1 //===-- tsan_interceptors_mac.cpp -----------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 // Mac-specific interceptors.
12 //===----------------------------------------------------------------------===//
14 #include "sanitizer_common/sanitizer_platform.h"
17 #include "interception/interception.h"
18 #include "tsan_interceptors.h"
19 #include "tsan_interface.h"
20 #include "tsan_interface_ann.h"
21 #include "tsan_spinlock_defs_mac.h"
22 #include "sanitizer_common/sanitizer_addrhashmap.h"
25 #include <libkern/OSAtomic.h>
26 #include <objc/objc-sync.h>
28 #include <sys/ucontext.h>
30 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
32 #endif // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
37 int getcontext(ucontext_t
*ucp
) __attribute__((returns_twice
));
38 int setcontext(const ucontext_t
*ucp
);
43 // The non-barrier versions of OSAtomic* functions are semantically mo_relaxed,
44 // but the two variants (e.g. OSAtomicAdd32 and OSAtomicAdd32Barrier) are
45 // actually aliases of each other, and we cannot have different interceptors for
46 // them, because they're actually the same function. Thus, we have to stay
47 // conservative and treat the non-barrier versions as mo_acq_rel.
48 static constexpr morder kMacOrderBarrier
= mo_acq_rel
;
49 static constexpr morder kMacOrderNonBarrier
= mo_acq_rel
;
50 static constexpr morder kMacFailureOrder
= mo_relaxed
;
52 #define OSATOMIC_INTERCEPTOR(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
53 TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) { \
54 SCOPED_TSAN_INTERCEPTOR(f, x, ptr); \
55 return tsan_atomic_f((volatile tsan_t *)ptr, x, mo); \
58 #define OSATOMIC_INTERCEPTOR_PLUS_X(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
59 TSAN_INTERCEPTOR(return_t, f, t x, volatile t *ptr) { \
60 SCOPED_TSAN_INTERCEPTOR(f, x, ptr); \
61 return tsan_atomic_f((volatile tsan_t *)ptr, x, mo) + x; \
64 #define OSATOMIC_INTERCEPTOR_PLUS_1(return_t, t, tsan_t, f, tsan_atomic_f, mo) \
65 TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) { \
66 SCOPED_TSAN_INTERCEPTOR(f, ptr); \
67 return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) + 1; \
70 #define OSATOMIC_INTERCEPTOR_MINUS_1(return_t, t, tsan_t, f, tsan_atomic_f, \
72 TSAN_INTERCEPTOR(return_t, f, volatile t *ptr) { \
73 SCOPED_TSAN_INTERCEPTOR(f, ptr); \
74 return tsan_atomic_f((volatile tsan_t *)ptr, 1, mo) - 1; \
77 #define OSATOMIC_INTERCEPTORS_ARITHMETIC(f, tsan_atomic_f, m) \
78 m(int32_t, int32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f, \
79 kMacOrderNonBarrier) \
80 m(int32_t, int32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f, \
82 m(int64_t, int64_t, a64, f##64, __tsan_atomic64_##tsan_atomic_f, \
83 kMacOrderNonBarrier) \
84 m(int64_t, int64_t, a64, f##64##Barrier, __tsan_atomic64_##tsan_atomic_f, \
87 #define OSATOMIC_INTERCEPTORS_BITWISE(f, tsan_atomic_f, m, m_orig) \
88 m(int32_t, uint32_t, a32, f##32, __tsan_atomic32_##tsan_atomic_f, \
89 kMacOrderNonBarrier) \
90 m(int32_t, uint32_t, a32, f##32##Barrier, __tsan_atomic32_##tsan_atomic_f, \
92 m_orig(int32_t, uint32_t, a32, f##32##Orig, __tsan_atomic32_##tsan_atomic_f, \
93 kMacOrderNonBarrier) \
94 m_orig(int32_t, uint32_t, a32, f##32##OrigBarrier, \
95 __tsan_atomic32_##tsan_atomic_f, kMacOrderBarrier)
97 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicAdd
, fetch_add
,
98 OSATOMIC_INTERCEPTOR_PLUS_X
)
99 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicIncrement
, fetch_add
,
100 OSATOMIC_INTERCEPTOR_PLUS_1
)
101 OSATOMIC_INTERCEPTORS_ARITHMETIC(OSAtomicDecrement
, fetch_sub
,
102 OSATOMIC_INTERCEPTOR_MINUS_1
)
103 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicOr
, fetch_or
, OSATOMIC_INTERCEPTOR_PLUS_X
,
104 OSATOMIC_INTERCEPTOR
)
105 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicAnd
, fetch_and
,
106 OSATOMIC_INTERCEPTOR_PLUS_X
, OSATOMIC_INTERCEPTOR
)
107 OSATOMIC_INTERCEPTORS_BITWISE(OSAtomicXor
, fetch_xor
,
108 OSATOMIC_INTERCEPTOR_PLUS_X
, OSATOMIC_INTERCEPTOR
)
110 #define OSATOMIC_INTERCEPTORS_CAS(f, tsan_atomic_f, tsan_t, t) \
111 TSAN_INTERCEPTOR(bool, f, t old_value, t new_value, t volatile *ptr) { \
112 SCOPED_TSAN_INTERCEPTOR(f, old_value, new_value, ptr); \
113 return tsan_atomic_f##_compare_exchange_strong( \
114 (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value, \
115 kMacOrderNonBarrier, kMacFailureOrder); \
118 TSAN_INTERCEPTOR(bool, f##Barrier, t old_value, t new_value, \
120 SCOPED_TSAN_INTERCEPTOR(f##Barrier, old_value, new_value, ptr); \
121 return tsan_atomic_f##_compare_exchange_strong( \
122 (volatile tsan_t *)ptr, (tsan_t *)&old_value, (tsan_t)new_value, \
123 kMacOrderBarrier, kMacFailureOrder); \
126 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapInt
, __tsan_atomic32
, a32
, int)
127 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapLong
, __tsan_atomic64
, a64
,
129 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwapPtr
, __tsan_atomic64
, a64
,
131 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap32
, __tsan_atomic32
, a32
,
133 OSATOMIC_INTERCEPTORS_CAS(OSAtomicCompareAndSwap64
, __tsan_atomic64
, a64
,
136 #define OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, mo) \
137 TSAN_INTERCEPTOR(bool, f, uint32_t n, volatile void *ptr) { \
138 SCOPED_TSAN_INTERCEPTOR(f, n, ptr); \
139 volatile char *byte_ptr = ((volatile char *)ptr) + (n >> 3); \
140 char bit = 0x80u >> (n & 7); \
141 char mask = clear ? ~bit : bit; \
142 char orig_byte = op((volatile a8 *)byte_ptr, mask, mo); \
143 return orig_byte & bit; \
146 #define OSATOMIC_INTERCEPTORS_BITOP(f, op, clear) \
147 OSATOMIC_INTERCEPTOR_BITOP(f, op, clear, kMacOrderNonBarrier) \
148 OSATOMIC_INTERCEPTOR_BITOP(f##Barrier, op, clear, kMacOrderBarrier)
150 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndSet
, __tsan_atomic8_fetch_or
, false)
151 OSATOMIC_INTERCEPTORS_BITOP(OSAtomicTestAndClear
, __tsan_atomic8_fetch_and
,
154 TSAN_INTERCEPTOR(void, OSAtomicEnqueue
, OSQueueHead
*list
, void *item
,
156 SCOPED_TSAN_INTERCEPTOR(OSAtomicEnqueue
, list
, item
, offset
);
157 __tsan_release(item
);
158 REAL(OSAtomicEnqueue
)(list
, item
, offset
);
161 TSAN_INTERCEPTOR(void *, OSAtomicDequeue
, OSQueueHead
*list
, size_t offset
) {
162 SCOPED_TSAN_INTERCEPTOR(OSAtomicDequeue
, list
, offset
);
163 void *item
= REAL(OSAtomicDequeue
)(list
, offset
);
164 if (item
) __tsan_acquire(item
);
168 // OSAtomicFifoEnqueue and OSAtomicFifoDequeue are only on OS X.
171 TSAN_INTERCEPTOR(void, OSAtomicFifoEnqueue
, OSFifoQueueHead
*list
, void *item
,
173 SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoEnqueue
, list
, item
, offset
);
174 __tsan_release(item
);
175 REAL(OSAtomicFifoEnqueue
)(list
, item
, offset
);
178 TSAN_INTERCEPTOR(void *, OSAtomicFifoDequeue
, OSFifoQueueHead
*list
,
180 SCOPED_TSAN_INTERCEPTOR(OSAtomicFifoDequeue
, list
, offset
);
181 void *item
= REAL(OSAtomicFifoDequeue
)(list
, offset
);
182 if (item
) __tsan_acquire(item
);
188 TSAN_INTERCEPTOR(void, OSSpinLockLock
, volatile OSSpinLock
*lock
) {
189 CHECK(!cur_thread()->is_dead
);
190 if (!cur_thread()->is_inited
) {
191 return REAL(OSSpinLockLock
)(lock
);
193 SCOPED_TSAN_INTERCEPTOR(OSSpinLockLock
, lock
);
194 REAL(OSSpinLockLock
)(lock
);
195 Acquire(thr
, pc
, (uptr
)lock
);
198 TSAN_INTERCEPTOR(bool, OSSpinLockTry
, volatile OSSpinLock
*lock
) {
199 CHECK(!cur_thread()->is_dead
);
200 if (!cur_thread()->is_inited
) {
201 return REAL(OSSpinLockTry
)(lock
);
203 SCOPED_TSAN_INTERCEPTOR(OSSpinLockTry
, lock
);
204 bool result
= REAL(OSSpinLockTry
)(lock
);
206 Acquire(thr
, pc
, (uptr
)lock
);
210 TSAN_INTERCEPTOR(void, OSSpinLockUnlock
, volatile OSSpinLock
*lock
) {
211 CHECK(!cur_thread()->is_dead
);
212 if (!cur_thread()->is_inited
) {
213 return REAL(OSSpinLockUnlock
)(lock
);
215 SCOPED_TSAN_INTERCEPTOR(OSSpinLockUnlock
, lock
);
216 Release(thr
, pc
, (uptr
)lock
);
217 REAL(OSSpinLockUnlock
)(lock
);
220 TSAN_INTERCEPTOR(void, os_lock_lock
, void *lock
) {
221 CHECK(!cur_thread()->is_dead
);
222 if (!cur_thread()->is_inited
) {
223 return REAL(os_lock_lock
)(lock
);
225 SCOPED_TSAN_INTERCEPTOR(os_lock_lock
, lock
);
226 REAL(os_lock_lock
)(lock
);
227 Acquire(thr
, pc
, (uptr
)lock
);
230 TSAN_INTERCEPTOR(bool, os_lock_trylock
, void *lock
) {
231 CHECK(!cur_thread()->is_dead
);
232 if (!cur_thread()->is_inited
) {
233 return REAL(os_lock_trylock
)(lock
);
235 SCOPED_TSAN_INTERCEPTOR(os_lock_trylock
, lock
);
236 bool result
= REAL(os_lock_trylock
)(lock
);
238 Acquire(thr
, pc
, (uptr
)lock
);
242 TSAN_INTERCEPTOR(void, os_lock_unlock
, void *lock
) {
243 CHECK(!cur_thread()->is_dead
);
244 if (!cur_thread()->is_inited
) {
245 return REAL(os_lock_unlock
)(lock
);
247 SCOPED_TSAN_INTERCEPTOR(os_lock_unlock
, lock
);
248 Release(thr
, pc
, (uptr
)lock
);
249 REAL(os_lock_unlock
)(lock
);
252 TSAN_INTERCEPTOR(void, os_unfair_lock_lock
, os_unfair_lock_t lock
) {
253 if (!cur_thread()->is_inited
|| cur_thread()->is_dead
) {
254 return REAL(os_unfair_lock_lock
)(lock
);
256 SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_lock
, lock
);
257 REAL(os_unfair_lock_lock
)(lock
);
258 Acquire(thr
, pc
, (uptr
)lock
);
261 TSAN_INTERCEPTOR(void, os_unfair_lock_lock_with_options
, os_unfair_lock_t lock
,
263 if (!cur_thread()->is_inited
|| cur_thread()->is_dead
) {
264 return REAL(os_unfair_lock_lock_with_options
)(lock
, options
);
266 SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_lock_with_options
, lock
, options
);
267 REAL(os_unfair_lock_lock_with_options
)(lock
, options
);
268 Acquire(thr
, pc
, (uptr
)lock
);
271 TSAN_INTERCEPTOR(bool, os_unfair_lock_trylock
, os_unfair_lock_t lock
) {
272 if (!cur_thread()->is_inited
|| cur_thread()->is_dead
) {
273 return REAL(os_unfair_lock_trylock
)(lock
);
275 SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_trylock
, lock
);
276 bool result
= REAL(os_unfair_lock_trylock
)(lock
);
278 Acquire(thr
, pc
, (uptr
)lock
);
282 TSAN_INTERCEPTOR(void, os_unfair_lock_unlock
, os_unfair_lock_t lock
) {
283 if (!cur_thread()->is_inited
|| cur_thread()->is_dead
) {
284 return REAL(os_unfair_lock_unlock
)(lock
);
286 SCOPED_TSAN_INTERCEPTOR(os_unfair_lock_unlock
, lock
);
287 Release(thr
, pc
, (uptr
)lock
);
288 REAL(os_unfair_lock_unlock
)(lock
);
291 #if defined(__has_include) && __has_include(<xpc/xpc.h>)
293 TSAN_INTERCEPTOR(void, xpc_connection_set_event_handler
,
294 xpc_connection_t connection
, xpc_handler_t handler
) {
295 SCOPED_TSAN_INTERCEPTOR(xpc_connection_set_event_handler
, connection
,
297 Release(thr
, pc
, (uptr
)connection
);
298 xpc_handler_t new_handler
= ^(xpc_object_t object
) {
300 SCOPED_INTERCEPTOR_RAW(xpc_connection_set_event_handler
);
301 Acquire(thr
, pc
, (uptr
)connection
);
305 REAL(xpc_connection_set_event_handler
)(connection
, new_handler
);
308 TSAN_INTERCEPTOR(void, xpc_connection_send_barrier
, xpc_connection_t connection
,
309 dispatch_block_t barrier
) {
310 SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_barrier
, connection
, barrier
);
311 Release(thr
, pc
, (uptr
)connection
);
312 dispatch_block_t new_barrier
= ^() {
314 SCOPED_INTERCEPTOR_RAW(xpc_connection_send_barrier
);
315 Acquire(thr
, pc
, (uptr
)connection
);
319 REAL(xpc_connection_send_barrier
)(connection
, new_barrier
);
322 TSAN_INTERCEPTOR(void, xpc_connection_send_message_with_reply
,
323 xpc_connection_t connection
, xpc_object_t message
,
324 dispatch_queue_t replyq
, xpc_handler_t handler
) {
325 SCOPED_TSAN_INTERCEPTOR(xpc_connection_send_message_with_reply
, connection
,
326 message
, replyq
, handler
);
327 Release(thr
, pc
, (uptr
)connection
);
328 xpc_handler_t new_handler
= ^(xpc_object_t object
) {
330 SCOPED_INTERCEPTOR_RAW(xpc_connection_send_message_with_reply
);
331 Acquire(thr
, pc
, (uptr
)connection
);
335 REAL(xpc_connection_send_message_with_reply
)
336 (connection
, message
, replyq
, new_handler
);
339 TSAN_INTERCEPTOR(void, xpc_connection_cancel
, xpc_connection_t connection
) {
340 SCOPED_TSAN_INTERCEPTOR(xpc_connection_cancel
, connection
);
341 Release(thr
, pc
, (uptr
)connection
);
342 REAL(xpc_connection_cancel
)(connection
);
345 #endif // #if defined(__has_include) && __has_include(<xpc/xpc.h>)
347 // Determines whether the Obj-C object pointer is a tagged pointer. Tagged
348 // pointers encode the object data directly in their pointer bits and do not
349 // have an associated memory allocation. The Obj-C runtime uses tagged pointers
350 // to transparently optimize small objects.
351 static bool IsTaggedObjCPointer(id obj
) {
352 const uptr kPossibleTaggedBits
= 0x8000000000000001ull
;
353 return ((uptr
)obj
& kPossibleTaggedBits
) != 0;
356 // Returns an address which can be used to inform TSan about synchronization
357 // points (MutexLock/Unlock). The TSan infrastructure expects this to be a valid
358 // address in the process space. We do a small allocation here to obtain a
359 // stable address (the array backing the hash map can change). The memory is
360 // never free'd (leaked) and allocation and locking are slow, but this code only
361 // runs for @synchronized with tagged pointers, which is very rare.
362 static uptr
GetOrCreateSyncAddress(uptr addr
, ThreadState
*thr
, uptr pc
) {
363 typedef AddrHashMap
<uptr
, 5> Map
;
364 static Map Addresses
;
365 Map::Handle
h(&Addresses
, addr
);
367 ThreadIgnoreBegin(thr
, pc
);
368 *h
= (uptr
) user_alloc(thr
, pc
, /*size=*/1);
369 ThreadIgnoreEnd(thr
);
374 // Returns an address on which we can synchronize given an Obj-C object pointer.
375 // For normal object pointers, this is just the address of the object in memory.
376 // Tagged pointers are not backed by an actual memory allocation, so we need to
377 // synthesize a valid address.
378 static uptr
SyncAddressForObjCObject(id obj
, ThreadState
*thr
, uptr pc
) {
379 if (IsTaggedObjCPointer(obj
))
380 return GetOrCreateSyncAddress((uptr
)obj
, thr
, pc
);
384 TSAN_INTERCEPTOR(int, objc_sync_enter
, id obj
) {
385 SCOPED_TSAN_INTERCEPTOR(objc_sync_enter
, obj
);
386 if (!obj
) return REAL(objc_sync_enter
)(obj
);
387 uptr addr
= SyncAddressForObjCObject(obj
, thr
, pc
);
388 MutexPreLock(thr
, pc
, addr
, MutexFlagWriteReentrant
);
389 int result
= REAL(objc_sync_enter
)(obj
);
390 CHECK_EQ(result
, OBJC_SYNC_SUCCESS
);
391 MutexPostLock(thr
, pc
, addr
, MutexFlagWriteReentrant
);
395 TSAN_INTERCEPTOR(int, objc_sync_exit
, id obj
) {
396 SCOPED_TSAN_INTERCEPTOR(objc_sync_exit
, obj
);
397 if (!obj
) return REAL(objc_sync_exit
)(obj
);
398 uptr addr
= SyncAddressForObjCObject(obj
, thr
, pc
);
399 MutexUnlock(thr
, pc
, addr
);
400 int result
= REAL(objc_sync_exit
)(obj
);
401 if (result
!= OBJC_SYNC_SUCCESS
) MutexInvalidAccess(thr
, pc
, addr
);
405 TSAN_INTERCEPTOR(int, swapcontext
, ucontext_t
*oucp
, const ucontext_t
*ucp
) {
407 SCOPED_INTERCEPTOR_RAW(swapcontext
, oucp
, ucp
);
409 // Because of swapcontext() semantics we have no option but to copy its
410 // implementation here
415 ThreadState
*thr
= cur_thread();
416 const int UCF_SWAPPED
= 0x80000000;
417 oucp
->uc_onstack
&= ~UCF_SWAPPED
;
418 thr
->ignore_interceptors
++;
419 int ret
= getcontext(oucp
);
420 if (!(oucp
->uc_onstack
& UCF_SWAPPED
)) {
421 thr
->ignore_interceptors
--;
423 oucp
->uc_onstack
|= UCF_SWAPPED
;
424 ret
= setcontext(ucp
);
430 // On macOS, libc++ is always linked dynamically, so intercepting works the
432 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
435 struct fake_shared_weak_count
{
436 volatile a64 shared_owners
;
437 volatile a64 shared_weak_owners
;
438 virtual void _unused_0x0() = 0;
439 virtual void _unused_0x8() = 0;
440 virtual void on_zero_shared() = 0;
441 virtual void _unused_0x18() = 0;
442 virtual void on_zero_shared_weak() = 0;
443 virtual ~fake_shared_weak_count() = 0; // suppress -Wnon-virtual-dtor
447 // The following code adds libc++ interceptors for:
448 // void __shared_weak_count::__release_shared() _NOEXCEPT;
449 // bool __shared_count::__release_shared() _NOEXCEPT;
450 // Shared and weak pointers in C++ maintain reference counts via atomics in
451 // libc++.dylib, which are TSan-invisible, and this leads to false positives in
452 // destructor code. These interceptors re-implements the whole functions so that
453 // the mo_acq_rel semantics of the atomic decrement are visible.
455 // Unfortunately, the interceptors cannot simply Acquire/Release some sync
456 // object and call the original function, because it would have a race between
457 // the sync and the destruction of the object. Calling both under a lock will
458 // not work because the destructor can invoke this interceptor again (and even
459 // in a different thread, so recursive locks don't help).
461 STDCXX_INTERCEPTOR(void, _ZNSt3__119__shared_weak_count16__release_sharedEv
,
462 fake_shared_weak_count
*o
) {
463 if (!flags()->shared_ptr_interceptor
)
464 return REAL(_ZNSt3__119__shared_weak_count16__release_sharedEv
)(o
);
466 SCOPED_TSAN_INTERCEPTOR(_ZNSt3__119__shared_weak_count16__release_sharedEv
,
468 if (__tsan_atomic64_fetch_add(&o
->shared_owners
, -1, mo_release
) == 0) {
469 Acquire(thr
, pc
, (uptr
)&o
->shared_owners
);
471 if (__tsan_atomic64_fetch_add(&o
->shared_weak_owners
, -1, mo_release
) ==
473 Acquire(thr
, pc
, (uptr
)&o
->shared_weak_owners
);
474 o
->on_zero_shared_weak();
479 STDCXX_INTERCEPTOR(bool, _ZNSt3__114__shared_count16__release_sharedEv
,
480 fake_shared_weak_count
*o
) {
481 if (!flags()->shared_ptr_interceptor
)
482 return REAL(_ZNSt3__114__shared_count16__release_sharedEv
)(o
);
484 SCOPED_TSAN_INTERCEPTOR(_ZNSt3__114__shared_count16__release_sharedEv
, o
);
485 if (__tsan_atomic64_fetch_add(&o
->shared_owners
, -1, mo_release
) == 0) {
486 Acquire(thr
, pc
, (uptr
)&o
->shared_owners
);
494 struct call_once_callback_args
{
495 void (*orig_func
)(void *arg
);
500 void call_once_callback_wrapper(void *arg
) {
501 call_once_callback_args
*new_args
= (call_once_callback_args
*)arg
;
502 new_args
->orig_func(new_args
->orig_arg
);
503 __tsan_release(new_args
->flag
);
507 // This adds a libc++ interceptor for:
508 // void __call_once(volatile unsigned long&, void*, void(*)(void*));
509 // C++11 call_once is implemented via an internal function __call_once which is
510 // inside libc++.dylib, and the atomic release store inside it is thus
511 // TSan-invisible. To avoid false positives, this interceptor wraps the callback
512 // function and performs an explicit Release after the user code has run.
513 STDCXX_INTERCEPTOR(void, _ZNSt3__111__call_onceERVmPvPFvS2_E
, void *flag
,
514 void *arg
, void (*func
)(void *arg
)) {
515 call_once_callback_args new_args
= {func
, arg
, flag
};
516 REAL(_ZNSt3__111__call_onceERVmPvPFvS2_E
)(flag
, &new_args
,
517 call_once_callback_wrapper
);
520 } // namespace __tsan
522 #endif // SANITIZER_APPLE