expr.c (store_constructor_field): Don't call store_constructor if bitsize is not...
[official-gcc.git] / gcc / flow.c
blob1cd08230c8e3703485d5ac07d11c17ee0b4deb30
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
43 ** life_analysis **
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
112 /* TODO:
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "timevar.h"
141 #include "obstack.h"
142 #include "splay-tree.h"
144 #ifndef HAVE_epilogue
145 #define HAVE_epilogue 0
146 #endif
147 #ifndef HAVE_prologue
148 #define HAVE_prologue 0
149 #endif
150 #ifndef HAVE_sibcall_epilogue
151 #define HAVE_sibcall_epilogue 0
152 #endif
154 #ifndef EPILOGUE_USES
155 #define EPILOGUE_USES(REGNO) 0
156 #endif
157 #ifndef EH_USES
158 #define EH_USES(REGNO) 0
159 #endif
161 #ifdef HAVE_conditional_execution
162 #ifndef REVERSE_CONDEXEC_PREDICATES_P
163 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
164 #endif
165 #endif
167 /* Nonzero if the second flow pass has completed. */
168 int flow2_completed;
170 /* Maximum register number used in this function, plus one. */
172 int max_regno;
174 /* Indexed by n, giving various register information */
176 varray_type reg_n_info;
178 /* Size of a regset for the current function,
179 in (1) bytes and (2) elements. */
181 int regset_bytes;
182 int regset_size;
184 /* Regset of regs live when calls to `setjmp'-like functions happen. */
185 /* ??? Does this exist only for the setjmp-clobbered warning message? */
187 regset regs_live_at_setjmp;
189 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
190 that have to go in the same hard reg.
191 The first two regs in the list are a pair, and the next two
192 are another pair, etc. */
193 rtx regs_may_share;
195 /* Callback that determines if it's ok for a function to have no
196 noreturn attribute. */
197 int (*lang_missing_noreturn_ok_p) (tree);
199 /* Set of registers that may be eliminable. These are handled specially
200 in updating regs_ever_live. */
202 static HARD_REG_SET elim_reg_set;
204 /* Holds information for tracking conditional register life information. */
205 struct reg_cond_life_info
207 /* A boolean expression of conditions under which a register is dead. */
208 rtx condition;
209 /* Conditions under which a register is dead at the basic block end. */
210 rtx orig_condition;
212 /* A boolean expression of conditions under which a register has been
213 stored into. */
214 rtx stores;
216 /* ??? Could store mask of bytes that are dead, so that we could finally
217 track lifetimes of multi-word registers accessed via subregs. */
220 /* For use in communicating between propagate_block and its subroutines.
221 Holds all information needed to compute life and def-use information. */
223 struct propagate_block_info
225 /* The basic block we're considering. */
226 basic_block bb;
228 /* Bit N is set if register N is conditionally or unconditionally live. */
229 regset reg_live;
231 /* Bit N is set if register N is set this insn. */
232 regset new_set;
234 /* Element N is the next insn that uses (hard or pseudo) register N
235 within the current basic block; or zero, if there is no such insn. */
236 rtx *reg_next_use;
238 /* Contains a list of all the MEMs we are tracking for dead store
239 elimination. */
240 rtx mem_set_list;
242 /* If non-null, record the set of registers set unconditionally in the
243 basic block. */
244 regset local_set;
246 /* If non-null, record the set of registers set conditionally in the
247 basic block. */
248 regset cond_local_set;
250 #ifdef HAVE_conditional_execution
251 /* Indexed by register number, holds a reg_cond_life_info for each
252 register that is not unconditionally live or dead. */
253 splay_tree reg_cond_dead;
255 /* Bit N is set if register N is in an expression in reg_cond_dead. */
256 regset reg_cond_reg;
257 #endif
259 /* The length of mem_set_list. */
260 int mem_set_list_len;
262 /* Nonzero if the value of CC0 is live. */
263 int cc0_live;
265 /* Flags controlling the set of information propagate_block collects. */
266 int flags;
267 /* Index of instruction being processed. */
268 int insn_num;
271 /* Number of dead insns removed. */
272 static int ndead;
274 /* When PROP_REG_INFO set, array contains pbi->insn_num of instruction
275 where given register died. When the register is marked alive, we use the
276 information to compute amount of instructions life range cross.
277 (remember, we are walking backward). This can be computed as current
278 pbi->insn_num - reg_deaths[regno].
279 At the end of processing each basic block, the remaining live registers
280 are inspected and liferanges are increased same way so liverange of global
281 registers are computed correctly.
283 The array is maintained clear for dead registers, so it can be safely reused
284 for next basic block without expensive memset of the whole array after
285 reseting pbi->insn_num to 0. */
287 static int *reg_deaths;
289 /* Maximum length of pbi->mem_set_list before we start dropping
290 new elements on the floor. */
291 #define MAX_MEM_SET_LIST_LEN 100
293 /* Forward declarations */
294 static int verify_wide_reg_1 (rtx *, void *);
295 static void verify_wide_reg (int, basic_block);
296 static void verify_local_live_at_start (regset, basic_block);
297 static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
298 static void notice_stack_pointer_modification (rtx);
299 static void mark_reg (rtx, void *);
300 static void mark_regs_live_at_end (regset);
301 static void calculate_global_regs_live (sbitmap, sbitmap, int);
302 static void propagate_block_delete_insn (rtx);
303 static rtx propagate_block_delete_libcall (rtx, rtx);
304 static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
305 static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
306 static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
307 static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
308 rtx, rtx, int);
309 static int find_regno_partial (rtx *, void *);
311 #ifdef HAVE_conditional_execution
312 static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
313 static void free_reg_cond_life_info (splay_tree_value);
314 static int flush_reg_cond_reg_1 (splay_tree_node, void *);
315 static void flush_reg_cond_reg (struct propagate_block_info *, int);
316 static rtx elim_reg_cond (rtx, unsigned int);
317 static rtx ior_reg_cond (rtx, rtx, int);
318 static rtx not_reg_cond (rtx);
319 static rtx and_reg_cond (rtx, rtx, int);
320 #endif
321 #ifdef AUTO_INC_DEC
322 static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
323 rtx, rtx);
324 static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
325 static int try_pre_increment_1 (struct propagate_block_info *, rtx);
326 static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
327 #endif
328 static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
329 static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
330 void debug_flow_info (void);
331 static void add_to_mem_set_list (struct propagate_block_info *, rtx);
332 static int invalidate_mems_from_autoinc (rtx *, void *);
333 static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
334 static void clear_log_links (sbitmap);
335 static int count_or_remove_death_notes_bb (basic_block, int);
338 void
339 check_function_return_warnings (void)
341 if (warn_missing_noreturn
342 && !TREE_THIS_VOLATILE (cfun->decl)
343 && EXIT_BLOCK_PTR->pred == NULL
344 && (lang_missing_noreturn_ok_p
345 && !lang_missing_noreturn_ok_p (cfun->decl)))
346 warning ("function might be possible candidate for attribute `noreturn'");
348 /* If we have a path to EXIT, then we do return. */
349 if (TREE_THIS_VOLATILE (cfun->decl)
350 && EXIT_BLOCK_PTR->pred != NULL)
351 warning ("`noreturn' function does return");
353 /* If the clobber_return_insn appears in some basic block, then we
354 do reach the end without returning a value. */
355 else if (warn_return_type
356 && cfun->x_clobber_return_insn != NULL
357 && EXIT_BLOCK_PTR->pred != NULL)
359 int max_uid = get_max_uid ();
361 /* If clobber_return_insn was excised by jump1, then renumber_insns
362 can make max_uid smaller than the number still recorded in our rtx.
363 That's fine, since this is a quick way of verifying that the insn
364 is no longer in the chain. */
365 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
367 rtx insn;
369 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
370 if (insn == cfun->x_clobber_return_insn)
372 warning ("control reaches end of non-void function");
373 break;
379 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
380 note associated with the BLOCK. */
383 first_insn_after_basic_block_note (basic_block block)
385 rtx insn;
387 /* Get the first instruction in the block. */
388 insn = BB_HEAD (block);
390 if (insn == NULL_RTX)
391 return NULL_RTX;
392 if (GET_CODE (insn) == CODE_LABEL)
393 insn = NEXT_INSN (insn);
394 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
395 abort ();
397 return NEXT_INSN (insn);
400 /* Perform data flow analysis.
401 F is the first insn of the function; FLAGS is a set of PROP_* flags
402 to be used in accumulating flow info. */
404 void
405 life_analysis (rtx f, FILE *file, int flags)
407 #ifdef ELIMINABLE_REGS
408 int i;
409 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
410 #endif
412 /* Record which registers will be eliminated. We use this in
413 mark_used_regs. */
415 CLEAR_HARD_REG_SET (elim_reg_set);
417 #ifdef ELIMINABLE_REGS
418 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
419 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
420 #else
421 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
422 #endif
425 #ifdef CANNOT_CHANGE_MODE_CLASS
426 if (flags & PROP_REG_INFO)
427 bitmap_initialize (&subregs_of_mode, 1);
428 #endif
430 if (! optimize)
431 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
433 /* The post-reload life analysis have (on a global basis) the same
434 registers live as was computed by reload itself. elimination
435 Otherwise offsets and such may be incorrect.
437 Reload will make some registers as live even though they do not
438 appear in the rtl.
440 We don't want to create new auto-incs after reload, since they
441 are unlikely to be useful and can cause problems with shared
442 stack slots. */
443 if (reload_completed)
444 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
446 /* We want alias analysis information for local dead store elimination. */
447 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
448 init_alias_analysis ();
450 /* Always remove no-op moves. Do this before other processing so
451 that we don't have to keep re-scanning them. */
452 delete_noop_moves (f);
454 /* Some targets can emit simpler epilogues if they know that sp was
455 not ever modified during the function. After reload, of course,
456 we've already emitted the epilogue so there's no sense searching. */
457 if (! reload_completed)
458 notice_stack_pointer_modification (f);
460 /* Allocate and zero out data structures that will record the
461 data from lifetime analysis. */
462 allocate_reg_life_data ();
463 allocate_bb_life_data ();
465 /* Find the set of registers live on function exit. */
466 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
468 /* "Update" life info from zero. It'd be nice to begin the
469 relaxation with just the exit and noreturn blocks, but that set
470 is not immediately handy. */
472 if (flags & PROP_REG_INFO)
474 memset (regs_ever_live, 0, sizeof (regs_ever_live));
475 memset (regs_asm_clobbered, 0, sizeof (regs_asm_clobbered));
477 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
478 if (reg_deaths)
480 free (reg_deaths);
481 reg_deaths = NULL;
484 /* Clean up. */
485 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
486 end_alias_analysis ();
488 if (file)
489 dump_flow_info (file);
491 free_basic_block_vars (1);
493 /* Removing dead insns should have made jumptables really dead. */
494 delete_dead_jumptables ();
497 /* A subroutine of verify_wide_reg, called through for_each_rtx.
498 Search for REGNO. If found, return 2 if it is not wider than
499 word_mode. */
501 static int
502 verify_wide_reg_1 (rtx *px, void *pregno)
504 rtx x = *px;
505 unsigned int regno = *(int *) pregno;
507 if (GET_CODE (x) == REG && REGNO (x) == regno)
509 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
510 return 2;
511 return 1;
513 return 0;
516 /* A subroutine of verify_local_live_at_start. Search through insns
517 of BB looking for register REGNO. */
519 static void
520 verify_wide_reg (int regno, basic_block bb)
522 rtx head = BB_HEAD (bb), end = BB_END (bb);
524 while (1)
526 if (INSN_P (head))
528 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
529 if (r == 1)
530 return;
531 if (r == 2)
532 break;
534 if (head == end)
535 break;
536 head = NEXT_INSN (head);
539 if (dump_file)
541 fprintf (dump_file, "Register %d died unexpectedly.\n", regno);
542 dump_bb (bb, dump_file, 0);
544 abort ();
547 /* A subroutine of update_life_info. Verify that there are no untoward
548 changes in live_at_start during a local update. */
550 static void
551 verify_local_live_at_start (regset new_live_at_start, basic_block bb)
553 if (reload_completed)
555 /* After reload, there are no pseudos, nor subregs of multi-word
556 registers. The regsets should exactly match. */
557 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
559 if (dump_file)
561 fprintf (dump_file,
562 "live_at_start mismatch in bb %d, aborting\nNew:\n",
563 bb->index);
564 debug_bitmap_file (dump_file, new_live_at_start);
565 fputs ("Old:\n", dump_file);
566 dump_bb (bb, dump_file, 0);
568 abort ();
571 else
573 int i;
575 /* Find the set of changed registers. */
576 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
578 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
580 /* No registers should die. */
581 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
583 if (dump_file)
585 fprintf (dump_file,
586 "Register %d died unexpectedly.\n", i);
587 dump_bb (bb, dump_file, 0);
589 abort ();
592 /* Verify that the now-live register is wider than word_mode. */
593 verify_wide_reg (i, bb);
598 /* Updates life information starting with the basic blocks set in BLOCKS.
599 If BLOCKS is null, consider it to be the universal set.
601 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
602 we are only expecting local modifications to basic blocks. If we find
603 extra registers live at the beginning of a block, then we either killed
604 useful data, or we have a broken split that wants data not provided.
605 If we find registers removed from live_at_start, that means we have
606 a broken peephole that is killing a register it shouldn't.
608 ??? This is not true in one situation -- when a pre-reload splitter
609 generates subregs of a multi-word pseudo, current life analysis will
610 lose the kill. So we _can_ have a pseudo go live. How irritating.
612 It is also not true when a peephole decides that it doesn't need one
613 or more of the inputs.
615 Including PROP_REG_INFO does not properly refresh regs_ever_live
616 unless the caller resets it to zero. */
619 update_life_info (sbitmap blocks, enum update_life_extent extent, int prop_flags)
621 regset tmp;
622 regset_head tmp_head;
623 int i;
624 int stabilized_prop_flags = prop_flags;
625 basic_block bb;
627 tmp = INITIALIZE_REG_SET (tmp_head);
628 ndead = 0;
630 if ((prop_flags & PROP_REG_INFO) && !reg_deaths)
631 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
633 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
634 ? TV_LIFE_UPDATE : TV_LIFE);
636 /* Changes to the CFG are only allowed when
637 doing a global update for the entire CFG. */
638 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
639 && (extent == UPDATE_LIFE_LOCAL || blocks))
640 abort ();
642 /* For a global update, we go through the relaxation process again. */
643 if (extent != UPDATE_LIFE_LOCAL)
645 for ( ; ; )
647 int changed = 0;
649 calculate_global_regs_live (blocks, blocks,
650 prop_flags & (PROP_SCAN_DEAD_CODE
651 | PROP_SCAN_DEAD_STORES
652 | PROP_ALLOW_CFG_CHANGES));
654 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
655 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
656 break;
658 /* Removing dead code may allow the CFG to be simplified which
659 in turn may allow for further dead code detection / removal. */
660 FOR_EACH_BB_REVERSE (bb)
662 COPY_REG_SET (tmp, bb->global_live_at_end);
663 changed |= propagate_block (bb, tmp, NULL, NULL,
664 prop_flags & (PROP_SCAN_DEAD_CODE
665 | PROP_SCAN_DEAD_STORES
666 | PROP_KILL_DEAD_CODE));
669 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
670 subsequent propagate_block calls, since removing or acting as
671 removing dead code can affect global register liveness, which
672 is supposed to be finalized for this call after this loop. */
673 stabilized_prop_flags
674 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
675 | PROP_KILL_DEAD_CODE);
677 if (! changed)
678 break;
680 /* We repeat regardless of what cleanup_cfg says. If there were
681 instructions deleted above, that might have been only a
682 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
683 Further improvement may be possible. */
684 cleanup_cfg (CLEANUP_EXPENSIVE);
686 /* Zap the life information from the last round. If we don't
687 do this, we can wind up with registers that no longer appear
688 in the code being marked live at entry, which twiggs bogus
689 warnings from regno_uninitialized. */
690 FOR_EACH_BB (bb)
692 CLEAR_REG_SET (bb->global_live_at_start);
693 CLEAR_REG_SET (bb->global_live_at_end);
697 /* If asked, remove notes from the blocks we'll update. */
698 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
699 count_or_remove_death_notes (blocks, 1);
702 /* Clear log links in case we are asked to (re)compute them. */
703 if (prop_flags & PROP_LOG_LINKS)
704 clear_log_links (blocks);
706 if (blocks)
708 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
710 bb = BASIC_BLOCK (i);
712 COPY_REG_SET (tmp, bb->global_live_at_end);
713 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
715 if (extent == UPDATE_LIFE_LOCAL)
716 verify_local_live_at_start (tmp, bb);
719 else
721 FOR_EACH_BB_REVERSE (bb)
723 COPY_REG_SET (tmp, bb->global_live_at_end);
725 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
727 if (extent == UPDATE_LIFE_LOCAL)
728 verify_local_live_at_start (tmp, bb);
732 FREE_REG_SET (tmp);
734 if (prop_flags & PROP_REG_INFO)
736 /* The only pseudos that are live at the beginning of the function
737 are those that were not set anywhere in the function. local-alloc
738 doesn't know how to handle these correctly, so mark them as not
739 local to any one basic block. */
740 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
741 FIRST_PSEUDO_REGISTER, i,
742 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
744 /* We have a problem with any pseudoreg that lives across the setjmp.
745 ANSI says that if a user variable does not change in value between
746 the setjmp and the longjmp, then the longjmp preserves it. This
747 includes longjmp from a place where the pseudo appears dead.
748 (In principle, the value still exists if it is in scope.)
749 If the pseudo goes in a hard reg, some other value may occupy
750 that hard reg where this pseudo is dead, thus clobbering the pseudo.
751 Conclusion: such a pseudo must not go in a hard reg. */
752 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
753 FIRST_PSEUDO_REGISTER, i,
755 if (regno_reg_rtx[i] != 0)
757 REG_LIVE_LENGTH (i) = -1;
758 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
762 if (reg_deaths)
764 free (reg_deaths);
765 reg_deaths = NULL;
767 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
768 ? TV_LIFE_UPDATE : TV_LIFE);
769 if (ndead && dump_file)
770 fprintf (dump_file, "deleted %i dead insns\n", ndead);
771 return ndead;
774 /* Update life information in all blocks where BB_DIRTY is set. */
777 update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
779 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
780 int n = 0;
781 basic_block bb;
782 int retval = 0;
784 sbitmap_zero (update_life_blocks);
785 FOR_EACH_BB (bb)
787 if (extent == UPDATE_LIFE_LOCAL)
789 if (bb->flags & BB_DIRTY)
791 SET_BIT (update_life_blocks, bb->index);
792 n++;
795 else
797 /* ??? Bootstrap with -march=pentium4 fails to terminate
798 with only a partial life update. */
799 SET_BIT (update_life_blocks, bb->index);
800 if (bb->flags & BB_DIRTY)
801 n++;
805 if (n)
806 retval = update_life_info (update_life_blocks, extent, prop_flags);
808 sbitmap_free (update_life_blocks);
809 return retval;
812 /* Free the variables allocated by find_basic_blocks.
814 KEEP_HEAD_END_P is nonzero if basic_block_info is not to be freed. */
816 void
817 free_basic_block_vars (int keep_head_end_p)
819 if (! keep_head_end_p)
821 if (basic_block_info)
823 clear_edges ();
824 VARRAY_FREE (basic_block_info);
826 n_basic_blocks = 0;
827 last_basic_block = 0;
829 ENTRY_BLOCK_PTR->aux = NULL;
830 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
831 EXIT_BLOCK_PTR->aux = NULL;
832 EXIT_BLOCK_PTR->global_live_at_start = NULL;
836 /* Delete any insns that copy a register to itself. */
839 delete_noop_moves (rtx f ATTRIBUTE_UNUSED)
841 rtx insn, next;
842 basic_block bb;
843 int nnoops = 0;
845 FOR_EACH_BB (bb)
847 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
849 next = NEXT_INSN (insn);
850 if (INSN_P (insn) && noop_move_p (insn))
852 rtx note;
854 /* If we're about to remove the first insn of a libcall
855 then move the libcall note to the next real insn and
856 update the retval note. */
857 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
858 && XEXP (note, 0) != insn)
860 rtx new_libcall_insn = next_real_insn (insn);
861 rtx retval_note = find_reg_note (XEXP (note, 0),
862 REG_RETVAL, NULL_RTX);
863 REG_NOTES (new_libcall_insn)
864 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
865 REG_NOTES (new_libcall_insn));
866 XEXP (retval_note, 0) = new_libcall_insn;
869 delete_insn_and_edges (insn);
870 nnoops++;
874 if (nnoops && dump_file)
875 fprintf (dump_file, "deleted %i noop moves", nnoops);
876 return nnoops;
879 /* Delete any jump tables never referenced. We can't delete them at the
880 time of removing tablejump insn as they are referenced by the preceding
881 insns computing the destination, so we delay deleting and garbagecollect
882 them once life information is computed. */
883 void
884 delete_dead_jumptables (void)
886 rtx insn, next;
887 for (insn = get_insns (); insn; insn = next)
889 next = NEXT_INSN (insn);
890 if (GET_CODE (insn) == CODE_LABEL
891 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
892 && GET_CODE (next) == JUMP_INSN
893 && (GET_CODE (PATTERN (next)) == ADDR_VEC
894 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
896 if (dump_file)
897 fprintf (dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
898 delete_insn (NEXT_INSN (insn));
899 delete_insn (insn);
900 next = NEXT_INSN (next);
905 /* Determine if the stack pointer is constant over the life of the function.
906 Only useful before prologues have been emitted. */
908 static void
909 notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
910 void *data ATTRIBUTE_UNUSED)
912 if (x == stack_pointer_rtx
913 /* The stack pointer is only modified indirectly as the result
914 of a push until later in flow. See the comments in rtl.texi
915 regarding Embedded Side-Effects on Addresses. */
916 || (GET_CODE (x) == MEM
917 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_AUTOINC
918 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
919 current_function_sp_is_unchanging = 0;
922 static void
923 notice_stack_pointer_modification (rtx f)
925 rtx insn;
927 /* Assume that the stack pointer is unchanging if alloca hasn't
928 been used. */
929 current_function_sp_is_unchanging = !current_function_calls_alloca;
930 if (! current_function_sp_is_unchanging)
931 return;
933 for (insn = f; insn; insn = NEXT_INSN (insn))
935 if (INSN_P (insn))
937 /* Check if insn modifies the stack pointer. */
938 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
939 NULL);
940 if (! current_function_sp_is_unchanging)
941 return;
946 /* Mark a register in SET. Hard registers in large modes get all
947 of their component registers set as well. */
949 static void
950 mark_reg (rtx reg, void *xset)
952 regset set = (regset) xset;
953 int regno = REGNO (reg);
955 if (GET_MODE (reg) == BLKmode)
956 abort ();
958 SET_REGNO_REG_SET (set, regno);
959 if (regno < FIRST_PSEUDO_REGISTER)
961 int n = hard_regno_nregs[regno][GET_MODE (reg)];
962 while (--n > 0)
963 SET_REGNO_REG_SET (set, regno + n);
967 /* Mark those regs which are needed at the end of the function as live
968 at the end of the last basic block. */
970 static void
971 mark_regs_live_at_end (regset set)
973 unsigned int i;
975 /* If exiting needs the right stack value, consider the stack pointer
976 live at the end of the function. */
977 if ((HAVE_epilogue && epilogue_completed)
978 || ! EXIT_IGNORE_STACK
979 || (! FRAME_POINTER_REQUIRED
980 && ! current_function_calls_alloca
981 && flag_omit_frame_pointer)
982 || current_function_sp_is_unchanging)
984 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
987 /* Mark the frame pointer if needed at the end of the function. If
988 we end up eliminating it, it will be removed from the live list
989 of each basic block by reload. */
991 if (! reload_completed || frame_pointer_needed)
993 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
994 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
995 /* If they are different, also mark the hard frame pointer as live. */
996 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
997 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
998 #endif
1001 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1002 /* Many architectures have a GP register even without flag_pic.
1003 Assume the pic register is not in use, or will be handled by
1004 other means, if it is not fixed. */
1005 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1006 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1007 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
1008 #endif
1010 /* Mark all global registers, and all registers used by the epilogue
1011 as being live at the end of the function since they may be
1012 referenced by our caller. */
1013 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1014 if (global_regs[i] || EPILOGUE_USES (i))
1015 SET_REGNO_REG_SET (set, i);
1017 if (HAVE_epilogue && epilogue_completed)
1019 /* Mark all call-saved registers that we actually used. */
1020 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1021 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
1022 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1023 SET_REGNO_REG_SET (set, i);
1026 #ifdef EH_RETURN_DATA_REGNO
1027 /* Mark the registers that will contain data for the handler. */
1028 if (reload_completed && current_function_calls_eh_return)
1029 for (i = 0; ; ++i)
1031 unsigned regno = EH_RETURN_DATA_REGNO(i);
1032 if (regno == INVALID_REGNUM)
1033 break;
1034 SET_REGNO_REG_SET (set, regno);
1036 #endif
1037 #ifdef EH_RETURN_STACKADJ_RTX
1038 if ((! HAVE_epilogue || ! epilogue_completed)
1039 && current_function_calls_eh_return)
1041 rtx tmp = EH_RETURN_STACKADJ_RTX;
1042 if (tmp && REG_P (tmp))
1043 mark_reg (tmp, set);
1045 #endif
1046 #ifdef EH_RETURN_HANDLER_RTX
1047 if ((! HAVE_epilogue || ! epilogue_completed)
1048 && current_function_calls_eh_return)
1050 rtx tmp = EH_RETURN_HANDLER_RTX;
1051 if (tmp && REG_P (tmp))
1052 mark_reg (tmp, set);
1054 #endif
1056 /* Mark function return value. */
1057 diddle_return_value (mark_reg, set);
1060 /* Propagate global life info around the graph of basic blocks. Begin
1061 considering blocks with their corresponding bit set in BLOCKS_IN.
1062 If BLOCKS_IN is null, consider it the universal set.
1064 BLOCKS_OUT is set for every block that was changed. */
1066 static void
1067 calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
1069 basic_block *queue, *qhead, *qtail, *qend, bb;
1070 regset tmp, new_live_at_end, invalidated_by_call;
1071 regset_head tmp_head, invalidated_by_call_head;
1072 regset_head new_live_at_end_head;
1073 int i;
1075 /* Some passes used to forget clear aux field of basic block causing
1076 sick behavior here. */
1077 #ifdef ENABLE_CHECKING
1078 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1079 if (bb->aux)
1080 abort ();
1081 #endif
1083 tmp = INITIALIZE_REG_SET (tmp_head);
1084 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1085 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1087 /* Inconveniently, this is only readily available in hard reg set form. */
1088 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1089 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1090 SET_REGNO_REG_SET (invalidated_by_call, i);
1092 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1093 because the `head == tail' style test for an empty queue doesn't
1094 work with a full queue. */
1095 queue = xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1096 qtail = queue;
1097 qhead = qend = queue + n_basic_blocks + 2;
1099 /* Queue the blocks set in the initial mask. Do this in reverse block
1100 number order so that we are more likely for the first round to do
1101 useful work. We use AUX non-null to flag that the block is queued. */
1102 if (blocks_in)
1104 FOR_EACH_BB (bb)
1105 if (TEST_BIT (blocks_in, bb->index))
1107 *--qhead = bb;
1108 bb->aux = bb;
1111 else
1113 FOR_EACH_BB (bb)
1115 *--qhead = bb;
1116 bb->aux = bb;
1120 /* We clean aux when we remove the initially-enqueued bbs, but we
1121 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1122 unconditionally. */
1123 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1125 if (blocks_out)
1126 sbitmap_zero (blocks_out);
1128 /* We work through the queue until there are no more blocks. What
1129 is live at the end of this block is precisely the union of what
1130 is live at the beginning of all its successors. So, we set its
1131 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1132 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1133 this block by walking through the instructions in this block in
1134 reverse order and updating as we go. If that changed
1135 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1136 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1138 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1139 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1140 must either be live at the end of the block, or used within the
1141 block. In the latter case, it will certainly never disappear
1142 from GLOBAL_LIVE_AT_START. In the former case, the register
1143 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1144 for one of the successor blocks. By induction, that cannot
1145 occur. */
1146 while (qhead != qtail)
1148 int rescan, changed;
1149 basic_block bb;
1150 edge e;
1152 bb = *qhead++;
1153 if (qhead == qend)
1154 qhead = queue;
1155 bb->aux = NULL;
1157 /* Begin by propagating live_at_start from the successor blocks. */
1158 CLEAR_REG_SET (new_live_at_end);
1160 if (bb->succ)
1161 for (e = bb->succ; e; e = e->succ_next)
1163 basic_block sb = e->dest;
1165 /* Call-clobbered registers die across exception and
1166 call edges. */
1167 /* ??? Abnormal call edges ignored for the moment, as this gets
1168 confused by sibling call edges, which crashes reg-stack. */
1169 if (e->flags & EDGE_EH)
1171 bitmap_operation (tmp, sb->global_live_at_start,
1172 invalidated_by_call, BITMAP_AND_COMPL);
1173 IOR_REG_SET (new_live_at_end, tmp);
1175 else
1176 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1178 /* If a target saves one register in another (instead of on
1179 the stack) the save register will need to be live for EH. */
1180 if (e->flags & EDGE_EH)
1181 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1182 if (EH_USES (i))
1183 SET_REGNO_REG_SET (new_live_at_end, i);
1185 else
1187 /* This might be a noreturn function that throws. And
1188 even if it isn't, getting the unwind info right helps
1189 debugging. */
1190 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1191 if (EH_USES (i))
1192 SET_REGNO_REG_SET (new_live_at_end, i);
1195 /* The all-important stack pointer must always be live. */
1196 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1198 /* Before reload, there are a few registers that must be forced
1199 live everywhere -- which might not already be the case for
1200 blocks within infinite loops. */
1201 if (! reload_completed)
1203 /* Any reference to any pseudo before reload is a potential
1204 reference of the frame pointer. */
1205 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1207 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1208 /* Pseudos with argument area equivalences may require
1209 reloading via the argument pointer. */
1210 if (fixed_regs[ARG_POINTER_REGNUM])
1211 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1212 #endif
1214 /* Any constant, or pseudo with constant equivalences, may
1215 require reloading from memory using the pic register. */
1216 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1217 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1218 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1221 if (bb == ENTRY_BLOCK_PTR)
1223 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1224 continue;
1227 /* On our first pass through this block, we'll go ahead and continue.
1228 Recognize first pass by local_set NULL. On subsequent passes, we
1229 get to skip out early if live_at_end wouldn't have changed. */
1231 if (bb->local_set == NULL)
1233 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1234 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1235 rescan = 1;
1237 else
1239 /* If any bits were removed from live_at_end, we'll have to
1240 rescan the block. This wouldn't be necessary if we had
1241 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1242 local_live is really dependent on live_at_end. */
1243 CLEAR_REG_SET (tmp);
1244 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1245 new_live_at_end, BITMAP_AND_COMPL);
1247 if (! rescan)
1249 /* If any of the registers in the new live_at_end set are
1250 conditionally set in this basic block, we must rescan.
1251 This is because conditional lifetimes at the end of the
1252 block do not just take the live_at_end set into account,
1253 but also the liveness at the start of each successor
1254 block. We can miss changes in those sets if we only
1255 compare the new live_at_end against the previous one. */
1256 CLEAR_REG_SET (tmp);
1257 rescan = bitmap_operation (tmp, new_live_at_end,
1258 bb->cond_local_set, BITMAP_AND);
1261 if (! rescan)
1263 /* Find the set of changed bits. Take this opportunity
1264 to notice that this set is empty and early out. */
1265 CLEAR_REG_SET (tmp);
1266 changed = bitmap_operation (tmp, bb->global_live_at_end,
1267 new_live_at_end, BITMAP_XOR);
1268 if (! changed)
1269 continue;
1271 /* If any of the changed bits overlap with local_set,
1272 we'll have to rescan the block. Detect overlap by
1273 the AND with ~local_set turning off bits. */
1274 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1275 BITMAP_AND_COMPL);
1279 /* Let our caller know that BB changed enough to require its
1280 death notes updated. */
1281 if (blocks_out)
1282 SET_BIT (blocks_out, bb->index);
1284 if (! rescan)
1286 /* Add to live_at_start the set of all registers in
1287 new_live_at_end that aren't in the old live_at_end. */
1289 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1290 BITMAP_AND_COMPL);
1291 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1293 changed = bitmap_operation (bb->global_live_at_start,
1294 bb->global_live_at_start,
1295 tmp, BITMAP_IOR);
1296 if (! changed)
1297 continue;
1299 else
1301 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1303 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1304 into live_at_start. */
1305 propagate_block (bb, new_live_at_end, bb->local_set,
1306 bb->cond_local_set, flags);
1308 /* If live_at start didn't change, no need to go farther. */
1309 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1310 continue;
1312 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1315 /* Queue all predecessors of BB so that we may re-examine
1316 their live_at_end. */
1317 for (e = bb->pred; e; e = e->pred_next)
1319 basic_block pb = e->src;
1320 if (pb->aux == NULL)
1322 *qtail++ = pb;
1323 if (qtail == qend)
1324 qtail = queue;
1325 pb->aux = pb;
1330 FREE_REG_SET (tmp);
1331 FREE_REG_SET (new_live_at_end);
1332 FREE_REG_SET (invalidated_by_call);
1334 if (blocks_out)
1336 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1338 basic_block bb = BASIC_BLOCK (i);
1339 FREE_REG_SET (bb->local_set);
1340 FREE_REG_SET (bb->cond_local_set);
1343 else
1345 FOR_EACH_BB (bb)
1347 FREE_REG_SET (bb->local_set);
1348 FREE_REG_SET (bb->cond_local_set);
1352 free (queue);
1356 /* This structure is used to pass parameters to and from the
1357 the function find_regno_partial(). It is used to pass in the
1358 register number we are looking, as well as to return any rtx
1359 we find. */
1361 typedef struct {
1362 unsigned regno_to_find;
1363 rtx retval;
1364 } find_regno_partial_param;
1367 /* Find the rtx for the reg numbers specified in 'data' if it is
1368 part of an expression which only uses part of the register. Return
1369 it in the structure passed in. */
1370 static int
1371 find_regno_partial (rtx *ptr, void *data)
1373 find_regno_partial_param *param = (find_regno_partial_param *)data;
1374 unsigned reg = param->regno_to_find;
1375 param->retval = NULL_RTX;
1377 if (*ptr == NULL_RTX)
1378 return 0;
1380 switch (GET_CODE (*ptr))
1382 case ZERO_EXTRACT:
1383 case SIGN_EXTRACT:
1384 case STRICT_LOW_PART:
1385 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1387 param->retval = XEXP (*ptr, 0);
1388 return 1;
1390 break;
1392 case SUBREG:
1393 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1394 && REGNO (SUBREG_REG (*ptr)) == reg)
1396 param->retval = SUBREG_REG (*ptr);
1397 return 1;
1399 break;
1401 default:
1402 break;
1405 return 0;
1408 /* Process all immediate successors of the entry block looking for pseudo
1409 registers which are live on entry. Find all of those whose first
1410 instance is a partial register reference of some kind, and initialize
1411 them to 0 after the entry block. This will prevent bit sets within
1412 registers whose value is unknown, and may contain some kind of sticky
1413 bits we don't want. */
1416 initialize_uninitialized_subregs (void)
1418 rtx insn;
1419 edge e;
1420 int reg, did_something = 0;
1421 find_regno_partial_param param;
1423 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1425 basic_block bb = e->dest;
1426 regset map = bb->global_live_at_start;
1427 EXECUTE_IF_SET_IN_REG_SET (map,
1428 FIRST_PSEUDO_REGISTER, reg,
1430 int uid = REGNO_FIRST_UID (reg);
1431 rtx i;
1433 /* Find an insn which mentions the register we are looking for.
1434 Its preferable to have an instance of the register's rtl since
1435 there may be various flags set which we need to duplicate.
1436 If we can't find it, its probably an automatic whose initial
1437 value doesn't matter, or hopefully something we don't care about. */
1438 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1440 if (i != NULL_RTX)
1442 /* Found the insn, now get the REG rtx, if we can. */
1443 param.regno_to_find = reg;
1444 for_each_rtx (&i, find_regno_partial, &param);
1445 if (param.retval != NULL_RTX)
1447 start_sequence ();
1448 emit_move_insn (param.retval,
1449 CONST0_RTX (GET_MODE (param.retval)));
1450 insn = get_insns ();
1451 end_sequence ();
1452 insert_insn_on_edge (insn, e);
1453 did_something = 1;
1459 if (did_something)
1460 commit_edge_insertions ();
1461 return did_something;
1465 /* Subroutines of life analysis. */
1467 /* Allocate the permanent data structures that represent the results
1468 of life analysis. Not static since used also for stupid life analysis. */
1470 void
1471 allocate_bb_life_data (void)
1473 basic_block bb;
1475 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1477 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1478 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1481 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1484 void
1485 allocate_reg_life_data (void)
1487 int i;
1489 max_regno = max_reg_num ();
1490 if (reg_deaths)
1491 abort ();
1492 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
1494 /* Recalculate the register space, in case it has grown. Old style
1495 vector oriented regsets would set regset_{size,bytes} here also. */
1496 allocate_reg_info (max_regno, FALSE, FALSE);
1498 /* Reset all the data we'll collect in propagate_block and its
1499 subroutines. */
1500 for (i = 0; i < max_regno; i++)
1502 REG_N_SETS (i) = 0;
1503 REG_N_REFS (i) = 0;
1504 REG_N_DEATHS (i) = 0;
1505 REG_N_CALLS_CROSSED (i) = 0;
1506 REG_LIVE_LENGTH (i) = 0;
1507 REG_FREQ (i) = 0;
1508 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1512 /* Delete dead instructions for propagate_block. */
1514 static void
1515 propagate_block_delete_insn (rtx insn)
1517 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1519 /* If the insn referred to a label, and that label was attached to
1520 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1521 pretty much mandatory to delete it, because the ADDR_VEC may be
1522 referencing labels that no longer exist.
1524 INSN may reference a deleted label, particularly when a jump
1525 table has been optimized into a direct jump. There's no
1526 real good way to fix up the reference to the deleted label
1527 when the label is deleted, so we just allow it here. */
1529 if (inote && GET_CODE (inote) == CODE_LABEL)
1531 rtx label = XEXP (inote, 0);
1532 rtx next;
1534 /* The label may be forced if it has been put in the constant
1535 pool. If that is the only use we must discard the table
1536 jump following it, but not the label itself. */
1537 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1538 && (next = next_nonnote_insn (label)) != NULL
1539 && GET_CODE (next) == JUMP_INSN
1540 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1541 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1543 rtx pat = PATTERN (next);
1544 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1545 int len = XVECLEN (pat, diff_vec_p);
1546 int i;
1548 for (i = 0; i < len; i++)
1549 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1551 delete_insn_and_edges (next);
1552 ndead++;
1556 delete_insn_and_edges (insn);
1557 ndead++;
1560 /* Delete dead libcalls for propagate_block. Return the insn
1561 before the libcall. */
1563 static rtx
1564 propagate_block_delete_libcall (rtx insn, rtx note)
1566 rtx first = XEXP (note, 0);
1567 rtx before = PREV_INSN (first);
1569 delete_insn_chain_and_edges (first, insn);
1570 ndead++;
1571 return before;
1574 /* Update the life-status of regs for one insn. Return the previous insn. */
1577 propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
1579 rtx prev = PREV_INSN (insn);
1580 int flags = pbi->flags;
1581 int insn_is_dead = 0;
1582 int libcall_is_dead = 0;
1583 rtx note;
1584 int i;
1586 if (! INSN_P (insn))
1587 return prev;
1589 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1590 if (flags & PROP_SCAN_DEAD_CODE)
1592 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1593 libcall_is_dead = (insn_is_dead && note != 0
1594 && libcall_dead_p (pbi, note, insn));
1597 /* If an instruction consists of just dead store(s) on final pass,
1598 delete it. */
1599 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1601 /* If we're trying to delete a prologue or epilogue instruction
1602 that isn't flagged as possibly being dead, something is wrong.
1603 But if we are keeping the stack pointer depressed, we might well
1604 be deleting insns that are used to compute the amount to update
1605 it by, so they are fine. */
1606 if (reload_completed
1607 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1608 && (TYPE_RETURNS_STACK_DEPRESSED
1609 (TREE_TYPE (current_function_decl))))
1610 && (((HAVE_epilogue || HAVE_prologue)
1611 && prologue_epilogue_contains (insn))
1612 || (HAVE_sibcall_epilogue
1613 && sibcall_epilogue_contains (insn)))
1614 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1615 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1617 /* Record sets. Do this even for dead instructions, since they
1618 would have killed the values if they hadn't been deleted. */
1619 mark_set_regs (pbi, PATTERN (insn), insn);
1621 /* CC0 is now known to be dead. Either this insn used it,
1622 in which case it doesn't anymore, or clobbered it,
1623 so the next insn can't use it. */
1624 pbi->cc0_live = 0;
1626 if (libcall_is_dead)
1627 prev = propagate_block_delete_libcall ( insn, note);
1628 else
1631 /* If INSN contains a RETVAL note and is dead, but the libcall
1632 as a whole is not dead, then we want to remove INSN, but
1633 not the whole libcall sequence.
1635 However, we need to also remove the dangling REG_LIBCALL
1636 note so that we do not have mis-matched LIBCALL/RETVAL
1637 notes. In theory we could find a new location for the
1638 REG_RETVAL note, but it hardly seems worth the effort.
1640 NOTE at this point will be the RETVAL note if it exists. */
1641 if (note)
1643 rtx libcall_note;
1645 libcall_note
1646 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1647 remove_note (XEXP (note, 0), libcall_note);
1650 /* Similarly if INSN contains a LIBCALL note, remove the
1651 dangling REG_RETVAL note. */
1652 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1653 if (note)
1655 rtx retval_note;
1657 retval_note
1658 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1659 remove_note (XEXP (note, 0), retval_note);
1662 /* Now delete INSN. */
1663 propagate_block_delete_insn (insn);
1666 return prev;
1669 /* See if this is an increment or decrement that can be merged into
1670 a following memory address. */
1671 #ifdef AUTO_INC_DEC
1673 rtx x = single_set (insn);
1675 /* Does this instruction increment or decrement a register? */
1676 if ((flags & PROP_AUTOINC)
1677 && x != 0
1678 && GET_CODE (SET_DEST (x)) == REG
1679 && (GET_CODE (SET_SRC (x)) == PLUS
1680 || GET_CODE (SET_SRC (x)) == MINUS)
1681 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1682 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1683 /* Ok, look for a following memory ref we can combine with.
1684 If one is found, change the memory ref to a PRE_INC
1685 or PRE_DEC, cancel this insn, and return 1.
1686 Return 0 if nothing has been done. */
1687 && try_pre_increment_1 (pbi, insn))
1688 return prev;
1690 #endif /* AUTO_INC_DEC */
1692 CLEAR_REG_SET (pbi->new_set);
1694 /* If this is not the final pass, and this insn is copying the value of
1695 a library call and it's dead, don't scan the insns that perform the
1696 library call, so that the call's arguments are not marked live. */
1697 if (libcall_is_dead)
1699 /* Record the death of the dest reg. */
1700 mark_set_regs (pbi, PATTERN (insn), insn);
1702 insn = XEXP (note, 0);
1703 return PREV_INSN (insn);
1705 else if (GET_CODE (PATTERN (insn)) == SET
1706 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1707 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1708 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1709 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1711 /* We have an insn to pop a constant amount off the stack.
1712 (Such insns use PLUS regardless of the direction of the stack,
1713 and any insn to adjust the stack by a constant is always a pop
1714 or part of a push.)
1715 These insns, if not dead stores, have no effect on life, though
1716 they do have an effect on the memory stores we are tracking. */
1717 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1718 /* Still, we need to update local_set, lest ifcvt.c:dead_or_predicable
1719 concludes that the stack pointer is not modified. */
1720 mark_set_regs (pbi, PATTERN (insn), insn);
1722 else
1724 rtx note;
1725 /* Any regs live at the time of a call instruction must not go
1726 in a register clobbered by calls. Find all regs now live and
1727 record this for them. */
1729 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1730 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1731 { REG_N_CALLS_CROSSED (i)++; });
1733 /* Record sets. Do this even for dead instructions, since they
1734 would have killed the values if they hadn't been deleted. */
1735 mark_set_regs (pbi, PATTERN (insn), insn);
1737 if (GET_CODE (insn) == CALL_INSN)
1739 regset live_at_end;
1740 bool sibcall_p;
1741 rtx note, cond;
1742 int i;
1744 cond = NULL_RTX;
1745 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1746 cond = COND_EXEC_TEST (PATTERN (insn));
1748 /* Non-constant calls clobber memory, constant calls do not
1749 clobber memory, though they may clobber outgoing arguments
1750 on the stack. */
1751 if (! CONST_OR_PURE_CALL_P (insn))
1753 free_EXPR_LIST_list (&pbi->mem_set_list);
1754 pbi->mem_set_list_len = 0;
1756 else
1757 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1759 /* There may be extra registers to be clobbered. */
1760 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1761 note;
1762 note = XEXP (note, 1))
1763 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1764 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1765 cond, insn, pbi->flags);
1767 /* Calls change all call-used and global registers; sibcalls do not
1768 clobber anything that must be preserved at end-of-function,
1769 except for return values. */
1771 sibcall_p = SIBLING_CALL_P (insn);
1772 live_at_end = EXIT_BLOCK_PTR->global_live_at_start;
1773 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1774 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1775 && ! (sibcall_p
1776 && REGNO_REG_SET_P (live_at_end, i)
1777 && ! refers_to_regno_p (i, i+1,
1778 current_function_return_rtx,
1779 (rtx *) 0)))
1781 enum rtx_code code = global_regs[i] ? SET : CLOBBER;
1782 /* We do not want REG_UNUSED notes for these registers. */
1783 mark_set_1 (pbi, code, regno_reg_rtx[i], cond, insn,
1784 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1788 /* If an insn doesn't use CC0, it becomes dead since we assume
1789 that every insn clobbers it. So show it dead here;
1790 mark_used_regs will set it live if it is referenced. */
1791 pbi->cc0_live = 0;
1793 /* Record uses. */
1794 if (! insn_is_dead)
1795 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1796 if ((flags & PROP_EQUAL_NOTES)
1797 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1798 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1799 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1801 /* Sometimes we may have inserted something before INSN (such as a move)
1802 when we make an auto-inc. So ensure we will scan those insns. */
1803 #ifdef AUTO_INC_DEC
1804 prev = PREV_INSN (insn);
1805 #endif
1807 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1809 int i;
1810 rtx note, cond;
1812 cond = NULL_RTX;
1813 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1814 cond = COND_EXEC_TEST (PATTERN (insn));
1816 /* Calls use their arguments, and may clobber memory which
1817 address involves some register. */
1818 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1819 note;
1820 note = XEXP (note, 1))
1821 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1822 of which mark_used_regs knows how to handle. */
1823 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1825 /* The stack ptr is used (honorarily) by a CALL insn. */
1826 if ((flags & PROP_REG_INFO)
1827 && !REGNO_REG_SET_P (pbi->reg_live, STACK_POINTER_REGNUM))
1828 reg_deaths[STACK_POINTER_REGNUM] = pbi->insn_num;
1829 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1831 /* Calls may also reference any of the global registers,
1832 so they are made live. */
1833 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1834 if (global_regs[i])
1835 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1839 pbi->insn_num++;
1841 return prev;
1844 /* Initialize a propagate_block_info struct for public consumption.
1845 Note that the structure itself is opaque to this file, but that
1846 the user can use the regsets provided here. */
1848 struct propagate_block_info *
1849 init_propagate_block_info (basic_block bb, regset live, regset local_set,
1850 regset cond_local_set, int flags)
1852 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1854 pbi->bb = bb;
1855 pbi->reg_live = live;
1856 pbi->mem_set_list = NULL_RTX;
1857 pbi->mem_set_list_len = 0;
1858 pbi->local_set = local_set;
1859 pbi->cond_local_set = cond_local_set;
1860 pbi->cc0_live = 0;
1861 pbi->flags = flags;
1862 pbi->insn_num = 0;
1864 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1865 pbi->reg_next_use = xcalloc (max_reg_num (), sizeof (rtx));
1866 else
1867 pbi->reg_next_use = NULL;
1869 pbi->new_set = BITMAP_XMALLOC ();
1871 #ifdef HAVE_conditional_execution
1872 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1873 free_reg_cond_life_info);
1874 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1876 /* If this block ends in a conditional branch, for each register
1877 live from one side of the branch and not the other, record the
1878 register as conditionally dead. */
1879 if (GET_CODE (BB_END (bb)) == JUMP_INSN
1880 && any_condjump_p (BB_END (bb)))
1882 regset_head diff_head;
1883 regset diff = INITIALIZE_REG_SET (diff_head);
1884 basic_block bb_true, bb_false;
1885 int i;
1887 /* Identify the successor blocks. */
1888 bb_true = bb->succ->dest;
1889 if (bb->succ->succ_next != NULL)
1891 bb_false = bb->succ->succ_next->dest;
1893 if (bb->succ->flags & EDGE_FALLTHRU)
1895 basic_block t = bb_false;
1896 bb_false = bb_true;
1897 bb_true = t;
1899 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1900 abort ();
1902 else
1904 /* This can happen with a conditional jump to the next insn. */
1905 if (JUMP_LABEL (BB_END (bb)) != BB_HEAD (bb_true))
1906 abort ();
1908 /* Simplest way to do nothing. */
1909 bb_false = bb_true;
1912 /* Compute which register lead different lives in the successors. */
1913 if (bitmap_operation (diff, bb_true->global_live_at_start,
1914 bb_false->global_live_at_start, BITMAP_XOR))
1916 /* Extract the condition from the branch. */
1917 rtx set_src = SET_SRC (pc_set (BB_END (bb)));
1918 rtx cond_true = XEXP (set_src, 0);
1919 rtx reg = XEXP (cond_true, 0);
1921 if (GET_CODE (reg) == SUBREG)
1922 reg = SUBREG_REG (reg);
1924 /* We can only track conditional lifetimes if the condition is
1925 in the form of a comparison of a register against zero.
1926 If the condition is more complex than that, then it is safe
1927 not to record any information. */
1928 if (GET_CODE (reg) == REG
1929 && XEXP (cond_true, 1) == const0_rtx)
1931 rtx cond_false
1932 = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1933 GET_MODE (cond_true), XEXP (cond_true, 0),
1934 XEXP (cond_true, 1));
1935 if (GET_CODE (XEXP (set_src, 1)) == PC)
1937 rtx t = cond_false;
1938 cond_false = cond_true;
1939 cond_true = t;
1942 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1944 /* For each such register, mark it conditionally dead. */
1945 EXECUTE_IF_SET_IN_REG_SET
1946 (diff, 0, i,
1948 struct reg_cond_life_info *rcli;
1949 rtx cond;
1951 rcli = xmalloc (sizeof (*rcli));
1953 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1954 cond = cond_false;
1955 else
1956 cond = cond_true;
1957 rcli->condition = cond;
1958 rcli->stores = const0_rtx;
1959 rcli->orig_condition = cond;
1961 splay_tree_insert (pbi->reg_cond_dead, i,
1962 (splay_tree_value) rcli);
1967 FREE_REG_SET (diff);
1969 #endif
1971 /* If this block has no successors, any stores to the frame that aren't
1972 used later in the block are dead. So make a pass over the block
1973 recording any such that are made and show them dead at the end. We do
1974 a very conservative and simple job here. */
1975 if (optimize
1976 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1977 && (TYPE_RETURNS_STACK_DEPRESSED
1978 (TREE_TYPE (current_function_decl))))
1979 && (flags & PROP_SCAN_DEAD_STORES)
1980 && (bb->succ == NULL
1981 || (bb->succ->succ_next == NULL
1982 && bb->succ->dest == EXIT_BLOCK_PTR
1983 && ! current_function_calls_eh_return)))
1985 rtx insn, set;
1986 for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
1987 if (GET_CODE (insn) == INSN
1988 && (set = single_set (insn))
1989 && GET_CODE (SET_DEST (set)) == MEM)
1991 rtx mem = SET_DEST (set);
1992 rtx canon_mem = canon_rtx (mem);
1994 if (XEXP (canon_mem, 0) == frame_pointer_rtx
1995 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1996 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1997 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1998 add_to_mem_set_list (pbi, canon_mem);
2002 return pbi;
2005 /* Release a propagate_block_info struct. */
2007 void
2008 free_propagate_block_info (struct propagate_block_info *pbi)
2010 free_EXPR_LIST_list (&pbi->mem_set_list);
2012 BITMAP_XFREE (pbi->new_set);
2014 #ifdef HAVE_conditional_execution
2015 splay_tree_delete (pbi->reg_cond_dead);
2016 BITMAP_XFREE (pbi->reg_cond_reg);
2017 #endif
2019 if (pbi->flags & PROP_REG_INFO)
2021 int num = pbi->insn_num;
2022 int i;
2024 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
2025 { REG_LIVE_LENGTH (i) += num - reg_deaths[i];
2026 reg_deaths[i] = 0;
2029 if (pbi->reg_next_use)
2030 free (pbi->reg_next_use);
2032 free (pbi);
2035 /* Compute the registers live at the beginning of a basic block BB from
2036 those live at the end.
2038 When called, REG_LIVE contains those live at the end. On return, it
2039 contains those live at the beginning.
2041 LOCAL_SET, if non-null, will be set with all registers killed
2042 unconditionally by this basic block.
2043 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2044 killed conditionally by this basic block. If there is any unconditional
2045 set of a register, then the corresponding bit will be set in LOCAL_SET
2046 and cleared in COND_LOCAL_SET.
2047 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2048 case, the resulting set will be equal to the union of the two sets that
2049 would otherwise be computed.
2051 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2054 propagate_block (basic_block bb, regset live, regset local_set,
2055 regset cond_local_set, int flags)
2057 struct propagate_block_info *pbi;
2058 rtx insn, prev;
2059 int changed;
2061 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2063 if (flags & PROP_REG_INFO)
2065 int i;
2067 /* Process the regs live at the end of the block.
2068 Mark them as not local to any one basic block. */
2069 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2070 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2073 /* Scan the block an insn at a time from end to beginning. */
2075 changed = 0;
2076 for (insn = BB_END (bb); ; insn = prev)
2078 /* If this is a call to `setjmp' et al, warn if any
2079 non-volatile datum is live. */
2080 if ((flags & PROP_REG_INFO)
2081 && GET_CODE (insn) == CALL_INSN
2082 && find_reg_note (insn, REG_SETJMP, NULL))
2083 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2085 prev = propagate_one_insn (pbi, insn);
2086 if (!prev)
2087 changed |= insn != get_insns ();
2088 else
2089 changed |= NEXT_INSN (prev) != insn;
2091 if (insn == BB_HEAD (bb))
2092 break;
2095 free_propagate_block_info (pbi);
2097 return changed;
2100 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2101 (SET expressions whose destinations are registers dead after the insn).
2102 NEEDED is the regset that says which regs are alive after the insn.
2104 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2106 If X is the entire body of an insn, NOTES contains the reg notes
2107 pertaining to the insn. */
2109 static int
2110 insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
2111 rtx notes ATTRIBUTE_UNUSED)
2113 enum rtx_code code = GET_CODE (x);
2115 /* Don't eliminate insns that may trap. */
2116 if (flag_non_call_exceptions && may_trap_p (x))
2117 return 0;
2119 #ifdef AUTO_INC_DEC
2120 /* As flow is invoked after combine, we must take existing AUTO_INC
2121 expressions into account. */
2122 for (; notes; notes = XEXP (notes, 1))
2124 if (REG_NOTE_KIND (notes) == REG_INC)
2126 int regno = REGNO (XEXP (notes, 0));
2128 /* Don't delete insns to set global regs. */
2129 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2130 || REGNO_REG_SET_P (pbi->reg_live, regno))
2131 return 0;
2134 #endif
2136 /* If setting something that's a reg or part of one,
2137 see if that register's altered value will be live. */
2139 if (code == SET)
2141 rtx r = SET_DEST (x);
2143 #ifdef HAVE_cc0
2144 if (GET_CODE (r) == CC0)
2145 return ! pbi->cc0_live;
2146 #endif
2148 /* A SET that is a subroutine call cannot be dead. */
2149 if (GET_CODE (SET_SRC (x)) == CALL)
2151 if (! call_ok)
2152 return 0;
2155 /* Don't eliminate loads from volatile memory or volatile asms. */
2156 else if (volatile_refs_p (SET_SRC (x)))
2157 return 0;
2159 if (GET_CODE (r) == MEM)
2161 rtx temp, canon_r;
2163 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2164 return 0;
2166 canon_r = canon_rtx (r);
2168 /* Walk the set of memory locations we are currently tracking
2169 and see if one is an identical match to this memory location.
2170 If so, this memory write is dead (remember, we're walking
2171 backwards from the end of the block to the start). Since
2172 rtx_equal_p does not check the alias set or flags, we also
2173 must have the potential for them to conflict (anti_dependence). */
2174 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2175 if (unchanging_anti_dependence (r, XEXP (temp, 0)))
2177 rtx mem = XEXP (temp, 0);
2179 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2180 && (GET_MODE_SIZE (GET_MODE (canon_r))
2181 <= GET_MODE_SIZE (GET_MODE (mem))))
2182 return 1;
2184 #ifdef AUTO_INC_DEC
2185 /* Check if memory reference matches an auto increment. Only
2186 post increment/decrement or modify are valid. */
2187 if (GET_MODE (mem) == GET_MODE (r)
2188 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2189 || GET_CODE (XEXP (mem, 0)) == POST_INC
2190 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2191 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2192 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2193 return 1;
2194 #endif
2197 else
2199 while (GET_CODE (r) == SUBREG
2200 || GET_CODE (r) == STRICT_LOW_PART
2201 || GET_CODE (r) == ZERO_EXTRACT)
2202 r = XEXP (r, 0);
2204 if (GET_CODE (r) == REG)
2206 int regno = REGNO (r);
2208 /* Obvious. */
2209 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2210 return 0;
2212 /* If this is a hard register, verify that subsequent
2213 words are not needed. */
2214 if (regno < FIRST_PSEUDO_REGISTER)
2216 int n = hard_regno_nregs[regno][GET_MODE (r)];
2218 while (--n > 0)
2219 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2220 return 0;
2223 /* Don't delete insns to set global regs. */
2224 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2225 return 0;
2227 /* Make sure insns to set the stack pointer aren't deleted. */
2228 if (regno == STACK_POINTER_REGNUM)
2229 return 0;
2231 /* ??? These bits might be redundant with the force live bits
2232 in calculate_global_regs_live. We would delete from
2233 sequential sets; whether this actually affects real code
2234 for anything but the stack pointer I don't know. */
2235 /* Make sure insns to set the frame pointer aren't deleted. */
2236 if (regno == FRAME_POINTER_REGNUM
2237 && (! reload_completed || frame_pointer_needed))
2238 return 0;
2239 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2240 if (regno == HARD_FRAME_POINTER_REGNUM
2241 && (! reload_completed || frame_pointer_needed))
2242 return 0;
2243 #endif
2245 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2246 /* Make sure insns to set arg pointer are never deleted
2247 (if the arg pointer isn't fixed, there will be a USE
2248 for it, so we can treat it normally). */
2249 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2250 return 0;
2251 #endif
2253 /* Otherwise, the set is dead. */
2254 return 1;
2259 /* If performing several activities, insn is dead if each activity
2260 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2261 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2262 worth keeping. */
2263 else if (code == PARALLEL)
2265 int i = XVECLEN (x, 0);
2267 for (i--; i >= 0; i--)
2268 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2269 && GET_CODE (XVECEXP (x, 0, i)) != USE
2270 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2271 return 0;
2273 return 1;
2276 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2277 is not necessarily true for hard registers until after reload. */
2278 else if (code == CLOBBER)
2280 if (GET_CODE (XEXP (x, 0)) == REG
2281 && (REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2282 || reload_completed)
2283 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2284 return 1;
2287 /* ??? A base USE is a historical relic. It ought not be needed anymore.
2288 Instances where it is still used are either (1) temporary and the USE
2289 escaped the pass, (2) cruft and the USE need not be emitted anymore,
2290 or (3) hiding bugs elsewhere that are not properly representing data
2291 flow. */
2293 return 0;
2296 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2297 return 1 if the entire library call is dead.
2298 This is true if INSN copies a register (hard or pseudo)
2299 and if the hard return reg of the call insn is dead.
2300 (The caller should have tested the destination of the SET inside
2301 INSN already for death.)
2303 If this insn doesn't just copy a register, then we don't
2304 have an ordinary libcall. In that case, cse could not have
2305 managed to substitute the source for the dest later on,
2306 so we can assume the libcall is dead.
2308 PBI is the block info giving pseudoregs live before this insn.
2309 NOTE is the REG_RETVAL note of the insn. */
2311 static int
2312 libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
2314 rtx x = single_set (insn);
2316 if (x)
2318 rtx r = SET_SRC (x);
2320 if (GET_CODE (r) == REG)
2322 rtx call = XEXP (note, 0);
2323 rtx call_pat;
2324 int i;
2326 /* Find the call insn. */
2327 while (call != insn && GET_CODE (call) != CALL_INSN)
2328 call = NEXT_INSN (call);
2330 /* If there is none, do nothing special,
2331 since ordinary death handling can understand these insns. */
2332 if (call == insn)
2333 return 0;
2335 /* See if the hard reg holding the value is dead.
2336 If this is a PARALLEL, find the call within it. */
2337 call_pat = PATTERN (call);
2338 if (GET_CODE (call_pat) == PARALLEL)
2340 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2341 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2342 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2343 break;
2345 /* This may be a library call that is returning a value
2346 via invisible pointer. Do nothing special, since
2347 ordinary death handling can understand these insns. */
2348 if (i < 0)
2349 return 0;
2351 call_pat = XVECEXP (call_pat, 0, i);
2354 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2357 return 1;
2360 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2361 live at function entry. Don't count global register variables, variables
2362 in registers that can be used for function arg passing, or variables in
2363 fixed hard registers. */
2366 regno_uninitialized (unsigned int regno)
2368 if (n_basic_blocks == 0
2369 || (regno < FIRST_PSEUDO_REGISTER
2370 && (global_regs[regno]
2371 || fixed_regs[regno]
2372 || FUNCTION_ARG_REGNO_P (regno))))
2373 return 0;
2375 return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno);
2378 /* 1 if register REGNO was alive at a place where `setjmp' was called
2379 and was set more than once or is an argument.
2380 Such regs may be clobbered by `longjmp'. */
2383 regno_clobbered_at_setjmp (int regno)
2385 if (n_basic_blocks == 0)
2386 return 0;
2388 return ((REG_N_SETS (regno) > 1
2389 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno))
2390 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2393 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2394 maximal list size; look for overlaps in mode and select the largest. */
2395 static void
2396 add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
2398 rtx i;
2400 /* We don't know how large a BLKmode store is, so we must not
2401 take them into consideration. */
2402 if (GET_MODE (mem) == BLKmode)
2403 return;
2405 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2407 rtx e = XEXP (i, 0);
2408 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2410 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2412 #ifdef AUTO_INC_DEC
2413 /* If we must store a copy of the mem, we can just modify
2414 the mode of the stored copy. */
2415 if (pbi->flags & PROP_AUTOINC)
2416 PUT_MODE (e, GET_MODE (mem));
2417 else
2418 #endif
2419 XEXP (i, 0) = mem;
2421 return;
2425 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2427 #ifdef AUTO_INC_DEC
2428 /* Store a copy of mem, otherwise the address may be
2429 scrogged by find_auto_inc. */
2430 if (pbi->flags & PROP_AUTOINC)
2431 mem = shallow_copy_rtx (mem);
2432 #endif
2433 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2434 pbi->mem_set_list_len++;
2438 /* INSN references memory, possibly using autoincrement addressing modes.
2439 Find any entries on the mem_set_list that need to be invalidated due
2440 to an address change. */
2442 static int
2443 invalidate_mems_from_autoinc (rtx *px, void *data)
2445 rtx x = *px;
2446 struct propagate_block_info *pbi = data;
2448 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2450 invalidate_mems_from_set (pbi, XEXP (x, 0));
2451 return -1;
2454 return 0;
2457 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2459 static void
2460 invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
2462 rtx temp = pbi->mem_set_list;
2463 rtx prev = NULL_RTX;
2464 rtx next;
2466 while (temp)
2468 next = XEXP (temp, 1);
2469 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2471 /* Splice this entry out of the list. */
2472 if (prev)
2473 XEXP (prev, 1) = next;
2474 else
2475 pbi->mem_set_list = next;
2476 free_EXPR_LIST_node (temp);
2477 pbi->mem_set_list_len--;
2479 else
2480 prev = temp;
2481 temp = next;
2485 /* Process the registers that are set within X. Their bits are set to
2486 1 in the regset DEAD, because they are dead prior to this insn.
2488 If INSN is nonzero, it is the insn being processed.
2490 FLAGS is the set of operations to perform. */
2492 static void
2493 mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
2495 rtx cond = NULL_RTX;
2496 rtx link;
2497 enum rtx_code code;
2498 int flags = pbi->flags;
2500 if (insn)
2501 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2503 if (REG_NOTE_KIND (link) == REG_INC)
2504 mark_set_1 (pbi, SET, XEXP (link, 0),
2505 (GET_CODE (x) == COND_EXEC
2506 ? COND_EXEC_TEST (x) : NULL_RTX),
2507 insn, flags);
2509 retry:
2510 switch (code = GET_CODE (x))
2512 case SET:
2513 if (GET_CODE (XEXP (x, 1)) == ASM_OPERANDS)
2514 flags |= PROP_ASM_SCAN;
2515 /* Fall through */
2516 case CLOBBER:
2517 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, flags);
2518 return;
2520 case COND_EXEC:
2521 cond = COND_EXEC_TEST (x);
2522 x = COND_EXEC_CODE (x);
2523 goto retry;
2525 case PARALLEL:
2527 int i;
2529 /* We must scan forwards. If we have an asm, we need to set
2530 the PROP_ASM_SCAN flag before scanning the clobbers. */
2531 for (i = 0; i < XVECLEN (x, 0); i++)
2533 rtx sub = XVECEXP (x, 0, i);
2534 switch (code = GET_CODE (sub))
2536 case COND_EXEC:
2537 if (cond != NULL_RTX)
2538 abort ();
2540 cond = COND_EXEC_TEST (sub);
2541 sub = COND_EXEC_CODE (sub);
2542 if (GET_CODE (sub) == SET)
2543 goto mark_set;
2544 if (GET_CODE (sub) == CLOBBER)
2545 goto mark_clob;
2546 break;
2548 case SET:
2549 mark_set:
2550 if (GET_CODE (XEXP (sub, 1)) == ASM_OPERANDS)
2551 flags |= PROP_ASM_SCAN;
2552 /* Fall through */
2553 case CLOBBER:
2554 mark_clob:
2555 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, flags);
2556 break;
2558 case ASM_OPERANDS:
2559 flags |= PROP_ASM_SCAN;
2560 break;
2562 default:
2563 break;
2566 break;
2569 default:
2570 break;
2574 /* Process a single set, which appears in INSN. REG (which may not
2575 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2576 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2577 If the set is conditional (because it appear in a COND_EXEC), COND
2578 will be the condition. */
2580 static void
2581 mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
2583 int regno_first = -1, regno_last = -1;
2584 unsigned long not_dead = 0;
2585 int i;
2587 /* Modifying just one hardware register of a multi-reg value or just a
2588 byte field of a register does not mean the value from before this insn
2589 is now dead. Of course, if it was dead after it's unused now. */
2591 switch (GET_CODE (reg))
2593 case PARALLEL:
2594 /* Some targets place small structures in registers for return values of
2595 functions. We have to detect this case specially here to get correct
2596 flow information. */
2597 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2598 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2599 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2600 flags);
2601 return;
2603 case ZERO_EXTRACT:
2604 case SIGN_EXTRACT:
2605 case STRICT_LOW_PART:
2606 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2608 reg = XEXP (reg, 0);
2609 while (GET_CODE (reg) == SUBREG
2610 || GET_CODE (reg) == ZERO_EXTRACT
2611 || GET_CODE (reg) == SIGN_EXTRACT
2612 || GET_CODE (reg) == STRICT_LOW_PART);
2613 if (GET_CODE (reg) == MEM)
2614 break;
2615 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2616 /* Fall through. */
2618 case REG:
2619 regno_last = regno_first = REGNO (reg);
2620 if (regno_first < FIRST_PSEUDO_REGISTER)
2621 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
2622 break;
2624 case SUBREG:
2625 if (GET_CODE (SUBREG_REG (reg)) == REG)
2627 enum machine_mode outer_mode = GET_MODE (reg);
2628 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2630 /* Identify the range of registers affected. This is moderately
2631 tricky for hard registers. See alter_subreg. */
2633 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2634 if (regno_first < FIRST_PSEUDO_REGISTER)
2636 regno_first += subreg_regno_offset (regno_first, inner_mode,
2637 SUBREG_BYTE (reg),
2638 outer_mode);
2639 regno_last = (regno_first
2640 + hard_regno_nregs[regno_first][outer_mode] - 1);
2642 /* Since we've just adjusted the register number ranges, make
2643 sure REG matches. Otherwise some_was_live will be clear
2644 when it shouldn't have been, and we'll create incorrect
2645 REG_UNUSED notes. */
2646 reg = gen_rtx_REG (outer_mode, regno_first);
2648 else
2650 /* If the number of words in the subreg is less than the number
2651 of words in the full register, we have a well-defined partial
2652 set. Otherwise the high bits are undefined.
2654 This is only really applicable to pseudos, since we just took
2655 care of multi-word hard registers. */
2656 if (((GET_MODE_SIZE (outer_mode)
2657 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2658 < ((GET_MODE_SIZE (inner_mode)
2659 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2660 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2661 regno_first);
2663 reg = SUBREG_REG (reg);
2666 else
2667 reg = SUBREG_REG (reg);
2668 break;
2670 default:
2671 break;
2674 /* If this set is a MEM, then it kills any aliased writes.
2675 If this set is a REG, then it kills any MEMs which use the reg. */
2676 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2678 if (GET_CODE (reg) == REG)
2679 invalidate_mems_from_set (pbi, reg);
2681 /* If the memory reference had embedded side effects (autoincrement
2682 address modes. Then we may need to kill some entries on the
2683 memory set list. */
2684 if (insn && GET_CODE (reg) == MEM)
2685 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2687 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2688 /* ??? With more effort we could track conditional memory life. */
2689 && ! cond)
2690 add_to_mem_set_list (pbi, canon_rtx (reg));
2693 if (GET_CODE (reg) == REG
2694 && ! (regno_first == FRAME_POINTER_REGNUM
2695 && (! reload_completed || frame_pointer_needed))
2696 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2697 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2698 && (! reload_completed || frame_pointer_needed))
2699 #endif
2700 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2701 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2702 #endif
2705 int some_was_live = 0, some_was_dead = 0;
2707 for (i = regno_first; i <= regno_last; ++i)
2709 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2710 if (pbi->local_set)
2712 /* Order of the set operation matters here since both
2713 sets may be the same. */
2714 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2715 if (cond != NULL_RTX
2716 && ! REGNO_REG_SET_P (pbi->local_set, i))
2717 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2718 else
2719 SET_REGNO_REG_SET (pbi->local_set, i);
2721 if (code != CLOBBER)
2722 SET_REGNO_REG_SET (pbi->new_set, i);
2724 some_was_live |= needed_regno;
2725 some_was_dead |= ! needed_regno;
2728 #ifdef HAVE_conditional_execution
2729 /* Consider conditional death in deciding that the register needs
2730 a death note. */
2731 if (some_was_live && ! not_dead
2732 /* The stack pointer is never dead. Well, not strictly true,
2733 but it's very difficult to tell from here. Hopefully
2734 combine_stack_adjustments will fix up the most egregious
2735 errors. */
2736 && regno_first != STACK_POINTER_REGNUM)
2738 for (i = regno_first; i <= regno_last; ++i)
2739 if (! mark_regno_cond_dead (pbi, i, cond))
2740 not_dead |= ((unsigned long) 1) << (i - regno_first);
2742 #endif
2744 /* Additional data to record if this is the final pass. */
2745 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2746 | PROP_DEATH_NOTES | PROP_AUTOINC))
2748 rtx y;
2749 int blocknum = pbi->bb->index;
2751 y = NULL_RTX;
2752 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2754 y = pbi->reg_next_use[regno_first];
2756 /* The next use is no longer next, since a store intervenes. */
2757 for (i = regno_first; i <= regno_last; ++i)
2758 pbi->reg_next_use[i] = 0;
2761 if (flags & PROP_REG_INFO)
2763 for (i = regno_first; i <= regno_last; ++i)
2765 /* Count (weighted) references, stores, etc. This counts a
2766 register twice if it is modified, but that is correct. */
2767 REG_N_SETS (i) += 1;
2768 REG_N_REFS (i) += 1;
2769 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2771 /* The insns where a reg is live are normally counted
2772 elsewhere, but we want the count to include the insn
2773 where the reg is set, and the normal counting mechanism
2774 would not count it. */
2775 REG_LIVE_LENGTH (i) += 1;
2778 /* If this is a hard reg, record this function uses the reg. */
2779 if (regno_first < FIRST_PSEUDO_REGISTER)
2781 for (i = regno_first; i <= regno_last; i++)
2782 regs_ever_live[i] = 1;
2783 if (flags & PROP_ASM_SCAN)
2784 for (i = regno_first; i <= regno_last; i++)
2785 regs_asm_clobbered[i] = 1;
2787 else
2789 /* Keep track of which basic blocks each reg appears in. */
2790 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2791 REG_BASIC_BLOCK (regno_first) = blocknum;
2792 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2793 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2797 if (! some_was_dead)
2799 if (flags & PROP_LOG_LINKS)
2801 /* Make a logical link from the next following insn
2802 that uses this register, back to this insn.
2803 The following insns have already been processed.
2805 We don't build a LOG_LINK for hard registers containing
2806 in ASM_OPERANDs. If these registers get replaced,
2807 we might wind up changing the semantics of the insn,
2808 even if reload can make what appear to be valid
2809 assignments later.
2811 We don't build a LOG_LINK for global registers to
2812 or from a function call. We don't want to let
2813 combine think that it knows what is going on with
2814 global registers. */
2815 if (y && (BLOCK_NUM (y) == blocknum)
2816 && (regno_first >= FIRST_PSEUDO_REGISTER
2817 || (asm_noperands (PATTERN (y)) < 0
2818 && ! ((GET_CODE (insn) == CALL_INSN
2819 || GET_CODE (y) == CALL_INSN)
2820 && global_regs[regno_first]))))
2821 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2824 else if (not_dead)
2826 else if (! some_was_live)
2828 if (flags & PROP_REG_INFO)
2829 REG_N_DEATHS (regno_first) += 1;
2831 if (flags & PROP_DEATH_NOTES)
2833 /* Note that dead stores have already been deleted
2834 when possible. If we get here, we have found a
2835 dead store that cannot be eliminated (because the
2836 same insn does something useful). Indicate this
2837 by marking the reg being set as dying here. */
2838 REG_NOTES (insn)
2839 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2842 else
2844 if (flags & PROP_DEATH_NOTES)
2846 /* This is a case where we have a multi-word hard register
2847 and some, but not all, of the words of the register are
2848 needed in subsequent insns. Write REG_UNUSED notes
2849 for those parts that were not needed. This case should
2850 be rare. */
2852 for (i = regno_first; i <= regno_last; ++i)
2853 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2854 REG_NOTES (insn)
2855 = alloc_EXPR_LIST (REG_UNUSED,
2856 regno_reg_rtx[i],
2857 REG_NOTES (insn));
2862 /* Mark the register as being dead. */
2863 if (some_was_live
2864 /* The stack pointer is never dead. Well, not strictly true,
2865 but it's very difficult to tell from here. Hopefully
2866 combine_stack_adjustments will fix up the most egregious
2867 errors. */
2868 && regno_first != STACK_POINTER_REGNUM)
2870 for (i = regno_first; i <= regno_last; ++i)
2871 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2873 if ((pbi->flags & PROP_REG_INFO)
2874 && REGNO_REG_SET_P (pbi->reg_live, i))
2876 REG_LIVE_LENGTH (i) += pbi->insn_num - reg_deaths[i];
2877 reg_deaths[i] = 0;
2879 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2883 else if (GET_CODE (reg) == REG)
2885 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2886 pbi->reg_next_use[regno_first] = 0;
2888 if ((flags & PROP_REG_INFO) != 0
2889 && (flags & PROP_ASM_SCAN) != 0
2890 && regno_first < FIRST_PSEUDO_REGISTER)
2892 for (i = regno_first; i <= regno_last; i++)
2893 regs_asm_clobbered[i] = 1;
2897 /* If this is the last pass and this is a SCRATCH, show it will be dying
2898 here and count it. */
2899 else if (GET_CODE (reg) == SCRATCH)
2901 if (flags & PROP_DEATH_NOTES)
2902 REG_NOTES (insn)
2903 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2907 #ifdef HAVE_conditional_execution
2908 /* Mark REGNO conditionally dead.
2909 Return true if the register is now unconditionally dead. */
2911 static int
2912 mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
2914 /* If this is a store to a predicate register, the value of the
2915 predicate is changing, we don't know that the predicate as seen
2916 before is the same as that seen after. Flush all dependent
2917 conditions from reg_cond_dead. This will make all such
2918 conditionally live registers unconditionally live. */
2919 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2920 flush_reg_cond_reg (pbi, regno);
2922 /* If this is an unconditional store, remove any conditional
2923 life that may have existed. */
2924 if (cond == NULL_RTX)
2925 splay_tree_remove (pbi->reg_cond_dead, regno);
2926 else
2928 splay_tree_node node;
2929 struct reg_cond_life_info *rcli;
2930 rtx ncond;
2932 /* Otherwise this is a conditional set. Record that fact.
2933 It may have been conditionally used, or there may be a
2934 subsequent set with a complimentary condition. */
2936 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2937 if (node == NULL)
2939 /* The register was unconditionally live previously.
2940 Record the current condition as the condition under
2941 which it is dead. */
2942 rcli = xmalloc (sizeof (*rcli));
2943 rcli->condition = cond;
2944 rcli->stores = cond;
2945 rcli->orig_condition = const0_rtx;
2946 splay_tree_insert (pbi->reg_cond_dead, regno,
2947 (splay_tree_value) rcli);
2949 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2951 /* Not unconditionally dead. */
2952 return 0;
2954 else
2956 /* The register was conditionally live previously.
2957 Add the new condition to the old. */
2958 rcli = (struct reg_cond_life_info *) node->value;
2959 ncond = rcli->condition;
2960 ncond = ior_reg_cond (ncond, cond, 1);
2961 if (rcli->stores == const0_rtx)
2962 rcli->stores = cond;
2963 else if (rcli->stores != const1_rtx)
2964 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2966 /* If the register is now unconditionally dead, remove the entry
2967 in the splay_tree. A register is unconditionally dead if the
2968 dead condition ncond is true. A register is also unconditionally
2969 dead if the sum of all conditional stores is an unconditional
2970 store (stores is true), and the dead condition is identically the
2971 same as the original dead condition initialized at the end of
2972 the block. This is a pointer compare, not an rtx_equal_p
2973 compare. */
2974 if (ncond == const1_rtx
2975 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2976 splay_tree_remove (pbi->reg_cond_dead, regno);
2977 else
2979 rcli->condition = ncond;
2981 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2983 /* Not unconditionally dead. */
2984 return 0;
2989 return 1;
2992 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2994 static void
2995 free_reg_cond_life_info (splay_tree_value value)
2997 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2998 free (rcli);
3001 /* Helper function for flush_reg_cond_reg. */
3003 static int
3004 flush_reg_cond_reg_1 (splay_tree_node node, void *data)
3006 struct reg_cond_life_info *rcli;
3007 int *xdata = (int *) data;
3008 unsigned int regno = xdata[0];
3010 /* Don't need to search if last flushed value was farther on in
3011 the in-order traversal. */
3012 if (xdata[1] >= (int) node->key)
3013 return 0;
3015 /* Splice out portions of the expression that refer to regno. */
3016 rcli = (struct reg_cond_life_info *) node->value;
3017 rcli->condition = elim_reg_cond (rcli->condition, regno);
3018 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
3019 rcli->stores = elim_reg_cond (rcli->stores, regno);
3021 /* If the entire condition is now false, signal the node to be removed. */
3022 if (rcli->condition == const0_rtx)
3024 xdata[1] = node->key;
3025 return -1;
3027 else if (rcli->condition == const1_rtx)
3028 abort ();
3030 return 0;
3033 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
3035 static void
3036 flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
3038 int pair[2];
3040 pair[0] = regno;
3041 pair[1] = -1;
3042 while (splay_tree_foreach (pbi->reg_cond_dead,
3043 flush_reg_cond_reg_1, pair) == -1)
3044 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3046 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3049 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3050 For ior/and, the ADD flag determines whether we want to add the new
3051 condition X to the old one unconditionally. If it is zero, we will
3052 only return a new expression if X allows us to simplify part of
3053 OLD, otherwise we return NULL to the caller.
3054 If ADD is nonzero, we will return a new condition in all cases. The
3055 toplevel caller of one of these functions should always pass 1 for
3056 ADD. */
3058 static rtx
3059 ior_reg_cond (rtx old, rtx x, int add)
3061 rtx op0, op1;
3063 if (COMPARISON_P (old))
3065 if (COMPARISON_P (x)
3066 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
3067 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3068 return const1_rtx;
3069 if (GET_CODE (x) == GET_CODE (old)
3070 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3071 return old;
3072 if (! add)
3073 return NULL;
3074 return gen_rtx_IOR (0, old, x);
3077 switch (GET_CODE (old))
3079 case IOR:
3080 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3081 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3082 if (op0 != NULL || op1 != NULL)
3084 if (op0 == const0_rtx)
3085 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3086 if (op1 == const0_rtx)
3087 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3088 if (op0 == const1_rtx || op1 == const1_rtx)
3089 return const1_rtx;
3090 if (op0 == NULL)
3091 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3092 else if (rtx_equal_p (x, op0))
3093 /* (x | A) | x ~ (x | A). */
3094 return old;
3095 if (op1 == NULL)
3096 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3097 else if (rtx_equal_p (x, op1))
3098 /* (A | x) | x ~ (A | x). */
3099 return old;
3100 return gen_rtx_IOR (0, op0, op1);
3102 if (! add)
3103 return NULL;
3104 return gen_rtx_IOR (0, old, x);
3106 case AND:
3107 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3108 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3109 if (op0 != NULL || op1 != NULL)
3111 if (op0 == const1_rtx)
3112 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3113 if (op1 == const1_rtx)
3114 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3115 if (op0 == const0_rtx || op1 == const0_rtx)
3116 return const0_rtx;
3117 if (op0 == NULL)
3118 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3119 else if (rtx_equal_p (x, op0))
3120 /* (x & A) | x ~ x. */
3121 return op0;
3122 if (op1 == NULL)
3123 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3124 else if (rtx_equal_p (x, op1))
3125 /* (A & x) | x ~ x. */
3126 return op1;
3127 return gen_rtx_AND (0, op0, op1);
3129 if (! add)
3130 return NULL;
3131 return gen_rtx_IOR (0, old, x);
3133 case NOT:
3134 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3135 if (op0 != NULL)
3136 return not_reg_cond (op0);
3137 if (! add)
3138 return NULL;
3139 return gen_rtx_IOR (0, old, x);
3141 default:
3142 abort ();
3146 static rtx
3147 not_reg_cond (rtx x)
3149 enum rtx_code x_code;
3151 if (x == const0_rtx)
3152 return const1_rtx;
3153 else if (x == const1_rtx)
3154 return const0_rtx;
3155 x_code = GET_CODE (x);
3156 if (x_code == NOT)
3157 return XEXP (x, 0);
3158 if (COMPARISON_P (x)
3159 && GET_CODE (XEXP (x, 0)) == REG)
3161 if (XEXP (x, 1) != const0_rtx)
3162 abort ();
3164 return gen_rtx_fmt_ee (reverse_condition (x_code),
3165 VOIDmode, XEXP (x, 0), const0_rtx);
3167 return gen_rtx_NOT (0, x);
3170 static rtx
3171 and_reg_cond (rtx old, rtx x, int add)
3173 rtx op0, op1;
3175 if (COMPARISON_P (old))
3177 if (COMPARISON_P (x)
3178 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3179 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3180 return const0_rtx;
3181 if (GET_CODE (x) == GET_CODE (old)
3182 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3183 return old;
3184 if (! add)
3185 return NULL;
3186 return gen_rtx_AND (0, old, x);
3189 switch (GET_CODE (old))
3191 case IOR:
3192 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3193 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3194 if (op0 != NULL || op1 != NULL)
3196 if (op0 == const0_rtx)
3197 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3198 if (op1 == const0_rtx)
3199 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3200 if (op0 == const1_rtx || op1 == const1_rtx)
3201 return const1_rtx;
3202 if (op0 == NULL)
3203 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3204 else if (rtx_equal_p (x, op0))
3205 /* (x | A) & x ~ x. */
3206 return op0;
3207 if (op1 == NULL)
3208 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3209 else if (rtx_equal_p (x, op1))
3210 /* (A | x) & x ~ x. */
3211 return op1;
3212 return gen_rtx_IOR (0, op0, op1);
3214 if (! add)
3215 return NULL;
3216 return gen_rtx_AND (0, old, x);
3218 case AND:
3219 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3220 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3221 if (op0 != NULL || op1 != NULL)
3223 if (op0 == const1_rtx)
3224 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3225 if (op1 == const1_rtx)
3226 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3227 if (op0 == const0_rtx || op1 == const0_rtx)
3228 return const0_rtx;
3229 if (op0 == NULL)
3230 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3231 else if (rtx_equal_p (x, op0))
3232 /* (x & A) & x ~ (x & A). */
3233 return old;
3234 if (op1 == NULL)
3235 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3236 else if (rtx_equal_p (x, op1))
3237 /* (A & x) & x ~ (A & x). */
3238 return old;
3239 return gen_rtx_AND (0, op0, op1);
3241 if (! add)
3242 return NULL;
3243 return gen_rtx_AND (0, old, x);
3245 case NOT:
3246 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3247 if (op0 != NULL)
3248 return not_reg_cond (op0);
3249 if (! add)
3250 return NULL;
3251 return gen_rtx_AND (0, old, x);
3253 default:
3254 abort ();
3258 /* Given a condition X, remove references to reg REGNO and return the
3259 new condition. The removal will be done so that all conditions
3260 involving REGNO are considered to evaluate to false. This function
3261 is used when the value of REGNO changes. */
3263 static rtx
3264 elim_reg_cond (rtx x, unsigned int regno)
3266 rtx op0, op1;
3268 if (COMPARISON_P (x))
3270 if (REGNO (XEXP (x, 0)) == regno)
3271 return const0_rtx;
3272 return x;
3275 switch (GET_CODE (x))
3277 case AND:
3278 op0 = elim_reg_cond (XEXP (x, 0), regno);
3279 op1 = elim_reg_cond (XEXP (x, 1), regno);
3280 if (op0 == const0_rtx || op1 == const0_rtx)
3281 return const0_rtx;
3282 if (op0 == const1_rtx)
3283 return op1;
3284 if (op1 == const1_rtx)
3285 return op0;
3286 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3287 return x;
3288 return gen_rtx_AND (0, op0, op1);
3290 case IOR:
3291 op0 = elim_reg_cond (XEXP (x, 0), regno);
3292 op1 = elim_reg_cond (XEXP (x, 1), regno);
3293 if (op0 == const1_rtx || op1 == const1_rtx)
3294 return const1_rtx;
3295 if (op0 == const0_rtx)
3296 return op1;
3297 if (op1 == const0_rtx)
3298 return op0;
3299 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3300 return x;
3301 return gen_rtx_IOR (0, op0, op1);
3303 case NOT:
3304 op0 = elim_reg_cond (XEXP (x, 0), regno);
3305 if (op0 == const0_rtx)
3306 return const1_rtx;
3307 if (op0 == const1_rtx)
3308 return const0_rtx;
3309 if (op0 != XEXP (x, 0))
3310 return not_reg_cond (op0);
3311 return x;
3313 default:
3314 abort ();
3317 #endif /* HAVE_conditional_execution */
3319 #ifdef AUTO_INC_DEC
3321 /* Try to substitute the auto-inc expression INC as the address inside
3322 MEM which occurs in INSN. Currently, the address of MEM is an expression
3323 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3324 that has a single set whose source is a PLUS of INCR_REG and something
3325 else. */
3327 static void
3328 attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
3329 rtx mem, rtx incr, rtx incr_reg)
3331 int regno = REGNO (incr_reg);
3332 rtx set = single_set (incr);
3333 rtx q = SET_DEST (set);
3334 rtx y = SET_SRC (set);
3335 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3337 /* Make sure this reg appears only once in this insn. */
3338 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3339 return;
3341 if (dead_or_set_p (incr, incr_reg)
3342 /* Mustn't autoinc an eliminable register. */
3343 && (regno >= FIRST_PSEUDO_REGISTER
3344 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3346 /* This is the simple case. Try to make the auto-inc. If
3347 we can't, we are done. Otherwise, we will do any
3348 needed updates below. */
3349 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3350 return;
3352 else if (GET_CODE (q) == REG
3353 /* PREV_INSN used here to check the semi-open interval
3354 [insn,incr). */
3355 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3356 /* We must also check for sets of q as q may be
3357 a call clobbered hard register and there may
3358 be a call between PREV_INSN (insn) and incr. */
3359 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3361 /* We have *p followed sometime later by q = p+size.
3362 Both p and q must be live afterward,
3363 and q is not used between INSN and its assignment.
3364 Change it to q = p, ...*q..., q = q+size.
3365 Then fall into the usual case. */
3366 rtx insns, temp;
3368 start_sequence ();
3369 emit_move_insn (q, incr_reg);
3370 insns = get_insns ();
3371 end_sequence ();
3373 /* If we can't make the auto-inc, or can't make the
3374 replacement into Y, exit. There's no point in making
3375 the change below if we can't do the auto-inc and doing
3376 so is not correct in the pre-inc case. */
3378 XEXP (inc, 0) = q;
3379 validate_change (insn, &XEXP (mem, 0), inc, 1);
3380 validate_change (incr, &XEXP (y, opnum), q, 1);
3381 if (! apply_change_group ())
3382 return;
3384 /* We now know we'll be doing this change, so emit the
3385 new insn(s) and do the updates. */
3386 emit_insn_before (insns, insn);
3388 if (BB_HEAD (pbi->bb) == insn)
3389 BB_HEAD (pbi->bb) = insns;
3391 /* INCR will become a NOTE and INSN won't contain a
3392 use of INCR_REG. If a use of INCR_REG was just placed in
3393 the insn before INSN, make that the next use.
3394 Otherwise, invalidate it. */
3395 if (GET_CODE (PREV_INSN (insn)) == INSN
3396 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3397 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3398 pbi->reg_next_use[regno] = PREV_INSN (insn);
3399 else
3400 pbi->reg_next_use[regno] = 0;
3402 incr_reg = q;
3403 regno = REGNO (q);
3405 if ((pbi->flags & PROP_REG_INFO)
3406 && !REGNO_REG_SET_P (pbi->reg_live, regno))
3407 reg_deaths[regno] = pbi->insn_num;
3409 /* REGNO is now used in INCR which is below INSN, but
3410 it previously wasn't live here. If we don't mark
3411 it as live, we'll put a REG_DEAD note for it
3412 on this insn, which is incorrect. */
3413 SET_REGNO_REG_SET (pbi->reg_live, regno);
3415 /* If there are any calls between INSN and INCR, show
3416 that REGNO now crosses them. */
3417 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3418 if (GET_CODE (temp) == CALL_INSN)
3419 REG_N_CALLS_CROSSED (regno)++;
3421 /* Invalidate alias info for Q since we just changed its value. */
3422 clear_reg_alias_info (q);
3424 else
3425 return;
3427 /* If we haven't returned, it means we were able to make the
3428 auto-inc, so update the status. First, record that this insn
3429 has an implicit side effect. */
3431 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3433 /* Modify the old increment-insn to simply copy
3434 the already-incremented value of our register. */
3435 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3436 abort ();
3438 /* If that makes it a no-op (copying the register into itself) delete
3439 it so it won't appear to be a "use" and a "set" of this
3440 register. */
3441 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3443 /* If the original source was dead, it's dead now. */
3444 rtx note;
3446 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3448 remove_note (incr, note);
3449 if (XEXP (note, 0) != incr_reg)
3451 unsigned int regno = REGNO (XEXP (note, 0));
3453 if ((pbi->flags & PROP_REG_INFO)
3454 && REGNO_REG_SET_P (pbi->reg_live, regno))
3456 REG_LIVE_LENGTH (regno) += pbi->insn_num - reg_deaths[regno];
3457 reg_deaths[regno] = 0;
3459 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3463 PUT_CODE (incr, NOTE);
3464 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3465 NOTE_SOURCE_FILE (incr) = 0;
3468 if (regno >= FIRST_PSEUDO_REGISTER)
3470 /* Count an extra reference to the reg. When a reg is
3471 incremented, spilling it is worse, so we want to make
3472 that less likely. */
3473 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3475 /* Count the increment as a setting of the register,
3476 even though it isn't a SET in rtl. */
3477 REG_N_SETS (regno)++;
3481 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3482 reference. */
3484 static void
3485 find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
3487 rtx addr = XEXP (x, 0);
3488 HOST_WIDE_INT offset = 0;
3489 rtx set, y, incr, inc_val;
3490 int regno;
3491 int size = GET_MODE_SIZE (GET_MODE (x));
3493 if (GET_CODE (insn) == JUMP_INSN)
3494 return;
3496 /* Here we detect use of an index register which might be good for
3497 postincrement, postdecrement, preincrement, or predecrement. */
3499 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3500 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3502 if (GET_CODE (addr) != REG)
3503 return;
3505 regno = REGNO (addr);
3507 /* Is the next use an increment that might make auto-increment? */
3508 incr = pbi->reg_next_use[regno];
3509 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3510 return;
3511 set = single_set (incr);
3512 if (set == 0 || GET_CODE (set) != SET)
3513 return;
3514 y = SET_SRC (set);
3516 if (GET_CODE (y) != PLUS)
3517 return;
3519 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3520 inc_val = XEXP (y, 1);
3521 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3522 inc_val = XEXP (y, 0);
3523 else
3524 return;
3526 if (GET_CODE (inc_val) == CONST_INT)
3528 if (HAVE_POST_INCREMENT
3529 && (INTVAL (inc_val) == size && offset == 0))
3530 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3531 incr, addr);
3532 else if (HAVE_POST_DECREMENT
3533 && (INTVAL (inc_val) == -size && offset == 0))
3534 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3535 incr, addr);
3536 else if (HAVE_PRE_INCREMENT
3537 && (INTVAL (inc_val) == size && offset == size))
3538 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3539 incr, addr);
3540 else if (HAVE_PRE_DECREMENT
3541 && (INTVAL (inc_val) == -size && offset == -size))
3542 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3543 incr, addr);
3544 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3545 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3546 gen_rtx_PLUS (Pmode,
3547 addr,
3548 inc_val)),
3549 insn, x, incr, addr);
3550 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3551 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3552 gen_rtx_PLUS (Pmode,
3553 addr,
3554 inc_val)),
3555 insn, x, incr, addr);
3557 else if (GET_CODE (inc_val) == REG
3558 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3559 NEXT_INSN (incr)))
3562 if (HAVE_POST_MODIFY_REG && offset == 0)
3563 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3564 gen_rtx_PLUS (Pmode,
3565 addr,
3566 inc_val)),
3567 insn, x, incr, addr);
3571 #endif /* AUTO_INC_DEC */
3573 static void
3574 mark_used_reg (struct propagate_block_info *pbi, rtx reg,
3575 rtx cond ATTRIBUTE_UNUSED, rtx insn)
3577 unsigned int regno_first, regno_last, i;
3578 int some_was_live, some_was_dead, some_not_set;
3580 regno_last = regno_first = REGNO (reg);
3581 if (regno_first < FIRST_PSEUDO_REGISTER)
3582 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
3584 /* Find out if any of this register is live after this instruction. */
3585 some_was_live = some_was_dead = 0;
3586 for (i = regno_first; i <= regno_last; ++i)
3588 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3589 some_was_live |= needed_regno;
3590 some_was_dead |= ! needed_regno;
3593 /* Find out if any of the register was set this insn. */
3594 some_not_set = 0;
3595 for (i = regno_first; i <= regno_last; ++i)
3596 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3598 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3600 /* Record where each reg is used, so when the reg is set we know
3601 the next insn that uses it. */
3602 pbi->reg_next_use[regno_first] = insn;
3605 if (pbi->flags & PROP_REG_INFO)
3607 if (regno_first < FIRST_PSEUDO_REGISTER)
3609 /* If this is a register we are going to try to eliminate,
3610 don't mark it live here. If we are successful in
3611 eliminating it, it need not be live unless it is used for
3612 pseudos, in which case it will have been set live when it
3613 was allocated to the pseudos. If the register will not
3614 be eliminated, reload will set it live at that point.
3616 Otherwise, record that this function uses this register. */
3617 /* ??? The PPC backend tries to "eliminate" on the pic
3618 register to itself. This should be fixed. In the mean
3619 time, hack around it. */
3621 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3622 && (regno_first == FRAME_POINTER_REGNUM
3623 || regno_first == ARG_POINTER_REGNUM)))
3624 for (i = regno_first; i <= regno_last; ++i)
3625 regs_ever_live[i] = 1;
3627 else
3629 /* Keep track of which basic block each reg appears in. */
3631 int blocknum = pbi->bb->index;
3632 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3633 REG_BASIC_BLOCK (regno_first) = blocknum;
3634 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3635 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3637 /* Count (weighted) number of uses of each reg. */
3638 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3639 REG_N_REFS (regno_first)++;
3641 for (i = regno_first; i <= regno_last; ++i)
3642 if (! REGNO_REG_SET_P (pbi->reg_live, i))
3644 #ifdef ENABLE_CHECKING
3645 if (reg_deaths[i])
3646 abort ();
3647 #endif
3648 reg_deaths[i] = pbi->insn_num;
3652 /* Record and count the insns in which a reg dies. If it is used in
3653 this insn and was dead below the insn then it dies in this insn.
3654 If it was set in this insn, we do not make a REG_DEAD note;
3655 likewise if we already made such a note. */
3656 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3657 && some_was_dead
3658 && some_not_set)
3660 /* Check for the case where the register dying partially
3661 overlaps the register set by this insn. */
3662 if (regno_first != regno_last)
3663 for (i = regno_first; i <= regno_last; ++i)
3664 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3666 /* If none of the words in X is needed, make a REG_DEAD note.
3667 Otherwise, we must make partial REG_DEAD notes. */
3668 if (! some_was_live)
3670 if ((pbi->flags & PROP_DEATH_NOTES)
3671 && ! find_regno_note (insn, REG_DEAD, regno_first))
3672 REG_NOTES (insn)
3673 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3675 if (pbi->flags & PROP_REG_INFO)
3676 REG_N_DEATHS (regno_first)++;
3678 else
3680 /* Don't make a REG_DEAD note for a part of a register
3681 that is set in the insn. */
3682 for (i = regno_first; i <= regno_last; ++i)
3683 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3684 && ! dead_or_set_regno_p (insn, i))
3685 REG_NOTES (insn)
3686 = alloc_EXPR_LIST (REG_DEAD,
3687 regno_reg_rtx[i],
3688 REG_NOTES (insn));
3692 /* Mark the register as being live. */
3693 for (i = regno_first; i <= regno_last; ++i)
3695 #ifdef HAVE_conditional_execution
3696 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3697 #endif
3699 SET_REGNO_REG_SET (pbi->reg_live, i);
3701 #ifdef HAVE_conditional_execution
3702 /* If this is a conditional use, record that fact. If it is later
3703 conditionally set, we'll know to kill the register. */
3704 if (cond != NULL_RTX)
3706 splay_tree_node node;
3707 struct reg_cond_life_info *rcli;
3708 rtx ncond;
3710 if (this_was_live)
3712 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3713 if (node == NULL)
3715 /* The register was unconditionally live previously.
3716 No need to do anything. */
3718 else
3720 /* The register was conditionally live previously.
3721 Subtract the new life cond from the old death cond. */
3722 rcli = (struct reg_cond_life_info *) node->value;
3723 ncond = rcli->condition;
3724 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3726 /* If the register is now unconditionally live,
3727 remove the entry in the splay_tree. */
3728 if (ncond == const0_rtx)
3729 splay_tree_remove (pbi->reg_cond_dead, i);
3730 else
3732 rcli->condition = ncond;
3733 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3734 REGNO (XEXP (cond, 0)));
3738 else
3740 /* The register was not previously live at all. Record
3741 the condition under which it is still dead. */
3742 rcli = xmalloc (sizeof (*rcli));
3743 rcli->condition = not_reg_cond (cond);
3744 rcli->stores = const0_rtx;
3745 rcli->orig_condition = const0_rtx;
3746 splay_tree_insert (pbi->reg_cond_dead, i,
3747 (splay_tree_value) rcli);
3749 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3752 else if (this_was_live)
3754 /* The register may have been conditionally live previously, but
3755 is now unconditionally live. Remove it from the conditionally
3756 dead list, so that a conditional set won't cause us to think
3757 it dead. */
3758 splay_tree_remove (pbi->reg_cond_dead, i);
3760 #endif
3764 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3765 This is done assuming the registers needed from X are those that
3766 have 1-bits in PBI->REG_LIVE.
3768 INSN is the containing instruction. If INSN is dead, this function
3769 is not called. */
3771 static void
3772 mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3774 RTX_CODE code;
3775 int regno;
3776 int flags = pbi->flags;
3778 retry:
3779 if (!x)
3780 return;
3781 code = GET_CODE (x);
3782 switch (code)
3784 case LABEL_REF:
3785 case SYMBOL_REF:
3786 case CONST_INT:
3787 case CONST:
3788 case CONST_DOUBLE:
3789 case CONST_VECTOR:
3790 case PC:
3791 case ADDR_VEC:
3792 case ADDR_DIFF_VEC:
3793 return;
3795 #ifdef HAVE_cc0
3796 case CC0:
3797 pbi->cc0_live = 1;
3798 return;
3799 #endif
3801 case CLOBBER:
3802 /* If we are clobbering a MEM, mark any registers inside the address
3803 as being used. */
3804 if (GET_CODE (XEXP (x, 0)) == MEM)
3805 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3806 return;
3808 case MEM:
3809 /* Don't bother watching stores to mems if this is not the
3810 final pass. We'll not be deleting dead stores this round. */
3811 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3813 /* Invalidate the data for the last MEM stored, but only if MEM is
3814 something that can be stored into. */
3815 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3816 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3817 /* Needn't clear the memory set list. */
3819 else
3821 rtx temp = pbi->mem_set_list;
3822 rtx prev = NULL_RTX;
3823 rtx next;
3825 while (temp)
3827 next = XEXP (temp, 1);
3828 if (unchanging_anti_dependence (XEXP (temp, 0), x))
3830 /* Splice temp out of the list. */
3831 if (prev)
3832 XEXP (prev, 1) = next;
3833 else
3834 pbi->mem_set_list = next;
3835 free_EXPR_LIST_node (temp);
3836 pbi->mem_set_list_len--;
3838 else
3839 prev = temp;
3840 temp = next;
3844 /* If the memory reference had embedded side effects (autoincrement
3845 address modes. Then we may need to kill some entries on the
3846 memory set list. */
3847 if (insn)
3848 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3851 #ifdef AUTO_INC_DEC
3852 if (flags & PROP_AUTOINC)
3853 find_auto_inc (pbi, x, insn);
3854 #endif
3855 break;
3857 case SUBREG:
3858 #ifdef CANNOT_CHANGE_MODE_CLASS
3859 if ((flags & PROP_REG_INFO)
3860 && GET_CODE (SUBREG_REG (x)) == REG
3861 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
3862 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (x))
3863 * MAX_MACHINE_MODE
3864 + GET_MODE (x));
3865 #endif
3867 /* While we're here, optimize this case. */
3868 x = SUBREG_REG (x);
3869 if (GET_CODE (x) != REG)
3870 goto retry;
3871 /* Fall through. */
3873 case REG:
3874 /* See a register other than being set => mark it as needed. */
3875 mark_used_reg (pbi, x, cond, insn);
3876 return;
3878 case SET:
3880 rtx testreg = SET_DEST (x);
3881 int mark_dest = 0;
3883 /* If storing into MEM, don't show it as being used. But do
3884 show the address as being used. */
3885 if (GET_CODE (testreg) == MEM)
3887 #ifdef AUTO_INC_DEC
3888 if (flags & PROP_AUTOINC)
3889 find_auto_inc (pbi, testreg, insn);
3890 #endif
3891 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3892 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3893 return;
3896 /* Storing in STRICT_LOW_PART is like storing in a reg
3897 in that this SET might be dead, so ignore it in TESTREG.
3898 but in some other ways it is like using the reg.
3900 Storing in a SUBREG or a bit field is like storing the entire
3901 register in that if the register's value is not used
3902 then this SET is not needed. */
3903 while (GET_CODE (testreg) == STRICT_LOW_PART
3904 || GET_CODE (testreg) == ZERO_EXTRACT
3905 || GET_CODE (testreg) == SIGN_EXTRACT
3906 || GET_CODE (testreg) == SUBREG)
3908 #ifdef CANNOT_CHANGE_MODE_CLASS
3909 if ((flags & PROP_REG_INFO)
3910 && GET_CODE (testreg) == SUBREG
3911 && GET_CODE (SUBREG_REG (testreg)) == REG
3912 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER)
3913 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (testreg))
3914 * MAX_MACHINE_MODE
3915 + GET_MODE (testreg));
3916 #endif
3918 /* Modifying a single register in an alternate mode
3919 does not use any of the old value. But these other
3920 ways of storing in a register do use the old value. */
3921 if (GET_CODE (testreg) == SUBREG
3922 && !((REG_BYTES (SUBREG_REG (testreg))
3923 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3924 > (REG_BYTES (testreg)
3925 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3927 else
3928 mark_dest = 1;
3930 testreg = XEXP (testreg, 0);
3933 /* If this is a store into a register or group of registers,
3934 recursively scan the value being stored. */
3936 if ((GET_CODE (testreg) == PARALLEL
3937 && GET_MODE (testreg) == BLKmode)
3938 || (GET_CODE (testreg) == REG
3939 && (regno = REGNO (testreg),
3940 ! (regno == FRAME_POINTER_REGNUM
3941 && (! reload_completed || frame_pointer_needed)))
3942 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3943 && ! (regno == HARD_FRAME_POINTER_REGNUM
3944 && (! reload_completed || frame_pointer_needed))
3945 #endif
3946 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3947 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3948 #endif
3951 if (mark_dest)
3952 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3953 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3954 return;
3957 break;
3959 case ASM_OPERANDS:
3960 case UNSPEC_VOLATILE:
3961 case TRAP_IF:
3962 case ASM_INPUT:
3964 /* Traditional and volatile asm instructions must be considered to use
3965 and clobber all hard registers, all pseudo-registers and all of
3966 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3968 Consider for instance a volatile asm that changes the fpu rounding
3969 mode. An insn should not be moved across this even if it only uses
3970 pseudo-regs because it might give an incorrectly rounded result.
3972 ?!? Unfortunately, marking all hard registers as live causes massive
3973 problems for the register allocator and marking all pseudos as live
3974 creates mountains of uninitialized variable warnings.
3976 So for now, just clear the memory set list and mark any regs
3977 we can find in ASM_OPERANDS as used. */
3978 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3980 free_EXPR_LIST_list (&pbi->mem_set_list);
3981 pbi->mem_set_list_len = 0;
3984 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3985 We can not just fall through here since then we would be confused
3986 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3987 traditional asms unlike their normal usage. */
3988 if (code == ASM_OPERANDS)
3990 int j;
3992 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3993 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3995 break;
3998 case COND_EXEC:
3999 if (cond != NULL_RTX)
4000 abort ();
4002 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
4004 cond = COND_EXEC_TEST (x);
4005 x = COND_EXEC_CODE (x);
4006 goto retry;
4008 default:
4009 break;
4012 /* Recursively scan the operands of this expression. */
4015 const char * const fmt = GET_RTX_FORMAT (code);
4016 int i;
4018 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4020 if (fmt[i] == 'e')
4022 /* Tail recursive case: save a function call level. */
4023 if (i == 0)
4025 x = XEXP (x, 0);
4026 goto retry;
4028 mark_used_regs (pbi, XEXP (x, i), cond, insn);
4030 else if (fmt[i] == 'E')
4032 int j;
4033 for (j = 0; j < XVECLEN (x, i); j++)
4034 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
4040 #ifdef AUTO_INC_DEC
4042 static int
4043 try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
4045 /* Find the next use of this reg. If in same basic block,
4046 make it do pre-increment or pre-decrement if appropriate. */
4047 rtx x = single_set (insn);
4048 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
4049 * INTVAL (XEXP (SET_SRC (x), 1)));
4050 int regno = REGNO (SET_DEST (x));
4051 rtx y = pbi->reg_next_use[regno];
4052 if (y != 0
4053 && SET_DEST (x) != stack_pointer_rtx
4054 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4055 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4056 mode would be better. */
4057 && ! dead_or_set_p (y, SET_DEST (x))
4058 && try_pre_increment (y, SET_DEST (x), amount))
4060 /* We have found a suitable auto-increment and already changed
4061 insn Y to do it. So flush this increment instruction. */
4062 propagate_block_delete_insn (insn);
4064 /* Count a reference to this reg for the increment insn we are
4065 deleting. When a reg is incremented, spilling it is worse,
4066 so we want to make that less likely. */
4067 if (regno >= FIRST_PSEUDO_REGISTER)
4069 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4070 REG_N_SETS (regno)++;
4073 /* Flush any remembered memories depending on the value of
4074 the incremented register. */
4075 invalidate_mems_from_set (pbi, SET_DEST (x));
4077 return 1;
4079 return 0;
4082 /* Try to change INSN so that it does pre-increment or pre-decrement
4083 addressing on register REG in order to add AMOUNT to REG.
4084 AMOUNT is negative for pre-decrement.
4085 Returns 1 if the change could be made.
4086 This checks all about the validity of the result of modifying INSN. */
4088 static int
4089 try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
4091 rtx use;
4093 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4094 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4095 int pre_ok = 0;
4096 /* Nonzero if we can try to make a post-increment or post-decrement.
4097 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4098 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4099 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4100 int post_ok = 0;
4102 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4103 int do_post = 0;
4105 /* From the sign of increment, see which possibilities are conceivable
4106 on this target machine. */
4107 if (HAVE_PRE_INCREMENT && amount > 0)
4108 pre_ok = 1;
4109 if (HAVE_POST_INCREMENT && amount > 0)
4110 post_ok = 1;
4112 if (HAVE_PRE_DECREMENT && amount < 0)
4113 pre_ok = 1;
4114 if (HAVE_POST_DECREMENT && amount < 0)
4115 post_ok = 1;
4117 if (! (pre_ok || post_ok))
4118 return 0;
4120 /* It is not safe to add a side effect to a jump insn
4121 because if the incremented register is spilled and must be reloaded
4122 there would be no way to store the incremented value back in memory. */
4124 if (GET_CODE (insn) == JUMP_INSN)
4125 return 0;
4127 use = 0;
4128 if (pre_ok)
4129 use = find_use_as_address (PATTERN (insn), reg, 0);
4130 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4132 use = find_use_as_address (PATTERN (insn), reg, -amount);
4133 do_post = 1;
4136 if (use == 0 || use == (rtx) (size_t) 1)
4137 return 0;
4139 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4140 return 0;
4142 /* See if this combination of instruction and addressing mode exists. */
4143 if (! validate_change (insn, &XEXP (use, 0),
4144 gen_rtx_fmt_e (amount > 0
4145 ? (do_post ? POST_INC : PRE_INC)
4146 : (do_post ? POST_DEC : PRE_DEC),
4147 Pmode, reg), 0))
4148 return 0;
4150 /* Record that this insn now has an implicit side effect on X. */
4151 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4152 return 1;
4155 #endif /* AUTO_INC_DEC */
4157 /* Find the place in the rtx X where REG is used as a memory address.
4158 Return the MEM rtx that so uses it.
4159 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4160 (plus REG (const_int PLUSCONST)).
4162 If such an address does not appear, return 0.
4163 If REG appears more than once, or is used other than in such an address,
4164 return (rtx) 1. */
4167 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
4169 enum rtx_code code = GET_CODE (x);
4170 const char * const fmt = GET_RTX_FORMAT (code);
4171 int i;
4172 rtx value = 0;
4173 rtx tem;
4175 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4176 return x;
4178 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4179 && XEXP (XEXP (x, 0), 0) == reg
4180 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4181 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4182 return x;
4184 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4186 /* If REG occurs inside a MEM used in a bit-field reference,
4187 that is unacceptable. */
4188 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4189 return (rtx) (size_t) 1;
4192 if (x == reg)
4193 return (rtx) (size_t) 1;
4195 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4197 if (fmt[i] == 'e')
4199 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4200 if (value == 0)
4201 value = tem;
4202 else if (tem != 0)
4203 return (rtx) (size_t) 1;
4205 else if (fmt[i] == 'E')
4207 int j;
4208 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4210 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4211 if (value == 0)
4212 value = tem;
4213 else if (tem != 0)
4214 return (rtx) (size_t) 1;
4219 return value;
4222 /* Write information about registers and basic blocks into FILE.
4223 This is part of making a debugging dump. */
4225 void
4226 dump_regset (regset r, FILE *outf)
4228 int i;
4229 if (r == NULL)
4231 fputs (" (nil)", outf);
4232 return;
4235 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4237 fprintf (outf, " %d", i);
4238 if (i < FIRST_PSEUDO_REGISTER)
4239 fprintf (outf, " [%s]",
4240 reg_names[i]);
4244 /* Print a human-readable representation of R on the standard error
4245 stream. This function is designed to be used from within the
4246 debugger. */
4248 void
4249 debug_regset (regset r)
4251 dump_regset (r, stderr);
4252 putc ('\n', stderr);
4255 /* Recompute register set/reference counts immediately prior to register
4256 allocation.
4258 This avoids problems with set/reference counts changing to/from values
4259 which have special meanings to the register allocators.
4261 Additionally, the reference counts are the primary component used by the
4262 register allocators to prioritize pseudos for allocation to hard regs.
4263 More accurate reference counts generally lead to better register allocation.
4265 F is the first insn to be scanned.
4267 LOOP_STEP denotes how much loop_depth should be incremented per
4268 loop nesting level in order to increase the ref count more for
4269 references in a loop.
4271 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4272 possibly other information which is used by the register allocators. */
4274 void
4275 recompute_reg_usage (rtx f ATTRIBUTE_UNUSED, int loop_step ATTRIBUTE_UNUSED)
4277 allocate_reg_life_data ();
4278 /* distribute_notes in combiner fails to convert some of the REG_UNUSED notes
4279 to REG_DEAD notes. This causes CHECK_DEAD_NOTES in sched1 to abort. To
4280 solve this update the DEATH_NOTES here. */
4281 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO | PROP_DEATH_NOTES);
4284 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4285 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4286 of the number of registers that died. */
4289 count_or_remove_death_notes (sbitmap blocks, int kill)
4291 int count = 0;
4292 int i;
4293 basic_block bb;
4296 /* This used to be a loop over all the blocks with a membership test
4297 inside the loop. That can be amazingly expensive on a large CFG
4298 when only a small number of bits are set in BLOCKs (for example,
4299 the calls from the scheduler typically have very few bits set).
4301 For extra credit, someone should convert BLOCKS to a bitmap rather
4302 than an sbitmap. */
4303 if (blocks)
4305 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4307 count += count_or_remove_death_notes_bb (BASIC_BLOCK (i), kill);
4310 else
4312 FOR_EACH_BB (bb)
4314 count += count_or_remove_death_notes_bb (bb, kill);
4318 return count;
4321 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from basic
4322 block BB. Returns a count of the number of registers that died. */
4324 static int
4325 count_or_remove_death_notes_bb (basic_block bb, int kill)
4327 int count = 0;
4328 rtx insn;
4330 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
4332 if (INSN_P (insn))
4334 rtx *pprev = &REG_NOTES (insn);
4335 rtx link = *pprev;
4337 while (link)
4339 switch (REG_NOTE_KIND (link))
4341 case REG_DEAD:
4342 if (GET_CODE (XEXP (link, 0)) == REG)
4344 rtx reg = XEXP (link, 0);
4345 int n;
4347 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4348 n = 1;
4349 else
4350 n = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
4351 count += n;
4354 /* Fall through. */
4356 case REG_UNUSED:
4357 if (kill)
4359 rtx next = XEXP (link, 1);
4360 free_EXPR_LIST_node (link);
4361 *pprev = link = next;
4362 break;
4364 /* Fall through. */
4366 default:
4367 pprev = &XEXP (link, 1);
4368 link = *pprev;
4369 break;
4374 if (insn == BB_END (bb))
4375 break;
4378 return count;
4381 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4382 if blocks is NULL. */
4384 static void
4385 clear_log_links (sbitmap blocks)
4387 rtx insn;
4388 int i;
4390 if (!blocks)
4392 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4393 if (INSN_P (insn))
4394 free_INSN_LIST_list (&LOG_LINKS (insn));
4396 else
4397 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4399 basic_block bb = BASIC_BLOCK (i);
4401 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
4402 insn = NEXT_INSN (insn))
4403 if (INSN_P (insn))
4404 free_INSN_LIST_list (&LOG_LINKS (insn));
4408 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4409 correspond to the hard registers, if any, set in that map. This
4410 could be done far more efficiently by having all sorts of special-cases
4411 with moving single words, but probably isn't worth the trouble. */
4413 void
4414 reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
4416 int i;
4418 EXECUTE_IF_SET_IN_BITMAP
4419 (from, 0, i,
4421 if (i >= FIRST_PSEUDO_REGISTER)
4422 return;
4423 SET_HARD_REG_BIT (*to, i);