1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005-2017 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
31 #include "insn-config.h"
35 #include "sparseset.h"
37 #include "cfgcleanup.h"
39 #include "tree-pass.h"
44 /* This pass does simple forward propagation and simplification when an
45 operand of an insn can only come from a single def. This pass uses
46 df.c, so it is global. However, we only do limited analysis of
47 available expressions.
49 1) The pass tries to propagate the source of the def into the use,
50 and checks if the result is independent of the substituted value.
51 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
52 zero, independent of the source register.
54 In particular, we propagate constants into the use site. Sometimes
55 RTL expansion did not put the constant in the same insn on purpose,
56 to satisfy a predicate, and the result will fail to be recognized;
57 but this happens rarely and in this case we can still create a
58 REG_EQUAL note. For multi-word operations, this
60 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
61 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
62 (set (subreg:SI (reg:DI 122) 0)
63 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
64 (set (subreg:SI (reg:DI 122) 4)
65 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
67 can be simplified to the much simpler
69 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
70 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
72 This particular propagation is also effective at putting together
73 complex addressing modes. We are more aggressive inside MEMs, in
74 that all definitions are propagated if the use is in a MEM; if the
75 result is a valid memory address we check address_cost to decide
76 whether the substitution is worthwhile.
78 2) The pass propagates register copies. This is not as effective as
79 the copy propagation done by CSE's canon_reg, which works by walking
80 the instruction chain, it can help the other transformations.
82 We should consider removing this optimization, and instead reorder the
83 RTL passes, because GCSE does this transformation too. With some luck,
84 the CSE pass at the end of rest_of_handle_gcse could also go away.
86 3) The pass looks for paradoxical subregs that are actually unnecessary.
89 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
90 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
91 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
92 (subreg:SI (reg:QI 121) 0)))
94 are very common on machines that can only do word-sized operations.
95 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
96 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
97 we can replace the paradoxical subreg with simply (reg:WIDE M). The
98 above will simplify this to
100 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
101 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
102 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
104 where the first two insns are now dead.
106 We used to use reaching definitions to find which uses have a
107 single reaching definition (sounds obvious...), but this is too
108 complex a problem in nasty testcases like PR33928. Now we use the
109 multiple definitions problem in df-problems.c. The similarity
110 between that problem and SSA form creation is taken further, in
111 that fwprop does a dominator walk to create its chains; however,
112 instead of creating a PHI function where multiple definitions meet
113 I just punt and record only singleton use-def chains, which is
114 all that is needed by fwprop. */
117 static int num_changes
;
119 static vec
<df_ref
> use_def_ref
;
120 static vec
<df_ref
> reg_defs
;
121 static vec
<df_ref
> reg_defs_stack
;
123 /* The maximum number of propagations that are still allowed. If we do
124 more propagations than originally we had uses, we must have ended up
125 in a propagation loop, as in PR79405. Until the algorithm fwprop
126 uses can obviously not get into such loops we need a workaround like
128 static int propagations_left
;
130 /* The MD bitmaps are trimmed to include only live registers to cut
131 memory usage on testcases like insn-recog.c. Track live registers
132 in the basic block and do not perform forward propagation if the
133 destination is a dead pseudo occurring in a note. */
134 static bitmap local_md
;
135 static bitmap local_lr
;
137 /* Return the only def in USE's use-def chain, or NULL if there is
138 more than one def in the chain. */
141 get_def_for_use (df_ref use
)
143 return use_def_ref
[DF_REF_ID (use
)];
147 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
148 TOP_FLAG says which artificials uses should be used, when DEF_REC
149 is an artificial def vector. LOCAL_MD is modified as after a
150 df_md_simulate_* function; we do more or less the same processing
151 done there, so we do not use those functions. */
153 #define DF_MD_GEN_FLAGS \
154 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
157 process_defs (df_ref def
, int top_flag
)
159 for (; def
; def
= DF_REF_NEXT_LOC (def
))
161 df_ref curr_def
= reg_defs
[DF_REF_REGNO (def
)];
164 if ((DF_REF_FLAGS (def
) & DF_REF_AT_TOP
) != top_flag
)
167 dregno
= DF_REF_REGNO (def
);
169 reg_defs_stack
.safe_push (curr_def
);
172 /* Do not store anything if "transitioning" from NULL to NULL. But
173 otherwise, push a special entry on the stack to tell the
174 leave_block callback that the entry in reg_defs was NULL. */
175 if (DF_REF_FLAGS (def
) & DF_MD_GEN_FLAGS
)
178 reg_defs_stack
.safe_push (def
);
181 if (DF_REF_FLAGS (def
) & DF_MD_GEN_FLAGS
)
183 bitmap_set_bit (local_md
, dregno
);
184 reg_defs
[dregno
] = NULL
;
188 bitmap_clear_bit (local_md
, dregno
);
189 reg_defs
[dregno
] = def
;
195 /* Fill the use_def_ref vector with values for the uses in USE_REC,
196 taking reaching definitions info from LOCAL_MD and REG_DEFS.
197 TOP_FLAG says which artificials uses should be used, when USE_REC
198 is an artificial use vector. */
201 process_uses (df_ref use
, int top_flag
)
203 for (; use
; use
= DF_REF_NEXT_LOC (use
))
204 if ((DF_REF_FLAGS (use
) & DF_REF_AT_TOP
) == top_flag
)
206 unsigned int uregno
= DF_REF_REGNO (use
);
208 && !bitmap_bit_p (local_md
, uregno
)
209 && bitmap_bit_p (local_lr
, uregno
))
210 use_def_ref
[DF_REF_ID (use
)] = reg_defs
[uregno
];
214 class single_def_use_dom_walker
: public dom_walker
217 single_def_use_dom_walker (cdi_direction direction
)
218 : dom_walker (direction
) {}
219 virtual edge
before_dom_children (basic_block
);
220 virtual void after_dom_children (basic_block
);
224 single_def_use_dom_walker::before_dom_children (basic_block bb
)
226 int bb_index
= bb
->index
;
227 struct df_md_bb_info
*md_bb_info
= df_md_get_bb_info (bb_index
);
228 struct df_lr_bb_info
*lr_bb_info
= df_lr_get_bb_info (bb_index
);
231 bitmap_copy (local_md
, &md_bb_info
->in
);
232 bitmap_copy (local_lr
, &lr_bb_info
->in
);
234 /* Push a marker for the leave_block callback. */
235 reg_defs_stack
.safe_push (NULL
);
237 process_uses (df_get_artificial_uses (bb_index
), DF_REF_AT_TOP
);
238 process_defs (df_get_artificial_defs (bb_index
), DF_REF_AT_TOP
);
240 /* We don't call df_simulate_initialize_forwards, as it may overestimate
241 the live registers if there are unused artificial defs. We prefer
242 liveness to be underestimated. */
244 FOR_BB_INSNS (bb
, insn
)
247 unsigned int uid
= INSN_UID (insn
);
248 process_uses (DF_INSN_UID_USES (uid
), 0);
249 process_uses (DF_INSN_UID_EQ_USES (uid
), 0);
250 process_defs (DF_INSN_UID_DEFS (uid
), 0);
251 df_simulate_one_insn_forwards (bb
, insn
, local_lr
);
254 process_uses (df_get_artificial_uses (bb_index
), 0);
255 process_defs (df_get_artificial_defs (bb_index
), 0);
260 /* Pop the definitions created in this basic block when leaving its
264 single_def_use_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED
)
267 while ((saved_def
= reg_defs_stack
.pop ()) != NULL
)
269 unsigned int dregno
= DF_REF_REGNO (saved_def
);
271 /* See also process_defs. */
272 if (saved_def
== reg_defs
[dregno
])
273 reg_defs
[dregno
] = NULL
;
275 reg_defs
[dregno
] = saved_def
;
280 /* Build a vector holding the reaching definitions of uses reached by a
281 single dominating definition. */
284 build_single_def_use_links (void)
286 /* We use the multiple definitions problem to compute our restricted
288 df_set_flags (DF_EQ_NOTES
);
289 df_md_add_problem ();
290 df_note_add_problem ();
292 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES
);
294 use_def_ref
.create (DF_USES_TABLE_SIZE ());
295 use_def_ref
.safe_grow_cleared (DF_USES_TABLE_SIZE ());
297 reg_defs
.create (max_reg_num ());
298 reg_defs
.safe_grow_cleared (max_reg_num ());
300 reg_defs_stack
.create (n_basic_blocks_for_fn (cfun
) * 10);
301 local_md
= BITMAP_ALLOC (NULL
);
302 local_lr
= BITMAP_ALLOC (NULL
);
304 /* Walk the dominator tree looking for single reaching definitions
305 dominating the uses. This is similar to how SSA form is built. */
306 single_def_use_dom_walker (CDI_DOMINATORS
)
307 .walk (cfun
->cfg
->x_entry_block_ptr
);
309 BITMAP_FREE (local_lr
);
310 BITMAP_FREE (local_md
);
312 reg_defs_stack
.release ();
316 /* Do not try to replace constant addresses or addresses of local and
317 argument slots. These MEM expressions are made only once and inserted
318 in many instructions, as well as being used to control symbol table
319 output. It is not safe to clobber them.
321 There are some uncommon cases where the address is already in a register
322 for some reason, but we cannot take advantage of that because we have
323 no easy way to unshare the MEM. In addition, looking up all stack
324 addresses is costly. */
327 can_simplify_addr (rtx addr
)
331 if (CONSTANT_ADDRESS_P (addr
))
334 if (GET_CODE (addr
) == PLUS
)
335 reg
= XEXP (addr
, 0);
340 || (REGNO (reg
) != FRAME_POINTER_REGNUM
341 && REGNO (reg
) != HARD_FRAME_POINTER_REGNUM
342 && REGNO (reg
) != ARG_POINTER_REGNUM
));
345 /* Returns a canonical version of X for the address, from the point of view,
346 that all multiplications are represented as MULT instead of the multiply
347 by a power of 2 being represented as ASHIFT.
349 Every ASHIFT we find has been made by simplify_gen_binary and was not
350 there before, so it is not shared. So we can do this in place. */
353 canonicalize_address (rtx x
)
356 switch (GET_CODE (x
))
359 if (CONST_INT_P (XEXP (x
, 1))
360 && INTVAL (XEXP (x
, 1)) < GET_MODE_BITSIZE (GET_MODE (x
))
361 && INTVAL (XEXP (x
, 1)) >= 0)
363 HOST_WIDE_INT shift
= INTVAL (XEXP (x
, 1));
365 XEXP (x
, 1) = gen_int_mode (HOST_WIDE_INT_1
<< shift
,
373 if (GET_CODE (XEXP (x
, 0)) == PLUS
374 || GET_CODE (XEXP (x
, 0)) == ASHIFT
375 || GET_CODE (XEXP (x
, 0)) == CONST
)
376 canonicalize_address (XEXP (x
, 0));
390 /* OLD is a memory address. Return whether it is good to use NEW instead,
391 for a memory access in the given MODE. */
394 should_replace_address (rtx old_rtx
, rtx new_rtx
, machine_mode mode
,
395 addr_space_t as
, bool speed
)
399 if (rtx_equal_p (old_rtx
, new_rtx
)
400 || !memory_address_addr_space_p (mode
, new_rtx
, as
))
403 /* Copy propagation is always ok. */
404 if (REG_P (old_rtx
) && REG_P (new_rtx
))
407 /* Prefer the new address if it is less expensive. */
408 gain
= (address_cost (old_rtx
, mode
, as
, speed
)
409 - address_cost (new_rtx
, mode
, as
, speed
));
411 /* If the addresses have equivalent cost, prefer the new address
412 if it has the highest `set_src_cost'. That has the potential of
413 eliminating the most insns without additional costs, and it
414 is the same that cse.c used to do. */
416 gain
= (set_src_cost (new_rtx
, VOIDmode
, speed
)
417 - set_src_cost (old_rtx
, VOIDmode
, speed
));
423 /* Flags for the last parameter of propagate_rtx_1. */
426 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
427 if it is false, propagate_rtx_1 returns false if, for at least
428 one occurrence OLD, it failed to collapse the result to a constant.
429 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
430 collapse to zero if replacing (reg:M B) with (reg:M A).
432 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
433 propagate_rtx_1 just tries to make cheaper and valid memory
437 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
438 outside memory addresses. This is needed because propagate_rtx_1 does
439 not do any analysis on memory; thus it is very conservative and in general
440 it will fail if non-read-only MEMs are found in the source expression.
442 PR_HANDLE_MEM is set when the source of the propagation was not
443 another MEM. Then, it is safe not to treat non-read-only MEMs as
444 ``opaque'' objects. */
447 /* Set when costs should be optimized for speed. */
448 PR_OPTIMIZE_FOR_SPEED
= 4
452 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
453 resulting expression. Replace *PX with a new RTL expression if an
454 occurrence of OLD was found.
456 This is only a wrapper around simplify-rtx.c: do not add any pattern
457 matching code here. (The sole exception is the handling of LO_SUM, but
458 that is because there is no simplify_gen_* function for LO_SUM). */
461 propagate_rtx_1 (rtx
*px
, rtx old_rtx
, rtx new_rtx
, int flags
)
463 rtx x
= *px
, tem
= NULL_RTX
, op0
, op1
, op2
;
464 enum rtx_code code
= GET_CODE (x
);
465 machine_mode mode
= GET_MODE (x
);
466 machine_mode op_mode
;
467 bool can_appear
= (flags
& PR_CAN_APPEAR
) != 0;
468 bool valid_ops
= true;
470 if (!(flags
& PR_HANDLE_MEM
) && MEM_P (x
) && !MEM_READONLY_P (x
))
472 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
473 they have side effects or not). */
474 *px
= (side_effects_p (x
)
475 ? gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
)
476 : gen_rtx_SCRATCH (GET_MODE (x
)));
480 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
481 address, and we are *not* inside one. */
488 /* If this is an expression, try recursive substitution. */
489 switch (GET_RTX_CLASS (code
))
493 op_mode
= GET_MODE (op0
);
494 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
495 if (op0
== XEXP (x
, 0))
497 tem
= simplify_gen_unary (code
, mode
, op0
, op_mode
);
504 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
505 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
506 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
508 tem
= simplify_gen_binary (code
, mode
, op0
, op1
);
512 case RTX_COMM_COMPARE
:
515 op_mode
= GET_MODE (op0
) != VOIDmode
? GET_MODE (op0
) : GET_MODE (op1
);
516 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
517 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
518 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
520 tem
= simplify_gen_relational (code
, mode
, op_mode
, op0
, op1
);
524 case RTX_BITFIELD_OPS
:
528 op_mode
= GET_MODE (op0
);
529 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
530 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
531 valid_ops
&= propagate_rtx_1 (&op2
, old_rtx
, new_rtx
, flags
);
532 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1) && op2
== XEXP (x
, 2))
534 if (op_mode
== VOIDmode
)
535 op_mode
= GET_MODE (op0
);
536 tem
= simplify_gen_ternary (code
, mode
, op_mode
, op0
, op1
, op2
);
540 /* The only case we try to handle is a SUBREG. */
544 valid_ops
&= propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
);
545 if (op0
== XEXP (x
, 0))
547 tem
= simplify_gen_subreg (mode
, op0
, GET_MODE (SUBREG_REG (x
)),
553 if (code
== MEM
&& x
!= new_rtx
)
558 /* There are some addresses that we cannot work on. */
559 if (!can_simplify_addr (op0
))
562 op0
= new_op0
= targetm
.delegitimize_address (op0
);
563 valid_ops
&= propagate_rtx_1 (&new_op0
, old_rtx
, new_rtx
,
564 flags
| PR_CAN_APPEAR
);
566 /* Dismiss transformation that we do not want to carry on. */
569 || !(GET_MODE (new_op0
) == GET_MODE (op0
)
570 || GET_MODE (new_op0
) == VOIDmode
))
573 canonicalize_address (new_op0
);
575 /* Copy propagations are always ok. Otherwise check the costs. */
576 if (!(REG_P (old_rtx
) && REG_P (new_rtx
))
577 && !should_replace_address (op0
, new_op0
, GET_MODE (x
),
579 flags
& PR_OPTIMIZE_FOR_SPEED
))
582 tem
= replace_equiv_address_nv (x
, new_op0
);
585 else if (code
== LO_SUM
)
590 /* The only simplification we do attempts to remove references to op0
591 or make it constant -- in both cases, op0's invalidity will not
592 make the result invalid. */
593 propagate_rtx_1 (&op0
, old_rtx
, new_rtx
, flags
| PR_CAN_APPEAR
);
594 valid_ops
&= propagate_rtx_1 (&op1
, old_rtx
, new_rtx
, flags
);
595 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
598 /* (lo_sum (high x) x) -> x */
599 if (GET_CODE (op0
) == HIGH
&& rtx_equal_p (XEXP (op0
, 0), op1
))
602 tem
= gen_rtx_LO_SUM (mode
, op0
, op1
);
604 /* OP1 is likely not a legitimate address, otherwise there would have
605 been no LO_SUM. We want it to disappear if it is invalid, return
606 false in that case. */
607 return memory_address_p (mode
, tem
);
610 else if (code
== REG
)
612 if (rtx_equal_p (x
, old_rtx
))
624 /* No change, no trouble. */
630 /* Allow replacements that simplify operations on a vector or complex
631 value to a component. The most prominent case is
632 (subreg ([vec_]concat ...)). */
633 if (REG_P (tem
) && !HARD_REGISTER_P (tem
)
634 && (VECTOR_MODE_P (GET_MODE (new_rtx
))
635 || COMPLEX_MODE_P (GET_MODE (new_rtx
)))
636 && GET_MODE (tem
) == GET_MODE_INNER (GET_MODE (new_rtx
)))
639 /* The replacement we made so far is valid, if all of the recursive
640 replacements were valid, or we could simplify everything to
642 return valid_ops
|| can_appear
|| CONSTANT_P (tem
);
646 /* Return true if X constains a non-constant mem. */
649 varying_mem_p (const_rtx x
)
651 subrtx_iterator::array_type array
;
652 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
653 if (MEM_P (*iter
) && !MEM_READONLY_P (*iter
))
659 /* Replace all occurrences of OLD in X with NEW and try to simplify the
660 resulting expression (in mode MODE). Return a new expression if it is
661 a constant, otherwise X.
663 Simplifications where occurrences of NEW collapse to a constant are always
664 accepted. All simplifications are accepted if NEW is a pseudo too.
665 Otherwise, we accept simplifications that have a lower or equal cost. */
668 propagate_rtx (rtx x
, machine_mode mode
, rtx old_rtx
, rtx new_rtx
,
675 if (REG_P (new_rtx
) && REGNO (new_rtx
) < FIRST_PSEUDO_REGISTER
)
680 || CONSTANT_P (new_rtx
)
681 || (GET_CODE (new_rtx
) == SUBREG
682 && REG_P (SUBREG_REG (new_rtx
))
683 && (GET_MODE_SIZE (mode
)
684 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (new_rtx
))))))
685 flags
|= PR_CAN_APPEAR
;
686 if (!varying_mem_p (new_rtx
))
687 flags
|= PR_HANDLE_MEM
;
690 flags
|= PR_OPTIMIZE_FOR_SPEED
;
693 collapsed
= propagate_rtx_1 (&tem
, old_rtx
, copy_rtx (new_rtx
), flags
);
694 if (tem
== x
|| !collapsed
)
697 /* gen_lowpart_common will not be able to process VOIDmode entities other
699 if (GET_MODE (tem
) == VOIDmode
&& !CONST_INT_P (tem
))
702 if (GET_MODE (tem
) == VOIDmode
)
703 tem
= rtl_hooks
.gen_lowpart_no_emit (mode
, tem
);
705 gcc_assert (GET_MODE (tem
) == mode
);
713 /* Return true if the register from reference REF is killed
714 between FROM to (but not including) TO. */
717 local_ref_killed_between_p (df_ref ref
, rtx_insn
*from
, rtx_insn
*to
)
721 for (insn
= from
; insn
!= to
; insn
= NEXT_INSN (insn
))
727 FOR_EACH_INSN_DEF (def
, insn
)
728 if (DF_REF_REGNO (ref
) == DF_REF_REGNO (def
))
735 /* Check if the given DEF is available in INSN. This would require full
736 computation of available expressions; we check only restricted conditions:
737 - if DEF is the sole definition of its register, go ahead;
738 - in the same basic block, we check for no definitions killing the
739 definition of DEF_INSN;
740 - if USE's basic block has DEF's basic block as the sole predecessor,
741 we check if the definition is killed after DEF_INSN or before
742 TARGET_INSN insn, in their respective basic blocks. */
744 use_killed_between (df_ref use
, rtx_insn
*def_insn
, rtx_insn
*target_insn
)
746 basic_block def_bb
= BLOCK_FOR_INSN (def_insn
);
747 basic_block target_bb
= BLOCK_FOR_INSN (target_insn
);
751 /* We used to have a def reaching a use that is _before_ the def,
752 with the def not dominating the use even though the use and def
753 are in the same basic block, when a register may be used
754 uninitialized in a loop. This should not happen anymore since
755 we do not use reaching definitions, but still we test for such
756 cases and assume that DEF is not available. */
757 if (def_bb
== target_bb
758 ? DF_INSN_LUID (def_insn
) >= DF_INSN_LUID (target_insn
)
759 : !dominated_by_p (CDI_DOMINATORS
, target_bb
, def_bb
))
762 /* Check if the reg in USE has only one definition. We already
763 know that this definition reaches use, or we wouldn't be here.
764 However, this is invalid for hard registers because if they are
765 live at the beginning of the function it does not mean that we
766 have an uninitialized access. */
767 regno
= DF_REF_REGNO (use
);
768 def
= DF_REG_DEF_CHAIN (regno
);
770 && DF_REF_NEXT_REG (def
) == NULL
771 && regno
>= FIRST_PSEUDO_REGISTER
)
774 /* Check locally if we are in the same basic block. */
775 if (def_bb
== target_bb
)
776 return local_ref_killed_between_p (use
, def_insn
, target_insn
);
778 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
779 if (single_pred_p (target_bb
)
780 && single_pred (target_bb
) == def_bb
)
784 /* See if USE is killed between DEF_INSN and the last insn in the
785 basic block containing DEF_INSN. */
786 x
= df_bb_regno_last_def_find (def_bb
, regno
);
787 if (x
&& DF_INSN_LUID (DF_REF_INSN (x
)) >= DF_INSN_LUID (def_insn
))
790 /* See if USE is killed between TARGET_INSN and the first insn in the
791 basic block containing TARGET_INSN. */
792 x
= df_bb_regno_first_def_find (target_bb
, regno
);
793 if (x
&& DF_INSN_LUID (DF_REF_INSN (x
)) < DF_INSN_LUID (target_insn
))
799 /* Otherwise assume the worst case. */
804 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
805 would require full computation of available expressions;
806 we check only restricted conditions, see use_killed_between. */
808 all_uses_available_at (rtx_insn
*def_insn
, rtx_insn
*target_insn
)
811 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (def_insn
);
812 rtx def_set
= single_set (def_insn
);
815 gcc_assert (def_set
);
817 /* If target_insn comes right after def_insn, which is very common
818 for addresses, we can use a quicker test. Ignore debug insns
819 other than target insns for this. */
820 next
= NEXT_INSN (def_insn
);
821 while (next
&& next
!= target_insn
&& DEBUG_INSN_P (next
))
822 next
= NEXT_INSN (next
);
823 if (next
== target_insn
&& REG_P (SET_DEST (def_set
)))
825 rtx def_reg
= SET_DEST (def_set
);
827 /* If the insn uses the reg that it defines, the substitution is
829 FOR_EACH_INSN_INFO_USE (use
, insn_info
)
830 if (rtx_equal_p (DF_REF_REG (use
), def_reg
))
832 FOR_EACH_INSN_INFO_EQ_USE (use
, insn_info
)
833 if (rtx_equal_p (DF_REF_REG (use
), def_reg
))
838 rtx def_reg
= REG_P (SET_DEST (def_set
)) ? SET_DEST (def_set
) : NULL_RTX
;
840 /* Look at all the uses of DEF_INSN, and see if they are not
841 killed between DEF_INSN and TARGET_INSN. */
842 FOR_EACH_INSN_INFO_USE (use
, insn_info
)
844 if (def_reg
&& rtx_equal_p (DF_REF_REG (use
), def_reg
))
846 if (use_killed_between (use
, def_insn
, target_insn
))
849 FOR_EACH_INSN_INFO_EQ_USE (use
, insn_info
)
851 if (def_reg
&& rtx_equal_p (DF_REF_REG (use
), def_reg
))
853 if (use_killed_between (use
, def_insn
, target_insn
))
862 static df_ref
*active_defs
;
863 static sparseset active_defs_check
;
865 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
866 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
867 too, for checking purposes. */
870 register_active_defs (df_ref use
)
872 for (; use
; use
= DF_REF_NEXT_LOC (use
))
874 df_ref def
= get_def_for_use (use
);
875 int regno
= DF_REF_REGNO (use
);
878 sparseset_set_bit (active_defs_check
, regno
);
879 active_defs
[regno
] = def
;
884 /* Build the use->def links that we use to update the dataflow info
885 for new uses. Note that building the links is very cheap and if
886 it were done earlier, they could be used to rule out invalid
887 propagations (in addition to what is done in all_uses_available_at).
888 I'm not doing this yet, though. */
891 update_df_init (rtx_insn
*def_insn
, rtx_insn
*insn
)
894 sparseset_clear (active_defs_check
);
895 register_active_defs (DF_INSN_USES (def_insn
));
896 register_active_defs (DF_INSN_USES (insn
));
897 register_active_defs (DF_INSN_EQ_USES (insn
));
901 /* Update the USE_DEF_REF array for the given use, using the active definitions
902 in the ACTIVE_DEFS array to match pseudos to their def. */
905 update_uses (df_ref use
)
907 for (; use
; use
= DF_REF_NEXT_LOC (use
))
909 int regno
= DF_REF_REGNO (use
);
911 /* Set up the use-def chain. */
912 if (DF_REF_ID (use
) >= (int) use_def_ref
.length ())
913 use_def_ref
.safe_grow_cleared (DF_REF_ID (use
) + 1);
916 gcc_assert (sparseset_bit_p (active_defs_check
, regno
));
917 use_def_ref
[DF_REF_ID (use
)] = active_defs
[regno
];
922 /* Update the USE_DEF_REF array for the uses in INSN. Only update note
923 uses if NOTES_ONLY is true. */
926 update_df (rtx_insn
*insn
, rtx note
)
928 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (insn
);
932 df_uses_create (&XEXP (note
, 0), insn
, DF_REF_IN_NOTE
);
933 df_notes_rescan (insn
);
937 df_uses_create (&PATTERN (insn
), insn
, 0);
938 df_insn_rescan (insn
);
939 update_uses (DF_INSN_INFO_USES (insn_info
));
942 update_uses (DF_INSN_INFO_EQ_USES (insn_info
));
946 /* Try substituting NEW into LOC, which originated from forward propagation
947 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
948 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
949 new insn is not recognized. Return whether the substitution was
953 try_fwprop_subst (df_ref use
, rtx
*loc
, rtx new_rtx
, rtx_insn
*def_insn
,
956 rtx_insn
*insn
= DF_REF_INSN (use
);
957 rtx set
= single_set (insn
);
959 bool speed
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn
));
963 update_df_init (def_insn
, insn
);
965 /* forward_propagate_subreg may be operating on an instruction with
966 multiple sets. If so, assume the cost of the new instruction is
967 not greater than the old one. */
969 old_cost
= set_src_cost (SET_SRC (set
), GET_MODE (SET_DEST (set
)), speed
);
972 fprintf (dump_file
, "\nIn insn %d, replacing\n ", INSN_UID (insn
));
973 print_inline_rtx (dump_file
, *loc
, 2);
974 fprintf (dump_file
, "\n with ");
975 print_inline_rtx (dump_file
, new_rtx
, 2);
976 fprintf (dump_file
, "\n");
979 validate_unshare_change (insn
, loc
, new_rtx
, true);
980 if (!verify_changes (0))
983 fprintf (dump_file
, "Changes to insn %d not recognized\n",
988 else if (DF_REF_TYPE (use
) == DF_REF_REG_USE
990 && (set_src_cost (SET_SRC (set
), GET_MODE (SET_DEST (set
)), speed
)
994 fprintf (dump_file
, "Changes to insn %d not profitable\n",
1002 fprintf (dump_file
, "Changed insn %d\n", INSN_UID (insn
));
1008 confirm_change_group ();
1015 /* Can also record a simplified value in a REG_EQUAL note,
1016 making a new one if one does not already exist. */
1019 /* If there are any paradoxical SUBREGs, don't add REG_EQUAL note,
1020 because the bits in there can be anything and so might not
1021 match the REG_EQUAL note content. See PR70574. */
1022 subrtx_var_iterator::array_type array
;
1023 FOR_EACH_SUBRTX_VAR (iter
, array
, *loc
, NONCONST
)
1026 if (SUBREG_P (x
) && paradoxical_subreg_p (x
))
1028 set_reg_equal
= false;
1036 fprintf (dump_file
, " Setting REG_EQUAL note\n");
1038 note
= set_unique_reg_note (insn
, REG_EQUAL
, copy_rtx (new_rtx
));
1043 if ((ok
|| note
) && !CONSTANT_P (new_rtx
))
1044 update_df (insn
, note
);
1049 /* For the given single_set INSN, containing SRC known to be a
1050 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1051 is redundant due to the register being set by a LOAD_EXTEND_OP
1052 load from memory. */
1055 free_load_extend (rtx src
, rtx_insn
*insn
)
1060 reg
= XEXP (src
, 0);
1061 if (load_extend_op (GET_MODE (reg
)) != GET_CODE (src
))
1064 FOR_EACH_INSN_USE (use
, insn
)
1065 if (!DF_REF_IS_ARTIFICIAL (use
)
1066 && DF_REF_TYPE (use
) == DF_REF_REG_USE
1067 && DF_REF_REG (use
) == reg
)
1072 def
= get_def_for_use (use
);
1076 if (DF_REF_IS_ARTIFICIAL (def
))
1079 if (NONJUMP_INSN_P (DF_REF_INSN (def
)))
1081 rtx patt
= PATTERN (DF_REF_INSN (def
));
1083 if (GET_CODE (patt
) == SET
1084 && GET_CODE (SET_SRC (patt
)) == MEM
1085 && rtx_equal_p (SET_DEST (patt
), reg
))
1091 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1094 forward_propagate_subreg (df_ref use
, rtx_insn
*def_insn
, rtx def_set
)
1096 rtx use_reg
= DF_REF_REG (use
);
1100 /* Only consider subregs... */
1101 machine_mode use_mode
= GET_MODE (use_reg
);
1102 if (GET_CODE (use_reg
) != SUBREG
1103 || !REG_P (SET_DEST (def_set
)))
1106 /* If this is a paradoxical SUBREG... */
1107 if (GET_MODE_SIZE (use_mode
)
1108 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg
))))
1110 /* If this is a paradoxical SUBREG, we have no idea what value the
1111 extra bits would have. However, if the operand is equivalent to
1112 a SUBREG whose operand is the same as our mode, and all the modes
1113 are within a word, we can just use the inner operand because
1114 these SUBREGs just say how to treat the register. */
1115 use_insn
= DF_REF_INSN (use
);
1116 src
= SET_SRC (def_set
);
1117 if (GET_CODE (src
) == SUBREG
1118 && REG_P (SUBREG_REG (src
))
1119 && REGNO (SUBREG_REG (src
)) >= FIRST_PSEUDO_REGISTER
1120 && GET_MODE (SUBREG_REG (src
)) == use_mode
1121 && subreg_lowpart_p (src
)
1122 && all_uses_available_at (def_insn
, use_insn
))
1123 return try_fwprop_subst (use
, DF_REF_LOC (use
), SUBREG_REG (src
),
1127 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1128 is the low part of the reg being extended then just use the inner
1129 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1130 be removed due to it matching a LOAD_EXTEND_OP load from memory,
1131 or due to the operation being a no-op when applied to registers.
1132 For example, if we have:
1134 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1135 B: (... (subreg:SI (reg:DI X)) ...)
1137 and mode_rep_extended says that Y is already sign-extended,
1138 the backend will typically allow A to be combined with the
1139 definition of Y or, failing that, allow A to be deleted after
1140 reload through register tying. Introducing more uses of Y
1141 prevents both optimisations. */
1142 else if (subreg_lowpart_p (use_reg
))
1144 use_insn
= DF_REF_INSN (use
);
1145 src
= SET_SRC (def_set
);
1146 if ((GET_CODE (src
) == ZERO_EXTEND
1147 || GET_CODE (src
) == SIGN_EXTEND
)
1148 && REG_P (XEXP (src
, 0))
1149 && REGNO (XEXP (src
, 0)) >= FIRST_PSEUDO_REGISTER
1150 && GET_MODE (XEXP (src
, 0)) == use_mode
1151 && !free_load_extend (src
, def_insn
)
1152 && (targetm
.mode_rep_extended (use_mode
, GET_MODE (src
))
1153 != (int) GET_CODE (src
))
1154 && all_uses_available_at (def_insn
, use_insn
))
1155 return try_fwprop_subst (use
, DF_REF_LOC (use
), XEXP (src
, 0),
1162 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1165 forward_propagate_asm (df_ref use
, rtx_insn
*def_insn
, rtx def_set
, rtx reg
)
1167 rtx_insn
*use_insn
= DF_REF_INSN (use
);
1168 rtx src
, use_pat
, asm_operands
, new_rtx
, *loc
;
1172 gcc_assert ((DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
) == 0);
1174 src
= SET_SRC (def_set
);
1175 use_pat
= PATTERN (use_insn
);
1177 /* In __asm don't replace if src might need more registers than
1178 reg, as that could increase register pressure on the __asm. */
1179 uses
= DF_INSN_USES (def_insn
);
1180 if (uses
&& DF_REF_NEXT_LOC (uses
))
1183 update_df_init (def_insn
, use_insn
);
1184 speed_p
= optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn
));
1185 asm_operands
= NULL_RTX
;
1186 switch (GET_CODE (use_pat
))
1189 asm_operands
= use_pat
;
1192 if (MEM_P (SET_DEST (use_pat
)))
1194 loc
= &SET_DEST (use_pat
);
1195 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
, src
, speed_p
);
1197 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1199 asm_operands
= SET_SRC (use_pat
);
1202 for (i
= 0; i
< XVECLEN (use_pat
, 0); i
++)
1203 if (GET_CODE (XVECEXP (use_pat
, 0, i
)) == SET
)
1205 if (MEM_P (SET_DEST (XVECEXP (use_pat
, 0, i
))))
1207 loc
= &SET_DEST (XVECEXP (use_pat
, 0, i
));
1208 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
,
1211 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1213 asm_operands
= SET_SRC (XVECEXP (use_pat
, 0, i
));
1215 else if (GET_CODE (XVECEXP (use_pat
, 0, i
)) == ASM_OPERANDS
)
1216 asm_operands
= XVECEXP (use_pat
, 0, i
);
1222 gcc_assert (asm_operands
&& GET_CODE (asm_operands
) == ASM_OPERANDS
);
1223 for (i
= 0; i
< ASM_OPERANDS_INPUT_LENGTH (asm_operands
); i
++)
1225 loc
= &ASM_OPERANDS_INPUT (asm_operands
, i
);
1226 new_rtx
= propagate_rtx (*loc
, GET_MODE (*loc
), reg
, src
, speed_p
);
1228 validate_unshare_change (use_insn
, loc
, new_rtx
, true);
1231 if (num_changes_pending () == 0 || !apply_change_group ())
1234 update_df (use_insn
, NULL
);
1239 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1243 forward_propagate_and_simplify (df_ref use
, rtx_insn
*def_insn
, rtx def_set
)
1245 rtx_insn
*use_insn
= DF_REF_INSN (use
);
1246 rtx use_set
= single_set (use_insn
);
1247 rtx src
, reg
, new_rtx
, *loc
;
1252 if (INSN_CODE (use_insn
) < 0)
1253 asm_use
= asm_noperands (PATTERN (use_insn
));
1255 if (!use_set
&& asm_use
< 0 && !DEBUG_INSN_P (use_insn
))
1258 /* Do not propagate into PC, CC0, etc. */
1259 if (use_set
&& GET_MODE (SET_DEST (use_set
)) == VOIDmode
)
1262 /* If def and use are subreg, check if they match. */
1263 reg
= DF_REF_REG (use
);
1264 if (GET_CODE (reg
) == SUBREG
&& GET_CODE (SET_DEST (def_set
)) == SUBREG
)
1266 if (SUBREG_BYTE (SET_DEST (def_set
)) != SUBREG_BYTE (reg
))
1269 /* Check if the def had a subreg, but the use has the whole reg. */
1270 else if (REG_P (reg
) && GET_CODE (SET_DEST (def_set
)) == SUBREG
)
1272 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1273 previous case, the optimization is possible and often useful indeed. */
1274 else if (GET_CODE (reg
) == SUBREG
&& REG_P (SET_DEST (def_set
)))
1275 reg
= SUBREG_REG (reg
);
1277 /* Make sure that we can treat REG as having the same mode as the
1278 source of DEF_SET. */
1279 if (GET_MODE (SET_DEST (def_set
)) != GET_MODE (reg
))
1282 /* Check if the substitution is valid (last, because it's the most
1283 expensive check!). */
1284 src
= SET_SRC (def_set
);
1285 if (!CONSTANT_P (src
) && !all_uses_available_at (def_insn
, use_insn
))
1288 /* Check if the def is loading something from the constant pool; in this
1289 case we would undo optimization such as compress_float_constant.
1290 Still, we can set a REG_EQUAL note. */
1291 if (MEM_P (src
) && MEM_READONLY_P (src
))
1293 rtx x
= avoid_constant_pool_reference (src
);
1294 if (x
!= src
&& use_set
)
1296 rtx note
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1297 rtx old_rtx
= note
? XEXP (note
, 0) : SET_SRC (use_set
);
1298 rtx new_rtx
= simplify_replace_rtx (old_rtx
, src
, x
);
1299 if (old_rtx
!= new_rtx
)
1300 set_unique_reg_note (use_insn
, REG_EQUAL
, copy_rtx (new_rtx
));
1306 return forward_propagate_asm (use
, def_insn
, def_set
, reg
);
1308 /* Else try simplifying. */
1310 if (DF_REF_TYPE (use
) == DF_REF_REG_MEM_STORE
)
1312 loc
= &SET_DEST (use_set
);
1313 set_reg_equal
= false;
1317 loc
= &INSN_VAR_LOCATION_LOC (use_insn
);
1318 set_reg_equal
= false;
1322 rtx note
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1323 if (DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
)
1324 loc
= &XEXP (note
, 0);
1326 loc
= &SET_SRC (use_set
);
1328 /* Do not replace an existing REG_EQUAL note if the insn is not
1329 recognized. Either we're already replacing in the note, or we'll
1330 separately try plugging the definition in the note and simplifying.
1331 And only install a REQ_EQUAL note when the destination is a REG
1332 that isn't mentioned in USE_SET, as the note would be invalid
1333 otherwise. We also don't want to install a note if we are merely
1334 propagating a pseudo since verifying that this pseudo isn't dead
1335 is a pain; moreover such a note won't help anything.
1336 If the use is a paradoxical subreg, make sure we don't add a
1337 REG_EQUAL note for it, because it is not equivalent, it is one
1338 possible value for it, but we can't rely on it holding that value.
1340 set_reg_equal
= (note
== NULL_RTX
1341 && REG_P (SET_DEST (use_set
))
1343 && !(GET_CODE (src
) == SUBREG
1344 && REG_P (SUBREG_REG (src
)))
1345 && !reg_mentioned_p (SET_DEST (use_set
),
1347 && !paradoxical_subreg_p (DF_REF_REG (use
)));
1350 if (GET_MODE (*loc
) == VOIDmode
)
1351 mode
= GET_MODE (SET_DEST (use_set
));
1353 mode
= GET_MODE (*loc
);
1355 new_rtx
= propagate_rtx (*loc
, mode
, reg
, src
,
1356 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn
)));
1361 return try_fwprop_subst (use
, loc
, new_rtx
, def_insn
, set_reg_equal
);
1365 /* Given a use USE of an insn, if it has a single reaching
1366 definition, try to forward propagate it into that insn.
1367 Return true if cfg cleanup will be needed. */
1370 forward_propagate_into (df_ref use
)
1373 rtx_insn
*def_insn
, *use_insn
;
1377 if (DF_REF_FLAGS (use
) & DF_REF_READ_WRITE
)
1379 if (DF_REF_IS_ARTIFICIAL (use
))
1382 /* Only consider uses that have a single definition. */
1383 def
= get_def_for_use (use
);
1386 if (DF_REF_FLAGS (def
) & DF_REF_READ_WRITE
)
1388 if (DF_REF_IS_ARTIFICIAL (def
))
1391 /* Do not propagate loop invariant definitions inside the loop. */
1392 if (DF_REF_BB (def
)->loop_father
!= DF_REF_BB (use
)->loop_father
)
1395 /* Check if the use is still present in the insn! */
1396 use_insn
= DF_REF_INSN (use
);
1397 if (DF_REF_FLAGS (use
) & DF_REF_IN_NOTE
)
1398 parent
= find_reg_note (use_insn
, REG_EQUAL
, NULL_RTX
);
1400 parent
= PATTERN (use_insn
);
1402 if (!reg_mentioned_p (DF_REF_REG (use
), parent
))
1405 def_insn
= DF_REF_INSN (def
);
1406 if (multiple_sets (def_insn
))
1408 def_set
= single_set (def_insn
);
1412 /* Only try one kind of propagation. If two are possible, we'll
1413 do it on the following iterations. */
1414 if (forward_propagate_and_simplify (use
, def_insn
, def_set
)
1415 || forward_propagate_subreg (use
, def_insn
, def_set
))
1417 propagations_left
--;
1419 if (cfun
->can_throw_non_call_exceptions
1420 && find_reg_note (use_insn
, REG_EH_REGION
, NULL_RTX
)
1421 && purge_dead_edges (DF_REF_BB (use
)))
1432 calculate_dominance_info (CDI_DOMINATORS
);
1434 /* We do not always want to propagate into loops, so we have to find
1435 loops and be careful about them. Avoid CFG modifications so that
1436 we don't have to update dominance information afterwards for
1437 build_single_def_use_links. */
1438 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
1440 build_single_def_use_links ();
1441 df_set_flags (DF_DEFER_INSN_RESCAN
);
1443 active_defs
= XNEWVEC (df_ref
, max_reg_num ());
1445 active_defs_check
= sparseset_alloc (max_reg_num ());
1447 propagations_left
= DF_USES_TABLE_SIZE ();
1453 loop_optimizer_finalize ();
1455 use_def_ref
.release ();
1458 sparseset_free (active_defs_check
);
1460 free_dominance_info (CDI_DOMINATORS
);
1462 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1466 "\nNumber of successful forward propagations: %d\n\n",
1471 /* Main entry point. */
1476 return optimize
> 0 && flag_forward_propagate
;
1486 /* Go through all the uses. df_uses_create will create new ones at the
1487 end, and we'll go through them as well.
1489 Do not forward propagate addresses into loops until after unrolling.
1490 CSE did so because it was able to fix its own mess, but we are not. */
1492 for (i
= 0; i
< DF_USES_TABLE_SIZE (); i
++)
1494 if (!propagations_left
)
1497 df_ref use
= DF_USES_GET (i
);
1499 if (DF_REF_TYPE (use
) == DF_REF_REG_USE
1500 || DF_REF_BB (use
)->loop_father
== NULL
1501 /* The outer most loop is not really a loop. */
1502 || loop_outer (DF_REF_BB (use
)->loop_father
) == NULL
)
1503 forward_propagate_into (use
);
1512 const pass_data pass_data_rtl_fwprop
=
1514 RTL_PASS
, /* type */
1515 "fwprop1", /* name */
1516 OPTGROUP_NONE
, /* optinfo_flags */
1517 TV_FWPROP
, /* tv_id */
1518 0, /* properties_required */
1519 0, /* properties_provided */
1520 0, /* properties_destroyed */
1521 0, /* todo_flags_start */
1522 TODO_df_finish
, /* todo_flags_finish */
1525 class pass_rtl_fwprop
: public rtl_opt_pass
1528 pass_rtl_fwprop (gcc::context
*ctxt
)
1529 : rtl_opt_pass (pass_data_rtl_fwprop
, ctxt
)
1532 /* opt_pass methods: */
1533 virtual bool gate (function
*) { return gate_fwprop (); }
1534 virtual unsigned int execute (function
*) { return fwprop (); }
1536 }; // class pass_rtl_fwprop
1541 make_pass_rtl_fwprop (gcc::context
*ctxt
)
1543 return new pass_rtl_fwprop (ctxt
);
1553 /* Go through all the uses. df_uses_create will create new ones at the
1554 end, and we'll go through them as well. */
1555 for (i
= 0; i
< DF_USES_TABLE_SIZE (); i
++)
1557 if (!propagations_left
)
1560 df_ref use
= DF_USES_GET (i
);
1562 if (DF_REF_TYPE (use
) != DF_REF_REG_USE
1563 && DF_REF_BB (use
)->loop_father
!= NULL
1564 /* The outer most loop is not really a loop. */
1565 && loop_outer (DF_REF_BB (use
)->loop_father
) != NULL
)
1566 forward_propagate_into (use
);
1575 const pass_data pass_data_rtl_fwprop_addr
=
1577 RTL_PASS
, /* type */
1578 "fwprop2", /* name */
1579 OPTGROUP_NONE
, /* optinfo_flags */
1580 TV_FWPROP
, /* tv_id */
1581 0, /* properties_required */
1582 0, /* properties_provided */
1583 0, /* properties_destroyed */
1584 0, /* todo_flags_start */
1585 TODO_df_finish
, /* todo_flags_finish */
1588 class pass_rtl_fwprop_addr
: public rtl_opt_pass
1591 pass_rtl_fwprop_addr (gcc::context
*ctxt
)
1592 : rtl_opt_pass (pass_data_rtl_fwprop_addr
, ctxt
)
1595 /* opt_pass methods: */
1596 virtual bool gate (function
*) { return gate_fwprop (); }
1597 virtual unsigned int execute (function
*) { return fwprop_addr (); }
1599 }; // class pass_rtl_fwprop_addr
1604 make_pass_rtl_fwprop_addr (gcc::context
*ctxt
)
1606 return new pass_rtl_fwprop_addr (ctxt
);