libgo: update to Go 1.10.2 release
[official-gcc.git] / libgo / go / cmd / go / internal / work / buildid.go
blob733938e0adebd5155ca53da8cd5fd3620d2a5628
1 // Copyright 2017 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 package work
7 import (
8 "bytes"
9 "fmt"
10 "io/ioutil"
11 "os"
12 "os/exec"
13 "strings"
15 "cmd/go/internal/base"
16 "cmd/go/internal/cache"
17 "cmd/go/internal/cfg"
18 "cmd/go/internal/load"
19 "cmd/go/internal/str"
20 "cmd/internal/buildid"
23 // Build IDs
25 // Go packages and binaries are stamped with build IDs that record both
26 // the action ID, which is a hash of the inputs to the action that produced
27 // the packages or binary, and the content ID, which is a hash of the action
28 // output, namely the archive or binary itself. The hash is the same one
29 // used by the build artifact cache (see cmd/go/internal/cache), but
30 // truncated when stored in packages and binaries, as the full length is not
31 // needed and is a bit unwieldy. The precise form is
33 // actionID/[.../]contentID
35 // where the actionID and contentID are prepared by hashToString below.
36 // and are found by looking for the first or last slash.
37 // Usually the buildID is simply actionID/contentID, but see below for an
38 // exception.
40 // The build ID serves two primary purposes.
42 // 1. The action ID half allows installed packages and binaries to serve as
43 // one-element cache entries. If we intend to build math.a with a given
44 // set of inputs summarized in the action ID, and the installed math.a already
45 // has that action ID, we can reuse the installed math.a instead of rebuilding it.
47 // 2. The content ID half allows the easy preparation of action IDs for steps
48 // that consume a particular package or binary. The content hash of every
49 // input file for a given action must be included in the action ID hash.
50 // Storing the content ID in the build ID lets us read it from the file with
51 // minimal I/O, instead of reading and hashing the entire file.
52 // This is especially effective since packages and binaries are typically
53 // the largest inputs to an action.
55 // Separating action ID from content ID is important for reproducible builds.
56 // The compiler is compiled with itself. If an output were represented by its
57 // own action ID (instead of content ID) when computing the action ID of
58 // the next step in the build process, then the compiler could never have its
59 // own input action ID as its output action ID (short of a miraculous hash collision).
60 // Instead we use the content IDs to compute the next action ID, and because
61 // the content IDs converge, so too do the action IDs and therefore the
62 // build IDs and the overall compiler binary. See cmd/dist's cmdbootstrap
63 // for the actual convergence sequence.
65 // The “one-element cache” purpose is a bit more complex for installed
66 // binaries. For a binary, like cmd/gofmt, there are two steps: compile
67 // cmd/gofmt/*.go into main.a, and then link main.a into the gofmt binary.
68 // We do not install gofmt's main.a, only the gofmt binary. Being able to
69 // decide that the gofmt binary is up-to-date means computing the action ID
70 // for the final link of the gofmt binary and comparing it against the
71 // already-installed gofmt binary. But computing the action ID for the link
72 // means knowing the content ID of main.a, which we did not keep.
73 // To sidestep this problem, each binary actually stores an expanded build ID:
75 // actionID(binary)/actionID(main.a)/contentID(main.a)/contentID(binary)
77 // (Note that this can be viewed equivalently as:
79 // actionID(binary)/buildID(main.a)/contentID(binary)
81 // Storing the buildID(main.a) in the middle lets the computations that care
82 // about the prefix or suffix halves ignore the middle and preserves the
83 // original build ID as a contiguous string.)
85 // During the build, when it's time to build main.a, the gofmt binary has the
86 // information needed to decide whether the eventual link would produce
87 // the same binary: if the action ID for main.a's inputs matches and then
88 // the action ID for the link step matches when assuming the given main.a
89 // content ID, then the binary as a whole is up-to-date and need not be rebuilt.
91 // This is all a bit complex and may be simplified once we can rely on the
92 // main cache, but at least at the start we will be using the content-based
93 // staleness determination without a cache beyond the usual installed
94 // package and binary locations.
96 const buildIDSeparator = "/"
98 // actionID returns the action ID half of a build ID.
99 func actionID(buildID string) string {
100 i := strings.Index(buildID, buildIDSeparator)
101 if i < 0 {
102 return buildID
104 return buildID[:i]
107 // contentID returns the content ID half of a build ID.
108 func contentID(buildID string) string {
109 return buildID[strings.LastIndex(buildID, buildIDSeparator)+1:]
112 // hashToString converts the hash h to a string to be recorded
113 // in package archives and binaries as part of the build ID.
114 // We use the first 96 bits of the hash and encode it in base64,
115 // resulting in a 16-byte string. Because this is only used for
116 // detecting the need to rebuild installed files (not for lookups
117 // in the object file cache), 96 bits are sufficient to drive the
118 // probability of a false "do not need to rebuild" decision to effectively zero.
119 // We embed two different hashes in archives and four in binaries,
120 // so cutting to 16 bytes is a significant savings when build IDs are displayed.
121 // (16*4+3 = 67 bytes compared to 64*4+3 = 259 bytes for the
122 // more straightforward option of printing the entire h in hex).
123 func hashToString(h [cache.HashSize]byte) string {
124 const b64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"
125 const chunks = 5
126 var dst [chunks * 4]byte
127 for i := 0; i < chunks; i++ {
128 v := uint32(h[3*i])<<16 | uint32(h[3*i+1])<<8 | uint32(h[3*i+2])
129 dst[4*i+0] = b64[(v>>18)&0x3F]
130 dst[4*i+1] = b64[(v>>12)&0x3F]
131 dst[4*i+2] = b64[(v>>6)&0x3F]
132 dst[4*i+3] = b64[v&0x3F]
134 return string(dst[:])
137 // toolID returns the unique ID to use for the current copy of the
138 // named tool (asm, compile, cover, link).
140 // It is important that if the tool changes (for example a compiler bug is fixed
141 // and the compiler reinstalled), toolID returns a different string, so that old
142 // package archives look stale and are rebuilt (with the fixed compiler).
143 // This suggests using a content hash of the tool binary, as stored in the build ID.
145 // Unfortunately, we can't just open the tool binary, because the tool might be
146 // invoked via a wrapper program specified by -toolexec and we don't know
147 // what the wrapper program does. In particular, we want "-toolexec toolstash"
148 // to continue working: it does no good if "-toolexec toolstash" is executing a
149 // stashed copy of the compiler but the go command is acting as if it will run
150 // the standard copy of the compiler. The solution is to ask the tool binary to tell
151 // us its own build ID using the "-V=full" flag now supported by all tools.
152 // Then we know we're getting the build ID of the compiler that will actually run
153 // during the build. (How does the compiler binary know its own content hash?
154 // We store it there using updateBuildID after the standard link step.)
156 // A final twist is that we'd prefer to have reproducible builds for release toolchains.
157 // It should be possible to cross-compile for Windows from either Linux or Mac
158 // or Windows itself and produce the same binaries, bit for bit. If the tool ID,
159 // which influences the action ID half of the build ID, is based on the content ID,
160 // then the Linux compiler binary and Mac compiler binary will have different tool IDs
161 // and therefore produce executables with different action IDs.
162 // To avoids this problem, for releases we use the release version string instead
163 // of the compiler binary's content hash. This assumes that all compilers built
164 // on all different systems are semantically equivalent, which is of course only true
165 // modulo bugs. (Producing the exact same executables also requires that the different
166 // build setups agree on details like $GOROOT and file name paths, but at least the
167 // tool IDs do not make it impossible.)
168 func (b *Builder) toolID(name string) string {
169 b.id.Lock()
170 id := b.toolIDCache[name]
171 b.id.Unlock()
173 if id != "" {
174 return id
177 cmdline := str.StringList(cfg.BuildToolexec, base.Tool(name), "-V=full")
178 cmd := exec.Command(cmdline[0], cmdline[1:]...)
179 cmd.Env = base.EnvForDir(cmd.Dir, os.Environ())
180 var stdout, stderr bytes.Buffer
181 cmd.Stdout = &stdout
182 cmd.Stderr = &stderr
183 if err := cmd.Run(); err != nil {
184 base.Fatalf("go tool %s: %v\n%s%s", name, err, stdout.Bytes(), stderr.Bytes())
187 line := stdout.String()
188 f := strings.Fields(line)
189 if len(f) < 3 || f[0] != name || f[1] != "version" || f[2] == "devel" && !strings.HasPrefix(f[len(f)-1], "buildID=") {
190 base.Fatalf("go tool %s -V=full: unexpected output:\n\t%s", name, line)
192 if f[2] == "devel" {
193 // On the development branch, use the content ID part of the build ID.
194 id = contentID(f[len(f)-1])
195 } else {
196 // For a release, the output is like: "compile version go1.9.1". Use the whole line.
197 id = f[2]
200 b.id.Lock()
201 b.toolIDCache[name] = id
202 b.id.Unlock()
204 return id
207 // gccToolID returns the unique ID to use for a tool that is invoked
208 // by the GCC driver. This is in particular gccgo, but this can also
209 // be used for gcc, g++, gfortran, etc.; those tools all use the GCC
210 // driver under different names. The approach used here should also
211 // work for sufficiently new versions of clang. Unlike toolID, the
212 // name argument is the program to run. The language argument is the
213 // type of input file as passed to the GCC driver's -x option.
215 // For these tools we have no -V=full option to dump the build ID,
216 // but we can run the tool with -v -### to reliably get the compiler proper
217 // and hash that. That will work in the presence of -toolexec.
219 // In order to get reproducible builds for released compilers, we
220 // detect a released compiler by the absence of "experimental" in the
221 // --version output, and in that case we just use the version string.
222 func (b *Builder) gccgoToolID(name, language string) (string, error) {
223 key := name + "." + language
224 b.id.Lock()
225 id := b.toolIDCache[key]
226 b.id.Unlock()
228 if id != "" {
229 return id, nil
232 // Invoke the driver with -### to see the subcommands and the
233 // version strings. Use -x to set the language. Pretend to
234 // compile an empty file on standard input.
235 cmdline := str.StringList(cfg.BuildToolexec, name, "-###", "-x", language, "-c", "-")
236 cmd := exec.Command(cmdline[0], cmdline[1:]...)
237 cmd.Env = base.EnvForDir(cmd.Dir, os.Environ())
238 // Force untranslated output so that we see the string "version".
239 cmd.Env = append(cmd.Env, "LC_ALL=C")
240 out, err := cmd.CombinedOutput()
241 if err != nil {
242 return "", fmt.Errorf("%s: %v; output: %q", name, err, out)
245 version := ""
246 lines := strings.Split(string(out), "\n")
247 for _, line := range lines {
248 if fields := strings.Fields(line); len(fields) > 1 && fields[1] == "version" {
249 version = line
250 break
253 if version == "" {
254 return "", fmt.Errorf("%s: can not find version number in %q", name, out)
257 if !strings.Contains(version, "experimental") {
258 // This is a release. Use this line as the tool ID.
259 id = version
260 } else {
261 // This is a development version. The first line with
262 // a leading space is the compiler proper.
263 compiler := ""
264 for _, line := range lines {
265 if len(line) > 1 && line[0] == ' ' {
266 compiler = line
267 break
270 if compiler == "" {
271 return "", fmt.Errorf("%s: can not find compilation command in %q", name, out)
274 fields := strings.Fields(compiler)
275 if len(fields) == 0 {
276 return "", fmt.Errorf("%s: compilation command confusion %q", name, out)
278 exe := fields[0]
279 if !strings.ContainsAny(exe, `/\`) {
280 if lp, err := exec.LookPath(exe); err == nil {
281 exe = lp
284 if _, err := os.Stat(exe); err != nil {
285 return "", fmt.Errorf("%s: can not find compiler %q: %v; output %q", name, exe, err, out)
287 id = b.fileHash(exe)
290 b.id.Lock()
291 b.toolIDCache[name] = id
292 b.id.Unlock()
294 return id, nil
297 // Check if assembler used by gccgo is GNU as.
298 func assemblerIsGas() bool {
299 cmd := exec.Command(BuildToolchain.compiler(), "-print-prog-name=as")
300 assembler, err := cmd.Output()
301 if err == nil {
302 cmd := exec.Command(strings.TrimSpace(string(assembler)), "--version")
303 out, err := cmd.Output()
304 if err == nil && strings.Contains(string(out), "GNU") {
305 return true
306 } else {
307 return false
309 } else {
310 return false
314 // gccgoBuildIDELFFile creates an assembler file that records the
315 // action's build ID in an SHF_EXCLUDE section.
316 func (b *Builder) gccgoBuildIDELFFile(a *Action) (string, error) {
317 sfile := a.Objdir + "_buildid.s"
319 var buf bytes.Buffer
320 if cfg.Goos != "solaris" || assemblerIsGas() {
321 fmt.Fprintf(&buf, "\t"+`.section .go.buildid,"e"`+"\n")
322 } else if cfg.Goarch == "sparc" || cfg.Goarch == "sparc64" {
323 fmt.Fprintf(&buf, "\t"+`.section ".go.buildid",#exclude`+"\n")
324 } else { // cfg.Goarch == "386" || cfg.Goarch == "amd64"
325 fmt.Fprintf(&buf, "\t"+`.section .go.buildid,#exclude`+"\n")
327 fmt.Fprintf(&buf, "\t.byte ")
328 for i := 0; i < len(a.buildID); i++ {
329 if i > 0 {
330 if i%8 == 0 {
331 fmt.Fprintf(&buf, "\n\t.byte ")
332 } else {
333 fmt.Fprintf(&buf, ",")
336 fmt.Fprintf(&buf, "%#02x", a.buildID[i])
338 fmt.Fprintf(&buf, "\n")
339 if cfg.Goos != "solaris" {
340 fmt.Fprintf(&buf, "\t"+`.section .note.GNU-stack,"",@progbits`+"\n")
341 fmt.Fprintf(&buf, "\t"+`.section .note.GNU-split-stack,"",@progbits`+"\n")
344 if cfg.BuildN || cfg.BuildX {
345 for _, line := range bytes.Split(buf.Bytes(), []byte("\n")) {
346 b.Showcmd("", "echo '%s' >> %s", line, sfile)
348 if cfg.BuildN {
349 return sfile, nil
353 if err := ioutil.WriteFile(sfile, buf.Bytes(), 0666); err != nil {
354 return "", err
357 return sfile, nil
360 // gccgoBuildIDXCOFFFile creates an assembler file that records the
361 // action's build ID in a CSECT (AIX linker deletes CSECTs that are
362 // not referenced in the output file).
363 func (b *Builder) gccgoBuildIDXCOFFFile(a *Action) (string, error) {
364 sfile := a.Objdir + "_buildid.s"
366 var buf bytes.Buffer
367 fmt.Fprintf(&buf, "\t.csect .go.buildid[XO]\n")
368 fmt.Fprintf(&buf, "\t.byte ")
369 for i := 0; i < len(a.buildID); i++ {
370 if i > 0 {
371 if i%8 == 0 {
372 fmt.Fprintf(&buf, "\n\t.byte ")
373 } else {
374 fmt.Fprintf(&buf, ",")
377 fmt.Fprintf(&buf, "%#02x", a.buildID[i])
379 fmt.Fprintf(&buf, "\n")
381 if cfg.BuildN || cfg.BuildX {
382 for _, line := range bytes.Split(buf.Bytes(), []byte("\n")) {
383 b.Showcmd("", "echo '%s' >> %s", line, sfile)
385 if cfg.BuildN {
386 return sfile, nil
390 if err := ioutil.WriteFile(sfile, buf.Bytes(), 0666); err != nil {
391 return "", err
394 return sfile, nil
397 // buildID returns the build ID found in the given file.
398 // If no build ID is found, buildID returns the content hash of the file.
399 func (b *Builder) buildID(file string) string {
400 b.id.Lock()
401 id := b.buildIDCache[file]
402 b.id.Unlock()
404 if id != "" {
405 return id
408 id, err := buildid.ReadFile(file)
409 if err != nil {
410 id = b.fileHash(file)
413 b.id.Lock()
414 b.buildIDCache[file] = id
415 b.id.Unlock()
417 return id
420 // fileHash returns the content hash of the named file.
421 func (b *Builder) fileHash(file string) string {
422 sum, err := cache.FileHash(file)
423 if err != nil {
424 return ""
426 return hashToString(sum)
429 // useCache tries to satisfy the action a, which has action ID actionHash,
430 // by using a cached result from an earlier build. At the moment, the only
431 // cached result is the installed package or binary at target.
432 // If useCache decides that the cache can be used, it sets a.buildID
433 // and a.built for use by parent actions and then returns true.
434 // Otherwise it sets a.buildID to a temporary build ID for use in the build
435 // and returns false. When useCache returns false the expectation is that
436 // the caller will build the target and then call updateBuildID to finish the
437 // build ID computation.
438 // When useCache returns false, it may have initiated buffering of output
439 // during a's work. The caller should defer b.flushOutput(a), to make sure
440 // that flushOutput is eventually called regardless of whether the action
441 // succeeds. The flushOutput call must happen after updateBuildID.
442 func (b *Builder) useCache(a *Action, p *load.Package, actionHash cache.ActionID, target string) bool {
443 // The second half of the build ID here is a placeholder for the content hash.
444 // It's important that the overall buildID be unlikely verging on impossible
445 // to appear in the output by chance, but that should be taken care of by
446 // the actionID half; if it also appeared in the input that would be like an
447 // engineered 96-bit partial SHA256 collision.
448 a.actionID = actionHash
449 actionID := hashToString(actionHash)
450 contentID := actionID // temporary placeholder, likely unique
451 a.buildID = actionID + buildIDSeparator + contentID
453 // Executable binaries also record the main build ID in the middle.
454 // See "Build IDs" comment above.
455 if a.Mode == "link" {
456 mainpkg := a.Deps[0]
457 a.buildID = actionID + buildIDSeparator + mainpkg.buildID + buildIDSeparator + contentID
460 // Check to see if target exists and matches the expected action ID.
461 // If so, it's up to date and we can reuse it instead of rebuilding it.
462 var buildID string
463 if target != "" && !cfg.BuildA {
464 buildID, _ = buildid.ReadFile(target)
465 if strings.HasPrefix(buildID, actionID+buildIDSeparator) {
466 a.buildID = buildID
467 a.built = target
468 // Poison a.Target to catch uses later in the build.
469 a.Target = "DO NOT USE - " + a.Mode
470 return true
474 // Special case for building a main package: if the only thing we
475 // want the package for is to link a binary, and the binary is
476 // already up-to-date, then to avoid a rebuild, report the package
477 // as up-to-date as well. See "Build IDs" comment above.
478 // TODO(rsc): Rewrite this code to use a TryCache func on the link action.
479 if target != "" && !cfg.BuildA && a.Mode == "build" && len(a.triggers) == 1 && a.triggers[0].Mode == "link" {
480 buildID, err := buildid.ReadFile(target)
481 if err == nil {
482 id := strings.Split(buildID, buildIDSeparator)
483 if len(id) == 4 && id[1] == actionID {
484 // Temporarily assume a.buildID is the package build ID
485 // stored in the installed binary, and see if that makes
486 // the upcoming link action ID a match. If so, report that
487 // we built the package, safe in the knowledge that the
488 // link step will not ask us for the actual package file.
489 // Note that (*Builder).LinkAction arranged that all of
490 // a.triggers[0]'s dependencies other than a are also
491 // dependencies of a, so that we can be sure that,
492 // other than a.buildID, b.linkActionID is only accessing
493 // build IDs of completed actions.
494 oldBuildID := a.buildID
495 a.buildID = id[1] + buildIDSeparator + id[2]
496 linkID := hashToString(b.linkActionID(a.triggers[0]))
497 if id[0] == linkID {
498 // Poison a.Target to catch uses later in the build.
499 a.Target = "DO NOT USE - main build pseudo-cache Target"
500 a.built = "DO NOT USE - main build pseudo-cache built"
501 return true
503 // Otherwise restore old build ID for main build.
504 a.buildID = oldBuildID
509 // Special case for linking a test binary: if the only thing we
510 // want the binary for is to run the test, and the test result is cached,
511 // then to avoid the link step, report the link as up-to-date.
512 // We avoid the nested build ID problem in the previous special case
513 // by recording the test results in the cache under the action ID half.
514 if !cfg.BuildA && len(a.triggers) == 1 && a.triggers[0].TryCache != nil && a.triggers[0].TryCache(b, a.triggers[0]) {
515 a.Target = "DO NOT USE - pseudo-cache Target"
516 a.built = "DO NOT USE - pseudo-cache built"
517 return true
520 if b.ComputeStaleOnly {
521 // Invoked during go list only to compute and record staleness.
522 if p := a.Package; p != nil && !p.Stale {
523 p.Stale = true
524 if cfg.BuildA {
525 p.StaleReason = "build -a flag in use"
526 } else {
527 p.StaleReason = "build ID mismatch"
528 for _, p1 := range p.Internal.Imports {
529 if p1.Stale && p1.StaleReason != "" {
530 if strings.HasPrefix(p1.StaleReason, "stale dependency: ") {
531 p.StaleReason = p1.StaleReason
532 break
534 if strings.HasPrefix(p.StaleReason, "build ID mismatch") {
535 p.StaleReason = "stale dependency: " + p1.ImportPath
542 // Fall through to update a.buildID from the build artifact cache,
543 // which will affect the computation of buildIDs for targets
544 // higher up in the dependency graph.
547 // Check the build artifact cache.
548 // We treat hits in this cache as being "stale" for the purposes of go list
549 // (in effect, "stale" means whether p.Target is up-to-date),
550 // but we're still happy to use results from the build artifact cache.
551 if c := cache.Default(); c != nil {
552 if !cfg.BuildA {
553 entry, err := c.Get(actionHash)
554 if err == nil {
555 file := c.OutputFile(entry.OutputID)
556 info, err1 := os.Stat(file)
557 buildID, err2 := buildid.ReadFile(file)
558 if err1 == nil && err2 == nil && info.Size() == entry.Size {
559 stdout, stdoutEntry, err := c.GetBytes(cache.Subkey(a.actionID, "stdout"))
560 if err == nil {
561 if len(stdout) > 0 {
562 if cfg.BuildX || cfg.BuildN {
563 b.Showcmd("", "%s # internal", joinUnambiguously(str.StringList("cat", c.OutputFile(stdoutEntry.OutputID))))
565 if !cfg.BuildN {
566 b.Print(string(stdout))
569 a.built = file
570 a.Target = "DO NOT USE - using cache"
571 a.buildID = buildID
572 if p := a.Package; p != nil {
573 // Clearer than explaining that something else is stale.
574 p.StaleReason = "not installed but available in build cache"
576 return true
582 // Begin saving output for later writing to cache.
583 a.output = []byte{}
586 if b.ComputeStaleOnly {
587 return true
590 return false
593 // flushOutput flushes the output being queued in a.
594 func (b *Builder) flushOutput(a *Action) {
595 b.Print(string(a.output))
596 a.output = nil
599 // updateBuildID updates the build ID in the target written by action a.
600 // It requires that useCache was called for action a and returned false,
601 // and that the build was then carried out and given the temporary
602 // a.buildID to record as the build ID in the resulting package or binary.
603 // updateBuildID computes the final content ID and updates the build IDs
604 // in the binary.
606 // Keep in sync with src/cmd/buildid/buildid.go
607 func (b *Builder) updateBuildID(a *Action, target string, rewrite bool) error {
608 if cfg.BuildX || cfg.BuildN {
609 if rewrite {
610 b.Showcmd("", "%s # internal", joinUnambiguously(str.StringList(base.Tool("buildid"), "-w", target)))
612 if cfg.BuildN {
613 return nil
617 // Find occurrences of old ID and compute new content-based ID.
618 r, err := os.Open(target)
619 if err != nil {
620 return err
622 matches, hash, err := buildid.FindAndHash(r, a.buildID, 0)
623 r.Close()
624 if err != nil {
625 return err
627 newID := a.buildID[:strings.LastIndex(a.buildID, buildIDSeparator)] + buildIDSeparator + hashToString(hash)
628 if len(newID) != len(a.buildID) {
629 return fmt.Errorf("internal error: build ID length mismatch %q vs %q", a.buildID, newID)
632 // Replace with new content-based ID.
633 a.buildID = newID
634 if len(matches) == 0 {
635 // Assume the user specified -buildid= to override what we were going to choose.
636 return nil
639 if rewrite {
640 w, err := os.OpenFile(target, os.O_WRONLY, 0)
641 if err != nil {
642 return err
644 err = buildid.Rewrite(w, matches, newID)
645 if err != nil {
646 w.Close()
647 return err
649 if err := w.Close(); err != nil {
650 return err
654 // Cache package builds, but not binaries (link steps).
655 // The expectation is that binaries are not reused
656 // nearly as often as individual packages, and they're
657 // much larger, so the cache-footprint-to-utility ratio
658 // of binaries is much lower for binaries.
659 // Not caching the link step also makes sure that repeated "go run" at least
660 // always rerun the linker, so that they don't get too fast.
661 // (We don't want people thinking go is a scripting language.)
662 // Note also that if we start caching binaries, then we will
663 // copy the binaries out of the cache to run them, and then
664 // that will mean the go process is itself writing a binary
665 // and then executing it, so we will need to defend against
666 // ETXTBSY problems as discussed in exec.go and golang.org/issue/22220.
667 if c := cache.Default(); c != nil && a.Mode == "build" {
668 r, err := os.Open(target)
669 if err == nil {
670 if a.output == nil {
671 panic("internal error: a.output not set")
673 outputID, _, err := c.Put(a.actionID, r)
674 if err == nil && cfg.BuildX {
675 b.Showcmd("", "%s # internal", joinUnambiguously(str.StringList("cp", target, c.OutputFile(outputID))))
677 c.PutBytes(cache.Subkey(a.actionID, "stdout"), a.output)
678 r.Close()
682 return nil