Reset prologue_location before calling code_end
[official-gcc.git] / libsanitizer / sanitizer_common / sanitizer_allocator_primary64.h
blob0a18b0c58ef7925ed97925db4aafaa8e6e73cc34
1 //===-- sanitizer_allocator_primary64.h -------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Part of the Sanitizer Allocator.
11 //===----------------------------------------------------------------------===//
12 #ifndef SANITIZER_ALLOCATOR_H
13 #error This file must be included inside sanitizer_allocator.h
14 #endif
16 template<class SizeClassAllocator> struct SizeClassAllocator64LocalCache;
18 // SizeClassAllocator64 -- allocator for 64-bit address space.
19 // The template parameter Params is a class containing the actual parameters.
21 // Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg.
22 // If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically my mmap.
23 // Otherwise SpaceBeg=kSpaceBeg (fixed address).
24 // kSpaceSize is a power of two.
25 // At the beginning the entire space is mprotect-ed, then small parts of it
26 // are mapped on demand.
28 // Region: a part of Space dedicated to a single size class.
29 // There are kNumClasses Regions of equal size.
31 // UserChunk: a piece of memory returned to user.
32 // MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
34 // FreeArray is an array free-d chunks (stored as 4-byte offsets)
36 // A Region looks like this:
37 // UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1 FreeArray
39 struct SizeClassAllocator64FlagMasks { // Bit masks.
40 enum {
41 kRandomShuffleChunks = 1,
45 template <class Params>
46 class SizeClassAllocator64 {
47 public:
48 using AddressSpaceView = typename Params::AddressSpaceView;
49 static const uptr kSpaceBeg = Params::kSpaceBeg;
50 static const uptr kSpaceSize = Params::kSpaceSize;
51 static const uptr kMetadataSize = Params::kMetadataSize;
52 typedef typename Params::SizeClassMap SizeClassMap;
53 typedef typename Params::MapUnmapCallback MapUnmapCallback;
55 static const bool kRandomShuffleChunks =
56 Params::kFlags & SizeClassAllocator64FlagMasks::kRandomShuffleChunks;
58 typedef SizeClassAllocator64<Params> ThisT;
59 typedef SizeClassAllocator64LocalCache<ThisT> AllocatorCache;
61 // When we know the size class (the region base) we can represent a pointer
62 // as a 4-byte integer (offset from the region start shifted right by 4).
63 typedef u32 CompactPtrT;
64 static const uptr kCompactPtrScale = 4;
65 CompactPtrT PointerToCompactPtr(uptr base, uptr ptr) const {
66 return static_cast<CompactPtrT>((ptr - base) >> kCompactPtrScale);
68 uptr CompactPtrToPointer(uptr base, CompactPtrT ptr32) const {
69 return base + (static_cast<uptr>(ptr32) << kCompactPtrScale);
72 void Init(s32 release_to_os_interval_ms) {
73 uptr TotalSpaceSize = kSpaceSize + AdditionalSize();
74 if (kUsingConstantSpaceBeg) {
75 CHECK(IsAligned(kSpaceBeg, SizeClassMap::kMaxSize));
76 CHECK_EQ(kSpaceBeg, address_range.Init(TotalSpaceSize,
77 PrimaryAllocatorName, kSpaceBeg));
78 } else {
79 // Combined allocator expects that an 2^N allocation is always aligned to
80 // 2^N. For this to work, the start of the space needs to be aligned as
81 // high as the largest size class (which also needs to be a power of 2).
82 NonConstSpaceBeg = address_range.InitAligned(
83 TotalSpaceSize, SizeClassMap::kMaxSize, PrimaryAllocatorName);
84 CHECK_NE(NonConstSpaceBeg, ~(uptr)0);
86 SetReleaseToOSIntervalMs(release_to_os_interval_ms);
87 MapWithCallbackOrDie(SpaceEnd(), AdditionalSize(),
88 "SizeClassAllocator: region info");
89 // Check that the RegionInfo array is aligned on the CacheLine size.
90 DCHECK_EQ(SpaceEnd() % kCacheLineSize, 0);
93 s32 ReleaseToOSIntervalMs() const {
94 return atomic_load(&release_to_os_interval_ms_, memory_order_relaxed);
97 void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
98 atomic_store(&release_to_os_interval_ms_, release_to_os_interval_ms,
99 memory_order_relaxed);
102 void ForceReleaseToOS() {
103 for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
104 BlockingMutexLock l(&GetRegionInfo(class_id)->mutex);
105 MaybeReleaseToOS(class_id, true /*force*/);
109 static bool CanAllocate(uptr size, uptr alignment) {
110 return size <= SizeClassMap::kMaxSize &&
111 alignment <= SizeClassMap::kMaxSize;
114 NOINLINE void ReturnToAllocator(AllocatorStats *stat, uptr class_id,
115 const CompactPtrT *chunks, uptr n_chunks) {
116 RegionInfo *region = GetRegionInfo(class_id);
117 uptr region_beg = GetRegionBeginBySizeClass(class_id);
118 CompactPtrT *free_array = GetFreeArray(region_beg);
120 BlockingMutexLock l(&region->mutex);
121 uptr old_num_chunks = region->num_freed_chunks;
122 uptr new_num_freed_chunks = old_num_chunks + n_chunks;
123 // Failure to allocate free array space while releasing memory is non
124 // recoverable.
125 if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg,
126 new_num_freed_chunks))) {
127 Report("FATAL: Internal error: %s's allocator exhausted the free list "
128 "space for size class %zd (%zd bytes).\n", SanitizerToolName,
129 class_id, ClassIdToSize(class_id));
130 Die();
132 for (uptr i = 0; i < n_chunks; i++)
133 free_array[old_num_chunks + i] = chunks[i];
134 region->num_freed_chunks = new_num_freed_chunks;
135 region->stats.n_freed += n_chunks;
137 MaybeReleaseToOS(class_id, false /*force*/);
140 NOINLINE bool GetFromAllocator(AllocatorStats *stat, uptr class_id,
141 CompactPtrT *chunks, uptr n_chunks) {
142 RegionInfo *region = GetRegionInfo(class_id);
143 uptr region_beg = GetRegionBeginBySizeClass(class_id);
144 CompactPtrT *free_array = GetFreeArray(region_beg);
146 BlockingMutexLock l(&region->mutex);
147 if (UNLIKELY(region->num_freed_chunks < n_chunks)) {
148 if (UNLIKELY(!PopulateFreeArray(stat, class_id, region,
149 n_chunks - region->num_freed_chunks)))
150 return false;
151 CHECK_GE(region->num_freed_chunks, n_chunks);
153 region->num_freed_chunks -= n_chunks;
154 uptr base_idx = region->num_freed_chunks;
155 for (uptr i = 0; i < n_chunks; i++)
156 chunks[i] = free_array[base_idx + i];
157 region->stats.n_allocated += n_chunks;
158 return true;
161 bool PointerIsMine(const void *p) const {
162 uptr P = reinterpret_cast<uptr>(p);
163 if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
164 return P / kSpaceSize == kSpaceBeg / kSpaceSize;
165 return P >= SpaceBeg() && P < SpaceEnd();
168 uptr GetRegionBegin(const void *p) {
169 if (kUsingConstantSpaceBeg)
170 return reinterpret_cast<uptr>(p) & ~(kRegionSize - 1);
171 uptr space_beg = SpaceBeg();
172 return ((reinterpret_cast<uptr>(p) - space_beg) & ~(kRegionSize - 1)) +
173 space_beg;
176 uptr GetRegionBeginBySizeClass(uptr class_id) const {
177 return SpaceBeg() + kRegionSize * class_id;
180 uptr GetSizeClass(const void *p) {
181 if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
182 return ((reinterpret_cast<uptr>(p)) / kRegionSize) % kNumClassesRounded;
183 return ((reinterpret_cast<uptr>(p) - SpaceBeg()) / kRegionSize) %
184 kNumClassesRounded;
187 void *GetBlockBegin(const void *p) {
188 uptr class_id = GetSizeClass(p);
189 if (class_id >= kNumClasses) return nullptr;
190 uptr size = ClassIdToSize(class_id);
191 if (!size) return nullptr;
192 uptr chunk_idx = GetChunkIdx((uptr)p, size);
193 uptr reg_beg = GetRegionBegin(p);
194 uptr beg = chunk_idx * size;
195 uptr next_beg = beg + size;
196 const RegionInfo *region = AddressSpaceView::Load(GetRegionInfo(class_id));
197 if (region->mapped_user >= next_beg)
198 return reinterpret_cast<void*>(reg_beg + beg);
199 return nullptr;
202 uptr GetActuallyAllocatedSize(void *p) {
203 CHECK(PointerIsMine(p));
204 return ClassIdToSize(GetSizeClass(p));
207 static uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
209 void *GetMetaData(const void *p) {
210 CHECK(kMetadataSize);
211 uptr class_id = GetSizeClass(p);
212 uptr size = ClassIdToSize(class_id);
213 uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
214 uptr region_beg = GetRegionBeginBySizeClass(class_id);
215 return reinterpret_cast<void *>(GetMetadataEnd(region_beg) -
216 (1 + chunk_idx) * kMetadataSize);
219 uptr TotalMemoryUsed() {
220 uptr res = 0;
221 for (uptr i = 0; i < kNumClasses; i++)
222 res += GetRegionInfo(i)->allocated_user;
223 return res;
226 // Test-only.
227 void TestOnlyUnmap() {
228 UnmapWithCallbackOrDie((uptr)address_range.base(), address_range.size());
231 static void FillMemoryProfile(uptr start, uptr rss, bool file, uptr *stats,
232 uptr stats_size) {
233 for (uptr class_id = 0; class_id < stats_size; class_id++)
234 if (stats[class_id] == start)
235 stats[class_id] = rss;
238 void PrintStats(uptr class_id, uptr rss) {
239 RegionInfo *region = GetRegionInfo(class_id);
240 if (region->mapped_user == 0) return;
241 uptr in_use = region->stats.n_allocated - region->stats.n_freed;
242 uptr avail_chunks = region->allocated_user / ClassIdToSize(class_id);
243 Printf(
244 "%s %02zd (%6zd): mapped: %6zdK allocs: %7zd frees: %7zd inuse: %6zd "
245 "num_freed_chunks %7zd avail: %6zd rss: %6zdK releases: %6zd "
246 "last released: %6zdK region: 0x%zx\n",
247 region->exhausted ? "F" : " ", class_id, ClassIdToSize(class_id),
248 region->mapped_user >> 10, region->stats.n_allocated,
249 region->stats.n_freed, in_use, region->num_freed_chunks, avail_chunks,
250 rss >> 10, region->rtoi.num_releases,
251 region->rtoi.last_released_bytes >> 10,
252 SpaceBeg() + kRegionSize * class_id);
255 void PrintStats() {
256 uptr rss_stats[kNumClasses];
257 for (uptr class_id = 0; class_id < kNumClasses; class_id++)
258 rss_stats[class_id] = SpaceBeg() + kRegionSize * class_id;
259 GetMemoryProfile(FillMemoryProfile, rss_stats, kNumClasses);
261 uptr total_mapped = 0;
262 uptr total_rss = 0;
263 uptr n_allocated = 0;
264 uptr n_freed = 0;
265 for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
266 RegionInfo *region = GetRegionInfo(class_id);
267 if (region->mapped_user != 0) {
268 total_mapped += region->mapped_user;
269 total_rss += rss_stats[class_id];
271 n_allocated += region->stats.n_allocated;
272 n_freed += region->stats.n_freed;
275 Printf("Stats: SizeClassAllocator64: %zdM mapped (%zdM rss) in "
276 "%zd allocations; remains %zd\n", total_mapped >> 20,
277 total_rss >> 20, n_allocated, n_allocated - n_freed);
278 for (uptr class_id = 1; class_id < kNumClasses; class_id++)
279 PrintStats(class_id, rss_stats[class_id]);
282 // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
283 // introspection API.
284 void ForceLock() {
285 for (uptr i = 0; i < kNumClasses; i++) {
286 GetRegionInfo(i)->mutex.Lock();
290 void ForceUnlock() {
291 for (int i = (int)kNumClasses - 1; i >= 0; i--) {
292 GetRegionInfo(i)->mutex.Unlock();
296 // Iterate over all existing chunks.
297 // The allocator must be locked when calling this function.
298 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
299 for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
300 RegionInfo *region = GetRegionInfo(class_id);
301 uptr chunk_size = ClassIdToSize(class_id);
302 uptr region_beg = SpaceBeg() + class_id * kRegionSize;
303 uptr region_allocated_user_size =
304 AddressSpaceView::Load(region)->allocated_user;
305 for (uptr chunk = region_beg;
306 chunk < region_beg + region_allocated_user_size;
307 chunk += chunk_size) {
308 // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
309 callback(chunk, arg);
314 static uptr ClassIdToSize(uptr class_id) {
315 return SizeClassMap::Size(class_id);
318 static uptr AdditionalSize() {
319 return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
320 GetPageSizeCached());
323 typedef SizeClassMap SizeClassMapT;
324 static const uptr kNumClasses = SizeClassMap::kNumClasses;
325 static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
327 // A packed array of counters. Each counter occupies 2^n bits, enough to store
328 // counter's max_value. Ctor will try to allocate the required buffer via
329 // mapper->MapPackedCounterArrayBuffer and the caller is expected to check
330 // whether the initialization was successful by checking IsAllocated() result.
331 // For the performance sake, none of the accessors check the validity of the
332 // arguments, it is assumed that index is always in [0, n) range and the value
333 // is not incremented past max_value.
334 template<class MemoryMapperT>
335 class PackedCounterArray {
336 public:
337 PackedCounterArray(u64 num_counters, u64 max_value, MemoryMapperT *mapper)
338 : n(num_counters), memory_mapper(mapper) {
339 CHECK_GT(num_counters, 0);
340 CHECK_GT(max_value, 0);
341 constexpr u64 kMaxCounterBits = sizeof(*buffer) * 8ULL;
342 // Rounding counter storage size up to the power of two allows for using
343 // bit shifts calculating particular counter's index and offset.
344 uptr counter_size_bits =
345 RoundUpToPowerOfTwo(MostSignificantSetBitIndex(max_value) + 1);
346 CHECK_LE(counter_size_bits, kMaxCounterBits);
347 counter_size_bits_log = Log2(counter_size_bits);
348 counter_mask = ~0ULL >> (kMaxCounterBits - counter_size_bits);
350 uptr packing_ratio = kMaxCounterBits >> counter_size_bits_log;
351 CHECK_GT(packing_ratio, 0);
352 packing_ratio_log = Log2(packing_ratio);
353 bit_offset_mask = packing_ratio - 1;
355 buffer_size =
356 (RoundUpTo(n, 1ULL << packing_ratio_log) >> packing_ratio_log) *
357 sizeof(*buffer);
358 buffer = reinterpret_cast<u64*>(
359 memory_mapper->MapPackedCounterArrayBuffer(buffer_size));
361 ~PackedCounterArray() {
362 if (buffer) {
363 memory_mapper->UnmapPackedCounterArrayBuffer(
364 reinterpret_cast<uptr>(buffer), buffer_size);
368 bool IsAllocated() const {
369 return !!buffer;
372 u64 GetCount() const {
373 return n;
376 uptr Get(uptr i) const {
377 DCHECK_LT(i, n);
378 uptr index = i >> packing_ratio_log;
379 uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
380 return (buffer[index] >> bit_offset) & counter_mask;
383 void Inc(uptr i) const {
384 DCHECK_LT(Get(i), counter_mask);
385 uptr index = i >> packing_ratio_log;
386 uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
387 buffer[index] += 1ULL << bit_offset;
390 void IncRange(uptr from, uptr to) const {
391 DCHECK_LE(from, to);
392 for (uptr i = from; i <= to; i++)
393 Inc(i);
396 private:
397 const u64 n;
398 u64 counter_size_bits_log;
399 u64 counter_mask;
400 u64 packing_ratio_log;
401 u64 bit_offset_mask;
403 MemoryMapperT* const memory_mapper;
404 u64 buffer_size;
405 u64* buffer;
408 template<class MemoryMapperT>
409 class FreePagesRangeTracker {
410 public:
411 explicit FreePagesRangeTracker(MemoryMapperT* mapper)
412 : memory_mapper(mapper),
413 page_size_scaled_log(Log2(GetPageSizeCached() >> kCompactPtrScale)),
414 in_the_range(false), current_page(0), current_range_start_page(0) {}
416 void NextPage(bool freed) {
417 if (freed) {
418 if (!in_the_range) {
419 current_range_start_page = current_page;
420 in_the_range = true;
422 } else {
423 CloseOpenedRange();
425 current_page++;
428 void Done() {
429 CloseOpenedRange();
432 private:
433 void CloseOpenedRange() {
434 if (in_the_range) {
435 memory_mapper->ReleasePageRangeToOS(
436 current_range_start_page << page_size_scaled_log,
437 current_page << page_size_scaled_log);
438 in_the_range = false;
442 MemoryMapperT* const memory_mapper;
443 const uptr page_size_scaled_log;
444 bool in_the_range;
445 uptr current_page;
446 uptr current_range_start_page;
449 // Iterates over the free_array to identify memory pages containing freed
450 // chunks only and returns these pages back to OS.
451 // allocated_pages_count is the total number of pages allocated for the
452 // current bucket.
453 template<class MemoryMapperT>
454 static void ReleaseFreeMemoryToOS(CompactPtrT *free_array,
455 uptr free_array_count, uptr chunk_size,
456 uptr allocated_pages_count,
457 MemoryMapperT *memory_mapper) {
458 const uptr page_size = GetPageSizeCached();
460 // Figure out the number of chunks per page and whether we can take a fast
461 // path (the number of chunks per page is the same for all pages).
462 uptr full_pages_chunk_count_max;
463 bool same_chunk_count_per_page;
464 if (chunk_size <= page_size && page_size % chunk_size == 0) {
465 // Same number of chunks per page, no cross overs.
466 full_pages_chunk_count_max = page_size / chunk_size;
467 same_chunk_count_per_page = true;
468 } else if (chunk_size <= page_size && page_size % chunk_size != 0 &&
469 chunk_size % (page_size % chunk_size) == 0) {
470 // Some chunks are crossing page boundaries, which means that the page
471 // contains one or two partial chunks, but all pages contain the same
472 // number of chunks.
473 full_pages_chunk_count_max = page_size / chunk_size + 1;
474 same_chunk_count_per_page = true;
475 } else if (chunk_size <= page_size) {
476 // Some chunks are crossing page boundaries, which means that the page
477 // contains one or two partial chunks.
478 full_pages_chunk_count_max = page_size / chunk_size + 2;
479 same_chunk_count_per_page = false;
480 } else if (chunk_size > page_size && chunk_size % page_size == 0) {
481 // One chunk covers multiple pages, no cross overs.
482 full_pages_chunk_count_max = 1;
483 same_chunk_count_per_page = true;
484 } else if (chunk_size > page_size) {
485 // One chunk covers multiple pages, Some chunks are crossing page
486 // boundaries. Some pages contain one chunk, some contain two.
487 full_pages_chunk_count_max = 2;
488 same_chunk_count_per_page = false;
489 } else {
490 UNREACHABLE("All chunk_size/page_size ratios must be handled.");
493 PackedCounterArray<MemoryMapperT> counters(allocated_pages_count,
494 full_pages_chunk_count_max,
495 memory_mapper);
496 if (!counters.IsAllocated())
497 return;
499 const uptr chunk_size_scaled = chunk_size >> kCompactPtrScale;
500 const uptr page_size_scaled = page_size >> kCompactPtrScale;
501 const uptr page_size_scaled_log = Log2(page_size_scaled);
503 // Iterate over free chunks and count how many free chunks affect each
504 // allocated page.
505 if (chunk_size <= page_size && page_size % chunk_size == 0) {
506 // Each chunk affects one page only.
507 for (uptr i = 0; i < free_array_count; i++)
508 counters.Inc(free_array[i] >> page_size_scaled_log);
509 } else {
510 // In all other cases chunks might affect more than one page.
511 for (uptr i = 0; i < free_array_count; i++) {
512 counters.IncRange(
513 free_array[i] >> page_size_scaled_log,
514 (free_array[i] + chunk_size_scaled - 1) >> page_size_scaled_log);
518 // Iterate over pages detecting ranges of pages with chunk counters equal
519 // to the expected number of chunks for the particular page.
520 FreePagesRangeTracker<MemoryMapperT> range_tracker(memory_mapper);
521 if (same_chunk_count_per_page) {
522 // Fast path, every page has the same number of chunks affecting it.
523 for (uptr i = 0; i < counters.GetCount(); i++)
524 range_tracker.NextPage(counters.Get(i) == full_pages_chunk_count_max);
525 } else {
526 // Show path, go through the pages keeping count how many chunks affect
527 // each page.
528 const uptr pn =
529 chunk_size < page_size ? page_size_scaled / chunk_size_scaled : 1;
530 const uptr pnc = pn * chunk_size_scaled;
531 // The idea is to increment the current page pointer by the first chunk
532 // size, middle portion size (the portion of the page covered by chunks
533 // except the first and the last one) and then the last chunk size, adding
534 // up the number of chunks on the current page and checking on every step
535 // whether the page boundary was crossed.
536 uptr prev_page_boundary = 0;
537 uptr current_boundary = 0;
538 for (uptr i = 0; i < counters.GetCount(); i++) {
539 uptr page_boundary = prev_page_boundary + page_size_scaled;
540 uptr chunks_per_page = pn;
541 if (current_boundary < page_boundary) {
542 if (current_boundary > prev_page_boundary)
543 chunks_per_page++;
544 current_boundary += pnc;
545 if (current_boundary < page_boundary) {
546 chunks_per_page++;
547 current_boundary += chunk_size_scaled;
550 prev_page_boundary = page_boundary;
552 range_tracker.NextPage(counters.Get(i) == chunks_per_page);
555 range_tracker.Done();
558 private:
559 friend class MemoryMapper;
561 ReservedAddressRange address_range;
563 static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
564 // FreeArray is the array of free-d chunks (stored as 4-byte offsets).
565 // In the worst case it may reguire kRegionSize/SizeClassMap::kMinSize
566 // elements, but in reality this will not happen. For simplicity we
567 // dedicate 1/8 of the region's virtual space to FreeArray.
568 static const uptr kFreeArraySize = kRegionSize / 8;
570 static const bool kUsingConstantSpaceBeg = kSpaceBeg != ~(uptr)0;
571 uptr NonConstSpaceBeg;
572 uptr SpaceBeg() const {
573 return kUsingConstantSpaceBeg ? kSpaceBeg : NonConstSpaceBeg;
575 uptr SpaceEnd() const { return SpaceBeg() + kSpaceSize; }
576 // kRegionSize must be >= 2^32.
577 COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
578 // kRegionSize must be <= 2^36, see CompactPtrT.
579 COMPILER_CHECK((kRegionSize) <= (1ULL << (SANITIZER_WORDSIZE / 2 + 4)));
580 // Call mmap for user memory with at least this size.
581 static const uptr kUserMapSize = 1 << 16;
582 // Call mmap for metadata memory with at least this size.
583 static const uptr kMetaMapSize = 1 << 16;
584 // Call mmap for free array memory with at least this size.
585 static const uptr kFreeArrayMapSize = 1 << 16;
587 atomic_sint32_t release_to_os_interval_ms_;
589 struct Stats {
590 uptr n_allocated;
591 uptr n_freed;
594 struct ReleaseToOsInfo {
595 uptr n_freed_at_last_release;
596 uptr num_releases;
597 u64 last_release_at_ns;
598 u64 last_released_bytes;
601 struct ALIGNED(SANITIZER_CACHE_LINE_SIZE) RegionInfo {
602 BlockingMutex mutex;
603 uptr num_freed_chunks; // Number of elements in the freearray.
604 uptr mapped_free_array; // Bytes mapped for freearray.
605 uptr allocated_user; // Bytes allocated for user memory.
606 uptr allocated_meta; // Bytes allocated for metadata.
607 uptr mapped_user; // Bytes mapped for user memory.
608 uptr mapped_meta; // Bytes mapped for metadata.
609 u32 rand_state; // Seed for random shuffle, used if kRandomShuffleChunks.
610 bool exhausted; // Whether region is out of space for new chunks.
611 Stats stats;
612 ReleaseToOsInfo rtoi;
614 COMPILER_CHECK(sizeof(RegionInfo) % kCacheLineSize == 0);
616 RegionInfo *GetRegionInfo(uptr class_id) const {
617 DCHECK_LT(class_id, kNumClasses);
618 RegionInfo *regions = reinterpret_cast<RegionInfo *>(SpaceEnd());
619 return &regions[class_id];
622 uptr GetMetadataEnd(uptr region_beg) const {
623 return region_beg + kRegionSize - kFreeArraySize;
626 uptr GetChunkIdx(uptr chunk, uptr size) const {
627 if (!kUsingConstantSpaceBeg)
628 chunk -= SpaceBeg();
630 uptr offset = chunk % kRegionSize;
631 // Here we divide by a non-constant. This is costly.
632 // size always fits into 32-bits. If the offset fits too, use 32-bit div.
633 if (offset >> (SANITIZER_WORDSIZE / 2))
634 return offset / size;
635 return (u32)offset / (u32)size;
638 CompactPtrT *GetFreeArray(uptr region_beg) const {
639 return reinterpret_cast<CompactPtrT *>(GetMetadataEnd(region_beg));
642 bool MapWithCallback(uptr beg, uptr size, const char *name) {
643 uptr mapped = address_range.Map(beg, size, name);
644 if (UNLIKELY(!mapped))
645 return false;
646 CHECK_EQ(beg, mapped);
647 MapUnmapCallback().OnMap(beg, size);
648 return true;
651 void MapWithCallbackOrDie(uptr beg, uptr size, const char *name) {
652 CHECK_EQ(beg, address_range.MapOrDie(beg, size, name));
653 MapUnmapCallback().OnMap(beg, size);
656 void UnmapWithCallbackOrDie(uptr beg, uptr size) {
657 MapUnmapCallback().OnUnmap(beg, size);
658 address_range.Unmap(beg, size);
661 bool EnsureFreeArraySpace(RegionInfo *region, uptr region_beg,
662 uptr num_freed_chunks) {
663 uptr needed_space = num_freed_chunks * sizeof(CompactPtrT);
664 if (region->mapped_free_array < needed_space) {
665 uptr new_mapped_free_array = RoundUpTo(needed_space, kFreeArrayMapSize);
666 CHECK_LE(new_mapped_free_array, kFreeArraySize);
667 uptr current_map_end = reinterpret_cast<uptr>(GetFreeArray(region_beg)) +
668 region->mapped_free_array;
669 uptr new_map_size = new_mapped_free_array - region->mapped_free_array;
670 if (UNLIKELY(!MapWithCallback(current_map_end, new_map_size,
671 "SizeClassAllocator: freearray")))
672 return false;
673 region->mapped_free_array = new_mapped_free_array;
675 return true;
678 // Check whether this size class is exhausted.
679 bool IsRegionExhausted(RegionInfo *region, uptr class_id,
680 uptr additional_map_size) {
681 if (LIKELY(region->mapped_user + region->mapped_meta +
682 additional_map_size <= kRegionSize - kFreeArraySize))
683 return false;
684 if (!region->exhausted) {
685 region->exhausted = true;
686 Printf("%s: Out of memory. ", SanitizerToolName);
687 Printf("The process has exhausted %zuMB for size class %zu.\n",
688 kRegionSize >> 20, ClassIdToSize(class_id));
690 return true;
693 NOINLINE bool PopulateFreeArray(AllocatorStats *stat, uptr class_id,
694 RegionInfo *region, uptr requested_count) {
695 // region->mutex is held.
696 const uptr region_beg = GetRegionBeginBySizeClass(class_id);
697 const uptr size = ClassIdToSize(class_id);
699 const uptr total_user_bytes =
700 region->allocated_user + requested_count * size;
701 // Map more space for chunks, if necessary.
702 if (LIKELY(total_user_bytes > region->mapped_user)) {
703 if (UNLIKELY(region->mapped_user == 0)) {
704 if (!kUsingConstantSpaceBeg && kRandomShuffleChunks)
705 // The random state is initialized from ASLR.
706 region->rand_state = static_cast<u32>(region_beg >> 12);
707 // Postpone the first release to OS attempt for ReleaseToOSIntervalMs,
708 // preventing just allocated memory from being released sooner than
709 // necessary and also preventing extraneous ReleaseMemoryPagesToOS calls
710 // for short lived processes.
711 // Do it only when the feature is turned on, to avoid a potentially
712 // extraneous syscall.
713 if (ReleaseToOSIntervalMs() >= 0)
714 region->rtoi.last_release_at_ns = MonotonicNanoTime();
716 // Do the mmap for the user memory.
717 const uptr user_map_size =
718 RoundUpTo(total_user_bytes - region->mapped_user, kUserMapSize);
719 if (UNLIKELY(IsRegionExhausted(region, class_id, user_map_size)))
720 return false;
721 if (UNLIKELY(!MapWithCallback(region_beg + region->mapped_user,
722 user_map_size,
723 "SizeClassAllocator: region data")))
724 return false;
725 stat->Add(AllocatorStatMapped, user_map_size);
726 region->mapped_user += user_map_size;
728 const uptr new_chunks_count =
729 (region->mapped_user - region->allocated_user) / size;
731 if (kMetadataSize) {
732 // Calculate the required space for metadata.
733 const uptr total_meta_bytes =
734 region->allocated_meta + new_chunks_count * kMetadataSize;
735 const uptr meta_map_size = (total_meta_bytes > region->mapped_meta) ?
736 RoundUpTo(total_meta_bytes - region->mapped_meta, kMetaMapSize) : 0;
737 // Map more space for metadata, if necessary.
738 if (meta_map_size) {
739 if (UNLIKELY(IsRegionExhausted(region, class_id, meta_map_size)))
740 return false;
741 if (UNLIKELY(!MapWithCallback(
742 GetMetadataEnd(region_beg) - region->mapped_meta - meta_map_size,
743 meta_map_size, "SizeClassAllocator: region metadata")))
744 return false;
745 region->mapped_meta += meta_map_size;
749 // If necessary, allocate more space for the free array and populate it with
750 // newly allocated chunks.
751 const uptr total_freed_chunks = region->num_freed_chunks + new_chunks_count;
752 if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg, total_freed_chunks)))
753 return false;
754 CompactPtrT *free_array = GetFreeArray(region_beg);
755 for (uptr i = 0, chunk = region->allocated_user; i < new_chunks_count;
756 i++, chunk += size)
757 free_array[total_freed_chunks - 1 - i] = PointerToCompactPtr(0, chunk);
758 if (kRandomShuffleChunks)
759 RandomShuffle(&free_array[region->num_freed_chunks], new_chunks_count,
760 &region->rand_state);
762 // All necessary memory is mapped and now it is safe to advance all
763 // 'allocated_*' counters.
764 region->num_freed_chunks += new_chunks_count;
765 region->allocated_user += new_chunks_count * size;
766 CHECK_LE(region->allocated_user, region->mapped_user);
767 region->allocated_meta += new_chunks_count * kMetadataSize;
768 CHECK_LE(region->allocated_meta, region->mapped_meta);
769 region->exhausted = false;
771 // TODO(alekseyshl): Consider bumping last_release_at_ns here to prevent
772 // MaybeReleaseToOS from releasing just allocated pages or protect these
773 // not yet used chunks some other way.
775 return true;
778 class MemoryMapper {
779 public:
780 MemoryMapper(const ThisT& base_allocator, uptr class_id)
781 : allocator(base_allocator),
782 region_base(base_allocator.GetRegionBeginBySizeClass(class_id)),
783 released_ranges_count(0),
784 released_bytes(0) {
787 uptr GetReleasedRangesCount() const {
788 return released_ranges_count;
791 uptr GetReleasedBytes() const {
792 return released_bytes;
795 uptr MapPackedCounterArrayBuffer(uptr buffer_size) {
796 // TODO(alekseyshl): The idea to explore is to check if we have enough
797 // space between num_freed_chunks*sizeof(CompactPtrT) and
798 // mapped_free_array to fit buffer_size bytes and use that space instead
799 // of mapping a temporary one.
800 return reinterpret_cast<uptr>(
801 MmapOrDieOnFatalError(buffer_size, "ReleaseToOSPageCounters"));
804 void UnmapPackedCounterArrayBuffer(uptr buffer, uptr buffer_size) {
805 UnmapOrDie(reinterpret_cast<void *>(buffer), buffer_size);
808 // Releases [from, to) range of pages back to OS.
809 void ReleasePageRangeToOS(CompactPtrT from, CompactPtrT to) {
810 const uptr from_page = allocator.CompactPtrToPointer(region_base, from);
811 const uptr to_page = allocator.CompactPtrToPointer(region_base, to);
812 ReleaseMemoryPagesToOS(from_page, to_page);
813 released_ranges_count++;
814 released_bytes += to_page - from_page;
817 private:
818 const ThisT& allocator;
819 const uptr region_base;
820 uptr released_ranges_count;
821 uptr released_bytes;
824 // Attempts to release RAM occupied by freed chunks back to OS. The region is
825 // expected to be locked.
826 void MaybeReleaseToOS(uptr class_id, bool force) {
827 RegionInfo *region = GetRegionInfo(class_id);
828 const uptr chunk_size = ClassIdToSize(class_id);
829 const uptr page_size = GetPageSizeCached();
831 uptr n = region->num_freed_chunks;
832 if (n * chunk_size < page_size)
833 return; // No chance to release anything.
834 if ((region->stats.n_freed -
835 region->rtoi.n_freed_at_last_release) * chunk_size < page_size) {
836 return; // Nothing new to release.
839 if (!force) {
840 s32 interval_ms = ReleaseToOSIntervalMs();
841 if (interval_ms < 0)
842 return;
844 if (region->rtoi.last_release_at_ns + interval_ms * 1000000ULL >
845 MonotonicNanoTime()) {
846 return; // Memory was returned recently.
850 MemoryMapper memory_mapper(*this, class_id);
852 ReleaseFreeMemoryToOS<MemoryMapper>(
853 GetFreeArray(GetRegionBeginBySizeClass(class_id)), n, chunk_size,
854 RoundUpTo(region->allocated_user, page_size) / page_size,
855 &memory_mapper);
857 if (memory_mapper.GetReleasedRangesCount() > 0) {
858 region->rtoi.n_freed_at_last_release = region->stats.n_freed;
859 region->rtoi.num_releases += memory_mapper.GetReleasedRangesCount();
860 region->rtoi.last_released_bytes = memory_mapper.GetReleasedBytes();
862 region->rtoi.last_release_at_ns = MonotonicNanoTime();