Fix formatting of -ftime-report.
[official-gcc.git] / gcc / ada / libgnarl / s-taprop__mingw.adb
blobc86b5ac23f6d89cd5974b850b28f47df3343d4d9
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 -- This is a NT (native) version of this package
34 -- This package contains all the GNULL primitives that interface directly with
35 -- the underlying OS.
37 pragma Polling (Off);
38 -- Turn off polling, we do not want ATC polling to take place during tasking
39 -- operations. It causes infinite loops and other problems.
41 with Interfaces.C;
42 with Interfaces.C.Strings;
44 with System.Float_Control;
45 with System.Interrupt_Management;
46 with System.Multiprocessors;
47 with System.OS_Primitives;
48 with System.Task_Info;
49 with System.Tasking.Debug;
50 with System.Win32.Ext;
52 with System.Soft_Links;
53 -- We use System.Soft_Links instead of System.Tasking.Initialization because
54 -- the later is a higher level package that we shouldn't depend on. For
55 -- example when using the restricted run time, it is replaced by
56 -- System.Tasking.Restricted.Stages.
58 package body System.Task_Primitives.Operations is
60 package SSL renames System.Soft_Links;
62 use Interfaces.C;
63 use Interfaces.C.Strings;
64 use System.OS_Interface;
65 use System.OS_Primitives;
66 use System.Parameters;
67 use System.Task_Info;
68 use System.Tasking;
69 use System.Tasking.Debug;
70 use System.Win32;
71 use System.Win32.Ext;
73 pragma Link_With ("-Xlinker --stack=0x200000,0x1000");
74 -- Change the default stack size (2 MB) for tasking programs on Windows.
75 -- This allows about 1000 tasks running at the same time. Note that
76 -- we set the stack size for non tasking programs on System unit.
77 -- Also note that under Windows XP, we use a Windows XP extension to
78 -- specify the stack size on a per task basis, as done under other OSes.
80 ---------------------
81 -- Local Functions --
82 ---------------------
84 procedure InitializeCriticalSection (pCriticalSection : access RTS_Lock);
85 procedure InitializeCriticalSection
86 (pCriticalSection : access CRITICAL_SECTION);
87 pragma Import
88 (Stdcall, InitializeCriticalSection, "InitializeCriticalSection");
90 procedure EnterCriticalSection (pCriticalSection : access RTS_Lock);
91 procedure EnterCriticalSection
92 (pCriticalSection : access CRITICAL_SECTION);
93 pragma Import (Stdcall, EnterCriticalSection, "EnterCriticalSection");
95 procedure LeaveCriticalSection (pCriticalSection : access RTS_Lock);
96 procedure LeaveCriticalSection (pCriticalSection : access CRITICAL_SECTION);
97 pragma Import (Stdcall, LeaveCriticalSection, "LeaveCriticalSection");
99 procedure DeleteCriticalSection (pCriticalSection : access RTS_Lock);
100 procedure DeleteCriticalSection
101 (pCriticalSection : access CRITICAL_SECTION);
102 pragma Import (Stdcall, DeleteCriticalSection, "DeleteCriticalSection");
104 ----------------
105 -- Local Data --
106 ----------------
108 Environment_Task_Id : Task_Id;
109 -- A variable to hold Task_Id for the environment task
111 Single_RTS_Lock : aliased RTS_Lock;
112 -- This is a lock to allow only one thread of control in the RTS at
113 -- a time; it is used to execute in mutual exclusion from all other tasks.
114 -- Used mainly in Single_Lock mode, but also to protect All_Tasks_List
116 Time_Slice_Val : Integer;
117 pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
119 Dispatching_Policy : Character;
120 pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
122 function Get_Policy (Prio : System.Any_Priority) return Character;
123 pragma Import (C, Get_Policy, "__gnat_get_specific_dispatching");
124 -- Get priority specific dispatching policy
126 Foreign_Task_Elaborated : aliased Boolean := True;
127 -- Used to identified fake tasks (i.e., non-Ada Threads)
129 Null_Thread_Id : constant Thread_Id := 0;
130 -- Constant to indicate that the thread identifier has not yet been
131 -- initialized.
133 ------------------------------------
134 -- The thread local storage index --
135 ------------------------------------
137 TlsIndex : DWORD;
138 pragma Export (Ada, TlsIndex);
139 -- To ensure that this variable won't be local to this package, since
140 -- in some cases, inlining forces this variable to be global anyway.
142 --------------------
143 -- Local Packages --
144 --------------------
146 package Specific is
148 function Is_Valid_Task return Boolean;
149 pragma Inline (Is_Valid_Task);
150 -- Does executing thread have a TCB?
152 procedure Set (Self_Id : Task_Id);
153 pragma Inline (Set);
154 -- Set the self id for the current task
156 end Specific;
158 package body Specific is
160 -------------------
161 -- Is_Valid_Task --
162 -------------------
164 function Is_Valid_Task return Boolean is
165 begin
166 return TlsGetValue (TlsIndex) /= System.Null_Address;
167 end Is_Valid_Task;
169 ---------
170 -- Set --
171 ---------
173 procedure Set (Self_Id : Task_Id) is
174 Succeeded : BOOL;
175 begin
176 Succeeded := TlsSetValue (TlsIndex, To_Address (Self_Id));
177 pragma Assert (Succeeded = Win32.TRUE);
178 end Set;
180 end Specific;
182 ----------------------------------
183 -- ATCB allocation/deallocation --
184 ----------------------------------
186 package body ATCB_Allocation is separate;
187 -- The body of this package is shared across several targets
189 ---------------------------------
190 -- Support for foreign threads --
191 ---------------------------------
193 function Register_Foreign_Thread
194 (Thread : Thread_Id;
195 Sec_Stack_Size : Size_Type := Unspecified_Size) return Task_Id;
196 -- Allocate and initialize a new ATCB for the current Thread. The size of
197 -- the secondary stack can be optionally specified.
199 function Register_Foreign_Thread
200 (Thread : Thread_Id;
201 Sec_Stack_Size : Size_Type := Unspecified_Size)
202 return Task_Id is separate;
204 ----------------------------------
205 -- Condition Variable Functions --
206 ----------------------------------
208 procedure Initialize_Cond (Cond : not null access Condition_Variable);
209 -- Initialize given condition variable Cond
211 procedure Finalize_Cond (Cond : not null access Condition_Variable);
212 -- Finalize given condition variable Cond
214 procedure Cond_Signal (Cond : not null access Condition_Variable);
215 -- Signal condition variable Cond
217 procedure Cond_Wait
218 (Cond : not null access Condition_Variable;
219 L : not null access RTS_Lock);
220 -- Wait on conditional variable Cond, using lock L
222 procedure Cond_Timed_Wait
223 (Cond : not null access Condition_Variable;
224 L : not null access RTS_Lock;
225 Rel_Time : Duration;
226 Timed_Out : out Boolean;
227 Status : out Integer);
228 -- Do timed wait on condition variable Cond using lock L. The duration
229 -- of the timed wait is given by Rel_Time. When the condition is
230 -- signalled, Timed_Out shows whether or not a time out occurred.
231 -- Status is only valid if Timed_Out is False, in which case it
232 -- shows whether Cond_Timed_Wait completed successfully.
234 ---------------------
235 -- Initialize_Cond --
236 ---------------------
238 procedure Initialize_Cond (Cond : not null access Condition_Variable) is
239 hEvent : HANDLE;
240 begin
241 hEvent := CreateEvent (null, Win32.TRUE, Win32.FALSE, Null_Ptr);
242 pragma Assert (hEvent /= 0);
243 Cond.all := Condition_Variable (hEvent);
244 end Initialize_Cond;
246 -------------------
247 -- Finalize_Cond --
248 -------------------
250 -- No such problem here, DosCloseEventSem has been derived.
251 -- What does such refer to in above comment???
253 procedure Finalize_Cond (Cond : not null access Condition_Variable) is
254 Result : BOOL;
255 begin
256 Result := CloseHandle (HANDLE (Cond.all));
257 pragma Assert (Result = Win32.TRUE);
258 end Finalize_Cond;
260 -----------------
261 -- Cond_Signal --
262 -----------------
264 procedure Cond_Signal (Cond : not null access Condition_Variable) is
265 Result : BOOL;
266 begin
267 Result := SetEvent (HANDLE (Cond.all));
268 pragma Assert (Result = Win32.TRUE);
269 end Cond_Signal;
271 ---------------
272 -- Cond_Wait --
273 ---------------
275 -- Pre-condition: Cond is posted
276 -- L is locked.
278 -- Post-condition: Cond is posted
279 -- L is locked.
281 procedure Cond_Wait
282 (Cond : not null access Condition_Variable;
283 L : not null access RTS_Lock)
285 Result : DWORD;
286 Result_Bool : BOOL;
288 begin
289 -- Must reset Cond BEFORE L is unlocked
291 Result_Bool := ResetEvent (HANDLE (Cond.all));
292 pragma Assert (Result_Bool = Win32.TRUE);
293 Unlock (L, Global_Lock => True);
295 -- No problem if we are interrupted here: if the condition is signaled,
296 -- WaitForSingleObject will simply not block
298 Result := WaitForSingleObject (HANDLE (Cond.all), Wait_Infinite);
299 pragma Assert (Result = 0);
301 Write_Lock (L, Global_Lock => True);
302 end Cond_Wait;
304 ---------------------
305 -- Cond_Timed_Wait --
306 ---------------------
308 -- Pre-condition: Cond is posted
309 -- L is locked.
311 -- Post-condition: Cond is posted
312 -- L is locked.
314 procedure Cond_Timed_Wait
315 (Cond : not null access Condition_Variable;
316 L : not null access RTS_Lock;
317 Rel_Time : Duration;
318 Timed_Out : out Boolean;
319 Status : out Integer)
321 Time_Out_Max : constant DWORD := 16#FFFF0000#;
322 -- NT 4 can't handle excessive timeout values (e.g. DWORD'Last - 1)
324 Time_Out : DWORD;
325 Result : BOOL;
326 Wait_Result : DWORD;
328 begin
329 -- Must reset Cond BEFORE L is unlocked
331 Result := ResetEvent (HANDLE (Cond.all));
332 pragma Assert (Result = Win32.TRUE);
333 Unlock (L, Global_Lock => True);
335 -- No problem if we are interrupted here: if the condition is signaled,
336 -- WaitForSingleObject will simply not block.
338 if Rel_Time <= 0.0 then
339 Timed_Out := True;
340 Wait_Result := 0;
342 else
343 Time_Out :=
344 (if Rel_Time >= Duration (Time_Out_Max) / 1000
345 then Time_Out_Max
346 else DWORD (Rel_Time * 1000));
348 Wait_Result := WaitForSingleObject (HANDLE (Cond.all), Time_Out);
350 if Wait_Result = WAIT_TIMEOUT then
351 Timed_Out := True;
352 Wait_Result := 0;
353 else
354 Timed_Out := False;
355 end if;
356 end if;
358 Write_Lock (L, Global_Lock => True);
360 -- Ensure post-condition
362 if Timed_Out then
363 Result := SetEvent (HANDLE (Cond.all));
364 pragma Assert (Result = Win32.TRUE);
365 end if;
367 Status := Integer (Wait_Result);
368 end Cond_Timed_Wait;
370 ------------------
371 -- Stack_Guard --
372 ------------------
374 -- The underlying thread system sets a guard page at the bottom of a thread
375 -- stack, so nothing is needed.
376 -- ??? Check the comment above
378 procedure Stack_Guard (T : ST.Task_Id; On : Boolean) is
379 pragma Unreferenced (T, On);
380 begin
381 null;
382 end Stack_Guard;
384 --------------------
385 -- Get_Thread_Id --
386 --------------------
388 function Get_Thread_Id (T : ST.Task_Id) return OSI.Thread_Id is
389 begin
390 return T.Common.LL.Thread;
391 end Get_Thread_Id;
393 ----------
394 -- Self --
395 ----------
397 function Self return Task_Id is
398 Self_Id : constant Task_Id := To_Task_Id (TlsGetValue (TlsIndex));
399 begin
400 if Self_Id = null then
401 return Register_Foreign_Thread (GetCurrentThread);
402 else
403 return Self_Id;
404 end if;
405 end Self;
407 ---------------------
408 -- Initialize_Lock --
409 ---------------------
411 -- Note: mutexes and cond_variables needed per-task basis are initialized
412 -- in Initialize_TCB and the Storage_Error is handled. Other mutexes (such
413 -- as RTS_Lock, Memory_Lock...) used in the RTS is initialized before any
414 -- status change of RTS. Therefore raising Storage_Error in the following
415 -- routines should be able to be handled safely.
417 procedure Initialize_Lock
418 (Prio : System.Any_Priority;
419 L : not null access Lock)
421 begin
422 InitializeCriticalSection (L.Mutex'Access);
423 L.Owner_Priority := 0;
424 L.Priority := Prio;
425 end Initialize_Lock;
427 procedure Initialize_Lock
428 (L : not null access RTS_Lock; Level : Lock_Level)
430 pragma Unreferenced (Level);
431 begin
432 InitializeCriticalSection (L);
433 end Initialize_Lock;
435 -------------------
436 -- Finalize_Lock --
437 -------------------
439 procedure Finalize_Lock (L : not null access Lock) is
440 begin
441 DeleteCriticalSection (L.Mutex'Access);
442 end Finalize_Lock;
444 procedure Finalize_Lock (L : not null access RTS_Lock) is
445 begin
446 DeleteCriticalSection (L);
447 end Finalize_Lock;
449 ----------------
450 -- Write_Lock --
451 ----------------
453 procedure Write_Lock
454 (L : not null access Lock; Ceiling_Violation : out Boolean) is
455 begin
456 L.Owner_Priority := Get_Priority (Self);
458 if L.Priority < L.Owner_Priority then
459 Ceiling_Violation := True;
460 return;
461 end if;
463 EnterCriticalSection (L.Mutex'Access);
465 Ceiling_Violation := False;
466 end Write_Lock;
468 procedure Write_Lock
469 (L : not null access RTS_Lock;
470 Global_Lock : Boolean := False)
472 begin
473 if not Single_Lock or else Global_Lock then
474 EnterCriticalSection (L);
475 end if;
476 end Write_Lock;
478 procedure Write_Lock (T : Task_Id) is
479 begin
480 if not Single_Lock then
481 EnterCriticalSection (T.Common.LL.L'Access);
482 end if;
483 end Write_Lock;
485 ---------------
486 -- Read_Lock --
487 ---------------
489 procedure Read_Lock
490 (L : not null access Lock; Ceiling_Violation : out Boolean) is
491 begin
492 Write_Lock (L, Ceiling_Violation);
493 end Read_Lock;
495 ------------
496 -- Unlock --
497 ------------
499 procedure Unlock (L : not null access Lock) is
500 begin
501 LeaveCriticalSection (L.Mutex'Access);
502 end Unlock;
504 procedure Unlock
505 (L : not null access RTS_Lock; Global_Lock : Boolean := False) is
506 begin
507 if not Single_Lock or else Global_Lock then
508 LeaveCriticalSection (L);
509 end if;
510 end Unlock;
512 procedure Unlock (T : Task_Id) is
513 begin
514 if not Single_Lock then
515 LeaveCriticalSection (T.Common.LL.L'Access);
516 end if;
517 end Unlock;
519 -----------------
520 -- Set_Ceiling --
521 -----------------
523 -- Dynamic priority ceilings are not supported by the underlying system
525 procedure Set_Ceiling
526 (L : not null access Lock;
527 Prio : System.Any_Priority)
529 pragma Unreferenced (L, Prio);
530 begin
531 null;
532 end Set_Ceiling;
534 -----------
535 -- Sleep --
536 -----------
538 procedure Sleep
539 (Self_ID : Task_Id;
540 Reason : System.Tasking.Task_States)
542 pragma Unreferenced (Reason);
544 begin
545 pragma Assert (Self_ID = Self);
547 if Single_Lock then
548 Cond_Wait (Self_ID.Common.LL.CV'Access, Single_RTS_Lock'Access);
549 else
550 Cond_Wait (Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L'Access);
551 end if;
553 if Self_ID.Deferral_Level = 0
554 and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
555 then
556 Unlock (Self_ID);
557 raise Standard'Abort_Signal;
558 end if;
559 end Sleep;
561 -----------------
562 -- Timed_Sleep --
563 -----------------
565 -- This is for use within the run-time system, so abort is assumed to be
566 -- already deferred, and the caller should be holding its own ATCB lock.
568 procedure Timed_Sleep
569 (Self_ID : Task_Id;
570 Time : Duration;
571 Mode : ST.Delay_Modes;
572 Reason : System.Tasking.Task_States;
573 Timedout : out Boolean;
574 Yielded : out Boolean)
576 pragma Unreferenced (Reason);
577 Check_Time : Duration := Monotonic_Clock;
578 Rel_Time : Duration;
579 Abs_Time : Duration;
581 Result : Integer;
582 pragma Unreferenced (Result);
584 Local_Timedout : Boolean;
586 begin
587 Timedout := True;
588 Yielded := False;
590 if Mode = Relative then
591 Rel_Time := Time;
592 Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
593 else
594 Rel_Time := Time - Check_Time;
595 Abs_Time := Time;
596 end if;
598 if Rel_Time > 0.0 then
599 loop
600 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
602 if Single_Lock then
603 Cond_Timed_Wait
604 (Self_ID.Common.LL.CV'Access,
605 Single_RTS_Lock'Access,
606 Rel_Time, Local_Timedout, Result);
607 else
608 Cond_Timed_Wait
609 (Self_ID.Common.LL.CV'Access,
610 Self_ID.Common.LL.L'Access,
611 Rel_Time, Local_Timedout, Result);
612 end if;
614 Check_Time := Monotonic_Clock;
615 exit when Abs_Time <= Check_Time;
617 if not Local_Timedout then
619 -- Somebody may have called Wakeup for us
621 Timedout := False;
622 exit;
623 end if;
625 Rel_Time := Abs_Time - Check_Time;
626 end loop;
627 end if;
628 end Timed_Sleep;
630 -----------------
631 -- Timed_Delay --
632 -----------------
634 procedure Timed_Delay
635 (Self_ID : Task_Id;
636 Time : Duration;
637 Mode : ST.Delay_Modes)
639 Check_Time : Duration := Monotonic_Clock;
640 Rel_Time : Duration;
641 Abs_Time : Duration;
643 Timedout : Boolean;
644 Result : Integer;
645 pragma Unreferenced (Timedout, Result);
647 begin
648 if Single_Lock then
649 Lock_RTS;
650 end if;
652 Write_Lock (Self_ID);
654 if Mode = Relative then
655 Rel_Time := Time;
656 Abs_Time := Time + Check_Time;
657 else
658 Rel_Time := Time - Check_Time;
659 Abs_Time := Time;
660 end if;
662 if Rel_Time > 0.0 then
663 Self_ID.Common.State := Delay_Sleep;
665 loop
666 exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
668 if Single_Lock then
669 Cond_Timed_Wait
670 (Self_ID.Common.LL.CV'Access,
671 Single_RTS_Lock'Access,
672 Rel_Time, Timedout, Result);
673 else
674 Cond_Timed_Wait
675 (Self_ID.Common.LL.CV'Access,
676 Self_ID.Common.LL.L'Access,
677 Rel_Time, Timedout, Result);
678 end if;
680 Check_Time := Monotonic_Clock;
681 exit when Abs_Time <= Check_Time;
683 Rel_Time := Abs_Time - Check_Time;
684 end loop;
686 Self_ID.Common.State := Runnable;
687 end if;
689 Unlock (Self_ID);
691 if Single_Lock then
692 Unlock_RTS;
693 end if;
695 Yield;
696 end Timed_Delay;
698 ------------
699 -- Wakeup --
700 ------------
702 procedure Wakeup (T : Task_Id; Reason : System.Tasking.Task_States) is
703 pragma Unreferenced (Reason);
704 begin
705 Cond_Signal (T.Common.LL.CV'Access);
706 end Wakeup;
708 -----------
709 -- Yield --
710 -----------
712 procedure Yield (Do_Yield : Boolean := True) is
713 begin
714 -- Note: in a previous implementation if Do_Yield was False, then we
715 -- introduced a delay of 1 millisecond in an attempt to get closer to
716 -- annex D semantics, and in particular to make ACATS CXD8002 pass. But
717 -- this change introduced a huge performance regression evaluating the
718 -- Count attribute. So we decided to remove this processing.
720 -- Moreover, CXD8002 appears to pass on Windows (although we do not
721 -- guarantee full Annex D compliance on Windows in any case).
723 if Do_Yield then
724 SwitchToThread;
725 end if;
726 end Yield;
728 ------------------
729 -- Set_Priority --
730 ------------------
732 procedure Set_Priority
733 (T : Task_Id;
734 Prio : System.Any_Priority;
735 Loss_Of_Inheritance : Boolean := False)
737 Res : BOOL;
738 pragma Unreferenced (Loss_Of_Inheritance);
740 begin
741 Res :=
742 SetThreadPriority
743 (T.Common.LL.Thread,
744 Interfaces.C.int (Underlying_Priorities (Prio)));
745 pragma Assert (Res = Win32.TRUE);
747 -- Note: Annex D (RM D.2.3(5/2)) requires the task to be placed at the
748 -- head of its priority queue when decreasing its priority as a result
749 -- of a loss of inherited priority. This is not the case, but we
750 -- consider it an acceptable variation (RM 1.1.3(6)), given this is
751 -- the built-in behavior offered by the Windows operating system.
753 -- In older versions we attempted to better approximate the Annex D
754 -- required behavior, but this simulation was not entirely accurate,
755 -- and it seems better to live with the standard Windows semantics.
757 T.Common.Current_Priority := Prio;
758 end Set_Priority;
760 ------------------
761 -- Get_Priority --
762 ------------------
764 function Get_Priority (T : Task_Id) return System.Any_Priority is
765 begin
766 return T.Common.Current_Priority;
767 end Get_Priority;
769 ----------------
770 -- Enter_Task --
771 ----------------
773 -- There were two paths were we needed to call Enter_Task :
774 -- 1) from System.Task_Primitives.Operations.Initialize
775 -- 2) from System.Tasking.Stages.Task_Wrapper
777 -- The pseudo handle (LL.Thread) need not be closed when it is no
778 -- longer needed. Calling the CloseHandle function with this handle
779 -- has no effect.
781 procedure Enter_Task (Self_ID : Task_Id) is
782 procedure Get_Stack_Bounds (Base : Address; Limit : Address);
783 pragma Import (C, Get_Stack_Bounds, "__gnat_get_stack_bounds");
784 -- Get stack boundaries
785 begin
786 Specific.Set (Self_ID);
788 -- Properly initializes the FPU for x86 systems
790 System.Float_Control.Reset;
792 if Self_ID.Common.Task_Info /= null
793 and then
794 Self_ID.Common.Task_Info.CPU >= CPU_Number (Number_Of_Processors)
795 then
796 raise Invalid_CPU_Number;
797 end if;
799 -- Initialize the thread here only if not set. This is done for a
800 -- foreign task but is not needed when a real thread-id is already
801 -- set in Create_Task. Note that we do want to keep the real thread-id
802 -- as it is the only way to free the associated resource. Another way
803 -- to say this is that a pseudo thread-id from a foreign thread won't
804 -- allow for freeing resources.
806 if Self_ID.Common.LL.Thread = Null_Thread_Id then
807 Self_ID.Common.LL.Thread := GetCurrentThread;
808 end if;
810 Self_ID.Common.LL.Thread_Id := GetCurrentThreadId;
812 Get_Stack_Bounds
813 (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Base'Address,
814 Self_ID.Common.Compiler_Data.Pri_Stack_Info.Limit'Address);
815 end Enter_Task;
817 -------------------
818 -- Is_Valid_Task --
819 -------------------
821 function Is_Valid_Task return Boolean renames Specific.Is_Valid_Task;
823 -----------------------------
824 -- Register_Foreign_Thread --
825 -----------------------------
827 function Register_Foreign_Thread return Task_Id is
828 begin
829 if Is_Valid_Task then
830 return Self;
831 else
832 return Register_Foreign_Thread (GetCurrentThread);
833 end if;
834 end Register_Foreign_Thread;
836 --------------------
837 -- Initialize_TCB --
838 --------------------
840 procedure Initialize_TCB (Self_ID : Task_Id; Succeeded : out Boolean) is
841 begin
842 -- Initialize thread ID to 0, this is needed to detect threads that
843 -- are not yet activated.
845 Self_ID.Common.LL.Thread := Null_Thread_Id;
847 Initialize_Cond (Self_ID.Common.LL.CV'Access);
849 if not Single_Lock then
850 Initialize_Lock (Self_ID.Common.LL.L'Access, ATCB_Level);
851 end if;
853 Succeeded := True;
854 end Initialize_TCB;
856 -----------------
857 -- Create_Task --
858 -----------------
860 procedure Create_Task
861 (T : Task_Id;
862 Wrapper : System.Address;
863 Stack_Size : System.Parameters.Size_Type;
864 Priority : System.Any_Priority;
865 Succeeded : out Boolean)
867 Initial_Stack_Size : constant := 1024;
868 -- We set the initial stack size to 1024. On Windows version prior to XP
869 -- there is no way to fix a task stack size. Only the initial stack size
870 -- can be set, the operating system will raise the task stack size if
871 -- needed.
873 function Is_Windows_XP return Integer;
874 pragma Import (C, Is_Windows_XP, "__gnat_is_windows_xp");
875 -- Returns 1 if running on Windows XP
877 hTask : HANDLE;
878 TaskId : aliased DWORD;
879 pTaskParameter : Win32.PVOID;
880 Result : DWORD;
881 Entry_Point : PTHREAD_START_ROUTINE;
883 use type System.Multiprocessors.CPU_Range;
885 begin
886 -- Check whether both Dispatching_Domain and CPU are specified for the
887 -- task, and the CPU value is not contained within the range of
888 -- processors for the domain.
890 if T.Common.Domain /= null
891 and then T.Common.Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
892 and then
893 (T.Common.Base_CPU not in T.Common.Domain'Range
894 or else not T.Common.Domain (T.Common.Base_CPU))
895 then
896 Succeeded := False;
897 return;
898 end if;
900 pTaskParameter := To_Address (T);
902 Entry_Point := To_PTHREAD_START_ROUTINE (Wrapper);
904 if Is_Windows_XP = 1 then
905 hTask := CreateThread
906 (null,
907 DWORD (Stack_Size),
908 Entry_Point,
909 pTaskParameter,
910 DWORD (Create_Suspended)
911 or DWORD (Stack_Size_Param_Is_A_Reservation),
912 TaskId'Unchecked_Access);
913 else
914 hTask := CreateThread
915 (null,
916 Initial_Stack_Size,
917 Entry_Point,
918 pTaskParameter,
919 DWORD (Create_Suspended),
920 TaskId'Unchecked_Access);
921 end if;
923 -- Step 1: Create the thread in blocked mode
925 if hTask = 0 then
926 Succeeded := False;
927 return;
928 end if;
930 -- Step 2: set its TCB
932 T.Common.LL.Thread := hTask;
934 -- Note: it would be useful to initialize Thread_Id right away to avoid
935 -- a race condition in gdb where Thread_ID may not have the right value
936 -- yet, but GetThreadId is a Vista specific API, not available under XP:
937 -- T.Common.LL.Thread_Id := GetThreadId (hTask); so instead we set the
938 -- field to 0 to avoid having a random value. Thread_Id is initialized
939 -- in Enter_Task anyway.
941 T.Common.LL.Thread_Id := 0;
943 -- Step 3: set its priority (child has inherited priority from parent)
945 Set_Priority (T, Priority);
947 if Time_Slice_Val = 0
948 or else Dispatching_Policy = 'F'
949 or else Get_Policy (Priority) = 'F'
950 then
951 -- Here we need Annex D semantics so we disable the NT priority
952 -- boost. A priority boost is temporarily given by the system to
953 -- a thread when it is taken out of a wait state.
955 SetThreadPriorityBoost (hTask, DisablePriorityBoost => Win32.TRUE);
956 end if;
958 -- Step 4: Handle pragma CPU and Task_Info
960 Set_Task_Affinity (T);
962 -- Step 5: Now, start it for good
964 Result := ResumeThread (hTask);
965 pragma Assert (Result = 1);
967 Succeeded := Result = 1;
968 end Create_Task;
970 ------------------
971 -- Finalize_TCB --
972 ------------------
974 procedure Finalize_TCB (T : Task_Id) is
975 Succeeded : BOOL;
976 pragma Unreferenced (Succeeded);
978 begin
979 if not Single_Lock then
980 Finalize_Lock (T.Common.LL.L'Access);
981 end if;
983 Finalize_Cond (T.Common.LL.CV'Access);
985 if T.Known_Tasks_Index /= -1 then
986 Known_Tasks (T.Known_Tasks_Index) := null;
987 end if;
989 if T.Common.LL.Thread /= Null_Thread_Id then
991 -- This task has been activated. Close the thread handle. This
992 -- is needed to release system resources.
994 Succeeded := CloseHandle (T.Common.LL.Thread);
995 -- Note that we do not check for the returned value, this is
996 -- because the above call will fail for a foreign thread. But
997 -- we still need to call it to properly close Ada tasks created
998 -- with CreateThread() in Create_Task above.
999 end if;
1001 ATCB_Allocation.Free_ATCB (T);
1002 end Finalize_TCB;
1004 ---------------
1005 -- Exit_Task --
1006 ---------------
1008 procedure Exit_Task is
1009 begin
1010 Specific.Set (null);
1011 end Exit_Task;
1013 ----------------
1014 -- Abort_Task --
1015 ----------------
1017 procedure Abort_Task (T : Task_Id) is
1018 pragma Unreferenced (T);
1019 begin
1020 null;
1021 end Abort_Task;
1023 ----------------------
1024 -- Environment_Task --
1025 ----------------------
1027 function Environment_Task return Task_Id is
1028 begin
1029 return Environment_Task_Id;
1030 end Environment_Task;
1032 --------------
1033 -- Lock_RTS --
1034 --------------
1036 procedure Lock_RTS is
1037 begin
1038 Write_Lock (Single_RTS_Lock'Access, Global_Lock => True);
1039 end Lock_RTS;
1041 ----------------
1042 -- Unlock_RTS --
1043 ----------------
1045 procedure Unlock_RTS is
1046 begin
1047 Unlock (Single_RTS_Lock'Access, Global_Lock => True);
1048 end Unlock_RTS;
1050 ----------------
1051 -- Initialize --
1052 ----------------
1054 procedure Initialize (Environment_Task : Task_Id) is
1055 Discard : BOOL;
1057 begin
1058 Environment_Task_Id := Environment_Task;
1059 OS_Primitives.Initialize;
1060 Interrupt_Management.Initialize;
1062 if Time_Slice_Val = 0 or else Dispatching_Policy = 'F' then
1063 -- Here we need Annex D semantics, switch the current process to the
1064 -- Realtime_Priority_Class.
1066 Discard := OS_Interface.SetPriorityClass
1067 (GetCurrentProcess, Realtime_Priority_Class);
1068 end if;
1070 TlsIndex := TlsAlloc;
1072 -- Initialize the lock used to synchronize chain of all ATCBs
1074 Initialize_Lock (Single_RTS_Lock'Access, RTS_Lock_Level);
1076 Environment_Task.Common.LL.Thread := GetCurrentThread;
1078 -- Make environment task known here because it doesn't go through
1079 -- Activate_Tasks, which does it for all other tasks.
1081 Known_Tasks (Known_Tasks'First) := Environment_Task;
1082 Environment_Task.Known_Tasks_Index := Known_Tasks'First;
1084 Enter_Task (Environment_Task);
1086 -- pragma CPU and dispatching domains for the environment task
1088 Set_Task_Affinity (Environment_Task);
1089 end Initialize;
1091 ---------------------
1092 -- Monotonic_Clock --
1093 ---------------------
1095 function Monotonic_Clock return Duration is
1096 function Internal_Clock return Duration;
1097 pragma Import (Ada, Internal_Clock, "__gnat_monotonic_clock");
1098 begin
1099 return Internal_Clock;
1100 end Monotonic_Clock;
1102 -------------------
1103 -- RT_Resolution --
1104 -------------------
1106 function RT_Resolution return Duration is
1107 Ticks_Per_Second : aliased LARGE_INTEGER;
1108 begin
1109 QueryPerformanceFrequency (Ticks_Per_Second'Access);
1110 return Duration (1.0 / Ticks_Per_Second);
1111 end RT_Resolution;
1113 ----------------
1114 -- Initialize --
1115 ----------------
1117 procedure Initialize (S : in out Suspension_Object) is
1118 begin
1119 -- Initialize internal state. It is always initialized to False (ARM
1120 -- D.10 par. 6).
1122 S.State := False;
1123 S.Waiting := False;
1125 -- Initialize internal mutex
1127 InitializeCriticalSection (S.L'Access);
1129 -- Initialize internal condition variable
1131 S.CV := CreateEvent (null, Win32.TRUE, Win32.FALSE, Null_Ptr);
1132 pragma Assert (S.CV /= 0);
1133 end Initialize;
1135 --------------
1136 -- Finalize --
1137 --------------
1139 procedure Finalize (S : in out Suspension_Object) is
1140 Result : BOOL;
1142 begin
1143 -- Destroy internal mutex
1145 DeleteCriticalSection (S.L'Access);
1147 -- Destroy internal condition variable
1149 Result := CloseHandle (S.CV);
1150 pragma Assert (Result = Win32.TRUE);
1151 end Finalize;
1153 -------------------
1154 -- Current_State --
1155 -------------------
1157 function Current_State (S : Suspension_Object) return Boolean is
1158 begin
1159 -- We do not want to use lock on this read operation. State is marked
1160 -- as Atomic so that we ensure that the value retrieved is correct.
1162 return S.State;
1163 end Current_State;
1165 ---------------
1166 -- Set_False --
1167 ---------------
1169 procedure Set_False (S : in out Suspension_Object) is
1170 begin
1171 SSL.Abort_Defer.all;
1173 EnterCriticalSection (S.L'Access);
1175 S.State := False;
1177 LeaveCriticalSection (S.L'Access);
1179 SSL.Abort_Undefer.all;
1180 end Set_False;
1182 --------------
1183 -- Set_True --
1184 --------------
1186 procedure Set_True (S : in out Suspension_Object) is
1187 Result : BOOL;
1189 begin
1190 SSL.Abort_Defer.all;
1192 EnterCriticalSection (S.L'Access);
1194 -- If there is already a task waiting on this suspension object then
1195 -- we resume it, leaving the state of the suspension object to False,
1196 -- as it is specified in ARM D.10 par. 9. Otherwise, it just leaves
1197 -- the state to True.
1199 if S.Waiting then
1200 S.Waiting := False;
1201 S.State := False;
1203 Result := SetEvent (S.CV);
1204 pragma Assert (Result = Win32.TRUE);
1206 else
1207 S.State := True;
1208 end if;
1210 LeaveCriticalSection (S.L'Access);
1212 SSL.Abort_Undefer.all;
1213 end Set_True;
1215 ------------------------
1216 -- Suspend_Until_True --
1217 ------------------------
1219 procedure Suspend_Until_True (S : in out Suspension_Object) is
1220 Result : DWORD;
1221 Result_Bool : BOOL;
1223 begin
1224 SSL.Abort_Defer.all;
1226 EnterCriticalSection (S.L'Access);
1228 if S.Waiting then
1230 -- Program_Error must be raised upon calling Suspend_Until_True
1231 -- if another task is already waiting on that suspension object
1232 -- (ARM D.10 par. 10).
1234 LeaveCriticalSection (S.L'Access);
1236 SSL.Abort_Undefer.all;
1238 raise Program_Error;
1240 else
1241 -- Suspend the task if the state is False. Otherwise, the task
1242 -- continues its execution, and the state of the suspension object
1243 -- is set to False (ARM D.10 par. 9).
1245 if S.State then
1246 S.State := False;
1248 LeaveCriticalSection (S.L'Access);
1250 SSL.Abort_Undefer.all;
1252 else
1253 S.Waiting := True;
1255 -- Must reset CV BEFORE L is unlocked
1257 Result_Bool := ResetEvent (S.CV);
1258 pragma Assert (Result_Bool = Win32.TRUE);
1260 LeaveCriticalSection (S.L'Access);
1262 SSL.Abort_Undefer.all;
1264 Result := WaitForSingleObject (S.CV, Wait_Infinite);
1265 pragma Assert (Result = 0);
1266 end if;
1267 end if;
1268 end Suspend_Until_True;
1270 ----------------
1271 -- Check_Exit --
1272 ----------------
1274 -- Dummy versions, currently this only works for solaris (native)
1276 function Check_Exit (Self_ID : ST.Task_Id) return Boolean is
1277 pragma Unreferenced (Self_ID);
1278 begin
1279 return True;
1280 end Check_Exit;
1282 --------------------
1283 -- Check_No_Locks --
1284 --------------------
1286 function Check_No_Locks (Self_ID : ST.Task_Id) return Boolean is
1287 pragma Unreferenced (Self_ID);
1288 begin
1289 return True;
1290 end Check_No_Locks;
1292 ------------------
1293 -- Suspend_Task --
1294 ------------------
1296 function Suspend_Task
1297 (T : ST.Task_Id;
1298 Thread_Self : Thread_Id) return Boolean
1300 begin
1301 if T.Common.LL.Thread /= Thread_Self then
1302 return SuspendThread (T.Common.LL.Thread) = NO_ERROR;
1303 else
1304 return True;
1305 end if;
1306 end Suspend_Task;
1308 -----------------
1309 -- Resume_Task --
1310 -----------------
1312 function Resume_Task
1313 (T : ST.Task_Id;
1314 Thread_Self : Thread_Id) return Boolean
1316 begin
1317 if T.Common.LL.Thread /= Thread_Self then
1318 return ResumeThread (T.Common.LL.Thread) = NO_ERROR;
1319 else
1320 return True;
1321 end if;
1322 end Resume_Task;
1324 --------------------
1325 -- Stop_All_Tasks --
1326 --------------------
1328 procedure Stop_All_Tasks is
1329 begin
1330 null;
1331 end Stop_All_Tasks;
1333 ---------------
1334 -- Stop_Task --
1335 ---------------
1337 function Stop_Task (T : ST.Task_Id) return Boolean is
1338 pragma Unreferenced (T);
1339 begin
1340 return False;
1341 end Stop_Task;
1343 -------------------
1344 -- Continue_Task --
1345 -------------------
1347 function Continue_Task (T : ST.Task_Id) return Boolean is
1348 pragma Unreferenced (T);
1349 begin
1350 return False;
1351 end Continue_Task;
1353 -----------------------
1354 -- Set_Task_Affinity --
1355 -----------------------
1357 procedure Set_Task_Affinity (T : ST.Task_Id) is
1358 Result : DWORD;
1360 use type System.Multiprocessors.CPU_Range;
1362 begin
1363 -- Do nothing if the underlying thread has not yet been created. If the
1364 -- thread has not yet been created then the proper affinity will be set
1365 -- during its creation.
1367 if T.Common.LL.Thread = Null_Thread_Id then
1368 null;
1370 -- pragma CPU
1372 elsif T.Common.Base_CPU /= Multiprocessors.Not_A_Specific_CPU then
1374 -- The CPU numbering in pragma CPU starts at 1 while the subprogram
1375 -- to set the affinity starts at 0, therefore we must substract 1.
1377 Result :=
1378 SetThreadIdealProcessor
1379 (T.Common.LL.Thread, ProcessorId (T.Common.Base_CPU) - 1);
1380 pragma Assert (Result = 1);
1382 -- Task_Info
1384 elsif T.Common.Task_Info /= null then
1385 if T.Common.Task_Info.CPU /= Task_Info.Any_CPU then
1386 Result :=
1387 SetThreadIdealProcessor
1388 (T.Common.LL.Thread, T.Common.Task_Info.CPU);
1389 pragma Assert (Result = 1);
1390 end if;
1392 -- Dispatching domains
1394 elsif T.Common.Domain /= null
1395 and then (T.Common.Domain /= ST.System_Domain
1396 or else
1397 T.Common.Domain.all /=
1398 (Multiprocessors.CPU'First ..
1399 Multiprocessors.Number_Of_CPUs => True))
1400 then
1401 declare
1402 CPU_Set : DWORD := 0;
1404 begin
1405 for Proc in T.Common.Domain'Range loop
1406 if T.Common.Domain (Proc) then
1408 -- The thread affinity mask is a bit vector in which each
1409 -- bit represents a logical processor.
1411 CPU_Set := CPU_Set + 2 ** (Integer (Proc) - 1);
1412 end if;
1413 end loop;
1415 Result := SetThreadAffinityMask (T.Common.LL.Thread, CPU_Set);
1416 pragma Assert (Result = 1);
1417 end;
1418 end if;
1419 end Set_Task_Affinity;
1421 end System.Task_Primitives.Operations;