BB (bb)
4358 if (BB_LV_SET (bb))
4359 free_lv_set (bb);
4362 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4363 compute_av() processes BB. This function is called when creating new basic
4364 blocks, as well as for blocks (either new or existing) where new jumps are
4365 created when the control flow is being updated. */
4366 static void
4367 invalidate_av_set (basic_block bb)
4369 BB_AV_LEVEL (bb) = -1;
4372 /* Create initial data sets for BB (they will be invalid). */
4373 static void
4374 create_initial_data_sets (basic_block bb)
4376 if (BB_LV_SET (bb))
4377 BB_LV_SET_VALID_P (bb) = false;
4378 else
4379 BB_LV_SET (bb) = get_regset_from_pool ();
4380 invalidate_av_set (bb);
4383 /* Free av set of BB. */
4384 static void
4385 free_av_set (basic_block bb)
4387 av_set_clear (&BB_AV_SET (bb));
4388 BB_AV_LEVEL (bb) = 0;
4391 /* Free data sets of BB. */
4392 void
4393 free_data_sets (basic_block bb)
4395 free_lv_set (bb);
4396 free_av_set (bb);
4399 /* Exchange lv sets of TO and FROM. */
4400 static void
4401 exchange_lv_sets (basic_block to, basic_block from)
4404 regset to_lv_set = BB_LV_SET (to);
4406 BB_LV_SET (to) = BB_LV_SET (from);
4407 BB_LV_SET (from) = to_lv_set;
4411 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4413 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4414 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4419 /* Exchange av sets of TO and FROM. */
4420 static void
4421 exchange_av_sets (basic_block to, basic_block from)
4424 av_set_t to_av_set = BB_AV_SET (to);
4426 BB_AV_SET (to) = BB_AV_SET (from);
4427 BB_AV_SET (from) = to_av_set;
4431 int to_av_level = BB_AV_LEVEL (to);
4433 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4434 BB_AV_LEVEL (from) = to_av_level;
4438 /* Exchange data sets of TO and FROM. */
4439 void
4440 exchange_data_sets (basic_block to, basic_block from)
4442 exchange_lv_sets (to, from);
4443 exchange_av_sets (to, from);
4446 /* Copy data sets of FROM to TO. */
4447 void
4448 copy_data_sets (basic_block to, basic_block from)
4450 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4451 gcc_assert (BB_AV_SET (to) == NULL);
4453 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4454 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4456 if (BB_AV_SET_VALID_P (from))
4458 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4460 if (BB_LV_SET_VALID_P (from))
4462 gcc_assert (BB_LV_SET (to) != NULL);
4463 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4467 /* Return an av set for INSN, if any. */
4468 av_set_t
4469 get_av_set (insn_t insn)
4471 av_set_t av_set;
4473 gcc_assert (AV_SET_VALID_P (insn));
4475 if (sel_bb_head_p (insn))
4476 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4477 else
4478 av_set = NULL;
4480 return av_set;
4483 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4485 get_av_level (insn_t insn)
4487 int av_level;
4489 gcc_assert (INSN_P (insn));
4491 if (sel_bb_head_p (insn))
4492 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4493 else
4494 av_level = INSN_WS_LEVEL (insn);
4496 return av_level;
4501 /* Variables to work with control-flow graph. */
4503 /* The basic block that already has been processed by the sched_data_update (),
4504 but hasn't been in sel_add_bb () yet. */
4505 static vec<basic_block>
4506 last_added_blocks = vNULL;
4508 /* A pool for allocating successor infos. */
4509 static struct
4511 /* A stack for saving succs_info structures. */
4512 struct succs_info *stack;
4514 /* Its size. */
4515 int size;
4517 /* Top of the stack. */
4518 int top;
4520 /* Maximal value of the top. */
4521 int max_top;
4522 } succs_info_pool;
4524 /* Functions to work with control-flow graph. */
4526 /* Return basic block note of BB. */
4527 insn_t
4528 sel_bb_head (basic_block bb)
4530 insn_t head;
4532 if (bb == EXIT_BLOCK_PTR)
4534 gcc_assert (exit_insn != NULL_RTX);
4535 head = exit_insn;
4537 else
4539 insn_t note;
4541 note = bb_note (bb);
4542 head = next_nonnote_insn (note);
4544 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4545 head = NULL_RTX;
4548 return head;
4551 /* Return true if INSN is a basic block header. */
4552 bool
4553 sel_bb_head_p (insn_t insn)
4555 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4558 /* Return last insn of BB. */
4559 insn_t
4560 sel_bb_end (basic_block bb)
4562 if (sel_bb_empty_p (bb))
4563 return NULL_RTX;
4565 gcc_assert (bb != EXIT_BLOCK_PTR);
4567 return BB_END (bb);
4570 /* Return true if INSN is the last insn in its basic block. */
4571 bool
4572 sel_bb_end_p (insn_t insn)
4574 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4577 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4578 bool
4579 sel_bb_empty_p (basic_block bb)
4581 return sel_bb_head (bb) == NULL;
4584 /* True when BB belongs to the current scheduling region. */
4585 bool
4586 in_current_region_p (basic_block bb)
4588 if (bb->index < NUM_FIXED_BLOCKS)
4589 return false;
4591 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4594 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4595 basic_block
4596 fallthru_bb_of_jump (rtx jump)
4598 if (!JUMP_P (jump))
4599 return NULL;
4601 if (!any_condjump_p (jump))
4602 return NULL;
4604 /* A basic block that ends with a conditional jump may still have one successor
4605 (and be followed by a barrier), we are not interested. */
4606 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4607 return NULL;
4609 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4612 /* Remove all notes from BB. */
4613 static void
4614 init_bb (basic_block bb)
4616 remove_notes (bb_note (bb), BB_END (bb));
4617 BB_NOTE_LIST (bb) = note_list;
4620 void
4621 sel_init_bbs (bb_vec_t bbs)
4623 const struct sched_scan_info_def ssi =
4625 extend_bb_info, /* extend_bb */
4626 init_bb, /* init_bb */
4627 NULL, /* extend_insn */
4628 NULL /* init_insn */
4631 sched_scan (&ssi, bbs);
4634 /* Restore notes for the whole region. */
4635 static void
4636 sel_restore_notes (void)
4638 int bb;
4639 insn_t insn;
4641 for (bb = 0; bb < current_nr_blocks; bb++)
4643 basic_block first, last;
4645 first = EBB_FIRST_BB (bb);
4646 last = EBB_LAST_BB (bb)->next_bb;
4650 note_list = BB_NOTE_LIST (first);
4651 restore_other_notes (NULL, first);
4652 BB_NOTE_LIST (first) = NULL_RTX;
4654 FOR_BB_INSNS (first, insn)
4655 if (NONDEBUG_INSN_P (insn))
4656 reemit_notes (insn);
4658 first = first->next_bb;
4660 while (first != last);
4664 /* Free per-bb data structures. */
4665 void
4666 sel_finish_bbs (void)
4668 sel_restore_notes ();
4670 /* Remove current loop preheader from this loop. */
4671 if (current_loop_nest)
4672 sel_remove_loop_preheader ();
4674 finish_region_bb_info ();
4677 /* Return true if INSN has a single successor of type FLAGS. */
4678 bool
4679 sel_insn_has_single_succ_p (insn_t insn, int flags)
4681 insn_t succ;
4682 succ_iterator si;
4683 bool first_p = true;
4685 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4687 if (first_p)
4688 first_p = false;
4689 else
4690 return false;
4693 return true;
4696 /* Allocate successor's info. */
4697 static struct succs_info *
4698 alloc_succs_info (void)
4700 if (succs_info_pool.top == succs_info_pool.max_top)
4702 int i;
4704 if (++succs_info_pool.max_top >= succs_info_pool.size)
4705 gcc_unreachable ();
4707 i = ++succs_info_pool.top;
4708 succs_info_pool.stack[i].succs_ok.create (10);
4709 succs_info_pool.stack[i].succs_other.create (10);
4710 succs_info_pool.stack[i].probs_ok.create (10);
4712 else
4713 succs_info_pool.top++;
4715 return &succs_info_pool.stack[succs_info_pool.top];
4718 /* Free successor's info. */
4719 void
4720 free_succs_info (struct succs_info * sinfo)
4722 gcc_assert (succs_info_pool.top >= 0
4723 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4724 succs_info_pool.top--;
4726 /* Clear stale info. */
4727 sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4728 sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4729 sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
4730 sinfo->all_prob = 0;
4731 sinfo->succs_ok_n = 0;
4732 sinfo->all_succs_n = 0;
4735 /* Compute successor info for INSN. FLAGS are the flags passed
4736 to the FOR_EACH_SUCC_1 iterator. */
4737 struct succs_info *
4738 compute_succs_info (insn_t insn, short flags)
4740 succ_iterator si;
4741 insn_t succ;
4742 struct succs_info *sinfo = alloc_succs_info ();
4744 /* Traverse *all* successors and decide what to do with each. */
4745 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4747 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4748 perform code motion through inner loops. */
4749 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4751 if (current_flags & flags)
4753 sinfo->succs_ok.safe_push (succ);
4754 sinfo->probs_ok.safe_push (
4755 /* FIXME: Improve calculation when skipping
4756 inner loop to exits. */
4757 si.bb_end ? si.e1->probability : REG_BR_PROB_BASE);
4758 sinfo->succs_ok_n++;
4760 else
4761 sinfo->succs_other.safe_push (succ);
4763 /* Compute all_prob. */
4764 if (!si.bb_end)
4765 sinfo->all_prob = REG_BR_PROB_BASE;
4766 else
4767 sinfo->all_prob += si.e1->probability;
4769 sinfo->all_succs_n++;
4772 return sinfo;
4775 /* Return the predecessors of BB in PREDS and their number in N.
4776 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4777 static void
4778 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4780 edge e;
4781 edge_iterator ei;
4783 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4785 FOR_EACH_EDGE (e, ei, bb->preds)
4787 basic_block pred_bb = e->src;
4788 insn_t bb_end = BB_END (pred_bb);
4790 if (!in_current_region_p (pred_bb))
4792 gcc_assert (flag_sel_sched_pipelining_outer_loops
4793 && current_loop_nest);
4794 continue;
4797 if (sel_bb_empty_p (pred_bb))
4798 cfg_preds_1 (pred_bb, preds, n, size);
4799 else
4801 if (*n == *size)
4802 *preds = XRESIZEVEC (insn_t, *preds,
4803 (*size = 2 * *size + 1));
4804 (*preds)[(*n)++] = bb_end;
4808 gcc_assert (*n != 0
4809 || (flag_sel_sched_pipelining_outer_loops
4810 && current_loop_nest));
4813 /* Find all predecessors of BB and record them in PREDS and their number
4814 in N. Empty blocks are skipped, and only normal (forward in-region)
4815 edges are processed. */
4816 static void
4817 cfg_preds (basic_block bb, insn_t **preds, int *n)
4819 int size = 0;
4821 *preds = NULL;
4822 *n = 0;
4823 cfg_preds_1 (bb, preds, n, &size);
4826 /* Returns true if we are moving INSN through join point. */
4827 bool
4828 sel_num_cfg_preds_gt_1 (insn_t insn)
4830 basic_block bb;
4832 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4833 return false;
4835 bb = BLOCK_FOR_INSN (insn);
4837 while (1)
4839 if (EDGE_COUNT (bb->preds) > 1)
4840 return true;
4842 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4843 bb = EDGE_PRED (bb, 0)->src;
4845 if (!sel_bb_empty_p (bb))
4846 break;
4849 return false;
4852 /* Returns true when BB should be the end of an ebb. Adapted from the
4853 code in sched-ebb.c. */
4854 bool
4855 bb_ends_ebb_p (basic_block bb)
4857 basic_block next_bb = bb_next_bb (bb);
4858 edge e;
4860 if (next_bb == EXIT_BLOCK_PTR
4861 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4862 || (LABEL_P (BB_HEAD (next_bb))
4863 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4864 Work around that. */
4865 && !single_pred_p (next_bb)))
4866 return true;
4868 if (!in_current_region_p (next_bb))
4869 return true;
4871 e = find_fallthru_edge (bb->succs);
4872 if (e)
4874 gcc_assert (e->dest == next_bb);
4876 return false;
4879 return true;
4882 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4883 successor of INSN. */
4884 bool
4885 in_same_ebb_p (insn_t insn, insn_t succ)
4887 basic_block ptr = BLOCK_FOR_INSN (insn);
4889 for(;;)
4891 if (ptr == BLOCK_FOR_INSN (succ))
4892 return true;
4894 if (bb_ends_ebb_p (ptr))
4895 return false;
4897 ptr = bb_next_bb (ptr);
4900 gcc_unreachable ();
4901 return false;
4904 /* Recomputes the reverse topological order for the function and
4905 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4906 modified appropriately. */
4907 static void
4908 recompute_rev_top_order (void)
4910 int *postorder;
4911 int n_blocks, i;
4913 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4915 rev_top_order_index_len = last_basic_block;
4916 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4917 rev_top_order_index_len);
4920 postorder = XNEWVEC (int, n_basic_blocks);
4922 n_blocks = post_order_compute (postorder, true, false);
4923 gcc_assert (n_basic_blocks == n_blocks);
4925 /* Build reverse function: for each basic block with BB->INDEX == K
4926 rev_top_order_index[K] is it's reverse topological sort number. */
4927 for (i = 0; i < n_blocks; i++)
4929 gcc_assert (postorder[i] < rev_top_order_index_len);
4930 rev_top_order_index[postorder[i]] = i;
4933 free (postorder);
4936 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4937 void
4938 clear_outdated_rtx_info (basic_block bb)
4940 rtx insn;
4942 FOR_BB_INSNS (bb, insn)
4943 if (INSN_P (insn))
4945 SCHED_GROUP_P (insn) = 0;
4946 INSN_AFTER_STALL_P (insn) = 0;
4947 INSN_SCHED_TIMES (insn) = 0;
4948 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4950 /* We cannot use the changed caches, as previously we could ignore
4951 the LHS dependence due to enabled renaming and transform
4952 the expression, and currently we'll be unable to do this. */
4953 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4957 /* Add BB_NOTE to the pool of available basic block notes. */
4958 static void
4959 return_bb_to_pool (basic_block bb)
4961 rtx note = bb_note (bb);
4963 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4964 && bb->aux == NULL);
4966 /* It turns out that current cfg infrastructure does not support
4967 reuse of basic blocks. Don't bother for now. */
4968 /*bb_note_pool.safe_push (note);*/
4971 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4972 static rtx
4973 get_bb_note_from_pool (void)
4975 if (bb_note_pool.is_empty ())
4976 return NULL_RTX;
4977 else
4979 rtx note = bb_note_pool.pop ();
4981 PREV_INSN (note) = NULL_RTX;
4982 NEXT_INSN (note) = NULL_RTX;
4984 return note;
4988 /* Free bb_note_pool. */
4989 void
4990 free_bb_note_pool (void)
4992 bb_note_pool.release ();
4995 /* Setup scheduler pool and successor structure. */
4996 void
4997 alloc_sched_pools (void)
4999 int succs_size;
5001 succs_size = MAX_WS + 1;
5002 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
5003 succs_info_pool.size = succs_size;
5004 succs_info_pool.top = -1;
5005 succs_info_pool.max_top = -1;
5007 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
5008 sizeof (struct _list_node), 500);
5011 /* Free the pools. */
5012 void
5013 free_sched_pools (void)
5015 int i;
5017 free_alloc_pool (sched_lists_pool);
5018 gcc_assert (succs_info_pool.top == -1);
5019 for (i = 0; i < succs_info_pool.max_top; i++)
5021 succs_info_pool.stack[i].succs_ok.release ();
5022 succs_info_pool.stack[i].succs_other.release ();
5023 succs_info_pool.stack[i].probs_ok.release ();
5025 free (succs_info_pool.stack);
5029 /* Returns a position in RGN where BB can be inserted retaining
5030 topological order. */
5031 static int
5032 find_place_to_insert_bb (basic_block bb, int rgn)
5034 bool has_preds_outside_rgn = false;
5035 edge e;
5036 edge_iterator ei;
5038 /* Find whether we have preds outside the region. */
5039 FOR_EACH_EDGE (e, ei, bb->preds)
5040 if (!in_current_region_p (e->src))
5042 has_preds_outside_rgn = true;
5043 break;
5046 /* Recompute the top order -- needed when we have > 1 pred
5047 and in case we don't have preds outside. */
5048 if (flag_sel_sched_pipelining_outer_loops
5049 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5051 int i, bbi = bb->index, cur_bbi;
5053 recompute_rev_top_order ();
5054 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5056 cur_bbi = BB_TO_BLOCK (i);
5057 if (rev_top_order_index[bbi]
5058 < rev_top_order_index[cur_bbi])
5059 break;
5062 /* We skipped the right block, so we increase i. We accommodate
5063 it for increasing by step later, so we decrease i. */
5064 return (i + 1) - 1;
5066 else if (has_preds_outside_rgn)
5068 /* This is the case when we generate an extra empty block
5069 to serve as region head during pipelining. */
5070 e = EDGE_SUCC (bb, 0);
5071 gcc_assert (EDGE_COUNT (bb->succs) == 1
5072 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5073 && (BLOCK_TO_BB (e->dest->index) == 0));
5074 return -1;
5077 /* We don't have preds outside the region. We should have
5078 the only pred, because the multiple preds case comes from
5079 the pipelining of outer loops, and that is handled above.
5080 Just take the bbi of this single pred. */
5081 if (EDGE_COUNT (bb->succs) > 0)
5083 int pred_bbi;
5085 gcc_assert (EDGE_COUNT (bb->preds) == 1);
5087 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5088 return BLOCK_TO_BB (pred_bbi);
5090 else
5091 /* BB has no successors. It is safe to put it in the end. */
5092 return current_nr_blocks - 1;
5095 /* Deletes an empty basic block freeing its data. */
5096 static void
5097 delete_and_free_basic_block (basic_block bb)
5099 gcc_assert (sel_bb_empty_p (bb));
5101 if (BB_LV_SET (bb))
5102 free_lv_set (bb);
5104 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5106 /* Can't assert av_set properties because we use sel_aremove_bb
5107 when removing loop preheader from the region. At the point of
5108 removing the preheader we already have deallocated sel_region_bb_info. */
5109 gcc_assert (BB_LV_SET (bb) == NULL
5110 && !BB_LV_SET_VALID_P (bb)
5111 && BB_AV_LEVEL (bb) == 0
5112 && BB_AV_SET (bb) == NULL);
5114 delete_basic_block (bb);
5117 /* Add BB to the current region and update the region data. */
5118 static void
5119 add_block_to_current_region (basic_block bb)
5121 int i, pos, bbi = -2, rgn;
5123 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5124 bbi = find_place_to_insert_bb (bb, rgn);
5125 bbi += 1;
5126 pos = RGN_BLOCKS (rgn) + bbi;
5128 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5129 && ebb_head[bbi] == pos);
5131 /* Make a place for the new block. */
5132 extend_regions ();
5134 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5135 BLOCK_TO_BB (rgn_bb_table[i])++;
5137 memmove (rgn_bb_table + pos + 1,
5138 rgn_bb_table + pos,
5139 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5141 /* Initialize data for BB. */
5142 rgn_bb_table[pos] = bb->index;
5143 BLOCK_TO_BB (bb->index) = bbi;
5144 CONTAINING_RGN (bb->index) = rgn;
5146 RGN_NR_BLOCKS (rgn)++;
5148 for (i = rgn + 1; i <= nr_regions; i++)
5149 RGN_BLOCKS (i)++;
5152 /* Remove BB from the current region and update the region data. */
5153 static void
5154 remove_bb_from_region (basic_block bb)
5156 int i, pos, bbi = -2, rgn;
5158 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5159 bbi = BLOCK_TO_BB (bb->index);
5160 pos = RGN_BLOCKS (rgn) + bbi;
5162 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5163 && ebb_head[bbi] == pos);
5165 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5166 BLOCK_TO_BB (rgn_bb_table[i])--;
5168 memmove (rgn_bb_table + pos,
5169 rgn_bb_table + pos + 1,
5170 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5172 RGN_NR_BLOCKS (rgn)--;
5173 for (i = rgn + 1; i <= nr_regions; i++)
5174 RGN_BLOCKS (i)--;
5177 /* Add BB to the current region and update all data. If BB is NULL, add all
5178 blocks from last_added_blocks vector. */
5179 static void
5180 sel_add_bb (basic_block bb)
5182 /* Extend luids so that new notes will receive zero luids. */
5183 sched_extend_luids ();
5184 sched_init_bbs ();
5185 sel_init_bbs (last_added_blocks);
5187 /* When bb is passed explicitly, the vector should contain
5188 the only element that equals to bb; otherwise, the vector
5189 should not be NULL. */
5190 gcc_assert (last_added_blocks.exists ());
5192 if (bb != NULL)
5194 gcc_assert (last_added_blocks.length () == 1
5195 && last_added_blocks[0] == bb);
5196 add_block_to_current_region (bb);
5198 /* We associate creating/deleting data sets with the first insn
5199 appearing / disappearing in the bb. */
5200 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5201 create_initial_data_sets (bb);
5203 last_added_blocks.release ();
5205 else
5206 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5208 int i;
5209 basic_block temp_bb = NULL;
5211 for (i = 0;
5212 last_added_blocks.iterate (i, &bb); i++)
5214 add_block_to_current_region (bb);
5215 temp_bb = bb;
5218 /* We need to fetch at least one bb so we know the region
5219 to update. */
5220 gcc_assert (temp_bb != NULL);
5221 bb = temp_bb;
5223 last_added_blocks.release ();
5226 rgn_setup_region (CONTAINING_RGN (bb->index));
5229 /* Remove BB from the current region and update all data.
5230 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5231 static void
5232 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5234 unsigned idx = bb->index;
5236 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5238 remove_bb_from_region (bb);
5239 return_bb_to_pool (bb);
5240 bitmap_clear_bit (blocks_to_reschedule, idx);
5242 if (remove_from_cfg_p)
5244 basic_block succ = single_succ (bb);
5245 delete_and_free_basic_block (bb);
5246 set_immediate_dominator (CDI_DOMINATORS, succ,
5247 recompute_dominator (CDI_DOMINATORS, succ));
5250 rgn_setup_region (CONTAINING_RGN (idx));
5253 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5254 static void
5255 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5257 if (in_current_region_p (merge_bb))
5258 concat_note_lists (BB_NOTE_LIST (empty_bb),
5259 &BB_NOTE_LIST (merge_bb));
5260 BB_NOTE_LIST (empty_bb) = NULL_RTX;
5264 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5265 region, but keep it in CFG. */
5266 static void
5267 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5269 /* The block should contain just a note or a label.
5270 We try to check whether it is unused below. */
5271 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5272 || LABEL_P (BB_HEAD (empty_bb)));
5274 /* If basic block has predecessors or successors, redirect them. */
5275 if (remove_from_cfg_p
5276 && (EDGE_COUNT (empty_bb->preds) > 0
5277 || EDGE_COUNT (empty_bb->succs) > 0))
5279 basic_block pred;
5280 basic_block succ;
5282 /* We need to init PRED and SUCC before redirecting edges. */
5283 if (EDGE_COUNT (empty_bb->preds) > 0)
5285 edge e;
5287 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5289 e = EDGE_PRED (empty_bb, 0);
5290 gcc_assert (e->src == empty_bb->prev_bb
5291 && (e->flags & EDGE_FALLTHRU));
5293 pred = empty_bb->prev_bb;
5295 else
5296 pred = NULL;
5298 if (EDGE_COUNT (empty_bb->succs) > 0)
5300 /* We do not check fallthruness here as above, because
5301 after removing a jump the edge may actually be not fallthru. */
5302 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5303 succ = EDGE_SUCC (empty_bb, 0)->dest;
5305 else
5306 succ = NULL;
5308 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5310 edge e = EDGE_PRED (empty_bb, 0);
5312 if (e->flags & EDGE_FALLTHRU)
5313 redirect_edge_succ_nodup (e, succ);
5314 else
5315 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5318 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5320 edge e = EDGE_SUCC (empty_bb, 0);
5322 if (find_edge (pred, e->dest) == NULL)
5323 redirect_edge_pred (e, pred);
5327 /* Finish removing. */
5328 sel_remove_bb (empty_bb, remove_from_cfg_p);
5331 /* An implementation of create_basic_block hook, which additionally updates
5332 per-bb data structures. */
5333 static basic_block
5334 sel_create_basic_block (void *headp, void *endp, basic_block after)
5336 basic_block new_bb;
5337 insn_t new_bb_note;
5339 gcc_assert (flag_sel_sched_pipelining_outer_loops
5340 || !last_added_blocks.exists ());
5342 new_bb_note = get_bb_note_from_pool ();
5344 if (new_bb_note == NULL_RTX)
5345 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5346 else
5348 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5349 new_bb_note, after);
5350 new_bb->aux = NULL;
5353 last_added_blocks.safe_push (new_bb);
5355 return new_bb;
5358 /* Implement sched_init_only_bb (). */
5359 static void
5360 sel_init_only_bb (basic_block bb, basic_block after)
5362 gcc_assert (after == NULL);
5364 extend_regions ();
5365 rgn_make_new_region_out_of_new_block (bb);
5368 /* Update the latch when we've splitted or merged it from FROM block to TO.
5369 This should be checked for all outer loops, too. */
5370 static void
5371 change_loops_latches (basic_block from, basic_block to)
5373 gcc_assert (from != to);
5375 if (current_loop_nest)
5377 struct loop *loop;
5379 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5380 if (considered_for_pipelining_p (loop) && loop->latch == from)
5382 gcc_assert (loop == current_loop_nest);
5383 loop->latch = to;
5384 gcc_assert (loop_latch_edge (loop));
5389 /* Splits BB on two basic blocks, adding it to the region and extending
5390 per-bb data structures. Returns the newly created bb. */
5391 static basic_block
5392 sel_split_block (basic_block bb, rtx after)
5394 basic_block new_bb;
5395 insn_t insn;
5397 new_bb = sched_split_block_1 (bb, after);
5398 sel_add_bb (new_bb);
5400 /* This should be called after sel_add_bb, because this uses
5401 CONTAINING_RGN for the new block, which is not yet initialized.
5402 FIXME: this function may be a no-op now. */
5403 change_loops_latches (bb, new_bb);
5405 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5406 FOR_BB_INSNS (new_bb, insn)
5407 if (INSN_P (insn))
5408 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5410 if (sel_bb_empty_p (bb))
5412 gcc_assert (!sel_bb_empty_p (new_bb));
5414 /* NEW_BB has data sets that need to be updated and BB holds
5415 data sets that should be removed. Exchange these data sets
5416 so that we won't lose BB's valid data sets. */
5417 exchange_data_sets (new_bb, bb);
5418 free_data_sets (bb);
5421 if (!sel_bb_empty_p (new_bb)
5422 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5423 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5425 return new_bb;
5428 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5429 Otherwise returns NULL. */
5430 static rtx
5431 check_for_new_jump (basic_block bb, int prev_max_uid)
5433 rtx end;
5435 end = sel_bb_end (bb);
5436 if (end && INSN_UID (end) >= prev_max_uid)
5437 return end;
5438 return NULL;
5441 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5442 New means having UID at least equal to PREV_MAX_UID. */
5443 static rtx
5444 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5446 rtx jump;
5448 /* Return immediately if no new insns were emitted. */
5449 if (get_max_uid () == prev_max_uid)
5450 return NULL;
5452 /* Now check both blocks for new jumps. It will ever be only one. */
5453 if ((jump = check_for_new_jump (from, prev_max_uid)))
5454 return jump;
5456 if (jump_bb != NULL
5457 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5458 return jump;
5459 return NULL;
5462 /* Splits E and adds the newly created basic block to the current region.
5463 Returns this basic block. */
5464 basic_block
5465 sel_split_edge (edge e)
5467 basic_block new_bb, src, other_bb = NULL;
5468 int prev_max_uid;
5469 rtx jump;
5471 src = e->src;
5472 prev_max_uid = get_max_uid ();
5473 new_bb = split_edge (e);
5475 if (flag_sel_sched_pipelining_outer_loops
5476 && current_loop_nest)
5478 int i;
5479 basic_block bb;
5481 /* Some of the basic blocks might not have been added to the loop.
5482 Add them here, until this is fixed in force_fallthru. */
5483 for (i = 0;
5484 last_added_blocks.iterate (i, &bb); i++)
5485 if (!bb->loop_father)
5487 add_bb_to_loop (bb, e->dest->loop_father);
5489 gcc_assert (!other_bb && (new_bb->index != bb->index));
5490 other_bb = bb;
5494 /* Add all last_added_blocks to the region. */
5495 sel_add_bb (NULL);
5497 jump = find_new_jump (src, new_bb, prev_max_uid);
5498 if (jump)
5499 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5501 /* Put the correct lv set on this block. */
5502 if (other_bb && !sel_bb_empty_p (other_bb))
5503 compute_live (sel_bb_head (other_bb));
5505 return new_bb;
5508 /* Implement sched_create_empty_bb (). */
5509 static basic_block
5510 sel_create_empty_bb (basic_block after)
5512 basic_block new_bb;
5514 new_bb = sched_create_empty_bb_1 (after);
5516 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5517 later. */
5518 gcc_assert (last_added_blocks.length () == 1
5519 && last_added_blocks[0] == new_bb);
5521 last_added_blocks.release ();
5522 return new_bb;
5525 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5526 will be splitted to insert a check. */
5527 basic_block
5528 sel_create_recovery_block (insn_t orig_insn)
5530 basic_block first_bb, second_bb, recovery_block;
5531 basic_block before_recovery = NULL;
5532 rtx jump;
5534 first_bb = BLOCK_FOR_INSN (orig_insn);
5535 if (sel_bb_end_p (orig_insn))
5537 /* Avoid introducing an empty block while splitting. */
5538 gcc_assert (single_succ_p (first_bb));
5539 second_bb = single_succ (first_bb);
5541 else
5542 second_bb = sched_split_block (first_bb, orig_insn);
5544 recovery_block = sched_create_recovery_block (&before_recovery);
5545 if (before_recovery)
5546 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5548 gcc_assert (sel_bb_empty_p (recovery_block));
5549 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5550 if (current_loops != NULL)
5551 add_bb_to_loop (recovery_block, first_bb->loop_father);
5553 sel_add_bb (recovery_block);
5555 jump = BB_END (recovery_block);
5556 gcc_assert (sel_bb_head (recovery_block) == jump);
5557 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5559 return recovery_block;
5562 /* Merge basic block B into basic block A. */
5563 static void
5564 sel_merge_blocks (basic_block a, basic_block b)
5566 gcc_assert (sel_bb_empty_p (b)
5567 && EDGE_COUNT (b->preds) == 1
5568 && EDGE_PRED (b, 0)->src == b->prev_bb);
5570 move_bb_info (b->prev_bb, b);
5571 remove_empty_bb (b, false);
5572 merge_blocks (a, b);
5573 change_loops_latches (b, a);
5576 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5577 data structures for possibly created bb and insns. Returns the newly
5578 added bb or NULL, when a bb was not needed. */
5579 void
5580 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5582 basic_block jump_bb, src, orig_dest = e->dest;
5583 int prev_max_uid;
5584 rtx jump;
5586 /* This function is now used only for bookkeeping code creation, where
5587 we'll never get the single pred of orig_dest block and thus will not
5588 hit unreachable blocks when updating dominator info. */
5589 gcc_assert (!sel_bb_empty_p (e->src)
5590 && !single_pred_p (orig_dest));
5591 src = e->src;
5592 prev_max_uid = get_max_uid ();
5593 jump_bb = redirect_edge_and_branch_force (e, to);
5595 if (jump_bb != NULL)
5596 sel_add_bb (jump_bb);
5598 /* This function could not be used to spoil the loop structure by now,
5599 thus we don't care to update anything. But check it to be sure. */
5600 if (current_loop_nest
5601 && pipelining_p)
5602 gcc_assert (loop_latch_edge (current_loop_nest));
5604 jump = find_new_jump (src, jump_bb, prev_max_uid);
5605 if (jump)
5606 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5607 set_immediate_dominator (CDI_DOMINATORS, to,
5608 recompute_dominator (CDI_DOMINATORS, to));
5609 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5610 recompute_dominator (CDI_DOMINATORS, orig_dest));
5613 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5614 redirected edge are in reverse topological order. */
5615 bool
5616 sel_redirect_edge_and_branch (edge e, basic_block to)
5618 bool latch_edge_p;
5619 basic_block src, orig_dest = e->dest;
5620 int prev_max_uid;
5621 rtx jump;
5622 edge redirected;
5623 bool recompute_toporder_p = false;
5624 bool maybe_unreachable = single_pred_p (orig_dest);
5626 latch_edge_p = (pipelining_p
5627 && current_loop_nest
5628 && e == loop_latch_edge (current_loop_nest));
5630 src = e->src;
5631 prev_max_uid = get_max_uid ();
5633 redirected = redirect_edge_and_branch (e, to);
5635 gcc_assert (redirected && !last_added_blocks.exists ());
5637 /* When we've redirected a latch edge, update the header. */
5638 if (latch_edge_p)
5640 current_loop_nest->header = to;
5641 gcc_assert (loop_latch_edge (current_loop_nest));
5644 /* In rare situations, the topological relation between the blocks connected
5645 by the redirected edge can change (see PR42245 for an example). Update
5646 block_to_bb/bb_to_block. */
5647 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5648 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5649 recompute_toporder_p = true;
5651 jump = find_new_jump (src, NULL, prev_max_uid);
5652 if (jump)
5653 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5655 /* Only update dominator info when we don't have unreachable blocks.
5656 Otherwise we'll update in maybe_tidy_empty_bb. */
5657 if (!maybe_unreachable)
5659 set_immediate_dominator (CDI_DOMINATORS, to,
5660 recompute_dominator (CDI_DOMINATORS, to));
5661 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5662 recompute_dominator (CDI_DOMINATORS, orig_dest));
5664 return recompute_toporder_p;
5667 /* This variable holds the cfg hooks used by the selective scheduler. */
5668 static struct cfg_hooks sel_cfg_hooks;
5670 /* Register sel-sched cfg hooks. */
5671 void
5672 sel_register_cfg_hooks (void)
5674 sched_split_block = sel_split_block;
5676 orig_cfg_hooks = get_cfg_hooks ();
5677 sel_cfg_hooks = orig_cfg_hooks;
5679 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5681 set_cfg_hooks (sel_cfg_hooks);
5683 sched_init_only_bb = sel_init_only_bb;
5684 sched_split_block = sel_split_block;
5685 sched_create_empty_bb = sel_create_empty_bb;
5688 /* Unregister sel-sched cfg hooks. */
5689 void
5690 sel_unregister_cfg_hooks (void)
5692 sched_create_empty_bb = NULL;
5693 sched_split_block = NULL;
5694 sched_init_only_bb = NULL;
5696 set_cfg_hooks (orig_cfg_hooks);
5700 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5701 LABEL is where this jump should be directed. */
5703 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5705 rtx insn_rtx;
5707 gcc_assert (!INSN_P (pattern));
5709 start_sequence ();
5711 if (label == NULL_RTX)
5712 insn_rtx = emit_insn (pattern);
5713 else if (DEBUG_INSN_P (label))
5714 insn_rtx = emit_debug_insn (pattern);
5715 else
5717 insn_rtx = emit_jump_insn (pattern);
5718 JUMP_LABEL (insn_rtx) = label;
5719 ++LABEL_NUSES (label);
5722 end_sequence ();
5724 sched_extend_luids ();
5725 sched_extend_target ();
5726 sched_deps_init (false);
5728 /* Initialize INSN_CODE now. */
5729 recog_memoized (insn_rtx);
5730 return insn_rtx;
5733 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5734 must not be clonable. */
5735 vinsn_t
5736 create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5738 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5740 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5741 return vinsn_create (insn_rtx, force_unique_p);
5744 /* Create a copy of INSN_RTX. */
5746 create_copy_of_insn_rtx (rtx insn_rtx)
5748 rtx res, link;
5750 if (DEBUG_INSN_P (insn_rtx))
5751 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5752 insn_rtx);
5754 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5756 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5757 NULL_RTX);
5759 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5760 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5761 there too, but are supposed to be sticky, so we copy them. */
5762 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5763 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5764 && REG_NOTE_KIND (link) != REG_EQUAL
5765 && REG_NOTE_KIND (link) != REG_EQUIV)
5767 if (GET_CODE (link) == EXPR_LIST)
5768 add_reg_note (res, REG_NOTE_KIND (link),
5769 copy_insn_1 (XEXP (link, 0)));
5770 else
5771 add_reg_note (res, REG_NOTE_KIND (link), XEXP (link, 0));
5774 return res;
5777 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5778 void
5779 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5781 vinsn_detach (EXPR_VINSN (expr));
5783 EXPR_VINSN (expr) = new_vinsn;
5784 vinsn_attach (new_vinsn);
5787 /* Helpers for global init. */
5788 /* This structure is used to be able to call existing bundling mechanism
5789 and calculate insn priorities. */
5790 static struct haifa_sched_info sched_sel_haifa_sched_info =
5792 NULL, /* init_ready_list */
5793 NULL, /* can_schedule_ready_p */
5794 NULL, /* schedule_more_p */
5795 NULL, /* new_ready */
5796 NULL, /* rgn_rank */
5797 sel_print_insn, /* rgn_print_insn */
5798 contributes_to_priority,
5799 NULL, /* insn_finishes_block_p */
5801 NULL, NULL,
5802 NULL, NULL,
5803 0, 0,
5805 NULL, /* add_remove_insn */
5806 NULL, /* begin_schedule_ready */
5807 NULL, /* begin_move_insn */
5808 NULL, /* advance_target_bb */
5810 NULL,
5811 NULL,
5813 SEL_SCHED | NEW_BBS
5816 /* Setup special insns used in the scheduler. */
5817 void
5818 setup_nop_and_exit_insns (void)
5820 gcc_assert (nop_pattern == NULL_RTX
5821 && exit_insn == NULL_RTX);
5823 nop_pattern = constm1_rtx;
5825 start_sequence ();
5826 emit_insn (nop_pattern);
5827 exit_insn = get_insns ();
5828 end_sequence ();
5829 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5832 /* Free special insns used in the scheduler. */
5833 void
5834 free_nop_and_exit_insns (void)
5836 exit_insn = NULL_RTX;
5837 nop_pattern = NULL_RTX;
5840 /* Setup a special vinsn used in new insns initialization. */
5841 void
5842 setup_nop_vinsn (void)
5844 nop_vinsn = vinsn_create (exit_insn, false);
5845 vinsn_attach (nop_vinsn);
5848 /* Free a special vinsn used in new insns initialization. */
5849 void
5850 free_nop_vinsn (void)
5852 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5853 vinsn_detach (nop_vinsn);
5854 nop_vinsn = NULL;
5857 /* Call a set_sched_flags hook. */
5858 void
5859 sel_set_sched_flags (void)
5861 /* ??? This means that set_sched_flags were called, and we decided to
5862 support speculation. However, set_sched_flags also modifies flags
5863 on current_sched_info, doing this only at global init. And we
5864 sometimes change c_s_i later. So put the correct flags again. */
5865 if (spec_info && targetm.sched.set_sched_flags)
5866 targetm.sched.set_sched_flags (spec_info);
5869 /* Setup pointers to global sched info structures. */
5870 void
5871 sel_setup_sched_infos (void)
5873 rgn_setup_common_sched_info ();
5875 memcpy (&sel_common_sched_info, common_sched_info,
5876 sizeof (sel_common_sched_info));
5878 sel_common_sched_info.fix_recovery_cfg = NULL;
5879 sel_common_sched_info.add_block = NULL;
5880 sel_common_sched_info.estimate_number_of_insns
5881 = sel_estimate_number_of_insns;
5882 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5883 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5885 common_sched_info = &sel_common_sched_info;
5887 current_sched_info = &sched_sel_haifa_sched_info;
5888 current_sched_info->sched_max_insns_priority =
5889 get_rgn_sched_max_insns_priority ();
5891 sel_set_sched_flags ();
5895 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5896 *BB_ORD_INDEX after that is increased. */
5897 static void
5898 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5900 RGN_NR_BLOCKS (rgn) += 1;
5901 RGN_DONT_CALC_DEPS (rgn) = 0;
5902 RGN_HAS_REAL_EBB (rgn) = 0;
5903 CONTAINING_RGN (bb->index) = rgn;
5904 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5905 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5906 (*bb_ord_index)++;
5908 /* FIXME: it is true only when not scheduling ebbs. */
5909 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5912 /* Functions to support pipelining of outer loops. */
5914 /* Creates a new empty region and returns it's number. */
5915 static int
5916 sel_create_new_region (void)
5918 int new_rgn_number = nr_regions;
5920 RGN_NR_BLOCKS (new_rgn_number) = 0;
5922 /* FIXME: This will work only when EBBs are not created. */
5923 if (new_rgn_number != 0)
5924 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5925 RGN_NR_BLOCKS (new_rgn_number - 1);
5926 else
5927 RGN_BLOCKS (new_rgn_number) = 0;
5929 /* Set the blocks of the next region so the other functions may
5930 calculate the number of blocks in the region. */
5931 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5932 RGN_NR_BLOCKS (new_rgn_number);
5934 nr_regions++;
5936 return new_rgn_number;
5939 /* If X has a smaller topological sort number than Y, returns -1;
5940 if greater, returns 1. */
5941 static int
5942 bb_top_order_comparator (const void *x, const void *y)
5944 basic_block bb1 = *(const basic_block *) x;
5945 basic_block bb2 = *(const basic_block *) y;
5947 gcc_assert (bb1 == bb2
5948 || rev_top_order_index[bb1->index]
5949 != rev_top_order_index[bb2->index]);
5951 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5952 bbs with greater number should go earlier. */
5953 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5954 return -1;
5955 else
5956 return 1;
5959 /* Create a region for LOOP and return its number. If we don't want
5960 to pipeline LOOP, return -1. */
5961 static int
5962 make_region_from_loop (struct loop *loop)
5964 unsigned int i;
5965 int new_rgn_number = -1;
5966 struct loop *inner;
5968 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5969 int bb_ord_index = 0;
5970 basic_block *loop_blocks;
5971 basic_block preheader_block;
5973 if (loop->num_nodes
5974 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5975 return -1;
5977 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5978 for (inner = loop->inner; inner; inner = inner->inner)
5979 if (flow_bb_inside_loop_p (inner, loop->latch))
5980 return -1;
5982 loop->ninsns = num_loop_insns (loop);
5983 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5984 return -1;
5986 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5988 for (i = 0; i < loop->num_nodes; i++)
5989 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5991 free (loop_blocks);
5992 return -1;
5995 preheader_block = loop_preheader_edge (loop)->src;
5996 gcc_assert (preheader_block);
5997 gcc_assert (loop_blocks[0] == loop->header);
5999 new_rgn_number = sel_create_new_region ();
6001 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
6002 bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
6004 for (i = 0; i < loop->num_nodes; i++)
6006 /* Add only those blocks that haven't been scheduled in the inner loop.
6007 The exception is the basic blocks with bookkeeping code - they should
6008 be added to the region (and they actually don't belong to the loop
6009 body, but to the region containing that loop body). */
6011 gcc_assert (new_rgn_number >= 0);
6013 if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
6015 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6016 new_rgn_number);
6017 bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
6021 free (loop_blocks);
6022 MARK_LOOP_FOR_PIPELINING (loop);
6024 return new_rgn_number;
6027 /* Create a new region from preheader blocks LOOP_BLOCKS. */
6028 void
6029 make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
6031 unsigned int i;
6032 int new_rgn_number = -1;
6033 basic_block bb;
6035 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6036 int bb_ord_index = 0;
6038 new_rgn_number = sel_create_new_region ();
6040 FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
6042 gcc_assert (new_rgn_number >= 0);
6044 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6047 vec_free (loop_blocks);
6051 /* Create region(s) from loop nest LOOP, such that inner loops will be
6052 pipelined before outer loops. Returns true when a region for LOOP
6053 is created. */
6054 static bool
6055 make_regions_from_loop_nest (struct loop *loop)
6057 struct loop *cur_loop;
6058 int rgn_number;
6060 /* Traverse all inner nodes of the loop. */
6061 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6062 if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
6063 return false;
6065 /* At this moment all regular inner loops should have been pipelined.
6066 Try to create a region from this loop. */
6067 rgn_number = make_region_from_loop (loop);
6069 if (rgn_number < 0)
6070 return false;
6072 loop_nests.safe_push (loop);
6073 return true;
6076 /* Initalize data structures needed. */
6077 void
6078 sel_init_pipelining (void)
6080 /* Collect loop information to be used in outer loops pipelining. */
6081 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6082 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6083 | LOOPS_HAVE_RECORDED_EXITS
6084 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6085 current_loop_nest = NULL;
6087 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
6088 bitmap_clear (bbs_in_loop_rgns);
6090 recompute_rev_top_order ();
6093 /* Returns a struct loop for region RGN. */
6094 loop_p
6095 get_loop_nest_for_rgn (unsigned int rgn)
6097 /* Regions created with extend_rgns don't have corresponding loop nests,
6098 because they don't represent loops. */
6099 if (rgn < loop_nests.length ())
6100 return loop_nests[rgn];
6101 else
6102 return NULL;
6105 /* True when LOOP was included into pipelining regions. */
6106 bool
6107 considered_for_pipelining_p (struct loop *loop)
6109 if (loop_depth (loop) == 0)
6110 return false;
6112 /* Now, the loop could be too large or irreducible. Check whether its
6113 region is in LOOP_NESTS.
6114 We determine the region number of LOOP as the region number of its
6115 latch. We can't use header here, because this header could be
6116 just removed preheader and it will give us the wrong region number.
6117 Latch can't be used because it could be in the inner loop too. */
6118 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6120 int rgn = CONTAINING_RGN (loop->latch->index);
6122 gcc_assert ((unsigned) rgn < loop_nests.length ());
6123 return true;
6126 return false;
6129 /* Makes regions from the rest of the blocks, after loops are chosen
6130 for pipelining. */
6131 static void
6132 make_regions_from_the_rest (void)
6134 int cur_rgn_blocks;
6135 int *loop_hdr;
6136 int i;
6138 basic_block bb;
6139 edge e;
6140 edge_iterator ei;
6141 int *degree;
6143 /* Index in rgn_bb_table where to start allocating new regions. */
6144 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6146 /* Make regions from all the rest basic blocks - those that don't belong to
6147 any loop or belong to irreducible loops. Prepare the data structures
6148 for extend_rgns. */
6150 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6151 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6152 loop. */
6153 loop_hdr = XNEWVEC (int, last_basic_block);
6154 degree = XCNEWVEC (int, last_basic_block);
6157 /* For each basic block that belongs to some loop assign the number
6158 of innermost loop it belongs to. */
6159 for (i = 0; i < last_basic_block; i++)
6160 loop_hdr[i] = -1;
6162 FOR_EACH_BB (bb)
6164 if (bb->loop_father && !bb->loop_father->num == 0
6165 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6166 loop_hdr[bb->index] = bb->loop_father->num;
6169 /* For each basic block degree is calculated as the number of incoming
6170 edges, that are going out of bbs that are not yet scheduled.
6171 The basic blocks that are scheduled have degree value of zero. */
6172 FOR_EACH_BB (bb)
6174 degree[bb->index] = 0;
6176 if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
6178 FOR_EACH_EDGE (e, ei, bb->preds)
6179 if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
6180 degree[bb->index]++;
6182 else
6183 degree[bb->index] = -1;
6186 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6188 /* Any block that did not end up in a region is placed into a region
6189 by itself. */
6190 FOR_EACH_BB (bb)
6191 if (degree[bb->index] >= 0)
6193 rgn_bb_table[cur_rgn_blocks] = bb->index;
6194 RGN_NR_BLOCKS (nr_regions) = 1;
6195 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6196 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6197 RGN_HAS_REAL_EBB (nr_regions) = 0;
6198 CONTAINING_RGN (bb->index) = nr_regions++;
6199 BLOCK_TO_BB (bb->index) = 0;
6202 free (degree);
6203 free (loop_hdr);
6206 /* Free data structures used in pipelining of loops. */
6207 void sel_finish_pipelining (void)
6209 loop_iterator li;
6210 struct loop *loop;
6212 /* Release aux fields so we don't free them later by mistake. */
6213 FOR_EACH_LOOP (li, loop, 0)
6214 loop->aux = NULL;
6216 loop_optimizer_finalize ();
6218 loop_nests.release ();
6220 free (rev_top_order_index);
6221 rev_top_order_index = NULL;
6224 /* This function replaces the find_rgns when
6225 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6226 void
6227 sel_find_rgns (void)
6229 sel_init_pipelining ();
6230 extend_regions ();
6232 if (current_loops)
6234 loop_p loop;
6235 loop_iterator li;
6237 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6238 ? LI_FROM_INNERMOST
6239 : LI_ONLY_INNERMOST))
6240 make_regions_from_loop_nest (loop);
6243 /* Make regions from all the rest basic blocks and schedule them.
6244 These blocks include blocks that don't belong to any loop or belong
6245 to irreducible loops. */
6246 make_regions_from_the_rest ();
6248 /* We don't need bbs_in_loop_rgns anymore. */
6249 sbitmap_free (bbs_in_loop_rgns);
6250 bbs_in_loop_rgns = NULL;
6253 /* Add the preheader blocks from previous loop to current region taking
6254 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6255 This function is only used with -fsel-sched-pipelining-outer-loops. */
6256 void
6257 sel_add_loop_preheaders (bb_vec_t *bbs)
6259 int i;
6260 basic_block bb;
6261 vec<basic_block> *preheader_blocks
6262 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6264 if (!preheader_blocks)
6265 return;
6267 for (i = 0; preheader_blocks->iterate (i, &bb); i++)
6269 bbs->safe_push (bb);
6270 last_added_blocks.safe_push (bb);
6271 sel_add_bb (bb);
6274 vec_free (preheader_blocks);
6277 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6278 Please note that the function should also work when pipelining_p is
6279 false, because it is used when deciding whether we should or should
6280 not reschedule pipelined code. */
6281 bool
6282 sel_is_loop_preheader_p (basic_block bb)
6284 if (current_loop_nest)
6286 struct loop *outer;
6288 if (preheader_removed)
6289 return false;
6291 /* Preheader is the first block in the region. */
6292 if (BLOCK_TO_BB (bb->index) == 0)
6293 return true;
6295 /* We used to find a preheader with the topological information.
6296 Check that the above code is equivalent to what we did before. */
6298 if (in_current_region_p (current_loop_nest->header))
6299 gcc_assert (!(BLOCK_TO_BB (bb->index)
6300 < BLOCK_TO_BB (current_loop_nest->header->index)));
6302 /* Support the situation when the latch block of outer loop
6303 could be from here. */
6304 for (outer = loop_outer (current_loop_nest);
6305 outer;
6306 outer = loop_outer (outer))
6307 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6308 gcc_unreachable ();
6311 return false;
6314 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6315 can be removed, making the corresponding edge fallthrough (assuming that
6316 all basic blocks between JUMP_BB and DEST_BB are empty). */
6317 static bool
6318 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6320 if (!onlyjump_p (BB_END (jump_bb))
6321 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6322 return false;
6324 /* Several outgoing edges, abnormal edge or destination of jump is
6325 not DEST_BB. */
6326 if (EDGE_COUNT (jump_bb->succs) != 1
6327 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6328 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6329 return false;
6331 /* If not anything of the upper. */
6332 return true;
6335 /* Removes the loop preheader from the current region and saves it in
6336 PREHEADER_BLOCKS of the father loop, so they will be added later to
6337 region that represents an outer loop. */
6338 static void
6339 sel_remove_loop_preheader (void)
6341 int i, old_len;
6342 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6343 basic_block bb;
6344 bool all_empty_p = true;
6345 vec<basic_block> *preheader_blocks
6346 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6348 vec_check_alloc (preheader_blocks, 0);
6350 gcc_assert (current_loop_nest);
6351 old_len = preheader_blocks->length ();
6353 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6354 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6356 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6358 /* If the basic block belongs to region, but doesn't belong to
6359 corresponding loop, then it should be a preheader. */
6360 if (sel_is_loop_preheader_p (bb))
6362 preheader_blocks->safe_push (bb);
6363 if (BB_END (bb) != bb_note (bb))
6364 all_empty_p = false;
6368 /* Remove these blocks only after iterating over the whole region. */
6369 for (i = preheader_blocks->length () - 1; i >= old_len; i--)
6371 bb = (*preheader_blocks)[i];
6372 sel_remove_bb (bb, false);
6375 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6377 if (!all_empty_p)
6378 /* Immediately create new region from preheader. */
6379 make_region_from_loop_preheader (preheader_blocks);
6380 else
6382 /* If all preheader blocks are empty - dont create new empty region.
6383 Instead, remove them completely. */
6384 FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
6386 edge e;
6387 edge_iterator ei;
6388 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6390 /* Redirect all incoming edges to next basic block. */
6391 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6393 if (! (e->flags & EDGE_FALLTHRU))
6394 redirect_edge_and_branch (e, bb->next_bb);
6395 else
6396 redirect_edge_succ (e, bb->next_bb);
6398 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6399 delete_and_free_basic_block (bb);
6401 /* Check if after deleting preheader there is a nonconditional
6402 jump in PREV_BB that leads to the next basic block NEXT_BB.
6403 If it is so - delete this jump and clear data sets of its
6404 basic block if it becomes empty. */
6405 if (next_bb->prev_bb == prev_bb
6406 && prev_bb != ENTRY_BLOCK_PTR
6407 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6409 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6410 if (BB_END (prev_bb) == bb_note (prev_bb))
6411 free_data_sets (prev_bb);
6414 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6415 recompute_dominator (CDI_DOMINATORS,
6416 next_bb));
6419 vec_free (preheader_blocks);
6421 else
6422 /* Store preheader within the father's loop structure. */
6423 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6424 preheader_blocks);
6426 #endif