re PR target/82015 (PowerPC should check if 2nd argument to __builtin_unpackv1ti...
[official-gcc.git] / gcc / ada / sem_ch3.adb
blobfcbf86e8cc4bbbb4dc783068430e4b557e18cdf5
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Elists; use Elists;
32 with Einfo; use Einfo;
33 with Errout; use Errout;
34 with Eval_Fat; use Eval_Fat;
35 with Exp_Ch3; use Exp_Ch3;
36 with Exp_Ch9; use Exp_Ch9;
37 with Exp_Disp; use Exp_Disp;
38 with Exp_Dist; use Exp_Dist;
39 with Exp_Tss; use Exp_Tss;
40 with Exp_Util; use Exp_Util;
41 with Freeze; use Freeze;
42 with Ghost; use Ghost;
43 with Itypes; use Itypes;
44 with Layout; use Layout;
45 with Lib; use Lib;
46 with Lib.Xref; use Lib.Xref;
47 with Namet; use Namet;
48 with Nmake; use Nmake;
49 with Opt; use Opt;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Case; use Sem_Case;
56 with Sem_Cat; use Sem_Cat;
57 with Sem_Ch6; use Sem_Ch6;
58 with Sem_Ch7; use Sem_Ch7;
59 with Sem_Ch8; use Sem_Ch8;
60 with Sem_Ch13; use Sem_Ch13;
61 with Sem_Dim; use Sem_Dim;
62 with Sem_Disp; use Sem_Disp;
63 with Sem_Dist; use Sem_Dist;
64 with Sem_Elim; use Sem_Elim;
65 with Sem_Eval; use Sem_Eval;
66 with Sem_Mech; use Sem_Mech;
67 with Sem_Res; use Sem_Res;
68 with Sem_Smem; use Sem_Smem;
69 with Sem_Type; use Sem_Type;
70 with Sem_Util; use Sem_Util;
71 with Sem_Warn; use Sem_Warn;
72 with Stand; use Stand;
73 with Sinfo; use Sinfo;
74 with Sinput; use Sinput;
75 with Snames; use Snames;
76 with Targparm; use Targparm;
77 with Tbuild; use Tbuild;
78 with Ttypes; use Ttypes;
79 with Uintp; use Uintp;
80 with Urealp; use Urealp;
82 package body Sem_Ch3 is
84 -----------------------
85 -- Local Subprograms --
86 -----------------------
88 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id);
89 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
90 -- abstract interface types implemented by a record type or a derived
91 -- record type.
93 procedure Build_Derived_Type
94 (N : Node_Id;
95 Parent_Type : Entity_Id;
96 Derived_Type : Entity_Id;
97 Is_Completion : Boolean;
98 Derive_Subps : Boolean := True);
99 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
100 -- the N_Full_Type_Declaration node containing the derived type definition.
101 -- Parent_Type is the entity for the parent type in the derived type
102 -- definition and Derived_Type the actual derived type. Is_Completion must
103 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
104 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
105 -- completion of a private type declaration. If Is_Completion is set to
106 -- True, N is the completion of a private type declaration and Derived_Type
107 -- is different from the defining identifier inside N (i.e. Derived_Type /=
108 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
109 -- subprograms should be derived. The only case where this parameter is
110 -- False is when Build_Derived_Type is recursively called to process an
111 -- implicit derived full type for a type derived from a private type (in
112 -- that case the subprograms must only be derived for the private view of
113 -- the type).
115 -- ??? These flags need a bit of re-examination and re-documentation:
116 -- ??? are they both necessary (both seem related to the recursion)?
118 procedure Build_Derived_Access_Type
119 (N : Node_Id;
120 Parent_Type : Entity_Id;
121 Derived_Type : Entity_Id);
122 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
123 -- create an implicit base if the parent type is constrained or if the
124 -- subtype indication has a constraint.
126 procedure Build_Derived_Array_Type
127 (N : Node_Id;
128 Parent_Type : Entity_Id;
129 Derived_Type : Entity_Id);
130 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
131 -- create an implicit base if the parent type is constrained or if the
132 -- subtype indication has a constraint.
134 procedure Build_Derived_Concurrent_Type
135 (N : Node_Id;
136 Parent_Type : Entity_Id;
137 Derived_Type : Entity_Id);
138 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
139 -- protected type, inherit entries and protected subprograms, check
140 -- legality of discriminant constraints if any.
142 procedure Build_Derived_Enumeration_Type
143 (N : Node_Id;
144 Parent_Type : Entity_Id;
145 Derived_Type : Entity_Id);
146 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
147 -- type, we must create a new list of literals. Types derived from
148 -- Character and [Wide_]Wide_Character are special-cased.
150 procedure Build_Derived_Numeric_Type
151 (N : Node_Id;
152 Parent_Type : Entity_Id;
153 Derived_Type : Entity_Id);
154 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
155 -- an anonymous base type, and propagate constraint to subtype if needed.
157 procedure Build_Derived_Private_Type
158 (N : Node_Id;
159 Parent_Type : Entity_Id;
160 Derived_Type : Entity_Id;
161 Is_Completion : Boolean;
162 Derive_Subps : Boolean := True);
163 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
164 -- because the parent may or may not have a completion, and the derivation
165 -- may itself be a completion.
167 procedure Build_Derived_Record_Type
168 (N : Node_Id;
169 Parent_Type : Entity_Id;
170 Derived_Type : Entity_Id;
171 Derive_Subps : Boolean := True);
172 -- Subsidiary procedure used for tagged and untagged record types
173 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
174 -- All parameters are as in Build_Derived_Type except that N, in
175 -- addition to being an N_Full_Type_Declaration node, can also be an
176 -- N_Private_Extension_Declaration node. See the definition of this routine
177 -- for much more info. Derive_Subps indicates whether subprograms should be
178 -- derived from the parent type. The only case where Derive_Subps is False
179 -- is for an implicit derived full type for a type derived from a private
180 -- type (see Build_Derived_Type).
182 procedure Build_Discriminal (Discrim : Entity_Id);
183 -- Create the discriminal corresponding to discriminant Discrim, that is
184 -- the parameter corresponding to Discrim to be used in initialization
185 -- procedures for the type where Discrim is a discriminant. Discriminals
186 -- are not used during semantic analysis, and are not fully defined
187 -- entities until expansion. Thus they are not given a scope until
188 -- initialization procedures are built.
190 function Build_Discriminant_Constraints
191 (T : Entity_Id;
192 Def : Node_Id;
193 Derived_Def : Boolean := False) return Elist_Id;
194 -- Validate discriminant constraints and return the list of the constraints
195 -- in order of discriminant declarations, where T is the discriminated
196 -- unconstrained type. Def is the N_Subtype_Indication node where the
197 -- discriminants constraints for T are specified. Derived_Def is True
198 -- when building the discriminant constraints in a derived type definition
199 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
200 -- type and Def is the constraint "(xxx)" on T and this routine sets the
201 -- Corresponding_Discriminant field of the discriminants in the derived
202 -- type D to point to the corresponding discriminants in the parent type T.
204 procedure Build_Discriminated_Subtype
205 (T : Entity_Id;
206 Def_Id : Entity_Id;
207 Elist : Elist_Id;
208 Related_Nod : Node_Id;
209 For_Access : Boolean := False);
210 -- Subsidiary procedure to Constrain_Discriminated_Type and to
211 -- Process_Incomplete_Dependents. Given
213 -- T (a possibly discriminated base type)
214 -- Def_Id (a very partially built subtype for T),
216 -- the call completes Def_Id to be the appropriate E_*_Subtype.
218 -- The Elist is the list of discriminant constraints if any (it is set
219 -- to No_Elist if T is not a discriminated type, and to an empty list if
220 -- T has discriminants but there are no discriminant constraints). The
221 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
222 -- The For_Access says whether or not this subtype is really constraining
223 -- an access type. That is its sole purpose is the designated type of an
224 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
225 -- is built to avoid freezing T when the access subtype is frozen.
227 function Build_Scalar_Bound
228 (Bound : Node_Id;
229 Par_T : Entity_Id;
230 Der_T : Entity_Id) return Node_Id;
231 -- The bounds of a derived scalar type are conversions of the bounds of
232 -- the parent type. Optimize the representation if the bounds are literals.
233 -- Needs a more complete spec--what are the parameters exactly, and what
234 -- exactly is the returned value, and how is Bound affected???
236 procedure Build_Underlying_Full_View
237 (N : Node_Id;
238 Typ : Entity_Id;
239 Par : Entity_Id);
240 -- If the completion of a private type is itself derived from a private
241 -- type, or if the full view of a private subtype is itself private, the
242 -- back-end has no way to compute the actual size of this type. We build
243 -- an internal subtype declaration of the proper parent type to convey
244 -- this information. This extra mechanism is needed because a full
245 -- view cannot itself have a full view (it would get clobbered during
246 -- view exchanges).
248 procedure Check_Access_Discriminant_Requires_Limited
249 (D : Node_Id;
250 Loc : Node_Id);
251 -- Check the restriction that the type to which an access discriminant
252 -- belongs must be a concurrent type or a descendant of a type with
253 -- the reserved word 'limited' in its declaration.
255 procedure Check_Anonymous_Access_Components
256 (Typ_Decl : Node_Id;
257 Typ : Entity_Id;
258 Prev : Entity_Id;
259 Comp_List : Node_Id);
260 -- Ada 2005 AI-382: an access component in a record definition can refer to
261 -- the enclosing record, in which case it denotes the type itself, and not
262 -- the current instance of the type. We create an anonymous access type for
263 -- the component, and flag it as an access to a component, so accessibility
264 -- checks are properly performed on it. The declaration of the access type
265 -- is placed ahead of that of the record to prevent order-of-elaboration
266 -- circularity issues in Gigi. We create an incomplete type for the record
267 -- declaration, which is the designated type of the anonymous access.
269 procedure Check_Delta_Expression (E : Node_Id);
270 -- Check that the expression represented by E is suitable for use as a
271 -- delta expression, i.e. it is of real type and is static.
273 procedure Check_Digits_Expression (E : Node_Id);
274 -- Check that the expression represented by E is suitable for use as a
275 -- digits expression, i.e. it is of integer type, positive and static.
277 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
278 -- Validate the initialization of an object declaration. T is the required
279 -- type, and Exp is the initialization expression.
281 procedure Check_Interfaces (N : Node_Id; Def : Node_Id);
282 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
284 procedure Check_Or_Process_Discriminants
285 (N : Node_Id;
286 T : Entity_Id;
287 Prev : Entity_Id := Empty);
288 -- If N is the full declaration of the completion T of an incomplete or
289 -- private type, check its discriminants (which are already known to be
290 -- conformant with those of the partial view, see Find_Type_Name),
291 -- otherwise process them. Prev is the entity of the partial declaration,
292 -- if any.
294 procedure Check_Real_Bound (Bound : Node_Id);
295 -- Check given bound for being of real type and static. If not, post an
296 -- appropriate message, and rewrite the bound with the real literal zero.
298 procedure Constant_Redeclaration
299 (Id : Entity_Id;
300 N : Node_Id;
301 T : out Entity_Id);
302 -- Various checks on legality of full declaration of deferred constant.
303 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
304 -- node. The caller has not yet set any attributes of this entity.
306 function Contain_Interface
307 (Iface : Entity_Id;
308 Ifaces : Elist_Id) return Boolean;
309 -- Ada 2005: Determine whether Iface is present in the list Ifaces
311 procedure Convert_Scalar_Bounds
312 (N : Node_Id;
313 Parent_Type : Entity_Id;
314 Derived_Type : Entity_Id;
315 Loc : Source_Ptr);
316 -- For derived scalar types, convert the bounds in the type definition to
317 -- the derived type, and complete their analysis. Given a constraint of the
318 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
319 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
320 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
321 -- subtype are conversions of those bounds to the derived_type, so that
322 -- their typing is consistent.
324 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
325 -- Copies attributes from array base type T2 to array base type T1. Copies
326 -- only attributes that apply to base types, but not subtypes.
328 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
329 -- Copies attributes from array subtype T2 to array subtype T1. Copies
330 -- attributes that apply to both subtypes and base types.
332 procedure Create_Constrained_Components
333 (Subt : Entity_Id;
334 Decl_Node : Node_Id;
335 Typ : Entity_Id;
336 Constraints : Elist_Id);
337 -- Build the list of entities for a constrained discriminated record
338 -- subtype. If a component depends on a discriminant, replace its subtype
339 -- using the discriminant values in the discriminant constraint. Subt
340 -- is the defining identifier for the subtype whose list of constrained
341 -- entities we will create. Decl_Node is the type declaration node where
342 -- we will attach all the itypes created. Typ is the base discriminated
343 -- type for the subtype Subt. Constraints is the list of discriminant
344 -- constraints for Typ.
346 function Constrain_Component_Type
347 (Comp : Entity_Id;
348 Constrained_Typ : Entity_Id;
349 Related_Node : Node_Id;
350 Typ : Entity_Id;
351 Constraints : Elist_Id) return Entity_Id;
352 -- Given a discriminated base type Typ, a list of discriminant constraints,
353 -- Constraints, for Typ and a component Comp of Typ, create and return the
354 -- type corresponding to Etype (Comp) where all discriminant references
355 -- are replaced with the corresponding constraint. If Etype (Comp) contains
356 -- no discriminant references then it is returned as-is. Constrained_Typ
357 -- is the final constrained subtype to which the constrained component
358 -- belongs. Related_Node is the node where we attach all created itypes.
360 procedure Constrain_Access
361 (Def_Id : in out Entity_Id;
362 S : Node_Id;
363 Related_Nod : Node_Id);
364 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
365 -- an anonymous type created for a subtype indication. In that case it is
366 -- created in the procedure and attached to Related_Nod.
368 procedure Constrain_Array
369 (Def_Id : in out Entity_Id;
370 SI : Node_Id;
371 Related_Nod : Node_Id;
372 Related_Id : Entity_Id;
373 Suffix : Character);
374 -- Apply a list of index constraints to an unconstrained array type. The
375 -- first parameter is the entity for the resulting subtype. A value of
376 -- Empty for Def_Id indicates that an implicit type must be created, but
377 -- creation is delayed (and must be done by this procedure) because other
378 -- subsidiary implicit types must be created first (which is why Def_Id
379 -- is an in/out parameter). The second parameter is a subtype indication
380 -- node for the constrained array to be created (e.g. something of the
381 -- form string (1 .. 10)). Related_Nod gives the place where this type
382 -- has to be inserted in the tree. The Related_Id and Suffix parameters
383 -- are used to build the associated Implicit type name.
385 procedure Constrain_Concurrent
386 (Def_Id : in out Entity_Id;
387 SI : Node_Id;
388 Related_Nod : Node_Id;
389 Related_Id : Entity_Id;
390 Suffix : Character);
391 -- Apply list of discriminant constraints to an unconstrained concurrent
392 -- type.
394 -- SI is the N_Subtype_Indication node containing the constraint and
395 -- the unconstrained type to constrain.
397 -- Def_Id is the entity for the resulting constrained subtype. A value
398 -- of Empty for Def_Id indicates that an implicit type must be created,
399 -- but creation is delayed (and must be done by this procedure) because
400 -- other subsidiary implicit types must be created first (which is why
401 -- Def_Id is an in/out parameter).
403 -- Related_Nod gives the place where this type has to be inserted
404 -- in the tree.
406 -- The last two arguments are used to create its external name if needed.
408 function Constrain_Corresponding_Record
409 (Prot_Subt : Entity_Id;
410 Corr_Rec : Entity_Id;
411 Related_Nod : Node_Id) return Entity_Id;
412 -- When constraining a protected type or task type with discriminants,
413 -- constrain the corresponding record with the same discriminant values.
415 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
416 -- Constrain a decimal fixed point type with a digits constraint and/or a
417 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
419 procedure Constrain_Discriminated_Type
420 (Def_Id : Entity_Id;
421 S : Node_Id;
422 Related_Nod : Node_Id;
423 For_Access : Boolean := False);
424 -- Process discriminant constraints of composite type. Verify that values
425 -- have been provided for all discriminants, that the original type is
426 -- unconstrained, and that the types of the supplied expressions match
427 -- the discriminant types. The first three parameters are like in routine
428 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
429 -- of For_Access.
431 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
432 -- Constrain an enumeration type with a range constraint. This is identical
433 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
435 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
436 -- Constrain a floating point type with either a digits constraint
437 -- and/or a range constraint, building a E_Floating_Point_Subtype.
439 procedure Constrain_Index
440 (Index : Node_Id;
441 S : Node_Id;
442 Related_Nod : Node_Id;
443 Related_Id : Entity_Id;
444 Suffix : Character;
445 Suffix_Index : Nat);
446 -- Process an index constraint S in a constrained array declaration. The
447 -- constraint can be a subtype name, or a range with or without an explicit
448 -- subtype mark. The index is the corresponding index of the unconstrained
449 -- array. The Related_Id and Suffix parameters are used to build the
450 -- associated Implicit type name.
452 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
453 -- Build subtype of a signed or modular integer type
455 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
456 -- Constrain an ordinary fixed point type with a range constraint, and
457 -- build an E_Ordinary_Fixed_Point_Subtype entity.
459 procedure Copy_And_Swap (Priv, Full : Entity_Id);
460 -- Copy the Priv entity into the entity of its full declaration then swap
461 -- the two entities in such a manner that the former private type is now
462 -- seen as a full type.
464 procedure Decimal_Fixed_Point_Type_Declaration
465 (T : Entity_Id;
466 Def : Node_Id);
467 -- Create a new decimal fixed point type, and apply the constraint to
468 -- obtain a subtype of this new type.
470 procedure Complete_Private_Subtype
471 (Priv : Entity_Id;
472 Full : Entity_Id;
473 Full_Base : Entity_Id;
474 Related_Nod : Node_Id);
475 -- Complete the implicit full view of a private subtype by setting the
476 -- appropriate semantic fields. If the full view of the parent is a record
477 -- type, build constrained components of subtype.
479 procedure Derive_Progenitor_Subprograms
480 (Parent_Type : Entity_Id;
481 Tagged_Type : Entity_Id);
482 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
483 -- operations of progenitors of Tagged_Type, and replace the subsidiary
484 -- subtypes with Tagged_Type, to build the specs of the inherited interface
485 -- primitives. The derived primitives are aliased to those of the
486 -- interface. This routine takes care also of transferring to the full view
487 -- subprograms associated with the partial view of Tagged_Type that cover
488 -- interface primitives.
490 procedure Derived_Standard_Character
491 (N : Node_Id;
492 Parent_Type : Entity_Id;
493 Derived_Type : Entity_Id);
494 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
495 -- derivations from types Standard.Character and Standard.Wide_Character.
497 procedure Derived_Type_Declaration
498 (T : Entity_Id;
499 N : Node_Id;
500 Is_Completion : Boolean);
501 -- Process a derived type declaration. Build_Derived_Type is invoked
502 -- to process the actual derived type definition. Parameters N and
503 -- Is_Completion have the same meaning as in Build_Derived_Type.
504 -- T is the N_Defining_Identifier for the entity defined in the
505 -- N_Full_Type_Declaration node N, that is T is the derived type.
507 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
508 -- Insert each literal in symbol table, as an overloadable identifier. Each
509 -- enumeration type is mapped into a sequence of integers, and each literal
510 -- is defined as a constant with integer value. If any of the literals are
511 -- character literals, the type is a character type, which means that
512 -- strings are legal aggregates for arrays of components of the type.
514 function Expand_To_Stored_Constraint
515 (Typ : Entity_Id;
516 Constraint : Elist_Id) return Elist_Id;
517 -- Given a constraint (i.e. a list of expressions) on the discriminants of
518 -- Typ, expand it into a constraint on the stored discriminants and return
519 -- the new list of expressions constraining the stored discriminants.
521 function Find_Type_Of_Object
522 (Obj_Def : Node_Id;
523 Related_Nod : Node_Id) return Entity_Id;
524 -- Get type entity for object referenced by Obj_Def, attaching the implicit
525 -- types generated to Related_Nod.
527 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
528 -- Create a new float and apply the constraint to obtain subtype of it
530 function Has_Range_Constraint (N : Node_Id) return Boolean;
531 -- Given an N_Subtype_Indication node N, return True if a range constraint
532 -- is present, either directly, or as part of a digits or delta constraint.
533 -- In addition, a digits constraint in the decimal case returns True, since
534 -- it establishes a default range if no explicit range is present.
536 function Inherit_Components
537 (N : Node_Id;
538 Parent_Base : Entity_Id;
539 Derived_Base : Entity_Id;
540 Is_Tagged : Boolean;
541 Inherit_Discr : Boolean;
542 Discs : Elist_Id) return Elist_Id;
543 -- Called from Build_Derived_Record_Type to inherit the components of
544 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
545 -- For more information on derived types and component inheritance please
546 -- consult the comment above the body of Build_Derived_Record_Type.
548 -- N is the original derived type declaration
550 -- Is_Tagged is set if we are dealing with tagged types
552 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
553 -- Parent_Base, otherwise no discriminants are inherited.
555 -- Discs gives the list of constraints that apply to Parent_Base in the
556 -- derived type declaration. If Discs is set to No_Elist, then we have
557 -- the following situation:
559 -- type Parent (D1..Dn : ..) is [tagged] record ...;
560 -- type Derived is new Parent [with ...];
562 -- which gets treated as
564 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
566 -- For untagged types the returned value is an association list. The list
567 -- starts from the association (Parent_Base => Derived_Base), and then it
568 -- contains a sequence of the associations of the form
570 -- (Old_Component => New_Component),
572 -- where Old_Component is the Entity_Id of a component in Parent_Base and
573 -- New_Component is the Entity_Id of the corresponding component in
574 -- Derived_Base. For untagged records, this association list is needed when
575 -- copying the record declaration for the derived base. In the tagged case
576 -- the value returned is irrelevant.
578 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id);
579 -- Propagate static and dynamic predicate flags from a parent to the
580 -- subtype in a subtype declaration with and without constraints.
582 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean;
583 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
584 -- Determine whether subprogram Subp is a procedure subject to pragma
585 -- Extensions_Visible with value False and has at least one controlling
586 -- parameter of mode OUT.
588 function Is_Valid_Constraint_Kind
589 (T_Kind : Type_Kind;
590 Constraint_Kind : Node_Kind) return Boolean;
591 -- Returns True if it is legal to apply the given kind of constraint to the
592 -- given kind of type (index constraint to an array type, for example).
594 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
595 -- Create new modular type. Verify that modulus is in bounds
597 procedure New_Concatenation_Op (Typ : Entity_Id);
598 -- Create an abbreviated declaration for an operator in order to
599 -- materialize concatenation on array types.
601 procedure Ordinary_Fixed_Point_Type_Declaration
602 (T : Entity_Id;
603 Def : Node_Id);
604 -- Create a new ordinary fixed point type, and apply the constraint to
605 -- obtain subtype of it.
607 procedure Prepare_Private_Subtype_Completion
608 (Id : Entity_Id;
609 Related_Nod : Node_Id);
610 -- Id is a subtype of some private type. Creates the full declaration
611 -- associated with Id whenever possible, i.e. when the full declaration
612 -- of the base type is already known. Records each subtype into
613 -- Private_Dependents of the base type.
615 procedure Process_Incomplete_Dependents
616 (N : Node_Id;
617 Full_T : Entity_Id;
618 Inc_T : Entity_Id);
619 -- Process all entities that depend on an incomplete type. There include
620 -- subtypes, subprogram types that mention the incomplete type in their
621 -- profiles, and subprogram with access parameters that designate the
622 -- incomplete type.
624 -- Inc_T is the defining identifier of an incomplete type declaration, its
625 -- Ekind is E_Incomplete_Type.
627 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
629 -- Full_T is N's defining identifier.
631 -- Subtypes of incomplete types with discriminants are completed when the
632 -- parent type is. This is simpler than private subtypes, because they can
633 -- only appear in the same scope, and there is no need to exchange views.
634 -- Similarly, access_to_subprogram types may have a parameter or a return
635 -- type that is an incomplete type, and that must be replaced with the
636 -- full type.
638 -- If the full type is tagged, subprogram with access parameters that
639 -- designated the incomplete may be primitive operations of the full type,
640 -- and have to be processed accordingly.
642 procedure Process_Real_Range_Specification (Def : Node_Id);
643 -- Given the type definition for a real type, this procedure processes and
644 -- checks the real range specification of this type definition if one is
645 -- present. If errors are found, error messages are posted, and the
646 -- Real_Range_Specification of Def is reset to Empty.
648 procedure Record_Type_Declaration
649 (T : Entity_Id;
650 N : Node_Id;
651 Prev : Entity_Id);
652 -- Process a record type declaration (for both untagged and tagged
653 -- records). Parameters T and N are exactly like in procedure
654 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
655 -- for this routine. If this is the completion of an incomplete type
656 -- declaration, Prev is the entity of the incomplete declaration, used for
657 -- cross-referencing. Otherwise Prev = T.
659 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
660 -- This routine is used to process the actual record type definition (both
661 -- for untagged and tagged records). Def is a record type definition node.
662 -- This procedure analyzes the components in this record type definition.
663 -- Prev_T is the entity for the enclosing record type. It is provided so
664 -- that its Has_Task flag can be set if any of the component have Has_Task
665 -- set. If the declaration is the completion of an incomplete type
666 -- declaration, Prev_T is the original incomplete type, whose full view is
667 -- the record type.
669 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
670 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
671 -- build a copy of the declaration tree of the parent, and we create
672 -- independently the list of components for the derived type. Semantic
673 -- information uses the component entities, but record representation
674 -- clauses are validated on the declaration tree. This procedure replaces
675 -- discriminants and components in the declaration with those that have
676 -- been created by Inherit_Components.
678 procedure Set_Fixed_Range
679 (E : Entity_Id;
680 Loc : Source_Ptr;
681 Lo : Ureal;
682 Hi : Ureal);
683 -- Build a range node with the given bounds and set it as the Scalar_Range
684 -- of the given fixed-point type entity. Loc is the source location used
685 -- for the constructed range. See body for further details.
687 procedure Set_Scalar_Range_For_Subtype
688 (Def_Id : Entity_Id;
689 R : Node_Id;
690 Subt : Entity_Id);
691 -- This routine is used to set the scalar range field for a subtype given
692 -- Def_Id, the entity for the subtype, and R, the range expression for the
693 -- scalar range. Subt provides the parent subtype to be used to analyze,
694 -- resolve, and check the given range.
696 procedure Set_Default_SSO (T : Entity_Id);
697 -- T is the entity for an array or record being declared. This procedure
698 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
699 -- to the setting of Opt.Default_SSO.
701 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
702 -- Create a new signed integer entity, and apply the constraint to obtain
703 -- the required first named subtype of this type.
705 procedure Set_Stored_Constraint_From_Discriminant_Constraint
706 (E : Entity_Id);
707 -- E is some record type. This routine computes E's Stored_Constraint
708 -- from its Discriminant_Constraint.
710 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id);
711 -- Check that an entity in a list of progenitors is an interface,
712 -- emit error otherwise.
714 -----------------------
715 -- Access_Definition --
716 -----------------------
718 function Access_Definition
719 (Related_Nod : Node_Id;
720 N : Node_Id) return Entity_Id
722 Anon_Type : Entity_Id;
723 Anon_Scope : Entity_Id;
724 Desig_Type : Entity_Id;
725 Enclosing_Prot_Type : Entity_Id := Empty;
727 begin
728 Check_SPARK_05_Restriction ("access type is not allowed", N);
730 if Is_Entry (Current_Scope)
731 and then Is_Task_Type (Etype (Scope (Current_Scope)))
732 then
733 Error_Msg_N ("task entries cannot have access parameters", N);
734 return Empty;
735 end if;
737 -- Ada 2005: For an object declaration the corresponding anonymous
738 -- type is declared in the current scope.
740 -- If the access definition is the return type of another access to
741 -- function, scope is the current one, because it is the one of the
742 -- current type declaration, except for the pathological case below.
744 if Nkind_In (Related_Nod, N_Object_Declaration,
745 N_Access_Function_Definition)
746 then
747 Anon_Scope := Current_Scope;
749 -- A pathological case: function returning access functions that
750 -- return access functions, etc. Each anonymous access type created
751 -- is in the enclosing scope of the outermost function.
753 declare
754 Par : Node_Id;
756 begin
757 Par := Related_Nod;
758 while Nkind_In (Par, N_Access_Function_Definition,
759 N_Access_Definition)
760 loop
761 Par := Parent (Par);
762 end loop;
764 if Nkind (Par) = N_Function_Specification then
765 Anon_Scope := Scope (Defining_Entity (Par));
766 end if;
767 end;
769 -- For the anonymous function result case, retrieve the scope of the
770 -- function specification's associated entity rather than using the
771 -- current scope. The current scope will be the function itself if the
772 -- formal part is currently being analyzed, but will be the parent scope
773 -- in the case of a parameterless function, and we always want to use
774 -- the function's parent scope. Finally, if the function is a child
775 -- unit, we must traverse the tree to retrieve the proper entity.
777 elsif Nkind (Related_Nod) = N_Function_Specification
778 and then Nkind (Parent (N)) /= N_Parameter_Specification
779 then
780 -- If the current scope is a protected type, the anonymous access
781 -- is associated with one of the protected operations, and must
782 -- be available in the scope that encloses the protected declaration.
783 -- Otherwise the type is in the scope enclosing the subprogram.
785 -- If the function has formals, The return type of a subprogram
786 -- declaration is analyzed in the scope of the subprogram (see
787 -- Process_Formals) and thus the protected type, if present, is
788 -- the scope of the current function scope.
790 if Ekind (Current_Scope) = E_Protected_Type then
791 Enclosing_Prot_Type := Current_Scope;
793 elsif Ekind (Current_Scope) = E_Function
794 and then Ekind (Scope (Current_Scope)) = E_Protected_Type
795 then
796 Enclosing_Prot_Type := Scope (Current_Scope);
797 end if;
799 if Present (Enclosing_Prot_Type) then
800 Anon_Scope := Scope (Enclosing_Prot_Type);
802 else
803 Anon_Scope := Scope (Defining_Entity (Related_Nod));
804 end if;
806 -- For an access type definition, if the current scope is a child
807 -- unit it is the scope of the type.
809 elsif Is_Compilation_Unit (Current_Scope) then
810 Anon_Scope := Current_Scope;
812 -- For access formals, access components, and access discriminants, the
813 -- scope is that of the enclosing declaration,
815 else
816 Anon_Scope := Scope (Current_Scope);
817 end if;
819 Anon_Type :=
820 Create_Itype
821 (E_Anonymous_Access_Type, Related_Nod, Scope_Id => Anon_Scope);
823 if All_Present (N)
824 and then Ada_Version >= Ada_2005
825 then
826 Error_Msg_N ("ALL is not permitted for anonymous access types", N);
827 end if;
829 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
830 -- the corresponding semantic routine
832 if Present (Access_To_Subprogram_Definition (N)) then
834 -- Compiler runtime units are compiled in Ada 2005 mode when building
835 -- the runtime library but must also be compilable in Ada 95 mode
836 -- (when bootstrapping the compiler).
838 Check_Compiler_Unit ("anonymous access to subprogram", N);
840 Access_Subprogram_Declaration
841 (T_Name => Anon_Type,
842 T_Def => Access_To_Subprogram_Definition (N));
844 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
845 Set_Ekind
846 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
847 else
848 Set_Ekind (Anon_Type, E_Anonymous_Access_Subprogram_Type);
849 end if;
851 Set_Can_Use_Internal_Rep
852 (Anon_Type, not Always_Compatible_Rep_On_Target);
854 -- If the anonymous access is associated with a protected operation,
855 -- create a reference to it after the enclosing protected definition
856 -- because the itype will be used in the subsequent bodies.
858 -- If the anonymous access itself is protected, a full type
859 -- declaratiton will be created for it, so that the equivalent
860 -- record type can be constructed. For further details, see
861 -- Replace_Anonymous_Access_To_Protected-Subprogram.
863 if Ekind (Current_Scope) = E_Protected_Type
864 and then not Protected_Present (Access_To_Subprogram_Definition (N))
865 then
866 Build_Itype_Reference (Anon_Type, Parent (Current_Scope));
867 end if;
869 return Anon_Type;
870 end if;
872 Find_Type (Subtype_Mark (N));
873 Desig_Type := Entity (Subtype_Mark (N));
875 Set_Directly_Designated_Type (Anon_Type, Desig_Type);
876 Set_Etype (Anon_Type, Anon_Type);
878 -- Make sure the anonymous access type has size and alignment fields
879 -- set, as required by gigi. This is necessary in the case of the
880 -- Task_Body_Procedure.
882 if not Has_Private_Component (Desig_Type) then
883 Layout_Type (Anon_Type);
884 end if;
886 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
887 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
888 -- the null value is allowed. In Ada 95 the null value is never allowed.
890 if Ada_Version >= Ada_2005 then
891 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
892 else
893 Set_Can_Never_Be_Null (Anon_Type, True);
894 end if;
896 -- The anonymous access type is as public as the discriminated type or
897 -- subprogram that defines it. It is imported (for back-end purposes)
898 -- if the designated type is.
900 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
902 -- Ada 2005 (AI-231): Propagate the access-constant attribute
904 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
906 -- The context is either a subprogram declaration, object declaration,
907 -- or an access discriminant, in a private or a full type declaration.
908 -- In the case of a subprogram, if the designated type is incomplete,
909 -- the operation will be a primitive operation of the full type, to be
910 -- updated subsequently. If the type is imported through a limited_with
911 -- clause, the subprogram is not a primitive operation of the type
912 -- (which is declared elsewhere in some other scope).
914 if Ekind (Desig_Type) = E_Incomplete_Type
915 and then not From_Limited_With (Desig_Type)
916 and then Is_Overloadable (Current_Scope)
917 then
918 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
919 Set_Has_Delayed_Freeze (Current_Scope);
920 end if;
922 -- Ada 2005: If the designated type is an interface that may contain
923 -- tasks, create a Master entity for the declaration. This must be done
924 -- before expansion of the full declaration, because the declaration may
925 -- include an expression that is an allocator, whose expansion needs the
926 -- proper Master for the created tasks.
928 if Nkind (Related_Nod) = N_Object_Declaration and then Expander_Active
929 then
930 if Is_Interface (Desig_Type) and then Is_Limited_Record (Desig_Type)
931 then
932 Build_Class_Wide_Master (Anon_Type);
934 -- Similarly, if the type is an anonymous access that designates
935 -- tasks, create a master entity for it in the current context.
937 elsif Has_Task (Desig_Type) and then Comes_From_Source (Related_Nod)
938 then
939 Build_Master_Entity (Defining_Identifier (Related_Nod));
940 Build_Master_Renaming (Anon_Type);
941 end if;
942 end if;
944 -- For a private component of a protected type, it is imperative that
945 -- the back-end elaborate the type immediately after the protected
946 -- declaration, because this type will be used in the declarations
947 -- created for the component within each protected body, so we must
948 -- create an itype reference for it now.
950 if Nkind (Parent (Related_Nod)) = N_Protected_Definition then
951 Build_Itype_Reference (Anon_Type, Parent (Parent (Related_Nod)));
953 -- Similarly, if the access definition is the return result of a
954 -- function, create an itype reference for it because it will be used
955 -- within the function body. For a regular function that is not a
956 -- compilation unit, insert reference after the declaration. For a
957 -- protected operation, insert it after the enclosing protected type
958 -- declaration. In either case, do not create a reference for a type
959 -- obtained through a limited_with clause, because this would introduce
960 -- semantic dependencies.
962 -- Similarly, do not create a reference if the designated type is a
963 -- generic formal, because no use of it will reach the backend.
965 elsif Nkind (Related_Nod) = N_Function_Specification
966 and then not From_Limited_With (Desig_Type)
967 and then not Is_Generic_Type (Desig_Type)
968 then
969 if Present (Enclosing_Prot_Type) then
970 Build_Itype_Reference (Anon_Type, Parent (Enclosing_Prot_Type));
972 elsif Is_List_Member (Parent (Related_Nod))
973 and then Nkind (Parent (N)) /= N_Parameter_Specification
974 then
975 Build_Itype_Reference (Anon_Type, Parent (Related_Nod));
976 end if;
978 -- Finally, create an itype reference for an object declaration of an
979 -- anonymous access type. This is strictly necessary only for deferred
980 -- constants, but in any case will avoid out-of-scope problems in the
981 -- back-end.
983 elsif Nkind (Related_Nod) = N_Object_Declaration then
984 Build_Itype_Reference (Anon_Type, Related_Nod);
985 end if;
987 return Anon_Type;
988 end Access_Definition;
990 -----------------------------------
991 -- Access_Subprogram_Declaration --
992 -----------------------------------
994 procedure Access_Subprogram_Declaration
995 (T_Name : Entity_Id;
996 T_Def : Node_Id)
998 procedure Check_For_Premature_Usage (Def : Node_Id);
999 -- Check that type T_Name is not used, directly or recursively, as a
1000 -- parameter or a return type in Def. Def is either a subtype, an
1001 -- access_definition, or an access_to_subprogram_definition.
1003 -------------------------------
1004 -- Check_For_Premature_Usage --
1005 -------------------------------
1007 procedure Check_For_Premature_Usage (Def : Node_Id) is
1008 Param : Node_Id;
1010 begin
1011 -- Check for a subtype mark
1013 if Nkind (Def) in N_Has_Etype then
1014 if Etype (Def) = T_Name then
1015 Error_Msg_N
1016 ("type& cannot be used before end of its declaration", Def);
1017 end if;
1019 -- If this is not a subtype, then this is an access_definition
1021 elsif Nkind (Def) = N_Access_Definition then
1022 if Present (Access_To_Subprogram_Definition (Def)) then
1023 Check_For_Premature_Usage
1024 (Access_To_Subprogram_Definition (Def));
1025 else
1026 Check_For_Premature_Usage (Subtype_Mark (Def));
1027 end if;
1029 -- The only cases left are N_Access_Function_Definition and
1030 -- N_Access_Procedure_Definition.
1032 else
1033 if Present (Parameter_Specifications (Def)) then
1034 Param := First (Parameter_Specifications (Def));
1035 while Present (Param) loop
1036 Check_For_Premature_Usage (Parameter_Type (Param));
1037 Param := Next (Param);
1038 end loop;
1039 end if;
1041 if Nkind (Def) = N_Access_Function_Definition then
1042 Check_For_Premature_Usage (Result_Definition (Def));
1043 end if;
1044 end if;
1045 end Check_For_Premature_Usage;
1047 -- Local variables
1049 Formals : constant List_Id := Parameter_Specifications (T_Def);
1050 Formal : Entity_Id;
1051 D_Ityp : Node_Id;
1052 Desig_Type : constant Entity_Id :=
1053 Create_Itype (E_Subprogram_Type, Parent (T_Def));
1055 -- Start of processing for Access_Subprogram_Declaration
1057 begin
1058 Check_SPARK_05_Restriction ("access type is not allowed", T_Def);
1060 -- Associate the Itype node with the inner full-type declaration or
1061 -- subprogram spec or entry body. This is required to handle nested
1062 -- anonymous declarations. For example:
1064 -- procedure P
1065 -- (X : access procedure
1066 -- (Y : access procedure
1067 -- (Z : access T)))
1069 D_Ityp := Associated_Node_For_Itype (Desig_Type);
1070 while not (Nkind_In (D_Ityp, N_Full_Type_Declaration,
1071 N_Private_Type_Declaration,
1072 N_Private_Extension_Declaration,
1073 N_Procedure_Specification,
1074 N_Function_Specification,
1075 N_Entry_Body)
1077 or else
1078 Nkind_In (D_Ityp, N_Object_Declaration,
1079 N_Object_Renaming_Declaration,
1080 N_Formal_Object_Declaration,
1081 N_Formal_Type_Declaration,
1082 N_Task_Type_Declaration,
1083 N_Protected_Type_Declaration))
1084 loop
1085 D_Ityp := Parent (D_Ityp);
1086 pragma Assert (D_Ityp /= Empty);
1087 end loop;
1089 Set_Associated_Node_For_Itype (Desig_Type, D_Ityp);
1091 if Nkind_In (D_Ityp, N_Procedure_Specification,
1092 N_Function_Specification)
1093 then
1094 Set_Scope (Desig_Type, Scope (Defining_Entity (D_Ityp)));
1096 elsif Nkind_In (D_Ityp, N_Full_Type_Declaration,
1097 N_Object_Declaration,
1098 N_Object_Renaming_Declaration,
1099 N_Formal_Type_Declaration)
1100 then
1101 Set_Scope (Desig_Type, Scope (Defining_Identifier (D_Ityp)));
1102 end if;
1104 if Nkind (T_Def) = N_Access_Function_Definition then
1105 if Nkind (Result_Definition (T_Def)) = N_Access_Definition then
1106 declare
1107 Acc : constant Node_Id := Result_Definition (T_Def);
1109 begin
1110 if Present (Access_To_Subprogram_Definition (Acc))
1111 and then
1112 Protected_Present (Access_To_Subprogram_Definition (Acc))
1113 then
1114 Set_Etype
1115 (Desig_Type,
1116 Replace_Anonymous_Access_To_Protected_Subprogram
1117 (T_Def));
1119 else
1120 Set_Etype
1121 (Desig_Type,
1122 Access_Definition (T_Def, Result_Definition (T_Def)));
1123 end if;
1124 end;
1126 else
1127 Analyze (Result_Definition (T_Def));
1129 declare
1130 Typ : constant Entity_Id := Entity (Result_Definition (T_Def));
1132 begin
1133 -- If a null exclusion is imposed on the result type, then
1134 -- create a null-excluding itype (an access subtype) and use
1135 -- it as the function's Etype.
1137 if Is_Access_Type (Typ)
1138 and then Null_Exclusion_In_Return_Present (T_Def)
1139 then
1140 Set_Etype (Desig_Type,
1141 Create_Null_Excluding_Itype
1142 (T => Typ,
1143 Related_Nod => T_Def,
1144 Scope_Id => Current_Scope));
1146 else
1147 if From_Limited_With (Typ) then
1149 -- AI05-151: Incomplete types are allowed in all basic
1150 -- declarations, including access to subprograms.
1152 if Ada_Version >= Ada_2012 then
1153 null;
1155 else
1156 Error_Msg_NE
1157 ("illegal use of incomplete type&",
1158 Result_Definition (T_Def), Typ);
1159 end if;
1161 elsif Ekind (Current_Scope) = E_Package
1162 and then In_Private_Part (Current_Scope)
1163 then
1164 if Ekind (Typ) = E_Incomplete_Type then
1165 Append_Elmt (Desig_Type, Private_Dependents (Typ));
1167 elsif Is_Class_Wide_Type (Typ)
1168 and then Ekind (Etype (Typ)) = E_Incomplete_Type
1169 then
1170 Append_Elmt
1171 (Desig_Type, Private_Dependents (Etype (Typ)));
1172 end if;
1173 end if;
1175 Set_Etype (Desig_Type, Typ);
1176 end if;
1177 end;
1178 end if;
1180 if not (Is_Type (Etype (Desig_Type))) then
1181 Error_Msg_N
1182 ("expect type in function specification",
1183 Result_Definition (T_Def));
1184 end if;
1186 else
1187 Set_Etype (Desig_Type, Standard_Void_Type);
1188 end if;
1190 if Present (Formals) then
1191 Push_Scope (Desig_Type);
1193 -- Some special tests here. These special tests can be removed
1194 -- if and when Itypes always have proper parent pointers to their
1195 -- declarations???
1197 -- Special test 1) Link defining_identifier of formals. Required by
1198 -- First_Formal to provide its functionality.
1200 declare
1201 F : Node_Id;
1203 begin
1204 F := First (Formals);
1206 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1207 -- when it is part of an unconstrained type and subtype expansion
1208 -- is disabled. To avoid back-end problems with shared profiles,
1209 -- use previous subprogram type as the designated type, and then
1210 -- remove scope added above.
1212 if ASIS_Mode and then Present (Scope (Defining_Identifier (F)))
1213 then
1214 Set_Etype (T_Name, T_Name);
1215 Init_Size_Align (T_Name);
1216 Set_Directly_Designated_Type (T_Name,
1217 Scope (Defining_Identifier (F)));
1218 End_Scope;
1219 return;
1220 end if;
1222 while Present (F) loop
1223 if No (Parent (Defining_Identifier (F))) then
1224 Set_Parent (Defining_Identifier (F), F);
1225 end if;
1227 Next (F);
1228 end loop;
1229 end;
1231 Process_Formals (Formals, Parent (T_Def));
1233 -- Special test 2) End_Scope requires that the parent pointer be set
1234 -- to something reasonable, but Itypes don't have parent pointers. So
1235 -- we set it and then unset it ???
1237 Set_Parent (Desig_Type, T_Name);
1238 End_Scope;
1239 Set_Parent (Desig_Type, Empty);
1240 end if;
1242 -- Check for premature usage of the type being defined
1244 Check_For_Premature_Usage (T_Def);
1246 -- The return type and/or any parameter type may be incomplete. Mark the
1247 -- subprogram_type as depending on the incomplete type, so that it can
1248 -- be updated when the full type declaration is seen. This only applies
1249 -- to incomplete types declared in some enclosing scope, not to limited
1250 -- views from other packages.
1252 -- Prior to Ada 2012, access to functions can only have in_parameters.
1254 if Present (Formals) then
1255 Formal := First_Formal (Desig_Type);
1256 while Present (Formal) loop
1257 if Ekind (Formal) /= E_In_Parameter
1258 and then Nkind (T_Def) = N_Access_Function_Definition
1259 and then Ada_Version < Ada_2012
1260 then
1261 Error_Msg_N ("functions can only have IN parameters", Formal);
1262 end if;
1264 if Ekind (Etype (Formal)) = E_Incomplete_Type
1265 and then In_Open_Scopes (Scope (Etype (Formal)))
1266 then
1267 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
1268 Set_Has_Delayed_Freeze (Desig_Type);
1269 end if;
1271 Next_Formal (Formal);
1272 end loop;
1273 end if;
1275 -- Check whether an indirect call without actuals may be possible. This
1276 -- is used when resolving calls whose result is then indexed.
1278 May_Need_Actuals (Desig_Type);
1280 -- If the return type is incomplete, this is legal as long as the type
1281 -- is declared in the current scope and will be completed in it (rather
1282 -- than being part of limited view).
1284 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
1285 and then not Has_Delayed_Freeze (Desig_Type)
1286 and then In_Open_Scopes (Scope (Etype (Desig_Type)))
1287 then
1288 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
1289 Set_Has_Delayed_Freeze (Desig_Type);
1290 end if;
1292 Check_Delayed_Subprogram (Desig_Type);
1294 if Protected_Present (T_Def) then
1295 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
1296 Set_Convention (Desig_Type, Convention_Protected);
1297 else
1298 Set_Ekind (T_Name, E_Access_Subprogram_Type);
1299 end if;
1301 Set_Can_Use_Internal_Rep (T_Name, not Always_Compatible_Rep_On_Target);
1303 Set_Etype (T_Name, T_Name);
1304 Init_Size_Align (T_Name);
1305 Set_Directly_Designated_Type (T_Name, Desig_Type);
1307 Generate_Reference_To_Formals (T_Name);
1309 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1311 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
1313 Check_Restriction (No_Access_Subprograms, T_Def);
1314 end Access_Subprogram_Declaration;
1316 ----------------------------
1317 -- Access_Type_Declaration --
1318 ----------------------------
1320 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
1321 P : constant Node_Id := Parent (Def);
1322 S : constant Node_Id := Subtype_Indication (Def);
1324 Full_Desig : Entity_Id;
1326 begin
1327 Check_SPARK_05_Restriction ("access type is not allowed", Def);
1329 -- Check for permissible use of incomplete type
1331 if Nkind (S) /= N_Subtype_Indication then
1332 Analyze (S);
1334 if Present (Entity (S))
1335 and then Ekind (Root_Type (Entity (S))) = E_Incomplete_Type
1336 then
1337 Set_Directly_Designated_Type (T, Entity (S));
1339 -- If the designated type is a limited view, we cannot tell if
1340 -- the full view contains tasks, and there is no way to handle
1341 -- that full view in a client. We create a master entity for the
1342 -- scope, which will be used when a client determines that one
1343 -- is needed.
1345 if From_Limited_With (Entity (S))
1346 and then not Is_Class_Wide_Type (Entity (S))
1347 then
1348 Set_Ekind (T, E_Access_Type);
1349 Build_Master_Entity (T);
1350 Build_Master_Renaming (T);
1351 end if;
1353 else
1354 Set_Directly_Designated_Type (T, Process_Subtype (S, P, T, 'P'));
1355 end if;
1357 -- If the access definition is of the form: ACCESS NOT NULL ..
1358 -- the subtype indication must be of an access type. Create
1359 -- a null-excluding subtype of it.
1361 if Null_Excluding_Subtype (Def) then
1362 if not Is_Access_Type (Entity (S)) then
1363 Error_Msg_N ("null exclusion must apply to access type", Def);
1365 else
1366 declare
1367 Loc : constant Source_Ptr := Sloc (S);
1368 Decl : Node_Id;
1369 Nam : constant Entity_Id := Make_Temporary (Loc, 'S');
1371 begin
1372 Decl :=
1373 Make_Subtype_Declaration (Loc,
1374 Defining_Identifier => Nam,
1375 Subtype_Indication =>
1376 New_Occurrence_Of (Entity (S), Loc));
1377 Set_Null_Exclusion_Present (Decl);
1378 Insert_Before (Parent (Def), Decl);
1379 Analyze (Decl);
1380 Set_Entity (S, Nam);
1381 end;
1382 end if;
1383 end if;
1385 else
1386 Set_Directly_Designated_Type (T,
1387 Process_Subtype (S, P, T, 'P'));
1388 end if;
1390 if All_Present (Def) or Constant_Present (Def) then
1391 Set_Ekind (T, E_General_Access_Type);
1392 else
1393 Set_Ekind (T, E_Access_Type);
1394 end if;
1396 Full_Desig := Designated_Type (T);
1398 if Base_Type (Full_Desig) = T then
1399 Error_Msg_N ("access type cannot designate itself", S);
1401 -- In Ada 2005, the type may have a limited view through some unit in
1402 -- its own context, allowing the following circularity that cannot be
1403 -- detected earlier.
1405 elsif Is_Class_Wide_Type (Full_Desig) and then Etype (Full_Desig) = T
1406 then
1407 Error_Msg_N
1408 ("access type cannot designate its own class-wide type", S);
1410 -- Clean up indication of tagged status to prevent cascaded errors
1412 Set_Is_Tagged_Type (T, False);
1413 end if;
1415 Set_Etype (T, T);
1417 -- If the type has appeared already in a with_type clause, it is frozen
1418 -- and the pointer size is already set. Else, initialize.
1420 if not From_Limited_With (T) then
1421 Init_Size_Align (T);
1422 end if;
1424 -- Note that Has_Task is always false, since the access type itself
1425 -- is not a task type. See Einfo for more description on this point.
1426 -- Exactly the same consideration applies to Has_Controlled_Component
1427 -- and to Has_Protected.
1429 Set_Has_Task (T, False);
1430 Set_Has_Protected (T, False);
1431 Set_Has_Timing_Event (T, False);
1432 Set_Has_Controlled_Component (T, False);
1434 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1435 -- problems where an incomplete view of this entity has been previously
1436 -- established by a limited with and an overlaid version of this field
1437 -- (Stored_Constraint) was initialized for the incomplete view.
1439 -- This reset is performed in most cases except where the access type
1440 -- has been created for the purposes of allocating or deallocating a
1441 -- build-in-place object. Such access types have explicitly set pools
1442 -- and finalization masters.
1444 if No (Associated_Storage_Pool (T)) then
1445 Set_Finalization_Master (T, Empty);
1446 end if;
1448 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1449 -- attributes
1451 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
1452 Set_Is_Access_Constant (T, Constant_Present (Def));
1453 end Access_Type_Declaration;
1455 ----------------------------------
1456 -- Add_Interface_Tag_Components --
1457 ----------------------------------
1459 procedure Add_Interface_Tag_Components (N : Node_Id; Typ : Entity_Id) is
1460 Loc : constant Source_Ptr := Sloc (N);
1461 L : List_Id;
1462 Last_Tag : Node_Id;
1464 procedure Add_Tag (Iface : Entity_Id);
1465 -- Add tag for one of the progenitor interfaces
1467 -------------
1468 -- Add_Tag --
1469 -------------
1471 procedure Add_Tag (Iface : Entity_Id) is
1472 Decl : Node_Id;
1473 Def : Node_Id;
1474 Tag : Entity_Id;
1475 Offset : Entity_Id;
1477 begin
1478 pragma Assert (Is_Tagged_Type (Iface) and then Is_Interface (Iface));
1480 -- This is a reasonable place to propagate predicates
1482 if Has_Predicates (Iface) then
1483 Set_Has_Predicates (Typ);
1484 end if;
1486 Def :=
1487 Make_Component_Definition (Loc,
1488 Aliased_Present => True,
1489 Subtype_Indication =>
1490 New_Occurrence_Of (RTE (RE_Interface_Tag), Loc));
1492 Tag := Make_Temporary (Loc, 'V');
1494 Decl :=
1495 Make_Component_Declaration (Loc,
1496 Defining_Identifier => Tag,
1497 Component_Definition => Def);
1499 Analyze_Component_Declaration (Decl);
1501 Set_Analyzed (Decl);
1502 Set_Ekind (Tag, E_Component);
1503 Set_Is_Tag (Tag);
1504 Set_Is_Aliased (Tag);
1505 Set_Related_Type (Tag, Iface);
1506 Init_Component_Location (Tag);
1508 pragma Assert (Is_Frozen (Iface));
1510 Set_DT_Entry_Count (Tag,
1511 DT_Entry_Count (First_Entity (Iface)));
1513 if No (Last_Tag) then
1514 Prepend (Decl, L);
1515 else
1516 Insert_After (Last_Tag, Decl);
1517 end if;
1519 Last_Tag := Decl;
1521 -- If the ancestor has discriminants we need to give special support
1522 -- to store the offset_to_top value of the secondary dispatch tables.
1523 -- For this purpose we add a supplementary component just after the
1524 -- field that contains the tag associated with each secondary DT.
1526 if Typ /= Etype (Typ) and then Has_Discriminants (Etype (Typ)) then
1527 Def :=
1528 Make_Component_Definition (Loc,
1529 Subtype_Indication =>
1530 New_Occurrence_Of (RTE (RE_Storage_Offset), Loc));
1532 Offset := Make_Temporary (Loc, 'V');
1534 Decl :=
1535 Make_Component_Declaration (Loc,
1536 Defining_Identifier => Offset,
1537 Component_Definition => Def);
1539 Analyze_Component_Declaration (Decl);
1541 Set_Analyzed (Decl);
1542 Set_Ekind (Offset, E_Component);
1543 Set_Is_Aliased (Offset);
1544 Set_Related_Type (Offset, Iface);
1545 Init_Component_Location (Offset);
1546 Insert_After (Last_Tag, Decl);
1547 Last_Tag := Decl;
1548 end if;
1549 end Add_Tag;
1551 -- Local variables
1553 Elmt : Elmt_Id;
1554 Ext : Node_Id;
1555 Comp : Node_Id;
1557 -- Start of processing for Add_Interface_Tag_Components
1559 begin
1560 if not RTE_Available (RE_Interface_Tag) then
1561 Error_Msg
1562 ("(Ada 2005) interface types not supported by this run-time!",
1563 Sloc (N));
1564 return;
1565 end if;
1567 if Ekind (Typ) /= E_Record_Type
1568 or else (Is_Concurrent_Record_Type (Typ)
1569 and then Is_Empty_List (Abstract_Interface_List (Typ)))
1570 or else (not Is_Concurrent_Record_Type (Typ)
1571 and then No (Interfaces (Typ))
1572 and then Is_Empty_Elmt_List (Interfaces (Typ)))
1573 then
1574 return;
1575 end if;
1577 -- Find the current last tag
1579 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1580 Ext := Record_Extension_Part (Type_Definition (N));
1581 else
1582 pragma Assert (Nkind (Type_Definition (N)) = N_Record_Definition);
1583 Ext := Type_Definition (N);
1584 end if;
1586 Last_Tag := Empty;
1588 if not (Present (Component_List (Ext))) then
1589 Set_Null_Present (Ext, False);
1590 L := New_List;
1591 Set_Component_List (Ext,
1592 Make_Component_List (Loc,
1593 Component_Items => L,
1594 Null_Present => False));
1595 else
1596 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
1597 L := Component_Items
1598 (Component_List
1599 (Record_Extension_Part
1600 (Type_Definition (N))));
1601 else
1602 L := Component_Items
1603 (Component_List
1604 (Type_Definition (N)));
1605 end if;
1607 -- Find the last tag component
1609 Comp := First (L);
1610 while Present (Comp) loop
1611 if Nkind (Comp) = N_Component_Declaration
1612 and then Is_Tag (Defining_Identifier (Comp))
1613 then
1614 Last_Tag := Comp;
1615 end if;
1617 Next (Comp);
1618 end loop;
1619 end if;
1621 -- At this point L references the list of components and Last_Tag
1622 -- references the current last tag (if any). Now we add the tag
1623 -- corresponding with all the interfaces that are not implemented
1624 -- by the parent.
1626 if Present (Interfaces (Typ)) then
1627 Elmt := First_Elmt (Interfaces (Typ));
1628 while Present (Elmt) loop
1629 Add_Tag (Node (Elmt));
1630 Next_Elmt (Elmt);
1631 end loop;
1632 end if;
1633 end Add_Interface_Tag_Components;
1635 -------------------------------------
1636 -- Add_Internal_Interface_Entities --
1637 -------------------------------------
1639 procedure Add_Internal_Interface_Entities (Tagged_Type : Entity_Id) is
1640 Elmt : Elmt_Id;
1641 Iface : Entity_Id;
1642 Iface_Elmt : Elmt_Id;
1643 Iface_Prim : Entity_Id;
1644 Ifaces_List : Elist_Id;
1645 New_Subp : Entity_Id := Empty;
1646 Prim : Entity_Id;
1647 Restore_Scope : Boolean := False;
1649 begin
1650 pragma Assert (Ada_Version >= Ada_2005
1651 and then Is_Record_Type (Tagged_Type)
1652 and then Is_Tagged_Type (Tagged_Type)
1653 and then Has_Interfaces (Tagged_Type)
1654 and then not Is_Interface (Tagged_Type));
1656 -- Ensure that the internal entities are added to the scope of the type
1658 if Scope (Tagged_Type) /= Current_Scope then
1659 Push_Scope (Scope (Tagged_Type));
1660 Restore_Scope := True;
1661 end if;
1663 Collect_Interfaces (Tagged_Type, Ifaces_List);
1665 Iface_Elmt := First_Elmt (Ifaces_List);
1666 while Present (Iface_Elmt) loop
1667 Iface := Node (Iface_Elmt);
1669 -- Originally we excluded here from this processing interfaces that
1670 -- are parents of Tagged_Type because their primitives are located
1671 -- in the primary dispatch table (and hence no auxiliary internal
1672 -- entities are required to handle secondary dispatch tables in such
1673 -- case). However, these auxiliary entities are also required to
1674 -- handle derivations of interfaces in formals of generics (see
1675 -- Derive_Subprograms).
1677 Elmt := First_Elmt (Primitive_Operations (Iface));
1678 while Present (Elmt) loop
1679 Iface_Prim := Node (Elmt);
1681 if not Is_Predefined_Dispatching_Operation (Iface_Prim) then
1682 Prim :=
1683 Find_Primitive_Covering_Interface
1684 (Tagged_Type => Tagged_Type,
1685 Iface_Prim => Iface_Prim);
1687 if No (Prim) and then Serious_Errors_Detected > 0 then
1688 goto Continue;
1689 end if;
1691 pragma Assert (Present (Prim));
1693 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1694 -- differs from the name of the interface primitive then it is
1695 -- a private primitive inherited from a parent type. In such
1696 -- case, given that Tagged_Type covers the interface, the
1697 -- inherited private primitive becomes visible. For such
1698 -- purpose we add a new entity that renames the inherited
1699 -- private primitive.
1701 if Chars (Prim) /= Chars (Iface_Prim) then
1702 pragma Assert (Has_Suffix (Prim, 'P'));
1703 Derive_Subprogram
1704 (New_Subp => New_Subp,
1705 Parent_Subp => Iface_Prim,
1706 Derived_Type => Tagged_Type,
1707 Parent_Type => Iface);
1708 Set_Alias (New_Subp, Prim);
1709 Set_Is_Abstract_Subprogram
1710 (New_Subp, Is_Abstract_Subprogram (Prim));
1711 end if;
1713 Derive_Subprogram
1714 (New_Subp => New_Subp,
1715 Parent_Subp => Iface_Prim,
1716 Derived_Type => Tagged_Type,
1717 Parent_Type => Iface);
1719 declare
1720 Anc : Entity_Id;
1721 begin
1722 if Is_Inherited_Operation (Prim)
1723 and then Present (Alias (Prim))
1724 then
1725 Anc := Alias (Prim);
1726 else
1727 Anc := Overridden_Operation (Prim);
1728 end if;
1730 -- Apply legality checks in RM 6.1.1 (10-13) concerning
1731 -- nonconforming preconditions in both an ancestor and
1732 -- a progenitor operation.
1734 if Present (Anc)
1735 and then Has_Non_Trivial_Precondition (Anc)
1736 and then Has_Non_Trivial_Precondition (Iface_Prim)
1737 then
1738 if Is_Abstract_Subprogram (Prim)
1739 or else
1740 (Ekind (Prim) = E_Procedure
1741 and then Nkind (Parent (Prim)) =
1742 N_Procedure_Specification
1743 and then Null_Present (Parent (Prim)))
1744 then
1745 null;
1747 -- The inherited operation must be overridden
1749 elsif not Comes_From_Source (Prim) then
1750 Error_Msg_NE
1751 ("&inherits non-conforming preconditions and must "
1752 & "be overridden (RM 6.1.1 (10-16)",
1753 Parent (Tagged_Type), Prim);
1754 end if;
1755 end if;
1756 end;
1758 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1759 -- associated with interface types. These entities are
1760 -- only registered in the list of primitives of its
1761 -- corresponding tagged type because they are only used
1762 -- to fill the contents of the secondary dispatch tables.
1763 -- Therefore they are removed from the homonym chains.
1765 Set_Is_Hidden (New_Subp);
1766 Set_Is_Internal (New_Subp);
1767 Set_Alias (New_Subp, Prim);
1768 Set_Is_Abstract_Subprogram
1769 (New_Subp, Is_Abstract_Subprogram (Prim));
1770 Set_Interface_Alias (New_Subp, Iface_Prim);
1772 -- If the returned type is an interface then propagate it to
1773 -- the returned type. Needed by the thunk to generate the code
1774 -- which displaces "this" to reference the corresponding
1775 -- secondary dispatch table in the returned object.
1777 if Is_Interface (Etype (Iface_Prim)) then
1778 Set_Etype (New_Subp, Etype (Iface_Prim));
1779 end if;
1781 -- Internal entities associated with interface types are only
1782 -- registered in the list of primitives of the tagged type.
1783 -- They are only used to fill the contents of the secondary
1784 -- dispatch tables. Therefore they are not needed in the
1785 -- homonym chains.
1787 Remove_Homonym (New_Subp);
1789 -- Hidden entities associated with interfaces must have set
1790 -- the Has_Delay_Freeze attribute to ensure that, in case
1791 -- of locally defined tagged types (or compiling with static
1792 -- dispatch tables generation disabled) the corresponding
1793 -- entry of the secondary dispatch table is filled when such
1794 -- an entity is frozen. This is an expansion activity that must
1795 -- be suppressed for ASIS because it leads to gigi elaboration
1796 -- issues in annotate mode.
1798 if not ASIS_Mode then
1799 Set_Has_Delayed_Freeze (New_Subp);
1800 end if;
1801 end if;
1803 <<Continue>>
1804 Next_Elmt (Elmt);
1805 end loop;
1807 Next_Elmt (Iface_Elmt);
1808 end loop;
1810 if Restore_Scope then
1811 Pop_Scope;
1812 end if;
1813 end Add_Internal_Interface_Entities;
1815 -----------------------------------
1816 -- Analyze_Component_Declaration --
1817 -----------------------------------
1819 procedure Analyze_Component_Declaration (N : Node_Id) is
1820 Loc : constant Source_Ptr := Sloc (Component_Definition (N));
1821 Id : constant Entity_Id := Defining_Identifier (N);
1822 E : constant Node_Id := Expression (N);
1823 Typ : constant Node_Id :=
1824 Subtype_Indication (Component_Definition (N));
1825 T : Entity_Id;
1826 P : Entity_Id;
1828 function Contains_POC (Constr : Node_Id) return Boolean;
1829 -- Determines whether a constraint uses the discriminant of a record
1830 -- type thus becoming a per-object constraint (POC).
1832 function Is_Known_Limited (Typ : Entity_Id) return Boolean;
1833 -- Typ is the type of the current component, check whether this type is
1834 -- a limited type. Used to validate declaration against that of
1835 -- enclosing record.
1837 ------------------
1838 -- Contains_POC --
1839 ------------------
1841 function Contains_POC (Constr : Node_Id) return Boolean is
1842 begin
1843 -- Prevent cascaded errors
1845 if Error_Posted (Constr) then
1846 return False;
1847 end if;
1849 case Nkind (Constr) is
1850 when N_Attribute_Reference =>
1851 return Attribute_Name (Constr) = Name_Access
1852 and then Prefix (Constr) = Scope (Entity (Prefix (Constr)));
1854 when N_Discriminant_Association =>
1855 return Denotes_Discriminant (Expression (Constr));
1857 when N_Identifier =>
1858 return Denotes_Discriminant (Constr);
1860 when N_Index_Or_Discriminant_Constraint =>
1861 declare
1862 IDC : Node_Id;
1864 begin
1865 IDC := First (Constraints (Constr));
1866 while Present (IDC) loop
1868 -- One per-object constraint is sufficient
1870 if Contains_POC (IDC) then
1871 return True;
1872 end if;
1874 Next (IDC);
1875 end loop;
1877 return False;
1878 end;
1880 when N_Range =>
1881 return Denotes_Discriminant (Low_Bound (Constr))
1882 or else
1883 Denotes_Discriminant (High_Bound (Constr));
1885 when N_Range_Constraint =>
1886 return Denotes_Discriminant (Range_Expression (Constr));
1888 when others =>
1889 return False;
1890 end case;
1891 end Contains_POC;
1893 ----------------------
1894 -- Is_Known_Limited --
1895 ----------------------
1897 function Is_Known_Limited (Typ : Entity_Id) return Boolean is
1898 P : constant Entity_Id := Etype (Typ);
1899 R : constant Entity_Id := Root_Type (Typ);
1901 begin
1902 if Is_Limited_Record (Typ) then
1903 return True;
1905 -- If the root type is limited (and not a limited interface)
1906 -- so is the current type
1908 elsif Is_Limited_Record (R)
1909 and then (not Is_Interface (R) or else not Is_Limited_Interface (R))
1910 then
1911 return True;
1913 -- Else the type may have a limited interface progenitor, but a
1914 -- limited record parent.
1916 elsif R /= P and then Is_Limited_Record (P) then
1917 return True;
1919 else
1920 return False;
1921 end if;
1922 end Is_Known_Limited;
1924 -- Start of processing for Analyze_Component_Declaration
1926 begin
1927 Generate_Definition (Id);
1928 Enter_Name (Id);
1930 if Present (Typ) then
1931 T := Find_Type_Of_Object
1932 (Subtype_Indication (Component_Definition (N)), N);
1934 if not Nkind_In (Typ, N_Identifier, N_Expanded_Name) then
1935 Check_SPARK_05_Restriction ("subtype mark required", Typ);
1936 end if;
1938 -- Ada 2005 (AI-230): Access Definition case
1940 else
1941 pragma Assert (Present
1942 (Access_Definition (Component_Definition (N))));
1944 T := Access_Definition
1945 (Related_Nod => N,
1946 N => Access_Definition (Component_Definition (N)));
1947 Set_Is_Local_Anonymous_Access (T);
1949 -- Ada 2005 (AI-254)
1951 if Present (Access_To_Subprogram_Definition
1952 (Access_Definition (Component_Definition (N))))
1953 and then Protected_Present (Access_To_Subprogram_Definition
1954 (Access_Definition
1955 (Component_Definition (N))))
1956 then
1957 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
1958 end if;
1959 end if;
1961 -- If the subtype is a constrained subtype of the enclosing record,
1962 -- (which must have a partial view) the back-end does not properly
1963 -- handle the recursion. Rewrite the component declaration with an
1964 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1965 -- the tree directly because side effects have already been removed from
1966 -- discriminant constraints.
1968 if Ekind (T) = E_Access_Subtype
1969 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1970 and then Comes_From_Source (T)
1971 and then Nkind (Parent (T)) = N_Subtype_Declaration
1972 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1973 then
1974 Rewrite
1975 (Subtype_Indication (Component_Definition (N)),
1976 New_Copy_Tree (Subtype_Indication (Parent (T))));
1977 T := Find_Type_Of_Object
1978 (Subtype_Indication (Component_Definition (N)), N);
1979 end if;
1981 -- If the component declaration includes a default expression, then we
1982 -- check that the component is not of a limited type (RM 3.7(5)),
1983 -- and do the special preanalysis of the expression (see section on
1984 -- "Handling of Default and Per-Object Expressions" in the spec of
1985 -- package Sem).
1987 if Present (E) then
1988 Check_SPARK_05_Restriction ("default expression is not allowed", E);
1989 Preanalyze_Default_Expression (E, T);
1990 Check_Initialization (T, E);
1992 if Ada_Version >= Ada_2005
1993 and then Ekind (T) = E_Anonymous_Access_Type
1994 and then Etype (E) /= Any_Type
1995 then
1996 -- Check RM 3.9.2(9): "if the expected type for an expression is
1997 -- an anonymous access-to-specific tagged type, then the object
1998 -- designated by the expression shall not be dynamically tagged
1999 -- unless it is a controlling operand in a call on a dispatching
2000 -- operation"
2002 if Is_Tagged_Type (Directly_Designated_Type (T))
2003 and then
2004 Ekind (Directly_Designated_Type (T)) /= E_Class_Wide_Type
2005 and then
2006 Ekind (Directly_Designated_Type (Etype (E))) =
2007 E_Class_Wide_Type
2008 then
2009 Error_Msg_N
2010 ("access to specific tagged type required (RM 3.9.2(9))", E);
2011 end if;
2013 -- (Ada 2005: AI-230): Accessibility check for anonymous
2014 -- components
2016 if Type_Access_Level (Etype (E)) >
2017 Deepest_Type_Access_Level (T)
2018 then
2019 Error_Msg_N
2020 ("expression has deeper access level than component " &
2021 "(RM 3.10.2 (12.2))", E);
2022 end if;
2024 -- The initialization expression is a reference to an access
2025 -- discriminant. The type of the discriminant is always deeper
2026 -- than any access type.
2028 if Ekind (Etype (E)) = E_Anonymous_Access_Type
2029 and then Is_Entity_Name (E)
2030 and then Ekind (Entity (E)) = E_In_Parameter
2031 and then Present (Discriminal_Link (Entity (E)))
2032 then
2033 Error_Msg_N
2034 ("discriminant has deeper accessibility level than target",
2036 end if;
2037 end if;
2038 end if;
2040 -- The parent type may be a private view with unknown discriminants,
2041 -- and thus unconstrained. Regular components must be constrained.
2043 if not Is_Definite_Subtype (T) and then Chars (Id) /= Name_uParent then
2044 if Is_Class_Wide_Type (T) then
2045 Error_Msg_N
2046 ("class-wide subtype with unknown discriminants" &
2047 " in component declaration",
2048 Subtype_Indication (Component_Definition (N)));
2049 else
2050 Error_Msg_N
2051 ("unconstrained subtype in component declaration",
2052 Subtype_Indication (Component_Definition (N)));
2053 end if;
2055 -- Components cannot be abstract, except for the special case of
2056 -- the _Parent field (case of extending an abstract tagged type)
2058 elsif Is_Abstract_Type (T) and then Chars (Id) /= Name_uParent then
2059 Error_Msg_N ("type of a component cannot be abstract", N);
2060 end if;
2062 Set_Etype (Id, T);
2063 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
2065 -- The component declaration may have a per-object constraint, set
2066 -- the appropriate flag in the defining identifier of the subtype.
2068 if Present (Subtype_Indication (Component_Definition (N))) then
2069 declare
2070 Sindic : constant Node_Id :=
2071 Subtype_Indication (Component_Definition (N));
2072 begin
2073 if Nkind (Sindic) = N_Subtype_Indication
2074 and then Present (Constraint (Sindic))
2075 and then Contains_POC (Constraint (Sindic))
2076 then
2077 Set_Has_Per_Object_Constraint (Id);
2078 end if;
2079 end;
2080 end if;
2082 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2083 -- out some static checks.
2085 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (T) then
2086 Null_Exclusion_Static_Checks (N);
2087 end if;
2089 -- If this component is private (or depends on a private type), flag the
2090 -- record type to indicate that some operations are not available.
2092 P := Private_Component (T);
2094 if Present (P) then
2096 -- Check for circular definitions
2098 if P = Any_Type then
2099 Set_Etype (Id, Any_Type);
2101 -- There is a gap in the visibility of operations only if the
2102 -- component type is not defined in the scope of the record type.
2104 elsif Scope (P) = Scope (Current_Scope) then
2105 null;
2107 elsif Is_Limited_Type (P) then
2108 Set_Is_Limited_Composite (Current_Scope);
2110 else
2111 Set_Is_Private_Composite (Current_Scope);
2112 end if;
2113 end if;
2115 if P /= Any_Type
2116 and then Is_Limited_Type (T)
2117 and then Chars (Id) /= Name_uParent
2118 and then Is_Tagged_Type (Current_Scope)
2119 then
2120 if Is_Derived_Type (Current_Scope)
2121 and then not Is_Known_Limited (Current_Scope)
2122 then
2123 Error_Msg_N
2124 ("extension of nonlimited type cannot have limited components",
2127 if Is_Interface (Root_Type (Current_Scope)) then
2128 Error_Msg_N
2129 ("\limitedness is not inherited from limited interface", N);
2130 Error_Msg_N ("\add LIMITED to type indication", N);
2131 end if;
2133 Explain_Limited_Type (T, N);
2134 Set_Etype (Id, Any_Type);
2135 Set_Is_Limited_Composite (Current_Scope, False);
2137 elsif not Is_Derived_Type (Current_Scope)
2138 and then not Is_Limited_Record (Current_Scope)
2139 and then not Is_Concurrent_Type (Current_Scope)
2140 then
2141 Error_Msg_N
2142 ("nonlimited tagged type cannot have limited components", N);
2143 Explain_Limited_Type (T, N);
2144 Set_Etype (Id, Any_Type);
2145 Set_Is_Limited_Composite (Current_Scope, False);
2146 end if;
2147 end if;
2149 -- If the component is an unconstrained task or protected type with
2150 -- discriminants, the component and the enclosing record are limited
2151 -- and the component is constrained by its default values. Compute
2152 -- its actual subtype, else it may be allocated the maximum size by
2153 -- the backend, and possibly overflow.
2155 if Is_Concurrent_Type (T)
2156 and then not Is_Constrained (T)
2157 and then Has_Discriminants (T)
2158 and then not Has_Discriminants (Current_Scope)
2159 then
2160 declare
2161 Act_T : constant Entity_Id := Build_Default_Subtype (T, N);
2163 begin
2164 Set_Etype (Id, Act_T);
2166 -- Rewrite component definition to use the constrained subtype
2168 Rewrite (Component_Definition (N),
2169 Make_Component_Definition (Loc,
2170 Subtype_Indication => New_Occurrence_Of (Act_T, Loc)));
2171 end;
2172 end if;
2174 Set_Original_Record_Component (Id, Id);
2176 if Has_Aspects (N) then
2177 Analyze_Aspect_Specifications (N, Id);
2178 end if;
2180 Analyze_Dimension (N);
2181 end Analyze_Component_Declaration;
2183 --------------------------
2184 -- Analyze_Declarations --
2185 --------------------------
2187 procedure Analyze_Declarations (L : List_Id) is
2188 Decl : Node_Id;
2190 procedure Adjust_Decl;
2191 -- Adjust Decl not to include implicit label declarations, since these
2192 -- have strange Sloc values that result in elaboration check problems.
2193 -- (They have the sloc of the label as found in the source, and that
2194 -- is ahead of the current declarative part).
2196 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id);
2197 -- Create the subprogram bodies which verify the run-time semantics of
2198 -- the pragmas listed below for each elibigle type found in declarative
2199 -- list Decls. The pragmas are:
2201 -- Default_Initial_Condition
2202 -- Invariant
2203 -- Type_Invariant
2205 -- Context denotes the owner of the declarative list.
2207 procedure Check_Entry_Contracts;
2208 -- Perform a pre-analysis of the pre- and postconditions of an entry
2209 -- declaration. This must be done before full resolution and creation
2210 -- of the parameter block, etc. to catch illegal uses within the
2211 -- contract expression. Full analysis of the expression is done when
2212 -- the contract is processed.
2214 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id);
2215 -- Determine whether Body_Decl denotes the body of a late controlled
2216 -- primitive (either Initialize, Adjust or Finalize). If this is the
2217 -- case, add a proper spec if the body lacks one. The spec is inserted
2218 -- before Body_Decl and immediately analyzed.
2220 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id);
2221 -- Spec_Id is the entity of a package that may define abstract states,
2222 -- and in the case of a child unit, whose ancestors may define abstract
2223 -- states. If the states have partial visible refinement, remove the
2224 -- partial visibility of each constituent at the end of the package
2225 -- spec and body declarations.
2227 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id);
2228 -- Spec_Id is the entity of a package that may define abstract states.
2229 -- If the states have visible refinement, remove the visibility of each
2230 -- constituent at the end of the package body declaration.
2232 procedure Resolve_Aspects;
2233 -- Utility to resolve the expressions of aspects at the end of a list of
2234 -- declarations.
2236 function Uses_Unseen_Lib_Unit_Priv (Pkg : Entity_Id) return Boolean;
2237 -- Check if an inner package has entities within it that rely on library
2238 -- level private types where the full view has not been seen.
2240 -----------------
2241 -- Adjust_Decl --
2242 -----------------
2244 procedure Adjust_Decl is
2245 begin
2246 while Present (Prev (Decl))
2247 and then Nkind (Decl) = N_Implicit_Label_Declaration
2248 loop
2249 Prev (Decl);
2250 end loop;
2251 end Adjust_Decl;
2253 ----------------------------
2254 -- Build_Assertion_Bodies --
2255 ----------------------------
2257 procedure Build_Assertion_Bodies (Decls : List_Id; Context : Node_Id) is
2258 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id);
2259 -- Create the subprogram bodies which verify the run-time semantics
2260 -- of the pragmas listed below for type Typ. The pragmas are:
2262 -- Default_Initial_Condition
2263 -- Invariant
2264 -- Type_Invariant
2266 -------------------------------------
2267 -- Build_Assertion_Bodies_For_Type --
2268 -------------------------------------
2270 procedure Build_Assertion_Bodies_For_Type (Typ : Entity_Id) is
2271 begin
2272 -- Preanalyze and resolve the Default_Initial_Condition assertion
2273 -- expression at the end of the declarations to catch any errors.
2275 if Has_DIC (Typ) then
2276 Build_DIC_Procedure_Body (Typ);
2277 end if;
2279 if Nkind (Context) = N_Package_Specification then
2281 -- Preanalyze and resolve the class-wide invariants of an
2282 -- interface at the end of whichever declarative part has the
2283 -- interface type. Note that an interface may be declared in
2284 -- any non-package declarative part, but reaching the end of
2285 -- such a declarative part will always freeze the type and
2286 -- generate the invariant procedure (see Freeze_Type).
2288 if Is_Interface (Typ) then
2290 -- Interfaces are treated as the partial view of a private
2291 -- type, in order to achieve uniformity with the general
2292 -- case. As a result, an interface receives only a "partial"
2293 -- invariant procedure, which is never called.
2295 if Has_Own_Invariants (Typ) then
2296 Build_Invariant_Procedure_Body
2297 (Typ => Typ,
2298 Partial_Invariant => True);
2299 end if;
2301 -- Preanalyze and resolve the invariants of a private type
2302 -- at the end of the visible declarations to catch potential
2303 -- errors. Inherited class-wide invariants are not included
2304 -- because they have already been resolved.
2306 elsif Decls = Visible_Declarations (Context)
2307 and then Ekind_In (Typ, E_Limited_Private_Type,
2308 E_Private_Type,
2309 E_Record_Type_With_Private)
2310 and then Has_Own_Invariants (Typ)
2311 then
2312 Build_Invariant_Procedure_Body
2313 (Typ => Typ,
2314 Partial_Invariant => True);
2316 -- Preanalyze and resolve the invariants of a private type's
2317 -- full view at the end of the private declarations to catch
2318 -- potential errors.
2320 elsif Decls = Private_Declarations (Context)
2321 and then not Is_Private_Type (Typ)
2322 and then Has_Private_Declaration (Typ)
2323 and then Has_Invariants (Typ)
2324 then
2325 Build_Invariant_Procedure_Body (Typ);
2326 end if;
2327 end if;
2328 end Build_Assertion_Bodies_For_Type;
2330 -- Local variables
2332 Decl : Node_Id;
2333 Decl_Id : Entity_Id;
2335 -- Start of processing for Build_Assertion_Bodies
2337 begin
2338 Decl := First (Decls);
2339 while Present (Decl) loop
2340 if Is_Declaration (Decl) then
2341 Decl_Id := Defining_Entity (Decl);
2343 if Is_Type (Decl_Id) then
2344 Build_Assertion_Bodies_For_Type (Decl_Id);
2345 end if;
2346 end if;
2348 Next (Decl);
2349 end loop;
2350 end Build_Assertion_Bodies;
2352 ---------------------------
2353 -- Check_Entry_Contracts --
2354 ---------------------------
2356 procedure Check_Entry_Contracts is
2357 ASN : Node_Id;
2358 Ent : Entity_Id;
2359 Exp : Node_Id;
2361 begin
2362 Ent := First_Entity (Current_Scope);
2363 while Present (Ent) loop
2365 -- This only concerns entries with pre/postconditions
2367 if Ekind (Ent) = E_Entry
2368 and then Present (Contract (Ent))
2369 and then Present (Pre_Post_Conditions (Contract (Ent)))
2370 then
2371 ASN := Pre_Post_Conditions (Contract (Ent));
2372 Push_Scope (Ent);
2373 Install_Formals (Ent);
2375 -- Pre/postconditions are rewritten as Check pragmas. Analysis
2376 -- is performed on a copy of the pragma expression, to prevent
2377 -- modifying the original expression.
2379 while Present (ASN) loop
2380 if Nkind (ASN) = N_Pragma then
2381 Exp :=
2382 New_Copy_Tree
2383 (Expression
2384 (First (Pragma_Argument_Associations (ASN))));
2385 Set_Parent (Exp, ASN);
2387 Preanalyze_Assert_Expression (Exp, Standard_Boolean);
2388 end if;
2390 ASN := Next_Pragma (ASN);
2391 end loop;
2393 End_Scope;
2394 end if;
2396 Next_Entity (Ent);
2397 end loop;
2398 end Check_Entry_Contracts;
2400 --------------------------------------
2401 -- Handle_Late_Controlled_Primitive --
2402 --------------------------------------
2404 procedure Handle_Late_Controlled_Primitive (Body_Decl : Node_Id) is
2405 Body_Spec : constant Node_Id := Specification (Body_Decl);
2406 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2407 Loc : constant Source_Ptr := Sloc (Body_Id);
2408 Params : constant List_Id :=
2409 Parameter_Specifications (Body_Spec);
2410 Spec : Node_Id;
2411 Spec_Id : Entity_Id;
2412 Typ : Node_Id;
2414 begin
2415 -- Consider only procedure bodies whose name matches one of the three
2416 -- controlled primitives.
2418 if Nkind (Body_Spec) /= N_Procedure_Specification
2419 or else not Nam_In (Chars (Body_Id), Name_Adjust,
2420 Name_Finalize,
2421 Name_Initialize)
2422 then
2423 return;
2425 -- A controlled primitive must have exactly one formal which is not
2426 -- an anonymous access type.
2428 elsif List_Length (Params) /= 1 then
2429 return;
2430 end if;
2432 Typ := Parameter_Type (First (Params));
2434 if Nkind (Typ) = N_Access_Definition then
2435 return;
2436 end if;
2438 Find_Type (Typ);
2440 -- The type of the formal must be derived from [Limited_]Controlled
2442 if not Is_Controlled (Entity (Typ)) then
2443 return;
2444 end if;
2446 -- Check whether a specification exists for this body. We do not
2447 -- analyze the spec of the body in full, because it will be analyzed
2448 -- again when the body is properly analyzed, and we cannot create
2449 -- duplicate entries in the formals chain. We look for an explicit
2450 -- specification because the body may be an overriding operation and
2451 -- an inherited spec may be present.
2453 Spec_Id := Current_Entity (Body_Id);
2455 while Present (Spec_Id) loop
2456 if Ekind_In (Spec_Id, E_Procedure, E_Generic_Procedure)
2457 and then Scope (Spec_Id) = Current_Scope
2458 and then Present (First_Formal (Spec_Id))
2459 and then No (Next_Formal (First_Formal (Spec_Id)))
2460 and then Etype (First_Formal (Spec_Id)) = Entity (Typ)
2461 and then Comes_From_Source (Spec_Id)
2462 then
2463 return;
2464 end if;
2466 Spec_Id := Homonym (Spec_Id);
2467 end loop;
2469 -- At this point the body is known to be a late controlled primitive.
2470 -- Generate a matching spec and insert it before the body. Note the
2471 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2472 -- tree in this case.
2474 Spec := Copy_Separate_Tree (Body_Spec);
2476 -- Ensure that the subprogram declaration does not inherit the null
2477 -- indicator from the body as we now have a proper spec/body pair.
2479 Set_Null_Present (Spec, False);
2481 -- Ensure that the freeze node is inserted after the declaration of
2482 -- the primitive since its expansion will freeze the primitive.
2484 Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
2486 Insert_Before_And_Analyze (Body_Decl, Decl);
2487 end Handle_Late_Controlled_Primitive;
2489 ----------------------------------------
2490 -- Remove_Partial_Visible_Refinements --
2491 ----------------------------------------
2493 procedure Remove_Partial_Visible_Refinements (Spec_Id : Entity_Id) is
2494 State_Elmt : Elmt_Id;
2495 begin
2496 if Present (Abstract_States (Spec_Id)) then
2497 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2498 while Present (State_Elmt) loop
2499 Set_Has_Partial_Visible_Refinement (Node (State_Elmt), False);
2500 Next_Elmt (State_Elmt);
2501 end loop;
2502 end if;
2504 -- For a child unit, also hide the partial state refinement from
2505 -- ancestor packages.
2507 if Is_Child_Unit (Spec_Id) then
2508 Remove_Partial_Visible_Refinements (Scope (Spec_Id));
2509 end if;
2510 end Remove_Partial_Visible_Refinements;
2512 --------------------------------
2513 -- Remove_Visible_Refinements --
2514 --------------------------------
2516 procedure Remove_Visible_Refinements (Spec_Id : Entity_Id) is
2517 State_Elmt : Elmt_Id;
2518 begin
2519 if Present (Abstract_States (Spec_Id)) then
2520 State_Elmt := First_Elmt (Abstract_States (Spec_Id));
2521 while Present (State_Elmt) loop
2522 Set_Has_Visible_Refinement (Node (State_Elmt), False);
2523 Next_Elmt (State_Elmt);
2524 end loop;
2525 end if;
2526 end Remove_Visible_Refinements;
2528 ---------------------
2529 -- Resolve_Aspects --
2530 ---------------------
2532 procedure Resolve_Aspects is
2533 E : Entity_Id;
2535 begin
2536 E := First_Entity (Current_Scope);
2537 while Present (E) loop
2538 Resolve_Aspect_Expressions (E);
2539 Next_Entity (E);
2540 end loop;
2541 end Resolve_Aspects;
2543 -------------------------------
2544 -- Uses_Unseen_Lib_Unit_Priv --
2545 -------------------------------
2547 function Uses_Unseen_Lib_Unit_Priv (Pkg : Entity_Id) return Boolean is
2548 Curr : Entity_Id;
2550 begin
2551 -- Avoid looking through scopes that do not meet the precondition of
2552 -- Pkg not being within a library unit spec.
2554 if not Is_Compilation_Unit (Pkg)
2555 and then not Is_Generic_Instance (Pkg)
2556 and then not In_Package_Body (Enclosing_Lib_Unit_Entity (Pkg))
2557 then
2558 -- Loop through all entities in the current scope to identify
2559 -- an entity that depends on a private type.
2561 Curr := First_Entity (Pkg);
2562 loop
2563 if Nkind (Curr) in N_Entity
2564 and then Depends_On_Private (Curr)
2565 then
2566 return True;
2567 end if;
2569 exit when Last_Entity (Current_Scope) = Curr;
2570 Curr := Next_Entity (Curr);
2571 end loop;
2572 end if;
2574 return False;
2575 end Uses_Unseen_Lib_Unit_Priv;
2577 -- Local variables
2579 Context : Node_Id := Empty;
2580 Freeze_From : Entity_Id := Empty;
2581 Next_Decl : Node_Id;
2583 Body_Seen : Boolean := False;
2584 -- Flag set when the first body [stub] is encountered
2586 -- Start of processing for Analyze_Declarations
2588 begin
2589 if Restriction_Check_Required (SPARK_05) then
2590 Check_Later_Vs_Basic_Declarations (L, During_Parsing => False);
2591 end if;
2593 Decl := First (L);
2594 while Present (Decl) loop
2596 -- Package spec cannot contain a package declaration in SPARK
2598 if Nkind (Decl) = N_Package_Declaration
2599 and then Nkind (Parent (L)) = N_Package_Specification
2600 then
2601 Check_SPARK_05_Restriction
2602 ("package specification cannot contain a package declaration",
2603 Decl);
2604 end if;
2606 -- Complete analysis of declaration
2608 Analyze (Decl);
2609 Next_Decl := Next (Decl);
2611 if No (Freeze_From) then
2612 Freeze_From := First_Entity (Current_Scope);
2613 end if;
2615 -- At the end of a declarative part, freeze remaining entities
2616 -- declared in it. The end of the visible declarations of package
2617 -- specification is not the end of a declarative part if private
2618 -- declarations are present. The end of a package declaration is a
2619 -- freezing point only if it a library package. A task definition or
2620 -- protected type definition is not a freeze point either. Finally,
2621 -- we do not freeze entities in generic scopes, because there is no
2622 -- code generated for them and freeze nodes will be generated for
2623 -- the instance.
2625 -- The end of a package instantiation is not a freeze point, but
2626 -- for now we make it one, because the generic body is inserted
2627 -- (currently) immediately after. Generic instantiations will not
2628 -- be a freeze point once delayed freezing of bodies is implemented.
2629 -- (This is needed in any case for early instantiations ???).
2631 if No (Next_Decl) then
2632 if Nkind (Parent (L)) = N_Component_List then
2633 null;
2635 elsif Nkind_In (Parent (L), N_Protected_Definition,
2636 N_Task_Definition)
2637 then
2638 Check_Entry_Contracts;
2640 elsif Nkind (Parent (L)) /= N_Package_Specification then
2641 if Nkind (Parent (L)) = N_Package_Body then
2642 Freeze_From := First_Entity (Current_Scope);
2643 end if;
2645 -- There may have been several freezing points previously,
2646 -- for example object declarations or subprogram bodies, but
2647 -- at the end of a declarative part we check freezing from
2648 -- the beginning, even though entities may already be frozen,
2649 -- in order to perform visibility checks on delayed aspects.
2651 Adjust_Decl;
2652 Freeze_All (First_Entity (Current_Scope), Decl);
2653 Freeze_From := Last_Entity (Current_Scope);
2655 -- Current scope is a package specification
2657 elsif Scope (Current_Scope) /= Standard_Standard
2658 and then not Is_Child_Unit (Current_Scope)
2659 and then No (Generic_Parent (Parent (L)))
2660 then
2661 -- This is needed in all cases to catch visibility errors in
2662 -- aspect expressions, but several large user tests are now
2663 -- rejected. Pending notification we restrict this call to
2664 -- ASIS mode.
2666 if ASIS_Mode then
2667 Resolve_Aspects;
2668 end if;
2670 elsif L /= Visible_Declarations (Parent (L))
2671 or else No (Private_Declarations (Parent (L)))
2672 or else Is_Empty_List (Private_Declarations (Parent (L)))
2673 then
2674 Adjust_Decl;
2676 -- End of a package declaration
2678 -- In compilation mode the expansion of freeze node takes care
2679 -- of resolving expressions of all aspects in the list. In ASIS
2680 -- mode this must be done explicitly.
2682 if ASIS_Mode
2683 and then Scope (Current_Scope) = Standard_Standard
2684 then
2685 Resolve_Aspects;
2686 end if;
2688 -- This is a freeze point because it is the end of a
2689 -- compilation unit.
2691 Freeze_All (First_Entity (Current_Scope), Decl);
2692 Freeze_From := Last_Entity (Current_Scope);
2694 -- At the end of the visible declarations the expressions in
2695 -- aspects of all entities declared so far must be resolved.
2696 -- The entities themselves might be frozen later, and the
2697 -- generated pragmas and attribute definition clauses analyzed
2698 -- in full at that point, but name resolution must take place
2699 -- now.
2700 -- In addition to being the proper semantics, this is mandatory
2701 -- within generic units, because global name capture requires
2702 -- those expressions to be analyzed, given that the generated
2703 -- pragmas do not appear in the original generic tree.
2705 elsif Serious_Errors_Detected = 0 then
2706 Resolve_Aspects;
2707 end if;
2709 -- If next node is a body then freeze all types before the body.
2710 -- An exception occurs for some expander-generated bodies. If these
2711 -- are generated at places where in general language rules would not
2712 -- allow a freeze point, then we assume that the expander has
2713 -- explicitly checked that all required types are properly frozen,
2714 -- and we do not cause general freezing here. This special circuit
2715 -- is used when the encountered body is marked as having already
2716 -- been analyzed.
2718 -- In all other cases (bodies that come from source, and expander
2719 -- generated bodies that have not been analyzed yet), freeze all
2720 -- types now. Note that in the latter case, the expander must take
2721 -- care to attach the bodies at a proper place in the tree so as to
2722 -- not cause unwanted freezing at that point.
2724 -- It is also necessary to check for a case where both an expression
2725 -- function is used and the current scope depends on an unseen
2726 -- private type from a library unit, otherwise premature freezing of
2727 -- the private type will occur.
2729 elsif not Analyzed (Next_Decl) and then Is_Body (Next_Decl)
2730 and then ((Nkind (Next_Decl) /= N_Subprogram_Body
2731 or else not Was_Expression_Function (Next_Decl))
2732 or else not Uses_Unseen_Lib_Unit_Priv (Current_Scope))
2733 then
2734 -- When a controlled type is frozen, the expander generates stream
2735 -- and controlled-type support routines. If the freeze is caused
2736 -- by the stand-alone body of Initialize, Adjust, or Finalize, the
2737 -- expander will end up using the wrong version of these routines,
2738 -- as the body has not been processed yet. To remedy this, detect
2739 -- a late controlled primitive and create a proper spec for it.
2740 -- This ensures that the primitive will override its inherited
2741 -- counterpart before the freeze takes place.
2743 -- If the declaration we just processed is a body, do not attempt
2744 -- to examine Next_Decl as the late primitive idiom can only apply
2745 -- to the first encountered body.
2747 -- The spec of the late primitive is not generated in ASIS mode to
2748 -- ensure a consistent list of primitives that indicates the true
2749 -- semantic structure of the program (which is not relevant when
2750 -- generating executable code).
2752 -- ??? A cleaner approach may be possible and/or this solution
2753 -- could be extended to general-purpose late primitives, TBD.
2755 if not ASIS_Mode
2756 and then not Body_Seen
2757 and then not Is_Body (Decl)
2758 then
2759 Body_Seen := True;
2761 if Nkind (Next_Decl) = N_Subprogram_Body then
2762 Handle_Late_Controlled_Primitive (Next_Decl);
2763 end if;
2764 end if;
2766 Adjust_Decl;
2768 -- The generated body of an expression function does not freeze,
2769 -- unless it is a completion, in which case only the expression
2770 -- itself freezes. This is handled when the body itself is
2771 -- analyzed (see Freeze_Expr_Types, sem_ch6.adb).
2773 Freeze_All (Freeze_From, Decl);
2774 Freeze_From := Last_Entity (Current_Scope);
2775 end if;
2777 Decl := Next_Decl;
2778 end loop;
2780 -- Post-freezing actions
2782 if Present (L) then
2783 Context := Parent (L);
2785 -- Analyze the contracts of packages and their bodies
2787 if Nkind (Context) = N_Package_Specification then
2789 -- When a package has private declarations, its contract must be
2790 -- analyzed at the end of the said declarations. This way both the
2791 -- analysis and freeze actions are properly synchronized in case
2792 -- of private type use within the contract.
2794 if L = Private_Declarations (Context) then
2795 Analyze_Package_Contract (Defining_Entity (Context));
2797 -- Otherwise the contract is analyzed at the end of the visible
2798 -- declarations.
2800 elsif L = Visible_Declarations (Context)
2801 and then No (Private_Declarations (Context))
2802 then
2803 Analyze_Package_Contract (Defining_Entity (Context));
2804 end if;
2806 elsif Nkind (Context) = N_Package_Body then
2807 Analyze_Package_Body_Contract (Defining_Entity (Context));
2808 end if;
2810 -- Analyze the contracts of various constructs now due to the delayed
2811 -- visibility needs of their aspects and pragmas.
2813 Analyze_Contracts (L);
2815 if Nkind (Context) = N_Package_Body then
2817 -- Ensure that all abstract states and objects declared in the
2818 -- state space of a package body are utilized as constituents.
2820 Check_Unused_Body_States (Defining_Entity (Context));
2822 -- State refinements are visible up to the end of the package body
2823 -- declarations. Hide the state refinements from visibility to
2824 -- restore the original state conditions.
2826 Remove_Visible_Refinements (Corresponding_Spec (Context));
2827 Remove_Partial_Visible_Refinements (Corresponding_Spec (Context));
2829 elsif Nkind (Context) = N_Package_Declaration then
2831 -- Partial state refinements are visible up to the end of the
2832 -- package spec declarations. Hide the partial state refinements
2833 -- from visibility to restore the original state conditions.
2835 Remove_Partial_Visible_Refinements (Corresponding_Spec (Context));
2836 end if;
2838 -- Verify that all abstract states found in any package declared in
2839 -- the input declarative list have proper refinements. The check is
2840 -- performed only when the context denotes a block, entry, package,
2841 -- protected, subprogram, or task body (SPARK RM 7.2.2(3)).
2843 Check_State_Refinements (Context);
2845 -- Create the subprogram bodies which verify the run-time semantics
2846 -- of pragmas Default_Initial_Condition and [Type_]Invariant for all
2847 -- types within the current declarative list. This ensures that all
2848 -- assertion expressions are preanalyzed and resolved at the end of
2849 -- the declarative part. Note that the resolution happens even when
2850 -- freezing does not take place.
2852 Build_Assertion_Bodies (L, Context);
2853 end if;
2854 end Analyze_Declarations;
2856 -----------------------------------
2857 -- Analyze_Full_Type_Declaration --
2858 -----------------------------------
2860 procedure Analyze_Full_Type_Declaration (N : Node_Id) is
2861 Def : constant Node_Id := Type_Definition (N);
2862 Def_Id : constant Entity_Id := Defining_Identifier (N);
2863 T : Entity_Id;
2864 Prev : Entity_Id;
2866 Is_Remote : constant Boolean :=
2867 (Is_Remote_Types (Current_Scope)
2868 or else Is_Remote_Call_Interface (Current_Scope))
2869 and then not (In_Private_Part (Current_Scope)
2870 or else In_Package_Body (Current_Scope));
2872 procedure Check_Nonoverridable_Aspects;
2873 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2874 -- be overridden, and can only be confirmed on derivation.
2876 procedure Check_Ops_From_Incomplete_Type;
2877 -- If there is a tagged incomplete partial view of the type, traverse
2878 -- the primitives of the incomplete view and change the type of any
2879 -- controlling formals and result to indicate the full view. The
2880 -- primitives will be added to the full type's primitive operations
2881 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2882 -- is called from Process_Incomplete_Dependents).
2884 ----------------------------------
2885 -- Check_Nonoverridable_Aspects --
2886 ----------------------------------
2888 procedure Check_Nonoverridable_Aspects is
2889 function Get_Aspect_Spec
2890 (Specs : List_Id;
2891 Aspect_Name : Name_Id) return Node_Id;
2892 -- Check whether a list of aspect specifications includes an entry
2893 -- for a specific aspect. The list is either that of a partial or
2894 -- a full view.
2896 ---------------------
2897 -- Get_Aspect_Spec --
2898 ---------------------
2900 function Get_Aspect_Spec
2901 (Specs : List_Id;
2902 Aspect_Name : Name_Id) return Node_Id
2904 Spec : Node_Id;
2906 begin
2907 Spec := First (Specs);
2908 while Present (Spec) loop
2909 if Chars (Identifier (Spec)) = Aspect_Name then
2910 return Spec;
2911 end if;
2912 Next (Spec);
2913 end loop;
2915 return Empty;
2916 end Get_Aspect_Spec;
2918 -- Local variables
2920 Prev_Aspects : constant List_Id :=
2921 Aspect_Specifications (Parent (Def_Id));
2922 Par_Type : Entity_Id;
2923 Prev_Aspect : Node_Id;
2925 -- Start of processing for Check_Nonoverridable_Aspects
2927 begin
2928 -- Get parent type of derived type. Note that Prev is the entity in
2929 -- the partial declaration, but its contents are now those of full
2930 -- view, while Def_Id reflects the partial view.
2932 if Is_Private_Type (Def_Id) then
2933 Par_Type := Etype (Full_View (Def_Id));
2934 else
2935 Par_Type := Etype (Def_Id);
2936 end if;
2938 -- If there is an inherited Implicit_Dereference, verify that it is
2939 -- made explicit in the partial view.
2941 if Has_Discriminants (Base_Type (Par_Type))
2942 and then Nkind (Parent (Prev)) = N_Full_Type_Declaration
2943 and then Present (Discriminant_Specifications (Parent (Prev)))
2944 and then Present (Get_Reference_Discriminant (Par_Type))
2945 then
2946 Prev_Aspect :=
2947 Get_Aspect_Spec (Prev_Aspects, Name_Implicit_Dereference);
2949 if No (Prev_Aspect)
2950 and then Present
2951 (Discriminant_Specifications
2952 (Original_Node (Parent (Prev))))
2953 then
2954 Error_Msg_N
2955 ("type does not inherit implicit dereference", Prev);
2957 else
2958 -- If one of the views has the aspect specified, verify that it
2959 -- is consistent with that of the parent.
2961 declare
2962 Par_Discr : constant Entity_Id :=
2963 Get_Reference_Discriminant (Par_Type);
2964 Cur_Discr : constant Entity_Id :=
2965 Get_Reference_Discriminant (Prev);
2967 begin
2968 if Corresponding_Discriminant (Cur_Discr) /= Par_Discr then
2969 Error_Msg_N ("aspect incosistent with that of parent", N);
2970 end if;
2972 -- Check that specification in partial view matches the
2973 -- inherited aspect. Compare names directly because aspect
2974 -- expression may not be analyzed.
2976 if Present (Prev_Aspect)
2977 and then Nkind (Expression (Prev_Aspect)) = N_Identifier
2978 and then Chars (Expression (Prev_Aspect)) /=
2979 Chars (Cur_Discr)
2980 then
2981 Error_Msg_N
2982 ("aspect incosistent with that of parent", N);
2983 end if;
2984 end;
2985 end if;
2986 end if;
2988 -- TBD : other nonoverridable aspects.
2989 end Check_Nonoverridable_Aspects;
2991 ------------------------------------
2992 -- Check_Ops_From_Incomplete_Type --
2993 ------------------------------------
2995 procedure Check_Ops_From_Incomplete_Type is
2996 Elmt : Elmt_Id;
2997 Formal : Entity_Id;
2998 Op : Entity_Id;
3000 begin
3001 if Prev /= T
3002 and then Ekind (Prev) = E_Incomplete_Type
3003 and then Is_Tagged_Type (Prev)
3004 and then Is_Tagged_Type (T)
3005 then
3006 Elmt := First_Elmt (Primitive_Operations (Prev));
3007 while Present (Elmt) loop
3008 Op := Node (Elmt);
3010 Formal := First_Formal (Op);
3011 while Present (Formal) loop
3012 if Etype (Formal) = Prev then
3013 Set_Etype (Formal, T);
3014 end if;
3016 Next_Formal (Formal);
3017 end loop;
3019 if Etype (Op) = Prev then
3020 Set_Etype (Op, T);
3021 end if;
3023 Next_Elmt (Elmt);
3024 end loop;
3025 end if;
3026 end Check_Ops_From_Incomplete_Type;
3028 -- Start of processing for Analyze_Full_Type_Declaration
3030 begin
3031 Prev := Find_Type_Name (N);
3033 -- The full view, if present, now points to the current type. If there
3034 -- is an incomplete partial view, set a link to it, to simplify the
3035 -- retrieval of primitive operations of the type.
3037 -- Ada 2005 (AI-50217): If the type was previously decorated when
3038 -- imported through a LIMITED WITH clause, it appears as incomplete
3039 -- but has no full view.
3041 if Ekind (Prev) = E_Incomplete_Type
3042 and then Present (Full_View (Prev))
3043 then
3044 T := Full_View (Prev);
3045 Set_Incomplete_View (N, Parent (Prev));
3046 else
3047 T := Prev;
3048 end if;
3050 Set_Is_Pure (T, Is_Pure (Current_Scope));
3052 -- We set the flag Is_First_Subtype here. It is needed to set the
3053 -- corresponding flag for the Implicit class-wide-type created
3054 -- during tagged types processing.
3056 Set_Is_First_Subtype (T, True);
3058 -- Only composite types other than array types are allowed to have
3059 -- discriminants.
3061 case Nkind (Def) is
3063 -- For derived types, the rule will be checked once we've figured
3064 -- out the parent type.
3066 when N_Derived_Type_Definition =>
3067 null;
3069 -- For record types, discriminants are allowed, unless we are in
3070 -- SPARK.
3072 when N_Record_Definition =>
3073 if Present (Discriminant_Specifications (N)) then
3074 Check_SPARK_05_Restriction
3075 ("discriminant type is not allowed",
3076 Defining_Identifier
3077 (First (Discriminant_Specifications (N))));
3078 end if;
3080 when others =>
3081 if Present (Discriminant_Specifications (N)) then
3082 Error_Msg_N
3083 ("elementary or array type cannot have discriminants",
3084 Defining_Identifier
3085 (First (Discriminant_Specifications (N))));
3086 end if;
3087 end case;
3089 -- Elaborate the type definition according to kind, and generate
3090 -- subsidiary (implicit) subtypes where needed. We skip this if it was
3091 -- already done (this happens during the reanalysis that follows a call
3092 -- to the high level optimizer).
3094 if not Analyzed (T) then
3095 Set_Analyzed (T);
3097 case Nkind (Def) is
3098 when N_Access_To_Subprogram_Definition =>
3099 Access_Subprogram_Declaration (T, Def);
3101 -- If this is a remote access to subprogram, we must create the
3102 -- equivalent fat pointer type, and related subprograms.
3104 if Is_Remote then
3105 Process_Remote_AST_Declaration (N);
3106 end if;
3108 -- Validate categorization rule against access type declaration
3109 -- usually a violation in Pure unit, Shared_Passive unit.
3111 Validate_Access_Type_Declaration (T, N);
3113 when N_Access_To_Object_Definition =>
3114 Access_Type_Declaration (T, Def);
3116 -- Validate categorization rule against access type declaration
3117 -- usually a violation in Pure unit, Shared_Passive unit.
3119 Validate_Access_Type_Declaration (T, N);
3121 -- If we are in a Remote_Call_Interface package and define a
3122 -- RACW, then calling stubs and specific stream attributes
3123 -- must be added.
3125 if Is_Remote
3126 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
3127 then
3128 Add_RACW_Features (Def_Id);
3129 end if;
3131 when N_Array_Type_Definition =>
3132 Array_Type_Declaration (T, Def);
3134 when N_Derived_Type_Definition =>
3135 Derived_Type_Declaration (T, N, T /= Def_Id);
3137 -- Inherit predicates from parent, and protect against illegal
3138 -- derivations.
3140 if Is_Type (T) and then Has_Predicates (T) then
3141 Set_Has_Predicates (Def_Id);
3142 end if;
3144 when N_Enumeration_Type_Definition =>
3145 Enumeration_Type_Declaration (T, Def);
3147 when N_Floating_Point_Definition =>
3148 Floating_Point_Type_Declaration (T, Def);
3150 when N_Decimal_Fixed_Point_Definition =>
3151 Decimal_Fixed_Point_Type_Declaration (T, Def);
3153 when N_Ordinary_Fixed_Point_Definition =>
3154 Ordinary_Fixed_Point_Type_Declaration (T, Def);
3156 when N_Signed_Integer_Type_Definition =>
3157 Signed_Integer_Type_Declaration (T, Def);
3159 when N_Modular_Type_Definition =>
3160 Modular_Type_Declaration (T, Def);
3162 when N_Record_Definition =>
3163 Record_Type_Declaration (T, N, Prev);
3165 -- If declaration has a parse error, nothing to elaborate.
3167 when N_Error =>
3168 null;
3170 when others =>
3171 raise Program_Error;
3172 end case;
3173 end if;
3175 if Etype (T) = Any_Type then
3176 return;
3177 end if;
3179 -- Controlled type is not allowed in SPARK
3181 if Is_Visibly_Controlled (T) then
3182 Check_SPARK_05_Restriction ("controlled type is not allowed", N);
3183 end if;
3185 -- Some common processing for all types
3187 Set_Depends_On_Private (T, Has_Private_Component (T));
3188 Check_Ops_From_Incomplete_Type;
3190 -- Both the declared entity, and its anonymous base type if one was
3191 -- created, need freeze nodes allocated.
3193 declare
3194 B : constant Entity_Id := Base_Type (T);
3196 begin
3197 -- In the case where the base type differs from the first subtype, we
3198 -- pre-allocate a freeze node, and set the proper link to the first
3199 -- subtype. Freeze_Entity will use this preallocated freeze node when
3200 -- it freezes the entity.
3202 -- This does not apply if the base type is a generic type, whose
3203 -- declaration is independent of the current derived definition.
3205 if B /= T and then not Is_Generic_Type (B) then
3206 Ensure_Freeze_Node (B);
3207 Set_First_Subtype_Link (Freeze_Node (B), T);
3208 end if;
3210 -- A type that is imported through a limited_with clause cannot
3211 -- generate any code, and thus need not be frozen. However, an access
3212 -- type with an imported designated type needs a finalization list,
3213 -- which may be referenced in some other package that has non-limited
3214 -- visibility on the designated type. Thus we must create the
3215 -- finalization list at the point the access type is frozen, to
3216 -- prevent unsatisfied references at link time.
3218 if not From_Limited_With (T) or else Is_Access_Type (T) then
3219 Set_Has_Delayed_Freeze (T);
3220 end if;
3221 end;
3223 -- Case where T is the full declaration of some private type which has
3224 -- been swapped in Defining_Identifier (N).
3226 if T /= Def_Id and then Is_Private_Type (Def_Id) then
3227 Process_Full_View (N, T, Def_Id);
3229 -- Record the reference. The form of this is a little strange, since
3230 -- the full declaration has been swapped in. So the first parameter
3231 -- here represents the entity to which a reference is made which is
3232 -- the "real" entity, i.e. the one swapped in, and the second
3233 -- parameter provides the reference location.
3235 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
3236 -- since we don't want a complaint about the full type being an
3237 -- unwanted reference to the private type
3239 declare
3240 B : constant Boolean := Has_Pragma_Unreferenced (T);
3241 begin
3242 Set_Has_Pragma_Unreferenced (T, False);
3243 Generate_Reference (T, T, 'c');
3244 Set_Has_Pragma_Unreferenced (T, B);
3245 end;
3247 Set_Completion_Referenced (Def_Id);
3249 -- For completion of incomplete type, process incomplete dependents
3250 -- and always mark the full type as referenced (it is the incomplete
3251 -- type that we get for any real reference).
3253 elsif Ekind (Prev) = E_Incomplete_Type then
3254 Process_Incomplete_Dependents (N, T, Prev);
3255 Generate_Reference (Prev, Def_Id, 'c');
3256 Set_Completion_Referenced (Def_Id);
3258 -- If not private type or incomplete type completion, this is a real
3259 -- definition of a new entity, so record it.
3261 else
3262 Generate_Definition (Def_Id);
3263 end if;
3265 -- Propagate any pending access types whose finalization masters need to
3266 -- be fully initialized from the partial to the full view. Guard against
3267 -- an illegal full view that remains unanalyzed.
3269 if Is_Type (Def_Id) and then Is_Incomplete_Or_Private_Type (Prev) then
3270 Set_Pending_Access_Types (Def_Id, Pending_Access_Types (Prev));
3271 end if;
3273 if Chars (Scope (Def_Id)) = Name_System
3274 and then Chars (Def_Id) = Name_Address
3275 and then In_Predefined_Unit (N)
3276 then
3277 Set_Is_Descendant_Of_Address (Def_Id);
3278 Set_Is_Descendant_Of_Address (Base_Type (Def_Id));
3279 Set_Is_Descendant_Of_Address (Prev);
3280 end if;
3282 Set_Optimize_Alignment_Flags (Def_Id);
3283 Check_Eliminated (Def_Id);
3285 -- If the declaration is a completion and aspects are present, apply
3286 -- them to the entity for the type which is currently the partial
3287 -- view, but which is the one that will be frozen.
3289 if Has_Aspects (N) then
3291 -- In most cases the partial view is a private type, and both views
3292 -- appear in different declarative parts. In the unusual case where
3293 -- the partial view is incomplete, perform the analysis on the
3294 -- full view, to prevent freezing anomalies with the corresponding
3295 -- class-wide type, which otherwise might be frozen before the
3296 -- dispatch table is built.
3298 if Prev /= Def_Id
3299 and then Ekind (Prev) /= E_Incomplete_Type
3300 then
3301 Analyze_Aspect_Specifications (N, Prev);
3303 -- Normal case
3305 else
3306 Analyze_Aspect_Specifications (N, Def_Id);
3307 end if;
3308 end if;
3310 if Is_Derived_Type (Prev)
3311 and then Def_Id /= Prev
3312 then
3313 Check_Nonoverridable_Aspects;
3314 end if;
3315 end Analyze_Full_Type_Declaration;
3317 ----------------------------------
3318 -- Analyze_Incomplete_Type_Decl --
3319 ----------------------------------
3321 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
3322 F : constant Boolean := Is_Pure (Current_Scope);
3323 T : Entity_Id;
3325 begin
3326 Check_SPARK_05_Restriction ("incomplete type is not allowed", N);
3328 Generate_Definition (Defining_Identifier (N));
3330 -- Process an incomplete declaration. The identifier must not have been
3331 -- declared already in the scope. However, an incomplete declaration may
3332 -- appear in the private part of a package, for a private type that has
3333 -- already been declared.
3335 -- In this case, the discriminants (if any) must match
3337 T := Find_Type_Name (N);
3339 Set_Ekind (T, E_Incomplete_Type);
3340 Init_Size_Align (T);
3341 Set_Is_First_Subtype (T, True);
3342 Set_Etype (T, T);
3344 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
3345 -- incomplete types.
3347 if Tagged_Present (N) then
3348 Set_Is_Tagged_Type (T, True);
3349 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3350 Make_Class_Wide_Type (T);
3351 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3352 end if;
3354 Set_Stored_Constraint (T, No_Elist);
3356 if Present (Discriminant_Specifications (N)) then
3357 Push_Scope (T);
3358 Process_Discriminants (N);
3359 End_Scope;
3360 end if;
3362 -- If the type has discriminants, nontrivial subtypes may be declared
3363 -- before the full view of the type. The full views of those subtypes
3364 -- will be built after the full view of the type.
3366 Set_Private_Dependents (T, New_Elmt_List);
3367 Set_Is_Pure (T, F);
3368 end Analyze_Incomplete_Type_Decl;
3370 -----------------------------------
3371 -- Analyze_Interface_Declaration --
3372 -----------------------------------
3374 procedure Analyze_Interface_Declaration (T : Entity_Id; Def : Node_Id) is
3375 CW : constant Entity_Id := Class_Wide_Type (T);
3377 begin
3378 Set_Is_Tagged_Type (T);
3379 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
3381 Set_Is_Limited_Record (T, Limited_Present (Def)
3382 or else Task_Present (Def)
3383 or else Protected_Present (Def)
3384 or else Synchronized_Present (Def));
3386 -- Type is abstract if full declaration carries keyword, or if previous
3387 -- partial view did.
3389 Set_Is_Abstract_Type (T);
3390 Set_Is_Interface (T);
3392 -- Type is a limited interface if it includes the keyword limited, task,
3393 -- protected, or synchronized.
3395 Set_Is_Limited_Interface
3396 (T, Limited_Present (Def)
3397 or else Protected_Present (Def)
3398 or else Synchronized_Present (Def)
3399 or else Task_Present (Def));
3401 Set_Interfaces (T, New_Elmt_List);
3402 Set_Direct_Primitive_Operations (T, New_Elmt_List);
3404 -- Complete the decoration of the class-wide entity if it was already
3405 -- built (i.e. during the creation of the limited view)
3407 if Present (CW) then
3408 Set_Is_Interface (CW);
3409 Set_Is_Limited_Interface (CW, Is_Limited_Interface (T));
3410 end if;
3412 -- Check runtime support for synchronized interfaces
3414 if (Is_Task_Interface (T)
3415 or else Is_Protected_Interface (T)
3416 or else Is_Synchronized_Interface (T))
3417 and then not RTE_Available (RE_Select_Specific_Data)
3418 then
3419 Error_Msg_CRT ("synchronized interfaces", T);
3420 end if;
3421 end Analyze_Interface_Declaration;
3423 -----------------------------
3424 -- Analyze_Itype_Reference --
3425 -----------------------------
3427 -- Nothing to do. This node is placed in the tree only for the benefit of
3428 -- back end processing, and has no effect on the semantic processing.
3430 procedure Analyze_Itype_Reference (N : Node_Id) is
3431 begin
3432 pragma Assert (Is_Itype (Itype (N)));
3433 null;
3434 end Analyze_Itype_Reference;
3436 --------------------------------
3437 -- Analyze_Number_Declaration --
3438 --------------------------------
3440 procedure Analyze_Number_Declaration (N : Node_Id) is
3441 E : constant Node_Id := Expression (N);
3442 Id : constant Entity_Id := Defining_Identifier (N);
3443 Index : Interp_Index;
3444 It : Interp;
3445 T : Entity_Id;
3447 begin
3448 Generate_Definition (Id);
3449 Enter_Name (Id);
3451 -- This is an optimization of a common case of an integer literal
3453 if Nkind (E) = N_Integer_Literal then
3454 Set_Is_Static_Expression (E, True);
3455 Set_Etype (E, Universal_Integer);
3457 Set_Etype (Id, Universal_Integer);
3458 Set_Ekind (Id, E_Named_Integer);
3459 Set_Is_Frozen (Id, True);
3460 return;
3461 end if;
3463 Set_Is_Pure (Id, Is_Pure (Current_Scope));
3465 -- Process expression, replacing error by integer zero, to avoid
3466 -- cascaded errors or aborts further along in the processing
3468 -- Replace Error by integer zero, which seems least likely to cause
3469 -- cascaded errors.
3471 if E = Error then
3472 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
3473 Set_Error_Posted (E);
3474 end if;
3476 Analyze (E);
3478 -- Verify that the expression is static and numeric. If
3479 -- the expression is overloaded, we apply the preference
3480 -- rule that favors root numeric types.
3482 if not Is_Overloaded (E) then
3483 T := Etype (E);
3484 if Has_Dynamic_Predicate_Aspect (T) then
3485 Error_Msg_N
3486 ("subtype has dynamic predicate, "
3487 & "not allowed in number declaration", N);
3488 end if;
3490 else
3491 T := Any_Type;
3493 Get_First_Interp (E, Index, It);
3494 while Present (It.Typ) loop
3495 if (Is_Integer_Type (It.Typ) or else Is_Real_Type (It.Typ))
3496 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
3497 then
3498 if T = Any_Type then
3499 T := It.Typ;
3501 elsif It.Typ = Universal_Real
3502 or else
3503 It.Typ = Universal_Integer
3504 then
3505 -- Choose universal interpretation over any other
3507 T := It.Typ;
3508 exit;
3509 end if;
3510 end if;
3512 Get_Next_Interp (Index, It);
3513 end loop;
3514 end if;
3516 if Is_Integer_Type (T) then
3517 Resolve (E, T);
3518 Set_Etype (Id, Universal_Integer);
3519 Set_Ekind (Id, E_Named_Integer);
3521 elsif Is_Real_Type (T) then
3523 -- Because the real value is converted to universal_real, this is a
3524 -- legal context for a universal fixed expression.
3526 if T = Universal_Fixed then
3527 declare
3528 Loc : constant Source_Ptr := Sloc (N);
3529 Conv : constant Node_Id := Make_Type_Conversion (Loc,
3530 Subtype_Mark =>
3531 New_Occurrence_Of (Universal_Real, Loc),
3532 Expression => Relocate_Node (E));
3534 begin
3535 Rewrite (E, Conv);
3536 Analyze (E);
3537 end;
3539 elsif T = Any_Fixed then
3540 Error_Msg_N ("illegal context for mixed mode operation", E);
3542 -- Expression is of the form : universal_fixed * integer. Try to
3543 -- resolve as universal_real.
3545 T := Universal_Real;
3546 Set_Etype (E, T);
3547 end if;
3549 Resolve (E, T);
3550 Set_Etype (Id, Universal_Real);
3551 Set_Ekind (Id, E_Named_Real);
3553 else
3554 Wrong_Type (E, Any_Numeric);
3555 Resolve (E, T);
3557 Set_Etype (Id, T);
3558 Set_Ekind (Id, E_Constant);
3559 Set_Never_Set_In_Source (Id, True);
3560 Set_Is_True_Constant (Id, True);
3561 return;
3562 end if;
3564 if Nkind_In (E, N_Integer_Literal, N_Real_Literal) then
3565 Set_Etype (E, Etype (Id));
3566 end if;
3568 if not Is_OK_Static_Expression (E) then
3569 Flag_Non_Static_Expr
3570 ("non-static expression used in number declaration!", E);
3571 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
3572 Set_Etype (E, Any_Type);
3573 end if;
3575 Analyze_Dimension (N);
3576 end Analyze_Number_Declaration;
3578 --------------------------------
3579 -- Analyze_Object_Declaration --
3580 --------------------------------
3582 -- WARNING: This routine manages Ghost regions. Return statements must be
3583 -- replaced by gotos which jump to the end of the routine and restore the
3584 -- Ghost mode.
3586 procedure Analyze_Object_Declaration (N : Node_Id) is
3587 Loc : constant Source_Ptr := Sloc (N);
3588 Id : constant Entity_Id := Defining_Identifier (N);
3589 Act_T : Entity_Id;
3590 T : Entity_Id;
3592 E : Node_Id := Expression (N);
3593 -- E is set to Expression (N) throughout this routine. When Expression
3594 -- (N) is modified, E is changed accordingly.
3596 Prev_Entity : Entity_Id := Empty;
3598 procedure Check_Dynamic_Object (Typ : Entity_Id);
3599 -- A library-level object with non-static discriminant constraints may
3600 -- require dynamic allocation. The declaration is illegal if the
3601 -- profile includes the restriction No_Implicit_Heap_Allocations.
3603 procedure Check_For_Null_Excluding_Components
3604 (Obj_Typ : Entity_Id;
3605 Obj_Decl : Node_Id);
3606 -- Verify that each null-excluding component of object declaration
3607 -- Obj_Decl carrying type Obj_Typ has explicit initialization. Emit
3608 -- a compile-time warning if this is not the case.
3610 function Count_Tasks (T : Entity_Id) return Uint;
3611 -- This function is called when a non-generic library level object of a
3612 -- task type is declared. Its function is to count the static number of
3613 -- tasks declared within the type (it is only called if Has_Task is set
3614 -- for T). As a side effect, if an array of tasks with non-static bounds
3615 -- or a variant record type is encountered, Check_Restriction is called
3616 -- indicating the count is unknown.
3618 function Delayed_Aspect_Present return Boolean;
3619 -- If the declaration has an expression that is an aggregate, and it
3620 -- has aspects that require delayed analysis, the resolution of the
3621 -- aggregate must be deferred to the freeze point of the objet. This
3622 -- special processing was created for address clauses, but it must
3623 -- also apply to Alignment. This must be done before the aspect
3624 -- specifications are analyzed because we must handle the aggregate
3625 -- before the analysis of the object declaration is complete.
3627 -- Any other relevant delayed aspects on object declarations ???
3629 --------------------------
3630 -- Check_Dynamic_Object --
3631 --------------------------
3633 procedure Check_Dynamic_Object (Typ : Entity_Id) is
3634 Comp : Entity_Id;
3635 Obj_Type : Entity_Id;
3637 begin
3638 Obj_Type := Typ;
3640 if Is_Private_Type (Obj_Type)
3641 and then Present (Full_View (Obj_Type))
3642 then
3643 Obj_Type := Full_View (Obj_Type);
3644 end if;
3646 if Known_Static_Esize (Obj_Type) then
3647 return;
3648 end if;
3650 if Restriction_Active (No_Implicit_Heap_Allocations)
3651 and then Expander_Active
3652 and then Has_Discriminants (Obj_Type)
3653 then
3654 Comp := First_Component (Obj_Type);
3655 while Present (Comp) loop
3656 if Known_Static_Esize (Etype (Comp))
3657 or else Size_Known_At_Compile_Time (Etype (Comp))
3658 then
3659 null;
3661 elsif not Discriminated_Size (Comp)
3662 and then Comes_From_Source (Comp)
3663 then
3664 Error_Msg_NE
3665 ("component& of non-static size will violate restriction "
3666 & "No_Implicit_Heap_Allocation?", N, Comp);
3668 elsif Is_Record_Type (Etype (Comp)) then
3669 Check_Dynamic_Object (Etype (Comp));
3670 end if;
3672 Next_Component (Comp);
3673 end loop;
3674 end if;
3675 end Check_Dynamic_Object;
3677 -----------------------------------------
3678 -- Check_For_Null_Excluding_Components --
3679 -----------------------------------------
3681 procedure Check_For_Null_Excluding_Components
3682 (Obj_Typ : Entity_Id;
3683 Obj_Decl : Node_Id)
3685 procedure Check_Component
3686 (Comp_Typ : Entity_Id;
3687 Comp_Decl : Node_Id := Empty;
3688 Array_Comp : Boolean := False);
3689 -- Apply a compile-time null-exclusion check on a component denoted
3690 -- by its declaration Comp_Decl and type Comp_Typ, and all of its
3691 -- subcomponents (if any).
3693 ---------------------
3694 -- Check_Component --
3695 ---------------------
3697 procedure Check_Component
3698 (Comp_Typ : Entity_Id;
3699 Comp_Decl : Node_Id := Empty;
3700 Array_Comp : Boolean := False)
3702 Comp : Entity_Id;
3703 T : Entity_Id;
3705 begin
3706 -- Do not consider internally-generated components or those that
3707 -- are already initialized.
3709 if Present (Comp_Decl)
3710 and then (not Comes_From_Source (Comp_Decl)
3711 or else Present (Expression (Comp_Decl)))
3712 then
3713 return;
3714 end if;
3716 if Is_Incomplete_Or_Private_Type (Comp_Typ)
3717 and then Present (Full_View (Comp_Typ))
3718 then
3719 T := Full_View (Comp_Typ);
3720 else
3721 T := Comp_Typ;
3722 end if;
3724 -- Verify a component of a null-excluding access type
3726 if Is_Access_Type (T)
3727 and then Can_Never_Be_Null (T)
3728 then
3729 if Comp_Decl = Obj_Decl then
3730 Null_Exclusion_Static_Checks
3731 (N => Obj_Decl,
3732 Comp => Empty,
3733 Array_Comp => Array_Comp);
3735 else
3736 Null_Exclusion_Static_Checks
3737 (N => Obj_Decl,
3738 Comp => Comp_Decl,
3739 Array_Comp => Array_Comp);
3740 end if;
3742 -- Check array components
3744 elsif Is_Array_Type (T) then
3746 -- There is no suitable component when the object is of an
3747 -- array type. However, a namable component may appear at some
3748 -- point during the recursive inspection, but not at the top
3749 -- level. At the top level just indicate array component case.
3751 if Comp_Decl = Obj_Decl then
3752 Check_Component (Component_Type (T), Array_Comp => True);
3753 else
3754 Check_Component (Component_Type (T), Comp_Decl);
3755 end if;
3757 -- Verify all components of type T
3759 -- Note: No checks are performed on types with discriminants due
3760 -- to complexities involving variants. ???
3762 elsif (Is_Concurrent_Type (T)
3763 or else Is_Incomplete_Or_Private_Type (T)
3764 or else Is_Record_Type (T))
3765 and then not Has_Discriminants (T)
3766 then
3767 Comp := First_Component (T);
3768 while Present (Comp) loop
3769 Check_Component (Etype (Comp), Parent (Comp));
3771 Comp := Next_Component (Comp);
3772 end loop;
3773 end if;
3774 end Check_Component;
3776 -- Start processing for Check_For_Null_Excluding_Components
3778 begin
3779 Check_Component (Obj_Typ, Obj_Decl);
3780 end Check_For_Null_Excluding_Components;
3782 -----------------
3783 -- Count_Tasks --
3784 -----------------
3786 function Count_Tasks (T : Entity_Id) return Uint is
3787 C : Entity_Id;
3788 X : Node_Id;
3789 V : Uint;
3791 begin
3792 if Is_Task_Type (T) then
3793 return Uint_1;
3795 elsif Is_Record_Type (T) then
3796 if Has_Discriminants (T) then
3797 Check_Restriction (Max_Tasks, N);
3798 return Uint_0;
3800 else
3801 V := Uint_0;
3802 C := First_Component (T);
3803 while Present (C) loop
3804 V := V + Count_Tasks (Etype (C));
3805 Next_Component (C);
3806 end loop;
3808 return V;
3809 end if;
3811 elsif Is_Array_Type (T) then
3812 X := First_Index (T);
3813 V := Count_Tasks (Component_Type (T));
3814 while Present (X) loop
3815 C := Etype (X);
3817 if not Is_OK_Static_Subtype (C) then
3818 Check_Restriction (Max_Tasks, N);
3819 return Uint_0;
3820 else
3821 V := V * (UI_Max (Uint_0,
3822 Expr_Value (Type_High_Bound (C)) -
3823 Expr_Value (Type_Low_Bound (C)) + Uint_1));
3824 end if;
3826 Next_Index (X);
3827 end loop;
3829 return V;
3831 else
3832 return Uint_0;
3833 end if;
3834 end Count_Tasks;
3836 ----------------------------
3837 -- Delayed_Aspect_Present --
3838 ----------------------------
3840 function Delayed_Aspect_Present return Boolean is
3841 A : Node_Id;
3842 A_Id : Aspect_Id;
3844 begin
3845 if Present (Aspect_Specifications (N)) then
3846 A := First (Aspect_Specifications (N));
3847 A_Id := Get_Aspect_Id (Chars (Identifier (A)));
3848 while Present (A) loop
3849 if A_Id = Aspect_Alignment or else A_Id = Aspect_Address then
3850 return True;
3851 end if;
3853 Next (A);
3854 end loop;
3855 end if;
3857 return False;
3858 end Delayed_Aspect_Present;
3860 -- Local variables
3862 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
3863 -- Save the Ghost mode to restore on exit
3865 Related_Id : Entity_Id;
3867 -- Start of processing for Analyze_Object_Declaration
3869 begin
3870 -- There are three kinds of implicit types generated by an
3871 -- object declaration:
3873 -- 1. Those generated by the original Object Definition
3875 -- 2. Those generated by the Expression
3877 -- 3. Those used to constrain the Object Definition with the
3878 -- expression constraints when the definition is unconstrained.
3880 -- They must be generated in this order to avoid order of elaboration
3881 -- issues. Thus the first step (after entering the name) is to analyze
3882 -- the object definition.
3884 if Constant_Present (N) then
3885 Prev_Entity := Current_Entity_In_Scope (Id);
3887 if Present (Prev_Entity)
3888 and then
3889 -- If the homograph is an implicit subprogram, it is overridden
3890 -- by the current declaration.
3892 ((Is_Overloadable (Prev_Entity)
3893 and then Is_Inherited_Operation (Prev_Entity))
3895 -- The current object is a discriminal generated for an entry
3896 -- family index. Even though the index is a constant, in this
3897 -- particular context there is no true constant redeclaration.
3898 -- Enter_Name will handle the visibility.
3900 or else
3901 (Is_Discriminal (Id)
3902 and then Ekind (Discriminal_Link (Id)) =
3903 E_Entry_Index_Parameter)
3905 -- The current object is the renaming for a generic declared
3906 -- within the instance.
3908 or else
3909 (Ekind (Prev_Entity) = E_Package
3910 and then Nkind (Parent (Prev_Entity)) =
3911 N_Package_Renaming_Declaration
3912 and then not Comes_From_Source (Prev_Entity)
3913 and then
3914 Is_Generic_Instance (Renamed_Entity (Prev_Entity)))
3916 -- The entity may be a homonym of a private component of the
3917 -- enclosing protected object, for which we create a local
3918 -- renaming declaration. The declaration is legal, even if
3919 -- useless when it just captures that component.
3921 or else
3922 (Ekind (Scope (Current_Scope)) = E_Protected_Type
3923 and then Nkind (Parent (Prev_Entity)) =
3924 N_Object_Renaming_Declaration))
3925 then
3926 Prev_Entity := Empty;
3927 end if;
3928 end if;
3930 if Present (Prev_Entity) then
3932 -- The object declaration is Ghost when it completes a deferred Ghost
3933 -- constant.
3935 Mark_And_Set_Ghost_Completion (N, Prev_Entity);
3937 Constant_Redeclaration (Id, N, T);
3939 Generate_Reference (Prev_Entity, Id, 'c');
3940 Set_Completion_Referenced (Id);
3942 if Error_Posted (N) then
3944 -- Type mismatch or illegal redeclaration; do not analyze
3945 -- expression to avoid cascaded errors.
3947 T := Find_Type_Of_Object (Object_Definition (N), N);
3948 Set_Etype (Id, T);
3949 Set_Ekind (Id, E_Variable);
3950 goto Leave;
3951 end if;
3953 -- In the normal case, enter identifier at the start to catch premature
3954 -- usage in the initialization expression.
3956 else
3957 Generate_Definition (Id);
3958 Enter_Name (Id);
3960 Mark_Coextensions (N, Object_Definition (N));
3962 T := Find_Type_Of_Object (Object_Definition (N), N);
3964 if Nkind (Object_Definition (N)) = N_Access_Definition
3965 and then Present
3966 (Access_To_Subprogram_Definition (Object_Definition (N)))
3967 and then Protected_Present
3968 (Access_To_Subprogram_Definition (Object_Definition (N)))
3969 then
3970 T := Replace_Anonymous_Access_To_Protected_Subprogram (N);
3971 end if;
3973 if Error_Posted (Id) then
3974 Set_Etype (Id, T);
3975 Set_Ekind (Id, E_Variable);
3976 goto Leave;
3977 end if;
3978 end if;
3980 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3981 -- out some static checks.
3983 if Ada_Version >= Ada_2005 then
3985 -- In case of aggregates we must also take care of the correct
3986 -- initialization of nested aggregates bug this is done at the
3987 -- point of the analysis of the aggregate (see sem_aggr.adb) ???
3989 if Can_Never_Be_Null (T) then
3990 if Present (Expression (N))
3991 and then Nkind (Expression (N)) = N_Aggregate
3992 then
3993 null;
3995 else
3996 declare
3997 Save_Typ : constant Entity_Id := Etype (Id);
3998 begin
3999 Set_Etype (Id, T); -- Temp. decoration for static checks
4000 Null_Exclusion_Static_Checks (N);
4001 Set_Etype (Id, Save_Typ);
4002 end;
4003 end if;
4005 -- We might be dealing with an object of a composite type containing
4006 -- null-excluding components without an aggregate, so we must verify
4007 -- that such components have default initialization.
4009 else
4010 Check_For_Null_Excluding_Components (T, N);
4011 end if;
4012 end if;
4014 -- Object is marked pure if it is in a pure scope
4016 Set_Is_Pure (Id, Is_Pure (Current_Scope));
4018 -- If deferred constant, make sure context is appropriate. We detect
4019 -- a deferred constant as a constant declaration with no expression.
4020 -- A deferred constant can appear in a package body if its completion
4021 -- is by means of an interface pragma.
4023 if Constant_Present (N) and then No (E) then
4025 -- A deferred constant may appear in the declarative part of the
4026 -- following constructs:
4028 -- blocks
4029 -- entry bodies
4030 -- extended return statements
4031 -- package specs
4032 -- package bodies
4033 -- subprogram bodies
4034 -- task bodies
4036 -- When declared inside a package spec, a deferred constant must be
4037 -- completed by a full constant declaration or pragma Import. In all
4038 -- other cases, the only proper completion is pragma Import. Extended
4039 -- return statements are flagged as invalid contexts because they do
4040 -- not have a declarative part and so cannot accommodate the pragma.
4042 if Ekind (Current_Scope) = E_Return_Statement then
4043 Error_Msg_N
4044 ("invalid context for deferred constant declaration (RM 7.4)",
4046 Error_Msg_N
4047 ("\declaration requires an initialization expression",
4049 Set_Constant_Present (N, False);
4051 -- In Ada 83, deferred constant must be of private type
4053 elsif not Is_Private_Type (T) then
4054 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
4055 Error_Msg_N
4056 ("(Ada 83) deferred constant must be private type", N);
4057 end if;
4058 end if;
4060 -- If not a deferred constant, then the object declaration freezes
4061 -- its type, unless the object is of an anonymous type and has delayed
4062 -- aspects. In that case the type is frozen when the object itself is.
4064 else
4065 Check_Fully_Declared (T, N);
4067 if Has_Delayed_Aspects (Id)
4068 and then Is_Array_Type (T)
4069 and then Is_Itype (T)
4070 then
4071 Set_Has_Delayed_Freeze (T);
4072 else
4073 Freeze_Before (N, T);
4074 end if;
4075 end if;
4077 -- If the object was created by a constrained array definition, then
4078 -- set the link in both the anonymous base type and anonymous subtype
4079 -- that are built to represent the array type to point to the object.
4081 if Nkind (Object_Definition (Declaration_Node (Id))) =
4082 N_Constrained_Array_Definition
4083 then
4084 Set_Related_Array_Object (T, Id);
4085 Set_Related_Array_Object (Base_Type (T), Id);
4086 end if;
4088 -- Special checks for protected objects not at library level
4090 if Has_Protected (T) and then not Is_Library_Level_Entity (Id) then
4091 Check_Restriction (No_Local_Protected_Objects, Id);
4093 -- Protected objects with interrupt handlers must be at library level
4095 -- Ada 2005: This test is not needed (and the corresponding clause
4096 -- in the RM is removed) because accessibility checks are sufficient
4097 -- to make handlers not at the library level illegal.
4099 -- AI05-0303: The AI is in fact a binding interpretation, and thus
4100 -- applies to the '95 version of the language as well.
4102 if Is_Protected_Type (T)
4103 and then Has_Interrupt_Handler (T)
4104 and then Ada_Version < Ada_95
4105 then
4106 Error_Msg_N
4107 ("interrupt object can only be declared at library level", Id);
4108 end if;
4109 end if;
4111 -- Check for violation of No_Local_Timing_Events
4113 if Has_Timing_Event (T) and then not Is_Library_Level_Entity (Id) then
4114 Check_Restriction (No_Local_Timing_Events, Id);
4115 end if;
4117 -- The actual subtype of the object is the nominal subtype, unless
4118 -- the nominal one is unconstrained and obtained from the expression.
4120 Act_T := T;
4122 -- These checks should be performed before the initialization expression
4123 -- is considered, so that the Object_Definition node is still the same
4124 -- as in source code.
4126 -- In SPARK, the nominal subtype is always given by a subtype mark
4127 -- and must not be unconstrained. (The only exception to this is the
4128 -- acceptance of declarations of constants of type String.)
4130 if not Nkind_In (Object_Definition (N), N_Expanded_Name, N_Identifier)
4131 then
4132 Check_SPARK_05_Restriction
4133 ("subtype mark required", Object_Definition (N));
4135 elsif Is_Array_Type (T)
4136 and then not Is_Constrained (T)
4137 and then T /= Standard_String
4138 then
4139 Check_SPARK_05_Restriction
4140 ("subtype mark of constrained type expected",
4141 Object_Definition (N));
4142 end if;
4144 if Is_Library_Level_Entity (Id) then
4145 Check_Dynamic_Object (T);
4146 end if;
4148 -- There are no aliased objects in SPARK
4150 if Aliased_Present (N) then
4151 Check_SPARK_05_Restriction ("aliased object is not allowed", N);
4152 end if;
4154 -- Process initialization expression if present and not in error
4156 if Present (E) and then E /= Error then
4158 -- Generate an error in case of CPP class-wide object initialization.
4159 -- Required because otherwise the expansion of the class-wide
4160 -- assignment would try to use 'size to initialize the object
4161 -- (primitive that is not available in CPP tagged types).
4163 if Is_Class_Wide_Type (Act_T)
4164 and then
4165 (Is_CPP_Class (Root_Type (Etype (Act_T)))
4166 or else
4167 (Present (Full_View (Root_Type (Etype (Act_T))))
4168 and then
4169 Is_CPP_Class (Full_View (Root_Type (Etype (Act_T))))))
4170 then
4171 Error_Msg_N
4172 ("predefined assignment not available for 'C'P'P tagged types",
4174 end if;
4176 Mark_Coextensions (N, E);
4177 Analyze (E);
4179 -- In case of errors detected in the analysis of the expression,
4180 -- decorate it with the expected type to avoid cascaded errors
4182 if No (Etype (E)) then
4183 Set_Etype (E, T);
4184 end if;
4186 -- If an initialization expression is present, then we set the
4187 -- Is_True_Constant flag. It will be reset if this is a variable
4188 -- and it is indeed modified.
4190 Set_Is_True_Constant (Id, True);
4192 -- If we are analyzing a constant declaration, set its completion
4193 -- flag after analyzing and resolving the expression.
4195 if Constant_Present (N) then
4196 Set_Has_Completion (Id);
4197 end if;
4199 -- Set type and resolve (type may be overridden later on). Note:
4200 -- Ekind (Id) must still be E_Void at this point so that incorrect
4201 -- early usage within E is properly diagnosed.
4203 Set_Etype (Id, T);
4205 -- If the expression is an aggregate we must look ahead to detect
4206 -- the possible presence of an address clause, and defer resolution
4207 -- and expansion of the aggregate to the freeze point of the entity.
4209 -- This is not always legal because the aggregate may contain other
4210 -- references that need freezing, e.g. references to other entities
4211 -- with address clauses. In any case, when compiling with -gnatI the
4212 -- presence of the address clause must be ignored.
4214 if Comes_From_Source (N)
4215 and then Expander_Active
4216 and then Nkind (E) = N_Aggregate
4217 and then
4218 ((Present (Following_Address_Clause (N))
4219 and then not Ignore_Rep_Clauses)
4220 or else Delayed_Aspect_Present)
4221 then
4222 Set_Etype (E, T);
4224 else
4225 Resolve (E, T);
4226 end if;
4228 -- No further action needed if E is a call to an inlined function
4229 -- which returns an unconstrained type and it has been expanded into
4230 -- a procedure call. In that case N has been replaced by an object
4231 -- declaration without initializing expression and it has been
4232 -- analyzed (see Expand_Inlined_Call).
4234 if Back_End_Inlining
4235 and then Expander_Active
4236 and then Nkind (E) = N_Function_Call
4237 and then Nkind (Name (E)) in N_Has_Entity
4238 and then Is_Inlined (Entity (Name (E)))
4239 and then not Is_Constrained (Etype (E))
4240 and then Analyzed (N)
4241 and then No (Expression (N))
4242 then
4243 goto Leave;
4244 end if;
4246 -- If E is null and has been replaced by an N_Raise_Constraint_Error
4247 -- node (which was marked already-analyzed), we need to set the type
4248 -- to something other than Any_Access in order to keep gigi happy.
4250 if Etype (E) = Any_Access then
4251 Set_Etype (E, T);
4252 end if;
4254 -- If the object is an access to variable, the initialization
4255 -- expression cannot be an access to constant.
4257 if Is_Access_Type (T)
4258 and then not Is_Access_Constant (T)
4259 and then Is_Access_Type (Etype (E))
4260 and then Is_Access_Constant (Etype (E))
4261 then
4262 Error_Msg_N
4263 ("access to variable cannot be initialized with an "
4264 & "access-to-constant expression", E);
4265 end if;
4267 if not Assignment_OK (N) then
4268 Check_Initialization (T, E);
4269 end if;
4271 Check_Unset_Reference (E);
4273 -- If this is a variable, then set current value. If this is a
4274 -- declared constant of a scalar type with a static expression,
4275 -- indicate that it is always valid.
4277 if not Constant_Present (N) then
4278 if Compile_Time_Known_Value (E) then
4279 Set_Current_Value (Id, E);
4280 end if;
4282 elsif Is_Scalar_Type (T) and then Is_OK_Static_Expression (E) then
4283 Set_Is_Known_Valid (Id);
4284 end if;
4286 -- Deal with setting of null flags
4288 if Is_Access_Type (T) then
4289 if Known_Non_Null (E) then
4290 Set_Is_Known_Non_Null (Id, True);
4291 elsif Known_Null (E) and then not Can_Never_Be_Null (Id) then
4292 Set_Is_Known_Null (Id, True);
4293 end if;
4294 end if;
4296 -- Check incorrect use of dynamically tagged expressions
4298 if Is_Tagged_Type (T) then
4299 Check_Dynamically_Tagged_Expression
4300 (Expr => E,
4301 Typ => T,
4302 Related_Nod => N);
4303 end if;
4305 Apply_Scalar_Range_Check (E, T);
4306 Apply_Static_Length_Check (E, T);
4308 if Nkind (Original_Node (N)) = N_Object_Declaration
4309 and then Comes_From_Source (Original_Node (N))
4311 -- Only call test if needed
4313 and then Restriction_Check_Required (SPARK_05)
4314 and then not Is_SPARK_05_Initialization_Expr (Original_Node (E))
4315 then
4316 Check_SPARK_05_Restriction
4317 ("initialization expression is not appropriate", E);
4318 end if;
4320 -- A formal parameter of a specific tagged type whose related
4321 -- subprogram is subject to pragma Extensions_Visible with value
4322 -- "False" cannot be implicitly converted to a class-wide type by
4323 -- means of an initialization expression (SPARK RM 6.1.7(3)). Do
4324 -- not consider internally generated expressions.
4326 if Is_Class_Wide_Type (T)
4327 and then Comes_From_Source (E)
4328 and then Is_EVF_Expression (E)
4329 then
4330 Error_Msg_N
4331 ("formal parameter cannot be implicitly converted to "
4332 & "class-wide type when Extensions_Visible is False", E);
4333 end if;
4334 end if;
4336 -- If the No_Streams restriction is set, check that the type of the
4337 -- object is not, and does not contain, any subtype derived from
4338 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
4339 -- Has_Stream just for efficiency reasons. There is no point in
4340 -- spending time on a Has_Stream check if the restriction is not set.
4342 if Restriction_Check_Required (No_Streams) then
4343 if Has_Stream (T) then
4344 Check_Restriction (No_Streams, N);
4345 end if;
4346 end if;
4348 -- Deal with predicate check before we start to do major rewriting. It
4349 -- is OK to initialize and then check the initialized value, since the
4350 -- object goes out of scope if we get a predicate failure. Note that we
4351 -- do this in the analyzer and not the expander because the analyzer
4352 -- does some substantial rewriting in some cases.
4354 -- We need a predicate check if the type has predicates that are not
4355 -- ignored, and if either there is an initializing expression, or for
4356 -- default initialization when we have at least one case of an explicit
4357 -- default initial value and then this is not an internal declaration
4358 -- whose initialization comes later (as for an aggregate expansion).
4360 if not Suppress_Assignment_Checks (N)
4361 and then Present (Predicate_Function (T))
4362 and then not Predicates_Ignored (T)
4363 and then not No_Initialization (N)
4364 and then
4365 (Present (E)
4366 or else
4367 Is_Partially_Initialized_Type (T, Include_Implicit => False))
4368 then
4369 -- If the type has a static predicate and the expression is known at
4370 -- compile time, see if the expression satisfies the predicate.
4372 if Present (E) then
4373 Check_Expression_Against_Static_Predicate (E, T);
4374 end if;
4376 -- If the type is a null record and there is no explicit initial
4377 -- expression, no predicate check applies.
4379 if No (E) and then Is_Null_Record_Type (T) then
4380 null;
4382 -- Do not generate a predicate check if the initialization expression
4383 -- is a type conversion because the conversion has been subjected to
4384 -- the same check. This is a small optimization which avoid redundant
4385 -- checks.
4387 elsif Present (E) and then Nkind (E) = N_Type_Conversion then
4388 null;
4390 else
4391 Insert_After (N,
4392 Make_Predicate_Check (T, New_Occurrence_Of (Id, Loc)));
4393 end if;
4394 end if;
4396 -- Case of unconstrained type
4398 if not Is_Definite_Subtype (T) then
4400 -- In SPARK, a declaration of unconstrained type is allowed
4401 -- only for constants of type string.
4403 if Is_String_Type (T) and then not Constant_Present (N) then
4404 Check_SPARK_05_Restriction
4405 ("declaration of object of unconstrained type not allowed", N);
4406 end if;
4408 -- Nothing to do in deferred constant case
4410 if Constant_Present (N) and then No (E) then
4411 null;
4413 -- Case of no initialization present
4415 elsif No (E) then
4416 if No_Initialization (N) then
4417 null;
4419 elsif Is_Class_Wide_Type (T) then
4420 Error_Msg_N
4421 ("initialization required in class-wide declaration ", N);
4423 else
4424 Error_Msg_N
4425 ("unconstrained subtype not allowed (need initialization)",
4426 Object_Definition (N));
4428 if Is_Record_Type (T) and then Has_Discriminants (T) then
4429 Error_Msg_N
4430 ("\provide initial value or explicit discriminant values",
4431 Object_Definition (N));
4433 Error_Msg_NE
4434 ("\or give default discriminant values for type&",
4435 Object_Definition (N), T);
4437 elsif Is_Array_Type (T) then
4438 Error_Msg_N
4439 ("\provide initial value or explicit array bounds",
4440 Object_Definition (N));
4441 end if;
4442 end if;
4444 -- Case of initialization present but in error. Set initial
4445 -- expression as absent (but do not make above complaints)
4447 elsif E = Error then
4448 Set_Expression (N, Empty);
4449 E := Empty;
4451 -- Case of initialization present
4453 else
4454 -- Check restrictions in Ada 83
4456 if not Constant_Present (N) then
4458 -- Unconstrained variables not allowed in Ada 83 mode
4460 if Ada_Version = Ada_83
4461 and then Comes_From_Source (Object_Definition (N))
4462 then
4463 Error_Msg_N
4464 ("(Ada 83) unconstrained variable not allowed",
4465 Object_Definition (N));
4466 end if;
4467 end if;
4469 -- Now we constrain the variable from the initializing expression
4471 -- If the expression is an aggregate, it has been expanded into
4472 -- individual assignments. Retrieve the actual type from the
4473 -- expanded construct.
4475 if Is_Array_Type (T)
4476 and then No_Initialization (N)
4477 and then Nkind (Original_Node (E)) = N_Aggregate
4478 then
4479 Act_T := Etype (E);
4481 -- In case of class-wide interface object declarations we delay
4482 -- the generation of the equivalent record type declarations until
4483 -- its expansion because there are cases in they are not required.
4485 elsif Is_Interface (T) then
4486 null;
4488 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4489 -- we should prevent the generation of another Itype with the
4490 -- same name as the one already generated, or we end up with
4491 -- two identical types in GNATprove.
4493 elsif GNATprove_Mode then
4494 null;
4496 -- If the type is an unchecked union, no subtype can be built from
4497 -- the expression. Rewrite declaration as a renaming, which the
4498 -- back-end can handle properly. This is a rather unusual case,
4499 -- because most unchecked_union declarations have default values
4500 -- for discriminants and are thus not indefinite.
4502 elsif Is_Unchecked_Union (T) then
4503 if Constant_Present (N) or else Nkind (E) = N_Function_Call then
4504 Set_Ekind (Id, E_Constant);
4505 else
4506 Set_Ekind (Id, E_Variable);
4507 end if;
4509 Rewrite (N,
4510 Make_Object_Renaming_Declaration (Loc,
4511 Defining_Identifier => Id,
4512 Subtype_Mark => New_Occurrence_Of (T, Loc),
4513 Name => E));
4515 Set_Renamed_Object (Id, E);
4516 Freeze_Before (N, T);
4517 Set_Is_Frozen (Id);
4518 goto Leave;
4520 else
4521 -- Ensure that the generated subtype has a unique external name
4522 -- when the related object is public. This guarantees that the
4523 -- subtype and its bounds will not be affected by switches or
4524 -- pragmas that may offset the internal counter due to extra
4525 -- generated code.
4527 if Is_Public (Id) then
4528 Related_Id := Id;
4529 else
4530 Related_Id := Empty;
4531 end if;
4533 Expand_Subtype_From_Expr
4534 (N => N,
4535 Unc_Type => T,
4536 Subtype_Indic => Object_Definition (N),
4537 Exp => E,
4538 Related_Id => Related_Id);
4540 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
4541 end if;
4543 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
4545 if Aliased_Present (N) then
4546 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4547 end if;
4549 Freeze_Before (N, Act_T);
4550 Freeze_Before (N, T);
4551 end if;
4553 elsif Is_Array_Type (T)
4554 and then No_Initialization (N)
4555 and then (Nkind (Original_Node (E)) = N_Aggregate
4556 or else (Nkind (Original_Node (E)) = N_Qualified_Expression
4557 and then Nkind (Original_Node (Expression
4558 (Original_Node (E)))) = N_Aggregate))
4559 then
4560 if not Is_Entity_Name (Object_Definition (N)) then
4561 Act_T := Etype (E);
4562 Check_Compile_Time_Size (Act_T);
4564 if Aliased_Present (N) then
4565 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
4566 end if;
4567 end if;
4569 -- When the given object definition and the aggregate are specified
4570 -- independently, and their lengths might differ do a length check.
4571 -- This cannot happen if the aggregate is of the form (others =>...)
4573 if not Is_Constrained (T) then
4574 null;
4576 elsif Nkind (E) = N_Raise_Constraint_Error then
4578 -- Aggregate is statically illegal. Place back in declaration
4580 Set_Expression (N, E);
4581 Set_No_Initialization (N, False);
4583 elsif T = Etype (E) then
4584 null;
4586 elsif Nkind (E) = N_Aggregate
4587 and then Present (Component_Associations (E))
4588 and then Present (Choice_List (First (Component_Associations (E))))
4589 and then
4590 Nkind (First (Choice_List (First (Component_Associations (E))))) =
4591 N_Others_Choice
4592 then
4593 null;
4595 else
4596 Apply_Length_Check (E, T);
4597 end if;
4599 -- If the type is limited unconstrained with defaulted discriminants and
4600 -- there is no expression, then the object is constrained by the
4601 -- defaults, so it is worthwhile building the corresponding subtype.
4603 elsif (Is_Limited_Record (T) or else Is_Concurrent_Type (T))
4604 and then not Is_Constrained (T)
4605 and then Has_Discriminants (T)
4606 then
4607 if No (E) then
4608 Act_T := Build_Default_Subtype (T, N);
4609 else
4610 -- Ada 2005: A limited object may be initialized by means of an
4611 -- aggregate. If the type has default discriminants it has an
4612 -- unconstrained nominal type, Its actual subtype will be obtained
4613 -- from the aggregate, and not from the default discriminants.
4615 Act_T := Etype (E);
4616 end if;
4618 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
4620 elsif Nkind (E) = N_Function_Call
4621 and then Constant_Present (N)
4622 and then Has_Unconstrained_Elements (Etype (E))
4623 then
4624 -- The back-end has problems with constants of a discriminated type
4625 -- with defaults, if the initial value is a function call. We
4626 -- generate an intermediate temporary that will receive a reference
4627 -- to the result of the call. The initialization expression then
4628 -- becomes a dereference of that temporary.
4630 Remove_Side_Effects (E);
4632 -- If this is a constant declaration of an unconstrained type and
4633 -- the initialization is an aggregate, we can use the subtype of the
4634 -- aggregate for the declared entity because it is immutable.
4636 elsif not Is_Constrained (T)
4637 and then Has_Discriminants (T)
4638 and then Constant_Present (N)
4639 and then not Has_Unchecked_Union (T)
4640 and then Nkind (E) = N_Aggregate
4641 then
4642 Act_T := Etype (E);
4643 end if;
4645 -- Check No_Wide_Characters restriction
4647 Check_Wide_Character_Restriction (T, Object_Definition (N));
4649 -- Indicate this is not set in source. Certainly true for constants, and
4650 -- true for variables so far (will be reset for a variable if and when
4651 -- we encounter a modification in the source).
4653 Set_Never_Set_In_Source (Id);
4655 -- Now establish the proper kind and type of the object
4657 if Constant_Present (N) then
4658 Set_Ekind (Id, E_Constant);
4659 Set_Is_True_Constant (Id);
4661 else
4662 Set_Ekind (Id, E_Variable);
4664 -- A variable is set as shared passive if it appears in a shared
4665 -- passive package, and is at the outer level. This is not done for
4666 -- entities generated during expansion, because those are always
4667 -- manipulated locally.
4669 if Is_Shared_Passive (Current_Scope)
4670 and then Is_Library_Level_Entity (Id)
4671 and then Comes_From_Source (Id)
4672 then
4673 Set_Is_Shared_Passive (Id);
4674 Check_Shared_Var (Id, T, N);
4675 end if;
4677 -- Set Has_Initial_Value if initializing expression present. Note
4678 -- that if there is no initializing expression, we leave the state
4679 -- of this flag unchanged (usually it will be False, but notably in
4680 -- the case of exception choice variables, it will already be true).
4682 if Present (E) then
4683 Set_Has_Initial_Value (Id);
4684 end if;
4685 end if;
4687 -- Initialize alignment and size and capture alignment setting
4689 Init_Alignment (Id);
4690 Init_Esize (Id);
4691 Set_Optimize_Alignment_Flags (Id);
4693 -- Deal with aliased case
4695 if Aliased_Present (N) then
4696 Set_Is_Aliased (Id);
4698 -- If the object is aliased and the type is unconstrained with
4699 -- defaulted discriminants and there is no expression, then the
4700 -- object is constrained by the defaults, so it is worthwhile
4701 -- building the corresponding subtype.
4703 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4704 -- unconstrained, then only establish an actual subtype if the
4705 -- nominal subtype is indefinite. In definite cases the object is
4706 -- unconstrained in Ada 2005.
4708 if No (E)
4709 and then Is_Record_Type (T)
4710 and then not Is_Constrained (T)
4711 and then Has_Discriminants (T)
4712 and then (Ada_Version < Ada_2005
4713 or else not Is_Definite_Subtype (T))
4714 then
4715 Set_Actual_Subtype (Id, Build_Default_Subtype (T, N));
4716 end if;
4717 end if;
4719 -- Now we can set the type of the object
4721 Set_Etype (Id, Act_T);
4723 -- Non-constant object is marked to be treated as volatile if type is
4724 -- volatile and we clear the Current_Value setting that may have been
4725 -- set above. Doing so for constants isn't required and might interfere
4726 -- with possible uses of the object as a static expression in contexts
4727 -- incompatible with volatility (e.g. as a case-statement alternative).
4729 if Ekind (Id) /= E_Constant and then Treat_As_Volatile (Etype (Id)) then
4730 Set_Treat_As_Volatile (Id);
4731 Set_Current_Value (Id, Empty);
4732 end if;
4734 -- Deal with controlled types
4736 if Has_Controlled_Component (Etype (Id))
4737 or else Is_Controlled (Etype (Id))
4738 then
4739 if not Is_Library_Level_Entity (Id) then
4740 Check_Restriction (No_Nested_Finalization, N);
4741 else
4742 Validate_Controlled_Object (Id);
4743 end if;
4744 end if;
4746 if Has_Task (Etype (Id)) then
4747 Check_Restriction (No_Tasking, N);
4749 -- Deal with counting max tasks
4751 -- Nothing to do if inside a generic
4753 if Inside_A_Generic then
4754 null;
4756 -- If library level entity, then count tasks
4758 elsif Is_Library_Level_Entity (Id) then
4759 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
4761 -- If not library level entity, then indicate we don't know max
4762 -- tasks and also check task hierarchy restriction and blocking
4763 -- operation (since starting a task is definitely blocking).
4765 else
4766 Check_Restriction (Max_Tasks, N);
4767 Check_Restriction (No_Task_Hierarchy, N);
4768 Check_Potentially_Blocking_Operation (N);
4769 end if;
4771 -- A rather specialized test. If we see two tasks being declared
4772 -- of the same type in the same object declaration, and the task
4773 -- has an entry with an address clause, we know that program error
4774 -- will be raised at run time since we can't have two tasks with
4775 -- entries at the same address.
4777 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
4778 declare
4779 E : Entity_Id;
4781 begin
4782 E := First_Entity (Etype (Id));
4783 while Present (E) loop
4784 if Ekind (E) = E_Entry
4785 and then Present (Get_Attribute_Definition_Clause
4786 (E, Attribute_Address))
4787 then
4788 Error_Msg_Warn := SPARK_Mode /= On;
4789 Error_Msg_N
4790 ("more than one task with same entry address<<", N);
4791 Error_Msg_N ("\Program_Error [<<", N);
4792 Insert_Action (N,
4793 Make_Raise_Program_Error (Loc,
4794 Reason => PE_Duplicated_Entry_Address));
4795 exit;
4796 end if;
4798 Next_Entity (E);
4799 end loop;
4800 end;
4801 end if;
4802 end if;
4804 -- Some simple constant-propagation: if the expression is a constant
4805 -- string initialized with a literal, share the literal. This avoids
4806 -- a run-time copy.
4808 if Present (E)
4809 and then Is_Entity_Name (E)
4810 and then Ekind (Entity (E)) = E_Constant
4811 and then Base_Type (Etype (E)) = Standard_String
4812 then
4813 declare
4814 Val : constant Node_Id := Constant_Value (Entity (E));
4815 begin
4816 if Present (Val) and then Nkind (Val) = N_String_Literal then
4817 Rewrite (E, New_Copy (Val));
4818 end if;
4819 end;
4820 end if;
4822 -- Another optimization: if the nominal subtype is unconstrained and
4823 -- the expression is a function call that returns an unconstrained
4824 -- type, rewrite the declaration as a renaming of the result of the
4825 -- call. The exceptions below are cases where the copy is expected,
4826 -- either by the back end (Aliased case) or by the semantics, as for
4827 -- initializing controlled types or copying tags for class-wide types.
4829 if Present (E)
4830 and then Nkind (E) = N_Explicit_Dereference
4831 and then Nkind (Original_Node (E)) = N_Function_Call
4832 and then not Is_Library_Level_Entity (Id)
4833 and then not Is_Constrained (Underlying_Type (T))
4834 and then not Is_Aliased (Id)
4835 and then not Is_Class_Wide_Type (T)
4836 and then not Is_Controlled_Active (T)
4837 and then not Has_Controlled_Component (Base_Type (T))
4838 and then Expander_Active
4839 then
4840 Rewrite (N,
4841 Make_Object_Renaming_Declaration (Loc,
4842 Defining_Identifier => Id,
4843 Access_Definition => Empty,
4844 Subtype_Mark => New_Occurrence_Of
4845 (Base_Type (Etype (Id)), Loc),
4846 Name => E));
4848 Set_Renamed_Object (Id, E);
4850 -- Force generation of debugging information for the constant and for
4851 -- the renamed function call.
4853 Set_Debug_Info_Needed (Id);
4854 Set_Debug_Info_Needed (Entity (Prefix (E)));
4855 end if;
4857 if Present (Prev_Entity)
4858 and then Is_Frozen (Prev_Entity)
4859 and then not Error_Posted (Id)
4860 then
4861 Error_Msg_N ("full constant declaration appears too late", N);
4862 end if;
4864 Check_Eliminated (Id);
4866 -- Deal with setting In_Private_Part flag if in private part
4868 if Ekind (Scope (Id)) = E_Package
4869 and then In_Private_Part (Scope (Id))
4870 then
4871 Set_In_Private_Part (Id);
4872 end if;
4874 <<Leave>>
4875 -- Initialize the refined state of a variable here because this is a
4876 -- common destination for legal and illegal object declarations.
4878 if Ekind (Id) = E_Variable then
4879 Set_Encapsulating_State (Id, Empty);
4880 end if;
4882 if Has_Aspects (N) then
4883 Analyze_Aspect_Specifications (N, Id);
4884 end if;
4886 Analyze_Dimension (N);
4888 -- Verify whether the object declaration introduces an illegal hidden
4889 -- state within a package subject to a null abstract state.
4891 if Ekind (Id) = E_Variable then
4892 Check_No_Hidden_State (Id);
4893 end if;
4895 Restore_Ghost_Mode (Saved_GM);
4896 end Analyze_Object_Declaration;
4898 ---------------------------
4899 -- Analyze_Others_Choice --
4900 ---------------------------
4902 -- Nothing to do for the others choice node itself, the semantic analysis
4903 -- of the others choice will occur as part of the processing of the parent
4905 procedure Analyze_Others_Choice (N : Node_Id) is
4906 pragma Warnings (Off, N);
4907 begin
4908 null;
4909 end Analyze_Others_Choice;
4911 -------------------------------------------
4912 -- Analyze_Private_Extension_Declaration --
4913 -------------------------------------------
4915 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
4916 Indic : constant Node_Id := Subtype_Indication (N);
4917 T : constant Entity_Id := Defining_Identifier (N);
4918 Iface : Entity_Id;
4919 Iface_Elmt : Elmt_Id;
4920 Parent_Base : Entity_Id;
4921 Parent_Type : Entity_Id;
4923 begin
4924 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4926 if Is_Non_Empty_List (Interface_List (N)) then
4927 declare
4928 Intf : Node_Id;
4929 T : Entity_Id;
4931 begin
4932 Intf := First (Interface_List (N));
4933 while Present (Intf) loop
4934 T := Find_Type_Of_Subtype_Indic (Intf);
4936 Diagnose_Interface (Intf, T);
4937 Next (Intf);
4938 end loop;
4939 end;
4940 end if;
4942 Generate_Definition (T);
4944 -- For other than Ada 2012, just enter the name in the current scope
4946 if Ada_Version < Ada_2012 then
4947 Enter_Name (T);
4949 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4950 -- case of private type that completes an incomplete type.
4952 else
4953 declare
4954 Prev : Entity_Id;
4956 begin
4957 Prev := Find_Type_Name (N);
4959 pragma Assert (Prev = T
4960 or else (Ekind (Prev) = E_Incomplete_Type
4961 and then Present (Full_View (Prev))
4962 and then Full_View (Prev) = T));
4963 end;
4964 end if;
4966 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
4967 Parent_Base := Base_Type (Parent_Type);
4969 if Parent_Type = Any_Type or else Etype (Parent_Type) = Any_Type then
4970 Set_Ekind (T, Ekind (Parent_Type));
4971 Set_Etype (T, Any_Type);
4972 goto Leave;
4974 elsif not Is_Tagged_Type (Parent_Type) then
4975 Error_Msg_N
4976 ("parent of type extension must be a tagged type ", Indic);
4977 goto Leave;
4979 elsif Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
4980 Error_Msg_N ("premature derivation of incomplete type", Indic);
4981 goto Leave;
4983 elsif Is_Concurrent_Type (Parent_Type) then
4984 Error_Msg_N
4985 ("parent type of a private extension cannot be a synchronized "
4986 & "tagged type (RM 3.9.1 (3/1))", N);
4988 Set_Etype (T, Any_Type);
4989 Set_Ekind (T, E_Limited_Private_Type);
4990 Set_Private_Dependents (T, New_Elmt_List);
4991 Set_Error_Posted (T);
4992 goto Leave;
4993 end if;
4995 -- Perhaps the parent type should be changed to the class-wide type's
4996 -- specific type in this case to prevent cascading errors ???
4998 if Is_Class_Wide_Type (Parent_Type) then
4999 Error_Msg_N
5000 ("parent of type extension must not be a class-wide type", Indic);
5001 goto Leave;
5002 end if;
5004 if (not Is_Package_Or_Generic_Package (Current_Scope)
5005 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
5006 or else In_Private_Part (Current_Scope)
5007 then
5008 Error_Msg_N ("invalid context for private extension", N);
5009 end if;
5011 -- Set common attributes
5013 Set_Is_Pure (T, Is_Pure (Current_Scope));
5014 Set_Scope (T, Current_Scope);
5015 Set_Ekind (T, E_Record_Type_With_Private);
5016 Init_Size_Align (T);
5017 Set_Default_SSO (T);
5019 Set_Etype (T, Parent_Base);
5020 Propagate_Concurrent_Flags (T, Parent_Base);
5022 Set_Convention (T, Convention (Parent_Type));
5023 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
5024 Set_Is_First_Subtype (T);
5025 Make_Class_Wide_Type (T);
5027 if Unknown_Discriminants_Present (N) then
5028 Set_Discriminant_Constraint (T, No_Elist);
5029 end if;
5031 Build_Derived_Record_Type (N, Parent_Type, T);
5033 -- A private extension inherits the Default_Initial_Condition pragma
5034 -- coming from any parent type within the derivation chain.
5036 if Has_DIC (Parent_Type) then
5037 Set_Has_Inherited_DIC (T);
5038 end if;
5040 -- A private extension inherits any class-wide invariants coming from a
5041 -- parent type or an interface. Note that the invariant procedure of the
5042 -- parent type should not be inherited because the private extension may
5043 -- define invariants of its own.
5045 if Has_Inherited_Invariants (Parent_Type)
5046 or else Has_Inheritable_Invariants (Parent_Type)
5047 then
5048 Set_Has_Inherited_Invariants (T);
5050 elsif Present (Interfaces (T)) then
5051 Iface_Elmt := First_Elmt (Interfaces (T));
5052 while Present (Iface_Elmt) loop
5053 Iface := Node (Iface_Elmt);
5055 if Has_Inheritable_Invariants (Iface) then
5056 Set_Has_Inherited_Invariants (T);
5057 exit;
5058 end if;
5060 Next_Elmt (Iface_Elmt);
5061 end loop;
5062 end if;
5064 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
5065 -- synchronized formal derived type.
5067 if Ada_Version >= Ada_2005 and then Synchronized_Present (N) then
5068 Set_Is_Limited_Record (T);
5070 -- Formal derived type case
5072 if Is_Generic_Type (T) then
5074 -- The parent must be a tagged limited type or a synchronized
5075 -- interface.
5077 if (not Is_Tagged_Type (Parent_Type)
5078 or else not Is_Limited_Type (Parent_Type))
5079 and then
5080 (not Is_Interface (Parent_Type)
5081 or else not Is_Synchronized_Interface (Parent_Type))
5082 then
5083 Error_Msg_NE
5084 ("parent type of & must be tagged limited or synchronized",
5085 N, T);
5086 end if;
5088 -- The progenitors (if any) must be limited or synchronized
5089 -- interfaces.
5091 if Present (Interfaces (T)) then
5092 Iface_Elmt := First_Elmt (Interfaces (T));
5093 while Present (Iface_Elmt) loop
5094 Iface := Node (Iface_Elmt);
5096 if not Is_Limited_Interface (Iface)
5097 and then not Is_Synchronized_Interface (Iface)
5098 then
5099 Error_Msg_NE
5100 ("progenitor & must be limited or synchronized",
5101 N, Iface);
5102 end if;
5104 Next_Elmt (Iface_Elmt);
5105 end loop;
5106 end if;
5108 -- Regular derived extension, the parent must be a limited or
5109 -- synchronized interface.
5111 else
5112 if not Is_Interface (Parent_Type)
5113 or else (not Is_Limited_Interface (Parent_Type)
5114 and then not Is_Synchronized_Interface (Parent_Type))
5115 then
5116 Error_Msg_NE
5117 ("parent type of & must be limited interface", N, T);
5118 end if;
5119 end if;
5121 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
5122 -- extension with a synchronized parent must be explicitly declared
5123 -- synchronized, because the full view will be a synchronized type.
5124 -- This must be checked before the check for limited types below,
5125 -- to ensure that types declared limited are not allowed to extend
5126 -- synchronized interfaces.
5128 elsif Is_Interface (Parent_Type)
5129 and then Is_Synchronized_Interface (Parent_Type)
5130 and then not Synchronized_Present (N)
5131 then
5132 Error_Msg_NE
5133 ("private extension of& must be explicitly synchronized",
5134 N, Parent_Type);
5136 elsif Limited_Present (N) then
5137 Set_Is_Limited_Record (T);
5139 if not Is_Limited_Type (Parent_Type)
5140 and then
5141 (not Is_Interface (Parent_Type)
5142 or else not Is_Limited_Interface (Parent_Type))
5143 then
5144 Error_Msg_NE ("parent type& of limited extension must be limited",
5145 N, Parent_Type);
5146 end if;
5147 end if;
5149 -- Remember that its parent type has a private extension. Used to warn
5150 -- on public primitives of the parent type defined after its private
5151 -- extensions (see Check_Dispatching_Operation).
5153 Set_Has_Private_Extension (Parent_Type);
5155 <<Leave>>
5156 if Has_Aspects (N) then
5157 Analyze_Aspect_Specifications (N, T);
5158 end if;
5159 end Analyze_Private_Extension_Declaration;
5161 ---------------------------------
5162 -- Analyze_Subtype_Declaration --
5163 ---------------------------------
5165 procedure Analyze_Subtype_Declaration
5166 (N : Node_Id;
5167 Skip : Boolean := False)
5169 Id : constant Entity_Id := Defining_Identifier (N);
5170 R_Checks : Check_Result;
5171 T : Entity_Id;
5173 begin
5174 Generate_Definition (Id);
5175 Set_Is_Pure (Id, Is_Pure (Current_Scope));
5176 Init_Size_Align (Id);
5178 -- The following guard condition on Enter_Name is to handle cases where
5179 -- the defining identifier has already been entered into the scope but
5180 -- the declaration as a whole needs to be analyzed.
5182 -- This case in particular happens for derived enumeration types. The
5183 -- derived enumeration type is processed as an inserted enumeration type
5184 -- declaration followed by a rewritten subtype declaration. The defining
5185 -- identifier, however, is entered into the name scope very early in the
5186 -- processing of the original type declaration and therefore needs to be
5187 -- avoided here, when the created subtype declaration is analyzed. (See
5188 -- Build_Derived_Types)
5190 -- This also happens when the full view of a private type is derived
5191 -- type with constraints. In this case the entity has been introduced
5192 -- in the private declaration.
5194 -- Finally this happens in some complex cases when validity checks are
5195 -- enabled, where the same subtype declaration may be analyzed twice.
5196 -- This can happen if the subtype is created by the pre-analysis of
5197 -- an attribute tht gives the range of a loop statement, and the loop
5198 -- itself appears within an if_statement that will be rewritten during
5199 -- expansion.
5201 if Skip
5202 or else (Present (Etype (Id))
5203 and then (Is_Private_Type (Etype (Id))
5204 or else Is_Task_Type (Etype (Id))
5205 or else Is_Rewrite_Substitution (N)))
5206 then
5207 null;
5209 elsif Current_Entity (Id) = Id then
5210 null;
5212 else
5213 Enter_Name (Id);
5214 end if;
5216 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
5218 -- Class-wide equivalent types of records with unknown discriminants
5219 -- involve the generation of an itype which serves as the private view
5220 -- of a constrained record subtype. In such cases the base type of the
5221 -- current subtype we are processing is the private itype. Use the full
5222 -- of the private itype when decorating various attributes.
5224 if Is_Itype (T)
5225 and then Is_Private_Type (T)
5226 and then Present (Full_View (T))
5227 then
5228 T := Full_View (T);
5229 end if;
5231 -- Inherit common attributes
5233 Set_Is_Volatile (Id, Is_Volatile (T));
5234 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
5235 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
5236 Set_Convention (Id, Convention (T));
5238 -- If ancestor has predicates then so does the subtype, and in addition
5239 -- we must delay the freeze to properly arrange predicate inheritance.
5241 -- The Ancestor_Type test is really unpleasant, there seem to be cases
5242 -- in which T = ID, so the above tests and assignments do nothing???
5244 if Has_Predicates (T)
5245 or else (Present (Ancestor_Subtype (T))
5246 and then Has_Predicates (Ancestor_Subtype (T)))
5247 then
5248 Set_Has_Predicates (Id);
5249 Set_Has_Delayed_Freeze (Id);
5251 -- Generated subtypes inherit the predicate function from the parent
5252 -- (no aspects to examine on the generated declaration).
5254 if not Comes_From_Source (N) then
5255 Set_Ekind (Id, Ekind (T));
5257 if Present (Predicate_Function (T)) then
5258 Set_Predicate_Function (Id, Predicate_Function (T));
5260 elsif Present (Ancestor_Subtype (T))
5261 and then Has_Predicates (Ancestor_Subtype (T))
5262 and then Present (Predicate_Function (Ancestor_Subtype (T)))
5263 then
5264 Set_Predicate_Function (Id,
5265 Predicate_Function (Ancestor_Subtype (T)));
5266 end if;
5267 end if;
5268 end if;
5270 -- Subtype of Boolean cannot have a constraint in SPARK
5272 if Is_Boolean_Type (T)
5273 and then Nkind (Subtype_Indication (N)) = N_Subtype_Indication
5274 then
5275 Check_SPARK_05_Restriction
5276 ("subtype of Boolean cannot have constraint", N);
5277 end if;
5279 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5280 declare
5281 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5282 One_Cstr : Node_Id;
5283 Low : Node_Id;
5284 High : Node_Id;
5286 begin
5287 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint then
5288 One_Cstr := First (Constraints (Cstr));
5289 while Present (One_Cstr) loop
5291 -- Index or discriminant constraint in SPARK must be a
5292 -- subtype mark.
5294 if not
5295 Nkind_In (One_Cstr, N_Identifier, N_Expanded_Name)
5296 then
5297 Check_SPARK_05_Restriction
5298 ("subtype mark required", One_Cstr);
5300 -- String subtype must have a lower bound of 1 in SPARK.
5301 -- Note that we do not need to test for the non-static case
5302 -- here, since that was already taken care of in
5303 -- Process_Range_Expr_In_Decl.
5305 elsif Base_Type (T) = Standard_String then
5306 Get_Index_Bounds (One_Cstr, Low, High);
5308 if Is_OK_Static_Expression (Low)
5309 and then Expr_Value (Low) /= 1
5310 then
5311 Check_SPARK_05_Restriction
5312 ("String subtype must have lower bound of 1", N);
5313 end if;
5314 end if;
5316 Next (One_Cstr);
5317 end loop;
5318 end if;
5319 end;
5320 end if;
5322 -- In the case where there is no constraint given in the subtype
5323 -- indication, Process_Subtype just returns the Subtype_Mark, so its
5324 -- semantic attributes must be established here.
5326 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
5327 Set_Etype (Id, Base_Type (T));
5329 -- Subtype of unconstrained array without constraint is not allowed
5330 -- in SPARK.
5332 if Is_Array_Type (T) and then not Is_Constrained (T) then
5333 Check_SPARK_05_Restriction
5334 ("subtype of unconstrained array must have constraint", N);
5335 end if;
5337 case Ekind (T) is
5338 when Array_Kind =>
5339 Set_Ekind (Id, E_Array_Subtype);
5340 Copy_Array_Subtype_Attributes (Id, T);
5342 when Decimal_Fixed_Point_Kind =>
5343 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
5344 Set_Digits_Value (Id, Digits_Value (T));
5345 Set_Delta_Value (Id, Delta_Value (T));
5346 Set_Scale_Value (Id, Scale_Value (T));
5347 Set_Small_Value (Id, Small_Value (T));
5348 Set_Scalar_Range (Id, Scalar_Range (T));
5349 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
5350 Set_Is_Constrained (Id, Is_Constrained (T));
5351 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5352 Set_RM_Size (Id, RM_Size (T));
5354 when Enumeration_Kind =>
5355 Set_Ekind (Id, E_Enumeration_Subtype);
5356 Set_First_Literal (Id, First_Literal (Base_Type (T)));
5357 Set_Scalar_Range (Id, Scalar_Range (T));
5358 Set_Is_Character_Type (Id, Is_Character_Type (T));
5359 Set_Is_Constrained (Id, Is_Constrained (T));
5360 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5361 Set_RM_Size (Id, RM_Size (T));
5362 Inherit_Predicate_Flags (Id, T);
5364 when Ordinary_Fixed_Point_Kind =>
5365 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
5366 Set_Scalar_Range (Id, Scalar_Range (T));
5367 Set_Small_Value (Id, Small_Value (T));
5368 Set_Delta_Value (Id, Delta_Value (T));
5369 Set_Is_Constrained (Id, Is_Constrained (T));
5370 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5371 Set_RM_Size (Id, RM_Size (T));
5373 when Float_Kind =>
5374 Set_Ekind (Id, E_Floating_Point_Subtype);
5375 Set_Scalar_Range (Id, Scalar_Range (T));
5376 Set_Digits_Value (Id, Digits_Value (T));
5377 Set_Is_Constrained (Id, Is_Constrained (T));
5379 -- If the floating point type has dimensions, these will be
5380 -- inherited subsequently when Analyze_Dimensions is called.
5382 when Signed_Integer_Kind =>
5383 Set_Ekind (Id, E_Signed_Integer_Subtype);
5384 Set_Scalar_Range (Id, Scalar_Range (T));
5385 Set_Is_Constrained (Id, Is_Constrained (T));
5386 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5387 Set_RM_Size (Id, RM_Size (T));
5388 Inherit_Predicate_Flags (Id, T);
5390 when Modular_Integer_Kind =>
5391 Set_Ekind (Id, E_Modular_Integer_Subtype);
5392 Set_Scalar_Range (Id, Scalar_Range (T));
5393 Set_Is_Constrained (Id, Is_Constrained (T));
5394 Set_Is_Known_Valid (Id, Is_Known_Valid (T));
5395 Set_RM_Size (Id, RM_Size (T));
5396 Inherit_Predicate_Flags (Id, T);
5398 when Class_Wide_Kind =>
5399 Set_Ekind (Id, E_Class_Wide_Subtype);
5400 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5401 Set_Cloned_Subtype (Id, T);
5402 Set_Is_Tagged_Type (Id, True);
5403 Set_Has_Unknown_Discriminants
5404 (Id, True);
5405 Set_No_Tagged_Streams_Pragma
5406 (Id, No_Tagged_Streams_Pragma (T));
5408 if Ekind (T) = E_Class_Wide_Subtype then
5409 Set_Equivalent_Type (Id, Equivalent_Type (T));
5410 end if;
5412 when E_Record_Subtype
5413 | E_Record_Type
5415 Set_Ekind (Id, E_Record_Subtype);
5417 if Ekind (T) = E_Record_Subtype
5418 and then Present (Cloned_Subtype (T))
5419 then
5420 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
5421 else
5422 Set_Cloned_Subtype (Id, T);
5423 end if;
5425 Set_First_Entity (Id, First_Entity (T));
5426 Set_Last_Entity (Id, Last_Entity (T));
5427 Set_Has_Discriminants (Id, Has_Discriminants (T));
5428 Set_Is_Constrained (Id, Is_Constrained (T));
5429 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5430 Set_Has_Implicit_Dereference
5431 (Id, Has_Implicit_Dereference (T));
5432 Set_Has_Unknown_Discriminants
5433 (Id, Has_Unknown_Discriminants (T));
5435 if Has_Discriminants (T) then
5436 Set_Discriminant_Constraint
5437 (Id, Discriminant_Constraint (T));
5438 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5440 elsif Has_Unknown_Discriminants (Id) then
5441 Set_Discriminant_Constraint (Id, No_Elist);
5442 end if;
5444 if Is_Tagged_Type (T) then
5445 Set_Is_Tagged_Type (Id, True);
5446 Set_No_Tagged_Streams_Pragma
5447 (Id, No_Tagged_Streams_Pragma (T));
5448 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5449 Set_Direct_Primitive_Operations
5450 (Id, Direct_Primitive_Operations (T));
5451 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5453 if Is_Interface (T) then
5454 Set_Is_Interface (Id);
5455 Set_Is_Limited_Interface (Id, Is_Limited_Interface (T));
5456 end if;
5457 end if;
5459 when Private_Kind =>
5460 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5461 Set_Has_Discriminants (Id, Has_Discriminants (T));
5462 Set_Is_Constrained (Id, Is_Constrained (T));
5463 Set_First_Entity (Id, First_Entity (T));
5464 Set_Last_Entity (Id, Last_Entity (T));
5465 Set_Private_Dependents (Id, New_Elmt_List);
5466 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
5467 Set_Has_Implicit_Dereference
5468 (Id, Has_Implicit_Dereference (T));
5469 Set_Has_Unknown_Discriminants
5470 (Id, Has_Unknown_Discriminants (T));
5471 Set_Known_To_Have_Preelab_Init
5472 (Id, Known_To_Have_Preelab_Init (T));
5474 if Is_Tagged_Type (T) then
5475 Set_Is_Tagged_Type (Id);
5476 Set_No_Tagged_Streams_Pragma (Id,
5477 No_Tagged_Streams_Pragma (T));
5478 Set_Is_Abstract_Type (Id, Is_Abstract_Type (T));
5479 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
5480 Set_Direct_Primitive_Operations (Id,
5481 Direct_Primitive_Operations (T));
5482 end if;
5484 -- In general the attributes of the subtype of a private type
5485 -- are the attributes of the partial view of parent. However,
5486 -- the full view may be a discriminated type, and the subtype
5487 -- must share the discriminant constraint to generate correct
5488 -- calls to initialization procedures.
5490 if Has_Discriminants (T) then
5491 Set_Discriminant_Constraint
5492 (Id, Discriminant_Constraint (T));
5493 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5495 elsif Present (Full_View (T))
5496 and then Has_Discriminants (Full_View (T))
5497 then
5498 Set_Discriminant_Constraint
5499 (Id, Discriminant_Constraint (Full_View (T)));
5500 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5502 -- This would seem semantically correct, but apparently
5503 -- generates spurious errors about missing components ???
5505 -- Set_Has_Discriminants (Id);
5506 end if;
5508 Prepare_Private_Subtype_Completion (Id, N);
5510 -- If this is the subtype of a constrained private type with
5511 -- discriminants that has got a full view and we also have
5512 -- built a completion just above, show that the completion
5513 -- is a clone of the full view to the back-end.
5515 if Has_Discriminants (T)
5516 and then not Has_Unknown_Discriminants (T)
5517 and then not Is_Empty_Elmt_List (Discriminant_Constraint (T))
5518 and then Present (Full_View (T))
5519 and then Present (Full_View (Id))
5520 then
5521 Set_Cloned_Subtype (Full_View (Id), Full_View (T));
5522 end if;
5524 when Access_Kind =>
5525 Set_Ekind (Id, E_Access_Subtype);
5526 Set_Is_Constrained (Id, Is_Constrained (T));
5527 Set_Is_Access_Constant
5528 (Id, Is_Access_Constant (T));
5529 Set_Directly_Designated_Type
5530 (Id, Designated_Type (T));
5531 Set_Can_Never_Be_Null (Id, Can_Never_Be_Null (T));
5533 -- A Pure library_item must not contain the declaration of a
5534 -- named access type, except within a subprogram, generic
5535 -- subprogram, task unit, or protected unit, or if it has
5536 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5538 if Comes_From_Source (Id)
5539 and then In_Pure_Unit
5540 and then not In_Subprogram_Task_Protected_Unit
5541 and then not No_Pool_Assigned (Id)
5542 then
5543 Error_Msg_N
5544 ("named access types not allowed in pure unit", N);
5545 end if;
5547 when Concurrent_Kind =>
5548 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
5549 Set_Corresponding_Record_Type (Id,
5550 Corresponding_Record_Type (T));
5551 Set_First_Entity (Id, First_Entity (T));
5552 Set_First_Private_Entity (Id, First_Private_Entity (T));
5553 Set_Has_Discriminants (Id, Has_Discriminants (T));
5554 Set_Is_Constrained (Id, Is_Constrained (T));
5555 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5556 Set_Last_Entity (Id, Last_Entity (T));
5558 if Is_Tagged_Type (T) then
5559 Set_No_Tagged_Streams_Pragma
5560 (Id, No_Tagged_Streams_Pragma (T));
5561 end if;
5563 if Has_Discriminants (T) then
5564 Set_Discriminant_Constraint
5565 (Id, Discriminant_Constraint (T));
5566 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
5567 end if;
5569 when Incomplete_Kind =>
5570 if Ada_Version >= Ada_2005 then
5572 -- In Ada 2005 an incomplete type can be explicitly tagged:
5573 -- propagate indication. Note that we also have to include
5574 -- subtypes for Ada 2012 extended use of incomplete types.
5576 Set_Ekind (Id, E_Incomplete_Subtype);
5577 Set_Is_Tagged_Type (Id, Is_Tagged_Type (T));
5578 Set_Private_Dependents (Id, New_Elmt_List);
5580 if Is_Tagged_Type (Id) then
5581 Set_No_Tagged_Streams_Pragma
5582 (Id, No_Tagged_Streams_Pragma (T));
5583 Set_Direct_Primitive_Operations (Id, New_Elmt_List);
5584 end if;
5586 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5587 -- incomplete type visible through a limited with clause.
5589 if From_Limited_With (T)
5590 and then Present (Non_Limited_View (T))
5591 then
5592 Set_From_Limited_With (Id);
5593 Set_Non_Limited_View (Id, Non_Limited_View (T));
5595 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5596 -- to the private dependents of the original incomplete
5597 -- type for future transformation.
5599 else
5600 Append_Elmt (Id, Private_Dependents (T));
5601 end if;
5603 -- If the subtype name denotes an incomplete type an error
5604 -- was already reported by Process_Subtype.
5606 else
5607 Set_Etype (Id, Any_Type);
5608 end if;
5610 when others =>
5611 raise Program_Error;
5612 end case;
5613 end if;
5615 if Etype (Id) = Any_Type then
5616 goto Leave;
5617 end if;
5619 -- Some common processing on all types
5621 Set_Size_Info (Id, T);
5622 Set_First_Rep_Item (Id, First_Rep_Item (T));
5624 -- If the parent type is a generic actual, so is the subtype. This may
5625 -- happen in a nested instance. Why Comes_From_Source test???
5627 if not Comes_From_Source (N) then
5628 Set_Is_Generic_Actual_Type (Id, Is_Generic_Actual_Type (T));
5629 end if;
5631 -- If this is a subtype declaration for an actual in an instance,
5632 -- inherit static and dynamic predicates if any.
5634 -- If declaration has no aspect specifications, inherit predicate
5635 -- info as well. Unclear how to handle the case of both specified
5636 -- and inherited predicates ??? Other inherited aspects, such as
5637 -- invariants, should be OK, but the combination with later pragmas
5638 -- may also require special merging.
5640 if Has_Predicates (T)
5641 and then Present (Predicate_Function (T))
5642 and then
5643 ((In_Instance and then not Comes_From_Source (N))
5644 or else No (Aspect_Specifications (N)))
5645 then
5646 Set_Subprograms_For_Type (Id, Subprograms_For_Type (T));
5648 if Has_Static_Predicate (T) then
5649 Set_Has_Static_Predicate (Id);
5650 Set_Static_Discrete_Predicate (Id, Static_Discrete_Predicate (T));
5651 end if;
5652 end if;
5654 -- Remaining processing depends on characteristics of base type
5656 T := Etype (Id);
5658 Set_Is_Immediately_Visible (Id, True);
5659 Set_Depends_On_Private (Id, Has_Private_Component (T));
5660 Set_Is_Descendant_Of_Address (Id, Is_Descendant_Of_Address (T));
5662 if Is_Interface (T) then
5663 Set_Is_Interface (Id);
5664 end if;
5666 if Present (Generic_Parent_Type (N))
5667 and then
5668 (Nkind (Parent (Generic_Parent_Type (N))) /=
5669 N_Formal_Type_Declaration
5670 or else Nkind (Formal_Type_Definition
5671 (Parent (Generic_Parent_Type (N)))) /=
5672 N_Formal_Private_Type_Definition)
5673 then
5674 if Is_Tagged_Type (Id) then
5676 -- If this is a generic actual subtype for a synchronized type,
5677 -- the primitive operations are those of the corresponding record
5678 -- for which there is a separate subtype declaration.
5680 if Is_Concurrent_Type (Id) then
5681 null;
5682 elsif Is_Class_Wide_Type (Id) then
5683 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
5684 else
5685 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
5686 end if;
5688 elsif Scope (Etype (Id)) /= Standard_Standard then
5689 Derive_Subprograms (Generic_Parent_Type (N), Id);
5690 end if;
5691 end if;
5693 if Is_Private_Type (T) and then Present (Full_View (T)) then
5694 Conditional_Delay (Id, Full_View (T));
5696 -- The subtypes of components or subcomponents of protected types
5697 -- do not need freeze nodes, which would otherwise appear in the
5698 -- wrong scope (before the freeze node for the protected type). The
5699 -- proper subtypes are those of the subcomponents of the corresponding
5700 -- record.
5702 elsif Ekind (Scope (Id)) /= E_Protected_Type
5703 and then Present (Scope (Scope (Id))) -- error defense
5704 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
5705 then
5706 Conditional_Delay (Id, T);
5707 end if;
5709 -- Check that Constraint_Error is raised for a scalar subtype indication
5710 -- when the lower or upper bound of a non-null range lies outside the
5711 -- range of the type mark.
5713 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5714 if Is_Scalar_Type (Etype (Id))
5715 and then Scalar_Range (Id) /=
5716 Scalar_Range
5717 (Etype (Subtype_Mark (Subtype_Indication (N))))
5718 then
5719 Apply_Range_Check
5720 (Scalar_Range (Id),
5721 Etype (Subtype_Mark (Subtype_Indication (N))));
5723 -- In the array case, check compatibility for each index
5725 elsif Is_Array_Type (Etype (Id)) and then Present (First_Index (Id))
5726 then
5727 -- This really should be a subprogram that finds the indications
5728 -- to check???
5730 declare
5731 Subt_Index : Node_Id := First_Index (Id);
5732 Target_Index : Node_Id :=
5733 First_Index (Etype
5734 (Subtype_Mark (Subtype_Indication (N))));
5735 Has_Dyn_Chk : Boolean := Has_Dynamic_Range_Check (N);
5737 begin
5738 while Present (Subt_Index) loop
5739 if ((Nkind (Subt_Index) = N_Identifier
5740 and then Ekind (Entity (Subt_Index)) in Scalar_Kind)
5741 or else Nkind (Subt_Index) = N_Subtype_Indication)
5742 and then
5743 Nkind (Scalar_Range (Etype (Subt_Index))) = N_Range
5744 then
5745 declare
5746 Target_Typ : constant Entity_Id :=
5747 Etype (Target_Index);
5748 begin
5749 R_Checks :=
5750 Get_Range_Checks
5751 (Scalar_Range (Etype (Subt_Index)),
5752 Target_Typ,
5753 Etype (Subt_Index),
5754 Defining_Identifier (N));
5756 -- Reset Has_Dynamic_Range_Check on the subtype to
5757 -- prevent elision of the index check due to a dynamic
5758 -- check generated for a preceding index (needed since
5759 -- Insert_Range_Checks tries to avoid generating
5760 -- redundant checks on a given declaration).
5762 Set_Has_Dynamic_Range_Check (N, False);
5764 Insert_Range_Checks
5765 (R_Checks,
5767 Target_Typ,
5768 Sloc (Defining_Identifier (N)));
5770 -- Record whether this index involved a dynamic check
5772 Has_Dyn_Chk :=
5773 Has_Dyn_Chk or else Has_Dynamic_Range_Check (N);
5774 end;
5775 end if;
5777 Next_Index (Subt_Index);
5778 Next_Index (Target_Index);
5779 end loop;
5781 -- Finally, mark whether the subtype involves dynamic checks
5783 Set_Has_Dynamic_Range_Check (N, Has_Dyn_Chk);
5784 end;
5785 end if;
5786 end if;
5788 Set_Optimize_Alignment_Flags (Id);
5789 Check_Eliminated (Id);
5791 <<Leave>>
5792 if Has_Aspects (N) then
5793 Analyze_Aspect_Specifications (N, Id);
5794 end if;
5796 Analyze_Dimension (N);
5798 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5799 -- indications on composite types where the constraints are dynamic.
5800 -- Note that object declarations and aggregates generate implicit
5801 -- subtype declarations, which this covers. One special case is that the
5802 -- implicitly generated "=" for discriminated types includes an
5803 -- offending subtype declaration, which is harmless, so we ignore it
5804 -- here.
5806 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
5807 declare
5808 Cstr : constant Node_Id := Constraint (Subtype_Indication (N));
5809 begin
5810 if Nkind (Cstr) = N_Index_Or_Discriminant_Constraint
5811 and then not (Is_Internal (Id)
5812 and then Is_TSS (Scope (Id),
5813 TSS_Composite_Equality))
5814 and then not Within_Init_Proc
5815 and then not All_Composite_Constraints_Static (Cstr)
5816 then
5817 Check_Restriction (No_Dynamic_Sized_Objects, Cstr);
5818 end if;
5819 end;
5820 end if;
5821 end Analyze_Subtype_Declaration;
5823 --------------------------------
5824 -- Analyze_Subtype_Indication --
5825 --------------------------------
5827 procedure Analyze_Subtype_Indication (N : Node_Id) is
5828 T : constant Entity_Id := Subtype_Mark (N);
5829 R : constant Node_Id := Range_Expression (Constraint (N));
5831 begin
5832 Analyze (T);
5834 if R /= Error then
5835 Analyze (R);
5836 Set_Etype (N, Etype (R));
5837 Resolve (R, Entity (T));
5838 else
5839 Set_Error_Posted (R);
5840 Set_Error_Posted (T);
5841 end if;
5842 end Analyze_Subtype_Indication;
5844 --------------------------
5845 -- Analyze_Variant_Part --
5846 --------------------------
5848 procedure Analyze_Variant_Part (N : Node_Id) is
5849 Discr_Name : Node_Id;
5850 Discr_Type : Entity_Id;
5852 procedure Process_Variant (A : Node_Id);
5853 -- Analyze declarations for a single variant
5855 package Analyze_Variant_Choices is
5856 new Generic_Analyze_Choices (Process_Variant);
5857 use Analyze_Variant_Choices;
5859 ---------------------
5860 -- Process_Variant --
5861 ---------------------
5863 procedure Process_Variant (A : Node_Id) is
5864 CL : constant Node_Id := Component_List (A);
5865 begin
5866 if not Null_Present (CL) then
5867 Analyze_Declarations (Component_Items (CL));
5869 if Present (Variant_Part (CL)) then
5870 Analyze (Variant_Part (CL));
5871 end if;
5872 end if;
5873 end Process_Variant;
5875 -- Start of processing for Analyze_Variant_Part
5877 begin
5878 Discr_Name := Name (N);
5879 Analyze (Discr_Name);
5881 -- If Discr_Name bad, get out (prevent cascaded errors)
5883 if Etype (Discr_Name) = Any_Type then
5884 return;
5885 end if;
5887 -- Check invalid discriminant in variant part
5889 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
5890 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
5891 end if;
5893 Discr_Type := Etype (Entity (Discr_Name));
5895 if not Is_Discrete_Type (Discr_Type) then
5896 Error_Msg_N
5897 ("discriminant in a variant part must be of a discrete type",
5898 Name (N));
5899 return;
5900 end if;
5902 -- Now analyze the choices, which also analyzes the declarations that
5903 -- are associated with each choice.
5905 Analyze_Choices (Variants (N), Discr_Type);
5907 -- Note: we used to instantiate and call Check_Choices here to check
5908 -- that the choices covered the discriminant, but it's too early to do
5909 -- that because of statically predicated subtypes, whose analysis may
5910 -- be deferred to their freeze point which may be as late as the freeze
5911 -- point of the containing record. So this call is now to be found in
5912 -- Freeze_Record_Declaration.
5914 end Analyze_Variant_Part;
5916 ----------------------------
5917 -- Array_Type_Declaration --
5918 ----------------------------
5920 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
5921 Component_Def : constant Node_Id := Component_Definition (Def);
5922 Component_Typ : constant Node_Id := Subtype_Indication (Component_Def);
5923 P : constant Node_Id := Parent (Def);
5924 Element_Type : Entity_Id;
5925 Implicit_Base : Entity_Id;
5926 Index : Node_Id;
5927 Nb_Index : Nat;
5928 Priv : Entity_Id;
5929 Related_Id : Entity_Id := Empty;
5931 begin
5932 if Nkind (Def) = N_Constrained_Array_Definition then
5933 Index := First (Discrete_Subtype_Definitions (Def));
5934 else
5935 Index := First (Subtype_Marks (Def));
5936 end if;
5938 -- Find proper names for the implicit types which may be public. In case
5939 -- of anonymous arrays we use the name of the first object of that type
5940 -- as prefix.
5942 if No (T) then
5943 Related_Id := Defining_Identifier (P);
5944 else
5945 Related_Id := T;
5946 end if;
5948 Nb_Index := 1;
5949 while Present (Index) loop
5950 Analyze (Index);
5952 -- Test for odd case of trying to index a type by the type itself
5954 if Is_Entity_Name (Index) and then Entity (Index) = T then
5955 Error_Msg_N ("type& cannot be indexed by itself", Index);
5956 Set_Entity (Index, Standard_Boolean);
5957 Set_Etype (Index, Standard_Boolean);
5958 end if;
5960 -- Check SPARK restriction requiring a subtype mark
5962 if not Nkind_In (Index, N_Identifier, N_Expanded_Name) then
5963 Check_SPARK_05_Restriction ("subtype mark required", Index);
5964 end if;
5966 -- Add a subtype declaration for each index of private array type
5967 -- declaration whose etype is also private. For example:
5969 -- package Pkg is
5970 -- type Index is private;
5971 -- private
5972 -- type Table is array (Index) of ...
5973 -- end;
5975 -- This is currently required by the expander for the internally
5976 -- generated equality subprogram of records with variant parts in
5977 -- which the etype of some component is such private type.
5979 if Ekind (Current_Scope) = E_Package
5980 and then In_Private_Part (Current_Scope)
5981 and then Has_Private_Declaration (Etype (Index))
5982 then
5983 declare
5984 Loc : constant Source_Ptr := Sloc (Def);
5985 Decl : Entity_Id;
5986 New_E : Entity_Id;
5988 begin
5989 New_E := Make_Temporary (Loc, 'T');
5990 Set_Is_Internal (New_E);
5992 Decl :=
5993 Make_Subtype_Declaration (Loc,
5994 Defining_Identifier => New_E,
5995 Subtype_Indication =>
5996 New_Occurrence_Of (Etype (Index), Loc));
5998 Insert_Before (Parent (Def), Decl);
5999 Analyze (Decl);
6000 Set_Etype (Index, New_E);
6002 -- If the index is a range the Entity attribute is not
6003 -- available. Example:
6005 -- package Pkg is
6006 -- type T is private;
6007 -- private
6008 -- type T is new Natural;
6009 -- Table : array (T(1) .. T(10)) of Boolean;
6010 -- end Pkg;
6012 if Nkind (Index) /= N_Range then
6013 Set_Entity (Index, New_E);
6014 end if;
6015 end;
6016 end if;
6018 Make_Index (Index, P, Related_Id, Nb_Index);
6020 -- Check error of subtype with predicate for index type
6022 Bad_Predicated_Subtype_Use
6023 ("subtype& has predicate, not allowed as index subtype",
6024 Index, Etype (Index));
6026 -- Move to next index
6028 Next_Index (Index);
6029 Nb_Index := Nb_Index + 1;
6030 end loop;
6032 -- Process subtype indication if one is present
6034 if Present (Component_Typ) then
6035 Element_Type := Process_Subtype (Component_Typ, P, Related_Id, 'C');
6037 Set_Etype (Component_Typ, Element_Type);
6039 if not Nkind_In (Component_Typ, N_Identifier, N_Expanded_Name) then
6040 Check_SPARK_05_Restriction
6041 ("subtype mark required", Component_Typ);
6042 end if;
6044 -- Ada 2005 (AI-230): Access Definition case
6046 else pragma Assert (Present (Access_Definition (Component_Def)));
6048 -- Indicate that the anonymous access type is created by the
6049 -- array type declaration.
6051 Element_Type := Access_Definition
6052 (Related_Nod => P,
6053 N => Access_Definition (Component_Def));
6054 Set_Is_Local_Anonymous_Access (Element_Type);
6056 -- Propagate the parent. This field is needed if we have to generate
6057 -- the master_id associated with an anonymous access to task type
6058 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
6060 Set_Parent (Element_Type, Parent (T));
6062 -- Ada 2005 (AI-230): In case of components that are anonymous access
6063 -- types the level of accessibility depends on the enclosing type
6064 -- declaration
6066 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
6068 -- Ada 2005 (AI-254)
6070 declare
6071 CD : constant Node_Id :=
6072 Access_To_Subprogram_Definition
6073 (Access_Definition (Component_Def));
6074 begin
6075 if Present (CD) and then Protected_Present (CD) then
6076 Element_Type :=
6077 Replace_Anonymous_Access_To_Protected_Subprogram (Def);
6078 end if;
6079 end;
6080 end if;
6082 -- Constrained array case
6084 if No (T) then
6085 T := Create_Itype (E_Void, P, Related_Id, 'T');
6086 end if;
6088 if Nkind (Def) = N_Constrained_Array_Definition then
6090 -- Establish Implicit_Base as unconstrained base type
6092 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
6094 Set_Etype (Implicit_Base, Implicit_Base);
6095 Set_Scope (Implicit_Base, Current_Scope);
6096 Set_Has_Delayed_Freeze (Implicit_Base);
6097 Set_Default_SSO (Implicit_Base);
6099 -- The constrained array type is a subtype of the unconstrained one
6101 Set_Ekind (T, E_Array_Subtype);
6102 Init_Size_Align (T);
6103 Set_Etype (T, Implicit_Base);
6104 Set_Scope (T, Current_Scope);
6105 Set_Is_Constrained (T);
6106 Set_First_Index (T,
6107 First (Discrete_Subtype_Definitions (Def)));
6108 Set_Has_Delayed_Freeze (T);
6110 -- Complete setup of implicit base type
6112 Set_Component_Size (Implicit_Base, Uint_0);
6113 Set_Component_Type (Implicit_Base, Element_Type);
6114 Set_Finalize_Storage_Only
6115 (Implicit_Base,
6116 Finalize_Storage_Only (Element_Type));
6117 Set_First_Index (Implicit_Base, First_Index (T));
6118 Set_Has_Controlled_Component
6119 (Implicit_Base,
6120 Has_Controlled_Component (Element_Type)
6121 or else Is_Controlled_Active (Element_Type));
6122 Set_Packed_Array_Impl_Type
6123 (Implicit_Base, Empty);
6125 Propagate_Concurrent_Flags (Implicit_Base, Element_Type);
6127 -- Unconstrained array case
6129 else
6130 Set_Ekind (T, E_Array_Type);
6131 Init_Size_Align (T);
6132 Set_Etype (T, T);
6133 Set_Scope (T, Current_Scope);
6134 Set_Component_Size (T, Uint_0);
6135 Set_Is_Constrained (T, False);
6136 Set_First_Index (T, First (Subtype_Marks (Def)));
6137 Set_Has_Delayed_Freeze (T, True);
6138 Propagate_Concurrent_Flags (T, Element_Type);
6139 Set_Has_Controlled_Component (T, Has_Controlled_Component
6140 (Element_Type)
6141 or else
6142 Is_Controlled_Active (Element_Type));
6143 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
6144 (Element_Type));
6145 Set_Default_SSO (T);
6146 end if;
6148 -- Common attributes for both cases
6150 Set_Component_Type (Base_Type (T), Element_Type);
6151 Set_Packed_Array_Impl_Type (T, Empty);
6153 if Aliased_Present (Component_Definition (Def)) then
6154 Check_SPARK_05_Restriction
6155 ("aliased is not allowed", Component_Definition (Def));
6156 Set_Has_Aliased_Components (Etype (T));
6157 end if;
6159 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
6160 -- array type to ensure that objects of this type are initialized.
6162 if Ada_Version >= Ada_2005 and then Can_Never_Be_Null (Element_Type) then
6163 Set_Can_Never_Be_Null (T);
6165 if Null_Exclusion_Present (Component_Definition (Def))
6167 -- No need to check itypes because in their case this check was
6168 -- done at their point of creation
6170 and then not Is_Itype (Element_Type)
6171 then
6172 Error_Msg_N
6173 ("`NOT NULL` not allowed (null already excluded)",
6174 Subtype_Indication (Component_Definition (Def)));
6175 end if;
6176 end if;
6178 Priv := Private_Component (Element_Type);
6180 if Present (Priv) then
6182 -- Check for circular definitions
6184 if Priv = Any_Type then
6185 Set_Component_Type (Etype (T), Any_Type);
6187 -- There is a gap in the visibility of operations on the composite
6188 -- type only if the component type is defined in a different scope.
6190 elsif Scope (Priv) = Current_Scope then
6191 null;
6193 elsif Is_Limited_Type (Priv) then
6194 Set_Is_Limited_Composite (Etype (T));
6195 Set_Is_Limited_Composite (T);
6196 else
6197 Set_Is_Private_Composite (Etype (T));
6198 Set_Is_Private_Composite (T);
6199 end if;
6200 end if;
6202 -- A syntax error in the declaration itself may lead to an empty index
6203 -- list, in which case do a minimal patch.
6205 if No (First_Index (T)) then
6206 Error_Msg_N ("missing index definition in array type declaration", T);
6208 declare
6209 Indexes : constant List_Id :=
6210 New_List (New_Occurrence_Of (Any_Id, Sloc (T)));
6211 begin
6212 Set_Discrete_Subtype_Definitions (Def, Indexes);
6213 Set_First_Index (T, First (Indexes));
6214 return;
6215 end;
6216 end if;
6218 -- Create a concatenation operator for the new type. Internal array
6219 -- types created for packed entities do not need such, they are
6220 -- compatible with the user-defined type.
6222 if Number_Dimensions (T) = 1
6223 and then not Is_Packed_Array_Impl_Type (T)
6224 then
6225 New_Concatenation_Op (T);
6226 end if;
6228 -- In the case of an unconstrained array the parser has already verified
6229 -- that all the indexes are unconstrained but we still need to make sure
6230 -- that the element type is constrained.
6232 if not Is_Definite_Subtype (Element_Type) then
6233 Error_Msg_N
6234 ("unconstrained element type in array declaration",
6235 Subtype_Indication (Component_Def));
6237 elsif Is_Abstract_Type (Element_Type) then
6238 Error_Msg_N
6239 ("the type of a component cannot be abstract",
6240 Subtype_Indication (Component_Def));
6241 end if;
6243 -- There may be an invariant declared for the component type, but
6244 -- the construction of the component invariant checking procedure
6245 -- takes place during expansion.
6246 end Array_Type_Declaration;
6248 ------------------------------------------------------
6249 -- Replace_Anonymous_Access_To_Protected_Subprogram --
6250 ------------------------------------------------------
6252 function Replace_Anonymous_Access_To_Protected_Subprogram
6253 (N : Node_Id) return Entity_Id
6255 Loc : constant Source_Ptr := Sloc (N);
6257 Curr_Scope : constant Scope_Stack_Entry :=
6258 Scope_Stack.Table (Scope_Stack.Last);
6260 Anon : constant Entity_Id := Make_Temporary (Loc, 'S');
6262 Acc : Node_Id;
6263 -- Access definition in declaration
6265 Comp : Node_Id;
6266 -- Object definition or formal definition with an access definition
6268 Decl : Node_Id;
6269 -- Declaration of anonymous access to subprogram type
6271 Spec : Node_Id;
6272 -- Original specification in access to subprogram
6274 P : Node_Id;
6276 begin
6277 Set_Is_Internal (Anon);
6279 case Nkind (N) is
6280 when N_Constrained_Array_Definition
6281 | N_Component_Declaration
6282 | N_Unconstrained_Array_Definition
6284 Comp := Component_Definition (N);
6285 Acc := Access_Definition (Comp);
6287 when N_Discriminant_Specification =>
6288 Comp := Discriminant_Type (N);
6289 Acc := Comp;
6291 when N_Parameter_Specification =>
6292 Comp := Parameter_Type (N);
6293 Acc := Comp;
6295 when N_Access_Function_Definition =>
6296 Comp := Result_Definition (N);
6297 Acc := Comp;
6299 when N_Object_Declaration =>
6300 Comp := Object_Definition (N);
6301 Acc := Comp;
6303 when N_Function_Specification =>
6304 Comp := Result_Definition (N);
6305 Acc := Comp;
6307 when others =>
6308 raise Program_Error;
6309 end case;
6311 Spec := Access_To_Subprogram_Definition (Acc);
6313 Decl :=
6314 Make_Full_Type_Declaration (Loc,
6315 Defining_Identifier => Anon,
6316 Type_Definition => Copy_Separate_Tree (Spec));
6318 Mark_Rewrite_Insertion (Decl);
6320 -- In ASIS mode, analyze the profile on the original node, because
6321 -- the separate copy does not provide enough links to recover the
6322 -- original tree. Analysis is limited to type annotations, within
6323 -- a temporary scope that serves as an anonymous subprogram to collect
6324 -- otherwise useless temporaries and itypes.
6326 if ASIS_Mode then
6327 declare
6328 Typ : constant Entity_Id := Make_Temporary (Loc, 'S');
6330 begin
6331 if Nkind (Spec) = N_Access_Function_Definition then
6332 Set_Ekind (Typ, E_Function);
6333 else
6334 Set_Ekind (Typ, E_Procedure);
6335 end if;
6337 Set_Parent (Typ, N);
6338 Set_Scope (Typ, Current_Scope);
6339 Push_Scope (Typ);
6341 -- Nothing to do if procedure is parameterless
6343 if Present (Parameter_Specifications (Spec)) then
6344 Process_Formals (Parameter_Specifications (Spec), Spec);
6345 end if;
6347 if Nkind (Spec) = N_Access_Function_Definition then
6348 declare
6349 Def : constant Node_Id := Result_Definition (Spec);
6351 begin
6352 -- The result might itself be an anonymous access type, so
6353 -- have to recurse.
6355 if Nkind (Def) = N_Access_Definition then
6356 if Present (Access_To_Subprogram_Definition (Def)) then
6357 Set_Etype
6358 (Def,
6359 Replace_Anonymous_Access_To_Protected_Subprogram
6360 (Spec));
6361 else
6362 Find_Type (Subtype_Mark (Def));
6363 end if;
6365 else
6366 Find_Type (Def);
6367 end if;
6368 end;
6369 end if;
6371 End_Scope;
6372 end;
6373 end if;
6375 -- Insert the new declaration in the nearest enclosing scope. If the
6376 -- parent is a body and N is its return type, the declaration belongs
6377 -- in the enclosing scope. Likewise if N is the type of a parameter.
6379 P := Parent (N);
6381 if Nkind (N) = N_Function_Specification
6382 and then Nkind (P) = N_Subprogram_Body
6383 then
6384 P := Parent (P);
6385 elsif Nkind (N) = N_Parameter_Specification
6386 and then Nkind (P) in N_Subprogram_Specification
6387 and then Nkind (Parent (P)) = N_Subprogram_Body
6388 then
6389 P := Parent (Parent (P));
6390 end if;
6392 while Present (P) and then not Has_Declarations (P) loop
6393 P := Parent (P);
6394 end loop;
6396 pragma Assert (Present (P));
6398 if Nkind (P) = N_Package_Specification then
6399 Prepend (Decl, Visible_Declarations (P));
6400 else
6401 Prepend (Decl, Declarations (P));
6402 end if;
6404 -- Replace the anonymous type with an occurrence of the new declaration.
6405 -- In all cases the rewritten node does not have the null-exclusion
6406 -- attribute because (if present) it was already inherited by the
6407 -- anonymous entity (Anon). Thus, in case of components we do not
6408 -- inherit this attribute.
6410 if Nkind (N) = N_Parameter_Specification then
6411 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6412 Set_Etype (Defining_Identifier (N), Anon);
6413 Set_Null_Exclusion_Present (N, False);
6415 elsif Nkind (N) = N_Object_Declaration then
6416 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6417 Set_Etype (Defining_Identifier (N), Anon);
6419 elsif Nkind (N) = N_Access_Function_Definition then
6420 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6422 elsif Nkind (N) = N_Function_Specification then
6423 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
6424 Set_Etype (Defining_Unit_Name (N), Anon);
6426 else
6427 Rewrite (Comp,
6428 Make_Component_Definition (Loc,
6429 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
6430 end if;
6432 Mark_Rewrite_Insertion (Comp);
6434 if Nkind_In (N, N_Object_Declaration, N_Access_Function_Definition)
6435 or else (Nkind (Parent (N)) = N_Full_Type_Declaration
6436 and then not Is_Type (Current_Scope))
6437 then
6439 -- Declaration can be analyzed in the current scope.
6441 Analyze (Decl);
6443 else
6444 -- Temporarily remove the current scope (record or subprogram) from
6445 -- the stack to add the new declarations to the enclosing scope.
6446 -- The anonymous entity is an Itype with the proper attributes.
6448 Scope_Stack.Decrement_Last;
6449 Analyze (Decl);
6450 Set_Is_Itype (Anon);
6451 Set_Associated_Node_For_Itype (Anon, N);
6452 Scope_Stack.Append (Curr_Scope);
6453 end if;
6455 Set_Ekind (Anon, E_Anonymous_Access_Protected_Subprogram_Type);
6456 Set_Can_Use_Internal_Rep (Anon, not Always_Compatible_Rep_On_Target);
6457 return Anon;
6458 end Replace_Anonymous_Access_To_Protected_Subprogram;
6460 -------------------------------
6461 -- Build_Derived_Access_Type --
6462 -------------------------------
6464 procedure Build_Derived_Access_Type
6465 (N : Node_Id;
6466 Parent_Type : Entity_Id;
6467 Derived_Type : Entity_Id)
6469 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
6471 Desig_Type : Entity_Id;
6472 Discr : Entity_Id;
6473 Discr_Con_Elist : Elist_Id;
6474 Discr_Con_El : Elmt_Id;
6475 Subt : Entity_Id;
6477 begin
6478 -- Set the designated type so it is available in case this is an access
6479 -- to a self-referential type, e.g. a standard list type with a next
6480 -- pointer. Will be reset after subtype is built.
6482 Set_Directly_Designated_Type
6483 (Derived_Type, Designated_Type (Parent_Type));
6485 Subt := Process_Subtype (S, N);
6487 if Nkind (S) /= N_Subtype_Indication
6488 and then Subt /= Base_Type (Subt)
6489 then
6490 Set_Ekind (Derived_Type, E_Access_Subtype);
6491 end if;
6493 if Ekind (Derived_Type) = E_Access_Subtype then
6494 declare
6495 Pbase : constant Entity_Id := Base_Type (Parent_Type);
6496 Ibase : constant Entity_Id :=
6497 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
6498 Svg_Chars : constant Name_Id := Chars (Ibase);
6499 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
6501 begin
6502 Copy_Node (Pbase, Ibase);
6504 -- Restore Itype status after Copy_Node
6506 Set_Is_Itype (Ibase);
6507 Set_Associated_Node_For_Itype (Ibase, N);
6509 Set_Chars (Ibase, Svg_Chars);
6510 Set_Next_Entity (Ibase, Svg_Next_E);
6511 Set_Sloc (Ibase, Sloc (Derived_Type));
6512 Set_Scope (Ibase, Scope (Derived_Type));
6513 Set_Freeze_Node (Ibase, Empty);
6514 Set_Is_Frozen (Ibase, False);
6515 Set_Comes_From_Source (Ibase, False);
6516 Set_Is_First_Subtype (Ibase, False);
6518 Set_Etype (Ibase, Pbase);
6519 Set_Etype (Derived_Type, Ibase);
6520 end;
6521 end if;
6523 Set_Directly_Designated_Type
6524 (Derived_Type, Designated_Type (Subt));
6526 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
6527 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
6528 Set_Size_Info (Derived_Type, Parent_Type);
6529 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
6530 Set_Depends_On_Private (Derived_Type,
6531 Has_Private_Component (Derived_Type));
6532 Conditional_Delay (Derived_Type, Subt);
6534 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6535 -- that it is not redundant.
6537 if Null_Exclusion_Present (Type_Definition (N)) then
6538 Set_Can_Never_Be_Null (Derived_Type);
6540 elsif Can_Never_Be_Null (Parent_Type) then
6541 Set_Can_Never_Be_Null (Derived_Type);
6542 end if;
6544 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6545 -- the root type for this information.
6547 -- Apply range checks to discriminants for derived record case
6548 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6550 Desig_Type := Designated_Type (Derived_Type);
6552 if Is_Composite_Type (Desig_Type)
6553 and then (not Is_Array_Type (Desig_Type))
6554 and then Has_Discriminants (Desig_Type)
6555 and then Base_Type (Desig_Type) /= Desig_Type
6556 then
6557 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
6558 Discr_Con_El := First_Elmt (Discr_Con_Elist);
6560 Discr := First_Discriminant (Base_Type (Desig_Type));
6561 while Present (Discr_Con_El) loop
6562 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
6563 Next_Elmt (Discr_Con_El);
6564 Next_Discriminant (Discr);
6565 end loop;
6566 end if;
6567 end Build_Derived_Access_Type;
6569 ------------------------------
6570 -- Build_Derived_Array_Type --
6571 ------------------------------
6573 procedure Build_Derived_Array_Type
6574 (N : Node_Id;
6575 Parent_Type : Entity_Id;
6576 Derived_Type : Entity_Id)
6578 Loc : constant Source_Ptr := Sloc (N);
6579 Tdef : constant Node_Id := Type_Definition (N);
6580 Indic : constant Node_Id := Subtype_Indication (Tdef);
6581 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
6582 Implicit_Base : Entity_Id;
6583 New_Indic : Node_Id;
6585 procedure Make_Implicit_Base;
6586 -- If the parent subtype is constrained, the derived type is a subtype
6587 -- of an implicit base type derived from the parent base.
6589 ------------------------
6590 -- Make_Implicit_Base --
6591 ------------------------
6593 procedure Make_Implicit_Base is
6594 begin
6595 Implicit_Base :=
6596 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
6598 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
6599 Set_Etype (Implicit_Base, Parent_Base);
6601 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
6602 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
6604 Set_Has_Delayed_Freeze (Implicit_Base, True);
6605 end Make_Implicit_Base;
6607 -- Start of processing for Build_Derived_Array_Type
6609 begin
6610 if not Is_Constrained (Parent_Type) then
6611 if Nkind (Indic) /= N_Subtype_Indication then
6612 Set_Ekind (Derived_Type, E_Array_Type);
6614 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6615 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
6617 Set_Has_Delayed_Freeze (Derived_Type, True);
6619 else
6620 Make_Implicit_Base;
6621 Set_Etype (Derived_Type, Implicit_Base);
6623 New_Indic :=
6624 Make_Subtype_Declaration (Loc,
6625 Defining_Identifier => Derived_Type,
6626 Subtype_Indication =>
6627 Make_Subtype_Indication (Loc,
6628 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
6629 Constraint => Constraint (Indic)));
6631 Rewrite (N, New_Indic);
6632 Analyze (N);
6633 end if;
6635 else
6636 if Nkind (Indic) /= N_Subtype_Indication then
6637 Make_Implicit_Base;
6639 Set_Ekind (Derived_Type, Ekind (Parent_Type));
6640 Set_Etype (Derived_Type, Implicit_Base);
6641 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
6643 else
6644 Error_Msg_N ("illegal constraint on constrained type", Indic);
6645 end if;
6646 end if;
6648 -- If parent type is not a derived type itself, and is declared in
6649 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6650 -- the new type's concatenation operator since Derive_Subprograms
6651 -- will not inherit the parent's operator. If the parent type is
6652 -- unconstrained, the operator is of the unconstrained base type.
6654 if Number_Dimensions (Parent_Type) = 1
6655 and then not Is_Limited_Type (Parent_Type)
6656 and then not Is_Derived_Type (Parent_Type)
6657 and then not Is_Package_Or_Generic_Package
6658 (Scope (Base_Type (Parent_Type)))
6659 then
6660 if not Is_Constrained (Parent_Type)
6661 and then Is_Constrained (Derived_Type)
6662 then
6663 New_Concatenation_Op (Implicit_Base);
6664 else
6665 New_Concatenation_Op (Derived_Type);
6666 end if;
6667 end if;
6668 end Build_Derived_Array_Type;
6670 -----------------------------------
6671 -- Build_Derived_Concurrent_Type --
6672 -----------------------------------
6674 procedure Build_Derived_Concurrent_Type
6675 (N : Node_Id;
6676 Parent_Type : Entity_Id;
6677 Derived_Type : Entity_Id)
6679 Loc : constant Source_Ptr := Sloc (N);
6681 Corr_Record : constant Entity_Id := Make_Temporary (Loc, 'C');
6682 Corr_Decl : Node_Id;
6683 Corr_Decl_Needed : Boolean;
6684 -- If the derived type has fewer discriminants than its parent, the
6685 -- corresponding record is also a derived type, in order to account for
6686 -- the bound discriminants. We create a full type declaration for it in
6687 -- this case.
6689 Constraint_Present : constant Boolean :=
6690 Nkind (Subtype_Indication (Type_Definition (N))) =
6691 N_Subtype_Indication;
6693 D_Constraint : Node_Id;
6694 New_Constraint : Elist_Id;
6695 Old_Disc : Entity_Id;
6696 New_Disc : Entity_Id;
6697 New_N : Node_Id;
6699 begin
6700 Set_Stored_Constraint (Derived_Type, No_Elist);
6701 Corr_Decl_Needed := False;
6702 Old_Disc := Empty;
6704 if Present (Discriminant_Specifications (N))
6705 and then Constraint_Present
6706 then
6707 Old_Disc := First_Discriminant (Parent_Type);
6708 New_Disc := First (Discriminant_Specifications (N));
6709 while Present (New_Disc) and then Present (Old_Disc) loop
6710 Next_Discriminant (Old_Disc);
6711 Next (New_Disc);
6712 end loop;
6713 end if;
6715 if Present (Old_Disc) and then Expander_Active then
6717 -- The new type has fewer discriminants, so we need to create a new
6718 -- corresponding record, which is derived from the corresponding
6719 -- record of the parent, and has a stored constraint that captures
6720 -- the values of the discriminant constraints. The corresponding
6721 -- record is needed only if expander is active and code generation is
6722 -- enabled.
6724 -- The type declaration for the derived corresponding record has the
6725 -- same discriminant part and constraints as the current declaration.
6726 -- Copy the unanalyzed tree to build declaration.
6728 Corr_Decl_Needed := True;
6729 New_N := Copy_Separate_Tree (N);
6731 Corr_Decl :=
6732 Make_Full_Type_Declaration (Loc,
6733 Defining_Identifier => Corr_Record,
6734 Discriminant_Specifications =>
6735 Discriminant_Specifications (New_N),
6736 Type_Definition =>
6737 Make_Derived_Type_Definition (Loc,
6738 Subtype_Indication =>
6739 Make_Subtype_Indication (Loc,
6740 Subtype_Mark =>
6741 New_Occurrence_Of
6742 (Corresponding_Record_Type (Parent_Type), Loc),
6743 Constraint =>
6744 Constraint
6745 (Subtype_Indication (Type_Definition (New_N))))));
6746 end if;
6748 -- Copy Storage_Size and Relative_Deadline variables if task case
6750 if Is_Task_Type (Parent_Type) then
6751 Set_Storage_Size_Variable (Derived_Type,
6752 Storage_Size_Variable (Parent_Type));
6753 Set_Relative_Deadline_Variable (Derived_Type,
6754 Relative_Deadline_Variable (Parent_Type));
6755 end if;
6757 if Present (Discriminant_Specifications (N)) then
6758 Push_Scope (Derived_Type);
6759 Check_Or_Process_Discriminants (N, Derived_Type);
6761 if Constraint_Present then
6762 New_Constraint :=
6763 Expand_To_Stored_Constraint
6764 (Parent_Type,
6765 Build_Discriminant_Constraints
6766 (Parent_Type,
6767 Subtype_Indication (Type_Definition (N)), True));
6768 end if;
6770 End_Scope;
6772 elsif Constraint_Present then
6774 -- Build constrained subtype, copying the constraint, and derive
6775 -- from it to create a derived constrained type.
6777 declare
6778 Loc : constant Source_Ptr := Sloc (N);
6779 Anon : constant Entity_Id :=
6780 Make_Defining_Identifier (Loc,
6781 Chars => New_External_Name (Chars (Derived_Type), 'T'));
6782 Decl : Node_Id;
6784 begin
6785 Decl :=
6786 Make_Subtype_Declaration (Loc,
6787 Defining_Identifier => Anon,
6788 Subtype_Indication =>
6789 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
6790 Insert_Before (N, Decl);
6791 Analyze (Decl);
6793 Rewrite (Subtype_Indication (Type_Definition (N)),
6794 New_Occurrence_Of (Anon, Loc));
6795 Set_Analyzed (Derived_Type, False);
6796 Analyze (N);
6797 return;
6798 end;
6799 end if;
6801 -- By default, operations and private data are inherited from parent.
6802 -- However, in the presence of bound discriminants, a new corresponding
6803 -- record will be created, see below.
6805 Set_Has_Discriminants
6806 (Derived_Type, Has_Discriminants (Parent_Type));
6807 Set_Corresponding_Record_Type
6808 (Derived_Type, Corresponding_Record_Type (Parent_Type));
6810 -- Is_Constrained is set according the parent subtype, but is set to
6811 -- False if the derived type is declared with new discriminants.
6813 Set_Is_Constrained
6814 (Derived_Type,
6815 (Is_Constrained (Parent_Type) or else Constraint_Present)
6816 and then not Present (Discriminant_Specifications (N)));
6818 if Constraint_Present then
6819 if not Has_Discriminants (Parent_Type) then
6820 Error_Msg_N ("untagged parent must have discriminants", N);
6822 elsif Present (Discriminant_Specifications (N)) then
6824 -- Verify that new discriminants are used to constrain old ones
6826 D_Constraint :=
6827 First
6828 (Constraints
6829 (Constraint (Subtype_Indication (Type_Definition (N)))));
6831 Old_Disc := First_Discriminant (Parent_Type);
6833 while Present (D_Constraint) loop
6834 if Nkind (D_Constraint) /= N_Discriminant_Association then
6836 -- Positional constraint. If it is a reference to a new
6837 -- discriminant, it constrains the corresponding old one.
6839 if Nkind (D_Constraint) = N_Identifier then
6840 New_Disc := First_Discriminant (Derived_Type);
6841 while Present (New_Disc) loop
6842 exit when Chars (New_Disc) = Chars (D_Constraint);
6843 Next_Discriminant (New_Disc);
6844 end loop;
6846 if Present (New_Disc) then
6847 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
6848 end if;
6849 end if;
6851 Next_Discriminant (Old_Disc);
6853 -- if this is a named constraint, search by name for the old
6854 -- discriminants constrained by the new one.
6856 elsif Nkind (Expression (D_Constraint)) = N_Identifier then
6858 -- Find new discriminant with that name
6860 New_Disc := First_Discriminant (Derived_Type);
6861 while Present (New_Disc) loop
6862 exit when
6863 Chars (New_Disc) = Chars (Expression (D_Constraint));
6864 Next_Discriminant (New_Disc);
6865 end loop;
6867 if Present (New_Disc) then
6869 -- Verify that new discriminant renames some discriminant
6870 -- of the parent type, and associate the new discriminant
6871 -- with one or more old ones that it renames.
6873 declare
6874 Selector : Node_Id;
6876 begin
6877 Selector := First (Selector_Names (D_Constraint));
6878 while Present (Selector) loop
6879 Old_Disc := First_Discriminant (Parent_Type);
6880 while Present (Old_Disc) loop
6881 exit when Chars (Old_Disc) = Chars (Selector);
6882 Next_Discriminant (Old_Disc);
6883 end loop;
6885 if Present (Old_Disc) then
6886 Set_Corresponding_Discriminant
6887 (New_Disc, Old_Disc);
6888 end if;
6890 Next (Selector);
6891 end loop;
6892 end;
6893 end if;
6894 end if;
6896 Next (D_Constraint);
6897 end loop;
6899 New_Disc := First_Discriminant (Derived_Type);
6900 while Present (New_Disc) loop
6901 if No (Corresponding_Discriminant (New_Disc)) then
6902 Error_Msg_NE
6903 ("new discriminant& must constrain old one", N, New_Disc);
6905 elsif not
6906 Subtypes_Statically_Compatible
6907 (Etype (New_Disc),
6908 Etype (Corresponding_Discriminant (New_Disc)))
6909 then
6910 Error_Msg_NE
6911 ("& not statically compatible with parent discriminant",
6912 N, New_Disc);
6913 end if;
6915 Next_Discriminant (New_Disc);
6916 end loop;
6917 end if;
6919 elsif Present (Discriminant_Specifications (N)) then
6920 Error_Msg_N
6921 ("missing discriminant constraint in untagged derivation", N);
6922 end if;
6924 -- The entity chain of the derived type includes the new discriminants
6925 -- but shares operations with the parent.
6927 if Present (Discriminant_Specifications (N)) then
6928 Old_Disc := First_Discriminant (Parent_Type);
6929 while Present (Old_Disc) loop
6930 if No (Next_Entity (Old_Disc))
6931 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
6932 then
6933 Set_Next_Entity
6934 (Last_Entity (Derived_Type), Next_Entity (Old_Disc));
6935 exit;
6936 end if;
6938 Next_Discriminant (Old_Disc);
6939 end loop;
6941 else
6942 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
6943 if Has_Discriminants (Parent_Type) then
6944 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
6945 Set_Discriminant_Constraint (
6946 Derived_Type, Discriminant_Constraint (Parent_Type));
6947 end if;
6948 end if;
6950 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
6952 Set_Has_Completion (Derived_Type);
6954 if Corr_Decl_Needed then
6955 Set_Stored_Constraint (Derived_Type, New_Constraint);
6956 Insert_After (N, Corr_Decl);
6957 Analyze (Corr_Decl);
6958 Set_Corresponding_Record_Type (Derived_Type, Corr_Record);
6959 end if;
6960 end Build_Derived_Concurrent_Type;
6962 ------------------------------------
6963 -- Build_Derived_Enumeration_Type --
6964 ------------------------------------
6966 procedure Build_Derived_Enumeration_Type
6967 (N : Node_Id;
6968 Parent_Type : Entity_Id;
6969 Derived_Type : Entity_Id)
6971 Loc : constant Source_Ptr := Sloc (N);
6972 Def : constant Node_Id := Type_Definition (N);
6973 Indic : constant Node_Id := Subtype_Indication (Def);
6974 Implicit_Base : Entity_Id;
6975 Literal : Entity_Id;
6976 New_Lit : Entity_Id;
6977 Literals_List : List_Id;
6978 Type_Decl : Node_Id;
6979 Hi, Lo : Node_Id;
6980 Rang_Expr : Node_Id;
6982 begin
6983 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6984 -- not have explicit literals lists we need to process types derived
6985 -- from them specially. This is handled by Derived_Standard_Character.
6986 -- If the parent type is a generic type, there are no literals either,
6987 -- and we construct the same skeletal representation as for the generic
6988 -- parent type.
6990 if Is_Standard_Character_Type (Parent_Type) then
6991 Derived_Standard_Character (N, Parent_Type, Derived_Type);
6993 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
6994 declare
6995 Lo : Node_Id;
6996 Hi : Node_Id;
6998 begin
6999 if Nkind (Indic) /= N_Subtype_Indication then
7000 Lo :=
7001 Make_Attribute_Reference (Loc,
7002 Attribute_Name => Name_First,
7003 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7004 Set_Etype (Lo, Derived_Type);
7006 Hi :=
7007 Make_Attribute_Reference (Loc,
7008 Attribute_Name => Name_Last,
7009 Prefix => New_Occurrence_Of (Derived_Type, Loc));
7010 Set_Etype (Hi, Derived_Type);
7012 Set_Scalar_Range (Derived_Type,
7013 Make_Range (Loc,
7014 Low_Bound => Lo,
7015 High_Bound => Hi));
7016 else
7018 -- Analyze subtype indication and verify compatibility
7019 -- with parent type.
7021 if Base_Type (Process_Subtype (Indic, N)) /=
7022 Base_Type (Parent_Type)
7023 then
7024 Error_Msg_N
7025 ("illegal constraint for formal discrete type", N);
7026 end if;
7027 end if;
7028 end;
7030 else
7031 -- If a constraint is present, analyze the bounds to catch
7032 -- premature usage of the derived literals.
7034 if Nkind (Indic) = N_Subtype_Indication
7035 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
7036 then
7037 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
7038 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
7039 end if;
7041 -- Introduce an implicit base type for the derived type even if there
7042 -- is no constraint attached to it, since this seems closer to the
7043 -- Ada semantics. Build a full type declaration tree for the derived
7044 -- type using the implicit base type as the defining identifier. The
7045 -- build a subtype declaration tree which applies the constraint (if
7046 -- any) have it replace the derived type declaration.
7048 Literal := First_Literal (Parent_Type);
7049 Literals_List := New_List;
7050 while Present (Literal)
7051 and then Ekind (Literal) = E_Enumeration_Literal
7052 loop
7053 -- Literals of the derived type have the same representation as
7054 -- those of the parent type, but this representation can be
7055 -- overridden by an explicit representation clause. Indicate
7056 -- that there is no explicit representation given yet. These
7057 -- derived literals are implicit operations of the new type,
7058 -- and can be overridden by explicit ones.
7060 if Nkind (Literal) = N_Defining_Character_Literal then
7061 New_Lit :=
7062 Make_Defining_Character_Literal (Loc, Chars (Literal));
7063 else
7064 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
7065 end if;
7067 Set_Ekind (New_Lit, E_Enumeration_Literal);
7068 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
7069 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
7070 Set_Enumeration_Rep_Expr (New_Lit, Empty);
7071 Set_Alias (New_Lit, Literal);
7072 Set_Is_Known_Valid (New_Lit, True);
7074 Append (New_Lit, Literals_List);
7075 Next_Literal (Literal);
7076 end loop;
7078 Implicit_Base :=
7079 Make_Defining_Identifier (Sloc (Derived_Type),
7080 Chars => New_External_Name (Chars (Derived_Type), 'B'));
7082 -- Indicate the proper nature of the derived type. This must be done
7083 -- before analysis of the literals, to recognize cases when a literal
7084 -- may be hidden by a previous explicit function definition (cf.
7085 -- c83031a).
7087 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
7088 Set_Etype (Derived_Type, Implicit_Base);
7090 Type_Decl :=
7091 Make_Full_Type_Declaration (Loc,
7092 Defining_Identifier => Implicit_Base,
7093 Discriminant_Specifications => No_List,
7094 Type_Definition =>
7095 Make_Enumeration_Type_Definition (Loc, Literals_List));
7097 Mark_Rewrite_Insertion (Type_Decl);
7098 Insert_Before (N, Type_Decl);
7099 Analyze (Type_Decl);
7101 -- The anonymous base now has a full declaration, but this base
7102 -- is not a first subtype.
7104 Set_Is_First_Subtype (Implicit_Base, False);
7106 -- After the implicit base is analyzed its Etype needs to be changed
7107 -- to reflect the fact that it is derived from the parent type which
7108 -- was ignored during analysis. We also set the size at this point.
7110 Set_Etype (Implicit_Base, Parent_Type);
7112 Set_Size_Info (Implicit_Base, Parent_Type);
7113 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
7114 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
7116 -- Copy other flags from parent type
7118 Set_Has_Non_Standard_Rep
7119 (Implicit_Base, Has_Non_Standard_Rep
7120 (Parent_Type));
7121 Set_Has_Pragma_Ordered
7122 (Implicit_Base, Has_Pragma_Ordered
7123 (Parent_Type));
7124 Set_Has_Delayed_Freeze (Implicit_Base);
7126 -- Process the subtype indication including a validation check on the
7127 -- constraint, if any. If a constraint is given, its bounds must be
7128 -- implicitly converted to the new type.
7130 if Nkind (Indic) = N_Subtype_Indication then
7131 declare
7132 R : constant Node_Id :=
7133 Range_Expression (Constraint (Indic));
7135 begin
7136 if Nkind (R) = N_Range then
7137 Hi := Build_Scalar_Bound
7138 (High_Bound (R), Parent_Type, Implicit_Base);
7139 Lo := Build_Scalar_Bound
7140 (Low_Bound (R), Parent_Type, Implicit_Base);
7142 else
7143 -- Constraint is a Range attribute. Replace with explicit
7144 -- mention of the bounds of the prefix, which must be a
7145 -- subtype.
7147 Analyze (Prefix (R));
7148 Hi :=
7149 Convert_To (Implicit_Base,
7150 Make_Attribute_Reference (Loc,
7151 Attribute_Name => Name_Last,
7152 Prefix =>
7153 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7155 Lo :=
7156 Convert_To (Implicit_Base,
7157 Make_Attribute_Reference (Loc,
7158 Attribute_Name => Name_First,
7159 Prefix =>
7160 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
7161 end if;
7162 end;
7164 else
7165 Hi :=
7166 Build_Scalar_Bound
7167 (Type_High_Bound (Parent_Type),
7168 Parent_Type, Implicit_Base);
7169 Lo :=
7170 Build_Scalar_Bound
7171 (Type_Low_Bound (Parent_Type),
7172 Parent_Type, Implicit_Base);
7173 end if;
7175 Rang_Expr :=
7176 Make_Range (Loc,
7177 Low_Bound => Lo,
7178 High_Bound => Hi);
7180 -- If we constructed a default range for the case where no range
7181 -- was given, then the expressions in the range must not freeze
7182 -- since they do not correspond to expressions in the source.
7183 -- However, if the type inherits predicates the expressions will
7184 -- be elaborated earlier and must freeze.
7186 if Nkind (Indic) /= N_Subtype_Indication
7187 and then not Has_Predicates (Derived_Type)
7188 then
7189 Set_Must_Not_Freeze (Lo);
7190 Set_Must_Not_Freeze (Hi);
7191 Set_Must_Not_Freeze (Rang_Expr);
7192 end if;
7194 Rewrite (N,
7195 Make_Subtype_Declaration (Loc,
7196 Defining_Identifier => Derived_Type,
7197 Subtype_Indication =>
7198 Make_Subtype_Indication (Loc,
7199 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
7200 Constraint =>
7201 Make_Range_Constraint (Loc,
7202 Range_Expression => Rang_Expr))));
7204 Analyze (N);
7206 -- Propagate the aspects from the original type declaration to the
7207 -- declaration of the implicit base.
7209 Move_Aspects (From => Original_Node (N), To => Type_Decl);
7211 -- Apply a range check. Since this range expression doesn't have an
7212 -- Etype, we have to specifically pass the Source_Typ parameter. Is
7213 -- this right???
7215 if Nkind (Indic) = N_Subtype_Indication then
7216 Apply_Range_Check
7217 (Range_Expression (Constraint (Indic)), Parent_Type,
7218 Source_Typ => Entity (Subtype_Mark (Indic)));
7219 end if;
7220 end if;
7221 end Build_Derived_Enumeration_Type;
7223 --------------------------------
7224 -- Build_Derived_Numeric_Type --
7225 --------------------------------
7227 procedure Build_Derived_Numeric_Type
7228 (N : Node_Id;
7229 Parent_Type : Entity_Id;
7230 Derived_Type : Entity_Id)
7232 Loc : constant Source_Ptr := Sloc (N);
7233 Tdef : constant Node_Id := Type_Definition (N);
7234 Indic : constant Node_Id := Subtype_Indication (Tdef);
7235 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
7236 No_Constraint : constant Boolean := Nkind (Indic) /=
7237 N_Subtype_Indication;
7238 Implicit_Base : Entity_Id;
7240 Lo : Node_Id;
7241 Hi : Node_Id;
7243 begin
7244 -- Process the subtype indication including a validation check on
7245 -- the constraint if any.
7247 Discard_Node (Process_Subtype (Indic, N));
7249 -- Introduce an implicit base type for the derived type even if there
7250 -- is no constraint attached to it, since this seems closer to the Ada
7251 -- semantics.
7253 Implicit_Base :=
7254 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
7256 Set_Etype (Implicit_Base, Parent_Base);
7257 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
7258 Set_Size_Info (Implicit_Base, Parent_Base);
7259 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
7260 Set_Parent (Implicit_Base, Parent (Derived_Type));
7261 Set_Is_Known_Valid (Implicit_Base, Is_Known_Valid (Parent_Base));
7263 -- Set RM Size for discrete type or decimal fixed-point type
7264 -- Ordinary fixed-point is excluded, why???
7266 if Is_Discrete_Type (Parent_Base)
7267 or else Is_Decimal_Fixed_Point_Type (Parent_Base)
7268 then
7269 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
7270 end if;
7272 Set_Has_Delayed_Freeze (Implicit_Base);
7274 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
7275 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
7277 Set_Scalar_Range (Implicit_Base,
7278 Make_Range (Loc,
7279 Low_Bound => Lo,
7280 High_Bound => Hi));
7282 if Has_Infinities (Parent_Base) then
7283 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
7284 end if;
7286 -- The Derived_Type, which is the entity of the declaration, is a
7287 -- subtype of the implicit base. Its Ekind is a subtype, even in the
7288 -- absence of an explicit constraint.
7290 Set_Etype (Derived_Type, Implicit_Base);
7292 -- If we did not have a constraint, then the Ekind is set from the
7293 -- parent type (otherwise Process_Subtype has set the bounds)
7295 if No_Constraint then
7296 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
7297 end if;
7299 -- If we did not have a range constraint, then set the range from the
7300 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
7302 if No_Constraint or else not Has_Range_Constraint (Indic) then
7303 Set_Scalar_Range (Derived_Type,
7304 Make_Range (Loc,
7305 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
7306 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
7307 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7309 if Has_Infinities (Parent_Type) then
7310 Set_Includes_Infinities (Scalar_Range (Derived_Type));
7311 end if;
7313 Set_Is_Known_Valid (Derived_Type, Is_Known_Valid (Parent_Type));
7314 end if;
7316 Set_Is_Descendant_Of_Address (Derived_Type,
7317 Is_Descendant_Of_Address (Parent_Type));
7318 Set_Is_Descendant_Of_Address (Implicit_Base,
7319 Is_Descendant_Of_Address (Parent_Type));
7321 -- Set remaining type-specific fields, depending on numeric type
7323 if Is_Modular_Integer_Type (Parent_Type) then
7324 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
7326 Set_Non_Binary_Modulus
7327 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
7329 Set_Is_Known_Valid
7330 (Implicit_Base, Is_Known_Valid (Parent_Base));
7332 elsif Is_Floating_Point_Type (Parent_Type) then
7334 -- Digits of base type is always copied from the digits value of
7335 -- the parent base type, but the digits of the derived type will
7336 -- already have been set if there was a constraint present.
7338 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7339 Set_Float_Rep (Implicit_Base, Float_Rep (Parent_Base));
7341 if No_Constraint then
7342 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
7343 end if;
7345 elsif Is_Fixed_Point_Type (Parent_Type) then
7347 -- Small of base type and derived type are always copied from the
7348 -- parent base type, since smalls never change. The delta of the
7349 -- base type is also copied from the parent base type. However the
7350 -- delta of the derived type will have been set already if a
7351 -- constraint was present.
7353 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
7354 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
7355 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
7357 if No_Constraint then
7358 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
7359 end if;
7361 -- The scale and machine radix in the decimal case are always
7362 -- copied from the parent base type.
7364 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
7365 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
7366 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
7368 Set_Machine_Radix_10
7369 (Derived_Type, Machine_Radix_10 (Parent_Base));
7370 Set_Machine_Radix_10
7371 (Implicit_Base, Machine_Radix_10 (Parent_Base));
7373 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
7375 if No_Constraint then
7376 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
7378 else
7379 -- the analysis of the subtype_indication sets the
7380 -- digits value of the derived type.
7382 null;
7383 end if;
7384 end if;
7385 end if;
7387 if Is_Integer_Type (Parent_Type) then
7388 Set_Has_Shift_Operator
7389 (Implicit_Base, Has_Shift_Operator (Parent_Type));
7390 end if;
7392 -- The type of the bounds is that of the parent type, and they
7393 -- must be converted to the derived type.
7395 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
7397 -- The implicit_base should be frozen when the derived type is frozen,
7398 -- but note that it is used in the conversions of the bounds. For fixed
7399 -- types we delay the determination of the bounds until the proper
7400 -- freezing point. For other numeric types this is rejected by GCC, for
7401 -- reasons that are currently unclear (???), so we choose to freeze the
7402 -- implicit base now. In the case of integers and floating point types
7403 -- this is harmless because subsequent representation clauses cannot
7404 -- affect anything, but it is still baffling that we cannot use the
7405 -- same mechanism for all derived numeric types.
7407 -- There is a further complication: actually some representation
7408 -- clauses can affect the implicit base type. For example, attribute
7409 -- definition clauses for stream-oriented attributes need to set the
7410 -- corresponding TSS entries on the base type, and this normally
7411 -- cannot be done after the base type is frozen, so the circuitry in
7412 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
7413 -- and not use Set_TSS in this case.
7415 -- There are also consequences for the case of delayed representation
7416 -- aspects for some cases. For example, a Size aspect is delayed and
7417 -- should not be evaluated to the freeze point. This early freezing
7418 -- means that the size attribute evaluation happens too early???
7420 if Is_Fixed_Point_Type (Parent_Type) then
7421 Conditional_Delay (Implicit_Base, Parent_Type);
7422 else
7423 Freeze_Before (N, Implicit_Base);
7424 end if;
7425 end Build_Derived_Numeric_Type;
7427 --------------------------------
7428 -- Build_Derived_Private_Type --
7429 --------------------------------
7431 procedure Build_Derived_Private_Type
7432 (N : Node_Id;
7433 Parent_Type : Entity_Id;
7434 Derived_Type : Entity_Id;
7435 Is_Completion : Boolean;
7436 Derive_Subps : Boolean := True)
7438 Loc : constant Source_Ptr := Sloc (N);
7439 Par_Base : constant Entity_Id := Base_Type (Parent_Type);
7440 Par_Scope : constant Entity_Id := Scope (Par_Base);
7441 Full_N : constant Node_Id := New_Copy_Tree (N);
7442 Full_Der : Entity_Id := New_Copy (Derived_Type);
7443 Full_P : Entity_Id;
7445 procedure Build_Full_Derivation;
7446 -- Build full derivation, i.e. derive from the full view
7448 procedure Copy_And_Build;
7449 -- Copy derived type declaration, replace parent with its full view,
7450 -- and build derivation
7452 ---------------------------
7453 -- Build_Full_Derivation --
7454 ---------------------------
7456 procedure Build_Full_Derivation is
7457 begin
7458 -- If parent scope is not open, install the declarations
7460 if not In_Open_Scopes (Par_Scope) then
7461 Install_Private_Declarations (Par_Scope);
7462 Install_Visible_Declarations (Par_Scope);
7463 Copy_And_Build;
7464 Uninstall_Declarations (Par_Scope);
7466 -- If parent scope is open and in another unit, and parent has a
7467 -- completion, then the derivation is taking place in the visible
7468 -- part of a child unit. In that case retrieve the full view of
7469 -- the parent momentarily.
7471 elsif not In_Same_Source_Unit (N, Parent_Type) then
7472 Full_P := Full_View (Parent_Type);
7473 Exchange_Declarations (Parent_Type);
7474 Copy_And_Build;
7475 Exchange_Declarations (Full_P);
7477 -- Otherwise it is a local derivation
7479 else
7480 Copy_And_Build;
7481 end if;
7482 end Build_Full_Derivation;
7484 --------------------
7485 -- Copy_And_Build --
7486 --------------------
7488 procedure Copy_And_Build is
7489 Full_Parent : Entity_Id := Parent_Type;
7491 begin
7492 -- If the parent is itself derived from another private type,
7493 -- installing the private declarations has not affected its
7494 -- privacy status, so use its own full view explicitly.
7496 if Is_Private_Type (Full_Parent)
7497 and then Present (Full_View (Full_Parent))
7498 then
7499 Full_Parent := Full_View (Full_Parent);
7500 end if;
7502 -- And its underlying full view if necessary
7504 if Is_Private_Type (Full_Parent)
7505 and then Present (Underlying_Full_View (Full_Parent))
7506 then
7507 Full_Parent := Underlying_Full_View (Full_Parent);
7508 end if;
7510 -- For record, access and most enumeration types, derivation from
7511 -- the full view requires a fully-fledged declaration. In the other
7512 -- cases, just use an itype.
7514 if Ekind (Full_Parent) in Record_Kind
7515 or else Ekind (Full_Parent) in Access_Kind
7516 or else
7517 (Ekind (Full_Parent) in Enumeration_Kind
7518 and then not Is_Standard_Character_Type (Full_Parent)
7519 and then not Is_Generic_Type (Root_Type (Full_Parent)))
7520 then
7521 -- Copy and adjust declaration to provide a completion for what
7522 -- is originally a private declaration. Indicate that full view
7523 -- is internally generated.
7525 Set_Comes_From_Source (Full_N, False);
7526 Set_Comes_From_Source (Full_Der, False);
7527 Set_Parent (Full_Der, Full_N);
7528 Set_Defining_Identifier (Full_N, Full_Der);
7530 -- If there are no constraints, adjust the subtype mark
7532 if Nkind (Subtype_Indication (Type_Definition (Full_N))) /=
7533 N_Subtype_Indication
7534 then
7535 Set_Subtype_Indication
7536 (Type_Definition (Full_N),
7537 New_Occurrence_Of (Full_Parent, Sloc (Full_N)));
7538 end if;
7540 Insert_After (N, Full_N);
7542 -- Build full view of derived type from full view of parent which
7543 -- is now installed. Subprograms have been derived on the partial
7544 -- view, the completion does not derive them anew.
7546 if Ekind (Full_Parent) in Record_Kind then
7548 -- If parent type is tagged, the completion inherits the proper
7549 -- primitive operations.
7551 if Is_Tagged_Type (Parent_Type) then
7552 Build_Derived_Record_Type
7553 (Full_N, Full_Parent, Full_Der, Derive_Subps);
7554 else
7555 Build_Derived_Record_Type
7556 (Full_N, Full_Parent, Full_Der, Derive_Subps => False);
7557 end if;
7559 else
7560 Build_Derived_Type
7561 (Full_N, Full_Parent, Full_Der,
7562 Is_Completion => False, Derive_Subps => False);
7563 end if;
7565 -- The full declaration has been introduced into the tree and
7566 -- processed in the step above. It should not be analyzed again
7567 -- (when encountered later in the current list of declarations)
7568 -- to prevent spurious name conflicts. The full entity remains
7569 -- invisible.
7571 Set_Analyzed (Full_N);
7573 else
7574 Full_Der :=
7575 Make_Defining_Identifier (Sloc (Derived_Type),
7576 Chars => Chars (Derived_Type));
7577 Set_Is_Itype (Full_Der);
7578 Set_Associated_Node_For_Itype (Full_Der, N);
7579 Set_Parent (Full_Der, N);
7580 Build_Derived_Type
7581 (N, Full_Parent, Full_Der,
7582 Is_Completion => False, Derive_Subps => False);
7583 end if;
7585 Set_Has_Private_Declaration (Full_Der);
7586 Set_Has_Private_Declaration (Derived_Type);
7588 Set_Scope (Full_Der, Scope (Derived_Type));
7589 Set_Is_First_Subtype (Full_Der, Is_First_Subtype (Derived_Type));
7590 Set_Has_Size_Clause (Full_Der, False);
7591 Set_Has_Alignment_Clause (Full_Der, False);
7592 Set_Has_Delayed_Freeze (Full_Der);
7593 Set_Is_Frozen (Full_Der, False);
7594 Set_Freeze_Node (Full_Der, Empty);
7595 Set_Depends_On_Private (Full_Der, Has_Private_Component (Full_Der));
7596 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
7598 -- The convention on the base type may be set in the private part
7599 -- and not propagated to the subtype until later, so we obtain the
7600 -- convention from the base type of the parent.
7602 Set_Convention (Full_Der, Convention (Base_Type (Full_Parent)));
7603 end Copy_And_Build;
7605 -- Start of processing for Build_Derived_Private_Type
7607 begin
7608 if Is_Tagged_Type (Parent_Type) then
7609 Full_P := Full_View (Parent_Type);
7611 -- A type extension of a type with unknown discriminants is an
7612 -- indefinite type that the back-end cannot handle directly.
7613 -- We treat it as a private type, and build a completion that is
7614 -- derived from the full view of the parent, and hopefully has
7615 -- known discriminants.
7617 -- If the full view of the parent type has an underlying record view,
7618 -- use it to generate the underlying record view of this derived type
7619 -- (required for chains of derivations with unknown discriminants).
7621 -- Minor optimization: we avoid the generation of useless underlying
7622 -- record view entities if the private type declaration has unknown
7623 -- discriminants but its corresponding full view has no
7624 -- discriminants.
7626 if Has_Unknown_Discriminants (Parent_Type)
7627 and then Present (Full_P)
7628 and then (Has_Discriminants (Full_P)
7629 or else Present (Underlying_Record_View (Full_P)))
7630 and then not In_Open_Scopes (Par_Scope)
7631 and then Expander_Active
7632 then
7633 declare
7634 Full_Der : constant Entity_Id := Make_Temporary (Loc, 'T');
7635 New_Ext : constant Node_Id :=
7636 Copy_Separate_Tree
7637 (Record_Extension_Part (Type_Definition (N)));
7638 Decl : Node_Id;
7640 begin
7641 Build_Derived_Record_Type
7642 (N, Parent_Type, Derived_Type, Derive_Subps);
7644 -- Build anonymous completion, as a derivation from the full
7645 -- view of the parent. This is not a completion in the usual
7646 -- sense, because the current type is not private.
7648 Decl :=
7649 Make_Full_Type_Declaration (Loc,
7650 Defining_Identifier => Full_Der,
7651 Type_Definition =>
7652 Make_Derived_Type_Definition (Loc,
7653 Subtype_Indication =>
7654 New_Copy_Tree
7655 (Subtype_Indication (Type_Definition (N))),
7656 Record_Extension_Part => New_Ext));
7658 -- If the parent type has an underlying record view, use it
7659 -- here to build the new underlying record view.
7661 if Present (Underlying_Record_View (Full_P)) then
7662 pragma Assert
7663 (Nkind (Subtype_Indication (Type_Definition (Decl)))
7664 = N_Identifier);
7665 Set_Entity (Subtype_Indication (Type_Definition (Decl)),
7666 Underlying_Record_View (Full_P));
7667 end if;
7669 Install_Private_Declarations (Par_Scope);
7670 Install_Visible_Declarations (Par_Scope);
7671 Insert_Before (N, Decl);
7673 -- Mark entity as an underlying record view before analysis,
7674 -- to avoid generating the list of its primitive operations
7675 -- (which is not really required for this entity) and thus
7676 -- prevent spurious errors associated with missing overriding
7677 -- of abstract primitives (overridden only for Derived_Type).
7679 Set_Ekind (Full_Der, E_Record_Type);
7680 Set_Is_Underlying_Record_View (Full_Der);
7681 Set_Default_SSO (Full_Der);
7683 Analyze (Decl);
7685 pragma Assert (Has_Discriminants (Full_Der)
7686 and then not Has_Unknown_Discriminants (Full_Der));
7688 Uninstall_Declarations (Par_Scope);
7690 -- Freeze the underlying record view, to prevent generation of
7691 -- useless dispatching information, which is simply shared with
7692 -- the real derived type.
7694 Set_Is_Frozen (Full_Der);
7696 -- If the derived type has access discriminants, create
7697 -- references to their anonymous types now, to prevent
7698 -- back-end problems when their first use is in generated
7699 -- bodies of primitives.
7701 declare
7702 E : Entity_Id;
7704 begin
7705 E := First_Entity (Full_Der);
7707 while Present (E) loop
7708 if Ekind (E) = E_Discriminant
7709 and then Ekind (Etype (E)) = E_Anonymous_Access_Type
7710 then
7711 Build_Itype_Reference (Etype (E), Decl);
7712 end if;
7714 Next_Entity (E);
7715 end loop;
7716 end;
7718 -- Set up links between real entity and underlying record view
7720 Set_Underlying_Record_View (Derived_Type, Base_Type (Full_Der));
7721 Set_Underlying_Record_View (Base_Type (Full_Der), Derived_Type);
7722 end;
7724 -- If discriminants are known, build derived record
7726 else
7727 Build_Derived_Record_Type
7728 (N, Parent_Type, Derived_Type, Derive_Subps);
7729 end if;
7731 return;
7733 elsif Has_Discriminants (Parent_Type) then
7735 -- Build partial view of derived type from partial view of parent.
7736 -- This must be done before building the full derivation because the
7737 -- second derivation will modify the discriminants of the first and
7738 -- the discriminants are chained with the rest of the components in
7739 -- the full derivation.
7741 Build_Derived_Record_Type
7742 (N, Parent_Type, Derived_Type, Derive_Subps);
7744 -- Build the full derivation if this is not the anonymous derived
7745 -- base type created by Build_Derived_Record_Type in the constrained
7746 -- case (see point 5. of its head comment) since we build it for the
7747 -- derived subtype. And skip it for protected types altogether, as
7748 -- gigi does not use these types directly.
7750 if Present (Full_View (Parent_Type))
7751 and then not Is_Itype (Derived_Type)
7752 and then not (Ekind (Full_View (Parent_Type)) in Protected_Kind)
7753 then
7754 declare
7755 Der_Base : constant Entity_Id := Base_Type (Derived_Type);
7756 Discr : Entity_Id;
7757 Last_Discr : Entity_Id;
7759 begin
7760 -- If this is not a completion, construct the implicit full
7761 -- view by deriving from the full view of the parent type.
7762 -- But if this is a completion, the derived private type
7763 -- being built is a full view and the full derivation can
7764 -- only be its underlying full view.
7766 Build_Full_Derivation;
7768 if not Is_Completion then
7769 Set_Full_View (Derived_Type, Full_Der);
7770 else
7771 Set_Underlying_Full_View (Derived_Type, Full_Der);
7772 Set_Is_Underlying_Full_View (Full_Der);
7773 end if;
7775 if not Is_Base_Type (Derived_Type) then
7776 Set_Full_View (Der_Base, Base_Type (Full_Der));
7777 end if;
7779 -- Copy the discriminant list from full view to the partial
7780 -- view (base type and its subtype). Gigi requires that the
7781 -- partial and full views have the same discriminants.
7783 -- Note that since the partial view points to discriminants
7784 -- in the full view, their scope will be that of the full
7785 -- view. This might cause some front end problems and need
7786 -- adjustment???
7788 Discr := First_Discriminant (Base_Type (Full_Der));
7789 Set_First_Entity (Der_Base, Discr);
7791 loop
7792 Last_Discr := Discr;
7793 Next_Discriminant (Discr);
7794 exit when No (Discr);
7795 end loop;
7797 Set_Last_Entity (Der_Base, Last_Discr);
7798 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
7799 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
7800 end;
7801 end if;
7803 elsif Present (Full_View (Parent_Type))
7804 and then Has_Discriminants (Full_View (Parent_Type))
7805 then
7806 if Has_Unknown_Discriminants (Parent_Type)
7807 and then Nkind (Subtype_Indication (Type_Definition (N))) =
7808 N_Subtype_Indication
7809 then
7810 Error_Msg_N
7811 ("cannot constrain type with unknown discriminants",
7812 Subtype_Indication (Type_Definition (N)));
7813 return;
7814 end if;
7816 -- If this is not a completion, construct the implicit full view by
7817 -- deriving from the full view of the parent type. But if this is a
7818 -- completion, the derived private type being built is a full view
7819 -- and the full derivation can only be its underlying full view.
7821 Build_Full_Derivation;
7823 if not Is_Completion then
7824 Set_Full_View (Derived_Type, Full_Der);
7825 else
7826 Set_Underlying_Full_View (Derived_Type, Full_Der);
7827 Set_Is_Underlying_Full_View (Full_Der);
7828 end if;
7830 -- In any case, the primitive operations are inherited from the
7831 -- parent type, not from the internal full view.
7833 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
7835 if Derive_Subps then
7836 Derive_Subprograms (Parent_Type, Derived_Type);
7837 end if;
7839 Set_Stored_Constraint (Derived_Type, No_Elist);
7840 Set_Is_Constrained
7841 (Derived_Type, Is_Constrained (Full_View (Parent_Type)));
7843 else
7844 -- Untagged type, No discriminants on either view
7846 if Nkind (Subtype_Indication (Type_Definition (N))) =
7847 N_Subtype_Indication
7848 then
7849 Error_Msg_N
7850 ("illegal constraint on type without discriminants", N);
7851 end if;
7853 if Present (Discriminant_Specifications (N))
7854 and then Present (Full_View (Parent_Type))
7855 and then not Is_Tagged_Type (Full_View (Parent_Type))
7856 then
7857 Error_Msg_N ("cannot add discriminants to untagged type", N);
7858 end if;
7860 Set_Stored_Constraint (Derived_Type, No_Elist);
7861 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
7862 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
7863 Set_Disable_Controlled (Derived_Type, Disable_Controlled
7864 (Parent_Type));
7865 Set_Has_Controlled_Component
7866 (Derived_Type, Has_Controlled_Component
7867 (Parent_Type));
7869 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7871 if not Is_Controlled_Active (Parent_Type) then
7872 Set_Finalize_Storage_Only
7873 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
7874 end if;
7876 -- If this is not a completion, construct the implicit full view by
7877 -- deriving from the full view of the parent type.
7879 -- ??? If the parent is untagged private and its completion is
7880 -- tagged, this mechanism will not work because we cannot derive from
7881 -- the tagged full view unless we have an extension.
7883 if Present (Full_View (Parent_Type))
7884 and then not Is_Tagged_Type (Full_View (Parent_Type))
7885 and then not Is_Completion
7886 then
7887 Build_Full_Derivation;
7888 Set_Full_View (Derived_Type, Full_Der);
7889 end if;
7890 end if;
7892 Set_Has_Unknown_Discriminants (Derived_Type,
7893 Has_Unknown_Discriminants (Parent_Type));
7895 if Is_Private_Type (Derived_Type) then
7896 Set_Private_Dependents (Derived_Type, New_Elmt_List);
7897 end if;
7899 -- If the parent base type is in scope, add the derived type to its
7900 -- list of private dependents, because its full view may become
7901 -- visible subsequently (in a nested private part, a body, or in a
7902 -- further child unit).
7904 if Is_Private_Type (Par_Base) and then In_Open_Scopes (Par_Scope) then
7905 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
7907 -- Check for unusual case where a type completed by a private
7908 -- derivation occurs within a package nested in a child unit, and
7909 -- the parent is declared in an ancestor.
7911 if Is_Child_Unit (Scope (Current_Scope))
7912 and then Is_Completion
7913 and then In_Private_Part (Current_Scope)
7914 and then Scope (Parent_Type) /= Current_Scope
7916 -- Note that if the parent has a completion in the private part,
7917 -- (which is itself a derivation from some other private type)
7918 -- it is that completion that is visible, there is no full view
7919 -- available, and no special processing is needed.
7921 and then Present (Full_View (Parent_Type))
7922 then
7923 -- In this case, the full view of the parent type will become
7924 -- visible in the body of the enclosing child, and only then will
7925 -- the current type be possibly non-private. Build an underlying
7926 -- full view that will be installed when the enclosing child body
7927 -- is compiled.
7929 if Present (Underlying_Full_View (Derived_Type)) then
7930 Full_Der := Underlying_Full_View (Derived_Type);
7931 else
7932 Build_Full_Derivation;
7933 Set_Underlying_Full_View (Derived_Type, Full_Der);
7934 Set_Is_Underlying_Full_View (Full_Der);
7935 end if;
7937 -- The full view will be used to swap entities on entry/exit to
7938 -- the body, and must appear in the entity list for the package.
7940 Append_Entity (Full_Der, Scope (Derived_Type));
7941 end if;
7942 end if;
7943 end Build_Derived_Private_Type;
7945 -------------------------------
7946 -- Build_Derived_Record_Type --
7947 -------------------------------
7949 -- 1. INTRODUCTION
7951 -- Ideally we would like to use the same model of type derivation for
7952 -- tagged and untagged record types. Unfortunately this is not quite
7953 -- possible because the semantics of representation clauses is different
7954 -- for tagged and untagged records under inheritance. Consider the
7955 -- following:
7957 -- type R (...) is [tagged] record ... end record;
7958 -- type T (...) is new R (...) [with ...];
7960 -- The representation clauses for T can specify a completely different
7961 -- record layout from R's. Hence the same component can be placed in two
7962 -- very different positions in objects of type T and R. If R and T are
7963 -- tagged types, representation clauses for T can only specify the layout
7964 -- of non inherited components, thus components that are common in R and T
7965 -- have the same position in objects of type R and T.
7967 -- This has two implications. The first is that the entire tree for R's
7968 -- declaration needs to be copied for T in the untagged case, so that T
7969 -- can be viewed as a record type of its own with its own representation
7970 -- clauses. The second implication is the way we handle discriminants.
7971 -- Specifically, in the untagged case we need a way to communicate to Gigi
7972 -- what are the real discriminants in the record, while for the semantics
7973 -- we need to consider those introduced by the user to rename the
7974 -- discriminants in the parent type. This is handled by introducing the
7975 -- notion of stored discriminants. See below for more.
7977 -- Fortunately the way regular components are inherited can be handled in
7978 -- the same way in tagged and untagged types.
7980 -- To complicate things a bit more the private view of a private extension
7981 -- cannot be handled in the same way as the full view (for one thing the
7982 -- semantic rules are somewhat different). We will explain what differs
7983 -- below.
7985 -- 2. DISCRIMINANTS UNDER INHERITANCE
7987 -- The semantic rules governing the discriminants of derived types are
7988 -- quite subtle.
7990 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7991 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7993 -- If parent type has discriminants, then the discriminants that are
7994 -- declared in the derived type are [3.4 (11)]:
7996 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7997 -- there is one;
7999 -- o Otherwise, each discriminant of the parent type (implicitly declared
8000 -- in the same order with the same specifications). In this case, the
8001 -- discriminants are said to be "inherited", or if unknown in the parent
8002 -- are also unknown in the derived type.
8004 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
8006 -- o The parent subtype must be constrained;
8008 -- o If the parent type is not a tagged type, then each discriminant of
8009 -- the derived type must be used in the constraint defining a parent
8010 -- subtype. [Implementation note: This ensures that the new discriminant
8011 -- can share storage with an existing discriminant.]
8013 -- For the derived type each discriminant of the parent type is either
8014 -- inherited, constrained to equal some new discriminant of the derived
8015 -- type, or constrained to the value of an expression.
8017 -- When inherited or constrained to equal some new discriminant, the
8018 -- parent discriminant and the discriminant of the derived type are said
8019 -- to "correspond".
8021 -- If a discriminant of the parent type is constrained to a specific value
8022 -- in the derived type definition, then the discriminant is said to be
8023 -- "specified" by that derived type definition.
8025 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
8027 -- We have spoken about stored discriminants in point 1 (introduction)
8028 -- above. There are two sorts of stored discriminants: implicit and
8029 -- explicit. As long as the derived type inherits the same discriminants as
8030 -- the root record type, stored discriminants are the same as regular
8031 -- discriminants, and are said to be implicit. However, if any discriminant
8032 -- in the root type was renamed in the derived type, then the derived
8033 -- type will contain explicit stored discriminants. Explicit stored
8034 -- discriminants are discriminants in addition to the semantically visible
8035 -- discriminants defined for the derived type. Stored discriminants are
8036 -- used by Gigi to figure out what are the physical discriminants in
8037 -- objects of the derived type (see precise definition in einfo.ads).
8038 -- As an example, consider the following:
8040 -- type R (D1, D2, D3 : Int) is record ... end record;
8041 -- type T1 is new R;
8042 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
8043 -- type T3 is new T2;
8044 -- type T4 (Y : Int) is new T3 (Y, 99);
8046 -- The following table summarizes the discriminants and stored
8047 -- discriminants in R and T1 through T4:
8049 -- Type Discrim Stored Discrim Comment
8050 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
8051 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
8052 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
8053 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
8054 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
8056 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
8057 -- find the corresponding discriminant in the parent type, while
8058 -- Original_Record_Component (abbreviated ORC below) the actual physical
8059 -- component that is renamed. Finally the field Is_Completely_Hidden
8060 -- (abbreviated ICH below) is set for all explicit stored discriminants
8061 -- (see einfo.ads for more info). For the above example this gives:
8063 -- Discrim CD ORC ICH
8064 -- ^^^^^^^ ^^ ^^^ ^^^
8065 -- D1 in R empty itself no
8066 -- D2 in R empty itself no
8067 -- D3 in R empty itself no
8069 -- D1 in T1 D1 in R itself no
8070 -- D2 in T1 D2 in R itself no
8071 -- D3 in T1 D3 in R itself no
8073 -- X1 in T2 D3 in T1 D3 in T2 no
8074 -- X2 in T2 D1 in T1 D1 in T2 no
8075 -- D1 in T2 empty itself yes
8076 -- D2 in T2 empty itself yes
8077 -- D3 in T2 empty itself yes
8079 -- X1 in T3 X1 in T2 D3 in T3 no
8080 -- X2 in T3 X2 in T2 D1 in T3 no
8081 -- D1 in T3 empty itself yes
8082 -- D2 in T3 empty itself yes
8083 -- D3 in T3 empty itself yes
8085 -- Y in T4 X1 in T3 D3 in T4 no
8086 -- D1 in T4 empty itself yes
8087 -- D2 in T4 empty itself yes
8088 -- D3 in T4 empty itself yes
8090 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
8092 -- Type derivation for tagged types is fairly straightforward. If no
8093 -- discriminants are specified by the derived type, these are inherited
8094 -- from the parent. No explicit stored discriminants are ever necessary.
8095 -- The only manipulation that is done to the tree is that of adding a
8096 -- _parent field with parent type and constrained to the same constraint
8097 -- specified for the parent in the derived type definition. For instance:
8099 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
8100 -- type T1 is new R with null record;
8101 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
8103 -- are changed into:
8105 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
8106 -- _parent : R (D1, D2, D3);
8107 -- end record;
8109 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
8110 -- _parent : T1 (X2, 88, X1);
8111 -- end record;
8113 -- The discriminants actually present in R, T1 and T2 as well as their CD,
8114 -- ORC and ICH fields are:
8116 -- Discrim CD ORC ICH
8117 -- ^^^^^^^ ^^ ^^^ ^^^
8118 -- D1 in R empty itself no
8119 -- D2 in R empty itself no
8120 -- D3 in R empty itself no
8122 -- D1 in T1 D1 in R D1 in R no
8123 -- D2 in T1 D2 in R D2 in R no
8124 -- D3 in T1 D3 in R D3 in R no
8126 -- X1 in T2 D3 in T1 D3 in R no
8127 -- X2 in T2 D1 in T1 D1 in R no
8129 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
8131 -- Regardless of whether we dealing with a tagged or untagged type
8132 -- we will transform all derived type declarations of the form
8134 -- type T is new R (...) [with ...];
8135 -- or
8136 -- subtype S is R (...);
8137 -- type T is new S [with ...];
8138 -- into
8139 -- type BT is new R [with ...];
8140 -- subtype T is BT (...);
8142 -- That is, the base derived type is constrained only if it has no
8143 -- discriminants. The reason for doing this is that GNAT's semantic model
8144 -- assumes that a base type with discriminants is unconstrained.
8146 -- Note that, strictly speaking, the above transformation is not always
8147 -- correct. Consider for instance the following excerpt from ACVC b34011a:
8149 -- procedure B34011A is
8150 -- type REC (D : integer := 0) is record
8151 -- I : Integer;
8152 -- end record;
8154 -- package P is
8155 -- type T6 is new Rec;
8156 -- function F return T6;
8157 -- end P;
8159 -- use P;
8160 -- package Q6 is
8161 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
8162 -- end Q6;
8164 -- The definition of Q6.U is illegal. However transforming Q6.U into
8166 -- type BaseU is new T6;
8167 -- subtype U is BaseU (Q6.F.I)
8169 -- turns U into a legal subtype, which is incorrect. To avoid this problem
8170 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
8171 -- the transformation described above.
8173 -- There is another instance where the above transformation is incorrect.
8174 -- Consider:
8176 -- package Pack is
8177 -- type Base (D : Integer) is tagged null record;
8178 -- procedure P (X : Base);
8180 -- type Der is new Base (2) with null record;
8181 -- procedure P (X : Der);
8182 -- end Pack;
8184 -- Then the above transformation turns this into
8186 -- type Der_Base is new Base with null record;
8187 -- -- procedure P (X : Base) is implicitly inherited here
8188 -- -- as procedure P (X : Der_Base).
8190 -- subtype Der is Der_Base (2);
8191 -- procedure P (X : Der);
8192 -- -- The overriding of P (X : Der_Base) is illegal since we
8193 -- -- have a parameter conformance problem.
8195 -- To get around this problem, after having semantically processed Der_Base
8196 -- and the rewritten subtype declaration for Der, we copy Der_Base field
8197 -- Discriminant_Constraint from Der so that when parameter conformance is
8198 -- checked when P is overridden, no semantic errors are flagged.
8200 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
8202 -- Regardless of whether we are dealing with a tagged or untagged type
8203 -- we will transform all derived type declarations of the form
8205 -- type R (D1, .., Dn : ...) is [tagged] record ...;
8206 -- type T is new R [with ...];
8207 -- into
8208 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
8210 -- The reason for such transformation is that it allows us to implement a
8211 -- very clean form of component inheritance as explained below.
8213 -- Note that this transformation is not achieved by direct tree rewriting
8214 -- and manipulation, but rather by redoing the semantic actions that the
8215 -- above transformation will entail. This is done directly in routine
8216 -- Inherit_Components.
8218 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
8220 -- In both tagged and untagged derived types, regular non discriminant
8221 -- components are inherited in the derived type from the parent type. In
8222 -- the absence of discriminants component, inheritance is straightforward
8223 -- as components can simply be copied from the parent.
8225 -- If the parent has discriminants, inheriting components constrained with
8226 -- these discriminants requires caution. Consider the following example:
8228 -- type R (D1, D2 : Positive) is [tagged] record
8229 -- S : String (D1 .. D2);
8230 -- end record;
8232 -- type T1 is new R [with null record];
8233 -- type T2 (X : positive) is new R (1, X) [with null record];
8235 -- As explained in 6. above, T1 is rewritten as
8236 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
8237 -- which makes the treatment for T1 and T2 identical.
8239 -- What we want when inheriting S, is that references to D1 and D2 in R are
8240 -- replaced with references to their correct constraints, i.e. D1 and D2 in
8241 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
8242 -- with either discriminant references in the derived type or expressions.
8243 -- This replacement is achieved as follows: before inheriting R's
8244 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
8245 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
8246 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
8247 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
8248 -- by String (1 .. X).
8250 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
8252 -- We explain here the rules governing private type extensions relevant to
8253 -- type derivation. These rules are explained on the following example:
8255 -- type D [(...)] is new A [(...)] with private; <-- partial view
8256 -- type D [(...)] is new P [(...)] with null record; <-- full view
8258 -- Type A is called the ancestor subtype of the private extension.
8259 -- Type P is the parent type of the full view of the private extension. It
8260 -- must be A or a type derived from A.
8262 -- The rules concerning the discriminants of private type extensions are
8263 -- [7.3(10-13)]:
8265 -- o If a private extension inherits known discriminants from the ancestor
8266 -- subtype, then the full view must also inherit its discriminants from
8267 -- the ancestor subtype and the parent subtype of the full view must be
8268 -- constrained if and only if the ancestor subtype is constrained.
8270 -- o If a partial view has unknown discriminants, then the full view may
8271 -- define a definite or an indefinite subtype, with or without
8272 -- discriminants.
8274 -- o If a partial view has neither known nor unknown discriminants, then
8275 -- the full view must define a definite subtype.
8277 -- o If the ancestor subtype of a private extension has constrained
8278 -- discriminants, then the parent subtype of the full view must impose a
8279 -- statically matching constraint on those discriminants.
8281 -- This means that only the following forms of private extensions are
8282 -- allowed:
8284 -- type D is new A with private; <-- partial view
8285 -- type D is new P with null record; <-- full view
8287 -- If A has no discriminants than P has no discriminants, otherwise P must
8288 -- inherit A's discriminants.
8290 -- type D is new A (...) with private; <-- partial view
8291 -- type D is new P (:::) with null record; <-- full view
8293 -- P must inherit A's discriminants and (...) and (:::) must statically
8294 -- match.
8296 -- subtype A is R (...);
8297 -- type D is new A with private; <-- partial view
8298 -- type D is new P with null record; <-- full view
8300 -- P must have inherited R's discriminants and must be derived from A or
8301 -- any of its subtypes.
8303 -- type D (..) is new A with private; <-- partial view
8304 -- type D (..) is new P [(:::)] with null record; <-- full view
8306 -- No specific constraints on P's discriminants or constraint (:::).
8307 -- Note that A can be unconstrained, but the parent subtype P must either
8308 -- be constrained or (:::) must be present.
8310 -- type D (..) is new A [(...)] with private; <-- partial view
8311 -- type D (..) is new P [(:::)] with null record; <-- full view
8313 -- P's constraints on A's discriminants must statically match those
8314 -- imposed by (...).
8316 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
8318 -- The full view of a private extension is handled exactly as described
8319 -- above. The model chose for the private view of a private extension is
8320 -- the same for what concerns discriminants (i.e. they receive the same
8321 -- treatment as in the tagged case). However, the private view of the
8322 -- private extension always inherits the components of the parent base,
8323 -- without replacing any discriminant reference. Strictly speaking this is
8324 -- incorrect. However, Gigi never uses this view to generate code so this
8325 -- is a purely semantic issue. In theory, a set of transformations similar
8326 -- to those given in 5. and 6. above could be applied to private views of
8327 -- private extensions to have the same model of component inheritance as
8328 -- for non private extensions. However, this is not done because it would
8329 -- further complicate private type processing. Semantically speaking, this
8330 -- leaves us in an uncomfortable situation. As an example consider:
8332 -- package Pack is
8333 -- type R (D : integer) is tagged record
8334 -- S : String (1 .. D);
8335 -- end record;
8336 -- procedure P (X : R);
8337 -- type T is new R (1) with private;
8338 -- private
8339 -- type T is new R (1) with null record;
8340 -- end;
8342 -- This is transformed into:
8344 -- package Pack is
8345 -- type R (D : integer) is tagged record
8346 -- S : String (1 .. D);
8347 -- end record;
8348 -- procedure P (X : R);
8349 -- type T is new R (1) with private;
8350 -- private
8351 -- type BaseT is new R with null record;
8352 -- subtype T is BaseT (1);
8353 -- end;
8355 -- (strictly speaking the above is incorrect Ada)
8357 -- From the semantic standpoint the private view of private extension T
8358 -- should be flagged as constrained since one can clearly have
8360 -- Obj : T;
8362 -- in a unit withing Pack. However, when deriving subprograms for the
8363 -- private view of private extension T, T must be seen as unconstrained
8364 -- since T has discriminants (this is a constraint of the current
8365 -- subprogram derivation model). Thus, when processing the private view of
8366 -- a private extension such as T, we first mark T as unconstrained, we
8367 -- process it, we perform program derivation and just before returning from
8368 -- Build_Derived_Record_Type we mark T as constrained.
8370 -- ??? Are there are other uncomfortable cases that we will have to
8371 -- deal with.
8373 -- 10. RECORD_TYPE_WITH_PRIVATE complications
8375 -- Types that are derived from a visible record type and have a private
8376 -- extension present other peculiarities. They behave mostly like private
8377 -- types, but if they have primitive operations defined, these will not
8378 -- have the proper signatures for further inheritance, because other
8379 -- primitive operations will use the implicit base that we define for
8380 -- private derivations below. This affect subprogram inheritance (see
8381 -- Derive_Subprograms for details). We also derive the implicit base from
8382 -- the base type of the full view, so that the implicit base is a record
8383 -- type and not another private type, This avoids infinite loops.
8385 procedure Build_Derived_Record_Type
8386 (N : Node_Id;
8387 Parent_Type : Entity_Id;
8388 Derived_Type : Entity_Id;
8389 Derive_Subps : Boolean := True)
8391 Discriminant_Specs : constant Boolean :=
8392 Present (Discriminant_Specifications (N));
8393 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
8394 Loc : constant Source_Ptr := Sloc (N);
8395 Private_Extension : constant Boolean :=
8396 Nkind (N) = N_Private_Extension_Declaration;
8397 Assoc_List : Elist_Id;
8398 Constraint_Present : Boolean;
8399 Constrs : Elist_Id;
8400 Discrim : Entity_Id;
8401 Indic : Node_Id;
8402 Inherit_Discrims : Boolean := False;
8403 Last_Discrim : Entity_Id;
8404 New_Base : Entity_Id;
8405 New_Decl : Node_Id;
8406 New_Discrs : Elist_Id;
8407 New_Indic : Node_Id;
8408 Parent_Base : Entity_Id;
8409 Save_Etype : Entity_Id;
8410 Save_Discr_Constr : Elist_Id;
8411 Save_Next_Entity : Entity_Id;
8412 Type_Def : Node_Id;
8414 Discs : Elist_Id := New_Elmt_List;
8415 -- An empty Discs list means that there were no constraints in the
8416 -- subtype indication or that there was an error processing it.
8418 begin
8419 if Ekind (Parent_Type) = E_Record_Type_With_Private
8420 and then Present (Full_View (Parent_Type))
8421 and then Has_Discriminants (Parent_Type)
8422 then
8423 Parent_Base := Base_Type (Full_View (Parent_Type));
8424 else
8425 Parent_Base := Base_Type (Parent_Type);
8426 end if;
8428 -- AI05-0115 : if this is a derivation from a private type in some
8429 -- other scope that may lead to invisible components for the derived
8430 -- type, mark it accordingly.
8432 if Is_Private_Type (Parent_Type) then
8433 if Scope (Parent_Type) = Scope (Derived_Type) then
8434 null;
8436 elsif In_Open_Scopes (Scope (Parent_Type))
8437 and then In_Private_Part (Scope (Parent_Type))
8438 then
8439 null;
8441 else
8442 Set_Has_Private_Ancestor (Derived_Type);
8443 end if;
8445 else
8446 Set_Has_Private_Ancestor
8447 (Derived_Type, Has_Private_Ancestor (Parent_Type));
8448 end if;
8450 -- Before we start the previously documented transformations, here is
8451 -- little fix for size and alignment of tagged types. Normally when we
8452 -- derive type D from type P, we copy the size and alignment of P as the
8453 -- default for D, and in the absence of explicit representation clauses
8454 -- for D, the size and alignment are indeed the same as the parent.
8456 -- But this is wrong for tagged types, since fields may be added, and
8457 -- the default size may need to be larger, and the default alignment may
8458 -- need to be larger.
8460 -- We therefore reset the size and alignment fields in the tagged case.
8461 -- Note that the size and alignment will in any case be at least as
8462 -- large as the parent type (since the derived type has a copy of the
8463 -- parent type in the _parent field)
8465 -- The type is also marked as being tagged here, which is needed when
8466 -- processing components with a self-referential anonymous access type
8467 -- in the call to Check_Anonymous_Access_Components below. Note that
8468 -- this flag is also set later on for completeness.
8470 if Is_Tagged then
8471 Set_Is_Tagged_Type (Derived_Type);
8472 Init_Size_Align (Derived_Type);
8473 end if;
8475 -- STEP 0a: figure out what kind of derived type declaration we have
8477 if Private_Extension then
8478 Type_Def := N;
8479 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
8480 Set_Default_SSO (Derived_Type);
8482 else
8483 Type_Def := Type_Definition (N);
8485 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8486 -- Parent_Base can be a private type or private extension. However,
8487 -- for tagged types with an extension the newly added fields are
8488 -- visible and hence the Derived_Type is always an E_Record_Type.
8489 -- (except that the parent may have its own private fields).
8490 -- For untagged types we preserve the Ekind of the Parent_Base.
8492 if Present (Record_Extension_Part (Type_Def)) then
8493 Set_Ekind (Derived_Type, E_Record_Type);
8494 Set_Default_SSO (Derived_Type);
8496 -- Create internal access types for components with anonymous
8497 -- access types.
8499 if Ada_Version >= Ada_2005 then
8500 Check_Anonymous_Access_Components
8501 (N, Derived_Type, Derived_Type,
8502 Component_List (Record_Extension_Part (Type_Def)));
8503 end if;
8505 else
8506 Set_Ekind (Derived_Type, Ekind (Parent_Base));
8507 end if;
8508 end if;
8510 -- Indic can either be an N_Identifier if the subtype indication
8511 -- contains no constraint or an N_Subtype_Indication if the subtype
8512 -- indication has a constraint.
8514 Indic := Subtype_Indication (Type_Def);
8515 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
8517 -- Check that the type has visible discriminants. The type may be
8518 -- a private type with unknown discriminants whose full view has
8519 -- discriminants which are invisible.
8521 if Constraint_Present then
8522 if not Has_Discriminants (Parent_Base)
8523 or else
8524 (Has_Unknown_Discriminants (Parent_Base)
8525 and then Is_Private_Type (Parent_Base))
8526 then
8527 Error_Msg_N
8528 ("invalid constraint: type has no discriminant",
8529 Constraint (Indic));
8531 Constraint_Present := False;
8532 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8534 elsif Is_Constrained (Parent_Type) then
8535 Error_Msg_N
8536 ("invalid constraint: parent type is already constrained",
8537 Constraint (Indic));
8539 Constraint_Present := False;
8540 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
8541 end if;
8542 end if;
8544 -- STEP 0b: If needed, apply transformation given in point 5. above
8546 if not Private_Extension
8547 and then Has_Discriminants (Parent_Type)
8548 and then not Discriminant_Specs
8549 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
8550 then
8551 -- First, we must analyze the constraint (see comment in point 5.)
8552 -- The constraint may come from the subtype indication of the full
8553 -- declaration.
8555 if Constraint_Present then
8556 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
8558 -- If there is no explicit constraint, there might be one that is
8559 -- inherited from a constrained parent type. In that case verify that
8560 -- it conforms to the constraint in the partial view. In perverse
8561 -- cases the parent subtypes of the partial and full view can have
8562 -- different constraints.
8564 elsif Present (Stored_Constraint (Parent_Type)) then
8565 New_Discrs := Stored_Constraint (Parent_Type);
8567 else
8568 New_Discrs := No_Elist;
8569 end if;
8571 if Has_Discriminants (Derived_Type)
8572 and then Has_Private_Declaration (Derived_Type)
8573 and then Present (Discriminant_Constraint (Derived_Type))
8574 and then Present (New_Discrs)
8575 then
8576 -- Verify that constraints of the full view statically match
8577 -- those given in the partial view.
8579 declare
8580 C1, C2 : Elmt_Id;
8582 begin
8583 C1 := First_Elmt (New_Discrs);
8584 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
8585 while Present (C1) and then Present (C2) loop
8586 if Fully_Conformant_Expressions (Node (C1), Node (C2))
8587 or else
8588 (Is_OK_Static_Expression (Node (C1))
8589 and then Is_OK_Static_Expression (Node (C2))
8590 and then
8591 Expr_Value (Node (C1)) = Expr_Value (Node (C2)))
8592 then
8593 null;
8595 else
8596 if Constraint_Present then
8597 Error_Msg_N
8598 ("constraint not conformant to previous declaration",
8599 Node (C1));
8600 else
8601 Error_Msg_N
8602 ("constraint of full view is incompatible "
8603 & "with partial view", N);
8604 end if;
8605 end if;
8607 Next_Elmt (C1);
8608 Next_Elmt (C2);
8609 end loop;
8610 end;
8611 end if;
8613 -- Insert and analyze the declaration for the unconstrained base type
8615 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
8617 New_Decl :=
8618 Make_Full_Type_Declaration (Loc,
8619 Defining_Identifier => New_Base,
8620 Type_Definition =>
8621 Make_Derived_Type_Definition (Loc,
8622 Abstract_Present => Abstract_Present (Type_Def),
8623 Limited_Present => Limited_Present (Type_Def),
8624 Subtype_Indication =>
8625 New_Occurrence_Of (Parent_Base, Loc),
8626 Record_Extension_Part =>
8627 Relocate_Node (Record_Extension_Part (Type_Def)),
8628 Interface_List => Interface_List (Type_Def)));
8630 Set_Parent (New_Decl, Parent (N));
8631 Mark_Rewrite_Insertion (New_Decl);
8632 Insert_Before (N, New_Decl);
8634 -- In the extension case, make sure ancestor is frozen appropriately
8635 -- (see also non-discriminated case below).
8637 if Present (Record_Extension_Part (Type_Def))
8638 or else Is_Interface (Parent_Base)
8639 then
8640 Freeze_Before (New_Decl, Parent_Type);
8641 end if;
8643 -- Note that this call passes False for the Derive_Subps parameter
8644 -- because subprogram derivation is deferred until after creating
8645 -- the subtype (see below).
8647 Build_Derived_Type
8648 (New_Decl, Parent_Base, New_Base,
8649 Is_Completion => False, Derive_Subps => False);
8651 -- ??? This needs re-examination to determine whether the
8652 -- above call can simply be replaced by a call to Analyze.
8654 Set_Analyzed (New_Decl);
8656 -- Insert and analyze the declaration for the constrained subtype
8658 if Constraint_Present then
8659 New_Indic :=
8660 Make_Subtype_Indication (Loc,
8661 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8662 Constraint => Relocate_Node (Constraint (Indic)));
8664 else
8665 declare
8666 Constr_List : constant List_Id := New_List;
8667 C : Elmt_Id;
8668 Expr : Node_Id;
8670 begin
8671 C := First_Elmt (Discriminant_Constraint (Parent_Type));
8672 while Present (C) loop
8673 Expr := Node (C);
8675 -- It is safe here to call New_Copy_Tree since we called
8676 -- Force_Evaluation on each constraint previously
8677 -- in Build_Discriminant_Constraints.
8679 Append (New_Copy_Tree (Expr), To => Constr_List);
8681 Next_Elmt (C);
8682 end loop;
8684 New_Indic :=
8685 Make_Subtype_Indication (Loc,
8686 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
8687 Constraint =>
8688 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
8689 end;
8690 end if;
8692 Rewrite (N,
8693 Make_Subtype_Declaration (Loc,
8694 Defining_Identifier => Derived_Type,
8695 Subtype_Indication => New_Indic));
8697 Analyze (N);
8699 -- Derivation of subprograms must be delayed until the full subtype
8700 -- has been established, to ensure proper overriding of subprograms
8701 -- inherited by full types. If the derivations occurred as part of
8702 -- the call to Build_Derived_Type above, then the check for type
8703 -- conformance would fail because earlier primitive subprograms
8704 -- could still refer to the full type prior the change to the new
8705 -- subtype and hence would not match the new base type created here.
8706 -- Subprograms are not derived, however, when Derive_Subps is False
8707 -- (since otherwise there could be redundant derivations).
8709 if Derive_Subps then
8710 Derive_Subprograms (Parent_Type, Derived_Type);
8711 end if;
8713 -- For tagged types the Discriminant_Constraint of the new base itype
8714 -- is inherited from the first subtype so that no subtype conformance
8715 -- problem arise when the first subtype overrides primitive
8716 -- operations inherited by the implicit base type.
8718 if Is_Tagged then
8719 Set_Discriminant_Constraint
8720 (New_Base, Discriminant_Constraint (Derived_Type));
8721 end if;
8723 return;
8724 end if;
8726 -- If we get here Derived_Type will have no discriminants or it will be
8727 -- a discriminated unconstrained base type.
8729 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8731 if Is_Tagged then
8733 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8734 -- The declaration of a specific descendant of an interface type
8735 -- freezes the interface type (RM 13.14).
8737 if not Private_Extension or else Is_Interface (Parent_Base) then
8738 Freeze_Before (N, Parent_Type);
8739 end if;
8741 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8742 -- cannot be declared at a deeper level than its parent type is
8743 -- removed. The check on derivation within a generic body is also
8744 -- relaxed, but there's a restriction that a derived tagged type
8745 -- cannot be declared in a generic body if it's derived directly
8746 -- or indirectly from a formal type of that generic.
8748 if Ada_Version >= Ada_2005 then
8749 if Present (Enclosing_Generic_Body (Derived_Type)) then
8750 declare
8751 Ancestor_Type : Entity_Id;
8753 begin
8754 -- Check to see if any ancestor of the derived type is a
8755 -- formal type.
8757 Ancestor_Type := Parent_Type;
8758 while not Is_Generic_Type (Ancestor_Type)
8759 and then Etype (Ancestor_Type) /= Ancestor_Type
8760 loop
8761 Ancestor_Type := Etype (Ancestor_Type);
8762 end loop;
8764 -- If the derived type does have a formal type as an
8765 -- ancestor, then it's an error if the derived type is
8766 -- declared within the body of the generic unit that
8767 -- declares the formal type in its generic formal part. It's
8768 -- sufficient to check whether the ancestor type is declared
8769 -- inside the same generic body as the derived type (such as
8770 -- within a nested generic spec), in which case the
8771 -- derivation is legal. If the formal type is declared
8772 -- outside of that generic body, then it's guaranteed that
8773 -- the derived type is declared within the generic body of
8774 -- the generic unit declaring the formal type.
8776 if Is_Generic_Type (Ancestor_Type)
8777 and then Enclosing_Generic_Body (Ancestor_Type) /=
8778 Enclosing_Generic_Body (Derived_Type)
8779 then
8780 Error_Msg_NE
8781 ("parent type of& must not be descendant of formal type"
8782 & " of an enclosing generic body",
8783 Indic, Derived_Type);
8784 end if;
8785 end;
8786 end if;
8788 elsif Type_Access_Level (Derived_Type) /=
8789 Type_Access_Level (Parent_Type)
8790 and then not Is_Generic_Type (Derived_Type)
8791 then
8792 if Is_Controlled (Parent_Type) then
8793 Error_Msg_N
8794 ("controlled type must be declared at the library level",
8795 Indic);
8796 else
8797 Error_Msg_N
8798 ("type extension at deeper accessibility level than parent",
8799 Indic);
8800 end if;
8802 else
8803 declare
8804 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
8805 begin
8806 if Present (GB)
8807 and then GB /= Enclosing_Generic_Body (Parent_Base)
8808 then
8809 Error_Msg_NE
8810 ("parent type of& must not be outside generic body"
8811 & " (RM 3.9.1(4))",
8812 Indic, Derived_Type);
8813 end if;
8814 end;
8815 end if;
8816 end if;
8818 -- Ada 2005 (AI-251)
8820 if Ada_Version >= Ada_2005 and then Is_Tagged then
8822 -- "The declaration of a specific descendant of an interface type
8823 -- freezes the interface type" (RM 13.14).
8825 declare
8826 Iface : Node_Id;
8827 begin
8828 if Is_Non_Empty_List (Interface_List (Type_Def)) then
8829 Iface := First (Interface_List (Type_Def));
8830 while Present (Iface) loop
8831 Freeze_Before (N, Etype (Iface));
8832 Next (Iface);
8833 end loop;
8834 end if;
8835 end;
8836 end if;
8838 -- STEP 1b : preliminary cleanup of the full view of private types
8840 -- If the type is already marked as having discriminants, then it's the
8841 -- completion of a private type or private extension and we need to
8842 -- retain the discriminants from the partial view if the current
8843 -- declaration has Discriminant_Specifications so that we can verify
8844 -- conformance. However, we must remove any existing components that
8845 -- were inherited from the parent (and attached in Copy_And_Swap)
8846 -- because the full type inherits all appropriate components anyway, and
8847 -- we do not want the partial view's components interfering.
8849 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
8850 Discrim := First_Discriminant (Derived_Type);
8851 loop
8852 Last_Discrim := Discrim;
8853 Next_Discriminant (Discrim);
8854 exit when No (Discrim);
8855 end loop;
8857 Set_Last_Entity (Derived_Type, Last_Discrim);
8859 -- In all other cases wipe out the list of inherited components (even
8860 -- inherited discriminants), it will be properly rebuilt here.
8862 else
8863 Set_First_Entity (Derived_Type, Empty);
8864 Set_Last_Entity (Derived_Type, Empty);
8865 end if;
8867 -- STEP 1c: Initialize some flags for the Derived_Type
8869 -- The following flags must be initialized here so that
8870 -- Process_Discriminants can check that discriminants of tagged types do
8871 -- not have a default initial value and that access discriminants are
8872 -- only specified for limited records. For completeness, these flags are
8873 -- also initialized along with all the other flags below.
8875 -- AI-419: Limitedness is not inherited from an interface parent, so to
8876 -- be limited in that case the type must be explicitly declared as
8877 -- limited. However, task and protected interfaces are always limited.
8879 if Limited_Present (Type_Def) then
8880 Set_Is_Limited_Record (Derived_Type);
8882 elsif Is_Limited_Record (Parent_Type)
8883 or else (Present (Full_View (Parent_Type))
8884 and then Is_Limited_Record (Full_View (Parent_Type)))
8885 then
8886 if not Is_Interface (Parent_Type)
8887 or else Is_Synchronized_Interface (Parent_Type)
8888 or else Is_Protected_Interface (Parent_Type)
8889 or else Is_Task_Interface (Parent_Type)
8890 then
8891 Set_Is_Limited_Record (Derived_Type);
8892 end if;
8893 end if;
8895 -- STEP 2a: process discriminants of derived type if any
8897 Push_Scope (Derived_Type);
8899 if Discriminant_Specs then
8900 Set_Has_Unknown_Discriminants (Derived_Type, False);
8902 -- The following call initializes fields Has_Discriminants and
8903 -- Discriminant_Constraint, unless we are processing the completion
8904 -- of a private type declaration.
8906 Check_Or_Process_Discriminants (N, Derived_Type);
8908 -- For untagged types, the constraint on the Parent_Type must be
8909 -- present and is used to rename the discriminants.
8911 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
8912 Error_Msg_N ("untagged parent must have discriminants", Indic);
8914 elsif not Is_Tagged and then not Constraint_Present then
8915 Error_Msg_N
8916 ("discriminant constraint needed for derived untagged records",
8917 Indic);
8919 -- Otherwise the parent subtype must be constrained unless we have a
8920 -- private extension.
8922 elsif not Constraint_Present
8923 and then not Private_Extension
8924 and then not Is_Constrained (Parent_Type)
8925 then
8926 Error_Msg_N
8927 ("unconstrained type not allowed in this context", Indic);
8929 elsif Constraint_Present then
8930 -- The following call sets the field Corresponding_Discriminant
8931 -- for the discriminants in the Derived_Type.
8933 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
8935 -- For untagged types all new discriminants must rename
8936 -- discriminants in the parent. For private extensions new
8937 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8939 Discrim := First_Discriminant (Derived_Type);
8940 while Present (Discrim) loop
8941 if not Is_Tagged
8942 and then No (Corresponding_Discriminant (Discrim))
8943 then
8944 Error_Msg_N
8945 ("new discriminants must constrain old ones", Discrim);
8947 elsif Private_Extension
8948 and then Present (Corresponding_Discriminant (Discrim))
8949 then
8950 Error_Msg_N
8951 ("only static constraints allowed for parent"
8952 & " discriminants in the partial view", Indic);
8953 exit;
8954 end if;
8956 -- If a new discriminant is used in the constraint, then its
8957 -- subtype must be statically compatible with the parent
8958 -- discriminant's subtype (3.7(15)).
8960 -- However, if the record contains an array constrained by
8961 -- the discriminant but with some different bound, the compiler
8962 -- tries to create a smaller range for the discriminant type.
8963 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8964 -- the discriminant type is a scalar type, the check must use
8965 -- the original discriminant type in the parent declaration.
8967 declare
8968 Corr_Disc : constant Entity_Id :=
8969 Corresponding_Discriminant (Discrim);
8970 Disc_Type : constant Entity_Id := Etype (Discrim);
8971 Corr_Type : Entity_Id;
8973 begin
8974 if Present (Corr_Disc) then
8975 if Is_Scalar_Type (Disc_Type) then
8976 Corr_Type :=
8977 Entity (Discriminant_Type (Parent (Corr_Disc)));
8978 else
8979 Corr_Type := Etype (Corr_Disc);
8980 end if;
8982 if not
8983 Subtypes_Statically_Compatible (Disc_Type, Corr_Type)
8984 then
8985 Error_Msg_N
8986 ("subtype must be compatible "
8987 & "with parent discriminant",
8988 Discrim);
8989 end if;
8990 end if;
8991 end;
8993 Next_Discriminant (Discrim);
8994 end loop;
8996 -- Check whether the constraints of the full view statically
8997 -- match those imposed by the parent subtype [7.3(13)].
8999 if Present (Stored_Constraint (Derived_Type)) then
9000 declare
9001 C1, C2 : Elmt_Id;
9003 begin
9004 C1 := First_Elmt (Discs);
9005 C2 := First_Elmt (Stored_Constraint (Derived_Type));
9006 while Present (C1) and then Present (C2) loop
9007 if not
9008 Fully_Conformant_Expressions (Node (C1), Node (C2))
9009 then
9010 Error_Msg_N
9011 ("not conformant with previous declaration",
9012 Node (C1));
9013 end if;
9015 Next_Elmt (C1);
9016 Next_Elmt (C2);
9017 end loop;
9018 end;
9019 end if;
9020 end if;
9022 -- STEP 2b: No new discriminants, inherit discriminants if any
9024 else
9025 if Private_Extension then
9026 Set_Has_Unknown_Discriminants
9027 (Derived_Type,
9028 Has_Unknown_Discriminants (Parent_Type)
9029 or else Unknown_Discriminants_Present (N));
9031 -- The partial view of the parent may have unknown discriminants,
9032 -- but if the full view has discriminants and the parent type is
9033 -- in scope they must be inherited.
9035 elsif Has_Unknown_Discriminants (Parent_Type)
9036 and then
9037 (not Has_Discriminants (Parent_Type)
9038 or else not In_Open_Scopes (Scope (Parent_Type)))
9039 then
9040 Set_Has_Unknown_Discriminants (Derived_Type);
9041 end if;
9043 if not Has_Unknown_Discriminants (Derived_Type)
9044 and then not Has_Unknown_Discriminants (Parent_Base)
9045 and then Has_Discriminants (Parent_Type)
9046 then
9047 Inherit_Discrims := True;
9048 Set_Has_Discriminants
9049 (Derived_Type, True);
9050 Set_Discriminant_Constraint
9051 (Derived_Type, Discriminant_Constraint (Parent_Base));
9052 end if;
9054 -- The following test is true for private types (remember
9055 -- transformation 5. is not applied to those) and in an error
9056 -- situation.
9058 if Constraint_Present then
9059 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
9060 end if;
9062 -- For now mark a new derived type as constrained only if it has no
9063 -- discriminants. At the end of Build_Derived_Record_Type we properly
9064 -- set this flag in the case of private extensions. See comments in
9065 -- point 9. just before body of Build_Derived_Record_Type.
9067 Set_Is_Constrained
9068 (Derived_Type,
9069 not (Inherit_Discrims
9070 or else Has_Unknown_Discriminants (Derived_Type)));
9071 end if;
9073 -- STEP 3: initialize fields of derived type
9075 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
9076 Set_Stored_Constraint (Derived_Type, No_Elist);
9078 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
9079 -- but cannot be interfaces
9081 if not Private_Extension
9082 and then Ekind (Derived_Type) /= E_Private_Type
9083 and then Ekind (Derived_Type) /= E_Limited_Private_Type
9084 then
9085 if Interface_Present (Type_Def) then
9086 Analyze_Interface_Declaration (Derived_Type, Type_Def);
9087 end if;
9089 Set_Interfaces (Derived_Type, No_Elist);
9090 end if;
9092 -- Fields inherited from the Parent_Type
9094 Set_Has_Specified_Layout
9095 (Derived_Type, Has_Specified_Layout (Parent_Type));
9096 Set_Is_Limited_Composite
9097 (Derived_Type, Is_Limited_Composite (Parent_Type));
9098 Set_Is_Private_Composite
9099 (Derived_Type, Is_Private_Composite (Parent_Type));
9101 if Is_Tagged_Type (Parent_Type) then
9102 Set_No_Tagged_Streams_Pragma
9103 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9104 end if;
9106 -- Fields inherited from the Parent_Base
9108 Set_Has_Controlled_Component
9109 (Derived_Type, Has_Controlled_Component (Parent_Base));
9110 Set_Has_Non_Standard_Rep
9111 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
9112 Set_Has_Primitive_Operations
9113 (Derived_Type, Has_Primitive_Operations (Parent_Base));
9115 -- Fields inherited from the Parent_Base in the non-private case
9117 if Ekind (Derived_Type) = E_Record_Type then
9118 Set_Has_Complex_Representation
9119 (Derived_Type, Has_Complex_Representation (Parent_Base));
9120 end if;
9122 -- Fields inherited from the Parent_Base for record types
9124 if Is_Record_Type (Derived_Type) then
9125 declare
9126 Parent_Full : Entity_Id;
9128 begin
9129 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
9130 -- Parent_Base can be a private type or private extension. Go
9131 -- to the full view here to get the E_Record_Type specific flags.
9133 if Present (Full_View (Parent_Base)) then
9134 Parent_Full := Full_View (Parent_Base);
9135 else
9136 Parent_Full := Parent_Base;
9137 end if;
9139 Set_OK_To_Reorder_Components
9140 (Derived_Type, OK_To_Reorder_Components (Parent_Full));
9141 end;
9142 end if;
9144 -- Set fields for private derived types
9146 if Is_Private_Type (Derived_Type) then
9147 Set_Depends_On_Private (Derived_Type, True);
9148 Set_Private_Dependents (Derived_Type, New_Elmt_List);
9150 -- Inherit fields from non private record types. If this is the
9151 -- completion of a derivation from a private type, the parent itself
9152 -- is private, and the attributes come from its full view, which must
9153 -- be present.
9155 else
9156 if Is_Private_Type (Parent_Base)
9157 and then not Is_Record_Type (Parent_Base)
9158 then
9159 Set_Component_Alignment
9160 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
9161 Set_C_Pass_By_Copy
9162 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
9163 else
9164 Set_Component_Alignment
9165 (Derived_Type, Component_Alignment (Parent_Base));
9166 Set_C_Pass_By_Copy
9167 (Derived_Type, C_Pass_By_Copy (Parent_Base));
9168 end if;
9169 end if;
9171 -- Set fields for tagged types
9173 if Is_Tagged then
9174 Set_Direct_Primitive_Operations (Derived_Type, New_Elmt_List);
9176 -- All tagged types defined in Ada.Finalization are controlled
9178 if Chars (Scope (Derived_Type)) = Name_Finalization
9179 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
9180 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
9181 then
9182 Set_Is_Controlled (Derived_Type);
9183 else
9184 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
9185 end if;
9187 -- Minor optimization: there is no need to generate the class-wide
9188 -- entity associated with an underlying record view.
9190 if not Is_Underlying_Record_View (Derived_Type) then
9191 Make_Class_Wide_Type (Derived_Type);
9192 end if;
9194 Set_Is_Abstract_Type (Derived_Type, Abstract_Present (Type_Def));
9196 if Has_Discriminants (Derived_Type)
9197 and then Constraint_Present
9198 then
9199 Set_Stored_Constraint
9200 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
9201 end if;
9203 if Ada_Version >= Ada_2005 then
9204 declare
9205 Ifaces_List : Elist_Id;
9207 begin
9208 -- Checks rules 3.9.4 (13/2 and 14/2)
9210 if Comes_From_Source (Derived_Type)
9211 and then not Is_Private_Type (Derived_Type)
9212 and then Is_Interface (Parent_Type)
9213 and then not Is_Interface (Derived_Type)
9214 then
9215 if Is_Task_Interface (Parent_Type) then
9216 Error_Msg_N
9217 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
9218 Derived_Type);
9220 elsif Is_Protected_Interface (Parent_Type) then
9221 Error_Msg_N
9222 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
9223 Derived_Type);
9224 end if;
9225 end if;
9227 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
9229 Check_Interfaces (N, Type_Def);
9231 -- Ada 2005 (AI-251): Collect the list of progenitors that are
9232 -- not already in the parents.
9234 Collect_Interfaces
9235 (T => Derived_Type,
9236 Ifaces_List => Ifaces_List,
9237 Exclude_Parents => True);
9239 Set_Interfaces (Derived_Type, Ifaces_List);
9241 -- If the derived type is the anonymous type created for
9242 -- a declaration whose parent has a constraint, propagate
9243 -- the interface list to the source type. This must be done
9244 -- prior to the completion of the analysis of the source type
9245 -- because the components in the extension may contain current
9246 -- instances whose legality depends on some ancestor.
9248 if Is_Itype (Derived_Type) then
9249 declare
9250 Def : constant Node_Id :=
9251 Associated_Node_For_Itype (Derived_Type);
9252 begin
9253 if Present (Def)
9254 and then Nkind (Def) = N_Full_Type_Declaration
9255 then
9256 Set_Interfaces
9257 (Defining_Identifier (Def), Ifaces_List);
9258 end if;
9259 end;
9260 end if;
9262 -- A type extension is automatically Ghost when one of its
9263 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
9264 -- also inherited when the parent type is Ghost, but this is
9265 -- done in Build_Derived_Type as the mechanism also handles
9266 -- untagged derivations.
9268 if Implements_Ghost_Interface (Derived_Type) then
9269 Set_Is_Ghost_Entity (Derived_Type);
9270 end if;
9271 end;
9272 end if;
9274 else
9275 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
9276 Set_Has_Non_Standard_Rep
9277 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
9278 end if;
9280 -- STEP 4: Inherit components from the parent base and constrain them.
9281 -- Apply the second transformation described in point 6. above.
9283 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
9284 or else not Has_Discriminants (Parent_Type)
9285 or else not Is_Constrained (Parent_Type)
9286 then
9287 Constrs := Discs;
9288 else
9289 Constrs := Discriminant_Constraint (Parent_Type);
9290 end if;
9292 Assoc_List :=
9293 Inherit_Components
9294 (N, Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
9296 -- STEP 5a: Copy the parent record declaration for untagged types
9298 Set_Has_Implicit_Dereference
9299 (Derived_Type, Has_Implicit_Dereference (Parent_Type));
9301 if not Is_Tagged then
9303 -- Discriminant_Constraint (Derived_Type) has been properly
9304 -- constructed. Save it and temporarily set it to Empty because we
9305 -- do not want the call to New_Copy_Tree below to mess this list.
9307 if Has_Discriminants (Derived_Type) then
9308 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
9309 Set_Discriminant_Constraint (Derived_Type, No_Elist);
9310 else
9311 Save_Discr_Constr := No_Elist;
9312 end if;
9314 -- Save the Etype field of Derived_Type. It is correctly set now,
9315 -- but the call to New_Copy tree may remap it to point to itself,
9316 -- which is not what we want. Ditto for the Next_Entity field.
9318 Save_Etype := Etype (Derived_Type);
9319 Save_Next_Entity := Next_Entity (Derived_Type);
9321 -- Assoc_List maps all stored discriminants in the Parent_Base to
9322 -- stored discriminants in the Derived_Type. It is fundamental that
9323 -- no types or itypes with discriminants other than the stored
9324 -- discriminants appear in the entities declared inside
9325 -- Derived_Type, since the back end cannot deal with it.
9327 New_Decl :=
9328 New_Copy_Tree
9329 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
9331 -- Restore the fields saved prior to the New_Copy_Tree call
9332 -- and compute the stored constraint.
9334 Set_Etype (Derived_Type, Save_Etype);
9335 Set_Next_Entity (Derived_Type, Save_Next_Entity);
9337 if Has_Discriminants (Derived_Type) then
9338 Set_Discriminant_Constraint
9339 (Derived_Type, Save_Discr_Constr);
9340 Set_Stored_Constraint
9341 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
9342 Replace_Components (Derived_Type, New_Decl);
9343 end if;
9345 -- Insert the new derived type declaration
9347 Rewrite (N, New_Decl);
9349 -- STEP 5b: Complete the processing for record extensions in generics
9351 -- There is no completion for record extensions declared in the
9352 -- parameter part of a generic, so we need to complete processing for
9353 -- these generic record extensions here. The Record_Type_Definition call
9354 -- will change the Ekind of the components from E_Void to E_Component.
9356 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
9357 Record_Type_Definition (Empty, Derived_Type);
9359 -- STEP 5c: Process the record extension for non private tagged types
9361 elsif not Private_Extension then
9362 Expand_Record_Extension (Derived_Type, Type_Def);
9364 -- Note : previously in ASIS mode we set the Parent_Subtype of the
9365 -- derived type to propagate some semantic information. This led
9366 -- to other ASIS failures and has been removed.
9368 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
9369 -- implemented interfaces if we are in expansion mode
9371 if Expander_Active
9372 and then Has_Interfaces (Derived_Type)
9373 then
9374 Add_Interface_Tag_Components (N, Derived_Type);
9375 end if;
9377 -- Analyze the record extension
9379 Record_Type_Definition
9380 (Record_Extension_Part (Type_Def), Derived_Type);
9381 end if;
9383 End_Scope;
9385 -- Nothing else to do if there is an error in the derivation.
9386 -- An unusual case: the full view may be derived from a type in an
9387 -- instance, when the partial view was used illegally as an actual
9388 -- in that instance, leading to a circular definition.
9390 if Etype (Derived_Type) = Any_Type
9391 or else Etype (Parent_Type) = Derived_Type
9392 then
9393 return;
9394 end if;
9396 -- Set delayed freeze and then derive subprograms, we need to do
9397 -- this in this order so that derived subprograms inherit the
9398 -- derived freeze if necessary.
9400 Set_Has_Delayed_Freeze (Derived_Type);
9402 if Derive_Subps then
9403 Derive_Subprograms (Parent_Type, Derived_Type);
9404 end if;
9406 -- If we have a private extension which defines a constrained derived
9407 -- type mark as constrained here after we have derived subprograms. See
9408 -- comment on point 9. just above the body of Build_Derived_Record_Type.
9410 if Private_Extension and then Inherit_Discrims then
9411 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
9412 Set_Is_Constrained (Derived_Type, True);
9413 Set_Discriminant_Constraint (Derived_Type, Discs);
9415 elsif Is_Constrained (Parent_Type) then
9416 Set_Is_Constrained
9417 (Derived_Type, True);
9418 Set_Discriminant_Constraint
9419 (Derived_Type, Discriminant_Constraint (Parent_Type));
9420 end if;
9421 end if;
9423 -- Update the class-wide type, which shares the now-completed entity
9424 -- list with its specific type. In case of underlying record views,
9425 -- we do not generate the corresponding class wide entity.
9427 if Is_Tagged
9428 and then not Is_Underlying_Record_View (Derived_Type)
9429 then
9430 Set_First_Entity
9431 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
9432 Set_Last_Entity
9433 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
9434 end if;
9436 Check_Function_Writable_Actuals (N);
9437 end Build_Derived_Record_Type;
9439 ------------------------
9440 -- Build_Derived_Type --
9441 ------------------------
9443 procedure Build_Derived_Type
9444 (N : Node_Id;
9445 Parent_Type : Entity_Id;
9446 Derived_Type : Entity_Id;
9447 Is_Completion : Boolean;
9448 Derive_Subps : Boolean := True)
9450 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
9452 begin
9453 -- Set common attributes
9455 Set_Scope (Derived_Type, Current_Scope);
9457 Set_Etype (Derived_Type, Parent_Base);
9458 Set_Ekind (Derived_Type, Ekind (Parent_Base));
9459 Propagate_Concurrent_Flags (Derived_Type, Parent_Base);
9461 Set_Size_Info (Derived_Type, Parent_Type);
9462 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
9463 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
9464 Set_Disable_Controlled (Derived_Type, Disable_Controlled (Parent_Type));
9466 Set_Is_Tagged_Type (Derived_Type, Is_Tagged_Type (Parent_Type));
9467 Set_Is_Volatile (Derived_Type, Is_Volatile (Parent_Type));
9469 if Is_Tagged_Type (Derived_Type) then
9470 Set_No_Tagged_Streams_Pragma
9471 (Derived_Type, No_Tagged_Streams_Pragma (Parent_Type));
9472 end if;
9474 -- If the parent has primitive routines, set the derived type link
9476 if Has_Primitive_Operations (Parent_Type) then
9477 Set_Derived_Type_Link (Parent_Base, Derived_Type);
9478 end if;
9480 -- If the parent type is a private subtype, the convention on the base
9481 -- type may be set in the private part, and not propagated to the
9482 -- subtype until later, so we obtain the convention from the base type.
9484 Set_Convention (Derived_Type, Convention (Parent_Base));
9486 -- Set SSO default for record or array type
9488 if (Is_Array_Type (Derived_Type) or else Is_Record_Type (Derived_Type))
9489 and then Is_Base_Type (Derived_Type)
9490 then
9491 Set_Default_SSO (Derived_Type);
9492 end if;
9494 -- A derived type inherits the Default_Initial_Condition pragma coming
9495 -- from any parent type within the derivation chain.
9497 if Has_DIC (Parent_Type) then
9498 Set_Has_Inherited_DIC (Derived_Type);
9499 end if;
9501 -- A derived type inherits any class-wide invariants coming from a
9502 -- parent type or an interface. Note that the invariant procedure of
9503 -- the parent type should not be inherited because the derived type may
9504 -- define invariants of its own.
9506 if not Is_Interface (Derived_Type) then
9507 if Has_Inherited_Invariants (Parent_Type)
9508 or else Has_Inheritable_Invariants (Parent_Type)
9509 then
9510 Set_Has_Inherited_Invariants (Derived_Type);
9512 elsif Is_Concurrent_Type (Derived_Type)
9513 or else Is_Tagged_Type (Derived_Type)
9514 then
9515 declare
9516 Iface : Entity_Id;
9517 Ifaces : Elist_Id;
9518 Iface_Elmt : Elmt_Id;
9520 begin
9521 Collect_Interfaces
9522 (T => Derived_Type,
9523 Ifaces_List => Ifaces,
9524 Exclude_Parents => True);
9526 if Present (Ifaces) then
9527 Iface_Elmt := First_Elmt (Ifaces);
9528 while Present (Iface_Elmt) loop
9529 Iface := Node (Iface_Elmt);
9531 if Has_Inheritable_Invariants (Iface) then
9532 Set_Has_Inherited_Invariants (Derived_Type);
9533 exit;
9534 end if;
9536 Next_Elmt (Iface_Elmt);
9537 end loop;
9538 end if;
9539 end;
9540 end if;
9541 end if;
9543 -- We similarly inherit predicates. Note that for scalar derived types
9544 -- the predicate is inherited from the first subtype, and not from its
9545 -- (anonymous) base type.
9547 if Has_Predicates (Parent_Type)
9548 or else Has_Predicates (First_Subtype (Parent_Type))
9549 then
9550 Set_Has_Predicates (Derived_Type);
9551 end if;
9553 -- The derived type inherits the representation clauses of the parent
9555 Inherit_Rep_Item_Chain (Derived_Type, Parent_Type);
9557 -- If the parent type has delayed rep aspects, then mark the derived
9558 -- type as possibly inheriting a delayed rep aspect.
9560 if Has_Delayed_Rep_Aspects (Parent_Type) then
9561 Set_May_Inherit_Delayed_Rep_Aspects (Derived_Type);
9562 end if;
9564 -- A derived type becomes Ghost when its parent type is also Ghost
9565 -- (SPARK RM 6.9(9)). Note that the Ghost-related attributes are not
9566 -- directly inherited because the Ghost policy in effect may differ.
9568 if Is_Ghost_Entity (Parent_Type) then
9569 Set_Is_Ghost_Entity (Derived_Type);
9570 end if;
9572 -- Type dependent processing
9574 case Ekind (Parent_Type) is
9575 when Numeric_Kind =>
9576 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
9578 when Array_Kind =>
9579 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
9581 when Class_Wide_Kind
9582 | E_Record_Subtype
9583 | E_Record_Type
9585 Build_Derived_Record_Type
9586 (N, Parent_Type, Derived_Type, Derive_Subps);
9587 return;
9589 when Enumeration_Kind =>
9590 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
9592 when Access_Kind =>
9593 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
9595 when Incomplete_Or_Private_Kind =>
9596 Build_Derived_Private_Type
9597 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
9599 -- For discriminated types, the derivation includes deriving
9600 -- primitive operations. For others it is done below.
9602 if Is_Tagged_Type (Parent_Type)
9603 or else Has_Discriminants (Parent_Type)
9604 or else (Present (Full_View (Parent_Type))
9605 and then Has_Discriminants (Full_View (Parent_Type)))
9606 then
9607 return;
9608 end if;
9610 when Concurrent_Kind =>
9611 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
9613 when others =>
9614 raise Program_Error;
9615 end case;
9617 -- Nothing more to do if some error occurred
9619 if Etype (Derived_Type) = Any_Type then
9620 return;
9621 end if;
9623 -- Set delayed freeze and then derive subprograms, we need to do this
9624 -- in this order so that derived subprograms inherit the derived freeze
9625 -- if necessary.
9627 Set_Has_Delayed_Freeze (Derived_Type);
9629 if Derive_Subps then
9630 Derive_Subprograms (Parent_Type, Derived_Type);
9631 end if;
9633 Set_Has_Primitive_Operations
9634 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
9635 end Build_Derived_Type;
9637 -----------------------
9638 -- Build_Discriminal --
9639 -----------------------
9641 procedure Build_Discriminal (Discrim : Entity_Id) is
9642 D_Minal : Entity_Id;
9643 CR_Disc : Entity_Id;
9645 begin
9646 -- A discriminal has the same name as the discriminant
9648 D_Minal := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9650 Set_Ekind (D_Minal, E_In_Parameter);
9651 Set_Mechanism (D_Minal, Default_Mechanism);
9652 Set_Etype (D_Minal, Etype (Discrim));
9653 Set_Scope (D_Minal, Current_Scope);
9654 Set_Parent (D_Minal, Parent (Discrim));
9656 Set_Discriminal (Discrim, D_Minal);
9657 Set_Discriminal_Link (D_Minal, Discrim);
9659 -- For task types, build at once the discriminants of the corresponding
9660 -- record, which are needed if discriminants are used in entry defaults
9661 -- and in family bounds.
9663 if Is_Concurrent_Type (Current_Scope)
9664 or else
9665 Is_Limited_Type (Current_Scope)
9666 then
9667 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
9669 Set_Ekind (CR_Disc, E_In_Parameter);
9670 Set_Mechanism (CR_Disc, Default_Mechanism);
9671 Set_Etype (CR_Disc, Etype (Discrim));
9672 Set_Scope (CR_Disc, Current_Scope);
9673 Set_Discriminal_Link (CR_Disc, Discrim);
9674 Set_CR_Discriminant (Discrim, CR_Disc);
9675 end if;
9676 end Build_Discriminal;
9678 ------------------------------------
9679 -- Build_Discriminant_Constraints --
9680 ------------------------------------
9682 function Build_Discriminant_Constraints
9683 (T : Entity_Id;
9684 Def : Node_Id;
9685 Derived_Def : Boolean := False) return Elist_Id
9687 C : constant Node_Id := Constraint (Def);
9688 Nb_Discr : constant Nat := Number_Discriminants (T);
9690 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
9691 -- Saves the expression corresponding to a given discriminant in T
9693 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
9694 -- Return the Position number within array Discr_Expr of a discriminant
9695 -- D within the discriminant list of the discriminated type T.
9697 procedure Process_Discriminant_Expression
9698 (Expr : Node_Id;
9699 D : Entity_Id);
9700 -- If this is a discriminant constraint on a partial view, do not
9701 -- generate an overflow check on the discriminant expression. The check
9702 -- will be generated when constraining the full view. Otherwise the
9703 -- backend creates duplicate symbols for the temporaries corresponding
9704 -- to the expressions to be checked, causing spurious assembler errors.
9706 ------------------
9707 -- Pos_Of_Discr --
9708 ------------------
9710 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
9711 Disc : Entity_Id;
9713 begin
9714 Disc := First_Discriminant (T);
9715 for J in Discr_Expr'Range loop
9716 if Disc = D then
9717 return J;
9718 end if;
9720 Next_Discriminant (Disc);
9721 end loop;
9723 -- Note: Since this function is called on discriminants that are
9724 -- known to belong to the discriminated type, falling through the
9725 -- loop with no match signals an internal compiler error.
9727 raise Program_Error;
9728 end Pos_Of_Discr;
9730 -------------------------------------
9731 -- Process_Discriminant_Expression --
9732 -------------------------------------
9734 procedure Process_Discriminant_Expression
9735 (Expr : Node_Id;
9736 D : Entity_Id)
9738 BDT : constant Entity_Id := Base_Type (Etype (D));
9740 begin
9741 -- If this is a discriminant constraint on a partial view, do
9742 -- not generate an overflow on the discriminant expression. The
9743 -- check will be generated when constraining the full view.
9745 if Is_Private_Type (T)
9746 and then Present (Full_View (T))
9747 then
9748 Analyze_And_Resolve (Expr, BDT, Suppress => Overflow_Check);
9749 else
9750 Analyze_And_Resolve (Expr, BDT);
9751 end if;
9752 end Process_Discriminant_Expression;
9754 -- Declarations local to Build_Discriminant_Constraints
9756 Discr : Entity_Id;
9757 E : Entity_Id;
9758 Elist : constant Elist_Id := New_Elmt_List;
9760 Constr : Node_Id;
9761 Expr : Node_Id;
9762 Id : Node_Id;
9763 Position : Nat;
9764 Found : Boolean;
9766 Discrim_Present : Boolean := False;
9768 -- Start of processing for Build_Discriminant_Constraints
9770 begin
9771 -- The following loop will process positional associations only.
9772 -- For a positional association, the (single) discriminant is
9773 -- implicitly specified by position, in textual order (RM 3.7.2).
9775 Discr := First_Discriminant (T);
9776 Constr := First (Constraints (C));
9777 for D in Discr_Expr'Range loop
9778 exit when Nkind (Constr) = N_Discriminant_Association;
9780 if No (Constr) then
9781 Error_Msg_N ("too few discriminants given in constraint", C);
9782 return New_Elmt_List;
9784 elsif Nkind (Constr) = N_Range
9785 or else (Nkind (Constr) = N_Attribute_Reference
9786 and then Attribute_Name (Constr) = Name_Range)
9787 then
9788 Error_Msg_N
9789 ("a range is not a valid discriminant constraint", Constr);
9790 Discr_Expr (D) := Error;
9792 else
9793 Process_Discriminant_Expression (Constr, Discr);
9794 Discr_Expr (D) := Constr;
9795 end if;
9797 Next_Discriminant (Discr);
9798 Next (Constr);
9799 end loop;
9801 if No (Discr) and then Present (Constr) then
9802 Error_Msg_N ("too many discriminants given in constraint", Constr);
9803 return New_Elmt_List;
9804 end if;
9806 -- Named associations can be given in any order, but if both positional
9807 -- and named associations are used in the same discriminant constraint,
9808 -- then positional associations must occur first, at their normal
9809 -- position. Hence once a named association is used, the rest of the
9810 -- discriminant constraint must use only named associations.
9812 while Present (Constr) loop
9814 -- Positional association forbidden after a named association
9816 if Nkind (Constr) /= N_Discriminant_Association then
9817 Error_Msg_N ("positional association follows named one", Constr);
9818 return New_Elmt_List;
9820 -- Otherwise it is a named association
9822 else
9823 -- E records the type of the discriminants in the named
9824 -- association. All the discriminants specified in the same name
9825 -- association must have the same type.
9827 E := Empty;
9829 -- Search the list of discriminants in T to see if the simple name
9830 -- given in the constraint matches any of them.
9832 Id := First (Selector_Names (Constr));
9833 while Present (Id) loop
9834 Found := False;
9836 -- If Original_Discriminant is present, we are processing a
9837 -- generic instantiation and this is an instance node. We need
9838 -- to find the name of the corresponding discriminant in the
9839 -- actual record type T and not the name of the discriminant in
9840 -- the generic formal. Example:
9842 -- generic
9843 -- type G (D : int) is private;
9844 -- package P is
9845 -- subtype W is G (D => 1);
9846 -- end package;
9847 -- type Rec (X : int) is record ... end record;
9848 -- package Q is new P (G => Rec);
9850 -- At the point of the instantiation, formal type G is Rec
9851 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9852 -- which really looks like "subtype W is Rec (D => 1);" at
9853 -- the point of instantiation, we want to find the discriminant
9854 -- that corresponds to D in Rec, i.e. X.
9856 if Present (Original_Discriminant (Id))
9857 and then In_Instance
9858 then
9859 Discr := Find_Corresponding_Discriminant (Id, T);
9860 Found := True;
9862 else
9863 Discr := First_Discriminant (T);
9864 while Present (Discr) loop
9865 if Chars (Discr) = Chars (Id) then
9866 Found := True;
9867 exit;
9868 end if;
9870 Next_Discriminant (Discr);
9871 end loop;
9873 if not Found then
9874 Error_Msg_N ("& does not match any discriminant", Id);
9875 return New_Elmt_List;
9877 -- If the parent type is a generic formal, preserve the
9878 -- name of the discriminant for subsequent instances.
9879 -- see comment at the beginning of this if statement.
9881 elsif Is_Generic_Type (Root_Type (T)) then
9882 Set_Original_Discriminant (Id, Discr);
9883 end if;
9884 end if;
9886 Position := Pos_Of_Discr (T, Discr);
9888 if Present (Discr_Expr (Position)) then
9889 Error_Msg_N ("duplicate constraint for discriminant&", Id);
9891 else
9892 -- Each discriminant specified in the same named association
9893 -- must be associated with a separate copy of the
9894 -- corresponding expression.
9896 if Present (Next (Id)) then
9897 Expr := New_Copy_Tree (Expression (Constr));
9898 Set_Parent (Expr, Parent (Expression (Constr)));
9899 else
9900 Expr := Expression (Constr);
9901 end if;
9903 Discr_Expr (Position) := Expr;
9904 Process_Discriminant_Expression (Expr, Discr);
9905 end if;
9907 -- A discriminant association with more than one discriminant
9908 -- name is only allowed if the named discriminants are all of
9909 -- the same type (RM 3.7.1(8)).
9911 if E = Empty then
9912 E := Base_Type (Etype (Discr));
9914 elsif Base_Type (Etype (Discr)) /= E then
9915 Error_Msg_N
9916 ("all discriminants in an association " &
9917 "must have the same type", Id);
9918 end if;
9920 Next (Id);
9921 end loop;
9922 end if;
9924 Next (Constr);
9925 end loop;
9927 -- A discriminant constraint must provide exactly one value for each
9928 -- discriminant of the type (RM 3.7.1(8)).
9930 for J in Discr_Expr'Range loop
9931 if No (Discr_Expr (J)) then
9932 Error_Msg_N ("too few discriminants given in constraint", C);
9933 return New_Elmt_List;
9934 end if;
9935 end loop;
9937 -- Determine if there are discriminant expressions in the constraint
9939 for J in Discr_Expr'Range loop
9940 if Denotes_Discriminant
9941 (Discr_Expr (J), Check_Concurrent => True)
9942 then
9943 Discrim_Present := True;
9944 end if;
9945 end loop;
9947 -- Build an element list consisting of the expressions given in the
9948 -- discriminant constraint and apply the appropriate checks. The list
9949 -- is constructed after resolving any named discriminant associations
9950 -- and therefore the expressions appear in the textual order of the
9951 -- discriminants.
9953 Discr := First_Discriminant (T);
9954 for J in Discr_Expr'Range loop
9955 if Discr_Expr (J) /= Error then
9956 Append_Elmt (Discr_Expr (J), Elist);
9958 -- If any of the discriminant constraints is given by a
9959 -- discriminant and we are in a derived type declaration we
9960 -- have a discriminant renaming. Establish link between new
9961 -- and old discriminant. The new discriminant has an implicit
9962 -- dereference if the old one does.
9964 if Denotes_Discriminant (Discr_Expr (J)) then
9965 if Derived_Def then
9966 declare
9967 New_Discr : constant Entity_Id := Entity (Discr_Expr (J));
9969 begin
9970 Set_Corresponding_Discriminant (New_Discr, Discr);
9971 Set_Has_Implicit_Dereference (New_Discr,
9972 Has_Implicit_Dereference (Discr));
9973 end;
9974 end if;
9976 -- Force the evaluation of non-discriminant expressions.
9977 -- If we have found a discriminant in the constraint 3.4(26)
9978 -- and 3.8(18) demand that no range checks are performed are
9979 -- after evaluation. If the constraint is for a component
9980 -- definition that has a per-object constraint, expressions are
9981 -- evaluated but not checked either. In all other cases perform
9982 -- a range check.
9984 else
9985 if Discrim_Present then
9986 null;
9988 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
9989 and then Has_Per_Object_Constraint
9990 (Defining_Identifier (Parent (Parent (Def))))
9991 then
9992 null;
9994 elsif Is_Access_Type (Etype (Discr)) then
9995 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
9997 else
9998 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
9999 end if;
10001 Force_Evaluation (Discr_Expr (J));
10002 end if;
10004 -- Check that the designated type of an access discriminant's
10005 -- expression is not a class-wide type unless the discriminant's
10006 -- designated type is also class-wide.
10008 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
10009 and then not Is_Class_Wide_Type
10010 (Designated_Type (Etype (Discr)))
10011 and then Etype (Discr_Expr (J)) /= Any_Type
10012 and then Is_Class_Wide_Type
10013 (Designated_Type (Etype (Discr_Expr (J))))
10014 then
10015 Wrong_Type (Discr_Expr (J), Etype (Discr));
10017 elsif Is_Access_Type (Etype (Discr))
10018 and then not Is_Access_Constant (Etype (Discr))
10019 and then Is_Access_Type (Etype (Discr_Expr (J)))
10020 and then Is_Access_Constant (Etype (Discr_Expr (J)))
10021 then
10022 Error_Msg_NE
10023 ("constraint for discriminant& must be access to variable",
10024 Def, Discr);
10025 end if;
10026 end if;
10028 Next_Discriminant (Discr);
10029 end loop;
10031 return Elist;
10032 end Build_Discriminant_Constraints;
10034 ---------------------------------
10035 -- Build_Discriminated_Subtype --
10036 ---------------------------------
10038 procedure Build_Discriminated_Subtype
10039 (T : Entity_Id;
10040 Def_Id : Entity_Id;
10041 Elist : Elist_Id;
10042 Related_Nod : Node_Id;
10043 For_Access : Boolean := False)
10045 Has_Discrs : constant Boolean := Has_Discriminants (T);
10046 Constrained : constant Boolean :=
10047 (Has_Discrs
10048 and then not Is_Empty_Elmt_List (Elist)
10049 and then not Is_Class_Wide_Type (T))
10050 or else Is_Constrained (T);
10052 begin
10053 if Ekind (T) = E_Record_Type then
10054 if For_Access then
10055 Set_Ekind (Def_Id, E_Private_Subtype);
10056 Set_Is_For_Access_Subtype (Def_Id, True);
10057 else
10058 Set_Ekind (Def_Id, E_Record_Subtype);
10059 end if;
10061 -- Inherit preelaboration flag from base, for types for which it
10062 -- may have been set: records, private types, protected types.
10064 Set_Known_To_Have_Preelab_Init
10065 (Def_Id, Known_To_Have_Preelab_Init (T));
10067 elsif Ekind (T) = E_Task_Type then
10068 Set_Ekind (Def_Id, E_Task_Subtype);
10070 elsif Ekind (T) = E_Protected_Type then
10071 Set_Ekind (Def_Id, E_Protected_Subtype);
10072 Set_Known_To_Have_Preelab_Init
10073 (Def_Id, Known_To_Have_Preelab_Init (T));
10075 elsif Is_Private_Type (T) then
10076 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
10077 Set_Known_To_Have_Preelab_Init
10078 (Def_Id, Known_To_Have_Preelab_Init (T));
10080 -- Private subtypes may have private dependents
10082 Set_Private_Dependents (Def_Id, New_Elmt_List);
10084 elsif Is_Class_Wide_Type (T) then
10085 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
10087 else
10088 -- Incomplete type. Attach subtype to list of dependents, to be
10089 -- completed with full view of parent type, unless is it the
10090 -- designated subtype of a record component within an init_proc.
10091 -- This last case arises for a component of an access type whose
10092 -- designated type is incomplete (e.g. a Taft Amendment type).
10093 -- The designated subtype is within an inner scope, and needs no
10094 -- elaboration, because only the access type is needed in the
10095 -- initialization procedure.
10097 Set_Ekind (Def_Id, Ekind (T));
10099 if For_Access and then Within_Init_Proc then
10100 null;
10101 else
10102 Append_Elmt (Def_Id, Private_Dependents (T));
10103 end if;
10104 end if;
10106 Set_Etype (Def_Id, T);
10107 Init_Size_Align (Def_Id);
10108 Set_Has_Discriminants (Def_Id, Has_Discrs);
10109 Set_Is_Constrained (Def_Id, Constrained);
10111 Set_First_Entity (Def_Id, First_Entity (T));
10112 Set_Last_Entity (Def_Id, Last_Entity (T));
10113 Set_Has_Implicit_Dereference
10114 (Def_Id, Has_Implicit_Dereference (T));
10115 Set_Has_Pragma_Unreferenced_Objects
10116 (Def_Id, Has_Pragma_Unreferenced_Objects (T));
10118 -- If the subtype is the completion of a private declaration, there may
10119 -- have been representation clauses for the partial view, and they must
10120 -- be preserved. Build_Derived_Type chains the inherited clauses with
10121 -- the ones appearing on the extension. If this comes from a subtype
10122 -- declaration, all clauses are inherited.
10124 if No (First_Rep_Item (Def_Id)) then
10125 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
10126 end if;
10128 if Is_Tagged_Type (T) then
10129 Set_Is_Tagged_Type (Def_Id);
10130 Set_No_Tagged_Streams_Pragma (Def_Id, No_Tagged_Streams_Pragma (T));
10131 Make_Class_Wide_Type (Def_Id);
10132 end if;
10134 Set_Stored_Constraint (Def_Id, No_Elist);
10136 if Has_Discrs then
10137 Set_Discriminant_Constraint (Def_Id, Elist);
10138 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
10139 end if;
10141 if Is_Tagged_Type (T) then
10143 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
10144 -- concurrent record type (which has the list of primitive
10145 -- operations).
10147 if Ada_Version >= Ada_2005
10148 and then Is_Concurrent_Type (T)
10149 then
10150 Set_Corresponding_Record_Type (Def_Id,
10151 Corresponding_Record_Type (T));
10152 else
10153 Set_Direct_Primitive_Operations (Def_Id,
10154 Direct_Primitive_Operations (T));
10155 end if;
10157 Set_Is_Abstract_Type (Def_Id, Is_Abstract_Type (T));
10158 end if;
10160 -- Subtypes introduced by component declarations do not need to be
10161 -- marked as delayed, and do not get freeze nodes, because the semantics
10162 -- verifies that the parents of the subtypes are frozen before the
10163 -- enclosing record is frozen.
10165 if not Is_Type (Scope (Def_Id)) then
10166 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
10168 if Is_Private_Type (T)
10169 and then Present (Full_View (T))
10170 then
10171 Conditional_Delay (Def_Id, Full_View (T));
10172 else
10173 Conditional_Delay (Def_Id, T);
10174 end if;
10175 end if;
10177 if Is_Record_Type (T) then
10178 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
10180 if Has_Discrs
10181 and then not Is_Empty_Elmt_List (Elist)
10182 and then not For_Access
10183 then
10184 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
10185 elsif not For_Access then
10186 Set_Cloned_Subtype (Def_Id, T);
10187 end if;
10188 end if;
10189 end Build_Discriminated_Subtype;
10191 ---------------------------
10192 -- Build_Itype_Reference --
10193 ---------------------------
10195 procedure Build_Itype_Reference
10196 (Ityp : Entity_Id;
10197 Nod : Node_Id)
10199 IR : constant Node_Id := Make_Itype_Reference (Sloc (Nod));
10200 begin
10202 -- Itype references are only created for use by the back-end
10204 if Inside_A_Generic then
10205 return;
10206 else
10207 Set_Itype (IR, Ityp);
10208 Insert_After (Nod, IR);
10209 end if;
10210 end Build_Itype_Reference;
10212 ------------------------
10213 -- Build_Scalar_Bound --
10214 ------------------------
10216 function Build_Scalar_Bound
10217 (Bound : Node_Id;
10218 Par_T : Entity_Id;
10219 Der_T : Entity_Id) return Node_Id
10221 New_Bound : Entity_Id;
10223 begin
10224 -- Note: not clear why this is needed, how can the original bound
10225 -- be unanalyzed at this point? and if it is, what business do we
10226 -- have messing around with it? and why is the base type of the
10227 -- parent type the right type for the resolution. It probably is
10228 -- not. It is OK for the new bound we are creating, but not for
10229 -- the old one??? Still if it never happens, no problem.
10231 Analyze_And_Resolve (Bound, Base_Type (Par_T));
10233 if Nkind_In (Bound, N_Integer_Literal, N_Real_Literal) then
10234 New_Bound := New_Copy (Bound);
10235 Set_Etype (New_Bound, Der_T);
10236 Set_Analyzed (New_Bound);
10238 elsif Is_Entity_Name (Bound) then
10239 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
10241 -- The following is almost certainly wrong. What business do we have
10242 -- relocating a node (Bound) that is presumably still attached to
10243 -- the tree elsewhere???
10245 else
10246 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
10247 end if;
10249 Set_Etype (New_Bound, Der_T);
10250 return New_Bound;
10251 end Build_Scalar_Bound;
10253 --------------------------------
10254 -- Build_Underlying_Full_View --
10255 --------------------------------
10257 procedure Build_Underlying_Full_View
10258 (N : Node_Id;
10259 Typ : Entity_Id;
10260 Par : Entity_Id)
10262 Loc : constant Source_Ptr := Sloc (N);
10263 Subt : constant Entity_Id :=
10264 Make_Defining_Identifier
10265 (Loc, New_External_Name (Chars (Typ), 'S'));
10267 Constr : Node_Id;
10268 Indic : Node_Id;
10269 C : Node_Id;
10270 Id : Node_Id;
10272 procedure Set_Discriminant_Name (Id : Node_Id);
10273 -- If the derived type has discriminants, they may rename discriminants
10274 -- of the parent. When building the full view of the parent, we need to
10275 -- recover the names of the original discriminants if the constraint is
10276 -- given by named associations.
10278 ---------------------------
10279 -- Set_Discriminant_Name --
10280 ---------------------------
10282 procedure Set_Discriminant_Name (Id : Node_Id) is
10283 Disc : Entity_Id;
10285 begin
10286 Set_Original_Discriminant (Id, Empty);
10288 if Has_Discriminants (Typ) then
10289 Disc := First_Discriminant (Typ);
10290 while Present (Disc) loop
10291 if Chars (Disc) = Chars (Id)
10292 and then Present (Corresponding_Discriminant (Disc))
10293 then
10294 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
10295 end if;
10296 Next_Discriminant (Disc);
10297 end loop;
10298 end if;
10299 end Set_Discriminant_Name;
10301 -- Start of processing for Build_Underlying_Full_View
10303 begin
10304 if Nkind (N) = N_Full_Type_Declaration then
10305 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
10307 elsif Nkind (N) = N_Subtype_Declaration then
10308 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
10310 elsif Nkind (N) = N_Component_Declaration then
10311 Constr :=
10312 New_Copy_Tree
10313 (Constraint (Subtype_Indication (Component_Definition (N))));
10315 else
10316 raise Program_Error;
10317 end if;
10319 C := First (Constraints (Constr));
10320 while Present (C) loop
10321 if Nkind (C) = N_Discriminant_Association then
10322 Id := First (Selector_Names (C));
10323 while Present (Id) loop
10324 Set_Discriminant_Name (Id);
10325 Next (Id);
10326 end loop;
10327 end if;
10329 Next (C);
10330 end loop;
10332 Indic :=
10333 Make_Subtype_Declaration (Loc,
10334 Defining_Identifier => Subt,
10335 Subtype_Indication =>
10336 Make_Subtype_Indication (Loc,
10337 Subtype_Mark => New_Occurrence_Of (Par, Loc),
10338 Constraint => New_Copy_Tree (Constr)));
10340 -- If this is a component subtype for an outer itype, it is not
10341 -- a list member, so simply set the parent link for analysis: if
10342 -- the enclosing type does not need to be in a declarative list,
10343 -- neither do the components.
10345 if Is_List_Member (N)
10346 and then Nkind (N) /= N_Component_Declaration
10347 then
10348 Insert_Before (N, Indic);
10349 else
10350 Set_Parent (Indic, Parent (N));
10351 end if;
10353 Analyze (Indic);
10354 Set_Underlying_Full_View (Typ, Full_View (Subt));
10355 Set_Is_Underlying_Full_View (Full_View (Subt));
10356 end Build_Underlying_Full_View;
10358 -------------------------------
10359 -- Check_Abstract_Overriding --
10360 -------------------------------
10362 procedure Check_Abstract_Overriding (T : Entity_Id) is
10363 Alias_Subp : Entity_Id;
10364 Elmt : Elmt_Id;
10365 Op_List : Elist_Id;
10366 Subp : Entity_Id;
10367 Type_Def : Node_Id;
10369 procedure Check_Pragma_Implemented (Subp : Entity_Id);
10370 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
10371 -- which has pragma Implemented already set. Check whether Subp's entity
10372 -- kind conforms to the implementation kind of the overridden routine.
10374 procedure Check_Pragma_Implemented
10375 (Subp : Entity_Id;
10376 Iface_Subp : Entity_Id);
10377 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
10378 -- Iface_Subp and both entities have pragma Implemented already set on
10379 -- them. Check whether the two implementation kinds are conforming.
10381 procedure Inherit_Pragma_Implemented
10382 (Subp : Entity_Id;
10383 Iface_Subp : Entity_Id);
10384 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
10385 -- subprogram Iface_Subp which has been marked by pragma Implemented.
10386 -- Propagate the implementation kind of Iface_Subp to Subp.
10388 ------------------------------
10389 -- Check_Pragma_Implemented --
10390 ------------------------------
10392 procedure Check_Pragma_Implemented (Subp : Entity_Id) is
10393 Iface_Alias : constant Entity_Id := Interface_Alias (Subp);
10394 Impl_Kind : constant Name_Id := Implementation_Kind (Iface_Alias);
10395 Subp_Alias : constant Entity_Id := Alias (Subp);
10396 Contr_Typ : Entity_Id;
10397 Impl_Subp : Entity_Id;
10399 begin
10400 -- Subp must have an alias since it is a hidden entity used to link
10401 -- an interface subprogram to its overriding counterpart.
10403 pragma Assert (Present (Subp_Alias));
10405 -- Handle aliases to synchronized wrappers
10407 Impl_Subp := Subp_Alias;
10409 if Is_Primitive_Wrapper (Impl_Subp) then
10410 Impl_Subp := Wrapped_Entity (Impl_Subp);
10411 end if;
10413 -- Extract the type of the controlling formal
10415 Contr_Typ := Etype (First_Formal (Subp_Alias));
10417 if Is_Concurrent_Record_Type (Contr_Typ) then
10418 Contr_Typ := Corresponding_Concurrent_Type (Contr_Typ);
10419 end if;
10421 -- An interface subprogram whose implementation kind is By_Entry must
10422 -- be implemented by an entry.
10424 if Impl_Kind = Name_By_Entry
10425 and then Ekind (Impl_Subp) /= E_Entry
10426 then
10427 Error_Msg_Node_2 := Iface_Alias;
10428 Error_Msg_NE
10429 ("type & must implement abstract subprogram & with an entry",
10430 Subp_Alias, Contr_Typ);
10432 elsif Impl_Kind = Name_By_Protected_Procedure then
10434 -- An interface subprogram whose implementation kind is By_
10435 -- Protected_Procedure cannot be implemented by a primitive
10436 -- procedure of a task type.
10438 if Ekind (Contr_Typ) /= E_Protected_Type then
10439 Error_Msg_Node_2 := Contr_Typ;
10440 Error_Msg_NE
10441 ("interface subprogram & cannot be implemented by a " &
10442 "primitive procedure of task type &", Subp_Alias,
10443 Iface_Alias);
10445 -- An interface subprogram whose implementation kind is By_
10446 -- Protected_Procedure must be implemented by a procedure.
10448 elsif Ekind (Impl_Subp) /= E_Procedure then
10449 Error_Msg_Node_2 := Iface_Alias;
10450 Error_Msg_NE
10451 ("type & must implement abstract subprogram & with a " &
10452 "procedure", Subp_Alias, Contr_Typ);
10454 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10455 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10456 then
10457 Error_Msg_Name_1 := Impl_Kind;
10458 Error_Msg_N
10459 ("overriding operation& must have synchronization%",
10460 Subp_Alias);
10461 end if;
10463 -- If primitive has Optional synchronization, overriding operation
10464 -- must match if it has an explicit synchronization..
10466 elsif Present (Get_Rep_Pragma (Impl_Subp, Name_Implemented))
10467 and then Implementation_Kind (Impl_Subp) /= Impl_Kind
10468 then
10469 Error_Msg_Name_1 := Impl_Kind;
10470 Error_Msg_N
10471 ("overriding operation& must have syncrhonization%",
10472 Subp_Alias);
10473 end if;
10474 end Check_Pragma_Implemented;
10476 ------------------------------
10477 -- Check_Pragma_Implemented --
10478 ------------------------------
10480 procedure Check_Pragma_Implemented
10481 (Subp : Entity_Id;
10482 Iface_Subp : Entity_Id)
10484 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10485 Subp_Kind : constant Name_Id := Implementation_Kind (Subp);
10487 begin
10488 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
10489 -- and overriding subprogram are different. In general this is an
10490 -- error except when the implementation kind of the overridden
10491 -- subprograms is By_Any or Optional.
10493 if Iface_Kind /= Subp_Kind
10494 and then Iface_Kind /= Name_By_Any
10495 and then Iface_Kind /= Name_Optional
10496 then
10497 if Iface_Kind = Name_By_Entry then
10498 Error_Msg_N
10499 ("incompatible implementation kind, overridden subprogram " &
10500 "is marked By_Entry", Subp);
10501 else
10502 Error_Msg_N
10503 ("incompatible implementation kind, overridden subprogram " &
10504 "is marked By_Protected_Procedure", Subp);
10505 end if;
10506 end if;
10507 end Check_Pragma_Implemented;
10509 --------------------------------
10510 -- Inherit_Pragma_Implemented --
10511 --------------------------------
10513 procedure Inherit_Pragma_Implemented
10514 (Subp : Entity_Id;
10515 Iface_Subp : Entity_Id)
10517 Iface_Kind : constant Name_Id := Implementation_Kind (Iface_Subp);
10518 Loc : constant Source_Ptr := Sloc (Subp);
10519 Impl_Prag : Node_Id;
10521 begin
10522 -- Since the implementation kind is stored as a representation item
10523 -- rather than a flag, create a pragma node.
10525 Impl_Prag :=
10526 Make_Pragma (Loc,
10527 Chars => Name_Implemented,
10528 Pragma_Argument_Associations => New_List (
10529 Make_Pragma_Argument_Association (Loc,
10530 Expression => New_Occurrence_Of (Subp, Loc)),
10532 Make_Pragma_Argument_Association (Loc,
10533 Expression => Make_Identifier (Loc, Iface_Kind))));
10535 -- The pragma doesn't need to be analyzed because it is internally
10536 -- built. It is safe to directly register it as a rep item since we
10537 -- are only interested in the characters of the implementation kind.
10539 Record_Rep_Item (Subp, Impl_Prag);
10540 end Inherit_Pragma_Implemented;
10542 -- Start of processing for Check_Abstract_Overriding
10544 begin
10545 Op_List := Primitive_Operations (T);
10547 -- Loop to check primitive operations
10549 Elmt := First_Elmt (Op_List);
10550 while Present (Elmt) loop
10551 Subp := Node (Elmt);
10552 Alias_Subp := Alias (Subp);
10554 -- Inherited subprograms are identified by the fact that they do not
10555 -- come from source, and the associated source location is the
10556 -- location of the first subtype of the derived type.
10558 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
10559 -- subprograms that "require overriding".
10561 -- Special exception, do not complain about failure to override the
10562 -- stream routines _Input and _Output, as well as the primitive
10563 -- operations used in dispatching selects since we always provide
10564 -- automatic overridings for these subprograms.
10566 -- The partial view of T may have been a private extension, for
10567 -- which inherited functions dispatching on result are abstract.
10568 -- If the full view is a null extension, there is no need for
10569 -- overriding in Ada 2005, but wrappers need to be built for them
10570 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10572 if Is_Null_Extension (T)
10573 and then Has_Controlling_Result (Subp)
10574 and then Ada_Version >= Ada_2005
10575 and then Present (Alias_Subp)
10576 and then not Comes_From_Source (Subp)
10577 and then not Is_Abstract_Subprogram (Alias_Subp)
10578 and then not Is_Access_Type (Etype (Subp))
10579 then
10580 null;
10582 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10583 -- processing because this check is done with the aliased
10584 -- entity
10586 elsif Present (Interface_Alias (Subp)) then
10587 null;
10589 elsif (Is_Abstract_Subprogram (Subp)
10590 or else Requires_Overriding (Subp)
10591 or else
10592 (Has_Controlling_Result (Subp)
10593 and then Present (Alias_Subp)
10594 and then not Comes_From_Source (Subp)
10595 and then Sloc (Subp) = Sloc (First_Subtype (T))))
10596 and then not Is_TSS (Subp, TSS_Stream_Input)
10597 and then not Is_TSS (Subp, TSS_Stream_Output)
10598 and then not Is_Abstract_Type (T)
10599 and then not Is_Predefined_Interface_Primitive (Subp)
10601 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10602 -- with abstract interface types because the check will be done
10603 -- with the aliased entity (otherwise we generate a duplicated
10604 -- error message).
10606 and then not Present (Interface_Alias (Subp))
10607 then
10608 if Present (Alias_Subp) then
10610 -- Only perform the check for a derived subprogram when the
10611 -- type has an explicit record extension. This avoids incorrect
10612 -- flagging of abstract subprograms for the case of a type
10613 -- without an extension that is derived from a formal type
10614 -- with a tagged actual (can occur within a private part).
10616 -- Ada 2005 (AI-391): In the case of an inherited function with
10617 -- a controlling result of the type, the rule does not apply if
10618 -- the type is a null extension (unless the parent function
10619 -- itself is abstract, in which case the function must still be
10620 -- be overridden). The expander will generate an overriding
10621 -- wrapper function calling the parent subprogram (see
10622 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10624 Type_Def := Type_Definition (Parent (T));
10626 if Nkind (Type_Def) = N_Derived_Type_Definition
10627 and then Present (Record_Extension_Part (Type_Def))
10628 and then
10629 (Ada_Version < Ada_2005
10630 or else not Is_Null_Extension (T)
10631 or else Ekind (Subp) = E_Procedure
10632 or else not Has_Controlling_Result (Subp)
10633 or else Is_Abstract_Subprogram (Alias_Subp)
10634 or else Requires_Overriding (Subp)
10635 or else Is_Access_Type (Etype (Subp)))
10636 then
10637 -- Avoid reporting error in case of abstract predefined
10638 -- primitive inherited from interface type because the
10639 -- body of internally generated predefined primitives
10640 -- of tagged types are generated later by Freeze_Type
10642 if Is_Interface (Root_Type (T))
10643 and then Is_Abstract_Subprogram (Subp)
10644 and then Is_Predefined_Dispatching_Operation (Subp)
10645 and then not Comes_From_Source (Ultimate_Alias (Subp))
10646 then
10647 null;
10649 -- A null extension is not obliged to override an inherited
10650 -- procedure subject to pragma Extensions_Visible with value
10651 -- False and at least one controlling OUT parameter
10652 -- (SPARK RM 6.1.7(6)).
10654 elsif Is_Null_Extension (T)
10655 and then Is_EVF_Procedure (Subp)
10656 then
10657 null;
10659 else
10660 Error_Msg_NE
10661 ("type must be declared abstract or & overridden",
10662 T, Subp);
10664 -- Traverse the whole chain of aliased subprograms to
10665 -- complete the error notification. This is especially
10666 -- useful for traceability of the chain of entities when
10667 -- the subprogram corresponds with an interface
10668 -- subprogram (which may be defined in another package).
10670 if Present (Alias_Subp) then
10671 declare
10672 E : Entity_Id;
10674 begin
10675 E := Subp;
10676 while Present (Alias (E)) loop
10678 -- Avoid reporting redundant errors on entities
10679 -- inherited from interfaces
10681 if Sloc (E) /= Sloc (T) then
10682 Error_Msg_Sloc := Sloc (E);
10683 Error_Msg_NE
10684 ("\& has been inherited #", T, Subp);
10685 end if;
10687 E := Alias (E);
10688 end loop;
10690 Error_Msg_Sloc := Sloc (E);
10692 -- AI05-0068: report if there is an overriding
10693 -- non-abstract subprogram that is invisible.
10695 if Is_Hidden (E)
10696 and then not Is_Abstract_Subprogram (E)
10697 then
10698 Error_Msg_NE
10699 ("\& subprogram# is not visible",
10700 T, Subp);
10702 -- Clarify the case where a non-null extension must
10703 -- override inherited procedure subject to pragma
10704 -- Extensions_Visible with value False and at least
10705 -- one controlling OUT param.
10707 elsif Is_EVF_Procedure (E) then
10708 Error_Msg_NE
10709 ("\& # is subject to Extensions_Visible False",
10710 T, Subp);
10712 else
10713 Error_Msg_NE
10714 ("\& has been inherited from subprogram #",
10715 T, Subp);
10716 end if;
10717 end;
10718 end if;
10719 end if;
10721 -- Ada 2005 (AI-345): Protected or task type implementing
10722 -- abstract interfaces.
10724 elsif Is_Concurrent_Record_Type (T)
10725 and then Present (Interfaces (T))
10726 then
10727 -- There is no need to check here RM 9.4(11.9/3) since we
10728 -- are processing the corresponding record type and the
10729 -- mode of the overriding subprograms was verified by
10730 -- Check_Conformance when the corresponding concurrent
10731 -- type declaration was analyzed.
10733 Error_Msg_NE
10734 ("interface subprogram & must be overridden", T, Subp);
10736 -- Examine primitive operations of synchronized type to find
10737 -- homonyms that have the wrong profile.
10739 declare
10740 Prim : Entity_Id;
10742 begin
10743 Prim := First_Entity (Corresponding_Concurrent_Type (T));
10744 while Present (Prim) loop
10745 if Chars (Prim) = Chars (Subp) then
10746 Error_Msg_NE
10747 ("profile is not type conformant with prefixed "
10748 & "view profile of inherited operation&",
10749 Prim, Subp);
10750 end if;
10752 Next_Entity (Prim);
10753 end loop;
10754 end;
10755 end if;
10757 else
10758 Error_Msg_Node_2 := T;
10759 Error_Msg_N
10760 ("abstract subprogram& not allowed for type&", Subp);
10762 -- Also post unconditional warning on the type (unconditional
10763 -- so that if there are more than one of these cases, we get
10764 -- them all, and not just the first one).
10766 Error_Msg_Node_2 := Subp;
10767 Error_Msg_N ("nonabstract type& has abstract subprogram&!", T);
10768 end if;
10770 -- A subprogram subject to pragma Extensions_Visible with value
10771 -- "True" cannot override a subprogram subject to the same pragma
10772 -- with value "False" (SPARK RM 6.1.7(5)).
10774 elsif Extensions_Visible_Status (Subp) = Extensions_Visible_True
10775 and then Present (Overridden_Operation (Subp))
10776 and then Extensions_Visible_Status (Overridden_Operation (Subp)) =
10777 Extensions_Visible_False
10778 then
10779 Error_Msg_Sloc := Sloc (Overridden_Operation (Subp));
10780 Error_Msg_N
10781 ("subprogram & with Extensions_Visible True cannot override "
10782 & "subprogram # with Extensions_Visible False", Subp);
10783 end if;
10785 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10787 -- Subp is an expander-generated procedure which maps an interface
10788 -- alias to a protected wrapper. The interface alias is flagged by
10789 -- pragma Implemented. Ensure that Subp is a procedure when the
10790 -- implementation kind is By_Protected_Procedure or an entry when
10791 -- By_Entry.
10793 if Ada_Version >= Ada_2012
10794 and then Is_Hidden (Subp)
10795 and then Present (Interface_Alias (Subp))
10796 and then Has_Rep_Pragma (Interface_Alias (Subp), Name_Implemented)
10797 then
10798 Check_Pragma_Implemented (Subp);
10799 end if;
10801 -- Subp is an interface primitive which overrides another interface
10802 -- primitive marked with pragma Implemented.
10804 if Ada_Version >= Ada_2012
10805 and then Present (Overridden_Operation (Subp))
10806 and then Has_Rep_Pragma
10807 (Overridden_Operation (Subp), Name_Implemented)
10808 then
10809 -- If the overriding routine is also marked by Implemented, check
10810 -- that the two implementation kinds are conforming.
10812 if Has_Rep_Pragma (Subp, Name_Implemented) then
10813 Check_Pragma_Implemented
10814 (Subp => Subp,
10815 Iface_Subp => Overridden_Operation (Subp));
10817 -- Otherwise the overriding routine inherits the implementation
10818 -- kind from the overridden subprogram.
10820 else
10821 Inherit_Pragma_Implemented
10822 (Subp => Subp,
10823 Iface_Subp => Overridden_Operation (Subp));
10824 end if;
10825 end if;
10827 -- If the operation is a wrapper for a synchronized primitive, it
10828 -- may be called indirectly through a dispatching select. We assume
10829 -- that it will be referenced elsewhere indirectly, and suppress
10830 -- warnings about an unused entity.
10832 if Is_Primitive_Wrapper (Subp)
10833 and then Present (Wrapped_Entity (Subp))
10834 then
10835 Set_Referenced (Wrapped_Entity (Subp));
10836 end if;
10838 Next_Elmt (Elmt);
10839 end loop;
10840 end Check_Abstract_Overriding;
10842 ------------------------------------------------
10843 -- Check_Access_Discriminant_Requires_Limited --
10844 ------------------------------------------------
10846 procedure Check_Access_Discriminant_Requires_Limited
10847 (D : Node_Id;
10848 Loc : Node_Id)
10850 begin
10851 -- A discriminant_specification for an access discriminant shall appear
10852 -- only in the declaration for a task or protected type, or for a type
10853 -- with the reserved word 'limited' in its definition or in one of its
10854 -- ancestors (RM 3.7(10)).
10856 -- AI-0063: The proper condition is that type must be immutably limited,
10857 -- or else be a partial view.
10859 if Nkind (Discriminant_Type (D)) = N_Access_Definition then
10860 if Is_Limited_View (Current_Scope)
10861 or else
10862 (Nkind (Parent (Current_Scope)) = N_Private_Type_Declaration
10863 and then Limited_Present (Parent (Current_Scope)))
10864 then
10865 null;
10867 else
10868 Error_Msg_N
10869 ("access discriminants allowed only for limited types", Loc);
10870 end if;
10871 end if;
10872 end Check_Access_Discriminant_Requires_Limited;
10874 -----------------------------------
10875 -- Check_Aliased_Component_Types --
10876 -----------------------------------
10878 procedure Check_Aliased_Component_Types (T : Entity_Id) is
10879 C : Entity_Id;
10881 begin
10882 -- ??? Also need to check components of record extensions, but not
10883 -- components of protected types (which are always limited).
10885 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10886 -- types to be unconstrained. This is safe because it is illegal to
10887 -- create access subtypes to such types with explicit discriminant
10888 -- constraints.
10890 if not Is_Limited_Type (T) then
10891 if Ekind (T) = E_Record_Type then
10892 C := First_Component (T);
10893 while Present (C) loop
10894 if Is_Aliased (C)
10895 and then Has_Discriminants (Etype (C))
10896 and then not Is_Constrained (Etype (C))
10897 and then not In_Instance_Body
10898 and then Ada_Version < Ada_2005
10899 then
10900 Error_Msg_N
10901 ("aliased component must be constrained (RM 3.6(11))",
10903 end if;
10905 Next_Component (C);
10906 end loop;
10908 elsif Ekind (T) = E_Array_Type then
10909 if Has_Aliased_Components (T)
10910 and then Has_Discriminants (Component_Type (T))
10911 and then not Is_Constrained (Component_Type (T))
10912 and then not In_Instance_Body
10913 and then Ada_Version < Ada_2005
10914 then
10915 Error_Msg_N
10916 ("aliased component type must be constrained (RM 3.6(11))",
10918 end if;
10919 end if;
10920 end if;
10921 end Check_Aliased_Component_Types;
10923 ---------------------------------------
10924 -- Check_Anonymous_Access_Components --
10925 ---------------------------------------
10927 procedure Check_Anonymous_Access_Components
10928 (Typ_Decl : Node_Id;
10929 Typ : Entity_Id;
10930 Prev : Entity_Id;
10931 Comp_List : Node_Id)
10933 Loc : constant Source_Ptr := Sloc (Typ_Decl);
10934 Anon_Access : Entity_Id;
10935 Acc_Def : Node_Id;
10936 Comp : Node_Id;
10937 Comp_Def : Node_Id;
10938 Decl : Node_Id;
10939 Type_Def : Node_Id;
10941 procedure Build_Incomplete_Type_Declaration;
10942 -- If the record type contains components that include an access to the
10943 -- current record, then create an incomplete type declaration for the
10944 -- record, to be used as the designated type of the anonymous access.
10945 -- This is done only once, and only if there is no previous partial
10946 -- view of the type.
10948 function Designates_T (Subt : Node_Id) return Boolean;
10949 -- Check whether a node designates the enclosing record type, or 'Class
10950 -- of that type
10952 function Mentions_T (Acc_Def : Node_Id) return Boolean;
10953 -- Check whether an access definition includes a reference to
10954 -- the enclosing record type. The reference can be a subtype mark
10955 -- in the access definition itself, a 'Class attribute reference, or
10956 -- recursively a reference appearing in a parameter specification
10957 -- or result definition of an access_to_subprogram definition.
10959 --------------------------------------
10960 -- Build_Incomplete_Type_Declaration --
10961 --------------------------------------
10963 procedure Build_Incomplete_Type_Declaration is
10964 Decl : Node_Id;
10965 Inc_T : Entity_Id;
10966 H : Entity_Id;
10968 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10969 -- it's "is new ... with record" or else "is tagged record ...".
10971 Is_Tagged : constant Boolean :=
10972 (Nkind (Type_Definition (Typ_Decl)) = N_Derived_Type_Definition
10973 and then
10974 Present (Record_Extension_Part (Type_Definition (Typ_Decl))))
10975 or else
10976 (Nkind (Type_Definition (Typ_Decl)) = N_Record_Definition
10977 and then Tagged_Present (Type_Definition (Typ_Decl)));
10979 begin
10980 -- If there is a previous partial view, no need to create a new one
10981 -- If the partial view, given by Prev, is incomplete, If Prev is
10982 -- a private declaration, full declaration is flagged accordingly.
10984 if Prev /= Typ then
10985 if Is_Tagged then
10986 Make_Class_Wide_Type (Prev);
10987 Set_Class_Wide_Type (Typ, Class_Wide_Type (Prev));
10988 Set_Etype (Class_Wide_Type (Typ), Typ);
10989 end if;
10991 return;
10993 elsif Has_Private_Declaration (Typ) then
10995 -- If we refer to T'Class inside T, and T is the completion of a
10996 -- private type, then make sure the class-wide type exists.
10998 if Is_Tagged then
10999 Make_Class_Wide_Type (Typ);
11000 end if;
11002 return;
11004 -- If there was a previous anonymous access type, the incomplete
11005 -- type declaration will have been created already.
11007 elsif Present (Current_Entity (Typ))
11008 and then Ekind (Current_Entity (Typ)) = E_Incomplete_Type
11009 and then Full_View (Current_Entity (Typ)) = Typ
11010 then
11011 if Is_Tagged
11012 and then Comes_From_Source (Current_Entity (Typ))
11013 and then not Is_Tagged_Type (Current_Entity (Typ))
11014 then
11015 Make_Class_Wide_Type (Typ);
11016 Error_Msg_N
11017 ("incomplete view of tagged type should be declared tagged??",
11018 Parent (Current_Entity (Typ)));
11019 end if;
11020 return;
11022 else
11023 Inc_T := Make_Defining_Identifier (Loc, Chars (Typ));
11024 Decl := Make_Incomplete_Type_Declaration (Loc, Inc_T);
11026 -- Type has already been inserted into the current scope. Remove
11027 -- it, and add incomplete declaration for type, so that subsequent
11028 -- anonymous access types can use it. The entity is unchained from
11029 -- the homonym list and from immediate visibility. After analysis,
11030 -- the entity in the incomplete declaration becomes immediately
11031 -- visible in the record declaration that follows.
11033 H := Current_Entity (Typ);
11035 if H = Typ then
11036 Set_Name_Entity_Id (Chars (Typ), Homonym (Typ));
11037 else
11038 while Present (H)
11039 and then Homonym (H) /= Typ
11040 loop
11041 H := Homonym (Typ);
11042 end loop;
11044 Set_Homonym (H, Homonym (Typ));
11045 end if;
11047 Insert_Before (Typ_Decl, Decl);
11048 Analyze (Decl);
11049 Set_Full_View (Inc_T, Typ);
11051 if Is_Tagged then
11053 -- Create a common class-wide type for both views, and set the
11054 -- Etype of the class-wide type to the full view.
11056 Make_Class_Wide_Type (Inc_T);
11057 Set_Class_Wide_Type (Typ, Class_Wide_Type (Inc_T));
11058 Set_Etype (Class_Wide_Type (Typ), Typ);
11059 end if;
11060 end if;
11061 end Build_Incomplete_Type_Declaration;
11063 ------------------
11064 -- Designates_T --
11065 ------------------
11067 function Designates_T (Subt : Node_Id) return Boolean is
11068 Type_Id : constant Name_Id := Chars (Typ);
11070 function Names_T (Nam : Node_Id) return Boolean;
11071 -- The record type has not been introduced in the current scope
11072 -- yet, so we must examine the name of the type itself, either
11073 -- an identifier T, or an expanded name of the form P.T, where
11074 -- P denotes the current scope.
11076 -------------
11077 -- Names_T --
11078 -------------
11080 function Names_T (Nam : Node_Id) return Boolean is
11081 begin
11082 if Nkind (Nam) = N_Identifier then
11083 return Chars (Nam) = Type_Id;
11085 elsif Nkind (Nam) = N_Selected_Component then
11086 if Chars (Selector_Name (Nam)) = Type_Id then
11087 if Nkind (Prefix (Nam)) = N_Identifier then
11088 return Chars (Prefix (Nam)) = Chars (Current_Scope);
11090 elsif Nkind (Prefix (Nam)) = N_Selected_Component then
11091 return Chars (Selector_Name (Prefix (Nam))) =
11092 Chars (Current_Scope);
11093 else
11094 return False;
11095 end if;
11097 else
11098 return False;
11099 end if;
11101 else
11102 return False;
11103 end if;
11104 end Names_T;
11106 -- Start of processing for Designates_T
11108 begin
11109 if Nkind (Subt) = N_Identifier then
11110 return Chars (Subt) = Type_Id;
11112 -- Reference can be through an expanded name which has not been
11113 -- analyzed yet, and which designates enclosing scopes.
11115 elsif Nkind (Subt) = N_Selected_Component then
11116 if Names_T (Subt) then
11117 return True;
11119 -- Otherwise it must denote an entity that is already visible.
11120 -- The access definition may name a subtype of the enclosing
11121 -- type, if there is a previous incomplete declaration for it.
11123 else
11124 Find_Selected_Component (Subt);
11125 return
11126 Is_Entity_Name (Subt)
11127 and then Scope (Entity (Subt)) = Current_Scope
11128 and then
11129 (Chars (Base_Type (Entity (Subt))) = Type_Id
11130 or else
11131 (Is_Class_Wide_Type (Entity (Subt))
11132 and then
11133 Chars (Etype (Base_Type (Entity (Subt)))) =
11134 Type_Id));
11135 end if;
11137 -- A reference to the current type may appear as the prefix of
11138 -- a 'Class attribute.
11140 elsif Nkind (Subt) = N_Attribute_Reference
11141 and then Attribute_Name (Subt) = Name_Class
11142 then
11143 return Names_T (Prefix (Subt));
11145 else
11146 return False;
11147 end if;
11148 end Designates_T;
11150 ----------------
11151 -- Mentions_T --
11152 ----------------
11154 function Mentions_T (Acc_Def : Node_Id) return Boolean is
11155 Param_Spec : Node_Id;
11157 Acc_Subprg : constant Node_Id :=
11158 Access_To_Subprogram_Definition (Acc_Def);
11160 begin
11161 if No (Acc_Subprg) then
11162 return Designates_T (Subtype_Mark (Acc_Def));
11163 end if;
11165 -- Component is an access_to_subprogram: examine its formals,
11166 -- and result definition in the case of an access_to_function.
11168 Param_Spec := First (Parameter_Specifications (Acc_Subprg));
11169 while Present (Param_Spec) loop
11170 if Nkind (Parameter_Type (Param_Spec)) = N_Access_Definition
11171 and then Mentions_T (Parameter_Type (Param_Spec))
11172 then
11173 return True;
11175 elsif Designates_T (Parameter_Type (Param_Spec)) then
11176 return True;
11177 end if;
11179 Next (Param_Spec);
11180 end loop;
11182 if Nkind (Acc_Subprg) = N_Access_Function_Definition then
11183 if Nkind (Result_Definition (Acc_Subprg)) =
11184 N_Access_Definition
11185 then
11186 return Mentions_T (Result_Definition (Acc_Subprg));
11187 else
11188 return Designates_T (Result_Definition (Acc_Subprg));
11189 end if;
11190 end if;
11192 return False;
11193 end Mentions_T;
11195 -- Start of processing for Check_Anonymous_Access_Components
11197 begin
11198 if No (Comp_List) then
11199 return;
11200 end if;
11202 Comp := First (Component_Items (Comp_List));
11203 while Present (Comp) loop
11204 if Nkind (Comp) = N_Component_Declaration
11205 and then Present
11206 (Access_Definition (Component_Definition (Comp)))
11207 and then
11208 Mentions_T (Access_Definition (Component_Definition (Comp)))
11209 then
11210 Comp_Def := Component_Definition (Comp);
11211 Acc_Def :=
11212 Access_To_Subprogram_Definition (Access_Definition (Comp_Def));
11214 Build_Incomplete_Type_Declaration;
11215 Anon_Access := Make_Temporary (Loc, 'S');
11217 -- Create a declaration for the anonymous access type: either
11218 -- an access_to_object or an access_to_subprogram.
11220 if Present (Acc_Def) then
11221 if Nkind (Acc_Def) = N_Access_Function_Definition then
11222 Type_Def :=
11223 Make_Access_Function_Definition (Loc,
11224 Parameter_Specifications =>
11225 Parameter_Specifications (Acc_Def),
11226 Result_Definition => Result_Definition (Acc_Def));
11227 else
11228 Type_Def :=
11229 Make_Access_Procedure_Definition (Loc,
11230 Parameter_Specifications =>
11231 Parameter_Specifications (Acc_Def));
11232 end if;
11234 else
11235 Type_Def :=
11236 Make_Access_To_Object_Definition (Loc,
11237 Subtype_Indication =>
11238 Relocate_Node
11239 (Subtype_Mark (Access_Definition (Comp_Def))));
11241 Set_Constant_Present
11242 (Type_Def, Constant_Present (Access_Definition (Comp_Def)));
11243 Set_All_Present
11244 (Type_Def, All_Present (Access_Definition (Comp_Def)));
11245 end if;
11247 Set_Null_Exclusion_Present
11248 (Type_Def,
11249 Null_Exclusion_Present (Access_Definition (Comp_Def)));
11251 Decl :=
11252 Make_Full_Type_Declaration (Loc,
11253 Defining_Identifier => Anon_Access,
11254 Type_Definition => Type_Def);
11256 Insert_Before (Typ_Decl, Decl);
11257 Analyze (Decl);
11259 -- If an access to subprogram, create the extra formals
11261 if Present (Acc_Def) then
11262 Create_Extra_Formals (Designated_Type (Anon_Access));
11264 -- If an access to object, preserve entity of designated type,
11265 -- for ASIS use, before rewriting the component definition.
11267 else
11268 declare
11269 Desig : Entity_Id;
11271 begin
11272 Desig := Entity (Subtype_Indication (Type_Def));
11274 -- If the access definition is to the current record,
11275 -- the visible entity at this point is an incomplete
11276 -- type. Retrieve the full view to simplify ASIS queries
11278 if Ekind (Desig) = E_Incomplete_Type then
11279 Desig := Full_View (Desig);
11280 end if;
11282 Set_Entity
11283 (Subtype_Mark (Access_Definition (Comp_Def)), Desig);
11284 end;
11285 end if;
11287 Rewrite (Comp_Def,
11288 Make_Component_Definition (Loc,
11289 Subtype_Indication =>
11290 New_Occurrence_Of (Anon_Access, Loc)));
11292 if Ekind (Designated_Type (Anon_Access)) = E_Subprogram_Type then
11293 Set_Ekind (Anon_Access, E_Anonymous_Access_Subprogram_Type);
11294 else
11295 Set_Ekind (Anon_Access, E_Anonymous_Access_Type);
11296 end if;
11298 Set_Is_Local_Anonymous_Access (Anon_Access);
11299 end if;
11301 Next (Comp);
11302 end loop;
11304 if Present (Variant_Part (Comp_List)) then
11305 declare
11306 V : Node_Id;
11307 begin
11308 V := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
11309 while Present (V) loop
11310 Check_Anonymous_Access_Components
11311 (Typ_Decl, Typ, Prev, Component_List (V));
11312 Next_Non_Pragma (V);
11313 end loop;
11314 end;
11315 end if;
11316 end Check_Anonymous_Access_Components;
11318 ----------------------
11319 -- Check_Completion --
11320 ----------------------
11322 procedure Check_Completion (Body_Id : Node_Id := Empty) is
11323 E : Entity_Id;
11325 procedure Post_Error;
11326 -- Post error message for lack of completion for entity E
11328 ----------------
11329 -- Post_Error --
11330 ----------------
11332 procedure Post_Error is
11333 procedure Missing_Body;
11334 -- Output missing body message
11336 ------------------
11337 -- Missing_Body --
11338 ------------------
11340 procedure Missing_Body is
11341 begin
11342 -- Spec is in same unit, so we can post on spec
11344 if In_Same_Source_Unit (Body_Id, E) then
11345 Error_Msg_N ("missing body for &", E);
11347 -- Spec is in a separate unit, so we have to post on the body
11349 else
11350 Error_Msg_NE ("missing body for & declared#!", Body_Id, E);
11351 end if;
11352 end Missing_Body;
11354 -- Start of processing for Post_Error
11356 begin
11357 if not Comes_From_Source (E) then
11358 if Ekind_In (E, E_Task_Type, E_Protected_Type) then
11360 -- It may be an anonymous protected type created for a
11361 -- single variable. Post error on variable, if present.
11363 declare
11364 Var : Entity_Id;
11366 begin
11367 Var := First_Entity (Current_Scope);
11368 while Present (Var) loop
11369 exit when Etype (Var) = E
11370 and then Comes_From_Source (Var);
11372 Next_Entity (Var);
11373 end loop;
11375 if Present (Var) then
11376 E := Var;
11377 end if;
11378 end;
11379 end if;
11380 end if;
11382 -- If a generated entity has no completion, then either previous
11383 -- semantic errors have disabled the expansion phase, or else we had
11384 -- missing subunits, or else we are compiling without expansion,
11385 -- or else something is very wrong.
11387 if not Comes_From_Source (E) then
11388 pragma Assert
11389 (Serious_Errors_Detected > 0
11390 or else Configurable_Run_Time_Violations > 0
11391 or else Subunits_Missing
11392 or else not Expander_Active);
11393 return;
11395 -- Here for source entity
11397 else
11398 -- Here if no body to post the error message, so we post the error
11399 -- on the declaration that has no completion. This is not really
11400 -- the right place to post it, think about this later ???
11402 if No (Body_Id) then
11403 if Is_Type (E) then
11404 Error_Msg_NE
11405 ("missing full declaration for }", Parent (E), E);
11406 else
11407 Error_Msg_NE ("missing body for &", Parent (E), E);
11408 end if;
11410 -- Package body has no completion for a declaration that appears
11411 -- in the corresponding spec. Post error on the body, with a
11412 -- reference to the non-completed declaration.
11414 else
11415 Error_Msg_Sloc := Sloc (E);
11417 if Is_Type (E) then
11418 Error_Msg_NE ("missing full declaration for }!", Body_Id, E);
11420 elsif Is_Overloadable (E)
11421 and then Current_Entity_In_Scope (E) /= E
11422 then
11423 -- It may be that the completion is mistyped and appears as
11424 -- a distinct overloading of the entity.
11426 declare
11427 Candidate : constant Entity_Id :=
11428 Current_Entity_In_Scope (E);
11429 Decl : constant Node_Id :=
11430 Unit_Declaration_Node (Candidate);
11432 begin
11433 if Is_Overloadable (Candidate)
11434 and then Ekind (Candidate) = Ekind (E)
11435 and then Nkind (Decl) = N_Subprogram_Body
11436 and then Acts_As_Spec (Decl)
11437 then
11438 Check_Type_Conformant (Candidate, E);
11440 else
11441 Missing_Body;
11442 end if;
11443 end;
11445 else
11446 Missing_Body;
11447 end if;
11448 end if;
11449 end if;
11450 end Post_Error;
11452 -- Local variables
11454 Pack_Id : constant Entity_Id := Current_Scope;
11456 -- Start of processing for Check_Completion
11458 begin
11459 E := First_Entity (Pack_Id);
11460 while Present (E) loop
11461 if Is_Intrinsic_Subprogram (E) then
11462 null;
11464 -- The following situation requires special handling: a child unit
11465 -- that appears in the context clause of the body of its parent:
11467 -- procedure Parent.Child (...);
11469 -- with Parent.Child;
11470 -- package body Parent is
11472 -- Here Parent.Child appears as a local entity, but should not be
11473 -- flagged as requiring completion, because it is a compilation
11474 -- unit.
11476 -- Ignore missing completion for a subprogram that does not come from
11477 -- source (including the _Call primitive operation of RAS types,
11478 -- which has to have the flag Comes_From_Source for other purposes):
11479 -- we assume that the expander will provide the missing completion.
11480 -- In case of previous errors, other expansion actions that provide
11481 -- bodies for null procedures with not be invoked, so inhibit message
11482 -- in those cases.
11484 -- Note that E_Operator is not in the list that follows, because
11485 -- this kind is reserved for predefined operators, that are
11486 -- intrinsic and do not need completion.
11488 elsif Ekind_In (E, E_Function,
11489 E_Procedure,
11490 E_Generic_Function,
11491 E_Generic_Procedure)
11492 then
11493 if Has_Completion (E) then
11494 null;
11496 elsif Is_Subprogram (E) and then Is_Abstract_Subprogram (E) then
11497 null;
11499 elsif Is_Subprogram (E)
11500 and then (not Comes_From_Source (E)
11501 or else Chars (E) = Name_uCall)
11502 then
11503 null;
11505 elsif
11506 Nkind (Parent (Unit_Declaration_Node (E))) = N_Compilation_Unit
11507 then
11508 null;
11510 elsif Nkind (Parent (E)) = N_Procedure_Specification
11511 and then Null_Present (Parent (E))
11512 and then Serious_Errors_Detected > 0
11513 then
11514 null;
11516 else
11517 Post_Error;
11518 end if;
11520 elsif Is_Entry (E) then
11521 if not Has_Completion (E) and then
11522 (Ekind (Scope (E)) = E_Protected_Object
11523 or else Ekind (Scope (E)) = E_Protected_Type)
11524 then
11525 Post_Error;
11526 end if;
11528 elsif Is_Package_Or_Generic_Package (E) then
11529 if Unit_Requires_Body (E) then
11530 if not Has_Completion (E)
11531 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
11532 N_Compilation_Unit
11533 then
11534 Post_Error;
11535 end if;
11537 elsif not Is_Child_Unit (E) then
11538 May_Need_Implicit_Body (E);
11539 end if;
11541 -- A formal incomplete type (Ada 2012) does not require a completion;
11542 -- other incomplete type declarations do.
11544 elsif Ekind (E) = E_Incomplete_Type
11545 and then No (Underlying_Type (E))
11546 and then not Is_Generic_Type (E)
11547 then
11548 Post_Error;
11550 elsif Ekind_In (E, E_Task_Type, E_Protected_Type)
11551 and then not Has_Completion (E)
11552 then
11553 Post_Error;
11555 -- A single task declared in the current scope is a constant, verify
11556 -- that the body of its anonymous type is in the same scope. If the
11557 -- task is defined elsewhere, this may be a renaming declaration for
11558 -- which no completion is needed.
11560 elsif Ekind (E) = E_Constant
11561 and then Ekind (Etype (E)) = E_Task_Type
11562 and then not Has_Completion (Etype (E))
11563 and then Scope (Etype (E)) = Current_Scope
11564 then
11565 Post_Error;
11567 elsif Ekind (E) = E_Protected_Object
11568 and then not Has_Completion (Etype (E))
11569 then
11570 Post_Error;
11572 elsif Ekind (E) = E_Record_Type then
11573 if Is_Tagged_Type (E) then
11574 Check_Abstract_Overriding (E);
11575 Check_Conventions (E);
11576 end if;
11578 Check_Aliased_Component_Types (E);
11580 elsif Ekind (E) = E_Array_Type then
11581 Check_Aliased_Component_Types (E);
11583 end if;
11585 Next_Entity (E);
11586 end loop;
11587 end Check_Completion;
11589 ------------------------------------
11590 -- Check_CPP_Type_Has_No_Defaults --
11591 ------------------------------------
11593 procedure Check_CPP_Type_Has_No_Defaults (T : Entity_Id) is
11594 Tdef : constant Node_Id := Type_Definition (Declaration_Node (T));
11595 Clist : Node_Id;
11596 Comp : Node_Id;
11598 begin
11599 -- Obtain the component list
11601 if Nkind (Tdef) = N_Record_Definition then
11602 Clist := Component_List (Tdef);
11603 else pragma Assert (Nkind (Tdef) = N_Derived_Type_Definition);
11604 Clist := Component_List (Record_Extension_Part (Tdef));
11605 end if;
11607 -- Check all components to ensure no default expressions
11609 if Present (Clist) then
11610 Comp := First (Component_Items (Clist));
11611 while Present (Comp) loop
11612 if Present (Expression (Comp)) then
11613 Error_Msg_N
11614 ("component of imported 'C'P'P type cannot have "
11615 & "default expression", Expression (Comp));
11616 end if;
11618 Next (Comp);
11619 end loop;
11620 end if;
11621 end Check_CPP_Type_Has_No_Defaults;
11623 ----------------------------
11624 -- Check_Delta_Expression --
11625 ----------------------------
11627 procedure Check_Delta_Expression (E : Node_Id) is
11628 begin
11629 if not (Is_Real_Type (Etype (E))) then
11630 Wrong_Type (E, Any_Real);
11632 elsif not Is_OK_Static_Expression (E) then
11633 Flag_Non_Static_Expr
11634 ("non-static expression used for delta value!", E);
11636 elsif not UR_Is_Positive (Expr_Value_R (E)) then
11637 Error_Msg_N ("delta expression must be positive", E);
11639 else
11640 return;
11641 end if;
11643 -- If any of above errors occurred, then replace the incorrect
11644 -- expression by the real 0.1, which should prevent further errors.
11646 Rewrite (E,
11647 Make_Real_Literal (Sloc (E), Ureal_Tenth));
11648 Analyze_And_Resolve (E, Standard_Float);
11649 end Check_Delta_Expression;
11651 -----------------------------
11652 -- Check_Digits_Expression --
11653 -----------------------------
11655 procedure Check_Digits_Expression (E : Node_Id) is
11656 begin
11657 if not (Is_Integer_Type (Etype (E))) then
11658 Wrong_Type (E, Any_Integer);
11660 elsif not Is_OK_Static_Expression (E) then
11661 Flag_Non_Static_Expr
11662 ("non-static expression used for digits value!", E);
11664 elsif Expr_Value (E) <= 0 then
11665 Error_Msg_N ("digits value must be greater than zero", E);
11667 else
11668 return;
11669 end if;
11671 -- If any of above errors occurred, then replace the incorrect
11672 -- expression by the integer 1, which should prevent further errors.
11674 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
11675 Analyze_And_Resolve (E, Standard_Integer);
11677 end Check_Digits_Expression;
11679 --------------------------
11680 -- Check_Initialization --
11681 --------------------------
11683 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
11684 begin
11685 -- Special processing for limited types
11687 if Is_Limited_Type (T)
11688 and then not In_Instance
11689 and then not In_Inlined_Body
11690 then
11691 if not OK_For_Limited_Init (T, Exp) then
11693 -- In GNAT mode, this is just a warning, to allow it to be evilly
11694 -- turned off. Otherwise it is a real error.
11696 if GNAT_Mode then
11697 Error_Msg_N
11698 ("??cannot initialize entities of limited type!", Exp);
11700 elsif Ada_Version < Ada_2005 then
11702 -- The side effect removal machinery may generate illegal Ada
11703 -- code to avoid the usage of access types and 'reference in
11704 -- SPARK mode. Since this is legal code with respect to theorem
11705 -- proving, do not emit the error.
11707 if GNATprove_Mode
11708 and then Nkind (Exp) = N_Function_Call
11709 and then Nkind (Parent (Exp)) = N_Object_Declaration
11710 and then not Comes_From_Source
11711 (Defining_Identifier (Parent (Exp)))
11712 then
11713 null;
11715 else
11716 Error_Msg_N
11717 ("cannot initialize entities of limited type", Exp);
11718 Explain_Limited_Type (T, Exp);
11719 end if;
11721 else
11722 -- Specialize error message according to kind of illegal
11723 -- initial expression.
11725 if Nkind (Exp) = N_Type_Conversion
11726 and then Nkind (Expression (Exp)) = N_Function_Call
11727 then
11728 Error_Msg_N
11729 ("illegal context for call"
11730 & " to function with limited result", Exp);
11732 else
11733 Error_Msg_N
11734 ("initialization of limited object requires aggregate "
11735 & "or function call", Exp);
11736 end if;
11737 end if;
11738 end if;
11739 end if;
11741 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11742 -- set unless we can be sure that no range check is required.
11744 if (GNATprove_Mode or not Expander_Active)
11745 and then Is_Scalar_Type (T)
11746 and then not Is_In_Range (Exp, T, Assume_Valid => True)
11747 then
11748 Set_Do_Range_Check (Exp);
11749 end if;
11750 end Check_Initialization;
11752 ----------------------
11753 -- Check_Interfaces --
11754 ----------------------
11756 procedure Check_Interfaces (N : Node_Id; Def : Node_Id) is
11757 Parent_Type : constant Entity_Id := Etype (Defining_Identifier (N));
11759 Iface : Node_Id;
11760 Iface_Def : Node_Id;
11761 Iface_Typ : Entity_Id;
11762 Parent_Node : Node_Id;
11764 Is_Task : Boolean := False;
11765 -- Set True if parent type or any progenitor is a task interface
11767 Is_Protected : Boolean := False;
11768 -- Set True if parent type or any progenitor is a protected interface
11770 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id);
11771 -- Check that a progenitor is compatible with declaration. If an error
11772 -- message is output, it is posted on Error_Node.
11774 ------------------
11775 -- Check_Ifaces --
11776 ------------------
11778 procedure Check_Ifaces (Iface_Def : Node_Id; Error_Node : Node_Id) is
11779 Iface_Id : constant Entity_Id :=
11780 Defining_Identifier (Parent (Iface_Def));
11781 Type_Def : Node_Id;
11783 begin
11784 if Nkind (N) = N_Private_Extension_Declaration then
11785 Type_Def := N;
11786 else
11787 Type_Def := Type_Definition (N);
11788 end if;
11790 if Is_Task_Interface (Iface_Id) then
11791 Is_Task := True;
11793 elsif Is_Protected_Interface (Iface_Id) then
11794 Is_Protected := True;
11795 end if;
11797 if Is_Synchronized_Interface (Iface_Id) then
11799 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11800 -- extension derived from a synchronized interface must explicitly
11801 -- be declared synchronized, because the full view will be a
11802 -- synchronized type.
11804 if Nkind (N) = N_Private_Extension_Declaration then
11805 if not Synchronized_Present (N) then
11806 Error_Msg_NE
11807 ("private extension of& must be explicitly synchronized",
11808 N, Iface_Id);
11809 end if;
11811 -- However, by 3.9.4(16/2), a full type that is a record extension
11812 -- is never allowed to derive from a synchronized interface (note
11813 -- that interfaces must be excluded from this check, because those
11814 -- are represented by derived type definitions in some cases).
11816 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11817 and then not Interface_Present (Type_Definition (N))
11818 then
11819 Error_Msg_N ("record extension cannot derive from synchronized "
11820 & "interface", Error_Node);
11821 end if;
11822 end if;
11824 -- Check that the characteristics of the progenitor are compatible
11825 -- with the explicit qualifier in the declaration.
11826 -- The check only applies to qualifiers that come from source.
11827 -- Limited_Present also appears in the declaration of corresponding
11828 -- records, and the check does not apply to them.
11830 if Limited_Present (Type_Def)
11831 and then not
11832 Is_Concurrent_Record_Type (Defining_Identifier (N))
11833 then
11834 if Is_Limited_Interface (Parent_Type)
11835 and then not Is_Limited_Interface (Iface_Id)
11836 then
11837 Error_Msg_NE
11838 ("progenitor & must be limited interface",
11839 Error_Node, Iface_Id);
11841 elsif
11842 (Task_Present (Iface_Def)
11843 or else Protected_Present (Iface_Def)
11844 or else Synchronized_Present (Iface_Def))
11845 and then Nkind (N) /= N_Private_Extension_Declaration
11846 and then not Error_Posted (N)
11847 then
11848 Error_Msg_NE
11849 ("progenitor & must be limited interface",
11850 Error_Node, Iface_Id);
11851 end if;
11853 -- Protected interfaces can only inherit from limited, synchronized
11854 -- or protected interfaces.
11856 elsif Nkind (N) = N_Full_Type_Declaration
11857 and then Protected_Present (Type_Def)
11858 then
11859 if Limited_Present (Iface_Def)
11860 or else Synchronized_Present (Iface_Def)
11861 or else Protected_Present (Iface_Def)
11862 then
11863 null;
11865 elsif Task_Present (Iface_Def) then
11866 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11867 & "from task interface", Error_Node);
11869 else
11870 Error_Msg_N ("(Ada 2005) protected interface cannot inherit "
11871 & "from non-limited interface", Error_Node);
11872 end if;
11874 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11875 -- limited and synchronized.
11877 elsif Synchronized_Present (Type_Def) then
11878 if Limited_Present (Iface_Def)
11879 or else Synchronized_Present (Iface_Def)
11880 then
11881 null;
11883 elsif Protected_Present (Iface_Def)
11884 and then Nkind (N) /= N_Private_Extension_Declaration
11885 then
11886 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11887 & "from protected interface", Error_Node);
11889 elsif Task_Present (Iface_Def)
11890 and then Nkind (N) /= N_Private_Extension_Declaration
11891 then
11892 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11893 & "from task interface", Error_Node);
11895 elsif not Is_Limited_Interface (Iface_Id) then
11896 Error_Msg_N ("(Ada 2005) synchronized interface cannot inherit "
11897 & "from non-limited interface", Error_Node);
11898 end if;
11900 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11901 -- synchronized or task interfaces.
11903 elsif Nkind (N) = N_Full_Type_Declaration
11904 and then Task_Present (Type_Def)
11905 then
11906 if Limited_Present (Iface_Def)
11907 or else Synchronized_Present (Iface_Def)
11908 or else Task_Present (Iface_Def)
11909 then
11910 null;
11912 elsif Protected_Present (Iface_Def) then
11913 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11914 & "protected interface", Error_Node);
11916 else
11917 Error_Msg_N ("(Ada 2005) task interface cannot inherit from "
11918 & "non-limited interface", Error_Node);
11919 end if;
11920 end if;
11921 end Check_Ifaces;
11923 -- Start of processing for Check_Interfaces
11925 begin
11926 if Is_Interface (Parent_Type) then
11927 if Is_Task_Interface (Parent_Type) then
11928 Is_Task := True;
11930 elsif Is_Protected_Interface (Parent_Type) then
11931 Is_Protected := True;
11932 end if;
11933 end if;
11935 if Nkind (N) = N_Private_Extension_Declaration then
11937 -- Check that progenitors are compatible with declaration
11939 Iface := First (Interface_List (Def));
11940 while Present (Iface) loop
11941 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11943 Parent_Node := Parent (Base_Type (Iface_Typ));
11944 Iface_Def := Type_Definition (Parent_Node);
11946 if not Is_Interface (Iface_Typ) then
11947 Diagnose_Interface (Iface, Iface_Typ);
11948 else
11949 Check_Ifaces (Iface_Def, Iface);
11950 end if;
11952 Next (Iface);
11953 end loop;
11955 if Is_Task and Is_Protected then
11956 Error_Msg_N
11957 ("type cannot derive from task and protected interface", N);
11958 end if;
11960 return;
11961 end if;
11963 -- Full type declaration of derived type.
11964 -- Check compatibility with parent if it is interface type
11966 if Nkind (Type_Definition (N)) = N_Derived_Type_Definition
11967 and then Is_Interface (Parent_Type)
11968 then
11969 Parent_Node := Parent (Parent_Type);
11971 -- More detailed checks for interface varieties
11973 Check_Ifaces
11974 (Iface_Def => Type_Definition (Parent_Node),
11975 Error_Node => Subtype_Indication (Type_Definition (N)));
11976 end if;
11978 Iface := First (Interface_List (Def));
11979 while Present (Iface) loop
11980 Iface_Typ := Find_Type_Of_Subtype_Indic (Iface);
11982 Parent_Node := Parent (Base_Type (Iface_Typ));
11983 Iface_Def := Type_Definition (Parent_Node);
11985 if not Is_Interface (Iface_Typ) then
11986 Diagnose_Interface (Iface, Iface_Typ);
11988 else
11989 -- "The declaration of a specific descendant of an interface
11990 -- type freezes the interface type" RM 13.14
11992 Freeze_Before (N, Iface_Typ);
11993 Check_Ifaces (Iface_Def, Error_Node => Iface);
11994 end if;
11996 Next (Iface);
11997 end loop;
11999 if Is_Task and Is_Protected then
12000 Error_Msg_N
12001 ("type cannot derive from task and protected interface", N);
12002 end if;
12003 end Check_Interfaces;
12005 ------------------------------------
12006 -- Check_Or_Process_Discriminants --
12007 ------------------------------------
12009 -- If an incomplete or private type declaration was already given for the
12010 -- type, the discriminants may have already been processed if they were
12011 -- present on the incomplete declaration. In this case a full conformance
12012 -- check has been performed in Find_Type_Name, and we then recheck here
12013 -- some properties that can't be checked on the partial view alone.
12014 -- Otherwise we call Process_Discriminants.
12016 procedure Check_Or_Process_Discriminants
12017 (N : Node_Id;
12018 T : Entity_Id;
12019 Prev : Entity_Id := Empty)
12021 begin
12022 if Has_Discriminants (T) then
12024 -- Discriminants are already set on T if they were already present
12025 -- on the partial view. Make them visible to component declarations.
12027 declare
12028 D : Entity_Id;
12029 -- Discriminant on T (full view) referencing expr on partial view
12031 Prev_D : Entity_Id;
12032 -- Entity of corresponding discriminant on partial view
12034 New_D : Node_Id;
12035 -- Discriminant specification for full view, expression is
12036 -- the syntactic copy on full view (which has been checked for
12037 -- conformance with partial view), only used here to post error
12038 -- message.
12040 begin
12041 D := First_Discriminant (T);
12042 New_D := First (Discriminant_Specifications (N));
12043 while Present (D) loop
12044 Prev_D := Current_Entity (D);
12045 Set_Current_Entity (D);
12046 Set_Is_Immediately_Visible (D);
12047 Set_Homonym (D, Prev_D);
12049 -- Handle the case where there is an untagged partial view and
12050 -- the full view is tagged: must disallow discriminants with
12051 -- defaults, unless compiling for Ada 2012, which allows a
12052 -- limited tagged type to have defaulted discriminants (see
12053 -- AI05-0214). However, suppress error here if it was already
12054 -- reported on the default expression of the partial view.
12056 if Is_Tagged_Type (T)
12057 and then Present (Expression (Parent (D)))
12058 and then (not Is_Limited_Type (Current_Scope)
12059 or else Ada_Version < Ada_2012)
12060 and then not Error_Posted (Expression (Parent (D)))
12061 then
12062 if Ada_Version >= Ada_2012 then
12063 Error_Msg_N
12064 ("discriminants of nonlimited tagged type cannot have "
12065 & "defaults",
12066 Expression (New_D));
12067 else
12068 Error_Msg_N
12069 ("discriminants of tagged type cannot have defaults",
12070 Expression (New_D));
12071 end if;
12072 end if;
12074 -- Ada 2005 (AI-230): Access discriminant allowed in
12075 -- non-limited record types.
12077 if Ada_Version < Ada_2005 then
12079 -- This restriction gets applied to the full type here. It
12080 -- has already been applied earlier to the partial view.
12082 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
12083 end if;
12085 Next_Discriminant (D);
12086 Next (New_D);
12087 end loop;
12088 end;
12090 elsif Present (Discriminant_Specifications (N)) then
12091 Process_Discriminants (N, Prev);
12092 end if;
12093 end Check_Or_Process_Discriminants;
12095 ----------------------
12096 -- Check_Real_Bound --
12097 ----------------------
12099 procedure Check_Real_Bound (Bound : Node_Id) is
12100 begin
12101 if not Is_Real_Type (Etype (Bound)) then
12102 Error_Msg_N
12103 ("bound in real type definition must be of real type", Bound);
12105 elsif not Is_OK_Static_Expression (Bound) then
12106 Flag_Non_Static_Expr
12107 ("non-static expression used for real type bound!", Bound);
12109 else
12110 return;
12111 end if;
12113 Rewrite
12114 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
12115 Analyze (Bound);
12116 Resolve (Bound, Standard_Float);
12117 end Check_Real_Bound;
12119 ------------------------------
12120 -- Complete_Private_Subtype --
12121 ------------------------------
12123 procedure Complete_Private_Subtype
12124 (Priv : Entity_Id;
12125 Full : Entity_Id;
12126 Full_Base : Entity_Id;
12127 Related_Nod : Node_Id)
12129 Save_Next_Entity : Entity_Id;
12130 Save_Homonym : Entity_Id;
12132 begin
12133 -- Set semantic attributes for (implicit) private subtype completion.
12134 -- If the full type has no discriminants, then it is a copy of the
12135 -- full view of the base. Otherwise, it is a subtype of the base with
12136 -- a possible discriminant constraint. Save and restore the original
12137 -- Next_Entity field of full to ensure that the calls to Copy_Node do
12138 -- not corrupt the entity chain.
12140 -- Note that the type of the full view is the same entity as the type
12141 -- of the partial view. In this fashion, the subtype has access to the
12142 -- correct view of the parent.
12144 Save_Next_Entity := Next_Entity (Full);
12145 Save_Homonym := Homonym (Priv);
12147 case Ekind (Full_Base) is
12148 when Class_Wide_Kind
12149 | Private_Kind
12150 | Protected_Kind
12151 | Task_Kind
12152 | E_Record_Subtype
12153 | E_Record_Type
12155 Copy_Node (Priv, Full);
12157 Set_Has_Discriminants
12158 (Full, Has_Discriminants (Full_Base));
12159 Set_Has_Unknown_Discriminants
12160 (Full, Has_Unknown_Discriminants (Full_Base));
12161 Set_First_Entity (Full, First_Entity (Full_Base));
12162 Set_Last_Entity (Full, Last_Entity (Full_Base));
12164 -- If the underlying base type is constrained, we know that the
12165 -- full view of the subtype is constrained as well (the converse
12166 -- is not necessarily true).
12168 if Is_Constrained (Full_Base) then
12169 Set_Is_Constrained (Full);
12170 end if;
12172 when others =>
12173 Copy_Node (Full_Base, Full);
12175 Set_Chars (Full, Chars (Priv));
12176 Conditional_Delay (Full, Priv);
12177 Set_Sloc (Full, Sloc (Priv));
12178 end case;
12180 Set_Next_Entity (Full, Save_Next_Entity);
12181 Set_Homonym (Full, Save_Homonym);
12182 Set_Associated_Node_For_Itype (Full, Related_Nod);
12184 -- Set common attributes for all subtypes: kind, convention, etc.
12186 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
12187 Set_Convention (Full, Convention (Full_Base));
12189 -- The Etype of the full view is inconsistent. Gigi needs to see the
12190 -- structural full view, which is what the current scheme gives: the
12191 -- Etype of the full view is the etype of the full base. However, if the
12192 -- full base is a derived type, the full view then looks like a subtype
12193 -- of the parent, not a subtype of the full base. If instead we write:
12195 -- Set_Etype (Full, Full_Base);
12197 -- then we get inconsistencies in the front-end (confusion between
12198 -- views). Several outstanding bugs are related to this ???
12200 Set_Is_First_Subtype (Full, False);
12201 Set_Scope (Full, Scope (Priv));
12202 Set_Size_Info (Full, Full_Base);
12203 Set_RM_Size (Full, RM_Size (Full_Base));
12204 Set_Is_Itype (Full);
12206 -- A subtype of a private-type-without-discriminants, whose full-view
12207 -- has discriminants with default expressions, is not constrained.
12209 if not Has_Discriminants (Priv) then
12210 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
12212 if Has_Discriminants (Full_Base) then
12213 Set_Discriminant_Constraint
12214 (Full, Discriminant_Constraint (Full_Base));
12216 -- The partial view may have been indefinite, the full view
12217 -- might not be.
12219 Set_Has_Unknown_Discriminants
12220 (Full, Has_Unknown_Discriminants (Full_Base));
12221 end if;
12222 end if;
12224 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
12225 Set_Depends_On_Private (Full, Has_Private_Component (Full));
12227 -- Freeze the private subtype entity if its parent is delayed, and not
12228 -- already frozen. We skip this processing if the type is an anonymous
12229 -- subtype of a record component, or is the corresponding record of a
12230 -- protected type, since these are processed when the enclosing type
12231 -- is frozen. If the parent type is declared in a nested package then
12232 -- the freezing of the private and full views also happens later.
12234 if not Is_Type (Scope (Full)) then
12235 if Is_Itype (Priv)
12236 and then In_Same_Source_Unit (Full, Full_Base)
12237 and then Scope (Full_Base) /= Scope (Full)
12238 then
12239 Set_Has_Delayed_Freeze (Full);
12240 Set_Has_Delayed_Freeze (Priv);
12242 else
12243 Set_Has_Delayed_Freeze (Full,
12244 Has_Delayed_Freeze (Full_Base)
12245 and then not Is_Frozen (Full_Base));
12246 end if;
12247 end if;
12249 Set_Freeze_Node (Full, Empty);
12250 Set_Is_Frozen (Full, False);
12251 Set_Full_View (Priv, Full);
12253 if Has_Discriminants (Full) then
12254 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
12255 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
12257 if Has_Unknown_Discriminants (Full) then
12258 Set_Discriminant_Constraint (Full, No_Elist);
12259 end if;
12260 end if;
12262 if Ekind (Full_Base) = E_Record_Type
12263 and then Has_Discriminants (Full_Base)
12264 and then Has_Discriminants (Priv) -- might not, if errors
12265 and then not Has_Unknown_Discriminants (Priv)
12266 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
12267 then
12268 Create_Constrained_Components
12269 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
12271 -- If the full base is itself derived from private, build a congruent
12272 -- subtype of its underlying type, for use by the back end. For a
12273 -- constrained record component, the declaration cannot be placed on
12274 -- the component list, but it must nevertheless be built an analyzed, to
12275 -- supply enough information for Gigi to compute the size of component.
12277 elsif Ekind (Full_Base) in Private_Kind
12278 and then Is_Derived_Type (Full_Base)
12279 and then Has_Discriminants (Full_Base)
12280 and then (Ekind (Current_Scope) /= E_Record_Subtype)
12281 then
12282 if not Is_Itype (Priv)
12283 and then
12284 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
12285 then
12286 Build_Underlying_Full_View
12287 (Parent (Priv), Full, Etype (Full_Base));
12289 elsif Nkind (Related_Nod) = N_Component_Declaration then
12290 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
12291 end if;
12293 elsif Is_Record_Type (Full_Base) then
12295 -- Show Full is simply a renaming of Full_Base
12297 Set_Cloned_Subtype (Full, Full_Base);
12298 end if;
12300 -- It is unsafe to share the bounds of a scalar type, because the Itype
12301 -- is elaborated on demand, and if a bound is non-static then different
12302 -- orders of elaboration in different units will lead to different
12303 -- external symbols.
12305 if Is_Scalar_Type (Full_Base) then
12306 Set_Scalar_Range (Full,
12307 Make_Range (Sloc (Related_Nod),
12308 Low_Bound =>
12309 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
12310 High_Bound =>
12311 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
12313 -- This completion inherits the bounds of the full parent, but if
12314 -- the parent is an unconstrained floating point type, so is the
12315 -- completion.
12317 if Is_Floating_Point_Type (Full_Base) then
12318 Set_Includes_Infinities
12319 (Scalar_Range (Full), Has_Infinities (Full_Base));
12320 end if;
12321 end if;
12323 -- ??? It seems that a lot of fields are missing that should be copied
12324 -- from Full_Base to Full. Here are some that are introduced in a
12325 -- non-disruptive way but a cleanup is necessary.
12327 if Is_Tagged_Type (Full_Base) then
12328 Set_Is_Tagged_Type (Full);
12329 Set_Direct_Primitive_Operations
12330 (Full, Direct_Primitive_Operations (Full_Base));
12331 Set_No_Tagged_Streams_Pragma
12332 (Full, No_Tagged_Streams_Pragma (Full_Base));
12334 -- Inherit class_wide type of full_base in case the partial view was
12335 -- not tagged. Otherwise it has already been created when the private
12336 -- subtype was analyzed.
12338 if No (Class_Wide_Type (Full)) then
12339 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
12340 end if;
12342 -- If this is a subtype of a protected or task type, constrain its
12343 -- corresponding record, unless this is a subtype without constraints,
12344 -- i.e. a simple renaming as with an actual subtype in an instance.
12346 elsif Is_Concurrent_Type (Full_Base) then
12347 if Has_Discriminants (Full)
12348 and then Present (Corresponding_Record_Type (Full_Base))
12349 and then
12350 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
12351 then
12352 Set_Corresponding_Record_Type (Full,
12353 Constrain_Corresponding_Record
12354 (Full, Corresponding_Record_Type (Full_Base), Related_Nod));
12356 else
12357 Set_Corresponding_Record_Type (Full,
12358 Corresponding_Record_Type (Full_Base));
12359 end if;
12360 end if;
12362 -- Link rep item chain, and also setting of Has_Predicates from private
12363 -- subtype to full subtype, since we will need these on the full subtype
12364 -- to create the predicate function. Note that the full subtype may
12365 -- already have rep items, inherited from the full view of the base
12366 -- type, so we must be sure not to overwrite these entries.
12368 declare
12369 Append : Boolean;
12370 Item : Node_Id;
12371 Next_Item : Node_Id;
12372 Priv_Item : Node_Id;
12374 begin
12375 Item := First_Rep_Item (Full);
12376 Priv_Item := First_Rep_Item (Priv);
12378 -- If no existing rep items on full type, we can just link directly
12379 -- to the list of items on the private type, if any exist.. Same if
12380 -- the rep items are only those inherited from the base
12382 if (No (Item)
12383 or else Nkind (Item) /= N_Aspect_Specification
12384 or else Entity (Item) = Full_Base)
12385 and then Present (First_Rep_Item (Priv))
12386 then
12387 Set_First_Rep_Item (Full, Priv_Item);
12389 -- Otherwise, search to the end of items currently linked to the full
12390 -- subtype and append the private items to the end. However, if Priv
12391 -- and Full already have the same list of rep items, then the append
12392 -- is not done, as that would create a circularity.
12394 -- The partial view may have a predicate and the rep item lists of
12395 -- both views agree when inherited from the same ancestor. In that
12396 -- case, simply propagate the list from one view to the other.
12397 -- A more complex analysis needed here ???
12399 elsif Present (Priv_Item)
12400 and then Item = Next_Rep_Item (Priv_Item)
12401 then
12402 Set_First_Rep_Item (Full, Priv_Item);
12404 elsif Item /= Priv_Item then
12405 Append := True;
12406 loop
12407 Next_Item := Next_Rep_Item (Item);
12408 exit when No (Next_Item);
12409 Item := Next_Item;
12411 -- If the private view has aspect specifications, the full view
12412 -- inherits them. Since these aspects may already have been
12413 -- attached to the full view during derivation, do not append
12414 -- them if already present.
12416 if Item = First_Rep_Item (Priv) then
12417 Append := False;
12418 exit;
12419 end if;
12420 end loop;
12422 -- And link the private type items at the end of the chain
12424 if Append then
12425 Set_Next_Rep_Item (Item, First_Rep_Item (Priv));
12426 end if;
12427 end if;
12428 end;
12430 -- Make sure Has_Predicates is set on full type if it is set on the
12431 -- private type. Note that it may already be set on the full type and
12432 -- if so, we don't want to unset it. Similarly, propagate information
12433 -- about delayed aspects, because the corresponding pragmas must be
12434 -- analyzed when one of the views is frozen. This last step is needed
12435 -- in particular when the full type is a scalar type for which an
12436 -- anonymous base type is constructed.
12438 -- The predicate functions are generated either at the freeze point
12439 -- of the type or at the end of the visible part, and we must avoid
12440 -- generating them twice.
12442 if Has_Predicates (Priv) then
12443 Set_Has_Predicates (Full);
12445 if Present (Predicate_Function (Priv))
12446 and then No (Predicate_Function (Full))
12447 then
12448 Set_Predicate_Function (Full, Predicate_Function (Priv));
12449 end if;
12450 end if;
12452 if Has_Delayed_Aspects (Priv) then
12453 Set_Has_Delayed_Aspects (Full);
12454 end if;
12455 end Complete_Private_Subtype;
12457 ----------------------------
12458 -- Constant_Redeclaration --
12459 ----------------------------
12461 procedure Constant_Redeclaration
12462 (Id : Entity_Id;
12463 N : Node_Id;
12464 T : out Entity_Id)
12466 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
12467 Obj_Def : constant Node_Id := Object_Definition (N);
12468 New_T : Entity_Id;
12470 procedure Check_Possible_Deferred_Completion
12471 (Prev_Id : Entity_Id;
12472 Prev_Obj_Def : Node_Id;
12473 Curr_Obj_Def : Node_Id);
12474 -- Determine whether the two object definitions describe the partial
12475 -- and the full view of a constrained deferred constant. Generate
12476 -- a subtype for the full view and verify that it statically matches
12477 -- the subtype of the partial view.
12479 procedure Check_Recursive_Declaration (Typ : Entity_Id);
12480 -- If deferred constant is an access type initialized with an allocator,
12481 -- check whether there is an illegal recursion in the definition,
12482 -- through a default value of some record subcomponent. This is normally
12483 -- detected when generating init procs, but requires this additional
12484 -- mechanism when expansion is disabled.
12486 ----------------------------------------
12487 -- Check_Possible_Deferred_Completion --
12488 ----------------------------------------
12490 procedure Check_Possible_Deferred_Completion
12491 (Prev_Id : Entity_Id;
12492 Prev_Obj_Def : Node_Id;
12493 Curr_Obj_Def : Node_Id)
12495 begin
12496 if Nkind (Prev_Obj_Def) = N_Subtype_Indication
12497 and then Present (Constraint (Prev_Obj_Def))
12498 and then Nkind (Curr_Obj_Def) = N_Subtype_Indication
12499 and then Present (Constraint (Curr_Obj_Def))
12500 then
12501 declare
12502 Loc : constant Source_Ptr := Sloc (N);
12503 Def_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
12504 Decl : constant Node_Id :=
12505 Make_Subtype_Declaration (Loc,
12506 Defining_Identifier => Def_Id,
12507 Subtype_Indication =>
12508 Relocate_Node (Curr_Obj_Def));
12510 begin
12511 Insert_Before_And_Analyze (N, Decl);
12512 Set_Etype (Id, Def_Id);
12514 if not Subtypes_Statically_Match (Etype (Prev_Id), Def_Id) then
12515 Error_Msg_Sloc := Sloc (Prev_Id);
12516 Error_Msg_N ("subtype does not statically match deferred "
12517 & "declaration #", N);
12518 end if;
12519 end;
12520 end if;
12521 end Check_Possible_Deferred_Completion;
12523 ---------------------------------
12524 -- Check_Recursive_Declaration --
12525 ---------------------------------
12527 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
12528 Comp : Entity_Id;
12530 begin
12531 if Is_Record_Type (Typ) then
12532 Comp := First_Component (Typ);
12533 while Present (Comp) loop
12534 if Comes_From_Source (Comp) then
12535 if Present (Expression (Parent (Comp)))
12536 and then Is_Entity_Name (Expression (Parent (Comp)))
12537 and then Entity (Expression (Parent (Comp))) = Prev
12538 then
12539 Error_Msg_Sloc := Sloc (Parent (Comp));
12540 Error_Msg_NE
12541 ("illegal circularity with declaration for & #",
12542 N, Comp);
12543 return;
12545 elsif Is_Record_Type (Etype (Comp)) then
12546 Check_Recursive_Declaration (Etype (Comp));
12547 end if;
12548 end if;
12550 Next_Component (Comp);
12551 end loop;
12552 end if;
12553 end Check_Recursive_Declaration;
12555 -- Start of processing for Constant_Redeclaration
12557 begin
12558 if Nkind (Parent (Prev)) = N_Object_Declaration then
12559 if Nkind (Object_Definition
12560 (Parent (Prev))) = N_Subtype_Indication
12561 then
12562 -- Find type of new declaration. The constraints of the two
12563 -- views must match statically, but there is no point in
12564 -- creating an itype for the full view.
12566 if Nkind (Obj_Def) = N_Subtype_Indication then
12567 Find_Type (Subtype_Mark (Obj_Def));
12568 New_T := Entity (Subtype_Mark (Obj_Def));
12570 else
12571 Find_Type (Obj_Def);
12572 New_T := Entity (Obj_Def);
12573 end if;
12575 T := Etype (Prev);
12577 else
12578 -- The full view may impose a constraint, even if the partial
12579 -- view does not, so construct the subtype.
12581 New_T := Find_Type_Of_Object (Obj_Def, N);
12582 T := New_T;
12583 end if;
12585 else
12586 -- Current declaration is illegal, diagnosed below in Enter_Name
12588 T := Empty;
12589 New_T := Any_Type;
12590 end if;
12592 -- If previous full declaration or a renaming declaration exists, or if
12593 -- a homograph is present, let Enter_Name handle it, either with an
12594 -- error or with the removal of an overridden implicit subprogram.
12595 -- The previous one is a full declaration if it has an expression
12596 -- (which in the case of an aggregate is indicated by the Init flag).
12598 if Ekind (Prev) /= E_Constant
12599 or else Nkind (Parent (Prev)) = N_Object_Renaming_Declaration
12600 or else Present (Expression (Parent (Prev)))
12601 or else Has_Init_Expression (Parent (Prev))
12602 or else Present (Full_View (Prev))
12603 then
12604 Enter_Name (Id);
12606 -- Verify that types of both declarations match, or else that both types
12607 -- are anonymous access types whose designated subtypes statically match
12608 -- (as allowed in Ada 2005 by AI-385).
12610 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T)
12611 and then
12612 (Ekind (Etype (Prev)) /= E_Anonymous_Access_Type
12613 or else Ekind (Etype (New_T)) /= E_Anonymous_Access_Type
12614 or else Is_Access_Constant (Etype (New_T)) /=
12615 Is_Access_Constant (Etype (Prev))
12616 or else Can_Never_Be_Null (Etype (New_T)) /=
12617 Can_Never_Be_Null (Etype (Prev))
12618 or else Null_Exclusion_Present (Parent (Prev)) /=
12619 Null_Exclusion_Present (Parent (Id))
12620 or else not Subtypes_Statically_Match
12621 (Designated_Type (Etype (Prev)),
12622 Designated_Type (Etype (New_T))))
12623 then
12624 Error_Msg_Sloc := Sloc (Prev);
12625 Error_Msg_N ("type does not match declaration#", N);
12626 Set_Full_View (Prev, Id);
12627 Set_Etype (Id, Any_Type);
12629 -- A deferred constant whose type is an anonymous array is always
12630 -- illegal (unless imported). A detailed error message might be
12631 -- helpful for Ada beginners.
12633 if Nkind (Object_Definition (Parent (Prev)))
12634 = N_Constrained_Array_Definition
12635 and then Nkind (Object_Definition (N))
12636 = N_Constrained_Array_Definition
12637 then
12638 Error_Msg_N ("\each anonymous array is a distinct type", N);
12639 Error_Msg_N ("a deferred constant must have a named type",
12640 Object_Definition (Parent (Prev)));
12641 end if;
12643 elsif
12644 Null_Exclusion_Present (Parent (Prev))
12645 and then not Null_Exclusion_Present (N)
12646 then
12647 Error_Msg_Sloc := Sloc (Prev);
12648 Error_Msg_N ("null-exclusion does not match declaration#", N);
12649 Set_Full_View (Prev, Id);
12650 Set_Etype (Id, Any_Type);
12652 -- If so, process the full constant declaration
12654 else
12655 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12656 -- the deferred declaration is constrained, then the subtype defined
12657 -- by the subtype_indication in the full declaration shall match it
12658 -- statically.
12660 Check_Possible_Deferred_Completion
12661 (Prev_Id => Prev,
12662 Prev_Obj_Def => Object_Definition (Parent (Prev)),
12663 Curr_Obj_Def => Obj_Def);
12665 Set_Full_View (Prev, Id);
12666 Set_Is_Public (Id, Is_Public (Prev));
12667 Set_Is_Internal (Id);
12668 Append_Entity (Id, Current_Scope);
12670 -- Check ALIASED present if present before (RM 7.4(7))
12672 if Is_Aliased (Prev)
12673 and then not Aliased_Present (N)
12674 then
12675 Error_Msg_Sloc := Sloc (Prev);
12676 Error_Msg_N ("ALIASED required (see declaration #)", N);
12677 end if;
12679 -- Check that placement is in private part and that the incomplete
12680 -- declaration appeared in the visible part.
12682 if Ekind (Current_Scope) = E_Package
12683 and then not In_Private_Part (Current_Scope)
12684 then
12685 Error_Msg_Sloc := Sloc (Prev);
12686 Error_Msg_N
12687 ("full constant for declaration # must be in private part", N);
12689 elsif Ekind (Current_Scope) = E_Package
12690 and then
12691 List_Containing (Parent (Prev)) /=
12692 Visible_Declarations (Package_Specification (Current_Scope))
12693 then
12694 Error_Msg_N
12695 ("deferred constant must be declared in visible part",
12696 Parent (Prev));
12697 end if;
12699 if Is_Access_Type (T)
12700 and then Nkind (Expression (N)) = N_Allocator
12701 then
12702 Check_Recursive_Declaration (Designated_Type (T));
12703 end if;
12705 -- A deferred constant is a visible entity. If type has invariants,
12706 -- verify that the initial value satisfies them.
12708 if Has_Invariants (T) and then Present (Invariant_Procedure (T)) then
12709 Insert_After (N,
12710 Make_Invariant_Call (New_Occurrence_Of (Prev, Sloc (N))));
12711 end if;
12712 end if;
12713 end Constant_Redeclaration;
12715 ----------------------
12716 -- Constrain_Access --
12717 ----------------------
12719 procedure Constrain_Access
12720 (Def_Id : in out Entity_Id;
12721 S : Node_Id;
12722 Related_Nod : Node_Id)
12724 T : constant Entity_Id := Entity (Subtype_Mark (S));
12725 Desig_Type : constant Entity_Id := Designated_Type (T);
12726 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
12727 Constraint_OK : Boolean := True;
12729 begin
12730 if Is_Array_Type (Desig_Type) then
12731 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
12733 elsif (Is_Record_Type (Desig_Type)
12734 or else Is_Incomplete_Or_Private_Type (Desig_Type))
12735 and then not Is_Constrained (Desig_Type)
12736 then
12737 -- ??? The following code is a temporary bypass to ignore a
12738 -- discriminant constraint on access type if it is constraining
12739 -- the current record. Avoid creating the implicit subtype of the
12740 -- record we are currently compiling since right now, we cannot
12741 -- handle these. For now, just return the access type itself.
12743 if Desig_Type = Current_Scope
12744 and then No (Def_Id)
12745 then
12746 Set_Ekind (Desig_Subtype, E_Record_Subtype);
12747 Def_Id := Entity (Subtype_Mark (S));
12749 -- This call added to ensure that the constraint is analyzed
12750 -- (needed for a B test). Note that we still return early from
12751 -- this procedure to avoid recursive processing. ???
12753 Constrain_Discriminated_Type
12754 (Desig_Subtype, S, Related_Nod, For_Access => True);
12755 return;
12756 end if;
12758 -- Enforce rule that the constraint is illegal if there is an
12759 -- unconstrained view of the designated type. This means that the
12760 -- partial view (either a private type declaration or a derivation
12761 -- from a private type) has no discriminants. (Defect Report
12762 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12764 -- Rule updated for Ada 2005: The private type is said to have
12765 -- a constrained partial view, given that objects of the type
12766 -- can be declared. Furthermore, the rule applies to all access
12767 -- types, unlike the rule concerning default discriminants (see
12768 -- RM 3.7.1(7/3))
12770 if (Ekind (T) = E_General_Access_Type or else Ada_Version >= Ada_2005)
12771 and then Has_Private_Declaration (Desig_Type)
12772 and then In_Open_Scopes (Scope (Desig_Type))
12773 and then Has_Discriminants (Desig_Type)
12774 then
12775 declare
12776 Pack : constant Node_Id :=
12777 Unit_Declaration_Node (Scope (Desig_Type));
12778 Decls : List_Id;
12779 Decl : Node_Id;
12781 begin
12782 if Nkind (Pack) = N_Package_Declaration then
12783 Decls := Visible_Declarations (Specification (Pack));
12784 Decl := First (Decls);
12785 while Present (Decl) loop
12786 if (Nkind (Decl) = N_Private_Type_Declaration
12787 and then Chars (Defining_Identifier (Decl)) =
12788 Chars (Desig_Type))
12790 or else
12791 (Nkind (Decl) = N_Full_Type_Declaration
12792 and then
12793 Chars (Defining_Identifier (Decl)) =
12794 Chars (Desig_Type)
12795 and then Is_Derived_Type (Desig_Type)
12796 and then
12797 Has_Private_Declaration (Etype (Desig_Type)))
12798 then
12799 if No (Discriminant_Specifications (Decl)) then
12800 Error_Msg_N
12801 ("cannot constrain access type if designated "
12802 & "type has constrained partial view", S);
12803 end if;
12805 exit;
12806 end if;
12808 Next (Decl);
12809 end loop;
12810 end if;
12811 end;
12812 end if;
12814 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
12815 For_Access => True);
12817 elsif Is_Concurrent_Type (Desig_Type)
12818 and then not Is_Constrained (Desig_Type)
12819 then
12820 Constrain_Concurrent (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
12822 else
12823 Error_Msg_N ("invalid constraint on access type", S);
12825 -- We simply ignore an invalid constraint
12827 Desig_Subtype := Desig_Type;
12828 Constraint_OK := False;
12829 end if;
12831 if No (Def_Id) then
12832 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
12833 else
12834 Set_Ekind (Def_Id, E_Access_Subtype);
12835 end if;
12837 if Constraint_OK then
12838 Set_Etype (Def_Id, Base_Type (T));
12840 if Is_Private_Type (Desig_Type) then
12841 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
12842 end if;
12843 else
12844 Set_Etype (Def_Id, Any_Type);
12845 end if;
12847 Set_Size_Info (Def_Id, T);
12848 Set_Is_Constrained (Def_Id, Constraint_OK);
12849 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
12850 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12851 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
12853 Conditional_Delay (Def_Id, T);
12855 -- AI-363 : Subtypes of general access types whose designated types have
12856 -- default discriminants are disallowed. In instances, the rule has to
12857 -- be checked against the actual, of which T is the subtype. In a
12858 -- generic body, the rule is checked assuming that the actual type has
12859 -- defaulted discriminants.
12861 if Ada_Version >= Ada_2005 or else Warn_On_Ada_2005_Compatibility then
12862 if Ekind (Base_Type (T)) = E_General_Access_Type
12863 and then Has_Defaulted_Discriminants (Desig_Type)
12864 then
12865 if Ada_Version < Ada_2005 then
12866 Error_Msg_N
12867 ("access subtype of general access type would not " &
12868 "be allowed in Ada 2005?y?", S);
12869 else
12870 Error_Msg_N
12871 ("access subtype of general access type not allowed", S);
12872 end if;
12874 Error_Msg_N ("\discriminants have defaults", S);
12876 elsif Is_Access_Type (T)
12877 and then Is_Generic_Type (Desig_Type)
12878 and then Has_Discriminants (Desig_Type)
12879 and then In_Package_Body (Current_Scope)
12880 then
12881 if Ada_Version < Ada_2005 then
12882 Error_Msg_N
12883 ("access subtype would not be allowed in generic body "
12884 & "in Ada 2005?y?", S);
12885 else
12886 Error_Msg_N
12887 ("access subtype not allowed in generic body", S);
12888 end if;
12890 Error_Msg_N
12891 ("\designated type is a discriminated formal", S);
12892 end if;
12893 end if;
12894 end Constrain_Access;
12896 ---------------------
12897 -- Constrain_Array --
12898 ---------------------
12900 procedure Constrain_Array
12901 (Def_Id : in out Entity_Id;
12902 SI : Node_Id;
12903 Related_Nod : Node_Id;
12904 Related_Id : Entity_Id;
12905 Suffix : Character)
12907 C : constant Node_Id := Constraint (SI);
12908 Number_Of_Constraints : Nat := 0;
12909 Index : Node_Id;
12910 S, T : Entity_Id;
12911 Constraint_OK : Boolean := True;
12913 begin
12914 T := Entity (Subtype_Mark (SI));
12916 if Is_Access_Type (T) then
12917 T := Designated_Type (T);
12918 end if;
12920 -- If an index constraint follows a subtype mark in a subtype indication
12921 -- then the type or subtype denoted by the subtype mark must not already
12922 -- impose an index constraint. The subtype mark must denote either an
12923 -- unconstrained array type or an access type whose designated type
12924 -- is such an array type... (RM 3.6.1)
12926 if Is_Constrained (T) then
12927 Error_Msg_N ("array type is already constrained", Subtype_Mark (SI));
12928 Constraint_OK := False;
12930 else
12931 S := First (Constraints (C));
12932 while Present (S) loop
12933 Number_Of_Constraints := Number_Of_Constraints + 1;
12934 Next (S);
12935 end loop;
12937 -- In either case, the index constraint must provide a discrete
12938 -- range for each index of the array type and the type of each
12939 -- discrete range must be the same as that of the corresponding
12940 -- index. (RM 3.6.1)
12942 if Number_Of_Constraints /= Number_Dimensions (T) then
12943 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
12944 Constraint_OK := False;
12946 else
12947 S := First (Constraints (C));
12948 Index := First_Index (T);
12949 Analyze (Index);
12951 -- Apply constraints to each index type
12953 for J in 1 .. Number_Of_Constraints loop
12954 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
12955 Next (Index);
12956 Next (S);
12957 end loop;
12959 end if;
12960 end if;
12962 if No (Def_Id) then
12963 Def_Id :=
12964 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
12965 Set_Parent (Def_Id, Related_Nod);
12967 else
12968 Set_Ekind (Def_Id, E_Array_Subtype);
12969 end if;
12971 Set_Size_Info (Def_Id, (T));
12972 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
12973 Set_Etype (Def_Id, Base_Type (T));
12975 if Constraint_OK then
12976 Set_First_Index (Def_Id, First (Constraints (C)));
12977 else
12978 Set_First_Index (Def_Id, First_Index (T));
12979 end if;
12981 Set_Is_Constrained (Def_Id, True);
12982 Set_Is_Aliased (Def_Id, Is_Aliased (T));
12983 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
12985 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
12986 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
12988 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12989 -- We need to initialize the attribute because if Def_Id is previously
12990 -- analyzed through a limited_with clause, it will have the attributes
12991 -- of an incomplete type, one of which is an Elist that overlaps the
12992 -- Packed_Array_Impl_Type field.
12994 Set_Packed_Array_Impl_Type (Def_Id, Empty);
12996 -- Build a freeze node if parent still needs one. Also make sure that
12997 -- the Depends_On_Private status is set because the subtype will need
12998 -- reprocessing at the time the base type does, and also we must set a
12999 -- conditional delay.
13001 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
13002 Conditional_Delay (Def_Id, T);
13003 end Constrain_Array;
13005 ------------------------------
13006 -- Constrain_Component_Type --
13007 ------------------------------
13009 function Constrain_Component_Type
13010 (Comp : Entity_Id;
13011 Constrained_Typ : Entity_Id;
13012 Related_Node : Node_Id;
13013 Typ : Entity_Id;
13014 Constraints : Elist_Id) return Entity_Id
13016 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
13017 Compon_Type : constant Entity_Id := Etype (Comp);
13019 function Build_Constrained_Array_Type
13020 (Old_Type : Entity_Id) return Entity_Id;
13021 -- If Old_Type is an array type, one of whose indexes is constrained
13022 -- by a discriminant, build an Itype whose constraint replaces the
13023 -- discriminant with its value in the constraint.
13025 function Build_Constrained_Discriminated_Type
13026 (Old_Type : Entity_Id) return Entity_Id;
13027 -- Ditto for record components
13029 function Build_Constrained_Access_Type
13030 (Old_Type : Entity_Id) return Entity_Id;
13031 -- Ditto for access types. Makes use of previous two functions, to
13032 -- constrain designated type.
13034 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
13035 -- T is an array or discriminated type, C is a list of constraints
13036 -- that apply to T. This routine builds the constrained subtype.
13038 function Is_Discriminant (Expr : Node_Id) return Boolean;
13039 -- Returns True if Expr is a discriminant
13041 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
13042 -- Find the value of discriminant Discrim in Constraint
13044 -----------------------------------
13045 -- Build_Constrained_Access_Type --
13046 -----------------------------------
13048 function Build_Constrained_Access_Type
13049 (Old_Type : Entity_Id) return Entity_Id
13051 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
13052 Itype : Entity_Id;
13053 Desig_Subtype : Entity_Id;
13054 Scop : Entity_Id;
13056 begin
13057 -- if the original access type was not embedded in the enclosing
13058 -- type definition, there is no need to produce a new access
13059 -- subtype. In fact every access type with an explicit constraint
13060 -- generates an itype whose scope is the enclosing record.
13062 if not Is_Type (Scope (Old_Type)) then
13063 return Old_Type;
13065 elsif Is_Array_Type (Desig_Type) then
13066 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
13068 elsif Has_Discriminants (Desig_Type) then
13070 -- This may be an access type to an enclosing record type for
13071 -- which we are constructing the constrained components. Return
13072 -- the enclosing record subtype. This is not always correct,
13073 -- but avoids infinite recursion. ???
13075 Desig_Subtype := Any_Type;
13077 for J in reverse 0 .. Scope_Stack.Last loop
13078 Scop := Scope_Stack.Table (J).Entity;
13080 if Is_Type (Scop)
13081 and then Base_Type (Scop) = Base_Type (Desig_Type)
13082 then
13083 Desig_Subtype := Scop;
13084 end if;
13086 exit when not Is_Type (Scop);
13087 end loop;
13089 if Desig_Subtype = Any_Type then
13090 Desig_Subtype :=
13091 Build_Constrained_Discriminated_Type (Desig_Type);
13092 end if;
13094 else
13095 return Old_Type;
13096 end if;
13098 if Desig_Subtype /= Desig_Type then
13100 -- The Related_Node better be here or else we won't be able
13101 -- to attach new itypes to a node in the tree.
13103 pragma Assert (Present (Related_Node));
13105 Itype := Create_Itype (E_Access_Subtype, Related_Node);
13107 Set_Etype (Itype, Base_Type (Old_Type));
13108 Set_Size_Info (Itype, (Old_Type));
13109 Set_Directly_Designated_Type (Itype, Desig_Subtype);
13110 Set_Depends_On_Private (Itype, Has_Private_Component
13111 (Old_Type));
13112 Set_Is_Access_Constant (Itype, Is_Access_Constant
13113 (Old_Type));
13115 -- The new itype needs freezing when it depends on a not frozen
13116 -- type and the enclosing subtype needs freezing.
13118 if Has_Delayed_Freeze (Constrained_Typ)
13119 and then not Is_Frozen (Constrained_Typ)
13120 then
13121 Conditional_Delay (Itype, Base_Type (Old_Type));
13122 end if;
13124 return Itype;
13126 else
13127 return Old_Type;
13128 end if;
13129 end Build_Constrained_Access_Type;
13131 ----------------------------------
13132 -- Build_Constrained_Array_Type --
13133 ----------------------------------
13135 function Build_Constrained_Array_Type
13136 (Old_Type : Entity_Id) return Entity_Id
13138 Lo_Expr : Node_Id;
13139 Hi_Expr : Node_Id;
13140 Old_Index : Node_Id;
13141 Range_Node : Node_Id;
13142 Constr_List : List_Id;
13144 Need_To_Create_Itype : Boolean := False;
13146 begin
13147 Old_Index := First_Index (Old_Type);
13148 while Present (Old_Index) loop
13149 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13151 if Is_Discriminant (Lo_Expr)
13152 or else
13153 Is_Discriminant (Hi_Expr)
13154 then
13155 Need_To_Create_Itype := True;
13156 end if;
13158 Next_Index (Old_Index);
13159 end loop;
13161 if Need_To_Create_Itype then
13162 Constr_List := New_List;
13164 Old_Index := First_Index (Old_Type);
13165 while Present (Old_Index) loop
13166 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
13168 if Is_Discriminant (Lo_Expr) then
13169 Lo_Expr := Get_Discr_Value (Lo_Expr);
13170 end if;
13172 if Is_Discriminant (Hi_Expr) then
13173 Hi_Expr := Get_Discr_Value (Hi_Expr);
13174 end if;
13176 Range_Node :=
13177 Make_Range
13178 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
13180 Append (Range_Node, To => Constr_List);
13182 Next_Index (Old_Index);
13183 end loop;
13185 return Build_Subtype (Old_Type, Constr_List);
13187 else
13188 return Old_Type;
13189 end if;
13190 end Build_Constrained_Array_Type;
13192 ------------------------------------------
13193 -- Build_Constrained_Discriminated_Type --
13194 ------------------------------------------
13196 function Build_Constrained_Discriminated_Type
13197 (Old_Type : Entity_Id) return Entity_Id
13199 Expr : Node_Id;
13200 Constr_List : List_Id;
13201 Old_Constraint : Elmt_Id;
13203 Need_To_Create_Itype : Boolean := False;
13205 begin
13206 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13207 while Present (Old_Constraint) loop
13208 Expr := Node (Old_Constraint);
13210 if Is_Discriminant (Expr) then
13211 Need_To_Create_Itype := True;
13212 end if;
13214 Next_Elmt (Old_Constraint);
13215 end loop;
13217 if Need_To_Create_Itype then
13218 Constr_List := New_List;
13220 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
13221 while Present (Old_Constraint) loop
13222 Expr := Node (Old_Constraint);
13224 if Is_Discriminant (Expr) then
13225 Expr := Get_Discr_Value (Expr);
13226 end if;
13228 Append (New_Copy_Tree (Expr), To => Constr_List);
13230 Next_Elmt (Old_Constraint);
13231 end loop;
13233 return Build_Subtype (Old_Type, Constr_List);
13235 else
13236 return Old_Type;
13237 end if;
13238 end Build_Constrained_Discriminated_Type;
13240 -------------------
13241 -- Build_Subtype --
13242 -------------------
13244 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
13245 Indic : Node_Id;
13246 Subtyp_Decl : Node_Id;
13247 Def_Id : Entity_Id;
13248 Btyp : Entity_Id := Base_Type (T);
13250 begin
13251 -- The Related_Node better be here or else we won't be able to
13252 -- attach new itypes to a node in the tree.
13254 pragma Assert (Present (Related_Node));
13256 -- If the view of the component's type is incomplete or private
13257 -- with unknown discriminants, then the constraint must be applied
13258 -- to the full type.
13260 if Has_Unknown_Discriminants (Btyp)
13261 and then Present (Underlying_Type (Btyp))
13262 then
13263 Btyp := Underlying_Type (Btyp);
13264 end if;
13266 Indic :=
13267 Make_Subtype_Indication (Loc,
13268 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
13269 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
13271 Def_Id := Create_Itype (Ekind (T), Related_Node);
13273 Subtyp_Decl :=
13274 Make_Subtype_Declaration (Loc,
13275 Defining_Identifier => Def_Id,
13276 Subtype_Indication => Indic);
13278 Set_Parent (Subtyp_Decl, Parent (Related_Node));
13280 -- Itypes must be analyzed with checks off (see package Itypes)
13282 Analyze (Subtyp_Decl, Suppress => All_Checks);
13284 return Def_Id;
13285 end Build_Subtype;
13287 ---------------------
13288 -- Get_Discr_Value --
13289 ---------------------
13291 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
13292 D : Entity_Id;
13293 E : Elmt_Id;
13295 begin
13296 -- The discriminant may be declared for the type, in which case we
13297 -- find it by iterating over the list of discriminants. If the
13298 -- discriminant is inherited from a parent type, it appears as the
13299 -- corresponding discriminant of the current type. This will be the
13300 -- case when constraining an inherited component whose constraint is
13301 -- given by a discriminant of the parent.
13303 D := First_Discriminant (Typ);
13304 E := First_Elmt (Constraints);
13306 while Present (D) loop
13307 if D = Entity (Discrim)
13308 or else D = CR_Discriminant (Entity (Discrim))
13309 or else Corresponding_Discriminant (D) = Entity (Discrim)
13310 then
13311 return Node (E);
13312 end if;
13314 Next_Discriminant (D);
13315 Next_Elmt (E);
13316 end loop;
13318 -- The Corresponding_Discriminant mechanism is incomplete, because
13319 -- the correspondence between new and old discriminants is not one
13320 -- to one: one new discriminant can constrain several old ones. In
13321 -- that case, scan sequentially the stored_constraint, the list of
13322 -- discriminants of the parents, and the constraints.
13324 -- Previous code checked for the present of the Stored_Constraint
13325 -- list for the derived type, but did not use it at all. Should it
13326 -- be present when the component is a discriminated task type?
13328 if Is_Derived_Type (Typ)
13329 and then Scope (Entity (Discrim)) = Etype (Typ)
13330 then
13331 D := First_Discriminant (Etype (Typ));
13332 E := First_Elmt (Constraints);
13333 while Present (D) loop
13334 if D = Entity (Discrim) then
13335 return Node (E);
13336 end if;
13338 Next_Discriminant (D);
13339 Next_Elmt (E);
13340 end loop;
13341 end if;
13343 -- Something is wrong if we did not find the value
13345 raise Program_Error;
13346 end Get_Discr_Value;
13348 ---------------------
13349 -- Is_Discriminant --
13350 ---------------------
13352 function Is_Discriminant (Expr : Node_Id) return Boolean is
13353 Discrim_Scope : Entity_Id;
13355 begin
13356 if Denotes_Discriminant (Expr) then
13357 Discrim_Scope := Scope (Entity (Expr));
13359 -- Either we have a reference to one of Typ's discriminants,
13361 pragma Assert (Discrim_Scope = Typ
13363 -- or to the discriminants of the parent type, in the case
13364 -- of a derivation of a tagged type with variants.
13366 or else Discrim_Scope = Etype (Typ)
13367 or else Full_View (Discrim_Scope) = Etype (Typ)
13369 -- or same as above for the case where the discriminants
13370 -- were declared in Typ's private view.
13372 or else (Is_Private_Type (Discrim_Scope)
13373 and then Chars (Discrim_Scope) = Chars (Typ))
13375 -- or else we are deriving from the full view and the
13376 -- discriminant is declared in the private entity.
13378 or else (Is_Private_Type (Typ)
13379 and then Chars (Discrim_Scope) = Chars (Typ))
13381 -- Or we are constrained the corresponding record of a
13382 -- synchronized type that completes a private declaration.
13384 or else (Is_Concurrent_Record_Type (Typ)
13385 and then
13386 Corresponding_Concurrent_Type (Typ) = Discrim_Scope)
13388 -- or we have a class-wide type, in which case make sure the
13389 -- discriminant found belongs to the root type.
13391 or else (Is_Class_Wide_Type (Typ)
13392 and then Etype (Typ) = Discrim_Scope));
13394 return True;
13395 end if;
13397 -- In all other cases we have something wrong
13399 return False;
13400 end Is_Discriminant;
13402 -- Start of processing for Constrain_Component_Type
13404 begin
13405 if Nkind (Parent (Comp)) = N_Component_Declaration
13406 and then Comes_From_Source (Parent (Comp))
13407 and then Comes_From_Source
13408 (Subtype_Indication (Component_Definition (Parent (Comp))))
13409 and then
13410 Is_Entity_Name
13411 (Subtype_Indication (Component_Definition (Parent (Comp))))
13412 then
13413 return Compon_Type;
13415 elsif Is_Array_Type (Compon_Type) then
13416 return Build_Constrained_Array_Type (Compon_Type);
13418 elsif Has_Discriminants (Compon_Type) then
13419 return Build_Constrained_Discriminated_Type (Compon_Type);
13421 elsif Is_Access_Type (Compon_Type) then
13422 return Build_Constrained_Access_Type (Compon_Type);
13424 else
13425 return Compon_Type;
13426 end if;
13427 end Constrain_Component_Type;
13429 --------------------------
13430 -- Constrain_Concurrent --
13431 --------------------------
13433 -- For concurrent types, the associated record value type carries the same
13434 -- discriminants, so when we constrain a concurrent type, we must constrain
13435 -- the corresponding record type as well.
13437 procedure Constrain_Concurrent
13438 (Def_Id : in out Entity_Id;
13439 SI : Node_Id;
13440 Related_Nod : Node_Id;
13441 Related_Id : Entity_Id;
13442 Suffix : Character)
13444 -- Retrieve Base_Type to ensure getting to the concurrent type in the
13445 -- case of a private subtype (needed when only doing semantic analysis).
13447 T_Ent : Entity_Id := Base_Type (Entity (Subtype_Mark (SI)));
13448 T_Val : Entity_Id;
13450 begin
13451 if Is_Access_Type (T_Ent) then
13452 T_Ent := Designated_Type (T_Ent);
13453 end if;
13455 T_Val := Corresponding_Record_Type (T_Ent);
13457 if Present (T_Val) then
13459 if No (Def_Id) then
13460 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13462 -- Elaborate itype now, as it may be used in a subsequent
13463 -- synchronized operation in another scope.
13465 if Nkind (Related_Nod) = N_Full_Type_Declaration then
13466 Build_Itype_Reference (Def_Id, Related_Nod);
13467 end if;
13468 end if;
13470 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13472 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
13473 Set_Corresponding_Record_Type (Def_Id,
13474 Constrain_Corresponding_Record (Def_Id, T_Val, Related_Nod));
13476 else
13477 -- If there is no associated record, expansion is disabled and this
13478 -- is a generic context. Create a subtype in any case, so that
13479 -- semantic analysis can proceed.
13481 if No (Def_Id) then
13482 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
13483 end if;
13485 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
13486 end if;
13487 end Constrain_Concurrent;
13489 ------------------------------------
13490 -- Constrain_Corresponding_Record --
13491 ------------------------------------
13493 function Constrain_Corresponding_Record
13494 (Prot_Subt : Entity_Id;
13495 Corr_Rec : Entity_Id;
13496 Related_Nod : Node_Id) return Entity_Id
13498 T_Sub : constant Entity_Id :=
13499 Create_Itype (E_Record_Subtype, Related_Nod, Corr_Rec, 'C');
13501 begin
13502 Set_Etype (T_Sub, Corr_Rec);
13503 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
13504 Set_Is_Constrained (T_Sub, True);
13505 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
13506 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
13508 if Has_Discriminants (Prot_Subt) then -- False only if errors.
13509 Set_Discriminant_Constraint
13510 (T_Sub, Discriminant_Constraint (Prot_Subt));
13511 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
13512 Create_Constrained_Components
13513 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
13514 end if;
13516 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
13518 if Ekind (Scope (Prot_Subt)) /= E_Record_Type then
13519 Conditional_Delay (T_Sub, Corr_Rec);
13521 else
13522 -- This is a component subtype: it will be frozen in the context of
13523 -- the enclosing record's init_proc, so that discriminant references
13524 -- are resolved to discriminals. (Note: we used to skip freezing
13525 -- altogether in that case, which caused errors downstream for
13526 -- components of a bit packed array type).
13528 Set_Has_Delayed_Freeze (T_Sub);
13529 end if;
13531 return T_Sub;
13532 end Constrain_Corresponding_Record;
13534 -----------------------
13535 -- Constrain_Decimal --
13536 -----------------------
13538 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
13539 T : constant Entity_Id := Entity (Subtype_Mark (S));
13540 C : constant Node_Id := Constraint (S);
13541 Loc : constant Source_Ptr := Sloc (C);
13542 Range_Expr : Node_Id;
13543 Digits_Expr : Node_Id;
13544 Digits_Val : Uint;
13545 Bound_Val : Ureal;
13547 begin
13548 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
13550 if Nkind (C) = N_Range_Constraint then
13551 Range_Expr := Range_Expression (C);
13552 Digits_Val := Digits_Value (T);
13554 else
13555 pragma Assert (Nkind (C) = N_Digits_Constraint);
13557 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13559 Digits_Expr := Digits_Expression (C);
13560 Analyze_And_Resolve (Digits_Expr, Any_Integer);
13562 Check_Digits_Expression (Digits_Expr);
13563 Digits_Val := Expr_Value (Digits_Expr);
13565 if Digits_Val > Digits_Value (T) then
13566 Error_Msg_N
13567 ("digits expression is incompatible with subtype", C);
13568 Digits_Val := Digits_Value (T);
13569 end if;
13571 if Present (Range_Constraint (C)) then
13572 Range_Expr := Range_Expression (Range_Constraint (C));
13573 else
13574 Range_Expr := Empty;
13575 end if;
13576 end if;
13578 Set_Etype (Def_Id, Base_Type (T));
13579 Set_Size_Info (Def_Id, (T));
13580 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13581 Set_Delta_Value (Def_Id, Delta_Value (T));
13582 Set_Scale_Value (Def_Id, Scale_Value (T));
13583 Set_Small_Value (Def_Id, Small_Value (T));
13584 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
13585 Set_Digits_Value (Def_Id, Digits_Val);
13587 -- Manufacture range from given digits value if no range present
13589 if No (Range_Expr) then
13590 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
13591 Range_Expr :=
13592 Make_Range (Loc,
13593 Low_Bound =>
13594 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
13595 High_Bound =>
13596 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
13597 end if;
13599 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
13600 Set_Discrete_RM_Size (Def_Id);
13602 -- Unconditionally delay the freeze, since we cannot set size
13603 -- information in all cases correctly until the freeze point.
13605 Set_Has_Delayed_Freeze (Def_Id);
13606 end Constrain_Decimal;
13608 ----------------------------------
13609 -- Constrain_Discriminated_Type --
13610 ----------------------------------
13612 procedure Constrain_Discriminated_Type
13613 (Def_Id : Entity_Id;
13614 S : Node_Id;
13615 Related_Nod : Node_Id;
13616 For_Access : Boolean := False)
13618 E : Entity_Id := Entity (Subtype_Mark (S));
13619 T : Entity_Id;
13621 procedure Fixup_Bad_Constraint;
13622 -- Called after finding a bad constraint, and after having posted an
13623 -- appropriate error message. The goal is to leave type Def_Id in as
13624 -- reasonable state as possible.
13626 --------------------------
13627 -- Fixup_Bad_Constraint --
13628 --------------------------
13630 procedure Fixup_Bad_Constraint is
13631 begin
13632 -- Set a reasonable Ekind for the entity. For an incomplete type,
13633 -- we can't do much, but for other types, we can set the proper
13634 -- corresponding subtype kind.
13636 if Ekind (T) = E_Incomplete_Type then
13637 Set_Ekind (Def_Id, Ekind (T));
13638 else
13639 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
13640 end if;
13642 -- Set Etype to the known type, to reduce chances of cascaded errors
13644 Set_Etype (Def_Id, E);
13645 Set_Error_Posted (Def_Id);
13646 end Fixup_Bad_Constraint;
13648 -- Local variables
13650 C : Node_Id;
13651 Constr : Elist_Id := New_Elmt_List;
13653 -- Start of processing for Constrain_Discriminated_Type
13655 begin
13656 C := Constraint (S);
13658 -- A discriminant constraint is only allowed in a subtype indication,
13659 -- after a subtype mark. This subtype mark must denote either a type
13660 -- with discriminants, or an access type whose designated type is a
13661 -- type with discriminants. A discriminant constraint specifies the
13662 -- values of these discriminants (RM 3.7.2(5)).
13664 T := Base_Type (Entity (Subtype_Mark (S)));
13666 if Is_Access_Type (T) then
13667 T := Designated_Type (T);
13668 end if;
13670 -- In an instance it may be necessary to retrieve the full view of a
13671 -- type with unknown discriminants, or a full view with defaulted
13672 -- discriminants. In other contexts the constraint is illegal.
13674 if In_Instance
13675 and then Is_Private_Type (T)
13676 and then Present (Full_View (T))
13677 and then
13678 (Has_Unknown_Discriminants (T)
13679 or else
13680 (not Has_Discriminants (T)
13681 and then Has_Discriminants (Full_View (T))
13682 and then Present (Discriminant_Default_Value
13683 (First_Discriminant (Full_View (T))))))
13684 then
13685 T := Full_View (T);
13686 E := Full_View (E);
13687 end if;
13689 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. Avoid
13690 -- generating an error for access-to-incomplete subtypes.
13692 if Ada_Version >= Ada_2005
13693 and then Ekind (T) = E_Incomplete_Type
13694 and then Nkind (Parent (S)) = N_Subtype_Declaration
13695 and then not Is_Itype (Def_Id)
13696 then
13697 -- A little sanity check: emit an error message if the type has
13698 -- discriminants to begin with. Type T may be a regular incomplete
13699 -- type or imported via a limited with clause.
13701 if Has_Discriminants (T)
13702 or else (From_Limited_With (T)
13703 and then Present (Non_Limited_View (T))
13704 and then Nkind (Parent (Non_Limited_View (T))) =
13705 N_Full_Type_Declaration
13706 and then Present (Discriminant_Specifications
13707 (Parent (Non_Limited_View (T)))))
13708 then
13709 Error_Msg_N
13710 ("(Ada 2005) incomplete subtype may not be constrained", C);
13711 else
13712 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13713 end if;
13715 Fixup_Bad_Constraint;
13716 return;
13718 -- Check that the type has visible discriminants. The type may be
13719 -- a private type with unknown discriminants whose full view has
13720 -- discriminants which are invisible.
13722 elsif not Has_Discriminants (T)
13723 or else
13724 (Has_Unknown_Discriminants (T)
13725 and then Is_Private_Type (T))
13726 then
13727 Error_Msg_N ("invalid constraint: type has no discriminant", C);
13728 Fixup_Bad_Constraint;
13729 return;
13731 elsif Is_Constrained (E)
13732 or else (Ekind (E) = E_Class_Wide_Subtype
13733 and then Present (Discriminant_Constraint (E)))
13734 then
13735 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
13736 Fixup_Bad_Constraint;
13737 return;
13738 end if;
13740 -- T may be an unconstrained subtype (e.g. a generic actual). Constraint
13741 -- applies to the base type.
13743 T := Base_Type (T);
13745 Constr := Build_Discriminant_Constraints (T, S);
13747 -- If the list returned was empty we had an error in building the
13748 -- discriminant constraint. We have also already signalled an error
13749 -- in the incomplete type case
13751 if Is_Empty_Elmt_List (Constr) then
13752 Fixup_Bad_Constraint;
13753 return;
13754 end if;
13756 Build_Discriminated_Subtype (T, Def_Id, Constr, Related_Nod, For_Access);
13757 end Constrain_Discriminated_Type;
13759 ---------------------------
13760 -- Constrain_Enumeration --
13761 ---------------------------
13763 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
13764 T : constant Entity_Id := Entity (Subtype_Mark (S));
13765 C : constant Node_Id := Constraint (S);
13767 begin
13768 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13770 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
13772 Set_Etype (Def_Id, Base_Type (T));
13773 Set_Size_Info (Def_Id, (T));
13774 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13775 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13777 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13779 Set_Discrete_RM_Size (Def_Id);
13780 end Constrain_Enumeration;
13782 ----------------------
13783 -- Constrain_Float --
13784 ----------------------
13786 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
13787 T : constant Entity_Id := Entity (Subtype_Mark (S));
13788 C : Node_Id;
13789 D : Node_Id;
13790 Rais : Node_Id;
13792 begin
13793 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
13795 Set_Etype (Def_Id, Base_Type (T));
13796 Set_Size_Info (Def_Id, (T));
13797 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13799 -- Process the constraint
13801 C := Constraint (S);
13803 -- Digits constraint present
13805 if Nkind (C) = N_Digits_Constraint then
13807 Check_SPARK_05_Restriction ("digits constraint is not allowed", S);
13808 Check_Restriction (No_Obsolescent_Features, C);
13810 if Warn_On_Obsolescent_Feature then
13811 Error_Msg_N
13812 ("subtype digits constraint is an " &
13813 "obsolescent feature (RM J.3(8))?j?", C);
13814 end if;
13816 D := Digits_Expression (C);
13817 Analyze_And_Resolve (D, Any_Integer);
13818 Check_Digits_Expression (D);
13819 Set_Digits_Value (Def_Id, Expr_Value (D));
13821 -- Check that digits value is in range. Obviously we can do this
13822 -- at compile time, but it is strictly a runtime check, and of
13823 -- course there is an ACVC test that checks this.
13825 if Digits_Value (Def_Id) > Digits_Value (T) then
13826 Error_Msg_Uint_1 := Digits_Value (T);
13827 Error_Msg_N ("??digits value is too large, maximum is ^", D);
13828 Rais :=
13829 Make_Raise_Constraint_Error (Sloc (D),
13830 Reason => CE_Range_Check_Failed);
13831 Insert_Action (Declaration_Node (Def_Id), Rais);
13832 end if;
13834 C := Range_Constraint (C);
13836 -- No digits constraint present
13838 else
13839 Set_Digits_Value (Def_Id, Digits_Value (T));
13840 end if;
13842 -- Range constraint present
13844 if Nkind (C) = N_Range_Constraint then
13845 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
13847 -- No range constraint present
13849 else
13850 pragma Assert (No (C));
13851 Set_Scalar_Range (Def_Id, Scalar_Range (T));
13852 end if;
13854 Set_Is_Constrained (Def_Id);
13855 end Constrain_Float;
13857 ---------------------
13858 -- Constrain_Index --
13859 ---------------------
13861 procedure Constrain_Index
13862 (Index : Node_Id;
13863 S : Node_Id;
13864 Related_Nod : Node_Id;
13865 Related_Id : Entity_Id;
13866 Suffix : Character;
13867 Suffix_Index : Nat)
13869 Def_Id : Entity_Id;
13870 R : Node_Id := Empty;
13871 T : constant Entity_Id := Etype (Index);
13873 begin
13874 Def_Id :=
13875 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
13876 Set_Etype (Def_Id, Base_Type (T));
13878 if Nkind (S) = N_Range
13879 or else
13880 (Nkind (S) = N_Attribute_Reference
13881 and then Attribute_Name (S) = Name_Range)
13882 then
13883 -- A Range attribute will be transformed into N_Range by Resolve
13885 Analyze (S);
13886 Set_Etype (S, T);
13887 R := S;
13889 Process_Range_Expr_In_Decl (R, T);
13891 if not Error_Posted (S)
13892 and then
13893 (Nkind (S) /= N_Range
13894 or else not Covers (T, (Etype (Low_Bound (S))))
13895 or else not Covers (T, (Etype (High_Bound (S)))))
13896 then
13897 if Base_Type (T) /= Any_Type
13898 and then Etype (Low_Bound (S)) /= Any_Type
13899 and then Etype (High_Bound (S)) /= Any_Type
13900 then
13901 Error_Msg_N ("range expected", S);
13902 end if;
13903 end if;
13905 elsif Nkind (S) = N_Subtype_Indication then
13907 -- The parser has verified that this is a discrete indication
13909 Resolve_Discrete_Subtype_Indication (S, T);
13910 Bad_Predicated_Subtype_Use
13911 ("subtype& has predicate, not allowed in index constraint",
13912 S, Entity (Subtype_Mark (S)));
13914 R := Range_Expression (Constraint (S));
13916 -- Capture values of bounds and generate temporaries for them if
13917 -- needed, since checks may cause duplication of the expressions
13918 -- which must not be reevaluated.
13920 -- The forced evaluation removes side effects from expressions, which
13921 -- should occur also in GNATprove mode. Otherwise, we end up with
13922 -- unexpected insertions of actions at places where this is not
13923 -- supposed to occur, e.g. on default parameters of a call.
13925 if Expander_Active or GNATprove_Mode then
13926 Force_Evaluation
13927 (Low_Bound (R), Related_Id => Def_Id, Is_Low_Bound => True);
13928 Force_Evaluation
13929 (High_Bound (R), Related_Id => Def_Id, Is_High_Bound => True);
13930 end if;
13932 elsif Nkind (S) = N_Discriminant_Association then
13934 -- Syntactically valid in subtype indication
13936 Error_Msg_N ("invalid index constraint", S);
13937 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13938 return;
13940 -- Subtype_Mark case, no anonymous subtypes to construct
13942 else
13943 Analyze (S);
13945 if Is_Entity_Name (S) then
13946 if not Is_Type (Entity (S)) then
13947 Error_Msg_N ("expect subtype mark for index constraint", S);
13949 elsif Base_Type (Entity (S)) /= Base_Type (T) then
13950 Wrong_Type (S, Base_Type (T));
13952 -- Check error of subtype with predicate in index constraint
13954 else
13955 Bad_Predicated_Subtype_Use
13956 ("subtype& has predicate, not allowed in index constraint",
13957 S, Entity (S));
13958 end if;
13960 return;
13962 else
13963 Error_Msg_N ("invalid index constraint", S);
13964 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
13965 return;
13966 end if;
13967 end if;
13969 -- Complete construction of the Itype
13971 if Is_Modular_Integer_Type (T) then
13972 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
13974 elsif Is_Integer_Type (T) then
13975 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
13977 else
13978 Set_Ekind (Def_Id, E_Enumeration_Subtype);
13979 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
13980 Set_First_Literal (Def_Id, First_Literal (T));
13981 end if;
13983 Set_Size_Info (Def_Id, (T));
13984 Set_RM_Size (Def_Id, RM_Size (T));
13985 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
13987 Set_Scalar_Range (Def_Id, R);
13989 Set_Etype (S, Def_Id);
13990 Set_Discrete_RM_Size (Def_Id);
13991 end Constrain_Index;
13993 -----------------------
13994 -- Constrain_Integer --
13995 -----------------------
13997 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
13998 T : constant Entity_Id := Entity (Subtype_Mark (S));
13999 C : constant Node_Id := Constraint (S);
14001 begin
14002 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14004 if Is_Modular_Integer_Type (T) then
14005 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
14006 else
14007 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
14008 end if;
14010 Set_Etype (Def_Id, Base_Type (T));
14011 Set_Size_Info (Def_Id, (T));
14012 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14013 Set_Discrete_RM_Size (Def_Id);
14014 end Constrain_Integer;
14016 ------------------------------
14017 -- Constrain_Ordinary_Fixed --
14018 ------------------------------
14020 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
14021 T : constant Entity_Id := Entity (Subtype_Mark (S));
14022 C : Node_Id;
14023 D : Node_Id;
14024 Rais : Node_Id;
14026 begin
14027 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
14028 Set_Etype (Def_Id, Base_Type (T));
14029 Set_Size_Info (Def_Id, (T));
14030 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
14031 Set_Small_Value (Def_Id, Small_Value (T));
14033 -- Process the constraint
14035 C := Constraint (S);
14037 -- Delta constraint present
14039 if Nkind (C) = N_Delta_Constraint then
14041 Check_SPARK_05_Restriction ("delta constraint is not allowed", S);
14042 Check_Restriction (No_Obsolescent_Features, C);
14044 if Warn_On_Obsolescent_Feature then
14045 Error_Msg_S
14046 ("subtype delta constraint is an " &
14047 "obsolescent feature (RM J.3(7))?j?");
14048 end if;
14050 D := Delta_Expression (C);
14051 Analyze_And_Resolve (D, Any_Real);
14052 Check_Delta_Expression (D);
14053 Set_Delta_Value (Def_Id, Expr_Value_R (D));
14055 -- Check that delta value is in range. Obviously we can do this
14056 -- at compile time, but it is strictly a runtime check, and of
14057 -- course there is an ACVC test that checks this.
14059 if Delta_Value (Def_Id) < Delta_Value (T) then
14060 Error_Msg_N ("??delta value is too small", D);
14061 Rais :=
14062 Make_Raise_Constraint_Error (Sloc (D),
14063 Reason => CE_Range_Check_Failed);
14064 Insert_Action (Declaration_Node (Def_Id), Rais);
14065 end if;
14067 C := Range_Constraint (C);
14069 -- No delta constraint present
14071 else
14072 Set_Delta_Value (Def_Id, Delta_Value (T));
14073 end if;
14075 -- Range constraint present
14077 if Nkind (C) = N_Range_Constraint then
14078 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
14080 -- No range constraint present
14082 else
14083 pragma Assert (No (C));
14084 Set_Scalar_Range (Def_Id, Scalar_Range (T));
14085 end if;
14087 Set_Discrete_RM_Size (Def_Id);
14089 -- Unconditionally delay the freeze, since we cannot set size
14090 -- information in all cases correctly until the freeze point.
14092 Set_Has_Delayed_Freeze (Def_Id);
14093 end Constrain_Ordinary_Fixed;
14095 -----------------------
14096 -- Contain_Interface --
14097 -----------------------
14099 function Contain_Interface
14100 (Iface : Entity_Id;
14101 Ifaces : Elist_Id) return Boolean
14103 Iface_Elmt : Elmt_Id;
14105 begin
14106 if Present (Ifaces) then
14107 Iface_Elmt := First_Elmt (Ifaces);
14108 while Present (Iface_Elmt) loop
14109 if Node (Iface_Elmt) = Iface then
14110 return True;
14111 end if;
14113 Next_Elmt (Iface_Elmt);
14114 end loop;
14115 end if;
14117 return False;
14118 end Contain_Interface;
14120 ---------------------------
14121 -- Convert_Scalar_Bounds --
14122 ---------------------------
14124 procedure Convert_Scalar_Bounds
14125 (N : Node_Id;
14126 Parent_Type : Entity_Id;
14127 Derived_Type : Entity_Id;
14128 Loc : Source_Ptr)
14130 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
14132 Lo : Node_Id;
14133 Hi : Node_Id;
14134 Rng : Node_Id;
14136 begin
14137 -- Defend against previous errors
14139 if No (Scalar_Range (Derived_Type)) then
14140 Check_Error_Detected;
14141 return;
14142 end if;
14144 Lo := Build_Scalar_Bound
14145 (Type_Low_Bound (Derived_Type),
14146 Parent_Type, Implicit_Base);
14148 Hi := Build_Scalar_Bound
14149 (Type_High_Bound (Derived_Type),
14150 Parent_Type, Implicit_Base);
14152 Rng :=
14153 Make_Range (Loc,
14154 Low_Bound => Lo,
14155 High_Bound => Hi);
14157 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
14159 Set_Parent (Rng, N);
14160 Set_Scalar_Range (Derived_Type, Rng);
14162 -- Analyze the bounds
14164 Analyze_And_Resolve (Lo, Implicit_Base);
14165 Analyze_And_Resolve (Hi, Implicit_Base);
14167 -- Analyze the range itself, except that we do not analyze it if
14168 -- the bounds are real literals, and we have a fixed-point type.
14169 -- The reason for this is that we delay setting the bounds in this
14170 -- case till we know the final Small and Size values (see circuit
14171 -- in Freeze.Freeze_Fixed_Point_Type for further details).
14173 if Is_Fixed_Point_Type (Parent_Type)
14174 and then Nkind (Lo) = N_Real_Literal
14175 and then Nkind (Hi) = N_Real_Literal
14176 then
14177 return;
14179 -- Here we do the analysis of the range
14181 -- Note: we do this manually, since if we do a normal Analyze and
14182 -- Resolve call, there are problems with the conversions used for
14183 -- the derived type range.
14185 else
14186 Set_Etype (Rng, Implicit_Base);
14187 Set_Analyzed (Rng, True);
14188 end if;
14189 end Convert_Scalar_Bounds;
14191 -------------------
14192 -- Copy_And_Swap --
14193 -------------------
14195 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
14196 begin
14197 -- Initialize new full declaration entity by copying the pertinent
14198 -- fields of the corresponding private declaration entity.
14200 -- We temporarily set Ekind to a value appropriate for a type to
14201 -- avoid assert failures in Einfo from checking for setting type
14202 -- attributes on something that is not a type. Ekind (Priv) is an
14203 -- appropriate choice, since it allowed the attributes to be set
14204 -- in the first place. This Ekind value will be modified later.
14206 Set_Ekind (Full, Ekind (Priv));
14208 -- Also set Etype temporarily to Any_Type, again, in the absence
14209 -- of errors, it will be properly reset, and if there are errors,
14210 -- then we want a value of Any_Type to remain.
14212 Set_Etype (Full, Any_Type);
14214 -- Now start copying attributes
14216 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
14218 if Has_Discriminants (Full) then
14219 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
14220 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
14221 end if;
14223 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
14224 Set_Homonym (Full, Homonym (Priv));
14225 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
14226 Set_Is_Public (Full, Is_Public (Priv));
14227 Set_Is_Pure (Full, Is_Pure (Priv));
14228 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
14229 Set_Has_Pragma_Unmodified (Full, Has_Pragma_Unmodified (Priv));
14230 Set_Has_Pragma_Unreferenced (Full, Has_Pragma_Unreferenced (Priv));
14231 Set_Has_Pragma_Unreferenced_Objects
14232 (Full, Has_Pragma_Unreferenced_Objects
14233 (Priv));
14235 Conditional_Delay (Full, Priv);
14237 if Is_Tagged_Type (Full) then
14238 Set_Direct_Primitive_Operations
14239 (Full, Direct_Primitive_Operations (Priv));
14240 Set_No_Tagged_Streams_Pragma
14241 (Full, No_Tagged_Streams_Pragma (Priv));
14243 if Is_Base_Type (Priv) then
14244 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
14245 end if;
14246 end if;
14248 Set_Is_Volatile (Full, Is_Volatile (Priv));
14249 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
14250 Set_Scope (Full, Scope (Priv));
14251 Set_Next_Entity (Full, Next_Entity (Priv));
14252 Set_First_Entity (Full, First_Entity (Priv));
14253 Set_Last_Entity (Full, Last_Entity (Priv));
14255 -- If access types have been recorded for later handling, keep them in
14256 -- the full view so that they get handled when the full view freeze
14257 -- node is expanded.
14259 if Present (Freeze_Node (Priv))
14260 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
14261 then
14262 Ensure_Freeze_Node (Full);
14263 Set_Access_Types_To_Process
14264 (Freeze_Node (Full),
14265 Access_Types_To_Process (Freeze_Node (Priv)));
14266 end if;
14268 -- Swap the two entities. Now Private is the full type entity and Full
14269 -- is the private one. They will be swapped back at the end of the
14270 -- private part. This swapping ensures that the entity that is visible
14271 -- in the private part is the full declaration.
14273 Exchange_Entities (Priv, Full);
14274 Append_Entity (Full, Scope (Full));
14275 end Copy_And_Swap;
14277 -------------------------------------
14278 -- Copy_Array_Base_Type_Attributes --
14279 -------------------------------------
14281 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
14282 begin
14283 Set_Component_Alignment (T1, Component_Alignment (T2));
14284 Set_Component_Type (T1, Component_Type (T2));
14285 Set_Component_Size (T1, Component_Size (T2));
14286 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
14287 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
14288 Propagate_Concurrent_Flags (T1, T2);
14289 Set_Is_Packed (T1, Is_Packed (T2));
14290 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
14291 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
14292 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
14293 end Copy_Array_Base_Type_Attributes;
14295 -----------------------------------
14296 -- Copy_Array_Subtype_Attributes --
14297 -----------------------------------
14299 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
14300 begin
14301 Set_Size_Info (T1, T2);
14303 Set_First_Index (T1, First_Index (T2));
14304 Set_Is_Aliased (T1, Is_Aliased (T2));
14305 Set_Is_Volatile (T1, Is_Volatile (T2));
14306 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
14307 Set_Is_Constrained (T1, Is_Constrained (T2));
14308 Set_Depends_On_Private (T1, Has_Private_Component (T2));
14309 Inherit_Rep_Item_Chain (T1, T2);
14310 Set_Convention (T1, Convention (T2));
14311 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
14312 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
14313 Set_Packed_Array_Impl_Type (T1, Packed_Array_Impl_Type (T2));
14314 end Copy_Array_Subtype_Attributes;
14316 -----------------------------------
14317 -- Create_Constrained_Components --
14318 -----------------------------------
14320 procedure Create_Constrained_Components
14321 (Subt : Entity_Id;
14322 Decl_Node : Node_Id;
14323 Typ : Entity_Id;
14324 Constraints : Elist_Id)
14326 Loc : constant Source_Ptr := Sloc (Subt);
14327 Comp_List : constant Elist_Id := New_Elmt_List;
14328 Parent_Type : constant Entity_Id := Etype (Typ);
14329 Assoc_List : constant List_Id := New_List;
14330 Discr_Val : Elmt_Id;
14331 Errors : Boolean;
14332 New_C : Entity_Id;
14333 Old_C : Entity_Id;
14334 Is_Static : Boolean := True;
14336 procedure Collect_Fixed_Components (Typ : Entity_Id);
14337 -- Collect parent type components that do not appear in a variant part
14339 procedure Create_All_Components;
14340 -- Iterate over Comp_List to create the components of the subtype
14342 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
14343 -- Creates a new component from Old_Compon, copying all the fields from
14344 -- it, including its Etype, inserts the new component in the Subt entity
14345 -- chain and returns the new component.
14347 function Is_Variant_Record (T : Entity_Id) return Boolean;
14348 -- If true, and discriminants are static, collect only components from
14349 -- variants selected by discriminant values.
14351 ------------------------------
14352 -- Collect_Fixed_Components --
14353 ------------------------------
14355 procedure Collect_Fixed_Components (Typ : Entity_Id) is
14356 begin
14357 -- Build association list for discriminants, and find components of the
14358 -- variant part selected by the values of the discriminants.
14360 Old_C := First_Discriminant (Typ);
14361 Discr_Val := First_Elmt (Constraints);
14362 while Present (Old_C) loop
14363 Append_To (Assoc_List,
14364 Make_Component_Association (Loc,
14365 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
14366 Expression => New_Copy (Node (Discr_Val))));
14368 Next_Elmt (Discr_Val);
14369 Next_Discriminant (Old_C);
14370 end loop;
14372 -- The tag and the possible parent component are unconditionally in
14373 -- the subtype.
14375 if Is_Tagged_Type (Typ) or else Has_Controlled_Component (Typ) then
14376 Old_C := First_Component (Typ);
14377 while Present (Old_C) loop
14378 if Nam_In (Chars (Old_C), Name_uTag, Name_uParent) then
14379 Append_Elmt (Old_C, Comp_List);
14380 end if;
14382 Next_Component (Old_C);
14383 end loop;
14384 end if;
14385 end Collect_Fixed_Components;
14387 ---------------------------
14388 -- Create_All_Components --
14389 ---------------------------
14391 procedure Create_All_Components is
14392 Comp : Elmt_Id;
14394 begin
14395 Comp := First_Elmt (Comp_List);
14396 while Present (Comp) loop
14397 Old_C := Node (Comp);
14398 New_C := Create_Component (Old_C);
14400 Set_Etype
14401 (New_C,
14402 Constrain_Component_Type
14403 (Old_C, Subt, Decl_Node, Typ, Constraints));
14404 Set_Is_Public (New_C, Is_Public (Subt));
14406 Next_Elmt (Comp);
14407 end loop;
14408 end Create_All_Components;
14410 ----------------------
14411 -- Create_Component --
14412 ----------------------
14414 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
14415 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
14417 begin
14418 if Ekind (Old_Compon) = E_Discriminant
14419 and then Is_Completely_Hidden (Old_Compon)
14420 then
14421 -- This is a shadow discriminant created for a discriminant of
14422 -- the parent type, which needs to be present in the subtype.
14423 -- Give the shadow discriminant an internal name that cannot
14424 -- conflict with that of visible components.
14426 Set_Chars (New_Compon, New_Internal_Name ('C'));
14427 end if;
14429 -- Set the parent so we have a proper link for freezing etc. This is
14430 -- not a real parent pointer, since of course our parent does not own
14431 -- up to us and reference us, we are an illegitimate child of the
14432 -- original parent.
14434 Set_Parent (New_Compon, Parent (Old_Compon));
14436 -- If the old component's Esize was already determined and is a
14437 -- static value, then the new component simply inherits it. Otherwise
14438 -- the old component's size may require run-time determination, but
14439 -- the new component's size still might be statically determinable
14440 -- (if, for example it has a static constraint). In that case we want
14441 -- Layout_Type to recompute the component's size, so we reset its
14442 -- size and positional fields.
14444 if Frontend_Layout_On_Target
14445 and then not Known_Static_Esize (Old_Compon)
14446 then
14447 Set_Esize (New_Compon, Uint_0);
14448 Init_Normalized_First_Bit (New_Compon);
14449 Init_Normalized_Position (New_Compon);
14450 Init_Normalized_Position_Max (New_Compon);
14451 end if;
14453 -- We do not want this node marked as Comes_From_Source, since
14454 -- otherwise it would get first class status and a separate cross-
14455 -- reference line would be generated. Illegitimate children do not
14456 -- rate such recognition.
14458 Set_Comes_From_Source (New_Compon, False);
14460 -- But it is a real entity, and a birth certificate must be properly
14461 -- registered by entering it into the entity list.
14463 Enter_Name (New_Compon);
14465 return New_Compon;
14466 end Create_Component;
14468 -----------------------
14469 -- Is_Variant_Record --
14470 -----------------------
14472 function Is_Variant_Record (T : Entity_Id) return Boolean is
14473 begin
14474 return Nkind (Parent (T)) = N_Full_Type_Declaration
14475 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
14476 and then Present (Component_List (Type_Definition (Parent (T))))
14477 and then
14478 Present
14479 (Variant_Part (Component_List (Type_Definition (Parent (T)))));
14480 end Is_Variant_Record;
14482 -- Start of processing for Create_Constrained_Components
14484 begin
14485 pragma Assert (Subt /= Base_Type (Subt));
14486 pragma Assert (Typ = Base_Type (Typ));
14488 Set_First_Entity (Subt, Empty);
14489 Set_Last_Entity (Subt, Empty);
14491 -- Check whether constraint is fully static, in which case we can
14492 -- optimize the list of components.
14494 Discr_Val := First_Elmt (Constraints);
14495 while Present (Discr_Val) loop
14496 if not Is_OK_Static_Expression (Node (Discr_Val)) then
14497 Is_Static := False;
14498 exit;
14499 end if;
14501 Next_Elmt (Discr_Val);
14502 end loop;
14504 Set_Has_Static_Discriminants (Subt, Is_Static);
14506 Push_Scope (Subt);
14508 -- Inherit the discriminants of the parent type
14510 Add_Discriminants : declare
14511 Num_Disc : Nat;
14512 Num_Gird : Nat;
14514 begin
14515 Num_Disc := 0;
14516 Old_C := First_Discriminant (Typ);
14518 while Present (Old_C) loop
14519 Num_Disc := Num_Disc + 1;
14520 New_C := Create_Component (Old_C);
14521 Set_Is_Public (New_C, Is_Public (Subt));
14522 Next_Discriminant (Old_C);
14523 end loop;
14525 -- For an untagged derived subtype, the number of discriminants may
14526 -- be smaller than the number of inherited discriminants, because
14527 -- several of them may be renamed by a single new discriminant or
14528 -- constrained. In this case, add the hidden discriminants back into
14529 -- the subtype, because they need to be present if the optimizer of
14530 -- the GCC 4.x back-end decides to break apart assignments between
14531 -- objects using the parent view into member-wise assignments.
14533 Num_Gird := 0;
14535 if Is_Derived_Type (Typ)
14536 and then not Is_Tagged_Type (Typ)
14537 then
14538 Old_C := First_Stored_Discriminant (Typ);
14540 while Present (Old_C) loop
14541 Num_Gird := Num_Gird + 1;
14542 Next_Stored_Discriminant (Old_C);
14543 end loop;
14544 end if;
14546 if Num_Gird > Num_Disc then
14548 -- Find out multiple uses of new discriminants, and add hidden
14549 -- components for the extra renamed discriminants. We recognize
14550 -- multiple uses through the Corresponding_Discriminant of a
14551 -- new discriminant: if it constrains several old discriminants,
14552 -- this field points to the last one in the parent type. The
14553 -- stored discriminants of the derived type have the same name
14554 -- as those of the parent.
14556 declare
14557 Constr : Elmt_Id;
14558 New_Discr : Entity_Id;
14559 Old_Discr : Entity_Id;
14561 begin
14562 Constr := First_Elmt (Stored_Constraint (Typ));
14563 Old_Discr := First_Stored_Discriminant (Typ);
14564 while Present (Constr) loop
14565 if Is_Entity_Name (Node (Constr))
14566 and then Ekind (Entity (Node (Constr))) = E_Discriminant
14567 then
14568 New_Discr := Entity (Node (Constr));
14570 if Chars (Corresponding_Discriminant (New_Discr)) /=
14571 Chars (Old_Discr)
14572 then
14573 -- The new discriminant has been used to rename a
14574 -- subsequent old discriminant. Introduce a shadow
14575 -- component for the current old discriminant.
14577 New_C := Create_Component (Old_Discr);
14578 Set_Original_Record_Component (New_C, Old_Discr);
14579 end if;
14581 else
14582 -- The constraint has eliminated the old discriminant.
14583 -- Introduce a shadow component.
14585 New_C := Create_Component (Old_Discr);
14586 Set_Original_Record_Component (New_C, Old_Discr);
14587 end if;
14589 Next_Elmt (Constr);
14590 Next_Stored_Discriminant (Old_Discr);
14591 end loop;
14592 end;
14593 end if;
14594 end Add_Discriminants;
14596 if Is_Static
14597 and then Is_Variant_Record (Typ)
14598 then
14599 Collect_Fixed_Components (Typ);
14601 Gather_Components (
14602 Typ,
14603 Component_List (Type_Definition (Parent (Typ))),
14604 Governed_By => Assoc_List,
14605 Into => Comp_List,
14606 Report_Errors => Errors);
14607 pragma Assert (not Errors
14608 or else Serious_Errors_Detected > 0);
14610 Create_All_Components;
14612 -- If the subtype declaration is created for a tagged type derivation
14613 -- with constraints, we retrieve the record definition of the parent
14614 -- type to select the components of the proper variant.
14616 elsif Is_Static
14617 and then Is_Tagged_Type (Typ)
14618 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
14619 and then
14620 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
14621 and then Is_Variant_Record (Parent_Type)
14622 then
14623 Collect_Fixed_Components (Typ);
14625 Gather_Components
14626 (Typ,
14627 Component_List (Type_Definition (Parent (Parent_Type))),
14628 Governed_By => Assoc_List,
14629 Into => Comp_List,
14630 Report_Errors => Errors);
14632 -- Note: previously there was a check at this point that no errors
14633 -- were detected. As a consequence of AI05-220 there may be an error
14634 -- if an inherited discriminant that controls a variant has a non-
14635 -- static constraint.
14637 -- If the tagged derivation has a type extension, collect all the
14638 -- new components therein.
14640 if Present (Record_Extension_Part (Type_Definition (Parent (Typ))))
14641 then
14642 Old_C := First_Component (Typ);
14643 while Present (Old_C) loop
14644 if Original_Record_Component (Old_C) = Old_C
14645 and then Chars (Old_C) /= Name_uTag
14646 and then Chars (Old_C) /= Name_uParent
14647 then
14648 Append_Elmt (Old_C, Comp_List);
14649 end if;
14651 Next_Component (Old_C);
14652 end loop;
14653 end if;
14655 Create_All_Components;
14657 else
14658 -- If discriminants are not static, or if this is a multi-level type
14659 -- extension, we have to include all components of the parent type.
14661 Old_C := First_Component (Typ);
14662 while Present (Old_C) loop
14663 New_C := Create_Component (Old_C);
14665 Set_Etype
14666 (New_C,
14667 Constrain_Component_Type
14668 (Old_C, Subt, Decl_Node, Typ, Constraints));
14669 Set_Is_Public (New_C, Is_Public (Subt));
14671 Next_Component (Old_C);
14672 end loop;
14673 end if;
14675 End_Scope;
14676 end Create_Constrained_Components;
14678 ------------------------------------------
14679 -- Decimal_Fixed_Point_Type_Declaration --
14680 ------------------------------------------
14682 procedure Decimal_Fixed_Point_Type_Declaration
14683 (T : Entity_Id;
14684 Def : Node_Id)
14686 Loc : constant Source_Ptr := Sloc (Def);
14687 Digs_Expr : constant Node_Id := Digits_Expression (Def);
14688 Delta_Expr : constant Node_Id := Delta_Expression (Def);
14689 Implicit_Base : Entity_Id;
14690 Digs_Val : Uint;
14691 Delta_Val : Ureal;
14692 Scale_Val : Uint;
14693 Bound_Val : Ureal;
14695 begin
14696 Check_SPARK_05_Restriction
14697 ("decimal fixed point type is not allowed", Def);
14698 Check_Restriction (No_Fixed_Point, Def);
14700 -- Create implicit base type
14702 Implicit_Base :=
14703 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
14704 Set_Etype (Implicit_Base, Implicit_Base);
14706 -- Analyze and process delta expression
14708 Analyze_And_Resolve (Delta_Expr, Universal_Real);
14710 Check_Delta_Expression (Delta_Expr);
14711 Delta_Val := Expr_Value_R (Delta_Expr);
14713 -- Check delta is power of 10, and determine scale value from it
14715 declare
14716 Val : Ureal;
14718 begin
14719 Scale_Val := Uint_0;
14720 Val := Delta_Val;
14722 if Val < Ureal_1 then
14723 while Val < Ureal_1 loop
14724 Val := Val * Ureal_10;
14725 Scale_Val := Scale_Val + 1;
14726 end loop;
14728 if Scale_Val > 18 then
14729 Error_Msg_N ("scale exceeds maximum value of 18", Def);
14730 Scale_Val := UI_From_Int (+18);
14731 end if;
14733 else
14734 while Val > Ureal_1 loop
14735 Val := Val / Ureal_10;
14736 Scale_Val := Scale_Val - 1;
14737 end loop;
14739 if Scale_Val < -18 then
14740 Error_Msg_N ("scale is less than minimum value of -18", Def);
14741 Scale_Val := UI_From_Int (-18);
14742 end if;
14743 end if;
14745 if Val /= Ureal_1 then
14746 Error_Msg_N ("delta expression must be a power of 10", Def);
14747 Delta_Val := Ureal_10 ** (-Scale_Val);
14748 end if;
14749 end;
14751 -- Set delta, scale and small (small = delta for decimal type)
14753 Set_Delta_Value (Implicit_Base, Delta_Val);
14754 Set_Scale_Value (Implicit_Base, Scale_Val);
14755 Set_Small_Value (Implicit_Base, Delta_Val);
14757 -- Analyze and process digits expression
14759 Analyze_And_Resolve (Digs_Expr, Any_Integer);
14760 Check_Digits_Expression (Digs_Expr);
14761 Digs_Val := Expr_Value (Digs_Expr);
14763 if Digs_Val > 18 then
14764 Digs_Val := UI_From_Int (+18);
14765 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
14766 end if;
14768 Set_Digits_Value (Implicit_Base, Digs_Val);
14769 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
14771 -- Set range of base type from digits value for now. This will be
14772 -- expanded to represent the true underlying base range by Freeze.
14774 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
14776 -- Note: We leave size as zero for now, size will be set at freeze
14777 -- time. We have to do this for ordinary fixed-point, because the size
14778 -- depends on the specified small, and we might as well do the same for
14779 -- decimal fixed-point.
14781 pragma Assert (Esize (Implicit_Base) = Uint_0);
14783 -- If there are bounds given in the declaration use them as the
14784 -- bounds of the first named subtype.
14786 if Present (Real_Range_Specification (Def)) then
14787 declare
14788 RRS : constant Node_Id := Real_Range_Specification (Def);
14789 Low : constant Node_Id := Low_Bound (RRS);
14790 High : constant Node_Id := High_Bound (RRS);
14791 Low_Val : Ureal;
14792 High_Val : Ureal;
14794 begin
14795 Analyze_And_Resolve (Low, Any_Real);
14796 Analyze_And_Resolve (High, Any_Real);
14797 Check_Real_Bound (Low);
14798 Check_Real_Bound (High);
14799 Low_Val := Expr_Value_R (Low);
14800 High_Val := Expr_Value_R (High);
14802 if Low_Val < (-Bound_Val) then
14803 Error_Msg_N
14804 ("range low bound too small for digits value", Low);
14805 Low_Val := -Bound_Val;
14806 end if;
14808 if High_Val > Bound_Val then
14809 Error_Msg_N
14810 ("range high bound too large for digits value", High);
14811 High_Val := Bound_Val;
14812 end if;
14814 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
14815 end;
14817 -- If no explicit range, use range that corresponds to given
14818 -- digits value. This will end up as the final range for the
14819 -- first subtype.
14821 else
14822 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
14823 end if;
14825 -- Complete entity for first subtype. The inheritance of the rep item
14826 -- chain ensures that SPARK-related pragmas are not clobbered when the
14827 -- decimal fixed point type acts as a full view of a private type.
14829 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
14830 Set_Etype (T, Implicit_Base);
14831 Set_Size_Info (T, Implicit_Base);
14832 Inherit_Rep_Item_Chain (T, Implicit_Base);
14833 Set_Digits_Value (T, Digs_Val);
14834 Set_Delta_Value (T, Delta_Val);
14835 Set_Small_Value (T, Delta_Val);
14836 Set_Scale_Value (T, Scale_Val);
14837 Set_Is_Constrained (T);
14838 end Decimal_Fixed_Point_Type_Declaration;
14840 -----------------------------------
14841 -- Derive_Progenitor_Subprograms --
14842 -----------------------------------
14844 procedure Derive_Progenitor_Subprograms
14845 (Parent_Type : Entity_Id;
14846 Tagged_Type : Entity_Id)
14848 E : Entity_Id;
14849 Elmt : Elmt_Id;
14850 Iface : Entity_Id;
14851 Iface_Elmt : Elmt_Id;
14852 Iface_Subp : Entity_Id;
14853 New_Subp : Entity_Id := Empty;
14854 Prim_Elmt : Elmt_Id;
14855 Subp : Entity_Id;
14856 Typ : Entity_Id;
14858 begin
14859 pragma Assert (Ada_Version >= Ada_2005
14860 and then Is_Record_Type (Tagged_Type)
14861 and then Is_Tagged_Type (Tagged_Type)
14862 and then Has_Interfaces (Tagged_Type));
14864 -- Step 1: Transfer to the full-view primitives associated with the
14865 -- partial-view that cover interface primitives. Conceptually this
14866 -- work should be done later by Process_Full_View; done here to
14867 -- simplify its implementation at later stages. It can be safely
14868 -- done here because interfaces must be visible in the partial and
14869 -- private view (RM 7.3(7.3/2)).
14871 -- Small optimization: This work is only required if the parent may
14872 -- have entities whose Alias attribute reference an interface primitive.
14873 -- Such a situation may occur if the parent is an abstract type and the
14874 -- primitive has not been yet overridden or if the parent is a generic
14875 -- formal type covering interfaces.
14877 -- If the tagged type is not abstract, it cannot have abstract
14878 -- primitives (the only entities in the list of primitives of
14879 -- non-abstract tagged types that can reference abstract primitives
14880 -- through its Alias attribute are the internal entities that have
14881 -- attribute Interface_Alias, and these entities are generated later
14882 -- by Add_Internal_Interface_Entities).
14884 if In_Private_Part (Current_Scope)
14885 and then (Is_Abstract_Type (Parent_Type)
14886 or else
14887 Is_Generic_Type (Parent_Type))
14888 then
14889 Elmt := First_Elmt (Primitive_Operations (Tagged_Type));
14890 while Present (Elmt) loop
14891 Subp := Node (Elmt);
14893 -- At this stage it is not possible to have entities in the list
14894 -- of primitives that have attribute Interface_Alias.
14896 pragma Assert (No (Interface_Alias (Subp)));
14898 Typ := Find_Dispatching_Type (Ultimate_Alias (Subp));
14900 if Is_Interface (Typ) then
14901 E := Find_Primitive_Covering_Interface
14902 (Tagged_Type => Tagged_Type,
14903 Iface_Prim => Subp);
14905 if Present (E)
14906 and then Find_Dispatching_Type (Ultimate_Alias (E)) /= Typ
14907 then
14908 Replace_Elmt (Elmt, E);
14909 Remove_Homonym (Subp);
14910 end if;
14911 end if;
14913 Next_Elmt (Elmt);
14914 end loop;
14915 end if;
14917 -- Step 2: Add primitives of progenitors that are not implemented by
14918 -- parents of Tagged_Type.
14920 if Present (Interfaces (Base_Type (Tagged_Type))) then
14921 Iface_Elmt := First_Elmt (Interfaces (Base_Type (Tagged_Type)));
14922 while Present (Iface_Elmt) loop
14923 Iface := Node (Iface_Elmt);
14925 Prim_Elmt := First_Elmt (Primitive_Operations (Iface));
14926 while Present (Prim_Elmt) loop
14927 Iface_Subp := Node (Prim_Elmt);
14929 -- Exclude derivation of predefined primitives except those
14930 -- that come from source, or are inherited from one that comes
14931 -- from source. Required to catch declarations of equality
14932 -- operators of interfaces. For example:
14934 -- type Iface is interface;
14935 -- function "=" (Left, Right : Iface) return Boolean;
14937 if not Is_Predefined_Dispatching_Operation (Iface_Subp)
14938 or else Comes_From_Source (Ultimate_Alias (Iface_Subp))
14939 then
14940 E := Find_Primitive_Covering_Interface
14941 (Tagged_Type => Tagged_Type,
14942 Iface_Prim => Iface_Subp);
14944 -- If not found we derive a new primitive leaving its alias
14945 -- attribute referencing the interface primitive.
14947 if No (E) then
14948 Derive_Subprogram
14949 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14951 -- Ada 2012 (AI05-0197): If the covering primitive's name
14952 -- differs from the name of the interface primitive then it
14953 -- is a private primitive inherited from a parent type. In
14954 -- such case, given that Tagged_Type covers the interface,
14955 -- the inherited private primitive becomes visible. For such
14956 -- purpose we add a new entity that renames the inherited
14957 -- private primitive.
14959 elsif Chars (E) /= Chars (Iface_Subp) then
14960 pragma Assert (Has_Suffix (E, 'P'));
14961 Derive_Subprogram
14962 (New_Subp, Iface_Subp, Tagged_Type, Iface);
14963 Set_Alias (New_Subp, E);
14964 Set_Is_Abstract_Subprogram (New_Subp,
14965 Is_Abstract_Subprogram (E));
14967 -- Propagate to the full view interface entities associated
14968 -- with the partial view.
14970 elsif In_Private_Part (Current_Scope)
14971 and then Present (Alias (E))
14972 and then Alias (E) = Iface_Subp
14973 and then
14974 List_Containing (Parent (E)) /=
14975 Private_Declarations
14976 (Specification
14977 (Unit_Declaration_Node (Current_Scope)))
14978 then
14979 Append_Elmt (E, Primitive_Operations (Tagged_Type));
14980 end if;
14981 end if;
14983 Next_Elmt (Prim_Elmt);
14984 end loop;
14986 Next_Elmt (Iface_Elmt);
14987 end loop;
14988 end if;
14989 end Derive_Progenitor_Subprograms;
14991 -----------------------
14992 -- Derive_Subprogram --
14993 -----------------------
14995 procedure Derive_Subprogram
14996 (New_Subp : out Entity_Id;
14997 Parent_Subp : Entity_Id;
14998 Derived_Type : Entity_Id;
14999 Parent_Type : Entity_Id;
15000 Actual_Subp : Entity_Id := Empty)
15002 Formal : Entity_Id;
15003 -- Formal parameter of parent primitive operation
15005 Formal_Of_Actual : Entity_Id;
15006 -- Formal parameter of actual operation, when the derivation is to
15007 -- create a renaming for a primitive operation of an actual in an
15008 -- instantiation.
15010 New_Formal : Entity_Id;
15011 -- Formal of inherited operation
15013 Visible_Subp : Entity_Id := Parent_Subp;
15015 function Is_Private_Overriding return Boolean;
15016 -- If Subp is a private overriding of a visible operation, the inherited
15017 -- operation derives from the overridden op (even though its body is the
15018 -- overriding one) and the inherited operation is visible now. See
15019 -- sem_disp to see the full details of the handling of the overridden
15020 -- subprogram, which is removed from the list of primitive operations of
15021 -- the type. The overridden subprogram is saved locally in Visible_Subp,
15022 -- and used to diagnose abstract operations that need overriding in the
15023 -- derived type.
15025 procedure Replace_Type (Id, New_Id : Entity_Id);
15026 -- When the type is an anonymous access type, create a new access type
15027 -- designating the derived type.
15029 procedure Set_Derived_Name;
15030 -- This procedure sets the appropriate Chars name for New_Subp. This
15031 -- is normally just a copy of the parent name. An exception arises for
15032 -- type support subprograms, where the name is changed to reflect the
15033 -- name of the derived type, e.g. if type foo is derived from type bar,
15034 -- then a procedure barDA is derived with a name fooDA.
15036 ---------------------------
15037 -- Is_Private_Overriding --
15038 ---------------------------
15040 function Is_Private_Overriding return Boolean is
15041 Prev : Entity_Id;
15043 begin
15044 -- If the parent is not a dispatching operation there is no
15045 -- need to investigate overridings
15047 if not Is_Dispatching_Operation (Parent_Subp) then
15048 return False;
15049 end if;
15051 -- The visible operation that is overridden is a homonym of the
15052 -- parent subprogram. We scan the homonym chain to find the one
15053 -- whose alias is the subprogram we are deriving.
15055 Prev := Current_Entity (Parent_Subp);
15056 while Present (Prev) loop
15057 if Ekind (Prev) = Ekind (Parent_Subp)
15058 and then Alias (Prev) = Parent_Subp
15059 and then Scope (Parent_Subp) = Scope (Prev)
15060 and then not Is_Hidden (Prev)
15061 then
15062 Visible_Subp := Prev;
15063 return True;
15064 end if;
15066 Prev := Homonym (Prev);
15067 end loop;
15069 return False;
15070 end Is_Private_Overriding;
15072 ------------------
15073 -- Replace_Type --
15074 ------------------
15076 procedure Replace_Type (Id, New_Id : Entity_Id) is
15077 Id_Type : constant Entity_Id := Etype (Id);
15078 Acc_Type : Entity_Id;
15079 Par : constant Node_Id := Parent (Derived_Type);
15081 begin
15082 -- When the type is an anonymous access type, create a new access
15083 -- type designating the derived type. This itype must be elaborated
15084 -- at the point of the derivation, not on subsequent calls that may
15085 -- be out of the proper scope for Gigi, so we insert a reference to
15086 -- it after the derivation.
15088 if Ekind (Id_Type) = E_Anonymous_Access_Type then
15089 declare
15090 Desig_Typ : Entity_Id := Designated_Type (Id_Type);
15092 begin
15093 if Ekind (Desig_Typ) = E_Record_Type_With_Private
15094 and then Present (Full_View (Desig_Typ))
15095 and then not Is_Private_Type (Parent_Type)
15096 then
15097 Desig_Typ := Full_View (Desig_Typ);
15098 end if;
15100 if Base_Type (Desig_Typ) = Base_Type (Parent_Type)
15102 -- Ada 2005 (AI-251): Handle also derivations of abstract
15103 -- interface primitives.
15105 or else (Is_Interface (Desig_Typ)
15106 and then not Is_Class_Wide_Type (Desig_Typ))
15107 then
15108 Acc_Type := New_Copy (Id_Type);
15109 Set_Etype (Acc_Type, Acc_Type);
15110 Set_Scope (Acc_Type, New_Subp);
15112 -- Set size of anonymous access type. If we have an access
15113 -- to an unconstrained array, this is a fat pointer, so it
15114 -- is sizes at twice addtress size.
15116 if Is_Array_Type (Desig_Typ)
15117 and then not Is_Constrained (Desig_Typ)
15118 then
15119 Init_Size (Acc_Type, 2 * System_Address_Size);
15121 -- Other cases use a thin pointer
15123 else
15124 Init_Size (Acc_Type, System_Address_Size);
15125 end if;
15127 -- Set remaining characterstics of anonymous access type
15129 Init_Alignment (Acc_Type);
15130 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
15132 Set_Etype (New_Id, Acc_Type);
15133 Set_Scope (New_Id, New_Subp);
15135 -- Create a reference to it
15137 Build_Itype_Reference (Acc_Type, Parent (Derived_Type));
15139 else
15140 Set_Etype (New_Id, Id_Type);
15141 end if;
15142 end;
15144 -- In Ada2012, a formal may have an incomplete type but the type
15145 -- derivation that inherits the primitive follows the full view.
15147 elsif Base_Type (Id_Type) = Base_Type (Parent_Type)
15148 or else
15149 (Ekind (Id_Type) = E_Record_Type_With_Private
15150 and then Present (Full_View (Id_Type))
15151 and then
15152 Base_Type (Full_View (Id_Type)) = Base_Type (Parent_Type))
15153 or else
15154 (Ada_Version >= Ada_2012
15155 and then Ekind (Id_Type) = E_Incomplete_Type
15156 and then Full_View (Id_Type) = Parent_Type)
15157 then
15158 -- Constraint checks on formals are generated during expansion,
15159 -- based on the signature of the original subprogram. The bounds
15160 -- of the derived type are not relevant, and thus we can use
15161 -- the base type for the formals. However, the return type may be
15162 -- used in a context that requires that the proper static bounds
15163 -- be used (a case statement, for example) and for those cases
15164 -- we must use the derived type (first subtype), not its base.
15166 -- If the derived_type_definition has no constraints, we know that
15167 -- the derived type has the same constraints as the first subtype
15168 -- of the parent, and we can also use it rather than its base,
15169 -- which can lead to more efficient code.
15171 if Etype (Id) = Parent_Type then
15172 if Is_Scalar_Type (Parent_Type)
15173 and then
15174 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
15175 then
15176 Set_Etype (New_Id, Derived_Type);
15178 elsif Nkind (Par) = N_Full_Type_Declaration
15179 and then
15180 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
15181 and then
15182 Is_Entity_Name
15183 (Subtype_Indication (Type_Definition (Par)))
15184 then
15185 Set_Etype (New_Id, Derived_Type);
15187 else
15188 Set_Etype (New_Id, Base_Type (Derived_Type));
15189 end if;
15191 else
15192 Set_Etype (New_Id, Base_Type (Derived_Type));
15193 end if;
15195 else
15196 Set_Etype (New_Id, Etype (Id));
15197 end if;
15198 end Replace_Type;
15200 ----------------------
15201 -- Set_Derived_Name --
15202 ----------------------
15204 procedure Set_Derived_Name is
15205 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
15206 begin
15207 if Nm = TSS_Null then
15208 Set_Chars (New_Subp, Chars (Parent_Subp));
15209 else
15210 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
15211 end if;
15212 end Set_Derived_Name;
15214 -- Start of processing for Derive_Subprogram
15216 begin
15217 New_Subp := New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
15218 Set_Ekind (New_Subp, Ekind (Parent_Subp));
15220 -- Check whether the inherited subprogram is a private operation that
15221 -- should be inherited but not yet made visible. Such subprograms can
15222 -- become visible at a later point (e.g., the private part of a public
15223 -- child unit) via Declare_Inherited_Private_Subprograms. If the
15224 -- following predicate is true, then this is not such a private
15225 -- operation and the subprogram simply inherits the name of the parent
15226 -- subprogram. Note the special check for the names of controlled
15227 -- operations, which are currently exempted from being inherited with
15228 -- a hidden name because they must be findable for generation of
15229 -- implicit run-time calls.
15231 if not Is_Hidden (Parent_Subp)
15232 or else Is_Internal (Parent_Subp)
15233 or else Is_Private_Overriding
15234 or else Is_Internal_Name (Chars (Parent_Subp))
15235 or else (Is_Controlled (Parent_Type)
15236 and then Nam_In (Chars (Parent_Subp), Name_Adjust,
15237 Name_Finalize,
15238 Name_Initialize))
15239 then
15240 Set_Derived_Name;
15242 -- An inherited dispatching equality will be overridden by an internally
15243 -- generated one, or by an explicit one, so preserve its name and thus
15244 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
15245 -- private operation it may become invisible if the full view has
15246 -- progenitors, and the dispatch table will be malformed.
15247 -- We check that the type is limited to handle the anomalous declaration
15248 -- of Limited_Controlled, which is derived from a non-limited type, and
15249 -- which is handled specially elsewhere as well.
15251 elsif Chars (Parent_Subp) = Name_Op_Eq
15252 and then Is_Dispatching_Operation (Parent_Subp)
15253 and then Etype (Parent_Subp) = Standard_Boolean
15254 and then not Is_Limited_Type (Etype (First_Formal (Parent_Subp)))
15255 and then
15256 Etype (First_Formal (Parent_Subp)) =
15257 Etype (Next_Formal (First_Formal (Parent_Subp)))
15258 then
15259 Set_Derived_Name;
15261 -- If parent is hidden, this can be a regular derivation if the
15262 -- parent is immediately visible in a non-instantiating context,
15263 -- or if we are in the private part of an instance. This test
15264 -- should still be refined ???
15266 -- The test for In_Instance_Not_Visible avoids inheriting the derived
15267 -- operation as a non-visible operation in cases where the parent
15268 -- subprogram might not be visible now, but was visible within the
15269 -- original generic, so it would be wrong to make the inherited
15270 -- subprogram non-visible now. (Not clear if this test is fully
15271 -- correct; are there any cases where we should declare the inherited
15272 -- operation as not visible to avoid it being overridden, e.g., when
15273 -- the parent type is a generic actual with private primitives ???)
15275 -- (they should be treated the same as other private inherited
15276 -- subprograms, but it's not clear how to do this cleanly). ???
15278 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
15279 and then Is_Immediately_Visible (Parent_Subp)
15280 and then not In_Instance)
15281 or else In_Instance_Not_Visible
15282 then
15283 Set_Derived_Name;
15285 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
15286 -- overrides an interface primitive because interface primitives
15287 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
15289 elsif Ada_Version >= Ada_2005
15290 and then Is_Dispatching_Operation (Parent_Subp)
15291 and then Present (Covered_Interface_Op (Parent_Subp))
15292 then
15293 Set_Derived_Name;
15295 -- Otherwise, the type is inheriting a private operation, so enter it
15296 -- with a special name so it can't be overridden.
15298 else
15299 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
15300 end if;
15302 Set_Parent (New_Subp, Parent (Derived_Type));
15304 if Present (Actual_Subp) then
15305 Replace_Type (Actual_Subp, New_Subp);
15306 else
15307 Replace_Type (Parent_Subp, New_Subp);
15308 end if;
15310 Conditional_Delay (New_Subp, Parent_Subp);
15312 -- If we are creating a renaming for a primitive operation of an
15313 -- actual of a generic derived type, we must examine the signature
15314 -- of the actual primitive, not that of the generic formal, which for
15315 -- example may be an interface. However the name and initial value
15316 -- of the inherited operation are those of the formal primitive.
15318 Formal := First_Formal (Parent_Subp);
15320 if Present (Actual_Subp) then
15321 Formal_Of_Actual := First_Formal (Actual_Subp);
15322 else
15323 Formal_Of_Actual := Empty;
15324 end if;
15326 while Present (Formal) loop
15327 New_Formal := New_Copy (Formal);
15329 -- Normally we do not go copying parents, but in the case of
15330 -- formals, we need to link up to the declaration (which is the
15331 -- parameter specification), and it is fine to link up to the
15332 -- original formal's parameter specification in this case.
15334 Set_Parent (New_Formal, Parent (Formal));
15335 Append_Entity (New_Formal, New_Subp);
15337 if Present (Formal_Of_Actual) then
15338 Replace_Type (Formal_Of_Actual, New_Formal);
15339 Next_Formal (Formal_Of_Actual);
15340 else
15341 Replace_Type (Formal, New_Formal);
15342 end if;
15344 Next_Formal (Formal);
15345 end loop;
15347 -- If this derivation corresponds to a tagged generic actual, then
15348 -- primitive operations rename those of the actual. Otherwise the
15349 -- primitive operations rename those of the parent type, If the parent
15350 -- renames an intrinsic operator, so does the new subprogram. We except
15351 -- concatenation, which is always properly typed, and does not get
15352 -- expanded as other intrinsic operations.
15354 if No (Actual_Subp) then
15355 if Is_Intrinsic_Subprogram (Parent_Subp) then
15356 Set_Is_Intrinsic_Subprogram (New_Subp);
15358 if Present (Alias (Parent_Subp))
15359 and then Chars (Parent_Subp) /= Name_Op_Concat
15360 then
15361 Set_Alias (New_Subp, Alias (Parent_Subp));
15362 else
15363 Set_Alias (New_Subp, Parent_Subp);
15364 end if;
15366 else
15367 Set_Alias (New_Subp, Parent_Subp);
15368 end if;
15370 else
15371 Set_Alias (New_Subp, Actual_Subp);
15372 end if;
15374 -- Derived subprograms of a tagged type must inherit the convention
15375 -- of the parent subprogram (a requirement of AI-117). Derived
15376 -- subprograms of untagged types simply get convention Ada by default.
15378 -- If the derived type is a tagged generic formal type with unknown
15379 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
15381 -- However, if the type is derived from a generic formal, the further
15382 -- inherited subprogram has the convention of the non-generic ancestor.
15383 -- Otherwise there would be no way to override the operation.
15384 -- (This is subject to forthcoming ARG discussions).
15386 if Is_Tagged_Type (Derived_Type) then
15387 if Is_Generic_Type (Derived_Type)
15388 and then Has_Unknown_Discriminants (Derived_Type)
15389 then
15390 Set_Convention (New_Subp, Convention_Intrinsic);
15392 else
15393 if Is_Generic_Type (Parent_Type)
15394 and then Has_Unknown_Discriminants (Parent_Type)
15395 then
15396 Set_Convention (New_Subp, Convention (Alias (Parent_Subp)));
15397 else
15398 Set_Convention (New_Subp, Convention (Parent_Subp));
15399 end if;
15400 end if;
15401 end if;
15403 -- Predefined controlled operations retain their name even if the parent
15404 -- is hidden (see above), but they are not primitive operations if the
15405 -- ancestor is not visible, for example if the parent is a private
15406 -- extension completed with a controlled extension. Note that a full
15407 -- type that is controlled can break privacy: the flag Is_Controlled is
15408 -- set on both views of the type.
15410 if Is_Controlled (Parent_Type)
15411 and then Nam_In (Chars (Parent_Subp), Name_Initialize,
15412 Name_Adjust,
15413 Name_Finalize)
15414 and then Is_Hidden (Parent_Subp)
15415 and then not Is_Visibly_Controlled (Parent_Type)
15416 then
15417 Set_Is_Hidden (New_Subp);
15418 end if;
15420 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
15421 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
15423 if Ekind (Parent_Subp) = E_Procedure then
15424 Set_Is_Valued_Procedure
15425 (New_Subp, Is_Valued_Procedure (Parent_Subp));
15426 else
15427 Set_Has_Controlling_Result
15428 (New_Subp, Has_Controlling_Result (Parent_Subp));
15429 end if;
15431 -- No_Return must be inherited properly. If this is overridden in the
15432 -- case of a dispatching operation, then a check is made in Sem_Disp
15433 -- that the overriding operation is also No_Return (no such check is
15434 -- required for the case of non-dispatching operation.
15436 Set_No_Return (New_Subp, No_Return (Parent_Subp));
15438 -- A derived function with a controlling result is abstract. If the
15439 -- Derived_Type is a nonabstract formal generic derived type, then
15440 -- inherited operations are not abstract: the required check is done at
15441 -- instantiation time. If the derivation is for a generic actual, the
15442 -- function is not abstract unless the actual is.
15444 if Is_Generic_Type (Derived_Type)
15445 and then not Is_Abstract_Type (Derived_Type)
15446 then
15447 null;
15449 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
15450 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
15452 -- A subprogram subject to pragma Extensions_Visible with value False
15453 -- requires overriding if the subprogram has at least one controlling
15454 -- OUT parameter (SPARK RM 6.1.7(6)).
15456 elsif Ada_Version >= Ada_2005
15457 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15458 or else (Is_Tagged_Type (Derived_Type)
15459 and then Etype (New_Subp) = Derived_Type
15460 and then not Is_Null_Extension (Derived_Type))
15461 or else (Is_Tagged_Type (Derived_Type)
15462 and then Ekind (Etype (New_Subp)) =
15463 E_Anonymous_Access_Type
15464 and then Designated_Type (Etype (New_Subp)) =
15465 Derived_Type
15466 and then not Is_Null_Extension (Derived_Type))
15467 or else (Comes_From_Source (Alias (New_Subp))
15468 and then Is_EVF_Procedure (Alias (New_Subp))))
15469 and then No (Actual_Subp)
15470 then
15471 if not Is_Tagged_Type (Derived_Type)
15472 or else Is_Abstract_Type (Derived_Type)
15473 or else Is_Abstract_Subprogram (Alias (New_Subp))
15474 then
15475 Set_Is_Abstract_Subprogram (New_Subp);
15476 else
15477 Set_Requires_Overriding (New_Subp);
15478 end if;
15480 elsif Ada_Version < Ada_2005
15481 and then (Is_Abstract_Subprogram (Alias (New_Subp))
15482 or else (Is_Tagged_Type (Derived_Type)
15483 and then Etype (New_Subp) = Derived_Type
15484 and then No (Actual_Subp)))
15485 then
15486 Set_Is_Abstract_Subprogram (New_Subp);
15488 -- AI05-0097 : an inherited operation that dispatches on result is
15489 -- abstract if the derived type is abstract, even if the parent type
15490 -- is concrete and the derived type is a null extension.
15492 elsif Has_Controlling_Result (Alias (New_Subp))
15493 and then Is_Abstract_Type (Etype (New_Subp))
15494 then
15495 Set_Is_Abstract_Subprogram (New_Subp);
15497 -- Finally, if the parent type is abstract we must verify that all
15498 -- inherited operations are either non-abstract or overridden, or that
15499 -- the derived type itself is abstract (this check is performed at the
15500 -- end of a package declaration, in Check_Abstract_Overriding). A
15501 -- private overriding in the parent type will not be visible in the
15502 -- derivation if we are not in an inner package or in a child unit of
15503 -- the parent type, in which case the abstractness of the inherited
15504 -- operation is carried to the new subprogram.
15506 elsif Is_Abstract_Type (Parent_Type)
15507 and then not In_Open_Scopes (Scope (Parent_Type))
15508 and then Is_Private_Overriding
15509 and then Is_Abstract_Subprogram (Visible_Subp)
15510 then
15511 if No (Actual_Subp) then
15512 Set_Alias (New_Subp, Visible_Subp);
15513 Set_Is_Abstract_Subprogram (New_Subp, True);
15515 else
15516 -- If this is a derivation for an instance of a formal derived
15517 -- type, abstractness comes from the primitive operation of the
15518 -- actual, not from the operation inherited from the ancestor.
15520 Set_Is_Abstract_Subprogram
15521 (New_Subp, Is_Abstract_Subprogram (Actual_Subp));
15522 end if;
15523 end if;
15525 New_Overloaded_Entity (New_Subp, Derived_Type);
15527 -- Ada RM 6.1.1 (15): If a subprogram inherits nonconforming class-wide
15528 -- preconditions and the derived type is abstract, the derived operation
15529 -- is abstract as well if parent subprogram is not abstract or null.
15531 if Is_Abstract_Type (Derived_Type)
15532 and then Has_Non_Trivial_Precondition (Parent_Subp)
15533 and then Present (Interfaces (Derived_Type))
15534 then
15536 -- Add useful attributes of subprogram before the freeze point,
15537 -- in case freezing is delayed or there are previous errors.
15539 Set_Is_Dispatching_Operation (New_Subp);
15541 declare
15542 Iface_Prim : constant Entity_Id := Covered_Interface_Op (New_Subp);
15544 begin
15545 if Present (Iface_Prim)
15546 and then Has_Non_Trivial_Precondition (Iface_Prim)
15547 then
15548 Set_Is_Abstract_Subprogram (New_Subp);
15549 end if;
15550 end;
15551 end if;
15553 -- Check for case of a derived subprogram for the instantiation of a
15554 -- formal derived tagged type, if so mark the subprogram as dispatching
15555 -- and inherit the dispatching attributes of the actual subprogram. The
15556 -- derived subprogram is effectively renaming of the actual subprogram,
15557 -- so it needs to have the same attributes as the actual.
15559 if Present (Actual_Subp)
15560 and then Is_Dispatching_Operation (Actual_Subp)
15561 then
15562 Set_Is_Dispatching_Operation (New_Subp);
15564 if Present (DTC_Entity (Actual_Subp)) then
15565 Set_DTC_Entity (New_Subp, DTC_Entity (Actual_Subp));
15566 Set_DT_Position_Value (New_Subp, DT_Position (Actual_Subp));
15567 end if;
15568 end if;
15570 -- Indicate that a derived subprogram does not require a body and that
15571 -- it does not require processing of default expressions.
15573 Set_Has_Completion (New_Subp);
15574 Set_Default_Expressions_Processed (New_Subp);
15576 if Ekind (New_Subp) = E_Function then
15577 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
15578 end if;
15579 end Derive_Subprogram;
15581 ------------------------
15582 -- Derive_Subprograms --
15583 ------------------------
15585 procedure Derive_Subprograms
15586 (Parent_Type : Entity_Id;
15587 Derived_Type : Entity_Id;
15588 Generic_Actual : Entity_Id := Empty)
15590 Op_List : constant Elist_Id :=
15591 Collect_Primitive_Operations (Parent_Type);
15593 function Check_Derived_Type return Boolean;
15594 -- Check that all the entities derived from Parent_Type are found in
15595 -- the list of primitives of Derived_Type exactly in the same order.
15597 procedure Derive_Interface_Subprogram
15598 (New_Subp : out Entity_Id;
15599 Subp : Entity_Id;
15600 Actual_Subp : Entity_Id);
15601 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
15602 -- (which is an interface primitive). If Generic_Actual is present then
15603 -- Actual_Subp is the actual subprogram corresponding with the generic
15604 -- subprogram Subp.
15606 ------------------------
15607 -- Check_Derived_Type --
15608 ------------------------
15610 function Check_Derived_Type return Boolean is
15611 E : Entity_Id;
15612 Elmt : Elmt_Id;
15613 List : Elist_Id;
15614 New_Subp : Entity_Id;
15615 Op_Elmt : Elmt_Id;
15616 Subp : Entity_Id;
15618 begin
15619 -- Traverse list of entities in the current scope searching for
15620 -- an incomplete type whose full-view is derived type.
15622 E := First_Entity (Scope (Derived_Type));
15623 while Present (E) and then E /= Derived_Type loop
15624 if Ekind (E) = E_Incomplete_Type
15625 and then Present (Full_View (E))
15626 and then Full_View (E) = Derived_Type
15627 then
15628 -- Disable this test if Derived_Type completes an incomplete
15629 -- type because in such case more primitives can be added
15630 -- later to the list of primitives of Derived_Type by routine
15631 -- Process_Incomplete_Dependents
15633 return True;
15634 end if;
15636 E := Next_Entity (E);
15637 end loop;
15639 List := Collect_Primitive_Operations (Derived_Type);
15640 Elmt := First_Elmt (List);
15642 Op_Elmt := First_Elmt (Op_List);
15643 while Present (Op_Elmt) loop
15644 Subp := Node (Op_Elmt);
15645 New_Subp := Node (Elmt);
15647 -- At this early stage Derived_Type has no entities with attribute
15648 -- Interface_Alias. In addition, such primitives are always
15649 -- located at the end of the list of primitives of Parent_Type.
15650 -- Therefore, if found we can safely stop processing pending
15651 -- entities.
15653 exit when Present (Interface_Alias (Subp));
15655 -- Handle hidden entities
15657 if not Is_Predefined_Dispatching_Operation (Subp)
15658 and then Is_Hidden (Subp)
15659 then
15660 if Present (New_Subp)
15661 and then Primitive_Names_Match (Subp, New_Subp)
15662 then
15663 Next_Elmt (Elmt);
15664 end if;
15666 else
15667 if not Present (New_Subp)
15668 or else Ekind (Subp) /= Ekind (New_Subp)
15669 or else not Primitive_Names_Match (Subp, New_Subp)
15670 then
15671 return False;
15672 end if;
15674 Next_Elmt (Elmt);
15675 end if;
15677 Next_Elmt (Op_Elmt);
15678 end loop;
15680 return True;
15681 end Check_Derived_Type;
15683 ---------------------------------
15684 -- Derive_Interface_Subprogram --
15685 ---------------------------------
15687 procedure Derive_Interface_Subprogram
15688 (New_Subp : out Entity_Id;
15689 Subp : Entity_Id;
15690 Actual_Subp : Entity_Id)
15692 Iface_Subp : constant Entity_Id := Ultimate_Alias (Subp);
15693 Iface_Type : constant Entity_Id := Find_Dispatching_Type (Iface_Subp);
15695 begin
15696 pragma Assert (Is_Interface (Iface_Type));
15698 Derive_Subprogram
15699 (New_Subp => New_Subp,
15700 Parent_Subp => Iface_Subp,
15701 Derived_Type => Derived_Type,
15702 Parent_Type => Iface_Type,
15703 Actual_Subp => Actual_Subp);
15705 -- Given that this new interface entity corresponds with a primitive
15706 -- of the parent that was not overridden we must leave it associated
15707 -- with its parent primitive to ensure that it will share the same
15708 -- dispatch table slot when overridden. We must set the Alias to Subp
15709 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15710 -- (in case we inherited Subp from Iface_Type via a nonabstract
15711 -- generic formal type).
15713 if No (Actual_Subp) then
15714 Set_Alias (New_Subp, Subp);
15716 declare
15717 T : Entity_Id := Find_Dispatching_Type (Subp);
15718 begin
15719 while Etype (T) /= T loop
15720 if Is_Generic_Type (T) and then not Is_Abstract_Type (T) then
15721 Set_Is_Abstract_Subprogram (New_Subp, False);
15722 exit;
15723 end if;
15725 T := Etype (T);
15726 end loop;
15727 end;
15729 -- For instantiations this is not needed since the previous call to
15730 -- Derive_Subprogram leaves the entity well decorated.
15732 else
15733 pragma Assert (Alias (New_Subp) = Actual_Subp);
15734 null;
15735 end if;
15736 end Derive_Interface_Subprogram;
15738 -- Local variables
15740 Alias_Subp : Entity_Id;
15741 Act_List : Elist_Id;
15742 Act_Elmt : Elmt_Id;
15743 Act_Subp : Entity_Id := Empty;
15744 Elmt : Elmt_Id;
15745 Need_Search : Boolean := False;
15746 New_Subp : Entity_Id := Empty;
15747 Parent_Base : Entity_Id;
15748 Subp : Entity_Id;
15750 -- Start of processing for Derive_Subprograms
15752 begin
15753 if Ekind (Parent_Type) = E_Record_Type_With_Private
15754 and then Has_Discriminants (Parent_Type)
15755 and then Present (Full_View (Parent_Type))
15756 then
15757 Parent_Base := Full_View (Parent_Type);
15758 else
15759 Parent_Base := Parent_Type;
15760 end if;
15762 if Present (Generic_Actual) then
15763 Act_List := Collect_Primitive_Operations (Generic_Actual);
15764 Act_Elmt := First_Elmt (Act_List);
15765 else
15766 Act_List := No_Elist;
15767 Act_Elmt := No_Elmt;
15768 end if;
15770 -- Derive primitives inherited from the parent. Note that if the generic
15771 -- actual is present, this is not really a type derivation, it is a
15772 -- completion within an instance.
15774 -- Case 1: Derived_Type does not implement interfaces
15776 if not Is_Tagged_Type (Derived_Type)
15777 or else (not Has_Interfaces (Derived_Type)
15778 and then not (Present (Generic_Actual)
15779 and then Has_Interfaces (Generic_Actual)))
15780 then
15781 Elmt := First_Elmt (Op_List);
15782 while Present (Elmt) loop
15783 Subp := Node (Elmt);
15785 -- Literals are derived earlier in the process of building the
15786 -- derived type, and are skipped here.
15788 if Ekind (Subp) = E_Enumeration_Literal then
15789 null;
15791 -- The actual is a direct descendant and the common primitive
15792 -- operations appear in the same order.
15794 -- If the generic parent type is present, the derived type is an
15795 -- instance of a formal derived type, and within the instance its
15796 -- operations are those of the actual. We derive from the formal
15797 -- type but make the inherited operations aliases of the
15798 -- corresponding operations of the actual.
15800 else
15801 pragma Assert (No (Node (Act_Elmt))
15802 or else (Primitive_Names_Match (Subp, Node (Act_Elmt))
15803 and then
15804 Type_Conformant
15805 (Subp, Node (Act_Elmt),
15806 Skip_Controlling_Formals => True)));
15808 Derive_Subprogram
15809 (New_Subp, Subp, Derived_Type, Parent_Base, Node (Act_Elmt));
15811 if Present (Act_Elmt) then
15812 Next_Elmt (Act_Elmt);
15813 end if;
15814 end if;
15816 Next_Elmt (Elmt);
15817 end loop;
15819 -- Case 2: Derived_Type implements interfaces
15821 else
15822 -- If the parent type has no predefined primitives we remove
15823 -- predefined primitives from the list of primitives of generic
15824 -- actual to simplify the complexity of this algorithm.
15826 if Present (Generic_Actual) then
15827 declare
15828 Has_Predefined_Primitives : Boolean := False;
15830 begin
15831 -- Check if the parent type has predefined primitives
15833 Elmt := First_Elmt (Op_List);
15834 while Present (Elmt) loop
15835 Subp := Node (Elmt);
15837 if Is_Predefined_Dispatching_Operation (Subp)
15838 and then not Comes_From_Source (Ultimate_Alias (Subp))
15839 then
15840 Has_Predefined_Primitives := True;
15841 exit;
15842 end if;
15844 Next_Elmt (Elmt);
15845 end loop;
15847 -- Remove predefined primitives of Generic_Actual. We must use
15848 -- an auxiliary list because in case of tagged types the value
15849 -- returned by Collect_Primitive_Operations is the value stored
15850 -- in its Primitive_Operations attribute (and we don't want to
15851 -- modify its current contents).
15853 if not Has_Predefined_Primitives then
15854 declare
15855 Aux_List : constant Elist_Id := New_Elmt_List;
15857 begin
15858 Elmt := First_Elmt (Act_List);
15859 while Present (Elmt) loop
15860 Subp := Node (Elmt);
15862 if not Is_Predefined_Dispatching_Operation (Subp)
15863 or else Comes_From_Source (Subp)
15864 then
15865 Append_Elmt (Subp, Aux_List);
15866 end if;
15868 Next_Elmt (Elmt);
15869 end loop;
15871 Act_List := Aux_List;
15872 end;
15873 end if;
15875 Act_Elmt := First_Elmt (Act_List);
15876 Act_Subp := Node (Act_Elmt);
15877 end;
15878 end if;
15880 -- Stage 1: If the generic actual is not present we derive the
15881 -- primitives inherited from the parent type. If the generic parent
15882 -- type is present, the derived type is an instance of a formal
15883 -- derived type, and within the instance its operations are those of
15884 -- the actual. We derive from the formal type but make the inherited
15885 -- operations aliases of the corresponding operations of the actual.
15887 Elmt := First_Elmt (Op_List);
15888 while Present (Elmt) loop
15889 Subp := Node (Elmt);
15890 Alias_Subp := Ultimate_Alias (Subp);
15892 -- Do not derive internal entities of the parent that link
15893 -- interface primitives with their covering primitive. These
15894 -- entities will be added to this type when frozen.
15896 if Present (Interface_Alias (Subp)) then
15897 goto Continue;
15898 end if;
15900 -- If the generic actual is present find the corresponding
15901 -- operation in the generic actual. If the parent type is a
15902 -- direct ancestor of the derived type then, even if it is an
15903 -- interface, the operations are inherited from the primary
15904 -- dispatch table and are in the proper order. If we detect here
15905 -- that primitives are not in the same order we traverse the list
15906 -- of primitive operations of the actual to find the one that
15907 -- implements the interface primitive.
15909 if Need_Search
15910 or else
15911 (Present (Generic_Actual)
15912 and then Present (Act_Subp)
15913 and then not
15914 (Primitive_Names_Match (Subp, Act_Subp)
15915 and then
15916 Type_Conformant (Subp, Act_Subp,
15917 Skip_Controlling_Formals => True)))
15918 then
15919 pragma Assert (not Is_Ancestor (Parent_Base, Generic_Actual,
15920 Use_Full_View => True));
15922 -- Remember that we need searching for all pending primitives
15924 Need_Search := True;
15926 -- Handle entities associated with interface primitives
15928 if Present (Alias_Subp)
15929 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
15930 and then not Is_Predefined_Dispatching_Operation (Subp)
15931 then
15932 -- Search for the primitive in the homonym chain
15934 Act_Subp :=
15935 Find_Primitive_Covering_Interface
15936 (Tagged_Type => Generic_Actual,
15937 Iface_Prim => Alias_Subp);
15939 -- Previous search may not locate primitives covering
15940 -- interfaces defined in generics units or instantiations.
15941 -- (it fails if the covering primitive has formals whose
15942 -- type is also defined in generics or instantiations).
15943 -- In such case we search in the list of primitives of the
15944 -- generic actual for the internal entity that links the
15945 -- interface primitive and the covering primitive.
15947 if No (Act_Subp)
15948 and then Is_Generic_Type (Parent_Type)
15949 then
15950 -- This code has been designed to handle only generic
15951 -- formals that implement interfaces that are defined
15952 -- in a generic unit or instantiation. If this code is
15953 -- needed for other cases we must review it because
15954 -- (given that it relies on Original_Location to locate
15955 -- the primitive of Generic_Actual that covers the
15956 -- interface) it could leave linked through attribute
15957 -- Alias entities of unrelated instantiations).
15959 pragma Assert
15960 (Is_Generic_Unit
15961 (Scope (Find_Dispatching_Type (Alias_Subp)))
15962 or else
15963 Instantiation_Depth
15964 (Sloc (Find_Dispatching_Type (Alias_Subp))) > 0);
15966 declare
15967 Iface_Prim_Loc : constant Source_Ptr :=
15968 Original_Location (Sloc (Alias_Subp));
15970 Elmt : Elmt_Id;
15971 Prim : Entity_Id;
15973 begin
15974 Elmt :=
15975 First_Elmt (Primitive_Operations (Generic_Actual));
15977 Search : while Present (Elmt) loop
15978 Prim := Node (Elmt);
15980 if Present (Interface_Alias (Prim))
15981 and then Original_Location
15982 (Sloc (Interface_Alias (Prim))) =
15983 Iface_Prim_Loc
15984 then
15985 Act_Subp := Alias (Prim);
15986 exit Search;
15987 end if;
15989 Next_Elmt (Elmt);
15990 end loop Search;
15991 end;
15992 end if;
15994 pragma Assert (Present (Act_Subp)
15995 or else Is_Abstract_Type (Generic_Actual)
15996 or else Serious_Errors_Detected > 0);
15998 -- Handle predefined primitives plus the rest of user-defined
15999 -- primitives
16001 else
16002 Act_Elmt := First_Elmt (Act_List);
16003 while Present (Act_Elmt) loop
16004 Act_Subp := Node (Act_Elmt);
16006 exit when Primitive_Names_Match (Subp, Act_Subp)
16007 and then Type_Conformant
16008 (Subp, Act_Subp,
16009 Skip_Controlling_Formals => True)
16010 and then No (Interface_Alias (Act_Subp));
16012 Next_Elmt (Act_Elmt);
16013 end loop;
16015 if No (Act_Elmt) then
16016 Act_Subp := Empty;
16017 end if;
16018 end if;
16019 end if;
16021 -- Case 1: If the parent is a limited interface then it has the
16022 -- predefined primitives of synchronized interfaces. However, the
16023 -- actual type may be a non-limited type and hence it does not
16024 -- have such primitives.
16026 if Present (Generic_Actual)
16027 and then not Present (Act_Subp)
16028 and then Is_Limited_Interface (Parent_Base)
16029 and then Is_Predefined_Interface_Primitive (Subp)
16030 then
16031 null;
16033 -- Case 2: Inherit entities associated with interfaces that were
16034 -- not covered by the parent type. We exclude here null interface
16035 -- primitives because they do not need special management.
16037 -- We also exclude interface operations that are renamings. If the
16038 -- subprogram is an explicit renaming of an interface primitive,
16039 -- it is a regular primitive operation, and the presence of its
16040 -- alias is not relevant: it has to be derived like any other
16041 -- primitive.
16043 elsif Present (Alias (Subp))
16044 and then Nkind (Unit_Declaration_Node (Subp)) /=
16045 N_Subprogram_Renaming_Declaration
16046 and then Is_Interface (Find_Dispatching_Type (Alias_Subp))
16047 and then not
16048 (Nkind (Parent (Alias_Subp)) = N_Procedure_Specification
16049 and then Null_Present (Parent (Alias_Subp)))
16050 then
16051 -- If this is an abstract private type then we transfer the
16052 -- derivation of the interface primitive from the partial view
16053 -- to the full view. This is safe because all the interfaces
16054 -- must be visible in the partial view. Done to avoid adding
16055 -- a new interface derivation to the private part of the
16056 -- enclosing package; otherwise this new derivation would be
16057 -- decorated as hidden when the analysis of the enclosing
16058 -- package completes.
16060 if Is_Abstract_Type (Derived_Type)
16061 and then In_Private_Part (Current_Scope)
16062 and then Has_Private_Declaration (Derived_Type)
16063 then
16064 declare
16065 Partial_View : Entity_Id;
16066 Elmt : Elmt_Id;
16067 Ent : Entity_Id;
16069 begin
16070 Partial_View := First_Entity (Current_Scope);
16071 loop
16072 exit when No (Partial_View)
16073 or else (Has_Private_Declaration (Partial_View)
16074 and then
16075 Full_View (Partial_View) = Derived_Type);
16077 Next_Entity (Partial_View);
16078 end loop;
16080 -- If the partial view was not found then the source code
16081 -- has errors and the derivation is not needed.
16083 if Present (Partial_View) then
16084 Elmt :=
16085 First_Elmt (Primitive_Operations (Partial_View));
16086 while Present (Elmt) loop
16087 Ent := Node (Elmt);
16089 if Present (Alias (Ent))
16090 and then Ultimate_Alias (Ent) = Alias (Subp)
16091 then
16092 Append_Elmt
16093 (Ent, Primitive_Operations (Derived_Type));
16094 exit;
16095 end if;
16097 Next_Elmt (Elmt);
16098 end loop;
16100 -- If the interface primitive was not found in the
16101 -- partial view then this interface primitive was
16102 -- overridden. We add a derivation to activate in
16103 -- Derive_Progenitor_Subprograms the machinery to
16104 -- search for it.
16106 if No (Elmt) then
16107 Derive_Interface_Subprogram
16108 (New_Subp => New_Subp,
16109 Subp => Subp,
16110 Actual_Subp => Act_Subp);
16111 end if;
16112 end if;
16113 end;
16114 else
16115 Derive_Interface_Subprogram
16116 (New_Subp => New_Subp,
16117 Subp => Subp,
16118 Actual_Subp => Act_Subp);
16119 end if;
16121 -- Case 3: Common derivation
16123 else
16124 Derive_Subprogram
16125 (New_Subp => New_Subp,
16126 Parent_Subp => Subp,
16127 Derived_Type => Derived_Type,
16128 Parent_Type => Parent_Base,
16129 Actual_Subp => Act_Subp);
16130 end if;
16132 -- No need to update Act_Elm if we must search for the
16133 -- corresponding operation in the generic actual
16135 if not Need_Search
16136 and then Present (Act_Elmt)
16137 then
16138 Next_Elmt (Act_Elmt);
16139 Act_Subp := Node (Act_Elmt);
16140 end if;
16142 <<Continue>>
16143 Next_Elmt (Elmt);
16144 end loop;
16146 -- Inherit additional operations from progenitors. If the derived
16147 -- type is a generic actual, there are not new primitive operations
16148 -- for the type because it has those of the actual, and therefore
16149 -- nothing needs to be done. The renamings generated above are not
16150 -- primitive operations, and their purpose is simply to make the
16151 -- proper operations visible within an instantiation.
16153 if No (Generic_Actual) then
16154 Derive_Progenitor_Subprograms (Parent_Base, Derived_Type);
16155 end if;
16156 end if;
16158 -- Final check: Direct descendants must have their primitives in the
16159 -- same order. We exclude from this test untagged types and instances
16160 -- of formal derived types. We skip this test if we have already
16161 -- reported serious errors in the sources.
16163 pragma Assert (not Is_Tagged_Type (Derived_Type)
16164 or else Present (Generic_Actual)
16165 or else Serious_Errors_Detected > 0
16166 or else Check_Derived_Type);
16167 end Derive_Subprograms;
16169 --------------------------------
16170 -- Derived_Standard_Character --
16171 --------------------------------
16173 procedure Derived_Standard_Character
16174 (N : Node_Id;
16175 Parent_Type : Entity_Id;
16176 Derived_Type : Entity_Id)
16178 Loc : constant Source_Ptr := Sloc (N);
16179 Def : constant Node_Id := Type_Definition (N);
16180 Indic : constant Node_Id := Subtype_Indication (Def);
16181 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
16182 Implicit_Base : constant Entity_Id :=
16183 Create_Itype
16184 (E_Enumeration_Type, N, Derived_Type, 'B');
16186 Lo : Node_Id;
16187 Hi : Node_Id;
16189 begin
16190 Discard_Node (Process_Subtype (Indic, N));
16192 Set_Etype (Implicit_Base, Parent_Base);
16193 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
16194 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
16196 Set_Is_Character_Type (Implicit_Base, True);
16197 Set_Has_Delayed_Freeze (Implicit_Base);
16199 -- The bounds of the implicit base are the bounds of the parent base.
16200 -- Note that their type is the parent base.
16202 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
16203 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
16205 Set_Scalar_Range (Implicit_Base,
16206 Make_Range (Loc,
16207 Low_Bound => Lo,
16208 High_Bound => Hi));
16210 Conditional_Delay (Derived_Type, Parent_Type);
16212 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
16213 Set_Etype (Derived_Type, Implicit_Base);
16214 Set_Size_Info (Derived_Type, Parent_Type);
16216 if Unknown_RM_Size (Derived_Type) then
16217 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
16218 end if;
16220 Set_Is_Character_Type (Derived_Type, True);
16222 if Nkind (Indic) /= N_Subtype_Indication then
16224 -- If no explicit constraint, the bounds are those
16225 -- of the parent type.
16227 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
16228 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
16229 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
16230 end if;
16232 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
16234 -- Because the implicit base is used in the conversion of the bounds, we
16235 -- have to freeze it now. This is similar to what is done for numeric
16236 -- types, and it equally suspicious, but otherwise a non-static bound
16237 -- will have a reference to an unfrozen type, which is rejected by Gigi
16238 -- (???). This requires specific care for definition of stream
16239 -- attributes. For details, see comments at the end of
16240 -- Build_Derived_Numeric_Type.
16242 Freeze_Before (N, Implicit_Base);
16243 end Derived_Standard_Character;
16245 ------------------------------
16246 -- Derived_Type_Declaration --
16247 ------------------------------
16249 procedure Derived_Type_Declaration
16250 (T : Entity_Id;
16251 N : Node_Id;
16252 Is_Completion : Boolean)
16254 Parent_Type : Entity_Id;
16256 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
16257 -- Check whether the parent type is a generic formal, or derives
16258 -- directly or indirectly from one.
16260 ------------------------
16261 -- Comes_From_Generic --
16262 ------------------------
16264 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
16265 begin
16266 if Is_Generic_Type (Typ) then
16267 return True;
16269 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
16270 return True;
16272 elsif Is_Private_Type (Typ)
16273 and then Present (Full_View (Typ))
16274 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
16275 then
16276 return True;
16278 elsif Is_Generic_Actual_Type (Typ) then
16279 return True;
16281 else
16282 return False;
16283 end if;
16284 end Comes_From_Generic;
16286 -- Local variables
16288 Def : constant Node_Id := Type_Definition (N);
16289 Iface_Def : Node_Id;
16290 Indic : constant Node_Id := Subtype_Indication (Def);
16291 Extension : constant Node_Id := Record_Extension_Part (Def);
16292 Parent_Node : Node_Id;
16293 Taggd : Boolean;
16295 -- Start of processing for Derived_Type_Declaration
16297 begin
16298 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
16300 -- Ada 2005 (AI-251): In case of interface derivation check that the
16301 -- parent is also an interface.
16303 if Interface_Present (Def) then
16304 Check_SPARK_05_Restriction ("interface is not allowed", Def);
16306 if not Is_Interface (Parent_Type) then
16307 Diagnose_Interface (Indic, Parent_Type);
16309 else
16310 Parent_Node := Parent (Base_Type (Parent_Type));
16311 Iface_Def := Type_Definition (Parent_Node);
16313 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
16314 -- other limited interfaces.
16316 if Limited_Present (Def) then
16317 if Limited_Present (Iface_Def) then
16318 null;
16320 elsif Protected_Present (Iface_Def) then
16321 Error_Msg_NE
16322 ("descendant of & must be declared as a protected "
16323 & "interface", N, Parent_Type);
16325 elsif Synchronized_Present (Iface_Def) then
16326 Error_Msg_NE
16327 ("descendant of & must be declared as a synchronized "
16328 & "interface", N, Parent_Type);
16330 elsif Task_Present (Iface_Def) then
16331 Error_Msg_NE
16332 ("descendant of & must be declared as a task interface",
16333 N, Parent_Type);
16335 else
16336 Error_Msg_N
16337 ("(Ada 2005) limited interface cannot inherit from "
16338 & "non-limited interface", Indic);
16339 end if;
16341 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
16342 -- from non-limited or limited interfaces.
16344 elsif not Protected_Present (Def)
16345 and then not Synchronized_Present (Def)
16346 and then not Task_Present (Def)
16347 then
16348 if Limited_Present (Iface_Def) then
16349 null;
16351 elsif Protected_Present (Iface_Def) then
16352 Error_Msg_NE
16353 ("descendant of & must be declared as a protected "
16354 & "interface", N, Parent_Type);
16356 elsif Synchronized_Present (Iface_Def) then
16357 Error_Msg_NE
16358 ("descendant of & must be declared as a synchronized "
16359 & "interface", N, Parent_Type);
16361 elsif Task_Present (Iface_Def) then
16362 Error_Msg_NE
16363 ("descendant of & must be declared as a task interface",
16364 N, Parent_Type);
16365 else
16366 null;
16367 end if;
16368 end if;
16369 end if;
16370 end if;
16372 if Is_Tagged_Type (Parent_Type)
16373 and then Is_Concurrent_Type (Parent_Type)
16374 and then not Is_Interface (Parent_Type)
16375 then
16376 Error_Msg_N
16377 ("parent type of a record extension cannot be a synchronized "
16378 & "tagged type (RM 3.9.1 (3/1))", N);
16379 Set_Etype (T, Any_Type);
16380 return;
16381 end if;
16383 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
16384 -- interfaces
16386 if Is_Tagged_Type (Parent_Type)
16387 and then Is_Non_Empty_List (Interface_List (Def))
16388 then
16389 declare
16390 Intf : Node_Id;
16391 T : Entity_Id;
16393 begin
16394 Intf := First (Interface_List (Def));
16395 while Present (Intf) loop
16396 T := Find_Type_Of_Subtype_Indic (Intf);
16398 if not Is_Interface (T) then
16399 Diagnose_Interface (Intf, T);
16401 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
16402 -- a limited type from having a nonlimited progenitor.
16404 elsif (Limited_Present (Def)
16405 or else (not Is_Interface (Parent_Type)
16406 and then Is_Limited_Type (Parent_Type)))
16407 and then not Is_Limited_Interface (T)
16408 then
16409 Error_Msg_NE
16410 ("progenitor interface& of limited type must be limited",
16411 N, T);
16412 end if;
16414 Next (Intf);
16415 end loop;
16416 end;
16417 end if;
16419 if Parent_Type = Any_Type
16420 or else Etype (Parent_Type) = Any_Type
16421 or else (Is_Class_Wide_Type (Parent_Type)
16422 and then Etype (Parent_Type) = T)
16423 then
16424 -- If Parent_Type is undefined or illegal, make new type into a
16425 -- subtype of Any_Type, and set a few attributes to prevent cascaded
16426 -- errors. If this is a self-definition, emit error now.
16428 if T = Parent_Type or else T = Etype (Parent_Type) then
16429 Error_Msg_N ("type cannot be used in its own definition", Indic);
16430 end if;
16432 Set_Ekind (T, Ekind (Parent_Type));
16433 Set_Etype (T, Any_Type);
16434 Set_Scalar_Range (T, Scalar_Range (Any_Type));
16436 if Is_Tagged_Type (T)
16437 and then Is_Record_Type (T)
16438 then
16439 Set_Direct_Primitive_Operations (T, New_Elmt_List);
16440 end if;
16442 return;
16443 end if;
16445 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
16446 -- an interface is special because the list of interfaces in the full
16447 -- view can be given in any order. For example:
16449 -- type A is interface;
16450 -- type B is interface and A;
16451 -- type D is new B with private;
16452 -- private
16453 -- type D is new A and B with null record; -- 1 --
16455 -- In this case we perform the following transformation of -1-:
16457 -- type D is new B and A with null record;
16459 -- If the parent of the full-view covers the parent of the partial-view
16460 -- we have two possible cases:
16462 -- 1) They have the same parent
16463 -- 2) The parent of the full-view implements some further interfaces
16465 -- In both cases we do not need to perform the transformation. In the
16466 -- first case the source program is correct and the transformation is
16467 -- not needed; in the second case the source program does not fulfill
16468 -- the no-hidden interfaces rule (AI-396) and the error will be reported
16469 -- later.
16471 -- This transformation not only simplifies the rest of the analysis of
16472 -- this type declaration but also simplifies the correct generation of
16473 -- the object layout to the expander.
16475 if In_Private_Part (Current_Scope)
16476 and then Is_Interface (Parent_Type)
16477 then
16478 declare
16479 Iface : Node_Id;
16480 Partial_View : Entity_Id;
16481 Partial_View_Parent : Entity_Id;
16482 New_Iface : Node_Id;
16484 begin
16485 -- Look for the associated private type declaration
16487 Partial_View := First_Entity (Current_Scope);
16488 loop
16489 exit when No (Partial_View)
16490 or else (Has_Private_Declaration (Partial_View)
16491 and then Full_View (Partial_View) = T);
16493 Next_Entity (Partial_View);
16494 end loop;
16496 -- If the partial view was not found then the source code has
16497 -- errors and the transformation is not needed.
16499 if Present (Partial_View) then
16500 Partial_View_Parent := Etype (Partial_View);
16502 -- If the parent of the full-view covers the parent of the
16503 -- partial-view we have nothing else to do.
16505 if Interface_Present_In_Ancestor
16506 (Parent_Type, Partial_View_Parent)
16507 then
16508 null;
16510 -- Traverse the list of interfaces of the full-view to look
16511 -- for the parent of the partial-view and perform the tree
16512 -- transformation.
16514 else
16515 Iface := First (Interface_List (Def));
16516 while Present (Iface) loop
16517 if Etype (Iface) = Etype (Partial_View) then
16518 Rewrite (Subtype_Indication (Def),
16519 New_Copy (Subtype_Indication
16520 (Parent (Partial_View))));
16522 New_Iface :=
16523 Make_Identifier (Sloc (N), Chars (Parent_Type));
16524 Append (New_Iface, Interface_List (Def));
16526 -- Analyze the transformed code
16528 Derived_Type_Declaration (T, N, Is_Completion);
16529 return;
16530 end if;
16532 Next (Iface);
16533 end loop;
16534 end if;
16535 end if;
16536 end;
16537 end if;
16539 -- Only composite types other than array types are allowed to have
16540 -- discriminants.
16542 if Present (Discriminant_Specifications (N)) then
16543 if (Is_Elementary_Type (Parent_Type)
16544 or else
16545 Is_Array_Type (Parent_Type))
16546 and then not Error_Posted (N)
16547 then
16548 Error_Msg_N
16549 ("elementary or array type cannot have discriminants",
16550 Defining_Identifier (First (Discriminant_Specifications (N))));
16551 Set_Has_Discriminants (T, False);
16553 -- The type is allowed to have discriminants
16555 else
16556 Check_SPARK_05_Restriction ("discriminant type is not allowed", N);
16557 end if;
16558 end if;
16560 -- In Ada 83, a derived type defined in a package specification cannot
16561 -- be used for further derivation until the end of its visible part.
16562 -- Note that derivation in the private part of the package is allowed.
16564 if Ada_Version = Ada_83
16565 and then Is_Derived_Type (Parent_Type)
16566 and then In_Visible_Part (Scope (Parent_Type))
16567 then
16568 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
16569 Error_Msg_N
16570 ("(Ada 83): premature use of type for derivation", Indic);
16571 end if;
16572 end if;
16574 -- Check for early use of incomplete or private type
16576 if Ekind_In (Parent_Type, E_Void, E_Incomplete_Type) then
16577 Error_Msg_N ("premature derivation of incomplete type", Indic);
16578 return;
16580 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
16581 and then not Comes_From_Generic (Parent_Type))
16582 or else Has_Private_Component (Parent_Type)
16583 then
16584 -- The ancestor type of a formal type can be incomplete, in which
16585 -- case only the operations of the partial view are available in the
16586 -- generic. Subsequent checks may be required when the full view is
16587 -- analyzed to verify that a derivation from a tagged type has an
16588 -- extension.
16590 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
16591 null;
16593 elsif No (Underlying_Type (Parent_Type))
16594 or else Has_Private_Component (Parent_Type)
16595 then
16596 Error_Msg_N
16597 ("premature derivation of derived or private type", Indic);
16599 -- Flag the type itself as being in error, this prevents some
16600 -- nasty problems with subsequent uses of the malformed type.
16602 Set_Error_Posted (T);
16604 -- Check that within the immediate scope of an untagged partial
16605 -- view it's illegal to derive from the partial view if the
16606 -- full view is tagged. (7.3(7))
16608 -- We verify that the Parent_Type is a partial view by checking
16609 -- that it is not a Full_Type_Declaration (i.e. a private type or
16610 -- private extension declaration), to distinguish a partial view
16611 -- from a derivation from a private type which also appears as
16612 -- E_Private_Type. If the parent base type is not declared in an
16613 -- enclosing scope there is no need to check.
16615 elsif Present (Full_View (Parent_Type))
16616 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
16617 and then not Is_Tagged_Type (Parent_Type)
16618 and then Is_Tagged_Type (Full_View (Parent_Type))
16619 and then In_Open_Scopes (Scope (Base_Type (Parent_Type)))
16620 then
16621 Error_Msg_N
16622 ("premature derivation from type with tagged full view",
16623 Indic);
16624 end if;
16625 end if;
16627 -- Check that form of derivation is appropriate
16629 Taggd := Is_Tagged_Type (Parent_Type);
16631 -- Set the parent type to the class-wide type's specific type in this
16632 -- case to prevent cascading errors
16634 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
16635 Error_Msg_N ("parent type must not be a class-wide type", Indic);
16636 Set_Etype (T, Etype (Parent_Type));
16637 return;
16638 end if;
16640 if Present (Extension) and then not Taggd then
16641 Error_Msg_N
16642 ("type derived from untagged type cannot have extension", Indic);
16644 elsif No (Extension) and then Taggd then
16646 -- If this declaration is within a private part (or body) of a
16647 -- generic instantiation then the derivation is allowed (the parent
16648 -- type can only appear tagged in this case if it's a generic actual
16649 -- type, since it would otherwise have been rejected in the analysis
16650 -- of the generic template).
16652 if not Is_Generic_Actual_Type (Parent_Type)
16653 or else In_Visible_Part (Scope (Parent_Type))
16654 then
16655 if Is_Class_Wide_Type (Parent_Type) then
16656 Error_Msg_N
16657 ("parent type must not be a class-wide type", Indic);
16659 -- Use specific type to prevent cascaded errors.
16661 Parent_Type := Etype (Parent_Type);
16663 else
16664 Error_Msg_N
16665 ("type derived from tagged type must have extension", Indic);
16666 end if;
16667 end if;
16668 end if;
16670 -- AI-443: Synchronized formal derived types require a private
16671 -- extension. There is no point in checking the ancestor type or
16672 -- the progenitors since the construct is wrong to begin with.
16674 if Ada_Version >= Ada_2005
16675 and then Is_Generic_Type (T)
16676 and then Present (Original_Node (N))
16677 then
16678 declare
16679 Decl : constant Node_Id := Original_Node (N);
16681 begin
16682 if Nkind (Decl) = N_Formal_Type_Declaration
16683 and then Nkind (Formal_Type_Definition (Decl)) =
16684 N_Formal_Derived_Type_Definition
16685 and then Synchronized_Present (Formal_Type_Definition (Decl))
16686 and then No (Extension)
16688 -- Avoid emitting a duplicate error message
16690 and then not Error_Posted (Indic)
16691 then
16692 Error_Msg_N
16693 ("synchronized derived type must have extension", N);
16694 end if;
16695 end;
16696 end if;
16698 if Null_Exclusion_Present (Def)
16699 and then not Is_Access_Type (Parent_Type)
16700 then
16701 Error_Msg_N ("null exclusion can only apply to an access type", N);
16702 end if;
16704 -- Avoid deriving parent primitives of underlying record views
16706 Build_Derived_Type (N, Parent_Type, T, Is_Completion,
16707 Derive_Subps => not Is_Underlying_Record_View (T));
16709 -- AI-419: The parent type of an explicitly limited derived type must
16710 -- be a limited type or a limited interface.
16712 if Limited_Present (Def) then
16713 Set_Is_Limited_Record (T);
16715 if Is_Interface (T) then
16716 Set_Is_Limited_Interface (T);
16717 end if;
16719 if not Is_Limited_Type (Parent_Type)
16720 and then
16721 (not Is_Interface (Parent_Type)
16722 or else not Is_Limited_Interface (Parent_Type))
16723 then
16724 -- AI05-0096: a derivation in the private part of an instance is
16725 -- legal if the generic formal is untagged limited, and the actual
16726 -- is non-limited.
16728 if Is_Generic_Actual_Type (Parent_Type)
16729 and then In_Private_Part (Current_Scope)
16730 and then
16731 not Is_Tagged_Type
16732 (Generic_Parent_Type (Parent (Parent_Type)))
16733 then
16734 null;
16736 else
16737 Error_Msg_NE
16738 ("parent type& of limited type must be limited",
16739 N, Parent_Type);
16740 end if;
16741 end if;
16742 end if;
16744 -- In SPARK, there are no derived type definitions other than type
16745 -- extensions of tagged record types.
16747 if No (Extension) then
16748 Check_SPARK_05_Restriction
16749 ("derived type is not allowed", Original_Node (N));
16750 end if;
16751 end Derived_Type_Declaration;
16753 ------------------------
16754 -- Diagnose_Interface --
16755 ------------------------
16757 procedure Diagnose_Interface (N : Node_Id; E : Entity_Id) is
16758 begin
16759 if not Is_Interface (E) and then E /= Any_Type then
16760 Error_Msg_NE ("(Ada 2005) & must be an interface", N, E);
16761 end if;
16762 end Diagnose_Interface;
16764 ----------------------------------
16765 -- Enumeration_Type_Declaration --
16766 ----------------------------------
16768 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
16769 Ev : Uint;
16770 L : Node_Id;
16771 R_Node : Node_Id;
16772 B_Node : Node_Id;
16774 begin
16775 -- Create identifier node representing lower bound
16777 B_Node := New_Node (N_Identifier, Sloc (Def));
16778 L := First (Literals (Def));
16779 Set_Chars (B_Node, Chars (L));
16780 Set_Entity (B_Node, L);
16781 Set_Etype (B_Node, T);
16782 Set_Is_Static_Expression (B_Node, True);
16784 R_Node := New_Node (N_Range, Sloc (Def));
16785 Set_Low_Bound (R_Node, B_Node);
16787 Set_Ekind (T, E_Enumeration_Type);
16788 Set_First_Literal (T, L);
16789 Set_Etype (T, T);
16790 Set_Is_Constrained (T);
16792 Ev := Uint_0;
16794 -- Loop through literals of enumeration type setting pos and rep values
16795 -- except that if the Ekind is already set, then it means the literal
16796 -- was already constructed (case of a derived type declaration and we
16797 -- should not disturb the Pos and Rep values.
16799 while Present (L) loop
16800 if Ekind (L) /= E_Enumeration_Literal then
16801 Set_Ekind (L, E_Enumeration_Literal);
16802 Set_Enumeration_Pos (L, Ev);
16803 Set_Enumeration_Rep (L, Ev);
16804 Set_Is_Known_Valid (L, True);
16805 end if;
16807 Set_Etype (L, T);
16808 New_Overloaded_Entity (L);
16809 Generate_Definition (L);
16810 Set_Convention (L, Convention_Intrinsic);
16812 -- Case of character literal
16814 if Nkind (L) = N_Defining_Character_Literal then
16815 Set_Is_Character_Type (T, True);
16817 -- Check violation of No_Wide_Characters
16819 if Restriction_Check_Required (No_Wide_Characters) then
16820 Get_Name_String (Chars (L));
16822 if Name_Len >= 3 and then Name_Buffer (1 .. 2) = "QW" then
16823 Check_Restriction (No_Wide_Characters, L);
16824 end if;
16825 end if;
16826 end if;
16828 Ev := Ev + 1;
16829 Next (L);
16830 end loop;
16832 -- Now create a node representing upper bound
16834 B_Node := New_Node (N_Identifier, Sloc (Def));
16835 Set_Chars (B_Node, Chars (Last (Literals (Def))));
16836 Set_Entity (B_Node, Last (Literals (Def)));
16837 Set_Etype (B_Node, T);
16838 Set_Is_Static_Expression (B_Node, True);
16840 Set_High_Bound (R_Node, B_Node);
16842 -- Initialize various fields of the type. Some of this information
16843 -- may be overwritten later through rep.clauses.
16845 Set_Scalar_Range (T, R_Node);
16846 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
16847 Set_Enum_Esize (T);
16848 Set_Enum_Pos_To_Rep (T, Empty);
16850 -- Set Discard_Names if configuration pragma set, or if there is
16851 -- a parameterless pragma in the current declarative region
16853 if Global_Discard_Names or else Discard_Names (Scope (T)) then
16854 Set_Discard_Names (T);
16855 end if;
16857 -- Process end label if there is one
16859 if Present (Def) then
16860 Process_End_Label (Def, 'e', T);
16861 end if;
16862 end Enumeration_Type_Declaration;
16864 ---------------------------------
16865 -- Expand_To_Stored_Constraint --
16866 ---------------------------------
16868 function Expand_To_Stored_Constraint
16869 (Typ : Entity_Id;
16870 Constraint : Elist_Id) return Elist_Id
16872 Explicitly_Discriminated_Type : Entity_Id;
16873 Expansion : Elist_Id;
16874 Discriminant : Entity_Id;
16876 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
16877 -- Find the nearest type that actually specifies discriminants
16879 ---------------------------------
16880 -- Type_With_Explicit_Discrims --
16881 ---------------------------------
16883 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
16884 Typ : constant E := Base_Type (Id);
16886 begin
16887 if Ekind (Typ) in Incomplete_Or_Private_Kind then
16888 if Present (Full_View (Typ)) then
16889 return Type_With_Explicit_Discrims (Full_View (Typ));
16890 end if;
16892 else
16893 if Has_Discriminants (Typ) then
16894 return Typ;
16895 end if;
16896 end if;
16898 if Etype (Typ) = Typ then
16899 return Empty;
16900 elsif Has_Discriminants (Typ) then
16901 return Typ;
16902 else
16903 return Type_With_Explicit_Discrims (Etype (Typ));
16904 end if;
16906 end Type_With_Explicit_Discrims;
16908 -- Start of processing for Expand_To_Stored_Constraint
16910 begin
16911 if No (Constraint) or else Is_Empty_Elmt_List (Constraint) then
16912 return No_Elist;
16913 end if;
16915 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
16917 if No (Explicitly_Discriminated_Type) then
16918 return No_Elist;
16919 end if;
16921 Expansion := New_Elmt_List;
16923 Discriminant :=
16924 First_Stored_Discriminant (Explicitly_Discriminated_Type);
16925 while Present (Discriminant) loop
16926 Append_Elmt
16927 (Get_Discriminant_Value
16928 (Discriminant, Explicitly_Discriminated_Type, Constraint),
16929 To => Expansion);
16930 Next_Stored_Discriminant (Discriminant);
16931 end loop;
16933 return Expansion;
16934 end Expand_To_Stored_Constraint;
16936 ---------------------------
16937 -- Find_Hidden_Interface --
16938 ---------------------------
16940 function Find_Hidden_Interface
16941 (Src : Elist_Id;
16942 Dest : Elist_Id) return Entity_Id
16944 Iface : Entity_Id;
16945 Iface_Elmt : Elmt_Id;
16947 begin
16948 if Present (Src) and then Present (Dest) then
16949 Iface_Elmt := First_Elmt (Src);
16950 while Present (Iface_Elmt) loop
16951 Iface := Node (Iface_Elmt);
16953 if Is_Interface (Iface)
16954 and then not Contain_Interface (Iface, Dest)
16955 then
16956 return Iface;
16957 end if;
16959 Next_Elmt (Iface_Elmt);
16960 end loop;
16961 end if;
16963 return Empty;
16964 end Find_Hidden_Interface;
16966 --------------------
16967 -- Find_Type_Name --
16968 --------------------
16970 function Find_Type_Name (N : Node_Id) return Entity_Id is
16971 Id : constant Entity_Id := Defining_Identifier (N);
16972 New_Id : Entity_Id;
16973 Prev : Entity_Id;
16974 Prev_Par : Node_Id;
16976 procedure Check_Duplicate_Aspects;
16977 -- Check that aspects specified in a completion have not been specified
16978 -- already in the partial view.
16980 procedure Tag_Mismatch;
16981 -- Diagnose a tagged partial view whose full view is untagged. We post
16982 -- the message on the full view, with a reference to the previous
16983 -- partial view. The partial view can be private or incomplete, and
16984 -- these are handled in a different manner, so we determine the position
16985 -- of the error message from the respective slocs of both.
16987 -----------------------------
16988 -- Check_Duplicate_Aspects --
16989 -----------------------------
16991 procedure Check_Duplicate_Aspects is
16992 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id;
16993 -- Return the corresponding aspect of the partial view which matches
16994 -- the aspect id of Asp. Return Empty is no such aspect exists.
16996 -----------------------------
16997 -- Get_Partial_View_Aspect --
16998 -----------------------------
17000 function Get_Partial_View_Aspect (Asp : Node_Id) return Node_Id is
17001 Asp_Id : constant Aspect_Id := Get_Aspect_Id (Asp);
17002 Prev_Asps : constant List_Id := Aspect_Specifications (Prev_Par);
17003 Prev_Asp : Node_Id;
17005 begin
17006 if Present (Prev_Asps) then
17007 Prev_Asp := First (Prev_Asps);
17008 while Present (Prev_Asp) loop
17009 if Get_Aspect_Id (Prev_Asp) = Asp_Id then
17010 return Prev_Asp;
17011 end if;
17013 Next (Prev_Asp);
17014 end loop;
17015 end if;
17017 return Empty;
17018 end Get_Partial_View_Aspect;
17020 -- Local variables
17022 Full_Asps : constant List_Id := Aspect_Specifications (N);
17023 Full_Asp : Node_Id;
17024 Part_Asp : Node_Id;
17026 -- Start of processing for Check_Duplicate_Aspects
17028 begin
17029 if Present (Full_Asps) then
17030 Full_Asp := First (Full_Asps);
17031 while Present (Full_Asp) loop
17032 Part_Asp := Get_Partial_View_Aspect (Full_Asp);
17034 -- An aspect and its class-wide counterpart are two distinct
17035 -- aspects and may apply to both views of an entity.
17037 if Present (Part_Asp)
17038 and then Class_Present (Part_Asp) = Class_Present (Full_Asp)
17039 then
17040 Error_Msg_N
17041 ("aspect already specified in private declaration",
17042 Full_Asp);
17044 Remove (Full_Asp);
17045 return;
17046 end if;
17048 if Has_Discriminants (Prev)
17049 and then not Has_Unknown_Discriminants (Prev)
17050 and then Get_Aspect_Id (Full_Asp) =
17051 Aspect_Implicit_Dereference
17052 then
17053 Error_Msg_N
17054 ("cannot specify aspect if partial view has known "
17055 & "discriminants", Full_Asp);
17056 end if;
17058 Next (Full_Asp);
17059 end loop;
17060 end if;
17061 end Check_Duplicate_Aspects;
17063 ------------------
17064 -- Tag_Mismatch --
17065 ------------------
17067 procedure Tag_Mismatch is
17068 begin
17069 if Sloc (Prev) < Sloc (Id) then
17070 if Ada_Version >= Ada_2012
17071 and then Nkind (N) = N_Private_Type_Declaration
17072 then
17073 Error_Msg_NE
17074 ("declaration of private } must be a tagged type ", Id, Prev);
17075 else
17076 Error_Msg_NE
17077 ("full declaration of } must be a tagged type ", Id, Prev);
17078 end if;
17080 else
17081 if Ada_Version >= Ada_2012
17082 and then Nkind (N) = N_Private_Type_Declaration
17083 then
17084 Error_Msg_NE
17085 ("declaration of private } must be a tagged type ", Prev, Id);
17086 else
17087 Error_Msg_NE
17088 ("full declaration of } must be a tagged type ", Prev, Id);
17089 end if;
17090 end if;
17091 end Tag_Mismatch;
17093 -- Start of processing for Find_Type_Name
17095 begin
17096 -- Find incomplete declaration, if one was given
17098 Prev := Current_Entity_In_Scope (Id);
17100 -- New type declaration
17102 if No (Prev) then
17103 Enter_Name (Id);
17104 return Id;
17106 -- Previous declaration exists
17108 else
17109 Prev_Par := Parent (Prev);
17111 -- Error if not incomplete/private case except if previous
17112 -- declaration is implicit, etc. Enter_Name will emit error if
17113 -- appropriate.
17115 if not Is_Incomplete_Or_Private_Type (Prev) then
17116 Enter_Name (Id);
17117 New_Id := Id;
17119 -- Check invalid completion of private or incomplete type
17121 elsif not Nkind_In (N, N_Full_Type_Declaration,
17122 N_Task_Type_Declaration,
17123 N_Protected_Type_Declaration)
17124 and then
17125 (Ada_Version < Ada_2012
17126 or else not Is_Incomplete_Type (Prev)
17127 or else not Nkind_In (N, N_Private_Type_Declaration,
17128 N_Private_Extension_Declaration))
17129 then
17130 -- Completion must be a full type declarations (RM 7.3(4))
17132 Error_Msg_Sloc := Sloc (Prev);
17133 Error_Msg_NE ("invalid completion of }", Id, Prev);
17135 -- Set scope of Id to avoid cascaded errors. Entity is never
17136 -- examined again, except when saving globals in generics.
17138 Set_Scope (Id, Current_Scope);
17139 New_Id := Id;
17141 -- If this is a repeated incomplete declaration, no further
17142 -- checks are possible.
17144 if Nkind (N) = N_Incomplete_Type_Declaration then
17145 return Prev;
17146 end if;
17148 -- Case of full declaration of incomplete type
17150 elsif Ekind (Prev) = E_Incomplete_Type
17151 and then (Ada_Version < Ada_2012
17152 or else No (Full_View (Prev))
17153 or else not Is_Private_Type (Full_View (Prev)))
17154 then
17155 -- Indicate that the incomplete declaration has a matching full
17156 -- declaration. The defining occurrence of the incomplete
17157 -- declaration remains the visible one, and the procedure
17158 -- Get_Full_View dereferences it whenever the type is used.
17160 if Present (Full_View (Prev)) then
17161 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17162 end if;
17164 Set_Full_View (Prev, Id);
17165 Append_Entity (Id, Current_Scope);
17166 Set_Is_Public (Id, Is_Public (Prev));
17167 Set_Is_Internal (Id);
17168 New_Id := Prev;
17170 -- If the incomplete view is tagged, a class_wide type has been
17171 -- created already. Use it for the private type as well, in order
17172 -- to prevent multiple incompatible class-wide types that may be
17173 -- created for self-referential anonymous access components.
17175 if Is_Tagged_Type (Prev)
17176 and then Present (Class_Wide_Type (Prev))
17177 then
17178 Set_Ekind (Id, Ekind (Prev)); -- will be reset later
17179 Set_Class_Wide_Type (Id, Class_Wide_Type (Prev));
17181 -- Type of the class-wide type is the current Id. Previously
17182 -- this was not done for private declarations because of order-
17183 -- of-elaboration issues in the back end, but gigi now handles
17184 -- this properly.
17186 Set_Etype (Class_Wide_Type (Id), Id);
17187 end if;
17189 -- Case of full declaration of private type
17191 else
17192 -- If the private type was a completion of an incomplete type then
17193 -- update Prev to reference the private type
17195 if Ada_Version >= Ada_2012
17196 and then Ekind (Prev) = E_Incomplete_Type
17197 and then Present (Full_View (Prev))
17198 and then Is_Private_Type (Full_View (Prev))
17199 then
17200 Prev := Full_View (Prev);
17201 Prev_Par := Parent (Prev);
17202 end if;
17204 if Nkind (N) = N_Full_Type_Declaration
17205 and then Nkind_In
17206 (Type_Definition (N), N_Record_Definition,
17207 N_Derived_Type_Definition)
17208 and then Interface_Present (Type_Definition (N))
17209 then
17210 Error_Msg_N
17211 ("completion of private type cannot be an interface", N);
17212 end if;
17214 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
17215 if Etype (Prev) /= Prev then
17217 -- Prev is a private subtype or a derived type, and needs
17218 -- no completion.
17220 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
17221 New_Id := Id;
17223 elsif Ekind (Prev) = E_Private_Type
17224 and then Nkind_In (N, N_Task_Type_Declaration,
17225 N_Protected_Type_Declaration)
17226 then
17227 Error_Msg_N
17228 ("completion of nonlimited type cannot be limited", N);
17230 elsif Ekind (Prev) = E_Record_Type_With_Private
17231 and then Nkind_In (N, N_Task_Type_Declaration,
17232 N_Protected_Type_Declaration)
17233 then
17234 if not Is_Limited_Record (Prev) then
17235 Error_Msg_N
17236 ("completion of nonlimited type cannot be limited", N);
17238 elsif No (Interface_List (N)) then
17239 Error_Msg_N
17240 ("completion of tagged private type must be tagged",
17242 end if;
17243 end if;
17245 -- Ada 2005 (AI-251): Private extension declaration of a task
17246 -- type or a protected type. This case arises when covering
17247 -- interface types.
17249 elsif Nkind_In (N, N_Task_Type_Declaration,
17250 N_Protected_Type_Declaration)
17251 then
17252 null;
17254 elsif Nkind (N) /= N_Full_Type_Declaration
17255 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
17256 then
17257 Error_Msg_N
17258 ("full view of private extension must be an extension", N);
17260 elsif not (Abstract_Present (Parent (Prev)))
17261 and then Abstract_Present (Type_Definition (N))
17262 then
17263 Error_Msg_N
17264 ("full view of non-abstract extension cannot be abstract", N);
17265 end if;
17267 if not In_Private_Part (Current_Scope) then
17268 Error_Msg_N
17269 ("declaration of full view must appear in private part", N);
17270 end if;
17272 if Ada_Version >= Ada_2012 then
17273 Check_Duplicate_Aspects;
17274 end if;
17276 Copy_And_Swap (Prev, Id);
17277 Set_Has_Private_Declaration (Prev);
17278 Set_Has_Private_Declaration (Id);
17280 -- AI12-0133: Indicate whether we have a partial view with
17281 -- unknown discriminants, in which case initialization of objects
17282 -- of the type do not receive an invariant check.
17284 Set_Partial_View_Has_Unknown_Discr
17285 (Prev, Has_Unknown_Discriminants (Id));
17287 -- Preserve aspect and iterator flags that may have been set on
17288 -- the partial view.
17290 Set_Has_Delayed_Aspects (Prev, Has_Delayed_Aspects (Id));
17291 Set_Has_Implicit_Dereference (Prev, Has_Implicit_Dereference (Id));
17293 -- If no error, propagate freeze_node from private to full view.
17294 -- It may have been generated for an early operational item.
17296 if Present (Freeze_Node (Id))
17297 and then Serious_Errors_Detected = 0
17298 and then No (Full_View (Id))
17299 then
17300 Set_Freeze_Node (Prev, Freeze_Node (Id));
17301 Set_Freeze_Node (Id, Empty);
17302 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
17303 end if;
17305 Set_Full_View (Id, Prev);
17306 New_Id := Prev;
17307 end if;
17309 -- Verify that full declaration conforms to partial one
17311 if Is_Incomplete_Or_Private_Type (Prev)
17312 and then Present (Discriminant_Specifications (Prev_Par))
17313 then
17314 if Present (Discriminant_Specifications (N)) then
17315 if Ekind (Prev) = E_Incomplete_Type then
17316 Check_Discriminant_Conformance (N, Prev, Prev);
17317 else
17318 Check_Discriminant_Conformance (N, Prev, Id);
17319 end if;
17321 else
17322 Error_Msg_N
17323 ("missing discriminants in full type declaration", N);
17325 -- To avoid cascaded errors on subsequent use, share the
17326 -- discriminants of the partial view.
17328 Set_Discriminant_Specifications (N,
17329 Discriminant_Specifications (Prev_Par));
17330 end if;
17331 end if;
17333 -- A prior untagged partial view can have an associated class-wide
17334 -- type due to use of the class attribute, and in this case the full
17335 -- type must also be tagged. This Ada 95 usage is deprecated in favor
17336 -- of incomplete tagged declarations, but we check for it.
17338 if Is_Type (Prev)
17339 and then (Is_Tagged_Type (Prev)
17340 or else Present (Class_Wide_Type (Prev)))
17341 then
17342 -- Ada 2012 (AI05-0162): A private type may be the completion of
17343 -- an incomplete type.
17345 if Ada_Version >= Ada_2012
17346 and then Is_Incomplete_Type (Prev)
17347 and then Nkind_In (N, N_Private_Type_Declaration,
17348 N_Private_Extension_Declaration)
17349 then
17350 -- No need to check private extensions since they are tagged
17352 if Nkind (N) = N_Private_Type_Declaration
17353 and then not Tagged_Present (N)
17354 then
17355 Tag_Mismatch;
17356 end if;
17358 -- The full declaration is either a tagged type (including
17359 -- a synchronized type that implements interfaces) or a
17360 -- type extension, otherwise this is an error.
17362 elsif Nkind_In (N, N_Task_Type_Declaration,
17363 N_Protected_Type_Declaration)
17364 then
17365 if No (Interface_List (N)) and then not Error_Posted (N) then
17366 Tag_Mismatch;
17367 end if;
17369 elsif Nkind (Type_Definition (N)) = N_Record_Definition then
17371 -- Indicate that the previous declaration (tagged incomplete
17372 -- or private declaration) requires the same on the full one.
17374 if not Tagged_Present (Type_Definition (N)) then
17375 Tag_Mismatch;
17376 Set_Is_Tagged_Type (Id);
17377 end if;
17379 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
17380 if No (Record_Extension_Part (Type_Definition (N))) then
17381 Error_Msg_NE
17382 ("full declaration of } must be a record extension",
17383 Prev, Id);
17385 -- Set some attributes to produce a usable full view
17387 Set_Is_Tagged_Type (Id);
17388 end if;
17390 else
17391 Tag_Mismatch;
17392 end if;
17393 end if;
17395 if Present (Prev)
17396 and then Nkind (Parent (Prev)) = N_Incomplete_Type_Declaration
17397 and then Present (Premature_Use (Parent (Prev)))
17398 then
17399 Error_Msg_Sloc := Sloc (N);
17400 Error_Msg_N
17401 ("\full declaration #", Premature_Use (Parent (Prev)));
17402 end if;
17404 return New_Id;
17405 end if;
17406 end Find_Type_Name;
17408 -------------------------
17409 -- Find_Type_Of_Object --
17410 -------------------------
17412 function Find_Type_Of_Object
17413 (Obj_Def : Node_Id;
17414 Related_Nod : Node_Id) return Entity_Id
17416 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
17417 P : Node_Id := Parent (Obj_Def);
17418 T : Entity_Id;
17419 Nam : Name_Id;
17421 begin
17422 -- If the parent is a component_definition node we climb to the
17423 -- component_declaration node
17425 if Nkind (P) = N_Component_Definition then
17426 P := Parent (P);
17427 end if;
17429 -- Case of an anonymous array subtype
17431 if Nkind_In (Def_Kind, N_Constrained_Array_Definition,
17432 N_Unconstrained_Array_Definition)
17433 then
17434 T := Empty;
17435 Array_Type_Declaration (T, Obj_Def);
17437 -- Create an explicit subtype whenever possible
17439 elsif Nkind (P) /= N_Component_Declaration
17440 and then Def_Kind = N_Subtype_Indication
17441 then
17442 -- Base name of subtype on object name, which will be unique in
17443 -- the current scope.
17445 -- If this is a duplicate declaration, return base type, to avoid
17446 -- generating duplicate anonymous types.
17448 if Error_Posted (P) then
17449 Analyze (Subtype_Mark (Obj_Def));
17450 return Entity (Subtype_Mark (Obj_Def));
17451 end if;
17453 Nam :=
17454 New_External_Name
17455 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
17457 T := Make_Defining_Identifier (Sloc (P), Nam);
17459 Insert_Action (Obj_Def,
17460 Make_Subtype_Declaration (Sloc (P),
17461 Defining_Identifier => T,
17462 Subtype_Indication => Relocate_Node (Obj_Def)));
17464 -- This subtype may need freezing, and this will not be done
17465 -- automatically if the object declaration is not in declarative
17466 -- part. Since this is an object declaration, the type cannot always
17467 -- be frozen here. Deferred constants do not freeze their type
17468 -- (which often enough will be private).
17470 if Nkind (P) = N_Object_Declaration
17471 and then Constant_Present (P)
17472 and then No (Expression (P))
17473 then
17474 null;
17476 -- Here we freeze the base type of object type to catch premature use
17477 -- of discriminated private type without a full view.
17479 else
17480 Insert_Actions (Obj_Def, Freeze_Entity (Base_Type (T), P));
17481 end if;
17483 -- Ada 2005 AI-406: the object definition in an object declaration
17484 -- can be an access definition.
17486 elsif Def_Kind = N_Access_Definition then
17487 T := Access_Definition (Related_Nod, Obj_Def);
17489 Set_Is_Local_Anonymous_Access
17491 V => (Ada_Version < Ada_2012)
17492 or else (Nkind (P) /= N_Object_Declaration)
17493 or else Is_Library_Level_Entity (Defining_Identifier (P)));
17495 -- Otherwise, the object definition is just a subtype_mark
17497 else
17498 T := Process_Subtype (Obj_Def, Related_Nod);
17500 -- If expansion is disabled an object definition that is an aggregate
17501 -- will not get expanded and may lead to scoping problems in the back
17502 -- end, if the object is referenced in an inner scope. In that case
17503 -- create an itype reference for the object definition now. This
17504 -- may be redundant in some cases, but harmless.
17506 if Is_Itype (T)
17507 and then Nkind (Related_Nod) = N_Object_Declaration
17508 and then ASIS_Mode
17509 then
17510 Build_Itype_Reference (T, Related_Nod);
17511 end if;
17512 end if;
17514 return T;
17515 end Find_Type_Of_Object;
17517 --------------------------------
17518 -- Find_Type_Of_Subtype_Indic --
17519 --------------------------------
17521 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
17522 Typ : Entity_Id;
17524 begin
17525 -- Case of subtype mark with a constraint
17527 if Nkind (S) = N_Subtype_Indication then
17528 Find_Type (Subtype_Mark (S));
17529 Typ := Entity (Subtype_Mark (S));
17531 if not
17532 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
17533 then
17534 Error_Msg_N
17535 ("incorrect constraint for this kind of type", Constraint (S));
17536 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
17537 end if;
17539 -- Otherwise we have a subtype mark without a constraint
17541 elsif Error_Posted (S) then
17542 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
17543 return Any_Type;
17545 else
17546 Find_Type (S);
17547 Typ := Entity (S);
17548 end if;
17550 -- Check No_Wide_Characters restriction
17552 Check_Wide_Character_Restriction (Typ, S);
17554 return Typ;
17555 end Find_Type_Of_Subtype_Indic;
17557 -------------------------------------
17558 -- Floating_Point_Type_Declaration --
17559 -------------------------------------
17561 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
17562 Digs : constant Node_Id := Digits_Expression (Def);
17563 Max_Digs_Val : constant Uint := Digits_Value (Standard_Long_Long_Float);
17564 Digs_Val : Uint;
17565 Base_Typ : Entity_Id;
17566 Implicit_Base : Entity_Id;
17567 Bound : Node_Id;
17569 function Can_Derive_From (E : Entity_Id) return Boolean;
17570 -- Find if given digits value, and possibly a specified range, allows
17571 -- derivation from specified type
17573 function Find_Base_Type return Entity_Id;
17574 -- Find a predefined base type that Def can derive from, or generate
17575 -- an error and substitute Long_Long_Float if none exists.
17577 ---------------------
17578 -- Can_Derive_From --
17579 ---------------------
17581 function Can_Derive_From (E : Entity_Id) return Boolean is
17582 Spec : constant Entity_Id := Real_Range_Specification (Def);
17584 begin
17585 -- Check specified "digits" constraint
17587 if Digs_Val > Digits_Value (E) then
17588 return False;
17589 end if;
17591 -- Check for matching range, if specified
17593 if Present (Spec) then
17594 if Expr_Value_R (Type_Low_Bound (E)) >
17595 Expr_Value_R (Low_Bound (Spec))
17596 then
17597 return False;
17598 end if;
17600 if Expr_Value_R (Type_High_Bound (E)) <
17601 Expr_Value_R (High_Bound (Spec))
17602 then
17603 return False;
17604 end if;
17605 end if;
17607 return True;
17608 end Can_Derive_From;
17610 --------------------
17611 -- Find_Base_Type --
17612 --------------------
17614 function Find_Base_Type return Entity_Id is
17615 Choice : Elmt_Id := First_Elmt (Predefined_Float_Types);
17617 begin
17618 -- Iterate over the predefined types in order, returning the first
17619 -- one that Def can derive from.
17621 while Present (Choice) loop
17622 if Can_Derive_From (Node (Choice)) then
17623 return Node (Choice);
17624 end if;
17626 Next_Elmt (Choice);
17627 end loop;
17629 -- If we can't derive from any existing type, use Long_Long_Float
17630 -- and give appropriate message explaining the problem.
17632 if Digs_Val > Max_Digs_Val then
17633 -- It might be the case that there is a type with the requested
17634 -- range, just not the combination of digits and range.
17636 Error_Msg_N
17637 ("no predefined type has requested range and precision",
17638 Real_Range_Specification (Def));
17640 else
17641 Error_Msg_N
17642 ("range too large for any predefined type",
17643 Real_Range_Specification (Def));
17644 end if;
17646 return Standard_Long_Long_Float;
17647 end Find_Base_Type;
17649 -- Start of processing for Floating_Point_Type_Declaration
17651 begin
17652 Check_Restriction (No_Floating_Point, Def);
17654 -- Create an implicit base type
17656 Implicit_Base :=
17657 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
17659 -- Analyze and verify digits value
17661 Analyze_And_Resolve (Digs, Any_Integer);
17662 Check_Digits_Expression (Digs);
17663 Digs_Val := Expr_Value (Digs);
17665 -- Process possible range spec and find correct type to derive from
17667 Process_Real_Range_Specification (Def);
17669 -- Check that requested number of digits is not too high.
17671 if Digs_Val > Max_Digs_Val then
17673 -- The check for Max_Base_Digits may be somewhat expensive, as it
17674 -- requires reading System, so only do it when necessary.
17676 declare
17677 Max_Base_Digits : constant Uint :=
17678 Expr_Value
17679 (Expression
17680 (Parent (RTE (RE_Max_Base_Digits))));
17682 begin
17683 if Digs_Val > Max_Base_Digits then
17684 Error_Msg_Uint_1 := Max_Base_Digits;
17685 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
17687 elsif No (Real_Range_Specification (Def)) then
17688 Error_Msg_Uint_1 := Max_Digs_Val;
17689 Error_Msg_N ("types with more than ^ digits need range spec "
17690 & "(RM 3.5.7(6))", Digs);
17691 end if;
17692 end;
17693 end if;
17695 -- Find a suitable type to derive from or complain and use a substitute
17697 Base_Typ := Find_Base_Type;
17699 -- If there are bounds given in the declaration use them as the bounds
17700 -- of the type, otherwise use the bounds of the predefined base type
17701 -- that was chosen based on the Digits value.
17703 if Present (Real_Range_Specification (Def)) then
17704 Set_Scalar_Range (T, Real_Range_Specification (Def));
17705 Set_Is_Constrained (T);
17707 -- The bounds of this range must be converted to machine numbers
17708 -- in accordance with RM 4.9(38).
17710 Bound := Type_Low_Bound (T);
17712 if Nkind (Bound) = N_Real_Literal then
17713 Set_Realval
17714 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17715 Set_Is_Machine_Number (Bound);
17716 end if;
17718 Bound := Type_High_Bound (T);
17720 if Nkind (Bound) = N_Real_Literal then
17721 Set_Realval
17722 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
17723 Set_Is_Machine_Number (Bound);
17724 end if;
17726 else
17727 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
17728 end if;
17730 -- Complete definition of implicit base and declared first subtype. The
17731 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17732 -- are not clobbered when the floating point type acts as a full view of
17733 -- a private type.
17735 Set_Etype (Implicit_Base, Base_Typ);
17736 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
17737 Set_Size_Info (Implicit_Base, Base_Typ);
17738 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
17739 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
17740 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
17741 Set_Float_Rep (Implicit_Base, Float_Rep (Base_Typ));
17743 Set_Ekind (T, E_Floating_Point_Subtype);
17744 Set_Etype (T, Implicit_Base);
17745 Set_Size_Info (T, Implicit_Base);
17746 Set_RM_Size (T, RM_Size (Implicit_Base));
17747 Inherit_Rep_Item_Chain (T, Implicit_Base);
17748 Set_Digits_Value (T, Digs_Val);
17749 end Floating_Point_Type_Declaration;
17751 ----------------------------
17752 -- Get_Discriminant_Value --
17753 ----------------------------
17755 -- This is the situation:
17757 -- There is a non-derived type
17759 -- type T0 (Dx, Dy, Dz...)
17761 -- There are zero or more levels of derivation, with each derivation
17762 -- either purely inheriting the discriminants, or defining its own.
17764 -- type Ti is new Ti-1
17765 -- or
17766 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17767 -- or
17768 -- subtype Ti is ...
17770 -- The subtype issue is avoided by the use of Original_Record_Component,
17771 -- and the fact that derived subtypes also derive the constraints.
17773 -- This chain leads back from
17775 -- Typ_For_Constraint
17777 -- Typ_For_Constraint has discriminants, and the value for each
17778 -- discriminant is given by its corresponding Elmt of Constraints.
17780 -- Discriminant is some discriminant in this hierarchy
17782 -- We need to return its value
17784 -- We do this by recursively searching each level, and looking for
17785 -- Discriminant. Once we get to the bottom, we start backing up
17786 -- returning the value for it which may in turn be a discriminant
17787 -- further up, so on the backup we continue the substitution.
17789 function Get_Discriminant_Value
17790 (Discriminant : Entity_Id;
17791 Typ_For_Constraint : Entity_Id;
17792 Constraint : Elist_Id) return Node_Id
17794 function Root_Corresponding_Discriminant
17795 (Discr : Entity_Id) return Entity_Id;
17796 -- Given a discriminant, traverse the chain of inherited discriminants
17797 -- and return the topmost discriminant.
17799 function Search_Derivation_Levels
17800 (Ti : Entity_Id;
17801 Discrim_Values : Elist_Id;
17802 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
17803 -- This is the routine that performs the recursive search of levels
17804 -- as described above.
17806 -------------------------------------
17807 -- Root_Corresponding_Discriminant --
17808 -------------------------------------
17810 function Root_Corresponding_Discriminant
17811 (Discr : Entity_Id) return Entity_Id
17813 D : Entity_Id;
17815 begin
17816 D := Discr;
17817 while Present (Corresponding_Discriminant (D)) loop
17818 D := Corresponding_Discriminant (D);
17819 end loop;
17821 return D;
17822 end Root_Corresponding_Discriminant;
17824 ------------------------------
17825 -- Search_Derivation_Levels --
17826 ------------------------------
17828 function Search_Derivation_Levels
17829 (Ti : Entity_Id;
17830 Discrim_Values : Elist_Id;
17831 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
17833 Assoc : Elmt_Id;
17834 Disc : Entity_Id;
17835 Result : Node_Or_Entity_Id;
17836 Result_Entity : Node_Id;
17838 begin
17839 -- If inappropriate type, return Error, this happens only in
17840 -- cascaded error situations, and we want to avoid a blow up.
17842 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
17843 return Error;
17844 end if;
17846 -- Look deeper if possible. Use Stored_Constraints only for
17847 -- untagged types. For tagged types use the given constraint.
17848 -- This asymmetry needs explanation???
17850 if not Stored_Discrim_Values
17851 and then Present (Stored_Constraint (Ti))
17852 and then not Is_Tagged_Type (Ti)
17853 then
17854 Result :=
17855 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
17856 else
17857 declare
17858 Td : constant Entity_Id := Etype (Ti);
17860 begin
17861 if Td = Ti then
17862 Result := Discriminant;
17864 else
17865 if Present (Stored_Constraint (Ti)) then
17866 Result :=
17867 Search_Derivation_Levels
17868 (Td, Stored_Constraint (Ti), True);
17869 else
17870 Result :=
17871 Search_Derivation_Levels
17872 (Td, Discrim_Values, Stored_Discrim_Values);
17873 end if;
17874 end if;
17875 end;
17876 end if;
17878 -- Extra underlying places to search, if not found above. For
17879 -- concurrent types, the relevant discriminant appears in the
17880 -- corresponding record. For a type derived from a private type
17881 -- without discriminant, the full view inherits the discriminants
17882 -- of the full view of the parent.
17884 if Result = Discriminant then
17885 if Is_Concurrent_Type (Ti)
17886 and then Present (Corresponding_Record_Type (Ti))
17887 then
17888 Result :=
17889 Search_Derivation_Levels (
17890 Corresponding_Record_Type (Ti),
17891 Discrim_Values,
17892 Stored_Discrim_Values);
17894 elsif Is_Private_Type (Ti)
17895 and then not Has_Discriminants (Ti)
17896 and then Present (Full_View (Ti))
17897 and then Etype (Full_View (Ti)) /= Ti
17898 then
17899 Result :=
17900 Search_Derivation_Levels (
17901 Full_View (Ti),
17902 Discrim_Values,
17903 Stored_Discrim_Values);
17904 end if;
17905 end if;
17907 -- If Result is not a (reference to a) discriminant, return it,
17908 -- otherwise set Result_Entity to the discriminant.
17910 if Nkind (Result) = N_Defining_Identifier then
17911 pragma Assert (Result = Discriminant);
17912 Result_Entity := Result;
17914 else
17915 if not Denotes_Discriminant (Result) then
17916 return Result;
17917 end if;
17919 Result_Entity := Entity (Result);
17920 end if;
17922 -- See if this level of derivation actually has discriminants because
17923 -- tagged derivations can add them, hence the lower levels need not
17924 -- have any.
17926 if not Has_Discriminants (Ti) then
17927 return Result;
17928 end if;
17930 -- Scan Ti's discriminants for Result_Entity, and return its
17931 -- corresponding value, if any.
17933 Result_Entity := Original_Record_Component (Result_Entity);
17935 Assoc := First_Elmt (Discrim_Values);
17937 if Stored_Discrim_Values then
17938 Disc := First_Stored_Discriminant (Ti);
17939 else
17940 Disc := First_Discriminant (Ti);
17941 end if;
17943 while Present (Disc) loop
17945 -- If no further associations return the discriminant, value will
17946 -- be found on the second pass.
17948 if No (Assoc) then
17949 return Result;
17950 end if;
17952 if Original_Record_Component (Disc) = Result_Entity then
17953 return Node (Assoc);
17954 end if;
17956 Next_Elmt (Assoc);
17958 if Stored_Discrim_Values then
17959 Next_Stored_Discriminant (Disc);
17960 else
17961 Next_Discriminant (Disc);
17962 end if;
17963 end loop;
17965 -- Could not find it
17967 return Result;
17968 end Search_Derivation_Levels;
17970 -- Local Variables
17972 Result : Node_Or_Entity_Id;
17974 -- Start of processing for Get_Discriminant_Value
17976 begin
17977 -- ??? This routine is a gigantic mess and will be deleted. For the
17978 -- time being just test for the trivial case before calling recurse.
17980 -- We are now celebrating the 20th anniversary of this comment!
17982 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
17983 declare
17984 D : Entity_Id;
17985 E : Elmt_Id;
17987 begin
17988 D := First_Discriminant (Typ_For_Constraint);
17989 E := First_Elmt (Constraint);
17990 while Present (D) loop
17991 if Chars (D) = Chars (Discriminant) then
17992 return Node (E);
17993 end if;
17995 Next_Discriminant (D);
17996 Next_Elmt (E);
17997 end loop;
17998 end;
17999 end if;
18001 Result := Search_Derivation_Levels
18002 (Typ_For_Constraint, Constraint, False);
18004 -- ??? hack to disappear when this routine is gone
18006 if Nkind (Result) = N_Defining_Identifier then
18007 declare
18008 D : Entity_Id;
18009 E : Elmt_Id;
18011 begin
18012 D := First_Discriminant (Typ_For_Constraint);
18013 E := First_Elmt (Constraint);
18014 while Present (D) loop
18015 if Root_Corresponding_Discriminant (D) = Discriminant then
18016 return Node (E);
18017 end if;
18019 Next_Discriminant (D);
18020 Next_Elmt (E);
18021 end loop;
18022 end;
18023 end if;
18025 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
18026 return Result;
18027 end Get_Discriminant_Value;
18029 --------------------------
18030 -- Has_Range_Constraint --
18031 --------------------------
18033 function Has_Range_Constraint (N : Node_Id) return Boolean is
18034 C : constant Node_Id := Constraint (N);
18036 begin
18037 if Nkind (C) = N_Range_Constraint then
18038 return True;
18040 elsif Nkind (C) = N_Digits_Constraint then
18041 return
18042 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
18043 or else Present (Range_Constraint (C));
18045 elsif Nkind (C) = N_Delta_Constraint then
18046 return Present (Range_Constraint (C));
18048 else
18049 return False;
18050 end if;
18051 end Has_Range_Constraint;
18053 ------------------------
18054 -- Inherit_Components --
18055 ------------------------
18057 function Inherit_Components
18058 (N : Node_Id;
18059 Parent_Base : Entity_Id;
18060 Derived_Base : Entity_Id;
18061 Is_Tagged : Boolean;
18062 Inherit_Discr : Boolean;
18063 Discs : Elist_Id) return Elist_Id
18065 Assoc_List : constant Elist_Id := New_Elmt_List;
18067 procedure Inherit_Component
18068 (Old_C : Entity_Id;
18069 Plain_Discrim : Boolean := False;
18070 Stored_Discrim : Boolean := False);
18071 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
18072 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
18073 -- True, Old_C is a stored discriminant. If they are both false then
18074 -- Old_C is a regular component.
18076 -----------------------
18077 -- Inherit_Component --
18078 -----------------------
18080 procedure Inherit_Component
18081 (Old_C : Entity_Id;
18082 Plain_Discrim : Boolean := False;
18083 Stored_Discrim : Boolean := False)
18085 procedure Set_Anonymous_Type (Id : Entity_Id);
18086 -- Id denotes the entity of an access discriminant or anonymous
18087 -- access component. Set the type of Id to either the same type of
18088 -- Old_C or create a new one depending on whether the parent and
18089 -- the child types are in the same scope.
18091 ------------------------
18092 -- Set_Anonymous_Type --
18093 ------------------------
18095 procedure Set_Anonymous_Type (Id : Entity_Id) is
18096 Old_Typ : constant Entity_Id := Etype (Old_C);
18098 begin
18099 if Scope (Parent_Base) = Scope (Derived_Base) then
18100 Set_Etype (Id, Old_Typ);
18102 -- The parent and the derived type are in two different scopes.
18103 -- Reuse the type of the original discriminant / component by
18104 -- copying it in order to preserve all attributes.
18106 else
18107 declare
18108 Typ : constant Entity_Id := New_Copy (Old_Typ);
18110 begin
18111 Set_Etype (Id, Typ);
18113 -- Since we do not generate component declarations for
18114 -- inherited components, associate the itype with the
18115 -- derived type.
18117 Set_Associated_Node_For_Itype (Typ, Parent (Derived_Base));
18118 Set_Scope (Typ, Derived_Base);
18119 end;
18120 end if;
18121 end Set_Anonymous_Type;
18123 -- Local variables and constants
18125 New_C : constant Entity_Id := New_Copy (Old_C);
18127 Corr_Discrim : Entity_Id;
18128 Discrim : Entity_Id;
18130 -- Start of processing for Inherit_Component
18132 begin
18133 pragma Assert (not Is_Tagged or not Stored_Discrim);
18135 Set_Parent (New_C, Parent (Old_C));
18137 -- Regular discriminants and components must be inserted in the scope
18138 -- of the Derived_Base. Do it here.
18140 if not Stored_Discrim then
18141 Enter_Name (New_C);
18142 end if;
18144 -- For tagged types the Original_Record_Component must point to
18145 -- whatever this field was pointing to in the parent type. This has
18146 -- already been achieved by the call to New_Copy above.
18148 if not Is_Tagged then
18149 Set_Original_Record_Component (New_C, New_C);
18150 Set_Corresponding_Record_Component (New_C, Old_C);
18151 end if;
18153 -- Set the proper type of an access discriminant
18155 if Ekind (New_C) = E_Discriminant
18156 and then Ekind (Etype (New_C)) = E_Anonymous_Access_Type
18157 then
18158 Set_Anonymous_Type (New_C);
18159 end if;
18161 -- If we have inherited a component then see if its Etype contains
18162 -- references to Parent_Base discriminants. In this case, replace
18163 -- these references with the constraints given in Discs. We do not
18164 -- do this for the partial view of private types because this is
18165 -- not needed (only the components of the full view will be used
18166 -- for code generation) and cause problem. We also avoid this
18167 -- transformation in some error situations.
18169 if Ekind (New_C) = E_Component then
18171 -- Set the proper type of an anonymous access component
18173 if Ekind (Etype (New_C)) = E_Anonymous_Access_Type then
18174 Set_Anonymous_Type (New_C);
18176 elsif (Is_Private_Type (Derived_Base)
18177 and then not Is_Generic_Type (Derived_Base))
18178 or else (Is_Empty_Elmt_List (Discs)
18179 and then not Expander_Active)
18180 then
18181 Set_Etype (New_C, Etype (Old_C));
18183 else
18184 -- The current component introduces a circularity of the
18185 -- following kind:
18187 -- limited with Pack_2;
18188 -- package Pack_1 is
18189 -- type T_1 is tagged record
18190 -- Comp : access Pack_2.T_2;
18191 -- ...
18192 -- end record;
18193 -- end Pack_1;
18195 -- with Pack_1;
18196 -- package Pack_2 is
18197 -- type T_2 is new Pack_1.T_1 with ...;
18198 -- end Pack_2;
18200 Set_Etype
18201 (New_C,
18202 Constrain_Component_Type
18203 (Old_C, Derived_Base, N, Parent_Base, Discs));
18204 end if;
18205 end if;
18207 -- In derived tagged types it is illegal to reference a non
18208 -- discriminant component in the parent type. To catch this, mark
18209 -- these components with an Ekind of E_Void. This will be reset in
18210 -- Record_Type_Definition after processing the record extension of
18211 -- the derived type.
18213 -- If the declaration is a private extension, there is no further
18214 -- record extension to process, and the components retain their
18215 -- current kind, because they are visible at this point.
18217 if Is_Tagged and then Ekind (New_C) = E_Component
18218 and then Nkind (N) /= N_Private_Extension_Declaration
18219 then
18220 Set_Ekind (New_C, E_Void);
18221 end if;
18223 if Plain_Discrim then
18224 Set_Corresponding_Discriminant (New_C, Old_C);
18225 Build_Discriminal (New_C);
18227 -- If we are explicitly inheriting a stored discriminant it will be
18228 -- completely hidden.
18230 elsif Stored_Discrim then
18231 Set_Corresponding_Discriminant (New_C, Empty);
18232 Set_Discriminal (New_C, Empty);
18233 Set_Is_Completely_Hidden (New_C);
18235 -- Set the Original_Record_Component of each discriminant in the
18236 -- derived base to point to the corresponding stored that we just
18237 -- created.
18239 Discrim := First_Discriminant (Derived_Base);
18240 while Present (Discrim) loop
18241 Corr_Discrim := Corresponding_Discriminant (Discrim);
18243 -- Corr_Discrim could be missing in an error situation
18245 if Present (Corr_Discrim)
18246 and then Original_Record_Component (Corr_Discrim) = Old_C
18247 then
18248 Set_Original_Record_Component (Discrim, New_C);
18249 Set_Corresponding_Record_Component (Discrim, Empty);
18250 end if;
18252 Next_Discriminant (Discrim);
18253 end loop;
18255 Append_Entity (New_C, Derived_Base);
18256 end if;
18258 if not Is_Tagged then
18259 Append_Elmt (Old_C, Assoc_List);
18260 Append_Elmt (New_C, Assoc_List);
18261 end if;
18262 end Inherit_Component;
18264 -- Variables local to Inherit_Component
18266 Loc : constant Source_Ptr := Sloc (N);
18268 Parent_Discrim : Entity_Id;
18269 Stored_Discrim : Entity_Id;
18270 D : Entity_Id;
18271 Component : Entity_Id;
18273 -- Start of processing for Inherit_Components
18275 begin
18276 if not Is_Tagged then
18277 Append_Elmt (Parent_Base, Assoc_List);
18278 Append_Elmt (Derived_Base, Assoc_List);
18279 end if;
18281 -- Inherit parent discriminants if needed
18283 if Inherit_Discr then
18284 Parent_Discrim := First_Discriminant (Parent_Base);
18285 while Present (Parent_Discrim) loop
18286 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
18287 Next_Discriminant (Parent_Discrim);
18288 end loop;
18289 end if;
18291 -- Create explicit stored discrims for untagged types when necessary
18293 if not Has_Unknown_Discriminants (Derived_Base)
18294 and then Has_Discriminants (Parent_Base)
18295 and then not Is_Tagged
18296 and then
18297 (not Inherit_Discr
18298 or else First_Discriminant (Parent_Base) /=
18299 First_Stored_Discriminant (Parent_Base))
18300 then
18301 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
18302 while Present (Stored_Discrim) loop
18303 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
18304 Next_Stored_Discriminant (Stored_Discrim);
18305 end loop;
18306 end if;
18308 -- See if we can apply the second transformation for derived types, as
18309 -- explained in point 6. in the comments above Build_Derived_Record_Type
18310 -- This is achieved by appending Derived_Base discriminants into Discs,
18311 -- which has the side effect of returning a non empty Discs list to the
18312 -- caller of Inherit_Components, which is what we want. This must be
18313 -- done for private derived types if there are explicit stored
18314 -- discriminants, to ensure that we can retrieve the values of the
18315 -- constraints provided in the ancestors.
18317 if Inherit_Discr
18318 and then Is_Empty_Elmt_List (Discs)
18319 and then Present (First_Discriminant (Derived_Base))
18320 and then
18321 (not Is_Private_Type (Derived_Base)
18322 or else Is_Completely_Hidden
18323 (First_Stored_Discriminant (Derived_Base))
18324 or else Is_Generic_Type (Derived_Base))
18325 then
18326 D := First_Discriminant (Derived_Base);
18327 while Present (D) loop
18328 Append_Elmt (New_Occurrence_Of (D, Loc), Discs);
18329 Next_Discriminant (D);
18330 end loop;
18331 end if;
18333 -- Finally, inherit non-discriminant components unless they are not
18334 -- visible because defined or inherited from the full view of the
18335 -- parent. Don't inherit the _parent field of the parent type.
18337 Component := First_Entity (Parent_Base);
18338 while Present (Component) loop
18340 -- Ada 2005 (AI-251): Do not inherit components associated with
18341 -- secondary tags of the parent.
18343 if Ekind (Component) = E_Component
18344 and then Present (Related_Type (Component))
18345 then
18346 null;
18348 elsif Ekind (Component) /= E_Component
18349 or else Chars (Component) = Name_uParent
18350 then
18351 null;
18353 -- If the derived type is within the parent type's declarative
18354 -- region, then the components can still be inherited even though
18355 -- they aren't visible at this point. This can occur for cases
18356 -- such as within public child units where the components must
18357 -- become visible upon entering the child unit's private part.
18359 elsif not Is_Visible_Component (Component)
18360 and then not In_Open_Scopes (Scope (Parent_Base))
18361 then
18362 null;
18364 elsif Ekind_In (Derived_Base, E_Private_Type,
18365 E_Limited_Private_Type)
18366 then
18367 null;
18369 else
18370 Inherit_Component (Component);
18371 end if;
18373 Next_Entity (Component);
18374 end loop;
18376 -- For tagged derived types, inherited discriminants cannot be used in
18377 -- component declarations of the record extension part. To achieve this
18378 -- we mark the inherited discriminants as not visible.
18380 if Is_Tagged and then Inherit_Discr then
18381 D := First_Discriminant (Derived_Base);
18382 while Present (D) loop
18383 Set_Is_Immediately_Visible (D, False);
18384 Next_Discriminant (D);
18385 end loop;
18386 end if;
18388 return Assoc_List;
18389 end Inherit_Components;
18391 -----------------------------
18392 -- Inherit_Predicate_Flags --
18393 -----------------------------
18395 procedure Inherit_Predicate_Flags (Subt, Par : Entity_Id) is
18396 begin
18397 Set_Has_Predicates (Subt, Has_Predicates (Par));
18398 Set_Has_Static_Predicate_Aspect
18399 (Subt, Has_Static_Predicate_Aspect (Par));
18400 Set_Has_Dynamic_Predicate_Aspect
18401 (Subt, Has_Dynamic_Predicate_Aspect (Par));
18402 end Inherit_Predicate_Flags;
18404 ----------------------
18405 -- Is_EVF_Procedure --
18406 ----------------------
18408 function Is_EVF_Procedure (Subp : Entity_Id) return Boolean is
18409 Formal : Entity_Id;
18411 begin
18412 -- Examine the formals of an Extensions_Visible False procedure looking
18413 -- for a controlling OUT parameter.
18415 if Ekind (Subp) = E_Procedure
18416 and then Extensions_Visible_Status (Subp) = Extensions_Visible_False
18417 then
18418 Formal := First_Formal (Subp);
18419 while Present (Formal) loop
18420 if Ekind (Formal) = E_Out_Parameter
18421 and then Is_Controlling_Formal (Formal)
18422 then
18423 return True;
18424 end if;
18426 Next_Formal (Formal);
18427 end loop;
18428 end if;
18430 return False;
18431 end Is_EVF_Procedure;
18433 -----------------------
18434 -- Is_Null_Extension --
18435 -----------------------
18437 function Is_Null_Extension (T : Entity_Id) return Boolean is
18438 Type_Decl : constant Node_Id := Parent (Base_Type (T));
18439 Comp_List : Node_Id;
18440 Comp : Node_Id;
18442 begin
18443 if Nkind (Type_Decl) /= N_Full_Type_Declaration
18444 or else not Is_Tagged_Type (T)
18445 or else Nkind (Type_Definition (Type_Decl)) /=
18446 N_Derived_Type_Definition
18447 or else No (Record_Extension_Part (Type_Definition (Type_Decl)))
18448 then
18449 return False;
18450 end if;
18452 Comp_List :=
18453 Component_List (Record_Extension_Part (Type_Definition (Type_Decl)));
18455 if Present (Discriminant_Specifications (Type_Decl)) then
18456 return False;
18458 elsif Present (Comp_List)
18459 and then Is_Non_Empty_List (Component_Items (Comp_List))
18460 then
18461 Comp := First (Component_Items (Comp_List));
18463 -- Only user-defined components are relevant. The component list
18464 -- may also contain a parent component and internal components
18465 -- corresponding to secondary tags, but these do not determine
18466 -- whether this is a null extension.
18468 while Present (Comp) loop
18469 if Comes_From_Source (Comp) then
18470 return False;
18471 end if;
18473 Next (Comp);
18474 end loop;
18476 return True;
18478 else
18479 return True;
18480 end if;
18481 end Is_Null_Extension;
18483 ------------------------------
18484 -- Is_Valid_Constraint_Kind --
18485 ------------------------------
18487 function Is_Valid_Constraint_Kind
18488 (T_Kind : Type_Kind;
18489 Constraint_Kind : Node_Kind) return Boolean
18491 begin
18492 case T_Kind is
18493 when Enumeration_Kind
18494 | Integer_Kind
18496 return Constraint_Kind = N_Range_Constraint;
18498 when Decimal_Fixed_Point_Kind =>
18499 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18500 N_Range_Constraint);
18502 when Ordinary_Fixed_Point_Kind =>
18503 return Nkind_In (Constraint_Kind, N_Delta_Constraint,
18504 N_Range_Constraint);
18506 when Float_Kind =>
18507 return Nkind_In (Constraint_Kind, N_Digits_Constraint,
18508 N_Range_Constraint);
18510 when Access_Kind
18511 | Array_Kind
18512 | Class_Wide_Kind
18513 | Concurrent_Kind
18514 | Private_Kind
18515 | E_Incomplete_Type
18516 | E_Record_Subtype
18517 | E_Record_Type
18519 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
18521 when others =>
18522 return True; -- Error will be detected later
18523 end case;
18524 end Is_Valid_Constraint_Kind;
18526 --------------------------
18527 -- Is_Visible_Component --
18528 --------------------------
18530 function Is_Visible_Component
18531 (C : Entity_Id;
18532 N : Node_Id := Empty) return Boolean
18534 Original_Comp : Entity_Id := Empty;
18535 Original_Type : Entity_Id;
18536 Type_Scope : Entity_Id;
18538 function Is_Local_Type (Typ : Entity_Id) return Boolean;
18539 -- Check whether parent type of inherited component is declared locally,
18540 -- possibly within a nested package or instance. The current scope is
18541 -- the derived record itself.
18543 -------------------
18544 -- Is_Local_Type --
18545 -------------------
18547 function Is_Local_Type (Typ : Entity_Id) return Boolean is
18548 Scop : Entity_Id;
18550 begin
18551 Scop := Scope (Typ);
18552 while Present (Scop)
18553 and then Scop /= Standard_Standard
18554 loop
18555 if Scop = Scope (Current_Scope) then
18556 return True;
18557 end if;
18559 Scop := Scope (Scop);
18560 end loop;
18562 return False;
18563 end Is_Local_Type;
18565 -- Start of processing for Is_Visible_Component
18567 begin
18568 if Ekind_In (C, E_Component, E_Discriminant) then
18569 Original_Comp := Original_Record_Component (C);
18570 end if;
18572 if No (Original_Comp) then
18574 -- Premature usage, or previous error
18576 return False;
18578 else
18579 Original_Type := Scope (Original_Comp);
18580 Type_Scope := Scope (Base_Type (Scope (C)));
18581 end if;
18583 -- This test only concerns tagged types
18585 if not Is_Tagged_Type (Original_Type) then
18586 return True;
18588 -- If it is _Parent or _Tag, there is no visibility issue
18590 elsif not Comes_From_Source (Original_Comp) then
18591 return True;
18593 -- Discriminants are visible unless the (private) type has unknown
18594 -- discriminants. If the discriminant reference is inserted for a
18595 -- discriminant check on a full view it is also visible.
18597 elsif Ekind (Original_Comp) = E_Discriminant
18598 and then
18599 (not Has_Unknown_Discriminants (Original_Type)
18600 or else (Present (N)
18601 and then Nkind (N) = N_Selected_Component
18602 and then Nkind (Prefix (N)) = N_Type_Conversion
18603 and then not Comes_From_Source (Prefix (N))))
18604 then
18605 return True;
18607 -- In the body of an instantiation, check the visibility of a component
18608 -- in case it has a homograph that is a primitive operation of a private
18609 -- type which was not visible in the generic unit.
18611 -- Should Is_Prefixed_Call be propagated from template to instance???
18613 elsif In_Instance_Body then
18614 if not Is_Tagged_Type (Original_Type)
18615 or else not Is_Private_Type (Original_Type)
18616 then
18617 return True;
18619 else
18620 declare
18621 Subp_Elmt : Elmt_Id;
18623 begin
18624 Subp_Elmt := First_Elmt (Primitive_Operations (Original_Type));
18625 while Present (Subp_Elmt) loop
18627 -- The component is hidden by a primitive operation
18629 if Chars (Node (Subp_Elmt)) = Chars (C) then
18630 return False;
18631 end if;
18633 Next_Elmt (Subp_Elmt);
18634 end loop;
18636 return True;
18637 end;
18638 end if;
18640 -- If the component has been declared in an ancestor which is currently
18641 -- a private type, then it is not visible. The same applies if the
18642 -- component's containing type is not in an open scope and the original
18643 -- component's enclosing type is a visible full view of a private type
18644 -- (which can occur in cases where an attempt is being made to reference
18645 -- a component in a sibling package that is inherited from a visible
18646 -- component of a type in an ancestor package; the component in the
18647 -- sibling package should not be visible even though the component it
18648 -- inherited from is visible). This does not apply however in the case
18649 -- where the scope of the type is a private child unit, or when the
18650 -- parent comes from a local package in which the ancestor is currently
18651 -- visible. The latter suppression of visibility is needed for cases
18652 -- that are tested in B730006.
18654 elsif Is_Private_Type (Original_Type)
18655 or else
18656 (not Is_Private_Descendant (Type_Scope)
18657 and then not In_Open_Scopes (Type_Scope)
18658 and then Has_Private_Declaration (Original_Type))
18659 then
18660 -- If the type derives from an entity in a formal package, there
18661 -- are no additional visible components.
18663 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
18664 N_Formal_Package_Declaration
18665 then
18666 return False;
18668 -- if we are not in the private part of the current package, there
18669 -- are no additional visible components.
18671 elsif Ekind (Scope (Current_Scope)) = E_Package
18672 and then not In_Private_Part (Scope (Current_Scope))
18673 then
18674 return False;
18675 else
18676 return
18677 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
18678 and then In_Open_Scopes (Scope (Original_Type))
18679 and then Is_Local_Type (Type_Scope);
18680 end if;
18682 -- There is another weird way in which a component may be invisible when
18683 -- the private and the full view are not derived from the same ancestor.
18684 -- Here is an example :
18686 -- type A1 is tagged record F1 : integer; end record;
18687 -- type A2 is new A1 with record F2 : integer; end record;
18688 -- type T is new A1 with private;
18689 -- private
18690 -- type T is new A2 with null record;
18692 -- In this case, the full view of T inherits F1 and F2 but the private
18693 -- view inherits only F1
18695 else
18696 declare
18697 Ancestor : Entity_Id := Scope (C);
18699 begin
18700 loop
18701 if Ancestor = Original_Type then
18702 return True;
18704 -- The ancestor may have a partial view of the original type,
18705 -- but if the full view is in scope, as in a child body, the
18706 -- component is visible.
18708 elsif In_Private_Part (Scope (Original_Type))
18709 and then Full_View (Ancestor) = Original_Type
18710 then
18711 return True;
18713 elsif Ancestor = Etype (Ancestor) then
18715 -- No further ancestors to examine
18717 return False;
18718 end if;
18720 Ancestor := Etype (Ancestor);
18721 end loop;
18722 end;
18723 end if;
18724 end Is_Visible_Component;
18726 --------------------------
18727 -- Make_Class_Wide_Type --
18728 --------------------------
18730 procedure Make_Class_Wide_Type (T : Entity_Id) is
18731 CW_Type : Entity_Id;
18732 CW_Name : Name_Id;
18733 Next_E : Entity_Id;
18735 begin
18736 if Present (Class_Wide_Type (T)) then
18738 -- The class-wide type is a partially decorated entity created for a
18739 -- unanalyzed tagged type referenced through a limited with clause.
18740 -- When the tagged type is analyzed, its class-wide type needs to be
18741 -- redecorated. Note that we reuse the entity created by Decorate_
18742 -- Tagged_Type in order to preserve all links.
18744 if Materialize_Entity (Class_Wide_Type (T)) then
18745 CW_Type := Class_Wide_Type (T);
18746 Set_Materialize_Entity (CW_Type, False);
18748 -- The class wide type can have been defined by the partial view, in
18749 -- which case everything is already done.
18751 else
18752 return;
18753 end if;
18755 -- Default case, we need to create a new class-wide type
18757 else
18758 CW_Type :=
18759 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
18760 end if;
18762 -- Inherit root type characteristics
18764 CW_Name := Chars (CW_Type);
18765 Next_E := Next_Entity (CW_Type);
18766 Copy_Node (T, CW_Type);
18767 Set_Comes_From_Source (CW_Type, False);
18768 Set_Chars (CW_Type, CW_Name);
18769 Set_Parent (CW_Type, Parent (T));
18770 Set_Next_Entity (CW_Type, Next_E);
18772 -- Ensure we have a new freeze node for the class-wide type. The partial
18773 -- view may have freeze action of its own, requiring a proper freeze
18774 -- node, and the same freeze node cannot be shared between the two
18775 -- types.
18777 Set_Has_Delayed_Freeze (CW_Type);
18778 Set_Freeze_Node (CW_Type, Empty);
18780 -- Customize the class-wide type: It has no prim. op., it cannot be
18781 -- abstract, its Etype points back to the specific root type, and it
18782 -- cannot have any invariants.
18784 Set_Ekind (CW_Type, E_Class_Wide_Type);
18785 Set_Is_Tagged_Type (CW_Type, True);
18786 Set_Direct_Primitive_Operations (CW_Type, New_Elmt_List);
18787 Set_Is_Abstract_Type (CW_Type, False);
18788 Set_Is_Constrained (CW_Type, False);
18789 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
18790 Set_Default_SSO (CW_Type);
18791 Set_Has_Inheritable_Invariants (CW_Type, False);
18792 Set_Has_Inherited_Invariants (CW_Type, False);
18793 Set_Has_Own_Invariants (CW_Type, False);
18795 if Ekind (T) = E_Class_Wide_Subtype then
18796 Set_Etype (CW_Type, Etype (Base_Type (T)));
18797 else
18798 Set_Etype (CW_Type, T);
18799 end if;
18801 Set_No_Tagged_Streams_Pragma (CW_Type, No_Tagged_Streams);
18803 -- If this is the class_wide type of a constrained subtype, it does
18804 -- not have discriminants.
18806 Set_Has_Discriminants (CW_Type,
18807 Has_Discriminants (T) and then not Is_Constrained (T));
18809 Set_Has_Unknown_Discriminants (CW_Type, True);
18810 Set_Class_Wide_Type (T, CW_Type);
18811 Set_Equivalent_Type (CW_Type, Empty);
18813 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
18815 Set_Class_Wide_Type (CW_Type, CW_Type);
18816 end Make_Class_Wide_Type;
18818 ----------------
18819 -- Make_Index --
18820 ----------------
18822 procedure Make_Index
18823 (N : Node_Id;
18824 Related_Nod : Node_Id;
18825 Related_Id : Entity_Id := Empty;
18826 Suffix_Index : Nat := 1;
18827 In_Iter_Schm : Boolean := False)
18829 R : Node_Id;
18830 T : Entity_Id;
18831 Def_Id : Entity_Id := Empty;
18832 Found : Boolean := False;
18834 begin
18835 -- For a discrete range used in a constrained array definition and
18836 -- defined by a range, an implicit conversion to the predefined type
18837 -- INTEGER is assumed if each bound is either a numeric literal, a named
18838 -- number, or an attribute, and the type of both bounds (prior to the
18839 -- implicit conversion) is the type universal_integer. Otherwise, both
18840 -- bounds must be of the same discrete type, other than universal
18841 -- integer; this type must be determinable independently of the
18842 -- context, but using the fact that the type must be discrete and that
18843 -- both bounds must have the same type.
18845 -- Character literals also have a universal type in the absence of
18846 -- of additional context, and are resolved to Standard_Character.
18848 if Nkind (N) = N_Range then
18850 -- The index is given by a range constraint. The bounds are known
18851 -- to be of a consistent type.
18853 if not Is_Overloaded (N) then
18854 T := Etype (N);
18856 -- For universal bounds, choose the specific predefined type
18858 if T = Universal_Integer then
18859 T := Standard_Integer;
18861 elsif T = Any_Character then
18862 Ambiguous_Character (Low_Bound (N));
18864 T := Standard_Character;
18865 end if;
18867 -- The node may be overloaded because some user-defined operators
18868 -- are available, but if a universal interpretation exists it is
18869 -- also the selected one.
18871 elsif Universal_Interpretation (N) = Universal_Integer then
18872 T := Standard_Integer;
18874 else
18875 T := Any_Type;
18877 declare
18878 Ind : Interp_Index;
18879 It : Interp;
18881 begin
18882 Get_First_Interp (N, Ind, It);
18883 while Present (It.Typ) loop
18884 if Is_Discrete_Type (It.Typ) then
18886 if Found
18887 and then not Covers (It.Typ, T)
18888 and then not Covers (T, It.Typ)
18889 then
18890 Error_Msg_N ("ambiguous bounds in discrete range", N);
18891 exit;
18892 else
18893 T := It.Typ;
18894 Found := True;
18895 end if;
18896 end if;
18898 Get_Next_Interp (Ind, It);
18899 end loop;
18901 if T = Any_Type then
18902 Error_Msg_N ("discrete type required for range", N);
18903 Set_Etype (N, Any_Type);
18904 return;
18906 elsif T = Universal_Integer then
18907 T := Standard_Integer;
18908 end if;
18909 end;
18910 end if;
18912 if not Is_Discrete_Type (T) then
18913 Error_Msg_N ("discrete type required for range", N);
18914 Set_Etype (N, Any_Type);
18915 return;
18916 end if;
18918 if Nkind (Low_Bound (N)) = N_Attribute_Reference
18919 and then Attribute_Name (Low_Bound (N)) = Name_First
18920 and then Is_Entity_Name (Prefix (Low_Bound (N)))
18921 and then Is_Type (Entity (Prefix (Low_Bound (N))))
18922 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (N))))
18923 then
18924 -- The type of the index will be the type of the prefix, as long
18925 -- as the upper bound is 'Last of the same type.
18927 Def_Id := Entity (Prefix (Low_Bound (N)));
18929 if Nkind (High_Bound (N)) /= N_Attribute_Reference
18930 or else Attribute_Name (High_Bound (N)) /= Name_Last
18931 or else not Is_Entity_Name (Prefix (High_Bound (N)))
18932 or else Entity (Prefix (High_Bound (N))) /= Def_Id
18933 then
18934 Def_Id := Empty;
18935 end if;
18936 end if;
18938 R := N;
18939 Process_Range_Expr_In_Decl (R, T, In_Iter_Schm => In_Iter_Schm);
18941 elsif Nkind (N) = N_Subtype_Indication then
18943 -- The index is given by a subtype with a range constraint
18945 T := Base_Type (Entity (Subtype_Mark (N)));
18947 if not Is_Discrete_Type (T) then
18948 Error_Msg_N ("discrete type required for range", N);
18949 Set_Etype (N, Any_Type);
18950 return;
18951 end if;
18953 R := Range_Expression (Constraint (N));
18955 Resolve (R, T);
18956 Process_Range_Expr_In_Decl
18957 (R, Entity (Subtype_Mark (N)), In_Iter_Schm => In_Iter_Schm);
18959 elsif Nkind (N) = N_Attribute_Reference then
18961 -- Catch beginner's error (use of attribute other than 'Range)
18963 if Attribute_Name (N) /= Name_Range then
18964 Error_Msg_N ("expect attribute ''Range", N);
18965 Set_Etype (N, Any_Type);
18966 return;
18967 end if;
18969 -- If the node denotes the range of a type mark, that is also the
18970 -- resulting type, and we do not need to create an Itype for it.
18972 if Is_Entity_Name (Prefix (N))
18973 and then Comes_From_Source (N)
18974 and then Is_Type (Entity (Prefix (N)))
18975 and then Is_Discrete_Type (Entity (Prefix (N)))
18976 then
18977 Def_Id := Entity (Prefix (N));
18978 end if;
18980 Analyze_And_Resolve (N);
18981 T := Etype (N);
18982 R := N;
18984 -- If none of the above, must be a subtype. We convert this to a
18985 -- range attribute reference because in the case of declared first
18986 -- named subtypes, the types in the range reference can be different
18987 -- from the type of the entity. A range attribute normalizes the
18988 -- reference and obtains the correct types for the bounds.
18990 -- This transformation is in the nature of an expansion, is only
18991 -- done if expansion is active. In particular, it is not done on
18992 -- formal generic types, because we need to retain the name of the
18993 -- original index for instantiation purposes.
18995 else
18996 if not Is_Entity_Name (N) or else not Is_Type (Entity (N)) then
18997 Error_Msg_N ("invalid subtype mark in discrete range ", N);
18998 Set_Etype (N, Any_Integer);
18999 return;
19001 else
19002 -- The type mark may be that of an incomplete type. It is only
19003 -- now that we can get the full view, previous analysis does
19004 -- not look specifically for a type mark.
19006 Set_Entity (N, Get_Full_View (Entity (N)));
19007 Set_Etype (N, Entity (N));
19008 Def_Id := Entity (N);
19010 if not Is_Discrete_Type (Def_Id) then
19011 Error_Msg_N ("discrete type required for index", N);
19012 Set_Etype (N, Any_Type);
19013 return;
19014 end if;
19015 end if;
19017 if Expander_Active then
19018 Rewrite (N,
19019 Make_Attribute_Reference (Sloc (N),
19020 Attribute_Name => Name_Range,
19021 Prefix => Relocate_Node (N)));
19023 -- The original was a subtype mark that does not freeze. This
19024 -- means that the rewritten version must not freeze either.
19026 Set_Must_Not_Freeze (N);
19027 Set_Must_Not_Freeze (Prefix (N));
19028 Analyze_And_Resolve (N);
19029 T := Etype (N);
19030 R := N;
19032 -- If expander is inactive, type is legal, nothing else to construct
19034 else
19035 return;
19036 end if;
19037 end if;
19039 if not Is_Discrete_Type (T) then
19040 Error_Msg_N ("discrete type required for range", N);
19041 Set_Etype (N, Any_Type);
19042 return;
19044 elsif T = Any_Type then
19045 Set_Etype (N, Any_Type);
19046 return;
19047 end if;
19049 -- We will now create the appropriate Itype to describe the range, but
19050 -- first a check. If we originally had a subtype, then we just label
19051 -- the range with this subtype. Not only is there no need to construct
19052 -- a new subtype, but it is wrong to do so for two reasons:
19054 -- 1. A legality concern, if we have a subtype, it must not freeze,
19055 -- and the Itype would cause freezing incorrectly
19057 -- 2. An efficiency concern, if we created an Itype, it would not be
19058 -- recognized as the same type for the purposes of eliminating
19059 -- checks in some circumstances.
19061 -- We signal this case by setting the subtype entity in Def_Id
19063 if No (Def_Id) then
19064 Def_Id :=
19065 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
19066 Set_Etype (Def_Id, Base_Type (T));
19068 if Is_Signed_Integer_Type (T) then
19069 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
19071 elsif Is_Modular_Integer_Type (T) then
19072 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
19074 else
19075 Set_Ekind (Def_Id, E_Enumeration_Subtype);
19076 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
19077 Set_First_Literal (Def_Id, First_Literal (T));
19078 end if;
19080 Set_Size_Info (Def_Id, (T));
19081 Set_RM_Size (Def_Id, RM_Size (T));
19082 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
19084 Set_Scalar_Range (Def_Id, R);
19085 Conditional_Delay (Def_Id, T);
19087 if Nkind (N) = N_Subtype_Indication then
19088 Inherit_Predicate_Flags (Def_Id, Entity (Subtype_Mark (N)));
19089 end if;
19091 -- In the subtype indication case, if the immediate parent of the
19092 -- new subtype is non-static, then the subtype we create is non-
19093 -- static, even if its bounds are static.
19095 if Nkind (N) = N_Subtype_Indication
19096 and then not Is_OK_Static_Subtype (Entity (Subtype_Mark (N)))
19097 then
19098 Set_Is_Non_Static_Subtype (Def_Id);
19099 end if;
19100 end if;
19102 -- Final step is to label the index with this constructed type
19104 Set_Etype (N, Def_Id);
19105 end Make_Index;
19107 ------------------------------
19108 -- Modular_Type_Declaration --
19109 ------------------------------
19111 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
19112 Mod_Expr : constant Node_Id := Expression (Def);
19113 M_Val : Uint;
19115 procedure Set_Modular_Size (Bits : Int);
19116 -- Sets RM_Size to Bits, and Esize to normal word size above this
19118 ----------------------
19119 -- Set_Modular_Size --
19120 ----------------------
19122 procedure Set_Modular_Size (Bits : Int) is
19123 begin
19124 Set_RM_Size (T, UI_From_Int (Bits));
19126 if Bits <= 8 then
19127 Init_Esize (T, 8);
19129 elsif Bits <= 16 then
19130 Init_Esize (T, 16);
19132 elsif Bits <= 32 then
19133 Init_Esize (T, 32);
19135 else
19136 Init_Esize (T, System_Max_Binary_Modulus_Power);
19137 end if;
19139 if not Non_Binary_Modulus (T) and then Esize (T) = RM_Size (T) then
19140 Set_Is_Known_Valid (T);
19141 end if;
19142 end Set_Modular_Size;
19144 -- Start of processing for Modular_Type_Declaration
19146 begin
19147 -- If the mod expression is (exactly) 2 * literal, where literal is
19148 -- 64 or less,then almost certainly the * was meant to be **. Warn.
19150 if Warn_On_Suspicious_Modulus_Value
19151 and then Nkind (Mod_Expr) = N_Op_Multiply
19152 and then Nkind (Left_Opnd (Mod_Expr)) = N_Integer_Literal
19153 and then Intval (Left_Opnd (Mod_Expr)) = Uint_2
19154 and then Nkind (Right_Opnd (Mod_Expr)) = N_Integer_Literal
19155 and then Intval (Right_Opnd (Mod_Expr)) <= Uint_64
19156 then
19157 Error_Msg_N
19158 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr);
19159 end if;
19161 -- Proceed with analysis of mod expression
19163 Analyze_And_Resolve (Mod_Expr, Any_Integer);
19164 Set_Etype (T, T);
19165 Set_Ekind (T, E_Modular_Integer_Type);
19166 Init_Alignment (T);
19167 Set_Is_Constrained (T);
19169 if not Is_OK_Static_Expression (Mod_Expr) then
19170 Flag_Non_Static_Expr
19171 ("non-static expression used for modular type bound!", Mod_Expr);
19172 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19173 else
19174 M_Val := Expr_Value (Mod_Expr);
19175 end if;
19177 if M_Val < 1 then
19178 Error_Msg_N ("modulus value must be positive", Mod_Expr);
19179 M_Val := 2 ** System_Max_Binary_Modulus_Power;
19180 end if;
19182 if M_Val > 2 ** Standard_Long_Integer_Size then
19183 Check_Restriction (No_Long_Long_Integers, Mod_Expr);
19184 end if;
19186 Set_Modulus (T, M_Val);
19188 -- Create bounds for the modular type based on the modulus given in
19189 -- the type declaration and then analyze and resolve those bounds.
19191 Set_Scalar_Range (T,
19192 Make_Range (Sloc (Mod_Expr),
19193 Low_Bound => Make_Integer_Literal (Sloc (Mod_Expr), 0),
19194 High_Bound => Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
19196 -- Properly analyze the literals for the range. We do this manually
19197 -- because we can't go calling Resolve, since we are resolving these
19198 -- bounds with the type, and this type is certainly not complete yet.
19200 Set_Etype (Low_Bound (Scalar_Range (T)), T);
19201 Set_Etype (High_Bound (Scalar_Range (T)), T);
19202 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
19203 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
19205 -- Loop through powers of two to find number of bits required
19207 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
19209 -- Binary case
19211 if M_Val = 2 ** Bits then
19212 Set_Modular_Size (Bits);
19213 return;
19215 -- Nonbinary case
19217 elsif M_Val < 2 ** Bits then
19218 Check_SPARK_05_Restriction ("modulus should be a power of 2", T);
19219 Set_Non_Binary_Modulus (T);
19221 if Bits > System_Max_Nonbinary_Modulus_Power then
19222 Error_Msg_Uint_1 :=
19223 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
19224 Error_Msg_F
19225 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
19226 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19227 return;
19229 else
19230 -- In the nonbinary case, set size as per RM 13.3(55)
19232 Set_Modular_Size (Bits);
19233 return;
19234 end if;
19235 end if;
19237 end loop;
19239 -- If we fall through, then the size exceed System.Max_Binary_Modulus
19240 -- so we just signal an error and set the maximum size.
19242 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
19243 Error_Msg_F ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
19245 Set_Modular_Size (System_Max_Binary_Modulus_Power);
19246 Init_Alignment (T);
19248 end Modular_Type_Declaration;
19250 --------------------------
19251 -- New_Concatenation_Op --
19252 --------------------------
19254 procedure New_Concatenation_Op (Typ : Entity_Id) is
19255 Loc : constant Source_Ptr := Sloc (Typ);
19256 Op : Entity_Id;
19258 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
19259 -- Create abbreviated declaration for the formal of a predefined
19260 -- Operator 'Op' of type 'Typ'
19262 --------------------
19263 -- Make_Op_Formal --
19264 --------------------
19266 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
19267 Formal : Entity_Id;
19268 begin
19269 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
19270 Set_Etype (Formal, Typ);
19271 Set_Mechanism (Formal, Default_Mechanism);
19272 return Formal;
19273 end Make_Op_Formal;
19275 -- Start of processing for New_Concatenation_Op
19277 begin
19278 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
19280 Set_Ekind (Op, E_Operator);
19281 Set_Scope (Op, Current_Scope);
19282 Set_Etype (Op, Typ);
19283 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
19284 Set_Is_Immediately_Visible (Op);
19285 Set_Is_Intrinsic_Subprogram (Op);
19286 Set_Has_Completion (Op);
19287 Append_Entity (Op, Current_Scope);
19289 Set_Name_Entity_Id (Name_Op_Concat, Op);
19291 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19292 Append_Entity (Make_Op_Formal (Typ, Op), Op);
19293 end New_Concatenation_Op;
19295 -------------------------
19296 -- OK_For_Limited_Init --
19297 -------------------------
19299 -- ???Check all calls of this, and compare the conditions under which it's
19300 -- called.
19302 function OK_For_Limited_Init
19303 (Typ : Entity_Id;
19304 Exp : Node_Id) return Boolean
19306 begin
19307 return Is_CPP_Constructor_Call (Exp)
19308 or else (Ada_Version >= Ada_2005
19309 and then not Debug_Flag_Dot_L
19310 and then OK_For_Limited_Init_In_05 (Typ, Exp));
19311 end OK_For_Limited_Init;
19313 -------------------------------
19314 -- OK_For_Limited_Init_In_05 --
19315 -------------------------------
19317 function OK_For_Limited_Init_In_05
19318 (Typ : Entity_Id;
19319 Exp : Node_Id) return Boolean
19321 begin
19322 -- An object of a limited interface type can be initialized with any
19323 -- expression of a nonlimited descendant type. However this does not
19324 -- apply if this is a view conversion of some other expression. This
19325 -- is checked below.
19327 if Is_Class_Wide_Type (Typ)
19328 and then Is_Limited_Interface (Typ)
19329 and then not Is_Limited_Type (Etype (Exp))
19330 and then Nkind (Exp) /= N_Type_Conversion
19331 then
19332 return True;
19333 end if;
19335 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
19336 -- case of limited aggregates (including extension aggregates), and
19337 -- function calls. The function call may have been given in prefixed
19338 -- notation, in which case the original node is an indexed component.
19339 -- If the function is parameterless, the original node was an explicit
19340 -- dereference. The function may also be parameterless, in which case
19341 -- the source node is just an identifier.
19343 -- A branch of a conditional expression may have been removed if the
19344 -- condition is statically known. This happens during expansion, and
19345 -- thus will not happen if previous errors were encountered. The check
19346 -- will have been performed on the chosen branch, which replaces the
19347 -- original conditional expression.
19349 if No (Exp) then
19350 return True;
19351 end if;
19353 case Nkind (Original_Node (Exp)) is
19354 when N_Aggregate
19355 | N_Extension_Aggregate
19356 | N_Function_Call
19357 | N_Op
19359 return True;
19361 when N_Identifier =>
19362 return Present (Entity (Original_Node (Exp)))
19363 and then Ekind (Entity (Original_Node (Exp))) = E_Function;
19365 when N_Qualified_Expression =>
19366 return
19367 OK_For_Limited_Init_In_05
19368 (Typ, Expression (Original_Node (Exp)));
19370 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
19371 -- with a function call, the expander has rewritten the call into an
19372 -- N_Type_Conversion node to force displacement of the pointer to
19373 -- reference the component containing the secondary dispatch table.
19374 -- Otherwise a type conversion is not a legal context.
19375 -- A return statement for a build-in-place function returning a
19376 -- synchronized type also introduces an unchecked conversion.
19378 when N_Type_Conversion
19379 | N_Unchecked_Type_Conversion
19381 return not Comes_From_Source (Exp)
19382 and then
19383 OK_For_Limited_Init_In_05
19384 (Typ, Expression (Original_Node (Exp)));
19386 when N_Explicit_Dereference
19387 | N_Indexed_Component
19388 | N_Selected_Component
19390 return Nkind (Exp) = N_Function_Call;
19392 -- A use of 'Input is a function call, hence allowed. Normally the
19393 -- attribute will be changed to a call, but the attribute by itself
19394 -- can occur with -gnatc.
19396 when N_Attribute_Reference =>
19397 return Attribute_Name (Original_Node (Exp)) = Name_Input;
19399 -- "return raise ..." is OK
19401 when N_Raise_Expression =>
19402 return True;
19404 -- For a case expression, all dependent expressions must be legal
19406 when N_Case_Expression =>
19407 declare
19408 Alt : Node_Id;
19410 begin
19411 Alt := First (Alternatives (Original_Node (Exp)));
19412 while Present (Alt) loop
19413 if not OK_For_Limited_Init_In_05 (Typ, Expression (Alt)) then
19414 return False;
19415 end if;
19417 Next (Alt);
19418 end loop;
19420 return True;
19421 end;
19423 -- For an if expression, all dependent expressions must be legal
19425 when N_If_Expression =>
19426 declare
19427 Then_Expr : constant Node_Id :=
19428 Next (First (Expressions (Original_Node (Exp))));
19429 Else_Expr : constant Node_Id := Next (Then_Expr);
19430 begin
19431 return OK_For_Limited_Init_In_05 (Typ, Then_Expr)
19432 and then
19433 OK_For_Limited_Init_In_05 (Typ, Else_Expr);
19434 end;
19436 when others =>
19437 return False;
19438 end case;
19439 end OK_For_Limited_Init_In_05;
19441 -------------------------------------------
19442 -- Ordinary_Fixed_Point_Type_Declaration --
19443 -------------------------------------------
19445 procedure Ordinary_Fixed_Point_Type_Declaration
19446 (T : Entity_Id;
19447 Def : Node_Id)
19449 Loc : constant Source_Ptr := Sloc (Def);
19450 Delta_Expr : constant Node_Id := Delta_Expression (Def);
19451 RRS : constant Node_Id := Real_Range_Specification (Def);
19452 Implicit_Base : Entity_Id;
19453 Delta_Val : Ureal;
19454 Small_Val : Ureal;
19455 Low_Val : Ureal;
19456 High_Val : Ureal;
19458 begin
19459 Check_Restriction (No_Fixed_Point, Def);
19461 -- Create implicit base type
19463 Implicit_Base :=
19464 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
19465 Set_Etype (Implicit_Base, Implicit_Base);
19467 -- Analyze and process delta expression
19469 Analyze_And_Resolve (Delta_Expr, Any_Real);
19471 Check_Delta_Expression (Delta_Expr);
19472 Delta_Val := Expr_Value_R (Delta_Expr);
19474 Set_Delta_Value (Implicit_Base, Delta_Val);
19476 -- Compute default small from given delta, which is the largest power
19477 -- of two that does not exceed the given delta value.
19479 declare
19480 Tmp : Ureal;
19481 Scale : Int;
19483 begin
19484 Tmp := Ureal_1;
19485 Scale := 0;
19487 if Delta_Val < Ureal_1 then
19488 while Delta_Val < Tmp loop
19489 Tmp := Tmp / Ureal_2;
19490 Scale := Scale + 1;
19491 end loop;
19493 else
19494 loop
19495 Tmp := Tmp * Ureal_2;
19496 exit when Tmp > Delta_Val;
19497 Scale := Scale - 1;
19498 end loop;
19499 end if;
19501 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
19502 end;
19504 Set_Small_Value (Implicit_Base, Small_Val);
19506 -- If no range was given, set a dummy range
19508 if RRS <= Empty_Or_Error then
19509 Low_Val := -Small_Val;
19510 High_Val := Small_Val;
19512 -- Otherwise analyze and process given range
19514 else
19515 declare
19516 Low : constant Node_Id := Low_Bound (RRS);
19517 High : constant Node_Id := High_Bound (RRS);
19519 begin
19520 Analyze_And_Resolve (Low, Any_Real);
19521 Analyze_And_Resolve (High, Any_Real);
19522 Check_Real_Bound (Low);
19523 Check_Real_Bound (High);
19525 -- Obtain and set the range
19527 Low_Val := Expr_Value_R (Low);
19528 High_Val := Expr_Value_R (High);
19530 if Low_Val > High_Val then
19531 Error_Msg_NE ("??fixed point type& has null range", Def, T);
19532 end if;
19533 end;
19534 end if;
19536 -- The range for both the implicit base and the declared first subtype
19537 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
19538 -- set a temporary range in place. Note that the bounds of the base
19539 -- type will be widened to be symmetrical and to fill the available
19540 -- bits when the type is frozen.
19542 -- We could do this with all discrete types, and probably should, but
19543 -- we absolutely have to do it for fixed-point, since the end-points
19544 -- of the range and the size are determined by the small value, which
19545 -- could be reset before the freeze point.
19547 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
19548 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
19550 -- Complete definition of first subtype. The inheritance of the rep item
19551 -- chain ensures that SPARK-related pragmas are not clobbered when the
19552 -- ordinary fixed point type acts as a full view of a private type.
19554 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
19555 Set_Etype (T, Implicit_Base);
19556 Init_Size_Align (T);
19557 Inherit_Rep_Item_Chain (T, Implicit_Base);
19558 Set_Small_Value (T, Small_Val);
19559 Set_Delta_Value (T, Delta_Val);
19560 Set_Is_Constrained (T);
19561 end Ordinary_Fixed_Point_Type_Declaration;
19563 ----------------------------------
19564 -- Preanalyze_Assert_Expression --
19565 ----------------------------------
19567 procedure Preanalyze_Assert_Expression (N : Node_Id; T : Entity_Id) is
19568 begin
19569 In_Assertion_Expr := In_Assertion_Expr + 1;
19570 Preanalyze_Spec_Expression (N, T);
19571 In_Assertion_Expr := In_Assertion_Expr - 1;
19572 end Preanalyze_Assert_Expression;
19574 -----------------------------------
19575 -- Preanalyze_Default_Expression --
19576 -----------------------------------
19578 procedure Preanalyze_Default_Expression (N : Node_Id; T : Entity_Id) is
19579 Save_In_Default_Expr : constant Boolean := In_Default_Expr;
19580 begin
19581 In_Default_Expr := True;
19582 Preanalyze_Spec_Expression (N, T);
19583 In_Default_Expr := Save_In_Default_Expr;
19584 end Preanalyze_Default_Expression;
19586 --------------------------------
19587 -- Preanalyze_Spec_Expression --
19588 --------------------------------
19590 procedure Preanalyze_Spec_Expression (N : Node_Id; T : Entity_Id) is
19591 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
19592 begin
19593 In_Spec_Expression := True;
19594 Preanalyze_And_Resolve (N, T);
19595 In_Spec_Expression := Save_In_Spec_Expression;
19596 end Preanalyze_Spec_Expression;
19598 ----------------------------------------
19599 -- Prepare_Private_Subtype_Completion --
19600 ----------------------------------------
19602 procedure Prepare_Private_Subtype_Completion
19603 (Id : Entity_Id;
19604 Related_Nod : Node_Id)
19606 Id_B : constant Entity_Id := Base_Type (Id);
19607 Full_B : Entity_Id := Full_View (Id_B);
19608 Full : Entity_Id;
19610 begin
19611 if Present (Full_B) then
19613 -- Get to the underlying full view if necessary
19615 if Is_Private_Type (Full_B)
19616 and then Present (Underlying_Full_View (Full_B))
19617 then
19618 Full_B := Underlying_Full_View (Full_B);
19619 end if;
19621 -- The Base_Type is already completed, we can complete the subtype
19622 -- now. We have to create a new entity with the same name, Thus we
19623 -- can't use Create_Itype.
19625 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
19626 Set_Is_Itype (Full);
19627 Set_Associated_Node_For_Itype (Full, Related_Nod);
19628 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
19629 end if;
19631 -- The parent subtype may be private, but the base might not, in some
19632 -- nested instances. In that case, the subtype does not need to be
19633 -- exchanged. It would still be nice to make private subtypes and their
19634 -- bases consistent at all times ???
19636 if Is_Private_Type (Id_B) then
19637 Append_Elmt (Id, Private_Dependents (Id_B));
19638 end if;
19639 end Prepare_Private_Subtype_Completion;
19641 ---------------------------
19642 -- Process_Discriminants --
19643 ---------------------------
19645 procedure Process_Discriminants
19646 (N : Node_Id;
19647 Prev : Entity_Id := Empty)
19649 Elist : constant Elist_Id := New_Elmt_List;
19650 Id : Node_Id;
19651 Discr : Node_Id;
19652 Discr_Number : Uint;
19653 Discr_Type : Entity_Id;
19654 Default_Present : Boolean := False;
19655 Default_Not_Present : Boolean := False;
19657 begin
19658 -- A composite type other than an array type can have discriminants.
19659 -- On entry, the current scope is the composite type.
19661 -- The discriminants are initially entered into the scope of the type
19662 -- via Enter_Name with the default Ekind of E_Void to prevent premature
19663 -- use, as explained at the end of this procedure.
19665 Discr := First (Discriminant_Specifications (N));
19666 while Present (Discr) loop
19667 Enter_Name (Defining_Identifier (Discr));
19669 -- For navigation purposes we add a reference to the discriminant
19670 -- in the entity for the type. If the current declaration is a
19671 -- completion, place references on the partial view. Otherwise the
19672 -- type is the current scope.
19674 if Present (Prev) then
19676 -- The references go on the partial view, if present. If the
19677 -- partial view has discriminants, the references have been
19678 -- generated already.
19680 if not Has_Discriminants (Prev) then
19681 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
19682 end if;
19683 else
19684 Generate_Reference
19685 (Current_Scope, Defining_Identifier (Discr), 'd');
19686 end if;
19688 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
19689 Discr_Type := Access_Definition (Discr, Discriminant_Type (Discr));
19691 -- Ada 2005 (AI-254)
19693 if Present (Access_To_Subprogram_Definition
19694 (Discriminant_Type (Discr)))
19695 and then Protected_Present (Access_To_Subprogram_Definition
19696 (Discriminant_Type (Discr)))
19697 then
19698 Discr_Type :=
19699 Replace_Anonymous_Access_To_Protected_Subprogram (Discr);
19700 end if;
19702 else
19703 Find_Type (Discriminant_Type (Discr));
19704 Discr_Type := Etype (Discriminant_Type (Discr));
19706 if Error_Posted (Discriminant_Type (Discr)) then
19707 Discr_Type := Any_Type;
19708 end if;
19709 end if;
19711 -- Handling of discriminants that are access types
19713 if Is_Access_Type (Discr_Type) then
19715 -- Ada 2005 (AI-230): Access discriminant allowed in non-
19716 -- limited record types
19718 if Ada_Version < Ada_2005 then
19719 Check_Access_Discriminant_Requires_Limited
19720 (Discr, Discriminant_Type (Discr));
19721 end if;
19723 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
19724 Error_Msg_N
19725 ("(Ada 83) access discriminant not allowed", Discr);
19726 end if;
19728 -- If not access type, must be a discrete type
19730 elsif not Is_Discrete_Type (Discr_Type) then
19731 Error_Msg_N
19732 ("discriminants must have a discrete or access type",
19733 Discriminant_Type (Discr));
19734 end if;
19736 Set_Etype (Defining_Identifier (Discr), Discr_Type);
19738 -- If a discriminant specification includes the assignment compound
19739 -- delimiter followed by an expression, the expression is the default
19740 -- expression of the discriminant; the default expression must be of
19741 -- the type of the discriminant. (RM 3.7.1) Since this expression is
19742 -- a default expression, we do the special preanalysis, since this
19743 -- expression does not freeze (see section "Handling of Default and
19744 -- Per-Object Expressions" in spec of package Sem).
19746 if Present (Expression (Discr)) then
19747 Preanalyze_Spec_Expression (Expression (Discr), Discr_Type);
19749 -- Legaity checks
19751 if Nkind (N) = N_Formal_Type_Declaration then
19752 Error_Msg_N
19753 ("discriminant defaults not allowed for formal type",
19754 Expression (Discr));
19756 -- Flag an error for a tagged type with defaulted discriminants,
19757 -- excluding limited tagged types when compiling for Ada 2012
19758 -- (see AI05-0214).
19760 elsif Is_Tagged_Type (Current_Scope)
19761 and then (not Is_Limited_Type (Current_Scope)
19762 or else Ada_Version < Ada_2012)
19763 and then Comes_From_Source (N)
19764 then
19765 -- Note: see similar test in Check_Or_Process_Discriminants, to
19766 -- handle the (illegal) case of the completion of an untagged
19767 -- view with discriminants with defaults by a tagged full view.
19768 -- We skip the check if Discr does not come from source, to
19769 -- account for the case of an untagged derived type providing
19770 -- defaults for a renamed discriminant from a private untagged
19771 -- ancestor with a tagged full view (ACATS B460006).
19773 if Ada_Version >= Ada_2012 then
19774 Error_Msg_N
19775 ("discriminants of nonlimited tagged type cannot have"
19776 & " defaults",
19777 Expression (Discr));
19778 else
19779 Error_Msg_N
19780 ("discriminants of tagged type cannot have defaults",
19781 Expression (Discr));
19782 end if;
19784 else
19785 Default_Present := True;
19786 Append_Elmt (Expression (Discr), Elist);
19788 -- Tag the defining identifiers for the discriminants with
19789 -- their corresponding default expressions from the tree.
19791 Set_Discriminant_Default_Value
19792 (Defining_Identifier (Discr), Expression (Discr));
19793 end if;
19795 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
19796 -- gets set unless we can be sure that no range check is required.
19798 if (GNATprove_Mode or not Expander_Active)
19799 and then not
19800 Is_In_Range
19801 (Expression (Discr), Discr_Type, Assume_Valid => True)
19802 then
19803 Set_Do_Range_Check (Expression (Discr));
19804 end if;
19806 -- No default discriminant value given
19808 else
19809 Default_Not_Present := True;
19810 end if;
19812 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
19813 -- Discr_Type but with the null-exclusion attribute
19815 if Ada_Version >= Ada_2005 then
19817 -- Ada 2005 (AI-231): Static checks
19819 if Can_Never_Be_Null (Discr_Type) then
19820 Null_Exclusion_Static_Checks (Discr);
19822 elsif Is_Access_Type (Discr_Type)
19823 and then Null_Exclusion_Present (Discr)
19825 -- No need to check itypes because in their case this check
19826 -- was done at their point of creation
19828 and then not Is_Itype (Discr_Type)
19829 then
19830 if Can_Never_Be_Null (Discr_Type) then
19831 Error_Msg_NE
19832 ("`NOT NULL` not allowed (& already excludes null)",
19833 Discr,
19834 Discr_Type);
19835 end if;
19837 Set_Etype (Defining_Identifier (Discr),
19838 Create_Null_Excluding_Itype
19839 (T => Discr_Type,
19840 Related_Nod => Discr));
19842 -- Check for improper null exclusion if the type is otherwise
19843 -- legal for a discriminant.
19845 elsif Null_Exclusion_Present (Discr)
19846 and then Is_Discrete_Type (Discr_Type)
19847 then
19848 Error_Msg_N
19849 ("null exclusion can only apply to an access type", Discr);
19850 end if;
19852 -- Ada 2005 (AI-402): access discriminants of nonlimited types
19853 -- can't have defaults. Synchronized types, or types that are
19854 -- explicitly limited are fine, but special tests apply to derived
19855 -- types in generics: in a generic body we have to assume the
19856 -- worst, and therefore defaults are not allowed if the parent is
19857 -- a generic formal private type (see ACATS B370001).
19859 if Is_Access_Type (Discr_Type) and then Default_Present then
19860 if Ekind (Discr_Type) /= E_Anonymous_Access_Type
19861 or else Is_Limited_Record (Current_Scope)
19862 or else Is_Concurrent_Type (Current_Scope)
19863 or else Is_Concurrent_Record_Type (Current_Scope)
19864 or else Ekind (Current_Scope) = E_Limited_Private_Type
19865 then
19866 if not Is_Derived_Type (Current_Scope)
19867 or else not Is_Generic_Type (Etype (Current_Scope))
19868 or else not In_Package_Body (Scope (Etype (Current_Scope)))
19869 or else Limited_Present
19870 (Type_Definition (Parent (Current_Scope)))
19871 then
19872 null;
19874 else
19875 Error_Msg_N
19876 ("access discriminants of nonlimited types cannot "
19877 & "have defaults", Expression (Discr));
19878 end if;
19880 elsif Present (Expression (Discr)) then
19881 Error_Msg_N
19882 ("(Ada 2005) access discriminants of nonlimited types "
19883 & "cannot have defaults", Expression (Discr));
19884 end if;
19885 end if;
19886 end if;
19888 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(6)).
19889 -- This check is relevant only when SPARK_Mode is on as it is not a
19890 -- standard Ada legality rule.
19892 if SPARK_Mode = On
19893 and then Is_Effectively_Volatile (Defining_Identifier (Discr))
19894 then
19895 Error_Msg_N ("discriminant cannot be volatile", Discr);
19896 end if;
19898 Next (Discr);
19899 end loop;
19901 -- An element list consisting of the default expressions of the
19902 -- discriminants is constructed in the above loop and used to set
19903 -- the Discriminant_Constraint attribute for the type. If an object
19904 -- is declared of this (record or task) type without any explicit
19905 -- discriminant constraint given, this element list will form the
19906 -- actual parameters for the corresponding initialization procedure
19907 -- for the type.
19909 Set_Discriminant_Constraint (Current_Scope, Elist);
19910 Set_Stored_Constraint (Current_Scope, No_Elist);
19912 -- Default expressions must be provided either for all or for none
19913 -- of the discriminants of a discriminant part. (RM 3.7.1)
19915 if Default_Present and then Default_Not_Present then
19916 Error_Msg_N
19917 ("incomplete specification of defaults for discriminants", N);
19918 end if;
19920 -- The use of the name of a discriminant is not allowed in default
19921 -- expressions of a discriminant part if the specification of the
19922 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19924 -- To detect this, the discriminant names are entered initially with an
19925 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19926 -- attempt to use a void entity (for example in an expression that is
19927 -- type-checked) produces the error message: premature usage. Now after
19928 -- completing the semantic analysis of the discriminant part, we can set
19929 -- the Ekind of all the discriminants appropriately.
19931 Discr := First (Discriminant_Specifications (N));
19932 Discr_Number := Uint_1;
19933 while Present (Discr) loop
19934 Id := Defining_Identifier (Discr);
19935 Set_Ekind (Id, E_Discriminant);
19936 Init_Component_Location (Id);
19937 Init_Esize (Id);
19938 Set_Discriminant_Number (Id, Discr_Number);
19940 -- Make sure this is always set, even in illegal programs
19942 Set_Corresponding_Discriminant (Id, Empty);
19944 -- Initialize the Original_Record_Component to the entity itself.
19945 -- Inherit_Components will propagate the right value to
19946 -- discriminants in derived record types.
19948 Set_Original_Record_Component (Id, Id);
19950 -- Create the discriminal for the discriminant
19952 Build_Discriminal (Id);
19954 Next (Discr);
19955 Discr_Number := Discr_Number + 1;
19956 end loop;
19958 Set_Has_Discriminants (Current_Scope);
19959 end Process_Discriminants;
19961 -----------------------
19962 -- Process_Full_View --
19963 -----------------------
19965 -- WARNING: This routine manages Ghost regions. Return statements must be
19966 -- replaced by gotos which jump to the end of the routine and restore the
19967 -- Ghost mode.
19969 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
19970 procedure Collect_Implemented_Interfaces
19971 (Typ : Entity_Id;
19972 Ifaces : Elist_Id);
19973 -- Ada 2005: Gather all the interfaces that Typ directly or
19974 -- inherently implements. Duplicate entries are not added to
19975 -- the list Ifaces.
19977 ------------------------------------
19978 -- Collect_Implemented_Interfaces --
19979 ------------------------------------
19981 procedure Collect_Implemented_Interfaces
19982 (Typ : Entity_Id;
19983 Ifaces : Elist_Id)
19985 Iface : Entity_Id;
19986 Iface_Elmt : Elmt_Id;
19988 begin
19989 -- Abstract interfaces are only associated with tagged record types
19991 if not Is_Tagged_Type (Typ) or else not Is_Record_Type (Typ) then
19992 return;
19993 end if;
19995 -- Recursively climb to the ancestors
19997 if Etype (Typ) /= Typ
19999 -- Protect the frontend against wrong cyclic declarations like:
20001 -- type B is new A with private;
20002 -- type C is new A with private;
20003 -- private
20004 -- type B is new C with null record;
20005 -- type C is new B with null record;
20007 and then Etype (Typ) /= Priv_T
20008 and then Etype (Typ) /= Full_T
20009 then
20010 -- Keep separate the management of private type declarations
20012 if Ekind (Typ) = E_Record_Type_With_Private then
20014 -- Handle the following illegal usage:
20015 -- type Private_Type is tagged private;
20016 -- private
20017 -- type Private_Type is new Type_Implementing_Iface;
20019 if Present (Full_View (Typ))
20020 and then Etype (Typ) /= Full_View (Typ)
20021 then
20022 if Is_Interface (Etype (Typ)) then
20023 Append_Unique_Elmt (Etype (Typ), Ifaces);
20024 end if;
20026 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20027 end if;
20029 -- Non-private types
20031 else
20032 if Is_Interface (Etype (Typ)) then
20033 Append_Unique_Elmt (Etype (Typ), Ifaces);
20034 end if;
20036 Collect_Implemented_Interfaces (Etype (Typ), Ifaces);
20037 end if;
20038 end if;
20040 -- Handle entities in the list of abstract interfaces
20042 if Present (Interfaces (Typ)) then
20043 Iface_Elmt := First_Elmt (Interfaces (Typ));
20044 while Present (Iface_Elmt) loop
20045 Iface := Node (Iface_Elmt);
20047 pragma Assert (Is_Interface (Iface));
20049 if not Contain_Interface (Iface, Ifaces) then
20050 Append_Elmt (Iface, Ifaces);
20051 Collect_Implemented_Interfaces (Iface, Ifaces);
20052 end if;
20054 Next_Elmt (Iface_Elmt);
20055 end loop;
20056 end if;
20057 end Collect_Implemented_Interfaces;
20059 -- Local variables
20061 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
20063 Full_Indic : Node_Id;
20064 Full_Parent : Entity_Id;
20065 Priv_Parent : Entity_Id;
20067 -- Start of processing for Process_Full_View
20069 begin
20070 Mark_And_Set_Ghost_Completion (N, Priv_T);
20072 -- First some sanity checks that must be done after semantic
20073 -- decoration of the full view and thus cannot be placed with other
20074 -- similar checks in Find_Type_Name
20076 if not Is_Limited_Type (Priv_T)
20077 and then (Is_Limited_Type (Full_T)
20078 or else Is_Limited_Composite (Full_T))
20079 then
20080 if In_Instance then
20081 null;
20082 else
20083 Error_Msg_N
20084 ("completion of nonlimited type cannot be limited", Full_T);
20085 Explain_Limited_Type (Full_T, Full_T);
20086 end if;
20088 elsif Is_Abstract_Type (Full_T)
20089 and then not Is_Abstract_Type (Priv_T)
20090 then
20091 Error_Msg_N
20092 ("completion of nonabstract type cannot be abstract", Full_T);
20094 elsif Is_Tagged_Type (Priv_T)
20095 and then Is_Limited_Type (Priv_T)
20096 and then not Is_Limited_Type (Full_T)
20097 then
20098 -- If pragma CPP_Class was applied to the private declaration
20099 -- propagate the limitedness to the full-view
20101 if Is_CPP_Class (Priv_T) then
20102 Set_Is_Limited_Record (Full_T);
20104 -- GNAT allow its own definition of Limited_Controlled to disobey
20105 -- this rule in order in ease the implementation. This test is safe
20106 -- because Root_Controlled is defined in a child of System that
20107 -- normal programs are not supposed to use.
20109 elsif Is_RTE (Etype (Full_T), RE_Root_Controlled) then
20110 Set_Is_Limited_Composite (Full_T);
20111 else
20112 Error_Msg_N
20113 ("completion of limited tagged type must be limited", Full_T);
20114 end if;
20116 elsif Is_Generic_Type (Priv_T) then
20117 Error_Msg_N ("generic type cannot have a completion", Full_T);
20118 end if;
20120 -- Check that ancestor interfaces of private and full views are
20121 -- consistent. We omit this check for synchronized types because
20122 -- they are performed on the corresponding record type when frozen.
20124 if Ada_Version >= Ada_2005
20125 and then Is_Tagged_Type (Priv_T)
20126 and then Is_Tagged_Type (Full_T)
20127 and then not Is_Concurrent_Type (Full_T)
20128 then
20129 declare
20130 Iface : Entity_Id;
20131 Priv_T_Ifaces : constant Elist_Id := New_Elmt_List;
20132 Full_T_Ifaces : constant Elist_Id := New_Elmt_List;
20134 begin
20135 Collect_Implemented_Interfaces (Priv_T, Priv_T_Ifaces);
20136 Collect_Implemented_Interfaces (Full_T, Full_T_Ifaces);
20138 -- Ada 2005 (AI-251): The partial view shall be a descendant of
20139 -- an interface type if and only if the full type is descendant
20140 -- of the interface type (AARM 7.3 (7.3/2)).
20142 Iface := Find_Hidden_Interface (Priv_T_Ifaces, Full_T_Ifaces);
20144 if Present (Iface) then
20145 Error_Msg_NE
20146 ("interface in partial view& not implemented by full type "
20147 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20148 end if;
20150 Iface := Find_Hidden_Interface (Full_T_Ifaces, Priv_T_Ifaces);
20152 if Present (Iface) then
20153 Error_Msg_NE
20154 ("interface & not implemented by partial view "
20155 & "(RM-2005 7.3 (7.3/2))", Full_T, Iface);
20156 end if;
20157 end;
20158 end if;
20160 if Is_Tagged_Type (Priv_T)
20161 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20162 and then Is_Derived_Type (Full_T)
20163 then
20164 Priv_Parent := Etype (Priv_T);
20166 -- The full view of a private extension may have been transformed
20167 -- into an unconstrained derived type declaration and a subtype
20168 -- declaration (see build_derived_record_type for details).
20170 if Nkind (N) = N_Subtype_Declaration then
20171 Full_Indic := Subtype_Indication (N);
20172 Full_Parent := Etype (Base_Type (Full_T));
20173 else
20174 Full_Indic := Subtype_Indication (Type_Definition (N));
20175 Full_Parent := Etype (Full_T);
20176 end if;
20178 -- Check that the parent type of the full type is a descendant of
20179 -- the ancestor subtype given in the private extension. If either
20180 -- entity has an Etype equal to Any_Type then we had some previous
20181 -- error situation [7.3(8)].
20183 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
20184 goto Leave;
20186 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
20187 -- any order. Therefore we don't have to check that its parent must
20188 -- be a descendant of the parent of the private type declaration.
20190 elsif Is_Interface (Priv_Parent)
20191 and then Is_Interface (Full_Parent)
20192 then
20193 null;
20195 -- Ada 2005 (AI-251): If the parent of the private type declaration
20196 -- is an interface there is no need to check that it is an ancestor
20197 -- of the associated full type declaration. The required tests for
20198 -- this case are performed by Build_Derived_Record_Type.
20200 elsif not Is_Interface (Base_Type (Priv_Parent))
20201 and then not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent)
20202 then
20203 Error_Msg_N
20204 ("parent of full type must descend from parent of private "
20205 & "extension", Full_Indic);
20207 -- First check a formal restriction, and then proceed with checking
20208 -- Ada rules. Since the formal restriction is not a serious error, we
20209 -- don't prevent further error detection for this check, hence the
20210 -- ELSE.
20212 else
20213 -- In formal mode, when completing a private extension the type
20214 -- named in the private part must be exactly the same as that
20215 -- named in the visible part.
20217 if Priv_Parent /= Full_Parent then
20218 Error_Msg_Name_1 := Chars (Priv_Parent);
20219 Check_SPARK_05_Restriction ("% expected", Full_Indic);
20220 end if;
20222 -- Check the rules of 7.3(10): if the private extension inherits
20223 -- known discriminants, then the full type must also inherit those
20224 -- discriminants from the same (ancestor) type, and the parent
20225 -- subtype of the full type must be constrained if and only if
20226 -- the ancestor subtype of the private extension is constrained.
20228 if No (Discriminant_Specifications (Parent (Priv_T)))
20229 and then not Has_Unknown_Discriminants (Priv_T)
20230 and then Has_Discriminants (Base_Type (Priv_Parent))
20231 then
20232 declare
20233 Priv_Indic : constant Node_Id :=
20234 Subtype_Indication (Parent (Priv_T));
20236 Priv_Constr : constant Boolean :=
20237 Is_Constrained (Priv_Parent)
20238 or else
20239 Nkind (Priv_Indic) = N_Subtype_Indication
20240 or else
20241 Is_Constrained (Entity (Priv_Indic));
20243 Full_Constr : constant Boolean :=
20244 Is_Constrained (Full_Parent)
20245 or else
20246 Nkind (Full_Indic) = N_Subtype_Indication
20247 or else
20248 Is_Constrained (Entity (Full_Indic));
20250 Priv_Discr : Entity_Id;
20251 Full_Discr : Entity_Id;
20253 begin
20254 Priv_Discr := First_Discriminant (Priv_Parent);
20255 Full_Discr := First_Discriminant (Full_Parent);
20256 while Present (Priv_Discr) and then Present (Full_Discr) loop
20257 if Original_Record_Component (Priv_Discr) =
20258 Original_Record_Component (Full_Discr)
20259 or else
20260 Corresponding_Discriminant (Priv_Discr) =
20261 Corresponding_Discriminant (Full_Discr)
20262 then
20263 null;
20264 else
20265 exit;
20266 end if;
20268 Next_Discriminant (Priv_Discr);
20269 Next_Discriminant (Full_Discr);
20270 end loop;
20272 if Present (Priv_Discr) or else Present (Full_Discr) then
20273 Error_Msg_N
20274 ("full view must inherit discriminants of the parent "
20275 & "type used in the private extension", Full_Indic);
20277 elsif Priv_Constr and then not Full_Constr then
20278 Error_Msg_N
20279 ("parent subtype of full type must be constrained",
20280 Full_Indic);
20282 elsif Full_Constr and then not Priv_Constr then
20283 Error_Msg_N
20284 ("parent subtype of full type must be unconstrained",
20285 Full_Indic);
20286 end if;
20287 end;
20289 -- Check the rules of 7.3(12): if a partial view has neither
20290 -- known or unknown discriminants, then the full type
20291 -- declaration shall define a definite subtype.
20293 elsif not Has_Unknown_Discriminants (Priv_T)
20294 and then not Has_Discriminants (Priv_T)
20295 and then not Is_Constrained (Full_T)
20296 then
20297 Error_Msg_N
20298 ("full view must define a constrained type if partial view "
20299 & "has no discriminants", Full_T);
20300 end if;
20302 -- ??????? Do we implement the following properly ?????
20303 -- If the ancestor subtype of a private extension has constrained
20304 -- discriminants, then the parent subtype of the full view shall
20305 -- impose a statically matching constraint on those discriminants
20306 -- [7.3(13)].
20307 end if;
20309 else
20310 -- For untagged types, verify that a type without discriminants is
20311 -- not completed with an unconstrained type. A separate error message
20312 -- is produced if the full type has defaulted discriminants.
20314 if Is_Definite_Subtype (Priv_T)
20315 and then not Is_Definite_Subtype (Full_T)
20316 then
20317 Error_Msg_Sloc := Sloc (Parent (Priv_T));
20318 Error_Msg_NE
20319 ("full view of& not compatible with declaration#",
20320 Full_T, Priv_T);
20322 if not Is_Tagged_Type (Full_T) then
20323 Error_Msg_N
20324 ("\one is constrained, the other unconstrained", Full_T);
20325 end if;
20326 end if;
20327 end if;
20329 -- AI-419: verify that the use of "limited" is consistent
20331 declare
20332 Orig_Decl : constant Node_Id := Original_Node (N);
20334 begin
20335 if Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20336 and then Nkind (Orig_Decl) = N_Full_Type_Declaration
20337 and then Nkind
20338 (Type_Definition (Orig_Decl)) = N_Derived_Type_Definition
20339 then
20340 if not Limited_Present (Parent (Priv_T))
20341 and then not Synchronized_Present (Parent (Priv_T))
20342 and then Limited_Present (Type_Definition (Orig_Decl))
20343 then
20344 Error_Msg_N
20345 ("full view of non-limited extension cannot be limited", N);
20347 -- Conversely, if the partial view carries the limited keyword,
20348 -- the full view must as well, even if it may be redundant.
20350 elsif Limited_Present (Parent (Priv_T))
20351 and then not Limited_Present (Type_Definition (Orig_Decl))
20352 then
20353 Error_Msg_N
20354 ("full view of limited extension must be explicitly limited",
20356 end if;
20357 end if;
20358 end;
20360 -- Ada 2005 (AI-443): A synchronized private extension must be
20361 -- completed by a task or protected type.
20363 if Ada_Version >= Ada_2005
20364 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
20365 and then Synchronized_Present (Parent (Priv_T))
20366 and then not Is_Concurrent_Type (Full_T)
20367 then
20368 Error_Msg_N ("full view of synchronized extension must " &
20369 "be synchronized type", N);
20370 end if;
20372 -- Ada 2005 AI-363: if the full view has discriminants with
20373 -- defaults, it is illegal to declare constrained access subtypes
20374 -- whose designated type is the current type. This allows objects
20375 -- of the type that are declared in the heap to be unconstrained.
20377 if not Has_Unknown_Discriminants (Priv_T)
20378 and then not Has_Discriminants (Priv_T)
20379 and then Has_Discriminants (Full_T)
20380 and then
20381 Present (Discriminant_Default_Value (First_Discriminant (Full_T)))
20382 then
20383 Set_Has_Constrained_Partial_View (Full_T);
20384 Set_Has_Constrained_Partial_View (Priv_T);
20385 end if;
20387 -- Create a full declaration for all its subtypes recorded in
20388 -- Private_Dependents and swap them similarly to the base type. These
20389 -- are subtypes that have been define before the full declaration of
20390 -- the private type. We also swap the entry in Private_Dependents list
20391 -- so we can properly restore the private view on exit from the scope.
20393 declare
20394 Priv_Elmt : Elmt_Id;
20395 Priv_Scop : Entity_Id;
20396 Priv : Entity_Id;
20397 Full : Entity_Id;
20399 begin
20400 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
20401 while Present (Priv_Elmt) loop
20402 Priv := Node (Priv_Elmt);
20403 Priv_Scop := Scope (Priv);
20405 if Ekind_In (Priv, E_Private_Subtype,
20406 E_Limited_Private_Subtype,
20407 E_Record_Subtype_With_Private)
20408 then
20409 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
20410 Set_Is_Itype (Full);
20411 Set_Parent (Full, Parent (Priv));
20412 Set_Associated_Node_For_Itype (Full, N);
20414 -- Now we need to complete the private subtype, but since the
20415 -- base type has already been swapped, we must also swap the
20416 -- subtypes (and thus, reverse the arguments in the call to
20417 -- Complete_Private_Subtype). Also note that we may need to
20418 -- re-establish the scope of the private subtype.
20420 Copy_And_Swap (Priv, Full);
20422 if not In_Open_Scopes (Priv_Scop) then
20423 Push_Scope (Priv_Scop);
20425 else
20426 -- Reset Priv_Scop to Empty to indicate no scope was pushed
20428 Priv_Scop := Empty;
20429 end if;
20431 Complete_Private_Subtype (Full, Priv, Full_T, N);
20433 if Present (Priv_Scop) then
20434 Pop_Scope;
20435 end if;
20437 Replace_Elmt (Priv_Elmt, Full);
20438 end if;
20440 Next_Elmt (Priv_Elmt);
20441 end loop;
20442 end;
20444 -- If the private view was tagged, copy the new primitive operations
20445 -- from the private view to the full view.
20447 if Is_Tagged_Type (Full_T) then
20448 declare
20449 Disp_Typ : Entity_Id;
20450 Full_List : Elist_Id;
20451 Prim : Entity_Id;
20452 Prim_Elmt : Elmt_Id;
20453 Priv_List : Elist_Id;
20455 function Contains
20456 (E : Entity_Id;
20457 L : Elist_Id) return Boolean;
20458 -- Determine whether list L contains element E
20460 --------------
20461 -- Contains --
20462 --------------
20464 function Contains
20465 (E : Entity_Id;
20466 L : Elist_Id) return Boolean
20468 List_Elmt : Elmt_Id;
20470 begin
20471 List_Elmt := First_Elmt (L);
20472 while Present (List_Elmt) loop
20473 if Node (List_Elmt) = E then
20474 return True;
20475 end if;
20477 Next_Elmt (List_Elmt);
20478 end loop;
20480 return False;
20481 end Contains;
20483 -- Start of processing
20485 begin
20486 if Is_Tagged_Type (Priv_T) then
20487 Priv_List := Primitive_Operations (Priv_T);
20488 Prim_Elmt := First_Elmt (Priv_List);
20490 -- In the case of a concurrent type completing a private tagged
20491 -- type, primitives may have been declared in between the two
20492 -- views. These subprograms need to be wrapped the same way
20493 -- entries and protected procedures are handled because they
20494 -- cannot be directly shared by the two views.
20496 if Is_Concurrent_Type (Full_T) then
20497 declare
20498 Conc_Typ : constant Entity_Id :=
20499 Corresponding_Record_Type (Full_T);
20500 Curr_Nod : Node_Id := Parent (Conc_Typ);
20501 Wrap_Spec : Node_Id;
20503 begin
20504 while Present (Prim_Elmt) loop
20505 Prim := Node (Prim_Elmt);
20507 if Comes_From_Source (Prim)
20508 and then not Is_Abstract_Subprogram (Prim)
20509 then
20510 Wrap_Spec :=
20511 Make_Subprogram_Declaration (Sloc (Prim),
20512 Specification =>
20513 Build_Wrapper_Spec
20514 (Subp_Id => Prim,
20515 Obj_Typ => Conc_Typ,
20516 Formals =>
20517 Parameter_Specifications
20518 (Parent (Prim))));
20520 Insert_After (Curr_Nod, Wrap_Spec);
20521 Curr_Nod := Wrap_Spec;
20523 Analyze (Wrap_Spec);
20525 -- Remove the wrapper from visibility to avoid
20526 -- spurious conflict with the wrapped entity.
20528 Set_Is_Immediately_Visible
20529 (Defining_Entity (Specification (Wrap_Spec)),
20530 False);
20531 end if;
20533 Next_Elmt (Prim_Elmt);
20534 end loop;
20536 goto Leave;
20537 end;
20539 -- For non-concurrent types, transfer explicit primitives, but
20540 -- omit those inherited from the parent of the private view
20541 -- since they will be re-inherited later on.
20543 else
20544 Full_List := Primitive_Operations (Full_T);
20546 while Present (Prim_Elmt) loop
20547 Prim := Node (Prim_Elmt);
20549 if Comes_From_Source (Prim)
20550 and then not Contains (Prim, Full_List)
20551 then
20552 Append_Elmt (Prim, Full_List);
20553 end if;
20555 Next_Elmt (Prim_Elmt);
20556 end loop;
20557 end if;
20559 -- Untagged private view
20561 else
20562 Full_List := Primitive_Operations (Full_T);
20564 -- In this case the partial view is untagged, so here we locate
20565 -- all of the earlier primitives that need to be treated as
20566 -- dispatching (those that appear between the two views). Note
20567 -- that these additional operations must all be new operations
20568 -- (any earlier operations that override inherited operations
20569 -- of the full view will already have been inserted in the
20570 -- primitives list, marked by Check_Operation_From_Private_View
20571 -- as dispatching. Note that implicit "/=" operators are
20572 -- excluded from being added to the primitives list since they
20573 -- shouldn't be treated as dispatching (tagged "/=" is handled
20574 -- specially).
20576 Prim := Next_Entity (Full_T);
20577 while Present (Prim) and then Prim /= Priv_T loop
20578 if Ekind_In (Prim, E_Procedure, E_Function) then
20579 Disp_Typ := Find_Dispatching_Type (Prim);
20581 if Disp_Typ = Full_T
20582 and then (Chars (Prim) /= Name_Op_Ne
20583 or else Comes_From_Source (Prim))
20584 then
20585 Check_Controlling_Formals (Full_T, Prim);
20587 if not Is_Dispatching_Operation (Prim) then
20588 Append_Elmt (Prim, Full_List);
20589 Set_Is_Dispatching_Operation (Prim, True);
20590 Set_DT_Position_Value (Prim, No_Uint);
20591 end if;
20593 elsif Is_Dispatching_Operation (Prim)
20594 and then Disp_Typ /= Full_T
20595 then
20597 -- Verify that it is not otherwise controlled by a
20598 -- formal or a return value of type T.
20600 Check_Controlling_Formals (Disp_Typ, Prim);
20601 end if;
20602 end if;
20604 Next_Entity (Prim);
20605 end loop;
20606 end if;
20608 -- For the tagged case, the two views can share the same primitive
20609 -- operations list and the same class-wide type. Update attributes
20610 -- of the class-wide type which depend on the full declaration.
20612 if Is_Tagged_Type (Priv_T) then
20613 Set_Direct_Primitive_Operations (Priv_T, Full_List);
20614 Set_Class_Wide_Type
20615 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
20617 Propagate_Concurrent_Flags (Class_Wide_Type (Priv_T), Full_T);
20618 end if;
20619 end;
20620 end if;
20622 -- Ada 2005 AI 161: Check preelaborable initialization consistency
20624 if Known_To_Have_Preelab_Init (Priv_T) then
20626 -- Case where there is a pragma Preelaborable_Initialization. We
20627 -- always allow this in predefined units, which is cheating a bit,
20628 -- but it means we don't have to struggle to meet the requirements in
20629 -- the RM for having Preelaborable Initialization. Otherwise we
20630 -- require that the type meets the RM rules. But we can't check that
20631 -- yet, because of the rule about overriding Initialize, so we simply
20632 -- set a flag that will be checked at freeze time.
20634 if not In_Predefined_Unit (Full_T) then
20635 Set_Must_Have_Preelab_Init (Full_T);
20636 end if;
20637 end if;
20639 -- If pragma CPP_Class was applied to the private type declaration,
20640 -- propagate it now to the full type declaration.
20642 if Is_CPP_Class (Priv_T) then
20643 Set_Is_CPP_Class (Full_T);
20644 Set_Convention (Full_T, Convention_CPP);
20646 -- Check that components of imported CPP types do not have default
20647 -- expressions.
20649 Check_CPP_Type_Has_No_Defaults (Full_T);
20650 end if;
20652 -- If the private view has user specified stream attributes, then so has
20653 -- the full view.
20655 -- Why the test, how could these flags be already set in Full_T ???
20657 if Has_Specified_Stream_Read (Priv_T) then
20658 Set_Has_Specified_Stream_Read (Full_T);
20659 end if;
20661 if Has_Specified_Stream_Write (Priv_T) then
20662 Set_Has_Specified_Stream_Write (Full_T);
20663 end if;
20665 if Has_Specified_Stream_Input (Priv_T) then
20666 Set_Has_Specified_Stream_Input (Full_T);
20667 end if;
20669 if Has_Specified_Stream_Output (Priv_T) then
20670 Set_Has_Specified_Stream_Output (Full_T);
20671 end if;
20673 -- Propagate Default_Initial_Condition-related attributes from the
20674 -- partial view to the full view and its base type.
20676 Propagate_DIC_Attributes (Full_T, From_Typ => Priv_T);
20677 Propagate_DIC_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20679 -- Propagate invariant-related attributes from the partial view to the
20680 -- full view and its base type.
20682 Propagate_Invariant_Attributes (Full_T, From_Typ => Priv_T);
20683 Propagate_Invariant_Attributes (Base_Type (Full_T), From_Typ => Priv_T);
20685 -- AI12-0041: Detect an attempt to inherit a class-wide type invariant
20686 -- in the full view without advertising the inheritance in the partial
20687 -- view. This can only occur when the partial view has no parent type
20688 -- and the full view has an interface as a parent. Any other scenarios
20689 -- are illegal because implemented interfaces must match between the
20690 -- two views.
20692 if Is_Tagged_Type (Priv_T) and then Is_Tagged_Type (Full_T) then
20693 declare
20694 Full_Par : constant Entity_Id := Etype (Full_T);
20695 Priv_Par : constant Entity_Id := Etype (Priv_T);
20697 begin
20698 if not Is_Interface (Priv_Par)
20699 and then Is_Interface (Full_Par)
20700 and then Has_Inheritable_Invariants (Full_Par)
20701 then
20702 Error_Msg_N
20703 ("hidden inheritance of class-wide type invariants not "
20704 & "allowed", N);
20705 end if;
20706 end;
20707 end if;
20709 -- Propagate predicates to full type, and predicate function if already
20710 -- defined. It is not clear that this can actually happen? the partial
20711 -- view cannot be frozen yet, and the predicate function has not been
20712 -- built. Still it is a cheap check and seems safer to make it.
20714 if Has_Predicates (Priv_T) then
20715 Set_Has_Predicates (Full_T);
20717 if Present (Predicate_Function (Priv_T)) then
20718 Set_Predicate_Function (Full_T, Predicate_Function (Priv_T));
20719 end if;
20720 end if;
20722 <<Leave>>
20723 Restore_Ghost_Mode (Saved_GM);
20724 end Process_Full_View;
20726 -----------------------------------
20727 -- Process_Incomplete_Dependents --
20728 -----------------------------------
20730 procedure Process_Incomplete_Dependents
20731 (N : Node_Id;
20732 Full_T : Entity_Id;
20733 Inc_T : Entity_Id)
20735 Inc_Elmt : Elmt_Id;
20736 Priv_Dep : Entity_Id;
20737 New_Subt : Entity_Id;
20739 Disc_Constraint : Elist_Id;
20741 begin
20742 if No (Private_Dependents (Inc_T)) then
20743 return;
20744 end if;
20746 -- Itypes that may be generated by the completion of an incomplete
20747 -- subtype are not used by the back-end and not attached to the tree.
20748 -- They are created only for constraint-checking purposes.
20750 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
20751 while Present (Inc_Elmt) loop
20752 Priv_Dep := Node (Inc_Elmt);
20754 if Ekind (Priv_Dep) = E_Subprogram_Type then
20756 -- An Access_To_Subprogram type may have a return type or a
20757 -- parameter type that is incomplete. Replace with the full view.
20759 if Etype (Priv_Dep) = Inc_T then
20760 Set_Etype (Priv_Dep, Full_T);
20761 end if;
20763 declare
20764 Formal : Entity_Id;
20766 begin
20767 Formal := First_Formal (Priv_Dep);
20768 while Present (Formal) loop
20769 if Etype (Formal) = Inc_T then
20770 Set_Etype (Formal, Full_T);
20771 end if;
20773 Next_Formal (Formal);
20774 end loop;
20775 end;
20777 elsif Is_Overloadable (Priv_Dep) then
20779 -- If a subprogram in the incomplete dependents list is primitive
20780 -- for a tagged full type then mark it as a dispatching operation,
20781 -- check whether it overrides an inherited subprogram, and check
20782 -- restrictions on its controlling formals. Note that a protected
20783 -- operation is never dispatching: only its wrapper operation
20784 -- (which has convention Ada) is.
20786 if Is_Tagged_Type (Full_T)
20787 and then Is_Primitive (Priv_Dep)
20788 and then Convention (Priv_Dep) /= Convention_Protected
20789 then
20790 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
20791 Set_Is_Dispatching_Operation (Priv_Dep);
20792 Check_Controlling_Formals (Full_T, Priv_Dep);
20793 end if;
20795 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
20797 -- Can happen during processing of a body before the completion
20798 -- of a TA type. Ignore, because spec is also on dependent list.
20800 return;
20802 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
20803 -- corresponding subtype of the full view.
20805 elsif Ekind (Priv_Dep) = E_Incomplete_Subtype then
20806 Set_Subtype_Indication
20807 (Parent (Priv_Dep), New_Occurrence_Of (Full_T, Sloc (Priv_Dep)));
20808 Set_Etype (Priv_Dep, Full_T);
20809 Set_Ekind (Priv_Dep, Subtype_Kind (Ekind (Full_T)));
20810 Set_Analyzed (Parent (Priv_Dep), False);
20812 -- Reanalyze the declaration, suppressing the call to
20813 -- Enter_Name to avoid duplicate names.
20815 Analyze_Subtype_Declaration
20816 (N => Parent (Priv_Dep),
20817 Skip => True);
20819 -- Dependent is a subtype
20821 else
20822 -- We build a new subtype indication using the full view of the
20823 -- incomplete parent. The discriminant constraints have been
20824 -- elaborated already at the point of the subtype declaration.
20826 New_Subt := Create_Itype (E_Void, N);
20828 if Has_Discriminants (Full_T) then
20829 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
20830 else
20831 Disc_Constraint := No_Elist;
20832 end if;
20834 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
20835 Set_Full_View (Priv_Dep, New_Subt);
20836 end if;
20838 Next_Elmt (Inc_Elmt);
20839 end loop;
20840 end Process_Incomplete_Dependents;
20842 --------------------------------
20843 -- Process_Range_Expr_In_Decl --
20844 --------------------------------
20846 procedure Process_Range_Expr_In_Decl
20847 (R : Node_Id;
20848 T : Entity_Id;
20849 Subtyp : Entity_Id := Empty;
20850 Check_List : List_Id := Empty_List;
20851 R_Check_Off : Boolean := False;
20852 In_Iter_Schm : Boolean := False)
20854 Lo, Hi : Node_Id;
20855 R_Checks : Check_Result;
20856 Insert_Node : Node_Id;
20857 Def_Id : Entity_Id;
20859 begin
20860 Analyze_And_Resolve (R, Base_Type (T));
20862 if Nkind (R) = N_Range then
20864 -- In SPARK, all ranges should be static, with the exception of the
20865 -- discrete type definition of a loop parameter specification.
20867 if not In_Iter_Schm
20868 and then not Is_OK_Static_Range (R)
20869 then
20870 Check_SPARK_05_Restriction ("range should be static", R);
20871 end if;
20873 Lo := Low_Bound (R);
20874 Hi := High_Bound (R);
20876 -- Validity checks on the range of a quantified expression are
20877 -- delayed until the construct is transformed into a loop.
20879 if Nkind (Parent (R)) = N_Loop_Parameter_Specification
20880 and then Nkind (Parent (Parent (R))) = N_Quantified_Expression
20881 then
20882 null;
20884 -- We need to ensure validity of the bounds here, because if we
20885 -- go ahead and do the expansion, then the expanded code will get
20886 -- analyzed with range checks suppressed and we miss the check.
20888 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
20889 -- the temporaries generated by routine Remove_Side_Effects by means
20890 -- of validity checks must use the same names. When a range appears
20891 -- in the parent of a generic, the range is processed with checks
20892 -- disabled as part of the generic context and with checks enabled
20893 -- for code generation purposes. This leads to link issues as the
20894 -- generic contains references to xxx_FIRST/_LAST, but the inlined
20895 -- template sees the temporaries generated by Remove_Side_Effects.
20897 else
20898 Validity_Check_Range (R, Subtyp);
20899 end if;
20901 -- If there were errors in the declaration, try and patch up some
20902 -- common mistakes in the bounds. The cases handled are literals
20903 -- which are Integer where the expected type is Real and vice versa.
20904 -- These corrections allow the compilation process to proceed further
20905 -- along since some basic assumptions of the format of the bounds
20906 -- are guaranteed.
20908 if Etype (R) = Any_Type then
20909 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
20910 Rewrite (Lo,
20911 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
20913 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
20914 Rewrite (Hi,
20915 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
20917 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
20918 Rewrite (Lo,
20919 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
20921 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
20922 Rewrite (Hi,
20923 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
20924 end if;
20926 Set_Etype (Lo, T);
20927 Set_Etype (Hi, T);
20928 end if;
20930 -- If the bounds of the range have been mistakenly given as string
20931 -- literals (perhaps in place of character literals), then an error
20932 -- has already been reported, but we rewrite the string literal as a
20933 -- bound of the range's type to avoid blowups in later processing
20934 -- that looks at static values.
20936 if Nkind (Lo) = N_String_Literal then
20937 Rewrite (Lo,
20938 Make_Attribute_Reference (Sloc (Lo),
20939 Prefix => New_Occurrence_Of (T, Sloc (Lo)),
20940 Attribute_Name => Name_First));
20941 Analyze_And_Resolve (Lo);
20942 end if;
20944 if Nkind (Hi) = N_String_Literal then
20945 Rewrite (Hi,
20946 Make_Attribute_Reference (Sloc (Hi),
20947 Prefix => New_Occurrence_Of (T, Sloc (Hi)),
20948 Attribute_Name => Name_First));
20949 Analyze_And_Resolve (Hi);
20950 end if;
20952 -- If bounds aren't scalar at this point then exit, avoiding
20953 -- problems with further processing of the range in this procedure.
20955 if not Is_Scalar_Type (Etype (Lo)) then
20956 return;
20957 end if;
20959 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20960 -- then range of the base type. Here we check whether the bounds
20961 -- are in the range of the subtype itself. Note that if the bounds
20962 -- represent the null range the Constraint_Error exception should
20963 -- not be raised.
20965 -- ??? The following code should be cleaned up as follows
20967 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20968 -- is done in the call to Range_Check (R, T); below
20970 -- 2. The use of R_Check_Off should be investigated and possibly
20971 -- removed, this would clean up things a bit.
20973 if Is_Null_Range (Lo, Hi) then
20974 null;
20976 else
20977 -- Capture values of bounds and generate temporaries for them
20978 -- if needed, before applying checks, since checks may cause
20979 -- duplication of the expression without forcing evaluation.
20981 -- The forced evaluation removes side effects from expressions,
20982 -- which should occur also in GNATprove mode. Otherwise, we end up
20983 -- with unexpected insertions of actions at places where this is
20984 -- not supposed to occur, e.g. on default parameters of a call.
20986 if Expander_Active or GNATprove_Mode then
20988 -- Call Force_Evaluation to create declarations as needed to
20989 -- deal with side effects, and also create typ_FIRST/LAST
20990 -- entities for bounds if we have a subtype name.
20992 -- Note: we do this transformation even if expansion is not
20993 -- active if we are in GNATprove_Mode since the transformation
20994 -- is in general required to ensure that the resulting tree has
20995 -- proper Ada semantics.
20997 Force_Evaluation
20998 (Lo, Related_Id => Subtyp, Is_Low_Bound => True);
20999 Force_Evaluation
21000 (Hi, Related_Id => Subtyp, Is_High_Bound => True);
21001 end if;
21003 -- We use a flag here instead of suppressing checks on the type
21004 -- because the type we check against isn't necessarily the place
21005 -- where we put the check.
21007 if not R_Check_Off then
21008 R_Checks := Get_Range_Checks (R, T);
21010 -- Look up tree to find an appropriate insertion point. We
21011 -- can't just use insert_actions because later processing
21012 -- depends on the insertion node. Prior to Ada 2012 the
21013 -- insertion point could only be a declaration or a loop, but
21014 -- quantified expressions can appear within any context in an
21015 -- expression, and the insertion point can be any statement,
21016 -- pragma, or declaration.
21018 Insert_Node := Parent (R);
21019 while Present (Insert_Node) loop
21020 exit when
21021 Nkind (Insert_Node) in N_Declaration
21022 and then
21023 not Nkind_In
21024 (Insert_Node, N_Component_Declaration,
21025 N_Loop_Parameter_Specification,
21026 N_Function_Specification,
21027 N_Procedure_Specification);
21029 exit when Nkind (Insert_Node) in N_Later_Decl_Item
21030 or else Nkind (Insert_Node) in
21031 N_Statement_Other_Than_Procedure_Call
21032 or else Nkind_In (Insert_Node, N_Procedure_Call_Statement,
21033 N_Pragma);
21035 Insert_Node := Parent (Insert_Node);
21036 end loop;
21038 -- Why would Type_Decl not be present??? Without this test,
21039 -- short regression tests fail.
21041 if Present (Insert_Node) then
21043 -- Case of loop statement. Verify that the range is part
21044 -- of the subtype indication of the iteration scheme.
21046 if Nkind (Insert_Node) = N_Loop_Statement then
21047 declare
21048 Indic : Node_Id;
21050 begin
21051 Indic := Parent (R);
21052 while Present (Indic)
21053 and then Nkind (Indic) /= N_Subtype_Indication
21054 loop
21055 Indic := Parent (Indic);
21056 end loop;
21058 if Present (Indic) then
21059 Def_Id := Etype (Subtype_Mark (Indic));
21061 Insert_Range_Checks
21062 (R_Checks,
21063 Insert_Node,
21064 Def_Id,
21065 Sloc (Insert_Node),
21067 Do_Before => True);
21068 end if;
21069 end;
21071 -- Insertion before a declaration. If the declaration
21072 -- includes discriminants, the list of applicable checks
21073 -- is given by the caller.
21075 elsif Nkind (Insert_Node) in N_Declaration then
21076 Def_Id := Defining_Identifier (Insert_Node);
21078 if (Ekind (Def_Id) = E_Record_Type
21079 and then Depends_On_Discriminant (R))
21080 or else
21081 (Ekind (Def_Id) = E_Protected_Type
21082 and then Has_Discriminants (Def_Id))
21083 then
21084 Append_Range_Checks
21085 (R_Checks,
21086 Check_List, Def_Id, Sloc (Insert_Node), R);
21088 else
21089 Insert_Range_Checks
21090 (R_Checks,
21091 Insert_Node, Def_Id, Sloc (Insert_Node), R);
21093 end if;
21095 -- Insertion before a statement. Range appears in the
21096 -- context of a quantified expression. Insertion will
21097 -- take place when expression is expanded.
21099 else
21100 null;
21101 end if;
21102 end if;
21103 end if;
21104 end if;
21106 -- Case of other than an explicit N_Range node
21108 -- The forced evaluation removes side effects from expressions, which
21109 -- should occur also in GNATprove mode. Otherwise, we end up with
21110 -- unexpected insertions of actions at places where this is not
21111 -- supposed to occur, e.g. on default parameters of a call.
21113 elsif Expander_Active or GNATprove_Mode then
21114 Get_Index_Bounds (R, Lo, Hi);
21115 Force_Evaluation (Lo);
21116 Force_Evaluation (Hi);
21117 end if;
21118 end Process_Range_Expr_In_Decl;
21120 --------------------------------------
21121 -- Process_Real_Range_Specification --
21122 --------------------------------------
21124 procedure Process_Real_Range_Specification (Def : Node_Id) is
21125 Spec : constant Node_Id := Real_Range_Specification (Def);
21126 Lo : Node_Id;
21127 Hi : Node_Id;
21128 Err : Boolean := False;
21130 procedure Analyze_Bound (N : Node_Id);
21131 -- Analyze and check one bound
21133 -------------------
21134 -- Analyze_Bound --
21135 -------------------
21137 procedure Analyze_Bound (N : Node_Id) is
21138 begin
21139 Analyze_And_Resolve (N, Any_Real);
21141 if not Is_OK_Static_Expression (N) then
21142 Flag_Non_Static_Expr
21143 ("bound in real type definition is not static!", N);
21144 Err := True;
21145 end if;
21146 end Analyze_Bound;
21148 -- Start of processing for Process_Real_Range_Specification
21150 begin
21151 if Present (Spec) then
21152 Lo := Low_Bound (Spec);
21153 Hi := High_Bound (Spec);
21154 Analyze_Bound (Lo);
21155 Analyze_Bound (Hi);
21157 -- If error, clear away junk range specification
21159 if Err then
21160 Set_Real_Range_Specification (Def, Empty);
21161 end if;
21162 end if;
21163 end Process_Real_Range_Specification;
21165 ---------------------
21166 -- Process_Subtype --
21167 ---------------------
21169 function Process_Subtype
21170 (S : Node_Id;
21171 Related_Nod : Node_Id;
21172 Related_Id : Entity_Id := Empty;
21173 Suffix : Character := ' ') return Entity_Id
21175 P : Node_Id;
21176 Def_Id : Entity_Id;
21177 Error_Node : Node_Id;
21178 Full_View_Id : Entity_Id;
21179 Subtype_Mark_Id : Entity_Id;
21181 May_Have_Null_Exclusion : Boolean;
21183 procedure Check_Incomplete (T : Node_Id);
21184 -- Called to verify that an incomplete type is not used prematurely
21186 ----------------------
21187 -- Check_Incomplete --
21188 ----------------------
21190 procedure Check_Incomplete (T : Node_Id) is
21191 begin
21192 -- Ada 2005 (AI-412): Incomplete subtypes are legal
21194 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type
21195 and then
21196 not (Ada_Version >= Ada_2005
21197 and then
21198 (Nkind (Parent (T)) = N_Subtype_Declaration
21199 or else (Nkind (Parent (T)) = N_Subtype_Indication
21200 and then Nkind (Parent (Parent (T))) =
21201 N_Subtype_Declaration)))
21202 then
21203 Error_Msg_N ("invalid use of type before its full declaration", T);
21204 end if;
21205 end Check_Incomplete;
21207 -- Start of processing for Process_Subtype
21209 begin
21210 -- Case of no constraints present
21212 if Nkind (S) /= N_Subtype_Indication then
21213 Find_Type (S);
21214 Check_Incomplete (S);
21215 P := Parent (S);
21217 -- Ada 2005 (AI-231): Static check
21219 if Ada_Version >= Ada_2005
21220 and then Present (P)
21221 and then Null_Exclusion_Present (P)
21222 and then Nkind (P) /= N_Access_To_Object_Definition
21223 and then not Is_Access_Type (Entity (S))
21224 then
21225 Error_Msg_N ("`NOT NULL` only allowed for an access type", S);
21226 end if;
21228 -- The following is ugly, can't we have a range or even a flag???
21230 May_Have_Null_Exclusion :=
21231 Nkind_In (P, N_Access_Definition,
21232 N_Access_Function_Definition,
21233 N_Access_Procedure_Definition,
21234 N_Access_To_Object_Definition,
21235 N_Allocator,
21236 N_Component_Definition)
21237 or else
21238 Nkind_In (P, N_Derived_Type_Definition,
21239 N_Discriminant_Specification,
21240 N_Formal_Object_Declaration,
21241 N_Object_Declaration,
21242 N_Object_Renaming_Declaration,
21243 N_Parameter_Specification,
21244 N_Subtype_Declaration);
21246 -- Create an Itype that is a duplicate of Entity (S) but with the
21247 -- null-exclusion attribute.
21249 if May_Have_Null_Exclusion
21250 and then Is_Access_Type (Entity (S))
21251 and then Null_Exclusion_Present (P)
21253 -- No need to check the case of an access to object definition.
21254 -- It is correct to define double not-null pointers.
21256 -- Example:
21257 -- type Not_Null_Int_Ptr is not null access Integer;
21258 -- type Acc is not null access Not_Null_Int_Ptr;
21260 and then Nkind (P) /= N_Access_To_Object_Definition
21261 then
21262 if Can_Never_Be_Null (Entity (S)) then
21263 case Nkind (Related_Nod) is
21264 when N_Full_Type_Declaration =>
21265 if Nkind (Type_Definition (Related_Nod))
21266 in N_Array_Type_Definition
21267 then
21268 Error_Node :=
21269 Subtype_Indication
21270 (Component_Definition
21271 (Type_Definition (Related_Nod)));
21272 else
21273 Error_Node :=
21274 Subtype_Indication (Type_Definition (Related_Nod));
21275 end if;
21277 when N_Subtype_Declaration =>
21278 Error_Node := Subtype_Indication (Related_Nod);
21280 when N_Object_Declaration =>
21281 Error_Node := Object_Definition (Related_Nod);
21283 when N_Component_Declaration =>
21284 Error_Node :=
21285 Subtype_Indication (Component_Definition (Related_Nod));
21287 when N_Allocator =>
21288 Error_Node := Expression (Related_Nod);
21290 when others =>
21291 pragma Assert (False);
21292 Error_Node := Related_Nod;
21293 end case;
21295 Error_Msg_NE
21296 ("`NOT NULL` not allowed (& already excludes null)",
21297 Error_Node,
21298 Entity (S));
21299 end if;
21301 Set_Etype (S,
21302 Create_Null_Excluding_Itype
21303 (T => Entity (S),
21304 Related_Nod => P));
21305 Set_Entity (S, Etype (S));
21306 end if;
21308 return Entity (S);
21310 -- Case of constraint present, so that we have an N_Subtype_Indication
21311 -- node (this node is created only if constraints are present).
21313 else
21314 Find_Type (Subtype_Mark (S));
21316 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
21317 and then not
21318 (Nkind (Parent (S)) = N_Subtype_Declaration
21319 and then Is_Itype (Defining_Identifier (Parent (S))))
21320 then
21321 Check_Incomplete (Subtype_Mark (S));
21322 end if;
21324 P := Parent (S);
21325 Subtype_Mark_Id := Entity (Subtype_Mark (S));
21327 -- Explicit subtype declaration case
21329 if Nkind (P) = N_Subtype_Declaration then
21330 Def_Id := Defining_Identifier (P);
21332 -- Explicit derived type definition case
21334 elsif Nkind (P) = N_Derived_Type_Definition then
21335 Def_Id := Defining_Identifier (Parent (P));
21337 -- Implicit case, the Def_Id must be created as an implicit type.
21338 -- The one exception arises in the case of concurrent types, array
21339 -- and access types, where other subsidiary implicit types may be
21340 -- created and must appear before the main implicit type. In these
21341 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
21342 -- has not yet been called to create Def_Id.
21344 else
21345 if Is_Array_Type (Subtype_Mark_Id)
21346 or else Is_Concurrent_Type (Subtype_Mark_Id)
21347 or else Is_Access_Type (Subtype_Mark_Id)
21348 then
21349 Def_Id := Empty;
21351 -- For the other cases, we create a new unattached Itype,
21352 -- and set the indication to ensure it gets attached later.
21354 else
21355 Def_Id :=
21356 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21357 end if;
21358 end if;
21360 -- If the kind of constraint is invalid for this kind of type,
21361 -- then give an error, and then pretend no constraint was given.
21363 if not Is_Valid_Constraint_Kind
21364 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
21365 then
21366 Error_Msg_N
21367 ("incorrect constraint for this kind of type", Constraint (S));
21369 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
21371 -- Set Ekind of orphan itype, to prevent cascaded errors
21373 if Present (Def_Id) then
21374 Set_Ekind (Def_Id, Ekind (Any_Type));
21375 end if;
21377 -- Make recursive call, having got rid of the bogus constraint
21379 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
21380 end if;
21382 -- Remaining processing depends on type. Select on Base_Type kind to
21383 -- ensure getting to the concrete type kind in the case of a private
21384 -- subtype (needed when only doing semantic analysis).
21386 case Ekind (Base_Type (Subtype_Mark_Id)) is
21387 when Access_Kind =>
21389 -- If this is a constraint on a class-wide type, discard it.
21390 -- There is currently no way to express a partial discriminant
21391 -- constraint on a type with unknown discriminants. This is
21392 -- a pathology that the ACATS wisely decides not to test.
21394 if Is_Class_Wide_Type (Designated_Type (Subtype_Mark_Id)) then
21395 if Comes_From_Source (S) then
21396 Error_Msg_N
21397 ("constraint on class-wide type ignored??",
21398 Constraint (S));
21399 end if;
21401 if Nkind (P) = N_Subtype_Declaration then
21402 Set_Subtype_Indication (P,
21403 New_Occurrence_Of (Subtype_Mark_Id, Sloc (S)));
21404 end if;
21406 return Subtype_Mark_Id;
21407 end if;
21409 Constrain_Access (Def_Id, S, Related_Nod);
21411 if Expander_Active
21412 and then Is_Itype (Designated_Type (Def_Id))
21413 and then Nkind (Related_Nod) = N_Subtype_Declaration
21414 and then not Is_Incomplete_Type (Designated_Type (Def_Id))
21415 then
21416 Build_Itype_Reference
21417 (Designated_Type (Def_Id), Related_Nod);
21418 end if;
21420 when Array_Kind =>
21421 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
21423 when Decimal_Fixed_Point_Kind =>
21424 Constrain_Decimal (Def_Id, S);
21426 when Enumeration_Kind =>
21427 Constrain_Enumeration (Def_Id, S);
21428 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
21430 when Ordinary_Fixed_Point_Kind =>
21431 Constrain_Ordinary_Fixed (Def_Id, S);
21433 when Float_Kind =>
21434 Constrain_Float (Def_Id, S);
21436 when Integer_Kind =>
21437 Constrain_Integer (Def_Id, S);
21438 Inherit_Predicate_Flags (Def_Id, Subtype_Mark_Id);
21440 when Class_Wide_Kind
21441 | E_Incomplete_Type
21442 | E_Record_Subtype
21443 | E_Record_Type
21445 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21447 if Ekind (Def_Id) = E_Incomplete_Type then
21448 Set_Private_Dependents (Def_Id, New_Elmt_List);
21449 end if;
21451 when Private_Kind =>
21452 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
21454 -- The base type may be private but Def_Id may be a full view
21455 -- in an instance.
21457 if Is_Private_Type (Def_Id) then
21458 Set_Private_Dependents (Def_Id, New_Elmt_List);
21459 end if;
21461 -- In case of an invalid constraint prevent further processing
21462 -- since the type constructed is missing expected fields.
21464 if Etype (Def_Id) = Any_Type then
21465 return Def_Id;
21466 end if;
21468 -- If the full view is that of a task with discriminants,
21469 -- we must constrain both the concurrent type and its
21470 -- corresponding record type. Otherwise we will just propagate
21471 -- the constraint to the full view, if available.
21473 if Present (Full_View (Subtype_Mark_Id))
21474 and then Has_Discriminants (Subtype_Mark_Id)
21475 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
21476 then
21477 Full_View_Id :=
21478 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
21480 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
21481 Constrain_Concurrent (Full_View_Id, S,
21482 Related_Nod, Related_Id, Suffix);
21483 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
21484 Set_Full_View (Def_Id, Full_View_Id);
21486 -- Introduce an explicit reference to the private subtype,
21487 -- to prevent scope anomalies in gigi if first use appears
21488 -- in a nested context, e.g. a later function body.
21489 -- Should this be generated in other contexts than a full
21490 -- type declaration?
21492 if Is_Itype (Def_Id)
21493 and then
21494 Nkind (Parent (P)) = N_Full_Type_Declaration
21495 then
21496 Build_Itype_Reference (Def_Id, Parent (P));
21497 end if;
21499 else
21500 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
21501 end if;
21503 when Concurrent_Kind =>
21504 Constrain_Concurrent (Def_Id, S,
21505 Related_Nod, Related_Id, Suffix);
21507 when others =>
21508 Error_Msg_N ("invalid subtype mark in subtype indication", S);
21509 end case;
21511 -- Size and Convention are always inherited from the base type
21513 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
21514 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
21516 return Def_Id;
21517 end if;
21518 end Process_Subtype;
21520 -----------------------------
21521 -- Record_Type_Declaration --
21522 -----------------------------
21524 procedure Record_Type_Declaration
21525 (T : Entity_Id;
21526 N : Node_Id;
21527 Prev : Entity_Id)
21529 Def : constant Node_Id := Type_Definition (N);
21530 Is_Tagged : Boolean;
21531 Tag_Comp : Entity_Id;
21533 begin
21534 -- These flags must be initialized before calling Process_Discriminants
21535 -- because this routine makes use of them.
21537 Set_Ekind (T, E_Record_Type);
21538 Set_Etype (T, T);
21539 Init_Size_Align (T);
21540 Set_Interfaces (T, No_Elist);
21541 Set_Stored_Constraint (T, No_Elist);
21542 Set_Default_SSO (T);
21544 -- Normal case
21546 if Ada_Version < Ada_2005 or else not Interface_Present (Def) then
21547 if Limited_Present (Def) then
21548 Check_SPARK_05_Restriction ("limited is not allowed", N);
21549 end if;
21551 if Abstract_Present (Def) then
21552 Check_SPARK_05_Restriction ("abstract is not allowed", N);
21553 end if;
21555 -- The flag Is_Tagged_Type might have already been set by
21556 -- Find_Type_Name if it detected an error for declaration T. This
21557 -- arises in the case of private tagged types where the full view
21558 -- omits the word tagged.
21560 Is_Tagged :=
21561 Tagged_Present (Def)
21562 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
21564 Set_Is_Limited_Record (T, Limited_Present (Def));
21566 if Is_Tagged then
21567 Set_Is_Tagged_Type (T, True);
21568 Set_No_Tagged_Streams_Pragma (T, No_Tagged_Streams);
21569 end if;
21571 -- Type is abstract if full declaration carries keyword, or if
21572 -- previous partial view did.
21574 Set_Is_Abstract_Type (T, Is_Abstract_Type (T)
21575 or else Abstract_Present (Def));
21577 else
21578 Check_SPARK_05_Restriction ("interface is not allowed", N);
21580 Is_Tagged := True;
21581 Analyze_Interface_Declaration (T, Def);
21583 if Present (Discriminant_Specifications (N)) then
21584 Error_Msg_N
21585 ("interface types cannot have discriminants",
21586 Defining_Identifier
21587 (First (Discriminant_Specifications (N))));
21588 end if;
21589 end if;
21591 -- First pass: if there are self-referential access components,
21592 -- create the required anonymous access type declarations, and if
21593 -- need be an incomplete type declaration for T itself.
21595 Check_Anonymous_Access_Components (N, T, Prev, Component_List (Def));
21597 if Ada_Version >= Ada_2005
21598 and then Present (Interface_List (Def))
21599 then
21600 Check_Interfaces (N, Def);
21602 declare
21603 Ifaces_List : Elist_Id;
21605 begin
21606 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21607 -- already in the parents.
21609 Collect_Interfaces
21610 (T => T,
21611 Ifaces_List => Ifaces_List,
21612 Exclude_Parents => True);
21614 Set_Interfaces (T, Ifaces_List);
21615 end;
21616 end if;
21618 -- Records constitute a scope for the component declarations within.
21619 -- The scope is created prior to the processing of these declarations.
21620 -- Discriminants are processed first, so that they are visible when
21621 -- processing the other components. The Ekind of the record type itself
21622 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21624 -- Enter record scope
21626 Push_Scope (T);
21628 -- If an incomplete or private type declaration was already given for
21629 -- the type, then this scope already exists, and the discriminants have
21630 -- been declared within. We must verify that the full declaration
21631 -- matches the incomplete one.
21633 Check_Or_Process_Discriminants (N, T, Prev);
21635 Set_Is_Constrained (T, not Has_Discriminants (T));
21636 Set_Has_Delayed_Freeze (T, True);
21638 -- For tagged types add a manually analyzed component corresponding
21639 -- to the component _tag, the corresponding piece of tree will be
21640 -- expanded as part of the freezing actions if it is not a CPP_Class.
21642 if Is_Tagged then
21644 -- Do not add the tag unless we are in expansion mode
21646 if Expander_Active then
21647 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
21648 Enter_Name (Tag_Comp);
21650 Set_Ekind (Tag_Comp, E_Component);
21651 Set_Is_Tag (Tag_Comp);
21652 Set_Is_Aliased (Tag_Comp);
21653 Set_Etype (Tag_Comp, RTE (RE_Tag));
21654 Set_DT_Entry_Count (Tag_Comp, No_Uint);
21655 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
21656 Init_Component_Location (Tag_Comp);
21658 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21659 -- implemented interfaces.
21661 if Has_Interfaces (T) then
21662 Add_Interface_Tag_Components (N, T);
21663 end if;
21664 end if;
21666 Make_Class_Wide_Type (T);
21667 Set_Direct_Primitive_Operations (T, New_Elmt_List);
21668 end if;
21670 -- We must suppress range checks when processing record components in
21671 -- the presence of discriminants, since we don't want spurious checks to
21672 -- be generated during their analysis, but Suppress_Range_Checks flags
21673 -- must be reset the after processing the record definition.
21675 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21676 -- couldn't we just use the normal range check suppression method here.
21677 -- That would seem cleaner ???
21679 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
21680 Set_Kill_Range_Checks (T, True);
21681 Record_Type_Definition (Def, Prev);
21682 Set_Kill_Range_Checks (T, False);
21683 else
21684 Record_Type_Definition (Def, Prev);
21685 end if;
21687 -- Exit from record scope
21689 End_Scope;
21691 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21692 -- the implemented interfaces and associate them an aliased entity.
21694 if Is_Tagged
21695 and then not Is_Empty_List (Interface_List (Def))
21696 then
21697 Derive_Progenitor_Subprograms (T, T);
21698 end if;
21700 Check_Function_Writable_Actuals (N);
21701 end Record_Type_Declaration;
21703 ----------------------------
21704 -- Record_Type_Definition --
21705 ----------------------------
21707 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
21708 Component : Entity_Id;
21709 Ctrl_Components : Boolean := False;
21710 Final_Storage_Only : Boolean;
21711 T : Entity_Id;
21713 begin
21714 if Ekind (Prev_T) = E_Incomplete_Type then
21715 T := Full_View (Prev_T);
21716 else
21717 T := Prev_T;
21718 end if;
21720 -- In SPARK, tagged types and type extensions may only be declared in
21721 -- the specification of library unit packages.
21723 if Present (Def) and then Is_Tagged_Type (T) then
21724 declare
21725 Typ : Node_Id;
21726 Ctxt : Node_Id;
21728 begin
21729 if Nkind (Parent (Def)) = N_Full_Type_Declaration then
21730 Typ := Parent (Def);
21731 else
21732 pragma Assert
21733 (Nkind (Parent (Def)) = N_Derived_Type_Definition);
21734 Typ := Parent (Parent (Def));
21735 end if;
21737 Ctxt := Parent (Typ);
21739 if Nkind (Ctxt) = N_Package_Body
21740 and then Nkind (Parent (Ctxt)) = N_Compilation_Unit
21741 then
21742 Check_SPARK_05_Restriction
21743 ("type should be defined in package specification", Typ);
21745 elsif Nkind (Ctxt) /= N_Package_Specification
21746 or else Nkind (Parent (Parent (Ctxt))) /= N_Compilation_Unit
21747 then
21748 Check_SPARK_05_Restriction
21749 ("type should be defined in library unit package", Typ);
21750 end if;
21751 end;
21752 end if;
21754 Final_Storage_Only := not Is_Controlled_Active (T);
21756 -- Ada 2005: Check whether an explicit Limited is present in a derived
21757 -- type declaration.
21759 if Nkind (Parent (Def)) = N_Derived_Type_Definition
21760 and then Limited_Present (Parent (Def))
21761 then
21762 Set_Is_Limited_Record (T);
21763 end if;
21765 -- If the component list of a record type is defined by the reserved
21766 -- word null and there is no discriminant part, then the record type has
21767 -- no components and all records of the type are null records (RM 3.7)
21768 -- This procedure is also called to process the extension part of a
21769 -- record extension, in which case the current scope may have inherited
21770 -- components.
21772 if No (Def)
21773 or else No (Component_List (Def))
21774 or else Null_Present (Component_List (Def))
21775 then
21776 if not Is_Tagged_Type (T) then
21777 Check_SPARK_05_Restriction ("untagged record cannot be null", Def);
21778 end if;
21780 else
21781 Analyze_Declarations (Component_Items (Component_List (Def)));
21783 if Present (Variant_Part (Component_List (Def))) then
21784 Check_SPARK_05_Restriction ("variant part is not allowed", Def);
21785 Analyze (Variant_Part (Component_List (Def)));
21786 end if;
21787 end if;
21789 -- After completing the semantic analysis of the record definition,
21790 -- record components, both new and inherited, are accessible. Set their
21791 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21792 -- whose Ekind may be void.
21794 Component := First_Entity (Current_Scope);
21795 while Present (Component) loop
21796 if Ekind (Component) = E_Void
21797 and then not Is_Itype (Component)
21798 then
21799 Set_Ekind (Component, E_Component);
21800 Init_Component_Location (Component);
21801 end if;
21803 Propagate_Concurrent_Flags (T, Etype (Component));
21805 if Ekind (Component) /= E_Component then
21806 null;
21808 -- Do not set Has_Controlled_Component on a class-wide equivalent
21809 -- type. See Make_CW_Equivalent_Type.
21811 elsif not Is_Class_Wide_Equivalent_Type (T)
21812 and then (Has_Controlled_Component (Etype (Component))
21813 or else (Chars (Component) /= Name_uParent
21814 and then Is_Controlled_Active
21815 (Etype (Component))))
21816 then
21817 Set_Has_Controlled_Component (T, True);
21818 Final_Storage_Only :=
21819 Final_Storage_Only
21820 and then Finalize_Storage_Only (Etype (Component));
21821 Ctrl_Components := True;
21822 end if;
21824 Next_Entity (Component);
21825 end loop;
21827 -- A Type is Finalize_Storage_Only only if all its controlled components
21828 -- are also.
21830 if Ctrl_Components then
21831 Set_Finalize_Storage_Only (T, Final_Storage_Only);
21832 end if;
21834 -- Place reference to end record on the proper entity, which may
21835 -- be a partial view.
21837 if Present (Def) then
21838 Process_End_Label (Def, 'e', Prev_T);
21839 end if;
21840 end Record_Type_Definition;
21842 ------------------------
21843 -- Replace_Components --
21844 ------------------------
21846 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
21847 function Process (N : Node_Id) return Traverse_Result;
21849 -------------
21850 -- Process --
21851 -------------
21853 function Process (N : Node_Id) return Traverse_Result is
21854 Comp : Entity_Id;
21856 begin
21857 if Nkind (N) = N_Discriminant_Specification then
21858 Comp := First_Discriminant (Typ);
21859 while Present (Comp) loop
21860 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21861 Set_Defining_Identifier (N, Comp);
21862 exit;
21863 end if;
21865 Next_Discriminant (Comp);
21866 end loop;
21868 elsif Nkind (N) = N_Component_Declaration then
21869 Comp := First_Component (Typ);
21870 while Present (Comp) loop
21871 if Chars (Comp) = Chars (Defining_Identifier (N)) then
21872 Set_Defining_Identifier (N, Comp);
21873 exit;
21874 end if;
21876 Next_Component (Comp);
21877 end loop;
21878 end if;
21880 return OK;
21881 end Process;
21883 procedure Replace is new Traverse_Proc (Process);
21885 -- Start of processing for Replace_Components
21887 begin
21888 Replace (Decl);
21889 end Replace_Components;
21891 -------------------------------
21892 -- Set_Completion_Referenced --
21893 -------------------------------
21895 procedure Set_Completion_Referenced (E : Entity_Id) is
21896 begin
21897 -- If in main unit, mark entity that is a completion as referenced,
21898 -- warnings go on the partial view when needed.
21900 if In_Extended_Main_Source_Unit (E) then
21901 Set_Referenced (E);
21902 end if;
21903 end Set_Completion_Referenced;
21905 ---------------------
21906 -- Set_Default_SSO --
21907 ---------------------
21909 procedure Set_Default_SSO (T : Entity_Id) is
21910 begin
21911 case Opt.Default_SSO is
21912 when ' ' =>
21913 null;
21914 when 'L' =>
21915 Set_SSO_Set_Low_By_Default (T, True);
21916 when 'H' =>
21917 Set_SSO_Set_High_By_Default (T, True);
21918 when others =>
21919 raise Program_Error;
21920 end case;
21921 end Set_Default_SSO;
21923 ---------------------
21924 -- Set_Fixed_Range --
21925 ---------------------
21927 -- The range for fixed-point types is complicated by the fact that we
21928 -- do not know the exact end points at the time of the declaration. This
21929 -- is true for three reasons:
21931 -- A size clause may affect the fudging of the end-points.
21932 -- A small clause may affect the values of the end-points.
21933 -- We try to include the end-points if it does not affect the size.
21935 -- This means that the actual end-points must be established at the
21936 -- point when the type is frozen. Meanwhile, we first narrow the range
21937 -- as permitted (so that it will fit if necessary in a small specified
21938 -- size), and then build a range subtree with these narrowed bounds.
21939 -- Set_Fixed_Range constructs the range from real literal values, and
21940 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21942 -- The parent of this range is set to point to the entity so that it is
21943 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21944 -- other scalar types, which are just pointers to the range in the
21945 -- original tree, this would otherwise be an orphan).
21947 -- The tree is left unanalyzed. When the type is frozen, the processing
21948 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21949 -- analyzed, and uses this as an indication that it should complete
21950 -- work on the range (it will know the final small and size values).
21952 procedure Set_Fixed_Range
21953 (E : Entity_Id;
21954 Loc : Source_Ptr;
21955 Lo : Ureal;
21956 Hi : Ureal)
21958 S : constant Node_Id :=
21959 Make_Range (Loc,
21960 Low_Bound => Make_Real_Literal (Loc, Lo),
21961 High_Bound => Make_Real_Literal (Loc, Hi));
21962 begin
21963 Set_Scalar_Range (E, S);
21964 Set_Parent (S, E);
21966 -- Before the freeze point, the bounds of a fixed point are universal
21967 -- and carry the corresponding type.
21969 Set_Etype (Low_Bound (S), Universal_Real);
21970 Set_Etype (High_Bound (S), Universal_Real);
21971 end Set_Fixed_Range;
21973 ----------------------------------
21974 -- Set_Scalar_Range_For_Subtype --
21975 ----------------------------------
21977 procedure Set_Scalar_Range_For_Subtype
21978 (Def_Id : Entity_Id;
21979 R : Node_Id;
21980 Subt : Entity_Id)
21982 Kind : constant Entity_Kind := Ekind (Def_Id);
21984 begin
21985 -- Defend against previous error
21987 if Nkind (R) = N_Error then
21988 return;
21989 end if;
21991 Set_Scalar_Range (Def_Id, R);
21993 -- We need to link the range into the tree before resolving it so
21994 -- that types that are referenced, including importantly the subtype
21995 -- itself, are properly frozen (Freeze_Expression requires that the
21996 -- expression be properly linked into the tree). Of course if it is
21997 -- already linked in, then we do not disturb the current link.
21999 if No (Parent (R)) then
22000 Set_Parent (R, Def_Id);
22001 end if;
22003 -- Reset the kind of the subtype during analysis of the range, to
22004 -- catch possible premature use in the bounds themselves.
22006 Set_Ekind (Def_Id, E_Void);
22007 Process_Range_Expr_In_Decl (R, Subt, Subtyp => Def_Id);
22008 Set_Ekind (Def_Id, Kind);
22009 end Set_Scalar_Range_For_Subtype;
22011 --------------------------------------------------------
22012 -- Set_Stored_Constraint_From_Discriminant_Constraint --
22013 --------------------------------------------------------
22015 procedure Set_Stored_Constraint_From_Discriminant_Constraint
22016 (E : Entity_Id)
22018 begin
22019 -- Make sure set if encountered during Expand_To_Stored_Constraint
22021 Set_Stored_Constraint (E, No_Elist);
22023 -- Give it the right value
22025 if Is_Constrained (E) and then Has_Discriminants (E) then
22026 Set_Stored_Constraint (E,
22027 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
22028 end if;
22029 end Set_Stored_Constraint_From_Discriminant_Constraint;
22031 -------------------------------------
22032 -- Signed_Integer_Type_Declaration --
22033 -------------------------------------
22035 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
22036 Implicit_Base : Entity_Id;
22037 Base_Typ : Entity_Id;
22038 Lo_Val : Uint;
22039 Hi_Val : Uint;
22040 Errs : Boolean := False;
22041 Lo : Node_Id;
22042 Hi : Node_Id;
22044 function Can_Derive_From (E : Entity_Id) return Boolean;
22045 -- Determine whether given bounds allow derivation from specified type
22047 procedure Check_Bound (Expr : Node_Id);
22048 -- Check bound to make sure it is integral and static. If not, post
22049 -- appropriate error message and set Errs flag
22051 ---------------------
22052 -- Can_Derive_From --
22053 ---------------------
22055 -- Note we check both bounds against both end values, to deal with
22056 -- strange types like ones with a range of 0 .. -12341234.
22058 function Can_Derive_From (E : Entity_Id) return Boolean is
22059 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
22060 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
22061 begin
22062 return Lo <= Lo_Val and then Lo_Val <= Hi
22063 and then
22064 Lo <= Hi_Val and then Hi_Val <= Hi;
22065 end Can_Derive_From;
22067 -----------------
22068 -- Check_Bound --
22069 -----------------
22071 procedure Check_Bound (Expr : Node_Id) is
22072 begin
22073 -- If a range constraint is used as an integer type definition, each
22074 -- bound of the range must be defined by a static expression of some
22075 -- integer type, but the two bounds need not have the same integer
22076 -- type (Negative bounds are allowed.) (RM 3.5.4)
22078 if not Is_Integer_Type (Etype (Expr)) then
22079 Error_Msg_N
22080 ("integer type definition bounds must be of integer type", Expr);
22081 Errs := True;
22083 elsif not Is_OK_Static_Expression (Expr) then
22084 Flag_Non_Static_Expr
22085 ("non-static expression used for integer type bound!", Expr);
22086 Errs := True;
22088 -- The bounds are folded into literals, and we set their type to be
22089 -- universal, to avoid typing difficulties: we cannot set the type
22090 -- of the literal to the new type, because this would be a forward
22091 -- reference for the back end, and if the original type is user-
22092 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
22094 else
22095 if Is_Entity_Name (Expr) then
22096 Fold_Uint (Expr, Expr_Value (Expr), True);
22097 end if;
22099 Set_Etype (Expr, Universal_Integer);
22100 end if;
22101 end Check_Bound;
22103 -- Start of processing for Signed_Integer_Type_Declaration
22105 begin
22106 -- Create an anonymous base type
22108 Implicit_Base :=
22109 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
22111 -- Analyze and check the bounds, they can be of any integer type
22113 Lo := Low_Bound (Def);
22114 Hi := High_Bound (Def);
22116 -- Arbitrarily use Integer as the type if either bound had an error
22118 if Hi = Error or else Lo = Error then
22119 Base_Typ := Any_Integer;
22120 Set_Error_Posted (T, True);
22122 -- Here both bounds are OK expressions
22124 else
22125 Analyze_And_Resolve (Lo, Any_Integer);
22126 Analyze_And_Resolve (Hi, Any_Integer);
22128 Check_Bound (Lo);
22129 Check_Bound (Hi);
22131 if Errs then
22132 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22133 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22134 end if;
22136 -- Find type to derive from
22138 Lo_Val := Expr_Value (Lo);
22139 Hi_Val := Expr_Value (Hi);
22141 if Can_Derive_From (Standard_Short_Short_Integer) then
22142 Base_Typ := Base_Type (Standard_Short_Short_Integer);
22144 elsif Can_Derive_From (Standard_Short_Integer) then
22145 Base_Typ := Base_Type (Standard_Short_Integer);
22147 elsif Can_Derive_From (Standard_Integer) then
22148 Base_Typ := Base_Type (Standard_Integer);
22150 elsif Can_Derive_From (Standard_Long_Integer) then
22151 Base_Typ := Base_Type (Standard_Long_Integer);
22153 elsif Can_Derive_From (Standard_Long_Long_Integer) then
22154 Check_Restriction (No_Long_Long_Integers, Def);
22155 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22157 else
22158 Base_Typ := Base_Type (Standard_Long_Long_Integer);
22159 Error_Msg_N ("integer type definition bounds out of range", Def);
22160 Hi := Type_High_Bound (Standard_Long_Long_Integer);
22161 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
22162 end if;
22163 end if;
22165 -- Complete both implicit base and declared first subtype entities. The
22166 -- inheritance of the rep item chain ensures that SPARK-related pragmas
22167 -- are not clobbered when the signed integer type acts as a full view of
22168 -- a private type.
22170 Set_Etype (Implicit_Base, Base_Typ);
22171 Set_Size_Info (Implicit_Base, Base_Typ);
22172 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
22173 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
22174 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
22176 Set_Ekind (T, E_Signed_Integer_Subtype);
22177 Set_Etype (T, Implicit_Base);
22178 Set_Size_Info (T, Implicit_Base);
22179 Inherit_Rep_Item_Chain (T, Implicit_Base);
22180 Set_Scalar_Range (T, Def);
22181 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
22182 Set_Is_Constrained (T);
22183 end Signed_Integer_Type_Declaration;
22185 end Sem_Ch3;