1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
80 #include "coretypes.h"
84 #include "stor-layout.h"
88 #include "hard-reg-set.h"
89 #include "basic-block.h"
90 #include "insn-config.h"
92 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
94 #include "insn-attr.h"
96 #include "diagnostic-core.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
102 #include "tree-pass.h"
104 #include "valtrack.h"
107 #include "statistics.h"
110 /* Number of attempts to combine instructions in this function. */
112 static int combine_attempts
;
114 /* Number of attempts that got as far as substitution in this function. */
116 static int combine_merges
;
118 /* Number of instructions combined with added SETs in this function. */
120 static int combine_extras
;
122 /* Number of instructions combined in this function. */
124 static int combine_successes
;
126 /* Totals over entire compilation. */
128 static int total_attempts
, total_merges
, total_extras
, total_successes
;
130 /* combine_instructions may try to replace the right hand side of the
131 second instruction with the value of an associated REG_EQUAL note
132 before throwing it at try_combine. That is problematic when there
133 is a REG_DEAD note for a register used in the old right hand side
134 and can cause distribute_notes to do wrong things. This is the
135 second instruction if it has been so modified, null otherwise. */
139 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
141 static rtx i2mod_old_rhs
;
143 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
145 static rtx i2mod_new_rhs
;
147 typedef struct reg_stat_struct
{
148 /* Record last point of death of (hard or pseudo) register n. */
151 /* Record last point of modification of (hard or pseudo) register n. */
154 /* The next group of fields allows the recording of the last value assigned
155 to (hard or pseudo) register n. We use this information to see if an
156 operation being processed is redundant given a prior operation performed
157 on the register. For example, an `and' with a constant is redundant if
158 all the zero bits are already known to be turned off.
160 We use an approach similar to that used by cse, but change it in the
163 (1) We do not want to reinitialize at each label.
164 (2) It is useful, but not critical, to know the actual value assigned
165 to a register. Often just its form is helpful.
167 Therefore, we maintain the following fields:
169 last_set_value the last value assigned
170 last_set_label records the value of label_tick when the
171 register was assigned
172 last_set_table_tick records the value of label_tick when a
173 value using the register is assigned
174 last_set_invalid set to nonzero when it is not valid
175 to use the value of this register in some
178 To understand the usage of these tables, it is important to understand
179 the distinction between the value in last_set_value being valid and
180 the register being validly contained in some other expression in the
183 (The next two parameters are out of date).
185 reg_stat[i].last_set_value is valid if it is nonzero, and either
186 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
188 Register I may validly appear in any expression returned for the value
189 of another register if reg_n_sets[i] is 1. It may also appear in the
190 value for register J if reg_stat[j].last_set_invalid is zero, or
191 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
193 If an expression is found in the table containing a register which may
194 not validly appear in an expression, the register is replaced by
195 something that won't match, (clobber (const_int 0)). */
197 /* Record last value assigned to (hard or pseudo) register n. */
201 /* Record the value of label_tick when an expression involving register n
202 is placed in last_set_value. */
204 int last_set_table_tick
;
206 /* Record the value of label_tick when the value for register n is placed in
211 /* These fields are maintained in parallel with last_set_value and are
212 used to store the mode in which the register was last set, the bits
213 that were known to be zero when it was last set, and the number of
214 sign bits copies it was known to have when it was last set. */
216 unsigned HOST_WIDE_INT last_set_nonzero_bits
;
217 char last_set_sign_bit_copies
;
218 ENUM_BITFIELD(machine_mode
) last_set_mode
: 8;
220 /* Set nonzero if references to register n in expressions should not be
221 used. last_set_invalid is set nonzero when this register is being
222 assigned to and last_set_table_tick == label_tick. */
224 char last_set_invalid
;
226 /* Some registers that are set more than once and used in more than one
227 basic block are nevertheless always set in similar ways. For example,
228 a QImode register may be loaded from memory in two places on a machine
229 where byte loads zero extend.
231 We record in the following fields if a register has some leading bits
232 that are always equal to the sign bit, and what we know about the
233 nonzero bits of a register, specifically which bits are known to be
236 If an entry is zero, it means that we don't know anything special. */
238 unsigned char sign_bit_copies
;
240 unsigned HOST_WIDE_INT nonzero_bits
;
242 /* Record the value of the label_tick when the last truncation
243 happened. The field truncated_to_mode is only valid if
244 truncation_label == label_tick. */
246 int truncation_label
;
248 /* Record the last truncation seen for this register. If truncation
249 is not a nop to this mode we might be able to save an explicit
250 truncation if we know that value already contains a truncated
253 ENUM_BITFIELD(machine_mode
) truncated_to_mode
: 8;
257 static vec
<reg_stat_type
> reg_stat
;
259 /* Record the luid of the last insn that invalidated memory
260 (anything that writes memory, and subroutine calls, but not pushes). */
262 static int mem_last_set
;
264 /* Record the luid of the last CALL_INSN
265 so we can tell whether a potential combination crosses any calls. */
267 static int last_call_luid
;
269 /* When `subst' is called, this is the insn that is being modified
270 (by combining in a previous insn). The PATTERN of this insn
271 is still the old pattern partially modified and it should not be
272 looked at, but this may be used to examine the successors of the insn
273 to judge whether a simplification is valid. */
275 static rtx subst_insn
;
277 /* This is the lowest LUID that `subst' is currently dealing with.
278 get_last_value will not return a value if the register was set at or
279 after this LUID. If not for this mechanism, we could get confused if
280 I2 or I1 in try_combine were an insn that used the old value of a register
281 to obtain a new value. In that case, we might erroneously get the
282 new value of the register when we wanted the old one. */
284 static int subst_low_luid
;
286 /* This contains any hard registers that are used in newpat; reg_dead_at_p
287 must consider all these registers to be always live. */
289 static HARD_REG_SET newpat_used_regs
;
291 /* This is an insn to which a LOG_LINKS entry has been added. If this
292 insn is the earlier than I2 or I3, combine should rescan starting at
295 static rtx added_links_insn
;
297 /* Basic block in which we are performing combines. */
298 static basic_block this_basic_block
;
299 static bool optimize_this_for_speed_p
;
302 /* Length of the currently allocated uid_insn_cost array. */
304 static int max_uid_known
;
306 /* The following array records the insn_rtx_cost for every insn
307 in the instruction stream. */
309 static int *uid_insn_cost
;
311 /* The following array records the LOG_LINKS for every insn in the
312 instruction stream as struct insn_link pointers. */
316 struct insn_link
*next
;
319 static struct insn_link
**uid_log_links
;
321 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
322 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
324 #define FOR_EACH_LOG_LINK(L, INSN) \
325 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
327 /* Links for LOG_LINKS are allocated from this obstack. */
329 static struct obstack insn_link_obstack
;
331 /* Allocate a link. */
333 static inline struct insn_link
*
334 alloc_insn_link (rtx insn
, struct insn_link
*next
)
337 = (struct insn_link
*) obstack_alloc (&insn_link_obstack
,
338 sizeof (struct insn_link
));
344 /* Incremented for each basic block. */
346 static int label_tick
;
348 /* Reset to label_tick for each extended basic block in scanning order. */
350 static int label_tick_ebb_start
;
352 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
353 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
355 static enum machine_mode nonzero_bits_mode
;
357 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
358 be safely used. It is zero while computing them and after combine has
359 completed. This former test prevents propagating values based on
360 previously set values, which can be incorrect if a variable is modified
363 static int nonzero_sign_valid
;
366 /* Record one modification to rtl structure
367 to be undone by storing old_contents into *where. */
369 enum undo_kind
{ UNDO_RTX
, UNDO_INT
, UNDO_MODE
, UNDO_LINKS
};
375 union { rtx r
; int i
; enum machine_mode m
; struct insn_link
*l
; } old_contents
;
376 union { rtx
*r
; int *i
; struct insn_link
**l
; } where
;
379 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
380 num_undo says how many are currently recorded.
382 other_insn is nonzero if we have modified some other insn in the process
383 of working on subst_insn. It must be verified too. */
392 static struct undobuf undobuf
;
394 /* Number of times the pseudo being substituted for
395 was found and replaced. */
397 static int n_occurrences
;
399 static rtx
reg_nonzero_bits_for_combine (const_rtx
, enum machine_mode
, const_rtx
,
401 unsigned HOST_WIDE_INT
,
402 unsigned HOST_WIDE_INT
*);
403 static rtx
reg_num_sign_bit_copies_for_combine (const_rtx
, enum machine_mode
, const_rtx
,
405 unsigned int, unsigned int *);
406 static void do_SUBST (rtx
*, rtx
);
407 static void do_SUBST_INT (int *, int);
408 static void init_reg_last (void);
409 static void setup_incoming_promotions (rtx
);
410 static void set_nonzero_bits_and_sign_copies (rtx
, const_rtx
, void *);
411 static int cant_combine_insn_p (rtx
);
412 static int can_combine_p (rtx
, rtx
, rtx
, rtx
, rtx
, rtx
, rtx
*, rtx
*);
413 static int combinable_i3pat (rtx
, rtx
*, rtx
, rtx
, rtx
, int, int, rtx
*);
414 static int contains_muldiv (rtx
);
415 static rtx
try_combine (rtx
, rtx
, rtx
, rtx
, int *, rtx
);
416 static void undo_all (void);
417 static void undo_commit (void);
418 static rtx
*find_split_point (rtx
*, rtx
, bool);
419 static rtx
subst (rtx
, rtx
, rtx
, int, int, int);
420 static rtx
combine_simplify_rtx (rtx
, enum machine_mode
, int, int);
421 static rtx
simplify_if_then_else (rtx
);
422 static rtx
simplify_set (rtx
);
423 static rtx
simplify_logical (rtx
);
424 static rtx
expand_compound_operation (rtx
);
425 static const_rtx
expand_field_assignment (const_rtx
);
426 static rtx
make_extraction (enum machine_mode
, rtx
, HOST_WIDE_INT
,
427 rtx
, unsigned HOST_WIDE_INT
, int, int, int);
428 static rtx
extract_left_shift (rtx
, int);
429 static int get_pos_from_mask (unsigned HOST_WIDE_INT
,
430 unsigned HOST_WIDE_INT
*);
431 static rtx
canon_reg_for_combine (rtx
, rtx
);
432 static rtx
force_to_mode (rtx
, enum machine_mode
,
433 unsigned HOST_WIDE_INT
, int);
434 static rtx
if_then_else_cond (rtx
, rtx
*, rtx
*);
435 static rtx
known_cond (rtx
, enum rtx_code
, rtx
, rtx
);
436 static int rtx_equal_for_field_assignment_p (rtx
, rtx
);
437 static rtx
make_field_assignment (rtx
);
438 static rtx
apply_distributive_law (rtx
);
439 static rtx
distribute_and_simplify_rtx (rtx
, int);
440 static rtx
simplify_and_const_int_1 (enum machine_mode
, rtx
,
441 unsigned HOST_WIDE_INT
);
442 static rtx
simplify_and_const_int (rtx
, enum machine_mode
, rtx
,
443 unsigned HOST_WIDE_INT
);
444 static int merge_outer_ops (enum rtx_code
*, HOST_WIDE_INT
*, enum rtx_code
,
445 HOST_WIDE_INT
, enum machine_mode
, int *);
446 static rtx
simplify_shift_const_1 (enum rtx_code
, enum machine_mode
, rtx
, int);
447 static rtx
simplify_shift_const (rtx
, enum rtx_code
, enum machine_mode
, rtx
,
449 static int recog_for_combine (rtx
*, rtx
, rtx
*);
450 static rtx
gen_lowpart_for_combine (enum machine_mode
, rtx
);
451 static enum rtx_code
simplify_compare_const (enum rtx_code
, enum machine_mode
,
453 static enum rtx_code
simplify_comparison (enum rtx_code
, rtx
*, rtx
*);
454 static void update_table_tick (rtx
);
455 static void record_value_for_reg (rtx
, rtx
, rtx
);
456 static void check_promoted_subreg (rtx
, rtx
);
457 static void record_dead_and_set_regs_1 (rtx
, const_rtx
, void *);
458 static void record_dead_and_set_regs (rtx
);
459 static int get_last_value_validate (rtx
*, rtx
, int, int);
460 static rtx
get_last_value (const_rtx
);
461 static int use_crosses_set_p (const_rtx
, int);
462 static void reg_dead_at_p_1 (rtx
, const_rtx
, void *);
463 static int reg_dead_at_p (rtx
, rtx
);
464 static void move_deaths (rtx
, rtx
, int, rtx
, rtx
*);
465 static int reg_bitfield_target_p (rtx
, rtx
);
466 static void distribute_notes (rtx
, rtx
, rtx
, rtx
, rtx
, rtx
, rtx
);
467 static void distribute_links (struct insn_link
*);
468 static void mark_used_regs_combine (rtx
);
469 static void record_promoted_value (rtx
, rtx
);
470 static int unmentioned_reg_p_1 (rtx
*, void *);
471 static bool unmentioned_reg_p (rtx
, rtx
);
472 static int record_truncated_value (rtx
*, void *);
473 static void record_truncated_values (rtx
*, void *);
474 static bool reg_truncated_to_mode (enum machine_mode
, const_rtx
);
475 static rtx
gen_lowpart_or_truncate (enum machine_mode
, rtx
);
478 /* It is not safe to use ordinary gen_lowpart in combine.
479 See comments in gen_lowpart_for_combine. */
480 #undef RTL_HOOKS_GEN_LOWPART
481 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
483 /* Our implementation of gen_lowpart never emits a new pseudo. */
484 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
485 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
487 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
488 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
490 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
491 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
493 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
494 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
496 static const struct rtl_hooks combine_rtl_hooks
= RTL_HOOKS_INITIALIZER
;
499 /* Convenience wrapper for the canonicalize_comparison target hook.
500 Target hooks cannot use enum rtx_code. */
502 target_canonicalize_comparison (enum rtx_code
*code
, rtx
*op0
, rtx
*op1
,
503 bool op0_preserve_value
)
505 int code_int
= (int)*code
;
506 targetm
.canonicalize_comparison (&code_int
, op0
, op1
, op0_preserve_value
);
507 *code
= (enum rtx_code
)code_int
;
510 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
511 PATTERN can not be split. Otherwise, it returns an insn sequence.
512 This is a wrapper around split_insns which ensures that the
513 reg_stat vector is made larger if the splitter creates a new
517 combine_split_insns (rtx pattern
, rtx insn
)
522 ret
= split_insns (pattern
, insn
);
523 nregs
= max_reg_num ();
524 if (nregs
> reg_stat
.length ())
525 reg_stat
.safe_grow_cleared (nregs
);
529 /* This is used by find_single_use to locate an rtx in LOC that
530 contains exactly one use of DEST, which is typically either a REG
531 or CC0. It returns a pointer to the innermost rtx expression
532 containing DEST. Appearances of DEST that are being used to
533 totally replace it are not counted. */
536 find_single_use_1 (rtx dest
, rtx
*loc
)
539 enum rtx_code code
= GET_CODE (x
);
555 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
556 of a REG that occupies all of the REG, the insn uses DEST if
557 it is mentioned in the destination or the source. Otherwise, we
558 need just check the source. */
559 if (GET_CODE (SET_DEST (x
)) != CC0
560 && GET_CODE (SET_DEST (x
)) != PC
561 && !REG_P (SET_DEST (x
))
562 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
563 && REG_P (SUBREG_REG (SET_DEST (x
)))
564 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
565 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
566 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
567 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
570 return find_single_use_1 (dest
, &SET_SRC (x
));
574 return find_single_use_1 (dest
, &XEXP (x
, 0));
580 /* If it wasn't one of the common cases above, check each expression and
581 vector of this code. Look for a unique usage of DEST. */
583 fmt
= GET_RTX_FORMAT (code
);
584 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
588 if (dest
== XEXP (x
, i
)
589 || (REG_P (dest
) && REG_P (XEXP (x
, i
))
590 && REGNO (dest
) == REGNO (XEXP (x
, i
))))
593 this_result
= find_single_use_1 (dest
, &XEXP (x
, i
));
596 result
= this_result
;
597 else if (this_result
)
598 /* Duplicate usage. */
601 else if (fmt
[i
] == 'E')
605 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
607 if (XVECEXP (x
, i
, j
) == dest
609 && REG_P (XVECEXP (x
, i
, j
))
610 && REGNO (XVECEXP (x
, i
, j
)) == REGNO (dest
)))
613 this_result
= find_single_use_1 (dest
, &XVECEXP (x
, i
, j
));
616 result
= this_result
;
617 else if (this_result
)
627 /* See if DEST, produced in INSN, is used only a single time in the
628 sequel. If so, return a pointer to the innermost rtx expression in which
631 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
633 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
634 care about REG_DEAD notes or LOG_LINKS.
636 Otherwise, we find the single use by finding an insn that has a
637 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
638 only referenced once in that insn, we know that it must be the first
639 and last insn referencing DEST. */
642 find_single_use (rtx dest
, rtx insn
, rtx
*ploc
)
647 struct insn_link
*link
;
652 next
= NEXT_INSN (insn
);
654 || (!NONJUMP_INSN_P (next
) && !JUMP_P (next
)))
657 result
= find_single_use_1 (dest
, &PATTERN (next
));
667 bb
= BLOCK_FOR_INSN (insn
);
668 for (next
= NEXT_INSN (insn
);
669 next
&& BLOCK_FOR_INSN (next
) == bb
;
670 next
= NEXT_INSN (next
))
671 if (INSN_P (next
) && dead_or_set_p (next
, dest
))
673 FOR_EACH_LOG_LINK (link
, next
)
674 if (link
->insn
== insn
)
679 result
= find_single_use_1 (dest
, &PATTERN (next
));
689 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
690 insn. The substitution can be undone by undo_all. If INTO is already
691 set to NEWVAL, do not record this change. Because computing NEWVAL might
692 also call SUBST, we have to compute it before we put anything into
696 do_SUBST (rtx
*into
, rtx newval
)
701 if (oldval
== newval
)
704 /* We'd like to catch as many invalid transformations here as
705 possible. Unfortunately, there are way too many mode changes
706 that are perfectly valid, so we'd waste too much effort for
707 little gain doing the checks here. Focus on catching invalid
708 transformations involving integer constants. */
709 if (GET_MODE_CLASS (GET_MODE (oldval
)) == MODE_INT
710 && CONST_INT_P (newval
))
712 /* Sanity check that we're replacing oldval with a CONST_INT
713 that is a valid sign-extension for the original mode. */
714 gcc_assert (INTVAL (newval
)
715 == trunc_int_for_mode (INTVAL (newval
), GET_MODE (oldval
)));
717 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
718 CONST_INT is not valid, because after the replacement, the
719 original mode would be gone. Unfortunately, we can't tell
720 when do_SUBST is called to replace the operand thereof, so we
721 perform this test on oldval instead, checking whether an
722 invalid replacement took place before we got here. */
723 gcc_assert (!(GET_CODE (oldval
) == SUBREG
724 && CONST_INT_P (SUBREG_REG (oldval
))));
725 gcc_assert (!(GET_CODE (oldval
) == ZERO_EXTEND
726 && CONST_INT_P (XEXP (oldval
, 0))));
730 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
732 buf
= XNEW (struct undo
);
734 buf
->kind
= UNDO_RTX
;
736 buf
->old_contents
.r
= oldval
;
739 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
742 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
744 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
745 for the value of a HOST_WIDE_INT value (including CONST_INT) is
749 do_SUBST_INT (int *into
, int newval
)
754 if (oldval
== newval
)
758 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
760 buf
= XNEW (struct undo
);
762 buf
->kind
= UNDO_INT
;
764 buf
->old_contents
.i
= oldval
;
767 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
770 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
772 /* Similar to SUBST, but just substitute the mode. This is used when
773 changing the mode of a pseudo-register, so that any other
774 references to the entry in the regno_reg_rtx array will change as
778 do_SUBST_MODE (rtx
*into
, enum machine_mode newval
)
781 enum machine_mode oldval
= GET_MODE (*into
);
783 if (oldval
== newval
)
787 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
789 buf
= XNEW (struct undo
);
791 buf
->kind
= UNDO_MODE
;
793 buf
->old_contents
.m
= oldval
;
794 adjust_reg_mode (*into
, newval
);
796 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
799 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
802 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
805 do_SUBST_LINK (struct insn_link
**into
, struct insn_link
*newval
)
808 struct insn_link
* oldval
= *into
;
810 if (oldval
== newval
)
814 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
816 buf
= XNEW (struct undo
);
818 buf
->kind
= UNDO_LINKS
;
820 buf
->old_contents
.l
= oldval
;
823 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
826 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
829 /* Subroutine of try_combine. Determine whether the replacement patterns
830 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
831 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
832 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
833 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
834 of all the instructions can be estimated and the replacements are more
835 expensive than the original sequence. */
838 combine_validate_cost (rtx i0
, rtx i1
, rtx i2
, rtx i3
, rtx newpat
,
839 rtx newi2pat
, rtx newotherpat
)
841 int i0_cost
, i1_cost
, i2_cost
, i3_cost
;
842 int new_i2_cost
, new_i3_cost
;
843 int old_cost
, new_cost
;
845 /* Lookup the original insn_rtx_costs. */
846 i2_cost
= INSN_COST (i2
);
847 i3_cost
= INSN_COST (i3
);
851 i1_cost
= INSN_COST (i1
);
854 i0_cost
= INSN_COST (i0
);
855 old_cost
= (i0_cost
> 0 && i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
856 ? i0_cost
+ i1_cost
+ i2_cost
+ i3_cost
: 0);
860 old_cost
= (i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
861 ? i1_cost
+ i2_cost
+ i3_cost
: 0);
867 old_cost
= (i2_cost
> 0 && i3_cost
> 0) ? i2_cost
+ i3_cost
: 0;
868 i1_cost
= i0_cost
= 0;
871 /* Calculate the replacement insn_rtx_costs. */
872 new_i3_cost
= insn_rtx_cost (newpat
, optimize_this_for_speed_p
);
875 new_i2_cost
= insn_rtx_cost (newi2pat
, optimize_this_for_speed_p
);
876 new_cost
= (new_i2_cost
> 0 && new_i3_cost
> 0)
877 ? new_i2_cost
+ new_i3_cost
: 0;
881 new_cost
= new_i3_cost
;
885 if (undobuf
.other_insn
)
887 int old_other_cost
, new_other_cost
;
889 old_other_cost
= INSN_COST (undobuf
.other_insn
);
890 new_other_cost
= insn_rtx_cost (newotherpat
, optimize_this_for_speed_p
);
891 if (old_other_cost
> 0 && new_other_cost
> 0)
893 old_cost
+= old_other_cost
;
894 new_cost
+= new_other_cost
;
900 /* Disallow this combination if both new_cost and old_cost are greater than
901 zero, and new_cost is greater than old cost. */
902 if (old_cost
> 0 && new_cost
> old_cost
)
909 "rejecting combination of insns %d, %d, %d and %d\n",
910 INSN_UID (i0
), INSN_UID (i1
), INSN_UID (i2
),
912 fprintf (dump_file
, "original costs %d + %d + %d + %d = %d\n",
913 i0_cost
, i1_cost
, i2_cost
, i3_cost
, old_cost
);
918 "rejecting combination of insns %d, %d and %d\n",
919 INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
920 fprintf (dump_file
, "original costs %d + %d + %d = %d\n",
921 i1_cost
, i2_cost
, i3_cost
, old_cost
);
926 "rejecting combination of insns %d and %d\n",
927 INSN_UID (i2
), INSN_UID (i3
));
928 fprintf (dump_file
, "original costs %d + %d = %d\n",
929 i2_cost
, i3_cost
, old_cost
);
934 fprintf (dump_file
, "replacement costs %d + %d = %d\n",
935 new_i2_cost
, new_i3_cost
, new_cost
);
938 fprintf (dump_file
, "replacement cost %d\n", new_cost
);
944 /* Update the uid_insn_cost array with the replacement costs. */
945 INSN_COST (i2
) = new_i2_cost
;
946 INSN_COST (i3
) = new_i3_cost
;
958 /* Delete any insns that copy a register to itself. */
961 delete_noop_moves (void)
966 FOR_EACH_BB_FN (bb
, cfun
)
968 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
)); insn
= next
)
970 next
= NEXT_INSN (insn
);
971 if (INSN_P (insn
) && noop_move_p (insn
))
974 fprintf (dump_file
, "deleting noop move %d\n", INSN_UID (insn
));
976 delete_insn_and_edges (insn
);
983 /* Fill in log links field for all insns. */
986 create_log_links (void)
992 next_use
= XCNEWVEC (rtx
, max_reg_num ());
994 /* Pass through each block from the end, recording the uses of each
995 register and establishing log links when def is encountered.
996 Note that we do not clear next_use array in order to save time,
997 so we have to test whether the use is in the same basic block as def.
999 There are a few cases below when we do not consider the definition or
1000 usage -- these are taken from original flow.c did. Don't ask me why it is
1001 done this way; I don't know and if it works, I don't want to know. */
1003 FOR_EACH_BB_FN (bb
, cfun
)
1005 FOR_BB_INSNS_REVERSE (bb
, insn
)
1007 if (!NONDEBUG_INSN_P (insn
))
1010 /* Log links are created only once. */
1011 gcc_assert (!LOG_LINKS (insn
));
1013 FOR_EACH_INSN_DEF (def
, insn
)
1015 int regno
= DF_REF_REGNO (def
);
1018 if (!next_use
[regno
])
1021 /* Do not consider if it is pre/post modification in MEM. */
1022 if (DF_REF_FLAGS (def
) & DF_REF_PRE_POST_MODIFY
)
1025 /* Do not make the log link for frame pointer. */
1026 if ((regno
== FRAME_POINTER_REGNUM
1027 && (! reload_completed
|| frame_pointer_needed
))
1028 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1029 || (regno
== HARD_FRAME_POINTER_REGNUM
1030 && (! reload_completed
|| frame_pointer_needed
))
1032 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1033 || (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
1038 use_insn
= next_use
[regno
];
1039 if (BLOCK_FOR_INSN (use_insn
) == bb
)
1043 We don't build a LOG_LINK for hard registers contained
1044 in ASM_OPERANDs. If these registers get replaced,
1045 we might wind up changing the semantics of the insn,
1046 even if reload can make what appear to be valid
1047 assignments later. */
1048 if (regno
>= FIRST_PSEUDO_REGISTER
1049 || asm_noperands (PATTERN (use_insn
)) < 0)
1051 /* Don't add duplicate links between instructions. */
1052 struct insn_link
*links
;
1053 FOR_EACH_LOG_LINK (links
, use_insn
)
1054 if (insn
== links
->insn
)
1058 LOG_LINKS (use_insn
)
1059 = alloc_insn_link (insn
, LOG_LINKS (use_insn
));
1062 next_use
[regno
] = NULL_RTX
;
1065 FOR_EACH_INSN_USE (use
, insn
)
1067 int regno
= DF_REF_REGNO (use
);
1069 /* Do not consider the usage of the stack pointer
1070 by function call. */
1071 if (DF_REF_FLAGS (use
) & DF_REF_CALL_STACK_USAGE
)
1074 next_use
[regno
] = insn
;
1082 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1083 true if we found a LOG_LINK that proves that A feeds B. This only works
1084 if there are no instructions between A and B which could have a link
1085 depending on A, since in that case we would not record a link for B.
1086 We also check the implicit dependency created by a cc0 setter/user
1090 insn_a_feeds_b (rtx a
, rtx b
)
1092 struct insn_link
*links
;
1093 FOR_EACH_LOG_LINK (links
, b
)
1094 if (links
->insn
== a
)
1103 /* Main entry point for combiner. F is the first insn of the function.
1104 NREGS is the first unused pseudo-reg number.
1106 Return nonzero if the combiner has turned an indirect jump
1107 instruction into a direct jump. */
1109 combine_instructions (rtx f
, unsigned int nregs
)
1115 struct insn_link
*links
, *nextlinks
;
1117 basic_block last_bb
;
1119 int new_direct_jump_p
= 0;
1121 for (first
= f
; first
&& !INSN_P (first
); )
1122 first
= NEXT_INSN (first
);
1126 combine_attempts
= 0;
1129 combine_successes
= 0;
1131 rtl_hooks
= combine_rtl_hooks
;
1133 reg_stat
.safe_grow_cleared (nregs
);
1135 init_recog_no_volatile ();
1137 /* Allocate array for insn info. */
1138 max_uid_known
= get_max_uid ();
1139 uid_log_links
= XCNEWVEC (struct insn_link
*, max_uid_known
+ 1);
1140 uid_insn_cost
= XCNEWVEC (int, max_uid_known
+ 1);
1141 gcc_obstack_init (&insn_link_obstack
);
1143 nonzero_bits_mode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1145 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1146 problems when, for example, we have j <<= 1 in a loop. */
1148 nonzero_sign_valid
= 0;
1149 label_tick
= label_tick_ebb_start
= 1;
1151 /* Scan all SETs and see if we can deduce anything about what
1152 bits are known to be zero for some registers and how many copies
1153 of the sign bit are known to exist for those registers.
1155 Also set any known values so that we can use it while searching
1156 for what bits are known to be set. */
1158 setup_incoming_promotions (first
);
1159 /* Allow the entry block and the first block to fall into the same EBB.
1160 Conceptually the incoming promotions are assigned to the entry block. */
1161 last_bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1163 create_log_links ();
1164 FOR_EACH_BB_FN (this_basic_block
, cfun
)
1166 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1171 if (!single_pred_p (this_basic_block
)
1172 || single_pred (this_basic_block
) != last_bb
)
1173 label_tick_ebb_start
= label_tick
;
1174 last_bb
= this_basic_block
;
1176 FOR_BB_INSNS (this_basic_block
, insn
)
1177 if (INSN_P (insn
) && BLOCK_FOR_INSN (insn
))
1183 subst_low_luid
= DF_INSN_LUID (insn
);
1186 note_stores (PATTERN (insn
), set_nonzero_bits_and_sign_copies
,
1188 record_dead_and_set_regs (insn
);
1191 for (links
= REG_NOTES (insn
); links
; links
= XEXP (links
, 1))
1192 if (REG_NOTE_KIND (links
) == REG_INC
)
1193 set_nonzero_bits_and_sign_copies (XEXP (links
, 0), NULL_RTX
,
1197 /* Record the current insn_rtx_cost of this instruction. */
1198 if (NONJUMP_INSN_P (insn
))
1199 INSN_COST (insn
) = insn_rtx_cost (PATTERN (insn
),
1200 optimize_this_for_speed_p
);
1202 fprintf (dump_file
, "insn_cost %d: %d\n",
1203 INSN_UID (insn
), INSN_COST (insn
));
1207 nonzero_sign_valid
= 1;
1209 /* Now scan all the insns in forward order. */
1210 label_tick
= label_tick_ebb_start
= 1;
1212 setup_incoming_promotions (first
);
1213 last_bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1214 int max_combine
= PARAM_VALUE (PARAM_MAX_COMBINE_INSNS
);
1216 FOR_EACH_BB_FN (this_basic_block
, cfun
)
1218 rtx last_combined_insn
= NULL_RTX
;
1219 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1224 if (!single_pred_p (this_basic_block
)
1225 || single_pred (this_basic_block
) != last_bb
)
1226 label_tick_ebb_start
= label_tick
;
1227 last_bb
= this_basic_block
;
1229 rtl_profile_for_bb (this_basic_block
);
1230 for (insn
= BB_HEAD (this_basic_block
);
1231 insn
!= NEXT_INSN (BB_END (this_basic_block
));
1232 insn
= next
? next
: NEXT_INSN (insn
))
1235 if (!NONDEBUG_INSN_P (insn
))
1238 while (last_combined_insn
1239 && INSN_DELETED_P (last_combined_insn
))
1240 last_combined_insn
= PREV_INSN (last_combined_insn
);
1241 if (last_combined_insn
== NULL_RTX
1242 || BARRIER_P (last_combined_insn
)
1243 || BLOCK_FOR_INSN (last_combined_insn
) != this_basic_block
1244 || DF_INSN_LUID (last_combined_insn
) <= DF_INSN_LUID (insn
))
1245 last_combined_insn
= insn
;
1247 /* See if we know about function return values before this
1248 insn based upon SUBREG flags. */
1249 check_promoted_subreg (insn
, PATTERN (insn
));
1251 /* See if we can find hardregs and subreg of pseudos in
1252 narrower modes. This could help turning TRUNCATEs
1254 note_uses (&PATTERN (insn
), record_truncated_values
, NULL
);
1256 /* Try this insn with each insn it links back to. */
1258 FOR_EACH_LOG_LINK (links
, insn
)
1259 if ((next
= try_combine (insn
, links
->insn
, NULL_RTX
,
1260 NULL_RTX
, &new_direct_jump_p
,
1261 last_combined_insn
)) != 0)
1263 statistics_counter_event (cfun
, "two-insn combine", 1);
1267 /* Try each sequence of three linked insns ending with this one. */
1269 if (max_combine
>= 3)
1270 FOR_EACH_LOG_LINK (links
, insn
)
1272 rtx link
= links
->insn
;
1274 /* If the linked insn has been replaced by a note, then there
1275 is no point in pursuing this chain any further. */
1279 FOR_EACH_LOG_LINK (nextlinks
, link
)
1280 if ((next
= try_combine (insn
, link
, nextlinks
->insn
,
1281 NULL_RTX
, &new_direct_jump_p
,
1282 last_combined_insn
)) != 0)
1284 statistics_counter_event (cfun
, "three-insn combine", 1);
1290 /* Try to combine a jump insn that uses CC0
1291 with a preceding insn that sets CC0, and maybe with its
1292 logical predecessor as well.
1293 This is how we make decrement-and-branch insns.
1294 We need this special code because data flow connections
1295 via CC0 do not get entered in LOG_LINKS. */
1298 && (prev
= prev_nonnote_insn (insn
)) != 0
1299 && NONJUMP_INSN_P (prev
)
1300 && sets_cc0_p (PATTERN (prev
)))
1302 if ((next
= try_combine (insn
, prev
, NULL_RTX
, NULL_RTX
,
1304 last_combined_insn
)) != 0)
1307 FOR_EACH_LOG_LINK (nextlinks
, prev
)
1308 if ((next
= try_combine (insn
, prev
, nextlinks
->insn
,
1309 NULL_RTX
, &new_direct_jump_p
,
1310 last_combined_insn
)) != 0)
1314 /* Do the same for an insn that explicitly references CC0. */
1315 if (NONJUMP_INSN_P (insn
)
1316 && (prev
= prev_nonnote_insn (insn
)) != 0
1317 && NONJUMP_INSN_P (prev
)
1318 && sets_cc0_p (PATTERN (prev
))
1319 && GET_CODE (PATTERN (insn
)) == SET
1320 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (insn
))))
1322 if ((next
= try_combine (insn
, prev
, NULL_RTX
, NULL_RTX
,
1324 last_combined_insn
)) != 0)
1327 FOR_EACH_LOG_LINK (nextlinks
, prev
)
1328 if ((next
= try_combine (insn
, prev
, nextlinks
->insn
,
1329 NULL_RTX
, &new_direct_jump_p
,
1330 last_combined_insn
)) != 0)
1334 /* Finally, see if any of the insns that this insn links to
1335 explicitly references CC0. If so, try this insn, that insn,
1336 and its predecessor if it sets CC0. */
1337 FOR_EACH_LOG_LINK (links
, insn
)
1338 if (NONJUMP_INSN_P (links
->insn
)
1339 && GET_CODE (PATTERN (links
->insn
)) == SET
1340 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (links
->insn
)))
1341 && (prev
= prev_nonnote_insn (links
->insn
)) != 0
1342 && NONJUMP_INSN_P (prev
)
1343 && sets_cc0_p (PATTERN (prev
))
1344 && (next
= try_combine (insn
, links
->insn
,
1345 prev
, NULL_RTX
, &new_direct_jump_p
,
1346 last_combined_insn
)) != 0)
1350 /* Try combining an insn with two different insns whose results it
1352 if (max_combine
>= 3)
1353 FOR_EACH_LOG_LINK (links
, insn
)
1354 for (nextlinks
= links
->next
; nextlinks
;
1355 nextlinks
= nextlinks
->next
)
1356 if ((next
= try_combine (insn
, links
->insn
,
1357 nextlinks
->insn
, NULL_RTX
,
1359 last_combined_insn
)) != 0)
1362 statistics_counter_event (cfun
, "three-insn combine", 1);
1366 /* Try four-instruction combinations. */
1367 if (max_combine
>= 4)
1368 FOR_EACH_LOG_LINK (links
, insn
)
1370 struct insn_link
*next1
;
1371 rtx link
= links
->insn
;
1373 /* If the linked insn has been replaced by a note, then there
1374 is no point in pursuing this chain any further. */
1378 FOR_EACH_LOG_LINK (next1
, link
)
1380 rtx link1
= next1
->insn
;
1383 /* I0 -> I1 -> I2 -> I3. */
1384 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1385 if ((next
= try_combine (insn
, link
, link1
,
1388 last_combined_insn
)) != 0)
1390 statistics_counter_event (cfun
, "four-insn combine", 1);
1393 /* I0, I1 -> I2, I2 -> I3. */
1394 for (nextlinks
= next1
->next
; nextlinks
;
1395 nextlinks
= nextlinks
->next
)
1396 if ((next
= try_combine (insn
, link
, link1
,
1399 last_combined_insn
)) != 0)
1401 statistics_counter_event (cfun
, "four-insn combine", 1);
1406 for (next1
= links
->next
; next1
; next1
= next1
->next
)
1408 rtx link1
= next1
->insn
;
1411 /* I0 -> I2; I1, I2 -> I3. */
1412 FOR_EACH_LOG_LINK (nextlinks
, link
)
1413 if ((next
= try_combine (insn
, link
, link1
,
1416 last_combined_insn
)) != 0)
1418 statistics_counter_event (cfun
, "four-insn combine", 1);
1421 /* I0 -> I1; I1, I2 -> I3. */
1422 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1423 if ((next
= try_combine (insn
, link
, link1
,
1426 last_combined_insn
)) != 0)
1428 statistics_counter_event (cfun
, "four-insn combine", 1);
1434 /* Try this insn with each REG_EQUAL note it links back to. */
1435 FOR_EACH_LOG_LINK (links
, insn
)
1438 rtx temp
= links
->insn
;
1439 if ((set
= single_set (temp
)) != 0
1440 && (note
= find_reg_equal_equiv_note (temp
)) != 0
1441 && (note
= XEXP (note
, 0), GET_CODE (note
)) != EXPR_LIST
1442 /* Avoid using a register that may already been marked
1443 dead by an earlier instruction. */
1444 && ! unmentioned_reg_p (note
, SET_SRC (set
))
1445 && (GET_MODE (note
) == VOIDmode
1446 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set
)))
1447 : GET_MODE (SET_DEST (set
)) == GET_MODE (note
)))
1449 /* Temporarily replace the set's source with the
1450 contents of the REG_EQUAL note. The insn will
1451 be deleted or recognized by try_combine. */
1452 rtx orig
= SET_SRC (set
);
1453 SET_SRC (set
) = note
;
1455 i2mod_old_rhs
= copy_rtx (orig
);
1456 i2mod_new_rhs
= copy_rtx (note
);
1457 next
= try_combine (insn
, i2mod
, NULL_RTX
, NULL_RTX
,
1459 last_combined_insn
);
1463 statistics_counter_event (cfun
, "insn-with-note combine", 1);
1466 SET_SRC (set
) = orig
;
1471 record_dead_and_set_regs (insn
);
1478 default_rtl_profile ();
1480 new_direct_jump_p
|= purge_all_dead_edges ();
1481 delete_noop_moves ();
1484 obstack_free (&insn_link_obstack
, NULL
);
1485 free (uid_log_links
);
1486 free (uid_insn_cost
);
1487 reg_stat
.release ();
1490 struct undo
*undo
, *next
;
1491 for (undo
= undobuf
.frees
; undo
; undo
= next
)
1499 total_attempts
+= combine_attempts
;
1500 total_merges
+= combine_merges
;
1501 total_extras
+= combine_extras
;
1502 total_successes
+= combine_successes
;
1504 nonzero_sign_valid
= 0;
1505 rtl_hooks
= general_rtl_hooks
;
1507 /* Make recognizer allow volatile MEMs again. */
1510 return new_direct_jump_p
;
1513 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1516 init_reg_last (void)
1521 FOR_EACH_VEC_ELT (reg_stat
, i
, p
)
1522 memset (p
, 0, offsetof (reg_stat_type
, sign_bit_copies
));
1525 /* Set up any promoted values for incoming argument registers. */
1528 setup_incoming_promotions (rtx first
)
1531 bool strictly_local
= false;
1533 for (arg
= DECL_ARGUMENTS (current_function_decl
); arg
;
1534 arg
= DECL_CHAIN (arg
))
1536 rtx x
, reg
= DECL_INCOMING_RTL (arg
);
1538 enum machine_mode mode1
, mode2
, mode3
, mode4
;
1540 /* Only continue if the incoming argument is in a register. */
1544 /* Determine, if possible, whether all call sites of the current
1545 function lie within the current compilation unit. (This does
1546 take into account the exporting of a function via taking its
1547 address, and so forth.) */
1548 strictly_local
= cgraph_local_info (current_function_decl
)->local
;
1550 /* The mode and signedness of the argument before any promotions happen
1551 (equal to the mode of the pseudo holding it at that stage). */
1552 mode1
= TYPE_MODE (TREE_TYPE (arg
));
1553 uns1
= TYPE_UNSIGNED (TREE_TYPE (arg
));
1555 /* The mode and signedness of the argument after any source language and
1556 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1557 mode2
= TYPE_MODE (DECL_ARG_TYPE (arg
));
1558 uns3
= TYPE_UNSIGNED (DECL_ARG_TYPE (arg
));
1560 /* The mode and signedness of the argument as it is actually passed,
1561 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1562 mode3
= promote_function_mode (DECL_ARG_TYPE (arg
), mode2
, &uns3
,
1563 TREE_TYPE (cfun
->decl
), 0);
1565 /* The mode of the register in which the argument is being passed. */
1566 mode4
= GET_MODE (reg
);
1568 /* Eliminate sign extensions in the callee when:
1569 (a) A mode promotion has occurred; */
1572 /* (b) The mode of the register is the same as the mode of
1573 the argument as it is passed; */
1576 /* (c) There's no language level extension; */
1579 /* (c.1) All callers are from the current compilation unit. If that's
1580 the case we don't have to rely on an ABI, we only have to know
1581 what we're generating right now, and we know that we will do the
1582 mode1 to mode2 promotion with the given sign. */
1583 else if (!strictly_local
)
1585 /* (c.2) The combination of the two promotions is useful. This is
1586 true when the signs match, or if the first promotion is unsigned.
1587 In the later case, (sign_extend (zero_extend x)) is the same as
1588 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1594 /* Record that the value was promoted from mode1 to mode3,
1595 so that any sign extension at the head of the current
1596 function may be eliminated. */
1597 x
= gen_rtx_CLOBBER (mode1
, const0_rtx
);
1598 x
= gen_rtx_fmt_e ((uns3
? ZERO_EXTEND
: SIGN_EXTEND
), mode3
, x
);
1599 record_value_for_reg (reg
, first
, x
);
1603 /* Called via note_stores. If X is a pseudo that is narrower than
1604 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1606 If we are setting only a portion of X and we can't figure out what
1607 portion, assume all bits will be used since we don't know what will
1610 Similarly, set how many bits of X are known to be copies of the sign bit
1611 at all locations in the function. This is the smallest number implied
1615 set_nonzero_bits_and_sign_copies (rtx x
, const_rtx set
, void *data
)
1617 rtx insn
= (rtx
) data
;
1621 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
1622 /* If this register is undefined at the start of the file, we can't
1623 say what its contents were. */
1624 && ! REGNO_REG_SET_P
1625 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
), REGNO (x
))
1626 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
)))
1628 reg_stat_type
*rsp
= ®_stat
[REGNO (x
)];
1630 if (set
== 0 || GET_CODE (set
) == CLOBBER
)
1632 rsp
->nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
1633 rsp
->sign_bit_copies
= 1;
1637 /* If this register is being initialized using itself, and the
1638 register is uninitialized in this basic block, and there are
1639 no LOG_LINKS which set the register, then part of the
1640 register is uninitialized. In that case we can't assume
1641 anything about the number of nonzero bits.
1643 ??? We could do better if we checked this in
1644 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1645 could avoid making assumptions about the insn which initially
1646 sets the register, while still using the information in other
1647 insns. We would have to be careful to check every insn
1648 involved in the combination. */
1651 && reg_referenced_p (x
, PATTERN (insn
))
1652 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn
)),
1655 struct insn_link
*link
;
1657 FOR_EACH_LOG_LINK (link
, insn
)
1658 if (dead_or_set_p (link
->insn
, x
))
1662 rsp
->nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
1663 rsp
->sign_bit_copies
= 1;
1668 /* If this is a complex assignment, see if we can convert it into a
1669 simple assignment. */
1670 set
= expand_field_assignment (set
);
1672 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1673 set what we know about X. */
1675 if (SET_DEST (set
) == x
1676 || (paradoxical_subreg_p (SET_DEST (set
))
1677 && SUBREG_REG (SET_DEST (set
)) == x
))
1679 rtx src
= SET_SRC (set
);
1681 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1682 /* If X is narrower than a word and SRC is a non-negative
1683 constant that would appear negative in the mode of X,
1684 sign-extend it for use in reg_stat[].nonzero_bits because some
1685 machines (maybe most) will actually do the sign-extension
1686 and this is the conservative approach.
1688 ??? For 2.5, try to tighten up the MD files in this regard
1689 instead of this kludge. */
1691 if (GET_MODE_PRECISION (GET_MODE (x
)) < BITS_PER_WORD
1692 && CONST_INT_P (src
)
1694 && val_signbit_known_set_p (GET_MODE (x
), INTVAL (src
)))
1695 src
= GEN_INT (INTVAL (src
) | ~GET_MODE_MASK (GET_MODE (x
)));
1698 /* Don't call nonzero_bits if it cannot change anything. */
1699 if (rsp
->nonzero_bits
!= ~(unsigned HOST_WIDE_INT
) 0)
1700 rsp
->nonzero_bits
|= nonzero_bits (src
, nonzero_bits_mode
);
1701 num
= num_sign_bit_copies (SET_SRC (set
), GET_MODE (x
));
1702 if (rsp
->sign_bit_copies
== 0
1703 || rsp
->sign_bit_copies
> num
)
1704 rsp
->sign_bit_copies
= num
;
1708 rsp
->nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
1709 rsp
->sign_bit_copies
= 1;
1714 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1715 optionally insns that were previously combined into I3 or that will be
1716 combined into the merger of INSN and I3. The order is PRED, PRED2,
1717 INSN, SUCC, SUCC2, I3.
1719 Return 0 if the combination is not allowed for any reason.
1721 If the combination is allowed, *PDEST will be set to the single
1722 destination of INSN and *PSRC to the single source, and this function
1726 can_combine_p (rtx insn
, rtx i3
, rtx pred ATTRIBUTE_UNUSED
,
1727 rtx pred2 ATTRIBUTE_UNUSED
, rtx succ
, rtx succ2
,
1728 rtx
*pdest
, rtx
*psrc
)
1737 bool all_adjacent
= true;
1738 int (*is_volatile_p
) (const_rtx
);
1744 if (next_active_insn (succ2
) != i3
)
1745 all_adjacent
= false;
1746 if (next_active_insn (succ
) != succ2
)
1747 all_adjacent
= false;
1749 else if (next_active_insn (succ
) != i3
)
1750 all_adjacent
= false;
1751 if (next_active_insn (insn
) != succ
)
1752 all_adjacent
= false;
1754 else if (next_active_insn (insn
) != i3
)
1755 all_adjacent
= false;
1757 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1758 or a PARALLEL consisting of such a SET and CLOBBERs.
1760 If INSN has CLOBBER parallel parts, ignore them for our processing.
1761 By definition, these happen during the execution of the insn. When it
1762 is merged with another insn, all bets are off. If they are, in fact,
1763 needed and aren't also supplied in I3, they may be added by
1764 recog_for_combine. Otherwise, it won't match.
1766 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1769 Get the source and destination of INSN. If more than one, can't
1772 if (GET_CODE (PATTERN (insn
)) == SET
)
1773 set
= PATTERN (insn
);
1774 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
1775 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1777 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1779 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
1781 switch (GET_CODE (elt
))
1783 /* This is important to combine floating point insns
1784 for the SH4 port. */
1786 /* Combining an isolated USE doesn't make sense.
1787 We depend here on combinable_i3pat to reject them. */
1788 /* The code below this loop only verifies that the inputs of
1789 the SET in INSN do not change. We call reg_set_between_p
1790 to verify that the REG in the USE does not change between
1792 If the USE in INSN was for a pseudo register, the matching
1793 insn pattern will likely match any register; combining this
1794 with any other USE would only be safe if we knew that the
1795 used registers have identical values, or if there was
1796 something to tell them apart, e.g. different modes. For
1797 now, we forgo such complicated tests and simply disallow
1798 combining of USES of pseudo registers with any other USE. */
1799 if (REG_P (XEXP (elt
, 0))
1800 && GET_CODE (PATTERN (i3
)) == PARALLEL
)
1802 rtx i3pat
= PATTERN (i3
);
1803 int i
= XVECLEN (i3pat
, 0) - 1;
1804 unsigned int regno
= REGNO (XEXP (elt
, 0));
1808 rtx i3elt
= XVECEXP (i3pat
, 0, i
);
1810 if (GET_CODE (i3elt
) == USE
1811 && REG_P (XEXP (i3elt
, 0))
1812 && (REGNO (XEXP (i3elt
, 0)) == regno
1813 ? reg_set_between_p (XEXP (elt
, 0),
1814 PREV_INSN (insn
), i3
)
1815 : regno
>= FIRST_PSEUDO_REGISTER
))
1822 /* We can ignore CLOBBERs. */
1827 /* Ignore SETs whose result isn't used but not those that
1828 have side-effects. */
1829 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (elt
))
1830 && insn_nothrow_p (insn
)
1831 && !side_effects_p (elt
))
1834 /* If we have already found a SET, this is a second one and
1835 so we cannot combine with this insn. */
1843 /* Anything else means we can't combine. */
1849 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1850 so don't do anything with it. */
1851 || GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
)
1860 /* The simplification in expand_field_assignment may call back to
1861 get_last_value, so set safe guard here. */
1862 subst_low_luid
= DF_INSN_LUID (insn
);
1864 set
= expand_field_assignment (set
);
1865 src
= SET_SRC (set
), dest
= SET_DEST (set
);
1867 /* Don't eliminate a store in the stack pointer. */
1868 if (dest
== stack_pointer_rtx
1869 /* Don't combine with an insn that sets a register to itself if it has
1870 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1871 || (rtx_equal_p (src
, dest
) && find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1872 /* Can't merge an ASM_OPERANDS. */
1873 || GET_CODE (src
) == ASM_OPERANDS
1874 /* Can't merge a function call. */
1875 || GET_CODE (src
) == CALL
1876 /* Don't eliminate a function call argument. */
1878 && (find_reg_fusage (i3
, USE
, dest
)
1880 && REGNO (dest
) < FIRST_PSEUDO_REGISTER
1881 && global_regs
[REGNO (dest
)])))
1882 /* Don't substitute into an incremented register. */
1883 || FIND_REG_INC_NOTE (i3
, dest
)
1884 || (succ
&& FIND_REG_INC_NOTE (succ
, dest
))
1885 || (succ2
&& FIND_REG_INC_NOTE (succ2
, dest
))
1886 /* Don't substitute into a non-local goto, this confuses CFG. */
1887 || (JUMP_P (i3
) && find_reg_note (i3
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
1888 /* Make sure that DEST is not used after SUCC but before I3. */
1891 && (reg_used_between_p (dest
, succ2
, i3
)
1892 || reg_used_between_p (dest
, succ
, succ2
)))
1893 || (!succ2
&& succ
&& reg_used_between_p (dest
, succ
, i3
))))
1894 /* Make sure that the value that is to be substituted for the register
1895 does not use any registers whose values alter in between. However,
1896 If the insns are adjacent, a use can't cross a set even though we
1897 think it might (this can happen for a sequence of insns each setting
1898 the same destination; last_set of that register might point to
1899 a NOTE). If INSN has a REG_EQUIV note, the register is always
1900 equivalent to the memory so the substitution is valid even if there
1901 are intervening stores. Also, don't move a volatile asm or
1902 UNSPEC_VOLATILE across any other insns. */
1905 || ! find_reg_note (insn
, REG_EQUIV
, src
))
1906 && use_crosses_set_p (src
, DF_INSN_LUID (insn
)))
1907 || (GET_CODE (src
) == ASM_OPERANDS
&& MEM_VOLATILE_P (src
))
1908 || GET_CODE (src
) == UNSPEC_VOLATILE
))
1909 /* Don't combine across a CALL_INSN, because that would possibly
1910 change whether the life span of some REGs crosses calls or not,
1911 and it is a pain to update that information.
1912 Exception: if source is a constant, moving it later can't hurt.
1913 Accept that as a special case. */
1914 || (DF_INSN_LUID (insn
) < last_call_luid
&& ! CONSTANT_P (src
)))
1917 /* DEST must either be a REG or CC0. */
1920 /* If register alignment is being enforced for multi-word items in all
1921 cases except for parameters, it is possible to have a register copy
1922 insn referencing a hard register that is not allowed to contain the
1923 mode being copied and which would not be valid as an operand of most
1924 insns. Eliminate this problem by not combining with such an insn.
1926 Also, on some machines we don't want to extend the life of a hard
1930 && ((REGNO (dest
) < FIRST_PSEUDO_REGISTER
1931 && ! HARD_REGNO_MODE_OK (REGNO (dest
), GET_MODE (dest
)))
1932 /* Don't extend the life of a hard register unless it is
1933 user variable (if we have few registers) or it can't
1934 fit into the desired register (meaning something special
1936 Also avoid substituting a return register into I3, because
1937 reload can't handle a conflict with constraints of other
1939 || (REGNO (src
) < FIRST_PSEUDO_REGISTER
1940 && ! HARD_REGNO_MODE_OK (REGNO (src
), GET_MODE (src
)))))
1943 else if (GET_CODE (dest
) != CC0
)
1947 if (GET_CODE (PATTERN (i3
)) == PARALLEL
)
1948 for (i
= XVECLEN (PATTERN (i3
), 0) - 1; i
>= 0; i
--)
1949 if (GET_CODE (XVECEXP (PATTERN (i3
), 0, i
)) == CLOBBER
)
1951 /* Don't substitute for a register intended as a clobberable
1953 rtx reg
= XEXP (XVECEXP (PATTERN (i3
), 0, i
), 0);
1954 if (rtx_equal_p (reg
, dest
))
1957 /* If the clobber represents an earlyclobber operand, we must not
1958 substitute an expression containing the clobbered register.
1959 As we do not analyze the constraint strings here, we have to
1960 make the conservative assumption. However, if the register is
1961 a fixed hard reg, the clobber cannot represent any operand;
1962 we leave it up to the machine description to either accept or
1963 reject use-and-clobber patterns. */
1965 || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
1966 || !fixed_regs
[REGNO (reg
)])
1967 if (reg_overlap_mentioned_p (reg
, src
))
1971 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1972 or not), reject, unless nothing volatile comes between it and I3 */
1974 if (GET_CODE (src
) == ASM_OPERANDS
|| volatile_refs_p (src
))
1976 /* Make sure neither succ nor succ2 contains a volatile reference. */
1977 if (succ2
!= 0 && volatile_refs_p (PATTERN (succ2
)))
1979 if (succ
!= 0 && volatile_refs_p (PATTERN (succ
)))
1981 /* We'll check insns between INSN and I3 below. */
1984 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1985 to be an explicit register variable, and was chosen for a reason. */
1987 if (GET_CODE (src
) == ASM_OPERANDS
1988 && REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
1991 /* If INSN contains volatile references (specifically volatile MEMs),
1992 we cannot combine across any other volatile references.
1993 Even if INSN doesn't contain volatile references, any intervening
1994 volatile insn might affect machine state. */
1996 is_volatile_p
= volatile_refs_p (PATTERN (insn
))
2000 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
2001 if (INSN_P (p
) && p
!= succ
&& p
!= succ2
&& is_volatile_p (PATTERN (p
)))
2004 /* If INSN contains an autoincrement or autodecrement, make sure that
2005 register is not used between there and I3, and not already used in
2006 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2007 Also insist that I3 not be a jump; if it were one
2008 and the incremented register were spilled, we would lose. */
2011 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2012 if (REG_NOTE_KIND (link
) == REG_INC
2014 || reg_used_between_p (XEXP (link
, 0), insn
, i3
)
2015 || (pred
!= NULL_RTX
2016 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred
)))
2017 || (pred2
!= NULL_RTX
2018 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred2
)))
2019 || (succ
!= NULL_RTX
2020 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ
)))
2021 || (succ2
!= NULL_RTX
2022 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ2
)))
2023 || reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i3
))))
2028 /* Don't combine an insn that follows a CC0-setting insn.
2029 An insn that uses CC0 must not be separated from the one that sets it.
2030 We do, however, allow I2 to follow a CC0-setting insn if that insn
2031 is passed as I1; in that case it will be deleted also.
2032 We also allow combining in this case if all the insns are adjacent
2033 because that would leave the two CC0 insns adjacent as well.
2034 It would be more logical to test whether CC0 occurs inside I1 or I2,
2035 but that would be much slower, and this ought to be equivalent. */
2037 p
= prev_nonnote_insn (insn
);
2038 if (p
&& p
!= pred
&& NONJUMP_INSN_P (p
) && sets_cc0_p (PATTERN (p
))
2043 /* If we get here, we have passed all the tests and the combination is
2052 /* LOC is the location within I3 that contains its pattern or the component
2053 of a PARALLEL of the pattern. We validate that it is valid for combining.
2055 One problem is if I3 modifies its output, as opposed to replacing it
2056 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2057 doing so would produce an insn that is not equivalent to the original insns.
2061 (set (reg:DI 101) (reg:DI 100))
2062 (set (subreg:SI (reg:DI 101) 0) <foo>)
2064 This is NOT equivalent to:
2066 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2067 (set (reg:DI 101) (reg:DI 100))])
2069 Not only does this modify 100 (in which case it might still be valid
2070 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2072 We can also run into a problem if I2 sets a register that I1
2073 uses and I1 gets directly substituted into I3 (not via I2). In that
2074 case, we would be getting the wrong value of I2DEST into I3, so we
2075 must reject the combination. This case occurs when I2 and I1 both
2076 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2077 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2078 of a SET must prevent combination from occurring. The same situation
2079 can occur for I0, in which case I0_NOT_IN_SRC is set.
2081 Before doing the above check, we first try to expand a field assignment
2082 into a set of logical operations.
2084 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2085 we place a register that is both set and used within I3. If more than one
2086 such register is detected, we fail.
2088 Return 1 if the combination is valid, zero otherwise. */
2091 combinable_i3pat (rtx i3
, rtx
*loc
, rtx i2dest
, rtx i1dest
, rtx i0dest
,
2092 int i1_not_in_src
, int i0_not_in_src
, rtx
*pi3dest_killed
)
2096 if (GET_CODE (x
) == SET
)
2099 rtx dest
= SET_DEST (set
);
2100 rtx src
= SET_SRC (set
);
2101 rtx inner_dest
= dest
;
2104 while (GET_CODE (inner_dest
) == STRICT_LOW_PART
2105 || GET_CODE (inner_dest
) == SUBREG
2106 || GET_CODE (inner_dest
) == ZERO_EXTRACT
)
2107 inner_dest
= XEXP (inner_dest
, 0);
2109 /* Check for the case where I3 modifies its output, as discussed
2110 above. We don't want to prevent pseudos from being combined
2111 into the address of a MEM, so only prevent the combination if
2112 i1 or i2 set the same MEM. */
2113 if ((inner_dest
!= dest
&&
2114 (!MEM_P (inner_dest
)
2115 || rtx_equal_p (i2dest
, inner_dest
)
2116 || (i1dest
&& rtx_equal_p (i1dest
, inner_dest
))
2117 || (i0dest
&& rtx_equal_p (i0dest
, inner_dest
)))
2118 && (reg_overlap_mentioned_p (i2dest
, inner_dest
)
2119 || (i1dest
&& reg_overlap_mentioned_p (i1dest
, inner_dest
))
2120 || (i0dest
&& reg_overlap_mentioned_p (i0dest
, inner_dest
))))
2122 /* This is the same test done in can_combine_p except we can't test
2123 all_adjacent; we don't have to, since this instruction will stay
2124 in place, thus we are not considering increasing the lifetime of
2127 Also, if this insn sets a function argument, combining it with
2128 something that might need a spill could clobber a previous
2129 function argument; the all_adjacent test in can_combine_p also
2130 checks this; here, we do a more specific test for this case. */
2132 || (REG_P (inner_dest
)
2133 && REGNO (inner_dest
) < FIRST_PSEUDO_REGISTER
2134 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest
),
2135 GET_MODE (inner_dest
))))
2136 || (i1_not_in_src
&& reg_overlap_mentioned_p (i1dest
, src
))
2137 || (i0_not_in_src
&& reg_overlap_mentioned_p (i0dest
, src
)))
2140 /* If DEST is used in I3, it is being killed in this insn, so
2141 record that for later. We have to consider paradoxical
2142 subregs here, since they kill the whole register, but we
2143 ignore partial subregs, STRICT_LOW_PART, etc.
2144 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2145 STACK_POINTER_REGNUM, since these are always considered to be
2146 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2148 if (GET_CODE (subdest
) == SUBREG
2149 && (GET_MODE_SIZE (GET_MODE (subdest
))
2150 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest
)))))
2151 subdest
= SUBREG_REG (subdest
);
2154 && reg_referenced_p (subdest
, PATTERN (i3
))
2155 && REGNO (subdest
) != FRAME_POINTER_REGNUM
2156 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2157 && REGNO (subdest
) != HARD_FRAME_POINTER_REGNUM
2159 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2160 && (REGNO (subdest
) != ARG_POINTER_REGNUM
2161 || ! fixed_regs
[REGNO (subdest
)])
2163 && REGNO (subdest
) != STACK_POINTER_REGNUM
)
2165 if (*pi3dest_killed
)
2168 *pi3dest_killed
= subdest
;
2172 else if (GET_CODE (x
) == PARALLEL
)
2176 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
2177 if (! combinable_i3pat (i3
, &XVECEXP (x
, 0, i
), i2dest
, i1dest
, i0dest
,
2178 i1_not_in_src
, i0_not_in_src
, pi3dest_killed
))
2185 /* Return 1 if X is an arithmetic expression that contains a multiplication
2186 and division. We don't count multiplications by powers of two here. */
2189 contains_muldiv (rtx x
)
2191 switch (GET_CODE (x
))
2193 case MOD
: case DIV
: case UMOD
: case UDIV
:
2197 return ! (CONST_INT_P (XEXP (x
, 1))
2198 && exact_log2 (UINTVAL (XEXP (x
, 1))) >= 0);
2201 return contains_muldiv (XEXP (x
, 0))
2202 || contains_muldiv (XEXP (x
, 1));
2205 return contains_muldiv (XEXP (x
, 0));
2211 /* Determine whether INSN can be used in a combination. Return nonzero if
2212 not. This is used in try_combine to detect early some cases where we
2213 can't perform combinations. */
2216 cant_combine_insn_p (rtx insn
)
2221 /* If this isn't really an insn, we can't do anything.
2222 This can occur when flow deletes an insn that it has merged into an
2223 auto-increment address. */
2224 if (! INSN_P (insn
))
2227 /* Never combine loads and stores involving hard regs that are likely
2228 to be spilled. The register allocator can usually handle such
2229 reg-reg moves by tying. If we allow the combiner to make
2230 substitutions of likely-spilled regs, reload might die.
2231 As an exception, we allow combinations involving fixed regs; these are
2232 not available to the register allocator so there's no risk involved. */
2234 set
= single_set (insn
);
2237 src
= SET_SRC (set
);
2238 dest
= SET_DEST (set
);
2239 if (GET_CODE (src
) == SUBREG
)
2240 src
= SUBREG_REG (src
);
2241 if (GET_CODE (dest
) == SUBREG
)
2242 dest
= SUBREG_REG (dest
);
2243 if (REG_P (src
) && REG_P (dest
)
2244 && ((HARD_REGISTER_P (src
)
2245 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (src
))
2246 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src
))))
2247 || (HARD_REGISTER_P (dest
)
2248 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (dest
))
2249 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest
))))))
2255 struct likely_spilled_retval_info
2257 unsigned regno
, nregs
;
2261 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2262 hard registers that are known to be written to / clobbered in full. */
2264 likely_spilled_retval_1 (rtx x
, const_rtx set
, void *data
)
2266 struct likely_spilled_retval_info
*const info
=
2267 (struct likely_spilled_retval_info
*) data
;
2268 unsigned regno
, nregs
;
2271 if (!REG_P (XEXP (set
, 0)))
2274 if (regno
>= info
->regno
+ info
->nregs
)
2276 nregs
= hard_regno_nregs
[regno
][GET_MODE (x
)];
2277 if (regno
+ nregs
<= info
->regno
)
2279 new_mask
= (2U << (nregs
- 1)) - 1;
2280 if (regno
< info
->regno
)
2281 new_mask
>>= info
->regno
- regno
;
2283 new_mask
<<= regno
- info
->regno
;
2284 info
->mask
&= ~new_mask
;
2287 /* Return nonzero iff part of the return value is live during INSN, and
2288 it is likely spilled. This can happen when more than one insn is needed
2289 to copy the return value, e.g. when we consider to combine into the
2290 second copy insn for a complex value. */
2293 likely_spilled_retval_p (rtx insn
)
2295 rtx use
= BB_END (this_basic_block
);
2297 unsigned regno
, nregs
;
2298 /* We assume here that no machine mode needs more than
2299 32 hard registers when the value overlaps with a register
2300 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2302 struct likely_spilled_retval_info info
;
2304 if (!NONJUMP_INSN_P (use
) || GET_CODE (PATTERN (use
)) != USE
|| insn
== use
)
2306 reg
= XEXP (PATTERN (use
), 0);
2307 if (!REG_P (reg
) || !targetm
.calls
.function_value_regno_p (REGNO (reg
)))
2309 regno
= REGNO (reg
);
2310 nregs
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
2313 mask
= (2U << (nregs
- 1)) - 1;
2315 /* Disregard parts of the return value that are set later. */
2319 for (p
= PREV_INSN (use
); info
.mask
&& p
!= insn
; p
= PREV_INSN (p
))
2321 note_stores (PATTERN (p
), likely_spilled_retval_1
, &info
);
2324 /* Check if any of the (probably) live return value registers is
2329 if ((mask
& 1 << nregs
)
2330 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (regno
+ nregs
)))
2336 /* Adjust INSN after we made a change to its destination.
2338 Changing the destination can invalidate notes that say something about
2339 the results of the insn and a LOG_LINK pointing to the insn. */
2342 adjust_for_new_dest (rtx insn
)
2344 /* For notes, be conservative and simply remove them. */
2345 remove_reg_equal_equiv_notes (insn
);
2347 /* The new insn will have a destination that was previously the destination
2348 of an insn just above it. Call distribute_links to make a LOG_LINK from
2349 the next use of that destination. */
2350 distribute_links (alloc_insn_link (insn
, NULL
));
2352 df_insn_rescan (insn
);
2355 /* Return TRUE if combine can reuse reg X in mode MODE.
2356 ADDED_SETS is nonzero if the original set is still required. */
2358 can_change_dest_mode (rtx x
, int added_sets
, enum machine_mode mode
)
2366 /* Allow hard registers if the new mode is legal, and occupies no more
2367 registers than the old mode. */
2368 if (regno
< FIRST_PSEUDO_REGISTER
)
2369 return (HARD_REGNO_MODE_OK (regno
, mode
)
2370 && (hard_regno_nregs
[regno
][GET_MODE (x
)]
2371 >= hard_regno_nregs
[regno
][mode
]));
2373 /* Or a pseudo that is only used once. */
2374 return (REG_N_SETS (regno
) == 1 && !added_sets
2375 && !REG_USERVAR_P (x
));
2379 /* Check whether X, the destination of a set, refers to part of
2380 the register specified by REG. */
2383 reg_subword_p (rtx x
, rtx reg
)
2385 /* Check that reg is an integer mode register. */
2386 if (!REG_P (reg
) || GET_MODE_CLASS (GET_MODE (reg
)) != MODE_INT
)
2389 if (GET_CODE (x
) == STRICT_LOW_PART
2390 || GET_CODE (x
) == ZERO_EXTRACT
)
2393 return GET_CODE (x
) == SUBREG
2394 && SUBREG_REG (x
) == reg
2395 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
;
2398 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2399 Note that the INSN should be deleted *after* removing dead edges, so
2400 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2401 but not for a (set (pc) (label_ref FOO)). */
2404 update_cfg_for_uncondjump (rtx insn
)
2406 basic_block bb
= BLOCK_FOR_INSN (insn
);
2407 gcc_assert (BB_END (bb
) == insn
);
2409 purge_dead_edges (bb
);
2412 if (EDGE_COUNT (bb
->succs
) == 1)
2416 single_succ_edge (bb
)->flags
|= EDGE_FALLTHRU
;
2418 /* Remove barriers from the footer if there are any. */
2419 for (insn
= BB_FOOTER (bb
); insn
; insn
= NEXT_INSN (insn
))
2420 if (BARRIER_P (insn
))
2422 if (PREV_INSN (insn
))
2423 NEXT_INSN (PREV_INSN (insn
)) = NEXT_INSN (insn
);
2425 BB_FOOTER (bb
) = NEXT_INSN (insn
);
2426 if (NEXT_INSN (insn
))
2427 PREV_INSN (NEXT_INSN (insn
)) = PREV_INSN (insn
);
2429 else if (LABEL_P (insn
))
2434 /* Try to combine the insns I0, I1 and I2 into I3.
2435 Here I0, I1 and I2 appear earlier than I3.
2436 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2439 If we are combining more than two insns and the resulting insn is not
2440 recognized, try splitting it into two insns. If that happens, I2 and I3
2441 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2442 Otherwise, I0, I1 and I2 are pseudo-deleted.
2444 Return 0 if the combination does not work. Then nothing is changed.
2445 If we did the combination, return the insn at which combine should
2448 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2449 new direct jump instruction.
2451 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2452 been I3 passed to an earlier try_combine within the same basic
2456 try_combine (rtx i3
, rtx i2
, rtx i1
, rtx i0
, int *new_direct_jump_p
,
2457 rtx last_combined_insn
)
2459 /* New patterns for I3 and I2, respectively. */
2460 rtx newpat
, newi2pat
= 0;
2461 rtvec newpat_vec_with_clobbers
= 0;
2462 int substed_i2
= 0, substed_i1
= 0, substed_i0
= 0;
2463 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2465 int added_sets_0
, added_sets_1
, added_sets_2
;
2466 /* Total number of SETs to put into I3. */
2468 /* Nonzero if I2's or I1's body now appears in I3. */
2469 int i2_is_used
= 0, i1_is_used
= 0;
2470 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2471 int insn_code_number
, i2_code_number
= 0, other_code_number
= 0;
2472 /* Contains I3 if the destination of I3 is used in its source, which means
2473 that the old life of I3 is being killed. If that usage is placed into
2474 I2 and not in I3, a REG_DEAD note must be made. */
2475 rtx i3dest_killed
= 0;
2476 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2477 rtx i2dest
= 0, i2src
= 0, i1dest
= 0, i1src
= 0, i0dest
= 0, i0src
= 0;
2478 /* Copy of SET_SRC of I1 and I0, if needed. */
2479 rtx i1src_copy
= 0, i0src_copy
= 0, i0src_copy2
= 0;
2480 /* Set if I2DEST was reused as a scratch register. */
2481 bool i2scratch
= false;
2482 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2483 rtx i0pat
= 0, i1pat
= 0, i2pat
= 0;
2484 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2485 int i2dest_in_i2src
= 0, i1dest_in_i1src
= 0, i2dest_in_i1src
= 0;
2486 int i0dest_in_i0src
= 0, i1dest_in_i0src
= 0, i2dest_in_i0src
= 0;
2487 int i2dest_killed
= 0, i1dest_killed
= 0, i0dest_killed
= 0;
2488 int i1_feeds_i2_n
= 0, i0_feeds_i2_n
= 0, i0_feeds_i1_n
= 0;
2489 /* Notes that must be added to REG_NOTES in I3 and I2. */
2490 rtx new_i3_notes
, new_i2_notes
;
2491 /* Notes that we substituted I3 into I2 instead of the normal case. */
2492 int i3_subst_into_i2
= 0;
2493 /* Notes that I1, I2 or I3 is a MULT operation. */
2496 int changed_i3_dest
= 0;
2500 struct insn_link
*link
;
2502 rtx new_other_notes
;
2505 /* Only try four-insn combinations when there's high likelihood of
2506 success. Look for simple insns, such as loads of constants or
2507 binary operations involving a constant. */
2514 if (!flag_expensive_optimizations
)
2517 for (i
= 0; i
< 4; i
++)
2519 rtx insn
= i
== 0 ? i0
: i
== 1 ? i1
: i
== 2 ? i2
: i3
;
2520 rtx set
= single_set (insn
);
2524 src
= SET_SRC (set
);
2525 if (CONSTANT_P (src
))
2530 else if (BINARY_P (src
) && CONSTANT_P (XEXP (src
, 1)))
2532 else if (GET_CODE (src
) == ASHIFT
|| GET_CODE (src
) == ASHIFTRT
2533 || GET_CODE (src
) == LSHIFTRT
)
2536 if (ngood
< 2 && nshift
< 2)
2540 /* Exit early if one of the insns involved can't be used for
2542 if (cant_combine_insn_p (i3
)
2543 || cant_combine_insn_p (i2
)
2544 || (i1
&& cant_combine_insn_p (i1
))
2545 || (i0
&& cant_combine_insn_p (i0
))
2546 || likely_spilled_retval_p (i3
))
2550 undobuf
.other_insn
= 0;
2552 /* Reset the hard register usage information. */
2553 CLEAR_HARD_REG_SET (newpat_used_regs
);
2555 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2558 fprintf (dump_file
, "\nTrying %d, %d, %d -> %d:\n",
2559 INSN_UID (i0
), INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2561 fprintf (dump_file
, "\nTrying %d, %d -> %d:\n",
2562 INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2564 fprintf (dump_file
, "\nTrying %d -> %d:\n",
2565 INSN_UID (i2
), INSN_UID (i3
));
2568 /* If multiple insns feed into one of I2 or I3, they can be in any
2569 order. To simplify the code below, reorder them in sequence. */
2570 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i2
))
2571 temp
= i2
, i2
= i0
, i0
= temp
;
2572 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i1
))
2573 temp
= i1
, i1
= i0
, i0
= temp
;
2574 if (i1
&& DF_INSN_LUID (i1
) > DF_INSN_LUID (i2
))
2575 temp
= i1
, i1
= i2
, i2
= temp
;
2577 added_links_insn
= 0;
2579 /* First check for one important special case that the code below will
2580 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2581 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2582 we may be able to replace that destination with the destination of I3.
2583 This occurs in the common code where we compute both a quotient and
2584 remainder into a structure, in which case we want to do the computation
2585 directly into the structure to avoid register-register copies.
2587 Note that this case handles both multiple sets in I2 and also cases
2588 where I2 has a number of CLOBBERs inside the PARALLEL.
2590 We make very conservative checks below and only try to handle the
2591 most common cases of this. For example, we only handle the case
2592 where I2 and I3 are adjacent to avoid making difficult register
2595 if (i1
== 0 && NONJUMP_INSN_P (i3
) && GET_CODE (PATTERN (i3
)) == SET
2596 && REG_P (SET_SRC (PATTERN (i3
)))
2597 && REGNO (SET_SRC (PATTERN (i3
))) >= FIRST_PSEUDO_REGISTER
2598 && find_reg_note (i3
, REG_DEAD
, SET_SRC (PATTERN (i3
)))
2599 && GET_CODE (PATTERN (i2
)) == PARALLEL
2600 && ! side_effects_p (SET_DEST (PATTERN (i3
)))
2601 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2602 below would need to check what is inside (and reg_overlap_mentioned_p
2603 doesn't support those codes anyway). Don't allow those destinations;
2604 the resulting insn isn't likely to be recognized anyway. */
2605 && GET_CODE (SET_DEST (PATTERN (i3
))) != ZERO_EXTRACT
2606 && GET_CODE (SET_DEST (PATTERN (i3
))) != STRICT_LOW_PART
2607 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3
)),
2608 SET_DEST (PATTERN (i3
)))
2609 && next_active_insn (i2
) == i3
)
2611 rtx p2
= PATTERN (i2
);
2613 /* Make sure that the destination of I3,
2614 which we are going to substitute into one output of I2,
2615 is not used within another output of I2. We must avoid making this:
2616 (parallel [(set (mem (reg 69)) ...)
2617 (set (reg 69) ...)])
2618 which is not well-defined as to order of actions.
2619 (Besides, reload can't handle output reloads for this.)
2621 The problem can also happen if the dest of I3 is a memory ref,
2622 if another dest in I2 is an indirect memory ref. */
2623 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
2624 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2625 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
2626 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3
)),
2627 SET_DEST (XVECEXP (p2
, 0, i
))))
2630 if (i
== XVECLEN (p2
, 0))
2631 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
2632 if (GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2633 && SET_DEST (XVECEXP (p2
, 0, i
)) == SET_SRC (PATTERN (i3
)))
2638 subst_low_luid
= DF_INSN_LUID (i2
);
2640 added_sets_2
= added_sets_1
= added_sets_0
= 0;
2641 i2src
= SET_SRC (XVECEXP (p2
, 0, i
));
2642 i2dest
= SET_DEST (XVECEXP (p2
, 0, i
));
2643 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2645 /* Replace the dest in I2 with our dest and make the resulting
2646 insn the new pattern for I3. Then skip to where we validate
2647 the pattern. Everything was set up above. */
2648 SUBST (SET_DEST (XVECEXP (p2
, 0, i
)), SET_DEST (PATTERN (i3
)));
2650 i3_subst_into_i2
= 1;
2651 goto validate_replacement
;
2655 /* If I2 is setting a pseudo to a constant and I3 is setting some
2656 sub-part of it to another constant, merge them by making a new
2659 && (temp
= single_set (i2
)) != 0
2660 && CONST_SCALAR_INT_P (SET_SRC (temp
))
2661 && GET_CODE (PATTERN (i3
)) == SET
2662 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3
)))
2663 && reg_subword_p (SET_DEST (PATTERN (i3
)), SET_DEST (temp
)))
2665 rtx dest
= SET_DEST (PATTERN (i3
));
2669 if (GET_CODE (dest
) == ZERO_EXTRACT
)
2671 if (CONST_INT_P (XEXP (dest
, 1))
2672 && CONST_INT_P (XEXP (dest
, 2)))
2674 width
= INTVAL (XEXP (dest
, 1));
2675 offset
= INTVAL (XEXP (dest
, 2));
2676 dest
= XEXP (dest
, 0);
2677 if (BITS_BIG_ENDIAN
)
2678 offset
= GET_MODE_PRECISION (GET_MODE (dest
)) - width
- offset
;
2683 if (GET_CODE (dest
) == STRICT_LOW_PART
)
2684 dest
= XEXP (dest
, 0);
2685 width
= GET_MODE_PRECISION (GET_MODE (dest
));
2691 /* If this is the low part, we're done. */
2692 if (subreg_lowpart_p (dest
))
2694 /* Handle the case where inner is twice the size of outer. */
2695 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp
)))
2696 == 2 * GET_MODE_PRECISION (GET_MODE (dest
)))
2697 offset
+= GET_MODE_PRECISION (GET_MODE (dest
));
2698 /* Otherwise give up for now. */
2705 rtx inner
= SET_SRC (PATTERN (i3
));
2706 rtx outer
= SET_SRC (temp
);
2709 = wi::insert (std::make_pair (outer
, GET_MODE (SET_DEST (temp
))),
2710 std::make_pair (inner
, GET_MODE (dest
)),
2715 subst_low_luid
= DF_INSN_LUID (i2
);
2716 added_sets_2
= added_sets_1
= added_sets_0
= 0;
2717 i2dest
= SET_DEST (temp
);
2718 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2720 /* Replace the source in I2 with the new constant and make the
2721 resulting insn the new pattern for I3. Then skip to where we
2722 validate the pattern. Everything was set up above. */
2723 SUBST (SET_SRC (temp
),
2724 immed_wide_int_const (o
, GET_MODE (SET_DEST (temp
))));
2726 newpat
= PATTERN (i2
);
2728 /* The dest of I3 has been replaced with the dest of I2. */
2729 changed_i3_dest
= 1;
2730 goto validate_replacement
;
2735 /* If we have no I1 and I2 looks like:
2736 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2738 make up a dummy I1 that is
2741 (set (reg:CC X) (compare:CC Y (const_int 0)))
2743 (We can ignore any trailing CLOBBERs.)
2745 This undoes a previous combination and allows us to match a branch-and-
2748 if (i1
== 0 && GET_CODE (PATTERN (i2
)) == PARALLEL
2749 && XVECLEN (PATTERN (i2
), 0) >= 2
2750 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 0)) == SET
2751 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0))))
2753 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0))) == COMPARE
2754 && XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 1) == const0_rtx
2755 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 1)) == SET
2756 && REG_P (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)))
2757 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 0),
2758 SET_SRC (XVECEXP (PATTERN (i2
), 0, 1))))
2760 for (i
= XVECLEN (PATTERN (i2
), 0) - 1; i
>= 2; i
--)
2761 if (GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) != CLOBBER
)
2766 /* We make I1 with the same INSN_UID as I2. This gives it
2767 the same DF_INSN_LUID for value tracking. Our fake I1 will
2768 never appear in the insn stream so giving it the same INSN_UID
2769 as I2 will not cause a problem. */
2771 i1
= gen_rtx_INSN (VOIDmode
, NULL_RTX
, i2
, BLOCK_FOR_INSN (i2
),
2772 XVECEXP (PATTERN (i2
), 0, 1), INSN_LOCATION (i2
),
2774 INSN_UID (i1
) = INSN_UID (i2
);
2776 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 0));
2777 SUBST (XEXP (SET_SRC (PATTERN (i2
)), 0),
2778 SET_DEST (PATTERN (i1
)));
2779 SUBST_LINK (LOG_LINKS (i2
), alloc_insn_link (i1
, LOG_LINKS (i2
)));
2784 /* Verify that I2 and I1 are valid for combining. */
2785 if (! can_combine_p (i2
, i3
, i0
, i1
, NULL_RTX
, NULL_RTX
, &i2dest
, &i2src
)
2786 || (i1
&& ! can_combine_p (i1
, i3
, i0
, NULL_RTX
, i2
, NULL_RTX
,
2788 || (i0
&& ! can_combine_p (i0
, i3
, NULL_RTX
, NULL_RTX
, i1
, i2
,
2795 /* Record whether I2DEST is used in I2SRC and similarly for the other
2796 cases. Knowing this will help in register status updating below. */
2797 i2dest_in_i2src
= reg_overlap_mentioned_p (i2dest
, i2src
);
2798 i1dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i1dest
, i1src
);
2799 i2dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i2dest
, i1src
);
2800 i0dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i0dest
, i0src
);
2801 i1dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i1dest
, i0src
);
2802 i2dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i2dest
, i0src
);
2803 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2804 i1dest_killed
= i1
&& dead_or_set_p (i1
, i1dest
);
2805 i0dest_killed
= i0
&& dead_or_set_p (i0
, i0dest
);
2807 /* For the earlier insns, determine which of the subsequent ones they
2809 i1_feeds_i2_n
= i1
&& insn_a_feeds_b (i1
, i2
);
2810 i0_feeds_i1_n
= i0
&& insn_a_feeds_b (i0
, i1
);
2811 i0_feeds_i2_n
= (i0
&& (!i0_feeds_i1_n
? insn_a_feeds_b (i0
, i2
)
2812 : (!reg_overlap_mentioned_p (i1dest
, i0dest
)
2813 && reg_overlap_mentioned_p (i0dest
, i2src
))));
2815 /* Ensure that I3's pattern can be the destination of combines. */
2816 if (! combinable_i3pat (i3
, &PATTERN (i3
), i2dest
, i1dest
, i0dest
,
2817 i1
&& i2dest_in_i1src
&& !i1_feeds_i2_n
,
2818 i0
&& ((i2dest_in_i0src
&& !i0_feeds_i2_n
)
2819 || (i1dest_in_i0src
&& !i0_feeds_i1_n
)),
2826 /* See if any of the insns is a MULT operation. Unless one is, we will
2827 reject a combination that is, since it must be slower. Be conservative
2829 if (GET_CODE (i2src
) == MULT
2830 || (i1
!= 0 && GET_CODE (i1src
) == MULT
)
2831 || (i0
!= 0 && GET_CODE (i0src
) == MULT
)
2832 || (GET_CODE (PATTERN (i3
)) == SET
2833 && GET_CODE (SET_SRC (PATTERN (i3
))) == MULT
))
2836 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2837 We used to do this EXCEPT in one case: I3 has a post-inc in an
2838 output operand. However, that exception can give rise to insns like
2840 which is a famous insn on the PDP-11 where the value of r3 used as the
2841 source was model-dependent. Avoid this sort of thing. */
2844 if (!(GET_CODE (PATTERN (i3
)) == SET
2845 && REG_P (SET_SRC (PATTERN (i3
)))
2846 && MEM_P (SET_DEST (PATTERN (i3
)))
2847 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_INC
2848 || GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_DEC
)))
2849 /* It's not the exception. */
2854 for (link
= REG_NOTES (i3
); link
; link
= XEXP (link
, 1))
2855 if (REG_NOTE_KIND (link
) == REG_INC
2856 && (reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i2
))
2858 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i1
)))))
2866 /* See if the SETs in I1 or I2 need to be kept around in the merged
2867 instruction: whenever the value set there is still needed past I3.
2868 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
2870 For the SET in I1, we have two cases: if I1 and I2 independently feed
2871 into I3, the set in I1 needs to be kept around unless I1DEST dies
2872 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2873 in I1 needs to be kept around unless I1DEST dies or is set in either
2874 I2 or I3. The same considerations apply to I0. */
2876 added_sets_2
= !dead_or_set_p (i3
, i2dest
);
2879 added_sets_1
= !(dead_or_set_p (i3
, i1dest
)
2880 || (i1_feeds_i2_n
&& dead_or_set_p (i2
, i1dest
)));
2885 added_sets_0
= !(dead_or_set_p (i3
, i0dest
)
2886 || (i0_feeds_i1_n
&& dead_or_set_p (i1
, i0dest
))
2887 || ((i0_feeds_i2_n
|| (i0_feeds_i1_n
&& i1_feeds_i2_n
))
2888 && dead_or_set_p (i2
, i0dest
)));
2892 /* We are about to copy insns for the case where they need to be kept
2893 around. Check that they can be copied in the merged instruction. */
2895 if (targetm
.cannot_copy_insn_p
2896 && ((added_sets_2
&& targetm
.cannot_copy_insn_p (i2
))
2897 || (i1
&& added_sets_1
&& targetm
.cannot_copy_insn_p (i1
))
2898 || (i0
&& added_sets_0
&& targetm
.cannot_copy_insn_p (i0
))))
2904 /* If the set in I2 needs to be kept around, we must make a copy of
2905 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2906 PATTERN (I2), we are only substituting for the original I1DEST, not into
2907 an already-substituted copy. This also prevents making self-referential
2908 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2913 if (GET_CODE (PATTERN (i2
)) == PARALLEL
)
2914 i2pat
= gen_rtx_SET (VOIDmode
, i2dest
, copy_rtx (i2src
));
2916 i2pat
= copy_rtx (PATTERN (i2
));
2921 if (GET_CODE (PATTERN (i1
)) == PARALLEL
)
2922 i1pat
= gen_rtx_SET (VOIDmode
, i1dest
, copy_rtx (i1src
));
2924 i1pat
= copy_rtx (PATTERN (i1
));
2929 if (GET_CODE (PATTERN (i0
)) == PARALLEL
)
2930 i0pat
= gen_rtx_SET (VOIDmode
, i0dest
, copy_rtx (i0src
));
2932 i0pat
= copy_rtx (PATTERN (i0
));
2937 /* Substitute in the latest insn for the regs set by the earlier ones. */
2939 maxreg
= max_reg_num ();
2944 /* Many machines that don't use CC0 have insns that can both perform an
2945 arithmetic operation and set the condition code. These operations will
2946 be represented as a PARALLEL with the first element of the vector
2947 being a COMPARE of an arithmetic operation with the constant zero.
2948 The second element of the vector will set some pseudo to the result
2949 of the same arithmetic operation. If we simplify the COMPARE, we won't
2950 match such a pattern and so will generate an extra insn. Here we test
2951 for this case, where both the comparison and the operation result are
2952 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2953 I2SRC. Later we will make the PARALLEL that contains I2. */
2955 if (i1
== 0 && added_sets_2
&& GET_CODE (PATTERN (i3
)) == SET
2956 && GET_CODE (SET_SRC (PATTERN (i3
))) == COMPARE
2957 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3
)), 1))
2958 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3
)), 0), i2dest
))
2961 rtx
*cc_use_loc
= NULL
, cc_use_insn
= NULL_RTX
;
2962 rtx op0
= i2src
, op1
= XEXP (SET_SRC (PATTERN (i3
)), 1);
2963 enum machine_mode compare_mode
, orig_compare_mode
;
2964 enum rtx_code compare_code
= UNKNOWN
, orig_compare_code
= UNKNOWN
;
2966 newpat
= PATTERN (i3
);
2967 newpat_dest
= SET_DEST (newpat
);
2968 compare_mode
= orig_compare_mode
= GET_MODE (newpat_dest
);
2970 if (undobuf
.other_insn
== 0
2971 && (cc_use_loc
= find_single_use (SET_DEST (newpat
), i3
,
2974 compare_code
= orig_compare_code
= GET_CODE (*cc_use_loc
);
2975 compare_code
= simplify_compare_const (compare_code
,
2976 GET_MODE (i2dest
), op0
, &op1
);
2977 target_canonicalize_comparison (&compare_code
, &op0
, &op1
, 1);
2980 /* Do the rest only if op1 is const0_rtx, which may be the
2981 result of simplification. */
2982 if (op1
== const0_rtx
)
2984 /* If a single use of the CC is found, prepare to modify it
2985 when SELECT_CC_MODE returns a new CC-class mode, or when
2986 the above simplify_compare_const() returned a new comparison
2987 operator. undobuf.other_insn is assigned the CC use insn
2988 when modifying it. */
2991 #ifdef SELECT_CC_MODE
2992 enum machine_mode new_mode
2993 = SELECT_CC_MODE (compare_code
, op0
, op1
);
2994 if (new_mode
!= orig_compare_mode
2995 && can_change_dest_mode (SET_DEST (newpat
),
2996 added_sets_2
, new_mode
))
2998 unsigned int regno
= REGNO (newpat_dest
);
2999 compare_mode
= new_mode
;
3000 if (regno
< FIRST_PSEUDO_REGISTER
)
3001 newpat_dest
= gen_rtx_REG (compare_mode
, regno
);
3004 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
3005 newpat_dest
= regno_reg_rtx
[regno
];
3009 /* Cases for modifying the CC-using comparison. */
3010 if (compare_code
!= orig_compare_code
3011 /* ??? Do we need to verify the zero rtx? */
3012 && XEXP (*cc_use_loc
, 1) == const0_rtx
)
3014 /* Replace cc_use_loc with entire new RTX. */
3016 gen_rtx_fmt_ee (compare_code
, compare_mode
,
3017 newpat_dest
, const0_rtx
));
3018 undobuf
.other_insn
= cc_use_insn
;
3020 else if (compare_mode
!= orig_compare_mode
)
3022 /* Just replace the CC reg with a new mode. */
3023 SUBST (XEXP (*cc_use_loc
, 0), newpat_dest
);
3024 undobuf
.other_insn
= cc_use_insn
;
3028 /* Now we modify the current newpat:
3029 First, SET_DEST(newpat) is updated if the CC mode has been
3030 altered. For targets without SELECT_CC_MODE, this should be
3032 if (compare_mode
!= orig_compare_mode
)
3033 SUBST (SET_DEST (newpat
), newpat_dest
);
3034 /* This is always done to propagate i2src into newpat. */
3035 SUBST (SET_SRC (newpat
),
3036 gen_rtx_COMPARE (compare_mode
, op0
, op1
));
3037 /* Create new version of i2pat if needed; the below PARALLEL
3038 creation needs this to work correctly. */
3039 if (! rtx_equal_p (i2src
, op0
))
3040 i2pat
= gen_rtx_SET (VOIDmode
, i2dest
, op0
);
3046 if (i2_is_used
== 0)
3048 /* It is possible that the source of I2 or I1 may be performing
3049 an unneeded operation, such as a ZERO_EXTEND of something
3050 that is known to have the high part zero. Handle that case
3051 by letting subst look at the inner insns.
3053 Another way to do this would be to have a function that tries
3054 to simplify a single insn instead of merging two or more
3055 insns. We don't do this because of the potential of infinite
3056 loops and because of the potential extra memory required.
3057 However, doing it the way we are is a bit of a kludge and
3058 doesn't catch all cases.
3060 But only do this if -fexpensive-optimizations since it slows
3061 things down and doesn't usually win.
3063 This is not done in the COMPARE case above because the
3064 unmodified I2PAT is used in the PARALLEL and so a pattern
3065 with a modified I2SRC would not match. */
3067 if (flag_expensive_optimizations
)
3069 /* Pass pc_rtx so no substitutions are done, just
3073 subst_low_luid
= DF_INSN_LUID (i1
);
3074 i1src
= subst (i1src
, pc_rtx
, pc_rtx
, 0, 0, 0);
3077 subst_low_luid
= DF_INSN_LUID (i2
);
3078 i2src
= subst (i2src
, pc_rtx
, pc_rtx
, 0, 0, 0);
3081 n_occurrences
= 0; /* `subst' counts here */
3082 subst_low_luid
= DF_INSN_LUID (i2
);
3084 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3085 copy of I2SRC each time we substitute it, in order to avoid creating
3086 self-referential RTL when we will be substituting I1SRC for I1DEST
3087 later. Likewise if I0 feeds into I2, either directly or indirectly
3088 through I1, and I0DEST is in I0SRC. */
3089 newpat
= subst (PATTERN (i3
), i2dest
, i2src
, 0, 0,
3090 (i1_feeds_i2_n
&& i1dest_in_i1src
)
3091 || ((i0_feeds_i2_n
|| (i0_feeds_i1_n
&& i1_feeds_i2_n
))
3092 && i0dest_in_i0src
));
3095 /* Record whether I2's body now appears within I3's body. */
3096 i2_is_used
= n_occurrences
;
3099 /* If we already got a failure, don't try to do more. Otherwise, try to
3100 substitute I1 if we have it. */
3102 if (i1
&& GET_CODE (newpat
) != CLOBBER
)
3104 /* Check that an autoincrement side-effect on I1 has not been lost.
3105 This happens if I1DEST is mentioned in I2 and dies there, and
3106 has disappeared from the new pattern. */
3107 if ((FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
3109 && dead_or_set_p (i2
, i1dest
)
3110 && !reg_overlap_mentioned_p (i1dest
, newpat
))
3111 /* Before we can do this substitution, we must redo the test done
3112 above (see detailed comments there) that ensures I1DEST isn't
3113 mentioned in any SETs in NEWPAT that are field assignments. */
3114 || !combinable_i3pat (NULL_RTX
, &newpat
, i1dest
, NULL_RTX
, NULL_RTX
,
3122 subst_low_luid
= DF_INSN_LUID (i1
);
3124 /* If the following substitution will modify I1SRC, make a copy of it
3125 for the case where it is substituted for I1DEST in I2PAT later. */
3126 if (added_sets_2
&& i1_feeds_i2_n
)
3127 i1src_copy
= copy_rtx (i1src
);
3129 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3130 copy of I1SRC each time we substitute it, in order to avoid creating
3131 self-referential RTL when we will be substituting I0SRC for I0DEST
3133 newpat
= subst (newpat
, i1dest
, i1src
, 0, 0,
3134 i0_feeds_i1_n
&& i0dest_in_i0src
);
3137 /* Record whether I1's body now appears within I3's body. */
3138 i1_is_used
= n_occurrences
;
3141 /* Likewise for I0 if we have it. */
3143 if (i0
&& GET_CODE (newpat
) != CLOBBER
)
3145 if ((FIND_REG_INC_NOTE (i0
, NULL_RTX
) != 0
3146 && ((i0_feeds_i2_n
&& dead_or_set_p (i2
, i0dest
))
3147 || (i0_feeds_i1_n
&& dead_or_set_p (i1
, i0dest
)))
3148 && !reg_overlap_mentioned_p (i0dest
, newpat
))
3149 || !combinable_i3pat (NULL_RTX
, &newpat
, i0dest
, NULL_RTX
, NULL_RTX
,
3156 /* If the following substitution will modify I0SRC, make a copy of it
3157 for the case where it is substituted for I0DEST in I1PAT later. */
3158 if (added_sets_1
&& i0_feeds_i1_n
)
3159 i0src_copy
= copy_rtx (i0src
);
3160 /* And a copy for I0DEST in I2PAT substitution. */
3161 if (added_sets_2
&& ((i0_feeds_i1_n
&& i1_feeds_i2_n
)
3162 || (i0_feeds_i2_n
)))
3163 i0src_copy2
= copy_rtx (i0src
);
3166 subst_low_luid
= DF_INSN_LUID (i0
);
3167 newpat
= subst (newpat
, i0dest
, i0src
, 0, 0, 0);
3171 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3172 to count all the ways that I2SRC and I1SRC can be used. */
3173 if ((FIND_REG_INC_NOTE (i2
, NULL_RTX
) != 0
3174 && i2_is_used
+ added_sets_2
> 1)
3175 || (i1
!= 0 && FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
3176 && (i1_is_used
+ added_sets_1
+ (added_sets_2
&& i1_feeds_i2_n
)
3178 || (i0
!= 0 && FIND_REG_INC_NOTE (i0
, NULL_RTX
) != 0
3179 && (n_occurrences
+ added_sets_0
3180 + (added_sets_1
&& i0_feeds_i1_n
)
3181 + (added_sets_2
&& i0_feeds_i2_n
)
3183 /* Fail if we tried to make a new register. */
3184 || max_reg_num () != maxreg
3185 /* Fail if we couldn't do something and have a CLOBBER. */
3186 || GET_CODE (newpat
) == CLOBBER
3187 /* Fail if this new pattern is a MULT and we didn't have one before
3188 at the outer level. */
3189 || (GET_CODE (newpat
) == SET
&& GET_CODE (SET_SRC (newpat
)) == MULT
3196 /* If the actions of the earlier insns must be kept
3197 in addition to substituting them into the latest one,
3198 we must make a new PARALLEL for the latest insn
3199 to hold additional the SETs. */
3201 if (added_sets_0
|| added_sets_1
|| added_sets_2
)
3203 int extra_sets
= added_sets_0
+ added_sets_1
+ added_sets_2
;
3206 if (GET_CODE (newpat
) == PARALLEL
)
3208 rtvec old
= XVEC (newpat
, 0);
3209 total_sets
= XVECLEN (newpat
, 0) + extra_sets
;
3210 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3211 memcpy (XVEC (newpat
, 0)->elem
, &old
->elem
[0],
3212 sizeof (old
->elem
[0]) * old
->num_elem
);
3217 total_sets
= 1 + extra_sets
;
3218 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3219 XVECEXP (newpat
, 0, 0) = old
;
3223 XVECEXP (newpat
, 0, --total_sets
) = i0pat
;
3229 t
= subst (t
, i0dest
, i0src_copy
? i0src_copy
: i0src
, 0, 0, 0);
3231 XVECEXP (newpat
, 0, --total_sets
) = t
;
3237 t
= subst (t
, i1dest
, i1src_copy
? i1src_copy
: i1src
, 0, 0,
3238 i0_feeds_i1_n
&& i0dest_in_i0src
);
3239 if ((i0_feeds_i1_n
&& i1_feeds_i2_n
) || i0_feeds_i2_n
)
3240 t
= subst (t
, i0dest
, i0src_copy2
? i0src_copy2
: i0src
, 0, 0, 0);
3242 XVECEXP (newpat
, 0, --total_sets
) = t
;
3246 validate_replacement
:
3248 /* Note which hard regs this insn has as inputs. */
3249 mark_used_regs_combine (newpat
);
3251 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3252 consider splitting this pattern, we might need these clobbers. */
3253 if (i1
&& GET_CODE (newpat
) == PARALLEL
3254 && GET_CODE (XVECEXP (newpat
, 0, XVECLEN (newpat
, 0) - 1)) == CLOBBER
)
3256 int len
= XVECLEN (newpat
, 0);
3258 newpat_vec_with_clobbers
= rtvec_alloc (len
);
3259 for (i
= 0; i
< len
; i
++)
3260 RTVEC_ELT (newpat_vec_with_clobbers
, i
) = XVECEXP (newpat
, 0, i
);
3263 /* Is the result of combination a valid instruction? */
3264 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3266 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
3267 the second SET's destination is a register that is unused and isn't
3268 marked as an instruction that might trap in an EH region. In that case,
3269 we just need the first SET. This can occur when simplifying a divmod
3270 insn. We *must* test for this case here because the code below that
3271 splits two independent SETs doesn't handle this case correctly when it
3272 updates the register status.
3274 It's pointless doing this if we originally had two sets, one from
3275 i3, and one from i2. Combining then splitting the parallel results
3276 in the original i2 again plus an invalid insn (which we delete).
3277 The net effect is only to move instructions around, which makes
3278 debug info less accurate.
3280 Also check the case where the first SET's destination is unused.
3281 That would not cause incorrect code, but does cause an unneeded
3284 if (insn_code_number
< 0
3285 && !(added_sets_2
&& i1
== 0)
3286 && GET_CODE (newpat
) == PARALLEL
3287 && XVECLEN (newpat
, 0) == 2
3288 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3289 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3290 && asm_noperands (newpat
) < 0)
3292 rtx set0
= XVECEXP (newpat
, 0, 0);
3293 rtx set1
= XVECEXP (newpat
, 0, 1);
3295 if (((REG_P (SET_DEST (set1
))
3296 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set1
)))
3297 || (GET_CODE (SET_DEST (set1
)) == SUBREG
3298 && find_reg_note (i3
, REG_UNUSED
, SUBREG_REG (SET_DEST (set1
)))))
3299 && insn_nothrow_p (i3
)
3300 && !side_effects_p (SET_SRC (set1
)))
3303 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3306 else if (((REG_P (SET_DEST (set0
))
3307 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set0
)))
3308 || (GET_CODE (SET_DEST (set0
)) == SUBREG
3309 && find_reg_note (i3
, REG_UNUSED
,
3310 SUBREG_REG (SET_DEST (set0
)))))
3311 && insn_nothrow_p (i3
)
3312 && !side_effects_p (SET_SRC (set0
)))
3315 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3317 if (insn_code_number
>= 0)
3318 changed_i3_dest
= 1;
3322 /* If we were combining three insns and the result is a simple SET
3323 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3324 insns. There are two ways to do this. It can be split using a
3325 machine-specific method (like when you have an addition of a large
3326 constant) or by combine in the function find_split_point. */
3328 if (i1
&& insn_code_number
< 0 && GET_CODE (newpat
) == SET
3329 && asm_noperands (newpat
) < 0)
3331 rtx parallel
, m_split
, *split
;
3333 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3334 use I2DEST as a scratch register will help. In the latter case,
3335 convert I2DEST to the mode of the source of NEWPAT if we can. */
3337 m_split
= combine_split_insns (newpat
, i3
);
3339 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3340 inputs of NEWPAT. */
3342 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3343 possible to try that as a scratch reg. This would require adding
3344 more code to make it work though. */
3346 if (m_split
== 0 && ! reg_overlap_mentioned_p (i2dest
, newpat
))
3348 enum machine_mode new_mode
= GET_MODE (SET_DEST (newpat
));
3350 /* First try to split using the original register as a
3351 scratch register. */
3352 parallel
= gen_rtx_PARALLEL (VOIDmode
,
3353 gen_rtvec (2, newpat
,
3354 gen_rtx_CLOBBER (VOIDmode
,
3356 m_split
= combine_split_insns (parallel
, i3
);
3358 /* If that didn't work, try changing the mode of I2DEST if
3361 && new_mode
!= GET_MODE (i2dest
)
3362 && new_mode
!= VOIDmode
3363 && can_change_dest_mode (i2dest
, added_sets_2
, new_mode
))
3365 enum machine_mode old_mode
= GET_MODE (i2dest
);
3368 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3369 ni2dest
= gen_rtx_REG (new_mode
, REGNO (i2dest
));
3372 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], new_mode
);
3373 ni2dest
= regno_reg_rtx
[REGNO (i2dest
)];
3376 parallel
= (gen_rtx_PARALLEL
3378 gen_rtvec (2, newpat
,
3379 gen_rtx_CLOBBER (VOIDmode
,
3381 m_split
= combine_split_insns (parallel
, i3
);
3384 && REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
3388 adjust_reg_mode (regno_reg_rtx
[REGNO (i2dest
)], old_mode
);
3389 buf
= undobuf
.undos
;
3390 undobuf
.undos
= buf
->next
;
3391 buf
->next
= undobuf
.frees
;
3392 undobuf
.frees
= buf
;
3396 i2scratch
= m_split
!= 0;
3399 /* If recog_for_combine has discarded clobbers, try to use them
3400 again for the split. */
3401 if (m_split
== 0 && newpat_vec_with_clobbers
)
3403 parallel
= gen_rtx_PARALLEL (VOIDmode
, newpat_vec_with_clobbers
);
3404 m_split
= combine_split_insns (parallel
, i3
);
3407 if (m_split
&& NEXT_INSN (m_split
) == NULL_RTX
)
3409 m_split
= PATTERN (m_split
);
3410 insn_code_number
= recog_for_combine (&m_split
, i3
, &new_i3_notes
);
3411 if (insn_code_number
>= 0)
3414 else if (m_split
&& NEXT_INSN (NEXT_INSN (m_split
)) == NULL_RTX
3415 && (next_nonnote_nondebug_insn (i2
) == i3
3416 || ! use_crosses_set_p (PATTERN (m_split
), DF_INSN_LUID (i2
))))
3419 rtx newi3pat
= PATTERN (NEXT_INSN (m_split
));
3420 newi2pat
= PATTERN (m_split
);
3422 i3set
= single_set (NEXT_INSN (m_split
));
3423 i2set
= single_set (m_split
);
3425 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3427 /* If I2 or I3 has multiple SETs, we won't know how to track
3428 register status, so don't use these insns. If I2's destination
3429 is used between I2 and I3, we also can't use these insns. */
3431 if (i2_code_number
>= 0 && i2set
&& i3set
3432 && (next_nonnote_nondebug_insn (i2
) == i3
3433 || ! reg_used_between_p (SET_DEST (i2set
), i2
, i3
)))
3434 insn_code_number
= recog_for_combine (&newi3pat
, i3
,
3436 if (insn_code_number
>= 0)
3439 /* It is possible that both insns now set the destination of I3.
3440 If so, we must show an extra use of it. */
3442 if (insn_code_number
>= 0)
3444 rtx new_i3_dest
= SET_DEST (i3set
);
3445 rtx new_i2_dest
= SET_DEST (i2set
);
3447 while (GET_CODE (new_i3_dest
) == ZERO_EXTRACT
3448 || GET_CODE (new_i3_dest
) == STRICT_LOW_PART
3449 || GET_CODE (new_i3_dest
) == SUBREG
)
3450 new_i3_dest
= XEXP (new_i3_dest
, 0);
3452 while (GET_CODE (new_i2_dest
) == ZERO_EXTRACT
3453 || GET_CODE (new_i2_dest
) == STRICT_LOW_PART
3454 || GET_CODE (new_i2_dest
) == SUBREG
)
3455 new_i2_dest
= XEXP (new_i2_dest
, 0);
3457 if (REG_P (new_i3_dest
)
3458 && REG_P (new_i2_dest
)
3459 && REGNO (new_i3_dest
) == REGNO (new_i2_dest
))
3460 INC_REG_N_SETS (REGNO (new_i2_dest
), 1);
3464 /* If we can split it and use I2DEST, go ahead and see if that
3465 helps things be recognized. Verify that none of the registers
3466 are set between I2 and I3. */
3467 if (insn_code_number
< 0
3468 && (split
= find_split_point (&newpat
, i3
, false)) != 0
3472 /* We need I2DEST in the proper mode. If it is a hard register
3473 or the only use of a pseudo, we can change its mode.
3474 Make sure we don't change a hard register to have a mode that
3475 isn't valid for it, or change the number of registers. */
3476 && (GET_MODE (*split
) == GET_MODE (i2dest
)
3477 || GET_MODE (*split
) == VOIDmode
3478 || can_change_dest_mode (i2dest
, added_sets_2
,
3480 && (next_nonnote_nondebug_insn (i2
) == i3
3481 || ! use_crosses_set_p (*split
, DF_INSN_LUID (i2
)))
3482 /* We can't overwrite I2DEST if its value is still used by
3484 && ! reg_referenced_p (i2dest
, newpat
))
3486 rtx newdest
= i2dest
;
3487 enum rtx_code split_code
= GET_CODE (*split
);
3488 enum machine_mode split_mode
= GET_MODE (*split
);
3489 bool subst_done
= false;
3490 newi2pat
= NULL_RTX
;
3494 /* *SPLIT may be part of I2SRC, so make sure we have the
3495 original expression around for later debug processing.
3496 We should not need I2SRC any more in other cases. */
3497 if (MAY_HAVE_DEBUG_INSNS
)
3498 i2src
= copy_rtx (i2src
);
3502 /* Get NEWDEST as a register in the proper mode. We have already
3503 validated that we can do this. */
3504 if (GET_MODE (i2dest
) != split_mode
&& split_mode
!= VOIDmode
)
3506 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3507 newdest
= gen_rtx_REG (split_mode
, REGNO (i2dest
));
3510 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], split_mode
);
3511 newdest
= regno_reg_rtx
[REGNO (i2dest
)];
3515 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3516 an ASHIFT. This can occur if it was inside a PLUS and hence
3517 appeared to be a memory address. This is a kludge. */
3518 if (split_code
== MULT
3519 && CONST_INT_P (XEXP (*split
, 1))
3520 && INTVAL (XEXP (*split
, 1)) > 0
3521 && (i
= exact_log2 (UINTVAL (XEXP (*split
, 1)))) >= 0)
3523 SUBST (*split
, gen_rtx_ASHIFT (split_mode
,
3524 XEXP (*split
, 0), GEN_INT (i
)));
3525 /* Update split_code because we may not have a multiply
3527 split_code
= GET_CODE (*split
);
3530 #ifdef INSN_SCHEDULING
3531 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3532 be written as a ZERO_EXTEND. */
3533 if (split_code
== SUBREG
&& MEM_P (SUBREG_REG (*split
)))
3535 #ifdef LOAD_EXTEND_OP
3536 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3537 what it really is. */
3538 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split
)))
3540 SUBST (*split
, gen_rtx_SIGN_EXTEND (split_mode
,
3541 SUBREG_REG (*split
)));
3544 SUBST (*split
, gen_rtx_ZERO_EXTEND (split_mode
,
3545 SUBREG_REG (*split
)));
3549 /* Attempt to split binary operators using arithmetic identities. */
3550 if (BINARY_P (SET_SRC (newpat
))
3551 && split_mode
== GET_MODE (SET_SRC (newpat
))
3552 && ! side_effects_p (SET_SRC (newpat
)))
3554 rtx setsrc
= SET_SRC (newpat
);
3555 enum machine_mode mode
= GET_MODE (setsrc
);
3556 enum rtx_code code
= GET_CODE (setsrc
);
3557 rtx src_op0
= XEXP (setsrc
, 0);
3558 rtx src_op1
= XEXP (setsrc
, 1);
3560 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3561 if (rtx_equal_p (src_op0
, src_op1
))
3563 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, src_op0
);
3564 SUBST (XEXP (setsrc
, 0), newdest
);
3565 SUBST (XEXP (setsrc
, 1), newdest
);
3568 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3569 else if ((code
== PLUS
|| code
== MULT
)
3570 && GET_CODE (src_op0
) == code
3571 && GET_CODE (XEXP (src_op0
, 0)) == code
3572 && (INTEGRAL_MODE_P (mode
)
3573 || (FLOAT_MODE_P (mode
)
3574 && flag_unsafe_math_optimizations
)))
3576 rtx p
= XEXP (XEXP (src_op0
, 0), 0);
3577 rtx q
= XEXP (XEXP (src_op0
, 0), 1);
3578 rtx r
= XEXP (src_op0
, 1);
3581 /* Split both "((X op Y) op X) op Y" and
3582 "((X op Y) op Y) op X" as "T op T" where T is
3584 if ((rtx_equal_p (p
,r
) && rtx_equal_p (q
,s
))
3585 || (rtx_equal_p (p
,s
) && rtx_equal_p (q
,r
)))
3587 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
,
3589 SUBST (XEXP (setsrc
, 0), newdest
);
3590 SUBST (XEXP (setsrc
, 1), newdest
);
3593 /* Split "((X op X) op Y) op Y)" as "T op T" where
3595 else if (rtx_equal_p (p
,q
) && rtx_equal_p (r
,s
))
3597 rtx tmp
= simplify_gen_binary (code
, mode
, p
, r
);
3598 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, tmp
);
3599 SUBST (XEXP (setsrc
, 0), newdest
);
3600 SUBST (XEXP (setsrc
, 1), newdest
);
3608 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, *split
);
3609 SUBST (*split
, newdest
);
3612 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3614 /* recog_for_combine might have added CLOBBERs to newi2pat.
3615 Make sure NEWPAT does not depend on the clobbered regs. */
3616 if (GET_CODE (newi2pat
) == PARALLEL
)
3617 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
3618 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
3620 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
3621 if (reg_overlap_mentioned_p (reg
, newpat
))
3628 /* If the split point was a MULT and we didn't have one before,
3629 don't use one now. */
3630 if (i2_code_number
>= 0 && ! (split_code
== MULT
&& ! have_mult
))
3631 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3635 /* Check for a case where we loaded from memory in a narrow mode and
3636 then sign extended it, but we need both registers. In that case,
3637 we have a PARALLEL with both loads from the same memory location.
3638 We can split this into a load from memory followed by a register-register
3639 copy. This saves at least one insn, more if register allocation can
3642 We cannot do this if the destination of the first assignment is a
3643 condition code register or cc0. We eliminate this case by making sure
3644 the SET_DEST and SET_SRC have the same mode.
3646 We cannot do this if the destination of the second assignment is
3647 a register that we have already assumed is zero-extended. Similarly
3648 for a SUBREG of such a register. */
3650 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
3651 && GET_CODE (newpat
) == PARALLEL
3652 && XVECLEN (newpat
, 0) == 2
3653 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3654 && GET_CODE (SET_SRC (XVECEXP (newpat
, 0, 0))) == SIGN_EXTEND
3655 && (GET_MODE (SET_DEST (XVECEXP (newpat
, 0, 0)))
3656 == GET_MODE (SET_SRC (XVECEXP (newpat
, 0, 0))))
3657 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3658 && rtx_equal_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
3659 XEXP (SET_SRC (XVECEXP (newpat
, 0, 0)), 0))
3660 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
3662 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
3663 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
3664 && ! (temp
= SET_DEST (XVECEXP (newpat
, 0, 1)),
3666 && reg_stat
[REGNO (temp
)].nonzero_bits
!= 0
3667 && GET_MODE_PRECISION (GET_MODE (temp
)) < BITS_PER_WORD
3668 && GET_MODE_PRECISION (GET_MODE (temp
)) < HOST_BITS_PER_INT
3669 && (reg_stat
[REGNO (temp
)].nonzero_bits
3670 != GET_MODE_MASK (word_mode
))))
3671 && ! (GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) == SUBREG
3672 && (temp
= SUBREG_REG (SET_DEST (XVECEXP (newpat
, 0, 1))),
3674 && reg_stat
[REGNO (temp
)].nonzero_bits
!= 0
3675 && GET_MODE_PRECISION (GET_MODE (temp
)) < BITS_PER_WORD
3676 && GET_MODE_PRECISION (GET_MODE (temp
)) < HOST_BITS_PER_INT
3677 && (reg_stat
[REGNO (temp
)].nonzero_bits
3678 != GET_MODE_MASK (word_mode
)))))
3679 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
3680 SET_SRC (XVECEXP (newpat
, 0, 1)))
3681 && ! find_reg_note (i3
, REG_UNUSED
,
3682 SET_DEST (XVECEXP (newpat
, 0, 0))))
3686 newi2pat
= XVECEXP (newpat
, 0, 0);
3687 ni2dest
= SET_DEST (XVECEXP (newpat
, 0, 0));
3688 newpat
= XVECEXP (newpat
, 0, 1);
3689 SUBST (SET_SRC (newpat
),
3690 gen_lowpart (GET_MODE (SET_SRC (newpat
)), ni2dest
));
3691 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3693 if (i2_code_number
>= 0)
3694 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3696 if (insn_code_number
>= 0)
3700 /* Similarly, check for a case where we have a PARALLEL of two independent
3701 SETs but we started with three insns. In this case, we can do the sets
3702 as two separate insns. This case occurs when some SET allows two
3703 other insns to combine, but the destination of that SET is still live. */
3705 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
3706 && GET_CODE (newpat
) == PARALLEL
3707 && XVECLEN (newpat
, 0) == 2
3708 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3709 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != ZERO_EXTRACT
3710 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != STRICT_LOW_PART
3711 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3712 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
3713 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
3714 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
3715 XVECEXP (newpat
, 0, 0))
3716 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 0)),
3717 XVECEXP (newpat
, 0, 1))
3718 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 0)))
3719 && contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 1)))))
3721 rtx set0
= XVECEXP (newpat
, 0, 0);
3722 rtx set1
= XVECEXP (newpat
, 0, 1);
3724 /* Normally, it doesn't matter which of the two is done first,
3725 but the one that references cc0 can't be the second, and
3726 one which uses any regs/memory set in between i2 and i3 can't
3727 be first. The PARALLEL might also have been pre-existing in i3,
3728 so we need to make sure that we won't wrongly hoist a SET to i2
3729 that would conflict with a death note present in there. */
3730 if (!use_crosses_set_p (SET_SRC (set1
), DF_INSN_LUID (i2
))
3731 && !(REG_P (SET_DEST (set1
))
3732 && find_reg_note (i2
, REG_DEAD
, SET_DEST (set1
)))
3733 && !(GET_CODE (SET_DEST (set1
)) == SUBREG
3734 && find_reg_note (i2
, REG_DEAD
,
3735 SUBREG_REG (SET_DEST (set1
))))
3737 && !reg_referenced_p (cc0_rtx
, set0
)
3739 /* If I3 is a jump, ensure that set0 is a jump so that
3740 we do not create invalid RTL. */
3741 && (!JUMP_P (i3
) || SET_DEST (set0
) == pc_rtx
)
3747 else if (!use_crosses_set_p (SET_SRC (set0
), DF_INSN_LUID (i2
))
3748 && !(REG_P (SET_DEST (set0
))
3749 && find_reg_note (i2
, REG_DEAD
, SET_DEST (set0
)))
3750 && !(GET_CODE (SET_DEST (set0
)) == SUBREG
3751 && find_reg_note (i2
, REG_DEAD
,
3752 SUBREG_REG (SET_DEST (set0
))))
3754 && !reg_referenced_p (cc0_rtx
, set1
)
3756 /* If I3 is a jump, ensure that set1 is a jump so that
3757 we do not create invalid RTL. */
3758 && (!JUMP_P (i3
) || SET_DEST (set1
) == pc_rtx
)
3770 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3772 if (i2_code_number
>= 0)
3774 /* recog_for_combine might have added CLOBBERs to newi2pat.
3775 Make sure NEWPAT does not depend on the clobbered regs. */
3776 if (GET_CODE (newi2pat
) == PARALLEL
)
3778 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
3779 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
3781 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
3782 if (reg_overlap_mentioned_p (reg
, newpat
))
3790 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3794 /* If it still isn't recognized, fail and change things back the way they
3796 if ((insn_code_number
< 0
3797 /* Is the result a reasonable ASM_OPERANDS? */
3798 && (! check_asm_operands (newpat
) || added_sets_1
|| added_sets_2
)))
3804 /* If we had to change another insn, make sure it is valid also. */
3805 if (undobuf
.other_insn
)
3807 CLEAR_HARD_REG_SET (newpat_used_regs
);
3809 other_pat
= PATTERN (undobuf
.other_insn
);
3810 other_code_number
= recog_for_combine (&other_pat
, undobuf
.other_insn
,
3813 if (other_code_number
< 0 && ! check_asm_operands (other_pat
))
3821 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3822 they are adjacent to each other or not. */
3824 rtx p
= prev_nonnote_insn (i3
);
3825 if (p
&& p
!= i2
&& NONJUMP_INSN_P (p
) && newi2pat
3826 && sets_cc0_p (newi2pat
))
3834 /* Only allow this combination if insn_rtx_costs reports that the
3835 replacement instructions are cheaper than the originals. */
3836 if (!combine_validate_cost (i0
, i1
, i2
, i3
, newpat
, newi2pat
, other_pat
))
3842 if (MAY_HAVE_DEBUG_INSNS
)
3846 for (undo
= undobuf
.undos
; undo
; undo
= undo
->next
)
3847 if (undo
->kind
== UNDO_MODE
)
3849 rtx reg
= *undo
->where
.r
;
3850 enum machine_mode new_mode
= GET_MODE (reg
);
3851 enum machine_mode old_mode
= undo
->old_contents
.m
;
3853 /* Temporarily revert mode back. */
3854 adjust_reg_mode (reg
, old_mode
);
3856 if (reg
== i2dest
&& i2scratch
)
3858 /* If we used i2dest as a scratch register with a
3859 different mode, substitute it for the original
3860 i2src while its original mode is temporarily
3861 restored, and then clear i2scratch so that we don't
3862 do it again later. */
3863 propagate_for_debug (i2
, last_combined_insn
, reg
, i2src
,
3866 /* Put back the new mode. */
3867 adjust_reg_mode (reg
, new_mode
);
3871 rtx tempreg
= gen_raw_REG (old_mode
, REGNO (reg
));
3877 last
= last_combined_insn
;
3882 last
= undobuf
.other_insn
;
3884 if (DF_INSN_LUID (last
)
3885 < DF_INSN_LUID (last_combined_insn
))
3886 last
= last_combined_insn
;
3889 /* We're dealing with a reg that changed mode but not
3890 meaning, so we want to turn it into a subreg for
3891 the new mode. However, because of REG sharing and
3892 because its mode had already changed, we have to do
3893 it in two steps. First, replace any debug uses of
3894 reg, with its original mode temporarily restored,
3895 with this copy we have created; then, replace the
3896 copy with the SUBREG of the original shared reg,
3897 once again changed to the new mode. */
3898 propagate_for_debug (first
, last
, reg
, tempreg
,
3900 adjust_reg_mode (reg
, new_mode
);
3901 propagate_for_debug (first
, last
, tempreg
,
3902 lowpart_subreg (old_mode
, reg
, new_mode
),
3908 /* If we will be able to accept this, we have made a
3909 change to the destination of I3. This requires us to
3910 do a few adjustments. */
3912 if (changed_i3_dest
)
3914 PATTERN (i3
) = newpat
;
3915 adjust_for_new_dest (i3
);
3918 /* We now know that we can do this combination. Merge the insns and
3919 update the status of registers and LOG_LINKS. */
3921 if (undobuf
.other_insn
)
3925 PATTERN (undobuf
.other_insn
) = other_pat
;
3927 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
3928 ensure that they are still valid. Then add any non-duplicate
3929 notes added by recog_for_combine. */
3930 for (note
= REG_NOTES (undobuf
.other_insn
); note
; note
= next
)
3932 next
= XEXP (note
, 1);
3934 if ((REG_NOTE_KIND (note
) == REG_DEAD
3935 && !reg_referenced_p (XEXP (note
, 0),
3936 PATTERN (undobuf
.other_insn
)))
3937 ||(REG_NOTE_KIND (note
) == REG_UNUSED
3938 && !reg_set_p (XEXP (note
, 0),
3939 PATTERN (undobuf
.other_insn
))))
3940 remove_note (undobuf
.other_insn
, note
);
3943 distribute_notes (new_other_notes
, undobuf
.other_insn
,
3944 undobuf
.other_insn
, NULL_RTX
, NULL_RTX
, NULL_RTX
,
3951 struct insn_link
*link
;
3954 /* I3 now uses what used to be its destination and which is now
3955 I2's destination. This requires us to do a few adjustments. */
3956 PATTERN (i3
) = newpat
;
3957 adjust_for_new_dest (i3
);
3959 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3962 However, some later insn might be using I2's dest and have
3963 a LOG_LINK pointing at I3. We must remove this link.
3964 The simplest way to remove the link is to point it at I1,
3965 which we know will be a NOTE. */
3967 /* newi2pat is usually a SET here; however, recog_for_combine might
3968 have added some clobbers. */
3969 if (GET_CODE (newi2pat
) == PARALLEL
)
3970 ni2dest
= SET_DEST (XVECEXP (newi2pat
, 0, 0));
3972 ni2dest
= SET_DEST (newi2pat
);
3974 for (insn
= NEXT_INSN (i3
);
3975 insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
3976 || insn
!= BB_HEAD (this_basic_block
->next_bb
));
3977 insn
= NEXT_INSN (insn
))
3979 if (INSN_P (insn
) && reg_referenced_p (ni2dest
, PATTERN (insn
)))
3981 FOR_EACH_LOG_LINK (link
, insn
)
3982 if (link
->insn
== i3
)
3991 rtx i3notes
, i2notes
, i1notes
= 0, i0notes
= 0;
3992 struct insn_link
*i3links
, *i2links
, *i1links
= 0, *i0links
= 0;
3995 /* Compute which registers we expect to eliminate. newi2pat may be setting
3996 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3997 same as i3dest, in which case newi2pat may be setting i1dest. */
3998 rtx elim_i2
= ((newi2pat
&& reg_set_p (i2dest
, newi2pat
))
3999 || i2dest_in_i2src
|| i2dest_in_i1src
|| i2dest_in_i0src
4002 rtx elim_i1
= (i1
== 0 || i1dest_in_i1src
|| i1dest_in_i0src
4003 || (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
4006 rtx elim_i0
= (i0
== 0 || i0dest_in_i0src
4007 || (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
4011 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4013 i3notes
= REG_NOTES (i3
), i3links
= LOG_LINKS (i3
);
4014 i2notes
= REG_NOTES (i2
), i2links
= LOG_LINKS (i2
);
4016 i1notes
= REG_NOTES (i1
), i1links
= LOG_LINKS (i1
);
4018 i0notes
= REG_NOTES (i0
), i0links
= LOG_LINKS (i0
);
4020 /* Ensure that we do not have something that should not be shared but
4021 occurs multiple times in the new insns. Check this by first
4022 resetting all the `used' flags and then copying anything is shared. */
4024 reset_used_flags (i3notes
);
4025 reset_used_flags (i2notes
);
4026 reset_used_flags (i1notes
);
4027 reset_used_flags (i0notes
);
4028 reset_used_flags (newpat
);
4029 reset_used_flags (newi2pat
);
4030 if (undobuf
.other_insn
)
4031 reset_used_flags (PATTERN (undobuf
.other_insn
));
4033 i3notes
= copy_rtx_if_shared (i3notes
);
4034 i2notes
= copy_rtx_if_shared (i2notes
);
4035 i1notes
= copy_rtx_if_shared (i1notes
);
4036 i0notes
= copy_rtx_if_shared (i0notes
);
4037 newpat
= copy_rtx_if_shared (newpat
);
4038 newi2pat
= copy_rtx_if_shared (newi2pat
);
4039 if (undobuf
.other_insn
)
4040 reset_used_flags (PATTERN (undobuf
.other_insn
));
4042 INSN_CODE (i3
) = insn_code_number
;
4043 PATTERN (i3
) = newpat
;
4045 if (CALL_P (i3
) && CALL_INSN_FUNCTION_USAGE (i3
))
4047 rtx call_usage
= CALL_INSN_FUNCTION_USAGE (i3
);
4049 reset_used_flags (call_usage
);
4050 call_usage
= copy_rtx (call_usage
);
4054 /* I2SRC must still be meaningful at this point. Some splitting
4055 operations can invalidate I2SRC, but those operations do not
4058 replace_rtx (call_usage
, i2dest
, i2src
);
4062 replace_rtx (call_usage
, i1dest
, i1src
);
4064 replace_rtx (call_usage
, i0dest
, i0src
);
4066 CALL_INSN_FUNCTION_USAGE (i3
) = call_usage
;
4069 if (undobuf
.other_insn
)
4070 INSN_CODE (undobuf
.other_insn
) = other_code_number
;
4072 /* We had one special case above where I2 had more than one set and
4073 we replaced a destination of one of those sets with the destination
4074 of I3. In that case, we have to update LOG_LINKS of insns later
4075 in this basic block. Note that this (expensive) case is rare.
4077 Also, in this case, we must pretend that all REG_NOTEs for I2
4078 actually came from I3, so that REG_UNUSED notes from I2 will be
4079 properly handled. */
4081 if (i3_subst_into_i2
)
4083 for (i
= 0; i
< XVECLEN (PATTERN (i2
), 0); i
++)
4084 if ((GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == SET
4085 || GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == CLOBBER
)
4086 && REG_P (SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)))
4087 && SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)) != i2dest
4088 && ! find_reg_note (i2
, REG_UNUSED
,
4089 SET_DEST (XVECEXP (PATTERN (i2
), 0, i
))))
4090 for (temp
= NEXT_INSN (i2
);
4092 && (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
4093 || BB_HEAD (this_basic_block
) != temp
);
4094 temp
= NEXT_INSN (temp
))
4095 if (temp
!= i3
&& INSN_P (temp
))
4096 FOR_EACH_LOG_LINK (link
, temp
)
4097 if (link
->insn
== i2
)
4103 while (XEXP (link
, 1))
4104 link
= XEXP (link
, 1);
4105 XEXP (link
, 1) = i2notes
;
4112 LOG_LINKS (i3
) = NULL
;
4114 LOG_LINKS (i2
) = NULL
;
4119 if (MAY_HAVE_DEBUG_INSNS
&& i2scratch
)
4120 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
,
4122 INSN_CODE (i2
) = i2_code_number
;
4123 PATTERN (i2
) = newi2pat
;
4127 if (MAY_HAVE_DEBUG_INSNS
&& i2src
)
4128 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
,
4130 SET_INSN_DELETED (i2
);
4135 LOG_LINKS (i1
) = NULL
;
4137 if (MAY_HAVE_DEBUG_INSNS
)
4138 propagate_for_debug (i1
, last_combined_insn
, i1dest
, i1src
,
4140 SET_INSN_DELETED (i1
);
4145 LOG_LINKS (i0
) = NULL
;
4147 if (MAY_HAVE_DEBUG_INSNS
)
4148 propagate_for_debug (i0
, last_combined_insn
, i0dest
, i0src
,
4150 SET_INSN_DELETED (i0
);
4153 /* Get death notes for everything that is now used in either I3 or
4154 I2 and used to die in a previous insn. If we built two new
4155 patterns, move from I1 to I2 then I2 to I3 so that we get the
4156 proper movement on registers that I2 modifies. */
4159 from_luid
= DF_INSN_LUID (i0
);
4161 from_luid
= DF_INSN_LUID (i1
);
4163 from_luid
= DF_INSN_LUID (i2
);
4165 move_deaths (newi2pat
, NULL_RTX
, from_luid
, i2
, &midnotes
);
4166 move_deaths (newpat
, newi2pat
, from_luid
, i3
, &midnotes
);
4168 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4170 distribute_notes (i3notes
, i3
, i3
, newi2pat
? i2
: NULL_RTX
,
4171 elim_i2
, elim_i1
, elim_i0
);
4173 distribute_notes (i2notes
, i2
, i3
, newi2pat
? i2
: NULL_RTX
,
4174 elim_i2
, elim_i1
, elim_i0
);
4176 distribute_notes (i1notes
, i1
, i3
, newi2pat
? i2
: NULL_RTX
,
4177 elim_i2
, elim_i1
, elim_i0
);
4179 distribute_notes (i0notes
, i0
, i3
, newi2pat
? i2
: NULL_RTX
,
4180 elim_i2
, elim_i1
, elim_i0
);
4182 distribute_notes (midnotes
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
4183 elim_i2
, elim_i1
, elim_i0
);
4185 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4186 know these are REG_UNUSED and want them to go to the desired insn,
4187 so we always pass it as i3. */
4189 if (newi2pat
&& new_i2_notes
)
4190 distribute_notes (new_i2_notes
, i2
, i2
, NULL_RTX
, NULL_RTX
, NULL_RTX
,
4194 distribute_notes (new_i3_notes
, i3
, i3
, NULL_RTX
, NULL_RTX
, NULL_RTX
,
4197 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4198 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4199 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4200 in that case, it might delete I2. Similarly for I2 and I1.
4201 Show an additional death due to the REG_DEAD note we make here. If
4202 we discard it in distribute_notes, we will decrement it again. */
4206 rtx new_note
= alloc_reg_note (REG_DEAD
, i3dest_killed
, NULL_RTX
);
4207 if (newi2pat
&& reg_set_p (i3dest_killed
, newi2pat
))
4208 distribute_notes (new_note
, NULL_RTX
, i2
, NULL_RTX
, elim_i2
,
4211 distribute_notes (new_note
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
4212 elim_i2
, elim_i1
, elim_i0
);
4215 if (i2dest_in_i2src
)
4217 rtx new_note
= alloc_reg_note (REG_DEAD
, i2dest
, NULL_RTX
);
4218 if (newi2pat
&& reg_set_p (i2dest
, newi2pat
))
4219 distribute_notes (new_note
, NULL_RTX
, i2
, NULL_RTX
, NULL_RTX
,
4220 NULL_RTX
, NULL_RTX
);
4222 distribute_notes (new_note
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
4223 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4226 if (i1dest_in_i1src
)
4228 rtx new_note
= alloc_reg_note (REG_DEAD
, i1dest
, NULL_RTX
);
4229 if (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
4230 distribute_notes (new_note
, NULL_RTX
, i2
, NULL_RTX
, NULL_RTX
,
4231 NULL_RTX
, NULL_RTX
);
4233 distribute_notes (new_note
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
4234 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4237 if (i0dest_in_i0src
)
4239 rtx new_note
= alloc_reg_note (REG_DEAD
, i0dest
, NULL_RTX
);
4240 if (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
4241 distribute_notes (new_note
, NULL_RTX
, i2
, NULL_RTX
, NULL_RTX
,
4242 NULL_RTX
, NULL_RTX
);
4244 distribute_notes (new_note
, NULL_RTX
, i3
, newi2pat
? i2
: NULL_RTX
,
4245 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4248 distribute_links (i3links
);
4249 distribute_links (i2links
);
4250 distribute_links (i1links
);
4251 distribute_links (i0links
);
4255 struct insn_link
*link
;
4256 rtx i2_insn
= 0, i2_val
= 0, set
;
4258 /* The insn that used to set this register doesn't exist, and
4259 this life of the register may not exist either. See if one of
4260 I3's links points to an insn that sets I2DEST. If it does,
4261 that is now the last known value for I2DEST. If we don't update
4262 this and I2 set the register to a value that depended on its old
4263 contents, we will get confused. If this insn is used, thing
4264 will be set correctly in combine_instructions. */
4265 FOR_EACH_LOG_LINK (link
, i3
)
4266 if ((set
= single_set (link
->insn
)) != 0
4267 && rtx_equal_p (i2dest
, SET_DEST (set
)))
4268 i2_insn
= link
->insn
, i2_val
= SET_SRC (set
);
4270 record_value_for_reg (i2dest
, i2_insn
, i2_val
);
4272 /* If the reg formerly set in I2 died only once and that was in I3,
4273 zero its use count so it won't make `reload' do any work. */
4275 && (newi2pat
== 0 || ! reg_mentioned_p (i2dest
, newi2pat
))
4276 && ! i2dest_in_i2src
)
4277 INC_REG_N_SETS (REGNO (i2dest
), -1);
4280 if (i1
&& REG_P (i1dest
))
4282 struct insn_link
*link
;
4283 rtx i1_insn
= 0, i1_val
= 0, set
;
4285 FOR_EACH_LOG_LINK (link
, i3
)
4286 if ((set
= single_set (link
->insn
)) != 0
4287 && rtx_equal_p (i1dest
, SET_DEST (set
)))
4288 i1_insn
= link
->insn
, i1_val
= SET_SRC (set
);
4290 record_value_for_reg (i1dest
, i1_insn
, i1_val
);
4292 if (! added_sets_1
&& ! i1dest_in_i1src
)
4293 INC_REG_N_SETS (REGNO (i1dest
), -1);
4296 if (i0
&& REG_P (i0dest
))
4298 struct insn_link
*link
;
4299 rtx i0_insn
= 0, i0_val
= 0, set
;
4301 FOR_EACH_LOG_LINK (link
, i3
)
4302 if ((set
= single_set (link
->insn
)) != 0
4303 && rtx_equal_p (i0dest
, SET_DEST (set
)))
4304 i0_insn
= link
->insn
, i0_val
= SET_SRC (set
);
4306 record_value_for_reg (i0dest
, i0_insn
, i0_val
);
4308 if (! added_sets_0
&& ! i0dest_in_i0src
)
4309 INC_REG_N_SETS (REGNO (i0dest
), -1);
4312 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4313 been made to this insn. The order is important, because newi2pat
4314 can affect nonzero_bits of newpat. */
4316 note_stores (newi2pat
, set_nonzero_bits_and_sign_copies
, NULL
);
4317 note_stores (newpat
, set_nonzero_bits_and_sign_copies
, NULL
);
4320 if (undobuf
.other_insn
!= NULL_RTX
)
4324 fprintf (dump_file
, "modifying other_insn ");
4325 dump_insn_slim (dump_file
, undobuf
.other_insn
);
4327 df_insn_rescan (undobuf
.other_insn
);
4330 if (i0
&& !(NOTE_P (i0
) && (NOTE_KIND (i0
) == NOTE_INSN_DELETED
)))
4334 fprintf (dump_file
, "modifying insn i0 ");
4335 dump_insn_slim (dump_file
, i0
);
4337 df_insn_rescan (i0
);
4340 if (i1
&& !(NOTE_P (i1
) && (NOTE_KIND (i1
) == NOTE_INSN_DELETED
)))
4344 fprintf (dump_file
, "modifying insn i1 ");
4345 dump_insn_slim (dump_file
, i1
);
4347 df_insn_rescan (i1
);
4350 if (i2
&& !(NOTE_P (i2
) && (NOTE_KIND (i2
) == NOTE_INSN_DELETED
)))
4354 fprintf (dump_file
, "modifying insn i2 ");
4355 dump_insn_slim (dump_file
, i2
);
4357 df_insn_rescan (i2
);
4360 if (i3
&& !(NOTE_P (i3
) && (NOTE_KIND (i3
) == NOTE_INSN_DELETED
)))
4364 fprintf (dump_file
, "modifying insn i3 ");
4365 dump_insn_slim (dump_file
, i3
);
4367 df_insn_rescan (i3
);
4370 /* Set new_direct_jump_p if a new return or simple jump instruction
4371 has been created. Adjust the CFG accordingly. */
4372 if (returnjump_p (i3
) || any_uncondjump_p (i3
))
4374 *new_direct_jump_p
= 1;
4375 mark_jump_label (PATTERN (i3
), i3
, 0);
4376 update_cfg_for_uncondjump (i3
);
4379 if (undobuf
.other_insn
!= NULL_RTX
4380 && (returnjump_p (undobuf
.other_insn
)
4381 || any_uncondjump_p (undobuf
.other_insn
)))
4383 *new_direct_jump_p
= 1;
4384 update_cfg_for_uncondjump (undobuf
.other_insn
);
4387 /* A noop might also need cleaning up of CFG, if it comes from the
4388 simplification of a jump. */
4390 && GET_CODE (newpat
) == SET
4391 && SET_SRC (newpat
) == pc_rtx
4392 && SET_DEST (newpat
) == pc_rtx
)
4394 *new_direct_jump_p
= 1;
4395 update_cfg_for_uncondjump (i3
);
4398 if (undobuf
.other_insn
!= NULL_RTX
4399 && JUMP_P (undobuf
.other_insn
)
4400 && GET_CODE (PATTERN (undobuf
.other_insn
)) == SET
4401 && SET_SRC (PATTERN (undobuf
.other_insn
)) == pc_rtx
4402 && SET_DEST (PATTERN (undobuf
.other_insn
)) == pc_rtx
)
4404 *new_direct_jump_p
= 1;
4405 update_cfg_for_uncondjump (undobuf
.other_insn
);
4408 combine_successes
++;
4411 if (added_links_insn
4412 && (newi2pat
== 0 || DF_INSN_LUID (added_links_insn
) < DF_INSN_LUID (i2
))
4413 && DF_INSN_LUID (added_links_insn
) < DF_INSN_LUID (i3
))
4414 return added_links_insn
;
4416 return newi2pat
? i2
: i3
;
4419 /* Undo all the modifications recorded in undobuf. */
4424 struct undo
*undo
, *next
;
4426 for (undo
= undobuf
.undos
; undo
; undo
= next
)
4432 *undo
->where
.r
= undo
->old_contents
.r
;
4435 *undo
->where
.i
= undo
->old_contents
.i
;
4438 adjust_reg_mode (*undo
->where
.r
, undo
->old_contents
.m
);
4441 *undo
->where
.l
= undo
->old_contents
.l
;
4447 undo
->next
= undobuf
.frees
;
4448 undobuf
.frees
= undo
;
4454 /* We've committed to accepting the changes we made. Move all
4455 of the undos to the free list. */
4460 struct undo
*undo
, *next
;
4462 for (undo
= undobuf
.undos
; undo
; undo
= next
)
4465 undo
->next
= undobuf
.frees
;
4466 undobuf
.frees
= undo
;
4471 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4472 where we have an arithmetic expression and return that point. LOC will
4475 try_combine will call this function to see if an insn can be split into
4479 find_split_point (rtx
*loc
, rtx insn
, bool set_src
)
4482 enum rtx_code code
= GET_CODE (x
);
4484 unsigned HOST_WIDE_INT len
= 0;
4485 HOST_WIDE_INT pos
= 0;
4487 rtx inner
= NULL_RTX
;
4489 /* First special-case some codes. */
4493 #ifdef INSN_SCHEDULING
4494 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4496 if (MEM_P (SUBREG_REG (x
)))
4499 return find_split_point (&SUBREG_REG (x
), insn
, false);
4503 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4504 using LO_SUM and HIGH. */
4505 if (GET_CODE (XEXP (x
, 0)) == CONST
4506 || GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
4508 enum machine_mode address_mode
= get_address_mode (x
);
4511 gen_rtx_LO_SUM (address_mode
,
4512 gen_rtx_HIGH (address_mode
, XEXP (x
, 0)),
4514 return &XEXP (XEXP (x
, 0), 0);
4518 /* If we have a PLUS whose second operand is a constant and the
4519 address is not valid, perhaps will can split it up using
4520 the machine-specific way to split large constants. We use
4521 the first pseudo-reg (one of the virtual regs) as a placeholder;
4522 it will not remain in the result. */
4523 if (GET_CODE (XEXP (x
, 0)) == PLUS
4524 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
4525 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4526 MEM_ADDR_SPACE (x
)))
4528 rtx reg
= regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
4529 rtx seq
= combine_split_insns (gen_rtx_SET (VOIDmode
, reg
,
4533 /* This should have produced two insns, each of which sets our
4534 placeholder. If the source of the second is a valid address,
4535 we can make put both sources together and make a split point
4539 && NEXT_INSN (seq
) != NULL_RTX
4540 && NEXT_INSN (NEXT_INSN (seq
)) == NULL_RTX
4541 && NONJUMP_INSN_P (seq
)
4542 && GET_CODE (PATTERN (seq
)) == SET
4543 && SET_DEST (PATTERN (seq
)) == reg
4544 && ! reg_mentioned_p (reg
,
4545 SET_SRC (PATTERN (seq
)))
4546 && NONJUMP_INSN_P (NEXT_INSN (seq
))
4547 && GET_CODE (PATTERN (NEXT_INSN (seq
))) == SET
4548 && SET_DEST (PATTERN (NEXT_INSN (seq
))) == reg
4549 && memory_address_addr_space_p
4550 (GET_MODE (x
), SET_SRC (PATTERN (NEXT_INSN (seq
))),
4551 MEM_ADDR_SPACE (x
)))
4553 rtx src1
= SET_SRC (PATTERN (seq
));
4554 rtx src2
= SET_SRC (PATTERN (NEXT_INSN (seq
)));
4556 /* Replace the placeholder in SRC2 with SRC1. If we can
4557 find where in SRC2 it was placed, that can become our
4558 split point and we can replace this address with SRC2.
4559 Just try two obvious places. */
4561 src2
= replace_rtx (src2
, reg
, src1
);
4563 if (XEXP (src2
, 0) == src1
)
4564 split
= &XEXP (src2
, 0);
4565 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2
, 0)))[0] == 'e'
4566 && XEXP (XEXP (src2
, 0), 0) == src1
)
4567 split
= &XEXP (XEXP (src2
, 0), 0);
4571 SUBST (XEXP (x
, 0), src2
);
4576 /* If that didn't work, perhaps the first operand is complex and
4577 needs to be computed separately, so make a split point there.
4578 This will occur on machines that just support REG + CONST
4579 and have a constant moved through some previous computation. */
4581 else if (!OBJECT_P (XEXP (XEXP (x
, 0), 0))
4582 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
4583 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
4584 return &XEXP (XEXP (x
, 0), 0);
4587 /* If we have a PLUS whose first operand is complex, try computing it
4588 separately by making a split there. */
4589 if (GET_CODE (XEXP (x
, 0)) == PLUS
4590 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4592 && ! OBJECT_P (XEXP (XEXP (x
, 0), 0))
4593 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
4594 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
4595 return &XEXP (XEXP (x
, 0), 0);
4600 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4601 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4602 we need to put the operand into a register. So split at that
4605 if (SET_DEST (x
) == cc0_rtx
4606 && GET_CODE (SET_SRC (x
)) != COMPARE
4607 && GET_CODE (SET_SRC (x
)) != ZERO_EXTRACT
4608 && !OBJECT_P (SET_SRC (x
))
4609 && ! (GET_CODE (SET_SRC (x
)) == SUBREG
4610 && OBJECT_P (SUBREG_REG (SET_SRC (x
)))))
4611 return &SET_SRC (x
);
4614 /* See if we can split SET_SRC as it stands. */
4615 split
= find_split_point (&SET_SRC (x
), insn
, true);
4616 if (split
&& split
!= &SET_SRC (x
))
4619 /* See if we can split SET_DEST as it stands. */
4620 split
= find_split_point (&SET_DEST (x
), insn
, false);
4621 if (split
&& split
!= &SET_DEST (x
))
4624 /* See if this is a bitfield assignment with everything constant. If
4625 so, this is an IOR of an AND, so split it into that. */
4626 if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
4627 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x
), 0)))
4628 && CONST_INT_P (XEXP (SET_DEST (x
), 1))
4629 && CONST_INT_P (XEXP (SET_DEST (x
), 2))
4630 && CONST_INT_P (SET_SRC (x
))
4631 && ((INTVAL (XEXP (SET_DEST (x
), 1))
4632 + INTVAL (XEXP (SET_DEST (x
), 2)))
4633 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x
), 0))))
4634 && ! side_effects_p (XEXP (SET_DEST (x
), 0)))
4636 HOST_WIDE_INT pos
= INTVAL (XEXP (SET_DEST (x
), 2));
4637 unsigned HOST_WIDE_INT len
= INTVAL (XEXP (SET_DEST (x
), 1));
4638 unsigned HOST_WIDE_INT src
= INTVAL (SET_SRC (x
));
4639 rtx dest
= XEXP (SET_DEST (x
), 0);
4640 enum machine_mode mode
= GET_MODE (dest
);
4641 unsigned HOST_WIDE_INT mask
4642 = ((unsigned HOST_WIDE_INT
) 1 << len
) - 1;
4645 if (BITS_BIG_ENDIAN
)
4646 pos
= GET_MODE_PRECISION (mode
) - len
- pos
;
4648 or_mask
= gen_int_mode (src
<< pos
, mode
);
4651 simplify_gen_binary (IOR
, mode
, dest
, or_mask
));
4654 rtx negmask
= gen_int_mode (~(mask
<< pos
), mode
);
4656 simplify_gen_binary (IOR
, mode
,
4657 simplify_gen_binary (AND
, mode
,
4662 SUBST (SET_DEST (x
), dest
);
4664 split
= find_split_point (&SET_SRC (x
), insn
, true);
4665 if (split
&& split
!= &SET_SRC (x
))
4669 /* Otherwise, see if this is an operation that we can split into two.
4670 If so, try to split that. */
4671 code
= GET_CODE (SET_SRC (x
));
4676 /* If we are AND'ing with a large constant that is only a single
4677 bit and the result is only being used in a context where we
4678 need to know if it is zero or nonzero, replace it with a bit
4679 extraction. This will avoid the large constant, which might
4680 have taken more than one insn to make. If the constant were
4681 not a valid argument to the AND but took only one insn to make,
4682 this is no worse, but if it took more than one insn, it will
4685 if (CONST_INT_P (XEXP (SET_SRC (x
), 1))
4686 && REG_P (XEXP (SET_SRC (x
), 0))
4687 && (pos
= exact_log2 (UINTVAL (XEXP (SET_SRC (x
), 1)))) >= 7
4688 && REG_P (SET_DEST (x
))
4689 && (split
= find_single_use (SET_DEST (x
), insn
, (rtx
*) 0)) != 0
4690 && (GET_CODE (*split
) == EQ
|| GET_CODE (*split
) == NE
)
4691 && XEXP (*split
, 0) == SET_DEST (x
)
4692 && XEXP (*split
, 1) == const0_rtx
)
4694 rtx extraction
= make_extraction (GET_MODE (SET_DEST (x
)),
4695 XEXP (SET_SRC (x
), 0),
4696 pos
, NULL_RTX
, 1, 1, 0, 0);
4697 if (extraction
!= 0)
4699 SUBST (SET_SRC (x
), extraction
);
4700 return find_split_point (loc
, insn
, false);
4706 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4707 is known to be on, this can be converted into a NEG of a shift. */
4708 if (STORE_FLAG_VALUE
== -1 && XEXP (SET_SRC (x
), 1) == const0_rtx
4709 && GET_MODE (SET_SRC (x
)) == GET_MODE (XEXP (SET_SRC (x
), 0))
4710 && 1 <= (pos
= exact_log2
4711 (nonzero_bits (XEXP (SET_SRC (x
), 0),
4712 GET_MODE (XEXP (SET_SRC (x
), 0))))))
4714 enum machine_mode mode
= GET_MODE (XEXP (SET_SRC (x
), 0));
4718 gen_rtx_LSHIFTRT (mode
,
4719 XEXP (SET_SRC (x
), 0),
4722 split
= find_split_point (&SET_SRC (x
), insn
, true);
4723 if (split
&& split
!= &SET_SRC (x
))
4729 inner
= XEXP (SET_SRC (x
), 0);
4731 /* We can't optimize if either mode is a partial integer
4732 mode as we don't know how many bits are significant
4734 if (GET_MODE_CLASS (GET_MODE (inner
)) == MODE_PARTIAL_INT
4735 || GET_MODE_CLASS (GET_MODE (SET_SRC (x
))) == MODE_PARTIAL_INT
)
4739 len
= GET_MODE_PRECISION (GET_MODE (inner
));
4745 if (CONST_INT_P (XEXP (SET_SRC (x
), 1))
4746 && CONST_INT_P (XEXP (SET_SRC (x
), 2)))
4748 inner
= XEXP (SET_SRC (x
), 0);
4749 len
= INTVAL (XEXP (SET_SRC (x
), 1));
4750 pos
= INTVAL (XEXP (SET_SRC (x
), 2));
4752 if (BITS_BIG_ENDIAN
)
4753 pos
= GET_MODE_PRECISION (GET_MODE (inner
)) - len
- pos
;
4754 unsignedp
= (code
== ZERO_EXTRACT
);
4763 && pos
+ len
<= GET_MODE_PRECISION (GET_MODE (inner
)))
4765 enum machine_mode mode
= GET_MODE (SET_SRC (x
));
4767 /* For unsigned, we have a choice of a shift followed by an
4768 AND or two shifts. Use two shifts for field sizes where the
4769 constant might be too large. We assume here that we can
4770 always at least get 8-bit constants in an AND insn, which is
4771 true for every current RISC. */
4773 if (unsignedp
&& len
<= 8)
4775 unsigned HOST_WIDE_INT mask
4776 = ((unsigned HOST_WIDE_INT
) 1 << len
) - 1;
4780 (mode
, gen_lowpart (mode
, inner
),
4782 gen_int_mode (mask
, mode
)));
4784 split
= find_split_point (&SET_SRC (x
), insn
, true);
4785 if (split
&& split
!= &SET_SRC (x
))
4792 (unsignedp
? LSHIFTRT
: ASHIFTRT
, mode
,
4793 gen_rtx_ASHIFT (mode
,
4794 gen_lowpart (mode
, inner
),
4795 GEN_INT (GET_MODE_PRECISION (mode
)
4797 GEN_INT (GET_MODE_PRECISION (mode
) - len
)));
4799 split
= find_split_point (&SET_SRC (x
), insn
, true);
4800 if (split
&& split
!= &SET_SRC (x
))
4805 /* See if this is a simple operation with a constant as the second
4806 operand. It might be that this constant is out of range and hence
4807 could be used as a split point. */
4808 if (BINARY_P (SET_SRC (x
))
4809 && CONSTANT_P (XEXP (SET_SRC (x
), 1))
4810 && (OBJECT_P (XEXP (SET_SRC (x
), 0))
4811 || (GET_CODE (XEXP (SET_SRC (x
), 0)) == SUBREG
4812 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x
), 0))))))
4813 return &XEXP (SET_SRC (x
), 1);
4815 /* Finally, see if this is a simple operation with its first operand
4816 not in a register. The operation might require this operand in a
4817 register, so return it as a split point. We can always do this
4818 because if the first operand were another operation, we would have
4819 already found it as a split point. */
4820 if ((BINARY_P (SET_SRC (x
)) || UNARY_P (SET_SRC (x
)))
4821 && ! register_operand (XEXP (SET_SRC (x
), 0), VOIDmode
))
4822 return &XEXP (SET_SRC (x
), 0);
4828 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4829 it is better to write this as (not (ior A B)) so we can split it.
4830 Similarly for IOR. */
4831 if (GET_CODE (XEXP (x
, 0)) == NOT
&& GET_CODE (XEXP (x
, 1)) == NOT
)
4834 gen_rtx_NOT (GET_MODE (x
),
4835 gen_rtx_fmt_ee (code
== IOR
? AND
: IOR
,
4837 XEXP (XEXP (x
, 0), 0),
4838 XEXP (XEXP (x
, 1), 0))));
4839 return find_split_point (loc
, insn
, set_src
);
4842 /* Many RISC machines have a large set of logical insns. If the
4843 second operand is a NOT, put it first so we will try to split the
4844 other operand first. */
4845 if (GET_CODE (XEXP (x
, 1)) == NOT
)
4847 rtx tem
= XEXP (x
, 0);
4848 SUBST (XEXP (x
, 0), XEXP (x
, 1));
4849 SUBST (XEXP (x
, 1), tem
);
4855 /* Canonicalization can produce (minus A (mult B C)), where C is a
4856 constant. It may be better to try splitting (plus (mult B -C) A)
4857 instead if this isn't a multiply by a power of two. */
4858 if (set_src
&& code
== MINUS
&& GET_CODE (XEXP (x
, 1)) == MULT
4859 && GET_CODE (XEXP (XEXP (x
, 1), 1)) == CONST_INT
4860 && exact_log2 (INTVAL (XEXP (XEXP (x
, 1), 1))) < 0)
4862 enum machine_mode mode
= GET_MODE (x
);
4863 unsigned HOST_WIDE_INT this_int
= INTVAL (XEXP (XEXP (x
, 1), 1));
4864 HOST_WIDE_INT other_int
= trunc_int_for_mode (-this_int
, mode
);
4865 SUBST (*loc
, gen_rtx_PLUS (mode
,
4867 XEXP (XEXP (x
, 1), 0),
4868 gen_int_mode (other_int
,
4871 return find_split_point (loc
, insn
, set_src
);
4874 /* Split at a multiply-accumulate instruction. However if this is
4875 the SET_SRC, we likely do not have such an instruction and it's
4876 worthless to try this split. */
4877 if (!set_src
&& GET_CODE (XEXP (x
, 0)) == MULT
)
4884 /* Otherwise, select our actions depending on our rtx class. */
4885 switch (GET_RTX_CLASS (code
))
4887 case RTX_BITFIELD_OPS
: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4889 split
= find_split_point (&XEXP (x
, 2), insn
, false);
4892 /* ... fall through ... */
4894 case RTX_COMM_ARITH
:
4896 case RTX_COMM_COMPARE
:
4897 split
= find_split_point (&XEXP (x
, 1), insn
, false);
4900 /* ... fall through ... */
4902 /* Some machines have (and (shift ...) ...) insns. If X is not
4903 an AND, but XEXP (X, 0) is, use it as our split point. */
4904 if (GET_CODE (x
) != AND
&& GET_CODE (XEXP (x
, 0)) == AND
)
4905 return &XEXP (x
, 0);
4907 split
= find_split_point (&XEXP (x
, 0), insn
, false);
4913 /* Otherwise, we don't have a split point. */
4918 /* Throughout X, replace FROM with TO, and return the result.
4919 The result is TO if X is FROM;
4920 otherwise the result is X, but its contents may have been modified.
4921 If they were modified, a record was made in undobuf so that
4922 undo_all will (among other things) return X to its original state.
4924 If the number of changes necessary is too much to record to undo,
4925 the excess changes are not made, so the result is invalid.
4926 The changes already made can still be undone.
4927 undobuf.num_undo is incremented for such changes, so by testing that
4928 the caller can tell whether the result is valid.
4930 `n_occurrences' is incremented each time FROM is replaced.
4932 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4934 IN_COND is nonzero if we are at the top level of a condition.
4936 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4937 by copying if `n_occurrences' is nonzero. */
4940 subst (rtx x
, rtx from
, rtx to
, int in_dest
, int in_cond
, int unique_copy
)
4942 enum rtx_code code
= GET_CODE (x
);
4943 enum machine_mode op0_mode
= VOIDmode
;
4948 /* Two expressions are equal if they are identical copies of a shared
4949 RTX or if they are both registers with the same register number
4952 #define COMBINE_RTX_EQUAL_P(X,Y) \
4954 || (REG_P (X) && REG_P (Y) \
4955 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4957 if (! in_dest
&& COMBINE_RTX_EQUAL_P (x
, from
))
4960 return (unique_copy
&& n_occurrences
> 1 ? copy_rtx (to
) : to
);
4963 /* If X and FROM are the same register but different modes, they
4964 will not have been seen as equal above. However, the log links code
4965 will make a LOG_LINKS entry for that case. If we do nothing, we
4966 will try to rerecognize our original insn and, when it succeeds,
4967 we will delete the feeding insn, which is incorrect.
4969 So force this insn not to match in this (rare) case. */
4970 if (! in_dest
&& code
== REG
&& REG_P (from
)
4971 && reg_overlap_mentioned_p (x
, from
))
4972 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
4974 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4975 of which may contain things that can be combined. */
4976 if (code
!= MEM
&& code
!= LO_SUM
&& OBJECT_P (x
))
4979 /* It is possible to have a subexpression appear twice in the insn.
4980 Suppose that FROM is a register that appears within TO.
4981 Then, after that subexpression has been scanned once by `subst',
4982 the second time it is scanned, TO may be found. If we were
4983 to scan TO here, we would find FROM within it and create a
4984 self-referent rtl structure which is completely wrong. */
4985 if (COMBINE_RTX_EQUAL_P (x
, to
))
4988 /* Parallel asm_operands need special attention because all of the
4989 inputs are shared across the arms. Furthermore, unsharing the
4990 rtl results in recognition failures. Failure to handle this case
4991 specially can result in circular rtl.
4993 Solve this by doing a normal pass across the first entry of the
4994 parallel, and only processing the SET_DESTs of the subsequent
4997 if (code
== PARALLEL
4998 && GET_CODE (XVECEXP (x
, 0, 0)) == SET
4999 && GET_CODE (SET_SRC (XVECEXP (x
, 0, 0))) == ASM_OPERANDS
)
5001 new_rtx
= subst (XVECEXP (x
, 0, 0), from
, to
, 0, 0, unique_copy
);
5003 /* If this substitution failed, this whole thing fails. */
5004 if (GET_CODE (new_rtx
) == CLOBBER
5005 && XEXP (new_rtx
, 0) == const0_rtx
)
5008 SUBST (XVECEXP (x
, 0, 0), new_rtx
);
5010 for (i
= XVECLEN (x
, 0) - 1; i
>= 1; i
--)
5012 rtx dest
= SET_DEST (XVECEXP (x
, 0, i
));
5015 && GET_CODE (dest
) != CC0
5016 && GET_CODE (dest
) != PC
)
5018 new_rtx
= subst (dest
, from
, to
, 0, 0, unique_copy
);
5020 /* If this substitution failed, this whole thing fails. */
5021 if (GET_CODE (new_rtx
) == CLOBBER
5022 && XEXP (new_rtx
, 0) == const0_rtx
)
5025 SUBST (SET_DEST (XVECEXP (x
, 0, i
)), new_rtx
);
5031 len
= GET_RTX_LENGTH (code
);
5032 fmt
= GET_RTX_FORMAT (code
);
5034 /* We don't need to process a SET_DEST that is a register, CC0,
5035 or PC, so set up to skip this common case. All other cases
5036 where we want to suppress replacing something inside a
5037 SET_SRC are handled via the IN_DEST operand. */
5039 && (REG_P (SET_DEST (x
))
5040 || GET_CODE (SET_DEST (x
)) == CC0
5041 || GET_CODE (SET_DEST (x
)) == PC
))
5044 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5047 op0_mode
= GET_MODE (XEXP (x
, 0));
5049 for (i
= 0; i
< len
; i
++)
5054 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5056 if (COMBINE_RTX_EQUAL_P (XVECEXP (x
, i
, j
), from
))
5058 new_rtx
= (unique_copy
&& n_occurrences
5059 ? copy_rtx (to
) : to
);
5064 new_rtx
= subst (XVECEXP (x
, i
, j
), from
, to
, 0, 0,
5067 /* If this substitution failed, this whole thing
5069 if (GET_CODE (new_rtx
) == CLOBBER
5070 && XEXP (new_rtx
, 0) == const0_rtx
)
5074 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
5077 else if (fmt
[i
] == 'e')
5079 /* If this is a register being set, ignore it. */
5080 new_rtx
= XEXP (x
, i
);
5083 && (((code
== SUBREG
|| code
== ZERO_EXTRACT
)
5085 || code
== STRICT_LOW_PART
))
5088 else if (COMBINE_RTX_EQUAL_P (XEXP (x
, i
), from
))
5090 /* In general, don't install a subreg involving two
5091 modes not tieable. It can worsen register
5092 allocation, and can even make invalid reload
5093 insns, since the reg inside may need to be copied
5094 from in the outside mode, and that may be invalid
5095 if it is an fp reg copied in integer mode.
5097 We allow two exceptions to this: It is valid if
5098 it is inside another SUBREG and the mode of that
5099 SUBREG and the mode of the inside of TO is
5100 tieable and it is valid if X is a SET that copies
5103 if (GET_CODE (to
) == SUBREG
5104 && ! MODES_TIEABLE_P (GET_MODE (to
),
5105 GET_MODE (SUBREG_REG (to
)))
5106 && ! (code
== SUBREG
5107 && MODES_TIEABLE_P (GET_MODE (x
),
5108 GET_MODE (SUBREG_REG (to
))))
5110 && ! (code
== SET
&& i
== 1 && XEXP (x
, 0) == cc0_rtx
)
5113 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5115 #ifdef CANNOT_CHANGE_MODE_CLASS
5118 && REGNO (to
) < FIRST_PSEUDO_REGISTER
5119 && REG_CANNOT_CHANGE_MODE_P (REGNO (to
),
5122 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5125 new_rtx
= (unique_copy
&& n_occurrences
? copy_rtx (to
) : to
);
5129 /* If we are in a SET_DEST, suppress most cases unless we
5130 have gone inside a MEM, in which case we want to
5131 simplify the address. We assume here that things that
5132 are actually part of the destination have their inner
5133 parts in the first expression. This is true for SUBREG,
5134 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5135 things aside from REG and MEM that should appear in a
5137 new_rtx
= subst (XEXP (x
, i
), from
, to
,
5139 && (code
== SUBREG
|| code
== STRICT_LOW_PART
5140 || code
== ZERO_EXTRACT
))
5143 code
== IF_THEN_ELSE
&& i
== 0,
5146 /* If we found that we will have to reject this combination,
5147 indicate that by returning the CLOBBER ourselves, rather than
5148 an expression containing it. This will speed things up as
5149 well as prevent accidents where two CLOBBERs are considered
5150 to be equal, thus producing an incorrect simplification. */
5152 if (GET_CODE (new_rtx
) == CLOBBER
&& XEXP (new_rtx
, 0) == const0_rtx
)
5155 if (GET_CODE (x
) == SUBREG
&& CONST_SCALAR_INT_P (new_rtx
))
5157 enum machine_mode mode
= GET_MODE (x
);
5159 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
5160 GET_MODE (SUBREG_REG (x
)),
5163 x
= gen_rtx_CLOBBER (mode
, const0_rtx
);
5165 else if (CONST_SCALAR_INT_P (new_rtx
)
5166 && GET_CODE (x
) == ZERO_EXTEND
)
5168 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
5169 new_rtx
, GET_MODE (XEXP (x
, 0)));
5173 SUBST (XEXP (x
, i
), new_rtx
);
5178 /* Check if we are loading something from the constant pool via float
5179 extension; in this case we would undo compress_float_constant
5180 optimization and degenerate constant load to an immediate value. */
5181 if (GET_CODE (x
) == FLOAT_EXTEND
5182 && MEM_P (XEXP (x
, 0))
5183 && MEM_READONLY_P (XEXP (x
, 0)))
5185 rtx tmp
= avoid_constant_pool_reference (x
);
5190 /* Try to simplify X. If the simplification changed the code, it is likely
5191 that further simplification will help, so loop, but limit the number
5192 of repetitions that will be performed. */
5194 for (i
= 0; i
< 4; i
++)
5196 /* If X is sufficiently simple, don't bother trying to do anything
5198 if (code
!= CONST_INT
&& code
!= REG
&& code
!= CLOBBER
)
5199 x
= combine_simplify_rtx (x
, op0_mode
, in_dest
, in_cond
);
5201 if (GET_CODE (x
) == code
)
5204 code
= GET_CODE (x
);
5206 /* We no longer know the original mode of operand 0 since we
5207 have changed the form of X) */
5208 op0_mode
= VOIDmode
;
5214 /* Simplify X, a piece of RTL. We just operate on the expression at the
5215 outer level; call `subst' to simplify recursively. Return the new
5218 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5219 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5223 combine_simplify_rtx (rtx x
, enum machine_mode op0_mode
, int in_dest
,
5226 enum rtx_code code
= GET_CODE (x
);
5227 enum machine_mode mode
= GET_MODE (x
);
5231 /* If this is a commutative operation, put a constant last and a complex
5232 expression first. We don't need to do this for comparisons here. */
5233 if (COMMUTATIVE_ARITH_P (x
)
5234 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
5237 SUBST (XEXP (x
, 0), XEXP (x
, 1));
5238 SUBST (XEXP (x
, 1), temp
);
5241 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5242 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5243 things. Check for cases where both arms are testing the same
5246 Don't do anything if all operands are very simple. */
5249 && ((!OBJECT_P (XEXP (x
, 0))
5250 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5251 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))
5252 || (!OBJECT_P (XEXP (x
, 1))
5253 && ! (GET_CODE (XEXP (x
, 1)) == SUBREG
5254 && OBJECT_P (SUBREG_REG (XEXP (x
, 1)))))))
5256 && (!OBJECT_P (XEXP (x
, 0))
5257 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5258 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))))
5260 rtx cond
, true_rtx
, false_rtx
;
5262 cond
= if_then_else_cond (x
, &true_rtx
, &false_rtx
);
5264 /* If everything is a comparison, what we have is highly unlikely
5265 to be simpler, so don't use it. */
5266 && ! (COMPARISON_P (x
)
5267 && (COMPARISON_P (true_rtx
) || COMPARISON_P (false_rtx
))))
5269 rtx cop1
= const0_rtx
;
5270 enum rtx_code cond_code
= simplify_comparison (NE
, &cond
, &cop1
);
5272 if (cond_code
== NE
&& COMPARISON_P (cond
))
5275 /* Simplify the alternative arms; this may collapse the true and
5276 false arms to store-flag values. Be careful to use copy_rtx
5277 here since true_rtx or false_rtx might share RTL with x as a
5278 result of the if_then_else_cond call above. */
5279 true_rtx
= subst (copy_rtx (true_rtx
), pc_rtx
, pc_rtx
, 0, 0, 0);
5280 false_rtx
= subst (copy_rtx (false_rtx
), pc_rtx
, pc_rtx
, 0, 0, 0);
5282 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5283 is unlikely to be simpler. */
5284 if (general_operand (true_rtx
, VOIDmode
)
5285 && general_operand (false_rtx
, VOIDmode
))
5287 enum rtx_code reversed
;
5289 /* Restarting if we generate a store-flag expression will cause
5290 us to loop. Just drop through in this case. */
5292 /* If the result values are STORE_FLAG_VALUE and zero, we can
5293 just make the comparison operation. */
5294 if (true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
5295 x
= simplify_gen_relational (cond_code
, mode
, VOIDmode
,
5297 else if (true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
5298 && ((reversed
= reversed_comparison_code_parts
5299 (cond_code
, cond
, cop1
, NULL
))
5301 x
= simplify_gen_relational (reversed
, mode
, VOIDmode
,
5304 /* Likewise, we can make the negate of a comparison operation
5305 if the result values are - STORE_FLAG_VALUE and zero. */
5306 else if (CONST_INT_P (true_rtx
)
5307 && INTVAL (true_rtx
) == - STORE_FLAG_VALUE
5308 && false_rtx
== const0_rtx
)
5309 x
= simplify_gen_unary (NEG
, mode
,
5310 simplify_gen_relational (cond_code
,
5314 else if (CONST_INT_P (false_rtx
)
5315 && INTVAL (false_rtx
) == - STORE_FLAG_VALUE
5316 && true_rtx
== const0_rtx
5317 && ((reversed
= reversed_comparison_code_parts
5318 (cond_code
, cond
, cop1
, NULL
))
5320 x
= simplify_gen_unary (NEG
, mode
,
5321 simplify_gen_relational (reversed
,
5326 return gen_rtx_IF_THEN_ELSE (mode
,
5327 simplify_gen_relational (cond_code
,
5332 true_rtx
, false_rtx
);
5334 code
= GET_CODE (x
);
5335 op0_mode
= VOIDmode
;
5340 /* Try to fold this expression in case we have constants that weren't
5343 switch (GET_RTX_CLASS (code
))
5346 if (op0_mode
== VOIDmode
)
5347 op0_mode
= GET_MODE (XEXP (x
, 0));
5348 temp
= simplify_unary_operation (code
, mode
, XEXP (x
, 0), op0_mode
);
5351 case RTX_COMM_COMPARE
:
5353 enum machine_mode cmp_mode
= GET_MODE (XEXP (x
, 0));
5354 if (cmp_mode
== VOIDmode
)
5356 cmp_mode
= GET_MODE (XEXP (x
, 1));
5357 if (cmp_mode
== VOIDmode
)
5358 cmp_mode
= op0_mode
;
5360 temp
= simplify_relational_operation (code
, mode
, cmp_mode
,
5361 XEXP (x
, 0), XEXP (x
, 1));
5364 case RTX_COMM_ARITH
:
5366 temp
= simplify_binary_operation (code
, mode
, XEXP (x
, 0), XEXP (x
, 1));
5368 case RTX_BITFIELD_OPS
:
5370 temp
= simplify_ternary_operation (code
, mode
, op0_mode
, XEXP (x
, 0),
5371 XEXP (x
, 1), XEXP (x
, 2));
5380 code
= GET_CODE (temp
);
5381 op0_mode
= VOIDmode
;
5382 mode
= GET_MODE (temp
);
5385 /* First see if we can apply the inverse distributive law. */
5386 if (code
== PLUS
|| code
== MINUS
5387 || code
== AND
|| code
== IOR
|| code
== XOR
)
5389 x
= apply_distributive_law (x
);
5390 code
= GET_CODE (x
);
5391 op0_mode
= VOIDmode
;
5394 /* If CODE is an associative operation not otherwise handled, see if we
5395 can associate some operands. This can win if they are constants or
5396 if they are logically related (i.e. (a & b) & a). */
5397 if ((code
== PLUS
|| code
== MINUS
|| code
== MULT
|| code
== DIV
5398 || code
== AND
|| code
== IOR
|| code
== XOR
5399 || code
== SMAX
|| code
== SMIN
|| code
== UMAX
|| code
== UMIN
)
5400 && ((INTEGRAL_MODE_P (mode
) && code
!= DIV
)
5401 || (flag_associative_math
&& FLOAT_MODE_P (mode
))))
5403 if (GET_CODE (XEXP (x
, 0)) == code
)
5405 rtx other
= XEXP (XEXP (x
, 0), 0);
5406 rtx inner_op0
= XEXP (XEXP (x
, 0), 1);
5407 rtx inner_op1
= XEXP (x
, 1);
5410 /* Make sure we pass the constant operand if any as the second
5411 one if this is a commutative operation. */
5412 if (CONSTANT_P (inner_op0
) && COMMUTATIVE_ARITH_P (x
))
5414 rtx tem
= inner_op0
;
5415 inner_op0
= inner_op1
;
5418 inner
= simplify_binary_operation (code
== MINUS
? PLUS
5419 : code
== DIV
? MULT
5421 mode
, inner_op0
, inner_op1
);
5423 /* For commutative operations, try the other pair if that one
5425 if (inner
== 0 && COMMUTATIVE_ARITH_P (x
))
5427 other
= XEXP (XEXP (x
, 0), 1);
5428 inner
= simplify_binary_operation (code
, mode
,
5429 XEXP (XEXP (x
, 0), 0),
5434 return simplify_gen_binary (code
, mode
, other
, inner
);
5438 /* A little bit of algebraic simplification here. */
5442 /* Ensure that our address has any ASHIFTs converted to MULT in case
5443 address-recognizing predicates are called later. */
5444 temp
= make_compound_operation (XEXP (x
, 0), MEM
);
5445 SUBST (XEXP (x
, 0), temp
);
5449 if (op0_mode
== VOIDmode
)
5450 op0_mode
= GET_MODE (SUBREG_REG (x
));
5452 /* See if this can be moved to simplify_subreg. */
5453 if (CONSTANT_P (SUBREG_REG (x
))
5454 && subreg_lowpart_offset (mode
, op0_mode
) == SUBREG_BYTE (x
)
5455 /* Don't call gen_lowpart if the inner mode
5456 is VOIDmode and we cannot simplify it, as SUBREG without
5457 inner mode is invalid. */
5458 && (GET_MODE (SUBREG_REG (x
)) != VOIDmode
5459 || gen_lowpart_common (mode
, SUBREG_REG (x
))))
5460 return gen_lowpart (mode
, SUBREG_REG (x
));
5462 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x
))) == MODE_CC
)
5466 temp
= simplify_subreg (mode
, SUBREG_REG (x
), op0_mode
,
5471 /* If op is known to have all lower bits zero, the result is zero. */
5473 && SCALAR_INT_MODE_P (mode
)
5474 && SCALAR_INT_MODE_P (op0_mode
)
5475 && GET_MODE_PRECISION (mode
) < GET_MODE_PRECISION (op0_mode
)
5476 && subreg_lowpart_offset (mode
, op0_mode
) == SUBREG_BYTE (x
)
5477 && HWI_COMPUTABLE_MODE_P (op0_mode
)
5478 && (nonzero_bits (SUBREG_REG (x
), op0_mode
)
5479 & GET_MODE_MASK (mode
)) == 0)
5480 return CONST0_RTX (mode
);
5483 /* Don't change the mode of the MEM if that would change the meaning
5485 if (MEM_P (SUBREG_REG (x
))
5486 && (MEM_VOLATILE_P (SUBREG_REG (x
))
5487 || mode_dependent_address_p (XEXP (SUBREG_REG (x
), 0),
5488 MEM_ADDR_SPACE (SUBREG_REG (x
)))))
5489 return gen_rtx_CLOBBER (mode
, const0_rtx
);
5491 /* Note that we cannot do any narrowing for non-constants since
5492 we might have been counting on using the fact that some bits were
5493 zero. We now do this in the SET. */
5498 temp
= expand_compound_operation (XEXP (x
, 0));
5500 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5501 replaced by (lshiftrt X C). This will convert
5502 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5504 if (GET_CODE (temp
) == ASHIFTRT
5505 && CONST_INT_P (XEXP (temp
, 1))
5506 && INTVAL (XEXP (temp
, 1)) == GET_MODE_PRECISION (mode
) - 1)
5507 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (temp
, 0),
5508 INTVAL (XEXP (temp
, 1)));
5510 /* If X has only a single bit that might be nonzero, say, bit I, convert
5511 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5512 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5513 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5514 or a SUBREG of one since we'd be making the expression more
5515 complex if it was just a register. */
5518 && ! (GET_CODE (temp
) == SUBREG
5519 && REG_P (SUBREG_REG (temp
)))
5520 && (i
= exact_log2 (nonzero_bits (temp
, mode
))) >= 0)
5522 rtx temp1
= simplify_shift_const
5523 (NULL_RTX
, ASHIFTRT
, mode
,
5524 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, temp
,
5525 GET_MODE_PRECISION (mode
) - 1 - i
),
5526 GET_MODE_PRECISION (mode
) - 1 - i
);
5528 /* If all we did was surround TEMP with the two shifts, we
5529 haven't improved anything, so don't use it. Otherwise,
5530 we are better off with TEMP1. */
5531 if (GET_CODE (temp1
) != ASHIFTRT
5532 || GET_CODE (XEXP (temp1
, 0)) != ASHIFT
5533 || XEXP (XEXP (temp1
, 0), 0) != temp
)
5539 /* We can't handle truncation to a partial integer mode here
5540 because we don't know the real bitsize of the partial
5542 if (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
5545 if (HWI_COMPUTABLE_MODE_P (mode
))
5547 force_to_mode (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
5548 GET_MODE_MASK (mode
), 0));
5550 /* We can truncate a constant value and return it. */
5551 if (CONST_INT_P (XEXP (x
, 0)))
5552 return gen_int_mode (INTVAL (XEXP (x
, 0)), mode
);
5554 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5555 whose value is a comparison can be replaced with a subreg if
5556 STORE_FLAG_VALUE permits. */
5557 if (HWI_COMPUTABLE_MODE_P (mode
)
5558 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0
5559 && (temp
= get_last_value (XEXP (x
, 0)))
5560 && COMPARISON_P (temp
))
5561 return gen_lowpart (mode
, XEXP (x
, 0));
5565 /* (const (const X)) can become (const X). Do it this way rather than
5566 returning the inner CONST since CONST can be shared with a
5568 if (GET_CODE (XEXP (x
, 0)) == CONST
)
5569 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
5574 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5575 can add in an offset. find_split_point will split this address up
5576 again if it doesn't match. */
5577 if (GET_CODE (XEXP (x
, 0)) == HIGH
5578 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)))
5584 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5585 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5586 bit-field and can be replaced by either a sign_extend or a
5587 sign_extract. The `and' may be a zero_extend and the two
5588 <c>, -<c> constants may be reversed. */
5589 if (GET_CODE (XEXP (x
, 0)) == XOR
5590 && CONST_INT_P (XEXP (x
, 1))
5591 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
5592 && INTVAL (XEXP (x
, 1)) == -INTVAL (XEXP (XEXP (x
, 0), 1))
5593 && ((i
= exact_log2 (UINTVAL (XEXP (XEXP (x
, 0), 1)))) >= 0
5594 || (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0)
5595 && HWI_COMPUTABLE_MODE_P (mode
)
5596 && ((GET_CODE (XEXP (XEXP (x
, 0), 0)) == AND
5597 && CONST_INT_P (XEXP (XEXP (XEXP (x
, 0), 0), 1))
5598 && (UINTVAL (XEXP (XEXP (XEXP (x
, 0), 0), 1))
5599 == ((unsigned HOST_WIDE_INT
) 1 << (i
+ 1)) - 1))
5600 || (GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
5601 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)))
5602 == (unsigned int) i
+ 1))))
5603 return simplify_shift_const
5604 (NULL_RTX
, ASHIFTRT
, mode
,
5605 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
5606 XEXP (XEXP (XEXP (x
, 0), 0), 0),
5607 GET_MODE_PRECISION (mode
) - (i
+ 1)),
5608 GET_MODE_PRECISION (mode
) - (i
+ 1));
5610 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5611 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5612 the bitsize of the mode - 1. This allows simplification of
5613 "a = (b & 8) == 0;" */
5614 if (XEXP (x
, 1) == constm1_rtx
5615 && !REG_P (XEXP (x
, 0))
5616 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5617 && REG_P (SUBREG_REG (XEXP (x
, 0))))
5618 && nonzero_bits (XEXP (x
, 0), mode
) == 1)
5619 return simplify_shift_const (NULL_RTX
, ASHIFTRT
, mode
,
5620 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
5621 gen_rtx_XOR (mode
, XEXP (x
, 0), const1_rtx
),
5622 GET_MODE_PRECISION (mode
) - 1),
5623 GET_MODE_PRECISION (mode
) - 1);
5625 /* If we are adding two things that have no bits in common, convert
5626 the addition into an IOR. This will often be further simplified,
5627 for example in cases like ((a & 1) + (a & 2)), which can
5630 if (HWI_COMPUTABLE_MODE_P (mode
)
5631 && (nonzero_bits (XEXP (x
, 0), mode
)
5632 & nonzero_bits (XEXP (x
, 1), mode
)) == 0)
5634 /* Try to simplify the expression further. */
5635 rtx tor
= simplify_gen_binary (IOR
, mode
, XEXP (x
, 0), XEXP (x
, 1));
5636 temp
= combine_simplify_rtx (tor
, VOIDmode
, in_dest
, 0);
5638 /* If we could, great. If not, do not go ahead with the IOR
5639 replacement, since PLUS appears in many special purpose
5640 address arithmetic instructions. */
5641 if (GET_CODE (temp
) != CLOBBER
5642 && (GET_CODE (temp
) != IOR
5643 || ((XEXP (temp
, 0) != XEXP (x
, 0)
5644 || XEXP (temp
, 1) != XEXP (x
, 1))
5645 && (XEXP (temp
, 0) != XEXP (x
, 1)
5646 || XEXP (temp
, 1) != XEXP (x
, 0)))))
5652 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5653 (and <foo> (const_int pow2-1)) */
5654 if (GET_CODE (XEXP (x
, 1)) == AND
5655 && CONST_INT_P (XEXP (XEXP (x
, 1), 1))
5656 && exact_log2 (-UINTVAL (XEXP (XEXP (x
, 1), 1))) >= 0
5657 && rtx_equal_p (XEXP (XEXP (x
, 1), 0), XEXP (x
, 0)))
5658 return simplify_and_const_int (NULL_RTX
, mode
, XEXP (x
, 0),
5659 -INTVAL (XEXP (XEXP (x
, 1), 1)) - 1);
5663 /* If we have (mult (plus A B) C), apply the distributive law and then
5664 the inverse distributive law to see if things simplify. This
5665 occurs mostly in addresses, often when unrolling loops. */
5667 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
5669 rtx result
= distribute_and_simplify_rtx (x
, 0);
5674 /* Try simplify a*(b/c) as (a*b)/c. */
5675 if (FLOAT_MODE_P (mode
) && flag_associative_math
5676 && GET_CODE (XEXP (x
, 0)) == DIV
)
5678 rtx tem
= simplify_binary_operation (MULT
, mode
,
5679 XEXP (XEXP (x
, 0), 0),
5682 return simplify_gen_binary (DIV
, mode
, tem
, XEXP (XEXP (x
, 0), 1));
5687 /* If this is a divide by a power of two, treat it as a shift if
5688 its first operand is a shift. */
5689 if (CONST_INT_P (XEXP (x
, 1))
5690 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0
5691 && (GET_CODE (XEXP (x
, 0)) == ASHIFT
5692 || GET_CODE (XEXP (x
, 0)) == LSHIFTRT
5693 || GET_CODE (XEXP (x
, 0)) == ASHIFTRT
5694 || GET_CODE (XEXP (x
, 0)) == ROTATE
5695 || GET_CODE (XEXP (x
, 0)) == ROTATERT
))
5696 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (x
, 0), i
);
5700 case GT
: case GTU
: case GE
: case GEU
:
5701 case LT
: case LTU
: case LE
: case LEU
:
5702 case UNEQ
: case LTGT
:
5703 case UNGT
: case UNGE
:
5704 case UNLT
: case UNLE
:
5705 case UNORDERED
: case ORDERED
:
5706 /* If the first operand is a condition code, we can't do anything
5708 if (GET_CODE (XEXP (x
, 0)) == COMPARE
5709 || (GET_MODE_CLASS (GET_MODE (XEXP (x
, 0))) != MODE_CC
5710 && ! CC0_P (XEXP (x
, 0))))
5712 rtx op0
= XEXP (x
, 0);
5713 rtx op1
= XEXP (x
, 1);
5714 enum rtx_code new_code
;
5716 if (GET_CODE (op0
) == COMPARE
)
5717 op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
5719 /* Simplify our comparison, if possible. */
5720 new_code
= simplify_comparison (code
, &op0
, &op1
);
5722 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5723 if only the low-order bit is possibly nonzero in X (such as when
5724 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5725 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5726 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5729 Remove any ZERO_EXTRACT we made when thinking this was a
5730 comparison. It may now be simpler to use, e.g., an AND. If a
5731 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5732 the call to make_compound_operation in the SET case.
5734 Don't apply these optimizations if the caller would
5735 prefer a comparison rather than a value.
5736 E.g., for the condition in an IF_THEN_ELSE most targets need
5737 an explicit comparison. */
5742 else if (STORE_FLAG_VALUE
== 1
5743 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5744 && op1
== const0_rtx
5745 && mode
== GET_MODE (op0
)
5746 && nonzero_bits (op0
, mode
) == 1)
5747 return gen_lowpart (mode
,
5748 expand_compound_operation (op0
));
5750 else if (STORE_FLAG_VALUE
== 1
5751 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5752 && op1
== const0_rtx
5753 && mode
== GET_MODE (op0
)
5754 && (num_sign_bit_copies (op0
, mode
)
5755 == GET_MODE_PRECISION (mode
)))
5757 op0
= expand_compound_operation (op0
);
5758 return simplify_gen_unary (NEG
, mode
,
5759 gen_lowpart (mode
, op0
),
5763 else if (STORE_FLAG_VALUE
== 1
5764 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
5765 && op1
== const0_rtx
5766 && mode
== GET_MODE (op0
)
5767 && nonzero_bits (op0
, mode
) == 1)
5769 op0
= expand_compound_operation (op0
);
5770 return simplify_gen_binary (XOR
, mode
,
5771 gen_lowpart (mode
, op0
),
5775 else if (STORE_FLAG_VALUE
== 1
5776 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
5777 && op1
== const0_rtx
5778 && mode
== GET_MODE (op0
)
5779 && (num_sign_bit_copies (op0
, mode
)
5780 == GET_MODE_PRECISION (mode
)))
5782 op0
= expand_compound_operation (op0
);
5783 return plus_constant (mode
, gen_lowpart (mode
, op0
), 1);
5786 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5791 else if (STORE_FLAG_VALUE
== -1
5792 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5793 && op1
== const0_rtx
5794 && (num_sign_bit_copies (op0
, mode
)
5795 == GET_MODE_PRECISION (mode
)))
5796 return gen_lowpart (mode
,
5797 expand_compound_operation (op0
));
5799 else if (STORE_FLAG_VALUE
== -1
5800 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5801 && op1
== const0_rtx
5802 && mode
== GET_MODE (op0
)
5803 && nonzero_bits (op0
, mode
) == 1)
5805 op0
= expand_compound_operation (op0
);
5806 return simplify_gen_unary (NEG
, mode
,
5807 gen_lowpart (mode
, op0
),
5811 else if (STORE_FLAG_VALUE
== -1
5812 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
5813 && op1
== const0_rtx
5814 && mode
== GET_MODE (op0
)
5815 && (num_sign_bit_copies (op0
, mode
)
5816 == GET_MODE_PRECISION (mode
)))
5818 op0
= expand_compound_operation (op0
);
5819 return simplify_gen_unary (NOT
, mode
,
5820 gen_lowpart (mode
, op0
),
5824 /* If X is 0/1, (eq X 0) is X-1. */
5825 else if (STORE_FLAG_VALUE
== -1
5826 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
5827 && op1
== const0_rtx
5828 && mode
== GET_MODE (op0
)
5829 && nonzero_bits (op0
, mode
) == 1)
5831 op0
= expand_compound_operation (op0
);
5832 return plus_constant (mode
, gen_lowpart (mode
, op0
), -1);
5835 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5836 one bit that might be nonzero, we can convert (ne x 0) to
5837 (ashift x c) where C puts the bit in the sign bit. Remove any
5838 AND with STORE_FLAG_VALUE when we are done, since we are only
5839 going to test the sign bit. */
5840 if (new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5841 && HWI_COMPUTABLE_MODE_P (mode
)
5842 && val_signbit_p (mode
, STORE_FLAG_VALUE
)
5843 && op1
== const0_rtx
5844 && mode
== GET_MODE (op0
)
5845 && (i
= exact_log2 (nonzero_bits (op0
, mode
))) >= 0)
5847 x
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
5848 expand_compound_operation (op0
),
5849 GET_MODE_PRECISION (mode
) - 1 - i
);
5850 if (GET_CODE (x
) == AND
&& XEXP (x
, 1) == const_true_rtx
)
5856 /* If the code changed, return a whole new comparison.
5857 We also need to avoid using SUBST in cases where
5858 simplify_comparison has widened a comparison with a CONST_INT,
5859 since in that case the wider CONST_INT may fail the sanity
5860 checks in do_SUBST. */
5861 if (new_code
!= code
5862 || (CONST_INT_P (op1
)
5863 && GET_MODE (op0
) != GET_MODE (XEXP (x
, 0))
5864 && GET_MODE (op0
) != GET_MODE (XEXP (x
, 1))))
5865 return gen_rtx_fmt_ee (new_code
, mode
, op0
, op1
);
5867 /* Otherwise, keep this operation, but maybe change its operands.
5868 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5869 SUBST (XEXP (x
, 0), op0
);
5870 SUBST (XEXP (x
, 1), op1
);
5875 return simplify_if_then_else (x
);
5881 /* If we are processing SET_DEST, we are done. */
5885 return expand_compound_operation (x
);
5888 return simplify_set (x
);
5892 return simplify_logical (x
);
5899 /* If this is a shift by a constant amount, simplify it. */
5900 if (CONST_INT_P (XEXP (x
, 1)))
5901 return simplify_shift_const (x
, code
, mode
, XEXP (x
, 0),
5902 INTVAL (XEXP (x
, 1)));
5904 else if (SHIFT_COUNT_TRUNCATED
&& !REG_P (XEXP (x
, 1)))
5906 force_to_mode (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)),
5907 ((unsigned HOST_WIDE_INT
) 1
5908 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x
))))
5920 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5923 simplify_if_then_else (rtx x
)
5925 enum machine_mode mode
= GET_MODE (x
);
5926 rtx cond
= XEXP (x
, 0);
5927 rtx true_rtx
= XEXP (x
, 1);
5928 rtx false_rtx
= XEXP (x
, 2);
5929 enum rtx_code true_code
= GET_CODE (cond
);
5930 int comparison_p
= COMPARISON_P (cond
);
5933 enum rtx_code false_code
;
5936 /* Simplify storing of the truth value. */
5937 if (comparison_p
&& true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
5938 return simplify_gen_relational (true_code
, mode
, VOIDmode
,
5939 XEXP (cond
, 0), XEXP (cond
, 1));
5941 /* Also when the truth value has to be reversed. */
5943 && true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
5944 && (reversed
= reversed_comparison (cond
, mode
)))
5947 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5948 in it is being compared against certain values. Get the true and false
5949 comparisons and see if that says anything about the value of each arm. */
5952 && ((false_code
= reversed_comparison_code (cond
, NULL
))
5954 && REG_P (XEXP (cond
, 0)))
5957 rtx from
= XEXP (cond
, 0);
5958 rtx true_val
= XEXP (cond
, 1);
5959 rtx false_val
= true_val
;
5962 /* If FALSE_CODE is EQ, swap the codes and arms. */
5964 if (false_code
== EQ
)
5966 swapped
= 1, true_code
= EQ
, false_code
= NE
;
5967 temp
= true_rtx
, true_rtx
= false_rtx
, false_rtx
= temp
;
5970 /* If we are comparing against zero and the expression being tested has
5971 only a single bit that might be nonzero, that is its value when it is
5972 not equal to zero. Similarly if it is known to be -1 or 0. */
5974 if (true_code
== EQ
&& true_val
== const0_rtx
5975 && exact_log2 (nzb
= nonzero_bits (from
, GET_MODE (from
))) >= 0)
5978 false_val
= gen_int_mode (nzb
, GET_MODE (from
));
5980 else if (true_code
== EQ
&& true_val
== const0_rtx
5981 && (num_sign_bit_copies (from
, GET_MODE (from
))
5982 == GET_MODE_PRECISION (GET_MODE (from
))))
5985 false_val
= constm1_rtx
;
5988 /* Now simplify an arm if we know the value of the register in the
5989 branch and it is used in the arm. Be careful due to the potential
5990 of locally-shared RTL. */
5992 if (reg_mentioned_p (from
, true_rtx
))
5993 true_rtx
= subst (known_cond (copy_rtx (true_rtx
), true_code
,
5995 pc_rtx
, pc_rtx
, 0, 0, 0);
5996 if (reg_mentioned_p (from
, false_rtx
))
5997 false_rtx
= subst (known_cond (copy_rtx (false_rtx
), false_code
,
5999 pc_rtx
, pc_rtx
, 0, 0, 0);
6001 SUBST (XEXP (x
, 1), swapped
? false_rtx
: true_rtx
);
6002 SUBST (XEXP (x
, 2), swapped
? true_rtx
: false_rtx
);
6004 true_rtx
= XEXP (x
, 1);
6005 false_rtx
= XEXP (x
, 2);
6006 true_code
= GET_CODE (cond
);
6009 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6010 reversed, do so to avoid needing two sets of patterns for
6011 subtract-and-branch insns. Similarly if we have a constant in the true
6012 arm, the false arm is the same as the first operand of the comparison, or
6013 the false arm is more complicated than the true arm. */
6016 && reversed_comparison_code (cond
, NULL
) != UNKNOWN
6017 && (true_rtx
== pc_rtx
6018 || (CONSTANT_P (true_rtx
)
6019 && !CONST_INT_P (false_rtx
) && false_rtx
!= pc_rtx
)
6020 || true_rtx
== const0_rtx
6021 || (OBJECT_P (true_rtx
) && !OBJECT_P (false_rtx
))
6022 || (GET_CODE (true_rtx
) == SUBREG
&& OBJECT_P (SUBREG_REG (true_rtx
))
6023 && !OBJECT_P (false_rtx
))
6024 || reg_mentioned_p (true_rtx
, false_rtx
)
6025 || rtx_equal_p (false_rtx
, XEXP (cond
, 0))))
6027 true_code
= reversed_comparison_code (cond
, NULL
);
6028 SUBST (XEXP (x
, 0), reversed_comparison (cond
, GET_MODE (cond
)));
6029 SUBST (XEXP (x
, 1), false_rtx
);
6030 SUBST (XEXP (x
, 2), true_rtx
);
6032 temp
= true_rtx
, true_rtx
= false_rtx
, false_rtx
= temp
;
6035 /* It is possible that the conditional has been simplified out. */
6036 true_code
= GET_CODE (cond
);
6037 comparison_p
= COMPARISON_P (cond
);
6040 /* If the two arms are identical, we don't need the comparison. */
6042 if (rtx_equal_p (true_rtx
, false_rtx
) && ! side_effects_p (cond
))
6045 /* Convert a == b ? b : a to "a". */
6046 if (true_code
== EQ
&& ! side_effects_p (cond
)
6047 && !HONOR_NANS (mode
)
6048 && rtx_equal_p (XEXP (cond
, 0), false_rtx
)
6049 && rtx_equal_p (XEXP (cond
, 1), true_rtx
))
6051 else if (true_code
== NE
&& ! side_effects_p (cond
)
6052 && !HONOR_NANS (mode
)
6053 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6054 && rtx_equal_p (XEXP (cond
, 1), false_rtx
))
6057 /* Look for cases where we have (abs x) or (neg (abs X)). */
6059 if (GET_MODE_CLASS (mode
) == MODE_INT
6061 && XEXP (cond
, 1) == const0_rtx
6062 && GET_CODE (false_rtx
) == NEG
6063 && rtx_equal_p (true_rtx
, XEXP (false_rtx
, 0))
6064 && rtx_equal_p (true_rtx
, XEXP (cond
, 0))
6065 && ! side_effects_p (true_rtx
))
6070 return simplify_gen_unary (ABS
, mode
, true_rtx
, mode
);
6074 simplify_gen_unary (NEG
, mode
,
6075 simplify_gen_unary (ABS
, mode
, true_rtx
, mode
),
6081 /* Look for MIN or MAX. */
6083 if ((! FLOAT_MODE_P (mode
) || flag_unsafe_math_optimizations
)
6085 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6086 && rtx_equal_p (XEXP (cond
, 1), false_rtx
)
6087 && ! side_effects_p (cond
))
6092 return simplify_gen_binary (SMAX
, mode
, true_rtx
, false_rtx
);
6095 return simplify_gen_binary (SMIN
, mode
, true_rtx
, false_rtx
);
6098 return simplify_gen_binary (UMAX
, mode
, true_rtx
, false_rtx
);
6101 return simplify_gen_binary (UMIN
, mode
, true_rtx
, false_rtx
);
6106 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6107 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6108 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6109 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6110 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6111 neither 1 or -1, but it isn't worth checking for. */
6113 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
6115 && GET_MODE_CLASS (mode
) == MODE_INT
6116 && ! side_effects_p (x
))
6118 rtx t
= make_compound_operation (true_rtx
, SET
);
6119 rtx f
= make_compound_operation (false_rtx
, SET
);
6120 rtx cond_op0
= XEXP (cond
, 0);
6121 rtx cond_op1
= XEXP (cond
, 1);
6122 enum rtx_code op
= UNKNOWN
, extend_op
= UNKNOWN
;
6123 enum machine_mode m
= mode
;
6124 rtx z
= 0, c1
= NULL_RTX
;
6126 if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == MINUS
6127 || GET_CODE (t
) == IOR
|| GET_CODE (t
) == XOR
6128 || GET_CODE (t
) == ASHIFT
6129 || GET_CODE (t
) == LSHIFTRT
|| GET_CODE (t
) == ASHIFTRT
)
6130 && rtx_equal_p (XEXP (t
, 0), f
))
6131 c1
= XEXP (t
, 1), op
= GET_CODE (t
), z
= f
;
6133 /* If an identity-zero op is commutative, check whether there
6134 would be a match if we swapped the operands. */
6135 else if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == IOR
6136 || GET_CODE (t
) == XOR
)
6137 && rtx_equal_p (XEXP (t
, 1), f
))
6138 c1
= XEXP (t
, 0), op
= GET_CODE (t
), z
= f
;
6139 else if (GET_CODE (t
) == SIGN_EXTEND
6140 && (GET_CODE (XEXP (t
, 0)) == PLUS
6141 || GET_CODE (XEXP (t
, 0)) == MINUS
6142 || GET_CODE (XEXP (t
, 0)) == IOR
6143 || GET_CODE (XEXP (t
, 0)) == XOR
6144 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6145 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6146 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6147 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6148 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6149 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6150 && (num_sign_bit_copies (f
, GET_MODE (f
))
6152 (GET_MODE_PRECISION (mode
)
6153 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t
, 0), 0))))))
6155 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6156 extend_op
= SIGN_EXTEND
;
6157 m
= GET_MODE (XEXP (t
, 0));
6159 else if (GET_CODE (t
) == SIGN_EXTEND
6160 && (GET_CODE (XEXP (t
, 0)) == PLUS
6161 || GET_CODE (XEXP (t
, 0)) == IOR
6162 || GET_CODE (XEXP (t
, 0)) == XOR
)
6163 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6164 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6165 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6166 && (num_sign_bit_copies (f
, GET_MODE (f
))
6168 (GET_MODE_PRECISION (mode
)
6169 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t
, 0), 1))))))
6171 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6172 extend_op
= SIGN_EXTEND
;
6173 m
= GET_MODE (XEXP (t
, 0));
6175 else if (GET_CODE (t
) == ZERO_EXTEND
6176 && (GET_CODE (XEXP (t
, 0)) == PLUS
6177 || GET_CODE (XEXP (t
, 0)) == MINUS
6178 || GET_CODE (XEXP (t
, 0)) == IOR
6179 || GET_CODE (XEXP (t
, 0)) == XOR
6180 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6181 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6182 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6183 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6184 && HWI_COMPUTABLE_MODE_P (mode
)
6185 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6186 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6187 && ((nonzero_bits (f
, GET_MODE (f
))
6188 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 0))))
6191 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6192 extend_op
= ZERO_EXTEND
;
6193 m
= GET_MODE (XEXP (t
, 0));
6195 else if (GET_CODE (t
) == ZERO_EXTEND
6196 && (GET_CODE (XEXP (t
, 0)) == PLUS
6197 || GET_CODE (XEXP (t
, 0)) == IOR
6198 || GET_CODE (XEXP (t
, 0)) == XOR
)
6199 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6200 && HWI_COMPUTABLE_MODE_P (mode
)
6201 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6202 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6203 && ((nonzero_bits (f
, GET_MODE (f
))
6204 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 1))))
6207 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6208 extend_op
= ZERO_EXTEND
;
6209 m
= GET_MODE (XEXP (t
, 0));
6214 temp
= subst (simplify_gen_relational (true_code
, m
, VOIDmode
,
6215 cond_op0
, cond_op1
),
6216 pc_rtx
, pc_rtx
, 0, 0, 0);
6217 temp
= simplify_gen_binary (MULT
, m
, temp
,
6218 simplify_gen_binary (MULT
, m
, c1
,
6220 temp
= subst (temp
, pc_rtx
, pc_rtx
, 0, 0, 0);
6221 temp
= simplify_gen_binary (op
, m
, gen_lowpart (m
, z
), temp
);
6223 if (extend_op
!= UNKNOWN
)
6224 temp
= simplify_gen_unary (extend_op
, mode
, temp
, m
);
6230 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6231 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6232 negation of a single bit, we can convert this operation to a shift. We
6233 can actually do this more generally, but it doesn't seem worth it. */
6235 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
6236 && false_rtx
== const0_rtx
&& CONST_INT_P (true_rtx
)
6237 && ((1 == nonzero_bits (XEXP (cond
, 0), mode
)
6238 && (i
= exact_log2 (UINTVAL (true_rtx
))) >= 0)
6239 || ((num_sign_bit_copies (XEXP (cond
, 0), mode
)
6240 == GET_MODE_PRECISION (mode
))
6241 && (i
= exact_log2 (-UINTVAL (true_rtx
))) >= 0)))
6243 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
6244 gen_lowpart (mode
, XEXP (cond
, 0)), i
);
6246 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6247 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
6248 && false_rtx
== const0_rtx
&& CONST_INT_P (true_rtx
)
6249 && GET_MODE (XEXP (cond
, 0)) == mode
6250 && (UINTVAL (true_rtx
) & GET_MODE_MASK (mode
))
6251 == nonzero_bits (XEXP (cond
, 0), mode
)
6252 && (i
= exact_log2 (UINTVAL (true_rtx
) & GET_MODE_MASK (mode
))) >= 0)
6253 return XEXP (cond
, 0);
6258 /* Simplify X, a SET expression. Return the new expression. */
6261 simplify_set (rtx x
)
6263 rtx src
= SET_SRC (x
);
6264 rtx dest
= SET_DEST (x
);
6265 enum machine_mode mode
6266 = GET_MODE (src
) != VOIDmode
? GET_MODE (src
) : GET_MODE (dest
);
6270 /* (set (pc) (return)) gets written as (return). */
6271 if (GET_CODE (dest
) == PC
&& ANY_RETURN_P (src
))
6274 /* Now that we know for sure which bits of SRC we are using, see if we can
6275 simplify the expression for the object knowing that we only need the
6278 if (GET_MODE_CLASS (mode
) == MODE_INT
&& HWI_COMPUTABLE_MODE_P (mode
))
6280 src
= force_to_mode (src
, mode
, ~(unsigned HOST_WIDE_INT
) 0, 0);
6281 SUBST (SET_SRC (x
), src
);
6284 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6285 the comparison result and try to simplify it unless we already have used
6286 undobuf.other_insn. */
6287 if ((GET_MODE_CLASS (mode
) == MODE_CC
6288 || GET_CODE (src
) == COMPARE
6290 && (cc_use
= find_single_use (dest
, subst_insn
, &other_insn
)) != 0
6291 && (undobuf
.other_insn
== 0 || other_insn
== undobuf
.other_insn
)
6292 && COMPARISON_P (*cc_use
)
6293 && rtx_equal_p (XEXP (*cc_use
, 0), dest
))
6295 enum rtx_code old_code
= GET_CODE (*cc_use
);
6296 enum rtx_code new_code
;
6298 int other_changed
= 0;
6299 rtx inner_compare
= NULL_RTX
;
6300 enum machine_mode compare_mode
= GET_MODE (dest
);
6302 if (GET_CODE (src
) == COMPARE
)
6304 op0
= XEXP (src
, 0), op1
= XEXP (src
, 1);
6305 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
6307 inner_compare
= op0
;
6308 op0
= XEXP (inner_compare
, 0), op1
= XEXP (inner_compare
, 1);
6312 op0
= src
, op1
= CONST0_RTX (GET_MODE (src
));
6314 tmp
= simplify_relational_operation (old_code
, compare_mode
, VOIDmode
,
6317 new_code
= old_code
;
6318 else if (!CONSTANT_P (tmp
))
6320 new_code
= GET_CODE (tmp
);
6321 op0
= XEXP (tmp
, 0);
6322 op1
= XEXP (tmp
, 1);
6326 rtx pat
= PATTERN (other_insn
);
6327 undobuf
.other_insn
= other_insn
;
6328 SUBST (*cc_use
, tmp
);
6330 /* Attempt to simplify CC user. */
6331 if (GET_CODE (pat
) == SET
)
6333 rtx new_rtx
= simplify_rtx (SET_SRC (pat
));
6334 if (new_rtx
!= NULL_RTX
)
6335 SUBST (SET_SRC (pat
), new_rtx
);
6338 /* Convert X into a no-op move. */
6339 SUBST (SET_DEST (x
), pc_rtx
);
6340 SUBST (SET_SRC (x
), pc_rtx
);
6344 /* Simplify our comparison, if possible. */
6345 new_code
= simplify_comparison (new_code
, &op0
, &op1
);
6347 #ifdef SELECT_CC_MODE
6348 /* If this machine has CC modes other than CCmode, check to see if we
6349 need to use a different CC mode here. */
6350 if (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
6351 compare_mode
= GET_MODE (op0
);
6352 else if (inner_compare
6353 && GET_MODE_CLASS (GET_MODE (inner_compare
)) == MODE_CC
6354 && new_code
== old_code
6355 && op0
== XEXP (inner_compare
, 0)
6356 && op1
== XEXP (inner_compare
, 1))
6357 compare_mode
= GET_MODE (inner_compare
);
6359 compare_mode
= SELECT_CC_MODE (new_code
, op0
, op1
);
6362 /* If the mode changed, we have to change SET_DEST, the mode in the
6363 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6364 a hard register, just build new versions with the proper mode. If it
6365 is a pseudo, we lose unless it is only time we set the pseudo, in
6366 which case we can safely change its mode. */
6367 if (compare_mode
!= GET_MODE (dest
))
6369 if (can_change_dest_mode (dest
, 0, compare_mode
))
6371 unsigned int regno
= REGNO (dest
);
6374 if (regno
< FIRST_PSEUDO_REGISTER
)
6375 new_dest
= gen_rtx_REG (compare_mode
, regno
);
6378 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
6379 new_dest
= regno_reg_rtx
[regno
];
6382 SUBST (SET_DEST (x
), new_dest
);
6383 SUBST (XEXP (*cc_use
, 0), new_dest
);
6390 #endif /* SELECT_CC_MODE */
6392 /* If the code changed, we have to build a new comparison in
6393 undobuf.other_insn. */
6394 if (new_code
!= old_code
)
6396 int other_changed_previously
= other_changed
;
6397 unsigned HOST_WIDE_INT mask
;
6398 rtx old_cc_use
= *cc_use
;
6400 SUBST (*cc_use
, gen_rtx_fmt_ee (new_code
, GET_MODE (*cc_use
),
6404 /* If the only change we made was to change an EQ into an NE or
6405 vice versa, OP0 has only one bit that might be nonzero, and OP1
6406 is zero, check if changing the user of the condition code will
6407 produce a valid insn. If it won't, we can keep the original code
6408 in that insn by surrounding our operation with an XOR. */
6410 if (((old_code
== NE
&& new_code
== EQ
)
6411 || (old_code
== EQ
&& new_code
== NE
))
6412 && ! other_changed_previously
&& op1
== const0_rtx
6413 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0
))
6414 && exact_log2 (mask
= nonzero_bits (op0
, GET_MODE (op0
))) >= 0)
6416 rtx pat
= PATTERN (other_insn
), note
= 0;
6418 if ((recog_for_combine (&pat
, other_insn
, ¬e
) < 0
6419 && ! check_asm_operands (pat
)))
6421 *cc_use
= old_cc_use
;
6424 op0
= simplify_gen_binary (XOR
, GET_MODE (op0
), op0
,
6432 undobuf
.other_insn
= other_insn
;
6434 /* Otherwise, if we didn't previously have a COMPARE in the
6435 correct mode, we need one. */
6436 if (GET_CODE (src
) != COMPARE
|| GET_MODE (src
) != compare_mode
)
6438 SUBST (SET_SRC (x
), gen_rtx_COMPARE (compare_mode
, op0
, op1
));
6441 else if (GET_MODE (op0
) == compare_mode
&& op1
== const0_rtx
)
6443 SUBST (SET_SRC (x
), op0
);
6446 /* Otherwise, update the COMPARE if needed. */
6447 else if (XEXP (src
, 0) != op0
|| XEXP (src
, 1) != op1
)
6449 SUBST (SET_SRC (x
), gen_rtx_COMPARE (compare_mode
, op0
, op1
));
6455 /* Get SET_SRC in a form where we have placed back any
6456 compound expressions. Then do the checks below. */
6457 src
= make_compound_operation (src
, SET
);
6458 SUBST (SET_SRC (x
), src
);
6461 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6462 and X being a REG or (subreg (reg)), we may be able to convert this to
6463 (set (subreg:m2 x) (op)).
6465 We can always do this if M1 is narrower than M2 because that means that
6466 we only care about the low bits of the result.
6468 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6469 perform a narrower operation than requested since the high-order bits will
6470 be undefined. On machine where it is defined, this transformation is safe
6471 as long as M1 and M2 have the same number of words. */
6473 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
6474 && !OBJECT_P (SUBREG_REG (src
))
6475 && (((GET_MODE_SIZE (GET_MODE (src
)) + (UNITS_PER_WORD
- 1))
6477 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))
6478 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
6479 #ifndef WORD_REGISTER_OPERATIONS
6480 && (GET_MODE_SIZE (GET_MODE (src
))
6481 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))))
6483 #ifdef CANNOT_CHANGE_MODE_CLASS
6484 && ! (REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
6485 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest
),
6486 GET_MODE (SUBREG_REG (src
)),
6490 || (GET_CODE (dest
) == SUBREG
6491 && REG_P (SUBREG_REG (dest
)))))
6493 SUBST (SET_DEST (x
),
6494 gen_lowpart (GET_MODE (SUBREG_REG (src
)),
6496 SUBST (SET_SRC (x
), SUBREG_REG (src
));
6498 src
= SET_SRC (x
), dest
= SET_DEST (x
);
6502 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6505 && GET_CODE (src
) == SUBREG
6506 && subreg_lowpart_p (src
)
6507 && (GET_MODE_PRECISION (GET_MODE (src
))
6508 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src
)))))
6510 rtx inner
= SUBREG_REG (src
);
6511 enum machine_mode inner_mode
= GET_MODE (inner
);
6513 /* Here we make sure that we don't have a sign bit on. */
6514 if (val_signbit_known_clear_p (GET_MODE (src
),
6515 nonzero_bits (inner
, inner_mode
)))
6517 SUBST (SET_SRC (x
), inner
);
6523 #ifdef LOAD_EXTEND_OP
6524 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6525 would require a paradoxical subreg. Replace the subreg with a
6526 zero_extend to avoid the reload that would otherwise be required. */
6528 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
6529 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src
)))
6530 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))) != UNKNOWN
6531 && SUBREG_BYTE (src
) == 0
6532 && paradoxical_subreg_p (src
)
6533 && MEM_P (SUBREG_REG (src
)))
6536 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))),
6537 GET_MODE (src
), SUBREG_REG (src
)));
6543 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6544 are comparing an item known to be 0 or -1 against 0, use a logical
6545 operation instead. Check for one of the arms being an IOR of the other
6546 arm with some value. We compute three terms to be IOR'ed together. In
6547 practice, at most two will be nonzero. Then we do the IOR's. */
6549 if (GET_CODE (dest
) != PC
6550 && GET_CODE (src
) == IF_THEN_ELSE
6551 && GET_MODE_CLASS (GET_MODE (src
)) == MODE_INT
6552 && (GET_CODE (XEXP (src
, 0)) == EQ
|| GET_CODE (XEXP (src
, 0)) == NE
)
6553 && XEXP (XEXP (src
, 0), 1) == const0_rtx
6554 && GET_MODE (src
) == GET_MODE (XEXP (XEXP (src
, 0), 0))
6555 #ifdef HAVE_conditional_move
6556 && ! can_conditionally_move_p (GET_MODE (src
))
6558 && (num_sign_bit_copies (XEXP (XEXP (src
, 0), 0),
6559 GET_MODE (XEXP (XEXP (src
, 0), 0)))
6560 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src
, 0), 0))))
6561 && ! side_effects_p (src
))
6563 rtx true_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
6564 ? XEXP (src
, 1) : XEXP (src
, 2));
6565 rtx false_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
6566 ? XEXP (src
, 2) : XEXP (src
, 1));
6567 rtx term1
= const0_rtx
, term2
, term3
;
6569 if (GET_CODE (true_rtx
) == IOR
6570 && rtx_equal_p (XEXP (true_rtx
, 0), false_rtx
))
6571 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 1), false_rtx
= const0_rtx
;
6572 else if (GET_CODE (true_rtx
) == IOR
6573 && rtx_equal_p (XEXP (true_rtx
, 1), false_rtx
))
6574 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 0), false_rtx
= const0_rtx
;
6575 else if (GET_CODE (false_rtx
) == IOR
6576 && rtx_equal_p (XEXP (false_rtx
, 0), true_rtx
))
6577 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 1), true_rtx
= const0_rtx
;
6578 else if (GET_CODE (false_rtx
) == IOR
6579 && rtx_equal_p (XEXP (false_rtx
, 1), true_rtx
))
6580 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 0), true_rtx
= const0_rtx
;
6582 term2
= simplify_gen_binary (AND
, GET_MODE (src
),
6583 XEXP (XEXP (src
, 0), 0), true_rtx
);
6584 term3
= simplify_gen_binary (AND
, GET_MODE (src
),
6585 simplify_gen_unary (NOT
, GET_MODE (src
),
6586 XEXP (XEXP (src
, 0), 0),
6591 simplify_gen_binary (IOR
, GET_MODE (src
),
6592 simplify_gen_binary (IOR
, GET_MODE (src
),
6599 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6600 whole thing fail. */
6601 if (GET_CODE (src
) == CLOBBER
&& XEXP (src
, 0) == const0_rtx
)
6603 else if (GET_CODE (dest
) == CLOBBER
&& XEXP (dest
, 0) == const0_rtx
)
6606 /* Convert this into a field assignment operation, if possible. */
6607 return make_field_assignment (x
);
6610 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6614 simplify_logical (rtx x
)
6616 enum machine_mode mode
= GET_MODE (x
);
6617 rtx op0
= XEXP (x
, 0);
6618 rtx op1
= XEXP (x
, 1);
6620 switch (GET_CODE (x
))
6623 /* We can call simplify_and_const_int only if we don't lose
6624 any (sign) bits when converting INTVAL (op1) to
6625 "unsigned HOST_WIDE_INT". */
6626 if (CONST_INT_P (op1
)
6627 && (HWI_COMPUTABLE_MODE_P (mode
)
6628 || INTVAL (op1
) > 0))
6630 x
= simplify_and_const_int (x
, mode
, op0
, INTVAL (op1
));
6631 if (GET_CODE (x
) != AND
)
6638 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6639 apply the distributive law and then the inverse distributive
6640 law to see if things simplify. */
6641 if (GET_CODE (op0
) == IOR
|| GET_CODE (op0
) == XOR
)
6643 rtx result
= distribute_and_simplify_rtx (x
, 0);
6647 if (GET_CODE (op1
) == IOR
|| GET_CODE (op1
) == XOR
)
6649 rtx result
= distribute_and_simplify_rtx (x
, 1);
6656 /* If we have (ior (and A B) C), apply the distributive law and then
6657 the inverse distributive law to see if things simplify. */
6659 if (GET_CODE (op0
) == AND
)
6661 rtx result
= distribute_and_simplify_rtx (x
, 0);
6666 if (GET_CODE (op1
) == AND
)
6668 rtx result
= distribute_and_simplify_rtx (x
, 1);
6681 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6682 operations" because they can be replaced with two more basic operations.
6683 ZERO_EXTEND is also considered "compound" because it can be replaced with
6684 an AND operation, which is simpler, though only one operation.
6686 The function expand_compound_operation is called with an rtx expression
6687 and will convert it to the appropriate shifts and AND operations,
6688 simplifying at each stage.
6690 The function make_compound_operation is called to convert an expression
6691 consisting of shifts and ANDs into the equivalent compound expression.
6692 It is the inverse of this function, loosely speaking. */
6695 expand_compound_operation (rtx x
)
6697 unsigned HOST_WIDE_INT pos
= 0, len
;
6699 unsigned int modewidth
;
6702 switch (GET_CODE (x
))
6707 /* We can't necessarily use a const_int for a multiword mode;
6708 it depends on implicitly extending the value.
6709 Since we don't know the right way to extend it,
6710 we can't tell whether the implicit way is right.
6712 Even for a mode that is no wider than a const_int,
6713 we can't win, because we need to sign extend one of its bits through
6714 the rest of it, and we don't know which bit. */
6715 if (CONST_INT_P (XEXP (x
, 0)))
6718 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6719 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6720 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6721 reloaded. If not for that, MEM's would very rarely be safe.
6723 Reject MODEs bigger than a word, because we might not be able
6724 to reference a two-register group starting with an arbitrary register
6725 (and currently gen_lowpart might crash for a SUBREG). */
6727 if (GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))) > UNITS_PER_WORD
)
6730 /* Reject MODEs that aren't scalar integers because turning vector
6731 or complex modes into shifts causes problems. */
6733 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x
, 0))))
6736 len
= GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)));
6737 /* If the inner object has VOIDmode (the only way this can happen
6738 is if it is an ASM_OPERANDS), we can't do anything since we don't
6739 know how much masking to do. */
6748 /* ... fall through ... */
6751 /* If the operand is a CLOBBER, just return it. */
6752 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
6755 if (!CONST_INT_P (XEXP (x
, 1))
6756 || !CONST_INT_P (XEXP (x
, 2))
6757 || GET_MODE (XEXP (x
, 0)) == VOIDmode
)
6760 /* Reject MODEs that aren't scalar integers because turning vector
6761 or complex modes into shifts causes problems. */
6763 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x
, 0))))
6766 len
= INTVAL (XEXP (x
, 1));
6767 pos
= INTVAL (XEXP (x
, 2));
6769 /* This should stay within the object being extracted, fail otherwise. */
6770 if (len
+ pos
> GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0))))
6773 if (BITS_BIG_ENDIAN
)
6774 pos
= GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0))) - len
- pos
;
6781 /* Convert sign extension to zero extension, if we know that the high
6782 bit is not set, as this is easier to optimize. It will be converted
6783 back to cheaper alternative in make_extraction. */
6784 if (GET_CODE (x
) == SIGN_EXTEND
6785 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x
))
6786 && ((nonzero_bits (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
6787 & ~(((unsigned HOST_WIDE_INT
)
6788 GET_MODE_MASK (GET_MODE (XEXP (x
, 0))))
6792 rtx temp
= gen_rtx_ZERO_EXTEND (GET_MODE (x
), XEXP (x
, 0));
6793 rtx temp2
= expand_compound_operation (temp
);
6795 /* Make sure this is a profitable operation. */
6796 if (set_src_cost (x
, optimize_this_for_speed_p
)
6797 > set_src_cost (temp2
, optimize_this_for_speed_p
))
6799 else if (set_src_cost (x
, optimize_this_for_speed_p
)
6800 > set_src_cost (temp
, optimize_this_for_speed_p
))
6806 /* We can optimize some special cases of ZERO_EXTEND. */
6807 if (GET_CODE (x
) == ZERO_EXTEND
)
6809 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6810 know that the last value didn't have any inappropriate bits
6812 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
6813 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
6814 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
))
6815 && (nonzero_bits (XEXP (XEXP (x
, 0), 0), GET_MODE (x
))
6816 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6817 return XEXP (XEXP (x
, 0), 0);
6819 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6820 if (GET_CODE (XEXP (x
, 0)) == SUBREG
6821 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
6822 && subreg_lowpart_p (XEXP (x
, 0))
6823 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
))
6824 && (nonzero_bits (SUBREG_REG (XEXP (x
, 0)), GET_MODE (x
))
6825 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6826 return SUBREG_REG (XEXP (x
, 0));
6828 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6829 is a comparison and STORE_FLAG_VALUE permits. This is like
6830 the first case, but it works even when GET_MODE (x) is larger
6831 than HOST_WIDE_INT. */
6832 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
6833 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
6834 && COMPARISON_P (XEXP (XEXP (x
, 0), 0))
6835 && (GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
6836 <= HOST_BITS_PER_WIDE_INT
)
6837 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6838 return XEXP (XEXP (x
, 0), 0);
6840 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6841 if (GET_CODE (XEXP (x
, 0)) == SUBREG
6842 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
6843 && subreg_lowpart_p (XEXP (x
, 0))
6844 && COMPARISON_P (SUBREG_REG (XEXP (x
, 0)))
6845 && (GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
6846 <= HOST_BITS_PER_WIDE_INT
)
6847 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6848 return SUBREG_REG (XEXP (x
, 0));
6852 /* If we reach here, we want to return a pair of shifts. The inner
6853 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6854 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6855 logical depending on the value of UNSIGNEDP.
6857 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6858 converted into an AND of a shift.
6860 We must check for the case where the left shift would have a negative
6861 count. This can happen in a case like (x >> 31) & 255 on machines
6862 that can't shift by a constant. On those machines, we would first
6863 combine the shift with the AND to produce a variable-position
6864 extraction. Then the constant of 31 would be substituted in
6865 to produce such a position. */
6867 modewidth
= GET_MODE_PRECISION (GET_MODE (x
));
6868 if (modewidth
>= pos
+ len
)
6870 enum machine_mode mode
= GET_MODE (x
);
6871 tem
= gen_lowpart (mode
, XEXP (x
, 0));
6872 if (!tem
|| GET_CODE (tem
) == CLOBBER
)
6874 tem
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
6875 tem
, modewidth
- pos
- len
);
6876 tem
= simplify_shift_const (NULL_RTX
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
6877 mode
, tem
, modewidth
- len
);
6879 else if (unsignedp
&& len
< HOST_BITS_PER_WIDE_INT
)
6880 tem
= simplify_and_const_int (NULL_RTX
, GET_MODE (x
),
6881 simplify_shift_const (NULL_RTX
, LSHIFTRT
,
6884 ((unsigned HOST_WIDE_INT
) 1 << len
) - 1);
6886 /* Any other cases we can't handle. */
6889 /* If we couldn't do this for some reason, return the original
6891 if (GET_CODE (tem
) == CLOBBER
)
6897 /* X is a SET which contains an assignment of one object into
6898 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6899 or certain SUBREGS). If possible, convert it into a series of
6902 We half-heartedly support variable positions, but do not at all
6903 support variable lengths. */
6906 expand_field_assignment (const_rtx x
)
6909 rtx pos
; /* Always counts from low bit. */
6911 rtx mask
, cleared
, masked
;
6912 enum machine_mode compute_mode
;
6914 /* Loop until we find something we can't simplify. */
6917 if (GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
6918 && GET_CODE (XEXP (SET_DEST (x
), 0)) == SUBREG
)
6920 inner
= SUBREG_REG (XEXP (SET_DEST (x
), 0));
6921 len
= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x
), 0)));
6922 pos
= GEN_INT (subreg_lsb (XEXP (SET_DEST (x
), 0)));
6924 else if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
6925 && CONST_INT_P (XEXP (SET_DEST (x
), 1)))
6927 inner
= XEXP (SET_DEST (x
), 0);
6928 len
= INTVAL (XEXP (SET_DEST (x
), 1));
6929 pos
= XEXP (SET_DEST (x
), 2);
6931 /* A constant position should stay within the width of INNER. */
6932 if (CONST_INT_P (pos
)
6933 && INTVAL (pos
) + len
> GET_MODE_PRECISION (GET_MODE (inner
)))
6936 if (BITS_BIG_ENDIAN
)
6938 if (CONST_INT_P (pos
))
6939 pos
= GEN_INT (GET_MODE_PRECISION (GET_MODE (inner
)) - len
6941 else if (GET_CODE (pos
) == MINUS
6942 && CONST_INT_P (XEXP (pos
, 1))
6943 && (INTVAL (XEXP (pos
, 1))
6944 == GET_MODE_PRECISION (GET_MODE (inner
)) - len
))
6945 /* If position is ADJUST - X, new position is X. */
6946 pos
= XEXP (pos
, 0);
6949 HOST_WIDE_INT prec
= GET_MODE_PRECISION (GET_MODE (inner
));
6950 pos
= simplify_gen_binary (MINUS
, GET_MODE (pos
),
6951 gen_int_mode (prec
- len
,
6958 /* A SUBREG between two modes that occupy the same numbers of words
6959 can be done by moving the SUBREG to the source. */
6960 else if (GET_CODE (SET_DEST (x
)) == SUBREG
6961 /* We need SUBREGs to compute nonzero_bits properly. */
6962 && nonzero_sign_valid
6963 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
6964 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
6965 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
6966 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
6968 x
= gen_rtx_SET (VOIDmode
, SUBREG_REG (SET_DEST (x
)),
6970 (GET_MODE (SUBREG_REG (SET_DEST (x
))),
6977 while (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
6978 inner
= SUBREG_REG (inner
);
6980 compute_mode
= GET_MODE (inner
);
6982 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6983 if (! SCALAR_INT_MODE_P (compute_mode
))
6985 enum machine_mode imode
;
6987 /* Don't do anything for vector or complex integral types. */
6988 if (! FLOAT_MODE_P (compute_mode
))
6991 /* Try to find an integral mode to pun with. */
6992 imode
= mode_for_size (GET_MODE_BITSIZE (compute_mode
), MODE_INT
, 0);
6993 if (imode
== BLKmode
)
6996 compute_mode
= imode
;
6997 inner
= gen_lowpart (imode
, inner
);
7000 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7001 if (len
>= HOST_BITS_PER_WIDE_INT
)
7004 /* Now compute the equivalent expression. Make a copy of INNER
7005 for the SET_DEST in case it is a MEM into which we will substitute;
7006 we don't want shared RTL in that case. */
7007 mask
= gen_int_mode (((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
7009 cleared
= simplify_gen_binary (AND
, compute_mode
,
7010 simplify_gen_unary (NOT
, compute_mode
,
7011 simplify_gen_binary (ASHIFT
,
7016 masked
= simplify_gen_binary (ASHIFT
, compute_mode
,
7017 simplify_gen_binary (
7019 gen_lowpart (compute_mode
, SET_SRC (x
)),
7023 x
= gen_rtx_SET (VOIDmode
, copy_rtx (inner
),
7024 simplify_gen_binary (IOR
, compute_mode
,
7031 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7032 it is an RTX that represents the (variable) starting position; otherwise,
7033 POS is the (constant) starting bit position. Both are counted from the LSB.
7035 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7037 IN_DEST is nonzero if this is a reference in the destination of a SET.
7038 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7039 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7042 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7043 ZERO_EXTRACT should be built even for bits starting at bit 0.
7045 MODE is the desired mode of the result (if IN_DEST == 0).
7047 The result is an RTX for the extraction or NULL_RTX if the target
7051 make_extraction (enum machine_mode mode
, rtx inner
, HOST_WIDE_INT pos
,
7052 rtx pos_rtx
, unsigned HOST_WIDE_INT len
, int unsignedp
,
7053 int in_dest
, int in_compare
)
7055 /* This mode describes the size of the storage area
7056 to fetch the overall value from. Within that, we
7057 ignore the POS lowest bits, etc. */
7058 enum machine_mode is_mode
= GET_MODE (inner
);
7059 enum machine_mode inner_mode
;
7060 enum machine_mode wanted_inner_mode
;
7061 enum machine_mode wanted_inner_reg_mode
= word_mode
;
7062 enum machine_mode pos_mode
= word_mode
;
7063 enum machine_mode extraction_mode
= word_mode
;
7064 enum machine_mode tmode
= mode_for_size (len
, MODE_INT
, 1);
7066 rtx orig_pos_rtx
= pos_rtx
;
7067 HOST_WIDE_INT orig_pos
;
7069 if (pos_rtx
&& CONST_INT_P (pos_rtx
))
7070 pos
= INTVAL (pos_rtx
), pos_rtx
= 0;
7072 if (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
7074 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7075 consider just the QI as the memory to extract from.
7076 The subreg adds or removes high bits; its mode is
7077 irrelevant to the meaning of this extraction,
7078 since POS and LEN count from the lsb. */
7079 if (MEM_P (SUBREG_REG (inner
)))
7080 is_mode
= GET_MODE (SUBREG_REG (inner
));
7081 inner
= SUBREG_REG (inner
);
7083 else if (GET_CODE (inner
) == ASHIFT
7084 && CONST_INT_P (XEXP (inner
, 1))
7085 && pos_rtx
== 0 && pos
== 0
7086 && len
> UINTVAL (XEXP (inner
, 1)))
7088 /* We're extracting the least significant bits of an rtx
7089 (ashift X (const_int C)), where LEN > C. Extract the
7090 least significant (LEN - C) bits of X, giving an rtx
7091 whose mode is MODE, then shift it left C times. */
7092 new_rtx
= make_extraction (mode
, XEXP (inner
, 0),
7093 0, 0, len
- INTVAL (XEXP (inner
, 1)),
7094 unsignedp
, in_dest
, in_compare
);
7096 return gen_rtx_ASHIFT (mode
, new_rtx
, XEXP (inner
, 1));
7098 else if (GET_CODE (inner
) == TRUNCATE
)
7099 inner
= XEXP (inner
, 0);
7101 inner_mode
= GET_MODE (inner
);
7103 /* See if this can be done without an extraction. We never can if the
7104 width of the field is not the same as that of some integer mode. For
7105 registers, we can only avoid the extraction if the position is at the
7106 low-order bit and this is either not in the destination or we have the
7107 appropriate STRICT_LOW_PART operation available.
7109 For MEM, we can avoid an extract if the field starts on an appropriate
7110 boundary and we can change the mode of the memory reference. */
7112 if (tmode
!= BLKmode
7113 && ((pos_rtx
== 0 && (pos
% BITS_PER_WORD
) == 0
7115 && (inner_mode
== tmode
7117 || TRULY_NOOP_TRUNCATION_MODES_P (tmode
, inner_mode
)
7118 || reg_truncated_to_mode (tmode
, inner
))
7121 && have_insn_for (STRICT_LOW_PART
, tmode
))))
7122 || (MEM_P (inner
) && pos_rtx
== 0
7124 % (STRICT_ALIGNMENT
? GET_MODE_ALIGNMENT (tmode
)
7125 : BITS_PER_UNIT
)) == 0
7126 /* We can't do this if we are widening INNER_MODE (it
7127 may not be aligned, for one thing). */
7128 && GET_MODE_PRECISION (inner_mode
) >= GET_MODE_PRECISION (tmode
)
7129 && (inner_mode
== tmode
7130 || (! mode_dependent_address_p (XEXP (inner
, 0),
7131 MEM_ADDR_SPACE (inner
))
7132 && ! MEM_VOLATILE_P (inner
))))))
7134 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7135 field. If the original and current mode are the same, we need not
7136 adjust the offset. Otherwise, we do if bytes big endian.
7138 If INNER is not a MEM, get a piece consisting of just the field
7139 of interest (in this case POS % BITS_PER_WORD must be 0). */
7143 HOST_WIDE_INT offset
;
7145 /* POS counts from lsb, but make OFFSET count in memory order. */
7146 if (BYTES_BIG_ENDIAN
)
7147 offset
= (GET_MODE_PRECISION (is_mode
) - len
- pos
) / BITS_PER_UNIT
;
7149 offset
= pos
/ BITS_PER_UNIT
;
7151 new_rtx
= adjust_address_nv (inner
, tmode
, offset
);
7153 else if (REG_P (inner
))
7155 if (tmode
!= inner_mode
)
7157 /* We can't call gen_lowpart in a DEST since we
7158 always want a SUBREG (see below) and it would sometimes
7159 return a new hard register. */
7162 HOST_WIDE_INT final_word
= pos
/ BITS_PER_WORD
;
7164 if (WORDS_BIG_ENDIAN
7165 && GET_MODE_SIZE (inner_mode
) > UNITS_PER_WORD
)
7166 final_word
= ((GET_MODE_SIZE (inner_mode
)
7167 - GET_MODE_SIZE (tmode
))
7168 / UNITS_PER_WORD
) - final_word
;
7170 final_word
*= UNITS_PER_WORD
;
7171 if (BYTES_BIG_ENDIAN
&&
7172 GET_MODE_SIZE (inner_mode
) > GET_MODE_SIZE (tmode
))
7173 final_word
+= (GET_MODE_SIZE (inner_mode
)
7174 - GET_MODE_SIZE (tmode
)) % UNITS_PER_WORD
;
7176 /* Avoid creating invalid subregs, for example when
7177 simplifying (x>>32)&255. */
7178 if (!validate_subreg (tmode
, inner_mode
, inner
, final_word
))
7181 new_rtx
= gen_rtx_SUBREG (tmode
, inner
, final_word
);
7184 new_rtx
= gen_lowpart (tmode
, inner
);
7190 new_rtx
= force_to_mode (inner
, tmode
,
7191 len
>= HOST_BITS_PER_WIDE_INT
7192 ? ~(unsigned HOST_WIDE_INT
) 0
7193 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
7196 /* If this extraction is going into the destination of a SET,
7197 make a STRICT_LOW_PART unless we made a MEM. */
7200 return (MEM_P (new_rtx
) ? new_rtx
7201 : (GET_CODE (new_rtx
) != SUBREG
7202 ? gen_rtx_CLOBBER (tmode
, const0_rtx
)
7203 : gen_rtx_STRICT_LOW_PART (VOIDmode
, new_rtx
)));
7208 if (CONST_SCALAR_INT_P (new_rtx
))
7209 return simplify_unary_operation (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7210 mode
, new_rtx
, tmode
);
7212 /* If we know that no extraneous bits are set, and that the high
7213 bit is not set, convert the extraction to the cheaper of
7214 sign and zero extension, that are equivalent in these cases. */
7215 if (flag_expensive_optimizations
7216 && (HWI_COMPUTABLE_MODE_P (tmode
)
7217 && ((nonzero_bits (new_rtx
, tmode
)
7218 & ~(((unsigned HOST_WIDE_INT
)GET_MODE_MASK (tmode
)) >> 1))
7221 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, new_rtx
);
7222 rtx temp1
= gen_rtx_SIGN_EXTEND (mode
, new_rtx
);
7224 /* Prefer ZERO_EXTENSION, since it gives more information to
7226 if (set_src_cost (temp
, optimize_this_for_speed_p
)
7227 <= set_src_cost (temp1
, optimize_this_for_speed_p
))
7232 /* Otherwise, sign- or zero-extend unless we already are in the
7235 return (gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7239 /* Unless this is a COMPARE or we have a funny memory reference,
7240 don't do anything with zero-extending field extracts starting at
7241 the low-order bit since they are simple AND operations. */
7242 if (pos_rtx
== 0 && pos
== 0 && ! in_dest
7243 && ! in_compare
&& unsignedp
)
7246 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7247 if the position is not a constant and the length is not 1. In all
7248 other cases, we would only be going outside our object in cases when
7249 an original shift would have been undefined. */
7251 && ((pos_rtx
== 0 && pos
+ len
> GET_MODE_PRECISION (is_mode
))
7252 || (pos_rtx
!= 0 && len
!= 1)))
7255 enum extraction_pattern pattern
= (in_dest
? EP_insv
7256 : unsignedp
? EP_extzv
: EP_extv
);
7258 /* If INNER is not from memory, we want it to have the mode of a register
7259 extraction pattern's structure operand, or word_mode if there is no
7260 such pattern. The same applies to extraction_mode and pos_mode
7261 and their respective operands.
7263 For memory, assume that the desired extraction_mode and pos_mode
7264 are the same as for a register operation, since at present we don't
7265 have named patterns for aligned memory structures. */
7266 struct extraction_insn insn
;
7267 if (get_best_reg_extraction_insn (&insn
, pattern
,
7268 GET_MODE_BITSIZE (inner_mode
), mode
))
7270 wanted_inner_reg_mode
= insn
.struct_mode
;
7271 pos_mode
= insn
.pos_mode
;
7272 extraction_mode
= insn
.field_mode
;
7275 /* Never narrow an object, since that might not be safe. */
7277 if (mode
!= VOIDmode
7278 && GET_MODE_SIZE (extraction_mode
) < GET_MODE_SIZE (mode
))
7279 extraction_mode
= mode
;
7282 wanted_inner_mode
= wanted_inner_reg_mode
;
7285 /* Be careful not to go beyond the extracted object and maintain the
7286 natural alignment of the memory. */
7287 wanted_inner_mode
= smallest_mode_for_size (len
, MODE_INT
);
7288 while (pos
% GET_MODE_BITSIZE (wanted_inner_mode
) + len
7289 > GET_MODE_BITSIZE (wanted_inner_mode
))
7291 wanted_inner_mode
= GET_MODE_WIDER_MODE (wanted_inner_mode
);
7292 gcc_assert (wanted_inner_mode
!= VOIDmode
);
7298 if (BITS_BIG_ENDIAN
)
7300 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7301 BITS_BIG_ENDIAN style. If position is constant, compute new
7302 position. Otherwise, build subtraction.
7303 Note that POS is relative to the mode of the original argument.
7304 If it's a MEM we need to recompute POS relative to that.
7305 However, if we're extracting from (or inserting into) a register,
7306 we want to recompute POS relative to wanted_inner_mode. */
7307 int width
= (MEM_P (inner
)
7308 ? GET_MODE_BITSIZE (is_mode
)
7309 : GET_MODE_BITSIZE (wanted_inner_mode
));
7312 pos
= width
- len
- pos
;
7315 = gen_rtx_MINUS (GET_MODE (pos_rtx
),
7316 gen_int_mode (width
- len
, GET_MODE (pos_rtx
)),
7318 /* POS may be less than 0 now, but we check for that below.
7319 Note that it can only be less than 0 if !MEM_P (inner). */
7322 /* If INNER has a wider mode, and this is a constant extraction, try to
7323 make it smaller and adjust the byte to point to the byte containing
7325 if (wanted_inner_mode
!= VOIDmode
7326 && inner_mode
!= wanted_inner_mode
7328 && GET_MODE_SIZE (wanted_inner_mode
) < GET_MODE_SIZE (is_mode
)
7330 && ! mode_dependent_address_p (XEXP (inner
, 0), MEM_ADDR_SPACE (inner
))
7331 && ! MEM_VOLATILE_P (inner
))
7335 /* The computations below will be correct if the machine is big
7336 endian in both bits and bytes or little endian in bits and bytes.
7337 If it is mixed, we must adjust. */
7339 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7340 adjust OFFSET to compensate. */
7341 if (BYTES_BIG_ENDIAN
7342 && GET_MODE_SIZE (inner_mode
) < GET_MODE_SIZE (is_mode
))
7343 offset
-= GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (inner_mode
);
7345 /* We can now move to the desired byte. */
7346 offset
+= (pos
/ GET_MODE_BITSIZE (wanted_inner_mode
))
7347 * GET_MODE_SIZE (wanted_inner_mode
);
7348 pos
%= GET_MODE_BITSIZE (wanted_inner_mode
);
7350 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
7351 && is_mode
!= wanted_inner_mode
)
7352 offset
= (GET_MODE_SIZE (is_mode
)
7353 - GET_MODE_SIZE (wanted_inner_mode
) - offset
);
7355 inner
= adjust_address_nv (inner
, wanted_inner_mode
, offset
);
7358 /* If INNER is not memory, get it into the proper mode. If we are changing
7359 its mode, POS must be a constant and smaller than the size of the new
7361 else if (!MEM_P (inner
))
7363 /* On the LHS, don't create paradoxical subregs implicitely truncating
7364 the register unless TRULY_NOOP_TRUNCATION. */
7366 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner
),
7370 if (GET_MODE (inner
) != wanted_inner_mode
7372 || orig_pos
+ len
> GET_MODE_BITSIZE (wanted_inner_mode
)))
7378 inner
= force_to_mode (inner
, wanted_inner_mode
,
7380 || len
+ orig_pos
>= HOST_BITS_PER_WIDE_INT
7381 ? ~(unsigned HOST_WIDE_INT
) 0
7382 : ((((unsigned HOST_WIDE_INT
) 1 << len
) - 1)
7387 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7388 have to zero extend. Otherwise, we can just use a SUBREG. */
7390 && GET_MODE_SIZE (pos_mode
) > GET_MODE_SIZE (GET_MODE (pos_rtx
)))
7392 rtx temp
= simplify_gen_unary (ZERO_EXTEND
, pos_mode
, pos_rtx
,
7393 GET_MODE (pos_rtx
));
7395 /* If we know that no extraneous bits are set, and that the high
7396 bit is not set, convert extraction to cheaper one - either
7397 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7399 if (flag_expensive_optimizations
7400 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx
))
7401 && ((nonzero_bits (pos_rtx
, GET_MODE (pos_rtx
))
7402 & ~(((unsigned HOST_WIDE_INT
)
7403 GET_MODE_MASK (GET_MODE (pos_rtx
)))
7407 rtx temp1
= simplify_gen_unary (SIGN_EXTEND
, pos_mode
, pos_rtx
,
7408 GET_MODE (pos_rtx
));
7410 /* Prefer ZERO_EXTENSION, since it gives more information to
7412 if (set_src_cost (temp1
, optimize_this_for_speed_p
)
7413 < set_src_cost (temp
, optimize_this_for_speed_p
))
7419 /* Make POS_RTX unless we already have it and it is correct. If we don't
7420 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7422 if (pos_rtx
== 0 && orig_pos_rtx
!= 0 && INTVAL (orig_pos_rtx
) == pos
)
7423 pos_rtx
= orig_pos_rtx
;
7425 else if (pos_rtx
== 0)
7426 pos_rtx
= GEN_INT (pos
);
7428 /* Make the required operation. See if we can use existing rtx. */
7429 new_rtx
= gen_rtx_fmt_eee (unsignedp
? ZERO_EXTRACT
: SIGN_EXTRACT
,
7430 extraction_mode
, inner
, GEN_INT (len
), pos_rtx
);
7432 new_rtx
= gen_lowpart (mode
, new_rtx
);
7437 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7438 with any other operations in X. Return X without that shift if so. */
7441 extract_left_shift (rtx x
, int count
)
7443 enum rtx_code code
= GET_CODE (x
);
7444 enum machine_mode mode
= GET_MODE (x
);
7450 /* This is the shift itself. If it is wide enough, we will return
7451 either the value being shifted if the shift count is equal to
7452 COUNT or a shift for the difference. */
7453 if (CONST_INT_P (XEXP (x
, 1))
7454 && INTVAL (XEXP (x
, 1)) >= count
)
7455 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (x
, 0),
7456 INTVAL (XEXP (x
, 1)) - count
);
7460 if ((tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
7461 return simplify_gen_unary (code
, mode
, tem
, mode
);
7465 case PLUS
: case IOR
: case XOR
: case AND
:
7466 /* If we can safely shift this constant and we find the inner shift,
7467 make a new operation. */
7468 if (CONST_INT_P (XEXP (x
, 1))
7469 && (UINTVAL (XEXP (x
, 1))
7470 & ((((unsigned HOST_WIDE_INT
) 1 << count
)) - 1)) == 0
7471 && (tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
7473 HOST_WIDE_INT val
= INTVAL (XEXP (x
, 1)) >> count
;
7474 return simplify_gen_binary (code
, mode
, tem
,
7475 gen_int_mode (val
, mode
));
7486 /* Look at the expression rooted at X. Look for expressions
7487 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7488 Form these expressions.
7490 Return the new rtx, usually just X.
7492 Also, for machines like the VAX that don't have logical shift insns,
7493 try to convert logical to arithmetic shift operations in cases where
7494 they are equivalent. This undoes the canonicalizations to logical
7495 shifts done elsewhere.
7497 We try, as much as possible, to re-use rtl expressions to save memory.
7499 IN_CODE says what kind of expression we are processing. Normally, it is
7500 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7501 being kludges), it is MEM. When processing the arguments of a comparison
7502 or a COMPARE against zero, it is COMPARE. */
7505 make_compound_operation (rtx x
, enum rtx_code in_code
)
7507 enum rtx_code code
= GET_CODE (x
);
7508 enum machine_mode mode
= GET_MODE (x
);
7509 int mode_width
= GET_MODE_PRECISION (mode
);
7511 enum rtx_code next_code
;
7517 /* Select the code to be used in recursive calls. Once we are inside an
7518 address, we stay there. If we have a comparison, set to COMPARE,
7519 but once inside, go back to our default of SET. */
7521 next_code
= (code
== MEM
? MEM
7522 : ((code
== PLUS
|| code
== MINUS
)
7523 && SCALAR_INT_MODE_P (mode
)) ? MEM
7524 : ((code
== COMPARE
|| COMPARISON_P (x
))
7525 && XEXP (x
, 1) == const0_rtx
) ? COMPARE
7526 : in_code
== COMPARE
? SET
: in_code
);
7528 /* Process depending on the code of this operation. If NEW is set
7529 nonzero, it will be returned. */
7534 /* Convert shifts by constants into multiplications if inside
7536 if (in_code
== MEM
&& CONST_INT_P (XEXP (x
, 1))
7537 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
7538 && INTVAL (XEXP (x
, 1)) >= 0
7539 && SCALAR_INT_MODE_P (mode
))
7541 HOST_WIDE_INT count
= INTVAL (XEXP (x
, 1));
7542 HOST_WIDE_INT multval
= (HOST_WIDE_INT
) 1 << count
;
7544 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
7545 if (GET_CODE (new_rtx
) == NEG
)
7547 new_rtx
= XEXP (new_rtx
, 0);
7550 multval
= trunc_int_for_mode (multval
, mode
);
7551 new_rtx
= gen_rtx_MULT (mode
, new_rtx
, gen_int_mode (multval
, mode
));
7558 lhs
= make_compound_operation (lhs
, next_code
);
7559 rhs
= make_compound_operation (rhs
, next_code
);
7560 if (GET_CODE (lhs
) == MULT
&& GET_CODE (XEXP (lhs
, 0)) == NEG
7561 && SCALAR_INT_MODE_P (mode
))
7563 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (lhs
, 0), 0),
7565 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
7567 else if (GET_CODE (lhs
) == MULT
7568 && (CONST_INT_P (XEXP (lhs
, 1)) && INTVAL (XEXP (lhs
, 1)) < 0))
7570 tem
= simplify_gen_binary (MULT
, mode
, XEXP (lhs
, 0),
7571 simplify_gen_unary (NEG
, mode
,
7574 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
7578 SUBST (XEXP (x
, 0), lhs
);
7579 SUBST (XEXP (x
, 1), rhs
);
7582 x
= gen_lowpart (mode
, new_rtx
);
7588 lhs
= make_compound_operation (lhs
, next_code
);
7589 rhs
= make_compound_operation (rhs
, next_code
);
7590 if (GET_CODE (rhs
) == MULT
&& GET_CODE (XEXP (rhs
, 0)) == NEG
7591 && SCALAR_INT_MODE_P (mode
))
7593 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (rhs
, 0), 0),
7595 new_rtx
= simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
7597 else if (GET_CODE (rhs
) == MULT
7598 && (CONST_INT_P (XEXP (rhs
, 1)) && INTVAL (XEXP (rhs
, 1)) < 0))
7600 tem
= simplify_gen_binary (MULT
, mode
, XEXP (rhs
, 0),
7601 simplify_gen_unary (NEG
, mode
,
7604 new_rtx
= simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
7608 SUBST (XEXP (x
, 0), lhs
);
7609 SUBST (XEXP (x
, 1), rhs
);
7612 return gen_lowpart (mode
, new_rtx
);
7615 /* If the second operand is not a constant, we can't do anything
7617 if (!CONST_INT_P (XEXP (x
, 1)))
7620 /* If the constant is a power of two minus one and the first operand
7621 is a logical right shift, make an extraction. */
7622 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
7623 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7625 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
7626 new_rtx
= make_extraction (mode
, new_rtx
, 0, XEXP (XEXP (x
, 0), 1), i
, 1,
7627 0, in_code
== COMPARE
);
7630 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7631 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
7632 && subreg_lowpart_p (XEXP (x
, 0))
7633 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == LSHIFTRT
7634 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7636 new_rtx
= make_compound_operation (XEXP (SUBREG_REG (XEXP (x
, 0)), 0),
7638 new_rtx
= make_extraction (GET_MODE (SUBREG_REG (XEXP (x
, 0))), new_rtx
, 0,
7639 XEXP (SUBREG_REG (XEXP (x
, 0)), 1), i
, 1,
7640 0, in_code
== COMPARE
);
7642 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7643 else if ((GET_CODE (XEXP (x
, 0)) == XOR
7644 || GET_CODE (XEXP (x
, 0)) == IOR
)
7645 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == LSHIFTRT
7646 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == LSHIFTRT
7647 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7649 /* Apply the distributive law, and then try to make extractions. */
7650 new_rtx
= gen_rtx_fmt_ee (GET_CODE (XEXP (x
, 0)), mode
,
7651 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 0),
7653 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 1),
7655 new_rtx
= make_compound_operation (new_rtx
, in_code
);
7658 /* If we are have (and (rotate X C) M) and C is larger than the number
7659 of bits in M, this is an extraction. */
7661 else if (GET_CODE (XEXP (x
, 0)) == ROTATE
7662 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
7663 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0
7664 && i
<= INTVAL (XEXP (XEXP (x
, 0), 1)))
7666 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
7667 new_rtx
= make_extraction (mode
, new_rtx
,
7668 (GET_MODE_PRECISION (mode
)
7669 - INTVAL (XEXP (XEXP (x
, 0), 1))),
7670 NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
7673 /* On machines without logical shifts, if the operand of the AND is
7674 a logical shift and our mask turns off all the propagated sign
7675 bits, we can replace the logical shift with an arithmetic shift. */
7676 else if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
7677 && !have_insn_for (LSHIFTRT
, mode
)
7678 && have_insn_for (ASHIFTRT
, mode
)
7679 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
7680 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
7681 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
7682 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
7684 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
7686 mask
>>= INTVAL (XEXP (XEXP (x
, 0), 1));
7687 if ((INTVAL (XEXP (x
, 1)) & ~mask
) == 0)
7689 gen_rtx_ASHIFTRT (mode
,
7690 make_compound_operation
7691 (XEXP (XEXP (x
, 0), 0), next_code
),
7692 XEXP (XEXP (x
, 0), 1)));
7695 /* If the constant is one less than a power of two, this might be
7696 representable by an extraction even if no shift is present.
7697 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7698 we are in a COMPARE. */
7699 else if ((i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7700 new_rtx
= make_extraction (mode
,
7701 make_compound_operation (XEXP (x
, 0),
7703 0, NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
7705 /* If we are in a comparison and this is an AND with a power of two,
7706 convert this into the appropriate bit extract. */
7707 else if (in_code
== COMPARE
7708 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0)
7709 new_rtx
= make_extraction (mode
,
7710 make_compound_operation (XEXP (x
, 0),
7712 i
, NULL_RTX
, 1, 1, 0, 1);
7717 /* If the sign bit is known to be zero, replace this with an
7718 arithmetic shift. */
7719 if (have_insn_for (ASHIFTRT
, mode
)
7720 && ! have_insn_for (LSHIFTRT
, mode
)
7721 && mode_width
<= HOST_BITS_PER_WIDE_INT
7722 && (nonzero_bits (XEXP (x
, 0), mode
) & (1 << (mode_width
- 1))) == 0)
7724 new_rtx
= gen_rtx_ASHIFTRT (mode
,
7725 make_compound_operation (XEXP (x
, 0),
7731 /* ... fall through ... */
7737 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7738 this is a SIGN_EXTRACT. */
7739 if (CONST_INT_P (rhs
)
7740 && GET_CODE (lhs
) == ASHIFT
7741 && CONST_INT_P (XEXP (lhs
, 1))
7742 && INTVAL (rhs
) >= INTVAL (XEXP (lhs
, 1))
7743 && INTVAL (XEXP (lhs
, 1)) >= 0
7744 && INTVAL (rhs
) < mode_width
)
7746 new_rtx
= make_compound_operation (XEXP (lhs
, 0), next_code
);
7747 new_rtx
= make_extraction (mode
, new_rtx
,
7748 INTVAL (rhs
) - INTVAL (XEXP (lhs
, 1)),
7749 NULL_RTX
, mode_width
- INTVAL (rhs
),
7750 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
7754 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7755 If so, try to merge the shifts into a SIGN_EXTEND. We could
7756 also do this for some cases of SIGN_EXTRACT, but it doesn't
7757 seem worth the effort; the case checked for occurs on Alpha. */
7760 && ! (GET_CODE (lhs
) == SUBREG
7761 && (OBJECT_P (SUBREG_REG (lhs
))))
7762 && CONST_INT_P (rhs
)
7763 && INTVAL (rhs
) < HOST_BITS_PER_WIDE_INT
7764 && INTVAL (rhs
) < mode_width
7765 && (new_rtx
= extract_left_shift (lhs
, INTVAL (rhs
))) != 0)
7766 new_rtx
= make_extraction (mode
, make_compound_operation (new_rtx
, next_code
),
7767 0, NULL_RTX
, mode_width
- INTVAL (rhs
),
7768 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
7773 /* Call ourselves recursively on the inner expression. If we are
7774 narrowing the object and it has a different RTL code from
7775 what it originally did, do this SUBREG as a force_to_mode. */
7777 rtx inner
= SUBREG_REG (x
), simplified
;
7778 enum rtx_code subreg_code
= in_code
;
7780 /* If in_code is COMPARE, it isn't always safe to pass it through
7781 to the recursive make_compound_operation call. */
7782 if (subreg_code
== COMPARE
7783 && (!subreg_lowpart_p (x
)
7784 || GET_CODE (inner
) == SUBREG
7785 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
7786 is (const_int 0), rather than
7787 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
7788 || (GET_CODE (inner
) == AND
7789 && CONST_INT_P (XEXP (inner
, 1))
7790 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (inner
))
7791 && exact_log2 (UINTVAL (XEXP (inner
, 1)))
7792 >= GET_MODE_BITSIZE (mode
))))
7795 tem
= make_compound_operation (inner
, subreg_code
);
7798 = simplify_subreg (mode
, tem
, GET_MODE (inner
), SUBREG_BYTE (x
));
7802 if (GET_CODE (tem
) != GET_CODE (inner
)
7803 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (inner
))
7804 && subreg_lowpart_p (x
))
7807 = force_to_mode (tem
, mode
, ~(unsigned HOST_WIDE_INT
) 0, 0);
7809 /* If we have something other than a SUBREG, we might have
7810 done an expansion, so rerun ourselves. */
7811 if (GET_CODE (newer
) != SUBREG
)
7812 newer
= make_compound_operation (newer
, in_code
);
7814 /* force_to_mode can expand compounds. If it just re-expanded the
7815 compound, use gen_lowpart to convert to the desired mode. */
7816 if (rtx_equal_p (newer
, x
)
7817 /* Likewise if it re-expanded the compound only partially.
7818 This happens for SUBREG of ZERO_EXTRACT if they extract
7819 the same number of bits. */
7820 || (GET_CODE (newer
) == SUBREG
7821 && (GET_CODE (SUBREG_REG (newer
)) == LSHIFTRT
7822 || GET_CODE (SUBREG_REG (newer
)) == ASHIFTRT
)
7823 && GET_CODE (inner
) == AND
7824 && rtx_equal_p (SUBREG_REG (newer
), XEXP (inner
, 0))))
7825 return gen_lowpart (GET_MODE (x
), tem
);
7841 x
= gen_lowpart (mode
, new_rtx
);
7842 code
= GET_CODE (x
);
7845 /* Now recursively process each operand of this operation. We need to
7846 handle ZERO_EXTEND specially so that we don't lose track of the
7848 if (GET_CODE (x
) == ZERO_EXTEND
)
7850 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
7851 tem
= simplify_const_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
7852 new_rtx
, GET_MODE (XEXP (x
, 0)));
7855 SUBST (XEXP (x
, 0), new_rtx
);
7859 fmt
= GET_RTX_FORMAT (code
);
7860 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
7863 new_rtx
= make_compound_operation (XEXP (x
, i
), next_code
);
7864 SUBST (XEXP (x
, i
), new_rtx
);
7866 else if (fmt
[i
] == 'E')
7867 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
7869 new_rtx
= make_compound_operation (XVECEXP (x
, i
, j
), next_code
);
7870 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
7874 /* If this is a commutative operation, the changes to the operands
7875 may have made it noncanonical. */
7876 if (COMMUTATIVE_ARITH_P (x
)
7877 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
7880 SUBST (XEXP (x
, 0), XEXP (x
, 1));
7881 SUBST (XEXP (x
, 1), tem
);
7887 /* Given M see if it is a value that would select a field of bits
7888 within an item, but not the entire word. Return -1 if not.
7889 Otherwise, return the starting position of the field, where 0 is the
7892 *PLEN is set to the length of the field. */
7895 get_pos_from_mask (unsigned HOST_WIDE_INT m
, unsigned HOST_WIDE_INT
*plen
)
7897 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7898 int pos
= m
? ctz_hwi (m
) : -1;
7902 /* Now shift off the low-order zero bits and see if we have a
7903 power of two minus 1. */
7904 len
= exact_log2 ((m
>> pos
) + 1);
7913 /* If X refers to a register that equals REG in value, replace these
7914 references with REG. */
7916 canon_reg_for_combine (rtx x
, rtx reg
)
7923 enum rtx_code code
= GET_CODE (x
);
7924 switch (GET_RTX_CLASS (code
))
7927 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
7928 if (op0
!= XEXP (x
, 0))
7929 return simplify_gen_unary (GET_CODE (x
), GET_MODE (x
), op0
,
7934 case RTX_COMM_ARITH
:
7935 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
7936 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
7937 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
7938 return simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), op0
, op1
);
7942 case RTX_COMM_COMPARE
:
7943 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
7944 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
7945 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
7946 return simplify_gen_relational (GET_CODE (x
), GET_MODE (x
),
7947 GET_MODE (op0
), op0
, op1
);
7951 case RTX_BITFIELD_OPS
:
7952 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
7953 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
7954 op2
= canon_reg_for_combine (XEXP (x
, 2), reg
);
7955 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1) || op2
!= XEXP (x
, 2))
7956 return simplify_gen_ternary (GET_CODE (x
), GET_MODE (x
),
7957 GET_MODE (op0
), op0
, op1
, op2
);
7962 if (rtx_equal_p (get_last_value (reg
), x
)
7963 || rtx_equal_p (reg
, get_last_value (x
)))
7972 fmt
= GET_RTX_FORMAT (code
);
7974 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
7977 rtx op
= canon_reg_for_combine (XEXP (x
, i
), reg
);
7978 if (op
!= XEXP (x
, i
))
7988 else if (fmt
[i
] == 'E')
7991 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
7993 rtx op
= canon_reg_for_combine (XVECEXP (x
, i
, j
), reg
);
7994 if (op
!= XVECEXP (x
, i
, j
))
8001 XVECEXP (x
, i
, j
) = op
;
8012 /* Return X converted to MODE. If the value is already truncated to
8013 MODE we can just return a subreg even though in the general case we
8014 would need an explicit truncation. */
8017 gen_lowpart_or_truncate (enum machine_mode mode
, rtx x
)
8019 if (!CONST_INT_P (x
)
8020 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (x
))
8021 && !TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (x
))
8022 && !(REG_P (x
) && reg_truncated_to_mode (mode
, x
)))
8024 /* Bit-cast X into an integer mode. */
8025 if (!SCALAR_INT_MODE_P (GET_MODE (x
)))
8026 x
= gen_lowpart (int_mode_for_mode (GET_MODE (x
)), x
);
8027 x
= simplify_gen_unary (TRUNCATE
, int_mode_for_mode (mode
),
8031 return gen_lowpart (mode
, x
);
8034 /* See if X can be simplified knowing that we will only refer to it in
8035 MODE and will only refer to those bits that are nonzero in MASK.
8036 If other bits are being computed or if masking operations are done
8037 that select a superset of the bits in MASK, they can sometimes be
8040 Return a possibly simplified expression, but always convert X to
8041 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8043 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8044 are all off in X. This is used when X will be complemented, by either
8045 NOT, NEG, or XOR. */
8048 force_to_mode (rtx x
, enum machine_mode mode
, unsigned HOST_WIDE_INT mask
,
8051 enum rtx_code code
= GET_CODE (x
);
8052 int next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
8053 enum machine_mode op_mode
;
8054 unsigned HOST_WIDE_INT fuller_mask
, nonzero
;
8057 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8058 code below will do the wrong thing since the mode of such an
8059 expression is VOIDmode.
8061 Also do nothing if X is a CLOBBER; this can happen if X was
8062 the return value from a call to gen_lowpart. */
8063 if (code
== CALL
|| code
== ASM_OPERANDS
|| code
== CLOBBER
)
8066 /* We want to perform the operation in its present mode unless we know
8067 that the operation is valid in MODE, in which case we do the operation
8069 op_mode
= ((GET_MODE_CLASS (mode
) == GET_MODE_CLASS (GET_MODE (x
))
8070 && have_insn_for (code
, mode
))
8071 ? mode
: GET_MODE (x
));
8073 /* It is not valid to do a right-shift in a narrower mode
8074 than the one it came in with. */
8075 if ((code
== LSHIFTRT
|| code
== ASHIFTRT
)
8076 && GET_MODE_PRECISION (mode
) < GET_MODE_PRECISION (GET_MODE (x
)))
8077 op_mode
= GET_MODE (x
);
8079 /* Truncate MASK to fit OP_MODE. */
8081 mask
&= GET_MODE_MASK (op_mode
);
8083 /* When we have an arithmetic operation, or a shift whose count we
8084 do not know, we need to assume that all bits up to the highest-order
8085 bit in MASK will be needed. This is how we form such a mask. */
8086 if (mask
& ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
8087 fuller_mask
= ~(unsigned HOST_WIDE_INT
) 0;
8089 fuller_mask
= (((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mask
) + 1))
8092 /* Determine what bits of X are guaranteed to be (non)zero. */
8093 nonzero
= nonzero_bits (x
, mode
);
8095 /* If none of the bits in X are needed, return a zero. */
8096 if (!just_select
&& (nonzero
& mask
) == 0 && !side_effects_p (x
))
8099 /* If X is a CONST_INT, return a new one. Do this here since the
8100 test below will fail. */
8101 if (CONST_INT_P (x
))
8103 if (SCALAR_INT_MODE_P (mode
))
8104 return gen_int_mode (INTVAL (x
) & mask
, mode
);
8107 x
= GEN_INT (INTVAL (x
) & mask
);
8108 return gen_lowpart_common (mode
, x
);
8112 /* If X is narrower than MODE and we want all the bits in X's mode, just
8113 get X in the proper mode. */
8114 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (mode
)
8115 && (GET_MODE_MASK (GET_MODE (x
)) & ~mask
) == 0)
8116 return gen_lowpart (mode
, x
);
8118 /* We can ignore the effect of a SUBREG if it narrows the mode or
8119 if the constant masks to zero all the bits the mode doesn't have. */
8120 if (GET_CODE (x
) == SUBREG
8121 && subreg_lowpart_p (x
)
8122 && ((GET_MODE_SIZE (GET_MODE (x
))
8123 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
8125 & GET_MODE_MASK (GET_MODE (x
))
8126 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
)))))))
8127 return force_to_mode (SUBREG_REG (x
), mode
, mask
, next_select
);
8129 /* The arithmetic simplifications here only work for scalar integer modes. */
8130 if (!SCALAR_INT_MODE_P (mode
) || !SCALAR_INT_MODE_P (GET_MODE (x
)))
8131 return gen_lowpart_or_truncate (mode
, x
);
8136 /* If X is a (clobber (const_int)), return it since we know we are
8137 generating something that won't match. */
8144 x
= expand_compound_operation (x
);
8145 if (GET_CODE (x
) != code
)
8146 return force_to_mode (x
, mode
, mask
, next_select
);
8150 /* Similarly for a truncate. */
8151 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8154 /* If this is an AND with a constant, convert it into an AND
8155 whose constant is the AND of that constant with MASK. If it
8156 remains an AND of MASK, delete it since it is redundant. */
8158 if (CONST_INT_P (XEXP (x
, 1)))
8160 x
= simplify_and_const_int (x
, op_mode
, XEXP (x
, 0),
8161 mask
& INTVAL (XEXP (x
, 1)));
8163 /* If X is still an AND, see if it is an AND with a mask that
8164 is just some low-order bits. If so, and it is MASK, we don't
8167 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8168 && ((INTVAL (XEXP (x
, 1)) & GET_MODE_MASK (GET_MODE (x
)))
8172 /* If it remains an AND, try making another AND with the bits
8173 in the mode mask that aren't in MASK turned on. If the
8174 constant in the AND is wide enough, this might make a
8175 cheaper constant. */
8177 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8178 && GET_MODE_MASK (GET_MODE (x
)) != mask
8179 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
)))
8181 unsigned HOST_WIDE_INT cval
8182 = UINTVAL (XEXP (x
, 1))
8183 | (GET_MODE_MASK (GET_MODE (x
)) & ~mask
);
8186 y
= simplify_gen_binary (AND
, GET_MODE (x
), XEXP (x
, 0),
8187 gen_int_mode (cval
, GET_MODE (x
)));
8188 if (set_src_cost (y
, optimize_this_for_speed_p
)
8189 < set_src_cost (x
, optimize_this_for_speed_p
))
8199 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8200 low-order bits (as in an alignment operation) and FOO is already
8201 aligned to that boundary, mask C1 to that boundary as well.
8202 This may eliminate that PLUS and, later, the AND. */
8205 unsigned int width
= GET_MODE_PRECISION (mode
);
8206 unsigned HOST_WIDE_INT smask
= mask
;
8208 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8209 number, sign extend it. */
8211 if (width
< HOST_BITS_PER_WIDE_INT
8212 && (smask
& (HOST_WIDE_INT_1U
<< (width
- 1))) != 0)
8213 smask
|= HOST_WIDE_INT_M1U
<< width
;
8215 if (CONST_INT_P (XEXP (x
, 1))
8216 && exact_log2 (- smask
) >= 0
8217 && (nonzero_bits (XEXP (x
, 0), mode
) & ~smask
) == 0
8218 && (INTVAL (XEXP (x
, 1)) & ~smask
) != 0)
8219 return force_to_mode (plus_constant (GET_MODE (x
), XEXP (x
, 0),
8220 (INTVAL (XEXP (x
, 1)) & smask
)),
8221 mode
, smask
, next_select
);
8224 /* ... fall through ... */
8227 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8228 most significant bit in MASK since carries from those bits will
8229 affect the bits we are interested in. */
8234 /* If X is (minus C Y) where C's least set bit is larger than any bit
8235 in the mask, then we may replace with (neg Y). */
8236 if (CONST_INT_P (XEXP (x
, 0))
8237 && ((UINTVAL (XEXP (x
, 0)) & -UINTVAL (XEXP (x
, 0))) > mask
))
8239 x
= simplify_gen_unary (NEG
, GET_MODE (x
), XEXP (x
, 1),
8241 return force_to_mode (x
, mode
, mask
, next_select
);
8244 /* Similarly, if C contains every bit in the fuller_mask, then we may
8245 replace with (not Y). */
8246 if (CONST_INT_P (XEXP (x
, 0))
8247 && ((UINTVAL (XEXP (x
, 0)) | fuller_mask
) == UINTVAL (XEXP (x
, 0))))
8249 x
= simplify_gen_unary (NOT
, GET_MODE (x
),
8250 XEXP (x
, 1), GET_MODE (x
));
8251 return force_to_mode (x
, mode
, mask
, next_select
);
8259 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8260 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8261 operation which may be a bitfield extraction. Ensure that the
8262 constant we form is not wider than the mode of X. */
8264 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8265 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8266 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8267 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
8268 && CONST_INT_P (XEXP (x
, 1))
8269 && ((INTVAL (XEXP (XEXP (x
, 0), 1))
8270 + floor_log2 (INTVAL (XEXP (x
, 1))))
8271 < GET_MODE_PRECISION (GET_MODE (x
)))
8272 && (UINTVAL (XEXP (x
, 1))
8273 & ~nonzero_bits (XEXP (x
, 0), GET_MODE (x
))) == 0)
8275 temp
= gen_int_mode ((INTVAL (XEXP (x
, 1)) & mask
)
8276 << INTVAL (XEXP (XEXP (x
, 0), 1)),
8278 temp
= simplify_gen_binary (GET_CODE (x
), GET_MODE (x
),
8279 XEXP (XEXP (x
, 0), 0), temp
);
8280 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
), temp
,
8281 XEXP (XEXP (x
, 0), 1));
8282 return force_to_mode (x
, mode
, mask
, next_select
);
8286 /* For most binary operations, just propagate into the operation and
8287 change the mode if we have an operation of that mode. */
8289 op0
= force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8290 op1
= force_to_mode (XEXP (x
, 1), mode
, mask
, next_select
);
8292 /* If we ended up truncating both operands, truncate the result of the
8293 operation instead. */
8294 if (GET_CODE (op0
) == TRUNCATE
8295 && GET_CODE (op1
) == TRUNCATE
)
8297 op0
= XEXP (op0
, 0);
8298 op1
= XEXP (op1
, 0);
8301 op0
= gen_lowpart_or_truncate (op_mode
, op0
);
8302 op1
= gen_lowpart_or_truncate (op_mode
, op1
);
8304 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8305 x
= simplify_gen_binary (code
, op_mode
, op0
, op1
);
8309 /* For left shifts, do the same, but just for the first operand.
8310 However, we cannot do anything with shifts where we cannot
8311 guarantee that the counts are smaller than the size of the mode
8312 because such a count will have a different meaning in a
8315 if (! (CONST_INT_P (XEXP (x
, 1))
8316 && INTVAL (XEXP (x
, 1)) >= 0
8317 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (mode
))
8318 && ! (GET_MODE (XEXP (x
, 1)) != VOIDmode
8319 && (nonzero_bits (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)))
8320 < (unsigned HOST_WIDE_INT
) GET_MODE_PRECISION (mode
))))
8323 /* If the shift count is a constant and we can do arithmetic in
8324 the mode of the shift, refine which bits we need. Otherwise, use the
8325 conservative form of the mask. */
8326 if (CONST_INT_P (XEXP (x
, 1))
8327 && INTVAL (XEXP (x
, 1)) >= 0
8328 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (op_mode
)
8329 && HWI_COMPUTABLE_MODE_P (op_mode
))
8330 mask
>>= INTVAL (XEXP (x
, 1));
8334 op0
= gen_lowpart_or_truncate (op_mode
,
8335 force_to_mode (XEXP (x
, 0), op_mode
,
8336 mask
, next_select
));
8338 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
8339 x
= simplify_gen_binary (code
, op_mode
, op0
, XEXP (x
, 1));
8343 /* Here we can only do something if the shift count is a constant,
8344 this shift constant is valid for the host, and we can do arithmetic
8347 if (CONST_INT_P (XEXP (x
, 1))
8348 && INTVAL (XEXP (x
, 1)) >= 0
8349 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
8350 && HWI_COMPUTABLE_MODE_P (op_mode
))
8352 rtx inner
= XEXP (x
, 0);
8353 unsigned HOST_WIDE_INT inner_mask
;
8355 /* Select the mask of the bits we need for the shift operand. */
8356 inner_mask
= mask
<< INTVAL (XEXP (x
, 1));
8358 /* We can only change the mode of the shift if we can do arithmetic
8359 in the mode of the shift and INNER_MASK is no wider than the
8360 width of X's mode. */
8361 if ((inner_mask
& ~GET_MODE_MASK (GET_MODE (x
))) != 0)
8362 op_mode
= GET_MODE (x
);
8364 inner
= force_to_mode (inner
, op_mode
, inner_mask
, next_select
);
8366 if (GET_MODE (x
) != op_mode
|| inner
!= XEXP (x
, 0))
8367 x
= simplify_gen_binary (LSHIFTRT
, op_mode
, inner
, XEXP (x
, 1));
8370 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8371 shift and AND produces only copies of the sign bit (C2 is one less
8372 than a power of two), we can do this with just a shift. */
8374 if (GET_CODE (x
) == LSHIFTRT
8375 && CONST_INT_P (XEXP (x
, 1))
8376 /* The shift puts one of the sign bit copies in the least significant
8378 && ((INTVAL (XEXP (x
, 1))
8379 + num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0))))
8380 >= GET_MODE_PRECISION (GET_MODE (x
)))
8381 && exact_log2 (mask
+ 1) >= 0
8382 /* Number of bits left after the shift must be more than the mask
8384 && ((INTVAL (XEXP (x
, 1)) + exact_log2 (mask
+ 1))
8385 <= GET_MODE_PRECISION (GET_MODE (x
)))
8386 /* Must be more sign bit copies than the mask needs. */
8387 && ((int) num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
8388 >= exact_log2 (mask
+ 1)))
8389 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
8390 GEN_INT (GET_MODE_PRECISION (GET_MODE (x
))
8391 - exact_log2 (mask
+ 1)));
8396 /* If we are just looking for the sign bit, we don't need this shift at
8397 all, even if it has a variable count. */
8398 if (val_signbit_p (GET_MODE (x
), mask
))
8399 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8401 /* If this is a shift by a constant, get a mask that contains those bits
8402 that are not copies of the sign bit. We then have two cases: If
8403 MASK only includes those bits, this can be a logical shift, which may
8404 allow simplifications. If MASK is a single-bit field not within
8405 those bits, we are requesting a copy of the sign bit and hence can
8406 shift the sign bit to the appropriate location. */
8408 if (CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0
8409 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
8413 /* If the considered data is wider than HOST_WIDE_INT, we can't
8414 represent a mask for all its bits in a single scalar.
8415 But we only care about the lower bits, so calculate these. */
8417 if (GET_MODE_PRECISION (GET_MODE (x
)) > HOST_BITS_PER_WIDE_INT
)
8419 nonzero
= ~(unsigned HOST_WIDE_INT
) 0;
8421 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8422 is the number of bits a full-width mask would have set.
8423 We need only shift if these are fewer than nonzero can
8424 hold. If not, we must keep all bits set in nonzero. */
8426 if (GET_MODE_PRECISION (GET_MODE (x
)) - INTVAL (XEXP (x
, 1))
8427 < HOST_BITS_PER_WIDE_INT
)
8428 nonzero
>>= INTVAL (XEXP (x
, 1))
8429 + HOST_BITS_PER_WIDE_INT
8430 - GET_MODE_PRECISION (GET_MODE (x
)) ;
8434 nonzero
= GET_MODE_MASK (GET_MODE (x
));
8435 nonzero
>>= INTVAL (XEXP (x
, 1));
8438 if ((mask
& ~nonzero
) == 0)
8440 x
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, GET_MODE (x
),
8441 XEXP (x
, 0), INTVAL (XEXP (x
, 1)));
8442 if (GET_CODE (x
) != ASHIFTRT
)
8443 return force_to_mode (x
, mode
, mask
, next_select
);
8446 else if ((i
= exact_log2 (mask
)) >= 0)
8448 x
= simplify_shift_const
8449 (NULL_RTX
, LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
8450 GET_MODE_PRECISION (GET_MODE (x
)) - 1 - i
);
8452 if (GET_CODE (x
) != ASHIFTRT
)
8453 return force_to_mode (x
, mode
, mask
, next_select
);
8457 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8458 even if the shift count isn't a constant. */
8460 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
),
8461 XEXP (x
, 0), XEXP (x
, 1));
8465 /* If this is a zero- or sign-extension operation that just affects bits
8466 we don't care about, remove it. Be sure the call above returned
8467 something that is still a shift. */
8469 if ((GET_CODE (x
) == LSHIFTRT
|| GET_CODE (x
) == ASHIFTRT
)
8470 && CONST_INT_P (XEXP (x
, 1))
8471 && INTVAL (XEXP (x
, 1)) >= 0
8472 && (INTVAL (XEXP (x
, 1))
8473 <= GET_MODE_PRECISION (GET_MODE (x
)) - (floor_log2 (mask
) + 1))
8474 && GET_CODE (XEXP (x
, 0)) == ASHIFT
8475 && XEXP (XEXP (x
, 0), 1) == XEXP (x
, 1))
8476 return force_to_mode (XEXP (XEXP (x
, 0), 0), mode
, mask
,
8483 /* If the shift count is constant and we can do computations
8484 in the mode of X, compute where the bits we care about are.
8485 Otherwise, we can't do anything. Don't change the mode of
8486 the shift or propagate MODE into the shift, though. */
8487 if (CONST_INT_P (XEXP (x
, 1))
8488 && INTVAL (XEXP (x
, 1)) >= 0)
8490 temp
= simplify_binary_operation (code
== ROTATE
? ROTATERT
: ROTATE
,
8492 gen_int_mode (mask
, GET_MODE (x
)),
8494 if (temp
&& CONST_INT_P (temp
))
8495 x
= simplify_gen_binary (code
, GET_MODE (x
),
8496 force_to_mode (XEXP (x
, 0), GET_MODE (x
),
8497 INTVAL (temp
), next_select
),
8503 /* If we just want the low-order bit, the NEG isn't needed since it
8504 won't change the low-order bit. */
8506 return force_to_mode (XEXP (x
, 0), mode
, mask
, just_select
);
8508 /* We need any bits less significant than the most significant bit in
8509 MASK since carries from those bits will affect the bits we are
8515 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8516 same as the XOR case above. Ensure that the constant we form is not
8517 wider than the mode of X. */
8519 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8520 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8521 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8522 && (INTVAL (XEXP (XEXP (x
, 0), 1)) + floor_log2 (mask
)
8523 < GET_MODE_PRECISION (GET_MODE (x
)))
8524 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
8526 temp
= gen_int_mode (mask
<< INTVAL (XEXP (XEXP (x
, 0), 1)),
8528 temp
= simplify_gen_binary (XOR
, GET_MODE (x
),
8529 XEXP (XEXP (x
, 0), 0), temp
);
8530 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
),
8531 temp
, XEXP (XEXP (x
, 0), 1));
8533 return force_to_mode (x
, mode
, mask
, next_select
);
8536 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8537 use the full mask inside the NOT. */
8541 op0
= gen_lowpart_or_truncate (op_mode
,
8542 force_to_mode (XEXP (x
, 0), mode
, mask
,
8544 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
8545 x
= simplify_gen_unary (code
, op_mode
, op0
, op_mode
);
8549 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8550 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8551 which is equal to STORE_FLAG_VALUE. */
8552 if ((mask
& ~STORE_FLAG_VALUE
) == 0
8553 && XEXP (x
, 1) == const0_rtx
8554 && GET_MODE (XEXP (x
, 0)) == mode
8555 && exact_log2 (nonzero_bits (XEXP (x
, 0), mode
)) >= 0
8556 && (nonzero_bits (XEXP (x
, 0), mode
)
8557 == (unsigned HOST_WIDE_INT
) STORE_FLAG_VALUE
))
8558 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8563 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8564 written in a narrower mode. We play it safe and do not do so. */
8566 op0
= gen_lowpart_or_truncate (GET_MODE (x
),
8567 force_to_mode (XEXP (x
, 1), mode
,
8568 mask
, next_select
));
8569 op1
= gen_lowpart_or_truncate (GET_MODE (x
),
8570 force_to_mode (XEXP (x
, 2), mode
,
8571 mask
, next_select
));
8572 if (op0
!= XEXP (x
, 1) || op1
!= XEXP (x
, 2))
8573 x
= simplify_gen_ternary (IF_THEN_ELSE
, GET_MODE (x
),
8574 GET_MODE (XEXP (x
, 0)), XEXP (x
, 0),
8582 /* Ensure we return a value of the proper mode. */
8583 return gen_lowpart_or_truncate (mode
, x
);
8586 /* Return nonzero if X is an expression that has one of two values depending on
8587 whether some other value is zero or nonzero. In that case, we return the
8588 value that is being tested, *PTRUE is set to the value if the rtx being
8589 returned has a nonzero value, and *PFALSE is set to the other alternative.
8591 If we return zero, we set *PTRUE and *PFALSE to X. */
8594 if_then_else_cond (rtx x
, rtx
*ptrue
, rtx
*pfalse
)
8596 enum machine_mode mode
= GET_MODE (x
);
8597 enum rtx_code code
= GET_CODE (x
);
8598 rtx cond0
, cond1
, true0
, true1
, false0
, false1
;
8599 unsigned HOST_WIDE_INT nz
;
8601 /* If we are comparing a value against zero, we are done. */
8602 if ((code
== NE
|| code
== EQ
)
8603 && XEXP (x
, 1) == const0_rtx
)
8605 *ptrue
= (code
== NE
) ? const_true_rtx
: const0_rtx
;
8606 *pfalse
= (code
== NE
) ? const0_rtx
: const_true_rtx
;
8610 /* If this is a unary operation whose operand has one of two values, apply
8611 our opcode to compute those values. */
8612 else if (UNARY_P (x
)
8613 && (cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
)) != 0)
8615 *ptrue
= simplify_gen_unary (code
, mode
, true0
, GET_MODE (XEXP (x
, 0)));
8616 *pfalse
= simplify_gen_unary (code
, mode
, false0
,
8617 GET_MODE (XEXP (x
, 0)));
8621 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8622 make can't possibly match and would suppress other optimizations. */
8623 else if (code
== COMPARE
)
8626 /* If this is a binary operation, see if either side has only one of two
8627 values. If either one does or if both do and they are conditional on
8628 the same value, compute the new true and false values. */
8629 else if (BINARY_P (x
))
8631 cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
);
8632 cond1
= if_then_else_cond (XEXP (x
, 1), &true1
, &false1
);
8634 if ((cond0
!= 0 || cond1
!= 0)
8635 && ! (cond0
!= 0 && cond1
!= 0 && ! rtx_equal_p (cond0
, cond1
)))
8637 /* If if_then_else_cond returned zero, then true/false are the
8638 same rtl. We must copy one of them to prevent invalid rtl
8641 true0
= copy_rtx (true0
);
8642 else if (cond1
== 0)
8643 true1
= copy_rtx (true1
);
8645 if (COMPARISON_P (x
))
8647 *ptrue
= simplify_gen_relational (code
, mode
, VOIDmode
,
8649 *pfalse
= simplify_gen_relational (code
, mode
, VOIDmode
,
8654 *ptrue
= simplify_gen_binary (code
, mode
, true0
, true1
);
8655 *pfalse
= simplify_gen_binary (code
, mode
, false0
, false1
);
8658 return cond0
? cond0
: cond1
;
8661 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8662 operands is zero when the other is nonzero, and vice-versa,
8663 and STORE_FLAG_VALUE is 1 or -1. */
8665 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
8666 && (code
== PLUS
|| code
== IOR
|| code
== XOR
|| code
== MINUS
8668 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
8670 rtx op0
= XEXP (XEXP (x
, 0), 1);
8671 rtx op1
= XEXP (XEXP (x
, 1), 1);
8673 cond0
= XEXP (XEXP (x
, 0), 0);
8674 cond1
= XEXP (XEXP (x
, 1), 0);
8676 if (COMPARISON_P (cond0
)
8677 && COMPARISON_P (cond1
)
8678 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
8679 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
8680 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
8681 || ((swap_condition (GET_CODE (cond0
))
8682 == reversed_comparison_code (cond1
, NULL
))
8683 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
8684 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
8685 && ! side_effects_p (x
))
8687 *ptrue
= simplify_gen_binary (MULT
, mode
, op0
, const_true_rtx
);
8688 *pfalse
= simplify_gen_binary (MULT
, mode
,
8690 ? simplify_gen_unary (NEG
, mode
,
8698 /* Similarly for MULT, AND and UMIN, except that for these the result
8700 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
8701 && (code
== MULT
|| code
== AND
|| code
== UMIN
)
8702 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
8704 cond0
= XEXP (XEXP (x
, 0), 0);
8705 cond1
= XEXP (XEXP (x
, 1), 0);
8707 if (COMPARISON_P (cond0
)
8708 && COMPARISON_P (cond1
)
8709 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
8710 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
8711 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
8712 || ((swap_condition (GET_CODE (cond0
))
8713 == reversed_comparison_code (cond1
, NULL
))
8714 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
8715 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
8716 && ! side_effects_p (x
))
8718 *ptrue
= *pfalse
= const0_rtx
;
8724 else if (code
== IF_THEN_ELSE
)
8726 /* If we have IF_THEN_ELSE already, extract the condition and
8727 canonicalize it if it is NE or EQ. */
8728 cond0
= XEXP (x
, 0);
8729 *ptrue
= XEXP (x
, 1), *pfalse
= XEXP (x
, 2);
8730 if (GET_CODE (cond0
) == NE
&& XEXP (cond0
, 1) == const0_rtx
)
8731 return XEXP (cond0
, 0);
8732 else if (GET_CODE (cond0
) == EQ
&& XEXP (cond0
, 1) == const0_rtx
)
8734 *ptrue
= XEXP (x
, 2), *pfalse
= XEXP (x
, 1);
8735 return XEXP (cond0
, 0);
8741 /* If X is a SUBREG, we can narrow both the true and false values
8742 if the inner expression, if there is a condition. */
8743 else if (code
== SUBREG
8744 && 0 != (cond0
= if_then_else_cond (SUBREG_REG (x
),
8747 true0
= simplify_gen_subreg (mode
, true0
,
8748 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
8749 false0
= simplify_gen_subreg (mode
, false0
,
8750 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
8751 if (true0
&& false0
)
8759 /* If X is a constant, this isn't special and will cause confusions
8760 if we treat it as such. Likewise if it is equivalent to a constant. */
8761 else if (CONSTANT_P (x
)
8762 || ((cond0
= get_last_value (x
)) != 0 && CONSTANT_P (cond0
)))
8765 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8766 will be least confusing to the rest of the compiler. */
8767 else if (mode
== BImode
)
8769 *ptrue
= GEN_INT (STORE_FLAG_VALUE
), *pfalse
= const0_rtx
;
8773 /* If X is known to be either 0 or -1, those are the true and
8774 false values when testing X. */
8775 else if (x
== constm1_rtx
|| x
== const0_rtx
8776 || (mode
!= VOIDmode
8777 && num_sign_bit_copies (x
, mode
) == GET_MODE_PRECISION (mode
)))
8779 *ptrue
= constm1_rtx
, *pfalse
= const0_rtx
;
8783 /* Likewise for 0 or a single bit. */
8784 else if (HWI_COMPUTABLE_MODE_P (mode
)
8785 && exact_log2 (nz
= nonzero_bits (x
, mode
)) >= 0)
8787 *ptrue
= gen_int_mode (nz
, mode
), *pfalse
= const0_rtx
;
8791 /* Otherwise fail; show no condition with true and false values the same. */
8792 *ptrue
= *pfalse
= x
;
8796 /* Return the value of expression X given the fact that condition COND
8797 is known to be true when applied to REG as its first operand and VAL
8798 as its second. X is known to not be shared and so can be modified in
8801 We only handle the simplest cases, and specifically those cases that
8802 arise with IF_THEN_ELSE expressions. */
8805 known_cond (rtx x
, enum rtx_code cond
, rtx reg
, rtx val
)
8807 enum rtx_code code
= GET_CODE (x
);
8812 if (side_effects_p (x
))
8815 /* If either operand of the condition is a floating point value,
8816 then we have to avoid collapsing an EQ comparison. */
8818 && rtx_equal_p (x
, reg
)
8819 && ! FLOAT_MODE_P (GET_MODE (x
))
8820 && ! FLOAT_MODE_P (GET_MODE (val
)))
8823 if (cond
== UNEQ
&& rtx_equal_p (x
, reg
))
8826 /* If X is (abs REG) and we know something about REG's relationship
8827 with zero, we may be able to simplify this. */
8829 if (code
== ABS
&& rtx_equal_p (XEXP (x
, 0), reg
) && val
== const0_rtx
)
8832 case GE
: case GT
: case EQ
:
8835 return simplify_gen_unary (NEG
, GET_MODE (XEXP (x
, 0)),
8837 GET_MODE (XEXP (x
, 0)));
8842 /* The only other cases we handle are MIN, MAX, and comparisons if the
8843 operands are the same as REG and VAL. */
8845 else if (COMPARISON_P (x
) || COMMUTATIVE_ARITH_P (x
))
8847 if (rtx_equal_p (XEXP (x
, 0), val
))
8848 cond
= swap_condition (cond
), temp
= val
, val
= reg
, reg
= temp
;
8850 if (rtx_equal_p (XEXP (x
, 0), reg
) && rtx_equal_p (XEXP (x
, 1), val
))
8852 if (COMPARISON_P (x
))
8854 if (comparison_dominates_p (cond
, code
))
8855 return const_true_rtx
;
8857 code
= reversed_comparison_code (x
, NULL
);
8859 && comparison_dominates_p (cond
, code
))
8864 else if (code
== SMAX
|| code
== SMIN
8865 || code
== UMIN
|| code
== UMAX
)
8867 int unsignedp
= (code
== UMIN
|| code
== UMAX
);
8869 /* Do not reverse the condition when it is NE or EQ.
8870 This is because we cannot conclude anything about
8871 the value of 'SMAX (x, y)' when x is not equal to y,
8872 but we can when x equals y. */
8873 if ((code
== SMAX
|| code
== UMAX
)
8874 && ! (cond
== EQ
|| cond
== NE
))
8875 cond
= reverse_condition (cond
);
8880 return unsignedp
? x
: XEXP (x
, 1);
8882 return unsignedp
? x
: XEXP (x
, 0);
8884 return unsignedp
? XEXP (x
, 1) : x
;
8886 return unsignedp
? XEXP (x
, 0) : x
;
8893 else if (code
== SUBREG
)
8895 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (x
));
8896 rtx new_rtx
, r
= known_cond (SUBREG_REG (x
), cond
, reg
, val
);
8898 if (SUBREG_REG (x
) != r
)
8900 /* We must simplify subreg here, before we lose track of the
8901 original inner_mode. */
8902 new_rtx
= simplify_subreg (GET_MODE (x
), r
,
8903 inner_mode
, SUBREG_BYTE (x
));
8907 SUBST (SUBREG_REG (x
), r
);
8912 /* We don't have to handle SIGN_EXTEND here, because even in the
8913 case of replacing something with a modeless CONST_INT, a
8914 CONST_INT is already (supposed to be) a valid sign extension for
8915 its narrower mode, which implies it's already properly
8916 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8917 story is different. */
8918 else if (code
== ZERO_EXTEND
)
8920 enum machine_mode inner_mode
= GET_MODE (XEXP (x
, 0));
8921 rtx new_rtx
, r
= known_cond (XEXP (x
, 0), cond
, reg
, val
);
8923 if (XEXP (x
, 0) != r
)
8925 /* We must simplify the zero_extend here, before we lose
8926 track of the original inner_mode. */
8927 new_rtx
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
8932 SUBST (XEXP (x
, 0), r
);
8938 fmt
= GET_RTX_FORMAT (code
);
8939 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
8942 SUBST (XEXP (x
, i
), known_cond (XEXP (x
, i
), cond
, reg
, val
));
8943 else if (fmt
[i
] == 'E')
8944 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
8945 SUBST (XVECEXP (x
, i
, j
), known_cond (XVECEXP (x
, i
, j
),
8952 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8953 assignment as a field assignment. */
8956 rtx_equal_for_field_assignment_p (rtx x
, rtx y
)
8958 if (x
== y
|| rtx_equal_p (x
, y
))
8961 if (x
== 0 || y
== 0 || GET_MODE (x
) != GET_MODE (y
))
8964 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8965 Note that all SUBREGs of MEM are paradoxical; otherwise they
8966 would have been rewritten. */
8967 if (MEM_P (x
) && GET_CODE (y
) == SUBREG
8968 && MEM_P (SUBREG_REG (y
))
8969 && rtx_equal_p (SUBREG_REG (y
),
8970 gen_lowpart (GET_MODE (SUBREG_REG (y
)), x
)))
8973 if (MEM_P (y
) && GET_CODE (x
) == SUBREG
8974 && MEM_P (SUBREG_REG (x
))
8975 && rtx_equal_p (SUBREG_REG (x
),
8976 gen_lowpart (GET_MODE (SUBREG_REG (x
)), y
)))
8979 /* We used to see if get_last_value of X and Y were the same but that's
8980 not correct. In one direction, we'll cause the assignment to have
8981 the wrong destination and in the case, we'll import a register into this
8982 insn that might have already have been dead. So fail if none of the
8983 above cases are true. */
8987 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8988 Return that assignment if so.
8990 We only handle the most common cases. */
8993 make_field_assignment (rtx x
)
8995 rtx dest
= SET_DEST (x
);
8996 rtx src
= SET_SRC (x
);
9001 unsigned HOST_WIDE_INT len
;
9003 enum machine_mode mode
;
9005 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9006 a clear of a one-bit field. We will have changed it to
9007 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9010 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == ROTATE
9011 && CONST_INT_P (XEXP (XEXP (src
, 0), 0))
9012 && INTVAL (XEXP (XEXP (src
, 0), 0)) == -2
9013 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9015 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
9018 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
9022 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == SUBREG
9023 && subreg_lowpart_p (XEXP (src
, 0))
9024 && (GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)))
9025 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src
, 0)))))
9026 && GET_CODE (SUBREG_REG (XEXP (src
, 0))) == ROTATE
9027 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src
, 0)), 0))
9028 && INTVAL (XEXP (SUBREG_REG (XEXP (src
, 0)), 0)) == -2
9029 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9031 assign
= make_extraction (VOIDmode
, dest
, 0,
9032 XEXP (SUBREG_REG (XEXP (src
, 0)), 1),
9035 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
9039 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9041 if (GET_CODE (src
) == IOR
&& GET_CODE (XEXP (src
, 0)) == ASHIFT
9042 && XEXP (XEXP (src
, 0), 0) == const1_rtx
9043 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9045 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
9048 return gen_rtx_SET (VOIDmode
, assign
, const1_rtx
);
9052 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9053 SRC is an AND with all bits of that field set, then we can discard
9055 if (GET_CODE (dest
) == ZERO_EXTRACT
9056 && CONST_INT_P (XEXP (dest
, 1))
9057 && GET_CODE (src
) == AND
9058 && CONST_INT_P (XEXP (src
, 1)))
9060 HOST_WIDE_INT width
= INTVAL (XEXP (dest
, 1));
9061 unsigned HOST_WIDE_INT and_mask
= INTVAL (XEXP (src
, 1));
9062 unsigned HOST_WIDE_INT ze_mask
;
9064 if (width
>= HOST_BITS_PER_WIDE_INT
)
9067 ze_mask
= ((unsigned HOST_WIDE_INT
)1 << width
) - 1;
9069 /* Complete overlap. We can remove the source AND. */
9070 if ((and_mask
& ze_mask
) == ze_mask
)
9071 return gen_rtx_SET (VOIDmode
, dest
, XEXP (src
, 0));
9073 /* Partial overlap. We can reduce the source AND. */
9074 if ((and_mask
& ze_mask
) != and_mask
)
9076 mode
= GET_MODE (src
);
9077 src
= gen_rtx_AND (mode
, XEXP (src
, 0),
9078 gen_int_mode (and_mask
& ze_mask
, mode
));
9079 return gen_rtx_SET (VOIDmode
, dest
, src
);
9083 /* The other case we handle is assignments into a constant-position
9084 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9085 a mask that has all one bits except for a group of zero bits and
9086 OTHER is known to have zeros where C1 has ones, this is such an
9087 assignment. Compute the position and length from C1. Shift OTHER
9088 to the appropriate position, force it to the required mode, and
9089 make the extraction. Check for the AND in both operands. */
9091 if (GET_CODE (src
) != IOR
&& GET_CODE (src
) != XOR
)
9094 rhs
= expand_compound_operation (XEXP (src
, 0));
9095 lhs
= expand_compound_operation (XEXP (src
, 1));
9097 if (GET_CODE (rhs
) == AND
9098 && CONST_INT_P (XEXP (rhs
, 1))
9099 && rtx_equal_for_field_assignment_p (XEXP (rhs
, 0), dest
))
9100 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
9101 else if (GET_CODE (lhs
) == AND
9102 && CONST_INT_P (XEXP (lhs
, 1))
9103 && rtx_equal_for_field_assignment_p (XEXP (lhs
, 0), dest
))
9104 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
9108 pos
= get_pos_from_mask ((~c1
) & GET_MODE_MASK (GET_MODE (dest
)), &len
);
9109 if (pos
< 0 || pos
+ len
> GET_MODE_PRECISION (GET_MODE (dest
))
9110 || GET_MODE_PRECISION (GET_MODE (dest
)) > HOST_BITS_PER_WIDE_INT
9111 || (c1
& nonzero_bits (other
, GET_MODE (dest
))) != 0)
9114 assign
= make_extraction (VOIDmode
, dest
, pos
, NULL_RTX
, len
, 1, 1, 0);
9118 /* The mode to use for the source is the mode of the assignment, or of
9119 what is inside a possible STRICT_LOW_PART. */
9120 mode
= (GET_CODE (assign
) == STRICT_LOW_PART
9121 ? GET_MODE (XEXP (assign
, 0)) : GET_MODE (assign
));
9123 /* Shift OTHER right POS places and make it the source, restricting it
9124 to the proper length and mode. */
9126 src
= canon_reg_for_combine (simplify_shift_const (NULL_RTX
, LSHIFTRT
,
9130 src
= force_to_mode (src
, mode
,
9131 GET_MODE_PRECISION (mode
) >= HOST_BITS_PER_WIDE_INT
9132 ? ~(unsigned HOST_WIDE_INT
) 0
9133 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
9136 /* If SRC is masked by an AND that does not make a difference in
9137 the value being stored, strip it. */
9138 if (GET_CODE (assign
) == ZERO_EXTRACT
9139 && CONST_INT_P (XEXP (assign
, 1))
9140 && INTVAL (XEXP (assign
, 1)) < HOST_BITS_PER_WIDE_INT
9141 && GET_CODE (src
) == AND
9142 && CONST_INT_P (XEXP (src
, 1))
9143 && UINTVAL (XEXP (src
, 1))
9144 == ((unsigned HOST_WIDE_INT
) 1 << INTVAL (XEXP (assign
, 1))) - 1)
9145 src
= XEXP (src
, 0);
9147 return gen_rtx_SET (VOIDmode
, assign
, src
);
9150 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9154 apply_distributive_law (rtx x
)
9156 enum rtx_code code
= GET_CODE (x
);
9157 enum rtx_code inner_code
;
9158 rtx lhs
, rhs
, other
;
9161 /* Distributivity is not true for floating point as it can change the
9162 value. So we don't do it unless -funsafe-math-optimizations. */
9163 if (FLOAT_MODE_P (GET_MODE (x
))
9164 && ! flag_unsafe_math_optimizations
)
9167 /* The outer operation can only be one of the following: */
9168 if (code
!= IOR
&& code
!= AND
&& code
!= XOR
9169 && code
!= PLUS
&& code
!= MINUS
)
9175 /* If either operand is a primitive we can't do anything, so get out
9177 if (OBJECT_P (lhs
) || OBJECT_P (rhs
))
9180 lhs
= expand_compound_operation (lhs
);
9181 rhs
= expand_compound_operation (rhs
);
9182 inner_code
= GET_CODE (lhs
);
9183 if (inner_code
!= GET_CODE (rhs
))
9186 /* See if the inner and outer operations distribute. */
9193 /* These all distribute except over PLUS. */
9194 if (code
== PLUS
|| code
== MINUS
)
9199 if (code
!= PLUS
&& code
!= MINUS
)
9204 /* This is also a multiply, so it distributes over everything. */
9207 /* This used to handle SUBREG, but this turned out to be counter-
9208 productive, since (subreg (op ...)) usually is not handled by
9209 insn patterns, and this "optimization" therefore transformed
9210 recognizable patterns into unrecognizable ones. Therefore the
9211 SUBREG case was removed from here.
9213 It is possible that distributing SUBREG over arithmetic operations
9214 leads to an intermediate result than can then be optimized further,
9215 e.g. by moving the outer SUBREG to the other side of a SET as done
9216 in simplify_set. This seems to have been the original intent of
9217 handling SUBREGs here.
9219 However, with current GCC this does not appear to actually happen,
9220 at least on major platforms. If some case is found where removing
9221 the SUBREG case here prevents follow-on optimizations, distributing
9222 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9228 /* Set LHS and RHS to the inner operands (A and B in the example
9229 above) and set OTHER to the common operand (C in the example).
9230 There is only one way to do this unless the inner operation is
9232 if (COMMUTATIVE_ARITH_P (lhs
)
9233 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 0)))
9234 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 1);
9235 else if (COMMUTATIVE_ARITH_P (lhs
)
9236 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 1)))
9237 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 0);
9238 else if (COMMUTATIVE_ARITH_P (lhs
)
9239 && rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 0)))
9240 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 1);
9241 else if (rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 1)))
9242 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 0);
9246 /* Form the new inner operation, seeing if it simplifies first. */
9247 tem
= simplify_gen_binary (code
, GET_MODE (x
), lhs
, rhs
);
9249 /* There is one exception to the general way of distributing:
9250 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9251 if (code
== XOR
&& inner_code
== IOR
)
9254 other
= simplify_gen_unary (NOT
, GET_MODE (x
), other
, GET_MODE (x
));
9257 /* We may be able to continuing distributing the result, so call
9258 ourselves recursively on the inner operation before forming the
9259 outer operation, which we return. */
9260 return simplify_gen_binary (inner_code
, GET_MODE (x
),
9261 apply_distributive_law (tem
), other
);
9264 /* See if X is of the form (* (+ A B) C), and if so convert to
9265 (+ (* A C) (* B C)) and try to simplify.
9267 Most of the time, this results in no change. However, if some of
9268 the operands are the same or inverses of each other, simplifications
9271 For example, (and (ior A B) (not B)) can occur as the result of
9272 expanding a bit field assignment. When we apply the distributive
9273 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9274 which then simplifies to (and (A (not B))).
9276 Note that no checks happen on the validity of applying the inverse
9277 distributive law. This is pointless since we can do it in the
9278 few places where this routine is called.
9280 N is the index of the term that is decomposed (the arithmetic operation,
9281 i.e. (+ A B) in the first example above). !N is the index of the term that
9282 is distributed, i.e. of C in the first example above. */
9284 distribute_and_simplify_rtx (rtx x
, int n
)
9286 enum machine_mode mode
;
9287 enum rtx_code outer_code
, inner_code
;
9288 rtx decomposed
, distributed
, inner_op0
, inner_op1
, new_op0
, new_op1
, tmp
;
9290 /* Distributivity is not true for floating point as it can change the
9291 value. So we don't do it unless -funsafe-math-optimizations. */
9292 if (FLOAT_MODE_P (GET_MODE (x
))
9293 && ! flag_unsafe_math_optimizations
)
9296 decomposed
= XEXP (x
, n
);
9297 if (!ARITHMETIC_P (decomposed
))
9300 mode
= GET_MODE (x
);
9301 outer_code
= GET_CODE (x
);
9302 distributed
= XEXP (x
, !n
);
9304 inner_code
= GET_CODE (decomposed
);
9305 inner_op0
= XEXP (decomposed
, 0);
9306 inner_op1
= XEXP (decomposed
, 1);
9308 /* Special case (and (xor B C) (not A)), which is equivalent to
9309 (xor (ior A B) (ior A C)) */
9310 if (outer_code
== AND
&& inner_code
== XOR
&& GET_CODE (distributed
) == NOT
)
9312 distributed
= XEXP (distributed
, 0);
9318 /* Distribute the second term. */
9319 new_op0
= simplify_gen_binary (outer_code
, mode
, inner_op0
, distributed
);
9320 new_op1
= simplify_gen_binary (outer_code
, mode
, inner_op1
, distributed
);
9324 /* Distribute the first term. */
9325 new_op0
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op0
);
9326 new_op1
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op1
);
9329 tmp
= apply_distributive_law (simplify_gen_binary (inner_code
, mode
,
9331 if (GET_CODE (tmp
) != outer_code
9332 && (set_src_cost (tmp
, optimize_this_for_speed_p
)
9333 < set_src_cost (x
, optimize_this_for_speed_p
)))
9339 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9340 in MODE. Return an equivalent form, if different from (and VAROP
9341 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9344 simplify_and_const_int_1 (enum machine_mode mode
, rtx varop
,
9345 unsigned HOST_WIDE_INT constop
)
9347 unsigned HOST_WIDE_INT nonzero
;
9348 unsigned HOST_WIDE_INT orig_constop
;
9353 orig_constop
= constop
;
9354 if (GET_CODE (varop
) == CLOBBER
)
9357 /* Simplify VAROP knowing that we will be only looking at some of the
9360 Note by passing in CONSTOP, we guarantee that the bits not set in
9361 CONSTOP are not significant and will never be examined. We must
9362 ensure that is the case by explicitly masking out those bits
9363 before returning. */
9364 varop
= force_to_mode (varop
, mode
, constop
, 0);
9366 /* If VAROP is a CLOBBER, we will fail so return it. */
9367 if (GET_CODE (varop
) == CLOBBER
)
9370 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9371 to VAROP and return the new constant. */
9372 if (CONST_INT_P (varop
))
9373 return gen_int_mode (INTVAL (varop
) & constop
, mode
);
9375 /* See what bits may be nonzero in VAROP. Unlike the general case of
9376 a call to nonzero_bits, here we don't care about bits outside
9379 nonzero
= nonzero_bits (varop
, mode
) & GET_MODE_MASK (mode
);
9381 /* Turn off all bits in the constant that are known to already be zero.
9382 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9383 which is tested below. */
9387 /* If we don't have any bits left, return zero. */
9391 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9392 a power of two, we can replace this with an ASHIFT. */
9393 if (GET_CODE (varop
) == NEG
&& nonzero_bits (XEXP (varop
, 0), mode
) == 1
9394 && (i
= exact_log2 (constop
)) >= 0)
9395 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (varop
, 0), i
);
9397 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9398 or XOR, then try to apply the distributive law. This may eliminate
9399 operations if either branch can be simplified because of the AND.
9400 It may also make some cases more complex, but those cases probably
9401 won't match a pattern either with or without this. */
9403 if (GET_CODE (varop
) == IOR
|| GET_CODE (varop
) == XOR
)
9407 apply_distributive_law
9408 (simplify_gen_binary (GET_CODE (varop
), GET_MODE (varop
),
9409 simplify_and_const_int (NULL_RTX
,
9413 simplify_and_const_int (NULL_RTX
,
9418 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9419 the AND and see if one of the operands simplifies to zero. If so, we
9420 may eliminate it. */
9422 if (GET_CODE (varop
) == PLUS
9423 && exact_log2 (constop
+ 1) >= 0)
9427 o0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 0), constop
);
9428 o1
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 1), constop
);
9429 if (o0
== const0_rtx
)
9431 if (o1
== const0_rtx
)
9435 /* Make a SUBREG if necessary. If we can't make it, fail. */
9436 varop
= gen_lowpart (mode
, varop
);
9437 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
9440 /* If we are only masking insignificant bits, return VAROP. */
9441 if (constop
== nonzero
)
9444 if (varop
== orig_varop
&& constop
== orig_constop
)
9447 /* Otherwise, return an AND. */
9448 return simplify_gen_binary (AND
, mode
, varop
, gen_int_mode (constop
, mode
));
9452 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9455 Return an equivalent form, if different from X. Otherwise, return X. If
9456 X is zero, we are to always construct the equivalent form. */
9459 simplify_and_const_int (rtx x
, enum machine_mode mode
, rtx varop
,
9460 unsigned HOST_WIDE_INT constop
)
9462 rtx tem
= simplify_and_const_int_1 (mode
, varop
, constop
);
9467 x
= simplify_gen_binary (AND
, GET_MODE (varop
), varop
,
9468 gen_int_mode (constop
, mode
));
9469 if (GET_MODE (x
) != mode
)
9470 x
= gen_lowpart (mode
, x
);
9474 /* Given a REG, X, compute which bits in X can be nonzero.
9475 We don't care about bits outside of those defined in MODE.
9477 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9478 a shift, AND, or zero_extract, we can do better. */
9481 reg_nonzero_bits_for_combine (const_rtx x
, enum machine_mode mode
,
9482 const_rtx known_x ATTRIBUTE_UNUSED
,
9483 enum machine_mode known_mode ATTRIBUTE_UNUSED
,
9484 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED
,
9485 unsigned HOST_WIDE_INT
*nonzero
)
9490 /* If X is a register whose nonzero bits value is current, use it.
9491 Otherwise, if X is a register whose value we can find, use that
9492 value. Otherwise, use the previously-computed global nonzero bits
9493 for this register. */
9495 rsp
= ®_stat
[REGNO (x
)];
9496 if (rsp
->last_set_value
!= 0
9497 && (rsp
->last_set_mode
== mode
9498 || (GET_MODE_CLASS (rsp
->last_set_mode
) == MODE_INT
9499 && GET_MODE_CLASS (mode
) == MODE_INT
))
9500 && ((rsp
->last_set_label
>= label_tick_ebb_start
9501 && rsp
->last_set_label
< label_tick
)
9502 || (rsp
->last_set_label
== label_tick
9503 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
9504 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
9505 && REG_N_SETS (REGNO (x
)) == 1
9507 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
9510 unsigned HOST_WIDE_INT mask
= rsp
->last_set_nonzero_bits
;
9512 if (GET_MODE_PRECISION (rsp
->last_set_mode
) < GET_MODE_PRECISION (mode
))
9513 /* We don't know anything about the upper bits. */
9514 mask
|= GET_MODE_MASK (mode
) ^ GET_MODE_MASK (rsp
->last_set_mode
);
9520 tem
= get_last_value (x
);
9524 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9525 /* If X is narrower than MODE and TEM is a non-negative
9526 constant that would appear negative in the mode of X,
9527 sign-extend it for use in reg_nonzero_bits because some
9528 machines (maybe most) will actually do the sign-extension
9529 and this is the conservative approach.
9531 ??? For 2.5, try to tighten up the MD files in this regard
9532 instead of this kludge. */
9534 if (GET_MODE_PRECISION (GET_MODE (x
)) < GET_MODE_PRECISION (mode
)
9535 && CONST_INT_P (tem
)
9537 && val_signbit_known_set_p (GET_MODE (x
), INTVAL (tem
)))
9538 tem
= GEN_INT (INTVAL (tem
) | ~GET_MODE_MASK (GET_MODE (x
)));
9542 else if (nonzero_sign_valid
&& rsp
->nonzero_bits
)
9544 unsigned HOST_WIDE_INT mask
= rsp
->nonzero_bits
;
9546 if (GET_MODE_PRECISION (GET_MODE (x
)) < GET_MODE_PRECISION (mode
))
9547 /* We don't know anything about the upper bits. */
9548 mask
|= GET_MODE_MASK (mode
) ^ GET_MODE_MASK (GET_MODE (x
));
9556 /* Return the number of bits at the high-order end of X that are known to
9557 be equal to the sign bit. X will be used in mode MODE; if MODE is
9558 VOIDmode, X will be used in its own mode. The returned value will always
9559 be between 1 and the number of bits in MODE. */
9562 reg_num_sign_bit_copies_for_combine (const_rtx x
, enum machine_mode mode
,
9563 const_rtx known_x ATTRIBUTE_UNUSED
,
9564 enum machine_mode known_mode
9566 unsigned int known_ret ATTRIBUTE_UNUSED
,
9567 unsigned int *result
)
9572 rsp
= ®_stat
[REGNO (x
)];
9573 if (rsp
->last_set_value
!= 0
9574 && rsp
->last_set_mode
== mode
9575 && ((rsp
->last_set_label
>= label_tick_ebb_start
9576 && rsp
->last_set_label
< label_tick
)
9577 || (rsp
->last_set_label
== label_tick
9578 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
9579 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
9580 && REG_N_SETS (REGNO (x
)) == 1
9582 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
9585 *result
= rsp
->last_set_sign_bit_copies
;
9589 tem
= get_last_value (x
);
9593 if (nonzero_sign_valid
&& rsp
->sign_bit_copies
!= 0
9594 && GET_MODE_PRECISION (GET_MODE (x
)) == GET_MODE_PRECISION (mode
))
9595 *result
= rsp
->sign_bit_copies
;
9600 /* Return the number of "extended" bits there are in X, when interpreted
9601 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9602 unsigned quantities, this is the number of high-order zero bits.
9603 For signed quantities, this is the number of copies of the sign bit
9604 minus 1. In both case, this function returns the number of "spare"
9605 bits. For example, if two quantities for which this function returns
9606 at least 1 are added, the addition is known not to overflow.
9608 This function will always return 0 unless called during combine, which
9609 implies that it must be called from a define_split. */
9612 extended_count (const_rtx x
, enum machine_mode mode
, int unsignedp
)
9614 if (nonzero_sign_valid
== 0)
9618 ? (HWI_COMPUTABLE_MODE_P (mode
)
9619 ? (unsigned int) (GET_MODE_PRECISION (mode
) - 1
9620 - floor_log2 (nonzero_bits (x
, mode
)))
9622 : num_sign_bit_copies (x
, mode
) - 1);
9625 /* This function is called from `simplify_shift_const' to merge two
9626 outer operations. Specifically, we have already found that we need
9627 to perform operation *POP0 with constant *PCONST0 at the outermost
9628 position. We would now like to also perform OP1 with constant CONST1
9629 (with *POP0 being done last).
9631 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9632 the resulting operation. *PCOMP_P is set to 1 if we would need to
9633 complement the innermost operand, otherwise it is unchanged.
9635 MODE is the mode in which the operation will be done. No bits outside
9636 the width of this mode matter. It is assumed that the width of this mode
9637 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9639 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9640 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9641 result is simply *PCONST0.
9643 If the resulting operation cannot be expressed as one operation, we
9644 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9647 merge_outer_ops (enum rtx_code
*pop0
, HOST_WIDE_INT
*pconst0
, enum rtx_code op1
, HOST_WIDE_INT const1
, enum machine_mode mode
, int *pcomp_p
)
9649 enum rtx_code op0
= *pop0
;
9650 HOST_WIDE_INT const0
= *pconst0
;
9652 const0
&= GET_MODE_MASK (mode
);
9653 const1
&= GET_MODE_MASK (mode
);
9655 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9659 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9662 if (op1
== UNKNOWN
|| op0
== SET
)
9665 else if (op0
== UNKNOWN
)
9666 op0
= op1
, const0
= const1
;
9668 else if (op0
== op1
)
9692 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9693 else if (op0
== PLUS
|| op1
== PLUS
|| op0
== NEG
|| op1
== NEG
)
9696 /* If the two constants aren't the same, we can't do anything. The
9697 remaining six cases can all be done. */
9698 else if (const0
!= const1
)
9706 /* (a & b) | b == b */
9708 else /* op1 == XOR */
9709 /* (a ^ b) | b == a | b */
9715 /* (a & b) ^ b == (~a) & b */
9716 op0
= AND
, *pcomp_p
= 1;
9717 else /* op1 == IOR */
9718 /* (a | b) ^ b == a & ~b */
9719 op0
= AND
, const0
= ~const0
;
9724 /* (a | b) & b == b */
9726 else /* op1 == XOR */
9727 /* (a ^ b) & b) == (~a) & b */
9734 /* Check for NO-OP cases. */
9735 const0
&= GET_MODE_MASK (mode
);
9737 && (op0
== IOR
|| op0
== XOR
|| op0
== PLUS
))
9739 else if (const0
== 0 && op0
== AND
)
9741 else if ((unsigned HOST_WIDE_INT
) const0
== GET_MODE_MASK (mode
)
9747 /* ??? Slightly redundant with the above mask, but not entirely.
9748 Moving this above means we'd have to sign-extend the mode mask
9749 for the final test. */
9750 if (op0
!= UNKNOWN
&& op0
!= NEG
)
9751 *pconst0
= trunc_int_for_mode (const0
, mode
);
9756 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9757 the shift in. The original shift operation CODE is performed on OP in
9758 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9759 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9760 result of the shift is subject to operation OUTER_CODE with operand
9763 static enum machine_mode
9764 try_widen_shift_mode (enum rtx_code code
, rtx op
, int count
,
9765 enum machine_mode orig_mode
, enum machine_mode mode
,
9766 enum rtx_code outer_code
, HOST_WIDE_INT outer_const
)
9768 if (orig_mode
== mode
)
9770 gcc_assert (GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (orig_mode
));
9772 /* In general we can't perform in wider mode for right shift and rotate. */
9776 /* We can still widen if the bits brought in from the left are identical
9777 to the sign bit of ORIG_MODE. */
9778 if (num_sign_bit_copies (op
, mode
)
9779 > (unsigned) (GET_MODE_PRECISION (mode
)
9780 - GET_MODE_PRECISION (orig_mode
)))
9785 /* Similarly here but with zero bits. */
9786 if (HWI_COMPUTABLE_MODE_P (mode
)
9787 && (nonzero_bits (op
, mode
) & ~GET_MODE_MASK (orig_mode
)) == 0)
9790 /* We can also widen if the bits brought in will be masked off. This
9791 operation is performed in ORIG_MODE. */
9792 if (outer_code
== AND
)
9794 int care_bits
= low_bitmask_len (orig_mode
, outer_const
);
9797 && GET_MODE_PRECISION (orig_mode
) - care_bits
>= count
)
9813 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
9814 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
9815 if we cannot simplify it. Otherwise, return a simplified value.
9817 The shift is normally computed in the widest mode we find in VAROP, as
9818 long as it isn't a different number of words than RESULT_MODE. Exceptions
9819 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9822 simplify_shift_const_1 (enum rtx_code code
, enum machine_mode result_mode
,
9823 rtx varop
, int orig_count
)
9825 enum rtx_code orig_code
= code
;
9826 rtx orig_varop
= varop
;
9828 enum machine_mode mode
= result_mode
;
9829 enum machine_mode shift_mode
, tmode
;
9830 unsigned int mode_words
9831 = (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
9832 /* We form (outer_op (code varop count) (outer_const)). */
9833 enum rtx_code outer_op
= UNKNOWN
;
9834 HOST_WIDE_INT outer_const
= 0;
9835 int complement_p
= 0;
9838 /* Make sure and truncate the "natural" shift on the way in. We don't
9839 want to do this inside the loop as it makes it more difficult to
9841 if (SHIFT_COUNT_TRUNCATED
)
9842 orig_count
&= GET_MODE_BITSIZE (mode
) - 1;
9844 /* If we were given an invalid count, don't do anything except exactly
9845 what was requested. */
9847 if (orig_count
< 0 || orig_count
>= (int) GET_MODE_PRECISION (mode
))
9852 /* Unless one of the branches of the `if' in this loop does a `continue',
9853 we will `break' the loop after the `if'. */
9857 /* If we have an operand of (clobber (const_int 0)), fail. */
9858 if (GET_CODE (varop
) == CLOBBER
)
9861 /* Convert ROTATERT to ROTATE. */
9862 if (code
== ROTATERT
)
9864 unsigned int bitsize
= GET_MODE_PRECISION (result_mode
);
9866 if (VECTOR_MODE_P (result_mode
))
9867 count
= bitsize
/ GET_MODE_NUNITS (result_mode
) - count
;
9869 count
= bitsize
- count
;
9872 shift_mode
= try_widen_shift_mode (code
, varop
, count
, result_mode
,
9873 mode
, outer_op
, outer_const
);
9875 /* Handle cases where the count is greater than the size of the mode
9876 minus 1. For ASHIFT, use the size minus one as the count (this can
9877 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9878 take the count modulo the size. For other shifts, the result is
9881 Since these shifts are being produced by the compiler by combining
9882 multiple operations, each of which are defined, we know what the
9883 result is supposed to be. */
9885 if (count
> (GET_MODE_PRECISION (shift_mode
) - 1))
9887 if (code
== ASHIFTRT
)
9888 count
= GET_MODE_PRECISION (shift_mode
) - 1;
9889 else if (code
== ROTATE
|| code
== ROTATERT
)
9890 count
%= GET_MODE_PRECISION (shift_mode
);
9893 /* We can't simply return zero because there may be an
9901 /* If we discovered we had to complement VAROP, leave. Making a NOT
9902 here would cause an infinite loop. */
9906 /* An arithmetic right shift of a quantity known to be -1 or 0
9908 if (code
== ASHIFTRT
9909 && (num_sign_bit_copies (varop
, shift_mode
)
9910 == GET_MODE_PRECISION (shift_mode
)))
9916 /* If we are doing an arithmetic right shift and discarding all but
9917 the sign bit copies, this is equivalent to doing a shift by the
9918 bitsize minus one. Convert it into that shift because it will often
9919 allow other simplifications. */
9921 if (code
== ASHIFTRT
9922 && (count
+ num_sign_bit_copies (varop
, shift_mode
)
9923 >= GET_MODE_PRECISION (shift_mode
)))
9924 count
= GET_MODE_PRECISION (shift_mode
) - 1;
9926 /* We simplify the tests below and elsewhere by converting
9927 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9928 `make_compound_operation' will convert it to an ASHIFTRT for
9929 those machines (such as VAX) that don't have an LSHIFTRT. */
9930 if (code
== ASHIFTRT
9931 && val_signbit_known_clear_p (shift_mode
,
9932 nonzero_bits (varop
, shift_mode
)))
9935 if (((code
== LSHIFTRT
9936 && HWI_COMPUTABLE_MODE_P (shift_mode
)
9937 && !(nonzero_bits (varop
, shift_mode
) >> count
))
9939 && HWI_COMPUTABLE_MODE_P (shift_mode
)
9940 && !((nonzero_bits (varop
, shift_mode
) << count
)
9941 & GET_MODE_MASK (shift_mode
))))
9942 && !side_effects_p (varop
))
9945 switch (GET_CODE (varop
))
9951 new_rtx
= expand_compound_operation (varop
);
9952 if (new_rtx
!= varop
)
9960 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9961 minus the width of a smaller mode, we can do this with a
9962 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9963 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9964 && ! mode_dependent_address_p (XEXP (varop
, 0),
9965 MEM_ADDR_SPACE (varop
))
9966 && ! MEM_VOLATILE_P (varop
)
9967 && (tmode
= mode_for_size (GET_MODE_BITSIZE (mode
) - count
,
9968 MODE_INT
, 1)) != BLKmode
)
9970 new_rtx
= adjust_address_nv (varop
, tmode
,
9971 BYTES_BIG_ENDIAN
? 0
9972 : count
/ BITS_PER_UNIT
);
9974 varop
= gen_rtx_fmt_e (code
== ASHIFTRT
? SIGN_EXTEND
9975 : ZERO_EXTEND
, mode
, new_rtx
);
9982 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9983 the same number of words as what we've seen so far. Then store
9984 the widest mode in MODE. */
9985 if (subreg_lowpart_p (varop
)
9986 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
9987 > GET_MODE_SIZE (GET_MODE (varop
)))
9988 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
9989 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
9991 && GET_MODE_CLASS (GET_MODE (varop
)) == MODE_INT
9992 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop
))) == MODE_INT
)
9994 varop
= SUBREG_REG (varop
);
9995 if (GET_MODE_SIZE (GET_MODE (varop
)) > GET_MODE_SIZE (mode
))
9996 mode
= GET_MODE (varop
);
10002 /* Some machines use MULT instead of ASHIFT because MULT
10003 is cheaper. But it is still better on those machines to
10004 merge two shifts into one. */
10005 if (CONST_INT_P (XEXP (varop
, 1))
10006 && exact_log2 (UINTVAL (XEXP (varop
, 1))) >= 0)
10009 = simplify_gen_binary (ASHIFT
, GET_MODE (varop
),
10011 GEN_INT (exact_log2 (
10012 UINTVAL (XEXP (varop
, 1)))));
10018 /* Similar, for when divides are cheaper. */
10019 if (CONST_INT_P (XEXP (varop
, 1))
10020 && exact_log2 (UINTVAL (XEXP (varop
, 1))) >= 0)
10023 = simplify_gen_binary (LSHIFTRT
, GET_MODE (varop
),
10025 GEN_INT (exact_log2 (
10026 UINTVAL (XEXP (varop
, 1)))));
10032 /* If we are extracting just the sign bit of an arithmetic
10033 right shift, that shift is not needed. However, the sign
10034 bit of a wider mode may be different from what would be
10035 interpreted as the sign bit in a narrower mode, so, if
10036 the result is narrower, don't discard the shift. */
10037 if (code
== LSHIFTRT
10038 && count
== (GET_MODE_BITSIZE (result_mode
) - 1)
10039 && (GET_MODE_BITSIZE (result_mode
)
10040 >= GET_MODE_BITSIZE (GET_MODE (varop
))))
10042 varop
= XEXP (varop
, 0);
10046 /* ... fall through ... */
10051 /* Here we have two nested shifts. The result is usually the
10052 AND of a new shift with a mask. We compute the result below. */
10053 if (CONST_INT_P (XEXP (varop
, 1))
10054 && INTVAL (XEXP (varop
, 1)) >= 0
10055 && INTVAL (XEXP (varop
, 1)) < GET_MODE_PRECISION (GET_MODE (varop
))
10056 && HWI_COMPUTABLE_MODE_P (result_mode
)
10057 && HWI_COMPUTABLE_MODE_P (mode
)
10058 && !VECTOR_MODE_P (result_mode
))
10060 enum rtx_code first_code
= GET_CODE (varop
);
10061 unsigned int first_count
= INTVAL (XEXP (varop
, 1));
10062 unsigned HOST_WIDE_INT mask
;
10065 /* We have one common special case. We can't do any merging if
10066 the inner code is an ASHIFTRT of a smaller mode. However, if
10067 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10068 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10069 we can convert it to
10070 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10071 This simplifies certain SIGN_EXTEND operations. */
10072 if (code
== ASHIFT
&& first_code
== ASHIFTRT
10073 && count
== (GET_MODE_PRECISION (result_mode
)
10074 - GET_MODE_PRECISION (GET_MODE (varop
))))
10076 /* C3 has the low-order C1 bits zero. */
10078 mask
= GET_MODE_MASK (mode
)
10079 & ~(((unsigned HOST_WIDE_INT
) 1 << first_count
) - 1);
10081 varop
= simplify_and_const_int (NULL_RTX
, result_mode
,
10082 XEXP (varop
, 0), mask
);
10083 varop
= simplify_shift_const (NULL_RTX
, ASHIFT
, result_mode
,
10085 count
= first_count
;
10090 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10091 than C1 high-order bits equal to the sign bit, we can convert
10092 this to either an ASHIFT or an ASHIFTRT depending on the
10095 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10097 if (code
== ASHIFTRT
&& first_code
== ASHIFT
10098 && GET_MODE (varop
) == shift_mode
10099 && (num_sign_bit_copies (XEXP (varop
, 0), shift_mode
)
10102 varop
= XEXP (varop
, 0);
10103 count
-= first_count
;
10113 /* There are some cases we can't do. If CODE is ASHIFTRT,
10114 we can only do this if FIRST_CODE is also ASHIFTRT.
10116 We can't do the case when CODE is ROTATE and FIRST_CODE is
10119 If the mode of this shift is not the mode of the outer shift,
10120 we can't do this if either shift is a right shift or ROTATE.
10122 Finally, we can't do any of these if the mode is too wide
10123 unless the codes are the same.
10125 Handle the case where the shift codes are the same
10128 if (code
== first_code
)
10130 if (GET_MODE (varop
) != result_mode
10131 && (code
== ASHIFTRT
|| code
== LSHIFTRT
10132 || code
== ROTATE
))
10135 count
+= first_count
;
10136 varop
= XEXP (varop
, 0);
10140 if (code
== ASHIFTRT
10141 || (code
== ROTATE
&& first_code
== ASHIFTRT
)
10142 || GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
10143 || (GET_MODE (varop
) != result_mode
10144 && (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
10145 || first_code
== ROTATE
10146 || code
== ROTATE
)))
10149 /* To compute the mask to apply after the shift, shift the
10150 nonzero bits of the inner shift the same way the
10151 outer shift will. */
10153 mask_rtx
= gen_int_mode (nonzero_bits (varop
, GET_MODE (varop
)),
10157 = simplify_const_binary_operation (code
, result_mode
, mask_rtx
,
10160 /* Give up if we can't compute an outer operation to use. */
10162 || !CONST_INT_P (mask_rtx
)
10163 || ! merge_outer_ops (&outer_op
, &outer_const
, AND
,
10165 result_mode
, &complement_p
))
10168 /* If the shifts are in the same direction, we add the
10169 counts. Otherwise, we subtract them. */
10170 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10171 == (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
))
10172 count
+= first_count
;
10174 count
-= first_count
;
10176 /* If COUNT is positive, the new shift is usually CODE,
10177 except for the two exceptions below, in which case it is
10178 FIRST_CODE. If the count is negative, FIRST_CODE should
10181 && ((first_code
== ROTATE
&& code
== ASHIFT
)
10182 || (first_code
== ASHIFTRT
&& code
== LSHIFTRT
)))
10184 else if (count
< 0)
10185 code
= first_code
, count
= -count
;
10187 varop
= XEXP (varop
, 0);
10191 /* If we have (A << B << C) for any shift, we can convert this to
10192 (A << C << B). This wins if A is a constant. Only try this if
10193 B is not a constant. */
10195 else if (GET_CODE (varop
) == code
10196 && CONST_INT_P (XEXP (varop
, 0))
10197 && !CONST_INT_P (XEXP (varop
, 1)))
10199 rtx new_rtx
= simplify_const_binary_operation (code
, mode
,
10202 varop
= gen_rtx_fmt_ee (code
, mode
, new_rtx
, XEXP (varop
, 1));
10209 if (VECTOR_MODE_P (mode
))
10212 /* Make this fit the case below. */
10213 varop
= gen_rtx_XOR (mode
, XEXP (varop
, 0), constm1_rtx
);
10219 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10220 with C the size of VAROP - 1 and the shift is logical if
10221 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10222 we have an (le X 0) operation. If we have an arithmetic shift
10223 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10224 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10226 if (GET_CODE (varop
) == IOR
&& GET_CODE (XEXP (varop
, 0)) == PLUS
10227 && XEXP (XEXP (varop
, 0), 1) == constm1_rtx
10228 && (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
10229 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
10230 && count
== (GET_MODE_PRECISION (GET_MODE (varop
)) - 1)
10231 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
10234 varop
= gen_rtx_LE (GET_MODE (varop
), XEXP (varop
, 1),
10237 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
10238 varop
= gen_rtx_NEG (GET_MODE (varop
), varop
);
10243 /* If we have (shift (logical)), move the logical to the outside
10244 to allow it to possibly combine with another logical and the
10245 shift to combine with another shift. This also canonicalizes to
10246 what a ZERO_EXTRACT looks like. Also, some machines have
10247 (and (shift)) insns. */
10249 if (CONST_INT_P (XEXP (varop
, 1))
10250 /* We can't do this if we have (ashiftrt (xor)) and the
10251 constant has its sign bit set in shift_mode. */
10252 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
10253 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
10255 && (new_rtx
= simplify_const_binary_operation
10256 (code
, result_mode
,
10257 gen_int_mode (INTVAL (XEXP (varop
, 1)), result_mode
),
10258 GEN_INT (count
))) != 0
10259 && CONST_INT_P (new_rtx
)
10260 && merge_outer_ops (&outer_op
, &outer_const
, GET_CODE (varop
),
10261 INTVAL (new_rtx
), result_mode
, &complement_p
))
10263 varop
= XEXP (varop
, 0);
10267 /* If we can't do that, try to simplify the shift in each arm of the
10268 logical expression, make a new logical expression, and apply
10269 the inverse distributive law. This also can't be done
10270 for some (ashiftrt (xor)). */
10271 if (CONST_INT_P (XEXP (varop
, 1))
10272 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
10273 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
10276 rtx lhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
10277 XEXP (varop
, 0), count
);
10278 rtx rhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
10279 XEXP (varop
, 1), count
);
10281 varop
= simplify_gen_binary (GET_CODE (varop
), shift_mode
,
10283 varop
= apply_distributive_law (varop
);
10291 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10292 says that the sign bit can be tested, FOO has mode MODE, C is
10293 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10294 that may be nonzero. */
10295 if (code
== LSHIFTRT
10296 && XEXP (varop
, 1) == const0_rtx
10297 && GET_MODE (XEXP (varop
, 0)) == result_mode
10298 && count
== (GET_MODE_PRECISION (result_mode
) - 1)
10299 && HWI_COMPUTABLE_MODE_P (result_mode
)
10300 && STORE_FLAG_VALUE
== -1
10301 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
10302 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1, result_mode
,
10305 varop
= XEXP (varop
, 0);
10312 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10313 than the number of bits in the mode is equivalent to A. */
10314 if (code
== LSHIFTRT
10315 && count
== (GET_MODE_PRECISION (result_mode
) - 1)
10316 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1)
10318 varop
= XEXP (varop
, 0);
10323 /* NEG commutes with ASHIFT since it is multiplication. Move the
10324 NEG outside to allow shifts to combine. */
10326 && merge_outer_ops (&outer_op
, &outer_const
, NEG
, 0, result_mode
,
10329 varop
= XEXP (varop
, 0);
10335 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10336 is one less than the number of bits in the mode is
10337 equivalent to (xor A 1). */
10338 if (code
== LSHIFTRT
10339 && count
== (GET_MODE_PRECISION (result_mode
) - 1)
10340 && XEXP (varop
, 1) == constm1_rtx
10341 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
10342 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1, result_mode
,
10346 varop
= XEXP (varop
, 0);
10350 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10351 that might be nonzero in BAR are those being shifted out and those
10352 bits are known zero in FOO, we can replace the PLUS with FOO.
10353 Similarly in the other operand order. This code occurs when
10354 we are computing the size of a variable-size array. */
10356 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10357 && count
< HOST_BITS_PER_WIDE_INT
10358 && nonzero_bits (XEXP (varop
, 1), result_mode
) >> count
== 0
10359 && (nonzero_bits (XEXP (varop
, 1), result_mode
)
10360 & nonzero_bits (XEXP (varop
, 0), result_mode
)) == 0)
10362 varop
= XEXP (varop
, 0);
10365 else if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10366 && count
< HOST_BITS_PER_WIDE_INT
10367 && HWI_COMPUTABLE_MODE_P (result_mode
)
10368 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
10370 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
10371 & nonzero_bits (XEXP (varop
, 1),
10374 varop
= XEXP (varop
, 1);
10378 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10380 && CONST_INT_P (XEXP (varop
, 1))
10381 && (new_rtx
= simplify_const_binary_operation
10382 (ASHIFT
, result_mode
,
10383 gen_int_mode (INTVAL (XEXP (varop
, 1)), result_mode
),
10384 GEN_INT (count
))) != 0
10385 && CONST_INT_P (new_rtx
)
10386 && merge_outer_ops (&outer_op
, &outer_const
, PLUS
,
10387 INTVAL (new_rtx
), result_mode
, &complement_p
))
10389 varop
= XEXP (varop
, 0);
10393 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10394 signbit', and attempt to change the PLUS to an XOR and move it to
10395 the outer operation as is done above in the AND/IOR/XOR case
10396 leg for shift(logical). See details in logical handling above
10397 for reasoning in doing so. */
10398 if (code
== LSHIFTRT
10399 && CONST_INT_P (XEXP (varop
, 1))
10400 && mode_signbit_p (result_mode
, XEXP (varop
, 1))
10401 && (new_rtx
= simplify_const_binary_operation
10402 (code
, result_mode
,
10403 gen_int_mode (INTVAL (XEXP (varop
, 1)), result_mode
),
10404 GEN_INT (count
))) != 0
10405 && CONST_INT_P (new_rtx
)
10406 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
10407 INTVAL (new_rtx
), result_mode
, &complement_p
))
10409 varop
= XEXP (varop
, 0);
10416 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10417 with C the size of VAROP - 1 and the shift is logical if
10418 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10419 we have a (gt X 0) operation. If the shift is arithmetic with
10420 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10421 we have a (neg (gt X 0)) operation. */
10423 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
10424 && GET_CODE (XEXP (varop
, 0)) == ASHIFTRT
10425 && count
== (GET_MODE_PRECISION (GET_MODE (varop
)) - 1)
10426 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
10427 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
10428 && INTVAL (XEXP (XEXP (varop
, 0), 1)) == count
10429 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
10432 varop
= gen_rtx_GT (GET_MODE (varop
), XEXP (varop
, 1),
10435 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
10436 varop
= gen_rtx_NEG (GET_MODE (varop
), varop
);
10443 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10444 if the truncate does not affect the value. */
10445 if (code
== LSHIFTRT
10446 && GET_CODE (XEXP (varop
, 0)) == LSHIFTRT
10447 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
10448 && (INTVAL (XEXP (XEXP (varop
, 0), 1))
10449 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop
, 0)))
10450 - GET_MODE_PRECISION (GET_MODE (varop
)))))
10452 rtx varop_inner
= XEXP (varop
, 0);
10455 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner
),
10456 XEXP (varop_inner
, 0),
10458 (count
+ INTVAL (XEXP (varop_inner
, 1))));
10459 varop
= gen_rtx_TRUNCATE (GET_MODE (varop
), varop_inner
);
10472 shift_mode
= try_widen_shift_mode (code
, varop
, count
, result_mode
, mode
,
10473 outer_op
, outer_const
);
10475 /* We have now finished analyzing the shift. The result should be
10476 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10477 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10478 to the result of the shift. OUTER_CONST is the relevant constant,
10479 but we must turn off all bits turned off in the shift. */
10481 if (outer_op
== UNKNOWN
10482 && orig_code
== code
&& orig_count
== count
10483 && varop
== orig_varop
10484 && shift_mode
== GET_MODE (varop
))
10487 /* Make a SUBREG if necessary. If we can't make it, fail. */
10488 varop
= gen_lowpart (shift_mode
, varop
);
10489 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
10492 /* If we have an outer operation and we just made a shift, it is
10493 possible that we could have simplified the shift were it not
10494 for the outer operation. So try to do the simplification
10497 if (outer_op
!= UNKNOWN
)
10498 x
= simplify_shift_const_1 (code
, shift_mode
, varop
, count
);
10503 x
= simplify_gen_binary (code
, shift_mode
, varop
, GEN_INT (count
));
10505 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10506 turn off all the bits that the shift would have turned off. */
10507 if (orig_code
== LSHIFTRT
&& result_mode
!= shift_mode
)
10508 x
= simplify_and_const_int (NULL_RTX
, shift_mode
, x
,
10509 GET_MODE_MASK (result_mode
) >> orig_count
);
10511 /* Do the remainder of the processing in RESULT_MODE. */
10512 x
= gen_lowpart_or_truncate (result_mode
, x
);
10514 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10517 x
= simplify_gen_unary (NOT
, result_mode
, x
, result_mode
);
10519 if (outer_op
!= UNKNOWN
)
10521 if (GET_RTX_CLASS (outer_op
) != RTX_UNARY
10522 && GET_MODE_PRECISION (result_mode
) < HOST_BITS_PER_WIDE_INT
)
10523 outer_const
= trunc_int_for_mode (outer_const
, result_mode
);
10525 if (outer_op
== AND
)
10526 x
= simplify_and_const_int (NULL_RTX
, result_mode
, x
, outer_const
);
10527 else if (outer_op
== SET
)
10529 /* This means that we have determined that the result is
10530 equivalent to a constant. This should be rare. */
10531 if (!side_effects_p (x
))
10532 x
= GEN_INT (outer_const
);
10534 else if (GET_RTX_CLASS (outer_op
) == RTX_UNARY
)
10535 x
= simplify_gen_unary (outer_op
, result_mode
, x
, result_mode
);
10537 x
= simplify_gen_binary (outer_op
, result_mode
, x
,
10538 GEN_INT (outer_const
));
10544 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10545 The result of the shift is RESULT_MODE. If we cannot simplify it,
10546 return X or, if it is NULL, synthesize the expression with
10547 simplify_gen_binary. Otherwise, return a simplified value.
10549 The shift is normally computed in the widest mode we find in VAROP, as
10550 long as it isn't a different number of words than RESULT_MODE. Exceptions
10551 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10554 simplify_shift_const (rtx x
, enum rtx_code code
, enum machine_mode result_mode
,
10555 rtx varop
, int count
)
10557 rtx tem
= simplify_shift_const_1 (code
, result_mode
, varop
, count
);
10562 x
= simplify_gen_binary (code
, GET_MODE (varop
), varop
, GEN_INT (count
));
10563 if (GET_MODE (x
) != result_mode
)
10564 x
= gen_lowpart (result_mode
, x
);
10569 /* Like recog, but we receive the address of a pointer to a new pattern.
10570 We try to match the rtx that the pointer points to.
10571 If that fails, we may try to modify or replace the pattern,
10572 storing the replacement into the same pointer object.
10574 Modifications include deletion or addition of CLOBBERs.
10576 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10577 the CLOBBERs are placed.
10579 The value is the final insn code from the pattern ultimately matched,
10583 recog_for_combine (rtx
*pnewpat
, rtx insn
, rtx
*pnotes
)
10585 rtx pat
= *pnewpat
;
10586 rtx pat_without_clobbers
;
10587 int insn_code_number
;
10588 int num_clobbers_to_add
= 0;
10590 rtx notes
= NULL_RTX
;
10591 rtx old_notes
, old_pat
;
10594 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10595 we use to indicate that something didn't match. If we find such a
10596 thing, force rejection. */
10597 if (GET_CODE (pat
) == PARALLEL
)
10598 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
10599 if (GET_CODE (XVECEXP (pat
, 0, i
)) == CLOBBER
10600 && XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
10603 old_pat
= PATTERN (insn
);
10604 old_notes
= REG_NOTES (insn
);
10605 PATTERN (insn
) = pat
;
10606 REG_NOTES (insn
) = NULL_RTX
;
10608 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
10609 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10611 if (insn_code_number
< 0)
10612 fputs ("Failed to match this instruction:\n", dump_file
);
10614 fputs ("Successfully matched this instruction:\n", dump_file
);
10615 print_rtl_single (dump_file
, pat
);
10618 /* If it isn't, there is the possibility that we previously had an insn
10619 that clobbered some register as a side effect, but the combined
10620 insn doesn't need to do that. So try once more without the clobbers
10621 unless this represents an ASM insn. */
10623 if (insn_code_number
< 0 && ! check_asm_operands (pat
)
10624 && GET_CODE (pat
) == PARALLEL
)
10628 for (pos
= 0, i
= 0; i
< XVECLEN (pat
, 0); i
++)
10629 if (GET_CODE (XVECEXP (pat
, 0, i
)) != CLOBBER
)
10632 SUBST (XVECEXP (pat
, 0, pos
), XVECEXP (pat
, 0, i
));
10636 SUBST_INT (XVECLEN (pat
, 0), pos
);
10639 pat
= XVECEXP (pat
, 0, 0);
10641 PATTERN (insn
) = pat
;
10642 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
10643 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10645 if (insn_code_number
< 0)
10646 fputs ("Failed to match this instruction:\n", dump_file
);
10648 fputs ("Successfully matched this instruction:\n", dump_file
);
10649 print_rtl_single (dump_file
, pat
);
10653 pat_without_clobbers
= pat
;
10655 PATTERN (insn
) = old_pat
;
10656 REG_NOTES (insn
) = old_notes
;
10658 /* Recognize all noop sets, these will be killed by followup pass. */
10659 if (insn_code_number
< 0 && GET_CODE (pat
) == SET
&& set_noop_p (pat
))
10660 insn_code_number
= NOOP_MOVE_INSN_CODE
, num_clobbers_to_add
= 0;
10662 /* If we had any clobbers to add, make a new pattern than contains
10663 them. Then check to make sure that all of them are dead. */
10664 if (num_clobbers_to_add
)
10666 rtx newpat
= gen_rtx_PARALLEL (VOIDmode
,
10667 rtvec_alloc (GET_CODE (pat
) == PARALLEL
10668 ? (XVECLEN (pat
, 0)
10669 + num_clobbers_to_add
)
10670 : num_clobbers_to_add
+ 1));
10672 if (GET_CODE (pat
) == PARALLEL
)
10673 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
10674 XVECEXP (newpat
, 0, i
) = XVECEXP (pat
, 0, i
);
10676 XVECEXP (newpat
, 0, 0) = pat
;
10678 add_clobbers (newpat
, insn_code_number
);
10680 for (i
= XVECLEN (newpat
, 0) - num_clobbers_to_add
;
10681 i
< XVECLEN (newpat
, 0); i
++)
10683 if (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0))
10684 && ! reg_dead_at_p (XEXP (XVECEXP (newpat
, 0, i
), 0), insn
))
10686 if (GET_CODE (XEXP (XVECEXP (newpat
, 0, i
), 0)) != SCRATCH
)
10688 gcc_assert (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0)));
10689 notes
= alloc_reg_note (REG_UNUSED
,
10690 XEXP (XVECEXP (newpat
, 0, i
), 0), notes
);
10696 if (insn_code_number
>= 0
10697 && insn_code_number
!= NOOP_MOVE_INSN_CODE
)
10699 old_pat
= PATTERN (insn
);
10700 old_notes
= REG_NOTES (insn
);
10701 old_icode
= INSN_CODE (insn
);
10702 PATTERN (insn
) = pat
;
10703 REG_NOTES (insn
) = notes
;
10705 /* Allow targets to reject combined insn. */
10706 if (!targetm
.legitimate_combined_insn (insn
))
10708 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10709 fputs ("Instruction not appropriate for target.",
10712 /* Callers expect recog_for_combine to strip
10713 clobbers from the pattern on failure. */
10714 pat
= pat_without_clobbers
;
10717 insn_code_number
= -1;
10720 PATTERN (insn
) = old_pat
;
10721 REG_NOTES (insn
) = old_notes
;
10722 INSN_CODE (insn
) = old_icode
;
10728 return insn_code_number
;
10731 /* Like gen_lowpart_general but for use by combine. In combine it
10732 is not possible to create any new pseudoregs. However, it is
10733 safe to create invalid memory addresses, because combine will
10734 try to recognize them and all they will do is make the combine
10737 If for some reason this cannot do its job, an rtx
10738 (clobber (const_int 0)) is returned.
10739 An insn containing that will not be recognized. */
10742 gen_lowpart_for_combine (enum machine_mode omode
, rtx x
)
10744 enum machine_mode imode
= GET_MODE (x
);
10745 unsigned int osize
= GET_MODE_SIZE (omode
);
10746 unsigned int isize
= GET_MODE_SIZE (imode
);
10749 if (omode
== imode
)
10752 /* We can only support MODE being wider than a word if X is a
10753 constant integer or has a mode the same size. */
10754 if (GET_MODE_SIZE (omode
) > UNITS_PER_WORD
10755 && ! (CONST_SCALAR_INT_P (x
) || isize
== osize
))
10758 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10759 won't know what to do. So we will strip off the SUBREG here and
10760 process normally. */
10761 if (GET_CODE (x
) == SUBREG
&& MEM_P (SUBREG_REG (x
)))
10763 x
= SUBREG_REG (x
);
10765 /* For use in case we fall down into the address adjustments
10766 further below, we need to adjust the known mode and size of
10767 x; imode and isize, since we just adjusted x. */
10768 imode
= GET_MODE (x
);
10770 if (imode
== omode
)
10773 isize
= GET_MODE_SIZE (imode
);
10776 result
= gen_lowpart_common (omode
, x
);
10785 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10787 if (MEM_VOLATILE_P (x
)
10788 || mode_dependent_address_p (XEXP (x
, 0), MEM_ADDR_SPACE (x
)))
10791 /* If we want to refer to something bigger than the original memref,
10792 generate a paradoxical subreg instead. That will force a reload
10793 of the original memref X. */
10795 return gen_rtx_SUBREG (omode
, x
, 0);
10797 if (WORDS_BIG_ENDIAN
)
10798 offset
= MAX (isize
, UNITS_PER_WORD
) - MAX (osize
, UNITS_PER_WORD
);
10800 /* Adjust the address so that the address-after-the-data is
10802 if (BYTES_BIG_ENDIAN
)
10803 offset
-= MIN (UNITS_PER_WORD
, osize
) - MIN (UNITS_PER_WORD
, isize
);
10805 return adjust_address_nv (x
, omode
, offset
);
10808 /* If X is a comparison operator, rewrite it in a new mode. This
10809 probably won't match, but may allow further simplifications. */
10810 else if (COMPARISON_P (x
))
10811 return gen_rtx_fmt_ee (GET_CODE (x
), omode
, XEXP (x
, 0), XEXP (x
, 1));
10813 /* If we couldn't simplify X any other way, just enclose it in a
10814 SUBREG. Normally, this SUBREG won't match, but some patterns may
10815 include an explicit SUBREG or we may simplify it further in combine. */
10821 offset
= subreg_lowpart_offset (omode
, imode
);
10822 if (imode
== VOIDmode
)
10824 imode
= int_mode_for_mode (omode
);
10825 x
= gen_lowpart_common (imode
, x
);
10829 res
= simplify_gen_subreg (omode
, x
, imode
, offset
);
10835 return gen_rtx_CLOBBER (omode
, const0_rtx
);
10838 /* Try to simplify a comparison between OP0 and a constant OP1,
10839 where CODE is the comparison code that will be tested, into a
10840 (CODE OP0 const0_rtx) form.
10842 The result is a possibly different comparison code to use.
10843 *POP1 may be updated. */
10845 static enum rtx_code
10846 simplify_compare_const (enum rtx_code code
, enum machine_mode mode
,
10847 rtx op0
, rtx
*pop1
)
10849 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
10850 HOST_WIDE_INT const_op
= INTVAL (*pop1
);
10852 /* Get the constant we are comparing against and turn off all bits
10853 not on in our mode. */
10854 if (mode
!= VOIDmode
)
10855 const_op
= trunc_int_for_mode (const_op
, mode
);
10857 /* If we are comparing against a constant power of two and the value
10858 being compared can only have that single bit nonzero (e.g., it was
10859 `and'ed with that bit), we can replace this with a comparison
10862 && (code
== EQ
|| code
== NE
|| code
== GE
|| code
== GEU
10863 || code
== LT
|| code
== LTU
)
10864 && mode_width
- 1 < HOST_BITS_PER_WIDE_INT
10865 && exact_log2 (const_op
& GET_MODE_MASK (mode
)) >= 0
10866 && (nonzero_bits (op0
, mode
)
10867 == (unsigned HOST_WIDE_INT
) (const_op
& GET_MODE_MASK (mode
))))
10869 code
= (code
== EQ
|| code
== GE
|| code
== GEU
? NE
: EQ
);
10873 /* Similarly, if we are comparing a value known to be either -1 or
10874 0 with -1, change it to the opposite comparison against zero. */
10876 && (code
== EQ
|| code
== NE
|| code
== GT
|| code
== LE
10877 || code
== GEU
|| code
== LTU
)
10878 && num_sign_bit_copies (op0
, mode
) == mode_width
)
10880 code
= (code
== EQ
|| code
== LE
|| code
== GEU
? NE
: EQ
);
10884 /* Do some canonicalizations based on the comparison code. We prefer
10885 comparisons against zero and then prefer equality comparisons.
10886 If we can reduce the size of a constant, we will do that too. */
10890 /* < C is equivalent to <= (C - 1) */
10895 /* ... fall through to LE case below. */
10901 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10908 /* If we are doing a <= 0 comparison on a value known to have
10909 a zero sign bit, we can replace this with == 0. */
10910 else if (const_op
== 0
10911 && mode_width
- 1 < HOST_BITS_PER_WIDE_INT
10912 && (nonzero_bits (op0
, mode
)
10913 & ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10919 /* >= C is equivalent to > (C - 1). */
10924 /* ... fall through to GT below. */
10930 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10937 /* If we are doing a > 0 comparison on a value known to have
10938 a zero sign bit, we can replace this with != 0. */
10939 else if (const_op
== 0
10940 && mode_width
- 1 < HOST_BITS_PER_WIDE_INT
10941 && (nonzero_bits (op0
, mode
)
10942 & ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10948 /* < C is equivalent to <= (C - 1). */
10953 /* ... fall through ... */
10955 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10956 else if (mode_width
- 1 < HOST_BITS_PER_WIDE_INT
10957 && (unsigned HOST_WIDE_INT
) const_op
10958 == (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1))
10968 /* unsigned <= 0 is equivalent to == 0 */
10971 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10972 else if (mode_width
- 1 < HOST_BITS_PER_WIDE_INT
10973 && (unsigned HOST_WIDE_INT
) const_op
10974 == ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1)
10982 /* >= C is equivalent to > (C - 1). */
10987 /* ... fall through ... */
10990 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10991 else if (mode_width
- 1 < HOST_BITS_PER_WIDE_INT
10992 && (unsigned HOST_WIDE_INT
) const_op
10993 == (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1))
11003 /* unsigned > 0 is equivalent to != 0 */
11006 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11007 else if (mode_width
- 1 < HOST_BITS_PER_WIDE_INT
11008 && (unsigned HOST_WIDE_INT
) const_op
11009 == ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1)
11020 *pop1
= GEN_INT (const_op
);
11024 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11025 comparison code that will be tested.
11027 The result is a possibly different comparison code to use. *POP0 and
11028 *POP1 may be updated.
11030 It is possible that we might detect that a comparison is either always
11031 true or always false. However, we do not perform general constant
11032 folding in combine, so this knowledge isn't useful. Such tautologies
11033 should have been detected earlier. Hence we ignore all such cases. */
11035 static enum rtx_code
11036 simplify_comparison (enum rtx_code code
, rtx
*pop0
, rtx
*pop1
)
11042 enum machine_mode mode
, tmode
;
11044 /* Try a few ways of applying the same transformation to both operands. */
11047 #ifndef WORD_REGISTER_OPERATIONS
11048 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11049 so check specially. */
11050 if (code
!= GTU
&& code
!= GEU
&& code
!= LTU
&& code
!= LEU
11051 && GET_CODE (op0
) == ASHIFTRT
&& GET_CODE (op1
) == ASHIFTRT
11052 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
11053 && GET_CODE (XEXP (op1
, 0)) == ASHIFT
11054 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == SUBREG
11055 && GET_CODE (XEXP (XEXP (op1
, 0), 0)) == SUBREG
11056 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0)))
11057 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1
, 0), 0))))
11058 && CONST_INT_P (XEXP (op0
, 1))
11059 && XEXP (op0
, 1) == XEXP (op1
, 1)
11060 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
11061 && XEXP (op0
, 1) == XEXP (XEXP (op1
, 0), 1)
11062 && (INTVAL (XEXP (op0
, 1))
11063 == (GET_MODE_PRECISION (GET_MODE (op0
))
11064 - (GET_MODE_PRECISION
11065 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0))))))))
11067 op0
= SUBREG_REG (XEXP (XEXP (op0
, 0), 0));
11068 op1
= SUBREG_REG (XEXP (XEXP (op1
, 0), 0));
11072 /* If both operands are the same constant shift, see if we can ignore the
11073 shift. We can if the shift is a rotate or if the bits shifted out of
11074 this shift are known to be zero for both inputs and if the type of
11075 comparison is compatible with the shift. */
11076 if (GET_CODE (op0
) == GET_CODE (op1
)
11077 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0
))
11078 && ((GET_CODE (op0
) == ROTATE
&& (code
== NE
|| code
== EQ
))
11079 || ((GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFT
)
11080 && (code
!= GT
&& code
!= LT
&& code
!= GE
&& code
!= LE
))
11081 || (GET_CODE (op0
) == ASHIFTRT
11082 && (code
!= GTU
&& code
!= LTU
11083 && code
!= GEU
&& code
!= LEU
)))
11084 && CONST_INT_P (XEXP (op0
, 1))
11085 && INTVAL (XEXP (op0
, 1)) >= 0
11086 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
11087 && XEXP (op0
, 1) == XEXP (op1
, 1))
11089 enum machine_mode mode
= GET_MODE (op0
);
11090 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
11091 int shift_count
= INTVAL (XEXP (op0
, 1));
11093 if (GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFTRT
)
11094 mask
&= (mask
>> shift_count
) << shift_count
;
11095 else if (GET_CODE (op0
) == ASHIFT
)
11096 mask
= (mask
& (mask
<< shift_count
)) >> shift_count
;
11098 if ((nonzero_bits (XEXP (op0
, 0), mode
) & ~mask
) == 0
11099 && (nonzero_bits (XEXP (op1
, 0), mode
) & ~mask
) == 0)
11100 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0);
11105 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11106 SUBREGs are of the same mode, and, in both cases, the AND would
11107 be redundant if the comparison was done in the narrower mode,
11108 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11109 and the operand's possibly nonzero bits are 0xffffff01; in that case
11110 if we only care about QImode, we don't need the AND). This case
11111 occurs if the output mode of an scc insn is not SImode and
11112 STORE_FLAG_VALUE == 1 (e.g., the 386).
11114 Similarly, check for a case where the AND's are ZERO_EXTEND
11115 operations from some narrower mode even though a SUBREG is not
11118 else if (GET_CODE (op0
) == AND
&& GET_CODE (op1
) == AND
11119 && CONST_INT_P (XEXP (op0
, 1))
11120 && CONST_INT_P (XEXP (op1
, 1)))
11122 rtx inner_op0
= XEXP (op0
, 0);
11123 rtx inner_op1
= XEXP (op1
, 0);
11124 HOST_WIDE_INT c0
= INTVAL (XEXP (op0
, 1));
11125 HOST_WIDE_INT c1
= INTVAL (XEXP (op1
, 1));
11128 if (paradoxical_subreg_p (inner_op0
)
11129 && GET_CODE (inner_op1
) == SUBREG
11130 && (GET_MODE (SUBREG_REG (inner_op0
))
11131 == GET_MODE (SUBREG_REG (inner_op1
)))
11132 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0
)))
11133 <= HOST_BITS_PER_WIDE_INT
)
11134 && (0 == ((~c0
) & nonzero_bits (SUBREG_REG (inner_op0
),
11135 GET_MODE (SUBREG_REG (inner_op0
)))))
11136 && (0 == ((~c1
) & nonzero_bits (SUBREG_REG (inner_op1
),
11137 GET_MODE (SUBREG_REG (inner_op1
))))))
11139 op0
= SUBREG_REG (inner_op0
);
11140 op1
= SUBREG_REG (inner_op1
);
11142 /* The resulting comparison is always unsigned since we masked
11143 off the original sign bit. */
11144 code
= unsigned_condition (code
);
11150 for (tmode
= GET_CLASS_NARROWEST_MODE
11151 (GET_MODE_CLASS (GET_MODE (op0
)));
11152 tmode
!= GET_MODE (op0
); tmode
= GET_MODE_WIDER_MODE (tmode
))
11153 if ((unsigned HOST_WIDE_INT
) c0
== GET_MODE_MASK (tmode
))
11155 op0
= gen_lowpart (tmode
, inner_op0
);
11156 op1
= gen_lowpart (tmode
, inner_op1
);
11157 code
= unsigned_condition (code
);
11166 /* If both operands are NOT, we can strip off the outer operation
11167 and adjust the comparison code for swapped operands; similarly for
11168 NEG, except that this must be an equality comparison. */
11169 else if ((GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == NOT
)
11170 || (GET_CODE (op0
) == NEG
&& GET_CODE (op1
) == NEG
11171 && (code
== EQ
|| code
== NE
)))
11172 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0), code
= swap_condition (code
);
11178 /* If the first operand is a constant, swap the operands and adjust the
11179 comparison code appropriately, but don't do this if the second operand
11180 is already a constant integer. */
11181 if (swap_commutative_operands_p (op0
, op1
))
11183 tem
= op0
, op0
= op1
, op1
= tem
;
11184 code
= swap_condition (code
);
11187 /* We now enter a loop during which we will try to simplify the comparison.
11188 For the most part, we only are concerned with comparisons with zero,
11189 but some things may really be comparisons with zero but not start
11190 out looking that way. */
11192 while (CONST_INT_P (op1
))
11194 enum machine_mode mode
= GET_MODE (op0
);
11195 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
11196 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
11197 int equality_comparison_p
;
11198 int sign_bit_comparison_p
;
11199 int unsigned_comparison_p
;
11200 HOST_WIDE_INT const_op
;
11202 /* We only want to handle integral modes. This catches VOIDmode,
11203 CCmode, and the floating-point modes. An exception is that we
11204 can handle VOIDmode if OP0 is a COMPARE or a comparison
11207 if (GET_MODE_CLASS (mode
) != MODE_INT
11208 && ! (mode
== VOIDmode
11209 && (GET_CODE (op0
) == COMPARE
|| COMPARISON_P (op0
))))
11212 /* Try to simplify the compare to constant, possibly changing the
11213 comparison op, and/or changing op1 to zero. */
11214 code
= simplify_compare_const (code
, mode
, op0
, &op1
);
11215 const_op
= INTVAL (op1
);
11217 /* Compute some predicates to simplify code below. */
11219 equality_comparison_p
= (code
== EQ
|| code
== NE
);
11220 sign_bit_comparison_p
= ((code
== LT
|| code
== GE
) && const_op
== 0);
11221 unsigned_comparison_p
= (code
== LTU
|| code
== LEU
|| code
== GTU
11224 /* If this is a sign bit comparison and we can do arithmetic in
11225 MODE, say that we will only be needing the sign bit of OP0. */
11226 if (sign_bit_comparison_p
&& HWI_COMPUTABLE_MODE_P (mode
))
11227 op0
= force_to_mode (op0
, mode
,
11228 (unsigned HOST_WIDE_INT
) 1
11229 << (GET_MODE_PRECISION (mode
) - 1),
11232 /* Now try cases based on the opcode of OP0. If none of the cases
11233 does a "continue", we exit this loop immediately after the
11236 switch (GET_CODE (op0
))
11239 /* If we are extracting a single bit from a variable position in
11240 a constant that has only a single bit set and are comparing it
11241 with zero, we can convert this into an equality comparison
11242 between the position and the location of the single bit. */
11243 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11244 have already reduced the shift count modulo the word size. */
11245 if (!SHIFT_COUNT_TRUNCATED
11246 && CONST_INT_P (XEXP (op0
, 0))
11247 && XEXP (op0
, 1) == const1_rtx
11248 && equality_comparison_p
&& const_op
== 0
11249 && (i
= exact_log2 (UINTVAL (XEXP (op0
, 0)))) >= 0)
11251 if (BITS_BIG_ENDIAN
)
11252 i
= BITS_PER_WORD
- 1 - i
;
11254 op0
= XEXP (op0
, 2);
11258 /* Result is nonzero iff shift count is equal to I. */
11259 code
= reverse_condition (code
);
11263 /* ... fall through ... */
11266 tem
= expand_compound_operation (op0
);
11275 /* If testing for equality, we can take the NOT of the constant. */
11276 if (equality_comparison_p
11277 && (tem
= simplify_unary_operation (NOT
, mode
, op1
, mode
)) != 0)
11279 op0
= XEXP (op0
, 0);
11284 /* If just looking at the sign bit, reverse the sense of the
11286 if (sign_bit_comparison_p
)
11288 op0
= XEXP (op0
, 0);
11289 code
= (code
== GE
? LT
: GE
);
11295 /* If testing for equality, we can take the NEG of the constant. */
11296 if (equality_comparison_p
11297 && (tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
)) != 0)
11299 op0
= XEXP (op0
, 0);
11304 /* The remaining cases only apply to comparisons with zero. */
11308 /* When X is ABS or is known positive,
11309 (neg X) is < 0 if and only if X != 0. */
11311 if (sign_bit_comparison_p
11312 && (GET_CODE (XEXP (op0
, 0)) == ABS
11313 || (mode_width
<= HOST_BITS_PER_WIDE_INT
11314 && (nonzero_bits (XEXP (op0
, 0), mode
)
11315 & ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
11318 op0
= XEXP (op0
, 0);
11319 code
= (code
== LT
? NE
: EQ
);
11323 /* If we have NEG of something whose two high-order bits are the
11324 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11325 if (num_sign_bit_copies (op0
, mode
) >= 2)
11327 op0
= XEXP (op0
, 0);
11328 code
= swap_condition (code
);
11334 /* If we are testing equality and our count is a constant, we
11335 can perform the inverse operation on our RHS. */
11336 if (equality_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
11337 && (tem
= simplify_binary_operation (ROTATERT
, mode
,
11338 op1
, XEXP (op0
, 1))) != 0)
11340 op0
= XEXP (op0
, 0);
11345 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11346 a particular bit. Convert it to an AND of a constant of that
11347 bit. This will be converted into a ZERO_EXTRACT. */
11348 if (const_op
== 0 && sign_bit_comparison_p
11349 && CONST_INT_P (XEXP (op0
, 1))
11350 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
11352 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
11353 ((unsigned HOST_WIDE_INT
) 1
11355 - INTVAL (XEXP (op0
, 1)))));
11356 code
= (code
== LT
? NE
: EQ
);
11360 /* Fall through. */
11363 /* ABS is ignorable inside an equality comparison with zero. */
11364 if (const_op
== 0 && equality_comparison_p
)
11366 op0
= XEXP (op0
, 0);
11372 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11373 (compare FOO CONST) if CONST fits in FOO's mode and we
11374 are either testing inequality or have an unsigned
11375 comparison with ZERO_EXTEND or a signed comparison with
11376 SIGN_EXTEND. But don't do it if we don't have a compare
11377 insn of the given mode, since we'd have to revert it
11378 later on, and then we wouldn't know whether to sign- or
11380 mode
= GET_MODE (XEXP (op0
, 0));
11381 if (GET_MODE_CLASS (mode
) == MODE_INT
11382 && ! unsigned_comparison_p
11383 && HWI_COMPUTABLE_MODE_P (mode
)
11384 && trunc_int_for_mode (const_op
, mode
) == const_op
11385 && have_insn_for (COMPARE
, mode
))
11387 op0
= XEXP (op0
, 0);
11393 /* Check for the case where we are comparing A - C1 with C2, that is
11395 (subreg:MODE (plus (A) (-C1))) op (C2)
11397 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11398 comparison in the wider mode. One of the following two conditions
11399 must be true in order for this to be valid:
11401 1. The mode extension results in the same bit pattern being added
11402 on both sides and the comparison is equality or unsigned. As
11403 C2 has been truncated to fit in MODE, the pattern can only be
11406 2. The mode extension results in the sign bit being copied on
11409 The difficulty here is that we have predicates for A but not for
11410 (A - C1) so we need to check that C1 is within proper bounds so
11411 as to perturbate A as little as possible. */
11413 if (mode_width
<= HOST_BITS_PER_WIDE_INT
11414 && subreg_lowpart_p (op0
)
11415 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0
))) > mode_width
11416 && GET_CODE (SUBREG_REG (op0
)) == PLUS
11417 && CONST_INT_P (XEXP (SUBREG_REG (op0
), 1)))
11419 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (op0
));
11420 rtx a
= XEXP (SUBREG_REG (op0
), 0);
11421 HOST_WIDE_INT c1
= -INTVAL (XEXP (SUBREG_REG (op0
), 1));
11424 && (unsigned HOST_WIDE_INT
) c1
11425 < (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)
11426 && (equality_comparison_p
|| unsigned_comparison_p
)
11427 /* (A - C1) zero-extends if it is positive and sign-extends
11428 if it is negative, C2 both zero- and sign-extends. */
11429 && ((0 == (nonzero_bits (a
, inner_mode
)
11430 & ~GET_MODE_MASK (mode
))
11432 /* (A - C1) sign-extends if it is positive and 1-extends
11433 if it is negative, C2 both sign- and 1-extends. */
11434 || (num_sign_bit_copies (a
, inner_mode
)
11435 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
11438 || ((unsigned HOST_WIDE_INT
) c1
11439 < (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 2)
11440 /* (A - C1) always sign-extends, like C2. */
11441 && num_sign_bit_copies (a
, inner_mode
)
11442 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
11443 - (mode_width
- 1))))
11445 op0
= SUBREG_REG (op0
);
11450 /* If the inner mode is narrower and we are extracting the low part,
11451 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11452 if (subreg_lowpart_p (op0
)
11453 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0
))) < mode_width
)
11454 /* Fall through */ ;
11458 /* ... fall through ... */
11461 mode
= GET_MODE (XEXP (op0
, 0));
11462 if (GET_MODE_CLASS (mode
) == MODE_INT
11463 && (unsigned_comparison_p
|| equality_comparison_p
)
11464 && HWI_COMPUTABLE_MODE_P (mode
)
11465 && (unsigned HOST_WIDE_INT
) const_op
<= GET_MODE_MASK (mode
)
11467 && have_insn_for (COMPARE
, mode
))
11469 op0
= XEXP (op0
, 0);
11475 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11476 this for equality comparisons due to pathological cases involving
11478 if (equality_comparison_p
11479 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
11480 op1
, XEXP (op0
, 1))))
11482 op0
= XEXP (op0
, 0);
11487 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11488 if (const_op
== 0 && XEXP (op0
, 1) == constm1_rtx
11489 && GET_CODE (XEXP (op0
, 0)) == ABS
&& sign_bit_comparison_p
)
11491 op0
= XEXP (XEXP (op0
, 0), 0);
11492 code
= (code
== LT
? EQ
: NE
);
11498 /* We used to optimize signed comparisons against zero, but that
11499 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11500 arrive here as equality comparisons, or (GEU, LTU) are
11501 optimized away. No need to special-case them. */
11503 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11504 (eq B (minus A C)), whichever simplifies. We can only do
11505 this for equality comparisons due to pathological cases involving
11507 if (equality_comparison_p
11508 && 0 != (tem
= simplify_binary_operation (PLUS
, mode
,
11509 XEXP (op0
, 1), op1
)))
11511 op0
= XEXP (op0
, 0);
11516 if (equality_comparison_p
11517 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
11518 XEXP (op0
, 0), op1
)))
11520 op0
= XEXP (op0
, 1);
11525 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11526 of bits in X minus 1, is one iff X > 0. */
11527 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == ASHIFTRT
11528 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
11529 && UINTVAL (XEXP (XEXP (op0
, 0), 1)) == mode_width
- 1
11530 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
11532 op0
= XEXP (op0
, 1);
11533 code
= (code
== GE
? LE
: GT
);
11539 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11540 if C is zero or B is a constant. */
11541 if (equality_comparison_p
11542 && 0 != (tem
= simplify_binary_operation (XOR
, mode
,
11543 XEXP (op0
, 1), op1
)))
11545 op0
= XEXP (op0
, 0);
11552 case UNEQ
: case LTGT
:
11553 case LT
: case LTU
: case UNLT
: case LE
: case LEU
: case UNLE
:
11554 case GT
: case GTU
: case UNGT
: case GE
: case GEU
: case UNGE
:
11555 case UNORDERED
: case ORDERED
:
11556 /* We can't do anything if OP0 is a condition code value, rather
11557 than an actual data value. */
11559 || CC0_P (XEXP (op0
, 0))
11560 || GET_MODE_CLASS (GET_MODE (XEXP (op0
, 0))) == MODE_CC
)
11563 /* Get the two operands being compared. */
11564 if (GET_CODE (XEXP (op0
, 0)) == COMPARE
)
11565 tem
= XEXP (XEXP (op0
, 0), 0), tem1
= XEXP (XEXP (op0
, 0), 1);
11567 tem
= XEXP (op0
, 0), tem1
= XEXP (op0
, 1);
11569 /* Check for the cases where we simply want the result of the
11570 earlier test or the opposite of that result. */
11571 if (code
== NE
|| code
== EQ
11572 || (val_signbit_known_set_p (GET_MODE (op0
), STORE_FLAG_VALUE
)
11573 && (code
== LT
|| code
== GE
)))
11575 enum rtx_code new_code
;
11576 if (code
== LT
|| code
== NE
)
11577 new_code
= GET_CODE (op0
);
11579 new_code
= reversed_comparison_code (op0
, NULL
);
11581 if (new_code
!= UNKNOWN
)
11592 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11594 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == PLUS
11595 && XEXP (XEXP (op0
, 0), 1) == constm1_rtx
11596 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
11598 op0
= XEXP (op0
, 1);
11599 code
= (code
== GE
? GT
: LE
);
11605 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11606 will be converted to a ZERO_EXTRACT later. */
11607 if (const_op
== 0 && equality_comparison_p
11608 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
11609 && XEXP (XEXP (op0
, 0), 0) == const1_rtx
)
11611 op0
= gen_rtx_LSHIFTRT (mode
, XEXP (op0
, 1),
11612 XEXP (XEXP (op0
, 0), 1));
11613 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
11617 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11618 zero and X is a comparison and C1 and C2 describe only bits set
11619 in STORE_FLAG_VALUE, we can compare with X. */
11620 if (const_op
== 0 && equality_comparison_p
11621 && mode_width
<= HOST_BITS_PER_WIDE_INT
11622 && CONST_INT_P (XEXP (op0
, 1))
11623 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
11624 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
11625 && INTVAL (XEXP (XEXP (op0
, 0), 1)) >= 0
11626 && INTVAL (XEXP (XEXP (op0
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
11628 mask
= ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
11629 << INTVAL (XEXP (XEXP (op0
, 0), 1)));
11630 if ((~STORE_FLAG_VALUE
& mask
) == 0
11631 && (COMPARISON_P (XEXP (XEXP (op0
, 0), 0))
11632 || ((tem
= get_last_value (XEXP (XEXP (op0
, 0), 0))) != 0
11633 && COMPARISON_P (tem
))))
11635 op0
= XEXP (XEXP (op0
, 0), 0);
11640 /* If we are doing an equality comparison of an AND of a bit equal
11641 to the sign bit, replace this with a LT or GE comparison of
11642 the underlying value. */
11643 if (equality_comparison_p
11645 && CONST_INT_P (XEXP (op0
, 1))
11646 && mode_width
<= HOST_BITS_PER_WIDE_INT
11647 && ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
11648 == (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
11650 op0
= XEXP (op0
, 0);
11651 code
= (code
== EQ
? GE
: LT
);
11655 /* If this AND operation is really a ZERO_EXTEND from a narrower
11656 mode, the constant fits within that mode, and this is either an
11657 equality or unsigned comparison, try to do this comparison in
11662 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11663 -> (ne:DI (reg:SI 4) (const_int 0))
11665 unless TRULY_NOOP_TRUNCATION allows it or the register is
11666 known to hold a value of the required mode the
11667 transformation is invalid. */
11668 if ((equality_comparison_p
|| unsigned_comparison_p
)
11669 && CONST_INT_P (XEXP (op0
, 1))
11670 && (i
= exact_log2 ((UINTVAL (XEXP (op0
, 1))
11671 & GET_MODE_MASK (mode
))
11673 && const_op
>> i
== 0
11674 && (tmode
= mode_for_size (i
, MODE_INT
, 1)) != BLKmode
11675 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode
, GET_MODE (op0
))
11676 || (REG_P (XEXP (op0
, 0))
11677 && reg_truncated_to_mode (tmode
, XEXP (op0
, 0)))))
11679 op0
= gen_lowpart (tmode
, XEXP (op0
, 0));
11683 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11684 fits in both M1 and M2 and the SUBREG is either paradoxical
11685 or represents the low part, permute the SUBREG and the AND
11687 if (GET_CODE (XEXP (op0
, 0)) == SUBREG
)
11689 unsigned HOST_WIDE_INT c1
;
11690 tmode
= GET_MODE (SUBREG_REG (XEXP (op0
, 0)));
11691 /* Require an integral mode, to avoid creating something like
11693 if (SCALAR_INT_MODE_P (tmode
)
11694 /* It is unsafe to commute the AND into the SUBREG if the
11695 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11696 not defined. As originally written the upper bits
11697 have a defined value due to the AND operation.
11698 However, if we commute the AND inside the SUBREG then
11699 they no longer have defined values and the meaning of
11700 the code has been changed. */
11702 #ifdef WORD_REGISTER_OPERATIONS
11703 || (mode_width
> GET_MODE_PRECISION (tmode
)
11704 && mode_width
<= BITS_PER_WORD
)
11706 || (mode_width
<= GET_MODE_PRECISION (tmode
)
11707 && subreg_lowpart_p (XEXP (op0
, 0))))
11708 && CONST_INT_P (XEXP (op0
, 1))
11709 && mode_width
<= HOST_BITS_PER_WIDE_INT
11710 && HWI_COMPUTABLE_MODE_P (tmode
)
11711 && ((c1
= INTVAL (XEXP (op0
, 1))) & ~mask
) == 0
11712 && (c1
& ~GET_MODE_MASK (tmode
)) == 0
11714 && c1
!= GET_MODE_MASK (tmode
))
11716 op0
= simplify_gen_binary (AND
, tmode
,
11717 SUBREG_REG (XEXP (op0
, 0)),
11718 gen_int_mode (c1
, tmode
));
11719 op0
= gen_lowpart (mode
, op0
);
11724 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11725 if (const_op
== 0 && equality_comparison_p
11726 && XEXP (op0
, 1) == const1_rtx
11727 && GET_CODE (XEXP (op0
, 0)) == NOT
)
11729 op0
= simplify_and_const_int (NULL_RTX
, mode
,
11730 XEXP (XEXP (op0
, 0), 0), 1);
11731 code
= (code
== NE
? EQ
: NE
);
11735 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11736 (eq (and (lshiftrt X) 1) 0).
11737 Also handle the case where (not X) is expressed using xor. */
11738 if (const_op
== 0 && equality_comparison_p
11739 && XEXP (op0
, 1) == const1_rtx
11740 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
)
11742 rtx shift_op
= XEXP (XEXP (op0
, 0), 0);
11743 rtx shift_count
= XEXP (XEXP (op0
, 0), 1);
11745 if (GET_CODE (shift_op
) == NOT
11746 || (GET_CODE (shift_op
) == XOR
11747 && CONST_INT_P (XEXP (shift_op
, 1))
11748 && CONST_INT_P (shift_count
)
11749 && HWI_COMPUTABLE_MODE_P (mode
)
11750 && (UINTVAL (XEXP (shift_op
, 1))
11751 == (unsigned HOST_WIDE_INT
) 1
11752 << INTVAL (shift_count
))))
11755 = gen_rtx_LSHIFTRT (mode
, XEXP (shift_op
, 0), shift_count
);
11756 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
11757 code
= (code
== NE
? EQ
: NE
);
11764 /* If we have (compare (ashift FOO N) (const_int C)) and
11765 the high order N bits of FOO (N+1 if an inequality comparison)
11766 are known to be zero, we can do this by comparing FOO with C
11767 shifted right N bits so long as the low-order N bits of C are
11769 if (CONST_INT_P (XEXP (op0
, 1))
11770 && INTVAL (XEXP (op0
, 1)) >= 0
11771 && ((INTVAL (XEXP (op0
, 1)) + ! equality_comparison_p
)
11772 < HOST_BITS_PER_WIDE_INT
)
11773 && (((unsigned HOST_WIDE_INT
) const_op
11774 & (((unsigned HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1)))
11776 && mode_width
<= HOST_BITS_PER_WIDE_INT
11777 && (nonzero_bits (XEXP (op0
, 0), mode
)
11778 & ~(mask
>> (INTVAL (XEXP (op0
, 1))
11779 + ! equality_comparison_p
))) == 0)
11781 /* We must perform a logical shift, not an arithmetic one,
11782 as we want the top N bits of C to be zero. */
11783 unsigned HOST_WIDE_INT temp
= const_op
& GET_MODE_MASK (mode
);
11785 temp
>>= INTVAL (XEXP (op0
, 1));
11786 op1
= gen_int_mode (temp
, mode
);
11787 op0
= XEXP (op0
, 0);
11791 /* If we are doing a sign bit comparison, it means we are testing
11792 a particular bit. Convert it to the appropriate AND. */
11793 if (sign_bit_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
11794 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
11796 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
11797 ((unsigned HOST_WIDE_INT
) 1
11799 - INTVAL (XEXP (op0
, 1)))));
11800 code
= (code
== LT
? NE
: EQ
);
11804 /* If this an equality comparison with zero and we are shifting
11805 the low bit to the sign bit, we can convert this to an AND of the
11807 if (const_op
== 0 && equality_comparison_p
11808 && CONST_INT_P (XEXP (op0
, 1))
11809 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
11811 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0), 1);
11817 /* If this is an equality comparison with zero, we can do this
11818 as a logical shift, which might be much simpler. */
11819 if (equality_comparison_p
&& const_op
== 0
11820 && CONST_INT_P (XEXP (op0
, 1)))
11822 op0
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
,
11824 INTVAL (XEXP (op0
, 1)));
11828 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11829 do the comparison in a narrower mode. */
11830 if (! unsigned_comparison_p
11831 && CONST_INT_P (XEXP (op0
, 1))
11832 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
11833 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
11834 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
11835 MODE_INT
, 1)) != BLKmode
11836 && (((unsigned HOST_WIDE_INT
) const_op
11837 + (GET_MODE_MASK (tmode
) >> 1) + 1)
11838 <= GET_MODE_MASK (tmode
)))
11840 op0
= gen_lowpart (tmode
, XEXP (XEXP (op0
, 0), 0));
11844 /* Likewise if OP0 is a PLUS of a sign extension with a
11845 constant, which is usually represented with the PLUS
11846 between the shifts. */
11847 if (! unsigned_comparison_p
11848 && CONST_INT_P (XEXP (op0
, 1))
11849 && GET_CODE (XEXP (op0
, 0)) == PLUS
11850 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
11851 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == ASHIFT
11852 && XEXP (op0
, 1) == XEXP (XEXP (XEXP (op0
, 0), 0), 1)
11853 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
11854 MODE_INT
, 1)) != BLKmode
11855 && (((unsigned HOST_WIDE_INT
) const_op
11856 + (GET_MODE_MASK (tmode
) >> 1) + 1)
11857 <= GET_MODE_MASK (tmode
)))
11859 rtx inner
= XEXP (XEXP (XEXP (op0
, 0), 0), 0);
11860 rtx add_const
= XEXP (XEXP (op0
, 0), 1);
11861 rtx new_const
= simplify_gen_binary (ASHIFTRT
, GET_MODE (op0
),
11862 add_const
, XEXP (op0
, 1));
11864 op0
= simplify_gen_binary (PLUS
, tmode
,
11865 gen_lowpart (tmode
, inner
),
11870 /* ... fall through ... */
11872 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11873 the low order N bits of FOO are known to be zero, we can do this
11874 by comparing FOO with C shifted left N bits so long as no
11875 overflow occurs. Even if the low order N bits of FOO aren't known
11876 to be zero, if the comparison is >= or < we can use the same
11877 optimization and for > or <= by setting all the low
11878 order N bits in the comparison constant. */
11879 if (CONST_INT_P (XEXP (op0
, 1))
11880 && INTVAL (XEXP (op0
, 1)) > 0
11881 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
11882 && mode_width
<= HOST_BITS_PER_WIDE_INT
11883 && (((unsigned HOST_WIDE_INT
) const_op
11884 + (GET_CODE (op0
) != LSHIFTRT
11885 ? ((GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1)) >> 1)
11888 <= GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1))))
11890 unsigned HOST_WIDE_INT low_bits
11891 = (nonzero_bits (XEXP (op0
, 0), mode
)
11892 & (((unsigned HOST_WIDE_INT
) 1
11893 << INTVAL (XEXP (op0
, 1))) - 1));
11894 if (low_bits
== 0 || !equality_comparison_p
)
11896 /* If the shift was logical, then we must make the condition
11898 if (GET_CODE (op0
) == LSHIFTRT
)
11899 code
= unsigned_condition (code
);
11901 const_op
<<= INTVAL (XEXP (op0
, 1));
11903 && (code
== GT
|| code
== GTU
11904 || code
== LE
|| code
== LEU
))
11906 |= (((HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1))) - 1);
11907 op1
= GEN_INT (const_op
);
11908 op0
= XEXP (op0
, 0);
11913 /* If we are using this shift to extract just the sign bit, we
11914 can replace this with an LT or GE comparison. */
11916 && (equality_comparison_p
|| sign_bit_comparison_p
)
11917 && CONST_INT_P (XEXP (op0
, 1))
11918 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
11920 op0
= XEXP (op0
, 0);
11921 code
= (code
== NE
|| code
== GT
? LT
: GE
);
11933 /* Now make any compound operations involved in this comparison. Then,
11934 check for an outmost SUBREG on OP0 that is not doing anything or is
11935 paradoxical. The latter transformation must only be performed when
11936 it is known that the "extra" bits will be the same in op0 and op1 or
11937 that they don't matter. There are three cases to consider:
11939 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11940 care bits and we can assume they have any convenient value. So
11941 making the transformation is safe.
11943 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11944 In this case the upper bits of op0 are undefined. We should not make
11945 the simplification in that case as we do not know the contents of
11948 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11949 UNKNOWN. In that case we know those bits are zeros or ones. We must
11950 also be sure that they are the same as the upper bits of op1.
11952 We can never remove a SUBREG for a non-equality comparison because
11953 the sign bit is in a different place in the underlying object. */
11955 op0
= make_compound_operation (op0
, op1
== const0_rtx
? COMPARE
: SET
);
11956 op1
= make_compound_operation (op1
, SET
);
11958 if (GET_CODE (op0
) == SUBREG
&& subreg_lowpart_p (op0
)
11959 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
11960 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0
))) == MODE_INT
11961 && (code
== NE
|| code
== EQ
))
11963 if (paradoxical_subreg_p (op0
))
11965 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11967 if (REG_P (SUBREG_REG (op0
)))
11969 op0
= SUBREG_REG (op0
);
11970 op1
= gen_lowpart (GET_MODE (op0
), op1
);
11973 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0
)))
11974 <= HOST_BITS_PER_WIDE_INT
)
11975 && (nonzero_bits (SUBREG_REG (op0
),
11976 GET_MODE (SUBREG_REG (op0
)))
11977 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
11979 tem
= gen_lowpart (GET_MODE (SUBREG_REG (op0
)), op1
);
11981 if ((nonzero_bits (tem
, GET_MODE (SUBREG_REG (op0
)))
11982 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
11983 op0
= SUBREG_REG (op0
), op1
= tem
;
11987 /* We now do the opposite procedure: Some machines don't have compare
11988 insns in all modes. If OP0's mode is an integer mode smaller than a
11989 word and we can't do a compare in that mode, see if there is a larger
11990 mode for which we can do the compare. There are a number of cases in
11991 which we can use the wider mode. */
11993 mode
= GET_MODE (op0
);
11994 if (mode
!= VOIDmode
&& GET_MODE_CLASS (mode
) == MODE_INT
11995 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
11996 && ! have_insn_for (COMPARE
, mode
))
11997 for (tmode
= GET_MODE_WIDER_MODE (mode
);
11998 (tmode
!= VOIDmode
&& HWI_COMPUTABLE_MODE_P (tmode
));
11999 tmode
= GET_MODE_WIDER_MODE (tmode
))
12000 if (have_insn_for (COMPARE
, tmode
))
12004 /* If this is a test for negative, we can make an explicit
12005 test of the sign bit. Test this first so we can use
12006 a paradoxical subreg to extend OP0. */
12008 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
12009 && HWI_COMPUTABLE_MODE_P (mode
))
12011 unsigned HOST_WIDE_INT sign
12012 = (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1);
12013 op0
= simplify_gen_binary (AND
, tmode
,
12014 gen_lowpart (tmode
, op0
),
12015 gen_int_mode (sign
, tmode
));
12016 code
= (code
== LT
) ? NE
: EQ
;
12020 /* If the only nonzero bits in OP0 and OP1 are those in the
12021 narrower mode and this is an equality or unsigned comparison,
12022 we can use the wider mode. Similarly for sign-extended
12023 values, in which case it is true for all comparisons. */
12024 zero_extended
= ((code
== EQ
|| code
== NE
12025 || code
== GEU
|| code
== GTU
12026 || code
== LEU
|| code
== LTU
)
12027 && (nonzero_bits (op0
, tmode
)
12028 & ~GET_MODE_MASK (mode
)) == 0
12029 && ((CONST_INT_P (op1
)
12030 || (nonzero_bits (op1
, tmode
)
12031 & ~GET_MODE_MASK (mode
)) == 0)));
12034 || ((num_sign_bit_copies (op0
, tmode
)
12035 > (unsigned int) (GET_MODE_PRECISION (tmode
)
12036 - GET_MODE_PRECISION (mode
)))
12037 && (num_sign_bit_copies (op1
, tmode
)
12038 > (unsigned int) (GET_MODE_PRECISION (tmode
)
12039 - GET_MODE_PRECISION (mode
)))))
12041 /* If OP0 is an AND and we don't have an AND in MODE either,
12042 make a new AND in the proper mode. */
12043 if (GET_CODE (op0
) == AND
12044 && !have_insn_for (AND
, mode
))
12045 op0
= simplify_gen_binary (AND
, tmode
,
12046 gen_lowpart (tmode
,
12048 gen_lowpart (tmode
,
12054 op0
= simplify_gen_unary (ZERO_EXTEND
, tmode
, op0
, mode
);
12055 op1
= simplify_gen_unary (ZERO_EXTEND
, tmode
, op1
, mode
);
12059 op0
= simplify_gen_unary (SIGN_EXTEND
, tmode
, op0
, mode
);
12060 op1
= simplify_gen_unary (SIGN_EXTEND
, tmode
, op1
, mode
);
12067 /* We may have changed the comparison operands. Re-canonicalize. */
12068 if (swap_commutative_operands_p (op0
, op1
))
12070 tem
= op0
, op0
= op1
, op1
= tem
;
12071 code
= swap_condition (code
);
12074 /* If this machine only supports a subset of valid comparisons, see if we
12075 can convert an unsupported one into a supported one. */
12076 target_canonicalize_comparison (&code
, &op0
, &op1
, 0);
12084 /* Utility function for record_value_for_reg. Count number of
12089 enum rtx_code code
= GET_CODE (x
);
12093 if (GET_RTX_CLASS (code
) == RTX_BIN_ARITH
12094 || GET_RTX_CLASS (code
) == RTX_COMM_ARITH
)
12096 rtx x0
= XEXP (x
, 0);
12097 rtx x1
= XEXP (x
, 1);
12100 return 1 + 2 * count_rtxs (x0
);
12102 if ((GET_RTX_CLASS (GET_CODE (x1
)) == RTX_BIN_ARITH
12103 || GET_RTX_CLASS (GET_CODE (x1
)) == RTX_COMM_ARITH
)
12104 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
12105 return 2 + 2 * count_rtxs (x0
)
12106 + count_rtxs (x
== XEXP (x1
, 0)
12107 ? XEXP (x1
, 1) : XEXP (x1
, 0));
12109 if ((GET_RTX_CLASS (GET_CODE (x0
)) == RTX_BIN_ARITH
12110 || GET_RTX_CLASS (GET_CODE (x0
)) == RTX_COMM_ARITH
)
12111 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
12112 return 2 + 2 * count_rtxs (x1
)
12113 + count_rtxs (x
== XEXP (x0
, 0)
12114 ? XEXP (x0
, 1) : XEXP (x0
, 0));
12117 fmt
= GET_RTX_FORMAT (code
);
12118 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12120 ret
+= count_rtxs (XEXP (x
, i
));
12121 else if (fmt
[i
] == 'E')
12122 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12123 ret
+= count_rtxs (XVECEXP (x
, i
, j
));
12128 /* Utility function for following routine. Called when X is part of a value
12129 being stored into last_set_value. Sets last_set_table_tick
12130 for each register mentioned. Similar to mention_regs in cse.c */
12133 update_table_tick (rtx x
)
12135 enum rtx_code code
= GET_CODE (x
);
12136 const char *fmt
= GET_RTX_FORMAT (code
);
12141 unsigned int regno
= REGNO (x
);
12142 unsigned int endregno
= END_REGNO (x
);
12145 for (r
= regno
; r
< endregno
; r
++)
12147 reg_stat_type
*rsp
= ®_stat
[r
];
12148 rsp
->last_set_table_tick
= label_tick
;
12154 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12157 /* Check for identical subexpressions. If x contains
12158 identical subexpression we only have to traverse one of
12160 if (i
== 0 && ARITHMETIC_P (x
))
12162 /* Note that at this point x1 has already been
12164 rtx x0
= XEXP (x
, 0);
12165 rtx x1
= XEXP (x
, 1);
12167 /* If x0 and x1 are identical then there is no need to
12172 /* If x0 is identical to a subexpression of x1 then while
12173 processing x1, x0 has already been processed. Thus we
12174 are done with x. */
12175 if (ARITHMETIC_P (x1
)
12176 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
12179 /* If x1 is identical to a subexpression of x0 then we
12180 still have to process the rest of x0. */
12181 if (ARITHMETIC_P (x0
)
12182 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
12184 update_table_tick (XEXP (x0
, x1
== XEXP (x0
, 0) ? 1 : 0));
12189 update_table_tick (XEXP (x
, i
));
12191 else if (fmt
[i
] == 'E')
12192 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12193 update_table_tick (XVECEXP (x
, i
, j
));
12196 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12197 are saying that the register is clobbered and we no longer know its
12198 value. If INSN is zero, don't update reg_stat[].last_set; this is
12199 only permitted with VALUE also zero and is used to invalidate the
12203 record_value_for_reg (rtx reg
, rtx insn
, rtx value
)
12205 unsigned int regno
= REGNO (reg
);
12206 unsigned int endregno
= END_REGNO (reg
);
12208 reg_stat_type
*rsp
;
12210 /* If VALUE contains REG and we have a previous value for REG, substitute
12211 the previous value. */
12212 if (value
&& insn
&& reg_overlap_mentioned_p (reg
, value
))
12216 /* Set things up so get_last_value is allowed to see anything set up to
12218 subst_low_luid
= DF_INSN_LUID (insn
);
12219 tem
= get_last_value (reg
);
12221 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12222 it isn't going to be useful and will take a lot of time to process,
12223 so just use the CLOBBER. */
12227 if (ARITHMETIC_P (tem
)
12228 && GET_CODE (XEXP (tem
, 0)) == CLOBBER
12229 && GET_CODE (XEXP (tem
, 1)) == CLOBBER
)
12230 tem
= XEXP (tem
, 0);
12231 else if (count_occurrences (value
, reg
, 1) >= 2)
12233 /* If there are two or more occurrences of REG in VALUE,
12234 prevent the value from growing too much. */
12235 if (count_rtxs (tem
) > MAX_LAST_VALUE_RTL
)
12236 tem
= gen_rtx_CLOBBER (GET_MODE (tem
), const0_rtx
);
12239 value
= replace_rtx (copy_rtx (value
), reg
, tem
);
12243 /* For each register modified, show we don't know its value, that
12244 we don't know about its bitwise content, that its value has been
12245 updated, and that we don't know the location of the death of the
12247 for (i
= regno
; i
< endregno
; i
++)
12249 rsp
= ®_stat
[i
];
12252 rsp
->last_set
= insn
;
12254 rsp
->last_set_value
= 0;
12255 rsp
->last_set_mode
= VOIDmode
;
12256 rsp
->last_set_nonzero_bits
= 0;
12257 rsp
->last_set_sign_bit_copies
= 0;
12258 rsp
->last_death
= 0;
12259 rsp
->truncated_to_mode
= VOIDmode
;
12262 /* Mark registers that are being referenced in this value. */
12264 update_table_tick (value
);
12266 /* Now update the status of each register being set.
12267 If someone is using this register in this block, set this register
12268 to invalid since we will get confused between the two lives in this
12269 basic block. This makes using this register always invalid. In cse, we
12270 scan the table to invalidate all entries using this register, but this
12271 is too much work for us. */
12273 for (i
= regno
; i
< endregno
; i
++)
12275 rsp
= ®_stat
[i
];
12276 rsp
->last_set_label
= label_tick
;
12278 || (value
&& rsp
->last_set_table_tick
>= label_tick_ebb_start
))
12279 rsp
->last_set_invalid
= 1;
12281 rsp
->last_set_invalid
= 0;
12284 /* The value being assigned might refer to X (like in "x++;"). In that
12285 case, we must replace it with (clobber (const_int 0)) to prevent
12287 rsp
= ®_stat
[regno
];
12288 if (value
&& !get_last_value_validate (&value
, insn
, label_tick
, 0))
12290 value
= copy_rtx (value
);
12291 if (!get_last_value_validate (&value
, insn
, label_tick
, 1))
12295 /* For the main register being modified, update the value, the mode, the
12296 nonzero bits, and the number of sign bit copies. */
12298 rsp
->last_set_value
= value
;
12302 enum machine_mode mode
= GET_MODE (reg
);
12303 subst_low_luid
= DF_INSN_LUID (insn
);
12304 rsp
->last_set_mode
= mode
;
12305 if (GET_MODE_CLASS (mode
) == MODE_INT
12306 && HWI_COMPUTABLE_MODE_P (mode
))
12307 mode
= nonzero_bits_mode
;
12308 rsp
->last_set_nonzero_bits
= nonzero_bits (value
, mode
);
12309 rsp
->last_set_sign_bit_copies
12310 = num_sign_bit_copies (value
, GET_MODE (reg
));
12314 /* Called via note_stores from record_dead_and_set_regs to handle one
12315 SET or CLOBBER in an insn. DATA is the instruction in which the
12316 set is occurring. */
12319 record_dead_and_set_regs_1 (rtx dest
, const_rtx setter
, void *data
)
12321 rtx record_dead_insn
= (rtx
) data
;
12323 if (GET_CODE (dest
) == SUBREG
)
12324 dest
= SUBREG_REG (dest
);
12326 if (!record_dead_insn
)
12329 record_value_for_reg (dest
, NULL_RTX
, NULL_RTX
);
12335 /* If we are setting the whole register, we know its value. Otherwise
12336 show that we don't know the value. We can handle SUBREG in
12338 if (GET_CODE (setter
) == SET
&& dest
== SET_DEST (setter
))
12339 record_value_for_reg (dest
, record_dead_insn
, SET_SRC (setter
));
12340 else if (GET_CODE (setter
) == SET
12341 && GET_CODE (SET_DEST (setter
)) == SUBREG
12342 && SUBREG_REG (SET_DEST (setter
)) == dest
12343 && GET_MODE_PRECISION (GET_MODE (dest
)) <= BITS_PER_WORD
12344 && subreg_lowpart_p (SET_DEST (setter
)))
12345 record_value_for_reg (dest
, record_dead_insn
,
12346 gen_lowpart (GET_MODE (dest
),
12347 SET_SRC (setter
)));
12349 record_value_for_reg (dest
, record_dead_insn
, NULL_RTX
);
12351 else if (MEM_P (dest
)
12352 /* Ignore pushes, they clobber nothing. */
12353 && ! push_operand (dest
, GET_MODE (dest
)))
12354 mem_last_set
= DF_INSN_LUID (record_dead_insn
);
12357 /* Update the records of when each REG was most recently set or killed
12358 for the things done by INSN. This is the last thing done in processing
12359 INSN in the combiner loop.
12361 We update reg_stat[], in particular fields last_set, last_set_value,
12362 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12363 last_death, and also the similar information mem_last_set (which insn
12364 most recently modified memory) and last_call_luid (which insn was the
12365 most recent subroutine call). */
12368 record_dead_and_set_regs (rtx insn
)
12373 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
12375 if (REG_NOTE_KIND (link
) == REG_DEAD
12376 && REG_P (XEXP (link
, 0)))
12378 unsigned int regno
= REGNO (XEXP (link
, 0));
12379 unsigned int endregno
= END_REGNO (XEXP (link
, 0));
12381 for (i
= regno
; i
< endregno
; i
++)
12383 reg_stat_type
*rsp
;
12385 rsp
= ®_stat
[i
];
12386 rsp
->last_death
= insn
;
12389 else if (REG_NOTE_KIND (link
) == REG_INC
)
12390 record_value_for_reg (XEXP (link
, 0), insn
, NULL_RTX
);
12395 hard_reg_set_iterator hrsi
;
12396 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call
, 0, i
, hrsi
)
12398 reg_stat_type
*rsp
;
12400 rsp
= ®_stat
[i
];
12401 rsp
->last_set_invalid
= 1;
12402 rsp
->last_set
= insn
;
12403 rsp
->last_set_value
= 0;
12404 rsp
->last_set_mode
= VOIDmode
;
12405 rsp
->last_set_nonzero_bits
= 0;
12406 rsp
->last_set_sign_bit_copies
= 0;
12407 rsp
->last_death
= 0;
12408 rsp
->truncated_to_mode
= VOIDmode
;
12411 last_call_luid
= mem_last_set
= DF_INSN_LUID (insn
);
12413 /* We can't combine into a call pattern. Remember, though, that
12414 the return value register is set at this LUID. We could
12415 still replace a register with the return value from the
12416 wrong subroutine call! */
12417 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, NULL_RTX
);
12420 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, insn
);
12423 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12424 register present in the SUBREG, so for each such SUBREG go back and
12425 adjust nonzero and sign bit information of the registers that are
12426 known to have some zero/sign bits set.
12428 This is needed because when combine blows the SUBREGs away, the
12429 information on zero/sign bits is lost and further combines can be
12430 missed because of that. */
12433 record_promoted_value (rtx insn
, rtx subreg
)
12435 struct insn_link
*links
;
12437 unsigned int regno
= REGNO (SUBREG_REG (subreg
));
12438 enum machine_mode mode
= GET_MODE (subreg
);
12440 if (GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
)
12443 for (links
= LOG_LINKS (insn
); links
;)
12445 reg_stat_type
*rsp
;
12447 insn
= links
->insn
;
12448 set
= single_set (insn
);
12450 if (! set
|| !REG_P (SET_DEST (set
))
12451 || REGNO (SET_DEST (set
)) != regno
12452 || GET_MODE (SET_DEST (set
)) != GET_MODE (SUBREG_REG (subreg
)))
12454 links
= links
->next
;
12458 rsp
= ®_stat
[regno
];
12459 if (rsp
->last_set
== insn
)
12461 if (SUBREG_PROMOTED_UNSIGNED_P (subreg
))
12462 rsp
->last_set_nonzero_bits
&= GET_MODE_MASK (mode
);
12465 if (REG_P (SET_SRC (set
)))
12467 regno
= REGNO (SET_SRC (set
));
12468 links
= LOG_LINKS (insn
);
12475 /* Check if X, a register, is known to contain a value already
12476 truncated to MODE. In this case we can use a subreg to refer to
12477 the truncated value even though in the generic case we would need
12478 an explicit truncation. */
12481 reg_truncated_to_mode (enum machine_mode mode
, const_rtx x
)
12483 reg_stat_type
*rsp
= ®_stat
[REGNO (x
)];
12484 enum machine_mode truncated
= rsp
->truncated_to_mode
;
12487 || rsp
->truncation_label
< label_tick_ebb_start
)
12489 if (GET_MODE_SIZE (truncated
) <= GET_MODE_SIZE (mode
))
12491 if (TRULY_NOOP_TRUNCATION_MODES_P (mode
, truncated
))
12496 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
12497 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
12498 might be able to turn a truncate into a subreg using this information.
12499 Return -1 if traversing *P is complete or 0 otherwise. */
12502 record_truncated_value (rtx
*p
, void *data ATTRIBUTE_UNUSED
)
12505 enum machine_mode truncated_mode
;
12506 reg_stat_type
*rsp
;
12508 if (GET_CODE (x
) == SUBREG
&& REG_P (SUBREG_REG (x
)))
12510 enum machine_mode original_mode
= GET_MODE (SUBREG_REG (x
));
12511 truncated_mode
= GET_MODE (x
);
12513 if (GET_MODE_SIZE (original_mode
) <= GET_MODE_SIZE (truncated_mode
))
12516 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode
, original_mode
))
12519 x
= SUBREG_REG (x
);
12521 /* ??? For hard-regs we now record everything. We might be able to
12522 optimize this using last_set_mode. */
12523 else if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
12524 truncated_mode
= GET_MODE (x
);
12528 rsp
= ®_stat
[REGNO (x
)];
12529 if (rsp
->truncated_to_mode
== 0
12530 || rsp
->truncation_label
< label_tick_ebb_start
12531 || (GET_MODE_SIZE (truncated_mode
)
12532 < GET_MODE_SIZE (rsp
->truncated_to_mode
)))
12534 rsp
->truncated_to_mode
= truncated_mode
;
12535 rsp
->truncation_label
= label_tick
;
12541 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12542 the modes they are used in. This can help truning TRUNCATEs into
12546 record_truncated_values (rtx
*x
, void *data ATTRIBUTE_UNUSED
)
12548 for_each_rtx (x
, record_truncated_value
, NULL
);
12551 /* Scan X for promoted SUBREGs. For each one found,
12552 note what it implies to the registers used in it. */
12555 check_promoted_subreg (rtx insn
, rtx x
)
12557 if (GET_CODE (x
) == SUBREG
12558 && SUBREG_PROMOTED_VAR_P (x
)
12559 && REG_P (SUBREG_REG (x
)))
12560 record_promoted_value (insn
, x
);
12563 const char *format
= GET_RTX_FORMAT (GET_CODE (x
));
12566 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (x
)); i
++)
12570 check_promoted_subreg (insn
, XEXP (x
, i
));
12574 if (XVEC (x
, i
) != 0)
12575 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12576 check_promoted_subreg (insn
, XVECEXP (x
, i
, j
));
12582 /* Verify that all the registers and memory references mentioned in *LOC are
12583 still valid. *LOC was part of a value set in INSN when label_tick was
12584 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12585 the invalid references with (clobber (const_int 0)) and return 1. This
12586 replacement is useful because we often can get useful information about
12587 the form of a value (e.g., if it was produced by a shift that always
12588 produces -1 or 0) even though we don't know exactly what registers it
12589 was produced from. */
12592 get_last_value_validate (rtx
*loc
, rtx insn
, int tick
, int replace
)
12595 const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
12596 int len
= GET_RTX_LENGTH (GET_CODE (x
));
12601 unsigned int regno
= REGNO (x
);
12602 unsigned int endregno
= END_REGNO (x
);
12605 for (j
= regno
; j
< endregno
; j
++)
12607 reg_stat_type
*rsp
= ®_stat
[j
];
12608 if (rsp
->last_set_invalid
12609 /* If this is a pseudo-register that was only set once and not
12610 live at the beginning of the function, it is always valid. */
12611 || (! (regno
>= FIRST_PSEUDO_REGISTER
12612 && REG_N_SETS (regno
) == 1
12613 && (!REGNO_REG_SET_P
12614 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
12616 && rsp
->last_set_label
> tick
))
12619 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
12626 /* If this is a memory reference, make sure that there were no stores after
12627 it that might have clobbered the value. We don't have alias info, so we
12628 assume any store invalidates it. Moreover, we only have local UIDs, so
12629 we also assume that there were stores in the intervening basic blocks. */
12630 else if (MEM_P (x
) && !MEM_READONLY_P (x
)
12631 && (tick
!= label_tick
|| DF_INSN_LUID (insn
) <= mem_last_set
))
12634 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
12638 for (i
= 0; i
< len
; i
++)
12642 /* Check for identical subexpressions. If x contains
12643 identical subexpression we only have to traverse one of
12645 if (i
== 1 && ARITHMETIC_P (x
))
12647 /* Note that at this point x0 has already been checked
12648 and found valid. */
12649 rtx x0
= XEXP (x
, 0);
12650 rtx x1
= XEXP (x
, 1);
12652 /* If x0 and x1 are identical then x is also valid. */
12656 /* If x1 is identical to a subexpression of x0 then
12657 while checking x0, x1 has already been checked. Thus
12658 it is valid and so as x. */
12659 if (ARITHMETIC_P (x0
)
12660 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
12663 /* If x0 is identical to a subexpression of x1 then x is
12664 valid iff the rest of x1 is valid. */
12665 if (ARITHMETIC_P (x1
)
12666 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
12668 get_last_value_validate (&XEXP (x1
,
12669 x0
== XEXP (x1
, 0) ? 1 : 0),
12670 insn
, tick
, replace
);
12673 if (get_last_value_validate (&XEXP (x
, i
), insn
, tick
,
12677 else if (fmt
[i
] == 'E')
12678 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12679 if (get_last_value_validate (&XVECEXP (x
, i
, j
),
12680 insn
, tick
, replace
) == 0)
12684 /* If we haven't found a reason for it to be invalid, it is valid. */
12688 /* Get the last value assigned to X, if known. Some registers
12689 in the value may be replaced with (clobber (const_int 0)) if their value
12690 is known longer known reliably. */
12693 get_last_value (const_rtx x
)
12695 unsigned int regno
;
12697 reg_stat_type
*rsp
;
12699 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12700 then convert it to the desired mode. If this is a paradoxical SUBREG,
12701 we cannot predict what values the "extra" bits might have. */
12702 if (GET_CODE (x
) == SUBREG
12703 && subreg_lowpart_p (x
)
12704 && !paradoxical_subreg_p (x
)
12705 && (value
= get_last_value (SUBREG_REG (x
))) != 0)
12706 return gen_lowpart (GET_MODE (x
), value
);
12712 rsp
= ®_stat
[regno
];
12713 value
= rsp
->last_set_value
;
12715 /* If we don't have a value, or if it isn't for this basic block and
12716 it's either a hard register, set more than once, or it's a live
12717 at the beginning of the function, return 0.
12719 Because if it's not live at the beginning of the function then the reg
12720 is always set before being used (is never used without being set).
12721 And, if it's set only once, and it's always set before use, then all
12722 uses must have the same last value, even if it's not from this basic
12726 || (rsp
->last_set_label
< label_tick_ebb_start
12727 && (regno
< FIRST_PSEUDO_REGISTER
12728 || REG_N_SETS (regno
) != 1
12730 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
), regno
))))
12733 /* If the value was set in a later insn than the ones we are processing,
12734 we can't use it even if the register was only set once. */
12735 if (rsp
->last_set_label
== label_tick
12736 && DF_INSN_LUID (rsp
->last_set
) >= subst_low_luid
)
12739 /* If the value has all its registers valid, return it. */
12740 if (get_last_value_validate (&value
, rsp
->last_set
, rsp
->last_set_label
, 0))
12743 /* Otherwise, make a copy and replace any invalid register with
12744 (clobber (const_int 0)). If that fails for some reason, return 0. */
12746 value
= copy_rtx (value
);
12747 if (get_last_value_validate (&value
, rsp
->last_set
, rsp
->last_set_label
, 1))
12753 /* Return nonzero if expression X refers to a REG or to memory
12754 that is set in an instruction more recent than FROM_LUID. */
12757 use_crosses_set_p (const_rtx x
, int from_luid
)
12761 enum rtx_code code
= GET_CODE (x
);
12765 unsigned int regno
= REGNO (x
);
12766 unsigned endreg
= END_REGNO (x
);
12768 #ifdef PUSH_ROUNDING
12769 /* Don't allow uses of the stack pointer to be moved,
12770 because we don't know whether the move crosses a push insn. */
12771 if (regno
== STACK_POINTER_REGNUM
&& PUSH_ARGS
)
12774 for (; regno
< endreg
; regno
++)
12776 reg_stat_type
*rsp
= ®_stat
[regno
];
12778 && rsp
->last_set_label
== label_tick
12779 && DF_INSN_LUID (rsp
->last_set
) > from_luid
)
12785 if (code
== MEM
&& mem_last_set
> from_luid
)
12788 fmt
= GET_RTX_FORMAT (code
);
12790 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12795 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
12796 if (use_crosses_set_p (XVECEXP (x
, i
, j
), from_luid
))
12799 else if (fmt
[i
] == 'e'
12800 && use_crosses_set_p (XEXP (x
, i
), from_luid
))
12806 /* Define three variables used for communication between the following
12809 static unsigned int reg_dead_regno
, reg_dead_endregno
;
12810 static int reg_dead_flag
;
12812 /* Function called via note_stores from reg_dead_at_p.
12814 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12815 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12818 reg_dead_at_p_1 (rtx dest
, const_rtx x
, void *data ATTRIBUTE_UNUSED
)
12820 unsigned int regno
, endregno
;
12825 regno
= REGNO (dest
);
12826 endregno
= END_REGNO (dest
);
12827 if (reg_dead_endregno
> regno
&& reg_dead_regno
< endregno
)
12828 reg_dead_flag
= (GET_CODE (x
) == CLOBBER
) ? 1 : -1;
12831 /* Return nonzero if REG is known to be dead at INSN.
12833 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12834 referencing REG, it is dead. If we hit a SET referencing REG, it is
12835 live. Otherwise, see if it is live or dead at the start of the basic
12836 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12837 must be assumed to be always live. */
12840 reg_dead_at_p (rtx reg
, rtx insn
)
12845 /* Set variables for reg_dead_at_p_1. */
12846 reg_dead_regno
= REGNO (reg
);
12847 reg_dead_endregno
= END_REGNO (reg
);
12851 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12852 we allow the machine description to decide whether use-and-clobber
12853 patterns are OK. */
12854 if (reg_dead_regno
< FIRST_PSEUDO_REGISTER
)
12856 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
12857 if (!fixed_regs
[i
] && TEST_HARD_REG_BIT (newpat_used_regs
, i
))
12861 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12862 beginning of basic block. */
12863 block
= BLOCK_FOR_INSN (insn
);
12868 note_stores (PATTERN (insn
), reg_dead_at_p_1
, NULL
);
12870 return reg_dead_flag
== 1 ? 1 : 0;
12872 if (find_regno_note (insn
, REG_DEAD
, reg_dead_regno
))
12876 if (insn
== BB_HEAD (block
))
12879 insn
= PREV_INSN (insn
);
12882 /* Look at live-in sets for the basic block that we were in. */
12883 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
12884 if (REGNO_REG_SET_P (df_get_live_in (block
), i
))
12890 /* Note hard registers in X that are used. */
12893 mark_used_regs_combine (rtx x
)
12895 RTX_CODE code
= GET_CODE (x
);
12896 unsigned int regno
;
12907 case ADDR_DIFF_VEC
:
12910 /* CC0 must die in the insn after it is set, so we don't need to take
12911 special note of it here. */
12917 /* If we are clobbering a MEM, mark any hard registers inside the
12918 address as used. */
12919 if (MEM_P (XEXP (x
, 0)))
12920 mark_used_regs_combine (XEXP (XEXP (x
, 0), 0));
12925 /* A hard reg in a wide mode may really be multiple registers.
12926 If so, mark all of them just like the first. */
12927 if (regno
< FIRST_PSEUDO_REGISTER
)
12929 /* None of this applies to the stack, frame or arg pointers. */
12930 if (regno
== STACK_POINTER_REGNUM
12931 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12932 || regno
== HARD_FRAME_POINTER_REGNUM
12934 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12935 || (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
12937 || regno
== FRAME_POINTER_REGNUM
)
12940 add_to_hard_reg_set (&newpat_used_regs
, GET_MODE (x
), regno
);
12946 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12948 rtx testreg
= SET_DEST (x
);
12950 while (GET_CODE (testreg
) == SUBREG
12951 || GET_CODE (testreg
) == ZERO_EXTRACT
12952 || GET_CODE (testreg
) == STRICT_LOW_PART
)
12953 testreg
= XEXP (testreg
, 0);
12955 if (MEM_P (testreg
))
12956 mark_used_regs_combine (XEXP (testreg
, 0));
12958 mark_used_regs_combine (SET_SRC (x
));
12966 /* Recursively scan the operands of this expression. */
12969 const char *fmt
= GET_RTX_FORMAT (code
);
12971 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12974 mark_used_regs_combine (XEXP (x
, i
));
12975 else if (fmt
[i
] == 'E')
12979 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12980 mark_used_regs_combine (XVECEXP (x
, i
, j
));
12986 /* Remove register number REGNO from the dead registers list of INSN.
12988 Return the note used to record the death, if there was one. */
12991 remove_death (unsigned int regno
, rtx insn
)
12993 rtx note
= find_regno_note (insn
, REG_DEAD
, regno
);
12996 remove_note (insn
, note
);
13001 /* For each register (hardware or pseudo) used within expression X, if its
13002 death is in an instruction with luid between FROM_LUID (inclusive) and
13003 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13004 list headed by PNOTES.
13006 That said, don't move registers killed by maybe_kill_insn.
13008 This is done when X is being merged by combination into TO_INSN. These
13009 notes will then be distributed as needed. */
13012 move_deaths (rtx x
, rtx maybe_kill_insn
, int from_luid
, rtx to_insn
,
13017 enum rtx_code code
= GET_CODE (x
);
13021 unsigned int regno
= REGNO (x
);
13022 rtx where_dead
= reg_stat
[regno
].last_death
;
13024 /* Don't move the register if it gets killed in between from and to. */
13025 if (maybe_kill_insn
&& reg_set_p (x
, maybe_kill_insn
)
13026 && ! reg_referenced_p (x
, maybe_kill_insn
))
13030 && BLOCK_FOR_INSN (where_dead
) == BLOCK_FOR_INSN (to_insn
)
13031 && DF_INSN_LUID (where_dead
) >= from_luid
13032 && DF_INSN_LUID (where_dead
) < DF_INSN_LUID (to_insn
))
13034 rtx note
= remove_death (regno
, where_dead
);
13036 /* It is possible for the call above to return 0. This can occur
13037 when last_death points to I2 or I1 that we combined with.
13038 In that case make a new note.
13040 We must also check for the case where X is a hard register
13041 and NOTE is a death note for a range of hard registers
13042 including X. In that case, we must put REG_DEAD notes for
13043 the remaining registers in place of NOTE. */
13045 if (note
!= 0 && regno
< FIRST_PSEUDO_REGISTER
13046 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
13047 > GET_MODE_SIZE (GET_MODE (x
))))
13049 unsigned int deadregno
= REGNO (XEXP (note
, 0));
13050 unsigned int deadend
= END_HARD_REGNO (XEXP (note
, 0));
13051 unsigned int ourend
= END_HARD_REGNO (x
);
13054 for (i
= deadregno
; i
< deadend
; i
++)
13055 if (i
< regno
|| i
>= ourend
)
13056 add_reg_note (where_dead
, REG_DEAD
, regno_reg_rtx
[i
]);
13059 /* If we didn't find any note, or if we found a REG_DEAD note that
13060 covers only part of the given reg, and we have a multi-reg hard
13061 register, then to be safe we must check for REG_DEAD notes
13062 for each register other than the first. They could have
13063 their own REG_DEAD notes lying around. */
13064 else if ((note
== 0
13066 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
13067 < GET_MODE_SIZE (GET_MODE (x
)))))
13068 && regno
< FIRST_PSEUDO_REGISTER
13069 && hard_regno_nregs
[regno
][GET_MODE (x
)] > 1)
13071 unsigned int ourend
= END_HARD_REGNO (x
);
13072 unsigned int i
, offset
;
13076 offset
= hard_regno_nregs
[regno
][GET_MODE (XEXP (note
, 0))];
13080 for (i
= regno
+ offset
; i
< ourend
; i
++)
13081 move_deaths (regno_reg_rtx
[i
],
13082 maybe_kill_insn
, from_luid
, to_insn
, &oldnotes
);
13085 if (note
!= 0 && GET_MODE (XEXP (note
, 0)) == GET_MODE (x
))
13087 XEXP (note
, 1) = *pnotes
;
13091 *pnotes
= alloc_reg_note (REG_DEAD
, x
, *pnotes
);
13097 else if (GET_CODE (x
) == SET
)
13099 rtx dest
= SET_DEST (x
);
13101 move_deaths (SET_SRC (x
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
13103 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13104 that accesses one word of a multi-word item, some
13105 piece of everything register in the expression is used by
13106 this insn, so remove any old death. */
13107 /* ??? So why do we test for equality of the sizes? */
13109 if (GET_CODE (dest
) == ZERO_EXTRACT
13110 || GET_CODE (dest
) == STRICT_LOW_PART
13111 || (GET_CODE (dest
) == SUBREG
13112 && (((GET_MODE_SIZE (GET_MODE (dest
))
13113 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
13114 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
13115 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
))))
13117 move_deaths (dest
, maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
13121 /* If this is some other SUBREG, we know it replaces the entire
13122 value, so use that as the destination. */
13123 if (GET_CODE (dest
) == SUBREG
)
13124 dest
= SUBREG_REG (dest
);
13126 /* If this is a MEM, adjust deaths of anything used in the address.
13127 For a REG (the only other possibility), the entire value is
13128 being replaced so the old value is not used in this insn. */
13131 move_deaths (XEXP (dest
, 0), maybe_kill_insn
, from_luid
,
13136 else if (GET_CODE (x
) == CLOBBER
)
13139 len
= GET_RTX_LENGTH (code
);
13140 fmt
= GET_RTX_FORMAT (code
);
13142 for (i
= 0; i
< len
; i
++)
13147 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
13148 move_deaths (XVECEXP (x
, i
, j
), maybe_kill_insn
, from_luid
,
13151 else if (fmt
[i
] == 'e')
13152 move_deaths (XEXP (x
, i
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
13156 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13157 pattern of an insn. X must be a REG. */
13160 reg_bitfield_target_p (rtx x
, rtx body
)
13164 if (GET_CODE (body
) == SET
)
13166 rtx dest
= SET_DEST (body
);
13168 unsigned int regno
, tregno
, endregno
, endtregno
;
13170 if (GET_CODE (dest
) == ZERO_EXTRACT
)
13171 target
= XEXP (dest
, 0);
13172 else if (GET_CODE (dest
) == STRICT_LOW_PART
)
13173 target
= SUBREG_REG (XEXP (dest
, 0));
13177 if (GET_CODE (target
) == SUBREG
)
13178 target
= SUBREG_REG (target
);
13180 if (!REG_P (target
))
13183 tregno
= REGNO (target
), regno
= REGNO (x
);
13184 if (tregno
>= FIRST_PSEUDO_REGISTER
|| regno
>= FIRST_PSEUDO_REGISTER
)
13185 return target
== x
;
13187 endtregno
= end_hard_regno (GET_MODE (target
), tregno
);
13188 endregno
= end_hard_regno (GET_MODE (x
), regno
);
13190 return endregno
> tregno
&& regno
< endtregno
;
13193 else if (GET_CODE (body
) == PARALLEL
)
13194 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
13195 if (reg_bitfield_target_p (x
, XVECEXP (body
, 0, i
)))
13201 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13202 as appropriate. I3 and I2 are the insns resulting from the combination
13203 insns including FROM (I2 may be zero).
13205 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13206 not need REG_DEAD notes because they are being substituted for. This
13207 saves searching in the most common cases.
13209 Each note in the list is either ignored or placed on some insns, depending
13210 on the type of note. */
13213 distribute_notes (rtx notes
, rtx from_insn
, rtx i3
, rtx i2
, rtx elim_i2
,
13214 rtx elim_i1
, rtx elim_i0
)
13216 rtx note
, next_note
;
13219 for (note
= notes
; note
; note
= next_note
)
13221 rtx place
= 0, place2
= 0;
13223 next_note
= XEXP (note
, 1);
13224 switch (REG_NOTE_KIND (note
))
13228 /* Doesn't matter much where we put this, as long as it's somewhere.
13229 It is preferable to keep these notes on branches, which is most
13230 likely to be i3. */
13234 case REG_NON_LOCAL_GOTO
:
13239 gcc_assert (i2
&& JUMP_P (i2
));
13244 case REG_EH_REGION
:
13245 /* These notes must remain with the call or trapping instruction. */
13248 else if (i2
&& CALL_P (i2
))
13252 gcc_assert (cfun
->can_throw_non_call_exceptions
);
13253 if (may_trap_p (i3
))
13255 else if (i2
&& may_trap_p (i2
))
13257 /* ??? Otherwise assume we've combined things such that we
13258 can now prove that the instructions can't trap. Drop the
13259 note in this case. */
13263 case REG_ARGS_SIZE
:
13264 /* ??? How to distribute between i3-i1. Assume i3 contains the
13265 entire adjustment. Assert i3 contains at least some adjust. */
13266 if (!noop_move_p (i3
))
13268 int old_size
, args_size
= INTVAL (XEXP (note
, 0));
13269 /* fixup_args_size_notes looks at REG_NORETURN note,
13270 so ensure the note is placed there first. */
13274 for (np
= &next_note
; *np
; np
= &XEXP (*np
, 1))
13275 if (REG_NOTE_KIND (*np
) == REG_NORETURN
)
13279 XEXP (n
, 1) = REG_NOTES (i3
);
13280 REG_NOTES (i3
) = n
;
13284 old_size
= fixup_args_size_notes (PREV_INSN (i3
), i3
, args_size
);
13285 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13286 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13287 gcc_assert (old_size
!= args_size
13289 && !ACCUMULATE_OUTGOING_ARGS
13290 && find_reg_note (i3
, REG_NORETURN
, NULL_RTX
)));
13297 case REG_CALL_DECL
:
13298 /* These notes must remain with the call. It should not be
13299 possible for both I2 and I3 to be a call. */
13304 gcc_assert (i2
&& CALL_P (i2
));
13310 /* Any clobbers for i3 may still exist, and so we must process
13311 REG_UNUSED notes from that insn.
13313 Any clobbers from i2 or i1 can only exist if they were added by
13314 recog_for_combine. In that case, recog_for_combine created the
13315 necessary REG_UNUSED notes. Trying to keep any original
13316 REG_UNUSED notes from these insns can cause incorrect output
13317 if it is for the same register as the original i3 dest.
13318 In that case, we will notice that the register is set in i3,
13319 and then add a REG_UNUSED note for the destination of i3, which
13320 is wrong. However, it is possible to have REG_UNUSED notes from
13321 i2 or i1 for register which were both used and clobbered, so
13322 we keep notes from i2 or i1 if they will turn into REG_DEAD
13325 /* If this register is set or clobbered in I3, put the note there
13326 unless there is one already. */
13327 if (reg_set_p (XEXP (note
, 0), PATTERN (i3
)))
13329 if (from_insn
!= i3
)
13332 if (! (REG_P (XEXP (note
, 0))
13333 ? find_regno_note (i3
, REG_UNUSED
, REGNO (XEXP (note
, 0)))
13334 : find_reg_note (i3
, REG_UNUSED
, XEXP (note
, 0))))
13337 /* Otherwise, if this register is used by I3, then this register
13338 now dies here, so we must put a REG_DEAD note here unless there
13340 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
))
13341 && ! (REG_P (XEXP (note
, 0))
13342 ? find_regno_note (i3
, REG_DEAD
,
13343 REGNO (XEXP (note
, 0)))
13344 : find_reg_note (i3
, REG_DEAD
, XEXP (note
, 0))))
13346 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
13354 /* These notes say something about results of an insn. We can
13355 only support them if they used to be on I3 in which case they
13356 remain on I3. Otherwise they are ignored.
13358 If the note refers to an expression that is not a constant, we
13359 must also ignore the note since we cannot tell whether the
13360 equivalence is still true. It might be possible to do
13361 slightly better than this (we only have a problem if I2DEST
13362 or I1DEST is present in the expression), but it doesn't
13363 seem worth the trouble. */
13365 if (from_insn
== i3
13366 && (XEXP (note
, 0) == 0 || CONSTANT_P (XEXP (note
, 0))))
13371 /* These notes say something about how a register is used. They must
13372 be present on any use of the register in I2 or I3. */
13373 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
)))
13376 if (i2
&& reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
)))
13385 case REG_LABEL_TARGET
:
13386 case REG_LABEL_OPERAND
:
13387 /* This can show up in several ways -- either directly in the
13388 pattern, or hidden off in the constant pool with (or without?)
13389 a REG_EQUAL note. */
13390 /* ??? Ignore the without-reg_equal-note problem for now. */
13391 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
))
13392 || ((tem
= find_reg_note (i3
, REG_EQUAL
, NULL_RTX
))
13393 && GET_CODE (XEXP (tem
, 0)) == LABEL_REF
13394 && XEXP (XEXP (tem
, 0), 0) == XEXP (note
, 0)))
13398 && (reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
))
13399 || ((tem
= find_reg_note (i2
, REG_EQUAL
, NULL_RTX
))
13400 && GET_CODE (XEXP (tem
, 0)) == LABEL_REF
13401 && XEXP (XEXP (tem
, 0), 0) == XEXP (note
, 0))))
13409 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13410 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13412 if (place
&& JUMP_P (place
)
13413 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
13414 && (JUMP_LABEL (place
) == NULL
13415 || JUMP_LABEL (place
) == XEXP (note
, 0)))
13417 rtx label
= JUMP_LABEL (place
);
13420 JUMP_LABEL (place
) = XEXP (note
, 0);
13421 else if (LABEL_P (label
))
13422 LABEL_NUSES (label
)--;
13425 if (place2
&& JUMP_P (place2
)
13426 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
13427 && (JUMP_LABEL (place2
) == NULL
13428 || JUMP_LABEL (place2
) == XEXP (note
, 0)))
13430 rtx label
= JUMP_LABEL (place2
);
13433 JUMP_LABEL (place2
) = XEXP (note
, 0);
13434 else if (LABEL_P (label
))
13435 LABEL_NUSES (label
)--;
13441 /* This note says something about the value of a register prior
13442 to the execution of an insn. It is too much trouble to see
13443 if the note is still correct in all situations. It is better
13444 to simply delete it. */
13448 /* If we replaced the right hand side of FROM_INSN with a
13449 REG_EQUAL note, the original use of the dying register
13450 will not have been combined into I3 and I2. In such cases,
13451 FROM_INSN is guaranteed to be the first of the combined
13452 instructions, so we simply need to search back before
13453 FROM_INSN for the previous use or set of this register,
13454 then alter the notes there appropriately.
13456 If the register is used as an input in I3, it dies there.
13457 Similarly for I2, if it is nonzero and adjacent to I3.
13459 If the register is not used as an input in either I3 or I2
13460 and it is not one of the registers we were supposed to eliminate,
13461 there are two possibilities. We might have a non-adjacent I2
13462 or we might have somehow eliminated an additional register
13463 from a computation. For example, we might have had A & B where
13464 we discover that B will always be zero. In this case we will
13465 eliminate the reference to A.
13467 In both cases, we must search to see if we can find a previous
13468 use of A and put the death note there. */
13471 && from_insn
== i2mod
13472 && !reg_overlap_mentioned_p (XEXP (note
, 0), i2mod_new_rhs
))
13477 && CALL_P (from_insn
)
13478 && find_reg_fusage (from_insn
, USE
, XEXP (note
, 0)))
13480 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
)))
13482 else if (i2
!= 0 && next_nonnote_nondebug_insn (i2
) == i3
13483 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
13485 else if ((rtx_equal_p (XEXP (note
, 0), elim_i2
)
13487 && reg_overlap_mentioned_p (XEXP (note
, 0),
13489 || rtx_equal_p (XEXP (note
, 0), elim_i1
)
13490 || rtx_equal_p (XEXP (note
, 0), elim_i0
))
13497 basic_block bb
= this_basic_block
;
13499 for (tem
= PREV_INSN (tem
); place
== 0; tem
= PREV_INSN (tem
))
13501 if (!NONDEBUG_INSN_P (tem
))
13503 if (tem
== BB_HEAD (bb
))
13508 /* If the register is being set at TEM, see if that is all
13509 TEM is doing. If so, delete TEM. Otherwise, make this
13510 into a REG_UNUSED note instead. Don't delete sets to
13511 global register vars. */
13512 if ((REGNO (XEXP (note
, 0)) >= FIRST_PSEUDO_REGISTER
13513 || !global_regs
[REGNO (XEXP (note
, 0))])
13514 && reg_set_p (XEXP (note
, 0), PATTERN (tem
)))
13516 rtx set
= single_set (tem
);
13517 rtx inner_dest
= 0;
13519 rtx cc0_setter
= NULL_RTX
;
13523 for (inner_dest
= SET_DEST (set
);
13524 (GET_CODE (inner_dest
) == STRICT_LOW_PART
13525 || GET_CODE (inner_dest
) == SUBREG
13526 || GET_CODE (inner_dest
) == ZERO_EXTRACT
);
13527 inner_dest
= XEXP (inner_dest
, 0))
13530 /* Verify that it was the set, and not a clobber that
13531 modified the register.
13533 CC0 targets must be careful to maintain setter/user
13534 pairs. If we cannot delete the setter due to side
13535 effects, mark the user with an UNUSED note instead
13538 if (set
!= 0 && ! side_effects_p (SET_SRC (set
))
13539 && rtx_equal_p (XEXP (note
, 0), inner_dest
)
13541 && (! reg_mentioned_p (cc0_rtx
, SET_SRC (set
))
13542 || ((cc0_setter
= prev_cc0_setter (tem
)) != NULL
13543 && sets_cc0_p (PATTERN (cc0_setter
)) > 0))
13547 /* Move the notes and links of TEM elsewhere.
13548 This might delete other dead insns recursively.
13549 First set the pattern to something that won't use
13551 rtx old_notes
= REG_NOTES (tem
);
13553 PATTERN (tem
) = pc_rtx
;
13554 REG_NOTES (tem
) = NULL
;
13556 distribute_notes (old_notes
, tem
, tem
, NULL_RTX
,
13557 NULL_RTX
, NULL_RTX
, NULL_RTX
);
13558 distribute_links (LOG_LINKS (tem
));
13560 SET_INSN_DELETED (tem
);
13565 /* Delete the setter too. */
13568 PATTERN (cc0_setter
) = pc_rtx
;
13569 old_notes
= REG_NOTES (cc0_setter
);
13570 REG_NOTES (cc0_setter
) = NULL
;
13572 distribute_notes (old_notes
, cc0_setter
,
13573 cc0_setter
, NULL_RTX
,
13574 NULL_RTX
, NULL_RTX
, NULL_RTX
);
13575 distribute_links (LOG_LINKS (cc0_setter
));
13577 SET_INSN_DELETED (cc0_setter
);
13578 if (cc0_setter
== i2
)
13585 PUT_REG_NOTE_KIND (note
, REG_UNUSED
);
13587 /* If there isn't already a REG_UNUSED note, put one
13588 here. Do not place a REG_DEAD note, even if
13589 the register is also used here; that would not
13590 match the algorithm used in lifetime analysis
13591 and can cause the consistency check in the
13592 scheduler to fail. */
13593 if (! find_regno_note (tem
, REG_UNUSED
,
13594 REGNO (XEXP (note
, 0))))
13599 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (tem
))
13601 && find_reg_fusage (tem
, USE
, XEXP (note
, 0))))
13605 /* If we are doing a 3->2 combination, and we have a
13606 register which formerly died in i3 and was not used
13607 by i2, which now no longer dies in i3 and is used in
13608 i2 but does not die in i2, and place is between i2
13609 and i3, then we may need to move a link from place to
13611 if (i2
&& DF_INSN_LUID (place
) > DF_INSN_LUID (i2
)
13613 && DF_INSN_LUID (from_insn
) > DF_INSN_LUID (i2
)
13614 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
13616 struct insn_link
*links
= LOG_LINKS (place
);
13617 LOG_LINKS (place
) = NULL
;
13618 distribute_links (links
);
13623 if (tem
== BB_HEAD (bb
))
13629 /* If the register is set or already dead at PLACE, we needn't do
13630 anything with this note if it is still a REG_DEAD note.
13631 We check here if it is set at all, not if is it totally replaced,
13632 which is what `dead_or_set_p' checks, so also check for it being
13635 if (place
&& REG_NOTE_KIND (note
) == REG_DEAD
)
13637 unsigned int regno
= REGNO (XEXP (note
, 0));
13638 reg_stat_type
*rsp
= ®_stat
[regno
];
13640 if (dead_or_set_p (place
, XEXP (note
, 0))
13641 || reg_bitfield_target_p (XEXP (note
, 0), PATTERN (place
)))
13643 /* Unless the register previously died in PLACE, clear
13644 last_death. [I no longer understand why this is
13646 if (rsp
->last_death
!= place
)
13647 rsp
->last_death
= 0;
13651 rsp
->last_death
= place
;
13653 /* If this is a death note for a hard reg that is occupying
13654 multiple registers, ensure that we are still using all
13655 parts of the object. If we find a piece of the object
13656 that is unused, we must arrange for an appropriate REG_DEAD
13657 note to be added for it. However, we can't just emit a USE
13658 and tag the note to it, since the register might actually
13659 be dead; so we recourse, and the recursive call then finds
13660 the previous insn that used this register. */
13662 if (place
&& regno
< FIRST_PSEUDO_REGISTER
13663 && hard_regno_nregs
[regno
][GET_MODE (XEXP (note
, 0))] > 1)
13665 unsigned int endregno
= END_HARD_REGNO (XEXP (note
, 0));
13666 bool all_used
= true;
13669 for (i
= regno
; i
< endregno
; i
++)
13670 if ((! refers_to_regno_p (i
, i
+ 1, PATTERN (place
), 0)
13671 && ! find_regno_fusage (place
, USE
, i
))
13672 || dead_or_set_regno_p (place
, i
))
13680 /* Put only REG_DEAD notes for pieces that are
13681 not already dead or set. */
13683 for (i
= regno
; i
< endregno
;
13684 i
+= hard_regno_nregs
[i
][reg_raw_mode
[i
]])
13686 rtx piece
= regno_reg_rtx
[i
];
13687 basic_block bb
= this_basic_block
;
13689 if (! dead_or_set_p (place
, piece
)
13690 && ! reg_bitfield_target_p (piece
,
13693 rtx new_note
= alloc_reg_note (REG_DEAD
, piece
,
13696 distribute_notes (new_note
, place
, place
,
13697 NULL_RTX
, NULL_RTX
, NULL_RTX
,
13700 else if (! refers_to_regno_p (i
, i
+ 1,
13701 PATTERN (place
), 0)
13702 && ! find_regno_fusage (place
, USE
, i
))
13703 for (tem
= PREV_INSN (place
); ;
13704 tem
= PREV_INSN (tem
))
13706 if (!NONDEBUG_INSN_P (tem
))
13708 if (tem
== BB_HEAD (bb
))
13712 if (dead_or_set_p (tem
, piece
)
13713 || reg_bitfield_target_p (piece
,
13716 add_reg_note (tem
, REG_UNUSED
, piece
);
13729 /* Any other notes should not be present at this point in the
13731 gcc_unreachable ();
13736 XEXP (note
, 1) = REG_NOTES (place
);
13737 REG_NOTES (place
) = note
;
13741 add_shallow_copy_of_reg_note (place2
, note
);
13745 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13746 I3, I2, and I1 to new locations. This is also called to add a link
13747 pointing at I3 when I3's destination is changed. */
13750 distribute_links (struct insn_link
*links
)
13752 struct insn_link
*link
, *next_link
;
13754 for (link
= links
; link
; link
= next_link
)
13760 next_link
= link
->next
;
13762 /* If the insn that this link points to is a NOTE or isn't a single
13763 set, ignore it. In the latter case, it isn't clear what we
13764 can do other than ignore the link, since we can't tell which
13765 register it was for. Such links wouldn't be used by combine
13768 It is not possible for the destination of the target of the link to
13769 have been changed by combine. The only potential of this is if we
13770 replace I3, I2, and I1 by I3 and I2. But in that case the
13771 destination of I2 also remains unchanged. */
13773 if (NOTE_P (link
->insn
)
13774 || (set
= single_set (link
->insn
)) == 0)
13777 reg
= SET_DEST (set
);
13778 while (GET_CODE (reg
) == SUBREG
|| GET_CODE (reg
) == ZERO_EXTRACT
13779 || GET_CODE (reg
) == STRICT_LOW_PART
)
13780 reg
= XEXP (reg
, 0);
13782 /* A LOG_LINK is defined as being placed on the first insn that uses
13783 a register and points to the insn that sets the register. Start
13784 searching at the next insn after the target of the link and stop
13785 when we reach a set of the register or the end of the basic block.
13787 Note that this correctly handles the link that used to point from
13788 I3 to I2. Also note that not much searching is typically done here
13789 since most links don't point very far away. */
13791 for (insn
= NEXT_INSN (link
->insn
);
13792 (insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
13793 || BB_HEAD (this_basic_block
->next_bb
) != insn
));
13794 insn
= NEXT_INSN (insn
))
13795 if (DEBUG_INSN_P (insn
))
13797 else if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
13799 if (reg_referenced_p (reg
, PATTERN (insn
)))
13803 else if (CALL_P (insn
)
13804 && find_reg_fusage (insn
, USE
, reg
))
13809 else if (INSN_P (insn
) && reg_set_p (reg
, insn
))
13812 /* If we found a place to put the link, place it there unless there
13813 is already a link to the same insn as LINK at that point. */
13817 struct insn_link
*link2
;
13819 FOR_EACH_LOG_LINK (link2
, place
)
13820 if (link2
->insn
== link
->insn
)
13825 link
->next
= LOG_LINKS (place
);
13826 LOG_LINKS (place
) = link
;
13828 /* Set added_links_insn to the earliest insn we added a
13830 if (added_links_insn
== 0
13831 || DF_INSN_LUID (added_links_insn
) > DF_INSN_LUID (place
))
13832 added_links_insn
= place
;
13838 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
13839 Check whether the expression pointer to by LOC is a register or
13840 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
13841 Otherwise return zero. */
13844 unmentioned_reg_p_1 (rtx
*loc
, void *expr
)
13849 && (REG_P (x
) || MEM_P (x
))
13850 && ! reg_mentioned_p (x
, (rtx
) expr
))
13855 /* Check for any register or memory mentioned in EQUIV that is not
13856 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13857 of EXPR where some registers may have been replaced by constants. */
13860 unmentioned_reg_p (rtx equiv
, rtx expr
)
13862 return for_each_rtx (&equiv
, unmentioned_reg_p_1
, expr
);
13865 DEBUG_FUNCTION
void
13866 dump_combine_stats (FILE *file
)
13870 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13871 combine_attempts
, combine_merges
, combine_extras
, combine_successes
);
13875 dump_combine_total_stats (FILE *file
)
13879 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13880 total_attempts
, total_merges
, total_extras
, total_successes
);
13883 /* Try combining insns through substitution. */
13884 static unsigned int
13885 rest_of_handle_combine (void)
13887 int rebuild_jump_labels_after_combine
;
13889 df_set_flags (DF_LR_RUN_DCE
+ DF_DEFER_INSN_RESCAN
);
13890 df_note_add_problem ();
13893 regstat_init_n_sets_and_refs ();
13895 rebuild_jump_labels_after_combine
13896 = combine_instructions (get_insns (), max_reg_num ());
13898 /* Combining insns may have turned an indirect jump into a
13899 direct jump. Rebuild the JUMP_LABEL fields of jumping
13901 if (rebuild_jump_labels_after_combine
)
13903 timevar_push (TV_JUMP
);
13904 rebuild_jump_labels (get_insns ());
13906 timevar_pop (TV_JUMP
);
13909 regstat_free_n_sets_and_refs ();
13915 const pass_data pass_data_combine
=
13917 RTL_PASS
, /* type */
13918 "combine", /* name */
13919 OPTGROUP_NONE
, /* optinfo_flags */
13920 TV_COMBINE
, /* tv_id */
13921 PROP_cfglayout
, /* properties_required */
13922 0, /* properties_provided */
13923 0, /* properties_destroyed */
13924 0, /* todo_flags_start */
13925 TODO_df_finish
, /* todo_flags_finish */
13928 class pass_combine
: public rtl_opt_pass
13931 pass_combine (gcc::context
*ctxt
)
13932 : rtl_opt_pass (pass_data_combine
, ctxt
)
13935 /* opt_pass methods: */
13936 virtual bool gate (function
*) { return (optimize
> 0); }
13937 virtual unsigned int execute (function
*)
13939 return rest_of_handle_combine ();
13942 }; // class pass_combine
13944 } // anon namespace
13947 make_pass_combine (gcc::context
*ctxt
)
13949 return new pass_combine (ctxt
);