some more boiler plate code on how calls will be evaluated
[official-gcc.git] / gcc / explow.c
blob2a182065bca258e08fb5660eb2625b2fae7d487a
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "except.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "libfuncs.h"
37 #include "hard-reg-set.h"
38 #include "insn-config.h"
39 #include "ggc.h"
40 #include "recog.h"
41 #include "langhooks.h"
42 #include "target.h"
43 #include "output.h"
45 static rtx break_out_memory_refs (rtx);
48 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
50 HOST_WIDE_INT
51 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
53 int width = GET_MODE_BITSIZE (mode);
55 /* You want to truncate to a _what_? */
56 gcc_assert (SCALAR_INT_MODE_P (mode));
58 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
59 if (mode == BImode)
60 return c & 1 ? STORE_FLAG_VALUE : 0;
62 /* Sign-extend for the requested mode. */
64 if (width < HOST_BITS_PER_WIDE_INT)
66 HOST_WIDE_INT sign = 1;
67 sign <<= width - 1;
68 c &= (sign << 1) - 1;
69 c ^= sign;
70 c -= sign;
73 return c;
76 /* Return an rtx for the sum of X and the integer C. */
78 rtx
79 plus_constant (rtx x, HOST_WIDE_INT c)
81 RTX_CODE code;
82 rtx y;
83 enum machine_mode mode;
84 rtx tem;
85 int all_constant = 0;
87 if (c == 0)
88 return x;
90 restart:
92 code = GET_CODE (x);
93 mode = GET_MODE (x);
94 y = x;
96 switch (code)
98 case CONST_INT:
99 return GEN_INT (INTVAL (x) + c);
101 case CONST_DOUBLE:
103 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
104 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
105 unsigned HOST_WIDE_INT l2 = c;
106 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
107 unsigned HOST_WIDE_INT lv;
108 HOST_WIDE_INT hv;
110 add_double (l1, h1, l2, h2, &lv, &hv);
112 return immed_double_const (lv, hv, VOIDmode);
115 case MEM:
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
123 = force_const_mem (GET_MODE (x),
124 plus_constant (get_pool_constant (XEXP (x, 0)),
125 c));
126 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
127 return tem;
129 break;
131 case CONST:
132 /* If adding to something entirely constant, set a flag
133 so that we can add a CONST around the result. */
134 x = XEXP (x, 0);
135 all_constant = 1;
136 goto restart;
138 case SYMBOL_REF:
139 case LABEL_REF:
140 all_constant = 1;
141 break;
143 case PLUS:
144 /* The interesting case is adding the integer to a sum.
145 Look for constant term in the sum and combine
146 with C. For an integer constant term, we make a combined
147 integer. For a constant term that is not an explicit integer,
148 we cannot really combine, but group them together anyway.
150 Restart or use a recursive call in case the remaining operand is
151 something that we handle specially, such as a SYMBOL_REF.
153 We may not immediately return from the recursive call here, lest
154 all_constant gets lost. */
156 if (CONST_INT_P (XEXP (x, 1)))
158 c += INTVAL (XEXP (x, 1));
160 if (GET_MODE (x) != VOIDmode)
161 c = trunc_int_for_mode (c, GET_MODE (x));
163 x = XEXP (x, 0);
164 goto restart;
166 else if (CONSTANT_P (XEXP (x, 1)))
168 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
169 c = 0;
171 else if (find_constant_term_loc (&y))
173 /* We need to be careful since X may be shared and we can't
174 modify it in place. */
175 rtx copy = copy_rtx (x);
176 rtx *const_loc = find_constant_term_loc (&copy);
178 *const_loc = plus_constant (*const_loc, c);
179 x = copy;
180 c = 0;
182 break;
184 default:
185 break;
188 if (c != 0)
189 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
191 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
192 return x;
193 else if (all_constant)
194 return gen_rtx_CONST (mode, x);
195 else
196 return x;
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200 Add all the removed constant terms into *CONSTPTR.
201 X itself is not altered. The result != X if and only if
202 it is not isomorphic to X. */
205 eliminate_constant_term (rtx x, rtx *constptr)
207 rtx x0, x1;
208 rtx tem;
210 if (GET_CODE (x) != PLUS)
211 return x;
213 /* First handle constants appearing at this level explicitly. */
214 if (CONST_INT_P (XEXP (x, 1))
215 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216 XEXP (x, 1)))
217 && CONST_INT_P (tem))
219 *constptr = tem;
220 return eliminate_constant_term (XEXP (x, 0), constptr);
223 tem = const0_rtx;
224 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228 *constptr, tem))
229 && CONST_INT_P (tem))
231 *constptr = tem;
232 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
235 return x;
238 /* Return an rtx for the size in bytes of the value of EXP. */
241 expr_size (tree exp)
243 tree size;
245 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
246 size = TREE_OPERAND (exp, 1);
247 else
249 size = tree_expr_size (exp);
250 gcc_assert (size);
251 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
254 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
257 /* Return a wide integer for the size in bytes of the value of EXP, or -1
258 if the size can vary or is larger than an integer. */
260 HOST_WIDE_INT
261 int_expr_size (tree exp)
263 tree size;
265 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
266 size = TREE_OPERAND (exp, 1);
267 else
269 size = tree_expr_size (exp);
270 gcc_assert (size);
273 if (size == 0 || !host_integerp (size, 0))
274 return -1;
276 return tree_low_cst (size, 0);
279 /* Return a copy of X in which all memory references
280 and all constants that involve symbol refs
281 have been replaced with new temporary registers.
282 Also emit code to load the memory locations and constants
283 into those registers.
285 If X contains no such constants or memory references,
286 X itself (not a copy) is returned.
288 If a constant is found in the address that is not a legitimate constant
289 in an insn, it is left alone in the hope that it might be valid in the
290 address.
292 X may contain no arithmetic except addition, subtraction and multiplication.
293 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
295 static rtx
296 break_out_memory_refs (rtx x)
298 if (MEM_P (x)
299 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
300 && GET_MODE (x) != VOIDmode))
301 x = force_reg (GET_MODE (x), x);
302 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
303 || GET_CODE (x) == MULT)
305 rtx op0 = break_out_memory_refs (XEXP (x, 0));
306 rtx op1 = break_out_memory_refs (XEXP (x, 1));
308 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
309 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
312 return x;
315 /* Given X, a memory address in address space AS' pointer mode, convert it to
316 an address in the address space's address mode, or vice versa (TO_MODE says
317 which way). We take advantage of the fact that pointers are not allowed to
318 overflow by commuting arithmetic operations over conversions so that address
319 arithmetic insns can be used. */
322 convert_memory_address_addr_space (enum machine_mode to_mode ATTRIBUTE_UNUSED,
323 rtx x, addr_space_t as ATTRIBUTE_UNUSED)
325 #ifndef POINTERS_EXTEND_UNSIGNED
326 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
327 return x;
328 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
329 enum machine_mode pointer_mode, address_mode, from_mode;
330 rtx temp;
331 enum rtx_code code;
333 /* If X already has the right mode, just return it. */
334 if (GET_MODE (x) == to_mode)
335 return x;
337 pointer_mode = targetm.addr_space.pointer_mode (as);
338 address_mode = targetm.addr_space.address_mode (as);
339 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
341 /* Here we handle some special cases. If none of them apply, fall through
342 to the default case. */
343 switch (GET_CODE (x))
345 case CONST_INT:
346 case CONST_DOUBLE:
347 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
348 code = TRUNCATE;
349 else if (POINTERS_EXTEND_UNSIGNED < 0)
350 break;
351 else if (POINTERS_EXTEND_UNSIGNED > 0)
352 code = ZERO_EXTEND;
353 else
354 code = SIGN_EXTEND;
355 temp = simplify_unary_operation (code, to_mode, x, from_mode);
356 if (temp)
357 return temp;
358 break;
360 case SUBREG:
361 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
362 && GET_MODE (SUBREG_REG (x)) == to_mode)
363 return SUBREG_REG (x);
364 break;
366 case LABEL_REF:
367 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
368 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
369 return temp;
370 break;
372 case SYMBOL_REF:
373 temp = shallow_copy_rtx (x);
374 PUT_MODE (temp, to_mode);
375 return temp;
376 break;
378 case CONST:
379 return gen_rtx_CONST (to_mode,
380 convert_memory_address_addr_space
381 (to_mode, XEXP (x, 0), as));
382 break;
384 case PLUS:
385 case MULT:
386 /* For addition we can safely permute the conversion and addition
387 operation if one operand is a constant and converting the constant
388 does not change it or if one operand is a constant and we are
389 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
390 We can always safely permute them if we are making the address
391 narrower. */
392 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
393 || (GET_CODE (x) == PLUS
394 && CONST_INT_P (XEXP (x, 1))
395 && (XEXP (x, 1) == convert_memory_address_addr_space
396 (to_mode, XEXP (x, 1), as)
397 || POINTERS_EXTEND_UNSIGNED < 0)))
398 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
399 convert_memory_address_addr_space
400 (to_mode, XEXP (x, 0), as),
401 XEXP (x, 1));
402 break;
404 default:
405 break;
408 return convert_modes (to_mode, from_mode,
409 x, POINTERS_EXTEND_UNSIGNED);
410 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
413 /* Return something equivalent to X but valid as a memory address for something
414 of mode MODE in the named address space AS. When X is not itself valid,
415 this works by copying X or subexpressions of it into registers. */
418 memory_address_addr_space (enum machine_mode mode, rtx x, addr_space_t as)
420 rtx oldx = x;
421 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
423 x = convert_memory_address_addr_space (address_mode, x, as);
425 /* By passing constant addresses through registers
426 we get a chance to cse them. */
427 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
428 x = force_reg (address_mode, x);
430 /* We get better cse by rejecting indirect addressing at this stage.
431 Let the combiner create indirect addresses where appropriate.
432 For now, generate the code so that the subexpressions useful to share
433 are visible. But not if cse won't be done! */
434 else
436 if (! cse_not_expected && !REG_P (x))
437 x = break_out_memory_refs (x);
439 /* At this point, any valid address is accepted. */
440 if (memory_address_addr_space_p (mode, x, as))
441 goto done;
443 /* If it was valid before but breaking out memory refs invalidated it,
444 use it the old way. */
445 if (memory_address_addr_space_p (mode, oldx, as))
447 x = oldx;
448 goto done;
451 /* Perform machine-dependent transformations on X
452 in certain cases. This is not necessary since the code
453 below can handle all possible cases, but machine-dependent
454 transformations can make better code. */
456 rtx orig_x = x;
457 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
458 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
459 goto done;
462 /* PLUS and MULT can appear in special ways
463 as the result of attempts to make an address usable for indexing.
464 Usually they are dealt with by calling force_operand, below.
465 But a sum containing constant terms is special
466 if removing them makes the sum a valid address:
467 then we generate that address in a register
468 and index off of it. We do this because it often makes
469 shorter code, and because the addresses thus generated
470 in registers often become common subexpressions. */
471 if (GET_CODE (x) == PLUS)
473 rtx constant_term = const0_rtx;
474 rtx y = eliminate_constant_term (x, &constant_term);
475 if (constant_term == const0_rtx
476 || ! memory_address_addr_space_p (mode, y, as))
477 x = force_operand (x, NULL_RTX);
478 else
480 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
481 if (! memory_address_addr_space_p (mode, y, as))
482 x = force_operand (x, NULL_RTX);
483 else
484 x = y;
488 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
489 x = force_operand (x, NULL_RTX);
491 /* If we have a register that's an invalid address,
492 it must be a hard reg of the wrong class. Copy it to a pseudo. */
493 else if (REG_P (x))
494 x = copy_to_reg (x);
496 /* Last resort: copy the value to a register, since
497 the register is a valid address. */
498 else
499 x = force_reg (address_mode, x);
502 done:
504 gcc_assert (memory_address_addr_space_p (mode, x, as));
505 /* If we didn't change the address, we are done. Otherwise, mark
506 a reg as a pointer if we have REG or REG + CONST_INT. */
507 if (oldx == x)
508 return x;
509 else if (REG_P (x))
510 mark_reg_pointer (x, BITS_PER_UNIT);
511 else if (GET_CODE (x) == PLUS
512 && REG_P (XEXP (x, 0))
513 && CONST_INT_P (XEXP (x, 1)))
514 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
516 /* OLDX may have been the address on a temporary. Update the address
517 to indicate that X is now used. */
518 update_temp_slot_address (oldx, x);
520 return x;
523 /* Convert a mem ref into one with a valid memory address.
524 Pass through anything else unchanged. */
527 validize_mem (rtx ref)
529 if (!MEM_P (ref))
530 return ref;
531 ref = use_anchored_address (ref);
532 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
533 MEM_ADDR_SPACE (ref)))
534 return ref;
536 /* Don't alter REF itself, since that is probably a stack slot. */
537 return replace_equiv_address (ref, XEXP (ref, 0));
540 /* If X is a memory reference to a member of an object block, try rewriting
541 it to use an anchor instead. Return the new memory reference on success
542 and the old one on failure. */
545 use_anchored_address (rtx x)
547 rtx base;
548 HOST_WIDE_INT offset;
550 if (!flag_section_anchors)
551 return x;
553 if (!MEM_P (x))
554 return x;
556 /* Split the address into a base and offset. */
557 base = XEXP (x, 0);
558 offset = 0;
559 if (GET_CODE (base) == CONST
560 && GET_CODE (XEXP (base, 0)) == PLUS
561 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
563 offset += INTVAL (XEXP (XEXP (base, 0), 1));
564 base = XEXP (XEXP (base, 0), 0);
567 /* Check whether BASE is suitable for anchors. */
568 if (GET_CODE (base) != SYMBOL_REF
569 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
570 || SYMBOL_REF_ANCHOR_P (base)
571 || SYMBOL_REF_BLOCK (base) == NULL
572 || !targetm.use_anchors_for_symbol_p (base))
573 return x;
575 /* Decide where BASE is going to be. */
576 place_block_symbol (base);
578 /* Get the anchor we need to use. */
579 offset += SYMBOL_REF_BLOCK_OFFSET (base);
580 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
581 SYMBOL_REF_TLS_MODEL (base));
583 /* Work out the offset from the anchor. */
584 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
586 /* If we're going to run a CSE pass, force the anchor into a register.
587 We will then be able to reuse registers for several accesses, if the
588 target costs say that that's worthwhile. */
589 if (!cse_not_expected)
590 base = force_reg (GET_MODE (base), base);
592 return replace_equiv_address (x, plus_constant (base, offset));
595 /* Copy the value or contents of X to a new temp reg and return that reg. */
598 copy_to_reg (rtx x)
600 rtx temp = gen_reg_rtx (GET_MODE (x));
602 /* If not an operand, must be an address with PLUS and MULT so
603 do the computation. */
604 if (! general_operand (x, VOIDmode))
605 x = force_operand (x, temp);
607 if (x != temp)
608 emit_move_insn (temp, x);
610 return temp;
613 /* Like copy_to_reg but always give the new register mode Pmode
614 in case X is a constant. */
617 copy_addr_to_reg (rtx x)
619 return copy_to_mode_reg (Pmode, x);
622 /* Like copy_to_reg but always give the new register mode MODE
623 in case X is a constant. */
626 copy_to_mode_reg (enum machine_mode mode, rtx x)
628 rtx temp = gen_reg_rtx (mode);
630 /* If not an operand, must be an address with PLUS and MULT so
631 do the computation. */
632 if (! general_operand (x, VOIDmode))
633 x = force_operand (x, temp);
635 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
636 if (x != temp)
637 emit_move_insn (temp, x);
638 return temp;
641 /* Load X into a register if it is not already one.
642 Use mode MODE for the register.
643 X should be valid for mode MODE, but it may be a constant which
644 is valid for all integer modes; that's why caller must specify MODE.
646 The caller must not alter the value in the register we return,
647 since we mark it as a "constant" register. */
650 force_reg (enum machine_mode mode, rtx x)
652 rtx temp, insn, set;
654 if (REG_P (x))
655 return x;
657 if (general_operand (x, mode))
659 temp = gen_reg_rtx (mode);
660 insn = emit_move_insn (temp, x);
662 else
664 temp = force_operand (x, NULL_RTX);
665 if (REG_P (temp))
666 insn = get_last_insn ();
667 else
669 rtx temp2 = gen_reg_rtx (mode);
670 insn = emit_move_insn (temp2, temp);
671 temp = temp2;
675 /* Let optimizers know that TEMP's value never changes
676 and that X can be substituted for it. Don't get confused
677 if INSN set something else (such as a SUBREG of TEMP). */
678 if (CONSTANT_P (x)
679 && (set = single_set (insn)) != 0
680 && SET_DEST (set) == temp
681 && ! rtx_equal_p (x, SET_SRC (set)))
682 set_unique_reg_note (insn, REG_EQUAL, x);
684 /* Let optimizers know that TEMP is a pointer, and if so, the
685 known alignment of that pointer. */
687 unsigned align = 0;
688 if (GET_CODE (x) == SYMBOL_REF)
690 align = BITS_PER_UNIT;
691 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
692 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
694 else if (GET_CODE (x) == LABEL_REF)
695 align = BITS_PER_UNIT;
696 else if (GET_CODE (x) == CONST
697 && GET_CODE (XEXP (x, 0)) == PLUS
698 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
699 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
701 rtx s = XEXP (XEXP (x, 0), 0);
702 rtx c = XEXP (XEXP (x, 0), 1);
703 unsigned sa, ca;
705 sa = BITS_PER_UNIT;
706 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
707 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
709 if (INTVAL (c) == 0)
710 align = sa;
711 else
713 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
714 align = MIN (sa, ca);
718 if (align || (MEM_P (x) && MEM_POINTER (x)))
719 mark_reg_pointer (temp, align);
722 return temp;
725 /* If X is a memory ref, copy its contents to a new temp reg and return
726 that reg. Otherwise, return X. */
729 force_not_mem (rtx x)
731 rtx temp;
733 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
734 return x;
736 temp = gen_reg_rtx (GET_MODE (x));
738 if (MEM_POINTER (x))
739 REG_POINTER (temp) = 1;
741 emit_move_insn (temp, x);
742 return temp;
745 /* Copy X to TARGET (if it's nonzero and a reg)
746 or to a new temp reg and return that reg.
747 MODE is the mode to use for X in case it is a constant. */
750 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
752 rtx temp;
754 if (target && REG_P (target))
755 temp = target;
756 else
757 temp = gen_reg_rtx (mode);
759 emit_move_insn (temp, x);
760 return temp;
763 /* Return the mode to use to pass or return a scalar of TYPE and MODE.
764 PUNSIGNEDP points to the signedness of the type and may be adjusted
765 to show what signedness to use on extension operations.
767 FOR_RETURN is nonzero if the caller is promoting the return value
768 of FNDECL, else it is for promoting args. */
770 enum machine_mode
771 promote_function_mode (const_tree type, enum machine_mode mode, int *punsignedp,
772 const_tree funtype, int for_return)
774 switch (TREE_CODE (type))
776 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
777 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
778 case POINTER_TYPE: case REFERENCE_TYPE:
779 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
780 for_return);
782 default:
783 return mode;
786 /* Return the mode to use to store a scalar of TYPE and MODE.
787 PUNSIGNEDP points to the signedness of the type and may be adjusted
788 to show what signedness to use on extension operations. */
790 enum machine_mode
791 promote_mode (const_tree type ATTRIBUTE_UNUSED, enum machine_mode mode,
792 int *punsignedp ATTRIBUTE_UNUSED)
794 /* FIXME: this is the same logic that was there until GCC 4.4, but we
795 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
796 is not defined. The affected targets are M32C, S390, SPARC. */
797 #ifdef PROMOTE_MODE
798 const enum tree_code code = TREE_CODE (type);
799 int unsignedp = *punsignedp;
801 switch (code)
803 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
804 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
805 PROMOTE_MODE (mode, unsignedp, type);
806 *punsignedp = unsignedp;
807 return mode;
808 break;
810 #ifdef POINTERS_EXTEND_UNSIGNED
811 case REFERENCE_TYPE:
812 case POINTER_TYPE:
813 *punsignedp = POINTERS_EXTEND_UNSIGNED;
814 return targetm.addr_space.address_mode
815 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
816 break;
817 #endif
819 default:
820 return mode;
822 #else
823 return mode;
824 #endif
828 /* Use one of promote_mode or promote_function_mode to find the promoted
829 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
830 of DECL after promotion. */
832 enum machine_mode
833 promote_decl_mode (const_tree decl, int *punsignedp)
835 tree type = TREE_TYPE (decl);
836 int unsignedp = TYPE_UNSIGNED (type);
837 enum machine_mode mode = DECL_MODE (decl);
838 enum machine_mode pmode;
840 if (TREE_CODE (decl) == RESULT_DECL
841 || TREE_CODE (decl) == PARM_DECL)
842 pmode = promote_function_mode (type, mode, &unsignedp,
843 TREE_TYPE (current_function_decl), 2);
844 else
845 pmode = promote_mode (type, mode, &unsignedp);
847 if (punsignedp)
848 *punsignedp = unsignedp;
849 return pmode;
853 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
854 This pops when ADJUST is positive. ADJUST need not be constant. */
856 void
857 adjust_stack (rtx adjust)
859 rtx temp;
861 if (adjust == const0_rtx)
862 return;
864 /* We expect all variable sized adjustments to be multiple of
865 PREFERRED_STACK_BOUNDARY. */
866 if (CONST_INT_P (adjust))
867 stack_pointer_delta -= INTVAL (adjust);
869 temp = expand_binop (Pmode,
870 #ifdef STACK_GROWS_DOWNWARD
871 add_optab,
872 #else
873 sub_optab,
874 #endif
875 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
876 OPTAB_LIB_WIDEN);
878 if (temp != stack_pointer_rtx)
879 emit_move_insn (stack_pointer_rtx, temp);
882 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
883 This pushes when ADJUST is positive. ADJUST need not be constant. */
885 void
886 anti_adjust_stack (rtx adjust)
888 rtx temp;
890 if (adjust == const0_rtx)
891 return;
893 /* We expect all variable sized adjustments to be multiple of
894 PREFERRED_STACK_BOUNDARY. */
895 if (CONST_INT_P (adjust))
896 stack_pointer_delta += INTVAL (adjust);
898 temp = expand_binop (Pmode,
899 #ifdef STACK_GROWS_DOWNWARD
900 sub_optab,
901 #else
902 add_optab,
903 #endif
904 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
905 OPTAB_LIB_WIDEN);
907 if (temp != stack_pointer_rtx)
908 emit_move_insn (stack_pointer_rtx, temp);
911 /* Round the size of a block to be pushed up to the boundary required
912 by this machine. SIZE is the desired size, which need not be constant. */
914 static rtx
915 round_push (rtx size)
917 rtx align_rtx, alignm1_rtx;
919 if (!SUPPORTS_STACK_ALIGNMENT
920 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
922 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
924 if (align == 1)
925 return size;
927 if (CONST_INT_P (size))
929 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
931 if (INTVAL (size) != new_size)
932 size = GEN_INT (new_size);
933 return size;
936 align_rtx = GEN_INT (align);
937 alignm1_rtx = GEN_INT (align - 1);
939 else
941 /* If crtl->preferred_stack_boundary might still grow, use
942 virtual_preferred_stack_boundary_rtx instead. This will be
943 substituted by the right value in vregs pass and optimized
944 during combine. */
945 align_rtx = virtual_preferred_stack_boundary_rtx;
946 alignm1_rtx = force_operand (plus_constant (align_rtx, -1), NULL_RTX);
949 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
950 but we know it can't. So add ourselves and then do
951 TRUNC_DIV_EXPR. */
952 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
953 NULL_RTX, 1, OPTAB_LIB_WIDEN);
954 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
955 NULL_RTX, 1);
956 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
958 return size;
961 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
962 to a previously-created save area. If no save area has been allocated,
963 this function will allocate one. If a save area is specified, it
964 must be of the proper mode.
966 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
967 are emitted at the current position. */
969 void
970 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
972 rtx sa = *psave;
973 /* The default is that we use a move insn and save in a Pmode object. */
974 rtx (*fcn) (rtx, rtx) = gen_move_insn;
975 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
977 /* See if this machine has anything special to do for this kind of save. */
978 switch (save_level)
980 #ifdef HAVE_save_stack_block
981 case SAVE_BLOCK:
982 if (HAVE_save_stack_block)
983 fcn = gen_save_stack_block;
984 break;
985 #endif
986 #ifdef HAVE_save_stack_function
987 case SAVE_FUNCTION:
988 if (HAVE_save_stack_function)
989 fcn = gen_save_stack_function;
990 break;
991 #endif
992 #ifdef HAVE_save_stack_nonlocal
993 case SAVE_NONLOCAL:
994 if (HAVE_save_stack_nonlocal)
995 fcn = gen_save_stack_nonlocal;
996 break;
997 #endif
998 default:
999 break;
1002 /* If there is no save area and we have to allocate one, do so. Otherwise
1003 verify the save area is the proper mode. */
1005 if (sa == 0)
1007 if (mode != VOIDmode)
1009 if (save_level == SAVE_NONLOCAL)
1010 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1011 else
1012 *psave = sa = gen_reg_rtx (mode);
1016 if (after)
1018 rtx seq;
1020 start_sequence ();
1021 do_pending_stack_adjust ();
1022 /* We must validize inside the sequence, to ensure that any instructions
1023 created by the validize call also get moved to the right place. */
1024 if (sa != 0)
1025 sa = validize_mem (sa);
1026 emit_insn (fcn (sa, stack_pointer_rtx));
1027 seq = get_insns ();
1028 end_sequence ();
1029 emit_insn_after (seq, after);
1031 else
1033 do_pending_stack_adjust ();
1034 if (sa != 0)
1035 sa = validize_mem (sa);
1036 emit_insn (fcn (sa, stack_pointer_rtx));
1040 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1041 area made by emit_stack_save. If it is zero, we have nothing to do.
1043 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1044 current position. */
1046 void
1047 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
1049 /* The default is that we use a move insn. */
1050 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1052 /* See if this machine has anything special to do for this kind of save. */
1053 switch (save_level)
1055 #ifdef HAVE_restore_stack_block
1056 case SAVE_BLOCK:
1057 if (HAVE_restore_stack_block)
1058 fcn = gen_restore_stack_block;
1059 break;
1060 #endif
1061 #ifdef HAVE_restore_stack_function
1062 case SAVE_FUNCTION:
1063 if (HAVE_restore_stack_function)
1064 fcn = gen_restore_stack_function;
1065 break;
1066 #endif
1067 #ifdef HAVE_restore_stack_nonlocal
1068 case SAVE_NONLOCAL:
1069 if (HAVE_restore_stack_nonlocal)
1070 fcn = gen_restore_stack_nonlocal;
1071 break;
1072 #endif
1073 default:
1074 break;
1077 if (sa != 0)
1079 sa = validize_mem (sa);
1080 /* These clobbers prevent the scheduler from moving
1081 references to variable arrays below the code
1082 that deletes (pops) the arrays. */
1083 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1084 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
1087 discard_pending_stack_adjust ();
1089 if (after)
1091 rtx seq;
1093 start_sequence ();
1094 emit_insn (fcn (stack_pointer_rtx, sa));
1095 seq = get_insns ();
1096 end_sequence ();
1097 emit_insn_after (seq, after);
1099 else
1100 emit_insn (fcn (stack_pointer_rtx, sa));
1103 /* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
1104 function. This function should be called whenever we allocate or
1105 deallocate dynamic stack space. */
1107 void
1108 update_nonlocal_goto_save_area (void)
1110 tree t_save;
1111 rtx r_save;
1113 /* The nonlocal_goto_save_area object is an array of N pointers. The
1114 first one is used for the frame pointer save; the rest are sized by
1115 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1116 of the stack save area slots. */
1117 t_save = build4 (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
1118 integer_one_node, NULL_TREE, NULL_TREE);
1119 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1121 emit_stack_save (SAVE_NONLOCAL, &r_save, NULL_RTX);
1124 /* Return an rtx representing the address of an area of memory dynamically
1125 pushed on the stack.
1127 Any required stack pointer alignment is preserved.
1129 SIZE is an rtx representing the size of the area.
1131 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1132 parameter may be zero. If so, a proper value will be extracted
1133 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1135 REQUIRED_ALIGN is the alignment (in bits) required for the region
1136 of memory.
1138 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1139 stack space allocated by the generated code cannot be added with itself
1140 in the course of the execution of the function. It is always safe to
1141 pass FALSE here and the following criterion is sufficient in order to
1142 pass TRUE: every path in the CFG that starts at the allocation point and
1143 loops to it executes the associated deallocation code. */
1146 allocate_dynamic_stack_space (rtx size, unsigned size_align,
1147 unsigned required_align, bool cannot_accumulate)
1149 HOST_WIDE_INT stack_usage_size = -1;
1150 rtx final_label, final_target, target;
1151 unsigned extra_align = 0;
1152 bool must_align;
1154 /* If we're asking for zero bytes, it doesn't matter what we point
1155 to since we can't dereference it. But return a reasonable
1156 address anyway. */
1157 if (size == const0_rtx)
1158 return virtual_stack_dynamic_rtx;
1160 /* Otherwise, show we're calling alloca or equivalent. */
1161 cfun->calls_alloca = 1;
1163 /* If stack usage info is requested, look into the size we are passed.
1164 We need to do so this early to avoid the obfuscation that may be
1165 introduced later by the various alignment operations. */
1166 if (flag_stack_usage)
1168 if (CONST_INT_P (size))
1169 stack_usage_size = INTVAL (size);
1170 else if (REG_P (size))
1172 /* Look into the last emitted insn and see if we can deduce
1173 something for the register. */
1174 rtx insn, set, note;
1175 insn = get_last_insn ();
1176 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1178 if (CONST_INT_P (SET_SRC (set)))
1179 stack_usage_size = INTVAL (SET_SRC (set));
1180 else if ((note = find_reg_equal_equiv_note (insn))
1181 && CONST_INT_P (XEXP (note, 0)))
1182 stack_usage_size = INTVAL (XEXP (note, 0));
1186 /* If the size is not constant, we can't say anything. */
1187 if (stack_usage_size == -1)
1189 current_function_has_unbounded_dynamic_stack_size = 1;
1190 stack_usage_size = 0;
1194 /* Ensure the size is in the proper mode. */
1195 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1196 size = convert_to_mode (Pmode, size, 1);
1198 /* Adjust SIZE_ALIGN, if needed. */
1199 if (CONST_INT_P (size))
1201 unsigned HOST_WIDE_INT lsb;
1203 lsb = INTVAL (size);
1204 lsb &= -lsb;
1206 /* Watch out for overflow truncating to "unsigned". */
1207 if (lsb > UINT_MAX / BITS_PER_UNIT)
1208 size_align = 1u << (HOST_BITS_PER_INT - 1);
1209 else
1210 size_align = (unsigned)lsb * BITS_PER_UNIT;
1212 else if (size_align < BITS_PER_UNIT)
1213 size_align = BITS_PER_UNIT;
1215 /* We can't attempt to minimize alignment necessary, because we don't
1216 know the final value of preferred_stack_boundary yet while executing
1217 this code. */
1218 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1219 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1221 /* We will need to ensure that the address we return is aligned to
1222 REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't
1223 always know its final value at this point in the compilation (it
1224 might depend on the size of the outgoing parameter lists, for
1225 example), so we must align the value to be returned in that case.
1226 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1227 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1228 We must also do an alignment operation on the returned value if
1229 the stack pointer alignment is less strict than REQUIRED_ALIGN.
1231 If we have to align, we must leave space in SIZE for the hole
1232 that might result from the alignment operation. */
1234 must_align = (crtl->preferred_stack_boundary < required_align);
1235 if (must_align)
1237 if (required_align > PREFERRED_STACK_BOUNDARY)
1238 extra_align = PREFERRED_STACK_BOUNDARY;
1239 else if (required_align > STACK_BOUNDARY)
1240 extra_align = STACK_BOUNDARY;
1241 else
1242 extra_align = BITS_PER_UNIT;
1245 /* ??? STACK_POINTER_OFFSET is always defined now. */
1246 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1247 must_align = true;
1248 extra_align = BITS_PER_UNIT;
1249 #endif
1251 if (must_align)
1253 unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
1255 size = plus_constant (size, extra);
1256 size = force_operand (size, NULL_RTX);
1258 if (flag_stack_usage)
1259 stack_usage_size += extra;
1261 if (extra && size_align > extra_align)
1262 size_align = extra_align;
1265 #ifdef SETJMP_VIA_SAVE_AREA
1266 /* If setjmp restores regs from a save area in the stack frame,
1267 avoid clobbering the reg save area. Note that the offset of
1268 virtual_incoming_args_rtx includes the preallocated stack args space.
1269 It would be no problem to clobber that, but it's on the wrong side
1270 of the old save area.
1272 What used to happen is that, since we did not know for sure
1273 whether setjmp() was invoked until after RTL generation, we
1274 would use reg notes to store the "optimized" size and fix things
1275 up later. These days we know this information before we ever
1276 start building RTL so the reg notes are unnecessary. */
1277 if (cfun->calls_setjmp)
1279 rtx dynamic_offset
1280 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1281 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1283 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1284 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1286 /* The above dynamic offset cannot be computed statically at this
1287 point, but it will be possible to do so after RTL expansion is
1288 done. Record how many times we will need to add it. */
1289 if (flag_stack_usage)
1290 current_function_dynamic_alloc_count++;
1292 /* ??? Can we infer a minimum of STACK_BOUNDARY here? */
1293 size_align = BITS_PER_UNIT;
1295 #endif /* SETJMP_VIA_SAVE_AREA */
1297 /* Round the size to a multiple of the required stack alignment.
1298 Since the stack if presumed to be rounded before this allocation,
1299 this will maintain the required alignment.
1301 If the stack grows downward, we could save an insn by subtracting
1302 SIZE from the stack pointer and then aligning the stack pointer.
1303 The problem with this is that the stack pointer may be unaligned
1304 between the execution of the subtraction and alignment insns and
1305 some machines do not allow this. Even on those that do, some
1306 signal handlers malfunction if a signal should occur between those
1307 insns. Since this is an extremely rare event, we have no reliable
1308 way of knowing which systems have this problem. So we avoid even
1309 momentarily mis-aligning the stack. */
1310 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
1312 size = round_push (size);
1314 if (flag_stack_usage)
1316 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
1317 stack_usage_size = (stack_usage_size + align - 1) / align * align;
1321 target = gen_reg_rtx (Pmode);
1323 /* The size is supposed to be fully adjusted at this point so record it
1324 if stack usage info is requested. */
1325 if (flag_stack_usage)
1327 current_function_dynamic_stack_size += stack_usage_size;
1329 /* ??? This is gross but the only safe stance in the absence
1330 of stack usage oriented flow analysis. */
1331 if (!cannot_accumulate)
1332 current_function_has_unbounded_dynamic_stack_size = 1;
1335 final_label = NULL_RTX;
1336 final_target = NULL_RTX;
1338 /* If we are splitting the stack, we need to ask the backend whether
1339 there is enough room on the current stack. If there isn't, or if
1340 the backend doesn't know how to tell is, then we need to call a
1341 function to allocate memory in some other way. This memory will
1342 be released when we release the current stack segment. The
1343 effect is that stack allocation becomes less efficient, but at
1344 least it doesn't cause a stack overflow. */
1345 if (flag_split_stack)
1347 rtx available_label, ask, space, func;
1349 available_label = NULL_RTX;
1351 #ifdef HAVE_split_stack_space_check
1352 if (HAVE_split_stack_space_check)
1354 available_label = gen_label_rtx ();
1356 /* This instruction will branch to AVAILABLE_LABEL if there
1357 are SIZE bytes available on the stack. */
1358 emit_insn (gen_split_stack_space_check (size, available_label));
1360 #endif
1362 /* The __morestack_allocate_stack_space function will allocate
1363 memory using malloc. If the alignment of the memory returned
1364 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1365 make sure we allocate enough space. */
1366 if (MALLOC_ABI_ALIGNMENT >= required_align)
1367 ask = size;
1368 else
1370 ask = expand_binop (Pmode, add_optab, size,
1371 GEN_INT (required_align / BITS_PER_UNIT - 1),
1372 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1373 must_align = true;
1376 func = init_one_libfunc ("__morestack_allocate_stack_space");
1378 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
1379 1, ask, Pmode);
1381 if (available_label == NULL_RTX)
1382 return space;
1384 final_target = gen_reg_rtx (Pmode);
1386 emit_move_insn (final_target, space);
1388 final_label = gen_label_rtx ();
1389 emit_jump (final_label);
1391 emit_label (available_label);
1394 do_pending_stack_adjust ();
1396 /* We ought to be called always on the toplevel and stack ought to be aligned
1397 properly. */
1398 gcc_assert (!(stack_pointer_delta
1399 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1401 /* If needed, check that we have the required amount of stack. Take into
1402 account what has already been checked. */
1403 if (STACK_CHECK_MOVING_SP)
1405 else if (flag_stack_check == GENERIC_STACK_CHECK)
1406 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1407 size);
1408 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1409 probe_stack_range (STACK_CHECK_PROTECT, size);
1411 /* Perform the required allocation from the stack. Some systems do
1412 this differently than simply incrementing/decrementing from the
1413 stack pointer, such as acquiring the space by calling malloc(). */
1414 #ifdef HAVE_allocate_stack
1415 if (HAVE_allocate_stack)
1417 enum machine_mode mode = STACK_SIZE_MODE;
1418 insn_operand_predicate_fn pred;
1420 /* We don't have to check against the predicate for operand 0 since
1421 TARGET is known to be a pseudo of the proper mode, which must
1422 be valid for the operand. For operand 1, convert to the
1423 proper mode and validate. */
1424 if (mode == VOIDmode)
1425 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1427 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1428 if (pred && ! ((*pred) (size, mode)))
1429 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1431 emit_insn (gen_allocate_stack (target, size));
1433 else
1434 #endif
1436 int saved_stack_pointer_delta;
1438 #ifndef STACK_GROWS_DOWNWARD
1439 emit_move_insn (target, virtual_stack_dynamic_rtx);
1440 #endif
1442 /* Check stack bounds if necessary. */
1443 if (crtl->limit_stack)
1445 rtx available;
1446 rtx space_available = gen_label_rtx ();
1447 #ifdef STACK_GROWS_DOWNWARD
1448 available = expand_binop (Pmode, sub_optab,
1449 stack_pointer_rtx, stack_limit_rtx,
1450 NULL_RTX, 1, OPTAB_WIDEN);
1451 #else
1452 available = expand_binop (Pmode, sub_optab,
1453 stack_limit_rtx, stack_pointer_rtx,
1454 NULL_RTX, 1, OPTAB_WIDEN);
1455 #endif
1456 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1457 space_available);
1458 #ifdef HAVE_trap
1459 if (HAVE_trap)
1460 emit_insn (gen_trap ());
1461 else
1462 #endif
1463 error ("stack limits not supported on this target");
1464 emit_barrier ();
1465 emit_label (space_available);
1468 saved_stack_pointer_delta = stack_pointer_delta;
1469 if (flag_stack_check && STACK_CHECK_MOVING_SP)
1470 anti_adjust_stack_and_probe (size, false);
1471 else
1472 anti_adjust_stack (size);
1473 /* Even if size is constant, don't modify stack_pointer_delta.
1474 The constant size alloca should preserve
1475 crtl->preferred_stack_boundary alignment. */
1476 stack_pointer_delta = saved_stack_pointer_delta;
1478 #ifdef STACK_GROWS_DOWNWARD
1479 emit_move_insn (target, virtual_stack_dynamic_rtx);
1480 #endif
1483 /* Finish up the split stack handling. */
1484 if (final_label != NULL_RTX)
1486 gcc_assert (flag_split_stack);
1487 emit_move_insn (final_target, target);
1488 emit_label (final_label);
1489 target = final_target;
1492 if (must_align)
1494 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1495 but we know it can't. So add ourselves and then do
1496 TRUNC_DIV_EXPR. */
1497 target = expand_binop (Pmode, add_optab, target,
1498 GEN_INT (required_align / BITS_PER_UNIT - 1),
1499 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1500 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1501 GEN_INT (required_align / BITS_PER_UNIT),
1502 NULL_RTX, 1);
1503 target = expand_mult (Pmode, target,
1504 GEN_INT (required_align / BITS_PER_UNIT),
1505 NULL_RTX, 1);
1508 /* Now that we've committed to a return value, mark its alignment. */
1509 mark_reg_pointer (target, required_align);
1511 /* Record the new stack level for nonlocal gotos. */
1512 if (cfun->nonlocal_goto_save_area != 0)
1513 update_nonlocal_goto_save_area ();
1515 return target;
1518 /* A front end may want to override GCC's stack checking by providing a
1519 run-time routine to call to check the stack, so provide a mechanism for
1520 calling that routine. */
1522 static GTY(()) rtx stack_check_libfunc;
1524 void
1525 set_stack_check_libfunc (const char *libfunc_name)
1527 gcc_assert (stack_check_libfunc == NULL_RTX);
1528 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
1531 /* Emit one stack probe at ADDRESS, an address within the stack. */
1533 void
1534 emit_stack_probe (rtx address)
1536 rtx memref = gen_rtx_MEM (word_mode, address);
1538 MEM_VOLATILE_P (memref) = 1;
1540 /* See if we have an insn to probe the stack. */
1541 #ifdef HAVE_probe_stack
1542 if (HAVE_probe_stack)
1543 emit_insn (gen_probe_stack (memref));
1544 else
1545 #endif
1546 emit_move_insn (memref, const0_rtx);
1549 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1550 FIRST is a constant and size is a Pmode RTX. These are offsets from
1551 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1552 or subtract them from the stack pointer. */
1554 #define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
1556 #ifdef STACK_GROWS_DOWNWARD
1557 #define STACK_GROW_OP MINUS
1558 #define STACK_GROW_OPTAB sub_optab
1559 #define STACK_GROW_OFF(off) -(off)
1560 #else
1561 #define STACK_GROW_OP PLUS
1562 #define STACK_GROW_OPTAB add_optab
1563 #define STACK_GROW_OFF(off) (off)
1564 #endif
1566 void
1567 probe_stack_range (HOST_WIDE_INT first, rtx size)
1569 /* First ensure SIZE is Pmode. */
1570 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1571 size = convert_to_mode (Pmode, size, 1);
1573 /* Next see if we have a function to check the stack. */
1574 if (stack_check_libfunc)
1576 rtx addr = memory_address (Pmode,
1577 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1578 stack_pointer_rtx,
1579 plus_constant (size, first)));
1580 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1581 Pmode);
1584 /* Next see if we have an insn to check the stack. */
1585 #ifdef HAVE_check_stack
1586 else if (HAVE_check_stack)
1588 rtx addr = memory_address (Pmode,
1589 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1590 stack_pointer_rtx,
1591 plus_constant (size, first)));
1592 insn_operand_predicate_fn pred
1593 = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1594 if (pred && !((*pred) (addr, Pmode)))
1595 addr = copy_to_mode_reg (Pmode, addr);
1597 emit_insn (gen_check_stack (addr));
1599 #endif
1601 /* Otherwise we have to generate explicit probes. If we have a constant
1602 small number of them to generate, that's the easy case. */
1603 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1605 HOST_WIDE_INT isize = INTVAL (size), i;
1606 rtx addr;
1608 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1609 it exceeds SIZE. If only one probe is needed, this will not
1610 generate any code. Then probe at FIRST + SIZE. */
1611 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1613 addr = memory_address (Pmode,
1614 plus_constant (stack_pointer_rtx,
1615 STACK_GROW_OFF (first + i)));
1616 emit_stack_probe (addr);
1619 addr = memory_address (Pmode,
1620 plus_constant (stack_pointer_rtx,
1621 STACK_GROW_OFF (first + isize)));
1622 emit_stack_probe (addr);
1625 /* In the variable case, do the same as above, but in a loop. Note that we
1626 must be extra careful with variables wrapping around because we might be
1627 at the very top (or the very bottom) of the address space and we have to
1628 be able to handle this case properly; in particular, we use an equality
1629 test for the loop condition. */
1630 else
1632 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
1633 rtx loop_lab = gen_label_rtx ();
1634 rtx end_lab = gen_label_rtx ();
1637 /* Step 1: round SIZE to the previous multiple of the interval. */
1639 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1640 rounded_size
1641 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1642 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1645 /* Step 2: compute initial and final value of the loop counter. */
1647 /* TEST_ADDR = SP + FIRST. */
1648 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1649 stack_pointer_rtx,
1650 GEN_INT (first)), NULL_RTX);
1652 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1653 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1654 test_addr,
1655 rounded_size_op), NULL_RTX);
1658 /* Step 3: the loop
1660 while (TEST_ADDR != LAST_ADDR)
1662 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1663 probe at TEST_ADDR
1666 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1667 until it is equal to ROUNDED_SIZE. */
1669 emit_label (loop_lab);
1671 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1672 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1673 end_lab);
1675 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1676 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
1677 GEN_INT (PROBE_INTERVAL), test_addr,
1678 1, OPTAB_WIDEN);
1680 gcc_assert (temp == test_addr);
1682 /* Probe at TEST_ADDR. */
1683 emit_stack_probe (test_addr);
1685 emit_jump (loop_lab);
1687 emit_label (end_lab);
1690 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1691 that SIZE is equal to ROUNDED_SIZE. */
1693 /* TEMP = SIZE - ROUNDED_SIZE. */
1694 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1695 if (temp != const0_rtx)
1697 rtx addr;
1699 if (CONST_INT_P (temp))
1701 /* Use [base + disp} addressing mode if supported. */
1702 HOST_WIDE_INT offset = INTVAL (temp);
1703 addr = memory_address (Pmode,
1704 plus_constant (last_addr,
1705 STACK_GROW_OFF (offset)));
1707 else
1709 /* Manual CSE if the difference is not known at compile-time. */
1710 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1711 addr = memory_address (Pmode,
1712 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1713 last_addr, temp));
1716 emit_stack_probe (addr);
1721 /* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1722 while probing it. This pushes when SIZE is positive. SIZE need not
1723 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1724 by plus SIZE at the end. */
1726 void
1727 anti_adjust_stack_and_probe (rtx size, bool adjust_back)
1729 /* We skip the probe for the first interval + a small dope of 4 words and
1730 probe that many bytes past the specified size to maintain a protection
1731 area at the botton of the stack. */
1732 const int dope = 4 * UNITS_PER_WORD;
1734 /* First ensure SIZE is Pmode. */
1735 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1736 size = convert_to_mode (Pmode, size, 1);
1738 /* If we have a constant small number of probes to generate, that's the
1739 easy case. */
1740 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
1742 HOST_WIDE_INT isize = INTVAL (size), i;
1743 bool first_probe = true;
1745 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
1746 values of N from 1 until it exceeds SIZE. If only one probe is
1747 needed, this will not generate any code. Then adjust and probe
1748 to PROBE_INTERVAL + SIZE. */
1749 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1751 if (first_probe)
1753 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1754 first_probe = false;
1756 else
1757 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1758 emit_stack_probe (stack_pointer_rtx);
1761 if (first_probe)
1762 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1763 else
1764 anti_adjust_stack (plus_constant (size, PROBE_INTERVAL - i));
1765 emit_stack_probe (stack_pointer_rtx);
1768 /* In the variable case, do the same as above, but in a loop. Note that we
1769 must be extra careful with variables wrapping around because we might be
1770 at the very top (or the very bottom) of the address space and we have to
1771 be able to handle this case properly; in particular, we use an equality
1772 test for the loop condition. */
1773 else
1775 rtx rounded_size, rounded_size_op, last_addr, temp;
1776 rtx loop_lab = gen_label_rtx ();
1777 rtx end_lab = gen_label_rtx ();
1780 /* Step 1: round SIZE to the previous multiple of the interval. */
1782 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1783 rounded_size
1784 = simplify_gen_binary (AND, Pmode, size, GEN_INT (-PROBE_INTERVAL));
1785 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1788 /* Step 2: compute initial and final value of the loop counter. */
1790 /* SP = SP_0 + PROBE_INTERVAL. */
1791 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1793 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1794 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1795 stack_pointer_rtx,
1796 rounded_size_op), NULL_RTX);
1799 /* Step 3: the loop
1801 while (SP != LAST_ADDR)
1803 SP = SP + PROBE_INTERVAL
1804 probe at SP
1807 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
1808 values of N from 1 until it is equal to ROUNDED_SIZE. */
1810 emit_label (loop_lab);
1812 /* Jump to END_LAB if SP == LAST_ADDR. */
1813 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1814 Pmode, 1, end_lab);
1816 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1817 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1818 emit_stack_probe (stack_pointer_rtx);
1820 emit_jump (loop_lab);
1822 emit_label (end_lab);
1825 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
1826 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1828 /* TEMP = SIZE - ROUNDED_SIZE. */
1829 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1830 if (temp != const0_rtx)
1832 /* Manual CSE if the difference is not known at compile-time. */
1833 if (GET_CODE (temp) != CONST_INT)
1834 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1835 anti_adjust_stack (temp);
1836 emit_stack_probe (stack_pointer_rtx);
1840 /* Adjust back and account for the additional first interval. */
1841 if (adjust_back)
1842 adjust_stack (plus_constant (size, PROBE_INTERVAL + dope));
1843 else
1844 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1847 /* Return an rtx representing the register or memory location
1848 in which a scalar value of data type VALTYPE
1849 was returned by a function call to function FUNC.
1850 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1851 function is known, otherwise 0.
1852 OUTGOING is 1 if on a machine with register windows this function
1853 should return the register in which the function will put its result
1854 and 0 otherwise. */
1857 hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
1858 int outgoing ATTRIBUTE_UNUSED)
1860 rtx val;
1862 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
1864 if (REG_P (val)
1865 && GET_MODE (val) == BLKmode)
1867 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1868 enum machine_mode tmpmode;
1870 /* int_size_in_bytes can return -1. We don't need a check here
1871 since the value of bytes will then be large enough that no
1872 mode will match anyway. */
1874 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1875 tmpmode != VOIDmode;
1876 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1878 /* Have we found a large enough mode? */
1879 if (GET_MODE_SIZE (tmpmode) >= bytes)
1880 break;
1883 /* No suitable mode found. */
1884 gcc_assert (tmpmode != VOIDmode);
1886 PUT_MODE (val, tmpmode);
1888 return val;
1891 /* Return an rtx representing the register or memory location
1892 in which a scalar value of mode MODE was returned by a library call. */
1895 hard_libcall_value (enum machine_mode mode, rtx fun)
1897 return targetm.calls.libcall_value (mode, fun);
1900 /* Look up the tree code for a given rtx code
1901 to provide the arithmetic operation for REAL_ARITHMETIC.
1902 The function returns an int because the caller may not know
1903 what `enum tree_code' means. */
1906 rtx_to_tree_code (enum rtx_code code)
1908 enum tree_code tcode;
1910 switch (code)
1912 case PLUS:
1913 tcode = PLUS_EXPR;
1914 break;
1915 case MINUS:
1916 tcode = MINUS_EXPR;
1917 break;
1918 case MULT:
1919 tcode = MULT_EXPR;
1920 break;
1921 case DIV:
1922 tcode = RDIV_EXPR;
1923 break;
1924 case SMIN:
1925 tcode = MIN_EXPR;
1926 break;
1927 case SMAX:
1928 tcode = MAX_EXPR;
1929 break;
1930 default:
1931 tcode = LAST_AND_UNUSED_TREE_CODE;
1932 break;
1934 return ((int) tcode);
1937 #include "gt-explow.h"