1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
26 #include "stor-layout.h"
27 #include "stringpool.h"
29 #include "print-tree.h"
37 #include "hard-reg-set.h"
41 #include "diagnostic-core.h"
43 #include "langhooks.h"
48 #include "plugin-api.h"
51 #include "tree-inline.h"
52 #include "tree-dump.h"
55 /* Data type for the expressions representing sizes of data types.
56 It is the first integer type laid out. */
57 tree sizetype_tab
[(int) stk_type_kind_last
];
59 /* If nonzero, this is an upper limit on alignment of structure fields.
60 The value is measured in bits. */
61 unsigned int maximum_field_alignment
= TARGET_DEFAULT_PACK_STRUCT
* BITS_PER_UNIT
;
63 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
64 in the address spaces' address_mode, not pointer_mode. Set only by
65 internal_reference_types called only by a front end. */
66 static int reference_types_internal
= 0;
68 static tree
self_referential_size (tree
);
69 static void finalize_record_size (record_layout_info
);
70 static void finalize_type_size (tree
);
71 static void place_union_field (record_layout_info
, tree
);
72 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
73 static int excess_unit_span (HOST_WIDE_INT
, HOST_WIDE_INT
, HOST_WIDE_INT
,
76 extern void debug_rli (record_layout_info
);
78 /* Show that REFERENCE_TYPES are internal and should use address_mode.
79 Called only by front end. */
82 internal_reference_types (void)
84 reference_types_internal
= 1;
87 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
88 to serve as the actual size-expression for a type or decl. */
91 variable_size (tree size
)
94 if (TREE_CONSTANT (size
))
97 /* If the size is self-referential, we can't make a SAVE_EXPR (see
98 save_expr for the rationale). But we can do something else. */
99 if (CONTAINS_PLACEHOLDER_P (size
))
100 return self_referential_size (size
);
102 /* If we are in the global binding level, we can't make a SAVE_EXPR
103 since it may end up being shared across functions, so it is up
104 to the front-end to deal with this case. */
105 if (lang_hooks
.decls
.global_bindings_p ())
108 return save_expr (size
);
111 /* An array of functions used for self-referential size computation. */
112 static GTY(()) vec
<tree
, va_gc
> *size_functions
;
114 /* Similar to copy_tree_r but do not copy component references involving
115 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
116 and substituted in substitute_in_expr. */
119 copy_self_referential_tree_r (tree
*tp
, int *walk_subtrees
, void *data
)
121 enum tree_code code
= TREE_CODE (*tp
);
123 /* Stop at types, decls, constants like copy_tree_r. */
124 if (TREE_CODE_CLASS (code
) == tcc_type
125 || TREE_CODE_CLASS (code
) == tcc_declaration
126 || TREE_CODE_CLASS (code
) == tcc_constant
)
132 /* This is the pattern built in ada/make_aligning_type. */
133 else if (code
== ADDR_EXPR
134 && TREE_CODE (TREE_OPERAND (*tp
, 0)) == PLACEHOLDER_EXPR
)
140 /* Default case: the component reference. */
141 else if (code
== COMPONENT_REF
)
144 for (inner
= TREE_OPERAND (*tp
, 0);
145 REFERENCE_CLASS_P (inner
);
146 inner
= TREE_OPERAND (inner
, 0))
149 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
)
156 /* We're not supposed to have them in self-referential size trees
157 because we wouldn't properly control when they are evaluated.
158 However, not creating superfluous SAVE_EXPRs requires accurate
159 tracking of readonly-ness all the way down to here, which we
160 cannot always guarantee in practice. So punt in this case. */
161 else if (code
== SAVE_EXPR
)
162 return error_mark_node
;
164 else if (code
== STATEMENT_LIST
)
167 return copy_tree_r (tp
, walk_subtrees
, data
);
170 /* Given a SIZE expression that is self-referential, return an equivalent
171 expression to serve as the actual size expression for a type. */
174 self_referential_size (tree size
)
176 static unsigned HOST_WIDE_INT fnno
= 0;
177 vec
<tree
> self_refs
= vNULL
;
178 tree param_type_list
= NULL
, param_decl_list
= NULL
;
179 tree t
, ref
, return_type
, fntype
, fnname
, fndecl
;
182 vec
<tree
, va_gc
> *args
= NULL
;
184 /* Do not factor out simple operations. */
185 t
= skip_simple_constant_arithmetic (size
);
186 if (TREE_CODE (t
) == CALL_EXPR
)
189 /* Collect the list of self-references in the expression. */
190 find_placeholder_in_expr (size
, &self_refs
);
191 gcc_assert (self_refs
.length () > 0);
193 /* Obtain a private copy of the expression. */
195 if (walk_tree (&t
, copy_self_referential_tree_r
, NULL
, NULL
) != NULL_TREE
)
199 /* Build the parameter and argument lists in parallel; also
200 substitute the former for the latter in the expression. */
201 vec_alloc (args
, self_refs
.length ());
202 FOR_EACH_VEC_ELT (self_refs
, i
, ref
)
204 tree subst
, param_name
, param_type
, param_decl
;
208 /* We shouldn't have true variables here. */
209 gcc_assert (TREE_READONLY (ref
));
212 /* This is the pattern built in ada/make_aligning_type. */
213 else if (TREE_CODE (ref
) == ADDR_EXPR
)
215 /* Default case: the component reference. */
217 subst
= TREE_OPERAND (ref
, 1);
219 sprintf (buf
, "p%d", i
);
220 param_name
= get_identifier (buf
);
221 param_type
= TREE_TYPE (ref
);
223 = build_decl (input_location
, PARM_DECL
, param_name
, param_type
);
224 DECL_ARG_TYPE (param_decl
) = param_type
;
225 DECL_ARTIFICIAL (param_decl
) = 1;
226 TREE_READONLY (param_decl
) = 1;
228 size
= substitute_in_expr (size
, subst
, param_decl
);
230 param_type_list
= tree_cons (NULL_TREE
, param_type
, param_type_list
);
231 param_decl_list
= chainon (param_decl
, param_decl_list
);
232 args
->quick_push (ref
);
235 self_refs
.release ();
237 /* Append 'void' to indicate that the number of parameters is fixed. */
238 param_type_list
= tree_cons (NULL_TREE
, void_type_node
, param_type_list
);
240 /* The 3 lists have been created in reverse order. */
241 param_type_list
= nreverse (param_type_list
);
242 param_decl_list
= nreverse (param_decl_list
);
244 /* Build the function type. */
245 return_type
= TREE_TYPE (size
);
246 fntype
= build_function_type (return_type
, param_type_list
);
248 /* Build the function declaration. */
249 sprintf (buf
, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED
, fnno
++);
250 fnname
= get_file_function_name (buf
);
251 fndecl
= build_decl (input_location
, FUNCTION_DECL
, fnname
, fntype
);
252 for (t
= param_decl_list
; t
; t
= DECL_CHAIN (t
))
253 DECL_CONTEXT (t
) = fndecl
;
254 DECL_ARGUMENTS (fndecl
) = param_decl_list
;
256 = build_decl (input_location
, RESULT_DECL
, 0, return_type
);
257 DECL_CONTEXT (DECL_RESULT (fndecl
)) = fndecl
;
259 /* The function has been created by the compiler and we don't
260 want to emit debug info for it. */
261 DECL_ARTIFICIAL (fndecl
) = 1;
262 DECL_IGNORED_P (fndecl
) = 1;
264 /* It is supposed to be "const" and never throw. */
265 TREE_READONLY (fndecl
) = 1;
266 TREE_NOTHROW (fndecl
) = 1;
268 /* We want it to be inlined when this is deemed profitable, as
269 well as discarded if every call has been integrated. */
270 DECL_DECLARED_INLINE_P (fndecl
) = 1;
272 /* It is made up of a unique return statement. */
273 DECL_INITIAL (fndecl
) = make_node (BLOCK
);
274 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl
)) = fndecl
;
275 t
= build2 (MODIFY_EXPR
, return_type
, DECL_RESULT (fndecl
), size
);
276 DECL_SAVED_TREE (fndecl
) = build1 (RETURN_EXPR
, void_type_node
, t
);
277 TREE_STATIC (fndecl
) = 1;
279 /* Put it onto the list of size functions. */
280 vec_safe_push (size_functions
, fndecl
);
282 /* Replace the original expression with a call to the size function. */
283 return build_call_expr_loc_vec (UNKNOWN_LOCATION
, fndecl
, args
);
286 /* Take, queue and compile all the size functions. It is essential that
287 the size functions be gimplified at the very end of the compilation
288 in order to guarantee transparent handling of self-referential sizes.
289 Otherwise the GENERIC inliner would not be able to inline them back
290 at each of their call sites, thus creating artificial non-constant
291 size expressions which would trigger nasty problems later on. */
294 finalize_size_functions (void)
299 for (i
= 0; size_functions
&& size_functions
->iterate (i
, &fndecl
); i
++)
301 allocate_struct_function (fndecl
, false);
303 dump_function (TDI_original
, fndecl
);
304 gimplify_function_tree (fndecl
);
305 dump_function (TDI_generic
, fndecl
);
306 cgraph_node::finalize_function (fndecl
, false);
309 vec_free (size_functions
);
312 /* Return the machine mode to use for a nonscalar of SIZE bits. The
313 mode must be in class MCLASS, and have exactly that many value bits;
314 it may have padding as well. If LIMIT is nonzero, modes of wider
315 than MAX_FIXED_MODE_SIZE will not be used. */
318 mode_for_size (unsigned int size
, enum mode_class mclass
, int limit
)
323 if (limit
&& size
> MAX_FIXED_MODE_SIZE
)
326 /* Get the first mode which has this size, in the specified class. */
327 for (mode
= GET_CLASS_NARROWEST_MODE (mclass
); mode
!= VOIDmode
;
328 mode
= GET_MODE_WIDER_MODE (mode
))
329 if (GET_MODE_PRECISION (mode
) == size
)
332 if (mclass
== MODE_INT
|| mclass
== MODE_PARTIAL_INT
)
333 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
334 if (int_n_data
[i
].bitsize
== size
335 && int_n_enabled_p
[i
])
336 return int_n_data
[i
].m
;
341 /* Similar, except passed a tree node. */
344 mode_for_size_tree (const_tree size
, enum mode_class mclass
, int limit
)
346 unsigned HOST_WIDE_INT uhwi
;
349 if (!tree_fits_uhwi_p (size
))
351 uhwi
= tree_to_uhwi (size
);
355 return mode_for_size (ui
, mclass
, limit
);
358 /* Similar, but never return BLKmode; return the narrowest mode that
359 contains at least the requested number of value bits. */
362 smallest_mode_for_size (unsigned int size
, enum mode_class mclass
)
364 machine_mode mode
= VOIDmode
;
367 /* Get the first mode which has at least this size, in the
369 for (mode
= GET_CLASS_NARROWEST_MODE (mclass
); mode
!= VOIDmode
;
370 mode
= GET_MODE_WIDER_MODE (mode
))
371 if (GET_MODE_PRECISION (mode
) >= size
)
374 if (mclass
== MODE_INT
|| mclass
== MODE_PARTIAL_INT
)
375 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
376 if (int_n_data
[i
].bitsize
>= size
377 && int_n_data
[i
].bitsize
< GET_MODE_PRECISION (mode
)
378 && int_n_enabled_p
[i
])
379 mode
= int_n_data
[i
].m
;
381 if (mode
== VOIDmode
)
387 /* Find an integer mode of the exact same size, or BLKmode on failure. */
390 int_mode_for_mode (machine_mode mode
)
392 switch (GET_MODE_CLASS (mode
))
395 case MODE_PARTIAL_INT
:
398 case MODE_COMPLEX_INT
:
399 case MODE_COMPLEX_FLOAT
:
401 case MODE_DECIMAL_FLOAT
:
402 case MODE_VECTOR_INT
:
403 case MODE_VECTOR_FLOAT
:
408 case MODE_VECTOR_FRACT
:
409 case MODE_VECTOR_ACCUM
:
410 case MODE_VECTOR_UFRACT
:
411 case MODE_VECTOR_UACCUM
:
412 mode
= mode_for_size (GET_MODE_BITSIZE (mode
), MODE_INT
, 0);
419 /* ... fall through ... */
429 /* Find a mode that can be used for efficient bitwise operations on MODE.
430 Return BLKmode if no such mode exists. */
433 bitwise_mode_for_mode (machine_mode mode
)
435 /* Quick exit if we already have a suitable mode. */
436 unsigned int bitsize
= GET_MODE_BITSIZE (mode
);
437 if (SCALAR_INT_MODE_P (mode
) && bitsize
<= MAX_FIXED_MODE_SIZE
)
440 /* Reuse the sanity checks from int_mode_for_mode. */
441 gcc_checking_assert ((int_mode_for_mode (mode
), true));
443 /* Try to replace complex modes with complex modes. In general we
444 expect both components to be processed independently, so we only
445 care whether there is a register for the inner mode. */
446 if (COMPLEX_MODE_P (mode
))
448 machine_mode trial
= mode
;
449 if (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
)
450 trial
= mode_for_size (bitsize
, MODE_COMPLEX_INT
, false);
452 && have_regs_of_mode
[GET_MODE_INNER (trial
)])
456 /* Try to replace vector modes with vector modes. Also try using vector
457 modes if an integer mode would be too big. */
458 if (VECTOR_MODE_P (mode
) || bitsize
> MAX_FIXED_MODE_SIZE
)
460 machine_mode trial
= mode
;
461 if (GET_MODE_CLASS (mode
) != MODE_VECTOR_INT
)
462 trial
= mode_for_size (bitsize
, MODE_VECTOR_INT
, 0);
464 && have_regs_of_mode
[trial
]
465 && targetm
.vector_mode_supported_p (trial
))
469 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
470 return mode_for_size (bitsize
, MODE_INT
, true);
473 /* Find a type that can be used for efficient bitwise operations on MODE.
474 Return null if no such mode exists. */
477 bitwise_type_for_mode (machine_mode mode
)
479 mode
= bitwise_mode_for_mode (mode
);
483 unsigned int inner_size
= GET_MODE_UNIT_BITSIZE (mode
);
484 tree inner_type
= build_nonstandard_integer_type (inner_size
, true);
486 if (VECTOR_MODE_P (mode
))
487 return build_vector_type_for_mode (inner_type
, mode
);
489 if (COMPLEX_MODE_P (mode
))
490 return build_complex_type (inner_type
);
492 gcc_checking_assert (GET_MODE_INNER (mode
) == VOIDmode
);
496 /* Find a mode that is suitable for representing a vector with
497 NUNITS elements of mode INNERMODE. Returns BLKmode if there
498 is no suitable mode. */
501 mode_for_vector (machine_mode innermode
, unsigned nunits
)
505 /* First, look for a supported vector type. */
506 if (SCALAR_FLOAT_MODE_P (innermode
))
507 mode
= MIN_MODE_VECTOR_FLOAT
;
508 else if (SCALAR_FRACT_MODE_P (innermode
))
509 mode
= MIN_MODE_VECTOR_FRACT
;
510 else if (SCALAR_UFRACT_MODE_P (innermode
))
511 mode
= MIN_MODE_VECTOR_UFRACT
;
512 else if (SCALAR_ACCUM_MODE_P (innermode
))
513 mode
= MIN_MODE_VECTOR_ACCUM
;
514 else if (SCALAR_UACCUM_MODE_P (innermode
))
515 mode
= MIN_MODE_VECTOR_UACCUM
;
517 mode
= MIN_MODE_VECTOR_INT
;
519 /* Do not check vector_mode_supported_p here. We'll do that
520 later in vector_type_mode. */
521 for (; mode
!= VOIDmode
; mode
= GET_MODE_WIDER_MODE (mode
))
522 if (GET_MODE_NUNITS (mode
) == nunits
523 && GET_MODE_INNER (mode
) == innermode
)
526 /* For integers, try mapping it to a same-sized scalar mode. */
528 && GET_MODE_CLASS (innermode
) == MODE_INT
)
529 mode
= mode_for_size (nunits
* GET_MODE_BITSIZE (innermode
),
533 || (GET_MODE_CLASS (mode
) == MODE_INT
534 && !have_regs_of_mode
[mode
]))
540 /* Return the alignment of MODE. This will be bounded by 1 and
541 BIGGEST_ALIGNMENT. */
544 get_mode_alignment (machine_mode mode
)
546 return MIN (BIGGEST_ALIGNMENT
, MAX (1, mode_base_align
[mode
]*BITS_PER_UNIT
));
549 /* Return the precision of the mode, or for a complex or vector mode the
550 precision of the mode of its elements. */
553 element_precision (machine_mode mode
)
555 if (COMPLEX_MODE_P (mode
) || VECTOR_MODE_P (mode
))
556 mode
= GET_MODE_INNER (mode
);
558 return GET_MODE_PRECISION (mode
);
561 /* Return the natural mode of an array, given that it is SIZE bytes in
562 total and has elements of type ELEM_TYPE. */
565 mode_for_array (tree elem_type
, tree size
)
568 unsigned HOST_WIDE_INT int_size
, int_elem_size
;
571 /* One-element arrays get the component type's mode. */
572 elem_size
= TYPE_SIZE (elem_type
);
573 if (simple_cst_equal (size
, elem_size
))
574 return TYPE_MODE (elem_type
);
577 if (tree_fits_uhwi_p (size
) && tree_fits_uhwi_p (elem_size
))
579 int_size
= tree_to_uhwi (size
);
580 int_elem_size
= tree_to_uhwi (elem_size
);
581 if (int_elem_size
> 0
582 && int_size
% int_elem_size
== 0
583 && targetm
.array_mode_supported_p (TYPE_MODE (elem_type
),
584 int_size
/ int_elem_size
))
587 return mode_for_size_tree (size
, MODE_INT
, limit_p
);
590 /* Subroutine of layout_decl: Force alignment required for the data type.
591 But if the decl itself wants greater alignment, don't override that. */
594 do_type_align (tree type
, tree decl
)
596 if (TYPE_ALIGN (type
) > DECL_ALIGN (decl
))
598 DECL_ALIGN (decl
) = TYPE_ALIGN (type
);
599 if (TREE_CODE (decl
) == FIELD_DECL
)
600 DECL_USER_ALIGN (decl
) = TYPE_USER_ALIGN (type
);
604 /* Set the size, mode and alignment of a ..._DECL node.
605 TYPE_DECL does need this for C++.
606 Note that LABEL_DECL and CONST_DECL nodes do not need this,
607 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
608 Don't call layout_decl for them.
610 KNOWN_ALIGN is the amount of alignment we can assume this
611 decl has with no special effort. It is relevant only for FIELD_DECLs
612 and depends on the previous fields.
613 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
614 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
615 the record will be aligned to suit. */
618 layout_decl (tree decl
, unsigned int known_align
)
620 tree type
= TREE_TYPE (decl
);
621 enum tree_code code
= TREE_CODE (decl
);
623 location_t loc
= DECL_SOURCE_LOCATION (decl
);
625 if (code
== CONST_DECL
)
628 gcc_assert (code
== VAR_DECL
|| code
== PARM_DECL
|| code
== RESULT_DECL
629 || code
== TYPE_DECL
||code
== FIELD_DECL
);
631 rtl
= DECL_RTL_IF_SET (decl
);
633 if (type
== error_mark_node
)
634 type
= void_type_node
;
636 /* Usually the size and mode come from the data type without change,
637 however, the front-end may set the explicit width of the field, so its
638 size may not be the same as the size of its type. This happens with
639 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
640 also happens with other fields. For example, the C++ front-end creates
641 zero-sized fields corresponding to empty base classes, and depends on
642 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
643 size in bytes from the size in bits. If we have already set the mode,
644 don't set it again since we can be called twice for FIELD_DECLs. */
646 DECL_UNSIGNED (decl
) = TYPE_UNSIGNED (type
);
647 if (DECL_MODE (decl
) == VOIDmode
)
648 DECL_MODE (decl
) = TYPE_MODE (type
);
650 if (DECL_SIZE (decl
) == 0)
652 DECL_SIZE (decl
) = TYPE_SIZE (type
);
653 DECL_SIZE_UNIT (decl
) = TYPE_SIZE_UNIT (type
);
655 else if (DECL_SIZE_UNIT (decl
) == 0)
656 DECL_SIZE_UNIT (decl
)
657 = fold_convert_loc (loc
, sizetype
,
658 size_binop_loc (loc
, CEIL_DIV_EXPR
, DECL_SIZE (decl
),
661 if (code
!= FIELD_DECL
)
662 /* For non-fields, update the alignment from the type. */
663 do_type_align (type
, decl
);
665 /* For fields, it's a bit more complicated... */
667 bool old_user_align
= DECL_USER_ALIGN (decl
);
668 bool zero_bitfield
= false;
669 bool packed_p
= DECL_PACKED (decl
);
672 if (DECL_BIT_FIELD (decl
))
674 DECL_BIT_FIELD_TYPE (decl
) = type
;
676 /* A zero-length bit-field affects the alignment of the next
677 field. In essence such bit-fields are not influenced by
678 any packing due to #pragma pack or attribute packed. */
679 if (integer_zerop (DECL_SIZE (decl
))
680 && ! targetm
.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl
)))
682 zero_bitfield
= true;
684 #ifdef PCC_BITFIELD_TYPE_MATTERS
685 if (PCC_BITFIELD_TYPE_MATTERS
)
686 do_type_align (type
, decl
);
690 #ifdef EMPTY_FIELD_BOUNDARY
691 if (EMPTY_FIELD_BOUNDARY
> DECL_ALIGN (decl
))
693 DECL_ALIGN (decl
) = EMPTY_FIELD_BOUNDARY
;
694 DECL_USER_ALIGN (decl
) = 0;
700 /* See if we can use an ordinary integer mode for a bit-field.
701 Conditions are: a fixed size that is correct for another mode,
702 occupying a complete byte or bytes on proper boundary. */
703 if (TYPE_SIZE (type
) != 0
704 && TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
705 && GET_MODE_CLASS (TYPE_MODE (type
)) == MODE_INT
)
708 = mode_for_size_tree (DECL_SIZE (decl
), MODE_INT
, 1);
709 unsigned int xalign
= GET_MODE_ALIGNMENT (xmode
);
712 && !(xalign
> BITS_PER_UNIT
&& DECL_PACKED (decl
))
713 && (known_align
== 0 || known_align
>= xalign
))
715 DECL_ALIGN (decl
) = MAX (xalign
, DECL_ALIGN (decl
));
716 DECL_MODE (decl
) = xmode
;
717 DECL_BIT_FIELD (decl
) = 0;
721 /* Turn off DECL_BIT_FIELD if we won't need it set. */
722 if (TYPE_MODE (type
) == BLKmode
&& DECL_MODE (decl
) == BLKmode
723 && known_align
>= TYPE_ALIGN (type
)
724 && DECL_ALIGN (decl
) >= TYPE_ALIGN (type
))
725 DECL_BIT_FIELD (decl
) = 0;
727 else if (packed_p
&& DECL_USER_ALIGN (decl
))
728 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
729 round up; we'll reduce it again below. We want packing to
730 supersede USER_ALIGN inherited from the type, but defer to
731 alignment explicitly specified on the field decl. */;
733 do_type_align (type
, decl
);
735 /* If the field is packed and not explicitly aligned, give it the
736 minimum alignment. Note that do_type_align may set
737 DECL_USER_ALIGN, so we need to check old_user_align instead. */
740 DECL_ALIGN (decl
) = MIN (DECL_ALIGN (decl
), BITS_PER_UNIT
);
742 if (! packed_p
&& ! DECL_USER_ALIGN (decl
))
744 /* Some targets (i.e. i386, VMS) limit struct field alignment
745 to a lower boundary than alignment of variables unless
746 it was overridden by attribute aligned. */
747 #ifdef BIGGEST_FIELD_ALIGNMENT
749 = MIN (DECL_ALIGN (decl
), (unsigned) BIGGEST_FIELD_ALIGNMENT
);
751 #ifdef ADJUST_FIELD_ALIGN
752 DECL_ALIGN (decl
) = ADJUST_FIELD_ALIGN (decl
, DECL_ALIGN (decl
));
757 mfa
= initial_max_fld_align
* BITS_PER_UNIT
;
759 mfa
= maximum_field_alignment
;
760 /* Should this be controlled by DECL_USER_ALIGN, too? */
762 DECL_ALIGN (decl
) = MIN (DECL_ALIGN (decl
), mfa
);
765 /* Evaluate nonconstant size only once, either now or as soon as safe. */
766 if (DECL_SIZE (decl
) != 0 && TREE_CODE (DECL_SIZE (decl
)) != INTEGER_CST
)
767 DECL_SIZE (decl
) = variable_size (DECL_SIZE (decl
));
768 if (DECL_SIZE_UNIT (decl
) != 0
769 && TREE_CODE (DECL_SIZE_UNIT (decl
)) != INTEGER_CST
)
770 DECL_SIZE_UNIT (decl
) = variable_size (DECL_SIZE_UNIT (decl
));
772 /* If requested, warn about definitions of large data objects. */
774 && (code
== VAR_DECL
|| code
== PARM_DECL
)
775 && ! DECL_EXTERNAL (decl
))
777 tree size
= DECL_SIZE_UNIT (decl
);
779 if (size
!= 0 && TREE_CODE (size
) == INTEGER_CST
780 && compare_tree_int (size
, larger_than_size
) > 0)
782 int size_as_int
= TREE_INT_CST_LOW (size
);
784 if (compare_tree_int (size
, size_as_int
) == 0)
785 warning (OPT_Wlarger_than_
, "size of %q+D is %d bytes", decl
, size_as_int
);
787 warning (OPT_Wlarger_than_
, "size of %q+D is larger than %wd bytes",
788 decl
, larger_than_size
);
792 /* If the RTL was already set, update its mode and mem attributes. */
795 PUT_MODE (rtl
, DECL_MODE (decl
));
796 SET_DECL_RTL (decl
, 0);
797 set_mem_attributes (rtl
, decl
, 1);
798 SET_DECL_RTL (decl
, rtl
);
802 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
803 a previous call to layout_decl and calls it again. */
806 relayout_decl (tree decl
)
808 DECL_SIZE (decl
) = DECL_SIZE_UNIT (decl
) = 0;
809 DECL_MODE (decl
) = VOIDmode
;
810 if (!DECL_USER_ALIGN (decl
))
811 DECL_ALIGN (decl
) = 0;
812 SET_DECL_RTL (decl
, 0);
814 layout_decl (decl
, 0);
817 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
818 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
819 is to be passed to all other layout functions for this record. It is the
820 responsibility of the caller to call `free' for the storage returned.
821 Note that garbage collection is not permitted until we finish laying
825 start_record_layout (tree t
)
827 record_layout_info rli
= XNEW (struct record_layout_info_s
);
831 /* If the type has a minimum specified alignment (via an attribute
832 declaration, for example) use it -- otherwise, start with a
833 one-byte alignment. */
834 rli
->record_align
= MAX (BITS_PER_UNIT
, TYPE_ALIGN (t
));
835 rli
->unpacked_align
= rli
->record_align
;
836 rli
->offset_align
= MAX (rli
->record_align
, BIGGEST_ALIGNMENT
);
838 #ifdef STRUCTURE_SIZE_BOUNDARY
839 /* Packed structures don't need to have minimum size. */
840 if (! TYPE_PACKED (t
))
844 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
845 tmp
= (unsigned) STRUCTURE_SIZE_BOUNDARY
;
846 if (maximum_field_alignment
!= 0)
847 tmp
= MIN (tmp
, maximum_field_alignment
);
848 rli
->record_align
= MAX (rli
->record_align
, tmp
);
852 rli
->offset
= size_zero_node
;
853 rli
->bitpos
= bitsize_zero_node
;
855 rli
->pending_statics
= 0;
856 rli
->packed_maybe_necessary
= 0;
857 rli
->remaining_in_alignment
= 0;
862 /* Return the combined bit position for the byte offset OFFSET and the
865 These functions operate on byte and bit positions present in FIELD_DECLs
866 and assume that these expressions result in no (intermediate) overflow.
867 This assumption is necessary to fold the expressions as much as possible,
868 so as to avoid creating artificially variable-sized types in languages
869 supporting variable-sized types like Ada. */
872 bit_from_pos (tree offset
, tree bitpos
)
874 if (TREE_CODE (offset
) == PLUS_EXPR
)
875 offset
= size_binop (PLUS_EXPR
,
876 fold_convert (bitsizetype
, TREE_OPERAND (offset
, 0)),
877 fold_convert (bitsizetype
, TREE_OPERAND (offset
, 1)));
879 offset
= fold_convert (bitsizetype
, offset
);
880 return size_binop (PLUS_EXPR
, bitpos
,
881 size_binop (MULT_EXPR
, offset
, bitsize_unit_node
));
884 /* Return the combined truncated byte position for the byte offset OFFSET and
885 the bit position BITPOS. */
888 byte_from_pos (tree offset
, tree bitpos
)
891 if (TREE_CODE (bitpos
) == MULT_EXPR
892 && tree_int_cst_equal (TREE_OPERAND (bitpos
, 1), bitsize_unit_node
))
893 bytepos
= TREE_OPERAND (bitpos
, 0);
895 bytepos
= size_binop (TRUNC_DIV_EXPR
, bitpos
, bitsize_unit_node
);
896 return size_binop (PLUS_EXPR
, offset
, fold_convert (sizetype
, bytepos
));
899 /* Split the bit position POS into a byte offset *POFFSET and a bit
900 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
903 pos_from_bit (tree
*poffset
, tree
*pbitpos
, unsigned int off_align
,
906 tree toff_align
= bitsize_int (off_align
);
907 if (TREE_CODE (pos
) == MULT_EXPR
908 && tree_int_cst_equal (TREE_OPERAND (pos
, 1), toff_align
))
910 *poffset
= size_binop (MULT_EXPR
,
911 fold_convert (sizetype
, TREE_OPERAND (pos
, 0)),
912 size_int (off_align
/ BITS_PER_UNIT
));
913 *pbitpos
= bitsize_zero_node
;
917 *poffset
= size_binop (MULT_EXPR
,
918 fold_convert (sizetype
,
919 size_binop (FLOOR_DIV_EXPR
, pos
,
921 size_int (off_align
/ BITS_PER_UNIT
));
922 *pbitpos
= size_binop (FLOOR_MOD_EXPR
, pos
, toff_align
);
926 /* Given a pointer to bit and byte offsets and an offset alignment,
927 normalize the offsets so they are within the alignment. */
930 normalize_offset (tree
*poffset
, tree
*pbitpos
, unsigned int off_align
)
932 /* If the bit position is now larger than it should be, adjust it
934 if (compare_tree_int (*pbitpos
, off_align
) >= 0)
937 pos_from_bit (&offset
, &bitpos
, off_align
, *pbitpos
);
938 *poffset
= size_binop (PLUS_EXPR
, *poffset
, offset
);
943 /* Print debugging information about the information in RLI. */
946 debug_rli (record_layout_info rli
)
948 print_node_brief (stderr
, "type", rli
->t
, 0);
949 print_node_brief (stderr
, "\noffset", rli
->offset
, 0);
950 print_node_brief (stderr
, " bitpos", rli
->bitpos
, 0);
952 fprintf (stderr
, "\naligns: rec = %u, unpack = %u, off = %u\n",
953 rli
->record_align
, rli
->unpacked_align
,
956 /* The ms_struct code is the only that uses this. */
957 if (targetm
.ms_bitfield_layout_p (rli
->t
))
958 fprintf (stderr
, "remaining in alignment = %u\n", rli
->remaining_in_alignment
);
960 if (rli
->packed_maybe_necessary
)
961 fprintf (stderr
, "packed may be necessary\n");
963 if (!vec_safe_is_empty (rli
->pending_statics
))
965 fprintf (stderr
, "pending statics:\n");
966 debug_vec_tree (rli
->pending_statics
);
970 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
971 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
974 normalize_rli (record_layout_info rli
)
976 normalize_offset (&rli
->offset
, &rli
->bitpos
, rli
->offset_align
);
979 /* Returns the size in bytes allocated so far. */
982 rli_size_unit_so_far (record_layout_info rli
)
984 return byte_from_pos (rli
->offset
, rli
->bitpos
);
987 /* Returns the size in bits allocated so far. */
990 rli_size_so_far (record_layout_info rli
)
992 return bit_from_pos (rli
->offset
, rli
->bitpos
);
995 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
996 the next available location within the record is given by KNOWN_ALIGN.
997 Update the variable alignment fields in RLI, and return the alignment
998 to give the FIELD. */
1001 update_alignment_for_field (record_layout_info rli
, tree field
,
1002 unsigned int known_align
)
1004 /* The alignment required for FIELD. */
1005 unsigned int desired_align
;
1006 /* The type of this field. */
1007 tree type
= TREE_TYPE (field
);
1008 /* True if the field was explicitly aligned by the user. */
1012 /* Do not attempt to align an ERROR_MARK node */
1013 if (TREE_CODE (type
) == ERROR_MARK
)
1016 /* Lay out the field so we know what alignment it needs. */
1017 layout_decl (field
, known_align
);
1018 desired_align
= DECL_ALIGN (field
);
1019 user_align
= DECL_USER_ALIGN (field
);
1021 is_bitfield
= (type
!= error_mark_node
1022 && DECL_BIT_FIELD_TYPE (field
)
1023 && ! integer_zerop (TYPE_SIZE (type
)));
1025 /* Record must have at least as much alignment as any field.
1026 Otherwise, the alignment of the field within the record is
1028 if (targetm
.ms_bitfield_layout_p (rli
->t
))
1030 /* Here, the alignment of the underlying type of a bitfield can
1031 affect the alignment of a record; even a zero-sized field
1032 can do this. The alignment should be to the alignment of
1033 the type, except that for zero-size bitfields this only
1034 applies if there was an immediately prior, nonzero-size
1035 bitfield. (That's the way it is, experimentally.) */
1036 if ((!is_bitfield
&& !DECL_PACKED (field
))
1037 || ((DECL_SIZE (field
) == NULL_TREE
1038 || !integer_zerop (DECL_SIZE (field
)))
1039 ? !DECL_PACKED (field
)
1041 && DECL_BIT_FIELD_TYPE (rli
->prev_field
)
1042 && ! integer_zerop (DECL_SIZE (rli
->prev_field
)))))
1044 unsigned int type_align
= TYPE_ALIGN (type
);
1045 type_align
= MAX (type_align
, desired_align
);
1046 if (maximum_field_alignment
!= 0)
1047 type_align
= MIN (type_align
, maximum_field_alignment
);
1048 rli
->record_align
= MAX (rli
->record_align
, type_align
);
1049 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
1052 #ifdef PCC_BITFIELD_TYPE_MATTERS
1053 else if (is_bitfield
&& PCC_BITFIELD_TYPE_MATTERS
)
1055 /* Named bit-fields cause the entire structure to have the
1056 alignment implied by their type. Some targets also apply the same
1057 rules to unnamed bitfields. */
1058 if (DECL_NAME (field
) != 0
1059 || targetm
.align_anon_bitfield ())
1061 unsigned int type_align
= TYPE_ALIGN (type
);
1063 #ifdef ADJUST_FIELD_ALIGN
1064 if (! TYPE_USER_ALIGN (type
))
1065 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
1068 /* Targets might chose to handle unnamed and hence possibly
1069 zero-width bitfield. Those are not influenced by #pragmas
1070 or packed attributes. */
1071 if (integer_zerop (DECL_SIZE (field
)))
1073 if (initial_max_fld_align
)
1074 type_align
= MIN (type_align
,
1075 initial_max_fld_align
* BITS_PER_UNIT
);
1077 else if (maximum_field_alignment
!= 0)
1078 type_align
= MIN (type_align
, maximum_field_alignment
);
1079 else if (DECL_PACKED (field
))
1080 type_align
= MIN (type_align
, BITS_PER_UNIT
);
1082 /* The alignment of the record is increased to the maximum
1083 of the current alignment, the alignment indicated on the
1084 field (i.e., the alignment specified by an __aligned__
1085 attribute), and the alignment indicated by the type of
1087 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
1088 rli
->record_align
= MAX (rli
->record_align
, type_align
);
1091 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
1092 user_align
|= TYPE_USER_ALIGN (type
);
1098 rli
->record_align
= MAX (rli
->record_align
, desired_align
);
1099 rli
->unpacked_align
= MAX (rli
->unpacked_align
, TYPE_ALIGN (type
));
1102 TYPE_USER_ALIGN (rli
->t
) |= user_align
;
1104 return desired_align
;
1107 /* Called from place_field to handle unions. */
1110 place_union_field (record_layout_info rli
, tree field
)
1112 update_alignment_for_field (rli
, field
, /*known_align=*/0);
1114 DECL_FIELD_OFFSET (field
) = size_zero_node
;
1115 DECL_FIELD_BIT_OFFSET (field
) = bitsize_zero_node
;
1116 SET_DECL_OFFSET_ALIGN (field
, BIGGEST_ALIGNMENT
);
1118 /* If this is an ERROR_MARK return *after* having set the
1119 field at the start of the union. This helps when parsing
1121 if (TREE_CODE (TREE_TYPE (field
)) == ERROR_MARK
)
1124 /* We assume the union's size will be a multiple of a byte so we don't
1125 bother with BITPOS. */
1126 if (TREE_CODE (rli
->t
) == UNION_TYPE
)
1127 rli
->offset
= size_binop (MAX_EXPR
, rli
->offset
, DECL_SIZE_UNIT (field
));
1128 else if (TREE_CODE (rli
->t
) == QUAL_UNION_TYPE
)
1129 rli
->offset
= fold_build3 (COND_EXPR
, sizetype
, DECL_QUALIFIER (field
),
1130 DECL_SIZE_UNIT (field
), rli
->offset
);
1133 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1134 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1135 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1136 units of alignment than the underlying TYPE. */
1138 excess_unit_span (HOST_WIDE_INT byte_offset
, HOST_WIDE_INT bit_offset
,
1139 HOST_WIDE_INT size
, HOST_WIDE_INT align
, tree type
)
1141 /* Note that the calculation of OFFSET might overflow; we calculate it so
1142 that we still get the right result as long as ALIGN is a power of two. */
1143 unsigned HOST_WIDE_INT offset
= byte_offset
* BITS_PER_UNIT
+ bit_offset
;
1145 offset
= offset
% align
;
1146 return ((offset
+ size
+ align
- 1) / align
1147 > tree_to_uhwi (TYPE_SIZE (type
)) / align
);
1151 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1152 is a FIELD_DECL to be added after those fields already present in
1153 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1154 callers that desire that behavior must manually perform that step.) */
1157 place_field (record_layout_info rli
, tree field
)
1159 /* The alignment required for FIELD. */
1160 unsigned int desired_align
;
1161 /* The alignment FIELD would have if we just dropped it into the
1162 record as it presently stands. */
1163 unsigned int known_align
;
1164 unsigned int actual_align
;
1165 /* The type of this field. */
1166 tree type
= TREE_TYPE (field
);
1168 gcc_assert (TREE_CODE (field
) != ERROR_MARK
);
1170 /* If FIELD is static, then treat it like a separate variable, not
1171 really like a structure field. If it is a FUNCTION_DECL, it's a
1172 method. In both cases, all we do is lay out the decl, and we do
1173 it *after* the record is laid out. */
1174 if (TREE_CODE (field
) == VAR_DECL
)
1176 vec_safe_push (rli
->pending_statics
, field
);
1180 /* Enumerators and enum types which are local to this class need not
1181 be laid out. Likewise for initialized constant fields. */
1182 else if (TREE_CODE (field
) != FIELD_DECL
)
1185 /* Unions are laid out very differently than records, so split
1186 that code off to another function. */
1187 else if (TREE_CODE (rli
->t
) != RECORD_TYPE
)
1189 place_union_field (rli
, field
);
1193 else if (TREE_CODE (type
) == ERROR_MARK
)
1195 /* Place this field at the current allocation position, so we
1196 maintain monotonicity. */
1197 DECL_FIELD_OFFSET (field
) = rli
->offset
;
1198 DECL_FIELD_BIT_OFFSET (field
) = rli
->bitpos
;
1199 SET_DECL_OFFSET_ALIGN (field
, rli
->offset_align
);
1203 /* Work out the known alignment so far. Note that A & (-A) is the
1204 value of the least-significant bit in A that is one. */
1205 if (! integer_zerop (rli
->bitpos
))
1206 known_align
= (tree_to_uhwi (rli
->bitpos
)
1207 & - tree_to_uhwi (rli
->bitpos
));
1208 else if (integer_zerop (rli
->offset
))
1210 else if (tree_fits_uhwi_p (rli
->offset
))
1211 known_align
= (BITS_PER_UNIT
1212 * (tree_to_uhwi (rli
->offset
)
1213 & - tree_to_uhwi (rli
->offset
)));
1215 known_align
= rli
->offset_align
;
1217 desired_align
= update_alignment_for_field (rli
, field
, known_align
);
1218 if (known_align
== 0)
1219 known_align
= MAX (BIGGEST_ALIGNMENT
, rli
->record_align
);
1221 if (warn_packed
&& DECL_PACKED (field
))
1223 if (known_align
>= TYPE_ALIGN (type
))
1225 if (TYPE_ALIGN (type
) > desired_align
)
1227 if (STRICT_ALIGNMENT
)
1228 warning (OPT_Wattributes
, "packed attribute causes "
1229 "inefficient alignment for %q+D", field
);
1230 /* Don't warn if DECL_PACKED was set by the type. */
1231 else if (!TYPE_PACKED (rli
->t
))
1232 warning (OPT_Wattributes
, "packed attribute is "
1233 "unnecessary for %q+D", field
);
1237 rli
->packed_maybe_necessary
= 1;
1240 /* Does this field automatically have alignment it needs by virtue
1241 of the fields that precede it and the record's own alignment? */
1242 if (known_align
< desired_align
)
1244 /* No, we need to skip space before this field.
1245 Bump the cumulative size to multiple of field alignment. */
1247 if (!targetm
.ms_bitfield_layout_p (rli
->t
)
1248 && DECL_SOURCE_LOCATION (field
) != BUILTINS_LOCATION
)
1249 warning (OPT_Wpadded
, "padding struct to align %q+D", field
);
1251 /* If the alignment is still within offset_align, just align
1252 the bit position. */
1253 if (desired_align
< rli
->offset_align
)
1254 rli
->bitpos
= round_up (rli
->bitpos
, desired_align
);
1257 /* First adjust OFFSET by the partial bits, then align. */
1259 = size_binop (PLUS_EXPR
, rli
->offset
,
1260 fold_convert (sizetype
,
1261 size_binop (CEIL_DIV_EXPR
, rli
->bitpos
,
1262 bitsize_unit_node
)));
1263 rli
->bitpos
= bitsize_zero_node
;
1265 rli
->offset
= round_up (rli
->offset
, desired_align
/ BITS_PER_UNIT
);
1268 if (! TREE_CONSTANT (rli
->offset
))
1269 rli
->offset_align
= desired_align
;
1270 if (targetm
.ms_bitfield_layout_p (rli
->t
))
1271 rli
->prev_field
= NULL
;
1274 /* Handle compatibility with PCC. Note that if the record has any
1275 variable-sized fields, we need not worry about compatibility. */
1276 #ifdef PCC_BITFIELD_TYPE_MATTERS
1277 if (PCC_BITFIELD_TYPE_MATTERS
1278 && ! targetm
.ms_bitfield_layout_p (rli
->t
)
1279 && TREE_CODE (field
) == FIELD_DECL
1280 && type
!= error_mark_node
1281 && DECL_BIT_FIELD (field
)
1282 && (! DECL_PACKED (field
)
1283 /* Enter for these packed fields only to issue a warning. */
1284 || TYPE_ALIGN (type
) <= BITS_PER_UNIT
)
1285 && maximum_field_alignment
== 0
1286 && ! integer_zerop (DECL_SIZE (field
))
1287 && tree_fits_uhwi_p (DECL_SIZE (field
))
1288 && tree_fits_uhwi_p (rli
->offset
)
1289 && tree_fits_uhwi_p (TYPE_SIZE (type
)))
1291 unsigned int type_align
= TYPE_ALIGN (type
);
1292 tree dsize
= DECL_SIZE (field
);
1293 HOST_WIDE_INT field_size
= tree_to_uhwi (dsize
);
1294 HOST_WIDE_INT offset
= tree_to_uhwi (rli
->offset
);
1295 HOST_WIDE_INT bit_offset
= tree_to_shwi (rli
->bitpos
);
1297 #ifdef ADJUST_FIELD_ALIGN
1298 if (! TYPE_USER_ALIGN (type
))
1299 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
1302 /* A bit field may not span more units of alignment of its type
1303 than its type itself. Advance to next boundary if necessary. */
1304 if (excess_unit_span (offset
, bit_offset
, field_size
, type_align
, type
))
1306 if (DECL_PACKED (field
))
1308 if (warn_packed_bitfield_compat
== 1)
1311 "offset of packed bit-field %qD has changed in GCC 4.4",
1315 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1318 if (! DECL_PACKED (field
))
1319 TYPE_USER_ALIGN (rli
->t
) |= TYPE_USER_ALIGN (type
);
1323 #ifdef BITFIELD_NBYTES_LIMITED
1324 if (BITFIELD_NBYTES_LIMITED
1325 && ! targetm
.ms_bitfield_layout_p (rli
->t
)
1326 && TREE_CODE (field
) == FIELD_DECL
1327 && type
!= error_mark_node
1328 && DECL_BIT_FIELD_TYPE (field
)
1329 && ! DECL_PACKED (field
)
1330 && ! integer_zerop (DECL_SIZE (field
))
1331 && tree_fits_uhwi_p (DECL_SIZE (field
))
1332 && tree_fits_uhwi_p (rli
->offset
)
1333 && tree_fits_uhwi_p (TYPE_SIZE (type
)))
1335 unsigned int type_align
= TYPE_ALIGN (type
);
1336 tree dsize
= DECL_SIZE (field
);
1337 HOST_WIDE_INT field_size
= tree_to_uhwi (dsize
);
1338 HOST_WIDE_INT offset
= tree_to_uhwi (rli
->offset
);
1339 HOST_WIDE_INT bit_offset
= tree_to_shwi (rli
->bitpos
);
1341 #ifdef ADJUST_FIELD_ALIGN
1342 if (! TYPE_USER_ALIGN (type
))
1343 type_align
= ADJUST_FIELD_ALIGN (field
, type_align
);
1346 if (maximum_field_alignment
!= 0)
1347 type_align
= MIN (type_align
, maximum_field_alignment
);
1348 /* ??? This test is opposite the test in the containing if
1349 statement, so this code is unreachable currently. */
1350 else if (DECL_PACKED (field
))
1351 type_align
= MIN (type_align
, BITS_PER_UNIT
);
1353 /* A bit field may not span the unit of alignment of its type.
1354 Advance to next boundary if necessary. */
1355 if (excess_unit_span (offset
, bit_offset
, field_size
, type_align
, type
))
1356 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1358 TYPE_USER_ALIGN (rli
->t
) |= TYPE_USER_ALIGN (type
);
1362 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1364 When a bit field is inserted into a packed record, the whole
1365 size of the underlying type is used by one or more same-size
1366 adjacent bitfields. (That is, if its long:3, 32 bits is
1367 used in the record, and any additional adjacent long bitfields are
1368 packed into the same chunk of 32 bits. However, if the size
1369 changes, a new field of that size is allocated.) In an unpacked
1370 record, this is the same as using alignment, but not equivalent
1373 Note: for compatibility, we use the type size, not the type alignment
1374 to determine alignment, since that matches the documentation */
1376 if (targetm
.ms_bitfield_layout_p (rli
->t
))
1378 tree prev_saved
= rli
->prev_field
;
1379 tree prev_type
= prev_saved
? DECL_BIT_FIELD_TYPE (prev_saved
) : NULL
;
1381 /* This is a bitfield if it exists. */
1382 if (rli
->prev_field
)
1384 /* If both are bitfields, nonzero, and the same size, this is
1385 the middle of a run. Zero declared size fields are special
1386 and handled as "end of run". (Note: it's nonzero declared
1387 size, but equal type sizes!) (Since we know that both
1388 the current and previous fields are bitfields by the
1389 time we check it, DECL_SIZE must be present for both.) */
1390 if (DECL_BIT_FIELD_TYPE (field
)
1391 && !integer_zerop (DECL_SIZE (field
))
1392 && !integer_zerop (DECL_SIZE (rli
->prev_field
))
1393 && tree_fits_shwi_p (DECL_SIZE (rli
->prev_field
))
1394 && tree_fits_uhwi_p (TYPE_SIZE (type
))
1395 && simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (prev_type
)))
1397 /* We're in the middle of a run of equal type size fields; make
1398 sure we realign if we run out of bits. (Not decl size,
1400 HOST_WIDE_INT bitsize
= tree_to_uhwi (DECL_SIZE (field
));
1402 if (rli
->remaining_in_alignment
< bitsize
)
1404 HOST_WIDE_INT typesize
= tree_to_uhwi (TYPE_SIZE (type
));
1406 /* out of bits; bump up to next 'word'. */
1408 = size_binop (PLUS_EXPR
, rli
->bitpos
,
1409 bitsize_int (rli
->remaining_in_alignment
));
1410 rli
->prev_field
= field
;
1411 if (typesize
< bitsize
)
1412 rli
->remaining_in_alignment
= 0;
1414 rli
->remaining_in_alignment
= typesize
- bitsize
;
1417 rli
->remaining_in_alignment
-= bitsize
;
1421 /* End of a run: if leaving a run of bitfields of the same type
1422 size, we have to "use up" the rest of the bits of the type
1425 Compute the new position as the sum of the size for the prior
1426 type and where we first started working on that type.
1427 Note: since the beginning of the field was aligned then
1428 of course the end will be too. No round needed. */
1430 if (!integer_zerop (DECL_SIZE (rli
->prev_field
)))
1433 = size_binop (PLUS_EXPR
, rli
->bitpos
,
1434 bitsize_int (rli
->remaining_in_alignment
));
1437 /* We "use up" size zero fields; the code below should behave
1438 as if the prior field was not a bitfield. */
1441 /* Cause a new bitfield to be captured, either this time (if
1442 currently a bitfield) or next time we see one. */
1443 if (!DECL_BIT_FIELD_TYPE (field
)
1444 || integer_zerop (DECL_SIZE (field
)))
1445 rli
->prev_field
= NULL
;
1448 normalize_rli (rli
);
1451 /* If we're starting a new run of same type size bitfields
1452 (or a run of non-bitfields), set up the "first of the run"
1455 That is, if the current field is not a bitfield, or if there
1456 was a prior bitfield the type sizes differ, or if there wasn't
1457 a prior bitfield the size of the current field is nonzero.
1459 Note: we must be sure to test ONLY the type size if there was
1460 a prior bitfield and ONLY for the current field being zero if
1463 if (!DECL_BIT_FIELD_TYPE (field
)
1464 || (prev_saved
!= NULL
1465 ? !simple_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (prev_type
))
1466 : !integer_zerop (DECL_SIZE (field
)) ))
1468 /* Never smaller than a byte for compatibility. */
1469 unsigned int type_align
= BITS_PER_UNIT
;
1471 /* (When not a bitfield), we could be seeing a flex array (with
1472 no DECL_SIZE). Since we won't be using remaining_in_alignment
1473 until we see a bitfield (and come by here again) we just skip
1475 if (DECL_SIZE (field
) != NULL
1476 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field
)))
1477 && tree_fits_uhwi_p (DECL_SIZE (field
)))
1479 unsigned HOST_WIDE_INT bitsize
1480 = tree_to_uhwi (DECL_SIZE (field
));
1481 unsigned HOST_WIDE_INT typesize
1482 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field
)));
1484 if (typesize
< bitsize
)
1485 rli
->remaining_in_alignment
= 0;
1487 rli
->remaining_in_alignment
= typesize
- bitsize
;
1490 /* Now align (conventionally) for the new type. */
1491 type_align
= TYPE_ALIGN (TREE_TYPE (field
));
1493 if (maximum_field_alignment
!= 0)
1494 type_align
= MIN (type_align
, maximum_field_alignment
);
1496 rli
->bitpos
= round_up (rli
->bitpos
, type_align
);
1498 /* If we really aligned, don't allow subsequent bitfields
1500 rli
->prev_field
= NULL
;
1504 /* Offset so far becomes the position of this field after normalizing. */
1505 normalize_rli (rli
);
1506 DECL_FIELD_OFFSET (field
) = rli
->offset
;
1507 DECL_FIELD_BIT_OFFSET (field
) = rli
->bitpos
;
1508 SET_DECL_OFFSET_ALIGN (field
, rli
->offset_align
);
1510 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1511 if (TREE_CODE (DECL_FIELD_OFFSET (field
)) != INTEGER_CST
)
1512 DECL_FIELD_OFFSET (field
) = variable_size (DECL_FIELD_OFFSET (field
));
1514 /* If this field ended up more aligned than we thought it would be (we
1515 approximate this by seeing if its position changed), lay out the field
1516 again; perhaps we can use an integral mode for it now. */
1517 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field
)))
1518 actual_align
= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
1519 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
)));
1520 else if (integer_zerop (DECL_FIELD_OFFSET (field
)))
1521 actual_align
= MAX (BIGGEST_ALIGNMENT
, rli
->record_align
);
1522 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field
)))
1523 actual_align
= (BITS_PER_UNIT
1524 * (tree_to_uhwi (DECL_FIELD_OFFSET (field
))
1525 & - tree_to_uhwi (DECL_FIELD_OFFSET (field
))));
1527 actual_align
= DECL_OFFSET_ALIGN (field
);
1528 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1529 store / extract bit field operations will check the alignment of the
1530 record against the mode of bit fields. */
1532 if (known_align
!= actual_align
)
1533 layout_decl (field
, actual_align
);
1535 if (rli
->prev_field
== NULL
&& DECL_BIT_FIELD_TYPE (field
))
1536 rli
->prev_field
= field
;
1538 /* Now add size of this field to the size of the record. If the size is
1539 not constant, treat the field as being a multiple of bytes and just
1540 adjust the offset, resetting the bit position. Otherwise, apportion the
1541 size amongst the bit position and offset. First handle the case of an
1542 unspecified size, which can happen when we have an invalid nested struct
1543 definition, such as struct j { struct j { int i; } }. The error message
1544 is printed in finish_struct. */
1545 if (DECL_SIZE (field
) == 0)
1547 else if (TREE_CODE (DECL_SIZE (field
)) != INTEGER_CST
1548 || TREE_OVERFLOW (DECL_SIZE (field
)))
1551 = size_binop (PLUS_EXPR
, rli
->offset
,
1552 fold_convert (sizetype
,
1553 size_binop (CEIL_DIV_EXPR
, rli
->bitpos
,
1554 bitsize_unit_node
)));
1556 = size_binop (PLUS_EXPR
, rli
->offset
, DECL_SIZE_UNIT (field
));
1557 rli
->bitpos
= bitsize_zero_node
;
1558 rli
->offset_align
= MIN (rli
->offset_align
, desired_align
);
1560 else if (targetm
.ms_bitfield_layout_p (rli
->t
))
1562 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
, DECL_SIZE (field
));
1564 /* If we ended a bitfield before the full length of the type then
1565 pad the struct out to the full length of the last type. */
1566 if ((DECL_CHAIN (field
) == NULL
1567 || TREE_CODE (DECL_CHAIN (field
)) != FIELD_DECL
)
1568 && DECL_BIT_FIELD_TYPE (field
)
1569 && !integer_zerop (DECL_SIZE (field
)))
1570 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
,
1571 bitsize_int (rli
->remaining_in_alignment
));
1573 normalize_rli (rli
);
1577 rli
->bitpos
= size_binop (PLUS_EXPR
, rli
->bitpos
, DECL_SIZE (field
));
1578 normalize_rli (rli
);
1582 /* Assuming that all the fields have been laid out, this function uses
1583 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1584 indicated by RLI. */
1587 finalize_record_size (record_layout_info rli
)
1589 tree unpadded_size
, unpadded_size_unit
;
1591 /* Now we want just byte and bit offsets, so set the offset alignment
1592 to be a byte and then normalize. */
1593 rli
->offset_align
= BITS_PER_UNIT
;
1594 normalize_rli (rli
);
1596 /* Determine the desired alignment. */
1597 #ifdef ROUND_TYPE_ALIGN
1598 TYPE_ALIGN (rli
->t
) = ROUND_TYPE_ALIGN (rli
->t
, TYPE_ALIGN (rli
->t
),
1601 TYPE_ALIGN (rli
->t
) = MAX (TYPE_ALIGN (rli
->t
), rli
->record_align
);
1604 /* Compute the size so far. Be sure to allow for extra bits in the
1605 size in bytes. We have guaranteed above that it will be no more
1606 than a single byte. */
1607 unpadded_size
= rli_size_so_far (rli
);
1608 unpadded_size_unit
= rli_size_unit_so_far (rli
);
1609 if (! integer_zerop (rli
->bitpos
))
1611 = size_binop (PLUS_EXPR
, unpadded_size_unit
, size_one_node
);
1613 if (TREE_CODE (unpadded_size_unit
) == INTEGER_CST
1614 && !TREE_OVERFLOW (unpadded_size_unit
)
1615 && !valid_constant_size_p (unpadded_size_unit
))
1616 error ("type %qT is too large", rli
->t
);
1618 /* Round the size up to be a multiple of the required alignment. */
1619 TYPE_SIZE (rli
->t
) = round_up (unpadded_size
, TYPE_ALIGN (rli
->t
));
1620 TYPE_SIZE_UNIT (rli
->t
)
1621 = round_up (unpadded_size_unit
, TYPE_ALIGN_UNIT (rli
->t
));
1623 if (TREE_CONSTANT (unpadded_size
)
1624 && simple_cst_equal (unpadded_size
, TYPE_SIZE (rli
->t
)) == 0
1625 && input_location
!= BUILTINS_LOCATION
)
1626 warning (OPT_Wpadded
, "padding struct size to alignment boundary");
1628 if (warn_packed
&& TREE_CODE (rli
->t
) == RECORD_TYPE
1629 && TYPE_PACKED (rli
->t
) && ! rli
->packed_maybe_necessary
1630 && TREE_CONSTANT (unpadded_size
))
1634 #ifdef ROUND_TYPE_ALIGN
1636 = ROUND_TYPE_ALIGN (rli
->t
, TYPE_ALIGN (rli
->t
), rli
->unpacked_align
);
1638 rli
->unpacked_align
= MAX (TYPE_ALIGN (rli
->t
), rli
->unpacked_align
);
1641 unpacked_size
= round_up (TYPE_SIZE (rli
->t
), rli
->unpacked_align
);
1642 if (simple_cst_equal (unpacked_size
, TYPE_SIZE (rli
->t
)))
1644 if (TYPE_NAME (rli
->t
))
1648 if (TREE_CODE (TYPE_NAME (rli
->t
)) == IDENTIFIER_NODE
)
1649 name
= TYPE_NAME (rli
->t
);
1651 name
= DECL_NAME (TYPE_NAME (rli
->t
));
1653 if (STRICT_ALIGNMENT
)
1654 warning (OPT_Wpacked
, "packed attribute causes inefficient "
1655 "alignment for %qE", name
);
1657 warning (OPT_Wpacked
,
1658 "packed attribute is unnecessary for %qE", name
);
1662 if (STRICT_ALIGNMENT
)
1663 warning (OPT_Wpacked
,
1664 "packed attribute causes inefficient alignment");
1666 warning (OPT_Wpacked
, "packed attribute is unnecessary");
1672 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1675 compute_record_mode (tree type
)
1678 machine_mode mode
= VOIDmode
;
1680 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1681 However, if possible, we use a mode that fits in a register
1682 instead, in order to allow for better optimization down the
1684 SET_TYPE_MODE (type
, BLKmode
);
1686 if (! tree_fits_uhwi_p (TYPE_SIZE (type
)))
1689 /* A record which has any BLKmode members must itself be
1690 BLKmode; it can't go in a register. Unless the member is
1691 BLKmode only because it isn't aligned. */
1692 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
1694 if (TREE_CODE (field
) != FIELD_DECL
)
1697 if (TREE_CODE (TREE_TYPE (field
)) == ERROR_MARK
1698 || (TYPE_MODE (TREE_TYPE (field
)) == BLKmode
1699 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field
))
1700 && !(TYPE_SIZE (TREE_TYPE (field
)) != 0
1701 && integer_zerop (TYPE_SIZE (TREE_TYPE (field
)))))
1702 || ! tree_fits_uhwi_p (bit_position (field
))
1703 || DECL_SIZE (field
) == 0
1704 || ! tree_fits_uhwi_p (DECL_SIZE (field
)))
1707 /* If this field is the whole struct, remember its mode so
1708 that, say, we can put a double in a class into a DF
1709 register instead of forcing it to live in the stack. */
1710 if (simple_cst_equal (TYPE_SIZE (type
), DECL_SIZE (field
)))
1711 mode
= DECL_MODE (field
);
1713 /* With some targets, it is sub-optimal to access an aligned
1714 BLKmode structure as a scalar. */
1715 if (targetm
.member_type_forces_blk (field
, mode
))
1719 /* If we only have one real field; use its mode if that mode's size
1720 matches the type's size. This only applies to RECORD_TYPE. This
1721 does not apply to unions. */
1722 if (TREE_CODE (type
) == RECORD_TYPE
&& mode
!= VOIDmode
1723 && tree_fits_uhwi_p (TYPE_SIZE (type
))
1724 && GET_MODE_BITSIZE (mode
) == tree_to_uhwi (TYPE_SIZE (type
)))
1725 SET_TYPE_MODE (type
, mode
);
1727 SET_TYPE_MODE (type
, mode_for_size_tree (TYPE_SIZE (type
), MODE_INT
, 1));
1729 /* If structure's known alignment is less than what the scalar
1730 mode would need, and it matters, then stick with BLKmode. */
1731 if (TYPE_MODE (type
) != BLKmode
1733 && ! (TYPE_ALIGN (type
) >= BIGGEST_ALIGNMENT
1734 || TYPE_ALIGN (type
) >= GET_MODE_ALIGNMENT (TYPE_MODE (type
))))
1736 /* If this is the only reason this type is BLKmode, then
1737 don't force containing types to be BLKmode. */
1738 TYPE_NO_FORCE_BLK (type
) = 1;
1739 SET_TYPE_MODE (type
, BLKmode
);
1743 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1747 finalize_type_size (tree type
)
1749 /* Normally, use the alignment corresponding to the mode chosen.
1750 However, where strict alignment is not required, avoid
1751 over-aligning structures, since most compilers do not do this
1754 if (TYPE_MODE (type
) != BLKmode
&& TYPE_MODE (type
) != VOIDmode
1755 && (STRICT_ALIGNMENT
1756 || (TREE_CODE (type
) != RECORD_TYPE
&& TREE_CODE (type
) != UNION_TYPE
1757 && TREE_CODE (type
) != QUAL_UNION_TYPE
1758 && TREE_CODE (type
) != ARRAY_TYPE
)))
1760 unsigned mode_align
= GET_MODE_ALIGNMENT (TYPE_MODE (type
));
1762 /* Don't override a larger alignment requirement coming from a user
1763 alignment of one of the fields. */
1764 if (mode_align
>= TYPE_ALIGN (type
))
1766 TYPE_ALIGN (type
) = mode_align
;
1767 TYPE_USER_ALIGN (type
) = 0;
1771 /* Do machine-dependent extra alignment. */
1772 #ifdef ROUND_TYPE_ALIGN
1774 = ROUND_TYPE_ALIGN (type
, TYPE_ALIGN (type
), BITS_PER_UNIT
);
1777 /* If we failed to find a simple way to calculate the unit size
1778 of the type, find it by division. */
1779 if (TYPE_SIZE_UNIT (type
) == 0 && TYPE_SIZE (type
) != 0)
1780 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1781 result will fit in sizetype. We will get more efficient code using
1782 sizetype, so we force a conversion. */
1783 TYPE_SIZE_UNIT (type
)
1784 = fold_convert (sizetype
,
1785 size_binop (FLOOR_DIV_EXPR
, TYPE_SIZE (type
),
1786 bitsize_unit_node
));
1788 if (TYPE_SIZE (type
) != 0)
1790 TYPE_SIZE (type
) = round_up (TYPE_SIZE (type
), TYPE_ALIGN (type
));
1791 TYPE_SIZE_UNIT (type
)
1792 = round_up (TYPE_SIZE_UNIT (type
), TYPE_ALIGN_UNIT (type
));
1795 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1796 if (TYPE_SIZE (type
) != 0 && TREE_CODE (TYPE_SIZE (type
)) != INTEGER_CST
)
1797 TYPE_SIZE (type
) = variable_size (TYPE_SIZE (type
));
1798 if (TYPE_SIZE_UNIT (type
) != 0
1799 && TREE_CODE (TYPE_SIZE_UNIT (type
)) != INTEGER_CST
)
1800 TYPE_SIZE_UNIT (type
) = variable_size (TYPE_SIZE_UNIT (type
));
1802 /* Also layout any other variants of the type. */
1803 if (TYPE_NEXT_VARIANT (type
)
1804 || type
!= TYPE_MAIN_VARIANT (type
))
1807 /* Record layout info of this variant. */
1808 tree size
= TYPE_SIZE (type
);
1809 tree size_unit
= TYPE_SIZE_UNIT (type
);
1810 unsigned int align
= TYPE_ALIGN (type
);
1811 unsigned int precision
= TYPE_PRECISION (type
);
1812 unsigned int user_align
= TYPE_USER_ALIGN (type
);
1813 machine_mode mode
= TYPE_MODE (type
);
1815 /* Copy it into all variants. */
1816 for (variant
= TYPE_MAIN_VARIANT (type
);
1818 variant
= TYPE_NEXT_VARIANT (variant
))
1820 TYPE_SIZE (variant
) = size
;
1821 TYPE_SIZE_UNIT (variant
) = size_unit
;
1822 TYPE_ALIGN (variant
) = align
;
1823 TYPE_PRECISION (variant
) = precision
;
1824 TYPE_USER_ALIGN (variant
) = user_align
;
1825 SET_TYPE_MODE (variant
, mode
);
1830 /* Return a new underlying object for a bitfield started with FIELD. */
1833 start_bitfield_representative (tree field
)
1835 tree repr
= make_node (FIELD_DECL
);
1836 DECL_FIELD_OFFSET (repr
) = DECL_FIELD_OFFSET (field
);
1837 /* Force the representative to begin at a BITS_PER_UNIT aligned
1838 boundary - C++ may use tail-padding of a base object to
1839 continue packing bits so the bitfield region does not start
1840 at bit zero (see g++.dg/abi/bitfield5.C for example).
1841 Unallocated bits may happen for other reasons as well,
1842 for example Ada which allows explicit bit-granular structure layout. */
1843 DECL_FIELD_BIT_OFFSET (repr
)
1844 = size_binop (BIT_AND_EXPR
,
1845 DECL_FIELD_BIT_OFFSET (field
),
1846 bitsize_int (~(BITS_PER_UNIT
- 1)));
1847 SET_DECL_OFFSET_ALIGN (repr
, DECL_OFFSET_ALIGN (field
));
1848 DECL_SIZE (repr
) = DECL_SIZE (field
);
1849 DECL_SIZE_UNIT (repr
) = DECL_SIZE_UNIT (field
);
1850 DECL_PACKED (repr
) = DECL_PACKED (field
);
1851 DECL_CONTEXT (repr
) = DECL_CONTEXT (field
);
1855 /* Finish up a bitfield group that was started by creating the underlying
1856 object REPR with the last field in the bitfield group FIELD. */
1859 finish_bitfield_representative (tree repr
, tree field
)
1861 unsigned HOST_WIDE_INT bitsize
, maxbitsize
;
1865 size
= size_diffop (DECL_FIELD_OFFSET (field
),
1866 DECL_FIELD_OFFSET (repr
));
1867 while (TREE_CODE (size
) == COMPOUND_EXPR
)
1868 size
= TREE_OPERAND (size
, 1);
1869 gcc_assert (tree_fits_uhwi_p (size
));
1870 bitsize
= (tree_to_uhwi (size
) * BITS_PER_UNIT
1871 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
1872 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
))
1873 + tree_to_uhwi (DECL_SIZE (field
)));
1875 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1876 bitsize
= (bitsize
+ BITS_PER_UNIT
- 1) & ~(BITS_PER_UNIT
- 1);
1878 /* Now nothing tells us how to pad out bitsize ... */
1879 nextf
= DECL_CHAIN (field
);
1880 while (nextf
&& TREE_CODE (nextf
) != FIELD_DECL
)
1881 nextf
= DECL_CHAIN (nextf
);
1885 /* If there was an error, the field may be not laid out
1886 correctly. Don't bother to do anything. */
1887 if (TREE_TYPE (nextf
) == error_mark_node
)
1889 maxsize
= size_diffop (DECL_FIELD_OFFSET (nextf
),
1890 DECL_FIELD_OFFSET (repr
));
1891 if (tree_fits_uhwi_p (maxsize
))
1893 maxbitsize
= (tree_to_uhwi (maxsize
) * BITS_PER_UNIT
1894 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf
))
1895 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
1896 /* If the group ends within a bitfield nextf does not need to be
1897 aligned to BITS_PER_UNIT. Thus round up. */
1898 maxbitsize
= (maxbitsize
+ BITS_PER_UNIT
- 1) & ~(BITS_PER_UNIT
- 1);
1901 maxbitsize
= bitsize
;
1905 /* ??? If you consider that tail-padding of this struct might be
1906 re-used when deriving from it we cannot really do the following
1907 and thus need to set maxsize to bitsize? Also we cannot
1908 generally rely on maxsize to fold to an integer constant, so
1909 use bitsize as fallback for this case. */
1910 tree maxsize
= size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field
)),
1911 DECL_FIELD_OFFSET (repr
));
1912 if (tree_fits_uhwi_p (maxsize
))
1913 maxbitsize
= (tree_to_uhwi (maxsize
) * BITS_PER_UNIT
1914 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr
)));
1916 maxbitsize
= bitsize
;
1919 /* Only if we don't artificially break up the representative in
1920 the middle of a large bitfield with different possibly
1921 overlapping representatives. And all representatives start
1923 gcc_assert (maxbitsize
% BITS_PER_UNIT
== 0);
1925 /* Find the smallest nice mode to use. */
1926 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1927 mode
= GET_MODE_WIDER_MODE (mode
))
1928 if (GET_MODE_BITSIZE (mode
) >= bitsize
)
1930 if (mode
!= VOIDmode
1931 && (GET_MODE_BITSIZE (mode
) > maxbitsize
1932 || GET_MODE_BITSIZE (mode
) > MAX_FIXED_MODE_SIZE
))
1935 if (mode
== VOIDmode
)
1937 /* We really want a BLKmode representative only as a last resort,
1938 considering the member b in
1939 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1940 Otherwise we simply want to split the representative up
1941 allowing for overlaps within the bitfield region as required for
1942 struct { int a : 7; int b : 7;
1943 int c : 10; int d; } __attribute__((packed));
1944 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1945 DECL_SIZE (repr
) = bitsize_int (bitsize
);
1946 DECL_SIZE_UNIT (repr
) = size_int (bitsize
/ BITS_PER_UNIT
);
1947 DECL_MODE (repr
) = BLKmode
;
1948 TREE_TYPE (repr
) = build_array_type_nelts (unsigned_char_type_node
,
1949 bitsize
/ BITS_PER_UNIT
);
1953 unsigned HOST_WIDE_INT modesize
= GET_MODE_BITSIZE (mode
);
1954 DECL_SIZE (repr
) = bitsize_int (modesize
);
1955 DECL_SIZE_UNIT (repr
) = size_int (modesize
/ BITS_PER_UNIT
);
1956 DECL_MODE (repr
) = mode
;
1957 TREE_TYPE (repr
) = lang_hooks
.types
.type_for_mode (mode
, 1);
1960 /* Remember whether the bitfield group is at the end of the
1961 structure or not. */
1962 DECL_CHAIN (repr
) = nextf
;
1965 /* Compute and set FIELD_DECLs for the underlying objects we should
1966 use for bitfield access for the structure T. */
1969 finish_bitfield_layout (tree t
)
1972 tree repr
= NULL_TREE
;
1974 /* Unions would be special, for the ease of type-punning optimizations
1975 we could use the underlying type as hint for the representative
1976 if the bitfield would fit and the representative would not exceed
1977 the union in size. */
1978 if (TREE_CODE (t
) != RECORD_TYPE
)
1981 for (prev
= NULL_TREE
, field
= TYPE_FIELDS (t
);
1982 field
; field
= DECL_CHAIN (field
))
1984 if (TREE_CODE (field
) != FIELD_DECL
)
1987 /* In the C++ memory model, consecutive bit fields in a structure are
1988 considered one memory location and updating a memory location
1989 may not store into adjacent memory locations. */
1991 && DECL_BIT_FIELD_TYPE (field
))
1993 /* Start new representative. */
1994 repr
= start_bitfield_representative (field
);
1997 && ! DECL_BIT_FIELD_TYPE (field
))
1999 /* Finish off new representative. */
2000 finish_bitfield_representative (repr
, prev
);
2003 else if (DECL_BIT_FIELD_TYPE (field
))
2005 gcc_assert (repr
!= NULL_TREE
);
2007 /* Zero-size bitfields finish off a representative and
2008 do not have a representative themselves. This is
2009 required by the C++ memory model. */
2010 if (integer_zerop (DECL_SIZE (field
)))
2012 finish_bitfield_representative (repr
, prev
);
2016 /* We assume that either DECL_FIELD_OFFSET of the representative
2017 and each bitfield member is a constant or they are equal.
2018 This is because we need to be able to compute the bit-offset
2019 of each field relative to the representative in get_bit_range
2020 during RTL expansion.
2021 If these constraints are not met, simply force a new
2022 representative to be generated. That will at most
2023 generate worse code but still maintain correctness with
2024 respect to the C++ memory model. */
2025 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr
))
2026 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field
)))
2027 || operand_equal_p (DECL_FIELD_OFFSET (repr
),
2028 DECL_FIELD_OFFSET (field
), 0)))
2030 finish_bitfield_representative (repr
, prev
);
2031 repr
= start_bitfield_representative (field
);
2038 DECL_BIT_FIELD_REPRESENTATIVE (field
) = repr
;
2044 finish_bitfield_representative (repr
, prev
);
2047 /* Do all of the work required to layout the type indicated by RLI,
2048 once the fields have been laid out. This function will call `free'
2049 for RLI, unless FREE_P is false. Passing a value other than false
2050 for FREE_P is bad practice; this option only exists to support the
2054 finish_record_layout (record_layout_info rli
, int free_p
)
2058 /* Compute the final size. */
2059 finalize_record_size (rli
);
2061 /* Compute the TYPE_MODE for the record. */
2062 compute_record_mode (rli
->t
);
2064 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2065 finalize_type_size (rli
->t
);
2067 /* Compute bitfield representatives. */
2068 finish_bitfield_layout (rli
->t
);
2070 /* Propagate TYPE_PACKED to variants. With C++ templates,
2071 handle_packed_attribute is too early to do this. */
2072 for (variant
= TYPE_NEXT_VARIANT (rli
->t
); variant
;
2073 variant
= TYPE_NEXT_VARIANT (variant
))
2074 TYPE_PACKED (variant
) = TYPE_PACKED (rli
->t
);
2076 /* Lay out any static members. This is done now because their type
2077 may use the record's type. */
2078 while (!vec_safe_is_empty (rli
->pending_statics
))
2079 layout_decl (rli
->pending_statics
->pop (), 0);
2084 vec_free (rli
->pending_statics
);
2090 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2091 NAME, its fields are chained in reverse on FIELDS.
2093 If ALIGN_TYPE is non-null, it is given the same alignment as
2097 finish_builtin_struct (tree type
, const char *name
, tree fields
,
2102 for (tail
= NULL_TREE
; fields
; tail
= fields
, fields
= next
)
2104 DECL_FIELD_CONTEXT (fields
) = type
;
2105 next
= DECL_CHAIN (fields
);
2106 DECL_CHAIN (fields
) = tail
;
2108 TYPE_FIELDS (type
) = tail
;
2112 TYPE_ALIGN (type
) = TYPE_ALIGN (align_type
);
2113 TYPE_USER_ALIGN (type
) = TYPE_USER_ALIGN (align_type
);
2117 #if 0 /* not yet, should get fixed properly later */
2118 TYPE_NAME (type
) = make_type_decl (get_identifier (name
), type
);
2120 TYPE_NAME (type
) = build_decl (BUILTINS_LOCATION
,
2121 TYPE_DECL
, get_identifier (name
), type
);
2123 TYPE_STUB_DECL (type
) = TYPE_NAME (type
);
2124 layout_decl (TYPE_NAME (type
), 0);
2127 /* Calculate the mode, size, and alignment for TYPE.
2128 For an array type, calculate the element separation as well.
2129 Record TYPE on the chain of permanent or temporary types
2130 so that dbxout will find out about it.
2132 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2133 layout_type does nothing on such a type.
2135 If the type is incomplete, its TYPE_SIZE remains zero. */
2138 layout_type (tree type
)
2142 if (type
== error_mark_node
)
2145 /* Do nothing if type has been laid out before. */
2146 if (TYPE_SIZE (type
))
2149 switch (TREE_CODE (type
))
2152 /* This kind of type is the responsibility
2153 of the language-specific code. */
2159 SET_TYPE_MODE (type
,
2160 smallest_mode_for_size (TYPE_PRECISION (type
), MODE_INT
));
2161 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2162 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2163 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2167 SET_TYPE_MODE (type
,
2168 mode_for_size (TYPE_PRECISION (type
), MODE_FLOAT
, 0));
2169 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2170 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2173 case FIXED_POINT_TYPE
:
2174 /* TYPE_MODE (type) has been set already. */
2175 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2176 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2180 TYPE_UNSIGNED (type
) = TYPE_UNSIGNED (TREE_TYPE (type
));
2181 SET_TYPE_MODE (type
,
2182 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type
)),
2183 (TREE_CODE (TREE_TYPE (type
)) == REAL_TYPE
2184 ? MODE_COMPLEX_FLOAT
: MODE_COMPLEX_INT
),
2186 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type
)));
2187 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (TYPE_MODE (type
)));
2192 int nunits
= TYPE_VECTOR_SUBPARTS (type
);
2193 tree innertype
= TREE_TYPE (type
);
2195 gcc_assert (!(nunits
& (nunits
- 1)));
2197 /* Find an appropriate mode for the vector type. */
2198 if (TYPE_MODE (type
) == VOIDmode
)
2199 SET_TYPE_MODE (type
,
2200 mode_for_vector (TYPE_MODE (innertype
), nunits
));
2202 TYPE_SATURATING (type
) = TYPE_SATURATING (TREE_TYPE (type
));
2203 TYPE_UNSIGNED (type
) = TYPE_UNSIGNED (TREE_TYPE (type
));
2204 TYPE_SIZE_UNIT (type
) = int_const_binop (MULT_EXPR
,
2205 TYPE_SIZE_UNIT (innertype
),
2207 TYPE_SIZE (type
) = int_const_binop (MULT_EXPR
, TYPE_SIZE (innertype
),
2208 bitsize_int (nunits
));
2210 /* For vector types, we do not default to the mode's alignment.
2211 Instead, query a target hook, defaulting to natural alignment.
2212 This prevents ABI changes depending on whether or not native
2213 vector modes are supported. */
2214 TYPE_ALIGN (type
) = targetm
.vector_alignment (type
);
2216 /* However, if the underlying mode requires a bigger alignment than
2217 what the target hook provides, we cannot use the mode. For now,
2218 simply reject that case. */
2219 gcc_assert (TYPE_ALIGN (type
)
2220 >= GET_MODE_ALIGNMENT (TYPE_MODE (type
)));
2225 /* This is an incomplete type and so doesn't have a size. */
2226 TYPE_ALIGN (type
) = 1;
2227 TYPE_USER_ALIGN (type
) = 0;
2228 SET_TYPE_MODE (type
, VOIDmode
);
2232 TYPE_SIZE (type
) = bitsize_int (POINTER_SIZE
);
2233 TYPE_SIZE_UNIT (type
) = size_int (POINTER_SIZE_UNITS
);
2234 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2235 integral, which may be an __intN. */
2236 SET_TYPE_MODE (type
, mode_for_size (POINTER_SIZE
, MODE_INT
, 0));
2237 TYPE_PRECISION (type
) = POINTER_SIZE
;
2242 /* It's hard to see what the mode and size of a function ought to
2243 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2244 make it consistent with that. */
2245 SET_TYPE_MODE (type
, mode_for_size (FUNCTION_BOUNDARY
, MODE_INT
, 0));
2246 TYPE_SIZE (type
) = bitsize_int (FUNCTION_BOUNDARY
);
2247 TYPE_SIZE_UNIT (type
) = size_int (FUNCTION_BOUNDARY
/ BITS_PER_UNIT
);
2251 case REFERENCE_TYPE
:
2253 machine_mode mode
= TYPE_MODE (type
);
2254 if (TREE_CODE (type
) == REFERENCE_TYPE
&& reference_types_internal
)
2256 addr_space_t as
= TYPE_ADDR_SPACE (TREE_TYPE (type
));
2257 mode
= targetm
.addr_space
.address_mode (as
);
2260 TYPE_SIZE (type
) = bitsize_int (GET_MODE_BITSIZE (mode
));
2261 TYPE_SIZE_UNIT (type
) = size_int (GET_MODE_SIZE (mode
));
2262 TYPE_UNSIGNED (type
) = 1;
2263 TYPE_PRECISION (type
) = GET_MODE_PRECISION (mode
);
2269 tree index
= TYPE_DOMAIN (type
);
2270 tree element
= TREE_TYPE (type
);
2272 build_pointer_type (element
);
2274 /* We need to know both bounds in order to compute the size. */
2275 if (index
&& TYPE_MAX_VALUE (index
) && TYPE_MIN_VALUE (index
)
2276 && TYPE_SIZE (element
))
2278 tree ub
= TYPE_MAX_VALUE (index
);
2279 tree lb
= TYPE_MIN_VALUE (index
);
2280 tree element_size
= TYPE_SIZE (element
);
2283 /* Make sure that an array of zero-sized element is zero-sized
2284 regardless of its extent. */
2285 if (integer_zerop (element_size
))
2286 length
= size_zero_node
;
2288 /* The computation should happen in the original signedness so
2289 that (possible) negative values are handled appropriately
2290 when determining overflow. */
2293 /* ??? When it is obvious that the range is signed
2294 represent it using ssizetype. */
2295 if (TREE_CODE (lb
) == INTEGER_CST
2296 && TREE_CODE (ub
) == INTEGER_CST
2297 && TYPE_UNSIGNED (TREE_TYPE (lb
))
2298 && tree_int_cst_lt (ub
, lb
))
2300 lb
= wide_int_to_tree (ssizetype
,
2301 offset_int::from (lb
, SIGNED
));
2302 ub
= wide_int_to_tree (ssizetype
,
2303 offset_int::from (ub
, SIGNED
));
2306 = fold_convert (sizetype
,
2307 size_binop (PLUS_EXPR
,
2308 build_int_cst (TREE_TYPE (lb
), 1),
2309 size_binop (MINUS_EXPR
, ub
, lb
)));
2312 /* ??? We have no way to distinguish a null-sized array from an
2313 array spanning the whole sizetype range, so we arbitrarily
2314 decide that [0, -1] is the only valid representation. */
2315 if (integer_zerop (length
)
2316 && TREE_OVERFLOW (length
)
2317 && integer_zerop (lb
))
2318 length
= size_zero_node
;
2320 TYPE_SIZE (type
) = size_binop (MULT_EXPR
, element_size
,
2321 fold_convert (bitsizetype
,
2324 /* If we know the size of the element, calculate the total size
2325 directly, rather than do some division thing below. This
2326 optimization helps Fortran assumed-size arrays (where the
2327 size of the array is determined at runtime) substantially. */
2328 if (TYPE_SIZE_UNIT (element
))
2329 TYPE_SIZE_UNIT (type
)
2330 = size_binop (MULT_EXPR
, TYPE_SIZE_UNIT (element
), length
);
2333 /* Now round the alignment and size,
2334 using machine-dependent criteria if any. */
2336 #ifdef ROUND_TYPE_ALIGN
2338 = ROUND_TYPE_ALIGN (type
, TYPE_ALIGN (element
), BITS_PER_UNIT
);
2340 TYPE_ALIGN (type
) = MAX (TYPE_ALIGN (element
), BITS_PER_UNIT
);
2342 TYPE_USER_ALIGN (type
) = TYPE_USER_ALIGN (element
);
2343 SET_TYPE_MODE (type
, BLKmode
);
2344 if (TYPE_SIZE (type
) != 0
2345 && ! targetm
.member_type_forces_blk (type
, VOIDmode
)
2346 /* BLKmode elements force BLKmode aggregate;
2347 else extract/store fields may lose. */
2348 && (TYPE_MODE (TREE_TYPE (type
)) != BLKmode
2349 || TYPE_NO_FORCE_BLK (TREE_TYPE (type
))))
2351 SET_TYPE_MODE (type
, mode_for_array (TREE_TYPE (type
),
2353 if (TYPE_MODE (type
) != BLKmode
2354 && STRICT_ALIGNMENT
&& TYPE_ALIGN (type
) < BIGGEST_ALIGNMENT
2355 && TYPE_ALIGN (type
) < GET_MODE_ALIGNMENT (TYPE_MODE (type
)))
2357 TYPE_NO_FORCE_BLK (type
) = 1;
2358 SET_TYPE_MODE (type
, BLKmode
);
2361 /* When the element size is constant, check that it is at least as
2362 large as the element alignment. */
2363 if (TYPE_SIZE_UNIT (element
)
2364 && TREE_CODE (TYPE_SIZE_UNIT (element
)) == INTEGER_CST
2365 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2367 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element
))
2368 && !integer_zerop (TYPE_SIZE_UNIT (element
))
2369 && compare_tree_int (TYPE_SIZE_UNIT (element
),
2370 TYPE_ALIGN_UNIT (element
)) < 0)
2371 error ("alignment of array elements is greater than element size");
2377 case QUAL_UNION_TYPE
:
2380 record_layout_info rli
;
2382 /* Initialize the layout information. */
2383 rli
= start_record_layout (type
);
2385 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2386 in the reverse order in building the COND_EXPR that denotes
2387 its size. We reverse them again later. */
2388 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
2389 TYPE_FIELDS (type
) = nreverse (TYPE_FIELDS (type
));
2391 /* Place all the fields. */
2392 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
2393 place_field (rli
, field
);
2395 if (TREE_CODE (type
) == QUAL_UNION_TYPE
)
2396 TYPE_FIELDS (type
) = nreverse (TYPE_FIELDS (type
));
2398 /* Finish laying out the record. */
2399 finish_record_layout (rli
, /*free_p=*/true);
2407 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2408 records and unions, finish_record_layout already called this
2410 if (TREE_CODE (type
) != RECORD_TYPE
2411 && TREE_CODE (type
) != UNION_TYPE
2412 && TREE_CODE (type
) != QUAL_UNION_TYPE
)
2413 finalize_type_size (type
);
2415 /* We should never see alias sets on incomplete aggregates. And we
2416 should not call layout_type on not incomplete aggregates. */
2417 if (AGGREGATE_TYPE_P (type
))
2418 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type
));
2421 /* Return the least alignment required for type TYPE. */
2424 min_align_of_type (tree type
)
2426 unsigned int align
= TYPE_ALIGN (type
);
2427 align
= MIN (align
, BIGGEST_ALIGNMENT
);
2428 if (!TYPE_USER_ALIGN (type
))
2430 #ifdef BIGGEST_FIELD_ALIGNMENT
2431 align
= MIN (align
, BIGGEST_FIELD_ALIGNMENT
);
2433 unsigned int field_align
= align
;
2434 #ifdef ADJUST_FIELD_ALIGN
2435 tree field
= build_decl (UNKNOWN_LOCATION
, FIELD_DECL
, NULL_TREE
, type
);
2436 field_align
= ADJUST_FIELD_ALIGN (field
, field_align
);
2439 align
= MIN (align
, field_align
);
2441 return align
/ BITS_PER_UNIT
;
2444 /* Vector types need to re-check the target flags each time we report
2445 the machine mode. We need to do this because attribute target can
2446 change the result of vector_mode_supported_p and have_regs_of_mode
2447 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2448 change on a per-function basis. */
2449 /* ??? Possibly a better solution is to run through all the types
2450 referenced by a function and re-compute the TYPE_MODE once, rather
2451 than make the TYPE_MODE macro call a function. */
2454 vector_type_mode (const_tree t
)
2458 gcc_assert (TREE_CODE (t
) == VECTOR_TYPE
);
2460 mode
= t
->type_common
.mode
;
2461 if (VECTOR_MODE_P (mode
)
2462 && (!targetm
.vector_mode_supported_p (mode
)
2463 || !have_regs_of_mode
[mode
]))
2465 machine_mode innermode
= TREE_TYPE (t
)->type_common
.mode
;
2467 /* For integers, try mapping it to a same-sized scalar mode. */
2468 if (GET_MODE_CLASS (innermode
) == MODE_INT
)
2470 mode
= mode_for_size (TYPE_VECTOR_SUBPARTS (t
)
2471 * GET_MODE_BITSIZE (innermode
), MODE_INT
, 0);
2473 if (mode
!= VOIDmode
&& have_regs_of_mode
[mode
])
2483 /* Create and return a type for signed integers of PRECISION bits. */
2486 make_signed_type (int precision
)
2488 tree type
= make_node (INTEGER_TYPE
);
2490 TYPE_PRECISION (type
) = precision
;
2492 fixup_signed_type (type
);
2496 /* Create and return a type for unsigned integers of PRECISION bits. */
2499 make_unsigned_type (int precision
)
2501 tree type
= make_node (INTEGER_TYPE
);
2503 TYPE_PRECISION (type
) = precision
;
2505 fixup_unsigned_type (type
);
2509 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2513 make_fract_type (int precision
, int unsignedp
, int satp
)
2515 tree type
= make_node (FIXED_POINT_TYPE
);
2517 TYPE_PRECISION (type
) = precision
;
2520 TYPE_SATURATING (type
) = 1;
2522 /* Lay out the type: set its alignment, size, etc. */
2525 TYPE_UNSIGNED (type
) = 1;
2526 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_UFRACT
, 0));
2529 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_FRACT
, 0));
2535 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2539 make_accum_type (int precision
, int unsignedp
, int satp
)
2541 tree type
= make_node (FIXED_POINT_TYPE
);
2543 TYPE_PRECISION (type
) = precision
;
2546 TYPE_SATURATING (type
) = 1;
2548 /* Lay out the type: set its alignment, size, etc. */
2551 TYPE_UNSIGNED (type
) = 1;
2552 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_UACCUM
, 0));
2555 SET_TYPE_MODE (type
, mode_for_size (precision
, MODE_ACCUM
, 0));
2561 /* Initialize sizetypes so layout_type can use them. */
2564 initialize_sizetypes (void)
2566 int precision
, bprecision
;
2568 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2569 if (strcmp (SIZETYPE
, "unsigned int") == 0)
2570 precision
= INT_TYPE_SIZE
;
2571 else if (strcmp (SIZETYPE
, "long unsigned int") == 0)
2572 precision
= LONG_TYPE_SIZE
;
2573 else if (strcmp (SIZETYPE
, "long long unsigned int") == 0)
2574 precision
= LONG_LONG_TYPE_SIZE
;
2575 else if (strcmp (SIZETYPE
, "short unsigned int") == 0)
2576 precision
= SHORT_TYPE_SIZE
;
2582 for (i
= 0; i
< NUM_INT_N_ENTS
; i
++)
2583 if (int_n_enabled_p
[i
])
2586 sprintf (name
, "__int%d unsigned", int_n_data
[i
].bitsize
);
2588 if (strcmp (name
, SIZETYPE
) == 0)
2590 precision
= int_n_data
[i
].bitsize
;
2593 if (precision
== -1)
2598 = MIN (precision
+ BITS_PER_UNIT_LOG
+ 1, MAX_FIXED_MODE_SIZE
);
2600 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision
, MODE_INT
));
2601 if (bprecision
> HOST_BITS_PER_DOUBLE_INT
)
2602 bprecision
= HOST_BITS_PER_DOUBLE_INT
;
2604 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2605 sizetype
= make_node (INTEGER_TYPE
);
2606 TYPE_NAME (sizetype
) = get_identifier ("sizetype");
2607 TYPE_PRECISION (sizetype
) = precision
;
2608 TYPE_UNSIGNED (sizetype
) = 1;
2609 bitsizetype
= make_node (INTEGER_TYPE
);
2610 TYPE_NAME (bitsizetype
) = get_identifier ("bitsizetype");
2611 TYPE_PRECISION (bitsizetype
) = bprecision
;
2612 TYPE_UNSIGNED (bitsizetype
) = 1;
2614 /* Now layout both types manually. */
2615 SET_TYPE_MODE (sizetype
, smallest_mode_for_size (precision
, MODE_INT
));
2616 TYPE_ALIGN (sizetype
) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype
));
2617 TYPE_SIZE (sizetype
) = bitsize_int (precision
);
2618 TYPE_SIZE_UNIT (sizetype
) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype
)));
2619 set_min_and_max_values_for_integral_type (sizetype
, precision
, UNSIGNED
);
2621 SET_TYPE_MODE (bitsizetype
, smallest_mode_for_size (bprecision
, MODE_INT
));
2622 TYPE_ALIGN (bitsizetype
) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype
));
2623 TYPE_SIZE (bitsizetype
) = bitsize_int (bprecision
);
2624 TYPE_SIZE_UNIT (bitsizetype
)
2625 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype
)));
2626 set_min_and_max_values_for_integral_type (bitsizetype
, bprecision
, UNSIGNED
);
2628 /* Create the signed variants of *sizetype. */
2629 ssizetype
= make_signed_type (TYPE_PRECISION (sizetype
));
2630 TYPE_NAME (ssizetype
) = get_identifier ("ssizetype");
2631 sbitsizetype
= make_signed_type (TYPE_PRECISION (bitsizetype
));
2632 TYPE_NAME (sbitsizetype
) = get_identifier ("sbitsizetype");
2635 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2636 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2637 for TYPE, based on the PRECISION and whether or not the TYPE
2638 IS_UNSIGNED. PRECISION need not correspond to a width supported
2639 natively by the hardware; for example, on a machine with 8-bit,
2640 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2644 set_min_and_max_values_for_integral_type (tree type
,
2648 /* For bitfields with zero width we end up creating integer types
2649 with zero precision. Don't assign any minimum/maximum values
2650 to those types, they don't have any valid value. */
2654 TYPE_MIN_VALUE (type
)
2655 = wide_int_to_tree (type
, wi::min_value (precision
, sgn
));
2656 TYPE_MAX_VALUE (type
)
2657 = wide_int_to_tree (type
, wi::max_value (precision
, sgn
));
2660 /* Set the extreme values of TYPE based on its precision in bits,
2661 then lay it out. Used when make_signed_type won't do
2662 because the tree code is not INTEGER_TYPE.
2663 E.g. for Pascal, when the -fsigned-char option is given. */
2666 fixup_signed_type (tree type
)
2668 int precision
= TYPE_PRECISION (type
);
2670 set_min_and_max_values_for_integral_type (type
, precision
, SIGNED
);
2672 /* Lay out the type: set its alignment, size, etc. */
2676 /* Set the extreme values of TYPE based on its precision in bits,
2677 then lay it out. This is used both in `make_unsigned_type'
2678 and for enumeral types. */
2681 fixup_unsigned_type (tree type
)
2683 int precision
= TYPE_PRECISION (type
);
2685 TYPE_UNSIGNED (type
) = 1;
2687 set_min_and_max_values_for_integral_type (type
, precision
, UNSIGNED
);
2689 /* Lay out the type: set its alignment, size, etc. */
2693 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2696 BITREGION_START is the bit position of the first bit in this
2697 sequence of bit fields. BITREGION_END is the last bit in this
2698 sequence. If these two fields are non-zero, we should restrict the
2699 memory access to that range. Otherwise, we are allowed to touch
2700 any adjacent non bit-fields.
2702 ALIGN is the alignment of the underlying object in bits.
2703 VOLATILEP says whether the bitfield is volatile. */
2705 bit_field_mode_iterator
2706 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
2707 HOST_WIDE_INT bitregion_start
,
2708 HOST_WIDE_INT bitregion_end
,
2709 unsigned int align
, bool volatilep
)
2710 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT
)), m_bitsize (bitsize
),
2711 m_bitpos (bitpos
), m_bitregion_start (bitregion_start
),
2712 m_bitregion_end (bitregion_end
), m_align (align
),
2713 m_volatilep (volatilep
), m_count (0)
2715 if (!m_bitregion_end
)
2717 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2718 the bitfield is mapped and won't trap, provided that ALIGN isn't
2719 too large. The cap is the biggest required alignment for data,
2720 or at least the word size. And force one such chunk at least. */
2721 unsigned HOST_WIDE_INT units
2722 = MIN (align
, MAX (BIGGEST_ALIGNMENT
, BITS_PER_WORD
));
2725 m_bitregion_end
= bitpos
+ bitsize
+ units
- 1;
2726 m_bitregion_end
-= m_bitregion_end
% units
+ 1;
2730 /* Calls to this function return successively larger modes that can be used
2731 to represent the bitfield. Return true if another bitfield mode is
2732 available, storing it in *OUT_MODE if so. */
2735 bit_field_mode_iterator::next_mode (machine_mode
*out_mode
)
2737 for (; m_mode
!= VOIDmode
; m_mode
= GET_MODE_WIDER_MODE (m_mode
))
2739 unsigned int unit
= GET_MODE_BITSIZE (m_mode
);
2741 /* Skip modes that don't have full precision. */
2742 if (unit
!= GET_MODE_PRECISION (m_mode
))
2745 /* Stop if the mode is too wide to handle efficiently. */
2746 if (unit
> MAX_FIXED_MODE_SIZE
)
2749 /* Don't deliver more than one multiword mode; the smallest one
2751 if (m_count
> 0 && unit
> BITS_PER_WORD
)
2754 /* Skip modes that are too small. */
2755 unsigned HOST_WIDE_INT substart
= (unsigned HOST_WIDE_INT
) m_bitpos
% unit
;
2756 unsigned HOST_WIDE_INT subend
= substart
+ m_bitsize
;
2760 /* Stop if the mode goes outside the bitregion. */
2761 HOST_WIDE_INT start
= m_bitpos
- substart
;
2762 if (m_bitregion_start
&& start
< m_bitregion_start
)
2764 HOST_WIDE_INT end
= start
+ unit
;
2765 if (end
> m_bitregion_end
+ 1)
2768 /* Stop if the mode requires too much alignment. */
2769 if (GET_MODE_ALIGNMENT (m_mode
) > m_align
2770 && SLOW_UNALIGNED_ACCESS (m_mode
, m_align
))
2774 m_mode
= GET_MODE_WIDER_MODE (m_mode
);
2781 /* Return true if smaller modes are generally preferred for this kind
2785 bit_field_mode_iterator::prefer_smaller_modes ()
2788 ? targetm
.narrow_volatile_bitfield ()
2789 : !SLOW_BYTE_ACCESS
);
2792 /* Find the best machine mode to use when referencing a bit field of length
2793 BITSIZE bits starting at BITPOS.
2795 BITREGION_START is the bit position of the first bit in this
2796 sequence of bit fields. BITREGION_END is the last bit in this
2797 sequence. If these two fields are non-zero, we should restrict the
2798 memory access to that range. Otherwise, we are allowed to touch
2799 any adjacent non bit-fields.
2801 The underlying object is known to be aligned to a boundary of ALIGN bits.
2802 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2803 larger than LARGEST_MODE (usually SImode).
2805 If no mode meets all these conditions, we return VOIDmode.
2807 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2808 smallest mode meeting these conditions.
2810 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2811 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2814 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2815 decide which of the above modes should be used. */
2818 get_best_mode (int bitsize
, int bitpos
,
2819 unsigned HOST_WIDE_INT bitregion_start
,
2820 unsigned HOST_WIDE_INT bitregion_end
,
2822 machine_mode largest_mode
, bool volatilep
)
2824 bit_field_mode_iterator
iter (bitsize
, bitpos
, bitregion_start
,
2825 bitregion_end
, align
, volatilep
);
2826 machine_mode widest_mode
= VOIDmode
;
2828 while (iter
.next_mode (&mode
)
2829 /* ??? For historical reasons, reject modes that would normally
2830 receive greater alignment, even if unaligned accesses are
2831 acceptable. This has both advantages and disadvantages.
2832 Removing this check means that something like:
2834 struct s { unsigned int x; unsigned int y; };
2835 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2837 can be implemented using a single load and compare on
2838 64-bit machines that have no alignment restrictions.
2839 For example, on powerpc64-linux-gnu, we would generate:
2861 However, accessing more than one field can make life harder
2862 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2863 has a series of unsigned short copies followed by a series of
2864 unsigned short comparisons. With this check, both the copies
2865 and comparisons remain 16-bit accesses and FRE is able
2866 to eliminate the latter. Without the check, the comparisons
2867 can be done using 2 64-bit operations, which FRE isn't able
2868 to handle in the same way.
2870 Either way, it would probably be worth disabling this check
2871 during expand. One particular example where removing the
2872 check would help is the get_best_mode call in store_bit_field.
2873 If we are given a memory bitregion of 128 bits that is aligned
2874 to a 64-bit boundary, and the bitfield we want to modify is
2875 in the second half of the bitregion, this check causes
2876 store_bitfield to turn the memory into a 64-bit reference
2877 to the _first_ half of the region. We later use
2878 adjust_bitfield_address to get a reference to the correct half,
2879 but doing so looks to adjust_bitfield_address as though we are
2880 moving past the end of the original object, so it drops the
2881 associated MEM_EXPR and MEM_OFFSET. Removing the check
2882 causes store_bit_field to keep a 128-bit memory reference,
2883 so that the final bitfield reference still has a MEM_EXPR
2885 && GET_MODE_ALIGNMENT (mode
) <= align
2886 && (largest_mode
== VOIDmode
2887 || GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (largest_mode
)))
2890 if (iter
.prefer_smaller_modes ())
2896 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2897 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2900 get_mode_bounds (machine_mode mode
, int sign
,
2901 machine_mode target_mode
,
2902 rtx
*mmin
, rtx
*mmax
)
2904 unsigned size
= GET_MODE_PRECISION (mode
);
2905 unsigned HOST_WIDE_INT min_val
, max_val
;
2907 gcc_assert (size
<= HOST_BITS_PER_WIDE_INT
);
2909 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2912 if (STORE_FLAG_VALUE
< 0)
2914 min_val
= STORE_FLAG_VALUE
;
2920 max_val
= STORE_FLAG_VALUE
;
2925 min_val
= -((unsigned HOST_WIDE_INT
) 1 << (size
- 1));
2926 max_val
= ((unsigned HOST_WIDE_INT
) 1 << (size
- 1)) - 1;
2931 max_val
= ((unsigned HOST_WIDE_INT
) 1 << (size
- 1) << 1) - 1;
2934 *mmin
= gen_int_mode (min_val
, target_mode
);
2935 *mmax
= gen_int_mode (max_val
, target_mode
);
2938 #include "gt-stor-layout.h"