* except.h (struct eh_entry): Add goto_entry_p.
[official-gcc.git] / gcc / except.c
blob4b294769f120b1735a92662b0eb2fe07bcf12a2f
1 /* Implements exception handling.
2 Copyright (C) 1989, 1992-1999 Free Software Foundation, Inc.
3 Contributed by Mike Stump <mrs@cygnus.com>.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 /* An exception is an event that can be signaled from within a
24 function. This event can then be "caught" or "trapped" by the
25 callers of this function. This potentially allows program flow to
26 be transferred to any arbitrary code associated with a function call
27 several levels up the stack.
29 The intended use for this mechanism is for signaling "exceptional
30 events" in an out-of-band fashion, hence its name. The C++ language
31 (and many other OO-styled or functional languages) practically
32 requires such a mechanism, as otherwise it becomes very difficult
33 or even impossible to signal failure conditions in complex
34 situations. The traditional C++ example is when an error occurs in
35 the process of constructing an object; without such a mechanism, it
36 is impossible to signal that the error occurs without adding global
37 state variables and error checks around every object construction.
39 The act of causing this event to occur is referred to as "throwing
40 an exception". (Alternate terms include "raising an exception" or
41 "signaling an exception".) The term "throw" is used because control
42 is returned to the callers of the function that is signaling the
43 exception, and thus there is the concept of "throwing" the
44 exception up the call stack.
46 There are two major codegen options for exception handling. The
47 flag -fsjlj-exceptions can be used to select the setjmp/longjmp
48 approach, which is the default. -fno-sjlj-exceptions can be used to
49 get the PC range table approach. While this is a compile time
50 flag, an entire application must be compiled with the same codegen
51 option. The first is a PC range table approach, the second is a
52 setjmp/longjmp based scheme. We will first discuss the PC range
53 table approach, after that, we will discuss the setjmp/longjmp
54 based approach.
56 It is appropriate to speak of the "context of a throw". This
57 context refers to the address where the exception is thrown from,
58 and is used to determine which exception region will handle the
59 exception.
61 Regions of code within a function can be marked such that if it
62 contains the context of a throw, control will be passed to a
63 designated "exception handler". These areas are known as "exception
64 regions". Exception regions cannot overlap, but they can be nested
65 to any arbitrary depth. Also, exception regions cannot cross
66 function boundaries.
68 Exception handlers can either be specified by the user (which we
69 will call a "user-defined handler") or generated by the compiler
70 (which we will designate as a "cleanup"). Cleanups are used to
71 perform tasks such as destruction of objects allocated on the
72 stack.
74 In the current implementation, cleanups are handled by allocating an
75 exception region for the area that the cleanup is designated for,
76 and the handler for the region performs the cleanup and then
77 rethrows the exception to the outer exception region. From the
78 standpoint of the current implementation, there is little
79 distinction made between a cleanup and a user-defined handler, and
80 the phrase "exception handler" can be used to refer to either one
81 equally well. (The section "Future Directions" below discusses how
82 this will change).
84 Each object file that is compiled with exception handling contains
85 a static array of exception handlers named __EXCEPTION_TABLE__.
86 Each entry contains the starting and ending addresses of the
87 exception region, and the address of the handler designated for
88 that region.
90 If the target does not use the DWARF 2 frame unwind information, at
91 program startup each object file invokes a function named
92 __register_exceptions with the address of its local
93 __EXCEPTION_TABLE__. __register_exceptions is defined in libgcc2.c, and
94 is responsible for recording all of the exception regions into one list
95 (which is kept in a static variable named exception_table_list).
97 On targets that support crtstuff.c, the unwind information
98 is stored in a section named .eh_frame and the information for the
99 entire shared object or program is registered with a call to
100 __register_frame_info. On other targets, the information for each
101 translation unit is registered from the file generated by collect2.
102 __register_frame_info is defined in frame.c, and is responsible for
103 recording all of the unwind regions into one list (which is kept in a
104 static variable named unwind_table_list).
106 The function __throw is actually responsible for doing the
107 throw. On machines that have unwind info support, __throw is generated
108 by code in libgcc2.c, otherwise __throw is generated on a
109 per-object-file basis for each source file compiled with
110 -fexceptions by the C++ frontend. Before __throw is invoked,
111 the current context of the throw needs to be placed in the global
112 variable __eh_pc.
114 __throw attempts to find the appropriate exception handler for the
115 PC value stored in __eh_pc by calling __find_first_exception_table_match
116 (which is defined in libgcc2.c). If __find_first_exception_table_match
117 finds a relevant handler, __throw transfers control directly to it.
119 If a handler for the context being thrown from can't be found, __throw
120 walks (see Walking the stack below) the stack up the dynamic call chain to
121 continue searching for an appropriate exception handler based upon the
122 caller of the function it last sought a exception handler for. It stops
123 then either an exception handler is found, or when the top of the
124 call chain is reached.
126 If no handler is found, an external library function named
127 __terminate is called. If a handler is found, then we restart
128 our search for a handler at the end of the call chain, and repeat
129 the search process, but instead of just walking up the call chain,
130 we unwind the call chain as we walk up it.
132 Internal implementation details:
134 To associate a user-defined handler with a block of statements, the
135 function expand_start_try_stmts is used to mark the start of the
136 block of statements with which the handler is to be associated
137 (which is known as a "try block"). All statements that appear
138 afterwards will be associated with the try block.
140 A call to expand_start_all_catch marks the end of the try block,
141 and also marks the start of the "catch block" (the user-defined
142 handler) associated with the try block.
144 This user-defined handler will be invoked for *every* exception
145 thrown with the context of the try block. It is up to the handler
146 to decide whether or not it wishes to handle any given exception,
147 as there is currently no mechanism in this implementation for doing
148 this. (There are plans for conditionally processing an exception
149 based on its "type", which will provide a language-independent
150 mechanism).
152 If the handler chooses not to process the exception (perhaps by
153 looking at an "exception type" or some other additional data
154 supplied with the exception), it can fall through to the end of the
155 handler. expand_end_all_catch and expand_leftover_cleanups
156 add additional code to the end of each handler to take care of
157 rethrowing to the outer exception handler.
159 The handler also has the option to continue with "normal flow of
160 code", or in other words to resume executing at the statement
161 immediately after the end of the exception region. The variable
162 caught_return_label_stack contains a stack of labels, and jumping
163 to the topmost entry's label via expand_goto will resume normal
164 flow to the statement immediately after the end of the exception
165 region. If the handler falls through to the end, the exception will
166 be rethrown to the outer exception region.
168 The instructions for the catch block are kept as a separate
169 sequence, and will be emitted at the end of the function along with
170 the handlers specified via expand_eh_region_end. The end of the
171 catch block is marked with expand_end_all_catch.
173 Any data associated with the exception must currently be handled by
174 some external mechanism maintained in the frontend. For example,
175 the C++ exception mechanism passes an arbitrary value along with
176 the exception, and this is handled in the C++ frontend by using a
177 global variable to hold the value. (This will be changing in the
178 future.)
180 The mechanism in C++ for handling data associated with the
181 exception is clearly not thread-safe. For a thread-based
182 environment, another mechanism must be used (possibly using a
183 per-thread allocation mechanism if the size of the area that needs
184 to be allocated isn't known at compile time.)
186 Internally-generated exception regions (cleanups) are marked by
187 calling expand_eh_region_start to mark the start of the region,
188 and expand_eh_region_end (handler) is used to both designate the
189 end of the region and to associate a specified handler/cleanup with
190 the region. The rtl code in HANDLER will be invoked whenever an
191 exception occurs in the region between the calls to
192 expand_eh_region_start and expand_eh_region_end. After HANDLER is
193 executed, additional code is emitted to handle rethrowing the
194 exception to the outer exception handler. The code for HANDLER will
195 be emitted at the end of the function.
197 TARGET_EXPRs can also be used to designate exception regions. A
198 TARGET_EXPR gives an unwind-protect style interface commonly used
199 in functional languages such as LISP. The associated expression is
200 evaluated, and whether or not it (or any of the functions that it
201 calls) throws an exception, the protect expression is always
202 invoked. This implementation takes care of the details of
203 associating an exception table entry with the expression and
204 generating the necessary code (it actually emits the protect
205 expression twice, once for normal flow and once for the exception
206 case). As for the other handlers, the code for the exception case
207 will be emitted at the end of the function.
209 Cleanups can also be specified by using add_partial_entry (handler)
210 and end_protect_partials. add_partial_entry creates the start of
211 a new exception region; HANDLER will be invoked if an exception is
212 thrown with the context of the region between the calls to
213 add_partial_entry and end_protect_partials. end_protect_partials is
214 used to mark the end of these regions. add_partial_entry can be
215 called as many times as needed before calling end_protect_partials.
216 However, end_protect_partials should only be invoked once for each
217 group of calls to add_partial_entry as the entries are queued
218 and all of the outstanding entries are processed simultaneously
219 when end_protect_partials is invoked. Similarly to the other
220 handlers, the code for HANDLER will be emitted at the end of the
221 function.
223 The generated RTL for an exception region includes
224 NOTE_INSN_EH_REGION_BEG and NOTE_INSN_EH_REGION_END notes that mark
225 the start and end of the exception region. A unique label is also
226 generated at the start of the exception region, which is available
227 by looking at the ehstack variable. The topmost entry corresponds
228 to the current region.
230 In the current implementation, an exception can only be thrown from
231 a function call (since the mechanism used to actually throw an
232 exception involves calling __throw). If an exception region is
233 created but no function calls occur within that region, the region
234 can be safely optimized away (along with its exception handlers)
235 since no exceptions can ever be caught in that region. This
236 optimization is performed unless -fasynchronous-exceptions is
237 given. If the user wishes to throw from a signal handler, or other
238 asynchronous place, -fasynchronous-exceptions should be used when
239 compiling for maximally correct code, at the cost of additional
240 exception regions. Using -fasynchronous-exceptions only produces
241 code that is reasonably safe in such situations, but a correct
242 program cannot rely upon this working. It can be used in failsafe
243 code, where trying to continue on, and proceeding with potentially
244 incorrect results is better than halting the program.
247 Walking the stack:
249 The stack is walked by starting with a pointer to the current
250 frame, and finding the pointer to the callers frame. The unwind info
251 tells __throw how to find it.
253 Unwinding the stack:
255 When we use the term unwinding the stack, we mean undoing the
256 effects of the function prologue in a controlled fashion so that we
257 still have the flow of control. Otherwise, we could just return
258 (jump to the normal end of function epilogue).
260 This is done in __throw in libgcc2.c when we know that a handler exists
261 in a frame higher up the call stack than its immediate caller.
263 To unwind, we find the unwind data associated with the frame, if any.
264 If we don't find any, we call the library routine __terminate. If we do
265 find it, we use the information to copy the saved register values from
266 that frame into the register save area in the frame for __throw, return
267 into a stub which updates the stack pointer, and jump to the handler.
268 The normal function epilogue for __throw handles restoring the saved
269 values into registers.
271 When unwinding, we use this method if we know it will
272 work (if DWARF2_UNWIND_INFO is defined). Otherwise, we know that
273 an inline unwinder will have been emitted for any function that
274 __unwind_function cannot unwind. The inline unwinder appears as a
275 normal exception handler for the entire function, for any function
276 that we know cannot be unwound by __unwind_function. We inform the
277 compiler of whether a function can be unwound with
278 __unwind_function by having DOESNT_NEED_UNWINDER evaluate to true
279 when the unwinder isn't needed. __unwind_function is used as an
280 action of last resort. If no other method can be used for
281 unwinding, __unwind_function is used. If it cannot unwind, it
282 should call __terminate.
284 By default, if the target-specific backend doesn't supply a definition
285 for __unwind_function and doesn't support DWARF2_UNWIND_INFO, inlined
286 unwinders will be used instead. The main tradeoff here is in text space
287 utilization. Obviously, if inline unwinders have to be generated
288 repeatedly, this uses much more space than if a single routine is used.
290 However, it is simply not possible on some platforms to write a
291 generalized routine for doing stack unwinding without having some
292 form of additional data associated with each function. The current
293 implementation can encode this data in the form of additional
294 machine instructions or as static data in tabular form. The later
295 is called the unwind data.
297 The backend macro DOESNT_NEED_UNWINDER is used to conditionalize whether
298 or not per-function unwinders are needed. If DOESNT_NEED_UNWINDER is
299 defined and has a non-zero value, a per-function unwinder is not emitted
300 for the current function. If the static unwind data is supported, then
301 a per-function unwinder is not emitted.
303 On some platforms it is possible that neither __unwind_function
304 nor inlined unwinders are available. For these platforms it is not
305 possible to throw through a function call, and abort will be
306 invoked instead of performing the throw.
308 The reason the unwind data may be needed is that on some platforms
309 the order and types of data stored on the stack can vary depending
310 on the type of function, its arguments and returned values, and the
311 compilation options used (optimization versus non-optimization,
312 -fomit-frame-pointer, processor variations, etc).
314 Unfortunately, this also means that throwing through functions that
315 aren't compiled with exception handling support will still not be
316 possible on some platforms. This problem is currently being
317 investigated, but no solutions have been found that do not imply
318 some unacceptable performance penalties.
320 Future directions:
322 Currently __throw makes no differentiation between cleanups and
323 user-defined exception regions. While this makes the implementation
324 simple, it also implies that it is impossible to determine if a
325 user-defined exception handler exists for a given exception without
326 completely unwinding the stack in the process. This is undesirable
327 from the standpoint of debugging, as ideally it would be possible
328 to trap unhandled exceptions in the debugger before the process of
329 unwinding has even started.
331 This problem can be solved by marking user-defined handlers in a
332 special way (probably by adding additional bits to exception_table_list).
333 A two-pass scheme could then be used by __throw to iterate
334 through the table. The first pass would search for a relevant
335 user-defined handler for the current context of the throw, and if
336 one is found, the second pass would then invoke all needed cleanups
337 before jumping to the user-defined handler.
339 Many languages (including C++ and Ada) make execution of a
340 user-defined handler conditional on the "type" of the exception
341 thrown. (The type of the exception is actually the type of the data
342 that is thrown with the exception.) It will thus be necessary for
343 __throw to be able to determine if a given user-defined
344 exception handler will actually be executed, given the type of
345 exception.
347 One scheme is to add additional information to exception_table_list
348 as to the types of exceptions accepted by each handler. __throw
349 can do the type comparisons and then determine if the handler is
350 actually going to be executed.
352 There is currently no significant level of debugging support
353 available, other than to place a breakpoint on __throw. While
354 this is sufficient in most cases, it would be helpful to be able to
355 know where a given exception was going to be thrown to before it is
356 actually thrown, and to be able to choose between stopping before
357 every exception region (including cleanups), or just user-defined
358 exception regions. This should be possible to do in the two-pass
359 scheme by adding additional labels to __throw for appropriate
360 breakpoints, and additional debugger commands could be added to
361 query various state variables to determine what actions are to be
362 performed next.
364 Another major problem that is being worked on is the issue with stack
365 unwinding on various platforms. Currently the only platforms that have
366 support for the generation of a generic unwinder are the SPARC and MIPS.
367 All other ports require per-function unwinders, which produce large
368 amounts of code bloat.
370 For setjmp/longjmp based exception handling, some of the details
371 are as above, but there are some additional details. This section
372 discusses the details.
374 We don't use NOTE_INSN_EH_REGION_{BEG,END} pairs. We don't
375 optimize EH regions yet. We don't have to worry about machine
376 specific issues with unwinding the stack, as we rely upon longjmp
377 for all the machine specific details. There is no variable context
378 of a throw, just the one implied by the dynamic handler stack
379 pointed to by the dynamic handler chain. There is no exception
380 table, and no calls to __register_exceptions. __sjthrow is used
381 instead of __throw, and it works by using the dynamic handler
382 chain, and longjmp. -fasynchronous-exceptions has no effect, as
383 the elimination of trivial exception regions is not yet performed.
385 A frontend can set protect_cleanup_actions_with_terminate when all
386 the cleanup actions should be protected with an EH region that
387 calls terminate when an unhandled exception is throw. C++ does
388 this, Ada does not. */
391 #include "config.h"
392 #include "defaults.h"
393 #include "eh-common.h"
394 #include "system.h"
395 #include "rtl.h"
396 #include "tree.h"
397 #include "flags.h"
398 #include "except.h"
399 #include "function.h"
400 #include "insn-flags.h"
401 #include "expr.h"
402 #include "insn-codes.h"
403 #include "regs.h"
404 #include "hard-reg-set.h"
405 #include "insn-config.h"
406 #include "recog.h"
407 #include "output.h"
408 #include "toplev.h"
409 #include "intl.h"
410 #include "obstack.h"
411 #include "ggc.h"
412 #include "tm_p.h"
414 /* One to use setjmp/longjmp method of generating code for exception
415 handling. */
417 int exceptions_via_longjmp = 2;
419 /* One to enable asynchronous exception support. */
421 int asynchronous_exceptions = 0;
423 /* One to protect cleanup actions with a handler that calls
424 __terminate, zero otherwise. */
426 int protect_cleanup_actions_with_terminate;
428 /* A list of labels used for exception handlers. Created by
429 find_exception_handler_labels for the optimization passes. */
431 rtx exception_handler_labels;
433 /* Keeps track of the label used as the context of a throw to rethrow an
434 exception to the outer exception region. */
436 struct label_node *outer_context_label_stack = NULL;
438 /* Pseudos used to hold exception return data in the interim between
439 __builtin_eh_return and the end of the function. */
441 static rtx eh_return_context;
442 static rtx eh_return_stack_adjust;
443 static rtx eh_return_handler;
445 /* This is used for targets which can call rethrow with an offset instead
446 of an address. This is subtracted from the rethrow label we are
447 interested in. */
449 static rtx first_rethrow_symbol = NULL_RTX;
450 static rtx final_rethrow = NULL_RTX;
451 static rtx last_rethrow_symbol = NULL_RTX;
454 /* Prototypes for local functions. */
456 static void push_eh_entry PROTO((struct eh_stack *));
457 static struct eh_entry * pop_eh_entry PROTO((struct eh_stack *));
458 static void enqueue_eh_entry PROTO((struct eh_queue *, struct eh_entry *));
459 static struct eh_entry * dequeue_eh_entry PROTO((struct eh_queue *));
460 static rtx call_get_eh_context PROTO((void));
461 static void start_dynamic_cleanup PROTO((tree, tree));
462 static void start_dynamic_handler PROTO((void));
463 static void expand_rethrow PROTO((rtx));
464 static void output_exception_table_entry PROTO((FILE *, int));
465 static int can_throw PROTO((rtx));
466 static rtx scan_region PROTO((rtx, int, int *));
467 static void eh_regs PROTO((rtx *, rtx *, rtx *, int));
468 static void set_insn_eh_region PROTO((rtx *, int));
469 #ifdef DONT_USE_BUILTIN_SETJMP
470 static void jumpif_rtx PROTO((rtx, rtx));
471 #endif
472 static void mark_eh_node PROTO((struct eh_node *));
473 static void mark_eh_stack PROTO((struct eh_stack *));
474 static void mark_eh_queue PROTO((struct eh_queue *));
475 static void mark_tree_label_node PROTO ((struct label_node *));
476 static void mark_func_eh_entry PROTO ((void *));
477 static rtx create_rethrow_ref PROTO ((int));
478 static void push_entry PROTO ((struct eh_stack *, struct eh_entry*));
479 static void receive_exception_label PROTO ((rtx));
480 static int new_eh_region_entry PROTO ((int, rtx));
481 static int find_func_region PROTO ((int));
482 static int find_func_region_from_symbol PROTO ((rtx));
483 static void clear_function_eh_region PROTO ((void));
484 static void process_nestinfo PROTO ((int, eh_nesting_info *, int *));
486 rtx expand_builtin_return_addr PROTO((enum built_in_function, int, rtx));
487 static void emit_cleanup_handler PROTO ((struct eh_entry *));
488 static int eh_region_from_symbol PROTO((rtx));
491 /* Various support routines to manipulate the various data structures
492 used by the exception handling code. */
494 extern struct obstack permanent_obstack;
496 /* Generate a SYMBOL_REF for rethrow to use */
497 static rtx
498 create_rethrow_ref (region_num)
499 int region_num;
501 rtx def;
502 char *ptr;
503 char buf[60];
505 push_obstacks_nochange ();
506 end_temporary_allocation ();
508 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", region_num);
509 ptr = ggc_alloc_string (buf, -1);
510 def = gen_rtx_SYMBOL_REF (Pmode, ptr);
511 SYMBOL_REF_NEED_ADJUST (def) = 1;
513 pop_obstacks ();
514 return def;
517 /* Push a label entry onto the given STACK. */
519 void
520 push_label_entry (stack, rlabel, tlabel)
521 struct label_node **stack;
522 rtx rlabel;
523 tree tlabel;
525 struct label_node *newnode
526 = (struct label_node *) xmalloc (sizeof (struct label_node));
528 if (rlabel)
529 newnode->u.rlabel = rlabel;
530 else
531 newnode->u.tlabel = tlabel;
532 newnode->chain = *stack;
533 *stack = newnode;
536 /* Pop a label entry from the given STACK. */
539 pop_label_entry (stack)
540 struct label_node **stack;
542 rtx label;
543 struct label_node *tempnode;
545 if (! *stack)
546 return NULL_RTX;
548 tempnode = *stack;
549 label = tempnode->u.rlabel;
550 *stack = (*stack)->chain;
551 free (tempnode);
553 return label;
556 /* Return the top element of the given STACK. */
558 tree
559 top_label_entry (stack)
560 struct label_node **stack;
562 if (! *stack)
563 return NULL_TREE;
565 return (*stack)->u.tlabel;
568 /* get an exception label. These must be on the permanent obstack */
571 gen_exception_label ()
573 rtx lab;
574 lab = gen_label_rtx ();
575 return lab;
578 /* Push a new eh_node entry onto STACK. */
580 static void
581 push_eh_entry (stack)
582 struct eh_stack *stack;
584 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
585 struct eh_entry *entry = (struct eh_entry *) xmalloc (sizeof (struct eh_entry));
587 rtx rlab = gen_exception_label ();
588 entry->finalization = NULL_TREE;
589 entry->label_used = 0;
590 entry->exception_handler_label = rlab;
591 entry->false_label = NULL_RTX;
592 if (! flag_new_exceptions)
593 entry->outer_context = gen_label_rtx ();
594 else
595 entry->outer_context = create_rethrow_ref (CODE_LABEL_NUMBER (rlab));
596 entry->rethrow_label = entry->outer_context;
597 entry->goto_entry_p = 0;
599 node->entry = entry;
600 node->chain = stack->top;
601 stack->top = node;
604 /* push an existing entry onto a stack. */
605 static void
606 push_entry (stack, entry)
607 struct eh_stack *stack;
608 struct eh_entry *entry;
610 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
611 node->entry = entry;
612 node->chain = stack->top;
613 stack->top = node;
616 /* Pop an entry from the given STACK. */
618 static struct eh_entry *
619 pop_eh_entry (stack)
620 struct eh_stack *stack;
622 struct eh_node *tempnode;
623 struct eh_entry *tempentry;
625 tempnode = stack->top;
626 tempentry = tempnode->entry;
627 stack->top = stack->top->chain;
628 free (tempnode);
630 return tempentry;
633 /* Enqueue an ENTRY onto the given QUEUE. */
635 static void
636 enqueue_eh_entry (queue, entry)
637 struct eh_queue *queue;
638 struct eh_entry *entry;
640 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
642 node->entry = entry;
643 node->chain = NULL;
645 if (queue->head == NULL)
647 queue->head = node;
649 else
651 queue->tail->chain = node;
653 queue->tail = node;
656 /* Dequeue an entry from the given QUEUE. */
658 static struct eh_entry *
659 dequeue_eh_entry (queue)
660 struct eh_queue *queue;
662 struct eh_node *tempnode;
663 struct eh_entry *tempentry;
665 if (queue->head == NULL)
666 return NULL;
668 tempnode = queue->head;
669 queue->head = queue->head->chain;
671 tempentry = tempnode->entry;
672 free (tempnode);
674 return tempentry;
677 static void
678 receive_exception_label (handler_label)
679 rtx handler_label;
681 emit_label (handler_label);
683 #ifdef HAVE_exception_receiver
684 if (! exceptions_via_longjmp)
685 if (HAVE_exception_receiver)
686 emit_insn (gen_exception_receiver ());
687 #endif
689 #ifdef HAVE_nonlocal_goto_receiver
690 if (! exceptions_via_longjmp)
691 if (HAVE_nonlocal_goto_receiver)
692 emit_insn (gen_nonlocal_goto_receiver ());
693 #endif
697 struct func_eh_entry
699 int range_number; /* EH region number from EH NOTE insn's. */
700 rtx rethrow_label; /* Label for rethrow. */
701 int rethrow_ref; /* Is rethrow referenced? */
702 struct handler_info *handlers;
706 /* table of function eh regions */
707 static struct func_eh_entry *function_eh_regions = NULL;
708 static int num_func_eh_entries = 0;
709 static int current_func_eh_entry = 0;
711 #define SIZE_FUNC_EH(X) (sizeof (struct func_eh_entry) * X)
713 /* Add a new eh_entry for this function. The number returned is an
714 number which uniquely identifies this exception range. */
716 static int
717 new_eh_region_entry (note_eh_region, rethrow)
718 int note_eh_region;
719 rtx rethrow;
721 if (current_func_eh_entry == num_func_eh_entries)
723 if (num_func_eh_entries == 0)
725 function_eh_regions =
726 (struct func_eh_entry *) xmalloc (SIZE_FUNC_EH (50));
727 num_func_eh_entries = 50;
729 else
731 num_func_eh_entries = num_func_eh_entries * 3 / 2;
732 function_eh_regions = (struct func_eh_entry *)
733 xrealloc (function_eh_regions, SIZE_FUNC_EH (num_func_eh_entries));
736 function_eh_regions[current_func_eh_entry].range_number = note_eh_region;
737 if (rethrow == NULL_RTX)
738 function_eh_regions[current_func_eh_entry].rethrow_label =
739 create_rethrow_ref (note_eh_region);
740 else
741 function_eh_regions[current_func_eh_entry].rethrow_label = rethrow;
742 function_eh_regions[current_func_eh_entry].handlers = NULL;
744 return current_func_eh_entry++;
747 /* Add new handler information to an exception range. The first parameter
748 specifies the range number (returned from new_eh_entry()). The second
749 parameter specifies the handler. By default the handler is inserted at
750 the end of the list. A handler list may contain only ONE NULL_TREE
751 typeinfo entry. Regardless where it is positioned, a NULL_TREE entry
752 is always output as the LAST handler in the exception table for a region. */
754 void
755 add_new_handler (region, newhandler)
756 int region;
757 struct handler_info *newhandler;
759 struct handler_info *last;
761 /* If find_func_region returns -1, callers might attempt to pass us
762 this region number. If that happens, something has gone wrong;
763 -1 is never a valid region. */
764 if (region == -1)
765 abort ();
767 newhandler->next = NULL;
768 last = function_eh_regions[region].handlers;
769 if (last == NULL)
770 function_eh_regions[region].handlers = newhandler;
771 else
773 for ( ; ; last = last->next)
775 if (last->type_info == CATCH_ALL_TYPE)
776 pedwarn ("additional handler after ...");
777 if (last->next == NULL)
778 break;
780 last->next = newhandler;
784 /* Remove a handler label. The handler label is being deleted, so all
785 regions which reference this handler should have it removed from their
786 list of possible handlers. Any region which has the final handler
787 removed can be deleted. */
789 void remove_handler (removing_label)
790 rtx removing_label;
792 struct handler_info *handler, *last;
793 int x;
794 for (x = 0 ; x < current_func_eh_entry; ++x)
796 last = NULL;
797 handler = function_eh_regions[x].handlers;
798 for ( ; handler; last = handler, handler = handler->next)
799 if (handler->handler_label == removing_label)
801 if (last)
803 last->next = handler->next;
804 handler = last;
806 else
807 function_eh_regions[x].handlers = handler->next;
812 /* This function will return a malloc'd pointer to an array of
813 void pointer representing the runtime match values that
814 currently exist in all regions. */
816 int
817 find_all_handler_type_matches (array)
818 void ***array;
820 struct handler_info *handler, *last;
821 int x,y;
822 void *val;
823 void **ptr;
824 int max_ptr;
825 int n_ptr = 0;
827 *array = NULL;
829 if (!doing_eh (0) || ! flag_new_exceptions)
830 return 0;
832 max_ptr = 100;
833 ptr = (void **) xmalloc (max_ptr * sizeof (void *));
835 for (x = 0 ; x < current_func_eh_entry; x++)
837 last = NULL;
838 handler = function_eh_regions[x].handlers;
839 for ( ; handler; last = handler, handler = handler->next)
841 val = handler->type_info;
842 if (val != NULL && val != CATCH_ALL_TYPE)
844 /* See if this match value has already been found. */
845 for (y = 0; y < n_ptr; y++)
846 if (ptr[y] == val)
847 break;
849 /* If we break early, we already found this value. */
850 if (y < n_ptr)
851 continue;
853 /* Do we need to allocate more space? */
854 if (n_ptr >= max_ptr)
856 max_ptr += max_ptr / 2;
857 ptr = (void **) xrealloc (ptr, max_ptr * sizeof (void *));
859 ptr[n_ptr] = val;
860 n_ptr++;
865 if (n_ptr == 0)
867 free (ptr);
868 ptr = NULL;
870 *array = ptr;
871 return n_ptr;
874 /* Create a new handler structure initialized with the handler label and
875 typeinfo fields passed in. */
877 struct handler_info *
878 get_new_handler (handler, typeinfo)
879 rtx handler;
880 void *typeinfo;
882 struct handler_info* ptr;
883 ptr = (struct handler_info *) xmalloc (sizeof (struct handler_info));
884 ptr->handler_label = handler;
885 ptr->handler_number = CODE_LABEL_NUMBER (handler);
886 ptr->type_info = typeinfo;
887 ptr->next = NULL;
889 return ptr;
894 /* Find the index in function_eh_regions associated with a NOTE region. If
895 the region cannot be found, a -1 is returned. */
897 static int
898 find_func_region (insn_region)
899 int insn_region;
901 int x;
902 for (x = 0; x < current_func_eh_entry; x++)
903 if (function_eh_regions[x].range_number == insn_region)
904 return x;
906 return -1;
909 /* Get a pointer to the first handler in an exception region's list. */
911 struct handler_info *
912 get_first_handler (region)
913 int region;
915 return function_eh_regions[find_func_region (region)].handlers;
918 /* Clean out the function_eh_region table and free all memory */
920 static void
921 clear_function_eh_region ()
923 int x;
924 struct handler_info *ptr, *next;
925 for (x = 0; x < current_func_eh_entry; x++)
926 for (ptr = function_eh_regions[x].handlers; ptr != NULL; ptr = next)
928 next = ptr->next;
929 free (ptr);
931 free (function_eh_regions);
932 num_func_eh_entries = 0;
933 current_func_eh_entry = 0;
936 /* Make a duplicate of an exception region by copying all the handlers
937 for an exception region. Return the new handler index. The final
938 parameter is a routine which maps old labels to new ones. */
940 int
941 duplicate_eh_handlers (old_note_eh_region, new_note_eh_region, map)
942 int old_note_eh_region, new_note_eh_region;
943 rtx (*map) PARAMS ((rtx));
945 struct handler_info *ptr, *new_ptr;
946 int new_region, region;
948 region = find_func_region (old_note_eh_region);
949 if (region == -1)
950 fatal ("Cannot duplicate non-existant exception region.");
952 /* duplicate_eh_handlers may have been called during a symbol remap. */
953 new_region = find_func_region (new_note_eh_region);
954 if (new_region != -1)
955 return (new_region);
957 new_region = new_eh_region_entry (new_note_eh_region, NULL_RTX);
959 ptr = function_eh_regions[region].handlers;
961 for ( ; ptr; ptr = ptr->next)
963 new_ptr = get_new_handler (map (ptr->handler_label), ptr->type_info);
964 add_new_handler (new_region, new_ptr);
967 return new_region;
971 /* Given a rethrow symbol, find the EH region number this is for. */
972 static int
973 eh_region_from_symbol (sym)
974 rtx sym;
976 int x;
977 if (sym == last_rethrow_symbol)
978 return 1;
979 for (x = 0; x < current_func_eh_entry; x++)
980 if (function_eh_regions[x].rethrow_label == sym)
981 return function_eh_regions[x].range_number;
982 return -1;
985 /* Like find_func_region, but using the rethrow symbol for the region
986 rather than the region number itself. */
987 static int
988 find_func_region_from_symbol (sym)
989 rtx sym;
991 return find_func_region (eh_region_from_symbol (sym));
994 /* When inlining/unrolling, we have to map the symbols passed to
995 __rethrow as well. This performs the remap. If a symbol isn't foiund,
996 the original one is returned. This is not an efficient routine,
997 so don't call it on everything!! */
998 rtx
999 rethrow_symbol_map (sym, map)
1000 rtx sym;
1001 rtx (*map) PARAMS ((rtx));
1003 int x, y;
1004 for (x = 0; x < current_func_eh_entry; x++)
1005 if (function_eh_regions[x].rethrow_label == sym)
1007 /* We've found the original region, now lets determine which region
1008 this now maps to. */
1009 rtx l1 = function_eh_regions[x].handlers->handler_label;
1010 rtx l2 = map (l1);
1011 y = CODE_LABEL_NUMBER (l2); /* This is the new region number */
1012 x = find_func_region (y); /* Get the new permanent region */
1013 if (x == -1) /* Hmm, Doesn't exist yet */
1015 x = duplicate_eh_handlers (CODE_LABEL_NUMBER (l1), y, map);
1016 /* Since we're mapping it, it must be used. */
1017 function_eh_regions[x].rethrow_ref = 1;
1019 return function_eh_regions[x].rethrow_label;
1021 return sym;
1024 int
1025 rethrow_used (region)
1026 int region;
1028 if (flag_new_exceptions)
1030 int ret = function_eh_regions[find_func_region (region)].rethrow_ref;
1031 return ret;
1033 return 0;
1037 /* Routine to see if exception handling is turned on.
1038 DO_WARN is non-zero if we want to inform the user that exception
1039 handling is turned off.
1041 This is used to ensure that -fexceptions has been specified if the
1042 compiler tries to use any exception-specific functions. */
1045 doing_eh (do_warn)
1046 int do_warn;
1048 if (! flag_exceptions)
1050 static int warned = 0;
1051 if (! warned && do_warn)
1053 error ("exception handling disabled, use -fexceptions to enable");
1054 warned = 1;
1056 return 0;
1058 return 1;
1061 /* Given a return address in ADDR, determine the address we should use
1062 to find the corresponding EH region. */
1065 eh_outer_context (addr)
1066 rtx addr;
1068 /* First mask out any unwanted bits. */
1069 #ifdef MASK_RETURN_ADDR
1070 expand_and (addr, MASK_RETURN_ADDR, addr);
1071 #endif
1073 /* Then adjust to find the real return address. */
1074 #if defined (RETURN_ADDR_OFFSET)
1075 addr = plus_constant (addr, RETURN_ADDR_OFFSET);
1076 #endif
1078 return addr;
1081 /* Start a new exception region for a region of code that has a
1082 cleanup action and push the HANDLER for the region onto
1083 protect_list. All of the regions created with add_partial_entry
1084 will be ended when end_protect_partials is invoked. */
1086 void
1087 add_partial_entry (handler)
1088 tree handler;
1090 expand_eh_region_start ();
1092 /* Make sure the entry is on the correct obstack. */
1093 push_obstacks_nochange ();
1094 resume_temporary_allocation ();
1096 /* Because this is a cleanup action, we may have to protect the handler
1097 with __terminate. */
1098 handler = protect_with_terminate (handler);
1100 protect_list = tree_cons (NULL_TREE, handler, protect_list);
1101 pop_obstacks ();
1104 /* Emit code to get EH context to current function. */
1106 static rtx
1107 call_get_eh_context ()
1109 static tree fn;
1110 tree expr;
1112 if (fn == NULL_TREE)
1114 tree fntype;
1115 fn = get_identifier ("__get_eh_context");
1116 push_obstacks_nochange ();
1117 end_temporary_allocation ();
1118 fntype = build_pointer_type (build_pointer_type
1119 (build_pointer_type (void_type_node)));
1120 fntype = build_function_type (fntype, NULL_TREE);
1121 fn = build_decl (FUNCTION_DECL, fn, fntype);
1122 DECL_EXTERNAL (fn) = 1;
1123 TREE_PUBLIC (fn) = 1;
1124 DECL_ARTIFICIAL (fn) = 1;
1125 TREE_READONLY (fn) = 1;
1126 make_decl_rtl (fn, NULL_PTR, 1);
1127 assemble_external (fn);
1128 pop_obstacks ();
1130 ggc_add_tree_root (&fn, 1);
1133 expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1134 expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1135 expr, NULL_TREE, NULL_TREE);
1136 TREE_SIDE_EFFECTS (expr) = 1;
1138 return copy_to_reg (expand_expr (expr, NULL_RTX, VOIDmode, 0));
1141 /* Get a reference to the EH context.
1142 We will only generate a register for the current function EH context here,
1143 and emit a USE insn to mark that this is a EH context register.
1145 Later, emit_eh_context will emit needed call to __get_eh_context
1146 in libgcc2, and copy the value to the register we have generated. */
1149 get_eh_context ()
1151 if (current_function_ehc == 0)
1153 rtx insn;
1155 current_function_ehc = gen_reg_rtx (Pmode);
1157 insn = gen_rtx_USE (GET_MODE (current_function_ehc),
1158 current_function_ehc);
1159 insn = emit_insn_before (insn, get_first_nonparm_insn ());
1161 REG_NOTES (insn)
1162 = gen_rtx_EXPR_LIST (REG_EH_CONTEXT, current_function_ehc,
1163 REG_NOTES (insn));
1165 return current_function_ehc;
1168 /* Get a reference to the dynamic handler chain. It points to the
1169 pointer to the next element in the dynamic handler chain. It ends
1170 when there are no more elements in the dynamic handler chain, when
1171 the value is &top_elt from libgcc2.c. Immediately after the
1172 pointer, is an area suitable for setjmp/longjmp when
1173 DONT_USE_BUILTIN_SETJMP is defined, and an area suitable for
1174 __builtin_setjmp/__builtin_longjmp when DONT_USE_BUILTIN_SETJMP
1175 isn't defined. */
1178 get_dynamic_handler_chain ()
1180 rtx ehc, dhc, result;
1182 ehc = get_eh_context ();
1184 /* This is the offset of dynamic_handler_chain in the eh_context struct
1185 declared in eh-common.h. If its location is change, change this offset */
1186 dhc = plus_constant (ehc, POINTER_SIZE / BITS_PER_UNIT);
1188 result = copy_to_reg (dhc);
1190 /* We don't want a copy of the dcc, but rather, the single dcc. */
1191 return gen_rtx_MEM (Pmode, result);
1194 /* Get a reference to the dynamic cleanup chain. It points to the
1195 pointer to the next element in the dynamic cleanup chain.
1196 Immediately after the pointer, are two Pmode variables, one for a
1197 pointer to a function that performs the cleanup action, and the
1198 second, the argument to pass to that function. */
1201 get_dynamic_cleanup_chain ()
1203 rtx dhc, dcc, result;
1205 dhc = get_dynamic_handler_chain ();
1206 dcc = plus_constant (dhc, POINTER_SIZE / BITS_PER_UNIT);
1208 result = copy_to_reg (dcc);
1210 /* We don't want a copy of the dcc, but rather, the single dcc. */
1211 return gen_rtx_MEM (Pmode, result);
1214 #ifdef DONT_USE_BUILTIN_SETJMP
1215 /* Generate code to evaluate X and jump to LABEL if the value is nonzero.
1216 LABEL is an rtx of code CODE_LABEL, in this function. */
1218 static void
1219 jumpif_rtx (x, label)
1220 rtx x;
1221 rtx label;
1223 jumpif (make_tree (type_for_mode (GET_MODE (x), 0), x), label);
1225 #endif
1227 /* Start a dynamic cleanup on the EH runtime dynamic cleanup stack.
1228 We just need to create an element for the cleanup list, and push it
1229 into the chain.
1231 A dynamic cleanup is a cleanup action implied by the presence of an
1232 element on the EH runtime dynamic cleanup stack that is to be
1233 performed when an exception is thrown. The cleanup action is
1234 performed by __sjthrow when an exception is thrown. Only certain
1235 actions can be optimized into dynamic cleanup actions. For the
1236 restrictions on what actions can be performed using this routine,
1237 see expand_eh_region_start_tree. */
1239 static void
1240 start_dynamic_cleanup (func, arg)
1241 tree func;
1242 tree arg;
1244 rtx dcc;
1245 rtx new_func, new_arg;
1246 rtx x, buf;
1247 int size;
1249 /* We allocate enough room for a pointer to the function, and
1250 one argument. */
1251 size = 2;
1253 /* XXX, FIXME: The stack space allocated this way is too long lived,
1254 but there is no allocation routine that allocates at the level of
1255 the last binding contour. */
1256 buf = assign_stack_local (BLKmode,
1257 GET_MODE_SIZE (Pmode)*(size+1),
1260 buf = change_address (buf, Pmode, NULL_RTX);
1262 /* Store dcc into the first word of the newly allocated buffer. */
1264 dcc = get_dynamic_cleanup_chain ();
1265 emit_move_insn (buf, dcc);
1267 /* Store func and arg into the cleanup list element. */
1269 new_func = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1270 GET_MODE_SIZE (Pmode)));
1271 new_arg = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1272 GET_MODE_SIZE (Pmode)*2));
1273 x = expand_expr (func, new_func, Pmode, 0);
1274 if (x != new_func)
1275 emit_move_insn (new_func, x);
1277 x = expand_expr (arg, new_arg, Pmode, 0);
1278 if (x != new_arg)
1279 emit_move_insn (new_arg, x);
1281 /* Update the cleanup chain. */
1283 x = force_operand (XEXP (buf, 0), dcc);
1284 if (x != dcc)
1285 emit_move_insn (dcc, x);
1288 /* Emit RTL to start a dynamic handler on the EH runtime dynamic
1289 handler stack. This should only be used by expand_eh_region_start
1290 or expand_eh_region_start_tree. */
1292 static void
1293 start_dynamic_handler ()
1295 rtx dhc, dcc;
1296 rtx x, arg, buf;
1297 int size;
1299 #ifndef DONT_USE_BUILTIN_SETJMP
1300 /* The number of Pmode words for the setjmp buffer, when using the
1301 builtin setjmp/longjmp, see expand_builtin, case BUILT_IN_LONGJMP. */
1302 /* We use 2 words here before calling expand_builtin_setjmp.
1303 expand_builtin_setjmp uses 2 words, and then calls emit_stack_save.
1304 emit_stack_save needs space of size STACK_SAVEAREA_MODE (SAVE_NONLOCAL).
1305 Subtract one, because the assign_stack_local call below adds 1. */
1306 size = (2 + 2 + (GET_MODE_SIZE (STACK_SAVEAREA_MODE (SAVE_NONLOCAL))
1307 / GET_MODE_SIZE (Pmode))
1308 - 1);
1309 #else
1310 #ifdef JMP_BUF_SIZE
1311 size = JMP_BUF_SIZE;
1312 #else
1313 /* Should be large enough for most systems, if it is not,
1314 JMP_BUF_SIZE should be defined with the proper value. It will
1315 also tend to be larger than necessary for most systems, a more
1316 optimal port will define JMP_BUF_SIZE. */
1317 size = FIRST_PSEUDO_REGISTER+2;
1318 #endif
1319 #endif
1320 /* XXX, FIXME: The stack space allocated this way is too long lived,
1321 but there is no allocation routine that allocates at the level of
1322 the last binding contour. */
1323 arg = assign_stack_local (BLKmode,
1324 GET_MODE_SIZE (Pmode)*(size+1),
1327 arg = change_address (arg, Pmode, NULL_RTX);
1329 /* Store dhc into the first word of the newly allocated buffer. */
1331 dhc = get_dynamic_handler_chain ();
1332 dcc = gen_rtx_MEM (Pmode, plus_constant (XEXP (arg, 0),
1333 GET_MODE_SIZE (Pmode)));
1334 emit_move_insn (arg, dhc);
1336 /* Zero out the start of the cleanup chain. */
1337 emit_move_insn (dcc, const0_rtx);
1339 /* The jmpbuf starts two words into the area allocated. */
1340 buf = plus_constant (XEXP (arg, 0), GET_MODE_SIZE (Pmode)*2);
1342 #ifdef DONT_USE_BUILTIN_SETJMP
1343 x = emit_library_call_value (setjmp_libfunc, NULL_RTX, 1, SImode, 1,
1344 buf, Pmode);
1345 /* If we come back here for a catch, transfer control to the handler. */
1346 jumpif_rtx (x, ehstack.top->entry->exception_handler_label);
1347 #else
1349 /* A label to continue execution for the no exception case. */
1350 rtx noex = gen_label_rtx();
1351 x = expand_builtin_setjmp (buf, NULL_RTX, noex,
1352 ehstack.top->entry->exception_handler_label);
1353 emit_label (noex);
1355 #endif
1357 /* We are committed to this, so update the handler chain. */
1359 emit_move_insn (dhc, force_operand (XEXP (arg, 0), NULL_RTX));
1362 /* Start an exception handling region for the given cleanup action.
1363 All instructions emitted after this point are considered to be part
1364 of the region until expand_eh_region_end is invoked. CLEANUP is
1365 the cleanup action to perform. The return value is true if the
1366 exception region was optimized away. If that case,
1367 expand_eh_region_end does not need to be called for this cleanup,
1368 nor should it be.
1370 This routine notices one particular common case in C++ code
1371 generation, and optimizes it so as to not need the exception
1372 region. It works by creating a dynamic cleanup action, instead of
1373 a using an exception region. */
1376 expand_eh_region_start_tree (decl, cleanup)
1377 tree decl;
1378 tree cleanup;
1380 /* This is the old code. */
1381 if (! doing_eh (0))
1382 return 0;
1384 /* The optimization only applies to actions protected with
1385 terminate, and only applies if we are using the setjmp/longjmp
1386 codegen method. */
1387 if (exceptions_via_longjmp
1388 && protect_cleanup_actions_with_terminate)
1390 tree func, arg;
1391 tree args;
1393 /* Ignore any UNSAVE_EXPR. */
1394 if (TREE_CODE (cleanup) == UNSAVE_EXPR)
1395 cleanup = TREE_OPERAND (cleanup, 0);
1397 /* Further, it only applies if the action is a call, if there
1398 are 2 arguments, and if the second argument is 2. */
1400 if (TREE_CODE (cleanup) == CALL_EXPR
1401 && (args = TREE_OPERAND (cleanup, 1))
1402 && (func = TREE_OPERAND (cleanup, 0))
1403 && (arg = TREE_VALUE (args))
1404 && (args = TREE_CHAIN (args))
1406 /* is the second argument 2? */
1407 && TREE_CODE (TREE_VALUE (args)) == INTEGER_CST
1408 && TREE_INT_CST_LOW (TREE_VALUE (args)) == 2
1409 && TREE_INT_CST_HIGH (TREE_VALUE (args)) == 0
1411 /* Make sure there are no other arguments. */
1412 && TREE_CHAIN (args) == NULL_TREE)
1414 /* Arrange for returns and gotos to pop the entry we make on the
1415 dynamic cleanup stack. */
1416 expand_dcc_cleanup (decl);
1417 start_dynamic_cleanup (func, arg);
1418 return 1;
1422 expand_eh_region_start_for_decl (decl);
1423 ehstack.top->entry->finalization = cleanup;
1425 return 0;
1428 /* Just like expand_eh_region_start, except if a cleanup action is
1429 entered on the cleanup chain, the TREE_PURPOSE of the element put
1430 on the chain is DECL. DECL should be the associated VAR_DECL, if
1431 any, otherwise it should be NULL_TREE. */
1433 void
1434 expand_eh_region_start_for_decl (decl)
1435 tree decl;
1437 rtx note;
1439 /* This is the old code. */
1440 if (! doing_eh (0))
1441 return;
1443 /* We need a new block to record the start and end of the
1444 dynamic handler chain. We also want to prevent jumping into
1445 a try block. */
1446 expand_start_bindings (2);
1448 /* But we don't need or want a new temporary level. */
1449 pop_temp_slots ();
1451 /* Mark this block as created by expand_eh_region_start. This
1452 is so that we can pop the block with expand_end_bindings
1453 automatically. */
1454 mark_block_as_eh_region ();
1456 if (exceptions_via_longjmp)
1458 /* Arrange for returns and gotos to pop the entry we make on the
1459 dynamic handler stack. */
1460 expand_dhc_cleanup (decl);
1463 push_eh_entry (&ehstack);
1464 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_BEG);
1465 NOTE_EH_HANDLER (note)
1466 = CODE_LABEL_NUMBER (ehstack.top->entry->exception_handler_label);
1467 if (exceptions_via_longjmp)
1468 start_dynamic_handler ();
1471 /* Start an exception handling region. All instructions emitted after
1472 this point are considered to be part of the region until
1473 expand_eh_region_end is invoked. */
1475 void
1476 expand_eh_region_start ()
1478 expand_eh_region_start_for_decl (NULL_TREE);
1481 /* End an exception handling region. The information about the region
1482 is found on the top of ehstack.
1484 HANDLER is either the cleanup for the exception region, or if we're
1485 marking the end of a try block, HANDLER is integer_zero_node.
1487 HANDLER will be transformed to rtl when expand_leftover_cleanups
1488 is invoked. */
1490 void
1491 expand_eh_region_end (handler)
1492 tree handler;
1494 struct eh_entry *entry;
1495 struct eh_node *node;
1496 rtx note;
1497 int ret, r;
1499 if (! doing_eh (0))
1500 return;
1502 entry = pop_eh_entry (&ehstack);
1504 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_END);
1505 ret = NOTE_EH_HANDLER (note)
1506 = CODE_LABEL_NUMBER (entry->exception_handler_label);
1507 if (exceptions_via_longjmp == 0 && ! flag_new_exceptions
1508 /* We share outer_context between regions; only emit it once. */
1509 && INSN_UID (entry->outer_context) == 0)
1511 rtx label;
1513 label = gen_label_rtx ();
1514 emit_jump (label);
1516 /* Emit a label marking the end of this exception region that
1517 is used for rethrowing into the outer context. */
1518 emit_label (entry->outer_context);
1519 expand_internal_throw ();
1521 emit_label (label);
1524 entry->finalization = handler;
1526 /* create region entry in final exception table */
1527 r = new_eh_region_entry (NOTE_EH_HANDLER (note), entry->rethrow_label);
1529 enqueue_eh_entry (&ehqueue, entry);
1531 /* If we have already started ending the bindings, don't recurse. */
1532 if (is_eh_region ())
1534 /* Because we don't need or want a new temporary level and
1535 because we didn't create one in expand_eh_region_start,
1536 create a fake one now to avoid removing one in
1537 expand_end_bindings. */
1538 push_temp_slots ();
1540 mark_block_as_not_eh_region ();
1542 expand_end_bindings (NULL_TREE, 0, 0);
1545 /* Go through the goto handlers in the queue, emitting their
1546 handlers if we now have enough information to do so. */
1547 for (node = ehqueue.head; node; node = node->chain)
1548 if (node->entry->goto_entry_p
1549 && node->entry->outer_context == entry->rethrow_label)
1550 emit_cleanup_handler (node->entry);
1552 /* We can't emit handlers for goto entries until their scopes are
1553 complete because we don't know where they need to rethrow to,
1554 yet. */
1555 if (entry->finalization != integer_zero_node
1556 && (!entry->goto_entry_p
1557 || find_func_region_from_symbol (entry->outer_context) != -1))
1558 emit_cleanup_handler (entry);
1561 /* End the EH region for a goto fixup. We only need them in the region-based
1562 EH scheme. */
1564 void
1565 expand_fixup_region_start ()
1567 if (! doing_eh (0) || exceptions_via_longjmp)
1568 return;
1570 expand_eh_region_start ();
1571 /* Mark this entry as the entry for a goto. */
1572 ehstack.top->entry->goto_entry_p = 1;
1575 /* End the EH region for a goto fixup. CLEANUP is the cleanup we just
1576 expanded; to avoid running it twice if it throws, we look through the
1577 ehqueue for a matching region and rethrow from its outer_context. */
1579 void
1580 expand_fixup_region_end (cleanup)
1581 tree cleanup;
1583 struct eh_node *node;
1584 int dont_issue;
1586 if (! doing_eh (0) || exceptions_via_longjmp)
1587 return;
1589 for (node = ehstack.top; node && node->entry->finalization != cleanup; )
1590 node = node->chain;
1591 if (node == 0)
1592 for (node = ehqueue.head; node && node->entry->finalization != cleanup; )
1593 node = node->chain;
1594 if (node == 0)
1595 abort ();
1597 /* If the outer context label has not been issued yet, we don't want
1598 to issue it as a part of this region, unless this is the
1599 correct region for the outer context. If we did, then the label for
1600 the outer context will be WITHIN the begin/end labels,
1601 and we could get an infinte loop when it tried to rethrow, or just
1602 generally incorrect execution following a throw. */
1604 if (flag_new_exceptions)
1605 dont_issue = 0;
1606 else
1607 dont_issue = ((INSN_UID (node->entry->outer_context) == 0)
1608 && (ehstack.top->entry != node->entry));
1610 ehstack.top->entry->outer_context = node->entry->outer_context;
1612 /* Since we are rethrowing to the OUTER region, we know we don't need
1613 a jump around sequence for this region, so we'll pretend the outer
1614 context label has been issued by setting INSN_UID to 1, then clearing
1615 it again afterwards. */
1617 if (dont_issue)
1618 INSN_UID (node->entry->outer_context) = 1;
1620 /* Just rethrow. size_zero_node is just a NOP. */
1621 expand_eh_region_end (size_zero_node);
1623 if (dont_issue)
1624 INSN_UID (node->entry->outer_context) = 0;
1627 /* If we are using the setjmp/longjmp EH codegen method, we emit a
1628 call to __sjthrow.
1630 Otherwise, we emit a call to __throw and note that we threw
1631 something, so we know we need to generate the necessary code for
1632 __throw.
1634 Before invoking throw, the __eh_pc variable must have been set up
1635 to contain the PC being thrown from. This address is used by
1636 __throw to determine which exception region (if any) is
1637 responsible for handling the exception. */
1639 void
1640 emit_throw ()
1642 if (exceptions_via_longjmp)
1644 emit_library_call (sjthrow_libfunc, 0, VOIDmode, 0);
1646 else
1648 #ifdef JUMP_TO_THROW
1649 emit_indirect_jump (throw_libfunc);
1650 #else
1651 emit_library_call (throw_libfunc, 0, VOIDmode, 0);
1652 #endif
1654 emit_barrier ();
1657 /* Throw the current exception. If appropriate, this is done by jumping
1658 to the next handler. */
1660 void
1661 expand_internal_throw ()
1663 emit_throw ();
1666 /* Called from expand_exception_blocks and expand_end_catch_block to
1667 emit any pending handlers/cleanups queued from expand_eh_region_end. */
1669 void
1670 expand_leftover_cleanups ()
1672 struct eh_entry *entry;
1674 for (entry = dequeue_eh_entry (&ehqueue);
1675 entry;
1676 entry = dequeue_eh_entry (&ehqueue))
1678 /* A leftover try bock. Shouldn't be one here. */
1679 if (entry->finalization == integer_zero_node)
1680 abort ();
1682 free (entry);
1686 /* Called at the start of a block of try statements. */
1687 void
1688 expand_start_try_stmts ()
1690 if (! doing_eh (1))
1691 return;
1693 expand_eh_region_start ();
1696 /* Called to begin a catch clause. The parameter is the object which
1697 will be passed to the runtime type check routine. */
1698 void
1699 start_catch_handler (rtime)
1700 tree rtime;
1702 rtx handler_label;
1703 int insn_region_num;
1704 int eh_region_entry;
1706 if (! doing_eh (1))
1707 return;
1709 handler_label = catchstack.top->entry->exception_handler_label;
1710 insn_region_num = CODE_LABEL_NUMBER (handler_label);
1711 eh_region_entry = find_func_region (insn_region_num);
1713 /* If we've already issued this label, pick a new one */
1714 if (catchstack.top->entry->label_used)
1715 handler_label = gen_exception_label ();
1716 else
1717 catchstack.top->entry->label_used = 1;
1719 receive_exception_label (handler_label);
1721 add_new_handler (eh_region_entry, get_new_handler (handler_label, rtime));
1723 if (flag_new_exceptions && ! exceptions_via_longjmp)
1724 return;
1726 /* Under the old mechanism, as well as setjmp/longjmp, we need to
1727 issue code to compare 'rtime' to the value in eh_info, via the
1728 matching function in eh_info. If its is false, we branch around
1729 the handler we are about to issue. */
1731 if (rtime != NULL_TREE && rtime != CATCH_ALL_TYPE)
1733 rtx call_rtx, rtime_address;
1735 if (catchstack.top->entry->false_label != NULL_RTX)
1737 error ("Never issued previous false_label");
1738 abort ();
1740 catchstack.top->entry->false_label = gen_exception_label ();
1742 rtime_address = expand_expr (rtime, NULL_RTX, Pmode, EXPAND_INITIALIZER);
1743 #ifdef POINTERS_EXTEND_UNSIGNED
1744 rtime_address = convert_memory_address (Pmode, rtime_address);
1745 #endif
1746 rtime_address = force_reg (Pmode, rtime_address);
1748 /* Now issue the call, and branch around handler if needed */
1749 call_rtx = emit_library_call_value (eh_rtime_match_libfunc, NULL_RTX,
1750 0, SImode, 1, rtime_address, Pmode);
1752 /* Did the function return true? */
1753 emit_cmp_and_jump_insns (call_rtx, const0_rtx, EQ, NULL_RTX,
1754 GET_MODE (call_rtx), 0, 0,
1755 catchstack.top->entry->false_label);
1759 /* Called to end a catch clause. If we aren't using the new exception
1760 model tabel mechanism, we need to issue the branch-around label
1761 for the end of the catch block. */
1763 void
1764 end_catch_handler ()
1766 if (! doing_eh (1))
1767 return;
1769 if (flag_new_exceptions && ! exceptions_via_longjmp)
1771 emit_barrier ();
1772 return;
1775 /* A NULL label implies the catch clause was a catch all or cleanup */
1776 if (catchstack.top->entry->false_label == NULL_RTX)
1777 return;
1779 emit_label (catchstack.top->entry->false_label);
1780 catchstack.top->entry->false_label = NULL_RTX;
1783 /* Emit the handler specified by ENTRY. */
1785 static void
1786 emit_cleanup_handler (entry)
1787 struct eh_entry *entry;
1789 rtx prev;
1790 rtx handler_insns;
1792 /* Put these handler instructions in a sequence. */
1793 do_pending_stack_adjust ();
1794 start_sequence ();
1796 /* Emit the label for the cleanup handler for this region, and
1797 expand the code for the handler.
1799 Note that a catch region is handled as a side-effect here; for a
1800 try block, entry->finalization will contain integer_zero_node, so
1801 no code will be generated in the expand_expr call below. But, the
1802 label for the handler will still be emitted, so any code emitted
1803 after this point will end up being the handler. */
1805 receive_exception_label (entry->exception_handler_label);
1807 /* register a handler for this cleanup region */
1808 add_new_handler (find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1809 get_new_handler (entry->exception_handler_label, NULL));
1811 /* And now generate the insns for the cleanup handler. */
1812 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1814 prev = get_last_insn ();
1815 if (prev == NULL || GET_CODE (prev) != BARRIER)
1816 /* Code to throw out to outer context when we fall off end of the
1817 handler. We can't do this here for catch blocks, so it's done
1818 in expand_end_all_catch instead. */
1819 expand_rethrow (entry->outer_context);
1821 /* Finish this sequence. */
1822 do_pending_stack_adjust ();
1823 handler_insns = get_insns ();
1824 end_sequence ();
1826 /* And add it to the CATCH_CLAUSES. */
1827 push_to_sequence (catch_clauses);
1828 emit_insns (handler_insns);
1829 catch_clauses = get_insns ();
1830 end_sequence ();
1833 /* Generate RTL for the start of a group of catch clauses.
1835 It is responsible for starting a new instruction sequence for the
1836 instructions in the catch block, and expanding the handlers for the
1837 internally-generated exception regions nested within the try block
1838 corresponding to this catch block. */
1840 void
1841 expand_start_all_catch ()
1843 struct eh_entry *entry;
1844 tree label;
1845 rtx outer_context;
1847 if (! doing_eh (1))
1848 return;
1850 outer_context = ehstack.top->entry->outer_context;
1852 /* End the try block. */
1853 expand_eh_region_end (integer_zero_node);
1855 emit_line_note (input_filename, lineno);
1856 label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
1858 /* The label for the exception handling block that we will save.
1859 This is Lresume in the documentation. */
1860 expand_label (label);
1862 /* Push the label that points to where normal flow is resumed onto
1863 the top of the label stack. */
1864 push_label_entry (&caught_return_label_stack, NULL_RTX, label);
1866 /* Start a new sequence for all the catch blocks. We will add this
1867 to the global sequence catch_clauses when we have completed all
1868 the handlers in this handler-seq. */
1869 start_sequence ();
1871 for (entry = dequeue_eh_entry (&ehqueue);
1872 entry->finalization != integer_zero_node;
1873 entry = dequeue_eh_entry (&ehqueue))
1874 free (entry);
1876 /* At this point, all the cleanups are done, and the ehqueue now has
1877 the current exception region at its head. We dequeue it, and put it
1878 on the catch stack. */
1879 push_entry (&catchstack, entry);
1881 /* If we are not doing setjmp/longjmp EH, because we are reordered
1882 out of line, we arrange to rethrow in the outer context. We need to
1883 do this because we are not physically within the region, if any, that
1884 logically contains this catch block. */
1885 if (! exceptions_via_longjmp)
1887 expand_eh_region_start ();
1888 ehstack.top->entry->outer_context = outer_context;
1893 /* Finish up the catch block. At this point all the insns for the
1894 catch clauses have already been generated, so we only have to add
1895 them to the catch_clauses list. We also want to make sure that if
1896 we fall off the end of the catch clauses that we rethrow to the
1897 outer EH region. */
1899 void
1900 expand_end_all_catch ()
1902 rtx new_catch_clause;
1903 struct eh_entry *entry;
1905 if (! doing_eh (1))
1906 return;
1908 /* Dequeue the current catch clause region. */
1909 entry = pop_eh_entry (&catchstack);
1910 free (entry);
1912 if (! exceptions_via_longjmp)
1914 rtx outer_context = ehstack.top->entry->outer_context;
1916 /* Finish the rethrow region. size_zero_node is just a NOP. */
1917 expand_eh_region_end (size_zero_node);
1918 /* New exceptions handling models will never have a fall through
1919 of a catch clause */
1920 if (!flag_new_exceptions)
1921 expand_rethrow (outer_context);
1923 else
1924 expand_rethrow (NULL_RTX);
1926 /* Code to throw out to outer context, if we fall off end of catch
1927 handlers. This is rethrow (Lresume, same id, same obj) in the
1928 documentation. We use Lresume because we know that it will throw
1929 to the correct context.
1931 In other words, if the catch handler doesn't exit or return, we
1932 do a "throw" (using the address of Lresume as the point being
1933 thrown from) so that the outer EH region can then try to process
1934 the exception. */
1936 /* Now we have the complete catch sequence. */
1937 new_catch_clause = get_insns ();
1938 end_sequence ();
1940 /* This level of catch blocks is done, so set up the successful
1941 catch jump label for the next layer of catch blocks. */
1942 pop_label_entry (&caught_return_label_stack);
1943 pop_label_entry (&outer_context_label_stack);
1945 /* Add the new sequence of catches to the main one for this function. */
1946 push_to_sequence (catch_clauses);
1947 emit_insns (new_catch_clause);
1948 catch_clauses = get_insns ();
1949 end_sequence ();
1951 /* Here we fall through into the continuation code. */
1954 /* Rethrow from the outer context LABEL. */
1956 static void
1957 expand_rethrow (label)
1958 rtx label;
1960 if (exceptions_via_longjmp)
1961 emit_throw ();
1962 else
1963 if (flag_new_exceptions)
1965 rtx insn;
1966 int region;
1967 if (label == NULL_RTX)
1968 label = last_rethrow_symbol;
1969 emit_library_call (rethrow_libfunc, 0, VOIDmode, 1, label, Pmode);
1970 region = find_func_region (eh_region_from_symbol (label));
1971 /* If the region is -1, it doesn't exist yet. We should be
1972 trying to rethrow there yet. */
1973 if (region == -1)
1974 abort ();
1975 function_eh_regions[region].rethrow_ref = 1;
1977 /* Search backwards for the actual call insn. */
1978 insn = get_last_insn ();
1979 while (GET_CODE (insn) != CALL_INSN)
1980 insn = PREV_INSN (insn);
1981 delete_insns_since (insn);
1983 /* Mark the label/symbol on the call. */
1984 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_RETHROW, label,
1985 REG_NOTES (insn));
1986 emit_barrier ();
1988 else
1989 emit_jump (label);
1992 /* End all the pending exception regions on protect_list. The handlers
1993 will be emitted when expand_leftover_cleanups is invoked. */
1995 void
1996 end_protect_partials ()
1998 while (protect_list)
2000 expand_eh_region_end (TREE_VALUE (protect_list));
2001 protect_list = TREE_CHAIN (protect_list);
2005 /* Arrange for __terminate to be called if there is an unhandled throw
2006 from within E. */
2008 tree
2009 protect_with_terminate (e)
2010 tree e;
2012 /* We only need to do this when using setjmp/longjmp EH and the
2013 language requires it, as otherwise we protect all of the handlers
2014 at once, if we need to. */
2015 if (exceptions_via_longjmp && protect_cleanup_actions_with_terminate)
2017 tree handler, result;
2019 /* All cleanups must be on the function_obstack. */
2020 push_obstacks_nochange ();
2021 resume_temporary_allocation ();
2023 handler = make_node (RTL_EXPR);
2024 TREE_TYPE (handler) = void_type_node;
2025 RTL_EXPR_RTL (handler) = const0_rtx;
2026 TREE_SIDE_EFFECTS (handler) = 1;
2027 start_sequence_for_rtl_expr (handler);
2029 emit_library_call (terminate_libfunc, 0, VOIDmode, 0);
2030 emit_barrier ();
2032 RTL_EXPR_SEQUENCE (handler) = get_insns ();
2033 end_sequence ();
2035 result = build (TRY_CATCH_EXPR, TREE_TYPE (e), e, handler);
2036 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2037 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2038 TREE_READONLY (result) = TREE_READONLY (e);
2040 pop_obstacks ();
2042 e = result;
2045 return e;
2048 /* The exception table that we build that is used for looking up and
2049 dispatching exceptions, the current number of entries, and its
2050 maximum size before we have to extend it.
2052 The number in eh_table is the code label number of the exception
2053 handler for the region. This is added by add_eh_table_entry and
2054 used by output_exception_table_entry. */
2056 static int *eh_table = NULL;
2057 static int eh_table_size = 0;
2058 static int eh_table_max_size = 0;
2060 /* Note the need for an exception table entry for region N. If we
2061 don't need to output an explicit exception table, avoid all of the
2062 extra work.
2064 Called from final_scan_insn when a NOTE_INSN_EH_REGION_BEG is seen.
2065 (Or NOTE_INSN_EH_REGION_END sometimes)
2066 N is the NOTE_EH_HANDLER of the note, which comes from the code
2067 label number of the exception handler for the region. */
2069 void
2070 add_eh_table_entry (n)
2071 int n;
2073 #ifndef OMIT_EH_TABLE
2074 if (eh_table_size >= eh_table_max_size)
2076 if (eh_table)
2078 eh_table_max_size += eh_table_max_size>>1;
2080 if (eh_table_max_size < 0)
2081 abort ();
2083 eh_table = (int *) xrealloc (eh_table,
2084 eh_table_max_size * sizeof (int));
2086 else
2088 eh_table_max_size = 252;
2089 eh_table = (int *) xmalloc (eh_table_max_size * sizeof (int));
2092 eh_table[eh_table_size++] = n;
2093 #endif
2096 /* Return a non-zero value if we need to output an exception table.
2098 On some platforms, we don't have to output a table explicitly.
2099 This routine doesn't mean we don't have one. */
2102 exception_table_p ()
2104 if (eh_table)
2105 return 1;
2107 return 0;
2110 /* Output the entry of the exception table corresponding to the
2111 exception region numbered N to file FILE.
2113 N is the code label number corresponding to the handler of the
2114 region. */
2116 static void
2117 output_exception_table_entry (file, n)
2118 FILE *file;
2119 int n;
2121 char buf[256];
2122 rtx sym;
2123 struct handler_info *handler = get_first_handler (n);
2124 int index = find_func_region (n);
2125 rtx rethrow;
2127 /* form and emit the rethrow label, if needed */
2128 rethrow = function_eh_regions[index].rethrow_label;
2129 if (rethrow != NULL_RTX && !flag_new_exceptions)
2130 rethrow = NULL_RTX;
2131 if (rethrow != NULL_RTX && handler == NULL)
2132 if (! function_eh_regions[index].rethrow_ref)
2133 rethrow = NULL_RTX;
2136 for ( ; handler != NULL || rethrow != NULL_RTX; handler = handler->next)
2138 /* rethrow label should indicate the LAST entry for a region */
2139 if (rethrow != NULL_RTX && (handler == NULL || handler->next == NULL))
2141 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", n);
2142 assemble_label(buf);
2143 rethrow = NULL_RTX;
2146 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHB", n);
2147 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2148 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2150 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHE", n);
2151 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2152 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2154 if (handler == NULL)
2155 assemble_integer (GEN_INT (0), POINTER_SIZE / BITS_PER_UNIT, 1);
2156 else
2158 ASM_GENERATE_INTERNAL_LABEL (buf, "L", handler->handler_number);
2159 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
2160 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
2163 if (flag_new_exceptions)
2165 if (handler == NULL || handler->type_info == NULL)
2166 assemble_integer (const0_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2167 else
2168 if (handler->type_info == CATCH_ALL_TYPE)
2169 assemble_integer (GEN_INT (CATCH_ALL_TYPE),
2170 POINTER_SIZE / BITS_PER_UNIT, 1);
2171 else
2172 output_constant ((tree)(handler->type_info),
2173 POINTER_SIZE / BITS_PER_UNIT);
2175 putc ('\n', file); /* blank line */
2176 /* We only output the first label under the old scheme */
2177 if (! flag_new_exceptions || handler == NULL)
2178 break;
2182 /* Output the exception table if we have and need one. */
2184 static short language_code = 0;
2185 static short version_code = 0;
2187 /* This routine will set the language code for exceptions. */
2188 void
2189 set_exception_lang_code (code)
2190 int code;
2192 language_code = code;
2195 /* This routine will set the language version code for exceptions. */
2196 void
2197 set_exception_version_code (code)
2198 int code;
2200 version_code = code;
2204 void
2205 output_exception_table ()
2207 int i;
2208 char buf[256];
2209 extern FILE *asm_out_file;
2211 if (! doing_eh (0) || ! eh_table)
2212 return;
2214 exception_section ();
2216 /* Beginning marker for table. */
2217 assemble_align (GET_MODE_ALIGNMENT (ptr_mode));
2218 assemble_label ("__EXCEPTION_TABLE__");
2220 if (flag_new_exceptions)
2222 assemble_integer (GEN_INT (NEW_EH_RUNTIME),
2223 POINTER_SIZE / BITS_PER_UNIT, 1);
2224 assemble_integer (GEN_INT (language_code), 2 , 1);
2225 assemble_integer (GEN_INT (version_code), 2 , 1);
2227 /* Add enough padding to make sure table aligns on a pointer boundry. */
2228 i = GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT - 4;
2229 for ( ; i < 0; i = i + GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT)
2231 if (i != 0)
2232 assemble_integer (const0_rtx, i , 1);
2234 /* Generate the label for offset calculations on rethrows */
2235 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", 0);
2236 assemble_label(buf);
2239 for (i = 0; i < eh_table_size; ++i)
2240 output_exception_table_entry (asm_out_file, eh_table[i]);
2242 free (eh_table);
2243 clear_function_eh_region ();
2245 /* Ending marker for table. */
2246 /* Generate the label for end of table. */
2247 ASM_GENERATE_INTERNAL_LABEL (buf, "LRTH", CODE_LABEL_NUMBER (final_rethrow));
2248 assemble_label(buf);
2249 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2251 /* for binary compatability, the old __throw checked the second
2252 position for a -1, so we should output at least 2 -1's */
2253 if (! flag_new_exceptions)
2254 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
2256 putc ('\n', asm_out_file); /* blank line */
2259 /* Emit code to get EH context.
2261 We have to scan thru the code to find possible EH context registers.
2262 Inlined functions may use it too, and thus we'll have to be able
2263 to change them too.
2265 This is done only if using exceptions_via_longjmp. */
2267 void
2268 emit_eh_context ()
2270 rtx insn;
2271 rtx ehc = 0;
2273 if (! doing_eh (0))
2274 return;
2276 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2277 if (GET_CODE (insn) == INSN
2278 && GET_CODE (PATTERN (insn)) == USE)
2280 rtx reg = find_reg_note (insn, REG_EH_CONTEXT, 0);
2281 if (reg)
2283 rtx insns;
2285 start_sequence ();
2287 /* If this is the first use insn, emit the call here. This
2288 will always be at the top of our function, because if
2289 expand_inline_function notices a REG_EH_CONTEXT note, it
2290 adds a use insn to this function as well. */
2291 if (ehc == 0)
2292 ehc = call_get_eh_context ();
2294 emit_move_insn (XEXP (reg, 0), ehc);
2295 insns = get_insns ();
2296 end_sequence ();
2298 emit_insns_before (insns, insn);
2300 /* At -O0, we must make the context register stay alive so
2301 that the stupid.c register allocator doesn't get confused. */
2302 if (obey_regdecls != 0)
2304 insns = gen_rtx_USE (GET_MODE (XEXP (reg,0)), XEXP (reg,0));
2305 emit_insn_before (insns, get_last_insn ());
2311 /* Scan the current insns and build a list of handler labels. The
2312 resulting list is placed in the global variable exception_handler_labels.
2314 It is called after the last exception handling region is added to
2315 the current function (when the rtl is almost all built for the
2316 current function) and before the jump optimization pass. */
2318 void
2319 find_exception_handler_labels ()
2321 rtx insn;
2323 exception_handler_labels = NULL_RTX;
2325 /* If we aren't doing exception handling, there isn't much to check. */
2326 if (! doing_eh (0))
2327 return;
2329 /* For each start of a region, add its label to the list. */
2331 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2333 struct handler_info* ptr;
2334 if (GET_CODE (insn) == NOTE
2335 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2337 ptr = get_first_handler (NOTE_EH_HANDLER (insn));
2338 for ( ; ptr; ptr = ptr->next)
2340 /* make sure label isn't in the list already */
2341 rtx x;
2342 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2343 if (XEXP (x, 0) == ptr->handler_label)
2344 break;
2345 if (! x)
2346 exception_handler_labels = gen_rtx_EXPR_LIST (VOIDmode,
2347 ptr->handler_label, exception_handler_labels);
2353 /* Return a value of 1 if the parameter label number is an exception handler
2354 label. Return 0 otherwise. */
2357 is_exception_handler_label (lab)
2358 int lab;
2360 rtx x;
2361 for (x = exception_handler_labels ; x ; x = XEXP (x, 1))
2362 if (lab == CODE_LABEL_NUMBER (XEXP (x, 0)))
2363 return 1;
2364 return 0;
2367 /* Perform sanity checking on the exception_handler_labels list.
2369 Can be called after find_exception_handler_labels is called to
2370 build the list of exception handlers for the current function and
2371 before we finish processing the current function. */
2373 void
2374 check_exception_handler_labels ()
2376 rtx insn, insn2;
2378 /* If we aren't doing exception handling, there isn't much to check. */
2379 if (! doing_eh (0))
2380 return;
2382 /* Make sure there is no more than 1 copy of a label */
2383 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
2385 int count = 0;
2386 for (insn2 = exception_handler_labels; insn2; insn2 = XEXP (insn2, 1))
2387 if (XEXP (insn, 0) == XEXP (insn2, 0))
2388 count++;
2389 if (count != 1)
2390 warning ("Counted %d copies of EH region %d in list.\n", count,
2391 CODE_LABEL_NUMBER (insn));
2396 /* Mark the children of NODE for GC. */
2398 static void
2399 mark_eh_node (node)
2400 struct eh_node *node;
2402 while (node)
2404 if (node->entry)
2406 ggc_mark_rtx (node->entry->outer_context);
2407 ggc_mark_rtx (node->entry->exception_handler_label);
2408 ggc_mark_tree (node->entry->finalization);
2409 ggc_mark_rtx (node->entry->false_label);
2410 ggc_mark_rtx (node->entry->rethrow_label);
2412 node = node ->chain;
2416 /* Mark S for GC. */
2418 static void
2419 mark_eh_stack (s)
2420 struct eh_stack *s;
2422 if (s)
2423 mark_eh_node (s->top);
2426 /* Mark Q for GC. */
2428 static void
2429 mark_eh_queue (q)
2430 struct eh_queue *q;
2432 if (q)
2433 mark_eh_node (q->head);
2436 /* Mark NODE for GC. A label_node contains a union containing either
2437 a tree or an rtx. This label_node will contain a tree. */
2439 static void
2440 mark_tree_label_node (node)
2441 struct label_node *node;
2443 while (node)
2445 ggc_mark_tree (node->u.tlabel);
2446 node = node->chain;
2450 /* Mark EH for GC. */
2452 void
2453 mark_eh_status (eh)
2454 struct eh_status *eh;
2456 if (eh == 0)
2457 return;
2459 mark_eh_stack (&eh->x_ehstack);
2460 mark_eh_stack (&eh->x_catchstack);
2461 mark_eh_queue (&eh->x_ehqueue);
2462 ggc_mark_rtx (eh->x_catch_clauses);
2464 lang_mark_false_label_stack (eh->x_false_label_stack);
2465 mark_tree_label_node (eh->x_caught_return_label_stack);
2467 ggc_mark_tree (eh->x_protect_list);
2468 ggc_mark_rtx (eh->ehc);
2469 ggc_mark_rtx (eh->x_eh_return_stub_label);
2472 /* Mark ARG (which is really a struct func_eh_entry**) for GC. */
2474 static void
2475 mark_func_eh_entry (arg)
2476 void *arg;
2478 struct func_eh_entry *fee;
2479 struct handler_info *h;
2480 int i;
2482 fee = *((struct func_eh_entry **) arg);
2484 for (i = 0; i < current_func_eh_entry; ++i)
2486 ggc_mark_rtx (fee->rethrow_label);
2487 for (h = fee->handlers; h; h = h->next)
2489 ggc_mark_rtx (h->handler_label);
2490 if (h->type_info != CATCH_ALL_TYPE)
2491 ggc_mark_tree ((tree) h->type_info);
2494 /* Skip to the next entry in the array. */
2495 ++fee;
2499 /* This group of functions initializes the exception handling data
2500 structures at the start of the compilation, initializes the data
2501 structures at the start of a function, and saves and restores the
2502 exception handling data structures for the start/end of a nested
2503 function. */
2505 /* Toplevel initialization for EH things. */
2507 void
2508 init_eh ()
2510 first_rethrow_symbol = create_rethrow_ref (0);
2511 final_rethrow = gen_exception_label ();
2512 last_rethrow_symbol = create_rethrow_ref (CODE_LABEL_NUMBER (final_rethrow));
2514 ggc_add_rtx_root (&exception_handler_labels, 1);
2515 ggc_add_rtx_root (&eh_return_context, 1);
2516 ggc_add_rtx_root (&eh_return_stack_adjust, 1);
2517 ggc_add_rtx_root (&eh_return_handler, 1);
2518 ggc_add_rtx_root (&first_rethrow_symbol, 1);
2519 ggc_add_rtx_root (&final_rethrow, 1);
2520 ggc_add_rtx_root (&last_rethrow_symbol, 1);
2521 ggc_add_root (&function_eh_regions, 1, sizeof (function_eh_regions),
2522 mark_func_eh_entry);
2525 /* Initialize the per-function EH information. */
2527 void
2528 init_eh_for_function ()
2530 current_function->eh
2531 = (struct eh_status *) xmalloc (sizeof (struct eh_status));
2533 ehstack.top = 0;
2534 catchstack.top = 0;
2535 ehqueue.head = ehqueue.tail = 0;
2536 catch_clauses = NULL_RTX;
2537 false_label_stack = 0;
2538 caught_return_label_stack = 0;
2539 protect_list = NULL_TREE;
2540 current_function_ehc = NULL_RTX;
2541 eh_return_context = NULL_RTX;
2542 eh_return_stack_adjust = NULL_RTX;
2543 eh_return_handler = NULL_RTX;
2544 eh_return_stub_label = NULL_RTX;
2547 void
2548 free_eh_status (f)
2549 struct function *f;
2551 free (f->eh);
2552 f->eh = NULL;
2555 /* This section is for the exception handling specific optimization
2556 pass. First are the internal routines, and then the main
2557 optimization pass. */
2559 /* Determine if the given INSN can throw an exception. */
2561 static int
2562 can_throw (insn)
2563 rtx insn;
2565 /* Calls can always potentially throw exceptions, unless they have
2566 a REG_EH_REGION note with a value of 0 or less. */
2567 if (GET_CODE (insn) == CALL_INSN)
2569 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2570 if (!note || XINT (XEXP (note, 0), 0) > 0)
2571 return 1;
2574 if (asynchronous_exceptions)
2576 /* If we wanted asynchronous exceptions, then everything but NOTEs
2577 and CODE_LABELs could throw. */
2578 if (GET_CODE (insn) != NOTE && GET_CODE (insn) != CODE_LABEL)
2579 return 1;
2582 return 0;
2585 /* Scan a exception region looking for the matching end and then
2586 remove it if possible. INSN is the start of the region, N is the
2587 region number, and DELETE_OUTER is to note if anything in this
2588 region can throw.
2590 Regions are removed if they cannot possibly catch an exception.
2591 This is determined by invoking can_throw on each insn within the
2592 region; if can_throw returns true for any of the instructions, the
2593 region can catch an exception, since there is an insn within the
2594 region that is capable of throwing an exception.
2596 Returns the NOTE_INSN_EH_REGION_END corresponding to this region, or
2597 calls abort if it can't find one.
2599 Can abort if INSN is not a NOTE_INSN_EH_REGION_BEGIN, or if N doesn't
2600 correspond to the region number, or if DELETE_OUTER is NULL. */
2602 static rtx
2603 scan_region (insn, n, delete_outer)
2604 rtx insn;
2605 int n;
2606 int *delete_outer;
2608 rtx start = insn;
2610 /* Assume we can delete the region. */
2611 int delete = 1;
2613 /* Can't delete something which is rethrown to. */
2614 if (rethrow_used (n))
2615 delete = 0;
2617 if (insn == NULL_RTX
2618 || GET_CODE (insn) != NOTE
2619 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
2620 || NOTE_EH_HANDLER (insn) != n
2621 || delete_outer == NULL)
2622 abort ();
2624 insn = NEXT_INSN (insn);
2626 /* Look for the matching end. */
2627 while (! (GET_CODE (insn) == NOTE
2628 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2630 /* If anything can throw, we can't remove the region. */
2631 if (delete && can_throw (insn))
2633 delete = 0;
2636 /* Watch out for and handle nested regions. */
2637 if (GET_CODE (insn) == NOTE
2638 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2640 insn = scan_region (insn, NOTE_EH_HANDLER (insn), &delete);
2643 insn = NEXT_INSN (insn);
2646 /* The _BEG/_END NOTEs must match and nest. */
2647 if (NOTE_EH_HANDLER (insn) != n)
2648 abort ();
2650 /* If anything in this exception region can throw, we can throw. */
2651 if (! delete)
2652 *delete_outer = 0;
2653 else
2655 /* Delete the start and end of the region. */
2656 delete_insn (start);
2657 delete_insn (insn);
2659 /* We no longer removed labels here, since flow will now remove any
2660 handler which cannot be called any more. */
2662 #if 0
2663 /* Only do this part if we have built the exception handler
2664 labels. */
2665 if (exception_handler_labels)
2667 rtx x, *prev = &exception_handler_labels;
2669 /* Find it in the list of handlers. */
2670 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2672 rtx label = XEXP (x, 0);
2673 if (CODE_LABEL_NUMBER (label) == n)
2675 /* If we are the last reference to the handler,
2676 delete it. */
2677 if (--LABEL_NUSES (label) == 0)
2678 delete_insn (label);
2680 if (optimize)
2682 /* Remove it from the list of exception handler
2683 labels, if we are optimizing. If we are not, then
2684 leave it in the list, as we are not really going to
2685 remove the region. */
2686 *prev = XEXP (x, 1);
2687 XEXP (x, 1) = 0;
2688 XEXP (x, 0) = 0;
2691 break;
2693 prev = &XEXP (x, 1);
2696 #endif
2698 return insn;
2701 /* Perform various interesting optimizations for exception handling
2702 code.
2704 We look for empty exception regions and make them go (away). The
2705 jump optimization code will remove the handler if nothing else uses
2706 it. */
2708 void
2709 exception_optimize ()
2711 rtx insn;
2712 int n;
2714 /* Remove empty regions. */
2715 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2717 if (GET_CODE (insn) == NOTE
2718 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2720 /* Since scan_region will return the NOTE_INSN_EH_REGION_END
2721 insn, we will indirectly skip through all the insns
2722 inbetween. We are also guaranteed that the value of insn
2723 returned will be valid, as otherwise scan_region won't
2724 return. */
2725 insn = scan_region (insn, NOTE_EH_HANDLER (insn), &n);
2730 /* This function determines whether any of the exception regions in the
2731 current function are targets of a rethrow or not, and set the
2732 reference flag according. */
2733 void
2734 update_rethrow_references ()
2736 rtx insn;
2737 int x, region;
2738 int *saw_region, *saw_rethrow;
2740 if (!flag_new_exceptions)
2741 return;
2743 saw_region = (int *) xcalloc (current_func_eh_entry, sizeof (int));
2744 saw_rethrow = (int *) xcalloc (current_func_eh_entry, sizeof (int));
2746 /* Determine what regions exist, and whether there are any rethrows
2747 to those regions or not. */
2748 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2749 if (GET_CODE (insn) == CALL_INSN)
2751 rtx note = find_reg_note (insn, REG_EH_RETHROW, NULL_RTX);
2752 if (note)
2754 region = eh_region_from_symbol (XEXP (note, 0));
2755 region = find_func_region (region);
2756 saw_rethrow[region] = 1;
2759 else
2760 if (GET_CODE (insn) == NOTE)
2762 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2764 region = find_func_region (NOTE_EH_HANDLER (insn));
2765 saw_region[region] = 1;
2769 /* For any regions we did see, set the referenced flag. */
2770 for (x = 0; x < current_func_eh_entry; x++)
2771 if (saw_region[x])
2772 function_eh_regions[x].rethrow_ref = saw_rethrow[x];
2774 /* Clean up. */
2775 free (saw_region);
2776 free (saw_rethrow);
2779 /* Various hooks for the DWARF 2 __throw routine. */
2781 /* Do any necessary initialization to access arbitrary stack frames.
2782 On the SPARC, this means flushing the register windows. */
2784 void
2785 expand_builtin_unwind_init ()
2787 /* Set this so all the registers get saved in our frame; we need to be
2788 able to copy the saved values for any registers from frames we unwind. */
2789 current_function_has_nonlocal_label = 1;
2791 #ifdef SETUP_FRAME_ADDRESSES
2792 SETUP_FRAME_ADDRESSES ();
2793 #endif
2796 /* Given a value extracted from the return address register or stack slot,
2797 return the actual address encoded in that value. */
2800 expand_builtin_extract_return_addr (addr_tree)
2801 tree addr_tree;
2803 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2804 return eh_outer_context (addr);
2807 /* Given an actual address in addr_tree, do any necessary encoding
2808 and return the value to be stored in the return address register or
2809 stack slot so the epilogue will return to that address. */
2812 expand_builtin_frob_return_addr (addr_tree)
2813 tree addr_tree;
2815 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2816 #ifdef RETURN_ADDR_OFFSET
2817 addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
2818 #endif
2819 return addr;
2822 /* Choose three registers for communication between the main body of
2823 __throw and the epilogue (or eh stub) and the exception handler.
2824 We must do this with hard registers because the epilogue itself
2825 will be generated after reload, at which point we may not reference
2826 pseudos at all.
2828 The first passes the exception context to the handler. For this
2829 we use the return value register for a void*.
2831 The second holds the stack pointer value to be restored. For
2832 this we use the static chain register if it exists and is different
2833 from the previous, otherwise some arbitrary call-clobbered register.
2835 The third holds the address of the handler itself. Here we use
2836 some arbitrary call-clobbered register. */
2838 static void
2839 eh_regs (pcontext, psp, pra, outgoing)
2840 rtx *pcontext, *psp, *pra;
2841 int outgoing;
2843 rtx rcontext, rsp, rra;
2844 int i;
2846 #ifdef FUNCTION_OUTGOING_VALUE
2847 if (outgoing)
2848 rcontext = FUNCTION_OUTGOING_VALUE (build_pointer_type (void_type_node),
2849 current_function_decl);
2850 else
2851 #endif
2852 rcontext = FUNCTION_VALUE (build_pointer_type (void_type_node),
2853 current_function_decl);
2855 #ifdef STATIC_CHAIN_REGNUM
2856 if (outgoing)
2857 rsp = static_chain_incoming_rtx;
2858 else
2859 rsp = static_chain_rtx;
2860 if (REGNO (rsp) == REGNO (rcontext))
2861 #endif /* STATIC_CHAIN_REGNUM */
2862 rsp = NULL_RTX;
2864 if (rsp == NULL_RTX)
2866 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
2867 if (call_used_regs[i] && ! fixed_regs[i] && i != REGNO (rcontext))
2868 break;
2869 if (i == FIRST_PSEUDO_REGISTER)
2870 abort();
2872 rsp = gen_rtx_REG (Pmode, i);
2875 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
2876 if (call_used_regs[i] && ! fixed_regs[i]
2877 && i != REGNO (rcontext) && i != REGNO (rsp))
2878 break;
2879 if (i == FIRST_PSEUDO_REGISTER)
2880 abort();
2882 rra = gen_rtx_REG (Pmode, i);
2884 *pcontext = rcontext;
2885 *psp = rsp;
2886 *pra = rra;
2889 /* Retrieve the register which contains the pointer to the eh_context
2890 structure set the __throw. */
2892 #if 0
2893 rtx
2894 get_reg_for_handler ()
2896 rtx reg1;
2897 reg1 = FUNCTION_VALUE (build_pointer_type (void_type_node),
2898 current_function_decl);
2899 return reg1;
2901 #endif
2903 /* Set up the epilogue with the magic bits we'll need to return to the
2904 exception handler. */
2906 void
2907 expand_builtin_eh_return (context, stack, handler)
2908 tree context, stack, handler;
2910 if (eh_return_context)
2911 error("Duplicate call to __builtin_eh_return");
2913 eh_return_context
2914 = copy_to_reg (expand_expr (context, NULL_RTX, VOIDmode, 0));
2915 eh_return_stack_adjust
2916 = copy_to_reg (expand_expr (stack, NULL_RTX, VOIDmode, 0));
2917 eh_return_handler
2918 = copy_to_reg (expand_expr (handler, NULL_RTX, VOIDmode, 0));
2921 void
2922 expand_eh_return ()
2924 rtx reg1, reg2, reg3;
2925 rtx stub_start, after_stub;
2926 rtx ra, tmp;
2928 if (!eh_return_context)
2929 return;
2931 current_function_cannot_inline = N_("function uses __builtin_eh_return");
2933 eh_regs (&reg1, &reg2, &reg3, 1);
2934 #ifdef POINTERS_EXTEND_UNSIGNED
2935 eh_return_context = convert_memory_address (Pmode, eh_return_context);
2936 eh_return_stack_adjust =
2937 convert_memory_address (Pmode, eh_return_stack_adjust);
2938 eh_return_handler = convert_memory_address (Pmode, eh_return_handler);
2939 #endif
2940 emit_move_insn (reg1, eh_return_context);
2941 emit_move_insn (reg2, eh_return_stack_adjust);
2942 emit_move_insn (reg3, eh_return_handler);
2944 /* Talk directly to the target's epilogue code when possible. */
2946 #ifdef HAVE_eh_epilogue
2947 if (HAVE_eh_epilogue)
2949 emit_insn (gen_eh_epilogue (reg1, reg2, reg3));
2950 return;
2952 #endif
2954 /* Otherwise, use the same stub technique we had before. */
2956 eh_return_stub_label = stub_start = gen_label_rtx ();
2957 after_stub = gen_label_rtx ();
2959 /* Set the return address to the stub label. */
2961 ra = expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
2962 0, hard_frame_pointer_rtx);
2963 if (GET_CODE (ra) == REG && REGNO (ra) >= FIRST_PSEUDO_REGISTER)
2964 abort();
2966 tmp = memory_address (Pmode, gen_rtx_LABEL_REF (Pmode, stub_start));
2967 #ifdef RETURN_ADDR_OFFSET
2968 tmp = plus_constant (tmp, -RETURN_ADDR_OFFSET);
2969 #endif
2970 tmp = force_operand (tmp, ra);
2971 if (tmp != ra)
2972 emit_move_insn (ra, tmp);
2974 /* Indicate that the registers are in fact used. */
2975 emit_insn (gen_rtx_USE (VOIDmode, reg1));
2976 emit_insn (gen_rtx_USE (VOIDmode, reg2));
2977 emit_insn (gen_rtx_USE (VOIDmode, reg3));
2978 if (GET_CODE (ra) == REG)
2979 emit_insn (gen_rtx_USE (VOIDmode, ra));
2981 /* Generate the stub. */
2983 emit_jump (after_stub);
2984 emit_label (stub_start);
2986 eh_regs (&reg1, &reg2, &reg3, 0);
2987 adjust_stack (reg2);
2988 emit_indirect_jump (reg3);
2990 emit_label (after_stub);
2994 /* This contains the code required to verify whether arbitrary instructions
2995 are in the same exception region. */
2997 static int *insn_eh_region = (int *)0;
2998 static int maximum_uid;
3000 static void
3001 set_insn_eh_region (first, region_num)
3002 rtx *first;
3003 int region_num;
3005 rtx insn;
3006 int rnum;
3008 for (insn = *first; insn; insn = NEXT_INSN (insn))
3010 if ((GET_CODE (insn) == NOTE)
3011 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG))
3013 rnum = NOTE_EH_HANDLER (insn);
3014 insn_eh_region[INSN_UID (insn)] = rnum;
3015 insn = NEXT_INSN (insn);
3016 set_insn_eh_region (&insn, rnum);
3017 /* Upon return, insn points to the EH_REGION_END of nested region */
3018 continue;
3020 insn_eh_region[INSN_UID (insn)] = region_num;
3021 if ((GET_CODE (insn) == NOTE) &&
3022 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
3023 break;
3025 *first = insn;
3028 /* Free the insn table, an make sure it cannot be used again. */
3030 void
3031 free_insn_eh_region ()
3033 if (!doing_eh (0))
3034 return;
3036 if (insn_eh_region)
3038 free (insn_eh_region);
3039 insn_eh_region = (int *)0;
3043 /* Initialize the table. max_uid must be calculated and handed into
3044 this routine. If it is unavailable, passing a value of 0 will
3045 cause this routine to calculate it as well. */
3047 void
3048 init_insn_eh_region (first, max_uid)
3049 rtx first;
3050 int max_uid;
3052 rtx insn;
3054 if (!doing_eh (0))
3055 return;
3057 if (insn_eh_region)
3058 free_insn_eh_region();
3060 if (max_uid == 0)
3061 for (insn = first; insn; insn = NEXT_INSN (insn))
3062 if (INSN_UID (insn) > max_uid) /* find largest UID */
3063 max_uid = INSN_UID (insn);
3065 maximum_uid = max_uid;
3066 insn_eh_region = (int *) xmalloc ((max_uid + 1) * sizeof (int));
3067 insn = first;
3068 set_insn_eh_region (&insn, 0);
3072 /* Check whether 2 instructions are within the same region. */
3074 int
3075 in_same_eh_region (insn1, insn2)
3076 rtx insn1, insn2;
3078 int ret, uid1, uid2;
3080 /* If no exceptions, instructions are always in same region. */
3081 if (!doing_eh (0))
3082 return 1;
3084 /* If the table isn't allocated, assume the worst. */
3085 if (!insn_eh_region)
3086 return 0;
3088 uid1 = INSN_UID (insn1);
3089 uid2 = INSN_UID (insn2);
3091 /* if instructions have been allocated beyond the end, either
3092 the table is out of date, or this is a late addition, or
3093 something... Assume the worst. */
3094 if (uid1 > maximum_uid || uid2 > maximum_uid)
3095 return 0;
3097 ret = (insn_eh_region[uid1] == insn_eh_region[uid2]);
3098 return ret;
3102 /* This function will initialize the handler list for a specified block.
3103 It may recursively call itself if the outer block hasn't been processed
3104 yet. At some point in the future we can trim out handlers which we
3105 know cannot be called. (ie, if a block has an INT type handler,
3106 control will never be passed to an outer INT type handler). */
3107 static void
3108 process_nestinfo (block, info, nested_eh_region)
3109 int block;
3110 eh_nesting_info *info;
3111 int *nested_eh_region;
3113 handler_info *ptr, *last_ptr = NULL;
3114 int x, y, count = 0;
3115 int extra = 0;
3116 handler_info **extra_handlers = 0;
3117 int index = info->region_index[block];
3119 /* If we've already processed this block, simply return. */
3120 if (info->num_handlers[index] > 0)
3121 return;
3123 for (ptr = get_first_handler (block); ptr; last_ptr = ptr, ptr = ptr->next)
3124 count++;
3126 /* pick up any information from the next outer region. It will already
3127 contain a summary of itself and all outer regions to it. */
3129 if (nested_eh_region [block] != 0)
3131 int nested_index = info->region_index[nested_eh_region[block]];
3132 process_nestinfo (nested_eh_region[block], info, nested_eh_region);
3133 extra = info->num_handlers[nested_index];
3134 extra_handlers = info->handlers[nested_index];
3135 info->outer_index[index] = nested_index;
3138 /* If the last handler is either a CATCH_ALL or a cleanup, then we
3139 won't use the outer ones since we know control will not go past the
3140 catch-all or cleanup. */
3142 if (last_ptr != NULL && (last_ptr->type_info == NULL
3143 || last_ptr->type_info == CATCH_ALL_TYPE))
3144 extra = 0;
3146 info->num_handlers[index] = count + extra;
3147 info->handlers[index] = (handler_info **) xmalloc ((count + extra)
3148 * sizeof (handler_info **));
3150 /* First put all our handlers into the list. */
3151 ptr = get_first_handler (block);
3152 for (x = 0; x < count; x++)
3154 info->handlers[index][x] = ptr;
3155 ptr = ptr->next;
3158 /* Now add all the outer region handlers, if they aren't they same as
3159 one of the types in the current block. We won't worry about
3160 derived types yet, we'll just look for the exact type. */
3161 for (y =0, x = 0; x < extra ; x++)
3163 int i, ok;
3164 ok = 1;
3165 /* Check to see if we have a type duplication. */
3166 for (i = 0; i < count; i++)
3167 if (info->handlers[index][i]->type_info == extra_handlers[x]->type_info)
3169 ok = 0;
3170 /* Record one less handler. */
3171 (info->num_handlers[index])--;
3172 break;
3174 if (ok)
3176 info->handlers[index][y + count] = extra_handlers[x];
3177 y++;
3182 /* This function will allocate and initialize an eh_nesting_info structure.
3183 It returns a pointer to the completed data structure. If there are
3184 no exception regions, a NULL value is returned. */
3185 eh_nesting_info *
3186 init_eh_nesting_info ()
3188 int *nested_eh_region;
3189 int region_count = 0;
3190 rtx eh_note = NULL_RTX;
3191 eh_nesting_info *info;
3192 rtx insn;
3193 int x;
3195 info = (eh_nesting_info *) xmalloc (sizeof (eh_nesting_info));
3196 info->region_index = (int *) xcalloc ((max_label_num () + 1), sizeof (int));
3197 nested_eh_region = (int *) xcalloc (max_label_num () + 1, sizeof (int));
3199 /* Create the nested_eh_region list. If indexed with a block number, it
3200 returns the block number of the next outermost region, if any.
3201 We can count the number of regions and initialize the region_index
3202 vector at the same time. */
3203 for (insn = get_insns(); insn; insn = NEXT_INSN (insn))
3205 if (GET_CODE (insn) == NOTE)
3207 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
3209 int block = NOTE_EH_HANDLER (insn);
3210 region_count++;
3211 info->region_index[block] = region_count;
3212 if (eh_note)
3213 nested_eh_region [block] =
3214 NOTE_EH_HANDLER (XEXP (eh_note, 0));
3215 else
3216 nested_eh_region [block] = 0;
3217 eh_note = gen_rtx_EXPR_LIST (VOIDmode, insn, eh_note);
3219 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
3220 eh_note = XEXP (eh_note, 1);
3224 /* If there are no regions, wrap it up now. */
3225 if (region_count == 0)
3227 free (info->region_index);
3228 free (info);
3229 free (nested_eh_region);
3230 return NULL;
3233 region_count++;
3234 info->handlers = (handler_info ***) xcalloc (region_count,
3235 sizeof (handler_info ***));
3236 info->num_handlers = (int *) xcalloc (region_count, sizeof (int));
3237 info->outer_index = (int *) xcalloc (region_count, sizeof (int));
3239 /* Now initialize the handler lists for all exception blocks. */
3240 for (x = 0; x <= max_label_num (); x++)
3242 if (info->region_index[x] != 0)
3243 process_nestinfo (x, info, nested_eh_region);
3245 info->region_count = region_count;
3247 /* Clean up. */
3248 free (nested_eh_region);
3250 return info;
3254 /* This function is used to retreive the vector of handlers which
3255 can be reached by a given insn in a given exception region.
3256 BLOCK is the exception block the insn is in.
3257 INFO is the eh_nesting_info structure.
3258 INSN is the (optional) insn within the block. If insn is not NULL_RTX,
3259 it may contain reg notes which modify its throwing behavior, and
3260 these will be obeyed. If NULL_RTX is passed, then we simply return the
3261 handlers for block.
3262 HANDLERS is the address of a pointer to a vector of handler_info pointers.
3263 Upon return, this will have the handlers which can be reached by block.
3264 This function returns the number of elements in the handlers vector. */
3265 int
3266 reachable_handlers (block, info, insn, handlers)
3267 int block;
3268 eh_nesting_info *info;
3269 rtx insn ;
3270 handler_info ***handlers;
3272 int index = 0;
3273 *handlers = NULL;
3275 if (info == NULL)
3276 return 0;
3277 if (block > 0)
3278 index = info->region_index[block];
3280 if (insn && GET_CODE (insn) == CALL_INSN)
3282 /* RETHROWs specify a region number from which we are going to rethrow.
3283 This means we wont pass control to handlers in the specified
3284 region, but rather any region OUTSIDE the specified region.
3285 We accomplish this by setting block to the outer_index of the
3286 specified region. */
3287 rtx note = find_reg_note (insn, REG_EH_RETHROW, NULL_RTX);
3288 if (note)
3290 index = eh_region_from_symbol (XEXP (note, 0));
3291 index = info->region_index[index];
3292 if (index)
3293 index = info->outer_index[index];
3295 else
3297 /* If there is no rethrow, we look for a REG_EH_REGION, and
3298 we'll throw from that block. A value of 0 or less
3299 indicates that this insn cannot throw. */
3300 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3301 if (note)
3303 int b = XINT (XEXP (note, 0), 0);
3304 if (b <= 0)
3305 index = 0;
3306 else
3307 index = info->region_index[b];
3311 /* If we reach this point, and index is 0, there is no throw. */
3312 if (index == 0)
3313 return 0;
3315 *handlers = info->handlers[index];
3316 return info->num_handlers[index];
3320 /* This function will free all memory associated with the eh_nesting info. */
3322 void
3323 free_eh_nesting_info (info)
3324 eh_nesting_info *info;
3326 int x;
3327 if (info != NULL)
3329 if (info->region_index)
3330 free (info->region_index);
3331 if (info->num_handlers)
3332 free (info->num_handlers);
3333 if (info->outer_index)
3334 free (info->outer_index);
3335 if (info->handlers)
3337 for (x = 0; x < info->region_count; x++)
3338 if (info->handlers[x])
3339 free (info->handlers[x]);
3340 free (info->handlers);
3342 free (info);