d: Merge upstream dmd, druntime c8ae4adb2e, phobos 792c8b7c1.
[official-gcc.git] / libsanitizer / asan / asan_allocator.cpp
blob52d7eff7281e350b6a08510b5167672ed1593b73
1 //===-- asan_allocator.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of AddressSanitizer, an address sanity checker.
11 // Implementation of ASan's memory allocator, 2-nd version.
12 // This variant uses the allocator from sanitizer_common, i.e. the one shared
13 // with ThreadSanitizer and MemorySanitizer.
15 //===----------------------------------------------------------------------===//
17 #include "asan_allocator.h"
19 #include "asan_mapping.h"
20 #include "asan_poisoning.h"
21 #include "asan_report.h"
22 #include "asan_stack.h"
23 #include "asan_thread.h"
24 #include "lsan/lsan_common.h"
25 #include "sanitizer_common/sanitizer_allocator_checks.h"
26 #include "sanitizer_common/sanitizer_allocator_interface.h"
27 #include "sanitizer_common/sanitizer_errno.h"
28 #include "sanitizer_common/sanitizer_flags.h"
29 #include "sanitizer_common/sanitizer_internal_defs.h"
30 #include "sanitizer_common/sanitizer_list.h"
31 #include "sanitizer_common/sanitizer_quarantine.h"
32 #include "sanitizer_common/sanitizer_stackdepot.h"
34 namespace __asan {
36 // Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
37 // We use adaptive redzones: for larger allocation larger redzones are used.
38 static u32 RZLog2Size(u32 rz_log) {
39 CHECK_LT(rz_log, 8);
40 return 16 << rz_log;
43 static u32 RZSize2Log(u32 rz_size) {
44 CHECK_GE(rz_size, 16);
45 CHECK_LE(rz_size, 2048);
46 CHECK(IsPowerOfTwo(rz_size));
47 u32 res = Log2(rz_size) - 4;
48 CHECK_EQ(rz_size, RZLog2Size(res));
49 return res;
52 static AsanAllocator &get_allocator();
54 static void AtomicContextStore(volatile atomic_uint64_t *atomic_context,
55 u32 tid, u32 stack) {
56 u64 context = tid;
57 context <<= 32;
58 context += stack;
59 atomic_store(atomic_context, context, memory_order_relaxed);
62 static void AtomicContextLoad(const volatile atomic_uint64_t *atomic_context,
63 u32 &tid, u32 &stack) {
64 u64 context = atomic_load(atomic_context, memory_order_relaxed);
65 stack = context;
66 context >>= 32;
67 tid = context;
70 // The memory chunk allocated from the underlying allocator looks like this:
71 // L L L L L L H H U U U U U U R R
72 // L -- left redzone words (0 or more bytes)
73 // H -- ChunkHeader (16 bytes), which is also a part of the left redzone.
74 // U -- user memory.
75 // R -- right redzone (0 or more bytes)
76 // ChunkBase consists of ChunkHeader and other bytes that overlap with user
77 // memory.
79 // If the left redzone is greater than the ChunkHeader size we store a magic
80 // value in the first uptr word of the memory block and store the address of
81 // ChunkBase in the next uptr.
82 // M B L L L L L L L L L H H U U U U U U
83 // | ^
84 // ---------------------|
85 // M -- magic value kAllocBegMagic
86 // B -- address of ChunkHeader pointing to the first 'H'
88 class ChunkHeader {
89 public:
90 atomic_uint8_t chunk_state;
91 u8 alloc_type : 2;
92 u8 lsan_tag : 2;
94 // align < 8 -> 0
95 // else -> log2(min(align, 512)) - 2
96 u8 user_requested_alignment_log : 3;
98 private:
99 u16 user_requested_size_hi;
100 u32 user_requested_size_lo;
101 atomic_uint64_t alloc_context_id;
103 public:
104 uptr UsedSize() const {
105 static_assert(sizeof(user_requested_size_lo) == 4,
106 "Expression below requires this");
107 return FIRST_32_SECOND_64(0, ((uptr)user_requested_size_hi << 32)) +
108 user_requested_size_lo;
111 void SetUsedSize(uptr size) {
112 user_requested_size_lo = size;
113 static_assert(sizeof(user_requested_size_lo) == 4,
114 "Expression below requires this");
115 user_requested_size_hi = FIRST_32_SECOND_64(0, size >> 32);
116 CHECK_EQ(UsedSize(), size);
119 void SetAllocContext(u32 tid, u32 stack) {
120 AtomicContextStore(&alloc_context_id, tid, stack);
123 void GetAllocContext(u32 &tid, u32 &stack) const {
124 AtomicContextLoad(&alloc_context_id, tid, stack);
128 class ChunkBase : public ChunkHeader {
129 atomic_uint64_t free_context_id;
131 public:
132 void SetFreeContext(u32 tid, u32 stack) {
133 AtomicContextStore(&free_context_id, tid, stack);
136 void GetFreeContext(u32 &tid, u32 &stack) const {
137 AtomicContextLoad(&free_context_id, tid, stack);
141 static const uptr kChunkHeaderSize = sizeof(ChunkHeader);
142 static const uptr kChunkHeader2Size = sizeof(ChunkBase) - kChunkHeaderSize;
143 COMPILER_CHECK(kChunkHeaderSize == 16);
144 COMPILER_CHECK(kChunkHeader2Size <= 16);
146 enum {
147 // Either just allocated by underlying allocator, but AsanChunk is not yet
148 // ready, or almost returned to undelying allocator and AsanChunk is already
149 // meaningless.
150 CHUNK_INVALID = 0,
151 // The chunk is allocated and not yet freed.
152 CHUNK_ALLOCATED = 2,
153 // The chunk was freed and put into quarantine zone.
154 CHUNK_QUARANTINE = 3,
157 class AsanChunk : public ChunkBase {
158 public:
159 uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
160 bool AddrIsInside(uptr addr) {
161 return (addr >= Beg()) && (addr < Beg() + UsedSize());
165 class LargeChunkHeader {
166 static constexpr uptr kAllocBegMagic =
167 FIRST_32_SECOND_64(0xCC6E96B9, 0xCC6E96B9CC6E96B9ULL);
168 atomic_uintptr_t magic;
169 AsanChunk *chunk_header;
171 public:
172 AsanChunk *Get() const {
173 return atomic_load(&magic, memory_order_acquire) == kAllocBegMagic
174 ? chunk_header
175 : nullptr;
178 void Set(AsanChunk *p) {
179 if (p) {
180 chunk_header = p;
181 atomic_store(&magic, kAllocBegMagic, memory_order_release);
182 return;
185 uptr old = kAllocBegMagic;
186 if (!atomic_compare_exchange_strong(&magic, &old, 0,
187 memory_order_release)) {
188 CHECK_EQ(old, kAllocBegMagic);
193 struct QuarantineCallback {
194 QuarantineCallback(AllocatorCache *cache, BufferedStackTrace *stack)
195 : cache_(cache),
196 stack_(stack) {
199 void Recycle(AsanChunk *m) {
200 void *p = get_allocator().GetBlockBegin(m);
201 if (p != m) {
202 // Clear the magic value, as allocator internals may overwrite the
203 // contents of deallocated chunk, confusing GetAsanChunk lookup.
204 reinterpret_cast<LargeChunkHeader *>(p)->Set(nullptr);
207 u8 old_chunk_state = CHUNK_QUARANTINE;
208 if (!atomic_compare_exchange_strong(&m->chunk_state, &old_chunk_state,
209 CHUNK_INVALID, memory_order_acquire)) {
210 CHECK_EQ(old_chunk_state, CHUNK_QUARANTINE);
213 PoisonShadow(m->Beg(), RoundUpTo(m->UsedSize(), ASAN_SHADOW_GRANULARITY),
214 kAsanHeapLeftRedzoneMagic);
216 // Statistics.
217 AsanStats &thread_stats = GetCurrentThreadStats();
218 thread_stats.real_frees++;
219 thread_stats.really_freed += m->UsedSize();
221 get_allocator().Deallocate(cache_, p);
224 void *Allocate(uptr size) {
225 void *res = get_allocator().Allocate(cache_, size, 1);
226 // TODO(alekseys): Consider making quarantine OOM-friendly.
227 if (UNLIKELY(!res))
228 ReportOutOfMemory(size, stack_);
229 return res;
232 void Deallocate(void *p) {
233 get_allocator().Deallocate(cache_, p);
236 private:
237 AllocatorCache* const cache_;
238 BufferedStackTrace* const stack_;
241 typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
242 typedef AsanQuarantine::Cache QuarantineCache;
244 void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const {
245 PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
246 // Statistics.
247 AsanStats &thread_stats = GetCurrentThreadStats();
248 thread_stats.mmaps++;
249 thread_stats.mmaped += size;
251 void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
252 PoisonShadow(p, size, 0);
253 // We are about to unmap a chunk of user memory.
254 // Mark the corresponding shadow memory as not needed.
255 FlushUnneededASanShadowMemory(p, size);
256 // Statistics.
257 AsanStats &thread_stats = GetCurrentThreadStats();
258 thread_stats.munmaps++;
259 thread_stats.munmaped += size;
262 // We can not use THREADLOCAL because it is not supported on some of the
263 // platforms we care about (OSX 10.6, Android).
264 // static THREADLOCAL AllocatorCache cache;
265 AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
266 CHECK(ms);
267 return &ms->allocator_cache;
270 QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
271 CHECK(ms);
272 CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
273 return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
276 void AllocatorOptions::SetFrom(const Flags *f, const CommonFlags *cf) {
277 quarantine_size_mb = f->quarantine_size_mb;
278 thread_local_quarantine_size_kb = f->thread_local_quarantine_size_kb;
279 min_redzone = f->redzone;
280 max_redzone = f->max_redzone;
281 may_return_null = cf->allocator_may_return_null;
282 alloc_dealloc_mismatch = f->alloc_dealloc_mismatch;
283 release_to_os_interval_ms = cf->allocator_release_to_os_interval_ms;
286 void AllocatorOptions::CopyTo(Flags *f, CommonFlags *cf) {
287 f->quarantine_size_mb = quarantine_size_mb;
288 f->thread_local_quarantine_size_kb = thread_local_quarantine_size_kb;
289 f->redzone = min_redzone;
290 f->max_redzone = max_redzone;
291 cf->allocator_may_return_null = may_return_null;
292 f->alloc_dealloc_mismatch = alloc_dealloc_mismatch;
293 cf->allocator_release_to_os_interval_ms = release_to_os_interval_ms;
296 struct Allocator {
297 static const uptr kMaxAllowedMallocSize =
298 FIRST_32_SECOND_64(3UL << 30, 1ULL << 40);
300 AsanAllocator allocator;
301 AsanQuarantine quarantine;
302 StaticSpinMutex fallback_mutex;
303 AllocatorCache fallback_allocator_cache;
304 QuarantineCache fallback_quarantine_cache;
306 uptr max_user_defined_malloc_size;
308 // ------------------- Options --------------------------
309 atomic_uint16_t min_redzone;
310 atomic_uint16_t max_redzone;
311 atomic_uint8_t alloc_dealloc_mismatch;
313 // ------------------- Initialization ------------------------
314 explicit Allocator(LinkerInitialized)
315 : quarantine(LINKER_INITIALIZED),
316 fallback_quarantine_cache(LINKER_INITIALIZED) {}
318 void CheckOptions(const AllocatorOptions &options) const {
319 CHECK_GE(options.min_redzone, 16);
320 CHECK_GE(options.max_redzone, options.min_redzone);
321 CHECK_LE(options.max_redzone, 2048);
322 CHECK(IsPowerOfTwo(options.min_redzone));
323 CHECK(IsPowerOfTwo(options.max_redzone));
326 void SharedInitCode(const AllocatorOptions &options) {
327 CheckOptions(options);
328 quarantine.Init((uptr)options.quarantine_size_mb << 20,
329 (uptr)options.thread_local_quarantine_size_kb << 10);
330 atomic_store(&alloc_dealloc_mismatch, options.alloc_dealloc_mismatch,
331 memory_order_release);
332 atomic_store(&min_redzone, options.min_redzone, memory_order_release);
333 atomic_store(&max_redzone, options.max_redzone, memory_order_release);
336 void InitLinkerInitialized(const AllocatorOptions &options) {
337 SetAllocatorMayReturnNull(options.may_return_null);
338 allocator.InitLinkerInitialized(options.release_to_os_interval_ms);
339 SharedInitCode(options);
340 max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
341 ? common_flags()->max_allocation_size_mb
342 << 20
343 : kMaxAllowedMallocSize;
346 void RePoisonChunk(uptr chunk) {
347 // This could be a user-facing chunk (with redzones), or some internal
348 // housekeeping chunk, like TransferBatch. Start by assuming the former.
349 AsanChunk *ac = GetAsanChunk((void *)chunk);
350 uptr allocated_size = allocator.GetActuallyAllocatedSize((void *)chunk);
351 if (ac && atomic_load(&ac->chunk_state, memory_order_acquire) ==
352 CHUNK_ALLOCATED) {
353 uptr beg = ac->Beg();
354 uptr end = ac->Beg() + ac->UsedSize();
355 uptr chunk_end = chunk + allocated_size;
356 if (chunk < beg && beg < end && end <= chunk_end) {
357 // Looks like a valid AsanChunk in use, poison redzones only.
358 PoisonShadow(chunk, beg - chunk, kAsanHeapLeftRedzoneMagic);
359 uptr end_aligned_down = RoundDownTo(end, ASAN_SHADOW_GRANULARITY);
360 FastPoisonShadowPartialRightRedzone(
361 end_aligned_down, end - end_aligned_down,
362 chunk_end - end_aligned_down, kAsanHeapLeftRedzoneMagic);
363 return;
367 // This is either not an AsanChunk or freed or quarantined AsanChunk.
368 // In either case, poison everything.
369 PoisonShadow(chunk, allocated_size, kAsanHeapLeftRedzoneMagic);
372 void ReInitialize(const AllocatorOptions &options) {
373 SetAllocatorMayReturnNull(options.may_return_null);
374 allocator.SetReleaseToOSIntervalMs(options.release_to_os_interval_ms);
375 SharedInitCode(options);
377 // Poison all existing allocation's redzones.
378 if (CanPoisonMemory()) {
379 allocator.ForceLock();
380 allocator.ForEachChunk(
381 [](uptr chunk, void *alloc) {
382 ((Allocator *)alloc)->RePoisonChunk(chunk);
384 this);
385 allocator.ForceUnlock();
389 void GetOptions(AllocatorOptions *options) const {
390 options->quarantine_size_mb = quarantine.GetSize() >> 20;
391 options->thread_local_quarantine_size_kb = quarantine.GetCacheSize() >> 10;
392 options->min_redzone = atomic_load(&min_redzone, memory_order_acquire);
393 options->max_redzone = atomic_load(&max_redzone, memory_order_acquire);
394 options->may_return_null = AllocatorMayReturnNull();
395 options->alloc_dealloc_mismatch =
396 atomic_load(&alloc_dealloc_mismatch, memory_order_acquire);
397 options->release_to_os_interval_ms = allocator.ReleaseToOSIntervalMs();
400 // -------------------- Helper methods. -------------------------
401 uptr ComputeRZLog(uptr user_requested_size) {
402 u32 rz_log = user_requested_size <= 64 - 16 ? 0
403 : user_requested_size <= 128 - 32 ? 1
404 : user_requested_size <= 512 - 64 ? 2
405 : user_requested_size <= 4096 - 128 ? 3
406 : user_requested_size <= (1 << 14) - 256 ? 4
407 : user_requested_size <= (1 << 15) - 512 ? 5
408 : user_requested_size <= (1 << 16) - 1024 ? 6
409 : 7;
410 u32 hdr_log = RZSize2Log(RoundUpToPowerOfTwo(sizeof(ChunkHeader)));
411 u32 min_log = RZSize2Log(atomic_load(&min_redzone, memory_order_acquire));
412 u32 max_log = RZSize2Log(atomic_load(&max_redzone, memory_order_acquire));
413 return Min(Max(rz_log, Max(min_log, hdr_log)), Max(max_log, hdr_log));
416 static uptr ComputeUserRequestedAlignmentLog(uptr user_requested_alignment) {
417 if (user_requested_alignment < 8)
418 return 0;
419 if (user_requested_alignment > 512)
420 user_requested_alignment = 512;
421 return Log2(user_requested_alignment) - 2;
424 static uptr ComputeUserAlignment(uptr user_requested_alignment_log) {
425 if (user_requested_alignment_log == 0)
426 return 0;
427 return 1LL << (user_requested_alignment_log + 2);
430 // We have an address between two chunks, and we want to report just one.
431 AsanChunk *ChooseChunk(uptr addr, AsanChunk *left_chunk,
432 AsanChunk *right_chunk) {
433 if (!left_chunk)
434 return right_chunk;
435 if (!right_chunk)
436 return left_chunk;
437 // Prefer an allocated chunk over freed chunk and freed chunk
438 // over available chunk.
439 u8 left_state = atomic_load(&left_chunk->chunk_state, memory_order_relaxed);
440 u8 right_state =
441 atomic_load(&right_chunk->chunk_state, memory_order_relaxed);
442 if (left_state != right_state) {
443 if (left_state == CHUNK_ALLOCATED)
444 return left_chunk;
445 if (right_state == CHUNK_ALLOCATED)
446 return right_chunk;
447 if (left_state == CHUNK_QUARANTINE)
448 return left_chunk;
449 if (right_state == CHUNK_QUARANTINE)
450 return right_chunk;
452 // Same chunk_state: choose based on offset.
453 sptr l_offset = 0, r_offset = 0;
454 CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
455 CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
456 if (l_offset < r_offset)
457 return left_chunk;
458 return right_chunk;
461 bool UpdateAllocationStack(uptr addr, BufferedStackTrace *stack) {
462 AsanChunk *m = GetAsanChunkByAddr(addr);
463 if (!m) return false;
464 if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED)
465 return false;
466 if (m->Beg() != addr) return false;
467 AsanThread *t = GetCurrentThread();
468 m->SetAllocContext(t ? t->tid() : kMainTid, StackDepotPut(*stack));
469 return true;
472 // -------------------- Allocation/Deallocation routines ---------------
473 void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
474 AllocType alloc_type, bool can_fill) {
475 if (UNLIKELY(!asan_inited))
476 AsanInitFromRtl();
477 if (UNLIKELY(IsRssLimitExceeded())) {
478 if (AllocatorMayReturnNull())
479 return nullptr;
480 ReportRssLimitExceeded(stack);
482 Flags &fl = *flags();
483 CHECK(stack);
484 const uptr min_alignment = ASAN_SHADOW_GRANULARITY;
485 const uptr user_requested_alignment_log =
486 ComputeUserRequestedAlignmentLog(alignment);
487 if (alignment < min_alignment)
488 alignment = min_alignment;
489 if (size == 0) {
490 // We'd be happy to avoid allocating memory for zero-size requests, but
491 // some programs/tests depend on this behavior and assume that malloc
492 // would not return NULL even for zero-size allocations. Moreover, it
493 // looks like operator new should never return NULL, and results of
494 // consecutive "new" calls must be different even if the allocated size
495 // is zero.
496 size = 1;
498 CHECK(IsPowerOfTwo(alignment));
499 uptr rz_log = ComputeRZLog(size);
500 uptr rz_size = RZLog2Size(rz_log);
501 uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment);
502 uptr needed_size = rounded_size + rz_size;
503 if (alignment > min_alignment)
504 needed_size += alignment;
505 // If we are allocating from the secondary allocator, there will be no
506 // automatic right redzone, so add the right redzone manually.
507 if (!PrimaryAllocator::CanAllocate(needed_size, alignment))
508 needed_size += rz_size;
509 CHECK(IsAligned(needed_size, min_alignment));
510 if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize ||
511 size > max_user_defined_malloc_size) {
512 if (AllocatorMayReturnNull()) {
513 Report("WARNING: AddressSanitizer failed to allocate 0x%zx bytes\n",
514 size);
515 return nullptr;
517 uptr malloc_limit =
518 Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
519 ReportAllocationSizeTooBig(size, needed_size, malloc_limit, stack);
522 AsanThread *t = GetCurrentThread();
523 void *allocated;
524 if (t) {
525 AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
526 allocated = allocator.Allocate(cache, needed_size, 8);
527 } else {
528 SpinMutexLock l(&fallback_mutex);
529 AllocatorCache *cache = &fallback_allocator_cache;
530 allocated = allocator.Allocate(cache, needed_size, 8);
532 if (UNLIKELY(!allocated)) {
533 SetAllocatorOutOfMemory();
534 if (AllocatorMayReturnNull())
535 return nullptr;
536 ReportOutOfMemory(size, stack);
539 if (*(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0 && CanPoisonMemory()) {
540 // Heap poisoning is enabled, but the allocator provides an unpoisoned
541 // chunk. This is possible if CanPoisonMemory() was false for some
542 // time, for example, due to flags()->start_disabled.
543 // Anyway, poison the block before using it for anything else.
544 uptr allocated_size = allocator.GetActuallyAllocatedSize(allocated);
545 PoisonShadow((uptr)allocated, allocated_size, kAsanHeapLeftRedzoneMagic);
548 uptr alloc_beg = reinterpret_cast<uptr>(allocated);
549 uptr alloc_end = alloc_beg + needed_size;
550 uptr user_beg = alloc_beg + rz_size;
551 if (!IsAligned(user_beg, alignment))
552 user_beg = RoundUpTo(user_beg, alignment);
553 uptr user_end = user_beg + size;
554 CHECK_LE(user_end, alloc_end);
555 uptr chunk_beg = user_beg - kChunkHeaderSize;
556 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
557 m->alloc_type = alloc_type;
558 CHECK(size);
559 m->SetUsedSize(size);
560 m->user_requested_alignment_log = user_requested_alignment_log;
562 m->SetAllocContext(t ? t->tid() : kMainTid, StackDepotPut(*stack));
564 uptr size_rounded_down_to_granularity =
565 RoundDownTo(size, ASAN_SHADOW_GRANULARITY);
566 // Unpoison the bulk of the memory region.
567 if (size_rounded_down_to_granularity)
568 PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
569 // Deal with the end of the region if size is not aligned to granularity.
570 if (size != size_rounded_down_to_granularity && CanPoisonMemory()) {
571 u8 *shadow =
572 (u8 *)MemToShadow(user_beg + size_rounded_down_to_granularity);
573 *shadow = fl.poison_partial ? (size & (ASAN_SHADOW_GRANULARITY - 1)) : 0;
576 AsanStats &thread_stats = GetCurrentThreadStats();
577 thread_stats.mallocs++;
578 thread_stats.malloced += size;
579 thread_stats.malloced_redzones += needed_size - size;
580 if (needed_size > SizeClassMap::kMaxSize)
581 thread_stats.malloc_large++;
582 else
583 thread_stats.malloced_by_size[SizeClassMap::ClassID(needed_size)]++;
585 void *res = reinterpret_cast<void *>(user_beg);
586 if (can_fill && fl.max_malloc_fill_size) {
587 uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size);
588 REAL(memset)(res, fl.malloc_fill_byte, fill_size);
590 #if CAN_SANITIZE_LEAKS
591 m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored
592 : __lsan::kDirectlyLeaked;
593 #endif
594 // Must be the last mutation of metadata in this function.
595 atomic_store(&m->chunk_state, CHUNK_ALLOCATED, memory_order_release);
596 if (alloc_beg != chunk_beg) {
597 CHECK_LE(alloc_beg + sizeof(LargeChunkHeader), chunk_beg);
598 reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Set(m);
600 RunMallocHooks(res, size);
601 return res;
604 // Set quarantine flag if chunk is allocated, issue ASan error report on
605 // available and quarantined chunks. Return true on success, false otherwise.
606 bool AtomicallySetQuarantineFlagIfAllocated(AsanChunk *m, void *ptr,
607 BufferedStackTrace *stack) {
608 u8 old_chunk_state = CHUNK_ALLOCATED;
609 // Flip the chunk_state atomically to avoid race on double-free.
610 if (!atomic_compare_exchange_strong(&m->chunk_state, &old_chunk_state,
611 CHUNK_QUARANTINE,
612 memory_order_acquire)) {
613 ReportInvalidFree(ptr, old_chunk_state, stack);
614 // It's not safe to push a chunk in quarantine on invalid free.
615 return false;
617 CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
618 // It was a user data.
619 m->SetFreeContext(kInvalidTid, 0);
620 return true;
623 // Expects the chunk to already be marked as quarantined by using
624 // AtomicallySetQuarantineFlagIfAllocated.
625 void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack) {
626 CHECK_EQ(atomic_load(&m->chunk_state, memory_order_relaxed),
627 CHUNK_QUARANTINE);
628 AsanThread *t = GetCurrentThread();
629 m->SetFreeContext(t ? t->tid() : 0, StackDepotPut(*stack));
631 Flags &fl = *flags();
632 if (fl.max_free_fill_size > 0) {
633 // We have to skip the chunk header, it contains free_context_id.
634 uptr scribble_start = (uptr)m + kChunkHeaderSize + kChunkHeader2Size;
635 if (m->UsedSize() >= kChunkHeader2Size) { // Skip Header2 in user area.
636 uptr size_to_fill = m->UsedSize() - kChunkHeader2Size;
637 size_to_fill = Min(size_to_fill, (uptr)fl.max_free_fill_size);
638 REAL(memset)((void *)scribble_start, fl.free_fill_byte, size_to_fill);
642 // Poison the region.
643 PoisonShadow(m->Beg(), RoundUpTo(m->UsedSize(), ASAN_SHADOW_GRANULARITY),
644 kAsanHeapFreeMagic);
646 AsanStats &thread_stats = GetCurrentThreadStats();
647 thread_stats.frees++;
648 thread_stats.freed += m->UsedSize();
650 // Push into quarantine.
651 if (t) {
652 AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
653 AllocatorCache *ac = GetAllocatorCache(ms);
654 quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac, stack), m,
655 m->UsedSize());
656 } else {
657 SpinMutexLock l(&fallback_mutex);
658 AllocatorCache *ac = &fallback_allocator_cache;
659 quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac, stack),
660 m, m->UsedSize());
664 void Deallocate(void *ptr, uptr delete_size, uptr delete_alignment,
665 BufferedStackTrace *stack, AllocType alloc_type) {
666 uptr p = reinterpret_cast<uptr>(ptr);
667 if (p == 0) return;
669 uptr chunk_beg = p - kChunkHeaderSize;
670 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
672 // On Windows, uninstrumented DLLs may allocate memory before ASan hooks
673 // malloc. Don't report an invalid free in this case.
674 if (SANITIZER_WINDOWS &&
675 !get_allocator().PointerIsMine(ptr)) {
676 if (!IsSystemHeapAddress(p))
677 ReportFreeNotMalloced(p, stack);
678 return;
681 RunFreeHooks(ptr);
683 // Must mark the chunk as quarantined before any changes to its metadata.
684 // Do not quarantine given chunk if we failed to set CHUNK_QUARANTINE flag.
685 if (!AtomicallySetQuarantineFlagIfAllocated(m, ptr, stack)) return;
687 if (m->alloc_type != alloc_type) {
688 if (atomic_load(&alloc_dealloc_mismatch, memory_order_acquire)) {
689 ReportAllocTypeMismatch((uptr)ptr, stack, (AllocType)m->alloc_type,
690 (AllocType)alloc_type);
692 } else {
693 if (flags()->new_delete_type_mismatch &&
694 (alloc_type == FROM_NEW || alloc_type == FROM_NEW_BR) &&
695 ((delete_size && delete_size != m->UsedSize()) ||
696 ComputeUserRequestedAlignmentLog(delete_alignment) !=
697 m->user_requested_alignment_log)) {
698 ReportNewDeleteTypeMismatch(p, delete_size, delete_alignment, stack);
702 QuarantineChunk(m, ptr, stack);
705 void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) {
706 CHECK(old_ptr && new_size);
707 uptr p = reinterpret_cast<uptr>(old_ptr);
708 uptr chunk_beg = p - kChunkHeaderSize;
709 AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
711 AsanStats &thread_stats = GetCurrentThreadStats();
712 thread_stats.reallocs++;
713 thread_stats.realloced += new_size;
715 void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true);
716 if (new_ptr) {
717 u8 chunk_state = atomic_load(&m->chunk_state, memory_order_acquire);
718 if (chunk_state != CHUNK_ALLOCATED)
719 ReportInvalidFree(old_ptr, chunk_state, stack);
720 CHECK_NE(REAL(memcpy), nullptr);
721 uptr memcpy_size = Min(new_size, m->UsedSize());
722 // If realloc() races with free(), we may start copying freed memory.
723 // However, we will report racy double-free later anyway.
724 REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
725 Deallocate(old_ptr, 0, 0, stack, FROM_MALLOC);
727 return new_ptr;
730 void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
731 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
732 if (AllocatorMayReturnNull())
733 return nullptr;
734 ReportCallocOverflow(nmemb, size, stack);
736 void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false);
737 // If the memory comes from the secondary allocator no need to clear it
738 // as it comes directly from mmap.
739 if (ptr && allocator.FromPrimary(ptr))
740 REAL(memset)(ptr, 0, nmemb * size);
741 return ptr;
744 void ReportInvalidFree(void *ptr, u8 chunk_state, BufferedStackTrace *stack) {
745 if (chunk_state == CHUNK_QUARANTINE)
746 ReportDoubleFree((uptr)ptr, stack);
747 else
748 ReportFreeNotMalloced((uptr)ptr, stack);
751 void CommitBack(AsanThreadLocalMallocStorage *ms, BufferedStackTrace *stack) {
752 AllocatorCache *ac = GetAllocatorCache(ms);
753 quarantine.Drain(GetQuarantineCache(ms), QuarantineCallback(ac, stack));
754 allocator.SwallowCache(ac);
757 // -------------------------- Chunk lookup ----------------------
759 // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
760 // Returns nullptr if AsanChunk is not yet initialized just after
761 // get_allocator().Allocate(), or is being destroyed just before
762 // get_allocator().Deallocate().
763 AsanChunk *GetAsanChunk(void *alloc_beg) {
764 if (!alloc_beg)
765 return nullptr;
766 AsanChunk *p = reinterpret_cast<LargeChunkHeader *>(alloc_beg)->Get();
767 if (!p) {
768 if (!allocator.FromPrimary(alloc_beg))
769 return nullptr;
770 p = reinterpret_cast<AsanChunk *>(alloc_beg);
772 u8 state = atomic_load(&p->chunk_state, memory_order_relaxed);
773 // It does not guaranty that Chunk is initialized, but it's
774 // definitely not for any other value.
775 if (state == CHUNK_ALLOCATED || state == CHUNK_QUARANTINE)
776 return p;
777 return nullptr;
780 AsanChunk *GetAsanChunkByAddr(uptr p) {
781 void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
782 return GetAsanChunk(alloc_beg);
785 // Allocator must be locked when this function is called.
786 AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) {
787 void *alloc_beg =
788 allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p));
789 return GetAsanChunk(alloc_beg);
792 uptr AllocationSize(uptr p) {
793 AsanChunk *m = GetAsanChunkByAddr(p);
794 if (!m) return 0;
795 if (atomic_load(&m->chunk_state, memory_order_acquire) != CHUNK_ALLOCATED)
796 return 0;
797 if (m->Beg() != p) return 0;
798 return m->UsedSize();
801 AsanChunkView FindHeapChunkByAddress(uptr addr) {
802 AsanChunk *m1 = GetAsanChunkByAddr(addr);
803 sptr offset = 0;
804 if (!m1 || AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
805 // The address is in the chunk's left redzone, so maybe it is actually
806 // a right buffer overflow from the other chunk before.
807 // Search a bit before to see if there is another chunk.
808 AsanChunk *m2 = nullptr;
809 for (uptr l = 1; l < GetPageSizeCached(); l++) {
810 m2 = GetAsanChunkByAddr(addr - l);
811 if (m2 == m1) continue; // Still the same chunk.
812 break;
814 if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
815 m1 = ChooseChunk(addr, m2, m1);
817 return AsanChunkView(m1);
820 void Purge(BufferedStackTrace *stack) {
821 AsanThread *t = GetCurrentThread();
822 if (t) {
823 AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
824 quarantine.DrainAndRecycle(GetQuarantineCache(ms),
825 QuarantineCallback(GetAllocatorCache(ms),
826 stack));
829 SpinMutexLock l(&fallback_mutex);
830 quarantine.DrainAndRecycle(&fallback_quarantine_cache,
831 QuarantineCallback(&fallback_allocator_cache,
832 stack));
835 allocator.ForceReleaseToOS();
838 void PrintStats() {
839 allocator.PrintStats();
840 quarantine.PrintStats();
843 void ForceLock() SANITIZER_ACQUIRE(fallback_mutex) {
844 allocator.ForceLock();
845 fallback_mutex.Lock();
848 void ForceUnlock() SANITIZER_RELEASE(fallback_mutex) {
849 fallback_mutex.Unlock();
850 allocator.ForceUnlock();
854 static Allocator instance(LINKER_INITIALIZED);
856 static AsanAllocator &get_allocator() {
857 return instance.allocator;
860 bool AsanChunkView::IsValid() const {
861 return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) !=
862 CHUNK_INVALID;
864 bool AsanChunkView::IsAllocated() const {
865 return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) ==
866 CHUNK_ALLOCATED;
868 bool AsanChunkView::IsQuarantined() const {
869 return chunk_ && atomic_load(&chunk_->chunk_state, memory_order_relaxed) ==
870 CHUNK_QUARANTINE;
872 uptr AsanChunkView::Beg() const { return chunk_->Beg(); }
873 uptr AsanChunkView::End() const { return Beg() + UsedSize(); }
874 uptr AsanChunkView::UsedSize() const { return chunk_->UsedSize(); }
875 u32 AsanChunkView::UserRequestedAlignment() const {
876 return Allocator::ComputeUserAlignment(chunk_->user_requested_alignment_log);
879 uptr AsanChunkView::AllocTid() const {
880 u32 tid = 0;
881 u32 stack = 0;
882 chunk_->GetAllocContext(tid, stack);
883 return tid;
886 uptr AsanChunkView::FreeTid() const {
887 if (!IsQuarantined())
888 return kInvalidTid;
889 u32 tid = 0;
890 u32 stack = 0;
891 chunk_->GetFreeContext(tid, stack);
892 return tid;
895 AllocType AsanChunkView::GetAllocType() const {
896 return (AllocType)chunk_->alloc_type;
899 u32 AsanChunkView::GetAllocStackId() const {
900 u32 tid = 0;
901 u32 stack = 0;
902 chunk_->GetAllocContext(tid, stack);
903 return stack;
906 u32 AsanChunkView::GetFreeStackId() const {
907 if (!IsQuarantined())
908 return 0;
909 u32 tid = 0;
910 u32 stack = 0;
911 chunk_->GetFreeContext(tid, stack);
912 return stack;
915 void InitializeAllocator(const AllocatorOptions &options) {
916 instance.InitLinkerInitialized(options);
919 void ReInitializeAllocator(const AllocatorOptions &options) {
920 instance.ReInitialize(options);
923 void GetAllocatorOptions(AllocatorOptions *options) {
924 instance.GetOptions(options);
927 AsanChunkView FindHeapChunkByAddress(uptr addr) {
928 return instance.FindHeapChunkByAddress(addr);
930 AsanChunkView FindHeapChunkByAllocBeg(uptr addr) {
931 return AsanChunkView(instance.GetAsanChunk(reinterpret_cast<void*>(addr)));
934 void AsanThreadLocalMallocStorage::CommitBack() {
935 GET_STACK_TRACE_MALLOC;
936 instance.CommitBack(this, &stack);
939 void PrintInternalAllocatorStats() {
940 instance.PrintStats();
943 void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
944 instance.Deallocate(ptr, 0, 0, stack, alloc_type);
947 void asan_delete(void *ptr, uptr size, uptr alignment,
948 BufferedStackTrace *stack, AllocType alloc_type) {
949 instance.Deallocate(ptr, size, alignment, stack, alloc_type);
952 void *asan_malloc(uptr size, BufferedStackTrace *stack) {
953 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
956 void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
957 return SetErrnoOnNull(instance.Calloc(nmemb, size, stack));
960 void *asan_reallocarray(void *p, uptr nmemb, uptr size,
961 BufferedStackTrace *stack) {
962 if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
963 errno = errno_ENOMEM;
964 if (AllocatorMayReturnNull())
965 return nullptr;
966 ReportReallocArrayOverflow(nmemb, size, stack);
968 return asan_realloc(p, nmemb * size, stack);
971 void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) {
972 if (!p)
973 return SetErrnoOnNull(instance.Allocate(size, 8, stack, FROM_MALLOC, true));
974 if (size == 0) {
975 if (flags()->allocator_frees_and_returns_null_on_realloc_zero) {
976 instance.Deallocate(p, 0, 0, stack, FROM_MALLOC);
977 return nullptr;
979 // Allocate a size of 1 if we shouldn't free() on Realloc to 0
980 size = 1;
982 return SetErrnoOnNull(instance.Reallocate(p, size, stack));
985 void *asan_valloc(uptr size, BufferedStackTrace *stack) {
986 return SetErrnoOnNull(
987 instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true));
990 void *asan_pvalloc(uptr size, BufferedStackTrace *stack) {
991 uptr PageSize = GetPageSizeCached();
992 if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
993 errno = errno_ENOMEM;
994 if (AllocatorMayReturnNull())
995 return nullptr;
996 ReportPvallocOverflow(size, stack);
998 // pvalloc(0) should allocate one page.
999 size = size ? RoundUpTo(size, PageSize) : PageSize;
1000 return SetErrnoOnNull(
1001 instance.Allocate(size, PageSize, stack, FROM_MALLOC, true));
1004 void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
1005 AllocType alloc_type) {
1006 if (UNLIKELY(!IsPowerOfTwo(alignment))) {
1007 errno = errno_EINVAL;
1008 if (AllocatorMayReturnNull())
1009 return nullptr;
1010 ReportInvalidAllocationAlignment(alignment, stack);
1012 return SetErrnoOnNull(
1013 instance.Allocate(size, alignment, stack, alloc_type, true));
1016 void *asan_aligned_alloc(uptr alignment, uptr size, BufferedStackTrace *stack) {
1017 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
1018 errno = errno_EINVAL;
1019 if (AllocatorMayReturnNull())
1020 return nullptr;
1021 ReportInvalidAlignedAllocAlignment(size, alignment, stack);
1023 return SetErrnoOnNull(
1024 instance.Allocate(size, alignment, stack, FROM_MALLOC, true));
1027 int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
1028 BufferedStackTrace *stack) {
1029 if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
1030 if (AllocatorMayReturnNull())
1031 return errno_EINVAL;
1032 ReportInvalidPosixMemalignAlignment(alignment, stack);
1034 void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC, true);
1035 if (UNLIKELY(!ptr))
1036 // OOM error is already taken care of by Allocate.
1037 return errno_ENOMEM;
1038 CHECK(IsAligned((uptr)ptr, alignment));
1039 *memptr = ptr;
1040 return 0;
1043 uptr asan_malloc_usable_size(const void *ptr, uptr pc, uptr bp) {
1044 if (!ptr) return 0;
1045 uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr));
1046 if (flags()->check_malloc_usable_size && (usable_size == 0)) {
1047 GET_STACK_TRACE_FATAL(pc, bp);
1048 ReportMallocUsableSizeNotOwned((uptr)ptr, &stack);
1050 return usable_size;
1053 uptr asan_mz_size(const void *ptr) {
1054 return instance.AllocationSize(reinterpret_cast<uptr>(ptr));
1057 void asan_mz_force_lock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
1058 instance.ForceLock();
1061 void asan_mz_force_unlock() SANITIZER_NO_THREAD_SAFETY_ANALYSIS {
1062 instance.ForceUnlock();
1065 } // namespace __asan
1067 // --- Implementation of LSan-specific functions --- {{{1
1068 namespace __lsan {
1069 void LockAllocator() {
1070 __asan::get_allocator().ForceLock();
1073 void UnlockAllocator() {
1074 __asan::get_allocator().ForceUnlock();
1077 void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
1078 *begin = (uptr)&__asan::get_allocator();
1079 *end = *begin + sizeof(__asan::get_allocator());
1082 uptr PointsIntoChunk(void *p) {
1083 uptr addr = reinterpret_cast<uptr>(p);
1084 __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(addr);
1085 if (!m || atomic_load(&m->chunk_state, memory_order_acquire) !=
1086 __asan::CHUNK_ALLOCATED)
1087 return 0;
1088 uptr chunk = m->Beg();
1089 if (m->AddrIsInside(addr))
1090 return chunk;
1091 if (IsSpecialCaseOfOperatorNew0(chunk, m->UsedSize(), addr))
1092 return chunk;
1093 return 0;
1096 uptr GetUserBegin(uptr chunk) {
1097 __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(chunk);
1098 return m ? m->Beg() : 0;
1101 LsanMetadata::LsanMetadata(uptr chunk) {
1102 metadata_ = chunk ? reinterpret_cast<void *>(chunk - __asan::kChunkHeaderSize)
1103 : nullptr;
1106 bool LsanMetadata::allocated() const {
1107 if (!metadata_)
1108 return false;
1109 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1110 return atomic_load(&m->chunk_state, memory_order_relaxed) ==
1111 __asan::CHUNK_ALLOCATED;
1114 ChunkTag LsanMetadata::tag() const {
1115 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1116 return static_cast<ChunkTag>(m->lsan_tag);
1119 void LsanMetadata::set_tag(ChunkTag value) {
1120 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1121 m->lsan_tag = value;
1124 uptr LsanMetadata::requested_size() const {
1125 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1126 return m->UsedSize();
1129 u32 LsanMetadata::stack_trace_id() const {
1130 __asan::AsanChunk *m = reinterpret_cast<__asan::AsanChunk *>(metadata_);
1131 u32 tid = 0;
1132 u32 stack = 0;
1133 m->GetAllocContext(tid, stack);
1134 return stack;
1137 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
1138 __asan::get_allocator().ForEachChunk(callback, arg);
1141 IgnoreObjectResult IgnoreObjectLocked(const void *p) {
1142 uptr addr = reinterpret_cast<uptr>(p);
1143 __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddr(addr);
1144 if (!m ||
1145 (atomic_load(&m->chunk_state, memory_order_acquire) !=
1146 __asan::CHUNK_ALLOCATED) ||
1147 !m->AddrIsInside(addr)) {
1148 return kIgnoreObjectInvalid;
1150 if (m->lsan_tag == kIgnored)
1151 return kIgnoreObjectAlreadyIgnored;
1152 m->lsan_tag = __lsan::kIgnored;
1153 return kIgnoreObjectSuccess;
1156 void GetAdditionalThreadContextPtrs(ThreadContextBase *tctx, void *ptrs) {
1157 // Look for the arg pointer of threads that have been created or are running.
1158 // This is necessary to prevent false positive leaks due to the AsanThread
1159 // holding the only live reference to a heap object. This can happen because
1160 // the `pthread_create()` interceptor doesn't wait for the child thread to
1161 // start before returning and thus loosing the the only live reference to the
1162 // heap object on the stack.
1164 __asan::AsanThreadContext *atctx =
1165 reinterpret_cast<__asan::AsanThreadContext *>(tctx);
1166 __asan::AsanThread *asan_thread = atctx->thread;
1168 // Note ThreadStatusRunning is required because there is a small window where
1169 // the thread status switches to `ThreadStatusRunning` but the `arg` pointer
1170 // still isn't on the stack yet.
1171 if (atctx->status != ThreadStatusCreated &&
1172 atctx->status != ThreadStatusRunning)
1173 return;
1175 uptr thread_arg = reinterpret_cast<uptr>(asan_thread->get_arg());
1176 if (!thread_arg)
1177 return;
1179 auto ptrsVec = reinterpret_cast<InternalMmapVector<uptr> *>(ptrs);
1180 ptrsVec->push_back(thread_arg);
1183 } // namespace __lsan
1185 // ---------------------- Interface ---------------- {{{1
1186 using namespace __asan;
1188 // ASan allocator doesn't reserve extra bytes, so normally we would
1189 // just return "size". We don't want to expose our redzone sizes, etc here.
1190 uptr __sanitizer_get_estimated_allocated_size(uptr size) {
1191 return size;
1194 int __sanitizer_get_ownership(const void *p) {
1195 uptr ptr = reinterpret_cast<uptr>(p);
1196 return instance.AllocationSize(ptr) > 0;
1199 uptr __sanitizer_get_allocated_size(const void *p) {
1200 if (!p) return 0;
1201 uptr ptr = reinterpret_cast<uptr>(p);
1202 uptr allocated_size = instance.AllocationSize(ptr);
1203 // Die if p is not malloced or if it is already freed.
1204 if (allocated_size == 0) {
1205 GET_STACK_TRACE_FATAL_HERE;
1206 ReportSanitizerGetAllocatedSizeNotOwned(ptr, &stack);
1208 return allocated_size;
1211 void __sanitizer_purge_allocator() {
1212 GET_STACK_TRACE_MALLOC;
1213 instance.Purge(&stack);
1216 int __asan_update_allocation_context(void* addr) {
1217 GET_STACK_TRACE_MALLOC;
1218 return instance.UpdateAllocationStack((uptr)addr, &stack);