* dump.c (dequeue_and_dump): Dump DECL_EXTERNAL.
[official-gcc.git] / gcc / regclass.c
blob8f0829c1f338de77aa30cf9113a72f300bd0f401
1 /* Compute register class preferences for pseudo-registers.
2 Copyright (C) 1987, 88, 91-98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file contains two passes of the compiler: reg_scan and reg_class.
23 It also defines some tables of information about the hardware registers
24 and a function init_reg_sets to initialize the tables. */
26 #include "config.h"
27 #include "system.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "flags.h"
32 #include "basic-block.h"
33 #include "regs.h"
34 #include "function.h"
35 #include "insn-config.h"
36 #include "recog.h"
37 #include "reload.h"
38 #include "real.h"
39 #include "toplev.h"
40 #include "output.h"
41 #include "ggc.h"
43 #ifndef REGISTER_MOVE_COST
44 #define REGISTER_MOVE_COST(x, y) 2
45 #endif
47 static void init_reg_sets_1 PROTO((void));
48 static void init_reg_modes PROTO((void));
50 /* If we have auto-increment or auto-decrement and we can have secondary
51 reloads, we are not allowed to use classes requiring secondary
52 reloads for pseudos auto-incremented since reload can't handle it. */
54 #ifdef AUTO_INC_DEC
55 #if defined(SECONDARY_INPUT_RELOAD_CLASS) || defined(SECONDARY_OUTPUT_RELOAD_CLASS)
56 #define FORBIDDEN_INC_DEC_CLASSES
57 #endif
58 #endif
60 /* Register tables used by many passes. */
62 /* Indexed by hard register number, contains 1 for registers
63 that are fixed use (stack pointer, pc, frame pointer, etc.).
64 These are the registers that cannot be used to allocate
65 a pseudo reg for general use. */
67 char fixed_regs[FIRST_PSEUDO_REGISTER];
69 /* Same info as a HARD_REG_SET. */
71 HARD_REG_SET fixed_reg_set;
73 /* Data for initializing the above. */
75 static char initial_fixed_regs[] = FIXED_REGISTERS;
77 /* Indexed by hard register number, contains 1 for registers
78 that are fixed use or are clobbered by function calls.
79 These are the registers that cannot be used to allocate
80 a pseudo reg whose life crosses calls unless we are able
81 to save/restore them across the calls. */
83 char call_used_regs[FIRST_PSEUDO_REGISTER];
85 /* Same info as a HARD_REG_SET. */
87 HARD_REG_SET call_used_reg_set;
89 /* HARD_REG_SET of registers we want to avoid caller saving. */
90 HARD_REG_SET losing_caller_save_reg_set;
92 /* Data for initializing the above. */
94 static char initial_call_used_regs[] = CALL_USED_REGISTERS;
96 /* Indexed by hard register number, contains 1 for registers that are
97 fixed use or call used registers that cannot hold quantities across
98 calls even if we are willing to save and restore them. call fixed
99 registers are a subset of call used registers. */
101 char call_fixed_regs[FIRST_PSEUDO_REGISTER];
103 /* The same info as a HARD_REG_SET. */
105 HARD_REG_SET call_fixed_reg_set;
107 /* Number of non-fixed registers. */
109 int n_non_fixed_regs;
111 /* Indexed by hard register number, contains 1 for registers
112 that are being used for global register decls.
113 These must be exempt from ordinary flow analysis
114 and are also considered fixed. */
116 char global_regs[FIRST_PSEUDO_REGISTER];
118 /* Table of register numbers in the order in which to try to use them. */
119 #ifdef REG_ALLOC_ORDER
120 int reg_alloc_order[FIRST_PSEUDO_REGISTER] = REG_ALLOC_ORDER;
121 #endif
123 /* For each reg class, a HARD_REG_SET saying which registers are in it. */
125 HARD_REG_SET reg_class_contents[N_REG_CLASSES];
127 /* The same information, but as an array of unsigned ints. We copy from
128 these unsigned ints to the table above. We do this so the tm.h files
129 do not have to be aware of the wordsize for machines with <= 64 regs. */
131 #define N_REG_INTS \
132 ((FIRST_PSEUDO_REGISTER + (HOST_BITS_PER_INT - 1)) / HOST_BITS_PER_INT)
134 static unsigned int_reg_class_contents[N_REG_CLASSES][N_REG_INTS]
135 = REG_CLASS_CONTENTS;
137 /* For each reg class, number of regs it contains. */
139 int reg_class_size[N_REG_CLASSES];
141 /* For each reg class, table listing all the containing classes. */
143 enum reg_class reg_class_superclasses[N_REG_CLASSES][N_REG_CLASSES];
145 /* For each reg class, table listing all the classes contained in it. */
147 enum reg_class reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
149 /* For each pair of reg classes,
150 a largest reg class contained in their union. */
152 enum reg_class reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES];
154 /* For each pair of reg classes,
155 the smallest reg class containing their union. */
157 enum reg_class reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES];
159 /* Array containing all of the register names */
161 char *reg_names[] = REGISTER_NAMES;
163 /* For each hard register, the widest mode object that it can contain.
164 This will be a MODE_INT mode if the register can hold integers. Otherwise
165 it will be a MODE_FLOAT or a MODE_CC mode, whichever is valid for the
166 register. */
168 enum machine_mode reg_raw_mode[FIRST_PSEUDO_REGISTER];
170 /* Maximum cost of moving from a register in one class to a register in
171 another class. Based on REGISTER_MOVE_COST. */
173 static int move_cost[N_REG_CLASSES][N_REG_CLASSES];
175 /* Similar, but here we don't have to move if the first index is a subset
176 of the second so in that case the cost is zero. */
178 static int may_move_cost[N_REG_CLASSES][N_REG_CLASSES];
180 #ifdef FORBIDDEN_INC_DEC_CLASSES
182 /* These are the classes that regs which are auto-incremented or decremented
183 cannot be put in. */
185 static int forbidden_inc_dec_class[N_REG_CLASSES];
187 /* Indexed by n, is non-zero if (REG n) is used in an auto-inc or auto-dec
188 context. */
190 static char *in_inc_dec;
192 #endif /* FORBIDDEN_INC_DEC_CLASSES */
194 #ifdef HAVE_SECONDARY_RELOADS
196 /* Sample MEM values for use by memory_move_secondary_cost. */
198 static rtx top_of_stack[MAX_MACHINE_MODE];
200 #endif /* HAVE_SECONDARY_RELOADS */
202 /* Linked list of reg_info structures allocated for reg_n_info array.
203 Grouping all of the allocated structures together in one lump
204 means only one call to bzero to clear them, rather than n smaller
205 calls. */
206 struct reg_info_data {
207 struct reg_info_data *next; /* next set of reg_info structures */
208 size_t min_index; /* minimum index # */
209 size_t max_index; /* maximum index # */
210 char used_p; /* non-zero if this has been used previously */
211 reg_info data[1]; /* beginning of the reg_info data */
214 static struct reg_info_data *reg_info_head;
217 /* Function called only once to initialize the above data on reg usage.
218 Once this is done, various switches may override. */
220 void
221 init_reg_sets ()
223 register int i, j;
225 /* First copy the register information from the initial int form into
226 the regsets. */
228 for (i = 0; i < N_REG_CLASSES; i++)
230 CLEAR_HARD_REG_SET (reg_class_contents[i]);
232 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
233 if (int_reg_class_contents[i][j / HOST_BITS_PER_INT]
234 & ((unsigned) 1 << (j % HOST_BITS_PER_INT)))
235 SET_HARD_REG_BIT (reg_class_contents[i], j);
238 bcopy (initial_fixed_regs, fixed_regs, sizeof fixed_regs);
239 bcopy (initial_call_used_regs, call_used_regs, sizeof call_used_regs);
240 bzero (global_regs, sizeof global_regs);
242 /* Do any additional initialization regsets may need */
243 INIT_ONCE_REG_SET ();
246 /* After switches have been processed, which perhaps alter
247 `fixed_regs' and `call_used_regs', convert them to HARD_REG_SETs. */
249 static void
250 init_reg_sets_1 ()
252 register unsigned int i, j;
254 /* This macro allows the fixed or call-used registers
255 and the register classes to depend on target flags. */
257 #ifdef CONDITIONAL_REGISTER_USAGE
258 CONDITIONAL_REGISTER_USAGE;
259 #endif
261 /* Compute number of hard regs in each class. */
263 bzero ((char *) reg_class_size, sizeof reg_class_size);
264 for (i = 0; i < N_REG_CLASSES; i++)
265 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
266 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
267 reg_class_size[i]++;
269 /* Initialize the table of subunions.
270 reg_class_subunion[I][J] gets the largest-numbered reg-class
271 that is contained in the union of classes I and J. */
273 for (i = 0; i < N_REG_CLASSES; i++)
275 for (j = 0; j < N_REG_CLASSES; j++)
277 #ifdef HARD_REG_SET
278 register /* Declare it register if it's a scalar. */
279 #endif
280 HARD_REG_SET c;
281 register int k;
283 COPY_HARD_REG_SET (c, reg_class_contents[i]);
284 IOR_HARD_REG_SET (c, reg_class_contents[j]);
285 for (k = 0; k < N_REG_CLASSES; k++)
287 GO_IF_HARD_REG_SUBSET (reg_class_contents[k], c,
288 subclass1);
289 continue;
291 subclass1:
292 /* keep the largest subclass */ /* SPEE 900308 */
293 GO_IF_HARD_REG_SUBSET (reg_class_contents[k],
294 reg_class_contents[(int) reg_class_subunion[i][j]],
295 subclass2);
296 reg_class_subunion[i][j] = (enum reg_class) k;
297 subclass2:
303 /* Initialize the table of superunions.
304 reg_class_superunion[I][J] gets the smallest-numbered reg-class
305 containing the union of classes I and J. */
307 for (i = 0; i < N_REG_CLASSES; i++)
309 for (j = 0; j < N_REG_CLASSES; j++)
311 #ifdef HARD_REG_SET
312 register /* Declare it register if it's a scalar. */
313 #endif
314 HARD_REG_SET c;
315 register int k;
317 COPY_HARD_REG_SET (c, reg_class_contents[i]);
318 IOR_HARD_REG_SET (c, reg_class_contents[j]);
319 for (k = 0; k < N_REG_CLASSES; k++)
320 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[k], superclass);
322 superclass:
323 reg_class_superunion[i][j] = (enum reg_class) k;
327 /* Initialize the tables of subclasses and superclasses of each reg class.
328 First clear the whole table, then add the elements as they are found. */
330 for (i = 0; i < N_REG_CLASSES; i++)
332 for (j = 0; j < N_REG_CLASSES; j++)
334 reg_class_superclasses[i][j] = LIM_REG_CLASSES;
335 reg_class_subclasses[i][j] = LIM_REG_CLASSES;
339 for (i = 0; i < N_REG_CLASSES; i++)
341 if (i == (int) NO_REGS)
342 continue;
344 for (j = i + 1; j < N_REG_CLASSES; j++)
346 enum reg_class *p;
348 GO_IF_HARD_REG_SUBSET (reg_class_contents[i], reg_class_contents[j],
349 subclass);
350 continue;
351 subclass:
352 /* Reg class I is a subclass of J.
353 Add J to the table of superclasses of I. */
354 p = &reg_class_superclasses[i][0];
355 while (*p != LIM_REG_CLASSES) p++;
356 *p = (enum reg_class) j;
357 /* Add I to the table of superclasses of J. */
358 p = &reg_class_subclasses[j][0];
359 while (*p != LIM_REG_CLASSES) p++;
360 *p = (enum reg_class) i;
364 /* Initialize "constant" tables. */
366 CLEAR_HARD_REG_SET (fixed_reg_set);
367 CLEAR_HARD_REG_SET (call_used_reg_set);
368 CLEAR_HARD_REG_SET (call_fixed_reg_set);
370 bcopy (fixed_regs, call_fixed_regs, sizeof call_fixed_regs);
372 n_non_fixed_regs = 0;
374 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
376 if (fixed_regs[i])
377 SET_HARD_REG_BIT (fixed_reg_set, i);
378 else
379 n_non_fixed_regs++;
381 if (call_used_regs[i])
382 SET_HARD_REG_BIT (call_used_reg_set, i);
383 if (call_fixed_regs[i])
384 SET_HARD_REG_BIT (call_fixed_reg_set, i);
385 if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (i)))
386 SET_HARD_REG_BIT (losing_caller_save_reg_set, i);
389 /* Initialize the move cost table. Find every subset of each class
390 and take the maximum cost of moving any subset to any other. */
392 for (i = 0; i < N_REG_CLASSES; i++)
393 for (j = 0; j < N_REG_CLASSES; j++)
395 int cost = i == j ? 2 : REGISTER_MOVE_COST (i, j);
396 enum reg_class *p1, *p2;
398 for (p2 = &reg_class_subclasses[j][0]; *p2 != LIM_REG_CLASSES; p2++)
399 if (*p2 != i)
400 cost = MAX (cost, REGISTER_MOVE_COST (i, *p2));
402 for (p1 = &reg_class_subclasses[i][0]; *p1 != LIM_REG_CLASSES; p1++)
404 if (*p1 != j)
405 cost = MAX (cost, REGISTER_MOVE_COST (*p1, j));
407 for (p2 = &reg_class_subclasses[j][0];
408 *p2 != LIM_REG_CLASSES; p2++)
409 if (*p1 != *p2)
410 cost = MAX (cost, REGISTER_MOVE_COST (*p1, *p2));
413 move_cost[i][j] = cost;
415 if (reg_class_subset_p (i, j))
416 cost = 0;
418 may_move_cost[i][j] = cost;
422 /* Compute the table of register modes.
423 These values are used to record death information for individual registers
424 (as opposed to a multi-register mode). */
426 static void
427 init_reg_modes ()
429 register int i;
431 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
433 reg_raw_mode[i] = choose_hard_reg_mode (i, 1);
435 /* If we couldn't find a valid mode, just use the previous mode.
436 ??? One situation in which we need to do this is on the mips where
437 HARD_REGNO_NREGS (fpreg, [SD]Fmode) returns 2. Ideally we'd like
438 to use DF mode for the even registers and VOIDmode for the odd
439 (for the cpu models where the odd ones are inaccessible). */
440 if (reg_raw_mode[i] == VOIDmode)
441 reg_raw_mode[i] = i == 0 ? word_mode : reg_raw_mode[i-1];
445 /* Finish initializing the register sets and
446 initialize the register modes. */
448 void
449 init_regs ()
451 /* This finishes what was started by init_reg_sets, but couldn't be done
452 until after register usage was specified. */
453 init_reg_sets_1 ();
455 init_reg_modes ();
457 #ifdef HAVE_SECONDARY_RELOADS
459 /* Make some fake stack-frame MEM references for use in
460 memory_move_secondary_cost. */
461 int i;
462 for (i = 0; i < MAX_MACHINE_MODE; i++)
463 top_of_stack[i] = gen_rtx_MEM (i, stack_pointer_rtx);
464 ggc_add_rtx_root (top_of_stack, MAX_MACHINE_MODE);
466 #endif
469 #ifdef HAVE_SECONDARY_RELOADS
471 /* Compute extra cost of moving registers to/from memory due to reloads.
472 Only needed if secondary reloads are required for memory moves. */
475 memory_move_secondary_cost (mode, class, in)
476 enum machine_mode mode;
477 enum reg_class class;
478 int in;
480 enum reg_class altclass;
481 int partial_cost = 0;
482 /* We need a memory reference to feed to SECONDARY... macros. */
483 rtx mem = top_of_stack[(int) mode];
485 if (in)
487 #ifdef SECONDARY_INPUT_RELOAD_CLASS
488 altclass = SECONDARY_INPUT_RELOAD_CLASS (class, mode, mem);
489 #else
490 altclass = NO_REGS;
491 #endif
493 else
495 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
496 altclass = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, mem);
497 #else
498 altclass = NO_REGS;
499 #endif
502 if (altclass == NO_REGS)
503 return 0;
505 if (in)
506 partial_cost = REGISTER_MOVE_COST (altclass, class);
507 else
508 partial_cost = REGISTER_MOVE_COST (class, altclass);
510 if (class == altclass)
511 /* This isn't simply a copy-to-temporary situation. Can't guess
512 what it is, so MEMORY_MOVE_COST really ought not to be calling
513 here in that case.
515 I'm tempted to put in an abort here, but returning this will
516 probably only give poor estimates, which is what we would've
517 had before this code anyways. */
518 return partial_cost;
520 /* Check if the secondary reload register will also need a
521 secondary reload. */
522 return memory_move_secondary_cost (mode, altclass, in) + partial_cost;
524 #endif
526 /* Return a machine mode that is legitimate for hard reg REGNO and large
527 enough to save nregs. If we can't find one, return VOIDmode. */
529 enum machine_mode
530 choose_hard_reg_mode (regno, nregs)
531 int regno;
532 int nregs;
534 enum machine_mode found_mode = VOIDmode, mode;
536 /* We first look for the largest integer mode that can be validly
537 held in REGNO. If none, we look for the largest floating-point mode.
538 If we still didn't find a valid mode, try CCmode. */
540 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
541 mode != VOIDmode;
542 mode = GET_MODE_WIDER_MODE (mode))
543 if (HARD_REGNO_NREGS (regno, mode) == nregs
544 && HARD_REGNO_MODE_OK (regno, mode))
545 found_mode = mode;
547 if (found_mode != VOIDmode)
548 return found_mode;
550 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
551 mode != VOIDmode;
552 mode = GET_MODE_WIDER_MODE (mode))
553 if (HARD_REGNO_NREGS (regno, mode) == nregs
554 && HARD_REGNO_MODE_OK (regno, mode))
555 found_mode = mode;
557 if (found_mode != VOIDmode)
558 return found_mode;
560 if (HARD_REGNO_NREGS (regno, CCmode) == nregs
561 && HARD_REGNO_MODE_OK (regno, CCmode))
562 return CCmode;
564 /* We can't find a mode valid for this register. */
565 return VOIDmode;
568 /* Specify the usage characteristics of the register named NAME.
569 It should be a fixed register if FIXED and a
570 call-used register if CALL_USED. */
572 void
573 fix_register (name, fixed, call_used)
574 char *name;
575 int fixed, call_used;
577 int i;
579 /* Decode the name and update the primary form of
580 the register info. */
582 if ((i = decode_reg_name (name)) >= 0)
584 if ((i == STACK_POINTER_REGNUM
585 #ifdef HARD_FRAME_POINTER_REGNUM
586 || i == HARD_FRAME_POINTER_REGNUM
587 #else
588 || i == FRAME_POINTER_REGNUM
589 #endif
591 && (fixed == 0 || call_used == 0))
593 static const char * const what_option[2][2] = {
594 { "call-saved", "call-used" },
595 { "no-such-option", "fixed" }};
597 error ("can't use '%s' as a %s register", name,
598 what_option[fixed][call_used]);
600 else
602 fixed_regs[i] = fixed;
603 call_used_regs[i] = call_used;
606 else
608 warning ("unknown register name: %s", name);
612 /* Mark register number I as global. */
614 void
615 globalize_reg (i)
616 int i;
618 if (global_regs[i])
620 warning ("register used for two global register variables");
621 return;
624 if (call_used_regs[i] && ! fixed_regs[i])
625 warning ("call-clobbered register used for global register variable");
627 global_regs[i] = 1;
629 /* If already fixed, nothing else to do. */
630 if (fixed_regs[i])
631 return;
633 fixed_regs[i] = call_used_regs[i] = call_fixed_regs[i] = 1;
634 n_non_fixed_regs--;
636 SET_HARD_REG_BIT (fixed_reg_set, i);
637 SET_HARD_REG_BIT (call_used_reg_set, i);
638 SET_HARD_REG_BIT (call_fixed_reg_set, i);
641 /* Now the data and code for the `regclass' pass, which happens
642 just before local-alloc. */
644 /* The `costs' struct records the cost of using a hard register of each class
645 and of using memory for each pseudo. We use this data to set up
646 register class preferences. */
648 struct costs
650 int cost[N_REG_CLASSES];
651 int mem_cost;
654 /* Record the cost of each class for each pseudo. */
656 static struct costs *costs;
658 /* Initialized once, and used to initialize cost values for each insn. */
660 static struct costs init_cost;
662 /* Record the same data by operand number, accumulated for each alternative
663 in an insn. The contribution to a pseudo is that of the minimum-cost
664 alternative. */
666 static struct costs op_costs[MAX_RECOG_OPERANDS];
668 /* (enum reg_class) prefclass[R] is the preferred class for pseudo number R.
669 This is available after `regclass' is run. */
671 static char *prefclass;
673 /* altclass[R] is a register class that we should use for allocating
674 pseudo number R if no register in the preferred class is available.
675 If no register in this class is available, memory is preferred.
677 It might appear to be more general to have a bitmask of classes here,
678 but since it is recommended that there be a class corresponding to the
679 union of most major pair of classes, that generality is not required.
681 This is available after `regclass' is run. */
683 static char *altclass;
685 /* Allocated buffers for prefclass and altclass. */
686 static char *prefclass_buffer;
687 static char *altclass_buffer;
689 /* Record the depth of loops that we are in. */
691 static int loop_depth;
693 /* Account for the fact that insns within a loop are executed very commonly,
694 but don't keep doing this as loops go too deep. */
696 static int loop_cost;
698 static rtx scan_one_insn PROTO((rtx, int));
699 static void record_reg_classes PROTO((int, int, rtx *, enum machine_mode *,
700 char *, const char **, rtx));
701 static int copy_cost PROTO((rtx, enum machine_mode,
702 enum reg_class, int));
703 static void record_address_regs PROTO((rtx, enum reg_class, int));
704 #ifdef FORBIDDEN_INC_DEC_CLASSES
705 static int auto_inc_dec_reg_p PROTO((rtx, enum machine_mode));
706 #endif
707 static void reg_scan_mark_refs PROTO((rtx, rtx, int, int));
709 /* Return the reg_class in which pseudo reg number REGNO is best allocated.
710 This function is sometimes called before the info has been computed.
711 When that happens, just return GENERAL_REGS, which is innocuous. */
713 enum reg_class
714 reg_preferred_class (regno)
715 int regno;
717 if (prefclass == 0)
718 return GENERAL_REGS;
719 return (enum reg_class) prefclass[regno];
722 enum reg_class
723 reg_alternate_class (regno)
724 int regno;
726 if (prefclass == 0)
727 return ALL_REGS;
729 return (enum reg_class) altclass[regno];
732 /* Initialize some global data for this pass. */
734 void
735 regclass_init ()
737 int i;
739 init_cost.mem_cost = 10000;
740 for (i = 0; i < N_REG_CLASSES; i++)
741 init_cost.cost[i] = 10000;
743 /* This prevents dump_flow_info from losing if called
744 before regclass is run. */
745 prefclass = 0;
748 /* Subroutine of regclass, processes one insn INSN. Scan it and record each
749 time it would save code to put a certain register in a certain class.
750 PASS, when nonzero, inhibits some optimizations which need only be done
751 once.
752 Return the last insn processed, so that the scan can be continued from
753 there. */
755 static rtx
756 scan_one_insn (insn, pass)
757 rtx insn;
758 int pass;
760 enum rtx_code code = GET_CODE (insn);
761 enum rtx_code pat_code;
762 const char *constraints[MAX_RECOG_OPERANDS];
763 enum machine_mode modes[MAX_RECOG_OPERANDS];
764 char subreg_changes_size[MAX_RECOG_OPERANDS];
765 rtx set, note;
766 int i, j;
768 /* Show that an insn inside a loop is likely to be executed three
769 times more than insns outside a loop. This is much more aggressive
770 than the assumptions made elsewhere and is being tried as an
771 experiment. */
773 if (code == NOTE)
775 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
776 loop_depth++, loop_cost = 1 << (2 * MIN (loop_depth, 5));
777 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
778 loop_depth--, loop_cost = 1 << (2 * MIN (loop_depth, 5));
780 return insn;
783 if (GET_RTX_CLASS (code) != 'i')
784 return insn;
786 pat_code = GET_CODE (PATTERN (insn));
787 if (pat_code == USE
788 || pat_code == CLOBBER
789 || pat_code == ASM_INPUT
790 || pat_code == ADDR_VEC
791 || pat_code == ADDR_DIFF_VEC)
792 return insn;
794 set = single_set (insn);
795 extract_insn (insn);
797 for (i = 0; i < recog_data.n_operands; i++)
799 constraints[i] = recog_data.constraints[i];
800 modes[i] = recog_data.operand_mode[i];
802 memset (subreg_changes_size, 0, sizeof (subreg_changes_size));
804 /* If this insn loads a parameter from its stack slot, then
805 it represents a savings, rather than a cost, if the
806 parameter is stored in memory. Record this fact. */
808 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
809 && GET_CODE (SET_SRC (set)) == MEM
810 && (note = find_reg_note (insn, REG_EQUIV,
811 NULL_RTX)) != 0
812 && GET_CODE (XEXP (note, 0)) == MEM)
814 costs[REGNO (SET_DEST (set))].mem_cost
815 -= (MEMORY_MOVE_COST (GET_MODE (SET_DEST (set)),
816 GENERAL_REGS, 1)
817 * loop_cost);
818 record_address_regs (XEXP (SET_SRC (set), 0),
819 BASE_REG_CLASS, loop_cost * 2);
820 return insn;
823 /* Improve handling of two-address insns such as
824 (set X (ashift CONST Y)) where CONST must be made to
825 match X. Change it into two insns: (set X CONST)
826 (set X (ashift X Y)). If we left this for reloading, it
827 would probably get three insns because X and Y might go
828 in the same place. This prevents X and Y from receiving
829 the same hard reg.
831 We can only do this if the modes of operands 0 and 1
832 (which might not be the same) are tieable and we only need
833 do this during our first pass. */
835 if (pass == 0 && optimize
836 && recog_data.n_operands >= 3
837 && recog_data.constraints[1][0] == '0'
838 && recog_data.constraints[1][1] == 0
839 && CONSTANT_P (recog_data.operand[1])
840 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[1])
841 && ! rtx_equal_p (recog_data.operand[0], recog_data.operand[2])
842 && GET_CODE (recog_data.operand[0]) == REG
843 && MODES_TIEABLE_P (GET_MODE (recog_data.operand[0]),
844 recog_data.operand_mode[1]))
846 rtx previnsn = prev_real_insn (insn);
847 rtx dest
848 = gen_lowpart (recog_data.operand_mode[1],
849 recog_data.operand[0]);
850 rtx newinsn
851 = emit_insn_before (gen_move_insn (dest, recog_data.operand[1]), insn);
853 /* If this insn was the start of a basic block,
854 include the new insn in that block.
855 We need not check for code_label here;
856 while a basic block can start with a code_label,
857 INSN could not be at the beginning of that block. */
858 if (previnsn == 0 || GET_CODE (previnsn) == JUMP_INSN)
860 int b;
861 for (b = 0; b < n_basic_blocks; b++)
862 if (insn == BLOCK_HEAD (b))
863 BLOCK_HEAD (b) = newinsn;
866 /* This makes one more setting of new insns's dest. */
867 REG_N_SETS (REGNO (recog_data.operand[0]))++;
869 *recog_data.operand_loc[1] = recog_data.operand[0];
870 for (i = recog_data.n_dups - 1; i >= 0; i--)
871 if (recog_data.dup_num[i] == 1)
872 *recog_data.dup_loc[i] = recog_data.operand[0];
874 return PREV_INSN (newinsn);
877 /* If we get here, we are set up to record the costs of all the
878 operands for this insn. Start by initializing the costs.
879 Then handle any address registers. Finally record the desired
880 classes for any pseudos, doing it twice if some pair of
881 operands are commutative. */
883 for (i = 0; i < recog_data.n_operands; i++)
885 op_costs[i] = init_cost;
887 if (GET_CODE (recog_data.operand[i]) == SUBREG)
889 rtx inner = SUBREG_REG (recog_data.operand[i]);
890 if (GET_MODE_SIZE (modes[i]) != GET_MODE_SIZE (GET_MODE (inner)))
891 subreg_changes_size[i] = 1;
892 recog_data.operand[i] = inner;
895 if (GET_CODE (recog_data.operand[i]) == MEM)
896 record_address_regs (XEXP (recog_data.operand[i], 0),
897 BASE_REG_CLASS, loop_cost * 2);
898 else if (constraints[i][0] == 'p')
899 record_address_regs (recog_data.operand[i],
900 BASE_REG_CLASS, loop_cost * 2);
903 /* Check for commutative in a separate loop so everything will
904 have been initialized. We must do this even if one operand
905 is a constant--see addsi3 in m68k.md. */
907 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
908 if (constraints[i][0] == '%')
910 const char *xconstraints[MAX_RECOG_OPERANDS];
911 int j;
913 /* Handle commutative operands by swapping the constraints.
914 We assume the modes are the same. */
916 for (j = 0; j < recog_data.n_operands; j++)
917 xconstraints[j] = constraints[j];
919 xconstraints[i] = constraints[i+1];
920 xconstraints[i+1] = constraints[i];
921 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
922 recog_data.operand, modes, subreg_changes_size,
923 xconstraints, insn);
926 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
927 recog_data.operand, modes, subreg_changes_size,
928 constraints, insn);
930 /* Now add the cost for each operand to the total costs for
931 its register. */
933 for (i = 0; i < recog_data.n_operands; i++)
934 if (GET_CODE (recog_data.operand[i]) == REG
935 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
937 int regno = REGNO (recog_data.operand[i]);
938 struct costs *p = &costs[regno], *q = &op_costs[i];
940 p->mem_cost += q->mem_cost * loop_cost;
941 for (j = 0; j < N_REG_CLASSES; j++)
942 p->cost[j] += q->cost[j] * loop_cost;
945 return insn;
948 /* This is a pass of the compiler that scans all instructions
949 and calculates the preferred class for each pseudo-register.
950 This information can be accessed later by calling `reg_preferred_class'.
951 This pass comes just before local register allocation. */
953 void
954 regclass (f, nregs)
955 rtx f;
956 int nregs;
958 #ifdef REGISTER_CONSTRAINTS
959 register rtx insn;
960 register int i;
961 int pass;
963 init_recog ();
965 costs = (struct costs *) xmalloc (nregs * sizeof (struct costs));
967 #ifdef FORBIDDEN_INC_DEC_CLASSES
969 in_inc_dec = (char *) alloca (nregs);
971 /* Initialize information about which register classes can be used for
972 pseudos that are auto-incremented or auto-decremented. It would
973 seem better to put this in init_reg_sets, but we need to be able
974 to allocate rtx, which we can't do that early. */
976 for (i = 0; i < N_REG_CLASSES; i++)
978 rtx r = gen_rtx_REG (VOIDmode, 0);
979 enum machine_mode m;
980 register int j;
982 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
983 if (TEST_HARD_REG_BIT (reg_class_contents[i], j))
985 REGNO (r) = j;
987 for (m = VOIDmode; (int) m < (int) MAX_MACHINE_MODE;
988 m = (enum machine_mode) ((int) m + 1))
989 if (HARD_REGNO_MODE_OK (j, m))
991 PUT_MODE (r, m);
993 /* If a register is not directly suitable for an
994 auto-increment or decrement addressing mode and
995 requires secondary reloads, disallow its class from
996 being used in such addresses. */
998 if ((0
999 #ifdef SECONDARY_RELOAD_CLASS
1000 || (SECONDARY_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1001 != NO_REGS)
1002 #else
1003 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1004 || (SECONDARY_INPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1005 != NO_REGS)
1006 #endif
1007 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1008 || (SECONDARY_OUTPUT_RELOAD_CLASS (BASE_REG_CLASS, m, r)
1009 != NO_REGS)
1010 #endif
1011 #endif
1013 && ! auto_inc_dec_reg_p (r, m))
1014 forbidden_inc_dec_class[i] = 1;
1018 #endif /* FORBIDDEN_INC_DEC_CLASSES */
1020 /* Normally we scan the insns once and determine the best class to use for
1021 each register. However, if -fexpensive_optimizations are on, we do so
1022 twice, the second time using the tentative best classes to guide the
1023 selection. */
1025 for (pass = 0; pass <= flag_expensive_optimizations; pass++)
1027 /* Zero out our accumulation of the cost of each class for each reg. */
1029 bzero ((char *) costs, nregs * sizeof (struct costs));
1031 #ifdef FORBIDDEN_INC_DEC_CLASSES
1032 bzero (in_inc_dec, nregs);
1033 #endif
1035 loop_depth = 0, loop_cost = 1;
1037 /* Scan the instructions and record each time it would
1038 save code to put a certain register in a certain class. */
1040 for (insn = f; insn; insn = NEXT_INSN (insn))
1042 insn = scan_one_insn (insn, pass);
1045 /* Now for each register look at how desirable each class is
1046 and find which class is preferred. Store that in
1047 `prefclass[REGNO]'. Record in `altclass[REGNO]' the largest register
1048 class any of whose registers is better than memory. */
1050 if (pass == 0)
1052 prefclass = prefclass_buffer;
1053 altclass = altclass_buffer;
1056 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1058 register int best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1059 enum reg_class best = ALL_REGS, alt = NO_REGS;
1060 /* This is an enum reg_class, but we call it an int
1061 to save lots of casts. */
1062 register int class;
1063 register struct costs *p = &costs[i];
1065 for (class = (int) ALL_REGS - 1; class > 0; class--)
1067 /* Ignore classes that are too small for this operand or
1068 invalid for a operand that was auto-incremented. */
1069 if (CLASS_MAX_NREGS (class, PSEUDO_REGNO_MODE (i))
1070 > reg_class_size[class]
1071 #ifdef FORBIDDEN_INC_DEC_CLASSES
1072 || (in_inc_dec[i] && forbidden_inc_dec_class[class])
1073 #endif
1076 else if (p->cost[class] < best_cost)
1078 best_cost = p->cost[class];
1079 best = (enum reg_class) class;
1081 else if (p->cost[class] == best_cost)
1082 best = reg_class_subunion[(int)best][class];
1085 /* Record the alternate register class; i.e., a class for which
1086 every register in it is better than using memory. If adding a
1087 class would make a smaller class (i.e., no union of just those
1088 classes exists), skip that class. The major unions of classes
1089 should be provided as a register class. Don't do this if we
1090 will be doing it again later. */
1092 if (pass == 1 || ! flag_expensive_optimizations)
1093 for (class = 0; class < N_REG_CLASSES; class++)
1094 if (p->cost[class] < p->mem_cost
1095 && (reg_class_size[(int) reg_class_subunion[(int) alt][class]]
1096 > reg_class_size[(int) alt])
1097 #ifdef FORBIDDEN_INC_DEC_CLASSES
1098 && ! (in_inc_dec[i] && forbidden_inc_dec_class[class])
1099 #endif
1101 alt = reg_class_subunion[(int) alt][class];
1103 /* If we don't add any classes, nothing to try. */
1104 if (alt == best)
1105 alt = NO_REGS;
1107 /* We cast to (int) because (char) hits bugs in some compilers. */
1108 prefclass[i] = (int) best;
1109 altclass[i] = (int) alt;
1112 #endif /* REGISTER_CONSTRAINTS */
1114 free (costs);
1117 #ifdef REGISTER_CONSTRAINTS
1119 /* Record the cost of using memory or registers of various classes for
1120 the operands in INSN.
1122 N_ALTS is the number of alternatives.
1124 N_OPS is the number of operands.
1126 OPS is an array of the operands.
1128 MODES are the modes of the operands, in case any are VOIDmode.
1130 CONSTRAINTS are the constraints to use for the operands. This array
1131 is modified by this procedure.
1133 This procedure works alternative by alternative. For each alternative
1134 we assume that we will be able to allocate all pseudos to their ideal
1135 register class and calculate the cost of using that alternative. Then
1136 we compute for each operand that is a pseudo-register, the cost of
1137 having the pseudo allocated to each register class and using it in that
1138 alternative. To this cost is added the cost of the alternative.
1140 The cost of each class for this insn is its lowest cost among all the
1141 alternatives. */
1143 static void
1144 record_reg_classes (n_alts, n_ops, ops, modes, subreg_changes_size,
1145 constraints, insn)
1146 int n_alts;
1147 int n_ops;
1148 rtx *ops;
1149 enum machine_mode *modes;
1150 char *subreg_changes_size;
1151 const char **constraints;
1152 rtx insn;
1154 int alt;
1155 int i, j;
1156 rtx set;
1158 /* Process each alternative, each time minimizing an operand's cost with
1159 the cost for each operand in that alternative. */
1161 for (alt = 0; alt < n_alts; alt++)
1163 struct costs this_op_costs[MAX_RECOG_OPERANDS];
1164 int alt_fail = 0;
1165 int alt_cost = 0;
1166 enum reg_class classes[MAX_RECOG_OPERANDS];
1167 int class;
1169 for (i = 0; i < n_ops; i++)
1171 const char *p = constraints[i];
1172 rtx op = ops[i];
1173 enum machine_mode mode = modes[i];
1174 int allows_addr = 0;
1175 int allows_mem = 0;
1176 int win = 0;
1177 unsigned char c;
1179 /* Initially show we know nothing about the register class. */
1180 classes[i] = NO_REGS;
1182 /* If this operand has no constraints at all, we can conclude
1183 nothing about it since anything is valid. */
1185 if (*p == 0)
1187 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1188 bzero ((char *) &this_op_costs[i], sizeof this_op_costs[i]);
1190 continue;
1193 /* If this alternative is only relevant when this operand
1194 matches a previous operand, we do different things depending
1195 on whether this operand is a pseudo-reg or not. We must process
1196 any modifiers for the operand before we can make this test. */
1198 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
1199 p++;
1201 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
1203 j = p[0] - '0';
1204 classes[i] = classes[j];
1206 if (GET_CODE (op) != REG || REGNO (op) < FIRST_PSEUDO_REGISTER)
1208 /* If this matches the other operand, we have no added
1209 cost and we win. */
1210 if (rtx_equal_p (ops[j], op))
1211 win = 1;
1213 /* If we can put the other operand into a register, add to
1214 the cost of this alternative the cost to copy this
1215 operand to the register used for the other operand. */
1217 else if (classes[j] != NO_REGS)
1218 alt_cost += copy_cost (op, mode, classes[j], 1), win = 1;
1220 else if (GET_CODE (ops[j]) != REG
1221 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
1223 /* This op is a pseudo but the one it matches is not. */
1225 /* If we can't put the other operand into a register, this
1226 alternative can't be used. */
1228 if (classes[j] == NO_REGS)
1229 alt_fail = 1;
1231 /* Otherwise, add to the cost of this alternative the cost
1232 to copy the other operand to the register used for this
1233 operand. */
1235 else
1236 alt_cost += copy_cost (ops[j], mode, classes[j], 1);
1238 else
1240 /* The costs of this operand are the same as that of the
1241 other operand. However, if we cannot tie them, this
1242 alternative needs to do a copy, which is one
1243 instruction. */
1245 this_op_costs[i] = this_op_costs[j];
1246 if (REGNO (ops[i]) != REGNO (ops[j])
1247 && ! find_reg_note (insn, REG_DEAD, op))
1248 alt_cost += 2;
1250 /* This is in place of ordinary cost computation
1251 for this operand, so skip to the end of the
1252 alternative (should be just one character). */
1253 while (*p && *p++ != ',')
1256 constraints[i] = p;
1257 continue;
1261 /* Scan all the constraint letters. See if the operand matches
1262 any of the constraints. Collect the valid register classes
1263 and see if this operand accepts memory. */
1265 while (*p && (c = *p++) != ',')
1266 switch (c)
1268 case '*':
1269 /* Ignore the next letter for this pass. */
1270 p++;
1271 break;
1273 case '?':
1274 alt_cost += 2;
1275 case '!': case '#': case '&':
1276 case '0': case '1': case '2': case '3': case '4':
1277 case '5': case '6': case '7': case '8': case '9':
1278 break;
1280 case 'p':
1281 allows_addr = 1;
1282 win = address_operand (op, GET_MODE (op));
1283 /* We know this operand is an address, so we want it to be
1284 allocated to a register that can be the base of an
1285 address, ie BASE_REG_CLASS. */
1286 classes[i]
1287 = reg_class_subunion[(int) classes[i]]
1288 [(int) BASE_REG_CLASS];
1289 break;
1291 case 'm': case 'o': case 'V':
1292 /* It doesn't seem worth distinguishing between offsettable
1293 and non-offsettable addresses here. */
1294 allows_mem = 1;
1295 if (GET_CODE (op) == MEM)
1296 win = 1;
1297 break;
1299 case '<':
1300 if (GET_CODE (op) == MEM
1301 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
1302 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1303 win = 1;
1304 break;
1306 case '>':
1307 if (GET_CODE (op) == MEM
1308 && (GET_CODE (XEXP (op, 0)) == PRE_INC
1309 || GET_CODE (XEXP (op, 0)) == POST_INC))
1310 win = 1;
1311 break;
1313 case 'E':
1314 #ifndef REAL_ARITHMETIC
1315 /* Match any floating double constant, but only if
1316 we can examine the bits of it reliably. */
1317 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
1318 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
1319 && GET_MODE (op) != VOIDmode && ! flag_pretend_float)
1320 break;
1321 #endif
1322 if (GET_CODE (op) == CONST_DOUBLE)
1323 win = 1;
1324 break;
1326 case 'F':
1327 if (GET_CODE (op) == CONST_DOUBLE)
1328 win = 1;
1329 break;
1331 case 'G':
1332 case 'H':
1333 if (GET_CODE (op) == CONST_DOUBLE
1334 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
1335 win = 1;
1336 break;
1338 case 's':
1339 if (GET_CODE (op) == CONST_INT
1340 || (GET_CODE (op) == CONST_DOUBLE
1341 && GET_MODE (op) == VOIDmode))
1342 break;
1343 case 'i':
1344 if (CONSTANT_P (op)
1345 #ifdef LEGITIMATE_PIC_OPERAND_P
1346 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1347 #endif
1349 win = 1;
1350 break;
1352 case 'n':
1353 if (GET_CODE (op) == CONST_INT
1354 || (GET_CODE (op) == CONST_DOUBLE
1355 && GET_MODE (op) == VOIDmode))
1356 win = 1;
1357 break;
1359 case 'I':
1360 case 'J':
1361 case 'K':
1362 case 'L':
1363 case 'M':
1364 case 'N':
1365 case 'O':
1366 case 'P':
1367 if (GET_CODE (op) == CONST_INT
1368 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
1369 win = 1;
1370 break;
1372 case 'X':
1373 win = 1;
1374 break;
1376 #ifdef EXTRA_CONSTRAINT
1377 case 'Q':
1378 case 'R':
1379 case 'S':
1380 case 'T':
1381 case 'U':
1382 if (EXTRA_CONSTRAINT (op, c))
1383 win = 1;
1384 break;
1385 #endif
1387 case 'g':
1388 if (GET_CODE (op) == MEM
1389 || (CONSTANT_P (op)
1390 #ifdef LEGITIMATE_PIC_OPERAND_P
1391 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1392 #endif
1394 win = 1;
1395 allows_mem = 1;
1396 case 'r':
1397 classes[i]
1398 = reg_class_subunion[(int) classes[i]][(int) GENERAL_REGS];
1399 break;
1401 default:
1402 classes[i]
1403 = reg_class_subunion[(int) classes[i]]
1404 [(int) REG_CLASS_FROM_LETTER (c)];
1407 constraints[i] = p;
1409 #ifdef CLASS_CANNOT_CHANGE_SIZE
1410 /* If we noted a subreg earlier, and the selected class is a
1411 subclass of CLASS_CANNOT_CHANGE_SIZE, zap it. */
1412 if (subreg_changes_size[i]
1413 && (reg_class_subunion[(int) CLASS_CANNOT_CHANGE_SIZE]
1414 [(int) classes[i]]
1415 == CLASS_CANNOT_CHANGE_SIZE))
1416 classes[i] = NO_REGS;
1417 #endif
1419 /* How we account for this operand now depends on whether it is a
1420 pseudo register or not. If it is, we first check if any
1421 register classes are valid. If not, we ignore this alternative,
1422 since we want to assume that all pseudos get allocated for
1423 register preferencing. If some register class is valid, compute
1424 the costs of moving the pseudo into that class. */
1426 if (GET_CODE (op) == REG && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1428 if (classes[i] == NO_REGS)
1430 /* We must always fail if the operand is a REG, but
1431 we did not find a suitable class.
1433 Otherwise we may perform an uninitialized read
1434 from this_op_costs after the `continue' statement
1435 below. */
1436 alt_fail = 1;
1438 else
1440 struct costs *pp = &this_op_costs[i];
1442 for (class = 0; class < N_REG_CLASSES; class++)
1443 pp->cost[class] = may_move_cost[class][(int) classes[i]];
1445 /* If the alternative actually allows memory, make things
1446 a bit cheaper since we won't need an extra insn to
1447 load it. */
1449 pp->mem_cost = (MEMORY_MOVE_COST (mode, classes[i], 1)
1450 - allows_mem);
1452 /* If we have assigned a class to this register in our
1453 first pass, add a cost to this alternative corresponding
1454 to what we would add if this register were not in the
1455 appropriate class. */
1457 if (prefclass)
1458 alt_cost
1459 += may_move_cost[(unsigned char)prefclass[REGNO (op)]][(int) classes[i]];
1463 /* Otherwise, if this alternative wins, either because we
1464 have already determined that or if we have a hard register of
1465 the proper class, there is no cost for this alternative. */
1467 else if (win
1468 || (GET_CODE (op) == REG
1469 && reg_fits_class_p (op, classes[i], 0, GET_MODE (op))))
1472 /* If registers are valid, the cost of this alternative includes
1473 copying the object to and/or from a register. */
1475 else if (classes[i] != NO_REGS)
1477 if (recog_data.operand_type[i] != OP_OUT)
1478 alt_cost += copy_cost (op, mode, classes[i], 1);
1480 if (recog_data.operand_type[i] != OP_IN)
1481 alt_cost += copy_cost (op, mode, classes[i], 0);
1484 /* The only other way this alternative can be used is if this is a
1485 constant that could be placed into memory. */
1487 else if (CONSTANT_P (op) && (allows_addr || allows_mem))
1488 alt_cost += MEMORY_MOVE_COST (mode, classes[i], 1);
1489 else
1490 alt_fail = 1;
1493 if (alt_fail)
1494 continue;
1496 /* Finally, update the costs with the information we've calculated
1497 about this alternative. */
1499 for (i = 0; i < n_ops; i++)
1500 if (GET_CODE (ops[i]) == REG
1501 && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1503 struct costs *pp = &op_costs[i], *qq = &this_op_costs[i];
1504 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1506 pp->mem_cost = MIN (pp->mem_cost,
1507 (qq->mem_cost + alt_cost) * scale);
1509 for (class = 0; class < N_REG_CLASSES; class++)
1510 pp->cost[class] = MIN (pp->cost[class],
1511 (qq->cost[class] + alt_cost) * scale);
1515 /* If this insn is a single set copying operand 1 to operand 0
1516 and one is a pseudo with the other a hard reg that is in its
1517 own register class, set the cost of that register class to -1. */
1519 if ((set = single_set (insn)) != 0
1520 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
1521 && GET_CODE (ops[0]) == REG && GET_CODE (ops[1]) == REG)
1522 for (i = 0; i <= 1; i++)
1523 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1525 int regno = REGNO (ops[!i]);
1526 enum machine_mode mode = GET_MODE (ops[!i]);
1527 int class;
1528 int nr;
1530 if (regno >= FIRST_PSEUDO_REGISTER && prefclass != 0
1531 && (reg_class_size[(unsigned char)prefclass[regno]]
1532 == CLASS_MAX_NREGS (prefclass[regno], mode)))
1533 op_costs[i].cost[(unsigned char)prefclass[regno]] = -1;
1534 else if (regno < FIRST_PSEUDO_REGISTER)
1535 for (class = 0; class < N_REG_CLASSES; class++)
1536 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
1537 && reg_class_size[class] == CLASS_MAX_NREGS (class, mode))
1539 if (reg_class_size[class] == 1)
1540 op_costs[i].cost[class] = -1;
1541 else
1543 for (nr = 0; nr < HARD_REGNO_NREGS(regno, mode); nr++)
1545 if (!TEST_HARD_REG_BIT (reg_class_contents[class], regno + nr))
1546 break;
1549 if (nr == HARD_REGNO_NREGS(regno,mode))
1550 op_costs[i].cost[class] = -1;
1556 /* Compute the cost of loading X into (if TO_P is non-zero) or from (if
1557 TO_P is zero) a register of class CLASS in mode MODE.
1559 X must not be a pseudo. */
1561 static int
1562 copy_cost (x, mode, class, to_p)
1563 rtx x;
1564 enum machine_mode mode;
1565 enum reg_class class;
1566 int to_p;
1568 #ifdef HAVE_SECONDARY_RELOADS
1569 enum reg_class secondary_class = NO_REGS;
1570 #endif
1572 /* If X is a SCRATCH, there is actually nothing to move since we are
1573 assuming optimal allocation. */
1575 if (GET_CODE (x) == SCRATCH)
1576 return 0;
1578 /* Get the class we will actually use for a reload. */
1579 class = PREFERRED_RELOAD_CLASS (x, class);
1581 #ifdef HAVE_SECONDARY_RELOADS
1582 /* If we need a secondary reload (we assume here that we are using
1583 the secondary reload as an intermediate, not a scratch register), the
1584 cost is that to load the input into the intermediate register, then
1585 to copy them. We use a special value of TO_P to avoid recursion. */
1587 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1588 if (to_p == 1)
1589 secondary_class = SECONDARY_INPUT_RELOAD_CLASS (class, mode, x);
1590 #endif
1592 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1593 if (! to_p)
1594 secondary_class = SECONDARY_OUTPUT_RELOAD_CLASS (class, mode, x);
1595 #endif
1597 if (secondary_class != NO_REGS)
1598 return (move_cost[(int) secondary_class][(int) class]
1599 + copy_cost (x, mode, secondary_class, 2));
1600 #endif /* HAVE_SECONDARY_RELOADS */
1602 /* For memory, use the memory move cost, for (hard) registers, use the
1603 cost to move between the register classes, and use 2 for everything
1604 else (constants). */
1606 if (GET_CODE (x) == MEM || class == NO_REGS)
1607 return MEMORY_MOVE_COST (mode, class, to_p);
1609 else if (GET_CODE (x) == REG)
1610 return move_cost[(int) REGNO_REG_CLASS (REGNO (x))][(int) class];
1612 else
1613 /* If this is a constant, we may eventually want to call rtx_cost here. */
1614 return 2;
1617 /* Record the pseudo registers we must reload into hard registers
1618 in a subexpression of a memory address, X.
1620 CLASS is the class that the register needs to be in and is either
1621 BASE_REG_CLASS or INDEX_REG_CLASS.
1623 SCALE is twice the amount to multiply the cost by (it is twice so we
1624 can represent half-cost adjustments). */
1626 static void
1627 record_address_regs (x, class, scale)
1628 rtx x;
1629 enum reg_class class;
1630 int scale;
1632 register enum rtx_code code = GET_CODE (x);
1634 switch (code)
1636 case CONST_INT:
1637 case CONST:
1638 case CC0:
1639 case PC:
1640 case SYMBOL_REF:
1641 case LABEL_REF:
1642 return;
1644 case PLUS:
1645 /* When we have an address that is a sum,
1646 we must determine whether registers are "base" or "index" regs.
1647 If there is a sum of two registers, we must choose one to be
1648 the "base". Luckily, we can use the REGNO_POINTER_FLAG
1649 to make a good choice most of the time. We only need to do this
1650 on machines that can have two registers in an address and where
1651 the base and index register classes are different.
1653 ??? This code used to set REGNO_POINTER_FLAG in some cases, but
1654 that seems bogus since it should only be set when we are sure
1655 the register is being used as a pointer. */
1658 rtx arg0 = XEXP (x, 0);
1659 rtx arg1 = XEXP (x, 1);
1660 register enum rtx_code code0 = GET_CODE (arg0);
1661 register enum rtx_code code1 = GET_CODE (arg1);
1663 /* Look inside subregs. */
1664 if (code0 == SUBREG)
1665 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1666 if (code1 == SUBREG)
1667 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1669 /* If this machine only allows one register per address, it must
1670 be in the first operand. */
1672 if (MAX_REGS_PER_ADDRESS == 1)
1673 record_address_regs (arg0, class, scale);
1675 /* If index and base registers are the same on this machine, just
1676 record registers in any non-constant operands. We assume here,
1677 as well as in the tests below, that all addresses are in
1678 canonical form. */
1680 else if (INDEX_REG_CLASS == BASE_REG_CLASS)
1682 record_address_regs (arg0, class, scale);
1683 if (! CONSTANT_P (arg1))
1684 record_address_regs (arg1, class, scale);
1687 /* If the second operand is a constant integer, it doesn't change
1688 what class the first operand must be. */
1690 else if (code1 == CONST_INT || code1 == CONST_DOUBLE)
1691 record_address_regs (arg0, class, scale);
1693 /* If the second operand is a symbolic constant, the first operand
1694 must be an index register. */
1696 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1697 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1699 /* If both operands are registers but one is already a hard register
1700 of index or base class, give the other the class that the hard
1701 register is not. */
1703 #ifdef REG_OK_FOR_BASE_P
1704 else if (code0 == REG && code1 == REG
1705 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1706 && (REG_OK_FOR_BASE_P (arg0) || REG_OK_FOR_INDEX_P (arg0)))
1707 record_address_regs (arg1,
1708 REG_OK_FOR_BASE_P (arg0)
1709 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1710 scale);
1711 else if (code0 == REG && code1 == REG
1712 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1713 && (REG_OK_FOR_BASE_P (arg1) || REG_OK_FOR_INDEX_P (arg1)))
1714 record_address_regs (arg0,
1715 REG_OK_FOR_BASE_P (arg1)
1716 ? INDEX_REG_CLASS : BASE_REG_CLASS,
1717 scale);
1718 #endif
1720 /* If one operand is known to be a pointer, it must be the base
1721 with the other operand the index. Likewise if the other operand
1722 is a MULT. */
1724 else if ((code0 == REG && REGNO_POINTER_FLAG (REGNO (arg0)))
1725 || code1 == MULT)
1727 record_address_regs (arg0, BASE_REG_CLASS, scale);
1728 record_address_regs (arg1, INDEX_REG_CLASS, scale);
1730 else if ((code1 == REG && REGNO_POINTER_FLAG (REGNO (arg1)))
1731 || code0 == MULT)
1733 record_address_regs (arg0, INDEX_REG_CLASS, scale);
1734 record_address_regs (arg1, BASE_REG_CLASS, scale);
1737 /* Otherwise, count equal chances that each might be a base
1738 or index register. This case should be rare. */
1740 else
1742 record_address_regs (arg0, BASE_REG_CLASS, scale / 2);
1743 record_address_regs (arg0, INDEX_REG_CLASS, scale / 2);
1744 record_address_regs (arg1, BASE_REG_CLASS, scale / 2);
1745 record_address_regs (arg1, INDEX_REG_CLASS, scale / 2);
1748 break;
1750 case POST_INC:
1751 case PRE_INC:
1752 case POST_DEC:
1753 case PRE_DEC:
1754 /* Double the importance of a pseudo register that is incremented
1755 or decremented, since it would take two extra insns
1756 if it ends up in the wrong place. If the operand is a pseudo,
1757 show it is being used in an INC_DEC context. */
1759 #ifdef FORBIDDEN_INC_DEC_CLASSES
1760 if (GET_CODE (XEXP (x, 0)) == REG
1761 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER)
1762 in_inc_dec[REGNO (XEXP (x, 0))] = 1;
1763 #endif
1765 record_address_regs (XEXP (x, 0), class, 2 * scale);
1766 break;
1768 case REG:
1770 register struct costs *pp = &costs[REGNO (x)];
1771 register int i;
1773 pp->mem_cost += (MEMORY_MOVE_COST (Pmode, class, 1) * scale) / 2;
1775 for (i = 0; i < N_REG_CLASSES; i++)
1776 pp->cost[i] += (may_move_cost[i][(int) class] * scale) / 2;
1778 break;
1780 default:
1782 register const char *fmt = GET_RTX_FORMAT (code);
1783 register int i;
1784 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1785 if (fmt[i] == 'e')
1786 record_address_regs (XEXP (x, i), class, scale);
1791 #ifdef FORBIDDEN_INC_DEC_CLASSES
1793 /* Return 1 if REG is valid as an auto-increment memory reference
1794 to an object of MODE. */
1796 static int
1797 auto_inc_dec_reg_p (reg, mode)
1798 rtx reg;
1799 enum machine_mode mode;
1801 if (HAVE_POST_INCREMENT
1802 && memory_address_p (mode, gen_rtx_POST_INC (Pmode, reg)))
1803 return 1;
1805 if (HAVE_POST_DECREMENT
1806 && memory_address_p (mode, gen_rtx_POST_DEC (Pmode, reg)))
1807 return 1;
1809 if (HAVE_PRE_INCREMENT
1810 && memory_address_p (mode, gen_rtx_PRE_INC (Pmode, reg)))
1811 return 1;
1813 if (HAVE_PRE_DECREMENT
1814 && memory_address_p (mode, gen_rtx_PRE_DEC (Pmode, reg)))
1815 return 1;
1817 return 0;
1819 #endif
1821 #endif /* REGISTER_CONSTRAINTS */
1823 static short *renumber = (short *)0;
1824 static size_t regno_allocated = 0;
1826 /* Allocate enough space to hold NUM_REGS registers for the tables used for
1827 reg_scan and flow_analysis that are indexed by the register number. If
1828 NEW_P is non zero, initialize all of the registers, otherwise only
1829 initialize the new registers allocated. The same table is kept from
1830 function to function, only reallocating it when we need more room. If
1831 RENUMBER_P is non zero, allocate the reg_renumber array also. */
1833 void
1834 allocate_reg_info (num_regs, new_p, renumber_p)
1835 size_t num_regs;
1836 int new_p;
1837 int renumber_p;
1839 size_t size_info;
1840 size_t size_renumber;
1841 size_t min = (new_p) ? 0 : reg_n_max;
1842 struct reg_info_data *reg_data;
1843 struct reg_info_data *reg_next;
1845 if (num_regs > regno_allocated)
1847 size_t old_allocated = regno_allocated;
1849 regno_allocated = num_regs + (num_regs / 20); /* add some slop space */
1850 size_renumber = regno_allocated * sizeof (short);
1852 if (!reg_n_info)
1854 VARRAY_REG_INIT (reg_n_info, regno_allocated, "reg_n_info");
1855 renumber = (short *) xmalloc (size_renumber);
1856 prefclass_buffer = (char *) xmalloc (regno_allocated);
1857 altclass_buffer = (char *) xmalloc (regno_allocated);
1860 else
1862 VARRAY_GROW (reg_n_info, regno_allocated);
1864 if (new_p) /* if we're zapping everything, no need to realloc */
1866 free ((char *)renumber);
1867 free ((char *)prefclass_buffer);
1868 free ((char *)altclass_buffer);
1869 renumber = (short *) xmalloc (size_renumber);
1870 prefclass_buffer = (char *) xmalloc (regno_allocated);
1871 altclass_buffer = (char *) xmalloc (regno_allocated);
1874 else
1876 renumber = (short *) xrealloc ((char *)renumber, size_renumber);
1877 prefclass_buffer = (char *) xrealloc ((char *)prefclass_buffer,
1878 regno_allocated);
1880 altclass_buffer = (char *) xrealloc ((char *)altclass_buffer,
1881 regno_allocated);
1885 size_info = (regno_allocated - old_allocated) * sizeof (reg_info)
1886 + sizeof (struct reg_info_data) - sizeof (reg_info);
1887 reg_data = (struct reg_info_data *) xcalloc (size_info, 1);
1888 reg_data->min_index = old_allocated;
1889 reg_data->max_index = regno_allocated - 1;
1890 reg_data->next = reg_info_head;
1891 reg_info_head = reg_data;
1894 reg_n_max = num_regs;
1895 if (min < num_regs)
1897 /* Loop through each of the segments allocated for the actual
1898 reg_info pages, and set up the pointers, zero the pages, etc. */
1899 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
1901 size_t min_index = reg_data->min_index;
1902 size_t max_index = reg_data->max_index;
1904 reg_next = reg_data->next;
1905 if (min <= max_index)
1907 size_t max = max_index;
1908 size_t local_min = min - min_index;
1909 size_t i;
1911 if (min < min_index)
1912 local_min = 0;
1913 if (!reg_data->used_p) /* page just allocated with calloc */
1914 reg_data->used_p = 1; /* no need to zero */
1915 else
1916 bzero ((char *) &reg_data->data[local_min],
1917 sizeof (reg_info) * (max - min_index - local_min + 1));
1919 for (i = min_index+local_min; i <= max; i++)
1921 VARRAY_REG (reg_n_info, i) = &reg_data->data[i-min_index];
1922 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1923 renumber[i] = -1;
1924 prefclass_buffer[i] = (char) NO_REGS;
1925 altclass_buffer[i] = (char) NO_REGS;
1931 /* If {pref,alt}class have already been allocated, update the pointers to
1932 the newly realloced ones. */
1933 if (prefclass)
1935 prefclass = prefclass_buffer;
1936 altclass = altclass_buffer;
1939 if (renumber_p)
1940 reg_renumber = renumber;
1942 /* Tell the regset code about the new number of registers */
1943 MAX_REGNO_REG_SET (num_regs, new_p, renumber_p);
1946 /* Free up the space allocated by allocate_reg_info. */
1947 void
1948 free_reg_info ()
1950 if (reg_n_info)
1952 struct reg_info_data *reg_data;
1953 struct reg_info_data *reg_next;
1955 VARRAY_FREE (reg_n_info);
1956 for (reg_data = reg_info_head; reg_data; reg_data = reg_next)
1958 reg_next = reg_data->next;
1959 free ((char *)reg_data);
1962 free (prefclass_buffer);
1963 free (altclass_buffer);
1964 prefclass_buffer = (char *)0;
1965 altclass_buffer = (char *)0;
1966 reg_info_head = (struct reg_info_data *)0;
1967 renumber = (short *)0;
1969 regno_allocated = 0;
1970 reg_n_max = 0;
1973 /* This is the `regscan' pass of the compiler, run just before cse
1974 and again just before loop.
1976 It finds the first and last use of each pseudo-register
1977 and records them in the vectors regno_first_uid, regno_last_uid
1978 and counts the number of sets in the vector reg_n_sets.
1980 REPEAT is nonzero the second time this is called. */
1982 /* Maximum number of parallel sets and clobbers in any insn in this fn.
1983 Always at least 3, since the combiner could put that many together
1984 and we want this to remain correct for all the remaining passes. */
1986 int max_parallel;
1988 void
1989 reg_scan (f, nregs, repeat)
1990 rtx f;
1991 int nregs;
1992 int repeat;
1994 register rtx insn;
1996 allocate_reg_info (nregs, TRUE, FALSE);
1997 max_parallel = 3;
1999 for (insn = f; insn; insn = NEXT_INSN (insn))
2000 if (GET_CODE (insn) == INSN
2001 || GET_CODE (insn) == CALL_INSN
2002 || GET_CODE (insn) == JUMP_INSN)
2004 if (GET_CODE (PATTERN (insn)) == PARALLEL
2005 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2006 max_parallel = XVECLEN (PATTERN (insn), 0);
2007 reg_scan_mark_refs (PATTERN (insn), insn, 0, 0);
2009 if (REG_NOTES (insn))
2010 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, 0);
2014 /* Update 'regscan' information by looking at the insns
2015 from FIRST to LAST. Some new REGs have been created,
2016 and any REG with number greater than OLD_MAX_REGNO is
2017 such a REG. We only update information for those. */
2019 void
2020 reg_scan_update(first, last, old_max_regno)
2021 rtx first;
2022 rtx last;
2023 int old_max_regno;
2025 register rtx insn;
2027 allocate_reg_info (max_reg_num (), FALSE, FALSE);
2029 for (insn = first; insn != last; insn = NEXT_INSN (insn))
2030 if (GET_CODE (insn) == INSN
2031 || GET_CODE (insn) == CALL_INSN
2032 || GET_CODE (insn) == JUMP_INSN)
2034 if (GET_CODE (PATTERN (insn)) == PARALLEL
2035 && XVECLEN (PATTERN (insn), 0) > max_parallel)
2036 max_parallel = XVECLEN (PATTERN (insn), 0);
2037 reg_scan_mark_refs (PATTERN (insn), insn, 0, old_max_regno);
2039 if (REG_NOTES (insn))
2040 reg_scan_mark_refs (REG_NOTES (insn), insn, 1, old_max_regno);
2044 /* X is the expression to scan. INSN is the insn it appears in.
2045 NOTE_FLAG is nonzero if X is from INSN's notes rather than its body.
2046 We should only record information for REGs with numbers
2047 greater than or equal to MIN_REGNO. */
2049 static void
2050 reg_scan_mark_refs (x, insn, note_flag, min_regno)
2051 rtx x;
2052 rtx insn;
2053 int note_flag;
2054 int min_regno;
2056 register enum rtx_code code;
2057 register rtx dest;
2058 register rtx note;
2060 code = GET_CODE (x);
2061 switch (code)
2063 case CONST:
2064 case CONST_INT:
2065 case CONST_DOUBLE:
2066 case CC0:
2067 case PC:
2068 case SYMBOL_REF:
2069 case LABEL_REF:
2070 case ADDR_VEC:
2071 case ADDR_DIFF_VEC:
2072 return;
2074 case REG:
2076 register int regno = REGNO (x);
2078 if (regno >= min_regno)
2080 REGNO_LAST_NOTE_UID (regno) = INSN_UID (insn);
2081 if (!note_flag)
2082 REGNO_LAST_UID (regno) = INSN_UID (insn);
2083 if (REGNO_FIRST_UID (regno) == 0)
2084 REGNO_FIRST_UID (regno) = INSN_UID (insn);
2087 break;
2089 case EXPR_LIST:
2090 if (XEXP (x, 0))
2091 reg_scan_mark_refs (XEXP (x, 0), insn, note_flag, min_regno);
2092 if (XEXP (x, 1))
2093 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2094 break;
2096 case INSN_LIST:
2097 if (XEXP (x, 1))
2098 reg_scan_mark_refs (XEXP (x, 1), insn, note_flag, min_regno);
2099 break;
2101 case SET:
2102 /* Count a set of the destination if it is a register. */
2103 for (dest = SET_DEST (x);
2104 GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2105 || GET_CODE (dest) == ZERO_EXTEND;
2106 dest = XEXP (dest, 0))
2109 if (GET_CODE (dest) == REG
2110 && REGNO (dest) >= min_regno)
2111 REG_N_SETS (REGNO (dest))++;
2113 /* If this is setting a pseudo from another pseudo or the sum of a
2114 pseudo and a constant integer and the other pseudo is known to be
2115 a pointer, set the destination to be a pointer as well.
2117 Likewise if it is setting the destination from an address or from a
2118 value equivalent to an address or to the sum of an address and
2119 something else.
2121 But don't do any of this if the pseudo corresponds to a user
2122 variable since it should have already been set as a pointer based
2123 on the type. */
2125 if (GET_CODE (SET_DEST (x)) == REG
2126 && REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER
2127 && REGNO (SET_DEST (x)) >= min_regno
2128 /* If the destination pseudo is set more than once, then other
2129 sets might not be to a pointer value (consider access to a
2130 union in two threads of control in the presense of global
2131 optimizations). So only set REGNO_POINTER_FLAG on the destination
2132 pseudo if this is the only set of that pseudo. */
2133 && REG_N_SETS (REGNO (SET_DEST (x))) == 1
2134 && ! REG_USERVAR_P (SET_DEST (x))
2135 && ! REGNO_POINTER_FLAG (REGNO (SET_DEST (x)))
2136 && ((GET_CODE (SET_SRC (x)) == REG
2137 && REGNO_POINTER_FLAG (REGNO (SET_SRC (x))))
2138 || ((GET_CODE (SET_SRC (x)) == PLUS
2139 || GET_CODE (SET_SRC (x)) == LO_SUM)
2140 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
2141 && GET_CODE (XEXP (SET_SRC (x), 0)) == REG
2142 && REGNO_POINTER_FLAG (REGNO (XEXP (SET_SRC (x), 0))))
2143 || GET_CODE (SET_SRC (x)) == CONST
2144 || GET_CODE (SET_SRC (x)) == SYMBOL_REF
2145 || GET_CODE (SET_SRC (x)) == LABEL_REF
2146 || (GET_CODE (SET_SRC (x)) == HIGH
2147 && (GET_CODE (XEXP (SET_SRC (x), 0)) == CONST
2148 || GET_CODE (XEXP (SET_SRC (x), 0)) == SYMBOL_REF
2149 || GET_CODE (XEXP (SET_SRC (x), 0)) == LABEL_REF))
2150 || ((GET_CODE (SET_SRC (x)) == PLUS
2151 || GET_CODE (SET_SRC (x)) == LO_SUM)
2152 && (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST
2153 || GET_CODE (XEXP (SET_SRC (x), 1)) == SYMBOL_REF
2154 || GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF))
2155 || ((note = find_reg_note (insn, REG_EQUAL, 0)) != 0
2156 && (GET_CODE (XEXP (note, 0)) == CONST
2157 || GET_CODE (XEXP (note, 0)) == SYMBOL_REF
2158 || GET_CODE (XEXP (note, 0)) == LABEL_REF))))
2159 REGNO_POINTER_FLAG (REGNO (SET_DEST (x))) = 1;
2161 /* ... fall through ... */
2163 default:
2165 register const char *fmt = GET_RTX_FORMAT (code);
2166 register int i;
2167 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2169 if (fmt[i] == 'e')
2170 reg_scan_mark_refs (XEXP (x, i), insn, note_flag, min_regno);
2171 else if (fmt[i] == 'E' && XVEC (x, i) != 0)
2173 register int j;
2174 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2175 reg_scan_mark_refs (XVECEXP (x, i, j), insn, note_flag, min_regno);
2182 /* Return nonzero if C1 is a subset of C2, i.e., if every register in C1
2183 is also in C2. */
2186 reg_class_subset_p (c1, c2)
2187 register enum reg_class c1;
2188 register enum reg_class c2;
2190 if (c1 == c2) return 1;
2192 if (c2 == ALL_REGS)
2193 win:
2194 return 1;
2195 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int)c1],
2196 reg_class_contents[(int)c2],
2197 win);
2198 return 0;
2201 /* Return nonzero if there is a register that is in both C1 and C2. */
2204 reg_classes_intersect_p (c1, c2)
2205 register enum reg_class c1;
2206 register enum reg_class c2;
2208 #ifdef HARD_REG_SET
2209 register
2210 #endif
2211 HARD_REG_SET c;
2213 if (c1 == c2) return 1;
2215 if (c1 == ALL_REGS || c2 == ALL_REGS)
2216 return 1;
2218 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2219 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2221 GO_IF_HARD_REG_SUBSET (c, reg_class_contents[(int) NO_REGS], lose);
2222 return 1;
2224 lose:
2225 return 0;
2228 /* Release any memory allocated by register sets. */
2230 void
2231 regset_release_memory ()
2233 bitmap_release_memory ();