cp/:
[official-gcc.git] / gcc / tree-complex.c
blob3f1992b716b1fc2c19f8bdee3eac98d6fee62416
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "real.h"
28 #include "flags.h"
29 #include "tree-flow.h"
30 #include "gimple.h"
31 #include "tree-iterator.h"
32 #include "tree-pass.h"
33 #include "tree-ssa-propagate.h"
34 #include "diagnostic.h"
37 /* For each complex ssa name, a lattice value. We're interested in finding
38 out whether a complex number is degenerate in some way, having only real
39 or only complex parts. */
41 enum
43 UNINITIALIZED = 0,
44 ONLY_REAL = 1,
45 ONLY_IMAG = 2,
46 VARYING = 3
49 /* The type complex_lattice_t holds combinations of the above
50 constants. */
51 typedef int complex_lattice_t;
53 #define PAIR(a, b) ((a) << 2 | (b))
55 DEF_VEC_I(complex_lattice_t);
56 DEF_VEC_ALLOC_I(complex_lattice_t, heap);
58 static VEC(complex_lattice_t, heap) *complex_lattice_values;
60 /* For each complex variable, a pair of variables for the components exists in
61 the hashtable. */
62 static htab_t complex_variable_components;
64 /* For each complex SSA_NAME, a pair of ssa names for the components. */
65 static VEC(tree, heap) *complex_ssa_name_components;
67 /* Lookup UID in the complex_variable_components hashtable and return the
68 associated tree. */
69 static tree
70 cvc_lookup (unsigned int uid)
72 struct int_tree_map *h, in;
73 in.uid = uid;
74 h = (struct int_tree_map *) htab_find_with_hash (complex_variable_components, &in, uid);
75 return h ? h->to : NULL;
78 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
80 static void
81 cvc_insert (unsigned int uid, tree to)
83 struct int_tree_map *h;
84 void **loc;
86 h = XNEW (struct int_tree_map);
87 h->uid = uid;
88 h->to = to;
89 loc = htab_find_slot_with_hash (complex_variable_components, h,
90 uid, INSERT);
91 *(struct int_tree_map **) loc = h;
94 /* Return true if T is not a zero constant. In the case of real values,
95 we're only interested in +0.0. */
97 static int
98 some_nonzerop (tree t)
100 int zerop = false;
102 /* Operations with real or imaginary part of a complex number zero
103 cannot be treated the same as operations with a real or imaginary
104 operand if we care about the signs of zeros in the result. */
105 if (TREE_CODE (t) == REAL_CST && !flag_signed_zeros)
106 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
107 else if (TREE_CODE (t) == FIXED_CST)
108 zerop = fixed_zerop (t);
109 else if (TREE_CODE (t) == INTEGER_CST)
110 zerop = integer_zerop (t);
112 return !zerop;
116 /* Compute a lattice value from the components of a complex type REAL
117 and IMAG. */
119 static complex_lattice_t
120 find_lattice_value_parts (tree real, tree imag)
122 int r, i;
123 complex_lattice_t ret;
125 r = some_nonzerop (real);
126 i = some_nonzerop (imag);
127 ret = r * ONLY_REAL + i * ONLY_IMAG;
129 /* ??? On occasion we could do better than mapping 0+0i to real, but we
130 certainly don't want to leave it UNINITIALIZED, which eventually gets
131 mapped to VARYING. */
132 if (ret == UNINITIALIZED)
133 ret = ONLY_REAL;
135 return ret;
139 /* Compute a lattice value from gimple_val T. */
141 static complex_lattice_t
142 find_lattice_value (tree t)
144 tree real, imag;
146 switch (TREE_CODE (t))
148 case SSA_NAME:
149 return VEC_index (complex_lattice_t, complex_lattice_values,
150 SSA_NAME_VERSION (t));
152 case COMPLEX_CST:
153 real = TREE_REALPART (t);
154 imag = TREE_IMAGPART (t);
155 break;
157 default:
158 gcc_unreachable ();
161 return find_lattice_value_parts (real, imag);
164 /* Determine if LHS is something for which we're interested in seeing
165 simulation results. */
167 static bool
168 is_complex_reg (tree lhs)
170 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
173 /* Mark the incoming parameters to the function as VARYING. */
175 static void
176 init_parameter_lattice_values (void)
178 tree parm, ssa_name;
180 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm))
181 if (is_complex_reg (parm)
182 && var_ann (parm) != NULL
183 && (ssa_name = gimple_default_def (cfun, parm)) != NULL_TREE)
184 VEC_replace (complex_lattice_t, complex_lattice_values,
185 SSA_NAME_VERSION (ssa_name), VARYING);
188 /* Initialize simulation state for each statement. Return false if we
189 found no statements we want to simulate, and thus there's nothing
190 for the entire pass to do. */
192 static bool
193 init_dont_simulate_again (void)
195 basic_block bb;
196 gimple_stmt_iterator gsi;
197 gimple phi;
198 bool saw_a_complex_op = false;
200 FOR_EACH_BB (bb)
202 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
204 phi = gsi_stmt (gsi);
205 prop_set_simulate_again (phi,
206 is_complex_reg (gimple_phi_result (phi)));
209 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
211 gimple stmt;
212 tree op0, op1;
213 bool sim_again_p;
215 stmt = gsi_stmt (gsi);
216 op0 = op1 = NULL_TREE;
218 /* Most control-altering statements must be initially
219 simulated, else we won't cover the entire cfg. */
220 sim_again_p = stmt_ends_bb_p (stmt);
222 switch (gimple_code (stmt))
224 case GIMPLE_CALL:
225 if (gimple_call_lhs (stmt))
226 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
227 break;
229 case GIMPLE_ASSIGN:
230 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
231 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
232 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
233 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
234 else
235 op0 = gimple_assign_rhs1 (stmt);
236 if (gimple_num_ops (stmt) > 2)
237 op1 = gimple_assign_rhs2 (stmt);
238 break;
240 case GIMPLE_COND:
241 op0 = gimple_cond_lhs (stmt);
242 op1 = gimple_cond_rhs (stmt);
243 break;
245 default:
246 break;
249 if (op0 || op1)
250 switch (gimple_expr_code (stmt))
252 case EQ_EXPR:
253 case NE_EXPR:
254 case PLUS_EXPR:
255 case MINUS_EXPR:
256 case MULT_EXPR:
257 case TRUNC_DIV_EXPR:
258 case CEIL_DIV_EXPR:
259 case FLOOR_DIV_EXPR:
260 case ROUND_DIV_EXPR:
261 case RDIV_EXPR:
262 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
263 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
264 saw_a_complex_op = true;
265 break;
267 case NEGATE_EXPR:
268 case CONJ_EXPR:
269 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
270 saw_a_complex_op = true;
271 break;
273 case REALPART_EXPR:
274 case IMAGPART_EXPR:
275 /* The total store transformation performed during
276 gimplification creates such uninitialized loads
277 and we need to lower the statement to be able
278 to fix things up. */
279 if (TREE_CODE (op0) == SSA_NAME
280 && ssa_undefined_value_p (op0))
281 saw_a_complex_op = true;
282 break;
284 default:
285 break;
288 prop_set_simulate_again (stmt, sim_again_p);
292 return saw_a_complex_op;
296 /* Evaluate statement STMT against the complex lattice defined above. */
298 static enum ssa_prop_result
299 complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
300 tree *result_p)
302 complex_lattice_t new_l, old_l, op1_l, op2_l;
303 unsigned int ver;
304 tree lhs;
306 lhs = gimple_get_lhs (stmt);
307 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
308 if (!lhs)
309 return SSA_PROP_VARYING;
311 /* These conditions should be satisfied due to the initial filter
312 set up in init_dont_simulate_again. */
313 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
314 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
316 *result_p = lhs;
317 ver = SSA_NAME_VERSION (lhs);
318 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
320 switch (gimple_expr_code (stmt))
322 case SSA_NAME:
323 case COMPLEX_CST:
324 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
325 break;
327 case COMPLEX_EXPR:
328 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
329 gimple_assign_rhs2 (stmt));
330 break;
332 case PLUS_EXPR:
333 case MINUS_EXPR:
334 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
335 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
337 /* We've set up the lattice values such that IOR neatly
338 models addition. */
339 new_l = op1_l | op2_l;
340 break;
342 case MULT_EXPR:
343 case RDIV_EXPR:
344 case TRUNC_DIV_EXPR:
345 case CEIL_DIV_EXPR:
346 case FLOOR_DIV_EXPR:
347 case ROUND_DIV_EXPR:
348 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
349 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
351 /* Obviously, if either varies, so does the result. */
352 if (op1_l == VARYING || op2_l == VARYING)
353 new_l = VARYING;
354 /* Don't prematurely promote variables if we've not yet seen
355 their inputs. */
356 else if (op1_l == UNINITIALIZED)
357 new_l = op2_l;
358 else if (op2_l == UNINITIALIZED)
359 new_l = op1_l;
360 else
362 /* At this point both numbers have only one component. If the
363 numbers are of opposite kind, the result is imaginary,
364 otherwise the result is real. The add/subtract translates
365 the real/imag from/to 0/1; the ^ performs the comparison. */
366 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
368 /* Don't allow the lattice value to flip-flop indefinitely. */
369 new_l |= old_l;
371 break;
373 case NEGATE_EXPR:
374 case CONJ_EXPR:
375 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
376 break;
378 default:
379 new_l = VARYING;
380 break;
383 /* If nothing changed this round, let the propagator know. */
384 if (new_l == old_l)
385 return SSA_PROP_NOT_INTERESTING;
387 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
388 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
391 /* Evaluate a PHI node against the complex lattice defined above. */
393 static enum ssa_prop_result
394 complex_visit_phi (gimple phi)
396 complex_lattice_t new_l, old_l;
397 unsigned int ver;
398 tree lhs;
399 int i;
401 lhs = gimple_phi_result (phi);
403 /* This condition should be satisfied due to the initial filter
404 set up in init_dont_simulate_again. */
405 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
407 /* We've set up the lattice values such that IOR neatly models PHI meet. */
408 new_l = UNINITIALIZED;
409 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
410 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
412 ver = SSA_NAME_VERSION (lhs);
413 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
415 if (new_l == old_l)
416 return SSA_PROP_NOT_INTERESTING;
418 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
419 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
422 /* Create one backing variable for a complex component of ORIG. */
424 static tree
425 create_one_component_var (tree type, tree orig, const char *prefix,
426 const char *suffix, enum tree_code code)
428 tree r = create_tmp_var (type, prefix);
429 add_referenced_var (r);
431 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
432 DECL_ARTIFICIAL (r) = 1;
434 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
436 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
437 tree inner_type;
439 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
441 inner_type = TREE_TYPE (TREE_TYPE (orig));
442 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
443 DECL_DEBUG_EXPR_IS_FROM (r) = 1;
444 DECL_IGNORED_P (r) = 0;
445 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
447 else
449 DECL_IGNORED_P (r) = 1;
450 TREE_NO_WARNING (r) = 1;
453 return r;
456 /* Retrieve a value for a complex component of VAR. */
458 static tree
459 get_component_var (tree var, bool imag_p)
461 size_t decl_index = DECL_UID (var) * 2 + imag_p;
462 tree ret = cvc_lookup (decl_index);
464 if (ret == NULL)
466 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
467 imag_p ? "CI" : "CR",
468 imag_p ? "$imag" : "$real",
469 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
470 cvc_insert (decl_index, ret);
473 return ret;
476 /* Retrieve a value for a complex component of SSA_NAME. */
478 static tree
479 get_component_ssa_name (tree ssa_name, bool imag_p)
481 complex_lattice_t lattice = find_lattice_value (ssa_name);
482 size_t ssa_name_index;
483 tree ret;
485 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
487 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
488 if (SCALAR_FLOAT_TYPE_P (inner_type))
489 return build_real (inner_type, dconst0);
490 else
491 return build_int_cst (inner_type, 0);
494 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
495 ret = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
496 if (ret == NULL)
498 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
499 ret = make_ssa_name (ret, NULL);
501 /* Copy some properties from the original. In particular, whether it
502 is used in an abnormal phi, and whether it's uninitialized. */
503 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
504 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
505 if (TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL
506 && gimple_nop_p (SSA_NAME_DEF_STMT (ssa_name)))
508 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
509 set_default_def (SSA_NAME_VAR (ret), ret);
512 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, ret);
515 return ret;
518 /* Set a value for a complex component of SSA_NAME, return a
519 gimple_seq of stuff that needs doing. */
521 static gimple_seq
522 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
524 complex_lattice_t lattice = find_lattice_value (ssa_name);
525 size_t ssa_name_index;
526 tree comp;
527 gimple last;
528 gimple_seq list;
530 /* We know the value must be zero, else there's a bug in our lattice
531 analysis. But the value may well be a variable known to contain
532 zero. We should be safe ignoring it. */
533 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
534 return NULL;
536 /* If we've already assigned an SSA_NAME to this component, then this
537 means that our walk of the basic blocks found a use before the set.
538 This is fine. Now we should create an initialization for the value
539 we created earlier. */
540 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
541 comp = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
542 if (comp)
545 /* If we've nothing assigned, and the value we're given is already stable,
546 then install that as the value for this SSA_NAME. This preemptively
547 copy-propagates the value, which avoids unnecessary memory allocation. */
548 else if (is_gimple_min_invariant (value)
549 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
551 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
552 return NULL;
554 else if (TREE_CODE (value) == SSA_NAME
555 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
557 /* Replace an anonymous base value with the variable from cvc_lookup.
558 This should result in better debug info. */
559 if (DECL_IGNORED_P (SSA_NAME_VAR (value))
560 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
562 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
563 replace_ssa_name_symbol (value, comp);
566 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
567 return NULL;
570 /* Finally, we need to stabilize the result by installing the value into
571 a new ssa name. */
572 else
573 comp = get_component_ssa_name (ssa_name, imag_p);
575 /* Do all the work to assign VALUE to COMP. */
576 list = NULL;
577 value = force_gimple_operand (value, &list, false, NULL);
578 last = gimple_build_assign (comp, value);
579 gimple_seq_add_stmt (&list, last);
580 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
582 return list;
585 /* Extract the real or imaginary part of a complex variable or constant.
586 Make sure that it's a proper gimple_val and gimplify it if not.
587 Emit any new code before gsi. */
589 static tree
590 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
591 bool gimple_p)
593 switch (TREE_CODE (t))
595 case COMPLEX_CST:
596 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
598 case COMPLEX_EXPR:
599 gcc_unreachable ();
601 case VAR_DECL:
602 case RESULT_DECL:
603 case PARM_DECL:
604 case INDIRECT_REF:
605 case COMPONENT_REF:
606 case ARRAY_REF:
607 case VIEW_CONVERT_EXPR:
609 tree inner_type = TREE_TYPE (TREE_TYPE (t));
611 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
612 inner_type, unshare_expr (t));
614 if (gimple_p)
615 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
616 GSI_SAME_STMT);
618 return t;
621 case SSA_NAME:
622 return get_component_ssa_name (t, imagpart_p);
624 default:
625 gcc_unreachable ();
629 /* Update the complex components of the ssa name on the lhs of STMT. */
631 static void
632 update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
633 tree i)
635 tree lhs;
636 gimple_seq list;
638 lhs = gimple_get_lhs (stmt);
640 list = set_component_ssa_name (lhs, false, r);
641 if (list)
642 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
644 list = set_component_ssa_name (lhs, true, i);
645 if (list)
646 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
649 static void
650 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
652 gimple_seq list;
654 list = set_component_ssa_name (lhs, false, r);
655 if (list)
656 gsi_insert_seq_on_edge (e, list);
658 list = set_component_ssa_name (lhs, true, i);
659 if (list)
660 gsi_insert_seq_on_edge (e, list);
664 /* Update an assignment to a complex variable in place. */
666 static void
667 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
669 gimple_stmt_iterator orig_si = *gsi;
671 if (gimple_in_ssa_p (cfun))
672 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
674 gimple_assign_set_rhs_with_ops (&orig_si, COMPLEX_EXPR, r, i);
675 update_stmt (gsi_stmt (orig_si));
679 /* Generate code at the entry point of the function to initialize the
680 component variables for a complex parameter. */
682 static void
683 update_parameter_components (void)
685 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
686 tree parm;
688 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm))
690 tree type = TREE_TYPE (parm);
691 tree ssa_name, r, i;
693 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
694 continue;
696 type = TREE_TYPE (type);
697 ssa_name = gimple_default_def (cfun, parm);
698 if (!ssa_name)
699 continue;
701 r = build1 (REALPART_EXPR, type, ssa_name);
702 i = build1 (IMAGPART_EXPR, type, ssa_name);
703 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
707 /* Generate code to set the component variables of a complex variable
708 to match the PHI statements in block BB. */
710 static void
711 update_phi_components (basic_block bb)
713 gimple_stmt_iterator gsi;
715 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
717 gimple phi = gsi_stmt (gsi);
719 if (is_complex_reg (gimple_phi_result (phi)))
721 tree lr, li;
722 gimple pr = NULL, pi = NULL;
723 unsigned int i, n;
725 lr = get_component_ssa_name (gimple_phi_result (phi), false);
726 if (TREE_CODE (lr) == SSA_NAME)
728 pr = create_phi_node (lr, bb);
729 SSA_NAME_DEF_STMT (lr) = pr;
732 li = get_component_ssa_name (gimple_phi_result (phi), true);
733 if (TREE_CODE (li) == SSA_NAME)
735 pi = create_phi_node (li, bb);
736 SSA_NAME_DEF_STMT (li) = pi;
739 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
741 tree comp, arg = gimple_phi_arg_def (phi, i);
742 if (pr)
744 comp = extract_component (NULL, arg, false, false);
745 SET_PHI_ARG_DEF (pr, i, comp);
747 if (pi)
749 comp = extract_component (NULL, arg, true, false);
750 SET_PHI_ARG_DEF (pi, i, comp);
757 /* Expand a complex move to scalars. */
759 static void
760 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
762 tree inner_type = TREE_TYPE (type);
763 tree r, i, lhs, rhs;
764 gimple stmt = gsi_stmt (*gsi);
766 if (is_gimple_assign (stmt))
768 lhs = gimple_assign_lhs (stmt);
769 if (gimple_num_ops (stmt) == 2)
770 rhs = gimple_assign_rhs1 (stmt);
771 else
772 rhs = NULL_TREE;
774 else if (is_gimple_call (stmt))
776 lhs = gimple_call_lhs (stmt);
777 rhs = NULL_TREE;
779 else
780 gcc_unreachable ();
782 if (TREE_CODE (lhs) == SSA_NAME)
784 if (is_ctrl_altering_stmt (stmt))
786 edge_iterator ei;
787 edge e;
789 /* The value is not assigned on the exception edges, so we need not
790 concern ourselves there. We do need to update on the fallthru
791 edge. Find it. */
792 FOR_EACH_EDGE (e, ei, gsi_bb (*gsi)->succs)
793 if (e->flags & EDGE_FALLTHRU)
794 goto found_fallthru;
795 gcc_unreachable ();
796 found_fallthru:
798 r = build1 (REALPART_EXPR, inner_type, lhs);
799 i = build1 (IMAGPART_EXPR, inner_type, lhs);
800 update_complex_components_on_edge (e, lhs, r, i);
802 else if (is_gimple_call (stmt)
803 || gimple_has_side_effects (stmt)
804 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
806 r = build1 (REALPART_EXPR, inner_type, lhs);
807 i = build1 (IMAGPART_EXPR, inner_type, lhs);
808 update_complex_components (gsi, stmt, r, i);
810 else
812 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
814 r = extract_component (gsi, rhs, 0, true);
815 i = extract_component (gsi, rhs, 1, true);
817 else
819 r = gimple_assign_rhs1 (stmt);
820 i = gimple_assign_rhs2 (stmt);
822 update_complex_assignment (gsi, r, i);
825 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
827 tree x;
828 gimple t;
830 r = extract_component (gsi, rhs, 0, false);
831 i = extract_component (gsi, rhs, 1, false);
833 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
834 t = gimple_build_assign (x, r);
835 gsi_insert_before (gsi, t, GSI_SAME_STMT);
837 if (stmt == gsi_stmt (*gsi))
839 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
840 gimple_assign_set_lhs (stmt, x);
841 gimple_assign_set_rhs1 (stmt, i);
843 else
845 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
846 t = gimple_build_assign (x, i);
847 gsi_insert_before (gsi, t, GSI_SAME_STMT);
849 stmt = gsi_stmt (*gsi);
850 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
851 gimple_return_set_retval (stmt, lhs);
854 update_stmt (stmt);
858 /* Expand complex addition to scalars:
859 a + b = (ar + br) + i(ai + bi)
860 a - b = (ar - br) + i(ai + bi)
863 static void
864 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
865 tree ar, tree ai, tree br, tree bi,
866 enum tree_code code,
867 complex_lattice_t al, complex_lattice_t bl)
869 tree rr, ri;
871 switch (PAIR (al, bl))
873 case PAIR (ONLY_REAL, ONLY_REAL):
874 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
875 ri = ai;
876 break;
878 case PAIR (ONLY_REAL, ONLY_IMAG):
879 rr = ar;
880 if (code == MINUS_EXPR)
881 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
882 else
883 ri = bi;
884 break;
886 case PAIR (ONLY_IMAG, ONLY_REAL):
887 if (code == MINUS_EXPR)
888 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
889 else
890 rr = br;
891 ri = ai;
892 break;
894 case PAIR (ONLY_IMAG, ONLY_IMAG):
895 rr = ar;
896 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
897 break;
899 case PAIR (VARYING, ONLY_REAL):
900 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
901 ri = ai;
902 break;
904 case PAIR (VARYING, ONLY_IMAG):
905 rr = ar;
906 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
907 break;
909 case PAIR (ONLY_REAL, VARYING):
910 if (code == MINUS_EXPR)
911 goto general;
912 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
913 ri = bi;
914 break;
916 case PAIR (ONLY_IMAG, VARYING):
917 if (code == MINUS_EXPR)
918 goto general;
919 rr = br;
920 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
921 break;
923 case PAIR (VARYING, VARYING):
924 general:
925 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
926 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
927 break;
929 default:
930 gcc_unreachable ();
933 update_complex_assignment (gsi, rr, ri);
936 /* Expand a complex multiplication or division to a libcall to the c99
937 compliant routines. */
939 static void
940 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
941 tree br, tree bi, enum tree_code code)
943 enum machine_mode mode;
944 enum built_in_function bcode;
945 tree fn, type, lhs;
946 gimple old_stmt, stmt;
948 old_stmt = gsi_stmt (*gsi);
949 lhs = gimple_assign_lhs (old_stmt);
950 type = TREE_TYPE (lhs);
952 mode = TYPE_MODE (type);
953 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
955 if (code == MULT_EXPR)
956 bcode = ((enum built_in_function)
957 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
958 else if (code == RDIV_EXPR)
959 bcode = ((enum built_in_function)
960 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
961 else
962 gcc_unreachable ();
963 fn = built_in_decls[bcode];
965 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
966 gimple_call_set_lhs (stmt, lhs);
967 update_stmt (stmt);
968 gsi_replace (gsi, stmt, false);
970 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
971 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
973 if (gimple_in_ssa_p (cfun))
975 type = TREE_TYPE (type);
976 update_complex_components (gsi, stmt,
977 build1 (REALPART_EXPR, type, lhs),
978 build1 (IMAGPART_EXPR, type, lhs));
979 SSA_NAME_DEF_STMT (lhs) = stmt;
983 /* Expand complex multiplication to scalars:
984 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
987 static void
988 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
989 tree ar, tree ai, tree br, tree bi,
990 complex_lattice_t al, complex_lattice_t bl)
992 tree rr, ri;
994 if (al < bl)
996 complex_lattice_t tl;
997 rr = ar, ar = br, br = rr;
998 ri = ai, ai = bi, bi = ri;
999 tl = al, al = bl, bl = tl;
1002 switch (PAIR (al, bl))
1004 case PAIR (ONLY_REAL, ONLY_REAL):
1005 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1006 ri = ai;
1007 break;
1009 case PAIR (ONLY_IMAG, ONLY_REAL):
1010 rr = ar;
1011 if (TREE_CODE (ai) == REAL_CST
1012 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
1013 ri = br;
1014 else
1015 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1016 break;
1018 case PAIR (ONLY_IMAG, ONLY_IMAG):
1019 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1020 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1021 ri = ar;
1022 break;
1024 case PAIR (VARYING, ONLY_REAL):
1025 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1026 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1027 break;
1029 case PAIR (VARYING, ONLY_IMAG):
1030 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1031 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1032 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1033 break;
1035 case PAIR (VARYING, VARYING):
1036 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1038 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1039 return;
1041 else
1043 tree t1, t2, t3, t4;
1045 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1046 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1047 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1049 /* Avoid expanding redundant multiplication for the common
1050 case of squaring a complex number. */
1051 if (ar == br && ai == bi)
1052 t4 = t3;
1053 else
1054 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1056 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1057 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1059 break;
1061 default:
1062 gcc_unreachable ();
1065 update_complex_assignment (gsi, rr, ri);
1068 /* Expand complex division to scalars, straightforward algorithm.
1069 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1070 t = br*br + bi*bi
1073 static void
1074 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1075 tree ar, tree ai, tree br, tree bi,
1076 enum tree_code code)
1078 tree rr, ri, div, t1, t2, t3;
1080 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1081 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1082 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1084 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1085 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1086 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1087 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1089 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1090 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1091 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1092 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1094 update_complex_assignment (gsi, rr, ri);
1097 /* Expand complex division to scalars, modified algorithm to minimize
1098 overflow with wide input ranges. */
1100 static void
1101 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1102 tree ar, tree ai, tree br, tree bi,
1103 enum tree_code code)
1105 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1106 basic_block bb_cond, bb_true, bb_false, bb_join;
1107 gimple stmt;
1109 /* Examine |br| < |bi|, and branch. */
1110 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1111 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1112 compare = fold_build2 (LT_EXPR, boolean_type_node, t1, t2);
1113 STRIP_NOPS (compare);
1115 bb_cond = bb_true = bb_false = bb_join = NULL;
1116 rr = ri = tr = ti = NULL;
1117 if (!TREE_CONSTANT (compare))
1119 edge e;
1120 gimple stmt;
1121 tree cond, tmp;
1123 tmp = create_tmp_var (boolean_type_node, NULL);
1124 stmt = gimple_build_assign (tmp, compare);
1125 if (gimple_in_ssa_p (cfun))
1127 tmp = make_ssa_name (tmp, stmt);
1128 gimple_assign_set_lhs (stmt, tmp);
1131 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1133 cond = fold_build2 (EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1134 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1135 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1137 /* Split the original block, and create the TRUE and FALSE blocks. */
1138 e = split_block (gsi_bb (*gsi), stmt);
1139 bb_cond = e->src;
1140 bb_join = e->dest;
1141 bb_true = create_empty_bb (bb_cond);
1142 bb_false = create_empty_bb (bb_true);
1144 /* Wire the blocks together. */
1145 e->flags = EDGE_TRUE_VALUE;
1146 redirect_edge_succ (e, bb_true);
1147 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1148 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1149 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
1151 /* Update dominance info. Note that bb_join's data was
1152 updated by split_block. */
1153 if (dom_info_available_p (CDI_DOMINATORS))
1155 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1156 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1159 rr = make_rename_temp (inner_type, NULL);
1160 ri = make_rename_temp (inner_type, NULL);
1163 /* In the TRUE branch, we compute
1164 ratio = br/bi;
1165 div = (br * ratio) + bi;
1166 tr = (ar * ratio) + ai;
1167 ti = (ai * ratio) - ar;
1168 tr = tr / div;
1169 ti = ti / div; */
1170 if (bb_true || integer_nonzerop (compare))
1172 if (bb_true)
1174 *gsi = gsi_last_bb (bb_true);
1175 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1178 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1180 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1181 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1183 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1184 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1186 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1187 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1189 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1190 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1192 if (bb_true)
1194 stmt = gimple_build_assign (rr, tr);
1195 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1196 stmt = gimple_build_assign (ri, ti);
1197 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1198 gsi_remove (gsi, true);
1202 /* In the FALSE branch, we compute
1203 ratio = d/c;
1204 divisor = (d * ratio) + c;
1205 tr = (b * ratio) + a;
1206 ti = b - (a * ratio);
1207 tr = tr / div;
1208 ti = ti / div; */
1209 if (bb_false || integer_zerop (compare))
1211 if (bb_false)
1213 *gsi = gsi_last_bb (bb_false);
1214 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1217 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1219 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1220 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1222 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1223 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1225 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1226 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1228 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1229 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1231 if (bb_false)
1233 stmt = gimple_build_assign (rr, tr);
1234 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1235 stmt = gimple_build_assign (ri, ti);
1236 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1237 gsi_remove (gsi, true);
1241 if (bb_join)
1242 *gsi = gsi_start_bb (bb_join);
1243 else
1244 rr = tr, ri = ti;
1246 update_complex_assignment (gsi, rr, ri);
1249 /* Expand complex division to scalars. */
1251 static void
1252 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1253 tree ar, tree ai, tree br, tree bi,
1254 enum tree_code code,
1255 complex_lattice_t al, complex_lattice_t bl)
1257 tree rr, ri;
1259 switch (PAIR (al, bl))
1261 case PAIR (ONLY_REAL, ONLY_REAL):
1262 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1263 ri = ai;
1264 break;
1266 case PAIR (ONLY_REAL, ONLY_IMAG):
1267 rr = ai;
1268 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1269 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1270 break;
1272 case PAIR (ONLY_IMAG, ONLY_REAL):
1273 rr = ar;
1274 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1275 break;
1277 case PAIR (ONLY_IMAG, ONLY_IMAG):
1278 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1279 ri = ar;
1280 break;
1282 case PAIR (VARYING, ONLY_REAL):
1283 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1284 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1285 break;
1287 case PAIR (VARYING, ONLY_IMAG):
1288 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1289 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1290 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1292 case PAIR (ONLY_REAL, VARYING):
1293 case PAIR (ONLY_IMAG, VARYING):
1294 case PAIR (VARYING, VARYING):
1295 switch (flag_complex_method)
1297 case 0:
1298 /* straightforward implementation of complex divide acceptable. */
1299 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1300 break;
1302 case 2:
1303 if (SCALAR_FLOAT_TYPE_P (inner_type))
1305 expand_complex_libcall (gsi, ar, ai, br, bi, code);
1306 break;
1308 /* FALLTHRU */
1310 case 1:
1311 /* wide ranges of inputs must work for complex divide. */
1312 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1313 break;
1315 default:
1316 gcc_unreachable ();
1318 return;
1320 default:
1321 gcc_unreachable ();
1324 update_complex_assignment (gsi, rr, ri);
1327 /* Expand complex negation to scalars:
1328 -a = (-ar) + i(-ai)
1331 static void
1332 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1333 tree ar, tree ai)
1335 tree rr, ri;
1337 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1338 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1340 update_complex_assignment (gsi, rr, ri);
1343 /* Expand complex conjugate to scalars:
1344 ~a = (ar) + i(-ai)
1347 static void
1348 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1349 tree ar, tree ai)
1351 tree ri;
1353 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1355 update_complex_assignment (gsi, ar, ri);
1358 /* Expand complex comparison (EQ or NE only). */
1360 static void
1361 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1362 tree br, tree bi, enum tree_code code)
1364 tree cr, ci, cc, type;
1365 gimple stmt;
1367 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1368 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1369 cc = gimplify_build2 (gsi,
1370 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1371 boolean_type_node, cr, ci);
1373 stmt = gsi_stmt (*gsi);
1375 switch (gimple_code (stmt))
1377 case GIMPLE_RETURN:
1378 type = TREE_TYPE (gimple_return_retval (stmt));
1379 gimple_return_set_retval (stmt, fold_convert (type, cc));
1380 break;
1382 case GIMPLE_ASSIGN:
1383 type = TREE_TYPE (gimple_assign_lhs (stmt));
1384 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1385 stmt = gsi_stmt (*gsi);
1386 break;
1388 case GIMPLE_COND:
1389 gimple_cond_set_code (stmt, EQ_EXPR);
1390 gimple_cond_set_lhs (stmt, cc);
1391 gimple_cond_set_rhs (stmt, boolean_true_node);
1392 break;
1394 default:
1395 gcc_unreachable ();
1398 update_stmt (stmt);
1402 /* Process one statement. If we identify a complex operation, expand it. */
1404 static void
1405 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1407 gimple stmt = gsi_stmt (*gsi);
1408 tree type, inner_type, lhs;
1409 tree ac, ar, ai, bc, br, bi;
1410 complex_lattice_t al, bl;
1411 enum tree_code code;
1413 lhs = gimple_get_lhs (stmt);
1414 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1415 return;
1417 type = TREE_TYPE (gimple_op (stmt, 0));
1418 code = gimple_expr_code (stmt);
1420 /* Initial filter for operations we handle. */
1421 switch (code)
1423 case PLUS_EXPR:
1424 case MINUS_EXPR:
1425 case MULT_EXPR:
1426 case TRUNC_DIV_EXPR:
1427 case CEIL_DIV_EXPR:
1428 case FLOOR_DIV_EXPR:
1429 case ROUND_DIV_EXPR:
1430 case RDIV_EXPR:
1431 case NEGATE_EXPR:
1432 case CONJ_EXPR:
1433 if (TREE_CODE (type) != COMPLEX_TYPE)
1434 return;
1435 inner_type = TREE_TYPE (type);
1436 break;
1438 case EQ_EXPR:
1439 case NE_EXPR:
1440 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1441 subocde, so we need to access the operands using gimple_op. */
1442 inner_type = TREE_TYPE (gimple_op (stmt, 1));
1443 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1444 return;
1445 break;
1447 default:
1449 tree rhs;
1451 /* GIMPLE_COND may also fallthru here, but we do not need to
1452 do anything with it. */
1453 if (gimple_code (stmt) == GIMPLE_COND)
1454 return;
1456 if (TREE_CODE (type) == COMPLEX_TYPE)
1457 expand_complex_move (gsi, type);
1458 else if (is_gimple_assign (stmt)
1459 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1460 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1461 && TREE_CODE (lhs) == SSA_NAME)
1463 rhs = gimple_assign_rhs1 (stmt);
1464 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1465 gimple_assign_rhs_code (stmt)
1466 == IMAGPART_EXPR,
1467 false);
1468 gimple_assign_set_rhs_from_tree (gsi, rhs);
1469 stmt = gsi_stmt (*gsi);
1470 update_stmt (stmt);
1473 return;
1476 /* Extract the components of the two complex values. Make sure and
1477 handle the common case of the same value used twice specially. */
1478 if (is_gimple_assign (stmt))
1480 ac = gimple_assign_rhs1 (stmt);
1481 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1483 /* GIMPLE_CALL can not get here. */
1484 else
1486 ac = gimple_cond_lhs (stmt);
1487 bc = gimple_cond_rhs (stmt);
1490 ar = extract_component (gsi, ac, false, true);
1491 ai = extract_component (gsi, ac, true, true);
1493 if (ac == bc)
1494 br = ar, bi = ai;
1495 else if (bc)
1497 br = extract_component (gsi, bc, 0, true);
1498 bi = extract_component (gsi, bc, 1, true);
1500 else
1501 br = bi = NULL_TREE;
1503 if (gimple_in_ssa_p (cfun))
1505 al = find_lattice_value (ac);
1506 if (al == UNINITIALIZED)
1507 al = VARYING;
1509 if (TREE_CODE_CLASS (code) == tcc_unary)
1510 bl = UNINITIALIZED;
1511 else if (ac == bc)
1512 bl = al;
1513 else
1515 bl = find_lattice_value (bc);
1516 if (bl == UNINITIALIZED)
1517 bl = VARYING;
1520 else
1521 al = bl = VARYING;
1523 switch (code)
1525 case PLUS_EXPR:
1526 case MINUS_EXPR:
1527 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1528 break;
1530 case MULT_EXPR:
1531 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1532 break;
1534 case TRUNC_DIV_EXPR:
1535 case CEIL_DIV_EXPR:
1536 case FLOOR_DIV_EXPR:
1537 case ROUND_DIV_EXPR:
1538 case RDIV_EXPR:
1539 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1540 break;
1542 case NEGATE_EXPR:
1543 expand_complex_negation (gsi, inner_type, ar, ai);
1544 break;
1546 case CONJ_EXPR:
1547 expand_complex_conjugate (gsi, inner_type, ar, ai);
1548 break;
1550 case EQ_EXPR:
1551 case NE_EXPR:
1552 expand_complex_comparison (gsi, ar, ai, br, bi, code);
1553 break;
1555 default:
1556 gcc_unreachable ();
1561 /* Entry point for complex operation lowering during optimization. */
1563 static unsigned int
1564 tree_lower_complex (void)
1566 int old_last_basic_block;
1567 gimple_stmt_iterator gsi;
1568 basic_block bb;
1570 if (!init_dont_simulate_again ())
1571 return 0;
1573 complex_lattice_values = VEC_alloc (complex_lattice_t, heap, num_ssa_names);
1574 VEC_safe_grow_cleared (complex_lattice_t, heap,
1575 complex_lattice_values, num_ssa_names);
1577 init_parameter_lattice_values ();
1578 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1580 complex_variable_components = htab_create (10, int_tree_map_hash,
1581 int_tree_map_eq, free);
1583 complex_ssa_name_components = VEC_alloc (tree, heap, 2*num_ssa_names);
1584 VEC_safe_grow_cleared (tree, heap, complex_ssa_name_components,
1585 2 * num_ssa_names);
1587 update_parameter_components ();
1589 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1590 old_last_basic_block = last_basic_block;
1591 FOR_EACH_BB (bb)
1593 if (bb->index >= old_last_basic_block)
1594 continue;
1596 update_phi_components (bb);
1597 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1598 expand_complex_operations_1 (&gsi);
1601 gsi_commit_edge_inserts ();
1603 htab_delete (complex_variable_components);
1604 VEC_free (tree, heap, complex_ssa_name_components);
1605 VEC_free (complex_lattice_t, heap, complex_lattice_values);
1606 return 0;
1609 struct gimple_opt_pass pass_lower_complex =
1612 GIMPLE_PASS,
1613 "cplxlower", /* name */
1614 0, /* gate */
1615 tree_lower_complex, /* execute */
1616 NULL, /* sub */
1617 NULL, /* next */
1618 0, /* static_pass_number */
1619 TV_NONE, /* tv_id */
1620 PROP_ssa, /* properties_required */
1621 0, /* properties_provided */
1622 0, /* properties_destroyed */
1623 0, /* todo_flags_start */
1624 TODO_dump_func
1625 | TODO_ggc_collect
1626 | TODO_update_ssa
1627 | TODO_verify_stmts /* todo_flags_finish */
1632 /* Entry point for complex operation lowering without optimization. */
1634 static unsigned int
1635 tree_lower_complex_O0 (void)
1637 int old_last_basic_block = last_basic_block;
1638 gimple_stmt_iterator gsi;
1639 basic_block bb;
1641 FOR_EACH_BB (bb)
1643 if (bb->index >= old_last_basic_block)
1644 continue;
1646 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1647 expand_complex_operations_1 (&gsi);
1649 return 0;
1652 static bool
1653 gate_no_optimization (void)
1655 /* With errors, normal optimization passes are not run. If we don't
1656 lower complex operations at all, rtl expansion will abort. */
1657 return optimize == 0 || sorrycount || errorcount;
1660 struct gimple_opt_pass pass_lower_complex_O0 =
1663 GIMPLE_PASS,
1664 "cplxlower0", /* name */
1665 gate_no_optimization, /* gate */
1666 tree_lower_complex_O0, /* execute */
1667 NULL, /* sub */
1668 NULL, /* next */
1669 0, /* static_pass_number */
1670 TV_NONE, /* tv_id */
1671 PROP_cfg, /* properties_required */
1672 0, /* properties_provided */
1673 0, /* properties_destroyed */
1674 0, /* todo_flags_start */
1675 TODO_dump_func | TODO_ggc_collect
1676 | TODO_verify_stmts, /* todo_flags_finish */