* gcc.pot: Regenerate.
[official-gcc.git] / gcc / basic-block.h
blob1f4e80539fe247c61e2f23f3d1679b2847e74604
1 /* Define control and data flow tables, and regsets.
2 Copyright (C) 1987, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2007 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_BASIC_BLOCK_H
22 #define GCC_BASIC_BLOCK_H
24 #include "bitmap.h"
25 #include "sbitmap.h"
26 #include "varray.h"
27 #include "partition.h"
28 #include "hard-reg-set.h"
29 #include "predict.h"
30 #include "vec.h"
31 #include "function.h"
33 /* Head of register set linked list. */
34 typedef bitmap_head regset_head;
36 /* A pointer to a regset_head. */
37 typedef bitmap regset;
39 /* Allocate a register set with oballoc. */
40 #define ALLOC_REG_SET(OBSTACK) BITMAP_ALLOC (OBSTACK)
42 /* Do any cleanup needed on a regset when it is no longer used. */
43 #define FREE_REG_SET(REGSET) BITMAP_FREE (REGSET)
45 /* Initialize a new regset. */
46 #define INIT_REG_SET(HEAD) bitmap_initialize (HEAD, &reg_obstack)
48 /* Clear a register set by freeing up the linked list. */
49 #define CLEAR_REG_SET(HEAD) bitmap_clear (HEAD)
51 /* Copy a register set to another register set. */
52 #define COPY_REG_SET(TO, FROM) bitmap_copy (TO, FROM)
54 /* Compare two register sets. */
55 #define REG_SET_EQUAL_P(A, B) bitmap_equal_p (A, B)
57 /* `and' a register set with a second register set. */
58 #define AND_REG_SET(TO, FROM) bitmap_and_into (TO, FROM)
60 /* `and' the complement of a register set with a register set. */
61 #define AND_COMPL_REG_SET(TO, FROM) bitmap_and_compl_into (TO, FROM)
63 /* Inclusive or a register set with a second register set. */
64 #define IOR_REG_SET(TO, FROM) bitmap_ior_into (TO, FROM)
66 /* Exclusive or a register set with a second register set. */
67 #define XOR_REG_SET(TO, FROM) bitmap_xor_into (TO, FROM)
69 /* Or into TO the register set FROM1 `and'ed with the complement of FROM2. */
70 #define IOR_AND_COMPL_REG_SET(TO, FROM1, FROM2) \
71 bitmap_ior_and_compl_into (TO, FROM1, FROM2)
73 /* Clear a single register in a register set. */
74 #define CLEAR_REGNO_REG_SET(HEAD, REG) bitmap_clear_bit (HEAD, REG)
76 /* Set a single register in a register set. */
77 #define SET_REGNO_REG_SET(HEAD, REG) bitmap_set_bit (HEAD, REG)
79 /* Return true if a register is set in a register set. */
80 #define REGNO_REG_SET_P(TO, REG) bitmap_bit_p (TO, REG)
82 /* Copy the hard registers in a register set to the hard register set. */
83 extern void reg_set_to_hard_reg_set (HARD_REG_SET *, bitmap);
84 #define REG_SET_TO_HARD_REG_SET(TO, FROM) \
85 do { \
86 CLEAR_HARD_REG_SET (TO); \
87 reg_set_to_hard_reg_set (&TO, FROM); \
88 } while (0)
90 typedef bitmap_iterator reg_set_iterator;
92 /* Loop over all registers in REGSET, starting with MIN, setting REGNUM to the
93 register number and executing CODE for all registers that are set. */
94 #define EXECUTE_IF_SET_IN_REG_SET(REGSET, MIN, REGNUM, RSI) \
95 EXECUTE_IF_SET_IN_BITMAP (REGSET, MIN, REGNUM, RSI)
97 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
98 REGNUM to the register number and executing CODE for all registers that are
99 set in the first regset and not set in the second. */
100 #define EXECUTE_IF_AND_COMPL_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
101 EXECUTE_IF_AND_COMPL_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI)
103 /* Loop over all registers in REGSET1 and REGSET2, starting with MIN, setting
104 REGNUM to the register number and executing CODE for all registers that are
105 set in both regsets. */
106 #define EXECUTE_IF_AND_IN_REG_SET(REGSET1, REGSET2, MIN, REGNUM, RSI) \
107 EXECUTE_IF_AND_IN_BITMAP (REGSET1, REGSET2, MIN, REGNUM, RSI) \
109 /* Type we use to hold basic block counters. Should be at least
110 64bit. Although a counter cannot be negative, we use a signed
111 type, because erroneous negative counts can be generated when the
112 flow graph is manipulated by various optimizations. A signed type
113 makes those easy to detect. */
114 typedef HOST_WIDEST_INT gcov_type;
116 /* Control flow edge information. */
117 struct edge_def GTY(())
119 /* The two blocks at the ends of the edge. */
120 struct basic_block_def *src;
121 struct basic_block_def *dest;
123 /* Instructions queued on the edge. */
124 union edge_def_insns {
125 rtx GTY ((tag ("0"))) r;
126 tree GTY ((tag ("1"))) t;
127 } GTY ((desc ("ir_type ()"))) insns;
129 /* Auxiliary info specific to a pass. */
130 PTR GTY ((skip (""))) aux;
132 /* Location of any goto implicit in the edge, during tree-ssa. */
133 source_locus goto_locus;
135 int flags; /* see EDGE_* below */
136 int probability; /* biased by REG_BR_PROB_BASE */
137 gcov_type count; /* Expected number of executions calculated
138 in profile.c */
140 /* The index number corresponding to this edge in the edge vector
141 dest->preds. */
142 unsigned int dest_idx;
145 typedef struct edge_def *edge;
146 DEF_VEC_P(edge);
147 DEF_VEC_ALLOC_P(edge,gc);
149 #define EDGE_FALLTHRU 1 /* 'Straight line' flow */
150 #define EDGE_ABNORMAL 2 /* Strange flow, like computed
151 label, or eh */
152 #define EDGE_ABNORMAL_CALL 4 /* Call with abnormal exit
153 like an exception, or sibcall */
154 #define EDGE_EH 8 /* Exception throw */
155 #define EDGE_FAKE 16 /* Not a real edge (profile.c) */
156 #define EDGE_DFS_BACK 32 /* A backwards edge */
157 #define EDGE_CAN_FALLTHRU 64 /* Candidate for straight line
158 flow. */
159 #define EDGE_IRREDUCIBLE_LOOP 128 /* Part of irreducible loop. */
160 #define EDGE_SIBCALL 256 /* Edge from sibcall to exit. */
161 #define EDGE_LOOP_EXIT 512 /* Exit of a loop. */
162 #define EDGE_TRUE_VALUE 1024 /* Edge taken when controlling
163 predicate is nonzero. */
164 #define EDGE_FALSE_VALUE 2048 /* Edge taken when controlling
165 predicate is zero. */
166 #define EDGE_EXECUTABLE 4096 /* Edge is executable. Only
167 valid during SSA-CCP. */
168 #define EDGE_CROSSING 8192 /* Edge crosses between hot
169 and cold sections, when we
170 do partitioning. */
171 #define EDGE_ALL_FLAGS 16383
173 #define EDGE_COMPLEX (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH)
175 /* Counter summary from the last set of coverage counts read by
176 profile.c. */
177 extern const struct gcov_ctr_summary *profile_info;
179 /* Declared in cfgloop.h. */
180 struct loop;
181 struct loops;
183 /* Declared in tree-flow.h. */
184 struct edge_prediction;
185 struct rtl_bb_info;
187 /* A basic block is a sequence of instructions with only entry and
188 only one exit. If any one of the instructions are executed, they
189 will all be executed, and in sequence from first to last.
191 There may be COND_EXEC instructions in the basic block. The
192 COND_EXEC *instructions* will be executed -- but if the condition
193 is false the conditionally executed *expressions* will of course
194 not be executed. We don't consider the conditionally executed
195 expression (which might have side-effects) to be in a separate
196 basic block because the program counter will always be at the same
197 location after the COND_EXEC instruction, regardless of whether the
198 condition is true or not.
200 Basic blocks need not start with a label nor end with a jump insn.
201 For example, a previous basic block may just "conditionally fall"
202 into the succeeding basic block, and the last basic block need not
203 end with a jump insn. Block 0 is a descendant of the entry block.
205 A basic block beginning with two labels cannot have notes between
206 the labels.
208 Data for jump tables are stored in jump_insns that occur in no
209 basic block even though these insns can follow or precede insns in
210 basic blocks. */
212 /* Basic block information indexed by block number. */
213 struct basic_block_def GTY((chain_next ("%h.next_bb"), chain_prev ("%h.prev_bb")))
215 /* Pointers to the first and last trees of the block. */
216 tree stmt_list;
218 /* The edges into and out of the block. */
219 VEC(edge,gc) *preds;
220 VEC(edge,gc) *succs;
222 /* Auxiliary info specific to a pass. */
223 PTR GTY ((skip (""))) aux;
225 /* Innermost loop containing the block. */
226 struct loop * GTY ((skip (""))) loop_father;
228 /* The dominance and postdominance information node. */
229 struct et_node * GTY ((skip (""))) dom[2];
231 /* Previous and next blocks in the chain. */
232 struct basic_block_def *prev_bb;
233 struct basic_block_def *next_bb;
235 union basic_block_il_dependent {
236 struct rtl_bb_info * GTY ((tag ("1"))) rtl;
237 } GTY ((desc ("((%1.flags & BB_RTL) != 0)"))) il;
239 /* Chain of PHI nodes for this block. */
240 tree phi_nodes;
242 /* A list of predictions. */
243 struct edge_prediction *predictions;
245 /* Expected number of executions: calculated in profile.c. */
246 gcov_type count;
248 /* The index of this block. */
249 int index;
251 /* The loop depth of this block. */
252 int loop_depth;
254 /* Expected frequency. Normalized to be in range 0 to BB_FREQ_MAX. */
255 int frequency;
257 /* Various flags. See BB_* below. */
258 int flags;
261 struct rtl_bb_info GTY(())
263 /* The first and last insns of the block. */
264 rtx head_;
265 rtx end_;
267 /* The registers that are live on entry to this block. */
268 bitmap GTY ((skip (""))) global_live_at_start;
270 /* The registers that are live on exit from this block. */
271 bitmap GTY ((skip (""))) global_live_at_end;
273 /* In CFGlayout mode points to insn notes/jumptables to be placed just before
274 and after the block. */
275 rtx header;
276 rtx footer;
278 /* This field is used by the bb-reorder and tracer passes. */
279 int visited;
282 typedef struct basic_block_def *basic_block;
284 DEF_VEC_P(basic_block);
285 DEF_VEC_ALLOC_P(basic_block,gc);
286 DEF_VEC_ALLOC_P(basic_block,heap);
288 #define BB_FREQ_MAX 10000
290 /* Masks for basic_block.flags.
292 BB_HOT_PARTITION and BB_COLD_PARTITION should be preserved throughout
293 the compilation, so they are never cleared.
295 All other flags may be cleared by clear_bb_flags(). It is generally
296 a bad idea to rely on any flags being up-to-date. */
298 enum bb_flags
301 /* Set if insns in BB have are modified. Used for updating liveness info. */
302 BB_DIRTY = 1,
304 /* Only set on blocks that have just been created by create_bb. */
305 BB_NEW = 2,
307 /* Set by find_unreachable_blocks. Do not rely on this being set in any
308 pass. */
309 BB_REACHABLE = 4,
311 /* Set for blocks in an irreducible loop by loop analysis. */
312 BB_IRREDUCIBLE_LOOP = 8,
314 /* Set on blocks that may actually not be single-entry single-exit block. */
315 BB_SUPERBLOCK = 16,
317 /* Set on basic blocks that the scheduler should not touch. This is used
318 by SMS to prevent other schedulers from messing with the loop schedule. */
319 BB_DISABLE_SCHEDULE = 32,
321 /* Set on blocks that should be put in a hot section. */
322 BB_HOT_PARTITION = 64,
324 /* Set on blocks that should be put in a cold section. */
325 BB_COLD_PARTITION = 128,
327 /* Set on block that was duplicated. */
328 BB_DUPLICATED = 256,
330 /* Set on blocks that are in RTL format. */
331 BB_RTL = 1024,
333 /* Set on blocks that are forwarder blocks.
334 Only used in cfgcleanup.c. */
335 BB_FORWARDER_BLOCK = 2048,
337 /* Set on blocks that cannot be threaded through.
338 Only used in cfgcleanup.c. */
339 BB_NONTHREADABLE_BLOCK = 4096
342 /* Dummy flag for convenience in the hot/cold partitioning code. */
343 #define BB_UNPARTITIONED 0
345 /* Partitions, to be used when partitioning hot and cold basic blocks into
346 separate sections. */
347 #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION))
348 #define BB_SET_PARTITION(bb, part) do { \
349 basic_block bb_ = (bb); \
350 bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \
351 | (part)); \
352 } while (0)
354 #define BB_COPY_PARTITION(dstbb, srcbb) \
355 BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb))
357 /* A structure to group all the per-function control flow graph data.
358 The x_* prefixing is necessary because otherwise references to the
359 fields of this struct are interpreted as the defines for backward
360 source compatibility following the definition of this struct. */
361 struct control_flow_graph GTY(())
363 /* Block pointers for the exit and entry of a function.
364 These are always the head and tail of the basic block list. */
365 basic_block x_entry_block_ptr;
366 basic_block x_exit_block_ptr;
368 /* Index by basic block number, get basic block struct info. */
369 VEC(basic_block,gc) *x_basic_block_info;
371 /* Number of basic blocks in this flow graph. */
372 int x_n_basic_blocks;
374 /* Number of edges in this flow graph. */
375 int x_n_edges;
377 /* The first free basic block number. */
378 int x_last_basic_block;
380 /* Mapping of labels to their associated blocks. At present
381 only used for the tree CFG. */
382 VEC(basic_block,gc) *x_label_to_block_map;
384 enum profile_status {
385 PROFILE_ABSENT,
386 PROFILE_GUESSED,
387 PROFILE_READ
388 } x_profile_status;
391 /* Defines for accessing the fields of the CFG structure for function FN. */
392 #define ENTRY_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_entry_block_ptr)
393 #define EXIT_BLOCK_PTR_FOR_FUNCTION(FN) ((FN)->cfg->x_exit_block_ptr)
394 #define basic_block_info_for_function(FN) ((FN)->cfg->x_basic_block_info)
395 #define n_basic_blocks_for_function(FN) ((FN)->cfg->x_n_basic_blocks)
396 #define n_edges_for_function(FN) ((FN)->cfg->x_n_edges)
397 #define last_basic_block_for_function(FN) ((FN)->cfg->x_last_basic_block)
398 #define label_to_block_map_for_function(FN) ((FN)->cfg->x_label_to_block_map)
400 #define BASIC_BLOCK_FOR_FUNCTION(FN,N) \
401 (VEC_index (basic_block, basic_block_info_for_function(FN), (N)))
403 /* Defines for textual backward source compatibility. */
404 #define ENTRY_BLOCK_PTR (cfun->cfg->x_entry_block_ptr)
405 #define EXIT_BLOCK_PTR (cfun->cfg->x_exit_block_ptr)
406 #define basic_block_info (cfun->cfg->x_basic_block_info)
407 #define n_basic_blocks (cfun->cfg->x_n_basic_blocks)
408 #define n_edges (cfun->cfg->x_n_edges)
409 #define last_basic_block (cfun->cfg->x_last_basic_block)
410 #define label_to_block_map (cfun->cfg->x_label_to_block_map)
411 #define profile_status (cfun->cfg->x_profile_status)
413 #define BASIC_BLOCK(N) (VEC_index (basic_block, basic_block_info, (N)))
414 #define SET_BASIC_BLOCK(N,BB) (VEC_replace (basic_block, basic_block_info, (N), (BB)))
416 /* For iterating over basic blocks. */
417 #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \
418 for (BB = FROM; BB != TO; BB = BB->DIR)
420 #define FOR_EACH_BB_FN(BB, FN) \
421 FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb)
423 #define FOR_EACH_BB(BB) FOR_EACH_BB_FN (BB, cfun)
425 #define FOR_EACH_BB_REVERSE_FN(BB, FN) \
426 FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb)
428 #define FOR_EACH_BB_REVERSE(BB) FOR_EACH_BB_REVERSE_FN(BB, cfun)
430 /* For iterating over insns in basic block. */
431 #define FOR_BB_INSNS(BB, INSN) \
432 for ((INSN) = BB_HEAD (BB); \
433 (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \
434 (INSN) = NEXT_INSN (INSN))
436 #define FOR_BB_INSNS_REVERSE(BB, INSN) \
437 for ((INSN) = BB_END (BB); \
438 (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \
439 (INSN) = PREV_INSN (INSN))
441 /* Cycles through _all_ basic blocks, even the fake ones (entry and
442 exit block). */
444 #define FOR_ALL_BB(BB) \
445 for (BB = ENTRY_BLOCK_PTR; BB; BB = BB->next_bb)
447 #define FOR_ALL_BB_FN(BB, FN) \
448 for (BB = ENTRY_BLOCK_PTR_FOR_FUNCTION (FN); BB; BB = BB->next_bb)
450 extern bitmap_obstack reg_obstack;
452 /* Indexed by n, gives number of basic block that (REG n) is used in.
453 If the value is REG_BLOCK_GLOBAL (-2),
454 it means (REG n) is used in more than one basic block.
455 REG_BLOCK_UNKNOWN (-1) means it hasn't been seen yet so we don't know.
456 This information remains valid for the rest of the compilation
457 of the current function; it is used to control register allocation. */
459 #define REG_BLOCK_UNKNOWN -1
460 #define REG_BLOCK_GLOBAL -2
462 #define REG_BASIC_BLOCK(N) \
463 (VEC_index (reg_info_p, reg_n_info, N)->basic_block)
465 /* Stuff for recording basic block info. */
467 #define BB_HEAD(B) (B)->il.rtl->head_
468 #define BB_END(B) (B)->il.rtl->end_
470 /* Special block numbers [markers] for entry and exit. */
471 #define ENTRY_BLOCK (0)
472 #define EXIT_BLOCK (1)
474 /* The two blocks that are always in the cfg. */
475 #define NUM_FIXED_BLOCKS (2)
478 #define BLOCK_NUM(INSN) (BLOCK_FOR_INSN (INSN)->index + 0)
479 #define set_block_for_insn(INSN, BB) (BLOCK_FOR_INSN (INSN) = BB)
481 extern void compute_bb_for_insn (void);
482 extern unsigned int free_bb_for_insn (void);
483 extern void update_bb_for_insn (basic_block);
485 extern void free_basic_block_vars (void);
487 extern void insert_insn_on_edge (rtx, edge);
489 extern void commit_edge_insertions (void);
490 extern void commit_edge_insertions_watch_calls (void);
492 extern void remove_fake_edges (void);
493 extern void remove_fake_exit_edges (void);
494 extern void add_noreturn_fake_exit_edges (void);
495 extern void connect_infinite_loops_to_exit (void);
496 extern edge unchecked_make_edge (basic_block, basic_block, int);
497 extern edge cached_make_edge (sbitmap, basic_block, basic_block, int);
498 extern edge make_edge (basic_block, basic_block, int);
499 extern edge make_single_succ_edge (basic_block, basic_block, int);
500 extern void remove_edge (edge);
501 extern void redirect_edge_succ (edge, basic_block);
502 extern edge redirect_edge_succ_nodup (edge, basic_block);
503 extern void redirect_edge_pred (edge, basic_block);
504 extern basic_block create_basic_block_structure (rtx, rtx, rtx, basic_block);
505 extern void clear_bb_flags (void);
506 extern int post_order_compute (int *, bool);
507 extern int pre_and_rev_post_order_compute (int *, int *, bool);
508 extern int dfs_enumerate_from (basic_block, int,
509 bool (*)(basic_block, void *),
510 basic_block *, int, void *);
511 extern void compute_dominance_frontiers (bitmap *);
512 extern void dump_bb_info (basic_block, bool, bool, int, const char *, FILE *);
513 extern void dump_edge_info (FILE *, edge, int);
514 extern void brief_dump_cfg (FILE *);
515 extern void clear_edges (void);
516 extern rtx first_insn_after_basic_block_note (basic_block);
517 extern void scale_bbs_frequencies_int (basic_block *, int, int, int);
518 extern void scale_bbs_frequencies_gcov_type (basic_block *, int, gcov_type,
519 gcov_type);
521 /* Structure to group all of the information to process IF-THEN and
522 IF-THEN-ELSE blocks for the conditional execution support. This
523 needs to be in a public file in case the IFCVT macros call
524 functions passing the ce_if_block data structure. */
526 typedef struct ce_if_block
528 basic_block test_bb; /* First test block. */
529 basic_block then_bb; /* THEN block. */
530 basic_block else_bb; /* ELSE block or NULL. */
531 basic_block join_bb; /* Join THEN/ELSE blocks. */
532 basic_block last_test_bb; /* Last bb to hold && or || tests. */
533 int num_multiple_test_blocks; /* # of && and || basic blocks. */
534 int num_and_and_blocks; /* # of && blocks. */
535 int num_or_or_blocks; /* # of || blocks. */
536 int num_multiple_test_insns; /* # of insns in && and || blocks. */
537 int and_and_p; /* Complex test is &&. */
538 int num_then_insns; /* # of insns in THEN block. */
539 int num_else_insns; /* # of insns in ELSE block. */
540 int pass; /* Pass number. */
542 #ifdef IFCVT_EXTRA_FIELDS
543 IFCVT_EXTRA_FIELDS /* Any machine dependent fields. */
544 #endif
546 } ce_if_block_t;
548 /* This structure maintains an edge list vector. */
549 struct edge_list
551 int num_blocks;
552 int num_edges;
553 edge *index_to_edge;
556 /* The base value for branch probability notes and edge probabilities. */
557 #define REG_BR_PROB_BASE 10000
559 /* This is the value which indicates no edge is present. */
560 #define EDGE_INDEX_NO_EDGE -1
562 /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE
563 if there is no edge between the 2 basic blocks. */
564 #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ)))
566 /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic
567 block which is either the pred or succ end of the indexed edge. */
568 #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src)
569 #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest)
571 /* INDEX_EDGE returns a pointer to the edge. */
572 #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)])
574 /* Number of edges in the compressed edge list. */
575 #define NUM_EDGES(el) ((el)->num_edges)
577 /* BB is assumed to contain conditional jump. Return the fallthru edge. */
578 #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
579 ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1))
581 /* BB is assumed to contain conditional jump. Return the branch edge. */
582 #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \
583 ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0))
585 /* Return expected execution frequency of the edge E. */
586 #define EDGE_FREQUENCY(e) (((e)->src->frequency \
587 * (e)->probability \
588 + REG_BR_PROB_BASE / 2) \
589 / REG_BR_PROB_BASE)
591 /* Return nonzero if edge is critical. */
592 #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \
593 && EDGE_COUNT ((e)->dest->preds) >= 2)
595 #define EDGE_COUNT(ev) VEC_length (edge, (ev))
596 #define EDGE_I(ev,i) VEC_index (edge, (ev), (i))
597 #define EDGE_PRED(bb,i) VEC_index (edge, (bb)->preds, (i))
598 #define EDGE_SUCC(bb,i) VEC_index (edge, (bb)->succs, (i))
600 /* Returns true if BB has precisely one successor. */
602 static inline bool
603 single_succ_p (basic_block bb)
605 return EDGE_COUNT (bb->succs) == 1;
608 /* Returns true if BB has precisely one predecessor. */
610 static inline bool
611 single_pred_p (basic_block bb)
613 return EDGE_COUNT (bb->preds) == 1;
616 /* Returns the single successor edge of basic block BB. Aborts if
617 BB does not have exactly one successor. */
619 static inline edge
620 single_succ_edge (basic_block bb)
622 gcc_assert (single_succ_p (bb));
623 return EDGE_SUCC (bb, 0);
626 /* Returns the single predecessor edge of basic block BB. Aborts
627 if BB does not have exactly one predecessor. */
629 static inline edge
630 single_pred_edge (basic_block bb)
632 gcc_assert (single_pred_p (bb));
633 return EDGE_PRED (bb, 0);
636 /* Returns the single successor block of basic block BB. Aborts
637 if BB does not have exactly one successor. */
639 static inline basic_block
640 single_succ (basic_block bb)
642 return single_succ_edge (bb)->dest;
645 /* Returns the single predecessor block of basic block BB. Aborts
646 if BB does not have exactly one predecessor.*/
648 static inline basic_block
649 single_pred (basic_block bb)
651 return single_pred_edge (bb)->src;
654 /* Iterator object for edges. */
656 typedef struct {
657 unsigned index;
658 VEC(edge,gc) **container;
659 } edge_iterator;
661 static inline VEC(edge,gc) *
662 ei_container (edge_iterator i)
664 gcc_assert (i.container);
665 return *i.container;
668 #define ei_start(iter) ei_start_1 (&(iter))
669 #define ei_last(iter) ei_last_1 (&(iter))
671 /* Return an iterator pointing to the start of an edge vector. */
672 static inline edge_iterator
673 ei_start_1 (VEC(edge,gc) **ev)
675 edge_iterator i;
677 i.index = 0;
678 i.container = ev;
680 return i;
683 /* Return an iterator pointing to the last element of an edge
684 vector. */
685 static inline edge_iterator
686 ei_last_1 (VEC(edge,gc) **ev)
688 edge_iterator i;
690 i.index = EDGE_COUNT (*ev) - 1;
691 i.container = ev;
693 return i;
696 /* Is the iterator `i' at the end of the sequence? */
697 static inline bool
698 ei_end_p (edge_iterator i)
700 return (i.index == EDGE_COUNT (ei_container (i)));
703 /* Is the iterator `i' at one position before the end of the
704 sequence? */
705 static inline bool
706 ei_one_before_end_p (edge_iterator i)
708 return (i.index + 1 == EDGE_COUNT (ei_container (i)));
711 /* Advance the iterator to the next element. */
712 static inline void
713 ei_next (edge_iterator *i)
715 gcc_assert (i->index < EDGE_COUNT (ei_container (*i)));
716 i->index++;
719 /* Move the iterator to the previous element. */
720 static inline void
721 ei_prev (edge_iterator *i)
723 gcc_assert (i->index > 0);
724 i->index--;
727 /* Return the edge pointed to by the iterator `i'. */
728 static inline edge
729 ei_edge (edge_iterator i)
731 return EDGE_I (ei_container (i), i.index);
734 /* Return an edge pointed to by the iterator. Do it safely so that
735 NULL is returned when the iterator is pointing at the end of the
736 sequence. */
737 static inline edge
738 ei_safe_edge (edge_iterator i)
740 return !ei_end_p (i) ? ei_edge (i) : NULL;
743 /* Return 1 if we should continue to iterate. Return 0 otherwise.
744 *Edge P is set to the next edge if we are to continue to iterate
745 and NULL otherwise. */
747 static inline bool
748 ei_cond (edge_iterator ei, edge *p)
750 if (!ei_end_p (ei))
752 *p = ei_edge (ei);
753 return 1;
755 else
757 *p = NULL;
758 return 0;
762 /* This macro serves as a convenient way to iterate each edge in a
763 vector of predecessor or successor edges. It must not be used when
764 an element might be removed during the traversal, otherwise
765 elements will be missed. Instead, use a for-loop like that shown
766 in the following pseudo-code:
768 FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
770 IF (e != taken_edge)
771 remove_edge (e);
772 ELSE
773 ei_next (&ei);
777 #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \
778 for ((ITER) = ei_start ((EDGE_VEC)); \
779 ei_cond ((ITER), &(EDGE)); \
780 ei_next (&(ITER)))
782 struct edge_list * create_edge_list (void);
783 void free_edge_list (struct edge_list *);
784 void print_edge_list (FILE *, struct edge_list *);
785 void verify_edge_list (FILE *, struct edge_list *);
786 int find_edge_index (struct edge_list *, basic_block, basic_block);
787 edge find_edge (basic_block, basic_block);
790 enum update_life_extent
792 UPDATE_LIFE_LOCAL = 0,
793 UPDATE_LIFE_GLOBAL = 1,
794 UPDATE_LIFE_GLOBAL_RM_NOTES = 2
797 /* Flags for life_analysis and update_life_info. */
799 #define PROP_DEATH_NOTES 1 /* Create DEAD and UNUSED notes. */
800 #define PROP_LOG_LINKS 2 /* Create LOG_LINKS. */
801 #define PROP_REG_INFO 4 /* Update regs_ever_live et al. */
802 #define PROP_KILL_DEAD_CODE 8 /* Remove dead code. */
803 #define PROP_SCAN_DEAD_CODE 16 /* Scan for dead code. */
804 #define PROP_ALLOW_CFG_CHANGES 32 /* Allow the CFG to be changed
805 by dead code removal. */
806 #define PROP_AUTOINC 64 /* Create autoinc mem references. */
807 #define PROP_SCAN_DEAD_STORES 128 /* Scan for dead code. */
808 #define PROP_ASM_SCAN 256 /* Internal flag used within flow.c
809 to flag analysis of asms. */
810 #define PROP_DEAD_INSN 1024 /* Internal flag used within flow.c
811 to flag analysis of dead insn. */
812 #define PROP_POST_REGSTACK 2048 /* We run after reg-stack and need
813 to preserve REG_DEAD notes for
814 stack regs. */
815 #define PROP_FINAL (PROP_DEATH_NOTES | PROP_LOG_LINKS \
816 | PROP_REG_INFO | PROP_KILL_DEAD_CODE \
817 | PROP_SCAN_DEAD_CODE | PROP_AUTOINC \
818 | PROP_ALLOW_CFG_CHANGES \
819 | PROP_SCAN_DEAD_STORES)
820 #define PROP_POSTRELOAD (PROP_DEATH_NOTES \
821 | PROP_KILL_DEAD_CODE \
822 | PROP_SCAN_DEAD_CODE \
823 | PROP_SCAN_DEAD_STORES)
825 #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations
826 except for edge forwarding */
827 #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */
828 #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need
829 to care REG_DEAD notes. */
830 #define CLEANUP_UPDATE_LIFE 8 /* Keep life information up to date. */
831 #define CLEANUP_THREADING 16 /* Do jump threading. */
832 #define CLEANUP_NO_INSN_DEL 32 /* Do not try to delete trivially dead
833 insns. */
834 #define CLEANUP_CFGLAYOUT 64 /* Do cleanup in cfglayout mode. */
835 #define CLEANUP_LOG_LINKS 128 /* Update log links. */
837 /* The following are ORed in on top of the CLEANUP* flags in calls to
838 struct_equiv_block_eq. */
839 #define STRUCT_EQUIV_START 256 /* Initializes the search range. */
840 #define STRUCT_EQUIV_RERUN 512 /* Rerun to find register use in
841 found equivalence. */
842 #define STRUCT_EQUIV_FINAL 1024 /* Make any changes necessary to get
843 actual equivalence. */
844 #define STRUCT_EQUIV_NEED_FULL_BLOCK 2048 /* struct_equiv_block_eq is required
845 to match only full blocks */
846 #define STRUCT_EQUIV_MATCH_JUMPS 4096 /* Also include the jumps at the end of the block in the comparison. */
848 extern void life_analysis (int);
849 extern int update_life_info (sbitmap, enum update_life_extent, int);
850 extern int update_life_info_in_dirty_blocks (enum update_life_extent, int);
851 extern int count_or_remove_death_notes (sbitmap, int);
852 extern int propagate_block (basic_block, regset, regset, regset, int);
854 struct propagate_block_info;
855 extern rtx propagate_one_insn (struct propagate_block_info *, rtx);
856 extern struct propagate_block_info *init_propagate_block_info
857 (basic_block, regset, regset, regset, int);
858 extern void free_propagate_block_info (struct propagate_block_info *);
860 /* In lcm.c */
861 extern struct edge_list *pre_edge_lcm (int, sbitmap *, sbitmap *,
862 sbitmap *, sbitmap *, sbitmap **,
863 sbitmap **);
864 extern struct edge_list *pre_edge_rev_lcm (int, sbitmap *,
865 sbitmap *, sbitmap *,
866 sbitmap *, sbitmap **,
867 sbitmap **);
868 extern void compute_available (sbitmap *, sbitmap *, sbitmap *, sbitmap *);
870 /* In predict.c */
871 extern void expected_value_to_br_prob (void);
872 extern bool maybe_hot_bb_p (basic_block);
873 extern bool probably_cold_bb_p (basic_block);
874 extern bool probably_never_executed_bb_p (basic_block);
875 extern bool tree_predicted_by_p (basic_block, enum br_predictor);
876 extern bool rtl_predicted_by_p (basic_block, enum br_predictor);
877 extern void tree_predict_edge (edge, enum br_predictor, int);
878 extern void rtl_predict_edge (edge, enum br_predictor, int);
879 extern void predict_edge_def (edge, enum br_predictor, enum prediction);
880 extern void guess_outgoing_edge_probabilities (basic_block);
881 extern void remove_predictions_associated_with_edge (edge);
882 extern bool edge_probability_reliable_p (edge);
883 extern bool br_prob_note_reliable_p (rtx);
885 /* In flow.c */
886 extern void init_flow (void);
887 extern void debug_bb (basic_block);
888 extern basic_block debug_bb_n (int);
889 extern void dump_regset (regset, FILE *);
890 extern void debug_regset (regset);
891 extern void allocate_reg_life_data (void);
892 extern void expunge_block (basic_block);
893 extern void link_block (basic_block, basic_block);
894 extern void unlink_block (basic_block);
895 extern void compact_blocks (void);
896 extern basic_block alloc_block (void);
897 extern void find_unreachable_blocks (void);
898 extern int delete_noop_moves (void);
899 extern basic_block force_nonfallthru (edge);
900 extern rtx block_label (basic_block);
901 extern bool forwarder_block_p (basic_block);
902 extern bool purge_all_dead_edges (void);
903 extern bool purge_dead_edges (basic_block);
904 extern void find_many_sub_basic_blocks (sbitmap);
905 extern void rtl_make_eh_edge (sbitmap, basic_block, rtx);
906 extern bool can_fallthru (basic_block, basic_block);
907 extern bool could_fall_through (basic_block, basic_block);
908 extern void flow_nodes_print (const char *, const sbitmap, FILE *);
909 extern void flow_edge_list_print (const char *, const edge *, int, FILE *);
910 extern void alloc_aux_for_block (basic_block, int);
911 extern void alloc_aux_for_blocks (int);
912 extern void clear_aux_for_blocks (void);
913 extern void free_aux_for_blocks (void);
914 extern void alloc_aux_for_edge (edge, int);
915 extern void alloc_aux_for_edges (int);
916 extern void clear_aux_for_edges (void);
917 extern void free_aux_for_edges (void);
918 extern void find_basic_blocks (rtx);
919 extern bool cleanup_cfg (int);
920 extern bool delete_unreachable_blocks (void);
921 extern bool merge_seq_blocks (void);
923 typedef struct conflict_graph_def *conflict_graph;
925 /* Callback function when enumerating conflicts. The arguments are
926 the smaller and larger regno in the conflict. Returns zero if
927 enumeration is to continue, nonzero to halt enumeration. */
928 typedef int (*conflict_graph_enum_fn) (int, int, void *);
931 /* Prototypes of operations on conflict graphs. */
933 extern conflict_graph conflict_graph_new
934 (int);
935 extern void conflict_graph_delete (conflict_graph);
936 extern int conflict_graph_add (conflict_graph, int, int);
937 extern int conflict_graph_conflict_p (conflict_graph, int, int);
938 extern void conflict_graph_enum (conflict_graph, int, conflict_graph_enum_fn,
939 void *);
940 extern void conflict_graph_merge_regs (conflict_graph, int, int);
941 extern void conflict_graph_print (conflict_graph, FILE*);
942 extern bool mark_dfs_back_edges (void);
943 extern void set_edge_can_fallthru_flag (void);
944 extern void update_br_prob_note (basic_block);
945 extern void fixup_abnormal_edges (void);
946 extern bool inside_basic_block_p (rtx);
947 extern bool control_flow_insn_p (rtx);
948 extern rtx get_last_bb_insn (basic_block);
950 /* In bb-reorder.c */
951 extern void reorder_basic_blocks (unsigned int);
953 /* In dominance.c */
955 enum cdi_direction
957 CDI_DOMINATORS,
958 CDI_POST_DOMINATORS
961 enum dom_state
963 DOM_NONE, /* Not computed at all. */
964 DOM_NO_FAST_QUERY, /* The data is OK, but the fast query data are not usable. */
965 DOM_OK /* Everything is ok. */
968 extern enum dom_state dom_computed[2];
970 extern bool dom_info_available_p (enum cdi_direction);
971 extern void calculate_dominance_info (enum cdi_direction);
972 extern void free_dominance_info (enum cdi_direction);
973 extern basic_block nearest_common_dominator (enum cdi_direction,
974 basic_block, basic_block);
975 extern basic_block nearest_common_dominator_for_set (enum cdi_direction,
976 bitmap);
977 extern void set_immediate_dominator (enum cdi_direction, basic_block,
978 basic_block);
979 extern basic_block get_immediate_dominator (enum cdi_direction, basic_block);
980 extern bool dominated_by_p (enum cdi_direction, basic_block, basic_block);
981 extern int get_dominated_by (enum cdi_direction, basic_block, basic_block **);
982 extern unsigned get_dominated_by_region (enum cdi_direction, basic_block *,
983 unsigned, basic_block *);
984 extern void add_to_dominance_info (enum cdi_direction, basic_block);
985 extern void delete_from_dominance_info (enum cdi_direction, basic_block);
986 basic_block recount_dominator (enum cdi_direction, basic_block);
987 extern void redirect_immediate_dominators (enum cdi_direction, basic_block,
988 basic_block);
989 extern void iterate_fix_dominators (enum cdi_direction, basic_block *, int);
990 extern void verify_dominators (enum cdi_direction);
991 extern basic_block first_dom_son (enum cdi_direction, basic_block);
992 extern basic_block next_dom_son (enum cdi_direction, basic_block);
993 unsigned bb_dom_dfs_in (enum cdi_direction, basic_block);
994 unsigned bb_dom_dfs_out (enum cdi_direction, basic_block);
996 extern edge try_redirect_by_replacing_jump (edge, basic_block, bool);
997 extern void break_superblocks (void);
998 extern void check_bb_profile (basic_block, FILE *);
999 extern void update_bb_profile_for_threading (basic_block, int, gcov_type, edge);
1000 extern void init_rtl_bb_info (basic_block);
1002 extern void initialize_original_copy_tables (void);
1003 extern void free_original_copy_tables (void);
1004 extern void set_bb_original (basic_block, basic_block);
1005 extern basic_block get_bb_original (basic_block);
1006 extern void set_bb_copy (basic_block, basic_block);
1007 extern basic_block get_bb_copy (basic_block);
1009 extern rtx insert_insn_end_bb_new (rtx, basic_block);
1011 #include "cfghooks.h"
1013 /* In struct-equiv.c */
1015 /* Constants used to size arrays in struct equiv_info (currently only one).
1016 When these limits are exceeded, struct_equiv returns zero.
1017 The maximum number of pseudo registers that are different in the two blocks,
1018 but appear in equivalent places and are dead at the end (or where one of
1019 a pair is dead at the end). */
1020 #define STRUCT_EQUIV_MAX_LOCAL 16
1021 /* The maximum number of references to an input register that struct_equiv
1022 can handle. */
1024 /* Structure used to track state during struct_equiv that can be rolled
1025 back when we find we can't match an insn, or if we want to match part
1026 of it in a different way.
1027 This information pertains to the pair of partial blocks that has been
1028 matched so far. Since this pair is structurally equivalent, this is
1029 conceptually just one partial block expressed in two potentially
1030 different ways. */
1031 struct struct_equiv_checkpoint
1033 int ninsns; /* Insns are matched so far. */
1034 int local_count; /* Number of block-local registers. */
1035 int input_count; /* Number of inputs to the block. */
1037 /* X_START and Y_START are the first insns (in insn stream order)
1038 of the partial blocks that have been considered for matching so far.
1039 Since we are scanning backwards, they are also the instructions that
1040 are currently considered - or the last ones that have been considered -
1041 for matching (Unless we tracked back to these because a preceding
1042 instruction failed to match). */
1043 rtx x_start, y_start;
1045 /* INPUT_VALID indicates if we have actually set up X_INPUT / Y_INPUT
1046 during the current pass; we keep X_INPUT / Y_INPUT around between passes
1047 so that we can match REG_EQUAL / REG_EQUIV notes referring to these. */
1048 bool input_valid;
1050 /* Some information would be expensive to exactly checkpoint, so we
1051 merely increment VERSION any time information about local
1052 registers, inputs and/or register liveness changes. When backtracking,
1053 it is decremented for changes that can be undone, and if a discrepancy
1054 remains, NEED_RERUN in the relevant struct equiv_info is set to indicate
1055 that a new pass should be made over the entire block match to get
1056 accurate register information. */
1057 int version;
1060 /* A struct equiv_info is used to pass information to struct_equiv and
1061 to gather state while two basic blocks are checked for structural
1062 equivalence. */
1064 struct equiv_info
1066 /* Fields set up by the caller to struct_equiv_block_eq */
1068 basic_block x_block, y_block; /* The two blocks being matched. */
1070 /* MODE carries the mode bits from cleanup_cfg if we are called from
1071 try_crossjump_to_edge, and additionally it carries the
1072 STRUCT_EQUIV_* bits described above. */
1073 int mode;
1075 /* INPUT_COST is the cost that adding an extra input to the matched blocks
1076 is supposed to have, and is taken into account when considering if the
1077 matched sequence should be extended backwards. input_cost < 0 means
1078 don't accept any inputs at all. */
1079 int input_cost;
1082 /* Fields to track state inside of struct_equiv_block_eq. Some of these
1083 are also outputs. */
1085 /* X_INPUT and Y_INPUT are used by struct_equiv to record a register that
1086 is used as an input parameter, i.e. where different registers are used
1087 as sources. This is only used for a register that is live at the end
1088 of the blocks, or in some identical code at the end of the blocks;
1089 Inputs that are dead at the end go into X_LOCAL / Y_LOCAL. */
1090 rtx x_input, y_input;
1091 /* When a previous pass has identified a valid input, INPUT_REG is set
1092 by struct_equiv_block_eq, and it is henceforth replaced in X_BLOCK
1093 for the input. */
1094 rtx input_reg;
1096 /* COMMON_LIVE keeps track of the registers which are currently live
1097 (as we scan backwards from the end) and have the same numbers in both
1098 blocks. N.B. a register that is in common_live is unsuitable to become
1099 a local reg. */
1100 regset common_live;
1101 /* Likewise, X_LOCAL_LIVE / Y_LOCAL_LIVE keep track of registers that are
1102 local to one of the blocks; these registers must not be accepted as
1103 identical when encountered in both blocks. */
1104 regset x_local_live, y_local_live;
1106 /* EQUIV_USED indicates for which insns a REG_EQUAL or REG_EQUIV note is
1107 being used, to avoid having to backtrack in the next pass, so that we
1108 get accurate life info for this insn then. For each such insn,
1109 the bit with the number corresponding to the CUR.NINSNS value at the
1110 time of scanning is set. */
1111 bitmap equiv_used;
1113 /* Current state that can be saved & restored easily. */
1114 struct struct_equiv_checkpoint cur;
1115 /* BEST_MATCH is used to store the best match so far, weighing the
1116 cost of matched insns COSTS_N_INSNS (CUR.NINSNS) against the cost
1117 CUR.INPUT_COUNT * INPUT_COST of setting up the inputs. */
1118 struct struct_equiv_checkpoint best_match;
1119 /* If a checkpoint restore failed, or an input conflict newly arises,
1120 NEED_RERUN is set. This has to be tested by the caller to re-run
1121 the comparison if the match appears otherwise sound. The state kept in
1122 x_start, y_start, equiv_used and check_input_conflict ensures that
1123 we won't loop indefinitely. */
1124 bool need_rerun;
1125 /* If there is indication of an input conflict at the end,
1126 CHECK_INPUT_CONFLICT is set so that we'll check for input conflicts
1127 for each insn in the next pass. This is needed so that we won't discard
1128 a partial match if there is a longer match that has to be abandoned due
1129 to an input conflict. */
1130 bool check_input_conflict;
1131 /* HAD_INPUT_CONFLICT is set if CHECK_INPUT_CONFLICT was already set and we
1132 have passed a point where there were multiple dying inputs. This helps
1133 us decide if we should set check_input_conflict for the next pass. */
1134 bool had_input_conflict;
1136 /* LIVE_UPDATE controls if we want to change any life info at all. We
1137 set it to false during REG_EQUAL / REG_EUQIV note comparison of the final
1138 pass so that we don't introduce new registers just for the note; if we
1139 can't match the notes without the current register information, we drop
1140 them. */
1141 bool live_update;
1143 /* X_LOCAL and Y_LOCAL are used to gather register numbers of register pairs
1144 that are local to X_BLOCK and Y_BLOCK, with CUR.LOCAL_COUNT being the index
1145 to the next free entry. */
1146 rtx x_local[STRUCT_EQUIV_MAX_LOCAL], y_local[STRUCT_EQUIV_MAX_LOCAL];
1147 /* LOCAL_RVALUE is nonzero if the corresponding X_LOCAL / Y_LOCAL entry
1148 was a source operand (including STRICT_LOW_PART) for the last invocation
1149 of struct_equiv mentioning it, zero if it was a destination-only operand.
1150 Since we are scanning backwards, this means the register is input/local
1151 for the (partial) block scanned so far. */
1152 bool local_rvalue[STRUCT_EQUIV_MAX_LOCAL];
1155 /* Additional fields that are computed for the convenience of the caller. */
1157 /* DYING_INPUTS is set to the number of local registers that turn out
1158 to be inputs to the (possibly partial) block. */
1159 int dying_inputs;
1160 /* X_END and Y_END are the last insns in X_BLOCK and Y_BLOCK, respectively,
1161 that are being compared. A final jump insn will not be included. */
1162 rtx x_end, y_end;
1164 /* If we are matching tablejumps, X_LABEL in X_BLOCK corresponds to
1165 Y_LABEL in Y_BLOCK. */
1166 rtx x_label, y_label;
1170 extern bool insns_match_p (rtx, rtx, struct equiv_info *);
1171 extern int struct_equiv_block_eq (int, struct equiv_info *);
1172 extern bool struct_equiv_init (int, struct equiv_info *);
1173 extern bool rtx_equiv_p (rtx *, rtx, int, struct equiv_info *);
1175 /* In cfgrtl.c */
1176 extern bool condjump_equiv_p (struct equiv_info *, bool);
1178 /* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */
1179 static inline bool bb_has_eh_pred (basic_block bb)
1181 edge e;
1182 edge_iterator ei;
1184 FOR_EACH_EDGE (e, ei, bb->preds)
1186 if (e->flags & EDGE_EH)
1187 return true;
1189 return false;
1192 #endif /* GCC_BASIC_BLOCK_H */