1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
5 Copyright (C) 2014 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
26 /* Generic tree predicates we inherit. */
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep
30 real_zerop real_onep real_minus_onep
32 tree_expr_nonnegative_p)
35 (define_operator_list tcc_comparison
36 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
37 (define_operator_list inverted_tcc_comparison
38 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
39 (define_operator_list inverted_tcc_comparison_with_nans
40 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
43 /* Simplifications of operations with one constant operand and
44 simplifications to constants or single values. */
46 (for op (plus pointer_plus minus bit_ior bit_xor)
51 /* 0 +p index -> (type)index */
53 (pointer_plus integer_zerop @1)
54 (non_lvalue (convert @1)))
56 /* See if ARG1 is zero and X + ARG1 reduces to X.
57 Likewise if the operands are reversed. */
59 (plus:c @0 real_zerop@1)
60 (if (fold_real_zero_addition_p (type, @1, 0))
63 /* See if ARG1 is zero and X - ARG1 reduces to X. */
65 (minus @0 real_zerop@1)
66 (if (fold_real_zero_addition_p (type, @1, 1))
70 This is unsafe for certain floats even in non-IEEE formats.
71 In IEEE, it is unsafe because it does wrong for NaNs.
72 Also note that operand_equal_p is always false if an operand
76 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (element_mode (type)))
77 { build_zero_cst (type); }))
80 (mult @0 integer_zerop@1)
83 /* Maybe fold x * 0 to 0. The expressions aren't the same
84 when x is NaN, since x * 0 is also NaN. Nor are they the
85 same in modes with signed zeros, since multiplying a
86 negative value by 0 gives -0, not +0. */
88 (mult @0 real_zerop@1)
89 (if (!HONOR_NANS (element_mode (type))
90 && !HONOR_SIGNED_ZEROS (element_mode (type)))
93 /* In IEEE floating point, x*1 is not equivalent to x for snans.
94 Likewise for complex arithmetic with signed zeros. */
97 (if (!HONOR_SNANS (element_mode (type))
98 && (!HONOR_SIGNED_ZEROS (element_mode (type))
99 || !COMPLEX_FLOAT_TYPE_P (type)))
102 /* Transform x * -1.0 into -x. */
104 (mult @0 real_minus_onep)
105 (if (!HONOR_SNANS (element_mode (type))
106 && (!HONOR_SIGNED_ZEROS (element_mode (type))
107 || !COMPLEX_FLOAT_TYPE_P (type)))
110 /* Make sure to preserve divisions by zero. This is the reason why
111 we don't simplify x / x to 1 or 0 / x to 0. */
112 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
118 (for div (trunc_div ceil_div floor_div round_div exact_div)
120 (div @0 integer_minus_onep@1)
121 (if (!TYPE_UNSIGNED (type))
124 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
125 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
128 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
129 && TYPE_UNSIGNED (type))
132 /* Optimize A / A to 1.0 if we don't care about
133 NaNs or Infinities. */
136 (if (FLOAT_TYPE_P (type)
137 && ! HONOR_NANS (element_mode (type))
138 && ! HONOR_INFINITIES (element_mode (type)))
139 { build_one_cst (type); }))
141 /* Optimize -A / A to -1.0 if we don't care about
142 NaNs or Infinities. */
144 (rdiv:c @0 (negate @0))
145 (if (FLOAT_TYPE_P (type)
146 && ! HONOR_NANS (element_mode (type))
147 && ! HONOR_INFINITIES (element_mode (type)))
148 { build_minus_one_cst (type); }))
150 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
153 (if (!HONOR_SNANS (element_mode (type)))
156 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
158 (rdiv @0 real_minus_onep)
159 (if (!HONOR_SNANS (element_mode (type)))
162 /* If ARG1 is a constant, we can convert this to a multiply by the
163 reciprocal. This does not have the same rounding properties,
164 so only do this if -freciprocal-math. We can actually
165 always safely do it if ARG1 is a power of two, but it's hard to
166 tell if it is or not in a portable manner. */
167 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
171 (if (flag_reciprocal_math
174 { tree tem = fold_binary (RDIV_EXPR, type, build_one_cst (type), @1); }
176 (mult @0 { tem; } ))))
177 (if (cst != COMPLEX_CST)
178 (with { tree inverse = exact_inverse (type, @1); }
180 (mult @0 { inverse; } )))))))
182 /* Same applies to modulo operations, but fold is inconsistent here
183 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
184 (for mod (ceil_mod floor_mod round_mod trunc_mod)
185 /* 0 % X is always zero. */
187 (mod integer_zerop@0 @1)
188 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
189 (if (!integer_zerop (@1))
191 /* X % 1 is always zero. */
193 (mod @0 integer_onep)
194 { build_zero_cst (type); })
195 /* X % -1 is zero. */
197 (mod @0 integer_minus_onep@1)
198 (if (!TYPE_UNSIGNED (type))
199 { build_zero_cst (type); })))
201 /* X % -C is the same as X % C. */
203 (trunc_mod @0 INTEGER_CST@1)
204 (if (TYPE_SIGN (type) == SIGNED
205 && !TREE_OVERFLOW (@1)
207 && !TYPE_OVERFLOW_TRAPS (type)
208 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
209 && !sign_bit_p (@1, @1))
210 (trunc_mod @0 (negate @1))))
214 (bit_ior @0 integer_all_onesp@1)
219 (bit_and @0 integer_zerop@1)
225 { build_zero_cst (type); })
227 /* Canonicalize X ^ ~0 to ~X. */
229 (bit_xor @0 integer_all_onesp@1)
234 (bit_and @0 integer_all_onesp)
237 /* x & x -> x, x | x -> x */
238 (for bitop (bit_and bit_ior)
247 (abs tree_expr_nonnegative_p@0)
251 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
253 For bitwise binary operations apply operand conversions to the
254 binary operation result instead of to the operands. This allows
255 to combine successive conversions and bitwise binary operations.
256 We combine the above two cases by using a conditional convert. */
257 (for bitop (bit_and bit_ior bit_xor)
259 (bitop (convert @0) (convert? @1))
260 (if (((TREE_CODE (@1) == INTEGER_CST
261 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
262 && int_fits_type_p (@1, TREE_TYPE (@0)))
263 || (GIMPLE && types_compatible_p (TREE_TYPE (@0), TREE_TYPE (@1)))
264 || (GENERIC && TREE_TYPE (@0) == TREE_TYPE (@1)))
265 /* ??? This transform conflicts with fold-const.c doing
266 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
267 constants (if x has signed type, the sign bit cannot be set
268 in c). This folds extension into the BIT_AND_EXPR.
269 Restrict it to GIMPLE to avoid endless recursions. */
270 && (bitop != BIT_AND_EXPR || GIMPLE)
271 && (/* That's a good idea if the conversion widens the operand, thus
272 after hoisting the conversion the operation will be narrower. */
273 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
274 /* It's also a good idea if the conversion is to a non-integer
276 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
277 /* Or if the precision of TO is not the same as the precision
279 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
280 (convert (bitop @0 (convert @1))))))
282 /* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
283 (for bitop (bit_and bit_ior bit_xor)
285 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
286 (bit_and (bitop @0 @2) @1)))
288 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
290 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
291 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
293 /* Combine successive equal operations with constants. */
294 (for bitop (bit_and bit_ior bit_xor)
296 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
297 (bitop @0 (bitop @1 @2))))
299 /* Try simple folding for X op !X, and X op X with the help
300 of the truth_valued_p and logical_inverted_value predicates. */
301 (match truth_valued_p
303 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
304 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
305 (match truth_valued_p
307 (match truth_valued_p
310 (match (logical_inverted_value @0)
311 (bit_not truth_valued_p@0))
312 (match (logical_inverted_value @0)
313 (eq @0 integer_zerop))
314 (match (logical_inverted_value @0)
315 (ne truth_valued_p@0 integer_truep))
316 (match (logical_inverted_value @0)
317 (bit_xor truth_valued_p@0 integer_truep))
321 (bit_and:c @0 (logical_inverted_value @0))
322 { build_zero_cst (type); })
323 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
324 (for op (bit_ior bit_xor)
326 (op:c truth_valued_p@0 (logical_inverted_value @0))
327 { constant_boolean_node (true, type); }))
329 (for bitop (bit_and bit_ior)
330 rbitop (bit_ior bit_and)
331 /* (x | y) & x -> x */
332 /* (x & y) | x -> x */
334 (bitop:c (rbitop:c @0 @1) @0)
336 /* (~x | y) & x -> x & y */
337 /* (~x & y) | x -> x | y */
339 (bitop:c (rbitop:c (bit_not @0) @1) @0)
342 /* If arg1 and arg2 are booleans (or any single bit type)
343 then try to simplify:
350 But only do this if our result feeds into a comparison as
351 this transformation is not always a win, particularly on
352 targets with and-not instructions.
353 -> simplify_bitwise_binary_boolean */
355 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
356 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
357 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
360 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
361 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
362 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
367 (bit_not (bit_not @0))
371 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
373 (pointer_plus (pointer_plus@2 @0 @1) @3)
374 (if (TREE_CODE (@2) != SSA_NAME || has_single_use (@2))
375 (pointer_plus @0 (plus @1 @3))))
381 tem4 = (unsigned long) tem3;
386 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
387 /* Conditionally look through a sign-changing conversion. */
388 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
389 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
390 || (GENERIC && type == TREE_TYPE (@1))))
394 tem = (sizetype) ptr;
398 and produce the simpler and easier to analyze with respect to alignment
399 ... = ptr & ~algn; */
401 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
402 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
403 (bit_and @0 { algn; })))
406 /* We can't reassociate at all for saturating types. */
407 (if (!TYPE_SATURATING (type))
409 /* Contract negates. */
410 /* A + (-B) -> A - B */
412 (plus:c (convert1? @0) (convert2? (negate @1)))
413 /* Apply STRIP_NOPS on @0 and the negate. */
414 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
415 && tree_nop_conversion_p (type, TREE_TYPE (@1))
416 && !TYPE_OVERFLOW_SANITIZED (type))
417 (minus (convert @0) (convert @1))))
418 /* A - (-B) -> A + B */
420 (minus (convert1? @0) (convert2? (negate @1)))
421 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
422 && tree_nop_conversion_p (type, TREE_TYPE (@1))
423 && !TYPE_OVERFLOW_SANITIZED (type))
424 (plus (convert @0) (convert @1))))
427 (negate (convert? (negate @1)))
428 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
429 && !TYPE_OVERFLOW_SANITIZED (type))
432 /* We can't reassociate floating-point or fixed-point plus or minus
433 because of saturation to +-Inf. */
434 (if (!FLOAT_TYPE_P (type) && !FIXED_POINT_TYPE_P (type))
436 /* Match patterns that allow contracting a plus-minus pair
437 irrespective of overflow issues. */
438 /* (A +- B) - A -> +- B */
439 /* (A +- B) -+ B -> A */
440 /* A - (A +- B) -> -+ B */
441 /* A +- (B -+ A) -> +- B */
443 (minus (plus:c @0 @1) @0)
446 (minus (minus @0 @1) @0)
449 (plus:c (minus @0 @1) @1)
452 (minus @0 (plus:c @0 @1))
455 (minus @0 (minus @0 @1))
458 /* (A +- CST) +- CST -> A + CST */
459 (for outer_op (plus minus)
460 (for inner_op (plus minus)
462 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
463 /* If the constant operation overflows we cannot do the transform
464 as we would introduce undefined overflow, for example
465 with (a - 1) + INT_MIN. */
466 (with { tree cst = fold_binary (outer_op == inner_op
467 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
468 (if (cst && !TREE_OVERFLOW (cst))
469 (inner_op @0 { cst; } ))))))
471 /* (CST - A) +- CST -> CST - A */
472 (for outer_op (plus minus)
474 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
475 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
476 (if (cst && !TREE_OVERFLOW (cst))
477 (minus { cst; } @0)))))
481 (plus:c (bit_not @0) @0)
482 (if (!TYPE_OVERFLOW_TRAPS (type))
483 { build_all_ones_cst (type); }))
487 (plus (bit_not @0) integer_each_onep)
490 /* (T)(P + A) - (T)P -> (T) A */
491 (for add (plus pointer_plus)
493 (minus (convert (add @0 @1))
495 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
496 /* For integer types, if A has a smaller type
497 than T the result depends on the possible
499 E.g. T=size_t, A=(unsigned)429497295, P>0.
500 However, if an overflow in P + A would cause
501 undefined behavior, we can assume that there
503 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
504 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
505 /* For pointer types, if the conversion of A to the
506 final type requires a sign- or zero-extension,
507 then we have to punt - it is not defined which
509 || (POINTER_TYPE_P (TREE_TYPE (@0))
510 && TREE_CODE (@1) == INTEGER_CST
511 && tree_int_cst_sign_bit (@1) == 0))
515 /* Simplifications of MIN_EXPR and MAX_EXPR. */
517 (for minmax (min max)
523 (if (INTEGRAL_TYPE_P (type)
524 && TYPE_MIN_VALUE (type)
525 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
529 (if (INTEGRAL_TYPE_P (type)
530 && TYPE_MAX_VALUE (type)
531 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
535 /* Simplifications of shift and rotates. */
537 (for rotate (lrotate rrotate)
539 (rotate integer_all_onesp@0 @1)
542 /* Optimize -1 >> x for arithmetic right shifts. */
544 (rshift integer_all_onesp@0 @1)
545 (if (!TYPE_UNSIGNED (type)
546 && tree_expr_nonnegative_p (@1))
549 (for shiftrotate (lrotate rrotate lshift rshift)
551 (shiftrotate @0 integer_zerop)
554 (shiftrotate integer_zerop@0 @1)
556 /* Prefer vector1 << scalar to vector1 << vector2
557 if vector2 is uniform. */
558 (for vec (VECTOR_CST CONSTRUCTOR)
560 (shiftrotate @0 vec@1)
561 (with { tree tem = uniform_vector_p (@1); }
563 (shiftrotate @0 { tem; }))))))
565 /* Rewrite an LROTATE_EXPR by a constant into an
566 RROTATE_EXPR by a new constant. */
568 (lrotate @0 INTEGER_CST@1)
569 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
570 build_int_cst (TREE_TYPE (@1),
571 element_precision (type)), @1); }))
574 /* Simplifications of conversions. */
576 /* Basic strip-useless-type-conversions / strip_nops. */
577 (for cvt (convert view_convert float fix_trunc)
580 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
581 || (GENERIC && type == TREE_TYPE (@0)))
584 /* Contract view-conversions. */
586 (view_convert (view_convert @0))
589 /* For integral conversions with the same precision or pointer
590 conversions use a NOP_EXPR instead. */
593 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
594 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
595 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
598 /* Strip inner integral conversions that do not change precision or size. */
600 (view_convert (convert@0 @1))
601 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
602 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
603 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
604 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
607 /* Re-association barriers around constants and other re-association
608 barriers can be removed. */
610 (paren CONSTANT_CLASS_P@0)
616 /* Handle cases of two conversions in a row. */
617 (for ocvt (convert float fix_trunc)
618 (for icvt (convert float)
623 tree inside_type = TREE_TYPE (@0);
624 tree inter_type = TREE_TYPE (@1);
625 int inside_int = INTEGRAL_TYPE_P (inside_type);
626 int inside_ptr = POINTER_TYPE_P (inside_type);
627 int inside_float = FLOAT_TYPE_P (inside_type);
628 int inside_vec = VECTOR_TYPE_P (inside_type);
629 unsigned int inside_prec = TYPE_PRECISION (inside_type);
630 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
631 int inter_int = INTEGRAL_TYPE_P (inter_type);
632 int inter_ptr = POINTER_TYPE_P (inter_type);
633 int inter_float = FLOAT_TYPE_P (inter_type);
634 int inter_vec = VECTOR_TYPE_P (inter_type);
635 unsigned int inter_prec = TYPE_PRECISION (inter_type);
636 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
637 int final_int = INTEGRAL_TYPE_P (type);
638 int final_ptr = POINTER_TYPE_P (type);
639 int final_float = FLOAT_TYPE_P (type);
640 int final_vec = VECTOR_TYPE_P (type);
641 unsigned int final_prec = TYPE_PRECISION (type);
642 int final_unsignedp = TYPE_UNSIGNED (type);
644 /* In addition to the cases of two conversions in a row
645 handled below, if we are converting something to its own
646 type via an object of identical or wider precision, neither
647 conversion is needed. */
648 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
650 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
651 && (((inter_int || inter_ptr) && final_int)
652 || (inter_float && final_float))
653 && inter_prec >= final_prec)
656 /* Likewise, if the intermediate and initial types are either both
657 float or both integer, we don't need the middle conversion if the
658 former is wider than the latter and doesn't change the signedness
659 (for integers). Avoid this if the final type is a pointer since
660 then we sometimes need the middle conversion. Likewise if the
661 final type has a precision not equal to the size of its mode. */
662 (if (((inter_int && inside_int)
663 || (inter_float && inside_float)
664 || (inter_vec && inside_vec))
665 && inter_prec >= inside_prec
666 && (inter_float || inter_vec
667 || inter_unsignedp == inside_unsignedp)
668 && ! (final_prec != GET_MODE_PRECISION (element_mode (type))
669 && element_mode (type) == element_mode (inter_type))
671 && (! final_vec || inter_prec == inside_prec))
674 /* If we have a sign-extension of a zero-extended value, we can
675 replace that by a single zero-extension. Likewise if the
676 final conversion does not change precision we can drop the
677 intermediate conversion. */
678 (if (inside_int && inter_int && final_int
679 && ((inside_prec < inter_prec && inter_prec < final_prec
680 && inside_unsignedp && !inter_unsignedp)
681 || final_prec == inter_prec))
684 /* Two conversions in a row are not needed unless:
685 - some conversion is floating-point (overstrict for now), or
686 - some conversion is a vector (overstrict for now), or
687 - the intermediate type is narrower than both initial and
689 - the intermediate type and innermost type differ in signedness,
690 and the outermost type is wider than the intermediate, or
691 - the initial type is a pointer type and the precisions of the
692 intermediate and final types differ, or
693 - the final type is a pointer type and the precisions of the
694 initial and intermediate types differ. */
695 (if (! inside_float && ! inter_float && ! final_float
696 && ! inside_vec && ! inter_vec && ! final_vec
697 && (inter_prec >= inside_prec || inter_prec >= final_prec)
698 && ! (inside_int && inter_int
699 && inter_unsignedp != inside_unsignedp
700 && inter_prec < final_prec)
701 && ((inter_unsignedp && inter_prec > inside_prec)
702 == (final_unsignedp && final_prec > inter_prec))
703 && ! (inside_ptr && inter_prec != final_prec)
704 && ! (final_ptr && inside_prec != inter_prec)
705 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
706 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
709 /* A truncation to an unsigned type (a zero-extension) should be
710 canonicalized as bitwise and of a mask. */
711 (if (final_int && inter_int && inside_int
712 && final_prec == inside_prec
713 && final_prec > inter_prec
715 (convert (bit_and @0 { wide_int_to_tree
717 wi::mask (inter_prec, false,
718 TYPE_PRECISION (inside_type))); })))
720 /* If we are converting an integer to a floating-point that can
721 represent it exactly and back to an integer, we can skip the
722 floating-point conversion. */
723 (if (inside_int && inter_float && final_int &&
724 (unsigned) significand_size (TYPE_MODE (inter_type))
725 >= inside_prec - !inside_unsignedp)
728 /* If we have a narrowing conversion to an integral type that is fed by a
729 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
730 masks off bits outside the final type (and nothing else). */
732 (convert (bit_and @0 INTEGER_CST@1))
733 (if (INTEGRAL_TYPE_P (type)
734 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
735 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
736 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
737 TYPE_PRECISION (type)), 0))
741 /* (X /[ex] A) * A -> X. */
743 (mult (convert? (exact_div @0 @1)) @1)
744 /* Look through a sign-changing conversion. */
745 (if (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (type))
748 /* Canonicalization of binary operations. */
750 /* Convert X + -C into X - C. */
753 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
754 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
755 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
756 (minus @0 { tem; })))))
758 /* Convert x+x into x*2.0. */
761 (if (SCALAR_FLOAT_TYPE_P (type))
762 (mult @0 { build_real (type, dconst2); })))
765 (minus integer_zerop @1)
768 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
769 ARG0 is zero and X + ARG0 reduces to X, since that would mean
770 (-ARG1 + ARG0) reduces to -ARG1. */
772 (minus real_zerop@0 @1)
773 (if (fold_real_zero_addition_p (type, @0, 0))
776 /* Transform x * -1 into -x. */
778 (mult @0 integer_minus_onep)
781 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
783 (complex (realpart @0) (imagpart @0))
786 (realpart (complex @0 @1))
789 (imagpart (complex @0 @1))
793 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
794 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
799 (bswap (bit_not (bswap @0)))
801 (for bitop (bit_xor bit_ior bit_and)
803 (bswap (bitop:c (bswap @0) @1))
804 (bitop @0 (bswap @1)))))
807 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
809 /* Simplify constant conditions.
810 Only optimize constant conditions when the selected branch
811 has the same type as the COND_EXPR. This avoids optimizing
812 away "c ? x : throw", where the throw has a void type.
813 Note that we cannot throw away the fold-const.c variant nor
814 this one as we depend on doing this transform before possibly
815 A ? B : B -> B triggers and the fold-const.c one can optimize
816 0 ? A : B to B even if A has side-effects. Something
817 genmatch cannot handle. */
819 (cond INTEGER_CST@0 @1 @2)
820 (if (integer_zerop (@0)
821 && (!VOID_TYPE_P (TREE_TYPE (@2))
822 || VOID_TYPE_P (type)))
824 (if (!integer_zerop (@0)
825 && (!VOID_TYPE_P (TREE_TYPE (@1))
826 || VOID_TYPE_P (type)))
829 (vec_cond VECTOR_CST@0 @1 @2)
830 (if (integer_all_onesp (@0))
832 (if (integer_zerop (@0))
835 (for cnd (cond vec_cond)
836 /* A ? B : (A ? X : C) -> A ? B : C. */
838 (cnd @0 (cnd @0 @1 @2) @3)
841 (cnd @0 @1 (cnd @0 @2 @3))
844 /* A ? B : B -> B. */
849 /* !A ? B : C -> A ? C : B. */
851 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
855 /* Simplifications of comparisons. */
857 /* We can simplify a logical negation of a comparison to the
858 inverted comparison. As we cannot compute an expression
859 operator using invert_tree_comparison we have to simulate
860 that with expression code iteration. */
861 (for cmp (tcc_comparison)
862 icmp (inverted_tcc_comparison)
863 ncmp (inverted_tcc_comparison_with_nans)
864 /* Ideally we'd like to combine the following two patterns
865 and handle some more cases by using
866 (logical_inverted_value (cmp @0 @1))
867 here but for that genmatch would need to "inline" that.
868 For now implement what forward_propagate_comparison did. */
870 (bit_not (cmp @0 @1))
871 (if (VECTOR_TYPE_P (type)
872 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
873 /* Comparison inversion may be impossible for trapping math,
874 invert_tree_comparison will tell us. But we can't use
875 a computed operator in the replacement tree thus we have
876 to play the trick below. */
877 (with { enum tree_code ic = invert_tree_comparison
878 (cmp, HONOR_NANS (element_mode (@0))); }
884 (bit_xor (cmp @0 @1) integer_truep)
885 (with { enum tree_code ic = invert_tree_comparison
886 (cmp, HONOR_NANS (element_mode (@0))); }