PR c++/10147
[official-gcc.git] / gcc / cp / init.c
blob503034569915b508b45e52e4fbe2373dd6b2fec6
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
23 /* High-level class interface. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
38 static bool begin_init_stmts (tree *, tree *);
39 static tree finish_init_stmts (bool, tree, tree);
40 static void construct_virtual_base (tree, tree);
41 static void expand_aggr_init_1 (tree, tree, tree, tree, int);
42 static void expand_default_init (tree, tree, tree, tree, int);
43 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
44 static void perform_member_init (tree, tree);
45 static tree build_builtin_delete_call (tree);
46 static int member_init_ok_or_else (tree, tree, tree);
47 static void expand_virtual_init (tree, tree);
48 static tree sort_mem_initializers (tree, tree);
49 static tree initializing_context (tree);
50 static void expand_cleanup_for_base (tree, tree);
51 static tree get_temp_regvar (tree, tree);
52 static tree dfs_initialize_vtbl_ptrs (tree, void *);
53 static tree build_default_init (tree, tree);
54 static tree build_new_1 (tree);
55 static tree get_cookie_size (tree);
56 static tree build_dtor_call (tree, special_function_kind, int);
57 static tree build_field_list (tree, tree, int *);
58 static tree build_vtbl_address (tree);
60 /* We are about to generate some complex initialization code.
61 Conceptually, it is all a single expression. However, we may want
62 to include conditionals, loops, and other such statement-level
63 constructs. Therefore, we build the initialization code inside a
64 statement-expression. This function starts such an expression.
65 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
66 pass them back to finish_init_stmts when the expression is
67 complete. */
69 static bool
70 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
72 bool is_global = !building_stmt_tree ();
74 *stmt_expr_p = begin_stmt_expr ();
75 *compound_stmt_p = begin_compound_stmt (/*has_no_scope=*/true);
77 return is_global;
80 /* Finish out the statement-expression begun by the previous call to
81 begin_init_stmts. Returns the statement-expression itself. */
83 static tree
84 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
86 finish_compound_stmt (compound_stmt);
88 stmt_expr = finish_stmt_expr (stmt_expr, true);
90 my_friendly_assert (!building_stmt_tree () == is_global, 20030726);
92 return stmt_expr;
95 /* Constructors */
97 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
98 which we want to initialize the vtable pointer for, DATA is
99 TREE_LIST whose TREE_VALUE is the this ptr expression. */
101 static tree
102 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
104 if ((!BINFO_PRIMARY_P (binfo) || TREE_VIA_VIRTUAL (binfo))
105 && CLASSTYPE_VFIELDS (BINFO_TYPE (binfo)))
107 tree base_ptr = TREE_VALUE ((tree) data);
109 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
111 expand_virtual_init (binfo, base_ptr);
114 BINFO_MARKED (binfo) = 1;
116 return NULL_TREE;
119 /* Initialize all the vtable pointers in the object pointed to by
120 ADDR. */
122 void
123 initialize_vtbl_ptrs (tree addr)
125 tree list;
126 tree type;
128 type = TREE_TYPE (TREE_TYPE (addr));
129 list = build_tree_list (type, addr);
131 /* Walk through the hierarchy, initializing the vptr in each base
132 class. We do these in pre-order because we can't find the virtual
133 bases for a class until we've initialized the vtbl for that
134 class. */
135 dfs_walk_real (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs,
136 NULL, unmarkedp, list);
137 dfs_walk (TYPE_BINFO (type), dfs_unmark, markedp, type);
140 /* Return an expression for the zero-initialization of an object with
141 type T. This expression will either be a constant (in the case
142 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
143 aggregate). In either case, the value can be used as DECL_INITIAL
144 for a decl of the indicated TYPE; it is a valid static initializer.
145 If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS is the
146 number of elements in the array. If STATIC_STORAGE_P is TRUE,
147 initializers are only generated for entities for which
148 zero-initialization does not simply mean filling the storage with
149 zero bytes. */
151 tree
152 build_zero_init (tree type, tree nelts, bool static_storage_p)
154 tree init = NULL_TREE;
156 /* [dcl.init]
158 To zero-initialization storage for an object of type T means:
160 -- if T is a scalar type, the storage is set to the value of zero
161 converted to T.
163 -- if T is a non-union class type, the storage for each nonstatic
164 data member and each base-class subobject is zero-initialized.
166 -- if T is a union type, the storage for its first data member is
167 zero-initialized.
169 -- if T is an array type, the storage for each element is
170 zero-initialized.
172 -- if T is a reference type, no initialization is performed. */
174 my_friendly_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST,
175 20030618);
177 if (type == error_mark_node)
179 else if (static_storage_p && zero_init_p (type))
180 /* In order to save space, we do not explicitly build initializers
181 for items that do not need them. GCC's semantics are that
182 items with static storage duration that are not otherwise
183 initialized are initialized to zero. */
185 else if (SCALAR_TYPE_P (type))
186 init = convert (type, integer_zero_node);
187 else if (CLASS_TYPE_P (type))
189 tree field;
190 tree inits;
192 /* Build a constructor to contain the initializations. */
193 init = build_constructor (type, NULL_TREE);
194 /* Iterate over the fields, building initializations. */
195 inits = NULL_TREE;
196 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
198 if (TREE_CODE (field) != FIELD_DECL)
199 continue;
201 /* Note that for class types there will be FIELD_DECLs
202 corresponding to base classes as well. Thus, iterating
203 over TYPE_FIELDs will result in correct initialization of
204 all of the subobjects. */
205 if (static_storage_p && !zero_init_p (TREE_TYPE (field)))
206 inits = tree_cons (field,
207 build_zero_init (TREE_TYPE (field),
208 /*nelts=*/NULL_TREE,
209 static_storage_p),
210 inits);
212 /* For unions, only the first field is initialized. */
213 if (TREE_CODE (type) == UNION_TYPE)
214 break;
216 CONSTRUCTOR_ELTS (init) = nreverse (inits);
218 else if (TREE_CODE (type) == ARRAY_TYPE)
220 tree index;
221 tree max_index;
222 tree inits;
224 /* Build a constructor to contain the initializations. */
225 init = build_constructor (type, NULL_TREE);
226 /* Iterate over the array elements, building initializations. */
227 inits = NULL_TREE;
228 max_index = nelts ? nelts : array_type_nelts (type);
229 my_friendly_assert (TREE_CODE (max_index) == INTEGER_CST, 20030618);
231 for (index = size_zero_node;
232 !tree_int_cst_lt (max_index, index);
233 index = size_binop (PLUS_EXPR, index, size_one_node))
234 inits = tree_cons (index,
235 build_zero_init (TREE_TYPE (type),
236 /*nelts=*/NULL_TREE,
237 static_storage_p),
238 inits);
239 CONSTRUCTOR_ELTS (init) = nreverse (inits);
241 else if (TREE_CODE (type) == REFERENCE_TYPE)
243 else
244 abort ();
246 /* In all cases, the initializer is a constant. */
247 if (init)
248 TREE_CONSTANT (init) = 1;
250 return init;
253 /* Build an expression for the default-initialization of an object of
254 the indicated TYPE. If NELTS is non-NULL, and TYPE is an
255 ARRAY_TYPE, NELTS is the number of elements in the array. If
256 initialization of TYPE requires calling constructors, this function
257 returns NULL_TREE; the caller is responsible for arranging for the
258 constructors to be called. */
260 static tree
261 build_default_init (tree type, tree nelts)
263 /* [dcl.init]:
265 To default-initialize an object of type T means:
267 --if T is a non-POD class type (clause _class_), the default construc-
268 tor for T is called (and the initialization is ill-formed if T has
269 no accessible default constructor);
271 --if T is an array type, each element is default-initialized;
273 --otherwise, the storage for the object is zero-initialized.
275 A program that calls for default-initialization of an entity of refer-
276 ence type is ill-formed. */
278 /* If TYPE_NEEDS_CONSTRUCTING is true, the caller is responsible for
279 performing the initialization. This is confusing in that some
280 non-PODs do not have TYPE_NEEDS_CONSTRUCTING set. (For example,
281 a class with a pointer-to-data member as a non-static data member
282 does not have TYPE_NEEDS_CONSTRUCTING set.) Therefore, we end up
283 passing non-PODs to build_zero_init below, which is contrary to
284 the semantics quoted above from [dcl.init].
286 It happens, however, that the behavior of the constructor the
287 standard says we should have generated would be precisely the
288 same as that obtained by calling build_zero_init below, so things
289 work out OK. */
290 if (TYPE_NEEDS_CONSTRUCTING (type)
291 || (nelts && TREE_CODE (nelts) != INTEGER_CST))
292 return NULL_TREE;
294 /* At this point, TYPE is either a POD class type, an array of POD
295 classes, or something even more inoccuous. */
296 return build_zero_init (type, nelts, /*static_storage_p=*/false);
299 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
300 arguments. If TREE_LIST is void_type_node, an empty initializer
301 list was given; if NULL_TREE no initializer was given. */
303 static void
304 perform_member_init (tree member, tree init)
306 tree decl;
307 tree type = TREE_TYPE (member);
308 bool explicit;
310 explicit = (init != NULL_TREE);
312 /* Effective C++ rule 12 requires that all data members be
313 initialized. */
314 if (warn_ecpp && !explicit && TREE_CODE (type) != ARRAY_TYPE)
315 warning ("`%D' should be initialized in the member initialization "
316 "list",
317 member);
319 if (init == void_type_node)
320 init = NULL_TREE;
322 /* Get an lvalue for the data member. */
323 decl = build_class_member_access_expr (current_class_ref, member,
324 /*access_path=*/NULL_TREE,
325 /*preserve_reference=*/true);
326 if (decl == error_mark_node)
327 return;
329 /* Deal with this here, as we will get confused if we try to call the
330 assignment op for an anonymous union. This can happen in a
331 synthesized copy constructor. */
332 if (ANON_AGGR_TYPE_P (type))
334 if (init)
336 init = build (INIT_EXPR, type, decl, TREE_VALUE (init));
337 finish_expr_stmt (init);
340 else if (TYPE_NEEDS_CONSTRUCTING (type)
341 || (init && TYPE_HAS_CONSTRUCTOR (type)))
343 if (explicit
344 && TREE_CODE (type) == ARRAY_TYPE
345 && init != NULL_TREE
346 && TREE_CHAIN (init) == NULL_TREE
347 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
349 /* Initialization of one array from another. */
350 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
351 /* from_array=*/1));
353 else
354 finish_expr_stmt (build_aggr_init (decl, init, 0));
356 else
358 if (init == NULL_TREE)
360 if (explicit)
362 init = build_default_init (type, /*nelts=*/NULL_TREE);
363 if (TREE_CODE (type) == REFERENCE_TYPE)
364 warning
365 ("default-initialization of `%#D', which has reference type",
366 member);
368 /* member traversal: note it leaves init NULL */
369 else if (TREE_CODE (type) == REFERENCE_TYPE)
370 pedwarn ("uninitialized reference member `%D'", member);
372 else if (TREE_CODE (init) == TREE_LIST)
373 /* There was an explicit member initialization. Do some work
374 in that case. */
375 init = build_x_compound_expr_from_list (init, "member initializer");
377 if (init)
378 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
381 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
383 tree expr;
385 expr = build_class_member_access_expr (current_class_ref, member,
386 /*access_path=*/NULL_TREE,
387 /*preserve_reference=*/false);
388 expr = build_delete (type, expr, sfk_complete_destructor,
389 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
391 if (expr != error_mark_node)
392 finish_eh_cleanup (expr);
396 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
397 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
399 static tree
400 build_field_list (tree t, tree list, int *uses_unions_p)
402 tree fields;
404 *uses_unions_p = 0;
406 /* Note whether or not T is a union. */
407 if (TREE_CODE (t) == UNION_TYPE)
408 *uses_unions_p = 1;
410 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
412 /* Skip CONST_DECLs for enumeration constants and so forth. */
413 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
414 continue;
416 /* Keep track of whether or not any fields are unions. */
417 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
418 *uses_unions_p = 1;
420 /* For an anonymous struct or union, we must recursively
421 consider the fields of the anonymous type. They can be
422 directly initialized from the constructor. */
423 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
425 /* Add this field itself. Synthesized copy constructors
426 initialize the entire aggregate. */
427 list = tree_cons (fields, NULL_TREE, list);
428 /* And now add the fields in the anonymous aggregate. */
429 list = build_field_list (TREE_TYPE (fields), list,
430 uses_unions_p);
432 /* Add this field. */
433 else if (DECL_NAME (fields))
434 list = tree_cons (fields, NULL_TREE, list);
437 return list;
440 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
441 a FIELD_DECL or BINFO in T that needs initialization. The
442 TREE_VALUE gives the initializer, or list of initializer arguments.
444 Return a TREE_LIST containing all of the initializations required
445 for T, in the order in which they should be performed. The output
446 list has the same format as the input. */
448 static tree
449 sort_mem_initializers (tree t, tree mem_inits)
451 tree init;
452 tree base;
453 tree sorted_inits;
454 tree next_subobject;
455 int i;
456 int uses_unions_p;
458 /* Build up a list of initializations. The TREE_PURPOSE of entry
459 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
460 TREE_VALUE will be the constructor arguments, or NULL if no
461 explicit initialization was provided. */
462 sorted_inits = NULL_TREE;
463 /* Process the virtual bases. */
464 for (base = CLASSTYPE_VBASECLASSES (t); base; base = TREE_CHAIN (base))
465 sorted_inits = tree_cons (TREE_VALUE (base), NULL_TREE, sorted_inits);
466 /* Process the direct bases. */
467 for (i = 0; i < CLASSTYPE_N_BASECLASSES (t); ++i)
469 base = BINFO_BASETYPE (TYPE_BINFO (t), i);
470 if (!TREE_VIA_VIRTUAL (base))
471 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
473 /* Process the non-static data members. */
474 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
475 /* Reverse the entire list of initializations, so that they are in
476 the order that they will actually be performed. */
477 sorted_inits = nreverse (sorted_inits);
479 /* If the user presented the initializers in an order different from
480 that in which they will actually occur, we issue a warning. Keep
481 track of the next subobject which can be explicitly initialized
482 without issuing a warning. */
483 next_subobject = sorted_inits;
485 /* Go through the explicit initializers, filling in TREE_PURPOSE in
486 the SORTED_INITS. */
487 for (init = mem_inits; init; init = TREE_CHAIN (init))
489 tree subobject;
490 tree subobject_init;
492 subobject = TREE_PURPOSE (init);
494 /* If the explicit initializers are in sorted order, then
495 SUBOBJECT will be NEXT_SUBOBJECT, or something following
496 it. */
497 for (subobject_init = next_subobject;
498 subobject_init;
499 subobject_init = TREE_CHAIN (subobject_init))
500 if (TREE_PURPOSE (subobject_init) == subobject)
501 break;
503 /* Issue a warning if the explicit initializer order does not
504 match that which will actually occur. */
505 if (warn_reorder && !subobject_init)
507 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
508 cp_warning_at ("`%D' will be initialized after",
509 TREE_PURPOSE (next_subobject));
510 else
511 warning ("base `%T' will be initialized after",
512 TREE_PURPOSE (next_subobject));
513 if (TREE_CODE (subobject) == FIELD_DECL)
514 cp_warning_at (" `%#D'", subobject);
515 else
516 warning (" base `%T'", subobject);
519 /* Look again, from the beginning of the list. */
520 if (!subobject_init)
522 subobject_init = sorted_inits;
523 while (TREE_PURPOSE (subobject_init) != subobject)
524 subobject_init = TREE_CHAIN (subobject_init);
527 /* It is invalid to initialize the same subobject more than
528 once. */
529 if (TREE_VALUE (subobject_init))
531 if (TREE_CODE (subobject) == FIELD_DECL)
532 error ("multiple initializations given for `%D'", subobject);
533 else
534 error ("multiple initializations given for base `%T'",
535 subobject);
538 /* Record the initialization. */
539 TREE_VALUE (subobject_init) = TREE_VALUE (init);
540 next_subobject = subobject_init;
543 /* [class.base.init]
545 If a ctor-initializer specifies more than one mem-initializer for
546 multiple members of the same union (including members of
547 anonymous unions), the ctor-initializer is ill-formed. */
548 if (uses_unions_p)
550 tree last_field = NULL_TREE;
551 for (init = sorted_inits; init; init = TREE_CHAIN (init))
553 tree field;
554 tree field_type;
555 int done;
557 /* Skip uninitialized members and base classes. */
558 if (!TREE_VALUE (init)
559 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
560 continue;
561 /* See if this field is a member of a union, or a member of a
562 structure contained in a union, etc. */
563 field = TREE_PURPOSE (init);
564 for (field_type = DECL_CONTEXT (field);
565 !same_type_p (field_type, t);
566 field_type = TYPE_CONTEXT (field_type))
567 if (TREE_CODE (field_type) == UNION_TYPE)
568 break;
569 /* If this field is not a member of a union, skip it. */
570 if (TREE_CODE (field_type) != UNION_TYPE)
571 continue;
573 /* It's only an error if we have two initializers for the same
574 union type. */
575 if (!last_field)
577 last_field = field;
578 continue;
581 /* See if LAST_FIELD and the field initialized by INIT are
582 members of the same union. If so, there's a problem,
583 unless they're actually members of the same structure
584 which is itself a member of a union. For example, given:
586 union { struct { int i; int j; }; };
588 initializing both `i' and `j' makes sense. */
589 field_type = DECL_CONTEXT (field);
590 done = 0;
593 tree last_field_type;
595 last_field_type = DECL_CONTEXT (last_field);
596 while (1)
598 if (same_type_p (last_field_type, field_type))
600 if (TREE_CODE (field_type) == UNION_TYPE)
601 error ("initializations for multiple members of `%T'",
602 last_field_type);
603 done = 1;
604 break;
607 if (same_type_p (last_field_type, t))
608 break;
610 last_field_type = TYPE_CONTEXT (last_field_type);
613 /* If we've reached the outermost class, then we're
614 done. */
615 if (same_type_p (field_type, t))
616 break;
618 field_type = TYPE_CONTEXT (field_type);
620 while (!done);
622 last_field = field;
626 return sorted_inits;
629 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
630 is a TREE_LIST giving the explicit mem-initializer-list for the
631 constructor. The TREE_PURPOSE of each entry is a subobject (a
632 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
633 is a TREE_LIST giving the arguments to the constructor or
634 void_type_node for an empty list of arguments. */
636 void
637 emit_mem_initializers (tree mem_inits)
639 /* Sort the mem-initializers into the order in which the
640 initializations should be performed. */
641 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
643 in_base_initializer = 1;
645 /* Initialize base classes. */
646 while (mem_inits
647 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
649 tree subobject = TREE_PURPOSE (mem_inits);
650 tree arguments = TREE_VALUE (mem_inits);
652 /* If these initializations are taking place in a copy
653 constructor, the base class should probably be explicitly
654 initialized. */
655 if (extra_warnings && !arguments
656 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
657 && TYPE_NEEDS_CONSTRUCTING (BINFO_TYPE (subobject)))
658 warning ("base class `%#T' should be explicitly initialized in the "
659 "copy constructor",
660 BINFO_TYPE (subobject));
662 /* If an explicit -- but empty -- initializer list was present,
663 treat it just like default initialization at this point. */
664 if (arguments == void_type_node)
665 arguments = NULL_TREE;
667 /* Initialize the base. */
668 if (TREE_VIA_VIRTUAL (subobject))
669 construct_virtual_base (subobject, arguments);
670 else
672 tree base_addr;
674 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
675 subobject, 1);
676 expand_aggr_init_1 (subobject, NULL_TREE,
677 build_indirect_ref (base_addr, NULL),
678 arguments,
679 LOOKUP_NORMAL);
680 expand_cleanup_for_base (subobject, NULL_TREE);
683 mem_inits = TREE_CHAIN (mem_inits);
685 in_base_initializer = 0;
687 /* Initialize the vptrs. */
688 initialize_vtbl_ptrs (current_class_ptr);
690 /* Initialize the data members. */
691 while (mem_inits)
693 perform_member_init (TREE_PURPOSE (mem_inits),
694 TREE_VALUE (mem_inits));
695 mem_inits = TREE_CHAIN (mem_inits);
699 /* Returns the address of the vtable (i.e., the value that should be
700 assigned to the vptr) for BINFO. */
702 static tree
703 build_vtbl_address (tree binfo)
705 tree binfo_for = binfo;
706 tree vtbl;
708 if (BINFO_VPTR_INDEX (binfo) && TREE_VIA_VIRTUAL (binfo)
709 && BINFO_PRIMARY_P (binfo))
710 /* If this is a virtual primary base, then the vtable we want to store
711 is that for the base this is being used as the primary base of. We
712 can't simply skip the initialization, because we may be expanding the
713 inits of a subobject constructor where the virtual base layout
714 can be different. */
715 while (BINFO_PRIMARY_BASE_OF (binfo_for))
716 binfo_for = BINFO_PRIMARY_BASE_OF (binfo_for);
718 /* Figure out what vtable BINFO's vtable is based on, and mark it as
719 used. */
720 vtbl = get_vtbl_decl_for_binfo (binfo_for);
721 assemble_external (vtbl);
722 TREE_USED (vtbl) = 1;
724 /* Now compute the address to use when initializing the vptr. */
725 vtbl = BINFO_VTABLE (binfo_for);
726 if (TREE_CODE (vtbl) == VAR_DECL)
728 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
729 TREE_CONSTANT (vtbl) = 1;
732 return vtbl;
735 /* This code sets up the virtual function tables appropriate for
736 the pointer DECL. It is a one-ply initialization.
738 BINFO is the exact type that DECL is supposed to be. In
739 multiple inheritance, this might mean "C's A" if C : A, B. */
741 static void
742 expand_virtual_init (tree binfo, tree decl)
744 tree vtbl, vtbl_ptr;
745 tree vtt_index;
747 /* Compute the initializer for vptr. */
748 vtbl = build_vtbl_address (binfo);
750 /* We may get this vptr from a VTT, if this is a subobject
751 constructor or subobject destructor. */
752 vtt_index = BINFO_VPTR_INDEX (binfo);
753 if (vtt_index)
755 tree vtbl2;
756 tree vtt_parm;
758 /* Compute the value to use, when there's a VTT. */
759 vtt_parm = current_vtt_parm;
760 vtbl2 = build (PLUS_EXPR,
761 TREE_TYPE (vtt_parm),
762 vtt_parm,
763 vtt_index);
764 vtbl2 = build1 (INDIRECT_REF, TREE_TYPE (vtbl), vtbl2);
766 /* The actual initializer is the VTT value only in the subobject
767 constructor. In maybe_clone_body we'll substitute NULL for
768 the vtt_parm in the case of the non-subobject constructor. */
769 vtbl = build (COND_EXPR,
770 TREE_TYPE (vtbl),
771 build (EQ_EXPR, boolean_type_node,
772 current_in_charge_parm, integer_zero_node),
773 vtbl2,
774 vtbl);
777 /* Compute the location of the vtpr. */
778 vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, NULL),
779 TREE_TYPE (binfo));
780 my_friendly_assert (vtbl_ptr != error_mark_node, 20010730);
782 /* Assign the vtable to the vptr. */
783 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
784 finish_expr_stmt (build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl));
787 /* If an exception is thrown in a constructor, those base classes already
788 constructed must be destroyed. This function creates the cleanup
789 for BINFO, which has just been constructed. If FLAG is non-NULL,
790 it is a DECL which is nonzero when this base needs to be
791 destroyed. */
793 static void
794 expand_cleanup_for_base (tree binfo, tree flag)
796 tree expr;
798 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
799 return;
801 /* Call the destructor. */
802 expr = build_special_member_call (current_class_ref,
803 base_dtor_identifier,
804 NULL_TREE,
805 binfo,
806 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
807 if (flag)
808 expr = fold (build (COND_EXPR, void_type_node,
809 c_common_truthvalue_conversion (flag),
810 expr, integer_zero_node));
812 finish_eh_cleanup (expr);
815 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
816 constructor. */
818 static void
819 construct_virtual_base (tree vbase, tree arguments)
821 tree inner_if_stmt;
822 tree compound_stmt;
823 tree exp;
824 tree flag;
826 /* If there are virtual base classes with destructors, we need to
827 emit cleanups to destroy them if an exception is thrown during
828 the construction process. These exception regions (i.e., the
829 period during which the cleanups must occur) begin from the time
830 the construction is complete to the end of the function. If we
831 create a conditional block in which to initialize the
832 base-classes, then the cleanup region for the virtual base begins
833 inside a block, and ends outside of that block. This situation
834 confuses the sjlj exception-handling code. Therefore, we do not
835 create a single conditional block, but one for each
836 initialization. (That way the cleanup regions always begin
837 in the outer block.) We trust the back-end to figure out
838 that the FLAG will not change across initializations, and
839 avoid doing multiple tests. */
840 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
841 inner_if_stmt = begin_if_stmt ();
842 finish_if_stmt_cond (flag, inner_if_stmt);
843 compound_stmt = begin_compound_stmt (/*has_no_scope=*/true);
845 /* Compute the location of the virtual base. If we're
846 constructing virtual bases, then we must be the most derived
847 class. Therefore, we don't have to look up the virtual base;
848 we already know where it is. */
849 exp = convert_to_base_statically (current_class_ref, vbase);
851 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
852 LOOKUP_COMPLAIN);
853 finish_compound_stmt (compound_stmt);
854 finish_then_clause (inner_if_stmt);
855 finish_if_stmt ();
857 expand_cleanup_for_base (vbase, flag);
860 /* Find the context in which this FIELD can be initialized. */
862 static tree
863 initializing_context (tree field)
865 tree t = DECL_CONTEXT (field);
867 /* Anonymous union members can be initialized in the first enclosing
868 non-anonymous union context. */
869 while (t && ANON_AGGR_TYPE_P (t))
870 t = TYPE_CONTEXT (t);
871 return t;
874 /* Function to give error message if member initialization specification
875 is erroneous. FIELD is the member we decided to initialize.
876 TYPE is the type for which the initialization is being performed.
877 FIELD must be a member of TYPE.
879 MEMBER_NAME is the name of the member. */
881 static int
882 member_init_ok_or_else (tree field, tree type, tree member_name)
884 if (field == error_mark_node)
885 return 0;
886 if (!field)
888 error ("class `%T' does not have any field named `%D'", type,
889 member_name);
890 return 0;
892 if (TREE_CODE (field) == VAR_DECL)
894 error ("`%#D' is a static data member; it can only be "
895 "initialized at its definition",
896 field);
897 return 0;
899 if (TREE_CODE (field) != FIELD_DECL)
901 error ("`%#D' is not a non-static data member of `%T'",
902 field, type);
903 return 0;
905 if (initializing_context (field) != type)
907 error ("class `%T' does not have any field named `%D'", type,
908 member_name);
909 return 0;
912 return 1;
915 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
916 is a _TYPE node or TYPE_DECL which names a base for that type.
917 Check the validity of NAME, and return either the base _TYPE, base
918 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
919 NULL_TREE and issue a diagnostic.
921 An old style unnamed direct single base construction is permitted,
922 where NAME is NULL. */
924 tree
925 expand_member_init (tree name)
927 tree basetype;
928 tree field;
930 if (!current_class_ref)
931 return NULL_TREE;
933 if (!name)
935 /* This is an obsolete unnamed base class initializer. The
936 parser will already have warned about its use. */
937 switch (CLASSTYPE_N_BASECLASSES (current_class_type))
939 case 0:
940 error ("unnamed initializer for `%T', which has no base classes",
941 current_class_type);
942 return NULL_TREE;
943 case 1:
944 basetype = TYPE_BINFO_BASETYPE (current_class_type, 0);
945 break;
946 default:
947 error ("unnamed initializer for `%T', which uses multiple inheritance",
948 current_class_type);
949 return NULL_TREE;
952 else if (TYPE_P (name))
954 basetype = TYPE_MAIN_VARIANT (name);
955 name = TYPE_NAME (name);
957 else if (TREE_CODE (name) == TYPE_DECL)
958 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
959 else
960 basetype = NULL_TREE;
962 if (basetype)
964 tree class_binfo;
965 tree direct_binfo;
966 tree virtual_binfo;
967 int i;
969 if (current_template_parms)
970 return basetype;
972 class_binfo = TYPE_BINFO (current_class_type);
973 direct_binfo = NULL_TREE;
974 virtual_binfo = NULL_TREE;
976 /* Look for a direct base. */
977 for (i = 0; i < BINFO_N_BASETYPES (class_binfo); ++i)
978 if (same_type_p (basetype,
979 TYPE_BINFO_BASETYPE (current_class_type, i)))
981 direct_binfo = BINFO_BASETYPE (class_binfo, i);
982 break;
984 /* Look for a virtual base -- unless the direct base is itself
985 virtual. */
986 if (!direct_binfo || !TREE_VIA_VIRTUAL (direct_binfo))
988 virtual_binfo
989 = purpose_member (basetype,
990 CLASSTYPE_VBASECLASSES (current_class_type));
991 if (virtual_binfo)
992 virtual_binfo = TREE_VALUE (virtual_binfo);
995 /* [class.base.init]
997 If a mem-initializer-id is ambiguous because it designates
998 both a direct non-virtual base class and an inherited virtual
999 base class, the mem-initializer is ill-formed. */
1000 if (direct_binfo && virtual_binfo)
1002 error ("'%D' is both a direct base and an indirect virtual base",
1003 basetype);
1004 return NULL_TREE;
1007 if (!direct_binfo && !virtual_binfo)
1009 if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type))
1010 error ("type `%D' is not a direct or virtual base of `%T'",
1011 name, current_class_type);
1012 else
1013 error ("type `%D' is not a direct base of `%T'",
1014 name, current_class_type);
1015 return NULL_TREE;
1018 return direct_binfo ? direct_binfo : virtual_binfo;
1020 else
1022 if (TREE_CODE (name) == IDENTIFIER_NODE)
1023 field = lookup_field (current_class_type, name, 1, false);
1024 else
1025 field = name;
1027 if (member_init_ok_or_else (field, current_class_type, name))
1028 return field;
1031 return NULL_TREE;
1034 /* This is like `expand_member_init', only it stores one aggregate
1035 value into another.
1037 INIT comes in two flavors: it is either a value which
1038 is to be stored in EXP, or it is a parameter list
1039 to go to a constructor, which will operate on EXP.
1040 If INIT is not a parameter list for a constructor, then set
1041 LOOKUP_ONLYCONVERTING.
1042 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1043 the initializer, if FLAGS is 0, then it is the (init) form.
1044 If `init' is a CONSTRUCTOR, then we emit a warning message,
1045 explaining that such initializations are invalid.
1047 If INIT resolves to a CALL_EXPR which happens to return
1048 something of the type we are looking for, then we know
1049 that we can safely use that call to perform the
1050 initialization.
1052 The virtual function table pointer cannot be set up here, because
1053 we do not really know its type.
1055 This never calls operator=().
1057 When initializing, nothing is CONST.
1059 A default copy constructor may have to be used to perform the
1060 initialization.
1062 A constructor or a conversion operator may have to be used to
1063 perform the initialization, but not both, as it would be ambiguous. */
1065 tree
1066 build_aggr_init (tree exp, tree init, int flags)
1068 tree stmt_expr;
1069 tree compound_stmt;
1070 int destroy_temps;
1071 tree type = TREE_TYPE (exp);
1072 int was_const = TREE_READONLY (exp);
1073 int was_volatile = TREE_THIS_VOLATILE (exp);
1074 int is_global;
1076 if (init == error_mark_node)
1077 return error_mark_node;
1079 TREE_READONLY (exp) = 0;
1080 TREE_THIS_VOLATILE (exp) = 0;
1082 if (init && TREE_CODE (init) != TREE_LIST)
1083 flags |= LOOKUP_ONLYCONVERTING;
1085 if (TREE_CODE (type) == ARRAY_TYPE)
1087 /* Must arrange to initialize each element of EXP
1088 from elements of INIT. */
1089 tree itype = init ? TREE_TYPE (init) : NULL_TREE;
1091 if (init && !itype)
1093 /* Handle bad initializers like:
1094 class COMPLEX {
1095 public:
1096 double re, im;
1097 COMPLEX(double r = 0.0, double i = 0.0) {re = r; im = i;};
1098 ~COMPLEX() {};
1101 int main(int argc, char **argv) {
1102 COMPLEX zees(1.0, 0.0)[10];
1105 error ("bad array initializer");
1106 return error_mark_node;
1108 if (cp_type_quals (type) != TYPE_UNQUALIFIED)
1109 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1110 if (itype && cp_type_quals (itype) != TYPE_UNQUALIFIED)
1111 TREE_TYPE (init) = TYPE_MAIN_VARIANT (itype);
1112 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1113 init && same_type_p (TREE_TYPE (init),
1114 TREE_TYPE (exp)));
1115 TREE_READONLY (exp) = was_const;
1116 TREE_THIS_VOLATILE (exp) = was_volatile;
1117 TREE_TYPE (exp) = type;
1118 if (init)
1119 TREE_TYPE (init) = itype;
1120 return stmt_expr;
1123 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1124 /* just know that we've seen something for this node */
1125 TREE_USED (exp) = 1;
1127 TREE_TYPE (exp) = TYPE_MAIN_VARIANT (type);
1128 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1129 destroy_temps = stmts_are_full_exprs_p ();
1130 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1131 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1132 init, LOOKUP_NORMAL|flags);
1133 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1134 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1135 TREE_TYPE (exp) = type;
1136 TREE_READONLY (exp) = was_const;
1137 TREE_THIS_VOLATILE (exp) = was_volatile;
1139 return stmt_expr;
1142 /* Like build_aggr_init, but not just for aggregates. */
1144 tree
1145 build_init (tree decl, tree init, int flags)
1147 tree expr;
1149 if (IS_AGGR_TYPE (TREE_TYPE (decl))
1150 || TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
1151 expr = build_aggr_init (decl, init, flags);
1152 else
1153 expr = build (INIT_EXPR, TREE_TYPE (decl), decl, init);
1155 return expr;
1158 static void
1159 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags)
1161 tree type = TREE_TYPE (exp);
1162 tree ctor_name;
1164 /* It fails because there may not be a constructor which takes
1165 its own type as the first (or only parameter), but which does
1166 take other types via a conversion. So, if the thing initializing
1167 the expression is a unit element of type X, first try X(X&),
1168 followed by initialization by X. If neither of these work
1169 out, then look hard. */
1170 tree rval;
1171 tree parms;
1173 if (init && TREE_CODE (init) != TREE_LIST
1174 && (flags & LOOKUP_ONLYCONVERTING))
1176 /* Base subobjects should only get direct-initialization. */
1177 if (true_exp != exp)
1178 abort ();
1180 if (flags & DIRECT_BIND)
1181 /* Do nothing. We hit this in two cases: Reference initialization,
1182 where we aren't initializing a real variable, so we don't want
1183 to run a new constructor; and catching an exception, where we
1184 have already built up the constructor call so we could wrap it
1185 in an exception region. */;
1186 else if (TREE_CODE (init) == CONSTRUCTOR
1187 && TREE_HAS_CONSTRUCTOR (init))
1189 /* A brace-enclosed initializer for an aggregate. */
1190 my_friendly_assert (CP_AGGREGATE_TYPE_P (type), 20021016);
1191 init = digest_init (type, init, (tree *)NULL);
1193 else
1194 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1196 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1197 /* We need to protect the initialization of a catch parm with a
1198 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1199 around the TARGET_EXPR for the copy constructor. See
1200 initialize_handler_parm. */
1202 TREE_OPERAND (init, 0) = build (INIT_EXPR, TREE_TYPE (exp), exp,
1203 TREE_OPERAND (init, 0));
1204 TREE_TYPE (init) = void_type_node;
1206 else
1207 init = build (INIT_EXPR, TREE_TYPE (exp), exp, init);
1208 TREE_SIDE_EFFECTS (init) = 1;
1209 finish_expr_stmt (init);
1210 return;
1213 if (init == NULL_TREE
1214 || (TREE_CODE (init) == TREE_LIST && ! TREE_TYPE (init)))
1216 parms = init;
1217 if (parms)
1218 init = TREE_VALUE (parms);
1220 else
1221 parms = build_tree_list (NULL_TREE, init);
1223 if (true_exp == exp)
1224 ctor_name = complete_ctor_identifier;
1225 else
1226 ctor_name = base_ctor_identifier;
1228 rval = build_special_member_call (exp, ctor_name, parms, binfo, flags);
1229 if (TREE_SIDE_EFFECTS (rval))
1230 finish_expr_stmt (convert_to_void (rval, NULL));
1233 /* This function is responsible for initializing EXP with INIT
1234 (if any).
1236 BINFO is the binfo of the type for who we are performing the
1237 initialization. For example, if W is a virtual base class of A and B,
1238 and C : A, B.
1239 If we are initializing B, then W must contain B's W vtable, whereas
1240 were we initializing C, W must contain C's W vtable.
1242 TRUE_EXP is nonzero if it is the true expression being initialized.
1243 In this case, it may be EXP, or may just contain EXP. The reason we
1244 need this is because if EXP is a base element of TRUE_EXP, we
1245 don't necessarily know by looking at EXP where its virtual
1246 baseclass fields should really be pointing. But we do know
1247 from TRUE_EXP. In constructors, we don't know anything about
1248 the value being initialized.
1250 FLAGS is just passes to `build_method_call'. See that function for
1251 its description. */
1253 static void
1254 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags)
1256 tree type = TREE_TYPE (exp);
1258 my_friendly_assert (init != error_mark_node && type != error_mark_node, 211);
1259 my_friendly_assert (building_stmt_tree (), 20021010);
1261 /* Use a function returning the desired type to initialize EXP for us.
1262 If the function is a constructor, and its first argument is
1263 NULL_TREE, know that it was meant for us--just slide exp on
1264 in and expand the constructor. Constructors now come
1265 as TARGET_EXPRs. */
1267 if (init && TREE_CODE (exp) == VAR_DECL
1268 && TREE_CODE (init) == CONSTRUCTOR
1269 && TREE_HAS_CONSTRUCTOR (init))
1271 /* If store_init_value returns NULL_TREE, the INIT has been
1272 record in the DECL_INITIAL for EXP. That means there's
1273 nothing more we have to do. */
1274 if (store_init_value (exp, init))
1275 finish_expr_stmt (build (INIT_EXPR, type, exp, init));
1276 return;
1279 /* We know that expand_default_init can handle everything we want
1280 at this point. */
1281 expand_default_init (binfo, true_exp, exp, init, flags);
1284 /* Report an error if TYPE is not a user-defined, aggregate type. If
1285 OR_ELSE is nonzero, give an error message. */
1288 is_aggr_type (tree type, int or_else)
1290 if (type == error_mark_node)
1291 return 0;
1293 if (! IS_AGGR_TYPE (type)
1294 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1295 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1297 if (or_else)
1298 error ("`%T' is not an aggregate type", type);
1299 return 0;
1301 return 1;
1304 /* Like is_aggr_typedef, but returns typedef if successful. */
1306 tree
1307 get_aggr_from_typedef (tree name, int or_else)
1309 tree type;
1311 if (name == error_mark_node)
1312 return NULL_TREE;
1314 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1315 type = IDENTIFIER_TYPE_VALUE (name);
1316 else
1318 if (or_else)
1319 error ("`%T' fails to be an aggregate typedef", name);
1320 return NULL_TREE;
1323 if (! IS_AGGR_TYPE (type)
1324 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1325 && TREE_CODE (type) != BOUND_TEMPLATE_TEMPLATE_PARM)
1327 if (or_else)
1328 error ("type `%T' is of non-aggregate type", type);
1329 return NULL_TREE;
1331 return type;
1334 tree
1335 get_type_value (tree name)
1337 if (name == error_mark_node)
1338 return NULL_TREE;
1340 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1341 return IDENTIFIER_TYPE_VALUE (name);
1342 else
1343 return NULL_TREE;
1346 /* Build a reference to a member of an aggregate. This is not a C++
1347 `&', but really something which can have its address taken, and
1348 then act as a pointer to member, for example TYPE :: FIELD can have
1349 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1350 this expression is the operand of "&".
1352 @@ Prints out lousy diagnostics for operator <typename>
1353 @@ fields.
1355 @@ This function should be rewritten and placed in search.c. */
1357 tree
1358 build_offset_ref (tree type, tree name, bool address_p)
1360 tree decl;
1361 tree member;
1362 tree basebinfo = NULL_TREE;
1363 tree orig_name = name;
1365 /* class templates can come in as TEMPLATE_DECLs here. */
1366 if (TREE_CODE (name) == TEMPLATE_DECL)
1367 return name;
1369 if (processing_template_decl || uses_template_parms (type))
1370 return build_min_nt (SCOPE_REF, type, name);
1372 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
1374 /* If the NAME is a TEMPLATE_ID_EXPR, we are looking at
1375 something like `a.template f<int>' or the like. For the most
1376 part, we treat this just like a.f. We do remember, however,
1377 the template-id that was used. */
1378 name = TREE_OPERAND (orig_name, 0);
1380 if (DECL_P (name))
1381 name = DECL_NAME (name);
1382 else
1384 if (TREE_CODE (name) == COMPONENT_REF)
1385 name = TREE_OPERAND (name, 1);
1386 if (TREE_CODE (name) == OVERLOAD)
1387 name = DECL_NAME (OVL_CURRENT (name));
1390 my_friendly_assert (TREE_CODE (name) == IDENTIFIER_NODE, 0);
1393 if (type == NULL_TREE)
1394 return error_mark_node;
1396 /* Handle namespace names fully here. */
1397 if (TREE_CODE (type) == NAMESPACE_DECL)
1399 tree t = lookup_namespace_name (type, name);
1400 if (t == error_mark_node)
1401 return t;
1402 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1403 /* Reconstruct the TEMPLATE_ID_EXPR. */
1404 t = build (TEMPLATE_ID_EXPR, TREE_TYPE (t),
1405 t, TREE_OPERAND (orig_name, 1));
1406 if (! type_unknown_p (t))
1408 mark_used (t);
1409 t = convert_from_reference (t);
1411 return t;
1414 if (! is_aggr_type (type, 1))
1415 return error_mark_node;
1417 if (TREE_CODE (name) == BIT_NOT_EXPR)
1419 if (! check_dtor_name (type, name))
1420 error ("qualified type `%T' does not match destructor name `~%T'",
1421 type, TREE_OPERAND (name, 0));
1422 name = dtor_identifier;
1425 if (!COMPLETE_TYPE_P (complete_type (type))
1426 && !TYPE_BEING_DEFINED (type))
1428 error ("incomplete type `%T' does not have member `%D'", type,
1429 name);
1430 return error_mark_node;
1433 decl = maybe_dummy_object (type, &basebinfo);
1435 if (BASELINK_P (name) || DECL_P (name))
1436 member = name;
1437 else
1439 member = lookup_member (basebinfo, name, 1, 0);
1441 if (member == error_mark_node)
1442 return error_mark_node;
1445 if (!member)
1447 error ("`%D' is not a member of type `%T'", name, type);
1448 return error_mark_node;
1451 if (TREE_CODE (member) == TYPE_DECL)
1453 TREE_USED (member) = 1;
1454 return member;
1456 /* static class members and class-specific enum
1457 values can be returned without further ado. */
1458 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1460 mark_used (member);
1461 return convert_from_reference (member);
1464 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1466 error ("invalid pointer to bit-field `%D'", member);
1467 return error_mark_node;
1470 /* A lot of this logic is now handled in lookup_member. */
1471 if (BASELINK_P (member))
1473 /* Go from the TREE_BASELINK to the member function info. */
1474 tree fnfields = member;
1475 tree t = BASELINK_FUNCTIONS (fnfields);
1477 if (TREE_CODE (orig_name) == TEMPLATE_ID_EXPR)
1479 /* The FNFIELDS are going to contain functions that aren't
1480 necessarily templates, and templates that don't
1481 necessarily match the explicit template parameters. We
1482 save all the functions, and the explicit parameters, and
1483 then figure out exactly what to instantiate with what
1484 arguments in instantiate_type. */
1486 if (TREE_CODE (t) != OVERLOAD)
1487 /* The code in instantiate_type which will process this
1488 expects to encounter OVERLOADs, not raw functions. */
1489 t = ovl_cons (t, NULL_TREE);
1491 t = build (TEMPLATE_ID_EXPR, TREE_TYPE (t), t,
1492 TREE_OPERAND (orig_name, 1));
1493 t = build (OFFSET_REF, unknown_type_node, decl, t);
1495 PTRMEM_OK_P (t) = 1;
1497 return t;
1500 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1502 /* Get rid of a potential OVERLOAD around it */
1503 t = OVL_CURRENT (t);
1505 /* Unique functions are handled easily. */
1507 /* For non-static member of base class, we need a special rule
1508 for access checking [class.protected]:
1510 If the access is to form a pointer to member, the
1511 nested-name-specifier shall name the derived class
1512 (or any class derived from that class). */
1513 if (address_p && DECL_P (t)
1514 && DECL_NONSTATIC_MEMBER_P (t))
1515 perform_or_defer_access_check (TYPE_BINFO (type), t);
1516 else
1517 perform_or_defer_access_check (basebinfo, t);
1519 mark_used (t);
1520 if (DECL_STATIC_FUNCTION_P (t))
1521 return t;
1522 member = t;
1524 else
1526 TREE_TYPE (fnfields) = unknown_type_node;
1527 member = fnfields;
1530 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1531 /* We need additional test besides the one in
1532 check_accessibility_of_qualified_id in case it is
1533 a pointer to non-static member. */
1534 perform_or_defer_access_check (TYPE_BINFO (type), member);
1536 if (!address_p)
1538 /* If MEMBER is non-static, then the program has fallen afoul of
1539 [expr.prim]:
1541 An id-expression that denotes a nonstatic data member or
1542 nonstatic member function of a class can only be used:
1544 -- as part of a class member access (_expr.ref_) in which the
1545 object-expression refers to the member's class or a class
1546 derived from that class, or
1548 -- to form a pointer to member (_expr.unary.op_), or
1550 -- in the body of a nonstatic member function of that class or
1551 of a class derived from that class (_class.mfct.nonstatic_), or
1553 -- in a mem-initializer for a constructor for that class or for
1554 a class derived from that class (_class.base.init_). */
1555 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1557 /* In Microsoft mode, treat a non-static member function as if
1558 it were a pointer-to-member. */
1559 if (flag_ms_extensions)
1561 member = build (OFFSET_REF, TREE_TYPE (member), decl, member);
1562 PTRMEM_OK_P (member) = 1;
1563 return build_unary_op (ADDR_EXPR, member, 0);
1565 error ("invalid use of non-static member function `%D'", member);
1566 return error_mark_node;
1568 else if (TREE_CODE (member) == FIELD_DECL)
1570 error ("invalid use of non-static data member `%D'", member);
1571 return error_mark_node;
1573 return member;
1576 /* In member functions, the form `type::name' is no longer
1577 equivalent to `this->type::name', at least not until
1578 resolve_offset_ref. */
1579 member = build (OFFSET_REF, TREE_TYPE (member), decl, member);
1580 PTRMEM_OK_P (member) = 1;
1581 return member;
1584 /* If DECL is a `const' declaration, and its value is a known
1585 constant, then return that value. */
1587 tree
1588 decl_constant_value (tree decl)
1590 /* When we build a COND_EXPR, we don't know whether it will be used
1591 as an lvalue or as an rvalue. If it is an lvalue, it's not safe
1592 to replace the second and third operands with their
1593 initializers. So, we do that here. */
1594 if (TREE_CODE (decl) == COND_EXPR)
1596 tree d1;
1597 tree d2;
1599 d1 = decl_constant_value (TREE_OPERAND (decl, 1));
1600 d2 = decl_constant_value (TREE_OPERAND (decl, 2));
1602 if (d1 != TREE_OPERAND (decl, 1) || d2 != TREE_OPERAND (decl, 2))
1603 return build (COND_EXPR,
1604 TREE_TYPE (decl),
1605 TREE_OPERAND (decl, 0), d1, d2);
1608 if (TREE_READONLY_DECL_P (decl)
1609 && ! TREE_THIS_VOLATILE (decl)
1610 && DECL_INITIAL (decl)
1611 && DECL_INITIAL (decl) != error_mark_node
1612 /* This is invalid if initial value is not constant.
1613 If it has either a function call, a memory reference,
1614 or a variable, then re-evaluating it could give different results. */
1615 && TREE_CONSTANT (DECL_INITIAL (decl))
1616 /* Check for cases where this is sub-optimal, even though valid. */
1617 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR)
1618 return DECL_INITIAL (decl);
1619 return decl;
1622 /* Common subroutines of build_new and build_vec_delete. */
1624 /* Call the global __builtin_delete to delete ADDR. */
1626 static tree
1627 build_builtin_delete_call (tree addr)
1629 mark_used (global_delete_fndecl);
1630 return build_call (global_delete_fndecl, build_tree_list (NULL_TREE, addr));
1633 /* Generate a C++ "new" expression. DECL is either a TREE_LIST
1634 (which needs to go through some sort of groktypename) or it
1635 is the name of the class we are newing. INIT is an initialization value.
1636 It is either an EXPRLIST, an EXPR_NO_COMMAS, or something in braces.
1637 If INIT is void_type_node, it means do *not* call a constructor
1638 for this instance.
1640 For types with constructors, the data returned is initialized
1641 by the appropriate constructor.
1643 Whether the type has a constructor or not, if it has a pointer
1644 to a virtual function table, then that pointer is set up
1645 here.
1647 Unless I am mistaken, a call to new () will return initialized
1648 data regardless of whether the constructor itself is private or
1649 not. NOPE; new fails if the constructor is private (jcm).
1651 Note that build_new does nothing to assure that any special
1652 alignment requirements of the type are met. Rather, it leaves
1653 it up to malloc to do the right thing. Otherwise, folding to
1654 the right alignment cal cause problems if the user tries to later
1655 free the memory returned by `new'.
1657 PLACEMENT is the `placement' list for user-defined operator new (). */
1659 tree
1660 build_new (tree placement, tree decl, tree init, int use_global_new)
1662 tree type, rval;
1663 tree nelts = NULL_TREE, t;
1664 int has_array = 0;
1666 if (decl == error_mark_node)
1667 return error_mark_node;
1669 if (TREE_CODE (decl) == TREE_LIST)
1671 tree absdcl = TREE_VALUE (decl);
1672 tree last_absdcl = NULL_TREE;
1674 if (current_function_decl
1675 && DECL_CONSTRUCTOR_P (current_function_decl))
1676 my_friendly_assert (immediate_size_expand == 0, 19990926);
1678 nelts = integer_one_node;
1680 if (absdcl && TREE_CODE (absdcl) == CALL_EXPR)
1681 abort ();
1682 while (absdcl && TREE_CODE (absdcl) == INDIRECT_REF)
1684 last_absdcl = absdcl;
1685 absdcl = TREE_OPERAND (absdcl, 0);
1688 if (absdcl && TREE_CODE (absdcl) == ARRAY_REF)
1690 /* probably meant to be a vec new */
1691 tree this_nelts;
1693 while (TREE_OPERAND (absdcl, 0)
1694 && TREE_CODE (TREE_OPERAND (absdcl, 0)) == ARRAY_REF)
1696 last_absdcl = absdcl;
1697 absdcl = TREE_OPERAND (absdcl, 0);
1700 has_array = 1;
1701 this_nelts = TREE_OPERAND (absdcl, 1);
1702 if (this_nelts != error_mark_node)
1704 if (this_nelts == NULL_TREE)
1705 error ("new of array type fails to specify size");
1706 else if (processing_template_decl)
1708 nelts = this_nelts;
1709 absdcl = TREE_OPERAND (absdcl, 0);
1711 else
1713 if (build_expr_type_conversion (WANT_INT | WANT_ENUM,
1714 this_nelts, false)
1715 == NULL_TREE)
1716 pedwarn ("size in array new must have integral type");
1718 this_nelts = save_expr (cp_convert (sizetype, this_nelts));
1719 absdcl = TREE_OPERAND (absdcl, 0);
1720 if (this_nelts == integer_zero_node)
1722 warning ("zero size array reserves no space");
1723 nelts = integer_zero_node;
1725 else
1726 nelts = cp_build_binary_op (MULT_EXPR, nelts, this_nelts);
1729 else
1730 nelts = integer_zero_node;
1733 if (last_absdcl)
1734 TREE_OPERAND (last_absdcl, 0) = absdcl;
1735 else
1736 TREE_VALUE (decl) = absdcl;
1738 type = groktypename (decl);
1739 if (! type || type == error_mark_node)
1740 return error_mark_node;
1742 else if (TREE_CODE (decl) == IDENTIFIER_NODE)
1744 if (IDENTIFIER_HAS_TYPE_VALUE (decl))
1746 /* An aggregate type. */
1747 type = IDENTIFIER_TYPE_VALUE (decl);
1748 decl = TYPE_MAIN_DECL (type);
1750 else
1752 /* A builtin type. */
1753 decl = lookup_name (decl, 1);
1754 my_friendly_assert (TREE_CODE (decl) == TYPE_DECL, 215);
1755 type = TREE_TYPE (decl);
1758 else if (TREE_CODE (decl) == TYPE_DECL)
1760 type = TREE_TYPE (decl);
1762 else
1764 type = decl;
1765 decl = TYPE_MAIN_DECL (type);
1768 if (processing_template_decl)
1770 if (has_array)
1771 t = tree_cons (tree_cons (NULL_TREE, type, NULL_TREE),
1772 build_min_nt (ARRAY_REF, NULL_TREE, nelts),
1773 NULL_TREE);
1774 else
1775 t = type;
1777 rval = build_min (NEW_EXPR, build_pointer_type (type),
1778 placement, t, init);
1779 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
1780 return rval;
1783 /* ``A reference cannot be created by the new operator. A reference
1784 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
1785 returned by new.'' ARM 5.3.3 */
1786 if (TREE_CODE (type) == REFERENCE_TYPE)
1788 error ("new cannot be applied to a reference type");
1789 type = TREE_TYPE (type);
1792 if (TREE_CODE (type) == FUNCTION_TYPE)
1794 error ("new cannot be applied to a function type");
1795 return error_mark_node;
1798 /* When the object being created is an array, the new-expression yields a
1799 pointer to the initial element (if any) of the array. For example,
1800 both new int and new int[10] return an int*. 5.3.4. */
1801 if (TREE_CODE (type) == ARRAY_TYPE && has_array == 0)
1803 nelts = array_type_nelts_top (type);
1804 has_array = 1;
1805 type = TREE_TYPE (type);
1808 if (has_array)
1809 t = build_nt (ARRAY_REF, type, nelts);
1810 else
1811 t = type;
1813 rval = build (NEW_EXPR, build_pointer_type (type), placement, t, init);
1814 NEW_EXPR_USE_GLOBAL (rval) = use_global_new;
1815 TREE_SIDE_EFFECTS (rval) = 1;
1816 rval = build_new_1 (rval);
1817 if (rval == error_mark_node)
1818 return error_mark_node;
1820 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
1821 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
1822 TREE_NO_UNUSED_WARNING (rval) = 1;
1824 return rval;
1827 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
1829 tree
1830 build_java_class_ref (tree type)
1832 tree name = NULL_TREE, class_decl;
1833 static tree CL_suffix = NULL_TREE;
1834 if (CL_suffix == NULL_TREE)
1835 CL_suffix = get_identifier("class$");
1836 if (jclass_node == NULL_TREE)
1838 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
1839 if (jclass_node == NULL_TREE)
1840 fatal_error ("call to Java constructor, while `jclass' undefined");
1842 jclass_node = TREE_TYPE (jclass_node);
1845 /* Mangle the class$ field */
1847 tree field;
1848 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1849 if (DECL_NAME (field) == CL_suffix)
1851 mangle_decl (field);
1852 name = DECL_ASSEMBLER_NAME (field);
1853 break;
1855 if (!field)
1856 internal_error ("can't find class$");
1859 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
1860 if (class_decl == NULL_TREE)
1862 class_decl = build_decl (VAR_DECL, name, TREE_TYPE (jclass_node));
1863 TREE_STATIC (class_decl) = 1;
1864 DECL_EXTERNAL (class_decl) = 1;
1865 TREE_PUBLIC (class_decl) = 1;
1866 DECL_ARTIFICIAL (class_decl) = 1;
1867 DECL_IGNORED_P (class_decl) = 1;
1868 pushdecl_top_level (class_decl);
1869 make_decl_rtl (class_decl, NULL);
1871 return class_decl;
1874 /* Returns the size of the cookie to use when allocating an array
1875 whose elements have the indicated TYPE. Assumes that it is already
1876 known that a cookie is needed. */
1878 static tree
1879 get_cookie_size (tree type)
1881 tree cookie_size;
1883 /* We need to allocate an additional max (sizeof (size_t), alignof
1884 (true_type)) bytes. */
1885 tree sizetype_size;
1886 tree type_align;
1888 sizetype_size = size_in_bytes (sizetype);
1889 type_align = size_int (TYPE_ALIGN_UNIT (type));
1890 if (INT_CST_LT_UNSIGNED (type_align, sizetype_size))
1891 cookie_size = sizetype_size;
1892 else
1893 cookie_size = type_align;
1895 return cookie_size;
1898 /* Called from cplus_expand_expr when expanding a NEW_EXPR. The return
1899 value is immediately handed to expand_expr. */
1901 static tree
1902 build_new_1 (tree exp)
1904 tree placement, init;
1905 tree true_type, size, rval, t;
1906 /* The type of the new-expression. (This type is always a pointer
1907 type.) */
1908 tree pointer_type;
1909 /* The type pointed to by POINTER_TYPE. */
1910 tree type;
1911 /* The type being allocated. For "new T[...]" this will be an
1912 ARRAY_TYPE. */
1913 tree full_type;
1914 /* A pointer type pointing to to the FULL_TYPE. */
1915 tree full_pointer_type;
1916 tree outer_nelts = NULL_TREE;
1917 tree nelts = NULL_TREE;
1918 tree alloc_call, alloc_expr;
1919 /* The address returned by the call to "operator new". This node is
1920 a VAR_DECL and is therefore reusable. */
1921 tree alloc_node;
1922 tree alloc_fn;
1923 tree cookie_expr, init_expr;
1924 int has_array = 0;
1925 enum tree_code code;
1926 int nothrow, check_new;
1927 /* Nonzero if the user wrote `::new' rather than just `new'. */
1928 int globally_qualified_p;
1929 int use_java_new = 0;
1930 /* If non-NULL, the number of extra bytes to allocate at the
1931 beginning of the storage allocated for an array-new expression in
1932 order to store the number of elements. */
1933 tree cookie_size = NULL_TREE;
1934 /* True if the function we are calling is a placement allocation
1935 function. */
1936 bool placement_allocation_fn_p;
1937 tree args = NULL_TREE;
1938 /* True if the storage must be initialized, either by a constructor
1939 or due to an explicit new-initializer. */
1940 bool is_initialized;
1941 /* The address of the thing allocated, not including any cookie. In
1942 particular, if an array cookie is in use, DATA_ADDR is the
1943 address of the first array element. This node is a VAR_DECL, and
1944 is therefore reusable. */
1945 tree data_addr;
1947 placement = TREE_OPERAND (exp, 0);
1948 type = TREE_OPERAND (exp, 1);
1949 init = TREE_OPERAND (exp, 2);
1950 globally_qualified_p = NEW_EXPR_USE_GLOBAL (exp);
1952 if (TREE_CODE (type) == ARRAY_REF)
1954 has_array = 1;
1955 nelts = outer_nelts = TREE_OPERAND (type, 1);
1956 type = TREE_OPERAND (type, 0);
1958 /* Use an incomplete array type to avoid VLA headaches. */
1959 full_type = build_cplus_array_type (type, NULL_TREE);
1961 else
1962 full_type = type;
1964 true_type = type;
1966 code = has_array ? VEC_NEW_EXPR : NEW_EXPR;
1968 /* If our base type is an array, then make sure we know how many elements
1969 it has. */
1970 while (TREE_CODE (true_type) == ARRAY_TYPE)
1972 tree this_nelts = array_type_nelts_top (true_type);
1973 nelts = cp_build_binary_op (MULT_EXPR, nelts, this_nelts);
1974 true_type = TREE_TYPE (true_type);
1977 if (!complete_type_or_else (true_type, exp))
1978 return error_mark_node;
1980 if (TREE_CODE (true_type) == VOID_TYPE)
1982 error ("invalid type `void' for new");
1983 return error_mark_node;
1986 if (abstract_virtuals_error (NULL_TREE, true_type))
1987 return error_mark_node;
1989 is_initialized = (TYPE_NEEDS_CONSTRUCTING (type) || init);
1990 if (CP_TYPE_CONST_P (true_type) && !is_initialized)
1992 error ("uninitialized const in `new' of `%#T'", true_type);
1993 return error_mark_node;
1996 size = size_in_bytes (true_type);
1997 if (has_array)
1998 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
2000 /* Allocate the object. */
2001 if (! placement && TYPE_FOR_JAVA (true_type))
2003 tree class_addr, alloc_decl;
2004 tree class_decl = build_java_class_ref (true_type);
2005 tree class_size = size_in_bytes (true_type);
2006 static const char alloc_name[] = "_Jv_AllocObject";
2007 use_java_new = 1;
2008 alloc_decl = IDENTIFIER_GLOBAL_VALUE (get_identifier (alloc_name));
2009 if (alloc_decl == NULL_TREE)
2010 fatal_error ("call to Java constructor with `%s' undefined",
2011 alloc_name);
2013 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2014 alloc_call = (build_function_call
2015 (alloc_decl,
2016 tree_cons (NULL_TREE, class_addr,
2017 build_tree_list (NULL_TREE, class_size))));
2019 else
2021 tree fnname;
2023 fnname = ansi_opname (code);
2025 if (!globally_qualified_p
2026 && CLASS_TYPE_P (true_type)
2027 && (has_array
2028 ? TYPE_HAS_ARRAY_NEW_OPERATOR (true_type)
2029 : TYPE_HAS_NEW_OPERATOR (true_type)))
2031 /* Use a class-specific operator new. */
2032 /* If a cookie is required, add some extra space. */
2033 if (has_array && TYPE_VEC_NEW_USES_COOKIE (true_type))
2035 cookie_size = get_cookie_size (true_type);
2036 size = size_binop (PLUS_EXPR, size, cookie_size);
2038 /* Create the argument list. */
2039 args = tree_cons (NULL_TREE, size, placement);
2040 /* Call the function. */
2041 alloc_call = build_method_call (build_dummy_object (true_type),
2042 fnname, args,
2043 TYPE_BINFO (true_type),
2044 LOOKUP_NORMAL);
2046 else
2048 /* Use a global operator new. */
2049 /* See if a cookie might be required. */
2050 if (has_array && TYPE_VEC_NEW_USES_COOKIE (true_type))
2051 cookie_size = get_cookie_size (true_type);
2052 else
2053 cookie_size = NULL_TREE;
2055 alloc_call = build_operator_new_call (fnname, placement,
2056 &size, &cookie_size);
2060 if (alloc_call == error_mark_node)
2061 return error_mark_node;
2063 /* The ALLOC_CALL should be a CALL_EXPR -- or a COMPOUND_EXPR whose
2064 right-hand-side is ultimately a CALL_EXPR -- and the first
2065 operand should be the address of a known FUNCTION_DECL. */
2066 t = alloc_call;
2067 while (TREE_CODE (t) == COMPOUND_EXPR)
2068 t = TREE_OPERAND (t, 1);
2069 alloc_fn = get_callee_fndecl (t);
2070 my_friendly_assert (alloc_fn != NULL_TREE, 20020325);
2072 /* Now, check to see if this function is actually a placement
2073 allocation function. This can happen even when PLACEMENT is NULL
2074 because we might have something like:
2076 struct S { void* operator new (size_t, int i = 0); };
2078 A call to `new S' will get this allocation function, even though
2079 there is no explicit placement argument. If there is more than
2080 one argument, or there are variable arguments, then this is a
2081 placement allocation function. */
2082 placement_allocation_fn_p
2083 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2084 || varargs_function_p (alloc_fn));
2086 /* unless an allocation function is declared with an empty excep-
2087 tion-specification (_except.spec_), throw(), it indicates failure to
2088 allocate storage by throwing a bad_alloc exception (clause _except_,
2089 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2090 cation function is declared with an empty exception-specification,
2091 throw(), it returns null to indicate failure to allocate storage and a
2092 non-null pointer otherwise.
2094 So check for a null exception spec on the op new we just called. */
2096 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2097 check_new = (flag_check_new || nothrow) && ! use_java_new;
2099 /* In the simple case, we can stop now. */
2100 pointer_type = build_pointer_type (type);
2101 if (!cookie_size && !is_initialized)
2102 return build_nop (pointer_type, alloc_call);
2104 /* While we're working, use a pointer to the type we've actually
2105 allocated. Store the result of the call in a variable so that we
2106 can use it more than once. */
2107 full_pointer_type = build_pointer_type (full_type);
2108 alloc_expr = get_target_expr (build_nop (full_pointer_type, alloc_call));
2109 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2111 if (cookie_size)
2113 tree cookie;
2115 /* Adjust so we're pointing to the start of the object. */
2116 data_addr = get_target_expr (build (PLUS_EXPR, full_pointer_type,
2117 alloc_node, cookie_size));
2119 /* Store the number of bytes allocated so that we can know how
2120 many elements to destroy later. We use the last sizeof
2121 (size_t) bytes to store the number of elements. */
2122 cookie = build (MINUS_EXPR, build_pointer_type (sizetype),
2123 data_addr, size_in_bytes (sizetype));
2124 cookie = build_indirect_ref (cookie, NULL);
2126 cookie_expr = build (MODIFY_EXPR, sizetype, cookie, nelts);
2127 data_addr = TARGET_EXPR_SLOT (data_addr);
2129 else
2131 cookie_expr = NULL_TREE;
2132 data_addr = alloc_node;
2135 /* Now initialize the allocated object. */
2136 if (is_initialized)
2138 init_expr = build_indirect_ref (data_addr, NULL);
2140 if (init == void_zero_node)
2141 init = build_default_init (full_type, nelts);
2142 else if (init && pedantic && has_array)
2143 pedwarn ("ISO C++ forbids initialization in array new");
2145 if (has_array)
2146 init_expr
2147 = build_vec_init (init_expr,
2148 cp_build_binary_op (MINUS_EXPR, outer_nelts,
2149 integer_one_node),
2150 init, /*from_array=*/0);
2151 else if (TYPE_NEEDS_CONSTRUCTING (type))
2152 init_expr = build_special_member_call (init_expr,
2153 complete_ctor_identifier,
2154 init, TYPE_BINFO (true_type),
2155 LOOKUP_NORMAL);
2156 else
2158 /* We are processing something like `new int (10)', which
2159 means allocate an int, and initialize it with 10. */
2161 if (TREE_CODE (init) == TREE_LIST)
2162 init = build_x_compound_expr_from_list (init, "new initializer");
2164 else if (TREE_CODE (init) == CONSTRUCTOR
2165 && TREE_TYPE (init) == NULL_TREE)
2167 pedwarn ("ISO C++ forbids aggregate initializer to new");
2168 init = digest_init (type, init, 0);
2171 init_expr = build_modify_expr (init_expr, INIT_EXPR, init);
2174 if (init_expr == error_mark_node)
2175 return error_mark_node;
2177 /* If any part of the object initialization terminates by throwing an
2178 exception and a suitable deallocation function can be found, the
2179 deallocation function is called to free the memory in which the
2180 object was being constructed, after which the exception continues
2181 to propagate in the context of the new-expression. If no
2182 unambiguous matching deallocation function can be found,
2183 propagating the exception does not cause the object's memory to be
2184 freed. */
2185 if (flag_exceptions && ! use_java_new)
2187 enum tree_code dcode = has_array ? VEC_DELETE_EXPR : DELETE_EXPR;
2188 tree cleanup;
2189 int flags = (LOOKUP_NORMAL
2190 | (globally_qualified_p * LOOKUP_GLOBAL));
2192 /* The Standard is unclear here, but the right thing to do
2193 is to use the same method for finding deallocation
2194 functions that we use for finding allocation functions. */
2195 flags |= LOOKUP_SPECULATIVELY;
2197 cleanup = build_op_delete_call (dcode, alloc_node, size, flags,
2198 (placement_allocation_fn_p
2199 ? alloc_call : NULL_TREE));
2201 /* Ack! First we allocate the memory. Then we set our sentry
2202 variable to true, and expand a cleanup that deletes the memory
2203 if sentry is true. Then we run the constructor, and finally
2204 clear the sentry.
2206 It would be nice to be able to handle this without the sentry
2207 variable, perhaps with a TRY_CATCH_EXPR, but this doesn't
2208 work. We allocate the space first, so if there are any
2209 temporaries with cleanups in the constructor args we need this
2210 EH region to extend until end of full-expression to preserve
2211 nesting.
2213 If the backend had some mechanism so that we could force the
2214 allocation to be expanded after all the other args to the
2215 constructor, that would fix the nesting problem and we could
2216 do away with this complexity. But that would complicate other
2217 things; in particular, it would make it difficult to bail out
2218 if the allocation function returns null. Er, no, it wouldn't;
2219 we just don't run the constructor. The standard says it's
2220 unspecified whether or not the args are evaluated.
2222 FIXME FIXME FIXME inline invisible refs as refs. That way we
2223 can preevaluate value parameters. */
2225 if (cleanup)
2227 tree end, sentry, begin;
2229 begin = get_target_expr (boolean_true_node);
2230 CLEANUP_EH_ONLY (begin) = 1;
2232 sentry = TARGET_EXPR_SLOT (begin);
2234 TARGET_EXPR_CLEANUP (begin)
2235 = build (COND_EXPR, void_type_node, sentry,
2236 cleanup, void_zero_node);
2238 end = build (MODIFY_EXPR, TREE_TYPE (sentry),
2239 sentry, boolean_false_node);
2241 init_expr
2242 = build (COMPOUND_EXPR, void_type_node, begin,
2243 build (COMPOUND_EXPR, void_type_node, init_expr,
2244 end));
2248 else
2249 init_expr = NULL_TREE;
2251 /* Now build up the return value in reverse order. */
2253 rval = data_addr;
2255 if (init_expr)
2256 rval = build (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2257 if (cookie_expr)
2258 rval = build (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2260 if (rval == alloc_node)
2261 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2262 and return the call (which doesn't need to be adjusted). */
2263 rval = TARGET_EXPR_INITIAL (alloc_expr);
2264 else
2266 if (check_new)
2268 tree ifexp = cp_build_binary_op (NE_EXPR, alloc_node,
2269 integer_zero_node);
2270 rval = build_conditional_expr (ifexp, rval, alloc_node);
2273 /* Perform the allocation before anything else, so that ALLOC_NODE
2274 has been initialized before we start using it. */
2275 rval = build (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2278 /* Convert to the final type. */
2279 rval = build_nop (pointer_type, rval);
2281 /* A new-expression is never an lvalue. */
2282 if (real_lvalue_p (rval))
2283 rval = build1 (NON_LVALUE_EXPR, TREE_TYPE (rval), rval);
2285 return rval;
2288 static tree
2289 build_vec_delete_1 (tree base, tree maxindex, tree type,
2290 special_function_kind auto_delete_vec, int use_global_delete)
2292 tree virtual_size;
2293 tree ptype = build_pointer_type (type = complete_type (type));
2294 tree size_exp = size_in_bytes (type);
2296 /* Temporary variables used by the loop. */
2297 tree tbase, tbase_init;
2299 /* This is the body of the loop that implements the deletion of a
2300 single element, and moves temp variables to next elements. */
2301 tree body;
2303 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2304 tree loop = 0;
2306 /* This is the thing that governs what to do after the loop has run. */
2307 tree deallocate_expr = 0;
2309 /* This is the BIND_EXPR which holds the outermost iterator of the
2310 loop. It is convenient to set this variable up and test it before
2311 executing any other code in the loop.
2312 This is also the containing expression returned by this function. */
2313 tree controller = NULL_TREE;
2315 /* We should only have 1-D arrays here. */
2316 if (TREE_CODE (type) == ARRAY_TYPE)
2317 abort ();
2319 if (! IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2320 goto no_destructor;
2322 /* The below is short by the cookie size. */
2323 virtual_size = size_binop (MULT_EXPR, size_exp,
2324 convert (sizetype, maxindex));
2326 tbase = create_temporary_var (ptype);
2327 tbase_init = build_modify_expr (tbase, NOP_EXPR,
2328 fold (build (PLUS_EXPR, ptype,
2329 base,
2330 virtual_size)));
2331 DECL_REGISTER (tbase) = 1;
2332 controller = build (BIND_EXPR, void_type_node, tbase, NULL_TREE, NULL_TREE);
2333 TREE_SIDE_EFFECTS (controller) = 1;
2335 body = build (EXIT_EXPR, void_type_node,
2336 build (EQ_EXPR, boolean_type_node, base, tbase));
2337 body = build_compound_expr
2338 (body, build_modify_expr (tbase, NOP_EXPR,
2339 build (MINUS_EXPR, ptype, tbase, size_exp)));
2340 body = build_compound_expr
2341 (body, build_delete (ptype, tbase, sfk_complete_destructor,
2342 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2344 loop = build (LOOP_EXPR, void_type_node, body);
2345 loop = build_compound_expr (tbase_init, loop);
2347 no_destructor:
2348 /* If the delete flag is one, or anything else with the low bit set,
2349 delete the storage. */
2350 if (auto_delete_vec != sfk_base_destructor)
2352 tree base_tbd;
2354 /* The below is short by the cookie size. */
2355 virtual_size = size_binop (MULT_EXPR, size_exp,
2356 convert (sizetype, maxindex));
2358 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2359 /* no header */
2360 base_tbd = base;
2361 else
2363 tree cookie_size;
2365 cookie_size = get_cookie_size (type);
2366 base_tbd
2367 = cp_convert (ptype,
2368 cp_build_binary_op (MINUS_EXPR,
2369 cp_convert (string_type_node,
2370 base),
2371 cookie_size));
2372 /* True size with header. */
2373 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2376 if (auto_delete_vec == sfk_deleting_destructor)
2377 deallocate_expr = build_x_delete (base_tbd,
2378 2 | use_global_delete,
2379 virtual_size);
2382 body = loop;
2383 if (!deallocate_expr)
2385 else if (!body)
2386 body = deallocate_expr;
2387 else
2388 body = build_compound_expr (body, deallocate_expr);
2390 if (!body)
2391 body = integer_zero_node;
2393 /* Outermost wrapper: If pointer is null, punt. */
2394 body = fold (build (COND_EXPR, void_type_node,
2395 fold (build (NE_EXPR, boolean_type_node, base,
2396 integer_zero_node)),
2397 body, integer_zero_node));
2398 body = build1 (NOP_EXPR, void_type_node, body);
2400 if (controller)
2402 TREE_OPERAND (controller, 1) = body;
2403 body = controller;
2406 if (TREE_CODE (base) == SAVE_EXPR)
2407 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2408 body = build (COMPOUND_EXPR, void_type_node, base, body);
2410 return convert_to_void (body, /*implicit=*/NULL);
2413 /* Create an unnamed variable of the indicated TYPE. */
2415 tree
2416 create_temporary_var (tree type)
2418 tree decl;
2420 decl = build_decl (VAR_DECL, NULL_TREE, type);
2421 TREE_USED (decl) = 1;
2422 DECL_ARTIFICIAL (decl) = 1;
2423 DECL_SOURCE_LOCATION (decl) = input_location;
2424 DECL_IGNORED_P (decl) = 1;
2425 DECL_CONTEXT (decl) = current_function_decl;
2427 return decl;
2430 /* Create a new temporary variable of the indicated TYPE, initialized
2431 to INIT.
2433 It is not entered into current_binding_level, because that breaks
2434 things when it comes time to do final cleanups (which take place
2435 "outside" the binding contour of the function). */
2437 static tree
2438 get_temp_regvar (tree type, tree init)
2440 tree decl;
2442 decl = create_temporary_var (type);
2443 add_decl_stmt (decl);
2445 finish_expr_stmt (build_modify_expr (decl, INIT_EXPR, init));
2447 return decl;
2450 /* `build_vec_init' returns tree structure that performs
2451 initialization of a vector of aggregate types.
2453 BASE is a reference to the vector, of ARRAY_TYPE.
2454 MAXINDEX is the maximum index of the array (one less than the
2455 number of elements). It is only used if
2456 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2457 INIT is the (possibly NULL) initializer.
2459 FROM_ARRAY is 0 if we should init everything with INIT
2460 (i.e., every element initialized from INIT).
2461 FROM_ARRAY is 1 if we should index into INIT in parallel
2462 with initialization of DECL.
2463 FROM_ARRAY is 2 if we should index into INIT in parallel,
2464 but use assignment instead of initialization. */
2466 tree
2467 build_vec_init (tree base, tree maxindex, tree init, int from_array)
2469 tree rval;
2470 tree base2 = NULL_TREE;
2471 tree size;
2472 tree itype = NULL_TREE;
2473 tree iterator;
2474 /* The type of the array. */
2475 tree atype = TREE_TYPE (base);
2476 /* The type of an element in the array. */
2477 tree type = TREE_TYPE (atype);
2478 /* The type of a pointer to an element in the array. */
2479 tree ptype;
2480 tree stmt_expr;
2481 tree compound_stmt;
2482 int destroy_temps;
2483 tree try_block = NULL_TREE;
2484 tree try_body = NULL_TREE;
2485 int num_initialized_elts = 0;
2486 bool is_global;
2488 if (TYPE_DOMAIN (atype))
2489 maxindex = array_type_nelts (atype);
2491 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2492 return error_mark_node;
2494 if (init
2495 && (from_array == 2
2496 ? (!CLASS_TYPE_P (type) || !TYPE_HAS_COMPLEX_ASSIGN_REF (type))
2497 : !TYPE_NEEDS_CONSTRUCTING (type))
2498 && ((TREE_CODE (init) == CONSTRUCTOR
2499 /* Don't do this if the CONSTRUCTOR might contain something
2500 that might throw and require us to clean up. */
2501 && (CONSTRUCTOR_ELTS (init) == NULL_TREE
2502 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (target_type (type))))
2503 || from_array))
2505 /* Do non-default initialization of POD arrays resulting from
2506 brace-enclosed initializers. In this case, digest_init and
2507 store_constructor will handle the semantics for us. */
2509 stmt_expr = build (INIT_EXPR, atype, base, init);
2510 return stmt_expr;
2513 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2514 ptype = build_pointer_type (type);
2515 size = size_in_bytes (type);
2516 if (TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
2517 base = cp_convert (ptype, decay_conversion (base));
2519 /* The code we are generating looks like:
2521 T* t1 = (T*) base;
2522 T* rval = t1;
2523 ptrdiff_t iterator = maxindex;
2524 try {
2525 for (; iterator != -1; --iterator) {
2526 ... initialize *t1 ...
2527 ++t1;
2529 } catch (...) {
2530 ... destroy elements that were constructed ...
2532 rval;
2535 We can omit the try and catch blocks if we know that the
2536 initialization will never throw an exception, or if the array
2537 elements do not have destructors. We can omit the loop completely if
2538 the elements of the array do not have constructors.
2540 We actually wrap the entire body of the above in a STMT_EXPR, for
2541 tidiness.
2543 When copying from array to another, when the array elements have
2544 only trivial copy constructors, we should use __builtin_memcpy
2545 rather than generating a loop. That way, we could take advantage
2546 of whatever cleverness the back-end has for dealing with copies
2547 of blocks of memory. */
2549 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2550 destroy_temps = stmts_are_full_exprs_p ();
2551 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2552 rval = get_temp_regvar (ptype, base);
2553 base = get_temp_regvar (ptype, rval);
2554 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2556 /* Protect the entire array initialization so that we can destroy
2557 the partially constructed array if an exception is thrown.
2558 But don't do this if we're assigning. */
2559 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2560 && from_array != 2)
2562 try_block = begin_try_block ();
2563 try_body = begin_compound_stmt (/*has_no_scope=*/true);
2566 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2568 /* Do non-default initialization of non-POD arrays resulting from
2569 brace-enclosed initializers. */
2571 tree elts;
2572 from_array = 0;
2574 for (elts = CONSTRUCTOR_ELTS (init); elts; elts = TREE_CHAIN (elts))
2576 tree elt = TREE_VALUE (elts);
2577 tree baseref = build1 (INDIRECT_REF, type, base);
2579 num_initialized_elts++;
2581 if (IS_AGGR_TYPE (type) || TREE_CODE (type) == ARRAY_TYPE)
2582 finish_expr_stmt (build_aggr_init (baseref, elt, 0));
2583 else
2584 finish_expr_stmt (build_modify_expr (baseref, NOP_EXPR,
2585 elt));
2587 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2588 finish_expr_stmt (build_unary_op (PREDECREMENT_EXPR, iterator, 0));
2591 /* Clear out INIT so that we don't get confused below. */
2592 init = NULL_TREE;
2594 else if (from_array)
2596 /* If initializing one array from another, initialize element by
2597 element. We rely upon the below calls the do argument
2598 checking. */
2599 if (init)
2601 base2 = decay_conversion (init);
2602 itype = TREE_TYPE (base2);
2603 base2 = get_temp_regvar (itype, base2);
2604 itype = TREE_TYPE (itype);
2606 else if (TYPE_LANG_SPECIFIC (type)
2607 && TYPE_NEEDS_CONSTRUCTING (type)
2608 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2610 error ("initializer ends prematurely");
2611 return error_mark_node;
2615 /* Now, default-initialize any remaining elements. We don't need to
2616 do that if a) the type does not need constructing, or b) we've
2617 already initialized all the elements.
2619 We do need to keep going if we're copying an array. */
2621 if (from_array
2622 || (TYPE_NEEDS_CONSTRUCTING (type)
2623 && ! (host_integerp (maxindex, 0)
2624 && (num_initialized_elts
2625 == tree_low_cst (maxindex, 0) + 1))))
2627 /* If the ITERATOR is equal to -1, then we don't have to loop;
2628 we've already initialized all the elements. */
2629 tree for_stmt;
2630 tree for_body;
2631 tree elt_init;
2633 for_stmt = begin_for_stmt ();
2634 finish_for_init_stmt (for_stmt);
2635 finish_for_cond (build (NE_EXPR, boolean_type_node,
2636 iterator, integer_minus_one_node),
2637 for_stmt);
2638 finish_for_expr (build_unary_op (PREDECREMENT_EXPR, iterator, 0),
2639 for_stmt);
2641 /* Otherwise, loop through the elements. */
2642 for_body = begin_compound_stmt (/*has_no_scope=*/true);
2644 if (from_array)
2646 tree to = build1 (INDIRECT_REF, type, base);
2647 tree from;
2649 if (base2)
2650 from = build1 (INDIRECT_REF, itype, base2);
2651 else
2652 from = NULL_TREE;
2654 if (from_array == 2)
2655 elt_init = build_modify_expr (to, NOP_EXPR, from);
2656 else if (TYPE_NEEDS_CONSTRUCTING (type))
2657 elt_init = build_aggr_init (to, from, 0);
2658 else if (from)
2659 elt_init = build_modify_expr (to, NOP_EXPR, from);
2660 else
2661 abort ();
2663 else if (TREE_CODE (type) == ARRAY_TYPE)
2665 if (init != 0)
2666 sorry
2667 ("cannot initialize multi-dimensional array with initializer");
2668 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
2669 0, 0, 0);
2671 else
2672 elt_init = build_aggr_init (build1 (INDIRECT_REF, type, base),
2673 init, 0);
2675 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2676 finish_expr_stmt (elt_init);
2677 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2679 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base, 0));
2680 if (base2)
2681 finish_expr_stmt (build_unary_op (PREINCREMENT_EXPR, base2, 0));
2683 finish_compound_stmt (for_body);
2684 finish_for_stmt (for_stmt);
2687 /* Make sure to cleanup any partially constructed elements. */
2688 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2689 && from_array != 2)
2691 tree e;
2692 tree m = cp_build_binary_op (MINUS_EXPR, maxindex, iterator);
2694 /* Flatten multi-dimensional array since build_vec_delete only
2695 expects one-dimensional array. */
2696 if (TREE_CODE (type) == ARRAY_TYPE)
2698 m = cp_build_binary_op (MULT_EXPR, m,
2699 array_type_nelts_total (type));
2700 type = strip_array_types (type);
2703 finish_compound_stmt (try_body);
2704 finish_cleanup_try_block (try_block);
2705 e = build_vec_delete_1 (rval, m, type, sfk_base_destructor,
2706 /*use_global_delete=*/0);
2707 finish_cleanup (e, try_block);
2710 /* The value of the array initialization is the array itself, RVAL
2711 is a pointer to the first element. */
2712 finish_stmt_expr_expr (rval);
2714 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2716 /* Now convert make the result have the correct type. */
2717 atype = build_pointer_type (atype);
2718 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
2719 stmt_expr = build_indirect_ref (stmt_expr, NULL);
2721 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
2722 return stmt_expr;
2725 /* Free up storage of type TYPE, at address ADDR.
2727 TYPE is a POINTER_TYPE and can be ptr_type_node for no special type
2728 of pointer.
2730 VIRTUAL_SIZE is the amount of storage that was allocated, and is
2731 used as the second argument to operator delete. It can include
2732 things like padding and magic size cookies. It has virtual in it,
2733 because if you have a base pointer and you delete through a virtual
2734 destructor, it should be the size of the dynamic object, not the
2735 static object, see Free Store 12.5 ISO C++.
2737 This does not call any destructors. */
2739 tree
2740 build_x_delete (tree addr, int which_delete, tree virtual_size)
2742 int use_global_delete = which_delete & 1;
2743 int use_vec_delete = !!(which_delete & 2);
2744 enum tree_code code = use_vec_delete ? VEC_DELETE_EXPR : DELETE_EXPR;
2745 int flags = LOOKUP_NORMAL | (use_global_delete * LOOKUP_GLOBAL);
2747 return build_op_delete_call (code, addr, virtual_size, flags, NULL_TREE);
2750 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
2751 build_delete. */
2753 static tree
2754 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
2756 tree name;
2757 tree fn;
2758 switch (dtor_kind)
2760 case sfk_complete_destructor:
2761 name = complete_dtor_identifier;
2762 break;
2764 case sfk_base_destructor:
2765 name = base_dtor_identifier;
2766 break;
2768 case sfk_deleting_destructor:
2769 name = deleting_dtor_identifier;
2770 break;
2772 default:
2773 abort ();
2776 exp = convert_from_reference (exp);
2777 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
2778 return build_new_method_call (exp, fn,
2779 /*args=*/NULL_TREE,
2780 /*conversion_path=*/NULL_TREE,
2781 flags);
2784 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
2785 ADDR is an expression which yields the store to be destroyed.
2786 AUTO_DELETE is the name of the destructor to call, i.e., either
2787 sfk_complete_destructor, sfk_base_destructor, or
2788 sfk_deleting_destructor.
2790 FLAGS is the logical disjunction of zero or more LOOKUP_
2791 flags. See cp-tree.h for more info. */
2793 tree
2794 build_delete (tree type, tree addr, special_function_kind auto_delete,
2795 int flags, int use_global_delete)
2797 tree expr;
2799 if (addr == error_mark_node)
2800 return error_mark_node;
2802 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
2803 set to `error_mark_node' before it gets properly cleaned up. */
2804 if (type == error_mark_node)
2805 return error_mark_node;
2807 type = TYPE_MAIN_VARIANT (type);
2809 if (TREE_CODE (type) == POINTER_TYPE)
2811 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
2812 if (TREE_CODE (type) == ARRAY_TYPE)
2813 goto handle_array;
2815 if (VOID_TYPE_P (type)
2816 /* We don't want to warn about delete of void*, only other
2817 incomplete types. Deleting other incomplete types
2818 invokes undefined behavior, but it is not ill-formed, so
2819 compile to something that would even do The Right Thing
2820 (TM) should the type have a trivial dtor and no delete
2821 operator. */
2822 || !complete_type_or_diagnostic (type, addr, 1)
2823 || !IS_AGGR_TYPE (type))
2825 /* Call the builtin operator delete. */
2826 return build_builtin_delete_call (addr);
2828 if (TREE_SIDE_EFFECTS (addr))
2829 addr = save_expr (addr);
2831 /* throw away const and volatile on target type of addr */
2832 addr = convert_force (build_pointer_type (type), addr, 0);
2834 else if (TREE_CODE (type) == ARRAY_TYPE)
2836 handle_array:
2838 if (TYPE_DOMAIN (type) == NULL_TREE)
2840 error ("unknown array size in delete");
2841 return error_mark_node;
2843 return build_vec_delete (addr, array_type_nelts (type),
2844 auto_delete, use_global_delete);
2846 else
2848 /* Don't check PROTECT here; leave that decision to the
2849 destructor. If the destructor is accessible, call it,
2850 else report error. */
2851 addr = build_unary_op (ADDR_EXPR, addr, 0);
2852 if (TREE_SIDE_EFFECTS (addr))
2853 addr = save_expr (addr);
2855 addr = convert_force (build_pointer_type (type), addr, 0);
2858 my_friendly_assert (IS_AGGR_TYPE (type), 220);
2860 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2862 if (auto_delete != sfk_deleting_destructor)
2863 return void_zero_node;
2865 return build_op_delete_call
2866 (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
2867 LOOKUP_NORMAL | (use_global_delete * LOOKUP_GLOBAL),
2868 NULL_TREE);
2870 else
2872 tree do_delete = NULL_TREE;
2873 tree ifexp;
2875 my_friendly_assert (TYPE_HAS_DESTRUCTOR (type), 20011213);
2877 /* For `::delete x', we must not use the deleting destructor
2878 since then we would not be sure to get the global `operator
2879 delete'. */
2880 if (use_global_delete && auto_delete == sfk_deleting_destructor)
2882 /* We will use ADDR multiple times so we must save it. */
2883 addr = save_expr (addr);
2884 /* Delete the object. */
2885 do_delete = build_builtin_delete_call (addr);
2886 /* Otherwise, treat this like a complete object destructor
2887 call. */
2888 auto_delete = sfk_complete_destructor;
2890 /* If the destructor is non-virtual, there is no deleting
2891 variant. Instead, we must explicitly call the appropriate
2892 `operator delete' here. */
2893 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
2894 && auto_delete == sfk_deleting_destructor)
2896 /* We will use ADDR multiple times so we must save it. */
2897 addr = save_expr (addr);
2898 /* Build the call. */
2899 do_delete = build_op_delete_call (DELETE_EXPR,
2900 addr,
2901 cxx_sizeof_nowarn (type),
2902 LOOKUP_NORMAL,
2903 NULL_TREE);
2904 /* Call the complete object destructor. */
2905 auto_delete = sfk_complete_destructor;
2907 else if (auto_delete == sfk_deleting_destructor
2908 && TYPE_GETS_REG_DELETE (type))
2910 /* Make sure we have access to the member op delete, even though
2911 we'll actually be calling it from the destructor. */
2912 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
2913 LOOKUP_NORMAL, NULL_TREE);
2916 expr = build_dtor_call (build_indirect_ref (addr, NULL),
2917 auto_delete, flags);
2918 if (do_delete)
2919 expr = build (COMPOUND_EXPR, void_type_node, expr, do_delete);
2921 if (flags & LOOKUP_DESTRUCTOR)
2922 /* Explicit destructor call; don't check for null pointer. */
2923 ifexp = integer_one_node;
2924 else
2925 /* Handle deleting a null pointer. */
2926 ifexp = fold (cp_build_binary_op (NE_EXPR, addr, integer_zero_node));
2928 if (ifexp != integer_one_node)
2929 expr = build (COND_EXPR, void_type_node,
2930 ifexp, expr, void_zero_node);
2932 return expr;
2936 /* At the beginning of a destructor, push cleanups that will call the
2937 destructors for our base classes and members.
2939 Called from begin_destructor_body. */
2941 void
2942 push_base_cleanups (void)
2944 tree binfos;
2945 int i, n_baseclasses;
2946 tree member;
2947 tree expr;
2949 /* Run destructors for all virtual baseclasses. */
2950 if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type))
2952 tree vbases;
2953 tree cond = (condition_conversion
2954 (build (BIT_AND_EXPR, integer_type_node,
2955 current_in_charge_parm,
2956 integer_two_node)));
2958 vbases = CLASSTYPE_VBASECLASSES (current_class_type);
2959 /* The CLASSTYPE_VBASECLASSES list is in initialization
2960 order, which is also the right order for pushing cleanups. */
2961 for (; vbases;
2962 vbases = TREE_CHAIN (vbases))
2964 tree vbase = TREE_VALUE (vbases);
2965 tree base_type = BINFO_TYPE (vbase);
2967 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (base_type))
2969 expr = build_special_member_call (current_class_ref,
2970 base_dtor_identifier,
2971 NULL_TREE,
2972 vbase,
2973 (LOOKUP_NORMAL
2974 | LOOKUP_NONVIRTUAL));
2975 expr = build (COND_EXPR, void_type_node, cond,
2976 expr, void_zero_node);
2977 finish_decl_cleanup (NULL_TREE, expr);
2982 binfos = BINFO_BASETYPES (TYPE_BINFO (current_class_type));
2983 n_baseclasses = CLASSTYPE_N_BASECLASSES (current_class_type);
2985 /* Take care of the remaining baseclasses. */
2986 for (i = 0; i < n_baseclasses; i++)
2988 tree base_binfo = TREE_VEC_ELT (binfos, i);
2989 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
2990 || TREE_VIA_VIRTUAL (base_binfo))
2991 continue;
2993 expr = build_special_member_call (current_class_ref,
2994 base_dtor_identifier,
2995 NULL_TREE, base_binfo,
2996 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL);
2997 finish_decl_cleanup (NULL_TREE, expr);
3000 for (member = TYPE_FIELDS (current_class_type); member;
3001 member = TREE_CHAIN (member))
3003 if (TREE_CODE (member) != FIELD_DECL || DECL_ARTIFICIAL (member))
3004 continue;
3005 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
3007 tree this_member = (build_class_member_access_expr
3008 (current_class_ref, member,
3009 /*access_path=*/NULL_TREE,
3010 /*preserve_reference=*/false));
3011 tree this_type = TREE_TYPE (member);
3012 expr = build_delete (this_type, this_member,
3013 sfk_complete_destructor,
3014 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3016 finish_decl_cleanup (NULL_TREE, expr);
3021 /* For type TYPE, delete the virtual baseclass objects of DECL. */
3023 tree
3024 build_vbase_delete (tree type, tree decl)
3026 tree vbases = CLASSTYPE_VBASECLASSES (type);
3027 tree result;
3028 tree addr = build_unary_op (ADDR_EXPR, decl, 0);
3030 my_friendly_assert (addr != error_mark_node, 222);
3032 for (result = convert_to_void (integer_zero_node, NULL);
3033 vbases; vbases = TREE_CHAIN (vbases))
3035 tree base_addr = convert_force
3036 (build_pointer_type (BINFO_TYPE (TREE_VALUE (vbases))), addr, 0);
3037 tree base_delete = build_delete
3038 (TREE_TYPE (base_addr), base_addr, sfk_base_destructor,
3039 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 0);
3041 result = build_compound_expr (result, base_delete);
3043 return result;
3046 /* Build a C++ vector delete expression.
3047 MAXINDEX is the number of elements to be deleted.
3048 ELT_SIZE is the nominal size of each element in the vector.
3049 BASE is the expression that should yield the store to be deleted.
3050 This function expands (or synthesizes) these calls itself.
3051 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3053 This also calls delete for virtual baseclasses of elements of the vector.
3055 Update: MAXINDEX is no longer needed. The size can be extracted from the
3056 start of the vector for pointers, and from the type for arrays. We still
3057 use MAXINDEX for arrays because it happens to already have one of the
3058 values we'd have to extract. (We could use MAXINDEX with pointers to
3059 confirm the size, and trap if the numbers differ; not clear that it'd
3060 be worth bothering.) */
3062 tree
3063 build_vec_delete (tree base, tree maxindex,
3064 special_function_kind auto_delete_vec, int use_global_delete)
3066 tree type;
3067 tree rval;
3068 tree base_init = NULL_TREE;
3070 type = TREE_TYPE (base);
3072 if (TREE_CODE (type) == POINTER_TYPE)
3074 /* Step back one from start of vector, and read dimension. */
3075 tree cookie_addr;
3077 if (TREE_SIDE_EFFECTS (base))
3079 base_init = get_target_expr (base);
3080 base = TARGET_EXPR_SLOT (base_init);
3082 type = strip_array_types (TREE_TYPE (type));
3083 cookie_addr = build (MINUS_EXPR,
3084 build_pointer_type (sizetype),
3085 base,
3086 TYPE_SIZE_UNIT (sizetype));
3087 maxindex = build_indirect_ref (cookie_addr, NULL);
3089 else if (TREE_CODE (type) == ARRAY_TYPE)
3091 /* get the total number of things in the array, maxindex is a bad name */
3092 maxindex = array_type_nelts_total (type);
3093 type = strip_array_types (type);
3094 base = build_unary_op (ADDR_EXPR, base, 1);
3095 if (TREE_SIDE_EFFECTS (base))
3097 base_init = get_target_expr (base);
3098 base = TARGET_EXPR_SLOT (base_init);
3101 else
3103 if (base != error_mark_node)
3104 error ("type to vector delete is neither pointer or array type");
3105 return error_mark_node;
3108 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3109 use_global_delete);
3110 if (base_init)
3111 rval = build (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3113 return rval;