2007-05-01 H.J. Lu <hongjiu.lu@intel.com>
[official-gcc.git] / gcc / fold-const.c
blob6311be7e0848e72fcd6e1a440ff5d8cbf5889271
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /*@@ This file should be rewritten to use an arbitrary precision
24 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
25 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
26 @@ The routines that translate from the ap rep should
27 @@ warn if precision et. al. is lost.
28 @@ This would also make life easier when this technology is used
29 @@ for cross-compilers. */
31 /* The entry points in this file are fold, size_int_wide, size_binop
32 and force_fit_type_double.
34 fold takes a tree as argument and returns a simplified tree.
36 size_binop takes a tree code for an arithmetic operation
37 and two operands that are trees, and produces a tree for the
38 result, assuming the type comes from `sizetype'.
40 size_int takes an integer value, and creates a tree constant
41 with type from `sizetype'.
43 force_fit_type_double takes a constant, an overflowable flag and a
44 prior overflow indicator. It forces the value to fit the type and
45 sets TREE_OVERFLOW.
47 Note: Since the folders get called on non-gimple code as well as
48 gimple code, we need to handle GIMPLE tuples as well as their
49 corresponding tree equivalents. */
51 #include "config.h"
52 #include "system.h"
53 #include "coretypes.h"
54 #include "tm.h"
55 #include "flags.h"
56 #include "tree.h"
57 #include "real.h"
58 #include "rtl.h"
59 #include "expr.h"
60 #include "tm_p.h"
61 #include "toplev.h"
62 #include "intl.h"
63 #include "ggc.h"
64 #include "hashtab.h"
65 #include "langhooks.h"
66 #include "md5.h"
68 /* Non-zero if we are folding constants inside an initializer; zero
69 otherwise. */
70 int folding_initializer = 0;
72 /* The following constants represent a bit based encoding of GCC's
73 comparison operators. This encoding simplifies transformations
74 on relational comparison operators, such as AND and OR. */
75 enum comparison_code {
76 COMPCODE_FALSE = 0,
77 COMPCODE_LT = 1,
78 COMPCODE_EQ = 2,
79 COMPCODE_LE = 3,
80 COMPCODE_GT = 4,
81 COMPCODE_LTGT = 5,
82 COMPCODE_GE = 6,
83 COMPCODE_ORD = 7,
84 COMPCODE_UNORD = 8,
85 COMPCODE_UNLT = 9,
86 COMPCODE_UNEQ = 10,
87 COMPCODE_UNLE = 11,
88 COMPCODE_UNGT = 12,
89 COMPCODE_NE = 13,
90 COMPCODE_UNGE = 14,
91 COMPCODE_TRUE = 15
94 static void encode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT, HOST_WIDE_INT);
95 static void decode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
96 static bool negate_mathfn_p (enum built_in_function);
97 static bool negate_expr_p (tree);
98 static tree negate_expr (tree);
99 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
100 static tree associate_trees (tree, tree, enum tree_code, tree);
101 static tree const_binop (enum tree_code, tree, tree, int);
102 static enum comparison_code comparison_to_compcode (enum tree_code);
103 static enum tree_code compcode_to_comparison (enum comparison_code);
104 static tree combine_comparisons (enum tree_code, enum tree_code,
105 enum tree_code, tree, tree, tree);
106 static int truth_value_p (enum tree_code);
107 static int operand_equal_for_comparison_p (tree, tree, tree);
108 static int twoval_comparison_p (tree, tree *, tree *, int *);
109 static tree eval_subst (tree, tree, tree, tree, tree);
110 static tree pedantic_omit_one_operand (tree, tree, tree);
111 static tree distribute_bit_expr (enum tree_code, tree, tree, tree);
112 static tree make_bit_field_ref (tree, tree, int, int, int);
113 static tree optimize_bit_field_compare (enum tree_code, tree, tree, tree);
114 static tree decode_field_reference (tree, HOST_WIDE_INT *, HOST_WIDE_INT *,
115 enum machine_mode *, int *, int *,
116 tree *, tree *);
117 static int all_ones_mask_p (tree, int);
118 static tree sign_bit_p (tree, tree);
119 static int simple_operand_p (tree);
120 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
121 static tree range_predecessor (tree);
122 static tree range_successor (tree);
123 static tree make_range (tree, int *, tree *, tree *, bool *);
124 static tree build_range_check (tree, tree, int, tree, tree);
125 static int merge_ranges (int *, tree *, tree *, int, tree, tree, int, tree,
126 tree);
127 static tree fold_range_test (enum tree_code, tree, tree, tree);
128 static tree fold_cond_expr_with_comparison (tree, tree, tree, tree);
129 static tree unextend (tree, int, int, tree);
130 static tree fold_truthop (enum tree_code, tree, tree, tree);
131 static tree optimize_minmax_comparison (enum tree_code, tree, tree, tree);
132 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
133 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
134 static tree fold_binary_op_with_conditional_arg (enum tree_code, tree,
135 tree, tree,
136 tree, tree, int);
137 static bool fold_real_zero_addition_p (tree, tree, int);
138 static tree fold_mathfn_compare (enum built_in_function, enum tree_code,
139 tree, tree, tree);
140 static tree fold_inf_compare (enum tree_code, tree, tree, tree);
141 static tree fold_div_compare (enum tree_code, tree, tree, tree);
142 static bool reorder_operands_p (tree, tree);
143 static tree fold_negate_const (tree, tree);
144 static tree fold_not_const (tree, tree);
145 static tree fold_relational_const (enum tree_code, tree, tree, tree);
148 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
149 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
150 and SUM1. Then this yields nonzero if overflow occurred during the
151 addition.
153 Overflow occurs if A and B have the same sign, but A and SUM differ in
154 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
155 sign. */
156 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
158 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
159 We do that by representing the two-word integer in 4 words, with only
160 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
161 number. The value of the word is LOWPART + HIGHPART * BASE. */
163 #define LOWPART(x) \
164 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
165 #define HIGHPART(x) \
166 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
167 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
169 /* Unpack a two-word integer into 4 words.
170 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
171 WORDS points to the array of HOST_WIDE_INTs. */
173 static void
174 encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
176 words[0] = LOWPART (low);
177 words[1] = HIGHPART (low);
178 words[2] = LOWPART (hi);
179 words[3] = HIGHPART (hi);
182 /* Pack an array of 4 words into a two-word integer.
183 WORDS points to the array of words.
184 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
186 static void
187 decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
188 HOST_WIDE_INT *hi)
190 *low = words[0] + words[1] * BASE;
191 *hi = words[2] + words[3] * BASE;
194 /* Force the double-word integer L1, H1 to be within the range of the
195 integer type TYPE. Stores the properly truncated and sign-extended
196 double-word integer in *LV, *HV. Returns true if the operation
197 overflows, that is, argument and result are different. */
200 fit_double_type (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
201 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, tree type)
203 unsigned HOST_WIDE_INT low0 = l1;
204 HOST_WIDE_INT high0 = h1;
205 unsigned int prec;
206 int sign_extended_type;
208 if (POINTER_TYPE_P (type)
209 || TREE_CODE (type) == OFFSET_TYPE)
210 prec = POINTER_SIZE;
211 else
212 prec = TYPE_PRECISION (type);
214 /* Size types *are* sign extended. */
215 sign_extended_type = (!TYPE_UNSIGNED (type)
216 || (TREE_CODE (type) == INTEGER_TYPE
217 && TYPE_IS_SIZETYPE (type)));
219 /* First clear all bits that are beyond the type's precision. */
220 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
222 else if (prec > HOST_BITS_PER_WIDE_INT)
223 h1 &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
224 else
226 h1 = 0;
227 if (prec < HOST_BITS_PER_WIDE_INT)
228 l1 &= ~((HOST_WIDE_INT) (-1) << prec);
231 /* Then do sign extension if necessary. */
232 if (!sign_extended_type)
233 /* No sign extension */;
234 else if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
235 /* Correct width already. */;
236 else if (prec > HOST_BITS_PER_WIDE_INT)
238 /* Sign extend top half? */
239 if (h1 & ((unsigned HOST_WIDE_INT)1
240 << (prec - HOST_BITS_PER_WIDE_INT - 1)))
241 h1 |= (HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT);
243 else if (prec == HOST_BITS_PER_WIDE_INT)
245 if ((HOST_WIDE_INT)l1 < 0)
246 h1 = -1;
248 else
250 /* Sign extend bottom half? */
251 if (l1 & ((unsigned HOST_WIDE_INT)1 << (prec - 1)))
253 h1 = -1;
254 l1 |= (HOST_WIDE_INT)(-1) << prec;
258 *lv = l1;
259 *hv = h1;
261 /* If the value didn't fit, signal overflow. */
262 return l1 != low0 || h1 != high0;
265 /* We force the double-int HIGH:LOW to the range of the type TYPE by
266 sign or zero extending it.
267 OVERFLOWABLE indicates if we are interested
268 in overflow of the value, when >0 we are only interested in signed
269 overflow, for <0 we are interested in any overflow. OVERFLOWED
270 indicates whether overflow has already occurred. CONST_OVERFLOWED
271 indicates whether constant overflow has already occurred. We force
272 T's value to be within range of T's type (by setting to 0 or 1 all
273 the bits outside the type's range). We set TREE_OVERFLOWED if,
274 OVERFLOWED is nonzero,
275 or OVERFLOWABLE is >0 and signed overflow occurs
276 or OVERFLOWABLE is <0 and any overflow occurs
277 We return a new tree node for the extended double-int. The node
278 is shared if no overflow flags are set. */
280 tree
281 force_fit_type_double (tree type, unsigned HOST_WIDE_INT low,
282 HOST_WIDE_INT high, int overflowable,
283 bool overflowed)
285 int sign_extended_type;
286 bool overflow;
288 /* Size types *are* sign extended. */
289 sign_extended_type = (!TYPE_UNSIGNED (type)
290 || (TREE_CODE (type) == INTEGER_TYPE
291 && TYPE_IS_SIZETYPE (type)));
293 overflow = fit_double_type (low, high, &low, &high, type);
295 /* If we need to set overflow flags, return a new unshared node. */
296 if (overflowed || overflow)
298 if (overflowed
299 || overflowable < 0
300 || (overflowable > 0 && sign_extended_type))
302 tree t = make_node (INTEGER_CST);
303 TREE_INT_CST_LOW (t) = low;
304 TREE_INT_CST_HIGH (t) = high;
305 TREE_TYPE (t) = type;
306 TREE_OVERFLOW (t) = 1;
307 return t;
311 /* Else build a shared node. */
312 return build_int_cst_wide (type, low, high);
315 /* Add two doubleword integers with doubleword result.
316 Return nonzero if the operation overflows according to UNSIGNED_P.
317 Each argument is given as two `HOST_WIDE_INT' pieces.
318 One argument is L1 and H1; the other, L2 and H2.
319 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
322 add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
323 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
324 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
325 bool unsigned_p)
327 unsigned HOST_WIDE_INT l;
328 HOST_WIDE_INT h;
330 l = l1 + l2;
331 h = h1 + h2 + (l < l1);
333 *lv = l;
334 *hv = h;
336 if (unsigned_p)
337 return (unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1;
338 else
339 return OVERFLOW_SUM_SIGN (h1, h2, h);
342 /* Negate a doubleword integer with doubleword result.
343 Return nonzero if the operation overflows, assuming it's signed.
344 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
345 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
348 neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
349 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
351 if (l1 == 0)
353 *lv = 0;
354 *hv = - h1;
355 return (*hv & h1) < 0;
357 else
359 *lv = -l1;
360 *hv = ~h1;
361 return 0;
365 /* Multiply two doubleword integers with doubleword result.
366 Return nonzero if the operation overflows according to UNSIGNED_P.
367 Each argument is given as two `HOST_WIDE_INT' pieces.
368 One argument is L1 and H1; the other, L2 and H2.
369 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
372 mul_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
373 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
374 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
375 bool unsigned_p)
377 HOST_WIDE_INT arg1[4];
378 HOST_WIDE_INT arg2[4];
379 HOST_WIDE_INT prod[4 * 2];
380 unsigned HOST_WIDE_INT carry;
381 int i, j, k;
382 unsigned HOST_WIDE_INT toplow, neglow;
383 HOST_WIDE_INT tophigh, neghigh;
385 encode (arg1, l1, h1);
386 encode (arg2, l2, h2);
388 memset (prod, 0, sizeof prod);
390 for (i = 0; i < 4; i++)
392 carry = 0;
393 for (j = 0; j < 4; j++)
395 k = i + j;
396 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
397 carry += arg1[i] * arg2[j];
398 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
399 carry += prod[k];
400 prod[k] = LOWPART (carry);
401 carry = HIGHPART (carry);
403 prod[i + 4] = carry;
406 decode (prod, lv, hv);
407 decode (prod + 4, &toplow, &tophigh);
409 /* Unsigned overflow is immediate. */
410 if (unsigned_p)
411 return (toplow | tophigh) != 0;
413 /* Check for signed overflow by calculating the signed representation of the
414 top half of the result; it should agree with the low half's sign bit. */
415 if (h1 < 0)
417 neg_double (l2, h2, &neglow, &neghigh);
418 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
420 if (h2 < 0)
422 neg_double (l1, h1, &neglow, &neghigh);
423 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
425 return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
428 /* Shift the doubleword integer in L1, H1 left by COUNT places
429 keeping only PREC bits of result.
430 Shift right if COUNT is negative.
431 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
432 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
434 void
435 lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
436 HOST_WIDE_INT count, unsigned int prec,
437 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, int arith)
439 unsigned HOST_WIDE_INT signmask;
441 if (count < 0)
443 rshift_double (l1, h1, -count, prec, lv, hv, arith);
444 return;
447 if (SHIFT_COUNT_TRUNCATED)
448 count %= prec;
450 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
452 /* Shifting by the host word size is undefined according to the
453 ANSI standard, so we must handle this as a special case. */
454 *hv = 0;
455 *lv = 0;
457 else if (count >= HOST_BITS_PER_WIDE_INT)
459 *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
460 *lv = 0;
462 else
464 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
465 | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
466 *lv = l1 << count;
469 /* Sign extend all bits that are beyond the precision. */
471 signmask = -((prec > HOST_BITS_PER_WIDE_INT
472 ? ((unsigned HOST_WIDE_INT) *hv
473 >> (prec - HOST_BITS_PER_WIDE_INT - 1))
474 : (*lv >> (prec - 1))) & 1);
476 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
478 else if (prec >= HOST_BITS_PER_WIDE_INT)
480 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
481 *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
483 else
485 *hv = signmask;
486 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
487 *lv |= signmask << prec;
491 /* Shift the doubleword integer in L1, H1 right by COUNT places
492 keeping only PREC bits of result. COUNT must be positive.
493 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
494 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
496 void
497 rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
498 HOST_WIDE_INT count, unsigned int prec,
499 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
500 int arith)
502 unsigned HOST_WIDE_INT signmask;
504 signmask = (arith
505 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
506 : 0);
508 if (SHIFT_COUNT_TRUNCATED)
509 count %= prec;
511 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
513 /* Shifting by the host word size is undefined according to the
514 ANSI standard, so we must handle this as a special case. */
515 *hv = 0;
516 *lv = 0;
518 else if (count >= HOST_BITS_PER_WIDE_INT)
520 *hv = 0;
521 *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
523 else
525 *hv = (unsigned HOST_WIDE_INT) h1 >> count;
526 *lv = ((l1 >> count)
527 | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
530 /* Zero / sign extend all bits that are beyond the precision. */
532 if (count >= (HOST_WIDE_INT)prec)
534 *hv = signmask;
535 *lv = signmask;
537 else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
539 else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
541 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
542 *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
544 else
546 *hv = signmask;
547 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
548 *lv |= signmask << (prec - count);
552 /* Rotate the doubleword integer in L1, H1 left by COUNT places
553 keeping only PREC bits of result.
554 Rotate right if COUNT is negative.
555 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
557 void
558 lrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
559 HOST_WIDE_INT count, unsigned int prec,
560 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
562 unsigned HOST_WIDE_INT s1l, s2l;
563 HOST_WIDE_INT s1h, s2h;
565 count %= prec;
566 if (count < 0)
567 count += prec;
569 lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
570 rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
571 *lv = s1l | s2l;
572 *hv = s1h | s2h;
575 /* Rotate the doubleword integer in L1, H1 left by COUNT places
576 keeping only PREC bits of result. COUNT must be positive.
577 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
579 void
580 rrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
581 HOST_WIDE_INT count, unsigned int prec,
582 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
584 unsigned HOST_WIDE_INT s1l, s2l;
585 HOST_WIDE_INT s1h, s2h;
587 count %= prec;
588 if (count < 0)
589 count += prec;
591 rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
592 lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
593 *lv = s1l | s2l;
594 *hv = s1h | s2h;
597 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
598 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
599 CODE is a tree code for a kind of division, one of
600 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
601 or EXACT_DIV_EXPR
602 It controls how the quotient is rounded to an integer.
603 Return nonzero if the operation overflows.
604 UNS nonzero says do unsigned division. */
607 div_and_round_double (enum tree_code code, int uns,
608 unsigned HOST_WIDE_INT lnum_orig, /* num == numerator == dividend */
609 HOST_WIDE_INT hnum_orig,
610 unsigned HOST_WIDE_INT lden_orig, /* den == denominator == divisor */
611 HOST_WIDE_INT hden_orig,
612 unsigned HOST_WIDE_INT *lquo,
613 HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
614 HOST_WIDE_INT *hrem)
616 int quo_neg = 0;
617 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
618 HOST_WIDE_INT den[4], quo[4];
619 int i, j;
620 unsigned HOST_WIDE_INT work;
621 unsigned HOST_WIDE_INT carry = 0;
622 unsigned HOST_WIDE_INT lnum = lnum_orig;
623 HOST_WIDE_INT hnum = hnum_orig;
624 unsigned HOST_WIDE_INT lden = lden_orig;
625 HOST_WIDE_INT hden = hden_orig;
626 int overflow = 0;
628 if (hden == 0 && lden == 0)
629 overflow = 1, lden = 1;
631 /* Calculate quotient sign and convert operands to unsigned. */
632 if (!uns)
634 if (hnum < 0)
636 quo_neg = ~ quo_neg;
637 /* (minimum integer) / (-1) is the only overflow case. */
638 if (neg_double (lnum, hnum, &lnum, &hnum)
639 && ((HOST_WIDE_INT) lden & hden) == -1)
640 overflow = 1;
642 if (hden < 0)
644 quo_neg = ~ quo_neg;
645 neg_double (lden, hden, &lden, &hden);
649 if (hnum == 0 && hden == 0)
650 { /* single precision */
651 *hquo = *hrem = 0;
652 /* This unsigned division rounds toward zero. */
653 *lquo = lnum / lden;
654 goto finish_up;
657 if (hnum == 0)
658 { /* trivial case: dividend < divisor */
659 /* hden != 0 already checked. */
660 *hquo = *lquo = 0;
661 *hrem = hnum;
662 *lrem = lnum;
663 goto finish_up;
666 memset (quo, 0, sizeof quo);
668 memset (num, 0, sizeof num); /* to zero 9th element */
669 memset (den, 0, sizeof den);
671 encode (num, lnum, hnum);
672 encode (den, lden, hden);
674 /* Special code for when the divisor < BASE. */
675 if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
677 /* hnum != 0 already checked. */
678 for (i = 4 - 1; i >= 0; i--)
680 work = num[i] + carry * BASE;
681 quo[i] = work / lden;
682 carry = work % lden;
685 else
687 /* Full double precision division,
688 with thanks to Don Knuth's "Seminumerical Algorithms". */
689 int num_hi_sig, den_hi_sig;
690 unsigned HOST_WIDE_INT quo_est, scale;
692 /* Find the highest nonzero divisor digit. */
693 for (i = 4 - 1;; i--)
694 if (den[i] != 0)
696 den_hi_sig = i;
697 break;
700 /* Insure that the first digit of the divisor is at least BASE/2.
701 This is required by the quotient digit estimation algorithm. */
703 scale = BASE / (den[den_hi_sig] + 1);
704 if (scale > 1)
705 { /* scale divisor and dividend */
706 carry = 0;
707 for (i = 0; i <= 4 - 1; i++)
709 work = (num[i] * scale) + carry;
710 num[i] = LOWPART (work);
711 carry = HIGHPART (work);
714 num[4] = carry;
715 carry = 0;
716 for (i = 0; i <= 4 - 1; i++)
718 work = (den[i] * scale) + carry;
719 den[i] = LOWPART (work);
720 carry = HIGHPART (work);
721 if (den[i] != 0) den_hi_sig = i;
725 num_hi_sig = 4;
727 /* Main loop */
728 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
730 /* Guess the next quotient digit, quo_est, by dividing the first
731 two remaining dividend digits by the high order quotient digit.
732 quo_est is never low and is at most 2 high. */
733 unsigned HOST_WIDE_INT tmp;
735 num_hi_sig = i + den_hi_sig + 1;
736 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
737 if (num[num_hi_sig] != den[den_hi_sig])
738 quo_est = work / den[den_hi_sig];
739 else
740 quo_est = BASE - 1;
742 /* Refine quo_est so it's usually correct, and at most one high. */
743 tmp = work - quo_est * den[den_hi_sig];
744 if (tmp < BASE
745 && (den[den_hi_sig - 1] * quo_est
746 > (tmp * BASE + num[num_hi_sig - 2])))
747 quo_est--;
749 /* Try QUO_EST as the quotient digit, by multiplying the
750 divisor by QUO_EST and subtracting from the remaining dividend.
751 Keep in mind that QUO_EST is the I - 1st digit. */
753 carry = 0;
754 for (j = 0; j <= den_hi_sig; j++)
756 work = quo_est * den[j] + carry;
757 carry = HIGHPART (work);
758 work = num[i + j] - LOWPART (work);
759 num[i + j] = LOWPART (work);
760 carry += HIGHPART (work) != 0;
763 /* If quo_est was high by one, then num[i] went negative and
764 we need to correct things. */
765 if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
767 quo_est--;
768 carry = 0; /* add divisor back in */
769 for (j = 0; j <= den_hi_sig; j++)
771 work = num[i + j] + den[j] + carry;
772 carry = HIGHPART (work);
773 num[i + j] = LOWPART (work);
776 num [num_hi_sig] += carry;
779 /* Store the quotient digit. */
780 quo[i] = quo_est;
784 decode (quo, lquo, hquo);
786 finish_up:
787 /* If result is negative, make it so. */
788 if (quo_neg)
789 neg_double (*lquo, *hquo, lquo, hquo);
791 /* Compute trial remainder: rem = num - (quo * den) */
792 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
793 neg_double (*lrem, *hrem, lrem, hrem);
794 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
796 switch (code)
798 case TRUNC_DIV_EXPR:
799 case TRUNC_MOD_EXPR: /* round toward zero */
800 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
801 return overflow;
803 case FLOOR_DIV_EXPR:
804 case FLOOR_MOD_EXPR: /* round toward negative infinity */
805 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
807 /* quo = quo - 1; */
808 add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
809 lquo, hquo);
811 else
812 return overflow;
813 break;
815 case CEIL_DIV_EXPR:
816 case CEIL_MOD_EXPR: /* round toward positive infinity */
817 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
819 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
820 lquo, hquo);
822 else
823 return overflow;
824 break;
826 case ROUND_DIV_EXPR:
827 case ROUND_MOD_EXPR: /* round to closest integer */
829 unsigned HOST_WIDE_INT labs_rem = *lrem;
830 HOST_WIDE_INT habs_rem = *hrem;
831 unsigned HOST_WIDE_INT labs_den = lden, ltwice;
832 HOST_WIDE_INT habs_den = hden, htwice;
834 /* Get absolute values. */
835 if (*hrem < 0)
836 neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
837 if (hden < 0)
838 neg_double (lden, hden, &labs_den, &habs_den);
840 /* If (2 * abs (lrem) >= abs (lden)) */
841 mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
842 labs_rem, habs_rem, &ltwice, &htwice);
844 if (((unsigned HOST_WIDE_INT) habs_den
845 < (unsigned HOST_WIDE_INT) htwice)
846 || (((unsigned HOST_WIDE_INT) habs_den
847 == (unsigned HOST_WIDE_INT) htwice)
848 && (labs_den < ltwice)))
850 if (*hquo < 0)
851 /* quo = quo - 1; */
852 add_double (*lquo, *hquo,
853 (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
854 else
855 /* quo = quo + 1; */
856 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
857 lquo, hquo);
859 else
860 return overflow;
862 break;
864 default:
865 gcc_unreachable ();
868 /* Compute true remainder: rem = num - (quo * den) */
869 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
870 neg_double (*lrem, *hrem, lrem, hrem);
871 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
872 return overflow;
875 /* If ARG2 divides ARG1 with zero remainder, carries out the division
876 of type CODE and returns the quotient.
877 Otherwise returns NULL_TREE. */
879 static tree
880 div_if_zero_remainder (enum tree_code code, tree arg1, tree arg2)
882 unsigned HOST_WIDE_INT int1l, int2l;
883 HOST_WIDE_INT int1h, int2h;
884 unsigned HOST_WIDE_INT quol, reml;
885 HOST_WIDE_INT quoh, remh;
886 tree type = TREE_TYPE (arg1);
887 int uns = TYPE_UNSIGNED (type);
889 int1l = TREE_INT_CST_LOW (arg1);
890 int1h = TREE_INT_CST_HIGH (arg1);
891 /* &obj[0] + -128 really should be compiled as &obj[-8] rahter than
892 &obj[some_exotic_number]. */
893 if (POINTER_TYPE_P (type))
895 uns = false;
896 type = signed_type_for (type);
897 fit_double_type (int1l, int1h, &int1l, &int1h,
898 type);
900 else
901 fit_double_type (int1l, int1h, &int1l, &int1h, type);
902 int2l = TREE_INT_CST_LOW (arg2);
903 int2h = TREE_INT_CST_HIGH (arg2);
905 div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
906 &quol, &quoh, &reml, &remh);
907 if (remh != 0 || reml != 0)
908 return NULL_TREE;
910 return build_int_cst_wide (type, quol, quoh);
913 /* This is non-zero if we should defer warnings about undefined
914 overflow. This facility exists because these warnings are a
915 special case. The code to estimate loop iterations does not want
916 to issue any warnings, since it works with expressions which do not
917 occur in user code. Various bits of cleanup code call fold(), but
918 only use the result if it has certain characteristics (e.g., is a
919 constant); that code only wants to issue a warning if the result is
920 used. */
922 static int fold_deferring_overflow_warnings;
924 /* If a warning about undefined overflow is deferred, this is the
925 warning. Note that this may cause us to turn two warnings into
926 one, but that is fine since it is sufficient to only give one
927 warning per expression. */
929 static const char* fold_deferred_overflow_warning;
931 /* If a warning about undefined overflow is deferred, this is the
932 level at which the warning should be emitted. */
934 static enum warn_strict_overflow_code fold_deferred_overflow_code;
936 /* Start deferring overflow warnings. We could use a stack here to
937 permit nested calls, but at present it is not necessary. */
939 void
940 fold_defer_overflow_warnings (void)
942 ++fold_deferring_overflow_warnings;
945 /* Stop deferring overflow warnings. If there is a pending warning,
946 and ISSUE is true, then issue the warning if appropriate. STMT is
947 the statement with which the warning should be associated (used for
948 location information); STMT may be NULL. CODE is the level of the
949 warning--a warn_strict_overflow_code value. This function will use
950 the smaller of CODE and the deferred code when deciding whether to
951 issue the warning. CODE may be zero to mean to always use the
952 deferred code. */
954 void
955 fold_undefer_overflow_warnings (bool issue, tree stmt, int code)
957 const char *warnmsg;
958 location_t locus;
960 gcc_assert (fold_deferring_overflow_warnings > 0);
961 --fold_deferring_overflow_warnings;
962 if (fold_deferring_overflow_warnings > 0)
964 if (fold_deferred_overflow_warning != NULL
965 && code != 0
966 && code < (int) fold_deferred_overflow_code)
967 fold_deferred_overflow_code = code;
968 return;
971 warnmsg = fold_deferred_overflow_warning;
972 fold_deferred_overflow_warning = NULL;
974 if (!issue || warnmsg == NULL)
975 return;
977 /* Use the smallest code level when deciding to issue the
978 warning. */
979 if (code == 0 || code > (int) fold_deferred_overflow_code)
980 code = fold_deferred_overflow_code;
982 if (!issue_strict_overflow_warning (code))
983 return;
985 if (stmt == NULL_TREE || !expr_has_location (stmt))
986 locus = input_location;
987 else
988 locus = expr_location (stmt);
989 warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
992 /* Stop deferring overflow warnings, ignoring any deferred
993 warnings. */
995 void
996 fold_undefer_and_ignore_overflow_warnings (void)
998 fold_undefer_overflow_warnings (false, NULL_TREE, 0);
1001 /* Whether we are deferring overflow warnings. */
1003 bool
1004 fold_deferring_overflow_warnings_p (void)
1006 return fold_deferring_overflow_warnings > 0;
1009 /* This is called when we fold something based on the fact that signed
1010 overflow is undefined. */
1012 static void
1013 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
1015 gcc_assert (!flag_wrapv && !flag_trapv);
1016 if (fold_deferring_overflow_warnings > 0)
1018 if (fold_deferred_overflow_warning == NULL
1019 || wc < fold_deferred_overflow_code)
1021 fold_deferred_overflow_warning = gmsgid;
1022 fold_deferred_overflow_code = wc;
1025 else if (issue_strict_overflow_warning (wc))
1026 warning (OPT_Wstrict_overflow, gmsgid);
1029 /* Return true if the built-in mathematical function specified by CODE
1030 is odd, i.e. -f(x) == f(-x). */
1032 static bool
1033 negate_mathfn_p (enum built_in_function code)
1035 switch (code)
1037 CASE_FLT_FN (BUILT_IN_ASIN):
1038 CASE_FLT_FN (BUILT_IN_ASINH):
1039 CASE_FLT_FN (BUILT_IN_ATAN):
1040 CASE_FLT_FN (BUILT_IN_ATANH):
1041 CASE_FLT_FN (BUILT_IN_CASIN):
1042 CASE_FLT_FN (BUILT_IN_CASINH):
1043 CASE_FLT_FN (BUILT_IN_CATAN):
1044 CASE_FLT_FN (BUILT_IN_CATANH):
1045 CASE_FLT_FN (BUILT_IN_CBRT):
1046 CASE_FLT_FN (BUILT_IN_CPROJ):
1047 CASE_FLT_FN (BUILT_IN_CSIN):
1048 CASE_FLT_FN (BUILT_IN_CSINH):
1049 CASE_FLT_FN (BUILT_IN_CTAN):
1050 CASE_FLT_FN (BUILT_IN_CTANH):
1051 CASE_FLT_FN (BUILT_IN_ERF):
1052 CASE_FLT_FN (BUILT_IN_LLROUND):
1053 CASE_FLT_FN (BUILT_IN_LROUND):
1054 CASE_FLT_FN (BUILT_IN_ROUND):
1055 CASE_FLT_FN (BUILT_IN_SIN):
1056 CASE_FLT_FN (BUILT_IN_SINH):
1057 CASE_FLT_FN (BUILT_IN_TAN):
1058 CASE_FLT_FN (BUILT_IN_TANH):
1059 CASE_FLT_FN (BUILT_IN_TRUNC):
1060 return true;
1062 CASE_FLT_FN (BUILT_IN_LLRINT):
1063 CASE_FLT_FN (BUILT_IN_LRINT):
1064 CASE_FLT_FN (BUILT_IN_NEARBYINT):
1065 CASE_FLT_FN (BUILT_IN_RINT):
1066 return !flag_rounding_math;
1068 default:
1069 break;
1071 return false;
1074 /* Check whether we may negate an integer constant T without causing
1075 overflow. */
1077 bool
1078 may_negate_without_overflow_p (tree t)
1080 unsigned HOST_WIDE_INT val;
1081 unsigned int prec;
1082 tree type;
1084 gcc_assert (TREE_CODE (t) == INTEGER_CST);
1086 type = TREE_TYPE (t);
1087 if (TYPE_UNSIGNED (type))
1088 return false;
1090 prec = TYPE_PRECISION (type);
1091 if (prec > HOST_BITS_PER_WIDE_INT)
1093 if (TREE_INT_CST_LOW (t) != 0)
1094 return true;
1095 prec -= HOST_BITS_PER_WIDE_INT;
1096 val = TREE_INT_CST_HIGH (t);
1098 else
1099 val = TREE_INT_CST_LOW (t);
1100 if (prec < HOST_BITS_PER_WIDE_INT)
1101 val &= ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1102 return val != ((unsigned HOST_WIDE_INT) 1 << (prec - 1));
1105 /* Determine whether an expression T can be cheaply negated using
1106 the function negate_expr without introducing undefined overflow. */
1108 static bool
1109 negate_expr_p (tree t)
1111 tree type;
1113 if (t == 0)
1114 return false;
1116 type = TREE_TYPE (t);
1118 STRIP_SIGN_NOPS (t);
1119 switch (TREE_CODE (t))
1121 case INTEGER_CST:
1122 if (TYPE_OVERFLOW_WRAPS (type))
1123 return true;
1125 /* Check that -CST will not overflow type. */
1126 return may_negate_without_overflow_p (t);
1127 case BIT_NOT_EXPR:
1128 return (INTEGRAL_TYPE_P (type)
1129 && TYPE_OVERFLOW_WRAPS (type));
1131 case REAL_CST:
1132 case NEGATE_EXPR:
1133 return true;
1135 case COMPLEX_CST:
1136 return negate_expr_p (TREE_REALPART (t))
1137 && negate_expr_p (TREE_IMAGPART (t));
1139 case COMPLEX_EXPR:
1140 return negate_expr_p (TREE_OPERAND (t, 0))
1141 && negate_expr_p (TREE_OPERAND (t, 1));
1143 case CONJ_EXPR:
1144 return negate_expr_p (TREE_OPERAND (t, 0));
1146 case PLUS_EXPR:
1147 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
1148 || HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
1149 return false;
1150 /* -(A + B) -> (-B) - A. */
1151 if (negate_expr_p (TREE_OPERAND (t, 1))
1152 && reorder_operands_p (TREE_OPERAND (t, 0),
1153 TREE_OPERAND (t, 1)))
1154 return true;
1155 /* -(A + B) -> (-A) - B. */
1156 return negate_expr_p (TREE_OPERAND (t, 0));
1158 case MINUS_EXPR:
1159 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
1160 return !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
1161 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
1162 && reorder_operands_p (TREE_OPERAND (t, 0),
1163 TREE_OPERAND (t, 1));
1165 case MULT_EXPR:
1166 if (TYPE_UNSIGNED (TREE_TYPE (t)))
1167 break;
1169 /* Fall through. */
1171 case RDIV_EXPR:
1172 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t))))
1173 return negate_expr_p (TREE_OPERAND (t, 1))
1174 || negate_expr_p (TREE_OPERAND (t, 0));
1175 break;
1177 case TRUNC_DIV_EXPR:
1178 case ROUND_DIV_EXPR:
1179 case FLOOR_DIV_EXPR:
1180 case CEIL_DIV_EXPR:
1181 case EXACT_DIV_EXPR:
1182 /* In general we can't negate A / B, because if A is INT_MIN and
1183 B is 1, we may turn this into INT_MIN / -1 which is undefined
1184 and actually traps on some architectures. But if overflow is
1185 undefined, we can negate, because - (INT_MIN / 1) is an
1186 overflow. */
1187 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
1188 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)))
1189 break;
1190 return negate_expr_p (TREE_OPERAND (t, 1))
1191 || negate_expr_p (TREE_OPERAND (t, 0));
1193 case NOP_EXPR:
1194 /* Negate -((double)float) as (double)(-float). */
1195 if (TREE_CODE (type) == REAL_TYPE)
1197 tree tem = strip_float_extensions (t);
1198 if (tem != t)
1199 return negate_expr_p (tem);
1201 break;
1203 case CALL_EXPR:
1204 /* Negate -f(x) as f(-x). */
1205 if (negate_mathfn_p (builtin_mathfn_code (t)))
1206 return negate_expr_p (CALL_EXPR_ARG (t, 0));
1207 break;
1209 case RSHIFT_EXPR:
1210 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
1211 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
1213 tree op1 = TREE_OPERAND (t, 1);
1214 if (TREE_INT_CST_HIGH (op1) == 0
1215 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
1216 == TREE_INT_CST_LOW (op1))
1217 return true;
1219 break;
1221 default:
1222 break;
1224 return false;
1227 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
1228 simplification is possible.
1229 If negate_expr_p would return true for T, NULL_TREE will never be
1230 returned. */
1232 static tree
1233 fold_negate_expr (tree t)
1235 tree type = TREE_TYPE (t);
1236 tree tem;
1238 switch (TREE_CODE (t))
1240 /* Convert - (~A) to A + 1. */
1241 case BIT_NOT_EXPR:
1242 if (INTEGRAL_TYPE_P (type))
1243 return fold_build2 (PLUS_EXPR, type, TREE_OPERAND (t, 0),
1244 build_int_cst (type, 1));
1245 break;
1247 case INTEGER_CST:
1248 tem = fold_negate_const (t, type);
1249 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
1250 || !TYPE_OVERFLOW_TRAPS (type))
1251 return tem;
1252 break;
1254 case REAL_CST:
1255 tem = fold_negate_const (t, type);
1256 /* Two's complement FP formats, such as c4x, may overflow. */
1257 if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1258 return tem;
1259 break;
1261 case COMPLEX_CST:
1263 tree rpart = negate_expr (TREE_REALPART (t));
1264 tree ipart = negate_expr (TREE_IMAGPART (t));
1266 if ((TREE_CODE (rpart) == REAL_CST
1267 && TREE_CODE (ipart) == REAL_CST)
1268 || (TREE_CODE (rpart) == INTEGER_CST
1269 && TREE_CODE (ipart) == INTEGER_CST))
1270 return build_complex (type, rpart, ipart);
1272 break;
1274 case COMPLEX_EXPR:
1275 if (negate_expr_p (t))
1276 return fold_build2 (COMPLEX_EXPR, type,
1277 fold_negate_expr (TREE_OPERAND (t, 0)),
1278 fold_negate_expr (TREE_OPERAND (t, 1)));
1279 break;
1281 case CONJ_EXPR:
1282 if (negate_expr_p (t))
1283 return fold_build1 (CONJ_EXPR, type,
1284 fold_negate_expr (TREE_OPERAND (t, 0)));
1285 break;
1287 case NEGATE_EXPR:
1288 return TREE_OPERAND (t, 0);
1290 case PLUS_EXPR:
1291 if (!HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
1292 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
1294 /* -(A + B) -> (-B) - A. */
1295 if (negate_expr_p (TREE_OPERAND (t, 1))
1296 && reorder_operands_p (TREE_OPERAND (t, 0),
1297 TREE_OPERAND (t, 1)))
1299 tem = negate_expr (TREE_OPERAND (t, 1));
1300 return fold_build2 (MINUS_EXPR, type,
1301 tem, TREE_OPERAND (t, 0));
1304 /* -(A + B) -> (-A) - B. */
1305 if (negate_expr_p (TREE_OPERAND (t, 0)))
1307 tem = negate_expr (TREE_OPERAND (t, 0));
1308 return fold_build2 (MINUS_EXPR, type,
1309 tem, TREE_OPERAND (t, 1));
1312 break;
1314 case MINUS_EXPR:
1315 /* - (A - B) -> B - A */
1316 if (!HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
1317 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
1318 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
1319 return fold_build2 (MINUS_EXPR, type,
1320 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
1321 break;
1323 case MULT_EXPR:
1324 if (TYPE_UNSIGNED (type))
1325 break;
1327 /* Fall through. */
1329 case RDIV_EXPR:
1330 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type)))
1332 tem = TREE_OPERAND (t, 1);
1333 if (negate_expr_p (tem))
1334 return fold_build2 (TREE_CODE (t), type,
1335 TREE_OPERAND (t, 0), negate_expr (tem));
1336 tem = TREE_OPERAND (t, 0);
1337 if (negate_expr_p (tem))
1338 return fold_build2 (TREE_CODE (t), type,
1339 negate_expr (tem), TREE_OPERAND (t, 1));
1341 break;
1343 case TRUNC_DIV_EXPR:
1344 case ROUND_DIV_EXPR:
1345 case FLOOR_DIV_EXPR:
1346 case CEIL_DIV_EXPR:
1347 case EXACT_DIV_EXPR:
1348 /* In general we can't negate A / B, because if A is INT_MIN and
1349 B is 1, we may turn this into INT_MIN / -1 which is undefined
1350 and actually traps on some architectures. But if overflow is
1351 undefined, we can negate, because - (INT_MIN / 1) is an
1352 overflow. */
1353 if (!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
1355 const char * const warnmsg = G_("assuming signed overflow does not "
1356 "occur when negating a division");
1357 tem = TREE_OPERAND (t, 1);
1358 if (negate_expr_p (tem))
1360 if (INTEGRAL_TYPE_P (type)
1361 && (TREE_CODE (tem) != INTEGER_CST
1362 || integer_onep (tem)))
1363 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
1364 return fold_build2 (TREE_CODE (t), type,
1365 TREE_OPERAND (t, 0), negate_expr (tem));
1367 tem = TREE_OPERAND (t, 0);
1368 if (negate_expr_p (tem))
1370 if (INTEGRAL_TYPE_P (type)
1371 && (TREE_CODE (tem) != INTEGER_CST
1372 || tree_int_cst_equal (tem, TYPE_MIN_VALUE (type))))
1373 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
1374 return fold_build2 (TREE_CODE (t), type,
1375 negate_expr (tem), TREE_OPERAND (t, 1));
1378 break;
1380 case NOP_EXPR:
1381 /* Convert -((double)float) into (double)(-float). */
1382 if (TREE_CODE (type) == REAL_TYPE)
1384 tem = strip_float_extensions (t);
1385 if (tem != t && negate_expr_p (tem))
1386 return negate_expr (tem);
1388 break;
1390 case CALL_EXPR:
1391 /* Negate -f(x) as f(-x). */
1392 if (negate_mathfn_p (builtin_mathfn_code (t))
1393 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
1395 tree fndecl, arg;
1397 fndecl = get_callee_fndecl (t);
1398 arg = negate_expr (CALL_EXPR_ARG (t, 0));
1399 return build_call_expr (fndecl, 1, arg);
1401 break;
1403 case RSHIFT_EXPR:
1404 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
1405 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
1407 tree op1 = TREE_OPERAND (t, 1);
1408 if (TREE_INT_CST_HIGH (op1) == 0
1409 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
1410 == TREE_INT_CST_LOW (op1))
1412 tree ntype = TYPE_UNSIGNED (type)
1413 ? lang_hooks.types.signed_type (type)
1414 : lang_hooks.types.unsigned_type (type);
1415 tree temp = fold_convert (ntype, TREE_OPERAND (t, 0));
1416 temp = fold_build2 (RSHIFT_EXPR, ntype, temp, op1);
1417 return fold_convert (type, temp);
1420 break;
1422 default:
1423 break;
1426 return NULL_TREE;
1429 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
1430 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
1431 return NULL_TREE. */
1433 static tree
1434 negate_expr (tree t)
1436 tree type, tem;
1438 if (t == NULL_TREE)
1439 return NULL_TREE;
1441 type = TREE_TYPE (t);
1442 STRIP_SIGN_NOPS (t);
1444 tem = fold_negate_expr (t);
1445 if (!tem)
1446 tem = build1 (NEGATE_EXPR, TREE_TYPE (t), t);
1447 return fold_convert (type, tem);
1450 /* Split a tree IN into a constant, literal and variable parts that could be
1451 combined with CODE to make IN. "constant" means an expression with
1452 TREE_CONSTANT but that isn't an actual constant. CODE must be a
1453 commutative arithmetic operation. Store the constant part into *CONP,
1454 the literal in *LITP and return the variable part. If a part isn't
1455 present, set it to null. If the tree does not decompose in this way,
1456 return the entire tree as the variable part and the other parts as null.
1458 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
1459 case, we negate an operand that was subtracted. Except if it is a
1460 literal for which we use *MINUS_LITP instead.
1462 If NEGATE_P is true, we are negating all of IN, again except a literal
1463 for which we use *MINUS_LITP instead.
1465 If IN is itself a literal or constant, return it as appropriate.
1467 Note that we do not guarantee that any of the three values will be the
1468 same type as IN, but they will have the same signedness and mode. */
1470 static tree
1471 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
1472 tree *minus_litp, int negate_p)
1474 tree var = 0;
1476 *conp = 0;
1477 *litp = 0;
1478 *minus_litp = 0;
1480 /* Strip any conversions that don't change the machine mode or signedness. */
1481 STRIP_SIGN_NOPS (in);
1483 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST)
1484 *litp = in;
1485 else if (TREE_CODE (in) == code
1486 || (! FLOAT_TYPE_P (TREE_TYPE (in))
1487 /* We can associate addition and subtraction together (even
1488 though the C standard doesn't say so) for integers because
1489 the value is not affected. For reals, the value might be
1490 affected, so we can't. */
1491 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
1492 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
1494 tree op0 = TREE_OPERAND (in, 0);
1495 tree op1 = TREE_OPERAND (in, 1);
1496 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
1497 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
1499 /* First see if either of the operands is a literal, then a constant. */
1500 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST)
1501 *litp = op0, op0 = 0;
1502 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST)
1503 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
1505 if (op0 != 0 && TREE_CONSTANT (op0))
1506 *conp = op0, op0 = 0;
1507 else if (op1 != 0 && TREE_CONSTANT (op1))
1508 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
1510 /* If we haven't dealt with either operand, this is not a case we can
1511 decompose. Otherwise, VAR is either of the ones remaining, if any. */
1512 if (op0 != 0 && op1 != 0)
1513 var = in;
1514 else if (op0 != 0)
1515 var = op0;
1516 else
1517 var = op1, neg_var_p = neg1_p;
1519 /* Now do any needed negations. */
1520 if (neg_litp_p)
1521 *minus_litp = *litp, *litp = 0;
1522 if (neg_conp_p)
1523 *conp = negate_expr (*conp);
1524 if (neg_var_p)
1525 var = negate_expr (var);
1527 else if (TREE_CONSTANT (in))
1528 *conp = in;
1529 else
1530 var = in;
1532 if (negate_p)
1534 if (*litp)
1535 *minus_litp = *litp, *litp = 0;
1536 else if (*minus_litp)
1537 *litp = *minus_litp, *minus_litp = 0;
1538 *conp = negate_expr (*conp);
1539 var = negate_expr (var);
1542 return var;
1545 /* Re-associate trees split by the above function. T1 and T2 are either
1546 expressions to associate or null. Return the new expression, if any. If
1547 we build an operation, do it in TYPE and with CODE. */
1549 static tree
1550 associate_trees (tree t1, tree t2, enum tree_code code, tree type)
1552 if (t1 == 0)
1553 return t2;
1554 else if (t2 == 0)
1555 return t1;
1557 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
1558 try to fold this since we will have infinite recursion. But do
1559 deal with any NEGATE_EXPRs. */
1560 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
1561 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
1563 if (code == PLUS_EXPR)
1565 if (TREE_CODE (t1) == NEGATE_EXPR)
1566 return build2 (MINUS_EXPR, type, fold_convert (type, t2),
1567 fold_convert (type, TREE_OPERAND (t1, 0)));
1568 else if (TREE_CODE (t2) == NEGATE_EXPR)
1569 return build2 (MINUS_EXPR, type, fold_convert (type, t1),
1570 fold_convert (type, TREE_OPERAND (t2, 0)));
1571 else if (integer_zerop (t2))
1572 return fold_convert (type, t1);
1574 else if (code == MINUS_EXPR)
1576 if (integer_zerop (t2))
1577 return fold_convert (type, t1);
1580 return build2 (code, type, fold_convert (type, t1),
1581 fold_convert (type, t2));
1584 return fold_build2 (code, type, fold_convert (type, t1),
1585 fold_convert (type, t2));
1588 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
1589 for use in int_const_binop, size_binop and size_diffop. */
1591 static bool
1592 int_binop_types_match_p (enum tree_code code, tree type1, tree type2)
1594 if (TREE_CODE (type1) != INTEGER_TYPE && !POINTER_TYPE_P (type1))
1595 return false;
1596 if (TREE_CODE (type2) != INTEGER_TYPE && !POINTER_TYPE_P (type2))
1597 return false;
1599 switch (code)
1601 case LSHIFT_EXPR:
1602 case RSHIFT_EXPR:
1603 case LROTATE_EXPR:
1604 case RROTATE_EXPR:
1605 return true;
1607 default:
1608 break;
1611 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
1612 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
1613 && TYPE_MODE (type1) == TYPE_MODE (type2);
1617 /* Combine two integer constants ARG1 and ARG2 under operation CODE
1618 to produce a new constant. Return NULL_TREE if we don't know how
1619 to evaluate CODE at compile-time.
1621 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1623 tree
1624 int_const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
1626 unsigned HOST_WIDE_INT int1l, int2l;
1627 HOST_WIDE_INT int1h, int2h;
1628 unsigned HOST_WIDE_INT low;
1629 HOST_WIDE_INT hi;
1630 unsigned HOST_WIDE_INT garbagel;
1631 HOST_WIDE_INT garbageh;
1632 tree t;
1633 tree type = TREE_TYPE (arg1);
1634 int uns = TYPE_UNSIGNED (type);
1635 int is_sizetype
1636 = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
1637 int overflow = 0;
1639 int1l = TREE_INT_CST_LOW (arg1);
1640 int1h = TREE_INT_CST_HIGH (arg1);
1641 int2l = TREE_INT_CST_LOW (arg2);
1642 int2h = TREE_INT_CST_HIGH (arg2);
1644 switch (code)
1646 case BIT_IOR_EXPR:
1647 low = int1l | int2l, hi = int1h | int2h;
1648 break;
1650 case BIT_XOR_EXPR:
1651 low = int1l ^ int2l, hi = int1h ^ int2h;
1652 break;
1654 case BIT_AND_EXPR:
1655 low = int1l & int2l, hi = int1h & int2h;
1656 break;
1658 case RSHIFT_EXPR:
1659 int2l = -int2l;
1660 case LSHIFT_EXPR:
1661 /* It's unclear from the C standard whether shifts can overflow.
1662 The following code ignores overflow; perhaps a C standard
1663 interpretation ruling is needed. */
1664 lshift_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1665 &low, &hi, !uns);
1666 break;
1668 case RROTATE_EXPR:
1669 int2l = - int2l;
1670 case LROTATE_EXPR:
1671 lrotate_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1672 &low, &hi);
1673 break;
1675 case PLUS_EXPR:
1676 overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
1677 break;
1679 case MINUS_EXPR:
1680 neg_double (int2l, int2h, &low, &hi);
1681 add_double (int1l, int1h, low, hi, &low, &hi);
1682 overflow = OVERFLOW_SUM_SIGN (hi, int2h, int1h);
1683 break;
1685 case MULT_EXPR:
1686 overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
1687 break;
1689 case TRUNC_DIV_EXPR:
1690 case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
1691 case EXACT_DIV_EXPR:
1692 /* This is a shortcut for a common special case. */
1693 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1694 && !TREE_OVERFLOW (arg1)
1695 && !TREE_OVERFLOW (arg2)
1696 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1698 if (code == CEIL_DIV_EXPR)
1699 int1l += int2l - 1;
1701 low = int1l / int2l, hi = 0;
1702 break;
1705 /* ... fall through ... */
1707 case ROUND_DIV_EXPR:
1708 if (int2h == 0 && int2l == 0)
1709 return NULL_TREE;
1710 if (int2h == 0 && int2l == 1)
1712 low = int1l, hi = int1h;
1713 break;
1715 if (int1l == int2l && int1h == int2h
1716 && ! (int1l == 0 && int1h == 0))
1718 low = 1, hi = 0;
1719 break;
1721 overflow = div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
1722 &low, &hi, &garbagel, &garbageh);
1723 break;
1725 case TRUNC_MOD_EXPR:
1726 case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
1727 /* This is a shortcut for a common special case. */
1728 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1729 && !TREE_OVERFLOW (arg1)
1730 && !TREE_OVERFLOW (arg2)
1731 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1733 if (code == CEIL_MOD_EXPR)
1734 int1l += int2l - 1;
1735 low = int1l % int2l, hi = 0;
1736 break;
1739 /* ... fall through ... */
1741 case ROUND_MOD_EXPR:
1742 if (int2h == 0 && int2l == 0)
1743 return NULL_TREE;
1744 overflow = div_and_round_double (code, uns,
1745 int1l, int1h, int2l, int2h,
1746 &garbagel, &garbageh, &low, &hi);
1747 break;
1749 case MIN_EXPR:
1750 case MAX_EXPR:
1751 if (uns)
1752 low = (((unsigned HOST_WIDE_INT) int1h
1753 < (unsigned HOST_WIDE_INT) int2h)
1754 || (((unsigned HOST_WIDE_INT) int1h
1755 == (unsigned HOST_WIDE_INT) int2h)
1756 && int1l < int2l));
1757 else
1758 low = (int1h < int2h
1759 || (int1h == int2h && int1l < int2l));
1761 if (low == (code == MIN_EXPR))
1762 low = int1l, hi = int1h;
1763 else
1764 low = int2l, hi = int2h;
1765 break;
1767 default:
1768 return NULL_TREE;
1771 if (notrunc)
1773 t = build_int_cst_wide (TREE_TYPE (arg1), low, hi);
1775 /* Propagate overflow flags ourselves. */
1776 if (((!uns || is_sizetype) && overflow)
1777 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1779 t = copy_node (t);
1780 TREE_OVERFLOW (t) = 1;
1783 else
1784 t = force_fit_type_double (TREE_TYPE (arg1), low, hi, 1,
1785 ((!uns || is_sizetype) && overflow)
1786 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1788 return t;
1791 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1792 constant. We assume ARG1 and ARG2 have the same data type, or at least
1793 are the same kind of constant and the same machine mode. Return zero if
1794 combining the constants is not allowed in the current operating mode.
1796 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1798 static tree
1799 const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
1801 /* Sanity check for the recursive cases. */
1802 if (!arg1 || !arg2)
1803 return NULL_TREE;
1805 STRIP_NOPS (arg1);
1806 STRIP_NOPS (arg2);
1808 if (TREE_CODE (arg1) == INTEGER_CST)
1809 return int_const_binop (code, arg1, arg2, notrunc);
1811 if (TREE_CODE (arg1) == REAL_CST)
1813 enum machine_mode mode;
1814 REAL_VALUE_TYPE d1;
1815 REAL_VALUE_TYPE d2;
1816 REAL_VALUE_TYPE value;
1817 REAL_VALUE_TYPE result;
1818 bool inexact;
1819 tree t, type;
1821 /* The following codes are handled by real_arithmetic. */
1822 switch (code)
1824 case PLUS_EXPR:
1825 case MINUS_EXPR:
1826 case MULT_EXPR:
1827 case RDIV_EXPR:
1828 case MIN_EXPR:
1829 case MAX_EXPR:
1830 break;
1832 default:
1833 return NULL_TREE;
1836 d1 = TREE_REAL_CST (arg1);
1837 d2 = TREE_REAL_CST (arg2);
1839 type = TREE_TYPE (arg1);
1840 mode = TYPE_MODE (type);
1842 /* Don't perform operation if we honor signaling NaNs and
1843 either operand is a NaN. */
1844 if (HONOR_SNANS (mode)
1845 && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
1846 return NULL_TREE;
1848 /* Don't perform operation if it would raise a division
1849 by zero exception. */
1850 if (code == RDIV_EXPR
1851 && REAL_VALUES_EQUAL (d2, dconst0)
1852 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1853 return NULL_TREE;
1855 /* If either operand is a NaN, just return it. Otherwise, set up
1856 for floating-point trap; we return an overflow. */
1857 if (REAL_VALUE_ISNAN (d1))
1858 return arg1;
1859 else if (REAL_VALUE_ISNAN (d2))
1860 return arg2;
1862 inexact = real_arithmetic (&value, code, &d1, &d2);
1863 real_convert (&result, mode, &value);
1865 /* Don't constant fold this floating point operation if
1866 the result has overflowed and flag_trapping_math. */
1867 if (flag_trapping_math
1868 && MODE_HAS_INFINITIES (mode)
1869 && REAL_VALUE_ISINF (result)
1870 && !REAL_VALUE_ISINF (d1)
1871 && !REAL_VALUE_ISINF (d2))
1872 return NULL_TREE;
1874 /* Don't constant fold this floating point operation if the
1875 result may dependent upon the run-time rounding mode and
1876 flag_rounding_math is set, or if GCC's software emulation
1877 is unable to accurately represent the result. */
1878 if ((flag_rounding_math
1879 || (REAL_MODE_FORMAT_COMPOSITE_P (mode)
1880 && !flag_unsafe_math_optimizations))
1881 && (inexact || !real_identical (&result, &value)))
1882 return NULL_TREE;
1884 t = build_real (type, result);
1886 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1887 return t;
1890 if (TREE_CODE (arg1) == COMPLEX_CST)
1892 tree type = TREE_TYPE (arg1);
1893 tree r1 = TREE_REALPART (arg1);
1894 tree i1 = TREE_IMAGPART (arg1);
1895 tree r2 = TREE_REALPART (arg2);
1896 tree i2 = TREE_IMAGPART (arg2);
1897 tree real, imag;
1899 switch (code)
1901 case PLUS_EXPR:
1902 case MINUS_EXPR:
1903 real = const_binop (code, r1, r2, notrunc);
1904 imag = const_binop (code, i1, i2, notrunc);
1905 break;
1907 case MULT_EXPR:
1908 real = const_binop (MINUS_EXPR,
1909 const_binop (MULT_EXPR, r1, r2, notrunc),
1910 const_binop (MULT_EXPR, i1, i2, notrunc),
1911 notrunc);
1912 imag = const_binop (PLUS_EXPR,
1913 const_binop (MULT_EXPR, r1, i2, notrunc),
1914 const_binop (MULT_EXPR, i1, r2, notrunc),
1915 notrunc);
1916 break;
1918 case RDIV_EXPR:
1920 tree magsquared
1921 = const_binop (PLUS_EXPR,
1922 const_binop (MULT_EXPR, r2, r2, notrunc),
1923 const_binop (MULT_EXPR, i2, i2, notrunc),
1924 notrunc);
1925 tree t1
1926 = const_binop (PLUS_EXPR,
1927 const_binop (MULT_EXPR, r1, r2, notrunc),
1928 const_binop (MULT_EXPR, i1, i2, notrunc),
1929 notrunc);
1930 tree t2
1931 = const_binop (MINUS_EXPR,
1932 const_binop (MULT_EXPR, i1, r2, notrunc),
1933 const_binop (MULT_EXPR, r1, i2, notrunc),
1934 notrunc);
1936 if (INTEGRAL_TYPE_P (TREE_TYPE (r1)))
1937 code = TRUNC_DIV_EXPR;
1939 real = const_binop (code, t1, magsquared, notrunc);
1940 imag = const_binop (code, t2, magsquared, notrunc);
1942 break;
1944 default:
1945 return NULL_TREE;
1948 if (real && imag)
1949 return build_complex (type, real, imag);
1952 return NULL_TREE;
1955 /* Create a size type INT_CST node with NUMBER sign extended. KIND
1956 indicates which particular sizetype to create. */
1958 tree
1959 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1961 return build_int_cst (sizetype_tab[(int) kind], number);
1964 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1965 is a tree code. The type of the result is taken from the operands.
1966 Both must be equivalent integer types, ala int_binop_types_match_p.
1967 If the operands are constant, so is the result. */
1969 tree
1970 size_binop (enum tree_code code, tree arg0, tree arg1)
1972 tree type = TREE_TYPE (arg0);
1974 if (arg0 == error_mark_node || arg1 == error_mark_node)
1975 return error_mark_node;
1977 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1978 TREE_TYPE (arg1)));
1980 /* Handle the special case of two integer constants faster. */
1981 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1983 /* And some specific cases even faster than that. */
1984 if (code == PLUS_EXPR)
1986 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
1987 return arg1;
1988 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1989 return arg0;
1991 else if (code == MINUS_EXPR)
1993 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1994 return arg0;
1996 else if (code == MULT_EXPR)
1998 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
1999 return arg1;
2002 /* Handle general case of two integer constants. */
2003 return int_const_binop (code, arg0, arg1, 0);
2006 return fold_build2 (code, type, arg0, arg1);
2009 /* Given two values, either both of sizetype or both of bitsizetype,
2010 compute the difference between the two values. Return the value
2011 in signed type corresponding to the type of the operands. */
2013 tree
2014 size_diffop (tree arg0, tree arg1)
2016 tree type = TREE_TYPE (arg0);
2017 tree ctype;
2019 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
2020 TREE_TYPE (arg1)));
2022 /* If the type is already signed, just do the simple thing. */
2023 if (!TYPE_UNSIGNED (type))
2024 return size_binop (MINUS_EXPR, arg0, arg1);
2026 if (type == sizetype)
2027 ctype = ssizetype;
2028 else if (type == bitsizetype)
2029 ctype = sbitsizetype;
2030 else
2031 ctype = lang_hooks.types.signed_type (type);
2033 /* If either operand is not a constant, do the conversions to the signed
2034 type and subtract. The hardware will do the right thing with any
2035 overflow in the subtraction. */
2036 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
2037 return size_binop (MINUS_EXPR, fold_convert (ctype, arg0),
2038 fold_convert (ctype, arg1));
2040 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
2041 Otherwise, subtract the other way, convert to CTYPE (we know that can't
2042 overflow) and negate (which can't either). Special-case a result
2043 of zero while we're here. */
2044 if (tree_int_cst_equal (arg0, arg1))
2045 return build_int_cst (ctype, 0);
2046 else if (tree_int_cst_lt (arg1, arg0))
2047 return fold_convert (ctype, size_binop (MINUS_EXPR, arg0, arg1));
2048 else
2049 return size_binop (MINUS_EXPR, build_int_cst (ctype, 0),
2050 fold_convert (ctype, size_binop (MINUS_EXPR,
2051 arg1, arg0)));
2054 /* A subroutine of fold_convert_const handling conversions of an
2055 INTEGER_CST to another integer type. */
2057 static tree
2058 fold_convert_const_int_from_int (tree type, tree arg1)
2060 tree t;
2062 /* Given an integer constant, make new constant with new type,
2063 appropriately sign-extended or truncated. */
2064 t = force_fit_type_double (type, TREE_INT_CST_LOW (arg1),
2065 TREE_INT_CST_HIGH (arg1),
2066 /* Don't set the overflow when
2067 converting a pointer */
2068 !POINTER_TYPE_P (TREE_TYPE (arg1)),
2069 (TREE_INT_CST_HIGH (arg1) < 0
2070 && (TYPE_UNSIGNED (type)
2071 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
2072 | TREE_OVERFLOW (arg1));
2074 return t;
2077 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2078 to an integer type. */
2080 static tree
2081 fold_convert_const_int_from_real (enum tree_code code, tree type, tree arg1)
2083 int overflow = 0;
2084 tree t;
2086 /* The following code implements the floating point to integer
2087 conversion rules required by the Java Language Specification,
2088 that IEEE NaNs are mapped to zero and values that overflow
2089 the target precision saturate, i.e. values greater than
2090 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
2091 are mapped to INT_MIN. These semantics are allowed by the
2092 C and C++ standards that simply state that the behavior of
2093 FP-to-integer conversion is unspecified upon overflow. */
2095 HOST_WIDE_INT high, low;
2096 REAL_VALUE_TYPE r;
2097 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
2099 switch (code)
2101 case FIX_TRUNC_EXPR:
2102 real_trunc (&r, VOIDmode, &x);
2103 break;
2105 default:
2106 gcc_unreachable ();
2109 /* If R is NaN, return zero and show we have an overflow. */
2110 if (REAL_VALUE_ISNAN (r))
2112 overflow = 1;
2113 high = 0;
2114 low = 0;
2117 /* See if R is less than the lower bound or greater than the
2118 upper bound. */
2120 if (! overflow)
2122 tree lt = TYPE_MIN_VALUE (type);
2123 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
2124 if (REAL_VALUES_LESS (r, l))
2126 overflow = 1;
2127 high = TREE_INT_CST_HIGH (lt);
2128 low = TREE_INT_CST_LOW (lt);
2132 if (! overflow)
2134 tree ut = TYPE_MAX_VALUE (type);
2135 if (ut)
2137 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
2138 if (REAL_VALUES_LESS (u, r))
2140 overflow = 1;
2141 high = TREE_INT_CST_HIGH (ut);
2142 low = TREE_INT_CST_LOW (ut);
2147 if (! overflow)
2148 REAL_VALUE_TO_INT (&low, &high, r);
2150 t = force_fit_type_double (type, low, high, -1,
2151 overflow | TREE_OVERFLOW (arg1));
2152 return t;
2155 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2156 to another floating point type. */
2158 static tree
2159 fold_convert_const_real_from_real (tree type, tree arg1)
2161 REAL_VALUE_TYPE value;
2162 tree t;
2164 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
2165 t = build_real (type, value);
2167 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2168 return t;
2171 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2172 type TYPE. If no simplification can be done return NULL_TREE. */
2174 static tree
2175 fold_convert_const (enum tree_code code, tree type, tree arg1)
2177 if (TREE_TYPE (arg1) == type)
2178 return arg1;
2180 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
2182 if (TREE_CODE (arg1) == INTEGER_CST)
2183 return fold_convert_const_int_from_int (type, arg1);
2184 else if (TREE_CODE (arg1) == REAL_CST)
2185 return fold_convert_const_int_from_real (code, type, arg1);
2187 else if (TREE_CODE (type) == REAL_TYPE)
2189 if (TREE_CODE (arg1) == INTEGER_CST)
2190 return build_real_from_int_cst (type, arg1);
2191 if (TREE_CODE (arg1) == REAL_CST)
2192 return fold_convert_const_real_from_real (type, arg1);
2194 return NULL_TREE;
2197 /* Construct a vector of zero elements of vector type TYPE. */
2199 static tree
2200 build_zero_vector (tree type)
2202 tree elem, list;
2203 int i, units;
2205 elem = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2206 units = TYPE_VECTOR_SUBPARTS (type);
2208 list = NULL_TREE;
2209 for (i = 0; i < units; i++)
2210 list = tree_cons (NULL_TREE, elem, list);
2211 return build_vector (type, list);
2214 /* Convert expression ARG to type TYPE. Used by the middle-end for
2215 simple conversions in preference to calling the front-end's convert. */
2217 tree
2218 fold_convert (tree type, tree arg)
2220 tree orig = TREE_TYPE (arg);
2221 tree tem;
2223 if (type == orig)
2224 return arg;
2226 if (TREE_CODE (arg) == ERROR_MARK
2227 || TREE_CODE (type) == ERROR_MARK
2228 || TREE_CODE (orig) == ERROR_MARK)
2229 return error_mark_node;
2231 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig)
2232 || lang_hooks.types_compatible_p (TYPE_MAIN_VARIANT (type),
2233 TYPE_MAIN_VARIANT (orig)))
2234 return fold_build1 (NOP_EXPR, type, arg);
2236 switch (TREE_CODE (type))
2238 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2239 case POINTER_TYPE: case REFERENCE_TYPE:
2240 case OFFSET_TYPE:
2241 if (TREE_CODE (arg) == INTEGER_CST)
2243 tem = fold_convert_const (NOP_EXPR, type, arg);
2244 if (tem != NULL_TREE)
2245 return tem;
2247 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2248 || TREE_CODE (orig) == OFFSET_TYPE)
2249 return fold_build1 (NOP_EXPR, type, arg);
2250 if (TREE_CODE (orig) == COMPLEX_TYPE)
2252 tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2253 return fold_convert (type, tem);
2255 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2256 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2257 return fold_build1 (NOP_EXPR, type, arg);
2259 case REAL_TYPE:
2260 if (TREE_CODE (arg) == INTEGER_CST)
2262 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2263 if (tem != NULL_TREE)
2264 return tem;
2266 else if (TREE_CODE (arg) == REAL_CST)
2268 tem = fold_convert_const (NOP_EXPR, type, arg);
2269 if (tem != NULL_TREE)
2270 return tem;
2273 switch (TREE_CODE (orig))
2275 case INTEGER_TYPE:
2276 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2277 case POINTER_TYPE: case REFERENCE_TYPE:
2278 return fold_build1 (FLOAT_EXPR, type, arg);
2280 case REAL_TYPE:
2281 return fold_build1 (NOP_EXPR, type, arg);
2283 case COMPLEX_TYPE:
2284 tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2285 return fold_convert (type, tem);
2287 default:
2288 gcc_unreachable ();
2291 case COMPLEX_TYPE:
2292 switch (TREE_CODE (orig))
2294 case INTEGER_TYPE:
2295 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2296 case POINTER_TYPE: case REFERENCE_TYPE:
2297 case REAL_TYPE:
2298 return build2 (COMPLEX_EXPR, type,
2299 fold_convert (TREE_TYPE (type), arg),
2300 fold_convert (TREE_TYPE (type), integer_zero_node));
2301 case COMPLEX_TYPE:
2303 tree rpart, ipart;
2305 if (TREE_CODE (arg) == COMPLEX_EXPR)
2307 rpart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 0));
2308 ipart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 1));
2309 return fold_build2 (COMPLEX_EXPR, type, rpart, ipart);
2312 arg = save_expr (arg);
2313 rpart = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2314 ipart = fold_build1 (IMAGPART_EXPR, TREE_TYPE (orig), arg);
2315 rpart = fold_convert (TREE_TYPE (type), rpart);
2316 ipart = fold_convert (TREE_TYPE (type), ipart);
2317 return fold_build2 (COMPLEX_EXPR, type, rpart, ipart);
2320 default:
2321 gcc_unreachable ();
2324 case VECTOR_TYPE:
2325 if (integer_zerop (arg))
2326 return build_zero_vector (type);
2327 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2328 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2329 || TREE_CODE (orig) == VECTOR_TYPE);
2330 return fold_build1 (VIEW_CONVERT_EXPR, type, arg);
2332 case VOID_TYPE:
2333 tem = fold_ignored_result (arg);
2334 if (TREE_CODE (tem) == GIMPLE_MODIFY_STMT)
2335 return tem;
2336 return fold_build1 (NOP_EXPR, type, tem);
2338 default:
2339 gcc_unreachable ();
2343 /* Return false if expr can be assumed not to be an lvalue, true
2344 otherwise. */
2346 static bool
2347 maybe_lvalue_p (tree x)
2349 /* We only need to wrap lvalue tree codes. */
2350 switch (TREE_CODE (x))
2352 case VAR_DECL:
2353 case PARM_DECL:
2354 case RESULT_DECL:
2355 case LABEL_DECL:
2356 case FUNCTION_DECL:
2357 case SSA_NAME:
2359 case COMPONENT_REF:
2360 case INDIRECT_REF:
2361 case ALIGN_INDIRECT_REF:
2362 case MISALIGNED_INDIRECT_REF:
2363 case ARRAY_REF:
2364 case ARRAY_RANGE_REF:
2365 case BIT_FIELD_REF:
2366 case OBJ_TYPE_REF:
2368 case REALPART_EXPR:
2369 case IMAGPART_EXPR:
2370 case PREINCREMENT_EXPR:
2371 case PREDECREMENT_EXPR:
2372 case SAVE_EXPR:
2373 case TRY_CATCH_EXPR:
2374 case WITH_CLEANUP_EXPR:
2375 case COMPOUND_EXPR:
2376 case MODIFY_EXPR:
2377 case GIMPLE_MODIFY_STMT:
2378 case TARGET_EXPR:
2379 case COND_EXPR:
2380 case BIND_EXPR:
2381 case MIN_EXPR:
2382 case MAX_EXPR:
2383 break;
2385 default:
2386 /* Assume the worst for front-end tree codes. */
2387 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2388 break;
2389 return false;
2392 return true;
2395 /* Return an expr equal to X but certainly not valid as an lvalue. */
2397 tree
2398 non_lvalue (tree x)
2400 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2401 us. */
2402 if (in_gimple_form)
2403 return x;
2405 if (! maybe_lvalue_p (x))
2406 return x;
2407 return build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
2410 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
2411 Zero means allow extended lvalues. */
2413 int pedantic_lvalues;
2415 /* When pedantic, return an expr equal to X but certainly not valid as a
2416 pedantic lvalue. Otherwise, return X. */
2418 static tree
2419 pedantic_non_lvalue (tree x)
2421 if (pedantic_lvalues)
2422 return non_lvalue (x);
2423 else
2424 return x;
2427 /* Given a tree comparison code, return the code that is the logical inverse
2428 of the given code. It is not safe to do this for floating-point
2429 comparisons, except for NE_EXPR and EQ_EXPR, so we receive a machine mode
2430 as well: if reversing the comparison is unsafe, return ERROR_MARK. */
2432 enum tree_code
2433 invert_tree_comparison (enum tree_code code, bool honor_nans)
2435 if (honor_nans && flag_trapping_math)
2436 return ERROR_MARK;
2438 switch (code)
2440 case EQ_EXPR:
2441 return NE_EXPR;
2442 case NE_EXPR:
2443 return EQ_EXPR;
2444 case GT_EXPR:
2445 return honor_nans ? UNLE_EXPR : LE_EXPR;
2446 case GE_EXPR:
2447 return honor_nans ? UNLT_EXPR : LT_EXPR;
2448 case LT_EXPR:
2449 return honor_nans ? UNGE_EXPR : GE_EXPR;
2450 case LE_EXPR:
2451 return honor_nans ? UNGT_EXPR : GT_EXPR;
2452 case LTGT_EXPR:
2453 return UNEQ_EXPR;
2454 case UNEQ_EXPR:
2455 return LTGT_EXPR;
2456 case UNGT_EXPR:
2457 return LE_EXPR;
2458 case UNGE_EXPR:
2459 return LT_EXPR;
2460 case UNLT_EXPR:
2461 return GE_EXPR;
2462 case UNLE_EXPR:
2463 return GT_EXPR;
2464 case ORDERED_EXPR:
2465 return UNORDERED_EXPR;
2466 case UNORDERED_EXPR:
2467 return ORDERED_EXPR;
2468 default:
2469 gcc_unreachable ();
2473 /* Similar, but return the comparison that results if the operands are
2474 swapped. This is safe for floating-point. */
2476 enum tree_code
2477 swap_tree_comparison (enum tree_code code)
2479 switch (code)
2481 case EQ_EXPR:
2482 case NE_EXPR:
2483 case ORDERED_EXPR:
2484 case UNORDERED_EXPR:
2485 case LTGT_EXPR:
2486 case UNEQ_EXPR:
2487 return code;
2488 case GT_EXPR:
2489 return LT_EXPR;
2490 case GE_EXPR:
2491 return LE_EXPR;
2492 case LT_EXPR:
2493 return GT_EXPR;
2494 case LE_EXPR:
2495 return GE_EXPR;
2496 case UNGT_EXPR:
2497 return UNLT_EXPR;
2498 case UNGE_EXPR:
2499 return UNLE_EXPR;
2500 case UNLT_EXPR:
2501 return UNGT_EXPR;
2502 case UNLE_EXPR:
2503 return UNGE_EXPR;
2504 default:
2505 gcc_unreachable ();
2510 /* Convert a comparison tree code from an enum tree_code representation
2511 into a compcode bit-based encoding. This function is the inverse of
2512 compcode_to_comparison. */
2514 static enum comparison_code
2515 comparison_to_compcode (enum tree_code code)
2517 switch (code)
2519 case LT_EXPR:
2520 return COMPCODE_LT;
2521 case EQ_EXPR:
2522 return COMPCODE_EQ;
2523 case LE_EXPR:
2524 return COMPCODE_LE;
2525 case GT_EXPR:
2526 return COMPCODE_GT;
2527 case NE_EXPR:
2528 return COMPCODE_NE;
2529 case GE_EXPR:
2530 return COMPCODE_GE;
2531 case ORDERED_EXPR:
2532 return COMPCODE_ORD;
2533 case UNORDERED_EXPR:
2534 return COMPCODE_UNORD;
2535 case UNLT_EXPR:
2536 return COMPCODE_UNLT;
2537 case UNEQ_EXPR:
2538 return COMPCODE_UNEQ;
2539 case UNLE_EXPR:
2540 return COMPCODE_UNLE;
2541 case UNGT_EXPR:
2542 return COMPCODE_UNGT;
2543 case LTGT_EXPR:
2544 return COMPCODE_LTGT;
2545 case UNGE_EXPR:
2546 return COMPCODE_UNGE;
2547 default:
2548 gcc_unreachable ();
2552 /* Convert a compcode bit-based encoding of a comparison operator back
2553 to GCC's enum tree_code representation. This function is the
2554 inverse of comparison_to_compcode. */
2556 static enum tree_code
2557 compcode_to_comparison (enum comparison_code code)
2559 switch (code)
2561 case COMPCODE_LT:
2562 return LT_EXPR;
2563 case COMPCODE_EQ:
2564 return EQ_EXPR;
2565 case COMPCODE_LE:
2566 return LE_EXPR;
2567 case COMPCODE_GT:
2568 return GT_EXPR;
2569 case COMPCODE_NE:
2570 return NE_EXPR;
2571 case COMPCODE_GE:
2572 return GE_EXPR;
2573 case COMPCODE_ORD:
2574 return ORDERED_EXPR;
2575 case COMPCODE_UNORD:
2576 return UNORDERED_EXPR;
2577 case COMPCODE_UNLT:
2578 return UNLT_EXPR;
2579 case COMPCODE_UNEQ:
2580 return UNEQ_EXPR;
2581 case COMPCODE_UNLE:
2582 return UNLE_EXPR;
2583 case COMPCODE_UNGT:
2584 return UNGT_EXPR;
2585 case COMPCODE_LTGT:
2586 return LTGT_EXPR;
2587 case COMPCODE_UNGE:
2588 return UNGE_EXPR;
2589 default:
2590 gcc_unreachable ();
2594 /* Return a tree for the comparison which is the combination of
2595 doing the AND or OR (depending on CODE) of the two operations LCODE
2596 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2597 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2598 if this makes the transformation invalid. */
2600 tree
2601 combine_comparisons (enum tree_code code, enum tree_code lcode,
2602 enum tree_code rcode, tree truth_type,
2603 tree ll_arg, tree lr_arg)
2605 bool honor_nans = HONOR_NANS (TYPE_MODE (TREE_TYPE (ll_arg)));
2606 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2607 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2608 enum comparison_code compcode;
2610 switch (code)
2612 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2613 compcode = lcompcode & rcompcode;
2614 break;
2616 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2617 compcode = lcompcode | rcompcode;
2618 break;
2620 default:
2621 return NULL_TREE;
2624 if (!honor_nans)
2626 /* Eliminate unordered comparisons, as well as LTGT and ORD
2627 which are not used unless the mode has NaNs. */
2628 compcode &= ~COMPCODE_UNORD;
2629 if (compcode == COMPCODE_LTGT)
2630 compcode = COMPCODE_NE;
2631 else if (compcode == COMPCODE_ORD)
2632 compcode = COMPCODE_TRUE;
2634 else if (flag_trapping_math)
2636 /* Check that the original operation and the optimized ones will trap
2637 under the same condition. */
2638 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2639 && (lcompcode != COMPCODE_EQ)
2640 && (lcompcode != COMPCODE_ORD);
2641 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2642 && (rcompcode != COMPCODE_EQ)
2643 && (rcompcode != COMPCODE_ORD);
2644 bool trap = (compcode & COMPCODE_UNORD) == 0
2645 && (compcode != COMPCODE_EQ)
2646 && (compcode != COMPCODE_ORD);
2648 /* In a short-circuited boolean expression the LHS might be
2649 such that the RHS, if evaluated, will never trap. For
2650 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2651 if neither x nor y is NaN. (This is a mixed blessing: for
2652 example, the expression above will never trap, hence
2653 optimizing it to x < y would be invalid). */
2654 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2655 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2656 rtrap = false;
2658 /* If the comparison was short-circuited, and only the RHS
2659 trapped, we may now generate a spurious trap. */
2660 if (rtrap && !ltrap
2661 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2662 return NULL_TREE;
2664 /* If we changed the conditions that cause a trap, we lose. */
2665 if ((ltrap || rtrap) != trap)
2666 return NULL_TREE;
2669 if (compcode == COMPCODE_TRUE)
2670 return constant_boolean_node (true, truth_type);
2671 else if (compcode == COMPCODE_FALSE)
2672 return constant_boolean_node (false, truth_type);
2673 else
2674 return fold_build2 (compcode_to_comparison (compcode),
2675 truth_type, ll_arg, lr_arg);
2678 /* Return nonzero if CODE is a tree code that represents a truth value. */
2680 static int
2681 truth_value_p (enum tree_code code)
2683 return (TREE_CODE_CLASS (code) == tcc_comparison
2684 || code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR
2685 || code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR
2686 || code == TRUTH_XOR_EXPR || code == TRUTH_NOT_EXPR);
2689 /* Return nonzero if two operands (typically of the same tree node)
2690 are necessarily equal. If either argument has side-effects this
2691 function returns zero. FLAGS modifies behavior as follows:
2693 If OEP_ONLY_CONST is set, only return nonzero for constants.
2694 This function tests whether the operands are indistinguishable;
2695 it does not test whether they are equal using C's == operation.
2696 The distinction is important for IEEE floating point, because
2697 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2698 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2700 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2701 even though it may hold multiple values during a function.
2702 This is because a GCC tree node guarantees that nothing else is
2703 executed between the evaluation of its "operands" (which may often
2704 be evaluated in arbitrary order). Hence if the operands themselves
2705 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2706 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2707 unset means assuming isochronic (or instantaneous) tree equivalence.
2708 Unless comparing arbitrary expression trees, such as from different
2709 statements, this flag can usually be left unset.
2711 If OEP_PURE_SAME is set, then pure functions with identical arguments
2712 are considered the same. It is used when the caller has other ways
2713 to ensure that global memory is unchanged in between. */
2716 operand_equal_p (tree arg0, tree arg1, unsigned int flags)
2718 /* If either is ERROR_MARK, they aren't equal. */
2719 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK)
2720 return 0;
2722 /* If both types don't have the same signedness, then we can't consider
2723 them equal. We must check this before the STRIP_NOPS calls
2724 because they may change the signedness of the arguments. */
2725 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2726 return 0;
2728 /* If both types don't have the same precision, then it is not safe
2729 to strip NOPs. */
2730 if (TYPE_PRECISION (TREE_TYPE (arg0)) != TYPE_PRECISION (TREE_TYPE (arg1)))
2731 return 0;
2733 STRIP_NOPS (arg0);
2734 STRIP_NOPS (arg1);
2736 /* In case both args are comparisons but with different comparison
2737 code, try to swap the comparison operands of one arg to produce
2738 a match and compare that variant. */
2739 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2740 && COMPARISON_CLASS_P (arg0)
2741 && COMPARISON_CLASS_P (arg1))
2743 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2745 if (TREE_CODE (arg0) == swap_code)
2746 return operand_equal_p (TREE_OPERAND (arg0, 0),
2747 TREE_OPERAND (arg1, 1), flags)
2748 && operand_equal_p (TREE_OPERAND (arg0, 1),
2749 TREE_OPERAND (arg1, 0), flags);
2752 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2753 /* This is needed for conversions and for COMPONENT_REF.
2754 Might as well play it safe and always test this. */
2755 || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2756 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2757 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
2758 return 0;
2760 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2761 We don't care about side effects in that case because the SAVE_EXPR
2762 takes care of that for us. In all other cases, two expressions are
2763 equal if they have no side effects. If we have two identical
2764 expressions with side effects that should be treated the same due
2765 to the only side effects being identical SAVE_EXPR's, that will
2766 be detected in the recursive calls below. */
2767 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2768 && (TREE_CODE (arg0) == SAVE_EXPR
2769 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2770 return 1;
2772 /* Next handle constant cases, those for which we can return 1 even
2773 if ONLY_CONST is set. */
2774 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2775 switch (TREE_CODE (arg0))
2777 case INTEGER_CST:
2778 return tree_int_cst_equal (arg0, arg1);
2780 case REAL_CST:
2781 if (REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
2782 TREE_REAL_CST (arg1)))
2783 return 1;
2786 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0))))
2788 /* If we do not distinguish between signed and unsigned zero,
2789 consider them equal. */
2790 if (real_zerop (arg0) && real_zerop (arg1))
2791 return 1;
2793 return 0;
2795 case VECTOR_CST:
2797 tree v1, v2;
2799 v1 = TREE_VECTOR_CST_ELTS (arg0);
2800 v2 = TREE_VECTOR_CST_ELTS (arg1);
2801 while (v1 && v2)
2803 if (!operand_equal_p (TREE_VALUE (v1), TREE_VALUE (v2),
2804 flags))
2805 return 0;
2806 v1 = TREE_CHAIN (v1);
2807 v2 = TREE_CHAIN (v2);
2810 return v1 == v2;
2813 case COMPLEX_CST:
2814 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2815 flags)
2816 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2817 flags));
2819 case STRING_CST:
2820 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2821 && ! memcmp (TREE_STRING_POINTER (arg0),
2822 TREE_STRING_POINTER (arg1),
2823 TREE_STRING_LENGTH (arg0)));
2825 case ADDR_EXPR:
2826 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2828 default:
2829 break;
2832 if (flags & OEP_ONLY_CONST)
2833 return 0;
2835 /* Define macros to test an operand from arg0 and arg1 for equality and a
2836 variant that allows null and views null as being different from any
2837 non-null value. In the latter case, if either is null, the both
2838 must be; otherwise, do the normal comparison. */
2839 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2840 TREE_OPERAND (arg1, N), flags)
2842 #define OP_SAME_WITH_NULL(N) \
2843 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2844 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2846 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2848 case tcc_unary:
2849 /* Two conversions are equal only if signedness and modes match. */
2850 switch (TREE_CODE (arg0))
2852 case NOP_EXPR:
2853 case CONVERT_EXPR:
2854 case FIX_TRUNC_EXPR:
2855 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2856 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2857 return 0;
2858 break;
2859 default:
2860 break;
2863 return OP_SAME (0);
2866 case tcc_comparison:
2867 case tcc_binary:
2868 if (OP_SAME (0) && OP_SAME (1))
2869 return 1;
2871 /* For commutative ops, allow the other order. */
2872 return (commutative_tree_code (TREE_CODE (arg0))
2873 && operand_equal_p (TREE_OPERAND (arg0, 0),
2874 TREE_OPERAND (arg1, 1), flags)
2875 && operand_equal_p (TREE_OPERAND (arg0, 1),
2876 TREE_OPERAND (arg1, 0), flags));
2878 case tcc_reference:
2879 /* If either of the pointer (or reference) expressions we are
2880 dereferencing contain a side effect, these cannot be equal. */
2881 if (TREE_SIDE_EFFECTS (arg0)
2882 || TREE_SIDE_EFFECTS (arg1))
2883 return 0;
2885 switch (TREE_CODE (arg0))
2887 case INDIRECT_REF:
2888 case ALIGN_INDIRECT_REF:
2889 case MISALIGNED_INDIRECT_REF:
2890 case REALPART_EXPR:
2891 case IMAGPART_EXPR:
2892 return OP_SAME (0);
2894 case ARRAY_REF:
2895 case ARRAY_RANGE_REF:
2896 /* Operands 2 and 3 may be null.
2897 Compare the array index by value if it is constant first as we
2898 may have different types but same value here. */
2899 return (OP_SAME (0)
2900 && (tree_int_cst_equal (TREE_OPERAND (arg0, 1),
2901 TREE_OPERAND (arg1, 1))
2902 || OP_SAME (1))
2903 && OP_SAME_WITH_NULL (2)
2904 && OP_SAME_WITH_NULL (3));
2906 case COMPONENT_REF:
2907 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
2908 may be NULL when we're called to compare MEM_EXPRs. */
2909 return OP_SAME_WITH_NULL (0)
2910 && OP_SAME (1)
2911 && OP_SAME_WITH_NULL (2);
2913 case BIT_FIELD_REF:
2914 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
2916 default:
2917 return 0;
2920 case tcc_expression:
2921 switch (TREE_CODE (arg0))
2923 case ADDR_EXPR:
2924 case TRUTH_NOT_EXPR:
2925 return OP_SAME (0);
2927 case TRUTH_ANDIF_EXPR:
2928 case TRUTH_ORIF_EXPR:
2929 return OP_SAME (0) && OP_SAME (1);
2931 case TRUTH_AND_EXPR:
2932 case TRUTH_OR_EXPR:
2933 case TRUTH_XOR_EXPR:
2934 if (OP_SAME (0) && OP_SAME (1))
2935 return 1;
2937 /* Otherwise take into account this is a commutative operation. */
2938 return (operand_equal_p (TREE_OPERAND (arg0, 0),
2939 TREE_OPERAND (arg1, 1), flags)
2940 && operand_equal_p (TREE_OPERAND (arg0, 1),
2941 TREE_OPERAND (arg1, 0), flags));
2943 default:
2944 return 0;
2947 case tcc_vl_exp:
2948 switch (TREE_CODE (arg0))
2950 case CALL_EXPR:
2951 /* If the CALL_EXPRs call different functions, then they
2952 clearly can not be equal. */
2953 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
2954 flags))
2955 return 0;
2958 unsigned int cef = call_expr_flags (arg0);
2959 if (flags & OEP_PURE_SAME)
2960 cef &= ECF_CONST | ECF_PURE;
2961 else
2962 cef &= ECF_CONST;
2963 if (!cef)
2964 return 0;
2967 /* Now see if all the arguments are the same. */
2969 call_expr_arg_iterator iter0, iter1;
2970 tree a0, a1;
2971 for (a0 = first_call_expr_arg (arg0, &iter0),
2972 a1 = first_call_expr_arg (arg1, &iter1);
2973 a0 && a1;
2974 a0 = next_call_expr_arg (&iter0),
2975 a1 = next_call_expr_arg (&iter1))
2976 if (! operand_equal_p (a0, a1, flags))
2977 return 0;
2979 /* If we get here and both argument lists are exhausted
2980 then the CALL_EXPRs are equal. */
2981 return ! (a0 || a1);
2983 default:
2984 return 0;
2987 case tcc_declaration:
2988 /* Consider __builtin_sqrt equal to sqrt. */
2989 return (TREE_CODE (arg0) == FUNCTION_DECL
2990 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
2991 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
2992 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
2994 default:
2995 return 0;
2998 #undef OP_SAME
2999 #undef OP_SAME_WITH_NULL
3002 /* Similar to operand_equal_p, but see if ARG0 might have been made by
3003 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
3005 When in doubt, return 0. */
3007 static int
3008 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
3010 int unsignedp1, unsignedpo;
3011 tree primarg0, primarg1, primother;
3012 unsigned int correct_width;
3014 if (operand_equal_p (arg0, arg1, 0))
3015 return 1;
3017 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3018 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3019 return 0;
3021 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3022 and see if the inner values are the same. This removes any
3023 signedness comparison, which doesn't matter here. */
3024 primarg0 = arg0, primarg1 = arg1;
3025 STRIP_NOPS (primarg0);
3026 STRIP_NOPS (primarg1);
3027 if (operand_equal_p (primarg0, primarg1, 0))
3028 return 1;
3030 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
3031 actual comparison operand, ARG0.
3033 First throw away any conversions to wider types
3034 already present in the operands. */
3036 primarg1 = get_narrower (arg1, &unsignedp1);
3037 primother = get_narrower (other, &unsignedpo);
3039 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
3040 if (unsignedp1 == unsignedpo
3041 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
3042 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
3044 tree type = TREE_TYPE (arg0);
3046 /* Make sure shorter operand is extended the right way
3047 to match the longer operand. */
3048 primarg1 = fold_convert (get_signed_or_unsigned_type
3049 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
3051 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
3052 return 1;
3055 return 0;
3058 /* See if ARG is an expression that is either a comparison or is performing
3059 arithmetic on comparisons. The comparisons must only be comparing
3060 two different values, which will be stored in *CVAL1 and *CVAL2; if
3061 they are nonzero it means that some operands have already been found.
3062 No variables may be used anywhere else in the expression except in the
3063 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3064 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3066 If this is true, return 1. Otherwise, return zero. */
3068 static int
3069 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
3071 enum tree_code code = TREE_CODE (arg);
3072 enum tree_code_class class = TREE_CODE_CLASS (code);
3074 /* We can handle some of the tcc_expression cases here. */
3075 if (class == tcc_expression && code == TRUTH_NOT_EXPR)
3076 class = tcc_unary;
3077 else if (class == tcc_expression
3078 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3079 || code == COMPOUND_EXPR))
3080 class = tcc_binary;
3082 else if (class == tcc_expression && code == SAVE_EXPR
3083 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
3085 /* If we've already found a CVAL1 or CVAL2, this expression is
3086 two complex to handle. */
3087 if (*cval1 || *cval2)
3088 return 0;
3090 class = tcc_unary;
3091 *save_p = 1;
3094 switch (class)
3096 case tcc_unary:
3097 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
3099 case tcc_binary:
3100 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
3101 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3102 cval1, cval2, save_p));
3104 case tcc_constant:
3105 return 1;
3107 case tcc_expression:
3108 if (code == COND_EXPR)
3109 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
3110 cval1, cval2, save_p)
3111 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3112 cval1, cval2, save_p)
3113 && twoval_comparison_p (TREE_OPERAND (arg, 2),
3114 cval1, cval2, save_p));
3115 return 0;
3117 case tcc_comparison:
3118 /* First see if we can handle the first operand, then the second. For
3119 the second operand, we know *CVAL1 can't be zero. It must be that
3120 one side of the comparison is each of the values; test for the
3121 case where this isn't true by failing if the two operands
3122 are the same. */
3124 if (operand_equal_p (TREE_OPERAND (arg, 0),
3125 TREE_OPERAND (arg, 1), 0))
3126 return 0;
3128 if (*cval1 == 0)
3129 *cval1 = TREE_OPERAND (arg, 0);
3130 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3132 else if (*cval2 == 0)
3133 *cval2 = TREE_OPERAND (arg, 0);
3134 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3136 else
3137 return 0;
3139 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3141 else if (*cval2 == 0)
3142 *cval2 = TREE_OPERAND (arg, 1);
3143 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3145 else
3146 return 0;
3148 return 1;
3150 default:
3151 return 0;
3155 /* ARG is a tree that is known to contain just arithmetic operations and
3156 comparisons. Evaluate the operations in the tree substituting NEW0 for
3157 any occurrence of OLD0 as an operand of a comparison and likewise for
3158 NEW1 and OLD1. */
3160 static tree
3161 eval_subst (tree arg, tree old0, tree new0, tree old1, tree new1)
3163 tree type = TREE_TYPE (arg);
3164 enum tree_code code = TREE_CODE (arg);
3165 enum tree_code_class class = TREE_CODE_CLASS (code);
3167 /* We can handle some of the tcc_expression cases here. */
3168 if (class == tcc_expression && code == TRUTH_NOT_EXPR)
3169 class = tcc_unary;
3170 else if (class == tcc_expression
3171 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3172 class = tcc_binary;
3174 switch (class)
3176 case tcc_unary:
3177 return fold_build1 (code, type,
3178 eval_subst (TREE_OPERAND (arg, 0),
3179 old0, new0, old1, new1));
3181 case tcc_binary:
3182 return fold_build2 (code, type,
3183 eval_subst (TREE_OPERAND (arg, 0),
3184 old0, new0, old1, new1),
3185 eval_subst (TREE_OPERAND (arg, 1),
3186 old0, new0, old1, new1));
3188 case tcc_expression:
3189 switch (code)
3191 case SAVE_EXPR:
3192 return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);
3194 case COMPOUND_EXPR:
3195 return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);
3197 case COND_EXPR:
3198 return fold_build3 (code, type,
3199 eval_subst (TREE_OPERAND (arg, 0),
3200 old0, new0, old1, new1),
3201 eval_subst (TREE_OPERAND (arg, 1),
3202 old0, new0, old1, new1),
3203 eval_subst (TREE_OPERAND (arg, 2),
3204 old0, new0, old1, new1));
3205 default:
3206 break;
3208 /* Fall through - ??? */
3210 case tcc_comparison:
3212 tree arg0 = TREE_OPERAND (arg, 0);
3213 tree arg1 = TREE_OPERAND (arg, 1);
3215 /* We need to check both for exact equality and tree equality. The
3216 former will be true if the operand has a side-effect. In that
3217 case, we know the operand occurred exactly once. */
3219 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3220 arg0 = new0;
3221 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3222 arg0 = new1;
3224 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3225 arg1 = new0;
3226 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3227 arg1 = new1;
3229 return fold_build2 (code, type, arg0, arg1);
3232 default:
3233 return arg;
3237 /* Return a tree for the case when the result of an expression is RESULT
3238 converted to TYPE and OMITTED was previously an operand of the expression
3239 but is now not needed (e.g., we folded OMITTED * 0).
3241 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3242 the conversion of RESULT to TYPE. */
3244 tree
3245 omit_one_operand (tree type, tree result, tree omitted)
3247 tree t = fold_convert (type, result);
3249 if (TREE_SIDE_EFFECTS (omitted))
3250 return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
3252 return non_lvalue (t);
3255 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
3257 static tree
3258 pedantic_omit_one_operand (tree type, tree result, tree omitted)
3260 tree t = fold_convert (type, result);
3262 if (TREE_SIDE_EFFECTS (omitted))
3263 return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
3265 return pedantic_non_lvalue (t);
3268 /* Return a tree for the case when the result of an expression is RESULT
3269 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3270 of the expression but are now not needed.
3272 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3273 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3274 evaluated before OMITTED2. Otherwise, if neither has side effects,
3275 just do the conversion of RESULT to TYPE. */
3277 tree
3278 omit_two_operands (tree type, tree result, tree omitted1, tree omitted2)
3280 tree t = fold_convert (type, result);
3282 if (TREE_SIDE_EFFECTS (omitted2))
3283 t = build2 (COMPOUND_EXPR, type, omitted2, t);
3284 if (TREE_SIDE_EFFECTS (omitted1))
3285 t = build2 (COMPOUND_EXPR, type, omitted1, t);
3287 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue (t) : t;
3291 /* Return a simplified tree node for the truth-negation of ARG. This
3292 never alters ARG itself. We assume that ARG is an operation that
3293 returns a truth value (0 or 1).
3295 FIXME: one would think we would fold the result, but it causes
3296 problems with the dominator optimizer. */
3298 tree
3299 fold_truth_not_expr (tree arg)
3301 tree type = TREE_TYPE (arg);
3302 enum tree_code code = TREE_CODE (arg);
3304 /* If this is a comparison, we can simply invert it, except for
3305 floating-point non-equality comparisons, in which case we just
3306 enclose a TRUTH_NOT_EXPR around what we have. */
3308 if (TREE_CODE_CLASS (code) == tcc_comparison)
3310 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3311 if (FLOAT_TYPE_P (op_type)
3312 && flag_trapping_math
3313 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3314 && code != NE_EXPR && code != EQ_EXPR)
3315 return NULL_TREE;
3316 else
3318 code = invert_tree_comparison (code,
3319 HONOR_NANS (TYPE_MODE (op_type)));
3320 if (code == ERROR_MARK)
3321 return NULL_TREE;
3322 else
3323 return build2 (code, type,
3324 TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
3328 switch (code)
3330 case INTEGER_CST:
3331 return constant_boolean_node (integer_zerop (arg), type);
3333 case TRUTH_AND_EXPR:
3334 return build2 (TRUTH_OR_EXPR, type,
3335 invert_truthvalue (TREE_OPERAND (arg, 0)),
3336 invert_truthvalue (TREE_OPERAND (arg, 1)));
3338 case TRUTH_OR_EXPR:
3339 return build2 (TRUTH_AND_EXPR, type,
3340 invert_truthvalue (TREE_OPERAND (arg, 0)),
3341 invert_truthvalue (TREE_OPERAND (arg, 1)));
3343 case TRUTH_XOR_EXPR:
3344 /* Here we can invert either operand. We invert the first operand
3345 unless the second operand is a TRUTH_NOT_EXPR in which case our
3346 result is the XOR of the first operand with the inside of the
3347 negation of the second operand. */
3349 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3350 return build2 (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3351 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3352 else
3353 return build2 (TRUTH_XOR_EXPR, type,
3354 invert_truthvalue (TREE_OPERAND (arg, 0)),
3355 TREE_OPERAND (arg, 1));
3357 case TRUTH_ANDIF_EXPR:
3358 return build2 (TRUTH_ORIF_EXPR, type,
3359 invert_truthvalue (TREE_OPERAND (arg, 0)),
3360 invert_truthvalue (TREE_OPERAND (arg, 1)));
3362 case TRUTH_ORIF_EXPR:
3363 return build2 (TRUTH_ANDIF_EXPR, type,
3364 invert_truthvalue (TREE_OPERAND (arg, 0)),
3365 invert_truthvalue (TREE_OPERAND (arg, 1)));
3367 case TRUTH_NOT_EXPR:
3368 return TREE_OPERAND (arg, 0);
3370 case COND_EXPR:
3372 tree arg1 = TREE_OPERAND (arg, 1);
3373 tree arg2 = TREE_OPERAND (arg, 2);
3374 /* A COND_EXPR may have a throw as one operand, which
3375 then has void type. Just leave void operands
3376 as they are. */
3377 return build3 (COND_EXPR, type, TREE_OPERAND (arg, 0),
3378 VOID_TYPE_P (TREE_TYPE (arg1))
3379 ? arg1 : invert_truthvalue (arg1),
3380 VOID_TYPE_P (TREE_TYPE (arg2))
3381 ? arg2 : invert_truthvalue (arg2));
3384 case COMPOUND_EXPR:
3385 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
3386 invert_truthvalue (TREE_OPERAND (arg, 1)));
3388 case NON_LVALUE_EXPR:
3389 return invert_truthvalue (TREE_OPERAND (arg, 0));
3391 case NOP_EXPR:
3392 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3393 return build1 (TRUTH_NOT_EXPR, type, arg);
3395 case CONVERT_EXPR:
3396 case FLOAT_EXPR:
3397 return build1 (TREE_CODE (arg), type,
3398 invert_truthvalue (TREE_OPERAND (arg, 0)));
3400 case BIT_AND_EXPR:
3401 if (!integer_onep (TREE_OPERAND (arg, 1)))
3402 break;
3403 return build2 (EQ_EXPR, type, arg,
3404 build_int_cst (type, 0));
3406 case SAVE_EXPR:
3407 return build1 (TRUTH_NOT_EXPR, type, arg);
3409 case CLEANUP_POINT_EXPR:
3410 return build1 (CLEANUP_POINT_EXPR, type,
3411 invert_truthvalue (TREE_OPERAND (arg, 0)));
3413 default:
3414 break;
3417 return NULL_TREE;
3420 /* Return a simplified tree node for the truth-negation of ARG. This
3421 never alters ARG itself. We assume that ARG is an operation that
3422 returns a truth value (0 or 1).
3424 FIXME: one would think we would fold the result, but it causes
3425 problems with the dominator optimizer. */
3427 tree
3428 invert_truthvalue (tree arg)
3430 tree tem;
3432 if (TREE_CODE (arg) == ERROR_MARK)
3433 return arg;
3435 tem = fold_truth_not_expr (arg);
3436 if (!tem)
3437 tem = build1 (TRUTH_NOT_EXPR, TREE_TYPE (arg), arg);
3439 return tem;
3442 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
3443 operands are another bit-wise operation with a common input. If so,
3444 distribute the bit operations to save an operation and possibly two if
3445 constants are involved. For example, convert
3446 (A | B) & (A | C) into A | (B & C)
3447 Further simplification will occur if B and C are constants.
3449 If this optimization cannot be done, 0 will be returned. */
3451 static tree
3452 distribute_bit_expr (enum tree_code code, tree type, tree arg0, tree arg1)
3454 tree common;
3455 tree left, right;
3457 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3458 || TREE_CODE (arg0) == code
3459 || (TREE_CODE (arg0) != BIT_AND_EXPR
3460 && TREE_CODE (arg0) != BIT_IOR_EXPR))
3461 return 0;
3463 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
3465 common = TREE_OPERAND (arg0, 0);
3466 left = TREE_OPERAND (arg0, 1);
3467 right = TREE_OPERAND (arg1, 1);
3469 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
3471 common = TREE_OPERAND (arg0, 0);
3472 left = TREE_OPERAND (arg0, 1);
3473 right = TREE_OPERAND (arg1, 0);
3475 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
3477 common = TREE_OPERAND (arg0, 1);
3478 left = TREE_OPERAND (arg0, 0);
3479 right = TREE_OPERAND (arg1, 1);
3481 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
3483 common = TREE_OPERAND (arg0, 1);
3484 left = TREE_OPERAND (arg0, 0);
3485 right = TREE_OPERAND (arg1, 0);
3487 else
3488 return 0;
3490 return fold_build2 (TREE_CODE (arg0), type, common,
3491 fold_build2 (code, type, left, right));
3494 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3495 with code CODE. This optimization is unsafe. */
3496 static tree
3497 distribute_real_division (enum tree_code code, tree type, tree arg0, tree arg1)
3499 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3500 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3502 /* (A / C) +- (B / C) -> (A +- B) / C. */
3503 if (mul0 == mul1
3504 && operand_equal_p (TREE_OPERAND (arg0, 1),
3505 TREE_OPERAND (arg1, 1), 0))
3506 return fold_build2 (mul0 ? MULT_EXPR : RDIV_EXPR, type,
3507 fold_build2 (code, type,
3508 TREE_OPERAND (arg0, 0),
3509 TREE_OPERAND (arg1, 0)),
3510 TREE_OPERAND (arg0, 1));
3512 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3513 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3514 TREE_OPERAND (arg1, 0), 0)
3515 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3516 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3518 REAL_VALUE_TYPE r0, r1;
3519 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3520 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3521 if (!mul0)
3522 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3523 if (!mul1)
3524 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3525 real_arithmetic (&r0, code, &r0, &r1);
3526 return fold_build2 (MULT_EXPR, type,
3527 TREE_OPERAND (arg0, 0),
3528 build_real (type, r0));
3531 return NULL_TREE;
3534 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3535 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3537 static tree
3538 make_bit_field_ref (tree inner, tree type, int bitsize, int bitpos,
3539 int unsignedp)
3541 tree result;
3543 if (bitpos == 0)
3545 tree size = TYPE_SIZE (TREE_TYPE (inner));
3546 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3547 || POINTER_TYPE_P (TREE_TYPE (inner)))
3548 && host_integerp (size, 0)
3549 && tree_low_cst (size, 0) == bitsize)
3550 return fold_convert (type, inner);
3553 result = build3 (BIT_FIELD_REF, type, inner,
3554 size_int (bitsize), bitsize_int (bitpos));
3556 BIT_FIELD_REF_UNSIGNED (result) = unsignedp;
3558 return result;
3561 /* Optimize a bit-field compare.
3563 There are two cases: First is a compare against a constant and the
3564 second is a comparison of two items where the fields are at the same
3565 bit position relative to the start of a chunk (byte, halfword, word)
3566 large enough to contain it. In these cases we can avoid the shift
3567 implicit in bitfield extractions.
3569 For constants, we emit a compare of the shifted constant with the
3570 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3571 compared. For two fields at the same position, we do the ANDs with the
3572 similar mask and compare the result of the ANDs.
3574 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3575 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3576 are the left and right operands of the comparison, respectively.
3578 If the optimization described above can be done, we return the resulting
3579 tree. Otherwise we return zero. */
3581 static tree
3582 optimize_bit_field_compare (enum tree_code code, tree compare_type,
3583 tree lhs, tree rhs)
3585 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3586 tree type = TREE_TYPE (lhs);
3587 tree signed_type, unsigned_type;
3588 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3589 enum machine_mode lmode, rmode, nmode;
3590 int lunsignedp, runsignedp;
3591 int lvolatilep = 0, rvolatilep = 0;
3592 tree linner, rinner = NULL_TREE;
3593 tree mask;
3594 tree offset;
3596 /* Get all the information about the extractions being done. If the bit size
3597 if the same as the size of the underlying object, we aren't doing an
3598 extraction at all and so can do nothing. We also don't want to
3599 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3600 then will no longer be able to replace it. */
3601 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3602 &lunsignedp, &lvolatilep, false);
3603 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3604 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
3605 return 0;
3607 if (!const_p)
3609 /* If this is not a constant, we can only do something if bit positions,
3610 sizes, and signedness are the same. */
3611 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3612 &runsignedp, &rvolatilep, false);
3614 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3615 || lunsignedp != runsignedp || offset != 0
3616 || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
3617 return 0;
3620 /* See if we can find a mode to refer to this field. We should be able to,
3621 but fail if we can't. */
3622 nmode = get_best_mode (lbitsize, lbitpos,
3623 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3624 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3625 TYPE_ALIGN (TREE_TYPE (rinner))),
3626 word_mode, lvolatilep || rvolatilep);
3627 if (nmode == VOIDmode)
3628 return 0;
3630 /* Set signed and unsigned types of the precision of this mode for the
3631 shifts below. */
3632 signed_type = lang_hooks.types.type_for_mode (nmode, 0);
3633 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3635 /* Compute the bit position and size for the new reference and our offset
3636 within it. If the new reference is the same size as the original, we
3637 won't optimize anything, so return zero. */
3638 nbitsize = GET_MODE_BITSIZE (nmode);
3639 nbitpos = lbitpos & ~ (nbitsize - 1);
3640 lbitpos -= nbitpos;
3641 if (nbitsize == lbitsize)
3642 return 0;
3644 if (BYTES_BIG_ENDIAN)
3645 lbitpos = nbitsize - lbitsize - lbitpos;
3647 /* Make the mask to be used against the extracted field. */
3648 mask = build_int_cst_type (unsigned_type, -1);
3649 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize), 0);
3650 mask = const_binop (RSHIFT_EXPR, mask,
3651 size_int (nbitsize - lbitsize - lbitpos), 0);
3653 if (! const_p)
3654 /* If not comparing with constant, just rework the comparison
3655 and return. */
3656 return fold_build2 (code, compare_type,
3657 fold_build2 (BIT_AND_EXPR, unsigned_type,
3658 make_bit_field_ref (linner,
3659 unsigned_type,
3660 nbitsize, nbitpos,
3662 mask),
3663 fold_build2 (BIT_AND_EXPR, unsigned_type,
3664 make_bit_field_ref (rinner,
3665 unsigned_type,
3666 nbitsize, nbitpos,
3668 mask));
3670 /* Otherwise, we are handling the constant case. See if the constant is too
3671 big for the field. Warn and return a tree of for 0 (false) if so. We do
3672 this not only for its own sake, but to avoid having to test for this
3673 error case below. If we didn't, we might generate wrong code.
3675 For unsigned fields, the constant shifted right by the field length should
3676 be all zero. For signed fields, the high-order bits should agree with
3677 the sign bit. */
3679 if (lunsignedp)
3681 if (! integer_zerop (const_binop (RSHIFT_EXPR,
3682 fold_convert (unsigned_type, rhs),
3683 size_int (lbitsize), 0)))
3685 warning (0, "comparison is always %d due to width of bit-field",
3686 code == NE_EXPR);
3687 return constant_boolean_node (code == NE_EXPR, compare_type);
3690 else
3692 tree tem = const_binop (RSHIFT_EXPR, fold_convert (signed_type, rhs),
3693 size_int (lbitsize - 1), 0);
3694 if (! integer_zerop (tem) && ! integer_all_onesp (tem))
3696 warning (0, "comparison is always %d due to width of bit-field",
3697 code == NE_EXPR);
3698 return constant_boolean_node (code == NE_EXPR, compare_type);
3702 /* Single-bit compares should always be against zero. */
3703 if (lbitsize == 1 && ! integer_zerop (rhs))
3705 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3706 rhs = build_int_cst (type, 0);
3709 /* Make a new bitfield reference, shift the constant over the
3710 appropriate number of bits and mask it with the computed mask
3711 (in case this was a signed field). If we changed it, make a new one. */
3712 lhs = make_bit_field_ref (linner, unsigned_type, nbitsize, nbitpos, 1);
3713 if (lvolatilep)
3715 TREE_SIDE_EFFECTS (lhs) = 1;
3716 TREE_THIS_VOLATILE (lhs) = 1;
3719 rhs = const_binop (BIT_AND_EXPR,
3720 const_binop (LSHIFT_EXPR,
3721 fold_convert (unsigned_type, rhs),
3722 size_int (lbitpos), 0),
3723 mask, 0);
3725 return build2 (code, compare_type,
3726 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask),
3727 rhs);
3730 /* Subroutine for fold_truthop: decode a field reference.
3732 If EXP is a comparison reference, we return the innermost reference.
3734 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
3735 set to the starting bit number.
3737 If the innermost field can be completely contained in a mode-sized
3738 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
3740 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
3741 otherwise it is not changed.
3743 *PUNSIGNEDP is set to the signedness of the field.
3745 *PMASK is set to the mask used. This is either contained in a
3746 BIT_AND_EXPR or derived from the width of the field.
3748 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
3750 Return 0 if this is not a component reference or is one that we can't
3751 do anything with. */
3753 static tree
3754 decode_field_reference (tree exp, HOST_WIDE_INT *pbitsize,
3755 HOST_WIDE_INT *pbitpos, enum machine_mode *pmode,
3756 int *punsignedp, int *pvolatilep,
3757 tree *pmask, tree *pand_mask)
3759 tree outer_type = 0;
3760 tree and_mask = 0;
3761 tree mask, inner, offset;
3762 tree unsigned_type;
3763 unsigned int precision;
3765 /* All the optimizations using this function assume integer fields.
3766 There are problems with FP fields since the type_for_size call
3767 below can fail for, e.g., XFmode. */
3768 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
3769 return 0;
3771 /* We are interested in the bare arrangement of bits, so strip everything
3772 that doesn't affect the machine mode. However, record the type of the
3773 outermost expression if it may matter below. */
3774 if (TREE_CODE (exp) == NOP_EXPR
3775 || TREE_CODE (exp) == CONVERT_EXPR
3776 || TREE_CODE (exp) == NON_LVALUE_EXPR)
3777 outer_type = TREE_TYPE (exp);
3778 STRIP_NOPS (exp);
3780 if (TREE_CODE (exp) == BIT_AND_EXPR)
3782 and_mask = TREE_OPERAND (exp, 1);
3783 exp = TREE_OPERAND (exp, 0);
3784 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
3785 if (TREE_CODE (and_mask) != INTEGER_CST)
3786 return 0;
3789 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
3790 punsignedp, pvolatilep, false);
3791 if ((inner == exp && and_mask == 0)
3792 || *pbitsize < 0 || offset != 0
3793 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
3794 return 0;
3796 /* If the number of bits in the reference is the same as the bitsize of
3797 the outer type, then the outer type gives the signedness. Otherwise
3798 (in case of a small bitfield) the signedness is unchanged. */
3799 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
3800 *punsignedp = TYPE_UNSIGNED (outer_type);
3802 /* Compute the mask to access the bitfield. */
3803 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
3804 precision = TYPE_PRECISION (unsigned_type);
3806 mask = build_int_cst_type (unsigned_type, -1);
3808 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
3809 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
3811 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
3812 if (and_mask != 0)
3813 mask = fold_build2 (BIT_AND_EXPR, unsigned_type,
3814 fold_convert (unsigned_type, and_mask), mask);
3816 *pmask = mask;
3817 *pand_mask = and_mask;
3818 return inner;
3821 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
3822 bit positions. */
3824 static int
3825 all_ones_mask_p (tree mask, int size)
3827 tree type = TREE_TYPE (mask);
3828 unsigned int precision = TYPE_PRECISION (type);
3829 tree tmask;
3831 tmask = build_int_cst_type (lang_hooks.types.signed_type (type), -1);
3833 return
3834 tree_int_cst_equal (mask,
3835 const_binop (RSHIFT_EXPR,
3836 const_binop (LSHIFT_EXPR, tmask,
3837 size_int (precision - size),
3839 size_int (precision - size), 0));
3842 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
3843 represents the sign bit of EXP's type. If EXP represents a sign
3844 or zero extension, also test VAL against the unextended type.
3845 The return value is the (sub)expression whose sign bit is VAL,
3846 or NULL_TREE otherwise. */
3848 static tree
3849 sign_bit_p (tree exp, tree val)
3851 unsigned HOST_WIDE_INT mask_lo, lo;
3852 HOST_WIDE_INT mask_hi, hi;
3853 int width;
3854 tree t;
3856 /* Tree EXP must have an integral type. */
3857 t = TREE_TYPE (exp);
3858 if (! INTEGRAL_TYPE_P (t))
3859 return NULL_TREE;
3861 /* Tree VAL must be an integer constant. */
3862 if (TREE_CODE (val) != INTEGER_CST
3863 || TREE_OVERFLOW (val))
3864 return NULL_TREE;
3866 width = TYPE_PRECISION (t);
3867 if (width > HOST_BITS_PER_WIDE_INT)
3869 hi = (unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1);
3870 lo = 0;
3872 mask_hi = ((unsigned HOST_WIDE_INT) -1
3873 >> (2 * HOST_BITS_PER_WIDE_INT - width));
3874 mask_lo = -1;
3876 else
3878 hi = 0;
3879 lo = (unsigned HOST_WIDE_INT) 1 << (width - 1);
3881 mask_hi = 0;
3882 mask_lo = ((unsigned HOST_WIDE_INT) -1
3883 >> (HOST_BITS_PER_WIDE_INT - width));
3886 /* We mask off those bits beyond TREE_TYPE (exp) so that we can
3887 treat VAL as if it were unsigned. */
3888 if ((TREE_INT_CST_HIGH (val) & mask_hi) == hi
3889 && (TREE_INT_CST_LOW (val) & mask_lo) == lo)
3890 return exp;
3892 /* Handle extension from a narrower type. */
3893 if (TREE_CODE (exp) == NOP_EXPR
3894 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
3895 return sign_bit_p (TREE_OPERAND (exp, 0), val);
3897 return NULL_TREE;
3900 /* Subroutine for fold_truthop: determine if an operand is simple enough
3901 to be evaluated unconditionally. */
3903 static int
3904 simple_operand_p (tree exp)
3906 /* Strip any conversions that don't change the machine mode. */
3907 STRIP_NOPS (exp);
3909 return (CONSTANT_CLASS_P (exp)
3910 || TREE_CODE (exp) == SSA_NAME
3911 || (DECL_P (exp)
3912 && ! TREE_ADDRESSABLE (exp)
3913 && ! TREE_THIS_VOLATILE (exp)
3914 && ! DECL_NONLOCAL (exp)
3915 /* Don't regard global variables as simple. They may be
3916 allocated in ways unknown to the compiler (shared memory,
3917 #pragma weak, etc). */
3918 && ! TREE_PUBLIC (exp)
3919 && ! DECL_EXTERNAL (exp)
3920 /* Loading a static variable is unduly expensive, but global
3921 registers aren't expensive. */
3922 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
3925 /* The following functions are subroutines to fold_range_test and allow it to
3926 try to change a logical combination of comparisons into a range test.
3928 For example, both
3929 X == 2 || X == 3 || X == 4 || X == 5
3931 X >= 2 && X <= 5
3932 are converted to
3933 (unsigned) (X - 2) <= 3
3935 We describe each set of comparisons as being either inside or outside
3936 a range, using a variable named like IN_P, and then describe the
3937 range with a lower and upper bound. If one of the bounds is omitted,
3938 it represents either the highest or lowest value of the type.
3940 In the comments below, we represent a range by two numbers in brackets
3941 preceded by a "+" to designate being inside that range, or a "-" to
3942 designate being outside that range, so the condition can be inverted by
3943 flipping the prefix. An omitted bound is represented by a "-". For
3944 example, "- [-, 10]" means being outside the range starting at the lowest
3945 possible value and ending at 10, in other words, being greater than 10.
3946 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
3947 always false.
3949 We set up things so that the missing bounds are handled in a consistent
3950 manner so neither a missing bound nor "true" and "false" need to be
3951 handled using a special case. */
3953 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
3954 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
3955 and UPPER1_P are nonzero if the respective argument is an upper bound
3956 and zero for a lower. TYPE, if nonzero, is the type of the result; it
3957 must be specified for a comparison. ARG1 will be converted to ARG0's
3958 type if both are specified. */
3960 static tree
3961 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
3962 tree arg1, int upper1_p)
3964 tree tem;
3965 int result;
3966 int sgn0, sgn1;
3968 /* If neither arg represents infinity, do the normal operation.
3969 Else, if not a comparison, return infinity. Else handle the special
3970 comparison rules. Note that most of the cases below won't occur, but
3971 are handled for consistency. */
3973 if (arg0 != 0 && arg1 != 0)
3975 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
3976 arg0, fold_convert (TREE_TYPE (arg0), arg1));
3977 STRIP_NOPS (tem);
3978 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
3981 if (TREE_CODE_CLASS (code) != tcc_comparison)
3982 return 0;
3984 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
3985 for neither. In real maths, we cannot assume open ended ranges are
3986 the same. But, this is computer arithmetic, where numbers are finite.
3987 We can therefore make the transformation of any unbounded range with
3988 the value Z, Z being greater than any representable number. This permits
3989 us to treat unbounded ranges as equal. */
3990 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
3991 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
3992 switch (code)
3994 case EQ_EXPR:
3995 result = sgn0 == sgn1;
3996 break;
3997 case NE_EXPR:
3998 result = sgn0 != sgn1;
3999 break;
4000 case LT_EXPR:
4001 result = sgn0 < sgn1;
4002 break;
4003 case LE_EXPR:
4004 result = sgn0 <= sgn1;
4005 break;
4006 case GT_EXPR:
4007 result = sgn0 > sgn1;
4008 break;
4009 case GE_EXPR:
4010 result = sgn0 >= sgn1;
4011 break;
4012 default:
4013 gcc_unreachable ();
4016 return constant_boolean_node (result, type);
4019 /* Given EXP, a logical expression, set the range it is testing into
4020 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4021 actually being tested. *PLOW and *PHIGH will be made of the same
4022 type as the returned expression. If EXP is not a comparison, we
4023 will most likely not be returning a useful value and range. Set
4024 *STRICT_OVERFLOW_P to true if the return value is only valid
4025 because signed overflow is undefined; otherwise, do not change
4026 *STRICT_OVERFLOW_P. */
4028 static tree
4029 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4030 bool *strict_overflow_p)
4032 enum tree_code code;
4033 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
4034 tree exp_type = NULL_TREE, arg0_type = NULL_TREE;
4035 int in_p, n_in_p;
4036 tree low, high, n_low, n_high;
4038 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4039 and see if we can refine the range. Some of the cases below may not
4040 happen, but it doesn't seem worth worrying about this. We "continue"
4041 the outer loop when we've changed something; otherwise we "break"
4042 the switch, which will "break" the while. */
4044 in_p = 0;
4045 low = high = build_int_cst (TREE_TYPE (exp), 0);
4047 while (1)
4049 code = TREE_CODE (exp);
4050 exp_type = TREE_TYPE (exp);
4052 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4054 if (TREE_OPERAND_LENGTH (exp) > 0)
4055 arg0 = TREE_OPERAND (exp, 0);
4056 if (TREE_CODE_CLASS (code) == tcc_comparison
4057 || TREE_CODE_CLASS (code) == tcc_unary
4058 || TREE_CODE_CLASS (code) == tcc_binary)
4059 arg0_type = TREE_TYPE (arg0);
4060 if (TREE_CODE_CLASS (code) == tcc_binary
4061 || TREE_CODE_CLASS (code) == tcc_comparison
4062 || (TREE_CODE_CLASS (code) == tcc_expression
4063 && TREE_OPERAND_LENGTH (exp) > 1))
4064 arg1 = TREE_OPERAND (exp, 1);
4067 switch (code)
4069 case TRUTH_NOT_EXPR:
4070 in_p = ! in_p, exp = arg0;
4071 continue;
4073 case EQ_EXPR: case NE_EXPR:
4074 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4075 /* We can only do something if the range is testing for zero
4076 and if the second operand is an integer constant. Note that
4077 saying something is "in" the range we make is done by
4078 complementing IN_P since it will set in the initial case of
4079 being not equal to zero; "out" is leaving it alone. */
4080 if (low == 0 || high == 0
4081 || ! integer_zerop (low) || ! integer_zerop (high)
4082 || TREE_CODE (arg1) != INTEGER_CST)
4083 break;
4085 switch (code)
4087 case NE_EXPR: /* - [c, c] */
4088 low = high = arg1;
4089 break;
4090 case EQ_EXPR: /* + [c, c] */
4091 in_p = ! in_p, low = high = arg1;
4092 break;
4093 case GT_EXPR: /* - [-, c] */
4094 low = 0, high = arg1;
4095 break;
4096 case GE_EXPR: /* + [c, -] */
4097 in_p = ! in_p, low = arg1, high = 0;
4098 break;
4099 case LT_EXPR: /* - [c, -] */
4100 low = arg1, high = 0;
4101 break;
4102 case LE_EXPR: /* + [-, c] */
4103 in_p = ! in_p, low = 0, high = arg1;
4104 break;
4105 default:
4106 gcc_unreachable ();
4109 /* If this is an unsigned comparison, we also know that EXP is
4110 greater than or equal to zero. We base the range tests we make
4111 on that fact, so we record it here so we can parse existing
4112 range tests. We test arg0_type since often the return type
4113 of, e.g. EQ_EXPR, is boolean. */
4114 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4116 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4117 in_p, low, high, 1,
4118 build_int_cst (arg0_type, 0),
4119 NULL_TREE))
4120 break;
4122 in_p = n_in_p, low = n_low, high = n_high;
4124 /* If the high bound is missing, but we have a nonzero low
4125 bound, reverse the range so it goes from zero to the low bound
4126 minus 1. */
4127 if (high == 0 && low && ! integer_zerop (low))
4129 in_p = ! in_p;
4130 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4131 integer_one_node, 0);
4132 low = build_int_cst (arg0_type, 0);
4136 exp = arg0;
4137 continue;
4139 case NEGATE_EXPR:
4140 /* (-x) IN [a,b] -> x in [-b, -a] */
4141 n_low = range_binop (MINUS_EXPR, exp_type,
4142 build_int_cst (exp_type, 0),
4143 0, high, 1);
4144 n_high = range_binop (MINUS_EXPR, exp_type,
4145 build_int_cst (exp_type, 0),
4146 0, low, 0);
4147 low = n_low, high = n_high;
4148 exp = arg0;
4149 continue;
4151 case BIT_NOT_EXPR:
4152 /* ~ X -> -X - 1 */
4153 exp = build2 (MINUS_EXPR, exp_type, negate_expr (arg0),
4154 build_int_cst (exp_type, 1));
4155 continue;
4157 case PLUS_EXPR: case MINUS_EXPR:
4158 if (TREE_CODE (arg1) != INTEGER_CST)
4159 break;
4161 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4162 move a constant to the other side. */
4163 if (!TYPE_UNSIGNED (arg0_type)
4164 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4165 break;
4167 /* If EXP is signed, any overflow in the computation is undefined,
4168 so we don't worry about it so long as our computations on
4169 the bounds don't overflow. For unsigned, overflow is defined
4170 and this is exactly the right thing. */
4171 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4172 arg0_type, low, 0, arg1, 0);
4173 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4174 arg0_type, high, 1, arg1, 0);
4175 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4176 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4177 break;
4179 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4180 *strict_overflow_p = true;
4182 /* Check for an unsigned range which has wrapped around the maximum
4183 value thus making n_high < n_low, and normalize it. */
4184 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4186 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4187 integer_one_node, 0);
4188 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4189 integer_one_node, 0);
4191 /* If the range is of the form +/- [ x+1, x ], we won't
4192 be able to normalize it. But then, it represents the
4193 whole range or the empty set, so make it
4194 +/- [ -, - ]. */
4195 if (tree_int_cst_equal (n_low, low)
4196 && tree_int_cst_equal (n_high, high))
4197 low = high = 0;
4198 else
4199 in_p = ! in_p;
4201 else
4202 low = n_low, high = n_high;
4204 exp = arg0;
4205 continue;
4207 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
4208 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4209 break;
4211 if (! INTEGRAL_TYPE_P (arg0_type)
4212 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4213 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4214 break;
4216 n_low = low, n_high = high;
4218 if (n_low != 0)
4219 n_low = fold_convert (arg0_type, n_low);
4221 if (n_high != 0)
4222 n_high = fold_convert (arg0_type, n_high);
4225 /* If we're converting arg0 from an unsigned type, to exp,
4226 a signed type, we will be doing the comparison as unsigned.
4227 The tests above have already verified that LOW and HIGH
4228 are both positive.
4230 So we have to ensure that we will handle large unsigned
4231 values the same way that the current signed bounds treat
4232 negative values. */
4234 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4236 tree high_positive;
4237 tree equiv_type = lang_hooks.types.type_for_mode
4238 (TYPE_MODE (arg0_type), 1);
4240 /* A range without an upper bound is, naturally, unbounded.
4241 Since convert would have cropped a very large value, use
4242 the max value for the destination type. */
4243 high_positive
4244 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4245 : TYPE_MAX_VALUE (arg0_type);
4247 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4248 high_positive = fold_build2 (RSHIFT_EXPR, arg0_type,
4249 fold_convert (arg0_type,
4250 high_positive),
4251 build_int_cst (arg0_type, 1));
4253 /* If the low bound is specified, "and" the range with the
4254 range for which the original unsigned value will be
4255 positive. */
4256 if (low != 0)
4258 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4259 1, n_low, n_high, 1,
4260 fold_convert (arg0_type,
4261 integer_zero_node),
4262 high_positive))
4263 break;
4265 in_p = (n_in_p == in_p);
4267 else
4269 /* Otherwise, "or" the range with the range of the input
4270 that will be interpreted as negative. */
4271 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4272 0, n_low, n_high, 1,
4273 fold_convert (arg0_type,
4274 integer_zero_node),
4275 high_positive))
4276 break;
4278 in_p = (in_p != n_in_p);
4282 exp = arg0;
4283 low = n_low, high = n_high;
4284 continue;
4286 default:
4287 break;
4290 break;
4293 /* If EXP is a constant, we can evaluate whether this is true or false. */
4294 if (TREE_CODE (exp) == INTEGER_CST)
4296 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4297 exp, 0, low, 0))
4298 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4299 exp, 1, high, 1)));
4300 low = high = 0;
4301 exp = 0;
4304 *pin_p = in_p, *plow = low, *phigh = high;
4305 return exp;
4308 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4309 type, TYPE, return an expression to test if EXP is in (or out of, depending
4310 on IN_P) the range. Return 0 if the test couldn't be created. */
4312 static tree
4313 build_range_check (tree type, tree exp, int in_p, tree low, tree high)
4315 tree etype = TREE_TYPE (exp);
4316 tree value;
4318 #ifdef HAVE_canonicalize_funcptr_for_compare
4319 /* Disable this optimization for function pointer expressions
4320 on targets that require function pointer canonicalization. */
4321 if (HAVE_canonicalize_funcptr_for_compare
4322 && TREE_CODE (etype) == POINTER_TYPE
4323 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4324 return NULL_TREE;
4325 #endif
4327 if (! in_p)
4329 value = build_range_check (type, exp, 1, low, high);
4330 if (value != 0)
4331 return invert_truthvalue (value);
4333 return 0;
4336 if (low == 0 && high == 0)
4337 return build_int_cst (type, 1);
4339 if (low == 0)
4340 return fold_build2 (LE_EXPR, type, exp,
4341 fold_convert (etype, high));
4343 if (high == 0)
4344 return fold_build2 (GE_EXPR, type, exp,
4345 fold_convert (etype, low));
4347 if (operand_equal_p (low, high, 0))
4348 return fold_build2 (EQ_EXPR, type, exp,
4349 fold_convert (etype, low));
4351 if (integer_zerop (low))
4353 if (! TYPE_UNSIGNED (etype))
4355 etype = lang_hooks.types.unsigned_type (etype);
4356 high = fold_convert (etype, high);
4357 exp = fold_convert (etype, exp);
4359 return build_range_check (type, exp, 1, 0, high);
4362 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4363 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4365 unsigned HOST_WIDE_INT lo;
4366 HOST_WIDE_INT hi;
4367 int prec;
4369 prec = TYPE_PRECISION (etype);
4370 if (prec <= HOST_BITS_PER_WIDE_INT)
4372 hi = 0;
4373 lo = ((unsigned HOST_WIDE_INT) 1 << (prec - 1)) - 1;
4375 else
4377 hi = ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)) - 1;
4378 lo = (unsigned HOST_WIDE_INT) -1;
4381 if (TREE_INT_CST_HIGH (high) == hi && TREE_INT_CST_LOW (high) == lo)
4383 if (TYPE_UNSIGNED (etype))
4385 etype = lang_hooks.types.signed_type (etype);
4386 exp = fold_convert (etype, exp);
4388 return fold_build2 (GT_EXPR, type, exp,
4389 build_int_cst (etype, 0));
4393 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4394 This requires wrap-around arithmetics for the type of the expression. */
4395 switch (TREE_CODE (etype))
4397 case INTEGER_TYPE:
4398 /* There is no requirement that LOW be within the range of ETYPE
4399 if the latter is a subtype. It must, however, be within the base
4400 type of ETYPE. So be sure we do the subtraction in that type. */
4401 if (TREE_TYPE (etype))
4402 etype = TREE_TYPE (etype);
4403 break;
4405 case ENUMERAL_TYPE:
4406 case BOOLEAN_TYPE:
4407 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4408 TYPE_UNSIGNED (etype));
4409 break;
4411 default:
4412 break;
4415 /* If we don't have wrap-around arithmetics upfront, try to force it. */
4416 if (TREE_CODE (etype) == INTEGER_TYPE
4417 && !TYPE_OVERFLOW_WRAPS (etype))
4419 tree utype, minv, maxv;
4421 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4422 for the type in question, as we rely on this here. */
4423 utype = lang_hooks.types.unsigned_type (etype);
4424 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
4425 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4426 integer_one_node, 1);
4427 minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
4429 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4430 minv, 1, maxv, 1)))
4431 etype = utype;
4432 else
4433 return 0;
4436 high = fold_convert (etype, high);
4437 low = fold_convert (etype, low);
4438 exp = fold_convert (etype, exp);
4440 value = const_binop (MINUS_EXPR, high, low, 0);
4442 if (value != 0 && !TREE_OVERFLOW (value))
4443 return build_range_check (type,
4444 fold_build2 (MINUS_EXPR, etype, exp, low),
4445 1, build_int_cst (etype, 0), value);
4447 return 0;
4450 /* Return the predecessor of VAL in its type, handling the infinite case. */
4452 static tree
4453 range_predecessor (tree val)
4455 tree type = TREE_TYPE (val);
4457 if (INTEGRAL_TYPE_P (type)
4458 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4459 return 0;
4460 else
4461 return range_binop (MINUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
4464 /* Return the successor of VAL in its type, handling the infinite case. */
4466 static tree
4467 range_successor (tree val)
4469 tree type = TREE_TYPE (val);
4471 if (INTEGRAL_TYPE_P (type)
4472 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4473 return 0;
4474 else
4475 return range_binop (PLUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
4478 /* Given two ranges, see if we can merge them into one. Return 1 if we
4479 can, 0 if we can't. Set the output range into the specified parameters. */
4481 static int
4482 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4483 tree high0, int in1_p, tree low1, tree high1)
4485 int no_overlap;
4486 int subset;
4487 int temp;
4488 tree tem;
4489 int in_p;
4490 tree low, high;
4491 int lowequal = ((low0 == 0 && low1 == 0)
4492 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4493 low0, 0, low1, 0)));
4494 int highequal = ((high0 == 0 && high1 == 0)
4495 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4496 high0, 1, high1, 1)));
4498 /* Make range 0 be the range that starts first, or ends last if they
4499 start at the same value. Swap them if it isn't. */
4500 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4501 low0, 0, low1, 0))
4502 || (lowequal
4503 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4504 high1, 1, high0, 1))))
4506 temp = in0_p, in0_p = in1_p, in1_p = temp;
4507 tem = low0, low0 = low1, low1 = tem;
4508 tem = high0, high0 = high1, high1 = tem;
4511 /* Now flag two cases, whether the ranges are disjoint or whether the
4512 second range is totally subsumed in the first. Note that the tests
4513 below are simplified by the ones above. */
4514 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4515 high0, 1, low1, 0));
4516 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4517 high1, 1, high0, 1));
4519 /* We now have four cases, depending on whether we are including or
4520 excluding the two ranges. */
4521 if (in0_p && in1_p)
4523 /* If they don't overlap, the result is false. If the second range
4524 is a subset it is the result. Otherwise, the range is from the start
4525 of the second to the end of the first. */
4526 if (no_overlap)
4527 in_p = 0, low = high = 0;
4528 else if (subset)
4529 in_p = 1, low = low1, high = high1;
4530 else
4531 in_p = 1, low = low1, high = high0;
4534 else if (in0_p && ! in1_p)
4536 /* If they don't overlap, the result is the first range. If they are
4537 equal, the result is false. If the second range is a subset of the
4538 first, and the ranges begin at the same place, we go from just after
4539 the end of the second range to the end of the first. If the second
4540 range is not a subset of the first, or if it is a subset and both
4541 ranges end at the same place, the range starts at the start of the
4542 first range and ends just before the second range.
4543 Otherwise, we can't describe this as a single range. */
4544 if (no_overlap)
4545 in_p = 1, low = low0, high = high0;
4546 else if (lowequal && highequal)
4547 in_p = 0, low = high = 0;
4548 else if (subset && lowequal)
4550 low = range_successor (high1);
4551 high = high0;
4552 in_p = (low != 0);
4554 else if (! subset || highequal)
4556 low = low0;
4557 high = range_predecessor (low1);
4558 in_p = (high != 0);
4560 else
4561 return 0;
4564 else if (! in0_p && in1_p)
4566 /* If they don't overlap, the result is the second range. If the second
4567 is a subset of the first, the result is false. Otherwise,
4568 the range starts just after the first range and ends at the
4569 end of the second. */
4570 if (no_overlap)
4571 in_p = 1, low = low1, high = high1;
4572 else if (subset || highequal)
4573 in_p = 0, low = high = 0;
4574 else
4576 low = range_successor (high0);
4577 high = high1;
4578 in_p = (low != 0);
4582 else
4584 /* The case where we are excluding both ranges. Here the complex case
4585 is if they don't overlap. In that case, the only time we have a
4586 range is if they are adjacent. If the second is a subset of the
4587 first, the result is the first. Otherwise, the range to exclude
4588 starts at the beginning of the first range and ends at the end of the
4589 second. */
4590 if (no_overlap)
4592 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4593 range_successor (high0),
4594 1, low1, 0)))
4595 in_p = 0, low = low0, high = high1;
4596 else
4598 /* Canonicalize - [min, x] into - [-, x]. */
4599 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4600 switch (TREE_CODE (TREE_TYPE (low0)))
4602 case ENUMERAL_TYPE:
4603 if (TYPE_PRECISION (TREE_TYPE (low0))
4604 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4605 break;
4606 /* FALLTHROUGH */
4607 case INTEGER_TYPE:
4608 if (tree_int_cst_equal (low0,
4609 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4610 low0 = 0;
4611 break;
4612 case POINTER_TYPE:
4613 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4614 && integer_zerop (low0))
4615 low0 = 0;
4616 break;
4617 default:
4618 break;
4621 /* Canonicalize - [x, max] into - [x, -]. */
4622 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4623 switch (TREE_CODE (TREE_TYPE (high1)))
4625 case ENUMERAL_TYPE:
4626 if (TYPE_PRECISION (TREE_TYPE (high1))
4627 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4628 break;
4629 /* FALLTHROUGH */
4630 case INTEGER_TYPE:
4631 if (tree_int_cst_equal (high1,
4632 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4633 high1 = 0;
4634 break;
4635 case POINTER_TYPE:
4636 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4637 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4638 high1, 1,
4639 integer_one_node, 1)))
4640 high1 = 0;
4641 break;
4642 default:
4643 break;
4646 /* The ranges might be also adjacent between the maximum and
4647 minimum values of the given type. For
4648 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4649 return + [x + 1, y - 1]. */
4650 if (low0 == 0 && high1 == 0)
4652 low = range_successor (high0);
4653 high = range_predecessor (low1);
4654 if (low == 0 || high == 0)
4655 return 0;
4657 in_p = 1;
4659 else
4660 return 0;
4663 else if (subset)
4664 in_p = 0, low = low0, high = high0;
4665 else
4666 in_p = 0, low = low0, high = high1;
4669 *pin_p = in_p, *plow = low, *phigh = high;
4670 return 1;
4674 /* Subroutine of fold, looking inside expressions of the form
4675 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
4676 of the COND_EXPR. This function is being used also to optimize
4677 A op B ? C : A, by reversing the comparison first.
4679 Return a folded expression whose code is not a COND_EXPR
4680 anymore, or NULL_TREE if no folding opportunity is found. */
4682 static tree
4683 fold_cond_expr_with_comparison (tree type, tree arg0, tree arg1, tree arg2)
4685 enum tree_code comp_code = TREE_CODE (arg0);
4686 tree arg00 = TREE_OPERAND (arg0, 0);
4687 tree arg01 = TREE_OPERAND (arg0, 1);
4688 tree arg1_type = TREE_TYPE (arg1);
4689 tree tem;
4691 STRIP_NOPS (arg1);
4692 STRIP_NOPS (arg2);
4694 /* If we have A op 0 ? A : -A, consider applying the following
4695 transformations:
4697 A == 0? A : -A same as -A
4698 A != 0? A : -A same as A
4699 A >= 0? A : -A same as abs (A)
4700 A > 0? A : -A same as abs (A)
4701 A <= 0? A : -A same as -abs (A)
4702 A < 0? A : -A same as -abs (A)
4704 None of these transformations work for modes with signed
4705 zeros. If A is +/-0, the first two transformations will
4706 change the sign of the result (from +0 to -0, or vice
4707 versa). The last four will fix the sign of the result,
4708 even though the original expressions could be positive or
4709 negative, depending on the sign of A.
4711 Note that all these transformations are correct if A is
4712 NaN, since the two alternatives (A and -A) are also NaNs. */
4713 if ((FLOAT_TYPE_P (TREE_TYPE (arg01))
4714 ? real_zerop (arg01)
4715 : integer_zerop (arg01))
4716 && ((TREE_CODE (arg2) == NEGATE_EXPR
4717 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
4718 /* In the case that A is of the form X-Y, '-A' (arg2) may
4719 have already been folded to Y-X, check for that. */
4720 || (TREE_CODE (arg1) == MINUS_EXPR
4721 && TREE_CODE (arg2) == MINUS_EXPR
4722 && operand_equal_p (TREE_OPERAND (arg1, 0),
4723 TREE_OPERAND (arg2, 1), 0)
4724 && operand_equal_p (TREE_OPERAND (arg1, 1),
4725 TREE_OPERAND (arg2, 0), 0))))
4726 switch (comp_code)
4728 case EQ_EXPR:
4729 case UNEQ_EXPR:
4730 tem = fold_convert (arg1_type, arg1);
4731 return pedantic_non_lvalue (fold_convert (type, negate_expr (tem)));
4732 case NE_EXPR:
4733 case LTGT_EXPR:
4734 return pedantic_non_lvalue (fold_convert (type, arg1));
4735 case UNGE_EXPR:
4736 case UNGT_EXPR:
4737 if (flag_trapping_math)
4738 break;
4739 /* Fall through. */
4740 case GE_EXPR:
4741 case GT_EXPR:
4742 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4743 arg1 = fold_convert (lang_hooks.types.signed_type
4744 (TREE_TYPE (arg1)), arg1);
4745 tem = fold_build1 (ABS_EXPR, TREE_TYPE (arg1), arg1);
4746 return pedantic_non_lvalue (fold_convert (type, tem));
4747 case UNLE_EXPR:
4748 case UNLT_EXPR:
4749 if (flag_trapping_math)
4750 break;
4751 case LE_EXPR:
4752 case LT_EXPR:
4753 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4754 arg1 = fold_convert (lang_hooks.types.signed_type
4755 (TREE_TYPE (arg1)), arg1);
4756 tem = fold_build1 (ABS_EXPR, TREE_TYPE (arg1), arg1);
4757 return negate_expr (fold_convert (type, tem));
4758 default:
4759 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4760 break;
4763 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
4764 A == 0 ? A : 0 is always 0 unless A is -0. Note that
4765 both transformations are correct when A is NaN: A != 0
4766 is then true, and A == 0 is false. */
4768 if (integer_zerop (arg01) && integer_zerop (arg2))
4770 if (comp_code == NE_EXPR)
4771 return pedantic_non_lvalue (fold_convert (type, arg1));
4772 else if (comp_code == EQ_EXPR)
4773 return build_int_cst (type, 0);
4776 /* Try some transformations of A op B ? A : B.
4778 A == B? A : B same as B
4779 A != B? A : B same as A
4780 A >= B? A : B same as max (A, B)
4781 A > B? A : B same as max (B, A)
4782 A <= B? A : B same as min (A, B)
4783 A < B? A : B same as min (B, A)
4785 As above, these transformations don't work in the presence
4786 of signed zeros. For example, if A and B are zeros of
4787 opposite sign, the first two transformations will change
4788 the sign of the result. In the last four, the original
4789 expressions give different results for (A=+0, B=-0) and
4790 (A=-0, B=+0), but the transformed expressions do not.
4792 The first two transformations are correct if either A or B
4793 is a NaN. In the first transformation, the condition will
4794 be false, and B will indeed be chosen. In the case of the
4795 second transformation, the condition A != B will be true,
4796 and A will be chosen.
4798 The conversions to max() and min() are not correct if B is
4799 a number and A is not. The conditions in the original
4800 expressions will be false, so all four give B. The min()
4801 and max() versions would give a NaN instead. */
4802 if (operand_equal_for_comparison_p (arg01, arg2, arg00)
4803 /* Avoid these transformations if the COND_EXPR may be used
4804 as an lvalue in the C++ front-end. PR c++/19199. */
4805 && (in_gimple_form
4806 || (strcmp (lang_hooks.name, "GNU C++") != 0
4807 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
4808 || ! maybe_lvalue_p (arg1)
4809 || ! maybe_lvalue_p (arg2)))
4811 tree comp_op0 = arg00;
4812 tree comp_op1 = arg01;
4813 tree comp_type = TREE_TYPE (comp_op0);
4815 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
4816 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
4818 comp_type = type;
4819 comp_op0 = arg1;
4820 comp_op1 = arg2;
4823 switch (comp_code)
4825 case EQ_EXPR:
4826 return pedantic_non_lvalue (fold_convert (type, arg2));
4827 case NE_EXPR:
4828 return pedantic_non_lvalue (fold_convert (type, arg1));
4829 case LE_EXPR:
4830 case LT_EXPR:
4831 case UNLE_EXPR:
4832 case UNLT_EXPR:
4833 /* In C++ a ?: expression can be an lvalue, so put the
4834 operand which will be used if they are equal first
4835 so that we can convert this back to the
4836 corresponding COND_EXPR. */
4837 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4839 comp_op0 = fold_convert (comp_type, comp_op0);
4840 comp_op1 = fold_convert (comp_type, comp_op1);
4841 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
4842 ? fold_build2 (MIN_EXPR, comp_type, comp_op0, comp_op1)
4843 : fold_build2 (MIN_EXPR, comp_type, comp_op1, comp_op0);
4844 return pedantic_non_lvalue (fold_convert (type, tem));
4846 break;
4847 case GE_EXPR:
4848 case GT_EXPR:
4849 case UNGE_EXPR:
4850 case UNGT_EXPR:
4851 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4853 comp_op0 = fold_convert (comp_type, comp_op0);
4854 comp_op1 = fold_convert (comp_type, comp_op1);
4855 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
4856 ? fold_build2 (MAX_EXPR, comp_type, comp_op0, comp_op1)
4857 : fold_build2 (MAX_EXPR, comp_type, comp_op1, comp_op0);
4858 return pedantic_non_lvalue (fold_convert (type, tem));
4860 break;
4861 case UNEQ_EXPR:
4862 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4863 return pedantic_non_lvalue (fold_convert (type, arg2));
4864 break;
4865 case LTGT_EXPR:
4866 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4867 return pedantic_non_lvalue (fold_convert (type, arg1));
4868 break;
4869 default:
4870 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
4871 break;
4875 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
4876 we might still be able to simplify this. For example,
4877 if C1 is one less or one more than C2, this might have started
4878 out as a MIN or MAX and been transformed by this function.
4879 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
4881 if (INTEGRAL_TYPE_P (type)
4882 && TREE_CODE (arg01) == INTEGER_CST
4883 && TREE_CODE (arg2) == INTEGER_CST)
4884 switch (comp_code)
4886 case EQ_EXPR:
4887 /* We can replace A with C1 in this case. */
4888 arg1 = fold_convert (type, arg01);
4889 return fold_build3 (COND_EXPR, type, arg0, arg1, arg2);
4891 case LT_EXPR:
4892 /* If C1 is C2 + 1, this is min(A, C2). */
4893 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
4894 OEP_ONLY_CONST)
4895 && operand_equal_p (arg01,
4896 const_binop (PLUS_EXPR, arg2,
4897 build_int_cst (type, 1), 0),
4898 OEP_ONLY_CONST))
4899 return pedantic_non_lvalue (fold_build2 (MIN_EXPR,
4900 type, arg1, arg2));
4901 break;
4903 case LE_EXPR:
4904 /* If C1 is C2 - 1, this is min(A, C2). */
4905 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
4906 OEP_ONLY_CONST)
4907 && operand_equal_p (arg01,
4908 const_binop (MINUS_EXPR, arg2,
4909 build_int_cst (type, 1), 0),
4910 OEP_ONLY_CONST))
4911 return pedantic_non_lvalue (fold_build2 (MIN_EXPR,
4912 type, arg1, arg2));
4913 break;
4915 case GT_EXPR:
4916 /* If C1 is C2 - 1, this is max(A, C2). */
4917 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
4918 OEP_ONLY_CONST)
4919 && operand_equal_p (arg01,
4920 const_binop (MINUS_EXPR, arg2,
4921 build_int_cst (type, 1), 0),
4922 OEP_ONLY_CONST))
4923 return pedantic_non_lvalue (fold_build2 (MAX_EXPR,
4924 type, arg1, arg2));
4925 break;
4927 case GE_EXPR:
4928 /* If C1 is C2 + 1, this is max(A, C2). */
4929 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
4930 OEP_ONLY_CONST)
4931 && operand_equal_p (arg01,
4932 const_binop (PLUS_EXPR, arg2,
4933 build_int_cst (type, 1), 0),
4934 OEP_ONLY_CONST))
4935 return pedantic_non_lvalue (fold_build2 (MAX_EXPR,
4936 type, arg1, arg2));
4937 break;
4938 case NE_EXPR:
4939 break;
4940 default:
4941 gcc_unreachable ();
4944 return NULL_TREE;
4949 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
4950 #define LOGICAL_OP_NON_SHORT_CIRCUIT (BRANCH_COST >= 2)
4951 #endif
4953 /* EXP is some logical combination of boolean tests. See if we can
4954 merge it into some range test. Return the new tree if so. */
4956 static tree
4957 fold_range_test (enum tree_code code, tree type, tree op0, tree op1)
4959 int or_op = (code == TRUTH_ORIF_EXPR
4960 || code == TRUTH_OR_EXPR);
4961 int in0_p, in1_p, in_p;
4962 tree low0, low1, low, high0, high1, high;
4963 bool strict_overflow_p = false;
4964 tree lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
4965 tree rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
4966 tree tem;
4967 const char * const warnmsg = G_("assuming signed overflow does not occur "
4968 "when simplifying range test");
4970 /* If this is an OR operation, invert both sides; we will invert
4971 again at the end. */
4972 if (or_op)
4973 in0_p = ! in0_p, in1_p = ! in1_p;
4975 /* If both expressions are the same, if we can merge the ranges, and we
4976 can build the range test, return it or it inverted. If one of the
4977 ranges is always true or always false, consider it to be the same
4978 expression as the other. */
4979 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
4980 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
4981 in1_p, low1, high1)
4982 && 0 != (tem = (build_range_check (type,
4983 lhs != 0 ? lhs
4984 : rhs != 0 ? rhs : integer_zero_node,
4985 in_p, low, high))))
4987 if (strict_overflow_p)
4988 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
4989 return or_op ? invert_truthvalue (tem) : tem;
4992 /* On machines where the branch cost is expensive, if this is a
4993 short-circuited branch and the underlying object on both sides
4994 is the same, make a non-short-circuit operation. */
4995 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
4996 && lhs != 0 && rhs != 0
4997 && (code == TRUTH_ANDIF_EXPR
4998 || code == TRUTH_ORIF_EXPR)
4999 && operand_equal_p (lhs, rhs, 0))
5001 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5002 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5003 which cases we can't do this. */
5004 if (simple_operand_p (lhs))
5005 return build2 (code == TRUTH_ANDIF_EXPR
5006 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5007 type, op0, op1);
5009 else if (lang_hooks.decls.global_bindings_p () == 0
5010 && ! CONTAINS_PLACEHOLDER_P (lhs))
5012 tree common = save_expr (lhs);
5014 if (0 != (lhs = build_range_check (type, common,
5015 or_op ? ! in0_p : in0_p,
5016 low0, high0))
5017 && (0 != (rhs = build_range_check (type, common,
5018 or_op ? ! in1_p : in1_p,
5019 low1, high1))))
5021 if (strict_overflow_p)
5022 fold_overflow_warning (warnmsg,
5023 WARN_STRICT_OVERFLOW_COMPARISON);
5024 return build2 (code == TRUTH_ANDIF_EXPR
5025 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5026 type, lhs, rhs);
5031 return 0;
5034 /* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
5035 bit value. Arrange things so the extra bits will be set to zero if and
5036 only if C is signed-extended to its full width. If MASK is nonzero,
5037 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5039 static tree
5040 unextend (tree c, int p, int unsignedp, tree mask)
5042 tree type = TREE_TYPE (c);
5043 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
5044 tree temp;
5046 if (p == modesize || unsignedp)
5047 return c;
5049 /* We work by getting just the sign bit into the low-order bit, then
5050 into the high-order bit, then sign-extend. We then XOR that value
5051 with C. */
5052 temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
5053 temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);
5055 /* We must use a signed type in order to get an arithmetic right shift.
5056 However, we must also avoid introducing accidental overflows, so that
5057 a subsequent call to integer_zerop will work. Hence we must
5058 do the type conversion here. At this point, the constant is either
5059 zero or one, and the conversion to a signed type can never overflow.
5060 We could get an overflow if this conversion is done anywhere else. */
5061 if (TYPE_UNSIGNED (type))
5062 temp = fold_convert (lang_hooks.types.signed_type (type), temp);
5064 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
5065 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
5066 if (mask != 0)
5067 temp = const_binop (BIT_AND_EXPR, temp,
5068 fold_convert (TREE_TYPE (c), mask), 0);
5069 /* If necessary, convert the type back to match the type of C. */
5070 if (TYPE_UNSIGNED (type))
5071 temp = fold_convert (type, temp);
5073 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
5076 /* Find ways of folding logical expressions of LHS and RHS:
5077 Try to merge two comparisons to the same innermost item.
5078 Look for range tests like "ch >= '0' && ch <= '9'".
5079 Look for combinations of simple terms on machines with expensive branches
5080 and evaluate the RHS unconditionally.
5082 For example, if we have p->a == 2 && p->b == 4 and we can make an
5083 object large enough to span both A and B, we can do this with a comparison
5084 against the object ANDed with the a mask.
5086 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5087 operations to do this with one comparison.
5089 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5090 function and the one above.
5092 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5093 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5095 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5096 two operands.
5098 We return the simplified tree or 0 if no optimization is possible. */
5100 static tree
5101 fold_truthop (enum tree_code code, tree truth_type, tree lhs, tree rhs)
5103 /* If this is the "or" of two comparisons, we can do something if
5104 the comparisons are NE_EXPR. If this is the "and", we can do something
5105 if the comparisons are EQ_EXPR. I.e.,
5106 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5108 WANTED_CODE is this operation code. For single bit fields, we can
5109 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5110 comparison for one-bit fields. */
5112 enum tree_code wanted_code;
5113 enum tree_code lcode, rcode;
5114 tree ll_arg, lr_arg, rl_arg, rr_arg;
5115 tree ll_inner, lr_inner, rl_inner, rr_inner;
5116 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5117 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5118 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5119 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5120 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5121 enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5122 enum machine_mode lnmode, rnmode;
5123 tree ll_mask, lr_mask, rl_mask, rr_mask;
5124 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5125 tree l_const, r_const;
5126 tree lntype, rntype, result;
5127 int first_bit, end_bit;
5128 int volatilep;
5129 tree orig_lhs = lhs, orig_rhs = rhs;
5130 enum tree_code orig_code = code;
5132 /* Start by getting the comparison codes. Fail if anything is volatile.
5133 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5134 it were surrounded with a NE_EXPR. */
5136 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5137 return 0;
5139 lcode = TREE_CODE (lhs);
5140 rcode = TREE_CODE (rhs);
5142 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5144 lhs = build2 (NE_EXPR, truth_type, lhs,
5145 build_int_cst (TREE_TYPE (lhs), 0));
5146 lcode = NE_EXPR;
5149 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5151 rhs = build2 (NE_EXPR, truth_type, rhs,
5152 build_int_cst (TREE_TYPE (rhs), 0));
5153 rcode = NE_EXPR;
5156 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5157 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5158 return 0;
5160 ll_arg = TREE_OPERAND (lhs, 0);
5161 lr_arg = TREE_OPERAND (lhs, 1);
5162 rl_arg = TREE_OPERAND (rhs, 0);
5163 rr_arg = TREE_OPERAND (rhs, 1);
5165 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5166 if (simple_operand_p (ll_arg)
5167 && simple_operand_p (lr_arg))
5169 tree result;
5170 if (operand_equal_p (ll_arg, rl_arg, 0)
5171 && operand_equal_p (lr_arg, rr_arg, 0))
5173 result = combine_comparisons (code, lcode, rcode,
5174 truth_type, ll_arg, lr_arg);
5175 if (result)
5176 return result;
5178 else if (operand_equal_p (ll_arg, rr_arg, 0)
5179 && operand_equal_p (lr_arg, rl_arg, 0))
5181 result = combine_comparisons (code, lcode,
5182 swap_tree_comparison (rcode),
5183 truth_type, ll_arg, lr_arg);
5184 if (result)
5185 return result;
5189 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5190 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5192 /* If the RHS can be evaluated unconditionally and its operands are
5193 simple, it wins to evaluate the RHS unconditionally on machines
5194 with expensive branches. In this case, this isn't a comparison
5195 that can be merged. Avoid doing this if the RHS is a floating-point
5196 comparison since those can trap. */
5198 if (BRANCH_COST >= 2
5199 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5200 && simple_operand_p (rl_arg)
5201 && simple_operand_p (rr_arg))
5203 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5204 if (code == TRUTH_OR_EXPR
5205 && lcode == NE_EXPR && integer_zerop (lr_arg)
5206 && rcode == NE_EXPR && integer_zerop (rr_arg)
5207 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
5208 return build2 (NE_EXPR, truth_type,
5209 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5210 ll_arg, rl_arg),
5211 build_int_cst (TREE_TYPE (ll_arg), 0));
5213 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5214 if (code == TRUTH_AND_EXPR
5215 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5216 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5217 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
5218 return build2 (EQ_EXPR, truth_type,
5219 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5220 ll_arg, rl_arg),
5221 build_int_cst (TREE_TYPE (ll_arg), 0));
5223 if (LOGICAL_OP_NON_SHORT_CIRCUIT)
5225 if (code != orig_code || lhs != orig_lhs || rhs != orig_rhs)
5226 return build2 (code, truth_type, lhs, rhs);
5227 return NULL_TREE;
5231 /* See if the comparisons can be merged. Then get all the parameters for
5232 each side. */
5234 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5235 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5236 return 0;
5238 volatilep = 0;
5239 ll_inner = decode_field_reference (ll_arg,
5240 &ll_bitsize, &ll_bitpos, &ll_mode,
5241 &ll_unsignedp, &volatilep, &ll_mask,
5242 &ll_and_mask);
5243 lr_inner = decode_field_reference (lr_arg,
5244 &lr_bitsize, &lr_bitpos, &lr_mode,
5245 &lr_unsignedp, &volatilep, &lr_mask,
5246 &lr_and_mask);
5247 rl_inner = decode_field_reference (rl_arg,
5248 &rl_bitsize, &rl_bitpos, &rl_mode,
5249 &rl_unsignedp, &volatilep, &rl_mask,
5250 &rl_and_mask);
5251 rr_inner = decode_field_reference (rr_arg,
5252 &rr_bitsize, &rr_bitpos, &rr_mode,
5253 &rr_unsignedp, &volatilep, &rr_mask,
5254 &rr_and_mask);
5256 /* It must be true that the inner operation on the lhs of each
5257 comparison must be the same if we are to be able to do anything.
5258 Then see if we have constants. If not, the same must be true for
5259 the rhs's. */
5260 if (volatilep || ll_inner == 0 || rl_inner == 0
5261 || ! operand_equal_p (ll_inner, rl_inner, 0))
5262 return 0;
5264 if (TREE_CODE (lr_arg) == INTEGER_CST
5265 && TREE_CODE (rr_arg) == INTEGER_CST)
5266 l_const = lr_arg, r_const = rr_arg;
5267 else if (lr_inner == 0 || rr_inner == 0
5268 || ! operand_equal_p (lr_inner, rr_inner, 0))
5269 return 0;
5270 else
5271 l_const = r_const = 0;
5273 /* If either comparison code is not correct for our logical operation,
5274 fail. However, we can convert a one-bit comparison against zero into
5275 the opposite comparison against that bit being set in the field. */
5277 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5278 if (lcode != wanted_code)
5280 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5282 /* Make the left operand unsigned, since we are only interested
5283 in the value of one bit. Otherwise we are doing the wrong
5284 thing below. */
5285 ll_unsignedp = 1;
5286 l_const = ll_mask;
5288 else
5289 return 0;
5292 /* This is analogous to the code for l_const above. */
5293 if (rcode != wanted_code)
5295 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5297 rl_unsignedp = 1;
5298 r_const = rl_mask;
5300 else
5301 return 0;
5304 /* See if we can find a mode that contains both fields being compared on
5305 the left. If we can't, fail. Otherwise, update all constants and masks
5306 to be relative to a field of that size. */
5307 first_bit = MIN (ll_bitpos, rl_bitpos);
5308 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5309 lnmode = get_best_mode (end_bit - first_bit, first_bit,
5310 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5311 volatilep);
5312 if (lnmode == VOIDmode)
5313 return 0;
5315 lnbitsize = GET_MODE_BITSIZE (lnmode);
5316 lnbitpos = first_bit & ~ (lnbitsize - 1);
5317 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5318 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5320 if (BYTES_BIG_ENDIAN)
5322 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5323 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5326 ll_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, ll_mask),
5327 size_int (xll_bitpos), 0);
5328 rl_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, rl_mask),
5329 size_int (xrl_bitpos), 0);
5331 if (l_const)
5333 l_const = fold_convert (lntype, l_const);
5334 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5335 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
5336 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5337 fold_build1 (BIT_NOT_EXPR,
5338 lntype, ll_mask),
5339 0)))
5341 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5343 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5346 if (r_const)
5348 r_const = fold_convert (lntype, r_const);
5349 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5350 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
5351 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5352 fold_build1 (BIT_NOT_EXPR,
5353 lntype, rl_mask),
5354 0)))
5356 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5358 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5362 /* If the right sides are not constant, do the same for it. Also,
5363 disallow this optimization if a size or signedness mismatch occurs
5364 between the left and right sides. */
5365 if (l_const == 0)
5367 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5368 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5369 /* Make sure the two fields on the right
5370 correspond to the left without being swapped. */
5371 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5372 return 0;
5374 first_bit = MIN (lr_bitpos, rr_bitpos);
5375 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5376 rnmode = get_best_mode (end_bit - first_bit, first_bit,
5377 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5378 volatilep);
5379 if (rnmode == VOIDmode)
5380 return 0;
5382 rnbitsize = GET_MODE_BITSIZE (rnmode);
5383 rnbitpos = first_bit & ~ (rnbitsize - 1);
5384 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5385 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5387 if (BYTES_BIG_ENDIAN)
5389 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5390 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5393 lr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, lr_mask),
5394 size_int (xlr_bitpos), 0);
5395 rr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, rr_mask),
5396 size_int (xrr_bitpos), 0);
5398 /* Make a mask that corresponds to both fields being compared.
5399 Do this for both items being compared. If the operands are the
5400 same size and the bits being compared are in the same position
5401 then we can do this by masking both and comparing the masked
5402 results. */
5403 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
5404 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
5405 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5407 lhs = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
5408 ll_unsignedp || rl_unsignedp);
5409 if (! all_ones_mask_p (ll_mask, lnbitsize))
5410 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5412 rhs = make_bit_field_ref (lr_inner, rntype, rnbitsize, rnbitpos,
5413 lr_unsignedp || rr_unsignedp);
5414 if (! all_ones_mask_p (lr_mask, rnbitsize))
5415 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5417 return build2 (wanted_code, truth_type, lhs, rhs);
5420 /* There is still another way we can do something: If both pairs of
5421 fields being compared are adjacent, we may be able to make a wider
5422 field containing them both.
5424 Note that we still must mask the lhs/rhs expressions. Furthermore,
5425 the mask must be shifted to account for the shift done by
5426 make_bit_field_ref. */
5427 if ((ll_bitsize + ll_bitpos == rl_bitpos
5428 && lr_bitsize + lr_bitpos == rr_bitpos)
5429 || (ll_bitpos == rl_bitpos + rl_bitsize
5430 && lr_bitpos == rr_bitpos + rr_bitsize))
5432 tree type;
5434 lhs = make_bit_field_ref (ll_inner, lntype, ll_bitsize + rl_bitsize,
5435 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
5436 rhs = make_bit_field_ref (lr_inner, rntype, lr_bitsize + rr_bitsize,
5437 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
5439 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5440 size_int (MIN (xll_bitpos, xrl_bitpos)), 0);
5441 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5442 size_int (MIN (xlr_bitpos, xrr_bitpos)), 0);
5444 /* Convert to the smaller type before masking out unwanted bits. */
5445 type = lntype;
5446 if (lntype != rntype)
5448 if (lnbitsize > rnbitsize)
5450 lhs = fold_convert (rntype, lhs);
5451 ll_mask = fold_convert (rntype, ll_mask);
5452 type = rntype;
5454 else if (lnbitsize < rnbitsize)
5456 rhs = fold_convert (lntype, rhs);
5457 lr_mask = fold_convert (lntype, lr_mask);
5458 type = lntype;
5462 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5463 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5465 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5466 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5468 return build2 (wanted_code, truth_type, lhs, rhs);
5471 return 0;
5474 /* Handle the case of comparisons with constants. If there is something in
5475 common between the masks, those bits of the constants must be the same.
5476 If not, the condition is always false. Test for this to avoid generating
5477 incorrect code below. */
5478 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
5479 if (! integer_zerop (result)
5480 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
5481 const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
5483 if (wanted_code == NE_EXPR)
5485 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5486 return constant_boolean_node (true, truth_type);
5488 else
5490 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5491 return constant_boolean_node (false, truth_type);
5495 /* Construct the expression we will return. First get the component
5496 reference we will make. Unless the mask is all ones the width of
5497 that field, perform the mask operation. Then compare with the
5498 merged constant. */
5499 result = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
5500 ll_unsignedp || rl_unsignedp);
5502 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
5503 if (! all_ones_mask_p (ll_mask, lnbitsize))
5504 result = build2 (BIT_AND_EXPR, lntype, result, ll_mask);
5506 return build2 (wanted_code, truth_type, result,
5507 const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
5510 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5511 constant. */
5513 static tree
5514 optimize_minmax_comparison (enum tree_code code, tree type, tree op0, tree op1)
5516 tree arg0 = op0;
5517 enum tree_code op_code;
5518 tree comp_const = op1;
5519 tree minmax_const;
5520 int consts_equal, consts_lt;
5521 tree inner;
5523 STRIP_SIGN_NOPS (arg0);
5525 op_code = TREE_CODE (arg0);
5526 minmax_const = TREE_OPERAND (arg0, 1);
5527 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
5528 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
5529 inner = TREE_OPERAND (arg0, 0);
5531 /* If something does not permit us to optimize, return the original tree. */
5532 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
5533 || TREE_CODE (comp_const) != INTEGER_CST
5534 || TREE_OVERFLOW (comp_const)
5535 || TREE_CODE (minmax_const) != INTEGER_CST
5536 || TREE_OVERFLOW (minmax_const))
5537 return NULL_TREE;
5539 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5540 and GT_EXPR, doing the rest with recursive calls using logical
5541 simplifications. */
5542 switch (code)
5544 case NE_EXPR: case LT_EXPR: case LE_EXPR:
5546 tree tem = optimize_minmax_comparison (invert_tree_comparison (code, false),
5547 type, op0, op1);
5548 if (tem)
5549 return invert_truthvalue (tem);
5550 return NULL_TREE;
5553 case GE_EXPR:
5554 return
5555 fold_build2 (TRUTH_ORIF_EXPR, type,
5556 optimize_minmax_comparison
5557 (EQ_EXPR, type, arg0, comp_const),
5558 optimize_minmax_comparison
5559 (GT_EXPR, type, arg0, comp_const));
5561 case EQ_EXPR:
5562 if (op_code == MAX_EXPR && consts_equal)
5563 /* MAX (X, 0) == 0 -> X <= 0 */
5564 return fold_build2 (LE_EXPR, type, inner, comp_const);
5566 else if (op_code == MAX_EXPR && consts_lt)
5567 /* MAX (X, 0) == 5 -> X == 5 */
5568 return fold_build2 (EQ_EXPR, type, inner, comp_const);
5570 else if (op_code == MAX_EXPR)
5571 /* MAX (X, 0) == -1 -> false */
5572 return omit_one_operand (type, integer_zero_node, inner);
5574 else if (consts_equal)
5575 /* MIN (X, 0) == 0 -> X >= 0 */
5576 return fold_build2 (GE_EXPR, type, inner, comp_const);
5578 else if (consts_lt)
5579 /* MIN (X, 0) == 5 -> false */
5580 return omit_one_operand (type, integer_zero_node, inner);
5582 else
5583 /* MIN (X, 0) == -1 -> X == -1 */
5584 return fold_build2 (EQ_EXPR, type, inner, comp_const);
5586 case GT_EXPR:
5587 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
5588 /* MAX (X, 0) > 0 -> X > 0
5589 MAX (X, 0) > 5 -> X > 5 */
5590 return fold_build2 (GT_EXPR, type, inner, comp_const);
5592 else if (op_code == MAX_EXPR)
5593 /* MAX (X, 0) > -1 -> true */
5594 return omit_one_operand (type, integer_one_node, inner);
5596 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
5597 /* MIN (X, 0) > 0 -> false
5598 MIN (X, 0) > 5 -> false */
5599 return omit_one_operand (type, integer_zero_node, inner);
5601 else
5602 /* MIN (X, 0) > -1 -> X > -1 */
5603 return fold_build2 (GT_EXPR, type, inner, comp_const);
5605 default:
5606 return NULL_TREE;
5610 /* T is an integer expression that is being multiplied, divided, or taken a
5611 modulus (CODE says which and what kind of divide or modulus) by a
5612 constant C. See if we can eliminate that operation by folding it with
5613 other operations already in T. WIDE_TYPE, if non-null, is a type that
5614 should be used for the computation if wider than our type.
5616 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5617 (X * 2) + (Y * 4). We must, however, be assured that either the original
5618 expression would not overflow or that overflow is undefined for the type
5619 in the language in question.
5621 We also canonicalize (X + 7) * 4 into X * 4 + 28 in the hope that either
5622 the machine has a multiply-accumulate insn or that this is part of an
5623 addressing calculation.
5625 If we return a non-null expression, it is an equivalent form of the
5626 original computation, but need not be in the original type.
5628 We set *STRICT_OVERFLOW_P to true if the return values depends on
5629 signed overflow being undefined. Otherwise we do not change
5630 *STRICT_OVERFLOW_P. */
5632 static tree
5633 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
5634 bool *strict_overflow_p)
5636 /* To avoid exponential search depth, refuse to allow recursion past
5637 three levels. Beyond that (1) it's highly unlikely that we'll find
5638 something interesting and (2) we've probably processed it before
5639 when we built the inner expression. */
5641 static int depth;
5642 tree ret;
5644 if (depth > 3)
5645 return NULL;
5647 depth++;
5648 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
5649 depth--;
5651 return ret;
5654 static tree
5655 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
5656 bool *strict_overflow_p)
5658 tree type = TREE_TYPE (t);
5659 enum tree_code tcode = TREE_CODE (t);
5660 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
5661 > GET_MODE_SIZE (TYPE_MODE (type)))
5662 ? wide_type : type);
5663 tree t1, t2;
5664 int same_p = tcode == code;
5665 tree op0 = NULL_TREE, op1 = NULL_TREE;
5666 bool sub_strict_overflow_p;
5668 /* Don't deal with constants of zero here; they confuse the code below. */
5669 if (integer_zerop (c))
5670 return NULL_TREE;
5672 if (TREE_CODE_CLASS (tcode) == tcc_unary)
5673 op0 = TREE_OPERAND (t, 0);
5675 if (TREE_CODE_CLASS (tcode) == tcc_binary)
5676 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
5678 /* Note that we need not handle conditional operations here since fold
5679 already handles those cases. So just do arithmetic here. */
5680 switch (tcode)
5682 case INTEGER_CST:
5683 /* For a constant, we can always simplify if we are a multiply
5684 or (for divide and modulus) if it is a multiple of our constant. */
5685 if (code == MULT_EXPR
5686 || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c, 0)))
5687 return const_binop (code, fold_convert (ctype, t),
5688 fold_convert (ctype, c), 0);
5689 break;
5691 case CONVERT_EXPR: case NON_LVALUE_EXPR: case NOP_EXPR:
5692 /* If op0 is an expression ... */
5693 if ((COMPARISON_CLASS_P (op0)
5694 || UNARY_CLASS_P (op0)
5695 || BINARY_CLASS_P (op0)
5696 || VL_EXP_CLASS_P (op0)
5697 || EXPRESSION_CLASS_P (op0))
5698 /* ... and is unsigned, and its type is smaller than ctype,
5699 then we cannot pass through as widening. */
5700 && ((TYPE_UNSIGNED (TREE_TYPE (op0))
5701 && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
5702 && TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
5703 && (GET_MODE_SIZE (TYPE_MODE (ctype))
5704 > GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0)))))
5705 /* ... or this is a truncation (t is narrower than op0),
5706 then we cannot pass through this narrowing. */
5707 || (GET_MODE_SIZE (TYPE_MODE (type))
5708 < GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0))))
5709 /* ... or signedness changes for division or modulus,
5710 then we cannot pass through this conversion. */
5711 || (code != MULT_EXPR
5712 && (TYPE_UNSIGNED (ctype)
5713 != TYPE_UNSIGNED (TREE_TYPE (op0))))))
5714 break;
5716 /* Pass the constant down and see if we can make a simplification. If
5717 we can, replace this expression with the inner simplification for
5718 possible later conversion to our or some other type. */
5719 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
5720 && TREE_CODE (t2) == INTEGER_CST
5721 && !TREE_OVERFLOW (t2)
5722 && (0 != (t1 = extract_muldiv (op0, t2, code,
5723 code == MULT_EXPR
5724 ? ctype : NULL_TREE,
5725 strict_overflow_p))))
5726 return t1;
5727 break;
5729 case ABS_EXPR:
5730 /* If widening the type changes it from signed to unsigned, then we
5731 must avoid building ABS_EXPR itself as unsigned. */
5732 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
5734 tree cstype = (*lang_hooks.types.signed_type) (ctype);
5735 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
5736 != 0)
5738 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
5739 return fold_convert (ctype, t1);
5741 break;
5743 /* FALLTHROUGH */
5744 case NEGATE_EXPR:
5745 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
5746 != 0)
5747 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
5748 break;
5750 case MIN_EXPR: case MAX_EXPR:
5751 /* If widening the type changes the signedness, then we can't perform
5752 this optimization as that changes the result. */
5753 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
5754 break;
5756 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
5757 sub_strict_overflow_p = false;
5758 if ((t1 = extract_muldiv (op0, c, code, wide_type,
5759 &sub_strict_overflow_p)) != 0
5760 && (t2 = extract_muldiv (op1, c, code, wide_type,
5761 &sub_strict_overflow_p)) != 0)
5763 if (tree_int_cst_sgn (c) < 0)
5764 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
5765 if (sub_strict_overflow_p)
5766 *strict_overflow_p = true;
5767 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5768 fold_convert (ctype, t2));
5770 break;
5772 case LSHIFT_EXPR: case RSHIFT_EXPR:
5773 /* If the second operand is constant, this is a multiplication
5774 or floor division, by a power of two, so we can treat it that
5775 way unless the multiplier or divisor overflows. Signed
5776 left-shift overflow is implementation-defined rather than
5777 undefined in C90, so do not convert signed left shift into
5778 multiplication. */
5779 if (TREE_CODE (op1) == INTEGER_CST
5780 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
5781 /* const_binop may not detect overflow correctly,
5782 so check for it explicitly here. */
5783 && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
5784 && TREE_INT_CST_HIGH (op1) == 0
5785 && 0 != (t1 = fold_convert (ctype,
5786 const_binop (LSHIFT_EXPR,
5787 size_one_node,
5788 op1, 0)))
5789 && !TREE_OVERFLOW (t1))
5790 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
5791 ? MULT_EXPR : FLOOR_DIV_EXPR,
5792 ctype, fold_convert (ctype, op0), t1),
5793 c, code, wide_type, strict_overflow_p);
5794 break;
5796 case PLUS_EXPR: case MINUS_EXPR:
5797 /* See if we can eliminate the operation on both sides. If we can, we
5798 can return a new PLUS or MINUS. If we can't, the only remaining
5799 cases where we can do anything are if the second operand is a
5800 constant. */
5801 sub_strict_overflow_p = false;
5802 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
5803 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
5804 if (t1 != 0 && t2 != 0
5805 && (code == MULT_EXPR
5806 /* If not multiplication, we can only do this if both operands
5807 are divisible by c. */
5808 || (multiple_of_p (ctype, op0, c)
5809 && multiple_of_p (ctype, op1, c))))
5811 if (sub_strict_overflow_p)
5812 *strict_overflow_p = true;
5813 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5814 fold_convert (ctype, t2));
5817 /* If this was a subtraction, negate OP1 and set it to be an addition.
5818 This simplifies the logic below. */
5819 if (tcode == MINUS_EXPR)
5820 tcode = PLUS_EXPR, op1 = negate_expr (op1);
5822 if (TREE_CODE (op1) != INTEGER_CST)
5823 break;
5825 /* If either OP1 or C are negative, this optimization is not safe for
5826 some of the division and remainder types while for others we need
5827 to change the code. */
5828 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
5830 if (code == CEIL_DIV_EXPR)
5831 code = FLOOR_DIV_EXPR;
5832 else if (code == FLOOR_DIV_EXPR)
5833 code = CEIL_DIV_EXPR;
5834 else if (code != MULT_EXPR
5835 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
5836 break;
5839 /* If it's a multiply or a division/modulus operation of a multiple
5840 of our constant, do the operation and verify it doesn't overflow. */
5841 if (code == MULT_EXPR
5842 || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
5844 op1 = const_binop (code, fold_convert (ctype, op1),
5845 fold_convert (ctype, c), 0);
5846 /* We allow the constant to overflow with wrapping semantics. */
5847 if (op1 == 0
5848 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
5849 break;
5851 else
5852 break;
5854 /* If we have an unsigned type is not a sizetype, we cannot widen
5855 the operation since it will change the result if the original
5856 computation overflowed. */
5857 if (TYPE_UNSIGNED (ctype)
5858 && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
5859 && ctype != type)
5860 break;
5862 /* If we were able to eliminate our operation from the first side,
5863 apply our operation to the second side and reform the PLUS. */
5864 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
5865 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
5867 /* The last case is if we are a multiply. In that case, we can
5868 apply the distributive law to commute the multiply and addition
5869 if the multiplication of the constants doesn't overflow. */
5870 if (code == MULT_EXPR)
5871 return fold_build2 (tcode, ctype,
5872 fold_build2 (code, ctype,
5873 fold_convert (ctype, op0),
5874 fold_convert (ctype, c)),
5875 op1);
5877 break;
5879 case MULT_EXPR:
5880 /* We have a special case here if we are doing something like
5881 (C * 8) % 4 since we know that's zero. */
5882 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
5883 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
5884 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
5885 && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
5886 return omit_one_operand (type, integer_zero_node, op0);
5888 /* ... fall through ... */
5890 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
5891 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
5892 /* If we can extract our operation from the LHS, do so and return a
5893 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
5894 do something only if the second operand is a constant. */
5895 if (same_p
5896 && (t1 = extract_muldiv (op0, c, code, wide_type,
5897 strict_overflow_p)) != 0)
5898 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
5899 fold_convert (ctype, op1));
5900 else if (tcode == MULT_EXPR && code == MULT_EXPR
5901 && (t1 = extract_muldiv (op1, c, code, wide_type,
5902 strict_overflow_p)) != 0)
5903 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
5904 fold_convert (ctype, t1));
5905 else if (TREE_CODE (op1) != INTEGER_CST)
5906 return 0;
5908 /* If these are the same operation types, we can associate them
5909 assuming no overflow. */
5910 if (tcode == code
5911 && 0 != (t1 = const_binop (MULT_EXPR, fold_convert (ctype, op1),
5912 fold_convert (ctype, c), 0))
5913 && !TREE_OVERFLOW (t1))
5914 return fold_build2 (tcode, ctype, fold_convert (ctype, op0), t1);
5916 /* If these operations "cancel" each other, we have the main
5917 optimizations of this pass, which occur when either constant is a
5918 multiple of the other, in which case we replace this with either an
5919 operation or CODE or TCODE.
5921 If we have an unsigned type that is not a sizetype, we cannot do
5922 this since it will change the result if the original computation
5923 overflowed. */
5924 if ((TYPE_OVERFLOW_UNDEFINED (ctype)
5925 || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
5926 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
5927 || (tcode == MULT_EXPR
5928 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
5929 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR)))
5931 if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
5933 if (TYPE_OVERFLOW_UNDEFINED (ctype))
5934 *strict_overflow_p = true;
5935 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
5936 fold_convert (ctype,
5937 const_binop (TRUNC_DIV_EXPR,
5938 op1, c, 0)));
5940 else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1, 0)))
5942 if (TYPE_OVERFLOW_UNDEFINED (ctype))
5943 *strict_overflow_p = true;
5944 return fold_build2 (code, ctype, fold_convert (ctype, op0),
5945 fold_convert (ctype,
5946 const_binop (TRUNC_DIV_EXPR,
5947 c, op1, 0)));
5950 break;
5952 default:
5953 break;
5956 return 0;
5959 /* Return a node which has the indicated constant VALUE (either 0 or
5960 1), and is of the indicated TYPE. */
5962 tree
5963 constant_boolean_node (int value, tree type)
5965 if (type == integer_type_node)
5966 return value ? integer_one_node : integer_zero_node;
5967 else if (type == boolean_type_node)
5968 return value ? boolean_true_node : boolean_false_node;
5969 else
5970 return build_int_cst (type, value);
5974 /* Return true if expr looks like an ARRAY_REF and set base and
5975 offset to the appropriate trees. If there is no offset,
5976 offset is set to NULL_TREE. Base will be canonicalized to
5977 something you can get the element type from using
5978 TREE_TYPE (TREE_TYPE (base)). Offset will be the offset
5979 in bytes to the base. */
5981 static bool
5982 extract_array_ref (tree expr, tree *base, tree *offset)
5984 /* One canonical form is a PLUS_EXPR with the first
5985 argument being an ADDR_EXPR with a possible NOP_EXPR
5986 attached. */
5987 if (TREE_CODE (expr) == PLUS_EXPR)
5989 tree op0 = TREE_OPERAND (expr, 0);
5990 tree inner_base, dummy1;
5991 /* Strip NOP_EXPRs here because the C frontends and/or
5992 folders present us (int *)&x.a + 4B possibly. */
5993 STRIP_NOPS (op0);
5994 if (extract_array_ref (op0, &inner_base, &dummy1))
5996 *base = inner_base;
5997 if (dummy1 == NULL_TREE)
5998 *offset = TREE_OPERAND (expr, 1);
5999 else
6000 *offset = fold_build2 (PLUS_EXPR, TREE_TYPE (expr),
6001 dummy1, TREE_OPERAND (expr, 1));
6002 return true;
6005 /* Other canonical form is an ADDR_EXPR of an ARRAY_REF,
6006 which we transform into an ADDR_EXPR with appropriate
6007 offset. For other arguments to the ADDR_EXPR we assume
6008 zero offset and as such do not care about the ADDR_EXPR
6009 type and strip possible nops from it. */
6010 else if (TREE_CODE (expr) == ADDR_EXPR)
6012 tree op0 = TREE_OPERAND (expr, 0);
6013 if (TREE_CODE (op0) == ARRAY_REF)
6015 tree idx = TREE_OPERAND (op0, 1);
6016 *base = TREE_OPERAND (op0, 0);
6017 *offset = fold_build2 (MULT_EXPR, TREE_TYPE (idx), idx,
6018 array_ref_element_size (op0));
6020 else
6022 /* Handle array-to-pointer decay as &a. */
6023 if (TREE_CODE (TREE_TYPE (op0)) == ARRAY_TYPE)
6024 *base = TREE_OPERAND (expr, 0);
6025 else
6026 *base = expr;
6027 *offset = NULL_TREE;
6029 return true;
6031 /* The next canonical form is a VAR_DECL with POINTER_TYPE. */
6032 else if (SSA_VAR_P (expr)
6033 && TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE)
6035 *base = expr;
6036 *offset = NULL_TREE;
6037 return true;
6040 return false;
6044 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6045 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6046 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6047 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6048 COND is the first argument to CODE; otherwise (as in the example
6049 given here), it is the second argument. TYPE is the type of the
6050 original expression. Return NULL_TREE if no simplification is
6051 possible. */
6053 static tree
6054 fold_binary_op_with_conditional_arg (enum tree_code code,
6055 tree type, tree op0, tree op1,
6056 tree cond, tree arg, int cond_first_p)
6058 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6059 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6060 tree test, true_value, false_value;
6061 tree lhs = NULL_TREE;
6062 tree rhs = NULL_TREE;
6064 /* This transformation is only worthwhile if we don't have to wrap
6065 arg in a SAVE_EXPR, and the operation can be simplified on at least
6066 one of the branches once its pushed inside the COND_EXPR. */
6067 if (!TREE_CONSTANT (arg))
6068 return NULL_TREE;
6070 if (TREE_CODE (cond) == COND_EXPR)
6072 test = TREE_OPERAND (cond, 0);
6073 true_value = TREE_OPERAND (cond, 1);
6074 false_value = TREE_OPERAND (cond, 2);
6075 /* If this operand throws an expression, then it does not make
6076 sense to try to perform a logical or arithmetic operation
6077 involving it. */
6078 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6079 lhs = true_value;
6080 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6081 rhs = false_value;
6083 else
6085 tree testtype = TREE_TYPE (cond);
6086 test = cond;
6087 true_value = constant_boolean_node (true, testtype);
6088 false_value = constant_boolean_node (false, testtype);
6091 arg = fold_convert (arg_type, arg);
6092 if (lhs == 0)
6094 true_value = fold_convert (cond_type, true_value);
6095 if (cond_first_p)
6096 lhs = fold_build2 (code, type, true_value, arg);
6097 else
6098 lhs = fold_build2 (code, type, arg, true_value);
6100 if (rhs == 0)
6102 false_value = fold_convert (cond_type, false_value);
6103 if (cond_first_p)
6104 rhs = fold_build2 (code, type, false_value, arg);
6105 else
6106 rhs = fold_build2 (code, type, arg, false_value);
6109 test = fold_build3 (COND_EXPR, type, test, lhs, rhs);
6110 return fold_convert (type, test);
6114 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6116 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6117 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6118 ADDEND is the same as X.
6120 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6121 and finite. The problematic cases are when X is zero, and its mode
6122 has signed zeros. In the case of rounding towards -infinity,
6123 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6124 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6126 static bool
6127 fold_real_zero_addition_p (tree type, tree addend, int negate)
6129 if (!real_zerop (addend))
6130 return false;
6132 /* Don't allow the fold with -fsignaling-nans. */
6133 if (HONOR_SNANS (TYPE_MODE (type)))
6134 return false;
6136 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6137 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
6138 return true;
6140 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6141 if (TREE_CODE (addend) == REAL_CST
6142 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6143 negate = !negate;
6145 /* The mode has signed zeros, and we have to honor their sign.
6146 In this situation, there is only one case we can return true for.
6147 X - 0 is the same as X unless rounding towards -infinity is
6148 supported. */
6149 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
6152 /* Subroutine of fold() that checks comparisons of built-in math
6153 functions against real constants.
6155 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
6156 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
6157 is the type of the result and ARG0 and ARG1 are the operands of the
6158 comparison. ARG1 must be a TREE_REAL_CST.
6160 The function returns the constant folded tree if a simplification
6161 can be made, and NULL_TREE otherwise. */
6163 static tree
6164 fold_mathfn_compare (enum built_in_function fcode, enum tree_code code,
6165 tree type, tree arg0, tree arg1)
6167 REAL_VALUE_TYPE c;
6169 if (BUILTIN_SQRT_P (fcode))
6171 tree arg = CALL_EXPR_ARG (arg0, 0);
6172 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
6174 c = TREE_REAL_CST (arg1);
6175 if (REAL_VALUE_NEGATIVE (c))
6177 /* sqrt(x) < y is always false, if y is negative. */
6178 if (code == EQ_EXPR || code == LT_EXPR || code == LE_EXPR)
6179 return omit_one_operand (type, integer_zero_node, arg);
6181 /* sqrt(x) > y is always true, if y is negative and we
6182 don't care about NaNs, i.e. negative values of x. */
6183 if (code == NE_EXPR || !HONOR_NANS (mode))
6184 return omit_one_operand (type, integer_one_node, arg);
6186 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
6187 return fold_build2 (GE_EXPR, type, arg,
6188 build_real (TREE_TYPE (arg), dconst0));
6190 else if (code == GT_EXPR || code == GE_EXPR)
6192 REAL_VALUE_TYPE c2;
6194 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
6195 real_convert (&c2, mode, &c2);
6197 if (REAL_VALUE_ISINF (c2))
6199 /* sqrt(x) > y is x == +Inf, when y is very large. */
6200 if (HONOR_INFINITIES (mode))
6201 return fold_build2 (EQ_EXPR, type, arg,
6202 build_real (TREE_TYPE (arg), c2));
6204 /* sqrt(x) > y is always false, when y is very large
6205 and we don't care about infinities. */
6206 return omit_one_operand (type, integer_zero_node, arg);
6209 /* sqrt(x) > c is the same as x > c*c. */
6210 return fold_build2 (code, type, arg,
6211 build_real (TREE_TYPE (arg), c2));
6213 else if (code == LT_EXPR || code == LE_EXPR)
6215 REAL_VALUE_TYPE c2;
6217 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
6218 real_convert (&c2, mode, &c2);
6220 if (REAL_VALUE_ISINF (c2))
6222 /* sqrt(x) < y is always true, when y is a very large
6223 value and we don't care about NaNs or Infinities. */
6224 if (! HONOR_NANS (mode) && ! HONOR_INFINITIES (mode))
6225 return omit_one_operand (type, integer_one_node, arg);
6227 /* sqrt(x) < y is x != +Inf when y is very large and we
6228 don't care about NaNs. */
6229 if (! HONOR_NANS (mode))
6230 return fold_build2 (NE_EXPR, type, arg,
6231 build_real (TREE_TYPE (arg), c2));
6233 /* sqrt(x) < y is x >= 0 when y is very large and we
6234 don't care about Infinities. */
6235 if (! HONOR_INFINITIES (mode))
6236 return fold_build2 (GE_EXPR, type, arg,
6237 build_real (TREE_TYPE (arg), dconst0));
6239 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
6240 if (lang_hooks.decls.global_bindings_p () != 0
6241 || CONTAINS_PLACEHOLDER_P (arg))
6242 return NULL_TREE;
6244 arg = save_expr (arg);
6245 return fold_build2 (TRUTH_ANDIF_EXPR, type,
6246 fold_build2 (GE_EXPR, type, arg,
6247 build_real (TREE_TYPE (arg),
6248 dconst0)),
6249 fold_build2 (NE_EXPR, type, arg,
6250 build_real (TREE_TYPE (arg),
6251 c2)));
6254 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
6255 if (! HONOR_NANS (mode))
6256 return fold_build2 (code, type, arg,
6257 build_real (TREE_TYPE (arg), c2));
6259 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
6260 if (lang_hooks.decls.global_bindings_p () == 0
6261 && ! CONTAINS_PLACEHOLDER_P (arg))
6263 arg = save_expr (arg);
6264 return fold_build2 (TRUTH_ANDIF_EXPR, type,
6265 fold_build2 (GE_EXPR, type, arg,
6266 build_real (TREE_TYPE (arg),
6267 dconst0)),
6268 fold_build2 (code, type, arg,
6269 build_real (TREE_TYPE (arg),
6270 c2)));
6275 return NULL_TREE;
6278 /* Subroutine of fold() that optimizes comparisons against Infinities,
6279 either +Inf or -Inf.
6281 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6282 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6283 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6285 The function returns the constant folded tree if a simplification
6286 can be made, and NULL_TREE otherwise. */
6288 static tree
6289 fold_inf_compare (enum tree_code code, tree type, tree arg0, tree arg1)
6291 enum machine_mode mode;
6292 REAL_VALUE_TYPE max;
6293 tree temp;
6294 bool neg;
6296 mode = TYPE_MODE (TREE_TYPE (arg0));
6298 /* For negative infinity swap the sense of the comparison. */
6299 neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1));
6300 if (neg)
6301 code = swap_tree_comparison (code);
6303 switch (code)
6305 case GT_EXPR:
6306 /* x > +Inf is always false, if with ignore sNANs. */
6307 if (HONOR_SNANS (mode))
6308 return NULL_TREE;
6309 return omit_one_operand (type, integer_zero_node, arg0);
6311 case LE_EXPR:
6312 /* x <= +Inf is always true, if we don't case about NaNs. */
6313 if (! HONOR_NANS (mode))
6314 return omit_one_operand (type, integer_one_node, arg0);
6316 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
6317 if (lang_hooks.decls.global_bindings_p () == 0
6318 && ! CONTAINS_PLACEHOLDER_P (arg0))
6320 arg0 = save_expr (arg0);
6321 return fold_build2 (EQ_EXPR, type, arg0, arg0);
6323 break;
6325 case EQ_EXPR:
6326 case GE_EXPR:
6327 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
6328 real_maxval (&max, neg, mode);
6329 return fold_build2 (neg ? LT_EXPR : GT_EXPR, type,
6330 arg0, build_real (TREE_TYPE (arg0), max));
6332 case LT_EXPR:
6333 /* x < +Inf is always equal to x <= DBL_MAX. */
6334 real_maxval (&max, neg, mode);
6335 return fold_build2 (neg ? GE_EXPR : LE_EXPR, type,
6336 arg0, build_real (TREE_TYPE (arg0), max));
6338 case NE_EXPR:
6339 /* x != +Inf is always equal to !(x > DBL_MAX). */
6340 real_maxval (&max, neg, mode);
6341 if (! HONOR_NANS (mode))
6342 return fold_build2 (neg ? GE_EXPR : LE_EXPR, type,
6343 arg0, build_real (TREE_TYPE (arg0), max));
6345 temp = fold_build2 (neg ? LT_EXPR : GT_EXPR, type,
6346 arg0, build_real (TREE_TYPE (arg0), max));
6347 return fold_build1 (TRUTH_NOT_EXPR, type, temp);
6349 default:
6350 break;
6353 return NULL_TREE;
6356 /* Subroutine of fold() that optimizes comparisons of a division by
6357 a nonzero integer constant against an integer constant, i.e.
6358 X/C1 op C2.
6360 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6361 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6362 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6364 The function returns the constant folded tree if a simplification
6365 can be made, and NULL_TREE otherwise. */
6367 static tree
6368 fold_div_compare (enum tree_code code, tree type, tree arg0, tree arg1)
6370 tree prod, tmp, hi, lo;
6371 tree arg00 = TREE_OPERAND (arg0, 0);
6372 tree arg01 = TREE_OPERAND (arg0, 1);
6373 unsigned HOST_WIDE_INT lpart;
6374 HOST_WIDE_INT hpart;
6375 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (arg0));
6376 bool neg_overflow;
6377 int overflow;
6379 /* We have to do this the hard way to detect unsigned overflow.
6380 prod = int_const_binop (MULT_EXPR, arg01, arg1, 0); */
6381 overflow = mul_double_with_sign (TREE_INT_CST_LOW (arg01),
6382 TREE_INT_CST_HIGH (arg01),
6383 TREE_INT_CST_LOW (arg1),
6384 TREE_INT_CST_HIGH (arg1),
6385 &lpart, &hpart, unsigned_p);
6386 prod = force_fit_type_double (TREE_TYPE (arg00), lpart, hpart,
6387 -1, overflow);
6388 neg_overflow = false;
6390 if (unsigned_p)
6392 tmp = int_const_binop (MINUS_EXPR, arg01,
6393 build_int_cst (TREE_TYPE (arg01), 1), 0);
6394 lo = prod;
6396 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp, 0). */
6397 overflow = add_double_with_sign (TREE_INT_CST_LOW (prod),
6398 TREE_INT_CST_HIGH (prod),
6399 TREE_INT_CST_LOW (tmp),
6400 TREE_INT_CST_HIGH (tmp),
6401 &lpart, &hpart, unsigned_p);
6402 hi = force_fit_type_double (TREE_TYPE (arg00), lpart, hpart,
6403 -1, overflow | TREE_OVERFLOW (prod));
6405 else if (tree_int_cst_sgn (arg01) >= 0)
6407 tmp = int_const_binop (MINUS_EXPR, arg01,
6408 build_int_cst (TREE_TYPE (arg01), 1), 0);
6409 switch (tree_int_cst_sgn (arg1))
6411 case -1:
6412 neg_overflow = true;
6413 lo = int_const_binop (MINUS_EXPR, prod, tmp, 0);
6414 hi = prod;
6415 break;
6417 case 0:
6418 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6419 hi = tmp;
6420 break;
6422 case 1:
6423 hi = int_const_binop (PLUS_EXPR, prod, tmp, 0);
6424 lo = prod;
6425 break;
6427 default:
6428 gcc_unreachable ();
6431 else
6433 /* A negative divisor reverses the relational operators. */
6434 code = swap_tree_comparison (code);
6436 tmp = int_const_binop (PLUS_EXPR, arg01,
6437 build_int_cst (TREE_TYPE (arg01), 1), 0);
6438 switch (tree_int_cst_sgn (arg1))
6440 case -1:
6441 hi = int_const_binop (MINUS_EXPR, prod, tmp, 0);
6442 lo = prod;
6443 break;
6445 case 0:
6446 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6447 lo = tmp;
6448 break;
6450 case 1:
6451 neg_overflow = true;
6452 lo = int_const_binop (PLUS_EXPR, prod, tmp, 0);
6453 hi = prod;
6454 break;
6456 default:
6457 gcc_unreachable ();
6461 switch (code)
6463 case EQ_EXPR:
6464 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6465 return omit_one_operand (type, integer_zero_node, arg00);
6466 if (TREE_OVERFLOW (hi))
6467 return fold_build2 (GE_EXPR, type, arg00, lo);
6468 if (TREE_OVERFLOW (lo))
6469 return fold_build2 (LE_EXPR, type, arg00, hi);
6470 return build_range_check (type, arg00, 1, lo, hi);
6472 case NE_EXPR:
6473 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6474 return omit_one_operand (type, integer_one_node, arg00);
6475 if (TREE_OVERFLOW (hi))
6476 return fold_build2 (LT_EXPR, type, arg00, lo);
6477 if (TREE_OVERFLOW (lo))
6478 return fold_build2 (GT_EXPR, type, arg00, hi);
6479 return build_range_check (type, arg00, 0, lo, hi);
6481 case LT_EXPR:
6482 if (TREE_OVERFLOW (lo))
6484 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6485 return omit_one_operand (type, tmp, arg00);
6487 return fold_build2 (LT_EXPR, type, arg00, lo);
6489 case LE_EXPR:
6490 if (TREE_OVERFLOW (hi))
6492 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6493 return omit_one_operand (type, tmp, arg00);
6495 return fold_build2 (LE_EXPR, type, arg00, hi);
6497 case GT_EXPR:
6498 if (TREE_OVERFLOW (hi))
6500 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6501 return omit_one_operand (type, tmp, arg00);
6503 return fold_build2 (GT_EXPR, type, arg00, hi);
6505 case GE_EXPR:
6506 if (TREE_OVERFLOW (lo))
6508 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6509 return omit_one_operand (type, tmp, arg00);
6511 return fold_build2 (GE_EXPR, type, arg00, lo);
6513 default:
6514 break;
6517 return NULL_TREE;
6521 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6522 equality/inequality test, then return a simplified form of the test
6523 using a sign testing. Otherwise return NULL. TYPE is the desired
6524 result type. */
6526 static tree
6527 fold_single_bit_test_into_sign_test (enum tree_code code, tree arg0, tree arg1,
6528 tree result_type)
6530 /* If this is testing a single bit, we can optimize the test. */
6531 if ((code == NE_EXPR || code == EQ_EXPR)
6532 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6533 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6535 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6536 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6537 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6539 if (arg00 != NULL_TREE
6540 /* This is only a win if casting to a signed type is cheap,
6541 i.e. when arg00's type is not a partial mode. */
6542 && TYPE_PRECISION (TREE_TYPE (arg00))
6543 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg00))))
6545 tree stype = lang_hooks.types.signed_type (TREE_TYPE (arg00));
6546 return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6547 result_type, fold_convert (stype, arg00),
6548 build_int_cst (stype, 0));
6552 return NULL_TREE;
6555 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6556 equality/inequality test, then return a simplified form of
6557 the test using shifts and logical operations. Otherwise return
6558 NULL. TYPE is the desired result type. */
6560 tree
6561 fold_single_bit_test (enum tree_code code, tree arg0, tree arg1,
6562 tree result_type)
6564 /* If this is testing a single bit, we can optimize the test. */
6565 if ((code == NE_EXPR || code == EQ_EXPR)
6566 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6567 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6569 tree inner = TREE_OPERAND (arg0, 0);
6570 tree type = TREE_TYPE (arg0);
6571 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6572 enum machine_mode operand_mode = TYPE_MODE (type);
6573 int ops_unsigned;
6574 tree signed_type, unsigned_type, intermediate_type;
6575 tree tem, one;
6577 /* First, see if we can fold the single bit test into a sign-bit
6578 test. */
6579 tem = fold_single_bit_test_into_sign_test (code, arg0, arg1,
6580 result_type);
6581 if (tem)
6582 return tem;
6584 /* Otherwise we have (A & C) != 0 where C is a single bit,
6585 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6586 Similarly for (A & C) == 0. */
6588 /* If INNER is a right shift of a constant and it plus BITNUM does
6589 not overflow, adjust BITNUM and INNER. */
6590 if (TREE_CODE (inner) == RSHIFT_EXPR
6591 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6592 && TREE_INT_CST_HIGH (TREE_OPERAND (inner, 1)) == 0
6593 && bitnum < TYPE_PRECISION (type)
6594 && 0 > compare_tree_int (TREE_OPERAND (inner, 1),
6595 bitnum - TYPE_PRECISION (type)))
6597 bitnum += TREE_INT_CST_LOW (TREE_OPERAND (inner, 1));
6598 inner = TREE_OPERAND (inner, 0);
6601 /* If we are going to be able to omit the AND below, we must do our
6602 operations as unsigned. If we must use the AND, we have a choice.
6603 Normally unsigned is faster, but for some machines signed is. */
6604 #ifdef LOAD_EXTEND_OP
6605 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
6606 && !flag_syntax_only) ? 0 : 1;
6607 #else
6608 ops_unsigned = 1;
6609 #endif
6611 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6612 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6613 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6614 inner = fold_convert (intermediate_type, inner);
6616 if (bitnum != 0)
6617 inner = build2 (RSHIFT_EXPR, intermediate_type,
6618 inner, size_int (bitnum));
6620 one = build_int_cst (intermediate_type, 1);
6622 if (code == EQ_EXPR)
6623 inner = fold_build2 (BIT_XOR_EXPR, intermediate_type, inner, one);
6625 /* Put the AND last so it can combine with more things. */
6626 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6628 /* Make sure to return the proper type. */
6629 inner = fold_convert (result_type, inner);
6631 return inner;
6633 return NULL_TREE;
6636 /* Check whether we are allowed to reorder operands arg0 and arg1,
6637 such that the evaluation of arg1 occurs before arg0. */
6639 static bool
6640 reorder_operands_p (tree arg0, tree arg1)
6642 if (! flag_evaluation_order)
6643 return true;
6644 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
6645 return true;
6646 return ! TREE_SIDE_EFFECTS (arg0)
6647 && ! TREE_SIDE_EFFECTS (arg1);
6650 /* Test whether it is preferable two swap two operands, ARG0 and
6651 ARG1, for example because ARG0 is an integer constant and ARG1
6652 isn't. If REORDER is true, only recommend swapping if we can
6653 evaluate the operands in reverse order. */
6655 bool
6656 tree_swap_operands_p (tree arg0, tree arg1, bool reorder)
6658 STRIP_SIGN_NOPS (arg0);
6659 STRIP_SIGN_NOPS (arg1);
6661 if (TREE_CODE (arg1) == INTEGER_CST)
6662 return 0;
6663 if (TREE_CODE (arg0) == INTEGER_CST)
6664 return 1;
6666 if (TREE_CODE (arg1) == REAL_CST)
6667 return 0;
6668 if (TREE_CODE (arg0) == REAL_CST)
6669 return 1;
6671 if (TREE_CODE (arg1) == COMPLEX_CST)
6672 return 0;
6673 if (TREE_CODE (arg0) == COMPLEX_CST)
6674 return 1;
6676 if (TREE_CONSTANT (arg1))
6677 return 0;
6678 if (TREE_CONSTANT (arg0))
6679 return 1;
6681 if (optimize_size)
6682 return 0;
6684 if (reorder && flag_evaluation_order
6685 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
6686 return 0;
6688 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6689 for commutative and comparison operators. Ensuring a canonical
6690 form allows the optimizers to find additional redundancies without
6691 having to explicitly check for both orderings. */
6692 if (TREE_CODE (arg0) == SSA_NAME
6693 && TREE_CODE (arg1) == SSA_NAME
6694 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6695 return 1;
6697 /* Put SSA_NAMEs last. */
6698 if (TREE_CODE (arg1) == SSA_NAME)
6699 return 0;
6700 if (TREE_CODE (arg0) == SSA_NAME)
6701 return 1;
6703 /* Put variables last. */
6704 if (DECL_P (arg1))
6705 return 0;
6706 if (DECL_P (arg0))
6707 return 1;
6709 return 0;
6712 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where
6713 ARG0 is extended to a wider type. */
6715 static tree
6716 fold_widened_comparison (enum tree_code code, tree type, tree arg0, tree arg1)
6718 tree arg0_unw = get_unwidened (arg0, NULL_TREE);
6719 tree arg1_unw;
6720 tree shorter_type, outer_type;
6721 tree min, max;
6722 bool above, below;
6724 if (arg0_unw == arg0)
6725 return NULL_TREE;
6726 shorter_type = TREE_TYPE (arg0_unw);
6728 #ifdef HAVE_canonicalize_funcptr_for_compare
6729 /* Disable this optimization if we're casting a function pointer
6730 type on targets that require function pointer canonicalization. */
6731 if (HAVE_canonicalize_funcptr_for_compare
6732 && TREE_CODE (shorter_type) == POINTER_TYPE
6733 && TREE_CODE (TREE_TYPE (shorter_type)) == FUNCTION_TYPE)
6734 return NULL_TREE;
6735 #endif
6737 if (TYPE_PRECISION (TREE_TYPE (arg0)) <= TYPE_PRECISION (shorter_type))
6738 return NULL_TREE;
6740 arg1_unw = get_unwidened (arg1, shorter_type);
6742 /* If possible, express the comparison in the shorter mode. */
6743 if ((code == EQ_EXPR || code == NE_EXPR
6744 || TYPE_UNSIGNED (TREE_TYPE (arg0)) == TYPE_UNSIGNED (shorter_type))
6745 && (TREE_TYPE (arg1_unw) == shorter_type
6746 || (TREE_CODE (arg1_unw) == INTEGER_CST
6747 && (TREE_CODE (shorter_type) == INTEGER_TYPE
6748 || TREE_CODE (shorter_type) == BOOLEAN_TYPE)
6749 && int_fits_type_p (arg1_unw, shorter_type))))
6750 return fold_build2 (code, type, arg0_unw,
6751 fold_convert (shorter_type, arg1_unw));
6753 if (TREE_CODE (arg1_unw) != INTEGER_CST
6754 || TREE_CODE (shorter_type) != INTEGER_TYPE
6755 || !int_fits_type_p (arg1_unw, shorter_type))
6756 return NULL_TREE;
6758 /* If we are comparing with the integer that does not fit into the range
6759 of the shorter type, the result is known. */
6760 outer_type = TREE_TYPE (arg1_unw);
6761 min = lower_bound_in_type (outer_type, shorter_type);
6762 max = upper_bound_in_type (outer_type, shorter_type);
6764 above = integer_nonzerop (fold_relational_const (LT_EXPR, type,
6765 max, arg1_unw));
6766 below = integer_nonzerop (fold_relational_const (LT_EXPR, type,
6767 arg1_unw, min));
6769 switch (code)
6771 case EQ_EXPR:
6772 if (above || below)
6773 return omit_one_operand (type, integer_zero_node, arg0);
6774 break;
6776 case NE_EXPR:
6777 if (above || below)
6778 return omit_one_operand (type, integer_one_node, arg0);
6779 break;
6781 case LT_EXPR:
6782 case LE_EXPR:
6783 if (above)
6784 return omit_one_operand (type, integer_one_node, arg0);
6785 else if (below)
6786 return omit_one_operand (type, integer_zero_node, arg0);
6788 case GT_EXPR:
6789 case GE_EXPR:
6790 if (above)
6791 return omit_one_operand (type, integer_zero_node, arg0);
6792 else if (below)
6793 return omit_one_operand (type, integer_one_node, arg0);
6795 default:
6796 break;
6799 return NULL_TREE;
6802 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where for
6803 ARG0 just the signedness is changed. */
6805 static tree
6806 fold_sign_changed_comparison (enum tree_code code, tree type,
6807 tree arg0, tree arg1)
6809 tree arg0_inner;
6810 tree inner_type, outer_type;
6812 if (TREE_CODE (arg0) != NOP_EXPR
6813 && TREE_CODE (arg0) != CONVERT_EXPR)
6814 return NULL_TREE;
6816 outer_type = TREE_TYPE (arg0);
6817 arg0_inner = TREE_OPERAND (arg0, 0);
6818 inner_type = TREE_TYPE (arg0_inner);
6820 #ifdef HAVE_canonicalize_funcptr_for_compare
6821 /* Disable this optimization if we're casting a function pointer
6822 type on targets that require function pointer canonicalization. */
6823 if (HAVE_canonicalize_funcptr_for_compare
6824 && TREE_CODE (inner_type) == POINTER_TYPE
6825 && TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE)
6826 return NULL_TREE;
6827 #endif
6829 if (TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
6830 return NULL_TREE;
6832 if (TREE_CODE (arg1) != INTEGER_CST
6833 && !((TREE_CODE (arg1) == NOP_EXPR
6834 || TREE_CODE (arg1) == CONVERT_EXPR)
6835 && TREE_TYPE (TREE_OPERAND (arg1, 0)) == inner_type))
6836 return NULL_TREE;
6838 if (TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
6839 && code != NE_EXPR
6840 && code != EQ_EXPR)
6841 return NULL_TREE;
6843 if (TREE_CODE (arg1) == INTEGER_CST)
6844 arg1 = force_fit_type_double (inner_type, TREE_INT_CST_LOW (arg1),
6845 TREE_INT_CST_HIGH (arg1), 0,
6846 TREE_OVERFLOW (arg1));
6847 else
6848 arg1 = fold_convert (inner_type, arg1);
6850 return fold_build2 (code, type, arg0_inner, arg1);
6853 /* Tries to replace &a[idx] CODE s * delta with &a[idx CODE delta], if s is
6854 step of the array. Reconstructs s and delta in the case of s * delta
6855 being an integer constant (and thus already folded).
6856 ADDR is the address. MULT is the multiplicative expression.
6857 If the function succeeds, the new address expression is returned. Otherwise
6858 NULL_TREE is returned. */
6860 static tree
6861 try_move_mult_to_index (enum tree_code code, tree addr, tree op1)
6863 tree s, delta, step;
6864 tree ref = TREE_OPERAND (addr, 0), pref;
6865 tree ret, pos;
6866 tree itype;
6867 bool mdim = false;
6869 /* Canonicalize op1 into a possibly non-constant delta
6870 and an INTEGER_CST s. */
6871 if (TREE_CODE (op1) == MULT_EXPR)
6873 tree arg0 = TREE_OPERAND (op1, 0), arg1 = TREE_OPERAND (op1, 1);
6875 STRIP_NOPS (arg0);
6876 STRIP_NOPS (arg1);
6878 if (TREE_CODE (arg0) == INTEGER_CST)
6880 s = arg0;
6881 delta = arg1;
6883 else if (TREE_CODE (arg1) == INTEGER_CST)
6885 s = arg1;
6886 delta = arg0;
6888 else
6889 return NULL_TREE;
6891 else if (TREE_CODE (op1) == INTEGER_CST)
6893 delta = op1;
6894 s = NULL_TREE;
6896 else
6898 /* Simulate we are delta * 1. */
6899 delta = op1;
6900 s = integer_one_node;
6903 for (;; ref = TREE_OPERAND (ref, 0))
6905 if (TREE_CODE (ref) == ARRAY_REF)
6907 /* Remember if this was a multi-dimensional array. */
6908 if (TREE_CODE (TREE_OPERAND (ref, 0)) == ARRAY_REF)
6909 mdim = true;
6911 itype = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (ref, 0)));
6912 if (! itype)
6913 continue;
6915 step = array_ref_element_size (ref);
6916 if (TREE_CODE (step) != INTEGER_CST)
6917 continue;
6919 if (s)
6921 if (! tree_int_cst_equal (step, s))
6922 continue;
6924 else
6926 /* Try if delta is a multiple of step. */
6927 tree tmp = div_if_zero_remainder (EXACT_DIV_EXPR, delta, step);
6928 if (! tmp)
6929 continue;
6930 delta = tmp;
6933 /* Only fold here if we can verify we do not overflow one
6934 dimension of a multi-dimensional array. */
6935 if (mdim)
6937 tree tmp;
6939 if (TREE_CODE (TREE_OPERAND (ref, 1)) != INTEGER_CST
6940 || !INTEGRAL_TYPE_P (itype)
6941 || !TYPE_MAX_VALUE (itype)
6942 || TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST)
6943 continue;
6945 tmp = fold_binary (code, itype,
6946 fold_convert (itype,
6947 TREE_OPERAND (ref, 1)),
6948 fold_convert (itype, delta));
6949 if (!tmp
6950 || TREE_CODE (tmp) != INTEGER_CST
6951 || tree_int_cst_lt (TYPE_MAX_VALUE (itype), tmp))
6952 continue;
6955 break;
6957 else
6958 mdim = false;
6960 if (!handled_component_p (ref))
6961 return NULL_TREE;
6964 /* We found the suitable array reference. So copy everything up to it,
6965 and replace the index. */
6967 pref = TREE_OPERAND (addr, 0);
6968 ret = copy_node (pref);
6969 pos = ret;
6971 while (pref != ref)
6973 pref = TREE_OPERAND (pref, 0);
6974 TREE_OPERAND (pos, 0) = copy_node (pref);
6975 pos = TREE_OPERAND (pos, 0);
6978 TREE_OPERAND (pos, 1) = fold_build2 (code, itype,
6979 fold_convert (itype,
6980 TREE_OPERAND (pos, 1)),
6981 fold_convert (itype, delta));
6983 return fold_build1 (ADDR_EXPR, TREE_TYPE (addr), ret);
6987 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6988 means A >= Y && A != MAX, but in this case we know that
6989 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6991 static tree
6992 fold_to_nonsharp_ineq_using_bound (tree ineq, tree bound)
6994 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6996 if (TREE_CODE (bound) == LT_EXPR)
6997 a = TREE_OPERAND (bound, 0);
6998 else if (TREE_CODE (bound) == GT_EXPR)
6999 a = TREE_OPERAND (bound, 1);
7000 else
7001 return NULL_TREE;
7003 typea = TREE_TYPE (a);
7004 if (!INTEGRAL_TYPE_P (typea)
7005 && !POINTER_TYPE_P (typea))
7006 return NULL_TREE;
7008 if (TREE_CODE (ineq) == LT_EXPR)
7010 a1 = TREE_OPERAND (ineq, 1);
7011 y = TREE_OPERAND (ineq, 0);
7013 else if (TREE_CODE (ineq) == GT_EXPR)
7015 a1 = TREE_OPERAND (ineq, 0);
7016 y = TREE_OPERAND (ineq, 1);
7018 else
7019 return NULL_TREE;
7021 if (TREE_TYPE (a1) != typea)
7022 return NULL_TREE;
7024 diff = fold_build2 (MINUS_EXPR, typea, a1, a);
7025 if (!integer_onep (diff))
7026 return NULL_TREE;
7028 return fold_build2 (GE_EXPR, type, a, y);
7031 /* Fold a sum or difference of at least one multiplication.
7032 Returns the folded tree or NULL if no simplification could be made. */
7034 static tree
7035 fold_plusminus_mult_expr (enum tree_code code, tree type, tree arg0, tree arg1)
7037 tree arg00, arg01, arg10, arg11;
7038 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
7040 /* (A * C) +- (B * C) -> (A+-B) * C.
7041 (A * C) +- A -> A * (C+-1).
7042 We are most concerned about the case where C is a constant,
7043 but other combinations show up during loop reduction. Since
7044 it is not difficult, try all four possibilities. */
7046 if (TREE_CODE (arg0) == MULT_EXPR)
7048 arg00 = TREE_OPERAND (arg0, 0);
7049 arg01 = TREE_OPERAND (arg0, 1);
7051 else
7053 arg00 = arg0;
7054 arg01 = build_one_cst (type);
7056 if (TREE_CODE (arg1) == MULT_EXPR)
7058 arg10 = TREE_OPERAND (arg1, 0);
7059 arg11 = TREE_OPERAND (arg1, 1);
7061 else
7063 arg10 = arg1;
7064 arg11 = build_one_cst (type);
7066 same = NULL_TREE;
7068 if (operand_equal_p (arg01, arg11, 0))
7069 same = arg01, alt0 = arg00, alt1 = arg10;
7070 else if (operand_equal_p (arg00, arg10, 0))
7071 same = arg00, alt0 = arg01, alt1 = arg11;
7072 else if (operand_equal_p (arg00, arg11, 0))
7073 same = arg00, alt0 = arg01, alt1 = arg10;
7074 else if (operand_equal_p (arg01, arg10, 0))
7075 same = arg01, alt0 = arg00, alt1 = arg11;
7077 /* No identical multiplicands; see if we can find a common
7078 power-of-two factor in non-power-of-two multiplies. This
7079 can help in multi-dimensional array access. */
7080 else if (host_integerp (arg01, 0)
7081 && host_integerp (arg11, 0))
7083 HOST_WIDE_INT int01, int11, tmp;
7084 bool swap = false;
7085 tree maybe_same;
7086 int01 = TREE_INT_CST_LOW (arg01);
7087 int11 = TREE_INT_CST_LOW (arg11);
7089 /* Move min of absolute values to int11. */
7090 if ((int01 >= 0 ? int01 : -int01)
7091 < (int11 >= 0 ? int11 : -int11))
7093 tmp = int01, int01 = int11, int11 = tmp;
7094 alt0 = arg00, arg00 = arg10, arg10 = alt0;
7095 maybe_same = arg01;
7096 swap = true;
7098 else
7099 maybe_same = arg11;
7101 if (exact_log2 (abs (int11)) > 0 && int01 % int11 == 0)
7103 alt0 = fold_build2 (MULT_EXPR, TREE_TYPE (arg00), arg00,
7104 build_int_cst (TREE_TYPE (arg00),
7105 int01 / int11));
7106 alt1 = arg10;
7107 same = maybe_same;
7108 if (swap)
7109 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
7113 if (same)
7114 return fold_build2 (MULT_EXPR, type,
7115 fold_build2 (code, type,
7116 fold_convert (type, alt0),
7117 fold_convert (type, alt1)),
7118 fold_convert (type, same));
7120 return NULL_TREE;
7123 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7124 specified by EXPR into the buffer PTR of length LEN bytes.
7125 Return the number of bytes placed in the buffer, or zero
7126 upon failure. */
7128 static int
7129 native_encode_int (tree expr, unsigned char *ptr, int len)
7131 tree type = TREE_TYPE (expr);
7132 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7133 int byte, offset, word, words;
7134 unsigned char value;
7136 if (total_bytes > len)
7137 return 0;
7138 words = total_bytes / UNITS_PER_WORD;
7140 for (byte = 0; byte < total_bytes; byte++)
7142 int bitpos = byte * BITS_PER_UNIT;
7143 if (bitpos < HOST_BITS_PER_WIDE_INT)
7144 value = (unsigned char) (TREE_INT_CST_LOW (expr) >> bitpos);
7145 else
7146 value = (unsigned char) (TREE_INT_CST_HIGH (expr)
7147 >> (bitpos - HOST_BITS_PER_WIDE_INT));
7149 if (total_bytes > UNITS_PER_WORD)
7151 word = byte / UNITS_PER_WORD;
7152 if (WORDS_BIG_ENDIAN)
7153 word = (words - 1) - word;
7154 offset = word * UNITS_PER_WORD;
7155 if (BYTES_BIG_ENDIAN)
7156 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7157 else
7158 offset += byte % UNITS_PER_WORD;
7160 else
7161 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7162 ptr[offset] = value;
7164 return total_bytes;
7168 /* Subroutine of native_encode_expr. Encode the REAL_CST
7169 specified by EXPR into the buffer PTR of length LEN bytes.
7170 Return the number of bytes placed in the buffer, or zero
7171 upon failure. */
7173 static int
7174 native_encode_real (tree expr, unsigned char *ptr, int len)
7176 tree type = TREE_TYPE (expr);
7177 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7178 int byte, offset, word, words, bitpos;
7179 unsigned char value;
7181 /* There are always 32 bits in each long, no matter the size of
7182 the hosts long. We handle floating point representations with
7183 up to 192 bits. */
7184 long tmp[6];
7186 if (total_bytes > len)
7187 return 0;
7188 words = 32 / UNITS_PER_WORD;
7190 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7192 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7193 bitpos += BITS_PER_UNIT)
7195 byte = (bitpos / BITS_PER_UNIT) & 3;
7196 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7198 if (UNITS_PER_WORD < 4)
7200 word = byte / UNITS_PER_WORD;
7201 if (WORDS_BIG_ENDIAN)
7202 word = (words - 1) - word;
7203 offset = word * UNITS_PER_WORD;
7204 if (BYTES_BIG_ENDIAN)
7205 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7206 else
7207 offset += byte % UNITS_PER_WORD;
7209 else
7210 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7211 ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)] = value;
7213 return total_bytes;
7216 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7217 specified by EXPR into the buffer PTR of length LEN bytes.
7218 Return the number of bytes placed in the buffer, or zero
7219 upon failure. */
7221 static int
7222 native_encode_complex (tree expr, unsigned char *ptr, int len)
7224 int rsize, isize;
7225 tree part;
7227 part = TREE_REALPART (expr);
7228 rsize = native_encode_expr (part, ptr, len);
7229 if (rsize == 0)
7230 return 0;
7231 part = TREE_IMAGPART (expr);
7232 isize = native_encode_expr (part, ptr+rsize, len-rsize);
7233 if (isize != rsize)
7234 return 0;
7235 return rsize + isize;
7239 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7240 specified by EXPR into the buffer PTR of length LEN bytes.
7241 Return the number of bytes placed in the buffer, or zero
7242 upon failure. */
7244 static int
7245 native_encode_vector (tree expr, unsigned char *ptr, int len)
7247 int i, size, offset, count;
7248 tree itype, elem, elements;
7250 offset = 0;
7251 elements = TREE_VECTOR_CST_ELTS (expr);
7252 count = TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr));
7253 itype = TREE_TYPE (TREE_TYPE (expr));
7254 size = GET_MODE_SIZE (TYPE_MODE (itype));
7255 for (i = 0; i < count; i++)
7257 if (elements)
7259 elem = TREE_VALUE (elements);
7260 elements = TREE_CHAIN (elements);
7262 else
7263 elem = NULL_TREE;
7265 if (elem)
7267 if (native_encode_expr (elem, ptr+offset, len-offset) != size)
7268 return 0;
7270 else
7272 if (offset + size > len)
7273 return 0;
7274 memset (ptr+offset, 0, size);
7276 offset += size;
7278 return offset;
7282 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7283 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7284 buffer PTR of length LEN bytes. Return the number of bytes
7285 placed in the buffer, or zero upon failure. */
7288 native_encode_expr (tree expr, unsigned char *ptr, int len)
7290 switch (TREE_CODE (expr))
7292 case INTEGER_CST:
7293 return native_encode_int (expr, ptr, len);
7295 case REAL_CST:
7296 return native_encode_real (expr, ptr, len);
7298 case COMPLEX_CST:
7299 return native_encode_complex (expr, ptr, len);
7301 case VECTOR_CST:
7302 return native_encode_vector (expr, ptr, len);
7304 default:
7305 return 0;
7310 /* Subroutine of native_interpret_expr. Interpret the contents of
7311 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7312 If the buffer cannot be interpreted, return NULL_TREE. */
7314 static tree
7315 native_interpret_int (tree type, unsigned char *ptr, int len)
7317 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7318 int byte, offset, word, words;
7319 unsigned char value;
7320 unsigned int HOST_WIDE_INT lo = 0;
7321 HOST_WIDE_INT hi = 0;
7323 if (total_bytes > len)
7324 return NULL_TREE;
7325 if (total_bytes * BITS_PER_UNIT > 2 * HOST_BITS_PER_WIDE_INT)
7326 return NULL_TREE;
7327 words = total_bytes / UNITS_PER_WORD;
7329 for (byte = 0; byte < total_bytes; byte++)
7331 int bitpos = byte * BITS_PER_UNIT;
7332 if (total_bytes > UNITS_PER_WORD)
7334 word = byte / UNITS_PER_WORD;
7335 if (WORDS_BIG_ENDIAN)
7336 word = (words - 1) - word;
7337 offset = word * UNITS_PER_WORD;
7338 if (BYTES_BIG_ENDIAN)
7339 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7340 else
7341 offset += byte % UNITS_PER_WORD;
7343 else
7344 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7345 value = ptr[offset];
7347 if (bitpos < HOST_BITS_PER_WIDE_INT)
7348 lo |= (unsigned HOST_WIDE_INT) value << bitpos;
7349 else
7350 hi |= (unsigned HOST_WIDE_INT) value
7351 << (bitpos - HOST_BITS_PER_WIDE_INT);
7354 return build_int_cst_wide_type (type, lo, hi);
7358 /* Subroutine of native_interpret_expr. Interpret the contents of
7359 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7360 If the buffer cannot be interpreted, return NULL_TREE. */
7362 static tree
7363 native_interpret_real (tree type, unsigned char *ptr, int len)
7365 enum machine_mode mode = TYPE_MODE (type);
7366 int total_bytes = GET_MODE_SIZE (mode);
7367 int byte, offset, word, words, bitpos;
7368 unsigned char value;
7369 /* There are always 32 bits in each long, no matter the size of
7370 the hosts long. We handle floating point representations with
7371 up to 192 bits. */
7372 REAL_VALUE_TYPE r;
7373 long tmp[6];
7375 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7376 if (total_bytes > len || total_bytes > 24)
7377 return NULL_TREE;
7378 words = 32 / UNITS_PER_WORD;
7380 memset (tmp, 0, sizeof (tmp));
7381 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7382 bitpos += BITS_PER_UNIT)
7384 byte = (bitpos / BITS_PER_UNIT) & 3;
7385 if (UNITS_PER_WORD < 4)
7387 word = byte / UNITS_PER_WORD;
7388 if (WORDS_BIG_ENDIAN)
7389 word = (words - 1) - word;
7390 offset = word * UNITS_PER_WORD;
7391 if (BYTES_BIG_ENDIAN)
7392 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7393 else
7394 offset += byte % UNITS_PER_WORD;
7396 else
7397 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7398 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7400 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7403 real_from_target (&r, tmp, mode);
7404 return build_real (type, r);
7408 /* Subroutine of native_interpret_expr. Interpret the contents of
7409 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7410 If the buffer cannot be interpreted, return NULL_TREE. */
7412 static tree
7413 native_interpret_complex (tree type, unsigned char *ptr, int len)
7415 tree etype, rpart, ipart;
7416 int size;
7418 etype = TREE_TYPE (type);
7419 size = GET_MODE_SIZE (TYPE_MODE (etype));
7420 if (size * 2 > len)
7421 return NULL_TREE;
7422 rpart = native_interpret_expr (etype, ptr, size);
7423 if (!rpart)
7424 return NULL_TREE;
7425 ipart = native_interpret_expr (etype, ptr+size, size);
7426 if (!ipart)
7427 return NULL_TREE;
7428 return build_complex (type, rpart, ipart);
7432 /* Subroutine of native_interpret_expr. Interpret the contents of
7433 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7434 If the buffer cannot be interpreted, return NULL_TREE. */
7436 static tree
7437 native_interpret_vector (tree type, unsigned char *ptr, int len)
7439 tree etype, elem, elements;
7440 int i, size, count;
7442 etype = TREE_TYPE (type);
7443 size = GET_MODE_SIZE (TYPE_MODE (etype));
7444 count = TYPE_VECTOR_SUBPARTS (type);
7445 if (size * count > len)
7446 return NULL_TREE;
7448 elements = NULL_TREE;
7449 for (i = count - 1; i >= 0; i--)
7451 elem = native_interpret_expr (etype, ptr+(i*size), size);
7452 if (!elem)
7453 return NULL_TREE;
7454 elements = tree_cons (NULL_TREE, elem, elements);
7456 return build_vector (type, elements);
7460 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7461 the buffer PTR of length LEN as a constant of type TYPE. For
7462 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7463 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7464 return NULL_TREE. */
7466 tree
7467 native_interpret_expr (tree type, unsigned char *ptr, int len)
7469 switch (TREE_CODE (type))
7471 case INTEGER_TYPE:
7472 case ENUMERAL_TYPE:
7473 case BOOLEAN_TYPE:
7474 return native_interpret_int (type, ptr, len);
7476 case REAL_TYPE:
7477 return native_interpret_real (type, ptr, len);
7479 case COMPLEX_TYPE:
7480 return native_interpret_complex (type, ptr, len);
7482 case VECTOR_TYPE:
7483 return native_interpret_vector (type, ptr, len);
7485 default:
7486 return NULL_TREE;
7491 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7492 TYPE at compile-time. If we're unable to perform the conversion
7493 return NULL_TREE. */
7495 static tree
7496 fold_view_convert_expr (tree type, tree expr)
7498 /* We support up to 512-bit values (for V8DFmode). */
7499 unsigned char buffer[64];
7500 int len;
7502 /* Check that the host and target are sane. */
7503 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7504 return NULL_TREE;
7506 len = native_encode_expr (expr, buffer, sizeof (buffer));
7507 if (len == 0)
7508 return NULL_TREE;
7510 return native_interpret_expr (type, buffer, len);
7514 /* Fold a unary expression of code CODE and type TYPE with operand
7515 OP0. Return the folded expression if folding is successful.
7516 Otherwise, return NULL_TREE. */
7518 tree
7519 fold_unary (enum tree_code code, tree type, tree op0)
7521 tree tem;
7522 tree arg0;
7523 enum tree_code_class kind = TREE_CODE_CLASS (code);
7525 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7526 && TREE_CODE_LENGTH (code) == 1);
7528 arg0 = op0;
7529 if (arg0)
7531 if (code == NOP_EXPR || code == CONVERT_EXPR
7532 || code == FLOAT_EXPR || code == ABS_EXPR)
7534 /* Don't use STRIP_NOPS, because signedness of argument type
7535 matters. */
7536 STRIP_SIGN_NOPS (arg0);
7538 else
7540 /* Strip any conversions that don't change the mode. This
7541 is safe for every expression, except for a comparison
7542 expression because its signedness is derived from its
7543 operands.
7545 Note that this is done as an internal manipulation within
7546 the constant folder, in order to find the simplest
7547 representation of the arguments so that their form can be
7548 studied. In any cases, the appropriate type conversions
7549 should be put back in the tree that will get out of the
7550 constant folder. */
7551 STRIP_NOPS (arg0);
7555 if (TREE_CODE_CLASS (code) == tcc_unary)
7557 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7558 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7559 fold_build1 (code, type, TREE_OPERAND (arg0, 1)));
7560 else if (TREE_CODE (arg0) == COND_EXPR)
7562 tree arg01 = TREE_OPERAND (arg0, 1);
7563 tree arg02 = TREE_OPERAND (arg0, 2);
7564 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7565 arg01 = fold_build1 (code, type, arg01);
7566 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7567 arg02 = fold_build1 (code, type, arg02);
7568 tem = fold_build3 (COND_EXPR, type, TREE_OPERAND (arg0, 0),
7569 arg01, arg02);
7571 /* If this was a conversion, and all we did was to move into
7572 inside the COND_EXPR, bring it back out. But leave it if
7573 it is a conversion from integer to integer and the
7574 result precision is no wider than a word since such a
7575 conversion is cheap and may be optimized away by combine,
7576 while it couldn't if it were outside the COND_EXPR. Then return
7577 so we don't get into an infinite recursion loop taking the
7578 conversion out and then back in. */
7580 if ((code == NOP_EXPR || code == CONVERT_EXPR
7581 || code == NON_LVALUE_EXPR)
7582 && TREE_CODE (tem) == COND_EXPR
7583 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7584 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7585 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7586 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7587 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7588 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7589 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7590 && (INTEGRAL_TYPE_P
7591 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7592 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7593 || flag_syntax_only))
7594 tem = build1 (code, type,
7595 build3 (COND_EXPR,
7596 TREE_TYPE (TREE_OPERAND
7597 (TREE_OPERAND (tem, 1), 0)),
7598 TREE_OPERAND (tem, 0),
7599 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7600 TREE_OPERAND (TREE_OPERAND (tem, 2), 0)));
7601 return tem;
7603 else if (COMPARISON_CLASS_P (arg0))
7605 if (TREE_CODE (type) == BOOLEAN_TYPE)
7607 arg0 = copy_node (arg0);
7608 TREE_TYPE (arg0) = type;
7609 return arg0;
7611 else if (TREE_CODE (type) != INTEGER_TYPE)
7612 return fold_build3 (COND_EXPR, type, arg0,
7613 fold_build1 (code, type,
7614 integer_one_node),
7615 fold_build1 (code, type,
7616 integer_zero_node));
7620 switch (code)
7622 case NOP_EXPR:
7623 case FLOAT_EXPR:
7624 case CONVERT_EXPR:
7625 case FIX_TRUNC_EXPR:
7626 if (TREE_TYPE (op0) == type)
7627 return op0;
7629 /* If we have (type) (a CMP b) and type is an integral type, return
7630 new expression involving the new type. */
7631 if (COMPARISON_CLASS_P (op0) && INTEGRAL_TYPE_P (type))
7632 return fold_build2 (TREE_CODE (op0), type, TREE_OPERAND (op0, 0),
7633 TREE_OPERAND (op0, 1));
7635 /* Handle cases of two conversions in a row. */
7636 if (TREE_CODE (op0) == NOP_EXPR
7637 || TREE_CODE (op0) == CONVERT_EXPR)
7639 tree inside_type = TREE_TYPE (TREE_OPERAND (op0, 0));
7640 tree inter_type = TREE_TYPE (op0);
7641 int inside_int = INTEGRAL_TYPE_P (inside_type);
7642 int inside_ptr = POINTER_TYPE_P (inside_type);
7643 int inside_float = FLOAT_TYPE_P (inside_type);
7644 int inside_vec = TREE_CODE (inside_type) == VECTOR_TYPE;
7645 unsigned int inside_prec = TYPE_PRECISION (inside_type);
7646 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
7647 int inter_int = INTEGRAL_TYPE_P (inter_type);
7648 int inter_ptr = POINTER_TYPE_P (inter_type);
7649 int inter_float = FLOAT_TYPE_P (inter_type);
7650 int inter_vec = TREE_CODE (inter_type) == VECTOR_TYPE;
7651 unsigned int inter_prec = TYPE_PRECISION (inter_type);
7652 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
7653 int final_int = INTEGRAL_TYPE_P (type);
7654 int final_ptr = POINTER_TYPE_P (type);
7655 int final_float = FLOAT_TYPE_P (type);
7656 int final_vec = TREE_CODE (type) == VECTOR_TYPE;
7657 unsigned int final_prec = TYPE_PRECISION (type);
7658 int final_unsignedp = TYPE_UNSIGNED (type);
7660 /* In addition to the cases of two conversions in a row
7661 handled below, if we are converting something to its own
7662 type via an object of identical or wider precision, neither
7663 conversion is needed. */
7664 if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (type)
7665 && (((inter_int || inter_ptr) && final_int)
7666 || (inter_float && final_float))
7667 && inter_prec >= final_prec)
7668 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
7670 /* Likewise, if the intermediate and final types are either both
7671 float or both integer, we don't need the middle conversion if
7672 it is wider than the final type and doesn't change the signedness
7673 (for integers). Avoid this if the final type is a pointer
7674 since then we sometimes need the inner conversion. Likewise if
7675 the outer has a precision not equal to the size of its mode. */
7676 if ((((inter_int || inter_ptr) && (inside_int || inside_ptr))
7677 || (inter_float && inside_float)
7678 || (inter_vec && inside_vec))
7679 && inter_prec >= inside_prec
7680 && (inter_float || inter_vec
7681 || inter_unsignedp == inside_unsignedp)
7682 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
7683 && TYPE_MODE (type) == TYPE_MODE (inter_type))
7684 && ! final_ptr
7685 && (! final_vec || inter_prec == inside_prec))
7686 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
7688 /* If we have a sign-extension of a zero-extended value, we can
7689 replace that by a single zero-extension. */
7690 if (inside_int && inter_int && final_int
7691 && inside_prec < inter_prec && inter_prec < final_prec
7692 && inside_unsignedp && !inter_unsignedp)
7693 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
7695 /* Two conversions in a row are not needed unless:
7696 - some conversion is floating-point (overstrict for now), or
7697 - some conversion is a vector (overstrict for now), or
7698 - the intermediate type is narrower than both initial and
7699 final, or
7700 - the intermediate type and innermost type differ in signedness,
7701 and the outermost type is wider than the intermediate, or
7702 - the initial type is a pointer type and the precisions of the
7703 intermediate and final types differ, or
7704 - the final type is a pointer type and the precisions of the
7705 initial and intermediate types differ.
7706 - the final type is a pointer type and the initial type not
7707 - the initial type is a pointer to an array and the final type
7708 not. */
7709 if (! inside_float && ! inter_float && ! final_float
7710 && ! inside_vec && ! inter_vec && ! final_vec
7711 && (inter_prec >= inside_prec || inter_prec >= final_prec)
7712 && ! (inside_int && inter_int
7713 && inter_unsignedp != inside_unsignedp
7714 && inter_prec < final_prec)
7715 && ((inter_unsignedp && inter_prec > inside_prec)
7716 == (final_unsignedp && final_prec > inter_prec))
7717 && ! (inside_ptr && inter_prec != final_prec)
7718 && ! (final_ptr && inside_prec != inter_prec)
7719 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
7720 && TYPE_MODE (type) == TYPE_MODE (inter_type))
7721 && final_ptr == inside_ptr
7722 && ! (inside_ptr
7723 && TREE_CODE (TREE_TYPE (inside_type)) == ARRAY_TYPE
7724 && TREE_CODE (TREE_TYPE (type)) != ARRAY_TYPE))
7725 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
7728 /* Handle (T *)&A.B.C for A being of type T and B and C
7729 living at offset zero. This occurs frequently in
7730 C++ upcasting and then accessing the base. */
7731 if (TREE_CODE (op0) == ADDR_EXPR
7732 && POINTER_TYPE_P (type)
7733 && handled_component_p (TREE_OPERAND (op0, 0)))
7735 HOST_WIDE_INT bitsize, bitpos;
7736 tree offset;
7737 enum machine_mode mode;
7738 int unsignedp, volatilep;
7739 tree base = TREE_OPERAND (op0, 0);
7740 base = get_inner_reference (base, &bitsize, &bitpos, &offset,
7741 &mode, &unsignedp, &volatilep, false);
7742 /* If the reference was to a (constant) zero offset, we can use
7743 the address of the base if it has the same base type
7744 as the result type. */
7745 if (! offset && bitpos == 0
7746 && TYPE_MAIN_VARIANT (TREE_TYPE (type))
7747 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7748 return fold_convert (type, build_fold_addr_expr (base));
7751 if ((TREE_CODE (op0) == MODIFY_EXPR
7752 || TREE_CODE (op0) == GIMPLE_MODIFY_STMT)
7753 && TREE_CONSTANT (GENERIC_TREE_OPERAND (op0, 1))
7754 /* Detect assigning a bitfield. */
7755 && !(TREE_CODE (GENERIC_TREE_OPERAND (op0, 0)) == COMPONENT_REF
7756 && DECL_BIT_FIELD
7757 (TREE_OPERAND (GENERIC_TREE_OPERAND (op0, 0), 1))))
7759 /* Don't leave an assignment inside a conversion
7760 unless assigning a bitfield. */
7761 tem = fold_build1 (code, type, GENERIC_TREE_OPERAND (op0, 1));
7762 /* First do the assignment, then return converted constant. */
7763 tem = build2 (COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7764 TREE_NO_WARNING (tem) = 1;
7765 TREE_USED (tem) = 1;
7766 return tem;
7769 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7770 constants (if x has signed type, the sign bit cannot be set
7771 in c). This folds extension into the BIT_AND_EXPR. */
7772 if (INTEGRAL_TYPE_P (type)
7773 && TREE_CODE (type) != BOOLEAN_TYPE
7774 && TREE_CODE (op0) == BIT_AND_EXPR
7775 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7777 tree and = op0;
7778 tree and0 = TREE_OPERAND (and, 0), and1 = TREE_OPERAND (and, 1);
7779 int change = 0;
7781 if (TYPE_UNSIGNED (TREE_TYPE (and))
7782 || (TYPE_PRECISION (type)
7783 <= TYPE_PRECISION (TREE_TYPE (and))))
7784 change = 1;
7785 else if (TYPE_PRECISION (TREE_TYPE (and1))
7786 <= HOST_BITS_PER_WIDE_INT
7787 && host_integerp (and1, 1))
7789 unsigned HOST_WIDE_INT cst;
7791 cst = tree_low_cst (and1, 1);
7792 cst &= (HOST_WIDE_INT) -1
7793 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7794 change = (cst == 0);
7795 #ifdef LOAD_EXTEND_OP
7796 if (change
7797 && !flag_syntax_only
7798 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
7799 == ZERO_EXTEND))
7801 tree uns = lang_hooks.types.unsigned_type (TREE_TYPE (and0));
7802 and0 = fold_convert (uns, and0);
7803 and1 = fold_convert (uns, and1);
7805 #endif
7807 if (change)
7809 tem = force_fit_type_double (type, TREE_INT_CST_LOW (and1),
7810 TREE_INT_CST_HIGH (and1), 0,
7811 TREE_OVERFLOW (and1));
7812 return fold_build2 (BIT_AND_EXPR, type,
7813 fold_convert (type, and0), tem);
7817 /* Convert (T1)((T2)X op Y) into (T1)X op Y, for pointer types T1 and
7818 T2 being pointers to types of the same size. */
7819 if (POINTER_TYPE_P (type)
7820 && BINARY_CLASS_P (arg0)
7821 && TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
7822 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 0))))
7824 tree arg00 = TREE_OPERAND (arg0, 0);
7825 tree t0 = type;
7826 tree t1 = TREE_TYPE (arg00);
7827 tree tt0 = TREE_TYPE (t0);
7828 tree tt1 = TREE_TYPE (t1);
7829 tree s0 = TYPE_SIZE (tt0);
7830 tree s1 = TYPE_SIZE (tt1);
7832 if (s0 && s1 && operand_equal_p (s0, s1, OEP_ONLY_CONST))
7833 return build2 (TREE_CODE (arg0), t0, fold_convert (t0, arg00),
7834 TREE_OPERAND (arg0, 1));
7837 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7838 of the same precision, and X is a integer type not narrower than
7839 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7840 if (INTEGRAL_TYPE_P (type)
7841 && TREE_CODE (op0) == BIT_NOT_EXPR
7842 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7843 && (TREE_CODE (TREE_OPERAND (op0, 0)) == NOP_EXPR
7844 || TREE_CODE (TREE_OPERAND (op0, 0)) == CONVERT_EXPR)
7845 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
7847 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
7848 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7849 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
7850 return fold_build1 (BIT_NOT_EXPR, type, fold_convert (type, tem));
7853 tem = fold_convert_const (code, type, op0);
7854 return tem ? tem : NULL_TREE;
7856 case VIEW_CONVERT_EXPR:
7857 if (TREE_TYPE (op0) == type)
7858 return op0;
7859 if (TREE_CODE (op0) == VIEW_CONVERT_EXPR)
7860 return fold_build1 (VIEW_CONVERT_EXPR, type, TREE_OPERAND (op0, 0));
7861 return fold_view_convert_expr (type, op0);
7863 case NEGATE_EXPR:
7864 tem = fold_negate_expr (arg0);
7865 if (tem)
7866 return fold_convert (type, tem);
7867 return NULL_TREE;
7869 case ABS_EXPR:
7870 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
7871 return fold_abs_const (arg0, type);
7872 else if (TREE_CODE (arg0) == NEGATE_EXPR)
7873 return fold_build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0));
7874 /* Convert fabs((double)float) into (double)fabsf(float). */
7875 else if (TREE_CODE (arg0) == NOP_EXPR
7876 && TREE_CODE (type) == REAL_TYPE)
7878 tree targ0 = strip_float_extensions (arg0);
7879 if (targ0 != arg0)
7880 return fold_convert (type, fold_build1 (ABS_EXPR,
7881 TREE_TYPE (targ0),
7882 targ0));
7884 /* ABS_EXPR<ABS_EXPR<x>> = ABS_EXPR<x> even if flag_wrapv is on. */
7885 else if (TREE_CODE (arg0) == ABS_EXPR)
7886 return arg0;
7887 else if (tree_expr_nonnegative_p (arg0))
7888 return arg0;
7890 /* Strip sign ops from argument. */
7891 if (TREE_CODE (type) == REAL_TYPE)
7893 tem = fold_strip_sign_ops (arg0);
7894 if (tem)
7895 return fold_build1 (ABS_EXPR, type, fold_convert (type, tem));
7897 return NULL_TREE;
7899 case CONJ_EXPR:
7900 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7901 return fold_convert (type, arg0);
7902 if (TREE_CODE (arg0) == COMPLEX_EXPR)
7904 tree itype = TREE_TYPE (type);
7905 tree rpart = fold_convert (itype, TREE_OPERAND (arg0, 0));
7906 tree ipart = fold_convert (itype, TREE_OPERAND (arg0, 1));
7907 return fold_build2 (COMPLEX_EXPR, type, rpart, negate_expr (ipart));
7909 if (TREE_CODE (arg0) == COMPLEX_CST)
7911 tree itype = TREE_TYPE (type);
7912 tree rpart = fold_convert (itype, TREE_REALPART (arg0));
7913 tree ipart = fold_convert (itype, TREE_IMAGPART (arg0));
7914 return build_complex (type, rpart, negate_expr (ipart));
7916 if (TREE_CODE (arg0) == CONJ_EXPR)
7917 return fold_convert (type, TREE_OPERAND (arg0, 0));
7918 return NULL_TREE;
7920 case BIT_NOT_EXPR:
7921 if (TREE_CODE (arg0) == INTEGER_CST)
7922 return fold_not_const (arg0, type);
7923 else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
7924 return TREE_OPERAND (arg0, 0);
7925 /* Convert ~ (-A) to A - 1. */
7926 else if (INTEGRAL_TYPE_P (type) && TREE_CODE (arg0) == NEGATE_EXPR)
7927 return fold_build2 (MINUS_EXPR, type, TREE_OPERAND (arg0, 0),
7928 build_int_cst (type, 1));
7929 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
7930 else if (INTEGRAL_TYPE_P (type)
7931 && ((TREE_CODE (arg0) == MINUS_EXPR
7932 && integer_onep (TREE_OPERAND (arg0, 1)))
7933 || (TREE_CODE (arg0) == PLUS_EXPR
7934 && integer_all_onesp (TREE_OPERAND (arg0, 1)))))
7935 return fold_build1 (NEGATE_EXPR, type, TREE_OPERAND (arg0, 0));
7936 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
7937 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7938 && (tem = fold_unary (BIT_NOT_EXPR, type,
7939 fold_convert (type,
7940 TREE_OPERAND (arg0, 0)))))
7941 return fold_build2 (BIT_XOR_EXPR, type, tem,
7942 fold_convert (type, TREE_OPERAND (arg0, 1)));
7943 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7944 && (tem = fold_unary (BIT_NOT_EXPR, type,
7945 fold_convert (type,
7946 TREE_OPERAND (arg0, 1)))))
7947 return fold_build2 (BIT_XOR_EXPR, type,
7948 fold_convert (type, TREE_OPERAND (arg0, 0)), tem);
7950 return NULL_TREE;
7952 case TRUTH_NOT_EXPR:
7953 /* The argument to invert_truthvalue must have Boolean type. */
7954 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
7955 arg0 = fold_convert (boolean_type_node, arg0);
7957 /* Note that the operand of this must be an int
7958 and its values must be 0 or 1.
7959 ("true" is a fixed value perhaps depending on the language,
7960 but we don't handle values other than 1 correctly yet.) */
7961 tem = fold_truth_not_expr (arg0);
7962 if (!tem)
7963 return NULL_TREE;
7964 return fold_convert (type, tem);
7966 case REALPART_EXPR:
7967 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
7968 return fold_convert (type, arg0);
7969 if (TREE_CODE (arg0) == COMPLEX_EXPR)
7970 return omit_one_operand (type, TREE_OPERAND (arg0, 0),
7971 TREE_OPERAND (arg0, 1));
7972 if (TREE_CODE (arg0) == COMPLEX_CST)
7973 return fold_convert (type, TREE_REALPART (arg0));
7974 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
7976 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7977 tem = fold_build2 (TREE_CODE (arg0), itype,
7978 fold_build1 (REALPART_EXPR, itype,
7979 TREE_OPERAND (arg0, 0)),
7980 fold_build1 (REALPART_EXPR, itype,
7981 TREE_OPERAND (arg0, 1)));
7982 return fold_convert (type, tem);
7984 if (TREE_CODE (arg0) == CONJ_EXPR)
7986 tree itype = TREE_TYPE (TREE_TYPE (arg0));
7987 tem = fold_build1 (REALPART_EXPR, itype, TREE_OPERAND (arg0, 0));
7988 return fold_convert (type, tem);
7990 if (TREE_CODE (arg0) == CALL_EXPR)
7992 tree fn = get_callee_fndecl (arg0);
7993 if (DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
7994 switch (DECL_FUNCTION_CODE (fn))
7996 CASE_FLT_FN (BUILT_IN_CEXPI):
7997 fn = mathfn_built_in (type, BUILT_IN_COS);
7998 if (fn)
7999 return build_call_expr (fn, 1, CALL_EXPR_ARG (arg0, 0));
8000 break;
8002 default:
8003 break;
8006 return NULL_TREE;
8008 case IMAGPART_EXPR:
8009 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8010 return fold_convert (type, integer_zero_node);
8011 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8012 return omit_one_operand (type, TREE_OPERAND (arg0, 1),
8013 TREE_OPERAND (arg0, 0));
8014 if (TREE_CODE (arg0) == COMPLEX_CST)
8015 return fold_convert (type, TREE_IMAGPART (arg0));
8016 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8018 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8019 tem = fold_build2 (TREE_CODE (arg0), itype,
8020 fold_build1 (IMAGPART_EXPR, itype,
8021 TREE_OPERAND (arg0, 0)),
8022 fold_build1 (IMAGPART_EXPR, itype,
8023 TREE_OPERAND (arg0, 1)));
8024 return fold_convert (type, tem);
8026 if (TREE_CODE (arg0) == CONJ_EXPR)
8028 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8029 tem = fold_build1 (IMAGPART_EXPR, itype, TREE_OPERAND (arg0, 0));
8030 return fold_convert (type, negate_expr (tem));
8032 if (TREE_CODE (arg0) == CALL_EXPR)
8034 tree fn = get_callee_fndecl (arg0);
8035 if (DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
8036 switch (DECL_FUNCTION_CODE (fn))
8038 CASE_FLT_FN (BUILT_IN_CEXPI):
8039 fn = mathfn_built_in (type, BUILT_IN_SIN);
8040 if (fn)
8041 return build_call_expr (fn, 1, CALL_EXPR_ARG (arg0, 0));
8042 break;
8044 default:
8045 break;
8048 return NULL_TREE;
8050 default:
8051 return NULL_TREE;
8052 } /* switch (code) */
8055 /* Fold a binary expression of code CODE and type TYPE with operands
8056 OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
8057 Return the folded expression if folding is successful. Otherwise,
8058 return NULL_TREE. */
8060 static tree
8061 fold_minmax (enum tree_code code, tree type, tree op0, tree op1)
8063 enum tree_code compl_code;
8065 if (code == MIN_EXPR)
8066 compl_code = MAX_EXPR;
8067 else if (code == MAX_EXPR)
8068 compl_code = MIN_EXPR;
8069 else
8070 gcc_unreachable ();
8072 /* MIN (MAX (a, b), b) == b. */
8073 if (TREE_CODE (op0) == compl_code
8074 && operand_equal_p (TREE_OPERAND (op0, 1), op1, 0))
8075 return omit_one_operand (type, op1, TREE_OPERAND (op0, 0));
8077 /* MIN (MAX (b, a), b) == b. */
8078 if (TREE_CODE (op0) == compl_code
8079 && operand_equal_p (TREE_OPERAND (op0, 0), op1, 0)
8080 && reorder_operands_p (TREE_OPERAND (op0, 1), op1))
8081 return omit_one_operand (type, op1, TREE_OPERAND (op0, 1));
8083 /* MIN (a, MAX (a, b)) == a. */
8084 if (TREE_CODE (op1) == compl_code
8085 && operand_equal_p (op0, TREE_OPERAND (op1, 0), 0)
8086 && reorder_operands_p (op0, TREE_OPERAND (op1, 1)))
8087 return omit_one_operand (type, op0, TREE_OPERAND (op1, 1));
8089 /* MIN (a, MAX (b, a)) == a. */
8090 if (TREE_CODE (op1) == compl_code
8091 && operand_equal_p (op0, TREE_OPERAND (op1, 1), 0)
8092 && reorder_operands_p (op0, TREE_OPERAND (op1, 0)))
8093 return omit_one_operand (type, op0, TREE_OPERAND (op1, 0));
8095 return NULL_TREE;
8098 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8099 by changing CODE to reduce the magnitude of constants involved in
8100 ARG0 of the comparison.
8101 Returns a canonicalized comparison tree if a simplification was
8102 possible, otherwise returns NULL_TREE.
8103 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8104 valid if signed overflow is undefined. */
8106 static tree
8107 maybe_canonicalize_comparison_1 (enum tree_code code, tree type,
8108 tree arg0, tree arg1,
8109 bool *strict_overflow_p)
8111 enum tree_code code0 = TREE_CODE (arg0);
8112 tree t, cst0 = NULL_TREE;
8113 int sgn0;
8114 bool swap = false;
8116 /* Match A +- CST code arg1 and CST code arg1. */
8117 if (!(((code0 == MINUS_EXPR
8118 || code0 == PLUS_EXPR)
8119 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8120 || code0 == INTEGER_CST))
8121 return NULL_TREE;
8123 /* Identify the constant in arg0 and its sign. */
8124 if (code0 == INTEGER_CST)
8125 cst0 = arg0;
8126 else
8127 cst0 = TREE_OPERAND (arg0, 1);
8128 sgn0 = tree_int_cst_sgn (cst0);
8130 /* Overflowed constants and zero will cause problems. */
8131 if (integer_zerop (cst0)
8132 || TREE_OVERFLOW (cst0))
8133 return NULL_TREE;
8135 /* See if we can reduce the magnitude of the constant in
8136 arg0 by changing the comparison code. */
8137 if (code0 == INTEGER_CST)
8139 /* CST <= arg1 -> CST-1 < arg1. */
8140 if (code == LE_EXPR && sgn0 == 1)
8141 code = LT_EXPR;
8142 /* -CST < arg1 -> -CST-1 <= arg1. */
8143 else if (code == LT_EXPR && sgn0 == -1)
8144 code = LE_EXPR;
8145 /* CST > arg1 -> CST-1 >= arg1. */
8146 else if (code == GT_EXPR && sgn0 == 1)
8147 code = GE_EXPR;
8148 /* -CST >= arg1 -> -CST-1 > arg1. */
8149 else if (code == GE_EXPR && sgn0 == -1)
8150 code = GT_EXPR;
8151 else
8152 return NULL_TREE;
8153 /* arg1 code' CST' might be more canonical. */
8154 swap = true;
8156 else
8158 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8159 if (code == LT_EXPR
8160 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8161 code = LE_EXPR;
8162 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8163 else if (code == GT_EXPR
8164 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8165 code = GE_EXPR;
8166 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8167 else if (code == LE_EXPR
8168 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8169 code = LT_EXPR;
8170 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8171 else if (code == GE_EXPR
8172 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8173 code = GT_EXPR;
8174 else
8175 return NULL_TREE;
8176 *strict_overflow_p = true;
8179 /* Now build the constant reduced in magnitude. */
8180 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8181 cst0, build_int_cst (TREE_TYPE (cst0), 1), 0);
8182 if (code0 != INTEGER_CST)
8183 t = fold_build2 (code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8185 /* If swapping might yield to a more canonical form, do so. */
8186 if (swap)
8187 return fold_build2 (swap_tree_comparison (code), type, arg1, t);
8188 else
8189 return fold_build2 (code, type, t, arg1);
8192 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8193 overflow further. Try to decrease the magnitude of constants involved
8194 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8195 and put sole constants at the second argument position.
8196 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8198 static tree
8199 maybe_canonicalize_comparison (enum tree_code code, tree type,
8200 tree arg0, tree arg1)
8202 tree t;
8203 bool strict_overflow_p;
8204 const char * const warnmsg = G_("assuming signed overflow does not occur "
8205 "when reducing constant in comparison");
8207 /* In principle pointers also have undefined overflow behavior,
8208 but that causes problems elsewhere. */
8209 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8210 || POINTER_TYPE_P (TREE_TYPE (arg0)))
8211 return NULL_TREE;
8213 /* Try canonicalization by simplifying arg0. */
8214 strict_overflow_p = false;
8215 t = maybe_canonicalize_comparison_1 (code, type, arg0, arg1,
8216 &strict_overflow_p);
8217 if (t)
8219 if (strict_overflow_p)
8220 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8221 return t;
8224 /* Try canonicalization by simplifying arg1 using the swapped
8225 comparison. */
8226 code = swap_tree_comparison (code);
8227 strict_overflow_p = false;
8228 t = maybe_canonicalize_comparison_1 (code, type, arg1, arg0,
8229 &strict_overflow_p);
8230 if (t && strict_overflow_p)
8231 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8232 return t;
8235 /* Subroutine of fold_binary. This routine performs all of the
8236 transformations that are common to the equality/inequality
8237 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8238 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8239 fold_binary should call fold_binary. Fold a comparison with
8240 tree code CODE and type TYPE with operands OP0 and OP1. Return
8241 the folded comparison or NULL_TREE. */
8243 static tree
8244 fold_comparison (enum tree_code code, tree type, tree op0, tree op1)
8246 tree arg0, arg1, tem;
8248 arg0 = op0;
8249 arg1 = op1;
8251 STRIP_SIGN_NOPS (arg0);
8252 STRIP_SIGN_NOPS (arg1);
8254 tem = fold_relational_const (code, type, arg0, arg1);
8255 if (tem != NULL_TREE)
8256 return tem;
8258 /* If one arg is a real or integer constant, put it last. */
8259 if (tree_swap_operands_p (arg0, arg1, true))
8260 return fold_build2 (swap_tree_comparison (code), type, op1, op0);
8262 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 +- C1. */
8263 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8264 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8265 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8266 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
8267 && (TREE_CODE (arg1) == INTEGER_CST
8268 && !TREE_OVERFLOW (arg1)))
8270 tree const1 = TREE_OPERAND (arg0, 1);
8271 tree const2 = arg1;
8272 tree variable = TREE_OPERAND (arg0, 0);
8273 tree lhs;
8274 int lhs_add;
8275 lhs_add = TREE_CODE (arg0) != PLUS_EXPR;
8277 lhs = fold_build2 (lhs_add ? PLUS_EXPR : MINUS_EXPR,
8278 TREE_TYPE (arg1), const2, const1);
8280 /* If the constant operation overflowed this can be
8281 simplified as a comparison against INT_MAX/INT_MIN. */
8282 if (TREE_CODE (lhs) == INTEGER_CST
8283 && TREE_OVERFLOW (lhs))
8285 int const1_sgn = tree_int_cst_sgn (const1);
8286 enum tree_code code2 = code;
8288 /* Get the sign of the constant on the lhs if the
8289 operation were VARIABLE + CONST1. */
8290 if (TREE_CODE (arg0) == MINUS_EXPR)
8291 const1_sgn = -const1_sgn;
8293 /* The sign of the constant determines if we overflowed
8294 INT_MAX (const1_sgn == -1) or INT_MIN (const1_sgn == 1).
8295 Canonicalize to the INT_MIN overflow by swapping the comparison
8296 if necessary. */
8297 if (const1_sgn == -1)
8298 code2 = swap_tree_comparison (code);
8300 /* We now can look at the canonicalized case
8301 VARIABLE + 1 CODE2 INT_MIN
8302 and decide on the result. */
8303 if (code2 == LT_EXPR
8304 || code2 == LE_EXPR
8305 || code2 == EQ_EXPR)
8306 return omit_one_operand (type, boolean_false_node, variable);
8307 else if (code2 == NE_EXPR
8308 || code2 == GE_EXPR
8309 || code2 == GT_EXPR)
8310 return omit_one_operand (type, boolean_true_node, variable);
8313 if (TREE_CODE (lhs) == TREE_CODE (arg1)
8314 && (TREE_CODE (lhs) != INTEGER_CST
8315 || !TREE_OVERFLOW (lhs)))
8317 fold_overflow_warning (("assuming signed overflow does not occur "
8318 "when changing X +- C1 cmp C2 to "
8319 "X cmp C1 +- C2"),
8320 WARN_STRICT_OVERFLOW_COMPARISON);
8321 return fold_build2 (code, type, variable, lhs);
8325 /* For comparisons of pointers we can decompose it to a compile time
8326 comparison of the base objects and the offsets into the object.
8327 This requires at least one operand being an ADDR_EXPR to do more
8328 than the operand_equal_p test below. */
8329 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8330 && (TREE_CODE (arg0) == ADDR_EXPR
8331 || TREE_CODE (arg1) == ADDR_EXPR))
8333 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8334 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8335 enum machine_mode mode;
8336 int volatilep, unsignedp;
8337 bool indirect_base0 = false;
8339 /* Get base and offset for the access. Strip ADDR_EXPR for
8340 get_inner_reference, but put it back by stripping INDIRECT_REF
8341 off the base object if possible. */
8342 base0 = arg0;
8343 if (TREE_CODE (arg0) == ADDR_EXPR)
8345 base0 = get_inner_reference (TREE_OPERAND (arg0, 0),
8346 &bitsize, &bitpos0, &offset0, &mode,
8347 &unsignedp, &volatilep, false);
8348 if (TREE_CODE (base0) == INDIRECT_REF)
8349 base0 = TREE_OPERAND (base0, 0);
8350 else
8351 indirect_base0 = true;
8354 base1 = arg1;
8355 if (TREE_CODE (arg1) == ADDR_EXPR)
8357 base1 = get_inner_reference (TREE_OPERAND (arg1, 0),
8358 &bitsize, &bitpos1, &offset1, &mode,
8359 &unsignedp, &volatilep, false);
8360 /* We have to make sure to have an indirect/non-indirect base1
8361 just the same as we did for base0. */
8362 if (TREE_CODE (base1) == INDIRECT_REF
8363 && !indirect_base0)
8364 base1 = TREE_OPERAND (base1, 0);
8365 else if (!indirect_base0)
8366 base1 = NULL_TREE;
8368 else if (indirect_base0)
8369 base1 = NULL_TREE;
8371 /* If we have equivalent bases we might be able to simplify. */
8372 if (base0 && base1
8373 && operand_equal_p (base0, base1, 0))
8375 /* We can fold this expression to a constant if the non-constant
8376 offset parts are equal. */
8377 if (offset0 == offset1
8378 || (offset0 && offset1
8379 && operand_equal_p (offset0, offset1, 0)))
8381 switch (code)
8383 case EQ_EXPR:
8384 return build_int_cst (boolean_type_node, bitpos0 == bitpos1);
8385 case NE_EXPR:
8386 return build_int_cst (boolean_type_node, bitpos0 != bitpos1);
8387 case LT_EXPR:
8388 return build_int_cst (boolean_type_node, bitpos0 < bitpos1);
8389 case LE_EXPR:
8390 return build_int_cst (boolean_type_node, bitpos0 <= bitpos1);
8391 case GE_EXPR:
8392 return build_int_cst (boolean_type_node, bitpos0 >= bitpos1);
8393 case GT_EXPR:
8394 return build_int_cst (boolean_type_node, bitpos0 > bitpos1);
8395 default:;
8398 /* We can simplify the comparison to a comparison of the variable
8399 offset parts if the constant offset parts are equal.
8400 Be careful to use signed size type here because otherwise we
8401 mess with array offsets in the wrong way. This is possible
8402 because pointer arithmetic is restricted to retain within an
8403 object and overflow on pointer differences is undefined as of
8404 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8405 else if (bitpos0 == bitpos1)
8407 tree signed_size_type_node;
8408 signed_size_type_node = signed_type_for (size_type_node);
8410 /* By converting to signed size type we cover middle-end pointer
8411 arithmetic which operates on unsigned pointer types of size
8412 type size and ARRAY_REF offsets which are properly sign or
8413 zero extended from their type in case it is narrower than
8414 size type. */
8415 if (offset0 == NULL_TREE)
8416 offset0 = build_int_cst (signed_size_type_node, 0);
8417 else
8418 offset0 = fold_convert (signed_size_type_node, offset0);
8419 if (offset1 == NULL_TREE)
8420 offset1 = build_int_cst (signed_size_type_node, 0);
8421 else
8422 offset1 = fold_convert (signed_size_type_node, offset1);
8424 return fold_build2 (code, type, offset0, offset1);
8429 /* If this is a comparison of two exprs that look like an ARRAY_REF of the
8430 same object, then we can fold this to a comparison of the two offsets in
8431 signed size type. This is possible because pointer arithmetic is
8432 restricted to retain within an object and overflow on pointer differences
8433 is undefined as of 6.5.6/8 and /9 with respect to the signed ptrdiff_t.
8435 We check flag_wrapv directly because pointers types are unsigned,
8436 and therefore TYPE_OVERFLOW_WRAPS returns true for them. That is
8437 normally what we want to avoid certain odd overflow cases, but
8438 not here. */
8439 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8440 && !flag_wrapv
8441 && !TYPE_OVERFLOW_TRAPS (TREE_TYPE (arg0)))
8443 tree base0, offset0, base1, offset1;
8445 if (extract_array_ref (arg0, &base0, &offset0)
8446 && extract_array_ref (arg1, &base1, &offset1)
8447 && operand_equal_p (base0, base1, 0))
8449 tree signed_size_type_node;
8450 signed_size_type_node = signed_type_for (size_type_node);
8452 /* By converting to signed size type we cover middle-end pointer
8453 arithmetic which operates on unsigned pointer types of size
8454 type size and ARRAY_REF offsets which are properly sign or
8455 zero extended from their type in case it is narrower than
8456 size type. */
8457 if (offset0 == NULL_TREE)
8458 offset0 = build_int_cst (signed_size_type_node, 0);
8459 else
8460 offset0 = fold_convert (signed_size_type_node, offset0);
8461 if (offset1 == NULL_TREE)
8462 offset1 = build_int_cst (signed_size_type_node, 0);
8463 else
8464 offset1 = fold_convert (signed_size_type_node, offset1);
8466 return fold_build2 (code, type, offset0, offset1);
8470 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8471 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8472 the resulting offset is smaller in absolute value than the
8473 original one. */
8474 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8475 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8476 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8477 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8478 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
8479 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8480 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
8482 tree const1 = TREE_OPERAND (arg0, 1);
8483 tree const2 = TREE_OPERAND (arg1, 1);
8484 tree variable1 = TREE_OPERAND (arg0, 0);
8485 tree variable2 = TREE_OPERAND (arg1, 0);
8486 tree cst;
8487 const char * const warnmsg = G_("assuming signed overflow does not "
8488 "occur when combining constants around "
8489 "a comparison");
8491 /* Put the constant on the side where it doesn't overflow and is
8492 of lower absolute value than before. */
8493 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8494 ? MINUS_EXPR : PLUS_EXPR,
8495 const2, const1, 0);
8496 if (!TREE_OVERFLOW (cst)
8497 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2))
8499 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8500 return fold_build2 (code, type,
8501 variable1,
8502 fold_build2 (TREE_CODE (arg1), TREE_TYPE (arg1),
8503 variable2, cst));
8506 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8507 ? MINUS_EXPR : PLUS_EXPR,
8508 const1, const2, 0);
8509 if (!TREE_OVERFLOW (cst)
8510 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1))
8512 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8513 return fold_build2 (code, type,
8514 fold_build2 (TREE_CODE (arg0), TREE_TYPE (arg0),
8515 variable1, cst),
8516 variable2);
8520 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
8521 signed arithmetic case. That form is created by the compiler
8522 often enough for folding it to be of value. One example is in
8523 computing loop trip counts after Operator Strength Reduction. */
8524 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8525 && TREE_CODE (arg0) == MULT_EXPR
8526 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8527 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8528 && integer_zerop (arg1))
8530 tree const1 = TREE_OPERAND (arg0, 1);
8531 tree const2 = arg1; /* zero */
8532 tree variable1 = TREE_OPERAND (arg0, 0);
8533 enum tree_code cmp_code = code;
8535 gcc_assert (!integer_zerop (const1));
8537 fold_overflow_warning (("assuming signed overflow does not occur when "
8538 "eliminating multiplication in comparison "
8539 "with zero"),
8540 WARN_STRICT_OVERFLOW_COMPARISON);
8542 /* If const1 is negative we swap the sense of the comparison. */
8543 if (tree_int_cst_sgn (const1) < 0)
8544 cmp_code = swap_tree_comparison (cmp_code);
8546 return fold_build2 (cmp_code, type, variable1, const2);
8549 tem = maybe_canonicalize_comparison (code, type, arg0, arg1);
8550 if (tem)
8551 return tem;
8553 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
8555 tree targ0 = strip_float_extensions (arg0);
8556 tree targ1 = strip_float_extensions (arg1);
8557 tree newtype = TREE_TYPE (targ0);
8559 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
8560 newtype = TREE_TYPE (targ1);
8562 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
8563 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
8564 return fold_build2 (code, type, fold_convert (newtype, targ0),
8565 fold_convert (newtype, targ1));
8567 /* (-a) CMP (-b) -> b CMP a */
8568 if (TREE_CODE (arg0) == NEGATE_EXPR
8569 && TREE_CODE (arg1) == NEGATE_EXPR)
8570 return fold_build2 (code, type, TREE_OPERAND (arg1, 0),
8571 TREE_OPERAND (arg0, 0));
8573 if (TREE_CODE (arg1) == REAL_CST)
8575 REAL_VALUE_TYPE cst;
8576 cst = TREE_REAL_CST (arg1);
8578 /* (-a) CMP CST -> a swap(CMP) (-CST) */
8579 if (TREE_CODE (arg0) == NEGATE_EXPR)
8580 return fold_build2 (swap_tree_comparison (code), type,
8581 TREE_OPERAND (arg0, 0),
8582 build_real (TREE_TYPE (arg1),
8583 REAL_VALUE_NEGATE (cst)));
8585 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
8586 /* a CMP (-0) -> a CMP 0 */
8587 if (REAL_VALUE_MINUS_ZERO (cst))
8588 return fold_build2 (code, type, arg0,
8589 build_real (TREE_TYPE (arg1), dconst0));
8591 /* x != NaN is always true, other ops are always false. */
8592 if (REAL_VALUE_ISNAN (cst)
8593 && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))))
8595 tem = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
8596 return omit_one_operand (type, tem, arg0);
8599 /* Fold comparisons against infinity. */
8600 if (REAL_VALUE_ISINF (cst))
8602 tem = fold_inf_compare (code, type, arg0, arg1);
8603 if (tem != NULL_TREE)
8604 return tem;
8608 /* If this is a comparison of a real constant with a PLUS_EXPR
8609 or a MINUS_EXPR of a real constant, we can convert it into a
8610 comparison with a revised real constant as long as no overflow
8611 occurs when unsafe_math_optimizations are enabled. */
8612 if (flag_unsafe_math_optimizations
8613 && TREE_CODE (arg1) == REAL_CST
8614 && (TREE_CODE (arg0) == PLUS_EXPR
8615 || TREE_CODE (arg0) == MINUS_EXPR)
8616 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
8617 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
8618 ? MINUS_EXPR : PLUS_EXPR,
8619 arg1, TREE_OPERAND (arg0, 1), 0))
8620 && !TREE_OVERFLOW (tem))
8621 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
8623 /* Likewise, we can simplify a comparison of a real constant with
8624 a MINUS_EXPR whose first operand is also a real constant, i.e.
8625 (c1 - x) < c2 becomes x > c1-c2. */
8626 if (flag_unsafe_math_optimizations
8627 && TREE_CODE (arg1) == REAL_CST
8628 && TREE_CODE (arg0) == MINUS_EXPR
8629 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST
8630 && 0 != (tem = const_binop (MINUS_EXPR, TREE_OPERAND (arg0, 0),
8631 arg1, 0))
8632 && !TREE_OVERFLOW (tem))
8633 return fold_build2 (swap_tree_comparison (code), type,
8634 TREE_OPERAND (arg0, 1), tem);
8636 /* Fold comparisons against built-in math functions. */
8637 if (TREE_CODE (arg1) == REAL_CST
8638 && flag_unsafe_math_optimizations
8639 && ! flag_errno_math)
8641 enum built_in_function fcode = builtin_mathfn_code (arg0);
8643 if (fcode != END_BUILTINS)
8645 tem = fold_mathfn_compare (fcode, code, type, arg0, arg1);
8646 if (tem != NULL_TREE)
8647 return tem;
8652 /* Convert foo++ == CONST into ++foo == CONST + INCR. */
8653 if (TREE_CONSTANT (arg1)
8654 && (TREE_CODE (arg0) == POSTINCREMENT_EXPR
8655 || TREE_CODE (arg0) == POSTDECREMENT_EXPR)
8656 /* This optimization is invalid for ordered comparisons
8657 if CONST+INCR overflows or if foo+incr might overflow.
8658 This optimization is invalid for floating point due to rounding.
8659 For pointer types we assume overflow doesn't happen. */
8660 && (POINTER_TYPE_P (TREE_TYPE (arg0))
8661 || (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8662 && (code == EQ_EXPR || code == NE_EXPR))))
8664 tree varop, newconst;
8666 if (TREE_CODE (arg0) == POSTINCREMENT_EXPR)
8668 newconst = fold_build2 (PLUS_EXPR, TREE_TYPE (arg0),
8669 arg1, TREE_OPERAND (arg0, 1));
8670 varop = build2 (PREINCREMENT_EXPR, TREE_TYPE (arg0),
8671 TREE_OPERAND (arg0, 0),
8672 TREE_OPERAND (arg0, 1));
8674 else
8676 newconst = fold_build2 (MINUS_EXPR, TREE_TYPE (arg0),
8677 arg1, TREE_OPERAND (arg0, 1));
8678 varop = build2 (PREDECREMENT_EXPR, TREE_TYPE (arg0),
8679 TREE_OPERAND (arg0, 0),
8680 TREE_OPERAND (arg0, 1));
8684 /* If VAROP is a reference to a bitfield, we must mask
8685 the constant by the width of the field. */
8686 if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
8687 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (varop, 0), 1))
8688 && host_integerp (DECL_SIZE (TREE_OPERAND
8689 (TREE_OPERAND (varop, 0), 1)), 1))
8691 tree fielddecl = TREE_OPERAND (TREE_OPERAND (varop, 0), 1);
8692 HOST_WIDE_INT size = tree_low_cst (DECL_SIZE (fielddecl), 1);
8693 tree folded_compare, shift;
8695 /* First check whether the comparison would come out
8696 always the same. If we don't do that we would
8697 change the meaning with the masking. */
8698 folded_compare = fold_build2 (code, type,
8699 TREE_OPERAND (varop, 0), arg1);
8700 if (TREE_CODE (folded_compare) == INTEGER_CST)
8701 return omit_one_operand (type, folded_compare, varop);
8703 shift = build_int_cst (NULL_TREE,
8704 TYPE_PRECISION (TREE_TYPE (varop)) - size);
8705 shift = fold_convert (TREE_TYPE (varop), shift);
8706 newconst = fold_build2 (LSHIFT_EXPR, TREE_TYPE (varop),
8707 newconst, shift);
8708 newconst = fold_build2 (RSHIFT_EXPR, TREE_TYPE (varop),
8709 newconst, shift);
8712 return fold_build2 (code, type, varop, newconst);
8715 if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
8716 && (TREE_CODE (arg0) == NOP_EXPR
8717 || TREE_CODE (arg0) == CONVERT_EXPR))
8719 /* If we are widening one operand of an integer comparison,
8720 see if the other operand is similarly being widened. Perhaps we
8721 can do the comparison in the narrower type. */
8722 tem = fold_widened_comparison (code, type, arg0, arg1);
8723 if (tem)
8724 return tem;
8726 /* Or if we are changing signedness. */
8727 tem = fold_sign_changed_comparison (code, type, arg0, arg1);
8728 if (tem)
8729 return tem;
8732 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
8733 constant, we can simplify it. */
8734 if (TREE_CODE (arg1) == INTEGER_CST
8735 && (TREE_CODE (arg0) == MIN_EXPR
8736 || TREE_CODE (arg0) == MAX_EXPR)
8737 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8739 tem = optimize_minmax_comparison (code, type, op0, op1);
8740 if (tem)
8741 return tem;
8744 /* Simplify comparison of something with itself. (For IEEE
8745 floating-point, we can only do some of these simplifications.) */
8746 if (operand_equal_p (arg0, arg1, 0))
8748 switch (code)
8750 case EQ_EXPR:
8751 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
8752 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
8753 return constant_boolean_node (1, type);
8754 break;
8756 case GE_EXPR:
8757 case LE_EXPR:
8758 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
8759 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
8760 return constant_boolean_node (1, type);
8761 return fold_build2 (EQ_EXPR, type, arg0, arg1);
8763 case NE_EXPR:
8764 /* For NE, we can only do this simplification if integer
8765 or we don't honor IEEE floating point NaNs. */
8766 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
8767 && HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
8768 break;
8769 /* ... fall through ... */
8770 case GT_EXPR:
8771 case LT_EXPR:
8772 return constant_boolean_node (0, type);
8773 default:
8774 gcc_unreachable ();
8778 /* If we are comparing an expression that just has comparisons
8779 of two integer values, arithmetic expressions of those comparisons,
8780 and constants, we can simplify it. There are only three cases
8781 to check: the two values can either be equal, the first can be
8782 greater, or the second can be greater. Fold the expression for
8783 those three values. Since each value must be 0 or 1, we have
8784 eight possibilities, each of which corresponds to the constant 0
8785 or 1 or one of the six possible comparisons.
8787 This handles common cases like (a > b) == 0 but also handles
8788 expressions like ((x > y) - (y > x)) > 0, which supposedly
8789 occur in macroized code. */
8791 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
8793 tree cval1 = 0, cval2 = 0;
8794 int save_p = 0;
8796 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
8797 /* Don't handle degenerate cases here; they should already
8798 have been handled anyway. */
8799 && cval1 != 0 && cval2 != 0
8800 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
8801 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
8802 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
8803 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
8804 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
8805 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
8806 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
8808 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
8809 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
8811 /* We can't just pass T to eval_subst in case cval1 or cval2
8812 was the same as ARG1. */
8814 tree high_result
8815 = fold_build2 (code, type,
8816 eval_subst (arg0, cval1, maxval,
8817 cval2, minval),
8818 arg1);
8819 tree equal_result
8820 = fold_build2 (code, type,
8821 eval_subst (arg0, cval1, maxval,
8822 cval2, maxval),
8823 arg1);
8824 tree low_result
8825 = fold_build2 (code, type,
8826 eval_subst (arg0, cval1, minval,
8827 cval2, maxval),
8828 arg1);
8830 /* All three of these results should be 0 or 1. Confirm they are.
8831 Then use those values to select the proper code to use. */
8833 if (TREE_CODE (high_result) == INTEGER_CST
8834 && TREE_CODE (equal_result) == INTEGER_CST
8835 && TREE_CODE (low_result) == INTEGER_CST)
8837 /* Make a 3-bit mask with the high-order bit being the
8838 value for `>', the next for '=', and the low for '<'. */
8839 switch ((integer_onep (high_result) * 4)
8840 + (integer_onep (equal_result) * 2)
8841 + integer_onep (low_result))
8843 case 0:
8844 /* Always false. */
8845 return omit_one_operand (type, integer_zero_node, arg0);
8846 case 1:
8847 code = LT_EXPR;
8848 break;
8849 case 2:
8850 code = EQ_EXPR;
8851 break;
8852 case 3:
8853 code = LE_EXPR;
8854 break;
8855 case 4:
8856 code = GT_EXPR;
8857 break;
8858 case 5:
8859 code = NE_EXPR;
8860 break;
8861 case 6:
8862 code = GE_EXPR;
8863 break;
8864 case 7:
8865 /* Always true. */
8866 return omit_one_operand (type, integer_one_node, arg0);
8869 if (save_p)
8870 return save_expr (build2 (code, type, cval1, cval2));
8871 return fold_build2 (code, type, cval1, cval2);
8876 /* Fold a comparison of the address of COMPONENT_REFs with the same
8877 type and component to a comparison of the address of the base
8878 object. In short, &x->a OP &y->a to x OP y and
8879 &x->a OP &y.a to x OP &y */
8880 if (TREE_CODE (arg0) == ADDR_EXPR
8881 && TREE_CODE (TREE_OPERAND (arg0, 0)) == COMPONENT_REF
8882 && TREE_CODE (arg1) == ADDR_EXPR
8883 && TREE_CODE (TREE_OPERAND (arg1, 0)) == COMPONENT_REF)
8885 tree cref0 = TREE_OPERAND (arg0, 0);
8886 tree cref1 = TREE_OPERAND (arg1, 0);
8887 if (TREE_OPERAND (cref0, 1) == TREE_OPERAND (cref1, 1))
8889 tree op0 = TREE_OPERAND (cref0, 0);
8890 tree op1 = TREE_OPERAND (cref1, 0);
8891 return fold_build2 (code, type,
8892 build_fold_addr_expr (op0),
8893 build_fold_addr_expr (op1));
8897 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
8898 into a single range test. */
8899 if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
8900 || TREE_CODE (arg0) == EXACT_DIV_EXPR)
8901 && TREE_CODE (arg1) == INTEGER_CST
8902 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8903 && !integer_zerop (TREE_OPERAND (arg0, 1))
8904 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8905 && !TREE_OVERFLOW (arg1))
8907 tem = fold_div_compare (code, type, arg0, arg1);
8908 if (tem != NULL_TREE)
8909 return tem;
8912 /* Fold ~X op ~Y as Y op X. */
8913 if (TREE_CODE (arg0) == BIT_NOT_EXPR
8914 && TREE_CODE (arg1) == BIT_NOT_EXPR)
8916 tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
8917 return fold_build2 (code, type,
8918 fold_convert (cmp_type, TREE_OPERAND (arg1, 0)),
8919 TREE_OPERAND (arg0, 0));
8922 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
8923 if (TREE_CODE (arg0) == BIT_NOT_EXPR
8924 && TREE_CODE (arg1) == INTEGER_CST)
8926 tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
8927 return fold_build2 (swap_tree_comparison (code), type,
8928 TREE_OPERAND (arg0, 0),
8929 fold_build1 (BIT_NOT_EXPR, cmp_type,
8930 fold_convert (cmp_type, arg1)));
8933 return NULL_TREE;
8937 /* Subroutine of fold_binary. Optimize complex multiplications of the
8938 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8939 argument EXPR represents the expression "z" of type TYPE. */
8941 static tree
8942 fold_mult_zconjz (tree type, tree expr)
8944 tree itype = TREE_TYPE (type);
8945 tree rpart, ipart, tem;
8947 if (TREE_CODE (expr) == COMPLEX_EXPR)
8949 rpart = TREE_OPERAND (expr, 0);
8950 ipart = TREE_OPERAND (expr, 1);
8952 else if (TREE_CODE (expr) == COMPLEX_CST)
8954 rpart = TREE_REALPART (expr);
8955 ipart = TREE_IMAGPART (expr);
8957 else
8959 expr = save_expr (expr);
8960 rpart = fold_build1 (REALPART_EXPR, itype, expr);
8961 ipart = fold_build1 (IMAGPART_EXPR, itype, expr);
8964 rpart = save_expr (rpart);
8965 ipart = save_expr (ipart);
8966 tem = fold_build2 (PLUS_EXPR, itype,
8967 fold_build2 (MULT_EXPR, itype, rpart, rpart),
8968 fold_build2 (MULT_EXPR, itype, ipart, ipart));
8969 return fold_build2 (COMPLEX_EXPR, type, tem,
8970 fold_convert (itype, integer_zero_node));
8974 /* Fold a binary expression of code CODE and type TYPE with operands
8975 OP0 and OP1. Return the folded expression if folding is
8976 successful. Otherwise, return NULL_TREE. */
8978 tree
8979 fold_binary (enum tree_code code, tree type, tree op0, tree op1)
8981 enum tree_code_class kind = TREE_CODE_CLASS (code);
8982 tree arg0, arg1, tem;
8983 tree t1 = NULL_TREE;
8984 bool strict_overflow_p;
8986 gcc_assert ((IS_EXPR_CODE_CLASS (kind)
8987 || IS_GIMPLE_STMT_CODE_CLASS (kind))
8988 && TREE_CODE_LENGTH (code) == 2
8989 && op0 != NULL_TREE
8990 && op1 != NULL_TREE);
8992 arg0 = op0;
8993 arg1 = op1;
8995 /* Strip any conversions that don't change the mode. This is
8996 safe for every expression, except for a comparison expression
8997 because its signedness is derived from its operands. So, in
8998 the latter case, only strip conversions that don't change the
8999 signedness.
9001 Note that this is done as an internal manipulation within the
9002 constant folder, in order to find the simplest representation
9003 of the arguments so that their form can be studied. In any
9004 cases, the appropriate type conversions should be put back in
9005 the tree that will get out of the constant folder. */
9007 if (kind == tcc_comparison)
9009 STRIP_SIGN_NOPS (arg0);
9010 STRIP_SIGN_NOPS (arg1);
9012 else
9014 STRIP_NOPS (arg0);
9015 STRIP_NOPS (arg1);
9018 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9019 constant but we can't do arithmetic on them. */
9020 if ((TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
9021 || (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
9022 || (TREE_CODE (arg0) == COMPLEX_CST && TREE_CODE (arg1) == COMPLEX_CST)
9023 || (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST))
9025 if (kind == tcc_binary)
9026 tem = const_binop (code, arg0, arg1, 0);
9027 else if (kind == tcc_comparison)
9028 tem = fold_relational_const (code, type, arg0, arg1);
9029 else
9030 tem = NULL_TREE;
9032 if (tem != NULL_TREE)
9034 if (TREE_TYPE (tem) != type)
9035 tem = fold_convert (type, tem);
9036 return tem;
9040 /* If this is a commutative operation, and ARG0 is a constant, move it
9041 to ARG1 to reduce the number of tests below. */
9042 if (commutative_tree_code (code)
9043 && tree_swap_operands_p (arg0, arg1, true))
9044 return fold_build2 (code, type, op1, op0);
9046 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9048 First check for cases where an arithmetic operation is applied to a
9049 compound, conditional, or comparison operation. Push the arithmetic
9050 operation inside the compound or conditional to see if any folding
9051 can then be done. Convert comparison to conditional for this purpose.
9052 The also optimizes non-constant cases that used to be done in
9053 expand_expr.
9055 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9056 one of the operands is a comparison and the other is a comparison, a
9057 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9058 code below would make the expression more complex. Change it to a
9059 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9060 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9062 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9063 || code == EQ_EXPR || code == NE_EXPR)
9064 && ((truth_value_p (TREE_CODE (arg0))
9065 && (truth_value_p (TREE_CODE (arg1))
9066 || (TREE_CODE (arg1) == BIT_AND_EXPR
9067 && integer_onep (TREE_OPERAND (arg1, 1)))))
9068 || (truth_value_p (TREE_CODE (arg1))
9069 && (truth_value_p (TREE_CODE (arg0))
9070 || (TREE_CODE (arg0) == BIT_AND_EXPR
9071 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9073 tem = fold_build2 (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9074 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9075 : TRUTH_XOR_EXPR,
9076 boolean_type_node,
9077 fold_convert (boolean_type_node, arg0),
9078 fold_convert (boolean_type_node, arg1));
9080 if (code == EQ_EXPR)
9081 tem = invert_truthvalue (tem);
9083 return fold_convert (type, tem);
9086 if (TREE_CODE_CLASS (code) == tcc_binary
9087 || TREE_CODE_CLASS (code) == tcc_comparison)
9089 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9090 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9091 fold_build2 (code, type,
9092 TREE_OPERAND (arg0, 1), op1));
9093 if (TREE_CODE (arg1) == COMPOUND_EXPR
9094 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9095 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9096 fold_build2 (code, type,
9097 op0, TREE_OPERAND (arg1, 1)));
9099 if (TREE_CODE (arg0) == COND_EXPR || COMPARISON_CLASS_P (arg0))
9101 tem = fold_binary_op_with_conditional_arg (code, type, op0, op1,
9102 arg0, arg1,
9103 /*cond_first_p=*/1);
9104 if (tem != NULL_TREE)
9105 return tem;
9108 if (TREE_CODE (arg1) == COND_EXPR || COMPARISON_CLASS_P (arg1))
9110 tem = fold_binary_op_with_conditional_arg (code, type, op0, op1,
9111 arg1, arg0,
9112 /*cond_first_p=*/0);
9113 if (tem != NULL_TREE)
9114 return tem;
9118 switch (code)
9120 case PLUS_EXPR:
9121 /* A + (-B) -> A - B */
9122 if (TREE_CODE (arg1) == NEGATE_EXPR)
9123 return fold_build2 (MINUS_EXPR, type,
9124 fold_convert (type, arg0),
9125 fold_convert (type, TREE_OPERAND (arg1, 0)));
9126 /* (-A) + B -> B - A */
9127 if (TREE_CODE (arg0) == NEGATE_EXPR
9128 && reorder_operands_p (TREE_OPERAND (arg0, 0), arg1))
9129 return fold_build2 (MINUS_EXPR, type,
9130 fold_convert (type, arg1),
9131 fold_convert (type, TREE_OPERAND (arg0, 0)));
9132 /* Convert ~A + 1 to -A. */
9133 if (INTEGRAL_TYPE_P (type)
9134 && TREE_CODE (arg0) == BIT_NOT_EXPR
9135 && integer_onep (arg1))
9136 return fold_build1 (NEGATE_EXPR, type, TREE_OPERAND (arg0, 0));
9138 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the
9139 same or one. */
9140 if ((TREE_CODE (arg0) == MULT_EXPR
9141 || TREE_CODE (arg1) == MULT_EXPR)
9142 && (!FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
9144 tree tem = fold_plusminus_mult_expr (code, type, arg0, arg1);
9145 if (tem)
9146 return tem;
9149 if (! FLOAT_TYPE_P (type))
9151 if (integer_zerop (arg1))
9152 return non_lvalue (fold_convert (type, arg0));
9154 /* ~X + X is -1. */
9155 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9156 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
9157 && !TYPE_OVERFLOW_TRAPS (type))
9159 t1 = build_int_cst_type (type, -1);
9160 return omit_one_operand (type, t1, arg1);
9163 /* X + ~X is -1. */
9164 if (TREE_CODE (arg1) == BIT_NOT_EXPR
9165 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
9166 && !TYPE_OVERFLOW_TRAPS (type))
9168 t1 = build_int_cst_type (type, -1);
9169 return omit_one_operand (type, t1, arg0);
9172 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
9173 with a constant, and the two constants have no bits in common,
9174 we should treat this as a BIT_IOR_EXPR since this may produce more
9175 simplifications. */
9176 if (TREE_CODE (arg0) == BIT_AND_EXPR
9177 && TREE_CODE (arg1) == BIT_AND_EXPR
9178 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9179 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
9180 && integer_zerop (const_binop (BIT_AND_EXPR,
9181 TREE_OPERAND (arg0, 1),
9182 TREE_OPERAND (arg1, 1), 0)))
9184 code = BIT_IOR_EXPR;
9185 goto bit_ior;
9188 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9189 (plus (plus (mult) (mult)) (foo)) so that we can
9190 take advantage of the factoring cases below. */
9191 if (((TREE_CODE (arg0) == PLUS_EXPR
9192 || TREE_CODE (arg0) == MINUS_EXPR)
9193 && TREE_CODE (arg1) == MULT_EXPR)
9194 || ((TREE_CODE (arg1) == PLUS_EXPR
9195 || TREE_CODE (arg1) == MINUS_EXPR)
9196 && TREE_CODE (arg0) == MULT_EXPR))
9198 tree parg0, parg1, parg, marg;
9199 enum tree_code pcode;
9201 if (TREE_CODE (arg1) == MULT_EXPR)
9202 parg = arg0, marg = arg1;
9203 else
9204 parg = arg1, marg = arg0;
9205 pcode = TREE_CODE (parg);
9206 parg0 = TREE_OPERAND (parg, 0);
9207 parg1 = TREE_OPERAND (parg, 1);
9208 STRIP_NOPS (parg0);
9209 STRIP_NOPS (parg1);
9211 if (TREE_CODE (parg0) == MULT_EXPR
9212 && TREE_CODE (parg1) != MULT_EXPR)
9213 return fold_build2 (pcode, type,
9214 fold_build2 (PLUS_EXPR, type,
9215 fold_convert (type, parg0),
9216 fold_convert (type, marg)),
9217 fold_convert (type, parg1));
9218 if (TREE_CODE (parg0) != MULT_EXPR
9219 && TREE_CODE (parg1) == MULT_EXPR)
9220 return fold_build2 (PLUS_EXPR, type,
9221 fold_convert (type, parg0),
9222 fold_build2 (pcode, type,
9223 fold_convert (type, marg),
9224 fold_convert (type,
9225 parg1)));
9228 /* Try replacing &a[i1] + c * i2 with &a[i1 + i2], if c is step
9229 of the array. Loop optimizer sometimes produce this type of
9230 expressions. */
9231 if (TREE_CODE (arg0) == ADDR_EXPR)
9233 tem = try_move_mult_to_index (PLUS_EXPR, arg0, arg1);
9234 if (tem)
9235 return fold_convert (type, tem);
9237 else if (TREE_CODE (arg1) == ADDR_EXPR)
9239 tem = try_move_mult_to_index (PLUS_EXPR, arg1, arg0);
9240 if (tem)
9241 return fold_convert (type, tem);
9244 else
9246 /* See if ARG1 is zero and X + ARG1 reduces to X. */
9247 if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
9248 return non_lvalue (fold_convert (type, arg0));
9250 /* Likewise if the operands are reversed. */
9251 if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
9252 return non_lvalue (fold_convert (type, arg1));
9254 /* Convert X + -C into X - C. */
9255 if (TREE_CODE (arg1) == REAL_CST
9256 && REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1)))
9258 tem = fold_negate_const (arg1, type);
9259 if (!TREE_OVERFLOW (arg1) || !flag_trapping_math)
9260 return fold_build2 (MINUS_EXPR, type,
9261 fold_convert (type, arg0),
9262 fold_convert (type, tem));
9265 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9266 to __complex__ ( x, y ). This is not the same for SNaNs or
9267 if signed zeros are involved. */
9268 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
9269 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
9270 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9272 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9273 tree arg0r = fold_unary (REALPART_EXPR, rtype, arg0);
9274 tree arg0i = fold_unary (IMAGPART_EXPR, rtype, arg0);
9275 bool arg0rz = false, arg0iz = false;
9276 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9277 || (arg0i && (arg0iz = real_zerop (arg0i))))
9279 tree arg1r = fold_unary (REALPART_EXPR, rtype, arg1);
9280 tree arg1i = fold_unary (IMAGPART_EXPR, rtype, arg1);
9281 if (arg0rz && arg1i && real_zerop (arg1i))
9283 tree rp = arg1r ? arg1r
9284 : build1 (REALPART_EXPR, rtype, arg1);
9285 tree ip = arg0i ? arg0i
9286 : build1 (IMAGPART_EXPR, rtype, arg0);
9287 return fold_build2 (COMPLEX_EXPR, type, rp, ip);
9289 else if (arg0iz && arg1r && real_zerop (arg1r))
9291 tree rp = arg0r ? arg0r
9292 : build1 (REALPART_EXPR, rtype, arg0);
9293 tree ip = arg1i ? arg1i
9294 : build1 (IMAGPART_EXPR, rtype, arg1);
9295 return fold_build2 (COMPLEX_EXPR, type, rp, ip);
9300 if (flag_unsafe_math_optimizations
9301 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9302 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9303 && (tem = distribute_real_division (code, type, arg0, arg1)))
9304 return tem;
9306 /* Convert x+x into x*2.0. */
9307 if (operand_equal_p (arg0, arg1, 0)
9308 && SCALAR_FLOAT_TYPE_P (type))
9309 return fold_build2 (MULT_EXPR, type, arg0,
9310 build_real (type, dconst2));
9312 /* Convert a + (b*c + d*e) into (a + b*c) + d*e. */
9313 if (flag_unsafe_math_optimizations
9314 && TREE_CODE (arg1) == PLUS_EXPR
9315 && TREE_CODE (arg0) != MULT_EXPR)
9317 tree tree10 = TREE_OPERAND (arg1, 0);
9318 tree tree11 = TREE_OPERAND (arg1, 1);
9319 if (TREE_CODE (tree11) == MULT_EXPR
9320 && TREE_CODE (tree10) == MULT_EXPR)
9322 tree tree0;
9323 tree0 = fold_build2 (PLUS_EXPR, type, arg0, tree10);
9324 return fold_build2 (PLUS_EXPR, type, tree0, tree11);
9327 /* Convert (b*c + d*e) + a into b*c + (d*e +a). */
9328 if (flag_unsafe_math_optimizations
9329 && TREE_CODE (arg0) == PLUS_EXPR
9330 && TREE_CODE (arg1) != MULT_EXPR)
9332 tree tree00 = TREE_OPERAND (arg0, 0);
9333 tree tree01 = TREE_OPERAND (arg0, 1);
9334 if (TREE_CODE (tree01) == MULT_EXPR
9335 && TREE_CODE (tree00) == MULT_EXPR)
9337 tree tree0;
9338 tree0 = fold_build2 (PLUS_EXPR, type, tree01, arg1);
9339 return fold_build2 (PLUS_EXPR, type, tree00, tree0);
9344 bit_rotate:
9345 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9346 is a rotate of A by C1 bits. */
9347 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9348 is a rotate of A by B bits. */
9350 enum tree_code code0, code1;
9351 code0 = TREE_CODE (arg0);
9352 code1 = TREE_CODE (arg1);
9353 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
9354 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
9355 && operand_equal_p (TREE_OPERAND (arg0, 0),
9356 TREE_OPERAND (arg1, 0), 0)
9357 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
9359 tree tree01, tree11;
9360 enum tree_code code01, code11;
9362 tree01 = TREE_OPERAND (arg0, 1);
9363 tree11 = TREE_OPERAND (arg1, 1);
9364 STRIP_NOPS (tree01);
9365 STRIP_NOPS (tree11);
9366 code01 = TREE_CODE (tree01);
9367 code11 = TREE_CODE (tree11);
9368 if (code01 == INTEGER_CST
9369 && code11 == INTEGER_CST
9370 && TREE_INT_CST_HIGH (tree01) == 0
9371 && TREE_INT_CST_HIGH (tree11) == 0
9372 && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
9373 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
9374 return build2 (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
9375 code0 == LSHIFT_EXPR ? tree01 : tree11);
9376 else if (code11 == MINUS_EXPR)
9378 tree tree110, tree111;
9379 tree110 = TREE_OPERAND (tree11, 0);
9380 tree111 = TREE_OPERAND (tree11, 1);
9381 STRIP_NOPS (tree110);
9382 STRIP_NOPS (tree111);
9383 if (TREE_CODE (tree110) == INTEGER_CST
9384 && 0 == compare_tree_int (tree110,
9385 TYPE_PRECISION
9386 (TREE_TYPE (TREE_OPERAND
9387 (arg0, 0))))
9388 && operand_equal_p (tree01, tree111, 0))
9389 return build2 ((code0 == LSHIFT_EXPR
9390 ? LROTATE_EXPR
9391 : RROTATE_EXPR),
9392 type, TREE_OPERAND (arg0, 0), tree01);
9394 else if (code01 == MINUS_EXPR)
9396 tree tree010, tree011;
9397 tree010 = TREE_OPERAND (tree01, 0);
9398 tree011 = TREE_OPERAND (tree01, 1);
9399 STRIP_NOPS (tree010);
9400 STRIP_NOPS (tree011);
9401 if (TREE_CODE (tree010) == INTEGER_CST
9402 && 0 == compare_tree_int (tree010,
9403 TYPE_PRECISION
9404 (TREE_TYPE (TREE_OPERAND
9405 (arg0, 0))))
9406 && operand_equal_p (tree11, tree011, 0))
9407 return build2 ((code0 != LSHIFT_EXPR
9408 ? LROTATE_EXPR
9409 : RROTATE_EXPR),
9410 type, TREE_OPERAND (arg0, 0), tree11);
9415 associate:
9416 /* In most languages, can't associate operations on floats through
9417 parentheses. Rather than remember where the parentheses were, we
9418 don't associate floats at all, unless the user has specified
9419 -funsafe-math-optimizations. */
9421 if (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
9423 tree var0, con0, lit0, minus_lit0;
9424 tree var1, con1, lit1, minus_lit1;
9425 bool ok = true;
9427 /* Split both trees into variables, constants, and literals. Then
9428 associate each group together, the constants with literals,
9429 then the result with variables. This increases the chances of
9430 literals being recombined later and of generating relocatable
9431 expressions for the sum of a constant and literal. */
9432 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
9433 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
9434 code == MINUS_EXPR);
9436 /* With undefined overflow we can only associate constants
9437 with one variable. */
9438 if ((POINTER_TYPE_P (type)
9439 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
9440 && var0 && var1)
9442 tree tmp0 = var0;
9443 tree tmp1 = var1;
9445 if (TREE_CODE (tmp0) == NEGATE_EXPR)
9446 tmp0 = TREE_OPERAND (tmp0, 0);
9447 if (TREE_CODE (tmp1) == NEGATE_EXPR)
9448 tmp1 = TREE_OPERAND (tmp1, 0);
9449 /* The only case we can still associate with two variables
9450 is if they are the same, modulo negation. */
9451 if (!operand_equal_p (tmp0, tmp1, 0))
9452 ok = false;
9455 /* Only do something if we found more than two objects. Otherwise,
9456 nothing has changed and we risk infinite recursion. */
9457 if (ok
9458 && (2 < ((var0 != 0) + (var1 != 0)
9459 + (con0 != 0) + (con1 != 0)
9460 + (lit0 != 0) + (lit1 != 0)
9461 + (minus_lit0 != 0) + (minus_lit1 != 0))))
9463 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9464 if (code == MINUS_EXPR)
9465 code = PLUS_EXPR;
9467 var0 = associate_trees (var0, var1, code, type);
9468 con0 = associate_trees (con0, con1, code, type);
9469 lit0 = associate_trees (lit0, lit1, code, type);
9470 minus_lit0 = associate_trees (minus_lit0, minus_lit1, code, type);
9472 /* Preserve the MINUS_EXPR if the negative part of the literal is
9473 greater than the positive part. Otherwise, the multiplicative
9474 folding code (i.e extract_muldiv) may be fooled in case
9475 unsigned constants are subtracted, like in the following
9476 example: ((X*2 + 4) - 8U)/2. */
9477 if (minus_lit0 && lit0)
9479 if (TREE_CODE (lit0) == INTEGER_CST
9480 && TREE_CODE (minus_lit0) == INTEGER_CST
9481 && tree_int_cst_lt (lit0, minus_lit0))
9483 minus_lit0 = associate_trees (minus_lit0, lit0,
9484 MINUS_EXPR, type);
9485 lit0 = 0;
9487 else
9489 lit0 = associate_trees (lit0, minus_lit0,
9490 MINUS_EXPR, type);
9491 minus_lit0 = 0;
9494 if (minus_lit0)
9496 if (con0 == 0)
9497 return fold_convert (type,
9498 associate_trees (var0, minus_lit0,
9499 MINUS_EXPR, type));
9500 else
9502 con0 = associate_trees (con0, minus_lit0,
9503 MINUS_EXPR, type);
9504 return fold_convert (type,
9505 associate_trees (var0, con0,
9506 PLUS_EXPR, type));
9510 con0 = associate_trees (con0, lit0, code, type);
9511 return fold_convert (type, associate_trees (var0, con0,
9512 code, type));
9516 return NULL_TREE;
9518 case MINUS_EXPR:
9519 /* A - (-B) -> A + B */
9520 if (TREE_CODE (arg1) == NEGATE_EXPR)
9521 return fold_build2 (PLUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0));
9522 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9523 if (TREE_CODE (arg0) == NEGATE_EXPR
9524 && (FLOAT_TYPE_P (type)
9525 || INTEGRAL_TYPE_P (type))
9526 && negate_expr_p (arg1)
9527 && reorder_operands_p (arg0, arg1))
9528 return fold_build2 (MINUS_EXPR, type, negate_expr (arg1),
9529 TREE_OPERAND (arg0, 0));
9530 /* Convert -A - 1 to ~A. */
9531 if (INTEGRAL_TYPE_P (type)
9532 && TREE_CODE (arg0) == NEGATE_EXPR
9533 && integer_onep (arg1)
9534 && !TYPE_OVERFLOW_TRAPS (type))
9535 return fold_build1 (BIT_NOT_EXPR, type,
9536 fold_convert (type, TREE_OPERAND (arg0, 0)));
9538 /* Convert -1 - A to ~A. */
9539 if (INTEGRAL_TYPE_P (type)
9540 && integer_all_onesp (arg0))
9541 return fold_build1 (BIT_NOT_EXPR, type, op1);
9543 if (! FLOAT_TYPE_P (type))
9545 if (integer_zerop (arg0))
9546 return negate_expr (fold_convert (type, arg1));
9547 if (integer_zerop (arg1))
9548 return non_lvalue (fold_convert (type, arg0));
9550 /* Fold A - (A & B) into ~B & A. */
9551 if (!TREE_SIDE_EFFECTS (arg0)
9552 && TREE_CODE (arg1) == BIT_AND_EXPR)
9554 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
9555 return fold_build2 (BIT_AND_EXPR, type,
9556 fold_build1 (BIT_NOT_EXPR, type,
9557 TREE_OPERAND (arg1, 0)),
9558 arg0);
9559 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9560 return fold_build2 (BIT_AND_EXPR, type,
9561 fold_build1 (BIT_NOT_EXPR, type,
9562 TREE_OPERAND (arg1, 1)),
9563 arg0);
9566 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
9567 any power of 2 minus 1. */
9568 if (TREE_CODE (arg0) == BIT_AND_EXPR
9569 && TREE_CODE (arg1) == BIT_AND_EXPR
9570 && operand_equal_p (TREE_OPERAND (arg0, 0),
9571 TREE_OPERAND (arg1, 0), 0))
9573 tree mask0 = TREE_OPERAND (arg0, 1);
9574 tree mask1 = TREE_OPERAND (arg1, 1);
9575 tree tem = fold_build1 (BIT_NOT_EXPR, type, mask0);
9577 if (operand_equal_p (tem, mask1, 0))
9579 tem = fold_build2 (BIT_XOR_EXPR, type,
9580 TREE_OPERAND (arg0, 0), mask1);
9581 return fold_build2 (MINUS_EXPR, type, tem, mask1);
9586 /* See if ARG1 is zero and X - ARG1 reduces to X. */
9587 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
9588 return non_lvalue (fold_convert (type, arg0));
9590 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
9591 ARG0 is zero and X + ARG0 reduces to X, since that would mean
9592 (-ARG1 + ARG0) reduces to -ARG1. */
9593 else if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
9594 return negate_expr (fold_convert (type, arg1));
9596 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9597 __complex__ ( x, -y ). This is not the same for SNaNs or if
9598 signed zeros are involved. */
9599 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
9600 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
9601 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9603 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9604 tree arg0r = fold_unary (REALPART_EXPR, rtype, arg0);
9605 tree arg0i = fold_unary (IMAGPART_EXPR, rtype, arg0);
9606 bool arg0rz = false, arg0iz = false;
9607 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9608 || (arg0i && (arg0iz = real_zerop (arg0i))))
9610 tree arg1r = fold_unary (REALPART_EXPR, rtype, arg1);
9611 tree arg1i = fold_unary (IMAGPART_EXPR, rtype, arg1);
9612 if (arg0rz && arg1i && real_zerop (arg1i))
9614 tree rp = fold_build1 (NEGATE_EXPR, rtype,
9615 arg1r ? arg1r
9616 : build1 (REALPART_EXPR, rtype, arg1));
9617 tree ip = arg0i ? arg0i
9618 : build1 (IMAGPART_EXPR, rtype, arg0);
9619 return fold_build2 (COMPLEX_EXPR, type, rp, ip);
9621 else if (arg0iz && arg1r && real_zerop (arg1r))
9623 tree rp = arg0r ? arg0r
9624 : build1 (REALPART_EXPR, rtype, arg0);
9625 tree ip = fold_build1 (NEGATE_EXPR, rtype,
9626 arg1i ? arg1i
9627 : build1 (IMAGPART_EXPR, rtype, arg1));
9628 return fold_build2 (COMPLEX_EXPR, type, rp, ip);
9633 /* Fold &x - &x. This can happen from &x.foo - &x.
9634 This is unsafe for certain floats even in non-IEEE formats.
9635 In IEEE, it is unsafe because it does wrong for NaNs.
9636 Also note that operand_equal_p is always false if an operand
9637 is volatile. */
9639 if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
9640 && operand_equal_p (arg0, arg1, 0))
9641 return fold_convert (type, integer_zero_node);
9643 /* A - B -> A + (-B) if B is easily negatable. */
9644 if (negate_expr_p (arg1)
9645 && ((FLOAT_TYPE_P (type)
9646 /* Avoid this transformation if B is a positive REAL_CST. */
9647 && (TREE_CODE (arg1) != REAL_CST
9648 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
9649 || INTEGRAL_TYPE_P (type)))
9650 return fold_build2 (PLUS_EXPR, type,
9651 fold_convert (type, arg0),
9652 fold_convert (type, negate_expr (arg1)));
9654 /* Try folding difference of addresses. */
9656 HOST_WIDE_INT diff;
9658 if ((TREE_CODE (arg0) == ADDR_EXPR
9659 || TREE_CODE (arg1) == ADDR_EXPR)
9660 && ptr_difference_const (arg0, arg1, &diff))
9661 return build_int_cst_type (type, diff);
9664 /* Fold &a[i] - &a[j] to i-j. */
9665 if (TREE_CODE (arg0) == ADDR_EXPR
9666 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
9667 && TREE_CODE (arg1) == ADDR_EXPR
9668 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
9670 tree aref0 = TREE_OPERAND (arg0, 0);
9671 tree aref1 = TREE_OPERAND (arg1, 0);
9672 if (operand_equal_p (TREE_OPERAND (aref0, 0),
9673 TREE_OPERAND (aref1, 0), 0))
9675 tree op0 = fold_convert (type, TREE_OPERAND (aref0, 1));
9676 tree op1 = fold_convert (type, TREE_OPERAND (aref1, 1));
9677 tree esz = array_ref_element_size (aref0);
9678 tree diff = build2 (MINUS_EXPR, type, op0, op1);
9679 return fold_build2 (MULT_EXPR, type, diff,
9680 fold_convert (type, esz));
9685 /* Try replacing &a[i1] - c * i2 with &a[i1 - i2], if c is step
9686 of the array. Loop optimizer sometimes produce this type of
9687 expressions. */
9688 if (TREE_CODE (arg0) == ADDR_EXPR)
9690 tem = try_move_mult_to_index (MINUS_EXPR, arg0, arg1);
9691 if (tem)
9692 return fold_convert (type, tem);
9695 if (flag_unsafe_math_optimizations
9696 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9697 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9698 && (tem = distribute_real_division (code, type, arg0, arg1)))
9699 return tem;
9701 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the
9702 same or one. */
9703 if ((TREE_CODE (arg0) == MULT_EXPR
9704 || TREE_CODE (arg1) == MULT_EXPR)
9705 && (!FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
9707 tree tem = fold_plusminus_mult_expr (code, type, arg0, arg1);
9708 if (tem)
9709 return tem;
9712 goto associate;
9714 case MULT_EXPR:
9715 /* (-A) * (-B) -> A * B */
9716 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
9717 return fold_build2 (MULT_EXPR, type,
9718 fold_convert (type, TREE_OPERAND (arg0, 0)),
9719 fold_convert (type, negate_expr (arg1)));
9720 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
9721 return fold_build2 (MULT_EXPR, type,
9722 fold_convert (type, negate_expr (arg0)),
9723 fold_convert (type, TREE_OPERAND (arg1, 0)));
9725 if (! FLOAT_TYPE_P (type))
9727 if (integer_zerop (arg1))
9728 return omit_one_operand (type, arg1, arg0);
9729 if (integer_onep (arg1))
9730 return non_lvalue (fold_convert (type, arg0));
9731 /* Transform x * -1 into -x. */
9732 if (integer_all_onesp (arg1))
9733 return fold_convert (type, negate_expr (arg0));
9734 /* Transform x * -C into -x * C if x is easily negatable. */
9735 if (TREE_CODE (arg1) == INTEGER_CST
9736 && tree_int_cst_sgn (arg1) == -1
9737 && negate_expr_p (arg0)
9738 && (tem = negate_expr (arg1)) != arg1
9739 && !TREE_OVERFLOW (tem))
9740 return fold_build2 (MULT_EXPR, type,
9741 negate_expr (arg0), tem);
9743 /* (a * (1 << b)) is (a << b) */
9744 if (TREE_CODE (arg1) == LSHIFT_EXPR
9745 && integer_onep (TREE_OPERAND (arg1, 0)))
9746 return fold_build2 (LSHIFT_EXPR, type, arg0,
9747 TREE_OPERAND (arg1, 1));
9748 if (TREE_CODE (arg0) == LSHIFT_EXPR
9749 && integer_onep (TREE_OPERAND (arg0, 0)))
9750 return fold_build2 (LSHIFT_EXPR, type, arg1,
9751 TREE_OPERAND (arg0, 1));
9753 strict_overflow_p = false;
9754 if (TREE_CODE (arg1) == INTEGER_CST
9755 && 0 != (tem = extract_muldiv (op0,
9756 fold_convert (type, arg1),
9757 code, NULL_TREE,
9758 &strict_overflow_p)))
9760 if (strict_overflow_p)
9761 fold_overflow_warning (("assuming signed overflow does not "
9762 "occur when simplifying "
9763 "multiplication"),
9764 WARN_STRICT_OVERFLOW_MISC);
9765 return fold_convert (type, tem);
9768 /* Optimize z * conj(z) for integer complex numbers. */
9769 if (TREE_CODE (arg0) == CONJ_EXPR
9770 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9771 return fold_mult_zconjz (type, arg1);
9772 if (TREE_CODE (arg1) == CONJ_EXPR
9773 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9774 return fold_mult_zconjz (type, arg0);
9776 else
9778 /* Maybe fold x * 0 to 0. The expressions aren't the same
9779 when x is NaN, since x * 0 is also NaN. Nor are they the
9780 same in modes with signed zeros, since multiplying a
9781 negative value by 0 gives -0, not +0. */
9782 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
9783 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
9784 && real_zerop (arg1))
9785 return omit_one_operand (type, arg1, arg0);
9786 /* In IEEE floating point, x*1 is not equivalent to x for snans. */
9787 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
9788 && real_onep (arg1))
9789 return non_lvalue (fold_convert (type, arg0));
9791 /* Transform x * -1.0 into -x. */
9792 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
9793 && real_minus_onep (arg1))
9794 return fold_convert (type, negate_expr (arg0));
9796 /* Convert (C1/X)*C2 into (C1*C2)/X. */
9797 if (flag_unsafe_math_optimizations
9798 && TREE_CODE (arg0) == RDIV_EXPR
9799 && TREE_CODE (arg1) == REAL_CST
9800 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
9802 tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
9803 arg1, 0);
9804 if (tem)
9805 return fold_build2 (RDIV_EXPR, type, tem,
9806 TREE_OPERAND (arg0, 1));
9809 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
9810 if (operand_equal_p (arg0, arg1, 0))
9812 tree tem = fold_strip_sign_ops (arg0);
9813 if (tem != NULL_TREE)
9815 tem = fold_convert (type, tem);
9816 return fold_build2 (MULT_EXPR, type, tem, tem);
9820 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
9821 This is not the same for NaNs or if signed zeros are
9822 involved. */
9823 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
9824 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
9825 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
9826 && TREE_CODE (arg1) == COMPLEX_CST
9827 && real_zerop (TREE_REALPART (arg1)))
9829 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9830 if (real_onep (TREE_IMAGPART (arg1)))
9831 return fold_build2 (COMPLEX_EXPR, type,
9832 negate_expr (fold_build1 (IMAGPART_EXPR,
9833 rtype, arg0)),
9834 fold_build1 (REALPART_EXPR, rtype, arg0));
9835 else if (real_minus_onep (TREE_IMAGPART (arg1)))
9836 return fold_build2 (COMPLEX_EXPR, type,
9837 fold_build1 (IMAGPART_EXPR, rtype, arg0),
9838 negate_expr (fold_build1 (REALPART_EXPR,
9839 rtype, arg0)));
9842 /* Optimize z * conj(z) for floating point complex numbers.
9843 Guarded by flag_unsafe_math_optimizations as non-finite
9844 imaginary components don't produce scalar results. */
9845 if (flag_unsafe_math_optimizations
9846 && TREE_CODE (arg0) == CONJ_EXPR
9847 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9848 return fold_mult_zconjz (type, arg1);
9849 if (flag_unsafe_math_optimizations
9850 && TREE_CODE (arg1) == CONJ_EXPR
9851 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9852 return fold_mult_zconjz (type, arg0);
9854 if (flag_unsafe_math_optimizations)
9856 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
9857 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
9859 /* Optimizations of root(...)*root(...). */
9860 if (fcode0 == fcode1 && BUILTIN_ROOT_P (fcode0))
9862 tree rootfn, arg;
9863 tree arg00 = CALL_EXPR_ARG (arg0, 0);
9864 tree arg10 = CALL_EXPR_ARG (arg1, 0);
9866 /* Optimize sqrt(x)*sqrt(x) as x. */
9867 if (BUILTIN_SQRT_P (fcode0)
9868 && operand_equal_p (arg00, arg10, 0)
9869 && ! HONOR_SNANS (TYPE_MODE (type)))
9870 return arg00;
9872 /* Optimize root(x)*root(y) as root(x*y). */
9873 rootfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
9874 arg = fold_build2 (MULT_EXPR, type, arg00, arg10);
9875 return build_call_expr (rootfn, 1, arg);
9878 /* Optimize expN(x)*expN(y) as expN(x+y). */
9879 if (fcode0 == fcode1 && BUILTIN_EXPONENT_P (fcode0))
9881 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
9882 tree arg = fold_build2 (PLUS_EXPR, type,
9883 CALL_EXPR_ARG (arg0, 0),
9884 CALL_EXPR_ARG (arg1, 0));
9885 return build_call_expr (expfn, 1, arg);
9888 /* Optimizations of pow(...)*pow(...). */
9889 if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
9890 || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
9891 || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
9893 tree arg00 = CALL_EXPR_ARG (arg0, 0);
9894 tree arg01 = CALL_EXPR_ARG (arg0, 1);
9895 tree arg10 = CALL_EXPR_ARG (arg1, 0);
9896 tree arg11 = CALL_EXPR_ARG (arg1, 1);
9898 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
9899 if (operand_equal_p (arg01, arg11, 0))
9901 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
9902 tree arg = fold_build2 (MULT_EXPR, type, arg00, arg10);
9903 return build_call_expr (powfn, 2, arg, arg01);
9906 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
9907 if (operand_equal_p (arg00, arg10, 0))
9909 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
9910 tree arg = fold_build2 (PLUS_EXPR, type, arg01, arg11);
9911 return build_call_expr (powfn, 2, arg00, arg);
9915 /* Optimize tan(x)*cos(x) as sin(x). */
9916 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
9917 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
9918 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
9919 || (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
9920 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
9921 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
9922 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
9923 CALL_EXPR_ARG (arg1, 0), 0))
9925 tree sinfn = mathfn_built_in (type, BUILT_IN_SIN);
9927 if (sinfn != NULL_TREE)
9928 return build_call_expr (sinfn, 1, CALL_EXPR_ARG (arg0, 0));
9931 /* Optimize x*pow(x,c) as pow(x,c+1). */
9932 if (fcode1 == BUILT_IN_POW
9933 || fcode1 == BUILT_IN_POWF
9934 || fcode1 == BUILT_IN_POWL)
9936 tree arg10 = CALL_EXPR_ARG (arg1, 0);
9937 tree arg11 = CALL_EXPR_ARG (arg1, 1);
9938 if (TREE_CODE (arg11) == REAL_CST
9939 && !TREE_OVERFLOW (arg11)
9940 && operand_equal_p (arg0, arg10, 0))
9942 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
9943 REAL_VALUE_TYPE c;
9944 tree arg;
9946 c = TREE_REAL_CST (arg11);
9947 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
9948 arg = build_real (type, c);
9949 return build_call_expr (powfn, 2, arg0, arg);
9953 /* Optimize pow(x,c)*x as pow(x,c+1). */
9954 if (fcode0 == BUILT_IN_POW
9955 || fcode0 == BUILT_IN_POWF
9956 || fcode0 == BUILT_IN_POWL)
9958 tree arg00 = CALL_EXPR_ARG (arg0, 0);
9959 tree arg01 = CALL_EXPR_ARG (arg0, 1);
9960 if (TREE_CODE (arg01) == REAL_CST
9961 && !TREE_OVERFLOW (arg01)
9962 && operand_equal_p (arg1, arg00, 0))
9964 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
9965 REAL_VALUE_TYPE c;
9966 tree arg;
9968 c = TREE_REAL_CST (arg01);
9969 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
9970 arg = build_real (type, c);
9971 return build_call_expr (powfn, 2, arg1, arg);
9975 /* Optimize x*x as pow(x,2.0), which is expanded as x*x. */
9976 if (! optimize_size
9977 && operand_equal_p (arg0, arg1, 0))
9979 tree powfn = mathfn_built_in (type, BUILT_IN_POW);
9981 if (powfn)
9983 tree arg = build_real (type, dconst2);
9984 return build_call_expr (powfn, 2, arg0, arg);
9989 goto associate;
9991 case BIT_IOR_EXPR:
9992 bit_ior:
9993 if (integer_all_onesp (arg1))
9994 return omit_one_operand (type, arg1, arg0);
9995 if (integer_zerop (arg1))
9996 return non_lvalue (fold_convert (type, arg0));
9997 if (operand_equal_p (arg0, arg1, 0))
9998 return non_lvalue (fold_convert (type, arg0));
10000 /* ~X | X is -1. */
10001 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10002 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10004 t1 = build_int_cst_type (type, -1);
10005 return omit_one_operand (type, t1, arg1);
10008 /* X | ~X is -1. */
10009 if (TREE_CODE (arg1) == BIT_NOT_EXPR
10010 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10012 t1 = build_int_cst_type (type, -1);
10013 return omit_one_operand (type, t1, arg0);
10016 /* Canonicalize (X & C1) | C2. */
10017 if (TREE_CODE (arg0) == BIT_AND_EXPR
10018 && TREE_CODE (arg1) == INTEGER_CST
10019 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10021 unsigned HOST_WIDE_INT hi1, lo1, hi2, lo2, mlo, mhi;
10022 int width = TYPE_PRECISION (type);
10023 hi1 = TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1));
10024 lo1 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
10025 hi2 = TREE_INT_CST_HIGH (arg1);
10026 lo2 = TREE_INT_CST_LOW (arg1);
10028 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10029 if ((hi1 & hi2) == hi1 && (lo1 & lo2) == lo1)
10030 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
10032 if (width > HOST_BITS_PER_WIDE_INT)
10034 mhi = (unsigned HOST_WIDE_INT) -1
10035 >> (2 * HOST_BITS_PER_WIDE_INT - width);
10036 mlo = -1;
10038 else
10040 mhi = 0;
10041 mlo = (unsigned HOST_WIDE_INT) -1
10042 >> (HOST_BITS_PER_WIDE_INT - width);
10045 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10046 if ((~(hi1 | hi2) & mhi) == 0 && (~(lo1 | lo2) & mlo) == 0)
10047 return fold_build2 (BIT_IOR_EXPR, type,
10048 TREE_OPERAND (arg0, 0), arg1);
10050 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2. */
10051 hi1 &= mhi;
10052 lo1 &= mlo;
10053 if ((hi1 & ~hi2) != hi1 || (lo1 & ~lo2) != lo1)
10054 return fold_build2 (BIT_IOR_EXPR, type,
10055 fold_build2 (BIT_AND_EXPR, type,
10056 TREE_OPERAND (arg0, 0),
10057 build_int_cst_wide (type,
10058 lo1 & ~lo2,
10059 hi1 & ~hi2)),
10060 arg1);
10063 /* (X & Y) | Y is (X, Y). */
10064 if (TREE_CODE (arg0) == BIT_AND_EXPR
10065 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10066 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
10067 /* (X & Y) | X is (Y, X). */
10068 if (TREE_CODE (arg0) == BIT_AND_EXPR
10069 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10070 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10071 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 1));
10072 /* X | (X & Y) is (Y, X). */
10073 if (TREE_CODE (arg1) == BIT_AND_EXPR
10074 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
10075 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
10076 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 1));
10077 /* X | (Y & X) is (Y, X). */
10078 if (TREE_CODE (arg1) == BIT_AND_EXPR
10079 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10080 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10081 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 0));
10083 t1 = distribute_bit_expr (code, type, arg0, arg1);
10084 if (t1 != NULL_TREE)
10085 return t1;
10087 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
10089 This results in more efficient code for machines without a NAND
10090 instruction. Combine will canonicalize to the first form
10091 which will allow use of NAND instructions provided by the
10092 backend if they exist. */
10093 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10094 && TREE_CODE (arg1) == BIT_NOT_EXPR)
10096 return fold_build1 (BIT_NOT_EXPR, type,
10097 build2 (BIT_AND_EXPR, type,
10098 TREE_OPERAND (arg0, 0),
10099 TREE_OPERAND (arg1, 0)));
10102 /* See if this can be simplified into a rotate first. If that
10103 is unsuccessful continue in the association code. */
10104 goto bit_rotate;
10106 case BIT_XOR_EXPR:
10107 if (integer_zerop (arg1))
10108 return non_lvalue (fold_convert (type, arg0));
10109 if (integer_all_onesp (arg1))
10110 return fold_build1 (BIT_NOT_EXPR, type, arg0);
10111 if (operand_equal_p (arg0, arg1, 0))
10112 return omit_one_operand (type, integer_zero_node, arg0);
10114 /* ~X ^ X is -1. */
10115 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10116 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10118 t1 = build_int_cst_type (type, -1);
10119 return omit_one_operand (type, t1, arg1);
10122 /* X ^ ~X is -1. */
10123 if (TREE_CODE (arg1) == BIT_NOT_EXPR
10124 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10126 t1 = build_int_cst_type (type, -1);
10127 return omit_one_operand (type, t1, arg0);
10130 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
10131 with a constant, and the two constants have no bits in common,
10132 we should treat this as a BIT_IOR_EXPR since this may produce more
10133 simplifications. */
10134 if (TREE_CODE (arg0) == BIT_AND_EXPR
10135 && TREE_CODE (arg1) == BIT_AND_EXPR
10136 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10137 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
10138 && integer_zerop (const_binop (BIT_AND_EXPR,
10139 TREE_OPERAND (arg0, 1),
10140 TREE_OPERAND (arg1, 1), 0)))
10142 code = BIT_IOR_EXPR;
10143 goto bit_ior;
10146 /* (X | Y) ^ X -> Y & ~ X*/
10147 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10148 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10150 tree t2 = TREE_OPERAND (arg0, 1);
10151 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1),
10152 arg1);
10153 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
10154 fold_convert (type, t1));
10155 return t1;
10158 /* (Y | X) ^ X -> Y & ~ X*/
10159 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10160 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10162 tree t2 = TREE_OPERAND (arg0, 0);
10163 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1),
10164 arg1);
10165 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
10166 fold_convert (type, t1));
10167 return t1;
10170 /* X ^ (X | Y) -> Y & ~ X*/
10171 if (TREE_CODE (arg1) == BIT_IOR_EXPR
10172 && operand_equal_p (TREE_OPERAND (arg1, 0), arg0, 0))
10174 tree t2 = TREE_OPERAND (arg1, 1);
10175 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg0),
10176 arg0);
10177 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
10178 fold_convert (type, t1));
10179 return t1;
10182 /* X ^ (Y | X) -> Y & ~ X*/
10183 if (TREE_CODE (arg1) == BIT_IOR_EXPR
10184 && operand_equal_p (TREE_OPERAND (arg1, 1), arg0, 0))
10186 tree t2 = TREE_OPERAND (arg1, 0);
10187 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg0),
10188 arg0);
10189 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
10190 fold_convert (type, t1));
10191 return t1;
10194 /* Convert ~X ^ ~Y to X ^ Y. */
10195 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10196 && TREE_CODE (arg1) == BIT_NOT_EXPR)
10197 return fold_build2 (code, type,
10198 fold_convert (type, TREE_OPERAND (arg0, 0)),
10199 fold_convert (type, TREE_OPERAND (arg1, 0)));
10201 /* Convert ~X ^ C to X ^ ~C. */
10202 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10203 && TREE_CODE (arg1) == INTEGER_CST)
10204 return fold_build2 (code, type,
10205 fold_convert (type, TREE_OPERAND (arg0, 0)),
10206 fold_build1 (BIT_NOT_EXPR, type, arg1));
10208 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
10209 if (TREE_CODE (arg0) == BIT_AND_EXPR
10210 && integer_onep (TREE_OPERAND (arg0, 1))
10211 && integer_onep (arg1))
10212 return fold_build2 (EQ_EXPR, type, arg0,
10213 build_int_cst (TREE_TYPE (arg0), 0));
10215 /* Fold (X & Y) ^ Y as ~X & Y. */
10216 if (TREE_CODE (arg0) == BIT_AND_EXPR
10217 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10219 tem = fold_convert (type, TREE_OPERAND (arg0, 0));
10220 return fold_build2 (BIT_AND_EXPR, type,
10221 fold_build1 (BIT_NOT_EXPR, type, tem),
10222 fold_convert (type, arg1));
10224 /* Fold (X & Y) ^ X as ~Y & X. */
10225 if (TREE_CODE (arg0) == BIT_AND_EXPR
10226 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10227 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10229 tem = fold_convert (type, TREE_OPERAND (arg0, 1));
10230 return fold_build2 (BIT_AND_EXPR, type,
10231 fold_build1 (BIT_NOT_EXPR, type, tem),
10232 fold_convert (type, arg1));
10234 /* Fold X ^ (X & Y) as X & ~Y. */
10235 if (TREE_CODE (arg1) == BIT_AND_EXPR
10236 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10238 tem = fold_convert (type, TREE_OPERAND (arg1, 1));
10239 return fold_build2 (BIT_AND_EXPR, type,
10240 fold_convert (type, arg0),
10241 fold_build1 (BIT_NOT_EXPR, type, tem));
10243 /* Fold X ^ (Y & X) as ~Y & X. */
10244 if (TREE_CODE (arg1) == BIT_AND_EXPR
10245 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10246 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10248 tem = fold_convert (type, TREE_OPERAND (arg1, 0));
10249 return fold_build2 (BIT_AND_EXPR, type,
10250 fold_build1 (BIT_NOT_EXPR, type, tem),
10251 fold_convert (type, arg0));
10254 /* See if this can be simplified into a rotate first. If that
10255 is unsuccessful continue in the association code. */
10256 goto bit_rotate;
10258 case BIT_AND_EXPR:
10259 if (integer_all_onesp (arg1))
10260 return non_lvalue (fold_convert (type, arg0));
10261 if (integer_zerop (arg1))
10262 return omit_one_operand (type, arg1, arg0);
10263 if (operand_equal_p (arg0, arg1, 0))
10264 return non_lvalue (fold_convert (type, arg0));
10266 /* ~X & X is always zero. */
10267 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10268 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10269 return omit_one_operand (type, integer_zero_node, arg1);
10271 /* X & ~X is always zero. */
10272 if (TREE_CODE (arg1) == BIT_NOT_EXPR
10273 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10274 return omit_one_operand (type, integer_zero_node, arg0);
10276 /* Canonicalize (X | C1) & C2 as (X & C2) | (C1 & C2). */
10277 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10278 && TREE_CODE (arg1) == INTEGER_CST
10279 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10280 return fold_build2 (BIT_IOR_EXPR, type,
10281 fold_build2 (BIT_AND_EXPR, type,
10282 TREE_OPERAND (arg0, 0), arg1),
10283 fold_build2 (BIT_AND_EXPR, type,
10284 TREE_OPERAND (arg0, 1), arg1));
10286 /* (X | Y) & Y is (X, Y). */
10287 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10288 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10289 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
10290 /* (X | Y) & X is (Y, X). */
10291 if (TREE_CODE (arg0) == BIT_IOR_EXPR
10292 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10293 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10294 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 1));
10295 /* X & (X | Y) is (Y, X). */
10296 if (TREE_CODE (arg1) == BIT_IOR_EXPR
10297 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
10298 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
10299 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 1));
10300 /* X & (Y | X) is (Y, X). */
10301 if (TREE_CODE (arg1) == BIT_IOR_EXPR
10302 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10303 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10304 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 0));
10306 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
10307 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10308 && integer_onep (TREE_OPERAND (arg0, 1))
10309 && integer_onep (arg1))
10311 tem = TREE_OPERAND (arg0, 0);
10312 return fold_build2 (EQ_EXPR, type,
10313 fold_build2 (BIT_AND_EXPR, TREE_TYPE (tem), tem,
10314 build_int_cst (TREE_TYPE (tem), 1)),
10315 build_int_cst (TREE_TYPE (tem), 0));
10317 /* Fold ~X & 1 as (X & 1) == 0. */
10318 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10319 && integer_onep (arg1))
10321 tem = TREE_OPERAND (arg0, 0);
10322 return fold_build2 (EQ_EXPR, type,
10323 fold_build2 (BIT_AND_EXPR, TREE_TYPE (tem), tem,
10324 build_int_cst (TREE_TYPE (tem), 1)),
10325 build_int_cst (TREE_TYPE (tem), 0));
10328 /* Fold (X ^ Y) & Y as ~X & Y. */
10329 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10330 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10332 tem = fold_convert (type, TREE_OPERAND (arg0, 0));
10333 return fold_build2 (BIT_AND_EXPR, type,
10334 fold_build1 (BIT_NOT_EXPR, type, tem),
10335 fold_convert (type, arg1));
10337 /* Fold (X ^ Y) & X as ~Y & X. */
10338 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10339 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10340 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10342 tem = fold_convert (type, TREE_OPERAND (arg0, 1));
10343 return fold_build2 (BIT_AND_EXPR, type,
10344 fold_build1 (BIT_NOT_EXPR, type, tem),
10345 fold_convert (type, arg1));
10347 /* Fold X & (X ^ Y) as X & ~Y. */
10348 if (TREE_CODE (arg1) == BIT_XOR_EXPR
10349 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10351 tem = fold_convert (type, TREE_OPERAND (arg1, 1));
10352 return fold_build2 (BIT_AND_EXPR, type,
10353 fold_convert (type, arg0),
10354 fold_build1 (BIT_NOT_EXPR, type, tem));
10356 /* Fold X & (Y ^ X) as ~Y & X. */
10357 if (TREE_CODE (arg1) == BIT_XOR_EXPR
10358 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10359 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10361 tem = fold_convert (type, TREE_OPERAND (arg1, 0));
10362 return fold_build2 (BIT_AND_EXPR, type,
10363 fold_build1 (BIT_NOT_EXPR, type, tem),
10364 fold_convert (type, arg0));
10367 t1 = distribute_bit_expr (code, type, arg0, arg1);
10368 if (t1 != NULL_TREE)
10369 return t1;
10370 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10371 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
10372 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
10374 unsigned int prec
10375 = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
10377 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
10378 && (~TREE_INT_CST_LOW (arg1)
10379 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
10380 return fold_convert (type, TREE_OPERAND (arg0, 0));
10383 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
10385 This results in more efficient code for machines without a NOR
10386 instruction. Combine will canonicalize to the first form
10387 which will allow use of NOR instructions provided by the
10388 backend if they exist. */
10389 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10390 && TREE_CODE (arg1) == BIT_NOT_EXPR)
10392 return fold_build1 (BIT_NOT_EXPR, type,
10393 build2 (BIT_IOR_EXPR, type,
10394 TREE_OPERAND (arg0, 0),
10395 TREE_OPERAND (arg1, 0)));
10398 goto associate;
10400 case RDIV_EXPR:
10401 /* Don't touch a floating-point divide by zero unless the mode
10402 of the constant can represent infinity. */
10403 if (TREE_CODE (arg1) == REAL_CST
10404 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
10405 && real_zerop (arg1))
10406 return NULL_TREE;
10408 /* Optimize A / A to 1.0 if we don't care about
10409 NaNs or Infinities. Skip the transformation
10410 for non-real operands. */
10411 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg0))
10412 && ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
10413 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg0)))
10414 && operand_equal_p (arg0, arg1, 0))
10416 tree r = build_real (TREE_TYPE (arg0), dconst1);
10418 return omit_two_operands (type, r, arg0, arg1);
10421 /* The complex version of the above A / A optimization. */
10422 if (COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
10423 && operand_equal_p (arg0, arg1, 0))
10425 tree elem_type = TREE_TYPE (TREE_TYPE (arg0));
10426 if (! HONOR_NANS (TYPE_MODE (elem_type))
10427 && ! HONOR_INFINITIES (TYPE_MODE (elem_type)))
10429 tree r = build_real (elem_type, dconst1);
10430 /* omit_two_operands will call fold_convert for us. */
10431 return omit_two_operands (type, r, arg0, arg1);
10435 /* (-A) / (-B) -> A / B */
10436 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10437 return fold_build2 (RDIV_EXPR, type,
10438 TREE_OPERAND (arg0, 0),
10439 negate_expr (arg1));
10440 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10441 return fold_build2 (RDIV_EXPR, type,
10442 negate_expr (arg0),
10443 TREE_OPERAND (arg1, 0));
10445 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
10446 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10447 && real_onep (arg1))
10448 return non_lvalue (fold_convert (type, arg0));
10450 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
10451 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10452 && real_minus_onep (arg1))
10453 return non_lvalue (fold_convert (type, negate_expr (arg0)));
10455 /* If ARG1 is a constant, we can convert this to a multiply by the
10456 reciprocal. This does not have the same rounding properties,
10457 so only do this if -funsafe-math-optimizations. We can actually
10458 always safely do it if ARG1 is a power of two, but it's hard to
10459 tell if it is or not in a portable manner. */
10460 if (TREE_CODE (arg1) == REAL_CST)
10462 if (flag_unsafe_math_optimizations
10463 && 0 != (tem = const_binop (code, build_real (type, dconst1),
10464 arg1, 0)))
10465 return fold_build2 (MULT_EXPR, type, arg0, tem);
10466 /* Find the reciprocal if optimizing and the result is exact. */
10467 if (optimize)
10469 REAL_VALUE_TYPE r;
10470 r = TREE_REAL_CST (arg1);
10471 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
10473 tem = build_real (type, r);
10474 return fold_build2 (MULT_EXPR, type,
10475 fold_convert (type, arg0), tem);
10479 /* Convert A/B/C to A/(B*C). */
10480 if (flag_unsafe_math_optimizations
10481 && TREE_CODE (arg0) == RDIV_EXPR)
10482 return fold_build2 (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
10483 fold_build2 (MULT_EXPR, type,
10484 TREE_OPERAND (arg0, 1), arg1));
10486 /* Convert A/(B/C) to (A/B)*C. */
10487 if (flag_unsafe_math_optimizations
10488 && TREE_CODE (arg1) == RDIV_EXPR)
10489 return fold_build2 (MULT_EXPR, type,
10490 fold_build2 (RDIV_EXPR, type, arg0,
10491 TREE_OPERAND (arg1, 0)),
10492 TREE_OPERAND (arg1, 1));
10494 /* Convert C1/(X*C2) into (C1/C2)/X. */
10495 if (flag_unsafe_math_optimizations
10496 && TREE_CODE (arg1) == MULT_EXPR
10497 && TREE_CODE (arg0) == REAL_CST
10498 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
10500 tree tem = const_binop (RDIV_EXPR, arg0,
10501 TREE_OPERAND (arg1, 1), 0);
10502 if (tem)
10503 return fold_build2 (RDIV_EXPR, type, tem,
10504 TREE_OPERAND (arg1, 0));
10507 if (flag_unsafe_math_optimizations)
10509 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
10510 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
10512 /* Optimize sin(x)/cos(x) as tan(x). */
10513 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
10514 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
10515 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
10516 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
10517 CALL_EXPR_ARG (arg1, 0), 0))
10519 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
10521 if (tanfn != NULL_TREE)
10522 return build_call_expr (tanfn, 1, CALL_EXPR_ARG (arg0, 0));
10525 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
10526 if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
10527 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
10528 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
10529 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
10530 CALL_EXPR_ARG (arg1, 0), 0))
10532 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
10534 if (tanfn != NULL_TREE)
10536 tree tmp = build_call_expr (tanfn, 1, CALL_EXPR_ARG (arg0, 0));
10537 return fold_build2 (RDIV_EXPR, type,
10538 build_real (type, dconst1), tmp);
10542 /* Optimize sin(x)/tan(x) as cos(x) if we don't care about
10543 NaNs or Infinities. */
10544 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_TAN)
10545 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_TANF)
10546 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_TANL)))
10548 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10549 tree arg01 = CALL_EXPR_ARG (arg1, 0);
10551 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
10552 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
10553 && operand_equal_p (arg00, arg01, 0))
10555 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
10557 if (cosfn != NULL_TREE)
10558 return build_call_expr (cosfn, 1, arg00);
10562 /* Optimize tan(x)/sin(x) as 1.0/cos(x) if we don't care about
10563 NaNs or Infinities. */
10564 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_SIN)
10565 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_SINF)
10566 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_SINL)))
10568 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10569 tree arg01 = CALL_EXPR_ARG (arg1, 0);
10571 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
10572 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
10573 && operand_equal_p (arg00, arg01, 0))
10575 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
10577 if (cosfn != NULL_TREE)
10579 tree tmp = build_call_expr (cosfn, 1, arg00);
10580 return fold_build2 (RDIV_EXPR, type,
10581 build_real (type, dconst1),
10582 tmp);
10587 /* Optimize pow(x,c)/x as pow(x,c-1). */
10588 if (fcode0 == BUILT_IN_POW
10589 || fcode0 == BUILT_IN_POWF
10590 || fcode0 == BUILT_IN_POWL)
10592 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10593 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10594 if (TREE_CODE (arg01) == REAL_CST
10595 && !TREE_OVERFLOW (arg01)
10596 && operand_equal_p (arg1, arg00, 0))
10598 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10599 REAL_VALUE_TYPE c;
10600 tree arg;
10602 c = TREE_REAL_CST (arg01);
10603 real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
10604 arg = build_real (type, c);
10605 return build_call_expr (powfn, 2, arg1, arg);
10609 /* Optimize x/expN(y) into x*expN(-y). */
10610 if (BUILTIN_EXPONENT_P (fcode1))
10612 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
10613 tree arg = negate_expr (CALL_EXPR_ARG (arg1, 0));
10614 arg1 = build_call_expr (expfn, 1, fold_convert (type, arg));
10615 return fold_build2 (MULT_EXPR, type, arg0, arg1);
10618 /* Optimize x/pow(y,z) into x*pow(y,-z). */
10619 if (fcode1 == BUILT_IN_POW
10620 || fcode1 == BUILT_IN_POWF
10621 || fcode1 == BUILT_IN_POWL)
10623 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
10624 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10625 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10626 tree neg11 = fold_convert (type, negate_expr (arg11));
10627 arg1 = build_call_expr (powfn, 2, arg10, neg11);
10628 return fold_build2 (MULT_EXPR, type, arg0, arg1);
10631 return NULL_TREE;
10633 case TRUNC_DIV_EXPR:
10634 case FLOOR_DIV_EXPR:
10635 /* Simplify A / (B << N) where A and B are positive and B is
10636 a power of 2, to A >> (N + log2(B)). */
10637 strict_overflow_p = false;
10638 if (TREE_CODE (arg1) == LSHIFT_EXPR
10639 && (TYPE_UNSIGNED (type)
10640 || tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p)))
10642 tree sval = TREE_OPERAND (arg1, 0);
10643 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
10645 tree sh_cnt = TREE_OPERAND (arg1, 1);
10646 unsigned long pow2 = exact_log2 (TREE_INT_CST_LOW (sval));
10648 if (strict_overflow_p)
10649 fold_overflow_warning (("assuming signed overflow does not "
10650 "occur when simplifying A / (B << N)"),
10651 WARN_STRICT_OVERFLOW_MISC);
10653 sh_cnt = fold_build2 (PLUS_EXPR, TREE_TYPE (sh_cnt),
10654 sh_cnt, build_int_cst (NULL_TREE, pow2));
10655 return fold_build2 (RSHIFT_EXPR, type,
10656 fold_convert (type, arg0), sh_cnt);
10659 /* Fall thru */
10661 case ROUND_DIV_EXPR:
10662 case CEIL_DIV_EXPR:
10663 case EXACT_DIV_EXPR:
10664 if (integer_onep (arg1))
10665 return non_lvalue (fold_convert (type, arg0));
10666 if (integer_zerop (arg1))
10667 return NULL_TREE;
10668 /* X / -1 is -X. */
10669 if (!TYPE_UNSIGNED (type)
10670 && TREE_CODE (arg1) == INTEGER_CST
10671 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
10672 && TREE_INT_CST_HIGH (arg1) == -1)
10673 return fold_convert (type, negate_expr (arg0));
10675 /* Convert -A / -B to A / B when the type is signed and overflow is
10676 undefined. */
10677 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10678 && TREE_CODE (arg0) == NEGATE_EXPR
10679 && negate_expr_p (arg1))
10681 if (INTEGRAL_TYPE_P (type))
10682 fold_overflow_warning (("assuming signed overflow does not occur "
10683 "when distributing negation across "
10684 "division"),
10685 WARN_STRICT_OVERFLOW_MISC);
10686 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
10687 negate_expr (arg1));
10689 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10690 && TREE_CODE (arg1) == NEGATE_EXPR
10691 && negate_expr_p (arg0))
10693 if (INTEGRAL_TYPE_P (type))
10694 fold_overflow_warning (("assuming signed overflow does not occur "
10695 "when distributing negation across "
10696 "division"),
10697 WARN_STRICT_OVERFLOW_MISC);
10698 return fold_build2 (code, type, negate_expr (arg0),
10699 TREE_OPERAND (arg1, 0));
10702 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10703 operation, EXACT_DIV_EXPR.
10705 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10706 At one time others generated faster code, it's not clear if they do
10707 after the last round to changes to the DIV code in expmed.c. */
10708 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
10709 && multiple_of_p (type, arg0, arg1))
10710 return fold_build2 (EXACT_DIV_EXPR, type, arg0, arg1);
10712 strict_overflow_p = false;
10713 if (TREE_CODE (arg1) == INTEGER_CST
10714 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10715 &strict_overflow_p)))
10717 if (strict_overflow_p)
10718 fold_overflow_warning (("assuming signed overflow does not occur "
10719 "when simplifying division"),
10720 WARN_STRICT_OVERFLOW_MISC);
10721 return fold_convert (type, tem);
10724 return NULL_TREE;
10726 case CEIL_MOD_EXPR:
10727 case FLOOR_MOD_EXPR:
10728 case ROUND_MOD_EXPR:
10729 case TRUNC_MOD_EXPR:
10730 /* X % 1 is always zero, but be sure to preserve any side
10731 effects in X. */
10732 if (integer_onep (arg1))
10733 return omit_one_operand (type, integer_zero_node, arg0);
10735 /* X % 0, return X % 0 unchanged so that we can get the
10736 proper warnings and errors. */
10737 if (integer_zerop (arg1))
10738 return NULL_TREE;
10740 /* 0 % X is always zero, but be sure to preserve any side
10741 effects in X. Place this after checking for X == 0. */
10742 if (integer_zerop (arg0))
10743 return omit_one_operand (type, integer_zero_node, arg1);
10745 /* X % -1 is zero. */
10746 if (!TYPE_UNSIGNED (type)
10747 && TREE_CODE (arg1) == INTEGER_CST
10748 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
10749 && TREE_INT_CST_HIGH (arg1) == -1)
10750 return omit_one_operand (type, integer_zero_node, arg0);
10752 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
10753 i.e. "X % C" into "X & (C - 1)", if X and C are positive. */
10754 strict_overflow_p = false;
10755 if ((code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR)
10756 && (TYPE_UNSIGNED (type)
10757 || tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p)))
10759 tree c = arg1;
10760 /* Also optimize A % (C << N) where C is a power of 2,
10761 to A & ((C << N) - 1). */
10762 if (TREE_CODE (arg1) == LSHIFT_EXPR)
10763 c = TREE_OPERAND (arg1, 0);
10765 if (integer_pow2p (c) && tree_int_cst_sgn (c) > 0)
10767 tree mask = fold_build2 (MINUS_EXPR, TREE_TYPE (arg1), arg1,
10768 build_int_cst (TREE_TYPE (arg1), 1));
10769 if (strict_overflow_p)
10770 fold_overflow_warning (("assuming signed overflow does not "
10771 "occur when simplifying "
10772 "X % (power of two)"),
10773 WARN_STRICT_OVERFLOW_MISC);
10774 return fold_build2 (BIT_AND_EXPR, type,
10775 fold_convert (type, arg0),
10776 fold_convert (type, mask));
10780 /* X % -C is the same as X % C. */
10781 if (code == TRUNC_MOD_EXPR
10782 && !TYPE_UNSIGNED (type)
10783 && TREE_CODE (arg1) == INTEGER_CST
10784 && !TREE_OVERFLOW (arg1)
10785 && TREE_INT_CST_HIGH (arg1) < 0
10786 && !TYPE_OVERFLOW_TRAPS (type)
10787 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
10788 && !sign_bit_p (arg1, arg1))
10789 return fold_build2 (code, type, fold_convert (type, arg0),
10790 fold_convert (type, negate_expr (arg1)));
10792 /* X % -Y is the same as X % Y. */
10793 if (code == TRUNC_MOD_EXPR
10794 && !TYPE_UNSIGNED (type)
10795 && TREE_CODE (arg1) == NEGATE_EXPR
10796 && !TYPE_OVERFLOW_TRAPS (type))
10797 return fold_build2 (code, type, fold_convert (type, arg0),
10798 fold_convert (type, TREE_OPERAND (arg1, 0)));
10800 if (TREE_CODE (arg1) == INTEGER_CST
10801 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10802 &strict_overflow_p)))
10804 if (strict_overflow_p)
10805 fold_overflow_warning (("assuming signed overflow does not occur "
10806 "when simplifying modulos"),
10807 WARN_STRICT_OVERFLOW_MISC);
10808 return fold_convert (type, tem);
10811 return NULL_TREE;
10813 case LROTATE_EXPR:
10814 case RROTATE_EXPR:
10815 if (integer_all_onesp (arg0))
10816 return omit_one_operand (type, arg0, arg1);
10817 goto shift;
10819 case RSHIFT_EXPR:
10820 /* Optimize -1 >> x for arithmetic right shifts. */
10821 if (integer_all_onesp (arg0) && !TYPE_UNSIGNED (type))
10822 return omit_one_operand (type, arg0, arg1);
10823 /* ... fall through ... */
10825 case LSHIFT_EXPR:
10826 shift:
10827 if (integer_zerop (arg1))
10828 return non_lvalue (fold_convert (type, arg0));
10829 if (integer_zerop (arg0))
10830 return omit_one_operand (type, arg0, arg1);
10832 /* Since negative shift count is not well-defined,
10833 don't try to compute it in the compiler. */
10834 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
10835 return NULL_TREE;
10837 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
10838 if (TREE_CODE (op0) == code && host_integerp (arg1, false)
10839 && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
10840 && host_integerp (TREE_OPERAND (arg0, 1), false)
10841 && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
10843 HOST_WIDE_INT low = (TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1))
10844 + TREE_INT_CST_LOW (arg1));
10846 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
10847 being well defined. */
10848 if (low >= TYPE_PRECISION (type))
10850 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
10851 low = low % TYPE_PRECISION (type);
10852 else if (TYPE_UNSIGNED (type) || code == LSHIFT_EXPR)
10853 return build_int_cst (type, 0);
10854 else
10855 low = TYPE_PRECISION (type) - 1;
10858 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
10859 build_int_cst (type, low));
10862 /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
10863 into x & ((unsigned)-1 >> c) for unsigned types. */
10864 if (((code == LSHIFT_EXPR && TREE_CODE (arg0) == RSHIFT_EXPR)
10865 || (TYPE_UNSIGNED (type)
10866 && code == RSHIFT_EXPR && TREE_CODE (arg0) == LSHIFT_EXPR))
10867 && host_integerp (arg1, false)
10868 && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
10869 && host_integerp (TREE_OPERAND (arg0, 1), false)
10870 && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
10872 HOST_WIDE_INT low0 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
10873 HOST_WIDE_INT low1 = TREE_INT_CST_LOW (arg1);
10874 tree lshift;
10875 tree arg00;
10877 if (low0 == low1)
10879 arg00 = fold_convert (type, TREE_OPERAND (arg0, 0));
10881 lshift = build_int_cst (type, -1);
10882 lshift = int_const_binop (code, lshift, arg1, 0);
10884 return fold_build2 (BIT_AND_EXPR, type, arg00, lshift);
10888 /* Rewrite an LROTATE_EXPR by a constant into an
10889 RROTATE_EXPR by a new constant. */
10890 if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
10892 tree tem = build_int_cst (TREE_TYPE (arg1),
10893 GET_MODE_BITSIZE (TYPE_MODE (type)));
10894 tem = const_binop (MINUS_EXPR, tem, arg1, 0);
10895 return fold_build2 (RROTATE_EXPR, type, arg0, tem);
10898 /* If we have a rotate of a bit operation with the rotate count and
10899 the second operand of the bit operation both constant,
10900 permute the two operations. */
10901 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10902 && (TREE_CODE (arg0) == BIT_AND_EXPR
10903 || TREE_CODE (arg0) == BIT_IOR_EXPR
10904 || TREE_CODE (arg0) == BIT_XOR_EXPR)
10905 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10906 return fold_build2 (TREE_CODE (arg0), type,
10907 fold_build2 (code, type,
10908 TREE_OPERAND (arg0, 0), arg1),
10909 fold_build2 (code, type,
10910 TREE_OPERAND (arg0, 1), arg1));
10912 /* Two consecutive rotates adding up to the width of the mode can
10913 be ignored. */
10914 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10915 && TREE_CODE (arg0) == RROTATE_EXPR
10916 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10917 && TREE_INT_CST_HIGH (arg1) == 0
10918 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
10919 && ((TREE_INT_CST_LOW (arg1)
10920 + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
10921 == (unsigned int) GET_MODE_BITSIZE (TYPE_MODE (type))))
10922 return TREE_OPERAND (arg0, 0);
10924 return NULL_TREE;
10926 case MIN_EXPR:
10927 if (operand_equal_p (arg0, arg1, 0))
10928 return omit_one_operand (type, arg0, arg1);
10929 if (INTEGRAL_TYPE_P (type)
10930 && operand_equal_p (arg1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
10931 return omit_one_operand (type, arg1, arg0);
10932 tem = fold_minmax (MIN_EXPR, type, arg0, arg1);
10933 if (tem)
10934 return tem;
10935 goto associate;
10937 case MAX_EXPR:
10938 if (operand_equal_p (arg0, arg1, 0))
10939 return omit_one_operand (type, arg0, arg1);
10940 if (INTEGRAL_TYPE_P (type)
10941 && TYPE_MAX_VALUE (type)
10942 && operand_equal_p (arg1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
10943 return omit_one_operand (type, arg1, arg0);
10944 tem = fold_minmax (MAX_EXPR, type, arg0, arg1);
10945 if (tem)
10946 return tem;
10947 goto associate;
10949 case TRUTH_ANDIF_EXPR:
10950 /* Note that the operands of this must be ints
10951 and their values must be 0 or 1.
10952 ("true" is a fixed value perhaps depending on the language.) */
10953 /* If first arg is constant zero, return it. */
10954 if (integer_zerop (arg0))
10955 return fold_convert (type, arg0);
10956 case TRUTH_AND_EXPR:
10957 /* If either arg is constant true, drop it. */
10958 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10959 return non_lvalue (fold_convert (type, arg1));
10960 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
10961 /* Preserve sequence points. */
10962 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10963 return non_lvalue (fold_convert (type, arg0));
10964 /* If second arg is constant zero, result is zero, but first arg
10965 must be evaluated. */
10966 if (integer_zerop (arg1))
10967 return omit_one_operand (type, arg1, arg0);
10968 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10969 case will be handled here. */
10970 if (integer_zerop (arg0))
10971 return omit_one_operand (type, arg0, arg1);
10973 /* !X && X is always false. */
10974 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10975 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10976 return omit_one_operand (type, integer_zero_node, arg1);
10977 /* X && !X is always false. */
10978 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10979 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10980 return omit_one_operand (type, integer_zero_node, arg0);
10982 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10983 means A >= Y && A != MAX, but in this case we know that
10984 A < X <= MAX. */
10986 if (!TREE_SIDE_EFFECTS (arg0)
10987 && !TREE_SIDE_EFFECTS (arg1))
10989 tem = fold_to_nonsharp_ineq_using_bound (arg0, arg1);
10990 if (tem && !operand_equal_p (tem, arg0, 0))
10991 return fold_build2 (code, type, tem, arg1);
10993 tem = fold_to_nonsharp_ineq_using_bound (arg1, arg0);
10994 if (tem && !operand_equal_p (tem, arg1, 0))
10995 return fold_build2 (code, type, arg0, tem);
10998 truth_andor:
10999 /* We only do these simplifications if we are optimizing. */
11000 if (!optimize)
11001 return NULL_TREE;
11003 /* Check for things like (A || B) && (A || C). We can convert this
11004 to A || (B && C). Note that either operator can be any of the four
11005 truth and/or operations and the transformation will still be
11006 valid. Also note that we only care about order for the
11007 ANDIF and ORIF operators. If B contains side effects, this
11008 might change the truth-value of A. */
11009 if (TREE_CODE (arg0) == TREE_CODE (arg1)
11010 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
11011 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
11012 || TREE_CODE (arg0) == TRUTH_AND_EXPR
11013 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
11014 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
11016 tree a00 = TREE_OPERAND (arg0, 0);
11017 tree a01 = TREE_OPERAND (arg0, 1);
11018 tree a10 = TREE_OPERAND (arg1, 0);
11019 tree a11 = TREE_OPERAND (arg1, 1);
11020 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
11021 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
11022 && (code == TRUTH_AND_EXPR
11023 || code == TRUTH_OR_EXPR));
11025 if (operand_equal_p (a00, a10, 0))
11026 return fold_build2 (TREE_CODE (arg0), type, a00,
11027 fold_build2 (code, type, a01, a11));
11028 else if (commutative && operand_equal_p (a00, a11, 0))
11029 return fold_build2 (TREE_CODE (arg0), type, a00,
11030 fold_build2 (code, type, a01, a10));
11031 else if (commutative && operand_equal_p (a01, a10, 0))
11032 return fold_build2 (TREE_CODE (arg0), type, a01,
11033 fold_build2 (code, type, a00, a11));
11035 /* This case if tricky because we must either have commutative
11036 operators or else A10 must not have side-effects. */
11038 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
11039 && operand_equal_p (a01, a11, 0))
11040 return fold_build2 (TREE_CODE (arg0), type,
11041 fold_build2 (code, type, a00, a10),
11042 a01);
11045 /* See if we can build a range comparison. */
11046 if (0 != (tem = fold_range_test (code, type, op0, op1)))
11047 return tem;
11049 /* Check for the possibility of merging component references. If our
11050 lhs is another similar operation, try to merge its rhs with our
11051 rhs. Then try to merge our lhs and rhs. */
11052 if (TREE_CODE (arg0) == code
11053 && 0 != (tem = fold_truthop (code, type,
11054 TREE_OPERAND (arg0, 1), arg1)))
11055 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
11057 if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
11058 return tem;
11060 return NULL_TREE;
11062 case TRUTH_ORIF_EXPR:
11063 /* Note that the operands of this must be ints
11064 and their values must be 0 or true.
11065 ("true" is a fixed value perhaps depending on the language.) */
11066 /* If first arg is constant true, return it. */
11067 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11068 return fold_convert (type, arg0);
11069 case TRUTH_OR_EXPR:
11070 /* If either arg is constant zero, drop it. */
11071 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
11072 return non_lvalue (fold_convert (type, arg1));
11073 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
11074 /* Preserve sequence points. */
11075 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
11076 return non_lvalue (fold_convert (type, arg0));
11077 /* If second arg is constant true, result is true, but we must
11078 evaluate first arg. */
11079 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
11080 return omit_one_operand (type, arg1, arg0);
11081 /* Likewise for first arg, but note this only occurs here for
11082 TRUTH_OR_EXPR. */
11083 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11084 return omit_one_operand (type, arg0, arg1);
11086 /* !X || X is always true. */
11087 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11088 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11089 return omit_one_operand (type, integer_one_node, arg1);
11090 /* X || !X is always true. */
11091 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
11092 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11093 return omit_one_operand (type, integer_one_node, arg0);
11095 goto truth_andor;
11097 case TRUTH_XOR_EXPR:
11098 /* If the second arg is constant zero, drop it. */
11099 if (integer_zerop (arg1))
11100 return non_lvalue (fold_convert (type, arg0));
11101 /* If the second arg is constant true, this is a logical inversion. */
11102 if (integer_onep (arg1))
11104 /* Only call invert_truthvalue if operand is a truth value. */
11105 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
11106 tem = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (arg0), arg0);
11107 else
11108 tem = invert_truthvalue (arg0);
11109 return non_lvalue (fold_convert (type, tem));
11111 /* Identical arguments cancel to zero. */
11112 if (operand_equal_p (arg0, arg1, 0))
11113 return omit_one_operand (type, integer_zero_node, arg0);
11115 /* !X ^ X is always true. */
11116 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
11117 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11118 return omit_one_operand (type, integer_one_node, arg1);
11120 /* X ^ !X is always true. */
11121 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
11122 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11123 return omit_one_operand (type, integer_one_node, arg0);
11125 return NULL_TREE;
11127 case EQ_EXPR:
11128 case NE_EXPR:
11129 tem = fold_comparison (code, type, op0, op1);
11130 if (tem != NULL_TREE)
11131 return tem;
11133 /* bool_var != 0 becomes bool_var. */
11134 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
11135 && code == NE_EXPR)
11136 return non_lvalue (fold_convert (type, arg0));
11138 /* bool_var == 1 becomes bool_var. */
11139 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
11140 && code == EQ_EXPR)
11141 return non_lvalue (fold_convert (type, arg0));
11143 /* bool_var != 1 becomes !bool_var. */
11144 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
11145 && code == NE_EXPR)
11146 return fold_build1 (TRUTH_NOT_EXPR, type, arg0);
11148 /* bool_var == 0 becomes !bool_var. */
11149 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
11150 && code == EQ_EXPR)
11151 return fold_build1 (TRUTH_NOT_EXPR, type, arg0);
11153 /* If this is an equality comparison of the address of two non-weak,
11154 unaliased symbols neither of which are extern (since we do not
11155 have access to attributes for externs), then we know the result. */
11156 if (TREE_CODE (arg0) == ADDR_EXPR
11157 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg0, 0))
11158 && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
11159 && ! lookup_attribute ("alias",
11160 DECL_ATTRIBUTES (TREE_OPERAND (arg0, 0)))
11161 && ! DECL_EXTERNAL (TREE_OPERAND (arg0, 0))
11162 && TREE_CODE (arg1) == ADDR_EXPR
11163 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg1, 0))
11164 && ! DECL_WEAK (TREE_OPERAND (arg1, 0))
11165 && ! lookup_attribute ("alias",
11166 DECL_ATTRIBUTES (TREE_OPERAND (arg1, 0)))
11167 && ! DECL_EXTERNAL (TREE_OPERAND (arg1, 0)))
11169 /* We know that we're looking at the address of two
11170 non-weak, unaliased, static _DECL nodes.
11172 It is both wasteful and incorrect to call operand_equal_p
11173 to compare the two ADDR_EXPR nodes. It is wasteful in that
11174 all we need to do is test pointer equality for the arguments
11175 to the two ADDR_EXPR nodes. It is incorrect to use
11176 operand_equal_p as that function is NOT equivalent to a
11177 C equality test. It can in fact return false for two
11178 objects which would test as equal using the C equality
11179 operator. */
11180 bool equal = TREE_OPERAND (arg0, 0) == TREE_OPERAND (arg1, 0);
11181 return constant_boolean_node (equal
11182 ? code == EQ_EXPR : code != EQ_EXPR,
11183 type);
11186 /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
11187 a MINUS_EXPR of a constant, we can convert it into a comparison with
11188 a revised constant as long as no overflow occurs. */
11189 if (TREE_CODE (arg1) == INTEGER_CST
11190 && (TREE_CODE (arg0) == PLUS_EXPR
11191 || TREE_CODE (arg0) == MINUS_EXPR)
11192 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11193 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
11194 ? MINUS_EXPR : PLUS_EXPR,
11195 fold_convert (TREE_TYPE (arg0), arg1),
11196 TREE_OPERAND (arg0, 1), 0))
11197 && !TREE_OVERFLOW (tem))
11198 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
11200 /* Similarly for a NEGATE_EXPR. */
11201 if (TREE_CODE (arg0) == NEGATE_EXPR
11202 && TREE_CODE (arg1) == INTEGER_CST
11203 && 0 != (tem = negate_expr (arg1))
11204 && TREE_CODE (tem) == INTEGER_CST
11205 && !TREE_OVERFLOW (tem))
11206 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
11208 /* Similarly for a BIT_XOR_EXPR; X ^ C1 == C2 is X == (C1 ^ C2). */
11209 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11210 && TREE_CODE (arg1) == INTEGER_CST
11211 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11212 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
11213 fold_build2 (BIT_XOR_EXPR, TREE_TYPE (arg0),
11214 fold_convert (TREE_TYPE (arg0), arg1),
11215 TREE_OPERAND (arg0, 1)));
11217 /* Transform comparisons of the form X +- C CMP X. */
11218 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
11219 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11220 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11221 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
11222 || POINTER_TYPE_P (TREE_TYPE (arg0))))
11224 tree cst = TREE_OPERAND (arg0, 1);
11226 if (code == EQ_EXPR
11227 && !integer_zerop (cst))
11228 return omit_two_operands (type, boolean_false_node,
11229 TREE_OPERAND (arg0, 0), arg1);
11230 else
11231 return omit_two_operands (type, boolean_true_node,
11232 TREE_OPERAND (arg0, 0), arg1);
11235 /* If we have X - Y == 0, we can convert that to X == Y and similarly
11236 for !=. Don't do this for ordered comparisons due to overflow. */
11237 if (TREE_CODE (arg0) == MINUS_EXPR
11238 && integer_zerop (arg1))
11239 return fold_build2 (code, type,
11240 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
11242 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
11243 if (TREE_CODE (arg0) == ABS_EXPR
11244 && (integer_zerop (arg1) || real_zerop (arg1)))
11245 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), arg1);
11247 /* If this is an EQ or NE comparison with zero and ARG0 is
11248 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
11249 two operations, but the latter can be done in one less insn
11250 on machines that have only two-operand insns or on which a
11251 constant cannot be the first operand. */
11252 if (TREE_CODE (arg0) == BIT_AND_EXPR
11253 && integer_zerop (arg1))
11255 tree arg00 = TREE_OPERAND (arg0, 0);
11256 tree arg01 = TREE_OPERAND (arg0, 1);
11257 if (TREE_CODE (arg00) == LSHIFT_EXPR
11258 && integer_onep (TREE_OPERAND (arg00, 0)))
11259 return
11260 fold_build2 (code, type,
11261 build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
11262 build2 (RSHIFT_EXPR, TREE_TYPE (arg00),
11263 arg01, TREE_OPERAND (arg00, 1)),
11264 fold_convert (TREE_TYPE (arg0),
11265 integer_one_node)),
11266 arg1);
11267 else if (TREE_CODE (TREE_OPERAND (arg0, 1)) == LSHIFT_EXPR
11268 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 1), 0)))
11269 return
11270 fold_build2 (code, type,
11271 build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
11272 build2 (RSHIFT_EXPR, TREE_TYPE (arg01),
11273 arg00, TREE_OPERAND (arg01, 1)),
11274 fold_convert (TREE_TYPE (arg0),
11275 integer_one_node)),
11276 arg1);
11279 /* If this is an NE or EQ comparison of zero against the result of a
11280 signed MOD operation whose second operand is a power of 2, make
11281 the MOD operation unsigned since it is simpler and equivalent. */
11282 if (integer_zerop (arg1)
11283 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
11284 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
11285 || TREE_CODE (arg0) == CEIL_MOD_EXPR
11286 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
11287 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
11288 && integer_pow2p (TREE_OPERAND (arg0, 1)))
11290 tree newtype = lang_hooks.types.unsigned_type (TREE_TYPE (arg0));
11291 tree newmod = fold_build2 (TREE_CODE (arg0), newtype,
11292 fold_convert (newtype,
11293 TREE_OPERAND (arg0, 0)),
11294 fold_convert (newtype,
11295 TREE_OPERAND (arg0, 1)));
11297 return fold_build2 (code, type, newmod,
11298 fold_convert (newtype, arg1));
11301 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
11302 C1 is a valid shift constant, and C2 is a power of two, i.e.
11303 a single bit. */
11304 if (TREE_CODE (arg0) == BIT_AND_EXPR
11305 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
11306 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
11307 == INTEGER_CST
11308 && integer_pow2p (TREE_OPERAND (arg0, 1))
11309 && integer_zerop (arg1))
11311 tree itype = TREE_TYPE (arg0);
11312 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (itype);
11313 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
11315 /* Check for a valid shift count. */
11316 if (TREE_INT_CST_HIGH (arg001) == 0
11317 && TREE_INT_CST_LOW (arg001) < prec)
11319 tree arg01 = TREE_OPERAND (arg0, 1);
11320 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
11321 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
11322 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
11323 can be rewritten as (X & (C2 << C1)) != 0. */
11324 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
11326 tem = fold_build2 (LSHIFT_EXPR, itype, arg01, arg001);
11327 tem = fold_build2 (BIT_AND_EXPR, itype, arg000, tem);
11328 return fold_build2 (code, type, tem, arg1);
11330 /* Otherwise, for signed (arithmetic) shifts,
11331 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
11332 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
11333 else if (!TYPE_UNSIGNED (itype))
11334 return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
11335 arg000, build_int_cst (itype, 0));
11336 /* Otherwise, of unsigned (logical) shifts,
11337 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
11338 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
11339 else
11340 return omit_one_operand (type,
11341 code == EQ_EXPR ? integer_one_node
11342 : integer_zero_node,
11343 arg000);
11347 /* If this is an NE comparison of zero with an AND of one, remove the
11348 comparison since the AND will give the correct value. */
11349 if (code == NE_EXPR
11350 && integer_zerop (arg1)
11351 && TREE_CODE (arg0) == BIT_AND_EXPR
11352 && integer_onep (TREE_OPERAND (arg0, 1)))
11353 return fold_convert (type, arg0);
11355 /* If we have (A & C) == C where C is a power of 2, convert this into
11356 (A & C) != 0. Similarly for NE_EXPR. */
11357 if (TREE_CODE (arg0) == BIT_AND_EXPR
11358 && integer_pow2p (TREE_OPERAND (arg0, 1))
11359 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11360 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
11361 arg0, fold_convert (TREE_TYPE (arg0),
11362 integer_zero_node));
11364 /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
11365 bit, then fold the expression into A < 0 or A >= 0. */
11366 tem = fold_single_bit_test_into_sign_test (code, arg0, arg1, type);
11367 if (tem)
11368 return tem;
11370 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
11371 Similarly for NE_EXPR. */
11372 if (TREE_CODE (arg0) == BIT_AND_EXPR
11373 && TREE_CODE (arg1) == INTEGER_CST
11374 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11376 tree notc = fold_build1 (BIT_NOT_EXPR,
11377 TREE_TYPE (TREE_OPERAND (arg0, 1)),
11378 TREE_OPERAND (arg0, 1));
11379 tree dandnotc = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
11380 arg1, notc);
11381 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
11382 if (integer_nonzerop (dandnotc))
11383 return omit_one_operand (type, rslt, arg0);
11386 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
11387 Similarly for NE_EXPR. */
11388 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11389 && TREE_CODE (arg1) == INTEGER_CST
11390 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11392 tree notd = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1), arg1);
11393 tree candnotd = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
11394 TREE_OPERAND (arg0, 1), notd);
11395 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
11396 if (integer_nonzerop (candnotd))
11397 return omit_one_operand (type, rslt, arg0);
11400 /* If this is a comparison of a field, we may be able to simplify it. */
11401 if ((TREE_CODE (arg0) == COMPONENT_REF
11402 || TREE_CODE (arg0) == BIT_FIELD_REF)
11403 /* Handle the constant case even without -O
11404 to make sure the warnings are given. */
11405 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
11407 t1 = optimize_bit_field_compare (code, type, arg0, arg1);
11408 if (t1)
11409 return t1;
11412 /* Optimize comparisons of strlen vs zero to a compare of the
11413 first character of the string vs zero. To wit,
11414 strlen(ptr) == 0 => *ptr == 0
11415 strlen(ptr) != 0 => *ptr != 0
11416 Other cases should reduce to one of these two (or a constant)
11417 due to the return value of strlen being unsigned. */
11418 if (TREE_CODE (arg0) == CALL_EXPR
11419 && integer_zerop (arg1))
11421 tree fndecl = get_callee_fndecl (arg0);
11423 if (fndecl
11424 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
11425 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
11426 && call_expr_nargs (arg0) == 1
11427 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
11429 tree iref = build_fold_indirect_ref (CALL_EXPR_ARG (arg0, 0));
11430 return fold_build2 (code, type, iref,
11431 build_int_cst (TREE_TYPE (iref), 0));
11435 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
11436 of X. Similarly fold (X >> C) == 0 into X >= 0. */
11437 if (TREE_CODE (arg0) == RSHIFT_EXPR
11438 && integer_zerop (arg1)
11439 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11441 tree arg00 = TREE_OPERAND (arg0, 0);
11442 tree arg01 = TREE_OPERAND (arg0, 1);
11443 tree itype = TREE_TYPE (arg00);
11444 if (TREE_INT_CST_HIGH (arg01) == 0
11445 && TREE_INT_CST_LOW (arg01)
11446 == (unsigned HOST_WIDE_INT) (TYPE_PRECISION (itype) - 1))
11448 if (TYPE_UNSIGNED (itype))
11450 itype = lang_hooks.types.signed_type (itype);
11451 arg00 = fold_convert (itype, arg00);
11453 return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR,
11454 type, arg00, build_int_cst (itype, 0));
11458 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
11459 if (integer_zerop (arg1)
11460 && TREE_CODE (arg0) == BIT_XOR_EXPR)
11461 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
11462 TREE_OPERAND (arg0, 1));
11464 /* (X ^ Y) == Y becomes X == 0. We know that Y has no side-effects. */
11465 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11466 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11467 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
11468 build_int_cst (TREE_TYPE (arg1), 0));
11469 /* Likewise (X ^ Y) == X becomes Y == 0. X has no side-effects. */
11470 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11471 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11472 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
11473 return fold_build2 (code, type, TREE_OPERAND (arg0, 1),
11474 build_int_cst (TREE_TYPE (arg1), 0));
11476 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
11477 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11478 && TREE_CODE (arg1) == INTEGER_CST
11479 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11480 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
11481 fold_build2 (BIT_XOR_EXPR, TREE_TYPE (arg1),
11482 TREE_OPERAND (arg0, 1), arg1));
11484 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
11485 (X & C) == 0 when C is a single bit. */
11486 if (TREE_CODE (arg0) == BIT_AND_EXPR
11487 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
11488 && integer_zerop (arg1)
11489 && integer_pow2p (TREE_OPERAND (arg0, 1)))
11491 tem = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
11492 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
11493 TREE_OPERAND (arg0, 1));
11494 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
11495 type, tem, arg1);
11498 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
11499 constant C is a power of two, i.e. a single bit. */
11500 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11501 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11502 && integer_zerop (arg1)
11503 && integer_pow2p (TREE_OPERAND (arg0, 1))
11504 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11505 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
11507 tree arg00 = TREE_OPERAND (arg0, 0);
11508 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
11509 arg00, build_int_cst (TREE_TYPE (arg00), 0));
11512 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
11513 when is C is a power of two, i.e. a single bit. */
11514 if (TREE_CODE (arg0) == BIT_AND_EXPR
11515 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
11516 && integer_zerop (arg1)
11517 && integer_pow2p (TREE_OPERAND (arg0, 1))
11518 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11519 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
11521 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
11522 tem = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg000),
11523 arg000, TREE_OPERAND (arg0, 1));
11524 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
11525 tem, build_int_cst (TREE_TYPE (tem), 0));
11528 if (integer_zerop (arg1)
11529 && tree_expr_nonzero_p (arg0))
11531 tree res = constant_boolean_node (code==NE_EXPR, type);
11532 return omit_one_operand (type, res, arg0);
11535 /* Fold -X op -Y as X op Y, where op is eq/ne. */
11536 if (TREE_CODE (arg0) == NEGATE_EXPR
11537 && TREE_CODE (arg1) == NEGATE_EXPR)
11538 return fold_build2 (code, type,
11539 TREE_OPERAND (arg0, 0),
11540 TREE_OPERAND (arg1, 0));
11542 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
11543 if (TREE_CODE (arg0) == BIT_AND_EXPR
11544 && TREE_CODE (arg1) == BIT_AND_EXPR)
11546 tree arg00 = TREE_OPERAND (arg0, 0);
11547 tree arg01 = TREE_OPERAND (arg0, 1);
11548 tree arg10 = TREE_OPERAND (arg1, 0);
11549 tree arg11 = TREE_OPERAND (arg1, 1);
11550 tree itype = TREE_TYPE (arg0);
11552 if (operand_equal_p (arg01, arg11, 0))
11553 return fold_build2 (code, type,
11554 fold_build2 (BIT_AND_EXPR, itype,
11555 fold_build2 (BIT_XOR_EXPR, itype,
11556 arg00, arg10),
11557 arg01),
11558 build_int_cst (itype, 0));
11560 if (operand_equal_p (arg01, arg10, 0))
11561 return fold_build2 (code, type,
11562 fold_build2 (BIT_AND_EXPR, itype,
11563 fold_build2 (BIT_XOR_EXPR, itype,
11564 arg00, arg11),
11565 arg01),
11566 build_int_cst (itype, 0));
11568 if (operand_equal_p (arg00, arg11, 0))
11569 return fold_build2 (code, type,
11570 fold_build2 (BIT_AND_EXPR, itype,
11571 fold_build2 (BIT_XOR_EXPR, itype,
11572 arg01, arg10),
11573 arg00),
11574 build_int_cst (itype, 0));
11576 if (operand_equal_p (arg00, arg10, 0))
11577 return fold_build2 (code, type,
11578 fold_build2 (BIT_AND_EXPR, itype,
11579 fold_build2 (BIT_XOR_EXPR, itype,
11580 arg01, arg11),
11581 arg00),
11582 build_int_cst (itype, 0));
11585 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11586 && TREE_CODE (arg1) == BIT_XOR_EXPR)
11588 tree arg00 = TREE_OPERAND (arg0, 0);
11589 tree arg01 = TREE_OPERAND (arg0, 1);
11590 tree arg10 = TREE_OPERAND (arg1, 0);
11591 tree arg11 = TREE_OPERAND (arg1, 1);
11592 tree itype = TREE_TYPE (arg0);
11594 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
11595 operand_equal_p guarantees no side-effects so we don't need
11596 to use omit_one_operand on Z. */
11597 if (operand_equal_p (arg01, arg11, 0))
11598 return fold_build2 (code, type, arg00, arg10);
11599 if (operand_equal_p (arg01, arg10, 0))
11600 return fold_build2 (code, type, arg00, arg11);
11601 if (operand_equal_p (arg00, arg11, 0))
11602 return fold_build2 (code, type, arg01, arg10);
11603 if (operand_equal_p (arg00, arg10, 0))
11604 return fold_build2 (code, type, arg01, arg11);
11606 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
11607 if (TREE_CODE (arg01) == INTEGER_CST
11608 && TREE_CODE (arg11) == INTEGER_CST)
11609 return fold_build2 (code, type,
11610 fold_build2 (BIT_XOR_EXPR, itype, arg00,
11611 fold_build2 (BIT_XOR_EXPR, itype,
11612 arg01, arg11)),
11613 arg10);
11616 /* Attempt to simplify equality/inequality comparisons of complex
11617 values. Only lower the comparison if the result is known or
11618 can be simplified to a single scalar comparison. */
11619 if ((TREE_CODE (arg0) == COMPLEX_EXPR
11620 || TREE_CODE (arg0) == COMPLEX_CST)
11621 && (TREE_CODE (arg1) == COMPLEX_EXPR
11622 || TREE_CODE (arg1) == COMPLEX_CST))
11624 tree real0, imag0, real1, imag1;
11625 tree rcond, icond;
11627 if (TREE_CODE (arg0) == COMPLEX_EXPR)
11629 real0 = TREE_OPERAND (arg0, 0);
11630 imag0 = TREE_OPERAND (arg0, 1);
11632 else
11634 real0 = TREE_REALPART (arg0);
11635 imag0 = TREE_IMAGPART (arg0);
11638 if (TREE_CODE (arg1) == COMPLEX_EXPR)
11640 real1 = TREE_OPERAND (arg1, 0);
11641 imag1 = TREE_OPERAND (arg1, 1);
11643 else
11645 real1 = TREE_REALPART (arg1);
11646 imag1 = TREE_IMAGPART (arg1);
11649 rcond = fold_binary (code, type, real0, real1);
11650 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
11652 if (integer_zerop (rcond))
11654 if (code == EQ_EXPR)
11655 return omit_two_operands (type, boolean_false_node,
11656 imag0, imag1);
11657 return fold_build2 (NE_EXPR, type, imag0, imag1);
11659 else
11661 if (code == NE_EXPR)
11662 return omit_two_operands (type, boolean_true_node,
11663 imag0, imag1);
11664 return fold_build2 (EQ_EXPR, type, imag0, imag1);
11668 icond = fold_binary (code, type, imag0, imag1);
11669 if (icond && TREE_CODE (icond) == INTEGER_CST)
11671 if (integer_zerop (icond))
11673 if (code == EQ_EXPR)
11674 return omit_two_operands (type, boolean_false_node,
11675 real0, real1);
11676 return fold_build2 (NE_EXPR, type, real0, real1);
11678 else
11680 if (code == NE_EXPR)
11681 return omit_two_operands (type, boolean_true_node,
11682 real0, real1);
11683 return fold_build2 (EQ_EXPR, type, real0, real1);
11688 return NULL_TREE;
11690 case LT_EXPR:
11691 case GT_EXPR:
11692 case LE_EXPR:
11693 case GE_EXPR:
11694 tem = fold_comparison (code, type, op0, op1);
11695 if (tem != NULL_TREE)
11696 return tem;
11698 /* Transform comparisons of the form X +- C CMP X. */
11699 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
11700 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11701 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
11702 && !HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0))))
11703 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11704 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
11706 tree arg01 = TREE_OPERAND (arg0, 1);
11707 enum tree_code code0 = TREE_CODE (arg0);
11708 int is_positive;
11710 if (TREE_CODE (arg01) == REAL_CST)
11711 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
11712 else
11713 is_positive = tree_int_cst_sgn (arg01);
11715 /* (X - c) > X becomes false. */
11716 if (code == GT_EXPR
11717 && ((code0 == MINUS_EXPR && is_positive >= 0)
11718 || (code0 == PLUS_EXPR && is_positive <= 0)))
11720 if (TREE_CODE (arg01) == INTEGER_CST
11721 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11722 fold_overflow_warning (("assuming signed overflow does not "
11723 "occur when assuming that (X - c) > X "
11724 "is always false"),
11725 WARN_STRICT_OVERFLOW_ALL);
11726 return constant_boolean_node (0, type);
11729 /* Likewise (X + c) < X becomes false. */
11730 if (code == LT_EXPR
11731 && ((code0 == PLUS_EXPR && is_positive >= 0)
11732 || (code0 == MINUS_EXPR && is_positive <= 0)))
11734 if (TREE_CODE (arg01) == INTEGER_CST
11735 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11736 fold_overflow_warning (("assuming signed overflow does not "
11737 "occur when assuming that "
11738 "(X + c) < X is always false"),
11739 WARN_STRICT_OVERFLOW_ALL);
11740 return constant_boolean_node (0, type);
11743 /* Convert (X - c) <= X to true. */
11744 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
11745 && code == LE_EXPR
11746 && ((code0 == MINUS_EXPR && is_positive >= 0)
11747 || (code0 == PLUS_EXPR && is_positive <= 0)))
11749 if (TREE_CODE (arg01) == INTEGER_CST
11750 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11751 fold_overflow_warning (("assuming signed overflow does not "
11752 "occur when assuming that "
11753 "(X - c) <= X is always true"),
11754 WARN_STRICT_OVERFLOW_ALL);
11755 return constant_boolean_node (1, type);
11758 /* Convert (X + c) >= X to true. */
11759 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
11760 && code == GE_EXPR
11761 && ((code0 == PLUS_EXPR && is_positive >= 0)
11762 || (code0 == MINUS_EXPR && is_positive <= 0)))
11764 if (TREE_CODE (arg01) == INTEGER_CST
11765 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11766 fold_overflow_warning (("assuming signed overflow does not "
11767 "occur when assuming that "
11768 "(X + c) >= X is always true"),
11769 WARN_STRICT_OVERFLOW_ALL);
11770 return constant_boolean_node (1, type);
11773 if (TREE_CODE (arg01) == INTEGER_CST)
11775 /* Convert X + c > X and X - c < X to true for integers. */
11776 if (code == GT_EXPR
11777 && ((code0 == PLUS_EXPR && is_positive > 0)
11778 || (code0 == MINUS_EXPR && is_positive < 0)))
11780 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11781 fold_overflow_warning (("assuming signed overflow does "
11782 "not occur when assuming that "
11783 "(X + c) > X is always true"),
11784 WARN_STRICT_OVERFLOW_ALL);
11785 return constant_boolean_node (1, type);
11788 if (code == LT_EXPR
11789 && ((code0 == MINUS_EXPR && is_positive > 0)
11790 || (code0 == PLUS_EXPR && is_positive < 0)))
11792 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11793 fold_overflow_warning (("assuming signed overflow does "
11794 "not occur when assuming that "
11795 "(X - c) < X is always true"),
11796 WARN_STRICT_OVERFLOW_ALL);
11797 return constant_boolean_node (1, type);
11800 /* Convert X + c <= X and X - c >= X to false for integers. */
11801 if (code == LE_EXPR
11802 && ((code0 == PLUS_EXPR && is_positive > 0)
11803 || (code0 == MINUS_EXPR && is_positive < 0)))
11805 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11806 fold_overflow_warning (("assuming signed overflow does "
11807 "not occur when assuming that "
11808 "(X + c) <= X is always false"),
11809 WARN_STRICT_OVERFLOW_ALL);
11810 return constant_boolean_node (0, type);
11813 if (code == GE_EXPR
11814 && ((code0 == MINUS_EXPR && is_positive > 0)
11815 || (code0 == PLUS_EXPR && is_positive < 0)))
11817 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11818 fold_overflow_warning (("assuming signed overflow does "
11819 "not occur when assuming that "
11820 "(X - c) >= X is always false"),
11821 WARN_STRICT_OVERFLOW_ALL);
11822 return constant_boolean_node (0, type);
11827 /* Change X >= C to X > (C - 1) and X < C to X <= (C - 1) if C > 0.
11828 This transformation affects the cases which are handled in later
11829 optimizations involving comparisons with non-negative constants. */
11830 if (TREE_CODE (arg1) == INTEGER_CST
11831 && TREE_CODE (arg0) != INTEGER_CST
11832 && tree_int_cst_sgn (arg1) > 0)
11834 if (code == GE_EXPR)
11836 arg1 = const_binop (MINUS_EXPR, arg1,
11837 build_int_cst (TREE_TYPE (arg1), 1), 0);
11838 return fold_build2 (GT_EXPR, type, arg0,
11839 fold_convert (TREE_TYPE (arg0), arg1));
11841 if (code == LT_EXPR)
11843 arg1 = const_binop (MINUS_EXPR, arg1,
11844 build_int_cst (TREE_TYPE (arg1), 1), 0);
11845 return fold_build2 (LE_EXPR, type, arg0,
11846 fold_convert (TREE_TYPE (arg0), arg1));
11850 /* Comparisons with the highest or lowest possible integer of
11851 the specified precision will have known values. */
11853 tree arg1_type = TREE_TYPE (arg1);
11854 unsigned int width = TYPE_PRECISION (arg1_type);
11856 if (TREE_CODE (arg1) == INTEGER_CST
11857 && !TREE_OVERFLOW (arg1)
11858 && width <= 2 * HOST_BITS_PER_WIDE_INT
11859 && (INTEGRAL_TYPE_P (arg1_type) || POINTER_TYPE_P (arg1_type)))
11861 HOST_WIDE_INT signed_max_hi;
11862 unsigned HOST_WIDE_INT signed_max_lo;
11863 unsigned HOST_WIDE_INT max_hi, max_lo, min_hi, min_lo;
11865 if (width <= HOST_BITS_PER_WIDE_INT)
11867 signed_max_lo = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
11868 - 1;
11869 signed_max_hi = 0;
11870 max_hi = 0;
11872 if (TYPE_UNSIGNED (arg1_type))
11874 max_lo = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
11875 min_lo = 0;
11876 min_hi = 0;
11878 else
11880 max_lo = signed_max_lo;
11881 min_lo = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
11882 min_hi = -1;
11885 else
11887 width -= HOST_BITS_PER_WIDE_INT;
11888 signed_max_lo = -1;
11889 signed_max_hi = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
11890 - 1;
11891 max_lo = -1;
11892 min_lo = 0;
11894 if (TYPE_UNSIGNED (arg1_type))
11896 max_hi = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
11897 min_hi = 0;
11899 else
11901 max_hi = signed_max_hi;
11902 min_hi = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
11906 if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1) == max_hi
11907 && TREE_INT_CST_LOW (arg1) == max_lo)
11908 switch (code)
11910 case GT_EXPR:
11911 return omit_one_operand (type, integer_zero_node, arg0);
11913 case GE_EXPR:
11914 return fold_build2 (EQ_EXPR, type, op0, op1);
11916 case LE_EXPR:
11917 return omit_one_operand (type, integer_one_node, arg0);
11919 case LT_EXPR:
11920 return fold_build2 (NE_EXPR, type, op0, op1);
11922 /* The GE_EXPR and LT_EXPR cases above are not normally
11923 reached because of previous transformations. */
11925 default:
11926 break;
11928 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
11929 == max_hi
11930 && TREE_INT_CST_LOW (arg1) == max_lo - 1)
11931 switch (code)
11933 case GT_EXPR:
11934 arg1 = const_binop (PLUS_EXPR, arg1,
11935 build_int_cst (TREE_TYPE (arg1), 1), 0);
11936 return fold_build2 (EQ_EXPR, type,
11937 fold_convert (TREE_TYPE (arg1), arg0),
11938 arg1);
11939 case LE_EXPR:
11940 arg1 = const_binop (PLUS_EXPR, arg1,
11941 build_int_cst (TREE_TYPE (arg1), 1), 0);
11942 return fold_build2 (NE_EXPR, type,
11943 fold_convert (TREE_TYPE (arg1), arg0),
11944 arg1);
11945 default:
11946 break;
11948 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
11949 == min_hi
11950 && TREE_INT_CST_LOW (arg1) == min_lo)
11951 switch (code)
11953 case LT_EXPR:
11954 return omit_one_operand (type, integer_zero_node, arg0);
11956 case LE_EXPR:
11957 return fold_build2 (EQ_EXPR, type, op0, op1);
11959 case GE_EXPR:
11960 return omit_one_operand (type, integer_one_node, arg0);
11962 case GT_EXPR:
11963 return fold_build2 (NE_EXPR, type, op0, op1);
11965 default:
11966 break;
11968 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
11969 == min_hi
11970 && TREE_INT_CST_LOW (arg1) == min_lo + 1)
11971 switch (code)
11973 case GE_EXPR:
11974 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
11975 return fold_build2 (NE_EXPR, type,
11976 fold_convert (TREE_TYPE (arg1), arg0),
11977 arg1);
11978 case LT_EXPR:
11979 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
11980 return fold_build2 (EQ_EXPR, type,
11981 fold_convert (TREE_TYPE (arg1), arg0),
11982 arg1);
11983 default:
11984 break;
11987 else if (TREE_INT_CST_HIGH (arg1) == signed_max_hi
11988 && TREE_INT_CST_LOW (arg1) == signed_max_lo
11989 && TYPE_UNSIGNED (arg1_type)
11990 /* We will flip the signedness of the comparison operator
11991 associated with the mode of arg1, so the sign bit is
11992 specified by this mode. Check that arg1 is the signed
11993 max associated with this sign bit. */
11994 && width == GET_MODE_BITSIZE (TYPE_MODE (arg1_type))
11995 /* signed_type does not work on pointer types. */
11996 && INTEGRAL_TYPE_P (arg1_type))
11998 /* The following case also applies to X < signed_max+1
11999 and X >= signed_max+1 because previous transformations. */
12000 if (code == LE_EXPR || code == GT_EXPR)
12002 tree st;
12003 st = lang_hooks.types.signed_type (TREE_TYPE (arg1));
12004 return fold_build2 (code == LE_EXPR ? GE_EXPR : LT_EXPR,
12005 type, fold_convert (st, arg0),
12006 build_int_cst (st, 0));
12012 /* If we are comparing an ABS_EXPR with a constant, we can
12013 convert all the cases into explicit comparisons, but they may
12014 well not be faster than doing the ABS and one comparison.
12015 But ABS (X) <= C is a range comparison, which becomes a subtraction
12016 and a comparison, and is probably faster. */
12017 if (code == LE_EXPR
12018 && TREE_CODE (arg1) == INTEGER_CST
12019 && TREE_CODE (arg0) == ABS_EXPR
12020 && ! TREE_SIDE_EFFECTS (arg0)
12021 && (0 != (tem = negate_expr (arg1)))
12022 && TREE_CODE (tem) == INTEGER_CST
12023 && !TREE_OVERFLOW (tem))
12024 return fold_build2 (TRUTH_ANDIF_EXPR, type,
12025 build2 (GE_EXPR, type,
12026 TREE_OPERAND (arg0, 0), tem),
12027 build2 (LE_EXPR, type,
12028 TREE_OPERAND (arg0, 0), arg1));
12030 /* Convert ABS_EXPR<x> >= 0 to true. */
12031 strict_overflow_p = false;
12032 if (code == GE_EXPR
12033 && (integer_zerop (arg1)
12034 || (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
12035 && real_zerop (arg1)))
12036 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
12038 if (strict_overflow_p)
12039 fold_overflow_warning (("assuming signed overflow does not occur "
12040 "when simplifying comparison of "
12041 "absolute value and zero"),
12042 WARN_STRICT_OVERFLOW_CONDITIONAL);
12043 return omit_one_operand (type, integer_one_node, arg0);
12046 /* Convert ABS_EXPR<x> < 0 to false. */
12047 strict_overflow_p = false;
12048 if (code == LT_EXPR
12049 && (integer_zerop (arg1) || real_zerop (arg1))
12050 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
12052 if (strict_overflow_p)
12053 fold_overflow_warning (("assuming signed overflow does not occur "
12054 "when simplifying comparison of "
12055 "absolute value and zero"),
12056 WARN_STRICT_OVERFLOW_CONDITIONAL);
12057 return omit_one_operand (type, integer_zero_node, arg0);
12060 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
12061 and similarly for >= into !=. */
12062 if ((code == LT_EXPR || code == GE_EXPR)
12063 && TYPE_UNSIGNED (TREE_TYPE (arg0))
12064 && TREE_CODE (arg1) == LSHIFT_EXPR
12065 && integer_onep (TREE_OPERAND (arg1, 0)))
12066 return build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
12067 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
12068 TREE_OPERAND (arg1, 1)),
12069 build_int_cst (TREE_TYPE (arg0), 0));
12071 if ((code == LT_EXPR || code == GE_EXPR)
12072 && TYPE_UNSIGNED (TREE_TYPE (arg0))
12073 && (TREE_CODE (arg1) == NOP_EXPR
12074 || TREE_CODE (arg1) == CONVERT_EXPR)
12075 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
12076 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
12077 return
12078 build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
12079 fold_convert (TREE_TYPE (arg0),
12080 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
12081 TREE_OPERAND (TREE_OPERAND (arg1, 0),
12082 1))),
12083 build_int_cst (TREE_TYPE (arg0), 0));
12085 return NULL_TREE;
12087 case UNORDERED_EXPR:
12088 case ORDERED_EXPR:
12089 case UNLT_EXPR:
12090 case UNLE_EXPR:
12091 case UNGT_EXPR:
12092 case UNGE_EXPR:
12093 case UNEQ_EXPR:
12094 case LTGT_EXPR:
12095 if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
12097 t1 = fold_relational_const (code, type, arg0, arg1);
12098 if (t1 != NULL_TREE)
12099 return t1;
12102 /* If the first operand is NaN, the result is constant. */
12103 if (TREE_CODE (arg0) == REAL_CST
12104 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
12105 && (code != LTGT_EXPR || ! flag_trapping_math))
12107 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
12108 ? integer_zero_node
12109 : integer_one_node;
12110 return omit_one_operand (type, t1, arg1);
12113 /* If the second operand is NaN, the result is constant. */
12114 if (TREE_CODE (arg1) == REAL_CST
12115 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
12116 && (code != LTGT_EXPR || ! flag_trapping_math))
12118 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
12119 ? integer_zero_node
12120 : integer_one_node;
12121 return omit_one_operand (type, t1, arg0);
12124 /* Simplify unordered comparison of something with itself. */
12125 if ((code == UNLE_EXPR || code == UNGE_EXPR || code == UNEQ_EXPR)
12126 && operand_equal_p (arg0, arg1, 0))
12127 return constant_boolean_node (1, type);
12129 if (code == LTGT_EXPR
12130 && !flag_trapping_math
12131 && operand_equal_p (arg0, arg1, 0))
12132 return constant_boolean_node (0, type);
12134 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
12136 tree targ0 = strip_float_extensions (arg0);
12137 tree targ1 = strip_float_extensions (arg1);
12138 tree newtype = TREE_TYPE (targ0);
12140 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
12141 newtype = TREE_TYPE (targ1);
12143 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
12144 return fold_build2 (code, type, fold_convert (newtype, targ0),
12145 fold_convert (newtype, targ1));
12148 return NULL_TREE;
12150 case COMPOUND_EXPR:
12151 /* When pedantic, a compound expression can be neither an lvalue
12152 nor an integer constant expression. */
12153 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
12154 return NULL_TREE;
12155 /* Don't let (0, 0) be null pointer constant. */
12156 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
12157 : fold_convert (type, arg1);
12158 return pedantic_non_lvalue (tem);
12160 case COMPLEX_EXPR:
12161 if ((TREE_CODE (arg0) == REAL_CST
12162 && TREE_CODE (arg1) == REAL_CST)
12163 || (TREE_CODE (arg0) == INTEGER_CST
12164 && TREE_CODE (arg1) == INTEGER_CST))
12165 return build_complex (type, arg0, arg1);
12166 return NULL_TREE;
12168 case ASSERT_EXPR:
12169 /* An ASSERT_EXPR should never be passed to fold_binary. */
12170 gcc_unreachable ();
12172 default:
12173 return NULL_TREE;
12174 } /* switch (code) */
12177 /* Callback for walk_tree, looking for LABEL_EXPR.
12178 Returns tree TP if it is LABEL_EXPR. Otherwise it returns NULL_TREE.
12179 Do not check the sub-tree of GOTO_EXPR. */
12181 static tree
12182 contains_label_1 (tree *tp,
12183 int *walk_subtrees,
12184 void *data ATTRIBUTE_UNUSED)
12186 switch (TREE_CODE (*tp))
12188 case LABEL_EXPR:
12189 return *tp;
12190 case GOTO_EXPR:
12191 *walk_subtrees = 0;
12192 /* no break */
12193 default:
12194 return NULL_TREE;
12198 /* Checks whether the sub-tree ST contains a label LABEL_EXPR which is
12199 accessible from outside the sub-tree. Returns NULL_TREE if no
12200 addressable label is found. */
12202 static bool
12203 contains_label_p (tree st)
12205 return (walk_tree (&st, contains_label_1 , NULL, NULL) != NULL_TREE);
12208 /* Fold a ternary expression of code CODE and type TYPE with operands
12209 OP0, OP1, and OP2. Return the folded expression if folding is
12210 successful. Otherwise, return NULL_TREE. */
12212 tree
12213 fold_ternary (enum tree_code code, tree type, tree op0, tree op1, tree op2)
12215 tree tem;
12216 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
12217 enum tree_code_class kind = TREE_CODE_CLASS (code);
12219 gcc_assert (IS_EXPR_CODE_CLASS (kind)
12220 && TREE_CODE_LENGTH (code) == 3);
12222 /* Strip any conversions that don't change the mode. This is safe
12223 for every expression, except for a comparison expression because
12224 its signedness is derived from its operands. So, in the latter
12225 case, only strip conversions that don't change the signedness.
12227 Note that this is done as an internal manipulation within the
12228 constant folder, in order to find the simplest representation of
12229 the arguments so that their form can be studied. In any cases,
12230 the appropriate type conversions should be put back in the tree
12231 that will get out of the constant folder. */
12232 if (op0)
12234 arg0 = op0;
12235 STRIP_NOPS (arg0);
12238 if (op1)
12240 arg1 = op1;
12241 STRIP_NOPS (arg1);
12244 switch (code)
12246 case COMPONENT_REF:
12247 if (TREE_CODE (arg0) == CONSTRUCTOR
12248 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
12250 unsigned HOST_WIDE_INT idx;
12251 tree field, value;
12252 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
12253 if (field == arg1)
12254 return value;
12256 return NULL_TREE;
12258 case COND_EXPR:
12259 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
12260 so all simple results must be passed through pedantic_non_lvalue. */
12261 if (TREE_CODE (arg0) == INTEGER_CST)
12263 tree unused_op = integer_zerop (arg0) ? op1 : op2;
12264 tem = integer_zerop (arg0) ? op2 : op1;
12265 /* Only optimize constant conditions when the selected branch
12266 has the same type as the COND_EXPR. This avoids optimizing
12267 away "c ? x : throw", where the throw has a void type.
12268 Avoid throwing away that operand which contains label. */
12269 if ((!TREE_SIDE_EFFECTS (unused_op)
12270 || !contains_label_p (unused_op))
12271 && (! VOID_TYPE_P (TREE_TYPE (tem))
12272 || VOID_TYPE_P (type)))
12273 return pedantic_non_lvalue (tem);
12274 return NULL_TREE;
12276 if (operand_equal_p (arg1, op2, 0))
12277 return pedantic_omit_one_operand (type, arg1, arg0);
12279 /* If we have A op B ? A : C, we may be able to convert this to a
12280 simpler expression, depending on the operation and the values
12281 of B and C. Signed zeros prevent all of these transformations,
12282 for reasons given above each one.
12284 Also try swapping the arguments and inverting the conditional. */
12285 if (COMPARISON_CLASS_P (arg0)
12286 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
12287 arg1, TREE_OPERAND (arg0, 1))
12288 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
12290 tem = fold_cond_expr_with_comparison (type, arg0, op1, op2);
12291 if (tem)
12292 return tem;
12295 if (COMPARISON_CLASS_P (arg0)
12296 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
12297 op2,
12298 TREE_OPERAND (arg0, 1))
12299 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op2))))
12301 tem = fold_truth_not_expr (arg0);
12302 if (tem && COMPARISON_CLASS_P (tem))
12304 tem = fold_cond_expr_with_comparison (type, tem, op2, op1);
12305 if (tem)
12306 return tem;
12310 /* If the second operand is simpler than the third, swap them
12311 since that produces better jump optimization results. */
12312 if (truth_value_p (TREE_CODE (arg0))
12313 && tree_swap_operands_p (op1, op2, false))
12315 /* See if this can be inverted. If it can't, possibly because
12316 it was a floating-point inequality comparison, don't do
12317 anything. */
12318 tem = fold_truth_not_expr (arg0);
12319 if (tem)
12320 return fold_build3 (code, type, tem, op2, op1);
12323 /* Convert A ? 1 : 0 to simply A. */
12324 if (integer_onep (op1)
12325 && integer_zerop (op2)
12326 /* If we try to convert OP0 to our type, the
12327 call to fold will try to move the conversion inside
12328 a COND, which will recurse. In that case, the COND_EXPR
12329 is probably the best choice, so leave it alone. */
12330 && type == TREE_TYPE (arg0))
12331 return pedantic_non_lvalue (arg0);
12333 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
12334 over COND_EXPR in cases such as floating point comparisons. */
12335 if (integer_zerop (op1)
12336 && integer_onep (op2)
12337 && truth_value_p (TREE_CODE (arg0)))
12338 return pedantic_non_lvalue (fold_convert (type,
12339 invert_truthvalue (arg0)));
12341 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
12342 if (TREE_CODE (arg0) == LT_EXPR
12343 && integer_zerop (TREE_OPERAND (arg0, 1))
12344 && integer_zerop (op2)
12345 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
12347 /* sign_bit_p only checks ARG1 bits within A's precision.
12348 If <sign bit of A> has wider type than A, bits outside
12349 of A's precision in <sign bit of A> need to be checked.
12350 If they are all 0, this optimization needs to be done
12351 in unsigned A's type, if they are all 1 in signed A's type,
12352 otherwise this can't be done. */
12353 if (TYPE_PRECISION (TREE_TYPE (tem))
12354 < TYPE_PRECISION (TREE_TYPE (arg1))
12355 && TYPE_PRECISION (TREE_TYPE (tem))
12356 < TYPE_PRECISION (type))
12358 unsigned HOST_WIDE_INT mask_lo;
12359 HOST_WIDE_INT mask_hi;
12360 int inner_width, outer_width;
12361 tree tem_type;
12363 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
12364 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
12365 if (outer_width > TYPE_PRECISION (type))
12366 outer_width = TYPE_PRECISION (type);
12368 if (outer_width > HOST_BITS_PER_WIDE_INT)
12370 mask_hi = ((unsigned HOST_WIDE_INT) -1
12371 >> (2 * HOST_BITS_PER_WIDE_INT - outer_width));
12372 mask_lo = -1;
12374 else
12376 mask_hi = 0;
12377 mask_lo = ((unsigned HOST_WIDE_INT) -1
12378 >> (HOST_BITS_PER_WIDE_INT - outer_width));
12380 if (inner_width > HOST_BITS_PER_WIDE_INT)
12382 mask_hi &= ~((unsigned HOST_WIDE_INT) -1
12383 >> (HOST_BITS_PER_WIDE_INT - inner_width));
12384 mask_lo = 0;
12386 else
12387 mask_lo &= ~((unsigned HOST_WIDE_INT) -1
12388 >> (HOST_BITS_PER_WIDE_INT - inner_width));
12390 if ((TREE_INT_CST_HIGH (arg1) & mask_hi) == mask_hi
12391 && (TREE_INT_CST_LOW (arg1) & mask_lo) == mask_lo)
12393 tem_type = lang_hooks.types.signed_type (TREE_TYPE (tem));
12394 tem = fold_convert (tem_type, tem);
12396 else if ((TREE_INT_CST_HIGH (arg1) & mask_hi) == 0
12397 && (TREE_INT_CST_LOW (arg1) & mask_lo) == 0)
12399 tem_type = lang_hooks.types.unsigned_type (TREE_TYPE (tem));
12400 tem = fold_convert (tem_type, tem);
12402 else
12403 tem = NULL;
12406 if (tem)
12407 return fold_convert (type,
12408 fold_build2 (BIT_AND_EXPR,
12409 TREE_TYPE (tem), tem,
12410 fold_convert (TREE_TYPE (tem),
12411 arg1)));
12414 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
12415 already handled above. */
12416 if (TREE_CODE (arg0) == BIT_AND_EXPR
12417 && integer_onep (TREE_OPERAND (arg0, 1))
12418 && integer_zerop (op2)
12419 && integer_pow2p (arg1))
12421 tree tem = TREE_OPERAND (arg0, 0);
12422 STRIP_NOPS (tem);
12423 if (TREE_CODE (tem) == RSHIFT_EXPR
12424 && TREE_CODE (TREE_OPERAND (tem, 1)) == INTEGER_CST
12425 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
12426 TREE_INT_CST_LOW (TREE_OPERAND (tem, 1)))
12427 return fold_build2 (BIT_AND_EXPR, type,
12428 TREE_OPERAND (tem, 0), arg1);
12431 /* A & N ? N : 0 is simply A & N if N is a power of two. This
12432 is probably obsolete because the first operand should be a
12433 truth value (that's why we have the two cases above), but let's
12434 leave it in until we can confirm this for all front-ends. */
12435 if (integer_zerop (op2)
12436 && TREE_CODE (arg0) == NE_EXPR
12437 && integer_zerop (TREE_OPERAND (arg0, 1))
12438 && integer_pow2p (arg1)
12439 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
12440 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12441 arg1, OEP_ONLY_CONST))
12442 return pedantic_non_lvalue (fold_convert (type,
12443 TREE_OPERAND (arg0, 0)));
12445 /* Convert A ? B : 0 into A && B if A and B are truth values. */
12446 if (integer_zerop (op2)
12447 && truth_value_p (TREE_CODE (arg0))
12448 && truth_value_p (TREE_CODE (arg1)))
12449 return fold_build2 (TRUTH_ANDIF_EXPR, type,
12450 fold_convert (type, arg0),
12451 arg1);
12453 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
12454 if (integer_onep (op2)
12455 && truth_value_p (TREE_CODE (arg0))
12456 && truth_value_p (TREE_CODE (arg1)))
12458 /* Only perform transformation if ARG0 is easily inverted. */
12459 tem = fold_truth_not_expr (arg0);
12460 if (tem)
12461 return fold_build2 (TRUTH_ORIF_EXPR, type,
12462 fold_convert (type, tem),
12463 arg1);
12466 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
12467 if (integer_zerop (arg1)
12468 && truth_value_p (TREE_CODE (arg0))
12469 && truth_value_p (TREE_CODE (op2)))
12471 /* Only perform transformation if ARG0 is easily inverted. */
12472 tem = fold_truth_not_expr (arg0);
12473 if (tem)
12474 return fold_build2 (TRUTH_ANDIF_EXPR, type,
12475 fold_convert (type, tem),
12476 op2);
12479 /* Convert A ? 1 : B into A || B if A and B are truth values. */
12480 if (integer_onep (arg1)
12481 && truth_value_p (TREE_CODE (arg0))
12482 && truth_value_p (TREE_CODE (op2)))
12483 return fold_build2 (TRUTH_ORIF_EXPR, type,
12484 fold_convert (type, arg0),
12485 op2);
12487 return NULL_TREE;
12489 case CALL_EXPR:
12490 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
12491 of fold_ternary on them. */
12492 gcc_unreachable ();
12494 case BIT_FIELD_REF:
12495 if ((TREE_CODE (arg0) == VECTOR_CST
12496 || (TREE_CODE (arg0) == CONSTRUCTOR && TREE_CONSTANT (arg0)))
12497 && type == TREE_TYPE (TREE_TYPE (arg0))
12498 && host_integerp (arg1, 1)
12499 && host_integerp (op2, 1))
12501 unsigned HOST_WIDE_INT width = tree_low_cst (arg1, 1);
12502 unsigned HOST_WIDE_INT idx = tree_low_cst (op2, 1);
12504 if (width != 0
12505 && simple_cst_equal (arg1, TYPE_SIZE (type)) == 1
12506 && (idx % width) == 0
12507 && (idx = idx / width)
12508 < TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
12510 tree elements = NULL_TREE;
12512 if (TREE_CODE (arg0) == VECTOR_CST)
12513 elements = TREE_VECTOR_CST_ELTS (arg0);
12514 else
12516 unsigned HOST_WIDE_INT idx;
12517 tree value;
12519 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (arg0), idx, value)
12520 elements = tree_cons (NULL_TREE, value, elements);
12522 while (idx-- > 0 && elements)
12523 elements = TREE_CHAIN (elements);
12524 if (elements)
12525 return TREE_VALUE (elements);
12526 else
12527 return fold_convert (type, integer_zero_node);
12530 return NULL_TREE;
12532 default:
12533 return NULL_TREE;
12534 } /* switch (code) */
12537 /* Perform constant folding and related simplification of EXPR.
12538 The related simplifications include x*1 => x, x*0 => 0, etc.,
12539 and application of the associative law.
12540 NOP_EXPR conversions may be removed freely (as long as we
12541 are careful not to change the type of the overall expression).
12542 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
12543 but we can constant-fold them if they have constant operands. */
12545 #ifdef ENABLE_FOLD_CHECKING
12546 # define fold(x) fold_1 (x)
12547 static tree fold_1 (tree);
12548 static
12549 #endif
12550 tree
12551 fold (tree expr)
12553 const tree t = expr;
12554 enum tree_code code = TREE_CODE (t);
12555 enum tree_code_class kind = TREE_CODE_CLASS (code);
12556 tree tem;
12558 /* Return right away if a constant. */
12559 if (kind == tcc_constant)
12560 return t;
12562 /* CALL_EXPR-like objects with variable numbers of operands are
12563 treated specially. */
12564 if (kind == tcc_vl_exp)
12566 if (code == CALL_EXPR)
12568 tem = fold_call_expr (expr, false);
12569 return tem ? tem : expr;
12571 return expr;
12574 if (IS_EXPR_CODE_CLASS (kind)
12575 || IS_GIMPLE_STMT_CODE_CLASS (kind))
12577 tree type = TREE_TYPE (t);
12578 tree op0, op1, op2;
12580 switch (TREE_CODE_LENGTH (code))
12582 case 1:
12583 op0 = TREE_OPERAND (t, 0);
12584 tem = fold_unary (code, type, op0);
12585 return tem ? tem : expr;
12586 case 2:
12587 op0 = TREE_OPERAND (t, 0);
12588 op1 = TREE_OPERAND (t, 1);
12589 tem = fold_binary (code, type, op0, op1);
12590 return tem ? tem : expr;
12591 case 3:
12592 op0 = TREE_OPERAND (t, 0);
12593 op1 = TREE_OPERAND (t, 1);
12594 op2 = TREE_OPERAND (t, 2);
12595 tem = fold_ternary (code, type, op0, op1, op2);
12596 return tem ? tem : expr;
12597 default:
12598 break;
12602 switch (code)
12604 case CONST_DECL:
12605 return fold (DECL_INITIAL (t));
12607 default:
12608 return t;
12609 } /* switch (code) */
12612 #ifdef ENABLE_FOLD_CHECKING
12613 #undef fold
12615 static void fold_checksum_tree (tree, struct md5_ctx *, htab_t);
12616 static void fold_check_failed (tree, tree);
12617 void print_fold_checksum (tree);
12619 /* When --enable-checking=fold, compute a digest of expr before
12620 and after actual fold call to see if fold did not accidentally
12621 change original expr. */
12623 tree
12624 fold (tree expr)
12626 tree ret;
12627 struct md5_ctx ctx;
12628 unsigned char checksum_before[16], checksum_after[16];
12629 htab_t ht;
12631 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
12632 md5_init_ctx (&ctx);
12633 fold_checksum_tree (expr, &ctx, ht);
12634 md5_finish_ctx (&ctx, checksum_before);
12635 htab_empty (ht);
12637 ret = fold_1 (expr);
12639 md5_init_ctx (&ctx);
12640 fold_checksum_tree (expr, &ctx, ht);
12641 md5_finish_ctx (&ctx, checksum_after);
12642 htab_delete (ht);
12644 if (memcmp (checksum_before, checksum_after, 16))
12645 fold_check_failed (expr, ret);
12647 return ret;
12650 void
12651 print_fold_checksum (tree expr)
12653 struct md5_ctx ctx;
12654 unsigned char checksum[16], cnt;
12655 htab_t ht;
12657 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
12658 md5_init_ctx (&ctx);
12659 fold_checksum_tree (expr, &ctx, ht);
12660 md5_finish_ctx (&ctx, checksum);
12661 htab_delete (ht);
12662 for (cnt = 0; cnt < 16; ++cnt)
12663 fprintf (stderr, "%02x", checksum[cnt]);
12664 putc ('\n', stderr);
12667 static void
12668 fold_check_failed (tree expr ATTRIBUTE_UNUSED, tree ret ATTRIBUTE_UNUSED)
12670 internal_error ("fold check: original tree changed by fold");
12673 static void
12674 fold_checksum_tree (tree expr, struct md5_ctx *ctx, htab_t ht)
12676 void **slot;
12677 enum tree_code code;
12678 struct tree_function_decl buf;
12679 int i, len;
12681 recursive_label:
12683 gcc_assert ((sizeof (struct tree_exp) + 5 * sizeof (tree)
12684 <= sizeof (struct tree_function_decl))
12685 && sizeof (struct tree_type) <= sizeof (struct tree_function_decl));
12686 if (expr == NULL)
12687 return;
12688 slot = htab_find_slot (ht, expr, INSERT);
12689 if (*slot != NULL)
12690 return;
12691 *slot = expr;
12692 code = TREE_CODE (expr);
12693 if (TREE_CODE_CLASS (code) == tcc_declaration
12694 && DECL_ASSEMBLER_NAME_SET_P (expr))
12696 /* Allow DECL_ASSEMBLER_NAME to be modified. */
12697 memcpy ((char *) &buf, expr, tree_size (expr));
12698 expr = (tree) &buf;
12699 SET_DECL_ASSEMBLER_NAME (expr, NULL);
12701 else if (TREE_CODE_CLASS (code) == tcc_type
12702 && (TYPE_POINTER_TO (expr) || TYPE_REFERENCE_TO (expr)
12703 || TYPE_CACHED_VALUES_P (expr)
12704 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)))
12706 /* Allow these fields to be modified. */
12707 memcpy ((char *) &buf, expr, tree_size (expr));
12708 expr = (tree) &buf;
12709 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr) = 0;
12710 TYPE_POINTER_TO (expr) = NULL;
12711 TYPE_REFERENCE_TO (expr) = NULL;
12712 if (TYPE_CACHED_VALUES_P (expr))
12714 TYPE_CACHED_VALUES_P (expr) = 0;
12715 TYPE_CACHED_VALUES (expr) = NULL;
12718 md5_process_bytes (expr, tree_size (expr), ctx);
12719 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
12720 if (TREE_CODE_CLASS (code) != tcc_type
12721 && TREE_CODE_CLASS (code) != tcc_declaration
12722 && code != TREE_LIST)
12723 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
12724 switch (TREE_CODE_CLASS (code))
12726 case tcc_constant:
12727 switch (code)
12729 case STRING_CST:
12730 md5_process_bytes (TREE_STRING_POINTER (expr),
12731 TREE_STRING_LENGTH (expr), ctx);
12732 break;
12733 case COMPLEX_CST:
12734 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
12735 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
12736 break;
12737 case VECTOR_CST:
12738 fold_checksum_tree (TREE_VECTOR_CST_ELTS (expr), ctx, ht);
12739 break;
12740 default:
12741 break;
12743 break;
12744 case tcc_exceptional:
12745 switch (code)
12747 case TREE_LIST:
12748 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
12749 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
12750 expr = TREE_CHAIN (expr);
12751 goto recursive_label;
12752 break;
12753 case TREE_VEC:
12754 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
12755 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
12756 break;
12757 default:
12758 break;
12760 break;
12761 case tcc_expression:
12762 case tcc_reference:
12763 case tcc_comparison:
12764 case tcc_unary:
12765 case tcc_binary:
12766 case tcc_statement:
12767 case tcc_vl_exp:
12768 len = TREE_OPERAND_LENGTH (expr);
12769 for (i = 0; i < len; ++i)
12770 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
12771 break;
12772 case tcc_declaration:
12773 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
12774 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
12775 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
12777 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
12778 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
12779 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
12780 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
12781 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
12783 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_WITH_VIS))
12784 fold_checksum_tree (DECL_SECTION_NAME (expr), ctx, ht);
12786 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
12788 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
12789 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
12790 fold_checksum_tree (DECL_ARGUMENT_FLD (expr), ctx, ht);
12792 break;
12793 case tcc_type:
12794 if (TREE_CODE (expr) == ENUMERAL_TYPE)
12795 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
12796 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
12797 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
12798 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
12799 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
12800 if (INTEGRAL_TYPE_P (expr)
12801 || SCALAR_FLOAT_TYPE_P (expr))
12803 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
12804 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
12806 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
12807 if (TREE_CODE (expr) == RECORD_TYPE
12808 || TREE_CODE (expr) == UNION_TYPE
12809 || TREE_CODE (expr) == QUAL_UNION_TYPE)
12810 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
12811 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
12812 break;
12813 default:
12814 break;
12818 #endif
12820 /* Fold a unary tree expression with code CODE of type TYPE with an
12821 operand OP0. Return a folded expression if successful. Otherwise,
12822 return a tree expression with code CODE of type TYPE with an
12823 operand OP0. */
12825 tree
12826 fold_build1_stat (enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
12828 tree tem;
12829 #ifdef ENABLE_FOLD_CHECKING
12830 unsigned char checksum_before[16], checksum_after[16];
12831 struct md5_ctx ctx;
12832 htab_t ht;
12834 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
12835 md5_init_ctx (&ctx);
12836 fold_checksum_tree (op0, &ctx, ht);
12837 md5_finish_ctx (&ctx, checksum_before);
12838 htab_empty (ht);
12839 #endif
12841 tem = fold_unary (code, type, op0);
12842 if (!tem)
12843 tem = build1_stat (code, type, op0 PASS_MEM_STAT);
12845 #ifdef ENABLE_FOLD_CHECKING
12846 md5_init_ctx (&ctx);
12847 fold_checksum_tree (op0, &ctx, ht);
12848 md5_finish_ctx (&ctx, checksum_after);
12849 htab_delete (ht);
12851 if (memcmp (checksum_before, checksum_after, 16))
12852 fold_check_failed (op0, tem);
12853 #endif
12854 return tem;
12857 /* Fold a binary tree expression with code CODE of type TYPE with
12858 operands OP0 and OP1. Return a folded expression if successful.
12859 Otherwise, return a tree expression with code CODE of type TYPE
12860 with operands OP0 and OP1. */
12862 tree
12863 fold_build2_stat (enum tree_code code, tree type, tree op0, tree op1
12864 MEM_STAT_DECL)
12866 tree tem;
12867 #ifdef ENABLE_FOLD_CHECKING
12868 unsigned char checksum_before_op0[16],
12869 checksum_before_op1[16],
12870 checksum_after_op0[16],
12871 checksum_after_op1[16];
12872 struct md5_ctx ctx;
12873 htab_t ht;
12875 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
12876 md5_init_ctx (&ctx);
12877 fold_checksum_tree (op0, &ctx, ht);
12878 md5_finish_ctx (&ctx, checksum_before_op0);
12879 htab_empty (ht);
12881 md5_init_ctx (&ctx);
12882 fold_checksum_tree (op1, &ctx, ht);
12883 md5_finish_ctx (&ctx, checksum_before_op1);
12884 htab_empty (ht);
12885 #endif
12887 tem = fold_binary (code, type, op0, op1);
12888 if (!tem)
12889 tem = build2_stat (code, type, op0, op1 PASS_MEM_STAT);
12891 #ifdef ENABLE_FOLD_CHECKING
12892 md5_init_ctx (&ctx);
12893 fold_checksum_tree (op0, &ctx, ht);
12894 md5_finish_ctx (&ctx, checksum_after_op0);
12895 htab_empty (ht);
12897 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12898 fold_check_failed (op0, tem);
12900 md5_init_ctx (&ctx);
12901 fold_checksum_tree (op1, &ctx, ht);
12902 md5_finish_ctx (&ctx, checksum_after_op1);
12903 htab_delete (ht);
12905 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12906 fold_check_failed (op1, tem);
12907 #endif
12908 return tem;
12911 /* Fold a ternary tree expression with code CODE of type TYPE with
12912 operands OP0, OP1, and OP2. Return a folded expression if
12913 successful. Otherwise, return a tree expression with code CODE of
12914 type TYPE with operands OP0, OP1, and OP2. */
12916 tree
12917 fold_build3_stat (enum tree_code code, tree type, tree op0, tree op1, tree op2
12918 MEM_STAT_DECL)
12920 tree tem;
12921 #ifdef ENABLE_FOLD_CHECKING
12922 unsigned char checksum_before_op0[16],
12923 checksum_before_op1[16],
12924 checksum_before_op2[16],
12925 checksum_after_op0[16],
12926 checksum_after_op1[16],
12927 checksum_after_op2[16];
12928 struct md5_ctx ctx;
12929 htab_t ht;
12931 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
12932 md5_init_ctx (&ctx);
12933 fold_checksum_tree (op0, &ctx, ht);
12934 md5_finish_ctx (&ctx, checksum_before_op0);
12935 htab_empty (ht);
12937 md5_init_ctx (&ctx);
12938 fold_checksum_tree (op1, &ctx, ht);
12939 md5_finish_ctx (&ctx, checksum_before_op1);
12940 htab_empty (ht);
12942 md5_init_ctx (&ctx);
12943 fold_checksum_tree (op2, &ctx, ht);
12944 md5_finish_ctx (&ctx, checksum_before_op2);
12945 htab_empty (ht);
12946 #endif
12948 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
12949 tem = fold_ternary (code, type, op0, op1, op2);
12950 if (!tem)
12951 tem = build3_stat (code, type, op0, op1, op2 PASS_MEM_STAT);
12953 #ifdef ENABLE_FOLD_CHECKING
12954 md5_init_ctx (&ctx);
12955 fold_checksum_tree (op0, &ctx, ht);
12956 md5_finish_ctx (&ctx, checksum_after_op0);
12957 htab_empty (ht);
12959 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12960 fold_check_failed (op0, tem);
12962 md5_init_ctx (&ctx);
12963 fold_checksum_tree (op1, &ctx, ht);
12964 md5_finish_ctx (&ctx, checksum_after_op1);
12965 htab_empty (ht);
12967 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12968 fold_check_failed (op1, tem);
12970 md5_init_ctx (&ctx);
12971 fold_checksum_tree (op2, &ctx, ht);
12972 md5_finish_ctx (&ctx, checksum_after_op2);
12973 htab_delete (ht);
12975 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
12976 fold_check_failed (op2, tem);
12977 #endif
12978 return tem;
12981 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12982 arguments in ARGARRAY, and a null static chain.
12983 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12984 of type TYPE from the given operands as constructed by build_call_array. */
12986 tree
12987 fold_build_call_array (tree type, tree fn, int nargs, tree *argarray)
12989 tree tem;
12990 #ifdef ENABLE_FOLD_CHECKING
12991 unsigned char checksum_before_fn[16],
12992 checksum_before_arglist[16],
12993 checksum_after_fn[16],
12994 checksum_after_arglist[16];
12995 struct md5_ctx ctx;
12996 htab_t ht;
12997 int i;
12999 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13000 md5_init_ctx (&ctx);
13001 fold_checksum_tree (fn, &ctx, ht);
13002 md5_finish_ctx (&ctx, checksum_before_fn);
13003 htab_empty (ht);
13005 md5_init_ctx (&ctx);
13006 for (i = 0; i < nargs; i++)
13007 fold_checksum_tree (argarray[i], &ctx, ht);
13008 md5_finish_ctx (&ctx, checksum_before_arglist);
13009 htab_empty (ht);
13010 #endif
13012 tem = fold_builtin_call_array (type, fn, nargs, argarray);
13014 #ifdef ENABLE_FOLD_CHECKING
13015 md5_init_ctx (&ctx);
13016 fold_checksum_tree (fn, &ctx, ht);
13017 md5_finish_ctx (&ctx, checksum_after_fn);
13018 htab_empty (ht);
13020 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
13021 fold_check_failed (fn, tem);
13023 md5_init_ctx (&ctx);
13024 for (i = 0; i < nargs; i++)
13025 fold_checksum_tree (argarray[i], &ctx, ht);
13026 md5_finish_ctx (&ctx, checksum_after_arglist);
13027 htab_delete (ht);
13029 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
13030 fold_check_failed (NULL_TREE, tem);
13031 #endif
13032 return tem;
13035 /* Perform constant folding and related simplification of initializer
13036 expression EXPR. These behave identically to "fold_buildN" but ignore
13037 potential run-time traps and exceptions that fold must preserve. */
13039 #define START_FOLD_INIT \
13040 int saved_signaling_nans = flag_signaling_nans;\
13041 int saved_trapping_math = flag_trapping_math;\
13042 int saved_rounding_math = flag_rounding_math;\
13043 int saved_trapv = flag_trapv;\
13044 int saved_folding_initializer = folding_initializer;\
13045 flag_signaling_nans = 0;\
13046 flag_trapping_math = 0;\
13047 flag_rounding_math = 0;\
13048 flag_trapv = 0;\
13049 folding_initializer = 1;
13051 #define END_FOLD_INIT \
13052 flag_signaling_nans = saved_signaling_nans;\
13053 flag_trapping_math = saved_trapping_math;\
13054 flag_rounding_math = saved_rounding_math;\
13055 flag_trapv = saved_trapv;\
13056 folding_initializer = saved_folding_initializer;
13058 tree
13059 fold_build1_initializer (enum tree_code code, tree type, tree op)
13061 tree result;
13062 START_FOLD_INIT;
13064 result = fold_build1 (code, type, op);
13066 END_FOLD_INIT;
13067 return result;
13070 tree
13071 fold_build2_initializer (enum tree_code code, tree type, tree op0, tree op1)
13073 tree result;
13074 START_FOLD_INIT;
13076 result = fold_build2 (code, type, op0, op1);
13078 END_FOLD_INIT;
13079 return result;
13082 tree
13083 fold_build3_initializer (enum tree_code code, tree type, tree op0, tree op1,
13084 tree op2)
13086 tree result;
13087 START_FOLD_INIT;
13089 result = fold_build3 (code, type, op0, op1, op2);
13091 END_FOLD_INIT;
13092 return result;
13095 tree
13096 fold_build_call_array_initializer (tree type, tree fn,
13097 int nargs, tree *argarray)
13099 tree result;
13100 START_FOLD_INIT;
13102 result = fold_build_call_array (type, fn, nargs, argarray);
13104 END_FOLD_INIT;
13105 return result;
13108 #undef START_FOLD_INIT
13109 #undef END_FOLD_INIT
13111 /* Determine if first argument is a multiple of second argument. Return 0 if
13112 it is not, or we cannot easily determined it to be.
13114 An example of the sort of thing we care about (at this point; this routine
13115 could surely be made more general, and expanded to do what the *_DIV_EXPR's
13116 fold cases do now) is discovering that
13118 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
13120 is a multiple of
13122 SAVE_EXPR (J * 8)
13124 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
13126 This code also handles discovering that
13128 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
13130 is a multiple of 8 so we don't have to worry about dealing with a
13131 possible remainder.
13133 Note that we *look* inside a SAVE_EXPR only to determine how it was
13134 calculated; it is not safe for fold to do much of anything else with the
13135 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
13136 at run time. For example, the latter example above *cannot* be implemented
13137 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
13138 evaluation time of the original SAVE_EXPR is not necessarily the same at
13139 the time the new expression is evaluated. The only optimization of this
13140 sort that would be valid is changing
13142 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
13144 divided by 8 to
13146 SAVE_EXPR (I) * SAVE_EXPR (J)
13148 (where the same SAVE_EXPR (J) is used in the original and the
13149 transformed version). */
13152 multiple_of_p (tree type, tree top, tree bottom)
13154 if (operand_equal_p (top, bottom, 0))
13155 return 1;
13157 if (TREE_CODE (type) != INTEGER_TYPE)
13158 return 0;
13160 switch (TREE_CODE (top))
13162 case BIT_AND_EXPR:
13163 /* Bitwise and provides a power of two multiple. If the mask is
13164 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
13165 if (!integer_pow2p (bottom))
13166 return 0;
13167 /* FALLTHRU */
13169 case MULT_EXPR:
13170 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
13171 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
13173 case PLUS_EXPR:
13174 case MINUS_EXPR:
13175 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
13176 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
13178 case LSHIFT_EXPR:
13179 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
13181 tree op1, t1;
13183 op1 = TREE_OPERAND (top, 1);
13184 /* const_binop may not detect overflow correctly,
13185 so check for it explicitly here. */
13186 if (TYPE_PRECISION (TREE_TYPE (size_one_node))
13187 > TREE_INT_CST_LOW (op1)
13188 && TREE_INT_CST_HIGH (op1) == 0
13189 && 0 != (t1 = fold_convert (type,
13190 const_binop (LSHIFT_EXPR,
13191 size_one_node,
13192 op1, 0)))
13193 && !TREE_OVERFLOW (t1))
13194 return multiple_of_p (type, t1, bottom);
13196 return 0;
13198 case NOP_EXPR:
13199 /* Can't handle conversions from non-integral or wider integral type. */
13200 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
13201 || (TYPE_PRECISION (type)
13202 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
13203 return 0;
13205 /* .. fall through ... */
13207 case SAVE_EXPR:
13208 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
13210 case INTEGER_CST:
13211 if (TREE_CODE (bottom) != INTEGER_CST
13212 || integer_zerop (bottom)
13213 || (TYPE_UNSIGNED (type)
13214 && (tree_int_cst_sgn (top) < 0
13215 || tree_int_cst_sgn (bottom) < 0)))
13216 return 0;
13217 return integer_zerop (int_const_binop (TRUNC_MOD_EXPR,
13218 top, bottom, 0));
13220 default:
13221 return 0;
13225 /* Return true if `t' is known to be non-negative. If the return
13226 value is based on the assumption that signed overflow is undefined,
13227 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13228 *STRICT_OVERFLOW_P. */
13230 bool
13231 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
13233 if (t == error_mark_node)
13234 return false;
13236 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13237 return true;
13239 switch (TREE_CODE (t))
13241 case SSA_NAME:
13242 /* Query VRP to see if it has recorded any information about
13243 the range of this object. */
13244 return ssa_name_nonnegative_p (t);
13246 case ABS_EXPR:
13247 /* We can't return 1 if flag_wrapv is set because
13248 ABS_EXPR<INT_MIN> = INT_MIN. */
13249 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
13250 return true;
13251 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)))
13253 *strict_overflow_p = true;
13254 return true;
13256 break;
13258 case INTEGER_CST:
13259 return tree_int_cst_sgn (t) >= 0;
13261 case REAL_CST:
13262 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
13264 case PLUS_EXPR:
13265 if (FLOAT_TYPE_P (TREE_TYPE (t)))
13266 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
13267 strict_overflow_p)
13268 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13269 strict_overflow_p));
13271 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
13272 both unsigned and at least 2 bits shorter than the result. */
13273 if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
13274 && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
13275 && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
13277 tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
13278 tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
13279 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
13280 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
13282 unsigned int prec = MAX (TYPE_PRECISION (inner1),
13283 TYPE_PRECISION (inner2)) + 1;
13284 return prec < TYPE_PRECISION (TREE_TYPE (t));
13287 break;
13289 case MULT_EXPR:
13290 if (FLOAT_TYPE_P (TREE_TYPE (t)))
13292 /* x * x for floating point x is always non-negative. */
13293 if (operand_equal_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1), 0))
13294 return true;
13295 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
13296 strict_overflow_p)
13297 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13298 strict_overflow_p));
13301 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
13302 both unsigned and their total bits is shorter than the result. */
13303 if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
13304 && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
13305 && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
13307 tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
13308 tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
13309 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
13310 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
13311 return TYPE_PRECISION (inner1) + TYPE_PRECISION (inner2)
13312 < TYPE_PRECISION (TREE_TYPE (t));
13314 return false;
13316 case BIT_AND_EXPR:
13317 case MAX_EXPR:
13318 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
13319 strict_overflow_p)
13320 || tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13321 strict_overflow_p));
13323 case BIT_IOR_EXPR:
13324 case BIT_XOR_EXPR:
13325 case MIN_EXPR:
13326 case RDIV_EXPR:
13327 case TRUNC_DIV_EXPR:
13328 case CEIL_DIV_EXPR:
13329 case FLOOR_DIV_EXPR:
13330 case ROUND_DIV_EXPR:
13331 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
13332 strict_overflow_p)
13333 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13334 strict_overflow_p));
13336 case TRUNC_MOD_EXPR:
13337 case CEIL_MOD_EXPR:
13338 case FLOOR_MOD_EXPR:
13339 case ROUND_MOD_EXPR:
13340 case SAVE_EXPR:
13341 case NON_LVALUE_EXPR:
13342 case FLOAT_EXPR:
13343 case FIX_TRUNC_EXPR:
13344 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
13345 strict_overflow_p);
13347 case COMPOUND_EXPR:
13348 case MODIFY_EXPR:
13349 case GIMPLE_MODIFY_STMT:
13350 return tree_expr_nonnegative_warnv_p (GENERIC_TREE_OPERAND (t, 1),
13351 strict_overflow_p);
13353 case BIND_EXPR:
13354 return tree_expr_nonnegative_warnv_p (expr_last (TREE_OPERAND (t, 1)),
13355 strict_overflow_p);
13357 case COND_EXPR:
13358 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13359 strict_overflow_p)
13360 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 2),
13361 strict_overflow_p));
13363 case NOP_EXPR:
13365 tree inner_type = TREE_TYPE (TREE_OPERAND (t, 0));
13366 tree outer_type = TREE_TYPE (t);
13368 if (TREE_CODE (outer_type) == REAL_TYPE)
13370 if (TREE_CODE (inner_type) == REAL_TYPE)
13371 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
13372 strict_overflow_p);
13373 if (TREE_CODE (inner_type) == INTEGER_TYPE)
13375 if (TYPE_UNSIGNED (inner_type))
13376 return true;
13377 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
13378 strict_overflow_p);
13381 else if (TREE_CODE (outer_type) == INTEGER_TYPE)
13383 if (TREE_CODE (inner_type) == REAL_TYPE)
13384 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t,0),
13385 strict_overflow_p);
13386 if (TREE_CODE (inner_type) == INTEGER_TYPE)
13387 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
13388 && TYPE_UNSIGNED (inner_type);
13391 break;
13393 case TARGET_EXPR:
13395 tree temp = TARGET_EXPR_SLOT (t);
13396 t = TARGET_EXPR_INITIAL (t);
13398 /* If the initializer is non-void, then it's a normal expression
13399 that will be assigned to the slot. */
13400 if (!VOID_TYPE_P (t))
13401 return tree_expr_nonnegative_warnv_p (t, strict_overflow_p);
13403 /* Otherwise, the initializer sets the slot in some way. One common
13404 way is an assignment statement at the end of the initializer. */
13405 while (1)
13407 if (TREE_CODE (t) == BIND_EXPR)
13408 t = expr_last (BIND_EXPR_BODY (t));
13409 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
13410 || TREE_CODE (t) == TRY_CATCH_EXPR)
13411 t = expr_last (TREE_OPERAND (t, 0));
13412 else if (TREE_CODE (t) == STATEMENT_LIST)
13413 t = expr_last (t);
13414 else
13415 break;
13417 if ((TREE_CODE (t) == MODIFY_EXPR
13418 || TREE_CODE (t) == GIMPLE_MODIFY_STMT)
13419 && GENERIC_TREE_OPERAND (t, 0) == temp)
13420 return tree_expr_nonnegative_warnv_p (GENERIC_TREE_OPERAND (t, 1),
13421 strict_overflow_p);
13423 return false;
13426 case CALL_EXPR:
13428 tree fndecl = get_callee_fndecl (t);
13429 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
13430 switch (DECL_FUNCTION_CODE (fndecl))
13432 CASE_FLT_FN (BUILT_IN_ACOS):
13433 CASE_FLT_FN (BUILT_IN_ACOSH):
13434 CASE_FLT_FN (BUILT_IN_CABS):
13435 CASE_FLT_FN (BUILT_IN_COSH):
13436 CASE_FLT_FN (BUILT_IN_ERFC):
13437 CASE_FLT_FN (BUILT_IN_EXP):
13438 CASE_FLT_FN (BUILT_IN_EXP10):
13439 CASE_FLT_FN (BUILT_IN_EXP2):
13440 CASE_FLT_FN (BUILT_IN_FABS):
13441 CASE_FLT_FN (BUILT_IN_FDIM):
13442 CASE_FLT_FN (BUILT_IN_HYPOT):
13443 CASE_FLT_FN (BUILT_IN_POW10):
13444 CASE_INT_FN (BUILT_IN_FFS):
13445 CASE_INT_FN (BUILT_IN_PARITY):
13446 CASE_INT_FN (BUILT_IN_POPCOUNT):
13447 case BUILT_IN_BSWAP32:
13448 case BUILT_IN_BSWAP64:
13449 /* Always true. */
13450 return true;
13452 CASE_FLT_FN (BUILT_IN_SQRT):
13453 /* sqrt(-0.0) is -0.0. */
13454 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (t))))
13455 return true;
13456 return tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 0),
13457 strict_overflow_p);
13459 CASE_FLT_FN (BUILT_IN_ASINH):
13460 CASE_FLT_FN (BUILT_IN_ATAN):
13461 CASE_FLT_FN (BUILT_IN_ATANH):
13462 CASE_FLT_FN (BUILT_IN_CBRT):
13463 CASE_FLT_FN (BUILT_IN_CEIL):
13464 CASE_FLT_FN (BUILT_IN_ERF):
13465 CASE_FLT_FN (BUILT_IN_EXPM1):
13466 CASE_FLT_FN (BUILT_IN_FLOOR):
13467 CASE_FLT_FN (BUILT_IN_FMOD):
13468 CASE_FLT_FN (BUILT_IN_FREXP):
13469 CASE_FLT_FN (BUILT_IN_LCEIL):
13470 CASE_FLT_FN (BUILT_IN_LDEXP):
13471 CASE_FLT_FN (BUILT_IN_LFLOOR):
13472 CASE_FLT_FN (BUILT_IN_LLCEIL):
13473 CASE_FLT_FN (BUILT_IN_LLFLOOR):
13474 CASE_FLT_FN (BUILT_IN_LLRINT):
13475 CASE_FLT_FN (BUILT_IN_LLROUND):
13476 CASE_FLT_FN (BUILT_IN_LRINT):
13477 CASE_FLT_FN (BUILT_IN_LROUND):
13478 CASE_FLT_FN (BUILT_IN_MODF):
13479 CASE_FLT_FN (BUILT_IN_NEARBYINT):
13480 CASE_FLT_FN (BUILT_IN_RINT):
13481 CASE_FLT_FN (BUILT_IN_ROUND):
13482 CASE_FLT_FN (BUILT_IN_SCALB):
13483 CASE_FLT_FN (BUILT_IN_SCALBLN):
13484 CASE_FLT_FN (BUILT_IN_SCALBN):
13485 CASE_FLT_FN (BUILT_IN_SIGNBIT):
13486 CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
13487 CASE_FLT_FN (BUILT_IN_SINH):
13488 CASE_FLT_FN (BUILT_IN_TANH):
13489 CASE_FLT_FN (BUILT_IN_TRUNC):
13490 /* True if the 1st argument is nonnegative. */
13491 return tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 0),
13492 strict_overflow_p);
13494 CASE_FLT_FN (BUILT_IN_FMAX):
13495 /* True if the 1st OR 2nd arguments are nonnegative. */
13496 return (tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 0),
13497 strict_overflow_p)
13498 || (tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 1),
13499 strict_overflow_p)));
13501 CASE_FLT_FN (BUILT_IN_FMIN):
13502 /* True if the 1st AND 2nd arguments are nonnegative. */
13503 return (tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 0),
13504 strict_overflow_p)
13505 && (tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 1),
13506 strict_overflow_p)));
13508 CASE_FLT_FN (BUILT_IN_COPYSIGN):
13509 /* True if the 2nd argument is nonnegative. */
13510 return tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 1),
13511 strict_overflow_p);
13513 CASE_FLT_FN (BUILT_IN_POWI):
13514 /* True if the 1st argument is nonnegative or the second
13515 argument is an even integer. */
13516 if (TREE_CODE (CALL_EXPR_ARG (t, 1)) == INTEGER_CST)
13518 tree arg1 = CALL_EXPR_ARG (t, 1);
13519 if ((TREE_INT_CST_LOW (arg1) & 1) == 0)
13520 return true;
13522 return tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 0),
13523 strict_overflow_p);
13525 CASE_FLT_FN (BUILT_IN_POW):
13526 /* True if the 1st argument is nonnegative or the second
13527 argument is an even integer valued real. */
13528 if (TREE_CODE (CALL_EXPR_ARG (t, 1)) == REAL_CST)
13530 REAL_VALUE_TYPE c;
13531 HOST_WIDE_INT n;
13533 c = TREE_REAL_CST (CALL_EXPR_ARG (t, 1));
13534 n = real_to_integer (&c);
13535 if ((n & 1) == 0)
13537 REAL_VALUE_TYPE cint;
13538 real_from_integer (&cint, VOIDmode, n,
13539 n < 0 ? -1 : 0, 0);
13540 if (real_identical (&c, &cint))
13541 return true;
13544 return tree_expr_nonnegative_warnv_p (CALL_EXPR_ARG (t, 0),
13545 strict_overflow_p);
13547 default:
13548 break;
13552 /* ... fall through ... */
13554 default:
13555 if (truth_value_p (TREE_CODE (t)))
13556 /* Truth values evaluate to 0 or 1, which is nonnegative. */
13557 return true;
13560 /* We don't know sign of `t', so be conservative and return false. */
13561 return false;
13564 /* Return true if `t' is known to be non-negative. Handle warnings
13565 about undefined signed overflow. */
13567 bool
13568 tree_expr_nonnegative_p (tree t)
13570 bool ret, strict_overflow_p;
13572 strict_overflow_p = false;
13573 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
13574 if (strict_overflow_p)
13575 fold_overflow_warning (("assuming signed overflow does not occur when "
13576 "determining that expression is always "
13577 "non-negative"),
13578 WARN_STRICT_OVERFLOW_MISC);
13579 return ret;
13582 /* Return true when T is an address and is known to be nonzero.
13583 For floating point we further ensure that T is not denormal.
13584 Similar logic is present in nonzero_address in rtlanal.h.
13586 If the return value is based on the assumption that signed overflow
13587 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13588 change *STRICT_OVERFLOW_P. */
13590 bool
13591 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
13593 tree type = TREE_TYPE (t);
13594 bool sub_strict_overflow_p;
13596 /* Doing something useful for floating point would need more work. */
13597 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
13598 return false;
13600 switch (TREE_CODE (t))
13602 case SSA_NAME:
13603 /* Query VRP to see if it has recorded any information about
13604 the range of this object. */
13605 return ssa_name_nonzero_p (t);
13607 case ABS_EXPR:
13608 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
13609 strict_overflow_p);
13611 case INTEGER_CST:
13612 return !integer_zerop (t);
13614 case PLUS_EXPR:
13615 if (TYPE_OVERFLOW_UNDEFINED (type))
13617 /* With the presence of negative values it is hard
13618 to say something. */
13619 sub_strict_overflow_p = false;
13620 if (!tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
13621 &sub_strict_overflow_p)
13622 || !tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13623 &sub_strict_overflow_p))
13624 return false;
13625 /* One of operands must be positive and the other non-negative. */
13626 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13627 overflows, on a twos-complement machine the sum of two
13628 nonnegative numbers can never be zero. */
13629 return (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
13630 strict_overflow_p)
13631 || tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
13632 strict_overflow_p));
13634 break;
13636 case MULT_EXPR:
13637 if (TYPE_OVERFLOW_UNDEFINED (type))
13639 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
13640 strict_overflow_p)
13641 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
13642 strict_overflow_p))
13644 *strict_overflow_p = true;
13645 return true;
13648 break;
13650 case NOP_EXPR:
13652 tree inner_type = TREE_TYPE (TREE_OPERAND (t, 0));
13653 tree outer_type = TREE_TYPE (t);
13655 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
13656 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
13657 strict_overflow_p));
13659 break;
13661 case ADDR_EXPR:
13663 tree base = get_base_address (TREE_OPERAND (t, 0));
13665 if (!base)
13666 return false;
13668 /* Weak declarations may link to NULL. */
13669 if (VAR_OR_FUNCTION_DECL_P (base))
13670 return !DECL_WEAK (base);
13672 /* Constants are never weak. */
13673 if (CONSTANT_CLASS_P (base))
13674 return true;
13676 return false;
13679 case COND_EXPR:
13680 sub_strict_overflow_p = false;
13681 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
13682 &sub_strict_overflow_p)
13683 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
13684 &sub_strict_overflow_p))
13686 if (sub_strict_overflow_p)
13687 *strict_overflow_p = true;
13688 return true;
13690 break;
13692 case MIN_EXPR:
13693 sub_strict_overflow_p = false;
13694 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
13695 &sub_strict_overflow_p)
13696 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
13697 &sub_strict_overflow_p))
13699 if (sub_strict_overflow_p)
13700 *strict_overflow_p = true;
13702 break;
13704 case MAX_EXPR:
13705 sub_strict_overflow_p = false;
13706 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
13707 &sub_strict_overflow_p))
13709 if (sub_strict_overflow_p)
13710 *strict_overflow_p = true;
13712 /* When both operands are nonzero, then MAX must be too. */
13713 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
13714 strict_overflow_p))
13715 return true;
13717 /* MAX where operand 0 is positive is positive. */
13718 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
13719 strict_overflow_p);
13721 /* MAX where operand 1 is positive is positive. */
13722 else if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
13723 &sub_strict_overflow_p)
13724 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
13725 &sub_strict_overflow_p))
13727 if (sub_strict_overflow_p)
13728 *strict_overflow_p = true;
13729 return true;
13731 break;
13733 case COMPOUND_EXPR:
13734 case MODIFY_EXPR:
13735 case GIMPLE_MODIFY_STMT:
13736 case BIND_EXPR:
13737 return tree_expr_nonzero_warnv_p (GENERIC_TREE_OPERAND (t, 1),
13738 strict_overflow_p);
13740 case SAVE_EXPR:
13741 case NON_LVALUE_EXPR:
13742 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
13743 strict_overflow_p);
13745 case BIT_IOR_EXPR:
13746 return (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
13747 strict_overflow_p)
13748 || tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
13749 strict_overflow_p));
13751 case CALL_EXPR:
13752 return alloca_call_p (t);
13754 default:
13755 break;
13757 return false;
13760 /* Return true when T is an address and is known to be nonzero.
13761 Handle warnings about undefined signed overflow. */
13763 bool
13764 tree_expr_nonzero_p (tree t)
13766 bool ret, strict_overflow_p;
13768 strict_overflow_p = false;
13769 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
13770 if (strict_overflow_p)
13771 fold_overflow_warning (("assuming signed overflow does not occur when "
13772 "determining that expression is always "
13773 "non-zero"),
13774 WARN_STRICT_OVERFLOW_MISC);
13775 return ret;
13778 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13779 attempt to fold the expression to a constant without modifying TYPE,
13780 OP0 or OP1.
13782 If the expression could be simplified to a constant, then return
13783 the constant. If the expression would not be simplified to a
13784 constant, then return NULL_TREE. */
13786 tree
13787 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
13789 tree tem = fold_binary (code, type, op0, op1);
13790 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13793 /* Given the components of a unary expression CODE, TYPE and OP0,
13794 attempt to fold the expression to a constant without modifying
13795 TYPE or OP0.
13797 If the expression could be simplified to a constant, then return
13798 the constant. If the expression would not be simplified to a
13799 constant, then return NULL_TREE. */
13801 tree
13802 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
13804 tree tem = fold_unary (code, type, op0);
13805 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13808 /* If EXP represents referencing an element in a constant string
13809 (either via pointer arithmetic or array indexing), return the
13810 tree representing the value accessed, otherwise return NULL. */
13812 tree
13813 fold_read_from_constant_string (tree exp)
13815 if ((TREE_CODE (exp) == INDIRECT_REF
13816 || TREE_CODE (exp) == ARRAY_REF)
13817 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
13819 tree exp1 = TREE_OPERAND (exp, 0);
13820 tree index;
13821 tree string;
13823 if (TREE_CODE (exp) == INDIRECT_REF)
13824 string = string_constant (exp1, &index);
13825 else
13827 tree low_bound = array_ref_low_bound (exp);
13828 index = fold_convert (sizetype, TREE_OPERAND (exp, 1));
13830 /* Optimize the special-case of a zero lower bound.
13832 We convert the low_bound to sizetype to avoid some problems
13833 with constant folding. (E.g. suppose the lower bound is 1,
13834 and its mode is QI. Without the conversion,l (ARRAY
13835 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13836 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
13837 if (! integer_zerop (low_bound))
13838 index = size_diffop (index, fold_convert (sizetype, low_bound));
13840 string = exp1;
13843 if (string
13844 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
13845 && TREE_CODE (string) == STRING_CST
13846 && TREE_CODE (index) == INTEGER_CST
13847 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
13848 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
13849 == MODE_INT)
13850 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
13851 return fold_convert (TREE_TYPE (exp),
13852 build_int_cst (NULL_TREE,
13853 (TREE_STRING_POINTER (string)
13854 [TREE_INT_CST_LOW (index)])));
13856 return NULL;
13859 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13860 an integer constant or real constant.
13862 TYPE is the type of the result. */
13864 static tree
13865 fold_negate_const (tree arg0, tree type)
13867 tree t = NULL_TREE;
13869 switch (TREE_CODE (arg0))
13871 case INTEGER_CST:
13873 unsigned HOST_WIDE_INT low;
13874 HOST_WIDE_INT high;
13875 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
13876 TREE_INT_CST_HIGH (arg0),
13877 &low, &high);
13878 t = force_fit_type_double (type, low, high, 1,
13879 (overflow | TREE_OVERFLOW (arg0))
13880 && !TYPE_UNSIGNED (type));
13881 break;
13884 case REAL_CST:
13885 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
13886 break;
13888 default:
13889 gcc_unreachable ();
13892 return t;
13895 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13896 an integer constant or real constant.
13898 TYPE is the type of the result. */
13900 tree
13901 fold_abs_const (tree arg0, tree type)
13903 tree t = NULL_TREE;
13905 switch (TREE_CODE (arg0))
13907 case INTEGER_CST:
13908 /* If the value is unsigned, then the absolute value is
13909 the same as the ordinary value. */
13910 if (TYPE_UNSIGNED (type))
13911 t = arg0;
13912 /* Similarly, if the value is non-negative. */
13913 else if (INT_CST_LT (integer_minus_one_node, arg0))
13914 t = arg0;
13915 /* If the value is negative, then the absolute value is
13916 its negation. */
13917 else
13919 unsigned HOST_WIDE_INT low;
13920 HOST_WIDE_INT high;
13921 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
13922 TREE_INT_CST_HIGH (arg0),
13923 &low, &high);
13924 t = force_fit_type_double (type, low, high, -1,
13925 overflow | TREE_OVERFLOW (arg0));
13927 break;
13929 case REAL_CST:
13930 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
13931 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
13932 else
13933 t = arg0;
13934 break;
13936 default:
13937 gcc_unreachable ();
13940 return t;
13943 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13944 constant. TYPE is the type of the result. */
13946 static tree
13947 fold_not_const (tree arg0, tree type)
13949 tree t = NULL_TREE;
13951 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
13953 t = force_fit_type_double (type, ~TREE_INT_CST_LOW (arg0),
13954 ~TREE_INT_CST_HIGH (arg0), 0,
13955 TREE_OVERFLOW (arg0));
13957 return t;
13960 /* Given CODE, a relational operator, the target type, TYPE and two
13961 constant operands OP0 and OP1, return the result of the
13962 relational operation. If the result is not a compile time
13963 constant, then return NULL_TREE. */
13965 static tree
13966 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
13968 int result, invert;
13970 /* From here on, the only cases we handle are when the result is
13971 known to be a constant. */
13973 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
13975 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
13976 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
13978 /* Handle the cases where either operand is a NaN. */
13979 if (real_isnan (c0) || real_isnan (c1))
13981 switch (code)
13983 case EQ_EXPR:
13984 case ORDERED_EXPR:
13985 result = 0;
13986 break;
13988 case NE_EXPR:
13989 case UNORDERED_EXPR:
13990 case UNLT_EXPR:
13991 case UNLE_EXPR:
13992 case UNGT_EXPR:
13993 case UNGE_EXPR:
13994 case UNEQ_EXPR:
13995 result = 1;
13996 break;
13998 case LT_EXPR:
13999 case LE_EXPR:
14000 case GT_EXPR:
14001 case GE_EXPR:
14002 case LTGT_EXPR:
14003 if (flag_trapping_math)
14004 return NULL_TREE;
14005 result = 0;
14006 break;
14008 default:
14009 gcc_unreachable ();
14012 return constant_boolean_node (result, type);
14015 return constant_boolean_node (real_compare (code, c0, c1), type);
14018 /* Handle equality/inequality of complex constants. */
14019 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
14021 tree rcond = fold_relational_const (code, type,
14022 TREE_REALPART (op0),
14023 TREE_REALPART (op1));
14024 tree icond = fold_relational_const (code, type,
14025 TREE_IMAGPART (op0),
14026 TREE_IMAGPART (op1));
14027 if (code == EQ_EXPR)
14028 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
14029 else if (code == NE_EXPR)
14030 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
14031 else
14032 return NULL_TREE;
14035 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
14037 To compute GT, swap the arguments and do LT.
14038 To compute GE, do LT and invert the result.
14039 To compute LE, swap the arguments, do LT and invert the result.
14040 To compute NE, do EQ and invert the result.
14042 Therefore, the code below must handle only EQ and LT. */
14044 if (code == LE_EXPR || code == GT_EXPR)
14046 tree tem = op0;
14047 op0 = op1;
14048 op1 = tem;
14049 code = swap_tree_comparison (code);
14052 /* Note that it is safe to invert for real values here because we
14053 have already handled the one case that it matters. */
14055 invert = 0;
14056 if (code == NE_EXPR || code == GE_EXPR)
14058 invert = 1;
14059 code = invert_tree_comparison (code, false);
14062 /* Compute a result for LT or EQ if args permit;
14063 Otherwise return T. */
14064 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
14066 if (code == EQ_EXPR)
14067 result = tree_int_cst_equal (op0, op1);
14068 else if (TYPE_UNSIGNED (TREE_TYPE (op0)))
14069 result = INT_CST_LT_UNSIGNED (op0, op1);
14070 else
14071 result = INT_CST_LT (op0, op1);
14073 else
14074 return NULL_TREE;
14076 if (invert)
14077 result ^= 1;
14078 return constant_boolean_node (result, type);
14081 /* Build an expression for the a clean point containing EXPR with type TYPE.
14082 Don't build a cleanup point expression for EXPR which don't have side
14083 effects. */
14085 tree
14086 fold_build_cleanup_point_expr (tree type, tree expr)
14088 /* If the expression does not have side effects then we don't have to wrap
14089 it with a cleanup point expression. */
14090 if (!TREE_SIDE_EFFECTS (expr))
14091 return expr;
14093 /* If the expression is a return, check to see if the expression inside the
14094 return has no side effects or the right hand side of the modify expression
14095 inside the return. If either don't have side effects set we don't need to
14096 wrap the expression in a cleanup point expression. Note we don't check the
14097 left hand side of the modify because it should always be a return decl. */
14098 if (TREE_CODE (expr) == RETURN_EXPR)
14100 tree op = TREE_OPERAND (expr, 0);
14101 if (!op || !TREE_SIDE_EFFECTS (op))
14102 return expr;
14103 op = TREE_OPERAND (op, 1);
14104 if (!TREE_SIDE_EFFECTS (op))
14105 return expr;
14108 return build1 (CLEANUP_POINT_EXPR, type, expr);
14111 /* Build an expression for the address of T. Folds away INDIRECT_REF to
14112 avoid confusing the gimplify process. */
14114 tree
14115 build_fold_addr_expr_with_type (tree t, tree ptrtype)
14117 /* The size of the object is not relevant when talking about its address. */
14118 if (TREE_CODE (t) == WITH_SIZE_EXPR)
14119 t = TREE_OPERAND (t, 0);
14121 /* Note: doesn't apply to ALIGN_INDIRECT_REF */
14122 if (TREE_CODE (t) == INDIRECT_REF
14123 || TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
14125 t = TREE_OPERAND (t, 0);
14126 if (TREE_TYPE (t) != ptrtype)
14127 t = build1 (NOP_EXPR, ptrtype, t);
14129 else
14131 tree base = t;
14133 while (handled_component_p (base))
14134 base = TREE_OPERAND (base, 0);
14135 if (DECL_P (base))
14136 TREE_ADDRESSABLE (base) = 1;
14138 t = build1 (ADDR_EXPR, ptrtype, t);
14141 return t;
14144 tree
14145 build_fold_addr_expr (tree t)
14147 return build_fold_addr_expr_with_type (t, build_pointer_type (TREE_TYPE (t)));
14150 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14151 of an indirection through OP0, or NULL_TREE if no simplification is
14152 possible. */
14154 tree
14155 fold_indirect_ref_1 (tree type, tree op0)
14157 tree sub = op0;
14158 tree subtype;
14160 STRIP_NOPS (sub);
14161 subtype = TREE_TYPE (sub);
14162 if (!POINTER_TYPE_P (subtype))
14163 return NULL_TREE;
14165 if (TREE_CODE (sub) == ADDR_EXPR)
14167 tree op = TREE_OPERAND (sub, 0);
14168 tree optype = TREE_TYPE (op);
14169 /* *&CONST_DECL -> to the value of the const decl. */
14170 if (TREE_CODE (op) == CONST_DECL)
14171 return DECL_INITIAL (op);
14172 /* *&p => p; make sure to handle *&"str"[cst] here. */
14173 if (type == optype)
14175 tree fop = fold_read_from_constant_string (op);
14176 if (fop)
14177 return fop;
14178 else
14179 return op;
14181 /* *(foo *)&fooarray => fooarray[0] */
14182 else if (TREE_CODE (optype) == ARRAY_TYPE
14183 && type == TREE_TYPE (optype))
14185 tree type_domain = TYPE_DOMAIN (optype);
14186 tree min_val = size_zero_node;
14187 if (type_domain && TYPE_MIN_VALUE (type_domain))
14188 min_val = TYPE_MIN_VALUE (type_domain);
14189 return build4 (ARRAY_REF, type, op, min_val, NULL_TREE, NULL_TREE);
14191 /* *(foo *)&complexfoo => __real__ complexfoo */
14192 else if (TREE_CODE (optype) == COMPLEX_TYPE
14193 && type == TREE_TYPE (optype))
14194 return fold_build1 (REALPART_EXPR, type, op);
14195 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14196 else if (TREE_CODE (optype) == VECTOR_TYPE
14197 && type == TREE_TYPE (optype))
14199 tree part_width = TYPE_SIZE (type);
14200 tree index = bitsize_int (0);
14201 return fold_build3 (BIT_FIELD_REF, type, op, part_width, index);
14205 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14206 if (TREE_CODE (sub) == PLUS_EXPR
14207 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
14209 tree op00 = TREE_OPERAND (sub, 0);
14210 tree op01 = TREE_OPERAND (sub, 1);
14211 tree op00type;
14213 STRIP_NOPS (op00);
14214 op00type = TREE_TYPE (op00);
14215 if (TREE_CODE (op00) == ADDR_EXPR
14216 && TREE_CODE (TREE_TYPE (op00type)) == COMPLEX_TYPE
14217 && type == TREE_TYPE (TREE_TYPE (op00type)))
14219 tree size = TYPE_SIZE_UNIT (type);
14220 if (tree_int_cst_equal (size, op01))
14221 return fold_build1 (IMAGPART_EXPR, type, TREE_OPERAND (op00, 0));
14225 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14226 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
14227 && type == TREE_TYPE (TREE_TYPE (subtype)))
14229 tree type_domain;
14230 tree min_val = size_zero_node;
14231 sub = build_fold_indirect_ref (sub);
14232 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
14233 if (type_domain && TYPE_MIN_VALUE (type_domain))
14234 min_val = TYPE_MIN_VALUE (type_domain);
14235 return build4 (ARRAY_REF, type, sub, min_val, NULL_TREE, NULL_TREE);
14238 return NULL_TREE;
14241 /* Builds an expression for an indirection through T, simplifying some
14242 cases. */
14244 tree
14245 build_fold_indirect_ref (tree t)
14247 tree type = TREE_TYPE (TREE_TYPE (t));
14248 tree sub = fold_indirect_ref_1 (type, t);
14250 if (sub)
14251 return sub;
14252 else
14253 return build1 (INDIRECT_REF, type, t);
14256 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14258 tree
14259 fold_indirect_ref (tree t)
14261 tree sub = fold_indirect_ref_1 (TREE_TYPE (t), TREE_OPERAND (t, 0));
14263 if (sub)
14264 return sub;
14265 else
14266 return t;
14269 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14270 whose result is ignored. The type of the returned tree need not be
14271 the same as the original expression. */
14273 tree
14274 fold_ignored_result (tree t)
14276 if (!TREE_SIDE_EFFECTS (t))
14277 return integer_zero_node;
14279 for (;;)
14280 switch (TREE_CODE_CLASS (TREE_CODE (t)))
14282 case tcc_unary:
14283 t = TREE_OPERAND (t, 0);
14284 break;
14286 case tcc_binary:
14287 case tcc_comparison:
14288 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14289 t = TREE_OPERAND (t, 0);
14290 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
14291 t = TREE_OPERAND (t, 1);
14292 else
14293 return t;
14294 break;
14296 case tcc_expression:
14297 switch (TREE_CODE (t))
14299 case COMPOUND_EXPR:
14300 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14301 return t;
14302 t = TREE_OPERAND (t, 0);
14303 break;
14305 case COND_EXPR:
14306 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
14307 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
14308 return t;
14309 t = TREE_OPERAND (t, 0);
14310 break;
14312 default:
14313 return t;
14315 break;
14317 default:
14318 return t;
14322 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
14323 This can only be applied to objects of a sizetype. */
14325 tree
14326 round_up (tree value, int divisor)
14328 tree div = NULL_TREE;
14330 gcc_assert (divisor > 0);
14331 if (divisor == 1)
14332 return value;
14334 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14335 have to do anything. Only do this when we are not given a const,
14336 because in that case, this check is more expensive than just
14337 doing it. */
14338 if (TREE_CODE (value) != INTEGER_CST)
14340 div = build_int_cst (TREE_TYPE (value), divisor);
14342 if (multiple_of_p (TREE_TYPE (value), value, div))
14343 return value;
14346 /* If divisor is a power of two, simplify this to bit manipulation. */
14347 if (divisor == (divisor & -divisor))
14349 if (TREE_CODE (value) == INTEGER_CST)
14351 unsigned HOST_WIDE_INT low = TREE_INT_CST_LOW (value);
14352 unsigned HOST_WIDE_INT high;
14353 bool overflow_p;
14355 if ((low & (divisor - 1)) == 0)
14356 return value;
14358 overflow_p = TREE_OVERFLOW (value);
14359 high = TREE_INT_CST_HIGH (value);
14360 low &= ~(divisor - 1);
14361 low += divisor;
14362 if (low == 0)
14364 high++;
14365 if (high == 0)
14366 overflow_p = true;
14369 return force_fit_type_double (TREE_TYPE (value), low, high,
14370 -1, overflow_p);
14372 else
14374 tree t;
14376 t = build_int_cst (TREE_TYPE (value), divisor - 1);
14377 value = size_binop (PLUS_EXPR, value, t);
14378 t = build_int_cst (TREE_TYPE (value), -divisor);
14379 value = size_binop (BIT_AND_EXPR, value, t);
14382 else
14384 if (!div)
14385 div = build_int_cst (TREE_TYPE (value), divisor);
14386 value = size_binop (CEIL_DIV_EXPR, value, div);
14387 value = size_binop (MULT_EXPR, value, div);
14390 return value;
14393 /* Likewise, but round down. */
14395 tree
14396 round_down (tree value, int divisor)
14398 tree div = NULL_TREE;
14400 gcc_assert (divisor > 0);
14401 if (divisor == 1)
14402 return value;
14404 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14405 have to do anything. Only do this when we are not given a const,
14406 because in that case, this check is more expensive than just
14407 doing it. */
14408 if (TREE_CODE (value) != INTEGER_CST)
14410 div = build_int_cst (TREE_TYPE (value), divisor);
14412 if (multiple_of_p (TREE_TYPE (value), value, div))
14413 return value;
14416 /* If divisor is a power of two, simplify this to bit manipulation. */
14417 if (divisor == (divisor & -divisor))
14419 tree t;
14421 t = build_int_cst (TREE_TYPE (value), -divisor);
14422 value = size_binop (BIT_AND_EXPR, value, t);
14424 else
14426 if (!div)
14427 div = build_int_cst (TREE_TYPE (value), divisor);
14428 value = size_binop (FLOOR_DIV_EXPR, value, div);
14429 value = size_binop (MULT_EXPR, value, div);
14432 return value;
14435 /* Returns the pointer to the base of the object addressed by EXP and
14436 extracts the information about the offset of the access, storing it
14437 to PBITPOS and POFFSET. */
14439 static tree
14440 split_address_to_core_and_offset (tree exp,
14441 HOST_WIDE_INT *pbitpos, tree *poffset)
14443 tree core;
14444 enum machine_mode mode;
14445 int unsignedp, volatilep;
14446 HOST_WIDE_INT bitsize;
14448 if (TREE_CODE (exp) == ADDR_EXPR)
14450 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
14451 poffset, &mode, &unsignedp, &volatilep,
14452 false);
14453 core = build_fold_addr_expr (core);
14455 else
14457 core = exp;
14458 *pbitpos = 0;
14459 *poffset = NULL_TREE;
14462 return core;
14465 /* Returns true if addresses of E1 and E2 differ by a constant, false
14466 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14468 bool
14469 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
14471 tree core1, core2;
14472 HOST_WIDE_INT bitpos1, bitpos2;
14473 tree toffset1, toffset2, tdiff, type;
14475 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
14476 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
14478 if (bitpos1 % BITS_PER_UNIT != 0
14479 || bitpos2 % BITS_PER_UNIT != 0
14480 || !operand_equal_p (core1, core2, 0))
14481 return false;
14483 if (toffset1 && toffset2)
14485 type = TREE_TYPE (toffset1);
14486 if (type != TREE_TYPE (toffset2))
14487 toffset2 = fold_convert (type, toffset2);
14489 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
14490 if (!cst_and_fits_in_hwi (tdiff))
14491 return false;
14493 *diff = int_cst_value (tdiff);
14495 else if (toffset1 || toffset2)
14497 /* If only one of the offsets is non-constant, the difference cannot
14498 be a constant. */
14499 return false;
14501 else
14502 *diff = 0;
14504 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
14505 return true;
14508 /* Simplify the floating point expression EXP when the sign of the
14509 result is not significant. Return NULL_TREE if no simplification
14510 is possible. */
14512 tree
14513 fold_strip_sign_ops (tree exp)
14515 tree arg0, arg1;
14517 switch (TREE_CODE (exp))
14519 case ABS_EXPR:
14520 case NEGATE_EXPR:
14521 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
14522 return arg0 ? arg0 : TREE_OPERAND (exp, 0);
14524 case MULT_EXPR:
14525 case RDIV_EXPR:
14526 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (exp))))
14527 return NULL_TREE;
14528 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
14529 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
14530 if (arg0 != NULL_TREE || arg1 != NULL_TREE)
14531 return fold_build2 (TREE_CODE (exp), TREE_TYPE (exp),
14532 arg0 ? arg0 : TREE_OPERAND (exp, 0),
14533 arg1 ? arg1 : TREE_OPERAND (exp, 1));
14534 break;
14536 case COMPOUND_EXPR:
14537 arg0 = TREE_OPERAND (exp, 0);
14538 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
14539 if (arg1)
14540 return fold_build2 (COMPOUND_EXPR, TREE_TYPE (exp), arg0, arg1);
14541 break;
14543 case COND_EXPR:
14544 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
14545 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 2));
14546 if (arg0 || arg1)
14547 return fold_build3 (COND_EXPR, TREE_TYPE (exp), TREE_OPERAND (exp, 0),
14548 arg0 ? arg0 : TREE_OPERAND (exp, 1),
14549 arg1 ? arg1 : TREE_OPERAND (exp, 2));
14550 break;
14552 case CALL_EXPR:
14554 const enum built_in_function fcode = builtin_mathfn_code (exp);
14555 switch (fcode)
14557 CASE_FLT_FN (BUILT_IN_COPYSIGN):
14558 /* Strip copysign function call, return the 1st argument. */
14559 arg0 = CALL_EXPR_ARG (exp, 0);
14560 arg1 = CALL_EXPR_ARG (exp, 1);
14561 return omit_one_operand (TREE_TYPE (exp), arg0, arg1);
14563 default:
14564 /* Strip sign ops from the argument of "odd" math functions. */
14565 if (negate_mathfn_p (fcode))
14567 arg0 = fold_strip_sign_ops (CALL_EXPR_ARG (exp, 0));
14568 if (arg0)
14569 return build_call_expr (get_callee_fndecl (exp), 1, arg0);
14571 break;
14574 break;
14576 default:
14577 break;
14579 return NULL_TREE;