Reset prologue_location before calling code_end
[official-gcc.git] / libsanitizer / sanitizer_common / sanitizer_common.h
blobbce24d68045b15294d6596919d28682e36690d88
1 //===-- sanitizer_common.h --------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is shared between run-time libraries of sanitizers.
11 // It declares common functions and classes that are used in both runtimes.
12 // Implementation of some functions are provided in sanitizer_common, while
13 // others must be defined by run-time library itself.
14 //===----------------------------------------------------------------------===//
15 #ifndef SANITIZER_COMMON_H
16 #define SANITIZER_COMMON_H
18 #include "sanitizer_flags.h"
19 #include "sanitizer_interface_internal.h"
20 #include "sanitizer_internal_defs.h"
21 #include "sanitizer_libc.h"
22 #include "sanitizer_list.h"
23 #include "sanitizer_mutex.h"
25 #if defined(_MSC_VER) && !defined(__clang__)
26 extern "C" void _ReadWriteBarrier();
27 #pragma intrinsic(_ReadWriteBarrier)
28 #endif
30 namespace __sanitizer {
32 struct AddressInfo;
33 struct BufferedStackTrace;
34 struct SignalContext;
35 struct StackTrace;
37 // Constants.
38 const uptr kWordSize = SANITIZER_WORDSIZE / 8;
39 const uptr kWordSizeInBits = 8 * kWordSize;
41 const uptr kCacheLineSize = SANITIZER_CACHE_LINE_SIZE;
43 const uptr kMaxPathLength = 4096;
45 const uptr kMaxThreadStackSize = 1 << 30; // 1Gb
47 static const uptr kErrorMessageBufferSize = 1 << 16;
49 // Denotes fake PC values that come from JIT/JAVA/etc.
50 // For such PC values __tsan_symbolize_external_ex() will be called.
51 const u64 kExternalPCBit = 1ULL << 60;
53 extern const char *SanitizerToolName; // Can be changed by the tool.
55 extern atomic_uint32_t current_verbosity;
56 inline void SetVerbosity(int verbosity) {
57 atomic_store(&current_verbosity, verbosity, memory_order_relaxed);
59 inline int Verbosity() {
60 return atomic_load(&current_verbosity, memory_order_relaxed);
63 #if SANITIZER_ANDROID
64 inline uptr GetPageSize() {
65 // Android post-M sysconf(_SC_PAGESIZE) crashes if called from .preinit_array.
66 return 4096;
68 inline uptr GetPageSizeCached() {
69 return 4096;
71 #else
72 uptr GetPageSize();
73 extern uptr PageSizeCached;
74 inline uptr GetPageSizeCached() {
75 if (!PageSizeCached)
76 PageSizeCached = GetPageSize();
77 return PageSizeCached;
79 #endif
80 uptr GetMmapGranularity();
81 uptr GetMaxVirtualAddress();
82 uptr GetMaxUserVirtualAddress();
83 // Threads
84 tid_t GetTid();
85 int TgKill(pid_t pid, tid_t tid, int sig);
86 uptr GetThreadSelf();
87 void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
88 uptr *stack_bottom);
89 void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
90 uptr *tls_addr, uptr *tls_size);
92 // Memory management
93 void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false);
94 inline void *MmapOrDieQuietly(uptr size, const char *mem_type) {
95 return MmapOrDie(size, mem_type, /*raw_report*/ true);
97 void UnmapOrDie(void *addr, uptr size);
98 // Behaves just like MmapOrDie, but tolerates out of memory condition, in that
99 // case returns nullptr.
100 void *MmapOrDieOnFatalError(uptr size, const char *mem_type);
101 bool MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name = nullptr)
102 WARN_UNUSED_RESULT;
103 bool MmapFixedSuperNoReserve(uptr fixed_addr, uptr size,
104 const char *name = nullptr) WARN_UNUSED_RESULT;
105 void *MmapNoReserveOrDie(uptr size, const char *mem_type);
106 void *MmapFixedOrDie(uptr fixed_addr, uptr size, const char *name = nullptr);
107 // Behaves just like MmapFixedOrDie, but tolerates out of memory condition, in
108 // that case returns nullptr.
109 void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size,
110 const char *name = nullptr);
111 void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr);
112 void *MmapNoAccess(uptr size);
113 // Map aligned chunk of address space; size and alignment are powers of two.
114 // Dies on all but out of memory errors, in the latter case returns nullptr.
115 void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
116 const char *mem_type);
117 // Disallow access to a memory range. Use MmapFixedNoAccess to allocate an
118 // unaccessible memory.
119 bool MprotectNoAccess(uptr addr, uptr size);
120 bool MprotectReadOnly(uptr addr, uptr size);
122 void MprotectMallocZones(void *addr, int prot);
124 #if SANITIZER_LINUX
125 // Unmap memory. Currently only used on Linux.
126 void UnmapFromTo(uptr from, uptr to);
127 #endif
129 // Maps shadow_size_bytes of shadow memory and returns shadow address. It will
130 // be aligned to the mmap granularity * 2^shadow_scale, or to
131 // 2^min_shadow_base_alignment if that is larger. The returned address will
132 // have max(2^min_shadow_base_alignment, mmap granularity) on the left, and
133 // shadow_size_bytes bytes on the right, which on linux is mapped no access.
134 // The high_mem_end may be updated if the original shadow size doesn't fit.
135 uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale,
136 uptr min_shadow_base_alignment, uptr &high_mem_end);
138 // Reserve memory range [beg, end]. If madvise_shadow is true then apply
139 // madvise (e.g. hugepages, core dumping) requested by options.
140 void ReserveShadowMemoryRange(uptr beg, uptr end, const char *name,
141 bool madvise_shadow = true);
143 // Protect size bytes of memory starting at addr. Also try to protect
144 // several pages at the start of the address space as specified by
145 // zero_base_shadow_start, at most up to the size or zero_base_max_shadow_start.
146 void ProtectGap(uptr addr, uptr size, uptr zero_base_shadow_start,
147 uptr zero_base_max_shadow_start);
149 // Find an available address space.
150 uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding,
151 uptr *largest_gap_found, uptr *max_occupied_addr);
153 // Used to check if we can map shadow memory to a fixed location.
154 bool MemoryRangeIsAvailable(uptr range_start, uptr range_end);
155 // Releases memory pages entirely within the [beg, end] address range. Noop if
156 // the provided range does not contain at least one entire page.
157 void ReleaseMemoryPagesToOS(uptr beg, uptr end);
158 void IncreaseTotalMmap(uptr size);
159 void DecreaseTotalMmap(uptr size);
160 uptr GetRSS();
161 void SetShadowRegionHugePageMode(uptr addr, uptr length);
162 bool DontDumpShadowMemory(uptr addr, uptr length);
163 // Check if the built VMA size matches the runtime one.
164 void CheckVMASize();
165 void RunMallocHooks(const void *ptr, uptr size);
166 void RunFreeHooks(const void *ptr);
168 class ReservedAddressRange {
169 public:
170 uptr Init(uptr size, const char *name = nullptr, uptr fixed_addr = 0);
171 uptr InitAligned(uptr size, uptr align, const char *name = nullptr);
172 uptr Map(uptr fixed_addr, uptr size, const char *name = nullptr);
173 uptr MapOrDie(uptr fixed_addr, uptr size, const char *name = nullptr);
174 void Unmap(uptr addr, uptr size);
175 void *base() const { return base_; }
176 uptr size() const { return size_; }
178 private:
179 void* base_;
180 uptr size_;
181 const char* name_;
182 uptr os_handle_;
185 typedef void (*fill_profile_f)(uptr start, uptr rss, bool file,
186 /*out*/uptr *stats, uptr stats_size);
188 // Parse the contents of /proc/self/smaps and generate a memory profile.
189 // |cb| is a tool-specific callback that fills the |stats| array containing
190 // |stats_size| elements.
191 void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size);
193 // Simple low-level (mmap-based) allocator for internal use. Doesn't have
194 // constructor, so all instances of LowLevelAllocator should be
195 // linker initialized.
196 class LowLevelAllocator {
197 public:
198 // Requires an external lock.
199 void *Allocate(uptr size);
200 private:
201 char *allocated_end_;
202 char *allocated_current_;
204 // Set the min alignment of LowLevelAllocator to at least alignment.
205 void SetLowLevelAllocateMinAlignment(uptr alignment);
206 typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size);
207 // Allows to register tool-specific callbacks for LowLevelAllocator.
208 // Passing NULL removes the callback.
209 void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback);
211 // IO
212 void CatastrophicErrorWrite(const char *buffer, uptr length);
213 void RawWrite(const char *buffer);
214 bool ColorizeReports();
215 void RemoveANSIEscapeSequencesFromString(char *buffer);
216 void Printf(const char *format, ...);
217 void Report(const char *format, ...);
218 void SetPrintfAndReportCallback(void (*callback)(const char *));
219 #define VReport(level, ...) \
220 do { \
221 if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \
222 } while (0)
223 #define VPrintf(level, ...) \
224 do { \
225 if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \
226 } while (0)
228 // Lock sanitizer error reporting and protects against nested errors.
229 class ScopedErrorReportLock {
230 public:
231 ScopedErrorReportLock();
232 ~ScopedErrorReportLock();
234 static void CheckLocked();
237 extern uptr stoptheworld_tracer_pid;
238 extern uptr stoptheworld_tracer_ppid;
240 bool IsAccessibleMemoryRange(uptr beg, uptr size);
242 // Error report formatting.
243 const char *StripPathPrefix(const char *filepath,
244 const char *strip_file_prefix);
245 // Strip the directories from the module name.
246 const char *StripModuleName(const char *module);
248 // OS
249 uptr ReadBinaryName(/*out*/char *buf, uptr buf_len);
250 uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len);
251 uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len);
252 const char *GetProcessName();
253 void UpdateProcessName();
254 void CacheBinaryName();
255 void DisableCoreDumperIfNecessary();
256 void DumpProcessMap();
257 const char *GetEnv(const char *name);
258 bool SetEnv(const char *name, const char *value);
260 u32 GetUid();
261 void ReExec();
262 void CheckASLR();
263 void CheckMPROTECT();
264 char **GetArgv();
265 char **GetEnviron();
266 void PrintCmdline();
267 bool StackSizeIsUnlimited();
268 void SetStackSizeLimitInBytes(uptr limit);
269 bool AddressSpaceIsUnlimited();
270 void SetAddressSpaceUnlimited();
271 void AdjustStackSize(void *attr);
272 void PlatformPrepareForSandboxing(__sanitizer_sandbox_arguments *args);
273 void SetSandboxingCallback(void (*f)());
275 void InitializeCoverage(bool enabled, const char *coverage_dir);
277 void InitTlsSize();
278 uptr GetTlsSize();
280 // Other
281 void SleepForSeconds(int seconds);
282 void SleepForMillis(int millis);
283 u64 NanoTime();
284 u64 MonotonicNanoTime();
285 int Atexit(void (*function)(void));
286 bool TemplateMatch(const char *templ, const char *str);
288 // Exit
289 void NORETURN Abort();
290 void NORETURN Die();
291 void NORETURN
292 CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2);
293 void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type,
294 const char *mmap_type, error_t err,
295 bool raw_report = false);
297 // Specific tools may override behavior of "Die" and "CheckFailed" functions
298 // to do tool-specific job.
299 typedef void (*DieCallbackType)(void);
301 // It's possible to add several callbacks that would be run when "Die" is
302 // called. The callbacks will be run in the opposite order. The tools are
303 // strongly recommended to setup all callbacks during initialization, when there
304 // is only a single thread.
305 bool AddDieCallback(DieCallbackType callback);
306 bool RemoveDieCallback(DieCallbackType callback);
308 void SetUserDieCallback(DieCallbackType callback);
310 typedef void (*CheckFailedCallbackType)(const char *, int, const char *,
311 u64, u64);
312 void SetCheckFailedCallback(CheckFailedCallbackType callback);
314 // Callback will be called if soft_rss_limit_mb is given and the limit is
315 // exceeded (exceeded==true) or if rss went down below the limit
316 // (exceeded==false).
317 // The callback should be registered once at the tool init time.
318 void SetSoftRssLimitExceededCallback(void (*Callback)(bool exceeded));
320 // Functions related to signal handling.
321 typedef void (*SignalHandlerType)(int, void *, void *);
322 HandleSignalMode GetHandleSignalMode(int signum);
323 void InstallDeadlySignalHandlers(SignalHandlerType handler);
325 // Signal reporting.
326 // Each sanitizer uses slightly different implementation of stack unwinding.
327 typedef void (*UnwindSignalStackCallbackType)(const SignalContext &sig,
328 const void *callback_context,
329 BufferedStackTrace *stack);
330 // Print deadly signal report and die.
331 void HandleDeadlySignal(void *siginfo, void *context, u32 tid,
332 UnwindSignalStackCallbackType unwind,
333 const void *unwind_context);
335 // Part of HandleDeadlySignal, exposed for asan.
336 void StartReportDeadlySignal();
337 // Part of HandleDeadlySignal, exposed for asan.
338 void ReportDeadlySignal(const SignalContext &sig, u32 tid,
339 UnwindSignalStackCallbackType unwind,
340 const void *unwind_context);
342 // Alternative signal stack (POSIX-only).
343 void SetAlternateSignalStack();
344 void UnsetAlternateSignalStack();
346 // We don't want a summary too long.
347 const int kMaxSummaryLength = 1024;
348 // Construct a one-line string:
349 // SUMMARY: SanitizerToolName: error_message
350 // and pass it to __sanitizer_report_error_summary.
351 // If alt_tool_name is provided, it's used in place of SanitizerToolName.
352 void ReportErrorSummary(const char *error_message,
353 const char *alt_tool_name = nullptr);
354 // Same as above, but construct error_message as:
355 // error_type file:line[:column][ function]
356 void ReportErrorSummary(const char *error_type, const AddressInfo &info,
357 const char *alt_tool_name = nullptr);
358 // Same as above, but obtains AddressInfo by symbolizing top stack trace frame.
359 void ReportErrorSummary(const char *error_type, const StackTrace *trace,
360 const char *alt_tool_name = nullptr);
362 void ReportMmapWriteExec(int prot);
364 // Math
365 #if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__)
366 extern "C" {
367 unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
368 unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
369 #if defined(_WIN64)
370 unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask);
371 unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask);
372 #endif
374 #endif
376 inline uptr MostSignificantSetBitIndex(uptr x) {
377 CHECK_NE(x, 0U);
378 unsigned long up;
379 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
380 # ifdef _WIN64
381 up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x);
382 # else
383 up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x);
384 # endif
385 #elif defined(_WIN64)
386 _BitScanReverse64(&up, x);
387 #else
388 _BitScanReverse(&up, x);
389 #endif
390 return up;
393 inline uptr LeastSignificantSetBitIndex(uptr x) {
394 CHECK_NE(x, 0U);
395 unsigned long up;
396 #if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
397 # ifdef _WIN64
398 up = __builtin_ctzll(x);
399 # else
400 up = __builtin_ctzl(x);
401 # endif
402 #elif defined(_WIN64)
403 _BitScanForward64(&up, x);
404 #else
405 _BitScanForward(&up, x);
406 #endif
407 return up;
410 inline bool IsPowerOfTwo(uptr x) {
411 return (x & (x - 1)) == 0;
414 inline uptr RoundUpToPowerOfTwo(uptr size) {
415 CHECK(size);
416 if (IsPowerOfTwo(size)) return size;
418 uptr up = MostSignificantSetBitIndex(size);
419 CHECK_LT(size, (1ULL << (up + 1)));
420 CHECK_GT(size, (1ULL << up));
421 return 1ULL << (up + 1);
424 inline uptr RoundUpTo(uptr size, uptr boundary) {
425 RAW_CHECK(IsPowerOfTwo(boundary));
426 return (size + boundary - 1) & ~(boundary - 1);
429 inline uptr RoundDownTo(uptr x, uptr boundary) {
430 return x & ~(boundary - 1);
433 inline bool IsAligned(uptr a, uptr alignment) {
434 return (a & (alignment - 1)) == 0;
437 inline uptr Log2(uptr x) {
438 CHECK(IsPowerOfTwo(x));
439 return LeastSignificantSetBitIndex(x);
442 // Don't use std::min, std::max or std::swap, to minimize dependency
443 // on libstdc++.
444 template<class T> T Min(T a, T b) { return a < b ? a : b; }
445 template<class T> T Max(T a, T b) { return a > b ? a : b; }
446 template<class T> void Swap(T& a, T& b) {
447 T tmp = a;
448 a = b;
449 b = tmp;
452 // Char handling
453 inline bool IsSpace(int c) {
454 return (c == ' ') || (c == '\n') || (c == '\t') ||
455 (c == '\f') || (c == '\r') || (c == '\v');
457 inline bool IsDigit(int c) {
458 return (c >= '0') && (c <= '9');
460 inline int ToLower(int c) {
461 return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c;
464 // A low-level vector based on mmap. May incur a significant memory overhead for
465 // small vectors.
466 // WARNING: The current implementation supports only POD types.
467 template<typename T>
468 class InternalMmapVectorNoCtor {
469 public:
470 void Initialize(uptr initial_capacity) {
471 capacity_bytes_ = 0;
472 size_ = 0;
473 data_ = 0;
474 reserve(initial_capacity);
476 void Destroy() { UnmapOrDie(data_, capacity_bytes_); }
477 T &operator[](uptr i) {
478 CHECK_LT(i, size_);
479 return data_[i];
481 const T &operator[](uptr i) const {
482 CHECK_LT(i, size_);
483 return data_[i];
485 void push_back(const T &element) {
486 CHECK_LE(size_, capacity());
487 if (size_ == capacity()) {
488 uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1);
489 Realloc(new_capacity);
491 internal_memcpy(&data_[size_++], &element, sizeof(T));
493 T &back() {
494 CHECK_GT(size_, 0);
495 return data_[size_ - 1];
497 void pop_back() {
498 CHECK_GT(size_, 0);
499 size_--;
501 uptr size() const {
502 return size_;
504 const T *data() const {
505 return data_;
507 T *data() {
508 return data_;
510 uptr capacity() const { return capacity_bytes_ / sizeof(T); }
511 void reserve(uptr new_size) {
512 // Never downsize internal buffer.
513 if (new_size > capacity())
514 Realloc(new_size);
516 void resize(uptr new_size) {
517 if (new_size > size_) {
518 reserve(new_size);
519 internal_memset(&data_[size_], 0, sizeof(T) * (new_size - size_));
521 size_ = new_size;
524 void clear() { size_ = 0; }
525 bool empty() const { return size() == 0; }
527 const T *begin() const {
528 return data();
530 T *begin() {
531 return data();
533 const T *end() const {
534 return data() + size();
536 T *end() {
537 return data() + size();
540 void swap(InternalMmapVectorNoCtor &other) {
541 Swap(data_, other.data_);
542 Swap(capacity_bytes_, other.capacity_bytes_);
543 Swap(size_, other.size_);
546 private:
547 void Realloc(uptr new_capacity) {
548 CHECK_GT(new_capacity, 0);
549 CHECK_LE(size_, new_capacity);
550 uptr new_capacity_bytes =
551 RoundUpTo(new_capacity * sizeof(T), GetPageSizeCached());
552 T *new_data = (T *)MmapOrDie(new_capacity_bytes, "InternalMmapVector");
553 internal_memcpy(new_data, data_, size_ * sizeof(T));
554 UnmapOrDie(data_, capacity_bytes_);
555 data_ = new_data;
556 capacity_bytes_ = new_capacity_bytes;
559 T *data_;
560 uptr capacity_bytes_;
561 uptr size_;
564 template <typename T>
565 bool operator==(const InternalMmapVectorNoCtor<T> &lhs,
566 const InternalMmapVectorNoCtor<T> &rhs) {
567 if (lhs.size() != rhs.size()) return false;
568 return internal_memcmp(lhs.data(), rhs.data(), lhs.size() * sizeof(T)) == 0;
571 template <typename T>
572 bool operator!=(const InternalMmapVectorNoCtor<T> &lhs,
573 const InternalMmapVectorNoCtor<T> &rhs) {
574 return !(lhs == rhs);
577 template<typename T>
578 class InternalMmapVector : public InternalMmapVectorNoCtor<T> {
579 public:
580 InternalMmapVector() { InternalMmapVectorNoCtor<T>::Initialize(0); }
581 explicit InternalMmapVector(uptr cnt) {
582 InternalMmapVectorNoCtor<T>::Initialize(cnt);
583 this->resize(cnt);
585 ~InternalMmapVector() { InternalMmapVectorNoCtor<T>::Destroy(); }
586 // Disallow copies and moves.
587 InternalMmapVector(const InternalMmapVector &) = delete;
588 InternalMmapVector &operator=(const InternalMmapVector &) = delete;
589 InternalMmapVector(InternalMmapVector &&) = delete;
590 InternalMmapVector &operator=(InternalMmapVector &&) = delete;
593 class InternalScopedString : public InternalMmapVector<char> {
594 public:
595 explicit InternalScopedString(uptr max_length)
596 : InternalMmapVector<char>(max_length), length_(0) {
597 (*this)[0] = '\0';
599 uptr length() { return length_; }
600 void clear() {
601 (*this)[0] = '\0';
602 length_ = 0;
604 void append(const char *format, ...);
606 private:
607 uptr length_;
610 template <class T>
611 struct CompareLess {
612 bool operator()(const T &a, const T &b) const { return a < b; }
615 // HeapSort for arrays and InternalMmapVector.
616 template <class T, class Compare = CompareLess<T>>
617 void Sort(T *v, uptr size, Compare comp = {}) {
618 if (size < 2)
619 return;
620 // Stage 1: insert elements to the heap.
621 for (uptr i = 1; i < size; i++) {
622 uptr j, p;
623 for (j = i; j > 0; j = p) {
624 p = (j - 1) / 2;
625 if (comp(v[p], v[j]))
626 Swap(v[j], v[p]);
627 else
628 break;
631 // Stage 2: swap largest element with the last one,
632 // and sink the new top.
633 for (uptr i = size - 1; i > 0; i--) {
634 Swap(v[0], v[i]);
635 uptr j, max_ind;
636 for (j = 0; j < i; j = max_ind) {
637 uptr left = 2 * j + 1;
638 uptr right = 2 * j + 2;
639 max_ind = j;
640 if (left < i && comp(v[max_ind], v[left]))
641 max_ind = left;
642 if (right < i && comp(v[max_ind], v[right]))
643 max_ind = right;
644 if (max_ind != j)
645 Swap(v[j], v[max_ind]);
646 else
647 break;
652 // Works like std::lower_bound: finds the first element that is not less
653 // than the val.
654 template <class Container, class Value, class Compare>
655 uptr InternalLowerBound(const Container &v, uptr first, uptr last,
656 const Value &val, Compare comp) {
657 while (last > first) {
658 uptr mid = (first + last) / 2;
659 if (comp(v[mid], val))
660 first = mid + 1;
661 else
662 last = mid;
664 return first;
667 enum ModuleArch {
668 kModuleArchUnknown,
669 kModuleArchI386,
670 kModuleArchX86_64,
671 kModuleArchX86_64H,
672 kModuleArchARMV6,
673 kModuleArchARMV7,
674 kModuleArchARMV7S,
675 kModuleArchARMV7K,
676 kModuleArchARM64,
677 kModuleArchRISCV64
680 // Opens the file 'file_name" and reads up to 'max_len' bytes.
681 // The resulting buffer is mmaped and stored in '*buff'.
682 // Returns true if file was successfully opened and read.
683 bool ReadFileToVector(const char *file_name,
684 InternalMmapVectorNoCtor<char> *buff,
685 uptr max_len = 1 << 26, error_t *errno_p = nullptr);
687 // Opens the file 'file_name" and reads up to 'max_len' bytes.
688 // This function is less I/O efficient than ReadFileToVector as it may reread
689 // file multiple times to avoid mmap during read attempts. It's used to read
690 // procmap, so short reads with mmap in between can produce inconsistent result.
691 // The resulting buffer is mmaped and stored in '*buff'.
692 // The size of the mmaped region is stored in '*buff_size'.
693 // The total number of read bytes is stored in '*read_len'.
694 // Returns true if file was successfully opened and read.
695 bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
696 uptr *read_len, uptr max_len = 1 << 26,
697 error_t *errno_p = nullptr);
699 // When adding a new architecture, don't forget to also update
700 // script/asan_symbolize.py and sanitizer_symbolizer_libcdep.cpp.
701 inline const char *ModuleArchToString(ModuleArch arch) {
702 switch (arch) {
703 case kModuleArchUnknown:
704 return "";
705 case kModuleArchI386:
706 return "i386";
707 case kModuleArchX86_64:
708 return "x86_64";
709 case kModuleArchX86_64H:
710 return "x86_64h";
711 case kModuleArchARMV6:
712 return "armv6";
713 case kModuleArchARMV7:
714 return "armv7";
715 case kModuleArchARMV7S:
716 return "armv7s";
717 case kModuleArchARMV7K:
718 return "armv7k";
719 case kModuleArchARM64:
720 return "arm64";
721 case kModuleArchRISCV64:
722 return "riscv64";
724 CHECK(0 && "Invalid module arch");
725 return "";
728 const uptr kModuleUUIDSize = 16;
729 const uptr kMaxSegName = 16;
731 // Represents a binary loaded into virtual memory (e.g. this can be an
732 // executable or a shared object).
733 class LoadedModule {
734 public:
735 LoadedModule()
736 : full_name_(nullptr),
737 base_address_(0),
738 max_executable_address_(0),
739 arch_(kModuleArchUnknown),
740 instrumented_(false) {
741 internal_memset(uuid_, 0, kModuleUUIDSize);
742 ranges_.clear();
744 void set(const char *module_name, uptr base_address);
745 void set(const char *module_name, uptr base_address, ModuleArch arch,
746 u8 uuid[kModuleUUIDSize], bool instrumented);
747 void clear();
748 void addAddressRange(uptr beg, uptr end, bool executable, bool writable,
749 const char *name = nullptr);
750 bool containsAddress(uptr address) const;
752 const char *full_name() const { return full_name_; }
753 uptr base_address() const { return base_address_; }
754 uptr max_executable_address() const { return max_executable_address_; }
755 ModuleArch arch() const { return arch_; }
756 const u8 *uuid() const { return uuid_; }
757 bool instrumented() const { return instrumented_; }
759 struct AddressRange {
760 AddressRange *next;
761 uptr beg;
762 uptr end;
763 bool executable;
764 bool writable;
765 char name[kMaxSegName];
767 AddressRange(uptr beg, uptr end, bool executable, bool writable,
768 const char *name)
769 : next(nullptr),
770 beg(beg),
771 end(end),
772 executable(executable),
773 writable(writable) {
774 internal_strncpy(this->name, (name ? name : ""), ARRAY_SIZE(this->name));
778 const IntrusiveList<AddressRange> &ranges() const { return ranges_; }
780 private:
781 char *full_name_; // Owned.
782 uptr base_address_;
783 uptr max_executable_address_;
784 ModuleArch arch_;
785 u8 uuid_[kModuleUUIDSize];
786 bool instrumented_;
787 IntrusiveList<AddressRange> ranges_;
790 // List of LoadedModules. OS-dependent implementation is responsible for
791 // filling this information.
792 class ListOfModules {
793 public:
794 ListOfModules() : initialized(false) {}
795 ~ListOfModules() { clear(); }
796 void init();
797 void fallbackInit(); // Uses fallback init if available, otherwise clears
798 const LoadedModule *begin() const { return modules_.begin(); }
799 LoadedModule *begin() { return modules_.begin(); }
800 const LoadedModule *end() const { return modules_.end(); }
801 LoadedModule *end() { return modules_.end(); }
802 uptr size() const { return modules_.size(); }
803 const LoadedModule &operator[](uptr i) const {
804 CHECK_LT(i, modules_.size());
805 return modules_[i];
808 private:
809 void clear() {
810 for (auto &module : modules_) module.clear();
811 modules_.clear();
813 void clearOrInit() {
814 initialized ? clear() : modules_.Initialize(kInitialCapacity);
815 initialized = true;
818 InternalMmapVectorNoCtor<LoadedModule> modules_;
819 // We rarely have more than 16K loaded modules.
820 static const uptr kInitialCapacity = 1 << 14;
821 bool initialized;
824 // Callback type for iterating over a set of memory ranges.
825 typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg);
827 enum AndroidApiLevel {
828 ANDROID_NOT_ANDROID = 0,
829 ANDROID_KITKAT = 19,
830 ANDROID_LOLLIPOP_MR1 = 22,
831 ANDROID_POST_LOLLIPOP = 23
834 void WriteToSyslog(const char *buffer);
836 #if defined(SANITIZER_WINDOWS) && defined(_MSC_VER) && !defined(__clang__)
837 #define SANITIZER_WIN_TRACE 1
838 #else
839 #define SANITIZER_WIN_TRACE 0
840 #endif
842 #if SANITIZER_MAC || SANITIZER_WIN_TRACE
843 void LogFullErrorReport(const char *buffer);
844 #else
845 inline void LogFullErrorReport(const char *buffer) {}
846 #endif
848 #if SANITIZER_LINUX || SANITIZER_MAC
849 void WriteOneLineToSyslog(const char *s);
850 void LogMessageOnPrintf(const char *str);
851 #else
852 inline void WriteOneLineToSyslog(const char *s) {}
853 inline void LogMessageOnPrintf(const char *str) {}
854 #endif
856 #if SANITIZER_LINUX || SANITIZER_WIN_TRACE
857 // Initialize Android logging. Any writes before this are silently lost.
858 void AndroidLogInit();
859 void SetAbortMessage(const char *);
860 #else
861 inline void AndroidLogInit() {}
862 // FIXME: MacOS implementation could use CRSetCrashLogMessage.
863 inline void SetAbortMessage(const char *) {}
864 #endif
866 #if SANITIZER_ANDROID
867 void SanitizerInitializeUnwinder();
868 AndroidApiLevel AndroidGetApiLevel();
869 #else
870 inline void AndroidLogWrite(const char *buffer_unused) {}
871 inline void SanitizerInitializeUnwinder() {}
872 inline AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; }
873 #endif
875 inline uptr GetPthreadDestructorIterations() {
876 #if SANITIZER_ANDROID
877 return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4;
878 #elif SANITIZER_POSIX
879 return 4;
880 #else
881 // Unused on Windows.
882 return 0;
883 #endif
886 void *internal_start_thread(void *(*func)(void*), void *arg);
887 void internal_join_thread(void *th);
888 void MaybeStartBackgroudThread();
890 // Make the compiler think that something is going on there.
891 // Use this inside a loop that looks like memset/memcpy/etc to prevent the
892 // compiler from recognising it and turning it into an actual call to
893 // memset/memcpy/etc.
894 static inline void SanitizerBreakOptimization(void *arg) {
895 #if defined(_MSC_VER) && !defined(__clang__)
896 _ReadWriteBarrier();
897 #else
898 __asm__ __volatile__("" : : "r" (arg) : "memory");
899 #endif
902 struct SignalContext {
903 void *siginfo;
904 void *context;
905 uptr addr;
906 uptr pc;
907 uptr sp;
908 uptr bp;
909 bool is_memory_access;
910 enum WriteFlag { UNKNOWN, READ, WRITE } write_flag;
912 // In some cases the kernel cannot provide the true faulting address; `addr`
913 // will be zero then. This field allows to distinguish between these cases
914 // and dereferences of null.
915 bool is_true_faulting_addr;
917 // VS2013 doesn't implement unrestricted unions, so we need a trivial default
918 // constructor
919 SignalContext() = default;
921 // Creates signal context in a platform-specific manner.
922 // SignalContext is going to keep pointers to siginfo and context without
923 // owning them.
924 SignalContext(void *siginfo, void *context)
925 : siginfo(siginfo),
926 context(context),
927 addr(GetAddress()),
928 is_memory_access(IsMemoryAccess()),
929 write_flag(GetWriteFlag()),
930 is_true_faulting_addr(IsTrueFaultingAddress()) {
931 InitPcSpBp();
934 static void DumpAllRegisters(void *context);
936 // Type of signal e.g. SIGSEGV or EXCEPTION_ACCESS_VIOLATION.
937 int GetType() const;
939 // String description of the signal.
940 const char *Describe() const;
942 // Returns true if signal is stack overflow.
943 bool IsStackOverflow() const;
945 private:
946 // Platform specific initialization.
947 void InitPcSpBp();
948 uptr GetAddress() const;
949 WriteFlag GetWriteFlag() const;
950 bool IsMemoryAccess() const;
951 bool IsTrueFaultingAddress() const;
954 void InitializePlatformEarly();
955 void MaybeReexec();
957 template <typename Fn>
958 class RunOnDestruction {
959 public:
960 explicit RunOnDestruction(Fn fn) : fn_(fn) {}
961 ~RunOnDestruction() { fn_(); }
963 private:
964 Fn fn_;
967 // A simple scope guard. Usage:
968 // auto cleanup = at_scope_exit([]{ do_cleanup; });
969 template <typename Fn>
970 RunOnDestruction<Fn> at_scope_exit(Fn fn) {
971 return RunOnDestruction<Fn>(fn);
974 // Linux on 64-bit s390 had a nasty bug that crashes the whole machine
975 // if a process uses virtual memory over 4TB (as many sanitizers like
976 // to do). This function will abort the process if running on a kernel
977 // that looks vulnerable.
978 #if SANITIZER_LINUX && SANITIZER_S390_64
979 void AvoidCVE_2016_2143();
980 #else
981 inline void AvoidCVE_2016_2143() {}
982 #endif
984 struct StackDepotStats {
985 uptr n_uniq_ids;
986 uptr allocated;
989 // The default value for allocator_release_to_os_interval_ms common flag to
990 // indicate that sanitizer allocator should not attempt to release memory to OS.
991 const s32 kReleaseToOSIntervalNever = -1;
993 void CheckNoDeepBind(const char *filename, int flag);
995 // Returns the requested amount of random data (up to 256 bytes) that can then
996 // be used to seed a PRNG. Defaults to blocking like the underlying syscall.
997 bool GetRandom(void *buffer, uptr length, bool blocking = true);
999 // Returns the number of logical processors on the system.
1000 u32 GetNumberOfCPUs();
1001 extern u32 NumberOfCPUsCached;
1002 inline u32 GetNumberOfCPUsCached() {
1003 if (!NumberOfCPUsCached)
1004 NumberOfCPUsCached = GetNumberOfCPUs();
1005 return NumberOfCPUsCached;
1008 template <typename T>
1009 class ArrayRef {
1010 public:
1011 ArrayRef() {}
1012 ArrayRef(T *begin, T *end) : begin_(begin), end_(end) {}
1014 T *begin() { return begin_; }
1015 T *end() { return end_; }
1017 private:
1018 T *begin_ = nullptr;
1019 T *end_ = nullptr;
1022 } // namespace __sanitizer
1024 inline void *operator new(__sanitizer::operator_new_size_type size,
1025 __sanitizer::LowLevelAllocator &alloc) { // NOLINT
1026 return alloc.Allocate(size);
1029 #endif // SANITIZER_COMMON_H