2013-10-21 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / testsuite / gcc.dg / pr36584.c
blob1b6e38ca43004617d0d9571a2d4721882b432dc6
1 /* { dg-do run } */
2 /* { dg-options "-O2 -lm" } */
3 /* { dg-options "-O2 -msse2 -mfpmath=sse" { target { { i?86-*-* x86_64-*-* } && ia32 } } } */
4 /* { dg-require-effective-target sse2_runtime { target { { i?86-*-* x86_64-*-* } && ia32 } } } */
6 extern double fabs (double);
7 extern void abort (void);
9 const int MAX_ITERATIONS = 50;
10 const double SMALL_ENOUGH = 1.0e-10;
11 const double RELERROR = 1.0e-12;
13 typedef struct p
15 int ord;
16 double coef[7];
18 polynomial;
20 static double
21 polyeval (double x, int n, double *Coeffs)
23 register int i;
24 double val;
26 val = Coeffs[n];
27 for (i = n - 1; i >= 0; i--)
28 val = val * x + Coeffs[i];
30 return (val);
33 static int
34 regula_falsa (int order, double *coef, double a, double b, double *val)
36 int its;
37 double fa, fb, x, fx, lfx;
39 fa = polyeval (a, order, coef);
40 fb = polyeval (b, order, coef);
42 if (fa * fb > 0.0)
43 return 0;
45 if (fabs (fa) < SMALL_ENOUGH)
47 *val = a;
48 return 1;
51 if (fabs (fb) < SMALL_ENOUGH)
53 *val = b;
54 return 1;
57 lfx = fa;
59 for (its = 0; its < MAX_ITERATIONS; its++)
61 x = (fb * a - fa * b) / (fb - fa);
62 fx = polyeval (x, order, coef);
63 if (fabs (x) > RELERROR)
65 if (fabs (fx / x) < RELERROR)
67 *val = x;
68 return 1;
71 else
73 if (fabs (fx) < RELERROR)
75 *val = x;
76 return 1;
80 if (fa < 0)
82 if (fx < 0)
84 a = x;
85 fa = fx;
86 if ((lfx * fx) > 0)
87 fb /= 2;
89 else
91 b = x;
92 fb = fx;
93 if ((lfx * fx) > 0)
94 fa /= 2;
97 else
99 if (fx < 0)
101 b = x;
102 fb = fx;
103 if ((lfx * fx) > 0)
104 fa /= 2;
106 else
108 a = x;
109 fa = fx;
110 if ((lfx * fx) > 0)
111 fb /= 2;
115 if (fabs (b - a) < RELERROR)
117 *val = x;
118 return 1;
121 lfx = fx;
124 return 0;
127 static int
128 numchanges (int np, polynomial * sseq, double a)
130 int changes;
131 double f, lf;
132 polynomial *s;
133 changes = 0;
135 lf = polyeval (a, sseq[0].ord, sseq[0].coef);
137 for (s = sseq + 1; s <= sseq + np; s++)
139 f = polyeval (a, s->ord, s->coef);
140 if (lf == 0.0 || lf * f < 0)
141 changes++;
143 lf = f;
146 return changes;
150 sbisect (int np, polynomial * sseq, double min_value, double max_value,
151 int atmin, int atmax, double *roots)
153 double mid;
154 int n1, n2, its, atmid;
156 if ((atmin - atmax) == 1)
158 if (regula_falsa (sseq->ord, sseq->coef, min_value, max_value, roots))
159 return 1;
160 else
162 for (its = 0; its < MAX_ITERATIONS; its++)
164 mid = (min_value + max_value) / 2;
165 atmid = numchanges (np, sseq, mid);
166 if ((atmid < atmax) || (atmid > atmin))
167 return 0;
169 if (fabs (mid) > RELERROR)
171 if (fabs ((max_value - min_value) / mid) < RELERROR)
173 roots[0] = mid;
174 return 1;
177 else
179 if (fabs (max_value - min_value) < RELERROR)
181 roots[0] = mid;
182 return 1;
186 if ((atmin - atmid) == 0)
187 min_value = mid;
188 else
189 max_value = mid;
192 roots[0] = mid;
193 return 1;
197 for (its = 0; its < MAX_ITERATIONS; its++)
199 mid = (min_value + max_value) / 2;
200 atmid = numchanges (np, sseq, mid);
201 if ((atmid < atmax) || (atmid > atmin))
202 return 0;
204 if (fabs (mid) > RELERROR)
206 if (fabs ((max_value - min_value) / mid) < RELERROR)
208 roots[0] = mid;
209 return 1;
212 else
214 if (fabs (max_value - min_value) < RELERROR)
216 roots[0] = mid;
217 return 1;
221 n1 = atmin - atmid;
222 n2 = atmid - atmax;
224 if ((n1 != 0) && (n2 != 0))
226 n1 = sbisect (np, sseq, min_value, mid, atmin, atmid, roots);
227 n2 = sbisect (np, sseq, mid, max_value, atmid, atmax, &roots[n1]);
229 return (n1 + n2);
232 if (n1 == 0)
233 min_value = mid;
234 else
235 max_value = mid;
238 roots[0] = mid;
239 return 1;
243 main ()
245 polynomial sseq[7] = {
246 {6, {0.15735259075109281, -5.1185263411378736, 1.8516070705868664,
247 7.348009172322695, -2.2152395279161343, -2.7543325329350692, 1.0}},
248 {5, {-0.8530877235229789, 0.61720235686228875, 3.6740045861613475,
249 -1.4768263519440896, -2.2952771107792245, 1.0}},
250 {4, {0.13072124257049417, 2.2220687798791126, -1.6299431586726509,
251 -1.6718404582408546, 1.0}},
252 {3, {0.86776597575462633, -2.1051099695282511, -0.49008580100694688,
253 1.0}},
254 {2, {-11.117984175064155, 10.89886635045883, 1.0}},
255 {1, {0.94453099602191237, -1.0}},
256 {0, {-0.068471716890574186}}
259 double roots[7];
260 int nroots;
262 nroots = sbisect (6, sseq, 0.0, 10000000.0, 5, 1, roots);
263 if (nroots != 4)
264 abort ();
266 return 0;