1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Casing
; use Casing
;
29 with Checks
; use Checks
;
30 with Debug
; use Debug
;
31 with Einfo
; use Einfo
;
32 with Elists
; use Elists
;
33 with Errout
; use Errout
;
34 with Exp_Aggr
; use Exp_Aggr
;
35 with Exp_Ch6
; use Exp_Ch6
;
36 with Exp_Ch7
; use Exp_Ch7
;
37 with Exp_Ch11
; use Exp_Ch11
;
38 with Ghost
; use Ghost
;
39 with Inline
; use Inline
;
40 with Itypes
; use Itypes
;
42 with Nlists
; use Nlists
;
43 with Nmake
; use Nmake
;
45 with Restrict
; use Restrict
;
46 with Rident
; use Rident
;
48 with Sem_Aux
; use Sem_Aux
;
49 with Sem_Ch3
; use Sem_Ch3
;
50 with Sem_Ch6
; use Sem_Ch6
;
51 with Sem_Ch8
; use Sem_Ch8
;
52 with Sem_Ch12
; use Sem_Ch12
;
53 with Sem_Ch13
; use Sem_Ch13
;
54 with Sem_Disp
; use Sem_Disp
;
55 with Sem_Elab
; use Sem_Elab
;
56 with Sem_Eval
; use Sem_Eval
;
57 with Sem_Res
; use Sem_Res
;
58 with Sem_Type
; use Sem_Type
;
59 with Sem_Util
; use Sem_Util
;
60 with Snames
; use Snames
;
61 with Stand
; use Stand
;
62 with Stringt
; use Stringt
;
63 with Targparm
; use Targparm
;
64 with Tbuild
; use Tbuild
;
65 with Ttypes
; use Ttypes
;
66 with Urealp
; use Urealp
;
67 with Validsw
; use Validsw
;
70 package body Exp_Util
is
72 ---------------------------------------------------------
73 -- Handling of inherited class-wide pre/postconditions --
74 ---------------------------------------------------------
76 -- Following AI12-0113, the expression for a class-wide condition is
77 -- transformed for a subprogram that inherits it, by replacing calls
78 -- to primitive operations of the original controlling type into the
79 -- corresponding overriding operations of the derived type. The following
80 -- hash table manages this mapping, and is expanded on demand whenever
81 -- such inherited expression needs to be constructed.
83 -- The mapping is also used to check whether an inherited operation has
84 -- a condition that depends on overridden operations. For such an
85 -- operation we must create a wrapper that is then treated as a normal
86 -- overriding. In SPARK mode such operations are illegal.
88 -- For a given root type there may be several type extensions with their
89 -- own overriding operations, so at various times a given operation of
90 -- the root will be mapped into different overridings. The root type is
91 -- also mapped into the current type extension to indicate that its
92 -- operations are mapped into the overriding operations of that current
95 -- The contents of the map are as follows:
99 -- Discriminant (Entity_Id) Discriminant (Entity_Id)
100 -- Discriminant (Entity_Id) Non-discriminant name (Entity_Id)
101 -- Discriminant (Entity_Id) Expression (Node_Id)
102 -- Primitive subprogram (Entity_Id) Primitive subprogram (Entity_Id)
103 -- Type (Entity_Id) Type (Entity_Id)
105 Type_Map_Size
: constant := 511;
107 subtype Type_Map_Header
is Integer range 0 .. Type_Map_Size
- 1;
108 function Type_Map_Hash
(Id
: Entity_Id
) return Type_Map_Header
;
110 package Type_Map
is new GNAT
.HTable
.Simple_HTable
111 (Header_Num
=> Type_Map_Header
,
113 Element
=> Node_Or_Entity_Id
,
115 Hash
=> Type_Map_Hash
,
118 -----------------------
119 -- Local Subprograms --
120 -----------------------
122 function Build_Task_Array_Image
126 Dyn
: Boolean := False) return Node_Id
;
127 -- Build function to generate the image string for a task that is an array
128 -- component, concatenating the images of each index. To avoid storage
129 -- leaks, the string is built with successive slice assignments. The flag
130 -- Dyn indicates whether this is called for the initialization procedure of
131 -- an array of tasks, or for the name of a dynamically created task that is
132 -- assigned to an indexed component.
134 function Build_Task_Image_Function
138 Res
: Entity_Id
) return Node_Id
;
139 -- Common processing for Task_Array_Image and Task_Record_Image. Build
140 -- function body that computes image.
142 procedure Build_Task_Image_Prefix
151 -- Common processing for Task_Array_Image and Task_Record_Image. Create
152 -- local variables and assign prefix of name to result string.
154 function Build_Task_Record_Image
157 Dyn
: Boolean := False) return Node_Id
;
158 -- Build function to generate the image string for a task that is a record
159 -- component. Concatenate name of variable with that of selector. The flag
160 -- Dyn indicates whether this is called for the initialization procedure of
161 -- record with task components, or for a dynamically created task that is
162 -- assigned to a selected component.
164 procedure Evaluate_Slice_Bounds
(Slice
: Node_Id
);
165 -- Force evaluation of bounds of a slice, which may be given by a range
166 -- or by a subtype indication with or without a constraint.
168 function Is_Verifiable_DIC_Pragma
(Prag
: Node_Id
) return Boolean;
169 -- Determine whether pragma Default_Initial_Condition denoted by Prag has
170 -- an assertion expression that should be verified at run time.
172 function Make_CW_Equivalent_Type
174 E
: Node_Id
) return Entity_Id
;
175 -- T is a class-wide type entity, E is the initial expression node that
176 -- constrains T in case such as: " X: T := E" or "new T'(E)". This function
177 -- returns the entity of the Equivalent type and inserts on the fly the
178 -- necessary declaration such as:
180 -- type anon is record
181 -- _parent : Root_Type (T); constrained with E discriminants (if any)
182 -- Extension : String (1 .. expr to match size of E);
185 -- This record is compatible with any object of the class of T thanks to
186 -- the first field and has the same size as E thanks to the second.
188 function Make_Literal_Range
190 Literal_Typ
: Entity_Id
) return Node_Id
;
191 -- Produce a Range node whose bounds are:
192 -- Low_Bound (Literal_Type) ..
193 -- Low_Bound (Literal_Type) + (Length (Literal_Typ) - 1)
194 -- this is used for expanding declarations like X : String := "sdfgdfg";
196 -- If the index type of the target array is not integer, we generate:
197 -- Low_Bound (Literal_Type) ..
199 -- (Literal_Type'Pos (Low_Bound (Literal_Type))
200 -- + (Length (Literal_Typ) -1))
202 function Make_Non_Empty_Check
204 N
: Node_Id
) return Node_Id
;
205 -- Produce a boolean expression checking that the unidimensional array
206 -- node N is not empty.
208 function New_Class_Wide_Subtype
210 N
: Node_Id
) return Entity_Id
;
211 -- Create an implicit subtype of CW_Typ attached to node N
213 function Requires_Cleanup_Actions
216 Nested_Constructs
: Boolean) return Boolean;
217 -- Given a list L, determine whether it contains one of the following:
219 -- 1) controlled objects
220 -- 2) library-level tagged types
222 -- Lib_Level is True when the list comes from a construct at the library
223 -- level, and False otherwise. Nested_Constructs is True when any nested
224 -- packages declared in L must be processed, and False otherwise.
226 -------------------------------------
227 -- Activate_Atomic_Synchronization --
228 -------------------------------------
230 procedure Activate_Atomic_Synchronization
(N
: Node_Id
) is
234 case Nkind
(Parent
(N
)) is
236 -- Check for cases of appearing in the prefix of a construct where we
237 -- don't need atomic synchronization for this kind of usage.
240 -- Nothing to do if we are the prefix of an attribute, since we
241 -- do not want an atomic sync operation for things like 'Size.
243 N_Attribute_Reference
245 -- The N_Reference node is like an attribute
249 -- Nothing to do for a reference to a component (or components)
250 -- of a composite object. Only reads and updates of the object
251 -- as a whole require atomic synchronization (RM C.6 (15)).
253 | N_Indexed_Component
254 | N_Selected_Component
257 -- For all the above cases, nothing to do if we are the prefix
259 if Prefix
(Parent
(N
)) = N
then
267 -- Nothing to do for the identifier in an object renaming declaration,
268 -- the renaming itself does not need atomic synchronization.
270 if Nkind
(Parent
(N
)) = N_Object_Renaming_Declaration
then
274 -- Go ahead and set the flag
276 Set_Atomic_Sync_Required
(N
);
278 -- Generate info message if requested
280 if Warn_On_Atomic_Synchronization
then
286 | N_Selected_Component
288 Msg_Node
:= Selector_Name
(N
);
290 when N_Explicit_Dereference
291 | N_Indexed_Component
296 pragma Assert
(False);
300 if Present
(Msg_Node
) then
302 ("info: atomic synchronization set for &?N?", Msg_Node
);
305 ("info: atomic synchronization set?N?", N
);
308 end Activate_Atomic_Synchronization
;
310 ----------------------
311 -- Adjust_Condition --
312 ----------------------
314 procedure Adjust_Condition
(N
: Node_Id
) is
321 Loc
: constant Source_Ptr
:= Sloc
(N
);
322 T
: constant Entity_Id
:= Etype
(N
);
326 -- Defend against a call where the argument has no type, or has a
327 -- type that is not Boolean. This can occur because of prior errors.
329 if No
(T
) or else not Is_Boolean_Type
(T
) then
333 -- Apply validity checking if needed
335 if Validity_Checks_On
and Validity_Check_Tests
then
339 -- Immediate return if standard boolean, the most common case,
340 -- where nothing needs to be done.
342 if Base_Type
(T
) = Standard_Boolean
then
346 -- Case of zero/non-zero semantics or non-standard enumeration
347 -- representation. In each case, we rewrite the node as:
349 -- ityp!(N) /= False'Enum_Rep
351 -- where ityp is an integer type with large enough size to hold any
354 if Nonzero_Is_True
(T
) or else Has_Non_Standard_Rep
(T
) then
355 if Esize
(T
) <= Esize
(Standard_Integer
) then
356 Ti
:= Standard_Integer
;
358 Ti
:= Standard_Long_Long_Integer
;
363 Left_Opnd
=> Unchecked_Convert_To
(Ti
, N
),
365 Make_Attribute_Reference
(Loc
,
366 Attribute_Name
=> Name_Enum_Rep
,
368 New_Occurrence_Of
(First_Literal
(T
), Loc
))));
369 Analyze_And_Resolve
(N
, Standard_Boolean
);
372 Rewrite
(N
, Convert_To
(Standard_Boolean
, N
));
373 Analyze_And_Resolve
(N
, Standard_Boolean
);
376 end Adjust_Condition
;
378 ------------------------
379 -- Adjust_Result_Type --
380 ------------------------
382 procedure Adjust_Result_Type
(N
: Node_Id
; T
: Entity_Id
) is
384 -- Ignore call if current type is not Standard.Boolean
386 if Etype
(N
) /= Standard_Boolean
then
390 -- If result is already of correct type, nothing to do. Note that
391 -- this will get the most common case where everything has a type
392 -- of Standard.Boolean.
394 if Base_Type
(T
) = Standard_Boolean
then
399 KP
: constant Node_Kind
:= Nkind
(Parent
(N
));
402 -- If result is to be used as a Condition in the syntax, no need
403 -- to convert it back, since if it was changed to Standard.Boolean
404 -- using Adjust_Condition, that is just fine for this usage.
406 if KP
in N_Raise_xxx_Error
or else KP
in N_Has_Condition
then
409 -- If result is an operand of another logical operation, no need
410 -- to reset its type, since Standard.Boolean is just fine, and
411 -- such operations always do Adjust_Condition on their operands.
413 elsif KP
in N_Op_Boolean
414 or else KP
in N_Short_Circuit
415 or else KP
= N_Op_Not
419 -- Otherwise we perform a conversion from the current type, which
420 -- must be Standard.Boolean, to the desired type. Use the base
421 -- type to prevent spurious constraint checks that are extraneous
422 -- to the transformation. The type and its base have the same
423 -- representation, standard or otherwise.
427 Rewrite
(N
, Convert_To
(Base_Type
(T
), N
));
428 Analyze_And_Resolve
(N
, Base_Type
(T
));
432 end Adjust_Result_Type
;
434 --------------------------
435 -- Append_Freeze_Action --
436 --------------------------
438 procedure Append_Freeze_Action
(T
: Entity_Id
; N
: Node_Id
) is
442 Ensure_Freeze_Node
(T
);
443 Fnode
:= Freeze_Node
(T
);
445 if No
(Actions
(Fnode
)) then
446 Set_Actions
(Fnode
, New_List
(N
));
448 Append
(N
, Actions
(Fnode
));
451 end Append_Freeze_Action
;
453 ---------------------------
454 -- Append_Freeze_Actions --
455 ---------------------------
457 procedure Append_Freeze_Actions
(T
: Entity_Id
; L
: List_Id
) is
465 Ensure_Freeze_Node
(T
);
466 Fnode
:= Freeze_Node
(T
);
468 if No
(Actions
(Fnode
)) then
469 Set_Actions
(Fnode
, L
);
471 Append_List
(L
, Actions
(Fnode
));
473 end Append_Freeze_Actions
;
475 ------------------------------------
476 -- Build_Allocate_Deallocate_Proc --
477 ------------------------------------
479 procedure Build_Allocate_Deallocate_Proc
481 Is_Allocate
: Boolean)
483 function Find_Object
(E
: Node_Id
) return Node_Id
;
484 -- Given an arbitrary expression of an allocator, try to find an object
485 -- reference in it, otherwise return the original expression.
487 function Is_Allocate_Deallocate_Proc
(Subp
: Entity_Id
) return Boolean;
488 -- Determine whether subprogram Subp denotes a custom allocate or
495 function Find_Object
(E
: Node_Id
) return Node_Id
is
499 pragma Assert
(Is_Allocate
);
503 if Nkind
(Expr
) = N_Explicit_Dereference
then
504 Expr
:= Prefix
(Expr
);
506 elsif Nkind
(Expr
) = N_Qualified_Expression
then
507 Expr
:= Expression
(Expr
);
509 elsif Nkind
(Expr
) = N_Unchecked_Type_Conversion
then
511 -- When interface class-wide types are involved in allocation,
512 -- the expander introduces several levels of address arithmetic
513 -- to perform dispatch table displacement. In this scenario the
514 -- object appears as:
516 -- Tag_Ptr (Base_Address (<object>'Address))
518 -- Detect this case and utilize the whole expression as the
519 -- "object" since it now points to the proper dispatch table.
521 if Is_RTE
(Etype
(Expr
), RE_Tag_Ptr
) then
524 -- Continue to strip the object
527 Expr
:= Expression
(Expr
);
538 ---------------------------------
539 -- Is_Allocate_Deallocate_Proc --
540 ---------------------------------
542 function Is_Allocate_Deallocate_Proc
(Subp
: Entity_Id
) return Boolean is
544 -- Look for a subprogram body with only one statement which is a
545 -- call to Allocate_Any_Controlled / Deallocate_Any_Controlled.
547 if Ekind
(Subp
) = E_Procedure
548 and then Nkind
(Parent
(Parent
(Subp
))) = N_Subprogram_Body
551 HSS
: constant Node_Id
:=
552 Handled_Statement_Sequence
(Parent
(Parent
(Subp
)));
556 if Present
(Statements
(HSS
))
557 and then Nkind
(First
(Statements
(HSS
))) =
558 N_Procedure_Call_Statement
560 Proc
:= Entity
(Name
(First
(Statements
(HSS
))));
563 Is_RTE
(Proc
, RE_Allocate_Any_Controlled
)
564 or else Is_RTE
(Proc
, RE_Deallocate_Any_Controlled
);
570 end Is_Allocate_Deallocate_Proc
;
574 Desig_Typ
: Entity_Id
;
578 Proc_To_Call
: Node_Id
:= Empty
;
581 -- Start of processing for Build_Allocate_Deallocate_Proc
584 -- Obtain the attributes of the allocation / deallocation
586 if Nkind
(N
) = N_Free_Statement
then
587 Expr
:= Expression
(N
);
588 Ptr_Typ
:= Base_Type
(Etype
(Expr
));
589 Proc_To_Call
:= Procedure_To_Call
(N
);
592 if Nkind
(N
) = N_Object_Declaration
then
593 Expr
:= Expression
(N
);
598 -- In certain cases an allocator with a qualified expression may
599 -- be relocated and used as the initialization expression of a
603 -- Obj : Ptr_Typ := new Desig_Typ'(...);
606 -- Tmp : Ptr_Typ := new Desig_Typ'(...);
607 -- Obj : Ptr_Typ := Tmp;
609 -- Since the allocator is always marked as analyzed to avoid infinite
610 -- expansion, it will never be processed by this routine given that
611 -- the designated type needs finalization actions. Detect this case
612 -- and complete the expansion of the allocator.
614 if Nkind
(Expr
) = N_Identifier
615 and then Nkind
(Parent
(Entity
(Expr
))) = N_Object_Declaration
616 and then Nkind
(Expression
(Parent
(Entity
(Expr
)))) = N_Allocator
618 Build_Allocate_Deallocate_Proc
(Parent
(Entity
(Expr
)), True);
622 -- The allocator may have been rewritten into something else in which
623 -- case the expansion performed by this routine does not apply.
625 if Nkind
(Expr
) /= N_Allocator
then
629 Ptr_Typ
:= Base_Type
(Etype
(Expr
));
630 Proc_To_Call
:= Procedure_To_Call
(Expr
);
633 Pool_Id
:= Associated_Storage_Pool
(Ptr_Typ
);
634 Desig_Typ
:= Available_View
(Designated_Type
(Ptr_Typ
));
636 -- Handle concurrent types
638 if Is_Concurrent_Type
(Desig_Typ
)
639 and then Present
(Corresponding_Record_Type
(Desig_Typ
))
641 Desig_Typ
:= Corresponding_Record_Type
(Desig_Typ
);
644 -- Do not process allocations / deallocations without a pool
649 -- Do not process allocations on / deallocations from the secondary
652 elsif Is_RTE
(Pool_Id
, RE_SS_Pool
)
653 or else (Nkind
(Expr
) = N_Allocator
654 and then Is_RTE
(Storage_Pool
(Expr
), RE_SS_Pool
))
658 -- Optimize the case where we are using the default Global_Pool_Object,
659 -- and we don't need the heavy finalization machinery.
661 elsif Pool_Id
= RTE
(RE_Global_Pool_Object
)
662 and then not Needs_Finalization
(Desig_Typ
)
666 -- Do not replicate the machinery if the allocator / free has already
667 -- been expanded and has a custom Allocate / Deallocate.
669 elsif Present
(Proc_To_Call
)
670 and then Is_Allocate_Deallocate_Proc
(Proc_To_Call
)
675 -- Finalization actions are required when the object to be allocated or
676 -- deallocated needs these actions and the associated access type is not
677 -- subject to pragma No_Heap_Finalization.
680 Needs_Finalization
(Desig_Typ
)
681 and then not No_Heap_Finalization
(Ptr_Typ
);
685 -- Certain run-time configurations and targets do not provide support
686 -- for controlled types.
688 if Restriction_Active
(No_Finalization
) then
691 -- Do nothing if the access type may never allocate / deallocate
694 elsif No_Pool_Assigned
(Ptr_Typ
) then
698 -- The allocation / deallocation of a controlled object must be
699 -- chained on / detached from a finalization master.
701 pragma Assert
(Present
(Finalization_Master
(Ptr_Typ
)));
703 -- The only other kind of allocation / deallocation supported by this
704 -- routine is on / from a subpool.
706 elsif Nkind
(Expr
) = N_Allocator
707 and then No
(Subpool_Handle_Name
(Expr
))
713 Loc
: constant Source_Ptr
:= Sloc
(N
);
714 Addr_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
715 Alig_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'L');
716 Proc_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'P');
717 Size_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
720 Fin_Addr_Id
: Entity_Id
;
721 Fin_Mas_Act
: Node_Id
;
722 Fin_Mas_Id
: Entity_Id
;
723 Proc_To_Call
: Entity_Id
;
724 Subpool
: Node_Id
:= Empty
;
727 -- Step 1: Construct all the actuals for the call to library routine
728 -- Allocate_Any_Controlled / Deallocate_Any_Controlled.
732 Actuals
:= New_List
(New_Occurrence_Of
(Pool_Id
, Loc
));
738 if Nkind
(Expr
) = N_Allocator
then
739 Subpool
:= Subpool_Handle_Name
(Expr
);
742 -- If a subpool is present it can be an arbitrary name, so make
743 -- the actual by copying the tree.
745 if Present
(Subpool
) then
746 Append_To
(Actuals
, New_Copy_Tree
(Subpool
, New_Sloc
=> Loc
));
748 Append_To
(Actuals
, Make_Null
(Loc
));
751 -- c) Finalization master
754 Fin_Mas_Id
:= Finalization_Master
(Ptr_Typ
);
755 Fin_Mas_Act
:= New_Occurrence_Of
(Fin_Mas_Id
, Loc
);
757 -- Handle the case where the master is actually a pointer to a
758 -- master. This case arises in build-in-place functions.
760 if Is_Access_Type
(Etype
(Fin_Mas_Id
)) then
761 Append_To
(Actuals
, Fin_Mas_Act
);
764 Make_Attribute_Reference
(Loc
,
765 Prefix
=> Fin_Mas_Act
,
766 Attribute_Name
=> Name_Unrestricted_Access
));
769 Append_To
(Actuals
, Make_Null
(Loc
));
772 -- d) Finalize_Address
774 -- Primitive Finalize_Address is never generated in CodePeer mode
775 -- since it contains an Unchecked_Conversion.
777 if Needs_Fin
and then not CodePeer_Mode
then
778 Fin_Addr_Id
:= Finalize_Address
(Desig_Typ
);
779 pragma Assert
(Present
(Fin_Addr_Id
));
782 Make_Attribute_Reference
(Loc
,
783 Prefix
=> New_Occurrence_Of
(Fin_Addr_Id
, Loc
),
784 Attribute_Name
=> Name_Unrestricted_Access
));
786 Append_To
(Actuals
, Make_Null
(Loc
));
794 Append_To
(Actuals
, New_Occurrence_Of
(Addr_Id
, Loc
));
795 Append_To
(Actuals
, New_Occurrence_Of
(Size_Id
, Loc
));
797 if Is_Allocate
or else not Is_Class_Wide_Type
(Desig_Typ
) then
798 Append_To
(Actuals
, New_Occurrence_Of
(Alig_Id
, Loc
));
800 -- For deallocation of class-wide types we obtain the value of
801 -- alignment from the Type Specific Record of the deallocated object.
802 -- This is needed because the frontend expansion of class-wide types
803 -- into equivalent types confuses the back end.
809 -- ... because 'Alignment applied to class-wide types is expanded
810 -- into the code that reads the value of alignment from the TSD
811 -- (see Expand_N_Attribute_Reference)
814 Unchecked_Convert_To
(RTE
(RE_Storage_Offset
),
815 Make_Attribute_Reference
(Loc
,
817 Make_Explicit_Dereference
(Loc
, Relocate_Node
(Expr
)),
818 Attribute_Name
=> Name_Alignment
)));
824 Is_Controlled
: declare
825 Flag_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'F');
833 Temp
:= Find_Object
(Expression
(Expr
));
838 -- Processing for allocations where the expression is a subtype
842 and then Is_Entity_Name
(Temp
)
843 and then Is_Type
(Entity
(Temp
))
848 (Needs_Finalization
(Entity
(Temp
))), Loc
);
850 -- The allocation / deallocation of a class-wide object relies
851 -- on a runtime check to determine whether the object is truly
852 -- controlled or not. Depending on this check, the finalization
853 -- machinery will request or reclaim extra storage reserved for
856 elsif Is_Class_Wide_Type
(Desig_Typ
) then
858 -- Detect a special case where interface class-wide types
859 -- are involved as the object appears as:
861 -- Tag_Ptr (Base_Address (<object>'Address))
863 -- The expression already yields the proper tag, generate:
867 if Is_RTE
(Etype
(Temp
), RE_Tag_Ptr
) then
869 Make_Explicit_Dereference
(Loc
,
870 Prefix
=> Relocate_Node
(Temp
));
872 -- In the default case, obtain the tag of the object about
873 -- to be allocated / deallocated. Generate:
877 -- If the object is an unchecked conversion (typically to
878 -- an access to class-wide type), we must preserve the
879 -- conversion to ensure that the object is seen as tagged
880 -- in the code that follows.
885 if Nkind
(Parent
(Pref
)) = N_Unchecked_Type_Conversion
887 Pref
:= Parent
(Pref
);
891 Make_Attribute_Reference
(Loc
,
892 Prefix
=> Relocate_Node
(Pref
),
893 Attribute_Name
=> Name_Tag
);
897 -- Needs_Finalization (<Param>)
900 Make_Function_Call
(Loc
,
902 New_Occurrence_Of
(RTE
(RE_Needs_Finalization
), Loc
),
903 Parameter_Associations
=> New_List
(Param
));
905 -- Processing for generic actuals
907 elsif Is_Generic_Actual_Type
(Desig_Typ
) then
909 New_Occurrence_Of
(Boolean_Literals
910 (Needs_Finalization
(Base_Type
(Desig_Typ
))), Loc
);
912 -- The object does not require any specialized checks, it is
913 -- known to be controlled.
916 Flag_Expr
:= New_Occurrence_Of
(Standard_True
, Loc
);
919 -- Create the temporary which represents the finalization state
920 -- of the expression. Generate:
922 -- F : constant Boolean := <Flag_Expr>;
925 Make_Object_Declaration
(Loc
,
926 Defining_Identifier
=> Flag_Id
,
927 Constant_Present
=> True,
929 New_Occurrence_Of
(Standard_Boolean
, Loc
),
930 Expression
=> Flag_Expr
));
932 Append_To
(Actuals
, New_Occurrence_Of
(Flag_Id
, Loc
));
935 -- The object is not controlled
938 Append_To
(Actuals
, New_Occurrence_Of
(Standard_False
, Loc
));
945 New_Occurrence_Of
(Boolean_Literals
(Present
(Subpool
)), Loc
));
948 -- Step 2: Build a wrapper Allocate / Deallocate which internally
949 -- calls Allocate_Any_Controlled / Deallocate_Any_Controlled.
951 -- Select the proper routine to call
954 Proc_To_Call
:= RTE
(RE_Allocate_Any_Controlled
);
956 Proc_To_Call
:= RTE
(RE_Deallocate_Any_Controlled
);
959 -- Create a custom Allocate / Deallocate routine which has identical
960 -- profile to that of System.Storage_Pools.
963 Make_Subprogram_Body
(Loc
,
968 Make_Procedure_Specification
(Loc
,
969 Defining_Unit_Name
=> Proc_Id
,
970 Parameter_Specifications
=> New_List
(
972 -- P : Root_Storage_Pool
974 Make_Parameter_Specification
(Loc
,
975 Defining_Identifier
=> Make_Temporary
(Loc
, 'P'),
977 New_Occurrence_Of
(RTE
(RE_Root_Storage_Pool
), Loc
)),
981 Make_Parameter_Specification
(Loc
,
982 Defining_Identifier
=> Addr_Id
,
983 Out_Present
=> Is_Allocate
,
985 New_Occurrence_Of
(RTE
(RE_Address
), Loc
)),
989 Make_Parameter_Specification
(Loc
,
990 Defining_Identifier
=> Size_Id
,
992 New_Occurrence_Of
(RTE
(RE_Storage_Count
), Loc
)),
996 Make_Parameter_Specification
(Loc
,
997 Defining_Identifier
=> Alig_Id
,
999 New_Occurrence_Of
(RTE
(RE_Storage_Count
), Loc
)))),
1001 Declarations
=> No_List
,
1003 Handled_Statement_Sequence
=>
1004 Make_Handled_Sequence_Of_Statements
(Loc
,
1005 Statements
=> New_List
(
1006 Make_Procedure_Call_Statement
(Loc
,
1008 New_Occurrence_Of
(Proc_To_Call
, Loc
),
1009 Parameter_Associations
=> Actuals
)))),
1010 Suppress
=> All_Checks
);
1012 -- The newly generated Allocate / Deallocate becomes the default
1013 -- procedure to call when the back end processes the allocation /
1017 Set_Procedure_To_Call
(Expr
, Proc_Id
);
1019 Set_Procedure_To_Call
(N
, Proc_Id
);
1022 end Build_Allocate_Deallocate_Proc
;
1024 -------------------------------
1025 -- Build_Abort_Undefer_Block --
1026 -------------------------------
1028 function Build_Abort_Undefer_Block
1031 Context
: Node_Id
) return Node_Id
1033 Exceptions_OK
: constant Boolean :=
1034 not Restriction_Active
(No_Exception_Propagation
);
1042 -- The block should be generated only when undeferring abort in the
1043 -- context of a potential exception.
1045 pragma Assert
(Abort_Allowed
and Exceptions_OK
);
1051 -- Abort_Undefer_Direct;
1054 AUD
:= RTE
(RE_Abort_Undefer_Direct
);
1057 Make_Handled_Sequence_Of_Statements
(Loc
,
1058 Statements
=> Stmts
,
1059 At_End_Proc
=> New_Occurrence_Of
(AUD
, Loc
));
1062 Make_Block_Statement
(Loc
,
1063 Handled_Statement_Sequence
=> HSS
);
1064 Set_Is_Abort_Block
(Blk
);
1066 Add_Block_Identifier
(Blk
, Blk_Id
);
1067 Expand_At_End_Handler
(HSS
, Blk_Id
);
1069 -- Present the Abort_Undefer_Direct function to the back end to inline
1070 -- the call to the routine.
1072 Add_Inlined_Body
(AUD
, Context
);
1075 end Build_Abort_Undefer_Block
;
1077 ---------------------------------
1078 -- Build_Class_Wide_Expression --
1079 ---------------------------------
1081 procedure Build_Class_Wide_Expression
1084 Par_Subp
: Entity_Id
;
1085 Adjust_Sloc
: Boolean;
1086 Needs_Wrapper
: out Boolean)
1088 function Replace_Entity
(N
: Node_Id
) return Traverse_Result
;
1089 -- Replace reference to formal of inherited operation or to primitive
1090 -- operation of root type, with corresponding entity for derived type,
1091 -- when constructing the class-wide condition of an overriding
1094 --------------------
1095 -- Replace_Entity --
1096 --------------------
1098 function Replace_Entity
(N
: Node_Id
) return Traverse_Result
is
1103 Adjust_Inherited_Pragma_Sloc
(N
);
1106 if Nkind
(N
) = N_Identifier
1107 and then Present
(Entity
(N
))
1109 (Is_Formal
(Entity
(N
)) or else Is_Subprogram
(Entity
(N
)))
1111 (Nkind
(Parent
(N
)) /= N_Attribute_Reference
1112 or else Attribute_Name
(Parent
(N
)) /= Name_Class
)
1114 -- The replacement does not apply to dispatching calls within the
1115 -- condition, but only to calls whose static tag is that of the
1118 if Is_Subprogram
(Entity
(N
))
1119 and then Nkind
(Parent
(N
)) = N_Function_Call
1120 and then Present
(Controlling_Argument
(Parent
(N
)))
1125 -- Determine whether entity has a renaming
1127 New_E
:= Type_Map
.Get
(Entity
(N
));
1129 if Present
(New_E
) then
1130 Rewrite
(N
, New_Occurrence_Of
(New_E
, Sloc
(N
)));
1132 -- AI12-0166: a precondition for a protected operation
1133 -- cannot include an internal call to a protected function
1134 -- of the type. In the case of an inherited condition for an
1135 -- overriding operation, both the operation and the function
1136 -- are given by primitive wrappers.
1138 if Ekind
(New_E
) = E_Function
1139 and then Is_Primitive_Wrapper
(New_E
)
1140 and then Is_Primitive_Wrapper
(Subp
)
1141 and then Scope
(Subp
) = Scope
(New_E
)
1143 Error_Msg_Node_2
:= Wrapped_Entity
(Subp
);
1145 ("internal call to& cannot appear in inherited "
1146 & "precondition of protected operation&",
1147 N
, Wrapped_Entity
(New_E
));
1150 -- If the entity is an overridden primitive and we are not
1151 -- in GNATprove mode, we must build a wrapper for the current
1152 -- inherited operation. If the reference is the prefix of an
1153 -- attribute such as 'Result (or others ???) there is no need
1154 -- for a wrapper: the condition is just rewritten in terms of
1155 -- the inherited subprogram.
1157 if Is_Subprogram
(New_E
)
1158 and then Nkind
(Parent
(N
)) /= N_Attribute_Reference
1159 and then not GNATprove_Mode
1161 Needs_Wrapper
:= True;
1165 -- Check that there are no calls left to abstract operations if
1166 -- the current subprogram is not abstract.
1168 if Nkind
(Parent
(N
)) = N_Function_Call
1169 and then N
= Name
(Parent
(N
))
1171 if not Is_Abstract_Subprogram
(Subp
)
1172 and then Is_Abstract_Subprogram
(Entity
(N
))
1174 Error_Msg_Sloc
:= Sloc
(Current_Scope
);
1175 Error_Msg_Node_2
:= Subp
;
1176 if Comes_From_Source
(Subp
) then
1178 ("cannot call abstract subprogram & in inherited "
1179 & "condition for&#", Subp
, Entity
(N
));
1182 ("cannot call abstract subprogram & in inherited "
1183 & "condition for inherited&#", Subp
, Entity
(N
));
1186 -- In SPARK mode, reject an inherited condition for an
1187 -- inherited operation if it contains a call to an overriding
1188 -- operation, because this implies that the pre/postconditions
1189 -- of the inherited operation have changed silently.
1191 elsif SPARK_Mode
= On
1192 and then Warn_On_Suspicious_Contract
1193 and then Present
(Alias
(Subp
))
1194 and then Present
(New_E
)
1195 and then Comes_From_Source
(New_E
)
1198 ("cannot modify inherited condition (SPARK RM 6.1.1(1))",
1200 Error_Msg_Sloc
:= Sloc
(New_E
);
1201 Error_Msg_Node_2
:= Subp
;
1203 ("\overriding of&# forces overriding of&",
1204 Parent
(Subp
), New_E
);
1208 -- Update type of function call node, which should be the same as
1209 -- the function's return type.
1211 if Is_Subprogram
(Entity
(N
))
1212 and then Nkind
(Parent
(N
)) = N_Function_Call
1214 Set_Etype
(Parent
(N
), Etype
(Entity
(N
)));
1217 -- The whole expression will be reanalyzed
1219 elsif Nkind
(N
) in N_Has_Etype
then
1220 Set_Analyzed
(N
, False);
1226 procedure Replace_Condition_Entities
is
1227 new Traverse_Proc
(Replace_Entity
);
1231 Par_Formal
: Entity_Id
;
1232 Subp_Formal
: Entity_Id
;
1234 -- Start of processing for Build_Class_Wide_Expression
1237 Needs_Wrapper
:= False;
1239 -- Add mapping from old formals to new formals
1241 Par_Formal
:= First_Formal
(Par_Subp
);
1242 Subp_Formal
:= First_Formal
(Subp
);
1244 while Present
(Par_Formal
) and then Present
(Subp_Formal
) loop
1245 Type_Map
.Set
(Par_Formal
, Subp_Formal
);
1246 Next_Formal
(Par_Formal
);
1247 Next_Formal
(Subp_Formal
);
1250 Replace_Condition_Entities
(Prag
);
1251 end Build_Class_Wide_Expression
;
1253 --------------------
1254 -- Build_DIC_Call --
1255 --------------------
1257 function Build_DIC_Call
1260 Typ
: Entity_Id
) return Node_Id
1262 Proc_Id
: constant Entity_Id
:= DIC_Procedure
(Typ
);
1263 Formal_Typ
: constant Entity_Id
:= Etype
(First_Formal
(Proc_Id
));
1267 Make_Procedure_Call_Statement
(Loc
,
1268 Name
=> New_Occurrence_Of
(Proc_Id
, Loc
),
1269 Parameter_Associations
=> New_List
(
1270 Make_Unchecked_Type_Conversion
(Loc
,
1271 Subtype_Mark
=> New_Occurrence_Of
(Formal_Typ
, Loc
),
1272 Expression
=> New_Occurrence_Of
(Obj_Id
, Loc
))));
1275 ------------------------------
1276 -- Build_DIC_Procedure_Body --
1277 ------------------------------
1279 -- WARNING: This routine manages Ghost regions. Return statements must be
1280 -- replaced by gotos which jump to the end of the routine and restore the
1283 procedure Build_DIC_Procedure_Body
1285 For_Freeze
: Boolean := False)
1287 procedure Add_DIC_Check
1288 (DIC_Prag
: Node_Id
;
1290 Stmts
: in out List_Id
);
1291 -- Subsidiary to all Add_xxx_DIC routines. Add a runtime check to verify
1292 -- assertion expression DIC_Expr of pragma DIC_Prag. All generated code
1293 -- is added to list Stmts.
1295 procedure Add_Inherited_DIC
1296 (DIC_Prag
: Node_Id
;
1297 Par_Typ
: Entity_Id
;
1298 Deriv_Typ
: Entity_Id
;
1299 Stmts
: in out List_Id
);
1300 -- Add a runtime check to verify the assertion expression of inherited
1301 -- pragma DIC_Prag. Par_Typ is parent type, which is also the owner of
1302 -- the DIC pragma. Deriv_Typ is the derived type inheriting the DIC
1303 -- pragma. All generated code is added to list Stmts.
1305 procedure Add_Inherited_Tagged_DIC
1306 (DIC_Prag
: Node_Id
;
1307 Par_Typ
: Entity_Id
;
1308 Deriv_Typ
: Entity_Id
;
1309 Stmts
: in out List_Id
);
1310 -- Add a runtime check to verify assertion expression DIC_Expr of
1311 -- inherited pragma DIC_Prag. This routine applies class-wide pre- and
1312 -- postcondition-like runtime semantics to the check. Par_Typ is the
1313 -- parent type whose DIC pragma is being inherited. Deriv_Typ is the
1314 -- derived type inheriting the DIC pragma. All generated code is added
1317 procedure Add_Own_DIC
1318 (DIC_Prag
: Node_Id
;
1319 DIC_Typ
: Entity_Id
;
1320 Stmts
: in out List_Id
);
1321 -- Add a runtime check to verify the assertion expression of pragma
1322 -- DIC_Prag. DIC_Typ is the owner of the DIC pragma. All generated code
1323 -- is added to list Stmts.
1329 procedure Add_DIC_Check
1330 (DIC_Prag
: Node_Id
;
1332 Stmts
: in out List_Id
)
1334 Loc
: constant Source_Ptr
:= Sloc
(DIC_Prag
);
1335 Nam
: constant Name_Id
:= Original_Aspect_Pragma_Name
(DIC_Prag
);
1338 -- The DIC pragma is ignored, nothing left to do
1340 if Is_Ignored
(DIC_Prag
) then
1343 -- Otherwise the DIC expression must be checked at run time.
1346 -- pragma Check (<Nam>, <DIC_Expr>);
1349 Append_New_To
(Stmts
,
1351 Pragma_Identifier
=>
1352 Make_Identifier
(Loc
, Name_Check
),
1354 Pragma_Argument_Associations
=> New_List
(
1355 Make_Pragma_Argument_Association
(Loc
,
1356 Expression
=> Make_Identifier
(Loc
, Nam
)),
1358 Make_Pragma_Argument_Association
(Loc
,
1359 Expression
=> DIC_Expr
))));
1363 -----------------------
1364 -- Add_Inherited_DIC --
1365 -----------------------
1367 procedure Add_Inherited_DIC
1368 (DIC_Prag
: Node_Id
;
1369 Par_Typ
: Entity_Id
;
1370 Deriv_Typ
: Entity_Id
;
1371 Stmts
: in out List_Id
)
1373 Deriv_Proc
: constant Entity_Id
:= DIC_Procedure
(Deriv_Typ
);
1374 Deriv_Obj
: constant Entity_Id
:= First_Entity
(Deriv_Proc
);
1375 Par_Proc
: constant Entity_Id
:= DIC_Procedure
(Par_Typ
);
1376 Par_Obj
: constant Entity_Id
:= First_Entity
(Par_Proc
);
1377 Loc
: constant Source_Ptr
:= Sloc
(DIC_Prag
);
1380 pragma Assert
(Present
(Deriv_Proc
) and then Present
(Par_Proc
));
1382 -- Verify the inherited DIC assertion expression by calling the DIC
1383 -- procedure of the parent type.
1386 -- <Par_Typ>DIC (Par_Typ (_object));
1388 Append_New_To
(Stmts
,
1389 Make_Procedure_Call_Statement
(Loc
,
1390 Name
=> New_Occurrence_Of
(Par_Proc
, Loc
),
1391 Parameter_Associations
=> New_List
(
1393 (Typ
=> Etype
(Par_Obj
),
1394 Expr
=> New_Occurrence_Of
(Deriv_Obj
, Loc
)))));
1395 end Add_Inherited_DIC
;
1397 ------------------------------
1398 -- Add_Inherited_Tagged_DIC --
1399 ------------------------------
1401 procedure Add_Inherited_Tagged_DIC
1402 (DIC_Prag
: Node_Id
;
1403 Par_Typ
: Entity_Id
;
1404 Deriv_Typ
: Entity_Id
;
1405 Stmts
: in out List_Id
)
1407 Deriv_Proc
: constant Entity_Id
:= DIC_Procedure
(Deriv_Typ
);
1408 DIC_Args
: constant List_Id
:=
1409 Pragma_Argument_Associations
(DIC_Prag
);
1410 DIC_Arg
: constant Node_Id
:= First
(DIC_Args
);
1411 DIC_Expr
: constant Node_Id
:= Expression_Copy
(DIC_Arg
);
1412 Par_Proc
: constant Entity_Id
:= DIC_Procedure
(Par_Typ
);
1417 -- The processing of an inherited DIC assertion expression starts off
1418 -- with a copy of the original parent expression where all references
1419 -- to the parent type have already been replaced with references to
1420 -- the _object formal parameter of the parent type's DIC procedure.
1422 pragma Assert
(Present
(DIC_Expr
));
1423 Expr
:= New_Copy_Tree
(DIC_Expr
);
1425 -- Perform the following substitutions:
1427 -- * Replace a reference to the _object parameter of the parent
1428 -- type's DIC procedure with a reference to the _object parameter
1429 -- of the derived types' DIC procedure.
1431 -- * Replace a reference to a discriminant of the parent type with
1432 -- a suitable value from the point of view of the derived type.
1434 -- * Replace a call to an overridden parent primitive with a call
1435 -- to the overriding derived type primitive.
1437 -- * Replace a call to an inherited parent primitive with a call to
1438 -- the internally-generated inherited derived type primitive.
1440 -- Note that primitives defined in the private part are automatically
1441 -- handled by the overriding/inheritance mechanism and do not require
1442 -- an extra replacement pass.
1444 pragma Assert
(Present
(Deriv_Proc
) and then Present
(Par_Proc
));
1449 Deriv_Typ
=> Deriv_Typ
,
1450 Par_Obj
=> First_Formal
(Par_Proc
),
1451 Deriv_Obj
=> First_Formal
(Deriv_Proc
));
1453 -- Once the DIC assertion expression is fully processed, add a check
1454 -- to the statements of the DIC procedure.
1457 (DIC_Prag
=> DIC_Prag
,
1460 end Add_Inherited_Tagged_DIC
;
1466 procedure Add_Own_DIC
1467 (DIC_Prag
: Node_Id
;
1468 DIC_Typ
: Entity_Id
;
1469 Stmts
: in out List_Id
)
1471 DIC_Args
: constant List_Id
:=
1472 Pragma_Argument_Associations
(DIC_Prag
);
1473 DIC_Arg
: constant Node_Id
:= First
(DIC_Args
);
1474 DIC_Asp
: constant Node_Id
:= Corresponding_Aspect
(DIC_Prag
);
1475 DIC_Expr
: constant Node_Id
:= Get_Pragma_Arg
(DIC_Arg
);
1476 DIC_Proc
: constant Entity_Id
:= DIC_Procedure
(DIC_Typ
);
1477 Obj_Id
: constant Entity_Id
:= First_Formal
(DIC_Proc
);
1479 procedure Preanalyze_Own_DIC_For_ASIS
;
1480 -- Preanalyze the original DIC expression of an aspect or a source
1483 ---------------------------------
1484 -- Preanalyze_Own_DIC_For_ASIS --
1485 ---------------------------------
1487 procedure Preanalyze_Own_DIC_For_ASIS
is
1488 Expr
: Node_Id
:= Empty
;
1491 -- The DIC pragma is a source construct, preanalyze the original
1492 -- expression of the pragma.
1494 if Comes_From_Source
(DIC_Prag
) then
1497 -- Otherwise preanalyze the expression of the corresponding aspect
1499 elsif Present
(DIC_Asp
) then
1500 Expr
:= Expression
(DIC_Asp
);
1503 -- The expression must be subjected to the same substitutions as
1504 -- the copy used in the generation of the runtime check.
1506 if Present
(Expr
) then
1507 Replace_Type_References
1512 Preanalyze_Assert_Expression
(Expr
, Any_Boolean
);
1514 end Preanalyze_Own_DIC_For_ASIS
;
1518 Typ_Decl
: constant Node_Id
:= Declaration_Node
(DIC_Typ
);
1522 -- Start of processing for Add_Own_DIC
1525 pragma Assert
(Present
(DIC_Expr
));
1526 Expr
:= New_Copy_Tree
(DIC_Expr
);
1528 -- Perform the following substitution:
1530 -- * Replace the current instance of DIC_Typ with a reference to
1531 -- the _object formal parameter of the DIC procedure.
1533 Replace_Type_References
1538 -- Preanalyze the DIC expression to detect errors and at the same
1539 -- time capture the visibility of the proper package part.
1541 Set_Parent
(Expr
, Typ_Decl
);
1542 Preanalyze_Assert_Expression
(Expr
, Any_Boolean
);
1544 -- Save a copy of the expression with all replacements and analysis
1545 -- already taken place in case a derived type inherits the pragma.
1546 -- The copy will be used as the foundation of the derived type's own
1547 -- version of the DIC assertion expression.
1549 if Is_Tagged_Type
(DIC_Typ
) then
1550 Set_Expression_Copy
(DIC_Arg
, New_Copy_Tree
(Expr
));
1553 -- If the pragma comes from an aspect specification, replace the
1554 -- saved expression because all type references must be substituted
1555 -- for the call to Preanalyze_Spec_Expression in Check_Aspect_At_xxx
1558 if Present
(DIC_Asp
) then
1559 Set_Entity
(Identifier
(DIC_Asp
), New_Copy_Tree
(Expr
));
1562 -- Preanalyze the original DIC expression for ASIS
1565 Preanalyze_Own_DIC_For_ASIS
;
1568 -- Once the DIC assertion expression is fully processed, add a check
1569 -- to the statements of the DIC procedure.
1572 (DIC_Prag
=> DIC_Prag
,
1579 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
1581 Saved_GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
1582 -- Save the Ghost mode to restore on exit
1585 DIC_Typ
: Entity_Id
;
1586 Dummy_1
: Entity_Id
;
1587 Dummy_2
: Entity_Id
;
1588 Proc_Body
: Node_Id
;
1589 Proc_Body_Id
: Entity_Id
;
1590 Proc_Decl
: Node_Id
;
1591 Proc_Id
: Entity_Id
;
1592 Stmts
: List_Id
:= No_List
;
1594 Build_Body
: Boolean := False;
1595 -- Flag set when the type requires a DIC procedure body to be built
1597 Work_Typ
: Entity_Id
;
1600 -- Start of processing for Build_DIC_Procedure_Body
1603 Work_Typ
:= Base_Type
(Typ
);
1605 -- Do not process class-wide types as these are Itypes, but lack a first
1606 -- subtype (see below).
1608 if Is_Class_Wide_Type
(Work_Typ
) then
1611 -- Do not process the underlying full view of a private type. There is
1612 -- no way to get back to the partial view, plus the body will be built
1613 -- by the full view or the base type.
1615 elsif Is_Underlying_Full_View
(Work_Typ
) then
1618 -- Use the first subtype when dealing with various base types
1620 elsif Is_Itype
(Work_Typ
) then
1621 Work_Typ
:= First_Subtype
(Work_Typ
);
1623 -- The input denotes the corresponding record type of a protected or a
1624 -- task type. Work with the concurrent type because the corresponding
1625 -- record type may not be visible to clients of the type.
1627 elsif Ekind
(Work_Typ
) = E_Record_Type
1628 and then Is_Concurrent_Record_Type
(Work_Typ
)
1630 Work_Typ
:= Corresponding_Concurrent_Type
(Work_Typ
);
1633 -- The working type may be subject to pragma Ghost. Set the mode now to
1634 -- ensure that the DIC procedure is properly marked as Ghost.
1636 Set_Ghost_Mode
(Work_Typ
);
1638 -- The working type must be either define a DIC pragma of its own or
1639 -- inherit one from a parent type.
1641 pragma Assert
(Has_DIC
(Work_Typ
));
1643 -- Recover the type which defines the DIC pragma. This is either the
1644 -- working type itself or a parent type when the pragma is inherited.
1646 DIC_Typ
:= Find_DIC_Type
(Work_Typ
);
1647 pragma Assert
(Present
(DIC_Typ
));
1649 DIC_Prag
:= Get_Pragma
(DIC_Typ
, Pragma_Default_Initial_Condition
);
1650 pragma Assert
(Present
(DIC_Prag
));
1652 -- Nothing to do if pragma DIC appears without an argument or its sole
1653 -- argument is "null".
1655 if not Is_Verifiable_DIC_Pragma
(DIC_Prag
) then
1659 -- The working type may lack a DIC procedure declaration. This may be
1660 -- due to several reasons:
1662 -- * The working type's own DIC pragma does not contain a verifiable
1663 -- assertion expression. In this case there is no need to build a
1664 -- DIC procedure because there is nothing to check.
1666 -- * The working type derives from a parent type. In this case a DIC
1667 -- procedure should be built only when the inherited DIC pragma has
1668 -- a verifiable assertion expression.
1670 Proc_Id
:= DIC_Procedure
(Work_Typ
);
1672 -- Build a DIC procedure declaration when the working type derives from
1675 if No
(Proc_Id
) then
1676 Build_DIC_Procedure_Declaration
(Work_Typ
);
1677 Proc_Id
:= DIC_Procedure
(Work_Typ
);
1680 -- At this point there should be a DIC procedure declaration
1682 pragma Assert
(Present
(Proc_Id
));
1683 Proc_Decl
:= Unit_Declaration_Node
(Proc_Id
);
1685 -- Nothing to do if the DIC procedure already has a body
1687 if Present
(Corresponding_Body
(Proc_Decl
)) then
1691 -- Emulate the environment of the DIC procedure by installing its scope
1692 -- and formal parameters.
1694 Push_Scope
(Proc_Id
);
1695 Install_Formals
(Proc_Id
);
1697 -- The working type defines its own DIC pragma. Replace the current
1698 -- instance of the working type with the formal of the DIC procedure.
1699 -- Note that there is no need to consider inherited DIC pragmas from
1700 -- parent types because the working type's DIC pragma "hides" all
1701 -- inherited DIC pragmas.
1703 if Has_Own_DIC
(Work_Typ
) then
1704 pragma Assert
(DIC_Typ
= Work_Typ
);
1707 (DIC_Prag
=> DIC_Prag
,
1713 -- Otherwise the working type inherits a DIC pragma from a parent type.
1714 -- This processing is carried out when the type is frozen because the
1715 -- state of all parent discriminants is known at that point. Note that
1716 -- it is semantically sound to delay the creation of the DIC procedure
1717 -- body till the freeze point. If the type has a DIC pragma of its own,
1718 -- then the DIC procedure body would have already been constructed at
1719 -- the end of the visible declarations and all parent DIC pragmas are
1720 -- effectively "hidden" and irrelevant.
1722 elsif For_Freeze
then
1723 pragma Assert
(Has_Inherited_DIC
(Work_Typ
));
1724 pragma Assert
(DIC_Typ
/= Work_Typ
);
1726 -- The working type is tagged. The verification of the assertion
1727 -- expression is subject to the same semantics as class-wide pre-
1728 -- and postconditions.
1730 if Is_Tagged_Type
(Work_Typ
) then
1731 Add_Inherited_Tagged_DIC
1732 (DIC_Prag
=> DIC_Prag
,
1734 Deriv_Typ
=> Work_Typ
,
1737 -- Otherwise the working type is not tagged. Verify the assertion
1738 -- expression of the inherited DIC pragma by directly calling the
1739 -- DIC procedure of the parent type.
1743 (DIC_Prag
=> DIC_Prag
,
1745 Deriv_Typ
=> Work_Typ
,
1756 -- Produce an empty completing body in the following cases:
1757 -- * Assertions are disabled
1758 -- * The DIC Assertion_Policy is Ignore
1761 Stmts
:= New_List
(Make_Null_Statement
(Loc
));
1765 -- procedure <Work_Typ>DIC (_object : <Work_Typ>) is
1768 -- end <Work_Typ>DIC;
1771 Make_Subprogram_Body
(Loc
,
1773 Copy_Subprogram_Spec
(Parent
(Proc_Id
)),
1774 Declarations
=> Empty_List
,
1775 Handled_Statement_Sequence
=>
1776 Make_Handled_Sequence_Of_Statements
(Loc
,
1777 Statements
=> Stmts
));
1778 Proc_Body_Id
:= Defining_Entity
(Proc_Body
);
1780 -- Perform minor decoration in case the body is not analyzed
1782 Set_Ekind
(Proc_Body_Id
, E_Subprogram_Body
);
1783 Set_Etype
(Proc_Body_Id
, Standard_Void_Type
);
1784 Set_Scope
(Proc_Body_Id
, Current_Scope
);
1785 Set_SPARK_Pragma
(Proc_Body_Id
, SPARK_Pragma
(Proc_Id
));
1786 Set_SPARK_Pragma_Inherited
1787 (Proc_Body_Id
, SPARK_Pragma_Inherited
(Proc_Id
));
1789 -- Link both spec and body to avoid generating duplicates
1791 Set_Corresponding_Body
(Proc_Decl
, Proc_Body_Id
);
1792 Set_Corresponding_Spec
(Proc_Body
, Proc_Id
);
1794 -- The body should not be inserted into the tree when the context
1795 -- is ASIS or a generic unit because it is not part of the template.
1796 -- Note that the body must still be generated in order to resolve the
1797 -- DIC assertion expression.
1799 if ASIS_Mode
or Inside_A_Generic
then
1802 -- Semi-insert the body into the tree for GNATprove by setting its
1803 -- Parent field. This allows for proper upstream tree traversals.
1805 elsif GNATprove_Mode
then
1806 Set_Parent
(Proc_Body
, Parent
(Declaration_Node
(Work_Typ
)));
1808 -- Otherwise the body is part of the freezing actions of the working
1812 Append_Freeze_Action
(Work_Typ
, Proc_Body
);
1817 Restore_Ghost_Mode
(Saved_GM
);
1818 end Build_DIC_Procedure_Body
;
1820 -------------------------------------
1821 -- Build_DIC_Procedure_Declaration --
1822 -------------------------------------
1824 -- WARNING: This routine manages Ghost regions. Return statements must be
1825 -- replaced by gotos which jump to the end of the routine and restore the
1828 procedure Build_DIC_Procedure_Declaration
(Typ
: Entity_Id
) is
1829 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
1831 Saved_GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
1832 -- Save the Ghost mode to restore on exit
1835 DIC_Typ
: Entity_Id
;
1836 Proc_Decl
: Node_Id
;
1837 Proc_Id
: Entity_Id
;
1840 CRec_Typ
: Entity_Id
;
1841 -- The corresponding record type of Full_Typ
1843 Full_Base
: Entity_Id
;
1844 -- The base type of Full_Typ
1846 Full_Typ
: Entity_Id
;
1847 -- The full view of working type
1850 -- The _object formal parameter of the DIC procedure
1852 Priv_Typ
: Entity_Id
;
1853 -- The partial view of working type
1855 Work_Typ
: Entity_Id
;
1859 Work_Typ
:= Base_Type
(Typ
);
1861 -- Do not process class-wide types as these are Itypes, but lack a first
1862 -- subtype (see below).
1864 if Is_Class_Wide_Type
(Work_Typ
) then
1867 -- Do not process the underlying full view of a private type. There is
1868 -- no way to get back to the partial view, plus the body will be built
1869 -- by the full view or the base type.
1871 elsif Is_Underlying_Full_View
(Work_Typ
) then
1874 -- Use the first subtype when dealing with various base types
1876 elsif Is_Itype
(Work_Typ
) then
1877 Work_Typ
:= First_Subtype
(Work_Typ
);
1879 -- The input denotes the corresponding record type of a protected or a
1880 -- task type. Work with the concurrent type because the corresponding
1881 -- record type may not be visible to clients of the type.
1883 elsif Ekind
(Work_Typ
) = E_Record_Type
1884 and then Is_Concurrent_Record_Type
(Work_Typ
)
1886 Work_Typ
:= Corresponding_Concurrent_Type
(Work_Typ
);
1889 -- The working type may be subject to pragma Ghost. Set the mode now to
1890 -- ensure that the DIC procedure is properly marked as Ghost.
1892 Set_Ghost_Mode
(Work_Typ
);
1894 -- The type must be either subject to a DIC pragma or inherit one from a
1897 pragma Assert
(Has_DIC
(Work_Typ
));
1899 -- Recover the type which defines the DIC pragma. This is either the
1900 -- working type itself or a parent type when the pragma is inherited.
1902 DIC_Typ
:= Find_DIC_Type
(Work_Typ
);
1903 pragma Assert
(Present
(DIC_Typ
));
1905 DIC_Prag
:= Get_Pragma
(DIC_Typ
, Pragma_Default_Initial_Condition
);
1906 pragma Assert
(Present
(DIC_Prag
));
1908 -- Nothing to do if pragma DIC appears without an argument or its sole
1909 -- argument is "null".
1911 if not Is_Verifiable_DIC_Pragma
(DIC_Prag
) then
1914 -- Nothing to do if the type already has a DIC procedure
1916 elsif Present
(DIC_Procedure
(Work_Typ
)) then
1921 Make_Defining_Identifier
(Loc
,
1923 New_External_Name
(Chars
(Work_Typ
), "Default_Initial_Condition"));
1925 -- Perform minor decoration in case the declaration is not analyzed
1927 Set_Ekind
(Proc_Id
, E_Procedure
);
1928 Set_Etype
(Proc_Id
, Standard_Void_Type
);
1929 Set_Is_DIC_Procedure
(Proc_Id
);
1930 Set_Scope
(Proc_Id
, Current_Scope
);
1931 Set_SPARK_Pragma
(Proc_Id
, SPARK_Mode_Pragma
);
1932 Set_SPARK_Pragma_Inherited
(Proc_Id
);
1934 Set_DIC_Procedure
(Work_Typ
, Proc_Id
);
1936 -- The DIC procedure requires debug info when the assertion expression
1937 -- is subject to Source Coverage Obligations.
1939 if Generate_SCO
then
1940 Set_Needs_Debug_Info
(Proc_Id
);
1943 -- Obtain all views of the input type
1945 Get_Views
(Work_Typ
, Priv_Typ
, Full_Typ
, Full_Base
, CRec_Typ
);
1947 -- Associate the DIC procedure and various relevant flags with all views
1949 Propagate_DIC_Attributes
(Priv_Typ
, From_Typ
=> Work_Typ
);
1950 Propagate_DIC_Attributes
(Full_Typ
, From_Typ
=> Work_Typ
);
1951 Propagate_DIC_Attributes
(Full_Base
, From_Typ
=> Work_Typ
);
1952 Propagate_DIC_Attributes
(CRec_Typ
, From_Typ
=> Work_Typ
);
1954 -- The declaration of the DIC procedure must be inserted after the
1955 -- declaration of the partial view as this allows for proper external
1958 if Present
(Priv_Typ
) then
1959 Typ_Decl
:= Declaration_Node
(Priv_Typ
);
1961 -- Derived types with the full view as parent do not have a partial
1962 -- view. Insert the DIC procedure after the derived type.
1965 Typ_Decl
:= Declaration_Node
(Full_Typ
);
1968 -- The type should have a declarative node
1970 pragma Assert
(Present
(Typ_Decl
));
1972 -- Create the formal parameter which emulates the variable-like behavior
1973 -- of the type's current instance.
1975 Obj_Id
:= Make_Defining_Identifier
(Loc
, Chars
=> Name_uObject
);
1977 -- Perform minor decoration in case the declaration is not analyzed
1979 Set_Ekind
(Obj_Id
, E_In_Parameter
);
1980 Set_Etype
(Obj_Id
, Work_Typ
);
1981 Set_Scope
(Obj_Id
, Proc_Id
);
1983 Set_First_Entity
(Proc_Id
, Obj_Id
);
1986 -- procedure <Work_Typ>DIC (_object : <Work_Typ>);
1989 Make_Subprogram_Declaration
(Loc
,
1991 Make_Procedure_Specification
(Loc
,
1992 Defining_Unit_Name
=> Proc_Id
,
1993 Parameter_Specifications
=> New_List
(
1994 Make_Parameter_Specification
(Loc
,
1995 Defining_Identifier
=> Obj_Id
,
1997 New_Occurrence_Of
(Work_Typ
, Loc
)))));
1999 -- The declaration should not be inserted into the tree when the context
2000 -- is ASIS or a generic unit because it is not part of the template.
2002 if ASIS_Mode
or Inside_A_Generic
then
2005 -- Semi-insert the declaration into the tree for GNATprove by setting
2006 -- its Parent field. This allows for proper upstream tree traversals.
2008 elsif GNATprove_Mode
then
2009 Set_Parent
(Proc_Decl
, Parent
(Typ_Decl
));
2011 -- Otherwise insert the declaration
2014 Insert_After_And_Analyze
(Typ_Decl
, Proc_Decl
);
2018 Restore_Ghost_Mode
(Saved_GM
);
2019 end Build_DIC_Procedure_Declaration
;
2021 ------------------------------------
2022 -- Build_Invariant_Procedure_Body --
2023 ------------------------------------
2025 -- WARNING: This routine manages Ghost regions. Return statements must be
2026 -- replaced by gotos which jump to the end of the routine and restore the
2029 procedure Build_Invariant_Procedure_Body
2031 Partial_Invariant
: Boolean := False)
2033 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
2035 Pragmas_Seen
: Elist_Id
:= No_Elist
;
2036 -- This list contains all invariant pragmas processed so far. The list
2037 -- is used to avoid generating redundant invariant checks.
2039 Produced_Check
: Boolean := False;
2040 -- This flag tracks whether the type has produced at least one invariant
2041 -- check. The flag is used as a sanity check at the end of the routine.
2043 -- NOTE: most of the routines in Build_Invariant_Procedure_Body are
2044 -- intentionally unnested to avoid deep indentation of code.
2046 -- NOTE: all Add_xxx_Invariants routines are reactive. In other words
2047 -- they emit checks, loops (for arrays) and case statements (for record
2048 -- variant parts) only when there are invariants to verify. This keeps
2049 -- the body of the invariant procedure free of useless code.
2051 procedure Add_Array_Component_Invariants
2054 Checks
: in out List_Id
);
2055 -- Generate an invariant check for each component of array type T.
2056 -- Obj_Id denotes the entity of the _object formal parameter of the
2057 -- invariant procedure. All created checks are added to list Checks.
2059 procedure Add_Inherited_Invariants
2061 Priv_Typ
: Entity_Id
;
2062 Full_Typ
: Entity_Id
;
2064 Checks
: in out List_Id
);
2065 -- Generate an invariant check for each inherited class-wide invariant
2066 -- coming from all parent types of type T. Priv_Typ and Full_Typ denote
2067 -- the partial and full view of the parent type. Obj_Id denotes the
2068 -- entity of the _object formal parameter of the invariant procedure.
2069 -- All created checks are added to list Checks.
2071 procedure Add_Interface_Invariants
2074 Checks
: in out List_Id
);
2075 -- Generate an invariant check for each inherited class-wide invariant
2076 -- coming from all interfaces implemented by type T. Obj_Id denotes the
2077 -- entity of the _object formal parameter of the invariant procedure.
2078 -- All created checks are added to list Checks.
2080 procedure Add_Invariant_Check
2083 Checks
: in out List_Id
;
2084 Inherited
: Boolean := False);
2085 -- Subsidiary to all Add_xxx_Invariant routines. Add a runtime check to
2086 -- verify assertion expression Expr of pragma Prag. All generated code
2087 -- is added to list Checks. Flag Inherited should be set when the pragma
2088 -- is inherited from a parent or interface type.
2090 procedure Add_Own_Invariants
2093 Checks
: in out List_Id
;
2094 Priv_Item
: Node_Id
:= Empty
);
2095 -- Generate an invariant check for each invariant found for type T.
2096 -- Obj_Id denotes the entity of the _object formal parameter of the
2097 -- invariant procedure. All created checks are added to list Checks.
2098 -- Priv_Item denotes the first rep item of the private type.
2100 procedure Add_Parent_Invariants
2103 Checks
: in out List_Id
);
2104 -- Generate an invariant check for each inherited class-wide invariant
2105 -- coming from all parent types of type T. Obj_Id denotes the entity of
2106 -- the _object formal parameter of the invariant procedure. All created
2107 -- checks are added to list Checks.
2109 procedure Add_Record_Component_Invariants
2112 Checks
: in out List_Id
);
2113 -- Generate an invariant check for each component of record type T.
2114 -- Obj_Id denotes the entity of the _object formal parameter of the
2115 -- invariant procedure. All created checks are added to list Checks.
2117 ------------------------------------
2118 -- Add_Array_Component_Invariants --
2119 ------------------------------------
2121 procedure Add_Array_Component_Invariants
2124 Checks
: in out List_Id
)
2126 Comp_Typ
: constant Entity_Id
:= Component_Type
(T
);
2127 Dims
: constant Pos
:= Number_Dimensions
(T
);
2129 procedure Process_Array_Component
2131 Comp_Checks
: in out List_Id
);
2132 -- Generate an invariant check for an array component identified by
2133 -- the indices in list Indices. All created checks are added to list
2136 procedure Process_One_Dimension
2139 Dim_Checks
: in out List_Id
);
2140 -- Generate a loop over the Nth dimension Dim of an array type. List
2141 -- Indices contains all array indices for the dimension. All created
2142 -- checks are added to list Dim_Checks.
2144 -----------------------------
2145 -- Process_Array_Component --
2146 -----------------------------
2148 procedure Process_Array_Component
2150 Comp_Checks
: in out List_Id
)
2152 Proc_Id
: Entity_Id
;
2155 if Has_Invariants
(Comp_Typ
) then
2157 -- In GNATprove mode, the component invariants are checked by
2158 -- other means. They should not be added to the array type
2159 -- invariant procedure, so that the procedure can be used to
2160 -- check the array type invariants if any.
2162 if GNATprove_Mode
then
2166 Proc_Id
:= Invariant_Procedure
(Base_Type
(Comp_Typ
));
2168 -- The component type should have an invariant procedure
2169 -- if it has invariants of its own or inherits class-wide
2170 -- invariants from parent or interface types.
2172 pragma Assert
(Present
(Proc_Id
));
2175 -- <Comp_Typ>Invariant (_object (<Indices>));
2177 -- Note that the invariant procedure may have a null body if
2178 -- assertions are disabled or Assertion_Policy Ignore is in
2181 if not Has_Null_Body
(Proc_Id
) then
2182 Append_New_To
(Comp_Checks
,
2183 Make_Procedure_Call_Statement
(Loc
,
2185 New_Occurrence_Of
(Proc_Id
, Loc
),
2186 Parameter_Associations
=> New_List
(
2187 Make_Indexed_Component
(Loc
,
2188 Prefix
=> New_Occurrence_Of
(Obj_Id
, Loc
),
2189 Expressions
=> New_Copy_List
(Indices
)))));
2193 Produced_Check
:= True;
2195 end Process_Array_Component
;
2197 ---------------------------
2198 -- Process_One_Dimension --
2199 ---------------------------
2201 procedure Process_One_Dimension
2204 Dim_Checks
: in out List_Id
)
2206 Comp_Checks
: List_Id
:= No_List
;
2210 -- Generate the invariant checks for the array component after all
2211 -- dimensions have produced their respective loops.
2214 Process_Array_Component
2215 (Indices
=> Indices
,
2216 Comp_Checks
=> Dim_Checks
);
2218 -- Otherwise create a loop for the current dimension
2221 -- Create a new loop variable for each dimension
2224 Make_Defining_Identifier
(Loc
,
2225 Chars
=> New_External_Name
('I', Dim
));
2226 Append_To
(Indices
, New_Occurrence_Of
(Index
, Loc
));
2228 Process_One_Dimension
2231 Dim_Checks
=> Comp_Checks
);
2234 -- for I<Dim> in _object'Range (<Dim>) loop
2238 -- Note that the invariant procedure may have a null body if
2239 -- assertions are disabled or Assertion_Policy Ignore is in
2242 if Present
(Comp_Checks
) then
2243 Append_New_To
(Dim_Checks
,
2244 Make_Implicit_Loop_Statement
(T
,
2245 Identifier
=> Empty
,
2247 Make_Iteration_Scheme
(Loc
,
2248 Loop_Parameter_Specification
=>
2249 Make_Loop_Parameter_Specification
(Loc
,
2250 Defining_Identifier
=> Index
,
2251 Discrete_Subtype_Definition
=>
2252 Make_Attribute_Reference
(Loc
,
2254 New_Occurrence_Of
(Obj_Id
, Loc
),
2255 Attribute_Name
=> Name_Range
,
2256 Expressions
=> New_List
(
2257 Make_Integer_Literal
(Loc
, Dim
))))),
2258 Statements
=> Comp_Checks
));
2261 end Process_One_Dimension
;
2263 -- Start of processing for Add_Array_Component_Invariants
2266 Process_One_Dimension
2268 Indices
=> New_List
,
2269 Dim_Checks
=> Checks
);
2270 end Add_Array_Component_Invariants
;
2272 ------------------------------
2273 -- Add_Inherited_Invariants --
2274 ------------------------------
2276 procedure Add_Inherited_Invariants
2278 Priv_Typ
: Entity_Id
;
2279 Full_Typ
: Entity_Id
;
2281 Checks
: in out List_Id
)
2283 Deriv_Typ
: Entity_Id
;
2286 Prag_Expr
: Node_Id
;
2287 Prag_Expr_Arg
: Node_Id
;
2289 Prag_Typ_Arg
: Node_Id
;
2291 Par_Proc
: Entity_Id
;
2292 -- The "partial" invariant procedure of Par_Typ
2294 Par_Typ
: Entity_Id
;
2295 -- The suitable view of the parent type used in the substitution of
2299 if not Present
(Priv_Typ
) and then not Present
(Full_Typ
) then
2303 -- When the type inheriting the class-wide invariant is a concurrent
2304 -- type, use the corresponding record type because it contains all
2305 -- primitive operations of the concurrent type and allows for proper
2308 if Is_Concurrent_Type
(T
) then
2309 Deriv_Typ
:= Corresponding_Record_Type
(T
);
2314 pragma Assert
(Present
(Deriv_Typ
));
2316 -- Determine which rep item chain to use. Precedence is given to that
2317 -- of the parent type's partial view since it usually carries all the
2318 -- class-wide invariants.
2320 if Present
(Priv_Typ
) then
2321 Prag
:= First_Rep_Item
(Priv_Typ
);
2323 Prag
:= First_Rep_Item
(Full_Typ
);
2326 while Present
(Prag
) loop
2327 if Nkind
(Prag
) = N_Pragma
2328 and then Pragma_Name
(Prag
) = Name_Invariant
2330 -- Nothing to do if the pragma was already processed
2332 if Contains
(Pragmas_Seen
, Prag
) then
2335 -- Nothing to do when the caller requests the processing of all
2336 -- inherited class-wide invariants, but the pragma does not
2337 -- fall in this category.
2339 elsif not Class_Present
(Prag
) then
2343 -- Extract the arguments of the invariant pragma
2345 Prag_Typ_Arg
:= First
(Pragma_Argument_Associations
(Prag
));
2346 Prag_Expr_Arg
:= Next
(Prag_Typ_Arg
);
2347 Prag_Expr
:= Expression_Copy
(Prag_Expr_Arg
);
2348 Prag_Typ
:= Get_Pragma_Arg
(Prag_Typ_Arg
);
2350 -- The pragma applies to the partial view of the parent type
2352 if Present
(Priv_Typ
)
2353 and then Entity
(Prag_Typ
) = Priv_Typ
2355 Par_Typ
:= Priv_Typ
;
2357 -- The pragma applies to the full view of the parent type
2359 elsif Present
(Full_Typ
)
2360 and then Entity
(Prag_Typ
) = Full_Typ
2362 Par_Typ
:= Full_Typ
;
2364 -- Otherwise the pragma does not belong to the parent type and
2365 -- should not be considered.
2371 -- Perform the following substitutions:
2373 -- * Replace a reference to the _object parameter of the
2374 -- parent type's partial invariant procedure with a
2375 -- reference to the _object parameter of the derived
2376 -- type's full invariant procedure.
2378 -- * Replace a reference to a discriminant of the parent type
2379 -- with a suitable value from the point of view of the
2382 -- * Replace a call to an overridden parent primitive with a
2383 -- call to the overriding derived type primitive.
2385 -- * Replace a call to an inherited parent primitive with a
2386 -- call to the internally-generated inherited derived type
2389 Expr
:= New_Copy_Tree
(Prag_Expr
);
2391 -- The parent type must have a "partial" invariant procedure
2392 -- because class-wide invariants are captured exclusively by
2395 Par_Proc
:= Partial_Invariant_Procedure
(Par_Typ
);
2396 pragma Assert
(Present
(Par_Proc
));
2401 Deriv_Typ
=> Deriv_Typ
,
2402 Par_Obj
=> First_Formal
(Par_Proc
),
2403 Deriv_Obj
=> Obj_Id
);
2405 Add_Invariant_Check
(Prag
, Expr
, Checks
, Inherited
=> True);
2408 Next_Rep_Item
(Prag
);
2410 end Add_Inherited_Invariants
;
2412 ------------------------------
2413 -- Add_Interface_Invariants --
2414 ------------------------------
2416 procedure Add_Interface_Invariants
2419 Checks
: in out List_Id
)
2421 Iface_Elmt
: Elmt_Id
;
2425 -- Generate an invariant check for each class-wide invariant coming
2426 -- from all interfaces implemented by type T.
2428 if Is_Tagged_Type
(T
) then
2429 Collect_Interfaces
(T
, Ifaces
);
2431 -- Process the class-wide invariants of all implemented interfaces
2433 Iface_Elmt
:= First_Elmt
(Ifaces
);
2434 while Present
(Iface_Elmt
) loop
2436 -- The Full_Typ parameter is intentionally left Empty because
2437 -- interfaces are treated as the partial view of a private type
2438 -- in order to achieve uniformity with the general case.
2440 Add_Inherited_Invariants
2442 Priv_Typ
=> Node
(Iface_Elmt
),
2447 Next_Elmt
(Iface_Elmt
);
2450 end Add_Interface_Invariants
;
2452 -------------------------
2453 -- Add_Invariant_Check --
2454 -------------------------
2456 procedure Add_Invariant_Check
2459 Checks
: in out List_Id
;
2460 Inherited
: Boolean := False)
2462 Args
: constant List_Id
:= Pragma_Argument_Associations
(Prag
);
2463 Nam
: constant Name_Id
:= Original_Aspect_Pragma_Name
(Prag
);
2464 Ploc
: constant Source_Ptr
:= Sloc
(Prag
);
2465 Str_Arg
: constant Node_Id
:= Next
(Next
(First
(Args
)));
2471 -- The invariant is ignored, nothing left to do
2473 if Is_Ignored
(Prag
) then
2476 -- Otherwise the invariant is checked. Build a pragma Check to verify
2477 -- the expression at run time.
2481 Make_Pragma_Argument_Association
(Ploc
,
2482 Expression
=> Make_Identifier
(Ploc
, Nam
)),
2483 Make_Pragma_Argument_Association
(Ploc
,
2484 Expression
=> Expr
));
2486 -- Handle the String argument (if any)
2488 if Present
(Str_Arg
) then
2489 Str
:= Strval
(Get_Pragma_Arg
(Str_Arg
));
2491 -- When inheriting an invariant, modify the message from
2492 -- "failed invariant" to "failed inherited invariant".
2495 String_To_Name_Buffer
(Str
);
2497 if Name_Buffer
(1 .. 16) = "failed invariant" then
2498 Insert_Str_In_Name_Buffer
("inherited ", 8);
2499 Str
:= String_From_Name_Buffer
;
2504 Make_Pragma_Argument_Association
(Ploc
,
2505 Expression
=> Make_String_Literal
(Ploc
, Str
)));
2509 -- pragma Check (<Nam>, <Expr>, <Str>);
2511 Append_New_To
(Checks
,
2513 Chars
=> Name_Check
,
2514 Pragma_Argument_Associations
=> Assoc
));
2517 -- Output an info message when inheriting an invariant and the
2518 -- listing option is enabled.
2520 if Inherited
and Opt
.List_Inherited_Aspects
then
2521 Error_Msg_Sloc
:= Sloc
(Prag
);
2523 ("info: & inherits `Invariant''Class` aspect from #?L?", Typ
);
2526 -- Add the pragma to the list of processed pragmas
2528 Append_New_Elmt
(Prag
, Pragmas_Seen
);
2529 Produced_Check
:= True;
2530 end Add_Invariant_Check
;
2532 ---------------------------
2533 -- Add_Parent_Invariants --
2534 ---------------------------
2536 procedure Add_Parent_Invariants
2539 Checks
: in out List_Id
)
2541 Dummy_1
: Entity_Id
;
2542 Dummy_2
: Entity_Id
;
2544 Curr_Typ
: Entity_Id
;
2545 -- The entity of the current type being examined
2547 Full_Typ
: Entity_Id
;
2548 -- The full view of Par_Typ
2550 Par_Typ
: Entity_Id
;
2551 -- The entity of the parent type
2553 Priv_Typ
: Entity_Id
;
2554 -- The partial view of Par_Typ
2557 -- Do not process array types because they cannot have true parent
2558 -- types. This also prevents the generation of a duplicate invariant
2559 -- check when the input type is an array base type because its Etype
2560 -- denotes the first subtype, both of which share the same component
2563 if Is_Array_Type
(T
) then
2567 -- Climb the parent type chain
2571 -- Do not consider subtypes as they inherit the invariants
2572 -- from their base types.
2574 Par_Typ
:= Base_Type
(Etype
(Curr_Typ
));
2576 -- Stop the climb once the root of the parent chain is
2579 exit when Curr_Typ
= Par_Typ
;
2581 -- Process the class-wide invariants of the parent type
2583 Get_Views
(Par_Typ
, Priv_Typ
, Full_Typ
, Dummy_1
, Dummy_2
);
2585 -- Process the elements of an array type
2587 if Is_Array_Type
(Full_Typ
) then
2588 Add_Array_Component_Invariants
(Full_Typ
, Obj_Id
, Checks
);
2590 -- Process the components of a record type
2592 elsif Ekind
(Full_Typ
) = E_Record_Type
then
2593 Add_Record_Component_Invariants
(Full_Typ
, Obj_Id
, Checks
);
2596 Add_Inherited_Invariants
2598 Priv_Typ
=> Priv_Typ
,
2599 Full_Typ
=> Full_Typ
,
2603 Curr_Typ
:= Par_Typ
;
2605 end Add_Parent_Invariants
;
2607 ------------------------
2608 -- Add_Own_Invariants --
2609 ------------------------
2611 procedure Add_Own_Invariants
2614 Checks
: in out List_Id
;
2615 Priv_Item
: Node_Id
:= Empty
)
2617 ASIS_Expr
: Node_Id
;
2621 Prag_Expr
: Node_Id
;
2622 Prag_Expr_Arg
: Node_Id
;
2624 Prag_Typ_Arg
: Node_Id
;
2627 if not Present
(T
) then
2631 Prag
:= First_Rep_Item
(T
);
2632 while Present
(Prag
) loop
2633 if Nkind
(Prag
) = N_Pragma
2634 and then Pragma_Name
(Prag
) = Name_Invariant
2636 -- Stop the traversal of the rep item chain once a specific
2637 -- item is encountered.
2639 if Present
(Priv_Item
) and then Prag
= Priv_Item
then
2643 -- Nothing to do if the pragma was already processed
2645 if Contains
(Pragmas_Seen
, Prag
) then
2649 -- Extract the arguments of the invariant pragma
2651 Prag_Typ_Arg
:= First
(Pragma_Argument_Associations
(Prag
));
2652 Prag_Expr_Arg
:= Next
(Prag_Typ_Arg
);
2653 Prag_Expr
:= Get_Pragma_Arg
(Prag_Expr_Arg
);
2654 Prag_Typ
:= Get_Pragma_Arg
(Prag_Typ_Arg
);
2655 Prag_Asp
:= Corresponding_Aspect
(Prag
);
2657 -- Verify the pragma belongs to T, otherwise the pragma applies
2658 -- to a parent type in which case it will be processed later by
2659 -- Add_Parent_Invariants or Add_Interface_Invariants.
2661 if Entity
(Prag_Typ
) /= T
then
2665 Expr
:= New_Copy_Tree
(Prag_Expr
);
2667 -- Substitute all references to type T with references to the
2668 -- _object formal parameter.
2670 Replace_Type_References
(Expr
, T
, Obj_Id
);
2672 -- Preanalyze the invariant expression to detect errors and at
2673 -- the same time capture the visibility of the proper package
2676 Set_Parent
(Expr
, Parent
(Prag_Expr
));
2677 Preanalyze_Assert_Expression
(Expr
, Any_Boolean
);
2679 -- Save a copy of the expression when T is tagged to detect
2680 -- errors and capture the visibility of the proper package part
2681 -- for the generation of inherited type invariants.
2683 if Is_Tagged_Type
(T
) then
2684 Set_Expression_Copy
(Prag_Expr_Arg
, New_Copy_Tree
(Expr
));
2687 -- If the pragma comes from an aspect specification, replace
2688 -- the saved expression because all type references must be
2689 -- substituted for the call to Preanalyze_Spec_Expression in
2690 -- Check_Aspect_At_xxx routines.
2692 if Present
(Prag_Asp
) then
2693 Set_Entity
(Identifier
(Prag_Asp
), New_Copy_Tree
(Expr
));
2696 -- Analyze the original invariant expression for ASIS
2701 if Comes_From_Source
(Prag
) then
2702 ASIS_Expr
:= Prag_Expr
;
2703 elsif Present
(Prag_Asp
) then
2704 ASIS_Expr
:= Expression
(Prag_Asp
);
2707 if Present
(ASIS_Expr
) then
2708 Replace_Type_References
(ASIS_Expr
, T
, Obj_Id
);
2709 Preanalyze_Assert_Expression
(ASIS_Expr
, Any_Boolean
);
2713 Add_Invariant_Check
(Prag
, Expr
, Checks
);
2716 Next_Rep_Item
(Prag
);
2718 end Add_Own_Invariants
;
2720 -------------------------------------
2721 -- Add_Record_Component_Invariants --
2722 -------------------------------------
2724 procedure Add_Record_Component_Invariants
2727 Checks
: in out List_Id
)
2729 procedure Process_Component_List
2730 (Comp_List
: Node_Id
;
2731 CL_Checks
: in out List_Id
);
2732 -- Generate invariant checks for all record components found in
2733 -- component list Comp_List, including variant parts. All created
2734 -- checks are added to list CL_Checks.
2736 procedure Process_Record_Component
2737 (Comp_Id
: Entity_Id
;
2738 Comp_Checks
: in out List_Id
);
2739 -- Generate an invariant check for a record component identified by
2740 -- Comp_Id. All created checks are added to list Comp_Checks.
2742 ----------------------------
2743 -- Process_Component_List --
2744 ----------------------------
2746 procedure Process_Component_List
2747 (Comp_List
: Node_Id
;
2748 CL_Checks
: in out List_Id
)
2752 Var_Alts
: List_Id
:= No_List
;
2753 Var_Checks
: List_Id
:= No_List
;
2754 Var_Stmts
: List_Id
;
2756 Produced_Variant_Check
: Boolean := False;
2757 -- This flag tracks whether the component has produced at least
2758 -- one invariant check.
2761 -- Traverse the component items
2763 Comp
:= First
(Component_Items
(Comp_List
));
2764 while Present
(Comp
) loop
2765 if Nkind
(Comp
) = N_Component_Declaration
then
2767 -- Generate the component invariant check
2769 Process_Record_Component
2770 (Comp_Id
=> Defining_Entity
(Comp
),
2771 Comp_Checks
=> CL_Checks
);
2777 -- Traverse the variant part
2779 if Present
(Variant_Part
(Comp_List
)) then
2780 Var
:= First
(Variants
(Variant_Part
(Comp_List
)));
2781 while Present
(Var
) loop
2782 Var_Checks
:= No_List
;
2784 -- Generate invariant checks for all components and variant
2785 -- parts that qualify.
2787 Process_Component_List
2788 (Comp_List
=> Component_List
(Var
),
2789 CL_Checks
=> Var_Checks
);
2791 -- The components of the current variant produced at least
2792 -- one invariant check.
2794 if Present
(Var_Checks
) then
2795 Var_Stmts
:= Var_Checks
;
2796 Produced_Variant_Check
:= True;
2798 -- Otherwise there are either no components with invariants,
2799 -- assertions are disabled, or Assertion_Policy Ignore is in
2803 Var_Stmts
:= New_List
(Make_Null_Statement
(Loc
));
2806 Append_New_To
(Var_Alts
,
2807 Make_Case_Statement_Alternative
(Loc
,
2809 New_Copy_List
(Discrete_Choices
(Var
)),
2810 Statements
=> Var_Stmts
));
2815 -- Create a case statement which verifies the invariant checks
2816 -- of a particular component list depending on the discriminant
2817 -- values only when there is at least one real invariant check.
2819 if Produced_Variant_Check
then
2820 Append_New_To
(CL_Checks
,
2821 Make_Case_Statement
(Loc
,
2823 Make_Selected_Component
(Loc
,
2824 Prefix
=> New_Occurrence_Of
(Obj_Id
, Loc
),
2827 (Entity
(Name
(Variant_Part
(Comp_List
))), Loc
)),
2828 Alternatives
=> Var_Alts
));
2831 end Process_Component_List
;
2833 ------------------------------
2834 -- Process_Record_Component --
2835 ------------------------------
2837 procedure Process_Record_Component
2838 (Comp_Id
: Entity_Id
;
2839 Comp_Checks
: in out List_Id
)
2841 Comp_Typ
: constant Entity_Id
:= Etype
(Comp_Id
);
2842 Proc_Id
: Entity_Id
;
2844 Produced_Component_Check
: Boolean := False;
2845 -- This flag tracks whether the component has produced at least
2846 -- one invariant check.
2849 -- Nothing to do for internal component _parent. Note that it is
2850 -- not desirable to check whether the component comes from source
2851 -- because protected type components are relocated to an internal
2852 -- corresponding record, but still need processing.
2854 if Chars
(Comp_Id
) = Name_uParent
then
2858 -- Verify the invariant of the component. Note that an access
2859 -- type may have an invariant when it acts as the full view of a
2860 -- private type and the invariant appears on the partial view. In
2861 -- this case verify the access value itself.
2863 if Has_Invariants
(Comp_Typ
) then
2865 -- In GNATprove mode, the component invariants are checked by
2866 -- other means. They should not be added to the record type
2867 -- invariant procedure, so that the procedure can be used to
2868 -- check the record type invariants if any.
2870 if GNATprove_Mode
then
2874 Proc_Id
:= Invariant_Procedure
(Base_Type
(Comp_Typ
));
2876 -- The component type should have an invariant procedure
2877 -- if it has invariants of its own or inherits class-wide
2878 -- invariants from parent or interface types.
2880 pragma Assert
(Present
(Proc_Id
));
2883 -- <Comp_Typ>Invariant (T (_object).<Comp_Id>);
2885 -- Note that the invariant procedure may have a null body if
2886 -- assertions are disabled or Assertion_Policy Ignore is in
2889 if not Has_Null_Body
(Proc_Id
) then
2890 Append_New_To
(Comp_Checks
,
2891 Make_Procedure_Call_Statement
(Loc
,
2893 New_Occurrence_Of
(Proc_Id
, Loc
),
2894 Parameter_Associations
=> New_List
(
2895 Make_Selected_Component
(Loc
,
2897 Unchecked_Convert_To
2898 (T
, New_Occurrence_Of
(Obj_Id
, Loc
)),
2900 New_Occurrence_Of
(Comp_Id
, Loc
)))));
2904 Produced_Check
:= True;
2905 Produced_Component_Check
:= True;
2908 if Produced_Component_Check
and then Has_Unchecked_Union
(T
) then
2910 ("invariants cannot be checked on components of "
2911 & "unchecked_union type &?", Comp_Id
, T
);
2913 end Process_Record_Component
;
2920 -- Start of processing for Add_Record_Component_Invariants
2923 -- An untagged derived type inherits the components of its parent
2924 -- type. In order to avoid creating redundant invariant checks, do
2925 -- not process the components now. Instead wait until the ultimate
2926 -- parent of the untagged derivation chain is reached.
2928 if not Is_Untagged_Derivation
(T
) then
2929 Def
:= Type_Definition
(Parent
(T
));
2931 if Nkind
(Def
) = N_Derived_Type_Definition
then
2932 Def
:= Record_Extension_Part
(Def
);
2935 pragma Assert
(Nkind
(Def
) = N_Record_Definition
);
2936 Comps
:= Component_List
(Def
);
2938 if Present
(Comps
) then
2939 Process_Component_List
2940 (Comp_List
=> Comps
,
2941 CL_Checks
=> Checks
);
2944 end Add_Record_Component_Invariants
;
2948 Saved_GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
2949 -- Save the Ghost mode to restore on exit
2952 Priv_Item
: Node_Id
;
2953 Proc_Body
: Node_Id
;
2954 Proc_Body_Id
: Entity_Id
;
2955 Proc_Decl
: Node_Id
;
2956 Proc_Id
: Entity_Id
;
2957 Stmts
: List_Id
:= No_List
;
2959 CRec_Typ
: Entity_Id
:= Empty
;
2960 -- The corresponding record type of Full_Typ
2962 Full_Proc
: Entity_Id
:= Empty
;
2963 -- The entity of the "full" invariant procedure
2965 Full_Typ
: Entity_Id
:= Empty
;
2966 -- The full view of the working type
2968 Obj_Id
: Entity_Id
:= Empty
;
2969 -- The _object formal parameter of the invariant procedure
2971 Part_Proc
: Entity_Id
:= Empty
;
2972 -- The entity of the "partial" invariant procedure
2974 Priv_Typ
: Entity_Id
:= Empty
;
2975 -- The partial view of the working type
2977 Work_Typ
: Entity_Id
:= Empty
;
2980 -- Start of processing for Build_Invariant_Procedure_Body
2985 -- The input type denotes the implementation base type of a constrained
2986 -- array type. Work with the first subtype as all invariant pragmas are
2987 -- on its rep item chain.
2989 if Ekind
(Work_Typ
) = E_Array_Type
and then Is_Itype
(Work_Typ
) then
2990 Work_Typ
:= First_Subtype
(Work_Typ
);
2992 -- The input type denotes the corresponding record type of a protected
2993 -- or task type. Work with the concurrent type because the corresponding
2994 -- record type may not be visible to clients of the type.
2996 elsif Ekind
(Work_Typ
) = E_Record_Type
2997 and then Is_Concurrent_Record_Type
(Work_Typ
)
2999 Work_Typ
:= Corresponding_Concurrent_Type
(Work_Typ
);
3002 -- The working type may be subject to pragma Ghost. Set the mode now to
3003 -- ensure that the invariant procedure is properly marked as Ghost.
3005 Set_Ghost_Mode
(Work_Typ
);
3007 -- The type must either have invariants of its own, inherit class-wide
3008 -- invariants from parent types or interfaces, or be an array or record
3009 -- type whose components have invariants.
3011 pragma Assert
(Has_Invariants
(Work_Typ
));
3013 -- Interfaces are treated as the partial view of a private type in order
3014 -- to achieve uniformity with the general case.
3016 if Is_Interface
(Work_Typ
) then
3017 Priv_Typ
:= Work_Typ
;
3019 -- Otherwise obtain both views of the type
3022 Get_Views
(Work_Typ
, Priv_Typ
, Full_Typ
, Dummy
, CRec_Typ
);
3025 -- The caller requests a body for the partial invariant procedure
3027 if Partial_Invariant
then
3028 Full_Proc
:= Invariant_Procedure
(Work_Typ
);
3029 Proc_Id
:= Partial_Invariant_Procedure
(Work_Typ
);
3031 -- The "full" invariant procedure body was already created
3033 if Present
(Full_Proc
)
3035 (Corresponding_Body
(Unit_Declaration_Node
(Full_Proc
)))
3037 -- This scenario happens only when the type is an untagged
3038 -- derivation from a private parent and the underlying full
3039 -- view was processed before the partial view.
3042 (Is_Untagged_Private_Derivation
(Priv_Typ
, Full_Typ
));
3044 -- Nothing to do because the processing of the underlying full
3045 -- view already checked the invariants of the partial view.
3050 -- Create a declaration for the "partial" invariant procedure if it
3051 -- is not available.
3053 if No
(Proc_Id
) then
3054 Build_Invariant_Procedure_Declaration
3056 Partial_Invariant
=> True);
3058 Proc_Id
:= Partial_Invariant_Procedure
(Work_Typ
);
3061 -- The caller requests a body for the "full" invariant procedure
3064 Proc_Id
:= Invariant_Procedure
(Work_Typ
);
3065 Part_Proc
:= Partial_Invariant_Procedure
(Work_Typ
);
3067 -- Create a declaration for the "full" invariant procedure if it is
3070 if No
(Proc_Id
) then
3071 Build_Invariant_Procedure_Declaration
(Work_Typ
);
3072 Proc_Id
:= Invariant_Procedure
(Work_Typ
);
3076 -- At this point there should be an invariant procedure declaration
3078 pragma Assert
(Present
(Proc_Id
));
3079 Proc_Decl
:= Unit_Declaration_Node
(Proc_Id
);
3081 -- Nothing to do if the invariant procedure already has a body
3083 if Present
(Corresponding_Body
(Proc_Decl
)) then
3087 -- Emulate the environment of the invariant procedure by installing its
3088 -- scope and formal parameters. Note that this is not needed, but having
3089 -- the scope installed helps with the detection of invariant-related
3092 Push_Scope
(Proc_Id
);
3093 Install_Formals
(Proc_Id
);
3095 Obj_Id
:= First_Formal
(Proc_Id
);
3096 pragma Assert
(Present
(Obj_Id
));
3098 -- The "partial" invariant procedure verifies the invariants of the
3099 -- partial view only.
3101 if Partial_Invariant
then
3102 pragma Assert
(Present
(Priv_Typ
));
3109 -- Otherwise the "full" invariant procedure verifies the invariants of
3110 -- the full view, all array or record components, as well as class-wide
3111 -- invariants inherited from parent types or interfaces. In addition, it
3112 -- indirectly verifies the invariants of the partial view by calling the
3113 -- "partial" invariant procedure.
3116 pragma Assert
(Present
(Full_Typ
));
3118 -- Check the invariants of the partial view by calling the "partial"
3119 -- invariant procedure. Generate:
3121 -- <Work_Typ>Partial_Invariant (_object);
3123 if Present
(Part_Proc
) then
3124 Append_New_To
(Stmts
,
3125 Make_Procedure_Call_Statement
(Loc
,
3126 Name
=> New_Occurrence_Of
(Part_Proc
, Loc
),
3127 Parameter_Associations
=> New_List
(
3128 New_Occurrence_Of
(Obj_Id
, Loc
))));
3130 Produced_Check
:= True;
3135 -- Derived subtypes do not have a partial view
3137 if Present
(Priv_Typ
) then
3139 -- The processing of the "full" invariant procedure intentionally
3140 -- skips the partial view because a) this may result in changes of
3141 -- visibility and b) lead to duplicate checks. However, when the
3142 -- full view is the underlying full view of an untagged derived
3143 -- type whose parent type is private, partial invariants appear on
3144 -- the rep item chain of the partial view only.
3146 -- package Pack_1 is
3147 -- type Root ... is private;
3149 -- <full view of Root>
3153 -- package Pack_2 is
3154 -- type Child is new Pack_1.Root with Type_Invariant => ...;
3155 -- <underlying full view of Child>
3158 -- As a result, the processing of the full view must also consider
3159 -- all invariants of the partial view.
3161 if Is_Untagged_Private_Derivation
(Priv_Typ
, Full_Typ
) then
3164 -- Otherwise the invariants of the partial view are ignored
3167 -- Note that the rep item chain is shared between the partial
3168 -- and full views of a type. To avoid processing the invariants
3169 -- of the partial view, signal the logic to stop when the first
3170 -- rep item of the partial view has been reached.
3172 Priv_Item
:= First_Rep_Item
(Priv_Typ
);
3174 -- Ignore the invariants of the partial view by eliminating the
3181 -- Process the invariants of the full view and in certain cases those
3182 -- of the partial view. This also handles any invariants on array or
3183 -- record components.
3189 Priv_Item
=> Priv_Item
);
3195 Priv_Item
=> Priv_Item
);
3197 -- Process the elements of an array type
3199 if Is_Array_Type
(Full_Typ
) then
3200 Add_Array_Component_Invariants
(Full_Typ
, Obj_Id
, Stmts
);
3202 -- Process the components of a record type
3204 elsif Ekind
(Full_Typ
) = E_Record_Type
then
3205 Add_Record_Component_Invariants
(Full_Typ
, Obj_Id
, Stmts
);
3207 -- Process the components of a corresponding record
3209 elsif Present
(CRec_Typ
) then
3210 Add_Record_Component_Invariants
(CRec_Typ
, Obj_Id
, Stmts
);
3213 -- Process the inherited class-wide invariants of all parent types.
3214 -- This also handles any invariants on record components.
3216 Add_Parent_Invariants
(Full_Typ
, Obj_Id
, Stmts
);
3218 -- Process the inherited class-wide invariants of all implemented
3221 Add_Interface_Invariants
(Full_Typ
, Obj_Id
, Stmts
);
3226 -- At this point there should be at least one invariant check. If this
3227 -- is not the case, then the invariant-related flags were not properly
3228 -- set, or there is a missing invariant procedure on one of the array
3229 -- or record components.
3231 pragma Assert
(Produced_Check
);
3233 -- Account for the case where assertions are disabled or all invariant
3234 -- checks are subject to Assertion_Policy Ignore. Produce a completing
3238 Stmts
:= New_List
(Make_Null_Statement
(Loc
));
3242 -- procedure <Work_Typ>[Partial_]Invariant (_object : <Obj_Typ>) is
3245 -- end <Work_Typ>[Partial_]Invariant;
3248 Make_Subprogram_Body
(Loc
,
3250 Copy_Subprogram_Spec
(Parent
(Proc_Id
)),
3251 Declarations
=> Empty_List
,
3252 Handled_Statement_Sequence
=>
3253 Make_Handled_Sequence_Of_Statements
(Loc
,
3254 Statements
=> Stmts
));
3255 Proc_Body_Id
:= Defining_Entity
(Proc_Body
);
3257 -- Perform minor decoration in case the body is not analyzed
3259 Set_Ekind
(Proc_Body_Id
, E_Subprogram_Body
);
3260 Set_Etype
(Proc_Body_Id
, Standard_Void_Type
);
3261 Set_Scope
(Proc_Body_Id
, Current_Scope
);
3263 -- Link both spec and body to avoid generating duplicates
3265 Set_Corresponding_Body
(Proc_Decl
, Proc_Body_Id
);
3266 Set_Corresponding_Spec
(Proc_Body
, Proc_Id
);
3268 -- The body should not be inserted into the tree when the context is
3269 -- ASIS or a generic unit because it is not part of the template. Note
3270 -- that the body must still be generated in order to resolve the
3273 if ASIS_Mode
or Inside_A_Generic
then
3276 -- Semi-insert the body into the tree for GNATprove by setting its
3277 -- Parent field. This allows for proper upstream tree traversals.
3279 elsif GNATprove_Mode
then
3280 Set_Parent
(Proc_Body
, Parent
(Declaration_Node
(Work_Typ
)));
3282 -- Otherwise the body is part of the freezing actions of the type
3285 Append_Freeze_Action
(Work_Typ
, Proc_Body
);
3289 Restore_Ghost_Mode
(Saved_GM
);
3290 end Build_Invariant_Procedure_Body
;
3292 -------------------------------------------
3293 -- Build_Invariant_Procedure_Declaration --
3294 -------------------------------------------
3296 -- WARNING: This routine manages Ghost regions. Return statements must be
3297 -- replaced by gotos which jump to the end of the routine and restore the
3300 procedure Build_Invariant_Procedure_Declaration
3302 Partial_Invariant
: Boolean := False)
3304 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
3306 Saved_GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
3307 -- Save the Ghost mode to restore on exit
3309 Proc_Decl
: Node_Id
;
3310 Proc_Id
: Entity_Id
;
3314 CRec_Typ
: Entity_Id
;
3315 -- The corresponding record type of Full_Typ
3317 Full_Base
: Entity_Id
;
3318 -- The base type of Full_Typ
3320 Full_Typ
: Entity_Id
;
3321 -- The full view of working type
3324 -- The _object formal parameter of the invariant procedure
3326 Obj_Typ
: Entity_Id
;
3327 -- The type of the _object formal parameter
3329 Priv_Typ
: Entity_Id
;
3330 -- The partial view of working type
3332 Work_Typ
: Entity_Id
;
3338 -- The input type denotes the implementation base type of a constrained
3339 -- array type. Work with the first subtype as all invariant pragmas are
3340 -- on its rep item chain.
3342 if Ekind
(Work_Typ
) = E_Array_Type
and then Is_Itype
(Work_Typ
) then
3343 Work_Typ
:= First_Subtype
(Work_Typ
);
3345 -- The input denotes the corresponding record type of a protected or a
3346 -- task type. Work with the concurrent type because the corresponding
3347 -- record type may not be visible to clients of the type.
3349 elsif Ekind
(Work_Typ
) = E_Record_Type
3350 and then Is_Concurrent_Record_Type
(Work_Typ
)
3352 Work_Typ
:= Corresponding_Concurrent_Type
(Work_Typ
);
3355 -- The working type may be subject to pragma Ghost. Set the mode now to
3356 -- ensure that the invariant procedure is properly marked as Ghost.
3358 Set_Ghost_Mode
(Work_Typ
);
3360 -- The type must either have invariants of its own, inherit class-wide
3361 -- invariants from parent or interface types, or be an array or record
3362 -- type whose components have invariants.
3364 pragma Assert
(Has_Invariants
(Work_Typ
));
3366 -- Nothing to do if the type already has a "partial" invariant procedure
3368 if Partial_Invariant
then
3369 if Present
(Partial_Invariant_Procedure
(Work_Typ
)) then
3373 -- Nothing to do if the type already has a "full" invariant procedure
3375 elsif Present
(Invariant_Procedure
(Work_Typ
)) then
3379 -- The caller requests the declaration of the "partial" invariant
3382 if Partial_Invariant
then
3383 Proc_Nam
:= New_External_Name
(Chars
(Work_Typ
), "Partial_Invariant");
3385 -- Otherwise the caller requests the declaration of the "full" invariant
3389 Proc_Nam
:= New_External_Name
(Chars
(Work_Typ
), "Invariant");
3392 Proc_Id
:= Make_Defining_Identifier
(Loc
, Chars
=> Proc_Nam
);
3394 -- Perform minor decoration in case the declaration is not analyzed
3396 Set_Ekind
(Proc_Id
, E_Procedure
);
3397 Set_Etype
(Proc_Id
, Standard_Void_Type
);
3398 Set_Scope
(Proc_Id
, Current_Scope
);
3400 if Partial_Invariant
then
3401 Set_Is_Partial_Invariant_Procedure
(Proc_Id
);
3402 Set_Partial_Invariant_Procedure
(Work_Typ
, Proc_Id
);
3404 Set_Is_Invariant_Procedure
(Proc_Id
);
3405 Set_Invariant_Procedure
(Work_Typ
, Proc_Id
);
3408 -- The invariant procedure requires debug info when the invariants are
3409 -- subject to Source Coverage Obligations.
3411 if Generate_SCO
then
3412 Set_Needs_Debug_Info
(Proc_Id
);
3415 -- Obtain all views of the input type
3417 Get_Views
(Work_Typ
, Priv_Typ
, Full_Typ
, Full_Base
, CRec_Typ
);
3419 -- Associate the invariant procedure with all views
3421 Propagate_Invariant_Attributes
(Priv_Typ
, From_Typ
=> Work_Typ
);
3422 Propagate_Invariant_Attributes
(Full_Typ
, From_Typ
=> Work_Typ
);
3423 Propagate_Invariant_Attributes
(Full_Base
, From_Typ
=> Work_Typ
);
3424 Propagate_Invariant_Attributes
(CRec_Typ
, From_Typ
=> Work_Typ
);
3426 -- The declaration of the invariant procedure is inserted after the
3427 -- declaration of the partial view as this allows for proper external
3430 if Present
(Priv_Typ
) then
3431 Typ_Decl
:= Declaration_Node
(Priv_Typ
);
3433 -- Anonymous arrays in object declarations have no explicit declaration
3434 -- so use the related object declaration as the insertion point.
3436 elsif Is_Itype
(Work_Typ
) and then Is_Array_Type
(Work_Typ
) then
3437 Typ_Decl
:= Associated_Node_For_Itype
(Work_Typ
);
3439 -- Derived types with the full view as parent do not have a partial
3440 -- view. Insert the invariant procedure after the derived type.
3443 Typ_Decl
:= Declaration_Node
(Full_Typ
);
3446 -- The type should have a declarative node
3448 pragma Assert
(Present
(Typ_Decl
));
3450 -- Create the formal parameter which emulates the variable-like behavior
3451 -- of the current type instance.
3453 Obj_Id
:= Make_Defining_Identifier
(Loc
, Chars
=> Name_uObject
);
3455 -- When generating an invariant procedure declaration for an abstract
3456 -- type (including interfaces), use the class-wide type as the _object
3457 -- type. This has several desirable effects:
3459 -- * The invariant procedure does not become a primitive of the type.
3460 -- This eliminates the need to either special case the treatment of
3461 -- invariant procedures, or to make it a predefined primitive and
3462 -- force every derived type to potentially provide an empty body.
3464 -- * The invariant procedure does not need to be declared as abstract.
3465 -- This allows for a proper body, which in turn avoids redundant
3466 -- processing of the same invariants for types with multiple views.
3468 -- * The class-wide type allows for calls to abstract primitives
3469 -- within a nonabstract subprogram. The calls are treated as
3470 -- dispatching and require additional processing when they are
3471 -- remapped to call primitives of derived types. See routine
3472 -- Replace_References for details.
3474 if Is_Abstract_Type
(Work_Typ
) then
3475 Obj_Typ
:= Class_Wide_Type
(Work_Typ
);
3477 Obj_Typ
:= Work_Typ
;
3480 -- Perform minor decoration in case the declaration is not analyzed
3482 Set_Ekind
(Obj_Id
, E_In_Parameter
);
3483 Set_Etype
(Obj_Id
, Obj_Typ
);
3484 Set_Scope
(Obj_Id
, Proc_Id
);
3486 Set_First_Entity
(Proc_Id
, Obj_Id
);
3487 Set_Last_Entity
(Proc_Id
, Obj_Id
);
3490 -- procedure <Work_Typ>[Partial_]Invariant (_object : <Obj_Typ>);
3493 Make_Subprogram_Declaration
(Loc
,
3495 Make_Procedure_Specification
(Loc
,
3496 Defining_Unit_Name
=> Proc_Id
,
3497 Parameter_Specifications
=> New_List
(
3498 Make_Parameter_Specification
(Loc
,
3499 Defining_Identifier
=> Obj_Id
,
3500 Parameter_Type
=> New_Occurrence_Of
(Obj_Typ
, Loc
)))));
3502 -- The declaration should not be inserted into the tree when the context
3503 -- is ASIS or a generic unit because it is not part of the template.
3505 if ASIS_Mode
or Inside_A_Generic
then
3508 -- Semi-insert the declaration into the tree for GNATprove by setting
3509 -- its Parent field. This allows for proper upstream tree traversals.
3511 elsif GNATprove_Mode
then
3512 Set_Parent
(Proc_Decl
, Parent
(Typ_Decl
));
3514 -- Otherwise insert the declaration
3517 pragma Assert
(Present
(Typ_Decl
));
3518 Insert_After_And_Analyze
(Typ_Decl
, Proc_Decl
);
3522 Restore_Ghost_Mode
(Saved_GM
);
3523 end Build_Invariant_Procedure_Declaration
;
3525 --------------------------
3526 -- Build_Procedure_Form --
3527 --------------------------
3529 procedure Build_Procedure_Form
(N
: Node_Id
) is
3530 Loc
: constant Source_Ptr
:= Sloc
(N
);
3531 Subp
: constant Entity_Id
:= Defining_Entity
(N
);
3533 Func_Formal
: Entity_Id
;
3534 Proc_Formals
: List_Id
;
3535 Proc_Decl
: Node_Id
;
3538 -- No action needed if this transformation was already done, or in case
3539 -- of subprogram renaming declarations.
3541 if Nkind
(Specification
(N
)) = N_Procedure_Specification
3542 or else Nkind
(N
) = N_Subprogram_Renaming_Declaration
3547 -- Ditto when dealing with an expression function, where both the
3548 -- original expression and the generated declaration end up being
3551 if Rewritten_For_C
(Subp
) then
3555 Proc_Formals
:= New_List
;
3557 -- Create a list of formal parameters with the same types as the
3560 Func_Formal
:= First_Formal
(Subp
);
3561 while Present
(Func_Formal
) loop
3562 Append_To
(Proc_Formals
,
3563 Make_Parameter_Specification
(Loc
,
3564 Defining_Identifier
=>
3565 Make_Defining_Identifier
(Loc
, Chars
(Func_Formal
)),
3567 New_Occurrence_Of
(Etype
(Func_Formal
), Loc
)));
3569 Next_Formal
(Func_Formal
);
3572 -- Add an extra out parameter to carry the function result
3575 Name_Buffer
(1 .. Name_Len
) := "RESULT";
3576 Append_To
(Proc_Formals
,
3577 Make_Parameter_Specification
(Loc
,
3578 Defining_Identifier
=>
3579 Make_Defining_Identifier
(Loc
, Chars
=> Name_Find
),
3580 Out_Present
=> True,
3581 Parameter_Type
=> New_Occurrence_Of
(Etype
(Subp
), Loc
)));
3583 -- The new procedure declaration is inserted immediately after the
3584 -- function declaration. The processing in Build_Procedure_Body_Form
3585 -- relies on this order.
3588 Make_Subprogram_Declaration
(Loc
,
3590 Make_Procedure_Specification
(Loc
,
3591 Defining_Unit_Name
=>
3592 Make_Defining_Identifier
(Loc
, Chars
(Subp
)),
3593 Parameter_Specifications
=> Proc_Formals
));
3595 Insert_After_And_Analyze
(Unit_Declaration_Node
(Subp
), Proc_Decl
);
3597 -- Entity of procedure must remain invisible so that it does not
3598 -- overload subsequent references to the original function.
3600 Set_Is_Immediately_Visible
(Defining_Entity
(Proc_Decl
), False);
3602 -- Mark the function as having a procedure form and link the function
3603 -- and its internally built procedure.
3605 Set_Rewritten_For_C
(Subp
);
3606 Set_Corresponding_Procedure
(Subp
, Defining_Entity
(Proc_Decl
));
3607 Set_Corresponding_Function
(Defining_Entity
(Proc_Decl
), Subp
);
3608 end Build_Procedure_Form
;
3610 ------------------------
3611 -- Build_Runtime_Call --
3612 ------------------------
3614 function Build_Runtime_Call
(Loc
: Source_Ptr
; RE
: RE_Id
) return Node_Id
is
3616 -- If entity is not available, we can skip making the call (this avoids
3617 -- junk duplicated error messages in a number of cases).
3619 if not RTE_Available
(RE
) then
3620 return Make_Null_Statement
(Loc
);
3623 Make_Procedure_Call_Statement
(Loc
,
3624 Name
=> New_Occurrence_Of
(RTE
(RE
), Loc
));
3626 end Build_Runtime_Call
;
3628 ------------------------
3629 -- Build_SS_Mark_Call --
3630 ------------------------
3632 function Build_SS_Mark_Call
3634 Mark
: Entity_Id
) return Node_Id
3638 -- Mark : constant Mark_Id := SS_Mark;
3641 Make_Object_Declaration
(Loc
,
3642 Defining_Identifier
=> Mark
,
3643 Constant_Present
=> True,
3644 Object_Definition
=>
3645 New_Occurrence_Of
(RTE
(RE_Mark_Id
), Loc
),
3647 Make_Function_Call
(Loc
,
3648 Name
=> New_Occurrence_Of
(RTE
(RE_SS_Mark
), Loc
)));
3649 end Build_SS_Mark_Call
;
3651 ---------------------------
3652 -- Build_SS_Release_Call --
3653 ---------------------------
3655 function Build_SS_Release_Call
3657 Mark
: Entity_Id
) return Node_Id
3661 -- SS_Release (Mark);
3664 Make_Procedure_Call_Statement
(Loc
,
3666 New_Occurrence_Of
(RTE
(RE_SS_Release
), Loc
),
3667 Parameter_Associations
=> New_List
(
3668 New_Occurrence_Of
(Mark
, Loc
)));
3669 end Build_SS_Release_Call
;
3671 ----------------------------
3672 -- Build_Task_Array_Image --
3673 ----------------------------
3675 -- This function generates the body for a function that constructs the
3676 -- image string for a task that is an array component. The function is
3677 -- local to the init proc for the array type, and is called for each one
3678 -- of the components. The constructed image has the form of an indexed
3679 -- component, whose prefix is the outer variable of the array type.
3680 -- The n-dimensional array type has known indexes Index, Index2...
3682 -- Id_Ref is an indexed component form created by the enclosing init proc.
3683 -- Its successive indexes are Val1, Val2, ... which are the loop variables
3684 -- in the loops that call the individual task init proc on each component.
3686 -- The generated function has the following structure:
3688 -- function F return String is
3689 -- Pref : string renames Task_Name;
3690 -- T1 : String := Index1'Image (Val1);
3692 -- Tn : String := indexn'image (Valn);
3693 -- Len : Integer := T1'Length + ... + Tn'Length + n + 1;
3694 -- -- Len includes commas and the end parentheses.
3695 -- Res : String (1..Len);
3696 -- Pos : Integer := Pref'Length;
3699 -- Res (1 .. Pos) := Pref;
3701 -- Res (Pos) := '(';
3703 -- Res (Pos .. Pos + T1'Length - 1) := T1;
3704 -- Pos := Pos + T1'Length;
3705 -- Res (Pos) := '.';
3708 -- Res (Pos .. Pos + Tn'Length - 1) := Tn;
3709 -- Res (Len) := ')';
3714 -- Needless to say, multidimensional arrays of tasks are rare enough that
3715 -- the bulkiness of this code is not really a concern.
3717 function Build_Task_Array_Image
3721 Dyn
: Boolean := False) return Node_Id
3723 Dims
: constant Nat
:= Number_Dimensions
(A_Type
);
3724 -- Number of dimensions for array of tasks
3726 Temps
: array (1 .. Dims
) of Entity_Id
;
3727 -- Array of temporaries to hold string for each index
3733 -- Total length of generated name
3736 -- Running index for substring assignments
3738 Pref
: constant Entity_Id
:= Make_Temporary
(Loc
, 'P');
3739 -- Name of enclosing variable, prefix of resulting name
3742 -- String to hold result
3745 -- Value of successive indexes
3748 -- Expression to compute total size of string
3751 -- Entity for name at one index position
3753 Decls
: constant List_Id
:= New_List
;
3754 Stats
: constant List_Id
:= New_List
;
3757 -- For a dynamic task, the name comes from the target variable. For a
3758 -- static one it is a formal of the enclosing init proc.
3761 Get_Name_String
(Chars
(Entity
(Prefix
(Id_Ref
))));
3763 Make_Object_Declaration
(Loc
,
3764 Defining_Identifier
=> Pref
,
3765 Object_Definition
=> New_Occurrence_Of
(Standard_String
, Loc
),
3767 Make_String_Literal
(Loc
,
3768 Strval
=> String_From_Name_Buffer
)));
3772 Make_Object_Renaming_Declaration
(Loc
,
3773 Defining_Identifier
=> Pref
,
3774 Subtype_Mark
=> New_Occurrence_Of
(Standard_String
, Loc
),
3775 Name
=> Make_Identifier
(Loc
, Name_uTask_Name
)));
3778 Indx
:= First_Index
(A_Type
);
3779 Val
:= First
(Expressions
(Id_Ref
));
3781 for J
in 1 .. Dims
loop
3782 T
:= Make_Temporary
(Loc
, 'T');
3786 Make_Object_Declaration
(Loc
,
3787 Defining_Identifier
=> T
,
3788 Object_Definition
=> New_Occurrence_Of
(Standard_String
, Loc
),
3790 Make_Attribute_Reference
(Loc
,
3791 Attribute_Name
=> Name_Image
,
3792 Prefix
=> New_Occurrence_Of
(Etype
(Indx
), Loc
),
3793 Expressions
=> New_List
(New_Copy_Tree
(Val
)))));
3799 Sum
:= Make_Integer_Literal
(Loc
, Dims
+ 1);
3805 Make_Attribute_Reference
(Loc
,
3806 Attribute_Name
=> Name_Length
,
3807 Prefix
=> New_Occurrence_Of
(Pref
, Loc
),
3808 Expressions
=> New_List
(Make_Integer_Literal
(Loc
, 1))));
3810 for J
in 1 .. Dims
loop
3815 Make_Attribute_Reference
(Loc
,
3816 Attribute_Name
=> Name_Length
,
3818 New_Occurrence_Of
(Temps
(J
), Loc
),
3819 Expressions
=> New_List
(Make_Integer_Literal
(Loc
, 1))));
3822 Build_Task_Image_Prefix
(Loc
, Len
, Res
, Pos
, Pref
, Sum
, Decls
, Stats
);
3824 Set_Character_Literal_Name
(Char_Code
(Character'Pos ('(')));
3827 Make_Assignment_Statement
(Loc
,
3829 Make_Indexed_Component
(Loc
,
3830 Prefix
=> New_Occurrence_Of
(Res
, Loc
),
3831 Expressions
=> New_List
(New_Occurrence_Of
(Pos
, Loc
))),
3833 Make_Character_Literal
(Loc
,
3835 Char_Literal_Value
=> UI_From_Int
(Character'Pos ('(')))));
3838 Make_Assignment_Statement
(Loc
,
3839 Name
=> New_Occurrence_Of
(Pos
, Loc
),
3842 Left_Opnd
=> New_Occurrence_Of
(Pos
, Loc
),
3843 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1))));
3845 for J
in 1 .. Dims
loop
3848 Make_Assignment_Statement
(Loc
,
3851 Prefix
=> New_Occurrence_Of
(Res
, Loc
),
3854 Low_Bound
=> New_Occurrence_Of
(Pos
, Loc
),
3856 Make_Op_Subtract
(Loc
,
3859 Left_Opnd
=> New_Occurrence_Of
(Pos
, Loc
),
3861 Make_Attribute_Reference
(Loc
,
3862 Attribute_Name
=> Name_Length
,
3864 New_Occurrence_Of
(Temps
(J
), Loc
),
3866 New_List
(Make_Integer_Literal
(Loc
, 1)))),
3867 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1)))),
3869 Expression
=> New_Occurrence_Of
(Temps
(J
), Loc
)));
3873 Make_Assignment_Statement
(Loc
,
3874 Name
=> New_Occurrence_Of
(Pos
, Loc
),
3877 Left_Opnd
=> New_Occurrence_Of
(Pos
, Loc
),
3879 Make_Attribute_Reference
(Loc
,
3880 Attribute_Name
=> Name_Length
,
3881 Prefix
=> New_Occurrence_Of
(Temps
(J
), Loc
),
3883 New_List
(Make_Integer_Literal
(Loc
, 1))))));
3885 Set_Character_Literal_Name
(Char_Code
(Character'Pos (',')));
3888 Make_Assignment_Statement
(Loc
,
3889 Name
=> Make_Indexed_Component
(Loc
,
3890 Prefix
=> New_Occurrence_Of
(Res
, Loc
),
3891 Expressions
=> New_List
(New_Occurrence_Of
(Pos
, Loc
))),
3893 Make_Character_Literal
(Loc
,
3895 Char_Literal_Value
=> UI_From_Int
(Character'Pos (',')))));
3898 Make_Assignment_Statement
(Loc
,
3899 Name
=> New_Occurrence_Of
(Pos
, Loc
),
3902 Left_Opnd
=> New_Occurrence_Of
(Pos
, Loc
),
3903 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1))));
3907 Set_Character_Literal_Name
(Char_Code
(Character'Pos (')')));
3910 Make_Assignment_Statement
(Loc
,
3912 Make_Indexed_Component
(Loc
,
3913 Prefix
=> New_Occurrence_Of
(Res
, Loc
),
3914 Expressions
=> New_List
(New_Occurrence_Of
(Len
, Loc
))),
3916 Make_Character_Literal
(Loc
,
3918 Char_Literal_Value
=> UI_From_Int
(Character'Pos (')')))));
3919 return Build_Task_Image_Function
(Loc
, Decls
, Stats
, Res
);
3920 end Build_Task_Array_Image
;
3922 ----------------------------
3923 -- Build_Task_Image_Decls --
3924 ----------------------------
3926 function Build_Task_Image_Decls
3930 In_Init_Proc
: Boolean := False) return List_Id
3932 Decls
: constant List_Id
:= New_List
;
3933 T_Id
: Entity_Id
:= Empty
;
3935 Expr
: Node_Id
:= Empty
;
3936 Fun
: Node_Id
:= Empty
;
3937 Is_Dyn
: constant Boolean :=
3938 Nkind
(Parent
(Id_Ref
)) = N_Assignment_Statement
3940 Nkind
(Expression
(Parent
(Id_Ref
))) = N_Allocator
;
3943 -- If Discard_Names or No_Implicit_Heap_Allocations are in effect,
3944 -- generate a dummy declaration only.
3946 if Restriction_Active
(No_Implicit_Heap_Allocations
)
3947 or else Global_Discard_Names
3949 T_Id
:= Make_Temporary
(Loc
, 'J');
3954 Make_Object_Declaration
(Loc
,
3955 Defining_Identifier
=> T_Id
,
3956 Object_Definition
=> New_Occurrence_Of
(Standard_String
, Loc
),
3958 Make_String_Literal
(Loc
,
3959 Strval
=> String_From_Name_Buffer
)));
3962 if Nkind
(Id_Ref
) = N_Identifier
3963 or else Nkind
(Id_Ref
) = N_Defining_Identifier
3965 -- For a simple variable, the image of the task is built from
3966 -- the name of the variable. To avoid possible conflict with the
3967 -- anonymous type created for a single protected object, add a
3971 Make_Defining_Identifier
(Loc
,
3972 New_External_Name
(Chars
(Id_Ref
), 'T', 1));
3974 Get_Name_String
(Chars
(Id_Ref
));
3977 Make_String_Literal
(Loc
,
3978 Strval
=> String_From_Name_Buffer
);
3980 elsif Nkind
(Id_Ref
) = N_Selected_Component
then
3982 Make_Defining_Identifier
(Loc
,
3983 New_External_Name
(Chars
(Selector_Name
(Id_Ref
)), 'T'));
3984 Fun
:= Build_Task_Record_Image
(Loc
, Id_Ref
, Is_Dyn
);
3986 elsif Nkind
(Id_Ref
) = N_Indexed_Component
then
3988 Make_Defining_Identifier
(Loc
,
3989 New_External_Name
(Chars
(A_Type
), 'N'));
3991 Fun
:= Build_Task_Array_Image
(Loc
, Id_Ref
, A_Type
, Is_Dyn
);
3995 if Present
(Fun
) then
3996 Append
(Fun
, Decls
);
3997 Expr
:= Make_Function_Call
(Loc
,
3998 Name
=> New_Occurrence_Of
(Defining_Entity
(Fun
), Loc
));
4000 if not In_Init_Proc
then
4001 Set_Uses_Sec_Stack
(Defining_Entity
(Fun
));
4005 Decl
:= Make_Object_Declaration
(Loc
,
4006 Defining_Identifier
=> T_Id
,
4007 Object_Definition
=> New_Occurrence_Of
(Standard_String
, Loc
),
4008 Constant_Present
=> True,
4009 Expression
=> Expr
);
4011 Append
(Decl
, Decls
);
4013 end Build_Task_Image_Decls
;
4015 -------------------------------
4016 -- Build_Task_Image_Function --
4017 -------------------------------
4019 function Build_Task_Image_Function
4023 Res
: Entity_Id
) return Node_Id
4029 Make_Simple_Return_Statement
(Loc
,
4030 Expression
=> New_Occurrence_Of
(Res
, Loc
)));
4032 Spec
:= Make_Function_Specification
(Loc
,
4033 Defining_Unit_Name
=> Make_Temporary
(Loc
, 'F'),
4034 Result_Definition
=> New_Occurrence_Of
(Standard_String
, Loc
));
4036 -- Calls to 'Image use the secondary stack, which must be cleaned up
4037 -- after the task name is built.
4039 return Make_Subprogram_Body
(Loc
,
4040 Specification
=> Spec
,
4041 Declarations
=> Decls
,
4042 Handled_Statement_Sequence
=>
4043 Make_Handled_Sequence_Of_Statements
(Loc
, Statements
=> Stats
));
4044 end Build_Task_Image_Function
;
4046 -----------------------------
4047 -- Build_Task_Image_Prefix --
4048 -----------------------------
4050 procedure Build_Task_Image_Prefix
4052 Len
: out Entity_Id
;
4053 Res
: out Entity_Id
;
4054 Pos
: out Entity_Id
;
4061 Len
:= Make_Temporary
(Loc
, 'L', Sum
);
4064 Make_Object_Declaration
(Loc
,
4065 Defining_Identifier
=> Len
,
4066 Object_Definition
=> New_Occurrence_Of
(Standard_Integer
, Loc
),
4067 Expression
=> Sum
));
4069 Res
:= Make_Temporary
(Loc
, 'R');
4072 Make_Object_Declaration
(Loc
,
4073 Defining_Identifier
=> Res
,
4074 Object_Definition
=>
4075 Make_Subtype_Indication
(Loc
,
4076 Subtype_Mark
=> New_Occurrence_Of
(Standard_String
, Loc
),
4078 Make_Index_Or_Discriminant_Constraint
(Loc
,
4082 Low_Bound
=> Make_Integer_Literal
(Loc
, 1),
4083 High_Bound
=> New_Occurrence_Of
(Len
, Loc
)))))));
4085 -- Indicate that the result is an internal temporary, so it does not
4086 -- receive a bogus initialization when declaration is expanded. This
4087 -- is both efficient, and prevents anomalies in the handling of
4088 -- dynamic objects on the secondary stack.
4090 Set_Is_Internal
(Res
);
4091 Pos
:= Make_Temporary
(Loc
, 'P');
4094 Make_Object_Declaration
(Loc
,
4095 Defining_Identifier
=> Pos
,
4096 Object_Definition
=> New_Occurrence_Of
(Standard_Integer
, Loc
)));
4098 -- Pos := Prefix'Length;
4101 Make_Assignment_Statement
(Loc
,
4102 Name
=> New_Occurrence_Of
(Pos
, Loc
),
4104 Make_Attribute_Reference
(Loc
,
4105 Attribute_Name
=> Name_Length
,
4106 Prefix
=> New_Occurrence_Of
(Prefix
, Loc
),
4107 Expressions
=> New_List
(Make_Integer_Literal
(Loc
, 1)))));
4109 -- Res (1 .. Pos) := Prefix;
4112 Make_Assignment_Statement
(Loc
,
4115 Prefix
=> New_Occurrence_Of
(Res
, Loc
),
4118 Low_Bound
=> Make_Integer_Literal
(Loc
, 1),
4119 High_Bound
=> New_Occurrence_Of
(Pos
, Loc
))),
4121 Expression
=> New_Occurrence_Of
(Prefix
, Loc
)));
4124 Make_Assignment_Statement
(Loc
,
4125 Name
=> New_Occurrence_Of
(Pos
, Loc
),
4128 Left_Opnd
=> New_Occurrence_Of
(Pos
, Loc
),
4129 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1))));
4130 end Build_Task_Image_Prefix
;
4132 -----------------------------
4133 -- Build_Task_Record_Image --
4134 -----------------------------
4136 function Build_Task_Record_Image
4139 Dyn
: Boolean := False) return Node_Id
4142 -- Total length of generated name
4145 -- Index into result
4148 -- String to hold result
4150 Pref
: constant Entity_Id
:= Make_Temporary
(Loc
, 'P');
4151 -- Name of enclosing variable, prefix of resulting name
4154 -- Expression to compute total size of string
4157 -- Entity for selector name
4159 Decls
: constant List_Id
:= New_List
;
4160 Stats
: constant List_Id
:= New_List
;
4163 -- For a dynamic task, the name comes from the target variable. For a
4164 -- static one it is a formal of the enclosing init proc.
4167 Get_Name_String
(Chars
(Entity
(Prefix
(Id_Ref
))));
4169 Make_Object_Declaration
(Loc
,
4170 Defining_Identifier
=> Pref
,
4171 Object_Definition
=> New_Occurrence_Of
(Standard_String
, Loc
),
4173 Make_String_Literal
(Loc
,
4174 Strval
=> String_From_Name_Buffer
)));
4178 Make_Object_Renaming_Declaration
(Loc
,
4179 Defining_Identifier
=> Pref
,
4180 Subtype_Mark
=> New_Occurrence_Of
(Standard_String
, Loc
),
4181 Name
=> Make_Identifier
(Loc
, Name_uTask_Name
)));
4184 Sel
:= Make_Temporary
(Loc
, 'S');
4186 Get_Name_String
(Chars
(Selector_Name
(Id_Ref
)));
4189 Make_Object_Declaration
(Loc
,
4190 Defining_Identifier
=> Sel
,
4191 Object_Definition
=> New_Occurrence_Of
(Standard_String
, Loc
),
4193 Make_String_Literal
(Loc
,
4194 Strval
=> String_From_Name_Buffer
)));
4196 Sum
:= Make_Integer_Literal
(Loc
, Nat
(Name_Len
+ 1));
4202 Make_Attribute_Reference
(Loc
,
4203 Attribute_Name
=> Name_Length
,
4205 New_Occurrence_Of
(Pref
, Loc
),
4206 Expressions
=> New_List
(Make_Integer_Literal
(Loc
, 1))));
4208 Build_Task_Image_Prefix
(Loc
, Len
, Res
, Pos
, Pref
, Sum
, Decls
, Stats
);
4210 Set_Character_Literal_Name
(Char_Code
(Character'Pos ('.')));
4212 -- Res (Pos) := '.';
4215 Make_Assignment_Statement
(Loc
,
4216 Name
=> Make_Indexed_Component
(Loc
,
4217 Prefix
=> New_Occurrence_Of
(Res
, Loc
),
4218 Expressions
=> New_List
(New_Occurrence_Of
(Pos
, Loc
))),
4220 Make_Character_Literal
(Loc
,
4222 Char_Literal_Value
=>
4223 UI_From_Int
(Character'Pos ('.')))));
4226 Make_Assignment_Statement
(Loc
,
4227 Name
=> New_Occurrence_Of
(Pos
, Loc
),
4230 Left_Opnd
=> New_Occurrence_Of
(Pos
, Loc
),
4231 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1))));
4233 -- Res (Pos .. Len) := Selector;
4236 Make_Assignment_Statement
(Loc
,
4237 Name
=> Make_Slice
(Loc
,
4238 Prefix
=> New_Occurrence_Of
(Res
, Loc
),
4241 Low_Bound
=> New_Occurrence_Of
(Pos
, Loc
),
4242 High_Bound
=> New_Occurrence_Of
(Len
, Loc
))),
4243 Expression
=> New_Occurrence_Of
(Sel
, Loc
)));
4245 return Build_Task_Image_Function
(Loc
, Decls
, Stats
, Res
);
4246 end Build_Task_Record_Image
;
4248 ---------------------------------------
4249 -- Build_Transient_Object_Statements --
4250 ---------------------------------------
4252 procedure Build_Transient_Object_Statements
4253 (Obj_Decl
: Node_Id
;
4254 Fin_Call
: out Node_Id
;
4255 Hook_Assign
: out Node_Id
;
4256 Hook_Clear
: out Node_Id
;
4257 Hook_Decl
: out Node_Id
;
4258 Ptr_Decl
: out Node_Id
;
4259 Finalize_Obj
: Boolean := True)
4261 Loc
: constant Source_Ptr
:= Sloc
(Obj_Decl
);
4262 Obj_Id
: constant Entity_Id
:= Defining_Entity
(Obj_Decl
);
4263 Obj_Typ
: constant Entity_Id
:= Base_Type
(Etype
(Obj_Id
));
4265 Desig_Typ
: Entity_Id
;
4266 Hook_Expr
: Node_Id
;
4267 Hook_Id
: Entity_Id
;
4269 Ptr_Typ
: Entity_Id
;
4272 -- Recover the type of the object
4274 Desig_Typ
:= Obj_Typ
;
4276 if Is_Access_Type
(Desig_Typ
) then
4277 Desig_Typ
:= Available_View
(Designated_Type
(Desig_Typ
));
4280 -- Create an access type which provides a reference to the transient
4281 -- object. Generate:
4283 -- type Ptr_Typ is access all Desig_Typ;
4285 Ptr_Typ
:= Make_Temporary
(Loc
, 'A');
4286 Set_Ekind
(Ptr_Typ
, E_General_Access_Type
);
4287 Set_Directly_Designated_Type
(Ptr_Typ
, Desig_Typ
);
4290 Make_Full_Type_Declaration
(Loc
,
4291 Defining_Identifier
=> Ptr_Typ
,
4293 Make_Access_To_Object_Definition
(Loc
,
4294 All_Present
=> True,
4295 Subtype_Indication
=> New_Occurrence_Of
(Desig_Typ
, Loc
)));
4297 -- Create a temporary check which acts as a hook to the transient
4298 -- object. Generate:
4300 -- Hook : Ptr_Typ := null;
4302 Hook_Id
:= Make_Temporary
(Loc
, 'T');
4303 Set_Ekind
(Hook_Id
, E_Variable
);
4304 Set_Etype
(Hook_Id
, Ptr_Typ
);
4307 Make_Object_Declaration
(Loc
,
4308 Defining_Identifier
=> Hook_Id
,
4309 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
),
4310 Expression
=> Make_Null
(Loc
));
4312 -- Mark the temporary as a hook. This signals the machinery in
4313 -- Build_Finalizer to recognize this special case.
4315 Set_Status_Flag_Or_Transient_Decl
(Hook_Id
, Obj_Decl
);
4317 -- Hook the transient object to the temporary. Generate:
4319 -- Hook := Ptr_Typ (Obj_Id);
4321 -- Hool := Obj_Id'Unrestricted_Access;
4323 if Is_Access_Type
(Obj_Typ
) then
4325 Unchecked_Convert_To
(Ptr_Typ
, New_Occurrence_Of
(Obj_Id
, Loc
));
4328 Make_Attribute_Reference
(Loc
,
4329 Prefix
=> New_Occurrence_Of
(Obj_Id
, Loc
),
4330 Attribute_Name
=> Name_Unrestricted_Access
);
4334 Make_Assignment_Statement
(Loc
,
4335 Name
=> New_Occurrence_Of
(Hook_Id
, Loc
),
4336 Expression
=> Hook_Expr
);
4338 -- Crear the hook prior to finalizing the object. Generate:
4343 Make_Assignment_Statement
(Loc
,
4344 Name
=> New_Occurrence_Of
(Hook_Id
, Loc
),
4345 Expression
=> Make_Null
(Loc
));
4347 -- Finalize the object. Generate:
4349 -- [Deep_]Finalize (Obj_Ref[.all]);
4351 if Finalize_Obj
then
4352 Obj_Ref
:= New_Occurrence_Of
(Obj_Id
, Loc
);
4354 if Is_Access_Type
(Obj_Typ
) then
4355 Obj_Ref
:= Make_Explicit_Dereference
(Loc
, Obj_Ref
);
4356 Set_Etype
(Obj_Ref
, Desig_Typ
);
4361 (Obj_Ref
=> Obj_Ref
,
4364 -- Otherwise finalize the hook. Generate:
4366 -- [Deep_]Finalize (Hook.all);
4372 Make_Explicit_Dereference
(Loc
,
4373 Prefix
=> New_Occurrence_Of
(Hook_Id
, Loc
)),
4376 end Build_Transient_Object_Statements
;
4378 -----------------------------
4379 -- Check_Float_Op_Overflow --
4380 -----------------------------
4382 procedure Check_Float_Op_Overflow
(N
: Node_Id
) is
4384 -- Return if no check needed
4386 if not Is_Floating_Point_Type
(Etype
(N
))
4387 or else not (Do_Overflow_Check
(N
) and then Check_Float_Overflow
)
4389 -- In CodePeer_Mode, rely on the overflow check flag being set instead
4390 -- and do not expand the code for float overflow checking.
4392 or else CodePeer_Mode
4397 -- Otherwise we replace the expression by
4399 -- do Tnn : constant ftype := expression;
4400 -- constraint_error when not Tnn'Valid;
4404 Loc
: constant Source_Ptr
:= Sloc
(N
);
4405 Tnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', N
);
4406 Typ
: constant Entity_Id
:= Etype
(N
);
4409 -- Turn off the Do_Overflow_Check flag, since we are doing that work
4410 -- right here. We also set the node as analyzed to prevent infinite
4411 -- recursion from repeating the operation in the expansion.
4413 Set_Do_Overflow_Check
(N
, False);
4414 Set_Analyzed
(N
, True);
4416 -- Do the rewrite to include the check
4419 Make_Expression_With_Actions
(Loc
,
4420 Actions
=> New_List
(
4421 Make_Object_Declaration
(Loc
,
4422 Defining_Identifier
=> Tnn
,
4423 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
4424 Constant_Present
=> True,
4425 Expression
=> Relocate_Node
(N
)),
4426 Make_Raise_Constraint_Error
(Loc
,
4430 Make_Attribute_Reference
(Loc
,
4431 Prefix
=> New_Occurrence_Of
(Tnn
, Loc
),
4432 Attribute_Name
=> Name_Valid
)),
4433 Reason
=> CE_Overflow_Check_Failed
)),
4434 Expression
=> New_Occurrence_Of
(Tnn
, Loc
)));
4436 Analyze_And_Resolve
(N
, Typ
);
4438 end Check_Float_Op_Overflow
;
4440 ----------------------------------
4441 -- Component_May_Be_Bit_Aligned --
4442 ----------------------------------
4444 function Component_May_Be_Bit_Aligned
(Comp
: Entity_Id
) return Boolean is
4448 -- If no component clause, then everything is fine, since the back end
4449 -- never bit-misaligns by default, even if there is a pragma Packed for
4452 if No
(Comp
) or else No
(Component_Clause
(Comp
)) then
4456 UT
:= Underlying_Type
(Etype
(Comp
));
4458 -- It is only array and record types that cause trouble
4460 if not Is_Record_Type
(UT
) and then not Is_Array_Type
(UT
) then
4463 -- If we know that we have a small (64 bits or less) record or small
4464 -- bit-packed array, then everything is fine, since the back end can
4465 -- handle these cases correctly.
4467 elsif Esize
(Comp
) <= 64
4468 and then (Is_Record_Type
(UT
) or else Is_Bit_Packed_Array
(UT
))
4472 -- Otherwise if the component is not byte aligned, we know we have the
4473 -- nasty unaligned case.
4475 elsif Normalized_First_Bit
(Comp
) /= Uint_0
4476 or else Esize
(Comp
) mod System_Storage_Unit
/= Uint_0
4480 -- If we are large and byte aligned, then OK at this level
4485 end Component_May_Be_Bit_Aligned
;
4487 ----------------------------------------
4488 -- Containing_Package_With_Ext_Axioms --
4489 ----------------------------------------
4491 function Containing_Package_With_Ext_Axioms
4492 (E
: Entity_Id
) return Entity_Id
4495 -- E is the package or generic package which is externally axiomatized
4497 if Ekind_In
(E
, E_Generic_Package
, E_Package
)
4498 and then Has_Annotate_Pragma_For_External_Axiomatization
(E
)
4503 -- If E's scope is axiomatized, E is axiomatized
4505 if Present
(Scope
(E
)) then
4507 First_Ax_Parent_Scope
: constant Entity_Id
:=
4508 Containing_Package_With_Ext_Axioms
(Scope
(E
));
4510 if Present
(First_Ax_Parent_Scope
) then
4511 return First_Ax_Parent_Scope
;
4516 -- Otherwise, if E is a package instance, it is axiomatized if the
4517 -- corresponding generic package is axiomatized.
4519 if Ekind
(E
) = E_Package
then
4521 Par
: constant Node_Id
:= Parent
(E
);
4525 if Nkind
(Par
) = N_Defining_Program_Unit_Name
then
4526 Decl
:= Parent
(Par
);
4531 if Present
(Generic_Parent
(Decl
)) then
4533 Containing_Package_With_Ext_Axioms
(Generic_Parent
(Decl
));
4539 end Containing_Package_With_Ext_Axioms
;
4541 -------------------------------
4542 -- Convert_To_Actual_Subtype --
4543 -------------------------------
4545 procedure Convert_To_Actual_Subtype
(Exp
: Entity_Id
) is
4549 Act_ST
:= Get_Actual_Subtype
(Exp
);
4551 if Act_ST
= Etype
(Exp
) then
4554 Rewrite
(Exp
, Convert_To
(Act_ST
, Relocate_Node
(Exp
)));
4555 Analyze_And_Resolve
(Exp
, Act_ST
);
4557 end Convert_To_Actual_Subtype
;
4559 -----------------------------------
4560 -- Corresponding_Runtime_Package --
4561 -----------------------------------
4563 function Corresponding_Runtime_Package
(Typ
: Entity_Id
) return RTU_Id
is
4564 function Has_One_Entry_And_No_Queue
(T
: Entity_Id
) return Boolean;
4565 -- Return True if protected type T has one entry and the maximum queue
4568 --------------------------------
4569 -- Has_One_Entry_And_No_Queue --
4570 --------------------------------
4572 function Has_One_Entry_And_No_Queue
(T
: Entity_Id
) return Boolean is
4574 Is_First
: Boolean := True;
4577 Item
:= First_Entity
(T
);
4578 while Present
(Item
) loop
4579 if Is_Entry
(Item
) then
4581 -- The protected type has more than one entry
4583 if not Is_First
then
4587 -- The queue length is not one
4589 if not Restriction_Active
(No_Entry_Queue
)
4590 and then Get_Max_Queue_Length
(Item
) /= Uint_1
4602 end Has_One_Entry_And_No_Queue
;
4606 Pkg_Id
: RTU_Id
:= RTU_Null
;
4608 -- Start of processing for Corresponding_Runtime_Package
4611 pragma Assert
(Is_Concurrent_Type
(Typ
));
4613 if Ekind
(Typ
) in Protected_Kind
then
4614 if Has_Entries
(Typ
)
4616 -- A protected type without entries that covers an interface and
4617 -- overrides the abstract routines with protected procedures is
4618 -- considered equivalent to a protected type with entries in the
4619 -- context of dispatching select statements. It is sufficient to
4620 -- check for the presence of an interface list in the declaration
4621 -- node to recognize this case.
4623 or else Present
(Interface_List
(Parent
(Typ
)))
4625 -- Protected types with interrupt handlers (when not using a
4626 -- restricted profile) are also considered equivalent to
4627 -- protected types with entries. The types which are used
4628 -- (Static_Interrupt_Protection and Dynamic_Interrupt_Protection)
4629 -- are derived from Protection_Entries.
4631 or else (Has_Attach_Handler
(Typ
) and then not Restricted_Profile
)
4632 or else Has_Interrupt_Handler
(Typ
)
4635 or else Restriction_Active
(No_Select_Statements
) = False
4636 or else not Has_One_Entry_And_No_Queue
(Typ
)
4637 or else (Has_Attach_Handler
(Typ
)
4638 and then not Restricted_Profile
)
4640 Pkg_Id
:= System_Tasking_Protected_Objects_Entries
;
4642 Pkg_Id
:= System_Tasking_Protected_Objects_Single_Entry
;
4646 Pkg_Id
:= System_Tasking_Protected_Objects
;
4651 end Corresponding_Runtime_Package
;
4653 -----------------------------------
4654 -- Current_Sem_Unit_Declarations --
4655 -----------------------------------
4657 function Current_Sem_Unit_Declarations
return List_Id
is
4658 U
: Node_Id
:= Unit
(Cunit
(Current_Sem_Unit
));
4662 -- If the current unit is a package body, locate the visible
4663 -- declarations of the package spec.
4665 if Nkind
(U
) = N_Package_Body
then
4666 U
:= Unit
(Library_Unit
(Cunit
(Current_Sem_Unit
)));
4669 if Nkind
(U
) = N_Package_Declaration
then
4670 U
:= Specification
(U
);
4671 Decls
:= Visible_Declarations
(U
);
4675 Set_Visible_Declarations
(U
, Decls
);
4679 Decls
:= Declarations
(U
);
4683 Set_Declarations
(U
, Decls
);
4688 end Current_Sem_Unit_Declarations
;
4690 -----------------------
4691 -- Duplicate_Subexpr --
4692 -----------------------
4694 function Duplicate_Subexpr
4696 Name_Req
: Boolean := False;
4697 Renaming_Req
: Boolean := False) return Node_Id
4700 Remove_Side_Effects
(Exp
, Name_Req
, Renaming_Req
);
4701 return New_Copy_Tree
(Exp
);
4702 end Duplicate_Subexpr
;
4704 ---------------------------------
4705 -- Duplicate_Subexpr_No_Checks --
4706 ---------------------------------
4708 function Duplicate_Subexpr_No_Checks
4710 Name_Req
: Boolean := False;
4711 Renaming_Req
: Boolean := False;
4712 Related_Id
: Entity_Id
:= Empty
;
4713 Is_Low_Bound
: Boolean := False;
4714 Is_High_Bound
: Boolean := False) return Node_Id
4721 Name_Req
=> Name_Req
,
4722 Renaming_Req
=> Renaming_Req
,
4723 Related_Id
=> Related_Id
,
4724 Is_Low_Bound
=> Is_Low_Bound
,
4725 Is_High_Bound
=> Is_High_Bound
);
4727 New_Exp
:= New_Copy_Tree
(Exp
);
4728 Remove_Checks
(New_Exp
);
4730 end Duplicate_Subexpr_No_Checks
;
4732 -----------------------------------
4733 -- Duplicate_Subexpr_Move_Checks --
4734 -----------------------------------
4736 function Duplicate_Subexpr_Move_Checks
4738 Name_Req
: Boolean := False;
4739 Renaming_Req
: Boolean := False) return Node_Id
4744 Remove_Side_Effects
(Exp
, Name_Req
, Renaming_Req
);
4745 New_Exp
:= New_Copy_Tree
(Exp
);
4746 Remove_Checks
(Exp
);
4748 end Duplicate_Subexpr_Move_Checks
;
4750 --------------------
4751 -- Ensure_Defined --
4752 --------------------
4754 procedure Ensure_Defined
(Typ
: Entity_Id
; N
: Node_Id
) is
4758 -- An itype reference must only be created if this is a local itype, so
4759 -- that gigi can elaborate it on the proper objstack.
4761 if Is_Itype
(Typ
) and then Scope
(Typ
) = Current_Scope
then
4762 IR
:= Make_Itype_Reference
(Sloc
(N
));
4763 Set_Itype
(IR
, Typ
);
4764 Insert_Action
(N
, IR
);
4768 --------------------
4769 -- Entry_Names_OK --
4770 --------------------
4772 function Entry_Names_OK
return Boolean is
4775 not Restricted_Profile
4776 and then not Global_Discard_Names
4777 and then not Restriction_Active
(No_Implicit_Heap_Allocations
)
4778 and then not Restriction_Active
(No_Local_Allocators
);
4785 procedure Evaluate_Name
(Nam
: Node_Id
) is
4787 -- For an attribute reference or an indexed component, evaluate the
4788 -- prefix, which is itself a name, recursively, and then force the
4789 -- evaluation of all the subscripts (or attribute expressions).
4792 when N_Attribute_Reference
4793 | N_Indexed_Component
4795 Evaluate_Name
(Prefix
(Nam
));
4801 E
:= First
(Expressions
(Nam
));
4802 while Present
(E
) loop
4803 Force_Evaluation
(E
);
4805 if Original_Node
(E
) /= E
then
4807 (E
, Do_Range_Check
(Original_Node
(E
)));
4814 -- For an explicit dereference, we simply force the evaluation of
4815 -- the name expression. The dereference provides a value that is the
4816 -- address for the renamed object, and it is precisely this value
4817 -- that we want to preserve.
4819 when N_Explicit_Dereference
=>
4820 Force_Evaluation
(Prefix
(Nam
));
4822 -- For a function call, we evaluate the call
4824 when N_Function_Call
=>
4825 Force_Evaluation
(Nam
);
4827 -- For a qualified expression, we evaluate the underlying object
4828 -- name if any, otherwise we force the evaluation of the underlying
4831 when N_Qualified_Expression
=>
4832 if Is_Object_Reference
(Expression
(Nam
)) then
4833 Evaluate_Name
(Expression
(Nam
));
4835 Force_Evaluation
(Expression
(Nam
));
4838 -- For a selected component, we simply evaluate the prefix
4840 when N_Selected_Component
=>
4841 Evaluate_Name
(Prefix
(Nam
));
4843 -- For a slice, we evaluate the prefix, as for the indexed component
4844 -- case and then, if there is a range present, either directly or as
4845 -- the constraint of a discrete subtype indication, we evaluate the
4846 -- two bounds of this range.
4849 Evaluate_Name
(Prefix
(Nam
));
4850 Evaluate_Slice_Bounds
(Nam
);
4852 -- For a type conversion, the expression of the conversion must be
4853 -- the name of an object, and we simply need to evaluate this name.
4855 when N_Type_Conversion
=>
4856 Evaluate_Name
(Expression
(Nam
));
4858 -- The remaining cases are direct name, operator symbol and character
4859 -- literal. In all these cases, we do nothing, since we want to
4860 -- reevaluate each time the renamed object is used.
4867 ---------------------------
4868 -- Evaluate_Slice_Bounds --
4869 ---------------------------
4871 procedure Evaluate_Slice_Bounds
(Slice
: Node_Id
) is
4872 DR
: constant Node_Id
:= Discrete_Range
(Slice
);
4877 if Nkind
(DR
) = N_Range
then
4878 Force_Evaluation
(Low_Bound
(DR
));
4879 Force_Evaluation
(High_Bound
(DR
));
4881 elsif Nkind
(DR
) = N_Subtype_Indication
then
4882 Constr
:= Constraint
(DR
);
4884 if Nkind
(Constr
) = N_Range_Constraint
then
4885 Rexpr
:= Range_Expression
(Constr
);
4887 Force_Evaluation
(Low_Bound
(Rexpr
));
4888 Force_Evaluation
(High_Bound
(Rexpr
));
4891 end Evaluate_Slice_Bounds
;
4893 ---------------------
4894 -- Evolve_And_Then --
4895 ---------------------
4897 procedure Evolve_And_Then
(Cond
: in out Node_Id
; Cond1
: Node_Id
) is
4903 Make_And_Then
(Sloc
(Cond1
),
4905 Right_Opnd
=> Cond1
);
4907 end Evolve_And_Then
;
4909 --------------------
4910 -- Evolve_Or_Else --
4911 --------------------
4913 procedure Evolve_Or_Else
(Cond
: in out Node_Id
; Cond1
: Node_Id
) is
4919 Make_Or_Else
(Sloc
(Cond1
),
4921 Right_Opnd
=> Cond1
);
4925 -----------------------------------
4926 -- Exceptions_In_Finalization_OK --
4927 -----------------------------------
4929 function Exceptions_In_Finalization_OK
return Boolean is
4932 not (Restriction_Active
(No_Exception_Handlers
) or else
4933 Restriction_Active
(No_Exception_Propagation
) or else
4934 Restriction_Active
(No_Exceptions
));
4935 end Exceptions_In_Finalization_OK
;
4937 -----------------------------------------
4938 -- Expand_Static_Predicates_In_Choices --
4939 -----------------------------------------
4941 procedure Expand_Static_Predicates_In_Choices
(N
: Node_Id
) is
4942 pragma Assert
(Nkind_In
(N
, N_Case_Statement_Alternative
, N_Variant
));
4944 Choices
: constant List_Id
:= Discrete_Choices
(N
);
4952 Choice
:= First
(Choices
);
4953 while Present
(Choice
) loop
4954 Next_C
:= Next
(Choice
);
4956 -- Check for name of subtype with static predicate
4958 if Is_Entity_Name
(Choice
)
4959 and then Is_Type
(Entity
(Choice
))
4960 and then Has_Predicates
(Entity
(Choice
))
4962 -- Loop through entries in predicate list, converting to choices
4963 -- and inserting in the list before the current choice. Note that
4964 -- if the list is empty, corresponding to a False predicate, then
4965 -- no choices are inserted.
4967 P
:= First
(Static_Discrete_Predicate
(Entity
(Choice
)));
4968 while Present
(P
) loop
4970 -- If low bound and high bounds are equal, copy simple choice
4972 if Expr_Value
(Low_Bound
(P
)) = Expr_Value
(High_Bound
(P
)) then
4973 C
:= New_Copy
(Low_Bound
(P
));
4975 -- Otherwise copy a range
4981 -- Change Sloc to referencing choice (rather than the Sloc of
4982 -- the predicate declaration element itself).
4984 Set_Sloc
(C
, Sloc
(Choice
));
4985 Insert_Before
(Choice
, C
);
4989 -- Delete the predicated entry
4994 -- Move to next choice to check
4998 end Expand_Static_Predicates_In_Choices
;
5000 ------------------------------
5001 -- Expand_Subtype_From_Expr --
5002 ------------------------------
5004 -- This function is applicable for both static and dynamic allocation of
5005 -- objects which are constrained by an initial expression. Basically it
5006 -- transforms an unconstrained subtype indication into a constrained one.
5008 -- The expression may also be transformed in certain cases in order to
5009 -- avoid multiple evaluation. In the static allocation case, the general
5014 -- is transformed into
5016 -- Val : Constrained_Subtype_Of_T := Maybe_Modified_Expr;
5018 -- Here are the main cases :
5020 -- <if Expr is a Slice>
5021 -- Val : T ([Index_Subtype (Expr)]) := Expr;
5023 -- <elsif Expr is a String Literal>
5024 -- Val : T (T'First .. T'First + Length (string literal) - 1) := Expr;
5026 -- <elsif Expr is Constrained>
5027 -- subtype T is Type_Of_Expr
5030 -- <elsif Expr is an entity_name>
5031 -- Val : T (constraints taken from Expr) := Expr;
5034 -- type Axxx is access all T;
5035 -- Rval : Axxx := Expr'ref;
5036 -- Val : T (constraints taken from Rval) := Rval.all;
5038 -- ??? note: when the Expression is allocated in the secondary stack
5039 -- we could use it directly instead of copying it by declaring
5040 -- Val : T (...) renames Rval.all
5042 procedure Expand_Subtype_From_Expr
5044 Unc_Type
: Entity_Id
;
5045 Subtype_Indic
: Node_Id
;
5047 Related_Id
: Entity_Id
:= Empty
)
5049 Loc
: constant Source_Ptr
:= Sloc
(N
);
5050 Exp_Typ
: constant Entity_Id
:= Etype
(Exp
);
5054 -- In general we cannot build the subtype if expansion is disabled,
5055 -- because internal entities may not have been defined. However, to
5056 -- avoid some cascaded errors, we try to continue when the expression is
5057 -- an array (or string), because it is safe to compute the bounds. It is
5058 -- in fact required to do so even in a generic context, because there
5059 -- may be constants that depend on the bounds of a string literal, both
5060 -- standard string types and more generally arrays of characters.
5062 -- In GNATprove mode, these extra subtypes are not needed
5064 if GNATprove_Mode
then
5068 if not Expander_Active
5069 and then (No
(Etype
(Exp
)) or else not Is_String_Type
(Etype
(Exp
)))
5074 if Nkind
(Exp
) = N_Slice
then
5076 Slice_Type
: constant Entity_Id
:= Etype
(First_Index
(Exp_Typ
));
5079 Rewrite
(Subtype_Indic
,
5080 Make_Subtype_Indication
(Loc
,
5081 Subtype_Mark
=> New_Occurrence_Of
(Unc_Type
, Loc
),
5083 Make_Index_Or_Discriminant_Constraint
(Loc
,
5084 Constraints
=> New_List
5085 (New_Occurrence_Of
(Slice_Type
, Loc
)))));
5087 -- This subtype indication may be used later for constraint checks
5088 -- we better make sure that if a variable was used as a bound of
5089 -- of the original slice, its value is frozen.
5091 Evaluate_Slice_Bounds
(Exp
);
5094 elsif Ekind
(Exp_Typ
) = E_String_Literal_Subtype
then
5095 Rewrite
(Subtype_Indic
,
5096 Make_Subtype_Indication
(Loc
,
5097 Subtype_Mark
=> New_Occurrence_Of
(Unc_Type
, Loc
),
5099 Make_Index_Or_Discriminant_Constraint
(Loc
,
5100 Constraints
=> New_List
(
5101 Make_Literal_Range
(Loc
,
5102 Literal_Typ
=> Exp_Typ
)))));
5104 -- If the type of the expression is an internally generated type it
5105 -- may not be necessary to create a new subtype. However there are two
5106 -- exceptions: references to the current instances, and aliased array
5107 -- object declarations for which the back end has to create a template.
5109 elsif Is_Constrained
(Exp_Typ
)
5110 and then not Is_Class_Wide_Type
(Unc_Type
)
5112 (Nkind
(N
) /= N_Object_Declaration
5113 or else not Is_Entity_Name
(Expression
(N
))
5114 or else not Comes_From_Source
(Entity
(Expression
(N
)))
5115 or else not Is_Array_Type
(Exp_Typ
)
5116 or else not Aliased_Present
(N
))
5118 if Is_Itype
(Exp_Typ
) then
5120 -- Within an initialization procedure, a selected component
5121 -- denotes a component of the enclosing record, and it appears as
5122 -- an actual in a call to its own initialization procedure. If
5123 -- this component depends on the outer discriminant, we must
5124 -- generate the proper actual subtype for it.
5126 if Nkind
(Exp
) = N_Selected_Component
5127 and then Within_Init_Proc
5130 Decl
: constant Node_Id
:=
5131 Build_Actual_Subtype_Of_Component
(Exp_Typ
, Exp
);
5133 if Present
(Decl
) then
5134 Insert_Action
(N
, Decl
);
5135 T
:= Defining_Identifier
(Decl
);
5141 -- No need to generate a new subtype
5148 T
:= Make_Temporary
(Loc
, 'T');
5151 Make_Subtype_Declaration
(Loc
,
5152 Defining_Identifier
=> T
,
5153 Subtype_Indication
=> New_Occurrence_Of
(Exp_Typ
, Loc
)));
5155 -- This type is marked as an itype even though it has an explicit
5156 -- declaration since otherwise Is_Generic_Actual_Type can get
5157 -- set, resulting in the generation of spurious errors. (See
5158 -- sem_ch8.Analyze_Package_Renaming and sem_type.covers)
5161 Set_Associated_Node_For_Itype
(T
, Exp
);
5164 Rewrite
(Subtype_Indic
, New_Occurrence_Of
(T
, Loc
));
5166 -- Nothing needs to be done for private types with unknown discriminants
5167 -- if the underlying type is not an unconstrained composite type or it
5168 -- is an unchecked union.
5170 elsif Is_Private_Type
(Unc_Type
)
5171 and then Has_Unknown_Discriminants
(Unc_Type
)
5172 and then (not Is_Composite_Type
(Underlying_Type
(Unc_Type
))
5173 or else Is_Constrained
(Underlying_Type
(Unc_Type
))
5174 or else Is_Unchecked_Union
(Underlying_Type
(Unc_Type
)))
5178 -- Case of derived type with unknown discriminants where the parent type
5179 -- also has unknown discriminants.
5181 elsif Is_Record_Type
(Unc_Type
)
5182 and then not Is_Class_Wide_Type
(Unc_Type
)
5183 and then Has_Unknown_Discriminants
(Unc_Type
)
5184 and then Has_Unknown_Discriminants
(Underlying_Type
(Unc_Type
))
5186 -- Nothing to be done if no underlying record view available
5188 -- If this is a limited type derived from a type with unknown
5189 -- discriminants, do not expand either, so that subsequent expansion
5190 -- of the call can add build-in-place parameters to call.
5192 if No
(Underlying_Record_View
(Unc_Type
))
5193 or else Is_Limited_Type
(Unc_Type
)
5197 -- Otherwise use the Underlying_Record_View to create the proper
5198 -- constrained subtype for an object of a derived type with unknown
5202 Remove_Side_Effects
(Exp
);
5203 Rewrite
(Subtype_Indic
,
5204 Make_Subtype_From_Expr
(Exp
, Underlying_Record_View
(Unc_Type
)));
5207 -- Renamings of class-wide interface types require no equivalent
5208 -- constrained type declarations because we only need to reference
5209 -- the tag component associated with the interface. The same is
5210 -- presumably true for class-wide types in general, so this test
5211 -- is broadened to include all class-wide renamings, which also
5212 -- avoids cases of unbounded recursion in Remove_Side_Effects.
5213 -- (Is this really correct, or are there some cases of class-wide
5214 -- renamings that require action in this procedure???)
5217 and then Nkind
(N
) = N_Object_Renaming_Declaration
5218 and then Is_Class_Wide_Type
(Unc_Type
)
5222 -- In Ada 95 nothing to be done if the type of the expression is limited
5223 -- because in this case the expression cannot be copied, and its use can
5224 -- only be by reference.
5226 -- In Ada 2005 the context can be an object declaration whose expression
5227 -- is a function that returns in place. If the nominal subtype has
5228 -- unknown discriminants, the call still provides constraints on the
5229 -- object, and we have to create an actual subtype from it.
5231 -- If the type is class-wide, the expression is dynamically tagged and
5232 -- we do not create an actual subtype either. Ditto for an interface.
5233 -- For now this applies only if the type is immutably limited, and the
5234 -- function being called is build-in-place. This will have to be revised
5235 -- when build-in-place functions are generalized to other types.
5237 elsif Is_Limited_View
(Exp_Typ
)
5239 (Is_Class_Wide_Type
(Exp_Typ
)
5240 or else Is_Interface
(Exp_Typ
)
5241 or else not Has_Unknown_Discriminants
(Exp_Typ
)
5242 or else not Is_Composite_Type
(Unc_Type
))
5246 -- For limited objects initialized with build in place function calls,
5247 -- nothing to be done; otherwise we prematurely introduce an N_Reference
5248 -- node in the expression initializing the object, which breaks the
5249 -- circuitry that detects and adds the additional arguments to the
5252 elsif Is_Build_In_Place_Function_Call
(Exp
) then
5256 Remove_Side_Effects
(Exp
);
5257 Rewrite
(Subtype_Indic
,
5258 Make_Subtype_From_Expr
(Exp
, Unc_Type
, Related_Id
));
5260 end Expand_Subtype_From_Expr
;
5262 ---------------------------------------------
5263 -- Expression_Contains_Primitives_Calls_Of --
5264 ---------------------------------------------
5266 function Expression_Contains_Primitives_Calls_Of
5268 Typ
: Entity_Id
) return Boolean
5270 U_Typ
: constant Entity_Id
:= Unique_Entity
(Typ
);
5272 Calls_OK
: Boolean := False;
5273 -- This flag is set to True when expression Expr contains at least one
5274 -- call to a nondispatching primitive function of Typ.
5276 function Search_Primitive_Calls
(N
: Node_Id
) return Traverse_Result
;
5277 -- Search for nondispatching calls to primitive functions of type Typ
5279 ----------------------------
5280 -- Search_Primitive_Calls --
5281 ----------------------------
5283 function Search_Primitive_Calls
(N
: Node_Id
) return Traverse_Result
is
5284 Disp_Typ
: Entity_Id
;
5288 -- Detect a function call that could denote a nondispatching
5289 -- primitive of the input type.
5291 if Nkind
(N
) = N_Function_Call
5292 and then Is_Entity_Name
(Name
(N
))
5294 Subp
:= Entity
(Name
(N
));
5296 -- Do not consider function calls with a controlling argument, as
5297 -- those are always dispatching calls.
5299 if Is_Dispatching_Operation
(Subp
)
5300 and then No
(Controlling_Argument
(N
))
5302 Disp_Typ
:= Find_Dispatching_Type
(Subp
);
5304 -- To qualify as a suitable primitive, the dispatching type of
5305 -- the function must be the input type.
5307 if Present
(Disp_Typ
)
5308 and then Unique_Entity
(Disp_Typ
) = U_Typ
5312 -- There is no need to continue the traversal, as one such
5321 end Search_Primitive_Calls
;
5323 procedure Search_Calls
is new Traverse_Proc
(Search_Primitive_Calls
);
5325 -- Start of processing for Expression_Contains_Primitives_Calls_Of_Type
5328 Search_Calls
(Expr
);
5330 end Expression_Contains_Primitives_Calls_Of
;
5332 ----------------------
5333 -- Finalize_Address --
5334 ----------------------
5336 function Finalize_Address
(Typ
: Entity_Id
) return Entity_Id
is
5337 Utyp
: Entity_Id
:= Typ
;
5340 -- Handle protected class-wide or task class-wide types
5342 if Is_Class_Wide_Type
(Utyp
) then
5343 if Is_Concurrent_Type
(Root_Type
(Utyp
)) then
5344 Utyp
:= Root_Type
(Utyp
);
5346 elsif Is_Private_Type
(Root_Type
(Utyp
))
5347 and then Present
(Full_View
(Root_Type
(Utyp
)))
5348 and then Is_Concurrent_Type
(Full_View
(Root_Type
(Utyp
)))
5350 Utyp
:= Full_View
(Root_Type
(Utyp
));
5354 -- Handle private types
5356 if Is_Private_Type
(Utyp
) and then Present
(Full_View
(Utyp
)) then
5357 Utyp
:= Full_View
(Utyp
);
5360 -- Handle protected and task types
5362 if Is_Concurrent_Type
(Utyp
)
5363 and then Present
(Corresponding_Record_Type
(Utyp
))
5365 Utyp
:= Corresponding_Record_Type
(Utyp
);
5368 Utyp
:= Underlying_Type
(Base_Type
(Utyp
));
5370 -- Deal with untagged derivation of private views. If the parent is
5371 -- now known to be protected, the finalization routine is the one
5372 -- defined on the corresponding record of the ancestor (corresponding
5373 -- records do not automatically inherit operations, but maybe they
5376 if Is_Untagged_Derivation
(Typ
) then
5377 if Is_Protected_Type
(Typ
) then
5378 Utyp
:= Corresponding_Record_Type
(Root_Type
(Base_Type
(Typ
)));
5381 Utyp
:= Underlying_Type
(Root_Type
(Base_Type
(Typ
)));
5383 if Is_Protected_Type
(Utyp
) then
5384 Utyp
:= Corresponding_Record_Type
(Utyp
);
5389 -- If the underlying_type is a subtype, we are dealing with the
5390 -- completion of a private type. We need to access the base type and
5391 -- generate a conversion to it.
5393 if Utyp
/= Base_Type
(Utyp
) then
5394 pragma Assert
(Is_Private_Type
(Typ
));
5396 Utyp
:= Base_Type
(Utyp
);
5399 -- When dealing with an internally built full view for a type with
5400 -- unknown discriminants, use the original record type.
5402 if Is_Underlying_Record_View
(Utyp
) then
5403 Utyp
:= Etype
(Utyp
);
5406 return TSS
(Utyp
, TSS_Finalize_Address
);
5407 end Finalize_Address
;
5409 ------------------------
5410 -- Find_Interface_ADT --
5411 ------------------------
5413 function Find_Interface_ADT
5415 Iface
: Entity_Id
) return Elmt_Id
5418 Typ
: Entity_Id
:= T
;
5421 pragma Assert
(Is_Interface
(Iface
));
5423 -- Handle private types
5425 if Has_Private_Declaration
(Typ
) and then Present
(Full_View
(Typ
)) then
5426 Typ
:= Full_View
(Typ
);
5429 -- Handle access types
5431 if Is_Access_Type
(Typ
) then
5432 Typ
:= Designated_Type
(Typ
);
5435 -- Handle task and protected types implementing interfaces
5437 if Is_Concurrent_Type
(Typ
) then
5438 Typ
:= Corresponding_Record_Type
(Typ
);
5442 (not Is_Class_Wide_Type
(Typ
)
5443 and then Ekind
(Typ
) /= E_Incomplete_Type
);
5445 if Is_Ancestor
(Iface
, Typ
, Use_Full_View
=> True) then
5446 return First_Elmt
(Access_Disp_Table
(Typ
));
5449 ADT
:= Next_Elmt
(Next_Elmt
(First_Elmt
(Access_Disp_Table
(Typ
))));
5451 and then Present
(Related_Type
(Node
(ADT
)))
5452 and then Related_Type
(Node
(ADT
)) /= Iface
5453 and then not Is_Ancestor
(Iface
, Related_Type
(Node
(ADT
)),
5454 Use_Full_View
=> True)
5459 pragma Assert
(Present
(Related_Type
(Node
(ADT
))));
5462 end Find_Interface_ADT
;
5464 ------------------------
5465 -- Find_Interface_Tag --
5466 ------------------------
5468 function Find_Interface_Tag
5470 Iface
: Entity_Id
) return Entity_Id
5472 AI_Tag
: Entity_Id
:= Empty
;
5473 Found
: Boolean := False;
5474 Typ
: Entity_Id
:= T
;
5476 procedure Find_Tag
(Typ
: Entity_Id
);
5477 -- Internal subprogram used to recursively climb to the ancestors
5483 procedure Find_Tag
(Typ
: Entity_Id
) is
5488 -- This routine does not handle the case in which the interface is an
5489 -- ancestor of Typ. That case is handled by the enclosing subprogram.
5491 pragma Assert
(Typ
/= Iface
);
5493 -- Climb to the root type handling private types
5495 if Present
(Full_View
(Etype
(Typ
))) then
5496 if Full_View
(Etype
(Typ
)) /= Typ
then
5497 Find_Tag
(Full_View
(Etype
(Typ
)));
5500 elsif Etype
(Typ
) /= Typ
then
5501 Find_Tag
(Etype
(Typ
));
5504 -- Traverse the list of interfaces implemented by the type
5507 and then Present
(Interfaces
(Typ
))
5508 and then not (Is_Empty_Elmt_List
(Interfaces
(Typ
)))
5510 -- Skip the tag associated with the primary table
5512 pragma Assert
(Etype
(First_Tag_Component
(Typ
)) = RTE
(RE_Tag
));
5513 AI_Tag
:= Next_Tag_Component
(First_Tag_Component
(Typ
));
5514 pragma Assert
(Present
(AI_Tag
));
5516 AI_Elmt
:= First_Elmt
(Interfaces
(Typ
));
5517 while Present
(AI_Elmt
) loop
5518 AI
:= Node
(AI_Elmt
);
5521 or else Is_Ancestor
(Iface
, AI
, Use_Full_View
=> True)
5527 AI_Tag
:= Next_Tag_Component
(AI_Tag
);
5528 Next_Elmt
(AI_Elmt
);
5533 -- Start of processing for Find_Interface_Tag
5536 pragma Assert
(Is_Interface
(Iface
));
5538 -- Handle access types
5540 if Is_Access_Type
(Typ
) then
5541 Typ
:= Designated_Type
(Typ
);
5544 -- Handle class-wide types
5546 if Is_Class_Wide_Type
(Typ
) then
5547 Typ
:= Root_Type
(Typ
);
5550 -- Handle private types
5552 if Has_Private_Declaration
(Typ
) and then Present
(Full_View
(Typ
)) then
5553 Typ
:= Full_View
(Typ
);
5556 -- Handle entities from the limited view
5558 if Ekind
(Typ
) = E_Incomplete_Type
then
5559 pragma Assert
(Present
(Non_Limited_View
(Typ
)));
5560 Typ
:= Non_Limited_View
(Typ
);
5563 -- Handle task and protected types implementing interfaces
5565 if Is_Concurrent_Type
(Typ
) then
5566 Typ
:= Corresponding_Record_Type
(Typ
);
5569 -- If the interface is an ancestor of the type, then it shared the
5570 -- primary dispatch table.
5572 if Is_Ancestor
(Iface
, Typ
, Use_Full_View
=> True) then
5573 pragma Assert
(Etype
(First_Tag_Component
(Typ
)) = RTE
(RE_Tag
));
5574 return First_Tag_Component
(Typ
);
5576 -- Otherwise we need to search for its associated tag component
5580 pragma Assert
(Found
);
5583 end Find_Interface_Tag
;
5585 ---------------------------
5586 -- Find_Optional_Prim_Op --
5587 ---------------------------
5589 function Find_Optional_Prim_Op
5590 (T
: Entity_Id
; Name
: Name_Id
) return Entity_Id
5593 Typ
: Entity_Id
:= T
;
5597 if Is_Class_Wide_Type
(Typ
) then
5598 Typ
:= Root_Type
(Typ
);
5601 Typ
:= Underlying_Type
(Typ
);
5603 -- Loop through primitive operations
5605 Prim
:= First_Elmt
(Primitive_Operations
(Typ
));
5606 while Present
(Prim
) loop
5609 -- We can retrieve primitive operations by name if it is an internal
5610 -- name. For equality we must check that both of its operands have
5611 -- the same type, to avoid confusion with user-defined equalities
5612 -- than may have a non-symmetric signature.
5614 exit when Chars
(Op
) = Name
5617 or else Etype
(First_Formal
(Op
)) = Etype
(Last_Formal
(Op
)));
5622 return Node
(Prim
); -- Empty if not found
5623 end Find_Optional_Prim_Op
;
5625 ---------------------------
5626 -- Find_Optional_Prim_Op --
5627 ---------------------------
5629 function Find_Optional_Prim_Op
5631 Name
: TSS_Name_Type
) return Entity_Id
5633 Inher_Op
: Entity_Id
:= Empty
;
5634 Own_Op
: Entity_Id
:= Empty
;
5635 Prim_Elmt
: Elmt_Id
;
5636 Prim_Id
: Entity_Id
;
5637 Typ
: Entity_Id
:= T
;
5640 if Is_Class_Wide_Type
(Typ
) then
5641 Typ
:= Root_Type
(Typ
);
5644 Typ
:= Underlying_Type
(Typ
);
5646 -- This search is based on the assertion that the dispatching version
5647 -- of the TSS routine always precedes the real primitive.
5649 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Typ
));
5650 while Present
(Prim_Elmt
) loop
5651 Prim_Id
:= Node
(Prim_Elmt
);
5653 if Is_TSS
(Prim_Id
, Name
) then
5654 if Present
(Alias
(Prim_Id
)) then
5655 Inher_Op
:= Prim_Id
;
5661 Next_Elmt
(Prim_Elmt
);
5664 if Present
(Own_Op
) then
5666 elsif Present
(Inher_Op
) then
5671 end Find_Optional_Prim_Op
;
5677 function Find_Prim_Op
5678 (T
: Entity_Id
; Name
: Name_Id
) return Entity_Id
5680 Result
: constant Entity_Id
:= Find_Optional_Prim_Op
(T
, Name
);
5683 raise Program_Error
;
5693 function Find_Prim_Op
5695 Name
: TSS_Name_Type
) return Entity_Id
5697 Result
: constant Entity_Id
:= Find_Optional_Prim_Op
(T
, Name
);
5700 raise Program_Error
;
5706 ----------------------------
5707 -- Find_Protection_Object --
5708 ----------------------------
5710 function Find_Protection_Object
(Scop
: Entity_Id
) return Entity_Id
is
5715 while Present
(S
) loop
5716 if Ekind_In
(S
, E_Entry
, E_Entry_Family
, E_Function
, E_Procedure
)
5717 and then Present
(Protection_Object
(S
))
5719 return Protection_Object
(S
);
5725 -- If we do not find a Protection object in the scope chain, then
5726 -- something has gone wrong, most likely the object was never created.
5728 raise Program_Error
;
5729 end Find_Protection_Object
;
5731 --------------------------
5732 -- Find_Protection_Type --
5733 --------------------------
5735 function Find_Protection_Type
(Conc_Typ
: Entity_Id
) return Entity_Id
is
5737 Typ
: Entity_Id
:= Conc_Typ
;
5740 if Is_Concurrent_Type
(Typ
) then
5741 Typ
:= Corresponding_Record_Type
(Typ
);
5744 -- Since restriction violations are not considered serious errors, the
5745 -- expander remains active, but may leave the corresponding record type
5746 -- malformed. In such cases, component _object is not available so do
5749 if not Analyzed
(Typ
) then
5753 Comp
:= First_Component
(Typ
);
5754 while Present
(Comp
) loop
5755 if Chars
(Comp
) = Name_uObject
then
5756 return Base_Type
(Etype
(Comp
));
5759 Next_Component
(Comp
);
5762 -- The corresponding record of a protected type should always have an
5765 raise Program_Error
;
5766 end Find_Protection_Type
;
5768 -----------------------
5769 -- Find_Hook_Context --
5770 -----------------------
5772 function Find_Hook_Context
(N
: Node_Id
) return Node_Id
is
5776 Wrapped_Node
: Node_Id
;
5777 -- Note: if we are in a transient scope, we want to reuse it as
5778 -- the context for actions insertion, if possible. But if N is itself
5779 -- part of the stored actions for the current transient scope,
5780 -- then we need to insert at the appropriate (inner) location in
5781 -- the not as an action on Node_To_Be_Wrapped.
5783 In_Cond_Expr
: constant Boolean := Within_Case_Or_If_Expression
(N
);
5786 -- When the node is inside a case/if expression, the lifetime of any
5787 -- temporary controlled object is extended. Find a suitable insertion
5788 -- node by locating the topmost case or if expressions.
5790 if In_Cond_Expr
then
5793 while Present
(Par
) loop
5794 if Nkind_In
(Original_Node
(Par
), N_Case_Expression
,
5799 -- Prevent the search from going too far
5801 elsif Is_Body_Or_Package_Declaration
(Par
) then
5805 Par
:= Parent
(Par
);
5808 -- The topmost case or if expression is now recovered, but it may
5809 -- still not be the correct place to add generated code. Climb to
5810 -- find a parent that is part of a declarative or statement list,
5811 -- and is not a list of actuals in a call.
5814 while Present
(Par
) loop
5815 if Is_List_Member
(Par
)
5816 and then not Nkind_In
(Par
, N_Component_Association
,
5817 N_Discriminant_Association
,
5818 N_Parameter_Association
,
5819 N_Pragma_Argument_Association
)
5820 and then not Nkind_In
(Parent
(Par
), N_Function_Call
,
5821 N_Procedure_Call_Statement
,
5822 N_Entry_Call_Statement
)
5827 -- Prevent the search from going too far
5829 elsif Is_Body_Or_Package_Declaration
(Par
) then
5833 Par
:= Parent
(Par
);
5840 while Present
(Par
) loop
5842 -- Keep climbing past various operators
5844 if Nkind
(Parent
(Par
)) in N_Op
5845 or else Nkind_In
(Parent
(Par
), N_And_Then
, N_Or_Else
)
5847 Par
:= Parent
(Par
);
5855 -- The node may be located in a pragma in which case return the
5858 -- pragma Precondition (... and then Ctrl_Func_Call ...);
5860 -- Similar case occurs when the node is related to an object
5861 -- declaration or assignment:
5863 -- Obj [: Some_Typ] := ... and then Ctrl_Func_Call ...;
5865 -- Another case to consider is when the node is part of a return
5868 -- return ... and then Ctrl_Func_Call ...;
5870 -- Another case is when the node acts as a formal in a procedure
5873 -- Proc (... and then Ctrl_Func_Call ...);
5875 if Scope_Is_Transient
then
5876 Wrapped_Node
:= Node_To_Be_Wrapped
;
5878 Wrapped_Node
:= Empty
;
5881 while Present
(Par
) loop
5882 if Par
= Wrapped_Node
5883 or else Nkind_In
(Par
, N_Assignment_Statement
,
5884 N_Object_Declaration
,
5886 N_Procedure_Call_Statement
,
5887 N_Simple_Return_Statement
)
5891 -- Prevent the search from going too far
5893 elsif Is_Body_Or_Package_Declaration
(Par
) then
5897 Par
:= Parent
(Par
);
5900 -- Return the topmost short circuit operator
5904 end Find_Hook_Context
;
5906 ------------------------------
5907 -- Following_Address_Clause --
5908 ------------------------------
5910 function Following_Address_Clause
(D
: Node_Id
) return Node_Id
is
5911 Id
: constant Entity_Id
:= Defining_Identifier
(D
);
5915 function Check_Decls
(D
: Node_Id
) return Node_Id
;
5916 -- This internal function differs from the main function in that it
5917 -- gets called to deal with a following package private part, and
5918 -- it checks declarations starting with D (the main function checks
5919 -- declarations following D). If D is Empty, then Empty is returned.
5925 function Check_Decls
(D
: Node_Id
) return Node_Id
is
5930 while Present
(Decl
) loop
5931 if Nkind
(Decl
) = N_At_Clause
5932 and then Chars
(Identifier
(Decl
)) = Chars
(Id
)
5936 elsif Nkind
(Decl
) = N_Attribute_Definition_Clause
5937 and then Chars
(Decl
) = Name_Address
5938 and then Chars
(Name
(Decl
)) = Chars
(Id
)
5946 -- Otherwise not found, return Empty
5951 -- Start of processing for Following_Address_Clause
5954 -- If parser detected no address clause for the identifier in question,
5955 -- then the answer is a quick NO, without the need for a search.
5957 if not Get_Name_Table_Boolean1
(Chars
(Id
)) then
5961 -- Otherwise search current declarative unit
5963 Result
:= Check_Decls
(Next
(D
));
5965 if Present
(Result
) then
5969 -- Check for possible package private part following
5973 if Nkind
(Par
) = N_Package_Specification
5974 and then Visible_Declarations
(Par
) = List_Containing
(D
)
5975 and then Present
(Private_Declarations
(Par
))
5977 -- Private part present, check declarations there
5979 return Check_Decls
(First
(Private_Declarations
(Par
)));
5982 -- No private part, clause not found, return Empty
5986 end Following_Address_Clause
;
5988 ----------------------
5989 -- Force_Evaluation --
5990 ----------------------
5992 procedure Force_Evaluation
5994 Name_Req
: Boolean := False;
5995 Related_Id
: Entity_Id
:= Empty
;
5996 Is_Low_Bound
: Boolean := False;
5997 Is_High_Bound
: Boolean := False;
5998 Mode
: Force_Evaluation_Mode
:= Relaxed
)
6003 Name_Req
=> Name_Req
,
6004 Variable_Ref
=> True,
6005 Renaming_Req
=> False,
6006 Related_Id
=> Related_Id
,
6007 Is_Low_Bound
=> Is_Low_Bound
,
6008 Is_High_Bound
=> Is_High_Bound
,
6009 Check_Side_Effects
=>
6010 Is_Static_Expression
(Exp
)
6011 or else Mode
= Relaxed
);
6012 end Force_Evaluation
;
6014 ---------------------------------
6015 -- Fully_Qualified_Name_String --
6016 ---------------------------------
6018 function Fully_Qualified_Name_String
6020 Append_NUL
: Boolean := True) return String_Id
6022 procedure Internal_Full_Qualified_Name
(E
: Entity_Id
);
6023 -- Compute recursively the qualified name without NUL at the end, adding
6024 -- it to the currently started string being generated
6026 ----------------------------------
6027 -- Internal_Full_Qualified_Name --
6028 ----------------------------------
6030 procedure Internal_Full_Qualified_Name
(E
: Entity_Id
) is
6034 -- Deal properly with child units
6036 if Nkind
(E
) = N_Defining_Program_Unit_Name
then
6037 Ent
:= Defining_Identifier
(E
);
6042 -- Compute qualification recursively (only "Standard" has no scope)
6044 if Present
(Scope
(Scope
(Ent
))) then
6045 Internal_Full_Qualified_Name
(Scope
(Ent
));
6046 Store_String_Char
(Get_Char_Code
('.'));
6049 -- Every entity should have a name except some expanded blocks
6050 -- don't bother about those.
6052 if Chars
(Ent
) = No_Name
then
6056 -- Generates the entity name in upper case
6058 Get_Decoded_Name_String
(Chars
(Ent
));
6060 Store_String_Chars
(Name_Buffer
(1 .. Name_Len
));
6062 end Internal_Full_Qualified_Name
;
6064 -- Start of processing for Full_Qualified_Name
6068 Internal_Full_Qualified_Name
(E
);
6071 Store_String_Char
(Get_Char_Code
(ASCII
.NUL
));
6075 end Fully_Qualified_Name_String
;
6077 ------------------------
6078 -- Generate_Poll_Call --
6079 ------------------------
6081 procedure Generate_Poll_Call
(N
: Node_Id
) is
6083 -- No poll call if polling not active
6085 if not Polling_Required
then
6088 -- Otherwise generate require poll call
6091 Insert_Before_And_Analyze
(N
,
6092 Make_Procedure_Call_Statement
(Sloc
(N
),
6093 Name
=> New_Occurrence_Of
(RTE
(RE_Poll
), Sloc
(N
))));
6095 end Generate_Poll_Call
;
6097 ---------------------------------
6098 -- Get_Current_Value_Condition --
6099 ---------------------------------
6101 -- Note: the implementation of this procedure is very closely tied to the
6102 -- implementation of Set_Current_Value_Condition. In the Get procedure, we
6103 -- interpret Current_Value fields set by the Set procedure, so the two
6104 -- procedures need to be closely coordinated.
6106 procedure Get_Current_Value_Condition
6111 Loc
: constant Source_Ptr
:= Sloc
(Var
);
6112 Ent
: constant Entity_Id
:= Entity
(Var
);
6114 procedure Process_Current_Value_Condition
6117 -- N is an expression which holds either True (S = True) or False (S =
6118 -- False) in the condition. This procedure digs out the expression and
6119 -- if it refers to Ent, sets Op and Val appropriately.
6121 -------------------------------------
6122 -- Process_Current_Value_Condition --
6123 -------------------------------------
6125 procedure Process_Current_Value_Condition
6130 Prev_Cond
: Node_Id
;
6140 -- Deal with NOT operators, inverting sense
6142 while Nkind
(Cond
) = N_Op_Not
loop
6143 Cond
:= Right_Opnd
(Cond
);
6147 -- Deal with conversions, qualifications, and expressions with
6150 while Nkind_In
(Cond
,
6152 N_Qualified_Expression
,
6153 N_Expression_With_Actions
)
6155 Cond
:= Expression
(Cond
);
6158 exit when Cond
= Prev_Cond
;
6161 -- Deal with AND THEN and AND cases
6163 if Nkind_In
(Cond
, N_And_Then
, N_Op_And
) then
6165 -- Don't ever try to invert a condition that is of the form of an
6166 -- AND or AND THEN (since we are not doing sufficiently general
6167 -- processing to allow this).
6169 if Sens
= False then
6175 -- Recursively process AND and AND THEN branches
6177 Process_Current_Value_Condition
(Left_Opnd
(Cond
), True);
6179 if Op
/= N_Empty
then
6183 Process_Current_Value_Condition
(Right_Opnd
(Cond
), True);
6186 -- Case of relational operator
6188 elsif Nkind
(Cond
) in N_Op_Compare
then
6191 -- Invert sense of test if inverted test
6193 if Sens
= False then
6195 when N_Op_Eq
=> Op
:= N_Op_Ne
;
6196 when N_Op_Ne
=> Op
:= N_Op_Eq
;
6197 when N_Op_Lt
=> Op
:= N_Op_Ge
;
6198 when N_Op_Gt
=> Op
:= N_Op_Le
;
6199 when N_Op_Le
=> Op
:= N_Op_Gt
;
6200 when N_Op_Ge
=> Op
:= N_Op_Lt
;
6201 when others => raise Program_Error
;
6205 -- Case of entity op value
6207 if Is_Entity_Name
(Left_Opnd
(Cond
))
6208 and then Ent
= Entity
(Left_Opnd
(Cond
))
6209 and then Compile_Time_Known_Value
(Right_Opnd
(Cond
))
6211 Val
:= Right_Opnd
(Cond
);
6213 -- Case of value op entity
6215 elsif Is_Entity_Name
(Right_Opnd
(Cond
))
6216 and then Ent
= Entity
(Right_Opnd
(Cond
))
6217 and then Compile_Time_Known_Value
(Left_Opnd
(Cond
))
6219 Val
:= Left_Opnd
(Cond
);
6221 -- We are effectively swapping operands
6224 when N_Op_Eq
=> null;
6225 when N_Op_Ne
=> null;
6226 when N_Op_Lt
=> Op
:= N_Op_Gt
;
6227 when N_Op_Gt
=> Op
:= N_Op_Lt
;
6228 when N_Op_Le
=> Op
:= N_Op_Ge
;
6229 when N_Op_Ge
=> Op
:= N_Op_Le
;
6230 when others => raise Program_Error
;
6239 elsif Nkind_In
(Cond
,
6241 N_Qualified_Expression
,
6242 N_Expression_With_Actions
)
6244 Cond
:= Expression
(Cond
);
6246 -- Case of Boolean variable reference, return as though the
6247 -- reference had said var = True.
6250 if Is_Entity_Name
(Cond
) and then Ent
= Entity
(Cond
) then
6251 Val
:= New_Occurrence_Of
(Standard_True
, Sloc
(Cond
));
6253 if Sens
= False then
6260 end Process_Current_Value_Condition
;
6262 -- Start of processing for Get_Current_Value_Condition
6268 -- Immediate return, nothing doing, if this is not an object
6270 if Ekind
(Ent
) not in Object_Kind
then
6274 -- Otherwise examine current value
6277 CV
: constant Node_Id
:= Current_Value
(Ent
);
6282 -- If statement. Condition is known true in THEN section, known False
6283 -- in any ELSIF or ELSE part, and unknown outside the IF statement.
6285 if Nkind
(CV
) = N_If_Statement
then
6287 -- Before start of IF statement
6289 if Loc
< Sloc
(CV
) then
6292 -- After end of IF statement
6294 elsif Loc
>= Sloc
(CV
) + Text_Ptr
(UI_To_Int
(End_Span
(CV
))) then
6298 -- At this stage we know that we are within the IF statement, but
6299 -- unfortunately, the tree does not record the SLOC of the ELSE so
6300 -- we cannot use a simple SLOC comparison to distinguish between
6301 -- the then/else statements, so we have to climb the tree.
6308 while Parent
(N
) /= CV
loop
6311 -- If we fall off the top of the tree, then that's odd, but
6312 -- perhaps it could occur in some error situation, and the
6313 -- safest response is simply to assume that the outcome of
6314 -- the condition is unknown. No point in bombing during an
6315 -- attempt to optimize things.
6322 -- Now we have N pointing to a node whose parent is the IF
6323 -- statement in question, so now we can tell if we are within
6324 -- the THEN statements.
6326 if Is_List_Member
(N
)
6327 and then List_Containing
(N
) = Then_Statements
(CV
)
6331 -- If the variable reference does not come from source, we
6332 -- cannot reliably tell whether it appears in the else part.
6333 -- In particular, if it appears in generated code for a node
6334 -- that requires finalization, it may be attached to a list
6335 -- that has not been yet inserted into the code. For now,
6336 -- treat it as unknown.
6338 elsif not Comes_From_Source
(N
) then
6341 -- Otherwise we must be in ELSIF or ELSE part
6348 -- ELSIF part. Condition is known true within the referenced
6349 -- ELSIF, known False in any subsequent ELSIF or ELSE part,
6350 -- and unknown before the ELSE part or after the IF statement.
6352 elsif Nkind
(CV
) = N_Elsif_Part
then
6354 -- if the Elsif_Part had condition_actions, the elsif has been
6355 -- rewritten as a nested if, and the original elsif_part is
6356 -- detached from the tree, so there is no way to obtain useful
6357 -- information on the current value of the variable.
6358 -- Can this be improved ???
6360 if No
(Parent
(CV
)) then
6366 -- If the tree has been otherwise rewritten there is nothing
6367 -- else to be done either.
6369 if Nkind
(Stm
) /= N_If_Statement
then
6373 -- Before start of ELSIF part
6375 if Loc
< Sloc
(CV
) then
6378 -- After end of IF statement
6380 elsif Loc
>= Sloc
(Stm
) +
6381 Text_Ptr
(UI_To_Int
(End_Span
(Stm
)))
6386 -- Again we lack the SLOC of the ELSE, so we need to climb the
6387 -- tree to see if we are within the ELSIF part in question.
6394 while Parent
(N
) /= Stm
loop
6397 -- If we fall off the top of the tree, then that's odd, but
6398 -- perhaps it could occur in some error situation, and the
6399 -- safest response is simply to assume that the outcome of
6400 -- the condition is unknown. No point in bombing during an
6401 -- attempt to optimize things.
6408 -- Now we have N pointing to a node whose parent is the IF
6409 -- statement in question, so see if is the ELSIF part we want.
6410 -- the THEN statements.
6415 -- Otherwise we must be in subsequent ELSIF or ELSE part
6422 -- Iteration scheme of while loop. The condition is known to be
6423 -- true within the body of the loop.
6425 elsif Nkind
(CV
) = N_Iteration_Scheme
then
6427 Loop_Stmt
: constant Node_Id
:= Parent
(CV
);
6430 -- Before start of body of loop
6432 if Loc
< Sloc
(Loop_Stmt
) then
6435 -- After end of LOOP statement
6437 elsif Loc
>= Sloc
(End_Label
(Loop_Stmt
)) then
6440 -- We are within the body of the loop
6447 -- All other cases of Current_Value settings
6453 -- If we fall through here, then we have a reportable condition, Sens
6454 -- is True if the condition is true and False if it needs inverting.
6456 Process_Current_Value_Condition
(Condition
(CV
), Sens
);
6458 end Get_Current_Value_Condition
;
6460 ---------------------
6461 -- Get_Stream_Size --
6462 ---------------------
6464 function Get_Stream_Size
(E
: Entity_Id
) return Uint
is
6466 -- If we have a Stream_Size clause for this type use it
6468 if Has_Stream_Size_Clause
(E
) then
6469 return Static_Integer
(Expression
(Stream_Size_Clause
(E
)));
6471 -- Otherwise the Stream_Size if the size of the type
6476 end Get_Stream_Size
;
6478 ---------------------------
6479 -- Has_Access_Constraint --
6480 ---------------------------
6482 function Has_Access_Constraint
(E
: Entity_Id
) return Boolean is
6484 T
: constant Entity_Id
:= Etype
(E
);
6487 if Has_Per_Object_Constraint
(E
) and then Has_Discriminants
(T
) then
6488 Disc
:= First_Discriminant
(T
);
6489 while Present
(Disc
) loop
6490 if Is_Access_Type
(Etype
(Disc
)) then
6494 Next_Discriminant
(Disc
);
6501 end Has_Access_Constraint
;
6503 -----------------------------------------------------
6504 -- Has_Annotate_Pragma_For_External_Axiomatization --
6505 -----------------------------------------------------
6507 function Has_Annotate_Pragma_For_External_Axiomatization
6508 (E
: Entity_Id
) return Boolean
6510 function Is_Annotate_Pragma_For_External_Axiomatization
6511 (N
: Node_Id
) return Boolean;
6512 -- Returns whether N is
6513 -- pragma Annotate (GNATprove, External_Axiomatization);
6515 ----------------------------------------------------
6516 -- Is_Annotate_Pragma_For_External_Axiomatization --
6517 ----------------------------------------------------
6519 -- The general form of pragma Annotate is
6521 -- pragma Annotate (IDENTIFIER [, IDENTIFIER {, ARG}]);
6522 -- ARG ::= NAME | EXPRESSION
6524 -- The first two arguments are by convention intended to refer to an
6525 -- external tool and a tool-specific function. These arguments are
6528 -- The following is used to annotate a package specification which
6529 -- GNATprove should treat specially, because the axiomatization of
6530 -- this unit is given by the user instead of being automatically
6533 -- pragma Annotate (GNATprove, External_Axiomatization);
6535 function Is_Annotate_Pragma_For_External_Axiomatization
6536 (N
: Node_Id
) return Boolean
6538 Name_GNATprove
: constant String :=
6540 Name_External_Axiomatization
: constant String :=
6541 "external_axiomatization";
6545 if Nkind
(N
) = N_Pragma
6546 and then Get_Pragma_Id
(N
) = Pragma_Annotate
6547 and then List_Length
(Pragma_Argument_Associations
(N
)) = 2
6550 Arg1
: constant Node_Id
:=
6551 First
(Pragma_Argument_Associations
(N
));
6552 Arg2
: constant Node_Id
:= Next
(Arg1
);
6557 -- Fill in Name_Buffer with Name_GNATprove first, and then with
6558 -- Name_External_Axiomatization so that Name_Find returns the
6559 -- corresponding name. This takes care of all possible casings.
6562 Add_Str_To_Name_Buffer
(Name_GNATprove
);
6566 Add_Str_To_Name_Buffer
(Name_External_Axiomatization
);
6569 return Chars
(Get_Pragma_Arg
(Arg1
)) = Nam1
6571 Chars
(Get_Pragma_Arg
(Arg2
)) = Nam2
;
6577 end Is_Annotate_Pragma_For_External_Axiomatization
;
6582 Vis_Decls
: List_Id
;
6585 -- Start of processing for Has_Annotate_Pragma_For_External_Axiomatization
6588 if Nkind
(Parent
(E
)) = N_Defining_Program_Unit_Name
then
6589 Decl
:= Parent
(Parent
(E
));
6594 Vis_Decls
:= Visible_Declarations
(Decl
);
6596 N
:= First
(Vis_Decls
);
6597 while Present
(N
) loop
6599 -- Skip declarations generated by the frontend. Skip all pragmas
6600 -- that are not the desired Annotate pragma. Stop the search on
6601 -- the first non-pragma source declaration.
6603 if Comes_From_Source
(N
) then
6604 if Nkind
(N
) = N_Pragma
then
6605 if Is_Annotate_Pragma_For_External_Axiomatization
(N
) then
6617 end Has_Annotate_Pragma_For_External_Axiomatization
;
6619 --------------------
6620 -- Homonym_Number --
6621 --------------------
6623 function Homonym_Number
(Subp
: Entity_Id
) return Nat
is
6629 Hom
:= Homonym
(Subp
);
6630 while Present
(Hom
) loop
6631 if Scope
(Hom
) = Scope
(Subp
) then
6635 Hom
:= Homonym
(Hom
);
6641 -----------------------------------
6642 -- In_Library_Level_Package_Body --
6643 -----------------------------------
6645 function In_Library_Level_Package_Body
(Id
: Entity_Id
) return Boolean is
6647 -- First determine whether the entity appears at the library level, then
6648 -- look at the containing unit.
6650 if Is_Library_Level_Entity
(Id
) then
6652 Container
: constant Node_Id
:= Cunit
(Get_Source_Unit
(Id
));
6655 return Nkind
(Unit
(Container
)) = N_Package_Body
;
6660 end In_Library_Level_Package_Body
;
6662 ------------------------------
6663 -- In_Unconditional_Context --
6664 ------------------------------
6666 function In_Unconditional_Context
(Node
: Node_Id
) return Boolean is
6671 while Present
(P
) loop
6673 when N_Subprogram_Body
=> return True;
6674 when N_If_Statement
=> return False;
6675 when N_Loop_Statement
=> return False;
6676 when N_Case_Statement
=> return False;
6677 when others => P
:= Parent
(P
);
6682 end In_Unconditional_Context
;
6688 procedure Insert_Action
(Assoc_Node
: Node_Id
; Ins_Action
: Node_Id
) is
6690 if Present
(Ins_Action
) then
6691 Insert_Actions
(Assoc_Node
, New_List
(Ins_Action
));
6695 -- Version with check(s) suppressed
6697 procedure Insert_Action
6698 (Assoc_Node
: Node_Id
; Ins_Action
: Node_Id
; Suppress
: Check_Id
)
6701 Insert_Actions
(Assoc_Node
, New_List
(Ins_Action
), Suppress
);
6704 -------------------------
6705 -- Insert_Action_After --
6706 -------------------------
6708 procedure Insert_Action_After
6709 (Assoc_Node
: Node_Id
;
6710 Ins_Action
: Node_Id
)
6713 Insert_Actions_After
(Assoc_Node
, New_List
(Ins_Action
));
6714 end Insert_Action_After
;
6716 --------------------
6717 -- Insert_Actions --
6718 --------------------
6720 procedure Insert_Actions
(Assoc_Node
: Node_Id
; Ins_Actions
: List_Id
) is
6724 Wrapped_Node
: Node_Id
:= Empty
;
6727 if No
(Ins_Actions
) or else Is_Empty_List
(Ins_Actions
) then
6731 -- Ignore insert of actions from inside default expression (or other
6732 -- similar "spec expression") in the special spec-expression analyze
6733 -- mode. Any insertions at this point have no relevance, since we are
6734 -- only doing the analyze to freeze the types of any static expressions.
6735 -- See section "Handling of Default Expressions" in the spec of package
6736 -- Sem for further details.
6738 if In_Spec_Expression
then
6742 -- If the action derives from stuff inside a record, then the actions
6743 -- are attached to the current scope, to be inserted and analyzed on
6744 -- exit from the scope. The reason for this is that we may also be
6745 -- generating freeze actions at the same time, and they must eventually
6746 -- be elaborated in the correct order.
6748 if Is_Record_Type
(Current_Scope
)
6749 and then not Is_Frozen
(Current_Scope
)
6751 if No
(Scope_Stack
.Table
6752 (Scope_Stack
.Last
).Pending_Freeze_Actions
)
6754 Scope_Stack
.Table
(Scope_Stack
.Last
).Pending_Freeze_Actions
:=
6759 Scope_Stack
.Table
(Scope_Stack
.Last
).Pending_Freeze_Actions
);
6765 -- We now intend to climb up the tree to find the right point to
6766 -- insert the actions. We start at Assoc_Node, unless this node is a
6767 -- subexpression in which case we start with its parent. We do this for
6768 -- two reasons. First it speeds things up. Second, if Assoc_Node is
6769 -- itself one of the special nodes like N_And_Then, then we assume that
6770 -- an initial request to insert actions for such a node does not expect
6771 -- the actions to get deposited in the node for later handling when the
6772 -- node is expanded, since clearly the node is being dealt with by the
6773 -- caller. Note that in the subexpression case, N is always the child we
6776 -- N_Raise_xxx_Error is an annoying special case, it is a statement
6777 -- if it has type Standard_Void_Type, and a subexpression otherwise.
6778 -- Procedure calls, and similarly procedure attribute references, are
6781 if Nkind
(Assoc_Node
) in N_Subexpr
6782 and then (Nkind
(Assoc_Node
) not in N_Raise_xxx_Error
6783 or else Etype
(Assoc_Node
) /= Standard_Void_Type
)
6784 and then Nkind
(Assoc_Node
) /= N_Procedure_Call_Statement
6785 and then (Nkind
(Assoc_Node
) /= N_Attribute_Reference
6786 or else not Is_Procedure_Attribute_Name
6787 (Attribute_Name
(Assoc_Node
)))
6790 P
:= Parent
(Assoc_Node
);
6792 -- Non-subexpression case. Note that N is initially Empty in this case
6793 -- (N is only guaranteed Non-Empty in the subexpr case).
6800 -- Capture root of the transient scope
6802 if Scope_Is_Transient
then
6803 Wrapped_Node
:= Node_To_Be_Wrapped
;
6807 pragma Assert
(Present
(P
));
6809 -- Make sure that inserted actions stay in the transient scope
6811 if Present
(Wrapped_Node
) and then N
= Wrapped_Node
then
6812 Store_Before_Actions_In_Scope
(Ins_Actions
);
6818 -- Case of right operand of AND THEN or OR ELSE. Put the actions
6819 -- in the Actions field of the right operand. They will be moved
6820 -- out further when the AND THEN or OR ELSE operator is expanded.
6821 -- Nothing special needs to be done for the left operand since
6822 -- in that case the actions are executed unconditionally.
6824 when N_Short_Circuit
=>
6825 if N
= Right_Opnd
(P
) then
6827 -- We are now going to either append the actions to the
6828 -- actions field of the short-circuit operation. We will
6829 -- also analyze the actions now.
6831 -- This analysis is really too early, the proper thing would
6832 -- be to just park them there now, and only analyze them if
6833 -- we find we really need them, and to it at the proper
6834 -- final insertion point. However attempting to this proved
6835 -- tricky, so for now we just kill current values before and
6836 -- after the analyze call to make sure we avoid peculiar
6837 -- optimizations from this out of order insertion.
6839 Kill_Current_Values
;
6841 -- If P has already been expanded, we can't park new actions
6842 -- on it, so we need to expand them immediately, introducing
6843 -- an Expression_With_Actions. N can't be an expression
6844 -- with actions, or else then the actions would have been
6845 -- inserted at an inner level.
6847 if Analyzed
(P
) then
6848 pragma Assert
(Nkind
(N
) /= N_Expression_With_Actions
);
6850 Make_Expression_With_Actions
(Sloc
(N
),
6851 Actions
=> Ins_Actions
,
6852 Expression
=> Relocate_Node
(N
)));
6853 Analyze_And_Resolve
(N
);
6855 elsif Present
(Actions
(P
)) then
6856 Insert_List_After_And_Analyze
6857 (Last
(Actions
(P
)), Ins_Actions
);
6859 Set_Actions
(P
, Ins_Actions
);
6860 Analyze_List
(Actions
(P
));
6863 Kill_Current_Values
;
6868 -- Then or Else dependent expression of an if expression. Add
6869 -- actions to Then_Actions or Else_Actions field as appropriate.
6870 -- The actions will be moved further out when the if is expanded.
6872 when N_If_Expression
=>
6874 ThenX
: constant Node_Id
:= Next
(First
(Expressions
(P
)));
6875 ElseX
: constant Node_Id
:= Next
(ThenX
);
6878 -- If the enclosing expression is already analyzed, as
6879 -- is the case for nested elaboration checks, insert the
6880 -- conditional further out.
6882 if Analyzed
(P
) then
6885 -- Actions belong to the then expression, temporarily place
6886 -- them as Then_Actions of the if expression. They will be
6887 -- moved to the proper place later when the if expression
6890 elsif N
= ThenX
then
6891 if Present
(Then_Actions
(P
)) then
6892 Insert_List_After_And_Analyze
6893 (Last
(Then_Actions
(P
)), Ins_Actions
);
6895 Set_Then_Actions
(P
, Ins_Actions
);
6896 Analyze_List
(Then_Actions
(P
));
6901 -- Actions belong to the else expression, temporarily place
6902 -- them as Else_Actions of the if expression. They will be
6903 -- moved to the proper place later when the if expression
6906 elsif N
= ElseX
then
6907 if Present
(Else_Actions
(P
)) then
6908 Insert_List_After_And_Analyze
6909 (Last
(Else_Actions
(P
)), Ins_Actions
);
6911 Set_Else_Actions
(P
, Ins_Actions
);
6912 Analyze_List
(Else_Actions
(P
));
6917 -- Actions belong to the condition. In this case they are
6918 -- unconditionally executed, and so we can continue the
6919 -- search for the proper insert point.
6926 -- Alternative of case expression, we place the action in the
6927 -- Actions field of the case expression alternative, this will
6928 -- be handled when the case expression is expanded.
6930 when N_Case_Expression_Alternative
=>
6931 if Present
(Actions
(P
)) then
6932 Insert_List_After_And_Analyze
6933 (Last
(Actions
(P
)), Ins_Actions
);
6935 Set_Actions
(P
, Ins_Actions
);
6936 Analyze_List
(Actions
(P
));
6941 -- Case of appearing within an Expressions_With_Actions node. When
6942 -- the new actions come from the expression of the expression with
6943 -- actions, they must be added to the existing actions. The other
6944 -- alternative is when the new actions are related to one of the
6945 -- existing actions of the expression with actions, and should
6946 -- never reach here: if actions are inserted on a statement
6947 -- within the Actions of an expression with actions, or on some
6948 -- subexpression of such a statement, then the outermost proper
6949 -- insertion point is right before the statement, and we should
6950 -- never climb up as far as the N_Expression_With_Actions itself.
6952 when N_Expression_With_Actions
=>
6953 if N
= Expression
(P
) then
6954 if Is_Empty_List
(Actions
(P
)) then
6955 Append_List_To
(Actions
(P
), Ins_Actions
);
6956 Analyze_List
(Actions
(P
));
6958 Insert_List_After_And_Analyze
6959 (Last
(Actions
(P
)), Ins_Actions
);
6965 raise Program_Error
;
6968 -- Case of appearing in the condition of a while expression or
6969 -- elsif. We insert the actions into the Condition_Actions field.
6970 -- They will be moved further out when the while loop or elsif
6974 | N_Iteration_Scheme
6976 if N
= Condition
(P
) then
6977 if Present
(Condition_Actions
(P
)) then
6978 Insert_List_After_And_Analyze
6979 (Last
(Condition_Actions
(P
)), Ins_Actions
);
6981 Set_Condition_Actions
(P
, Ins_Actions
);
6983 -- Set the parent of the insert actions explicitly. This
6984 -- is not a syntactic field, but we need the parent field
6985 -- set, in particular so that freeze can understand that
6986 -- it is dealing with condition actions, and properly
6987 -- insert the freezing actions.
6989 Set_Parent
(Ins_Actions
, P
);
6990 Analyze_List
(Condition_Actions
(P
));
6996 -- Statements, declarations, pragmas, representation clauses
7001 N_Procedure_Call_Statement
7002 | N_Statement_Other_Than_Procedure_Call
7008 -- Representation_Clause
7011 | N_Attribute_Definition_Clause
7012 | N_Enumeration_Representation_Clause
7013 | N_Record_Representation_Clause
7017 | N_Abstract_Subprogram_Declaration
7019 | N_Exception_Declaration
7020 | N_Exception_Renaming_Declaration
7021 | N_Expression_Function
7022 | N_Formal_Abstract_Subprogram_Declaration
7023 | N_Formal_Concrete_Subprogram_Declaration
7024 | N_Formal_Object_Declaration
7025 | N_Formal_Type_Declaration
7026 | N_Full_Type_Declaration
7027 | N_Function_Instantiation
7028 | N_Generic_Function_Renaming_Declaration
7029 | N_Generic_Package_Declaration
7030 | N_Generic_Package_Renaming_Declaration
7031 | N_Generic_Procedure_Renaming_Declaration
7032 | N_Generic_Subprogram_Declaration
7033 | N_Implicit_Label_Declaration
7034 | N_Incomplete_Type_Declaration
7035 | N_Number_Declaration
7036 | N_Object_Declaration
7037 | N_Object_Renaming_Declaration
7039 | N_Package_Body_Stub
7040 | N_Package_Declaration
7041 | N_Package_Instantiation
7042 | N_Package_Renaming_Declaration
7043 | N_Private_Extension_Declaration
7044 | N_Private_Type_Declaration
7045 | N_Procedure_Instantiation
7047 | N_Protected_Body_Stub
7048 | N_Protected_Type_Declaration
7049 | N_Single_Task_Declaration
7051 | N_Subprogram_Body_Stub
7052 | N_Subprogram_Declaration
7053 | N_Subprogram_Renaming_Declaration
7054 | N_Subtype_Declaration
7057 | N_Task_Type_Declaration
7059 -- Use clauses can appear in lists of declarations
7061 | N_Use_Package_Clause
7064 -- Freeze entity behaves like a declaration or statement
7067 | N_Freeze_Generic_Entity
7069 -- Do not insert here if the item is not a list member (this
7070 -- happens for example with a triggering statement, and the
7071 -- proper approach is to insert before the entire select).
7073 if not Is_List_Member
(P
) then
7076 -- Do not insert if parent of P is an N_Component_Association
7077 -- node (i.e. we are in the context of an N_Aggregate or
7078 -- N_Extension_Aggregate node. In this case we want to insert
7079 -- before the entire aggregate.
7081 elsif Nkind
(Parent
(P
)) = N_Component_Association
then
7084 -- Do not insert if the parent of P is either an N_Variant node
7085 -- or an N_Record_Definition node, meaning in either case that
7086 -- P is a member of a component list, and that therefore the
7087 -- actions should be inserted outside the complete record
7090 elsif Nkind_In
(Parent
(P
), N_Variant
, N_Record_Definition
) then
7093 -- Do not insert freeze nodes within the loop generated for
7094 -- an aggregate, because they may be elaborated too late for
7095 -- subsequent use in the back end: within a package spec the
7096 -- loop is part of the elaboration procedure and is only
7097 -- elaborated during the second pass.
7099 -- If the loop comes from source, or the entity is local to the
7100 -- loop itself it must remain within.
7102 elsif Nkind
(Parent
(P
)) = N_Loop_Statement
7103 and then not Comes_From_Source
(Parent
(P
))
7104 and then Nkind
(First
(Ins_Actions
)) = N_Freeze_Entity
7106 Scope
(Entity
(First
(Ins_Actions
))) /= Current_Scope
7110 -- Otherwise we can go ahead and do the insertion
7112 elsif P
= Wrapped_Node
then
7113 Store_Before_Actions_In_Scope
(Ins_Actions
);
7117 Insert_List_Before_And_Analyze
(P
, Ins_Actions
);
7121 -- A special case, N_Raise_xxx_Error can act either as a statement
7122 -- or a subexpression. We tell the difference by looking at the
7123 -- Etype. It is set to Standard_Void_Type in the statement case.
7125 when N_Raise_xxx_Error
=>
7126 if Etype
(P
) = Standard_Void_Type
then
7127 if P
= Wrapped_Node
then
7128 Store_Before_Actions_In_Scope
(Ins_Actions
);
7130 Insert_List_Before_And_Analyze
(P
, Ins_Actions
);
7135 -- In the subexpression case, keep climbing
7141 -- If a component association appears within a loop created for
7142 -- an array aggregate, attach the actions to the association so
7143 -- they can be subsequently inserted within the loop. For other
7144 -- component associations insert outside of the aggregate. For
7145 -- an association that will generate a loop, its Loop_Actions
7146 -- attribute is already initialized (see exp_aggr.adb).
7148 -- The list of Loop_Actions can in turn generate additional ones,
7149 -- that are inserted before the associated node. If the associated
7150 -- node is outside the aggregate, the new actions are collected
7151 -- at the end of the Loop_Actions, to respect the order in which
7152 -- they are to be elaborated.
7154 when N_Component_Association
7155 | N_Iterated_Component_Association
7157 if Nkind
(Parent
(P
)) = N_Aggregate
7158 and then Present
(Loop_Actions
(P
))
7160 if Is_Empty_List
(Loop_Actions
(P
)) then
7161 Set_Loop_Actions
(P
, Ins_Actions
);
7162 Analyze_List
(Ins_Actions
);
7168 -- Check whether these actions were generated by a
7169 -- declaration that is part of the Loop_Actions for
7170 -- the component_association.
7173 while Present
(Decl
) loop
7174 exit when Parent
(Decl
) = P
7175 and then Is_List_Member
(Decl
)
7177 List_Containing
(Decl
) = Loop_Actions
(P
);
7178 Decl
:= Parent
(Decl
);
7181 if Present
(Decl
) then
7182 Insert_List_Before_And_Analyze
7183 (Decl
, Ins_Actions
);
7185 Insert_List_After_And_Analyze
7186 (Last
(Loop_Actions
(P
)), Ins_Actions
);
7197 -- Special case: an attribute denoting a procedure call
7199 when N_Attribute_Reference
=>
7200 if Is_Procedure_Attribute_Name
(Attribute_Name
(P
)) then
7201 if P
= Wrapped_Node
then
7202 Store_Before_Actions_In_Scope
(Ins_Actions
);
7204 Insert_List_Before_And_Analyze
(P
, Ins_Actions
);
7209 -- In the subexpression case, keep climbing
7215 -- Special case: a marker
7218 | N_Variable_Reference_Marker
7220 if Is_List_Member
(P
) then
7221 Insert_List_Before_And_Analyze
(P
, Ins_Actions
);
7225 -- A contract node should not belong to the tree
7228 raise Program_Error
;
7230 -- For all other node types, keep climbing tree
7232 when N_Abortable_Part
7233 | N_Accept_Alternative
7234 | N_Access_Definition
7235 | N_Access_Function_Definition
7236 | N_Access_Procedure_Definition
7237 | N_Access_To_Object_Definition
7240 | N_Aspect_Specification
7242 | N_Case_Statement_Alternative
7243 | N_Character_Literal
7244 | N_Compilation_Unit
7245 | N_Compilation_Unit_Aux
7246 | N_Component_Clause
7247 | N_Component_Declaration
7248 | N_Component_Definition
7250 | N_Constrained_Array_Definition
7251 | N_Decimal_Fixed_Point_Definition
7252 | N_Defining_Character_Literal
7253 | N_Defining_Identifier
7254 | N_Defining_Operator_Symbol
7255 | N_Defining_Program_Unit_Name
7256 | N_Delay_Alternative
7258 | N_Delta_Constraint
7259 | N_Derived_Type_Definition
7261 | N_Digits_Constraint
7262 | N_Discriminant_Association
7263 | N_Discriminant_Specification
7265 | N_Entry_Body_Formal_Part
7266 | N_Entry_Call_Alternative
7267 | N_Entry_Declaration
7268 | N_Entry_Index_Specification
7269 | N_Enumeration_Type_Definition
7271 | N_Exception_Handler
7273 | N_Explicit_Dereference
7274 | N_Extension_Aggregate
7275 | N_Floating_Point_Definition
7276 | N_Formal_Decimal_Fixed_Point_Definition
7277 | N_Formal_Derived_Type_Definition
7278 | N_Formal_Discrete_Type_Definition
7279 | N_Formal_Floating_Point_Definition
7280 | N_Formal_Modular_Type_Definition
7281 | N_Formal_Ordinary_Fixed_Point_Definition
7282 | N_Formal_Package_Declaration
7283 | N_Formal_Private_Type_Definition
7284 | N_Formal_Incomplete_Type_Definition
7285 | N_Formal_Signed_Integer_Type_Definition
7287 | N_Function_Specification
7288 | N_Generic_Association
7289 | N_Handled_Sequence_Of_Statements
7292 | N_Index_Or_Discriminant_Constraint
7293 | N_Indexed_Component
7295 | N_Iterator_Specification
7298 | N_Loop_Parameter_Specification
7300 | N_Modular_Type_Definition
7326 | N_Op_Shift_Right_Arithmetic
7330 | N_Ordinary_Fixed_Point_Definition
7332 | N_Package_Specification
7333 | N_Parameter_Association
7334 | N_Parameter_Specification
7335 | N_Pop_Constraint_Error_Label
7336 | N_Pop_Program_Error_Label
7337 | N_Pop_Storage_Error_Label
7338 | N_Pragma_Argument_Association
7339 | N_Procedure_Specification
7340 | N_Protected_Definition
7341 | N_Push_Constraint_Error_Label
7342 | N_Push_Program_Error_Label
7343 | N_Push_Storage_Error_Label
7344 | N_Qualified_Expression
7345 | N_Quantified_Expression
7346 | N_Raise_Expression
7348 | N_Range_Constraint
7350 | N_Real_Range_Specification
7351 | N_Record_Definition
7352 | N_Reduction_Expression
7353 | N_Reduction_Expression_Parameter
7355 | N_SCIL_Dispatch_Table_Tag_Init
7356 | N_SCIL_Dispatching_Call
7357 | N_SCIL_Membership_Test
7358 | N_Selected_Component
7359 | N_Signed_Integer_Type_Definition
7360 | N_Single_Protected_Declaration
7363 | N_Subtype_Indication
7367 | N_Terminate_Alternative
7368 | N_Triggering_Alternative
7370 | N_Unchecked_Expression
7371 | N_Unchecked_Type_Conversion
7372 | N_Unconstrained_Array_Definition
7377 | N_Validate_Unchecked_Conversion
7383 -- If we fall through above tests, keep climbing tree
7387 if Nkind
(Parent
(N
)) = N_Subunit
then
7389 -- This is the proper body corresponding to a stub. Insertion must
7390 -- be done at the point of the stub, which is in the declarative
7391 -- part of the parent unit.
7393 P
:= Corresponding_Stub
(Parent
(N
));
7401 -- Version with check(s) suppressed
7403 procedure Insert_Actions
7404 (Assoc_Node
: Node_Id
;
7405 Ins_Actions
: List_Id
;
7406 Suppress
: Check_Id
)
7409 if Suppress
= All_Checks
then
7411 Sva
: constant Suppress_Array
:= Scope_Suppress
.Suppress
;
7413 Scope_Suppress
.Suppress
:= (others => True);
7414 Insert_Actions
(Assoc_Node
, Ins_Actions
);
7415 Scope_Suppress
.Suppress
:= Sva
;
7420 Svg
: constant Boolean := Scope_Suppress
.Suppress
(Suppress
);
7422 Scope_Suppress
.Suppress
(Suppress
) := True;
7423 Insert_Actions
(Assoc_Node
, Ins_Actions
);
7424 Scope_Suppress
.Suppress
(Suppress
) := Svg
;
7429 --------------------------
7430 -- Insert_Actions_After --
7431 --------------------------
7433 procedure Insert_Actions_After
7434 (Assoc_Node
: Node_Id
;
7435 Ins_Actions
: List_Id
)
7438 if Scope_Is_Transient
and then Assoc_Node
= Node_To_Be_Wrapped
then
7439 Store_After_Actions_In_Scope
(Ins_Actions
);
7441 Insert_List_After_And_Analyze
(Assoc_Node
, Ins_Actions
);
7443 end Insert_Actions_After
;
7445 ------------------------
7446 -- Insert_Declaration --
7447 ------------------------
7449 procedure Insert_Declaration
(N
: Node_Id
; Decl
: Node_Id
) is
7453 pragma Assert
(Nkind
(N
) in N_Subexpr
);
7455 -- Climb until we find a procedure or a package
7459 pragma Assert
(Present
(Parent
(P
)));
7462 if Is_List_Member
(P
) then
7463 exit when Nkind_In
(Parent
(P
), N_Package_Specification
,
7466 -- Special handling for handled sequence of statements, we must
7467 -- insert in the statements not the exception handlers!
7469 if Nkind
(Parent
(P
)) = N_Handled_Sequence_Of_Statements
then
7470 P
:= First
(Statements
(Parent
(P
)));
7476 -- Now do the insertion
7478 Insert_Before
(P
, Decl
);
7480 end Insert_Declaration
;
7482 ---------------------------------
7483 -- Insert_Library_Level_Action --
7484 ---------------------------------
7486 procedure Insert_Library_Level_Action
(N
: Node_Id
) is
7487 Aux
: constant Node_Id
:= Aux_Decls_Node
(Cunit
(Main_Unit
));
7490 Push_Scope
(Cunit_Entity
(Current_Sem_Unit
));
7491 -- And not Main_Unit as previously. If the main unit is a body,
7492 -- the scope needed to analyze the actions is the entity of the
7493 -- corresponding declaration.
7495 if No
(Actions
(Aux
)) then
7496 Set_Actions
(Aux
, New_List
(N
));
7498 Append
(N
, Actions
(Aux
));
7503 end Insert_Library_Level_Action
;
7505 ----------------------------------
7506 -- Insert_Library_Level_Actions --
7507 ----------------------------------
7509 procedure Insert_Library_Level_Actions
(L
: List_Id
) is
7510 Aux
: constant Node_Id
:= Aux_Decls_Node
(Cunit
(Main_Unit
));
7513 if Is_Non_Empty_List
(L
) then
7514 Push_Scope
(Cunit_Entity
(Main_Unit
));
7515 -- ??? should this be Current_Sem_Unit instead of Main_Unit?
7517 if No
(Actions
(Aux
)) then
7518 Set_Actions
(Aux
, L
);
7521 Insert_List_After_And_Analyze
(Last
(Actions
(Aux
)), L
);
7526 end Insert_Library_Level_Actions
;
7528 ----------------------
7529 -- Inside_Init_Proc --
7530 ----------------------
7532 function Inside_Init_Proc
return Boolean is
7537 while Present
(S
) and then S
/= Standard_Standard
loop
7538 if Is_Init_Proc
(S
) then
7546 end Inside_Init_Proc
;
7548 ----------------------------
7549 -- Is_All_Null_Statements --
7550 ----------------------------
7552 function Is_All_Null_Statements
(L
: List_Id
) return Boolean is
7557 while Present
(Stm
) loop
7558 if Nkind
(Stm
) /= N_Null_Statement
then
7566 end Is_All_Null_Statements
;
7568 --------------------------------------------------
7569 -- Is_Displacement_Of_Object_Or_Function_Result --
7570 --------------------------------------------------
7572 function Is_Displacement_Of_Object_Or_Function_Result
7573 (Obj_Id
: Entity_Id
) return Boolean
7575 function Is_Controlled_Function_Call
(N
: Node_Id
) return Boolean;
7576 -- Determine whether node N denotes a controlled function call
7578 function Is_Controlled_Indexing
(N
: Node_Id
) return Boolean;
7579 -- Determine whether node N denotes a generalized indexing form which
7580 -- involves a controlled result.
7582 function Is_Displace_Call
(N
: Node_Id
) return Boolean;
7583 -- Determine whether node N denotes a call to Ada.Tags.Displace
7585 function Is_Source_Object
(N
: Node_Id
) return Boolean;
7586 -- Determine whether a particular node denotes a source object
7588 function Strip
(N
: Node_Id
) return Node_Id
;
7589 -- Examine arbitrary node N by stripping various indirections and return
7592 ---------------------------------
7593 -- Is_Controlled_Function_Call --
7594 ---------------------------------
7596 function Is_Controlled_Function_Call
(N
: Node_Id
) return Boolean is
7600 -- When a function call appears in Object.Operation format, the
7601 -- original representation has several possible forms depending on
7602 -- the availability and form of actual parameters:
7604 -- Obj.Func N_Selected_Component
7605 -- Obj.Func (Actual) N_Indexed_Component
7606 -- Obj.Func (Formal => Actual) N_Function_Call, whose Name is an
7607 -- N_Selected_Component
7609 Expr
:= Original_Node
(N
);
7611 if Nkind
(Expr
) = N_Function_Call
then
7612 Expr
:= Name
(Expr
);
7614 -- "Obj.Func (Actual)" case
7616 elsif Nkind
(Expr
) = N_Indexed_Component
then
7617 Expr
:= Prefix
(Expr
);
7619 -- "Obj.Func" or "Obj.Func (Formal => Actual) case
7621 elsif Nkind
(Expr
) = N_Selected_Component
then
7622 Expr
:= Selector_Name
(Expr
);
7630 Nkind
(Expr
) in N_Has_Entity
7631 and then Present
(Entity
(Expr
))
7632 and then Ekind
(Entity
(Expr
)) = E_Function
7633 and then Needs_Finalization
(Etype
(Entity
(Expr
)));
7634 end Is_Controlled_Function_Call
;
7636 ----------------------------
7637 -- Is_Controlled_Indexing --
7638 ----------------------------
7640 function Is_Controlled_Indexing
(N
: Node_Id
) return Boolean is
7641 Expr
: constant Node_Id
:= Original_Node
(N
);
7645 Nkind
(Expr
) = N_Indexed_Component
7646 and then Present
(Generalized_Indexing
(Expr
))
7647 and then Needs_Finalization
(Etype
(Expr
));
7648 end Is_Controlled_Indexing
;
7650 ----------------------
7651 -- Is_Displace_Call --
7652 ----------------------
7654 function Is_Displace_Call
(N
: Node_Id
) return Boolean is
7655 Call
: constant Node_Id
:= Strip
(N
);
7660 and then Nkind
(Call
) = N_Function_Call
7661 and then Nkind
(Name
(Call
)) in N_Has_Entity
7662 and then Is_RTE
(Entity
(Name
(Call
)), RE_Displace
);
7663 end Is_Displace_Call
;
7665 ----------------------
7666 -- Is_Source_Object --
7667 ----------------------
7669 function Is_Source_Object
(N
: Node_Id
) return Boolean is
7670 Obj
: constant Node_Id
:= Strip
(N
);
7675 and then Comes_From_Source
(Obj
)
7676 and then Nkind
(Obj
) in N_Has_Entity
7677 and then Is_Object
(Entity
(Obj
));
7678 end Is_Source_Object
;
7684 function Strip
(N
: Node_Id
) return Node_Id
is
7690 if Nkind
(Result
) = N_Explicit_Dereference
then
7691 Result
:= Prefix
(Result
);
7693 elsif Nkind_In
(Result
, N_Type_Conversion
,
7694 N_Unchecked_Type_Conversion
)
7696 Result
:= Expression
(Result
);
7708 Obj_Decl
: constant Node_Id
:= Declaration_Node
(Obj_Id
);
7709 Obj_Typ
: constant Entity_Id
:= Base_Type
(Etype
(Obj_Id
));
7710 Orig_Decl
: constant Node_Id
:= Original_Node
(Obj_Decl
);
7711 Orig_Expr
: Node_Id
;
7713 -- Start of processing for Is_Displacement_Of_Object_Or_Function_Result
7718 -- Obj : CW_Type := Function_Call (...);
7720 -- is rewritten into:
7722 -- Temp : ... := Function_Call (...)'reference;
7723 -- Obj : CW_Type renames (... Ada.Tags.Displace (Temp));
7725 -- where the return type of the function and the class-wide type require
7726 -- dispatch table pointer displacement.
7730 -- Obj : CW_Type := Container (...);
7732 -- is rewritten into:
7734 -- Temp : ... := Function_Call (Container, ...)'reference;
7735 -- Obj : CW_Type renames (... Ada.Tags.Displace (Temp));
7737 -- where the container element type and the class-wide type require
7738 -- dispatch table pointer dispacement.
7742 -- Obj : CW_Type := Src_Obj;
7744 -- is rewritten into:
7746 -- Obj : CW_Type renames (... Ada.Tags.Displace (Src_Obj));
7748 -- where the type of the source object and the class-wide type require
7749 -- dispatch table pointer displacement.
7751 if Nkind
(Obj_Decl
) = N_Object_Renaming_Declaration
7752 and then Is_Class_Wide_Type
(Obj_Typ
)
7753 and then Is_Displace_Call
(Renamed_Object
(Obj_Id
))
7754 and then Nkind
(Orig_Decl
) = N_Object_Declaration
7755 and then Comes_From_Source
(Orig_Decl
)
7757 Orig_Expr
:= Expression
(Orig_Decl
);
7760 Is_Controlled_Function_Call
(Orig_Expr
)
7761 or else Is_Controlled_Indexing
(Orig_Expr
)
7762 or else Is_Source_Object
(Orig_Expr
);
7766 end Is_Displacement_Of_Object_Or_Function_Result
;
7768 ------------------------------
7769 -- Is_Finalizable_Transient --
7770 ------------------------------
7772 function Is_Finalizable_Transient
7774 Rel_Node
: Node_Id
) return Boolean
7776 Obj_Id
: constant Entity_Id
:= Defining_Identifier
(Decl
);
7777 Obj_Typ
: constant Entity_Id
:= Base_Type
(Etype
(Obj_Id
));
7779 function Initialized_By_Access
(Trans_Id
: Entity_Id
) return Boolean;
7780 -- Determine whether transient object Trans_Id is initialized either
7781 -- by a function call which returns an access type or simply renames
7784 function Initialized_By_Aliased_BIP_Func_Call
7785 (Trans_Id
: Entity_Id
) return Boolean;
7786 -- Determine whether transient object Trans_Id is initialized by a
7787 -- build-in-place function call where the BIPalloc parameter is of
7788 -- value 1 and BIPaccess is not null. This case creates an aliasing
7789 -- between the returned value and the value denoted by BIPaccess.
7792 (Trans_Id
: Entity_Id
;
7793 First_Stmt
: Node_Id
) return Boolean;
7794 -- Determine whether transient object Trans_Id has been renamed or
7795 -- aliased through 'reference in the statement list starting from
7798 function Is_Allocated
(Trans_Id
: Entity_Id
) return Boolean;
7799 -- Determine whether transient object Trans_Id is allocated on the heap
7801 function Is_Iterated_Container
7802 (Trans_Id
: Entity_Id
;
7803 First_Stmt
: Node_Id
) return Boolean;
7804 -- Determine whether transient object Trans_Id denotes a container which
7805 -- is in the process of being iterated in the statement list starting
7808 ---------------------------
7809 -- Initialized_By_Access --
7810 ---------------------------
7812 function Initialized_By_Access
(Trans_Id
: Entity_Id
) return Boolean is
7813 Expr
: constant Node_Id
:= Expression
(Parent
(Trans_Id
));
7818 and then Nkind
(Expr
) /= N_Reference
7819 and then Is_Access_Type
(Etype
(Expr
));
7820 end Initialized_By_Access
;
7822 ------------------------------------------
7823 -- Initialized_By_Aliased_BIP_Func_Call --
7824 ------------------------------------------
7826 function Initialized_By_Aliased_BIP_Func_Call
7827 (Trans_Id
: Entity_Id
) return Boolean
7829 Call
: Node_Id
:= Expression
(Parent
(Trans_Id
));
7832 -- Build-in-place calls usually appear in 'reference format
7834 if Nkind
(Call
) = N_Reference
then
7835 Call
:= Prefix
(Call
);
7838 Call
:= Unqual_Conv
(Call
);
7840 if Is_Build_In_Place_Function_Call
(Call
) then
7842 Access_Nam
: Name_Id
:= No_Name
;
7843 Access_OK
: Boolean := False;
7845 Alloc_Nam
: Name_Id
:= No_Name
;
7846 Alloc_OK
: Boolean := False;
7848 Func_Id
: Entity_Id
;
7852 -- Examine all parameter associations of the function call
7854 Param
:= First
(Parameter_Associations
(Call
));
7855 while Present
(Param
) loop
7856 if Nkind
(Param
) = N_Parameter_Association
7857 and then Nkind
(Selector_Name
(Param
)) = N_Identifier
7859 Actual
:= Explicit_Actual_Parameter
(Param
);
7860 Formal
:= Selector_Name
(Param
);
7862 -- Construct the names of formals BIPaccess and BIPalloc
7863 -- using the function name retrieved from an arbitrary
7866 if Access_Nam
= No_Name
7867 and then Alloc_Nam
= No_Name
7868 and then Present
(Entity
(Formal
))
7870 Func_Id
:= Scope
(Entity
(Formal
));
7873 New_External_Name
(Chars
(Func_Id
),
7874 BIP_Formal_Suffix
(BIP_Object_Access
));
7877 New_External_Name
(Chars
(Func_Id
),
7878 BIP_Formal_Suffix
(BIP_Alloc_Form
));
7881 -- A match for BIPaccess => Temp has been found
7883 if Chars
(Formal
) = Access_Nam
7884 and then Nkind
(Actual
) /= N_Null
7889 -- A match for BIPalloc => 1 has been found
7891 if Chars
(Formal
) = Alloc_Nam
7892 and then Nkind
(Actual
) = N_Integer_Literal
7893 and then Intval
(Actual
) = Uint_1
7902 return Access_OK
and Alloc_OK
;
7907 end Initialized_By_Aliased_BIP_Func_Call
;
7914 (Trans_Id
: Entity_Id
;
7915 First_Stmt
: Node_Id
) return Boolean
7917 function Find_Renamed_Object
(Ren_Decl
: Node_Id
) return Entity_Id
;
7918 -- Given an object renaming declaration, retrieve the entity of the
7919 -- renamed name. Return Empty if the renamed name is anything other
7920 -- than a variable or a constant.
7922 -------------------------
7923 -- Find_Renamed_Object --
7924 -------------------------
7926 function Find_Renamed_Object
(Ren_Decl
: Node_Id
) return Entity_Id
is
7927 Ren_Obj
: Node_Id
:= Empty
;
7929 function Find_Object
(N
: Node_Id
) return Traverse_Result
;
7930 -- Try to detect an object which is either a constant or a
7937 function Find_Object
(N
: Node_Id
) return Traverse_Result
is
7939 -- Stop the search once a constant or a variable has been
7942 if Nkind
(N
) = N_Identifier
7943 and then Present
(Entity
(N
))
7944 and then Ekind_In
(Entity
(N
), E_Constant
, E_Variable
)
7946 Ren_Obj
:= Entity
(N
);
7953 procedure Search
is new Traverse_Proc
(Find_Object
);
7957 Typ
: constant Entity_Id
:= Etype
(Defining_Identifier
(Ren_Decl
));
7959 -- Start of processing for Find_Renamed_Object
7962 -- Actions related to dispatching calls may appear as renamings of
7963 -- tags. Do not process this type of renaming because it does not
7964 -- use the actual value of the object.
7966 if not Is_RTE
(Typ
, RE_Tag_Ptr
) then
7967 Search
(Name
(Ren_Decl
));
7971 end Find_Renamed_Object
;
7976 Ren_Obj
: Entity_Id
;
7979 -- Start of processing for Is_Aliased
7982 -- A controlled transient object is not considered aliased when it
7983 -- appears inside an expression_with_actions node even when there are
7984 -- explicit aliases of it:
7987 -- Trans_Id : Ctrl_Typ ...; -- transient object
7988 -- Alias : ... := Trans_Id; -- object is aliased
7989 -- Val : constant Boolean :=
7990 -- ... Alias ...; -- aliasing ends
7991 -- <finalize Trans_Id> -- object safe to finalize
7994 -- Expansion ensures that all aliases are encapsulated in the actions
7995 -- list and do not leak to the expression by forcing the evaluation
7996 -- of the expression.
7998 if Nkind
(Rel_Node
) = N_Expression_With_Actions
then
8001 -- Otherwise examine the statements after the controlled transient
8002 -- object and look for various forms of aliasing.
8006 while Present
(Stmt
) loop
8007 if Nkind
(Stmt
) = N_Object_Declaration
then
8008 Expr
:= Expression
(Stmt
);
8010 -- Aliasing of the form:
8011 -- Obj : ... := Trans_Id'reference;
8014 and then Nkind
(Expr
) = N_Reference
8015 and then Nkind
(Prefix
(Expr
)) = N_Identifier
8016 and then Entity
(Prefix
(Expr
)) = Trans_Id
8021 elsif Nkind
(Stmt
) = N_Object_Renaming_Declaration
then
8022 Ren_Obj
:= Find_Renamed_Object
(Stmt
);
8024 -- Aliasing of the form:
8025 -- Obj : ... renames ... Trans_Id ...;
8027 if Present
(Ren_Obj
) and then Ren_Obj
= Trans_Id
then
8043 function Is_Allocated
(Trans_Id
: Entity_Id
) return Boolean is
8044 Expr
: constant Node_Id
:= Expression
(Parent
(Trans_Id
));
8047 Is_Access_Type
(Etype
(Trans_Id
))
8048 and then Present
(Expr
)
8049 and then Nkind
(Expr
) = N_Allocator
;
8052 ---------------------------
8053 -- Is_Iterated_Container --
8054 ---------------------------
8056 function Is_Iterated_Container
8057 (Trans_Id
: Entity_Id
;
8058 First_Stmt
: Node_Id
) return Boolean
8068 -- It is not possible to iterate over containers in non-Ada 2012 code
8070 if Ada_Version
< Ada_2012
then
8074 Typ
:= Etype
(Trans_Id
);
8076 -- Handle access type created for secondary stack use
8078 if Is_Access_Type
(Typ
) then
8079 Typ
:= Designated_Type
(Typ
);
8082 -- Look for aspect Default_Iterator. It may be part of a type
8083 -- declaration for a container, or inherited from a base type
8086 Aspect
:= Find_Value_Of_Aspect
(Typ
, Aspect_Default_Iterator
);
8088 if Present
(Aspect
) then
8089 Iter
:= Entity
(Aspect
);
8091 -- Examine the statements following the container object and
8092 -- look for a call to the default iterate routine where the
8093 -- first parameter is the transient. Such a call appears as:
8095 -- It : Access_To_CW_Iterator :=
8096 -- Iterate (Tran_Id.all, ...)'reference;
8099 while Present
(Stmt
) loop
8101 -- Detect an object declaration which is initialized by a
8102 -- secondary stack function call.
8104 if Nkind
(Stmt
) = N_Object_Declaration
8105 and then Present
(Expression
(Stmt
))
8106 and then Nkind
(Expression
(Stmt
)) = N_Reference
8107 and then Nkind
(Prefix
(Expression
(Stmt
))) = N_Function_Call
8109 Call
:= Prefix
(Expression
(Stmt
));
8111 -- The call must invoke the default iterate routine of
8112 -- the container and the transient object must appear as
8113 -- the first actual parameter. Skip any calls whose names
8114 -- are not entities.
8116 if Is_Entity_Name
(Name
(Call
))
8117 and then Entity
(Name
(Call
)) = Iter
8118 and then Present
(Parameter_Associations
(Call
))
8120 Param
:= First
(Parameter_Associations
(Call
));
8122 if Nkind
(Param
) = N_Explicit_Dereference
8123 and then Entity
(Prefix
(Param
)) = Trans_Id
8135 end Is_Iterated_Container
;
8139 Desig
: Entity_Id
:= Obj_Typ
;
8141 -- Start of processing for Is_Finalizable_Transient
8144 -- Handle access types
8146 if Is_Access_Type
(Desig
) then
8147 Desig
:= Available_View
(Designated_Type
(Desig
));
8151 Ekind_In
(Obj_Id
, E_Constant
, E_Variable
)
8152 and then Needs_Finalization
(Desig
)
8153 and then Requires_Transient_Scope
(Desig
)
8154 and then Nkind
(Rel_Node
) /= N_Simple_Return_Statement
8156 -- Do not consider a transient object that was already processed
8158 and then not Is_Finalized_Transient
(Obj_Id
)
8160 -- Do not consider renamed or 'reference-d transient objects because
8161 -- the act of renaming extends the object's lifetime.
8163 and then not Is_Aliased
(Obj_Id
, Decl
)
8165 -- Do not consider transient objects allocated on the heap since
8166 -- they are attached to a finalization master.
8168 and then not Is_Allocated
(Obj_Id
)
8170 -- If the transient object is a pointer, check that it is not
8171 -- initialized by a function that returns a pointer or acts as a
8172 -- renaming of another pointer.
8175 (not Is_Access_Type
(Obj_Typ
)
8176 or else not Initialized_By_Access
(Obj_Id
))
8178 -- Do not consider transient objects which act as indirect aliases
8179 -- of build-in-place function results.
8181 and then not Initialized_By_Aliased_BIP_Func_Call
(Obj_Id
)
8183 -- Do not consider conversions of tags to class-wide types
8185 and then not Is_Tag_To_Class_Wide_Conversion
(Obj_Id
)
8187 -- Do not consider iterators because those are treated as normal
8188 -- controlled objects and are processed by the usual finalization
8189 -- machinery. This avoids the double finalization of an iterator.
8191 and then not Is_Iterator
(Desig
)
8193 -- Do not consider containers in the context of iterator loops. Such
8194 -- transient objects must exist for as long as the loop is around,
8195 -- otherwise any operation carried out by the iterator will fail.
8197 and then not Is_Iterated_Container
(Obj_Id
, Decl
);
8198 end Is_Finalizable_Transient
;
8200 ---------------------------------
8201 -- Is_Fully_Repped_Tagged_Type --
8202 ---------------------------------
8204 function Is_Fully_Repped_Tagged_Type
(T
: Entity_Id
) return Boolean is
8205 U
: constant Entity_Id
:= Underlying_Type
(T
);
8209 if No
(U
) or else not Is_Tagged_Type
(U
) then
8211 elsif Has_Discriminants
(U
) then
8213 elsif not Has_Specified_Layout
(U
) then
8217 -- Here we have a tagged type, see if it has any unlayed out fields
8218 -- other than a possible tag and parent fields. If so, we return False.
8220 Comp
:= First_Component
(U
);
8221 while Present
(Comp
) loop
8222 if not Is_Tag
(Comp
)
8223 and then Chars
(Comp
) /= Name_uParent
8224 and then No
(Component_Clause
(Comp
))
8228 Next_Component
(Comp
);
8232 -- All components are layed out
8235 end Is_Fully_Repped_Tagged_Type
;
8237 ----------------------------------
8238 -- Is_Library_Level_Tagged_Type --
8239 ----------------------------------
8241 function Is_Library_Level_Tagged_Type
(Typ
: Entity_Id
) return Boolean is
8243 return Is_Tagged_Type
(Typ
) and then Is_Library_Level_Entity
(Typ
);
8244 end Is_Library_Level_Tagged_Type
;
8246 --------------------------
8247 -- Is_Non_BIP_Func_Call --
8248 --------------------------
8250 function Is_Non_BIP_Func_Call
(Expr
: Node_Id
) return Boolean is
8252 -- The expected call is of the format
8254 -- Func_Call'reference
8257 Nkind
(Expr
) = N_Reference
8258 and then Nkind
(Prefix
(Expr
)) = N_Function_Call
8259 and then not Is_Build_In_Place_Function_Call
(Prefix
(Expr
));
8260 end Is_Non_BIP_Func_Call
;
8262 ----------------------------------
8263 -- Is_Possibly_Unaligned_Object --
8264 ----------------------------------
8266 function Is_Possibly_Unaligned_Object
(N
: Node_Id
) return Boolean is
8267 T
: constant Entity_Id
:= Etype
(N
);
8270 -- If renamed object, apply test to underlying object
8272 if Is_Entity_Name
(N
)
8273 and then Is_Object
(Entity
(N
))
8274 and then Present
(Renamed_Object
(Entity
(N
)))
8276 return Is_Possibly_Unaligned_Object
(Renamed_Object
(Entity
(N
)));
8279 -- Tagged and controlled types and aliased types are always aligned, as
8280 -- are concurrent types.
8283 or else Has_Controlled_Component
(T
)
8284 or else Is_Concurrent_Type
(T
)
8285 or else Is_Tagged_Type
(T
)
8286 or else Is_Controlled
(T
)
8291 -- If this is an element of a packed array, may be unaligned
8293 if Is_Ref_To_Bit_Packed_Array
(N
) then
8297 -- Case of indexed component reference: test whether prefix is unaligned
8299 if Nkind
(N
) = N_Indexed_Component
then
8300 return Is_Possibly_Unaligned_Object
(Prefix
(N
));
8302 -- Case of selected component reference
8304 elsif Nkind
(N
) = N_Selected_Component
then
8306 P
: constant Node_Id
:= Prefix
(N
);
8307 C
: constant Entity_Id
:= Entity
(Selector_Name
(N
));
8312 -- If component reference is for an array with non-static bounds,
8313 -- then it is always aligned: we can only process unaligned arrays
8314 -- with static bounds (more precisely compile time known bounds).
8316 if Is_Array_Type
(T
)
8317 and then not Compile_Time_Known_Bounds
(T
)
8322 -- If component is aliased, it is definitely properly aligned
8324 if Is_Aliased
(C
) then
8328 -- If component is for a type implemented as a scalar, and the
8329 -- record is packed, and the component is other than the first
8330 -- component of the record, then the component may be unaligned.
8332 if Is_Packed
(Etype
(P
))
8333 and then Represented_As_Scalar
(Etype
(C
))
8334 and then First_Entity
(Scope
(C
)) /= C
8339 -- Compute maximum possible alignment for T
8341 -- If alignment is known, then that settles things
8343 if Known_Alignment
(T
) then
8344 M
:= UI_To_Int
(Alignment
(T
));
8346 -- If alignment is not known, tentatively set max alignment
8349 M
:= Ttypes
.Maximum_Alignment
;
8351 -- We can reduce this if the Esize is known since the default
8352 -- alignment will never be more than the smallest power of 2
8353 -- that does not exceed this Esize value.
8355 if Known_Esize
(T
) then
8356 S
:= UI_To_Int
(Esize
(T
));
8358 while (M
/ 2) >= S
loop
8364 -- The following code is historical, it used to be present but it
8365 -- is too cautious, because the front-end does not know the proper
8366 -- default alignments for the target. Also, if the alignment is
8367 -- not known, the front end can't know in any case. If a copy is
8368 -- needed, the back-end will take care of it. This whole section
8369 -- including this comment can be removed later ???
8371 -- If the component reference is for a record that has a specified
8372 -- alignment, and we either know it is too small, or cannot tell,
8373 -- then the component may be unaligned.
8375 -- What is the following commented out code ???
8377 -- if Known_Alignment (Etype (P))
8378 -- and then Alignment (Etype (P)) < Ttypes.Maximum_Alignment
8379 -- and then M > Alignment (Etype (P))
8384 -- Case of component clause present which may specify an
8385 -- unaligned position.
8387 if Present
(Component_Clause
(C
)) then
8389 -- Otherwise we can do a test to make sure that the actual
8390 -- start position in the record, and the length, are both
8391 -- consistent with the required alignment. If not, we know
8392 -- that we are unaligned.
8395 Align_In_Bits
: constant Nat
:= M
* System_Storage_Unit
;
8397 if Component_Bit_Offset
(C
) mod Align_In_Bits
/= 0
8398 or else Esize
(C
) mod Align_In_Bits
/= 0
8405 -- Otherwise, for a component reference, test prefix
8407 return Is_Possibly_Unaligned_Object
(P
);
8410 -- If not a component reference, must be aligned
8415 end Is_Possibly_Unaligned_Object
;
8417 ---------------------------------
8418 -- Is_Possibly_Unaligned_Slice --
8419 ---------------------------------
8421 function Is_Possibly_Unaligned_Slice
(N
: Node_Id
) return Boolean is
8423 -- Go to renamed object
8425 if Is_Entity_Name
(N
)
8426 and then Is_Object
(Entity
(N
))
8427 and then Present
(Renamed_Object
(Entity
(N
)))
8429 return Is_Possibly_Unaligned_Slice
(Renamed_Object
(Entity
(N
)));
8432 -- The reference must be a slice
8434 if Nkind
(N
) /= N_Slice
then
8438 -- We only need to worry if the target has strict alignment
8440 if not Target_Strict_Alignment
then
8444 -- If it is a slice, then look at the array type being sliced
8447 Sarr
: constant Node_Id
:= Prefix
(N
);
8448 -- Prefix of the slice, i.e. the array being sliced
8450 Styp
: constant Entity_Id
:= Etype
(Prefix
(N
));
8451 -- Type of the array being sliced
8457 -- The problems arise if the array object that is being sliced
8458 -- is a component of a record or array, and we cannot guarantee
8459 -- the alignment of the array within its containing object.
8461 -- To investigate this, we look at successive prefixes to see
8462 -- if we have a worrisome indexed or selected component.
8466 -- Case of array is part of an indexed component reference
8468 if Nkind
(Pref
) = N_Indexed_Component
then
8469 Ptyp
:= Etype
(Prefix
(Pref
));
8471 -- The only problematic case is when the array is packed, in
8472 -- which case we really know nothing about the alignment of
8473 -- individual components.
8475 if Is_Bit_Packed_Array
(Ptyp
) then
8479 -- Case of array is part of a selected component reference
8481 elsif Nkind
(Pref
) = N_Selected_Component
then
8482 Ptyp
:= Etype
(Prefix
(Pref
));
8484 -- We are definitely in trouble if the record in question
8485 -- has an alignment, and either we know this alignment is
8486 -- inconsistent with the alignment of the slice, or we don't
8487 -- know what the alignment of the slice should be.
8489 if Known_Alignment
(Ptyp
)
8490 and then (Unknown_Alignment
(Styp
)
8491 or else Alignment
(Styp
) > Alignment
(Ptyp
))
8496 -- We are in potential trouble if the record type is packed.
8497 -- We could special case when we know that the array is the
8498 -- first component, but that's not such a simple case ???
8500 if Is_Packed
(Ptyp
) then
8504 -- We are in trouble if there is a component clause, and
8505 -- either we do not know the alignment of the slice, or
8506 -- the alignment of the slice is inconsistent with the
8507 -- bit position specified by the component clause.
8510 Field
: constant Entity_Id
:= Entity
(Selector_Name
(Pref
));
8512 if Present
(Component_Clause
(Field
))
8514 (Unknown_Alignment
(Styp
)
8516 (Component_Bit_Offset
(Field
) mod
8517 (System_Storage_Unit
* Alignment
(Styp
))) /= 0)
8523 -- For cases other than selected or indexed components we know we
8524 -- are OK, since no issues arise over alignment.
8530 -- We processed an indexed component or selected component
8531 -- reference that looked safe, so keep checking prefixes.
8533 Pref
:= Prefix
(Pref
);
8536 end Is_Possibly_Unaligned_Slice
;
8538 -------------------------------
8539 -- Is_Related_To_Func_Return --
8540 -------------------------------
8542 function Is_Related_To_Func_Return
(Id
: Entity_Id
) return Boolean is
8543 Expr
: constant Node_Id
:= Related_Expression
(Id
);
8547 and then Nkind
(Expr
) = N_Explicit_Dereference
8548 and then Nkind
(Parent
(Expr
)) = N_Simple_Return_Statement
;
8549 end Is_Related_To_Func_Return
;
8551 --------------------------------
8552 -- Is_Ref_To_Bit_Packed_Array --
8553 --------------------------------
8555 function Is_Ref_To_Bit_Packed_Array
(N
: Node_Id
) return Boolean is
8560 if Is_Entity_Name
(N
)
8561 and then Is_Object
(Entity
(N
))
8562 and then Present
(Renamed_Object
(Entity
(N
)))
8564 return Is_Ref_To_Bit_Packed_Array
(Renamed_Object
(Entity
(N
)));
8567 if Nkind_In
(N
, N_Indexed_Component
, N_Selected_Component
) then
8568 if Is_Bit_Packed_Array
(Etype
(Prefix
(N
))) then
8571 Result
:= Is_Ref_To_Bit_Packed_Array
(Prefix
(N
));
8574 if Result
and then Nkind
(N
) = N_Indexed_Component
then
8575 Expr
:= First
(Expressions
(N
));
8576 while Present
(Expr
) loop
8577 Force_Evaluation
(Expr
);
8587 end Is_Ref_To_Bit_Packed_Array
;
8589 --------------------------------
8590 -- Is_Ref_To_Bit_Packed_Slice --
8591 --------------------------------
8593 function Is_Ref_To_Bit_Packed_Slice
(N
: Node_Id
) return Boolean is
8595 if Nkind
(N
) = N_Type_Conversion
then
8596 return Is_Ref_To_Bit_Packed_Slice
(Expression
(N
));
8598 elsif Is_Entity_Name
(N
)
8599 and then Is_Object
(Entity
(N
))
8600 and then Present
(Renamed_Object
(Entity
(N
)))
8602 return Is_Ref_To_Bit_Packed_Slice
(Renamed_Object
(Entity
(N
)));
8604 elsif Nkind
(N
) = N_Slice
8605 and then Is_Bit_Packed_Array
(Etype
(Prefix
(N
)))
8609 elsif Nkind_In
(N
, N_Indexed_Component
, N_Selected_Component
) then
8610 return Is_Ref_To_Bit_Packed_Slice
(Prefix
(N
));
8615 end Is_Ref_To_Bit_Packed_Slice
;
8617 -----------------------
8618 -- Is_Renamed_Object --
8619 -----------------------
8621 function Is_Renamed_Object
(N
: Node_Id
) return Boolean is
8622 Pnod
: constant Node_Id
:= Parent
(N
);
8623 Kind
: constant Node_Kind
:= Nkind
(Pnod
);
8625 if Kind
= N_Object_Renaming_Declaration
then
8627 elsif Nkind_In
(Kind
, N_Indexed_Component
, N_Selected_Component
) then
8628 return Is_Renamed_Object
(Pnod
);
8632 end Is_Renamed_Object
;
8634 --------------------------------------
8635 -- Is_Secondary_Stack_BIP_Func_Call --
8636 --------------------------------------
8638 function Is_Secondary_Stack_BIP_Func_Call
(Expr
: Node_Id
) return Boolean is
8639 Alloc_Nam
: Name_Id
:= No_Name
;
8641 Call
: Node_Id
:= Expr
;
8646 -- Build-in-place calls usually appear in 'reference format. Note that
8647 -- the accessibility check machinery may add an extra 'reference due to
8648 -- side effect removal.
8650 while Nkind
(Call
) = N_Reference
loop
8651 Call
:= Prefix
(Call
);
8654 Call
:= Unqual_Conv
(Call
);
8656 if Is_Build_In_Place_Function_Call
(Call
) then
8658 -- Examine all parameter associations of the function call
8660 Param
:= First
(Parameter_Associations
(Call
));
8661 while Present
(Param
) loop
8662 if Nkind
(Param
) = N_Parameter_Association
then
8663 Formal
:= Selector_Name
(Param
);
8664 Actual
:= Explicit_Actual_Parameter
(Param
);
8666 -- Construct the name of formal BIPalloc. It is much easier to
8667 -- extract the name of the function using an arbitrary formal's
8668 -- scope rather than the Name field of Call.
8670 if Alloc_Nam
= No_Name
and then Present
(Entity
(Formal
)) then
8673 (Chars
(Scope
(Entity
(Formal
))),
8674 BIP_Formal_Suffix
(BIP_Alloc_Form
));
8677 -- A match for BIPalloc => 2 has been found
8679 if Chars
(Formal
) = Alloc_Nam
8680 and then Nkind
(Actual
) = N_Integer_Literal
8681 and then Intval
(Actual
) = Uint_2
8692 end Is_Secondary_Stack_BIP_Func_Call
;
8694 -------------------------------------
8695 -- Is_Tag_To_Class_Wide_Conversion --
8696 -------------------------------------
8698 function Is_Tag_To_Class_Wide_Conversion
8699 (Obj_Id
: Entity_Id
) return Boolean
8701 Expr
: constant Node_Id
:= Expression
(Parent
(Obj_Id
));
8705 Is_Class_Wide_Type
(Etype
(Obj_Id
))
8706 and then Present
(Expr
)
8707 and then Nkind
(Expr
) = N_Unchecked_Type_Conversion
8708 and then Etype
(Expression
(Expr
)) = RTE
(RE_Tag
);
8709 end Is_Tag_To_Class_Wide_Conversion
;
8711 ----------------------------
8712 -- Is_Untagged_Derivation --
8713 ----------------------------
8715 function Is_Untagged_Derivation
(T
: Entity_Id
) return Boolean is
8717 return (not Is_Tagged_Type
(T
) and then Is_Derived_Type
(T
))
8719 (Is_Private_Type
(T
) and then Present
(Full_View
(T
))
8720 and then not Is_Tagged_Type
(Full_View
(T
))
8721 and then Is_Derived_Type
(Full_View
(T
))
8722 and then Etype
(Full_View
(T
)) /= T
);
8723 end Is_Untagged_Derivation
;
8725 ------------------------------------
8726 -- Is_Untagged_Private_Derivation --
8727 ------------------------------------
8729 function Is_Untagged_Private_Derivation
8730 (Priv_Typ
: Entity_Id
;
8731 Full_Typ
: Entity_Id
) return Boolean
8736 and then Is_Untagged_Derivation
(Priv_Typ
)
8737 and then Is_Private_Type
(Etype
(Priv_Typ
))
8738 and then Present
(Full_Typ
)
8739 and then Is_Itype
(Full_Typ
);
8740 end Is_Untagged_Private_Derivation
;
8742 ------------------------------
8743 -- Is_Verifiable_DIC_Pragma --
8744 ------------------------------
8746 function Is_Verifiable_DIC_Pragma
(Prag
: Node_Id
) return Boolean is
8747 Args
: constant List_Id
:= Pragma_Argument_Associations
(Prag
);
8750 -- To qualify as verifiable, a DIC pragma must have a non-null argument
8754 and then Nkind
(Get_Pragma_Arg
(First
(Args
))) /= N_Null
;
8755 end Is_Verifiable_DIC_Pragma
;
8757 ---------------------------
8758 -- Is_Volatile_Reference --
8759 ---------------------------
8761 function Is_Volatile_Reference
(N
: Node_Id
) return Boolean is
8763 -- Only source references are to be treated as volatile, internally
8764 -- generated stuff cannot have volatile external effects.
8766 if not Comes_From_Source
(N
) then
8769 -- Never true for reference to a type
8771 elsif Is_Entity_Name
(N
) and then Is_Type
(Entity
(N
)) then
8774 -- Never true for a compile time known constant
8776 elsif Compile_Time_Known_Value
(N
) then
8779 -- True if object reference with volatile type
8781 elsif Is_Volatile_Object
(N
) then
8784 -- True if reference to volatile entity
8786 elsif Is_Entity_Name
(N
) then
8787 return Treat_As_Volatile
(Entity
(N
));
8789 -- True for slice of volatile array
8791 elsif Nkind
(N
) = N_Slice
then
8792 return Is_Volatile_Reference
(Prefix
(N
));
8794 -- True if volatile component
8796 elsif Nkind_In
(N
, N_Indexed_Component
, N_Selected_Component
) then
8797 if (Is_Entity_Name
(Prefix
(N
))
8798 and then Has_Volatile_Components
(Entity
(Prefix
(N
))))
8799 or else (Present
(Etype
(Prefix
(N
)))
8800 and then Has_Volatile_Components
(Etype
(Prefix
(N
))))
8804 return Is_Volatile_Reference
(Prefix
(N
));
8812 end Is_Volatile_Reference
;
8814 --------------------
8815 -- Kill_Dead_Code --
8816 --------------------
8818 procedure Kill_Dead_Code
(N
: Node_Id
; Warn
: Boolean := False) is
8819 W
: Boolean := Warn
;
8820 -- Set False if warnings suppressed
8824 Remove_Warning_Messages
(N
);
8826 -- Update the internal structures of the ABE mechanism in case the
8827 -- dead node is an elaboration scenario.
8829 Kill_Elaboration_Scenario
(N
);
8831 -- Generate warning if appropriate
8835 -- We suppress the warning if this code is under control of an
8836 -- if statement, whose condition is a simple identifier, and
8837 -- either we are in an instance, or warnings off is set for this
8838 -- identifier. The reason for killing it in the instance case is
8839 -- that it is common and reasonable for code to be deleted in
8840 -- instances for various reasons.
8842 -- Could we use Is_Statically_Unevaluated here???
8844 if Nkind
(Parent
(N
)) = N_If_Statement
then
8846 C
: constant Node_Id
:= Condition
(Parent
(N
));
8848 if Nkind
(C
) = N_Identifier
8851 or else (Present
(Entity
(C
))
8852 and then Has_Warnings_Off
(Entity
(C
))))
8859 -- Generate warning if not suppressed
8863 ("?t?this code can never be executed and has been deleted!",
8868 -- Recurse into block statements and bodies to process declarations
8871 if Nkind
(N
) = N_Block_Statement
8872 or else Nkind
(N
) = N_Subprogram_Body
8873 or else Nkind
(N
) = N_Package_Body
8875 Kill_Dead_Code
(Declarations
(N
), False);
8876 Kill_Dead_Code
(Statements
(Handled_Statement_Sequence
(N
)));
8878 if Nkind
(N
) = N_Subprogram_Body
then
8879 Set_Is_Eliminated
(Defining_Entity
(N
));
8882 elsif Nkind
(N
) = N_Package_Declaration
then
8883 Kill_Dead_Code
(Visible_Declarations
(Specification
(N
)));
8884 Kill_Dead_Code
(Private_Declarations
(Specification
(N
)));
8886 -- ??? After this point, Delete_Tree has been called on all
8887 -- declarations in Specification (N), so references to entities
8888 -- therein look suspicious.
8891 E
: Entity_Id
:= First_Entity
(Defining_Entity
(N
));
8894 while Present
(E
) loop
8895 if Ekind
(E
) = E_Operator
then
8896 Set_Is_Eliminated
(E
);
8903 -- Recurse into composite statement to kill individual statements in
8904 -- particular instantiations.
8906 elsif Nkind
(N
) = N_If_Statement
then
8907 Kill_Dead_Code
(Then_Statements
(N
));
8908 Kill_Dead_Code
(Elsif_Parts
(N
));
8909 Kill_Dead_Code
(Else_Statements
(N
));
8911 elsif Nkind
(N
) = N_Loop_Statement
then
8912 Kill_Dead_Code
(Statements
(N
));
8914 elsif Nkind
(N
) = N_Case_Statement
then
8918 Alt
:= First
(Alternatives
(N
));
8919 while Present
(Alt
) loop
8920 Kill_Dead_Code
(Statements
(Alt
));
8925 elsif Nkind
(N
) = N_Case_Statement_Alternative
then
8926 Kill_Dead_Code
(Statements
(N
));
8928 -- Deal with dead instances caused by deleting instantiations
8930 elsif Nkind
(N
) in N_Generic_Instantiation
then
8931 Remove_Dead_Instance
(N
);
8936 -- Case where argument is a list of nodes to be killed
8938 procedure Kill_Dead_Code
(L
: List_Id
; Warn
: Boolean := False) is
8945 if Is_Non_Empty_List
(L
) then
8947 while Present
(N
) loop
8948 Kill_Dead_Code
(N
, W
);
8955 ------------------------
8956 -- Known_Non_Negative --
8957 ------------------------
8959 function Known_Non_Negative
(Opnd
: Node_Id
) return Boolean is
8961 if Is_OK_Static_Expression
(Opnd
) and then Expr_Value
(Opnd
) >= 0 then
8966 Lo
: constant Node_Id
:= Type_Low_Bound
(Etype
(Opnd
));
8969 Is_OK_Static_Expression
(Lo
) and then Expr_Value
(Lo
) >= 0;
8972 end Known_Non_Negative
;
8974 -----------------------------
8975 -- Make_CW_Equivalent_Type --
8976 -----------------------------
8978 -- Create a record type used as an equivalent of any member of the class
8979 -- which takes its size from exp.
8981 -- Generate the following code:
8983 -- type Equiv_T is record
8984 -- _parent : T (List of discriminant constraints taken from Exp);
8985 -- Ext__50 : Storage_Array (1 .. (Exp'size - Typ'object_size)/8);
8988 -- ??? Note that this type does not guarantee same alignment as all
8991 function Make_CW_Equivalent_Type
8993 E
: Node_Id
) return Entity_Id
8995 Loc
: constant Source_Ptr
:= Sloc
(E
);
8996 Root_Typ
: constant Entity_Id
:= Root_Type
(T
);
8997 List_Def
: constant List_Id
:= Empty_List
;
8998 Comp_List
: constant List_Id
:= New_List
;
8999 Equiv_Type
: Entity_Id
;
9000 Range_Type
: Entity_Id
;
9001 Str_Type
: Entity_Id
;
9002 Constr_Root
: Entity_Id
;
9006 -- If the root type is already constrained, there are no discriminants
9007 -- in the expression.
9009 if not Has_Discriminants
(Root_Typ
)
9010 or else Is_Constrained
(Root_Typ
)
9012 Constr_Root
:= Root_Typ
;
9014 -- At this point in the expansion, non-limited view of the type
9015 -- must be available, otherwise the error will be reported later.
9017 if From_Limited_With
(Constr_Root
)
9018 and then Present
(Non_Limited_View
(Constr_Root
))
9020 Constr_Root
:= Non_Limited_View
(Constr_Root
);
9024 Constr_Root
:= Make_Temporary
(Loc
, 'R');
9026 -- subtype cstr__n is T (List of discr constraints taken from Exp)
9028 Append_To
(List_Def
,
9029 Make_Subtype_Declaration
(Loc
,
9030 Defining_Identifier
=> Constr_Root
,
9031 Subtype_Indication
=> Make_Subtype_From_Expr
(E
, Root_Typ
)));
9034 -- Generate the range subtype declaration
9036 Range_Type
:= Make_Temporary
(Loc
, 'G');
9038 if not Is_Interface
(Root_Typ
) then
9040 -- subtype rg__xx is
9041 -- Storage_Offset range 1 .. (Expr'size - typ'size) / Storage_Unit
9044 Make_Op_Subtract
(Loc
,
9046 Make_Attribute_Reference
(Loc
,
9048 OK_Convert_To
(T
, Duplicate_Subexpr_No_Checks
(E
)),
9049 Attribute_Name
=> Name_Size
),
9051 Make_Attribute_Reference
(Loc
,
9052 Prefix
=> New_Occurrence_Of
(Constr_Root
, Loc
),
9053 Attribute_Name
=> Name_Object_Size
));
9055 -- subtype rg__xx is
9056 -- Storage_Offset range 1 .. Expr'size / Storage_Unit
9059 Make_Attribute_Reference
(Loc
,
9061 OK_Convert_To
(T
, Duplicate_Subexpr_No_Checks
(E
)),
9062 Attribute_Name
=> Name_Size
);
9065 Set_Paren_Count
(Sizexpr
, 1);
9067 Append_To
(List_Def
,
9068 Make_Subtype_Declaration
(Loc
,
9069 Defining_Identifier
=> Range_Type
,
9070 Subtype_Indication
=>
9071 Make_Subtype_Indication
(Loc
,
9072 Subtype_Mark
=> New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
),
9073 Constraint
=> Make_Range_Constraint
(Loc
,
9076 Low_Bound
=> Make_Integer_Literal
(Loc
, 1),
9078 Make_Op_Divide
(Loc
,
9079 Left_Opnd
=> Sizexpr
,
9080 Right_Opnd
=> Make_Integer_Literal
(Loc
,
9081 Intval
=> System_Storage_Unit
)))))));
9083 -- subtype str__nn is Storage_Array (rg__x);
9085 Str_Type
:= Make_Temporary
(Loc
, 'S');
9086 Append_To
(List_Def
,
9087 Make_Subtype_Declaration
(Loc
,
9088 Defining_Identifier
=> Str_Type
,
9089 Subtype_Indication
=>
9090 Make_Subtype_Indication
(Loc
,
9091 Subtype_Mark
=> New_Occurrence_Of
(RTE
(RE_Storage_Array
), Loc
),
9093 Make_Index_Or_Discriminant_Constraint
(Loc
,
9095 New_List
(New_Occurrence_Of
(Range_Type
, Loc
))))));
9097 -- type Equiv_T is record
9098 -- [ _parent : Tnn; ]
9102 Equiv_Type
:= Make_Temporary
(Loc
, 'T');
9103 Set_Ekind
(Equiv_Type
, E_Record_Type
);
9104 Set_Parent_Subtype
(Equiv_Type
, Constr_Root
);
9106 -- Set Is_Class_Wide_Equivalent_Type very early to trigger the special
9107 -- treatment for this type. In particular, even though _parent's type
9108 -- is a controlled type or contains controlled components, we do not
9109 -- want to set Has_Controlled_Component on it to avoid making it gain
9110 -- an unwanted _controller component.
9112 Set_Is_Class_Wide_Equivalent_Type
(Equiv_Type
);
9114 -- A class-wide equivalent type does not require initialization
9116 Set_Suppress_Initialization
(Equiv_Type
);
9118 if not Is_Interface
(Root_Typ
) then
9119 Append_To
(Comp_List
,
9120 Make_Component_Declaration
(Loc
,
9121 Defining_Identifier
=>
9122 Make_Defining_Identifier
(Loc
, Name_uParent
),
9123 Component_Definition
=>
9124 Make_Component_Definition
(Loc
,
9125 Aliased_Present
=> False,
9126 Subtype_Indication
=> New_Occurrence_Of
(Constr_Root
, Loc
))));
9129 Append_To
(Comp_List
,
9130 Make_Component_Declaration
(Loc
,
9131 Defining_Identifier
=> Make_Temporary
(Loc
, 'C'),
9132 Component_Definition
=>
9133 Make_Component_Definition
(Loc
,
9134 Aliased_Present
=> False,
9135 Subtype_Indication
=> New_Occurrence_Of
(Str_Type
, Loc
))));
9137 Append_To
(List_Def
,
9138 Make_Full_Type_Declaration
(Loc
,
9139 Defining_Identifier
=> Equiv_Type
,
9141 Make_Record_Definition
(Loc
,
9143 Make_Component_List
(Loc
,
9144 Component_Items
=> Comp_List
,
9145 Variant_Part
=> Empty
))));
9147 -- Suppress all checks during the analysis of the expanded code to avoid
9148 -- the generation of spurious warnings under ZFP run-time.
9150 Insert_Actions
(E
, List_Def
, Suppress
=> All_Checks
);
9152 end Make_CW_Equivalent_Type
;
9154 -------------------------
9155 -- Make_Invariant_Call --
9156 -------------------------
9158 function Make_Invariant_Call
(Expr
: Node_Id
) return Node_Id
is
9159 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
9160 Typ
: constant Entity_Id
:= Base_Type
(Etype
(Expr
));
9162 Proc_Id
: Entity_Id
;
9165 pragma Assert
(Has_Invariants
(Typ
));
9167 Proc_Id
:= Invariant_Procedure
(Typ
);
9168 pragma Assert
(Present
(Proc_Id
));
9171 Make_Procedure_Call_Statement
(Loc
,
9172 Name
=> New_Occurrence_Of
(Proc_Id
, Loc
),
9173 Parameter_Associations
=> New_List
(Relocate_Node
(Expr
)));
9174 end Make_Invariant_Call
;
9176 ------------------------
9177 -- Make_Literal_Range --
9178 ------------------------
9180 function Make_Literal_Range
9182 Literal_Typ
: Entity_Id
) return Node_Id
9184 Lo
: constant Node_Id
:=
9185 New_Copy_Tree
(String_Literal_Low_Bound
(Literal_Typ
));
9186 Index
: constant Entity_Id
:= Etype
(Lo
);
9187 Length_Expr
: constant Node_Id
:=
9188 Make_Op_Subtract
(Loc
,
9190 Make_Integer_Literal
(Loc
,
9191 Intval
=> String_Literal_Length
(Literal_Typ
)),
9192 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1));
9197 Set_Analyzed
(Lo
, False);
9199 if Is_Integer_Type
(Index
) then
9202 Left_Opnd
=> New_Copy_Tree
(Lo
),
9203 Right_Opnd
=> Length_Expr
);
9206 Make_Attribute_Reference
(Loc
,
9207 Attribute_Name
=> Name_Val
,
9208 Prefix
=> New_Occurrence_Of
(Index
, Loc
),
9209 Expressions
=> New_List
(
9212 Make_Attribute_Reference
(Loc
,
9213 Attribute_Name
=> Name_Pos
,
9214 Prefix
=> New_Occurrence_Of
(Index
, Loc
),
9215 Expressions
=> New_List
(New_Copy_Tree
(Lo
))),
9216 Right_Opnd
=> Length_Expr
)));
9223 end Make_Literal_Range
;
9225 --------------------------
9226 -- Make_Non_Empty_Check --
9227 --------------------------
9229 function Make_Non_Empty_Check
9231 N
: Node_Id
) return Node_Id
9237 Make_Attribute_Reference
(Loc
,
9238 Attribute_Name
=> Name_Length
,
9239 Prefix
=> Duplicate_Subexpr_No_Checks
(N
, Name_Req
=> True)),
9241 Make_Integer_Literal
(Loc
, 0));
9242 end Make_Non_Empty_Check
;
9244 -------------------------
9245 -- Make_Predicate_Call --
9246 -------------------------
9248 -- WARNING: This routine manages Ghost regions. Return statements must be
9249 -- replaced by gotos which jump to the end of the routine and restore the
9252 function Make_Predicate_Call
9255 Mem
: Boolean := False) return Node_Id
9257 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
9259 Saved_GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
9260 -- Save the Ghost mode to restore on exit
9263 Func_Id
: Entity_Id
;
9266 pragma Assert
(Present
(Predicate_Function
(Typ
)));
9268 -- The related type may be subject to pragma Ghost. Set the mode now to
9269 -- ensure that the call is properly marked as Ghost.
9271 Set_Ghost_Mode
(Typ
);
9273 -- Call special membership version if requested and available
9275 if Mem
and then Present
(Predicate_Function_M
(Typ
)) then
9276 Func_Id
:= Predicate_Function_M
(Typ
);
9278 Func_Id
:= Predicate_Function
(Typ
);
9281 -- Case of calling normal predicate function
9283 -- If the type is tagged, the expression may be class-wide, in which
9284 -- case it has to be converted to its root type, given that the
9285 -- generated predicate function is not dispatching.
9287 if Is_Tagged_Type
(Typ
) then
9289 Make_Function_Call
(Loc
,
9290 Name
=> New_Occurrence_Of
(Func_Id
, Loc
),
9291 Parameter_Associations
=>
9292 New_List
(Convert_To
(Typ
, Relocate_Node
(Expr
))));
9295 Make_Function_Call
(Loc
,
9296 Name
=> New_Occurrence_Of
(Func_Id
, Loc
),
9297 Parameter_Associations
=> New_List
(Relocate_Node
(Expr
)));
9300 Restore_Ghost_Mode
(Saved_GM
);
9303 end Make_Predicate_Call
;
9305 --------------------------
9306 -- Make_Predicate_Check --
9307 --------------------------
9309 function Make_Predicate_Check
9311 Expr
: Node_Id
) return Node_Id
9313 Loc
: constant Source_Ptr
:= Sloc
(Expr
);
9315 procedure Add_Failure_Expression
(Args
: List_Id
);
9316 -- Add the failure expression of pragma Predicate_Failure (if any) to
9319 ----------------------------
9320 -- Add_Failure_Expression --
9321 ----------------------------
9323 procedure Add_Failure_Expression
(Args
: List_Id
) is
9324 function Failure_Expression
return Node_Id
;
9325 pragma Inline
(Failure_Expression
);
9326 -- Find aspect or pragma Predicate_Failure that applies to type Typ
9327 -- and return its expression. Return Empty if no such annotation is
9330 function Is_OK_PF_Aspect
(Asp
: Node_Id
) return Boolean;
9331 pragma Inline
(Is_OK_PF_Aspect
);
9332 -- Determine whether aspect Asp is a suitable Predicate_Failure
9333 -- aspect that applies to type Typ.
9335 function Is_OK_PF_Pragma
(Prag
: Node_Id
) return Boolean;
9336 pragma Inline
(Is_OK_PF_Pragma
);
9337 -- Determine whether pragma Prag is a suitable Predicate_Failure
9338 -- pragma that applies to type Typ.
9340 procedure Replace_Subtype_Reference
(N
: Node_Id
);
9341 -- Replace the current instance of type Typ denoted by N with
9344 ------------------------
9345 -- Failure_Expression --
9346 ------------------------
9348 function Failure_Expression
return Node_Id
is
9352 -- The management of the rep item chain involves "inheritance" of
9353 -- parent type chains. If a parent [sub]type is already subject to
9354 -- pragma Predicate_Failure, then the pragma will also appear in
9355 -- the chain of the child [sub]type, which in turn may possess a
9356 -- pragma of its own. Avoid order-dependent issues by inspecting
9357 -- the rep item chain directly. Note that routine Get_Pragma may
9358 -- return a parent pragma.
9360 Item
:= First_Rep_Item
(Typ
);
9361 while Present
(Item
) loop
9363 -- Predicate_Failure appears as an aspect
9365 if Nkind
(Item
) = N_Aspect_Specification
9366 and then Is_OK_PF_Aspect
(Item
)
9368 return Expression
(Item
);
9370 -- Predicate_Failure appears as a pragma
9372 elsif Nkind
(Item
) = N_Pragma
9373 and then Is_OK_PF_Pragma
(Item
)
9377 (Next
(First
(Pragma_Argument_Associations
(Item
))));
9380 Item
:= Next_Rep_Item
(Item
);
9384 end Failure_Expression
;
9386 ---------------------
9387 -- Is_OK_PF_Aspect --
9388 ---------------------
9390 function Is_OK_PF_Aspect
(Asp
: Node_Id
) return Boolean is
9392 -- To qualify, the aspect must apply to the type subjected to the
9396 Chars
(Identifier
(Asp
)) = Name_Predicate_Failure
9397 and then Present
(Entity
(Asp
))
9398 and then Entity
(Asp
) = Typ
;
9399 end Is_OK_PF_Aspect
;
9401 ---------------------
9402 -- Is_OK_PF_Pragma --
9403 ---------------------
9405 function Is_OK_PF_Pragma
(Prag
: Node_Id
) return Boolean is
9406 Args
: constant List_Id
:= Pragma_Argument_Associations
(Prag
);
9410 -- Nothing to do when the pragma does not denote Predicate_Failure
9412 if Pragma_Name
(Prag
) /= Name_Predicate_Failure
then
9415 -- Nothing to do when the pragma lacks arguments, in which case it
9418 elsif No
(Args
) or else Is_Empty_List
(Args
) then
9422 Typ_Arg
:= Get_Pragma_Arg
(First
(Args
));
9424 -- To qualify, the local name argument of the pragma must denote
9425 -- the type subjected to the predicate check.
9428 Is_Entity_Name
(Typ_Arg
)
9429 and then Present
(Entity
(Typ_Arg
))
9430 and then Entity
(Typ_Arg
) = Typ
;
9431 end Is_OK_PF_Pragma
;
9433 --------------------------------
9434 -- Replace_Subtype_Reference --
9435 --------------------------------
9437 procedure Replace_Subtype_Reference
(N
: Node_Id
) is
9439 Rewrite
(N
, New_Copy_Tree
(Expr
));
9441 -- We want to treat the node as if it comes from source, so that
9442 -- ASIS will not ignore it.
9444 Set_Comes_From_Source
(N
, True);
9445 end Replace_Subtype_Reference
;
9447 procedure Replace_Subtype_References
is
9448 new Replace_Type_References_Generic
(Replace_Subtype_Reference
);
9452 PF_Expr
: constant Node_Id
:= Failure_Expression
;
9455 -- Start of processing for Add_Failure_Expression
9458 if Present
(PF_Expr
) then
9460 -- Replace any occurrences of the current instance of the type
9461 -- with the object subjected to the predicate check.
9463 Expr
:= New_Copy_Tree
(PF_Expr
);
9464 Replace_Subtype_References
(Expr
, Typ
);
9466 -- The failure expression appears as the third argument of the
9470 Make_Pragma_Argument_Association
(Loc
,
9471 Expression
=> Expr
));
9473 end Add_Failure_Expression
;
9480 -- Start of processing for Make_Predicate_Check
9483 -- If predicate checks are suppressed, then return a null statement. For
9484 -- this call, we check only the scope setting. If the caller wants to
9485 -- check a specific entity's setting, they must do it manually.
9487 if Predicate_Checks_Suppressed
(Empty
) then
9488 return Make_Null_Statement
(Loc
);
9491 -- Do not generate a check within an internal subprogram (stream
9492 -- functions and the like, including including predicate functions).
9494 if Within_Internal_Subprogram
then
9495 return Make_Null_Statement
(Loc
);
9498 -- Compute proper name to use, we need to get this right so that the
9499 -- right set of check policies apply to the Check pragma we are making.
9501 if Has_Dynamic_Predicate_Aspect
(Typ
) then
9502 Nam
:= Name_Dynamic_Predicate
;
9503 elsif Has_Static_Predicate_Aspect
(Typ
) then
9504 Nam
:= Name_Static_Predicate
;
9506 Nam
:= Name_Predicate
;
9510 Make_Pragma_Argument_Association
(Loc
,
9511 Expression
=> Make_Identifier
(Loc
, Nam
)),
9512 Make_Pragma_Argument_Association
(Loc
,
9513 Expression
=> Make_Predicate_Call
(Typ
, Expr
)));
9515 -- If the subtype is subject to pragma Predicate_Failure, add the
9516 -- failure expression as an additional parameter.
9518 Add_Failure_Expression
(Args
);
9522 Chars
=> Name_Check
,
9523 Pragma_Argument_Associations
=> Args
);
9524 end Make_Predicate_Check
;
9526 ----------------------------
9527 -- Make_Subtype_From_Expr --
9528 ----------------------------
9530 -- 1. If Expr is an unconstrained array expression, creates
9531 -- Unc_Type(Expr'first(1)..Expr'last(1),..., Expr'first(n)..Expr'last(n))
9533 -- 2. If Expr is a unconstrained discriminated type expression, creates
9534 -- Unc_Type(Expr.Discr1, ... , Expr.Discr_n)
9536 -- 3. If Expr is class-wide, creates an implicit class-wide subtype
9538 function Make_Subtype_From_Expr
9540 Unc_Typ
: Entity_Id
;
9541 Related_Id
: Entity_Id
:= Empty
) return Node_Id
9543 List_Constr
: constant List_Id
:= New_List
;
9544 Loc
: constant Source_Ptr
:= Sloc
(E
);
9547 Full_Subtyp
: Entity_Id
;
9548 High_Bound
: Entity_Id
;
9549 Index_Typ
: Entity_Id
;
9550 Low_Bound
: Entity_Id
;
9551 Priv_Subtyp
: Entity_Id
;
9555 if Is_Private_Type
(Unc_Typ
)
9556 and then Has_Unknown_Discriminants
(Unc_Typ
)
9558 -- The caller requests a unique external name for both the private
9559 -- and the full subtype.
9561 if Present
(Related_Id
) then
9563 Make_Defining_Identifier
(Loc
,
9564 Chars
=> New_External_Name
(Chars
(Related_Id
), 'C'));
9566 Make_Defining_Identifier
(Loc
,
9567 Chars
=> New_External_Name
(Chars
(Related_Id
), 'P'));
9570 Full_Subtyp
:= Make_Temporary
(Loc
, 'C');
9571 Priv_Subtyp
:= Make_Temporary
(Loc
, 'P');
9574 -- Prepare the subtype completion. Use the base type to find the
9575 -- underlying type because the type may be a generic actual or an
9576 -- explicit subtype.
9578 Utyp
:= Underlying_Type
(Base_Type
(Unc_Typ
));
9581 Unchecked_Convert_To
(Utyp
, Duplicate_Subexpr_No_Checks
(E
));
9582 Set_Parent
(Full_Exp
, Parent
(E
));
9585 Make_Subtype_Declaration
(Loc
,
9586 Defining_Identifier
=> Full_Subtyp
,
9587 Subtype_Indication
=> Make_Subtype_From_Expr
(Full_Exp
, Utyp
)));
9589 -- Define the dummy private subtype
9591 Set_Ekind
(Priv_Subtyp
, Subtype_Kind
(Ekind
(Unc_Typ
)));
9592 Set_Etype
(Priv_Subtyp
, Base_Type
(Unc_Typ
));
9593 Set_Scope
(Priv_Subtyp
, Full_Subtyp
);
9594 Set_Is_Constrained
(Priv_Subtyp
);
9595 Set_Is_Tagged_Type
(Priv_Subtyp
, Is_Tagged_Type
(Unc_Typ
));
9596 Set_Is_Itype
(Priv_Subtyp
);
9597 Set_Associated_Node_For_Itype
(Priv_Subtyp
, E
);
9599 if Is_Tagged_Type
(Priv_Subtyp
) then
9601 (Base_Type
(Priv_Subtyp
), Class_Wide_Type
(Unc_Typ
));
9602 Set_Direct_Primitive_Operations
(Priv_Subtyp
,
9603 Direct_Primitive_Operations
(Unc_Typ
));
9606 Set_Full_View
(Priv_Subtyp
, Full_Subtyp
);
9608 return New_Occurrence_Of
(Priv_Subtyp
, Loc
);
9610 elsif Is_Array_Type
(Unc_Typ
) then
9611 Index_Typ
:= First_Index
(Unc_Typ
);
9612 for J
in 1 .. Number_Dimensions
(Unc_Typ
) loop
9614 -- Capture the bounds of each index constraint in case the context
9615 -- is an object declaration of an unconstrained type initialized
9616 -- by a function call:
9618 -- Obj : Unconstr_Typ := Func_Call;
9620 -- This scenario requires secondary scope management and the index
9621 -- constraint cannot depend on the temporary used to capture the
9622 -- result of the function call.
9625 -- Temp : Unconstr_Typ_Ptr := Func_Call'reference;
9626 -- subtype S is Unconstr_Typ (Temp.all'First .. Temp.all'Last);
9627 -- Obj : S := Temp.all;
9628 -- SS_Release; -- Temp is gone at this point, bounds of S are
9632 -- Low_Bound : constant Base_Type (Index_Typ) := E'First (J);
9634 Low_Bound
:= Make_Temporary
(Loc
, 'B');
9636 Make_Object_Declaration
(Loc
,
9637 Defining_Identifier
=> Low_Bound
,
9638 Object_Definition
=>
9639 New_Occurrence_Of
(Base_Type
(Etype
(Index_Typ
)), Loc
),
9640 Constant_Present
=> True,
9642 Make_Attribute_Reference
(Loc
,
9643 Prefix
=> Duplicate_Subexpr_No_Checks
(E
),
9644 Attribute_Name
=> Name_First
,
9645 Expressions
=> New_List
(
9646 Make_Integer_Literal
(Loc
, J
)))));
9649 -- High_Bound : constant Base_Type (Index_Typ) := E'Last (J);
9651 High_Bound
:= Make_Temporary
(Loc
, 'B');
9653 Make_Object_Declaration
(Loc
,
9654 Defining_Identifier
=> High_Bound
,
9655 Object_Definition
=>
9656 New_Occurrence_Of
(Base_Type
(Etype
(Index_Typ
)), Loc
),
9657 Constant_Present
=> True,
9659 Make_Attribute_Reference
(Loc
,
9660 Prefix
=> Duplicate_Subexpr_No_Checks
(E
),
9661 Attribute_Name
=> Name_Last
,
9662 Expressions
=> New_List
(
9663 Make_Integer_Literal
(Loc
, J
)))));
9665 Append_To
(List_Constr
,
9667 Low_Bound
=> New_Occurrence_Of
(Low_Bound
, Loc
),
9668 High_Bound
=> New_Occurrence_Of
(High_Bound
, Loc
)));
9670 Index_Typ
:= Next_Index
(Index_Typ
);
9673 elsif Is_Class_Wide_Type
(Unc_Typ
) then
9675 CW_Subtype
: Entity_Id
;
9676 EQ_Typ
: Entity_Id
:= Empty
;
9679 -- A class-wide equivalent type is not needed on VM targets
9680 -- because the VM back-ends handle the class-wide object
9681 -- initialization itself (and doesn't need or want the
9682 -- additional intermediate type to handle the assignment).
9684 if Expander_Active
and then Tagged_Type_Expansion
then
9686 -- If this is the class-wide type of a completion that is a
9687 -- record subtype, set the type of the class-wide type to be
9688 -- the full base type, for use in the expanded code for the
9689 -- equivalent type. Should this be done earlier when the
9690 -- completion is analyzed ???
9692 if Is_Private_Type
(Etype
(Unc_Typ
))
9694 Ekind
(Full_View
(Etype
(Unc_Typ
))) = E_Record_Subtype
9696 Set_Etype
(Unc_Typ
, Base_Type
(Full_View
(Etype
(Unc_Typ
))));
9699 EQ_Typ
:= Make_CW_Equivalent_Type
(Unc_Typ
, E
);
9702 CW_Subtype
:= New_Class_Wide_Subtype
(Unc_Typ
, E
);
9703 Set_Equivalent_Type
(CW_Subtype
, EQ_Typ
);
9704 Set_Cloned_Subtype
(CW_Subtype
, Base_Type
(Unc_Typ
));
9706 return New_Occurrence_Of
(CW_Subtype
, Loc
);
9709 -- Indefinite record type with discriminants
9712 D
:= First_Discriminant
(Unc_Typ
);
9713 while Present
(D
) loop
9714 Append_To
(List_Constr
,
9715 Make_Selected_Component
(Loc
,
9716 Prefix
=> Duplicate_Subexpr_No_Checks
(E
),
9717 Selector_Name
=> New_Occurrence_Of
(D
, Loc
)));
9719 Next_Discriminant
(D
);
9724 Make_Subtype_Indication
(Loc
,
9725 Subtype_Mark
=> New_Occurrence_Of
(Unc_Typ
, Loc
),
9727 Make_Index_Or_Discriminant_Constraint
(Loc
,
9728 Constraints
=> List_Constr
));
9729 end Make_Subtype_From_Expr
;
9735 procedure Map_Types
(Parent_Type
: Entity_Id
; Derived_Type
: Entity_Id
) is
9737 -- NOTE: Most of the routines in Map_Types are intentionally unnested to
9738 -- avoid deep indentation of code.
9740 -- NOTE: Routines which deal with discriminant mapping operate on the
9741 -- [underlying/record] full view of various types because those views
9742 -- contain all discriminants and stored constraints.
9744 procedure Add_Primitive
(Prim
: Entity_Id
; Par_Typ
: Entity_Id
);
9745 -- Subsidiary to Map_Primitives. Find a primitive in the inheritance or
9746 -- overriding chain starting from Prim whose dispatching type is parent
9747 -- type Par_Typ and add a mapping between the result and primitive Prim.
9749 function Ancestor_Primitive
(Subp
: Entity_Id
) return Entity_Id
;
9750 -- Subsidiary to Map_Primitives. Return the next ancestor primitive in
9751 -- the inheritance or overriding chain of subprogram Subp. Return Empty
9752 -- if no such primitive is available.
9754 function Build_Chain
9755 (Par_Typ
: Entity_Id
;
9756 Deriv_Typ
: Entity_Id
) return Elist_Id
;
9757 -- Subsidiary to Map_Discriminants. Recreate the derivation chain from
9758 -- parent type Par_Typ leading down towards derived type Deriv_Typ. The
9759 -- list has the form:
9763 -- <Ancestor_N> -> <Ancestor_N-1> -> <Ancestor_1> -> Deriv_Typ
9765 -- Note that Par_Typ is not part of the resulting derivation chain
9767 function Discriminated_View
(Typ
: Entity_Id
) return Entity_Id
;
9768 -- Return the view of type Typ which could potentially contains either
9769 -- the discriminants or stored constraints of the type.
9771 function Find_Discriminant_Value
9773 Par_Typ
: Entity_Id
;
9774 Deriv_Typ
: Entity_Id
;
9775 Typ_Elmt
: Elmt_Id
) return Node_Or_Entity_Id
;
9776 -- Subsidiary to Map_Discriminants. Find the value of discriminant Discr
9777 -- in the derivation chain starting from parent type Par_Typ leading to
9778 -- derived type Deriv_Typ. The returned value is one of the following:
9780 -- * An entity which is either a discriminant or a non-discriminant
9781 -- name, and renames/constraints Discr.
9783 -- * An expression which constraints Discr
9785 -- Typ_Elmt is an element of the derivation chain created by routine
9786 -- Build_Chain and denotes the current ancestor being examined.
9788 procedure Map_Discriminants
9789 (Par_Typ
: Entity_Id
;
9790 Deriv_Typ
: Entity_Id
);
9791 -- Map each discriminant of type Par_Typ to a meaningful constraint
9792 -- from the point of view of type Deriv_Typ.
9794 procedure Map_Primitives
(Par_Typ
: Entity_Id
; Deriv_Typ
: Entity_Id
);
9795 -- Map each primitive of type Par_Typ to a corresponding primitive of
9802 procedure Add_Primitive
(Prim
: Entity_Id
; Par_Typ
: Entity_Id
) is
9803 Par_Prim
: Entity_Id
;
9806 -- Inspect the inheritance chain through the Alias attribute and the
9807 -- overriding chain through the Overridden_Operation looking for an
9808 -- ancestor primitive with the appropriate dispatching type.
9811 while Present
(Par_Prim
) loop
9812 exit when Find_Dispatching_Type
(Par_Prim
) = Par_Typ
;
9813 Par_Prim
:= Ancestor_Primitive
(Par_Prim
);
9816 -- Create a mapping of the form:
9818 -- parent type primitive -> derived type primitive
9820 if Present
(Par_Prim
) then
9821 Type_Map
.Set
(Par_Prim
, Prim
);
9825 ------------------------
9826 -- Ancestor_Primitive --
9827 ------------------------
9829 function Ancestor_Primitive
(Subp
: Entity_Id
) return Entity_Id
is
9830 Inher_Prim
: constant Entity_Id
:= Alias
(Subp
);
9831 Over_Prim
: constant Entity_Id
:= Overridden_Operation
(Subp
);
9834 -- The current subprogram overrides an ancestor primitive
9836 if Present
(Over_Prim
) then
9839 -- The current subprogram is an internally generated alias of an
9840 -- inherited ancestor primitive.
9842 elsif Present
(Inher_Prim
) then
9845 -- Otherwise the current subprogram is the root of the inheritance or
9846 -- overriding chain.
9851 end Ancestor_Primitive
;
9857 function Build_Chain
9858 (Par_Typ
: Entity_Id
;
9859 Deriv_Typ
: Entity_Id
) return Elist_Id
9861 Anc_Typ
: Entity_Id
;
9863 Curr_Typ
: Entity_Id
;
9866 Chain
:= New_Elmt_List
;
9868 -- Add the derived type to the derivation chain
9870 Prepend_Elmt
(Deriv_Typ
, Chain
);
9872 -- Examine all ancestors starting from the derived type climbing
9873 -- towards parent type Par_Typ.
9875 Curr_Typ
:= Deriv_Typ
;
9877 -- Handle the case where the current type is a record which
9878 -- derives from a subtype.
9880 -- subtype Sub_Typ is Par_Typ ...
9881 -- type Deriv_Typ is Sub_Typ ...
9883 if Ekind
(Curr_Typ
) = E_Record_Type
9884 and then Present
(Parent_Subtype
(Curr_Typ
))
9886 Anc_Typ
:= Parent_Subtype
(Curr_Typ
);
9888 -- Handle the case where the current type is a record subtype of
9891 -- subtype Sub_Typ1 is Par_Typ ...
9892 -- subtype Sub_Typ2 is Sub_Typ1 ...
9894 elsif Ekind
(Curr_Typ
) = E_Record_Subtype
9895 and then Present
(Cloned_Subtype
(Curr_Typ
))
9897 Anc_Typ
:= Cloned_Subtype
(Curr_Typ
);
9899 -- Otherwise use the direct parent type
9902 Anc_Typ
:= Etype
(Curr_Typ
);
9905 -- Use the first subtype when dealing with itypes
9907 if Is_Itype
(Anc_Typ
) then
9908 Anc_Typ
:= First_Subtype
(Anc_Typ
);
9911 -- Work with the view which contains the discriminants and stored
9914 Anc_Typ
:= Discriminated_View
(Anc_Typ
);
9916 -- Stop the climb when either the parent type has been reached or
9917 -- there are no more ancestors left to examine.
9919 exit when Anc_Typ
= Curr_Typ
or else Anc_Typ
= Par_Typ
;
9921 Prepend_Unique_Elmt
(Anc_Typ
, Chain
);
9922 Curr_Typ
:= Anc_Typ
;
9928 ------------------------
9929 -- Discriminated_View --
9930 ------------------------
9932 function Discriminated_View
(Typ
: Entity_Id
) return Entity_Id
is
9938 -- Use the [underlying] full view when dealing with private types
9939 -- because the view contains all inherited discriminants or stored
9942 if Is_Private_Type
(T
) then
9943 if Present
(Underlying_Full_View
(T
)) then
9944 T
:= Underlying_Full_View
(T
);
9946 elsif Present
(Full_View
(T
)) then
9951 -- Use the underlying record view when the type is an extenstion of
9952 -- a parent type with unknown discriminants because the view contains
9953 -- all inherited discriminants or stored constraints.
9955 if Ekind
(T
) = E_Record_Type
9956 and then Present
(Underlying_Record_View
(T
))
9958 T
:= Underlying_Record_View
(T
);
9962 end Discriminated_View
;
9964 -----------------------------
9965 -- Find_Discriminant_Value --
9966 -----------------------------
9968 function Find_Discriminant_Value
9970 Par_Typ
: Entity_Id
;
9971 Deriv_Typ
: Entity_Id
;
9972 Typ_Elmt
: Elmt_Id
) return Node_Or_Entity_Id
9974 Discr_Pos
: constant Uint
:= Discriminant_Number
(Discr
);
9975 Typ
: constant Entity_Id
:= Node
(Typ_Elmt
);
9977 function Find_Constraint_Value
9978 (Constr
: Node_Or_Entity_Id
) return Node_Or_Entity_Id
;
9979 -- Given constraint Constr, find what it denotes. This is either:
9981 -- * An entity which is either a discriminant or a name
9985 ---------------------------
9986 -- Find_Constraint_Value --
9987 ---------------------------
9989 function Find_Constraint_Value
9990 (Constr
: Node_Or_Entity_Id
) return Node_Or_Entity_Id
9993 if Nkind
(Constr
) in N_Entity
then
9995 -- The constraint denotes a discriminant of the curren type
9996 -- which renames the ancestor discriminant:
9999 -- type Typ (D1 : ...; DN : ...) is
10000 -- new Anc (Discr => D1) with ...
10003 if Ekind
(Constr
) = E_Discriminant
then
10005 -- The discriminant belongs to derived type Deriv_Typ. This
10006 -- is the final value for the ancestor discriminant as the
10007 -- derivations chain has been fully exhausted.
10009 if Typ
= Deriv_Typ
then
10012 -- Otherwise the discriminant may be renamed or constrained
10013 -- at a lower level. Continue looking down the derivation
10018 Find_Discriminant_Value
10020 Par_Typ
=> Par_Typ
,
10021 Deriv_Typ
=> Deriv_Typ
,
10022 Typ_Elmt
=> Next_Elmt
(Typ_Elmt
));
10025 -- Otherwise the constraint denotes a reference to some name
10026 -- which results in a Girder discriminant:
10030 -- type Typ (D1 : ...; DN : ...) is
10031 -- new Anc (Discr => Name) with ...
10034 -- Return the name as this is the proper constraint of the
10041 -- The constraint denotes a reference to a name
10043 elsif Is_Entity_Name
(Constr
) then
10044 return Find_Constraint_Value
(Entity
(Constr
));
10046 -- Otherwise the current constraint is an expression which yields
10047 -- a Girder discriminant:
10049 -- type Typ (D1 : ...; DN : ...) is
10050 -- new Anc (Discr => <expression>) with ...
10053 -- Return the expression as this is the proper constraint of the
10059 end Find_Constraint_Value
;
10063 Constrs
: constant Elist_Id
:= Stored_Constraint
(Typ
);
10065 Constr_Elmt
: Elmt_Id
;
10067 Typ_Discr
: Entity_Id
;
10069 -- Start of processing for Find_Discriminant_Value
10072 -- The algorithm for finding the value of a discriminant works as
10073 -- follows. First, it recreates the derivation chain from Par_Typ
10074 -- to Deriv_Typ as a list:
10076 -- Par_Typ (shown for completeness)
10078 -- Ancestor_N <-- head of chain
10082 -- Deriv_Typ <-- tail of chain
10084 -- The algorithm then traces the fate of a parent discriminant down
10085 -- the derivation chain. At each derivation level, the discriminant
10086 -- may be either inherited or constrained.
10088 -- 1) Discriminant is inherited: there are two cases, depending on
10089 -- which type is inheriting.
10091 -- 1.1) Deriv_Typ is inheriting:
10093 -- type Ancestor (D_1 : ...) is tagged ...
10094 -- type Deriv_Typ is new Ancestor ...
10096 -- In this case the inherited discriminant is the final value of
10097 -- the parent discriminant because the end of the derivation chain
10098 -- has been reached.
10100 -- 1.2) Some other type is inheriting:
10102 -- type Ancestor_1 (D_1 : ...) is tagged ...
10103 -- type Ancestor_2 is new Ancestor_1 ...
10105 -- In this case the algorithm continues to trace the fate of the
10106 -- inherited discriminant down the derivation chain because it may
10107 -- be further inherited or constrained.
10109 -- 2) Discriminant is constrained: there are three cases, depending
10110 -- on what the constraint is.
10112 -- 2.1) The constraint is another discriminant (aka renaming):
10114 -- type Ancestor_1 (D_1 : ...) is tagged ...
10115 -- type Ancestor_2 (D_2 : ...) is new Ancestor_1 (D_1 => D_2) ...
10117 -- In this case the constraining discriminant becomes the one to
10118 -- track down the derivation chain. The algorithm already knows
10119 -- that D_2 constrains D_1, therefore if the algorithm finds the
10120 -- value of D_2, then this would also be the value for D_1.
10122 -- 2.2) The constraint is a name (aka Girder):
10125 -- type Ancestor_1 (D_1 : ...) is tagged ...
10126 -- type Ancestor_2 is new Ancestor_1 (D_1 => Name) ...
10128 -- In this case the name is the final value of D_1 because the
10129 -- discriminant cannot be further constrained.
10131 -- 2.3) The constraint is an expression (aka Girder):
10133 -- type Ancestor_1 (D_1 : ...) is tagged ...
10134 -- type Ancestor_2 is new Ancestor_1 (D_1 => 1 + 2) ...
10136 -- Similar to 2.2, the expression is the final value of D_1
10140 -- When a derived type constrains its parent type, all constaints
10141 -- appear in the Stored_Constraint list. Examine the list looking
10142 -- for a positional match.
10144 if Present
(Constrs
) then
10145 Constr_Elmt
:= First_Elmt
(Constrs
);
10146 while Present
(Constr_Elmt
) loop
10148 -- The position of the current constraint matches that of the
10149 -- ancestor discriminant.
10151 if Pos
= Discr_Pos
then
10152 return Find_Constraint_Value
(Node
(Constr_Elmt
));
10155 Next_Elmt
(Constr_Elmt
);
10159 -- Otherwise the derived type does not constraint its parent type in
10160 -- which case it inherits the parent discriminants.
10163 Typ_Discr
:= First_Discriminant
(Typ
);
10164 while Present
(Typ_Discr
) loop
10166 -- The position of the current discriminant matches that of the
10167 -- ancestor discriminant.
10169 if Pos
= Discr_Pos
then
10170 return Find_Constraint_Value
(Typ_Discr
);
10173 Next_Discriminant
(Typ_Discr
);
10178 -- A discriminant must always have a corresponding value. This is
10179 -- either another discriminant, a name, or an expression. If this
10180 -- point is reached, them most likely the derivation chain employs
10181 -- the wrong views of types.
10183 pragma Assert
(False);
10186 end Find_Discriminant_Value
;
10188 -----------------------
10189 -- Map_Discriminants --
10190 -----------------------
10192 procedure Map_Discriminants
10193 (Par_Typ
: Entity_Id
;
10194 Deriv_Typ
: Entity_Id
)
10196 Deriv_Chain
: constant Elist_Id
:= Build_Chain
(Par_Typ
, Deriv_Typ
);
10199 Discr_Val
: Node_Or_Entity_Id
;
10202 -- Examine each discriminant of parent type Par_Typ and find a
10203 -- suitable value for it from the point of view of derived type
10206 if Has_Discriminants
(Par_Typ
) then
10207 Discr
:= First_Discriminant
(Par_Typ
);
10208 while Present
(Discr
) loop
10210 Find_Discriminant_Value
10212 Par_Typ
=> Par_Typ
,
10213 Deriv_Typ
=> Deriv_Typ
,
10214 Typ_Elmt
=> First_Elmt
(Deriv_Chain
));
10216 -- Create a mapping of the form:
10218 -- parent type discriminant -> value
10220 Type_Map
.Set
(Discr
, Discr_Val
);
10222 Next_Discriminant
(Discr
);
10225 end Map_Discriminants
;
10227 --------------------
10228 -- Map_Primitives --
10229 --------------------
10231 procedure Map_Primitives
(Par_Typ
: Entity_Id
; Deriv_Typ
: Entity_Id
) is
10232 Deriv_Prim
: Entity_Id
;
10233 Par_Prim
: Entity_Id
;
10234 Par_Prims
: Elist_Id
;
10235 Prim_Elmt
: Elmt_Id
;
10238 -- Inspect the primitives of the derived type and determine whether
10239 -- they relate to the primitives of the parent type. If there is a
10240 -- meaningful relation, create a mapping of the form:
10242 -- parent type primitive -> perived type primitive
10244 if Present
(Direct_Primitive_Operations
(Deriv_Typ
)) then
10245 Prim_Elmt
:= First_Elmt
(Direct_Primitive_Operations
(Deriv_Typ
));
10246 while Present
(Prim_Elmt
) loop
10247 Deriv_Prim
:= Node
(Prim_Elmt
);
10249 if Is_Subprogram
(Deriv_Prim
)
10250 and then Find_Dispatching_Type
(Deriv_Prim
) = Deriv_Typ
10252 Add_Primitive
(Deriv_Prim
, Par_Typ
);
10255 Next_Elmt
(Prim_Elmt
);
10259 -- If the parent operation is an interface operation, the overriding
10260 -- indicator is not present. Instead, we get from the interface
10261 -- operation the primitive of the current type that implements it.
10263 if Is_Interface
(Par_Typ
) then
10264 Par_Prims
:= Collect_Primitive_Operations
(Par_Typ
);
10266 if Present
(Par_Prims
) then
10267 Prim_Elmt
:= First_Elmt
(Par_Prims
);
10269 while Present
(Prim_Elmt
) loop
10270 Par_Prim
:= Node
(Prim_Elmt
);
10272 Find_Primitive_Covering_Interface
(Deriv_Typ
, Par_Prim
);
10274 if Present
(Deriv_Prim
) then
10275 Type_Map
.Set
(Par_Prim
, Deriv_Prim
);
10278 Next_Elmt
(Prim_Elmt
);
10282 end Map_Primitives
;
10284 -- Start of processing for Map_Types
10287 -- Nothing to do if there are no types to work with
10289 if No
(Parent_Type
) or else No
(Derived_Type
) then
10292 -- Nothing to do if the mapping already exists
10294 elsif Type_Map
.Get
(Parent_Type
) = Derived_Type
then
10297 -- Nothing to do if both types are not tagged. Note that untagged types
10298 -- do not have primitive operations and their discriminants are already
10299 -- handled by gigi.
10301 elsif not Is_Tagged_Type
(Parent_Type
)
10302 or else not Is_Tagged_Type
(Derived_Type
)
10307 -- Create a mapping of the form
10309 -- parent type -> derived type
10311 -- to prevent any subsequent attempts to produce the same relations
10313 Type_Map
.Set
(Parent_Type
, Derived_Type
);
10315 -- Create mappings of the form
10317 -- parent type discriminant -> derived type discriminant
10319 -- parent type discriminant -> constraint
10321 -- Note that mapping of discriminants breaks privacy because it needs to
10322 -- work with those views which contains the discriminants and any stored
10326 (Par_Typ
=> Discriminated_View
(Parent_Type
),
10327 Deriv_Typ
=> Discriminated_View
(Derived_Type
));
10329 -- Create mappings of the form
10331 -- parent type primitive -> derived type primitive
10334 (Par_Typ
=> Parent_Type
,
10335 Deriv_Typ
=> Derived_Type
);
10338 ----------------------------
10339 -- Matching_Standard_Type --
10340 ----------------------------
10342 function Matching_Standard_Type
(Typ
: Entity_Id
) return Entity_Id
is
10343 pragma Assert
(Is_Scalar_Type
(Typ
));
10344 Siz
: constant Uint
:= Esize
(Typ
);
10347 -- Floating-point cases
10349 if Is_Floating_Point_Type
(Typ
) then
10350 if Siz
<= Esize
(Standard_Short_Float
) then
10351 return Standard_Short_Float
;
10352 elsif Siz
<= Esize
(Standard_Float
) then
10353 return Standard_Float
;
10354 elsif Siz
<= Esize
(Standard_Long_Float
) then
10355 return Standard_Long_Float
;
10356 elsif Siz
<= Esize
(Standard_Long_Long_Float
) then
10357 return Standard_Long_Long_Float
;
10359 raise Program_Error
;
10362 -- Integer cases (includes fixed-point types)
10364 -- Unsigned integer cases (includes normal enumeration types)
10366 elsif Is_Unsigned_Type
(Typ
) then
10367 if Siz
<= Esize
(Standard_Short_Short_Unsigned
) then
10368 return Standard_Short_Short_Unsigned
;
10369 elsif Siz
<= Esize
(Standard_Short_Unsigned
) then
10370 return Standard_Short_Unsigned
;
10371 elsif Siz
<= Esize
(Standard_Unsigned
) then
10372 return Standard_Unsigned
;
10373 elsif Siz
<= Esize
(Standard_Long_Unsigned
) then
10374 return Standard_Long_Unsigned
;
10375 elsif Siz
<= Esize
(Standard_Long_Long_Unsigned
) then
10376 return Standard_Long_Long_Unsigned
;
10378 raise Program_Error
;
10381 -- Signed integer cases
10384 if Siz
<= Esize
(Standard_Short_Short_Integer
) then
10385 return Standard_Short_Short_Integer
;
10386 elsif Siz
<= Esize
(Standard_Short_Integer
) then
10387 return Standard_Short_Integer
;
10388 elsif Siz
<= Esize
(Standard_Integer
) then
10389 return Standard_Integer
;
10390 elsif Siz
<= Esize
(Standard_Long_Integer
) then
10391 return Standard_Long_Integer
;
10392 elsif Siz
<= Esize
(Standard_Long_Long_Integer
) then
10393 return Standard_Long_Long_Integer
;
10395 raise Program_Error
;
10398 end Matching_Standard_Type
;
10400 -----------------------------
10401 -- May_Generate_Large_Temp --
10402 -----------------------------
10404 -- At the current time, the only types that we return False for (i.e. where
10405 -- we decide we know they cannot generate large temps) are ones where we
10406 -- know the size is 256 bits or less at compile time, and we are still not
10407 -- doing a thorough job on arrays and records ???
10409 function May_Generate_Large_Temp
(Typ
: Entity_Id
) return Boolean is
10411 if not Size_Known_At_Compile_Time
(Typ
) then
10414 elsif Esize
(Typ
) /= 0 and then Esize
(Typ
) <= 256 then
10417 elsif Is_Array_Type
(Typ
)
10418 and then Present
(Packed_Array_Impl_Type
(Typ
))
10420 return May_Generate_Large_Temp
(Packed_Array_Impl_Type
(Typ
));
10422 -- We could do more here to find other small types ???
10427 end May_Generate_Large_Temp
;
10429 ------------------------
10430 -- Needs_Finalization --
10431 ------------------------
10433 function Needs_Finalization
(Typ
: Entity_Id
) return Boolean is
10434 function Has_Some_Controlled_Component
10435 (Input_Typ
: Entity_Id
) return Boolean;
10436 -- Determine whether type Input_Typ has at least one controlled
10439 -----------------------------------
10440 -- Has_Some_Controlled_Component --
10441 -----------------------------------
10443 function Has_Some_Controlled_Component
10444 (Input_Typ
: Entity_Id
) return Boolean
10449 -- When a type is already frozen and has at least one controlled
10450 -- component, or is manually decorated, it is sufficient to inspect
10451 -- flag Has_Controlled_Component.
10453 if Has_Controlled_Component
(Input_Typ
) then
10456 -- Otherwise inspect the internals of the type
10458 elsif not Is_Frozen
(Input_Typ
) then
10459 if Is_Array_Type
(Input_Typ
) then
10460 return Needs_Finalization
(Component_Type
(Input_Typ
));
10462 elsif Is_Record_Type
(Input_Typ
) then
10463 Comp
:= First_Component
(Input_Typ
);
10464 while Present
(Comp
) loop
10465 if Needs_Finalization
(Etype
(Comp
)) then
10469 Next_Component
(Comp
);
10475 end Has_Some_Controlled_Component
;
10477 -- Start of processing for Needs_Finalization
10480 -- Certain run-time configurations and targets do not provide support
10481 -- for controlled types.
10483 if Restriction_Active
(No_Finalization
) then
10486 -- C++ types are not considered controlled. It is assumed that the non-
10487 -- Ada side will handle their clean up.
10489 elsif Convention
(Typ
) = Convention_CPP
then
10492 -- Class-wide types are treated as controlled because derivations from
10493 -- the root type may introduce controlled components.
10495 elsif Is_Class_Wide_Type
(Typ
) then
10498 -- Concurrent types are controlled as long as their corresponding record
10501 elsif Is_Concurrent_Type
(Typ
)
10502 and then Present
(Corresponding_Record_Type
(Typ
))
10503 and then Needs_Finalization
(Corresponding_Record_Type
(Typ
))
10507 -- Otherwise the type is controlled when it is either derived from type
10508 -- [Limited_]Controlled and not subject to aspect Disable_Controlled, or
10509 -- contains at least one controlled component.
10513 Is_Controlled
(Typ
) or else Has_Some_Controlled_Component
(Typ
);
10515 end Needs_Finalization
;
10517 ----------------------------
10518 -- Needs_Constant_Address --
10519 ----------------------------
10521 function Needs_Constant_Address
10523 Typ
: Entity_Id
) return Boolean
10526 -- If we have no initialization of any kind, then we don't need to place
10527 -- any restrictions on the address clause, because the object will be
10528 -- elaborated after the address clause is evaluated. This happens if the
10529 -- declaration has no initial expression, or the type has no implicit
10530 -- initialization, or the object is imported.
10532 -- The same holds for all initialized scalar types and all access types.
10533 -- Packed bit arrays of size up to 64 are represented using a modular
10534 -- type with an initialization (to zero) and can be processed like other
10535 -- initialized scalar types.
10537 -- If the type is controlled, code to attach the object to a
10538 -- finalization chain is generated at the point of declaration, and
10539 -- therefore the elaboration of the object cannot be delayed: the
10540 -- address expression must be a constant.
10542 if No
(Expression
(Decl
))
10543 and then not Needs_Finalization
(Typ
)
10545 (not Has_Non_Null_Base_Init_Proc
(Typ
)
10546 or else Is_Imported
(Defining_Identifier
(Decl
)))
10550 elsif (Present
(Expression
(Decl
)) and then Is_Scalar_Type
(Typ
))
10551 or else Is_Access_Type
(Typ
)
10553 (Is_Bit_Packed_Array
(Typ
)
10554 and then Is_Modular_Integer_Type
(Packed_Array_Impl_Type
(Typ
)))
10560 -- Otherwise, we require the address clause to be constant because
10561 -- the call to the initialization procedure (or the attach code) has
10562 -- to happen at the point of the declaration.
10564 -- Actually the IP call has been moved to the freeze actions anyway,
10565 -- so maybe we can relax this restriction???
10569 end Needs_Constant_Address
;
10571 ----------------------------
10572 -- New_Class_Wide_Subtype --
10573 ----------------------------
10575 function New_Class_Wide_Subtype
10576 (CW_Typ
: Entity_Id
;
10577 N
: Node_Id
) return Entity_Id
10579 Res
: constant Entity_Id
:= Create_Itype
(E_Void
, N
);
10580 Res_Name
: constant Name_Id
:= Chars
(Res
);
10581 Res_Scope
: constant Entity_Id
:= Scope
(Res
);
10584 Copy_Node
(CW_Typ
, Res
);
10585 Set_Comes_From_Source
(Res
, False);
10586 Set_Sloc
(Res
, Sloc
(N
));
10587 Set_Is_Itype
(Res
);
10588 Set_Associated_Node_For_Itype
(Res
, N
);
10589 Set_Is_Public
(Res
, False); -- By default, may be changed below.
10590 Set_Public_Status
(Res
);
10591 Set_Chars
(Res
, Res_Name
);
10592 Set_Scope
(Res
, Res_Scope
);
10593 Set_Ekind
(Res
, E_Class_Wide_Subtype
);
10594 Set_Next_Entity
(Res
, Empty
);
10595 Set_Etype
(Res
, Base_Type
(CW_Typ
));
10596 Set_Is_Frozen
(Res
, False);
10597 Set_Freeze_Node
(Res
, Empty
);
10599 end New_Class_Wide_Subtype
;
10601 --------------------------------
10602 -- Non_Limited_Designated_Type --
10603 ---------------------------------
10605 function Non_Limited_Designated_Type
(T
: Entity_Id
) return Entity_Id
is
10606 Desig
: constant Entity_Id
:= Designated_Type
(T
);
10608 if Has_Non_Limited_View
(Desig
) then
10609 return Non_Limited_View
(Desig
);
10613 end Non_Limited_Designated_Type
;
10615 -----------------------------------
10616 -- OK_To_Do_Constant_Replacement --
10617 -----------------------------------
10619 function OK_To_Do_Constant_Replacement
(E
: Entity_Id
) return Boolean is
10620 ES
: constant Entity_Id
:= Scope
(E
);
10624 -- Do not replace statically allocated objects, because they may be
10625 -- modified outside the current scope.
10627 if Is_Statically_Allocated
(E
) then
10630 -- Do not replace aliased or volatile objects, since we don't know what
10631 -- else might change the value.
10633 elsif Is_Aliased
(E
) or else Treat_As_Volatile
(E
) then
10636 -- Debug flag -gnatdM disconnects this optimization
10638 elsif Debug_Flag_MM
then
10641 -- Otherwise check scopes
10644 CS
:= Current_Scope
;
10647 -- If we are in right scope, replacement is safe
10652 -- Packages do not affect the determination of safety
10654 elsif Ekind
(CS
) = E_Package
then
10655 exit when CS
= Standard_Standard
;
10658 -- Blocks do not affect the determination of safety
10660 elsif Ekind
(CS
) = E_Block
then
10663 -- Loops do not affect the determination of safety. Note that we
10664 -- kill all current values on entry to a loop, so we are just
10665 -- talking about processing within a loop here.
10667 elsif Ekind
(CS
) = E_Loop
then
10670 -- Otherwise, the reference is dubious, and we cannot be sure that
10671 -- it is safe to do the replacement.
10680 end OK_To_Do_Constant_Replacement
;
10682 ------------------------------------
10683 -- Possible_Bit_Aligned_Component --
10684 ------------------------------------
10686 function Possible_Bit_Aligned_Component
(N
: Node_Id
) return Boolean is
10688 -- Do not process an unanalyzed node because it is not yet decorated and
10689 -- most checks performed below will fail.
10691 if not Analyzed
(N
) then
10697 -- Case of indexed component
10699 when N_Indexed_Component
=>
10701 P
: constant Node_Id
:= Prefix
(N
);
10702 Ptyp
: constant Entity_Id
:= Etype
(P
);
10705 -- If we know the component size and it is less than 64, then
10706 -- we are definitely OK. The back end always does assignment of
10707 -- misaligned small objects correctly.
10709 if Known_Static_Component_Size
(Ptyp
)
10710 and then Component_Size
(Ptyp
) <= 64
10714 -- Otherwise, we need to test the prefix, to see if we are
10715 -- indexing from a possibly unaligned component.
10718 return Possible_Bit_Aligned_Component
(P
);
10722 -- Case of selected component
10724 when N_Selected_Component
=>
10726 P
: constant Node_Id
:= Prefix
(N
);
10727 Comp
: constant Entity_Id
:= Entity
(Selector_Name
(N
));
10730 -- If there is no component clause, then we are in the clear
10731 -- since the back end will never misalign a large component
10732 -- unless it is forced to do so. In the clear means we need
10733 -- only the recursive test on the prefix.
10735 if Component_May_Be_Bit_Aligned
(Comp
) then
10738 return Possible_Bit_Aligned_Component
(P
);
10742 -- For a slice, test the prefix, if that is possibly misaligned,
10743 -- then for sure the slice is.
10746 return Possible_Bit_Aligned_Component
(Prefix
(N
));
10748 -- For an unchecked conversion, check whether the expression may
10751 when N_Unchecked_Type_Conversion
=>
10752 return Possible_Bit_Aligned_Component
(Expression
(N
));
10754 -- If we have none of the above, it means that we have fallen off the
10755 -- top testing prefixes recursively, and we now have a stand alone
10756 -- object, where we don't have a problem, unless this is a renaming,
10757 -- in which case we need to look into the renamed object.
10760 if Is_Entity_Name
(N
)
10761 and then Present
(Renamed_Object
(Entity
(N
)))
10764 Possible_Bit_Aligned_Component
(Renamed_Object
(Entity
(N
)));
10769 end Possible_Bit_Aligned_Component
;
10771 -----------------------------------------------
10772 -- Process_Statements_For_Controlled_Objects --
10773 -----------------------------------------------
10775 procedure Process_Statements_For_Controlled_Objects
(N
: Node_Id
) is
10776 Loc
: constant Source_Ptr
:= Sloc
(N
);
10778 function Are_Wrapped
(L
: List_Id
) return Boolean;
10779 -- Determine whether list L contains only one statement which is a block
10781 function Wrap_Statements_In_Block
10783 Scop
: Entity_Id
:= Current_Scope
) return Node_Id
;
10784 -- Given a list of statements L, wrap it in a block statement and return
10785 -- the generated node. Scop is either the current scope or the scope of
10786 -- the context (if applicable).
10792 function Are_Wrapped
(L
: List_Id
) return Boolean is
10793 Stmt
: constant Node_Id
:= First
(L
);
10797 and then No
(Next
(Stmt
))
10798 and then Nkind
(Stmt
) = N_Block_Statement
;
10801 ------------------------------
10802 -- Wrap_Statements_In_Block --
10803 ------------------------------
10805 function Wrap_Statements_In_Block
10807 Scop
: Entity_Id
:= Current_Scope
) return Node_Id
10809 Block_Id
: Entity_Id
;
10810 Block_Nod
: Node_Id
;
10811 Iter_Loop
: Entity_Id
;
10815 Make_Block_Statement
(Loc
,
10816 Declarations
=> No_List
,
10817 Handled_Statement_Sequence
=>
10818 Make_Handled_Sequence_Of_Statements
(Loc
,
10821 -- Create a label for the block in case the block needs to manage the
10822 -- secondary stack. A label allows for flag Uses_Sec_Stack to be set.
10824 Add_Block_Identifier
(Block_Nod
, Block_Id
);
10826 -- When wrapping the statements of an iterator loop, check whether
10827 -- the loop requires secondary stack management and if so, propagate
10828 -- the appropriate flags to the block. This ensures that the cursor
10829 -- is properly cleaned up at each iteration of the loop.
10831 Iter_Loop
:= Find_Enclosing_Iterator_Loop
(Scop
);
10833 if Present
(Iter_Loop
) then
10834 Set_Uses_Sec_Stack
(Block_Id
, Uses_Sec_Stack
(Iter_Loop
));
10836 -- Secondary stack reclamation is suppressed when the associated
10837 -- iterator loop contains a return statement which uses the stack.
10839 Set_Sec_Stack_Needed_For_Return
10840 (Block_Id
, Sec_Stack_Needed_For_Return
(Iter_Loop
));
10844 end Wrap_Statements_In_Block
;
10850 -- Start of processing for Process_Statements_For_Controlled_Objects
10853 -- Whenever a non-handled statement list is wrapped in a block, the
10854 -- block must be explicitly analyzed to redecorate all entities in the
10855 -- list and ensure that a finalizer is properly built.
10858 when N_Conditional_Entry_Call
10861 | N_Selective_Accept
10863 -- Check the "then statements" for elsif parts and if statements
10865 if Nkind_In
(N
, N_Elsif_Part
, N_If_Statement
)
10866 and then not Is_Empty_List
(Then_Statements
(N
))
10867 and then not Are_Wrapped
(Then_Statements
(N
))
10868 and then Requires_Cleanup_Actions
10869 (L
=> Then_Statements
(N
),
10870 Lib_Level
=> False,
10871 Nested_Constructs
=> False)
10873 Block
:= Wrap_Statements_In_Block
(Then_Statements
(N
));
10874 Set_Then_Statements
(N
, New_List
(Block
));
10879 -- Check the "else statements" for conditional entry calls, if
10880 -- statements and selective accepts.
10882 if Nkind_In
(N
, N_Conditional_Entry_Call
,
10884 N_Selective_Accept
)
10885 and then not Is_Empty_List
(Else_Statements
(N
))
10886 and then not Are_Wrapped
(Else_Statements
(N
))
10887 and then Requires_Cleanup_Actions
10888 (L
=> Else_Statements
(N
),
10889 Lib_Level
=> False,
10890 Nested_Constructs
=> False)
10892 Block
:= Wrap_Statements_In_Block
(Else_Statements
(N
));
10893 Set_Else_Statements
(N
, New_List
(Block
));
10898 when N_Abortable_Part
10899 | N_Accept_Alternative
10900 | N_Case_Statement_Alternative
10901 | N_Delay_Alternative
10902 | N_Entry_Call_Alternative
10903 | N_Exception_Handler
10905 | N_Triggering_Alternative
10907 if not Is_Empty_List
(Statements
(N
))
10908 and then not Are_Wrapped
(Statements
(N
))
10909 and then Requires_Cleanup_Actions
10910 (L
=> Statements
(N
),
10911 Lib_Level
=> False,
10912 Nested_Constructs
=> False)
10914 if Nkind
(N
) = N_Loop_Statement
10915 and then Present
(Identifier
(N
))
10918 Wrap_Statements_In_Block
10919 (L
=> Statements
(N
),
10920 Scop
=> Entity
(Identifier
(N
)));
10922 Block
:= Wrap_Statements_In_Block
(Statements
(N
));
10925 Set_Statements
(N
, New_List
(Block
));
10929 -- Could be e.g. a loop that was transformed into a block or null
10930 -- statement. Do nothing for terminate alternatives.
10932 when N_Block_Statement
10934 | N_Terminate_Alternative
10939 raise Program_Error
;
10941 end Process_Statements_For_Controlled_Objects
;
10947 function Power_Of_Two
(N
: Node_Id
) return Nat
is
10948 Typ
: constant Entity_Id
:= Etype
(N
);
10949 pragma Assert
(Is_Integer_Type
(Typ
));
10951 Siz
: constant Nat
:= UI_To_Int
(Esize
(Typ
));
10955 if not Compile_Time_Known_Value
(N
) then
10959 Val
:= Expr_Value
(N
);
10960 for J
in 1 .. Siz
- 1 loop
10961 if Val
= Uint_2
** J
then
10970 ----------------------
10971 -- Remove_Init_Call --
10972 ----------------------
10974 function Remove_Init_Call
10976 Rep_Clause
: Node_Id
) return Node_Id
10978 Par
: constant Node_Id
:= Parent
(Var
);
10979 Typ
: constant Entity_Id
:= Etype
(Var
);
10981 Init_Proc
: Entity_Id
;
10982 -- Initialization procedure for Typ
10984 function Find_Init_Call_In_List
(From
: Node_Id
) return Node_Id
;
10985 -- Look for init call for Var starting at From and scanning the
10986 -- enclosing list until Rep_Clause or the end of the list is reached.
10988 ----------------------------
10989 -- Find_Init_Call_In_List --
10990 ----------------------------
10992 function Find_Init_Call_In_List
(From
: Node_Id
) return Node_Id
is
10993 Init_Call
: Node_Id
;
10997 while Present
(Init_Call
) and then Init_Call
/= Rep_Clause
loop
10998 if Nkind
(Init_Call
) = N_Procedure_Call_Statement
10999 and then Is_Entity_Name
(Name
(Init_Call
))
11000 and then Entity
(Name
(Init_Call
)) = Init_Proc
11009 end Find_Init_Call_In_List
;
11011 Init_Call
: Node_Id
;
11013 -- Start of processing for Find_Init_Call
11016 if Present
(Initialization_Statements
(Var
)) then
11017 Init_Call
:= Initialization_Statements
(Var
);
11018 Set_Initialization_Statements
(Var
, Empty
);
11020 elsif not Has_Non_Null_Base_Init_Proc
(Typ
) then
11022 -- No init proc for the type, so obviously no call to be found
11027 -- We might be able to handle other cases below by just properly
11028 -- setting Initialization_Statements at the point where the init proc
11029 -- call is generated???
11031 Init_Proc
:= Base_Init_Proc
(Typ
);
11033 -- First scan the list containing the declaration of Var
11035 Init_Call
:= Find_Init_Call_In_List
(From
=> Next
(Par
));
11037 -- If not found, also look on Var's freeze actions list, if any,
11038 -- since the init call may have been moved there (case of an address
11039 -- clause applying to Var).
11041 if No
(Init_Call
) and then Present
(Freeze_Node
(Var
)) then
11043 Find_Init_Call_In_List
(First
(Actions
(Freeze_Node
(Var
))));
11046 -- If the initialization call has actuals that use the secondary
11047 -- stack, the call may have been wrapped into a temporary block, in
11048 -- which case the block itself has to be removed.
11050 if No
(Init_Call
) and then Nkind
(Next
(Par
)) = N_Block_Statement
then
11052 Blk
: constant Node_Id
:= Next
(Par
);
11055 (Find_Init_Call_In_List
11056 (First
(Statements
(Handled_Statement_Sequence
(Blk
)))))
11064 if Present
(Init_Call
) then
11065 Remove
(Init_Call
);
11068 end Remove_Init_Call
;
11070 -------------------------
11071 -- Remove_Side_Effects --
11072 -------------------------
11074 procedure Remove_Side_Effects
11076 Name_Req
: Boolean := False;
11077 Renaming_Req
: Boolean := False;
11078 Variable_Ref
: Boolean := False;
11079 Related_Id
: Entity_Id
:= Empty
;
11080 Is_Low_Bound
: Boolean := False;
11081 Is_High_Bound
: Boolean := False;
11082 Check_Side_Effects
: Boolean := True)
11084 function Build_Temporary
11087 Related_Nod
: Node_Id
:= Empty
) return Entity_Id
;
11088 -- Create an external symbol of the form xxx_FIRST/_LAST if Related_Nod
11089 -- is present (xxx is taken from the Chars field of Related_Nod),
11090 -- otherwise it generates an internal temporary. The created temporary
11091 -- entity is marked as internal.
11093 ---------------------
11094 -- Build_Temporary --
11095 ---------------------
11097 function Build_Temporary
11100 Related_Nod
: Node_Id
:= Empty
) return Entity_Id
11102 Temp_Id
: Entity_Id
;
11103 Temp_Nam
: Name_Id
;
11106 -- The context requires an external symbol
11108 if Present
(Related_Id
) then
11109 if Is_Low_Bound
then
11110 Temp_Nam
:= New_External_Name
(Chars
(Related_Id
), "_FIRST");
11111 else pragma Assert
(Is_High_Bound
);
11112 Temp_Nam
:= New_External_Name
(Chars
(Related_Id
), "_LAST");
11115 Temp_Id
:= Make_Defining_Identifier
(Loc
, Temp_Nam
);
11117 -- Otherwise generate an internal temporary
11120 Temp_Id
:= Make_Temporary
(Loc
, Id
, Related_Nod
);
11123 Set_Is_Internal
(Temp_Id
);
11126 end Build_Temporary
;
11130 Loc
: constant Source_Ptr
:= Sloc
(Exp
);
11131 Exp_Type
: constant Entity_Id
:= Etype
(Exp
);
11132 Svg_Suppress
: constant Suppress_Record
:= Scope_Suppress
;
11133 Def_Id
: Entity_Id
;
11136 Ptr_Typ_Decl
: Node_Id
;
11137 Ref_Type
: Entity_Id
;
11140 -- Start of processing for Remove_Side_Effects
11143 -- Handle cases in which there is nothing to do. In GNATprove mode,
11144 -- removal of side effects is useful for the light expansion of
11145 -- renamings. This removal should only occur when not inside a
11146 -- generic and not doing a pre-analysis.
11148 if not Expander_Active
11149 and (Inside_A_Generic
or not Full_Analysis
or not GNATprove_Mode
)
11153 -- Cannot generate temporaries if the invocation to remove side effects
11154 -- was issued too early and the type of the expression is not resolved
11155 -- (this happens because routines Duplicate_Subexpr_XX implicitly invoke
11156 -- Remove_Side_Effects).
11158 elsif No
(Exp_Type
)
11159 or else Ekind
(Exp_Type
) = E_Access_Attribute_Type
11163 -- Nothing to do if prior expansion determined that a function call does
11164 -- not require side effect removal.
11166 elsif Nkind
(Exp
) = N_Function_Call
11167 and then No_Side_Effect_Removal
(Exp
)
11171 -- No action needed for side-effect free expressions
11173 elsif Check_Side_Effects
11174 and then Side_Effect_Free
(Exp
, Name_Req
, Variable_Ref
)
11178 -- Generating C code we cannot remove side effect of function returning
11179 -- class-wide types since there is no secondary stack (required to use
11182 elsif Modify_Tree_For_C
11183 and then Nkind
(Exp
) = N_Function_Call
11184 and then Is_Class_Wide_Type
(Etype
(Exp
))
11189 -- The remaining processing is done with all checks suppressed
11191 -- Note: from now on, don't use return statements, instead do a goto
11192 -- Leave, to ensure that we properly restore Scope_Suppress.Suppress.
11194 Scope_Suppress
.Suppress
:= (others => True);
11196 -- If this is an elementary or a small not-by-reference record type, and
11197 -- we need to capture the value, just make a constant; this is cheap and
11198 -- objects of both kinds of types can be bit aligned, so it might not be
11199 -- possible to generate a reference to them. Likewise if this is not a
11200 -- name reference, except for a type conversion, because we would enter
11201 -- an infinite recursion with Checks.Apply_Predicate_Check if the target
11202 -- type has predicates (and type conversions need a specific treatment
11203 -- anyway, see below). Also do it if we have a volatile reference and
11204 -- Name_Req is not set (see comments for Side_Effect_Free).
11206 if (Is_Elementary_Type
(Exp_Type
)
11207 or else (Is_Record_Type
(Exp_Type
)
11208 and then Known_Static_RM_Size
(Exp_Type
)
11209 and then RM_Size
(Exp_Type
) <= 64
11210 and then not Has_Discriminants
(Exp_Type
)
11211 and then not Is_By_Reference_Type
(Exp_Type
)))
11212 and then (Variable_Ref
11213 or else (not Is_Name_Reference
(Exp
)
11214 and then Nkind
(Exp
) /= N_Type_Conversion
)
11215 or else (not Name_Req
11216 and then Is_Volatile_Reference
(Exp
)))
11218 Def_Id
:= Build_Temporary
(Loc
, 'R', Exp
);
11219 Set_Etype
(Def_Id
, Exp_Type
);
11220 Res
:= New_Occurrence_Of
(Def_Id
, Loc
);
11222 -- If the expression is a packed reference, it must be reanalyzed and
11223 -- expanded, depending on context. This is the case for actuals where
11224 -- a constraint check may capture the actual before expansion of the
11225 -- call is complete.
11227 if Nkind
(Exp
) = N_Indexed_Component
11228 and then Is_Packed
(Etype
(Prefix
(Exp
)))
11230 Set_Analyzed
(Exp
, False);
11231 Set_Analyzed
(Prefix
(Exp
), False);
11235 -- Rnn : Exp_Type renames Expr;
11237 if Renaming_Req
then
11239 Make_Object_Renaming_Declaration
(Loc
,
11240 Defining_Identifier
=> Def_Id
,
11241 Subtype_Mark
=> New_Occurrence_Of
(Exp_Type
, Loc
),
11242 Name
=> Relocate_Node
(Exp
));
11245 -- Rnn : constant Exp_Type := Expr;
11249 Make_Object_Declaration
(Loc
,
11250 Defining_Identifier
=> Def_Id
,
11251 Object_Definition
=> New_Occurrence_Of
(Exp_Type
, Loc
),
11252 Constant_Present
=> True,
11253 Expression
=> Relocate_Node
(Exp
));
11255 Set_Assignment_OK
(E
);
11258 Insert_Action
(Exp
, E
);
11260 -- If the expression has the form v.all then we can just capture the
11261 -- pointer, and then do an explicit dereference on the result, but
11262 -- this is not right if this is a volatile reference.
11264 elsif Nkind
(Exp
) = N_Explicit_Dereference
11265 and then not Is_Volatile_Reference
(Exp
)
11267 Def_Id
:= Build_Temporary
(Loc
, 'R', Exp
);
11269 Make_Explicit_Dereference
(Loc
, New_Occurrence_Of
(Def_Id
, Loc
));
11271 Insert_Action
(Exp
,
11272 Make_Object_Declaration
(Loc
,
11273 Defining_Identifier
=> Def_Id
,
11274 Object_Definition
=>
11275 New_Occurrence_Of
(Etype
(Prefix
(Exp
)), Loc
),
11276 Constant_Present
=> True,
11277 Expression
=> Relocate_Node
(Prefix
(Exp
))));
11279 -- Similar processing for an unchecked conversion of an expression of
11280 -- the form v.all, where we want the same kind of treatment.
11282 elsif Nkind
(Exp
) = N_Unchecked_Type_Conversion
11283 and then Nkind
(Expression
(Exp
)) = N_Explicit_Dereference
11285 Remove_Side_Effects
(Expression
(Exp
), Name_Req
, Variable_Ref
);
11288 -- If this is a type conversion, leave the type conversion and remove
11289 -- the side effects in the expression. This is important in several
11290 -- circumstances: for change of representations, and also when this is a
11291 -- view conversion to a smaller object, where gigi can end up creating
11292 -- its own temporary of the wrong size.
11294 elsif Nkind
(Exp
) = N_Type_Conversion
then
11295 Remove_Side_Effects
(Expression
(Exp
), Name_Req
, Variable_Ref
);
11297 -- Generating C code the type conversion of an access to constrained
11298 -- array type into an access to unconstrained array type involves
11299 -- initializing a fat pointer and the expression must be free of
11300 -- side effects to safely compute its bounds.
11302 if Modify_Tree_For_C
11303 and then Is_Access_Type
(Etype
(Exp
))
11304 and then Is_Array_Type
(Designated_Type
(Etype
(Exp
)))
11305 and then not Is_Constrained
(Designated_Type
(Etype
(Exp
)))
11307 Def_Id
:= Build_Temporary
(Loc
, 'R', Exp
);
11308 Set_Etype
(Def_Id
, Exp_Type
);
11309 Res
:= New_Occurrence_Of
(Def_Id
, Loc
);
11311 Insert_Action
(Exp
,
11312 Make_Object_Declaration
(Loc
,
11313 Defining_Identifier
=> Def_Id
,
11314 Object_Definition
=> New_Occurrence_Of
(Exp_Type
, Loc
),
11315 Constant_Present
=> True,
11316 Expression
=> Relocate_Node
(Exp
)));
11321 -- If this is an unchecked conversion that Gigi can't handle, make
11322 -- a copy or a use a renaming to capture the value.
11324 elsif Nkind
(Exp
) = N_Unchecked_Type_Conversion
11325 and then not Safe_Unchecked_Type_Conversion
(Exp
)
11327 if CW_Or_Has_Controlled_Part
(Exp_Type
) then
11329 -- Use a renaming to capture the expression, rather than create
11330 -- a controlled temporary.
11332 Def_Id
:= Build_Temporary
(Loc
, 'R', Exp
);
11333 Res
:= New_Occurrence_Of
(Def_Id
, Loc
);
11335 Insert_Action
(Exp
,
11336 Make_Object_Renaming_Declaration
(Loc
,
11337 Defining_Identifier
=> Def_Id
,
11338 Subtype_Mark
=> New_Occurrence_Of
(Exp_Type
, Loc
),
11339 Name
=> Relocate_Node
(Exp
)));
11342 Def_Id
:= Build_Temporary
(Loc
, 'R', Exp
);
11343 Set_Etype
(Def_Id
, Exp_Type
);
11344 Res
:= New_Occurrence_Of
(Def_Id
, Loc
);
11347 Make_Object_Declaration
(Loc
,
11348 Defining_Identifier
=> Def_Id
,
11349 Object_Definition
=> New_Occurrence_Of
(Exp_Type
, Loc
),
11350 Constant_Present
=> not Is_Variable
(Exp
),
11351 Expression
=> Relocate_Node
(Exp
));
11353 Set_Assignment_OK
(E
);
11354 Insert_Action
(Exp
, E
);
11357 -- For expressions that denote names, we can use a renaming scheme.
11358 -- This is needed for correctness in the case of a volatile object of
11359 -- a non-volatile type because the Make_Reference call of the "default"
11360 -- approach would generate an illegal access value (an access value
11361 -- cannot designate such an object - see Analyze_Reference).
11363 elsif Is_Name_Reference
(Exp
)
11365 -- We skip using this scheme if we have an object of a volatile
11366 -- type and we do not have Name_Req set true (see comments for
11367 -- Side_Effect_Free).
11369 and then (Name_Req
or else not Treat_As_Volatile
(Exp_Type
))
11371 Def_Id
:= Build_Temporary
(Loc
, 'R', Exp
);
11372 Res
:= New_Occurrence_Of
(Def_Id
, Loc
);
11374 Insert_Action
(Exp
,
11375 Make_Object_Renaming_Declaration
(Loc
,
11376 Defining_Identifier
=> Def_Id
,
11377 Subtype_Mark
=> New_Occurrence_Of
(Exp_Type
, Loc
),
11378 Name
=> Relocate_Node
(Exp
)));
11380 -- If this is a packed reference, or a selected component with
11381 -- a non-standard representation, a reference to the temporary
11382 -- will be replaced by a copy of the original expression (see
11383 -- Exp_Ch2.Expand_Renaming). Otherwise the temporary must be
11384 -- elaborated by gigi, and is of course not to be replaced in-line
11385 -- by the expression it renames, which would defeat the purpose of
11386 -- removing the side effect.
11388 if Nkind_In
(Exp
, N_Selected_Component
, N_Indexed_Component
)
11389 and then Has_Non_Standard_Rep
(Etype
(Prefix
(Exp
)))
11393 Set_Is_Renaming_Of_Object
(Def_Id
, False);
11396 -- Avoid generating a variable-sized temporary, by generating the
11397 -- reference just for the function call. The transformation could be
11398 -- refined to apply only when the array component is constrained by a
11401 elsif Nkind
(Exp
) = N_Selected_Component
11402 and then Nkind
(Prefix
(Exp
)) = N_Function_Call
11403 and then Is_Array_Type
(Exp_Type
)
11405 Remove_Side_Effects
(Prefix
(Exp
), Name_Req
, Variable_Ref
);
11408 -- Otherwise we generate a reference to the expression
11411 -- An expression which is in SPARK mode is considered side effect
11412 -- free if the resulting value is captured by a variable or a
11416 and then Nkind
(Parent
(Exp
)) = N_Object_Declaration
11420 -- When generating C code we cannot consider side effect free object
11421 -- declarations that have discriminants and are initialized by means
11422 -- of a function call since on this target there is no secondary
11423 -- stack to store the return value and the expander may generate an
11424 -- extra call to the function to compute the discriminant value. In
11425 -- addition, for targets that have secondary stack, the expansion of
11426 -- functions with side effects involves the generation of an access
11427 -- type to capture the return value stored in the secondary stack;
11428 -- by contrast when generating C code such expansion generates an
11429 -- internal object declaration (no access type involved) which must
11430 -- be identified here to avoid entering into a never-ending loop
11431 -- generating internal object declarations.
11433 elsif Modify_Tree_For_C
11434 and then Nkind
(Parent
(Exp
)) = N_Object_Declaration
11436 (Nkind
(Exp
) /= N_Function_Call
11437 or else not Has_Discriminants
(Exp_Type
)
11438 or else Is_Internal_Name
11439 (Chars
(Defining_Identifier
(Parent
(Exp
)))))
11444 -- Special processing for function calls that return a limited type.
11445 -- We need to build a declaration that will enable build-in-place
11446 -- expansion of the call. This is not done if the context is already
11447 -- an object declaration, to prevent infinite recursion.
11449 -- This is relevant only in Ada 2005 mode. In Ada 95 programs we have
11450 -- to accommodate functions returning limited objects by reference.
11452 if Ada_Version
>= Ada_2005
11453 and then Nkind
(Exp
) = N_Function_Call
11454 and then Is_Limited_View
(Etype
(Exp
))
11455 and then Nkind
(Parent
(Exp
)) /= N_Object_Declaration
11458 Obj
: constant Entity_Id
:= Make_Temporary
(Loc
, 'F', Exp
);
11463 Make_Object_Declaration
(Loc
,
11464 Defining_Identifier
=> Obj
,
11465 Object_Definition
=> New_Occurrence_Of
(Exp_Type
, Loc
),
11466 Expression
=> Relocate_Node
(Exp
));
11468 Insert_Action
(Exp
, Decl
);
11469 Set_Etype
(Obj
, Exp_Type
);
11470 Rewrite
(Exp
, New_Occurrence_Of
(Obj
, Loc
));
11475 Def_Id
:= Build_Temporary
(Loc
, 'R', Exp
);
11477 -- The regular expansion of functions with side effects involves the
11478 -- generation of an access type to capture the return value found on
11479 -- the secondary stack. Since SPARK (and why) cannot process access
11480 -- types, use a different approach which ignores the secondary stack
11481 -- and "copies" the returned object.
11482 -- When generating C code, no need for a 'reference since the
11483 -- secondary stack is not supported.
11485 if GNATprove_Mode
or Modify_Tree_For_C
then
11486 Res
:= New_Occurrence_Of
(Def_Id
, Loc
);
11487 Ref_Type
:= Exp_Type
;
11489 -- Regular expansion utilizing an access type and 'reference
11493 Make_Explicit_Dereference
(Loc
,
11494 Prefix
=> New_Occurrence_Of
(Def_Id
, Loc
));
11497 -- type Ann is access all <Exp_Type>;
11499 Ref_Type
:= Make_Temporary
(Loc
, 'A');
11502 Make_Full_Type_Declaration
(Loc
,
11503 Defining_Identifier
=> Ref_Type
,
11505 Make_Access_To_Object_Definition
(Loc
,
11506 All_Present
=> True,
11507 Subtype_Indication
=>
11508 New_Occurrence_Of
(Exp_Type
, Loc
)));
11510 Insert_Action
(Exp
, Ptr_Typ_Decl
);
11514 if Nkind
(E
) = N_Explicit_Dereference
then
11515 New_Exp
:= Relocate_Node
(Prefix
(E
));
11518 E
:= Relocate_Node
(E
);
11520 -- Do not generate a 'reference in SPARK mode or C generation
11521 -- since the access type is not created in the first place.
11523 if GNATprove_Mode
or Modify_Tree_For_C
then
11526 -- Otherwise generate reference, marking the value as non-null
11527 -- since we know it cannot be null and we don't want a check.
11530 New_Exp
:= Make_Reference
(Loc
, E
);
11531 Set_Is_Known_Non_Null
(Def_Id
);
11535 if Is_Delayed_Aggregate
(E
) then
11537 -- The expansion of nested aggregates is delayed until the
11538 -- enclosing aggregate is expanded. As aggregates are often
11539 -- qualified, the predicate applies to qualified expressions as
11540 -- well, indicating that the enclosing aggregate has not been
11541 -- expanded yet. At this point the aggregate is part of a
11542 -- stand-alone declaration, and must be fully expanded.
11544 if Nkind
(E
) = N_Qualified_Expression
then
11545 Set_Expansion_Delayed
(Expression
(E
), False);
11546 Set_Analyzed
(Expression
(E
), False);
11548 Set_Expansion_Delayed
(E
, False);
11551 Set_Analyzed
(E
, False);
11554 -- Generating C code of object declarations that have discriminants
11555 -- and are initialized by means of a function call we propagate the
11556 -- discriminants of the parent type to the internally built object.
11557 -- This is needed to avoid generating an extra call to the called
11560 -- For example, if we generate here the following declaration, it
11561 -- will be expanded later adding an extra call to evaluate the value
11562 -- of the discriminant (needed to compute the size of the object).
11564 -- type Rec (D : Integer) is ...
11565 -- Obj : constant Rec := SomeFunc;
11567 if Modify_Tree_For_C
11568 and then Nkind
(Parent
(Exp
)) = N_Object_Declaration
11569 and then Has_Discriminants
(Exp_Type
)
11570 and then Nkind
(Exp
) = N_Function_Call
11572 Insert_Action
(Exp
,
11573 Make_Object_Declaration
(Loc
,
11574 Defining_Identifier
=> Def_Id
,
11575 Object_Definition
=> New_Copy_Tree
11576 (Object_Definition
(Parent
(Exp
))),
11577 Constant_Present
=> True,
11578 Expression
=> New_Exp
));
11580 Insert_Action
(Exp
,
11581 Make_Object_Declaration
(Loc
,
11582 Defining_Identifier
=> Def_Id
,
11583 Object_Definition
=> New_Occurrence_Of
(Ref_Type
, Loc
),
11584 Constant_Present
=> True,
11585 Expression
=> New_Exp
));
11589 -- Preserve the Assignment_OK flag in all copies, since at least one
11590 -- copy may be used in a context where this flag must be set (otherwise
11591 -- why would the flag be set in the first place).
11593 Set_Assignment_OK
(Res
, Assignment_OK
(Exp
));
11595 -- Finally rewrite the original expression and we are done
11597 Rewrite
(Exp
, Res
);
11598 Analyze_And_Resolve
(Exp
, Exp_Type
);
11601 Scope_Suppress
:= Svg_Suppress
;
11602 end Remove_Side_Effects
;
11604 ------------------------
11605 -- Replace_References --
11606 ------------------------
11608 procedure Replace_References
11610 Par_Typ
: Entity_Id
;
11611 Deriv_Typ
: Entity_Id
;
11612 Par_Obj
: Entity_Id
:= Empty
;
11613 Deriv_Obj
: Entity_Id
:= Empty
)
11615 function Is_Deriv_Obj_Ref
(Ref
: Node_Id
) return Boolean;
11616 -- Determine whether node Ref denotes some component of Deriv_Obj
11618 function Replace_Ref
(Ref
: Node_Id
) return Traverse_Result
;
11619 -- Substitute a reference to an entity with the corresponding value
11620 -- stored in table Type_Map.
11622 function Type_Of_Formal
11624 Actual
: Node_Id
) return Entity_Id
;
11625 -- Find the type of the formal parameter which corresponds to actual
11626 -- parameter Actual in subprogram call Call.
11628 ----------------------
11629 -- Is_Deriv_Obj_Ref --
11630 ----------------------
11632 function Is_Deriv_Obj_Ref
(Ref
: Node_Id
) return Boolean is
11633 Par
: constant Node_Id
:= Parent
(Ref
);
11636 -- Detect the folowing selected component form:
11638 -- Deriv_Obj.(something)
11641 Nkind
(Par
) = N_Selected_Component
11642 and then Is_Entity_Name
(Prefix
(Par
))
11643 and then Entity
(Prefix
(Par
)) = Deriv_Obj
;
11644 end Is_Deriv_Obj_Ref
;
11650 function Replace_Ref
(Ref
: Node_Id
) return Traverse_Result
is
11651 procedure Remove_Controlling_Arguments
(From_Arg
: Node_Id
);
11652 -- Reset the Controlling_Argument of all function calls that
11653 -- encapsulate node From_Arg.
11655 ----------------------------------
11656 -- Remove_Controlling_Arguments --
11657 ----------------------------------
11659 procedure Remove_Controlling_Arguments
(From_Arg
: Node_Id
) is
11664 while Present
(Par
) loop
11665 if Nkind
(Par
) = N_Function_Call
11666 and then Present
(Controlling_Argument
(Par
))
11668 Set_Controlling_Argument
(Par
, Empty
);
11670 -- Prevent the search from going too far
11672 elsif Is_Body_Or_Package_Declaration
(Par
) then
11676 Par
:= Parent
(Par
);
11678 end Remove_Controlling_Arguments
;
11682 Context
: constant Node_Id
:= Parent
(Ref
);
11683 Loc
: constant Source_Ptr
:= Sloc
(Ref
);
11684 Ref_Id
: Entity_Id
;
11685 Result
: Traverse_Result
;
11688 -- The new reference which is intended to substitute the old one
11691 -- The reference designated for replacement. In certain cases this
11692 -- may be a node other than Ref.
11694 Val
: Node_Or_Entity_Id
;
11695 -- The corresponding value of Ref from the type map
11697 -- Start of processing for Replace_Ref
11700 -- Assume that the input reference is to be replaced and that the
11701 -- traversal should examine the children of the reference.
11706 -- The input denotes a meaningful reference
11708 if Nkind
(Ref
) in N_Has_Entity
and then Present
(Entity
(Ref
)) then
11709 Ref_Id
:= Entity
(Ref
);
11710 Val
:= Type_Map
.Get
(Ref_Id
);
11712 -- The reference has a corresponding value in the type map, a
11713 -- substitution is possible.
11715 if Present
(Val
) then
11717 -- The reference denotes a discriminant
11719 if Ekind
(Ref_Id
) = E_Discriminant
then
11720 if Nkind
(Val
) in N_Entity
then
11722 -- The value denotes another discriminant. Replace as
11725 -- _object.Discr -> _object.Val
11727 if Ekind
(Val
) = E_Discriminant
then
11728 New_Ref
:= New_Occurrence_Of
(Val
, Loc
);
11730 -- Otherwise the value denotes the entity of a name which
11731 -- constraints the discriminant. Replace as follows:
11733 -- _object.Discr -> Val
11736 pragma Assert
(Is_Deriv_Obj_Ref
(Old_Ref
));
11738 New_Ref
:= New_Occurrence_Of
(Val
, Loc
);
11739 Old_Ref
:= Parent
(Old_Ref
);
11742 -- Otherwise the value denotes an arbitrary expression which
11743 -- constraints the discriminant. Replace as follows:
11745 -- _object.Discr -> Val
11748 pragma Assert
(Is_Deriv_Obj_Ref
(Old_Ref
));
11750 New_Ref
:= New_Copy_Tree
(Val
);
11751 Old_Ref
:= Parent
(Old_Ref
);
11754 -- Otherwise the reference denotes a primitive. Replace as
11757 -- Primitive -> Val
11760 pragma Assert
(Nkind
(Val
) in N_Entity
);
11761 New_Ref
:= New_Occurrence_Of
(Val
, Loc
);
11764 -- The reference mentions the _object parameter of the parent
11765 -- type's DIC or type invariant procedure. Replace as follows:
11767 -- _object -> _object
11769 elsif Present
(Par_Obj
)
11770 and then Present
(Deriv_Obj
)
11771 and then Ref_Id
= Par_Obj
11773 New_Ref
:= New_Occurrence_Of
(Deriv_Obj
, Loc
);
11775 -- The type of the _object parameter is class-wide when the
11776 -- expression comes from an assertion pragma that applies to
11777 -- an abstract parent type or an interface. The class-wide type
11778 -- facilitates the preanalysis of the expression by treating
11779 -- calls to abstract primitives that mention the current
11780 -- instance of the type as dispatching. Once the calls are
11781 -- remapped to invoke overriding or inherited primitives, the
11782 -- calls no longer need to be dispatching. Examine all function
11783 -- calls that encapsulate the _object parameter and reset their
11784 -- Controlling_Argument attribute.
11786 if Is_Class_Wide_Type
(Etype
(Par_Obj
))
11787 and then Is_Abstract_Type
(Root_Type
(Etype
(Par_Obj
)))
11789 Remove_Controlling_Arguments
(Old_Ref
);
11792 -- The reference to _object acts as an actual parameter in a
11793 -- subprogram call which may be invoking a primitive of the
11796 -- Primitive (... _object ...);
11798 -- The parent type primitive may not be overridden nor
11799 -- inherited when it is declared after the derived type
11802 -- type Parent is tagged private;
11803 -- type Child is new Parent with private;
11804 -- procedure Primitive (Obj : Parent);
11806 -- In this scenario the _object parameter is converted to the
11807 -- parent type. Due to complications with partial/full views
11808 -- and view swaps, the parent type is taken from the formal
11809 -- parameter of the subprogram being called.
11811 if Nkind_In
(Context
, N_Function_Call
,
11812 N_Procedure_Call_Statement
)
11813 and then No
(Type_Map
.Get
(Entity
(Name
(Context
))))
11816 Convert_To
(Type_Of_Formal
(Context
, Old_Ref
), New_Ref
);
11818 -- Do not process the generated type conversion because
11819 -- both the parent type and the derived type are in the
11820 -- Type_Map table. This will clobber the type conversion
11821 -- by resetting its subtype mark.
11826 -- Otherwise there is nothing to replace
11832 if Present
(New_Ref
) then
11833 Rewrite
(Old_Ref
, New_Ref
);
11835 -- Update the return type when the context of the reference
11836 -- acts as the name of a function call. Note that the update
11837 -- should not be performed when the reference appears as an
11838 -- actual in the call.
11840 if Nkind
(Context
) = N_Function_Call
11841 and then Name
(Context
) = Old_Ref
11843 Set_Etype
(Context
, Etype
(Val
));
11848 -- Reanalyze the reference due to potential replacements
11850 if Nkind
(Old_Ref
) in N_Has_Etype
then
11851 Set_Analyzed
(Old_Ref
, False);
11857 procedure Replace_Refs
is new Traverse_Proc
(Replace_Ref
);
11859 --------------------
11860 -- Type_Of_Formal --
11861 --------------------
11863 function Type_Of_Formal
11865 Actual
: Node_Id
) return Entity_Id
11871 -- Examine the list of actual and formal parameters in parallel
11873 A
:= First
(Parameter_Associations
(Call
));
11874 F
:= First_Formal
(Entity
(Name
(Call
)));
11875 while Present
(A
) and then Present
(F
) loop
11884 -- The actual parameter must always have a corresponding formal
11886 pragma Assert
(False);
11889 end Type_Of_Formal
;
11891 -- Start of processing for Replace_References
11894 -- Map the attributes of the parent type to the proper corresponding
11895 -- attributes of the derived type.
11898 (Parent_Type
=> Par_Typ
,
11899 Derived_Type
=> Deriv_Typ
);
11901 -- Inspect the input expression and perform substitutions where
11904 Replace_Refs
(Expr
);
11905 end Replace_References
;
11907 -----------------------------
11908 -- Replace_Type_References --
11909 -----------------------------
11911 procedure Replace_Type_References
11914 Obj_Id
: Entity_Id
)
11916 procedure Replace_Type_Ref
(N
: Node_Id
);
11917 -- Substitute a single reference of the current instance of type Typ
11918 -- with a reference to Obj_Id.
11920 ----------------------
11921 -- Replace_Type_Ref --
11922 ----------------------
11924 procedure Replace_Type_Ref
(N
: Node_Id
) is
11926 -- Decorate the reference to Typ even though it may be rewritten
11927 -- further down. This is done for two reasons:
11929 -- * ASIS has all necessary semantic information in the original
11932 -- * Routines which examine properties of the Original_Node have
11933 -- some semantic information.
11935 if Nkind
(N
) = N_Identifier
then
11936 Set_Entity
(N
, Typ
);
11937 Set_Etype
(N
, Typ
);
11939 elsif Nkind
(N
) = N_Selected_Component
then
11940 Analyze
(Prefix
(N
));
11941 Set_Entity
(Selector_Name
(N
), Typ
);
11942 Set_Etype
(Selector_Name
(N
), Typ
);
11945 -- Perform the following substitution:
11949 Rewrite
(N
, New_Occurrence_Of
(Obj_Id
, Sloc
(N
)));
11950 Set_Comes_From_Source
(N
, True);
11951 end Replace_Type_Ref
;
11953 procedure Replace_Type_Refs
is
11954 new Replace_Type_References_Generic
(Replace_Type_Ref
);
11956 -- Start of processing for Replace_Type_References
11959 Replace_Type_Refs
(Expr
, Typ
);
11960 end Replace_Type_References
;
11962 ---------------------------
11963 -- Represented_As_Scalar --
11964 ---------------------------
11966 function Represented_As_Scalar
(T
: Entity_Id
) return Boolean is
11967 UT
: constant Entity_Id
:= Underlying_Type
(T
);
11969 return Is_Scalar_Type
(UT
)
11970 or else (Is_Bit_Packed_Array
(UT
)
11971 and then Is_Scalar_Type
(Packed_Array_Impl_Type
(UT
)));
11972 end Represented_As_Scalar
;
11974 ------------------------------
11975 -- Requires_Cleanup_Actions --
11976 ------------------------------
11978 function Requires_Cleanup_Actions
11980 Lib_Level
: Boolean) return Boolean
11982 At_Lib_Level
: constant Boolean :=
11984 and then Nkind_In
(N
, N_Package_Body
,
11985 N_Package_Specification
);
11986 -- N is at the library level if the top-most context is a package and
11987 -- the path taken to reach N does not inlcude non-package constructs.
11991 when N_Accept_Statement
11992 | N_Block_Statement
11996 | N_Subprogram_Body
12000 Requires_Cleanup_Actions
12001 (L
=> Declarations
(N
),
12002 Lib_Level
=> At_Lib_Level
,
12003 Nested_Constructs
=> True)
12005 (Present
(Handled_Statement_Sequence
(N
))
12007 Requires_Cleanup_Actions
12009 Statements
(Handled_Statement_Sequence
(N
)),
12010 Lib_Level
=> At_Lib_Level
,
12011 Nested_Constructs
=> True));
12013 -- Extended return statements are the same as the above, except that
12014 -- there is no Declarations field. We do not want to clean up the
12015 -- Return_Object_Declarations.
12017 when N_Extended_Return_Statement
=>
12019 Present
(Handled_Statement_Sequence
(N
))
12020 and then Requires_Cleanup_Actions
12022 Statements
(Handled_Statement_Sequence
(N
)),
12023 Lib_Level
=> At_Lib_Level
,
12024 Nested_Constructs
=> True);
12026 when N_Package_Specification
=>
12028 Requires_Cleanup_Actions
12029 (L
=> Visible_Declarations
(N
),
12030 Lib_Level
=> At_Lib_Level
,
12031 Nested_Constructs
=> True)
12033 Requires_Cleanup_Actions
12034 (L
=> Private_Declarations
(N
),
12035 Lib_Level
=> At_Lib_Level
,
12036 Nested_Constructs
=> True);
12039 raise Program_Error
;
12041 end Requires_Cleanup_Actions
;
12043 ------------------------------
12044 -- Requires_Cleanup_Actions --
12045 ------------------------------
12047 function Requires_Cleanup_Actions
12049 Lib_Level
: Boolean;
12050 Nested_Constructs
: Boolean) return Boolean
12054 Obj_Id
: Entity_Id
;
12055 Obj_Typ
: Entity_Id
;
12056 Pack_Id
: Entity_Id
;
12061 or else Is_Empty_List
(L
)
12067 while Present
(Decl
) loop
12069 -- Library-level tagged types
12071 if Nkind
(Decl
) = N_Full_Type_Declaration
then
12072 Typ
:= Defining_Identifier
(Decl
);
12074 -- Ignored Ghost types do not need any cleanup actions because
12075 -- they will not appear in the final tree.
12077 if Is_Ignored_Ghost_Entity
(Typ
) then
12080 elsif Is_Tagged_Type
(Typ
)
12081 and then Is_Library_Level_Entity
(Typ
)
12082 and then Convention
(Typ
) = Convention_Ada
12083 and then Present
(Access_Disp_Table
(Typ
))
12084 and then RTE_Available
(RE_Unregister_Tag
)
12085 and then not Is_Abstract_Type
(Typ
)
12086 and then not No_Run_Time_Mode
12091 -- Regular object declarations
12093 elsif Nkind
(Decl
) = N_Object_Declaration
then
12094 Obj_Id
:= Defining_Identifier
(Decl
);
12095 Obj_Typ
:= Base_Type
(Etype
(Obj_Id
));
12096 Expr
:= Expression
(Decl
);
12098 -- Bypass any form of processing for objects which have their
12099 -- finalization disabled. This applies only to objects at the
12102 if Lib_Level
and then Finalize_Storage_Only
(Obj_Typ
) then
12105 -- Finalization of transient objects are treated separately in
12106 -- order to handle sensitive cases. These include:
12108 -- * Aggregate expansion
12109 -- * If, case, and expression with actions expansion
12110 -- * Transient scopes
12112 -- If one of those contexts has marked the transient object as
12113 -- ignored, do not generate finalization actions for it.
12115 elsif Is_Finalized_Transient
(Obj_Id
)
12116 or else Is_Ignored_Transient
(Obj_Id
)
12120 -- Ignored Ghost objects do not need any cleanup actions because
12121 -- they will not appear in the final tree.
12123 elsif Is_Ignored_Ghost_Entity
(Obj_Id
) then
12126 -- The object is of the form:
12127 -- Obj : [constant] Typ [:= Expr];
12129 -- Do not process tag-to-class-wide conversions because they do
12130 -- not yield an object. Do not process the incomplete view of a
12131 -- deferred constant. Note that an object initialized by means
12132 -- of a build-in-place function call may appear as a deferred
12133 -- constant after expansion activities. These kinds of objects
12134 -- must be finalized.
12136 elsif not Is_Imported
(Obj_Id
)
12137 and then Needs_Finalization
(Obj_Typ
)
12138 and then not Is_Tag_To_Class_Wide_Conversion
(Obj_Id
)
12139 and then not (Ekind
(Obj_Id
) = E_Constant
12140 and then not Has_Completion
(Obj_Id
)
12141 and then No
(BIP_Initialization_Call
(Obj_Id
)))
12145 -- The object is of the form:
12146 -- Obj : Access_Typ := Non_BIP_Function_Call'reference;
12148 -- Obj : Access_Typ :=
12149 -- BIP_Function_Call (BIPalloc => 2, ...)'reference;
12151 elsif Is_Access_Type
(Obj_Typ
)
12152 and then Needs_Finalization
12153 (Available_View
(Designated_Type
(Obj_Typ
)))
12154 and then Present
(Expr
)
12156 (Is_Secondary_Stack_BIP_Func_Call
(Expr
)
12158 (Is_Non_BIP_Func_Call
(Expr
)
12159 and then not Is_Related_To_Func_Return
(Obj_Id
)))
12163 -- Processing for "hook" objects generated for transient objects
12164 -- declared inside an Expression_With_Actions.
12166 elsif Is_Access_Type
(Obj_Typ
)
12167 and then Present
(Status_Flag_Or_Transient_Decl
(Obj_Id
))
12168 and then Nkind
(Status_Flag_Or_Transient_Decl
(Obj_Id
)) =
12169 N_Object_Declaration
12173 -- Processing for intermediate results of if expressions where
12174 -- one of the alternatives uses a controlled function call.
12176 elsif Is_Access_Type
(Obj_Typ
)
12177 and then Present
(Status_Flag_Or_Transient_Decl
(Obj_Id
))
12178 and then Nkind
(Status_Flag_Or_Transient_Decl
(Obj_Id
)) =
12179 N_Defining_Identifier
12180 and then Present
(Expr
)
12181 and then Nkind
(Expr
) = N_Null
12185 -- Simple protected objects which use type System.Tasking.
12186 -- Protected_Objects.Protection to manage their locks should be
12187 -- treated as controlled since they require manual cleanup.
12189 elsif Ekind
(Obj_Id
) = E_Variable
12190 and then (Is_Simple_Protected_Type
(Obj_Typ
)
12191 or else Has_Simple_Protected_Object
(Obj_Typ
))
12196 -- Specific cases of object renamings
12198 elsif Nkind
(Decl
) = N_Object_Renaming_Declaration
then
12199 Obj_Id
:= Defining_Identifier
(Decl
);
12200 Obj_Typ
:= Base_Type
(Etype
(Obj_Id
));
12202 -- Bypass any form of processing for objects which have their
12203 -- finalization disabled. This applies only to objects at the
12206 if Lib_Level
and then Finalize_Storage_Only
(Obj_Typ
) then
12209 -- Ignored Ghost object renamings do not need any cleanup actions
12210 -- because they will not appear in the final tree.
12212 elsif Is_Ignored_Ghost_Entity
(Obj_Id
) then
12215 -- Return object of a build-in-place function. This case is
12216 -- recognized and marked by the expansion of an extended return
12217 -- statement (see Expand_N_Extended_Return_Statement).
12219 elsif Needs_Finalization
(Obj_Typ
)
12220 and then Is_Return_Object
(Obj_Id
)
12221 and then Present
(Status_Flag_Or_Transient_Decl
(Obj_Id
))
12225 -- Detect a case where a source object has been initialized by
12226 -- a controlled function call or another object which was later
12227 -- rewritten as a class-wide conversion of Ada.Tags.Displace.
12229 -- Obj1 : CW_Type := Src_Obj;
12230 -- Obj2 : CW_Type := Function_Call (...);
12232 -- Obj1 : CW_Type renames (... Ada.Tags.Displace (Src_Obj));
12233 -- Tmp : ... := Function_Call (...)'reference;
12234 -- Obj2 : CW_Type renames (... Ada.Tags.Displace (Tmp));
12236 elsif Is_Displacement_Of_Object_Or_Function_Result
(Obj_Id
) then
12240 -- Inspect the freeze node of an access-to-controlled type and look
12241 -- for a delayed finalization master. This case arises when the
12242 -- freeze actions are inserted at a later time than the expansion of
12243 -- the context. Since Build_Finalizer is never called on a single
12244 -- construct twice, the master will be ultimately left out and never
12245 -- finalized. This is also needed for freeze actions of designated
12246 -- types themselves, since in some cases the finalization master is
12247 -- associated with a designated type's freeze node rather than that
12248 -- of the access type (see handling for freeze actions in
12249 -- Build_Finalization_Master).
12251 elsif Nkind
(Decl
) = N_Freeze_Entity
12252 and then Present
(Actions
(Decl
))
12254 Typ
:= Entity
(Decl
);
12256 -- Freeze nodes for ignored Ghost types do not need cleanup
12257 -- actions because they will never appear in the final tree.
12259 if Is_Ignored_Ghost_Entity
(Typ
) then
12262 elsif ((Is_Access_Type
(Typ
)
12263 and then not Is_Access_Subprogram_Type
(Typ
)
12264 and then Needs_Finalization
12265 (Available_View
(Designated_Type
(Typ
))))
12266 or else (Is_Type
(Typ
) and then Needs_Finalization
(Typ
)))
12267 and then Requires_Cleanup_Actions
12268 (Actions
(Decl
), Lib_Level
, Nested_Constructs
)
12273 -- Nested package declarations
12275 elsif Nested_Constructs
12276 and then Nkind
(Decl
) = N_Package_Declaration
12278 Pack_Id
:= Defining_Entity
(Decl
);
12280 -- Do not inspect an ignored Ghost package because all code found
12281 -- within will not appear in the final tree.
12283 if Is_Ignored_Ghost_Entity
(Pack_Id
) then
12286 elsif Ekind
(Pack_Id
) /= E_Generic_Package
12287 and then Requires_Cleanup_Actions
12288 (Specification
(Decl
), Lib_Level
)
12293 -- Nested package bodies
12295 elsif Nested_Constructs
and then Nkind
(Decl
) = N_Package_Body
then
12297 -- Do not inspect an ignored Ghost package body because all code
12298 -- found within will not appear in the final tree.
12300 if Is_Ignored_Ghost_Entity
(Defining_Entity
(Decl
)) then
12303 elsif Ekind
(Corresponding_Spec
(Decl
)) /= E_Generic_Package
12304 and then Requires_Cleanup_Actions
(Decl
, Lib_Level
)
12309 elsif Nkind
(Decl
) = N_Block_Statement
12312 -- Handle a rare case caused by a controlled transient object
12313 -- created as part of a record init proc. The variable is wrapped
12314 -- in a block, but the block is not associated with a transient
12319 -- Handle the case where the original context has been wrapped in
12320 -- a block to avoid interference between exception handlers and
12321 -- At_End handlers. Treat the block as transparent and process its
12324 or else Is_Finalization_Wrapper
(Decl
))
12326 if Requires_Cleanup_Actions
(Decl
, Lib_Level
) then
12335 end Requires_Cleanup_Actions
;
12337 ------------------------------------
12338 -- Safe_Unchecked_Type_Conversion --
12339 ------------------------------------
12341 -- Note: this function knows quite a bit about the exact requirements of
12342 -- Gigi with respect to unchecked type conversions, and its code must be
12343 -- coordinated with any changes in Gigi in this area.
12345 -- The above requirements should be documented in Sinfo ???
12347 function Safe_Unchecked_Type_Conversion
(Exp
: Node_Id
) return Boolean is
12352 Pexp
: constant Node_Id
:= Parent
(Exp
);
12355 -- If the expression is the RHS of an assignment or object declaration
12356 -- we are always OK because there will always be a target.
12358 -- Object renaming declarations, (generated for view conversions of
12359 -- actuals in inlined calls), like object declarations, provide an
12360 -- explicit type, and are safe as well.
12362 if (Nkind
(Pexp
) = N_Assignment_Statement
12363 and then Expression
(Pexp
) = Exp
)
12364 or else Nkind_In
(Pexp
, N_Object_Declaration
,
12365 N_Object_Renaming_Declaration
)
12369 -- If the expression is the prefix of an N_Selected_Component we should
12370 -- also be OK because GCC knows to look inside the conversion except if
12371 -- the type is discriminated. We assume that we are OK anyway if the
12372 -- type is not set yet or if it is controlled since we can't afford to
12373 -- introduce a temporary in this case.
12375 elsif Nkind
(Pexp
) = N_Selected_Component
12376 and then Prefix
(Pexp
) = Exp
12378 if No
(Etype
(Pexp
)) then
12382 not Has_Discriminants
(Etype
(Pexp
))
12383 or else Is_Constrained
(Etype
(Pexp
));
12387 -- Set the output type, this comes from Etype if it is set, otherwise we
12388 -- take it from the subtype mark, which we assume was already fully
12391 if Present
(Etype
(Exp
)) then
12392 Otyp
:= Etype
(Exp
);
12394 Otyp
:= Entity
(Subtype_Mark
(Exp
));
12397 -- The input type always comes from the expression, and we assume this
12398 -- is indeed always analyzed, so we can simply get the Etype.
12400 Ityp
:= Etype
(Expression
(Exp
));
12402 -- Initialize alignments to unknown so far
12407 -- Replace a concurrent type by its corresponding record type and each
12408 -- type by its underlying type and do the tests on those. The original
12409 -- type may be a private type whose completion is a concurrent type, so
12410 -- find the underlying type first.
12412 if Present
(Underlying_Type
(Otyp
)) then
12413 Otyp
:= Underlying_Type
(Otyp
);
12416 if Present
(Underlying_Type
(Ityp
)) then
12417 Ityp
:= Underlying_Type
(Ityp
);
12420 if Is_Concurrent_Type
(Otyp
) then
12421 Otyp
:= Corresponding_Record_Type
(Otyp
);
12424 if Is_Concurrent_Type
(Ityp
) then
12425 Ityp
:= Corresponding_Record_Type
(Ityp
);
12428 -- If the base types are the same, we know there is no problem since
12429 -- this conversion will be a noop.
12431 if Implementation_Base_Type
(Otyp
) = Implementation_Base_Type
(Ityp
) then
12434 -- Same if this is an upwards conversion of an untagged type, and there
12435 -- are no constraints involved (could be more general???)
12437 elsif Etype
(Ityp
) = Otyp
12438 and then not Is_Tagged_Type
(Ityp
)
12439 and then not Has_Discriminants
(Ityp
)
12440 and then No
(First_Rep_Item
(Base_Type
(Ityp
)))
12444 -- If the expression has an access type (object or subprogram) we assume
12445 -- that the conversion is safe, because the size of the target is safe,
12446 -- even if it is a record (which might be treated as having unknown size
12449 elsif Is_Access_Type
(Ityp
) then
12452 -- If the size of output type is known at compile time, there is never
12453 -- a problem. Note that unconstrained records are considered to be of
12454 -- known size, but we can't consider them that way here, because we are
12455 -- talking about the actual size of the object.
12457 -- We also make sure that in addition to the size being known, we do not
12458 -- have a case which might generate an embarrassingly large temp in
12459 -- stack checking mode.
12461 elsif Size_Known_At_Compile_Time
(Otyp
)
12463 (not Stack_Checking_Enabled
12464 or else not May_Generate_Large_Temp
(Otyp
))
12465 and then not (Is_Record_Type
(Otyp
) and then not Is_Constrained
(Otyp
))
12469 -- If either type is tagged, then we know the alignment is OK so Gigi
12470 -- will be able to use pointer punning.
12472 elsif Is_Tagged_Type
(Otyp
) or else Is_Tagged_Type
(Ityp
) then
12475 -- If either type is a limited record type, we cannot do a copy, so say
12476 -- safe since there's nothing else we can do.
12478 elsif Is_Limited_Record
(Otyp
) or else Is_Limited_Record
(Ityp
) then
12481 -- Conversions to and from packed array types are always ignored and
12484 elsif Is_Packed_Array_Impl_Type
(Otyp
)
12485 or else Is_Packed_Array_Impl_Type
(Ityp
)
12490 -- The only other cases known to be safe is if the input type's
12491 -- alignment is known to be at least the maximum alignment for the
12492 -- target or if both alignments are known and the output type's
12493 -- alignment is no stricter than the input's. We can use the component
12494 -- type alignment for an array if a type is an unpacked array type.
12496 if Present
(Alignment_Clause
(Otyp
)) then
12497 Oalign
:= Expr_Value
(Expression
(Alignment_Clause
(Otyp
)));
12499 elsif Is_Array_Type
(Otyp
)
12500 and then Present
(Alignment_Clause
(Component_Type
(Otyp
)))
12502 Oalign
:= Expr_Value
(Expression
(Alignment_Clause
12503 (Component_Type
(Otyp
))));
12506 if Present
(Alignment_Clause
(Ityp
)) then
12507 Ialign
:= Expr_Value
(Expression
(Alignment_Clause
(Ityp
)));
12509 elsif Is_Array_Type
(Ityp
)
12510 and then Present
(Alignment_Clause
(Component_Type
(Ityp
)))
12512 Ialign
:= Expr_Value
(Expression
(Alignment_Clause
12513 (Component_Type
(Ityp
))));
12516 if Ialign
/= No_Uint
and then Ialign
> Maximum_Alignment
then
12519 elsif Ialign
/= No_Uint
12520 and then Oalign
/= No_Uint
12521 and then Ialign
<= Oalign
12525 -- Otherwise, Gigi cannot handle this and we must make a temporary
12530 end Safe_Unchecked_Type_Conversion
;
12532 ---------------------------------
12533 -- Set_Current_Value_Condition --
12534 ---------------------------------
12536 -- Note: the implementation of this procedure is very closely tied to the
12537 -- implementation of Get_Current_Value_Condition. Here we set required
12538 -- Current_Value fields, and in Get_Current_Value_Condition, we interpret
12539 -- them, so they must have a consistent view.
12541 procedure Set_Current_Value_Condition
(Cnode
: Node_Id
) is
12543 procedure Set_Entity_Current_Value
(N
: Node_Id
);
12544 -- If N is an entity reference, where the entity is of an appropriate
12545 -- kind, then set the current value of this entity to Cnode, unless
12546 -- there is already a definite value set there.
12548 procedure Set_Expression_Current_Value
(N
: Node_Id
);
12549 -- If N is of an appropriate form, sets an appropriate entry in current
12550 -- value fields of relevant entities. Multiple entities can be affected
12551 -- in the case of an AND or AND THEN.
12553 ------------------------------
12554 -- Set_Entity_Current_Value --
12555 ------------------------------
12557 procedure Set_Entity_Current_Value
(N
: Node_Id
) is
12559 if Is_Entity_Name
(N
) then
12561 Ent
: constant Entity_Id
:= Entity
(N
);
12564 -- Don't capture if not safe to do so
12566 if not Safe_To_Capture_Value
(N
, Ent
, Cond
=> True) then
12570 -- Here we have a case where the Current_Value field may need
12571 -- to be set. We set it if it is not already set to a compile
12572 -- time expression value.
12574 -- Note that this represents a decision that one condition
12575 -- blots out another previous one. That's certainly right if
12576 -- they occur at the same level. If the second one is nested,
12577 -- then the decision is neither right nor wrong (it would be
12578 -- equally OK to leave the outer one in place, or take the new
12579 -- inner one. Really we should record both, but our data
12580 -- structures are not that elaborate.
12582 if Nkind
(Current_Value
(Ent
)) not in N_Subexpr
then
12583 Set_Current_Value
(Ent
, Cnode
);
12587 end Set_Entity_Current_Value
;
12589 ----------------------------------
12590 -- Set_Expression_Current_Value --
12591 ----------------------------------
12593 procedure Set_Expression_Current_Value
(N
: Node_Id
) is
12599 -- Loop to deal with (ignore for now) any NOT operators present. The
12600 -- presence of NOT operators will be handled properly when we call
12601 -- Get_Current_Value_Condition.
12603 while Nkind
(Cond
) = N_Op_Not
loop
12604 Cond
:= Right_Opnd
(Cond
);
12607 -- For an AND or AND THEN, recursively process operands
12609 if Nkind
(Cond
) = N_Op_And
or else Nkind
(Cond
) = N_And_Then
then
12610 Set_Expression_Current_Value
(Left_Opnd
(Cond
));
12611 Set_Expression_Current_Value
(Right_Opnd
(Cond
));
12615 -- Check possible relational operator
12617 if Nkind
(Cond
) in N_Op_Compare
then
12618 if Compile_Time_Known_Value
(Right_Opnd
(Cond
)) then
12619 Set_Entity_Current_Value
(Left_Opnd
(Cond
));
12620 elsif Compile_Time_Known_Value
(Left_Opnd
(Cond
)) then
12621 Set_Entity_Current_Value
(Right_Opnd
(Cond
));
12624 elsif Nkind_In
(Cond
,
12626 N_Qualified_Expression
,
12627 N_Expression_With_Actions
)
12629 Set_Expression_Current_Value
(Expression
(Cond
));
12631 -- Check possible boolean variable reference
12634 Set_Entity_Current_Value
(Cond
);
12636 end Set_Expression_Current_Value
;
12638 -- Start of processing for Set_Current_Value_Condition
12641 Set_Expression_Current_Value
(Condition
(Cnode
));
12642 end Set_Current_Value_Condition
;
12644 --------------------------
12645 -- Set_Elaboration_Flag --
12646 --------------------------
12648 procedure Set_Elaboration_Flag
(N
: Node_Id
; Spec_Id
: Entity_Id
) is
12649 Loc
: constant Source_Ptr
:= Sloc
(N
);
12650 Ent
: constant Entity_Id
:= Elaboration_Entity
(Spec_Id
);
12654 if Present
(Ent
) then
12656 -- Nothing to do if at the compilation unit level, because in this
12657 -- case the flag is set by the binder generated elaboration routine.
12659 if Nkind
(Parent
(N
)) = N_Compilation_Unit
then
12662 -- Here we do need to generate an assignment statement
12665 Check_Restriction
(No_Elaboration_Code
, N
);
12668 Make_Assignment_Statement
(Loc
,
12669 Name
=> New_Occurrence_Of
(Ent
, Loc
),
12670 Expression
=> Make_Integer_Literal
(Loc
, Uint_1
));
12672 -- Mark the assignment statement as elaboration code. This allows
12673 -- the early call region mechanism (see Sem_Elab) to properly
12674 -- ignore such assignments even though they are non-preelaborable
12677 Set_Is_Elaboration_Code
(Asn
);
12679 if Nkind
(Parent
(N
)) = N_Subunit
then
12680 Insert_After
(Corresponding_Stub
(Parent
(N
)), Asn
);
12682 Insert_After
(N
, Asn
);
12687 -- Kill current value indication. This is necessary because the
12688 -- tests of this flag are inserted out of sequence and must not
12689 -- pick up bogus indications of the wrong constant value.
12691 Set_Current_Value
(Ent
, Empty
);
12693 -- If the subprogram is in the current declarative part and
12694 -- 'access has been applied to it, generate an elaboration
12695 -- check at the beginning of the declarations of the body.
12697 if Nkind
(N
) = N_Subprogram_Body
12698 and then Address_Taken
(Spec_Id
)
12700 Ekind_In
(Scope
(Spec_Id
), E_Block
, E_Procedure
, E_Function
)
12703 Loc
: constant Source_Ptr
:= Sloc
(N
);
12704 Decls
: constant List_Id
:= Declarations
(N
);
12708 -- No need to generate this check if first entry in the
12709 -- declaration list is a raise of Program_Error now.
12712 and then Nkind
(First
(Decls
)) = N_Raise_Program_Error
12717 -- Otherwise generate the check
12720 Make_Raise_Program_Error
(Loc
,
12723 Left_Opnd
=> New_Occurrence_Of
(Ent
, Loc
),
12724 Right_Opnd
=> Make_Integer_Literal
(Loc
, Uint_0
)),
12725 Reason
=> PE_Access_Before_Elaboration
);
12728 Set_Declarations
(N
, New_List
(Chk
));
12730 Prepend
(Chk
, Decls
);
12738 end Set_Elaboration_Flag
;
12740 ----------------------------
12741 -- Set_Renamed_Subprogram --
12742 ----------------------------
12744 procedure Set_Renamed_Subprogram
(N
: Node_Id
; E
: Entity_Id
) is
12746 -- If input node is an identifier, we can just reset it
12748 if Nkind
(N
) = N_Identifier
then
12749 Set_Chars
(N
, Chars
(E
));
12752 -- Otherwise we have to do a rewrite, preserving Comes_From_Source
12756 CS
: constant Boolean := Comes_From_Source
(N
);
12758 Rewrite
(N
, Make_Identifier
(Sloc
(N
), Chars
(E
)));
12760 Set_Comes_From_Source
(N
, CS
);
12761 Set_Analyzed
(N
, True);
12764 end Set_Renamed_Subprogram
;
12766 ----------------------
12767 -- Side_Effect_Free --
12768 ----------------------
12770 function Side_Effect_Free
12772 Name_Req
: Boolean := False;
12773 Variable_Ref
: Boolean := False) return Boolean
12775 Typ
: constant Entity_Id
:= Etype
(N
);
12776 -- Result type of the expression
12778 function Safe_Prefixed_Reference
(N
: Node_Id
) return Boolean;
12779 -- The argument N is a construct where the Prefix is dereferenced if it
12780 -- is an access type and the result is a variable. The call returns True
12781 -- if the construct is side effect free (not considering side effects in
12782 -- other than the prefix which are to be tested by the caller).
12784 function Within_In_Parameter
(N
: Node_Id
) return Boolean;
12785 -- Determines if N is a subcomponent of a composite in-parameter. If so,
12786 -- N is not side-effect free when the actual is global and modifiable
12787 -- indirectly from within a subprogram, because it may be passed by
12788 -- reference. The front-end must be conservative here and assume that
12789 -- this may happen with any array or record type. On the other hand, we
12790 -- cannot create temporaries for all expressions for which this
12791 -- condition is true, for various reasons that might require clearing up
12792 -- ??? For example, discriminant references that appear out of place, or
12793 -- spurious type errors with class-wide expressions. As a result, we
12794 -- limit the transformation to loop bounds, which is so far the only
12795 -- case that requires it.
12797 -----------------------------
12798 -- Safe_Prefixed_Reference --
12799 -----------------------------
12801 function Safe_Prefixed_Reference
(N
: Node_Id
) return Boolean is
12803 -- If prefix is not side effect free, definitely not safe
12805 if not Side_Effect_Free
(Prefix
(N
), Name_Req
, Variable_Ref
) then
12808 -- If the prefix is of an access type that is not access-to-constant,
12809 -- then this construct is a variable reference, which means it is to
12810 -- be considered to have side effects if Variable_Ref is set True.
12812 elsif Is_Access_Type
(Etype
(Prefix
(N
)))
12813 and then not Is_Access_Constant
(Etype
(Prefix
(N
)))
12814 and then Variable_Ref
12816 -- Exception is a prefix that is the result of a previous removal
12817 -- of side effects.
12819 return Is_Entity_Name
(Prefix
(N
))
12820 and then not Comes_From_Source
(Prefix
(N
))
12821 and then Ekind
(Entity
(Prefix
(N
))) = E_Constant
12822 and then Is_Internal_Name
(Chars
(Entity
(Prefix
(N
))));
12824 -- If the prefix is an explicit dereference then this construct is a
12825 -- variable reference, which means it is to be considered to have
12826 -- side effects if Variable_Ref is True.
12828 -- We do NOT exclude dereferences of access-to-constant types because
12829 -- we handle them as constant view of variables.
12831 elsif Nkind
(Prefix
(N
)) = N_Explicit_Dereference
12832 and then Variable_Ref
12836 -- Note: The following test is the simplest way of solving a complex
12837 -- problem uncovered by the following test (Side effect on loop bound
12838 -- that is a subcomponent of a global variable:
12840 -- with Text_Io; use Text_Io;
12841 -- procedure Tloop is
12844 -- V : Natural := 4;
12845 -- S : String (1..5) := (others => 'a');
12852 -- with procedure Action;
12853 -- procedure Loop_G (Arg : X; Msg : String)
12855 -- procedure Loop_G (Arg : X; Msg : String) is
12857 -- Put_Line ("begin loop_g " & Msg & " will loop till: "
12858 -- & Natural'Image (Arg.V));
12859 -- for Index in 1 .. Arg.V loop
12860 -- Text_Io.Put_Line
12861 -- (Natural'Image (Index) & " " & Arg.S (Index));
12862 -- if Index > 2 then
12866 -- Put_Line ("end loop_g " & Msg);
12869 -- procedure Loop1 is new Loop_G (Modi);
12870 -- procedure Modi is
12873 -- Loop1 (X1, "from modi");
12877 -- Loop1 (X1, "initial");
12880 -- The output of the above program should be:
12882 -- begin loop_g initial will loop till: 4
12886 -- begin loop_g from modi will loop till: 1
12888 -- end loop_g from modi
12890 -- begin loop_g from modi will loop till: 1
12892 -- end loop_g from modi
12893 -- end loop_g initial
12895 -- If a loop bound is a subcomponent of a global variable, a
12896 -- modification of that variable within the loop may incorrectly
12897 -- affect the execution of the loop.
12899 elsif Nkind
(Parent
(Parent
(N
))) = N_Loop_Parameter_Specification
12900 and then Within_In_Parameter
(Prefix
(N
))
12901 and then Variable_Ref
12905 -- All other cases are side effect free
12910 end Safe_Prefixed_Reference
;
12912 -------------------------
12913 -- Within_In_Parameter --
12914 -------------------------
12916 function Within_In_Parameter
(N
: Node_Id
) return Boolean is
12918 if not Comes_From_Source
(N
) then
12921 elsif Is_Entity_Name
(N
) then
12922 return Ekind
(Entity
(N
)) = E_In_Parameter
;
12924 elsif Nkind_In
(N
, N_Indexed_Component
, N_Selected_Component
) then
12925 return Within_In_Parameter
(Prefix
(N
));
12930 end Within_In_Parameter
;
12932 -- Start of processing for Side_Effect_Free
12935 -- If volatile reference, always consider it to have side effects
12937 if Is_Volatile_Reference
(N
) then
12941 -- Note on checks that could raise Constraint_Error. Strictly, if we
12942 -- take advantage of 11.6, these checks do not count as side effects.
12943 -- However, we would prefer to consider that they are side effects,
12944 -- since the back end CSE does not work very well on expressions which
12945 -- can raise Constraint_Error. On the other hand if we don't consider
12946 -- them to be side effect free, then we get some awkward expansions
12947 -- in -gnato mode, resulting in code insertions at a point where we
12948 -- do not have a clear model for performing the insertions.
12950 -- Special handling for entity names
12952 if Is_Entity_Name
(N
) then
12954 -- A type reference is always side effect free
12956 if Is_Type
(Entity
(N
)) then
12959 -- Variables are considered to be a side effect if Variable_Ref
12960 -- is set or if we have a volatile reference and Name_Req is off.
12961 -- If Name_Req is True then we can't help returning a name which
12962 -- effectively allows multiple references in any case.
12964 elsif Is_Variable
(N
, Use_Original_Node
=> False) then
12965 return not Variable_Ref
12966 and then (not Is_Volatile_Reference
(N
) or else Name_Req
);
12968 -- Any other entity (e.g. a subtype name) is definitely side
12975 -- A value known at compile time is always side effect free
12977 elsif Compile_Time_Known_Value
(N
) then
12980 -- A variable renaming is not side-effect free, because the renaming
12981 -- will function like a macro in the front-end in some cases, and an
12982 -- assignment can modify the component designated by N, so we need to
12983 -- create a temporary for it.
12985 -- The guard testing for Entity being present is needed at least in
12986 -- the case of rewritten predicate expressions, and may well also be
12987 -- appropriate elsewhere. Obviously we can't go testing the entity
12988 -- field if it does not exist, so it's reasonable to say that this is
12989 -- not the renaming case if it does not exist.
12991 elsif Is_Entity_Name
(Original_Node
(N
))
12992 and then Present
(Entity
(Original_Node
(N
)))
12993 and then Is_Renaming_Of_Object
(Entity
(Original_Node
(N
)))
12994 and then Ekind
(Entity
(Original_Node
(N
))) /= E_Constant
12997 RO
: constant Node_Id
:=
12998 Renamed_Object
(Entity
(Original_Node
(N
)));
13001 -- If the renamed object is an indexed component, or an
13002 -- explicit dereference, then the designated object could
13003 -- be modified by an assignment.
13005 if Nkind_In
(RO
, N_Indexed_Component
,
13006 N_Explicit_Dereference
)
13010 -- A selected component must have a safe prefix
13012 elsif Nkind
(RO
) = N_Selected_Component
then
13013 return Safe_Prefixed_Reference
(RO
);
13015 -- In all other cases, designated object cannot be changed so
13016 -- we are side effect free.
13023 -- Remove_Side_Effects generates an object renaming declaration to
13024 -- capture the expression of a class-wide expression. In VM targets
13025 -- the frontend performs no expansion for dispatching calls to
13026 -- class- wide types since they are handled by the VM. Hence, we must
13027 -- locate here if this node corresponds to a previous invocation of
13028 -- Remove_Side_Effects to avoid a never ending loop in the frontend.
13030 elsif not Tagged_Type_Expansion
13031 and then not Comes_From_Source
(N
)
13032 and then Nkind
(Parent
(N
)) = N_Object_Renaming_Declaration
13033 and then Is_Class_Wide_Type
(Typ
)
13037 -- Generating C the type conversion of an access to constrained array
13038 -- type into an access to unconstrained array type involves initializing
13039 -- a fat pointer and the expression cannot be assumed to be free of side
13040 -- effects since it must referenced several times to compute its bounds.
13042 elsif Modify_Tree_For_C
13043 and then Nkind
(N
) = N_Type_Conversion
13044 and then Is_Access_Type
(Typ
)
13045 and then Is_Array_Type
(Designated_Type
(Typ
))
13046 and then not Is_Constrained
(Designated_Type
(Typ
))
13051 -- For other than entity names and compile time known values,
13052 -- check the node kind for special processing.
13056 -- An attribute reference is side effect free if its expressions
13057 -- are side effect free and its prefix is side effect free or
13058 -- is an entity reference.
13060 -- Is this right? what about x'first where x is a variable???
13062 when N_Attribute_Reference
=>
13063 Attribute_Reference
: declare
13065 function Side_Effect_Free_Attribute
13066 (Attribute_Name
: Name_Id
) return Boolean;
13067 -- Returns True if evaluation of the given attribute is
13068 -- considered side-effect free (independent of prefix and
13071 --------------------------------
13072 -- Side_Effect_Free_Attribute --
13073 --------------------------------
13075 function Side_Effect_Free_Attribute
13076 (Attribute_Name
: Name_Id
) return Boolean
13079 case Attribute_Name
is
13086 | Name_Wide_Wide_Image
13088 -- CodePeer doesn't want to see replicated copies of
13091 return not CodePeer_Mode
;
13096 end Side_Effect_Free_Attribute
;
13098 -- Start of processing for Attribute_Reference
13102 Side_Effect_Free
(Expressions
(N
), Name_Req
, Variable_Ref
)
13103 and then Side_Effect_Free_Attribute
(Attribute_Name
(N
))
13104 and then (Is_Entity_Name
(Prefix
(N
))
13105 or else Side_Effect_Free
13106 (Prefix
(N
), Name_Req
, Variable_Ref
));
13107 end Attribute_Reference
;
13109 -- A binary operator is side effect free if and both operands are
13110 -- side effect free. For this purpose binary operators include
13111 -- membership tests and short circuit forms.
13114 | N_Membership_Test
13117 return Side_Effect_Free
(Left_Opnd
(N
), Name_Req
, Variable_Ref
)
13119 Side_Effect_Free
(Right_Opnd
(N
), Name_Req
, Variable_Ref
);
13121 -- An explicit dereference is side effect free only if it is
13122 -- a side effect free prefixed reference.
13124 when N_Explicit_Dereference
=>
13125 return Safe_Prefixed_Reference
(N
);
13127 -- An expression with action is side effect free if its expression
13128 -- is side effect free and it has no actions.
13130 when N_Expression_With_Actions
=>
13132 Is_Empty_List
(Actions
(N
))
13133 and then Side_Effect_Free
13134 (Expression
(N
), Name_Req
, Variable_Ref
);
13136 -- A call to _rep_to_pos is side effect free, since we generate
13137 -- this pure function call ourselves. Moreover it is critically
13138 -- important to make this exception, since otherwise we can have
13139 -- discriminants in array components which don't look side effect
13140 -- free in the case of an array whose index type is an enumeration
13141 -- type with an enumeration rep clause.
13143 -- All other function calls are not side effect free
13145 when N_Function_Call
=>
13147 Nkind
(Name
(N
)) = N_Identifier
13148 and then Is_TSS
(Name
(N
), TSS_Rep_To_Pos
)
13149 and then Side_Effect_Free
13150 (First
(Parameter_Associations
(N
)),
13151 Name_Req
, Variable_Ref
);
13153 -- An IF expression is side effect free if it's of a scalar type, and
13154 -- all its components are all side effect free (conditions and then
13155 -- actions and else actions). We restrict to scalar types, since it
13156 -- is annoying to deal with things like (if A then B else C)'First
13157 -- where the type involved is a string type.
13159 when N_If_Expression
=>
13161 Is_Scalar_Type
(Typ
)
13162 and then Side_Effect_Free
13163 (Expressions
(N
), Name_Req
, Variable_Ref
);
13165 -- An indexed component is side effect free if it is a side
13166 -- effect free prefixed reference and all the indexing
13167 -- expressions are side effect free.
13169 when N_Indexed_Component
=>
13171 Side_Effect_Free
(Expressions
(N
), Name_Req
, Variable_Ref
)
13172 and then Safe_Prefixed_Reference
(N
);
13174 -- A type qualification, type conversion, or unchecked expression is
13175 -- side effect free if the expression is side effect free.
13177 when N_Qualified_Expression
13178 | N_Type_Conversion
13179 | N_Unchecked_Expression
13181 return Side_Effect_Free
(Expression
(N
), Name_Req
, Variable_Ref
);
13183 -- A selected component is side effect free only if it is a side
13184 -- effect free prefixed reference.
13186 when N_Selected_Component
=>
13187 return Safe_Prefixed_Reference
(N
);
13189 -- A range is side effect free if the bounds are side effect free
13192 return Side_Effect_Free
(Low_Bound
(N
), Name_Req
, Variable_Ref
)
13194 Side_Effect_Free
(High_Bound
(N
), Name_Req
, Variable_Ref
);
13196 -- A slice is side effect free if it is a side effect free
13197 -- prefixed reference and the bounds are side effect free.
13201 Side_Effect_Free
(Discrete_Range
(N
), Name_Req
, Variable_Ref
)
13202 and then Safe_Prefixed_Reference
(N
);
13204 -- A unary operator is side effect free if the operand
13205 -- is side effect free.
13208 return Side_Effect_Free
(Right_Opnd
(N
), Name_Req
, Variable_Ref
);
13210 -- An unchecked type conversion is side effect free only if it
13211 -- is safe and its argument is side effect free.
13213 when N_Unchecked_Type_Conversion
=>
13215 Safe_Unchecked_Type_Conversion
(N
)
13216 and then Side_Effect_Free
13217 (Expression
(N
), Name_Req
, Variable_Ref
);
13219 -- A literal is side effect free
13221 when N_Character_Literal
13222 | N_Integer_Literal
13228 -- We consider that anything else has side effects. This is a bit
13229 -- crude, but we are pretty close for most common cases, and we
13230 -- are certainly correct (i.e. we never return True when the
13231 -- answer should be False).
13236 end Side_Effect_Free
;
13238 -- A list is side effect free if all elements of the list are side
13241 function Side_Effect_Free
13243 Name_Req
: Boolean := False;
13244 Variable_Ref
: Boolean := False) return Boolean
13249 if L
= No_List
or else L
= Error_List
then
13254 while Present
(N
) loop
13255 if not Side_Effect_Free
(N
, Name_Req
, Variable_Ref
) then
13264 end Side_Effect_Free
;
13266 ----------------------------------
13267 -- Silly_Boolean_Array_Not_Test --
13268 ----------------------------------
13270 -- This procedure implements an odd and silly test. We explicitly check
13271 -- for the case where the 'First of the component type is equal to the
13272 -- 'Last of this component type, and if this is the case, we make sure
13273 -- that constraint error is raised. The reason is that the NOT is bound
13274 -- to cause CE in this case, and we will not otherwise catch it.
13276 -- No such check is required for AND and OR, since for both these cases
13277 -- False op False = False, and True op True = True. For the XOR case,
13278 -- see Silly_Boolean_Array_Xor_Test.
13280 -- Believe it or not, this was reported as a bug. Note that nearly always,
13281 -- the test will evaluate statically to False, so the code will be
13282 -- statically removed, and no extra overhead caused.
13284 procedure Silly_Boolean_Array_Not_Test
(N
: Node_Id
; T
: Entity_Id
) is
13285 Loc
: constant Source_Ptr
:= Sloc
(N
);
13286 CT
: constant Entity_Id
:= Component_Type
(T
);
13289 -- The check we install is
13291 -- constraint_error when
13292 -- component_type'first = component_type'last
13293 -- and then array_type'Length /= 0)
13295 -- We need the last guard because we don't want to raise CE for empty
13296 -- arrays since no out of range values result. (Empty arrays with a
13297 -- component type of True .. True -- very useful -- even the ACATS
13298 -- does not test that marginal case).
13301 Make_Raise_Constraint_Error
(Loc
,
13303 Make_And_Then
(Loc
,
13307 Make_Attribute_Reference
(Loc
,
13308 Prefix
=> New_Occurrence_Of
(CT
, Loc
),
13309 Attribute_Name
=> Name_First
),
13312 Make_Attribute_Reference
(Loc
,
13313 Prefix
=> New_Occurrence_Of
(CT
, Loc
),
13314 Attribute_Name
=> Name_Last
)),
13316 Right_Opnd
=> Make_Non_Empty_Check
(Loc
, Right_Opnd
(N
))),
13317 Reason
=> CE_Range_Check_Failed
));
13318 end Silly_Boolean_Array_Not_Test
;
13320 ----------------------------------
13321 -- Silly_Boolean_Array_Xor_Test --
13322 ----------------------------------
13324 -- This procedure implements an odd and silly test. We explicitly check
13325 -- for the XOR case where the component type is True .. True, since this
13326 -- will raise constraint error. A special check is required since CE
13327 -- will not be generated otherwise (cf Expand_Packed_Not).
13329 -- No such check is required for AND and OR, since for both these cases
13330 -- False op False = False, and True op True = True, and no check is
13331 -- required for the case of False .. False, since False xor False = False.
13332 -- See also Silly_Boolean_Array_Not_Test
13334 procedure Silly_Boolean_Array_Xor_Test
(N
: Node_Id
; T
: Entity_Id
) is
13335 Loc
: constant Source_Ptr
:= Sloc
(N
);
13336 CT
: constant Entity_Id
:= Component_Type
(T
);
13339 -- The check we install is
13341 -- constraint_error when
13342 -- Boolean (component_type'First)
13343 -- and then Boolean (component_type'Last)
13344 -- and then array_type'Length /= 0)
13346 -- We need the last guard because we don't want to raise CE for empty
13347 -- arrays since no out of range values result (Empty arrays with a
13348 -- component type of True .. True -- very useful -- even the ACATS
13349 -- does not test that marginal case).
13352 Make_Raise_Constraint_Error
(Loc
,
13354 Make_And_Then
(Loc
,
13356 Make_And_Then
(Loc
,
13358 Convert_To
(Standard_Boolean
,
13359 Make_Attribute_Reference
(Loc
,
13360 Prefix
=> New_Occurrence_Of
(CT
, Loc
),
13361 Attribute_Name
=> Name_First
)),
13364 Convert_To
(Standard_Boolean
,
13365 Make_Attribute_Reference
(Loc
,
13366 Prefix
=> New_Occurrence_Of
(CT
, Loc
),
13367 Attribute_Name
=> Name_Last
))),
13369 Right_Opnd
=> Make_Non_Empty_Check
(Loc
, Right_Opnd
(N
))),
13370 Reason
=> CE_Range_Check_Failed
));
13371 end Silly_Boolean_Array_Xor_Test
;
13373 --------------------------
13374 -- Target_Has_Fixed_Ops --
13375 --------------------------
13377 Integer_Sized_Small
: Ureal
;
13378 -- Set to 2.0 ** -(Integer'Size - 1) the first time that this function is
13379 -- called (we don't want to compute it more than once).
13381 Long_Integer_Sized_Small
: Ureal
;
13382 -- Set to 2.0 ** -(Long_Integer'Size - 1) the first time that this function
13383 -- is called (we don't want to compute it more than once)
13385 First_Time_For_THFO
: Boolean := True;
13386 -- Set to False after first call (if Fractional_Fixed_Ops_On_Target)
13388 function Target_Has_Fixed_Ops
13389 (Left_Typ
: Entity_Id
;
13390 Right_Typ
: Entity_Id
;
13391 Result_Typ
: Entity_Id
) return Boolean
13393 function Is_Fractional_Type
(Typ
: Entity_Id
) return Boolean;
13394 -- Return True if the given type is a fixed-point type with a small
13395 -- value equal to 2 ** (-(T'Object_Size - 1)) and whose values have
13396 -- an absolute value less than 1.0. This is currently limited to
13397 -- fixed-point types that map to Integer or Long_Integer.
13399 ------------------------
13400 -- Is_Fractional_Type --
13401 ------------------------
13403 function Is_Fractional_Type
(Typ
: Entity_Id
) return Boolean is
13405 if Esize
(Typ
) = Standard_Integer_Size
then
13406 return Small_Value
(Typ
) = Integer_Sized_Small
;
13408 elsif Esize
(Typ
) = Standard_Long_Integer_Size
then
13409 return Small_Value
(Typ
) = Long_Integer_Sized_Small
;
13414 end Is_Fractional_Type
;
13416 -- Start of processing for Target_Has_Fixed_Ops
13419 -- Return False if Fractional_Fixed_Ops_On_Target is false
13421 if not Fractional_Fixed_Ops_On_Target
then
13425 -- Here the target has Fractional_Fixed_Ops, if first time, compute
13426 -- standard constants used by Is_Fractional_Type.
13428 if First_Time_For_THFO
then
13429 First_Time_For_THFO
:= False;
13431 Integer_Sized_Small
:=
13434 Den
=> UI_From_Int
(Standard_Integer_Size
- 1),
13437 Long_Integer_Sized_Small
:=
13440 Den
=> UI_From_Int
(Standard_Long_Integer_Size
- 1),
13444 -- Return True if target supports fixed-by-fixed multiply/divide for
13445 -- fractional fixed-point types (see Is_Fractional_Type) and the operand
13446 -- and result types are equivalent fractional types.
13448 return Is_Fractional_Type
(Base_Type
(Left_Typ
))
13449 and then Is_Fractional_Type
(Base_Type
(Right_Typ
))
13450 and then Is_Fractional_Type
(Base_Type
(Result_Typ
))
13451 and then Esize
(Left_Typ
) = Esize
(Right_Typ
)
13452 and then Esize
(Left_Typ
) = Esize
(Result_Typ
);
13453 end Target_Has_Fixed_Ops
;
13455 -------------------
13456 -- Type_Map_Hash --
13457 -------------------
13459 function Type_Map_Hash
(Id
: Entity_Id
) return Type_Map_Header
is
13461 return Type_Map_Header
(Id
mod Type_Map_Size
);
13464 ------------------------------------------
13465 -- Type_May_Have_Bit_Aligned_Components --
13466 ------------------------------------------
13468 function Type_May_Have_Bit_Aligned_Components
13469 (Typ
: Entity_Id
) return Boolean
13472 -- Array type, check component type
13474 if Is_Array_Type
(Typ
) then
13476 Type_May_Have_Bit_Aligned_Components
(Component_Type
(Typ
));
13478 -- Record type, check components
13480 elsif Is_Record_Type
(Typ
) then
13485 E
:= First_Component_Or_Discriminant
(Typ
);
13486 while Present
(E
) loop
13487 if Component_May_Be_Bit_Aligned
(E
)
13488 or else Type_May_Have_Bit_Aligned_Components
(Etype
(E
))
13493 Next_Component_Or_Discriminant
(E
);
13499 -- Type other than array or record is always OK
13504 end Type_May_Have_Bit_Aligned_Components
;
13506 -------------------------------
13507 -- Update_Primitives_Mapping --
13508 -------------------------------
13510 procedure Update_Primitives_Mapping
13511 (Inher_Id
: Entity_Id
;
13512 Subp_Id
: Entity_Id
)
13516 (Parent_Type
=> Find_Dispatching_Type
(Inher_Id
),
13517 Derived_Type
=> Find_Dispatching_Type
(Subp_Id
));
13518 end Update_Primitives_Mapping
;
13520 ----------------------------------
13521 -- Within_Case_Or_If_Expression --
13522 ----------------------------------
13524 function Within_Case_Or_If_Expression
(N
: Node_Id
) return Boolean is
13528 -- Locate an enclosing case or if expression. Note that these constructs
13529 -- can be expanded into Expression_With_Actions, hence the test of the
13533 while Present
(Par
) loop
13534 if Nkind_In
(Original_Node
(Par
), N_Case_Expression
,
13539 -- Prevent the search from going too far
13541 elsif Is_Body_Or_Package_Declaration
(Par
) then
13545 Par
:= Parent
(Par
);
13549 end Within_Case_Or_If_Expression
;
13551 --------------------------------
13552 -- Within_Internal_Subprogram --
13553 --------------------------------
13555 function Within_Internal_Subprogram
return Boolean is
13559 S
:= Current_Scope
;
13560 while Present
(S
) and then not Is_Subprogram
(S
) loop
13565 and then Get_TSS_Name
(S
) /= TSS_Null
13566 and then not Is_Predicate_Function
(S
)
13567 and then not Is_Predicate_Function_M
(S
);
13568 end Within_Internal_Subprogram
;