[Ada] Place "at end" on body nodes
[official-gcc.git] / gcc / ada / sem_ch6.adb
blobc92e69139bebe38e94761abc8b1672f020bb536f
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 6 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2022, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Contracts; use Contracts;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Einfo.Entities; use Einfo.Entities;
33 with Einfo.Utils; use Einfo.Utils;
34 with Elists; use Elists;
35 with Errout; use Errout;
36 with Expander; use Expander;
37 with Exp_Ch6; use Exp_Ch6;
38 with Exp_Ch9; use Exp_Ch9;
39 with Exp_Dbug; use Exp_Dbug;
40 with Exp_Tss; use Exp_Tss;
41 with Exp_Util; use Exp_Util;
42 with Freeze; use Freeze;
43 with Ghost; use Ghost;
44 with Inline; use Inline;
45 with Itypes; use Itypes;
46 with Lib.Xref; use Lib.Xref;
47 with Layout; use Layout;
48 with Namet; use Namet;
49 with Lib; use Lib;
50 with Nlists; use Nlists;
51 with Nmake; use Nmake;
52 with Opt; use Opt;
53 with Output; use Output;
54 with Rtsfind; use Rtsfind;
55 with Sem; use Sem;
56 with Sem_Aux; use Sem_Aux;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch3; use Sem_Ch3;
59 with Sem_Ch4; use Sem_Ch4;
60 with Sem_Ch5; use Sem_Ch5;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch9; use Sem_Ch9;
63 with Sem_Ch10; use Sem_Ch10;
64 with Sem_Ch12; use Sem_Ch12;
65 with Sem_Ch13; use Sem_Ch13;
66 with Sem_Dim; use Sem_Dim;
67 with Sem_Disp; use Sem_Disp;
68 with Sem_Dist; use Sem_Dist;
69 with Sem_Elim; use Sem_Elim;
70 with Sem_Eval; use Sem_Eval;
71 with Sem_Mech; use Sem_Mech;
72 with Sem_Prag; use Sem_Prag;
73 with Sem_Res; use Sem_Res;
74 with Sem_Util; use Sem_Util;
75 with Sem_Type; use Sem_Type;
76 with Sem_Warn; use Sem_Warn;
77 with Sinput; use Sinput;
78 with Stand; use Stand;
79 with Sinfo; use Sinfo;
80 with Sinfo.Nodes; use Sinfo.Nodes;
81 with Sinfo.Utils; use Sinfo.Utils;
82 with Sinfo.CN; use Sinfo.CN;
83 with Snames; use Snames;
84 with Stringt; use Stringt;
85 with Style;
86 with Stylesw; use Stylesw;
87 with Tbuild; use Tbuild;
88 with Uintp; use Uintp;
89 with Urealp; use Urealp;
90 with Validsw; use Validsw;
91 with Warnsw; use Warnsw;
93 package body Sem_Ch6 is
95 May_Hide_Profile : Boolean := False;
96 -- This flag is used to indicate that two formals in two subprograms being
97 -- checked for conformance differ only in that one is an access parameter
98 -- while the other is of a general access type with the same designated
99 -- type. In this case, if the rest of the signatures match, a call to
100 -- either subprogram may be ambiguous, which is worth a warning. The flag
101 -- is set in Compatible_Types, and the warning emitted in
102 -- New_Overloaded_Entity.
104 -----------------------
105 -- Local Subprograms --
106 -----------------------
108 procedure Analyze_Function_Return (N : Node_Id);
109 -- Subsidiary to Analyze_Return_Statement. Called when the return statement
110 -- applies to a [generic] function.
112 procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
113 -- Analyze a generic subprogram body. N is the body to be analyzed, and
114 -- Gen_Id is the defining entity Id for the corresponding spec.
116 procedure Analyze_Null_Procedure
117 (N : Node_Id;
118 Is_Completion : out Boolean);
119 -- A null procedure can be a declaration or (Ada 2012) a completion
121 procedure Analyze_Return_Statement (N : Node_Id);
122 -- Common processing for simple and extended return statements
124 procedure Analyze_Return_Type (N : Node_Id);
125 -- Subsidiary to Process_Formals: analyze subtype mark in function
126 -- specification in a context where the formals are visible and hide
127 -- outer homographs.
129 procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
130 -- Does all the real work of Analyze_Subprogram_Body. This is split out so
131 -- that we can use RETURN but not skip the debug output at the end.
133 procedure Check_Conformance
134 (New_Id : Entity_Id;
135 Old_Id : Entity_Id;
136 Ctype : Conformance_Type;
137 Errmsg : Boolean;
138 Conforms : out Boolean;
139 Err_Loc : Node_Id := Empty;
140 Get_Inst : Boolean := False;
141 Skip_Controlling_Formals : Boolean := False);
142 -- Given two entities, this procedure checks that the profiles associated
143 -- with these entities meet the conformance criterion given by the third
144 -- parameter. If they conform, Conforms is set True and control returns
145 -- to the caller. If they do not conform, Conforms is set to False, and
146 -- in addition, if Errmsg is True on the call, proper messages are output
147 -- to complain about the conformance failure. If Err_Loc is non_Empty
148 -- the error messages are placed on Err_Loc, if Err_Loc is empty, then
149 -- error messages are placed on the appropriate part of the construct
150 -- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
151 -- against a formal access-to-subprogram type so Get_Instance_Of must
152 -- be called.
154 procedure Check_Formal_Subprogram_Conformance
155 (New_Id : Entity_Id;
156 Old_Id : Entity_Id;
157 Err_Loc : Node_Id;
158 Errmsg : Boolean;
159 Conforms : out Boolean);
160 -- Core implementation of Check_Formal_Subprogram_Conformance from spec.
161 -- Errmsg can be set to False to not emit error messages.
162 -- Conforms is set to True if there is conformance, False otherwise.
164 procedure Check_Limited_Return
165 (N : Node_Id;
166 Expr : Node_Id;
167 R_Type : Entity_Id);
168 -- Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
169 -- types. Used only for simple return statements. Expr is the expression
170 -- returned.
172 procedure Check_Subprogram_Order (N : Node_Id);
173 -- N is the N_Subprogram_Body node for a subprogram. This routine applies
174 -- the alpha ordering rule for N if this ordering requirement applicable.
176 procedure Check_Returns
177 (HSS : Node_Id;
178 Mode : Character;
179 Err : out Boolean;
180 Proc : Entity_Id := Empty);
181 -- Called to check for missing return statements in a function body, or for
182 -- returns present in a procedure body which has No_Return set. HSS is the
183 -- handled statement sequence for the subprogram body. This procedure
184 -- checks all flow paths to make sure they either have return (Mode = 'F',
185 -- used for functions) or do not have a return (Mode = 'P', used for
186 -- No_Return procedures). The flag Err is set if there are any control
187 -- paths not explicitly terminated by a return in the function case, and is
188 -- True otherwise. Proc is the entity for the procedure case and is used
189 -- in posting the warning message.
191 procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
192 -- In Ada 2012, a primitive equality operator for an untagged record type
193 -- must appear before the type is frozen. This procedure checks that this
194 -- rule is met, and otherwise gives an error on the subprogram declaration
195 -- and a warning on the earlier freeze point if it is easy to pinpoint. In
196 -- earlier versions of Ada, the call has not effect, unless compatibility
197 -- warnings are requested by means of Warn_On_Ada_2012_Incompatibility.
199 procedure Enter_Overloaded_Entity (S : Entity_Id);
200 -- This procedure makes S, a new overloaded entity, into the first visible
201 -- entity with that name.
203 function Is_Non_Overriding_Operation
204 (Prev_E : Entity_Id;
205 New_E : Entity_Id) return Boolean;
206 -- Enforce the rule given in 12.3(18): a private operation in an instance
207 -- overrides an inherited operation only if the corresponding operation
208 -- was overriding in the generic. This needs to be checked for primitive
209 -- operations of types derived (in the generic unit) from formal private
210 -- or formal derived types.
212 procedure Make_Inequality_Operator (S : Entity_Id);
213 -- Create the declaration for an inequality operator that is implicitly
214 -- created by a user-defined equality operator that yields a boolean.
216 procedure Preanalyze_Formal_Expression (N : Node_Id; T : Entity_Id);
217 -- Preanalysis of default expressions of subprogram formals. N is the
218 -- expression to be analyzed and T is the expected type.
220 procedure Set_Formal_Validity (Formal_Id : Entity_Id);
221 -- Formal_Id is an formal parameter entity. This procedure deals with
222 -- setting the proper validity status for this entity, which depends on
223 -- the kind of parameter and the validity checking mode.
225 ---------------------------------------------
226 -- Analyze_Abstract_Subprogram_Declaration --
227 ---------------------------------------------
229 procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
230 Scop : constant Entity_Id := Current_Scope;
231 Subp_Id : constant Entity_Id :=
232 Analyze_Subprogram_Specification (Specification (N));
234 begin
235 Generate_Definition (Subp_Id);
237 -- Set the SPARK mode from the current context (may be overwritten later
238 -- with explicit pragma).
240 Set_SPARK_Pragma (Subp_Id, SPARK_Mode_Pragma);
241 Set_SPARK_Pragma_Inherited (Subp_Id);
243 -- Preserve relevant elaboration-related attributes of the context which
244 -- are no longer available or very expensive to recompute once analysis,
245 -- resolution, and expansion are over.
247 Mark_Elaboration_Attributes
248 (N_Id => Subp_Id,
249 Checks => True,
250 Warnings => True);
252 Set_Is_Abstract_Subprogram (Subp_Id);
253 New_Overloaded_Entity (Subp_Id);
254 Check_Delayed_Subprogram (Subp_Id);
256 Set_Categorization_From_Scope (Subp_Id, Scop);
258 if Ekind (Scope (Subp_Id)) = E_Protected_Type then
259 Error_Msg_N ("abstract subprogram not allowed in protected type", N);
261 -- Issue a warning if the abstract subprogram is neither a dispatching
262 -- operation nor an operation that overrides an inherited subprogram or
263 -- predefined operator, since this most likely indicates a mistake.
265 elsif Warn_On_Redundant_Constructs
266 and then not Is_Dispatching_Operation (Subp_Id)
267 and then not Present (Overridden_Operation (Subp_Id))
268 and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
269 or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
270 then
271 Error_Msg_N
272 ("abstract subprogram is not dispatching or overriding?r?", N);
273 end if;
275 Generate_Reference_To_Formals (Subp_Id);
276 Check_Eliminated (Subp_Id);
278 if Has_Aspects (N) then
279 Analyze_Aspect_Specifications (N, Subp_Id);
280 end if;
281 end Analyze_Abstract_Subprogram_Declaration;
283 ---------------------------------
284 -- Analyze_Expression_Function --
285 ---------------------------------
287 procedure Analyze_Expression_Function (N : Node_Id) is
288 Expr : constant Node_Id := Expression (N);
289 Loc : constant Source_Ptr := Sloc (N);
290 LocX : constant Source_Ptr := Sloc (Expr);
291 Spec : constant Node_Id := Specification (N);
293 -- Local variables
295 Asp : Node_Id;
296 New_Body : Node_Id;
297 New_Spec : Node_Id;
298 Orig_N : Node_Id := Empty;
299 Ret : Node_Id;
300 Typ : Entity_Id := Empty;
302 Def_Id : Entity_Id := Empty;
303 Prev : Entity_Id;
304 -- If the expression is a completion, Prev is the entity whose
305 -- declaration is completed. Def_Id is needed to analyze the spec.
307 begin
308 -- This is one of the occasions on which we transform the tree during
309 -- semantic analysis. If this is a completion, transform the expression
310 -- function into an equivalent subprogram body, and analyze it.
312 -- Expression functions are inlined unconditionally. The back-end will
313 -- determine whether this is possible.
315 Inline_Processing_Required := True;
317 -- Create a specification for the generated body. This must be done
318 -- prior to the analysis of the initial declaration.
320 New_Spec := Copy_Subprogram_Spec (Spec);
321 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
323 -- If there are previous overloadable entities with the same name,
324 -- check whether any of them is completed by the expression function.
325 -- In a generic context a formal subprogram has no completion.
327 if Present (Prev)
328 and then Is_Overloadable (Prev)
329 and then not Is_Formal_Subprogram (Prev)
330 then
331 Def_Id := Analyze_Subprogram_Specification (Spec);
332 Prev := Find_Corresponding_Spec (N);
334 Typ := Etype (Def_Id);
336 -- The previous entity may be an expression function as well, in
337 -- which case the redeclaration is illegal.
339 if Present (Prev)
340 and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
341 N_Expression_Function
342 then
343 Error_Msg_Sloc := Sloc (Prev);
344 Error_Msg_N ("& conflicts with declaration#", Def_Id);
345 return;
346 end if;
347 end if;
349 Ret := Make_Simple_Return_Statement (LocX, Expr);
351 New_Body :=
352 Make_Subprogram_Body (Loc,
353 Specification => New_Spec,
354 Declarations => Empty_List,
355 Handled_Statement_Sequence =>
356 Make_Handled_Sequence_Of_Statements (LocX,
357 Statements => New_List (Ret)));
358 Set_Was_Expression_Function (New_Body);
360 -- If the expression completes a generic subprogram, we must create a
361 -- separate node for the body, because at instantiation the original
362 -- node of the generic copy must be a generic subprogram body, and
363 -- cannot be a expression function. Otherwise we just rewrite the
364 -- expression with the non-generic body.
366 if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
367 Insert_After (N, New_Body);
369 -- Propagate any aspects or pragmas that apply to the expression
370 -- function to the proper body when the expression function acts
371 -- as a completion.
373 if Has_Aspects (N) then
374 Move_Aspects (N, To => New_Body);
375 end if;
377 Relocate_Pragmas_To_Body (New_Body);
379 Rewrite (N, Make_Null_Statement (Loc));
380 Set_Has_Completion (Prev, False);
381 Analyze (N);
382 Analyze (New_Body);
383 Set_Is_Inlined (Prev);
385 elsif Present (Prev)
386 and then Is_Overloadable (Prev)
387 and then not Is_Formal_Subprogram (Prev)
388 then
389 Set_Has_Completion (Prev, False);
390 Set_Is_Inlined (Prev);
392 -- AI12-0103: Expression functions that are a completion freeze their
393 -- expression but don't freeze anything else (unlike regular bodies).
395 -- Note that we cannot defer this freezing to the analysis of the
396 -- expression itself, because a freeze node might appear in a nested
397 -- scope, leading to an elaboration order issue in gigi.
398 -- As elsewhere, we do not emit freeze nodes within a generic unit.
400 if not Inside_A_Generic then
401 Freeze_Expr_Types
402 (Def_Id => Def_Id,
403 Typ => Typ,
404 Expr => Expr,
405 N => N);
406 end if;
408 -- For navigation purposes, indicate that the function is a body
410 Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
411 Rewrite (N, New_Body);
413 -- Remove any existing aspects from the original node because the act
414 -- of rewriting causes the list to be shared between the two nodes.
416 Orig_N := Original_Node (N);
417 Remove_Aspects (Orig_N);
419 -- Propagate any pragmas that apply to expression function to the
420 -- proper body when the expression function acts as a completion.
421 -- Aspects are automatically transfered because of node rewriting.
423 Relocate_Pragmas_To_Body (N);
424 Analyze (N);
426 -- Prev is the previous entity with the same name, but it is can
427 -- be an unrelated spec that is not completed by the expression
428 -- function. In that case the relevant entity is the one in the body.
429 -- Not clear that the backend can inline it in this case ???
431 if Has_Completion (Prev) then
433 -- The formals of the expression function are body formals,
434 -- and do not appear in the ali file, which will only contain
435 -- references to the formals of the original subprogram spec.
437 declare
438 F1 : Entity_Id;
439 F2 : Entity_Id;
441 begin
442 F1 := First_Formal (Def_Id);
443 F2 := First_Formal (Prev);
445 while Present (F1) loop
446 Set_Spec_Entity (F1, F2);
447 Next_Formal (F1);
448 Next_Formal (F2);
449 end loop;
450 end;
452 else
453 Set_Is_Inlined (Defining_Entity (New_Body));
454 end if;
456 -- If this is not a completion, create both a declaration and a body, so
457 -- that the expression can be inlined whenever possible.
459 else
460 -- An expression function that is not a completion is not a
461 -- subprogram declaration, and thus cannot appear in a protected
462 -- definition.
464 if Nkind (Parent (N)) = N_Protected_Definition then
465 Error_Msg_N
466 ("an expression function is not a legal protected operation", N);
467 end if;
469 Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
471 -- Remove any existing aspects from the original node because the act
472 -- of rewriting causes the list to be shared between the two nodes.
474 Orig_N := Original_Node (N);
475 Remove_Aspects (Orig_N);
477 Analyze (N);
479 -- If aspect SPARK_Mode was specified on the body, it needs to be
480 -- repeated both on the generated spec and the body.
482 Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
484 if Present (Asp) then
485 Asp := New_Copy_Tree (Asp);
486 Set_Analyzed (Asp, False);
487 Set_Aspect_Specifications (New_Body, New_List (Asp));
488 end if;
490 Def_Id := Defining_Entity (N);
491 Set_Is_Inlined (Def_Id);
493 Typ := Etype (Def_Id);
495 -- Establish the linkages between the spec and the body. These are
496 -- used when the expression function acts as the prefix of attribute
497 -- 'Access in order to freeze the original expression which has been
498 -- moved to the generated body.
500 Set_Corresponding_Body (N, Defining_Entity (New_Body));
501 Set_Corresponding_Spec (New_Body, Def_Id);
503 -- Within a generic preanalyze the original expression for name
504 -- capture. The body is also generated but plays no role in
505 -- this because it is not part of the original source.
506 -- If this is an ignored Ghost entity, analysis of the generated
507 -- body is needed to hide external references (as is done in
508 -- Analyze_Subprogram_Body) after which the the subprogram profile
509 -- can be frozen, which is needed to expand calls to such an ignored
510 -- Ghost subprogram.
512 if Inside_A_Generic then
513 Set_Has_Completion (Def_Id, not Is_Ignored_Ghost_Entity (Def_Id));
514 Push_Scope (Def_Id);
515 Install_Formals (Def_Id);
516 Preanalyze_Spec_Expression (Expr, Typ);
517 End_Scope;
518 else
519 Push_Scope (Def_Id);
520 Install_Formals (Def_Id);
521 Preanalyze_Formal_Expression (Expr, Typ);
522 Check_Limited_Return (Orig_N, Expr, Typ);
523 End_Scope;
524 end if;
526 -- If this is a wrapper created in an instance for a formal
527 -- subprogram, insert body after declaration, to be analyzed when the
528 -- enclosing instance is analyzed.
530 if GNATprove_Mode
531 and then Is_Generic_Actual_Subprogram (Def_Id)
532 then
533 Insert_After (N, New_Body);
535 -- To prevent premature freeze action, insert the new body at the end
536 -- of the current declarations, or at the end of the package spec.
537 -- However, resolve usage names now, to prevent spurious visibility
538 -- on later entities. Note that the function can now be called in
539 -- the current declarative part, which will appear to be prior to the
540 -- presence of the body in the code. There are nevertheless no order
541 -- of elaboration issues because all name resolution has taken place
542 -- at the point of declaration.
544 else
545 declare
546 Decls : List_Id := List_Containing (N);
547 Par : constant Node_Id := Parent (Decls);
549 begin
550 if Nkind (Par) = N_Package_Specification
551 and then Decls = Visible_Declarations (Par)
552 and then not Is_Empty_List (Private_Declarations (Par))
553 then
554 Decls := Private_Declarations (Par);
555 end if;
557 Insert_After (Last (Decls), New_Body);
558 end;
559 end if;
561 -- In the case of an expression function marked with the aspect
562 -- Static, we need to check the requirement that the function's
563 -- expression is a potentially static expression. This is done
564 -- by making a full copy of the expression tree and performing
565 -- a special preanalysis on that tree with the global flag
566 -- Checking_Potentially_Static_Expression enabled. If the
567 -- resulting expression is static, then it's OK, but if not, that
568 -- means the expression violates the requirements of the Ada 2022
569 -- RM in 4.9(3.2/5-3.4/5) and we flag an error.
571 if Is_Static_Function (Def_Id) then
572 declare
573 -- If a potentially static expr like "Parameter / 0"
574 -- is transformed into "(raise Constraint_Error)", then we
575 -- need to copy the Original_Node.
576 function Make_Expr_Copy return Node_Id is
577 (New_Copy_Tree (if Expr in N_Raise_xxx_Error_Id
578 then Original_Node (Expr)
579 else Expr));
580 begin
581 if not Is_Static_Expression (Expr) then
582 declare
583 Exp_Copy : constant Node_Id := Make_Expr_Copy;
584 begin
585 Set_Checking_Potentially_Static_Expression (True);
587 Preanalyze_Formal_Expression (Exp_Copy, Typ);
589 if not Is_Static_Expression (Exp_Copy) then
590 Error_Msg_N
591 ("static expression function requires "
592 & "potentially static expression", Expr);
593 end if;
595 Set_Checking_Potentially_Static_Expression (False);
596 end;
597 end if;
599 -- We also make an additional copy of the expression and
600 -- replace the expression of the expression function with
601 -- this copy, because the currently present expression is
602 -- now associated with the body created for the static
603 -- expression function, which will later be analyzed and
604 -- possibly rewritten, and we need to have the separate
605 -- unanalyzed copy available for use with later static
606 -- calls.
608 Set_Expression
609 (Original_Node (Subprogram_Spec (Def_Id)),
610 Make_Expr_Copy);
612 -- Mark static expression functions as inlined, to ensure
613 -- that even calls with nonstatic actuals will be inlined.
615 Set_Has_Pragma_Inline (Def_Id);
616 Set_Is_Inlined (Def_Id);
617 end;
618 end if;
619 end if;
621 -- Check incorrect use of dynamically tagged expression. This doesn't
622 -- fall out automatically when analyzing the generated function body,
623 -- because Check_Dynamically_Tagged_Expression deliberately ignores
624 -- nodes that don't come from source.
626 if Present (Def_Id)
627 and then Is_Tagged_Type (Typ)
628 then
629 Check_Dynamically_Tagged_Expression
630 (Expr => Expr,
631 Typ => Typ,
632 Related_Nod => Orig_N);
633 end if;
635 -- We must enforce checks for unreferenced formals in our newly
636 -- generated function, so we propagate the referenced flag from the
637 -- original spec to the new spec as well as setting Comes_From_Source.
639 if Present (Parameter_Specifications (New_Spec)) then
640 declare
641 Form_New_Def : Entity_Id;
642 Form_New_Spec : Node_Id;
643 Form_Old_Def : Entity_Id;
644 Form_Old_Spec : Node_Id;
646 begin
647 Form_New_Spec := First (Parameter_Specifications (New_Spec));
648 Form_Old_Spec := First (Parameter_Specifications (Spec));
650 while Present (Form_New_Spec) and then Present (Form_Old_Spec) loop
651 Form_New_Def := Defining_Identifier (Form_New_Spec);
652 Form_Old_Def := Defining_Identifier (Form_Old_Spec);
654 Set_Comes_From_Source (Form_New_Def, True);
656 -- Because of the usefulness of unreferenced controlling
657 -- formals we exempt them from unreferenced warnings by marking
658 -- them as always referenced.
660 Set_Referenced (Form_Old_Def,
661 (Is_Formal (Form_Old_Def)
662 and then Is_Controlling_Formal (Form_Old_Def))
663 or else Referenced (Form_Old_Def));
665 Next (Form_New_Spec);
666 Next (Form_Old_Spec);
667 end loop;
668 end;
669 end if;
670 end Analyze_Expression_Function;
672 ---------------------------------------
673 -- Analyze_Extended_Return_Statement --
674 ---------------------------------------
676 procedure Analyze_Extended_Return_Statement (N : Node_Id) is
677 begin
678 Analyze_Return_Statement (N);
679 end Analyze_Extended_Return_Statement;
681 ----------------------------
682 -- Analyze_Function_Call --
683 ----------------------------
685 procedure Analyze_Function_Call (N : Node_Id) is
686 Actuals : constant List_Id := Parameter_Associations (N);
687 Func_Nam : constant Node_Id := Name (N);
688 Actual : Node_Id;
690 begin
691 Analyze (Func_Nam);
693 -- A call of the form A.B (X) may be an Ada 2005 call, which is
694 -- rewritten as B (A, X). If the rewriting is successful, the call
695 -- has been analyzed and we just return.
697 if Nkind (Func_Nam) = N_Selected_Component
698 and then Name (N) /= Func_Nam
699 and then Is_Rewrite_Substitution (N)
700 and then Present (Etype (N))
701 then
702 return;
703 end if;
705 -- If error analyzing name, then set Any_Type as result type and return
707 if Etype (Func_Nam) = Any_Type then
708 Set_Etype (N, Any_Type);
709 return;
710 end if;
712 -- Otherwise analyze the parameters
714 Actual := First (Actuals);
715 while Present (Actual) loop
716 Analyze (Actual);
717 Check_Parameterless_Call (Actual);
718 Next (Actual);
719 end loop;
721 Analyze_Call (N);
722 end Analyze_Function_Call;
724 -----------------------------
725 -- Analyze_Function_Return --
726 -----------------------------
728 procedure Analyze_Function_Return (N : Node_Id) is
729 Loc : constant Source_Ptr := Sloc (N);
730 Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
731 Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
733 R_Type : constant Entity_Id := Etype (Scope_Id);
734 -- Function result subtype
736 procedure Check_No_Return_Expression (Return_Expr : Node_Id);
737 -- Ada 2022: Check that the return expression in a No_Return function
738 -- meets the conditions specified by RM 6.5.1(5.1/5).
740 procedure Check_Return_Construct_Accessibility (Return_Stmt : Node_Id);
741 -- Apply legality rule of 6.5 (5.9) to the access discriminants of an
742 -- aggregate in a return statement.
744 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
745 -- Check that the return_subtype_indication properly matches the result
746 -- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
748 --------------------------------
749 -- Check_No_Return_Expression --
750 --------------------------------
752 procedure Check_No_Return_Expression (Return_Expr : Node_Id) is
753 Kind : constant Node_Kind := Nkind (Return_Expr);
755 begin
756 if Kind = N_Raise_Expression then
757 return;
759 elsif Kind = N_Function_Call
760 and then Is_Entity_Name (Name (Return_Expr))
761 and then Ekind (Entity (Name (Return_Expr))) in
762 E_Function | E_Generic_Function
763 and then No_Return (Entity (Name (Return_Expr)))
764 then
765 return;
766 end if;
768 Error_Msg_N
769 ("illegal expression in RETURN statement of No_Return function",
770 Return_Expr);
771 Error_Msg_N
772 ("\must be raise expression or call to No_Return (RM 6.5.1(5.1/5))",
773 Return_Expr);
774 end Check_No_Return_Expression;
776 ------------------------------------------
777 -- Check_Return_Construct_Accessibility --
778 ------------------------------------------
780 procedure Check_Return_Construct_Accessibility (Return_Stmt : Node_Id) is
782 function First_Selector (Assoc : Node_Id) return Node_Id;
783 -- Obtain the first selector or choice from a given association
785 function Is_Formal_Of_Current_Function
786 (Assoc_Expr : Entity_Id) return Boolean;
787 -- Predicate to test if a given expression associated with a
788 -- discriminant is a formal parameter to the function in which the
789 -- return construct we checking applies to.
791 --------------------
792 -- First_Selector --
793 --------------------
795 function First_Selector (Assoc : Node_Id) return Node_Id is
796 begin
797 if Nkind (Assoc) = N_Component_Association then
798 return First (Choices (Assoc));
800 elsif Nkind (Assoc) = N_Discriminant_Association then
801 return (First (Selector_Names (Assoc)));
803 else
804 raise Program_Error;
805 end if;
806 end First_Selector;
808 -----------------------------------
809 -- Is_Formal_Of_Current_Function --
810 -----------------------------------
812 function Is_Formal_Of_Current_Function
813 (Assoc_Expr : Entity_Id) return Boolean is
814 begin
815 return Is_Entity_Name (Assoc_Expr)
816 and then Enclosing_Subprogram
817 (Entity (Assoc_Expr)) = Scope_Id
818 and then Is_Formal (Entity (Assoc_Expr));
819 end Is_Formal_Of_Current_Function;
821 -- Local declarations
823 Assoc : Node_Id := Empty;
824 -- Assoc should perhaps be renamed and declared as a
825 -- Node_Or_Entity_Id since it encompasses not only component and
826 -- discriminant associations, but also discriminant components within
827 -- a type declaration or subtype indication ???
829 Assoc_Expr : Node_Id;
830 Assoc_Present : Boolean := False;
832 Check_Cond : Node_Id;
833 Unseen_Disc_Count : Nat := 0;
834 Seen_Discs : Elist_Id;
835 Disc : Entity_Id;
836 First_Disc : Entity_Id;
838 Obj_Decl : Node_Id;
839 Return_Con : Node_Id;
840 Unqual : Node_Id;
842 -- Start of processing for Check_Return_Construct_Accessibility
844 begin
845 -- Only perform checks on record types with access discriminants and
846 -- non-internally generated functions.
848 if not Is_Record_Type (R_Type)
849 or else not Has_Anonymous_Access_Discriminant (R_Type)
850 or else not Comes_From_Source (Return_Stmt)
851 then
852 return;
853 end if;
855 -- We are only interested in return statements
857 if Nkind (Return_Stmt) not in
858 N_Extended_Return_Statement | N_Simple_Return_Statement
859 then
860 return;
861 end if;
863 -- Fetch the object from the return statement, in the case of a
864 -- simple return statement the expression is part of the node.
866 if Nkind (Return_Stmt) = N_Extended_Return_Statement then
867 -- Obtain the object definition from the expanded extended return
869 Return_Con := First (Return_Object_Declarations (Return_Stmt));
870 while Present (Return_Con) loop
871 -- Inspect the original node to avoid object declarations
872 -- expanded into renamings.
874 if Nkind (Original_Node (Return_Con)) = N_Object_Declaration
875 and then Comes_From_Source (Original_Node (Return_Con))
876 then
877 exit;
878 end if;
880 Nlists.Next (Return_Con);
881 end loop;
883 pragma Assert (Present (Return_Con));
885 -- Could be dealing with a renaming
887 Return_Con := Original_Node (Return_Con);
888 else
889 Return_Con := Expression (Return_Stmt);
890 end if;
892 -- Obtain the accessibility levels of the expressions associated
893 -- with all anonymous access discriminants, then generate a
894 -- dynamic check or static error when relevant.
896 -- Note the repeated use of Original_Node to avoid checking
897 -- expanded code.
899 Unqual := Original_Node (Unqualify (Original_Node (Return_Con)));
901 -- Get the corresponding declaration based on the return object's
902 -- identifier.
904 if Nkind (Unqual) = N_Identifier
905 and then Nkind (Parent (Entity (Unqual)))
906 in N_Object_Declaration
907 | N_Object_Renaming_Declaration
908 then
909 Obj_Decl := Original_Node (Parent (Entity (Unqual)));
911 -- We were passed the object declaration directly, so use it
913 elsif Nkind (Unqual) in N_Object_Declaration
914 | N_Object_Renaming_Declaration
915 then
916 Obj_Decl := Unqual;
918 -- Otherwise, we are looking at something else
920 else
921 Obj_Decl := Empty;
923 end if;
925 -- Hop up object renamings when present
927 if Present (Obj_Decl)
928 and then Nkind (Obj_Decl) = N_Object_Renaming_Declaration
929 then
930 while Nkind (Obj_Decl) = N_Object_Renaming_Declaration loop
932 if Nkind (Name (Obj_Decl)) not in N_Entity then
933 -- We may be looking at the expansion of iterators or
934 -- some other internally generated construct, so it is safe
935 -- to ignore checks ???
937 if not Comes_From_Source (Obj_Decl) then
938 return;
939 end if;
941 Obj_Decl := Original_Node
942 (Declaration_Node
943 (Ultimate_Prefix (Name (Obj_Decl))));
945 -- Move up to the next declaration based on the object's name
947 else
948 Obj_Decl := Original_Node
949 (Declaration_Node (Name (Obj_Decl)));
950 end if;
951 end loop;
952 end if;
954 -- Obtain the discriminant values from the return aggregate
956 -- Do we cover extension aggregates correctly ???
958 if Nkind (Unqual) = N_Aggregate then
959 if Present (Expressions (Unqual)) then
960 Assoc := First (Expressions (Unqual));
961 else
962 Assoc := First (Component_Associations (Unqual));
963 end if;
965 -- There is an object declaration for the return object
967 elsif Present (Obj_Decl) then
968 -- When a subtype indication is present in an object declaration
969 -- it must contain the object's discriminants.
971 if Nkind (Object_Definition (Obj_Decl)) = N_Subtype_Indication then
972 Assoc := First
973 (Constraints
974 (Constraint
975 (Object_Definition (Obj_Decl))));
977 -- The object declaration contains an aggregate
979 elsif Present (Expression (Obj_Decl)) then
981 if Nkind (Unqualify (Expression (Obj_Decl))) = N_Aggregate then
982 -- Grab the first associated discriminant expresion
984 if Present
985 (Expressions (Unqualify (Expression (Obj_Decl))))
986 then
987 Assoc := First
988 (Expressions
989 (Unqualify (Expression (Obj_Decl))));
990 else
991 Assoc := First
992 (Component_Associations
993 (Unqualify (Expression (Obj_Decl))));
994 end if;
996 -- Otherwise, this is something else
998 else
999 return;
1000 end if;
1002 -- There are no supplied discriminants in the object declaration,
1003 -- so get them from the type definition since they must be default
1004 -- initialized.
1006 -- Do we handle constrained subtypes correctly ???
1008 elsif Nkind (Unqual) = N_Object_Declaration then
1009 Assoc := First_Discriminant
1010 (Etype (Object_Definition (Obj_Decl)));
1012 else
1013 Assoc := First_Discriminant (Etype (Unqual));
1014 end if;
1016 -- When we are not looking at an aggregate or an identifier, return
1017 -- since any other construct (like a function call) is not
1018 -- applicable since checks will be performed on the side of the
1019 -- callee.
1021 else
1022 return;
1023 end if;
1025 -- Obtain the discriminants so we know the actual type in case the
1026 -- value of their associated expression gets implicitly converted.
1028 if No (Obj_Decl) then
1029 pragma Assert (Nkind (Unqual) = N_Aggregate);
1031 Disc := First_Discriminant (Etype (Unqual));
1033 else
1034 Disc := First_Discriminant
1035 (Etype (Defining_Identifier (Obj_Decl)));
1036 end if;
1038 -- Preserve the first discriminant for checking named associations
1040 First_Disc := Disc;
1042 -- Count the number of discriminants for processing an aggregate
1043 -- which includes an others.
1045 Disc := First_Disc;
1046 while Present (Disc) loop
1047 Unseen_Disc_Count := Unseen_Disc_Count + 1;
1049 Next_Discriminant (Disc);
1050 end loop;
1052 Seen_Discs := New_Elmt_List;
1054 -- Loop through each of the discriminants and check each expression
1055 -- associated with an anonymous access discriminant.
1057 -- When named associations occur in the return aggregate then
1058 -- discriminants can be in any order, so we need to ensure we do
1059 -- not continue to loop when all discriminants have been seen.
1061 Disc := First_Disc;
1062 while Present (Assoc)
1063 and then (Present (Disc) or else Assoc_Present)
1064 and then Unseen_Disc_Count > 0
1065 loop
1066 -- Handle named associations by searching through the names of
1067 -- the relevant discriminant components.
1069 if Nkind (Assoc)
1070 in N_Component_Association | N_Discriminant_Association
1071 then
1072 Assoc_Expr := Expression (Assoc);
1073 Assoc_Present := True;
1075 -- We currently don't handle box initialized discriminants,
1076 -- however, since default initialized anonymous access
1077 -- discriminants are a corner case, this is ok for now ???
1079 if Nkind (Assoc) = N_Component_Association
1080 and then Box_Present (Assoc)
1081 then
1082 if Nkind (First_Selector (Assoc)) = N_Others_Choice then
1083 Unseen_Disc_Count := 0;
1084 end if;
1086 -- When others is present we must identify a discriminant we
1087 -- haven't already seen so as to get the appropriate type for
1088 -- the static accessibility check.
1090 -- This works because all components within an others clause
1091 -- must have the same type.
1093 elsif Nkind (First_Selector (Assoc)) = N_Others_Choice then
1095 Disc := First_Disc;
1096 Outer : while Present (Disc) loop
1097 declare
1098 Current_Seen_Disc : Elmt_Id;
1099 begin
1100 -- Move through the list of identified discriminants
1102 Current_Seen_Disc := First_Elmt (Seen_Discs);
1103 while Present (Current_Seen_Disc) loop
1104 -- Exit the loop when we found a match
1106 exit when
1107 Chars (Node (Current_Seen_Disc)) = Chars (Disc);
1109 Next_Elmt (Current_Seen_Disc);
1110 end loop;
1112 -- When we have exited the above loop without finding
1113 -- a match then we know that Disc has not been seen.
1115 exit Outer when No (Current_Seen_Disc);
1116 end;
1118 Next_Discriminant (Disc);
1119 end loop Outer;
1121 -- If we got to an others clause with a non-zero
1122 -- discriminant count there must be a discriminant left to
1123 -- check.
1125 pragma Assert (Present (Disc));
1127 -- Set the unseen discriminant count to zero because we know
1128 -- an others clause sets all remaining components of an
1129 -- aggregate.
1131 Unseen_Disc_Count := 0;
1133 -- Move through each of the selectors in the named association
1134 -- and obtain a discriminant for accessibility checking if one
1135 -- is referenced in the list. Also track which discriminants
1136 -- are referenced for the purpose of handling an others clause.
1138 else
1139 declare
1140 Assoc_Choice : Node_Id;
1141 Curr_Disc : Node_Id;
1142 begin
1144 Disc := Empty;
1145 Curr_Disc := First_Disc;
1146 while Present (Curr_Disc) loop
1147 -- Check each of the choices in the associations for a
1148 -- match to the name of the current discriminant.
1150 Assoc_Choice := First_Selector (Assoc);
1151 while Present (Assoc_Choice) loop
1152 -- When the name matches we track that we have seen
1153 -- the discriminant, but instead of exiting the
1154 -- loop we continue iterating to make sure all the
1155 -- discriminants within the named association get
1156 -- tracked.
1158 if Chars (Assoc_Choice) = Chars (Curr_Disc) then
1159 Append_Elmt (Curr_Disc, Seen_Discs);
1161 Disc := Curr_Disc;
1162 Unseen_Disc_Count := Unseen_Disc_Count - 1;
1163 end if;
1165 Next (Assoc_Choice);
1166 end loop;
1168 Next_Discriminant (Curr_Disc);
1169 end loop;
1170 end;
1171 end if;
1173 -- Unwrap the associated expression if we are looking at a default
1174 -- initialized type declaration. In this case Assoc is not really
1175 -- an association, but a component declaration. Should Assoc be
1176 -- renamed in some way to be more clear ???
1178 -- This occurs when the return object does not initialize
1179 -- discriminant and instead relies on the type declaration for
1180 -- their supplied values.
1182 elsif Nkind (Assoc) in N_Entity
1183 and then Ekind (Assoc) = E_Discriminant
1184 then
1185 Append_Elmt (Disc, Seen_Discs);
1187 Assoc_Expr := Discriminant_Default_Value (Assoc);
1188 Unseen_Disc_Count := Unseen_Disc_Count - 1;
1190 -- Otherwise, there is nothing to do because Assoc is an
1191 -- expression within the return aggregate itself.
1193 else
1194 Append_Elmt (Disc, Seen_Discs);
1196 Assoc_Expr := Assoc;
1197 Unseen_Disc_Count := Unseen_Disc_Count - 1;
1198 end if;
1200 -- Check the accessibility level of the expression when the
1201 -- discriminant is of an anonymous access type.
1203 if Present (Assoc_Expr)
1204 and then Present (Disc)
1205 and then Ekind (Etype (Disc)) = E_Anonymous_Access_Type
1207 -- We disable the check when we have a tagged return type and
1208 -- the associated expression for the discriminant is a formal
1209 -- parameter since the check would require us to compare the
1210 -- accessibility level of Assoc_Expr to the level of the
1211 -- Extra_Accessibility_Of_Result of the function - which is
1212 -- currently disabled for functions with tagged return types.
1213 -- This may change in the future ???
1215 -- See Needs_Result_Accessibility_Level for details.
1217 and then not
1218 (No (Extra_Accessibility_Of_Result (Scope_Id))
1219 and then Is_Formal_Of_Current_Function (Assoc_Expr)
1220 and then Is_Tagged_Type (Etype (Scope_Id)))
1221 then
1222 -- Generate a dynamic check based on the extra accessibility of
1223 -- the result or the scope of the current function.
1225 Check_Cond :=
1226 Make_Op_Gt (Loc,
1227 Left_Opnd => Accessibility_Level
1228 (Expr => Assoc_Expr,
1229 Level => Dynamic_Level,
1230 In_Return_Context => True),
1231 Right_Opnd =>
1232 (if Present (Extra_Accessibility_Of_Result (Scope_Id))
1234 -- When Assoc_Expr is a formal we have to look at the
1235 -- extra accessibility-level formal associated with
1236 -- the result.
1238 and then Is_Formal_Of_Current_Function (Assoc_Expr)
1239 then
1240 New_Occurrence_Of
1241 (Extra_Accessibility_Of_Result (Scope_Id), Loc)
1243 -- Otherwise, we compare the level of Assoc_Expr to the
1244 -- scope of the current function.
1246 else
1247 Make_Integer_Literal
1248 (Loc, Scope_Depth (Scope (Scope_Id)))));
1250 Insert_Before_And_Analyze (Return_Stmt,
1251 Make_Raise_Program_Error (Loc,
1252 Condition => Check_Cond,
1253 Reason => PE_Accessibility_Check_Failed));
1255 -- If constant folding has happened on the condition for the
1256 -- generated error, then warn about it being unconditional when
1257 -- we know an error will be raised.
1259 if Nkind (Check_Cond) = N_Identifier
1260 and then Entity (Check_Cond) = Standard_True
1261 then
1262 Error_Msg_N
1263 ("access discriminant in return object would be a dangling"
1264 & " reference", Return_Stmt);
1265 end if;
1266 end if;
1268 -- Iterate over the discriminants, except when we have encountered
1269 -- a named association since the discriminant order becomes
1270 -- irrelevant in that case.
1272 if not Assoc_Present then
1273 Next_Discriminant (Disc);
1274 end if;
1276 -- Iterate over associations
1278 if not Is_List_Member (Assoc) then
1279 exit;
1280 else
1281 Nlists.Next (Assoc);
1282 end if;
1283 end loop;
1284 end Check_Return_Construct_Accessibility;
1286 -------------------------------------
1287 -- Check_Return_Subtype_Indication --
1288 -------------------------------------
1290 procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
1291 Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
1293 R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
1294 -- Subtype given in the extended return statement (must match R_Type)
1296 Subtype_Ind : constant Node_Id :=
1297 Object_Definition (Original_Node (Obj_Decl));
1299 procedure Error_No_Match (N : Node_Id);
1300 -- Output error messages for case where types do not statically
1301 -- match. N is the location for the messages.
1303 --------------------
1304 -- Error_No_Match --
1305 --------------------
1307 procedure Error_No_Match (N : Node_Id) is
1308 begin
1309 Error_Msg_N
1310 ("subtype must statically match function result subtype", N);
1312 if not Predicates_Match (R_Stm_Type, R_Type) then
1313 Error_Msg_Node_2 := R_Type;
1314 Error_Msg_NE
1315 ("\predicate of& does not match predicate of&",
1316 N, R_Stm_Type);
1317 end if;
1318 end Error_No_Match;
1320 -- Start of processing for Check_Return_Subtype_Indication
1322 begin
1323 -- First, avoid cascaded errors
1325 if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
1326 return;
1327 end if;
1329 -- "return access T" case; check that the return statement also has
1330 -- "access T", and that the subtypes statically match:
1331 -- if this is an access to subprogram the signatures must match.
1333 if Is_Anonymous_Access_Type (R_Type) then
1334 if Is_Anonymous_Access_Type (R_Stm_Type) then
1335 if Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
1336 then
1337 if Base_Type (Designated_Type (R_Stm_Type)) /=
1338 Base_Type (Designated_Type (R_Type))
1339 or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
1340 then
1341 Error_No_Match (Subtype_Mark (Subtype_Ind));
1342 end if;
1344 else
1345 -- For two anonymous access to subprogram types, the types
1346 -- themselves must be type conformant.
1348 if not Conforming_Types
1349 (R_Stm_Type, R_Type, Fully_Conformant)
1350 then
1351 Error_No_Match (Subtype_Ind);
1352 end if;
1353 end if;
1355 else
1356 Error_Msg_N ("must use anonymous access type", Subtype_Ind);
1357 end if;
1359 -- If the return object is of an anonymous access type, then report
1360 -- an error if the function's result type is not also anonymous.
1362 elsif Is_Anonymous_Access_Type (R_Stm_Type) then
1363 pragma Assert (not Is_Anonymous_Access_Type (R_Type));
1364 Error_Msg_N
1365 ("anonymous access not allowed for function with named access "
1366 & "result", Subtype_Ind);
1368 -- Subtype indication case: check that the return object's type is
1369 -- covered by the result type, and that the subtypes statically match
1370 -- when the result subtype is constrained. Also handle record types
1371 -- with unknown discriminants for which we have built the underlying
1372 -- record view. Coverage is needed to allow specific-type return
1373 -- objects when the result type is class-wide (see AI05-32).
1375 elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
1376 or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
1377 and then
1378 Covers
1379 (Base_Type (R_Type),
1380 Underlying_Record_View (Base_Type (R_Stm_Type))))
1381 then
1382 -- A null exclusion may be present on the return type, on the
1383 -- function specification, on the object declaration or on the
1384 -- subtype itself.
1386 if Is_Access_Type (R_Type)
1387 and then
1388 (Can_Never_Be_Null (R_Type)
1389 or else Null_Exclusion_Present (Parent (Scope_Id))) /=
1390 Can_Never_Be_Null (R_Stm_Type)
1391 then
1392 Error_No_Match (Subtype_Ind);
1393 end if;
1395 -- AI05-103: for elementary types, subtypes must statically match
1397 if Is_Constrained (R_Type) or else Is_Access_Type (R_Type) then
1398 if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
1399 Error_No_Match (Subtype_Ind);
1400 end if;
1401 end if;
1403 -- All remaining cases are illegal
1405 -- Note: previous versions of this subprogram allowed the return
1406 -- value to be the ancestor of the return type if the return type
1407 -- was a null extension. This was plainly incorrect.
1409 else
1410 Error_Msg_N
1411 ("wrong type for return_subtype_indication", Subtype_Ind);
1412 end if;
1413 end Check_Return_Subtype_Indication;
1415 ---------------------
1416 -- Local Variables --
1417 ---------------------
1419 Expr : Node_Id;
1420 Obj_Decl : Node_Id := Empty;
1422 -- Start of processing for Analyze_Function_Return
1424 begin
1425 Set_Return_Present (Scope_Id);
1427 if Nkind (N) = N_Simple_Return_Statement then
1428 Expr := Expression (N);
1430 -- Guard against a malformed expression. The parser may have tried to
1431 -- recover but the node is not analyzable.
1433 if Nkind (Expr) = N_Error then
1434 Set_Etype (Expr, Any_Type);
1435 Expander_Mode_Save_And_Set (False);
1436 return;
1438 else
1439 -- The resolution of a controlled [extension] aggregate associated
1440 -- with a return statement creates a temporary which needs to be
1441 -- finalized on function exit. Wrap the return statement inside a
1442 -- block so that the finalization machinery can detect this case.
1443 -- This early expansion is done only when the return statement is
1444 -- not part of a handled sequence of statements.
1446 if Nkind (Expr) in N_Aggregate | N_Extension_Aggregate
1447 and then Needs_Finalization (R_Type)
1448 and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
1449 then
1450 Rewrite (N,
1451 Make_Block_Statement (Loc,
1452 Handled_Statement_Sequence =>
1453 Make_Handled_Sequence_Of_Statements (Loc,
1454 Statements => New_List (Relocate_Node (N)))));
1456 Analyze (N);
1457 return;
1458 end if;
1460 Analyze (Expr);
1462 -- Ada 2005 (AI-251): If the type of the returned object is
1463 -- an access to an interface type then we add an implicit type
1464 -- conversion to force the displacement of the "this" pointer to
1465 -- reference the secondary dispatch table. We cannot delay the
1466 -- generation of this implicit conversion until the expansion
1467 -- because in this case the type resolution changes the decoration
1468 -- of the expression node to match R_Type; by contrast, if the
1469 -- returned object is a class-wide interface type then it is too
1470 -- early to generate here the implicit conversion since the return
1471 -- statement may be rewritten by the expander into an extended
1472 -- return statement whose expansion takes care of adding the
1473 -- implicit type conversion to displace the pointer to the object.
1475 if Expander_Active
1476 and then Serious_Errors_Detected = 0
1477 and then Is_Access_Type (R_Type)
1478 and then Nkind (Expr) not in N_Null | N_Raise_Expression
1479 and then Is_Interface (Designated_Type (R_Type))
1480 and then Is_Progenitor (Designated_Type (R_Type),
1481 Designated_Type (Etype (Expr)))
1482 then
1483 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1484 Analyze (Expr);
1485 end if;
1487 Resolve (Expr, R_Type);
1488 Check_Limited_Return (N, Expr, R_Type);
1490 Check_Return_Construct_Accessibility (N);
1492 -- Ada 2022 (AI12-0269): Any return statement that applies to a
1493 -- nonreturning function shall be a simple_return_statement with
1494 -- an expression that is a raise_expression, or else a call on a
1495 -- nonreturning function, or else a parenthesized expression of
1496 -- one of these.
1498 if Ada_Version >= Ada_2022
1499 and then No_Return (Scope_Id)
1500 and then Comes_From_Source (N)
1501 then
1502 Check_No_Return_Expression (Original_Node (Expr));
1503 end if;
1504 end if;
1505 else
1506 Obj_Decl := Last (Return_Object_Declarations (N));
1508 -- Analyze parts specific to extended_return_statement:
1510 declare
1511 Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
1512 HSS : constant Node_Id := Handled_Statement_Sequence (N);
1514 begin
1515 Expr := Expression (Obj_Decl);
1517 -- Note: The check for OK_For_Limited_Init will happen in
1518 -- Analyze_Object_Declaration; we treat it as a normal
1519 -- object declaration.
1521 Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
1522 Analyze (Obj_Decl);
1524 Check_Return_Subtype_Indication (Obj_Decl);
1526 if Present (HSS) then
1527 Analyze (HSS);
1529 if Present (Exception_Handlers (HSS)) then
1531 -- ???Has_Nested_Block_With_Handler needs to be set.
1532 -- Probably by creating an actual N_Block_Statement.
1533 -- Probably in Expand.
1535 null;
1536 end if;
1537 end if;
1539 -- Mark the return object as referenced, since the return is an
1540 -- implicit reference of the object.
1542 Set_Referenced (Defining_Identifier (Obj_Decl));
1544 Check_References (Stm_Entity);
1546 Check_Return_Construct_Accessibility (N);
1548 -- Check RM 6.5 (5.9/3)
1550 if Has_Aliased and then not Is_Immutably_Limited_Type (R_Type) then
1551 if Ada_Version < Ada_2012
1552 and then Warn_On_Ada_2012_Compatibility
1553 then
1554 Error_Msg_N
1555 ("ALIASED only allowed for immutably limited return " &
1556 "objects in Ada 2012?y?", N);
1558 else
1559 Error_Msg_N
1560 ("ALIASED only allowed for immutably limited return " &
1561 "objects", N);
1562 end if;
1563 end if;
1565 -- Ada 2022 (AI12-0269): Any return statement that applies to a
1566 -- nonreturning function shall be a simple_return_statement.
1568 if Ada_Version >= Ada_2022
1569 and then No_Return (Scope_Id)
1570 and then Comes_From_Source (N)
1571 then
1572 Error_Msg_N
1573 ("extended RETURN statement not allowed in No_Return "
1574 & "function", N);
1575 end if;
1576 end;
1577 end if;
1579 -- Case of Expr present
1581 if Present (Expr) then
1583 -- Defend against previous errors
1585 if Nkind (Expr) = N_Empty
1586 or else No (Etype (Expr))
1587 then
1588 return;
1589 end if;
1591 -- Apply constraint check. Note that this is done before the implicit
1592 -- conversion of the expression done for anonymous access types to
1593 -- ensure correct generation of the null-excluding check associated
1594 -- with null-excluding expressions found in return statements. We
1595 -- don't need a check if the subtype of the return object is the
1596 -- same as the result subtype of the function.
1598 if Nkind (N) /= N_Extended_Return_Statement
1599 or else Nkind (Obj_Decl) /= N_Object_Declaration
1600 or else Nkind (Object_Definition (Obj_Decl)) not in N_Has_Entity
1601 or else Entity (Object_Definition (Obj_Decl)) /= R_Type
1602 then
1603 Apply_Constraint_Check (Expr, R_Type);
1604 end if;
1606 -- The return value is converted to the return type of the function,
1607 -- which implies a predicate check if the return type is predicated.
1608 -- We do not apply the check for an extended return statement because
1609 -- Analyze_Object_Declaration has already done it on Obj_Decl above.
1610 -- We do not apply the check to a case expression because it will
1611 -- be expanded into a series of return statements, each of which
1612 -- will receive a predicate check.
1614 if Nkind (N) /= N_Extended_Return_Statement
1615 and then Nkind (Expr) /= N_Case_Expression
1616 then
1617 Apply_Predicate_Check (Expr, R_Type);
1618 end if;
1620 -- Ada 2005 (AI-318-02): When the result type is an anonymous access
1621 -- type, apply an implicit conversion of the expression to that type
1622 -- to force appropriate static and run-time accessibility checks.
1623 -- But we want to apply the checks to an extended return statement
1624 -- only once, i.e. not to the simple return statement generated at
1625 -- the end of its expansion because, prior to leaving the function,
1626 -- the accessibility level of the return object changes to be a level
1627 -- determined by the point of call (RM 3.10.2(10.8/3)).
1629 if Ada_Version >= Ada_2005
1630 and then Ekind (R_Type) = E_Anonymous_Access_Type
1631 and then (Nkind (N) = N_Extended_Return_Statement
1632 or else not Comes_From_Extended_Return_Statement (N))
1633 then
1634 Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
1635 Analyze_And_Resolve (Expr, R_Type);
1637 -- If this is a local anonymous access to subprogram, the
1638 -- accessibility check can be applied statically. The return is
1639 -- illegal if the access type of the return expression is declared
1640 -- inside of the subprogram (except if it is the subtype indication
1641 -- of an extended return statement).
1643 elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
1644 if not Comes_From_Source (Current_Scope)
1645 or else Ekind (Current_Scope) = E_Return_Statement
1646 then
1647 null;
1649 elsif
1650 Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
1651 then
1652 Error_Msg_N ("cannot return local access to subprogram", N);
1653 end if;
1655 -- The expression cannot be of a formal incomplete type
1657 elsif Ekind (Etype (Expr)) = E_Incomplete_Type
1658 and then Is_Generic_Type (Etype (Expr))
1659 then
1660 Error_Msg_N
1661 ("cannot return expression of a formal incomplete type", N);
1662 end if;
1664 -- If the result type is class-wide, then check that the return
1665 -- expression's type is not declared at a deeper level than the
1666 -- function (RM05-6.5(5.6/2)).
1668 if Ada_Version >= Ada_2005
1669 and then Is_Class_Wide_Type (R_Type)
1670 then
1671 if Type_Access_Level (Etype (Expr)) >
1672 Subprogram_Access_Level (Scope_Id)
1673 then
1674 Error_Msg_N
1675 ("level of return expression type is deeper than "
1676 & "class-wide function!", Expr);
1677 end if;
1678 end if;
1680 -- Check incorrect use of dynamically tagged expression
1682 if Is_Tagged_Type (R_Type) then
1683 Check_Dynamically_Tagged_Expression
1684 (Expr => Expr,
1685 Typ => R_Type,
1686 Related_Nod => N);
1687 end if;
1689 -- Perform static accessibility checks for cases involving
1690 -- dereferences of access parameters. Runtime accessibility checks
1691 -- get generated elsewhere.
1693 if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
1694 and then Is_Limited_View (Etype (Scope_Id))
1695 and then Static_Accessibility_Level (Expr, Zero_On_Dynamic_Level)
1696 > Subprogram_Access_Level (Scope_Id)
1697 then
1698 -- Suppress the message in a generic, where the rewriting
1699 -- is irrelevant.
1701 if Inside_A_Generic then
1702 null;
1704 else
1705 Rewrite (N,
1706 Make_Raise_Program_Error (Loc,
1707 Reason => PE_Accessibility_Check_Failed));
1708 Analyze (N);
1710 Error_Msg_Warn := SPARK_Mode /= On;
1711 Error_Msg_N ("cannot return a local value by reference<<", N);
1712 Error_Msg_N ("\Program_Error [<<", N);
1713 end if;
1714 end if;
1716 if Known_Null (Expr)
1717 and then Nkind (Parent (Scope_Id)) = N_Function_Specification
1718 and then Null_Exclusion_Present (Parent (Scope_Id))
1719 then
1720 Apply_Compile_Time_Constraint_Error
1721 (N => Expr,
1722 Msg => "(Ada 2005) null not allowed for "
1723 & "null-excluding return??",
1724 Reason => CE_Null_Not_Allowed);
1725 end if;
1727 -- RM 6.5 (5.4/3): accessibility checks also apply if the return object
1728 -- has no initializing expression.
1730 elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
1731 if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
1732 Subprogram_Access_Level (Scope_Id)
1733 then
1734 Error_Msg_N
1735 ("level of return expression type is deeper than "
1736 & "class-wide function!", Obj_Decl);
1737 end if;
1738 end if;
1739 end Analyze_Function_Return;
1741 -------------------------------------
1742 -- Analyze_Generic_Subprogram_Body --
1743 -------------------------------------
1745 procedure Analyze_Generic_Subprogram_Body
1746 (N : Node_Id;
1747 Gen_Id : Entity_Id)
1749 Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
1750 Kind : constant Entity_Kind := Ekind (Gen_Id);
1751 Body_Id : Entity_Id;
1752 New_N : Node_Id;
1753 Spec : Node_Id;
1755 begin
1756 -- Copy body and disable expansion while analyzing the generic For a
1757 -- stub, do not copy the stub (which would load the proper body), this
1758 -- will be done when the proper body is analyzed.
1760 if Nkind (N) /= N_Subprogram_Body_Stub then
1761 New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
1762 Rewrite (N, New_N);
1764 -- Once the contents of the generic copy and the template are
1765 -- swapped, do the same for their respective aspect specifications.
1767 Exchange_Aspects (N, New_N);
1769 -- Collect all contract-related source pragmas found within the
1770 -- template and attach them to the contract of the subprogram body.
1771 -- This contract is used in the capture of global references within
1772 -- annotations.
1774 Create_Generic_Contract (N);
1776 Start_Generic;
1777 end if;
1779 Spec := Specification (N);
1781 -- Within the body of the generic, the subprogram is callable, and
1782 -- behaves like the corresponding non-generic unit.
1784 Body_Id := Defining_Entity (Spec);
1786 if Kind = E_Generic_Procedure
1787 and then Nkind (Spec) /= N_Procedure_Specification
1788 then
1789 Error_Msg_N ("invalid body for generic procedure", Body_Id);
1790 return;
1792 elsif Kind = E_Generic_Function
1793 and then Nkind (Spec) /= N_Function_Specification
1794 then
1795 Error_Msg_N ("invalid body for generic function", Body_Id);
1796 return;
1797 end if;
1799 Set_Corresponding_Body (Gen_Decl, Body_Id);
1801 if Has_Completion (Gen_Id)
1802 and then Nkind (Parent (N)) /= N_Subunit
1803 then
1804 Error_Msg_N ("duplicate generic body", N);
1805 return;
1806 else
1807 Set_Has_Completion (Gen_Id);
1808 end if;
1810 if Nkind (N) = N_Subprogram_Body_Stub then
1811 Mutate_Ekind (Defining_Entity (Specification (N)), Kind);
1812 else
1813 Set_Corresponding_Spec (N, Gen_Id);
1814 end if;
1816 if Nkind (Parent (N)) = N_Compilation_Unit then
1817 Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
1818 end if;
1820 -- Make generic parameters immediately visible in the body. They are
1821 -- needed to process the formals declarations. Then make the formals
1822 -- visible in a separate step.
1824 Push_Scope (Gen_Id);
1826 declare
1827 E : Entity_Id;
1828 First_Ent : Entity_Id;
1830 begin
1831 First_Ent := First_Entity (Gen_Id);
1833 E := First_Ent;
1834 while Present (E) and then not Is_Formal (E) loop
1835 Install_Entity (E);
1836 Next_Entity (E);
1837 end loop;
1839 Set_Use (Generic_Formal_Declarations (Gen_Decl));
1841 -- Now generic formals are visible, and the specification can be
1842 -- analyzed, for subsequent conformance check.
1844 Body_Id := Analyze_Subprogram_Specification (Spec);
1846 -- Make formal parameters visible
1848 if Present (E) then
1850 -- E is the first formal parameter, we loop through the formals
1851 -- installing them so that they will be visible.
1853 Set_First_Entity (Gen_Id, E);
1854 while Present (E) loop
1855 Install_Entity (E);
1856 Next_Formal (E);
1857 end loop;
1858 end if;
1860 -- Visible generic entity is callable within its own body
1862 Mutate_Ekind (Gen_Id, Ekind (Body_Id));
1863 Reinit_Field_To_Zero (Body_Id, F_Has_Out_Or_In_Out_Parameter,
1864 Old_Ekind =>
1865 (E_Function | E_Procedure |
1866 E_Generic_Function | E_Generic_Procedure => True,
1867 others => False));
1868 Mutate_Ekind (Body_Id, E_Subprogram_Body);
1869 Set_Convention (Body_Id, Convention (Gen_Id));
1870 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
1871 Set_Scope (Body_Id, Scope (Gen_Id));
1873 Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
1875 if Nkind (N) = N_Subprogram_Body_Stub then
1877 -- No body to analyze, so restore state of generic unit
1879 Mutate_Ekind (Gen_Id, Kind);
1880 Mutate_Ekind (Body_Id, Kind);
1882 if Present (First_Ent) then
1883 Set_First_Entity (Gen_Id, First_Ent);
1884 end if;
1886 End_Scope;
1887 return;
1888 end if;
1890 -- If this is a compilation unit, it must be made visible explicitly,
1891 -- because the compilation of the declaration, unlike other library
1892 -- unit declarations, does not. If it is not a unit, the following
1893 -- is redundant but harmless.
1895 Set_Is_Immediately_Visible (Gen_Id);
1896 Reference_Body_Formals (Gen_Id, Body_Id);
1898 if Is_Child_Unit (Gen_Id) then
1899 Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
1900 end if;
1902 Set_Actual_Subtypes (N, Current_Scope);
1904 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
1905 Set_SPARK_Pragma_Inherited (Body_Id);
1907 -- Analyze any aspect specifications that appear on the generic
1908 -- subprogram body.
1910 if Has_Aspects (N) then
1911 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
1912 end if;
1914 Analyze_Declarations (Declarations (N));
1915 Check_Completion;
1917 -- Process the contract of the subprogram body after all declarations
1918 -- have been analyzed. This ensures that any contract-related pragmas
1919 -- are available through the N_Contract node of the body.
1921 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
1923 Analyze (Handled_Statement_Sequence (N));
1924 Save_Global_References (Original_Node (N));
1926 -- Prior to exiting the scope, include generic formals again (if any
1927 -- are present) in the set of local entities.
1929 if Present (First_Ent) then
1930 Set_First_Entity (Gen_Id, First_Ent);
1931 end if;
1933 Check_References (Gen_Id);
1934 end;
1936 Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
1937 Update_Use_Clause_Chain;
1938 Validate_Categorization_Dependency (N, Gen_Id);
1939 End_Scope;
1940 Check_Subprogram_Order (N);
1942 -- Outside of its body, unit is generic again
1944 Reinit_Field_To_Zero (Gen_Id, F_Has_Nested_Subprogram,
1945 Old_Ekind => (E_Function | E_Procedure => True, others => False));
1946 Mutate_Ekind (Gen_Id, Kind);
1947 Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
1949 if Style_Check then
1950 Style.Check_Identifier (Body_Id, Gen_Id);
1951 end if;
1953 End_Generic;
1954 end Analyze_Generic_Subprogram_Body;
1956 ----------------------------
1957 -- Analyze_Null_Procedure --
1958 ----------------------------
1960 -- WARNING: This routine manages Ghost regions. Return statements must be
1961 -- replaced by gotos that jump to the end of the routine and restore the
1962 -- Ghost mode.
1964 procedure Analyze_Null_Procedure
1965 (N : Node_Id;
1966 Is_Completion : out Boolean)
1968 Loc : constant Source_Ptr := Sloc (N);
1969 Spec : constant Node_Id := Specification (N);
1971 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
1972 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
1973 Saved_ISMP : constant Boolean :=
1974 Ignore_SPARK_Mode_Pragmas_In_Instance;
1975 -- Save the Ghost and SPARK mode-related data to restore on exit
1977 Designator : Entity_Id;
1978 Form : Node_Id;
1979 Null_Body : Node_Id := Empty;
1980 Null_Stmt : Node_Id := Null_Statement (Spec);
1981 Prev : Entity_Id;
1983 begin
1984 Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
1986 -- A null procedure is Ghost when it is stand-alone and is subject to
1987 -- pragma Ghost, or when the corresponding spec is Ghost. Set the mode
1988 -- now, to ensure that any nodes generated during analysis and expansion
1989 -- are properly marked as Ghost.
1991 if Present (Prev) then
1992 Mark_And_Set_Ghost_Body (N, Prev);
1993 end if;
1995 -- Capture the profile of the null procedure before analysis, for
1996 -- expansion at the freeze point and at each point of call. The body is
1997 -- used if the procedure has preconditions, or if it is a completion. In
1998 -- the first case the body is analyzed at the freeze point, in the other
1999 -- it replaces the null procedure declaration.
2001 -- For a null procedure that comes from source, a NULL statement is
2002 -- provided by the parser, which carries the source location of the
2003 -- NULL keyword, and has Comes_From_Source set. For a null procedure
2004 -- from expansion, create one now.
2006 if No (Null_Stmt) then
2007 Null_Stmt := Make_Null_Statement (Loc);
2008 end if;
2010 Null_Body :=
2011 Make_Subprogram_Body (Loc,
2012 Specification => New_Copy_Tree (Spec),
2013 Declarations => New_List,
2014 Handled_Statement_Sequence =>
2015 Make_Handled_Sequence_Of_Statements (Loc,
2016 Statements => New_List (Null_Stmt)));
2018 -- Create new entities for body and formals
2020 Set_Defining_Unit_Name (Specification (Null_Body),
2021 Make_Defining_Identifier
2022 (Sloc (Defining_Entity (N)),
2023 Chars (Defining_Entity (N))));
2025 Form := First (Parameter_Specifications (Specification (Null_Body)));
2026 while Present (Form) loop
2027 Set_Defining_Identifier (Form,
2028 Make_Defining_Identifier
2029 (Sloc (Defining_Identifier (Form)),
2030 Chars (Defining_Identifier (Form))));
2031 Next (Form);
2032 end loop;
2034 -- Determine whether the null procedure may be a completion of a generic
2035 -- subprogram, in which case we use the new null body as the completion
2036 -- and set minimal semantic information on the original declaration,
2037 -- which is rewritten as a null statement.
2039 if Present (Prev) and then Is_Generic_Subprogram (Prev) then
2040 Insert_Before (N, Null_Body);
2041 Mutate_Ekind (Defining_Entity (N), Ekind (Prev));
2043 Rewrite (N, Make_Null_Statement (Loc));
2044 Analyze_Generic_Subprogram_Body (Null_Body, Prev);
2045 Is_Completion := True;
2047 -- Mark the newly generated subprogram body as trivial
2049 Set_Is_Trivial_Subprogram
2050 (Defining_Unit_Name (Specification (Null_Body)));
2052 goto Leave;
2054 else
2055 -- Resolve the types of the formals now, because the freeze point may
2056 -- appear in a different context, e.g. an instantiation.
2058 Form := First (Parameter_Specifications (Specification (Null_Body)));
2059 while Present (Form) loop
2060 if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
2061 Find_Type (Parameter_Type (Form));
2063 elsif No (Access_To_Subprogram_Definition
2064 (Parameter_Type (Form)))
2065 then
2066 Find_Type (Subtype_Mark (Parameter_Type (Form)));
2068 -- The case of a null procedure with a formal that is an
2069 -- access-to-subprogram type, and that is used as an actual
2070 -- in an instantiation is left to the enthusiastic reader.
2072 else
2073 null;
2074 end if;
2076 Next (Form);
2077 end loop;
2078 end if;
2080 -- If there are previous overloadable entities with the same name, check
2081 -- whether any of them is completed by the null procedure.
2083 if Present (Prev) and then Is_Overloadable (Prev) then
2084 Designator := Analyze_Subprogram_Specification (Spec);
2085 Prev := Find_Corresponding_Spec (N);
2086 end if;
2088 if No (Prev) or else not Comes_From_Source (Prev) then
2089 Designator := Analyze_Subprogram_Specification (Spec);
2090 Set_Has_Completion (Designator);
2092 -- Signal to caller that this is a procedure declaration
2094 Is_Completion := False;
2096 -- Null procedures are always inlined, but generic formal subprograms
2097 -- which appear as such in the internal instance of formal packages,
2098 -- need no completion and are not marked Inline.
2100 if Expander_Active
2101 and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
2102 then
2103 Set_Corresponding_Body (N, Defining_Entity (Null_Body));
2104 Set_Body_To_Inline (N, Null_Body);
2105 Set_Is_Inlined (Designator);
2106 end if;
2108 else
2109 -- The null procedure is a completion. We unconditionally rewrite
2110 -- this as a null body (even if expansion is not active), because
2111 -- there are various error checks that are applied on this body
2112 -- when it is analyzed (e.g. correct aspect placement).
2114 if Has_Completion (Prev) then
2115 Error_Msg_Sloc := Sloc (Prev);
2116 Error_Msg_NE ("duplicate body for & declared#", N, Prev);
2117 end if;
2119 Check_Previous_Null_Procedure (N, Prev);
2121 Is_Completion := True;
2122 Rewrite (N, Null_Body);
2123 Analyze (N);
2124 end if;
2126 <<Leave>>
2127 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
2128 Restore_Ghost_Region (Saved_GM, Saved_IGR);
2129 end Analyze_Null_Procedure;
2131 -----------------------------
2132 -- Analyze_Operator_Symbol --
2133 -----------------------------
2135 -- An operator symbol such as "+" or "and" may appear in context where the
2136 -- literal denotes an entity name, such as "+"(x, y) or in context when it
2137 -- is just a string, as in (conjunction = "or"). In these cases the parser
2138 -- generates this node, and the semantics does the disambiguation. Other
2139 -- such case are actuals in an instantiation, the generic unit in an
2140 -- instantiation, pragma arguments, and aspect specifications.
2142 procedure Analyze_Operator_Symbol (N : Node_Id) is
2143 Par : constant Node_Id := Parent (N);
2145 Maybe_Aspect_Spec : Node_Id := Par;
2146 begin
2147 if Nkind (Maybe_Aspect_Spec) /= N_Aspect_Specification then
2148 -- deal with N_Aggregate nodes
2149 Maybe_Aspect_Spec := Parent (Maybe_Aspect_Spec);
2150 end if;
2152 if (Nkind (Par) = N_Function_Call and then N = Name (Par))
2153 or else Nkind (Par) = N_Function_Instantiation
2154 or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
2155 or else (Nkind (Par) = N_Pragma_Argument_Association
2156 and then not Is_Pragma_String_Literal (Par))
2157 or else Nkind (Par) = N_Subprogram_Renaming_Declaration
2158 or else (Nkind (Par) = N_Attribute_Reference
2159 and then Attribute_Name (Par) /= Name_Value)
2160 or else (Nkind (Maybe_Aspect_Spec) = N_Aspect_Specification
2161 and then Get_Aspect_Id (Maybe_Aspect_Spec)
2163 -- Include aspects that can be specified by a
2164 -- subprogram name, which can be an operator.
2166 in Aspect_Stable_Properties
2167 | Aspect_Integer_Literal
2168 | Aspect_Real_Literal
2169 | Aspect_String_Literal
2170 | Aspect_Aggregate)
2171 then
2172 Find_Direct_Name (N);
2174 else
2175 Change_Operator_Symbol_To_String_Literal (N);
2176 Analyze (N);
2177 end if;
2178 end Analyze_Operator_Symbol;
2180 -----------------------------------
2181 -- Analyze_Parameter_Association --
2182 -----------------------------------
2184 procedure Analyze_Parameter_Association (N : Node_Id) is
2185 begin
2186 Analyze (Explicit_Actual_Parameter (N));
2187 end Analyze_Parameter_Association;
2189 ----------------------------
2190 -- Analyze_Procedure_Call --
2191 ----------------------------
2193 -- WARNING: This routine manages Ghost regions. Return statements must be
2194 -- replaced by gotos that jump to the end of the routine and restore the
2195 -- Ghost mode.
2197 procedure Analyze_Procedure_Call (N : Node_Id) is
2198 procedure Analyze_Call_And_Resolve;
2199 -- Do Analyze and Resolve calls for procedure call. At the end, check
2200 -- for illegal order dependence.
2201 -- ??? where is the check for illegal order dependencies?
2203 ------------------------------
2204 -- Analyze_Call_And_Resolve --
2205 ------------------------------
2207 procedure Analyze_Call_And_Resolve is
2208 begin
2209 if Nkind (N) = N_Procedure_Call_Statement then
2210 Analyze_Call (N);
2211 Resolve (N, Standard_Void_Type);
2212 else
2213 Analyze (N);
2214 end if;
2215 end Analyze_Call_And_Resolve;
2217 -- Local variables
2219 Actuals : constant List_Id := Parameter_Associations (N);
2220 Loc : constant Source_Ptr := Sloc (N);
2221 P : constant Node_Id := Name (N);
2223 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
2224 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
2225 -- Save the Ghost-related attributes to restore on exit
2227 Actual : Node_Id;
2228 New_N : Node_Id;
2230 -- Start of processing for Analyze_Procedure_Call
2232 begin
2233 -- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
2234 -- a procedure call or an entry call. The prefix may denote an access
2235 -- to subprogram type, in which case an implicit dereference applies.
2236 -- If the prefix is an indexed component (without implicit dereference)
2237 -- then the construct denotes a call to a member of an entire family.
2238 -- If the prefix is a simple name, it may still denote a call to a
2239 -- parameterless member of an entry family. Resolution of these various
2240 -- interpretations is delicate.
2242 -- Do not analyze machine code statements to avoid rejecting them in
2243 -- CodePeer mode.
2245 if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
2246 Set_Etype (P, Standard_Void_Type);
2247 else
2248 Analyze (P);
2249 end if;
2251 -- If this is a call of the form Obj.Op, the call may have been analyzed
2252 -- and possibly rewritten into a block, in which case we are done.
2254 if Analyzed (N) then
2255 return;
2257 -- If there is an error analyzing the name (which may have been
2258 -- rewritten if the original call was in prefix notation) then error
2259 -- has been emitted already, mark node and return.
2261 elsif Error_Posted (N) or else Etype (Name (N)) = Any_Type then
2262 Set_Etype (N, Any_Type);
2263 return;
2264 end if;
2266 -- A procedure call is Ghost when its name denotes a Ghost procedure.
2267 -- Set the mode now to ensure that any nodes generated during analysis
2268 -- and expansion are properly marked as Ghost.
2270 Mark_And_Set_Ghost_Procedure_Call (N);
2272 -- Otherwise analyze the parameters
2274 Actual := First (Actuals);
2276 while Present (Actual) loop
2277 Analyze (Actual);
2278 Check_Parameterless_Call (Actual);
2279 Next (Actual);
2280 end loop;
2282 -- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
2284 if Nkind (P) = N_Attribute_Reference
2285 and then Attribute_Name (P) in Name_Elab_Spec
2286 | Name_Elab_Body
2287 | Name_Elab_Subp_Body
2288 then
2289 if Present (Actuals) then
2290 Error_Msg_N
2291 ("no parameters allowed for this call", First (Actuals));
2292 goto Leave;
2293 end if;
2295 Set_Etype (N, Standard_Void_Type);
2296 Set_Analyzed (N);
2298 elsif Is_Entity_Name (P)
2299 and then Is_Record_Type (Etype (Entity (P)))
2300 and then Remote_AST_I_Dereference (P)
2301 then
2302 goto Leave;
2304 elsif Is_Entity_Name (P)
2305 and then Ekind (Entity (P)) /= E_Entry_Family
2306 then
2307 if Is_Access_Type (Etype (P))
2308 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
2309 and then No (Actuals)
2310 and then Comes_From_Source (N)
2311 then
2312 Error_Msg_N ("missing explicit dereference in call", N);
2314 elsif Ekind (Entity (P)) = E_Operator then
2315 Error_Msg_Name_1 := Chars (P);
2316 Error_Msg_N ("operator % cannot be used as a procedure", N);
2317 end if;
2319 Analyze_Call_And_Resolve;
2321 -- If the prefix is the simple name of an entry family, this is a
2322 -- parameterless call from within the task body itself.
2324 elsif Is_Entity_Name (P)
2325 and then Nkind (P) = N_Identifier
2326 and then Ekind (Entity (P)) = E_Entry_Family
2327 and then Present (Actuals)
2328 and then No (Next (First (Actuals)))
2329 then
2330 -- Can be call to parameterless entry family. What appears to be the
2331 -- sole argument is in fact the entry index. Rewrite prefix of node
2332 -- accordingly. Source representation is unchanged by this
2333 -- transformation.
2335 New_N :=
2336 Make_Indexed_Component (Loc,
2337 Prefix =>
2338 Make_Selected_Component (Loc,
2339 Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
2340 Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
2341 Expressions => Actuals);
2342 Set_Name (N, New_N);
2343 Set_Etype (New_N, Standard_Void_Type);
2344 Set_Parameter_Associations (N, No_List);
2345 Analyze_Call_And_Resolve;
2347 elsif Nkind (P) = N_Explicit_Dereference then
2348 if Ekind (Etype (P)) = E_Subprogram_Type then
2349 Analyze_Call_And_Resolve;
2350 else
2351 Error_Msg_N ("expect access to procedure in call", P);
2352 end if;
2354 -- The name can be a selected component or an indexed component that
2355 -- yields an access to subprogram. Such a prefix is legal if the call
2356 -- has parameter associations.
2358 elsif Is_Access_Type (Etype (P))
2359 and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
2360 then
2361 if Present (Actuals) then
2362 Analyze_Call_And_Resolve;
2363 else
2364 Error_Msg_N ("missing explicit dereference in call", N);
2365 end if;
2367 -- If not an access to subprogram, then the prefix must resolve to the
2368 -- name of an entry, entry family, or protected operation.
2370 -- For the case of a simple entry call, P is a selected component where
2371 -- the prefix is the task and the selector name is the entry. A call to
2372 -- a protected procedure will have the same syntax. If the protected
2373 -- object contains overloaded operations, the entity may appear as a
2374 -- function, the context will select the operation whose type is Void.
2376 elsif Nkind (P) = N_Selected_Component
2377 and then Ekind (Entity (Selector_Name (P)))
2378 in E_Entry | E_Function | E_Procedure
2379 then
2380 -- When front-end inlining is enabled, as with SPARK_Mode, a call
2381 -- in prefix notation may still be missing its controlling argument,
2382 -- so perform the transformation now.
2384 if SPARK_Mode = On and then In_Inlined_Body then
2385 declare
2386 Subp : constant Entity_Id := Entity (Selector_Name (P));
2387 Typ : constant Entity_Id := Etype (Prefix (P));
2389 begin
2390 if Is_Tagged_Type (Typ)
2391 and then Present (First_Formal (Subp))
2392 and then (Etype (First_Formal (Subp)) = Typ
2393 or else
2394 Class_Wide_Type (Etype (First_Formal (Subp))) = Typ)
2395 and then Try_Object_Operation (P)
2396 then
2397 return;
2399 else
2400 Analyze_Call_And_Resolve;
2401 end if;
2402 end;
2404 else
2405 Analyze_Call_And_Resolve;
2406 end if;
2408 elsif Nkind (P) = N_Selected_Component
2409 and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
2410 and then Present (Actuals)
2411 and then No (Next (First (Actuals)))
2412 then
2413 -- Can be call to parameterless entry family. What appears to be the
2414 -- sole argument is in fact the entry index. Rewrite prefix of node
2415 -- accordingly. Source representation is unchanged by this
2416 -- transformation.
2418 New_N :=
2419 Make_Indexed_Component (Loc,
2420 Prefix => New_Copy (P),
2421 Expressions => Actuals);
2422 Set_Name (N, New_N);
2423 Set_Etype (New_N, Standard_Void_Type);
2424 Set_Parameter_Associations (N, No_List);
2425 Analyze_Call_And_Resolve;
2427 -- For the case of a reference to an element of an entry family, P is
2428 -- an indexed component whose prefix is a selected component (task and
2429 -- entry family), and whose index is the entry family index.
2431 elsif Nkind (P) = N_Indexed_Component
2432 and then Nkind (Prefix (P)) = N_Selected_Component
2433 and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
2434 then
2435 Analyze_Call_And_Resolve;
2437 -- If the prefix is the name of an entry family, it is a call from
2438 -- within the task body itself.
2440 elsif Nkind (P) = N_Indexed_Component
2441 and then Nkind (Prefix (P)) = N_Identifier
2442 and then Ekind (Entity (Prefix (P))) = E_Entry_Family
2443 then
2444 New_N :=
2445 Make_Selected_Component (Loc,
2446 Prefix =>
2447 New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
2448 Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
2449 Rewrite (Prefix (P), New_N);
2450 Analyze (P);
2451 Analyze_Call_And_Resolve;
2453 -- In Ada 2012. a qualified expression is a name, but it cannot be a
2454 -- procedure name, so the construct can only be a qualified expression.
2456 elsif Nkind (P) = N_Qualified_Expression
2457 and then Ada_Version >= Ada_2012
2458 then
2459 Rewrite (N, Make_Code_Statement (Loc, Expression => P));
2460 Analyze (N);
2462 -- Anything else is an error
2464 else
2465 Error_Msg_N ("invalid procedure or entry call", N);
2467 -- Specialize the error message in the case where both a primitive
2468 -- operation and a record component are visible at the same time.
2470 if Nkind (P) = N_Selected_Component
2471 and then Is_Entity_Name (Selector_Name (P))
2472 then
2473 declare
2474 Sel : constant Entity_Id := Entity (Selector_Name (P));
2475 begin
2476 if Ekind (Sel) = E_Component
2477 and then Present (Homonym (Sel))
2478 and then Ekind (Homonym (Sel)) = E_Procedure
2479 then
2480 Error_Msg_NE ("\component & conflicts with"
2481 & " homonym procedure (RM 4.1.3 (9.2/3))",
2482 Selector_Name (P), Sel);
2483 end if;
2484 end;
2485 end if;
2486 end if;
2488 <<Leave>>
2489 Restore_Ghost_Region (Saved_GM, Saved_IGR);
2490 end Analyze_Procedure_Call;
2492 ------------------------------
2493 -- Analyze_Return_Statement --
2494 ------------------------------
2496 procedure Analyze_Return_Statement (N : Node_Id) is
2497 pragma Assert
2498 (Nkind (N) in N_Extended_Return_Statement | N_Simple_Return_Statement);
2500 Returns_Object : constant Boolean :=
2501 Nkind (N) = N_Extended_Return_Statement
2502 or else
2503 (Nkind (N) = N_Simple_Return_Statement
2504 and then Present (Expression (N)));
2505 -- True if we're returning something; that is, "return <expression>;"
2506 -- or "return Result : T [:= ...]". False for "return;". Used for error
2507 -- checking: If Returns_Object is True, N should apply to a function
2508 -- body; otherwise N should apply to a procedure body, entry body,
2509 -- accept statement, or extended return statement.
2511 function Find_What_It_Applies_To return Entity_Id;
2512 -- Find the entity representing the innermost enclosing body, accept
2513 -- statement, or extended return statement. If the result is a callable
2514 -- construct or extended return statement, then this will be the value
2515 -- of the Return_Applies_To attribute. Otherwise, the program is
2516 -- illegal. See RM-6.5(4/2).
2518 -----------------------------
2519 -- Find_What_It_Applies_To --
2520 -----------------------------
2522 function Find_What_It_Applies_To return Entity_Id is
2523 Result : Entity_Id := Empty;
2525 begin
2526 -- Loop outward through the Scope_Stack, skipping blocks, and loops
2528 for J in reverse 0 .. Scope_Stack.Last loop
2529 Result := Scope_Stack.Table (J).Entity;
2530 exit when Ekind (Result) not in E_Block | E_Loop;
2531 end loop;
2533 pragma Assert (Present (Result));
2534 return Result;
2535 end Find_What_It_Applies_To;
2537 -- Local declarations
2539 Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
2540 Kind : constant Entity_Kind := Ekind (Scope_Id);
2541 Loc : constant Source_Ptr := Sloc (N);
2542 Stm_Entity : constant Entity_Id :=
2543 New_Internal_Entity
2544 (E_Return_Statement, Current_Scope, Loc, 'R');
2546 -- Start of processing for Analyze_Return_Statement
2548 begin
2549 Set_Return_Statement_Entity (N, Stm_Entity);
2551 Set_Etype (Stm_Entity, Standard_Void_Type);
2552 Set_Return_Applies_To (Stm_Entity, Scope_Id);
2554 -- Place Return entity on scope stack, to simplify enforcement of 6.5
2555 -- (4/2): an inner return statement will apply to this extended return.
2557 if Nkind (N) = N_Extended_Return_Statement then
2558 Push_Scope (Stm_Entity);
2559 end if;
2561 -- Check that pragma No_Return is obeyed. Don't complain about the
2562 -- implicitly-generated return that is placed at the end.
2564 if No_Return (Scope_Id)
2565 and then Kind in E_Procedure | E_Generic_Procedure
2566 and then Comes_From_Source (N)
2567 then
2568 Error_Msg_N
2569 ("RETURN statement not allowed in No_Return procedure", N);
2570 end if;
2572 -- Warn on any unassigned OUT parameters if in procedure
2574 if Ekind (Scope_Id) = E_Procedure then
2575 Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
2576 end if;
2578 -- Check that functions return objects, and other things do not
2580 if Kind in E_Function | E_Generic_Function then
2581 if not Returns_Object then
2582 Error_Msg_N ("missing expression in return from function", N);
2583 end if;
2585 elsif Kind in E_Procedure | E_Generic_Procedure then
2586 if Returns_Object then
2587 Error_Msg_N ("procedure cannot return value (use function)", N);
2588 end if;
2590 elsif Kind in E_Entry | E_Entry_Family then
2591 if Returns_Object then
2592 if Is_Protected_Type (Scope (Scope_Id)) then
2593 Error_Msg_N ("entry body cannot return value", N);
2594 else
2595 Error_Msg_N ("accept statement cannot return value", N);
2596 end if;
2597 end if;
2599 elsif Kind = E_Return_Statement then
2601 -- We are nested within another return statement, which must be an
2602 -- extended_return_statement.
2604 if Returns_Object then
2605 if Nkind (N) = N_Extended_Return_Statement then
2606 Error_Msg_N
2607 ("extended return statement cannot be nested (use `RETURN;`)",
2610 -- Case of a simple return statement with a value inside extended
2611 -- return statement.
2613 else
2614 Error_Msg_N
2615 ("return nested in extended return statement cannot return "
2616 & "value (use `RETURN;`)", N);
2617 end if;
2618 end if;
2620 else
2621 Error_Msg_N ("illegal context for return statement", N);
2622 end if;
2624 if Kind in E_Function | E_Generic_Function then
2625 Analyze_Function_Return (N);
2627 elsif Kind in E_Procedure | E_Generic_Procedure then
2628 Set_Return_Present (Scope_Id);
2629 end if;
2631 if Nkind (N) = N_Extended_Return_Statement then
2632 End_Scope;
2633 end if;
2635 Kill_Current_Values (Last_Assignment_Only => True);
2636 Check_Unreachable_Code (N);
2638 Analyze_Dimension (N);
2639 end Analyze_Return_Statement;
2641 -----------------------------------
2642 -- Analyze_Return_When_Statement --
2643 -----------------------------------
2645 procedure Analyze_Return_When_Statement (N : Node_Id) is
2646 begin
2647 -- Verify the condition is a Boolean expression
2649 Analyze_And_Resolve (Condition (N), Any_Boolean);
2650 Check_Unset_Reference (Condition (N));
2651 end Analyze_Return_When_Statement;
2653 -------------------------------------
2654 -- Analyze_Simple_Return_Statement --
2655 -------------------------------------
2657 procedure Analyze_Simple_Return_Statement (N : Node_Id) is
2658 begin
2659 if Present (Expression (N)) then
2660 Mark_Coextensions (N, Expression (N));
2661 end if;
2663 Analyze_Return_Statement (N);
2664 end Analyze_Simple_Return_Statement;
2666 -------------------------
2667 -- Analyze_Return_Type --
2668 -------------------------
2670 procedure Analyze_Return_Type (N : Node_Id) is
2671 Designator : constant Entity_Id := Defining_Entity (N);
2672 Typ : Entity_Id := Empty;
2674 begin
2675 -- Normal case where result definition does not indicate an error
2677 if Result_Definition (N) /= Error then
2678 if Nkind (Result_Definition (N)) = N_Access_Definition then
2680 -- Ada 2005 (AI-254): Handle anonymous access to subprograms
2682 declare
2683 AD : constant Node_Id :=
2684 Access_To_Subprogram_Definition (Result_Definition (N));
2685 begin
2686 if Present (AD) and then Protected_Present (AD) then
2687 Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
2688 else
2689 Typ := Access_Definition (N, Result_Definition (N));
2690 end if;
2691 end;
2693 Set_Parent (Typ, Result_Definition (N));
2694 Set_Is_Local_Anonymous_Access (Typ);
2695 Set_Etype (Designator, Typ);
2697 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2699 Null_Exclusion_Static_Checks (N);
2701 -- Subtype_Mark case
2703 else
2704 Find_Type (Result_Definition (N));
2705 Typ := Entity (Result_Definition (N));
2706 Set_Etype (Designator, Typ);
2708 -- Ada 2005 (AI-231): Ensure proper usage of null exclusion
2710 Null_Exclusion_Static_Checks (N);
2712 -- If a null exclusion is imposed on the result type, then create
2713 -- a null-excluding itype (an access subtype) and use it as the
2714 -- function's Etype. Note that the null exclusion checks are done
2715 -- right before this, because they don't get applied to types that
2716 -- do not come from source.
2718 if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
2719 Set_Etype (Designator,
2720 Create_Null_Excluding_Itype
2721 (T => Typ,
2722 Related_Nod => N,
2723 Scope_Id => Scope (Current_Scope)));
2725 -- The new subtype must be elaborated before use because
2726 -- it is visible outside of the function. However its base
2727 -- type may not be frozen yet, so the reference that will
2728 -- force elaboration must be attached to the freezing of
2729 -- the base type.
2731 -- If the return specification appears on a proper body,
2732 -- the subtype will have been created already on the spec.
2734 if Is_Frozen (Typ) then
2735 if Nkind (Parent (N)) = N_Subprogram_Body
2736 and then Nkind (Parent (Parent (N))) = N_Subunit
2737 then
2738 null;
2739 else
2740 Build_Itype_Reference (Etype (Designator), Parent (N));
2741 end if;
2743 else
2744 declare
2745 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
2746 begin
2747 Set_Itype (IR, Etype (Designator));
2748 Append_Freeze_Action (Typ, IR);
2749 end;
2750 end if;
2752 else
2753 Set_Etype (Designator, Typ);
2754 end if;
2756 if Ekind (Typ) = E_Incomplete_Type
2757 or else (Is_Class_Wide_Type (Typ)
2758 and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
2759 then
2760 -- AI05-0151: Tagged incomplete types are allowed in all formal
2761 -- parts. Untagged incomplete types are not allowed in bodies.
2762 -- As a consequence, limited views cannot appear in a basic
2763 -- declaration that is itself within a body, because there is
2764 -- no point at which the non-limited view will become visible.
2766 if Ada_Version >= Ada_2012 then
2767 if From_Limited_With (Typ) and then In_Package_Body then
2768 Error_Msg_NE
2769 ("invalid use of incomplete type&",
2770 Result_Definition (N), Typ);
2772 -- The return type of a subprogram body cannot be of a
2773 -- formal incomplete type.
2775 elsif Is_Generic_Type (Typ)
2776 and then Nkind (Parent (N)) = N_Subprogram_Body
2777 then
2778 Error_Msg_N
2779 ("return type cannot be a formal incomplete type",
2780 Result_Definition (N));
2782 elsif Is_Class_Wide_Type (Typ)
2783 and then Is_Generic_Type (Root_Type (Typ))
2784 and then Nkind (Parent (N)) = N_Subprogram_Body
2785 then
2786 Error_Msg_N
2787 ("return type cannot be a formal incomplete type",
2788 Result_Definition (N));
2790 elsif Is_Tagged_Type (Typ) then
2791 null;
2793 -- Use is legal in a thunk generated for an operation
2794 -- inherited from a progenitor.
2796 elsif Is_Thunk (Designator)
2797 and then Present (Non_Limited_View (Typ))
2798 then
2799 null;
2801 elsif Nkind (Parent (N)) = N_Subprogram_Body
2802 or else Nkind (Parent (Parent (N))) in
2803 N_Accept_Statement | N_Entry_Body
2804 then
2805 Error_Msg_NE
2806 ("invalid use of untagged incomplete type&",
2807 Designator, Typ);
2808 end if;
2810 -- The type must be completed in the current package. This
2811 -- is checked at the end of the package declaration when
2812 -- Taft-amendment types are identified. If the return type
2813 -- is class-wide, there is no required check, the type can
2814 -- be a bona fide TAT.
2816 if Ekind (Scope (Current_Scope)) = E_Package
2817 and then In_Private_Part (Scope (Current_Scope))
2818 and then not Is_Class_Wide_Type (Typ)
2819 then
2820 Append_Elmt (Designator, Private_Dependents (Typ));
2821 end if;
2823 else
2824 Error_Msg_NE
2825 ("invalid use of incomplete type&", Designator, Typ);
2826 end if;
2827 end if;
2828 end if;
2830 -- Case where result definition does indicate an error
2832 else
2833 Set_Etype (Designator, Any_Type);
2834 end if;
2835 end Analyze_Return_Type;
2837 -----------------------------
2838 -- Analyze_Subprogram_Body --
2839 -----------------------------
2841 procedure Analyze_Subprogram_Body (N : Node_Id) is
2842 Loc : constant Source_Ptr := Sloc (N);
2843 Body_Spec : constant Node_Id := Specification (N);
2844 Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
2846 begin
2847 if Debug_Flag_C then
2848 Write_Str ("==> subprogram body ");
2849 Write_Name (Chars (Body_Id));
2850 Write_Str (" from ");
2851 Write_Location (Loc);
2852 Write_Eol;
2853 Indent;
2854 end if;
2856 Trace_Scope (N, Body_Id, " Analyze subprogram: ");
2858 -- The real work is split out into the helper, so it can do "return;"
2859 -- without skipping the debug output:
2861 Analyze_Subprogram_Body_Helper (N);
2863 if Debug_Flag_C then
2864 Outdent;
2865 Write_Str ("<== subprogram body ");
2866 Write_Name (Chars (Body_Id));
2867 Write_Str (" from ");
2868 Write_Location (Loc);
2869 Write_Eol;
2870 end if;
2871 end Analyze_Subprogram_Body;
2873 ------------------------------------
2874 -- Analyze_Subprogram_Body_Helper --
2875 ------------------------------------
2877 -- This procedure is called for regular subprogram bodies, generic bodies,
2878 -- and for subprogram stubs of both kinds. In the case of stubs, only the
2879 -- specification matters, and is used to create a proper declaration for
2880 -- the subprogram, or to perform conformance checks.
2882 -- WARNING: This routine manages Ghost regions. Return statements must be
2883 -- replaced by gotos that jump to the end of the routine and restore the
2884 -- Ghost mode.
2886 procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
2887 Body_Spec : Node_Id := Specification (N);
2888 Body_Id : Entity_Id := Defining_Entity (Body_Spec);
2889 Loc : constant Source_Ptr := Sloc (N);
2890 Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
2892 Body_Nod : Node_Id := Empty;
2893 Minimum_Acc_Objs : List_Id := No_List;
2895 Conformant : Boolean;
2896 Desig_View : Entity_Id := Empty;
2897 Exch_Views : Elist_Id := No_Elist;
2898 HSS : Node_Id;
2899 Mask_Types : Elist_Id := No_Elist;
2900 Prot_Typ : Entity_Id := Empty;
2901 Spec_Decl : Node_Id := Empty;
2902 Spec_Id : Entity_Id;
2904 Last_Real_Spec_Entity : Entity_Id := Empty;
2905 -- When we analyze a separate spec, the entity chain ends up containing
2906 -- the formals, as well as any itypes generated during analysis of the
2907 -- default expressions for parameters, or the arguments of associated
2908 -- precondition/postcondition pragmas (which are analyzed in the context
2909 -- of the spec since they have visibility on formals).
2911 -- These entities belong with the spec and not the body. However we do
2912 -- the analysis of the body in the context of the spec (again to obtain
2913 -- visibility to the formals), and all the entities generated during
2914 -- this analysis end up also chained to the entity chain of the spec.
2915 -- But they really belong to the body, and there is circuitry to move
2916 -- them from the spec to the body.
2918 -- However, when we do this move, we don't want to move the real spec
2919 -- entities (first para above) to the body. The Last_Real_Spec_Entity
2920 -- variable points to the last real spec entity, so we only move those
2921 -- chained beyond that point. It is initialized to Empty to deal with
2922 -- the case where there is no separate spec.
2924 function Body_Has_Contract return Boolean;
2925 -- Check whether unanalyzed body has an aspect or pragma that may
2926 -- generate a SPARK contract.
2928 function Body_Has_SPARK_Mode_On return Boolean;
2929 -- Check whether SPARK_Mode On applies to the subprogram body, either
2930 -- because it is specified directly on the body, or because it is
2931 -- inherited from the enclosing subprogram or package.
2933 function Build_Internal_Protected_Declaration
2934 (N : Node_Id) return Entity_Id;
2935 -- A subprogram body without a previous spec that appears in a protected
2936 -- body must be expanded separately to create a subprogram declaration
2937 -- for it, in order to resolve internal calls to it from other protected
2938 -- operations.
2940 -- Possibly factor this with Exp_Dist.Copy_Specification ???
2942 procedure Build_Subprogram_Declaration;
2943 -- Create a matching subprogram declaration for subprogram body N
2945 procedure Check_Anonymous_Return;
2946 -- Ada 2005: if a function returns an access type that denotes a task,
2947 -- or a type that contains tasks, we must create a master entity for
2948 -- the anonymous type, which typically will be used in an allocator
2949 -- in the body of the function.
2951 procedure Check_Inline_Pragma (Spec : in out Node_Id);
2952 -- Look ahead to recognize a pragma that may appear after the body.
2953 -- If there is a previous spec, check that it appears in the same
2954 -- declarative part. If the pragma is Inline_Always, perform inlining
2955 -- unconditionally, otherwise only if Front_End_Inlining is requested.
2956 -- If the body acts as a spec, and inlining is required, we create a
2957 -- subprogram declaration for it, in order to attach the body to inline.
2958 -- If pragma does not appear after the body, check whether there is
2959 -- an inline pragma before any local declarations.
2961 procedure Check_Missing_Return;
2962 -- Checks for a function with a no return statements, and also performs
2963 -- the warning checks implemented by Check_Returns.
2965 function Disambiguate_Spec return Entity_Id;
2966 -- When a primitive is declared between the private view and the full
2967 -- view of a concurrent type which implements an interface, a special
2968 -- mechanism is used to find the corresponding spec of the primitive
2969 -- body.
2971 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id;
2972 -- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
2973 -- incomplete types coming from a limited context and replace their
2974 -- limited views with the non-limited ones. Return the list of changes
2975 -- to be used to undo the transformation.
2977 procedure Generate_Minimum_Accessibility
2978 (Extra_Access : Entity_Id;
2979 Related_Form : Entity_Id := Empty);
2980 -- Generate a minimum accessibility object for a given extra
2981 -- accessibility formal (Extra_Access) and its related formal if it
2982 -- exists.
2984 function Is_Private_Concurrent_Primitive
2985 (Subp_Id : Entity_Id) return Boolean;
2986 -- Determine whether subprogram Subp_Id is a primitive of a concurrent
2987 -- type that implements an interface and has a private view.
2989 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id;
2990 -- N is the body generated for an expression function that is not a
2991 -- completion and Spec_Id the defining entity of its spec. Mark all
2992 -- the not-yet-frozen types referenced by the simple return statement
2993 -- of the function as formally frozen.
2995 procedure Move_Pragmas (From : Node_Id; To : Node_Id);
2996 -- Find all suitable source pragmas at the top of subprogram body
2997 -- From's declarations and move them after arbitrary node To.
2998 -- One exception is pragma SPARK_Mode which is copied rather than moved,
2999 -- as it applies to the body too.
3001 procedure Restore_Limited_Views (Restore_List : Elist_Id);
3002 -- Undo the transformation done by Exchange_Limited_Views.
3004 procedure Set_Trivial_Subprogram (N : Node_Id);
3005 -- Sets the Is_Trivial_Subprogram flag in both spec and body of the
3006 -- subprogram whose body is being analyzed. N is the statement node
3007 -- causing the flag to be set, if the following statement is a return
3008 -- of an entity, we mark the entity as set in source to suppress any
3009 -- warning on the stylized use of function stubs with a dummy return.
3011 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id);
3012 -- Undo the transformation done by Mask_Unfrozen_Types
3014 procedure Verify_Overriding_Indicator;
3015 -- If there was a previous spec, the entity has been entered in the
3016 -- current scope previously. If the body itself carries an overriding
3017 -- indicator, check that it is consistent with the known status of the
3018 -- entity.
3020 -----------------------
3021 -- Body_Has_Contract --
3022 -----------------------
3024 function Body_Has_Contract return Boolean is
3025 Decls : constant List_Id := Declarations (N);
3026 Item : Node_Id;
3028 begin
3029 -- Check for aspects that may generate a contract
3031 Item := First (Aspect_Specifications (N));
3032 while Present (Item) loop
3033 if Is_Subprogram_Contract_Annotation (Item) then
3034 return True;
3035 end if;
3037 Next (Item);
3038 end loop;
3040 -- Check for pragmas that may generate a contract
3042 Item := First (Decls);
3043 while Present (Item) loop
3044 if Nkind (Item) = N_Pragma
3045 and then Is_Subprogram_Contract_Annotation (Item)
3046 then
3047 return True;
3048 end if;
3050 Next (Item);
3051 end loop;
3053 return False;
3054 end Body_Has_Contract;
3056 ----------------------------
3057 -- Body_Has_SPARK_Mode_On --
3058 ----------------------------
3060 function Body_Has_SPARK_Mode_On return Boolean is
3061 Decls : constant List_Id := Declarations (N);
3062 Item : Node_Id;
3064 begin
3065 -- Check for SPARK_Mode aspect
3067 Item := First (Aspect_Specifications (N));
3068 while Present (Item) loop
3069 if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
3070 return Get_SPARK_Mode_From_Annotation (Item) = On;
3071 end if;
3073 Next (Item);
3074 end loop;
3076 -- Check for SPARK_Mode pragma
3078 Item := First (Decls);
3079 while Present (Item) loop
3081 -- Pragmas that apply to a subprogram body are usually grouped
3082 -- together. Look for a potential pragma SPARK_Mode among them.
3084 if Nkind (Item) = N_Pragma then
3085 if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
3086 return Get_SPARK_Mode_From_Annotation (Item) = On;
3087 end if;
3089 -- Otherwise the first non-pragma declarative item terminates the
3090 -- region where pragma SPARK_Mode may appear.
3092 else
3093 exit;
3094 end if;
3096 Next (Item);
3097 end loop;
3099 -- Otherwise, the applicable SPARK_Mode is inherited from the
3100 -- enclosing subprogram or package.
3102 return SPARK_Mode = On;
3103 end Body_Has_SPARK_Mode_On;
3105 ------------------------------------------
3106 -- Build_Internal_Protected_Declaration --
3107 ------------------------------------------
3109 function Build_Internal_Protected_Declaration
3110 (N : Node_Id) return Entity_Id
3112 procedure Analyze_Pragmas (From : Node_Id);
3113 -- Analyze all pragmas which follow arbitrary node From
3115 ---------------------
3116 -- Analyze_Pragmas --
3117 ---------------------
3119 procedure Analyze_Pragmas (From : Node_Id) is
3120 Decl : Node_Id;
3122 begin
3123 Decl := Next (From);
3124 while Present (Decl) loop
3125 if Nkind (Decl) = N_Pragma then
3126 Analyze_Pragma (Decl);
3128 -- No candidate pragmas are available for analysis
3130 else
3131 exit;
3132 end if;
3134 Next (Decl);
3135 end loop;
3136 end Analyze_Pragmas;
3138 -- Local variables
3140 Body_Id : constant Entity_Id := Defining_Entity (N);
3141 Loc : constant Source_Ptr := Sloc (N);
3142 Decl : Node_Id;
3143 Formal : Entity_Id;
3144 Formals : List_Id;
3145 Spec : Node_Id;
3146 Spec_Id : Entity_Id;
3148 -- Start of processing for Build_Internal_Protected_Declaration
3150 begin
3151 Formal := First_Formal (Body_Id);
3153 -- The protected operation always has at least one formal, namely the
3154 -- object itself, but it is only placed in the parameter list if
3155 -- expansion is enabled.
3157 if Present (Formal) or else Expander_Active then
3158 Formals := Copy_Parameter_List (Body_Id);
3159 else
3160 Formals := No_List;
3161 end if;
3163 Spec_Id :=
3164 Make_Defining_Identifier (Sloc (Body_Id),
3165 Chars => Chars (Body_Id));
3167 -- Indicate that the entity comes from source, to ensure that cross-
3168 -- reference information is properly generated. The body itself is
3169 -- rewritten during expansion, and the body entity will not appear in
3170 -- calls to the operation.
3172 Set_Comes_From_Source (Spec_Id, True);
3174 if Nkind (Specification (N)) = N_Procedure_Specification then
3175 Spec :=
3176 Make_Procedure_Specification (Loc,
3177 Defining_Unit_Name => Spec_Id,
3178 Parameter_Specifications => Formals);
3179 else
3180 Spec :=
3181 Make_Function_Specification (Loc,
3182 Defining_Unit_Name => Spec_Id,
3183 Parameter_Specifications => Formals,
3184 Result_Definition =>
3185 New_Occurrence_Of (Etype (Body_Id), Loc));
3186 end if;
3188 Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
3189 Set_Corresponding_Body (Decl, Body_Id);
3190 Set_Corresponding_Spec (N, Spec_Id);
3192 Insert_Before (N, Decl);
3194 -- Associate all aspects and pragmas of the body with the spec. This
3195 -- ensures that these annotations apply to the initial declaration of
3196 -- the subprogram body.
3198 Move_Aspects (From => N, To => Decl);
3199 Move_Pragmas (From => N, To => Decl);
3201 Analyze (Decl);
3203 -- The analysis of the spec may generate pragmas which require manual
3204 -- analysis. Since the generation of the spec and the relocation of
3205 -- the annotations is driven by the expansion of the stand-alone
3206 -- body, the pragmas will not be analyzed in a timely manner. Do this
3207 -- now.
3209 Analyze_Pragmas (Decl);
3211 -- This subprogram has convention Intrinsic as per RM 6.3.1(10/2)
3212 -- ensuring in particular that 'Access is illegal.
3214 Set_Convention (Spec_Id, Convention_Intrinsic);
3215 Set_Has_Completion (Spec_Id);
3217 return Spec_Id;
3218 end Build_Internal_Protected_Declaration;
3220 ----------------------------------
3221 -- Build_Subprogram_Declaration --
3222 ----------------------------------
3224 procedure Build_Subprogram_Declaration is
3225 Decl : Node_Id;
3226 Subp_Decl : Node_Id;
3228 begin
3229 -- Create a matching subprogram spec using the profile of the body.
3230 -- The structure of the tree is identical, but has new entities for
3231 -- the defining unit name and formal parameters.
3233 Subp_Decl :=
3234 Make_Subprogram_Declaration (Loc,
3235 Specification => Copy_Subprogram_Spec (Body_Spec));
3236 Set_Comes_From_Source (Subp_Decl, True);
3238 -- Also mark parameters as coming from source
3240 if Present (Parameter_Specifications (Specification (Subp_Decl))) then
3241 declare
3242 Form : Entity_Id;
3243 begin
3244 Form :=
3245 First (Parameter_Specifications (Specification (Subp_Decl)));
3247 while Present (Form) loop
3248 Set_Comes_From_Source (Defining_Identifier (Form), True);
3249 Next (Form);
3250 end loop;
3251 end;
3252 end if;
3254 -- Relocate the aspects and relevant pragmas from the subprogram body
3255 -- to the generated spec because it acts as the initial declaration.
3257 Insert_Before (N, Subp_Decl);
3258 Move_Aspects (N, To => Subp_Decl);
3259 Move_Pragmas (N, To => Subp_Decl);
3261 -- Ensure that the generated corresponding spec and original body
3262 -- share the same SPARK_Mode pragma or aspect. As a result, both have
3263 -- the same SPARK_Mode attributes, and the global SPARK_Mode value is
3264 -- correctly set for local subprograms.
3266 Copy_SPARK_Mode_Aspect (Subp_Decl, To => N);
3268 Analyze (Subp_Decl);
3270 -- Propagate the attributes Rewritten_For_C and Corresponding_Proc to
3271 -- the body since the expander may generate calls using that entity.
3272 -- Required to ensure that Expand_Call rewrites calls to this
3273 -- function by calls to the built procedure.
3275 if Transform_Function_Array
3276 and then Nkind (Body_Spec) = N_Function_Specification
3277 and then
3278 Rewritten_For_C (Defining_Entity (Specification (Subp_Decl)))
3279 then
3280 Set_Rewritten_For_C (Defining_Entity (Body_Spec));
3281 Set_Corresponding_Procedure (Defining_Entity (Body_Spec),
3282 Corresponding_Procedure
3283 (Defining_Entity (Specification (Subp_Decl))));
3284 end if;
3286 -- Analyze any relocated source pragmas or pragmas created for aspect
3287 -- specifications.
3289 Decl := Next (Subp_Decl);
3290 while Present (Decl) loop
3292 -- Stop the search for pragmas once the body has been reached as
3293 -- this terminates the region where pragmas may appear.
3295 if Decl = N then
3296 exit;
3298 elsif Nkind (Decl) = N_Pragma then
3299 Analyze (Decl);
3300 end if;
3302 Next (Decl);
3303 end loop;
3305 Spec_Id := Defining_Entity (Subp_Decl);
3306 Set_Corresponding_Spec (N, Spec_Id);
3308 -- Mark the generated spec as a source construct to ensure that all
3309 -- calls to it are properly registered in ALI files for GNATprove.
3311 Set_Comes_From_Source (Spec_Id, True);
3313 -- Ensure that the specs of the subprogram declaration and its body
3314 -- are identical, otherwise they will appear non-conformant due to
3315 -- rewritings in the default values of formal parameters.
3317 Body_Spec := Copy_Subprogram_Spec (Body_Spec);
3318 Set_Specification (N, Body_Spec);
3319 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
3320 end Build_Subprogram_Declaration;
3322 ----------------------------
3323 -- Check_Anonymous_Return --
3324 ----------------------------
3326 procedure Check_Anonymous_Return is
3327 Decl : Node_Id;
3328 Par : Node_Id;
3329 Scop : Entity_Id;
3331 begin
3332 if Present (Spec_Id) then
3333 Scop := Spec_Id;
3334 else
3335 Scop := Body_Id;
3336 end if;
3338 if Ekind (Scop) = E_Function
3339 and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
3340 and then not Is_Thunk (Scop)
3342 -- Skip internally built functions which handle the case of
3343 -- a null access (see Expand_Interface_Conversion)
3345 and then not (Is_Interface (Designated_Type (Etype (Scop)))
3346 and then not Comes_From_Source (Parent (Scop)))
3348 and then (Has_Task (Designated_Type (Etype (Scop)))
3349 or else
3350 (Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
3351 and then
3352 Is_Limited_Record (Designated_Type (Etype (Scop)))))
3353 and then Expander_Active
3354 then
3355 Decl := Build_Master_Declaration (Loc);
3357 if Present (Declarations (N)) then
3358 Prepend (Decl, Declarations (N));
3359 else
3360 Set_Declarations (N, New_List (Decl));
3361 end if;
3363 Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
3364 Set_Has_Master_Entity (Scop);
3366 -- Now mark the containing scope as a task master
3368 Par := N;
3369 while Nkind (Par) /= N_Compilation_Unit loop
3370 Par := Parent (Par);
3371 pragma Assert (Present (Par));
3373 -- If we fall off the top, we are at the outer level, and
3374 -- the environment task is our effective master, so nothing
3375 -- to mark.
3377 if Nkind (Par)
3378 in N_Task_Body | N_Block_Statement | N_Subprogram_Body
3379 then
3380 Set_Is_Task_Master (Par, True);
3381 exit;
3382 end if;
3383 end loop;
3384 end if;
3385 end Check_Anonymous_Return;
3387 -------------------------
3388 -- Check_Inline_Pragma --
3389 -------------------------
3391 procedure Check_Inline_Pragma (Spec : in out Node_Id) is
3392 Prag : Node_Id;
3393 Plist : List_Id;
3395 function Is_Inline_Pragma (N : Node_Id) return Boolean;
3396 -- True when N is a pragma Inline or Inline_Always that applies
3397 -- to this subprogram.
3399 -----------------------
3400 -- Is_Inline_Pragma --
3401 -----------------------
3403 function Is_Inline_Pragma (N : Node_Id) return Boolean is
3404 begin
3405 if Nkind (N) = N_Pragma
3406 and then
3407 (Pragma_Name_Unmapped (N) = Name_Inline_Always
3408 or else (Pragma_Name_Unmapped (N) = Name_Inline
3409 and then
3410 (Front_End_Inlining or else Optimization_Level > 0)))
3411 and then Present (Pragma_Argument_Associations (N))
3412 then
3413 declare
3414 Pragma_Arg : Node_Id :=
3415 Expression (First (Pragma_Argument_Associations (N)));
3416 begin
3417 if Nkind (Pragma_Arg) = N_Selected_Component then
3418 Pragma_Arg := Selector_Name (Pragma_Arg);
3419 end if;
3421 return Chars (Pragma_Arg) = Chars (Body_Id);
3422 end;
3424 else
3425 return False;
3426 end if;
3427 end Is_Inline_Pragma;
3429 -- Start of processing for Check_Inline_Pragma
3431 begin
3432 if not Expander_Active then
3433 return;
3434 end if;
3436 if Is_List_Member (N)
3437 and then Present (Next (N))
3438 and then Is_Inline_Pragma (Next (N))
3439 then
3440 Prag := Next (N);
3442 elsif Nkind (N) /= N_Subprogram_Body_Stub
3443 and then Present (Declarations (N))
3444 and then Is_Inline_Pragma (First (Declarations (N)))
3445 then
3446 Prag := First (Declarations (N));
3448 else
3449 Prag := Empty;
3450 end if;
3452 if Present (Prag) and then Is_List_Member (N) then
3453 if Present (Spec_Id) then
3454 if Is_List_Member (Unit_Declaration_Node (Spec_Id))
3455 and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
3456 then
3457 Analyze (Prag);
3458 end if;
3459 else
3460 -- Create a subprogram declaration, to make treatment uniform.
3461 -- Make the sloc of the subprogram name that of the entity in
3462 -- the body, so that style checks find identical strings.
3464 declare
3465 Subp : constant Entity_Id :=
3466 Make_Defining_Identifier
3467 (Sloc (Body_Id), Chars (Body_Id));
3468 Decl : constant Node_Id :=
3469 Make_Subprogram_Declaration (Loc,
3470 Specification =>
3471 New_Copy_Tree (Specification (N)));
3473 begin
3474 -- Link the body and the generated spec
3476 Set_Corresponding_Body (Decl, Body_Id);
3478 if Nkind (N) = N_Subprogram_Body_Stub then
3479 Set_Corresponding_Spec_Of_Stub (N, Subp);
3480 else
3481 Set_Corresponding_Spec (N, Subp);
3482 end if;
3484 Set_Defining_Unit_Name (Specification (Decl), Subp);
3486 -- To ensure proper coverage when body is inlined, indicate
3487 -- whether the subprogram comes from source.
3489 Preserve_Comes_From_Source (Subp, N);
3491 if Present (First_Formal (Body_Id)) then
3492 Plist := Copy_Parameter_List (Body_Id);
3493 Set_Parameter_Specifications
3494 (Specification (Decl), Plist);
3495 end if;
3497 -- Move aspects to the new spec
3499 if Has_Aspects (N) then
3500 Move_Aspects (N, To => Decl);
3501 end if;
3503 Insert_Before (N, Decl);
3504 Analyze (Decl);
3505 Analyze (Prag);
3506 Set_Has_Pragma_Inline (Subp);
3508 if Pragma_Name (Prag) = Name_Inline_Always then
3509 Set_Is_Inlined (Subp);
3510 Set_Has_Pragma_Inline_Always (Subp);
3511 end if;
3513 -- Prior to copying the subprogram body to create a template
3514 -- for it for subsequent inlining, remove the pragma from
3515 -- the current body so that the copy that will produce the
3516 -- new body will start from a completely unanalyzed tree.
3518 if Nkind (Parent (Prag)) = N_Subprogram_Body then
3519 Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
3520 end if;
3522 Spec := Subp;
3523 end;
3524 end if;
3525 end if;
3526 end Check_Inline_Pragma;
3528 --------------------------
3529 -- Check_Missing_Return --
3530 --------------------------
3532 procedure Check_Missing_Return is
3533 Id : Entity_Id;
3534 Missing_Ret : Boolean;
3536 begin
3537 if Nkind (Body_Spec) = N_Function_Specification then
3538 if Present (Spec_Id) then
3539 Id := Spec_Id;
3540 else
3541 Id := Body_Id;
3542 end if;
3544 -- A function body shall contain at least one return statement
3545 -- that applies to the function body, unless the function contains
3546 -- code_statements; RM 6.5(5).
3548 if Return_Present (Id) then
3549 Check_Returns (HSS, 'F', Missing_Ret);
3551 if Missing_Ret then
3552 Set_Has_Missing_Return (Id);
3553 end if;
3555 -- Within a premature instantiation of a package with no body, we
3556 -- build completions of the functions therein, with a Raise
3557 -- statement. No point in complaining about a missing return in
3558 -- this case.
3560 elsif Ekind (Id) = E_Function
3561 and then In_Instance
3562 and then Present (Statements (HSS))
3563 and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
3564 then
3565 null;
3567 elsif Is_Generic_Subprogram (Id)
3568 or else not Is_Machine_Code_Subprogram (Id)
3569 then
3570 Error_Msg_N ("missing RETURN statement in function body", N);
3571 end if;
3573 -- If procedure with No_Return, check returns
3575 elsif Nkind (Body_Spec) = N_Procedure_Specification then
3576 if Present (Spec_Id) then
3577 Id := Spec_Id;
3578 else
3579 Id := Body_Id;
3580 end if;
3582 if No_Return (Id) then
3583 Check_Returns (HSS, 'P', Missing_Ret, Id);
3584 end if;
3585 end if;
3586 end Check_Missing_Return;
3588 -----------------------
3589 -- Disambiguate_Spec --
3590 -----------------------
3592 function Disambiguate_Spec return Entity_Id is
3593 Priv_Spec : Entity_Id;
3594 Spec_N : Entity_Id;
3596 procedure Replace_Types (To_Corresponding : Boolean);
3597 -- Depending on the flag, replace the type of formal parameters of
3598 -- Body_Id if it is a concurrent type implementing interfaces with
3599 -- the corresponding record type or the other way around.
3601 procedure Replace_Types (To_Corresponding : Boolean) is
3602 Formal : Entity_Id;
3603 Formal_Typ : Entity_Id;
3605 begin
3606 Formal := First_Formal (Body_Id);
3607 while Present (Formal) loop
3608 Formal_Typ := Etype (Formal);
3610 if Is_Class_Wide_Type (Formal_Typ) then
3611 Formal_Typ := Root_Type (Formal_Typ);
3612 end if;
3614 -- From concurrent type to corresponding record
3616 if To_Corresponding then
3617 if Is_Concurrent_Type (Formal_Typ)
3618 and then Present (Corresponding_Record_Type (Formal_Typ))
3619 and then
3620 Present (Interfaces
3621 (Corresponding_Record_Type (Formal_Typ)))
3622 then
3623 Set_Etype (Formal,
3624 Corresponding_Record_Type (Formal_Typ));
3625 end if;
3627 -- From corresponding record to concurrent type
3629 else
3630 if Is_Concurrent_Record_Type (Formal_Typ)
3631 and then Present (Interfaces (Formal_Typ))
3632 then
3633 Set_Etype (Formal,
3634 Corresponding_Concurrent_Type (Formal_Typ));
3635 end if;
3636 end if;
3638 Next_Formal (Formal);
3639 end loop;
3640 end Replace_Types;
3642 -- Start of processing for Disambiguate_Spec
3644 begin
3645 -- Try to retrieve the specification of the body as is. All error
3646 -- messages are suppressed because the body may not have a spec in
3647 -- its current state.
3649 Spec_N := Find_Corresponding_Spec (N, False);
3651 -- It is possible that this is the body of a primitive declared
3652 -- between a private and a full view of a concurrent type. The
3653 -- controlling parameter of the spec carries the concurrent type,
3654 -- not the corresponding record type as transformed by Analyze_
3655 -- Subprogram_Specification. In such cases, we undo the change
3656 -- made by the analysis of the specification and try to find the
3657 -- spec again.
3659 -- Note that wrappers already have their corresponding specs and
3660 -- bodies set during their creation, so if the candidate spec is
3661 -- a wrapper, then we definitely need to swap all types to their
3662 -- original concurrent status.
3664 if No (Spec_N)
3665 or else Is_Primitive_Wrapper (Spec_N)
3666 then
3667 -- Restore all references of corresponding record types to the
3668 -- original concurrent types.
3670 Replace_Types (To_Corresponding => False);
3671 Priv_Spec := Find_Corresponding_Spec (N, False);
3673 -- The current body truly belongs to a primitive declared between
3674 -- a private and a full view. We leave the modified body as is,
3675 -- and return the true spec.
3677 if Present (Priv_Spec)
3678 and then Is_Private_Primitive (Priv_Spec)
3679 then
3680 return Priv_Spec;
3681 end if;
3683 -- In case that this is some sort of error, restore the original
3684 -- state of the body.
3686 Replace_Types (To_Corresponding => True);
3687 end if;
3689 return Spec_N;
3690 end Disambiguate_Spec;
3692 ----------------------------
3693 -- Exchange_Limited_Views --
3694 ----------------------------
3696 function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id is
3697 Result : Elist_Id := No_Elist;
3699 procedure Detect_And_Exchange (Id : Entity_Id);
3700 -- Determine whether Id's type denotes an incomplete type associated
3701 -- with a limited with clause and exchange the limited view with the
3702 -- non-limited one when available. Note that the non-limited view
3703 -- may exist because of a with_clause in another unit in the context,
3704 -- but cannot be used because the current view of the enclosing unit
3705 -- is still a limited view.
3707 -------------------------
3708 -- Detect_And_Exchange --
3709 -------------------------
3711 procedure Detect_And_Exchange (Id : Entity_Id) is
3712 Typ : constant Entity_Id := Etype (Id);
3714 begin
3715 if From_Limited_With (Typ)
3716 and then Has_Non_Limited_View (Typ)
3717 and then not From_Limited_With (Scope (Typ))
3718 then
3719 if No (Result) then
3720 Result := New_Elmt_List;
3721 end if;
3723 Prepend_Elmt (Typ, Result);
3724 Prepend_Elmt (Id, Result);
3725 Set_Etype (Id, Non_Limited_View (Typ));
3726 end if;
3727 end Detect_And_Exchange;
3729 -- Local variables
3731 Formal : Entity_Id;
3733 -- Start of processing for Exchange_Limited_Views
3735 begin
3736 -- Do not process subprogram bodies as they already use the non-
3737 -- limited view of types.
3739 if Ekind (Subp_Id) not in E_Function | E_Procedure then
3740 return No_Elist;
3741 end if;
3743 -- Examine all formals and swap views when applicable
3745 Formal := First_Formal (Subp_Id);
3746 while Present (Formal) loop
3747 Detect_And_Exchange (Formal);
3749 Next_Formal (Formal);
3750 end loop;
3752 -- Process the return type of a function
3754 if Ekind (Subp_Id) = E_Function then
3755 Detect_And_Exchange (Subp_Id);
3756 end if;
3758 return Result;
3759 end Exchange_Limited_Views;
3761 ------------------------------------
3762 -- Generate_Minimum_Accessibility --
3763 ------------------------------------
3765 procedure Generate_Minimum_Accessibility
3766 (Extra_Access : Entity_Id;
3767 Related_Form : Entity_Id := Empty)
3769 Loc : constant Source_Ptr := Sloc (Body_Nod);
3770 Form : Entity_Id;
3771 Obj_Node : Node_Id;
3772 begin
3773 -- When no related formal exists then we are dealing with an
3774 -- extra accessibility formal for a function result.
3776 if No (Related_Form) then
3777 Form := Extra_Access;
3778 else
3779 Form := Related_Form;
3780 end if;
3782 -- Create the minimum accessibility object
3784 Obj_Node :=
3785 Make_Object_Declaration (Loc,
3786 Defining_Identifier =>
3787 Make_Temporary
3788 (Loc, 'A', Extra_Access),
3789 Object_Definition => New_Occurrence_Of
3790 (Standard_Natural, Loc),
3791 Expression =>
3792 Make_Attribute_Reference (Loc,
3793 Prefix => New_Occurrence_Of
3794 (Standard_Natural, Loc),
3795 Attribute_Name => Name_Min,
3796 Expressions => New_List (
3797 Make_Integer_Literal (Loc,
3798 Scope_Depth (Body_Id)),
3799 New_Occurrence_Of
3800 (Extra_Access, Loc))));
3802 -- Add the new local object to the Minimum_Acc_Obj to
3803 -- be later prepended to the subprogram's list of
3804 -- declarations after we are sure all expansion is
3805 -- done.
3807 if Present (Minimum_Acc_Objs) then
3808 Prepend (Obj_Node, Minimum_Acc_Objs);
3809 else
3810 Minimum_Acc_Objs := New_List (Obj_Node);
3811 end if;
3813 -- Register the object and analyze it
3815 Set_Minimum_Accessibility
3816 (Form, Defining_Identifier (Obj_Node));
3818 Analyze (Obj_Node);
3819 end Generate_Minimum_Accessibility;
3821 -------------------------------------
3822 -- Is_Private_Concurrent_Primitive --
3823 -------------------------------------
3825 function Is_Private_Concurrent_Primitive
3826 (Subp_Id : Entity_Id) return Boolean
3828 Formal_Typ : Entity_Id;
3830 begin
3831 if Present (First_Formal (Subp_Id)) then
3832 Formal_Typ := Etype (First_Formal (Subp_Id));
3834 if Is_Concurrent_Record_Type (Formal_Typ) then
3835 if Is_Class_Wide_Type (Formal_Typ) then
3836 Formal_Typ := Root_Type (Formal_Typ);
3837 end if;
3839 Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
3840 end if;
3842 -- The type of the first formal is a concurrent tagged type with
3843 -- a private view.
3845 return
3846 Is_Concurrent_Type (Formal_Typ)
3847 and then Is_Tagged_Type (Formal_Typ)
3848 and then Has_Private_Declaration (Formal_Typ);
3849 end if;
3851 return False;
3852 end Is_Private_Concurrent_Primitive;
3854 -------------------------
3855 -- Mask_Unfrozen_Types --
3856 -------------------------
3858 function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id is
3859 Result : Elist_Id := No_Elist;
3861 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result;
3862 -- Mask all types referenced in the subtree rooted at Node as
3863 -- formally frozen.
3865 --------------------
3866 -- Mask_Type_Refs --
3867 --------------------
3869 function Mask_Type_Refs (Node : Node_Id) return Traverse_Result is
3870 procedure Mask_Type (Typ : Entity_Id);
3871 -- Mask a given type as formally frozen when outside the current
3872 -- scope, or else freeze the type.
3874 ---------------
3875 -- Mask_Type --
3876 ---------------
3878 procedure Mask_Type (Typ : Entity_Id) is
3879 begin
3880 -- Skip Itypes created by the preanalysis
3882 if Is_Itype (Typ)
3883 and then Scope_Within_Or_Same (Scope (Typ), Spec_Id)
3884 then
3885 return;
3886 end if;
3888 if not Is_Frozen (Typ) then
3889 if Scope (Typ) /= Current_Scope then
3890 Set_Is_Frozen (Typ);
3891 Append_New_Elmt (Typ, Result);
3892 else
3893 Freeze_Before (N, Typ);
3894 end if;
3895 end if;
3896 end Mask_Type;
3898 -- Start of processing for Mask_Type_Refs
3900 begin
3901 if Is_Entity_Name (Node) and then Present (Entity (Node)) then
3902 Mask_Type (Etype (Entity (Node)));
3904 if Ekind (Entity (Node)) in E_Component | E_Discriminant then
3905 Mask_Type (Scope (Entity (Node)));
3906 end if;
3908 elsif Nkind (Node) in N_Aggregate | N_Null | N_Type_Conversion
3909 and then Present (Etype (Node))
3910 then
3911 Mask_Type (Etype (Node));
3912 end if;
3914 return OK;
3915 end Mask_Type_Refs;
3917 procedure Mask_References is new Traverse_Proc (Mask_Type_Refs);
3919 -- Local variables
3921 Return_Stmt : constant Node_Id :=
3922 First (Statements (Handled_Statement_Sequence (N)));
3924 -- Start of processing for Mask_Unfrozen_Types
3926 begin
3927 pragma Assert (Nkind (Return_Stmt) = N_Simple_Return_Statement);
3929 Mask_References (Expression (Return_Stmt));
3931 return Result;
3932 end Mask_Unfrozen_Types;
3934 ------------------
3935 -- Move_Pragmas --
3936 ------------------
3938 procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
3939 Decl : Node_Id;
3940 Insert_Nod : Node_Id;
3941 Next_Decl : Node_Id;
3943 begin
3944 pragma Assert (Nkind (From) = N_Subprogram_Body);
3946 -- The pragmas are moved in an order-preserving fashion
3948 Insert_Nod := To;
3950 -- Inspect the declarations of the subprogram body and relocate all
3951 -- candidate pragmas.
3953 Decl := First (Declarations (From));
3954 while Present (Decl) loop
3956 -- Preserve the following declaration for iteration purposes, due
3957 -- to possible relocation of a pragma.
3959 Next_Decl := Next (Decl);
3961 if Nkind (Decl) = N_Pragma then
3962 -- Copy pragma SPARK_Mode if present in the declarative list
3963 -- of subprogram body From and insert it after node To. This
3964 -- pragma should not be moved, as it applies to the body too.
3966 if Pragma_Name_Unmapped (Decl) = Name_SPARK_Mode then
3967 Insert_After (Insert_Nod, New_Copy_Tree (Decl));
3969 -- Move relevant pragmas to the spec
3971 elsif Pragma_Name_Unmapped (Decl) in Name_Depends
3972 | Name_Ghost
3973 | Name_Global
3974 | Name_Pre
3975 | Name_Precondition
3976 | Name_Post
3977 | Name_Refined_Depends
3978 | Name_Refined_Global
3979 | Name_Refined_Post
3980 | Name_Inline
3981 | Name_Pure_Function
3982 | Name_Volatile_Function
3983 then
3984 Remove (Decl);
3985 Insert_After (Insert_Nod, Decl);
3986 Insert_Nod := Decl;
3987 end if;
3989 -- Skip internally generated code
3991 elsif not Comes_From_Source (Decl) then
3992 null;
3994 -- No candidate pragmas are available for relocation
3996 else
3997 exit;
3998 end if;
4000 Decl := Next_Decl;
4001 end loop;
4002 end Move_Pragmas;
4004 ---------------------------
4005 -- Restore_Limited_Views --
4006 ---------------------------
4008 procedure Restore_Limited_Views (Restore_List : Elist_Id) is
4009 Elmt : Elmt_Id := First_Elmt (Restore_List);
4010 Id : Entity_Id;
4012 begin
4013 while Present (Elmt) loop
4014 Id := Node (Elmt);
4015 Next_Elmt (Elmt);
4016 Set_Etype (Id, Node (Elmt));
4017 Next_Elmt (Elmt);
4018 end loop;
4019 end Restore_Limited_Views;
4021 ----------------------------
4022 -- Set_Trivial_Subprogram --
4023 ----------------------------
4025 procedure Set_Trivial_Subprogram (N : Node_Id) is
4026 Nxt : constant Node_Id := Next (N);
4028 begin
4029 Set_Is_Trivial_Subprogram (Body_Id);
4031 if Present (Spec_Id) then
4032 Set_Is_Trivial_Subprogram (Spec_Id);
4033 end if;
4035 if Present (Nxt)
4036 and then Nkind (Nxt) = N_Simple_Return_Statement
4037 and then No (Next (Nxt))
4038 and then Present (Expression (Nxt))
4039 and then Is_Entity_Name (Expression (Nxt))
4040 then
4041 Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
4042 end if;
4043 end Set_Trivial_Subprogram;
4045 ---------------------------
4046 -- Unmask_Unfrozen_Types --
4047 ---------------------------
4049 procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id) is
4050 Elmt : Elmt_Id := First_Elmt (Unmask_List);
4052 begin
4053 while Present (Elmt) loop
4054 Set_Is_Frozen (Node (Elmt), False);
4055 Next_Elmt (Elmt);
4056 end loop;
4057 end Unmask_Unfrozen_Types;
4059 ---------------------------------
4060 -- Verify_Overriding_Indicator --
4061 ---------------------------------
4063 procedure Verify_Overriding_Indicator is
4064 begin
4065 if Must_Override (Body_Spec) then
4066 if Nkind (Spec_Id) = N_Defining_Operator_Symbol
4067 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
4068 then
4069 null;
4071 -- Overridden controlled primitives may have had their
4072 -- Overridden_Operation field cleared according to the setting of
4073 -- the Is_Hidden flag. An issue arises, however, when analyzing
4074 -- an instance that may have manipulated the flag during
4075 -- expansion. As a result, we add an exception for this case.
4077 elsif not Present (Overridden_Operation (Spec_Id))
4078 and then not (Chars (Spec_Id) in Name_Adjust
4079 | Name_Finalize
4080 | Name_Initialize
4081 and then In_Instance)
4082 then
4083 Error_Msg_NE
4084 ("subprogram& is not overriding", Body_Spec, Spec_Id);
4086 -- Overriding indicators aren't allowed for protected subprogram
4087 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
4088 -- this to a warning if -gnatd.E is enabled.
4090 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
4091 Error_Msg_Warn := Error_To_Warning;
4092 Error_Msg_N
4093 ("<<overriding indicator not allowed for protected "
4094 & "subprogram body", Body_Spec);
4095 end if;
4097 elsif Must_Not_Override (Body_Spec) then
4098 if Present (Overridden_Operation (Spec_Id)) then
4099 Error_Msg_NE
4100 ("subprogram& overrides inherited operation",
4101 Body_Spec, Spec_Id);
4103 elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
4104 and then Operator_Matches_Spec (Spec_Id, Spec_Id)
4105 then
4106 Error_Msg_NE
4107 ("subprogram& overrides predefined operator",
4108 Body_Spec, Spec_Id);
4110 -- Overriding indicators aren't allowed for protected subprogram
4111 -- bodies (see the Confirmation in Ada Comment AC95-00213). Change
4112 -- this to a warning if -gnatd.E is enabled.
4114 elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
4115 Error_Msg_Warn := Error_To_Warning;
4117 Error_Msg_N
4118 ("<<overriding indicator not allowed "
4119 & "for protected subprogram body", Body_Spec);
4121 -- If this is not a primitive operation, then the overriding
4122 -- indicator is altogether illegal.
4124 elsif not Is_Primitive (Spec_Id) then
4125 Error_Msg_N
4126 ("overriding indicator only allowed "
4127 & "if subprogram is primitive", Body_Spec);
4128 end if;
4130 -- If checking the style rule and the operation overrides, then
4131 -- issue a warning about a missing overriding_indicator. Protected
4132 -- subprogram bodies are excluded from this style checking, since
4133 -- they aren't primitives (even though their declarations can
4134 -- override) and aren't allowed to have an overriding_indicator.
4136 elsif Style_Check
4137 and then Present (Overridden_Operation (Spec_Id))
4138 and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
4139 then
4140 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
4141 Style.Missing_Overriding (N, Body_Id);
4143 elsif Style_Check
4144 and then Can_Override_Operator (Spec_Id)
4145 and then not In_Predefined_Unit (Spec_Id)
4146 then
4147 pragma Assert (Unit_Declaration_Node (Body_Id) = N);
4148 Style.Missing_Overriding (N, Body_Id);
4149 end if;
4150 end Verify_Overriding_Indicator;
4152 -- Local variables
4154 Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
4155 Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
4156 Saved_EA : constant Boolean := Expander_Active;
4157 Saved_ISMP : constant Boolean :=
4158 Ignore_SPARK_Mode_Pragmas_In_Instance;
4159 -- Save the Ghost and SPARK mode-related data to restore on exit
4161 -- Start of processing for Analyze_Subprogram_Body_Helper
4163 begin
4164 -- A [generic] subprogram body freezes the contract of the nearest
4165 -- enclosing package body and all other contracts encountered in the
4166 -- same declarative part up to and excluding the subprogram body:
4168 -- package body Nearest_Enclosing_Package
4169 -- with Refined_State => (State => Constit)
4170 -- is
4171 -- Constit : ...;
4173 -- procedure Freezes_Enclosing_Package_Body
4174 -- with Refined_Depends => (Input => Constit) ...
4176 -- This ensures that any annotations referenced by the contract of the
4177 -- [generic] subprogram body are available. This form of freezing is
4178 -- decoupled from the usual Freeze_xxx mechanism because it must also
4179 -- work in the context of generics where normal freezing is disabled.
4181 -- Only bodies coming from source should cause this type of freezing.
4182 -- Expression functions that act as bodies and complete an initial
4183 -- declaration must be included in this category, hence the use of
4184 -- Original_Node.
4186 if Comes_From_Source (Original_Node (N)) then
4187 Freeze_Previous_Contracts (N);
4188 end if;
4190 -- Generic subprograms are handled separately. They always have a
4191 -- generic specification. Determine whether current scope has a
4192 -- previous declaration.
4194 -- If the subprogram body is defined within an instance of the same
4195 -- name, the instance appears as a package renaming, and will be hidden
4196 -- within the subprogram.
4198 if Present (Prev_Id)
4199 and then not Is_Overloadable (Prev_Id)
4200 and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
4201 or else Comes_From_Source (Prev_Id))
4202 then
4203 if Is_Generic_Subprogram (Prev_Id) then
4204 Spec_Id := Prev_Id;
4206 -- A subprogram body is Ghost when it is stand-alone and subject
4207 -- to pragma Ghost or when the corresponding spec is Ghost. Set
4208 -- the mode now to ensure that any nodes generated during analysis
4209 -- and expansion are properly marked as Ghost.
4211 Mark_And_Set_Ghost_Body (N, Spec_Id);
4213 -- If the body completes the initial declaration of a compilation
4214 -- unit which is subject to pragma Elaboration_Checks, set the
4215 -- model specified by the pragma because it applies to all parts
4216 -- of the unit.
4218 Install_Elaboration_Model (Spec_Id);
4220 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
4221 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
4223 Analyze_Generic_Subprogram_Body (N, Spec_Id);
4225 if Nkind (N) = N_Subprogram_Body then
4226 HSS := Handled_Statement_Sequence (N);
4227 Check_Missing_Return;
4228 end if;
4230 goto Leave;
4232 -- Otherwise a previous entity conflicts with the subprogram name.
4233 -- Attempting to enter name will post error.
4235 else
4236 Enter_Name (Body_Id);
4237 goto Leave;
4238 end if;
4240 -- Non-generic case, find the subprogram declaration, if one was seen,
4241 -- or enter new overloaded entity in the current scope. If the
4242 -- Current_Entity is the Body_Id itself, the unit is being analyzed as
4243 -- part of the context of one of its subunits. No need to redo the
4244 -- analysis.
4246 elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
4247 goto Leave;
4249 else
4250 Body_Id := Analyze_Subprogram_Specification (Body_Spec);
4252 if Nkind (N) = N_Subprogram_Body_Stub
4253 or else No (Corresponding_Spec (N))
4254 then
4255 if Is_Private_Concurrent_Primitive (Body_Id) then
4256 Spec_Id := Disambiguate_Spec;
4258 -- A subprogram body is Ghost when it is stand-alone and
4259 -- subject to pragma Ghost or when the corresponding spec is
4260 -- Ghost. Set the mode now to ensure that any nodes generated
4261 -- during analysis and expansion are properly marked as Ghost.
4263 Mark_And_Set_Ghost_Body (N, Spec_Id);
4265 -- If the body completes a compilation unit which is subject
4266 -- to pragma Elaboration_Checks, set the model specified by
4267 -- the pragma because it applies to all parts of the unit.
4269 Install_Elaboration_Model (Spec_Id);
4271 else
4272 Spec_Id := Find_Corresponding_Spec (N);
4274 -- A subprogram body is Ghost when it is stand-alone and
4275 -- subject to pragma Ghost or when the corresponding spec is
4276 -- Ghost. Set the mode now to ensure that any nodes generated
4277 -- during analysis and expansion are properly marked as Ghost.
4279 Mark_And_Set_Ghost_Body (N, Spec_Id);
4281 -- If the body completes a compilation unit which is subject
4282 -- to pragma Elaboration_Checks, set the model specified by
4283 -- the pragma because it applies to all parts of the unit.
4285 Install_Elaboration_Model (Spec_Id);
4287 -- In GNATprove mode, if the body has no previous spec, create
4288 -- one so that the inlining machinery can operate properly.
4289 -- Transfer aspects, if any, to the new spec, so that they
4290 -- are legal and can be processed ahead of the body.
4291 -- We make two copies of the given spec, one for the new
4292 -- declaration, and one for the body.
4293 -- ??? This should be conditioned on front-end inlining rather
4294 -- than GNATprove_Mode.
4296 if No (Spec_Id) and then GNATprove_Mode
4298 -- Inlining does not apply during preanalysis of code
4300 and then Full_Analysis
4302 -- Inlining only applies to full bodies, not stubs
4304 and then Nkind (N) /= N_Subprogram_Body_Stub
4306 -- Inlining only applies to bodies in the source code, not to
4307 -- those generated by the compiler. In particular, expression
4308 -- functions, whose body is generated by the compiler, are
4309 -- treated specially by GNATprove.
4311 and then Comes_From_Source (Body_Id)
4313 -- This cannot be done for a compilation unit, which is not
4314 -- in a context where we can insert a new spec.
4316 and then Is_List_Member (N)
4318 -- Inlining only applies to subprograms without contracts,
4319 -- as a contract is a sign that GNATprove should perform a
4320 -- modular analysis of the subprogram instead of a contextual
4321 -- analysis at each call site. The same test is performed in
4322 -- Inline.Can_Be_Inlined_In_GNATprove_Mode. It is repeated
4323 -- here in another form (because the contract has not been
4324 -- attached to the body) to avoid front-end errors in case
4325 -- pragmas are used instead of aspects, because the
4326 -- corresponding pragmas in the body would not be transferred
4327 -- to the spec, leading to legality errors.
4329 and then not Body_Has_Contract
4330 and then not Inside_A_Generic
4331 then
4332 Build_Subprogram_Declaration;
4334 -- If this is a function that returns a constrained array, and
4335 -- Transform_Function_Array is set, create subprogram
4336 -- declaration to simplify e.g. subsequent C generation.
4338 elsif No (Spec_Id)
4339 and then Transform_Function_Array
4340 and then Nkind (Body_Spec) = N_Function_Specification
4341 and then Is_Array_Type (Etype (Body_Id))
4342 and then Is_Constrained (Etype (Body_Id))
4343 then
4344 Build_Subprogram_Declaration;
4345 end if;
4346 end if;
4348 -- If this is a duplicate body, no point in analyzing it
4350 if Error_Posted (N) then
4351 goto Leave;
4352 end if;
4354 -- A subprogram body should cause freezing of its own declaration,
4355 -- so, if the body and spec are compilation units, we must do it
4356 -- manually here. Moreover, if the return type is anonymous access
4357 -- to protected subprogram, it must be frozen before the body
4358 -- because its expansion has generated an equivalent type that is
4359 -- used when elaborating the body.
4361 if Present (Spec_Id)
4362 and then Nkind (Parent (N)) = N_Compilation_Unit
4363 then
4364 Freeze_Before (N, Spec_Id);
4366 elsif Is_Access_Subprogram_Type (Etype (Body_Id)) then
4367 Freeze_Before (N, Etype (Body_Id));
4368 end if;
4370 else
4371 Spec_Id := Corresponding_Spec (N);
4373 -- A subprogram body is Ghost when it is stand-alone and subject
4374 -- to pragma Ghost or when the corresponding spec is Ghost. Set
4375 -- the mode now to ensure that any nodes generated during analysis
4376 -- and expansion are properly marked as Ghost.
4378 Mark_And_Set_Ghost_Body (N, Spec_Id);
4380 -- If the body completes the initial declaration of a compilation
4381 -- unit which is subject to pragma Elaboration_Checks, set the
4382 -- model specified by the pragma because it applies to all parts
4383 -- of the unit.
4385 Install_Elaboration_Model (Spec_Id);
4386 end if;
4387 end if;
4389 -- Deactivate expansion inside the body of ignored Ghost entities,
4390 -- as this code will ultimately be ignored. This avoids requiring the
4391 -- presence of run-time units which are not needed. Only do this for
4392 -- user entities, as internally generated entitities might still need
4393 -- to be expanded (e.g. those generated for types).
4395 if Present (Ignored_Ghost_Region)
4396 and then Comes_From_Source (Body_Id)
4397 then
4398 Expander_Active := False;
4399 end if;
4401 -- Previously we scanned the body to look for nested subprograms, and
4402 -- rejected an inline directive if nested subprograms were present,
4403 -- because the back-end would generate conflicting symbols for the
4404 -- nested bodies. This is now unnecessary.
4406 -- Look ahead to recognize a pragma Inline that appears after the body
4408 Check_Inline_Pragma (Spec_Id);
4410 -- Deal with special case of a fully private operation in the body of
4411 -- the protected type. We must create a declaration for the subprogram,
4412 -- in order to attach the subprogram that will be used in internal
4413 -- calls. We exclude compiler generated bodies from the expander since
4414 -- the issue does not arise for those cases.
4416 if No (Spec_Id)
4417 and then Comes_From_Source (N)
4418 and then Is_Protected_Type (Current_Scope)
4419 then
4420 Spec_Id := Build_Internal_Protected_Declaration (N);
4421 end if;
4423 -- If Transform_Function_Array is set and this is a function returning a
4424 -- constrained array type for which we must create a procedure with an
4425 -- extra out parameter, build and analyze the body now. The procedure
4426 -- declaration has already been created. We reuse the source body of the
4427 -- function, because in an instance it may contain global references
4428 -- that cannot be reanalyzed. The source function itself is not used any
4429 -- further, so we mark it as having a completion. If the subprogram is a
4430 -- stub the transformation is done later, when the proper body is
4431 -- analyzed.
4433 if Expander_Active
4434 and then Transform_Function_Array
4435 and then Nkind (N) /= N_Subprogram_Body_Stub
4436 then
4437 declare
4438 S : constant Entity_Id :=
4439 (if Present (Spec_Id)
4440 then Spec_Id
4441 else Defining_Unit_Name (Specification (N)));
4442 Proc_Body : Node_Id;
4444 begin
4445 if Ekind (S) = E_Function and then Rewritten_For_C (S) then
4446 Set_Has_Completion (S);
4447 Proc_Body := Build_Procedure_Body_Form (S, N);
4449 if Present (Spec_Id) then
4450 Rewrite (N, Proc_Body);
4451 Analyze (N);
4453 -- The entity for the created procedure must remain
4454 -- invisible, so it does not participate in resolution of
4455 -- subsequent references to the function.
4457 Set_Is_Immediately_Visible (Corresponding_Spec (N), False);
4459 -- If we do not have a separate spec for N, build one and
4460 -- insert the new body right after.
4462 else
4463 Rewrite (N,
4464 Make_Subprogram_Declaration (Loc,
4465 Specification => Relocate_Node (Specification (N))));
4466 Analyze (N);
4467 Insert_After_And_Analyze (N, Proc_Body);
4468 Set_Is_Immediately_Visible
4469 (Corresponding_Spec (Proc_Body), False);
4470 end if;
4472 goto Leave;
4473 end if;
4474 end;
4475 end if;
4477 -- If a separate spec is present, then deal with freezing issues
4479 if Present (Spec_Id) then
4480 Spec_Decl := Unit_Declaration_Node (Spec_Id);
4481 Verify_Overriding_Indicator;
4483 -- In general, the spec will be frozen when we start analyzing the
4484 -- body. However, for internally generated operations, such as
4485 -- wrapper functions for inherited operations with controlling
4486 -- results, the spec may not have been frozen by the time we expand
4487 -- the freeze actions that include the bodies. In particular, extra
4488 -- formals for accessibility or for return-in-place may need to be
4489 -- generated. Freeze nodes, if any, are inserted before the current
4490 -- body. These freeze actions are also needed in Compile_Only mode to
4491 -- enable the proper back-end type annotations.
4492 -- They are necessary in any case to ensure proper elaboration order
4493 -- in gigi.
4495 if Nkind (N) = N_Subprogram_Body
4496 and then Was_Expression_Function (N)
4497 and then not Has_Completion (Spec_Id)
4498 and then Serious_Errors_Detected = 0
4499 and then (Expander_Active
4500 or else Operating_Mode = Check_Semantics
4501 or else Is_Ignored_Ghost_Entity (Spec_Id))
4502 then
4503 -- The body generated for an expression function that is not a
4504 -- completion is a freeze point neither for the profile nor for
4505 -- anything else. That's why, in order to prevent any freezing
4506 -- during analysis, we need to mask types declared outside the
4507 -- expression (and in an outer scope) that are not yet frozen.
4508 -- This also needs to be done in the case of an ignored Ghost
4509 -- expression function, where the expander isn't active.
4511 -- A further complication arises if the expression function is
4512 -- a primitive operation of a tagged type: in that case the
4513 -- function entity must be frozen before the dispatch table for
4514 -- the type is constructed, so it will be frozen like other local
4515 -- entities, at the end of the current scope.
4517 if not Is_Dispatching_Operation (Spec_Id) then
4518 Set_Is_Frozen (Spec_Id);
4519 end if;
4521 Mask_Types := Mask_Unfrozen_Types (Spec_Id);
4523 elsif not Is_Frozen (Spec_Id)
4524 and then Serious_Errors_Detected = 0
4525 then
4526 Set_Has_Delayed_Freeze (Spec_Id);
4527 Freeze_Before (N, Spec_Id);
4528 end if;
4529 end if;
4531 -- Place subprogram on scope stack, and make formals visible. If there
4532 -- is a spec, the visible entity remains that of the spec.
4534 if Present (Spec_Id) then
4535 Generate_Reference (Spec_Id, Body_Id, 'b', Set_Ref => False);
4537 if Is_Child_Unit (Spec_Id) then
4538 Generate_Reference (Spec_Id, Scope (Spec_Id), 'k', False);
4539 end if;
4541 if Style_Check then
4542 Style.Check_Identifier (Body_Id, Spec_Id);
4543 end if;
4545 Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
4546 Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
4548 if Is_Abstract_Subprogram (Spec_Id) then
4549 Error_Msg_N ("an abstract subprogram cannot have a body", N);
4550 goto Leave;
4552 else
4553 Set_Convention (Body_Id, Convention (Spec_Id));
4554 Set_Has_Completion (Spec_Id);
4556 if Is_Protected_Type (Scope (Spec_Id)) then
4557 Prot_Typ := Scope (Spec_Id);
4558 end if;
4560 -- If this is a body generated for a renaming, do not check for
4561 -- full conformance. The check is redundant, because the spec of
4562 -- the body is a copy of the spec in the renaming declaration,
4563 -- and the test can lead to spurious errors on nested defaults.
4565 if Present (Spec_Decl)
4566 and then not Comes_From_Source (N)
4567 and then
4568 (Nkind (Original_Node (Spec_Decl)) =
4569 N_Subprogram_Renaming_Declaration
4570 or else (Present (Corresponding_Body (Spec_Decl))
4571 and then
4572 Nkind (Unit_Declaration_Node
4573 (Corresponding_Body (Spec_Decl))) =
4574 N_Subprogram_Renaming_Declaration))
4575 then
4576 Conformant := True;
4578 -- Conversely, the spec may have been generated for specless body
4579 -- with an inline pragma. The entity comes from source, which is
4580 -- both semantically correct and necessary for proper inlining.
4581 -- The subprogram declaration itself is not in the source.
4583 elsif Comes_From_Source (N)
4584 and then Present (Spec_Decl)
4585 and then not Comes_From_Source (Spec_Decl)
4586 and then Has_Pragma_Inline (Spec_Id)
4587 then
4588 Conformant := True;
4590 -- Finally, a body generated for an expression function copies
4591 -- the profile of the function and no check is needed either.
4592 -- If the body is the completion of a previous function
4593 -- declared elsewhere, the conformance check is required.
4595 elsif Nkind (N) = N_Subprogram_Body
4596 and then Was_Expression_Function (N)
4597 and then Sloc (Spec_Id) = Sloc (Body_Id)
4598 then
4599 Conformant := True;
4601 else
4602 Check_Conformance
4603 (Body_Id, Spec_Id,
4604 Fully_Conformant, True, Conformant, Body_Id);
4605 end if;
4607 -- If the body is not fully conformant, we have to decide if we
4608 -- should analyze it or not. If it has a really messed up profile
4609 -- then we probably should not analyze it, since we will get too
4610 -- many bogus messages.
4612 -- Our decision is to go ahead in the non-fully conformant case
4613 -- only if it is at least mode conformant with the spec. Note
4614 -- that the call to Check_Fully_Conformant has issued the proper
4615 -- error messages to complain about the lack of conformance.
4617 if not Conformant
4618 and then not Mode_Conformant (Body_Id, Spec_Id)
4619 then
4620 goto Leave;
4621 end if;
4622 end if;
4624 -- In the case we are dealing with an expression function we check
4625 -- the formals attached to the spec instead of the body - so we don't
4626 -- reference body formals.
4628 if Spec_Id /= Body_Id
4629 and then not Is_Expression_Function (Spec_Id)
4630 then
4631 Reference_Body_Formals (Spec_Id, Body_Id);
4632 end if;
4634 Reinit_Field_To_Zero (Body_Id, F_Has_Out_Or_In_Out_Parameter);
4635 Reinit_Field_To_Zero (Body_Id, F_Needs_No_Actuals,
4636 Old_Ekind => (E_Function | E_Procedure => True, others => False));
4637 Reinit_Field_To_Zero (Body_Id, F_Is_Predicate_Function,
4638 Old_Ekind => (E_Function | E_Procedure => True, others => False));
4639 Reinit_Field_To_Zero (Body_Id, F_Protected_Subprogram,
4640 Old_Ekind => (E_Function | E_Procedure => True, others => False));
4642 if Ekind (Body_Id) = E_Procedure then
4643 Reinit_Field_To_Zero (Body_Id, F_Receiving_Entry);
4644 end if;
4646 Mutate_Ekind (Body_Id, E_Subprogram_Body);
4648 if Nkind (N) = N_Subprogram_Body_Stub then
4649 Set_Corresponding_Spec_Of_Stub (N, Spec_Id);
4651 -- Regular body
4653 else
4654 Set_Corresponding_Spec (N, Spec_Id);
4656 -- Ada 2005 (AI-345): If the operation is a primitive operation
4657 -- of a concurrent type, the type of the first parameter has been
4658 -- replaced with the corresponding record, which is the proper
4659 -- run-time structure to use. However, within the body there may
4660 -- be uses of the formals that depend on primitive operations
4661 -- of the type (in particular calls in prefixed form) for which
4662 -- we need the original concurrent type. The operation may have
4663 -- several controlling formals, so the replacement must be done
4664 -- for all of them.
4666 if Comes_From_Source (Spec_Id)
4667 and then Present (First_Entity (Spec_Id))
4668 and then Ekind (Etype (First_Entity (Spec_Id))) = E_Record_Type
4669 and then Is_Tagged_Type (Etype (First_Entity (Spec_Id)))
4670 and then Present (Interfaces (Etype (First_Entity (Spec_Id))))
4671 and then Present (Corresponding_Concurrent_Type
4672 (Etype (First_Entity (Spec_Id))))
4673 then
4674 declare
4675 Typ : constant Entity_Id := Etype (First_Entity (Spec_Id));
4676 Form : Entity_Id;
4678 begin
4679 Form := First_Formal (Spec_Id);
4680 while Present (Form) loop
4681 if Etype (Form) = Typ then
4682 Set_Etype (Form, Corresponding_Concurrent_Type (Typ));
4683 end if;
4685 Next_Formal (Form);
4686 end loop;
4687 end;
4688 end if;
4690 -- Make the formals visible, and place subprogram on scope stack.
4691 -- This is also the point at which we set Last_Real_Spec_Entity
4692 -- to mark the entities which will not be moved to the body.
4694 Install_Formals (Spec_Id);
4695 Last_Real_Spec_Entity := Last_Entity (Spec_Id);
4697 -- Within an instance, add local renaming declarations so that
4698 -- gdb can retrieve the values of actuals more easily. This is
4699 -- only relevant if generating code.
4701 if Is_Generic_Instance (Spec_Id)
4702 and then Is_Wrapper_Package (Current_Scope)
4703 and then Expander_Active
4704 then
4705 Build_Subprogram_Instance_Renamings (N, Current_Scope);
4706 end if;
4708 Push_Scope (Spec_Id);
4710 -- Make sure that the subprogram is immediately visible. For
4711 -- child units that have no separate spec this is indispensable.
4712 -- Otherwise it is safe albeit redundant.
4714 Set_Is_Immediately_Visible (Spec_Id);
4715 end if;
4717 Set_Corresponding_Body (Unit_Declaration_Node (Spec_Id), Body_Id);
4718 Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Spec_Id));
4719 Set_Scope (Body_Id, Scope (Spec_Id));
4721 -- Case of subprogram body with no previous spec
4723 else
4724 -- Check for style warning required
4726 if Style_Check
4728 -- Only apply check for source level subprograms for which checks
4729 -- have not been suppressed.
4731 and then Comes_From_Source (Body_Id)
4732 and then not Suppress_Style_Checks (Body_Id)
4734 -- No warnings within an instance
4736 and then not In_Instance
4738 -- No warnings for expression functions
4740 and then (Nkind (N) /= N_Subprogram_Body
4741 or else not Was_Expression_Function (N))
4742 then
4743 Style.Body_With_No_Spec (N);
4744 end if;
4746 -- First set Acts_As_Spec if appropriate
4748 if Nkind (N) /= N_Subprogram_Body_Stub then
4749 Set_Acts_As_Spec (N);
4750 end if;
4752 New_Overloaded_Entity (Body_Id);
4754 -- A subprogram body should cause freezing of its own declaration,
4755 -- but if there was no previous explicit declaration, then the
4756 -- subprogram will get frozen too late (there may be code within
4757 -- the body that depends on the subprogram having been frozen,
4758 -- such as uses of extra formals), so we force it to be frozen here.
4759 -- An exception in Ada 2012 is that the body created for expression
4760 -- functions does not freeze.
4762 if Nkind (N) /= N_Subprogram_Body
4763 or else not Was_Expression_Function (N)
4764 then
4765 -- First clear the Is_Public flag on thunks since they are only
4766 -- referenced locally by dispatch tables and thus never inlined.
4768 if Is_Thunk (Body_Id) then
4769 Set_Is_Public (Body_Id, False);
4770 end if;
4772 Freeze_Before (N, Body_Id);
4773 end if;
4775 if Nkind (N) /= N_Subprogram_Body_Stub then
4776 Generate_Definition (Body_Id);
4777 Generate_Reference
4778 (Body_Id, Body_Id, 'b', Set_Ref => False, Force => True);
4780 -- If the body is an entry wrapper created for an entry with
4781 -- preconditions, it must be compiled in the context of the
4782 -- enclosing synchronized object, because it may mention other
4783 -- operations of the type.
4785 if Is_Entry_Wrapper (Body_Id) then
4786 declare
4787 Prot : constant Entity_Id := Etype (First_Entity (Body_Id));
4788 begin
4789 Push_Scope (Prot);
4790 Install_Declarations (Prot);
4791 end;
4792 end if;
4794 Install_Formals (Body_Id);
4796 Push_Scope (Body_Id);
4797 end if;
4799 -- For stubs and bodies with no previous spec, generate references to
4800 -- formals.
4802 Generate_Reference_To_Formals (Body_Id);
4803 end if;
4805 -- Entry barrier functions are generated outside the protected type and
4806 -- should not carry the SPARK_Mode of the enclosing context.
4808 if Nkind (N) = N_Subprogram_Body
4809 and then Is_Entry_Barrier_Function (N)
4810 then
4811 null;
4813 -- The body is generated as part of expression function expansion. When
4814 -- the expression function appears in the visible declarations of a
4815 -- package, the body is added to the private declarations. Since both
4816 -- declarative lists may be subject to a different SPARK_Mode, inherit
4817 -- the mode of the spec.
4819 -- package P with SPARK_Mode is
4820 -- function Expr_Func ... is (...); -- original
4821 -- [function Expr_Func ...;] -- generated spec
4822 -- -- mode is ON
4823 -- private
4824 -- pragma SPARK_Mode (Off);
4825 -- [function Expr_Func ... is return ...;] -- generated body
4826 -- end P; -- mode is ON
4828 elsif not Comes_From_Source (N)
4829 and then Present (Spec_Id)
4830 and then Is_Expression_Function (Spec_Id)
4831 then
4832 Set_SPARK_Pragma (Body_Id, SPARK_Pragma (Spec_Id));
4833 Set_SPARK_Pragma_Inherited
4834 (Body_Id, SPARK_Pragma_Inherited (Spec_Id));
4836 -- Set the SPARK_Mode from the current context (may be overwritten later
4837 -- with explicit pragma). Exclude the case where the SPARK_Mode appears
4838 -- initially on a stand-alone subprogram body, but is then relocated to
4839 -- a generated corresponding spec. In this scenario the mode is shared
4840 -- between the spec and body.
4842 elsif No (SPARK_Pragma (Body_Id)) then
4843 Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
4844 Set_SPARK_Pragma_Inherited (Body_Id);
4845 end if;
4847 -- A subprogram body may be instantiated or inlined at a later pass.
4848 -- Restore the state of Ignore_SPARK_Mode_Pragmas_In_Instance when it
4849 -- applied to the initial declaration of the body.
4851 if Present (Spec_Id) then
4852 if Ignore_SPARK_Mode_Pragmas (Spec_Id) then
4853 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4854 end if;
4856 else
4857 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in
4858 -- case the body is instantiated or inlined later and out of context.
4859 -- The body uses this attribute to restore the value of the global
4860 -- flag.
4862 if Ignore_SPARK_Mode_Pragmas_In_Instance then
4863 Set_Ignore_SPARK_Mode_Pragmas (Body_Id);
4865 elsif Ignore_SPARK_Mode_Pragmas (Body_Id) then
4866 Ignore_SPARK_Mode_Pragmas_In_Instance := True;
4867 end if;
4868 end if;
4870 -- Preserve relevant elaboration-related attributes of the context which
4871 -- are no longer available or very expensive to recompute once analysis,
4872 -- resolution, and expansion are over.
4874 if No (Spec_Id) then
4875 Mark_Elaboration_Attributes
4876 (N_Id => Body_Id,
4877 Checks => True,
4878 Warnings => True);
4879 end if;
4881 -- If this is the proper body of a stub, we must verify that the stub
4882 -- conforms to the body, and to the previous spec if one was present.
4883 -- We know already that the body conforms to that spec. This test is
4884 -- only required for subprograms that come from source.
4886 if Nkind (Parent (N)) = N_Subunit
4887 and then Comes_From_Source (N)
4888 and then not Error_Posted (Body_Id)
4889 and then Nkind (Corresponding_Stub (Parent (N))) =
4890 N_Subprogram_Body_Stub
4891 then
4892 declare
4893 Old_Id : constant Entity_Id :=
4894 Defining_Entity
4895 (Specification (Corresponding_Stub (Parent (N))));
4897 Conformant : Boolean := False;
4899 begin
4900 if No (Spec_Id) then
4901 Check_Fully_Conformant (Body_Id, Old_Id);
4903 else
4904 Check_Conformance
4905 (Body_Id, Old_Id, Fully_Conformant, False, Conformant);
4907 if not Conformant then
4909 -- The stub was taken to be a new declaration. Indicate that
4910 -- it lacks a body.
4912 Set_Has_Completion (Old_Id, False);
4913 end if;
4914 end if;
4915 end;
4916 end if;
4918 Set_Has_Completion (Body_Id);
4919 Check_Eliminated (Body_Id);
4921 -- Analyze any aspect specifications that appear on the subprogram body
4922 -- stub. Stop the analysis now as the stub does not have a declarative
4923 -- or a statement part, and it cannot be inlined.
4925 if Nkind (N) = N_Subprogram_Body_Stub then
4926 if Has_Aspects (N) then
4927 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
4928 end if;
4930 goto Leave;
4931 end if;
4933 -- Handle inlining
4935 if Expander_Active
4936 and then Serious_Errors_Detected = 0
4937 and then Present (Spec_Id)
4938 and then Has_Pragma_Inline (Spec_Id)
4939 then
4940 -- Legacy implementation (relying on front-end inlining)
4942 if not Back_End_Inlining then
4943 if Has_Pragma_Inline_Always (Spec_Id)
4944 or else (Front_End_Inlining
4945 and then not Opt.Disable_FE_Inline)
4946 then
4947 Build_Body_To_Inline (N, Spec_Id);
4948 end if;
4950 -- New implementation (relying on back-end inlining)
4952 else
4953 if Has_Pragma_Inline_Always (Spec_Id)
4954 or else Optimization_Level > 0
4955 then
4956 -- Handle function returning an unconstrained type
4958 if Comes_From_Source (Body_Id)
4959 and then Ekind (Spec_Id) = E_Function
4960 and then Returns_Unconstrained_Type (Spec_Id)
4962 -- If function builds in place, i.e. returns a limited type,
4963 -- inlining cannot be done.
4965 and then not Is_Limited_Type (Etype (Spec_Id))
4966 then
4967 Check_And_Split_Unconstrained_Function (N, Spec_Id, Body_Id);
4969 else
4970 declare
4971 Subp_Body : constant Node_Id :=
4972 Unit_Declaration_Node (Body_Id);
4973 Subp_Decl : constant List_Id := Declarations (Subp_Body);
4975 begin
4976 -- Do not pass inlining to the backend if the subprogram
4977 -- has declarations or statements which cannot be inlined
4978 -- by the backend. This check is done here to emit an
4979 -- error instead of the generic warning message reported
4980 -- by the GCC backend (ie. "function might not be
4981 -- inlinable").
4983 if Has_Excluded_Declaration (Spec_Id, Subp_Decl) then
4984 null;
4986 elsif Has_Excluded_Statement
4987 (Spec_Id,
4988 Statements
4989 (Handled_Statement_Sequence (Subp_Body)))
4990 then
4991 null;
4993 -- If the backend inlining is available then at this
4994 -- stage we only have to mark the subprogram as inlined.
4995 -- The expander will take care of registering it in the
4996 -- table of subprograms inlined by the backend a part of
4997 -- processing calls to it (cf. Expand_Call)
4999 else
5000 Set_Is_Inlined (Spec_Id);
5001 end if;
5002 end;
5003 end if;
5004 end if;
5005 end if;
5007 -- In GNATprove mode, inline only when there is a separate subprogram
5008 -- declaration for now, as inlining of subprogram bodies acting as
5009 -- declarations, or subprogram stubs, are not supported by front-end
5010 -- inlining. This inlining should occur after analysis of the body, so
5011 -- that it is known whether the value of SPARK_Mode, which can be
5012 -- defined by a pragma inside the body, is applicable to the body.
5013 -- Inlining can be disabled with switch -gnatdm
5015 elsif GNATprove_Mode
5016 and then Full_Analysis
5017 and then not Inside_A_Generic
5018 and then Present (Spec_Id)
5019 and then
5020 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
5021 and then Body_Has_SPARK_Mode_On
5022 and then Can_Be_Inlined_In_GNATprove_Mode (Spec_Id, Body_Id)
5023 and then not Body_Has_Contract
5024 and then not Debug_Flag_M
5025 then
5026 Build_Body_To_Inline (N, Spec_Id);
5027 end if;
5029 -- When generating code, inherited pre/postconditions are handled when
5030 -- expanding the corresponding contract.
5032 -- Ada 2005 (AI-262): In library subprogram bodies, after the analysis
5033 -- of the specification we have to install the private withed units.
5034 -- This holds for child units as well.
5036 if Is_Compilation_Unit (Body_Id)
5037 or else Nkind (Parent (N)) = N_Compilation_Unit
5038 then
5039 Install_Private_With_Clauses (Body_Id);
5040 end if;
5042 Check_Anonymous_Return;
5044 -- Set the Protected_Formal field of each extra formal of the protected
5045 -- subprogram to reference the corresponding extra formal of the
5046 -- subprogram that implements it. For regular formals this occurs when
5047 -- the protected subprogram's declaration is expanded, but the extra
5048 -- formals don't get created until the subprogram is frozen. We need to
5049 -- do this before analyzing the protected subprogram's body so that any
5050 -- references to the original subprogram's extra formals will be changed
5051 -- refer to the implementing subprogram's formals (see Expand_Formal).
5053 if Present (Spec_Id)
5054 and then Is_Protected_Type (Scope (Spec_Id))
5055 and then Present (Protected_Body_Subprogram (Spec_Id))
5056 then
5057 declare
5058 Impl_Subp : constant Entity_Id :=
5059 Protected_Body_Subprogram (Spec_Id);
5060 Prot_Ext_Formal : Entity_Id := Extra_Formals (Spec_Id);
5061 Impl_Ext_Formal : Entity_Id := Extra_Formals (Impl_Subp);
5063 begin
5064 while Present (Prot_Ext_Formal) loop
5065 pragma Assert (Present (Impl_Ext_Formal));
5066 Set_Protected_Formal (Prot_Ext_Formal, Impl_Ext_Formal);
5067 Next_Formal_With_Extras (Prot_Ext_Formal);
5068 Next_Formal_With_Extras (Impl_Ext_Formal);
5069 end loop;
5070 end;
5071 end if;
5073 -- Generate minimum accessibility local objects to correspond with
5074 -- any extra formal added for anonymous access types. This new local
5075 -- object can then be used instead of the formal in case it is used
5076 -- in an actual to a call to a nested subprogram.
5078 -- This method is used to supplement our "small integer model" for
5079 -- accessibility-check generation (for more information see
5080 -- Accessibility_Level).
5082 -- Because we allow accessibility values greater than our expected value
5083 -- passing along the same extra accessibility formal as an actual
5084 -- to a nested subprogram becomes a problem because high values mean
5085 -- different things to the callee even though they are the same to the
5086 -- caller. So, as described in the first section, we create a local
5087 -- object representing the minimum of the accessibility level value that
5088 -- is passed in and the accessibility level of the callee's parameter
5089 -- and locals and use it in the case of a call to a nested subprogram.
5090 -- This generated object is referred to as a "minimum accessibility
5091 -- level."
5093 if Present (Spec_Id) or else Present (Body_Id) then
5094 Body_Nod := Unit_Declaration_Node (Body_Id);
5096 declare
5097 Form : Entity_Id;
5098 begin
5099 -- Grab the appropriate formal depending on whether there exists
5100 -- an actual spec for the subprogram or whether we are dealing
5101 -- with a protected subprogram.
5103 if Present (Spec_Id) then
5104 if Present (Protected_Body_Subprogram (Spec_Id)) then
5105 Form := First_Formal (Protected_Body_Subprogram (Spec_Id));
5106 else
5107 Form := First_Formal (Spec_Id);
5108 end if;
5109 else
5110 Form := First_Formal (Body_Id);
5111 end if;
5113 -- Loop through formals if the subprogram is capable of accepting
5114 -- a generated local object. If it is not then it is also not
5115 -- capable of having local subprograms meaning it would not need
5116 -- a minimum accessibility level object anyway.
5118 if Present (Body_Nod)
5119 and then Has_Declarations (Body_Nod)
5120 and then Nkind (Body_Nod) /= N_Package_Specification
5121 then
5122 while Present (Form) loop
5124 if Present (Extra_Accessibility (Form))
5125 and then No (Minimum_Accessibility (Form))
5126 then
5127 -- Generate the minimum accessibility level object
5129 -- A60b : constant natural := natural'min(1, paramL);
5131 Generate_Minimum_Accessibility
5132 (Extra_Accessibility (Form), Form);
5133 end if;
5135 Next_Formal (Form);
5136 end loop;
5138 -- Generate the minimum accessibility level object for the
5139 -- function's Extra_Accessibility_Of_Result.
5141 -- A31b : constant natural := natural'min (2, funcL);
5143 if Ekind (Body_Id) = E_Function
5144 and then Present (Extra_Accessibility_Of_Result (Body_Id))
5145 then
5146 Generate_Minimum_Accessibility
5147 (Extra_Accessibility_Of_Result (Body_Id));
5149 -- Replace the Extra_Accessibility_Of_Result with the new
5150 -- minimum accessibility object.
5152 Set_Extra_Accessibility_Of_Result
5153 (Body_Id, Minimum_Accessibility
5154 (Extra_Accessibility_Of_Result (Body_Id)));
5155 end if;
5156 end if;
5157 end;
5158 end if;
5160 -- Now we can go on to analyze the body
5162 HSS := Handled_Statement_Sequence (N);
5163 Set_Actual_Subtypes (N, Current_Scope);
5165 -- Add a declaration for the Protection object, renaming declarations
5166 -- for discriminals and privals and finally a declaration for the entry
5167 -- family index (if applicable). This form of early expansion is done
5168 -- when the Expander is active because Install_Private_Data_Declarations
5169 -- references entities which were created during regular expansion. The
5170 -- subprogram entity must come from source, and not be an internally
5171 -- generated subprogram.
5173 if Expander_Active
5174 and then Present (Prot_Typ)
5175 and then Present (Spec_Id)
5176 and then Comes_From_Source (Spec_Id)
5177 and then not Is_Eliminated (Spec_Id)
5178 then
5179 Install_Private_Data_Declarations
5180 (Sloc (N), Spec_Id, Prot_Typ, N, Declarations (N));
5181 end if;
5183 -- Ada 2012 (AI05-0151): Incomplete types coming from a limited context
5184 -- may now appear in parameter and result profiles. Since the analysis
5185 -- of a subprogram body may use the parameter and result profile of the
5186 -- spec, swap any limited views with their non-limited counterpart.
5188 if Ada_Version >= Ada_2012 and then Present (Spec_Id) then
5189 Exch_Views := Exchange_Limited_Views (Spec_Id);
5190 end if;
5192 -- If the return type is an anonymous access type whose designated type
5193 -- is the limited view of a class-wide type and the non-limited view is
5194 -- available, update the return type accordingly.
5196 if Ada_Version >= Ada_2005
5197 and then Present (Spec_Id)
5198 and then Ekind (Etype (Spec_Id)) = E_Anonymous_Access_Type
5199 then
5200 declare
5201 Etyp : Entity_Id;
5203 begin
5204 Etyp := Directly_Designated_Type (Etype (Spec_Id));
5206 if Is_Class_Wide_Type (Etyp)
5207 and then From_Limited_With (Etyp)
5208 and then Has_Non_Limited_View (Etyp)
5209 then
5210 Desig_View := Etyp;
5211 Etyp := Non_Limited_View (Etyp);
5213 -- If the class-wide type has been created by the completion of
5214 -- an incomplete tagged type declaration, get the class-wide
5215 -- type of the incomplete tagged type to match Find_Type_Name.
5217 if Nkind (Parent (Etyp)) = N_Full_Type_Declaration
5218 and then Present (Incomplete_View (Parent (Etyp)))
5219 then
5220 Etyp := Class_Wide_Type (Incomplete_View (Parent (Etyp)));
5221 end if;
5223 Set_Directly_Designated_Type (Etype (Spec_Id), Etyp);
5224 end if;
5225 end;
5226 end if;
5228 -- Analyze any aspect specifications that appear on the subprogram body
5230 if Has_Aspects (N) then
5231 Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
5232 end if;
5234 Analyze_Declarations (Declarations (N));
5236 -- Verify that the SPARK_Mode of the body agrees with that of its spec
5238 if Present (Spec_Id) and then Present (SPARK_Pragma (Body_Id)) then
5239 if Present (SPARK_Pragma (Spec_Id)) then
5240 if Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Spec_Id)) = Off
5241 and then
5242 Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = On
5243 then
5244 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
5245 Error_Msg_N ("incorrect application of SPARK_Mode#", N);
5246 Error_Msg_Sloc := Sloc (SPARK_Pragma (Spec_Id));
5247 Error_Msg_NE
5248 ("\value Off was set for SPARK_Mode on & #", N, Spec_Id);
5249 end if;
5251 elsif Nkind (Parent (Parent (Spec_Id))) = N_Subprogram_Body_Stub then
5252 null;
5254 -- SPARK_Mode Off could complete no SPARK_Mode in a generic, either
5255 -- as specified in source code, or because SPARK_Mode On is ignored
5256 -- in an instance where the context is SPARK_Mode Off/Auto.
5258 elsif Get_SPARK_Mode_From_Annotation (SPARK_Pragma (Body_Id)) = Off
5259 and then (Is_Generic_Unit (Spec_Id) or else In_Instance)
5260 then
5261 null;
5263 else
5264 Error_Msg_Sloc := Sloc (SPARK_Pragma (Body_Id));
5265 Error_Msg_N ("incorrect application of SPARK_Mode #", N);
5266 Error_Msg_Sloc := Sloc (Spec_Id);
5267 Error_Msg_NE
5268 ("\no value was set for SPARK_Mode on & #", N, Spec_Id);
5269 end if;
5270 end if;
5272 -- A subprogram body freezes its own contract. Analyze the contract
5273 -- after the declarations of the body have been processed as pragmas
5274 -- are now chained on the contract of the subprogram body.
5276 Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
5278 -- Check completion, and analyze the statements
5280 Check_Completion;
5281 Inspect_Deferred_Constant_Completion (Declarations (N));
5282 Analyze (HSS);
5284 -- Add the generated minimum accessibility objects to the subprogram
5285 -- body's list of declarations after analysis of the statements and
5286 -- contracts.
5288 while Is_Non_Empty_List (Minimum_Acc_Objs) loop
5289 if Present (Declarations (Body_Nod)) then
5290 Prepend (Remove_Head (Minimum_Acc_Objs), Declarations (Body_Nod));
5291 else
5292 Set_Declarations
5293 (Body_Nod, New_List (Remove_Head (Minimum_Acc_Objs)));
5294 end if;
5295 end loop;
5297 -- Deal with end of scope processing for the body
5299 Process_End_Label (HSS, 't', Current_Scope);
5300 Update_Use_Clause_Chain;
5301 End_Scope;
5303 -- If we are compiling an entry wrapper, remove the enclosing
5304 -- synchronized object from the stack.
5306 if Is_Entry_Wrapper (Body_Id) then
5307 End_Scope;
5308 end if;
5310 Check_Subprogram_Order (N);
5311 Set_Analyzed (Body_Id);
5313 -- If we have a separate spec, then the analysis of the declarations
5314 -- caused the entities in the body to be chained to the spec id, but
5315 -- we want them chained to the body id. Only the formal parameters
5316 -- end up chained to the spec id in this case.
5318 if Present (Spec_Id) then
5320 -- We must conform to the categorization of our spec
5322 Validate_Categorization_Dependency (N, Spec_Id);
5324 -- And if this is a child unit, the parent units must conform
5326 if Is_Child_Unit (Spec_Id) then
5327 Validate_Categorization_Dependency
5328 (Unit_Declaration_Node (Spec_Id), Spec_Id);
5329 end if;
5331 -- Here is where we move entities from the spec to the body
5333 -- Case where there are entities that stay with the spec
5335 if Present (Last_Real_Spec_Entity) then
5337 -- No body entities (happens when the only real spec entities come
5338 -- from precondition and postcondition pragmas).
5340 if No (Last_Entity (Body_Id)) then
5341 Set_First_Entity (Body_Id, Next_Entity (Last_Real_Spec_Entity));
5343 -- Body entities present (formals), so chain stuff past them
5345 else
5346 Link_Entities
5347 (Last_Entity (Body_Id), Next_Entity (Last_Real_Spec_Entity));
5348 end if;
5350 Set_Next_Entity (Last_Real_Spec_Entity, Empty);
5351 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
5352 Set_Last_Entity (Spec_Id, Last_Real_Spec_Entity);
5354 -- Case where there are no spec entities, in this case there can be
5355 -- no body entities either, so just move everything.
5357 -- If the body is generated for an expression function, it may have
5358 -- been preanalyzed already, if 'access was applied to it.
5360 else
5361 if Nkind (Original_Node (Unit_Declaration_Node (Spec_Id))) /=
5362 N_Expression_Function
5363 then
5364 pragma Assert (No (Last_Entity (Body_Id)));
5365 null;
5366 end if;
5368 Set_First_Entity (Body_Id, First_Entity (Spec_Id));
5369 Set_Last_Entity (Body_Id, Last_Entity (Spec_Id));
5370 Set_First_Entity (Spec_Id, Empty);
5371 Set_Last_Entity (Spec_Id, Empty);
5372 end if;
5374 -- Otherwise the body does not complete a previous declaration. Check
5375 -- the categorization of the body against the units it withs.
5377 else
5378 Validate_Categorization_Dependency (N, Body_Id);
5379 end if;
5381 Check_Missing_Return;
5383 -- Now we are going to check for variables that are never modified in
5384 -- the body of the procedure. But first we deal with a special case
5385 -- where we want to modify this check. If the body of the subprogram
5386 -- starts with a raise statement or its equivalent, or if the body
5387 -- consists entirely of a null statement, then it is pretty obvious that
5388 -- it is OK to not reference the parameters. For example, this might be
5389 -- the following common idiom for a stubbed function: statement of the
5390 -- procedure raises an exception. In particular this deals with the
5391 -- common idiom of a stubbed function, which appears something like:
5393 -- function F (A : Integer) return Some_Type;
5394 -- X : Some_Type;
5395 -- begin
5396 -- raise Program_Error;
5397 -- return X;
5398 -- end F;
5400 -- Here the purpose of X is simply to satisfy the annoying requirement
5401 -- in Ada that there be at least one return, and we certainly do not
5402 -- want to go posting warnings on X that it is not initialized. On
5403 -- the other hand, if X is entirely unreferenced that should still
5404 -- get a warning.
5406 -- What we do is to detect these cases, and if we find them, flag the
5407 -- subprogram as being Is_Trivial_Subprogram and then use that flag to
5408 -- suppress unwanted warnings. For the case of the function stub above
5409 -- we have a special test to set X as apparently assigned to suppress
5410 -- the warning.
5412 declare
5413 Stm : Node_Id := First (Statements (HSS));
5414 begin
5415 -- Skip call markers installed by the ABE mechanism, labels, and
5416 -- Push_xxx_Error_Label to find the first real statement.
5418 while Nkind (Stm) in N_Call_Marker | N_Label | N_Push_xxx_Label loop
5419 Next (Stm);
5420 end loop;
5422 -- Do the test on the original statement before expansion
5424 declare
5425 Ostm : constant Node_Id := Original_Node (Stm);
5427 begin
5428 -- If explicit raise statement, turn on flag
5430 if Nkind (Ostm) = N_Raise_Statement then
5431 Set_Trivial_Subprogram (Stm);
5433 -- If null statement, and no following statements, turn on flag
5435 elsif Nkind (Stm) = N_Null_Statement
5436 and then Comes_From_Source (Stm)
5437 and then No (Next (Stm))
5438 then
5439 Set_Trivial_Subprogram (Stm);
5441 -- Check for explicit call cases which likely raise an exception
5443 elsif Nkind (Ostm) = N_Procedure_Call_Statement then
5444 if Is_Entity_Name (Name (Ostm)) then
5445 declare
5446 Ent : constant Entity_Id := Entity (Name (Ostm));
5448 begin
5449 -- If the procedure is marked No_Return, then likely it
5450 -- raises an exception, but in any case it is not coming
5451 -- back here, so turn on the flag.
5453 if Present (Ent)
5454 and then Ekind (Ent) = E_Procedure
5455 and then No_Return (Ent)
5456 then
5457 Set_Trivial_Subprogram (Stm);
5458 end if;
5459 end;
5460 end if;
5461 end if;
5462 end;
5463 end;
5465 -- Check if a Body_To_Inline was created, but the subprogram has
5466 -- references to object renamings which will be replaced by the special
5467 -- SPARK expansion into nodes of a different kind, which is not expected
5468 -- by the inlining mechanism. In that case, the Body_To_Inline is
5469 -- deleted prior to being analyzed. This check needs to take place
5470 -- after analysis of the subprogram body.
5472 if GNATprove_Mode
5473 and then Present (Spec_Id)
5474 and then
5475 Nkind (Unit_Declaration_Node (Spec_Id)) = N_Subprogram_Declaration
5476 and then Present (Body_To_Inline (Unit_Declaration_Node (Spec_Id)))
5477 then
5478 Check_Object_Renaming_In_GNATprove_Mode (Spec_Id);
5479 end if;
5481 -- Check for variables that are never modified
5483 declare
5484 F1 : Entity_Id;
5485 F2 : Entity_Id;
5487 begin
5488 -- If there is a separate spec, then transfer Never_Set_In_Source
5489 -- flags from out parameters to the corresponding entities in the
5490 -- body. The reason we do that is we want to post error flags on
5491 -- the body entities, not the spec entities.
5493 if Present (Spec_Id) then
5494 F1 := First_Formal (Spec_Id);
5495 while Present (F1) loop
5496 if Ekind (F1) = E_Out_Parameter then
5497 F2 := First_Formal (Body_Id);
5498 while Present (F2) loop
5499 exit when Chars (F1) = Chars (F2);
5500 Next_Formal (F2);
5501 end loop;
5503 if Present (F2) then
5504 Set_Never_Set_In_Source (F2, Never_Set_In_Source (F1));
5505 end if;
5506 end if;
5508 Next_Formal (F1);
5509 end loop;
5510 end if;
5512 -- Check references of the subprogram spec when we are dealing with
5513 -- an expression function due to it having a generated body.
5514 -- Otherwise, we simply check the formals of the subprogram body.
5516 if Present (Spec_Id)
5517 and then Is_Expression_Function (Spec_Id)
5518 then
5519 Check_References (Spec_Id);
5520 else
5521 Check_References (Body_Id);
5522 end if;
5523 end;
5525 -- Check for nested subprogram, and mark outer level subprogram if so
5527 declare
5528 Ent : Entity_Id;
5530 begin
5531 if Present (Spec_Id) then
5532 Ent := Spec_Id;
5533 else
5534 Ent := Body_Id;
5535 end if;
5537 loop
5538 Ent := Enclosing_Subprogram (Ent);
5539 exit when No (Ent) or else Is_Subprogram (Ent);
5540 end loop;
5542 if Present (Ent) then
5543 Set_Has_Nested_Subprogram (Ent);
5544 end if;
5545 end;
5547 -- Restore the limited views in the spec, if any, to let the back end
5548 -- process it without running into circularities.
5550 if Present (Exch_Views) then
5551 Restore_Limited_Views (Exch_Views);
5552 end if;
5554 if Present (Mask_Types) then
5555 Unmask_Unfrozen_Types (Mask_Types);
5556 end if;
5558 if Present (Desig_View) then
5559 Set_Directly_Designated_Type (Etype (Spec_Id), Desig_View);
5560 end if;
5562 <<Leave>>
5563 if Present (Ignored_Ghost_Region) then
5564 Expander_Active := Saved_EA;
5565 end if;
5567 Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
5568 Restore_Ghost_Region (Saved_GM, Saved_IGR);
5569 end Analyze_Subprogram_Body_Helper;
5571 ------------------------------------
5572 -- Analyze_Subprogram_Declaration --
5573 ------------------------------------
5575 procedure Analyze_Subprogram_Declaration (N : Node_Id) is
5576 Scop : constant Entity_Id := Current_Scope;
5577 Designator : Entity_Id;
5579 Is_Completion : Boolean;
5580 -- Indicates whether a null procedure declaration is a completion
5582 begin
5583 -- Null procedures are not allowed in SPARK
5585 if Nkind (Specification (N)) = N_Procedure_Specification
5586 and then Null_Present (Specification (N))
5587 then
5588 -- Null procedures are allowed in protected types, following the
5589 -- recent AI12-0147.
5591 if Is_Protected_Type (Current_Scope)
5592 and then Ada_Version < Ada_2012
5593 then
5594 Error_Msg_N ("protected operation cannot be a null procedure", N);
5595 end if;
5597 Analyze_Null_Procedure (N, Is_Completion);
5599 -- The null procedure acts as a body, nothing further is needed
5601 if Is_Completion then
5602 return;
5603 end if;
5604 end if;
5606 Designator := Analyze_Subprogram_Specification (Specification (N));
5608 -- A reference may already have been generated for the unit name, in
5609 -- which case the following call is redundant. However it is needed for
5610 -- declarations that are the rewriting of an expression function.
5612 Generate_Definition (Designator);
5614 -- Set the SPARK mode from the current context (may be overwritten later
5615 -- with explicit pragma). This is not done for entry barrier functions
5616 -- because they are generated outside the protected type and should not
5617 -- carry the mode of the enclosing context.
5619 if Nkind (N) = N_Subprogram_Declaration
5620 and then Is_Entry_Barrier_Function (N)
5621 then
5622 null;
5624 else
5625 Set_SPARK_Pragma (Designator, SPARK_Mode_Pragma);
5626 Set_SPARK_Pragma_Inherited (Designator);
5627 end if;
5629 -- Save the state of flag Ignore_SPARK_Mode_Pragmas_In_Instance in case
5630 -- the body of this subprogram is instantiated or inlined later and out
5631 -- of context. The body uses this attribute to restore the value of the
5632 -- global flag.
5634 if Ignore_SPARK_Mode_Pragmas_In_Instance then
5635 Set_Ignore_SPARK_Mode_Pragmas (Designator);
5636 end if;
5638 -- Preserve relevant elaboration-related attributes of the context which
5639 -- are no longer available or very expensive to recompute once analysis,
5640 -- resolution, and expansion are over.
5642 Mark_Elaboration_Attributes
5643 (N_Id => Designator,
5644 Checks => True,
5645 Warnings => True);
5647 if Debug_Flag_C then
5648 Write_Str ("==> subprogram spec ");
5649 Write_Name (Chars (Designator));
5650 Write_Str (" from ");
5651 Write_Location (Sloc (N));
5652 Write_Eol;
5653 Indent;
5654 end if;
5656 Validate_RCI_Subprogram_Declaration (N);
5657 New_Overloaded_Entity (Designator);
5658 Check_Delayed_Subprogram (Designator);
5660 -- If the type of the first formal of the current subprogram is a non-
5661 -- generic tagged private type, mark the subprogram as being a private
5662 -- primitive. Ditto if this is a function with controlling result, and
5663 -- the return type is currently private. In both cases, the type of the
5664 -- controlling argument or result must be in the current scope for the
5665 -- operation to be primitive.
5667 if Has_Controlling_Result (Designator)
5668 and then Is_Private_Type (Etype (Designator))
5669 and then Scope (Etype (Designator)) = Current_Scope
5670 and then not Is_Generic_Actual_Type (Etype (Designator))
5671 then
5672 Set_Is_Private_Primitive (Designator);
5674 elsif Present (First_Formal (Designator)) then
5675 declare
5676 Formal_Typ : constant Entity_Id :=
5677 Etype (First_Formal (Designator));
5678 begin
5679 Set_Is_Private_Primitive (Designator,
5680 Is_Tagged_Type (Formal_Typ)
5681 and then Scope (Formal_Typ) = Current_Scope
5682 and then Is_Private_Type (Formal_Typ)
5683 and then not Is_Generic_Actual_Type (Formal_Typ));
5684 end;
5685 end if;
5687 -- Ada 2005 (AI-251): Abstract interface primitives must be abstract
5688 -- or null.
5690 if Ada_Version >= Ada_2005
5691 and then Comes_From_Source (N)
5692 and then Is_Dispatching_Operation (Designator)
5693 then
5694 declare
5695 E : Entity_Id;
5696 Etyp : Entity_Id;
5698 begin
5699 if Has_Controlling_Result (Designator) then
5700 Etyp := Etype (Designator);
5702 else
5703 E := First_Entity (Designator);
5704 while Present (E)
5705 and then Is_Formal (E)
5706 and then not Is_Controlling_Formal (E)
5707 loop
5708 Next_Entity (E);
5709 end loop;
5711 Etyp := Etype (E);
5712 end if;
5714 if Is_Access_Type (Etyp) then
5715 Etyp := Directly_Designated_Type (Etyp);
5716 end if;
5718 if Is_Interface (Etyp)
5719 and then not Is_Abstract_Subprogram (Designator)
5720 and then not (Ekind (Designator) = E_Procedure
5721 and then Null_Present (Specification (N)))
5722 then
5723 Error_Msg_Name_1 := Chars (Defining_Entity (N));
5725 -- Specialize error message based on procedures vs. functions,
5726 -- since functions can't be null subprograms.
5728 if Ekind (Designator) = E_Procedure then
5729 Error_Msg_N
5730 ("interface procedure % must be abstract or null", N);
5731 else
5732 Error_Msg_N
5733 ("interface function % must be abstract", N);
5734 end if;
5735 end if;
5736 end;
5737 end if;
5739 -- For a compilation unit, set body required. This flag will only be
5740 -- reset if a valid Import or Interface pragma is processed later on.
5742 if Nkind (Parent (N)) = N_Compilation_Unit then
5743 Set_Body_Required (Parent (N), True);
5745 if Ada_Version >= Ada_2005
5746 and then Nkind (Specification (N)) = N_Procedure_Specification
5747 and then Null_Present (Specification (N))
5748 then
5749 Error_Msg_N
5750 ("null procedure cannot be declared at library level", N);
5751 end if;
5752 end if;
5754 Generate_Reference_To_Formals (Designator);
5755 Check_Eliminated (Designator);
5757 if Debug_Flag_C then
5758 Outdent;
5759 Write_Str ("<== subprogram spec ");
5760 Write_Name (Chars (Designator));
5761 Write_Str (" from ");
5762 Write_Location (Sloc (N));
5763 Write_Eol;
5764 end if;
5766 -- Indicate that this is a protected operation, because it may be used
5767 -- in subsequent declarations within the protected type.
5769 if Is_Protected_Type (Current_Scope) then
5770 Set_Convention (Designator, Convention_Protected);
5771 end if;
5773 List_Inherited_Pre_Post_Aspects (Designator);
5775 -- Process the aspects before establishing the proper categorization in
5776 -- case the subprogram is a compilation unit and one of its aspects is
5777 -- converted into a categorization pragma.
5779 if Has_Aspects (N) then
5780 Analyze_Aspect_Specifications (N, Designator);
5781 end if;
5783 if Scop /= Standard_Standard and then not Is_Child_Unit (Designator) then
5784 Set_Categorization_From_Scope (Designator, Scop);
5786 -- Otherwise the unit is a compilation unit and/or a child unit. Set the
5787 -- proper categorization of the unit based on its pragmas.
5789 else
5790 Push_Scope (Designator);
5791 Set_Categorization_From_Pragmas (N);
5792 Validate_Categorization_Dependency (N, Designator);
5793 Pop_Scope;
5794 end if;
5795 end Analyze_Subprogram_Declaration;
5797 --------------------------------------
5798 -- Analyze_Subprogram_Specification --
5799 --------------------------------------
5801 -- Reminder: N here really is a subprogram specification (not a subprogram
5802 -- declaration). This procedure is called to analyze the specification in
5803 -- both subprogram bodies and subprogram declarations (specs).
5805 function Analyze_Subprogram_Specification (N : Node_Id) return Entity_Id is
5806 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean;
5807 -- Determine whether entity E denotes the spec or body of an invariant
5808 -- procedure.
5810 ------------------------------------
5811 -- Is_Invariant_Procedure_Or_Body --
5812 ------------------------------------
5814 function Is_Invariant_Procedure_Or_Body (E : Entity_Id) return Boolean is
5815 Decl : constant Node_Id := Unit_Declaration_Node (E);
5816 Spec : Entity_Id;
5818 begin
5819 if Nkind (Decl) = N_Subprogram_Body then
5820 Spec := Corresponding_Spec (Decl);
5821 else
5822 Spec := E;
5823 end if;
5825 return
5826 Present (Spec)
5827 and then Ekind (Spec) = E_Procedure
5828 and then (Is_Partial_Invariant_Procedure (Spec)
5829 or else Is_Invariant_Procedure (Spec));
5830 end Is_Invariant_Procedure_Or_Body;
5832 -- Local variables
5834 Designator : constant Entity_Id := Defining_Entity (N);
5835 Formals : constant List_Id := Parameter_Specifications (N);
5837 -- Start of processing for Analyze_Subprogram_Specification
5839 begin
5840 -- Proceed with analysis. Do not emit a cross-reference entry if the
5841 -- specification comes from an expression function, because it may be
5842 -- the completion of a previous declaration. If it is not, the cross-
5843 -- reference entry will be emitted for the new subprogram declaration.
5845 if Nkind (Parent (N)) /= N_Expression_Function then
5846 Generate_Definition (Designator);
5847 end if;
5849 if Nkind (N) = N_Function_Specification then
5850 Mutate_Ekind (Designator, E_Function);
5851 Set_Mechanism (Designator, Default_Mechanism);
5852 else
5853 Mutate_Ekind (Designator, E_Procedure);
5854 Set_Etype (Designator, Standard_Void_Type);
5855 end if;
5857 -- Flag Is_Inlined_Always is True by default, and reversed to False for
5858 -- those subprograms which could be inlined in GNATprove mode (because
5859 -- Body_To_Inline is non-Empty) but should not be inlined.
5861 if GNATprove_Mode then
5862 Set_Is_Inlined_Always (Designator);
5863 end if;
5865 -- Introduce new scope for analysis of the formals and the return type
5867 Set_Scope (Designator, Current_Scope);
5869 if Present (Formals) then
5870 Push_Scope (Designator);
5871 Process_Formals (Formals, N);
5873 -- Check dimensions in N for formals with default expression
5875 Analyze_Dimension_Formals (N, Formals);
5877 -- Ada 2005 (AI-345): If this is an overriding operation of an
5878 -- inherited interface operation, and the controlling type is
5879 -- a synchronized type, replace the type with its corresponding
5880 -- record, to match the proper signature of an overriding operation.
5881 -- Same processing for an access parameter whose designated type is
5882 -- derived from a synchronized interface.
5884 -- This modification is not done for invariant procedures because
5885 -- the corresponding record may not necessarely be visible when the
5886 -- concurrent type acts as the full view of a private type.
5888 -- package Pack is
5889 -- type Prot is private with Type_Invariant => ...;
5890 -- procedure ConcInvariant (Obj : Prot);
5891 -- private
5892 -- protected type Prot is ...;
5893 -- type Concurrent_Record_Prot is record ...;
5894 -- procedure ConcInvariant (Obj : Prot) is
5895 -- ...
5896 -- end ConcInvariant;
5897 -- end Pack;
5899 -- In the example above, both the spec and body of the invariant
5900 -- procedure must utilize the private type as the controlling type.
5902 if Ada_Version >= Ada_2005
5903 and then not Is_Invariant_Procedure_Or_Body (Designator)
5904 then
5905 declare
5906 Formal : Entity_Id;
5907 Formal_Typ : Entity_Id;
5908 Rec_Typ : Entity_Id;
5909 Desig_Typ : Entity_Id;
5911 begin
5912 Formal := First_Formal (Designator);
5913 while Present (Formal) loop
5914 Formal_Typ := Etype (Formal);
5916 if Is_Concurrent_Type (Formal_Typ)
5917 and then Present (Corresponding_Record_Type (Formal_Typ))
5918 then
5919 Rec_Typ := Corresponding_Record_Type (Formal_Typ);
5921 if Present (Interfaces (Rec_Typ)) then
5922 Set_Etype (Formal, Rec_Typ);
5923 end if;
5925 elsif Ekind (Formal_Typ) = E_Anonymous_Access_Type then
5926 Desig_Typ := Designated_Type (Formal_Typ);
5928 if Is_Concurrent_Type (Desig_Typ)
5929 and then Present (Corresponding_Record_Type (Desig_Typ))
5930 then
5931 Rec_Typ := Corresponding_Record_Type (Desig_Typ);
5933 if Present (Interfaces (Rec_Typ)) then
5934 Set_Directly_Designated_Type (Formal_Typ, Rec_Typ);
5935 end if;
5936 end if;
5937 end if;
5939 Next_Formal (Formal);
5940 end loop;
5941 end;
5942 end if;
5944 End_Scope;
5946 -- The subprogram scope is pushed and popped around the processing of
5947 -- the return type for consistency with call above to Process_Formals
5948 -- (which itself can call Analyze_Return_Type), and to ensure that any
5949 -- itype created for the return type will be associated with the proper
5950 -- scope.
5952 elsif Nkind (N) = N_Function_Specification then
5953 Push_Scope (Designator);
5954 Analyze_Return_Type (N);
5955 End_Scope;
5956 end if;
5958 -- Function case
5960 if Nkind (N) = N_Function_Specification then
5962 -- Deal with operator symbol case
5964 if Nkind (Designator) = N_Defining_Operator_Symbol then
5965 Valid_Operator_Definition (Designator);
5966 end if;
5968 May_Need_Actuals (Designator);
5970 -- Ada 2005 (AI-251): If the return type is abstract, verify that
5971 -- the subprogram is abstract also. This does not apply to renaming
5972 -- declarations, where abstractness is inherited, and to subprogram
5973 -- bodies generated for stream operations, which become renamings as
5974 -- bodies. We also skip the check for thunks.
5976 -- In case of primitives associated with abstract interface types
5977 -- the check is applied later (see Analyze_Subprogram_Declaration).
5979 if Nkind (Original_Node (Parent (N))) not in
5980 N_Abstract_Subprogram_Declaration |
5981 N_Formal_Abstract_Subprogram_Declaration |
5982 N_Subprogram_Renaming_Declaration
5983 and then not Is_Thunk (Designator)
5984 then
5985 if Is_Abstract_Type (Etype (Designator)) then
5986 Error_Msg_N
5987 ("function that returns abstract type must be abstract", N);
5989 -- Ada 2012 (AI-0073): Extend this test to subprograms with an
5990 -- access result whose designated type is abstract.
5992 elsif Ada_Version >= Ada_2012
5993 and then Nkind (Result_Definition (N)) = N_Access_Definition
5994 and then
5995 not Is_Class_Wide_Type (Designated_Type (Etype (Designator)))
5996 and then Is_Abstract_Type (Designated_Type (Etype (Designator)))
5997 then
5998 Error_Msg_N
5999 ("function whose access result designates abstract type "
6000 & "must be abstract", N);
6001 end if;
6002 end if;
6003 end if;
6005 return Designator;
6006 end Analyze_Subprogram_Specification;
6008 -----------------------
6009 -- Check_Conformance --
6010 -----------------------
6012 procedure Check_Conformance
6013 (New_Id : Entity_Id;
6014 Old_Id : Entity_Id;
6015 Ctype : Conformance_Type;
6016 Errmsg : Boolean;
6017 Conforms : out Boolean;
6018 Err_Loc : Node_Id := Empty;
6019 Get_Inst : Boolean := False;
6020 Skip_Controlling_Formals : Boolean := False)
6022 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id);
6023 -- Sets Conforms to False. If Errmsg is False, then that's all it does.
6024 -- If Errmsg is True, then processing continues to post an error message
6025 -- for conformance error on given node. Two messages are output. The
6026 -- first message points to the previous declaration with a general "no
6027 -- conformance" message. The second is the detailed reason, supplied as
6028 -- Msg. The parameter N provide information for a possible & insertion
6029 -- in the message, and also provides the location for posting the
6030 -- message in the absence of a specified Err_Loc location.
6032 function Conventions_Match (Id1, Id2 : Entity_Id) return Boolean;
6033 -- True if the conventions of entities Id1 and Id2 match.
6035 function Null_Exclusions_Match (F1, F2 : Entity_Id) return Boolean;
6036 -- True if the null exclusions of two formals of anonymous access type
6037 -- match.
6039 function Subprogram_Subtypes_Have_Same_Declaration
6040 (Subp : Entity_Id;
6041 Decl_Subtype : Entity_Id;
6042 Body_Subtype : Entity_Id) return Boolean;
6043 -- Checks whether corresponding subtypes named within a subprogram
6044 -- declaration and body originate from the same declaration, and returns
6045 -- True when they do. In the case of anonymous access-to-object types,
6046 -- checks the designated types. Also returns True when GNAT_Mode is
6047 -- enabled, or when the subprogram is marked Is_Internal or occurs
6048 -- within a generic instantiation or internal unit (GNAT library unit).
6050 -----------------------
6051 -- Conformance_Error --
6052 -----------------------
6054 procedure Conformance_Error (Msg : String; N : Node_Id := New_Id) is
6055 Enode : Node_Id;
6057 begin
6058 Conforms := False;
6060 if Errmsg then
6061 if No (Err_Loc) then
6062 Enode := N;
6063 else
6064 Enode := Err_Loc;
6065 end if;
6067 Error_Msg_Sloc := Sloc (Old_Id);
6069 case Ctype is
6070 when Type_Conformant =>
6071 Error_Msg_N -- CODEFIX
6072 ("not type conformant with declaration#!", Enode);
6074 when Mode_Conformant =>
6075 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
6076 Error_Msg_N
6077 ("not mode conformant with operation inherited#!",
6078 Enode);
6079 else
6080 Error_Msg_N
6081 ("not mode conformant with declaration#!", Enode);
6082 end if;
6084 when Subtype_Conformant =>
6085 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
6086 Error_Msg_N
6087 ("not subtype conformant with operation inherited#!",
6088 Enode);
6089 else
6090 Error_Msg_N
6091 ("not subtype conformant with declaration#!", Enode);
6092 end if;
6094 when Fully_Conformant =>
6095 if Nkind (Parent (Old_Id)) = N_Full_Type_Declaration then
6096 Error_Msg_N -- CODEFIX
6097 ("not fully conformant with operation inherited#!",
6098 Enode);
6099 else
6100 Error_Msg_N -- CODEFIX
6101 ("not fully conformant with declaration#!", Enode);
6102 end if;
6103 end case;
6105 Error_Msg_NE (Msg, Enode, N);
6106 end if;
6107 end Conformance_Error;
6109 -----------------------
6110 -- Conventions_Match --
6111 -----------------------
6113 function Conventions_Match
6114 (Id1 : Entity_Id;
6115 Id2 : Entity_Id) return Boolean
6117 begin
6118 -- Ignore the conventions of anonymous access-to-subprogram types
6119 -- and subprogram types because these are internally generated and
6120 -- the only way these may receive a convention is if they inherit
6121 -- the convention of a related subprogram.
6123 if Ekind (Id1) in E_Anonymous_Access_Subprogram_Type
6124 | E_Subprogram_Type
6125 or else
6126 Ekind (Id2) in E_Anonymous_Access_Subprogram_Type
6127 | E_Subprogram_Type
6128 then
6129 return True;
6131 -- Otherwise compare the conventions directly
6133 else
6134 return Convention (Id1) = Convention (Id2);
6135 end if;
6136 end Conventions_Match;
6138 ---------------------------
6139 -- Null_Exclusions_Match --
6140 ---------------------------
6142 function Null_Exclusions_Match (F1, F2 : Entity_Id) return Boolean is
6143 begin
6144 if not Is_Anonymous_Access_Type (Etype (F1))
6145 or else not Is_Anonymous_Access_Type (Etype (F2))
6146 then
6147 return True;
6148 end if;
6150 -- AI12-0289-1: Case of controlling access parameter; False if the
6151 -- partial view is untagged, the full view is tagged, and no explicit
6152 -- "not null". Note that at this point, we're processing the package
6153 -- body, so private/full types have been swapped. The Sloc test below
6154 -- is to detect the (legal) case where F1 comes after the full type
6155 -- declaration. This part is disabled pre-2005, because "not null" is
6156 -- not allowed on those language versions.
6158 if Ada_Version >= Ada_2005
6159 and then Is_Controlling_Formal (F1)
6160 and then not Null_Exclusion_Present (Parent (F1))
6161 and then not Null_Exclusion_Present (Parent (F2))
6162 then
6163 declare
6164 D : constant Entity_Id := Directly_Designated_Type (Etype (F1));
6165 Partial_View_Of_Desig : constant Entity_Id :=
6166 Incomplete_Or_Partial_View (D);
6167 begin
6168 return No (Partial_View_Of_Desig)
6169 or else Is_Tagged_Type (Partial_View_Of_Desig)
6170 or else Sloc (D) < Sloc (F1);
6171 end;
6173 -- Not a controlling parameter, or one or both views have an explicit
6174 -- "not null".
6176 else
6177 return Null_Exclusion_Present (Parent (F1)) =
6178 Null_Exclusion_Present (Parent (F2));
6179 end if;
6180 end Null_Exclusions_Match;
6182 function Subprogram_Subtypes_Have_Same_Declaration
6183 (Subp : Entity_Id;
6184 Decl_Subtype : Entity_Id;
6185 Body_Subtype : Entity_Id) return Boolean
6188 function Nonlimited_View_Of_Subtype
6189 (Subt : Entity_Id) return Entity_Id;
6190 -- Returns the nonlimited view of a type or subtype that is an
6191 -- incomplete or class-wide type that comes from a limited view of
6192 -- a package (From_Limited_With is True for the entity), or the
6193 -- full view when the subtype is an incomplete type. Otherwise
6194 -- returns the entity passed in.
6196 function Nonlimited_View_Of_Subtype
6197 (Subt : Entity_Id) return Entity_Id
6199 Subt_Temp : Entity_Id := Subt;
6200 begin
6201 if Ekind (Subt) in Incomplete_Kind | E_Class_Wide_Type
6202 and then From_Limited_With (Subt)
6203 then
6204 Subt_Temp := Non_Limited_View (Subt);
6205 end if;
6207 -- If the subtype is incomplete, return full view if present
6208 -- (and accounts for the case where a type from a limited view
6209 -- is itself an incomplete type).
6211 if Ekind (Subt_Temp) in Incomplete_Kind
6212 and then Present (Full_View (Subt_Temp))
6213 then
6214 Subt_Temp := Full_View (Subt_Temp);
6215 end if;
6217 return Subt_Temp;
6218 end Nonlimited_View_Of_Subtype;
6220 -- Start of processing for Subprogram_Subtypes_Have_Same_Declaration
6222 begin
6223 if not In_Instance
6224 and then not In_Internal_Unit (Subp)
6225 and then not Is_Internal (Subp)
6226 and then not GNAT_Mode
6227 and then
6228 Ekind (Etype (Decl_Subtype)) not in Access_Subprogram_Kind
6229 then
6230 if Ekind (Etype (Decl_Subtype)) = E_Anonymous_Access_Type then
6231 if Nonlimited_View_Of_Subtype (Designated_Type (Decl_Subtype))
6232 /= Nonlimited_View_Of_Subtype (Designated_Type (Body_Subtype))
6233 then
6234 return False;
6235 end if;
6237 elsif Nonlimited_View_Of_Subtype (Decl_Subtype)
6238 /= Nonlimited_View_Of_Subtype (Body_Subtype)
6239 then
6240 -- Avoid returning False (and a false-positive warning) for
6241 -- the case of "not null" itypes, which will appear to be
6242 -- different subtypes even when the subtype_marks denote
6243 -- the same subtype.
6245 if Ekind (Decl_Subtype) = E_Access_Subtype
6246 and then Ekind (Body_Subtype) = E_Access_Subtype
6247 and then Is_Itype (Body_Subtype)
6248 and then Can_Never_Be_Null (Body_Subtype)
6249 and then Etype (Decl_Subtype) = Etype (Body_Subtype)
6250 then
6251 return True;
6253 else
6254 return False;
6255 end if;
6256 end if;
6257 end if;
6259 return True;
6260 end Subprogram_Subtypes_Have_Same_Declaration;
6262 -- Local Variables
6264 Old_Type : constant Entity_Id := Etype (Old_Id);
6265 New_Type : constant Entity_Id := Etype (New_Id);
6266 Old_Formal : Entity_Id;
6267 New_Formal : Entity_Id;
6268 Old_Formal_Base : Entity_Id;
6269 New_Formal_Base : Entity_Id;
6271 -- Start of processing for Check_Conformance
6273 begin
6274 Conforms := True;
6276 -- We need a special case for operators, since they don't appear
6277 -- explicitly.
6279 if Ctype = Type_Conformant then
6280 if Ekind (New_Id) = E_Operator
6281 and then Operator_Matches_Spec (New_Id, Old_Id)
6282 then
6283 return;
6284 end if;
6285 end if;
6287 -- If both are functions/operators, check return types conform
6289 if Old_Type /= Standard_Void_Type
6290 and then
6291 New_Type /= Standard_Void_Type
6292 then
6293 -- If we are checking interface conformance we omit controlling
6294 -- arguments and result, because we are only checking the conformance
6295 -- of the remaining parameters.
6297 if Has_Controlling_Result (Old_Id)
6298 and then Has_Controlling_Result (New_Id)
6299 and then Skip_Controlling_Formals
6300 then
6301 null;
6303 elsif not Conforming_Types (Old_Type, New_Type, Ctype, Get_Inst) then
6304 if Ctype >= Subtype_Conformant
6305 and then not Predicates_Match (Old_Type, New_Type)
6306 then
6307 Conformance_Error
6308 ("\predicate of return type does not match!", New_Id);
6309 else
6310 Conformance_Error
6311 ("\return type does not match!", New_Id);
6312 end if;
6314 return;
6316 -- If the result subtypes conform and pedantic checks are enabled,
6317 -- check to see whether the subtypes originate from different
6318 -- declarations, and issue a warning when they do.
6320 elsif Ctype = Fully_Conformant
6321 and then Warn_On_Pedantic_Checks
6322 and then not Subprogram_Subtypes_Have_Same_Declaration
6323 (Old_Id, Old_Type, New_Type)
6324 then
6325 Error_Msg_N ("result subtypes conform but come from different "
6326 & "declarations?_p?", New_Id);
6327 end if;
6329 -- Ada 2005 (AI-231): In case of anonymous access types check the
6330 -- null-exclusion and access-to-constant attributes match.
6332 if Ada_Version >= Ada_2005
6333 and then Ekind (Etype (Old_Type)) = E_Anonymous_Access_Type
6334 and then
6335 (Can_Never_Be_Null (Old_Type) /= Can_Never_Be_Null (New_Type)
6336 or else Is_Access_Constant (Etype (Old_Type)) /=
6337 Is_Access_Constant (Etype (New_Type)))
6338 then
6339 Conformance_Error ("\return type does not match!", New_Id);
6340 return;
6341 end if;
6343 -- If either is a function/operator and the other isn't, error
6345 elsif Old_Type /= Standard_Void_Type
6346 or else New_Type /= Standard_Void_Type
6347 then
6348 Conformance_Error ("\functions can only match functions!", New_Id);
6349 return;
6350 end if;
6352 -- In subtype conformant case, conventions must match (RM 6.3.1(16)).
6353 -- If this is a renaming as body, refine error message to indicate that
6354 -- the conflict is with the original declaration. If the entity is not
6355 -- frozen, the conventions don't have to match, the one of the renamed
6356 -- entity is inherited.
6358 if Ctype >= Subtype_Conformant then
6359 if not Conventions_Match (Old_Id, New_Id) then
6360 if not Is_Frozen (New_Id) then
6361 null;
6363 elsif Present (Err_Loc)
6364 and then Nkind (Err_Loc) = N_Subprogram_Renaming_Declaration
6365 and then Present (Corresponding_Spec (Err_Loc))
6366 then
6367 Error_Msg_Name_1 := Chars (New_Id);
6368 Error_Msg_Name_2 :=
6369 Name_Ada + Convention_Id'Pos (Convention (New_Id));
6370 Conformance_Error ("\prior declaration for% has convention %!");
6371 return;
6373 else
6374 Conformance_Error ("\calling conventions do not match!");
6375 return;
6376 end if;
6377 else
6378 Check_Formal_Subprogram_Conformance
6379 (New_Id, Old_Id, Err_Loc, Errmsg, Conforms);
6381 if not Conforms then
6382 return;
6383 end if;
6384 end if;
6385 end if;
6387 -- Deal with parameters
6389 -- Note: we use the entity information, rather than going directly
6390 -- to the specification in the tree. This is not only simpler, but
6391 -- absolutely necessary for some cases of conformance tests between
6392 -- operators, where the declaration tree simply does not exist.
6394 Old_Formal := First_Formal (Old_Id);
6395 New_Formal := First_Formal (New_Id);
6396 while Present (Old_Formal) and then Present (New_Formal) loop
6397 if Is_Controlling_Formal (Old_Formal)
6398 and then Is_Controlling_Formal (New_Formal)
6399 and then Skip_Controlling_Formals
6400 then
6401 -- The controlling formals will have different types when
6402 -- comparing an interface operation with its match, but both
6403 -- or neither must be access parameters.
6405 if Is_Access_Type (Etype (Old_Formal))
6407 Is_Access_Type (Etype (New_Formal))
6408 then
6409 goto Skip_Controlling_Formal;
6410 else
6411 Conformance_Error
6412 ("\access parameter does not match!", New_Formal);
6413 end if;
6414 end if;
6416 -- Ada 2012: Mode conformance also requires that formal parameters
6417 -- be both aliased, or neither.
6419 if Ctype >= Mode_Conformant and then Ada_Version >= Ada_2012 then
6420 if Is_Aliased (Old_Formal) /= Is_Aliased (New_Formal) then
6421 Conformance_Error
6422 ("\aliased parameter mismatch!", New_Formal);
6423 end if;
6424 end if;
6426 if Ctype = Fully_Conformant then
6428 -- Names must match. Error message is more accurate if we do
6429 -- this before checking that the types of the formals match.
6431 if Chars (Old_Formal) /= Chars (New_Formal) then
6432 Conformance_Error ("\name& does not match!", New_Formal);
6434 -- Set error posted flag on new formal as well to stop
6435 -- junk cascaded messages in some cases.
6437 Set_Error_Posted (New_Formal);
6438 return;
6439 end if;
6441 -- Null exclusion must match
6443 if not Relaxed_RM_Semantics
6444 and then not Null_Exclusions_Match (Old_Formal, New_Formal)
6445 then
6446 Conformance_Error
6447 ("\null exclusion for& does not match", New_Formal);
6449 -- Mark error posted on the new formal to avoid duplicated
6450 -- complaint about types not matching.
6452 Set_Error_Posted (New_Formal);
6453 end if;
6454 end if;
6456 -- Ada 2005 (AI-423): Possible access [sub]type and itype match. This
6457 -- case occurs whenever a subprogram is being renamed and one of its
6458 -- parameters imposes a null exclusion. For example:
6460 -- type T is null record;
6461 -- type Acc_T is access T;
6462 -- subtype Acc_T_Sub is Acc_T;
6464 -- procedure P (Obj : not null Acc_T_Sub); -- itype
6465 -- procedure Ren_P (Obj : Acc_T_Sub) -- subtype
6466 -- renames P;
6468 Old_Formal_Base := Etype (Old_Formal);
6469 New_Formal_Base := Etype (New_Formal);
6471 if Get_Inst then
6472 Old_Formal_Base := Get_Instance_Of (Old_Formal_Base);
6473 New_Formal_Base := Get_Instance_Of (New_Formal_Base);
6474 end if;
6476 -- Types must always match. In the visible part of an instance,
6477 -- usual overloading rules for dispatching operations apply, and
6478 -- we check base types (not the actual subtypes).
6480 if In_Instance_Visible_Part
6481 and then Is_Dispatching_Operation (New_Id)
6482 then
6483 if not Conforming_Types
6484 (T1 => Base_Type (Etype (Old_Formal)),
6485 T2 => Base_Type (Etype (New_Formal)),
6486 Ctype => Ctype,
6487 Get_Inst => Get_Inst)
6488 then
6489 Conformance_Error ("\type of & does not match!", New_Formal);
6490 return;
6491 end if;
6493 elsif not Conforming_Types
6494 (T1 => Old_Formal_Base,
6495 T2 => New_Formal_Base,
6496 Ctype => Ctype,
6497 Get_Inst => Get_Inst)
6498 then
6499 -- Don't give error message if old type is Any_Type. This test
6500 -- avoids some cascaded errors, e.g. in case of a bad spec.
6502 if Errmsg and then Old_Formal_Base = Any_Type then
6503 Conforms := False;
6504 else
6505 if Ctype >= Subtype_Conformant
6506 and then
6507 not Predicates_Match (Old_Formal_Base, New_Formal_Base)
6508 then
6509 Conformance_Error
6510 ("\predicate of & does not match!", New_Formal);
6511 else
6512 Conformance_Error
6513 ("\type of & does not match!", New_Formal);
6515 if not Dimensions_Match (Old_Formal_Base, New_Formal_Base)
6516 then
6517 Error_Msg_N ("\dimensions mismatch!", New_Formal);
6518 end if;
6519 end if;
6520 end if;
6522 return;
6524 -- If the formals' subtypes conform and pedantic checks are enabled,
6525 -- check to see whether the subtypes originate from different
6526 -- declarations, and issue a warning when they do.
6528 elsif Ctype = Fully_Conformant
6529 and then Warn_On_Pedantic_Checks
6530 and then not Subprogram_Subtypes_Have_Same_Declaration
6531 (Old_Id, Old_Formal_Base, New_Formal_Base)
6532 then
6533 Error_Msg_N ("formal subtypes conform but come from "
6534 & "different declarations?_p?", New_Formal);
6535 end if;
6537 -- For mode conformance, mode must match
6539 if Ctype >= Mode_Conformant then
6540 if Parameter_Mode (Old_Formal) /= Parameter_Mode (New_Formal) then
6541 if Ekind (New_Id) not in E_Function | E_Procedure
6542 or else not Is_Primitive_Wrapper (New_Id)
6543 then
6544 Conformance_Error ("\mode of & does not match!", New_Formal);
6546 else
6547 declare
6548 T : constant Entity_Id := Find_Dispatching_Type (New_Id);
6549 begin
6550 if Is_Protected_Type (Corresponding_Concurrent_Type (T))
6551 then
6552 Conforms := False;
6554 if Errmsg then
6555 Error_Msg_PT (New_Id, Ultimate_Alias (Old_Id));
6556 end if;
6557 else
6558 Conformance_Error
6559 ("\mode of & does not match!", New_Formal);
6560 end if;
6561 end;
6562 end if;
6564 return;
6566 elsif Is_Access_Type (Old_Formal_Base)
6567 and then Is_Access_Type (New_Formal_Base)
6568 and then Is_Access_Constant (Old_Formal_Base) /=
6569 Is_Access_Constant (New_Formal_Base)
6570 then
6571 Conformance_Error
6572 ("\constant modifier does not match!", New_Formal);
6573 return;
6574 end if;
6575 end if;
6577 if Ctype >= Subtype_Conformant then
6579 -- Ada 2005 (AI-231): In case of anonymous access types check
6580 -- the null-exclusion and access-to-constant attributes must
6581 -- match. For null exclusion, we test the types rather than the
6582 -- formals themselves, since the attribute is only set reliably
6583 -- on the formals in the Ada 95 case, and we exclude the case
6584 -- where Old_Formal is marked as controlling, to avoid errors
6585 -- when matching completing bodies with dispatching declarations
6586 -- (access formals in the bodies aren't marked Can_Never_Be_Null).
6588 if Ada_Version >= Ada_2005
6589 and then Is_Anonymous_Access_Type (Etype (Old_Formal))
6590 and then Is_Anonymous_Access_Type (Etype (New_Formal))
6591 and then
6592 ((Can_Never_Be_Null (Etype (Old_Formal)) /=
6593 Can_Never_Be_Null (Etype (New_Formal))
6594 and then
6595 not Is_Controlling_Formal (Old_Formal))
6596 or else
6597 Is_Access_Constant (Etype (Old_Formal)) /=
6598 Is_Access_Constant (Etype (New_Formal)))
6600 -- Do not complain if error already posted on New_Formal. This
6601 -- avoids some redundant error messages.
6603 and then not Error_Posted (New_Formal)
6604 then
6605 -- It is allowed to omit the null-exclusion in case of stream
6606 -- attribute subprograms. We recognize stream subprograms
6607 -- through their TSS-generated suffix.
6609 declare
6610 TSS_Name : constant TSS_Name_Type := Get_TSS_Name (New_Id);
6612 begin
6613 if TSS_Name /= TSS_Stream_Read
6614 and then TSS_Name /= TSS_Stream_Write
6615 and then TSS_Name /= TSS_Stream_Input
6616 and then TSS_Name /= TSS_Stream_Output
6617 then
6618 -- Here we have a definite conformance error. It is worth
6619 -- special casing the error message for the case of a
6620 -- controlling formal (which excludes null).
6622 if Is_Controlling_Formal (New_Formal) then
6623 Error_Msg_Node_2 := Scope (New_Formal);
6624 Conformance_Error
6625 ("\controlling formal & of & excludes null, "
6626 & "declaration must exclude null as well",
6627 New_Formal);
6629 -- Normal case (couldn't we give more detail here???)
6631 else
6632 Conformance_Error
6633 ("\type of & does not match!", New_Formal);
6634 end if;
6636 return;
6637 end if;
6638 end;
6639 end if;
6640 end if;
6642 -- Full conformance checks
6644 if Ctype = Fully_Conformant then
6646 -- We have checked already that names match
6648 if Parameter_Mode (Old_Formal) = E_In_Parameter then
6650 -- Check default expressions for in parameters
6652 declare
6653 NewD : constant Boolean :=
6654 Present (Default_Value (New_Formal));
6655 OldD : constant Boolean :=
6656 Present (Default_Value (Old_Formal));
6657 begin
6658 if NewD or OldD then
6660 -- The old default value has been analyzed because the
6661 -- current full declaration will have frozen everything
6662 -- before. The new default value has not been analyzed,
6663 -- so analyze it now before we check for conformance.
6665 if NewD then
6666 Push_Scope (New_Id);
6667 Preanalyze_Spec_Expression
6668 (Default_Value (New_Formal), Etype (New_Formal));
6669 End_Scope;
6670 end if;
6672 if not (NewD and OldD)
6673 or else not Fully_Conformant_Expressions
6674 (Default_Value (Old_Formal),
6675 Default_Value (New_Formal))
6676 then
6677 Conformance_Error
6678 ("\default expression for & does not match!",
6679 New_Formal);
6680 return;
6681 end if;
6682 end if;
6683 end;
6684 end if;
6685 end if;
6687 -- A couple of special checks for Ada 83 mode. These checks are
6688 -- skipped if either entity is an operator in package Standard,
6689 -- or if either old or new instance is not from the source program.
6691 if Ada_Version = Ada_83
6692 and then Sloc (Old_Id) > Standard_Location
6693 and then Sloc (New_Id) > Standard_Location
6694 and then Comes_From_Source (Old_Id)
6695 and then Comes_From_Source (New_Id)
6696 then
6697 declare
6698 Old_Param : constant Node_Id := Declaration_Node (Old_Formal);
6699 New_Param : constant Node_Id := Declaration_Node (New_Formal);
6701 begin
6702 -- Explicit IN must be present or absent in both cases. This
6703 -- test is required only in the full conformance case.
6705 if In_Present (Old_Param) /= In_Present (New_Param)
6706 and then Ctype = Fully_Conformant
6707 then
6708 Conformance_Error
6709 ("\(Ada 83) IN must appear in both declarations",
6710 New_Formal);
6711 return;
6712 end if;
6714 -- Grouping (use of comma in param lists) must be the same
6715 -- This is where we catch a misconformance like:
6717 -- A, B : Integer
6718 -- A : Integer; B : Integer
6720 -- which are represented identically in the tree except
6721 -- for the setting of the flags More_Ids and Prev_Ids.
6723 if More_Ids (Old_Param) /= More_Ids (New_Param)
6724 or else Prev_Ids (Old_Param) /= Prev_Ids (New_Param)
6725 then
6726 Conformance_Error
6727 ("\grouping of & does not match!", New_Formal);
6728 return;
6729 end if;
6730 end;
6731 end if;
6733 -- This label is required when skipping controlling formals
6735 <<Skip_Controlling_Formal>>
6737 Next_Formal (Old_Formal);
6738 Next_Formal (New_Formal);
6739 end loop;
6741 if Present (Old_Formal) then
6742 Conformance_Error ("\too few parameters!");
6743 return;
6745 elsif Present (New_Formal) then
6746 Conformance_Error ("\too many parameters!", New_Formal);
6747 return;
6748 end if;
6749 end Check_Conformance;
6751 -----------------------
6752 -- Check_Conventions --
6753 -----------------------
6755 procedure Check_Conventions (Typ : Entity_Id) is
6756 Ifaces_List : Elist_Id;
6758 procedure Check_Convention (Op : Entity_Id);
6759 -- Verify that the convention of inherited dispatching operation Op is
6760 -- consistent among all subprograms it overrides. In order to minimize
6761 -- the search, Search_From is utilized to designate a specific point in
6762 -- the list rather than iterating over the whole list once more.
6764 ----------------------
6765 -- Check_Convention --
6766 ----------------------
6768 procedure Check_Convention (Op : Entity_Id) is
6769 Op_Conv : constant Convention_Id := Convention (Op);
6770 Iface_Conv : Convention_Id;
6771 Iface_Elmt : Elmt_Id;
6772 Iface_Prim_Elmt : Elmt_Id;
6773 Iface_Prim : Entity_Id;
6775 begin
6776 Iface_Elmt := First_Elmt (Ifaces_List);
6777 while Present (Iface_Elmt) loop
6778 Iface_Prim_Elmt :=
6779 First_Elmt (Primitive_Operations (Node (Iface_Elmt)));
6780 while Present (Iface_Prim_Elmt) loop
6781 Iface_Prim := Node (Iface_Prim_Elmt);
6782 Iface_Conv := Convention (Iface_Prim);
6784 if Is_Interface_Conformant (Typ, Iface_Prim, Op)
6785 and then Iface_Conv /= Op_Conv
6786 then
6787 Error_Msg_N
6788 ("inconsistent conventions in primitive operations", Typ);
6790 Error_Msg_Name_1 := Chars (Op);
6791 Error_Msg_Name_2 := Get_Convention_Name (Op_Conv);
6792 Error_Msg_Sloc := Sloc (Op);
6794 if Comes_From_Source (Op) or else No (Alias (Op)) then
6795 if not Present (Overridden_Operation (Op)) then
6796 Error_Msg_N ("\\primitive % defined #", Typ);
6797 else
6798 Error_Msg_N
6799 ("\\overriding operation % with "
6800 & "convention % defined #", Typ);
6801 end if;
6803 else pragma Assert (Present (Alias (Op)));
6804 Error_Msg_Sloc := Sloc (Alias (Op));
6805 Error_Msg_N ("\\inherited operation % with "
6806 & "convention % defined #", Typ);
6807 end if;
6809 Error_Msg_Name_1 := Chars (Op);
6810 Error_Msg_Name_2 := Get_Convention_Name (Iface_Conv);
6811 Error_Msg_Sloc := Sloc (Iface_Prim);
6812 Error_Msg_N ("\\overridden operation % with "
6813 & "convention % defined #", Typ);
6815 -- Avoid cascading errors
6817 return;
6818 end if;
6820 Next_Elmt (Iface_Prim_Elmt);
6821 end loop;
6823 Next_Elmt (Iface_Elmt);
6824 end loop;
6825 end Check_Convention;
6827 -- Local variables
6829 Prim_Op : Entity_Id;
6830 Prim_Op_Elmt : Elmt_Id;
6832 -- Start of processing for Check_Conventions
6834 begin
6835 if not Has_Interfaces (Typ) then
6836 return;
6837 end if;
6839 Collect_Interfaces (Typ, Ifaces_List);
6841 -- The algorithm checks every overriding dispatching operation against
6842 -- all the corresponding overridden dispatching operations, detecting
6843 -- differences in conventions.
6845 Prim_Op_Elmt := First_Elmt (Primitive_Operations (Typ));
6846 while Present (Prim_Op_Elmt) loop
6847 Prim_Op := Node (Prim_Op_Elmt);
6849 -- A small optimization: skip the predefined dispatching operations
6850 -- since they always have the same convention.
6852 if not Is_Predefined_Dispatching_Operation (Prim_Op) then
6853 Check_Convention (Prim_Op);
6854 end if;
6856 Next_Elmt (Prim_Op_Elmt);
6857 end loop;
6858 end Check_Conventions;
6860 ------------------------------
6861 -- Check_Delayed_Subprogram --
6862 ------------------------------
6864 procedure Check_Delayed_Subprogram (Designator : Entity_Id) is
6865 procedure Possible_Freeze (T : Entity_Id);
6866 -- T is the type of either a formal parameter or of the return type. If
6867 -- T is not yet frozen and needs a delayed freeze, then the subprogram
6868 -- itself must be delayed.
6870 ---------------------
6871 -- Possible_Freeze --
6872 ---------------------
6874 procedure Possible_Freeze (T : Entity_Id) is
6875 Scop : constant Entity_Id := Scope (Designator);
6877 begin
6878 -- If the subprogram appears within a package instance (which may be
6879 -- the wrapper package of a subprogram instance) the freeze node for
6880 -- that package will freeze the subprogram at the proper place, so
6881 -- do not emit a freeze node for the subprogram, given that it may
6882 -- appear in the wrong scope.
6884 if Ekind (Scop) = E_Package
6885 and then not Comes_From_Source (Scop)
6886 and then Is_Generic_Instance (Scop)
6887 then
6888 null;
6890 elsif Has_Delayed_Freeze (T) and then not Is_Frozen (T) then
6891 Set_Has_Delayed_Freeze (Designator);
6893 elsif Is_Access_Type (T)
6894 and then Has_Delayed_Freeze (Designated_Type (T))
6895 and then not Is_Frozen (Designated_Type (T))
6896 then
6897 Set_Has_Delayed_Freeze (Designator);
6898 end if;
6899 end Possible_Freeze;
6901 -- Local variables
6903 F : Entity_Id;
6905 -- Start of processing for Check_Delayed_Subprogram
6907 begin
6908 -- All subprograms, including abstract subprograms, may need a freeze
6909 -- node if some formal type or the return type needs one.
6911 Possible_Freeze (Etype (Designator));
6912 Possible_Freeze (Base_Type (Etype (Designator))); -- needed ???
6914 -- Need delayed freeze if any of the formal types themselves need a
6915 -- delayed freeze and are not yet frozen.
6917 F := First_Formal (Designator);
6918 while Present (F) loop
6919 Possible_Freeze (Etype (F));
6920 Possible_Freeze (Base_Type (Etype (F))); -- needed ???
6921 Next_Formal (F);
6922 end loop;
6924 -- Mark functions that return by reference. Note that it cannot be done
6925 -- for delayed_freeze subprograms because the underlying returned type
6926 -- may not be known yet (for private types).
6928 if not Has_Delayed_Freeze (Designator) and then Expander_Active then
6929 Compute_Returns_By_Ref (Designator);
6930 end if;
6931 end Check_Delayed_Subprogram;
6933 ------------------------------------
6934 -- Check_Discriminant_Conformance --
6935 ------------------------------------
6937 procedure Check_Discriminant_Conformance
6938 (N : Node_Id;
6939 Prev : Entity_Id;
6940 Prev_Loc : Node_Id)
6942 Old_Discr : Entity_Id := First_Discriminant (Prev);
6943 New_Discr : Node_Id := First (Discriminant_Specifications (N));
6944 New_Discr_Id : Entity_Id;
6945 New_Discr_Type : Entity_Id;
6947 procedure Conformance_Error (Msg : String; N : Node_Id);
6948 -- Post error message for conformance error on given node. Two messages
6949 -- are output. The first points to the previous declaration with a
6950 -- general "no conformance" message. The second is the detailed reason,
6951 -- supplied as Msg. The parameter N provide information for a possible
6952 -- & insertion in the message.
6954 -----------------------
6955 -- Conformance_Error --
6956 -----------------------
6958 procedure Conformance_Error (Msg : String; N : Node_Id) is
6959 begin
6960 Error_Msg_Sloc := Sloc (Prev_Loc);
6961 Error_Msg_N -- CODEFIX
6962 ("not fully conformant with declaration#!", N);
6963 Error_Msg_NE (Msg, N, N);
6964 end Conformance_Error;
6966 -- Start of processing for Check_Discriminant_Conformance
6968 begin
6969 while Present (Old_Discr) and then Present (New_Discr) loop
6970 New_Discr_Id := Defining_Identifier (New_Discr);
6972 -- The subtype mark of the discriminant on the full type has not
6973 -- been analyzed so we do it here. For an access discriminant a new
6974 -- type is created.
6976 if Nkind (Discriminant_Type (New_Discr)) = N_Access_Definition then
6977 New_Discr_Type :=
6978 Access_Definition (N, Discriminant_Type (New_Discr));
6980 else
6981 Find_Type (Discriminant_Type (New_Discr));
6982 New_Discr_Type := Etype (Discriminant_Type (New_Discr));
6984 -- Ada 2005: if the discriminant definition carries a null
6985 -- exclusion, create an itype to check properly for consistency
6986 -- with partial declaration.
6988 if Is_Access_Type (New_Discr_Type)
6989 and then Null_Exclusion_Present (New_Discr)
6990 then
6991 New_Discr_Type :=
6992 Create_Null_Excluding_Itype
6993 (T => New_Discr_Type,
6994 Related_Nod => New_Discr,
6995 Scope_Id => Current_Scope);
6996 end if;
6997 end if;
6999 if not Conforming_Types
7000 (Etype (Old_Discr), New_Discr_Type, Fully_Conformant)
7001 then
7002 Conformance_Error ("type of & does not match!", New_Discr_Id);
7003 return;
7004 else
7005 -- Treat the new discriminant as an occurrence of the old one,
7006 -- for navigation purposes, and fill in some semantic
7007 -- information, for completeness.
7009 Generate_Reference (Old_Discr, New_Discr_Id, 'r');
7010 Set_Etype (New_Discr_Id, Etype (Old_Discr));
7011 Set_Scope (New_Discr_Id, Scope (Old_Discr));
7012 end if;
7014 -- Names must match
7016 if Chars (Old_Discr) /= Chars (Defining_Identifier (New_Discr)) then
7017 Conformance_Error ("name & does not match!", New_Discr_Id);
7018 return;
7019 end if;
7021 -- Default expressions must match
7023 declare
7024 NewD : constant Boolean :=
7025 Present (Expression (New_Discr));
7026 OldD : constant Boolean :=
7027 Present (Expression (Parent (Old_Discr)));
7029 begin
7030 if NewD or OldD then
7032 -- The old default value has been analyzed and expanded,
7033 -- because the current full declaration will have frozen
7034 -- everything before. The new default values have not been
7035 -- expanded, so expand now to check conformance.
7037 if NewD then
7038 Preanalyze_Spec_Expression
7039 (Expression (New_Discr), New_Discr_Type);
7040 end if;
7042 if not (NewD and OldD)
7043 or else not Fully_Conformant_Expressions
7044 (Expression (Parent (Old_Discr)),
7045 Expression (New_Discr))
7047 then
7048 Conformance_Error
7049 ("default expression for & does not match!",
7050 New_Discr_Id);
7051 return;
7052 end if;
7053 end if;
7054 end;
7056 -- In Ada 83 case, grouping must match: (A,B : X) /= (A : X; B : X)
7058 if Ada_Version = Ada_83 then
7059 declare
7060 Old_Disc : constant Node_Id := Declaration_Node (Old_Discr);
7062 begin
7063 -- Grouping (use of comma in param lists) must be the same
7064 -- This is where we catch a misconformance like:
7066 -- A, B : Integer
7067 -- A : Integer; B : Integer
7069 -- which are represented identically in the tree except
7070 -- for the setting of the flags More_Ids and Prev_Ids.
7072 if More_Ids (Old_Disc) /= More_Ids (New_Discr)
7073 or else Prev_Ids (Old_Disc) /= Prev_Ids (New_Discr)
7074 then
7075 Conformance_Error
7076 ("grouping of & does not match!", New_Discr_Id);
7077 return;
7078 end if;
7079 end;
7080 end if;
7082 Next_Discriminant (Old_Discr);
7083 Next (New_Discr);
7084 end loop;
7086 if Present (Old_Discr) then
7087 Conformance_Error ("too few discriminants!", Defining_Identifier (N));
7088 return;
7090 elsif Present (New_Discr) then
7091 Conformance_Error
7092 ("too many discriminants!", Defining_Identifier (New_Discr));
7093 return;
7094 end if;
7095 end Check_Discriminant_Conformance;
7097 -----------------------------------------
7098 -- Check_Formal_Subprogram_Conformance --
7099 -----------------------------------------
7101 procedure Check_Formal_Subprogram_Conformance
7102 (New_Id : Entity_Id;
7103 Old_Id : Entity_Id;
7104 Err_Loc : Node_Id;
7105 Errmsg : Boolean;
7106 Conforms : out Boolean)
7108 N : Node_Id;
7109 begin
7110 Conforms := True;
7112 if Is_Formal_Subprogram (Old_Id)
7113 or else Is_Formal_Subprogram (New_Id)
7114 or else (Is_Subprogram (New_Id)
7115 and then Present (Alias (New_Id))
7116 and then Is_Formal_Subprogram (Alias (New_Id)))
7117 then
7118 if Present (Err_Loc) then
7119 N := Err_Loc;
7120 else
7121 N := New_Id;
7122 end if;
7124 Conforms := False;
7126 if Errmsg then
7127 Error_Msg_Sloc := Sloc (Old_Id);
7128 Error_Msg_N ("not subtype conformant with declaration#!", N);
7129 Error_Msg_NE
7130 ("\formal subprograms are not subtype conformant "
7131 & "(RM 6.3.1 (17/3))", N, New_Id);
7132 end if;
7133 end if;
7134 end Check_Formal_Subprogram_Conformance;
7136 procedure Check_Formal_Subprogram_Conformance
7137 (New_Id : Entity_Id;
7138 Old_Id : Entity_Id;
7139 Err_Loc : Node_Id := Empty)
7141 Ignore : Boolean;
7142 begin
7143 Check_Formal_Subprogram_Conformance
7144 (New_Id, Old_Id, Err_Loc, True, Ignore);
7145 end Check_Formal_Subprogram_Conformance;
7147 ----------------------------
7148 -- Check_Fully_Conformant --
7149 ----------------------------
7151 procedure Check_Fully_Conformant
7152 (New_Id : Entity_Id;
7153 Old_Id : Entity_Id;
7154 Err_Loc : Node_Id := Empty)
7156 Result : Boolean;
7157 pragma Warnings (Off, Result);
7158 begin
7159 Check_Conformance
7160 (New_Id, Old_Id, Fully_Conformant, True, Result, Err_Loc);
7161 end Check_Fully_Conformant;
7163 --------------------------
7164 -- Check_Limited_Return --
7165 --------------------------
7167 procedure Check_Limited_Return
7168 (N : Node_Id;
7169 Expr : Node_Id;
7170 R_Type : Entity_Id)
7172 begin
7173 -- Ada 2005 (AI-318-02): Return-by-reference types have been removed and
7174 -- replaced by anonymous access results. This is an incompatibility with
7175 -- Ada 95. Not clear whether this should be enforced yet or perhaps
7176 -- controllable with special switch. ???
7178 -- A limited interface that is not immutably limited is OK
7180 if Is_Limited_Interface (R_Type)
7181 and then not Is_Concurrent_Interface (R_Type)
7182 then
7183 null;
7185 elsif Is_Limited_Type (R_Type)
7186 and then not Is_Interface (R_Type)
7187 and then not (Nkind (N) = N_Simple_Return_Statement
7188 and then Comes_From_Extended_Return_Statement (N))
7189 and then not In_Instance_Body
7190 and then not OK_For_Limited_Init_In_05 (R_Type, Expr)
7191 then
7192 -- Error in Ada 2005
7194 if Ada_Version >= Ada_2005
7195 and then not Debug_Flag_Dot_L
7196 and then not GNAT_Mode
7197 then
7198 Error_Msg_N
7199 ("(Ada 2005) cannot copy object of a limited type "
7200 & "(RM-2005 6.5(5.5/2))", Expr);
7202 if Is_Limited_View (R_Type) then
7203 Error_Msg_N
7204 ("\return by reference not permitted in Ada 2005", Expr);
7205 end if;
7207 -- Warn in Ada 95 mode, to give folks a heads up about this
7208 -- incompatibility.
7210 -- In GNAT mode, this is just a warning, to allow it to be evilly
7211 -- turned off. Otherwise it is a real error.
7213 -- In a generic context, simplify the warning because it makes no
7214 -- sense to discuss pass-by-reference or copy.
7216 elsif Warn_On_Ada_2005_Compatibility or GNAT_Mode then
7217 if Inside_A_Generic then
7218 Error_Msg_N
7219 ("return of limited object not permitted in Ada 2005 "
7220 & "(RM-2005 6.5(5.5/2))?y?", Expr);
7222 elsif Is_Limited_View (R_Type) then
7223 Error_Msg_N
7224 ("return by reference not permitted in Ada 2005 "
7225 & "(RM-2005 6.5(5.5/2))?y?", Expr);
7226 else
7227 Error_Msg_N
7228 ("cannot copy object of a limited type in Ada 2005 "
7229 & "(RM-2005 6.5(5.5/2))?y?", Expr);
7230 end if;
7232 -- Ada 95 mode, and compatibility warnings disabled
7234 else
7235 pragma Assert (Ada_Version <= Ada_95);
7236 pragma Assert (not (Warn_On_Ada_2005_Compatibility or GNAT_Mode));
7237 return; -- skip continuation messages below
7238 end if;
7240 if not Inside_A_Generic then
7241 Error_Msg_N
7242 ("\consider switching to return of access type", Expr);
7243 Explain_Limited_Type (R_Type, Expr);
7244 end if;
7245 end if;
7246 end Check_Limited_Return;
7248 ---------------------------
7249 -- Check_Mode_Conformant --
7250 ---------------------------
7252 procedure Check_Mode_Conformant
7253 (New_Id : Entity_Id;
7254 Old_Id : Entity_Id;
7255 Err_Loc : Node_Id := Empty;
7256 Get_Inst : Boolean := False)
7258 Result : Boolean;
7259 pragma Warnings (Off, Result);
7260 begin
7261 Check_Conformance
7262 (New_Id, Old_Id, Mode_Conformant, True, Result, Err_Loc, Get_Inst);
7263 end Check_Mode_Conformant;
7265 --------------------------------
7266 -- Check_Overriding_Indicator --
7267 --------------------------------
7269 procedure Check_Overriding_Indicator
7270 (Subp : Entity_Id;
7271 Overridden_Subp : Entity_Id;
7272 Is_Primitive : Boolean)
7274 Decl : Node_Id;
7275 Spec : Node_Id;
7277 begin
7278 -- No overriding indicator for literals
7280 if Ekind (Subp) = E_Enumeration_Literal then
7281 return;
7283 elsif Ekind (Subp) = E_Entry then
7284 Decl := Parent (Subp);
7286 -- No point in analyzing a malformed operator
7288 elsif Nkind (Subp) = N_Defining_Operator_Symbol
7289 and then Error_Posted (Subp)
7290 then
7291 return;
7293 else
7294 Decl := Unit_Declaration_Node (Subp);
7295 end if;
7297 if Nkind (Decl) in N_Subprogram_Body
7298 | N_Subprogram_Body_Stub
7299 | N_Subprogram_Declaration
7300 | N_Abstract_Subprogram_Declaration
7301 | N_Subprogram_Renaming_Declaration
7302 then
7303 Spec := Specification (Decl);
7305 elsif Nkind (Decl) = N_Entry_Declaration then
7306 Spec := Decl;
7308 else
7309 return;
7310 end if;
7312 -- An overriding indication is illegal on a subprogram declared
7313 -- in a protected body, where there is no operation to override.
7315 if (Must_Override (Spec) or else Must_Not_Override (Spec))
7316 and then Is_List_Member (Decl)
7317 and then Present (Parent (List_Containing (Decl)))
7318 and then Nkind (Parent (List_Containing (Decl))) = N_Protected_Body
7319 then
7320 Error_Msg_N
7321 ("illegal overriding indication in protected body", Decl);
7322 return;
7323 end if;
7325 -- The overriding operation is type conformant with the overridden one,
7326 -- but the names of the formals are not required to match. If the names
7327 -- appear permuted in the overriding operation, this is a possible
7328 -- source of confusion that is worth diagnosing. Controlling formals
7329 -- often carry names that reflect the type, and it is not worthwhile
7330 -- requiring that their names match.
7332 if Present (Overridden_Subp)
7333 and then Nkind (Subp) /= N_Defining_Operator_Symbol
7334 then
7335 declare
7336 Form1 : Entity_Id;
7337 Form2 : Entity_Id;
7339 begin
7340 Form1 := First_Formal (Subp);
7341 Form2 := First_Formal (Overridden_Subp);
7343 -- If the overriding operation is a synchronized operation, skip
7344 -- the first parameter of the overridden operation, which is
7345 -- implicit in the new one. If the operation is declared in the
7346 -- body it is not primitive and all formals must match.
7348 if Is_Concurrent_Type (Scope (Subp))
7349 and then Is_Tagged_Type (Scope (Subp))
7350 and then not Has_Completion (Scope (Subp))
7351 then
7352 Form2 := Next_Formal (Form2);
7353 end if;
7355 if Present (Form1) then
7356 Form1 := Next_Formal (Form1);
7357 Form2 := Next_Formal (Form2);
7358 end if;
7360 while Present (Form1) loop
7361 if not Is_Controlling_Formal (Form1)
7362 and then Present (Next_Formal (Form2))
7363 and then Chars (Form1) = Chars (Next_Formal (Form2))
7364 then
7365 Error_Msg_Node_2 := Alias (Overridden_Subp);
7366 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
7367 Error_Msg_NE
7368 ("& does not match corresponding formal of&#",
7369 Form1, Form1);
7370 exit;
7371 end if;
7373 Next_Formal (Form1);
7374 Next_Formal (Form2);
7375 end loop;
7376 end;
7377 end if;
7379 -- If there is an overridden subprogram, then check that there is no
7380 -- "not overriding" indicator, and mark the subprogram as overriding.
7382 -- This is not done if the overridden subprogram is marked as hidden,
7383 -- which can occur for the case of inherited controlled operations
7384 -- (see Derive_Subprogram), unless the inherited subprogram's parent
7385 -- subprogram is not itself hidden or we are within a generic instance,
7386 -- in which case the hidden flag may have been modified for the
7387 -- expansion of the instance.
7389 -- (Note: This condition could probably be simplified, leaving out the
7390 -- testing for the specific controlled cases, but it seems safer and
7391 -- clearer this way, and echoes similar special-case tests of this
7392 -- kind in other places.)
7394 if Present (Overridden_Subp)
7395 and then (not Is_Hidden (Overridden_Subp)
7396 or else
7397 (Chars (Overridden_Subp) in Name_Initialize
7398 | Name_Adjust
7399 | Name_Finalize
7400 and then Present (Alias (Overridden_Subp))
7401 and then (not Is_Hidden (Alias (Overridden_Subp))
7402 or else In_Instance)))
7403 then
7404 if Must_Not_Override (Spec) then
7405 Error_Msg_Sloc := Sloc (Overridden_Subp);
7407 if Ekind (Subp) = E_Entry then
7408 Error_Msg_NE
7409 ("entry & overrides inherited operation #", Spec, Subp);
7410 else
7411 Error_Msg_NE
7412 ("subprogram & overrides inherited operation #", Spec, Subp);
7413 end if;
7415 -- Special-case to fix a GNAT oddity: Limited_Controlled is declared
7416 -- as an extension of Root_Controlled, and thus has a useless Adjust
7417 -- operation. This operation should not be inherited by other limited
7418 -- controlled types. An explicit Adjust for them is not overriding.
7420 elsif Must_Override (Spec)
7421 and then Chars (Overridden_Subp) = Name_Adjust
7422 and then Is_Limited_Type (Etype (First_Formal (Subp)))
7423 and then Present (Alias (Overridden_Subp))
7424 and then In_Predefined_Unit (Alias (Overridden_Subp))
7425 then
7426 Get_Name_String
7427 (Unit_File_Name (Get_Source_Unit (Alias (Overridden_Subp))));
7428 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
7430 elsif Is_Subprogram (Subp) then
7431 if Is_Init_Proc (Subp) then
7432 null;
7434 elsif No (Overridden_Operation (Subp)) then
7436 -- For entities generated by Derive_Subprograms the overridden
7437 -- operation is the inherited primitive (which is available
7438 -- through the attribute alias)
7440 if (Is_Dispatching_Operation (Subp)
7441 or else Is_Dispatching_Operation (Overridden_Subp))
7442 and then not Comes_From_Source (Overridden_Subp)
7443 and then Find_Dispatching_Type (Overridden_Subp) =
7444 Find_Dispatching_Type (Subp)
7445 and then Present (Alias (Overridden_Subp))
7446 and then Comes_From_Source (Alias (Overridden_Subp))
7447 then
7448 Set_Overridden_Operation (Subp, Alias (Overridden_Subp));
7449 Inherit_Subprogram_Contract (Subp, Alias (Overridden_Subp));
7450 Set_Is_Ada_2022_Only (Subp,
7451 Is_Ada_2022_Only (Alias (Overridden_Subp)));
7453 else
7454 Set_Overridden_Operation (Subp, Overridden_Subp);
7455 Inherit_Subprogram_Contract (Subp, Overridden_Subp);
7456 Set_Is_Ada_2022_Only (Subp,
7457 Is_Ada_2022_Only (Overridden_Subp));
7458 end if;
7459 end if;
7460 end if;
7462 -- If primitive flag is set or this is a protected operation, then
7463 -- the operation is overriding at the point of its declaration, so
7464 -- warn if necessary. Otherwise it may have been declared before the
7465 -- operation it overrides and no check is required.
7467 if Style_Check
7468 and then not Must_Override (Spec)
7469 and then (Is_Primitive
7470 or else Ekind (Scope (Subp)) = E_Protected_Type)
7471 then
7472 Style.Missing_Overriding (Decl, Subp);
7473 end if;
7475 -- If Subp is an operator, it may override a predefined operation, if
7476 -- it is defined in the same scope as the type to which it applies.
7477 -- In that case Overridden_Subp is empty because of our implicit
7478 -- representation for predefined operators. We have to check whether the
7479 -- signature of Subp matches that of a predefined operator. Note that
7480 -- first argument provides the name of the operator, and the second
7481 -- argument the signature that may match that of a standard operation.
7482 -- If the indicator is overriding, then the operator must match a
7483 -- predefined signature, because we know already that there is no
7484 -- explicit overridden operation.
7486 elsif Chars (Subp) in Any_Operator_Name then
7487 if Must_Not_Override (Spec) then
7489 -- If this is not a primitive or a protected subprogram, then
7490 -- "not overriding" is illegal.
7492 if not Is_Primitive
7493 and then Ekind (Scope (Subp)) /= E_Protected_Type
7494 then
7495 Error_Msg_N ("overriding indicator only allowed "
7496 & "if subprogram is primitive", Subp);
7498 elsif Can_Override_Operator (Subp) then
7499 Error_Msg_NE
7500 ("subprogram& overrides predefined operator", Spec, Subp);
7501 end if;
7503 elsif Must_Override (Spec) then
7504 if No (Overridden_Operation (Subp))
7505 and then not Can_Override_Operator (Subp)
7506 then
7507 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
7508 end if;
7510 elsif not Error_Posted (Subp)
7511 and then Style_Check
7512 and then Can_Override_Operator (Subp)
7513 and then not In_Predefined_Unit (Subp)
7514 then
7515 -- If style checks are enabled, indicate that the indicator is
7516 -- missing. However, at the point of declaration, the type of
7517 -- which this is a primitive operation may be private, in which
7518 -- case the indicator would be premature.
7520 if Has_Private_Declaration (Etype (Subp))
7521 or else Has_Private_Declaration (Etype (First_Formal (Subp)))
7522 then
7523 null;
7524 else
7525 Style.Missing_Overriding (Decl, Subp);
7526 end if;
7527 end if;
7529 elsif Must_Override (Spec) then
7530 if Ekind (Subp) = E_Entry then
7531 Error_Msg_NE ("entry & is not overriding", Spec, Subp);
7532 else
7533 Error_Msg_NE ("subprogram & is not overriding", Spec, Subp);
7534 end if;
7536 -- If the operation is marked "not overriding" and it's not primitive
7537 -- then an error is issued, unless this is an operation of a task or
7538 -- protected type (RM05-8.3.1(3/2-4/2)). Error cases where "overriding"
7539 -- has been specified have already been checked above.
7541 elsif Must_Not_Override (Spec)
7542 and then not Is_Primitive
7543 and then Ekind (Subp) /= E_Entry
7544 and then Ekind (Scope (Subp)) /= E_Protected_Type
7545 then
7546 Error_Msg_N
7547 ("overriding indicator only allowed if subprogram is primitive",
7548 Subp);
7549 return;
7550 end if;
7551 end Check_Overriding_Indicator;
7553 -------------------
7554 -- Check_Returns --
7555 -------------------
7557 -- Note: this procedure needs to know far too much about how the expander
7558 -- messes with exceptions. The use of the flag Exception_Junk and the
7559 -- incorporation of knowledge of Exp_Ch11.Expand_Local_Exception_Handlers
7560 -- works, but is not very clean. It would be better if the expansion
7561 -- routines would leave Original_Node working nicely, and we could use
7562 -- Original_Node here to ignore all the peculiar expander messing ???
7564 procedure Check_Returns
7565 (HSS : Node_Id;
7566 Mode : Character;
7567 Err : out Boolean;
7568 Proc : Entity_Id := Empty)
7570 pragma Assert (Mode in 'F' | 'P');
7571 pragma Assert (if Mode = 'F' then No (Proc));
7572 Handler : Node_Id;
7574 procedure Check_Statement_Sequence (L : List_Id);
7575 -- Internal recursive procedure to check a list of statements for proper
7576 -- termination by a return statement (or a transfer of control or a
7577 -- compound statement that is itself internally properly terminated).
7579 ------------------------------
7580 -- Check_Statement_Sequence --
7581 ------------------------------
7583 procedure Check_Statement_Sequence (L : List_Id) is
7584 Last_Stm : Node_Id;
7585 Stm : Node_Id;
7586 Kind : Node_Kind;
7588 function Assert_False return Boolean;
7589 -- Returns True if Last_Stm is a pragma Assert (False) that has been
7590 -- rewritten as a null statement when assertions are off. The assert
7591 -- is not active, but it is still enough to kill the warning.
7593 ------------------
7594 -- Assert_False --
7595 ------------------
7597 function Assert_False return Boolean is
7598 Orig : constant Node_Id := Original_Node (Last_Stm);
7600 begin
7601 if Nkind (Orig) = N_Pragma
7602 and then Pragma_Name (Orig) = Name_Assert
7603 and then not Error_Posted (Orig)
7604 then
7605 declare
7606 Arg : constant Node_Id :=
7607 First (Pragma_Argument_Associations (Orig));
7608 Exp : constant Node_Id := Expression (Arg);
7609 begin
7610 return Nkind (Exp) = N_Identifier
7611 and then Chars (Exp) = Name_False;
7612 end;
7614 else
7615 return False;
7616 end if;
7617 end Assert_False;
7619 -- Local variables
7621 Raise_Exception_Call : Boolean := False;
7622 -- Set True if statement sequence terminated by Raise_Exception call
7623 -- or a Reraise_Occurrence call.
7625 -- Start of processing for Check_Statement_Sequence
7627 begin
7628 -- Get last real statement
7630 Last_Stm := Last (L);
7632 -- Deal with digging out exception handler statement sequences that
7633 -- have been transformed by the local raise to goto optimization.
7634 -- See Exp_Ch11.Expand_Local_Exception_Handlers for details. If this
7635 -- optimization has occurred, we are looking at something like:
7637 -- begin
7638 -- original stmts in block
7640 -- exception \
7641 -- when excep1 => |
7642 -- goto L1; | omitted if No_Exception_Propagation
7643 -- when excep2 => |
7644 -- goto L2; /
7645 -- end;
7647 -- goto L3; -- skip handler when exception not raised
7649 -- <<L1>> -- target label for local exception
7650 -- begin
7651 -- estmts1
7652 -- end;
7654 -- goto L3;
7656 -- <<L2>>
7657 -- begin
7658 -- estmts2
7659 -- end;
7661 -- <<L3>>
7663 -- and what we have to do is to dig out the estmts1 and estmts2
7664 -- sequences (which were the original sequences of statements in
7665 -- the exception handlers) and check them.
7667 if Nkind (Last_Stm) = N_Label and then Exception_Junk (Last_Stm) then
7668 Stm := Last_Stm;
7669 loop
7670 Prev (Stm);
7671 exit when No (Stm);
7672 exit when Nkind (Stm) /= N_Block_Statement;
7673 exit when not Exception_Junk (Stm);
7674 Prev (Stm);
7675 exit when No (Stm);
7676 exit when Nkind (Stm) /= N_Label;
7677 exit when not Exception_Junk (Stm);
7678 Check_Statement_Sequence
7679 (Statements (Handled_Statement_Sequence (Next (Stm))));
7681 Prev (Stm);
7682 Last_Stm := Stm;
7683 exit when No (Stm);
7684 exit when Nkind (Stm) /= N_Goto_Statement;
7685 exit when not Exception_Junk (Stm);
7686 end loop;
7687 end if;
7689 -- Don't count pragmas
7691 while Nkind (Last_Stm) = N_Pragma
7693 -- Don't count call to SS_Release (can happen after
7694 -- Raise_Exception).
7696 or else
7697 (Nkind (Last_Stm) = N_Procedure_Call_Statement
7698 and then
7699 Nkind (Name (Last_Stm)) = N_Identifier
7700 and then
7701 Is_RTE (Entity (Name (Last_Stm)), RE_SS_Release))
7703 -- Don't count exception junk
7705 or else
7706 (Nkind (Last_Stm) in
7707 N_Goto_Statement | N_Label | N_Object_Declaration
7708 and then Exception_Junk (Last_Stm))
7709 or else Nkind (Last_Stm) in N_Push_xxx_Label | N_Pop_xxx_Label
7711 -- Inserted code, such as finalization calls, is irrelevant; we
7712 -- only need to check original source. If we see a transfer of
7713 -- control, we stop.
7715 or else (Is_Rewrite_Insertion (Last_Stm)
7716 and then not Is_Transfer (Last_Stm))
7717 loop
7718 Prev (Last_Stm);
7719 end loop;
7721 -- Here we have the "real" last statement
7723 Kind := Nkind (Last_Stm);
7725 -- Transfer of control, OK. Note that in the No_Return procedure
7726 -- case, we already diagnosed any explicit return statements, so
7727 -- we can treat them as OK in this context.
7729 if Is_Transfer (Last_Stm) then
7730 return;
7732 -- Check cases of explicit non-indirect procedure calls
7734 elsif Kind = N_Procedure_Call_Statement
7735 and then Is_Entity_Name (Name (Last_Stm))
7736 then
7737 -- Check call to Raise_Exception procedure which is treated
7738 -- specially, as is a call to Reraise_Occurrence.
7740 -- We suppress the warning in these cases since it is likely that
7741 -- the programmer really does not expect to deal with the case
7742 -- of Null_Occurrence, and thus would find a warning about a
7743 -- missing return curious, and raising Program_Error does not
7744 -- seem such a bad behavior if this does occur.
7746 -- Note that in the Ada 2005 case for Raise_Exception, the actual
7747 -- behavior will be to raise Constraint_Error (see AI-329).
7749 if Is_RTE (Entity (Name (Last_Stm)), RE_Raise_Exception)
7750 or else
7751 Is_RTE (Entity (Name (Last_Stm)), RE_Reraise_Occurrence)
7752 then
7753 Raise_Exception_Call := True;
7755 -- For Raise_Exception call, test first argument, if it is
7756 -- an attribute reference for a 'Identity call, then we know
7757 -- that the call cannot possibly return.
7759 declare
7760 Arg : constant Node_Id :=
7761 Original_Node (First_Actual (Last_Stm));
7762 begin
7763 if Nkind (Arg) = N_Attribute_Reference
7764 and then Attribute_Name (Arg) = Name_Identity
7765 then
7766 return;
7767 end if;
7768 end;
7769 end if;
7771 -- If statement, need to look inside if there is an else and check
7772 -- each constituent statement sequence for proper termination.
7774 elsif Kind = N_If_Statement
7775 and then Present (Else_Statements (Last_Stm))
7776 then
7777 Check_Statement_Sequence (Then_Statements (Last_Stm));
7778 Check_Statement_Sequence (Else_Statements (Last_Stm));
7780 declare
7781 Elsif_Part : Node_Id := First (Elsif_Parts (Last_Stm));
7783 begin
7784 while Present (Elsif_Part) loop
7785 Check_Statement_Sequence (Then_Statements (Elsif_Part));
7786 Next (Elsif_Part);
7787 end loop;
7788 end;
7790 return;
7792 -- Case statement, check each case for proper termination
7794 elsif Kind = N_Case_Statement then
7795 declare
7796 Case_Alt : Node_Id;
7797 begin
7798 Case_Alt := First_Non_Pragma (Alternatives (Last_Stm));
7799 while Present (Case_Alt) loop
7800 Check_Statement_Sequence (Statements (Case_Alt));
7801 Next_Non_Pragma (Case_Alt);
7802 end loop;
7803 end;
7805 return;
7807 -- Block statement, check its handled sequence of statements
7809 elsif Kind = N_Block_Statement then
7810 declare
7811 Err1 : Boolean;
7813 begin
7814 Check_Returns
7815 (Handled_Statement_Sequence (Last_Stm), Mode, Err1);
7817 if Err1 then
7818 Err := True;
7819 end if;
7821 return;
7822 end;
7824 -- Loop statement. If there is an iteration scheme, we can definitely
7825 -- fall out of the loop. Similarly if there is an exit statement, we
7826 -- can fall out. In either case we need a following return.
7828 elsif Kind = N_Loop_Statement then
7829 if Present (Iteration_Scheme (Last_Stm))
7830 or else Has_Exit (Entity (Identifier (Last_Stm)))
7831 then
7832 null;
7834 -- A loop with no exit statement or iteration scheme is either
7835 -- an infinite loop, or it has some other exit (raise/return).
7836 -- In either case, no warning is required.
7838 else
7839 return;
7840 end if;
7842 -- Timed entry call, check entry call and delay alternatives
7844 -- Note: in expanded code, the timed entry call has been converted
7845 -- to a set of expanded statements on which the check will work
7846 -- correctly in any case.
7848 elsif Kind = N_Timed_Entry_Call then
7849 declare
7850 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
7851 DCA : constant Node_Id := Delay_Alternative (Last_Stm);
7853 begin
7854 -- If statement sequence of entry call alternative is missing,
7855 -- then we can definitely fall through, and we post the error
7856 -- message on the entry call alternative itself.
7858 if No (Statements (ECA)) then
7859 Last_Stm := ECA;
7861 -- If statement sequence of delay alternative is missing, then
7862 -- we can definitely fall through, and we post the error
7863 -- message on the delay alternative itself.
7865 -- Note: if both ECA and DCA are missing the return, then we
7866 -- post only one message, should be enough to fix the bugs.
7867 -- If not we will get a message next time on the DCA when the
7868 -- ECA is fixed.
7870 elsif No (Statements (DCA)) then
7871 Last_Stm := DCA;
7873 -- Else check both statement sequences
7875 else
7876 Check_Statement_Sequence (Statements (ECA));
7877 Check_Statement_Sequence (Statements (DCA));
7878 return;
7879 end if;
7880 end;
7882 -- Conditional entry call, check entry call and else part
7884 -- Note: in expanded code, the conditional entry call has been
7885 -- converted to a set of expanded statements on which the check
7886 -- will work correctly in any case.
7888 elsif Kind = N_Conditional_Entry_Call then
7889 declare
7890 ECA : constant Node_Id := Entry_Call_Alternative (Last_Stm);
7892 begin
7893 -- If statement sequence of entry call alternative is missing,
7894 -- then we can definitely fall through, and we post the error
7895 -- message on the entry call alternative itself.
7897 if No (Statements (ECA)) then
7898 Last_Stm := ECA;
7900 -- Else check statement sequence and else part
7902 else
7903 Check_Statement_Sequence (Statements (ECA));
7904 Check_Statement_Sequence (Else_Statements (Last_Stm));
7905 return;
7906 end if;
7907 end;
7908 end if;
7910 -- If we fall through, issue appropriate message
7912 if Mode = 'F' then
7914 -- Kill warning if last statement is a raise exception call,
7915 -- or a pragma Assert (False). Note that with assertions enabled,
7916 -- such a pragma has been converted into a raise exception call
7917 -- already, so the Assert_False is for the assertions off case.
7919 if not Raise_Exception_Call and then not Assert_False then
7921 -- In GNATprove mode, it is an error to have a missing return
7923 Error_Msg_Warn := SPARK_Mode /= On;
7925 -- Issue error message or warning
7927 Error_Msg_N
7928 ("RETURN statement missing following this statement<<!",
7929 Last_Stm);
7930 Error_Msg_N
7931 ("\Program_Error [<<!", Last_Stm);
7932 end if;
7934 -- Note: we set Err even though we have not issued a warning
7935 -- because we still have a case of a missing return. This is
7936 -- an extremely marginal case, probably will never be noticed
7937 -- but we might as well get it right.
7939 Err := True;
7941 -- Otherwise we have the case of a procedure marked No_Return
7943 else
7944 if not Raise_Exception_Call then
7945 if GNATprove_Mode then
7946 Error_Msg_N
7947 ("implied return after this statement would have raised "
7948 & "Program_Error", Last_Stm);
7950 -- In normal compilation mode, do not warn on a generated call
7951 -- (e.g. in the body of a renaming as completion).
7953 elsif Comes_From_Source (Last_Stm) then
7954 Error_Msg_N
7955 ("implied return after this statement will raise "
7956 & "Program_Error??", Last_Stm);
7957 end if;
7959 Error_Msg_Warn := SPARK_Mode /= On;
7960 Error_Msg_NE
7961 ("\procedure & is marked as No_Return<<!", Last_Stm, Proc);
7962 end if;
7964 declare
7965 RE : constant Node_Id :=
7966 Make_Raise_Program_Error (Sloc (Last_Stm),
7967 Reason => PE_Implicit_Return);
7968 begin
7969 Insert_After (Last_Stm, RE);
7970 Analyze (RE);
7971 end;
7972 end if;
7973 end Check_Statement_Sequence;
7975 -- Start of processing for Check_Returns
7977 begin
7978 Err := False;
7979 Check_Statement_Sequence (Statements (HSS));
7981 if Present (Exception_Handlers (HSS)) then
7982 Handler := First_Non_Pragma (Exception_Handlers (HSS));
7983 while Present (Handler) loop
7984 Check_Statement_Sequence (Statements (Handler));
7985 Next_Non_Pragma (Handler);
7986 end loop;
7987 end if;
7988 end Check_Returns;
7990 ----------------------------
7991 -- Check_Subprogram_Order --
7992 ----------------------------
7994 procedure Check_Subprogram_Order (N : Node_Id) is
7996 function Subprogram_Name_Greater (S1, S2 : String) return Boolean;
7997 -- This is used to check if S1 > S2 in the sense required by this test,
7998 -- for example nameab < namec, but name2 < name10.
8000 -----------------------------
8001 -- Subprogram_Name_Greater --
8002 -----------------------------
8004 function Subprogram_Name_Greater (S1, S2 : String) return Boolean is
8005 L1, L2 : Positive;
8006 N1, N2 : Natural;
8008 begin
8009 -- Deal with special case where names are identical except for a
8010 -- numerical suffix. These are handled specially, taking the numeric
8011 -- ordering from the suffix into account.
8013 L1 := S1'Last;
8014 while S1 (L1) in '0' .. '9' loop
8015 L1 := L1 - 1;
8016 end loop;
8018 L2 := S2'Last;
8019 while S2 (L2) in '0' .. '9' loop
8020 L2 := L2 - 1;
8021 end loop;
8023 -- If non-numeric parts non-equal, do straight compare
8025 if S1 (S1'First .. L1) /= S2 (S2'First .. L2) then
8026 return S1 > S2;
8028 -- If non-numeric parts equal, compare suffixed numeric parts. Note
8029 -- that a missing suffix is treated as numeric zero in this test.
8031 else
8032 N1 := 0;
8033 while L1 < S1'Last loop
8034 L1 := L1 + 1;
8035 N1 := N1 * 10 + Character'Pos (S1 (L1)) - Character'Pos ('0');
8036 end loop;
8038 N2 := 0;
8039 while L2 < S2'Last loop
8040 L2 := L2 + 1;
8041 N2 := N2 * 10 + Character'Pos (S2 (L2)) - Character'Pos ('0');
8042 end loop;
8044 return N1 > N2;
8045 end if;
8046 end Subprogram_Name_Greater;
8048 -- Start of processing for Check_Subprogram_Order
8050 begin
8051 -- Check body in alpha order if this is option
8053 if Style_Check
8054 and then Style_Check_Order_Subprograms
8055 and then Nkind (N) = N_Subprogram_Body
8056 and then Comes_From_Source (N)
8057 and then In_Extended_Main_Source_Unit (N)
8058 then
8059 declare
8060 LSN : String_Ptr
8061 renames Scope_Stack.Table
8062 (Scope_Stack.Last).Last_Subprogram_Name;
8064 Body_Id : constant Entity_Id :=
8065 Defining_Entity (Specification (N));
8067 begin
8068 Get_Decoded_Name_String (Chars (Body_Id));
8070 if LSN /= null then
8071 if Subprogram_Name_Greater
8072 (LSN.all, Name_Buffer (1 .. Name_Len))
8073 then
8074 Style.Subprogram_Not_In_Alpha_Order (Body_Id);
8075 end if;
8077 Free (LSN);
8078 end if;
8080 LSN := new String'(Name_Buffer (1 .. Name_Len));
8081 end;
8082 end if;
8083 end Check_Subprogram_Order;
8085 ------------------------------
8086 -- Check_Subtype_Conformant --
8087 ------------------------------
8089 procedure Check_Subtype_Conformant
8090 (New_Id : Entity_Id;
8091 Old_Id : Entity_Id;
8092 Err_Loc : Node_Id := Empty;
8093 Skip_Controlling_Formals : Boolean := False;
8094 Get_Inst : Boolean := False)
8096 Result : Boolean;
8097 pragma Warnings (Off, Result);
8098 begin
8099 Check_Conformance
8100 (New_Id, Old_Id, Subtype_Conformant, True, Result, Err_Loc,
8101 Skip_Controlling_Formals => Skip_Controlling_Formals,
8102 Get_Inst => Get_Inst);
8103 end Check_Subtype_Conformant;
8105 -----------------------------------
8106 -- Check_Synchronized_Overriding --
8107 -----------------------------------
8109 procedure Check_Synchronized_Overriding
8110 (Def_Id : Entity_Id;
8111 Overridden_Subp : out Entity_Id)
8113 Ifaces_List : Elist_Id;
8114 In_Scope : Boolean;
8115 Typ : Entity_Id;
8117 function Is_Valid_Formal (F : Entity_Id) return Boolean;
8118 -- Predicate for legality rule in 9.4 (11.9/2): If an inherited
8119 -- subprogram is implemented by a protected procedure or entry,
8120 -- its first parameter must be out, in out, or access-to-variable.
8122 function Matches_Prefixed_View_Profile
8123 (Prim_Params : List_Id;
8124 Iface_Params : List_Id) return Boolean;
8125 -- Determine whether a subprogram's parameter profile Prim_Params
8126 -- matches that of a potentially overridden interface subprogram
8127 -- Iface_Params. Also determine if the type of first parameter of
8128 -- Iface_Params is an implemented interface.
8130 ----------------------
8131 -- Is_Valid_Formal --
8132 ----------------------
8134 function Is_Valid_Formal (F : Entity_Id) return Boolean is
8135 begin
8136 return
8137 Ekind (F) in E_In_Out_Parameter | E_Out_Parameter
8138 or else
8139 (Nkind (Parameter_Type (Parent (F))) = N_Access_Definition
8140 and then not Constant_Present (Parameter_Type (Parent (F))));
8141 end Is_Valid_Formal;
8143 -----------------------------------
8144 -- Matches_Prefixed_View_Profile --
8145 -----------------------------------
8147 function Matches_Prefixed_View_Profile
8148 (Prim_Params : List_Id;
8149 Iface_Params : List_Id) return Boolean
8151 function Is_Implemented
8152 (Ifaces_List : Elist_Id;
8153 Iface : Entity_Id) return Boolean;
8154 -- Determine if Iface is implemented by the current task or
8155 -- protected type.
8157 --------------------
8158 -- Is_Implemented --
8159 --------------------
8161 function Is_Implemented
8162 (Ifaces_List : Elist_Id;
8163 Iface : Entity_Id) return Boolean
8165 Iface_Elmt : Elmt_Id;
8167 begin
8168 Iface_Elmt := First_Elmt (Ifaces_List);
8169 while Present (Iface_Elmt) loop
8170 if Node (Iface_Elmt) = Iface then
8171 return True;
8172 end if;
8174 Next_Elmt (Iface_Elmt);
8175 end loop;
8177 return False;
8178 end Is_Implemented;
8180 -- Local variables
8182 Iface_Id : Entity_Id;
8183 Iface_Param : Node_Id;
8184 Iface_Typ : Entity_Id;
8185 Prim_Id : Entity_Id;
8186 Prim_Param : Node_Id;
8187 Prim_Typ : Entity_Id;
8189 -- Start of processing for Matches_Prefixed_View_Profile
8191 begin
8192 Iface_Param := First (Iface_Params);
8193 Iface_Typ := Etype (Defining_Identifier (Iface_Param));
8195 if Is_Access_Type (Iface_Typ) then
8196 Iface_Typ := Designated_Type (Iface_Typ);
8197 end if;
8199 Prim_Param := First (Prim_Params);
8201 -- The first parameter of the potentially overridden subprogram must
8202 -- be an interface implemented by Prim.
8204 if not Is_Interface (Iface_Typ)
8205 or else not Is_Implemented (Ifaces_List, Iface_Typ)
8206 then
8207 return False;
8208 end if;
8210 -- The checks on the object parameters are done, so move on to the
8211 -- rest of the parameters.
8213 if not In_Scope then
8214 Next (Prim_Param);
8215 end if;
8217 Next (Iface_Param);
8218 while Present (Iface_Param) and then Present (Prim_Param) loop
8219 Iface_Id := Defining_Identifier (Iface_Param);
8220 Iface_Typ := Find_Parameter_Type (Iface_Param);
8222 Prim_Id := Defining_Identifier (Prim_Param);
8223 Prim_Typ := Find_Parameter_Type (Prim_Param);
8225 if Ekind (Iface_Typ) = E_Anonymous_Access_Type
8226 and then Ekind (Prim_Typ) = E_Anonymous_Access_Type
8227 and then Is_Concurrent_Type (Designated_Type (Prim_Typ))
8228 then
8229 Iface_Typ := Designated_Type (Iface_Typ);
8230 Prim_Typ := Designated_Type (Prim_Typ);
8231 end if;
8233 -- Case of multiple interface types inside a parameter profile
8235 -- (Obj_Param : in out Iface; ...; Param : Iface)
8237 -- If the interface type is implemented, then the matching type in
8238 -- the primitive should be the implementing record type.
8240 if Ekind (Iface_Typ) = E_Record_Type
8241 and then Is_Interface (Iface_Typ)
8242 and then Is_Implemented (Ifaces_List, Iface_Typ)
8243 then
8244 if Prim_Typ /= Typ then
8245 return False;
8246 end if;
8248 -- The two parameters must be both mode and subtype conformant
8250 elsif Ekind (Iface_Id) /= Ekind (Prim_Id)
8251 or else not
8252 Conforming_Types (Iface_Typ, Prim_Typ, Subtype_Conformant)
8253 then
8254 return False;
8255 end if;
8257 Next (Iface_Param);
8258 Next (Prim_Param);
8259 end loop;
8261 -- One of the two lists contains more parameters than the other
8263 if Present (Iface_Param) or else Present (Prim_Param) then
8264 return False;
8265 end if;
8267 return True;
8268 end Matches_Prefixed_View_Profile;
8270 -- Start of processing for Check_Synchronized_Overriding
8272 begin
8273 Overridden_Subp := Empty;
8275 -- Def_Id must be an entry or a subprogram. We should skip predefined
8276 -- primitives internally generated by the front end; however at this
8277 -- stage predefined primitives are still not fully decorated. As a
8278 -- minor optimization we skip here internally generated subprograms.
8280 if (Ekind (Def_Id) /= E_Entry
8281 and then Ekind (Def_Id) /= E_Function
8282 and then Ekind (Def_Id) /= E_Procedure)
8283 or else not Comes_From_Source (Def_Id)
8284 then
8285 return;
8286 end if;
8288 -- Search for the concurrent declaration since it contains the list of
8289 -- all implemented interfaces. In this case, the subprogram is declared
8290 -- within the scope of a protected or a task type.
8292 if Present (Scope (Def_Id))
8293 and then Is_Concurrent_Type (Scope (Def_Id))
8294 and then not Is_Generic_Actual_Type (Scope (Def_Id))
8295 then
8296 Typ := Scope (Def_Id);
8297 In_Scope := True;
8299 -- The enclosing scope is not a synchronized type and the subprogram
8300 -- has no formals.
8302 elsif No (First_Formal (Def_Id)) then
8303 return;
8305 -- The subprogram has formals and hence it may be a primitive of a
8306 -- concurrent type.
8308 else
8309 Typ := Etype (First_Formal (Def_Id));
8311 if Is_Access_Type (Typ) then
8312 Typ := Directly_Designated_Type (Typ);
8313 end if;
8315 if Is_Concurrent_Type (Typ)
8316 and then not Is_Generic_Actual_Type (Typ)
8317 then
8318 In_Scope := False;
8320 -- This case occurs when the concurrent type is declared within a
8321 -- generic unit. As a result the corresponding record has been built
8322 -- and used as the type of the first formal, we just have to retrieve
8323 -- the corresponding concurrent type.
8325 elsif Is_Concurrent_Record_Type (Typ)
8326 and then not Is_Class_Wide_Type (Typ)
8327 and then Present (Corresponding_Concurrent_Type (Typ))
8328 then
8329 Typ := Corresponding_Concurrent_Type (Typ);
8330 In_Scope := False;
8332 else
8333 return;
8334 end if;
8335 end if;
8337 -- There is no overriding to check if this is an inherited operation in
8338 -- a type derivation for a generic actual.
8340 Collect_Interfaces (Typ, Ifaces_List);
8342 if Is_Empty_Elmt_List (Ifaces_List) then
8343 return;
8344 end if;
8346 -- Determine whether entry or subprogram Def_Id overrides a primitive
8347 -- operation that belongs to one of the interfaces in Ifaces_List.
8349 declare
8350 Candidate : Entity_Id := Empty;
8351 Hom : Entity_Id := Empty;
8352 Subp : Entity_Id := Empty;
8354 begin
8355 -- Traverse the homonym chain, looking for a potentially overridden
8356 -- subprogram that belongs to an implemented interface.
8358 Hom := Current_Entity_In_Scope (Def_Id);
8359 while Present (Hom) loop
8360 Subp := Hom;
8362 if Subp = Def_Id
8363 or else not Is_Overloadable (Subp)
8364 or else not Is_Primitive (Subp)
8365 or else not Is_Dispatching_Operation (Subp)
8366 or else not Present (Find_Dispatching_Type (Subp))
8367 or else not Is_Interface (Find_Dispatching_Type (Subp))
8368 then
8369 null;
8371 -- Entries and procedures can override abstract or null interface
8372 -- procedures.
8374 elsif Ekind (Def_Id) in E_Entry | E_Procedure
8375 and then Ekind (Subp) = E_Procedure
8376 and then Matches_Prefixed_View_Profile
8377 (Parameter_Specifications (Parent (Def_Id)),
8378 Parameter_Specifications (Parent (Subp)))
8379 then
8380 Candidate := Subp;
8382 -- For an overridden subprogram Subp, check whether the mode
8383 -- of its first parameter is correct depending on the kind of
8384 -- synchronized type.
8386 declare
8387 Formal : constant Node_Id := First_Formal (Candidate);
8389 begin
8390 -- In order for an entry or a protected procedure to
8391 -- override, the first parameter of the overridden routine
8392 -- must be of mode "out", "in out", or access-to-variable.
8394 if Ekind (Candidate) in E_Entry | E_Procedure
8395 and then Is_Protected_Type (Typ)
8396 and then not Is_Valid_Formal (Formal)
8397 then
8398 null;
8400 -- All other cases are OK since a task entry or routine does
8401 -- not have a restriction on the mode of the first parameter
8402 -- of the overridden interface routine.
8404 else
8405 Overridden_Subp := Candidate;
8406 return;
8407 end if;
8408 end;
8410 -- Functions can override abstract interface functions. Return
8411 -- types must be subtype conformant.
8413 elsif Ekind (Def_Id) = E_Function
8414 and then Ekind (Subp) = E_Function
8415 and then Matches_Prefixed_View_Profile
8416 (Parameter_Specifications (Parent (Def_Id)),
8417 Parameter_Specifications (Parent (Subp)))
8418 and then Conforming_Types
8419 (Etype (Def_Id), Etype (Subp), Subtype_Conformant)
8420 then
8421 Candidate := Subp;
8423 -- If an inherited subprogram is implemented by a protected
8424 -- function, then the first parameter of the inherited
8425 -- subprogram shall be of mode in, but not an access-to-
8426 -- variable parameter (RM 9.4(11/9)).
8428 if Present (First_Formal (Subp))
8429 and then Ekind (First_Formal (Subp)) = E_In_Parameter
8430 and then
8431 (not Is_Access_Type (Etype (First_Formal (Subp)))
8432 or else
8433 Is_Access_Constant (Etype (First_Formal (Subp))))
8434 then
8435 Overridden_Subp := Subp;
8436 return;
8437 end if;
8438 end if;
8440 Hom := Homonym (Hom);
8441 end loop;
8443 -- After examining all candidates for overriding, we are left with
8444 -- the best match, which is a mode-incompatible interface routine.
8446 if In_Scope and then Present (Candidate) then
8447 Error_Msg_PT (Def_Id, Candidate);
8448 end if;
8450 Overridden_Subp := Candidate;
8451 return;
8452 end;
8453 end Check_Synchronized_Overriding;
8455 ---------------------------
8456 -- Check_Type_Conformant --
8457 ---------------------------
8459 procedure Check_Type_Conformant
8460 (New_Id : Entity_Id;
8461 Old_Id : Entity_Id;
8462 Err_Loc : Node_Id := Empty)
8464 Result : Boolean;
8465 pragma Warnings (Off, Result);
8466 begin
8467 Check_Conformance
8468 (New_Id, Old_Id, Type_Conformant, True, Result, Err_Loc);
8469 end Check_Type_Conformant;
8471 ---------------------------
8472 -- Can_Override_Operator --
8473 ---------------------------
8475 function Can_Override_Operator (Subp : Entity_Id) return Boolean is
8476 Typ : Entity_Id;
8478 begin
8479 -- Return False if not an operator. We test the name rather than testing
8480 -- that the Nkind is N_Defining_Operator_Symbol, because there are cases
8481 -- where an operator entity can be an N_Defining_Identifier (such as for
8482 -- function instantiations).
8484 if Chars (Subp) not in Any_Operator_Name then
8485 return False;
8487 else
8488 Typ := Base_Type (Etype (First_Formal (Subp)));
8490 -- Check explicitly that the operation is a primitive of the type
8492 return Operator_Matches_Spec (Subp, Subp)
8493 and then not Is_Generic_Type (Typ)
8494 and then Scope (Subp) = Scope (Typ)
8495 and then not Is_Class_Wide_Type (Typ);
8496 end if;
8497 end Can_Override_Operator;
8499 ----------------------
8500 -- Conforming_Types --
8501 ----------------------
8503 function Conforming_Types
8504 (T1 : Entity_Id;
8505 T2 : Entity_Id;
8506 Ctype : Conformance_Type;
8507 Get_Inst : Boolean := False) return Boolean
8509 function Base_Types_Match
8510 (Typ_1 : Entity_Id;
8511 Typ_2 : Entity_Id) return Boolean;
8512 -- If neither Typ_1 nor Typ_2 are generic actual types, or if they are
8513 -- in different scopes (e.g. parent and child instances), then verify
8514 -- that the base types are equal. Otherwise Typ_1 and Typ_2 must be on
8515 -- the same subtype chain. The whole purpose of this procedure is to
8516 -- prevent spurious ambiguities in an instantiation that may arise if
8517 -- two distinct generic types are instantiated with the same actual.
8519 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id;
8520 -- An access parameter can designate an incomplete type. If the
8521 -- incomplete type is the limited view of a type from a limited_
8522 -- with_clause, check whether the non-limited view is available.
8523 -- If it is a (non-limited) incomplete type, get the full view.
8525 function Matches_Limited_With_View
8526 (Typ_1 : Entity_Id;
8527 Typ_2 : Entity_Id) return Boolean;
8528 -- Returns True if and only if either Typ_1 denotes a limited view of
8529 -- Typ_2 or Typ_2 denotes a limited view of Typ_1. This can arise when
8530 -- the limited with view of a type is used in a subprogram declaration
8531 -- and the subprogram body is in the scope of a regular with clause for
8532 -- the same unit. In such a case, the two type entities are considered
8533 -- identical for purposes of conformance checking.
8535 ----------------------
8536 -- Base_Types_Match --
8537 ----------------------
8539 function Base_Types_Match
8540 (Typ_1 : Entity_Id;
8541 Typ_2 : Entity_Id) return Boolean
8543 Base_1 : constant Entity_Id := Base_Type (Typ_1);
8544 Base_2 : constant Entity_Id := Base_Type (Typ_2);
8546 begin
8547 if Typ_1 = Typ_2 then
8548 return True;
8550 elsif Base_1 = Base_2 then
8552 -- The following is too permissive. A more precise test should
8553 -- check that the generic actual is an ancestor subtype of the
8554 -- other ???.
8556 -- See code in Find_Corresponding_Spec that applies an additional
8557 -- filter to handle accidental amiguities in instances.
8559 return
8560 not Is_Generic_Actual_Type (Typ_1)
8561 or else not Is_Generic_Actual_Type (Typ_2)
8562 or else Scope (Typ_1) /= Scope (Typ_2);
8564 -- If Typ_2 is a generic actual type it is declared as the subtype of
8565 -- the actual. If that actual is itself a subtype we need to use its
8566 -- own base type to check for compatibility.
8568 elsif Ekind (Base_2) = Ekind (Typ_2)
8569 and then Base_1 = Base_Type (Base_2)
8570 then
8571 return True;
8573 elsif Ekind (Base_1) = Ekind (Typ_1)
8574 and then Base_2 = Base_Type (Base_1)
8575 then
8576 return True;
8578 else
8579 return False;
8580 end if;
8581 end Base_Types_Match;
8583 --------------------------
8584 -- Find_Designated_Type --
8585 --------------------------
8587 function Find_Designated_Type (Typ : Entity_Id) return Entity_Id is
8588 Desig : Entity_Id;
8590 begin
8591 Desig := Directly_Designated_Type (Typ);
8593 if Ekind (Desig) = E_Incomplete_Type then
8595 -- If regular incomplete type, get full view if available
8597 if Present (Full_View (Desig)) then
8598 Desig := Full_View (Desig);
8600 -- If limited view of a type, get non-limited view if available,
8601 -- and check again for a regular incomplete type.
8603 elsif Present (Non_Limited_View (Desig)) then
8604 Desig := Get_Full_View (Non_Limited_View (Desig));
8605 end if;
8606 end if;
8608 return Desig;
8609 end Find_Designated_Type;
8611 -------------------------------
8612 -- Matches_Limited_With_View --
8613 -------------------------------
8615 function Matches_Limited_With_View
8616 (Typ_1 : Entity_Id;
8617 Typ_2 : Entity_Id) return Boolean
8619 function Is_Matching_Limited_View
8620 (Typ : Entity_Id;
8621 View : Entity_Id) return Boolean;
8622 -- Determine whether non-limited view View denotes type Typ in some
8623 -- conformant fashion.
8625 ------------------------------
8626 -- Is_Matching_Limited_View --
8627 ------------------------------
8629 function Is_Matching_Limited_View
8630 (Typ : Entity_Id;
8631 View : Entity_Id) return Boolean
8633 Root_Typ : Entity_Id;
8634 Root_View : Entity_Id;
8636 begin
8637 -- The non-limited view directly denotes the type
8639 if Typ = View then
8640 return True;
8642 -- The type is a subtype of the non-limited view
8644 elsif Is_Subtype_Of (Typ, View) then
8645 return True;
8647 -- Both the non-limited view and the type denote class-wide types
8649 elsif Is_Class_Wide_Type (Typ)
8650 and then Is_Class_Wide_Type (View)
8651 then
8652 Root_Typ := Root_Type (Typ);
8653 Root_View := Root_Type (View);
8655 if Root_Typ = Root_View then
8656 return True;
8658 -- An incomplete tagged type and its full view may receive two
8659 -- distinct class-wide types when the related package has not
8660 -- been analyzed yet.
8662 -- package Pack is
8663 -- type T is tagged; -- CW_1
8664 -- type T is tagged null record; -- CW_2
8665 -- end Pack;
8667 -- This is because the package lacks any semantic information
8668 -- that may eventually link both views of T. As a consequence,
8669 -- a client of the limited view of Pack will see CW_2 while a
8670 -- client of the non-limited view of Pack will see CW_1.
8672 elsif Is_Incomplete_Type (Root_Typ)
8673 and then Present (Full_View (Root_Typ))
8674 and then Full_View (Root_Typ) = Root_View
8675 then
8676 return True;
8678 elsif Is_Incomplete_Type (Root_View)
8679 and then Present (Full_View (Root_View))
8680 and then Full_View (Root_View) = Root_Typ
8681 then
8682 return True;
8683 end if;
8684 end if;
8686 return False;
8687 end Is_Matching_Limited_View;
8689 -- Start of processing for Matches_Limited_With_View
8691 begin
8692 -- In some cases a type imported through a limited_with clause, and
8693 -- its non-limited view are both visible, for example in an anonymous
8694 -- access-to-class-wide type in a formal, or when building the body
8695 -- for a subprogram renaming after the subprogram has been frozen.
8696 -- In these cases both entities designate the same type. In addition,
8697 -- if one of them is an actual in an instance, it may be a subtype of
8698 -- the non-limited view of the other.
8700 if From_Limited_With (Typ_1)
8701 and then From_Limited_With (Typ_2)
8702 and then Available_View (Typ_1) = Available_View (Typ_2)
8703 then
8704 return True;
8706 elsif From_Limited_With (Typ_1) then
8707 return Is_Matching_Limited_View (Typ_2, Available_View (Typ_1));
8709 elsif From_Limited_With (Typ_2) then
8710 return Is_Matching_Limited_View (Typ_1, Available_View (Typ_2));
8712 else
8713 return False;
8714 end if;
8715 end Matches_Limited_With_View;
8717 -- Local variables
8719 Are_Anonymous_Access_To_Subprogram_Types : Boolean := False;
8721 Type_1 : Entity_Id := T1;
8722 Type_2 : Entity_Id := T2;
8724 -- Start of processing for Conforming_Types
8726 begin
8727 -- The context is an instance association for a formal access-to-
8728 -- subprogram type; the formal parameter types require mapping because
8729 -- they may denote other formal parameters of the generic unit.
8731 if Get_Inst then
8732 Type_1 := Get_Instance_Of (T1);
8733 Type_2 := Get_Instance_Of (T2);
8734 end if;
8736 -- If one of the types is a view of the other introduced by a limited
8737 -- with clause, treat these as conforming for all purposes.
8739 if Matches_Limited_With_View (T1, T2) then
8740 return True;
8742 elsif Base_Types_Match (Type_1, Type_2) then
8743 if Ctype <= Mode_Conformant then
8744 return True;
8746 else
8747 return
8748 Subtypes_Statically_Match (Type_1, Type_2)
8749 and then Dimensions_Match (Type_1, Type_2);
8750 end if;
8752 elsif Is_Incomplete_Or_Private_Type (Type_1)
8753 and then Present (Full_View (Type_1))
8754 and then Base_Types_Match (Full_View (Type_1), Type_2)
8755 then
8756 return
8757 Ctype <= Mode_Conformant
8758 or else Subtypes_Statically_Match (Full_View (Type_1), Type_2);
8760 elsif Ekind (Type_2) = E_Incomplete_Type
8761 and then Present (Full_View (Type_2))
8762 and then Base_Types_Match (Type_1, Full_View (Type_2))
8763 then
8764 return
8765 Ctype <= Mode_Conformant
8766 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
8768 elsif Is_Private_Type (Type_2)
8769 and then In_Instance
8770 and then Present (Full_View (Type_2))
8771 and then Base_Types_Match (Type_1, Full_View (Type_2))
8772 then
8773 return
8774 Ctype <= Mode_Conformant
8775 or else Subtypes_Statically_Match (Type_1, Full_View (Type_2));
8777 -- Another confusion between views in a nested instance with an
8778 -- actual private type whose full view is not in scope.
8780 elsif Ekind (Type_2) = E_Private_Subtype
8781 and then In_Instance
8782 and then Etype (Type_2) = Type_1
8783 then
8784 return True;
8786 -- In Ada 2012, incomplete types (including limited views) can appear
8787 -- as actuals in instantiations, where they are conformant to the
8788 -- corresponding incomplete formal.
8790 elsif Is_Incomplete_Type (Type_1)
8791 and then Is_Incomplete_Type (Type_2)
8792 and then In_Instance
8793 and then (Used_As_Generic_Actual (Type_1)
8794 or else Used_As_Generic_Actual (Type_2))
8795 then
8796 return True;
8797 end if;
8799 -- Ada 2005 (AI-254): Anonymous access-to-subprogram types must be
8800 -- treated recursively because they carry a signature. As far as
8801 -- conformance is concerned, convention plays no role, and either
8802 -- or both could be access to protected subprograms.
8804 Are_Anonymous_Access_To_Subprogram_Types :=
8805 Ekind (Type_1) in E_Anonymous_Access_Subprogram_Type
8806 | E_Anonymous_Access_Protected_Subprogram_Type
8807 and then
8808 Ekind (Type_2) in E_Anonymous_Access_Subprogram_Type
8809 | E_Anonymous_Access_Protected_Subprogram_Type;
8811 -- Test anonymous access type case. For this case, static subtype
8812 -- matching is required for mode conformance (RM 6.3.1(15)). We check
8813 -- the base types because we may have built internal subtype entities
8814 -- to handle null-excluding types (see Process_Formals).
8816 if (Ekind (Base_Type (Type_1)) = E_Anonymous_Access_Type
8817 and then
8818 Ekind (Base_Type (Type_2)) = E_Anonymous_Access_Type)
8820 -- Ada 2005 (AI-254)
8822 or else Are_Anonymous_Access_To_Subprogram_Types
8823 then
8824 declare
8825 Desig_1 : Entity_Id;
8826 Desig_2 : Entity_Id;
8828 begin
8829 -- In Ada 2005, access constant indicators must match for
8830 -- subtype conformance.
8832 if Ada_Version >= Ada_2005
8833 and then Ctype >= Subtype_Conformant
8834 and then
8835 Is_Access_Constant (Type_1) /= Is_Access_Constant (Type_2)
8836 then
8837 return False;
8838 end if;
8840 Desig_1 := Find_Designated_Type (Type_1);
8841 Desig_2 := Find_Designated_Type (Type_2);
8843 -- If the context is an instance association for a formal
8844 -- access-to-subprogram type; formal access parameter designated
8845 -- types require mapping because they may denote other formal
8846 -- parameters of the generic unit.
8848 if Get_Inst then
8849 Desig_1 := Get_Instance_Of (Desig_1);
8850 Desig_2 := Get_Instance_Of (Desig_2);
8851 end if;
8853 -- It is possible for a Class_Wide_Type to be introduced for an
8854 -- incomplete type, in which case there is a separate class_ wide
8855 -- type for the full view. The types conform if their Etypes
8856 -- conform, i.e. one may be the full view of the other. This can
8857 -- only happen in the context of an access parameter, other uses
8858 -- of an incomplete Class_Wide_Type are illegal.
8860 if Is_Class_Wide_Type (Desig_1)
8861 and then
8862 Is_Class_Wide_Type (Desig_2)
8863 then
8864 return
8865 Conforming_Types
8866 (Etype (Base_Type (Desig_1)),
8867 Etype (Base_Type (Desig_2)), Ctype);
8869 elsif Are_Anonymous_Access_To_Subprogram_Types then
8870 if Ada_Version < Ada_2005 then
8871 return
8872 Ctype = Type_Conformant
8873 or else Subtypes_Statically_Match (Desig_1, Desig_2);
8875 -- We must check the conformance of the signatures themselves
8877 else
8878 declare
8879 Conformant : Boolean;
8880 begin
8881 Check_Conformance
8882 (Desig_1, Desig_2, Ctype, False, Conformant);
8883 return Conformant;
8884 end;
8885 end if;
8887 -- A limited view of an actual matches the corresponding
8888 -- incomplete formal.
8890 elsif Ekind (Desig_2) = E_Incomplete_Subtype
8891 and then From_Limited_With (Desig_2)
8892 and then Used_As_Generic_Actual (Etype (Desig_2))
8893 then
8894 return True;
8896 else
8897 return Base_Type (Desig_1) = Base_Type (Desig_2)
8898 and then (Ctype = Type_Conformant
8899 or else
8900 Subtypes_Statically_Match (Desig_1, Desig_2));
8901 end if;
8902 end;
8904 -- Otherwise definitely no match
8906 else
8907 if ((Ekind (Type_1) = E_Anonymous_Access_Type
8908 and then Is_Access_Type (Type_2))
8909 or else (Ekind (Type_2) = E_Anonymous_Access_Type
8910 and then Is_Access_Type (Type_1)))
8911 and then
8912 Conforming_Types
8913 (Designated_Type (Type_1), Designated_Type (Type_2), Ctype)
8914 then
8915 May_Hide_Profile := True;
8916 end if;
8918 return False;
8919 end if;
8920 end Conforming_Types;
8922 --------------------------
8923 -- Create_Extra_Formals --
8924 --------------------------
8926 procedure Create_Extra_Formals (E : Entity_Id) is
8927 First_Extra : Entity_Id := Empty;
8928 Formal : Entity_Id;
8929 Last_Extra : Entity_Id := Empty;
8931 function Add_Extra_Formal
8932 (Assoc_Entity : Entity_Id;
8933 Typ : Entity_Id;
8934 Scope : Entity_Id;
8935 Suffix : String) return Entity_Id;
8936 -- Add an extra formal to the current list of formals and extra formals.
8937 -- The extra formal is added to the end of the list of extra formals,
8938 -- and also returned as the result. These formals are always of mode IN.
8939 -- The new formal has the type Typ, is declared in Scope, and its name
8940 -- is given by a concatenation of the name of Assoc_Entity and Suffix.
8941 -- The following suffixes are currently used. They should not be changed
8942 -- without coordinating with CodePeer, which makes use of these to
8943 -- provide better messages.
8945 -- O denotes the Constrained bit.
8946 -- L denotes the accessibility level.
8947 -- BIP_xxx denotes an extra formal for a build-in-place function. See
8948 -- the full list in exp_ch6.BIP_Formal_Kind.
8950 ----------------------
8951 -- Add_Extra_Formal --
8952 ----------------------
8954 function Add_Extra_Formal
8955 (Assoc_Entity : Entity_Id;
8956 Typ : Entity_Id;
8957 Scope : Entity_Id;
8958 Suffix : String) return Entity_Id
8960 EF : constant Entity_Id :=
8961 Make_Defining_Identifier (Sloc (Assoc_Entity),
8962 Chars => New_External_Name (Chars (Assoc_Entity),
8963 Suffix => Suffix));
8965 begin
8966 -- A little optimization. Never generate an extra formal for the
8967 -- _init operand of an initialization procedure, since it could
8968 -- never be used.
8970 if Chars (Formal) = Name_uInit then
8971 return Empty;
8972 end if;
8974 Mutate_Ekind (EF, E_In_Parameter);
8975 Set_Actual_Subtype (EF, Typ);
8976 Set_Etype (EF, Typ);
8977 Set_Scope (EF, Scope);
8978 Set_Mechanism (EF, Default_Mechanism);
8979 Set_Formal_Validity (EF);
8981 if No (First_Extra) then
8982 First_Extra := EF;
8983 Set_Extra_Formals (Scope, EF);
8984 end if;
8986 if Present (Last_Extra) then
8987 Set_Extra_Formal (Last_Extra, EF);
8988 end if;
8990 Last_Extra := EF;
8992 return EF;
8993 end Add_Extra_Formal;
8995 -- Local variables
8997 Formal_Type : Entity_Id;
8998 P_Formal : Entity_Id;
9000 -- Start of processing for Create_Extra_Formals
9002 begin
9003 -- We never generate extra formals if expansion is not active because we
9004 -- don't need them unless we are generating code.
9006 if not Expander_Active then
9007 return;
9008 end if;
9010 -- No need to generate extra formals in thunks whose target has no extra
9011 -- formals, but we can have two of them chained (interface and stack).
9013 if Is_Thunk (E) and then No (Extra_Formals (Thunk_Target (E))) then
9014 return;
9015 end if;
9017 -- If this is a derived subprogram then the subtypes of the parent
9018 -- subprogram's formal parameters will be used to determine the need
9019 -- for extra formals.
9021 if Is_Overloadable (E) and then Present (Alias (E)) then
9022 P_Formal := First_Formal (Alias (E));
9023 else
9024 P_Formal := Empty;
9025 end if;
9027 Formal := First_Formal (E);
9028 while Present (Formal) loop
9029 Last_Extra := Formal;
9030 Next_Formal (Formal);
9031 end loop;
9033 -- If Extra_Formals were already created, don't do it again. This
9034 -- situation may arise for subprogram types created as part of
9035 -- dispatching calls (see Expand_Dispatching_Call).
9037 if Present (Last_Extra) and then Present (Extra_Formal (Last_Extra)) then
9038 return;
9039 end if;
9041 -- If the subprogram is a predefined dispatching subprogram then don't
9042 -- generate any extra constrained or accessibility level formals. In
9043 -- general we suppress these for internal subprograms (by not calling
9044 -- Freeze_Subprogram and Create_Extra_Formals at all), but internally
9045 -- generated stream attributes do get passed through because extra
9046 -- build-in-place formals are needed in some cases (limited 'Input).
9048 if Is_Predefined_Internal_Operation (E) then
9049 goto Test_For_Func_Result_Extras;
9050 end if;
9052 Formal := First_Formal (E);
9053 while Present (Formal) loop
9055 -- Create extra formal for supporting the attribute 'Constrained.
9056 -- The case of a private type view without discriminants also
9057 -- requires the extra formal if the underlying type has defaulted
9058 -- discriminants.
9060 if Ekind (Formal) /= E_In_Parameter then
9061 if Present (P_Formal) then
9062 Formal_Type := Etype (P_Formal);
9063 else
9064 Formal_Type := Etype (Formal);
9065 end if;
9067 -- Do not produce extra formals for Unchecked_Union parameters.
9068 -- Jump directly to the end of the loop.
9070 if Is_Unchecked_Union (Base_Type (Formal_Type)) then
9071 goto Skip_Extra_Formal_Generation;
9072 end if;
9074 if not Has_Discriminants (Formal_Type)
9075 and then Is_Private_Type (Formal_Type)
9076 and then Present (Underlying_Type (Formal_Type))
9077 then
9078 Formal_Type := Underlying_Type (Formal_Type);
9079 end if;
9081 -- Suppress the extra formal if formal's subtype is constrained or
9082 -- indefinite, or we're compiling for Ada 2012 and the underlying
9083 -- type is tagged and limited. In Ada 2012, a limited tagged type
9084 -- can have defaulted discriminants, but 'Constrained is required
9085 -- to return True, so the formal is never needed (see AI05-0214).
9086 -- Note that this ensures consistency of calling sequences for
9087 -- dispatching operations when some types in a class have defaults
9088 -- on discriminants and others do not (and requiring the extra
9089 -- formal would introduce distributed overhead).
9091 -- If the type does not have a completion yet, treat as prior to
9092 -- Ada 2012 for consistency.
9094 if Has_Discriminants (Formal_Type)
9095 and then not Is_Constrained (Formal_Type)
9096 and then Is_Definite_Subtype (Formal_Type)
9097 and then (Ada_Version < Ada_2012
9098 or else No (Underlying_Type (Formal_Type))
9099 or else not
9100 (Is_Limited_Type (Formal_Type)
9101 and then
9102 (Is_Tagged_Type
9103 (Underlying_Type (Formal_Type)))))
9104 then
9105 Set_Extra_Constrained
9106 (Formal, Add_Extra_Formal (Formal, Standard_Boolean, E, "O"));
9107 end if;
9108 end if;
9110 -- Create extra formal for supporting accessibility checking. This
9111 -- is done for both anonymous access formals and formals of named
9112 -- access types that are marked as controlling formals. The latter
9113 -- case can occur when Expand_Dispatching_Call creates a subprogram
9114 -- type and substitutes the types of access-to-class-wide actuals
9115 -- for the anonymous access-to-specific-type of controlling formals.
9116 -- Base_Type is applied because in cases where there is a null
9117 -- exclusion the formal may have an access subtype.
9119 -- This is suppressed if we specifically suppress accessibility
9120 -- checks at the package level for either the subprogram, or the
9121 -- package in which it resides. However, we do not suppress it
9122 -- simply if the scope has accessibility checks suppressed, since
9123 -- this could cause trouble when clients are compiled with a
9124 -- different suppression setting. The explicit checks at the
9125 -- package level are safe from this point of view.
9127 if (Ekind (Base_Type (Etype (Formal))) = E_Anonymous_Access_Type
9128 or else (Is_Controlling_Formal (Formal)
9129 and then Is_Access_Type (Base_Type (Etype (Formal)))))
9130 and then not
9131 (Explicit_Suppress (E, Accessibility_Check)
9132 or else
9133 Explicit_Suppress (Scope (E), Accessibility_Check))
9134 and then
9135 (No (P_Formal)
9136 or else Present (Extra_Accessibility (P_Formal)))
9137 then
9138 Set_Extra_Accessibility
9139 (Formal, Add_Extra_Formal (Formal, Standard_Natural, E, "L"));
9140 end if;
9142 -- This label is required when skipping extra formal generation for
9143 -- Unchecked_Union parameters.
9145 <<Skip_Extra_Formal_Generation>>
9147 if Present (P_Formal) then
9148 Next_Formal (P_Formal);
9149 end if;
9151 Next_Formal (Formal);
9152 end loop;
9154 <<Test_For_Func_Result_Extras>>
9156 -- Ada 2012 (AI05-234): "the accessibility level of the result of a
9157 -- function call is ... determined by the point of call ...".
9159 if Needs_Result_Accessibility_Level (E) then
9160 Set_Extra_Accessibility_Of_Result
9161 (E, Add_Extra_Formal (E, Standard_Natural, E, "L"));
9162 end if;
9164 -- Ada 2005 (AI-318-02): In the case of build-in-place functions, add
9165 -- appropriate extra formals. See type Exp_Ch6.BIP_Formal_Kind.
9167 if Is_Build_In_Place_Function (E) then
9168 declare
9169 Result_Subt : constant Entity_Id := Etype (E);
9170 Formal_Typ : Entity_Id;
9171 Subp_Decl : Node_Id;
9172 Discard : Entity_Id;
9174 begin
9175 -- In the case of functions with unconstrained result subtypes,
9176 -- add a 4-state formal indicating whether the return object is
9177 -- allocated by the caller (1), or should be allocated by the
9178 -- callee on the secondary stack (2), in the global heap (3), or
9179 -- in a user-defined storage pool (4). For the moment we just use
9180 -- Natural for the type of this formal. Note that this formal
9181 -- isn't usually needed in the case where the result subtype is
9182 -- constrained, but it is needed when the function has a tagged
9183 -- result, because generally such functions can be called in a
9184 -- dispatching context and such calls must be handled like calls
9185 -- to a class-wide function.
9187 if Needs_BIP_Alloc_Form (E) then
9188 Discard :=
9189 Add_Extra_Formal
9190 (E, Standard_Natural,
9191 E, BIP_Formal_Suffix (BIP_Alloc_Form));
9193 -- Add BIP_Storage_Pool, in case BIP_Alloc_Form indicates to
9194 -- use a user-defined pool. This formal is not added on
9195 -- ZFP as those targets do not support pools.
9197 if RTE_Available (RE_Root_Storage_Pool_Ptr) then
9198 Discard :=
9199 Add_Extra_Formal
9200 (E, RTE (RE_Root_Storage_Pool_Ptr),
9201 E, BIP_Formal_Suffix (BIP_Storage_Pool));
9202 end if;
9203 end if;
9205 -- In the case of functions whose result type needs finalization,
9206 -- add an extra formal which represents the finalization master.
9208 if Needs_BIP_Finalization_Master (E) then
9209 Discard :=
9210 Add_Extra_Formal
9211 (E, RTE (RE_Finalization_Master_Ptr),
9212 E, BIP_Formal_Suffix (BIP_Finalization_Master));
9213 end if;
9215 -- When the result type contains tasks, add two extra formals: the
9216 -- master of the tasks to be created, and the caller's activation
9217 -- chain.
9219 if Needs_BIP_Task_Actuals (E) then
9220 Discard :=
9221 Add_Extra_Formal
9222 (E, Standard_Integer,
9223 E, BIP_Formal_Suffix (BIP_Task_Master));
9225 Set_Has_Master_Entity (E);
9227 Discard :=
9228 Add_Extra_Formal
9229 (E, RTE (RE_Activation_Chain_Access),
9230 E, BIP_Formal_Suffix (BIP_Activation_Chain));
9231 end if;
9233 -- All build-in-place functions get an extra formal that will be
9234 -- passed the address of the return object within the caller.
9236 Formal_Typ :=
9237 Create_Itype (E_Anonymous_Access_Type, E, Scope_Id => Scope (E));
9239 -- Incomplete_View_From_Limited_With is needed here because
9240 -- gigi gets confused if the designated type is the full view
9241 -- coming from a limited-with'ed package. In the normal case,
9242 -- (no limited with) Incomplete_View_From_Limited_With
9243 -- returns Result_Subt.
9245 Set_Directly_Designated_Type
9246 (Formal_Typ, Incomplete_View_From_Limited_With (Result_Subt));
9247 Set_Etype (Formal_Typ, Formal_Typ);
9248 Set_Depends_On_Private
9249 (Formal_Typ, Has_Private_Component (Formal_Typ));
9250 Set_Is_Public (Formal_Typ, Is_Public (Scope (Formal_Typ)));
9251 Set_Is_Access_Constant (Formal_Typ, False);
9253 -- Ada 2005 (AI-50217): Propagate the attribute that indicates
9254 -- the designated type comes from the limited view (for back-end
9255 -- purposes).
9257 Set_From_Limited_With
9258 (Formal_Typ, From_Limited_With (Result_Subt));
9260 Layout_Type (Formal_Typ);
9262 -- Force the definition of the Itype in case of internal function
9263 -- calls within the same or nested scope.
9265 if Is_Subprogram_Or_Generic_Subprogram (E)
9266 and then not Is_Compilation_Unit (E)
9267 then
9268 Subp_Decl := Parent (E);
9270 -- The insertion point for an Itype reference should be after
9271 -- the unit declaration node of the subprogram. An exception
9272 -- to this are inherited operations from a parent type in which
9273 -- case the derived type acts as their parent.
9275 if Nkind (Subp_Decl) in N_Function_Specification
9276 | N_Procedure_Specification
9277 then
9278 Subp_Decl := Parent (Subp_Decl);
9279 end if;
9281 Build_Itype_Reference (Formal_Typ, Subp_Decl);
9282 end if;
9284 Discard :=
9285 Add_Extra_Formal
9286 (E, Formal_Typ, E, BIP_Formal_Suffix (BIP_Object_Access));
9287 end;
9288 end if;
9290 -- If this is an instance of a generic, we need to have extra formals
9291 -- for the Alias.
9293 if Is_Generic_Instance (E) and then Present (Alias (E)) then
9294 Set_Extra_Formals (Alias (E), Extra_Formals (E));
9295 end if;
9296 end Create_Extra_Formals;
9298 -----------------------------
9299 -- Enter_Overloaded_Entity --
9300 -----------------------------
9302 procedure Enter_Overloaded_Entity (S : Entity_Id) is
9303 function Matches_Predefined_Op return Boolean;
9304 -- This returns an approximation of whether S matches a predefined
9305 -- operator, based on the operator symbol, and the parameter and result
9306 -- types. The rules are scattered throughout chapter 4 of the Ada RM.
9308 ---------------------------
9309 -- Matches_Predefined_Op --
9310 ---------------------------
9312 function Matches_Predefined_Op return Boolean is
9313 Formal_1 : constant Entity_Id := First_Formal (S);
9314 Formal_2 : constant Entity_Id := Next_Formal (Formal_1);
9315 Op : constant Name_Id := Chars (S);
9316 Result_Type : constant Entity_Id := Base_Type (Etype (S));
9317 Type_1 : constant Entity_Id := Base_Type (Etype (Formal_1));
9319 begin
9320 -- Binary operator
9322 if Present (Formal_2) then
9323 declare
9324 Type_2 : constant Entity_Id := Base_Type (Etype (Formal_2));
9326 begin
9327 -- All but "&" and "**" have same-types parameters
9329 case Op is
9330 when Name_Op_Concat
9331 | Name_Op_Expon
9333 null;
9335 when others =>
9336 if Type_1 /= Type_2 then
9337 return False;
9338 end if;
9339 end case;
9341 -- Check parameter and result types
9343 case Op is
9344 when Name_Op_And
9345 | Name_Op_Or
9346 | Name_Op_Xor
9348 return
9349 Is_Boolean_Type (Result_Type)
9350 and then Result_Type = Type_1;
9352 when Name_Op_Mod
9353 | Name_Op_Rem
9355 return
9356 Is_Integer_Type (Result_Type)
9357 and then Result_Type = Type_1;
9359 when Name_Op_Add
9360 | Name_Op_Divide
9361 | Name_Op_Multiply
9362 | Name_Op_Subtract
9364 return
9365 Is_Numeric_Type (Result_Type)
9366 and then Result_Type = Type_1;
9368 when Name_Op_Eq
9369 | Name_Op_Ne
9371 return
9372 Is_Boolean_Type (Result_Type)
9373 and then not Is_Limited_Type (Type_1);
9375 when Name_Op_Ge
9376 | Name_Op_Gt
9377 | Name_Op_Le
9378 | Name_Op_Lt
9380 return
9381 Is_Boolean_Type (Result_Type)
9382 and then (Is_Array_Type (Type_1)
9383 or else Is_Scalar_Type (Type_1));
9385 when Name_Op_Concat =>
9386 return Is_Array_Type (Result_Type);
9388 when Name_Op_Expon =>
9389 return
9390 (Is_Integer_Type (Result_Type)
9391 or else Is_Floating_Point_Type (Result_Type))
9392 and then Result_Type = Type_1
9393 and then Type_2 = Standard_Integer;
9395 when others =>
9396 raise Program_Error;
9397 end case;
9398 end;
9400 -- Unary operator
9402 else
9403 case Op is
9404 when Name_Op_Abs
9405 | Name_Op_Add
9406 | Name_Op_Subtract
9408 return
9409 Is_Numeric_Type (Result_Type)
9410 and then Result_Type = Type_1;
9412 when Name_Op_Not =>
9413 return
9414 Is_Boolean_Type (Result_Type)
9415 and then Result_Type = Type_1;
9417 when others =>
9418 raise Program_Error;
9419 end case;
9420 end if;
9421 end Matches_Predefined_Op;
9423 -- Local variables
9425 E : Entity_Id := Current_Entity_In_Scope (S);
9426 C_E : Entity_Id := Current_Entity (S);
9428 -- Start of processing for Enter_Overloaded_Entity
9430 begin
9431 if Present (E) then
9432 Set_Has_Homonym (E);
9433 Set_Has_Homonym (S);
9434 end if;
9436 Set_Is_Immediately_Visible (S);
9437 Set_Scope (S, Current_Scope);
9439 -- Chain new entity if front of homonym in current scope, so that
9440 -- homonyms are contiguous.
9442 if Present (E) and then E /= C_E then
9443 while Homonym (C_E) /= E loop
9444 C_E := Homonym (C_E);
9445 end loop;
9447 Set_Homonym (C_E, S);
9449 else
9450 E := C_E;
9451 Set_Current_Entity (S);
9452 end if;
9454 Set_Homonym (S, E);
9456 if Is_Inherited_Operation (S) then
9457 Append_Inherited_Subprogram (S);
9458 else
9459 Append_Entity (S, Current_Scope);
9460 end if;
9462 Set_Public_Status (S);
9464 if Debug_Flag_E then
9465 Write_Str ("New overloaded entity chain: ");
9466 Write_Name (Chars (S));
9468 E := S;
9469 while Present (E) loop
9470 Write_Str (" "); Write_Int (Int (E));
9471 E := Homonym (E);
9472 end loop;
9474 Write_Eol;
9475 end if;
9477 -- Generate warning for hiding
9479 if Warn_On_Hiding
9480 and then Comes_From_Source (S)
9481 and then In_Extended_Main_Source_Unit (S)
9482 then
9483 E := S;
9484 loop
9485 E := Homonym (E);
9486 exit when No (E);
9488 -- Warn unless genuine overloading. Do not emit warning on
9489 -- hiding predefined operators in Standard (these are either an
9490 -- artifact of our implicit declarations, or simple noise) but
9491 -- keep warning on a operator defined on a local subtype, because
9492 -- of the real danger that different operators may be applied in
9493 -- various parts of the program.
9495 -- Note that if E and S have the same scope, there is never any
9496 -- hiding. Either the two conflict, and the program is illegal,
9497 -- or S is overriding an implicit inherited subprogram.
9499 if Scope (E) /= Scope (S)
9500 and then (not Is_Overloadable (E)
9501 or else Subtype_Conformant (E, S))
9502 and then (Is_Immediately_Visible (E)
9503 or else Is_Potentially_Use_Visible (S))
9504 then
9505 if Scope (E) = Standard_Standard then
9506 if Nkind (S) = N_Defining_Operator_Symbol
9507 and then Scope (Base_Type (Etype (First_Formal (S)))) /=
9508 Scope (S)
9509 and then Matches_Predefined_Op
9510 then
9511 Error_Msg_N
9512 ("declaration of & hides predefined operator?h?", S);
9513 end if;
9515 -- E not immediately within Standard
9517 else
9518 Error_Msg_Sloc := Sloc (E);
9519 Error_Msg_N ("declaration of & hides one #?h?", S);
9520 end if;
9521 end if;
9522 end loop;
9523 end if;
9524 end Enter_Overloaded_Entity;
9526 -----------------------------
9527 -- Check_Untagged_Equality --
9528 -----------------------------
9530 procedure Check_Untagged_Equality (Eq_Op : Entity_Id) is
9531 Eq_Decl : constant Node_Id := Unit_Declaration_Node (Eq_Op);
9532 Typ : constant Entity_Id := Etype (First_Formal (Eq_Op));
9534 procedure Freezing_Point_Warning (N : Node_Id; S : String);
9535 -- Output a warning about the freezing point N of Typ
9537 function Is_Actual_Of_Instantiation
9538 (E : Entity_Id;
9539 Inst : Node_Id) return Boolean;
9540 -- Return True if E is an actual parameter of instantiation Inst
9542 -----------------------------------
9543 -- Output_Freezing_Point_Warning --
9544 -----------------------------------
9546 procedure Freezing_Point_Warning (N : Node_Id; S : String) is
9547 begin
9548 Error_Msg_String (1 .. S'Length) := S;
9549 Error_Msg_Strlen := S'Length;
9551 if Ada_Version >= Ada_2012 then
9552 Error_Msg_NE ("type& is frozen by ~??", N, Typ);
9553 Error_Msg_N
9554 ("\an equality operator cannot be declared after this point??",
9557 else
9558 Error_Msg_NE ("type& is frozen by ~ (Ada 2012)?y?", N, Typ);
9559 Error_Msg_N
9560 ("\an equality operator cannot be declared after this point"
9561 & " (Ada 2012)?y?", N);
9562 end if;
9563 end Freezing_Point_Warning;
9565 --------------------------------
9566 -- Is_Actual_Of_Instantiation --
9567 --------------------------------
9569 function Is_Actual_Of_Instantiation
9570 (E : Entity_Id;
9571 Inst : Node_Id) return Boolean
9573 Assoc : Node_Id;
9575 begin
9576 if Present (Generic_Associations (Inst)) then
9577 Assoc := First (Generic_Associations (Inst));
9579 while Present (Assoc) loop
9580 if Present (Explicit_Generic_Actual_Parameter (Assoc))
9581 and then
9582 Is_Entity_Name (Explicit_Generic_Actual_Parameter (Assoc))
9583 and then
9584 Entity (Explicit_Generic_Actual_Parameter (Assoc)) = E
9585 then
9586 return True;
9587 end if;
9589 Next (Assoc);
9590 end loop;
9591 end if;
9593 return False;
9594 end Is_Actual_Of_Instantiation;
9596 -- Local variable
9598 Decl : Node_Id;
9600 -- Start of processing for Check_Untagged_Equality
9602 begin
9603 -- This check applies only if we have a subprogram declaration or a
9604 -- subprogram body that is not a completion, for an untagged record
9605 -- type, and that is conformant with the predefined operator.
9607 if (Nkind (Eq_Decl) /= N_Subprogram_Declaration
9608 and then not (Nkind (Eq_Decl) = N_Subprogram_Body
9609 and then Acts_As_Spec (Eq_Decl)))
9610 or else not Is_Record_Type (Typ)
9611 or else Is_Tagged_Type (Typ)
9612 or else not Is_User_Defined_Equality (Eq_Op)
9613 then
9614 return;
9615 end if;
9617 -- In Ada 2012 case, we will output errors or warnings depending on
9618 -- the setting of debug flag -gnatd.E.
9620 if Ada_Version >= Ada_2012 then
9621 Error_Msg_Warn := Debug_Flag_Dot_EE;
9623 -- In earlier versions of Ada, nothing to do unless we are warning on
9624 -- Ada 2012 incompatibilities (Warn_On_Ada_2012_Incompatibility set).
9626 else
9627 if not Warn_On_Ada_2012_Compatibility then
9628 return;
9629 end if;
9630 end if;
9632 -- Cases where the type has already been frozen
9634 if Is_Frozen (Typ) then
9636 -- The check applies to a primitive operation, so check that type
9637 -- and equality operation are in the same scope.
9639 if Scope (Typ) /= Current_Scope then
9640 return;
9642 -- If the type is a generic actual (sub)type, the operation is not
9643 -- primitive either because the base type is declared elsewhere.
9645 elsif Is_Generic_Actual_Type (Typ) then
9646 return;
9648 -- Here we may have an error of declaration after freezing, but we
9649 -- must make sure not to flag the equality operator itself causing
9650 -- the freezing when it is a subprogram body.
9652 else
9653 Decl := Next (Declaration_Node (Typ));
9655 while Present (Decl) and then Decl /= Eq_Decl loop
9657 -- The declaration of an object of the type
9659 if Nkind (Decl) = N_Object_Declaration
9660 and then Etype (Defining_Identifier (Decl)) = Typ
9661 then
9662 Freezing_Point_Warning (Decl, "declaration");
9663 exit;
9665 -- The instantiation of a generic on the type
9667 elsif Nkind (Decl) in N_Generic_Instantiation
9668 and then Is_Actual_Of_Instantiation (Typ, Decl)
9669 then
9670 Freezing_Point_Warning (Decl, "instantiation");
9671 exit;
9673 -- A noninstance proper body, body stub or entry body
9675 elsif Nkind (Decl) in N_Proper_Body
9676 | N_Body_Stub
9677 | N_Entry_Body
9678 and then not Is_Generic_Instance (Defining_Entity (Decl))
9679 then
9680 Freezing_Point_Warning (Decl, "body");
9681 exit;
9683 -- If we have reached the freeze node and immediately after we
9684 -- have the body or generated code for the body, then it is the
9685 -- body that caused the freezing and this is legal.
9687 elsif Nkind (Decl) = N_Freeze_Entity
9688 and then Entity (Decl) = Typ
9689 and then (Next (Decl) = Eq_Decl
9690 or else
9691 Sloc (Next (Decl)) = Sloc (Eq_Decl))
9692 then
9693 return;
9694 end if;
9696 Next (Decl);
9697 end loop;
9699 -- Here we have a definite error of declaration after freezing
9701 if Ada_Version >= Ada_2012 then
9702 Error_Msg_NE
9703 ("equality operator must be declared before type & is "
9704 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)<<", Eq_Op, Typ);
9706 -- In Ada 2012 mode with error turned to warning, output one
9707 -- more warning to warn that the equality operation may not
9708 -- compose. This is the consequence of ignoring the error.
9710 if Error_Msg_Warn then
9711 Error_Msg_N ("\equality operation may not compose??", Eq_Op);
9712 end if;
9714 else
9715 Error_Msg_NE
9716 ("equality operator must be declared before type& is "
9717 & "frozen (RM 4.5.2 (9.8)) (Ada 2012)?y?", Eq_Op, Typ);
9718 end if;
9720 -- If we have found no freezing point and the declaration of the
9721 -- operator could not be reached from that of the type and we are
9722 -- in a package body, this must be because the type is declared
9723 -- in the spec of the package. Add a message tailored to this.
9725 if No (Decl) and then In_Package_Body (Scope (Typ)) then
9726 if Ada_Version >= Ada_2012 then
9727 if Nkind (Eq_Decl) = N_Subprogram_Body then
9728 Error_Msg_N
9729 ("\put declaration in package spec<<", Eq_Op);
9730 else
9731 Error_Msg_N
9732 ("\move declaration to package spec<<", Eq_Op);
9733 end if;
9735 else
9736 if Nkind (Eq_Decl) = N_Subprogram_Body then
9737 Error_Msg_N
9738 ("\put declaration in package spec (Ada 2012)?y?",
9739 Eq_Op);
9740 else
9741 Error_Msg_N
9742 ("\move declaration to package spec (Ada 2012)?y?",
9743 Eq_Op);
9744 end if;
9745 end if;
9746 end if;
9747 end if;
9749 -- Now check for AI12-0352: the declaration of a user-defined primitive
9750 -- equality operation for a record type T is illegal if it occurs after
9751 -- a type has been derived from T.
9753 else
9754 Decl := Next (Declaration_Node (Typ));
9756 while Present (Decl) and then Decl /= Eq_Decl loop
9757 if Nkind (Decl) = N_Full_Type_Declaration
9758 and then Etype (Defining_Identifier (Decl)) = Typ
9759 then
9760 Error_Msg_N
9761 ("equality operator cannot appear after derivation", Eq_Op);
9762 Error_Msg_NE
9763 ("an equality operator for& cannot be declared after "
9764 & "this point??",
9765 Decl, Typ);
9766 end if;
9768 Next (Decl);
9769 end loop;
9770 end if;
9771 end Check_Untagged_Equality;
9773 -----------------------------
9774 -- Find_Corresponding_Spec --
9775 -----------------------------
9777 function Find_Corresponding_Spec
9778 (N : Node_Id;
9779 Post_Error : Boolean := True) return Entity_Id
9781 Spec : constant Node_Id := Specification (N);
9782 Designator : constant Entity_Id := Defining_Entity (Spec);
9784 E : Entity_Id;
9786 function Different_Generic_Profile (E : Entity_Id) return Boolean;
9787 -- Even if fully conformant, a body may depend on a generic actual when
9788 -- the spec does not, or vice versa, in which case they were distinct
9789 -- entities in the generic.
9791 -------------------------------
9792 -- Different_Generic_Profile --
9793 -------------------------------
9795 function Different_Generic_Profile (E : Entity_Id) return Boolean is
9796 F1, F2 : Entity_Id;
9798 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean;
9799 -- Check that the types of corresponding formals have the same
9800 -- generic actual if any. We have to account for subtypes of a
9801 -- generic formal, declared between a spec and a body, which may
9802 -- appear distinct in an instance but matched in the generic, and
9803 -- the subtype may be used either in the spec or the body of the
9804 -- subprogram being checked.
9806 -------------------------
9807 -- Same_Generic_Actual --
9808 -------------------------
9810 function Same_Generic_Actual (T1, T2 : Entity_Id) return Boolean is
9812 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean;
9813 -- Predicate to check whether S1 is a subtype of S2 in the source
9814 -- of the instance.
9816 -------------------------
9817 -- Is_Declared_Subtype --
9818 -------------------------
9820 function Is_Declared_Subtype (S1, S2 : Entity_Id) return Boolean is
9821 begin
9822 return Comes_From_Source (Parent (S1))
9823 and then Nkind (Parent (S1)) = N_Subtype_Declaration
9824 and then Is_Entity_Name (Subtype_Indication (Parent (S1)))
9825 and then Entity (Subtype_Indication (Parent (S1))) = S2;
9826 end Is_Declared_Subtype;
9828 -- Start of processing for Same_Generic_Actual
9830 begin
9831 return Is_Generic_Actual_Type (T1) = Is_Generic_Actual_Type (T2)
9832 or else Is_Declared_Subtype (T1, T2)
9833 or else Is_Declared_Subtype (T2, T1);
9834 end Same_Generic_Actual;
9836 -- Start of processing for Different_Generic_Profile
9838 begin
9839 if not In_Instance then
9840 return False;
9842 elsif Ekind (E) = E_Function
9843 and then not Same_Generic_Actual (Etype (E), Etype (Designator))
9844 then
9845 return True;
9846 end if;
9848 F1 := First_Formal (Designator);
9849 F2 := First_Formal (E);
9850 while Present (F1) loop
9851 if not Same_Generic_Actual (Etype (F1), Etype (F2)) then
9852 return True;
9853 end if;
9855 Next_Formal (F1);
9856 Next_Formal (F2);
9857 end loop;
9859 return False;
9860 end Different_Generic_Profile;
9862 -- Start of processing for Find_Corresponding_Spec
9864 begin
9865 E := Current_Entity (Designator);
9866 while Present (E) loop
9868 -- We are looking for a matching spec. It must have the same scope,
9869 -- and the same name, and either be type conformant, or be the case
9870 -- of a library procedure spec and its body (which belong to one
9871 -- another regardless of whether they are type conformant or not).
9873 if Scope (E) = Current_Scope then
9874 if Current_Scope = Standard_Standard
9875 or else (Ekind (E) = Ekind (Designator)
9876 and then Type_Conformant (E, Designator))
9877 then
9878 -- Within an instantiation, we know that spec and body are
9879 -- subtype conformant, because they were subtype conformant in
9880 -- the generic. We choose the subtype-conformant entity here as
9881 -- well, to resolve spurious ambiguities in the instance that
9882 -- were not present in the generic (i.e. when two different
9883 -- types are given the same actual). If we are looking for a
9884 -- spec to match a body, full conformance is expected.
9886 if In_Instance then
9888 -- Inherit the convention and "ghostness" of the matching
9889 -- spec to ensure proper full and subtype conformance.
9891 Set_Convention (Designator, Convention (E));
9893 -- Skip past subprogram bodies and subprogram renamings that
9894 -- may appear to have a matching spec, but that aren't fully
9895 -- conformant with it. That can occur in cases where an
9896 -- actual type causes unrelated homographs in the instance.
9898 if Nkind (N) in N_Subprogram_Body
9899 | N_Subprogram_Renaming_Declaration
9900 and then Present (Homonym (E))
9901 and then not Fully_Conformant (Designator, E)
9902 then
9903 goto Next_Entity;
9905 elsif not Subtype_Conformant (Designator, E) then
9906 goto Next_Entity;
9908 elsif Different_Generic_Profile (E) then
9909 goto Next_Entity;
9910 end if;
9911 end if;
9913 -- Ada 2012 (AI05-0165): For internally generated bodies of
9914 -- null procedures locate the internally generated spec. We
9915 -- enforce mode conformance since a tagged type may inherit
9916 -- from interfaces several null primitives which differ only
9917 -- in the mode of the formals.
9919 if not (Comes_From_Source (E))
9920 and then Is_Null_Procedure (E)
9921 and then not Mode_Conformant (Designator, E)
9922 then
9923 null;
9925 -- For null procedures coming from source that are completions,
9926 -- analysis of the generated body will establish the link.
9928 elsif Comes_From_Source (E)
9929 and then Nkind (Spec) = N_Procedure_Specification
9930 and then Null_Present (Spec)
9931 then
9932 return E;
9934 -- Expression functions can be completions, but cannot be
9935 -- completed by an explicit body.
9937 elsif Comes_From_Source (E)
9938 and then Comes_From_Source (N)
9939 and then Nkind (N) = N_Subprogram_Body
9940 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
9941 N_Expression_Function
9942 then
9943 Error_Msg_Sloc := Sloc (E);
9944 Error_Msg_N ("body conflicts with expression function#", N);
9945 return Empty;
9947 elsif not Has_Completion (E) then
9948 if Nkind (N) /= N_Subprogram_Body_Stub then
9949 Set_Corresponding_Spec (N, E);
9950 end if;
9952 Set_Has_Completion (E);
9953 return E;
9955 elsif Nkind (Parent (N)) = N_Subunit then
9957 -- If this is the proper body of a subunit, the completion
9958 -- flag is set when analyzing the stub.
9960 return E;
9962 -- If E is an internal function with a controlling result that
9963 -- was created for an operation inherited by a null extension,
9964 -- it may be overridden by a body without a previous spec (one
9965 -- more reason why these should be shunned). In that case we
9966 -- remove the generated body if present, because the current
9967 -- one is the explicit overriding.
9969 elsif Ekind (E) = E_Function
9970 and then Ada_Version >= Ada_2005
9971 and then not Comes_From_Source (E)
9972 and then Has_Controlling_Result (E)
9973 and then (not Is_Class_Wide_Type (Etype (E))
9974 and then Is_Null_Extension (Etype (E)))
9975 and then Comes_From_Source (Spec)
9976 then
9977 Set_Has_Completion (E, False);
9979 if Expander_Active
9980 and then Nkind (Parent (E)) = N_Function_Specification
9981 then
9982 Remove
9983 (Unit_Declaration_Node
9984 (Corresponding_Body (Unit_Declaration_Node (E))));
9986 return E;
9988 -- If expansion is disabled, or if the wrapper function has
9989 -- not been generated yet, this a late body overriding an
9990 -- inherited operation, or it is an overriding by some other
9991 -- declaration before the controlling result is frozen. In
9992 -- either case this is a declaration of a new entity.
9994 else
9995 return Empty;
9996 end if;
9998 -- If the body already exists, then this is an error unless
9999 -- the previous declaration is the implicit declaration of a
10000 -- derived subprogram. It is also legal for an instance to
10001 -- contain type conformant overloadable declarations (but the
10002 -- generic declaration may not), per 8.3(26/2).
10004 elsif No (Alias (E))
10005 and then not Is_Intrinsic_Subprogram (E)
10006 and then not In_Instance
10007 and then Post_Error
10008 then
10009 Error_Msg_Sloc := Sloc (E);
10011 if Is_Imported (E) then
10012 Error_Msg_NE
10013 ("body not allowed for imported subprogram & declared#",
10014 N, E);
10015 else
10016 Error_Msg_NE ("duplicate body for & declared#", N, E);
10017 end if;
10018 end if;
10020 -- Child units cannot be overloaded, so a conformance mismatch
10021 -- between body and a previous spec is an error.
10023 elsif Is_Child_Unit (E)
10024 and then
10025 Nkind (Unit_Declaration_Node (Designator)) = N_Subprogram_Body
10026 and then
10027 Nkind (Parent (Unit_Declaration_Node (Designator))) =
10028 N_Compilation_Unit
10029 and then Post_Error
10030 then
10031 Error_Msg_N
10032 ("body of child unit does not match previous declaration", N);
10033 end if;
10034 end if;
10036 <<Next_Entity>>
10037 E := Homonym (E);
10038 end loop;
10040 -- On exit, we know that no previous declaration of subprogram exists
10042 return Empty;
10043 end Find_Corresponding_Spec;
10045 ----------------------
10046 -- Fully_Conformant --
10047 ----------------------
10049 function Fully_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
10050 Result : Boolean;
10051 begin
10052 Check_Conformance (New_Id, Old_Id, Fully_Conformant, False, Result);
10053 return Result;
10054 end Fully_Conformant;
10056 ----------------------------------
10057 -- Fully_Conformant_Expressions --
10058 ----------------------------------
10060 function Fully_Conformant_Expressions
10061 (Given_E1 : Node_Id;
10062 Given_E2 : Node_Id;
10063 Report : Boolean := False) return Boolean
10065 E1 : constant Node_Id := Original_Node (Given_E1);
10066 E2 : constant Node_Id := Original_Node (Given_E2);
10067 -- We always test conformance on original nodes, since it is possible
10068 -- for analysis and/or expansion to make things look as though they
10069 -- conform when they do not, e.g. by converting 1+2 into 3.
10071 function FCE (Given_E1 : Node_Id; Given_E2 : Node_Id) return Boolean;
10072 -- Convenience function to abbreviate recursive calls to
10073 -- Fully_Conformant_Expressions without having to pass Report.
10075 function FCL (L1 : List_Id; L2 : List_Id) return Boolean;
10076 -- Compare elements of two lists for conformance. Elements have to be
10077 -- conformant, and actuals inserted as default parameters do not match
10078 -- explicit actuals with the same value.
10080 function FCO (Op_Node : Node_Id; Call_Node : Node_Id) return Boolean;
10081 -- Compare an operator node with a function call
10083 ---------
10084 -- FCE --
10085 ---------
10087 function FCE (Given_E1 : Node_Id; Given_E2 : Node_Id) return Boolean is
10088 begin
10089 return Fully_Conformant_Expressions (Given_E1, Given_E2, Report);
10090 end FCE;
10092 ---------
10093 -- FCL --
10094 ---------
10096 function FCL (L1 : List_Id; L2 : List_Id) return Boolean is
10097 N1 : Node_Id;
10098 N2 : Node_Id;
10100 begin
10101 N1 := First (L1);
10102 N2 := First (L2);
10104 -- Compare two lists, skipping rewrite insertions (we want to compare
10105 -- the original trees, not the expanded versions).
10107 loop
10108 if Is_Rewrite_Insertion (N1) then
10109 Next (N1);
10110 elsif Is_Rewrite_Insertion (N2) then
10111 Next (N2);
10112 elsif No (N1) then
10113 return No (N2);
10114 elsif No (N2) then
10115 return False;
10116 elsif not FCE (N1, N2) then
10117 return False;
10118 else
10119 Next (N1);
10120 Next (N2);
10121 end if;
10122 end loop;
10123 end FCL;
10125 ---------
10126 -- FCO --
10127 ---------
10129 function FCO (Op_Node : Node_Id; Call_Node : Node_Id) return Boolean is
10130 Actuals : constant List_Id := Parameter_Associations (Call_Node);
10131 Act : Node_Id;
10133 begin
10134 if No (Actuals)
10135 or else Entity (Op_Node) /= Entity (Name (Call_Node))
10136 then
10137 return False;
10139 else
10140 Act := First (Actuals);
10142 if Nkind (Op_Node) in N_Binary_Op then
10143 if not FCE (Left_Opnd (Op_Node), Act) then
10144 return False;
10145 end if;
10147 Next (Act);
10148 end if;
10150 return Present (Act)
10151 and then FCE (Right_Opnd (Op_Node), Act)
10152 and then No (Next (Act));
10153 end if;
10154 end FCO;
10156 function User_Defined_Numeric_Literal_Mismatch return Boolean;
10157 -- Usually literals with the same value like 12345 and 12_345
10158 -- or 123.0 and 123.00 conform, but not if they are
10159 -- user-defined literals.
10161 -------------------------------------------
10162 -- User_Defined_Numeric_Literal_Mismatch --
10163 -------------------------------------------
10165 function User_Defined_Numeric_Literal_Mismatch return Boolean is
10166 E1_Is_User_Defined : constant Boolean :=
10167 Nkind (Given_E1) not in N_Integer_Literal | N_Real_Literal;
10168 E2_Is_User_Defined : constant Boolean :=
10169 Nkind (Given_E2) not in N_Integer_Literal | N_Real_Literal;
10171 begin
10172 pragma Assert (E1_Is_User_Defined = E2_Is_User_Defined);
10174 return E1_Is_User_Defined and then
10175 not String_Equal (String_From_Numeric_Literal (E1),
10176 String_From_Numeric_Literal (E2));
10177 end User_Defined_Numeric_Literal_Mismatch;
10179 -- Local variables
10181 Result : Boolean;
10183 -- Start of processing for Fully_Conformant_Expressions
10185 begin
10186 Result := True;
10188 -- Nonconformant if paren count does not match. Note: if some idiot
10189 -- complains that we don't do this right for more than 3 levels of
10190 -- parentheses, they will be treated with the respect they deserve.
10192 if Paren_Count (E1) /= Paren_Count (E2) then
10193 return False;
10195 -- If same entities are referenced, then they are conformant even if
10196 -- they have different forms (RM 8.3.1(19-20)).
10198 elsif Is_Entity_Name (E1) and then Is_Entity_Name (E2) then
10199 if Present (Entity (E1)) then
10200 Result := Entity (E1) = Entity (E2)
10202 -- One may be a discriminant that has been replaced by the
10203 -- corresponding discriminal.
10205 or else
10206 (Chars (Entity (E1)) = Chars (Entity (E2))
10207 and then Ekind (Entity (E1)) = E_Discriminant
10208 and then Ekind (Entity (E2)) = E_In_Parameter)
10210 -- The discriminant of a protected type is transformed into
10211 -- a local constant and then into a parameter of a protected
10212 -- operation.
10214 or else
10215 (Ekind (Entity (E1)) = E_Constant
10216 and then Ekind (Entity (E2)) = E_In_Parameter
10217 and then Present (Discriminal_Link (Entity (E1)))
10218 and then Discriminal_Link (Entity (E1)) =
10219 Discriminal_Link (Entity (E2)))
10221 -- AI12-050: The entities of quantified expressions match if they
10222 -- have the same identifier, even if they may be distinct nodes.
10224 or else
10225 (Chars (Entity (E1)) = Chars (Entity (E2))
10226 and then Is_Entity_Of_Quantified_Expression (Entity (E1))
10227 and then Is_Entity_Of_Quantified_Expression (Entity (E2)))
10229 -- A call to an instantiation of Unchecked_Conversion is
10230 -- rewritten with the name of the generated function created for
10231 -- the instance, and this must be special-cased.
10233 or else
10234 (Ekind (Entity (E1)) = E_Function
10235 and then Is_Intrinsic_Subprogram (Entity (E1))
10236 and then Is_Generic_Instance (Entity (E1))
10237 and then Entity (E2) = Alias (Entity (E1)));
10238 if Report and not Result then
10239 Error_Msg_Sloc :=
10240 Text_Ptr'Max (Sloc (Entity (E1)), Sloc (Entity (E2)));
10241 Error_Msg_NE
10242 ("meaning of& differs because of declaration#", E1, E2);
10243 end if;
10245 return Result;
10247 elsif Nkind (E1) = N_Expanded_Name
10248 and then Nkind (E2) = N_Expanded_Name
10249 and then Nkind (Selector_Name (E1)) = N_Character_Literal
10250 and then Nkind (Selector_Name (E2)) = N_Character_Literal
10251 then
10252 return Chars (Selector_Name (E1)) = Chars (Selector_Name (E2));
10254 else
10255 -- Identifiers in component associations don't always have
10256 -- entities, but their names must conform.
10258 return Nkind (E1) = N_Identifier
10259 and then Nkind (E2) = N_Identifier
10260 and then Chars (E1) = Chars (E2);
10261 end if;
10263 elsif Nkind (E1) = N_Character_Literal
10264 and then Nkind (E2) = N_Expanded_Name
10265 then
10266 return Nkind (Selector_Name (E2)) = N_Character_Literal
10267 and then Chars (E1) = Chars (Selector_Name (E2));
10269 elsif Nkind (E2) = N_Character_Literal
10270 and then Nkind (E1) = N_Expanded_Name
10271 then
10272 return Nkind (Selector_Name (E1)) = N_Character_Literal
10273 and then Chars (E2) = Chars (Selector_Name (E1));
10275 elsif Nkind (E1) in N_Op and then Nkind (E2) = N_Function_Call then
10276 return FCO (E1, E2);
10278 elsif Nkind (E2) in N_Op and then Nkind (E1) = N_Function_Call then
10279 return FCO (E2, E1);
10281 -- Otherwise we must have the same syntactic entity
10283 elsif Nkind (E1) /= Nkind (E2) then
10284 return False;
10286 -- At this point, we specialize by node type
10288 else
10289 case Nkind (E1) is
10290 when N_Aggregate =>
10291 return
10292 FCL (Expressions (E1), Expressions (E2))
10293 and then
10294 FCL (Component_Associations (E1),
10295 Component_Associations (E2));
10297 when N_Allocator =>
10298 if Nkind (Expression (E1)) = N_Qualified_Expression
10299 or else
10300 Nkind (Expression (E2)) = N_Qualified_Expression
10301 then
10302 return FCE (Expression (E1), Expression (E2));
10304 -- Check that the subtype marks and any constraints
10305 -- are conformant
10307 else
10308 declare
10309 Indic1 : constant Node_Id := Expression (E1);
10310 Indic2 : constant Node_Id := Expression (E2);
10311 Elt1 : Node_Id;
10312 Elt2 : Node_Id;
10314 begin
10315 if Nkind (Indic1) /= N_Subtype_Indication then
10316 return
10317 Nkind (Indic2) /= N_Subtype_Indication
10318 and then Entity (Indic1) = Entity (Indic2);
10320 elsif Nkind (Indic2) /= N_Subtype_Indication then
10321 return
10322 Nkind (Indic1) /= N_Subtype_Indication
10323 and then Entity (Indic1) = Entity (Indic2);
10325 else
10326 if Entity (Subtype_Mark (Indic1)) /=
10327 Entity (Subtype_Mark (Indic2))
10328 then
10329 return False;
10330 end if;
10332 Elt1 := First (Constraints (Constraint (Indic1)));
10333 Elt2 := First (Constraints (Constraint (Indic2)));
10334 while Present (Elt1) and then Present (Elt2) loop
10335 if not FCE (Elt1, Elt2) then
10336 return False;
10337 end if;
10339 Next (Elt1);
10340 Next (Elt2);
10341 end loop;
10343 return True;
10344 end if;
10345 end;
10346 end if;
10348 when N_Attribute_Reference =>
10349 return
10350 Attribute_Name (E1) = Attribute_Name (E2)
10351 and then FCL (Expressions (E1), Expressions (E2));
10353 when N_Binary_Op =>
10354 return
10355 Entity (E1) = Entity (E2)
10356 and then FCE (Left_Opnd (E1), Left_Opnd (E2))
10357 and then FCE (Right_Opnd (E1), Right_Opnd (E2));
10359 when N_Membership_Test
10360 | N_Short_Circuit
10362 return
10363 FCE (Left_Opnd (E1), Left_Opnd (E2))
10364 and then
10365 FCE (Right_Opnd (E1), Right_Opnd (E2));
10367 when N_Case_Expression =>
10368 declare
10369 Alt1 : Node_Id;
10370 Alt2 : Node_Id;
10372 begin
10373 if not FCE (Expression (E1), Expression (E2)) then
10374 return False;
10376 else
10377 Alt1 := First (Alternatives (E1));
10378 Alt2 := First (Alternatives (E2));
10379 loop
10380 if Present (Alt1) /= Present (Alt2) then
10381 return False;
10382 elsif No (Alt1) then
10383 return True;
10384 end if;
10386 if not FCE (Expression (Alt1), Expression (Alt2))
10387 or else not FCL (Discrete_Choices (Alt1),
10388 Discrete_Choices (Alt2))
10389 then
10390 return False;
10391 end if;
10393 Next (Alt1);
10394 Next (Alt2);
10395 end loop;
10396 end if;
10397 end;
10399 when N_Character_Literal =>
10400 return
10401 Char_Literal_Value (E1) = Char_Literal_Value (E2);
10403 when N_Component_Association =>
10404 return
10405 FCL (Choices (E1), Choices (E2))
10406 and then
10407 FCE (Expression (E1), Expression (E2));
10409 when N_Explicit_Dereference =>
10410 return
10411 FCE (Prefix (E1), Prefix (E2));
10413 when N_Extension_Aggregate =>
10414 return
10415 FCL (Expressions (E1), Expressions (E2))
10416 and then Null_Record_Present (E1) =
10417 Null_Record_Present (E2)
10418 and then FCL (Component_Associations (E1),
10419 Component_Associations (E2));
10421 when N_Function_Call =>
10422 return
10423 FCE (Name (E1), Name (E2))
10424 and then
10425 FCL (Parameter_Associations (E1),
10426 Parameter_Associations (E2));
10428 when N_If_Expression =>
10429 return
10430 FCL (Expressions (E1), Expressions (E2));
10432 when N_Indexed_Component =>
10433 return
10434 FCE (Prefix (E1), Prefix (E2))
10435 and then
10436 FCL (Expressions (E1), Expressions (E2));
10438 when N_Integer_Literal =>
10439 return (Intval (E1) = Intval (E2))
10440 and then not User_Defined_Numeric_Literal_Mismatch;
10442 when N_Null =>
10443 return True;
10445 when N_Operator_Symbol =>
10446 return
10447 Chars (E1) = Chars (E2);
10449 when N_Others_Choice =>
10450 return True;
10452 when N_Parameter_Association =>
10453 return
10454 Chars (Selector_Name (E1)) = Chars (Selector_Name (E2))
10455 and then FCE (Explicit_Actual_Parameter (E1),
10456 Explicit_Actual_Parameter (E2));
10458 when N_Qualified_Expression
10459 | N_Type_Conversion
10460 | N_Unchecked_Type_Conversion
10462 return
10463 FCE (Subtype_Mark (E1), Subtype_Mark (E2))
10464 and then
10465 FCE (Expression (E1), Expression (E2));
10467 when N_Quantified_Expression =>
10468 if not FCE (Condition (E1), Condition (E2)) then
10469 return False;
10470 end if;
10472 if Present (Loop_Parameter_Specification (E1))
10473 and then Present (Loop_Parameter_Specification (E2))
10474 then
10475 declare
10476 L1 : constant Node_Id :=
10477 Loop_Parameter_Specification (E1);
10478 L2 : constant Node_Id :=
10479 Loop_Parameter_Specification (E2);
10481 begin
10482 return
10483 Reverse_Present (L1) = Reverse_Present (L2)
10484 and then
10485 FCE (Defining_Identifier (L1),
10486 Defining_Identifier (L2))
10487 and then
10488 FCE (Discrete_Subtype_Definition (L1),
10489 Discrete_Subtype_Definition (L2));
10490 end;
10492 elsif Present (Iterator_Specification (E1))
10493 and then Present (Iterator_Specification (E2))
10494 then
10495 declare
10496 I1 : constant Node_Id := Iterator_Specification (E1);
10497 I2 : constant Node_Id := Iterator_Specification (E2);
10499 begin
10500 return
10501 FCE (Defining_Identifier (I1),
10502 Defining_Identifier (I2))
10503 and then
10504 Of_Present (I1) = Of_Present (I2)
10505 and then
10506 Reverse_Present (I1) = Reverse_Present (I2)
10507 and then FCE (Name (I1), Name (I2))
10508 and then FCE (Subtype_Indication (I1),
10509 Subtype_Indication (I2));
10510 end;
10512 -- The quantified expressions used different specifications to
10513 -- walk their respective ranges.
10515 else
10516 return False;
10517 end if;
10519 when N_Range =>
10520 return
10521 FCE (Low_Bound (E1), Low_Bound (E2))
10522 and then
10523 FCE (High_Bound (E1), High_Bound (E2));
10525 when N_Real_Literal =>
10526 return (Realval (E1) = Realval (E2))
10527 and then not User_Defined_Numeric_Literal_Mismatch;
10529 when N_Selected_Component =>
10530 return
10531 FCE (Prefix (E1), Prefix (E2))
10532 and then
10533 FCE (Selector_Name (E1), Selector_Name (E2));
10535 when N_Slice =>
10536 return
10537 FCE (Prefix (E1), Prefix (E2))
10538 and then
10539 FCE (Discrete_Range (E1), Discrete_Range (E2));
10541 when N_String_Literal =>
10542 declare
10543 S1 : constant String_Id := Strval (E1);
10544 S2 : constant String_Id := Strval (E2);
10545 L1 : constant Nat := String_Length (S1);
10546 L2 : constant Nat := String_Length (S2);
10548 begin
10549 if L1 /= L2 then
10550 return False;
10552 else
10553 for J in 1 .. L1 loop
10554 if Get_String_Char (S1, J) /=
10555 Get_String_Char (S2, J)
10556 then
10557 return False;
10558 end if;
10559 end loop;
10561 return True;
10562 end if;
10563 end;
10565 when N_Unary_Op =>
10566 return
10567 Entity (E1) = Entity (E2)
10568 and then
10569 FCE (Right_Opnd (E1), Right_Opnd (E2));
10571 -- All other node types cannot appear in this context. Strictly
10572 -- we should raise a fatal internal error. Instead we just ignore
10573 -- the nodes. This means that if anyone makes a mistake in the
10574 -- expander and mucks an expression tree irretrievably, the result
10575 -- will be a failure to detect a (probably very obscure) case
10576 -- of non-conformance, which is better than bombing on some
10577 -- case where two expressions do in fact conform.
10579 when others =>
10580 return True;
10581 end case;
10582 end if;
10583 end Fully_Conformant_Expressions;
10585 ----------------------------------------
10586 -- Fully_Conformant_Discrete_Subtypes --
10587 ----------------------------------------
10589 function Fully_Conformant_Discrete_Subtypes
10590 (Given_S1 : Node_Id;
10591 Given_S2 : Node_Id) return Boolean
10593 S1 : constant Node_Id := Original_Node (Given_S1);
10594 S2 : constant Node_Id := Original_Node (Given_S2);
10596 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean;
10597 -- Special-case for a bound given by a discriminant, which in the body
10598 -- is replaced with the discriminal of the enclosing type.
10600 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean;
10601 -- Check both bounds
10603 -----------------------
10604 -- Conforming_Bounds --
10605 -----------------------
10607 function Conforming_Bounds (B1, B2 : Node_Id) return Boolean is
10608 begin
10609 if Is_Entity_Name (B1)
10610 and then Is_Entity_Name (B2)
10611 and then Ekind (Entity (B1)) = E_Discriminant
10612 then
10613 return Chars (B1) = Chars (B2);
10615 else
10616 return Fully_Conformant_Expressions (B1, B2);
10617 end if;
10618 end Conforming_Bounds;
10620 -----------------------
10621 -- Conforming_Ranges --
10622 -----------------------
10624 function Conforming_Ranges (R1, R2 : Node_Id) return Boolean is
10625 begin
10626 return
10627 Conforming_Bounds (Low_Bound (R1), Low_Bound (R2))
10628 and then
10629 Conforming_Bounds (High_Bound (R1), High_Bound (R2));
10630 end Conforming_Ranges;
10632 -- Start of processing for Fully_Conformant_Discrete_Subtypes
10634 begin
10635 if Nkind (S1) /= Nkind (S2) then
10636 return False;
10638 elsif Is_Entity_Name (S1) then
10639 return Entity (S1) = Entity (S2);
10641 elsif Nkind (S1) = N_Range then
10642 return Conforming_Ranges (S1, S2);
10644 elsif Nkind (S1) = N_Subtype_Indication then
10645 return
10646 Entity (Subtype_Mark (S1)) = Entity (Subtype_Mark (S2))
10647 and then
10648 Conforming_Ranges
10649 (Range_Expression (Constraint (S1)),
10650 Range_Expression (Constraint (S2)));
10651 else
10652 return True;
10653 end if;
10654 end Fully_Conformant_Discrete_Subtypes;
10656 --------------------
10657 -- Install_Entity --
10658 --------------------
10660 procedure Install_Entity (E : Entity_Id) is
10661 Prev : constant Entity_Id := Current_Entity (E);
10662 begin
10663 Set_Is_Immediately_Visible (E);
10664 Set_Current_Entity (E);
10665 pragma Assert (Prev /= E);
10666 Set_Homonym (E, Prev);
10667 end Install_Entity;
10669 ---------------------
10670 -- Install_Formals --
10671 ---------------------
10673 procedure Install_Formals (Id : Entity_Id) is
10674 F : Entity_Id;
10675 begin
10676 F := First_Formal (Id);
10677 while Present (F) loop
10678 Install_Entity (F);
10679 Next_Formal (F);
10680 end loop;
10681 end Install_Formals;
10683 -----------------------------
10684 -- Is_Interface_Conformant --
10685 -----------------------------
10687 function Is_Interface_Conformant
10688 (Tagged_Type : Entity_Id;
10689 Iface_Prim : Entity_Id;
10690 Prim : Entity_Id) return Boolean
10692 -- The operation may in fact be an inherited (implicit) operation
10693 -- rather than the original interface primitive, so retrieve the
10694 -- ultimate ancestor.
10696 Iface : constant Entity_Id :=
10697 Find_Dispatching_Type (Ultimate_Alias (Iface_Prim));
10698 Typ : constant Entity_Id := Find_Dispatching_Type (Prim);
10700 function Controlling_Formal (Prim : Entity_Id) return Entity_Id;
10701 -- Return the controlling formal of Prim
10703 ------------------------
10704 -- Controlling_Formal --
10705 ------------------------
10707 function Controlling_Formal (Prim : Entity_Id) return Entity_Id is
10708 E : Entity_Id;
10710 begin
10711 E := First_Entity (Prim);
10712 while Present (E) loop
10713 if Is_Formal (E) and then Is_Controlling_Formal (E) then
10714 return E;
10715 end if;
10717 Next_Entity (E);
10718 end loop;
10720 return Empty;
10721 end Controlling_Formal;
10723 -- Local variables
10725 Iface_Ctrl_F : constant Entity_Id := Controlling_Formal (Iface_Prim);
10726 Prim_Ctrl_F : constant Entity_Id := Controlling_Formal (Prim);
10728 -- Start of processing for Is_Interface_Conformant
10730 begin
10731 pragma Assert (Is_Subprogram (Iface_Prim)
10732 and then Is_Subprogram (Prim)
10733 and then Is_Dispatching_Operation (Iface_Prim)
10734 and then Is_Dispatching_Operation (Prim));
10736 pragma Assert (Is_Interface (Iface)
10737 or else (Present (Alias (Iface_Prim))
10738 and then
10739 Is_Interface
10740 (Find_Dispatching_Type (Ultimate_Alias (Iface_Prim)))));
10742 if Prim = Iface_Prim
10743 or else not Is_Subprogram (Prim)
10744 or else Ekind (Prim) /= Ekind (Iface_Prim)
10745 or else not Is_Dispatching_Operation (Prim)
10746 or else Scope (Prim) /= Scope (Tagged_Type)
10747 or else No (Typ)
10748 or else Base_Type (Typ) /= Base_Type (Tagged_Type)
10749 or else not Primitive_Names_Match (Iface_Prim, Prim)
10750 then
10751 return False;
10753 -- The mode of the controlling formals must match
10755 elsif Present (Iface_Ctrl_F)
10756 and then Present (Prim_Ctrl_F)
10757 and then Ekind (Iface_Ctrl_F) /= Ekind (Prim_Ctrl_F)
10758 then
10759 return False;
10761 -- Case of a procedure, or a function whose result type matches the
10762 -- result type of the interface primitive, or a function that has no
10763 -- controlling result (I or access I).
10765 elsif Ekind (Iface_Prim) = E_Procedure
10766 or else Etype (Prim) = Etype (Iface_Prim)
10767 or else not Has_Controlling_Result (Prim)
10768 then
10769 return Type_Conformant
10770 (Iface_Prim, Prim, Skip_Controlling_Formals => True);
10772 -- Case of a function returning an interface, or an access to one. Check
10773 -- that the return types correspond.
10775 elsif Implements_Interface (Typ, Iface) then
10776 if (Ekind (Etype (Prim)) = E_Anonymous_Access_Type)
10778 (Ekind (Etype (Iface_Prim)) = E_Anonymous_Access_Type)
10779 then
10780 return False;
10781 else
10782 return
10783 Type_Conformant (Prim, Ultimate_Alias (Iface_Prim),
10784 Skip_Controlling_Formals => True);
10785 end if;
10787 else
10788 return False;
10789 end if;
10790 end Is_Interface_Conformant;
10792 ---------------------------------
10793 -- Is_Non_Overriding_Operation --
10794 ---------------------------------
10796 function Is_Non_Overriding_Operation
10797 (Prev_E : Entity_Id;
10798 New_E : Entity_Id) return Boolean
10800 Formal : Entity_Id;
10801 F_Typ : Entity_Id;
10802 G_Typ : Entity_Id := Empty;
10804 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id;
10805 -- If F_Type is a derived type associated with a generic actual subtype,
10806 -- then return its Generic_Parent_Type attribute, else return Empty.
10808 function Types_Correspond
10809 (P_Type : Entity_Id;
10810 N_Type : Entity_Id) return Boolean;
10811 -- Returns true if and only if the types (or designated types in the
10812 -- case of anonymous access types) are the same or N_Type is derived
10813 -- directly or indirectly from P_Type.
10815 -----------------------------
10816 -- Get_Generic_Parent_Type --
10817 -----------------------------
10819 function Get_Generic_Parent_Type (F_Typ : Entity_Id) return Entity_Id is
10820 G_Typ : Entity_Id;
10821 Defn : Node_Id;
10822 Indic : Node_Id;
10824 begin
10825 if Is_Derived_Type (F_Typ)
10826 and then Nkind (Parent (F_Typ)) = N_Full_Type_Declaration
10827 then
10828 -- The tree must be traversed to determine the parent subtype in
10829 -- the generic unit, which unfortunately isn't always available
10830 -- via semantic attributes. ??? (Note: The use of Original_Node
10831 -- is needed for cases where a full derived type has been
10832 -- rewritten.)
10834 -- If the parent type is a scalar type, the derivation creates
10835 -- an anonymous base type for it, and the source type is its
10836 -- first subtype.
10838 if Is_Scalar_Type (F_Typ)
10839 and then not Comes_From_Source (F_Typ)
10840 then
10841 Defn :=
10842 Type_Definition
10843 (Original_Node (Parent (First_Subtype (F_Typ))));
10844 else
10845 Defn := Type_Definition (Original_Node (Parent (F_Typ)));
10846 end if;
10847 if Nkind (Defn) = N_Derived_Type_Definition then
10848 Indic := Subtype_Indication (Defn);
10850 if Nkind (Indic) = N_Subtype_Indication then
10851 G_Typ := Entity (Subtype_Mark (Indic));
10852 else
10853 G_Typ := Entity (Indic);
10854 end if;
10856 if Nkind (Parent (G_Typ)) = N_Subtype_Declaration
10857 and then Present (Generic_Parent_Type (Parent (G_Typ)))
10858 then
10859 return Generic_Parent_Type (Parent (G_Typ));
10860 end if;
10861 end if;
10862 end if;
10864 return Empty;
10865 end Get_Generic_Parent_Type;
10867 ----------------------
10868 -- Types_Correspond --
10869 ----------------------
10871 function Types_Correspond
10872 (P_Type : Entity_Id;
10873 N_Type : Entity_Id) return Boolean
10875 Prev_Type : Entity_Id := Base_Type (P_Type);
10876 New_Type : Entity_Id := Base_Type (N_Type);
10878 begin
10879 if Ekind (Prev_Type) = E_Anonymous_Access_Type then
10880 Prev_Type := Designated_Type (Prev_Type);
10881 end if;
10883 if Ekind (New_Type) = E_Anonymous_Access_Type then
10884 New_Type := Designated_Type (New_Type);
10885 end if;
10887 if Prev_Type = New_Type then
10888 return True;
10890 elsif not Is_Class_Wide_Type (New_Type) then
10891 while Etype (New_Type) /= New_Type loop
10892 New_Type := Etype (New_Type);
10894 if New_Type = Prev_Type then
10895 return True;
10896 end if;
10897 end loop;
10898 end if;
10899 return False;
10900 end Types_Correspond;
10902 -- Start of processing for Is_Non_Overriding_Operation
10904 begin
10905 -- In the case where both operations are implicit derived subprograms
10906 -- then neither overrides the other. This can only occur in certain
10907 -- obscure cases (e.g., derivation from homographs created in a generic
10908 -- instantiation).
10910 if Present (Alias (Prev_E)) and then Present (Alias (New_E)) then
10911 return True;
10913 elsif Ekind (Current_Scope) = E_Package
10914 and then Is_Generic_Instance (Current_Scope)
10915 and then In_Private_Part (Current_Scope)
10916 and then Comes_From_Source (New_E)
10917 then
10918 -- We examine the formals and result type of the inherited operation,
10919 -- to determine whether their type is derived from (the instance of)
10920 -- a generic type. The first such formal or result type is the one
10921 -- tested.
10923 Formal := First_Formal (Prev_E);
10924 F_Typ := Empty;
10925 while Present (Formal) loop
10926 F_Typ := Base_Type (Etype (Formal));
10928 if Ekind (F_Typ) = E_Anonymous_Access_Type then
10929 F_Typ := Designated_Type (F_Typ);
10930 end if;
10932 G_Typ := Get_Generic_Parent_Type (F_Typ);
10933 exit when Present (G_Typ);
10935 Next_Formal (Formal);
10936 end loop;
10938 -- If the function dispatches on result check the result type
10940 if No (G_Typ) and then Ekind (Prev_E) = E_Function then
10941 G_Typ := Get_Generic_Parent_Type (Base_Type (Etype (Prev_E)));
10942 end if;
10944 if No (G_Typ) then
10945 return False;
10946 end if;
10948 -- If the generic type is a private type, then the original operation
10949 -- was not overriding in the generic, because there was no primitive
10950 -- operation to override.
10952 if Nkind (Parent (G_Typ)) = N_Formal_Type_Declaration
10953 and then Nkind (Formal_Type_Definition (Parent (G_Typ))) =
10954 N_Formal_Private_Type_Definition
10955 then
10956 return True;
10958 -- The generic parent type is the ancestor of a formal derived
10959 -- type declaration. We need to check whether it has a primitive
10960 -- operation that should be overridden by New_E in the generic.
10962 else
10963 declare
10964 P_Formal : Entity_Id;
10965 N_Formal : Entity_Id;
10966 P_Typ : Entity_Id;
10967 N_Typ : Entity_Id;
10968 P_Prim : Entity_Id;
10969 Prim_Elt : Elmt_Id := First_Elmt (Primitive_Operations (G_Typ));
10971 begin
10972 while Present (Prim_Elt) loop
10973 P_Prim := Node (Prim_Elt);
10975 if Chars (P_Prim) = Chars (New_E)
10976 and then Ekind (P_Prim) = Ekind (New_E)
10977 then
10978 P_Formal := First_Formal (P_Prim);
10979 N_Formal := First_Formal (New_E);
10980 while Present (P_Formal) and then Present (N_Formal) loop
10981 P_Typ := Etype (P_Formal);
10982 N_Typ := Etype (N_Formal);
10984 if not Types_Correspond (P_Typ, N_Typ) then
10985 exit;
10986 end if;
10988 Next_Formal (P_Formal);
10989 Next_Formal (N_Formal);
10990 end loop;
10992 -- Found a matching primitive operation belonging to the
10993 -- formal ancestor type, so the new subprogram is
10994 -- overriding.
10996 if No (P_Formal)
10997 and then No (N_Formal)
10998 and then (Ekind (New_E) /= E_Function
10999 or else
11000 Types_Correspond
11001 (Etype (P_Prim), Etype (New_E)))
11002 then
11003 return False;
11004 end if;
11005 end if;
11007 Next_Elmt (Prim_Elt);
11008 end loop;
11010 -- If no match found, then the new subprogram does not override
11011 -- in the generic (nor in the instance).
11013 -- If the type in question is not abstract, and the subprogram
11014 -- is, this will be an error if the new operation is in the
11015 -- private part of the instance. Emit a warning now, which will
11016 -- make the subsequent error message easier to understand.
11018 if Present (F_Typ) and then not Is_Abstract_Type (F_Typ)
11019 and then Is_Abstract_Subprogram (Prev_E)
11020 and then In_Private_Part (Current_Scope)
11021 then
11022 Error_Msg_Node_2 := F_Typ;
11023 Error_Msg_NE
11024 ("private operation& in generic unit does not override "
11025 & "any primitive operation of& (RM 12.3(18))??",
11026 New_E, New_E);
11027 end if;
11029 return True;
11030 end;
11031 end if;
11032 else
11033 return False;
11034 end if;
11035 end Is_Non_Overriding_Operation;
11037 -------------------------------------
11038 -- List_Inherited_Pre_Post_Aspects --
11039 -------------------------------------
11041 procedure List_Inherited_Pre_Post_Aspects (E : Entity_Id) is
11042 begin
11043 if Opt.List_Inherited_Aspects
11044 and then Is_Subprogram_Or_Generic_Subprogram (E)
11045 then
11046 declare
11047 Subps : constant Subprogram_List := Inherited_Subprograms (E);
11048 Items : Node_Id;
11049 Prag : Node_Id;
11051 begin
11052 for Index in Subps'Range loop
11053 Items := Contract (Subps (Index));
11055 if Present (Items) then
11056 Prag := Pre_Post_Conditions (Items);
11057 while Present (Prag) loop
11058 Error_Msg_Sloc := Sloc (Prag);
11060 if Class_Present (Prag)
11061 and then not Split_PPC (Prag)
11062 then
11063 if Pragma_Name (Prag) = Name_Precondition then
11064 Error_Msg_N
11065 ("info: & inherits `Pre''Class` aspect from "
11066 & "#?.l?", E);
11067 else
11068 Error_Msg_N
11069 ("info: & inherits `Post''Class` aspect from "
11070 & "#?.l?", E);
11071 end if;
11072 end if;
11074 Prag := Next_Pragma (Prag);
11075 end loop;
11076 end if;
11077 end loop;
11078 end;
11079 end if;
11080 end List_Inherited_Pre_Post_Aspects;
11082 ------------------------------
11083 -- Make_Inequality_Operator --
11084 ------------------------------
11086 -- S is the defining identifier of an equality operator. We build a
11087 -- subprogram declaration with the right signature. This operation is
11088 -- intrinsic, because it is always expanded as the negation of the
11089 -- call to the equality function.
11091 procedure Make_Inequality_Operator (S : Entity_Id) is
11092 Loc : constant Source_Ptr := Sloc (S);
11093 Decl : Node_Id;
11094 Formals : List_Id;
11095 Op_Name : Entity_Id;
11097 FF : constant Entity_Id := First_Formal (S);
11098 NF : constant Entity_Id := Next_Formal (FF);
11100 begin
11101 -- Check that equality was properly defined, ignore call if not
11103 if No (NF) then
11104 return;
11105 end if;
11107 declare
11108 A : constant Entity_Id :=
11109 Make_Defining_Identifier (Sloc (FF),
11110 Chars => Chars (FF));
11112 B : constant Entity_Id :=
11113 Make_Defining_Identifier (Sloc (NF),
11114 Chars => Chars (NF));
11116 begin
11117 Op_Name := Make_Defining_Operator_Symbol (Loc, Name_Op_Ne);
11119 Formals := New_List (
11120 Make_Parameter_Specification (Loc,
11121 Defining_Identifier => A,
11122 Parameter_Type =>
11123 New_Occurrence_Of (Etype (First_Formal (S)),
11124 Sloc (Etype (First_Formal (S))))),
11126 Make_Parameter_Specification (Loc,
11127 Defining_Identifier => B,
11128 Parameter_Type =>
11129 New_Occurrence_Of (Etype (Next_Formal (First_Formal (S))),
11130 Sloc (Etype (Next_Formal (First_Formal (S)))))));
11132 Decl :=
11133 Make_Subprogram_Declaration (Loc,
11134 Specification =>
11135 Make_Function_Specification (Loc,
11136 Defining_Unit_Name => Op_Name,
11137 Parameter_Specifications => Formals,
11138 Result_Definition =>
11139 New_Occurrence_Of (Standard_Boolean, Loc)));
11141 -- Insert inequality right after equality if it is explicit or after
11142 -- the derived type when implicit. These entities are created only
11143 -- for visibility purposes, and eventually replaced in the course
11144 -- of expansion, so they do not need to be attached to the tree and
11145 -- seen by the back-end. Keeping them internal also avoids spurious
11146 -- freezing problems. The declaration is inserted in the tree for
11147 -- analysis, and removed afterwards. If the equality operator comes
11148 -- from an explicit declaration, attach the inequality immediately
11149 -- after. Else the equality is inherited from a derived type
11150 -- declaration, so insert inequality after that declaration.
11152 if No (Alias (S)) then
11153 Insert_After (Unit_Declaration_Node (S), Decl);
11154 elsif Is_List_Member (Parent (S)) then
11155 Insert_After (Parent (S), Decl);
11156 else
11157 Insert_After (Parent (Etype (First_Formal (S))), Decl);
11158 end if;
11160 Mark_Rewrite_Insertion (Decl);
11161 Set_Is_Intrinsic_Subprogram (Op_Name);
11162 Analyze (Decl);
11163 Remove (Decl);
11164 Set_Has_Completion (Op_Name);
11165 Set_Corresponding_Equality (Op_Name, S);
11166 Set_Is_Abstract_Subprogram (Op_Name, Is_Abstract_Subprogram (S));
11167 end;
11168 end Make_Inequality_Operator;
11170 ----------------------
11171 -- May_Need_Actuals --
11172 ----------------------
11174 procedure May_Need_Actuals (Fun : Entity_Id) is
11175 F : Entity_Id;
11176 B : Boolean;
11178 begin
11179 F := First_Formal (Fun);
11180 B := True;
11181 while Present (F) loop
11182 if No (Default_Value (F)) then
11183 B := False;
11184 exit;
11185 end if;
11187 Next_Formal (F);
11188 end loop;
11190 Set_Needs_No_Actuals (Fun, B);
11191 end May_Need_Actuals;
11193 ---------------------
11194 -- Mode_Conformant --
11195 ---------------------
11197 function Mode_Conformant (New_Id, Old_Id : Entity_Id) return Boolean is
11198 Result : Boolean;
11199 begin
11200 Check_Conformance (New_Id, Old_Id, Mode_Conformant, False, Result);
11201 return Result;
11202 end Mode_Conformant;
11204 ---------------------------
11205 -- New_Overloaded_Entity --
11206 ---------------------------
11208 procedure New_Overloaded_Entity
11209 (S : Entity_Id;
11210 Derived_Type : Entity_Id := Empty)
11212 Overridden_Subp : Entity_Id := Empty;
11213 -- Set if the current scope has an operation that is type-conformant
11214 -- with S, and becomes hidden by S.
11216 Is_Primitive_Subp : Boolean;
11217 -- Set to True if the new subprogram is primitive
11219 E : Entity_Id;
11220 -- Entity that S overrides
11222 procedure Check_For_Primitive_Subprogram
11223 (Is_Primitive : out Boolean;
11224 Is_Overriding : Boolean := False);
11225 -- If the subprogram being analyzed is a primitive operation of the type
11226 -- of a formal or result, set the Has_Primitive_Operations flag on the
11227 -- type, and set Is_Primitive to True (otherwise set to False). Set the
11228 -- corresponding flag on the entity itself for later use.
11230 function Has_Matching_Entry_Or_Subprogram (E : Entity_Id) return Boolean;
11231 -- True if a) E is a subprogram whose first formal is a concurrent type
11232 -- defined in the scope of E that has some entry or subprogram whose
11233 -- profile matches E, or b) E is an internally built dispatching
11234 -- subprogram of a protected type and there is a matching subprogram
11235 -- defined in the enclosing scope of the protected type, or c) E is
11236 -- an entry of a synchronized type and a matching procedure has been
11237 -- previously defined in the enclosing scope of the synchronized type.
11239 function Is_Private_Declaration (E : Entity_Id) return Boolean;
11240 -- Check that E is declared in the private part of the current package,
11241 -- or in the package body, where it may hide a previous declaration.
11242 -- We can't use In_Private_Part by itself because this flag is also
11243 -- set when freezing entities, so we must examine the place of the
11244 -- declaration in the tree, and recognize wrapper packages as well.
11246 function Is_Overriding_Alias
11247 (Old_E : Entity_Id;
11248 New_E : Entity_Id) return Boolean;
11249 -- Check whether new subprogram and old subprogram are both inherited
11250 -- from subprograms that have distinct dispatch table entries. This can
11251 -- occur with derivations from instances with accidental homonyms. The
11252 -- function is conservative given that the converse is only true within
11253 -- instances that contain accidental overloadings.
11255 procedure Report_Conflict (S : Entity_Id; E : Entity_Id);
11256 -- Report conflict between entities S and E
11258 ------------------------------------
11259 -- Check_For_Primitive_Subprogram --
11260 ------------------------------------
11262 procedure Check_For_Primitive_Subprogram
11263 (Is_Primitive : out Boolean;
11264 Is_Overriding : Boolean := False)
11266 procedure Add_Or_Replace_Untagged_Primitive (Typ : Entity_Id);
11267 -- Either add the new subprogram to the list of primitives for
11268 -- untagged type Typ, or if it overrides a primitive of Typ, then
11269 -- replace the overridden primitive in Typ's primitives list with
11270 -- the new subprogram.
11272 function Visible_Part_Type (T : Entity_Id) return Boolean;
11273 -- Returns true if T is declared in the visible part of the current
11274 -- package scope; otherwise returns false. Assumes that T is declared
11275 -- in a package.
11277 procedure Check_Private_Overriding (T : Entity_Id);
11278 -- Checks that if a primitive abstract subprogram of a visible
11279 -- abstract type is declared in a private part, then it must override
11280 -- an abstract subprogram declared in the visible part. Also checks
11281 -- that if a primitive function with a controlling result is declared
11282 -- in a private part, then it must override a function declared in
11283 -- the visible part.
11285 ---------------------------------------
11286 -- Add_Or_Replace_Untagged_Primitive --
11287 ---------------------------------------
11289 procedure Add_Or_Replace_Untagged_Primitive (Typ : Entity_Id) is
11290 Replaced_Overridden_Subp : Boolean := False;
11292 begin
11293 pragma Assert (not Is_Tagged_Type (Typ));
11295 -- Anonymous access types don't have a primitives list. Normally
11296 -- such types wouldn't make it here, but the case of anonymous
11297 -- access-to-subprogram types can.
11299 if not Is_Anonymous_Access_Type (Typ) then
11301 -- If S overrides a subprogram that's a primitive of
11302 -- the formal's type, then replace the overridden
11303 -- subprogram with the new subprogram in the type's
11304 -- list of primitives.
11306 if Is_Overriding then
11307 pragma Assert (Present (Overridden_Subp)
11308 and then Overridden_Subp = E); -- Added for now
11310 declare
11311 Prim_Ops : constant Elist_Id :=
11312 Primitive_Operations (Typ);
11313 Elmt : Elmt_Id;
11314 begin
11315 if Present (Prim_Ops) then
11316 Elmt := First_Elmt (Prim_Ops);
11318 while Present (Elmt)
11319 and then Node (Elmt) /= Overridden_Subp
11320 loop
11321 Next_Elmt (Elmt);
11322 end loop;
11324 if Present (Elmt) then
11325 Replace_Elmt (Elmt, S);
11326 Replaced_Overridden_Subp := True;
11327 end if;
11328 end if;
11329 end;
11330 end if;
11332 -- If the new subprogram did not override an operation
11333 -- of the formal's type, then add it to the primitives
11334 -- list of the type.
11336 if not Replaced_Overridden_Subp then
11337 Append_Unique_Elmt (S, Primitive_Operations (Typ));
11338 end if;
11339 end if;
11340 end Add_Or_Replace_Untagged_Primitive;
11342 ------------------------------
11343 -- Check_Private_Overriding --
11344 ------------------------------
11346 procedure Check_Private_Overriding (T : Entity_Id) is
11347 function Overrides_Private_Part_Op return Boolean;
11348 -- This detects the special case where the overriding subprogram
11349 -- is overriding a subprogram that was declared in the same
11350 -- private part. That case is illegal by 3.9.3(10).
11352 function Overrides_Visible_Function
11353 (Partial_View : Entity_Id) return Boolean;
11354 -- True if S overrides a function in the visible part. The
11355 -- overridden function could be explicitly or implicitly declared.
11357 -------------------------------
11358 -- Overrides_Private_Part_Op --
11359 -------------------------------
11361 function Overrides_Private_Part_Op return Boolean is
11362 Over_Decl : constant Node_Id :=
11363 Unit_Declaration_Node
11364 (Ultimate_Alias (Overridden_Operation (S)));
11365 Subp_Decl : constant Node_Id := Unit_Declaration_Node (S);
11367 begin
11368 pragma Assert (Is_Overriding);
11369 pragma Assert
11370 (Nkind (Over_Decl) = N_Abstract_Subprogram_Declaration);
11371 pragma Assert
11372 (Nkind (Subp_Decl) = N_Abstract_Subprogram_Declaration);
11374 return In_Same_List (Over_Decl, Subp_Decl);
11375 end Overrides_Private_Part_Op;
11377 --------------------------------
11378 -- Overrides_Visible_Function --
11379 --------------------------------
11381 function Overrides_Visible_Function
11382 (Partial_View : Entity_Id) return Boolean
11384 begin
11385 if not Is_Overriding or else not Has_Homonym (S) then
11386 return False;
11387 end if;
11389 if not Present (Partial_View) then
11390 return True;
11391 end if;
11393 -- Search through all the homonyms H of S in the current
11394 -- package spec, and return True if we find one that matches.
11395 -- Note that Parent (H) will be the declaration of the
11396 -- partial view of T for a match.
11398 declare
11399 H : Entity_Id := S;
11400 begin
11401 loop
11402 H := Homonym (H);
11403 exit when not Present (H) or else Scope (H) /= Scope (S);
11405 if Nkind (Parent (H)) in
11406 N_Private_Extension_Declaration |
11407 N_Private_Type_Declaration
11408 and then Defining_Identifier (Parent (H)) = Partial_View
11409 then
11410 return True;
11411 end if;
11412 end loop;
11413 end;
11415 return False;
11416 end Overrides_Visible_Function;
11418 -- Start of processing for Check_Private_Overriding
11420 begin
11421 if Is_Package_Or_Generic_Package (Current_Scope)
11422 and then In_Private_Part (Current_Scope)
11423 and then Visible_Part_Type (T)
11424 and then not In_Instance
11425 then
11426 if Is_Abstract_Type (T)
11427 and then Is_Abstract_Subprogram (S)
11428 and then (not Is_Overriding
11429 or else not Is_Abstract_Subprogram (E)
11430 or else Overrides_Private_Part_Op)
11431 then
11432 Error_Msg_N
11433 ("abstract subprograms must be visible (RM 3.9.3(10))!",
11436 elsif Ekind (S) = E_Function then
11437 declare
11438 Partial_View : constant Entity_Id :=
11439 Incomplete_Or_Partial_View (T);
11441 begin
11442 if not Overrides_Visible_Function (Partial_View) then
11444 -- Here, S is "function ... return T;" declared in
11445 -- the private part, not overriding some visible
11446 -- operation. That's illegal in the tagged case
11447 -- (but not if the private type is untagged).
11449 if ((Present (Partial_View)
11450 and then Is_Tagged_Type (Partial_View))
11451 or else (not Present (Partial_View)
11452 and then Is_Tagged_Type (T)))
11453 and then T = Base_Type (Etype (S))
11454 then
11455 Error_Msg_N
11456 ("private function with tagged result must"
11457 & " override visible-part function", S);
11458 Error_Msg_N
11459 ("\move subprogram to the visible part"
11460 & " (RM 3.9.3(10))", S);
11462 -- Ada 2012 (AI05-0073): Extend this check to the case
11463 -- of a function whose result subtype is defined by an
11464 -- access_definition designating specific tagged type.
11466 elsif Ekind (Etype (S)) = E_Anonymous_Access_Type
11467 and then Is_Tagged_Type (Designated_Type (Etype (S)))
11468 and then
11469 not Is_Class_Wide_Type
11470 (Designated_Type (Etype (S)))
11471 and then Ada_Version >= Ada_2012
11472 then
11473 Error_Msg_N
11474 ("private function with controlling access "
11475 & "result must override visible-part function",
11477 Error_Msg_N
11478 ("\move subprogram to the visible part"
11479 & " (RM 3.9.3(10))", S);
11480 end if;
11481 end if;
11482 end;
11483 end if;
11484 end if;
11485 end Check_Private_Overriding;
11487 -----------------------
11488 -- Visible_Part_Type --
11489 -----------------------
11491 function Visible_Part_Type (T : Entity_Id) return Boolean is
11492 P : constant Node_Id := Unit_Declaration_Node (Scope (T));
11494 begin
11495 -- If the entity is a private type, then it must be declared in a
11496 -- visible part.
11498 if Is_Private_Type (T) then
11499 return True;
11501 elsif Is_Type (T) and then Has_Private_Declaration (T) then
11502 return True;
11504 elsif Is_List_Member (Declaration_Node (T))
11505 and then List_Containing (Declaration_Node (T)) =
11506 Visible_Declarations (Specification (P))
11507 then
11508 return True;
11510 else
11511 return False;
11512 end if;
11513 end Visible_Part_Type;
11515 -- Local variables
11517 Formal : Entity_Id;
11518 F_Typ : Entity_Id;
11519 B_Typ : Entity_Id;
11521 -- Start of processing for Check_For_Primitive_Subprogram
11523 begin
11524 Is_Primitive := False;
11526 if not Comes_From_Source (S) then
11528 -- Add an inherited primitive for an untagged derived type to
11529 -- Derived_Type's list of primitives. Tagged primitives are
11530 -- dealt with in Check_Dispatching_Operation. Do this even when
11531 -- Extensions_Allowed is False to issue better error messages.
11533 if Present (Derived_Type)
11534 and then not Is_Tagged_Type (Derived_Type)
11535 then
11536 Append_Unique_Elmt (S, Primitive_Operations (Derived_Type));
11537 end if;
11539 -- If subprogram is at library level, it is not primitive operation
11541 elsif Current_Scope = Standard_Standard then
11542 null;
11544 elsif (Is_Package_Or_Generic_Package (Current_Scope)
11545 and then not In_Package_Body (Current_Scope))
11546 or else Is_Overriding
11547 then
11548 -- For function, check return type
11550 if Ekind (S) = E_Function then
11551 if Ekind (Etype (S)) = E_Anonymous_Access_Type then
11552 F_Typ := Designated_Type (Etype (S));
11553 else
11554 F_Typ := Etype (S);
11555 end if;
11557 B_Typ := Base_Type (F_Typ);
11559 if Scope (B_Typ) = Current_Scope
11560 and then not Is_Class_Wide_Type (B_Typ)
11561 and then not Is_Generic_Type (B_Typ)
11562 then
11563 Is_Primitive := True;
11564 Set_Has_Primitive_Operations (B_Typ);
11565 Set_Is_Primitive (S);
11567 -- Add a primitive for an untagged type to B_Typ's
11568 -- list of primitives. Tagged primitives are dealt with
11569 -- in Check_Dispatching_Operation. Do this even when
11570 -- Extensions_Allowed is False to issue better error
11571 -- messages.
11573 if not Is_Tagged_Type (B_Typ) then
11574 Add_Or_Replace_Untagged_Primitive (B_Typ);
11575 end if;
11577 Check_Private_Overriding (B_Typ);
11578 -- The Ghost policy in effect at the point of declaration
11579 -- or a tagged type and a primitive operation must match
11580 -- (SPARK RM 6.9(16)).
11582 Check_Ghost_Primitive (S, B_Typ);
11583 end if;
11584 end if;
11586 -- For all subprograms, check formals
11588 Formal := First_Formal (S);
11589 while Present (Formal) loop
11590 if Ekind (Etype (Formal)) = E_Anonymous_Access_Type then
11591 F_Typ := Designated_Type (Etype (Formal));
11592 else
11593 F_Typ := Etype (Formal);
11594 end if;
11596 B_Typ := Base_Type (F_Typ);
11598 if Ekind (B_Typ) = E_Access_Subtype then
11599 B_Typ := Base_Type (B_Typ);
11600 end if;
11602 if Scope (B_Typ) = Current_Scope
11603 and then not Is_Class_Wide_Type (B_Typ)
11604 and then not Is_Generic_Type (B_Typ)
11605 then
11606 Is_Primitive := True;
11607 Set_Is_Primitive (S);
11608 Set_Has_Primitive_Operations (B_Typ);
11610 -- Add a primitive for an untagged type to B_Typ's list
11611 -- of primitives. Tagged primitives are dealt with in
11612 -- Check_Dispatching_Operation. Do this even when
11613 -- Extensions_Allowed is False to issue better error
11614 -- messages.
11616 if not Is_Tagged_Type (B_Typ) then
11617 Add_Or_Replace_Untagged_Primitive (B_Typ);
11618 end if;
11620 Check_Private_Overriding (B_Typ);
11622 -- The Ghost policy in effect at the point of declaration
11623 -- of a tagged type and a primitive operation must match
11624 -- (SPARK RM 6.9(16)).
11626 Check_Ghost_Primitive (S, B_Typ);
11627 end if;
11629 Next_Formal (Formal);
11630 end loop;
11632 -- Special case: An equality function can be redefined for a type
11633 -- occurring in a declarative part, and won't otherwise be treated as
11634 -- a primitive because it doesn't occur in a package spec and doesn't
11635 -- override an inherited subprogram. It's important that we mark it
11636 -- primitive so it can be returned by Collect_Primitive_Operations
11637 -- and be used in composing the equality operation of later types
11638 -- that have a component of the type.
11640 elsif Chars (S) = Name_Op_Eq
11641 and then Etype (S) = Standard_Boolean
11642 then
11643 B_Typ := Base_Type (Etype (First_Formal (S)));
11645 if Scope (B_Typ) = Current_Scope
11646 and then
11647 Base_Type (Etype (Next_Formal (First_Formal (S)))) = B_Typ
11648 and then not Is_Limited_Type (B_Typ)
11649 then
11650 Is_Primitive := True;
11651 Set_Is_Primitive (S);
11652 Set_Has_Primitive_Operations (B_Typ);
11653 Check_Private_Overriding (B_Typ);
11655 -- The Ghost policy in effect at the point of declaration of a
11656 -- tagged type and a primitive operation must match
11657 -- (SPARK RM 6.9(16)).
11659 Check_Ghost_Primitive (S, B_Typ);
11660 end if;
11661 end if;
11662 end Check_For_Primitive_Subprogram;
11664 --------------------------------------
11665 -- Has_Matching_Entry_Or_Subprogram --
11666 --------------------------------------
11668 function Has_Matching_Entry_Or_Subprogram
11669 (E : Entity_Id) return Boolean
11671 function Check_Conforming_Parameters
11672 (E1_Param : Node_Id;
11673 E2_Param : Node_Id;
11674 Ctype : Conformance_Type) return Boolean;
11675 -- Starting from the given parameters, check that all the parameters
11676 -- of two entries or subprograms are conformant. Used to skip
11677 -- the check on the controlling argument.
11679 function Matching_Entry_Or_Subprogram
11680 (Conc_Typ : Entity_Id;
11681 Subp : Entity_Id) return Entity_Id;
11682 -- Return the first entry or subprogram of the given concurrent type
11683 -- whose name matches the name of Subp and has a profile conformant
11684 -- with Subp; return Empty if not found.
11686 function Matching_Dispatching_Subprogram
11687 (Conc_Typ : Entity_Id;
11688 Ent : Entity_Id) return Entity_Id;
11689 -- Return the first dispatching primitive of Conc_Type defined in the
11690 -- enclosing scope of Conc_Type (i.e. before the full definition of
11691 -- this concurrent type) whose name matches the entry Ent and has a
11692 -- profile conformant with the profile of the corresponding (not yet
11693 -- built) dispatching primitive of Ent; return Empty if not found.
11695 function Matching_Original_Protected_Subprogram
11696 (Prot_Typ : Entity_Id;
11697 Subp : Entity_Id) return Entity_Id;
11698 -- Return the first subprogram defined in the enclosing scope of
11699 -- Prot_Typ (before the full definition of this protected type)
11700 -- whose name matches the original name of Subp and has a profile
11701 -- conformant with the profile of Subp; return Empty if not found.
11703 function Normalized_First_Parameter_Type
11704 (E : Entity_Id) return Entity_Id;
11705 -- Return the type of the first parameter unless that type
11706 -- is an anonymous access type, in which case return the
11707 -- designated type. Used to treat anonymous-access-to-synchronized
11708 -- the same as synchronized for purposes of checking for
11709 -- prefixed view profile conflicts.
11711 ---------------------------------
11712 -- Check_Conforming_Parameters --
11713 ---------------------------------
11715 function Check_Conforming_Parameters
11716 (E1_Param : Node_Id;
11717 E2_Param : Node_Id;
11718 Ctype : Conformance_Type) return Boolean
11720 Param_E1 : Node_Id := E1_Param;
11721 Param_E2 : Node_Id := E2_Param;
11723 begin
11724 while Present (Param_E1) and then Present (Param_E2) loop
11725 if (Ctype >= Mode_Conformant) and then
11726 Ekind (Defining_Identifier (Param_E1)) /=
11727 Ekind (Defining_Identifier (Param_E2))
11728 then
11729 return False;
11730 elsif not
11731 Conforming_Types
11732 (Find_Parameter_Type (Param_E1),
11733 Find_Parameter_Type (Param_E2),
11734 Ctype)
11735 then
11736 return False;
11737 end if;
11739 Next (Param_E1);
11740 Next (Param_E2);
11741 end loop;
11743 -- The candidate is not valid if one of the two lists contains
11744 -- more parameters than the other
11746 return No (Param_E1) and then No (Param_E2);
11747 end Check_Conforming_Parameters;
11749 ----------------------------------
11750 -- Matching_Entry_Or_Subprogram --
11751 ----------------------------------
11753 function Matching_Entry_Or_Subprogram
11754 (Conc_Typ : Entity_Id;
11755 Subp : Entity_Id) return Entity_Id
11757 E : Entity_Id;
11759 begin
11760 E := First_Entity (Conc_Typ);
11761 while Present (E) loop
11762 if Chars (Subp) = Chars (E)
11763 and then (Ekind (E) = E_Entry or else Is_Subprogram (E))
11764 and then
11765 Check_Conforming_Parameters
11766 (First (Parameter_Specifications (Parent (E))),
11767 Next (First (Parameter_Specifications (Parent (Subp)))),
11768 Type_Conformant)
11769 then
11770 return E;
11771 end if;
11773 Next_Entity (E);
11774 end loop;
11776 return Empty;
11777 end Matching_Entry_Or_Subprogram;
11779 -------------------------------------
11780 -- Matching_Dispatching_Subprogram --
11781 -------------------------------------
11783 function Matching_Dispatching_Subprogram
11784 (Conc_Typ : Entity_Id;
11785 Ent : Entity_Id) return Entity_Id
11787 E : Entity_Id;
11789 begin
11790 -- Search for entities in the enclosing scope of this synchronized
11791 -- type.
11793 pragma Assert (Is_Concurrent_Type (Conc_Typ));
11794 Push_Scope (Scope (Conc_Typ));
11795 E := Current_Entity_In_Scope (Ent);
11796 Pop_Scope;
11798 while Present (E) loop
11799 if Scope (E) = Scope (Conc_Typ)
11800 and then Comes_From_Source (E)
11801 and then Ekind (E) = E_Procedure
11802 and then Present (First_Entity (E))
11803 and then Is_Controlling_Formal (First_Entity (E))
11804 and then Etype (First_Entity (E)) = Conc_Typ
11805 and then
11806 Check_Conforming_Parameters
11807 (First (Parameter_Specifications (Parent (Ent))),
11808 Next (First (Parameter_Specifications (Parent (E)))),
11809 Subtype_Conformant)
11810 then
11811 return E;
11812 end if;
11814 E := Homonym (E);
11815 end loop;
11817 return Empty;
11818 end Matching_Dispatching_Subprogram;
11820 --------------------------------------------
11821 -- Matching_Original_Protected_Subprogram --
11822 --------------------------------------------
11824 function Matching_Original_Protected_Subprogram
11825 (Prot_Typ : Entity_Id;
11826 Subp : Entity_Id) return Entity_Id
11828 ICF : constant Boolean :=
11829 Is_Controlling_Formal (First_Entity (Subp));
11830 E : Entity_Id;
11832 begin
11833 -- Temporarily decorate the first parameter of Subp as controlling
11834 -- formal, required to invoke Subtype_Conformant.
11836 Set_Is_Controlling_Formal (First_Entity (Subp));
11838 E :=
11839 Current_Entity_In_Scope (Original_Protected_Subprogram (Subp));
11841 while Present (E) loop
11842 if Scope (E) = Scope (Prot_Typ)
11843 and then Comes_From_Source (E)
11844 and then Ekind (Subp) = Ekind (E)
11845 and then Present (First_Entity (E))
11846 and then Is_Controlling_Formal (First_Entity (E))
11847 and then Etype (First_Entity (E)) = Prot_Typ
11848 and then Subtype_Conformant (Subp, E,
11849 Skip_Controlling_Formals => True)
11850 then
11851 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
11852 return E;
11853 end if;
11855 E := Homonym (E);
11856 end loop;
11858 Set_Is_Controlling_Formal (First_Entity (Subp), ICF);
11860 return Empty;
11861 end Matching_Original_Protected_Subprogram;
11863 -------------------------------------
11864 -- Normalized_First_Parameter_Type --
11865 -------------------------------------
11867 function Normalized_First_Parameter_Type
11868 (E : Entity_Id) return Entity_Id
11870 Result : Entity_Id := Etype (First_Entity (E));
11871 begin
11872 if Ekind (Result) = E_Anonymous_Access_Type then
11873 Result := Designated_Type (Result);
11874 end if;
11875 return Result;
11876 end Normalized_First_Parameter_Type;
11878 -- Start of processing for Has_Matching_Entry_Or_Subprogram
11880 begin
11881 -- Case 1: E is a subprogram whose first formal is a concurrent type
11882 -- defined in the scope of E that has an entry or subprogram whose
11883 -- profile matches E.
11885 if Comes_From_Source (E)
11886 and then Is_Subprogram (E)
11887 and then Present (First_Entity (E))
11888 and then Is_Concurrent_Record_Type
11889 (Normalized_First_Parameter_Type (E))
11890 then
11891 if Scope (E) =
11892 Scope (Corresponding_Concurrent_Type
11893 (Normalized_First_Parameter_Type (E)))
11894 and then
11895 Present
11896 (Matching_Entry_Or_Subprogram
11897 (Corresponding_Concurrent_Type
11898 (Normalized_First_Parameter_Type (E)),
11899 Subp => E))
11900 then
11901 Report_Conflict (E,
11902 Matching_Entry_Or_Subprogram
11903 (Corresponding_Concurrent_Type
11904 (Normalized_First_Parameter_Type (E)),
11905 Subp => E));
11906 return True;
11907 end if;
11909 -- Case 2: E is an internally built dispatching subprogram of a
11910 -- protected type and there is a subprogram defined in the enclosing
11911 -- scope of the protected type that has the original name of E and
11912 -- its profile is conformant with the profile of E. We check the
11913 -- name of the original protected subprogram associated with E since
11914 -- the expander builds dispatching primitives of protected functions
11915 -- and procedures with other names (see Exp_Ch9.Build_Selected_Name).
11917 elsif not Comes_From_Source (E)
11918 and then Is_Subprogram (E)
11919 and then Present (First_Entity (E))
11920 and then Is_Concurrent_Record_Type (Etype (First_Entity (E)))
11921 and then Present (Original_Protected_Subprogram (E))
11922 and then
11923 Present
11924 (Matching_Original_Protected_Subprogram
11925 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
11926 Subp => E))
11927 then
11928 Report_Conflict (E,
11929 Matching_Original_Protected_Subprogram
11930 (Corresponding_Concurrent_Type (Etype (First_Entity (E))),
11931 Subp => E));
11932 return True;
11934 -- Case 3: E is an entry of a synchronized type and a matching
11935 -- procedure has been previously defined in the enclosing scope
11936 -- of the synchronized type.
11938 elsif Comes_From_Source (E)
11939 and then Ekind (E) = E_Entry
11940 and then
11941 Present (Matching_Dispatching_Subprogram (Current_Scope, E))
11942 then
11943 Report_Conflict (E,
11944 Matching_Dispatching_Subprogram (Current_Scope, E));
11945 return True;
11946 end if;
11948 return False;
11949 end Has_Matching_Entry_Or_Subprogram;
11951 ----------------------------
11952 -- Is_Private_Declaration --
11953 ----------------------------
11955 function Is_Private_Declaration (E : Entity_Id) return Boolean is
11956 Decl : constant Node_Id := Unit_Declaration_Node (E);
11957 Priv_Decls : List_Id;
11959 begin
11960 if Is_Package_Or_Generic_Package (Current_Scope)
11961 and then In_Private_Part (Current_Scope)
11962 then
11963 Priv_Decls :=
11964 Private_Declarations (Package_Specification (Current_Scope));
11966 return In_Package_Body (Current_Scope)
11967 or else
11968 (Is_List_Member (Decl)
11969 and then List_Containing (Decl) = Priv_Decls)
11970 or else (Nkind (Parent (Decl)) = N_Package_Specification
11971 and then not
11972 Is_Compilation_Unit
11973 (Defining_Entity (Parent (Decl)))
11974 and then List_Containing (Parent (Parent (Decl))) =
11975 Priv_Decls);
11976 else
11977 return False;
11978 end if;
11979 end Is_Private_Declaration;
11981 --------------------------
11982 -- Is_Overriding_Alias --
11983 --------------------------
11985 function Is_Overriding_Alias
11986 (Old_E : Entity_Id;
11987 New_E : Entity_Id) return Boolean
11989 AO : constant Entity_Id := Alias (Old_E);
11990 AN : constant Entity_Id := Alias (New_E);
11992 begin
11993 return Scope (AO) /= Scope (AN)
11994 or else No (DTC_Entity (AO))
11995 or else No (DTC_Entity (AN))
11996 or else DT_Position (AO) = DT_Position (AN);
11997 end Is_Overriding_Alias;
11999 ---------------------
12000 -- Report_Conflict --
12001 ---------------------
12003 procedure Report_Conflict (S : Entity_Id; E : Entity_Id) is
12004 begin
12005 Error_Msg_Sloc := Sloc (E);
12007 -- Generate message, with useful additional warning if in generic
12009 if Is_Generic_Unit (E) then
12010 Error_Msg_N ("previous generic unit cannot be overloaded", S);
12011 Error_Msg_N ("\& conflicts with declaration#", S);
12012 else
12013 Error_Msg_N ("& conflicts with declaration#", S);
12014 end if;
12015 end Report_Conflict;
12017 -- Start of processing for New_Overloaded_Entity
12019 begin
12020 -- We need to look for an entity that S may override. This must be a
12021 -- homonym in the current scope, so we look for the first homonym of
12022 -- S in the current scope as the starting point for the search.
12024 E := Current_Entity_In_Scope (S);
12026 -- Ada 2005 (AI-251): Derivation of abstract interface primitives.
12027 -- They are directly added to the list of primitive operations of
12028 -- Derived_Type, unless this is a rederivation in the private part
12029 -- of an operation that was already derived in the visible part of
12030 -- the current package.
12032 if Ada_Version >= Ada_2005
12033 and then Present (Derived_Type)
12034 and then Present (Alias (S))
12035 and then Is_Dispatching_Operation (Alias (S))
12036 and then Present (Find_Dispatching_Type (Alias (S)))
12037 and then Is_Interface (Find_Dispatching_Type (Alias (S)))
12038 then
12039 -- For private types, when the full-view is processed we propagate to
12040 -- the full view the non-overridden entities whose attribute "alias"
12041 -- references an interface primitive. These entities were added by
12042 -- Derive_Subprograms to ensure that interface primitives are
12043 -- covered.
12045 -- Inside_Freeze_Actions is non zero when S corresponds with an
12046 -- internal entity that links an interface primitive with its
12047 -- covering primitive through attribute Interface_Alias (see
12048 -- Add_Internal_Interface_Entities).
12050 if Inside_Freezing_Actions = 0
12051 and then Is_Package_Or_Generic_Package (Current_Scope)
12052 and then In_Private_Part (Current_Scope)
12053 and then Parent_Kind (E) = N_Private_Extension_Declaration
12054 and then Nkind (Parent (S)) = N_Full_Type_Declaration
12055 and then Full_View (Defining_Identifier (Parent (E)))
12056 = Defining_Identifier (Parent (S))
12057 and then Alias (E) = Alias (S)
12058 then
12059 Check_Operation_From_Private_View (S, E);
12060 Set_Is_Dispatching_Operation (S);
12062 -- Common case
12064 else
12065 Enter_Overloaded_Entity (S);
12066 Check_Dispatching_Operation (S, Empty);
12067 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
12068 end if;
12070 return;
12071 end if;
12073 -- For synchronized types check conflicts of this entity with previously
12074 -- defined entities.
12076 if Ada_Version >= Ada_2005
12077 and then Has_Matching_Entry_Or_Subprogram (S)
12078 then
12079 return;
12080 end if;
12082 -- If there is no homonym then this is definitely not overriding
12084 if No (E) then
12085 Enter_Overloaded_Entity (S);
12086 Check_Dispatching_Operation (S, Empty);
12087 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
12089 -- If subprogram has an explicit declaration, check whether it has an
12090 -- overriding indicator.
12092 if Comes_From_Source (S) then
12093 Check_Synchronized_Overriding (S, Overridden_Subp);
12095 -- (Ada 2012: AI05-0125-1): If S is a dispatching operation then
12096 -- it may have overridden some hidden inherited primitive. Update
12097 -- Overridden_Subp to avoid spurious errors when checking the
12098 -- overriding indicator.
12100 if Ada_Version >= Ada_2012
12101 and then No (Overridden_Subp)
12102 and then Is_Dispatching_Operation (S)
12103 and then Present (Overridden_Operation (S))
12104 then
12105 Overridden_Subp := Overridden_Operation (S);
12106 end if;
12108 Check_Overriding_Indicator
12109 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
12111 -- The Ghost policy in effect at the point of declaration of a
12112 -- parent subprogram and an overriding subprogram must match
12113 -- (SPARK RM 6.9(17)).
12115 Check_Ghost_Overriding (S, Overridden_Subp);
12116 end if;
12118 -- If there is a homonym that is not overloadable, then we have an
12119 -- error, except for the special cases checked explicitly below.
12121 elsif not Is_Overloadable (E) then
12123 -- Check for spurious conflict produced by a subprogram that has the
12124 -- same name as that of the enclosing generic package. The conflict
12125 -- occurs within an instance, between the subprogram and the renaming
12126 -- declaration for the package. After the subprogram, the package
12127 -- renaming declaration becomes hidden.
12129 if Ekind (E) = E_Package
12130 and then Present (Renamed_Entity (E))
12131 and then Renamed_Entity (E) = Current_Scope
12132 and then Nkind (Parent (Renamed_Entity (E))) =
12133 N_Package_Specification
12134 and then Present (Generic_Parent (Parent (Renamed_Entity (E))))
12135 then
12136 Set_Is_Hidden (E);
12137 Set_Is_Immediately_Visible (E, False);
12138 Enter_Overloaded_Entity (S);
12139 Set_Homonym (S, Homonym (E));
12140 Check_Dispatching_Operation (S, Empty);
12141 Check_Overriding_Indicator (S, Empty, Is_Primitive => False);
12143 -- If the subprogram is implicit it is hidden by the previous
12144 -- declaration. However if it is dispatching, it must appear in the
12145 -- dispatch table anyway, because it can be dispatched to even if it
12146 -- cannot be called directly.
12148 elsif Present (Alias (S)) and then not Comes_From_Source (S) then
12149 Set_Scope (S, Current_Scope);
12151 if Is_Dispatching_Operation (Alias (S)) then
12152 Check_Dispatching_Operation (S, Empty);
12153 end if;
12155 return;
12157 else
12158 Report_Conflict (S, E);
12159 return;
12160 end if;
12162 -- E exists and is overloadable
12164 else
12165 Check_Synchronized_Overriding (S, Overridden_Subp);
12167 -- Loop through E and its homonyms to determine if any of them is
12168 -- the candidate for overriding by S.
12170 while Present (E) loop
12172 -- Definitely not interesting if not in the current scope
12174 if Scope (E) /= Current_Scope then
12175 null;
12177 -- A function can overload the name of an abstract state. The
12178 -- state can be viewed as a function with a profile that cannot
12179 -- be matched by anything.
12181 elsif Ekind (S) = E_Function
12182 and then Ekind (E) = E_Abstract_State
12183 then
12184 Enter_Overloaded_Entity (S);
12185 return;
12187 -- Ada 2012 (AI05-0165): For internally generated bodies of null
12188 -- procedures locate the internally generated spec. We enforce
12189 -- mode conformance since a tagged type may inherit from
12190 -- interfaces several null primitives which differ only in
12191 -- the mode of the formals.
12193 elsif not Comes_From_Source (S)
12194 and then Is_Null_Procedure (S)
12195 and then not Mode_Conformant (E, S)
12196 then
12197 null;
12199 -- Check if we have type conformance
12201 elsif Type_Conformant (E, S) then
12203 -- If the old and new entities have the same profile and one
12204 -- is not the body of the other, then this is an error, unless
12205 -- one of them is implicitly declared.
12207 -- There are some cases when both can be implicit, for example
12208 -- when both a literal and a function that overrides it are
12209 -- inherited in a derivation, or when an inherited operation
12210 -- of a tagged full type overrides the inherited operation of
12211 -- a private extension. Ada 83 had a special rule for the
12212 -- literal case. In Ada 95, the later implicit operation hides
12213 -- the former, and the literal is always the former. In the
12214 -- odd case where both are derived operations declared at the
12215 -- same point, both operations should be declared, and in that
12216 -- case we bypass the following test and proceed to the next
12217 -- part. This can only occur for certain obscure cases in
12218 -- instances, when an operation on a type derived from a formal
12219 -- private type does not override a homograph inherited from
12220 -- the actual. In subsequent derivations of such a type, the
12221 -- DT positions of these operations remain distinct, if they
12222 -- have been set.
12224 if Present (Alias (S))
12225 and then (No (Alias (E))
12226 or else Comes_From_Source (E)
12227 or else Is_Abstract_Subprogram (S)
12228 or else
12229 (Is_Dispatching_Operation (E)
12230 and then Is_Overriding_Alias (E, S)))
12231 and then Ekind (E) /= E_Enumeration_Literal
12232 then
12233 -- When an derived operation is overloaded it may be due to
12234 -- the fact that the full view of a private extension
12235 -- re-inherits. It has to be dealt with.
12237 if Is_Package_Or_Generic_Package (Current_Scope)
12238 and then In_Private_Part (Current_Scope)
12239 then
12240 Check_Operation_From_Private_View (S, E);
12241 end if;
12243 -- In any case the implicit operation remains hidden by the
12244 -- existing declaration, which is overriding. Indicate that
12245 -- E overrides the operation from which S is inherited.
12247 if Present (Alias (S)) then
12248 Set_Overridden_Operation (E, Alias (S));
12249 Inherit_Subprogram_Contract (E, Alias (S));
12250 Set_Is_Ada_2022_Only (E,
12251 Is_Ada_2022_Only (Alias (S)));
12253 else
12254 Set_Overridden_Operation (E, S);
12255 Inherit_Subprogram_Contract (E, S);
12256 Set_Is_Ada_2022_Only (E, Is_Ada_2022_Only (S));
12257 end if;
12259 -- When a dispatching operation overrides an inherited
12260 -- subprogram, it shall be subtype conformant with the
12261 -- inherited subprogram (RM 3.9.2 (10.2)).
12263 if Comes_From_Source (E)
12264 and then Is_Dispatching_Operation (E)
12265 and then Find_Dispatching_Type (S)
12266 = Find_Dispatching_Type (E)
12267 then
12268 Check_Subtype_Conformant (E, S);
12269 end if;
12271 if Comes_From_Source (E) then
12272 Check_Overriding_Indicator (E, S, Is_Primitive => False);
12274 -- The Ghost policy in effect at the point of declaration
12275 -- of a parent subprogram and an overriding subprogram
12276 -- must match (SPARK RM 6.9(17)).
12278 Check_Ghost_Overriding (E, S);
12279 end if;
12281 return;
12283 -- Within an instance, the renaming declarations for actual
12284 -- subprograms may become ambiguous, but they do not hide each
12285 -- other.
12287 elsif Ekind (E) /= E_Entry
12288 and then not Comes_From_Source (E)
12289 and then not Is_Generic_Instance (E)
12290 and then (Present (Alias (E))
12291 or else Is_Intrinsic_Subprogram (E))
12292 and then (not In_Instance
12293 or else No (Parent (E))
12294 or else Nkind (Unit_Declaration_Node (E)) /=
12295 N_Subprogram_Renaming_Declaration)
12296 then
12297 -- A subprogram child unit is not allowed to override an
12298 -- inherited subprogram (10.1.1(20)).
12300 if Is_Child_Unit (S) then
12301 Error_Msg_N
12302 ("child unit overrides inherited subprogram in parent",
12304 return;
12305 end if;
12307 if Is_Non_Overriding_Operation (E, S) then
12308 Enter_Overloaded_Entity (S);
12310 if No (Derived_Type)
12311 or else Is_Tagged_Type (Derived_Type)
12312 then
12313 Check_Dispatching_Operation (S, Empty);
12314 end if;
12316 return;
12317 end if;
12319 -- E is a derived operation or an internal operator which
12320 -- is being overridden. Remove E from further visibility.
12321 -- Furthermore, if E is a dispatching operation, it must be
12322 -- replaced in the list of primitive operations of its type
12323 -- (see Override_Dispatching_Operation).
12325 Overridden_Subp := E;
12327 -- It is possible for E to be in the current scope and
12328 -- yet not in the entity chain. This can only occur in a
12329 -- generic context where E is an implicit concatenation
12330 -- in the formal part, because in a generic body the
12331 -- entity chain starts with the formals.
12333 -- In GNATprove mode, a wrapper for an operation with
12334 -- axiomatization may be a homonym of another declaration
12335 -- for an actual subprogram (needs refinement ???).
12337 if No (Prev_Entity (E)) then
12338 if In_Instance
12339 and then GNATprove_Mode
12340 and then
12341 Nkind (Original_Node (Unit_Declaration_Node (S))) =
12342 N_Subprogram_Renaming_Declaration
12343 then
12344 return;
12345 else
12346 pragma Assert (Chars (E) = Name_Op_Concat);
12347 null;
12348 end if;
12349 end if;
12351 -- E must be removed both from the entity_list of the
12352 -- current scope, and from the visibility chain.
12354 if Debug_Flag_E then
12355 Write_Str ("Override implicit operation ");
12356 Write_Int (Int (E));
12357 Write_Eol;
12358 end if;
12360 -- If E is a predefined concatenation, it stands for four
12361 -- different operations. As a result, a single explicit
12362 -- declaration does not hide it. In a possible ambiguous
12363 -- situation, Disambiguate chooses the user-defined op,
12364 -- so it is correct to retain the previous internal one.
12366 if Chars (E) /= Name_Op_Concat
12367 or else Ekind (E) /= E_Operator
12368 then
12369 -- For nondispatching derived operations that are
12370 -- overridden by a subprogram declared in the private
12371 -- part of a package, we retain the derived subprogram
12372 -- but mark it as not immediately visible. If the
12373 -- derived operation was declared in the visible part
12374 -- then this ensures that it will still be visible
12375 -- outside the package with the proper signature
12376 -- (calls from outside must also be directed to this
12377 -- version rather than the overriding one, unlike the
12378 -- dispatching case). Calls from inside the package
12379 -- will still resolve to the overriding subprogram
12380 -- since the derived one is marked as not visible
12381 -- within the package.
12383 -- If the private operation is dispatching, we achieve
12384 -- the overriding by keeping the implicit operation
12385 -- but setting its alias to be the overriding one. In
12386 -- this fashion the proper body is executed in all
12387 -- cases, but the original signature is used outside
12388 -- of the package.
12390 -- If the overriding is not in the private part, we
12391 -- remove the implicit operation altogether.
12393 if Is_Private_Declaration (S) then
12394 if not Is_Dispatching_Operation (E) then
12395 Set_Is_Immediately_Visible (E, False);
12396 else
12397 -- Work done in Override_Dispatching_Operation, so
12398 -- nothing else needs to be done here.
12400 -- ??? Special case to keep supporting the hiding
12401 -- of the predefined "=" operator for a nonlimited
12402 -- tagged type by a user-defined "=" operator for
12403 -- its class-wide type when the type is private.
12405 if Chars (E) = Name_Op_Eq then
12406 declare
12407 Typ : constant Entity_Id
12408 := Etype (First_Entity (E));
12409 H : Entity_Id := Homonym (E);
12411 begin
12412 while Present (H)
12413 and then Scope (H) = Scope (E)
12414 loop
12415 if Is_User_Defined_Equality (H)
12416 and then Is_Immediately_Visible (H)
12417 and then Etype (First_Entity (H))
12418 = Class_Wide_Type (Typ)
12419 then
12420 Remove_Entity_And_Homonym (E);
12421 exit;
12422 end if;
12424 H := Homonym (H);
12425 end loop;
12426 end;
12427 end if;
12428 end if;
12430 else
12431 Remove_Entity_And_Homonym (E);
12432 end if;
12433 end if;
12435 Enter_Overloaded_Entity (S);
12437 -- For entities generated by Derive_Subprograms the
12438 -- overridden operation is the inherited primitive
12439 -- (which is available through the attribute alias).
12441 if not (Comes_From_Source (E))
12442 and then Is_Dispatching_Operation (E)
12443 and then Find_Dispatching_Type (E) =
12444 Find_Dispatching_Type (S)
12445 and then Present (Alias (E))
12446 and then Comes_From_Source (Alias (E))
12447 then
12448 Set_Overridden_Operation (S, Alias (E));
12449 Inherit_Subprogram_Contract (S, Alias (E));
12450 Set_Is_Ada_2022_Only (S,
12451 Is_Ada_2022_Only (Alias (E)));
12453 -- Normal case of setting entity as overridden
12455 -- Note: Static_Initialization and Overridden_Operation
12456 -- attributes use the same field in subprogram entities.
12457 -- Static_Initialization is only defined for internal
12458 -- initialization procedures, where Overridden_Operation
12459 -- is irrelevant. Therefore the setting of this attribute
12460 -- must check whether the target is an init_proc.
12462 elsif not Is_Init_Proc (S) then
12464 -- LSP wrappers must override the ultimate alias of their
12465 -- wrapped dispatching primitive E; required to traverse
12466 -- the chain of ancestor primitives (c.f. Map_Primitives)
12467 -- They don't inherit contracts.
12469 if Is_Wrapper (S)
12470 and then Present (LSP_Subprogram (S))
12471 then
12472 Set_Overridden_Operation (S, Ultimate_Alias (E));
12473 else
12474 Set_Overridden_Operation (S, E);
12475 Inherit_Subprogram_Contract (S, E);
12476 end if;
12478 Set_Is_Ada_2022_Only (S, Is_Ada_2022_Only (E));
12479 end if;
12481 Check_Overriding_Indicator (S, E, Is_Primitive => True);
12483 -- The Ghost policy in effect at the point of declaration
12484 -- of a parent subprogram and an overriding subprogram
12485 -- must match (SPARK RM 6.9(17)).
12487 Check_Ghost_Overriding (S, E);
12489 -- If S is a user-defined subprogram or a null procedure
12490 -- expanded to override an inherited null procedure, or a
12491 -- predefined dispatching primitive then indicate that E
12492 -- overrides the operation from which S is inherited.
12494 if Comes_From_Source (S)
12495 or else
12496 (Present (Parent (S))
12497 and then Nkind (Parent (S)) = N_Procedure_Specification
12498 and then Null_Present (Parent (S)))
12499 or else
12500 (Present (Alias (E))
12501 and then
12502 Is_Predefined_Dispatching_Operation (Alias (E)))
12503 then
12504 if Present (Alias (E)) then
12506 -- LSP wrappers must override the ultimate alias of
12507 -- their wrapped dispatching primitive E; required to
12508 -- traverse the chain of ancestor primitives (see
12509 -- Map_Primitives). They don't inherit contracts.
12511 if Is_Wrapper (S)
12512 and then Present (LSP_Subprogram (S))
12513 then
12514 Set_Overridden_Operation (S, Ultimate_Alias (E));
12515 else
12516 Set_Overridden_Operation (S, Alias (E));
12517 Inherit_Subprogram_Contract (S, Alias (E));
12518 end if;
12520 Set_Is_Ada_2022_Only (S, Is_Ada_2022_Only (Alias (E)));
12521 end if;
12522 end if;
12524 if Is_Dispatching_Operation (E) then
12526 -- An overriding dispatching subprogram inherits the
12527 -- convention of the overridden subprogram (AI-117).
12529 Set_Convention (S, Convention (E));
12530 Check_Dispatching_Operation (S, E);
12532 else
12533 Check_Dispatching_Operation (S, Empty);
12534 end if;
12536 Check_For_Primitive_Subprogram
12537 (Is_Primitive_Subp, Is_Overriding => True);
12538 goto Check_Inequality;
12540 -- Apparent redeclarations in instances can occur when two
12541 -- formal types get the same actual type. The subprograms in
12542 -- in the instance are legal, even if not callable from the
12543 -- outside. Calls from within are disambiguated elsewhere.
12544 -- For dispatching operations in the visible part, the usual
12545 -- rules apply, and operations with the same profile are not
12546 -- legal (B830001).
12548 elsif (In_Instance_Visible_Part
12549 and then not Is_Dispatching_Operation (E))
12550 or else In_Instance_Not_Visible
12551 then
12552 null;
12554 -- Here we have a real error (identical profile)
12556 else
12557 Error_Msg_Sloc := Sloc (E);
12559 -- Avoid cascaded errors if the entity appears in
12560 -- subsequent calls.
12562 Set_Scope (S, Current_Scope);
12564 -- Generate error, with extra useful warning for the case
12565 -- of a generic instance with no completion.
12567 if Is_Generic_Instance (S)
12568 and then not Has_Completion (E)
12569 then
12570 Error_Msg_N
12571 ("instantiation cannot provide body for&", S);
12572 Error_Msg_N ("\& conflicts with declaration#", S);
12573 else
12574 Error_Msg_N ("& conflicts with declaration#", S);
12575 end if;
12577 return;
12578 end if;
12580 else
12581 -- If one subprogram has an access parameter and the other
12582 -- a parameter of an access type, calls to either might be
12583 -- ambiguous. Verify that parameters match except for the
12584 -- access parameter.
12586 if May_Hide_Profile then
12587 declare
12588 F1 : Entity_Id;
12589 F2 : Entity_Id;
12591 begin
12592 F1 := First_Formal (S);
12593 F2 := First_Formal (E);
12594 while Present (F1) and then Present (F2) loop
12595 if Is_Access_Type (Etype (F1)) then
12596 if not Is_Access_Type (Etype (F2))
12597 or else not Conforming_Types
12598 (Designated_Type (Etype (F1)),
12599 Designated_Type (Etype (F2)),
12600 Type_Conformant)
12601 then
12602 May_Hide_Profile := False;
12603 end if;
12605 elsif
12606 not Conforming_Types
12607 (Etype (F1), Etype (F2), Type_Conformant)
12608 then
12609 May_Hide_Profile := False;
12610 end if;
12612 Next_Formal (F1);
12613 Next_Formal (F2);
12614 end loop;
12616 if May_Hide_Profile
12617 and then No (F1)
12618 and then No (F2)
12619 then
12620 Error_Msg_NE ("calls to& may be ambiguous??", S, S);
12621 end if;
12622 end;
12623 end if;
12624 end if;
12626 E := Homonym (E);
12627 end loop;
12629 -- On exit, we know that S is a new entity
12631 Enter_Overloaded_Entity (S);
12632 Check_For_Primitive_Subprogram (Is_Primitive_Subp);
12633 Check_Overriding_Indicator
12634 (S, Overridden_Subp, Is_Primitive => Is_Primitive_Subp);
12636 -- The Ghost policy in effect at the point of declaration of a parent
12637 -- subprogram and an overriding subprogram must match
12638 -- (SPARK RM 6.9(17)).
12640 Check_Ghost_Overriding (S, Overridden_Subp);
12642 -- If S is a derived operation for an untagged type then by
12643 -- definition it's not a dispatching operation (even if the parent
12644 -- operation was dispatching), so Check_Dispatching_Operation is not
12645 -- called in that case.
12647 if No (Derived_Type)
12648 or else Is_Tagged_Type (Derived_Type)
12649 then
12650 Check_Dispatching_Operation (S, Empty);
12651 end if;
12652 end if;
12654 -- If this is a user-defined equality operator that is not a derived
12655 -- subprogram, create the corresponding inequality. If the operation is
12656 -- dispatching, the expansion is done elsewhere, and we do not create
12657 -- an explicit inequality operation.
12659 <<Check_Inequality>>
12660 if Chars (S) = Name_Op_Eq
12661 and then Etype (S) = Standard_Boolean
12662 and then Present (Parent (S))
12663 and then not Is_Dispatching_Operation (S)
12664 then
12665 Make_Inequality_Operator (S);
12666 Check_Untagged_Equality (S);
12667 end if;
12668 end New_Overloaded_Entity;
12670 ----------------------------------
12671 -- Preanalyze_Formal_Expression --
12672 ----------------------------------
12674 procedure Preanalyze_Formal_Expression (N : Node_Id; T : Entity_Id) is
12675 Save_In_Spec_Expression : constant Boolean := In_Spec_Expression;
12676 begin
12677 In_Spec_Expression := True;
12678 Preanalyze_With_Freezing_And_Resolve (N, T);
12679 In_Spec_Expression := Save_In_Spec_Expression;
12680 end Preanalyze_Formal_Expression;
12682 ---------------------
12683 -- Process_Formals --
12684 ---------------------
12686 procedure Process_Formals
12687 (T : List_Id;
12688 Related_Nod : Node_Id)
12690 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean;
12691 -- Determine whether an access type designates a type coming from a
12692 -- limited view.
12694 function Is_Class_Wide_Default (D : Node_Id) return Boolean;
12695 -- Check whether the default has a class-wide type. After analysis the
12696 -- default has the type of the formal, so we must also check explicitly
12697 -- for an access attribute.
12699 ----------------------------------
12700 -- Designates_From_Limited_With --
12701 ----------------------------------
12703 function Designates_From_Limited_With (Typ : Entity_Id) return Boolean is
12704 Desig : Entity_Id := Typ;
12706 begin
12707 if Is_Access_Type (Desig) then
12708 Desig := Directly_Designated_Type (Desig);
12709 end if;
12711 if Is_Class_Wide_Type (Desig) then
12712 Desig := Root_Type (Desig);
12713 end if;
12715 return
12716 Ekind (Desig) = E_Incomplete_Type
12717 and then From_Limited_With (Desig);
12718 end Designates_From_Limited_With;
12720 ---------------------------
12721 -- Is_Class_Wide_Default --
12722 ---------------------------
12724 function Is_Class_Wide_Default (D : Node_Id) return Boolean is
12725 begin
12726 return Is_Class_Wide_Type (Designated_Type (Etype (D)))
12727 or else (Nkind (D) = N_Attribute_Reference
12728 and then Attribute_Name (D) = Name_Access
12729 and then Is_Class_Wide_Type (Etype (Prefix (D))));
12730 end Is_Class_Wide_Default;
12732 -- Local variables
12734 Context : constant Node_Id := Parent (Parent (T));
12735 Default : Node_Id;
12736 Formal : Entity_Id;
12737 Formal_Type : Entity_Id;
12738 Param_Spec : Node_Id;
12739 Ptype : Entity_Id;
12741 Num_Out_Params : Nat := 0;
12742 First_Out_Param : Entity_Id := Empty;
12743 -- Used for setting Is_Only_Out_Parameter
12745 -- Start of processing for Process_Formals
12747 begin
12748 -- In order to prevent premature use of the formals in the same formal
12749 -- part, the Ekind is left undefined until all default expressions are
12750 -- analyzed. The Ekind is established in a separate loop at the end.
12752 Param_Spec := First (T);
12753 while Present (Param_Spec) loop
12754 Formal := Defining_Identifier (Param_Spec);
12755 Set_Never_Set_In_Source (Formal, True);
12756 Enter_Name (Formal);
12758 -- Case of ordinary parameters
12760 if Nkind (Parameter_Type (Param_Spec)) /= N_Access_Definition then
12761 Find_Type (Parameter_Type (Param_Spec));
12762 Ptype := Parameter_Type (Param_Spec);
12764 if Ptype = Error then
12765 goto Continue;
12766 end if;
12768 -- Protect against malformed parameter types
12770 if Nkind (Ptype) not in N_Has_Entity then
12771 Formal_Type := Any_Type;
12772 else
12773 Formal_Type := Entity (Ptype);
12774 end if;
12776 if Is_Incomplete_Type (Formal_Type)
12777 or else
12778 (Is_Class_Wide_Type (Formal_Type)
12779 and then Is_Incomplete_Type (Root_Type (Formal_Type)))
12780 then
12781 -- Ada 2005 (AI-326): Tagged incomplete types allowed in
12782 -- primitive operations, as long as their completion is
12783 -- in the same declarative part. If in the private part
12784 -- this means that the type cannot be a Taft-amendment type.
12785 -- Check is done on package exit. For access to subprograms,
12786 -- the use is legal for Taft-amendment types.
12788 -- Ada 2012: tagged incomplete types are allowed as generic
12789 -- formal types. They do not introduce dependencies and the
12790 -- corresponding generic subprogram does not have a delayed
12791 -- freeze, because it does not need a freeze node. However,
12792 -- it is still the case that untagged incomplete types cannot
12793 -- be Taft-amendment types and must be completed in private
12794 -- part, so the subprogram must appear in the list of private
12795 -- dependents of the type.
12797 if Is_Tagged_Type (Formal_Type)
12798 or else (Ada_Version >= Ada_2012
12799 and then not From_Limited_With (Formal_Type)
12800 and then not Is_Generic_Type (Formal_Type))
12801 then
12802 if Ekind (Scope (Current_Scope)) = E_Package
12803 and then not Is_Generic_Type (Formal_Type)
12804 and then not Is_Class_Wide_Type (Formal_Type)
12805 then
12806 if Nkind (Parent (T)) not in
12807 N_Access_Function_Definition |
12808 N_Access_Procedure_Definition
12809 then
12810 Append_Elmt (Current_Scope,
12811 Private_Dependents (Base_Type (Formal_Type)));
12813 -- Freezing is delayed to ensure that Register_Prim
12814 -- will get called for this operation, which is needed
12815 -- in cases where static dispatch tables aren't built.
12816 -- (Note that the same is done for controlling access
12817 -- parameter cases in function Access_Definition.)
12819 if not Is_Thunk (Current_Scope) then
12820 Set_Has_Delayed_Freeze (Current_Scope);
12821 end if;
12822 end if;
12823 end if;
12825 elsif Nkind (Parent (T)) not in N_Access_Function_Definition
12826 | N_Access_Procedure_Definition
12827 then
12828 -- AI05-0151: Tagged incomplete types are allowed in all
12829 -- formal parts. Untagged incomplete types are not allowed
12830 -- in bodies. Limited views of either kind are not allowed
12831 -- if there is no place at which the non-limited view can
12832 -- become available.
12834 -- Incomplete formal untagged types are not allowed in
12835 -- subprogram bodies (but are legal in their declarations).
12836 -- This excludes bodies created for null procedures, which
12837 -- are basic declarations.
12839 if Is_Generic_Type (Formal_Type)
12840 and then not Is_Tagged_Type (Formal_Type)
12841 and then Nkind (Parent (Related_Nod)) = N_Subprogram_Body
12842 then
12843 Error_Msg_N
12844 ("invalid use of formal incomplete type", Param_Spec);
12846 elsif Ada_Version >= Ada_2012 then
12847 if Is_Tagged_Type (Formal_Type)
12848 and then (not From_Limited_With (Formal_Type)
12849 or else not In_Package_Body)
12850 then
12851 null;
12853 elsif Nkind (Context) in N_Accept_Statement
12854 | N_Accept_Alternative
12855 | N_Entry_Body
12856 or else (Nkind (Context) = N_Subprogram_Body
12857 and then Comes_From_Source (Context))
12858 then
12859 Error_Msg_NE
12860 ("invalid use of untagged incomplete type &",
12861 Ptype, Formal_Type);
12862 end if;
12864 else
12865 Error_Msg_NE
12866 ("invalid use of incomplete type&",
12867 Param_Spec, Formal_Type);
12869 -- Further checks on the legality of incomplete types
12870 -- in formal parts are delayed until the freeze point
12871 -- of the enclosing subprogram or access to subprogram.
12872 end if;
12873 end if;
12875 elsif Ekind (Formal_Type) = E_Void then
12876 Error_Msg_NE
12877 ("premature use of&",
12878 Parameter_Type (Param_Spec), Formal_Type);
12879 end if;
12881 -- Ada 2012 (AI-142): Handle aliased parameters
12883 if Ada_Version >= Ada_2012
12884 and then Aliased_Present (Param_Spec)
12885 then
12886 Set_Is_Aliased (Formal);
12888 -- AI12-001: All aliased objects are considered to be specified
12889 -- as independently addressable (RM C.6(8.1/4)).
12891 Set_Is_Independent (Formal);
12892 end if;
12894 -- Ada 2005 (AI-231): Create and decorate an internal subtype
12895 -- declaration corresponding to the null-excluding type of the
12896 -- formal in the enclosing scope. Finally, replace the parameter
12897 -- type of the formal with the internal subtype.
12899 if Ada_Version >= Ada_2005
12900 and then Null_Exclusion_Present (Param_Spec)
12901 then
12902 if not Is_Access_Type (Formal_Type) then
12903 Error_Msg_N
12904 ("`NOT NULL` allowed only for an access type", Param_Spec);
12906 else
12907 if Can_Never_Be_Null (Formal_Type)
12908 and then Comes_From_Source (Related_Nod)
12909 then
12910 Error_Msg_NE
12911 ("`NOT NULL` not allowed (& already excludes null)",
12912 Param_Spec, Formal_Type);
12913 end if;
12915 Formal_Type :=
12916 Create_Null_Excluding_Itype
12917 (T => Formal_Type,
12918 Related_Nod => Related_Nod,
12919 Scope_Id => Scope (Current_Scope));
12921 -- If the designated type of the itype is an itype that is
12922 -- not frozen yet, we set the Has_Delayed_Freeze attribute
12923 -- on the access subtype, to prevent order-of-elaboration
12924 -- issues in the backend.
12926 -- Example:
12927 -- type T is access procedure;
12928 -- procedure Op (O : not null T);
12930 if Is_Itype (Directly_Designated_Type (Formal_Type))
12931 and then
12932 not Is_Frozen (Directly_Designated_Type (Formal_Type))
12933 then
12934 Set_Has_Delayed_Freeze (Formal_Type);
12935 end if;
12936 end if;
12937 end if;
12939 -- An access formal type
12941 else
12942 Formal_Type :=
12943 Access_Definition (Related_Nod, Parameter_Type (Param_Spec));
12945 -- No need to continue if we already notified errors
12947 if not Present (Formal_Type) then
12948 return;
12949 end if;
12951 -- Ada 2005 (AI-254)
12953 declare
12954 AD : constant Node_Id :=
12955 Access_To_Subprogram_Definition
12956 (Parameter_Type (Param_Spec));
12957 begin
12958 if Present (AD) and then Protected_Present (AD) then
12959 Formal_Type :=
12960 Replace_Anonymous_Access_To_Protected_Subprogram
12961 (Param_Spec);
12962 end if;
12963 end;
12964 end if;
12966 Set_Etype (Formal, Formal_Type);
12968 -- Deal with default expression if present
12970 Default := Expression (Param_Spec);
12972 if Present (Default) then
12973 if Out_Present (Param_Spec) then
12974 Error_Msg_N
12975 ("default initialization only allowed for IN parameters",
12976 Param_Spec);
12977 end if;
12979 -- Do the special preanalysis of the expression (see section on
12980 -- "Handling of Default Expressions" in the spec of package Sem).
12982 Preanalyze_Formal_Expression (Default, Formal_Type);
12984 -- An access to constant cannot be the default for
12985 -- an access parameter that is an access to variable.
12987 if Ekind (Formal_Type) = E_Anonymous_Access_Type
12988 and then not Is_Access_Constant (Formal_Type)
12989 and then Is_Access_Type (Etype (Default))
12990 and then Is_Access_Constant (Etype (Default))
12991 then
12992 Error_Msg_N
12993 ("formal that is access to variable cannot be initialized "
12994 & "with an access-to-constant expression", Default);
12995 end if;
12997 -- Check that the designated type of an access parameter's default
12998 -- is not a class-wide type unless the parameter's designated type
12999 -- is also class-wide.
13001 if Ekind (Formal_Type) = E_Anonymous_Access_Type
13002 and then not Designates_From_Limited_With (Formal_Type)
13003 and then Is_Class_Wide_Default (Default)
13004 and then not Is_Class_Wide_Type (Designated_Type (Formal_Type))
13005 then
13006 Error_Msg_N
13007 ("access to class-wide expression not allowed here", Default);
13008 end if;
13010 -- Check incorrect use of dynamically tagged expressions
13012 if Is_Tagged_Type (Formal_Type) then
13013 Check_Dynamically_Tagged_Expression
13014 (Expr => Default,
13015 Typ => Formal_Type,
13016 Related_Nod => Default);
13017 end if;
13018 end if;
13020 -- Ada 2005 (AI-231): Static checks
13022 if Ada_Version >= Ada_2005
13023 and then Is_Access_Type (Etype (Formal))
13024 and then Can_Never_Be_Null (Etype (Formal))
13025 then
13026 Null_Exclusion_Static_Checks (Param_Spec);
13027 end if;
13029 -- The following checks are relevant only when SPARK_Mode is on as
13030 -- these are not standard Ada legality rules.
13032 if SPARK_Mode = On then
13033 if Ekind (Scope (Formal)) in E_Function | E_Generic_Function then
13035 -- A function cannot have a parameter of mode IN OUT or OUT
13036 -- (SPARK RM 6.1).
13038 if Ekind (Formal) in E_In_Out_Parameter | E_Out_Parameter then
13039 Error_Msg_N
13040 ("function cannot have parameter of mode `OUT` or "
13041 & "`IN OUT`", Formal);
13042 end if;
13044 -- A procedure cannot have an effectively volatile formal
13045 -- parameter of mode IN because it behaves as a constant
13046 -- (SPARK RM 7.1.3(4)).
13048 elsif Ekind (Scope (Formal)) = E_Procedure
13049 and then Ekind (Formal) = E_In_Parameter
13050 and then Is_Effectively_Volatile (Formal)
13051 then
13052 Error_Msg_N
13053 ("formal parameter of mode `IN` cannot be volatile", Formal);
13054 end if;
13055 end if;
13057 -- Deal with aspects on formal parameters. Only Unreferenced is
13058 -- supported for the time being.
13060 if Has_Aspects (Param_Spec) then
13061 declare
13062 Aspect : Node_Id := First (Aspect_Specifications (Param_Spec));
13063 begin
13064 while Present (Aspect) loop
13065 if Chars (Identifier (Aspect)) = Name_Unreferenced then
13066 Set_Has_Pragma_Unreferenced (Formal);
13067 else
13068 Error_Msg_NE
13069 ("unsupported aspect& on parameter",
13070 Aspect, Identifier (Aspect));
13071 end if;
13073 Next (Aspect);
13074 end loop;
13075 end;
13076 end if;
13078 <<Continue>>
13079 Next (Param_Spec);
13080 end loop;
13082 -- If this is the formal part of a function specification, analyze the
13083 -- subtype mark in the context where the formals are visible but not
13084 -- yet usable, and may hide outer homographs.
13086 if Nkind (Related_Nod) = N_Function_Specification then
13087 Analyze_Return_Type (Related_Nod);
13088 end if;
13090 -- Now set the kind (mode) of each formal
13092 Param_Spec := First (T);
13093 while Present (Param_Spec) loop
13094 Formal := Defining_Identifier (Param_Spec);
13095 Set_Formal_Mode (Formal);
13097 if Ekind (Formal) = E_In_Parameter then
13098 Default := Expression (Param_Spec);
13100 if Present (Default) then
13101 Set_Default_Value (Formal, Default);
13103 if Is_Scalar_Type (Etype (Default)) then
13104 if Nkind (Parameter_Type (Param_Spec)) /=
13105 N_Access_Definition
13106 then
13107 Formal_Type := Entity (Parameter_Type (Param_Spec));
13108 else
13109 Formal_Type :=
13110 Access_Definition
13111 (Related_Nod, Parameter_Type (Param_Spec));
13112 end if;
13114 Apply_Scalar_Range_Check (Default, Formal_Type);
13115 end if;
13116 end if;
13118 elsif Ekind (Formal) = E_Out_Parameter then
13119 Num_Out_Params := Num_Out_Params + 1;
13121 if Num_Out_Params = 1 then
13122 First_Out_Param := Formal;
13123 end if;
13125 elsif Ekind (Formal) = E_In_Out_Parameter then
13126 Num_Out_Params := Num_Out_Params + 1;
13127 end if;
13129 -- Skip remaining processing if formal type was in error
13131 if Etype (Formal) = Any_Type or else Error_Posted (Formal) then
13132 goto Next_Parameter;
13133 end if;
13135 -- Force call by reference if aliased
13137 declare
13138 Conv : constant Convention_Id := Convention (Etype (Formal));
13139 begin
13140 if Is_Aliased (Formal) then
13141 Set_Mechanism (Formal, By_Reference);
13143 -- Warn if user asked this to be passed by copy
13145 if Conv = Convention_Ada_Pass_By_Copy then
13146 Error_Msg_N
13147 ("cannot pass aliased parameter & by copy??", Formal);
13148 end if;
13150 -- Force mechanism if type has Convention Ada_Pass_By_Ref/Copy
13152 elsif Conv = Convention_Ada_Pass_By_Copy then
13153 Set_Mechanism (Formal, By_Copy);
13155 elsif Conv = Convention_Ada_Pass_By_Reference then
13156 Set_Mechanism (Formal, By_Reference);
13157 end if;
13158 end;
13160 <<Next_Parameter>>
13161 Next (Param_Spec);
13162 end loop;
13164 if Present (First_Out_Param) and then Num_Out_Params = 1 then
13165 Set_Is_Only_Out_Parameter (First_Out_Param);
13166 end if;
13167 end Process_Formals;
13169 ----------------------------
13170 -- Reference_Body_Formals --
13171 ----------------------------
13173 procedure Reference_Body_Formals (Spec : Entity_Id; Bod : Entity_Id) is
13174 Fs : Entity_Id;
13175 Fb : Entity_Id;
13177 begin
13178 if Error_Posted (Spec) then
13179 return;
13180 end if;
13182 -- Iterate over both lists. They may be of different lengths if the two
13183 -- specs are not conformant.
13185 Fs := First_Formal (Spec);
13186 Fb := First_Formal (Bod);
13187 while Present (Fs) and then Present (Fb) loop
13188 Generate_Reference (Fs, Fb, 'b');
13190 if Style_Check then
13191 Style.Check_Identifier (Fb, Fs);
13192 end if;
13194 Set_Spec_Entity (Fb, Fs);
13195 Set_Referenced (Fs, False);
13196 Next_Formal (Fs);
13197 Next_Formal (Fb);
13198 end loop;
13199 end Reference_Body_Formals;
13201 -------------------------
13202 -- Set_Actual_Subtypes --
13203 -------------------------
13205 procedure Set_Actual_Subtypes (N : Node_Id; Subp : Entity_Id) is
13206 Decl : Node_Id;
13207 Formal : Entity_Id;
13208 T : Entity_Id;
13209 First_Stmt : Node_Id := Empty;
13210 AS_Needed : Boolean;
13212 begin
13213 -- If this is an empty initialization procedure, no need to create
13214 -- actual subtypes (small optimization).
13216 if Ekind (Subp) = E_Procedure and then Is_Null_Init_Proc (Subp) then
13217 return;
13219 -- Within a predicate function we do not want to generate local
13220 -- subtypes that may generate nested predicate functions.
13222 elsif Is_Subprogram (Subp) and then Is_Predicate_Function (Subp) then
13223 return;
13224 end if;
13226 -- The subtype declarations may freeze the formals. The body generated
13227 -- for an expression function is not a freeze point, so do not emit
13228 -- these declarations (small loss of efficiency in rare cases).
13230 if Nkind (N) = N_Subprogram_Body
13231 and then Was_Expression_Function (N)
13232 then
13233 return;
13234 end if;
13236 Formal := First_Formal (Subp);
13237 while Present (Formal) loop
13238 T := Etype (Formal);
13240 -- We never need an actual subtype for a constrained formal
13242 if Is_Constrained (T) then
13243 AS_Needed := False;
13245 -- If we have unknown discriminants, then we do not need an actual
13246 -- subtype, or more accurately we cannot figure it out. Note that
13247 -- all class-wide types have unknown discriminants.
13249 elsif Has_Unknown_Discriminants (T) then
13250 AS_Needed := False;
13252 -- At this stage we have an unconstrained type that may need an
13253 -- actual subtype. For sure the actual subtype is needed if we have
13254 -- an unconstrained array type. However, in an instance, the type
13255 -- may appear as a subtype of the full view, while the actual is
13256 -- in fact private (in which case no actual subtype is needed) so
13257 -- check the kind of the base type.
13259 elsif Is_Array_Type (Base_Type (T)) then
13260 AS_Needed := True;
13262 -- The only other case needing an actual subtype is an unconstrained
13263 -- record type which is an IN parameter (we cannot generate actual
13264 -- subtypes for the OUT or IN OUT case, since an assignment can
13265 -- change the discriminant values. However we exclude the case of
13266 -- initialization procedures, since discriminants are handled very
13267 -- specially in this context, see the section entitled "Handling of
13268 -- Discriminants" in Einfo.
13270 -- We also exclude the case of Discrim_SO_Functions (functions used
13271 -- in front-end layout mode for size/offset values), since in such
13272 -- functions only discriminants are referenced, and not only are such
13273 -- subtypes not needed, but they cannot always be generated, because
13274 -- of order of elaboration issues.
13276 elsif Is_Record_Type (T)
13277 and then Ekind (Formal) = E_In_Parameter
13278 and then Chars (Formal) /= Name_uInit
13279 and then not Is_Unchecked_Union (T)
13280 and then not Is_Discrim_SO_Function (Subp)
13281 then
13282 AS_Needed := True;
13284 -- All other cases do not need an actual subtype
13286 else
13287 AS_Needed := False;
13288 end if;
13290 -- Generate actual subtypes for unconstrained arrays and
13291 -- unconstrained discriminated records.
13293 if AS_Needed then
13294 if Nkind (N) = N_Accept_Statement then
13296 -- If expansion is active, the formal is replaced by a local
13297 -- variable that renames the corresponding entry of the
13298 -- parameter block, and it is this local variable that may
13299 -- require an actual subtype.
13301 if Expander_Active then
13302 Decl := Build_Actual_Subtype (T, Renamed_Object (Formal));
13303 else
13304 Decl := Build_Actual_Subtype (T, Formal);
13305 end if;
13307 if Present (Handled_Statement_Sequence (N)) then
13308 First_Stmt :=
13309 First (Statements (Handled_Statement_Sequence (N)));
13310 Prepend (Decl, Statements (Handled_Statement_Sequence (N)));
13311 Mark_Rewrite_Insertion (Decl);
13312 else
13313 -- If the accept statement has no body, there will be no
13314 -- reference to the actuals, so no need to compute actual
13315 -- subtypes.
13317 return;
13318 end if;
13320 else
13321 Decl := Build_Actual_Subtype (T, Formal);
13322 Prepend (Decl, Declarations (N));
13323 Mark_Rewrite_Insertion (Decl);
13324 end if;
13326 -- The declaration uses the bounds of an existing object, and
13327 -- therefore needs no constraint checks.
13329 Analyze (Decl, Suppress => All_Checks);
13330 Set_Is_Actual_Subtype (Defining_Identifier (Decl));
13332 -- We need to freeze manually the generated type when it is
13333 -- inserted anywhere else than in a declarative part.
13335 if Present (First_Stmt) then
13336 Insert_List_Before_And_Analyze (First_Stmt,
13337 Freeze_Entity (Defining_Identifier (Decl), N));
13339 -- Ditto if the type has a dynamic predicate, because the
13340 -- generated function will mention the actual subtype. The
13341 -- predicate may come from an explicit aspect of be inherited.
13343 elsif Has_Predicates (T) then
13344 Insert_List_After_And_Analyze (Decl,
13345 Freeze_Entity (Defining_Identifier (Decl), N));
13346 end if;
13348 if Nkind (N) = N_Accept_Statement
13349 and then Expander_Active
13350 then
13351 Set_Actual_Subtype (Renamed_Object (Formal),
13352 Defining_Identifier (Decl));
13353 else
13354 Set_Actual_Subtype (Formal, Defining_Identifier (Decl));
13355 end if;
13356 end if;
13358 Next_Formal (Formal);
13359 end loop;
13360 end Set_Actual_Subtypes;
13362 ---------------------
13363 -- Set_Formal_Mode --
13364 ---------------------
13366 procedure Set_Formal_Mode (Formal_Id : Entity_Id) is
13367 Spec : constant Node_Id := Parent (Formal_Id);
13368 Id : constant Entity_Id := Scope (Formal_Id);
13370 begin
13371 -- Note: we set Is_Known_Valid for IN parameters and IN OUT parameters
13372 -- since we ensure that corresponding actuals are always valid at the
13373 -- point of the call.
13375 if Out_Present (Spec) then
13376 if Is_Entry (Id)
13377 or else Is_Subprogram_Or_Generic_Subprogram (Id)
13378 then
13379 Set_Has_Out_Or_In_Out_Parameter (Id, True);
13380 end if;
13382 if Ekind (Id) in E_Function | E_Generic_Function then
13384 -- [IN] OUT parameters allowed for functions in Ada 2012
13386 if Ada_Version >= Ada_2012 then
13388 -- Even in Ada 2012 operators can only have IN parameters
13390 if Is_Operator_Symbol_Name (Chars (Scope (Formal_Id))) then
13391 Error_Msg_N ("operators can only have IN parameters", Spec);
13392 end if;
13394 if In_Present (Spec) then
13395 Mutate_Ekind (Formal_Id, E_In_Out_Parameter);
13396 else
13397 Mutate_Ekind (Formal_Id, E_Out_Parameter);
13398 end if;
13400 -- But not in earlier versions of Ada
13402 else
13403 Error_Msg_N ("functions can only have IN parameters", Spec);
13404 Mutate_Ekind (Formal_Id, E_In_Parameter);
13405 end if;
13407 elsif In_Present (Spec) then
13408 Mutate_Ekind (Formal_Id, E_In_Out_Parameter);
13410 else
13411 Mutate_Ekind (Formal_Id, E_Out_Parameter);
13412 Set_Is_True_Constant (Formal_Id, False);
13413 Set_Current_Value (Formal_Id, Empty);
13414 end if;
13416 else
13417 Mutate_Ekind (Formal_Id, E_In_Parameter);
13418 end if;
13420 -- Set Is_Known_Non_Null for access parameters since the language
13421 -- guarantees that access parameters are always non-null. We also set
13422 -- Can_Never_Be_Null, since there is no way to change the value.
13424 if Nkind (Parameter_Type (Spec)) = N_Access_Definition then
13426 -- Ada 2005 (AI-231): In Ada 95, access parameters are always non-
13427 -- null; In Ada 2005, only if then null_exclusion is explicit.
13429 if Ada_Version < Ada_2005
13430 or else Can_Never_Be_Null (Etype (Formal_Id))
13431 then
13432 Set_Is_Known_Non_Null (Formal_Id);
13433 Set_Can_Never_Be_Null (Formal_Id);
13434 end if;
13436 -- Ada 2005 (AI-231): Null-exclusion access subtype
13438 elsif Is_Access_Type (Etype (Formal_Id))
13439 and then Can_Never_Be_Null (Etype (Formal_Id))
13440 then
13441 Set_Is_Known_Non_Null (Formal_Id);
13443 -- We can also set Can_Never_Be_Null (thus preventing some junk
13444 -- access checks) for the case of an IN parameter, which cannot
13445 -- be changed, or for an IN OUT parameter, which can be changed but
13446 -- not to a null value. But for an OUT parameter, the initial value
13447 -- passed in can be null, so we can't set this flag in that case.
13449 if Ekind (Formal_Id) /= E_Out_Parameter then
13450 Set_Can_Never_Be_Null (Formal_Id);
13451 end if;
13452 end if;
13454 Set_Mechanism (Formal_Id, Default_Mechanism);
13455 Set_Formal_Validity (Formal_Id);
13456 end Set_Formal_Mode;
13458 -------------------------
13459 -- Set_Formal_Validity --
13460 -------------------------
13462 procedure Set_Formal_Validity (Formal_Id : Entity_Id) is
13463 begin
13464 -- If no validity checking, then we cannot assume anything about the
13465 -- validity of parameters, since we do not know there is any checking
13466 -- of the validity on the call side.
13468 if not Validity_Checks_On then
13469 return;
13471 -- If validity checking for parameters is enabled, this means we are
13472 -- not supposed to make any assumptions about argument values.
13474 elsif Validity_Check_Parameters then
13475 return;
13477 -- If we are checking in parameters, we will assume that the caller is
13478 -- also checking parameters, so we can assume the parameter is valid.
13480 elsif Ekind (Formal_Id) = E_In_Parameter
13481 and then Validity_Check_In_Params
13482 then
13483 Set_Is_Known_Valid (Formal_Id, True);
13485 -- Similar treatment for IN OUT parameters
13487 elsif Ekind (Formal_Id) = E_In_Out_Parameter
13488 and then Validity_Check_In_Out_Params
13489 then
13490 Set_Is_Known_Valid (Formal_Id, True);
13491 end if;
13492 end Set_Formal_Validity;
13494 ------------------------
13495 -- Subtype_Conformant --
13496 ------------------------
13498 function Subtype_Conformant
13499 (New_Id : Entity_Id;
13500 Old_Id : Entity_Id;
13501 Skip_Controlling_Formals : Boolean := False) return Boolean
13503 Result : Boolean;
13504 begin
13505 Check_Conformance (New_Id, Old_Id, Subtype_Conformant, False, Result,
13506 Skip_Controlling_Formals => Skip_Controlling_Formals);
13507 return Result;
13508 end Subtype_Conformant;
13510 ---------------------
13511 -- Type_Conformant --
13512 ---------------------
13514 function Type_Conformant
13515 (New_Id : Entity_Id;
13516 Old_Id : Entity_Id;
13517 Skip_Controlling_Formals : Boolean := False) return Boolean
13519 Result : Boolean;
13520 begin
13521 May_Hide_Profile := False;
13522 Check_Conformance
13523 (New_Id, Old_Id, Type_Conformant, False, Result,
13524 Skip_Controlling_Formals => Skip_Controlling_Formals);
13525 return Result;
13526 end Type_Conformant;
13528 -------------------------------
13529 -- Valid_Operator_Definition --
13530 -------------------------------
13532 procedure Valid_Operator_Definition (Designator : Entity_Id) is
13533 N : Integer := 0;
13534 F : Entity_Id;
13535 Id : constant Name_Id := Chars (Designator);
13536 N_OK : Boolean;
13538 begin
13539 F := First_Formal (Designator);
13540 while Present (F) loop
13541 N := N + 1;
13543 if Present (Default_Value (F)) then
13544 Error_Msg_N
13545 ("default values not allowed for operator parameters",
13546 Parent (F));
13548 -- For function instantiations that are operators, we must check
13549 -- separately that the corresponding generic only has in-parameters.
13550 -- For subprogram declarations this is done in Set_Formal_Mode. Such
13551 -- an error could not arise in earlier versions of the language.
13553 elsif Ekind (F) /= E_In_Parameter then
13554 Error_Msg_N ("operators can only have IN parameters", F);
13555 end if;
13557 Next_Formal (F);
13558 end loop;
13560 -- Verify that user-defined operators have proper number of arguments
13561 -- First case of operators which can only be unary
13563 if Id in Name_Op_Not | Name_Op_Abs then
13564 N_OK := (N = 1);
13566 -- Case of operators which can be unary or binary
13568 elsif Id in Name_Op_Add | Name_Op_Subtract then
13569 N_OK := (N in 1 .. 2);
13571 -- All other operators can only be binary
13573 else
13574 N_OK := (N = 2);
13575 end if;
13577 if not N_OK then
13578 Error_Msg_N
13579 ("incorrect number of arguments for operator", Designator);
13580 end if;
13582 if Id = Name_Op_Ne
13583 and then Base_Type (Etype (Designator)) = Standard_Boolean
13584 and then not Is_Intrinsic_Subprogram (Designator)
13585 then
13586 Error_Msg_N
13587 ("explicit definition of inequality not allowed", Designator);
13588 end if;
13589 end Valid_Operator_Definition;
13591 end Sem_Ch6;