d: Merge upstream dmd, druntime c8ae4adb2e, phobos 792c8b7c1.
[official-gcc.git] / gcc / tree-ssa-loop-niter.cc
blobfece876099c1687569d6351e7d2416ea6acae5b5
1 /* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004-2022 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "tree-pass.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "diagnostic-core.h"
31 #include "stor-layout.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "intl.h"
35 #include "gimplify.h"
36 #include "gimple-iterator.h"
37 #include "tree-cfg.h"
38 #include "tree-ssa-loop-ivopts.h"
39 #include "tree-ssa-loop-niter.h"
40 #include "tree-ssa-loop.h"
41 #include "cfgloop.h"
42 #include "tree-chrec.h"
43 #include "tree-scalar-evolution.h"
44 #include "tree-dfa.h"
45 #include "gimple-range.h"
48 /* The maximum number of dominator BBs we search for conditions
49 of loop header copies we use for simplifying a conditional
50 expression. */
51 #define MAX_DOMINATORS_TO_WALK 8
55 Analysis of number of iterations of an affine exit test.
59 /* Bounds on some value, BELOW <= X <= UP. */
61 struct bounds
63 mpz_t below, up;
66 /* Splits expression EXPR to a variable part VAR and constant OFFSET. */
68 static void
69 split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
71 tree type = TREE_TYPE (expr);
72 tree op0, op1;
73 bool negate = false;
75 *var = expr;
76 mpz_set_ui (offset, 0);
78 switch (TREE_CODE (expr))
80 case MINUS_EXPR:
81 negate = true;
82 /* Fallthru. */
84 case PLUS_EXPR:
85 case POINTER_PLUS_EXPR:
86 op0 = TREE_OPERAND (expr, 0);
87 op1 = TREE_OPERAND (expr, 1);
89 if (TREE_CODE (op1) != INTEGER_CST)
90 break;
92 *var = op0;
93 /* Always sign extend the offset. */
94 wi::to_mpz (wi::to_wide (op1), offset, SIGNED);
95 if (negate)
96 mpz_neg (offset, offset);
97 break;
99 case INTEGER_CST:
100 *var = build_int_cst_type (type, 0);
101 wi::to_mpz (wi::to_wide (expr), offset, TYPE_SIGN (type));
102 break;
104 default:
105 break;
109 /* From condition C0 CMP C1 derives information regarding the value range
110 of VAR, which is of TYPE. Results are stored in to BELOW and UP. */
112 static void
113 refine_value_range_using_guard (tree type, tree var,
114 tree c0, enum tree_code cmp, tree c1,
115 mpz_t below, mpz_t up)
117 tree varc0, varc1, ctype;
118 mpz_t offc0, offc1;
119 mpz_t mint, maxt, minc1, maxc1;
120 bool no_wrap = nowrap_type_p (type);
121 bool c0_ok, c1_ok;
122 signop sgn = TYPE_SIGN (type);
124 switch (cmp)
126 case LT_EXPR:
127 case LE_EXPR:
128 case GT_EXPR:
129 case GE_EXPR:
130 STRIP_SIGN_NOPS (c0);
131 STRIP_SIGN_NOPS (c1);
132 ctype = TREE_TYPE (c0);
133 if (!useless_type_conversion_p (ctype, type))
134 return;
136 break;
138 case EQ_EXPR:
139 /* We could derive quite precise information from EQ_EXPR, however,
140 such a guard is unlikely to appear, so we do not bother with
141 handling it. */
142 return;
144 case NE_EXPR:
145 /* NE_EXPR comparisons do not contain much of useful information,
146 except for cases of comparing with bounds. */
147 if (TREE_CODE (c1) != INTEGER_CST
148 || !INTEGRAL_TYPE_P (type))
149 return;
151 /* Ensure that the condition speaks about an expression in the same
152 type as X and Y. */
153 ctype = TREE_TYPE (c0);
154 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
155 return;
156 c0 = fold_convert (type, c0);
157 c1 = fold_convert (type, c1);
159 if (operand_equal_p (var, c0, 0))
161 mpz_t valc1;
163 /* Case of comparing VAR with its below/up bounds. */
164 mpz_init (valc1);
165 wi::to_mpz (wi::to_wide (c1), valc1, TYPE_SIGN (type));
166 if (mpz_cmp (valc1, below) == 0)
167 cmp = GT_EXPR;
168 if (mpz_cmp (valc1, up) == 0)
169 cmp = LT_EXPR;
171 mpz_clear (valc1);
173 else
175 /* Case of comparing with the bounds of the type. */
176 wide_int min = wi::min_value (type);
177 wide_int max = wi::max_value (type);
179 if (wi::to_wide (c1) == min)
180 cmp = GT_EXPR;
181 if (wi::to_wide (c1) == max)
182 cmp = LT_EXPR;
185 /* Quick return if no useful information. */
186 if (cmp == NE_EXPR)
187 return;
189 break;
191 default:
192 return;
195 mpz_init (offc0);
196 mpz_init (offc1);
197 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
198 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
200 /* We are only interested in comparisons of expressions based on VAR. */
201 if (operand_equal_p (var, varc1, 0))
203 std::swap (varc0, varc1);
204 mpz_swap (offc0, offc1);
205 cmp = swap_tree_comparison (cmp);
207 else if (!operand_equal_p (var, varc0, 0))
209 mpz_clear (offc0);
210 mpz_clear (offc1);
211 return;
214 mpz_init (mint);
215 mpz_init (maxt);
216 get_type_static_bounds (type, mint, maxt);
217 mpz_init (minc1);
218 mpz_init (maxc1);
219 Value_Range r (TREE_TYPE (varc1));
220 /* Setup range information for varc1. */
221 if (integer_zerop (varc1))
223 wi::to_mpz (0, minc1, TYPE_SIGN (type));
224 wi::to_mpz (0, maxc1, TYPE_SIGN (type));
226 else if (TREE_CODE (varc1) == SSA_NAME
227 && INTEGRAL_TYPE_P (type)
228 && get_range_query (cfun)->range_of_expr (r, varc1)
229 && r.kind () == VR_RANGE)
231 gcc_assert (wi::le_p (r.lower_bound (), r.upper_bound (), sgn));
232 wi::to_mpz (r.lower_bound (), minc1, sgn);
233 wi::to_mpz (r.upper_bound (), maxc1, sgn);
235 else
237 mpz_set (minc1, mint);
238 mpz_set (maxc1, maxt);
241 /* Compute valid range information for varc1 + offc1. Note nothing
242 useful can be derived if it overflows or underflows. Overflow or
243 underflow could happen when:
245 offc1 > 0 && varc1 + offc1 > MAX_VAL (type)
246 offc1 < 0 && varc1 + offc1 < MIN_VAL (type). */
247 mpz_add (minc1, minc1, offc1);
248 mpz_add (maxc1, maxc1, offc1);
249 c1_ok = (no_wrap
250 || mpz_sgn (offc1) == 0
251 || (mpz_sgn (offc1) < 0 && mpz_cmp (minc1, mint) >= 0)
252 || (mpz_sgn (offc1) > 0 && mpz_cmp (maxc1, maxt) <= 0));
253 if (!c1_ok)
254 goto end;
256 if (mpz_cmp (minc1, mint) < 0)
257 mpz_set (minc1, mint);
258 if (mpz_cmp (maxc1, maxt) > 0)
259 mpz_set (maxc1, maxt);
261 if (cmp == LT_EXPR)
263 cmp = LE_EXPR;
264 mpz_sub_ui (maxc1, maxc1, 1);
266 if (cmp == GT_EXPR)
268 cmp = GE_EXPR;
269 mpz_add_ui (minc1, minc1, 1);
272 /* Compute range information for varc0. If there is no overflow,
273 the condition implied that
275 (varc0) cmp (varc1 + offc1 - offc0)
277 We can possibly improve the upper bound of varc0 if cmp is LE_EXPR,
278 or the below bound if cmp is GE_EXPR.
280 To prove there is no overflow/underflow, we need to check below
281 four cases:
282 1) cmp == LE_EXPR && offc0 > 0
284 (varc0 + offc0) doesn't overflow
285 && (varc1 + offc1 - offc0) doesn't underflow
287 2) cmp == LE_EXPR && offc0 < 0
289 (varc0 + offc0) doesn't underflow
290 && (varc1 + offc1 - offc0) doesn't overfloe
292 In this case, (varc0 + offc0) will never underflow if we can
293 prove (varc1 + offc1 - offc0) doesn't overflow.
295 3) cmp == GE_EXPR && offc0 < 0
297 (varc0 + offc0) doesn't underflow
298 && (varc1 + offc1 - offc0) doesn't overflow
300 4) cmp == GE_EXPR && offc0 > 0
302 (varc0 + offc0) doesn't overflow
303 && (varc1 + offc1 - offc0) doesn't underflow
305 In this case, (varc0 + offc0) will never overflow if we can
306 prove (varc1 + offc1 - offc0) doesn't underflow.
308 Note we only handle case 2 and 4 in below code. */
310 mpz_sub (minc1, minc1, offc0);
311 mpz_sub (maxc1, maxc1, offc0);
312 c0_ok = (no_wrap
313 || mpz_sgn (offc0) == 0
314 || (cmp == LE_EXPR
315 && mpz_sgn (offc0) < 0 && mpz_cmp (maxc1, maxt) <= 0)
316 || (cmp == GE_EXPR
317 && mpz_sgn (offc0) > 0 && mpz_cmp (minc1, mint) >= 0));
318 if (!c0_ok)
319 goto end;
321 if (cmp == LE_EXPR)
323 if (mpz_cmp (up, maxc1) > 0)
324 mpz_set (up, maxc1);
326 else
328 if (mpz_cmp (below, minc1) < 0)
329 mpz_set (below, minc1);
332 end:
333 mpz_clear (mint);
334 mpz_clear (maxt);
335 mpz_clear (minc1);
336 mpz_clear (maxc1);
337 mpz_clear (offc0);
338 mpz_clear (offc1);
341 /* Stores estimate on the minimum/maximum value of the expression VAR + OFF
342 in TYPE to MIN and MAX. */
344 static void
345 determine_value_range (class loop *loop, tree type, tree var, mpz_t off,
346 mpz_t min, mpz_t max)
348 int cnt = 0;
349 mpz_t minm, maxm;
350 basic_block bb;
351 wide_int minv, maxv;
352 enum value_range_kind rtype = VR_VARYING;
354 /* If the expression is a constant, we know its value exactly. */
355 if (integer_zerop (var))
357 mpz_set (min, off);
358 mpz_set (max, off);
359 return;
362 get_type_static_bounds (type, min, max);
364 /* See if we have some range info from VRP. */
365 if (TREE_CODE (var) == SSA_NAME && INTEGRAL_TYPE_P (type))
367 edge e = loop_preheader_edge (loop);
368 signop sgn = TYPE_SIGN (type);
369 gphi_iterator gsi;
371 /* Either for VAR itself... */
372 Value_Range var_range (TREE_TYPE (var));
373 get_range_query (cfun)->range_of_expr (var_range, var);
374 rtype = var_range.kind ();
375 if (!var_range.undefined_p ())
377 minv = var_range.lower_bound ();
378 maxv = var_range.upper_bound ();
381 /* Or for PHI results in loop->header where VAR is used as
382 PHI argument from the loop preheader edge. */
383 Value_Range phi_range (TREE_TYPE (var));
384 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
386 gphi *phi = gsi.phi ();
387 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var
388 && get_range_query (cfun)->range_of_expr (phi_range,
389 gimple_phi_result (phi))
390 && phi_range.kind () == VR_RANGE)
392 if (rtype != VR_RANGE)
394 rtype = VR_RANGE;
395 minv = phi_range.lower_bound ();
396 maxv = phi_range.upper_bound ();
398 else
400 minv = wi::max (minv, phi_range.lower_bound (), sgn);
401 maxv = wi::min (maxv, phi_range.upper_bound (), sgn);
402 /* If the PHI result range are inconsistent with
403 the VAR range, give up on looking at the PHI
404 results. This can happen if VR_UNDEFINED is
405 involved. */
406 if (wi::gt_p (minv, maxv, sgn))
408 Value_Range vr (TREE_TYPE (var));
409 get_range_query (cfun)->range_of_expr (vr, var);
410 rtype = vr.kind ();
411 if (!vr.undefined_p ())
413 minv = vr.lower_bound ();
414 maxv = vr.upper_bound ();
416 break;
421 mpz_init (minm);
422 mpz_init (maxm);
423 if (rtype != VR_RANGE)
425 mpz_set (minm, min);
426 mpz_set (maxm, max);
428 else
430 gcc_assert (wi::le_p (minv, maxv, sgn));
431 wi::to_mpz (minv, minm, sgn);
432 wi::to_mpz (maxv, maxm, sgn);
434 /* Now walk the dominators of the loop header and use the entry
435 guards to refine the estimates. */
436 for (bb = loop->header;
437 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
438 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
440 edge e;
441 tree c0, c1;
442 gimple *cond;
443 enum tree_code cmp;
445 if (!single_pred_p (bb))
446 continue;
447 e = single_pred_edge (bb);
449 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
450 continue;
452 cond = last_stmt (e->src);
453 c0 = gimple_cond_lhs (cond);
454 cmp = gimple_cond_code (cond);
455 c1 = gimple_cond_rhs (cond);
457 if (e->flags & EDGE_FALSE_VALUE)
458 cmp = invert_tree_comparison (cmp, false);
460 refine_value_range_using_guard (type, var, c0, cmp, c1, minm, maxm);
461 ++cnt;
464 mpz_add (minm, minm, off);
465 mpz_add (maxm, maxm, off);
466 /* If the computation may not wrap or off is zero, then this
467 is always fine. If off is negative and minv + off isn't
468 smaller than type's minimum, or off is positive and
469 maxv + off isn't bigger than type's maximum, use the more
470 precise range too. */
471 if (nowrap_type_p (type)
472 || mpz_sgn (off) == 0
473 || (mpz_sgn (off) < 0 && mpz_cmp (minm, min) >= 0)
474 || (mpz_sgn (off) > 0 && mpz_cmp (maxm, max) <= 0))
476 mpz_set (min, minm);
477 mpz_set (max, maxm);
478 mpz_clear (minm);
479 mpz_clear (maxm);
480 return;
482 mpz_clear (minm);
483 mpz_clear (maxm);
486 /* If the computation may wrap, we know nothing about the value, except for
487 the range of the type. */
488 if (!nowrap_type_p (type))
489 return;
491 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
492 add it to MIN, otherwise to MAX. */
493 if (mpz_sgn (off) < 0)
494 mpz_add (max, max, off);
495 else
496 mpz_add (min, min, off);
499 /* Stores the bounds on the difference of the values of the expressions
500 (var + X) and (var + Y), computed in TYPE, to BNDS. */
502 static void
503 bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
504 bounds *bnds)
506 int rel = mpz_cmp (x, y);
507 bool may_wrap = !nowrap_type_p (type);
508 mpz_t m;
510 /* If X == Y, then the expressions are always equal.
511 If X > Y, there are the following possibilities:
512 a) neither of var + X and var + Y overflow or underflow, or both of
513 them do. Then their difference is X - Y.
514 b) var + X overflows, and var + Y does not. Then the values of the
515 expressions are var + X - M and var + Y, where M is the range of
516 the type, and their difference is X - Y - M.
517 c) var + Y underflows and var + X does not. Their difference again
518 is M - X + Y.
519 Therefore, if the arithmetics in type does not overflow, then the
520 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
521 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
522 (X - Y, X - Y + M). */
524 if (rel == 0)
526 mpz_set_ui (bnds->below, 0);
527 mpz_set_ui (bnds->up, 0);
528 return;
531 mpz_init (m);
532 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), m, UNSIGNED);
533 mpz_add_ui (m, m, 1);
534 mpz_sub (bnds->up, x, y);
535 mpz_set (bnds->below, bnds->up);
537 if (may_wrap)
539 if (rel > 0)
540 mpz_sub (bnds->below, bnds->below, m);
541 else
542 mpz_add (bnds->up, bnds->up, m);
545 mpz_clear (m);
548 /* From condition C0 CMP C1 derives information regarding the
549 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
550 and stores it to BNDS. */
552 static void
553 refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
554 tree vary, mpz_t offy,
555 tree c0, enum tree_code cmp, tree c1,
556 bounds *bnds)
558 tree varc0, varc1, ctype;
559 mpz_t offc0, offc1, loffx, loffy, bnd;
560 bool lbound = false;
561 bool no_wrap = nowrap_type_p (type);
562 bool x_ok, y_ok;
564 switch (cmp)
566 case LT_EXPR:
567 case LE_EXPR:
568 case GT_EXPR:
569 case GE_EXPR:
570 STRIP_SIGN_NOPS (c0);
571 STRIP_SIGN_NOPS (c1);
572 ctype = TREE_TYPE (c0);
573 if (!useless_type_conversion_p (ctype, type))
574 return;
576 break;
578 case EQ_EXPR:
579 /* We could derive quite precise information from EQ_EXPR, however, such
580 a guard is unlikely to appear, so we do not bother with handling
581 it. */
582 return;
584 case NE_EXPR:
585 /* NE_EXPR comparisons do not contain much of useful information, except for
586 special case of comparing with the bounds of the type. */
587 if (TREE_CODE (c1) != INTEGER_CST
588 || !INTEGRAL_TYPE_P (type))
589 return;
591 /* Ensure that the condition speaks about an expression in the same type
592 as X and Y. */
593 ctype = TREE_TYPE (c0);
594 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
595 return;
596 c0 = fold_convert (type, c0);
597 c1 = fold_convert (type, c1);
599 if (TYPE_MIN_VALUE (type)
600 && operand_equal_p (c1, TYPE_MIN_VALUE (type), 0))
602 cmp = GT_EXPR;
603 break;
605 if (TYPE_MAX_VALUE (type)
606 && operand_equal_p (c1, TYPE_MAX_VALUE (type), 0))
608 cmp = LT_EXPR;
609 break;
612 return;
613 default:
614 return;
617 mpz_init (offc0);
618 mpz_init (offc1);
619 split_to_var_and_offset (expand_simple_operations (c0), &varc0, offc0);
620 split_to_var_and_offset (expand_simple_operations (c1), &varc1, offc1);
622 /* We are only interested in comparisons of expressions based on VARX and
623 VARY. TODO -- we might also be able to derive some bounds from
624 expressions containing just one of the variables. */
626 if (operand_equal_p (varx, varc1, 0))
628 std::swap (varc0, varc1);
629 mpz_swap (offc0, offc1);
630 cmp = swap_tree_comparison (cmp);
633 if (!operand_equal_p (varx, varc0, 0)
634 || !operand_equal_p (vary, varc1, 0))
635 goto end;
637 mpz_init_set (loffx, offx);
638 mpz_init_set (loffy, offy);
640 if (cmp == GT_EXPR || cmp == GE_EXPR)
642 std::swap (varx, vary);
643 mpz_swap (offc0, offc1);
644 mpz_swap (loffx, loffy);
645 cmp = swap_tree_comparison (cmp);
646 lbound = true;
649 /* If there is no overflow, the condition implies that
651 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
653 The overflows and underflows may complicate things a bit; each
654 overflow decreases the appropriate offset by M, and underflow
655 increases it by M. The above inequality would not necessarily be
656 true if
658 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
659 VARX + OFFC0 overflows, but VARX + OFFX does not.
660 This may only happen if OFFX < OFFC0.
661 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
662 VARY + OFFC1 underflows and VARY + OFFY does not.
663 This may only happen if OFFY > OFFC1. */
665 if (no_wrap)
667 x_ok = true;
668 y_ok = true;
670 else
672 x_ok = (integer_zerop (varx)
673 || mpz_cmp (loffx, offc0) >= 0);
674 y_ok = (integer_zerop (vary)
675 || mpz_cmp (loffy, offc1) <= 0);
678 if (x_ok && y_ok)
680 mpz_init (bnd);
681 mpz_sub (bnd, loffx, loffy);
682 mpz_add (bnd, bnd, offc1);
683 mpz_sub (bnd, bnd, offc0);
685 if (cmp == LT_EXPR)
686 mpz_sub_ui (bnd, bnd, 1);
688 if (lbound)
690 mpz_neg (bnd, bnd);
691 if (mpz_cmp (bnds->below, bnd) < 0)
692 mpz_set (bnds->below, bnd);
694 else
696 if (mpz_cmp (bnd, bnds->up) < 0)
697 mpz_set (bnds->up, bnd);
699 mpz_clear (bnd);
702 mpz_clear (loffx);
703 mpz_clear (loffy);
704 end:
705 mpz_clear (offc0);
706 mpz_clear (offc1);
709 /* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
710 The subtraction is considered to be performed in arbitrary precision,
711 without overflows.
713 We do not attempt to be too clever regarding the value ranges of X and
714 Y; most of the time, they are just integers or ssa names offsetted by
715 integer. However, we try to use the information contained in the
716 comparisons before the loop (usually created by loop header copying). */
718 static void
719 bound_difference (class loop *loop, tree x, tree y, bounds *bnds)
721 tree type = TREE_TYPE (x);
722 tree varx, vary;
723 mpz_t offx, offy;
724 mpz_t minx, maxx, miny, maxy;
725 int cnt = 0;
726 edge e;
727 basic_block bb;
728 tree c0, c1;
729 gimple *cond;
730 enum tree_code cmp;
732 /* Get rid of unnecessary casts, but preserve the value of
733 the expressions. */
734 STRIP_SIGN_NOPS (x);
735 STRIP_SIGN_NOPS (y);
737 mpz_init (bnds->below);
738 mpz_init (bnds->up);
739 mpz_init (offx);
740 mpz_init (offy);
741 split_to_var_and_offset (x, &varx, offx);
742 split_to_var_and_offset (y, &vary, offy);
744 if (!integer_zerop (varx)
745 && operand_equal_p (varx, vary, 0))
747 /* Special case VARX == VARY -- we just need to compare the
748 offsets. The matters are a bit more complicated in the
749 case addition of offsets may wrap. */
750 bound_difference_of_offsetted_base (type, offx, offy, bnds);
752 else
754 /* Otherwise, use the value ranges to determine the initial
755 estimates on below and up. */
756 mpz_init (minx);
757 mpz_init (maxx);
758 mpz_init (miny);
759 mpz_init (maxy);
760 determine_value_range (loop, type, varx, offx, minx, maxx);
761 determine_value_range (loop, type, vary, offy, miny, maxy);
763 mpz_sub (bnds->below, minx, maxy);
764 mpz_sub (bnds->up, maxx, miny);
765 mpz_clear (minx);
766 mpz_clear (maxx);
767 mpz_clear (miny);
768 mpz_clear (maxy);
771 /* If both X and Y are constants, we cannot get any more precise. */
772 if (integer_zerop (varx) && integer_zerop (vary))
773 goto end;
775 /* Now walk the dominators of the loop header and use the entry
776 guards to refine the estimates. */
777 for (bb = loop->header;
778 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
779 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
781 if (!single_pred_p (bb))
782 continue;
783 e = single_pred_edge (bb);
785 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
786 continue;
788 cond = last_stmt (e->src);
789 c0 = gimple_cond_lhs (cond);
790 cmp = gimple_cond_code (cond);
791 c1 = gimple_cond_rhs (cond);
793 if (e->flags & EDGE_FALSE_VALUE)
794 cmp = invert_tree_comparison (cmp, false);
796 refine_bounds_using_guard (type, varx, offx, vary, offy,
797 c0, cmp, c1, bnds);
798 ++cnt;
801 end:
802 mpz_clear (offx);
803 mpz_clear (offy);
806 /* Update the bounds in BNDS that restrict the value of X to the bounds
807 that restrict the value of X + DELTA. X can be obtained as a
808 difference of two values in TYPE. */
810 static void
811 bounds_add (bounds *bnds, const widest_int &delta, tree type)
813 mpz_t mdelta, max;
815 mpz_init (mdelta);
816 wi::to_mpz (delta, mdelta, SIGNED);
818 mpz_init (max);
819 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
821 mpz_add (bnds->up, bnds->up, mdelta);
822 mpz_add (bnds->below, bnds->below, mdelta);
824 if (mpz_cmp (bnds->up, max) > 0)
825 mpz_set (bnds->up, max);
827 mpz_neg (max, max);
828 if (mpz_cmp (bnds->below, max) < 0)
829 mpz_set (bnds->below, max);
831 mpz_clear (mdelta);
832 mpz_clear (max);
835 /* Update the bounds in BNDS that restrict the value of X to the bounds
836 that restrict the value of -X. */
838 static void
839 bounds_negate (bounds *bnds)
841 mpz_t tmp;
843 mpz_init_set (tmp, bnds->up);
844 mpz_neg (bnds->up, bnds->below);
845 mpz_neg (bnds->below, tmp);
846 mpz_clear (tmp);
849 /* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
851 static tree
852 inverse (tree x, tree mask)
854 tree type = TREE_TYPE (x);
855 tree rslt;
856 unsigned ctr = tree_floor_log2 (mask);
858 if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
860 unsigned HOST_WIDE_INT ix;
861 unsigned HOST_WIDE_INT imask;
862 unsigned HOST_WIDE_INT irslt = 1;
864 gcc_assert (cst_and_fits_in_hwi (x));
865 gcc_assert (cst_and_fits_in_hwi (mask));
867 ix = int_cst_value (x);
868 imask = int_cst_value (mask);
870 for (; ctr; ctr--)
872 irslt *= ix;
873 ix *= ix;
875 irslt &= imask;
877 rslt = build_int_cst_type (type, irslt);
879 else
881 rslt = build_int_cst (type, 1);
882 for (; ctr; ctr--)
884 rslt = int_const_binop (MULT_EXPR, rslt, x);
885 x = int_const_binop (MULT_EXPR, x, x);
887 rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
890 return rslt;
893 /* Derives the upper bound BND on the number of executions of loop with exit
894 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
895 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
896 that the loop ends through this exit, i.e., the induction variable ever
897 reaches the value of C.
899 The value C is equal to final - base, where final and base are the final and
900 initial value of the actual induction variable in the analysed loop. BNDS
901 bounds the value of this difference when computed in signed type with
902 unbounded range, while the computation of C is performed in an unsigned
903 type with the range matching the range of the type of the induction variable.
904 In particular, BNDS.up contains an upper bound on C in the following cases:
905 -- if the iv must reach its final value without overflow, i.e., if
906 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
907 -- if final >= base, which we know to hold when BNDS.below >= 0. */
909 static void
910 number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
911 bounds *bnds, bool exit_must_be_taken)
913 widest_int max;
914 mpz_t d;
915 tree type = TREE_TYPE (c);
916 bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
917 || mpz_sgn (bnds->below) >= 0);
919 if (integer_onep (s)
920 || (TREE_CODE (c) == INTEGER_CST
921 && TREE_CODE (s) == INTEGER_CST
922 && wi::mod_trunc (wi::to_wide (c), wi::to_wide (s),
923 TYPE_SIGN (type)) == 0)
924 || (TYPE_OVERFLOW_UNDEFINED (type)
925 && multiple_of_p (type, c, s)))
927 /* If C is an exact multiple of S, then its value will be reached before
928 the induction variable overflows (unless the loop is exited in some
929 other way before). Note that the actual induction variable in the
930 loop (which ranges from base to final instead of from 0 to C) may
931 overflow, in which case BNDS.up will not be giving a correct upper
932 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
933 no_overflow = true;
934 exit_must_be_taken = true;
937 /* If the induction variable can overflow, the number of iterations is at
938 most the period of the control variable (or infinite, but in that case
939 the whole # of iterations analysis will fail). */
940 if (!no_overflow)
942 max = wi::mask <widest_int> (TYPE_PRECISION (type)
943 - wi::ctz (wi::to_wide (s)), false);
944 wi::to_mpz (max, bnd, UNSIGNED);
945 return;
948 /* Now we know that the induction variable does not overflow, so the loop
949 iterates at most (range of type / S) times. */
950 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), bnd, UNSIGNED);
952 /* If the induction variable is guaranteed to reach the value of C before
953 overflow, ... */
954 if (exit_must_be_taken)
956 /* ... then we can strengthen this to C / S, and possibly we can use
957 the upper bound on C given by BNDS. */
958 if (TREE_CODE (c) == INTEGER_CST)
959 wi::to_mpz (wi::to_wide (c), bnd, UNSIGNED);
960 else if (bnds_u_valid)
961 mpz_set (bnd, bnds->up);
964 mpz_init (d);
965 wi::to_mpz (wi::to_wide (s), d, UNSIGNED);
966 mpz_fdiv_q (bnd, bnd, d);
967 mpz_clear (d);
970 /* Determines number of iterations of loop whose ending condition
971 is IV <> FINAL. TYPE is the type of the iv. The number of
972 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
973 we know that the exit must be taken eventually, i.e., that the IV
974 ever reaches the value FINAL (we derived this earlier, and possibly set
975 NITER->assumptions to make sure this is the case). BNDS contains the
976 bounds on the difference FINAL - IV->base. */
978 static bool
979 number_of_iterations_ne (class loop *loop, tree type, affine_iv *iv,
980 tree final, class tree_niter_desc *niter,
981 bool exit_must_be_taken, bounds *bnds)
983 tree niter_type = unsigned_type_for (type);
984 tree s, c, d, bits, assumption, tmp, bound;
985 mpz_t max;
987 niter->control = *iv;
988 niter->bound = final;
989 niter->cmp = NE_EXPR;
991 /* Rearrange the terms so that we get inequality S * i <> C, with S
992 positive. Also cast everything to the unsigned type. If IV does
993 not overflow, BNDS bounds the value of C. Also, this is the
994 case if the computation |FINAL - IV->base| does not overflow, i.e.,
995 if BNDS->below in the result is nonnegative. */
996 if (tree_int_cst_sign_bit (iv->step))
998 s = fold_convert (niter_type,
999 fold_build1 (NEGATE_EXPR, type, iv->step));
1000 c = fold_build2 (MINUS_EXPR, niter_type,
1001 fold_convert (niter_type, iv->base),
1002 fold_convert (niter_type, final));
1003 bounds_negate (bnds);
1005 else
1007 s = fold_convert (niter_type, iv->step);
1008 c = fold_build2 (MINUS_EXPR, niter_type,
1009 fold_convert (niter_type, final),
1010 fold_convert (niter_type, iv->base));
1013 mpz_init (max);
1014 number_of_iterations_ne_max (max, iv->no_overflow, c, s, bnds,
1015 exit_must_be_taken);
1016 niter->max = widest_int::from (wi::from_mpz (niter_type, max, false),
1017 TYPE_SIGN (niter_type));
1018 mpz_clear (max);
1020 /* Compute no-overflow information for the control iv. This can be
1021 proven when below two conditions are satisfied:
1023 1) IV evaluates toward FINAL at beginning, i.e:
1024 base <= FINAL ; step > 0
1025 base >= FINAL ; step < 0
1027 2) |FINAL - base| is an exact multiple of step.
1029 Unfortunately, it's hard to prove above conditions after pass loop-ch
1030 because loop with exit condition (IV != FINAL) usually will be guarded
1031 by initial-condition (IV.base - IV.step != FINAL). In this case, we
1032 can alternatively try to prove below conditions:
1034 1') IV evaluates toward FINAL at beginning, i.e:
1035 new_base = base - step < FINAL ; step > 0
1036 && base - step doesn't underflow
1037 new_base = base - step > FINAL ; step < 0
1038 && base - step doesn't overflow
1040 Please refer to PR34114 as an example of loop-ch's impact.
1042 Note, for NE_EXPR, base equals to FINAL is a special case, in
1043 which the loop exits immediately, and the iv does not overflow.
1045 Also note, we prove condition 2) by checking base and final seperately
1046 along with condition 1) or 1'). Since we ensure the difference
1047 computation of c does not wrap with cond below and the adjusted s
1048 will fit a signed type as well as an unsigned we can safely do
1049 this using the type of the IV if it is not pointer typed. */
1050 tree mtype = type;
1051 if (POINTER_TYPE_P (type))
1052 mtype = niter_type;
1053 if (!niter->control.no_overflow
1054 && (integer_onep (s)
1055 || (multiple_of_p (mtype, fold_convert (mtype, iv->base),
1056 fold_convert (mtype, s), false)
1057 && multiple_of_p (mtype, fold_convert (mtype, final),
1058 fold_convert (mtype, s), false))))
1060 tree t, cond, relaxed_cond = boolean_false_node;
1062 if (tree_int_cst_sign_bit (iv->step))
1064 cond = fold_build2 (GE_EXPR, boolean_type_node, iv->base, final);
1065 if (TREE_CODE (type) == INTEGER_TYPE)
1067 /* Only when base - step doesn't overflow. */
1068 t = TYPE_MAX_VALUE (type);
1069 t = fold_build2 (PLUS_EXPR, type, t, iv->step);
1070 t = fold_build2 (GE_EXPR, boolean_type_node, t, iv->base);
1071 if (integer_nonzerop (t))
1073 t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
1074 relaxed_cond = fold_build2 (GT_EXPR, boolean_type_node, t,
1075 final);
1079 else
1081 cond = fold_build2 (LE_EXPR, boolean_type_node, iv->base, final);
1082 if (TREE_CODE (type) == INTEGER_TYPE)
1084 /* Only when base - step doesn't underflow. */
1085 t = TYPE_MIN_VALUE (type);
1086 t = fold_build2 (PLUS_EXPR, type, t, iv->step);
1087 t = fold_build2 (LE_EXPR, boolean_type_node, t, iv->base);
1088 if (integer_nonzerop (t))
1090 t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
1091 relaxed_cond = fold_build2 (LT_EXPR, boolean_type_node, t,
1092 final);
1097 t = simplify_using_initial_conditions (loop, cond);
1098 if (!t || !integer_onep (t))
1099 t = simplify_using_initial_conditions (loop, relaxed_cond);
1101 if (t && integer_onep (t))
1103 niter->control.no_overflow = true;
1104 niter->niter = fold_build2 (EXACT_DIV_EXPR, niter_type, c, s);
1105 return true;
1109 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
1110 is infinite. Otherwise, the number of iterations is
1111 (inverse(s/d) * (c/d)) mod (size of mode/d). */
1112 bits = num_ending_zeros (s);
1113 bound = build_low_bits_mask (niter_type,
1114 (TYPE_PRECISION (niter_type)
1115 - tree_to_uhwi (bits)));
1117 d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
1118 build_int_cst (niter_type, 1), bits);
1119 s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
1121 if (!exit_must_be_taken)
1123 /* If we cannot assume that the exit is taken eventually, record the
1124 assumptions for divisibility of c. */
1125 assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
1126 assumption = fold_build2 (EQ_EXPR, boolean_type_node,
1127 assumption, build_int_cst (niter_type, 0));
1128 if (!integer_nonzerop (assumption))
1129 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1130 niter->assumptions, assumption);
1133 c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
1134 if (integer_onep (s))
1136 niter->niter = c;
1138 else
1140 tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
1141 niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
1143 return true;
1146 /* Checks whether we can determine the final value of the control variable
1147 of the loop with ending condition IV0 < IV1 (computed in TYPE).
1148 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
1149 of the step. The assumptions necessary to ensure that the computation
1150 of the final value does not overflow are recorded in NITER. If we
1151 find the final value, we adjust DELTA and return TRUE. Otherwise
1152 we return false. BNDS bounds the value of IV1->base - IV0->base,
1153 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
1154 true if we know that the exit must be taken eventually. */
1156 static bool
1157 number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
1158 class tree_niter_desc *niter,
1159 tree *delta, tree step,
1160 bool exit_must_be_taken, bounds *bnds)
1162 tree niter_type = TREE_TYPE (step);
1163 tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
1164 tree tmod;
1165 mpz_t mmod;
1166 tree assumption = boolean_true_node, bound, noloop;
1167 bool ret = false, fv_comp_no_overflow;
1168 tree type1 = type;
1169 if (POINTER_TYPE_P (type))
1170 type1 = sizetype;
1172 if (TREE_CODE (mod) != INTEGER_CST)
1173 return false;
1174 if (integer_nonzerop (mod))
1175 mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
1176 tmod = fold_convert (type1, mod);
1178 mpz_init (mmod);
1179 wi::to_mpz (wi::to_wide (mod), mmod, UNSIGNED);
1180 mpz_neg (mmod, mmod);
1182 /* If the induction variable does not overflow and the exit is taken,
1183 then the computation of the final value does not overflow. This is
1184 also obviously the case if the new final value is equal to the
1185 current one. Finally, we postulate this for pointer type variables,
1186 as the code cannot rely on the object to that the pointer points being
1187 placed at the end of the address space (and more pragmatically,
1188 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
1189 if (integer_zerop (mod) || POINTER_TYPE_P (type))
1190 fv_comp_no_overflow = true;
1191 else if (!exit_must_be_taken)
1192 fv_comp_no_overflow = false;
1193 else
1194 fv_comp_no_overflow =
1195 (iv0->no_overflow && integer_nonzerop (iv0->step))
1196 || (iv1->no_overflow && integer_nonzerop (iv1->step));
1198 if (integer_nonzerop (iv0->step))
1200 /* The final value of the iv is iv1->base + MOD, assuming that this
1201 computation does not overflow, and that
1202 iv0->base <= iv1->base + MOD. */
1203 if (!fv_comp_no_overflow)
1205 bound = fold_build2 (MINUS_EXPR, type1,
1206 TYPE_MAX_VALUE (type1), tmod);
1207 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1208 iv1->base, bound);
1209 if (integer_zerop (assumption))
1210 goto end;
1212 if (mpz_cmp (mmod, bnds->below) < 0)
1213 noloop = boolean_false_node;
1214 else if (POINTER_TYPE_P (type))
1215 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1216 iv0->base,
1217 fold_build_pointer_plus (iv1->base, tmod));
1218 else
1219 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1220 iv0->base,
1221 fold_build2 (PLUS_EXPR, type1,
1222 iv1->base, tmod));
1224 else
1226 /* The final value of the iv is iv0->base - MOD, assuming that this
1227 computation does not overflow, and that
1228 iv0->base - MOD <= iv1->base. */
1229 if (!fv_comp_no_overflow)
1231 bound = fold_build2 (PLUS_EXPR, type1,
1232 TYPE_MIN_VALUE (type1), tmod);
1233 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1234 iv0->base, bound);
1235 if (integer_zerop (assumption))
1236 goto end;
1238 if (mpz_cmp (mmod, bnds->below) < 0)
1239 noloop = boolean_false_node;
1240 else if (POINTER_TYPE_P (type))
1241 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1242 fold_build_pointer_plus (iv0->base,
1243 fold_build1 (NEGATE_EXPR,
1244 type1, tmod)),
1245 iv1->base);
1246 else
1247 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1248 fold_build2 (MINUS_EXPR, type1,
1249 iv0->base, tmod),
1250 iv1->base);
1253 if (!integer_nonzerop (assumption))
1254 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1255 niter->assumptions,
1256 assumption);
1257 if (!integer_zerop (noloop))
1258 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1259 niter->may_be_zero,
1260 noloop);
1261 bounds_add (bnds, wi::to_widest (mod), type);
1262 *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
1264 ret = true;
1265 end:
1266 mpz_clear (mmod);
1267 return ret;
1270 /* Add assertions to NITER that ensure that the control variable of the loop
1271 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
1272 are TYPE. Returns false if we can prove that there is an overflow, true
1273 otherwise. STEP is the absolute value of the step. */
1275 static bool
1276 assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1277 class tree_niter_desc *niter, tree step)
1279 tree bound, d, assumption, diff;
1280 tree niter_type = TREE_TYPE (step);
1282 if (integer_nonzerop (iv0->step))
1284 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
1285 if (iv0->no_overflow)
1286 return true;
1288 /* If iv0->base is a constant, we can determine the last value before
1289 overflow precisely; otherwise we conservatively assume
1290 MAX - STEP + 1. */
1292 if (TREE_CODE (iv0->base) == INTEGER_CST)
1294 d = fold_build2 (MINUS_EXPR, niter_type,
1295 fold_convert (niter_type, TYPE_MAX_VALUE (type)),
1296 fold_convert (niter_type, iv0->base));
1297 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
1299 else
1300 diff = fold_build2 (MINUS_EXPR, niter_type, step,
1301 build_int_cst (niter_type, 1));
1302 bound = fold_build2 (MINUS_EXPR, type,
1303 TYPE_MAX_VALUE (type), fold_convert (type, diff));
1304 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1305 iv1->base, bound);
1307 else
1309 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
1310 if (iv1->no_overflow)
1311 return true;
1313 if (TREE_CODE (iv1->base) == INTEGER_CST)
1315 d = fold_build2 (MINUS_EXPR, niter_type,
1316 fold_convert (niter_type, iv1->base),
1317 fold_convert (niter_type, TYPE_MIN_VALUE (type)));
1318 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
1320 else
1321 diff = fold_build2 (MINUS_EXPR, niter_type, step,
1322 build_int_cst (niter_type, 1));
1323 bound = fold_build2 (PLUS_EXPR, type,
1324 TYPE_MIN_VALUE (type), fold_convert (type, diff));
1325 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1326 iv0->base, bound);
1329 if (integer_zerop (assumption))
1330 return false;
1331 if (!integer_nonzerop (assumption))
1332 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1333 niter->assumptions, assumption);
1335 iv0->no_overflow = true;
1336 iv1->no_overflow = true;
1337 return true;
1340 /* Add an assumption to NITER that a loop whose ending condition
1341 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
1342 bounds the value of IV1->base - IV0->base. */
1344 static void
1345 assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1346 class tree_niter_desc *niter, bounds *bnds)
1348 tree assumption = boolean_true_node, bound, diff;
1349 tree mbz, mbzl, mbzr, type1;
1350 bool rolls_p, no_overflow_p;
1351 widest_int dstep;
1352 mpz_t mstep, max;
1354 /* We are going to compute the number of iterations as
1355 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
1356 variant of TYPE. This formula only works if
1358 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
1360 (where MAX is the maximum value of the unsigned variant of TYPE, and
1361 the computations in this formula are performed in full precision,
1362 i.e., without overflows).
1364 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
1365 we have a condition of the form iv0->base - step < iv1->base before the loop,
1366 and for loops iv0->base < iv1->base - step * i the condition
1367 iv0->base < iv1->base + step, due to loop header copying, which enable us
1368 to prove the lower bound.
1370 The upper bound is more complicated. Unless the expressions for initial
1371 and final value themselves contain enough information, we usually cannot
1372 derive it from the context. */
1374 /* First check whether the answer does not follow from the bounds we gathered
1375 before. */
1376 if (integer_nonzerop (iv0->step))
1377 dstep = wi::to_widest (iv0->step);
1378 else
1380 dstep = wi::sext (wi::to_widest (iv1->step), TYPE_PRECISION (type));
1381 dstep = -dstep;
1384 mpz_init (mstep);
1385 wi::to_mpz (dstep, mstep, UNSIGNED);
1386 mpz_neg (mstep, mstep);
1387 mpz_add_ui (mstep, mstep, 1);
1389 rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
1391 mpz_init (max);
1392 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
1393 mpz_add (max, max, mstep);
1394 no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
1395 /* For pointers, only values lying inside a single object
1396 can be compared or manipulated by pointer arithmetics.
1397 Gcc in general does not allow or handle objects larger
1398 than half of the address space, hence the upper bound
1399 is satisfied for pointers. */
1400 || POINTER_TYPE_P (type));
1401 mpz_clear (mstep);
1402 mpz_clear (max);
1404 if (rolls_p && no_overflow_p)
1405 return;
1407 type1 = type;
1408 if (POINTER_TYPE_P (type))
1409 type1 = sizetype;
1411 /* Now the hard part; we must formulate the assumption(s) as expressions, and
1412 we must be careful not to introduce overflow. */
1414 if (integer_nonzerop (iv0->step))
1416 diff = fold_build2 (MINUS_EXPR, type1,
1417 iv0->step, build_int_cst (type1, 1));
1419 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
1420 0 address never belongs to any object, we can assume this for
1421 pointers. */
1422 if (!POINTER_TYPE_P (type))
1424 bound = fold_build2 (PLUS_EXPR, type1,
1425 TYPE_MIN_VALUE (type), diff);
1426 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1427 iv0->base, bound);
1430 /* And then we can compute iv0->base - diff, and compare it with
1431 iv1->base. */
1432 mbzl = fold_build2 (MINUS_EXPR, type1,
1433 fold_convert (type1, iv0->base), diff);
1434 mbzr = fold_convert (type1, iv1->base);
1436 else
1438 diff = fold_build2 (PLUS_EXPR, type1,
1439 iv1->step, build_int_cst (type1, 1));
1441 if (!POINTER_TYPE_P (type))
1443 bound = fold_build2 (PLUS_EXPR, type1,
1444 TYPE_MAX_VALUE (type), diff);
1445 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1446 iv1->base, bound);
1449 mbzl = fold_convert (type1, iv0->base);
1450 mbzr = fold_build2 (MINUS_EXPR, type1,
1451 fold_convert (type1, iv1->base), diff);
1454 if (!integer_nonzerop (assumption))
1455 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1456 niter->assumptions, assumption);
1457 if (!rolls_p)
1459 mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
1460 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1461 niter->may_be_zero, mbz);
1465 /* Determines number of iterations of loop whose ending condition
1466 is IV0 < IV1 which likes: {base, -C} < n, or n < {base, C}.
1467 The number of iterations is stored to NITER. */
1469 static bool
1470 number_of_iterations_until_wrap (class loop *loop, tree type, affine_iv *iv0,
1471 affine_iv *iv1, class tree_niter_desc *niter)
1473 tree niter_type = unsigned_type_for (type);
1474 tree step, num, assumptions, may_be_zero, span;
1475 wide_int high, low, max, min;
1477 may_be_zero = fold_build2 (LE_EXPR, boolean_type_node, iv1->base, iv0->base);
1478 if (integer_onep (may_be_zero))
1479 return false;
1481 int prec = TYPE_PRECISION (type);
1482 signop sgn = TYPE_SIGN (type);
1483 min = wi::min_value (prec, sgn);
1484 max = wi::max_value (prec, sgn);
1486 /* n < {base, C}. */
1487 if (integer_zerop (iv0->step) && !tree_int_cst_sign_bit (iv1->step))
1489 step = iv1->step;
1490 /* MIN + C - 1 <= n. */
1491 tree last = wide_int_to_tree (type, min + wi::to_wide (step) - 1);
1492 assumptions = fold_build2 (LE_EXPR, boolean_type_node, last, iv0->base);
1493 if (integer_zerop (assumptions))
1494 return false;
1496 num = fold_build2 (MINUS_EXPR, niter_type, wide_int_to_tree (type, max),
1497 iv1->base);
1499 /* When base has the form iv + 1, if we know iv >= n, then iv + 1 < n
1500 only when iv + 1 overflows, i.e. when iv == TYPE_VALUE_MAX. */
1501 if (sgn == UNSIGNED
1502 && integer_onep (step)
1503 && TREE_CODE (iv1->base) == PLUS_EXPR
1504 && integer_onep (TREE_OPERAND (iv1->base, 1)))
1506 tree cond = fold_build2 (GE_EXPR, boolean_type_node,
1507 TREE_OPERAND (iv1->base, 0), iv0->base);
1508 cond = simplify_using_initial_conditions (loop, cond);
1509 if (integer_onep (cond))
1510 may_be_zero = fold_build2 (EQ_EXPR, boolean_type_node,
1511 TREE_OPERAND (iv1->base, 0),
1512 TYPE_MAX_VALUE (type));
1515 high = max;
1516 if (TREE_CODE (iv1->base) == INTEGER_CST)
1517 low = wi::to_wide (iv1->base) - 1;
1518 else if (TREE_CODE (iv0->base) == INTEGER_CST)
1519 low = wi::to_wide (iv0->base);
1520 else
1521 low = min;
1523 /* {base, -C} < n. */
1524 else if (tree_int_cst_sign_bit (iv0->step) && integer_zerop (iv1->step))
1526 step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv0->step), iv0->step);
1527 /* MAX - C + 1 >= n. */
1528 tree last = wide_int_to_tree (type, max - wi::to_wide (step) + 1);
1529 assumptions = fold_build2 (GE_EXPR, boolean_type_node, last, iv1->base);
1530 if (integer_zerop (assumptions))
1531 return false;
1533 num = fold_build2 (MINUS_EXPR, niter_type, iv0->base,
1534 wide_int_to_tree (type, min));
1535 low = min;
1536 if (TREE_CODE (iv0->base) == INTEGER_CST)
1537 high = wi::to_wide (iv0->base) + 1;
1538 else if (TREE_CODE (iv1->base) == INTEGER_CST)
1539 high = wi::to_wide (iv1->base);
1540 else
1541 high = max;
1543 else
1544 return false;
1546 /* (delta + step - 1) / step */
1547 step = fold_convert (niter_type, step);
1548 num = fold_convert (niter_type, num);
1549 num = fold_build2 (PLUS_EXPR, niter_type, num, step);
1550 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, num, step);
1552 widest_int delta, s;
1553 delta = widest_int::from (high, sgn) - widest_int::from (low, sgn);
1554 s = wi::to_widest (step);
1555 delta = delta + s - 1;
1556 niter->max = wi::udiv_floor (delta, s);
1558 niter->may_be_zero = may_be_zero;
1560 if (!integer_nonzerop (assumptions))
1561 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1562 niter->assumptions, assumptions);
1564 niter->control.no_overflow = false;
1566 /* Update bound and exit condition as:
1567 bound = niter * STEP + (IVbase - STEP).
1568 { IVbase - STEP, +, STEP } != bound
1569 Here, biasing IVbase by 1 step makes 'bound' be the value before wrap.
1571 tree base_type = TREE_TYPE (niter->control.base);
1572 if (POINTER_TYPE_P (base_type))
1574 tree utype = unsigned_type_for (base_type);
1575 niter->control.base
1576 = fold_build2 (MINUS_EXPR, utype,
1577 fold_convert (utype, niter->control.base),
1578 fold_convert (utype, niter->control.step));
1579 niter->control.base = fold_convert (base_type, niter->control.base);
1581 else
1582 niter->control.base
1583 = fold_build2 (MINUS_EXPR, base_type, niter->control.base,
1584 niter->control.step);
1586 span = fold_build2 (MULT_EXPR, niter_type, niter->niter,
1587 fold_convert (niter_type, niter->control.step));
1588 niter->bound = fold_build2 (PLUS_EXPR, niter_type, span,
1589 fold_convert (niter_type, niter->control.base));
1590 niter->bound = fold_convert (type, niter->bound);
1591 niter->cmp = NE_EXPR;
1593 return true;
1596 /* Determines number of iterations of loop whose ending condition
1597 is IV0 < IV1. TYPE is the type of the iv. The number of
1598 iterations is stored to NITER. BNDS bounds the difference
1599 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1600 that the exit must be taken eventually. */
1602 static bool
1603 number_of_iterations_lt (class loop *loop, tree type, affine_iv *iv0,
1604 affine_iv *iv1, class tree_niter_desc *niter,
1605 bool exit_must_be_taken, bounds *bnds)
1607 tree niter_type = unsigned_type_for (type);
1608 tree delta, step, s;
1609 mpz_t mstep, tmp;
1611 if (integer_nonzerop (iv0->step))
1613 niter->control = *iv0;
1614 niter->cmp = LT_EXPR;
1615 niter->bound = iv1->base;
1617 else
1619 niter->control = *iv1;
1620 niter->cmp = GT_EXPR;
1621 niter->bound = iv0->base;
1624 /* {base, -C} < n, or n < {base, C} */
1625 if (tree_int_cst_sign_bit (iv0->step)
1626 || (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step)))
1627 return number_of_iterations_until_wrap (loop, type, iv0, iv1, niter);
1629 delta = fold_build2 (MINUS_EXPR, niter_type,
1630 fold_convert (niter_type, iv1->base),
1631 fold_convert (niter_type, iv0->base));
1633 /* First handle the special case that the step is +-1. */
1634 if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
1635 || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
1637 /* for (i = iv0->base; i < iv1->base; i++)
1641 for (i = iv1->base; i > iv0->base; i--).
1643 In both cases # of iterations is iv1->base - iv0->base, assuming that
1644 iv1->base >= iv0->base.
1646 First try to derive a lower bound on the value of
1647 iv1->base - iv0->base, computed in full precision. If the difference
1648 is nonnegative, we are done, otherwise we must record the
1649 condition. */
1651 if (mpz_sgn (bnds->below) < 0)
1652 niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
1653 iv1->base, iv0->base);
1654 niter->niter = delta;
1655 niter->max = widest_int::from (wi::from_mpz (niter_type, bnds->up, false),
1656 TYPE_SIGN (niter_type));
1657 niter->control.no_overflow = true;
1658 return true;
1661 if (integer_nonzerop (iv0->step))
1662 step = fold_convert (niter_type, iv0->step);
1663 else
1664 step = fold_convert (niter_type,
1665 fold_build1 (NEGATE_EXPR, type, iv1->step));
1667 /* If we can determine the final value of the control iv exactly, we can
1668 transform the condition to != comparison. In particular, this will be
1669 the case if DELTA is constant. */
1670 if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, &delta, step,
1671 exit_must_be_taken, bnds))
1673 affine_iv zps;
1675 zps.base = build_int_cst (niter_type, 0);
1676 zps.step = step;
1677 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1678 zps does not overflow. */
1679 zps.no_overflow = true;
1681 return number_of_iterations_ne (loop, type, &zps,
1682 delta, niter, true, bnds);
1685 /* Make sure that the control iv does not overflow. */
1686 if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
1687 return false;
1689 /* We determine the number of iterations as (delta + step - 1) / step. For
1690 this to work, we must know that iv1->base >= iv0->base - step + 1,
1691 otherwise the loop does not roll. */
1692 assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
1694 s = fold_build2 (MINUS_EXPR, niter_type,
1695 step, build_int_cst (niter_type, 1));
1696 delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
1697 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
1699 mpz_init (mstep);
1700 mpz_init (tmp);
1701 wi::to_mpz (wi::to_wide (step), mstep, UNSIGNED);
1702 mpz_add (tmp, bnds->up, mstep);
1703 mpz_sub_ui (tmp, tmp, 1);
1704 mpz_fdiv_q (tmp, tmp, mstep);
1705 niter->max = widest_int::from (wi::from_mpz (niter_type, tmp, false),
1706 TYPE_SIGN (niter_type));
1707 mpz_clear (mstep);
1708 mpz_clear (tmp);
1710 return true;
1713 /* Determines number of iterations of loop whose ending condition
1714 is IV0 <= IV1. TYPE is the type of the iv. The number of
1715 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1716 we know that this condition must eventually become false (we derived this
1717 earlier, and possibly set NITER->assumptions to make sure this
1718 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1720 static bool
1721 number_of_iterations_le (class loop *loop, tree type, affine_iv *iv0,
1722 affine_iv *iv1, class tree_niter_desc *niter,
1723 bool exit_must_be_taken, bounds *bnds)
1725 tree assumption;
1726 tree type1 = type;
1727 if (POINTER_TYPE_P (type))
1728 type1 = sizetype;
1730 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1731 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1732 value of the type. This we must know anyway, since if it is
1733 equal to this value, the loop rolls forever. We do not check
1734 this condition for pointer type ivs, as the code cannot rely on
1735 the object to that the pointer points being placed at the end of
1736 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1737 not defined for pointers). */
1739 if (!exit_must_be_taken && !POINTER_TYPE_P (type))
1741 if (integer_nonzerop (iv0->step))
1742 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1743 iv1->base, TYPE_MAX_VALUE (type));
1744 else
1745 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1746 iv0->base, TYPE_MIN_VALUE (type));
1748 if (integer_zerop (assumption))
1749 return false;
1750 if (!integer_nonzerop (assumption))
1751 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1752 niter->assumptions, assumption);
1755 if (integer_nonzerop (iv0->step))
1757 if (POINTER_TYPE_P (type))
1758 iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
1759 else
1760 iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
1761 build_int_cst (type1, 1));
1763 else if (POINTER_TYPE_P (type))
1764 iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
1765 else
1766 iv0->base = fold_build2 (MINUS_EXPR, type1,
1767 iv0->base, build_int_cst (type1, 1));
1769 bounds_add (bnds, 1, type1);
1771 return number_of_iterations_lt (loop, type, iv0, iv1, niter, exit_must_be_taken,
1772 bnds);
1775 /* Dumps description of affine induction variable IV to FILE. */
1777 static void
1778 dump_affine_iv (FILE *file, affine_iv *iv)
1780 if (!integer_zerop (iv->step))
1781 fprintf (file, "[");
1783 print_generic_expr (dump_file, iv->base, TDF_SLIM);
1785 if (!integer_zerop (iv->step))
1787 fprintf (file, ", + , ");
1788 print_generic_expr (dump_file, iv->step, TDF_SLIM);
1789 fprintf (file, "]%s", iv->no_overflow ? "(no_overflow)" : "");
1793 /* Determine the number of iterations according to condition (for staying
1794 inside loop) which compares two induction variables using comparison
1795 operator CODE. The induction variable on left side of the comparison
1796 is IV0, the right-hand side is IV1. Both induction variables must have
1797 type TYPE, which must be an integer or pointer type. The steps of the
1798 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1800 LOOP is the loop whose number of iterations we are determining.
1802 ONLY_EXIT is true if we are sure this is the only way the loop could be
1803 exited (including possibly non-returning function calls, exceptions, etc.)
1804 -- in this case we can use the information whether the control induction
1805 variables can overflow or not in a more efficient way.
1807 if EVERY_ITERATION is true, we know the test is executed on every iteration.
1809 The results (number of iterations and assumptions as described in
1810 comments at class tree_niter_desc in tree-ssa-loop.h) are stored to NITER.
1811 Returns false if it fails to determine number of iterations, true if it
1812 was determined (possibly with some assumptions). */
1814 static bool
1815 number_of_iterations_cond (class loop *loop,
1816 tree type, affine_iv *iv0, enum tree_code code,
1817 affine_iv *iv1, class tree_niter_desc *niter,
1818 bool only_exit, bool every_iteration)
1820 bool exit_must_be_taken = false, ret;
1821 bounds bnds;
1823 /* If the test is not executed every iteration, wrapping may make the test
1824 to pass again.
1825 TODO: the overflow case can be still used as unreliable estimate of upper
1826 bound. But we have no API to pass it down to number of iterations code
1827 and, at present, it will not use it anyway. */
1828 if (!every_iteration
1829 && (!iv0->no_overflow || !iv1->no_overflow
1830 || code == NE_EXPR || code == EQ_EXPR))
1831 return false;
1833 /* The meaning of these assumptions is this:
1834 if !assumptions
1835 then the rest of information does not have to be valid
1836 if may_be_zero then the loop does not roll, even if
1837 niter != 0. */
1838 niter->assumptions = boolean_true_node;
1839 niter->may_be_zero = boolean_false_node;
1840 niter->niter = NULL_TREE;
1841 niter->max = 0;
1842 niter->bound = NULL_TREE;
1843 niter->cmp = ERROR_MARK;
1845 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1846 the control variable is on lhs. */
1847 if (code == GE_EXPR || code == GT_EXPR
1848 || (code == NE_EXPR && integer_zerop (iv0->step)))
1850 std::swap (iv0, iv1);
1851 code = swap_tree_comparison (code);
1854 if (POINTER_TYPE_P (type))
1856 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1857 to the same object. If they do, the control variable cannot wrap
1858 (as wrap around the bounds of memory will never return a pointer
1859 that would be guaranteed to point to the same object, even if we
1860 avoid undefined behavior by casting to size_t and back). */
1861 iv0->no_overflow = true;
1862 iv1->no_overflow = true;
1865 /* If the control induction variable does not overflow and the only exit
1866 from the loop is the one that we analyze, we know it must be taken
1867 eventually. */
1868 if (only_exit)
1870 if (!integer_zerop (iv0->step) && iv0->no_overflow)
1871 exit_must_be_taken = true;
1872 else if (!integer_zerop (iv1->step) && iv1->no_overflow)
1873 exit_must_be_taken = true;
1876 /* We can handle cases which neither of the sides of the comparison is
1877 invariant:
1879 {iv0.base, iv0.step} cmp_code {iv1.base, iv1.step}
1880 as if:
1881 {iv0.base, iv0.step - iv1.step} cmp_code {iv1.base, 0}
1883 provided that either below condition is satisfied:
1885 a) the test is NE_EXPR;
1886 b) iv0 and iv1 do not overflow and iv0.step - iv1.step is of
1887 the same sign and of less or equal magnitude than iv0.step
1889 This rarely occurs in practice, but it is simple enough to manage. */
1890 if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
1892 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1893 tree step = fold_binary_to_constant (MINUS_EXPR, step_type,
1894 iv0->step, iv1->step);
1896 /* For code other than NE_EXPR we have to ensure moving the evolution
1897 of IV1 to that of IV0 does not introduce overflow. */
1898 if (TREE_CODE (step) != INTEGER_CST
1899 || !iv0->no_overflow || !iv1->no_overflow)
1901 if (code != NE_EXPR)
1902 return false;
1903 iv0->no_overflow = false;
1905 /* If the new step of IV0 has changed sign or is of greater
1906 magnitude then we do not know whether IV0 does overflow
1907 and thus the transform is not valid for code other than NE_EXPR. */
1908 else if (tree_int_cst_sign_bit (step) != tree_int_cst_sign_bit (iv0->step)
1909 || wi::gtu_p (wi::abs (wi::to_widest (step)),
1910 wi::abs (wi::to_widest (iv0->step))))
1912 if (POINTER_TYPE_P (type) && code != NE_EXPR)
1913 /* For relational pointer compares we have further guarantees
1914 that the pointers always point to the same object (or one
1915 after it) and that objects do not cross the zero page. So
1916 not only is the transform always valid for relational
1917 pointer compares, we also know the resulting IV does not
1918 overflow. */
1920 else if (code != NE_EXPR)
1921 return false;
1922 else
1923 iv0->no_overflow = false;
1926 iv0->step = step;
1927 iv1->step = build_int_cst (step_type, 0);
1928 iv1->no_overflow = true;
1931 /* If the result of the comparison is a constant, the loop is weird. More
1932 precise handling would be possible, but the situation is not common enough
1933 to waste time on it. */
1934 if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
1935 return false;
1937 /* If the loop exits immediately, there is nothing to do. */
1938 tree tem = fold_binary (code, boolean_type_node, iv0->base, iv1->base);
1939 if (tem && integer_zerop (tem))
1941 if (!every_iteration)
1942 return false;
1943 niter->niter = build_int_cst (unsigned_type_for (type), 0);
1944 niter->max = 0;
1945 return true;
1948 /* OK, now we know we have a senseful loop. Handle several cases, depending
1949 on what comparison operator is used. */
1950 bound_difference (loop, iv1->base, iv0->base, &bnds);
1952 if (dump_file && (dump_flags & TDF_DETAILS))
1954 fprintf (dump_file,
1955 "Analyzing # of iterations of loop %d\n", loop->num);
1957 fprintf (dump_file, " exit condition ");
1958 dump_affine_iv (dump_file, iv0);
1959 fprintf (dump_file, " %s ",
1960 code == NE_EXPR ? "!="
1961 : code == LT_EXPR ? "<"
1962 : "<=");
1963 dump_affine_iv (dump_file, iv1);
1964 fprintf (dump_file, "\n");
1966 fprintf (dump_file, " bounds on difference of bases: ");
1967 mpz_out_str (dump_file, 10, bnds.below);
1968 fprintf (dump_file, " ... ");
1969 mpz_out_str (dump_file, 10, bnds.up);
1970 fprintf (dump_file, "\n");
1973 switch (code)
1975 case NE_EXPR:
1976 gcc_assert (integer_zerop (iv1->step));
1977 ret = number_of_iterations_ne (loop, type, iv0, iv1->base, niter,
1978 exit_must_be_taken, &bnds);
1979 break;
1981 case LT_EXPR:
1982 ret = number_of_iterations_lt (loop, type, iv0, iv1, niter,
1983 exit_must_be_taken, &bnds);
1984 break;
1986 case LE_EXPR:
1987 ret = number_of_iterations_le (loop, type, iv0, iv1, niter,
1988 exit_must_be_taken, &bnds);
1989 break;
1991 default:
1992 gcc_unreachable ();
1995 mpz_clear (bnds.up);
1996 mpz_clear (bnds.below);
1998 if (dump_file && (dump_flags & TDF_DETAILS))
2000 if (ret)
2002 fprintf (dump_file, " result:\n");
2003 if (!integer_nonzerop (niter->assumptions))
2005 fprintf (dump_file, " under assumptions ");
2006 print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
2007 fprintf (dump_file, "\n");
2010 if (!integer_zerop (niter->may_be_zero))
2012 fprintf (dump_file, " zero if ");
2013 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
2014 fprintf (dump_file, "\n");
2017 fprintf (dump_file, " # of iterations ");
2018 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
2019 fprintf (dump_file, ", bounded by ");
2020 print_decu (niter->max, dump_file);
2021 fprintf (dump_file, "\n");
2023 else
2024 fprintf (dump_file, " failed\n\n");
2026 return ret;
2029 /* Return an expression that computes the popcount of src. */
2031 static tree
2032 build_popcount_expr (tree src)
2034 tree fn;
2035 int prec = TYPE_PRECISION (TREE_TYPE (src));
2036 int i_prec = TYPE_PRECISION (integer_type_node);
2037 int li_prec = TYPE_PRECISION (long_integer_type_node);
2038 int lli_prec = TYPE_PRECISION (long_long_integer_type_node);
2039 if (prec <= i_prec)
2040 fn = builtin_decl_implicit (BUILT_IN_POPCOUNT);
2041 else if (prec == li_prec)
2042 fn = builtin_decl_implicit (BUILT_IN_POPCOUNTL);
2043 else if (prec == lli_prec || prec == 2 * lli_prec)
2044 fn = builtin_decl_implicit (BUILT_IN_POPCOUNTLL);
2045 else
2046 return NULL_TREE;
2048 tree utype = unsigned_type_for (TREE_TYPE (src));
2049 src = fold_convert (utype, src);
2050 if (prec < i_prec)
2051 src = fold_convert (unsigned_type_node, src);
2052 tree call;
2053 if (prec == 2 * lli_prec)
2055 tree src1 = fold_convert (long_long_unsigned_type_node,
2056 fold_build2 (RSHIFT_EXPR, TREE_TYPE (src),
2057 unshare_expr (src),
2058 build_int_cst (integer_type_node,
2059 lli_prec)));
2060 tree src2 = fold_convert (long_long_unsigned_type_node, src);
2061 tree call1 = build_call_expr (fn, 1, src1);
2062 tree call2 = build_call_expr (fn, 1, src2);
2063 call = fold_build2 (PLUS_EXPR, integer_type_node, call1, call2);
2065 else
2066 call = build_call_expr (fn, 1, src);
2068 return call;
2071 /* Utility function to check if OP is defined by a stmt
2072 that is a val - 1. */
2074 static bool
2075 ssa_defined_by_minus_one_stmt_p (tree op, tree val)
2077 gimple *stmt;
2078 return (TREE_CODE (op) == SSA_NAME
2079 && (stmt = SSA_NAME_DEF_STMT (op))
2080 && is_gimple_assign (stmt)
2081 && (gimple_assign_rhs_code (stmt) == PLUS_EXPR)
2082 && val == gimple_assign_rhs1 (stmt)
2083 && integer_minus_onep (gimple_assign_rhs2 (stmt)));
2086 /* See comment below for number_of_iterations_bitcount.
2087 For popcount, we have:
2089 modify:
2090 _1 = iv_1 + -1
2091 iv_2 = iv_1 & _1
2093 test:
2094 if (iv != 0)
2096 modification count:
2097 popcount (src)
2101 static bool
2102 number_of_iterations_popcount (loop_p loop, edge exit,
2103 enum tree_code code,
2104 class tree_niter_desc *niter)
2106 bool modify_before_test = true;
2107 HOST_WIDE_INT max;
2109 /* Check that condition for staying inside the loop is like
2110 if (iv != 0). */
2111 gimple *cond_stmt = last_stmt (exit->src);
2112 if (!cond_stmt
2113 || gimple_code (cond_stmt) != GIMPLE_COND
2114 || code != NE_EXPR
2115 || !integer_zerop (gimple_cond_rhs (cond_stmt))
2116 || TREE_CODE (gimple_cond_lhs (cond_stmt)) != SSA_NAME)
2117 return false;
2119 tree iv_2 = gimple_cond_lhs (cond_stmt);
2120 gimple *iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2122 /* If the test comes before the iv modification, then these will actually be
2123 iv_1 and a phi node. */
2124 if (gimple_code (iv_2_stmt) == GIMPLE_PHI
2125 && gimple_bb (iv_2_stmt) == loop->header
2126 && gimple_phi_num_args (iv_2_stmt) == 2
2127 && (TREE_CODE (gimple_phi_arg_def (iv_2_stmt,
2128 loop_latch_edge (loop)->dest_idx))
2129 == SSA_NAME))
2131 /* iv_2 is actually one of the inputs to the phi. */
2132 iv_2 = gimple_phi_arg_def (iv_2_stmt, loop_latch_edge (loop)->dest_idx);
2133 iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2134 modify_before_test = false;
2137 /* Make sure iv_2_stmt is an and stmt (iv_2 = _1 & iv_1). */
2138 if (!is_gimple_assign (iv_2_stmt)
2139 || gimple_assign_rhs_code (iv_2_stmt) != BIT_AND_EXPR)
2140 return false;
2142 tree iv_1 = gimple_assign_rhs1 (iv_2_stmt);
2143 tree _1 = gimple_assign_rhs2 (iv_2_stmt);
2145 /* Check that _1 is defined by (_1 = iv_1 + -1).
2146 Also make sure that _1 is the same in and_stmt and _1 defining stmt.
2147 Also canonicalize if _1 and _b11 are revrsed. */
2148 if (ssa_defined_by_minus_one_stmt_p (iv_1, _1))
2149 std::swap (iv_1, _1);
2150 else if (ssa_defined_by_minus_one_stmt_p (_1, iv_1))
2152 else
2153 return false;
2155 /* Check the recurrence. */
2156 gimple *phi = SSA_NAME_DEF_STMT (iv_1);
2157 if (gimple_code (phi) != GIMPLE_PHI
2158 || (gimple_bb (phi) != loop_latch_edge (loop)->dest)
2159 || (iv_2 != gimple_phi_arg_def (phi, loop_latch_edge (loop)->dest_idx)))
2160 return false;
2162 /* We found a match. */
2163 tree src = gimple_phi_arg_def (phi, loop_preheader_edge (loop)->dest_idx);
2164 int src_precision = TYPE_PRECISION (TREE_TYPE (src));
2166 /* Get the corresponding popcount builtin. */
2167 tree expr = build_popcount_expr (src);
2169 if (!expr)
2170 return false;
2172 max = src_precision;
2174 tree may_be_zero = boolean_false_node;
2176 if (modify_before_test)
2178 expr = fold_build2 (MINUS_EXPR, integer_type_node, expr,
2179 integer_one_node);
2180 max = max - 1;
2181 may_be_zero = fold_build2 (EQ_EXPR, boolean_type_node, src,
2182 build_zero_cst (TREE_TYPE (src)));
2185 expr = fold_convert (unsigned_type_node, expr);
2187 niter->assumptions = boolean_true_node;
2188 niter->may_be_zero = simplify_using_initial_conditions (loop, may_be_zero);
2189 niter->niter = simplify_using_initial_conditions(loop, expr);
2191 if (TREE_CODE (niter->niter) == INTEGER_CST)
2192 niter->max = tree_to_uhwi (niter->niter);
2193 else
2194 niter->max = max;
2196 niter->bound = NULL_TREE;
2197 niter->cmp = ERROR_MARK;
2198 return true;
2201 /* See if LOOP contains a bit counting idiom. The idiom consists of two parts:
2202 1. A modification to the induction variabler;.
2203 2. A test to determine whether or not to exit the loop.
2205 These can come in either order - i.e.:
2207 <bb 3>
2208 iv_1 = PHI <src(2), iv_2(4)>
2209 if (test (iv_1))
2210 goto <bb 4>
2211 else
2212 goto <bb 5>
2214 <bb 4>
2215 iv_2 = modify (iv_1)
2216 goto <bb 3>
2220 <bb 3>
2221 iv_1 = PHI <src(2), iv_2(4)>
2222 iv_2 = modify (iv_1)
2224 <bb 4>
2225 if (test (iv_2))
2226 goto <bb 3>
2227 else
2228 goto <bb 5>
2230 The second form can be generated by copying the loop header out of the loop.
2232 In the first case, the number of latch executions will be equal to the
2233 number of induction variable modifications required before the test fails.
2235 In the second case (modify_before_test), if we assume that the number of
2236 modifications required before the test fails is nonzero, then the number of
2237 latch executions will be one less than this number.
2239 If we recognise the pattern, then we update niter accordingly, and return
2240 true. */
2242 static bool
2243 number_of_iterations_bitcount (loop_p loop, edge exit,
2244 enum tree_code code,
2245 class tree_niter_desc *niter)
2247 return number_of_iterations_popcount (loop, exit, code, niter);
2250 /* Substitute NEW_TREE for OLD in EXPR and fold the result.
2251 If VALUEIZE is non-NULL then OLD and NEW_TREE are ignored and instead
2252 all SSA names are replaced with the result of calling the VALUEIZE
2253 function with the SSA name as argument. */
2255 tree
2256 simplify_replace_tree (tree expr, tree old, tree new_tree,
2257 tree (*valueize) (tree, void*), void *context,
2258 bool do_fold)
2260 unsigned i, n;
2261 tree ret = NULL_TREE, e, se;
2263 if (!expr)
2264 return NULL_TREE;
2266 /* Do not bother to replace constants. */
2267 if (CONSTANT_CLASS_P (expr))
2268 return expr;
2270 if (valueize)
2272 if (TREE_CODE (expr) == SSA_NAME)
2274 new_tree = valueize (expr, context);
2275 if (new_tree != expr)
2276 return new_tree;
2279 else if (expr == old
2280 || operand_equal_p (expr, old, 0))
2281 return unshare_expr (new_tree);
2283 if (!EXPR_P (expr))
2284 return expr;
2286 n = TREE_OPERAND_LENGTH (expr);
2287 for (i = 0; i < n; i++)
2289 e = TREE_OPERAND (expr, i);
2290 se = simplify_replace_tree (e, old, new_tree, valueize, context, do_fold);
2291 if (e == se)
2292 continue;
2294 if (!ret)
2295 ret = copy_node (expr);
2297 TREE_OPERAND (ret, i) = se;
2300 return (ret ? (do_fold ? fold (ret) : ret) : expr);
2303 /* Expand definitions of ssa names in EXPR as long as they are simple
2304 enough, and return the new expression. If STOP is specified, stop
2305 expanding if EXPR equals to it. */
2307 static tree
2308 expand_simple_operations (tree expr, tree stop, hash_map<tree, tree> &cache)
2310 unsigned i, n;
2311 tree ret = NULL_TREE, e, ee, e1;
2312 enum tree_code code;
2313 gimple *stmt;
2315 if (expr == NULL_TREE)
2316 return expr;
2318 if (is_gimple_min_invariant (expr))
2319 return expr;
2321 code = TREE_CODE (expr);
2322 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
2324 n = TREE_OPERAND_LENGTH (expr);
2325 for (i = 0; i < n; i++)
2327 e = TREE_OPERAND (expr, i);
2328 /* SCEV analysis feeds us with a proper expression
2329 graph matching the SSA graph. Avoid turning it
2330 into a tree here, thus handle tree sharing
2331 properly.
2332 ??? The SSA walk below still turns the SSA graph
2333 into a tree but until we find a testcase do not
2334 introduce additional tree sharing here. */
2335 bool existed_p;
2336 tree &cee = cache.get_or_insert (e, &existed_p);
2337 if (existed_p)
2338 ee = cee;
2339 else
2341 cee = e;
2342 ee = expand_simple_operations (e, stop, cache);
2343 if (ee != e)
2344 *cache.get (e) = ee;
2346 if (e == ee)
2347 continue;
2349 if (!ret)
2350 ret = copy_node (expr);
2352 TREE_OPERAND (ret, i) = ee;
2355 if (!ret)
2356 return expr;
2358 fold_defer_overflow_warnings ();
2359 ret = fold (ret);
2360 fold_undefer_and_ignore_overflow_warnings ();
2361 return ret;
2364 /* Stop if it's not ssa name or the one we don't want to expand. */
2365 if (TREE_CODE (expr) != SSA_NAME || expr == stop)
2366 return expr;
2368 stmt = SSA_NAME_DEF_STMT (expr);
2369 if (gimple_code (stmt) == GIMPLE_PHI)
2371 basic_block src, dest;
2373 if (gimple_phi_num_args (stmt) != 1)
2374 return expr;
2375 e = PHI_ARG_DEF (stmt, 0);
2377 /* Avoid propagating through loop exit phi nodes, which
2378 could break loop-closed SSA form restrictions. */
2379 dest = gimple_bb (stmt);
2380 src = single_pred (dest);
2381 if (TREE_CODE (e) == SSA_NAME
2382 && src->loop_father != dest->loop_father)
2383 return expr;
2385 return expand_simple_operations (e, stop, cache);
2387 if (gimple_code (stmt) != GIMPLE_ASSIGN)
2388 return expr;
2390 /* Avoid expanding to expressions that contain SSA names that need
2391 to take part in abnormal coalescing. */
2392 ssa_op_iter iter;
2393 FOR_EACH_SSA_TREE_OPERAND (e, stmt, iter, SSA_OP_USE)
2394 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (e))
2395 return expr;
2397 e = gimple_assign_rhs1 (stmt);
2398 code = gimple_assign_rhs_code (stmt);
2399 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
2401 if (is_gimple_min_invariant (e))
2402 return e;
2404 if (code == SSA_NAME)
2405 return expand_simple_operations (e, stop, cache);
2406 else if (code == ADDR_EXPR)
2408 poly_int64 offset;
2409 tree base = get_addr_base_and_unit_offset (TREE_OPERAND (e, 0),
2410 &offset);
2411 if (base
2412 && TREE_CODE (base) == MEM_REF)
2414 ee = expand_simple_operations (TREE_OPERAND (base, 0), stop,
2415 cache);
2416 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (expr), ee,
2417 wide_int_to_tree (sizetype,
2418 mem_ref_offset (base)
2419 + offset));
2423 return expr;
2426 switch (code)
2428 CASE_CONVERT:
2429 /* Casts are simple. */
2430 ee = expand_simple_operations (e, stop, cache);
2431 return fold_build1 (code, TREE_TYPE (expr), ee);
2433 case PLUS_EXPR:
2434 case MINUS_EXPR:
2435 case MULT_EXPR:
2436 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (expr))
2437 && TYPE_OVERFLOW_TRAPS (TREE_TYPE (expr)))
2438 return expr;
2439 /* Fallthru. */
2440 case POINTER_PLUS_EXPR:
2441 /* And increments and decrements by a constant are simple. */
2442 e1 = gimple_assign_rhs2 (stmt);
2443 if (!is_gimple_min_invariant (e1))
2444 return expr;
2446 ee = expand_simple_operations (e, stop, cache);
2447 return fold_build2 (code, TREE_TYPE (expr), ee, e1);
2449 default:
2450 return expr;
2454 tree
2455 expand_simple_operations (tree expr, tree stop)
2457 hash_map<tree, tree> cache;
2458 return expand_simple_operations (expr, stop, cache);
2461 /* Tries to simplify EXPR using the condition COND. Returns the simplified
2462 expression (or EXPR unchanged, if no simplification was possible). */
2464 static tree
2465 tree_simplify_using_condition_1 (tree cond, tree expr)
2467 bool changed;
2468 tree e, e0, e1, e2, notcond;
2469 enum tree_code code = TREE_CODE (expr);
2471 if (code == INTEGER_CST)
2472 return expr;
2474 if (code == TRUTH_OR_EXPR
2475 || code == TRUTH_AND_EXPR
2476 || code == COND_EXPR)
2478 changed = false;
2480 e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
2481 if (TREE_OPERAND (expr, 0) != e0)
2482 changed = true;
2484 e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
2485 if (TREE_OPERAND (expr, 1) != e1)
2486 changed = true;
2488 if (code == COND_EXPR)
2490 e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
2491 if (TREE_OPERAND (expr, 2) != e2)
2492 changed = true;
2494 else
2495 e2 = NULL_TREE;
2497 if (changed)
2499 if (code == COND_EXPR)
2500 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
2501 else
2502 expr = fold_build2 (code, boolean_type_node, e0, e1);
2505 return expr;
2508 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
2509 propagation, and vice versa. Fold does not handle this, since it is
2510 considered too expensive. */
2511 if (TREE_CODE (cond) == EQ_EXPR)
2513 e0 = TREE_OPERAND (cond, 0);
2514 e1 = TREE_OPERAND (cond, 1);
2516 /* We know that e0 == e1. Check whether we cannot simplify expr
2517 using this fact. */
2518 e = simplify_replace_tree (expr, e0, e1);
2519 if (integer_zerop (e) || integer_nonzerop (e))
2520 return e;
2522 e = simplify_replace_tree (expr, e1, e0);
2523 if (integer_zerop (e) || integer_nonzerop (e))
2524 return e;
2526 if (TREE_CODE (expr) == EQ_EXPR)
2528 e0 = TREE_OPERAND (expr, 0);
2529 e1 = TREE_OPERAND (expr, 1);
2531 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
2532 e = simplify_replace_tree (cond, e0, e1);
2533 if (integer_zerop (e))
2534 return e;
2535 e = simplify_replace_tree (cond, e1, e0);
2536 if (integer_zerop (e))
2537 return e;
2539 if (TREE_CODE (expr) == NE_EXPR)
2541 e0 = TREE_OPERAND (expr, 0);
2542 e1 = TREE_OPERAND (expr, 1);
2544 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
2545 e = simplify_replace_tree (cond, e0, e1);
2546 if (integer_zerop (e))
2547 return boolean_true_node;
2548 e = simplify_replace_tree (cond, e1, e0);
2549 if (integer_zerop (e))
2550 return boolean_true_node;
2553 /* Check whether COND ==> EXPR. */
2554 notcond = invert_truthvalue (cond);
2555 e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, expr);
2556 if (e && integer_nonzerop (e))
2557 return e;
2559 /* Check whether COND ==> not EXPR. */
2560 e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, expr);
2561 if (e && integer_zerop (e))
2562 return e;
2564 return expr;
2567 /* Tries to simplify EXPR using the condition COND. Returns the simplified
2568 expression (or EXPR unchanged, if no simplification was possible).
2569 Wrapper around tree_simplify_using_condition_1 that ensures that chains
2570 of simple operations in definitions of ssa names in COND are expanded,
2571 so that things like casts or incrementing the value of the bound before
2572 the loop do not cause us to fail. */
2574 static tree
2575 tree_simplify_using_condition (tree cond, tree expr)
2577 cond = expand_simple_operations (cond);
2579 return tree_simplify_using_condition_1 (cond, expr);
2582 /* Tries to simplify EXPR using the conditions on entry to LOOP.
2583 Returns the simplified expression (or EXPR unchanged, if no
2584 simplification was possible). */
2586 tree
2587 simplify_using_initial_conditions (class loop *loop, tree expr)
2589 edge e;
2590 basic_block bb;
2591 gimple *stmt;
2592 tree cond, expanded, backup;
2593 int cnt = 0;
2595 if (TREE_CODE (expr) == INTEGER_CST)
2596 return expr;
2598 backup = expanded = expand_simple_operations (expr);
2600 /* Limit walking the dominators to avoid quadraticness in
2601 the number of BBs times the number of loops in degenerate
2602 cases. */
2603 for (bb = loop->header;
2604 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
2605 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
2607 if (!single_pred_p (bb))
2608 continue;
2609 e = single_pred_edge (bb);
2611 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
2612 continue;
2614 stmt = last_stmt (e->src);
2615 cond = fold_build2 (gimple_cond_code (stmt),
2616 boolean_type_node,
2617 gimple_cond_lhs (stmt),
2618 gimple_cond_rhs (stmt));
2619 if (e->flags & EDGE_FALSE_VALUE)
2620 cond = invert_truthvalue (cond);
2621 expanded = tree_simplify_using_condition (cond, expanded);
2622 /* Break if EXPR is simplified to const values. */
2623 if (expanded
2624 && (integer_zerop (expanded) || integer_nonzerop (expanded)))
2625 return expanded;
2627 ++cnt;
2630 /* Return the original expression if no simplification is done. */
2631 return operand_equal_p (backup, expanded, 0) ? expr : expanded;
2634 /* Tries to simplify EXPR using the evolutions of the loop invariants
2635 in the superloops of LOOP. Returns the simplified expression
2636 (or EXPR unchanged, if no simplification was possible). */
2638 static tree
2639 simplify_using_outer_evolutions (class loop *loop, tree expr)
2641 enum tree_code code = TREE_CODE (expr);
2642 bool changed;
2643 tree e, e0, e1, e2;
2645 if (is_gimple_min_invariant (expr))
2646 return expr;
2648 if (code == TRUTH_OR_EXPR
2649 || code == TRUTH_AND_EXPR
2650 || code == COND_EXPR)
2652 changed = false;
2654 e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
2655 if (TREE_OPERAND (expr, 0) != e0)
2656 changed = true;
2658 e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
2659 if (TREE_OPERAND (expr, 1) != e1)
2660 changed = true;
2662 if (code == COND_EXPR)
2664 e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
2665 if (TREE_OPERAND (expr, 2) != e2)
2666 changed = true;
2668 else
2669 e2 = NULL_TREE;
2671 if (changed)
2673 if (code == COND_EXPR)
2674 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
2675 else
2676 expr = fold_build2 (code, boolean_type_node, e0, e1);
2679 return expr;
2682 e = instantiate_parameters (loop, expr);
2683 if (is_gimple_min_invariant (e))
2684 return e;
2686 return expr;
2689 /* Returns true if EXIT is the only possible exit from LOOP. */
2691 bool
2692 loop_only_exit_p (const class loop *loop, basic_block *body, const_edge exit)
2694 gimple_stmt_iterator bsi;
2695 unsigned i;
2697 if (exit != single_exit (loop))
2698 return false;
2700 for (i = 0; i < loop->num_nodes; i++)
2701 for (bsi = gsi_start_bb (body[i]); !gsi_end_p (bsi); gsi_next (&bsi))
2702 if (stmt_can_terminate_bb_p (gsi_stmt (bsi)))
2703 return false;
2705 return true;
2708 /* Stores description of number of iterations of LOOP derived from
2709 EXIT (an exit edge of the LOOP) in NITER. Returns true if some useful
2710 information could be derived (and fields of NITER have meaning described
2711 in comments at class tree_niter_desc declaration), false otherwise.
2712 When EVERY_ITERATION is true, only tests that are known to be executed
2713 every iteration are considered (i.e. only test that alone bounds the loop).
2714 If AT_STMT is not NULL, this function stores LOOP's condition statement in
2715 it when returning true. */
2717 bool
2718 number_of_iterations_exit_assumptions (class loop *loop, edge exit,
2719 class tree_niter_desc *niter,
2720 gcond **at_stmt, bool every_iteration,
2721 basic_block *body)
2723 gimple *last;
2724 gcond *stmt;
2725 tree type;
2726 tree op0, op1;
2727 enum tree_code code;
2728 affine_iv iv0, iv1;
2729 bool safe;
2731 /* The condition at a fake exit (if it exists) does not control its
2732 execution. */
2733 if (exit->flags & EDGE_FAKE)
2734 return false;
2736 /* Nothing to analyze if the loop is known to be infinite. */
2737 if (loop_constraint_set_p (loop, LOOP_C_INFINITE))
2738 return false;
2740 safe = dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src);
2742 if (every_iteration && !safe)
2743 return false;
2745 niter->assumptions = boolean_false_node;
2746 niter->control.base = NULL_TREE;
2747 niter->control.step = NULL_TREE;
2748 niter->control.no_overflow = false;
2749 last = last_stmt (exit->src);
2750 if (!last)
2751 return false;
2752 stmt = dyn_cast <gcond *> (last);
2753 if (!stmt)
2754 return false;
2756 if (at_stmt)
2757 *at_stmt = stmt;
2759 /* We want the condition for staying inside loop. */
2760 code = gimple_cond_code (stmt);
2761 if (exit->flags & EDGE_TRUE_VALUE)
2762 code = invert_tree_comparison (code, false);
2764 switch (code)
2766 case GT_EXPR:
2767 case GE_EXPR:
2768 case LT_EXPR:
2769 case LE_EXPR:
2770 case NE_EXPR:
2771 break;
2773 default:
2774 return false;
2777 op0 = gimple_cond_lhs (stmt);
2778 op1 = gimple_cond_rhs (stmt);
2779 type = TREE_TYPE (op0);
2781 if (TREE_CODE (type) != INTEGER_TYPE
2782 && !POINTER_TYPE_P (type))
2783 return false;
2785 tree iv0_niters = NULL_TREE;
2786 if (!simple_iv_with_niters (loop, loop_containing_stmt (stmt),
2787 op0, &iv0, safe ? &iv0_niters : NULL, false))
2788 return number_of_iterations_bitcount (loop, exit, code, niter);
2789 tree iv1_niters = NULL_TREE;
2790 if (!simple_iv_with_niters (loop, loop_containing_stmt (stmt),
2791 op1, &iv1, safe ? &iv1_niters : NULL, false))
2792 return false;
2793 /* Give up on complicated case. */
2794 if (iv0_niters && iv1_niters)
2795 return false;
2797 /* We don't want to see undefined signed overflow warnings while
2798 computing the number of iterations. */
2799 fold_defer_overflow_warnings ();
2801 iv0.base = expand_simple_operations (iv0.base);
2802 iv1.base = expand_simple_operations (iv1.base);
2803 bool body_from_caller = true;
2804 if (!body)
2806 body = get_loop_body (loop);
2807 body_from_caller = false;
2809 bool only_exit_p = loop_only_exit_p (loop, body, exit);
2810 if (!body_from_caller)
2811 free (body);
2812 if (!number_of_iterations_cond (loop, type, &iv0, code, &iv1, niter,
2813 only_exit_p, safe))
2815 fold_undefer_and_ignore_overflow_warnings ();
2816 return false;
2819 /* Incorporate additional assumption implied by control iv. */
2820 tree iv_niters = iv0_niters ? iv0_niters : iv1_niters;
2821 if (iv_niters)
2823 tree assumption = fold_build2 (LE_EXPR, boolean_type_node, niter->niter,
2824 fold_convert (TREE_TYPE (niter->niter),
2825 iv_niters));
2827 if (!integer_nonzerop (assumption))
2828 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2829 niter->assumptions, assumption);
2831 /* Refine upper bound if possible. */
2832 if (TREE_CODE (iv_niters) == INTEGER_CST
2833 && niter->max > wi::to_widest (iv_niters))
2834 niter->max = wi::to_widest (iv_niters);
2837 /* There is no assumptions if the loop is known to be finite. */
2838 if (!integer_zerop (niter->assumptions)
2839 && loop_constraint_set_p (loop, LOOP_C_FINITE))
2840 niter->assumptions = boolean_true_node;
2842 if (optimize >= 3)
2844 niter->assumptions = simplify_using_outer_evolutions (loop,
2845 niter->assumptions);
2846 niter->may_be_zero = simplify_using_outer_evolutions (loop,
2847 niter->may_be_zero);
2848 niter->niter = simplify_using_outer_evolutions (loop, niter->niter);
2851 niter->assumptions
2852 = simplify_using_initial_conditions (loop,
2853 niter->assumptions);
2854 niter->may_be_zero
2855 = simplify_using_initial_conditions (loop,
2856 niter->may_be_zero);
2858 fold_undefer_and_ignore_overflow_warnings ();
2860 /* If NITER has simplified into a constant, update MAX. */
2861 if (TREE_CODE (niter->niter) == INTEGER_CST)
2862 niter->max = wi::to_widest (niter->niter);
2864 return (!integer_zerop (niter->assumptions));
2867 /* Like number_of_iterations_exit_assumptions, but return TRUE only if
2868 the niter information holds unconditionally. */
2870 bool
2871 number_of_iterations_exit (class loop *loop, edge exit,
2872 class tree_niter_desc *niter,
2873 bool warn, bool every_iteration,
2874 basic_block *body)
2876 gcond *stmt;
2877 if (!number_of_iterations_exit_assumptions (loop, exit, niter,
2878 &stmt, every_iteration, body))
2879 return false;
2881 if (integer_nonzerop (niter->assumptions))
2882 return true;
2884 if (warn && dump_enabled_p ())
2885 dump_printf_loc (MSG_MISSED_OPTIMIZATION, stmt,
2886 "missed loop optimization: niters analysis ends up "
2887 "with assumptions.\n");
2889 return false;
2892 /* Try to determine the number of iterations of LOOP. If we succeed,
2893 expression giving number of iterations is returned and *EXIT is
2894 set to the edge from that the information is obtained. Otherwise
2895 chrec_dont_know is returned. */
2897 tree
2898 find_loop_niter (class loop *loop, edge *exit)
2900 unsigned i;
2901 auto_vec<edge> exits = get_loop_exit_edges (loop);
2902 edge ex;
2903 tree niter = NULL_TREE, aniter;
2904 class tree_niter_desc desc;
2906 *exit = NULL;
2907 FOR_EACH_VEC_ELT (exits, i, ex)
2909 if (!number_of_iterations_exit (loop, ex, &desc, false))
2910 continue;
2912 if (integer_nonzerop (desc.may_be_zero))
2914 /* We exit in the first iteration through this exit.
2915 We won't find anything better. */
2916 niter = build_int_cst (unsigned_type_node, 0);
2917 *exit = ex;
2918 break;
2921 if (!integer_zerop (desc.may_be_zero))
2922 continue;
2924 aniter = desc.niter;
2926 if (!niter)
2928 /* Nothing recorded yet. */
2929 niter = aniter;
2930 *exit = ex;
2931 continue;
2934 /* Prefer constants, the lower the better. */
2935 if (TREE_CODE (aniter) != INTEGER_CST)
2936 continue;
2938 if (TREE_CODE (niter) != INTEGER_CST)
2940 niter = aniter;
2941 *exit = ex;
2942 continue;
2945 if (tree_int_cst_lt (aniter, niter))
2947 niter = aniter;
2948 *exit = ex;
2949 continue;
2953 return niter ? niter : chrec_dont_know;
2956 /* Return true if loop is known to have bounded number of iterations. */
2958 bool
2959 finite_loop_p (class loop *loop)
2961 widest_int nit;
2962 int flags;
2964 flags = flags_from_decl_or_type (current_function_decl);
2965 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
2967 if (dump_file && (dump_flags & TDF_DETAILS))
2968 fprintf (dump_file, "Found loop %i to be finite: it is within pure or const function.\n",
2969 loop->num);
2970 return true;
2973 if (loop->any_upper_bound
2974 || max_loop_iterations (loop, &nit))
2976 if (dump_file && (dump_flags & TDF_DETAILS))
2977 fprintf (dump_file, "Found loop %i to be finite: upper bound found.\n",
2978 loop->num);
2979 return true;
2982 if (loop->finite_p)
2984 unsigned i;
2985 auto_vec<edge> exits = get_loop_exit_edges (loop);
2986 edge ex;
2988 /* If the loop has a normal exit, we can assume it will terminate. */
2989 FOR_EACH_VEC_ELT (exits, i, ex)
2990 if (!(ex->flags & (EDGE_EH | EDGE_ABNORMAL | EDGE_FAKE)))
2992 if (dump_file)
2993 fprintf (dump_file, "Assume loop %i to be finite: it has an exit "
2994 "and -ffinite-loops is on.\n", loop->num);
2995 return true;
2999 return false;
3004 Analysis of a number of iterations of a loop by a brute-force evaluation.
3008 /* Bound on the number of iterations we try to evaluate. */
3010 #define MAX_ITERATIONS_TO_TRACK \
3011 ((unsigned) param_max_iterations_to_track)
3013 /* Returns the loop phi node of LOOP such that ssa name X is derived from its
3014 result by a chain of operations such that all but exactly one of their
3015 operands are constants. */
3017 static gphi *
3018 chain_of_csts_start (class loop *loop, tree x)
3020 gimple *stmt = SSA_NAME_DEF_STMT (x);
3021 tree use;
3022 basic_block bb = gimple_bb (stmt);
3023 enum tree_code code;
3025 if (!bb
3026 || !flow_bb_inside_loop_p (loop, bb))
3027 return NULL;
3029 if (gimple_code (stmt) == GIMPLE_PHI)
3031 if (bb == loop->header)
3032 return as_a <gphi *> (stmt);
3034 return NULL;
3037 if (gimple_code (stmt) != GIMPLE_ASSIGN
3038 || gimple_assign_rhs_class (stmt) == GIMPLE_TERNARY_RHS)
3039 return NULL;
3041 code = gimple_assign_rhs_code (stmt);
3042 if (gimple_references_memory_p (stmt)
3043 || TREE_CODE_CLASS (code) == tcc_reference
3044 || (code == ADDR_EXPR
3045 && !is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
3046 return NULL;
3048 use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
3049 if (use == NULL_TREE)
3050 return NULL;
3052 return chain_of_csts_start (loop, use);
3055 /* Determines whether the expression X is derived from a result of a phi node
3056 in header of LOOP such that
3058 * the derivation of X consists only from operations with constants
3059 * the initial value of the phi node is constant
3060 * the value of the phi node in the next iteration can be derived from the
3061 value in the current iteration by a chain of operations with constants,
3062 or is also a constant
3064 If such phi node exists, it is returned, otherwise NULL is returned. */
3066 static gphi *
3067 get_base_for (class loop *loop, tree x)
3069 gphi *phi;
3070 tree init, next;
3072 if (is_gimple_min_invariant (x))
3073 return NULL;
3075 phi = chain_of_csts_start (loop, x);
3076 if (!phi)
3077 return NULL;
3079 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
3080 next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
3082 if (!is_gimple_min_invariant (init))
3083 return NULL;
3085 if (TREE_CODE (next) == SSA_NAME
3086 && chain_of_csts_start (loop, next) != phi)
3087 return NULL;
3089 return phi;
3092 /* Given an expression X, then
3094 * if X is NULL_TREE, we return the constant BASE.
3095 * if X is a constant, we return the constant X.
3096 * otherwise X is a SSA name, whose value in the considered loop is derived
3097 by a chain of operations with constant from a result of a phi node in
3098 the header of the loop. Then we return value of X when the value of the
3099 result of this phi node is given by the constant BASE. */
3101 static tree
3102 get_val_for (tree x, tree base)
3104 gimple *stmt;
3106 gcc_checking_assert (is_gimple_min_invariant (base));
3108 if (!x)
3109 return base;
3110 else if (is_gimple_min_invariant (x))
3111 return x;
3113 stmt = SSA_NAME_DEF_STMT (x);
3114 if (gimple_code (stmt) == GIMPLE_PHI)
3115 return base;
3117 gcc_checking_assert (is_gimple_assign (stmt));
3119 /* STMT must be either an assignment of a single SSA name or an
3120 expression involving an SSA name and a constant. Try to fold that
3121 expression using the value for the SSA name. */
3122 if (gimple_assign_ssa_name_copy_p (stmt))
3123 return get_val_for (gimple_assign_rhs1 (stmt), base);
3124 else if (gimple_assign_rhs_class (stmt) == GIMPLE_UNARY_RHS
3125 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
3126 return fold_build1 (gimple_assign_rhs_code (stmt),
3127 TREE_TYPE (gimple_assign_lhs (stmt)),
3128 get_val_for (gimple_assign_rhs1 (stmt), base));
3129 else if (gimple_assign_rhs_class (stmt) == GIMPLE_BINARY_RHS)
3131 tree rhs1 = gimple_assign_rhs1 (stmt);
3132 tree rhs2 = gimple_assign_rhs2 (stmt);
3133 if (TREE_CODE (rhs1) == SSA_NAME)
3134 rhs1 = get_val_for (rhs1, base);
3135 else if (TREE_CODE (rhs2) == SSA_NAME)
3136 rhs2 = get_val_for (rhs2, base);
3137 else
3138 gcc_unreachable ();
3139 return fold_build2 (gimple_assign_rhs_code (stmt),
3140 TREE_TYPE (gimple_assign_lhs (stmt)), rhs1, rhs2);
3142 else
3143 gcc_unreachable ();
3147 /* Tries to count the number of iterations of LOOP till it exits by EXIT
3148 by brute force -- i.e. by determining the value of the operands of the
3149 condition at EXIT in first few iterations of the loop (assuming that
3150 these values are constant) and determining the first one in that the
3151 condition is not satisfied. Returns the constant giving the number
3152 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
3154 tree
3155 loop_niter_by_eval (class loop *loop, edge exit)
3157 tree acnd;
3158 tree op[2], val[2], next[2], aval[2];
3159 gphi *phi;
3160 gimple *cond;
3161 unsigned i, j;
3162 enum tree_code cmp;
3164 cond = last_stmt (exit->src);
3165 if (!cond || gimple_code (cond) != GIMPLE_COND)
3166 return chrec_dont_know;
3168 cmp = gimple_cond_code (cond);
3169 if (exit->flags & EDGE_TRUE_VALUE)
3170 cmp = invert_tree_comparison (cmp, false);
3172 switch (cmp)
3174 case EQ_EXPR:
3175 case NE_EXPR:
3176 case GT_EXPR:
3177 case GE_EXPR:
3178 case LT_EXPR:
3179 case LE_EXPR:
3180 op[0] = gimple_cond_lhs (cond);
3181 op[1] = gimple_cond_rhs (cond);
3182 break;
3184 default:
3185 return chrec_dont_know;
3188 for (j = 0; j < 2; j++)
3190 if (is_gimple_min_invariant (op[j]))
3192 val[j] = op[j];
3193 next[j] = NULL_TREE;
3194 op[j] = NULL_TREE;
3196 else
3198 phi = get_base_for (loop, op[j]);
3199 if (!phi)
3200 return chrec_dont_know;
3201 val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
3202 next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
3206 /* Don't issue signed overflow warnings. */
3207 fold_defer_overflow_warnings ();
3209 for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
3211 for (j = 0; j < 2; j++)
3212 aval[j] = get_val_for (op[j], val[j]);
3214 acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
3215 if (acnd && integer_zerop (acnd))
3217 fold_undefer_and_ignore_overflow_warnings ();
3218 if (dump_file && (dump_flags & TDF_DETAILS))
3219 fprintf (dump_file,
3220 "Proved that loop %d iterates %d times using brute force.\n",
3221 loop->num, i);
3222 return build_int_cst (unsigned_type_node, i);
3225 for (j = 0; j < 2; j++)
3227 aval[j] = val[j];
3228 val[j] = get_val_for (next[j], val[j]);
3229 if (!is_gimple_min_invariant (val[j]))
3231 fold_undefer_and_ignore_overflow_warnings ();
3232 return chrec_dont_know;
3236 /* If the next iteration would use the same base values
3237 as the current one, there is no point looping further,
3238 all following iterations will be the same as this one. */
3239 if (val[0] == aval[0] && val[1] == aval[1])
3240 break;
3243 fold_undefer_and_ignore_overflow_warnings ();
3245 return chrec_dont_know;
3248 /* Finds the exit of the LOOP by that the loop exits after a constant
3249 number of iterations and stores the exit edge to *EXIT. The constant
3250 giving the number of iterations of LOOP is returned. The number of
3251 iterations is determined using loop_niter_by_eval (i.e. by brute force
3252 evaluation). If we are unable to find the exit for that loop_niter_by_eval
3253 determines the number of iterations, chrec_dont_know is returned. */
3255 tree
3256 find_loop_niter_by_eval (class loop *loop, edge *exit)
3258 unsigned i;
3259 auto_vec<edge> exits = get_loop_exit_edges (loop);
3260 edge ex;
3261 tree niter = NULL_TREE, aniter;
3263 *exit = NULL;
3265 /* Loops with multiple exits are expensive to handle and less important. */
3266 if (!flag_expensive_optimizations
3267 && exits.length () > 1)
3268 return chrec_dont_know;
3270 FOR_EACH_VEC_ELT (exits, i, ex)
3272 if (!just_once_each_iteration_p (loop, ex->src))
3273 continue;
3275 aniter = loop_niter_by_eval (loop, ex);
3276 if (chrec_contains_undetermined (aniter))
3277 continue;
3279 if (niter
3280 && !tree_int_cst_lt (aniter, niter))
3281 continue;
3283 niter = aniter;
3284 *exit = ex;
3287 return niter ? niter : chrec_dont_know;
3292 Analysis of upper bounds on number of iterations of a loop.
3296 static widest_int derive_constant_upper_bound_ops (tree, tree,
3297 enum tree_code, tree);
3299 /* Returns a constant upper bound on the value of the right-hand side of
3300 an assignment statement STMT. */
3302 static widest_int
3303 derive_constant_upper_bound_assign (gimple *stmt)
3305 enum tree_code code = gimple_assign_rhs_code (stmt);
3306 tree op0 = gimple_assign_rhs1 (stmt);
3307 tree op1 = gimple_assign_rhs2 (stmt);
3309 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
3310 op0, code, op1);
3313 /* Returns a constant upper bound on the value of expression VAL. VAL
3314 is considered to be unsigned. If its type is signed, its value must
3315 be nonnegative. */
3317 static widest_int
3318 derive_constant_upper_bound (tree val)
3320 enum tree_code code;
3321 tree op0, op1, op2;
3323 extract_ops_from_tree (val, &code, &op0, &op1, &op2);
3324 return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
3327 /* Returns a constant upper bound on the value of expression OP0 CODE OP1,
3328 whose type is TYPE. The expression is considered to be unsigned. If
3329 its type is signed, its value must be nonnegative. */
3331 static widest_int
3332 derive_constant_upper_bound_ops (tree type, tree op0,
3333 enum tree_code code, tree op1)
3335 tree subtype, maxt;
3336 widest_int bnd, max, cst;
3337 gimple *stmt;
3339 if (INTEGRAL_TYPE_P (type))
3340 maxt = TYPE_MAX_VALUE (type);
3341 else
3342 maxt = upper_bound_in_type (type, type);
3344 max = wi::to_widest (maxt);
3346 switch (code)
3348 case INTEGER_CST:
3349 return wi::to_widest (op0);
3351 CASE_CONVERT:
3352 subtype = TREE_TYPE (op0);
3353 if (!TYPE_UNSIGNED (subtype)
3354 /* If TYPE is also signed, the fact that VAL is nonnegative implies
3355 that OP0 is nonnegative. */
3356 && TYPE_UNSIGNED (type)
3357 && !tree_expr_nonnegative_p (op0))
3359 /* If we cannot prove that the casted expression is nonnegative,
3360 we cannot establish more useful upper bound than the precision
3361 of the type gives us. */
3362 return max;
3365 /* We now know that op0 is an nonnegative value. Try deriving an upper
3366 bound for it. */
3367 bnd = derive_constant_upper_bound (op0);
3369 /* If the bound does not fit in TYPE, max. value of TYPE could be
3370 attained. */
3371 if (wi::ltu_p (max, bnd))
3372 return max;
3374 return bnd;
3376 case PLUS_EXPR:
3377 case POINTER_PLUS_EXPR:
3378 case MINUS_EXPR:
3379 if (TREE_CODE (op1) != INTEGER_CST
3380 || !tree_expr_nonnegative_p (op0))
3381 return max;
3383 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
3384 choose the most logical way how to treat this constant regardless
3385 of the signedness of the type. */
3386 cst = wi::sext (wi::to_widest (op1), TYPE_PRECISION (type));
3387 if (code != MINUS_EXPR)
3388 cst = -cst;
3390 bnd = derive_constant_upper_bound (op0);
3392 if (wi::neg_p (cst))
3394 cst = -cst;
3395 /* Avoid CST == 0x80000... */
3396 if (wi::neg_p (cst))
3397 return max;
3399 /* OP0 + CST. We need to check that
3400 BND <= MAX (type) - CST. */
3402 widest_int mmax = max - cst;
3403 if (wi::leu_p (bnd, mmax))
3404 return max;
3406 return bnd + cst;
3408 else
3410 /* OP0 - CST, where CST >= 0.
3412 If TYPE is signed, we have already verified that OP0 >= 0, and we
3413 know that the result is nonnegative. This implies that
3414 VAL <= BND - CST.
3416 If TYPE is unsigned, we must additionally know that OP0 >= CST,
3417 otherwise the operation underflows.
3420 /* This should only happen if the type is unsigned; however, for
3421 buggy programs that use overflowing signed arithmetics even with
3422 -fno-wrapv, this condition may also be true for signed values. */
3423 if (wi::ltu_p (bnd, cst))
3424 return max;
3426 if (TYPE_UNSIGNED (type))
3428 tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
3429 wide_int_to_tree (type, cst));
3430 if (!tem || integer_nonzerop (tem))
3431 return max;
3434 bnd -= cst;
3437 return bnd;
3439 case FLOOR_DIV_EXPR:
3440 case EXACT_DIV_EXPR:
3441 if (TREE_CODE (op1) != INTEGER_CST
3442 || tree_int_cst_sign_bit (op1))
3443 return max;
3445 bnd = derive_constant_upper_bound (op0);
3446 return wi::udiv_floor (bnd, wi::to_widest (op1));
3448 case BIT_AND_EXPR:
3449 if (TREE_CODE (op1) != INTEGER_CST
3450 || tree_int_cst_sign_bit (op1))
3451 return max;
3452 return wi::to_widest (op1);
3454 case SSA_NAME:
3455 stmt = SSA_NAME_DEF_STMT (op0);
3456 if (gimple_code (stmt) != GIMPLE_ASSIGN
3457 || gimple_assign_lhs (stmt) != op0)
3458 return max;
3459 return derive_constant_upper_bound_assign (stmt);
3461 default:
3462 return max;
3466 /* Emit a -Waggressive-loop-optimizations warning if needed. */
3468 static void
3469 do_warn_aggressive_loop_optimizations (class loop *loop,
3470 widest_int i_bound, gimple *stmt)
3472 /* Don't warn if the loop doesn't have known constant bound. */
3473 if (!loop->nb_iterations
3474 || TREE_CODE (loop->nb_iterations) != INTEGER_CST
3475 || !warn_aggressive_loop_optimizations
3476 /* To avoid warning multiple times for the same loop,
3477 only start warning when we preserve loops. */
3478 || (cfun->curr_properties & PROP_loops) == 0
3479 /* Only warn once per loop. */
3480 || loop->warned_aggressive_loop_optimizations
3481 /* Only warn if undefined behavior gives us lower estimate than the
3482 known constant bound. */
3483 || wi::cmpu (i_bound, wi::to_widest (loop->nb_iterations)) >= 0
3484 /* And undefined behavior happens unconditionally. */
3485 || !dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (stmt)))
3486 return;
3488 edge e = single_exit (loop);
3489 if (e == NULL)
3490 return;
3492 gimple *estmt = last_stmt (e->src);
3493 char buf[WIDE_INT_PRINT_BUFFER_SIZE];
3494 print_dec (i_bound, buf, TYPE_UNSIGNED (TREE_TYPE (loop->nb_iterations))
3495 ? UNSIGNED : SIGNED);
3496 auto_diagnostic_group d;
3497 if (warning_at (gimple_location (stmt), OPT_Waggressive_loop_optimizations,
3498 "iteration %s invokes undefined behavior", buf))
3499 inform (gimple_location (estmt), "within this loop");
3500 loop->warned_aggressive_loop_optimizations = true;
3503 /* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
3504 is true if the loop is exited immediately after STMT, and this exit
3505 is taken at last when the STMT is executed BOUND + 1 times.
3506 REALISTIC is true if BOUND is expected to be close to the real number
3507 of iterations. UPPER is true if we are sure the loop iterates at most
3508 BOUND times. I_BOUND is a widest_int upper estimate on BOUND. */
3510 static void
3511 record_estimate (class loop *loop, tree bound, const widest_int &i_bound,
3512 gimple *at_stmt, bool is_exit, bool realistic, bool upper)
3514 widest_int delta;
3516 if (dump_file && (dump_flags & TDF_DETAILS))
3518 fprintf (dump_file, "Statement %s", is_exit ? "(exit)" : "");
3519 print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
3520 fprintf (dump_file, " is %sexecuted at most ",
3521 upper ? "" : "probably ");
3522 print_generic_expr (dump_file, bound, TDF_SLIM);
3523 fprintf (dump_file, " (bounded by ");
3524 print_decu (i_bound, dump_file);
3525 fprintf (dump_file, ") + 1 times in loop %d.\n", loop->num);
3528 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
3529 real number of iterations. */
3530 if (TREE_CODE (bound) != INTEGER_CST)
3531 realistic = false;
3532 else
3533 gcc_checking_assert (i_bound == wi::to_widest (bound));
3535 /* If we have a guaranteed upper bound, record it in the appropriate
3536 list, unless this is an !is_exit bound (i.e. undefined behavior in
3537 at_stmt) in a loop with known constant number of iterations. */
3538 if (upper
3539 && (is_exit
3540 || loop->nb_iterations == NULL_TREE
3541 || TREE_CODE (loop->nb_iterations) != INTEGER_CST))
3543 class nb_iter_bound *elt = ggc_alloc<nb_iter_bound> ();
3545 elt->bound = i_bound;
3546 elt->stmt = at_stmt;
3547 elt->is_exit = is_exit;
3548 elt->next = loop->bounds;
3549 loop->bounds = elt;
3552 /* If statement is executed on every path to the loop latch, we can directly
3553 infer the upper bound on the # of iterations of the loop. */
3554 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (at_stmt)))
3555 upper = false;
3557 /* Update the number of iteration estimates according to the bound.
3558 If at_stmt is an exit then the loop latch is executed at most BOUND times,
3559 otherwise it can be executed BOUND + 1 times. We will lower the estimate
3560 later if such statement must be executed on last iteration */
3561 if (is_exit)
3562 delta = 0;
3563 else
3564 delta = 1;
3565 widest_int new_i_bound = i_bound + delta;
3567 /* If an overflow occurred, ignore the result. */
3568 if (wi::ltu_p (new_i_bound, delta))
3569 return;
3571 if (upper && !is_exit)
3572 do_warn_aggressive_loop_optimizations (loop, new_i_bound, at_stmt);
3573 record_niter_bound (loop, new_i_bound, realistic, upper);
3576 /* Records the control iv analyzed in NITER for LOOP if the iv is valid
3577 and doesn't overflow. */
3579 static void
3580 record_control_iv (class loop *loop, class tree_niter_desc *niter)
3582 struct control_iv *iv;
3584 if (!niter->control.base || !niter->control.step)
3585 return;
3587 if (!integer_onep (niter->assumptions) || !niter->control.no_overflow)
3588 return;
3590 iv = ggc_alloc<control_iv> ();
3591 iv->base = niter->control.base;
3592 iv->step = niter->control.step;
3593 iv->next = loop->control_ivs;
3594 loop->control_ivs = iv;
3596 return;
3599 /* This function returns TRUE if below conditions are satisfied:
3600 1) VAR is SSA variable.
3601 2) VAR is an IV:{base, step} in its defining loop.
3602 3) IV doesn't overflow.
3603 4) Both base and step are integer constants.
3604 5) Base is the MIN/MAX value depends on IS_MIN.
3605 Store value of base to INIT correspondingly. */
3607 static bool
3608 get_cst_init_from_scev (tree var, wide_int *init, bool is_min)
3610 if (TREE_CODE (var) != SSA_NAME)
3611 return false;
3613 gimple *def_stmt = SSA_NAME_DEF_STMT (var);
3614 class loop *loop = loop_containing_stmt (def_stmt);
3616 if (loop == NULL)
3617 return false;
3619 affine_iv iv;
3620 if (!simple_iv (loop, loop, var, &iv, false))
3621 return false;
3623 if (!iv.no_overflow)
3624 return false;
3626 if (TREE_CODE (iv.base) != INTEGER_CST || TREE_CODE (iv.step) != INTEGER_CST)
3627 return false;
3629 if (is_min == tree_int_cst_sign_bit (iv.step))
3630 return false;
3632 *init = wi::to_wide (iv.base);
3633 return true;
3636 /* Record the estimate on number of iterations of LOOP based on the fact that
3637 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
3638 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
3639 estimated number of iterations is expected to be close to the real one.
3640 UPPER is true if we are sure the induction variable does not wrap. */
3642 static void
3643 record_nonwrapping_iv (class loop *loop, tree base, tree step, gimple *stmt,
3644 tree low, tree high, bool realistic, bool upper)
3646 tree niter_bound, extreme, delta;
3647 tree type = TREE_TYPE (base), unsigned_type;
3648 tree orig_base = base;
3650 if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
3651 return;
3653 if (dump_file && (dump_flags & TDF_DETAILS))
3655 fprintf (dump_file, "Induction variable (");
3656 print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
3657 fprintf (dump_file, ") ");
3658 print_generic_expr (dump_file, base, TDF_SLIM);
3659 fprintf (dump_file, " + ");
3660 print_generic_expr (dump_file, step, TDF_SLIM);
3661 fprintf (dump_file, " * iteration does not wrap in statement ");
3662 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
3663 fprintf (dump_file, " in loop %d.\n", loop->num);
3666 unsigned_type = unsigned_type_for (type);
3667 base = fold_convert (unsigned_type, base);
3668 step = fold_convert (unsigned_type, step);
3670 if (tree_int_cst_sign_bit (step))
3672 wide_int max;
3673 Value_Range base_range (TREE_TYPE (orig_base));
3674 if (get_range_query (cfun)->range_of_expr (base_range, orig_base)
3675 && !base_range.undefined_p ())
3676 max = base_range.upper_bound ();
3677 extreme = fold_convert (unsigned_type, low);
3678 if (TREE_CODE (orig_base) == SSA_NAME
3679 && TREE_CODE (high) == INTEGER_CST
3680 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
3681 && (base_range.kind () == VR_RANGE
3682 || get_cst_init_from_scev (orig_base, &max, false))
3683 && wi::gts_p (wi::to_wide (high), max))
3684 base = wide_int_to_tree (unsigned_type, max);
3685 else if (TREE_CODE (base) != INTEGER_CST
3686 && dominated_by_p (CDI_DOMINATORS,
3687 loop->latch, gimple_bb (stmt)))
3688 base = fold_convert (unsigned_type, high);
3689 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
3690 step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
3692 else
3694 wide_int min;
3695 Value_Range base_range (TREE_TYPE (orig_base));
3696 if (get_range_query (cfun)->range_of_expr (base_range, orig_base)
3697 && !base_range.undefined_p ())
3698 min = base_range.lower_bound ();
3699 extreme = fold_convert (unsigned_type, high);
3700 if (TREE_CODE (orig_base) == SSA_NAME
3701 && TREE_CODE (low) == INTEGER_CST
3702 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
3703 && (base_range.kind () == VR_RANGE
3704 || get_cst_init_from_scev (orig_base, &min, true))
3705 && wi::gts_p (min, wi::to_wide (low)))
3706 base = wide_int_to_tree (unsigned_type, min);
3707 else if (TREE_CODE (base) != INTEGER_CST
3708 && dominated_by_p (CDI_DOMINATORS,
3709 loop->latch, gimple_bb (stmt)))
3710 base = fold_convert (unsigned_type, low);
3711 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
3714 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
3715 would get out of the range. */
3716 niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
3717 widest_int max = derive_constant_upper_bound (niter_bound);
3718 record_estimate (loop, niter_bound, max, stmt, false, realistic, upper);
3721 /* Determine information about number of iterations a LOOP from the index
3722 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
3723 guaranteed to be executed in every iteration of LOOP. Callback for
3724 for_each_index. */
3726 struct ilb_data
3728 class loop *loop;
3729 gimple *stmt;
3732 static bool
3733 idx_infer_loop_bounds (tree base, tree *idx, void *dta)
3735 struct ilb_data *data = (struct ilb_data *) dta;
3736 tree ev, init, step;
3737 tree low, high, type, next;
3738 bool sign, upper = true, has_flexible_size = false;
3739 class loop *loop = data->loop;
3741 if (TREE_CODE (base) != ARRAY_REF)
3742 return true;
3744 /* For arrays that might have flexible sizes, it is not guaranteed that they
3745 do not really extend over their declared size. */
3746 if (array_ref_flexible_size_p (base))
3748 has_flexible_size = true;
3749 upper = false;
3752 class loop *dloop = loop_containing_stmt (data->stmt);
3753 if (!dloop)
3754 return true;
3756 ev = analyze_scalar_evolution (dloop, *idx);
3757 ev = instantiate_parameters (loop, ev);
3758 init = initial_condition (ev);
3759 step = evolution_part_in_loop_num (ev, loop->num);
3761 if (!init
3762 || !step
3763 || TREE_CODE (step) != INTEGER_CST
3764 || integer_zerop (step)
3765 || tree_contains_chrecs (init, NULL)
3766 || chrec_contains_symbols_defined_in_loop (init, loop->num))
3767 return true;
3769 low = array_ref_low_bound (base);
3770 high = array_ref_up_bound (base);
3772 /* The case of nonconstant bounds could be handled, but it would be
3773 complicated. */
3774 if (TREE_CODE (low) != INTEGER_CST
3775 || !high
3776 || TREE_CODE (high) != INTEGER_CST)
3777 return true;
3778 sign = tree_int_cst_sign_bit (step);
3779 type = TREE_TYPE (step);
3781 /* The array that might have flexible size most likely extends
3782 beyond its bounds. */
3783 if (has_flexible_size
3784 && operand_equal_p (low, high, 0))
3785 return true;
3787 /* In case the relevant bound of the array does not fit in type, or
3788 it does, but bound + step (in type) still belongs into the range of the
3789 array, the index may wrap and still stay within the range of the array
3790 (consider e.g. if the array is indexed by the full range of
3791 unsigned char).
3793 To make things simpler, we require both bounds to fit into type, although
3794 there are cases where this would not be strictly necessary. */
3795 if (!int_fits_type_p (high, type)
3796 || !int_fits_type_p (low, type))
3797 return true;
3798 low = fold_convert (type, low);
3799 high = fold_convert (type, high);
3801 if (sign)
3802 next = fold_binary (PLUS_EXPR, type, low, step);
3803 else
3804 next = fold_binary (PLUS_EXPR, type, high, step);
3806 if (tree_int_cst_compare (low, next) <= 0
3807 && tree_int_cst_compare (next, high) <= 0)
3808 return true;
3810 /* If access is not executed on every iteration, we must ensure that overlow
3811 may not make the access valid later. */
3812 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (data->stmt))
3813 && scev_probably_wraps_p (NULL_TREE,
3814 initial_condition_in_loop_num (ev, loop->num),
3815 step, data->stmt, loop, true))
3816 upper = false;
3818 record_nonwrapping_iv (loop, init, step, data->stmt, low, high, false, upper);
3819 return true;
3822 /* Determine information about number of iterations a LOOP from the bounds
3823 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
3824 STMT is guaranteed to be executed in every iteration of LOOP.*/
3826 static void
3827 infer_loop_bounds_from_ref (class loop *loop, gimple *stmt, tree ref)
3829 struct ilb_data data;
3831 data.loop = loop;
3832 data.stmt = stmt;
3833 for_each_index (&ref, idx_infer_loop_bounds, &data);
3836 /* Determine information about number of iterations of a LOOP from the way
3837 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
3838 executed in every iteration of LOOP. */
3840 static void
3841 infer_loop_bounds_from_array (class loop *loop, gimple *stmt)
3843 if (is_gimple_assign (stmt))
3845 tree op0 = gimple_assign_lhs (stmt);
3846 tree op1 = gimple_assign_rhs1 (stmt);
3848 /* For each memory access, analyze its access function
3849 and record a bound on the loop iteration domain. */
3850 if (REFERENCE_CLASS_P (op0))
3851 infer_loop_bounds_from_ref (loop, stmt, op0);
3853 if (REFERENCE_CLASS_P (op1))
3854 infer_loop_bounds_from_ref (loop, stmt, op1);
3856 else if (is_gimple_call (stmt))
3858 tree arg, lhs;
3859 unsigned i, n = gimple_call_num_args (stmt);
3861 lhs = gimple_call_lhs (stmt);
3862 if (lhs && REFERENCE_CLASS_P (lhs))
3863 infer_loop_bounds_from_ref (loop, stmt, lhs);
3865 for (i = 0; i < n; i++)
3867 arg = gimple_call_arg (stmt, i);
3868 if (REFERENCE_CLASS_P (arg))
3869 infer_loop_bounds_from_ref (loop, stmt, arg);
3874 /* Determine information about number of iterations of a LOOP from the fact
3875 that pointer arithmetics in STMT does not overflow. */
3877 static void
3878 infer_loop_bounds_from_pointer_arith (class loop *loop, gimple *stmt)
3880 tree def, base, step, scev, type, low, high;
3881 tree var, ptr;
3883 if (!is_gimple_assign (stmt)
3884 || gimple_assign_rhs_code (stmt) != POINTER_PLUS_EXPR)
3885 return;
3887 def = gimple_assign_lhs (stmt);
3888 if (TREE_CODE (def) != SSA_NAME)
3889 return;
3891 type = TREE_TYPE (def);
3892 if (!nowrap_type_p (type))
3893 return;
3895 ptr = gimple_assign_rhs1 (stmt);
3896 if (!expr_invariant_in_loop_p (loop, ptr))
3897 return;
3899 var = gimple_assign_rhs2 (stmt);
3900 if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
3901 return;
3903 class loop *uloop = loop_containing_stmt (stmt);
3904 scev = instantiate_parameters (loop, analyze_scalar_evolution (uloop, def));
3905 if (chrec_contains_undetermined (scev))
3906 return;
3908 base = initial_condition_in_loop_num (scev, loop->num);
3909 step = evolution_part_in_loop_num (scev, loop->num);
3911 if (!base || !step
3912 || TREE_CODE (step) != INTEGER_CST
3913 || tree_contains_chrecs (base, NULL)
3914 || chrec_contains_symbols_defined_in_loop (base, loop->num))
3915 return;
3917 low = lower_bound_in_type (type, type);
3918 high = upper_bound_in_type (type, type);
3920 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
3921 produce a NULL pointer. The contrary would mean NULL points to an object,
3922 while NULL is supposed to compare unequal with the address of all objects.
3923 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
3924 NULL pointer since that would mean wrapping, which we assume here not to
3925 happen. So, we can exclude NULL from the valid range of pointer
3926 arithmetic. */
3927 if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
3928 low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));
3930 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
3933 /* Determine information about number of iterations of a LOOP from the fact
3934 that signed arithmetics in STMT does not overflow. */
3936 static void
3937 infer_loop_bounds_from_signedness (class loop *loop, gimple *stmt)
3939 tree def, base, step, scev, type, low, high;
3941 if (gimple_code (stmt) != GIMPLE_ASSIGN)
3942 return;
3944 def = gimple_assign_lhs (stmt);
3946 if (TREE_CODE (def) != SSA_NAME)
3947 return;
3949 type = TREE_TYPE (def);
3950 if (!INTEGRAL_TYPE_P (type)
3951 || !TYPE_OVERFLOW_UNDEFINED (type))
3952 return;
3954 scev = instantiate_parameters (loop, analyze_scalar_evolution (loop, def));
3955 if (chrec_contains_undetermined (scev))
3956 return;
3958 base = initial_condition_in_loop_num (scev, loop->num);
3959 step = evolution_part_in_loop_num (scev, loop->num);
3961 if (!base || !step
3962 || TREE_CODE (step) != INTEGER_CST
3963 || tree_contains_chrecs (base, NULL)
3964 || chrec_contains_symbols_defined_in_loop (base, loop->num))
3965 return;
3967 low = lower_bound_in_type (type, type);
3968 high = upper_bound_in_type (type, type);
3969 Value_Range r (TREE_TYPE (def));
3970 get_range_query (cfun)->range_of_expr (r, def);
3971 if (r.kind () == VR_RANGE)
3973 low = wide_int_to_tree (type, r.lower_bound ());
3974 high = wide_int_to_tree (type, r.upper_bound ());
3977 record_nonwrapping_iv (loop, base, step, stmt, low, high, false, true);
3980 /* The following analyzers are extracting informations on the bounds
3981 of LOOP from the following undefined behaviors:
3983 - data references should not access elements over the statically
3984 allocated size,
3986 - signed variables should not overflow when flag_wrapv is not set.
3989 static void
3990 infer_loop_bounds_from_undefined (class loop *loop, basic_block *bbs)
3992 unsigned i;
3993 gimple_stmt_iterator bsi;
3994 basic_block bb;
3995 bool reliable;
3997 for (i = 0; i < loop->num_nodes; i++)
3999 bb = bbs[i];
4001 /* If BB is not executed in each iteration of the loop, we cannot
4002 use the operations in it to infer reliable upper bound on the
4003 # of iterations of the loop. However, we can use it as a guess.
4004 Reliable guesses come only from array bounds. */
4005 reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
4007 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
4009 gimple *stmt = gsi_stmt (bsi);
4011 infer_loop_bounds_from_array (loop, stmt);
4013 if (reliable)
4015 infer_loop_bounds_from_signedness (loop, stmt);
4016 infer_loop_bounds_from_pointer_arith (loop, stmt);
4023 /* Compare wide ints, callback for qsort. */
4025 static int
4026 wide_int_cmp (const void *p1, const void *p2)
4028 const widest_int *d1 = (const widest_int *) p1;
4029 const widest_int *d2 = (const widest_int *) p2;
4030 return wi::cmpu (*d1, *d2);
4033 /* Return index of BOUND in BOUNDS array sorted in increasing order.
4034 Lookup by binary search. */
4036 static int
4037 bound_index (const vec<widest_int> &bounds, const widest_int &bound)
4039 unsigned int end = bounds.length ();
4040 unsigned int begin = 0;
4042 /* Find a matching index by means of a binary search. */
4043 while (begin != end)
4045 unsigned int middle = (begin + end) / 2;
4046 widest_int index = bounds[middle];
4048 if (index == bound)
4049 return middle;
4050 else if (wi::ltu_p (index, bound))
4051 begin = middle + 1;
4052 else
4053 end = middle;
4055 gcc_unreachable ();
4058 /* We recorded loop bounds only for statements dominating loop latch (and thus
4059 executed each loop iteration). If there are any bounds on statements not
4060 dominating the loop latch we can improve the estimate by walking the loop
4061 body and seeing if every path from loop header to loop latch contains
4062 some bounded statement. */
4064 static void
4065 discover_iteration_bound_by_body_walk (class loop *loop)
4067 class nb_iter_bound *elt;
4068 auto_vec<widest_int> bounds;
4069 vec<vec<basic_block> > queues = vNULL;
4070 vec<basic_block> queue = vNULL;
4071 ptrdiff_t queue_index;
4072 ptrdiff_t latch_index = 0;
4074 /* Discover what bounds may interest us. */
4075 for (elt = loop->bounds; elt; elt = elt->next)
4077 widest_int bound = elt->bound;
4079 /* Exit terminates loop at given iteration, while non-exits produce undefined
4080 effect on the next iteration. */
4081 if (!elt->is_exit)
4083 bound += 1;
4084 /* If an overflow occurred, ignore the result. */
4085 if (bound == 0)
4086 continue;
4089 if (!loop->any_upper_bound
4090 || wi::ltu_p (bound, loop->nb_iterations_upper_bound))
4091 bounds.safe_push (bound);
4094 /* Exit early if there is nothing to do. */
4095 if (!bounds.exists ())
4096 return;
4098 if (dump_file && (dump_flags & TDF_DETAILS))
4099 fprintf (dump_file, " Trying to walk loop body to reduce the bound.\n");
4101 /* Sort the bounds in decreasing order. */
4102 bounds.qsort (wide_int_cmp);
4104 /* For every basic block record the lowest bound that is guaranteed to
4105 terminate the loop. */
4107 hash_map<basic_block, ptrdiff_t> bb_bounds;
4108 for (elt = loop->bounds; elt; elt = elt->next)
4110 widest_int bound = elt->bound;
4111 if (!elt->is_exit)
4113 bound += 1;
4114 /* If an overflow occurred, ignore the result. */
4115 if (bound == 0)
4116 continue;
4119 if (!loop->any_upper_bound
4120 || wi::ltu_p (bound, loop->nb_iterations_upper_bound))
4122 ptrdiff_t index = bound_index (bounds, bound);
4123 ptrdiff_t *entry = bb_bounds.get (gimple_bb (elt->stmt));
4124 if (!entry)
4125 bb_bounds.put (gimple_bb (elt->stmt), index);
4126 else if ((ptrdiff_t)*entry > index)
4127 *entry = index;
4131 hash_map<basic_block, ptrdiff_t> block_priority;
4133 /* Perform shortest path discovery loop->header ... loop->latch.
4135 The "distance" is given by the smallest loop bound of basic block
4136 present in the path and we look for path with largest smallest bound
4137 on it.
4139 To avoid the need for fibonacci heap on double ints we simply compress
4140 double ints into indexes to BOUNDS array and then represent the queue
4141 as arrays of queues for every index.
4142 Index of BOUNDS.length() means that the execution of given BB has
4143 no bounds determined.
4145 VISITED is a pointer map translating basic block into smallest index
4146 it was inserted into the priority queue with. */
4147 latch_index = -1;
4149 /* Start walk in loop header with index set to infinite bound. */
4150 queue_index = bounds.length ();
4151 queues.safe_grow_cleared (queue_index + 1, true);
4152 queue.safe_push (loop->header);
4153 queues[queue_index] = queue;
4154 block_priority.put (loop->header, queue_index);
4156 for (; queue_index >= 0; queue_index--)
4158 if (latch_index < queue_index)
4160 while (queues[queue_index].length ())
4162 basic_block bb;
4163 ptrdiff_t bound_index = queue_index;
4164 edge e;
4165 edge_iterator ei;
4167 queue = queues[queue_index];
4168 bb = queue.pop ();
4170 /* OK, we later inserted the BB with lower priority, skip it. */
4171 if (*block_priority.get (bb) > queue_index)
4172 continue;
4174 /* See if we can improve the bound. */
4175 ptrdiff_t *entry = bb_bounds.get (bb);
4176 if (entry && *entry < bound_index)
4177 bound_index = *entry;
4179 /* Insert succesors into the queue, watch for latch edge
4180 and record greatest index we saw. */
4181 FOR_EACH_EDGE (e, ei, bb->succs)
4183 bool insert = false;
4185 if (loop_exit_edge_p (loop, e))
4186 continue;
4188 if (e == loop_latch_edge (loop)
4189 && latch_index < bound_index)
4190 latch_index = bound_index;
4191 else if (!(entry = block_priority.get (e->dest)))
4193 insert = true;
4194 block_priority.put (e->dest, bound_index);
4196 else if (*entry < bound_index)
4198 insert = true;
4199 *entry = bound_index;
4202 if (insert)
4203 queues[bound_index].safe_push (e->dest);
4207 queues[queue_index].release ();
4210 gcc_assert (latch_index >= 0);
4211 if ((unsigned)latch_index < bounds.length ())
4213 if (dump_file && (dump_flags & TDF_DETAILS))
4215 fprintf (dump_file, "Found better loop bound ");
4216 print_decu (bounds[latch_index], dump_file);
4217 fprintf (dump_file, "\n");
4219 record_niter_bound (loop, bounds[latch_index], false, true);
4222 queues.release ();
4225 /* See if every path cross the loop goes through a statement that is known
4226 to not execute at the last iteration. In that case we can decrese iteration
4227 count by 1. */
4229 static void
4230 maybe_lower_iteration_bound (class loop *loop)
4232 hash_set<gimple *> *not_executed_last_iteration = NULL;
4233 class nb_iter_bound *elt;
4234 bool found_exit = false;
4235 auto_vec<basic_block> queue;
4236 bitmap visited;
4238 /* Collect all statements with interesting (i.e. lower than
4239 nb_iterations_upper_bound) bound on them.
4241 TODO: Due to the way record_estimate choose estimates to store, the bounds
4242 will be always nb_iterations_upper_bound-1. We can change this to record
4243 also statements not dominating the loop latch and update the walk bellow
4244 to the shortest path algorithm. */
4245 for (elt = loop->bounds; elt; elt = elt->next)
4247 if (!elt->is_exit
4248 && wi::ltu_p (elt->bound, loop->nb_iterations_upper_bound))
4250 if (!not_executed_last_iteration)
4251 not_executed_last_iteration = new hash_set<gimple *>;
4252 not_executed_last_iteration->add (elt->stmt);
4255 if (!not_executed_last_iteration)
4256 return;
4258 /* Start DFS walk in the loop header and see if we can reach the
4259 loop latch or any of the exits (including statements with side
4260 effects that may terminate the loop otherwise) without visiting
4261 any of the statements known to have undefined effect on the last
4262 iteration. */
4263 queue.safe_push (loop->header);
4264 visited = BITMAP_ALLOC (NULL);
4265 bitmap_set_bit (visited, loop->header->index);
4266 found_exit = false;
4270 basic_block bb = queue.pop ();
4271 gimple_stmt_iterator gsi;
4272 bool stmt_found = false;
4274 /* Loop for possible exits and statements bounding the execution. */
4275 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4277 gimple *stmt = gsi_stmt (gsi);
4278 if (not_executed_last_iteration->contains (stmt))
4280 stmt_found = true;
4281 break;
4283 if (gimple_has_side_effects (stmt))
4285 found_exit = true;
4286 break;
4289 if (found_exit)
4290 break;
4292 /* If no bounding statement is found, continue the walk. */
4293 if (!stmt_found)
4295 edge e;
4296 edge_iterator ei;
4298 FOR_EACH_EDGE (e, ei, bb->succs)
4300 if (loop_exit_edge_p (loop, e)
4301 || e == loop_latch_edge (loop))
4303 found_exit = true;
4304 break;
4306 if (bitmap_set_bit (visited, e->dest->index))
4307 queue.safe_push (e->dest);
4311 while (queue.length () && !found_exit);
4313 /* If every path through the loop reach bounding statement before exit,
4314 then we know the last iteration of the loop will have undefined effect
4315 and we can decrease number of iterations. */
4317 if (!found_exit)
4319 if (dump_file && (dump_flags & TDF_DETAILS))
4320 fprintf (dump_file, "Reducing loop iteration estimate by 1; "
4321 "undefined statement must be executed at the last iteration.\n");
4322 record_niter_bound (loop, loop->nb_iterations_upper_bound - 1,
4323 false, true);
4326 BITMAP_FREE (visited);
4327 delete not_executed_last_iteration;
4330 /* Get expected upper bound for number of loop iterations for
4331 BUILT_IN_EXPECT_WITH_PROBABILITY for a condition COND. */
4333 static tree
4334 get_upper_bound_based_on_builtin_expr_with_prob (gcond *cond)
4336 if (cond == NULL)
4337 return NULL_TREE;
4339 tree lhs = gimple_cond_lhs (cond);
4340 if (TREE_CODE (lhs) != SSA_NAME)
4341 return NULL_TREE;
4343 gimple *stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
4344 gcall *def = dyn_cast<gcall *> (stmt);
4345 if (def == NULL)
4346 return NULL_TREE;
4348 tree decl = gimple_call_fndecl (def);
4349 if (!decl
4350 || !fndecl_built_in_p (decl, BUILT_IN_EXPECT_WITH_PROBABILITY)
4351 || gimple_call_num_args (stmt) != 3)
4352 return NULL_TREE;
4354 tree c = gimple_call_arg (def, 1);
4355 tree condt = TREE_TYPE (lhs);
4356 tree res = fold_build2 (gimple_cond_code (cond),
4357 condt, c,
4358 gimple_cond_rhs (cond));
4359 if (TREE_CODE (res) != INTEGER_CST)
4360 return NULL_TREE;
4363 tree prob = gimple_call_arg (def, 2);
4364 tree t = TREE_TYPE (prob);
4365 tree one
4366 = build_real_from_int_cst (t,
4367 integer_one_node);
4368 if (integer_zerop (res))
4369 prob = fold_build2 (MINUS_EXPR, t, one, prob);
4370 tree r = fold_build2 (RDIV_EXPR, t, one, prob);
4371 if (TREE_CODE (r) != REAL_CST)
4372 return NULL_TREE;
4374 HOST_WIDE_INT probi
4375 = real_to_integer (TREE_REAL_CST_PTR (r));
4376 return build_int_cst (condt, probi);
4379 /* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
4380 is true also use estimates derived from undefined behavior. */
4382 void
4383 estimate_numbers_of_iterations (class loop *loop)
4385 tree niter, type;
4386 unsigned i;
4387 class tree_niter_desc niter_desc;
4388 edge ex;
4389 widest_int bound;
4390 edge likely_exit;
4392 /* Give up if we already have tried to compute an estimation. */
4393 if (loop->estimate_state != EST_NOT_COMPUTED)
4394 return;
4396 if (dump_file && (dump_flags & TDF_DETAILS))
4397 fprintf (dump_file, "Estimating # of iterations of loop %d\n", loop->num);
4399 loop->estimate_state = EST_AVAILABLE;
4401 /* If we have a measured profile, use it to estimate the number of
4402 iterations. Normally this is recorded by branch_prob right after
4403 reading the profile. In case we however found a new loop, record the
4404 information here.
4406 Explicitly check for profile status so we do not report
4407 wrong prediction hitrates for guessed loop iterations heuristics.
4408 Do not recompute already recorded bounds - we ought to be better on
4409 updating iteration bounds than updating profile in general and thus
4410 recomputing iteration bounds later in the compilation process will just
4411 introduce random roundoff errors. */
4412 if (!loop->any_estimate
4413 && loop->header->count.reliable_p ())
4415 gcov_type nit = expected_loop_iterations_unbounded (loop);
4416 bound = gcov_type_to_wide_int (nit);
4417 record_niter_bound (loop, bound, true, false);
4420 /* Ensure that loop->nb_iterations is computed if possible. If it turns out
4421 to be constant, we avoid undefined behavior implied bounds and instead
4422 diagnose those loops with -Waggressive-loop-optimizations. */
4423 number_of_latch_executions (loop);
4425 basic_block *body = get_loop_body (loop);
4426 auto_vec<edge> exits = get_loop_exit_edges (loop, body);
4427 likely_exit = single_likely_exit (loop, exits);
4428 FOR_EACH_VEC_ELT (exits, i, ex)
4430 if (ex == likely_exit)
4432 gimple *stmt = last_stmt (ex->src);
4433 if (stmt != NULL)
4435 gcond *cond = dyn_cast<gcond *> (stmt);
4436 tree niter_bound
4437 = get_upper_bound_based_on_builtin_expr_with_prob (cond);
4438 if (niter_bound != NULL_TREE)
4440 widest_int max = derive_constant_upper_bound (niter_bound);
4441 record_estimate (loop, niter_bound, max, cond,
4442 true, true, false);
4447 if (!number_of_iterations_exit (loop, ex, &niter_desc,
4448 false, false, body))
4449 continue;
4451 niter = niter_desc.niter;
4452 type = TREE_TYPE (niter);
4453 if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
4454 niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
4455 build_int_cst (type, 0),
4456 niter);
4457 record_estimate (loop, niter, niter_desc.max,
4458 last_stmt (ex->src),
4459 true, ex == likely_exit, true);
4460 record_control_iv (loop, &niter_desc);
4463 if (flag_aggressive_loop_optimizations)
4464 infer_loop_bounds_from_undefined (loop, body);
4465 free (body);
4467 discover_iteration_bound_by_body_walk (loop);
4469 maybe_lower_iteration_bound (loop);
4471 /* If we know the exact number of iterations of this loop, try to
4472 not break code with undefined behavior by not recording smaller
4473 maximum number of iterations. */
4474 if (loop->nb_iterations
4475 && TREE_CODE (loop->nb_iterations) == INTEGER_CST)
4477 loop->any_upper_bound = true;
4478 loop->nb_iterations_upper_bound = wi::to_widest (loop->nb_iterations);
4482 /* Sets NIT to the estimated number of executions of the latch of the
4483 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
4484 large as the number of iterations. If we have no reliable estimate,
4485 the function returns false, otherwise returns true. */
4487 bool
4488 estimated_loop_iterations (class loop *loop, widest_int *nit)
4490 /* When SCEV information is available, try to update loop iterations
4491 estimate. Otherwise just return whatever we recorded earlier. */
4492 if (scev_initialized_p ())
4493 estimate_numbers_of_iterations (loop);
4495 return (get_estimated_loop_iterations (loop, nit));
4498 /* Similar to estimated_loop_iterations, but returns the estimate only
4499 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4500 on the number of iterations of LOOP could not be derived, returns -1. */
4502 HOST_WIDE_INT
4503 estimated_loop_iterations_int (class loop *loop)
4505 widest_int nit;
4506 HOST_WIDE_INT hwi_nit;
4508 if (!estimated_loop_iterations (loop, &nit))
4509 return -1;
4511 if (!wi::fits_shwi_p (nit))
4512 return -1;
4513 hwi_nit = nit.to_shwi ();
4515 return hwi_nit < 0 ? -1 : hwi_nit;
4519 /* Sets NIT to an upper bound for the maximum number of executions of the
4520 latch of the LOOP. If we have no reliable estimate, the function returns
4521 false, otherwise returns true. */
4523 bool
4524 max_loop_iterations (class loop *loop, widest_int *nit)
4526 /* When SCEV information is available, try to update loop iterations
4527 estimate. Otherwise just return whatever we recorded earlier. */
4528 if (scev_initialized_p ())
4529 estimate_numbers_of_iterations (loop);
4531 return get_max_loop_iterations (loop, nit);
4534 /* Similar to max_loop_iterations, but returns the estimate only
4535 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4536 on the number of iterations of LOOP could not be derived, returns -1. */
4538 HOST_WIDE_INT
4539 max_loop_iterations_int (class loop *loop)
4541 widest_int nit;
4542 HOST_WIDE_INT hwi_nit;
4544 if (!max_loop_iterations (loop, &nit))
4545 return -1;
4547 if (!wi::fits_shwi_p (nit))
4548 return -1;
4549 hwi_nit = nit.to_shwi ();
4551 return hwi_nit < 0 ? -1 : hwi_nit;
4554 /* Sets NIT to an likely upper bound for the maximum number of executions of the
4555 latch of the LOOP. If we have no reliable estimate, the function returns
4556 false, otherwise returns true. */
4558 bool
4559 likely_max_loop_iterations (class loop *loop, widest_int *nit)
4561 /* When SCEV information is available, try to update loop iterations
4562 estimate. Otherwise just return whatever we recorded earlier. */
4563 if (scev_initialized_p ())
4564 estimate_numbers_of_iterations (loop);
4566 return get_likely_max_loop_iterations (loop, nit);
4569 /* Similar to max_loop_iterations, but returns the estimate only
4570 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4571 on the number of iterations of LOOP could not be derived, returns -1. */
4573 HOST_WIDE_INT
4574 likely_max_loop_iterations_int (class loop *loop)
4576 widest_int nit;
4577 HOST_WIDE_INT hwi_nit;
4579 if (!likely_max_loop_iterations (loop, &nit))
4580 return -1;
4582 if (!wi::fits_shwi_p (nit))
4583 return -1;
4584 hwi_nit = nit.to_shwi ();
4586 return hwi_nit < 0 ? -1 : hwi_nit;
4589 /* Returns an estimate for the number of executions of statements
4590 in the LOOP. For statements before the loop exit, this exceeds
4591 the number of execution of the latch by one. */
4593 HOST_WIDE_INT
4594 estimated_stmt_executions_int (class loop *loop)
4596 HOST_WIDE_INT nit = estimated_loop_iterations_int (loop);
4597 HOST_WIDE_INT snit;
4599 if (nit == -1)
4600 return -1;
4602 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
4604 /* If the computation overflows, return -1. */
4605 return snit < 0 ? -1 : snit;
4608 /* Sets NIT to the maximum number of executions of the latch of the
4609 LOOP, plus one. If we have no reliable estimate, the function returns
4610 false, otherwise returns true. */
4612 bool
4613 max_stmt_executions (class loop *loop, widest_int *nit)
4615 widest_int nit_minus_one;
4617 if (!max_loop_iterations (loop, nit))
4618 return false;
4620 nit_minus_one = *nit;
4622 *nit += 1;
4624 return wi::gtu_p (*nit, nit_minus_one);
4627 /* Sets NIT to the estimated maximum number of executions of the latch of the
4628 LOOP, plus one. If we have no likely estimate, the function returns
4629 false, otherwise returns true. */
4631 bool
4632 likely_max_stmt_executions (class loop *loop, widest_int *nit)
4634 widest_int nit_minus_one;
4636 if (!likely_max_loop_iterations (loop, nit))
4637 return false;
4639 nit_minus_one = *nit;
4641 *nit += 1;
4643 return wi::gtu_p (*nit, nit_minus_one);
4646 /* Sets NIT to the estimated number of executions of the latch of the
4647 LOOP, plus one. If we have no reliable estimate, the function returns
4648 false, otherwise returns true. */
4650 bool
4651 estimated_stmt_executions (class loop *loop, widest_int *nit)
4653 widest_int nit_minus_one;
4655 if (!estimated_loop_iterations (loop, nit))
4656 return false;
4658 nit_minus_one = *nit;
4660 *nit += 1;
4662 return wi::gtu_p (*nit, nit_minus_one);
4665 /* Records estimates on numbers of iterations of loops. */
4667 void
4668 estimate_numbers_of_iterations (function *fn)
4670 /* We don't want to issue signed overflow warnings while getting
4671 loop iteration estimates. */
4672 fold_defer_overflow_warnings ();
4674 for (auto loop : loops_list (fn, 0))
4675 estimate_numbers_of_iterations (loop);
4677 fold_undefer_and_ignore_overflow_warnings ();
4680 /* Returns true if statement S1 dominates statement S2. */
4682 bool
4683 stmt_dominates_stmt_p (gimple *s1, gimple *s2)
4685 basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2);
4687 if (!bb1
4688 || s1 == s2)
4689 return true;
4691 if (bb1 == bb2)
4693 gimple_stmt_iterator bsi;
4695 if (gimple_code (s2) == GIMPLE_PHI)
4696 return false;
4698 if (gimple_code (s1) == GIMPLE_PHI)
4699 return true;
4701 for (bsi = gsi_start_bb (bb1); gsi_stmt (bsi) != s2; gsi_next (&bsi))
4702 if (gsi_stmt (bsi) == s1)
4703 return true;
4705 return false;
4708 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
4711 /* Returns true when we can prove that the number of executions of
4712 STMT in the loop is at most NITER, according to the bound on
4713 the number of executions of the statement NITER_BOUND->stmt recorded in
4714 NITER_BOUND and fact that NITER_BOUND->stmt dominate STMT.
4716 ??? This code can become quite a CPU hog - we can have many bounds,
4717 and large basic block forcing stmt_dominates_stmt_p to be queried
4718 many times on a large basic blocks, so the whole thing is O(n^2)
4719 for scev_probably_wraps_p invocation (that can be done n times).
4721 It would make more sense (and give better answers) to remember BB
4722 bounds computed by discover_iteration_bound_by_body_walk. */
4724 static bool
4725 n_of_executions_at_most (gimple *stmt,
4726 class nb_iter_bound *niter_bound,
4727 tree niter)
4729 widest_int bound = niter_bound->bound;
4730 tree nit_type = TREE_TYPE (niter), e;
4731 enum tree_code cmp;
4733 gcc_assert (TYPE_UNSIGNED (nit_type));
4735 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
4736 the number of iterations is small. */
4737 if (!wi::fits_to_tree_p (bound, nit_type))
4738 return false;
4740 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
4741 times. This means that:
4743 -- if NITER_BOUND->is_exit is true, then everything after
4744 it at most NITER_BOUND->bound times.
4746 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
4747 is executed, then NITER_BOUND->stmt is executed as well in the same
4748 iteration then STMT is executed at most NITER_BOUND->bound + 1 times.
4750 If we can determine that NITER_BOUND->stmt is always executed
4751 after STMT, then STMT is executed at most NITER_BOUND->bound + 2 times.
4752 We conclude that if both statements belong to the same
4753 basic block and STMT is before NITER_BOUND->stmt and there are no
4754 statements with side effects in between. */
4756 if (niter_bound->is_exit)
4758 if (stmt == niter_bound->stmt
4759 || !stmt_dominates_stmt_p (niter_bound->stmt, stmt))
4760 return false;
4761 cmp = GE_EXPR;
4763 else
4765 if (!stmt_dominates_stmt_p (niter_bound->stmt, stmt))
4767 gimple_stmt_iterator bsi;
4768 if (gimple_bb (stmt) != gimple_bb (niter_bound->stmt)
4769 || gimple_code (stmt) == GIMPLE_PHI
4770 || gimple_code (niter_bound->stmt) == GIMPLE_PHI)
4771 return false;
4773 /* By stmt_dominates_stmt_p we already know that STMT appears
4774 before NITER_BOUND->STMT. Still need to test that the loop
4775 cannot be terinated by a side effect in between. */
4776 for (bsi = gsi_for_stmt (stmt); gsi_stmt (bsi) != niter_bound->stmt;
4777 gsi_next (&bsi))
4778 if (gimple_has_side_effects (gsi_stmt (bsi)))
4779 return false;
4780 bound += 1;
4781 if (bound == 0
4782 || !wi::fits_to_tree_p (bound, nit_type))
4783 return false;
4785 cmp = GT_EXPR;
4788 e = fold_binary (cmp, boolean_type_node,
4789 niter, wide_int_to_tree (nit_type, bound));
4790 return e && integer_nonzerop (e);
4793 /* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
4795 bool
4796 nowrap_type_p (tree type)
4798 if (ANY_INTEGRAL_TYPE_P (type)
4799 && TYPE_OVERFLOW_UNDEFINED (type))
4800 return true;
4802 if (POINTER_TYPE_P (type))
4803 return true;
4805 return false;
4808 /* Return true if we can prove LOOP is exited before evolution of induction
4809 variable {BASE, STEP} overflows with respect to its type bound. */
4811 static bool
4812 loop_exits_before_overflow (tree base, tree step,
4813 gimple *at_stmt, class loop *loop)
4815 widest_int niter;
4816 struct control_iv *civ;
4817 class nb_iter_bound *bound;
4818 tree e, delta, step_abs, unsigned_base;
4819 tree type = TREE_TYPE (step);
4820 tree unsigned_type, valid_niter;
4822 /* Don't issue signed overflow warnings. */
4823 fold_defer_overflow_warnings ();
4825 /* Compute the number of iterations before we reach the bound of the
4826 type, and verify that the loop is exited before this occurs. */
4827 unsigned_type = unsigned_type_for (type);
4828 unsigned_base = fold_convert (unsigned_type, base);
4830 if (tree_int_cst_sign_bit (step))
4832 tree extreme = fold_convert (unsigned_type,
4833 lower_bound_in_type (type, type));
4834 delta = fold_build2 (MINUS_EXPR, unsigned_type, unsigned_base, extreme);
4835 step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
4836 fold_convert (unsigned_type, step));
4838 else
4840 tree extreme = fold_convert (unsigned_type,
4841 upper_bound_in_type (type, type));
4842 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, unsigned_base);
4843 step_abs = fold_convert (unsigned_type, step);
4846 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
4848 estimate_numbers_of_iterations (loop);
4850 if (max_loop_iterations (loop, &niter)
4851 && wi::fits_to_tree_p (niter, TREE_TYPE (valid_niter))
4852 && (e = fold_binary (GT_EXPR, boolean_type_node, valid_niter,
4853 wide_int_to_tree (TREE_TYPE (valid_niter),
4854 niter))) != NULL
4855 && integer_nonzerop (e))
4857 fold_undefer_and_ignore_overflow_warnings ();
4858 return true;
4860 if (at_stmt)
4861 for (bound = loop->bounds; bound; bound = bound->next)
4863 if (n_of_executions_at_most (at_stmt, bound, valid_niter))
4865 fold_undefer_and_ignore_overflow_warnings ();
4866 return true;
4869 fold_undefer_and_ignore_overflow_warnings ();
4871 /* Try to prove loop is exited before {base, step} overflows with the
4872 help of analyzed loop control IV. This is done only for IVs with
4873 constant step because otherwise we don't have the information. */
4874 if (TREE_CODE (step) == INTEGER_CST)
4876 for (civ = loop->control_ivs; civ; civ = civ->next)
4878 enum tree_code code;
4879 tree civ_type = TREE_TYPE (civ->step);
4881 /* Have to consider type difference because operand_equal_p ignores
4882 that for constants. */
4883 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (civ_type)
4884 || element_precision (type) != element_precision (civ_type))
4885 continue;
4887 /* Only consider control IV with same step. */
4888 if (!operand_equal_p (step, civ->step, 0))
4889 continue;
4891 /* Done proving if this is a no-overflow control IV. */
4892 if (operand_equal_p (base, civ->base, 0))
4893 return true;
4895 /* Control IV is recorded after expanding simple operations,
4896 Here we expand base and compare it too. */
4897 tree expanded_base = expand_simple_operations (base);
4898 if (operand_equal_p (expanded_base, civ->base, 0))
4899 return true;
4901 /* If this is a before stepping control IV, in other words, we have
4903 {civ_base, step} = {base + step, step}
4905 Because civ {base + step, step} doesn't overflow during loop
4906 iterations, {base, step} will not overflow if we can prove the
4907 operation "base + step" does not overflow. Specifically, we try
4908 to prove below conditions are satisfied:
4910 base <= UPPER_BOUND (type) - step ;;step > 0
4911 base >= LOWER_BOUND (type) - step ;;step < 0
4913 by proving the reverse conditions are false using loop's initial
4914 condition. */
4915 if (POINTER_TYPE_P (TREE_TYPE (base)))
4916 code = POINTER_PLUS_EXPR;
4917 else
4918 code = PLUS_EXPR;
4920 tree stepped = fold_build2 (code, TREE_TYPE (base), base, step);
4921 tree expanded_stepped = fold_build2 (code, TREE_TYPE (base),
4922 expanded_base, step);
4923 if (operand_equal_p (stepped, civ->base, 0)
4924 || operand_equal_p (expanded_stepped, civ->base, 0))
4926 tree extreme;
4928 if (tree_int_cst_sign_bit (step))
4930 code = LT_EXPR;
4931 extreme = lower_bound_in_type (type, type);
4933 else
4935 code = GT_EXPR;
4936 extreme = upper_bound_in_type (type, type);
4938 extreme = fold_build2 (MINUS_EXPR, type, extreme, step);
4939 e = fold_build2 (code, boolean_type_node, base, extreme);
4940 e = simplify_using_initial_conditions (loop, e);
4941 if (integer_zerop (e))
4942 return true;
4947 return false;
4950 /* VAR is scev variable whose evolution part is constant STEP, this function
4951 proves that VAR can't overflow by using value range info. If VAR's value
4952 range is [MIN, MAX], it can be proven by:
4953 MAX + step doesn't overflow ; if step > 0
4955 MIN + step doesn't underflow ; if step < 0.
4957 We can only do this if var is computed in every loop iteration, i.e, var's
4958 definition has to dominate loop latch. Consider below example:
4961 unsigned int i;
4963 <bb 3>:
4965 <bb 4>:
4966 # RANGE [0, 4294967294] NONZERO 65535
4967 # i_21 = PHI <0(3), i_18(9)>
4968 if (i_21 != 0)
4969 goto <bb 6>;
4970 else
4971 goto <bb 8>;
4973 <bb 6>:
4974 # RANGE [0, 65533] NONZERO 65535
4975 _6 = i_21 + 4294967295;
4976 # RANGE [0, 65533] NONZERO 65535
4977 _7 = (long unsigned int) _6;
4978 # RANGE [0, 524264] NONZERO 524280
4979 _8 = _7 * 8;
4980 # PT = nonlocal escaped
4981 _9 = a_14 + _8;
4982 *_9 = 0;
4984 <bb 8>:
4985 # RANGE [1, 65535] NONZERO 65535
4986 i_18 = i_21 + 1;
4987 if (i_18 >= 65535)
4988 goto <bb 10>;
4989 else
4990 goto <bb 9>;
4992 <bb 9>:
4993 goto <bb 4>;
4995 <bb 10>:
4996 return;
4999 VAR _6 doesn't overflow only with pre-condition (i_21 != 0), here we
5000 can't use _6 to prove no-overlfow for _7. In fact, var _7 takes value
5001 sequence (4294967295, 0, 1, ..., 65533) in loop life time, rather than
5002 (4294967295, 4294967296, ...). */
5004 static bool
5005 scev_var_range_cant_overflow (tree var, tree step, class loop *loop)
5007 tree type;
5008 wide_int minv, maxv, diff, step_wi;
5010 if (TREE_CODE (step) != INTEGER_CST || !INTEGRAL_TYPE_P (TREE_TYPE (var)))
5011 return false;
5013 /* Check if VAR evaluates in every loop iteration. It's not the case
5014 if VAR is default definition or does not dominate loop's latch. */
5015 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
5016 if (!def_bb || !dominated_by_p (CDI_DOMINATORS, loop->latch, def_bb))
5017 return false;
5019 Value_Range r (TREE_TYPE (var));
5020 get_range_query (cfun)->range_of_expr (r, var);
5021 if (r.kind () != VR_RANGE)
5022 return false;
5024 /* VAR is a scev whose evolution part is STEP and value range info
5025 is [MIN, MAX], we can prove its no-overflowness by conditions:
5027 type_MAX - MAX >= step ; if step > 0
5028 MIN - type_MIN >= |step| ; if step < 0.
5030 Or VAR must take value outside of value range, which is not true. */
5031 step_wi = wi::to_wide (step);
5032 type = TREE_TYPE (var);
5033 if (tree_int_cst_sign_bit (step))
5035 diff = r.lower_bound () - wi::to_wide (lower_bound_in_type (type, type));
5036 step_wi = - step_wi;
5038 else
5039 diff = wi::to_wide (upper_bound_in_type (type, type)) - r.upper_bound ();
5041 return (wi::geu_p (diff, step_wi));
5044 /* Return false only when the induction variable BASE + STEP * I is
5045 known to not overflow: i.e. when the number of iterations is small
5046 enough with respect to the step and initial condition in order to
5047 keep the evolution confined in TYPEs bounds. Return true when the
5048 iv is known to overflow or when the property is not computable.
5050 USE_OVERFLOW_SEMANTICS is true if this function should assume that
5051 the rules for overflow of the given language apply (e.g., that signed
5052 arithmetics in C does not overflow).
5054 If VAR is a ssa variable, this function also returns false if VAR can
5055 be proven not overflow with value range info. */
5057 bool
5058 scev_probably_wraps_p (tree var, tree base, tree step,
5059 gimple *at_stmt, class loop *loop,
5060 bool use_overflow_semantics)
5062 /* FIXME: We really need something like
5063 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
5065 We used to test for the following situation that frequently appears
5066 during address arithmetics:
5068 D.1621_13 = (long unsigned intD.4) D.1620_12;
5069 D.1622_14 = D.1621_13 * 8;
5070 D.1623_15 = (doubleD.29 *) D.1622_14;
5072 And derived that the sequence corresponding to D_14
5073 can be proved to not wrap because it is used for computing a
5074 memory access; however, this is not really the case -- for example,
5075 if D_12 = (unsigned char) [254,+,1], then D_14 has values
5076 2032, 2040, 0, 8, ..., but the code is still legal. */
5078 if (chrec_contains_undetermined (base)
5079 || chrec_contains_undetermined (step))
5080 return true;
5082 if (integer_zerop (step))
5083 return false;
5085 /* If we can use the fact that signed and pointer arithmetics does not
5086 wrap, we are done. */
5087 if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
5088 return false;
5090 /* To be able to use estimates on number of iterations of the loop,
5091 we must have an upper bound on the absolute value of the step. */
5092 if (TREE_CODE (step) != INTEGER_CST)
5093 return true;
5095 /* Check if var can be proven not overflow with value range info. */
5096 if (var && TREE_CODE (var) == SSA_NAME
5097 && scev_var_range_cant_overflow (var, step, loop))
5098 return false;
5100 if (loop_exits_before_overflow (base, step, at_stmt, loop))
5101 return false;
5103 /* At this point we still don't have a proof that the iv does not
5104 overflow: give up. */
5105 return true;
5108 /* Frees the information on upper bounds on numbers of iterations of LOOP. */
5110 void
5111 free_numbers_of_iterations_estimates (class loop *loop)
5113 struct control_iv *civ;
5114 class nb_iter_bound *bound;
5116 loop->nb_iterations = NULL;
5117 loop->estimate_state = EST_NOT_COMPUTED;
5118 for (bound = loop->bounds; bound;)
5120 class nb_iter_bound *next = bound->next;
5121 ggc_free (bound);
5122 bound = next;
5124 loop->bounds = NULL;
5126 for (civ = loop->control_ivs; civ;)
5128 struct control_iv *next = civ->next;
5129 ggc_free (civ);
5130 civ = next;
5132 loop->control_ivs = NULL;
5135 /* Frees the information on upper bounds on numbers of iterations of loops. */
5137 void
5138 free_numbers_of_iterations_estimates (function *fn)
5140 for (auto loop : loops_list (fn, 0))
5141 free_numbers_of_iterations_estimates (loop);
5144 /* Substitute value VAL for ssa name NAME inside expressions held
5145 at LOOP. */
5147 void
5148 substitute_in_loop_info (class loop *loop, tree name, tree val)
5150 loop->nb_iterations = simplify_replace_tree (loop->nb_iterations, name, val);