d: Merge upstream dmd, druntime c8ae4adb2e, phobos 792c8b7c1.
[official-gcc.git] / libsanitizer / sanitizer_common / sanitizer_common.h
blobb462e388c232ec1a68f037519b78e83b4126b98c
1 //===-- sanitizer_common.h --------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between run-time libraries of sanitizers.
11 // It declares common functions and classes that are used in both runtimes.
12 // Implementation of some functions are provided in sanitizer_common, while
13 // others must be defined by run-time library itself.
14 //===----------------------------------------------------------------------===//
15 #ifndef SANITIZER_COMMON_H
16 #define SANITIZER_COMMON_H
18 #include "sanitizer_flags.h"
19 #include "sanitizer_internal_defs.h"
20 #include "sanitizer_libc.h"
21 #include "sanitizer_list.h"
22 #include "sanitizer_mutex.h"
24 #if defined(_MSC_VER) && !defined(__clang__)
25 extern "C" void _ReadWriteBarrier();
26 #pragma intrinsic(_ReadWriteBarrier)
27 #endif
29 namespace __sanitizer {
31 struct AddressInfo;
32 struct BufferedStackTrace;
33 struct SignalContext;
34 struct StackTrace;
36 // Constants.
37 const uptr kWordSize = SANITIZER_WORDSIZE / 8;
38 const uptr kWordSizeInBits = 8 * kWordSize;
40 const uptr kCacheLineSize = SANITIZER_CACHE_LINE_SIZE;
42 const uptr kMaxPathLength = 4096;
44 const uptr kMaxThreadStackSize = 1 << 30; // 1Gb
46 const uptr kErrorMessageBufferSize = 1 << 16;
48 // Denotes fake PC values that come from JIT/JAVA/etc.
49 // For such PC values __tsan_symbolize_external_ex() will be called.
50 const u64 kExternalPCBit = 1ULL << 60;
52 extern const char *SanitizerToolName; // Can be changed by the tool.
54 extern atomic_uint32_t current_verbosity;
55 inline void SetVerbosity(int verbosity) {
56 atomic_store(&current_verbosity, verbosity, memory_order_relaxed);
58 inline int Verbosity() {
59 return atomic_load(&current_verbosity, memory_order_relaxed);
62 #if SANITIZER_ANDROID
63 inline uptr GetPageSize() {
64 // Android post-M sysconf(_SC_PAGESIZE) crashes if called from .preinit_array.
65 return 4096;
67 inline uptr GetPageSizeCached() {
68 return 4096;
70 #else
71 uptr GetPageSize();
72 extern uptr PageSizeCached;
73 inline uptr GetPageSizeCached() {
74 if (!PageSizeCached)
75 PageSizeCached = GetPageSize();
76 return PageSizeCached;
78 #endif
79 uptr GetMmapGranularity();
80 uptr GetMaxVirtualAddress();
81 uptr GetMaxUserVirtualAddress();
82 // Threads
83 tid_t GetTid();
84 int TgKill(pid_t pid, tid_t tid, int sig);
85 uptr GetThreadSelf();
86 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
87 uptr *stack_bottom);
88 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
89 uptr *tls_addr, uptr *tls_size);
91 // Memory management
92 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false);
93 inline void *MmapOrDieQuietly(uptr size, const char *mem_type) {
94 return MmapOrDie(size, mem_type, /*raw_report*/ true);
96 void UnmapOrDie(void *addr, uptr size);
97 // Behaves just like MmapOrDie, but tolerates out of memory condition, in that
98 // case returns nullptr.
99 void *MmapOrDieOnFatalError(uptr size, const char *mem_type);
100 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name = nullptr)
101 WARN_UNUSED_RESULT;
102 bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size,
103 const char *name = nullptr) WARN_UNUSED_RESULT;
104 void *MmapNoReserveOrDie(uptr size, const char *mem_type);
105 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name = nullptr);
106 // Behaves just like MmapFixedOrDie, but tolerates out of memory condition, in
107 // that case returns nullptr.
108 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size,
109 const char *name = nullptr);
110 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr);
111 void *MmapNoAccess(uptr size);
112 // Map aligned chunk of address space; size and alignment are powers of two.
113 // Dies on all but out of memory errors, in the latter case returns nullptr.
114 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
115 const char *mem_type);
116 // Disallow access to a memory range. Use MmapFixedNoAccess to allocate an
117 // unaccessible memory.
118 bool MprotectNoAccess(uptr addr, uptr size);
119 bool MprotectReadOnly(uptr addr, uptr size);
121 void MprotectMallocZones(void *addr, int prot);
123 #if SANITIZER_WINDOWS
124 // Zero previously mmap'd memory. Currently used only on Windows.
125 bool ZeroMmapFixedRegion(uptr fixed_addr, uptr size) WARN_UNUSED_RESULT;
126 #endif
128 #if SANITIZER_LINUX
129 // Unmap memory. Currently only used on Linux.
130 void UnmapFromTo(uptr from, uptr to);
131 #endif
133 // Maps shadow_size_bytes of shadow memory and returns shadow address. It will
134 // be aligned to the mmap granularity * 2^shadow_scale, or to
135 // 2^min_shadow_base_alignment if that is larger. The returned address will
136 // have max(2^min_shadow_base_alignment, mmap granularity) on the left, and
137 // shadow_size_bytes bytes on the right, which on linux is mapped no access.
138 // The high_mem_end may be updated if the original shadow size doesn't fit.
139 uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale,
140 uptr min_shadow_base_alignment, uptr &high_mem_end);
142 // Let S = max(shadow_size, num_aliases * alias_size, ring_buffer_size).
143 // Reserves 2*S bytes of address space to the right of the returned address and
144 // ring_buffer_size bytes to the left. The returned address is aligned to 2*S.
145 // Also creates num_aliases regions of accessible memory starting at offset S
146 // from the returned address. Each region has size alias_size and is backed by
147 // the same physical memory.
148 uptr MapDynamicShadowAndAliases(uptr shadow_size, uptr alias_size,
149 uptr num_aliases, uptr ring_buffer_size);
151 // Reserve memory range [beg, end]. If madvise_shadow is true then apply
152 // madvise (e.g. hugepages, core dumping) requested by options.
153 void ReserveShadowMemoryRange(uptr beg, uptr end, const char *name,
154 bool madvise_shadow = true);
156 // Protect size bytes of memory starting at addr. Also try to protect
157 // several pages at the start of the address space as specified by
158 // zero_base_shadow_start, at most up to the size or zero_base_max_shadow_start.
159 void ProtectGap(uptr addr, uptr size, uptr zero_base_shadow_start,
160 uptr zero_base_max_shadow_start);
162 // Find an available address space.
163 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
164 uptr *largest_gap_found, uptr *max_occupied_addr);
166 // Used to check if we can map shadow memory to a fixed location.
167 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end);
168 // Releases memory pages entirely within the [beg, end] address range. Noop if
169 // the provided range does not contain at least one entire page.
170 void ReleaseMemoryPagesToOS(uptr beg, uptr end);
171 void IncreaseTotalMmap(uptr size);
172 void DecreaseTotalMmap(uptr size);
173 uptr GetRSS();
174 void SetShadowRegionHugePageMode(uptr addr, uptr length);
175 bool DontDumpShadowMemory(uptr addr, uptr length);
176 // Check if the built VMA size matches the runtime one.
177 void CheckVMASize();
178 void RunMallocHooks(void *ptr, uptr size);
179 void RunFreeHooks(void *ptr);
181 class ReservedAddressRange {
182 public:
183 uptr Init(uptr size, const char *name = nullptr, uptr fixed_addr = 0);
184 uptr InitAligned(uptr size, uptr align, const char *name = nullptr);
185 uptr Map(uptr fixed_addr, uptr size, const char *name = nullptr);
186 uptr MapOrDie(uptr fixed_addr, uptr size, const char *name = nullptr);
187 void Unmap(uptr addr, uptr size);
188 void *base() const { return base_; }
189 uptr size() const { return size_; }
191 private:
192 void* base_;
193 uptr size_;
194 const char* name_;
195 uptr os_handle_;
198 typedef void (*fill_profile_f)(uptr start, uptr rss, bool file,
199 /*out*/ uptr *stats);
201 // Parse the contents of /proc/self/smaps and generate a memory profile.
202 // |cb| is a tool-specific callback that fills the |stats| array.
203 void GetMemoryProfile(fill_profile_f cb, uptr *stats);
204 void ParseUnixMemoryProfile(fill_profile_f cb, uptr *stats, char *smaps,
205 uptr smaps_len);
207 // Simple low-level (mmap-based) allocator for internal use. Doesn't have
208 // constructor, so all instances of LowLevelAllocator should be
209 // linker initialized.
210 class LowLevelAllocator {
211 public:
212 // Requires an external lock.
213 void *Allocate(uptr size);
214 private:
215 char *allocated_end_;
216 char *allocated_current_;
218 // Set the min alignment of LowLevelAllocator to at least alignment.
219 void SetLowLevelAllocateMinAlignment(uptr alignment);
220 typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size);
221 // Allows to register tool-specific callbacks for LowLevelAllocator.
222 // Passing NULL removes the callback.
223 void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback);
225 // IO
226 void CatastrophicErrorWrite(const char *buffer, uptr length);
227 void RawWrite(const char *buffer);
228 bool ColorizeReports();
229 void RemoveANSIEscapeSequencesFromString(char *buffer);
230 void Printf(const char *format, ...) FORMAT(1, 2);
231 void Report(const char *format, ...) FORMAT(1, 2);
232 void SetPrintfAndReportCallback(void (*callback)(const char *));
233 #define VReport(level, ...) \
234 do { \
235 if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \
236 } while (0)
237 #define VPrintf(level, ...) \
238 do { \
239 if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \
240 } while (0)
242 // Lock sanitizer error reporting and protects against nested errors.
243 class ScopedErrorReportLock {
244 public:
245 ScopedErrorReportLock() SANITIZER_ACQUIRE(mutex_) { Lock(); }
246 ~ScopedErrorReportLock() SANITIZER_RELEASE(mutex_) { Unlock(); }
248 static void Lock() SANITIZER_ACQUIRE(mutex_);
249 static void Unlock() SANITIZER_RELEASE(mutex_);
250 static void CheckLocked() SANITIZER_CHECK_LOCKED(mutex_);
252 private:
253 static atomic_uintptr_t reporting_thread_;
254 static StaticSpinMutex mutex_;
257 extern uptr stoptheworld_tracer_pid;
258 extern uptr stoptheworld_tracer_ppid;
260 bool IsAccessibleMemoryRange(uptr beg, uptr size);
262 // Error report formatting.
263 const char *StripPathPrefix(const char *filepath,
264 const char *strip_file_prefix);
265 // Strip the directories from the module name.
266 const char *StripModuleName(const char *module);
268 // OS
269 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len);
270 uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len);
271 uptr ReadBinaryDir(/*out*/ char *buf, uptr buf_len);
272 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len);
273 const char *GetProcessName();
274 void UpdateProcessName();
275 void CacheBinaryName();
276 void DisableCoreDumperIfNecessary();
277 void DumpProcessMap();
278 const char *GetEnv(const char *name);
279 bool SetEnv(const char *name, const char *value);
281 u32 GetUid();
282 void ReExec();
283 void CheckASLR();
284 void CheckMPROTECT();
285 char **GetArgv();
286 char **GetEnviron();
287 void PrintCmdline();
288 bool StackSizeIsUnlimited();
289 void SetStackSizeLimitInBytes(uptr limit);
290 bool AddressSpaceIsUnlimited();
291 void SetAddressSpaceUnlimited();
292 void AdjustStackSize(void *attr);
293 void PlatformPrepareForSandboxing(void *args);
294 void SetSandboxingCallback(void (*f)());
296 void InitializeCoverage(bool enabled, const char *coverage_dir);
298 void InitTlsSize();
299 uptr GetTlsSize();
301 // Other
302 void WaitForDebugger(unsigned seconds, const char *label);
303 void SleepForSeconds(unsigned seconds);
304 void SleepForMillis(unsigned millis);
305 u64 NanoTime();
306 u64 MonotonicNanoTime();
307 int Atexit(void (*function)(void));
308 bool TemplateMatch(const char *templ, const char *str);
310 // Exit
311 void NORETURN Abort();
312 void NORETURN Die();
313 void NORETURN
314 CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2);
315 void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type,
316 const char *mmap_type, error_t err,
317 bool raw_report = false);
319 // Returns true if the platform-specific error reported is an OOM error.
320 bool ErrorIsOOM(error_t err);
322 // This reports an error in the form:
324 // `ERROR: {{SanitizerToolName}}: out of memory: {{err_msg}}`
326 // Downstream tools that read sanitizer output will know that errors starting
327 // in this format are specifically OOM errors.
328 #define ERROR_OOM(err_msg, ...) \
329 Report("ERROR: %s: out of memory: " err_msg, SanitizerToolName, __VA_ARGS__)
331 // Specific tools may override behavior of "Die" function to do tool-specific
332 // job.
333 typedef void (*DieCallbackType)(void);
335 // It's possible to add several callbacks that would be run when "Die" is
336 // called. The callbacks will be run in the opposite order. The tools are
337 // strongly recommended to setup all callbacks during initialization, when there
338 // is only a single thread.
339 bool AddDieCallback(DieCallbackType callback);
340 bool RemoveDieCallback(DieCallbackType callback);
342 void SetUserDieCallback(DieCallbackType callback);
344 void SetCheckUnwindCallback(void (*callback)());
346 // Functions related to signal handling.
347 typedef void (*SignalHandlerType)(int, void *, void *);
348 HandleSignalMode GetHandleSignalMode(int signum);
349 void InstallDeadlySignalHandlers(SignalHandlerType handler);
351 // Signal reporting.
352 // Each sanitizer uses slightly different implementation of stack unwinding.
353 typedef void (*UnwindSignalStackCallbackType)(const SignalContext &sig,
354 const void *callback_context,
355 BufferedStackTrace *stack);
356 // Print deadly signal report and die.
357 void HandleDeadlySignal(void *siginfo, void *context, u32 tid,
358 UnwindSignalStackCallbackType unwind,
359 const void *unwind_context);
361 // Part of HandleDeadlySignal, exposed for asan.
362 void StartReportDeadlySignal();
363 // Part of HandleDeadlySignal, exposed for asan.
364 void ReportDeadlySignal(const SignalContext &sig, u32 tid,
365 UnwindSignalStackCallbackType unwind,
366 const void *unwind_context);
368 // Alternative signal stack (POSIX-only).
369 void SetAlternateSignalStack();
370 void UnsetAlternateSignalStack();
372 // Construct a one-line string:
373 // SUMMARY: SanitizerToolName: error_message
374 // and pass it to __sanitizer_report_error_summary.
375 // If alt_tool_name is provided, it's used in place of SanitizerToolName.
376 void ReportErrorSummary(const char *error_message,
377 const char *alt_tool_name = nullptr);
378 // Same as above, but construct error_message as:
379 // error_type file:line[:column][ function]
380 void ReportErrorSummary(const char *error_type, const AddressInfo &info,
381 const char *alt_tool_name = nullptr);
382 // Same as above, but obtains AddressInfo by symbolizing top stack trace frame.
383 void ReportErrorSummary(const char *error_type, const StackTrace *trace,
384 const char *alt_tool_name = nullptr);
386 void ReportMmapWriteExec(int prot, int mflags);
388 // Math
389 #if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__)
390 extern "C" {
391 unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
392 unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
393 #if defined(_WIN64)
394 unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask);
395 unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask);
396 #endif
398 #endif
400 inline uptr MostSignificantSetBitIndex(uptr x) {
401 CHECK_NE(x, 0U);
402 unsigned long up;
403 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
404 # ifdef _WIN64
405 up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x);
406 # else
407 up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x);
408 # endif
409 #elif defined(_WIN64)
410 _BitScanReverse64(&up, x);
411 #else
412 _BitScanReverse(&up, x);
413 #endif
414 return up;
417 inline uptr LeastSignificantSetBitIndex(uptr x) {
418 CHECK_NE(x, 0U);
419 unsigned long up;
420 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
421 # ifdef _WIN64
422 up = __builtin_ctzll(x);
423 # else
424 up = __builtin_ctzl(x);
425 # endif
426 #elif defined(_WIN64)
427 _BitScanForward64(&up, x);
428 #else
429 _BitScanForward(&up, x);
430 #endif
431 return up;
434 inline constexpr bool IsPowerOfTwo(uptr x) { return (x & (x - 1)) == 0; }
436 inline uptr RoundUpToPowerOfTwo(uptr size) {
437 CHECK(size);
438 if (IsPowerOfTwo(size)) return size;
440 uptr up = MostSignificantSetBitIndex(size);
441 CHECK_LT(size, (1ULL << (up + 1)));
442 CHECK_GT(size, (1ULL << up));
443 return 1ULL << (up + 1);
446 inline constexpr uptr RoundUpTo(uptr size, uptr boundary) {
447 RAW_CHECK(IsPowerOfTwo(boundary));
448 return (size + boundary - 1) & ~(boundary - 1);
451 inline constexpr uptr RoundDownTo(uptr x, uptr boundary) {
452 return x & ~(boundary - 1);
455 inline constexpr bool IsAligned(uptr a, uptr alignment) {
456 return (a & (alignment - 1)) == 0;
459 inline uptr Log2(uptr x) {
460 CHECK(IsPowerOfTwo(x));
461 return LeastSignificantSetBitIndex(x);
464 // Don't use std::min, std::max or std::swap, to minimize dependency
465 // on libstdc++.
466 template <class T>
467 constexpr T Min(T a, T b) {
468 return a < b ? a : b;
470 template <class T>
471 constexpr T Max(T a, T b) {
472 return a > b ? a : b;
474 template <class T>
475 constexpr T Abs(T a) {
476 return a < 0 ? -a : a;
478 template<class T> void Swap(T& a, T& b) {
479 T tmp = a;
480 a = b;
481 b = tmp;
484 // Char handling
485 inline bool IsSpace(int c) {
486 return (c == ' ') || (c == '\n') || (c == '\t') ||
487 (c == '\f') || (c == '\r') || (c == '\v');
489 inline bool IsDigit(int c) {
490 return (c >= '0') && (c <= '9');
492 inline int ToLower(int c) {
493 return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c;
496 // A low-level vector based on mmap. May incur a significant memory overhead for
497 // small vectors.
498 // WARNING: The current implementation supports only POD types.
499 template<typename T>
500 class InternalMmapVectorNoCtor {
501 public:
502 using value_type = T;
503 void Initialize(uptr initial_capacity) {
504 capacity_bytes_ = 0;
505 size_ = 0;
506 data_ = 0;
507 reserve(initial_capacity);
509 void Destroy() { UnmapOrDie(data_, capacity_bytes_); }
510 T &operator[](uptr i) {
511 CHECK_LT(i, size_);
512 return data_[i];
514 const T &operator[](uptr i) const {
515 CHECK_LT(i, size_);
516 return data_[i];
518 void push_back(const T &element) {
519 CHECK_LE(size_, capacity());
520 if (size_ == capacity()) {
521 uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1);
522 Realloc(new_capacity);
524 internal_memcpy(&data_[size_++], &element, sizeof(T));
526 T &back() {
527 CHECK_GT(size_, 0);
528 return data_[size_ - 1];
530 void pop_back() {
531 CHECK_GT(size_, 0);
532 size_--;
534 uptr size() const {
535 return size_;
537 const T *data() const {
538 return data_;
540 T *data() {
541 return data_;
543 uptr capacity() const { return capacity_bytes_ / sizeof(T); }
544 void reserve(uptr new_size) {
545 // Never downsize internal buffer.
546 if (new_size > capacity())
547 Realloc(new_size);
549 void resize(uptr new_size) {
550 if (new_size > size_) {
551 reserve(new_size);
552 internal_memset(&data_[size_], 0, sizeof(T) * (new_size - size_));
554 size_ = new_size;
557 void clear() { size_ = 0; }
558 bool empty() const { return size() == 0; }
560 const T *begin() const {
561 return data();
563 T *begin() {
564 return data();
566 const T *end() const {
567 return data() + size();
569 T *end() {
570 return data() + size();
573 void swap(InternalMmapVectorNoCtor &other) {
574 Swap(data_, other.data_);
575 Swap(capacity_bytes_, other.capacity_bytes_);
576 Swap(size_, other.size_);
579 private:
580 void Realloc(uptr new_capacity) {
581 CHECK_GT(new_capacity, 0);
582 CHECK_LE(size_, new_capacity);
583 uptr new_capacity_bytes =
584 RoundUpTo(new_capacity * sizeof(T), GetPageSizeCached());
585 T *new_data = (T *)MmapOrDie(new_capacity_bytes, "InternalMmapVector");
586 internal_memcpy(new_data, data_, size_ * sizeof(T));
587 UnmapOrDie(data_, capacity_bytes_);
588 data_ = new_data;
589 capacity_bytes_ = new_capacity_bytes;
592 T *data_;
593 uptr capacity_bytes_;
594 uptr size_;
597 template <typename T>
598 bool operator==(const InternalMmapVectorNoCtor<T> &lhs,
599 const InternalMmapVectorNoCtor<T> &rhs) {
600 if (lhs.size() != rhs.size()) return false;
601 return internal_memcmp(lhs.data(), rhs.data(), lhs.size() * sizeof(T)) == 0;
604 template <typename T>
605 bool operator!=(const InternalMmapVectorNoCtor<T> &lhs,
606 const InternalMmapVectorNoCtor<T> &rhs) {
607 return !(lhs == rhs);
610 template<typename T>
611 class InternalMmapVector : public InternalMmapVectorNoCtor<T> {
612 public:
613 InternalMmapVector() { InternalMmapVectorNoCtor<T>::Initialize(0); }
614 explicit InternalMmapVector(uptr cnt) {
615 InternalMmapVectorNoCtor<T>::Initialize(cnt);
616 this->resize(cnt);
618 ~InternalMmapVector() { InternalMmapVectorNoCtor<T>::Destroy(); }
619 // Disallow copies and moves.
620 InternalMmapVector(const InternalMmapVector &) = delete;
621 InternalMmapVector &operator=(const InternalMmapVector &) = delete;
622 InternalMmapVector(InternalMmapVector &&) = delete;
623 InternalMmapVector &operator=(InternalMmapVector &&) = delete;
626 class InternalScopedString {
627 public:
628 InternalScopedString() : buffer_(1) { buffer_[0] = '\0'; }
630 uptr length() const { return buffer_.size() - 1; }
631 void clear() {
632 buffer_.resize(1);
633 buffer_[0] = '\0';
635 void append(const char *format, ...) FORMAT(2, 3);
636 const char *data() const { return buffer_.data(); }
637 char *data() { return buffer_.data(); }
639 private:
640 InternalMmapVector<char> buffer_;
643 template <class T>
644 struct CompareLess {
645 bool operator()(const T &a, const T &b) const { return a < b; }
648 // HeapSort for arrays and InternalMmapVector.
649 template <class T, class Compare = CompareLess<T>>
650 void Sort(T *v, uptr size, Compare comp = {}) {
651 if (size < 2)
652 return;
653 // Stage 1: insert elements to the heap.
654 for (uptr i = 1; i < size; i++) {
655 uptr j, p;
656 for (j = i; j > 0; j = p) {
657 p = (j - 1) / 2;
658 if (comp(v[p], v[j]))
659 Swap(v[j], v[p]);
660 else
661 break;
664 // Stage 2: swap largest element with the last one,
665 // and sink the new top.
666 for (uptr i = size - 1; i > 0; i--) {
667 Swap(v[0], v[i]);
668 uptr j, max_ind;
669 for (j = 0; j < i; j = max_ind) {
670 uptr left = 2 * j + 1;
671 uptr right = 2 * j + 2;
672 max_ind = j;
673 if (left < i && comp(v[max_ind], v[left]))
674 max_ind = left;
675 if (right < i && comp(v[max_ind], v[right]))
676 max_ind = right;
677 if (max_ind != j)
678 Swap(v[j], v[max_ind]);
679 else
680 break;
685 // Works like std::lower_bound: finds the first element that is not less
686 // than the val.
687 template <class Container, class T,
688 class Compare = CompareLess<typename Container::value_type>>
689 uptr InternalLowerBound(const Container &v, const T &val, Compare comp = {}) {
690 uptr first = 0;
691 uptr last = v.size();
692 while (last > first) {
693 uptr mid = (first + last) / 2;
694 if (comp(v[mid], val))
695 first = mid + 1;
696 else
697 last = mid;
699 return first;
702 enum ModuleArch {
703 kModuleArchUnknown,
704 kModuleArchI386,
705 kModuleArchX86_64,
706 kModuleArchX86_64H,
707 kModuleArchARMV6,
708 kModuleArchARMV7,
709 kModuleArchARMV7S,
710 kModuleArchARMV7K,
711 kModuleArchARM64,
712 kModuleArchLoongArch64,
713 kModuleArchRISCV64,
714 kModuleArchHexagon
717 // Sorts and removes duplicates from the container.
718 template <class Container,
719 class Compare = CompareLess<typename Container::value_type>>
720 void SortAndDedup(Container &v, Compare comp = {}) {
721 Sort(v.data(), v.size(), comp);
722 uptr size = v.size();
723 if (size < 2)
724 return;
725 uptr last = 0;
726 for (uptr i = 1; i < size; ++i) {
727 if (comp(v[last], v[i])) {
728 ++last;
729 if (last != i)
730 v[last] = v[i];
731 } else {
732 CHECK(!comp(v[i], v[last]));
735 v.resize(last + 1);
738 constexpr uptr kDefaultFileMaxSize = FIRST_32_SECOND_64(1 << 26, 1 << 28);
740 // Opens the file 'file_name" and reads up to 'max_len' bytes.
741 // The resulting buffer is mmaped and stored in '*buff'.
742 // Returns true if file was successfully opened and read.
743 bool ReadFileToVector(const char *file_name,
744 InternalMmapVectorNoCtor<char> *buff,
745 uptr max_len = kDefaultFileMaxSize,
746 error_t *errno_p = nullptr);
748 // Opens the file 'file_name" and reads up to 'max_len' bytes.
749 // This function is less I/O efficient than ReadFileToVector as it may reread
750 // file multiple times to avoid mmap during read attempts. It's used to read
751 // procmap, so short reads with mmap in between can produce inconsistent result.
752 // The resulting buffer is mmaped and stored in '*buff'.
753 // The size of the mmaped region is stored in '*buff_size'.
754 // The total number of read bytes is stored in '*read_len'.
755 // Returns true if file was successfully opened and read.
756 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
757 uptr *read_len, uptr max_len = kDefaultFileMaxSize,
758 error_t *errno_p = nullptr);
760 int GetModuleAndOffsetForPc(uptr pc, char *module_name, uptr module_name_len,
761 uptr *pc_offset);
763 // When adding a new architecture, don't forget to also update
764 // script/asan_symbolize.py and sanitizer_symbolizer_libcdep.cpp.
765 inline const char *ModuleArchToString(ModuleArch arch) {
766 switch (arch) {
767 case kModuleArchUnknown:
768 return "";
769 case kModuleArchI386:
770 return "i386";
771 case kModuleArchX86_64:
772 return "x86_64";
773 case kModuleArchX86_64H:
774 return "x86_64h";
775 case kModuleArchARMV6:
776 return "armv6";
777 case kModuleArchARMV7:
778 return "armv7";
779 case kModuleArchARMV7S:
780 return "armv7s";
781 case kModuleArchARMV7K:
782 return "armv7k";
783 case kModuleArchARM64:
784 return "arm64";
785 case kModuleArchLoongArch64:
786 return "loongarch64";
787 case kModuleArchRISCV64:
788 return "riscv64";
789 case kModuleArchHexagon:
790 return "hexagon";
792 CHECK(0 && "Invalid module arch");
793 return "";
796 const uptr kModuleUUIDSize = 32;
797 const uptr kMaxSegName = 16;
799 // Represents a binary loaded into virtual memory (e.g. this can be an
800 // executable or a shared object).
801 class LoadedModule {
802 public:
803 LoadedModule()
804 : full_name_(nullptr),
805 base_address_(0),
806 max_address_(0),
807 arch_(kModuleArchUnknown),
808 uuid_size_(0),
809 instrumented_(false) {
810 internal_memset(uuid_, 0, kModuleUUIDSize);
811 ranges_.clear();
813 void set(const char *module_name, uptr base_address);
814 void set(const char *module_name, uptr base_address, ModuleArch arch,
815 u8 uuid[kModuleUUIDSize], bool instrumented);
816 void setUuid(const char *uuid, uptr size);
817 void clear();
818 void addAddressRange(uptr beg, uptr end, bool executable, bool writable,
819 const char *name = nullptr);
820 bool containsAddress(uptr address) const;
822 const char *full_name() const { return full_name_; }
823 uptr base_address() const { return base_address_; }
824 uptr max_address() const { return max_address_; }
825 ModuleArch arch() const { return arch_; }
826 const u8 *uuid() const { return uuid_; }
827 uptr uuid_size() const { return uuid_size_; }
828 bool instrumented() const { return instrumented_; }
830 struct AddressRange {
831 AddressRange *next;
832 uptr beg;
833 uptr end;
834 bool executable;
835 bool writable;
836 char name[kMaxSegName];
838 AddressRange(uptr beg, uptr end, bool executable, bool writable,
839 const char *name)
840 : next(nullptr),
841 beg(beg),
842 end(end),
843 executable(executable),
844 writable(writable) {
845 internal_strncpy(this->name, (name ? name : ""), ARRAY_SIZE(this->name));
849 const IntrusiveList<AddressRange> &ranges() const { return ranges_; }
851 private:
852 char *full_name_; // Owned.
853 uptr base_address_;
854 uptr max_address_;
855 ModuleArch arch_;
856 uptr uuid_size_;
857 u8 uuid_[kModuleUUIDSize];
858 bool instrumented_;
859 IntrusiveList<AddressRange> ranges_;
862 // List of LoadedModules. OS-dependent implementation is responsible for
863 // filling this information.
864 class ListOfModules {
865 public:
866 ListOfModules() : initialized(false) {}
867 ~ListOfModules() { clear(); }
868 void init();
869 void fallbackInit(); // Uses fallback init if available, otherwise clears
870 const LoadedModule *begin() const { return modules_.begin(); }
871 LoadedModule *begin() { return modules_.begin(); }
872 const LoadedModule *end() const { return modules_.end(); }
873 LoadedModule *end() { return modules_.end(); }
874 uptr size() const { return modules_.size(); }
875 const LoadedModule &operator[](uptr i) const {
876 CHECK_LT(i, modules_.size());
877 return modules_[i];
880 private:
881 void clear() {
882 for (auto &module : modules_) module.clear();
883 modules_.clear();
885 void clearOrInit() {
886 initialized ? clear() : modules_.Initialize(kInitialCapacity);
887 initialized = true;
890 InternalMmapVectorNoCtor<LoadedModule> modules_;
891 // We rarely have more than 16K loaded modules.
892 static const uptr kInitialCapacity = 1 << 14;
893 bool initialized;
896 // Callback type for iterating over a set of memory ranges.
897 typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg);
899 enum AndroidApiLevel {
900 ANDROID_NOT_ANDROID = 0,
901 ANDROID_KITKAT = 19,
902 ANDROID_LOLLIPOP_MR1 = 22,
903 ANDROID_POST_LOLLIPOP = 23
906 void WriteToSyslog(const char *buffer);
908 #if defined(SANITIZER_WINDOWS) && defined(_MSC_VER) && !defined(__clang__)
909 #define SANITIZER_WIN_TRACE 1
910 #else
911 #define SANITIZER_WIN_TRACE 0
912 #endif
914 #if SANITIZER_APPLE || SANITIZER_WIN_TRACE
915 void LogFullErrorReport(const char *buffer);
916 #else
917 inline void LogFullErrorReport(const char *buffer) {}
918 #endif
920 #if SANITIZER_LINUX || SANITIZER_APPLE
921 void WriteOneLineToSyslog(const char *s);
922 void LogMessageOnPrintf(const char *str);
923 #else
924 inline void WriteOneLineToSyslog(const char *s) {}
925 inline void LogMessageOnPrintf(const char *str) {}
926 #endif
928 #if SANITIZER_LINUX || SANITIZER_WIN_TRACE
929 // Initialize Android logging. Any writes before this are silently lost.
930 void AndroidLogInit();
931 void SetAbortMessage(const char *);
932 #else
933 inline void AndroidLogInit() {}
934 // FIXME: MacOS implementation could use CRSetCrashLogMessage.
935 inline void SetAbortMessage(const char *) {}
936 #endif
938 #if SANITIZER_ANDROID
939 void SanitizerInitializeUnwinder();
940 AndroidApiLevel AndroidGetApiLevel();
941 #else
942 inline void AndroidLogWrite(const char *buffer_unused) {}
943 inline void SanitizerInitializeUnwinder() {}
944 inline AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; }
945 #endif
947 inline uptr GetPthreadDestructorIterations() {
948 #if SANITIZER_ANDROID
949 return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4;
950 #elif SANITIZER_POSIX
951 return 4;
952 #else
953 // Unused on Windows.
954 return 0;
955 #endif
958 void *internal_start_thread(void *(*func)(void*), void *arg);
959 void internal_join_thread(void *th);
960 void MaybeStartBackgroudThread();
962 // Make the compiler think that something is going on there.
963 // Use this inside a loop that looks like memset/memcpy/etc to prevent the
964 // compiler from recognising it and turning it into an actual call to
965 // memset/memcpy/etc.
966 static inline void SanitizerBreakOptimization(void *arg) {
967 #if defined(_MSC_VER) && !defined(__clang__)
968 _ReadWriteBarrier();
969 #else
970 __asm__ __volatile__("" : : "r" (arg) : "memory");
971 #endif
974 struct SignalContext {
975 void *siginfo;
976 void *context;
977 uptr addr;
978 uptr pc;
979 uptr sp;
980 uptr bp;
981 bool is_memory_access;
982 enum WriteFlag { Unknown, Read, Write } write_flag;
984 // In some cases the kernel cannot provide the true faulting address; `addr`
985 // will be zero then. This field allows to distinguish between these cases
986 // and dereferences of null.
987 bool is_true_faulting_addr;
989 // VS2013 doesn't implement unrestricted unions, so we need a trivial default
990 // constructor
991 SignalContext() = default;
993 // Creates signal context in a platform-specific manner.
994 // SignalContext is going to keep pointers to siginfo and context without
995 // owning them.
996 SignalContext(void *siginfo, void *context)
997 : siginfo(siginfo),
998 context(context),
999 addr(GetAddress()),
1000 is_memory_access(IsMemoryAccess()),
1001 write_flag(GetWriteFlag()),
1002 is_true_faulting_addr(IsTrueFaultingAddress()) {
1003 InitPcSpBp();
1006 static void DumpAllRegisters(void *context);
1008 // Type of signal e.g. SIGSEGV or EXCEPTION_ACCESS_VIOLATION.
1009 int GetType() const;
1011 // String description of the signal.
1012 const char *Describe() const;
1014 // Returns true if signal is stack overflow.
1015 bool IsStackOverflow() const;
1017 private:
1018 // Platform specific initialization.
1019 void InitPcSpBp();
1020 uptr GetAddress() const;
1021 WriteFlag GetWriteFlag() const;
1022 bool IsMemoryAccess() const;
1023 bool IsTrueFaultingAddress() const;
1026 void InitializePlatformEarly();
1028 template <typename Fn>
1029 class RunOnDestruction {
1030 public:
1031 explicit RunOnDestruction(Fn fn) : fn_(fn) {}
1032 ~RunOnDestruction() { fn_(); }
1034 private:
1035 Fn fn_;
1038 // A simple scope guard. Usage:
1039 // auto cleanup = at_scope_exit([]{ do_cleanup; });
1040 template <typename Fn>
1041 RunOnDestruction<Fn> at_scope_exit(Fn fn) {
1042 return RunOnDestruction<Fn>(fn);
1045 // Linux on 64-bit s390 had a nasty bug that crashes the whole machine
1046 // if a process uses virtual memory over 4TB (as many sanitizers like
1047 // to do). This function will abort the process if running on a kernel
1048 // that looks vulnerable.
1049 #if SANITIZER_LINUX && SANITIZER_S390_64
1050 void AvoidCVE_2016_2143();
1051 #else
1052 inline void AvoidCVE_2016_2143() {}
1053 #endif
1055 struct StackDepotStats {
1056 uptr n_uniq_ids;
1057 uptr allocated;
1060 // The default value for allocator_release_to_os_interval_ms common flag to
1061 // indicate that sanitizer allocator should not attempt to release memory to OS.
1062 const s32 kReleaseToOSIntervalNever = -1;
1064 void CheckNoDeepBind(const char *filename, int flag);
1066 // Returns the requested amount of random data (up to 256 bytes) that can then
1067 // be used to seed a PRNG. Defaults to blocking like the underlying syscall.
1068 bool GetRandom(void *buffer, uptr length, bool blocking = true);
1070 // Returns the number of logical processors on the system.
1071 u32 GetNumberOfCPUs();
1072 extern u32 NumberOfCPUsCached;
1073 inline u32 GetNumberOfCPUsCached() {
1074 if (!NumberOfCPUsCached)
1075 NumberOfCPUsCached = GetNumberOfCPUs();
1076 return NumberOfCPUsCached;
1079 template <typename T>
1080 class ArrayRef {
1081 public:
1082 ArrayRef() {}
1083 ArrayRef(T *begin, T *end) : begin_(begin), end_(end) {}
1085 T *begin() { return begin_; }
1086 T *end() { return end_; }
1088 private:
1089 T *begin_ = nullptr;
1090 T *end_ = nullptr;
1093 } // namespace __sanitizer
1095 inline void *operator new(__sanitizer::operator_new_size_type size,
1096 __sanitizer::LowLevelAllocator &alloc) {
1097 return alloc.Allocate(size);
1100 #endif // SANITIZER_COMMON_H