1 /* Header file for SSA dominator optimizations.
2 Copyright (C) 2013-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
24 #include "basic-block.h"
27 #include "tree-pass.h"
28 #include "tree-pretty-print.h"
29 #include "tree-ssa-scopedtables.h"
30 #include "tree-ssa-threadedge.h"
31 #include "stor-layout.h"
32 #include "fold-const.h"
34 #include "internal-fn.h"
39 static bool hashable_expr_equal_p (const struct hashable_expr
*,
40 const struct hashable_expr
*);
42 /* Initialize local stacks for this optimizer and record equivalences
43 upon entry to BB. Equivalences can come from the edge traversed to
44 reach BB or they may come from PHI nodes at the start of BB. */
46 /* Pop items off the unwinding stack, removing each from the hash table
47 until a marker is encountered. */
50 avail_exprs_stack::pop_to_marker ()
52 /* Remove all the expressions made available in this block. */
53 while (m_stack
.length () > 0)
55 std::pair
<expr_hash_elt_t
, expr_hash_elt_t
> victim
= m_stack
.pop ();
58 if (victim
.first
== NULL
)
61 /* This must precede the actual removal from the hash table,
62 as ELEMENT and the table entry may share a call argument
63 vector which will be freed during removal. */
64 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
66 fprintf (dump_file
, "<<<< ");
67 victim
.first
->print (dump_file
);
70 slot
= m_avail_exprs
->find_slot (victim
.first
, NO_INSERT
);
71 gcc_assert (slot
&& *slot
== victim
.first
);
72 if (victim
.second
!= NULL
)
75 *slot
= victim
.second
;
78 m_avail_exprs
->clear_slot (slot
);
82 /* Add <ELT1,ELT2> to the unwinding stack so they can be later removed
83 from the hash table. */
86 avail_exprs_stack::record_expr (class expr_hash_elt
*elt1
,
87 class expr_hash_elt
*elt2
,
90 if (elt1
&& dump_file
&& (dump_flags
& TDF_DETAILS
))
92 fprintf (dump_file
, "%c>>> ", type
);
93 elt1
->print (dump_file
);
96 m_stack
.safe_push (std::pair
<expr_hash_elt_t
, expr_hash_elt_t
> (elt1
, elt2
));
99 /* Helper for walk_non_aliased_vuses. Determine if we arrived at
100 the desired memory state. */
103 vuse_eq (ao_ref
*, tree vuse1
, unsigned int cnt
, void *data
)
105 tree vuse2
= (tree
) data
;
109 /* This bounds the stmt walks we perform on reference lookups
110 to O(1) instead of O(N) where N is the number of dominating
111 stores leading to a candidate. We re-use the SCCVN param
112 for this as it is basically the same complexity. */
113 if (cnt
> (unsigned) PARAM_VALUE (PARAM_SCCVN_MAX_ALIAS_QUERIES_PER_ACCESS
))
119 /* Search for an existing instance of STMT in the AVAIL_EXPRS_STACK table.
120 If found, return its LHS. Otherwise insert STMT in the table and
123 Also, when an expression is first inserted in the table, it is also
124 is also added to AVAIL_EXPRS_STACK, so that it can be removed when
125 we finish processing this block and its children. */
128 avail_exprs_stack::lookup_avail_expr (gimple
*stmt
, bool insert
, bool tbaa_p
)
130 expr_hash_elt
**slot
;
133 /* Get LHS of phi, assignment, or call; else NULL_TREE. */
134 if (gimple_code (stmt
) == GIMPLE_PHI
)
135 lhs
= gimple_phi_result (stmt
);
137 lhs
= gimple_get_lhs (stmt
);
139 class expr_hash_elt
element (stmt
, lhs
);
141 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
143 fprintf (dump_file
, "LKUP ");
144 element
.print (dump_file
);
147 /* Don't bother remembering constant assignments and copy operations.
148 Constants and copy operations are handled by the constant/copy propagator
150 if (element
.expr()->kind
== EXPR_SINGLE
151 && (TREE_CODE (element
.expr()->ops
.single
.rhs
) == SSA_NAME
152 || is_gimple_min_invariant (element
.expr()->ops
.single
.rhs
)))
155 /* Finally try to find the expression in the main expression hash table. */
156 slot
= m_avail_exprs
->find_slot (&element
, (insert
? INSERT
: NO_INSERT
));
161 else if (*slot
== NULL
)
163 class expr_hash_elt
*element2
= new expr_hash_elt (element
);
166 record_expr (element2
, NULL
, '2');
170 /* If we found a redundant memory operation do an alias walk to
171 check if we can re-use it. */
172 if (gimple_vuse (stmt
) != (*slot
)->vop ())
174 tree vuse1
= (*slot
)->vop ();
175 tree vuse2
= gimple_vuse (stmt
);
176 /* If we have a load of a register and a candidate in the
177 hash with vuse1 then try to reach its stmt by walking
178 up the virtual use-def chain using walk_non_aliased_vuses.
179 But don't do this when removing expressions from the hash. */
182 && gimple_assign_single_p (stmt
)
183 && TREE_CODE (gimple_assign_lhs (stmt
)) == SSA_NAME
184 && (ao_ref_init (&ref
, gimple_assign_rhs1 (stmt
)),
185 ref
.base_alias_set
= ref
.ref_alias_set
= tbaa_p
? -1 : 0, true)
186 && walk_non_aliased_vuses (&ref
, vuse2
,
187 vuse_eq
, NULL
, NULL
, vuse1
) != NULL
))
191 class expr_hash_elt
*element2
= new expr_hash_elt (element
);
193 /* Insert the expr into the hash by replacing the current
194 entry and recording the value to restore in the
195 avail_exprs_stack. */
196 record_expr (element2
, *slot
, '2');
203 /* Extract the LHS of the assignment so that it can be used as the current
204 definition of another variable. */
205 lhs
= (*slot
)->lhs ();
207 /* Valueize the result. */
208 if (TREE_CODE (lhs
) == SSA_NAME
)
210 tree tem
= SSA_NAME_VALUE (lhs
);
215 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
217 fprintf (dump_file
, "FIND: ");
218 print_generic_expr (dump_file
, lhs
);
219 fprintf (dump_file
, "\n");
225 /* Enter condition equivalence P into the hash table.
227 This indicates that a conditional expression has a known
231 avail_exprs_stack::record_cond (cond_equivalence
*p
)
233 class expr_hash_elt
*element
= new expr_hash_elt (&p
->cond
, p
->value
);
234 expr_hash_elt
**slot
;
236 slot
= m_avail_exprs
->find_slot_with_hash (element
, element
->hash (), INSERT
);
240 record_expr (element
, NULL
, '1');
246 /* Generate a hash value for a pair of expressions. This can be used
247 iteratively by passing a previous result in HSTATE.
249 The same hash value is always returned for a given pair of expressions,
250 regardless of the order in which they are presented. This is useful in
251 hashing the operands of commutative functions. */
257 add_expr_commutative (const_tree t1
, const_tree t2
, hash
&hstate
)
261 inchash::add_expr (t1
, one
);
262 inchash::add_expr (t2
, two
);
263 hstate
.add_commutative (one
, two
);
266 /* Compute a hash value for a hashable_expr value EXPR and a
267 previously accumulated hash value VAL. If two hashable_expr
268 values compare equal with hashable_expr_equal_p, they must
269 hash to the same value, given an identical value of VAL.
270 The logic is intended to follow inchash::add_expr in tree.c. */
273 add_hashable_expr (const struct hashable_expr
*expr
, hash
&hstate
)
278 inchash::add_expr (expr
->ops
.single
.rhs
, hstate
);
282 hstate
.add_object (expr
->ops
.unary
.op
);
284 /* Make sure to include signedness in the hash computation.
285 Don't hash the type, that can lead to having nodes which
286 compare equal according to operand_equal_p, but which
287 have different hash codes. */
288 if (CONVERT_EXPR_CODE_P (expr
->ops
.unary
.op
)
289 || expr
->ops
.unary
.op
== NON_LVALUE_EXPR
)
290 hstate
.add_int (TYPE_UNSIGNED (expr
->type
));
292 inchash::add_expr (expr
->ops
.unary
.opnd
, hstate
);
296 hstate
.add_object (expr
->ops
.binary
.op
);
297 if (commutative_tree_code (expr
->ops
.binary
.op
))
298 inchash::add_expr_commutative (expr
->ops
.binary
.opnd0
,
299 expr
->ops
.binary
.opnd1
, hstate
);
302 inchash::add_expr (expr
->ops
.binary
.opnd0
, hstate
);
303 inchash::add_expr (expr
->ops
.binary
.opnd1
, hstate
);
308 hstate
.add_object (expr
->ops
.ternary
.op
);
309 if (commutative_ternary_tree_code (expr
->ops
.ternary
.op
))
310 inchash::add_expr_commutative (expr
->ops
.ternary
.opnd0
,
311 expr
->ops
.ternary
.opnd1
, hstate
);
314 inchash::add_expr (expr
->ops
.ternary
.opnd0
, hstate
);
315 inchash::add_expr (expr
->ops
.ternary
.opnd1
, hstate
);
317 inchash::add_expr (expr
->ops
.ternary
.opnd2
, hstate
);
323 enum tree_code code
= CALL_EXPR
;
326 hstate
.add_object (code
);
327 fn_from
= expr
->ops
.call
.fn_from
;
328 if (gimple_call_internal_p (fn_from
))
329 hstate
.merge_hash ((hashval_t
) gimple_call_internal_fn (fn_from
));
331 inchash::add_expr (gimple_call_fn (fn_from
), hstate
);
332 for (i
= 0; i
< expr
->ops
.call
.nargs
; i
++)
333 inchash::add_expr (expr
->ops
.call
.args
[i
], hstate
);
341 for (i
= 0; i
< expr
->ops
.phi
.nargs
; i
++)
342 inchash::add_expr (expr
->ops
.phi
.args
[i
], hstate
);
353 /* Hashing and equality functions. We compute a value number for expressions
354 using the code of the expression and the SSA numbers of its operands. */
357 avail_expr_hash (class expr_hash_elt
*p
)
359 const struct hashable_expr
*expr
= p
->expr ();
360 inchash::hash hstate
;
362 if (expr
->kind
== EXPR_SINGLE
)
364 /* T could potentially be a switch index or a goto dest. */
365 tree t
= expr
->ops
.single
.rhs
;
366 if (TREE_CODE (t
) == MEM_REF
|| handled_component_p (t
))
368 /* Make equivalent statements of both these kinds hash together.
369 Dealing with both MEM_REF and ARRAY_REF allows us not to care
370 about equivalence with other statements not considered here. */
372 HOST_WIDE_INT offset
, size
, max_size
;
373 tree base
= get_ref_base_and_extent (t
, &offset
, &size
, &max_size
,
375 /* Strictly, we could try to normalize variable-sized accesses too,
376 but here we just deal with the common case. */
380 enum tree_code code
= MEM_REF
;
381 hstate
.add_object (code
);
382 inchash::add_expr (base
, hstate
);
383 hstate
.add_object (offset
);
384 hstate
.add_object (size
);
385 return hstate
.end ();
390 inchash::add_hashable_expr (expr
, hstate
);
392 return hstate
.end ();
395 /* Compares trees T0 and T1 to see if they are MEM_REF or ARRAY_REFs equivalent
396 to each other. (That is, they return the value of the same bit of memory.)
398 Return TRUE if the two are so equivalent; FALSE if not (which could still
399 mean the two are equivalent by other means). */
402 equal_mem_array_ref_p (tree t0
, tree t1
)
404 if (TREE_CODE (t0
) != MEM_REF
&& ! handled_component_p (t0
))
406 if (TREE_CODE (t1
) != MEM_REF
&& ! handled_component_p (t1
))
409 if (!types_compatible_p (TREE_TYPE (t0
), TREE_TYPE (t1
)))
412 HOST_WIDE_INT off0
, sz0
, max0
;
413 tree base0
= get_ref_base_and_extent (t0
, &off0
, &sz0
, &max0
, &rev0
);
419 HOST_WIDE_INT off1
, sz1
, max1
;
420 tree base1
= get_ref_base_and_extent (t1
, &off1
, &sz1
, &max1
, &rev1
);
428 /* Types were compatible, so this is a sanity check. */
429 gcc_assert (sz0
== sz1
);
431 return (off0
== off1
) && operand_equal_p (base0
, base1
, 0);
434 /* Compare two hashable_expr structures for equivalence. They are
435 considered equivalent when the expressions they denote must
436 necessarily be equal. The logic is intended to follow that of
437 operand_equal_p in fold-const.c */
440 hashable_expr_equal_p (const struct hashable_expr
*expr0
,
441 const struct hashable_expr
*expr1
)
443 tree type0
= expr0
->type
;
444 tree type1
= expr1
->type
;
446 /* If either type is NULL, there is nothing to check. */
447 if ((type0
== NULL_TREE
) ^ (type1
== NULL_TREE
))
450 /* If both types don't have the same signedness, precision, and mode,
451 then we can't consider them equal. */
453 && (TREE_CODE (type0
) == ERROR_MARK
454 || TREE_CODE (type1
) == ERROR_MARK
455 || TYPE_UNSIGNED (type0
) != TYPE_UNSIGNED (type1
)
456 || TYPE_PRECISION (type0
) != TYPE_PRECISION (type1
)
457 || TYPE_MODE (type0
) != TYPE_MODE (type1
)))
460 if (expr0
->kind
!= expr1
->kind
)
466 return equal_mem_array_ref_p (expr0
->ops
.single
.rhs
,
467 expr1
->ops
.single
.rhs
)
468 || operand_equal_p (expr0
->ops
.single
.rhs
,
469 expr1
->ops
.single
.rhs
, 0);
471 if (expr0
->ops
.unary
.op
!= expr1
->ops
.unary
.op
)
474 if ((CONVERT_EXPR_CODE_P (expr0
->ops
.unary
.op
)
475 || expr0
->ops
.unary
.op
== NON_LVALUE_EXPR
)
476 && TYPE_UNSIGNED (expr0
->type
) != TYPE_UNSIGNED (expr1
->type
))
479 return operand_equal_p (expr0
->ops
.unary
.opnd
,
480 expr1
->ops
.unary
.opnd
, 0);
483 if (expr0
->ops
.binary
.op
!= expr1
->ops
.binary
.op
)
486 if (operand_equal_p (expr0
->ops
.binary
.opnd0
,
487 expr1
->ops
.binary
.opnd0
, 0)
488 && operand_equal_p (expr0
->ops
.binary
.opnd1
,
489 expr1
->ops
.binary
.opnd1
, 0))
492 /* For commutative ops, allow the other order. */
493 return (commutative_tree_code (expr0
->ops
.binary
.op
)
494 && operand_equal_p (expr0
->ops
.binary
.opnd0
,
495 expr1
->ops
.binary
.opnd1
, 0)
496 && operand_equal_p (expr0
->ops
.binary
.opnd1
,
497 expr1
->ops
.binary
.opnd0
, 0));
500 if (expr0
->ops
.ternary
.op
!= expr1
->ops
.ternary
.op
501 || !operand_equal_p (expr0
->ops
.ternary
.opnd2
,
502 expr1
->ops
.ternary
.opnd2
, 0))
505 if (operand_equal_p (expr0
->ops
.ternary
.opnd0
,
506 expr1
->ops
.ternary
.opnd0
, 0)
507 && operand_equal_p (expr0
->ops
.ternary
.opnd1
,
508 expr1
->ops
.ternary
.opnd1
, 0))
511 /* For commutative ops, allow the other order. */
512 return (commutative_ternary_tree_code (expr0
->ops
.ternary
.op
)
513 && operand_equal_p (expr0
->ops
.ternary
.opnd0
,
514 expr1
->ops
.ternary
.opnd1
, 0)
515 && operand_equal_p (expr0
->ops
.ternary
.opnd1
,
516 expr1
->ops
.ternary
.opnd0
, 0));
522 /* If the calls are to different functions, then they
523 clearly cannot be equal. */
524 if (!gimple_call_same_target_p (expr0
->ops
.call
.fn_from
,
525 expr1
->ops
.call
.fn_from
))
528 if (! expr0
->ops
.call
.pure
)
531 if (expr0
->ops
.call
.nargs
!= expr1
->ops
.call
.nargs
)
534 for (i
= 0; i
< expr0
->ops
.call
.nargs
; i
++)
535 if (! operand_equal_p (expr0
->ops
.call
.args
[i
],
536 expr1
->ops
.call
.args
[i
], 0))
539 if (stmt_could_throw_p (expr0
->ops
.call
.fn_from
))
541 int lp0
= lookup_stmt_eh_lp (expr0
->ops
.call
.fn_from
);
542 int lp1
= lookup_stmt_eh_lp (expr1
->ops
.call
.fn_from
);
543 if ((lp0
> 0 || lp1
> 0) && lp0
!= lp1
)
554 if (expr0
->ops
.phi
.nargs
!= expr1
->ops
.phi
.nargs
)
557 for (i
= 0; i
< expr0
->ops
.phi
.nargs
; i
++)
558 if (! operand_equal_p (expr0
->ops
.phi
.args
[i
],
559 expr1
->ops
.phi
.args
[i
], 0))
570 /* Given a statement STMT, construct a hash table element. */
572 expr_hash_elt::expr_hash_elt (gimple
*stmt
, tree orig_lhs
)
574 enum gimple_code code
= gimple_code (stmt
);
575 struct hashable_expr
*expr
= this->expr ();
577 if (code
== GIMPLE_ASSIGN
)
579 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
581 switch (get_gimple_rhs_class (subcode
))
583 case GIMPLE_SINGLE_RHS
:
584 expr
->kind
= EXPR_SINGLE
;
585 expr
->type
= TREE_TYPE (gimple_assign_rhs1 (stmt
));
586 expr
->ops
.single
.rhs
= gimple_assign_rhs1 (stmt
);
588 case GIMPLE_UNARY_RHS
:
589 expr
->kind
= EXPR_UNARY
;
590 expr
->type
= TREE_TYPE (gimple_assign_lhs (stmt
));
591 if (CONVERT_EXPR_CODE_P (subcode
))
593 expr
->ops
.unary
.op
= subcode
;
594 expr
->ops
.unary
.opnd
= gimple_assign_rhs1 (stmt
);
596 case GIMPLE_BINARY_RHS
:
597 expr
->kind
= EXPR_BINARY
;
598 expr
->type
= TREE_TYPE (gimple_assign_lhs (stmt
));
599 expr
->ops
.binary
.op
= subcode
;
600 expr
->ops
.binary
.opnd0
= gimple_assign_rhs1 (stmt
);
601 expr
->ops
.binary
.opnd1
= gimple_assign_rhs2 (stmt
);
603 case GIMPLE_TERNARY_RHS
:
604 expr
->kind
= EXPR_TERNARY
;
605 expr
->type
= TREE_TYPE (gimple_assign_lhs (stmt
));
606 expr
->ops
.ternary
.op
= subcode
;
607 expr
->ops
.ternary
.opnd0
= gimple_assign_rhs1 (stmt
);
608 expr
->ops
.ternary
.opnd1
= gimple_assign_rhs2 (stmt
);
609 expr
->ops
.ternary
.opnd2
= gimple_assign_rhs3 (stmt
);
615 else if (code
== GIMPLE_COND
)
617 expr
->type
= boolean_type_node
;
618 expr
->kind
= EXPR_BINARY
;
619 expr
->ops
.binary
.op
= gimple_cond_code (stmt
);
620 expr
->ops
.binary
.opnd0
= gimple_cond_lhs (stmt
);
621 expr
->ops
.binary
.opnd1
= gimple_cond_rhs (stmt
);
623 else if (gcall
*call_stmt
= dyn_cast
<gcall
*> (stmt
))
625 size_t nargs
= gimple_call_num_args (call_stmt
);
628 gcc_assert (gimple_call_lhs (call_stmt
));
630 expr
->type
= TREE_TYPE (gimple_call_lhs (call_stmt
));
631 expr
->kind
= EXPR_CALL
;
632 expr
->ops
.call
.fn_from
= call_stmt
;
634 if (gimple_call_flags (call_stmt
) & (ECF_CONST
| ECF_PURE
))
635 expr
->ops
.call
.pure
= true;
637 expr
->ops
.call
.pure
= false;
639 expr
->ops
.call
.nargs
= nargs
;
640 expr
->ops
.call
.args
= XCNEWVEC (tree
, nargs
);
641 for (i
= 0; i
< nargs
; i
++)
642 expr
->ops
.call
.args
[i
] = gimple_call_arg (call_stmt
, i
);
644 else if (gswitch
*swtch_stmt
= dyn_cast
<gswitch
*> (stmt
))
646 expr
->type
= TREE_TYPE (gimple_switch_index (swtch_stmt
));
647 expr
->kind
= EXPR_SINGLE
;
648 expr
->ops
.single
.rhs
= gimple_switch_index (swtch_stmt
);
650 else if (code
== GIMPLE_GOTO
)
652 expr
->type
= TREE_TYPE (gimple_goto_dest (stmt
));
653 expr
->kind
= EXPR_SINGLE
;
654 expr
->ops
.single
.rhs
= gimple_goto_dest (stmt
);
656 else if (code
== GIMPLE_PHI
)
658 size_t nargs
= gimple_phi_num_args (stmt
);
661 expr
->type
= TREE_TYPE (gimple_phi_result (stmt
));
662 expr
->kind
= EXPR_PHI
;
663 expr
->ops
.phi
.nargs
= nargs
;
664 expr
->ops
.phi
.args
= XCNEWVEC (tree
, nargs
);
665 for (i
= 0; i
< nargs
; i
++)
666 expr
->ops
.phi
.args
[i
] = gimple_phi_arg_def (stmt
, i
);
672 m_vop
= gimple_vuse (stmt
);
673 m_hash
= avail_expr_hash (this);
677 /* Given a hashable_expr expression ORIG and an ORIG_LHS,
678 construct a hash table element. */
680 expr_hash_elt::expr_hash_elt (struct hashable_expr
*orig
, tree orig_lhs
)
685 m_hash
= avail_expr_hash (this);
689 /* Copy constructor for a hash table element. */
691 expr_hash_elt::expr_hash_elt (class expr_hash_elt
&old_elt
)
693 m_expr
= old_elt
.m_expr
;
694 m_lhs
= old_elt
.m_lhs
;
695 m_vop
= old_elt
.m_vop
;
696 m_hash
= old_elt
.m_hash
;
699 /* Now deep copy the malloc'd space for CALL and PHI args. */
700 if (old_elt
.m_expr
.kind
== EXPR_CALL
)
702 size_t nargs
= old_elt
.m_expr
.ops
.call
.nargs
;
705 m_expr
.ops
.call
.args
= XCNEWVEC (tree
, nargs
);
706 for (i
= 0; i
< nargs
; i
++)
707 m_expr
.ops
.call
.args
[i
] = old_elt
.m_expr
.ops
.call
.args
[i
];
709 else if (old_elt
.m_expr
.kind
== EXPR_PHI
)
711 size_t nargs
= old_elt
.m_expr
.ops
.phi
.nargs
;
714 m_expr
.ops
.phi
.args
= XCNEWVEC (tree
, nargs
);
715 for (i
= 0; i
< nargs
; i
++)
716 m_expr
.ops
.phi
.args
[i
] = old_elt
.m_expr
.ops
.phi
.args
[i
];
720 /* Calls and PHIs have a variable number of arguments that are allocated
721 on the heap. Thus we have to have a special dtor to release them. */
723 expr_hash_elt::~expr_hash_elt ()
725 if (m_expr
.kind
== EXPR_CALL
)
726 free (m_expr
.ops
.call
.args
);
727 else if (m_expr
.kind
== EXPR_PHI
)
728 free (m_expr
.ops
.phi
.args
);
731 /* Print a diagnostic dump of an expression hash table entry. */
734 expr_hash_elt::print (FILE *stream
)
736 fprintf (stream
, "STMT ");
740 print_generic_expr (stream
, m_lhs
);
741 fprintf (stream
, " = ");
747 print_generic_expr (stream
, m_expr
.ops
.single
.rhs
);
751 fprintf (stream
, "%s ", get_tree_code_name (m_expr
.ops
.unary
.op
));
752 print_generic_expr (stream
, m_expr
.ops
.unary
.opnd
);
756 print_generic_expr (stream
, m_expr
.ops
.binary
.opnd0
);
757 fprintf (stream
, " %s ", get_tree_code_name (m_expr
.ops
.binary
.op
));
758 print_generic_expr (stream
, m_expr
.ops
.binary
.opnd1
);
762 fprintf (stream
, " %s <", get_tree_code_name (m_expr
.ops
.ternary
.op
));
763 print_generic_expr (stream
, m_expr
.ops
.ternary
.opnd0
);
764 fputs (", ", stream
);
765 print_generic_expr (stream
, m_expr
.ops
.ternary
.opnd1
);
766 fputs (", ", stream
);
767 print_generic_expr (stream
, m_expr
.ops
.ternary
.opnd2
);
774 size_t nargs
= m_expr
.ops
.call
.nargs
;
777 fn_from
= m_expr
.ops
.call
.fn_from
;
778 if (gimple_call_internal_p (fn_from
))
779 fputs (internal_fn_name (gimple_call_internal_fn (fn_from
)),
782 print_generic_expr (stream
, gimple_call_fn (fn_from
));
783 fprintf (stream
, " (");
784 for (i
= 0; i
< nargs
; i
++)
786 print_generic_expr (stream
, m_expr
.ops
.call
.args
[i
]);
788 fprintf (stream
, ", ");
790 fprintf (stream
, ")");
797 size_t nargs
= m_expr
.ops
.phi
.nargs
;
799 fprintf (stream
, "PHI <");
800 for (i
= 0; i
< nargs
; i
++)
802 print_generic_expr (stream
, m_expr
.ops
.phi
.args
[i
]);
804 fprintf (stream
, ", ");
806 fprintf (stream
, ">");
813 fprintf (stream
, " with ");
814 print_generic_expr (stream
, m_vop
);
817 fprintf (stream
, "\n");
820 /* Pop entries off the stack until we hit the NULL marker.
821 For each entry popped, use the SRC/DEST pair to restore
822 SRC to its prior value. */
825 const_and_copies::pop_to_marker (void)
827 while (m_stack
.length () > 0)
829 tree prev_value
, dest
;
831 dest
= m_stack
.pop ();
833 /* A NULL value indicates we should stop unwinding, otherwise
834 pop off the next entry as they're recorded in pairs. */
838 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
840 fprintf (dump_file
, "<<<< COPY ");
841 print_generic_expr (dump_file
, dest
);
842 fprintf (dump_file
, " = ");
843 print_generic_expr (dump_file
, SSA_NAME_VALUE (dest
));
844 fprintf (dump_file
, "\n");
847 prev_value
= m_stack
.pop ();
848 set_ssa_name_value (dest
, prev_value
);
852 /* Record that X has the value Y and that X's previous value is PREV_X.
854 This variant does not follow the value chain for Y. */
857 const_and_copies::record_const_or_copy_raw (tree x
, tree y
, tree prev_x
)
859 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
861 fprintf (dump_file
, "0>>> COPY ");
862 print_generic_expr (dump_file
, x
);
863 fprintf (dump_file
, " = ");
864 print_generic_expr (dump_file
, y
);
865 fprintf (dump_file
, "\n");
868 set_ssa_name_value (x
, y
);
870 m_stack
.quick_push (prev_x
);
871 m_stack
.quick_push (x
);
874 /* Record that X has the value Y. */
877 const_and_copies::record_const_or_copy (tree x
, tree y
)
879 record_const_or_copy (x
, y
, SSA_NAME_VALUE (x
));
882 /* Record that X has the value Y and that X's previous value is PREV_X.
884 This variant follow's Y value chain. */
887 const_and_copies::record_const_or_copy (tree x
, tree y
, tree prev_x
)
889 /* Y may be NULL if we are invalidating entries in the table. */
890 if (y
&& TREE_CODE (y
) == SSA_NAME
)
892 tree tmp
= SSA_NAME_VALUE (y
);
896 record_const_or_copy_raw (x
, y
, prev_x
);
900 expr_elt_hasher::equal (const value_type
&p1
, const compare_type
&p2
)
902 const struct hashable_expr
*expr1
= p1
->expr ();
903 const struct expr_hash_elt
*stamp1
= p1
->stamp ();
904 const struct hashable_expr
*expr2
= p2
->expr ();
905 const struct expr_hash_elt
*stamp2
= p2
->stamp ();
907 /* This case should apply only when removing entries from the table. */
908 if (stamp1
== stamp2
)
911 if (p1
->hash () != p2
->hash ())
914 /* In case of a collision, both RHS have to be identical and have the
915 same VUSE operands. */
916 if (hashable_expr_equal_p (expr1
, expr2
)
917 && types_compatible_p (expr1
->type
, expr2
->type
))
923 /* Given a conditional expression COND as a tree, initialize
924 a hashable_expr expression EXPR. The conditional must be a
925 comparison or logical negation. A constant or a variable is
929 initialize_expr_from_cond (tree cond
, struct hashable_expr
*expr
)
931 expr
->type
= boolean_type_node
;
933 if (COMPARISON_CLASS_P (cond
))
935 expr
->kind
= EXPR_BINARY
;
936 expr
->ops
.binary
.op
= TREE_CODE (cond
);
937 expr
->ops
.binary
.opnd0
= TREE_OPERAND (cond
, 0);
938 expr
->ops
.binary
.opnd1
= TREE_OPERAND (cond
, 1);
940 else if (TREE_CODE (cond
) == TRUTH_NOT_EXPR
)
942 expr
->kind
= EXPR_UNARY
;
943 expr
->ops
.unary
.op
= TRUTH_NOT_EXPR
;
944 expr
->ops
.unary
.opnd
= TREE_OPERAND (cond
, 0);
950 /* Build a cond_equivalence record indicating that the comparison
951 CODE holds between operands OP0 and OP1 and push it to **P. */
954 build_and_record_new_cond (enum tree_code code
,
956 vec
<cond_equivalence
> *p
,
960 struct hashable_expr
*cond
= &c
.cond
;
962 gcc_assert (TREE_CODE_CLASS (code
) == tcc_comparison
);
964 cond
->type
= boolean_type_node
;
965 cond
->kind
= EXPR_BINARY
;
966 cond
->ops
.binary
.op
= code
;
967 cond
->ops
.binary
.opnd0
= op0
;
968 cond
->ops
.binary
.opnd1
= op1
;
970 c
.value
= val
? boolean_true_node
: boolean_false_node
;
974 /* Record that COND is true and INVERTED is false into the edge information
975 structure. Also record that any conditions dominated by COND are true
978 For example, if a < b is true, then a <= b must also be true. */
981 record_conditions (vec
<cond_equivalence
> *p
, tree cond
, tree inverted
)
986 if (!COMPARISON_CLASS_P (cond
))
989 op0
= TREE_OPERAND (cond
, 0);
990 op1
= TREE_OPERAND (cond
, 1);
992 switch (TREE_CODE (cond
))
996 if (FLOAT_TYPE_P (TREE_TYPE (op0
)))
998 build_and_record_new_cond (ORDERED_EXPR
, op0
, op1
, p
);
999 build_and_record_new_cond (LTGT_EXPR
, op0
, op1
, p
);
1002 build_and_record_new_cond ((TREE_CODE (cond
) == LT_EXPR
1003 ? LE_EXPR
: GE_EXPR
),
1005 build_and_record_new_cond (NE_EXPR
, op0
, op1
, p
);
1006 build_and_record_new_cond (EQ_EXPR
, op0
, op1
, p
, false);
1011 if (FLOAT_TYPE_P (TREE_TYPE (op0
)))
1013 build_and_record_new_cond (ORDERED_EXPR
, op0
, op1
, p
);
1018 if (FLOAT_TYPE_P (TREE_TYPE (op0
)))
1020 build_and_record_new_cond (ORDERED_EXPR
, op0
, op1
, p
);
1022 build_and_record_new_cond (LE_EXPR
, op0
, op1
, p
);
1023 build_and_record_new_cond (GE_EXPR
, op0
, op1
, p
);
1026 case UNORDERED_EXPR
:
1027 build_and_record_new_cond (NE_EXPR
, op0
, op1
, p
);
1028 build_and_record_new_cond (UNLE_EXPR
, op0
, op1
, p
);
1029 build_and_record_new_cond (UNGE_EXPR
, op0
, op1
, p
);
1030 build_and_record_new_cond (UNEQ_EXPR
, op0
, op1
, p
);
1031 build_and_record_new_cond (UNLT_EXPR
, op0
, op1
, p
);
1032 build_and_record_new_cond (UNGT_EXPR
, op0
, op1
, p
);
1037 build_and_record_new_cond ((TREE_CODE (cond
) == UNLT_EXPR
1038 ? UNLE_EXPR
: UNGE_EXPR
),
1040 build_and_record_new_cond (NE_EXPR
, op0
, op1
, p
);
1044 build_and_record_new_cond (UNLE_EXPR
, op0
, op1
, p
);
1045 build_and_record_new_cond (UNGE_EXPR
, op0
, op1
, p
);
1049 build_and_record_new_cond (NE_EXPR
, op0
, op1
, p
);
1050 build_and_record_new_cond (ORDERED_EXPR
, op0
, op1
, p
);
1057 /* Now store the original true and false conditions into the first
1059 initialize_expr_from_cond (cond
, &c
.cond
);
1060 c
.value
= boolean_true_node
;
1063 /* It is possible for INVERTED to be the negation of a comparison,
1064 and not a valid RHS or GIMPLE_COND condition. This happens because
1065 invert_truthvalue may return such an expression when asked to invert
1066 a floating-point comparison. These comparisons are not assumed to
1067 obey the trichotomy law. */
1068 initialize_expr_from_cond (inverted
, &c
.cond
);
1069 c
.value
= boolean_false_node
;