* expr.c (expand_expr, case ARRAY_REF): Do not replace
[official-gcc.git] / gcc / flow.c
blobc93dbb8bd75adffcfa090ca482999ef8c815912f
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
43 ** life_analysis **
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
112 /* TODO:
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
121 #include "config.h"
122 #include "system.h"
123 #include "tree.h"
124 #include "rtl.h"
125 #include "tm_p.h"
126 #include "hard-reg-set.h"
127 #include "basic-block.h"
128 #include "insn-config.h"
129 #include "regs.h"
130 #include "flags.h"
131 #include "output.h"
132 #include "function.h"
133 #include "except.h"
134 #include "toplev.h"
135 #include "recog.h"
136 #include "expr.h"
137 #include "ssa.h"
139 #include "obstack.h"
140 #include "splay-tree.h"
142 #define obstack_chunk_alloc xmalloc
143 #define obstack_chunk_free free
145 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
146 the stack pointer does not matter. The value is tested only in
147 functions that have frame pointers.
148 No definition is equivalent to always zero. */
149 #ifndef EXIT_IGNORE_STACK
150 #define EXIT_IGNORE_STACK 0
151 #endif
153 #ifndef HAVE_epilogue
154 #define HAVE_epilogue 0
155 #endif
156 #ifndef HAVE_prologue
157 #define HAVE_prologue 0
158 #endif
159 #ifndef HAVE_sibcall_epilogue
160 #define HAVE_sibcall_epilogue 0
161 #endif
163 #ifndef LOCAL_REGNO
164 #define LOCAL_REGNO(REGNO) 0
165 #endif
166 #ifndef EPILOGUE_USES
167 #define EPILOGUE_USES(REGNO) 0
168 #endif
170 /* The obstack on which the flow graph components are allocated. */
172 struct obstack flow_obstack;
173 static char *flow_firstobj;
175 /* Number of basic blocks in the current function. */
177 int n_basic_blocks;
179 /* Number of edges in the current function. */
181 int n_edges;
183 /* The basic block array. */
185 varray_type basic_block_info;
187 /* The special entry and exit blocks. */
189 struct basic_block_def entry_exit_blocks[2]
190 = {{NULL, /* head */
191 NULL, /* end */
192 NULL, /* pred */
193 NULL, /* succ */
194 NULL, /* local_set */
195 NULL, /* cond_local_set */
196 NULL, /* global_live_at_start */
197 NULL, /* global_live_at_end */
198 NULL, /* aux */
199 ENTRY_BLOCK, /* index */
200 0, /* loop_depth */
201 0 /* count */
204 NULL, /* head */
205 NULL, /* end */
206 NULL, /* pred */
207 NULL, /* succ */
208 NULL, /* local_set */
209 NULL, /* cond_local_set */
210 NULL, /* global_live_at_start */
211 NULL, /* global_live_at_end */
212 NULL, /* aux */
213 EXIT_BLOCK, /* index */
214 0, /* loop_depth */
215 0 /* count */
219 /* Nonzero if the second flow pass has completed. */
220 int flow2_completed;
222 /* Maximum register number used in this function, plus one. */
224 int max_regno;
226 /* Indexed by n, giving various register information */
228 varray_type reg_n_info;
230 /* Size of a regset for the current function,
231 in (1) bytes and (2) elements. */
233 int regset_bytes;
234 int regset_size;
236 /* Regset of regs live when calls to `setjmp'-like functions happen. */
237 /* ??? Does this exist only for the setjmp-clobbered warning message? */
239 regset regs_live_at_setjmp;
241 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
242 that have to go in the same hard reg.
243 The first two regs in the list are a pair, and the next two
244 are another pair, etc. */
245 rtx regs_may_share;
247 /* Callback that determines if it's ok for a function to have no
248 noreturn attribute. */
249 int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
251 /* Set of registers that may be eliminable. These are handled specially
252 in updating regs_ever_live. */
254 static HARD_REG_SET elim_reg_set;
256 /* The basic block structure for every insn, indexed by uid. */
258 varray_type basic_block_for_insn;
260 /* The labels mentioned in non-jump rtl. Valid during find_basic_blocks. */
261 /* ??? Should probably be using LABEL_NUSES instead. It would take a
262 bit of surgery to be able to use or co-opt the routines in jump. */
264 static rtx label_value_list;
265 static rtx tail_recursion_label_list;
267 /* Holds information for tracking conditional register life information. */
268 struct reg_cond_life_info
270 /* A boolean expression of conditions under which a register is dead. */
271 rtx condition;
272 /* Conditions under which a register is dead at the basic block end. */
273 rtx orig_condition;
275 /* A boolean expression of conditions under which a register has been
276 stored into. */
277 rtx stores;
279 /* ??? Could store mask of bytes that are dead, so that we could finally
280 track lifetimes of multi-word registers accessed via subregs. */
283 /* For use in communicating between propagate_block and its subroutines.
284 Holds all information needed to compute life and def-use information. */
286 struct propagate_block_info
288 /* The basic block we're considering. */
289 basic_block bb;
291 /* Bit N is set if register N is conditionally or unconditionally live. */
292 regset reg_live;
294 /* Bit N is set if register N is set this insn. */
295 regset new_set;
297 /* Element N is the next insn that uses (hard or pseudo) register N
298 within the current basic block; or zero, if there is no such insn. */
299 rtx *reg_next_use;
301 /* Contains a list of all the MEMs we are tracking for dead store
302 elimination. */
303 rtx mem_set_list;
305 /* If non-null, record the set of registers set unconditionally in the
306 basic block. */
307 regset local_set;
309 /* If non-null, record the set of registers set conditionally in the
310 basic block. */
311 regset cond_local_set;
313 #ifdef HAVE_conditional_execution
314 /* Indexed by register number, holds a reg_cond_life_info for each
315 register that is not unconditionally live or dead. */
316 splay_tree reg_cond_dead;
318 /* Bit N is set if register N is in an expression in reg_cond_dead. */
319 regset reg_cond_reg;
320 #endif
322 /* The length of mem_set_list. */
323 int mem_set_list_len;
325 /* Non-zero if the value of CC0 is live. */
326 int cc0_live;
328 /* Flags controling the set of information propagate_block collects. */
329 int flags;
332 /* Maximum length of pbi->mem_set_list before we start dropping
333 new elements on the floor. */
334 #define MAX_MEM_SET_LIST_LEN 100
336 /* Store the data structures necessary for depth-first search. */
337 struct depth_first_search_dsS {
338 /* stack for backtracking during the algorithm */
339 basic_block *stack;
341 /* number of edges in the stack. That is, positions 0, ..., sp-1
342 have edges. */
343 unsigned int sp;
345 /* record of basic blocks already seen by depth-first search */
346 sbitmap visited_blocks;
348 typedef struct depth_first_search_dsS *depth_first_search_ds;
350 /* Forward declarations */
351 static int count_basic_blocks PARAMS ((rtx));
352 static void find_basic_blocks_1 PARAMS ((rtx));
353 static rtx find_label_refs PARAMS ((rtx, rtx));
354 static void clear_edges PARAMS ((void));
355 static void make_edges PARAMS ((rtx));
356 static void make_label_edge PARAMS ((sbitmap *, basic_block,
357 rtx, int));
358 static void make_eh_edge PARAMS ((sbitmap *, basic_block, rtx));
359 static void mark_critical_edges PARAMS ((void));
361 static void commit_one_edge_insertion PARAMS ((edge));
363 static void delete_unreachable_blocks PARAMS ((void));
364 static int can_delete_note_p PARAMS ((rtx));
365 static void expunge_block PARAMS ((basic_block));
366 static int can_delete_label_p PARAMS ((rtx));
367 static int tail_recursion_label_p PARAMS ((rtx));
368 static int merge_blocks_move_predecessor_nojumps PARAMS ((basic_block,
369 basic_block));
370 static int merge_blocks_move_successor_nojumps PARAMS ((basic_block,
371 basic_block));
372 static int merge_blocks PARAMS ((edge,basic_block,basic_block));
373 static void try_merge_blocks PARAMS ((void));
374 static void tidy_fallthru_edges PARAMS ((void));
375 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
376 static void verify_wide_reg PARAMS ((int, rtx, rtx));
377 static void verify_local_live_at_start PARAMS ((regset, basic_block));
378 static int set_noop_p PARAMS ((rtx));
379 static int noop_move_p PARAMS ((rtx));
380 static void delete_noop_moves PARAMS ((rtx));
381 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
382 static void notice_stack_pointer_modification PARAMS ((rtx));
383 static void mark_reg PARAMS ((rtx, void *));
384 static void mark_regs_live_at_end PARAMS ((regset));
385 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
386 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
387 static void propagate_block_delete_insn PARAMS ((basic_block, rtx));
388 static rtx propagate_block_delete_libcall PARAMS ((basic_block, rtx, rtx));
389 static int insn_dead_p PARAMS ((struct propagate_block_info *,
390 rtx, int, rtx));
391 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
392 rtx, rtx));
393 static void mark_set_regs PARAMS ((struct propagate_block_info *,
394 rtx, rtx));
395 static void mark_set_1 PARAMS ((struct propagate_block_info *,
396 enum rtx_code, rtx, rtx,
397 rtx, int));
398 #ifdef HAVE_conditional_execution
399 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
400 int, rtx));
401 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
402 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
403 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
404 int));
405 static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
406 static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
407 static rtx not_reg_cond PARAMS ((rtx));
408 static rtx and_reg_cond PARAMS ((rtx, rtx, int));
409 #endif
410 #ifdef AUTO_INC_DEC
411 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
412 rtx, rtx, rtx, rtx, rtx));
413 static void find_auto_inc PARAMS ((struct propagate_block_info *,
414 rtx, rtx));
415 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
416 rtx));
417 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
418 #endif
419 static void mark_used_reg PARAMS ((struct propagate_block_info *,
420 rtx, rtx, rtx));
421 static void mark_used_regs PARAMS ((struct propagate_block_info *,
422 rtx, rtx, rtx));
423 void dump_flow_info PARAMS ((FILE *));
424 void debug_flow_info PARAMS ((void));
425 static void dump_edge_info PARAMS ((FILE *, edge, int));
426 static void print_rtl_and_abort PARAMS ((void));
428 static void invalidate_mems_from_autoinc PARAMS ((struct propagate_block_info *,
429 rtx));
430 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
431 rtx));
432 static void remove_fake_successors PARAMS ((basic_block));
433 static void flow_nodes_print PARAMS ((const char *, const sbitmap,
434 FILE *));
435 static void flow_edge_list_print PARAMS ((const char *, const edge *,
436 int, FILE *));
437 static void flow_loops_cfg_dump PARAMS ((const struct loops *,
438 FILE *));
439 static int flow_loop_nested_p PARAMS ((struct loop *,
440 struct loop *));
441 static int flow_loop_entry_edges_find PARAMS ((basic_block, const sbitmap,
442 edge **));
443 static int flow_loop_exit_edges_find PARAMS ((const sbitmap, edge **));
444 static int flow_loop_nodes_find PARAMS ((basic_block, basic_block, sbitmap));
445 static int flow_depth_first_order_compute PARAMS ((int *, int *));
446 static void flow_dfs_compute_reverse_init
447 PARAMS ((depth_first_search_ds));
448 static void flow_dfs_compute_reverse_add_bb
449 PARAMS ((depth_first_search_ds, basic_block));
450 static basic_block flow_dfs_compute_reverse_execute
451 PARAMS ((depth_first_search_ds));
452 static void flow_dfs_compute_reverse_finish
453 PARAMS ((depth_first_search_ds));
454 static void flow_loop_pre_header_scan PARAMS ((struct loop *));
455 static basic_block flow_loop_pre_header_find PARAMS ((basic_block,
456 const sbitmap *));
457 static void flow_loop_tree_node_add PARAMS ((struct loop *, struct loop *));
458 static void flow_loops_tree_build PARAMS ((struct loops *));
459 static int flow_loop_level_compute PARAMS ((struct loop *, int));
460 static int flow_loops_level_compute PARAMS ((struct loops *));
461 static void allocate_bb_life_data PARAMS ((void));
463 /* Find basic blocks of the current function.
464 F is the first insn of the function and NREGS the number of register
465 numbers in use. */
467 void
468 find_basic_blocks (f, nregs, file)
469 rtx f;
470 int nregs ATTRIBUTE_UNUSED;
471 FILE *file ATTRIBUTE_UNUSED;
473 int max_uid;
475 /* Flush out existing data. */
476 if (basic_block_info != NULL)
478 int i;
480 clear_edges ();
482 /* Clear bb->aux on all extant basic blocks. We'll use this as a
483 tag for reuse during create_basic_block, just in case some pass
484 copies around basic block notes improperly. */
485 for (i = 0; i < n_basic_blocks; ++i)
486 BASIC_BLOCK (i)->aux = NULL;
488 VARRAY_FREE (basic_block_info);
491 n_basic_blocks = count_basic_blocks (f);
493 /* Size the basic block table. The actual structures will be allocated
494 by find_basic_blocks_1, since we want to keep the structure pointers
495 stable across calls to find_basic_blocks. */
496 /* ??? This whole issue would be much simpler if we called find_basic_blocks
497 exactly once, and thereafter we don't have a single long chain of
498 instructions at all until close to the end of compilation when we
499 actually lay them out. */
501 VARRAY_BB_INIT (basic_block_info, n_basic_blocks, "basic_block_info");
503 find_basic_blocks_1 (f);
505 /* Record the block to which an insn belongs. */
506 /* ??? This should be done another way, by which (perhaps) a label is
507 tagged directly with the basic block that it starts. It is used for
508 more than that currently, but IMO that is the only valid use. */
510 max_uid = get_max_uid ();
511 #ifdef AUTO_INC_DEC
512 /* Leave space for insns life_analysis makes in some cases for auto-inc.
513 These cases are rare, so we don't need too much space. */
514 max_uid += max_uid / 10;
515 #endif
517 compute_bb_for_insn (max_uid);
519 /* Discover the edges of our cfg. */
520 make_edges (label_value_list);
522 /* Do very simple cleanup now, for the benefit of code that runs between
523 here and cleanup_cfg, e.g. thread_prologue_and_epilogue_insns. */
524 tidy_fallthru_edges ();
526 mark_critical_edges ();
528 #ifdef ENABLE_CHECKING
529 verify_flow_info ();
530 #endif
533 void
534 check_function_return_warnings ()
536 if (warn_missing_noreturn
537 && !TREE_THIS_VOLATILE (cfun->decl)
538 && EXIT_BLOCK_PTR->pred == NULL
539 && (lang_missing_noreturn_ok_p
540 && !lang_missing_noreturn_ok_p (cfun->decl)))
541 warning ("function might be possible candidate for attribute `noreturn'");
543 /* If we have a path to EXIT, then we do return. */
544 if (TREE_THIS_VOLATILE (cfun->decl)
545 && EXIT_BLOCK_PTR->pred != NULL)
546 warning ("`noreturn' function does return");
548 /* If the clobber_return_insn appears in some basic block, then we
549 do reach the end without returning a value. */
550 else if (warn_return_type
551 && cfun->x_clobber_return_insn != NULL
552 && EXIT_BLOCK_PTR->pred != NULL)
554 int max_uid = get_max_uid ();
556 /* If clobber_return_insn was excised by jump1, then renumber_insns
557 can make max_uid smaller than the number still recorded in our rtx.
558 That's fine, since this is a quick way of verifying that the insn
559 is no longer in the chain. */
560 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
562 /* Recompute insn->block mapping, since the initial mapping is
563 set before we delete unreachable blocks. */
564 compute_bb_for_insn (max_uid);
566 if (BLOCK_FOR_INSN (cfun->x_clobber_return_insn) != NULL)
567 warning ("control reaches end of non-void function");
572 /* Count the basic blocks of the function. */
574 static int
575 count_basic_blocks (f)
576 rtx f;
578 register rtx insn;
579 register RTX_CODE prev_code;
580 register int count = 0;
581 int saw_abnormal_edge = 0;
583 prev_code = JUMP_INSN;
584 for (insn = f; insn; insn = NEXT_INSN (insn))
586 enum rtx_code code = GET_CODE (insn);
588 if (code == CODE_LABEL
589 || (GET_RTX_CLASS (code) == 'i'
590 && (prev_code == JUMP_INSN
591 || prev_code == BARRIER
592 || saw_abnormal_edge)))
594 saw_abnormal_edge = 0;
595 count++;
598 /* Record whether this insn created an edge. */
599 if (code == CALL_INSN)
601 rtx note;
603 /* If there is a nonlocal goto label and the specified
604 region number isn't -1, we have an edge. */
605 if (nonlocal_goto_handler_labels
606 && ((note = find_reg_note (insn, REG_EH_REGION, NULL_RTX)) == 0
607 || INTVAL (XEXP (note, 0)) >= 0))
608 saw_abnormal_edge = 1;
610 else if (can_throw_internal (insn))
611 saw_abnormal_edge = 1;
613 else if (flag_non_call_exceptions
614 && code == INSN
615 && can_throw_internal (insn))
616 saw_abnormal_edge = 1;
618 if (code != NOTE)
619 prev_code = code;
622 /* The rest of the compiler works a bit smoother when we don't have to
623 check for the edge case of do-nothing functions with no basic blocks. */
624 if (count == 0)
626 emit_insn (gen_rtx_USE (VOIDmode, const0_rtx));
627 count = 1;
630 return count;
633 /* Scan a list of insns for labels referred to other than by jumps.
634 This is used to scan the alternatives of a call placeholder. */
635 static rtx
636 find_label_refs (f, lvl)
637 rtx f;
638 rtx lvl;
640 rtx insn;
642 for (insn = f; insn; insn = NEXT_INSN (insn))
643 if (INSN_P (insn) && GET_CODE (insn) != JUMP_INSN)
645 rtx note;
647 /* Make a list of all labels referred to other than by jumps
648 (which just don't have the REG_LABEL notes).
650 Make a special exception for labels followed by an ADDR*VEC,
651 as this would be a part of the tablejump setup code.
653 Make a special exception to registers loaded with label
654 values just before jump insns that use them. */
656 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
657 if (REG_NOTE_KIND (note) == REG_LABEL)
659 rtx lab = XEXP (note, 0), next;
661 if ((next = next_nonnote_insn (lab)) != NULL
662 && GET_CODE (next) == JUMP_INSN
663 && (GET_CODE (PATTERN (next)) == ADDR_VEC
664 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
666 else if (GET_CODE (lab) == NOTE)
668 else if (GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
669 && find_reg_note (NEXT_INSN (insn), REG_LABEL, lab))
671 else
672 lvl = alloc_EXPR_LIST (0, XEXP (note, 0), lvl);
676 return lvl;
679 /* Find all basic blocks of the function whose first insn is F.
681 Collect and return a list of labels whose addresses are taken. This
682 will be used in make_edges for use with computed gotos. */
684 static void
685 find_basic_blocks_1 (f)
686 rtx f;
688 register rtx insn, next;
689 int i = 0;
690 rtx bb_note = NULL_RTX;
691 rtx lvl = NULL_RTX;
692 rtx trll = NULL_RTX;
693 rtx head = NULL_RTX;
694 rtx end = NULL_RTX;
696 /* We process the instructions in a slightly different way than we did
697 previously. This is so that we see a NOTE_BASIC_BLOCK after we have
698 closed out the previous block, so that it gets attached at the proper
699 place. Since this form should be equivalent to the previous,
700 count_basic_blocks continues to use the old form as a check. */
702 for (insn = f; insn; insn = next)
704 enum rtx_code code = GET_CODE (insn);
706 next = NEXT_INSN (insn);
708 switch (code)
710 case NOTE:
712 int kind = NOTE_LINE_NUMBER (insn);
714 /* Look for basic block notes with which to keep the
715 basic_block_info pointers stable. Unthread the note now;
716 we'll put it back at the right place in create_basic_block.
717 Or not at all if we've already found a note in this block. */
718 if (kind == NOTE_INSN_BASIC_BLOCK)
720 if (bb_note == NULL_RTX)
721 bb_note = insn;
722 else
723 next = flow_delete_insn (insn);
725 break;
728 case CODE_LABEL:
729 /* A basic block starts at a label. If we've closed one off due
730 to a barrier or some such, no need to do it again. */
731 if (head != NULL_RTX)
733 /* While we now have edge lists with which other portions of
734 the compiler might determine a call ending a basic block
735 does not imply an abnormal edge, it will be a bit before
736 everything can be updated. So continue to emit a noop at
737 the end of such a block. */
738 if (GET_CODE (end) == CALL_INSN && ! SIBLING_CALL_P (end))
740 rtx nop = gen_rtx_USE (VOIDmode, const0_rtx);
741 end = emit_insn_after (nop, end);
744 create_basic_block (i++, head, end, bb_note);
745 bb_note = NULL_RTX;
748 head = end = insn;
749 break;
751 case JUMP_INSN:
752 /* A basic block ends at a jump. */
753 if (head == NULL_RTX)
754 head = insn;
755 else
757 /* ??? Make a special check for table jumps. The way this
758 happens is truly and amazingly gross. We are about to
759 create a basic block that contains just a code label and
760 an addr*vec jump insn. Worse, an addr_diff_vec creates
761 its own natural loop.
763 Prevent this bit of brain damage, pasting things together
764 correctly in make_edges.
766 The correct solution involves emitting the table directly
767 on the tablejump instruction as a note, or JUMP_LABEL. */
769 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
770 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
772 head = end = NULL;
773 n_basic_blocks--;
774 break;
777 end = insn;
778 goto new_bb_inclusive;
780 case BARRIER:
781 /* A basic block ends at a barrier. It may be that an unconditional
782 jump already closed the basic block -- no need to do it again. */
783 if (head == NULL_RTX)
784 break;
786 /* While we now have edge lists with which other portions of the
787 compiler might determine a call ending a basic block does not
788 imply an abnormal edge, it will be a bit before everything can
789 be updated. So continue to emit a noop at the end of such a
790 block. */
791 if (GET_CODE (end) == CALL_INSN && ! SIBLING_CALL_P (end))
793 rtx nop = gen_rtx_USE (VOIDmode, const0_rtx);
794 end = emit_insn_after (nop, end);
796 goto new_bb_exclusive;
798 case CALL_INSN:
800 /* Record whether this call created an edge. */
801 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
802 int region = (note ? INTVAL (XEXP (note, 0)) : 0);
804 if (GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
806 /* Scan each of the alternatives for label refs. */
807 lvl = find_label_refs (XEXP (PATTERN (insn), 0), lvl);
808 lvl = find_label_refs (XEXP (PATTERN (insn), 1), lvl);
809 lvl = find_label_refs (XEXP (PATTERN (insn), 2), lvl);
810 /* Record its tail recursion label, if any. */
811 if (XEXP (PATTERN (insn), 3) != NULL_RTX)
812 trll = alloc_EXPR_LIST (0, XEXP (PATTERN (insn), 3), trll);
815 /* A basic block ends at a call that can either throw or
816 do a non-local goto. */
817 if ((nonlocal_goto_handler_labels && region >= 0)
818 || can_throw_internal (insn))
820 new_bb_inclusive:
821 if (head == NULL_RTX)
822 head = insn;
823 end = insn;
825 new_bb_exclusive:
826 create_basic_block (i++, head, end, bb_note);
827 head = end = NULL_RTX;
828 bb_note = NULL_RTX;
829 break;
832 /* Fall through. */
834 case INSN:
835 /* Non-call exceptions generate new blocks just like calls. */
836 if (flag_non_call_exceptions && can_throw_internal (insn))
837 goto new_bb_inclusive;
839 if (head == NULL_RTX)
840 head = insn;
841 end = insn;
842 break;
844 default:
845 abort ();
848 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
850 rtx note;
852 /* Make a list of all labels referred to other than by jumps.
854 Make a special exception for labels followed by an ADDR*VEC,
855 as this would be a part of the tablejump setup code.
857 Make a special exception to registers loaded with label
858 values just before jump insns that use them. */
860 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
861 if (REG_NOTE_KIND (note) == REG_LABEL)
863 rtx lab = XEXP (note, 0), next;
865 if ((next = next_nonnote_insn (lab)) != NULL
866 && GET_CODE (next) == JUMP_INSN
867 && (GET_CODE (PATTERN (next)) == ADDR_VEC
868 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
870 else if (GET_CODE (lab) == NOTE)
872 else if (GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
873 && find_reg_note (NEXT_INSN (insn), REG_LABEL, lab))
875 else
876 lvl = alloc_EXPR_LIST (0, XEXP (note, 0), lvl);
881 if (head != NULL_RTX)
882 create_basic_block (i++, head, end, bb_note);
883 else if (bb_note)
884 flow_delete_insn (bb_note);
886 if (i != n_basic_blocks)
887 abort ();
889 label_value_list = lvl;
890 tail_recursion_label_list = trll;
893 /* Tidy the CFG by deleting unreachable code and whatnot. */
895 void
896 cleanup_cfg ()
898 delete_unreachable_blocks ();
899 try_merge_blocks ();
900 mark_critical_edges ();
902 /* Kill the data we won't maintain. */
903 free_EXPR_LIST_list (&label_value_list);
904 free_EXPR_LIST_list (&tail_recursion_label_list);
907 /* Create a new basic block consisting of the instructions between
908 HEAD and END inclusive. Reuses the note and basic block struct
909 in BB_NOTE, if any. */
911 void
912 create_basic_block (index, head, end, bb_note)
913 int index;
914 rtx head, end, bb_note;
916 basic_block bb;
918 if (bb_note
919 && ! RTX_INTEGRATED_P (bb_note)
920 && (bb = NOTE_BASIC_BLOCK (bb_note)) != NULL
921 && bb->aux == NULL)
923 /* If we found an existing note, thread it back onto the chain. */
925 rtx after;
927 if (GET_CODE (head) == CODE_LABEL)
928 after = head;
929 else
931 after = PREV_INSN (head);
932 head = bb_note;
935 if (after != bb_note && NEXT_INSN (after) != bb_note)
936 reorder_insns (bb_note, bb_note, after);
938 else
940 /* Otherwise we must create a note and a basic block structure.
941 Since we allow basic block structs in rtl, give the struct
942 the same lifetime by allocating it off the function obstack
943 rather than using malloc. */
945 bb = (basic_block) obstack_alloc (&flow_obstack, sizeof (*bb));
946 memset (bb, 0, sizeof (*bb));
948 if (GET_CODE (head) == CODE_LABEL)
949 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, head);
950 else
952 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, head);
953 head = bb_note;
955 NOTE_BASIC_BLOCK (bb_note) = bb;
958 /* Always include the bb note in the block. */
959 if (NEXT_INSN (end) == bb_note)
960 end = bb_note;
962 bb->head = head;
963 bb->end = end;
964 bb->index = index;
965 BASIC_BLOCK (index) = bb;
967 /* Tag the block so that we know it has been used when considering
968 other basic block notes. */
969 bb->aux = bb;
972 /* Records the basic block struct in BB_FOR_INSN, for every instruction
973 indexed by INSN_UID. MAX is the size of the array. */
975 void
976 compute_bb_for_insn (max)
977 int max;
979 int i;
981 if (basic_block_for_insn)
982 VARRAY_FREE (basic_block_for_insn);
983 VARRAY_BB_INIT (basic_block_for_insn, max, "basic_block_for_insn");
985 for (i = 0; i < n_basic_blocks; ++i)
987 basic_block bb = BASIC_BLOCK (i);
988 rtx insn, end;
990 end = bb->end;
991 insn = bb->head;
992 while (1)
994 int uid = INSN_UID (insn);
995 if (uid < max)
996 VARRAY_BB (basic_block_for_insn, uid) = bb;
997 if (insn == end)
998 break;
999 insn = NEXT_INSN (insn);
1004 /* Free the memory associated with the edge structures. */
1006 static void
1007 clear_edges ()
1009 int i;
1010 edge n, e;
1012 for (i = 0; i < n_basic_blocks; ++i)
1014 basic_block bb = BASIC_BLOCK (i);
1016 for (e = bb->succ; e; e = n)
1018 n = e->succ_next;
1019 free (e);
1022 bb->succ = 0;
1023 bb->pred = 0;
1026 for (e = ENTRY_BLOCK_PTR->succ; e; e = n)
1028 n = e->succ_next;
1029 free (e);
1032 ENTRY_BLOCK_PTR->succ = 0;
1033 EXIT_BLOCK_PTR->pred = 0;
1035 n_edges = 0;
1038 /* Identify the edges between basic blocks.
1040 NONLOCAL_LABEL_LIST is a list of non-local labels in the function. Blocks
1041 that are otherwise unreachable may be reachable with a non-local goto.
1043 BB_EH_END is an array indexed by basic block number in which we record
1044 the list of exception regions active at the end of the basic block. */
1046 static void
1047 make_edges (label_value_list)
1048 rtx label_value_list;
1050 int i;
1051 sbitmap *edge_cache = NULL;
1053 /* Assume no computed jump; revise as we create edges. */
1054 current_function_has_computed_jump = 0;
1056 /* Heavy use of computed goto in machine-generated code can lead to
1057 nearly fully-connected CFGs. In that case we spend a significant
1058 amount of time searching the edge lists for duplicates. */
1059 if (forced_labels || label_value_list)
1061 edge_cache = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
1062 sbitmap_vector_zero (edge_cache, n_basic_blocks);
1065 /* By nature of the way these get numbered, block 0 is always the entry. */
1066 make_edge (edge_cache, ENTRY_BLOCK_PTR, BASIC_BLOCK (0), EDGE_FALLTHRU);
1068 for (i = 0; i < n_basic_blocks; ++i)
1070 basic_block bb = BASIC_BLOCK (i);
1071 rtx insn, x;
1072 enum rtx_code code;
1073 int force_fallthru = 0;
1075 /* Examine the last instruction of the block, and discover the
1076 ways we can leave the block. */
1078 insn = bb->end;
1079 code = GET_CODE (insn);
1081 /* A branch. */
1082 if (code == JUMP_INSN)
1084 rtx tmp;
1086 /* Recognize exception handling placeholders. */
1087 if (GET_CODE (PATTERN (insn)) == RESX)
1088 make_eh_edge (edge_cache, bb, insn);
1090 /* Recognize a non-local goto as a branch outside the
1091 current function. */
1092 else if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
1095 /* ??? Recognize a tablejump and do the right thing. */
1096 else if ((tmp = JUMP_LABEL (insn)) != NULL_RTX
1097 && (tmp = NEXT_INSN (tmp)) != NULL_RTX
1098 && GET_CODE (tmp) == JUMP_INSN
1099 && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
1100 || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
1102 rtvec vec;
1103 int j;
1105 if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
1106 vec = XVEC (PATTERN (tmp), 0);
1107 else
1108 vec = XVEC (PATTERN (tmp), 1);
1110 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
1111 make_label_edge (edge_cache, bb,
1112 XEXP (RTVEC_ELT (vec, j), 0), 0);
1114 /* Some targets (eg, ARM) emit a conditional jump that also
1115 contains the out-of-range target. Scan for these and
1116 add an edge if necessary. */
1117 if ((tmp = single_set (insn)) != NULL
1118 && SET_DEST (tmp) == pc_rtx
1119 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
1120 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
1121 make_label_edge (edge_cache, bb,
1122 XEXP (XEXP (SET_SRC (tmp), 2), 0), 0);
1124 #ifdef CASE_DROPS_THROUGH
1125 /* Silly VAXen. The ADDR_VEC is going to be in the way of
1126 us naturally detecting fallthru into the next block. */
1127 force_fallthru = 1;
1128 #endif
1131 /* If this is a computed jump, then mark it as reaching
1132 everything on the label_value_list and forced_labels list. */
1133 else if (computed_jump_p (insn))
1135 current_function_has_computed_jump = 1;
1137 for (x = label_value_list; x; x = XEXP (x, 1))
1138 make_label_edge (edge_cache, bb, XEXP (x, 0), EDGE_ABNORMAL);
1140 for (x = forced_labels; x; x = XEXP (x, 1))
1141 make_label_edge (edge_cache, bb, XEXP (x, 0), EDGE_ABNORMAL);
1144 /* Returns create an exit out. */
1145 else if (returnjump_p (insn))
1146 make_edge (edge_cache, bb, EXIT_BLOCK_PTR, 0);
1148 /* Otherwise, we have a plain conditional or unconditional jump. */
1149 else
1151 if (! JUMP_LABEL (insn))
1152 abort ();
1153 make_label_edge (edge_cache, bb, JUMP_LABEL (insn), 0);
1157 /* If this is a sibling call insn, then this is in effect a
1158 combined call and return, and so we need an edge to the
1159 exit block. No need to worry about EH edges, since we
1160 wouldn't have created the sibling call in the first place. */
1162 if (code == CALL_INSN && SIBLING_CALL_P (insn))
1163 make_edge (edge_cache, bb, EXIT_BLOCK_PTR,
1164 EDGE_ABNORMAL | EDGE_ABNORMAL_CALL);
1166 /* If this is a CALL_INSN, then mark it as reaching the active EH
1167 handler for this CALL_INSN. If we're handling non-call
1168 exceptions then any insn can reach any of the active handlers.
1170 Also mark the CALL_INSN as reaching any nonlocal goto handler. */
1172 else if (code == CALL_INSN || flag_non_call_exceptions)
1174 /* Add any appropriate EH edges. */
1175 make_eh_edge (edge_cache, bb, insn);
1177 if (code == CALL_INSN && nonlocal_goto_handler_labels)
1179 /* ??? This could be made smarter: in some cases it's possible
1180 to tell that certain calls will not do a nonlocal goto.
1182 For example, if the nested functions that do the nonlocal
1183 gotos do not have their addresses taken, then only calls to
1184 those functions or to other nested functions that use them
1185 could possibly do nonlocal gotos. */
1186 /* We do know that a REG_EH_REGION note with a value less
1187 than 0 is guaranteed not to perform a non-local goto. */
1188 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1189 if (!note || INTVAL (XEXP (note, 0)) >= 0)
1190 for (x = nonlocal_goto_handler_labels; x; x = XEXP (x, 1))
1191 make_label_edge (edge_cache, bb, XEXP (x, 0),
1192 EDGE_ABNORMAL | EDGE_ABNORMAL_CALL);
1196 /* Find out if we can drop through to the next block. */
1197 insn = next_nonnote_insn (insn);
1198 if (!insn || (i + 1 == n_basic_blocks && force_fallthru))
1199 make_edge (edge_cache, bb, EXIT_BLOCK_PTR, EDGE_FALLTHRU);
1200 else if (i + 1 < n_basic_blocks)
1202 rtx tmp = BLOCK_HEAD (i + 1);
1203 if (GET_CODE (tmp) == NOTE)
1204 tmp = next_nonnote_insn (tmp);
1205 if (force_fallthru || insn == tmp)
1206 make_edge (edge_cache, bb, BASIC_BLOCK (i + 1), EDGE_FALLTHRU);
1210 if (edge_cache)
1211 sbitmap_vector_free (edge_cache);
1214 /* Create an edge between two basic blocks. FLAGS are auxiliary information
1215 about the edge that is accumulated between calls. */
1217 void
1218 make_edge (edge_cache, src, dst, flags)
1219 sbitmap *edge_cache;
1220 basic_block src, dst;
1221 int flags;
1223 int use_edge_cache;
1224 edge e;
1226 /* Don't bother with edge cache for ENTRY or EXIT; there aren't that
1227 many edges to them, and we didn't allocate memory for it. */
1228 use_edge_cache = (edge_cache
1229 && src != ENTRY_BLOCK_PTR
1230 && dst != EXIT_BLOCK_PTR);
1232 /* Make sure we don't add duplicate edges. */
1233 switch (use_edge_cache)
1235 default:
1236 /* Quick test for non-existance of the edge. */
1237 if (! TEST_BIT (edge_cache[src->index], dst->index))
1238 break;
1240 /* The edge exists; early exit if no work to do. */
1241 if (flags == 0)
1242 return;
1244 /* FALLTHRU */
1245 case 0:
1246 for (e = src->succ; e; e = e->succ_next)
1247 if (e->dest == dst)
1249 e->flags |= flags;
1250 return;
1252 break;
1255 e = (edge) xcalloc (1, sizeof (*e));
1256 n_edges++;
1258 e->succ_next = src->succ;
1259 e->pred_next = dst->pred;
1260 e->src = src;
1261 e->dest = dst;
1262 e->flags = flags;
1264 src->succ = e;
1265 dst->pred = e;
1267 if (use_edge_cache)
1268 SET_BIT (edge_cache[src->index], dst->index);
1271 /* Create an edge from a basic block to a label. */
1273 static void
1274 make_label_edge (edge_cache, src, label, flags)
1275 sbitmap *edge_cache;
1276 basic_block src;
1277 rtx label;
1278 int flags;
1280 if (GET_CODE (label) != CODE_LABEL)
1281 abort ();
1283 /* If the label was never emitted, this insn is junk, but avoid a
1284 crash trying to refer to BLOCK_FOR_INSN (label). This can happen
1285 as a result of a syntax error and a diagnostic has already been
1286 printed. */
1288 if (INSN_UID (label) == 0)
1289 return;
1291 make_edge (edge_cache, src, BLOCK_FOR_INSN (label), flags);
1294 /* Create the edges generated by INSN in REGION. */
1296 static void
1297 make_eh_edge (edge_cache, src, insn)
1298 sbitmap *edge_cache;
1299 basic_block src;
1300 rtx insn;
1302 int is_call = (GET_CODE (insn) == CALL_INSN ? EDGE_ABNORMAL_CALL : 0);
1303 rtx handlers, i;
1305 handlers = reachable_handlers (insn);
1307 for (i = handlers; i; i = XEXP (i, 1))
1308 make_label_edge (edge_cache, src, XEXP (i, 0),
1309 EDGE_ABNORMAL | EDGE_EH | is_call);
1311 free_INSN_LIST_list (&handlers);
1314 /* Identify critical edges and set the bits appropriately. */
1316 static void
1317 mark_critical_edges ()
1319 int i, n = n_basic_blocks;
1320 basic_block bb;
1322 /* We begin with the entry block. This is not terribly important now,
1323 but could be if a front end (Fortran) implemented alternate entry
1324 points. */
1325 bb = ENTRY_BLOCK_PTR;
1326 i = -1;
1328 while (1)
1330 edge e;
1332 /* (1) Critical edges must have a source with multiple successors. */
1333 if (bb->succ && bb->succ->succ_next)
1335 for (e = bb->succ; e; e = e->succ_next)
1337 /* (2) Critical edges must have a destination with multiple
1338 predecessors. Note that we know there is at least one
1339 predecessor -- the edge we followed to get here. */
1340 if (e->dest->pred->pred_next)
1341 e->flags |= EDGE_CRITICAL;
1342 else
1343 e->flags &= ~EDGE_CRITICAL;
1346 else
1348 for (e = bb->succ; e; e = e->succ_next)
1349 e->flags &= ~EDGE_CRITICAL;
1352 if (++i >= n)
1353 break;
1354 bb = BASIC_BLOCK (i);
1358 /* Split a block BB after insn INSN creating a new fallthru edge.
1359 Return the new edge. Note that to keep other parts of the compiler happy,
1360 this function renumbers all the basic blocks so that the new
1361 one has a number one greater than the block split. */
1363 edge
1364 split_block (bb, insn)
1365 basic_block bb;
1366 rtx insn;
1368 basic_block new_bb;
1369 edge new_edge;
1370 edge e;
1371 rtx bb_note;
1372 int i, j;
1374 /* There is no point splitting the block after its end. */
1375 if (bb->end == insn)
1376 return 0;
1378 /* Create the new structures. */
1379 new_bb = (basic_block) obstack_alloc (&flow_obstack, sizeof (*new_bb));
1380 new_edge = (edge) xcalloc (1, sizeof (*new_edge));
1381 n_edges++;
1383 memset (new_bb, 0, sizeof (*new_bb));
1385 new_bb->head = NEXT_INSN (insn);
1386 new_bb->end = bb->end;
1387 bb->end = insn;
1389 new_bb->succ = bb->succ;
1390 bb->succ = new_edge;
1391 new_bb->pred = new_edge;
1392 new_bb->count = bb->count;
1393 new_bb->loop_depth = bb->loop_depth;
1395 new_edge->src = bb;
1396 new_edge->dest = new_bb;
1397 new_edge->flags = EDGE_FALLTHRU;
1398 new_edge->probability = REG_BR_PROB_BASE;
1399 new_edge->count = bb->count;
1401 /* Redirect the src of the successor edges of bb to point to new_bb. */
1402 for (e = new_bb->succ; e; e = e->succ_next)
1403 e->src = new_bb;
1405 /* Place the new block just after the block being split. */
1406 VARRAY_GROW (basic_block_info, ++n_basic_blocks);
1408 /* Some parts of the compiler expect blocks to be number in
1409 sequential order so insert the new block immediately after the
1410 block being split.. */
1411 j = bb->index;
1412 for (i = n_basic_blocks - 1; i > j + 1; --i)
1414 basic_block tmp = BASIC_BLOCK (i - 1);
1415 BASIC_BLOCK (i) = tmp;
1416 tmp->index = i;
1419 BASIC_BLOCK (i) = new_bb;
1420 new_bb->index = i;
1422 /* Create the basic block note. */
1423 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK,
1424 new_bb->head);
1425 NOTE_BASIC_BLOCK (bb_note) = new_bb;
1426 new_bb->head = bb_note;
1428 update_bb_for_insn (new_bb);
1430 if (bb->global_live_at_start)
1432 new_bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1433 new_bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1434 COPY_REG_SET (new_bb->global_live_at_end, bb->global_live_at_end);
1436 /* We now have to calculate which registers are live at the end
1437 of the split basic block and at the start of the new basic
1438 block. Start with those registers that are known to be live
1439 at the end of the original basic block and get
1440 propagate_block to determine which registers are live. */
1441 COPY_REG_SET (new_bb->global_live_at_start, bb->global_live_at_end);
1442 propagate_block (new_bb, new_bb->global_live_at_start, NULL, NULL, 0);
1443 COPY_REG_SET (bb->global_live_at_end,
1444 new_bb->global_live_at_start);
1447 return new_edge;
1451 /* Split a (typically critical) edge. Return the new block.
1452 Abort on abnormal edges.
1454 ??? The code generally expects to be called on critical edges.
1455 The case of a block ending in an unconditional jump to a
1456 block with multiple predecessors is not handled optimally. */
1458 basic_block
1459 split_edge (edge_in)
1460 edge edge_in;
1462 basic_block old_pred, bb, old_succ;
1463 edge edge_out;
1464 rtx bb_note;
1465 int i, j;
1467 /* Abnormal edges cannot be split. */
1468 if ((edge_in->flags & EDGE_ABNORMAL) != 0)
1469 abort ();
1471 old_pred = edge_in->src;
1472 old_succ = edge_in->dest;
1474 /* Remove the existing edge from the destination's pred list. */
1476 edge *pp;
1477 for (pp = &old_succ->pred; *pp != edge_in; pp = &(*pp)->pred_next)
1478 continue;
1479 *pp = edge_in->pred_next;
1480 edge_in->pred_next = NULL;
1483 /* Create the new structures. */
1484 bb = (basic_block) obstack_alloc (&flow_obstack, sizeof (*bb));
1485 edge_out = (edge) xcalloc (1, sizeof (*edge_out));
1486 n_edges++;
1488 memset (bb, 0, sizeof (*bb));
1490 /* ??? This info is likely going to be out of date very soon. */
1491 if (old_succ->global_live_at_start)
1493 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1494 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1495 COPY_REG_SET (bb->global_live_at_start, old_succ->global_live_at_start);
1496 COPY_REG_SET (bb->global_live_at_end, old_succ->global_live_at_start);
1499 /* Wire them up. */
1500 bb->pred = edge_in;
1501 bb->succ = edge_out;
1502 bb->count = edge_in->count;
1504 edge_in->dest = bb;
1505 edge_in->flags &= ~EDGE_CRITICAL;
1507 edge_out->pred_next = old_succ->pred;
1508 edge_out->succ_next = NULL;
1509 edge_out->src = bb;
1510 edge_out->dest = old_succ;
1511 edge_out->flags = EDGE_FALLTHRU;
1512 edge_out->probability = REG_BR_PROB_BASE;
1513 edge_out->count = edge_in->count;
1515 old_succ->pred = edge_out;
1517 /* Tricky case -- if there existed a fallthru into the successor
1518 (and we're not it) we must add a new unconditional jump around
1519 the new block we're actually interested in.
1521 Further, if that edge is critical, this means a second new basic
1522 block must be created to hold it. In order to simplify correct
1523 insn placement, do this before we touch the existing basic block
1524 ordering for the block we were really wanting. */
1525 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1527 edge e;
1528 for (e = edge_out->pred_next; e; e = e->pred_next)
1529 if (e->flags & EDGE_FALLTHRU)
1530 break;
1532 if (e)
1534 basic_block jump_block;
1535 rtx pos;
1537 if ((e->flags & EDGE_CRITICAL) == 0
1538 && e->src != ENTRY_BLOCK_PTR)
1540 /* Non critical -- we can simply add a jump to the end
1541 of the existing predecessor. */
1542 jump_block = e->src;
1544 else
1546 /* We need a new block to hold the jump. The simplest
1547 way to do the bulk of the work here is to recursively
1548 call ourselves. */
1549 jump_block = split_edge (e);
1550 e = jump_block->succ;
1553 /* Now add the jump insn ... */
1554 pos = emit_jump_insn_after (gen_jump (old_succ->head),
1555 jump_block->end);
1556 jump_block->end = pos;
1557 if (basic_block_for_insn)
1558 set_block_for_insn (pos, jump_block);
1559 emit_barrier_after (pos);
1561 /* ... let jump know that label is in use, ... */
1562 JUMP_LABEL (pos) = old_succ->head;
1563 ++LABEL_NUSES (old_succ->head);
1565 /* ... and clear fallthru on the outgoing edge. */
1566 e->flags &= ~EDGE_FALLTHRU;
1568 /* Continue splitting the interesting edge. */
1572 /* Place the new block just in front of the successor. */
1573 VARRAY_GROW (basic_block_info, ++n_basic_blocks);
1574 if (old_succ == EXIT_BLOCK_PTR)
1575 j = n_basic_blocks - 1;
1576 else
1577 j = old_succ->index;
1578 for (i = n_basic_blocks - 1; i > j; --i)
1580 basic_block tmp = BASIC_BLOCK (i - 1);
1581 BASIC_BLOCK (i) = tmp;
1582 tmp->index = i;
1584 BASIC_BLOCK (i) = bb;
1585 bb->index = i;
1587 /* Create the basic block note.
1589 Where we place the note can have a noticable impact on the generated
1590 code. Consider this cfg:
1596 +->1-->2--->E
1598 +--+
1600 If we need to insert an insn on the edge from block 0 to block 1,
1601 we want to ensure the instructions we insert are outside of any
1602 loop notes that physically sit between block 0 and block 1. Otherwise
1603 we confuse the loop optimizer into thinking the loop is a phony. */
1604 if (old_succ != EXIT_BLOCK_PTR
1605 && PREV_INSN (old_succ->head)
1606 && GET_CODE (PREV_INSN (old_succ->head)) == NOTE
1607 && NOTE_LINE_NUMBER (PREV_INSN (old_succ->head)) == NOTE_INSN_LOOP_BEG)
1608 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK,
1609 PREV_INSN (old_succ->head));
1610 else if (old_succ != EXIT_BLOCK_PTR)
1611 bb_note = emit_note_before (NOTE_INSN_BASIC_BLOCK, old_succ->head);
1612 else
1613 bb_note = emit_note_after (NOTE_INSN_BASIC_BLOCK, get_last_insn ());
1614 NOTE_BASIC_BLOCK (bb_note) = bb;
1615 bb->head = bb->end = bb_note;
1617 /* Not quite simple -- for non-fallthru edges, we must adjust the
1618 predecessor's jump instruction to target our new block. */
1619 if ((edge_in->flags & EDGE_FALLTHRU) == 0)
1621 rtx tmp, insn = old_pred->end;
1622 rtx old_label = old_succ->head;
1623 rtx new_label = gen_label_rtx ();
1625 if (GET_CODE (insn) != JUMP_INSN)
1626 abort ();
1628 /* ??? Recognize a tablejump and adjust all matching cases. */
1629 if ((tmp = JUMP_LABEL (insn)) != NULL_RTX
1630 && (tmp = NEXT_INSN (tmp)) != NULL_RTX
1631 && GET_CODE (tmp) == JUMP_INSN
1632 && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
1633 || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
1635 rtvec vec;
1636 int j;
1638 if (GET_CODE (PATTERN (tmp)) == ADDR_VEC)
1639 vec = XVEC (PATTERN (tmp), 0);
1640 else
1641 vec = XVEC (PATTERN (tmp), 1);
1643 for (j = GET_NUM_ELEM (vec) - 1; j >= 0; --j)
1644 if (XEXP (RTVEC_ELT (vec, j), 0) == old_label)
1646 RTVEC_ELT (vec, j) = gen_rtx_LABEL_REF (VOIDmode, new_label);
1647 --LABEL_NUSES (old_label);
1648 ++LABEL_NUSES (new_label);
1651 /* Handle casesi dispatch insns */
1652 if ((tmp = single_set (insn)) != NULL
1653 && SET_DEST (tmp) == pc_rtx
1654 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
1655 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF
1656 && XEXP (XEXP (SET_SRC (tmp), 2), 0) == old_label)
1658 XEXP (SET_SRC (tmp), 2) = gen_rtx_LABEL_REF (VOIDmode,
1659 new_label);
1660 --LABEL_NUSES (old_label);
1661 ++LABEL_NUSES (new_label);
1664 else
1666 /* This would have indicated an abnormal edge. */
1667 if (computed_jump_p (insn))
1668 abort ();
1670 /* A return instruction can't be redirected. */
1671 if (returnjump_p (insn))
1672 abort ();
1674 /* If the insn doesn't go where we think, we're confused. */
1675 if (JUMP_LABEL (insn) != old_label)
1676 abort ();
1678 redirect_jump (insn, new_label, 0);
1681 emit_label_before (new_label, bb_note);
1682 bb->head = new_label;
1685 return bb;
1688 /* Queue instructions for insertion on an edge between two basic blocks.
1689 The new instructions and basic blocks (if any) will not appear in the
1690 CFG until commit_edge_insertions is called. */
1692 void
1693 insert_insn_on_edge (pattern, e)
1694 rtx pattern;
1695 edge e;
1697 /* We cannot insert instructions on an abnormal critical edge.
1698 It will be easier to find the culprit if we die now. */
1699 if ((e->flags & (EDGE_ABNORMAL|EDGE_CRITICAL))
1700 == (EDGE_ABNORMAL|EDGE_CRITICAL))
1701 abort ();
1703 if (e->insns == NULL_RTX)
1704 start_sequence ();
1705 else
1706 push_to_sequence (e->insns);
1708 emit_insn (pattern);
1710 e->insns = get_insns ();
1711 end_sequence ();
1714 /* Update the CFG for the instructions queued on edge E. */
1716 static void
1717 commit_one_edge_insertion (e)
1718 edge e;
1720 rtx before = NULL_RTX, after = NULL_RTX, insns, tmp, last;
1721 basic_block bb;
1723 /* Pull the insns off the edge now since the edge might go away. */
1724 insns = e->insns;
1725 e->insns = NULL_RTX;
1727 /* Figure out where to put these things. If the destination has
1728 one predecessor, insert there. Except for the exit block. */
1729 if (e->dest->pred->pred_next == NULL
1730 && e->dest != EXIT_BLOCK_PTR)
1732 bb = e->dest;
1734 /* Get the location correct wrt a code label, and "nice" wrt
1735 a basic block note, and before everything else. */
1736 tmp = bb->head;
1737 if (GET_CODE (tmp) == CODE_LABEL)
1738 tmp = NEXT_INSN (tmp);
1739 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
1740 tmp = NEXT_INSN (tmp);
1741 if (tmp == bb->head)
1742 before = tmp;
1743 else
1744 after = PREV_INSN (tmp);
1747 /* If the source has one successor and the edge is not abnormal,
1748 insert there. Except for the entry block. */
1749 else if ((e->flags & EDGE_ABNORMAL) == 0
1750 && e->src->succ->succ_next == NULL
1751 && e->src != ENTRY_BLOCK_PTR)
1753 bb = e->src;
1754 /* It is possible to have a non-simple jump here. Consider a target
1755 where some forms of unconditional jumps clobber a register. This
1756 happens on the fr30 for example.
1758 We know this block has a single successor, so we can just emit
1759 the queued insns before the jump. */
1760 if (GET_CODE (bb->end) == JUMP_INSN)
1762 before = bb->end;
1764 else
1766 /* We'd better be fallthru, or we've lost track of what's what. */
1767 if ((e->flags & EDGE_FALLTHRU) == 0)
1768 abort ();
1770 after = bb->end;
1774 /* Otherwise we must split the edge. */
1775 else
1777 bb = split_edge (e);
1778 after = bb->end;
1781 /* Now that we've found the spot, do the insertion. */
1783 /* Set the new block number for these insns, if structure is allocated. */
1784 if (basic_block_for_insn)
1786 rtx i;
1787 for (i = insns; i != NULL_RTX; i = NEXT_INSN (i))
1788 set_block_for_insn (i, bb);
1791 if (before)
1793 emit_insns_before (insns, before);
1794 if (before == bb->head)
1795 bb->head = insns;
1797 last = prev_nonnote_insn (before);
1799 else
1801 last = emit_insns_after (insns, after);
1802 if (after == bb->end)
1803 bb->end = last;
1806 if (returnjump_p (last))
1808 /* ??? Remove all outgoing edges from BB and add one for EXIT.
1809 This is not currently a problem because this only happens
1810 for the (single) epilogue, which already has a fallthru edge
1811 to EXIT. */
1813 e = bb->succ;
1814 if (e->dest != EXIT_BLOCK_PTR
1815 || e->succ_next != NULL
1816 || (e->flags & EDGE_FALLTHRU) == 0)
1817 abort ();
1818 e->flags &= ~EDGE_FALLTHRU;
1820 emit_barrier_after (last);
1821 bb->end = last;
1823 if (before)
1824 flow_delete_insn (before);
1826 else if (GET_CODE (last) == JUMP_INSN)
1827 abort ();
1830 /* Update the CFG for all queued instructions. */
1832 void
1833 commit_edge_insertions ()
1835 int i;
1836 basic_block bb;
1838 #ifdef ENABLE_CHECKING
1839 verify_flow_info ();
1840 #endif
1842 i = -1;
1843 bb = ENTRY_BLOCK_PTR;
1844 while (1)
1846 edge e, next;
1848 for (e = bb->succ; e; e = next)
1850 next = e->succ_next;
1851 if (e->insns)
1852 commit_one_edge_insertion (e);
1855 if (++i >= n_basic_blocks)
1856 break;
1857 bb = BASIC_BLOCK (i);
1861 /* Add fake edges to the function exit for any non constant calls in
1862 the bitmap of blocks specified by BLOCKS or to the whole CFG if
1863 BLOCKS is zero. Return the nuber of blocks that were split. */
1866 flow_call_edges_add (blocks)
1867 sbitmap blocks;
1869 int i;
1870 int blocks_split = 0;
1871 int bb_num = 0;
1872 basic_block *bbs;
1874 /* Map bb indicies into basic block pointers since split_block
1875 will renumber the basic blocks. */
1877 bbs = xmalloc (n_basic_blocks * sizeof (*bbs));
1879 if (! blocks)
1881 for (i = 0; i < n_basic_blocks; i++)
1882 bbs[bb_num++] = BASIC_BLOCK (i);
1884 else
1886 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
1888 bbs[bb_num++] = BASIC_BLOCK (i);
1893 /* Now add fake edges to the function exit for any non constant
1894 calls since there is no way that we can determine if they will
1895 return or not... */
1897 for (i = 0; i < bb_num; i++)
1899 basic_block bb = bbs[i];
1900 rtx insn;
1901 rtx prev_insn;
1903 for (insn = bb->end; ; insn = prev_insn)
1905 prev_insn = PREV_INSN (insn);
1906 if (GET_CODE (insn) == CALL_INSN && ! CONST_CALL_P (insn))
1908 edge e;
1910 /* Note that the following may create a new basic block
1911 and renumber the existing basic blocks. */
1912 e = split_block (bb, insn);
1913 if (e)
1914 blocks_split++;
1916 make_edge (NULL, bb, EXIT_BLOCK_PTR, EDGE_FAKE);
1918 if (insn == bb->head)
1919 break;
1923 if (blocks_split)
1924 verify_flow_info ();
1926 free (bbs);
1927 return blocks_split;
1930 /* Delete all unreachable basic blocks. */
1932 static void
1933 delete_unreachable_blocks ()
1935 basic_block *worklist, *tos;
1936 edge e;
1937 int i, n;
1939 n = n_basic_blocks;
1940 tos = worklist = (basic_block *) xmalloc (sizeof (basic_block) * n);
1942 /* Use basic_block->aux as a marker. Clear them all. */
1944 for (i = 0; i < n; ++i)
1945 BASIC_BLOCK (i)->aux = NULL;
1947 /* Add our starting points to the worklist. Almost always there will
1948 be only one. It isn't inconcievable that we might one day directly
1949 support Fortran alternate entry points. */
1951 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1953 *tos++ = e->dest;
1955 /* Mark the block with a handy non-null value. */
1956 e->dest->aux = e;
1959 /* Iterate: find everything reachable from what we've already seen. */
1961 while (tos != worklist)
1963 basic_block b = *--tos;
1965 for (e = b->succ; e; e = e->succ_next)
1966 if (!e->dest->aux)
1968 *tos++ = e->dest;
1969 e->dest->aux = e;
1973 /* Delete all unreachable basic blocks. Count down so that we
1974 don't interfere with the block renumbering that happens in
1975 flow_delete_block. */
1977 for (i = n - 1; i >= 0; --i)
1979 basic_block b = BASIC_BLOCK (i);
1981 if (b->aux != NULL)
1982 /* This block was found. Tidy up the mark. */
1983 b->aux = NULL;
1984 else
1985 flow_delete_block (b);
1988 tidy_fallthru_edges ();
1990 free (worklist);
1993 /* Return true if NOTE is not one of the ones that must be kept paired,
1994 so that we may simply delete them. */
1996 static int
1997 can_delete_note_p (note)
1998 rtx note;
2000 return (NOTE_LINE_NUMBER (note) == NOTE_INSN_DELETED
2001 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BASIC_BLOCK);
2004 /* Unlink a chain of insns between START and FINISH, leaving notes
2005 that must be paired. */
2007 void
2008 flow_delete_insn_chain (start, finish)
2009 rtx start, finish;
2011 /* Unchain the insns one by one. It would be quicker to delete all
2012 of these with a single unchaining, rather than one at a time, but
2013 we need to keep the NOTE's. */
2015 rtx next;
2017 while (1)
2019 next = NEXT_INSN (start);
2020 if (GET_CODE (start) == NOTE && !can_delete_note_p (start))
2022 else if (GET_CODE (start) == CODE_LABEL
2023 && ! can_delete_label_p (start))
2025 const char *name = LABEL_NAME (start);
2026 PUT_CODE (start, NOTE);
2027 NOTE_LINE_NUMBER (start) = NOTE_INSN_DELETED_LABEL;
2028 NOTE_SOURCE_FILE (start) = name;
2030 else
2031 next = flow_delete_insn (start);
2033 if (start == finish)
2034 break;
2035 start = next;
2039 /* Delete the insns in a (non-live) block. We physically delete every
2040 non-deleted-note insn, and update the flow graph appropriately.
2042 Return nonzero if we deleted an exception handler. */
2044 /* ??? Preserving all such notes strikes me as wrong. It would be nice
2045 to post-process the stream to remove empty blocks, loops, ranges, etc. */
2048 flow_delete_block (b)
2049 basic_block b;
2051 int deleted_handler = 0;
2052 rtx insn, end, tmp;
2054 /* If the head of this block is a CODE_LABEL, then it might be the
2055 label for an exception handler which can't be reached.
2057 We need to remove the label from the exception_handler_label list
2058 and remove the associated NOTE_INSN_EH_REGION_BEG and
2059 NOTE_INSN_EH_REGION_END notes. */
2061 insn = b->head;
2063 never_reached_warning (insn);
2065 if (GET_CODE (insn) == CODE_LABEL)
2066 maybe_remove_eh_handler (insn);
2068 /* Include any jump table following the basic block. */
2069 end = b->end;
2070 if (GET_CODE (end) == JUMP_INSN
2071 && (tmp = JUMP_LABEL (end)) != NULL_RTX
2072 && (tmp = NEXT_INSN (tmp)) != NULL_RTX
2073 && GET_CODE (tmp) == JUMP_INSN
2074 && (GET_CODE (PATTERN (tmp)) == ADDR_VEC
2075 || GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC))
2076 end = tmp;
2078 /* Include any barrier that may follow the basic block. */
2079 tmp = next_nonnote_insn (end);
2080 if (tmp && GET_CODE (tmp) == BARRIER)
2081 end = tmp;
2083 /* Selectively delete the entire chain. */
2084 flow_delete_insn_chain (insn, end);
2086 /* Remove the edges into and out of this block. Note that there may
2087 indeed be edges in, if we are removing an unreachable loop. */
2089 edge e, next, *q;
2091 for (e = b->pred; e; e = next)
2093 for (q = &e->src->succ; *q != e; q = &(*q)->succ_next)
2094 continue;
2095 *q = e->succ_next;
2096 next = e->pred_next;
2097 n_edges--;
2098 free (e);
2100 for (e = b->succ; e; e = next)
2102 for (q = &e->dest->pred; *q != e; q = &(*q)->pred_next)
2103 continue;
2104 *q = e->pred_next;
2105 next = e->succ_next;
2106 n_edges--;
2107 free (e);
2110 b->pred = NULL;
2111 b->succ = NULL;
2114 /* Remove the basic block from the array, and compact behind it. */
2115 expunge_block (b);
2117 return deleted_handler;
2120 /* Remove block B from the basic block array and compact behind it. */
2122 static void
2123 expunge_block (b)
2124 basic_block b;
2126 int i, n = n_basic_blocks;
2128 for (i = b->index; i + 1 < n; ++i)
2130 basic_block x = BASIC_BLOCK (i + 1);
2131 BASIC_BLOCK (i) = x;
2132 x->index = i;
2135 basic_block_info->num_elements--;
2136 n_basic_blocks--;
2139 /* Delete INSN by patching it out. Return the next insn. */
2142 flow_delete_insn (insn)
2143 rtx insn;
2145 rtx prev = PREV_INSN (insn);
2146 rtx next = NEXT_INSN (insn);
2147 rtx note;
2149 PREV_INSN (insn) = NULL_RTX;
2150 NEXT_INSN (insn) = NULL_RTX;
2151 INSN_DELETED_P (insn) = 1;
2153 if (prev)
2154 NEXT_INSN (prev) = next;
2155 if (next)
2156 PREV_INSN (next) = prev;
2157 else
2158 set_last_insn (prev);
2160 if (GET_CODE (insn) == CODE_LABEL)
2161 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
2163 /* If deleting a jump, decrement the use count of the label. Deleting
2164 the label itself should happen in the normal course of block merging. */
2165 if (GET_CODE (insn) == JUMP_INSN
2166 && JUMP_LABEL (insn)
2167 && GET_CODE (JUMP_LABEL (insn)) == CODE_LABEL)
2168 LABEL_NUSES (JUMP_LABEL (insn))--;
2170 /* Also if deleting an insn that references a label. */
2171 else if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)) != NULL_RTX
2172 && GET_CODE (XEXP (note, 0)) == CODE_LABEL)
2173 LABEL_NUSES (XEXP (note, 0))--;
2175 return next;
2178 /* True if a given label can be deleted. */
2180 static int
2181 can_delete_label_p (label)
2182 rtx label;
2184 rtx x;
2186 if (LABEL_PRESERVE_P (label))
2187 return 0;
2189 for (x = forced_labels; x; x = XEXP (x, 1))
2190 if (label == XEXP (x, 0))
2191 return 0;
2192 for (x = label_value_list; x; x = XEXP (x, 1))
2193 if (label == XEXP (x, 0))
2194 return 0;
2195 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2196 if (label == XEXP (x, 0))
2197 return 0;
2199 /* User declared labels must be preserved. */
2200 if (LABEL_NAME (label) != 0)
2201 return 0;
2203 return 1;
2206 static int
2207 tail_recursion_label_p (label)
2208 rtx label;
2210 rtx x;
2212 for (x = tail_recursion_label_list; x; x = XEXP (x, 1))
2213 if (label == XEXP (x, 0))
2214 return 1;
2216 return 0;
2219 /* Blocks A and B are to be merged into a single block A. The insns
2220 are already contiguous, hence `nomove'. */
2222 void
2223 merge_blocks_nomove (a, b)
2224 basic_block a, b;
2226 edge e;
2227 rtx b_head, b_end, a_end;
2228 rtx del_first = NULL_RTX, del_last = NULL_RTX;
2229 int b_empty = 0;
2231 /* If there was a CODE_LABEL beginning B, delete it. */
2232 b_head = b->head;
2233 b_end = b->end;
2234 if (GET_CODE (b_head) == CODE_LABEL)
2236 /* Detect basic blocks with nothing but a label. This can happen
2237 in particular at the end of a function. */
2238 if (b_head == b_end)
2239 b_empty = 1;
2240 del_first = del_last = b_head;
2241 b_head = NEXT_INSN (b_head);
2244 /* Delete the basic block note. */
2245 if (NOTE_INSN_BASIC_BLOCK_P (b_head))
2247 if (b_head == b_end)
2248 b_empty = 1;
2249 if (! del_last)
2250 del_first = b_head;
2251 del_last = b_head;
2252 b_head = NEXT_INSN (b_head);
2255 /* If there was a jump out of A, delete it. */
2256 a_end = a->end;
2257 if (GET_CODE (a_end) == JUMP_INSN)
2259 rtx prev;
2261 for (prev = PREV_INSN (a_end); ; prev = PREV_INSN (prev))
2262 if (GET_CODE (prev) != NOTE
2263 || NOTE_LINE_NUMBER (prev) == NOTE_INSN_BASIC_BLOCK
2264 || prev == a->head)
2265 break;
2267 del_first = a_end;
2269 #ifdef HAVE_cc0
2270 /* If this was a conditional jump, we need to also delete
2271 the insn that set cc0. */
2272 if (prev && sets_cc0_p (prev))
2274 rtx tmp = prev;
2275 prev = prev_nonnote_insn (prev);
2276 if (!prev)
2277 prev = a->head;
2278 del_first = tmp;
2280 #endif
2282 a_end = prev;
2284 else if (GET_CODE (NEXT_INSN (a_end)) == BARRIER)
2285 del_first = NEXT_INSN (a_end);
2287 /* Delete everything marked above as well as crap that might be
2288 hanging out between the two blocks. */
2289 flow_delete_insn_chain (del_first, del_last);
2291 /* Normally there should only be one successor of A and that is B, but
2292 partway though the merge of blocks for conditional_execution we'll
2293 be merging a TEST block with THEN and ELSE successors. Free the
2294 whole lot of them and hope the caller knows what they're doing. */
2295 while (a->succ)
2296 remove_edge (a->succ);
2298 /* Adjust the edges out of B for the new owner. */
2299 for (e = b->succ; e; e = e->succ_next)
2300 e->src = a;
2301 a->succ = b->succ;
2303 /* B hasn't quite yet ceased to exist. Attempt to prevent mishap. */
2304 b->pred = b->succ = NULL;
2306 /* Reassociate the insns of B with A. */
2307 if (!b_empty)
2309 if (basic_block_for_insn)
2311 BLOCK_FOR_INSN (b_head) = a;
2312 while (b_head != b_end)
2314 b_head = NEXT_INSN (b_head);
2315 BLOCK_FOR_INSN (b_head) = a;
2318 a_end = b_end;
2320 a->end = a_end;
2322 expunge_block (b);
2325 /* Blocks A and B are to be merged into a single block. A has no incoming
2326 fallthru edge, so it can be moved before B without adding or modifying
2327 any jumps (aside from the jump from A to B). */
2329 static int
2330 merge_blocks_move_predecessor_nojumps (a, b)
2331 basic_block a, b;
2333 rtx start, end, barrier;
2334 int index;
2336 start = a->head;
2337 end = a->end;
2339 barrier = next_nonnote_insn (end);
2340 if (GET_CODE (barrier) != BARRIER)
2341 abort ();
2342 flow_delete_insn (barrier);
2344 /* Move block and loop notes out of the chain so that we do not
2345 disturb their order.
2347 ??? A better solution would be to squeeze out all the non-nested notes
2348 and adjust the block trees appropriately. Even better would be to have
2349 a tighter connection between block trees and rtl so that this is not
2350 necessary. */
2351 start = squeeze_notes (start, end);
2353 /* Scramble the insn chain. */
2354 if (end != PREV_INSN (b->head))
2355 reorder_insns (start, end, PREV_INSN (b->head));
2357 if (rtl_dump_file)
2359 fprintf (rtl_dump_file, "Moved block %d before %d and merged.\n",
2360 a->index, b->index);
2363 /* Swap the records for the two blocks around. Although we are deleting B,
2364 A is now where B was and we want to compact the BB array from where
2365 A used to be. */
2366 BASIC_BLOCK (a->index) = b;
2367 BASIC_BLOCK (b->index) = a;
2368 index = a->index;
2369 a->index = b->index;
2370 b->index = index;
2372 /* Now blocks A and B are contiguous. Merge them. */
2373 merge_blocks_nomove (a, b);
2375 return 1;
2378 /* Blocks A and B are to be merged into a single block. B has no outgoing
2379 fallthru edge, so it can be moved after A without adding or modifying
2380 any jumps (aside from the jump from A to B). */
2382 static int
2383 merge_blocks_move_successor_nojumps (a, b)
2384 basic_block a, b;
2386 rtx start, end, barrier;
2388 start = b->head;
2389 end = b->end;
2390 barrier = NEXT_INSN (end);
2392 /* Recognize a jump table following block B. */
2393 if (GET_CODE (barrier) == CODE_LABEL
2394 && NEXT_INSN (barrier)
2395 && GET_CODE (NEXT_INSN (barrier)) == JUMP_INSN
2396 && (GET_CODE (PATTERN (NEXT_INSN (barrier))) == ADDR_VEC
2397 || GET_CODE (PATTERN (NEXT_INSN (barrier))) == ADDR_DIFF_VEC))
2399 end = NEXT_INSN (barrier);
2400 barrier = NEXT_INSN (end);
2403 /* There had better have been a barrier there. Delete it. */
2404 if (GET_CODE (barrier) != BARRIER)
2405 abort ();
2406 flow_delete_insn (barrier);
2408 /* Move block and loop notes out of the chain so that we do not
2409 disturb their order.
2411 ??? A better solution would be to squeeze out all the non-nested notes
2412 and adjust the block trees appropriately. Even better would be to have
2413 a tighter connection between block trees and rtl so that this is not
2414 necessary. */
2415 start = squeeze_notes (start, end);
2417 /* Scramble the insn chain. */
2418 reorder_insns (start, end, a->end);
2420 /* Now blocks A and B are contiguous. Merge them. */
2421 merge_blocks_nomove (a, b);
2423 if (rtl_dump_file)
2425 fprintf (rtl_dump_file, "Moved block %d after %d and merged.\n",
2426 b->index, a->index);
2429 return 1;
2432 /* Attempt to merge basic blocks that are potentially non-adjacent.
2433 Return true iff the attempt succeeded. */
2435 static int
2436 merge_blocks (e, b, c)
2437 edge e;
2438 basic_block b, c;
2440 /* If C has a tail recursion label, do not merge. There is no
2441 edge recorded from the call_placeholder back to this label, as
2442 that would make optimize_sibling_and_tail_recursive_calls more
2443 complex for no gain. */
2444 if (GET_CODE (c->head) == CODE_LABEL
2445 && tail_recursion_label_p (c->head))
2446 return 0;
2448 /* If B has a fallthru edge to C, no need to move anything. */
2449 if (e->flags & EDGE_FALLTHRU)
2451 merge_blocks_nomove (b, c);
2453 if (rtl_dump_file)
2455 fprintf (rtl_dump_file, "Merged %d and %d without moving.\n",
2456 b->index, c->index);
2459 return 1;
2461 else
2463 edge tmp_edge;
2464 int c_has_outgoing_fallthru;
2465 int b_has_incoming_fallthru;
2467 /* We must make sure to not munge nesting of exception regions,
2468 lexical blocks, and loop notes.
2470 The first is taken care of by requiring that the active eh
2471 region at the end of one block always matches the active eh
2472 region at the beginning of the next block.
2474 The later two are taken care of by squeezing out all the notes. */
2476 /* ??? A throw/catch edge (or any abnormal edge) should be rarely
2477 executed and we may want to treat blocks which have two out
2478 edges, one normal, one abnormal as only having one edge for
2479 block merging purposes. */
2481 for (tmp_edge = c->succ; tmp_edge; tmp_edge = tmp_edge->succ_next)
2482 if (tmp_edge->flags & EDGE_FALLTHRU)
2483 break;
2484 c_has_outgoing_fallthru = (tmp_edge != NULL);
2486 for (tmp_edge = b->pred; tmp_edge; tmp_edge = tmp_edge->pred_next)
2487 if (tmp_edge->flags & EDGE_FALLTHRU)
2488 break;
2489 b_has_incoming_fallthru = (tmp_edge != NULL);
2491 /* If B does not have an incoming fallthru, then it can be moved
2492 immediately before C without introducing or modifying jumps.
2493 C cannot be the first block, so we do not have to worry about
2494 accessing a non-existent block. */
2495 if (! b_has_incoming_fallthru)
2496 return merge_blocks_move_predecessor_nojumps (b, c);
2498 /* Otherwise, we're going to try to move C after B. If C does
2499 not have an outgoing fallthru, then it can be moved
2500 immediately after B without introducing or modifying jumps. */
2501 if (! c_has_outgoing_fallthru)
2502 return merge_blocks_move_successor_nojumps (b, c);
2504 /* Otherwise, we'll need to insert an extra jump, and possibly
2505 a new block to contain it. */
2506 /* ??? Not implemented yet. */
2508 return 0;
2512 /* Top level driver for merge_blocks. */
2514 static void
2515 try_merge_blocks ()
2517 int i;
2519 /* Attempt to merge blocks as made possible by edge removal. If a block
2520 has only one successor, and the successor has only one predecessor,
2521 they may be combined. */
2523 for (i = 0; i < n_basic_blocks;)
2525 basic_block c, b = BASIC_BLOCK (i);
2526 edge s;
2528 /* A loop because chains of blocks might be combineable. */
2529 while ((s = b->succ) != NULL
2530 && s->succ_next == NULL
2531 && (s->flags & EDGE_EH) == 0
2532 && (c = s->dest) != EXIT_BLOCK_PTR
2533 && c->pred->pred_next == NULL
2534 /* If the jump insn has side effects, we can't kill the edge. */
2535 && (GET_CODE (b->end) != JUMP_INSN
2536 || onlyjump_p (b->end))
2537 && merge_blocks (s, b, c))
2538 continue;
2540 /* Don't get confused by the index shift caused by deleting blocks. */
2541 i = b->index + 1;
2545 /* The given edge should potentially be a fallthru edge. If that is in
2546 fact true, delete the jump and barriers that are in the way. */
2548 void
2549 tidy_fallthru_edge (e, b, c)
2550 edge e;
2551 basic_block b, c;
2553 rtx q;
2555 /* ??? In a late-running flow pass, other folks may have deleted basic
2556 blocks by nopping out blocks, leaving multiple BARRIERs between here
2557 and the target label. They ought to be chastized and fixed.
2559 We can also wind up with a sequence of undeletable labels between
2560 one block and the next.
2562 So search through a sequence of barriers, labels, and notes for
2563 the head of block C and assert that we really do fall through. */
2565 if (next_real_insn (b->end) != next_real_insn (PREV_INSN (c->head)))
2566 return;
2568 /* Remove what will soon cease being the jump insn from the source block.
2569 If block B consisted only of this single jump, turn it into a deleted
2570 note. */
2571 q = b->end;
2572 if (GET_CODE (q) == JUMP_INSN
2573 && onlyjump_p (q)
2574 && (any_uncondjump_p (q)
2575 || (b->succ == e && e->succ_next == NULL)))
2577 #ifdef HAVE_cc0
2578 /* If this was a conditional jump, we need to also delete
2579 the insn that set cc0. */
2580 if (any_condjump_p (q) && sets_cc0_p (PREV_INSN (q)))
2581 q = PREV_INSN (q);
2582 #endif
2584 if (b->head == q)
2586 PUT_CODE (q, NOTE);
2587 NOTE_LINE_NUMBER (q) = NOTE_INSN_DELETED;
2588 NOTE_SOURCE_FILE (q) = 0;
2590 else
2592 q = PREV_INSN (q);
2594 /* We don't want a block to end on a line-number note since that has
2595 the potential of changing the code between -g and not -g. */
2596 while (GET_CODE (q) == NOTE && NOTE_LINE_NUMBER (q) >= 0)
2597 q = PREV_INSN (q);
2600 b->end = q;
2603 /* Selectively unlink the sequence. */
2604 if (q != PREV_INSN (c->head))
2605 flow_delete_insn_chain (NEXT_INSN (q), PREV_INSN (c->head));
2607 e->flags |= EDGE_FALLTHRU;
2610 /* Fix up edges that now fall through, or rather should now fall through
2611 but previously required a jump around now deleted blocks. Simplify
2612 the search by only examining blocks numerically adjacent, since this
2613 is how find_basic_blocks created them. */
2615 static void
2616 tidy_fallthru_edges ()
2618 int i;
2620 for (i = 1; i < n_basic_blocks; ++i)
2622 basic_block b = BASIC_BLOCK (i - 1);
2623 basic_block c = BASIC_BLOCK (i);
2624 edge s;
2626 /* We care about simple conditional or unconditional jumps with
2627 a single successor.
2629 If we had a conditional branch to the next instruction when
2630 find_basic_blocks was called, then there will only be one
2631 out edge for the block which ended with the conditional
2632 branch (since we do not create duplicate edges).
2634 Furthermore, the edge will be marked as a fallthru because we
2635 merge the flags for the duplicate edges. So we do not want to
2636 check that the edge is not a FALLTHRU edge. */
2637 if ((s = b->succ) != NULL
2638 && ! (s->flags & EDGE_COMPLEX)
2639 && s->succ_next == NULL
2640 && s->dest == c
2641 /* If the jump insn has side effects, we can't tidy the edge. */
2642 && (GET_CODE (b->end) != JUMP_INSN
2643 || onlyjump_p (b->end)))
2644 tidy_fallthru_edge (s, b, c);
2648 /* Perform data flow analysis.
2649 F is the first insn of the function; FLAGS is a set of PROP_* flags
2650 to be used in accumulating flow info. */
2652 void
2653 life_analysis (f, file, flags)
2654 rtx f;
2655 FILE *file;
2656 int flags;
2658 #ifdef ELIMINABLE_REGS
2659 register int i;
2660 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
2661 #endif
2663 /* Record which registers will be eliminated. We use this in
2664 mark_used_regs. */
2666 CLEAR_HARD_REG_SET (elim_reg_set);
2668 #ifdef ELIMINABLE_REGS
2669 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2670 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
2671 #else
2672 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
2673 #endif
2675 if (! optimize)
2676 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC);
2678 /* The post-reload life analysis have (on a global basis) the same
2679 registers live as was computed by reload itself. elimination
2680 Otherwise offsets and such may be incorrect.
2682 Reload will make some registers as live even though they do not
2683 appear in the rtl.
2685 We don't want to create new auto-incs after reload, since they
2686 are unlikely to be useful and can cause problems with shared
2687 stack slots. */
2688 if (reload_completed)
2689 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
2691 /* We want alias analysis information for local dead store elimination. */
2692 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
2693 init_alias_analysis ();
2695 /* Always remove no-op moves. Do this before other processing so
2696 that we don't have to keep re-scanning them. */
2697 delete_noop_moves (f);
2699 /* Some targets can emit simpler epilogues if they know that sp was
2700 not ever modified during the function. After reload, of course,
2701 we've already emitted the epilogue so there's no sense searching. */
2702 if (! reload_completed)
2703 notice_stack_pointer_modification (f);
2705 /* Allocate and zero out data structures that will record the
2706 data from lifetime analysis. */
2707 allocate_reg_life_data ();
2708 allocate_bb_life_data ();
2710 /* Find the set of registers live on function exit. */
2711 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
2713 /* "Update" life info from zero. It'd be nice to begin the
2714 relaxation with just the exit and noreturn blocks, but that set
2715 is not immediately handy. */
2717 if (flags & PROP_REG_INFO)
2718 memset (regs_ever_live, 0, sizeof (regs_ever_live));
2719 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
2721 /* Clean up. */
2722 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
2723 end_alias_analysis ();
2725 if (file)
2726 dump_flow_info (file);
2728 free_basic_block_vars (1);
2730 #ifdef ENABLE_CHECKING
2732 rtx insn;
2734 /* Search for any REG_LABEL notes whih reference deleted labels. */
2735 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2737 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
2739 if (inote && GET_CODE (inote) == NOTE_INSN_DELETED_LABEL)
2740 abort ();
2743 #endif
2746 /* A subroutine of verify_wide_reg, called through for_each_rtx.
2747 Search for REGNO. If found, abort if it is not wider than word_mode. */
2749 static int
2750 verify_wide_reg_1 (px, pregno)
2751 rtx *px;
2752 void *pregno;
2754 rtx x = *px;
2755 unsigned int regno = *(int *) pregno;
2757 if (GET_CODE (x) == REG && REGNO (x) == regno)
2759 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
2760 abort ();
2761 return 1;
2763 return 0;
2766 /* A subroutine of verify_local_live_at_start. Search through insns
2767 between HEAD and END looking for register REGNO. */
2769 static void
2770 verify_wide_reg (regno, head, end)
2771 int regno;
2772 rtx head, end;
2774 while (1)
2776 if (INSN_P (head)
2777 && for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno))
2778 return;
2779 if (head == end)
2780 break;
2781 head = NEXT_INSN (head);
2784 /* We didn't find the register at all. Something's way screwy. */
2785 if (rtl_dump_file)
2786 fprintf (rtl_dump_file, "Aborting in verify_wide_reg; reg %d\n", regno);
2787 print_rtl_and_abort ();
2790 /* A subroutine of update_life_info. Verify that there are no untoward
2791 changes in live_at_start during a local update. */
2793 static void
2794 verify_local_live_at_start (new_live_at_start, bb)
2795 regset new_live_at_start;
2796 basic_block bb;
2798 if (reload_completed)
2800 /* After reload, there are no pseudos, nor subregs of multi-word
2801 registers. The regsets should exactly match. */
2802 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
2804 if (rtl_dump_file)
2806 fprintf (rtl_dump_file,
2807 "live_at_start mismatch in bb %d, aborting\n",
2808 bb->index);
2809 debug_bitmap_file (rtl_dump_file, bb->global_live_at_start);
2810 debug_bitmap_file (rtl_dump_file, new_live_at_start);
2812 print_rtl_and_abort ();
2815 else
2817 int i;
2819 /* Find the set of changed registers. */
2820 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
2822 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
2824 /* No registers should die. */
2825 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
2827 if (rtl_dump_file)
2828 fprintf (rtl_dump_file,
2829 "Register %d died unexpectedly in block %d\n", i,
2830 bb->index);
2831 print_rtl_and_abort ();
2834 /* Verify that the now-live register is wider than word_mode. */
2835 verify_wide_reg (i, bb->head, bb->end);
2840 /* Updates life information starting with the basic blocks set in BLOCKS.
2841 If BLOCKS is null, consider it to be the universal set.
2843 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
2844 we are only expecting local modifications to basic blocks. If we find
2845 extra registers live at the beginning of a block, then we either killed
2846 useful data, or we have a broken split that wants data not provided.
2847 If we find registers removed from live_at_start, that means we have
2848 a broken peephole that is killing a register it shouldn't.
2850 ??? This is not true in one situation -- when a pre-reload splitter
2851 generates subregs of a multi-word pseudo, current life analysis will
2852 lose the kill. So we _can_ have a pseudo go live. How irritating.
2854 Including PROP_REG_INFO does not properly refresh regs_ever_live
2855 unless the caller resets it to zero. */
2857 void
2858 update_life_info (blocks, extent, prop_flags)
2859 sbitmap blocks;
2860 enum update_life_extent extent;
2861 int prop_flags;
2863 regset tmp;
2864 regset_head tmp_head;
2865 int i;
2867 tmp = INITIALIZE_REG_SET (tmp_head);
2869 /* For a global update, we go through the relaxation process again. */
2870 if (extent != UPDATE_LIFE_LOCAL)
2872 calculate_global_regs_live (blocks, blocks,
2873 prop_flags & PROP_SCAN_DEAD_CODE);
2875 /* If asked, remove notes from the blocks we'll update. */
2876 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
2877 count_or_remove_death_notes (blocks, 1);
2880 if (blocks)
2882 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
2884 basic_block bb = BASIC_BLOCK (i);
2886 COPY_REG_SET (tmp, bb->global_live_at_end);
2887 propagate_block (bb, tmp, NULL, NULL, prop_flags);
2889 if (extent == UPDATE_LIFE_LOCAL)
2890 verify_local_live_at_start (tmp, bb);
2893 else
2895 for (i = n_basic_blocks - 1; i >= 0; --i)
2897 basic_block bb = BASIC_BLOCK (i);
2899 COPY_REG_SET (tmp, bb->global_live_at_end);
2900 propagate_block (bb, tmp, NULL, NULL, prop_flags);
2902 if (extent == UPDATE_LIFE_LOCAL)
2903 verify_local_live_at_start (tmp, bb);
2907 FREE_REG_SET (tmp);
2909 if (prop_flags & PROP_REG_INFO)
2911 /* The only pseudos that are live at the beginning of the function
2912 are those that were not set anywhere in the function. local-alloc
2913 doesn't know how to handle these correctly, so mark them as not
2914 local to any one basic block. */
2915 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
2916 FIRST_PSEUDO_REGISTER, i,
2917 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2919 /* We have a problem with any pseudoreg that lives across the setjmp.
2920 ANSI says that if a user variable does not change in value between
2921 the setjmp and the longjmp, then the longjmp preserves it. This
2922 includes longjmp from a place where the pseudo appears dead.
2923 (In principle, the value still exists if it is in scope.)
2924 If the pseudo goes in a hard reg, some other value may occupy
2925 that hard reg where this pseudo is dead, thus clobbering the pseudo.
2926 Conclusion: such a pseudo must not go in a hard reg. */
2927 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
2928 FIRST_PSEUDO_REGISTER, i,
2930 if (regno_reg_rtx[i] != 0)
2932 REG_LIVE_LENGTH (i) = -1;
2933 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
2939 /* Free the variables allocated by find_basic_blocks.
2941 KEEP_HEAD_END_P is non-zero if basic_block_info is not to be freed. */
2943 void
2944 free_basic_block_vars (keep_head_end_p)
2945 int keep_head_end_p;
2947 if (basic_block_for_insn)
2949 VARRAY_FREE (basic_block_for_insn);
2950 basic_block_for_insn = NULL;
2953 if (! keep_head_end_p)
2955 clear_edges ();
2956 VARRAY_FREE (basic_block_info);
2957 n_basic_blocks = 0;
2959 ENTRY_BLOCK_PTR->aux = NULL;
2960 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
2961 EXIT_BLOCK_PTR->aux = NULL;
2962 EXIT_BLOCK_PTR->global_live_at_start = NULL;
2966 /* Return nonzero if the destination of SET equals the source. */
2968 static int
2969 set_noop_p (set)
2970 rtx set;
2972 rtx src = SET_SRC (set);
2973 rtx dst = SET_DEST (set);
2975 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
2977 if (SUBREG_WORD (src) != SUBREG_WORD (dst))
2978 return 0;
2979 src = SUBREG_REG (src);
2980 dst = SUBREG_REG (dst);
2983 return (GET_CODE (src) == REG && GET_CODE (dst) == REG
2984 && REGNO (src) == REGNO (dst));
2987 /* Return nonzero if an insn consists only of SETs, each of which only sets a
2988 value to itself. */
2990 static int
2991 noop_move_p (insn)
2992 rtx insn;
2994 rtx pat = PATTERN (insn);
2996 /* Insns carrying these notes are useful later on. */
2997 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
2998 return 0;
3000 if (GET_CODE (pat) == SET && set_noop_p (pat))
3001 return 1;
3003 if (GET_CODE (pat) == PARALLEL)
3005 int i;
3006 /* If nothing but SETs of registers to themselves,
3007 this insn can also be deleted. */
3008 for (i = 0; i < XVECLEN (pat, 0); i++)
3010 rtx tem = XVECEXP (pat, 0, i);
3012 if (GET_CODE (tem) == USE
3013 || GET_CODE (tem) == CLOBBER)
3014 continue;
3016 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
3017 return 0;
3020 return 1;
3022 return 0;
3025 /* Delete any insns that copy a register to itself. */
3027 static void
3028 delete_noop_moves (f)
3029 rtx f;
3031 rtx insn;
3032 for (insn = f; insn; insn = NEXT_INSN (insn))
3034 if (GET_CODE (insn) == INSN && noop_move_p (insn))
3036 PUT_CODE (insn, NOTE);
3037 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
3038 NOTE_SOURCE_FILE (insn) = 0;
3043 /* Determine if the stack pointer is constant over the life of the function.
3044 Only useful before prologues have been emitted. */
3046 static void
3047 notice_stack_pointer_modification_1 (x, pat, data)
3048 rtx x;
3049 rtx pat ATTRIBUTE_UNUSED;
3050 void *data ATTRIBUTE_UNUSED;
3052 if (x == stack_pointer_rtx
3053 /* The stack pointer is only modified indirectly as the result
3054 of a push until later in flow. See the comments in rtl.texi
3055 regarding Embedded Side-Effects on Addresses. */
3056 || (GET_CODE (x) == MEM
3057 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
3058 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
3059 current_function_sp_is_unchanging = 0;
3062 static void
3063 notice_stack_pointer_modification (f)
3064 rtx f;
3066 rtx insn;
3068 /* Assume that the stack pointer is unchanging if alloca hasn't
3069 been used. */
3070 current_function_sp_is_unchanging = !current_function_calls_alloca;
3071 if (! current_function_sp_is_unchanging)
3072 return;
3074 for (insn = f; insn; insn = NEXT_INSN (insn))
3076 if (INSN_P (insn))
3078 /* Check if insn modifies the stack pointer. */
3079 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
3080 NULL);
3081 if (! current_function_sp_is_unchanging)
3082 return;
3087 /* Mark a register in SET. Hard registers in large modes get all
3088 of their component registers set as well. */
3090 static void
3091 mark_reg (reg, xset)
3092 rtx reg;
3093 void *xset;
3095 regset set = (regset) xset;
3096 int regno = REGNO (reg);
3098 if (GET_MODE (reg) == BLKmode)
3099 abort ();
3101 SET_REGNO_REG_SET (set, regno);
3102 if (regno < FIRST_PSEUDO_REGISTER)
3104 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
3105 while (--n > 0)
3106 SET_REGNO_REG_SET (set, regno + n);
3110 /* Mark those regs which are needed at the end of the function as live
3111 at the end of the last basic block. */
3113 static void
3114 mark_regs_live_at_end (set)
3115 regset set;
3117 int i;
3119 /* If exiting needs the right stack value, consider the stack pointer
3120 live at the end of the function. */
3121 if ((HAVE_epilogue && reload_completed)
3122 || ! EXIT_IGNORE_STACK
3123 || (! FRAME_POINTER_REQUIRED
3124 && ! current_function_calls_alloca
3125 && flag_omit_frame_pointer)
3126 || current_function_sp_is_unchanging)
3128 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
3131 /* Mark the frame pointer if needed at the end of the function. If
3132 we end up eliminating it, it will be removed from the live list
3133 of each basic block by reload. */
3135 if (! reload_completed || frame_pointer_needed)
3137 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
3138 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3139 /* If they are different, also mark the hard frame pointer as live. */
3140 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
3141 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
3142 #endif
3145 #ifdef PIC_OFFSET_TABLE_REGNUM
3146 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
3147 /* Many architectures have a GP register even without flag_pic.
3148 Assume the pic register is not in use, or will be handled by
3149 other means, if it is not fixed. */
3150 if (fixed_regs[PIC_OFFSET_TABLE_REGNUM])
3151 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
3152 #endif
3153 #endif
3155 /* Mark all global registers, and all registers used by the epilogue
3156 as being live at the end of the function since they may be
3157 referenced by our caller. */
3158 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3159 if (global_regs[i] || EPILOGUE_USES (i))
3160 SET_REGNO_REG_SET (set, i);
3162 if (HAVE_epilogue && reload_completed)
3164 /* Mark all call-saved registers that we actually used. */
3165 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3166 if (regs_ever_live[i] && ! call_used_regs[i] && ! LOCAL_REGNO (i))
3167 SET_REGNO_REG_SET (set, i);
3170 #ifdef EH_RETURN_DATA_REGNO
3171 /* Mark the registers that will contain data for the handler. */
3172 if (reload_completed && current_function_calls_eh_return)
3173 for (i = 0; ; ++i)
3175 unsigned regno = EH_RETURN_DATA_REGNO(i);
3176 if (regno == INVALID_REGNUM)
3177 break;
3178 SET_REGNO_REG_SET (set, regno);
3180 #endif
3181 #ifdef EH_RETURN_STACKADJ_RTX
3182 if ((! HAVE_epilogue || ! reload_completed)
3183 && current_function_calls_eh_return)
3185 rtx tmp = EH_RETURN_STACKADJ_RTX;
3186 if (tmp && REG_P (tmp))
3187 mark_reg (tmp, set);
3189 #endif
3190 #ifdef EH_RETURN_HANDLER_RTX
3191 if ((! HAVE_epilogue || ! reload_completed)
3192 && current_function_calls_eh_return)
3194 rtx tmp = EH_RETURN_HANDLER_RTX;
3195 if (tmp && REG_P (tmp))
3196 mark_reg (tmp, set);
3198 #endif
3200 /* Mark function return value. */
3201 diddle_return_value (mark_reg, set);
3204 /* Callback function for for_each_successor_phi. DATA is a regset.
3205 Sets the SRC_REGNO, the regno of the phi alternative for phi node
3206 INSN, in the regset. */
3208 static int
3209 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
3210 rtx insn ATTRIBUTE_UNUSED;
3211 int dest_regno ATTRIBUTE_UNUSED;
3212 int src_regno;
3213 void *data;
3215 regset live = (regset) data;
3216 SET_REGNO_REG_SET (live, src_regno);
3217 return 0;
3220 /* Propagate global life info around the graph of basic blocks. Begin
3221 considering blocks with their corresponding bit set in BLOCKS_IN.
3222 If BLOCKS_IN is null, consider it the universal set.
3224 BLOCKS_OUT is set for every block that was changed. */
3226 static void
3227 calculate_global_regs_live (blocks_in, blocks_out, flags)
3228 sbitmap blocks_in, blocks_out;
3229 int flags;
3231 basic_block *queue, *qhead, *qtail, *qend;
3232 regset tmp, new_live_at_end, call_used;
3233 regset_head tmp_head, call_used_head;
3234 regset_head new_live_at_end_head;
3235 int i;
3237 tmp = INITIALIZE_REG_SET (tmp_head);
3238 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
3239 call_used = INITIALIZE_REG_SET (call_used_head);
3241 /* Inconveniently, this is only redily available in hard reg set form. */
3242 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
3243 if (call_used_regs[i])
3244 SET_REGNO_REG_SET (call_used, i);
3246 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
3247 because the `head == tail' style test for an empty queue doesn't
3248 work with a full queue. */
3249 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
3250 qtail = queue;
3251 qhead = qend = queue + n_basic_blocks + 2;
3253 /* Queue the blocks set in the initial mask. Do this in reverse block
3254 number order so that we are more likely for the first round to do
3255 useful work. We use AUX non-null to flag that the block is queued. */
3256 if (blocks_in)
3258 /* Clear out the garbage that might be hanging out in bb->aux. */
3259 for (i = n_basic_blocks - 1; i >= 0; --i)
3260 BASIC_BLOCK (i)->aux = NULL;
3262 EXECUTE_IF_SET_IN_SBITMAP (blocks_in, 0, i,
3264 basic_block bb = BASIC_BLOCK (i);
3265 *--qhead = bb;
3266 bb->aux = bb;
3269 else
3271 for (i = 0; i < n_basic_blocks; ++i)
3273 basic_block bb = BASIC_BLOCK (i);
3274 *--qhead = bb;
3275 bb->aux = bb;
3279 if (blocks_out)
3280 sbitmap_zero (blocks_out);
3282 while (qhead != qtail)
3284 int rescan, changed;
3285 basic_block bb;
3286 edge e;
3288 bb = *qhead++;
3289 if (qhead == qend)
3290 qhead = queue;
3291 bb->aux = NULL;
3293 /* Begin by propogating live_at_start from the successor blocks. */
3294 CLEAR_REG_SET (new_live_at_end);
3295 for (e = bb->succ; e; e = e->succ_next)
3297 basic_block sb = e->dest;
3299 /* Call-clobbered registers die across exception and call edges. */
3300 /* ??? Abnormal call edges ignored for the moment, as this gets
3301 confused by sibling call edges, which crashes reg-stack. */
3302 if (e->flags & EDGE_EH)
3304 bitmap_operation (tmp, sb->global_live_at_start,
3305 call_used, BITMAP_AND_COMPL);
3306 IOR_REG_SET (new_live_at_end, tmp);
3308 else
3309 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
3312 /* The all-important stack pointer must always be live. */
3313 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
3315 /* Before reload, there are a few registers that must be forced
3316 live everywhere -- which might not already be the case for
3317 blocks within infinite loops. */
3318 if (! reload_completed)
3320 /* Any reference to any pseudo before reload is a potential
3321 reference of the frame pointer. */
3322 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
3324 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3325 /* Pseudos with argument area equivalences may require
3326 reloading via the argument pointer. */
3327 if (fixed_regs[ARG_POINTER_REGNUM])
3328 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
3329 #endif
3331 #ifdef PIC_OFFSET_TABLE_REGNUM
3332 /* Any constant, or pseudo with constant equivalences, may
3333 require reloading from memory using the pic register. */
3334 if (fixed_regs[PIC_OFFSET_TABLE_REGNUM])
3335 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
3336 #endif
3339 /* Regs used in phi nodes are not included in
3340 global_live_at_start, since they are live only along a
3341 particular edge. Set those regs that are live because of a
3342 phi node alternative corresponding to this particular block. */
3343 if (in_ssa_form)
3344 for_each_successor_phi (bb, &set_phi_alternative_reg,
3345 new_live_at_end);
3347 if (bb == ENTRY_BLOCK_PTR)
3349 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
3350 continue;
3353 /* On our first pass through this block, we'll go ahead and continue.
3354 Recognize first pass by local_set NULL. On subsequent passes, we
3355 get to skip out early if live_at_end wouldn't have changed. */
3357 if (bb->local_set == NULL)
3359 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
3360 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
3361 rescan = 1;
3363 else
3365 /* If any bits were removed from live_at_end, we'll have to
3366 rescan the block. This wouldn't be necessary if we had
3367 precalculated local_live, however with PROP_SCAN_DEAD_CODE
3368 local_live is really dependent on live_at_end. */
3369 CLEAR_REG_SET (tmp);
3370 rescan = bitmap_operation (tmp, bb->global_live_at_end,
3371 new_live_at_end, BITMAP_AND_COMPL);
3373 if (! rescan)
3375 /* If any of the registers in the new live_at_end set are
3376 conditionally set in this basic block, we must rescan.
3377 This is because conditional lifetimes at the end of the
3378 block do not just take the live_at_end set into account,
3379 but also the liveness at the start of each successor
3380 block. We can miss changes in those sets if we only
3381 compare the new live_at_end against the previous one. */
3382 CLEAR_REG_SET (tmp);
3383 rescan = bitmap_operation (tmp, new_live_at_end,
3384 bb->cond_local_set, BITMAP_AND);
3387 if (! rescan)
3389 /* Find the set of changed bits. Take this opportunity
3390 to notice that this set is empty and early out. */
3391 CLEAR_REG_SET (tmp);
3392 changed = bitmap_operation (tmp, bb->global_live_at_end,
3393 new_live_at_end, BITMAP_XOR);
3394 if (! changed)
3395 continue;
3397 /* If any of the changed bits overlap with local_set,
3398 we'll have to rescan the block. Detect overlap by
3399 the AND with ~local_set turning off bits. */
3400 rescan = bitmap_operation (tmp, tmp, bb->local_set,
3401 BITMAP_AND_COMPL);
3405 /* Let our caller know that BB changed enough to require its
3406 death notes updated. */
3407 if (blocks_out)
3408 SET_BIT (blocks_out, bb->index);
3410 if (! rescan)
3412 /* Add to live_at_start the set of all registers in
3413 new_live_at_end that aren't in the old live_at_end. */
3415 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
3416 BITMAP_AND_COMPL);
3417 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
3419 changed = bitmap_operation (bb->global_live_at_start,
3420 bb->global_live_at_start,
3421 tmp, BITMAP_IOR);
3422 if (! changed)
3423 continue;
3425 else
3427 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
3429 /* Rescan the block insn by insn to turn (a copy of) live_at_end
3430 into live_at_start. */
3431 propagate_block (bb, new_live_at_end, bb->local_set,
3432 bb->cond_local_set, flags);
3434 /* If live_at start didn't change, no need to go farther. */
3435 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
3436 continue;
3438 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
3441 /* Queue all predecessors of BB so that we may re-examine
3442 their live_at_end. */
3443 for (e = bb->pred; e; e = e->pred_next)
3445 basic_block pb = e->src;
3446 if (pb->aux == NULL)
3448 *qtail++ = pb;
3449 if (qtail == qend)
3450 qtail = queue;
3451 pb->aux = pb;
3456 FREE_REG_SET (tmp);
3457 FREE_REG_SET (new_live_at_end);
3458 FREE_REG_SET (call_used);
3460 if (blocks_out)
3462 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
3464 basic_block bb = BASIC_BLOCK (i);
3465 FREE_REG_SET (bb->local_set);
3466 FREE_REG_SET (bb->cond_local_set);
3469 else
3471 for (i = n_basic_blocks - 1; i >= 0; --i)
3473 basic_block bb = BASIC_BLOCK (i);
3474 FREE_REG_SET (bb->local_set);
3475 FREE_REG_SET (bb->cond_local_set);
3479 free (queue);
3482 /* Subroutines of life analysis. */
3484 /* Allocate the permanent data structures that represent the results
3485 of life analysis. Not static since used also for stupid life analysis. */
3487 static void
3488 allocate_bb_life_data ()
3490 register int i;
3492 for (i = 0; i < n_basic_blocks; i++)
3494 basic_block bb = BASIC_BLOCK (i);
3496 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
3497 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
3500 ENTRY_BLOCK_PTR->global_live_at_end
3501 = OBSTACK_ALLOC_REG_SET (&flow_obstack);
3502 EXIT_BLOCK_PTR->global_live_at_start
3503 = OBSTACK_ALLOC_REG_SET (&flow_obstack);
3505 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
3508 void
3509 allocate_reg_life_data ()
3511 int i;
3513 max_regno = max_reg_num ();
3515 /* Recalculate the register space, in case it has grown. Old style
3516 vector oriented regsets would set regset_{size,bytes} here also. */
3517 allocate_reg_info (max_regno, FALSE, FALSE);
3519 /* Reset all the data we'll collect in propagate_block and its
3520 subroutines. */
3521 for (i = 0; i < max_regno; i++)
3523 REG_N_SETS (i) = 0;
3524 REG_N_REFS (i) = 0;
3525 REG_N_DEATHS (i) = 0;
3526 REG_N_CALLS_CROSSED (i) = 0;
3527 REG_LIVE_LENGTH (i) = 0;
3528 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
3532 /* Delete dead instructions for propagate_block. */
3534 static void
3535 propagate_block_delete_insn (bb, insn)
3536 basic_block bb;
3537 rtx insn;
3539 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
3541 /* If the insn referred to a label, and that label was attached to
3542 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
3543 pretty much mandatory to delete it, because the ADDR_VEC may be
3544 referencing labels that no longer exist.
3546 INSN may reference a deleted label, particularly when a jump
3547 table has been optimized into a direct jump. There's no
3548 real good way to fix up the reference to the deleted label
3549 when the label is deleted, so we just allow it here.
3551 After dead code elimination is complete, we do search for
3552 any REG_LABEL notes which reference deleted labels as a
3553 sanity check. */
3555 if (inote && GET_CODE (inote) == CODE_LABEL)
3557 rtx label = XEXP (inote, 0);
3558 rtx next;
3560 /* The label may be forced if it has been put in the constant
3561 pool. If that is the only use we must discard the table
3562 jump following it, but not the label itself. */
3563 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
3564 && (next = next_nonnote_insn (label)) != NULL
3565 && GET_CODE (next) == JUMP_INSN
3566 && (GET_CODE (PATTERN (next)) == ADDR_VEC
3567 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
3569 rtx pat = PATTERN (next);
3570 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
3571 int len = XVECLEN (pat, diff_vec_p);
3572 int i;
3574 for (i = 0; i < len; i++)
3575 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
3577 flow_delete_insn (next);
3581 if (bb->end == insn)
3582 bb->end = PREV_INSN (insn);
3583 flow_delete_insn (insn);
3586 /* Delete dead libcalls for propagate_block. Return the insn
3587 before the libcall. */
3589 static rtx
3590 propagate_block_delete_libcall (bb, insn, note)
3591 basic_block bb;
3592 rtx insn, note;
3594 rtx first = XEXP (note, 0);
3595 rtx before = PREV_INSN (first);
3597 if (insn == bb->end)
3598 bb->end = before;
3600 flow_delete_insn_chain (first, insn);
3601 return before;
3604 /* Update the life-status of regs for one insn. Return the previous insn. */
3607 propagate_one_insn (pbi, insn)
3608 struct propagate_block_info *pbi;
3609 rtx insn;
3611 rtx prev = PREV_INSN (insn);
3612 int flags = pbi->flags;
3613 int insn_is_dead = 0;
3614 int libcall_is_dead = 0;
3615 rtx note;
3616 int i;
3618 if (! INSN_P (insn))
3619 return prev;
3621 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
3622 if (flags & PROP_SCAN_DEAD_CODE)
3624 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
3625 libcall_is_dead = (insn_is_dead && note != 0
3626 && libcall_dead_p (pbi, note, insn));
3629 /* If an instruction consists of just dead store(s) on final pass,
3630 delete it. */
3631 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
3633 /* If we're trying to delete a prologue or epilogue instruction
3634 that isn't flagged as possibly being dead, something is wrong.
3635 But if we are keeping the stack pointer depressed, we might well
3636 be deleting insns that are used to compute the amount to update
3637 it by, so they are fine. */
3638 if (reload_completed
3639 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
3640 && (TYPE_RETURNS_STACK_DEPRESSED
3641 (TREE_TYPE (current_function_decl))))
3642 && (((HAVE_epilogue || HAVE_prologue)
3643 && prologue_epilogue_contains (insn))
3644 || (HAVE_sibcall_epilogue
3645 && sibcall_epilogue_contains (insn)))
3646 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
3647 abort ();
3649 /* Record sets. Do this even for dead instructions, since they
3650 would have killed the values if they hadn't been deleted. */
3651 mark_set_regs (pbi, PATTERN (insn), insn);
3653 /* CC0 is now known to be dead. Either this insn used it,
3654 in which case it doesn't anymore, or clobbered it,
3655 so the next insn can't use it. */
3656 pbi->cc0_live = 0;
3658 if (libcall_is_dead)
3659 prev = propagate_block_delete_libcall (pbi->bb, insn, note);
3660 else
3661 propagate_block_delete_insn (pbi->bb, insn);
3663 return prev;
3666 /* See if this is an increment or decrement that can be merged into
3667 a following memory address. */
3668 #ifdef AUTO_INC_DEC
3670 register rtx x = single_set (insn);
3672 /* Does this instruction increment or decrement a register? */
3673 if ((flags & PROP_AUTOINC)
3674 && x != 0
3675 && GET_CODE (SET_DEST (x)) == REG
3676 && (GET_CODE (SET_SRC (x)) == PLUS
3677 || GET_CODE (SET_SRC (x)) == MINUS)
3678 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
3679 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3680 /* Ok, look for a following memory ref we can combine with.
3681 If one is found, change the memory ref to a PRE_INC
3682 or PRE_DEC, cancel this insn, and return 1.
3683 Return 0 if nothing has been done. */
3684 && try_pre_increment_1 (pbi, insn))
3685 return prev;
3687 #endif /* AUTO_INC_DEC */
3689 CLEAR_REG_SET (pbi->new_set);
3691 /* If this is not the final pass, and this insn is copying the value of
3692 a library call and it's dead, don't scan the insns that perform the
3693 library call, so that the call's arguments are not marked live. */
3694 if (libcall_is_dead)
3696 /* Record the death of the dest reg. */
3697 mark_set_regs (pbi, PATTERN (insn), insn);
3699 insn = XEXP (note, 0);
3700 return PREV_INSN (insn);
3702 else if (GET_CODE (PATTERN (insn)) == SET
3703 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
3704 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
3705 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
3706 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
3707 /* We have an insn to pop a constant amount off the stack.
3708 (Such insns use PLUS regardless of the direction of the stack,
3709 and any insn to adjust the stack by a constant is always a pop.)
3710 These insns, if not dead stores, have no effect on life. */
3712 else
3714 /* Any regs live at the time of a call instruction must not go
3715 in a register clobbered by calls. Find all regs now live and
3716 record this for them. */
3718 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
3719 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
3720 { REG_N_CALLS_CROSSED (i)++; });
3722 /* Record sets. Do this even for dead instructions, since they
3723 would have killed the values if they hadn't been deleted. */
3724 mark_set_regs (pbi, PATTERN (insn), insn);
3726 if (GET_CODE (insn) == CALL_INSN)
3728 register int i;
3729 rtx note, cond;
3731 cond = NULL_RTX;
3732 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
3733 cond = COND_EXEC_TEST (PATTERN (insn));
3735 /* Non-constant calls clobber memory. */
3736 if (! CONST_CALL_P (insn))
3738 free_EXPR_LIST_list (&pbi->mem_set_list);
3739 pbi->mem_set_list_len = 0;
3742 /* There may be extra registers to be clobbered. */
3743 for (note = CALL_INSN_FUNCTION_USAGE (insn);
3744 note;
3745 note = XEXP (note, 1))
3746 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
3747 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
3748 cond, insn, pbi->flags);
3750 /* Calls change all call-used and global registers. */
3751 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3752 if (call_used_regs[i] && ! global_regs[i]
3753 && ! fixed_regs[i])
3755 /* We do not want REG_UNUSED notes for these registers. */
3756 mark_set_1 (pbi, CLOBBER, gen_rtx_REG (reg_raw_mode[i], i),
3757 cond, insn,
3758 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
3762 /* If an insn doesn't use CC0, it becomes dead since we assume
3763 that every insn clobbers it. So show it dead here;
3764 mark_used_regs will set it live if it is referenced. */
3765 pbi->cc0_live = 0;
3767 /* Record uses. */
3768 if (! insn_is_dead)
3769 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
3771 /* Sometimes we may have inserted something before INSN (such as a move)
3772 when we make an auto-inc. So ensure we will scan those insns. */
3773 #ifdef AUTO_INC_DEC
3774 prev = PREV_INSN (insn);
3775 #endif
3777 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
3779 register int i;
3780 rtx note, cond;
3782 cond = NULL_RTX;
3783 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
3784 cond = COND_EXEC_TEST (PATTERN (insn));
3786 /* Calls use their arguments. */
3787 for (note = CALL_INSN_FUNCTION_USAGE (insn);
3788 note;
3789 note = XEXP (note, 1))
3790 if (GET_CODE (XEXP (note, 0)) == USE)
3791 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0),
3792 cond, insn);
3794 /* The stack ptr is used (honorarily) by a CALL insn. */
3795 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
3797 /* Calls may also reference any of the global registers,
3798 so they are made live. */
3799 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3800 if (global_regs[i])
3801 mark_used_reg (pbi, gen_rtx_REG (reg_raw_mode[i], i),
3802 cond, insn);
3806 /* On final pass, update counts of how many insns in which each reg
3807 is live. */
3808 if (flags & PROP_REG_INFO)
3809 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
3810 { REG_LIVE_LENGTH (i)++; });
3812 return prev;
3815 /* Initialize a propagate_block_info struct for public consumption.
3816 Note that the structure itself is opaque to this file, but that
3817 the user can use the regsets provided here. */
3819 struct propagate_block_info *
3820 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
3821 basic_block bb;
3822 regset live, local_set, cond_local_set;
3823 int flags;
3825 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
3827 pbi->bb = bb;
3828 pbi->reg_live = live;
3829 pbi->mem_set_list = NULL_RTX;
3830 pbi->mem_set_list_len = 0;
3831 pbi->local_set = local_set;
3832 pbi->cond_local_set = cond_local_set;
3833 pbi->cc0_live = 0;
3834 pbi->flags = flags;
3836 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3837 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
3838 else
3839 pbi->reg_next_use = NULL;
3841 pbi->new_set = BITMAP_XMALLOC ();
3843 #ifdef HAVE_conditional_execution
3844 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
3845 free_reg_cond_life_info);
3846 pbi->reg_cond_reg = BITMAP_XMALLOC ();
3848 /* If this block ends in a conditional branch, for each register live
3849 from one side of the branch and not the other, record the register
3850 as conditionally dead. */
3851 if (GET_CODE (bb->end) == JUMP_INSN
3852 && any_condjump_p (bb->end))
3854 regset_head diff_head;
3855 regset diff = INITIALIZE_REG_SET (diff_head);
3856 basic_block bb_true, bb_false;
3857 rtx cond_true, cond_false, set_src;
3858 int i;
3860 /* Identify the successor blocks. */
3861 bb_true = bb->succ->dest;
3862 if (bb->succ->succ_next != NULL)
3864 bb_false = bb->succ->succ_next->dest;
3866 if (bb->succ->flags & EDGE_FALLTHRU)
3868 basic_block t = bb_false;
3869 bb_false = bb_true;
3870 bb_true = t;
3872 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
3873 abort ();
3875 else
3877 /* This can happen with a conditional jump to the next insn. */
3878 if (JUMP_LABEL (bb->end) != bb_true->head)
3879 abort ();
3881 /* Simplest way to do nothing. */
3882 bb_false = bb_true;
3885 /* Extract the condition from the branch. */
3886 set_src = SET_SRC (pc_set (bb->end));
3887 cond_true = XEXP (set_src, 0);
3888 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
3889 GET_MODE (cond_true), XEXP (cond_true, 0),
3890 XEXP (cond_true, 1));
3891 if (GET_CODE (XEXP (set_src, 1)) == PC)
3893 rtx t = cond_false;
3894 cond_false = cond_true;
3895 cond_true = t;
3898 /* Compute which register lead different lives in the successors. */
3899 if (bitmap_operation (diff, bb_true->global_live_at_start,
3900 bb_false->global_live_at_start, BITMAP_XOR))
3902 rtx reg = XEXP (cond_true, 0);
3904 if (GET_CODE (reg) == SUBREG)
3905 reg = SUBREG_REG (reg);
3907 if (GET_CODE (reg) != REG)
3908 abort ();
3910 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
3912 /* For each such register, mark it conditionally dead. */
3913 EXECUTE_IF_SET_IN_REG_SET
3914 (diff, 0, i,
3916 struct reg_cond_life_info *rcli;
3917 rtx cond;
3919 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
3921 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
3922 cond = cond_false;
3923 else
3924 cond = cond_true;
3925 rcli->condition = cond;
3926 rcli->stores = const0_rtx;
3927 rcli->orig_condition = cond;
3929 splay_tree_insert (pbi->reg_cond_dead, i,
3930 (splay_tree_value) rcli);
3934 FREE_REG_SET (diff);
3936 #endif
3938 /* If this block has no successors, any stores to the frame that aren't
3939 used later in the block are dead. So make a pass over the block
3940 recording any such that are made and show them dead at the end. We do
3941 a very conservative and simple job here. */
3942 if (optimize
3943 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
3944 && (TYPE_RETURNS_STACK_DEPRESSED
3945 (TREE_TYPE (current_function_decl))))
3946 && (flags & PROP_SCAN_DEAD_CODE)
3947 && (bb->succ == NULL
3948 || (bb->succ->succ_next == NULL
3949 && bb->succ->dest == EXIT_BLOCK_PTR
3950 && ! current_function_calls_eh_return)))
3952 rtx insn;
3953 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
3954 if (GET_CODE (insn) == INSN
3955 && GET_CODE (PATTERN (insn)) == SET
3956 && GET_CODE (SET_DEST (PATTERN (insn))) == MEM)
3958 rtx mem = SET_DEST (PATTERN (insn));
3960 /* This optimization is performed by faking a store to the
3961 memory at the end of the block. This doesn't work for
3962 unchanging memories because multiple stores to unchanging
3963 memory is illegal and alias analysis doesn't consider it. */
3964 if (RTX_UNCHANGING_P (mem))
3965 continue;
3967 if (XEXP (mem, 0) == frame_pointer_rtx
3968 || (GET_CODE (XEXP (mem, 0)) == PLUS
3969 && XEXP (XEXP (mem, 0), 0) == frame_pointer_rtx
3970 && GET_CODE (XEXP (XEXP (mem, 0), 1)) == CONST_INT))
3972 #ifdef AUTO_INC_DEC
3973 /* Store a copy of mem, otherwise the address may be scrogged
3974 by find_auto_inc. This matters because insn_dead_p uses
3975 an rtx_equal_p check to determine if two addresses are
3976 the same. This works before find_auto_inc, but fails
3977 after find_auto_inc, causing discrepencies between the
3978 set of live registers calculated during the
3979 calculate_global_regs_live phase and what actually exists
3980 after flow completes, leading to aborts. */
3981 if (flags & PROP_AUTOINC)
3982 mem = shallow_copy_rtx (mem);
3983 #endif
3984 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
3985 if (++pbi->mem_set_list_len >= MAX_MEM_SET_LIST_LEN)
3986 break;
3991 return pbi;
3994 /* Release a propagate_block_info struct. */
3996 void
3997 free_propagate_block_info (pbi)
3998 struct propagate_block_info *pbi;
4000 free_EXPR_LIST_list (&pbi->mem_set_list);
4002 BITMAP_XFREE (pbi->new_set);
4004 #ifdef HAVE_conditional_execution
4005 splay_tree_delete (pbi->reg_cond_dead);
4006 BITMAP_XFREE (pbi->reg_cond_reg);
4007 #endif
4009 if (pbi->reg_next_use)
4010 free (pbi->reg_next_use);
4012 free (pbi);
4015 /* Compute the registers live at the beginning of a basic block BB from
4016 those live at the end.
4018 When called, REG_LIVE contains those live at the end. On return, it
4019 contains those live at the beginning.
4021 LOCAL_SET, if non-null, will be set with all registers killed
4022 unconditionally by this basic block.
4023 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
4024 killed conditionally by this basic block. If there is any unconditional
4025 set of a register, then the corresponding bit will be set in LOCAL_SET
4026 and cleared in COND_LOCAL_SET.
4027 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
4028 case, the resulting set will be equal to the union of the two sets that
4029 would otherwise be computed. */
4031 void
4032 propagate_block (bb, live, local_set, cond_local_set, flags)
4033 basic_block bb;
4034 regset live;
4035 regset local_set;
4036 regset cond_local_set;
4037 int flags;
4039 struct propagate_block_info *pbi;
4040 rtx insn, prev;
4042 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
4044 if (flags & PROP_REG_INFO)
4046 register int i;
4048 /* Process the regs live at the end of the block.
4049 Mark them as not local to any one basic block. */
4050 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
4051 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
4054 /* Scan the block an insn at a time from end to beginning. */
4056 for (insn = bb->end;; insn = prev)
4058 /* If this is a call to `setjmp' et al, warn if any
4059 non-volatile datum is live. */
4060 if ((flags & PROP_REG_INFO)
4061 && GET_CODE (insn) == NOTE
4062 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
4063 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
4065 prev = propagate_one_insn (pbi, insn);
4067 if (insn == bb->head)
4068 break;
4071 free_propagate_block_info (pbi);
4074 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
4075 (SET expressions whose destinations are registers dead after the insn).
4076 NEEDED is the regset that says which regs are alive after the insn.
4078 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.
4080 If X is the entire body of an insn, NOTES contains the reg notes
4081 pertaining to the insn. */
4083 static int
4084 insn_dead_p (pbi, x, call_ok, notes)
4085 struct propagate_block_info *pbi;
4086 rtx x;
4087 int call_ok;
4088 rtx notes ATTRIBUTE_UNUSED;
4090 enum rtx_code code = GET_CODE (x);
4092 #ifdef AUTO_INC_DEC
4093 /* If flow is invoked after reload, we must take existing AUTO_INC
4094 expresions into account. */
4095 if (reload_completed)
4097 for (; notes; notes = XEXP (notes, 1))
4099 if (REG_NOTE_KIND (notes) == REG_INC)
4101 int regno = REGNO (XEXP (notes, 0));
4103 /* Don't delete insns to set global regs. */
4104 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
4105 || REGNO_REG_SET_P (pbi->reg_live, regno))
4106 return 0;
4110 #endif
4112 /* If setting something that's a reg or part of one,
4113 see if that register's altered value will be live. */
4115 if (code == SET)
4117 rtx r = SET_DEST (x);
4119 #ifdef HAVE_cc0
4120 if (GET_CODE (r) == CC0)
4121 return ! pbi->cc0_live;
4122 #endif
4124 /* A SET that is a subroutine call cannot be dead. */
4125 if (GET_CODE (SET_SRC (x)) == CALL)
4127 if (! call_ok)
4128 return 0;
4131 /* Don't eliminate loads from volatile memory or volatile asms. */
4132 else if (volatile_refs_p (SET_SRC (x)))
4133 return 0;
4135 if (GET_CODE (r) == MEM)
4137 rtx temp;
4139 if (MEM_VOLATILE_P (r))
4140 return 0;
4142 /* Walk the set of memory locations we are currently tracking
4143 and see if one is an identical match to this memory location.
4144 If so, this memory write is dead (remember, we're walking
4145 backwards from the end of the block to the start). Since
4146 rtx_equal_p does not check the alias set or flags, we also
4147 must have the potential for them to conflict (anti_dependence). */
4148 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
4149 if (anti_dependence (r, XEXP (temp, 0)))
4151 rtx mem = XEXP (temp, 0);
4153 if (rtx_equal_p (mem, r))
4154 return 1;
4155 #ifdef AUTO_INC_DEC
4156 /* Check if memory reference matches an auto increment. Only
4157 post increment/decrement or modify are valid. */
4158 if (GET_MODE (mem) == GET_MODE (r)
4159 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
4160 || GET_CODE (XEXP (mem, 0)) == POST_INC
4161 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
4162 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
4163 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
4164 return 1;
4165 #endif
4168 else
4170 while (GET_CODE (r) == SUBREG
4171 || GET_CODE (r) == STRICT_LOW_PART
4172 || GET_CODE (r) == ZERO_EXTRACT)
4173 r = XEXP (r, 0);
4175 if (GET_CODE (r) == REG)
4177 int regno = REGNO (r);
4179 /* Obvious. */
4180 if (REGNO_REG_SET_P (pbi->reg_live, regno))
4181 return 0;
4183 /* If this is a hard register, verify that subsequent
4184 words are not needed. */
4185 if (regno < FIRST_PSEUDO_REGISTER)
4187 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
4189 while (--n > 0)
4190 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
4191 return 0;
4194 /* Don't delete insns to set global regs. */
4195 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
4196 return 0;
4198 /* Make sure insns to set the stack pointer aren't deleted. */
4199 if (regno == STACK_POINTER_REGNUM)
4200 return 0;
4202 /* ??? These bits might be redundant with the force live bits
4203 in calculate_global_regs_live. We would delete from
4204 sequential sets; whether this actually affects real code
4205 for anything but the stack pointer I don't know. */
4206 /* Make sure insns to set the frame pointer aren't deleted. */
4207 if (regno == FRAME_POINTER_REGNUM
4208 && (! reload_completed || frame_pointer_needed))
4209 return 0;
4210 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4211 if (regno == HARD_FRAME_POINTER_REGNUM
4212 && (! reload_completed || frame_pointer_needed))
4213 return 0;
4214 #endif
4216 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4217 /* Make sure insns to set arg pointer are never deleted
4218 (if the arg pointer isn't fixed, there will be a USE
4219 for it, so we can treat it normally). */
4220 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
4221 return 0;
4222 #endif
4224 /* Otherwise, the set is dead. */
4225 return 1;
4230 /* If performing several activities, insn is dead if each activity
4231 is individually dead. Also, CLOBBERs and USEs can be ignored; a
4232 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
4233 worth keeping. */
4234 else if (code == PARALLEL)
4236 int i = XVECLEN (x, 0);
4238 for (i--; i >= 0; i--)
4239 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
4240 && GET_CODE (XVECEXP (x, 0, i)) != USE
4241 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
4242 return 0;
4244 return 1;
4247 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
4248 is not necessarily true for hard registers. */
4249 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
4250 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
4251 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
4252 return 1;
4254 /* We do not check other CLOBBER or USE here. An insn consisting of just
4255 a CLOBBER or just a USE should not be deleted. */
4256 return 0;
4259 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
4260 return 1 if the entire library call is dead.
4261 This is true if INSN copies a register (hard or pseudo)
4262 and if the hard return reg of the call insn is dead.
4263 (The caller should have tested the destination of the SET inside
4264 INSN already for death.)
4266 If this insn doesn't just copy a register, then we don't
4267 have an ordinary libcall. In that case, cse could not have
4268 managed to substitute the source for the dest later on,
4269 so we can assume the libcall is dead.
4271 PBI is the block info giving pseudoregs live before this insn.
4272 NOTE is the REG_RETVAL note of the insn. */
4274 static int
4275 libcall_dead_p (pbi, note, insn)
4276 struct propagate_block_info *pbi;
4277 rtx note;
4278 rtx insn;
4280 rtx x = single_set (insn);
4282 if (x)
4284 register rtx r = SET_SRC (x);
4285 if (GET_CODE (r) == REG)
4287 rtx call = XEXP (note, 0);
4288 rtx call_pat;
4289 register int i;
4291 /* Find the call insn. */
4292 while (call != insn && GET_CODE (call) != CALL_INSN)
4293 call = NEXT_INSN (call);
4295 /* If there is none, do nothing special,
4296 since ordinary death handling can understand these insns. */
4297 if (call == insn)
4298 return 0;
4300 /* See if the hard reg holding the value is dead.
4301 If this is a PARALLEL, find the call within it. */
4302 call_pat = PATTERN (call);
4303 if (GET_CODE (call_pat) == PARALLEL)
4305 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
4306 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
4307 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
4308 break;
4310 /* This may be a library call that is returning a value
4311 via invisible pointer. Do nothing special, since
4312 ordinary death handling can understand these insns. */
4313 if (i < 0)
4314 return 0;
4316 call_pat = XVECEXP (call_pat, 0, i);
4319 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
4322 return 1;
4325 /* Return 1 if register REGNO was used before it was set, i.e. if it is
4326 live at function entry. Don't count global register variables, variables
4327 in registers that can be used for function arg passing, or variables in
4328 fixed hard registers. */
4331 regno_uninitialized (regno)
4332 int regno;
4334 if (n_basic_blocks == 0
4335 || (regno < FIRST_PSEUDO_REGISTER
4336 && (global_regs[regno]
4337 || fixed_regs[regno]
4338 || FUNCTION_ARG_REGNO_P (regno))))
4339 return 0;
4341 return REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno);
4344 /* 1 if register REGNO was alive at a place where `setjmp' was called
4345 and was set more than once or is an argument.
4346 Such regs may be clobbered by `longjmp'. */
4349 regno_clobbered_at_setjmp (regno)
4350 int regno;
4352 if (n_basic_blocks == 0)
4353 return 0;
4355 return ((REG_N_SETS (regno) > 1
4356 || REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno))
4357 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
4360 /* INSN references memory, possibly using autoincrement addressing modes.
4361 Find any entries on the mem_set_list that need to be invalidated due
4362 to an address change. */
4364 static void
4365 invalidate_mems_from_autoinc (pbi, insn)
4366 struct propagate_block_info *pbi;
4367 rtx insn;
4369 rtx note = REG_NOTES (insn);
4370 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
4372 if (REG_NOTE_KIND (note) == REG_INC)
4374 rtx temp = pbi->mem_set_list;
4375 rtx prev = NULL_RTX;
4376 rtx next;
4378 while (temp)
4380 next = XEXP (temp, 1);
4381 if (reg_overlap_mentioned_p (XEXP (note, 0), XEXP (temp, 0)))
4383 /* Splice temp out of list. */
4384 if (prev)
4385 XEXP (prev, 1) = next;
4386 else
4387 pbi->mem_set_list = next;
4388 free_EXPR_LIST_node (temp);
4389 pbi->mem_set_list_len--;
4391 else
4392 prev = temp;
4393 temp = next;
4399 /* EXP is either a MEM or a REG. Remove any dependant entries
4400 from pbi->mem_set_list. */
4402 static void
4403 invalidate_mems_from_set (pbi, exp)
4404 struct propagate_block_info *pbi;
4405 rtx exp;
4407 rtx temp = pbi->mem_set_list;
4408 rtx prev = NULL_RTX;
4409 rtx next;
4411 while (temp)
4413 next = XEXP (temp, 1);
4414 if ((GET_CODE (exp) == MEM
4415 && output_dependence (XEXP (temp, 0), exp))
4416 || (GET_CODE (exp) == REG
4417 && reg_overlap_mentioned_p (exp, XEXP (temp, 0))))
4419 /* Splice this entry out of the list. */
4420 if (prev)
4421 XEXP (prev, 1) = next;
4422 else
4423 pbi->mem_set_list = next;
4424 free_EXPR_LIST_node (temp);
4425 pbi->mem_set_list_len--;
4427 else
4428 prev = temp;
4429 temp = next;
4433 /* Process the registers that are set within X. Their bits are set to
4434 1 in the regset DEAD, because they are dead prior to this insn.
4436 If INSN is nonzero, it is the insn being processed.
4438 FLAGS is the set of operations to perform. */
4440 static void
4441 mark_set_regs (pbi, x, insn)
4442 struct propagate_block_info *pbi;
4443 rtx x, insn;
4445 rtx cond = NULL_RTX;
4446 rtx link;
4447 enum rtx_code code;
4449 if (insn)
4450 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
4452 if (REG_NOTE_KIND (link) == REG_INC)
4453 mark_set_1 (pbi, SET, XEXP (link, 0),
4454 (GET_CODE (x) == COND_EXEC
4455 ? COND_EXEC_TEST (x) : NULL_RTX),
4456 insn, pbi->flags);
4458 retry:
4459 switch (code = GET_CODE (x))
4461 case SET:
4462 case CLOBBER:
4463 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
4464 return;
4466 case COND_EXEC:
4467 cond = COND_EXEC_TEST (x);
4468 x = COND_EXEC_CODE (x);
4469 goto retry;
4471 case PARALLEL:
4473 register int i;
4474 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4476 rtx sub = XVECEXP (x, 0, i);
4477 switch (code = GET_CODE (sub))
4479 case COND_EXEC:
4480 if (cond != NULL_RTX)
4481 abort ();
4483 cond = COND_EXEC_TEST (sub);
4484 sub = COND_EXEC_CODE (sub);
4485 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
4486 break;
4487 /* Fall through. */
4489 case SET:
4490 case CLOBBER:
4491 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
4492 break;
4494 default:
4495 break;
4498 break;
4501 default:
4502 break;
4506 /* Process a single SET rtx, X. */
4508 static void
4509 mark_set_1 (pbi, code, reg, cond, insn, flags)
4510 struct propagate_block_info *pbi;
4511 enum rtx_code code;
4512 rtx reg, cond, insn;
4513 int flags;
4515 int regno_first = -1, regno_last = -1;
4516 unsigned long not_dead = 0;
4517 int i;
4519 /* Modifying just one hardware register of a multi-reg value or just a
4520 byte field of a register does not mean the value from before this insn
4521 is now dead. Of course, if it was dead after it's unused now. */
4523 switch (GET_CODE (reg))
4525 case PARALLEL:
4526 /* Some targets place small structures in registers for return values of
4527 functions. We have to detect this case specially here to get correct
4528 flow information. */
4529 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
4530 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
4531 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
4532 flags);
4533 return;
4535 case ZERO_EXTRACT:
4536 case SIGN_EXTRACT:
4537 case STRICT_LOW_PART:
4538 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
4540 reg = XEXP (reg, 0);
4541 while (GET_CODE (reg) == SUBREG
4542 || GET_CODE (reg) == ZERO_EXTRACT
4543 || GET_CODE (reg) == SIGN_EXTRACT
4544 || GET_CODE (reg) == STRICT_LOW_PART);
4545 if (GET_CODE (reg) == MEM)
4546 break;
4547 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
4548 /* Fall through. */
4550 case REG:
4551 regno_last = regno_first = REGNO (reg);
4552 if (regno_first < FIRST_PSEUDO_REGISTER)
4553 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
4554 break;
4556 case SUBREG:
4557 if (GET_CODE (SUBREG_REG (reg)) == REG)
4559 enum machine_mode outer_mode = GET_MODE (reg);
4560 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
4562 /* Identify the range of registers affected. This is moderately
4563 tricky for hard registers. See alter_subreg. */
4565 regno_last = regno_first = REGNO (SUBREG_REG (reg));
4566 if (regno_first < FIRST_PSEUDO_REGISTER)
4568 #ifdef ALTER_HARD_SUBREG
4569 regno_first = ALTER_HARD_SUBREG (outer_mode, SUBREG_WORD (reg),
4570 inner_mode, regno_first);
4571 #else
4572 regno_first += SUBREG_WORD (reg);
4573 #endif
4574 regno_last = (regno_first
4575 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
4577 /* Since we've just adjusted the register number ranges, make
4578 sure REG matches. Otherwise some_was_live will be clear
4579 when it shouldn't have been, and we'll create incorrect
4580 REG_UNUSED notes. */
4581 reg = gen_rtx_REG (outer_mode, regno_first);
4583 else
4585 /* If the number of words in the subreg is less than the number
4586 of words in the full register, we have a well-defined partial
4587 set. Otherwise the high bits are undefined.
4589 This is only really applicable to pseudos, since we just took
4590 care of multi-word hard registers. */
4591 if (((GET_MODE_SIZE (outer_mode)
4592 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
4593 < ((GET_MODE_SIZE (inner_mode)
4594 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
4595 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
4596 regno_first);
4598 reg = SUBREG_REG (reg);
4601 else
4602 reg = SUBREG_REG (reg);
4603 break;
4605 default:
4606 break;
4609 /* If this set is a MEM, then it kills any aliased writes.
4610 If this set is a REG, then it kills any MEMs which use the reg. */
4611 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
4613 if (GET_CODE (reg) == MEM || GET_CODE (reg) == REG)
4614 invalidate_mems_from_set (pbi, reg);
4616 /* If the memory reference had embedded side effects (autoincrement
4617 address modes. Then we may need to kill some entries on the
4618 memory set list. */
4619 if (insn && GET_CODE (reg) == MEM)
4620 invalidate_mems_from_autoinc (pbi, insn);
4622 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN
4623 && GET_CODE (reg) == MEM && ! side_effects_p (reg)
4624 /* ??? With more effort we could track conditional memory life. */
4625 && ! cond
4626 /* We do not know the size of a BLKmode store, so we do not track
4627 them for redundant store elimination. */
4628 && GET_MODE (reg) != BLKmode
4629 /* There are no REG_INC notes for SP, so we can't assume we'll see
4630 everything that invalidates it. To be safe, don't eliminate any
4631 stores though SP; none of them should be redundant anyway. */
4632 && ! reg_mentioned_p (stack_pointer_rtx, reg))
4634 #ifdef AUTO_INC_DEC
4635 /* Store a copy of mem, otherwise the address may be
4636 scrogged by find_auto_inc. */
4637 if (flags & PROP_AUTOINC)
4638 reg = shallow_copy_rtx (reg);
4639 #endif
4640 pbi->mem_set_list = alloc_EXPR_LIST (0, reg, pbi->mem_set_list);
4641 pbi->mem_set_list_len++;
4645 if (GET_CODE (reg) == REG
4646 && ! (regno_first == FRAME_POINTER_REGNUM
4647 && (! reload_completed || frame_pointer_needed))
4648 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4649 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
4650 && (! reload_completed || frame_pointer_needed))
4651 #endif
4652 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4653 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
4654 #endif
4657 int some_was_live = 0, some_was_dead = 0;
4659 for (i = regno_first; i <= regno_last; ++i)
4661 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
4662 if (pbi->local_set)
4664 /* Order of the set operation matters here since both
4665 sets may be the same. */
4666 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
4667 if (cond != NULL_RTX
4668 && ! REGNO_REG_SET_P (pbi->local_set, i))
4669 SET_REGNO_REG_SET (pbi->cond_local_set, i);
4670 else
4671 SET_REGNO_REG_SET (pbi->local_set, i);
4673 if (code != CLOBBER)
4674 SET_REGNO_REG_SET (pbi->new_set, i);
4676 some_was_live |= needed_regno;
4677 some_was_dead |= ! needed_regno;
4680 #ifdef HAVE_conditional_execution
4681 /* Consider conditional death in deciding that the register needs
4682 a death note. */
4683 if (some_was_live && ! not_dead
4684 /* The stack pointer is never dead. Well, not strictly true,
4685 but it's very difficult to tell from here. Hopefully
4686 combine_stack_adjustments will fix up the most egregious
4687 errors. */
4688 && regno_first != STACK_POINTER_REGNUM)
4690 for (i = regno_first; i <= regno_last; ++i)
4691 if (! mark_regno_cond_dead (pbi, i, cond))
4692 not_dead |= ((unsigned long) 1) << (i - regno_first);
4694 #endif
4696 /* Additional data to record if this is the final pass. */
4697 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
4698 | PROP_DEATH_NOTES | PROP_AUTOINC))
4700 register rtx y;
4701 register int blocknum = pbi->bb->index;
4703 y = NULL_RTX;
4704 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
4706 y = pbi->reg_next_use[regno_first];
4708 /* The next use is no longer next, since a store intervenes. */
4709 for (i = regno_first; i <= regno_last; ++i)
4710 pbi->reg_next_use[i] = 0;
4713 if (flags & PROP_REG_INFO)
4715 for (i = regno_first; i <= regno_last; ++i)
4717 /* Count (weighted) references, stores, etc. This counts a
4718 register twice if it is modified, but that is correct. */
4719 REG_N_SETS (i) += 1;
4720 REG_N_REFS (i) += (optimize_size ? 1
4721 : pbi->bb->loop_depth + 1);
4723 /* The insns where a reg is live are normally counted
4724 elsewhere, but we want the count to include the insn
4725 where the reg is set, and the normal counting mechanism
4726 would not count it. */
4727 REG_LIVE_LENGTH (i) += 1;
4730 /* If this is a hard reg, record this function uses the reg. */
4731 if (regno_first < FIRST_PSEUDO_REGISTER)
4733 for (i = regno_first; i <= regno_last; i++)
4734 regs_ever_live[i] = 1;
4736 else
4738 /* Keep track of which basic blocks each reg appears in. */
4739 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
4740 REG_BASIC_BLOCK (regno_first) = blocknum;
4741 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
4742 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
4746 if (! some_was_dead)
4748 if (flags & PROP_LOG_LINKS)
4750 /* Make a logical link from the next following insn
4751 that uses this register, back to this insn.
4752 The following insns have already been processed.
4754 We don't build a LOG_LINK for hard registers containing
4755 in ASM_OPERANDs. If these registers get replaced,
4756 we might wind up changing the semantics of the insn,
4757 even if reload can make what appear to be valid
4758 assignments later. */
4759 if (y && (BLOCK_NUM (y) == blocknum)
4760 && (regno_first >= FIRST_PSEUDO_REGISTER
4761 || asm_noperands (PATTERN (y)) < 0))
4762 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
4765 else if (not_dead)
4767 else if (! some_was_live)
4769 if (flags & PROP_REG_INFO)
4770 REG_N_DEATHS (regno_first) += 1;
4772 if (flags & PROP_DEATH_NOTES)
4774 /* Note that dead stores have already been deleted
4775 when possible. If we get here, we have found a
4776 dead store that cannot be eliminated (because the
4777 same insn does something useful). Indicate this
4778 by marking the reg being set as dying here. */
4779 REG_NOTES (insn)
4780 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
4783 else
4785 if (flags & PROP_DEATH_NOTES)
4787 /* This is a case where we have a multi-word hard register
4788 and some, but not all, of the words of the register are
4789 needed in subsequent insns. Write REG_UNUSED notes
4790 for those parts that were not needed. This case should
4791 be rare. */
4793 for (i = regno_first; i <= regno_last; ++i)
4794 if (! REGNO_REG_SET_P (pbi->reg_live, i))
4795 REG_NOTES (insn)
4796 = alloc_EXPR_LIST (REG_UNUSED,
4797 gen_rtx_REG (reg_raw_mode[i], i),
4798 REG_NOTES (insn));
4803 /* Mark the register as being dead. */
4804 if (some_was_live
4805 /* The stack pointer is never dead. Well, not strictly true,
4806 but it's very difficult to tell from here. Hopefully
4807 combine_stack_adjustments will fix up the most egregious
4808 errors. */
4809 && regno_first != STACK_POINTER_REGNUM)
4811 for (i = regno_first; i <= regno_last; ++i)
4812 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
4813 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
4816 else if (GET_CODE (reg) == REG)
4818 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
4819 pbi->reg_next_use[regno_first] = 0;
4822 /* If this is the last pass and this is a SCRATCH, show it will be dying
4823 here and count it. */
4824 else if (GET_CODE (reg) == SCRATCH)
4826 if (flags & PROP_DEATH_NOTES)
4827 REG_NOTES (insn)
4828 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
4832 #ifdef HAVE_conditional_execution
4833 /* Mark REGNO conditionally dead.
4834 Return true if the register is now unconditionally dead. */
4836 static int
4837 mark_regno_cond_dead (pbi, regno, cond)
4838 struct propagate_block_info *pbi;
4839 int regno;
4840 rtx cond;
4842 /* If this is a store to a predicate register, the value of the
4843 predicate is changing, we don't know that the predicate as seen
4844 before is the same as that seen after. Flush all dependent
4845 conditions from reg_cond_dead. This will make all such
4846 conditionally live registers unconditionally live. */
4847 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
4848 flush_reg_cond_reg (pbi, regno);
4850 /* If this is an unconditional store, remove any conditional
4851 life that may have existed. */
4852 if (cond == NULL_RTX)
4853 splay_tree_remove (pbi->reg_cond_dead, regno);
4854 else
4856 splay_tree_node node;
4857 struct reg_cond_life_info *rcli;
4858 rtx ncond;
4860 /* Otherwise this is a conditional set. Record that fact.
4861 It may have been conditionally used, or there may be a
4862 subsequent set with a complimentary condition. */
4864 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
4865 if (node == NULL)
4867 /* The register was unconditionally live previously.
4868 Record the current condition as the condition under
4869 which it is dead. */
4870 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
4871 rcli->condition = cond;
4872 rcli->stores = cond;
4873 rcli->orig_condition = const0_rtx;
4874 splay_tree_insert (pbi->reg_cond_dead, regno,
4875 (splay_tree_value) rcli);
4877 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
4879 /* Not unconditionaly dead. */
4880 return 0;
4882 else
4884 /* The register was conditionally live previously.
4885 Add the new condition to the old. */
4886 rcli = (struct reg_cond_life_info *) node->value;
4887 ncond = rcli->condition;
4888 ncond = ior_reg_cond (ncond, cond, 1);
4889 if (rcli->stores == const0_rtx)
4890 rcli->stores = cond;
4891 else if (rcli->stores != const1_rtx)
4892 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
4894 /* If the register is now unconditionally dead, remove the entry
4895 in the splay_tree. A register is unconditionally dead if the
4896 dead condition ncond is true. A register is also unconditionally
4897 dead if the sum of all conditional stores is an unconditional
4898 store (stores is true), and the dead condition is identically the
4899 same as the original dead condition initialized at the end of
4900 the block. This is a pointer compare, not an rtx_equal_p
4901 compare. */
4902 if (ncond == const1_rtx
4903 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
4904 splay_tree_remove (pbi->reg_cond_dead, regno);
4905 else
4907 rcli->condition = ncond;
4909 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
4911 /* Not unconditionaly dead. */
4912 return 0;
4917 return 1;
4920 /* Called from splay_tree_delete for pbi->reg_cond_life. */
4922 static void
4923 free_reg_cond_life_info (value)
4924 splay_tree_value value;
4926 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
4927 free (rcli);
4930 /* Helper function for flush_reg_cond_reg. */
4932 static int
4933 flush_reg_cond_reg_1 (node, data)
4934 splay_tree_node node;
4935 void *data;
4937 struct reg_cond_life_info *rcli;
4938 int *xdata = (int *) data;
4939 unsigned int regno = xdata[0];
4941 /* Don't need to search if last flushed value was farther on in
4942 the in-order traversal. */
4943 if (xdata[1] >= (int) node->key)
4944 return 0;
4946 /* Splice out portions of the expression that refer to regno. */
4947 rcli = (struct reg_cond_life_info *) node->value;
4948 rcli->condition = elim_reg_cond (rcli->condition, regno);
4949 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
4950 rcli->stores = elim_reg_cond (rcli->stores, regno);
4952 /* If the entire condition is now false, signal the node to be removed. */
4953 if (rcli->condition == const0_rtx)
4955 xdata[1] = node->key;
4956 return -1;
4958 else if (rcli->condition == const1_rtx)
4959 abort ();
4961 return 0;
4964 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
4966 static void
4967 flush_reg_cond_reg (pbi, regno)
4968 struct propagate_block_info *pbi;
4969 int regno;
4971 int pair[2];
4973 pair[0] = regno;
4974 pair[1] = -1;
4975 while (splay_tree_foreach (pbi->reg_cond_dead,
4976 flush_reg_cond_reg_1, pair) == -1)
4977 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
4979 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
4982 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
4983 For ior/and, the ADD flag determines whether we want to add the new
4984 condition X to the old one unconditionally. If it is zero, we will
4985 only return a new expression if X allows us to simplify part of
4986 OLD, otherwise we return OLD unchanged to the caller.
4987 If ADD is nonzero, we will return a new condition in all cases. The
4988 toplevel caller of one of these functions should always pass 1 for
4989 ADD. */
4991 static rtx
4992 ior_reg_cond (old, x, add)
4993 rtx old, x;
4994 int add;
4996 rtx op0, op1;
4998 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
5000 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
5001 && GET_CODE (x) == reverse_condition (GET_CODE (old))
5002 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
5003 return const1_rtx;
5004 if (GET_CODE (x) == GET_CODE (old)
5005 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
5006 return old;
5007 if (! add)
5008 return old;
5009 return gen_rtx_IOR (0, old, x);
5012 switch (GET_CODE (old))
5014 case IOR:
5015 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
5016 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
5017 if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
5019 if (op0 == const0_rtx)
5020 return op1;
5021 if (op1 == const0_rtx)
5022 return op0;
5023 if (op0 == const1_rtx || op1 == const1_rtx)
5024 return const1_rtx;
5025 if (op0 == XEXP (old, 0))
5026 op0 = gen_rtx_IOR (0, op0, x);
5027 else
5028 op1 = gen_rtx_IOR (0, op1, x);
5029 return gen_rtx_IOR (0, op0, op1);
5031 if (! add)
5032 return old;
5033 return gen_rtx_IOR (0, old, x);
5035 case AND:
5036 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
5037 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
5038 if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
5040 if (op0 == const1_rtx)
5041 return op1;
5042 if (op1 == const1_rtx)
5043 return op0;
5044 if (op0 == const0_rtx || op1 == const0_rtx)
5045 return const0_rtx;
5046 if (op0 == XEXP (old, 0))
5047 op0 = gen_rtx_IOR (0, op0, x);
5048 else
5049 op1 = gen_rtx_IOR (0, op1, x);
5050 return gen_rtx_AND (0, op0, op1);
5052 if (! add)
5053 return old;
5054 return gen_rtx_IOR (0, old, x);
5056 case NOT:
5057 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
5058 if (op0 != XEXP (old, 0))
5059 return not_reg_cond (op0);
5060 if (! add)
5061 return old;
5062 return gen_rtx_IOR (0, old, x);
5064 default:
5065 abort ();
5069 static rtx
5070 not_reg_cond (x)
5071 rtx x;
5073 enum rtx_code x_code;
5075 if (x == const0_rtx)
5076 return const1_rtx;
5077 else if (x == const1_rtx)
5078 return const0_rtx;
5079 x_code = GET_CODE (x);
5080 if (x_code == NOT)
5081 return XEXP (x, 0);
5082 if (GET_RTX_CLASS (x_code) == '<'
5083 && GET_CODE (XEXP (x, 0)) == REG)
5085 if (XEXP (x, 1) != const0_rtx)
5086 abort ();
5088 return gen_rtx_fmt_ee (reverse_condition (x_code),
5089 VOIDmode, XEXP (x, 0), const0_rtx);
5091 return gen_rtx_NOT (0, x);
5094 static rtx
5095 and_reg_cond (old, x, add)
5096 rtx old, x;
5097 int add;
5099 rtx op0, op1;
5101 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
5103 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
5104 && GET_CODE (x) == reverse_condition (GET_CODE (old))
5105 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
5106 return const0_rtx;
5107 if (GET_CODE (x) == GET_CODE (old)
5108 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
5109 return old;
5110 if (! add)
5111 return old;
5112 return gen_rtx_AND (0, old, x);
5115 switch (GET_CODE (old))
5117 case IOR:
5118 op0 = and_reg_cond (XEXP (old, 0), x, 0);
5119 op1 = and_reg_cond (XEXP (old, 1), x, 0);
5120 if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
5122 if (op0 == const0_rtx)
5123 return op1;
5124 if (op1 == const0_rtx)
5125 return op0;
5126 if (op0 == const1_rtx || op1 == const1_rtx)
5127 return const1_rtx;
5128 if (op0 == XEXP (old, 0))
5129 op0 = gen_rtx_AND (0, op0, x);
5130 else
5131 op1 = gen_rtx_AND (0, op1, x);
5132 return gen_rtx_IOR (0, op0, op1);
5134 if (! add)
5135 return old;
5136 return gen_rtx_AND (0, old, x);
5138 case AND:
5139 op0 = and_reg_cond (XEXP (old, 0), x, 0);
5140 op1 = and_reg_cond (XEXP (old, 1), x, 0);
5141 if (op0 != XEXP (old, 0) || op1 != XEXP (old, 1))
5143 if (op0 == const1_rtx)
5144 return op1;
5145 if (op1 == const1_rtx)
5146 return op0;
5147 if (op0 == const0_rtx || op1 == const0_rtx)
5148 return const0_rtx;
5149 if (op0 == XEXP (old, 0))
5150 op0 = gen_rtx_AND (0, op0, x);
5151 else
5152 op1 = gen_rtx_AND (0, op1, x);
5153 return gen_rtx_AND (0, op0, op1);
5155 if (! add)
5156 return old;
5158 /* If X is identical to one of the existing terms of the AND,
5159 then just return what we already have. */
5160 /* ??? There really should be some sort of recursive check here in
5161 case there are nested ANDs. */
5162 if ((GET_CODE (XEXP (old, 0)) == GET_CODE (x)
5163 && REGNO (XEXP (XEXP (old, 0), 0)) == REGNO (XEXP (x, 0)))
5164 || (GET_CODE (XEXP (old, 1)) == GET_CODE (x)
5165 && REGNO (XEXP (XEXP (old, 1), 0)) == REGNO (XEXP (x, 0))))
5166 return old;
5168 return gen_rtx_AND (0, old, x);
5170 case NOT:
5171 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
5172 if (op0 != XEXP (old, 0))
5173 return not_reg_cond (op0);
5174 if (! add)
5175 return old;
5176 return gen_rtx_AND (0, old, x);
5178 default:
5179 abort ();
5183 /* Given a condition X, remove references to reg REGNO and return the
5184 new condition. The removal will be done so that all conditions
5185 involving REGNO are considered to evaluate to false. This function
5186 is used when the value of REGNO changes. */
5188 static rtx
5189 elim_reg_cond (x, regno)
5190 rtx x;
5191 unsigned int regno;
5193 rtx op0, op1;
5195 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
5197 if (REGNO (XEXP (x, 0)) == regno)
5198 return const0_rtx;
5199 return x;
5202 switch (GET_CODE (x))
5204 case AND:
5205 op0 = elim_reg_cond (XEXP (x, 0), regno);
5206 op1 = elim_reg_cond (XEXP (x, 1), regno);
5207 if (op0 == const0_rtx || op1 == const0_rtx)
5208 return const0_rtx;
5209 if (op0 == const1_rtx)
5210 return op1;
5211 if (op1 == const1_rtx)
5212 return op0;
5213 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
5214 return x;
5215 return gen_rtx_AND (0, op0, op1);
5217 case IOR:
5218 op0 = elim_reg_cond (XEXP (x, 0), regno);
5219 op1 = elim_reg_cond (XEXP (x, 1), regno);
5220 if (op0 == const1_rtx || op1 == const1_rtx)
5221 return const1_rtx;
5222 if (op0 == const0_rtx)
5223 return op1;
5224 if (op1 == const0_rtx)
5225 return op0;
5226 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
5227 return x;
5228 return gen_rtx_IOR (0, op0, op1);
5230 case NOT:
5231 op0 = elim_reg_cond (XEXP (x, 0), regno);
5232 if (op0 == const0_rtx)
5233 return const1_rtx;
5234 if (op0 == const1_rtx)
5235 return const0_rtx;
5236 if (op0 != XEXP (x, 0))
5237 return not_reg_cond (op0);
5238 return x;
5240 default:
5241 abort ();
5244 #endif /* HAVE_conditional_execution */
5246 #ifdef AUTO_INC_DEC
5248 /* Try to substitute the auto-inc expression INC as the address inside
5249 MEM which occurs in INSN. Currently, the address of MEM is an expression
5250 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
5251 that has a single set whose source is a PLUS of INCR_REG and something
5252 else. */
5254 static void
5255 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
5256 struct propagate_block_info *pbi;
5257 rtx inc, insn, mem, incr, incr_reg;
5259 int regno = REGNO (incr_reg);
5260 rtx set = single_set (incr);
5261 rtx q = SET_DEST (set);
5262 rtx y = SET_SRC (set);
5263 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
5265 /* Make sure this reg appears only once in this insn. */
5266 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
5267 return;
5269 if (dead_or_set_p (incr, incr_reg)
5270 /* Mustn't autoinc an eliminable register. */
5271 && (regno >= FIRST_PSEUDO_REGISTER
5272 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
5274 /* This is the simple case. Try to make the auto-inc. If
5275 we can't, we are done. Otherwise, we will do any
5276 needed updates below. */
5277 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
5278 return;
5280 else if (GET_CODE (q) == REG
5281 /* PREV_INSN used here to check the semi-open interval
5282 [insn,incr). */
5283 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
5284 /* We must also check for sets of q as q may be
5285 a call clobbered hard register and there may
5286 be a call between PREV_INSN (insn) and incr. */
5287 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
5289 /* We have *p followed sometime later by q = p+size.
5290 Both p and q must be live afterward,
5291 and q is not used between INSN and its assignment.
5292 Change it to q = p, ...*q..., q = q+size.
5293 Then fall into the usual case. */
5294 rtx insns, temp;
5296 start_sequence ();
5297 emit_move_insn (q, incr_reg);
5298 insns = get_insns ();
5299 end_sequence ();
5301 if (basic_block_for_insn)
5302 for (temp = insns; temp; temp = NEXT_INSN (temp))
5303 set_block_for_insn (temp, pbi->bb);
5305 /* If we can't make the auto-inc, or can't make the
5306 replacement into Y, exit. There's no point in making
5307 the change below if we can't do the auto-inc and doing
5308 so is not correct in the pre-inc case. */
5310 XEXP (inc, 0) = q;
5311 validate_change (insn, &XEXP (mem, 0), inc, 1);
5312 validate_change (incr, &XEXP (y, opnum), q, 1);
5313 if (! apply_change_group ())
5314 return;
5316 /* We now know we'll be doing this change, so emit the
5317 new insn(s) and do the updates. */
5318 emit_insns_before (insns, insn);
5320 if (pbi->bb->head == insn)
5321 pbi->bb->head = insns;
5323 /* INCR will become a NOTE and INSN won't contain a
5324 use of INCR_REG. If a use of INCR_REG was just placed in
5325 the insn before INSN, make that the next use.
5326 Otherwise, invalidate it. */
5327 if (GET_CODE (PREV_INSN (insn)) == INSN
5328 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
5329 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
5330 pbi->reg_next_use[regno] = PREV_INSN (insn);
5331 else
5332 pbi->reg_next_use[regno] = 0;
5334 incr_reg = q;
5335 regno = REGNO (q);
5337 /* REGNO is now used in INCR which is below INSN, but
5338 it previously wasn't live here. If we don't mark
5339 it as live, we'll put a REG_DEAD note for it
5340 on this insn, which is incorrect. */
5341 SET_REGNO_REG_SET (pbi->reg_live, regno);
5343 /* If there are any calls between INSN and INCR, show
5344 that REGNO now crosses them. */
5345 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
5346 if (GET_CODE (temp) == CALL_INSN)
5347 REG_N_CALLS_CROSSED (regno)++;
5349 else
5350 return;
5352 /* If we haven't returned, it means we were able to make the
5353 auto-inc, so update the status. First, record that this insn
5354 has an implicit side effect. */
5356 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
5358 /* Modify the old increment-insn to simply copy
5359 the already-incremented value of our register. */
5360 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
5361 abort ();
5363 /* If that makes it a no-op (copying the register into itself) delete
5364 it so it won't appear to be a "use" and a "set" of this
5365 register. */
5366 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
5368 /* If the original source was dead, it's dead now. */
5369 rtx note;
5371 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
5373 remove_note (incr, note);
5374 if (XEXP (note, 0) != incr_reg)
5375 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
5378 PUT_CODE (incr, NOTE);
5379 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
5380 NOTE_SOURCE_FILE (incr) = 0;
5383 if (regno >= FIRST_PSEUDO_REGISTER)
5385 /* Count an extra reference to the reg. When a reg is
5386 incremented, spilling it is worse, so we want to make
5387 that less likely. */
5388 REG_N_REFS (regno) += (optimize_size ? 1 : pbi->bb->loop_depth + 1);
5390 /* Count the increment as a setting of the register,
5391 even though it isn't a SET in rtl. */
5392 REG_N_SETS (regno)++;
5396 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
5397 reference. */
5399 static void
5400 find_auto_inc (pbi, x, insn)
5401 struct propagate_block_info *pbi;
5402 rtx x;
5403 rtx insn;
5405 rtx addr = XEXP (x, 0);
5406 HOST_WIDE_INT offset = 0;
5407 rtx set, y, incr, inc_val;
5408 int regno;
5409 int size = GET_MODE_SIZE (GET_MODE (x));
5411 if (GET_CODE (insn) == JUMP_INSN)
5412 return;
5414 /* Here we detect use of an index register which might be good for
5415 postincrement, postdecrement, preincrement, or predecrement. */
5417 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5418 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
5420 if (GET_CODE (addr) != REG)
5421 return;
5423 regno = REGNO (addr);
5425 /* Is the next use an increment that might make auto-increment? */
5426 incr = pbi->reg_next_use[regno];
5427 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
5428 return;
5429 set = single_set (incr);
5430 if (set == 0 || GET_CODE (set) != SET)
5431 return;
5432 y = SET_SRC (set);
5434 if (GET_CODE (y) != PLUS)
5435 return;
5437 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
5438 inc_val = XEXP (y, 1);
5439 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
5440 inc_val = XEXP (y, 0);
5441 else
5442 return;
5444 if (GET_CODE (inc_val) == CONST_INT)
5446 if (HAVE_POST_INCREMENT
5447 && (INTVAL (inc_val) == size && offset == 0))
5448 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
5449 incr, addr);
5450 else if (HAVE_POST_DECREMENT
5451 && (INTVAL (inc_val) == -size && offset == 0))
5452 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
5453 incr, addr);
5454 else if (HAVE_PRE_INCREMENT
5455 && (INTVAL (inc_val) == size && offset == size))
5456 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
5457 incr, addr);
5458 else if (HAVE_PRE_DECREMENT
5459 && (INTVAL (inc_val) == -size && offset == -size))
5460 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
5461 incr, addr);
5462 else if (HAVE_POST_MODIFY_DISP && offset == 0)
5463 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
5464 gen_rtx_PLUS (Pmode,
5465 addr,
5466 inc_val)),
5467 insn, x, incr, addr);
5469 else if (GET_CODE (inc_val) == REG
5470 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
5471 NEXT_INSN (incr)))
5474 if (HAVE_POST_MODIFY_REG && offset == 0)
5475 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
5476 gen_rtx_PLUS (Pmode,
5477 addr,
5478 inc_val)),
5479 insn, x, incr, addr);
5483 #endif /* AUTO_INC_DEC */
5485 static void
5486 mark_used_reg (pbi, reg, cond, insn)
5487 struct propagate_block_info *pbi;
5488 rtx reg;
5489 rtx cond ATTRIBUTE_UNUSED;
5490 rtx insn;
5492 unsigned int regno_first, regno_last, i;
5493 int some_was_live, some_was_dead, some_not_set;
5495 regno_last = regno_first = REGNO (reg);
5496 if (regno_first < FIRST_PSEUDO_REGISTER)
5497 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
5499 /* Find out if any of this register is live after this instruction. */
5500 some_was_live = some_was_dead = 0;
5501 for (i = regno_first; i <= regno_last; ++i)
5503 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
5504 some_was_live |= needed_regno;
5505 some_was_dead |= ! needed_regno;
5508 /* Find out if any of the register was set this insn. */
5509 some_not_set = 0;
5510 for (i = regno_first; i <= regno_last; ++i)
5511 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
5513 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
5515 /* Record where each reg is used, so when the reg is set we know
5516 the next insn that uses it. */
5517 pbi->reg_next_use[regno_first] = insn;
5520 if (pbi->flags & PROP_REG_INFO)
5522 if (regno_first < FIRST_PSEUDO_REGISTER)
5524 /* If this is a register we are going to try to eliminate,
5525 don't mark it live here. If we are successful in
5526 eliminating it, it need not be live unless it is used for
5527 pseudos, in which case it will have been set live when it
5528 was allocated to the pseudos. If the register will not
5529 be eliminated, reload will set it live at that point.
5531 Otherwise, record that this function uses this register. */
5532 /* ??? The PPC backend tries to "eliminate" on the pic
5533 register to itself. This should be fixed. In the mean
5534 time, hack around it. */
5536 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
5537 && (regno_first == FRAME_POINTER_REGNUM
5538 || regno_first == ARG_POINTER_REGNUM)))
5539 for (i = regno_first; i <= regno_last; ++i)
5540 regs_ever_live[i] = 1;
5542 else
5544 /* Keep track of which basic block each reg appears in. */
5546 register int blocknum = pbi->bb->index;
5547 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
5548 REG_BASIC_BLOCK (regno_first) = blocknum;
5549 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
5550 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
5552 /* Count (weighted) number of uses of each reg. */
5553 REG_N_REFS (regno_first)
5554 += (optimize_size ? 1 : pbi->bb->loop_depth + 1);
5558 /* Record and count the insns in which a reg dies. If it is used in
5559 this insn and was dead below the insn then it dies in this insn.
5560 If it was set in this insn, we do not make a REG_DEAD note;
5561 likewise if we already made such a note. */
5562 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
5563 && some_was_dead
5564 && some_not_set)
5566 /* Check for the case where the register dying partially
5567 overlaps the register set by this insn. */
5568 if (regno_first != regno_last)
5569 for (i = regno_first; i <= regno_last; ++i)
5570 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
5572 /* If none of the words in X is needed, make a REG_DEAD note.
5573 Otherwise, we must make partial REG_DEAD notes. */
5574 if (! some_was_live)
5576 if ((pbi->flags & PROP_DEATH_NOTES)
5577 && ! find_regno_note (insn, REG_DEAD, regno_first))
5578 REG_NOTES (insn)
5579 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
5581 if (pbi->flags & PROP_REG_INFO)
5582 REG_N_DEATHS (regno_first)++;
5584 else
5586 /* Don't make a REG_DEAD note for a part of a register
5587 that is set in the insn. */
5588 for (i = regno_first; i <= regno_last; ++i)
5589 if (! REGNO_REG_SET_P (pbi->reg_live, i)
5590 && ! dead_or_set_regno_p (insn, i))
5591 REG_NOTES (insn)
5592 = alloc_EXPR_LIST (REG_DEAD,
5593 gen_rtx_REG (reg_raw_mode[i], i),
5594 REG_NOTES (insn));
5598 /* Mark the register as being live. */
5599 for (i = regno_first; i <= regno_last; ++i)
5601 SET_REGNO_REG_SET (pbi->reg_live, i);
5603 #ifdef HAVE_conditional_execution
5604 /* If this is a conditional use, record that fact. If it is later
5605 conditionally set, we'll know to kill the register. */
5606 if (cond != NULL_RTX)
5608 splay_tree_node node;
5609 struct reg_cond_life_info *rcli;
5610 rtx ncond;
5612 if (some_was_live)
5614 node = splay_tree_lookup (pbi->reg_cond_dead, i);
5615 if (node == NULL)
5617 /* The register was unconditionally live previously.
5618 No need to do anything. */
5620 else
5622 /* The register was conditionally live previously.
5623 Subtract the new life cond from the old death cond. */
5624 rcli = (struct reg_cond_life_info *) node->value;
5625 ncond = rcli->condition;
5626 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
5628 /* If the register is now unconditionally live,
5629 remove the entry in the splay_tree. */
5630 if (ncond == const0_rtx)
5631 splay_tree_remove (pbi->reg_cond_dead, i);
5632 else
5634 rcli->condition = ncond;
5635 SET_REGNO_REG_SET (pbi->reg_cond_reg,
5636 REGNO (XEXP (cond, 0)));
5640 else
5642 /* The register was not previously live at all. Record
5643 the condition under which it is still dead. */
5644 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
5645 rcli->condition = not_reg_cond (cond);
5646 rcli->stores = const0_rtx;
5647 rcli->orig_condition = const0_rtx;
5648 splay_tree_insert (pbi->reg_cond_dead, i,
5649 (splay_tree_value) rcli);
5651 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
5654 else if (some_was_live)
5656 /* The register may have been conditionally live previously, but
5657 is now unconditionally live. Remove it from the conditionally
5658 dead list, so that a conditional set won't cause us to think
5659 it dead. */
5660 splay_tree_remove (pbi->reg_cond_dead, i);
5662 #endif
5666 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
5667 This is done assuming the registers needed from X are those that
5668 have 1-bits in PBI->REG_LIVE.
5670 INSN is the containing instruction. If INSN is dead, this function
5671 is not called. */
5673 static void
5674 mark_used_regs (pbi, x, cond, insn)
5675 struct propagate_block_info *pbi;
5676 rtx x, cond, insn;
5678 register RTX_CODE code;
5679 register int regno;
5680 int flags = pbi->flags;
5682 retry:
5683 code = GET_CODE (x);
5684 switch (code)
5686 case LABEL_REF:
5687 case SYMBOL_REF:
5688 case CONST_INT:
5689 case CONST:
5690 case CONST_DOUBLE:
5691 case PC:
5692 case ADDR_VEC:
5693 case ADDR_DIFF_VEC:
5694 return;
5696 #ifdef HAVE_cc0
5697 case CC0:
5698 pbi->cc0_live = 1;
5699 return;
5700 #endif
5702 case CLOBBER:
5703 /* If we are clobbering a MEM, mark any registers inside the address
5704 as being used. */
5705 if (GET_CODE (XEXP (x, 0)) == MEM)
5706 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
5707 return;
5709 case MEM:
5710 /* Don't bother watching stores to mems if this is not the
5711 final pass. We'll not be deleting dead stores this round. */
5712 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
5714 /* Invalidate the data for the last MEM stored, but only if MEM is
5715 something that can be stored into. */
5716 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
5717 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
5718 /* Needn't clear the memory set list. */
5720 else
5722 rtx temp = pbi->mem_set_list;
5723 rtx prev = NULL_RTX;
5724 rtx next;
5726 while (temp)
5728 next = XEXP (temp, 1);
5729 if (anti_dependence (XEXP (temp, 0), x))
5731 /* Splice temp out of the list. */
5732 if (prev)
5733 XEXP (prev, 1) = next;
5734 else
5735 pbi->mem_set_list = next;
5736 free_EXPR_LIST_node (temp);
5737 pbi->mem_set_list_len--;
5739 else
5740 prev = temp;
5741 temp = next;
5745 /* If the memory reference had embedded side effects (autoincrement
5746 address modes. Then we may need to kill some entries on the
5747 memory set list. */
5748 if (insn)
5749 invalidate_mems_from_autoinc (pbi, insn);
5752 #ifdef AUTO_INC_DEC
5753 if (flags & PROP_AUTOINC)
5754 find_auto_inc (pbi, x, insn);
5755 #endif
5756 break;
5758 case SUBREG:
5759 #ifdef CLASS_CANNOT_CHANGE_MODE
5760 if (GET_CODE (SUBREG_REG (x)) == REG
5761 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
5762 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (x),
5763 GET_MODE (SUBREG_REG (x))))
5764 REG_CHANGES_MODE (REGNO (SUBREG_REG (x))) = 1;
5765 #endif
5767 /* While we're here, optimize this case. */
5768 x = SUBREG_REG (x);
5769 if (GET_CODE (x) != REG)
5770 goto retry;
5771 /* Fall through. */
5773 case REG:
5774 /* See a register other than being set => mark it as needed. */
5775 mark_used_reg (pbi, x, cond, insn);
5776 return;
5778 case SET:
5780 register rtx testreg = SET_DEST (x);
5781 int mark_dest = 0;
5783 /* If storing into MEM, don't show it as being used. But do
5784 show the address as being used. */
5785 if (GET_CODE (testreg) == MEM)
5787 #ifdef AUTO_INC_DEC
5788 if (flags & PROP_AUTOINC)
5789 find_auto_inc (pbi, testreg, insn);
5790 #endif
5791 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
5792 mark_used_regs (pbi, SET_SRC (x), cond, insn);
5793 return;
5796 /* Storing in STRICT_LOW_PART is like storing in a reg
5797 in that this SET might be dead, so ignore it in TESTREG.
5798 but in some other ways it is like using the reg.
5800 Storing in a SUBREG or a bit field is like storing the entire
5801 register in that if the register's value is not used
5802 then this SET is not needed. */
5803 while (GET_CODE (testreg) == STRICT_LOW_PART
5804 || GET_CODE (testreg) == ZERO_EXTRACT
5805 || GET_CODE (testreg) == SIGN_EXTRACT
5806 || GET_CODE (testreg) == SUBREG)
5808 #ifdef CLASS_CANNOT_CHANGE_MODE
5809 if (GET_CODE (testreg) == SUBREG
5810 && GET_CODE (SUBREG_REG (testreg)) == REG
5811 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
5812 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (testreg)),
5813 GET_MODE (testreg)))
5814 REG_CHANGES_MODE (REGNO (SUBREG_REG (testreg))) = 1;
5815 #endif
5817 /* Modifying a single register in an alternate mode
5818 does not use any of the old value. But these other
5819 ways of storing in a register do use the old value. */
5820 if (GET_CODE (testreg) == SUBREG
5821 && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
5823 else
5824 mark_dest = 1;
5826 testreg = XEXP (testreg, 0);
5829 /* If this is a store into a register or group of registers,
5830 recursively scan the value being stored. */
5832 if ((GET_CODE (testreg) == PARALLEL
5833 && GET_MODE (testreg) == BLKmode)
5834 || (GET_CODE (testreg) == REG
5835 && (regno = REGNO (testreg),
5836 ! (regno == FRAME_POINTER_REGNUM
5837 && (! reload_completed || frame_pointer_needed)))
5838 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
5839 && ! (regno == HARD_FRAME_POINTER_REGNUM
5840 && (! reload_completed || frame_pointer_needed))
5841 #endif
5842 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5843 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
5844 #endif
5847 if (mark_dest)
5848 mark_used_regs (pbi, SET_DEST (x), cond, insn);
5849 mark_used_regs (pbi, SET_SRC (x), cond, insn);
5850 return;
5853 break;
5855 case ASM_OPERANDS:
5856 case UNSPEC_VOLATILE:
5857 case TRAP_IF:
5858 case ASM_INPUT:
5860 /* Traditional and volatile asm instructions must be considered to use
5861 and clobber all hard registers, all pseudo-registers and all of
5862 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
5864 Consider for instance a volatile asm that changes the fpu rounding
5865 mode. An insn should not be moved across this even if it only uses
5866 pseudo-regs because it might give an incorrectly rounded result.
5868 ?!? Unfortunately, marking all hard registers as live causes massive
5869 problems for the register allocator and marking all pseudos as live
5870 creates mountains of uninitialized variable warnings.
5872 So for now, just clear the memory set list and mark any regs
5873 we can find in ASM_OPERANDS as used. */
5874 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
5876 free_EXPR_LIST_list (&pbi->mem_set_list);
5877 pbi->mem_set_list_len = 0;
5880 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
5881 We can not just fall through here since then we would be confused
5882 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
5883 traditional asms unlike their normal usage. */
5884 if (code == ASM_OPERANDS)
5886 int j;
5888 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
5889 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
5891 break;
5894 case COND_EXEC:
5895 if (cond != NULL_RTX)
5896 abort ();
5898 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
5900 cond = COND_EXEC_TEST (x);
5901 x = COND_EXEC_CODE (x);
5902 goto retry;
5904 case PHI:
5905 /* We _do_not_ want to scan operands of phi nodes. Operands of
5906 a phi function are evaluated only when control reaches this
5907 block along a particular edge. Therefore, regs that appear
5908 as arguments to phi should not be added to the global live at
5909 start. */
5910 return;
5912 default:
5913 break;
5916 /* Recursively scan the operands of this expression. */
5919 register const char *fmt = GET_RTX_FORMAT (code);
5920 register int i;
5922 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5924 if (fmt[i] == 'e')
5926 /* Tail recursive case: save a function call level. */
5927 if (i == 0)
5929 x = XEXP (x, 0);
5930 goto retry;
5932 mark_used_regs (pbi, XEXP (x, i), cond, insn);
5934 else if (fmt[i] == 'E')
5936 register int j;
5937 for (j = 0; j < XVECLEN (x, i); j++)
5938 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
5944 #ifdef AUTO_INC_DEC
5946 static int
5947 try_pre_increment_1 (pbi, insn)
5948 struct propagate_block_info *pbi;
5949 rtx insn;
5951 /* Find the next use of this reg. If in same basic block,
5952 make it do pre-increment or pre-decrement if appropriate. */
5953 rtx x = single_set (insn);
5954 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
5955 * INTVAL (XEXP (SET_SRC (x), 1)));
5956 int regno = REGNO (SET_DEST (x));
5957 rtx y = pbi->reg_next_use[regno];
5958 if (y != 0
5959 && SET_DEST (x) != stack_pointer_rtx
5960 && BLOCK_NUM (y) == BLOCK_NUM (insn)
5961 /* Don't do this if the reg dies, or gets set in y; a standard addressing
5962 mode would be better. */
5963 && ! dead_or_set_p (y, SET_DEST (x))
5964 && try_pre_increment (y, SET_DEST (x), amount))
5966 /* We have found a suitable auto-increment and already changed
5967 insn Y to do it. So flush this increment instruction. */
5968 propagate_block_delete_insn (pbi->bb, insn);
5970 /* Count a reference to this reg for the increment insn we are
5971 deleting. When a reg is incremented, spilling it is worse,
5972 so we want to make that less likely. */
5973 if (regno >= FIRST_PSEUDO_REGISTER)
5975 REG_N_REFS (regno) += (optimize_size ? 1
5976 : pbi->bb->loop_depth + 1);
5977 REG_N_SETS (regno)++;
5980 /* Flush any remembered memories depending on the value of
5981 the incremented register. */
5982 invalidate_mems_from_set (pbi, SET_DEST (x));
5984 return 1;
5986 return 0;
5989 /* Try to change INSN so that it does pre-increment or pre-decrement
5990 addressing on register REG in order to add AMOUNT to REG.
5991 AMOUNT is negative for pre-decrement.
5992 Returns 1 if the change could be made.
5993 This checks all about the validity of the result of modifying INSN. */
5995 static int
5996 try_pre_increment (insn, reg, amount)
5997 rtx insn, reg;
5998 HOST_WIDE_INT amount;
6000 register rtx use;
6002 /* Nonzero if we can try to make a pre-increment or pre-decrement.
6003 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
6004 int pre_ok = 0;
6005 /* Nonzero if we can try to make a post-increment or post-decrement.
6006 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
6007 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
6008 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
6009 int post_ok = 0;
6011 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
6012 int do_post = 0;
6014 /* From the sign of increment, see which possibilities are conceivable
6015 on this target machine. */
6016 if (HAVE_PRE_INCREMENT && amount > 0)
6017 pre_ok = 1;
6018 if (HAVE_POST_INCREMENT && amount > 0)
6019 post_ok = 1;
6021 if (HAVE_PRE_DECREMENT && amount < 0)
6022 pre_ok = 1;
6023 if (HAVE_POST_DECREMENT && amount < 0)
6024 post_ok = 1;
6026 if (! (pre_ok || post_ok))
6027 return 0;
6029 /* It is not safe to add a side effect to a jump insn
6030 because if the incremented register is spilled and must be reloaded
6031 there would be no way to store the incremented value back in memory. */
6033 if (GET_CODE (insn) == JUMP_INSN)
6034 return 0;
6036 use = 0;
6037 if (pre_ok)
6038 use = find_use_as_address (PATTERN (insn), reg, 0);
6039 if (post_ok && (use == 0 || use == (rtx) 1))
6041 use = find_use_as_address (PATTERN (insn), reg, -amount);
6042 do_post = 1;
6045 if (use == 0 || use == (rtx) 1)
6046 return 0;
6048 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
6049 return 0;
6051 /* See if this combination of instruction and addressing mode exists. */
6052 if (! validate_change (insn, &XEXP (use, 0),
6053 gen_rtx_fmt_e (amount > 0
6054 ? (do_post ? POST_INC : PRE_INC)
6055 : (do_post ? POST_DEC : PRE_DEC),
6056 Pmode, reg), 0))
6057 return 0;
6059 /* Record that this insn now has an implicit side effect on X. */
6060 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
6061 return 1;
6064 #endif /* AUTO_INC_DEC */
6066 /* Find the place in the rtx X where REG is used as a memory address.
6067 Return the MEM rtx that so uses it.
6068 If PLUSCONST is nonzero, search instead for a memory address equivalent to
6069 (plus REG (const_int PLUSCONST)).
6071 If such an address does not appear, return 0.
6072 If REG appears more than once, or is used other than in such an address,
6073 return (rtx)1. */
6076 find_use_as_address (x, reg, plusconst)
6077 register rtx x;
6078 rtx reg;
6079 HOST_WIDE_INT plusconst;
6081 enum rtx_code code = GET_CODE (x);
6082 const char *fmt = GET_RTX_FORMAT (code);
6083 register int i;
6084 register rtx value = 0;
6085 register rtx tem;
6087 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
6088 return x;
6090 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
6091 && XEXP (XEXP (x, 0), 0) == reg
6092 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6093 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
6094 return x;
6096 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
6098 /* If REG occurs inside a MEM used in a bit-field reference,
6099 that is unacceptable. */
6100 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
6101 return (rtx) (HOST_WIDE_INT) 1;
6104 if (x == reg)
6105 return (rtx) (HOST_WIDE_INT) 1;
6107 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6109 if (fmt[i] == 'e')
6111 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
6112 if (value == 0)
6113 value = tem;
6114 else if (tem != 0)
6115 return (rtx) (HOST_WIDE_INT) 1;
6117 else if (fmt[i] == 'E')
6119 register int j;
6120 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6122 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
6123 if (value == 0)
6124 value = tem;
6125 else if (tem != 0)
6126 return (rtx) (HOST_WIDE_INT) 1;
6131 return value;
6134 /* Write information about registers and basic blocks into FILE.
6135 This is part of making a debugging dump. */
6137 void
6138 dump_regset (r, outf)
6139 regset r;
6140 FILE *outf;
6142 int i;
6143 if (r == NULL)
6145 fputs (" (nil)", outf);
6146 return;
6149 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
6151 fprintf (outf, " %d", i);
6152 if (i < FIRST_PSEUDO_REGISTER)
6153 fprintf (outf, " [%s]",
6154 reg_names[i]);
6158 void
6159 debug_regset (r)
6160 regset r;
6162 dump_regset (r, stderr);
6163 putc ('\n', stderr);
6166 void
6167 dump_flow_info (file)
6168 FILE *file;
6170 register int i;
6171 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6173 fprintf (file, "%d registers.\n", max_regno);
6174 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
6175 if (REG_N_REFS (i))
6177 enum reg_class class, altclass;
6178 fprintf (file, "\nRegister %d used %d times across %d insns",
6179 i, REG_N_REFS (i), REG_LIVE_LENGTH (i));
6180 if (REG_BASIC_BLOCK (i) >= 0)
6181 fprintf (file, " in block %d", REG_BASIC_BLOCK (i));
6182 if (REG_N_SETS (i))
6183 fprintf (file, "; set %d time%s", REG_N_SETS (i),
6184 (REG_N_SETS (i) == 1) ? "" : "s");
6185 if (REG_USERVAR_P (regno_reg_rtx[i]))
6186 fprintf (file, "; user var");
6187 if (REG_N_DEATHS (i) != 1)
6188 fprintf (file, "; dies in %d places", REG_N_DEATHS (i));
6189 if (REG_N_CALLS_CROSSED (i) == 1)
6190 fprintf (file, "; crosses 1 call");
6191 else if (REG_N_CALLS_CROSSED (i))
6192 fprintf (file, "; crosses %d calls", REG_N_CALLS_CROSSED (i));
6193 if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
6194 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
6195 class = reg_preferred_class (i);
6196 altclass = reg_alternate_class (i);
6197 if (class != GENERAL_REGS || altclass != ALL_REGS)
6199 if (altclass == ALL_REGS || class == ALL_REGS)
6200 fprintf (file, "; pref %s", reg_class_names[(int) class]);
6201 else if (altclass == NO_REGS)
6202 fprintf (file, "; %s or none", reg_class_names[(int) class]);
6203 else
6204 fprintf (file, "; pref %s, else %s",
6205 reg_class_names[(int) class],
6206 reg_class_names[(int) altclass]);
6208 if (REG_POINTER (regno_reg_rtx[i]))
6209 fprintf (file, "; pointer");
6210 fprintf (file, ".\n");
6213 fprintf (file, "\n%d basic blocks, %d edges.\n", n_basic_blocks, n_edges);
6214 for (i = 0; i < n_basic_blocks; i++)
6216 register basic_block bb = BASIC_BLOCK (i);
6217 register edge e;
6219 fprintf (file, "\nBasic block %d: first insn %d, last %d, loop_depth %d, count %d.\n",
6220 i, INSN_UID (bb->head), INSN_UID (bb->end), bb->loop_depth, bb->count);
6222 fprintf (file, "Predecessors: ");
6223 for (e = bb->pred; e; e = e->pred_next)
6224 dump_edge_info (file, e, 0);
6226 fprintf (file, "\nSuccessors: ");
6227 for (e = bb->succ; e; e = e->succ_next)
6228 dump_edge_info (file, e, 1);
6230 fprintf (file, "\nRegisters live at start:");
6231 dump_regset (bb->global_live_at_start, file);
6233 fprintf (file, "\nRegisters live at end:");
6234 dump_regset (bb->global_live_at_end, file);
6236 putc ('\n', file);
6239 putc ('\n', file);
6242 void
6243 debug_flow_info ()
6245 dump_flow_info (stderr);
6248 static void
6249 dump_edge_info (file, e, do_succ)
6250 FILE *file;
6251 edge e;
6252 int do_succ;
6254 basic_block side = (do_succ ? e->dest : e->src);
6256 if (side == ENTRY_BLOCK_PTR)
6257 fputs (" ENTRY", file);
6258 else if (side == EXIT_BLOCK_PTR)
6259 fputs (" EXIT", file);
6260 else
6261 fprintf (file, " %d", side->index);
6263 if (e->count)
6264 fprintf (file, " count:%d", e->count);
6266 if (e->flags)
6268 static const char * const bitnames[] = {
6269 "fallthru", "crit", "ab", "abcall", "eh", "fake"
6271 int comma = 0;
6272 int i, flags = e->flags;
6274 fputc (' ', file);
6275 fputc ('(', file);
6276 for (i = 0; flags; i++)
6277 if (flags & (1 << i))
6279 flags &= ~(1 << i);
6281 if (comma)
6282 fputc (',', file);
6283 if (i < (int) ARRAY_SIZE (bitnames))
6284 fputs (bitnames[i], file);
6285 else
6286 fprintf (file, "%d", i);
6287 comma = 1;
6289 fputc (')', file);
6293 /* Print out one basic block with live information at start and end. */
6295 void
6296 dump_bb (bb, outf)
6297 basic_block bb;
6298 FILE *outf;
6300 rtx insn;
6301 rtx last;
6302 edge e;
6304 fprintf (outf, ";; Basic block %d, loop depth %d, count %d",
6305 bb->index, bb->loop_depth, bb->count);
6306 putc ('\n', outf);
6308 fputs (";; Predecessors: ", outf);
6309 for (e = bb->pred; e; e = e->pred_next)
6310 dump_edge_info (outf, e, 0);
6311 putc ('\n', outf);
6313 fputs (";; Registers live at start:", outf);
6314 dump_regset (bb->global_live_at_start, outf);
6315 putc ('\n', outf);
6317 for (insn = bb->head, last = NEXT_INSN (bb->end);
6318 insn != last;
6319 insn = NEXT_INSN (insn))
6320 print_rtl_single (outf, insn);
6322 fputs (";; Registers live at end:", outf);
6323 dump_regset (bb->global_live_at_end, outf);
6324 putc ('\n', outf);
6326 fputs (";; Successors: ", outf);
6327 for (e = bb->succ; e; e = e->succ_next)
6328 dump_edge_info (outf, e, 1);
6329 putc ('\n', outf);
6332 void
6333 debug_bb (bb)
6334 basic_block bb;
6336 dump_bb (bb, stderr);
6339 void
6340 debug_bb_n (n)
6341 int n;
6343 dump_bb (BASIC_BLOCK (n), stderr);
6346 /* Like print_rtl, but also print out live information for the start of each
6347 basic block. */
6349 void
6350 print_rtl_with_bb (outf, rtx_first)
6351 FILE *outf;
6352 rtx rtx_first;
6354 register rtx tmp_rtx;
6356 if (rtx_first == 0)
6357 fprintf (outf, "(nil)\n");
6358 else
6360 int i;
6361 enum bb_state { NOT_IN_BB, IN_ONE_BB, IN_MULTIPLE_BB };
6362 int max_uid = get_max_uid ();
6363 basic_block *start = (basic_block *)
6364 xcalloc (max_uid, sizeof (basic_block));
6365 basic_block *end = (basic_block *)
6366 xcalloc (max_uid, sizeof (basic_block));
6367 enum bb_state *in_bb_p = (enum bb_state *)
6368 xcalloc (max_uid, sizeof (enum bb_state));
6370 for (i = n_basic_blocks - 1; i >= 0; i--)
6372 basic_block bb = BASIC_BLOCK (i);
6373 rtx x;
6375 start[INSN_UID (bb->head)] = bb;
6376 end[INSN_UID (bb->end)] = bb;
6377 for (x = bb->head; x != NULL_RTX; x = NEXT_INSN (x))
6379 enum bb_state state = IN_MULTIPLE_BB;
6380 if (in_bb_p[INSN_UID (x)] == NOT_IN_BB)
6381 state = IN_ONE_BB;
6382 in_bb_p[INSN_UID (x)] = state;
6384 if (x == bb->end)
6385 break;
6389 for (tmp_rtx = rtx_first; NULL != tmp_rtx; tmp_rtx = NEXT_INSN (tmp_rtx))
6391 int did_output;
6392 basic_block bb;
6394 if ((bb = start[INSN_UID (tmp_rtx)]) != NULL)
6396 fprintf (outf, ";; Start of basic block %d, registers live:",
6397 bb->index);
6398 dump_regset (bb->global_live_at_start, outf);
6399 putc ('\n', outf);
6402 if (in_bb_p[INSN_UID (tmp_rtx)] == NOT_IN_BB
6403 && GET_CODE (tmp_rtx) != NOTE
6404 && GET_CODE (tmp_rtx) != BARRIER)
6405 fprintf (outf, ";; Insn is not within a basic block\n");
6406 else if (in_bb_p[INSN_UID (tmp_rtx)] == IN_MULTIPLE_BB)
6407 fprintf (outf, ";; Insn is in multiple basic blocks\n");
6409 did_output = print_rtl_single (outf, tmp_rtx);
6411 if ((bb = end[INSN_UID (tmp_rtx)]) != NULL)
6413 fprintf (outf, ";; End of basic block %d, registers live:\n",
6414 bb->index);
6415 dump_regset (bb->global_live_at_end, outf);
6416 putc ('\n', outf);
6419 if (did_output)
6420 putc ('\n', outf);
6423 free (start);
6424 free (end);
6425 free (in_bb_p);
6428 if (current_function_epilogue_delay_list != 0)
6430 fprintf (outf, "\n;; Insns in epilogue delay list:\n\n");
6431 for (tmp_rtx = current_function_epilogue_delay_list; tmp_rtx != 0;
6432 tmp_rtx = XEXP (tmp_rtx, 1))
6433 print_rtl_single (outf, XEXP (tmp_rtx, 0));
6437 /* Dump the rtl into the current debugging dump file, then abort. */
6438 static void
6439 print_rtl_and_abort ()
6441 if (rtl_dump_file)
6443 print_rtl_with_bb (rtl_dump_file, get_insns ());
6444 fclose (rtl_dump_file);
6446 abort ();
6449 /* Recompute register set/reference counts immediately prior to register
6450 allocation.
6452 This avoids problems with set/reference counts changing to/from values
6453 which have special meanings to the register allocators.
6455 Additionally, the reference counts are the primary component used by the
6456 register allocators to prioritize pseudos for allocation to hard regs.
6457 More accurate reference counts generally lead to better register allocation.
6459 F is the first insn to be scanned.
6461 LOOP_STEP denotes how much loop_depth should be incremented per
6462 loop nesting level in order to increase the ref count more for
6463 references in a loop.
6465 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
6466 possibly other information which is used by the register allocators. */
6468 void
6469 recompute_reg_usage (f, loop_step)
6470 rtx f ATTRIBUTE_UNUSED;
6471 int loop_step ATTRIBUTE_UNUSED;
6473 allocate_reg_life_data ();
6474 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
6477 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
6478 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
6479 of the number of registers that died. */
6482 count_or_remove_death_notes (blocks, kill)
6483 sbitmap blocks;
6484 int kill;
6486 int i, count = 0;
6488 for (i = n_basic_blocks - 1; i >= 0; --i)
6490 basic_block bb;
6491 rtx insn;
6493 if (blocks && ! TEST_BIT (blocks, i))
6494 continue;
6496 bb = BASIC_BLOCK (i);
6498 for (insn = bb->head;; insn = NEXT_INSN (insn))
6500 if (INSN_P (insn))
6502 rtx *pprev = &REG_NOTES (insn);
6503 rtx link = *pprev;
6505 while (link)
6507 switch (REG_NOTE_KIND (link))
6509 case REG_DEAD:
6510 if (GET_CODE (XEXP (link, 0)) == REG)
6512 rtx reg = XEXP (link, 0);
6513 int n;
6515 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
6516 n = 1;
6517 else
6518 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
6519 count += n;
6521 /* Fall through. */
6523 case REG_UNUSED:
6524 if (kill)
6526 rtx next = XEXP (link, 1);
6527 free_EXPR_LIST_node (link);
6528 *pprev = link = next;
6529 break;
6531 /* Fall through. */
6533 default:
6534 pprev = &XEXP (link, 1);
6535 link = *pprev;
6536 break;
6541 if (insn == bb->end)
6542 break;
6546 return count;
6550 /* Update insns block within BB. */
6552 void
6553 update_bb_for_insn (bb)
6554 basic_block bb;
6556 rtx insn;
6558 if (! basic_block_for_insn)
6559 return;
6561 for (insn = bb->head; ; insn = NEXT_INSN (insn))
6563 set_block_for_insn (insn, bb);
6565 if (insn == bb->end)
6566 break;
6571 /* Record INSN's block as BB. */
6573 void
6574 set_block_for_insn (insn, bb)
6575 rtx insn;
6576 basic_block bb;
6578 size_t uid = INSN_UID (insn);
6579 if (uid >= basic_block_for_insn->num_elements)
6581 int new_size;
6583 /* Add one-eighth the size so we don't keep calling xrealloc. */
6584 new_size = uid + (uid + 7) / 8;
6586 VARRAY_GROW (basic_block_for_insn, new_size);
6588 VARRAY_BB (basic_block_for_insn, uid) = bb;
6591 /* Record INSN's block number as BB. */
6592 /* ??? This has got to go. */
6594 void
6595 set_block_num (insn, bb)
6596 rtx insn;
6597 int bb;
6599 set_block_for_insn (insn, BASIC_BLOCK (bb));
6602 /* Verify the CFG consistency. This function check some CFG invariants and
6603 aborts when something is wrong. Hope that this function will help to
6604 convert many optimization passes to preserve CFG consistent.
6606 Currently it does following checks:
6608 - test head/end pointers
6609 - overlapping of basic blocks
6610 - edge list corectness
6611 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
6612 - tails of basic blocks (ensure that boundary is necesary)
6613 - scans body of the basic block for JUMP_INSN, CODE_LABEL
6614 and NOTE_INSN_BASIC_BLOCK
6615 - check that all insns are in the basic blocks
6616 (except the switch handling code, barriers and notes)
6617 - check that all returns are followed by barriers
6619 In future it can be extended check a lot of other stuff as well
6620 (reachability of basic blocks, life information, etc. etc.). */
6622 void
6623 verify_flow_info ()
6625 const int max_uid = get_max_uid ();
6626 const rtx rtx_first = get_insns ();
6627 rtx last_head = get_last_insn ();
6628 basic_block *bb_info;
6629 rtx x;
6630 int i, last_bb_num_seen, num_bb_notes, err = 0;
6632 bb_info = (basic_block *) xcalloc (max_uid, sizeof (basic_block));
6634 for (i = n_basic_blocks - 1; i >= 0; i--)
6636 basic_block bb = BASIC_BLOCK (i);
6637 rtx head = bb->head;
6638 rtx end = bb->end;
6640 /* Verify the end of the basic block is in the INSN chain. */
6641 for (x = last_head; x != NULL_RTX; x = PREV_INSN (x))
6642 if (x == end)
6643 break;
6644 if (!x)
6646 error ("End insn %d for block %d not found in the insn stream.",
6647 INSN_UID (end), bb->index);
6648 err = 1;
6651 /* Work backwards from the end to the head of the basic block
6652 to verify the head is in the RTL chain. */
6653 for (; x != NULL_RTX; x = PREV_INSN (x))
6655 /* While walking over the insn chain, verify insns appear
6656 in only one basic block and initialize the BB_INFO array
6657 used by other passes. */
6658 if (bb_info[INSN_UID (x)] != NULL)
6660 error ("Insn %d is in multiple basic blocks (%d and %d)",
6661 INSN_UID (x), bb->index, bb_info[INSN_UID (x)]->index);
6662 err = 1;
6664 bb_info[INSN_UID (x)] = bb;
6666 if (x == head)
6667 break;
6669 if (!x)
6671 error ("Head insn %d for block %d not found in the insn stream.",
6672 INSN_UID (head), bb->index);
6673 err = 1;
6676 last_head = x;
6679 /* Now check the basic blocks (boundaries etc.) */
6680 for (i = n_basic_blocks - 1; i >= 0; i--)
6682 basic_block bb = BASIC_BLOCK (i);
6683 /* Check corectness of edge lists */
6684 edge e;
6686 e = bb->succ;
6687 while (e)
6689 if (e->src != bb)
6691 fprintf (stderr,
6692 "verify_flow_info: Basic block %d succ edge is corrupted\n",
6693 bb->index);
6694 fprintf (stderr, "Predecessor: ");
6695 dump_edge_info (stderr, e, 0);
6696 fprintf (stderr, "\nSuccessor: ");
6697 dump_edge_info (stderr, e, 1);
6698 fflush (stderr);
6699 err = 1;
6701 if (e->dest != EXIT_BLOCK_PTR)
6703 edge e2 = e->dest->pred;
6704 while (e2 && e2 != e)
6705 e2 = e2->pred_next;
6706 if (!e2)
6708 error ("Basic block %i edge lists are corrupted", bb->index);
6709 err = 1;
6712 e = e->succ_next;
6715 e = bb->pred;
6716 while (e)
6718 if (e->dest != bb)
6720 error ("Basic block %d pred edge is corrupted", bb->index);
6721 fputs ("Predecessor: ", stderr);
6722 dump_edge_info (stderr, e, 0);
6723 fputs ("\nSuccessor: ", stderr);
6724 dump_edge_info (stderr, e, 1);
6725 fputc ('\n', stderr);
6726 err = 1;
6728 if (e->src != ENTRY_BLOCK_PTR)
6730 edge e2 = e->src->succ;
6731 while (e2 && e2 != e)
6732 e2 = e2->succ_next;
6733 if (!e2)
6735 error ("Basic block %i edge lists are corrupted", bb->index);
6736 err = 1;
6739 e = e->pred_next;
6742 /* OK pointers are correct. Now check the header of basic
6743 block. It ought to contain optional CODE_LABEL followed
6744 by NOTE_BASIC_BLOCK. */
6745 x = bb->head;
6746 if (GET_CODE (x) == CODE_LABEL)
6748 if (bb->end == x)
6750 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
6751 bb->index);
6752 err = 1;
6754 x = NEXT_INSN (x);
6756 if (!NOTE_INSN_BASIC_BLOCK_P (x) || NOTE_BASIC_BLOCK (x) != bb)
6758 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d\n",
6759 bb->index);
6760 err = 1;
6763 if (bb->end == x)
6765 /* Do checks for empty blocks here */
6767 else
6769 x = NEXT_INSN (x);
6770 while (x)
6772 if (NOTE_INSN_BASIC_BLOCK_P (x))
6774 error ("NOTE_INSN_BASIC_BLOCK %d in the middle of basic block %d",
6775 INSN_UID (x), bb->index);
6776 err = 1;
6779 if (x == bb->end)
6780 break;
6782 if (GET_CODE (x) == JUMP_INSN
6783 || GET_CODE (x) == CODE_LABEL
6784 || GET_CODE (x) == BARRIER)
6786 error ("In basic block %d:", bb->index);
6787 fatal_insn ("Flow control insn inside a basic block", x);
6790 x = NEXT_INSN (x);
6795 last_bb_num_seen = -1;
6796 num_bb_notes = 0;
6797 x = rtx_first;
6798 while (x)
6800 if (NOTE_INSN_BASIC_BLOCK_P (x))
6802 basic_block bb = NOTE_BASIC_BLOCK (x);
6803 num_bb_notes++;
6804 if (bb->index != last_bb_num_seen + 1)
6805 /* Basic blocks not numbered consecutively. */
6806 abort ();
6808 last_bb_num_seen = bb->index;
6811 if (!bb_info[INSN_UID (x)])
6813 switch (GET_CODE (x))
6815 case BARRIER:
6816 case NOTE:
6817 break;
6819 case CODE_LABEL:
6820 /* An addr_vec is placed outside any block block. */
6821 if (NEXT_INSN (x)
6822 && GET_CODE (NEXT_INSN (x)) == JUMP_INSN
6823 && (GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_DIFF_VEC
6824 || GET_CODE (PATTERN (NEXT_INSN (x))) == ADDR_VEC))
6826 x = NEXT_INSN (x);
6829 /* But in any case, non-deletable labels can appear anywhere. */
6830 break;
6832 default:
6833 fatal_insn ("Insn outside basic block", x);
6837 if (INSN_P (x)
6838 && GET_CODE (x) == JUMP_INSN
6839 && returnjump_p (x) && ! condjump_p (x)
6840 && ! (NEXT_INSN (x) && GET_CODE (NEXT_INSN (x)) == BARRIER))
6841 fatal_insn ("Return not followed by barrier", x);
6843 x = NEXT_INSN (x);
6846 if (num_bb_notes != n_basic_blocks)
6847 internal_error
6848 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
6849 num_bb_notes, n_basic_blocks);
6851 if (err)
6852 abort ();
6854 /* Clean up. */
6855 free (bb_info);
6858 /* Functions to access an edge list with a vector representation.
6859 Enough data is kept such that given an index number, the
6860 pred and succ that edge represents can be determined, or
6861 given a pred and a succ, its index number can be returned.
6862 This allows algorithms which consume a lot of memory to
6863 represent the normally full matrix of edge (pred,succ) with a
6864 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
6865 wasted space in the client code due to sparse flow graphs. */
6867 /* This functions initializes the edge list. Basically the entire
6868 flowgraph is processed, and all edges are assigned a number,
6869 and the data structure is filled in. */
6871 struct edge_list *
6872 create_edge_list ()
6874 struct edge_list *elist;
6875 edge e;
6876 int num_edges;
6877 int x;
6878 int block_count;
6880 block_count = n_basic_blocks + 2; /* Include the entry and exit blocks. */
6882 num_edges = 0;
6884 /* Determine the number of edges in the flow graph by counting successor
6885 edges on each basic block. */
6886 for (x = 0; x < n_basic_blocks; x++)
6888 basic_block bb = BASIC_BLOCK (x);
6890 for (e = bb->succ; e; e = e->succ_next)
6891 num_edges++;
6893 /* Don't forget successors of the entry block. */
6894 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
6895 num_edges++;
6897 elist = (struct edge_list *) xmalloc (sizeof (struct edge_list));
6898 elist->num_blocks = block_count;
6899 elist->num_edges = num_edges;
6900 elist->index_to_edge = (edge *) xmalloc (sizeof (edge) * num_edges);
6902 num_edges = 0;
6904 /* Follow successors of the entry block, and register these edges. */
6905 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
6907 elist->index_to_edge[num_edges] = e;
6908 num_edges++;
6911 for (x = 0; x < n_basic_blocks; x++)
6913 basic_block bb = BASIC_BLOCK (x);
6915 /* Follow all successors of blocks, and register these edges. */
6916 for (e = bb->succ; e; e = e->succ_next)
6918 elist->index_to_edge[num_edges] = e;
6919 num_edges++;
6922 return elist;
6925 /* This function free's memory associated with an edge list. */
6927 void
6928 free_edge_list (elist)
6929 struct edge_list *elist;
6931 if (elist)
6933 free (elist->index_to_edge);
6934 free (elist);
6938 /* This function provides debug output showing an edge list. */
6940 void
6941 print_edge_list (f, elist)
6942 FILE *f;
6943 struct edge_list *elist;
6945 int x;
6946 fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
6947 elist->num_blocks - 2, elist->num_edges);
6949 for (x = 0; x < elist->num_edges; x++)
6951 fprintf (f, " %-4d - edge(", x);
6952 if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
6953 fprintf (f, "entry,");
6954 else
6955 fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
6957 if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
6958 fprintf (f, "exit)\n");
6959 else
6960 fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
6964 /* This function provides an internal consistency check of an edge list,
6965 verifying that all edges are present, and that there are no
6966 extra edges. */
6968 void
6969 verify_edge_list (f, elist)
6970 FILE *f;
6971 struct edge_list *elist;
6973 int x, pred, succ, index;
6974 edge e;
6976 for (x = 0; x < n_basic_blocks; x++)
6978 basic_block bb = BASIC_BLOCK (x);
6980 for (e = bb->succ; e; e = e->succ_next)
6982 pred = e->src->index;
6983 succ = e->dest->index;
6984 index = EDGE_INDEX (elist, e->src, e->dest);
6985 if (index == EDGE_INDEX_NO_EDGE)
6987 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
6988 continue;
6990 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
6991 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
6992 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
6993 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
6994 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
6995 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
6998 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
7000 pred = e->src->index;
7001 succ = e->dest->index;
7002 index = EDGE_INDEX (elist, e->src, e->dest);
7003 if (index == EDGE_INDEX_NO_EDGE)
7005 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
7006 continue;
7008 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
7009 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
7010 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
7011 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
7012 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
7013 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
7015 /* We've verified that all the edges are in the list, no lets make sure
7016 there are no spurious edges in the list. */
7018 for (pred = 0; pred < n_basic_blocks; pred++)
7019 for (succ = 0; succ < n_basic_blocks; succ++)
7021 basic_block p = BASIC_BLOCK (pred);
7022 basic_block s = BASIC_BLOCK (succ);
7024 int found_edge = 0;
7026 for (e = p->succ; e; e = e->succ_next)
7027 if (e->dest == s)
7029 found_edge = 1;
7030 break;
7032 for (e = s->pred; e; e = e->pred_next)
7033 if (e->src == p)
7035 found_edge = 1;
7036 break;
7038 if (EDGE_INDEX (elist, BASIC_BLOCK (pred), BASIC_BLOCK (succ))
7039 == EDGE_INDEX_NO_EDGE && found_edge != 0)
7040 fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
7041 pred, succ);
7042 if (EDGE_INDEX (elist, BASIC_BLOCK (pred), BASIC_BLOCK (succ))
7043 != EDGE_INDEX_NO_EDGE && found_edge == 0)
7044 fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
7045 pred, succ, EDGE_INDEX (elist, BASIC_BLOCK (pred),
7046 BASIC_BLOCK (succ)));
7048 for (succ = 0; succ < n_basic_blocks; succ++)
7050 basic_block p = ENTRY_BLOCK_PTR;
7051 basic_block s = BASIC_BLOCK (succ);
7053 int found_edge = 0;
7055 for (e = p->succ; e; e = e->succ_next)
7056 if (e->dest == s)
7058 found_edge = 1;
7059 break;
7061 for (e = s->pred; e; e = e->pred_next)
7062 if (e->src == p)
7064 found_edge = 1;
7065 break;
7067 if (EDGE_INDEX (elist, ENTRY_BLOCK_PTR, BASIC_BLOCK (succ))
7068 == EDGE_INDEX_NO_EDGE && found_edge != 0)
7069 fprintf (f, "*** Edge (entry, %d) appears to not have an index\n",
7070 succ);
7071 if (EDGE_INDEX (elist, ENTRY_BLOCK_PTR, BASIC_BLOCK (succ))
7072 != EDGE_INDEX_NO_EDGE && found_edge == 0)
7073 fprintf (f, "*** Edge (entry, %d) has index %d, but no edge exists\n",
7074 succ, EDGE_INDEX (elist, ENTRY_BLOCK_PTR,
7075 BASIC_BLOCK (succ)));
7077 for (pred = 0; pred < n_basic_blocks; pred++)
7079 basic_block p = BASIC_BLOCK (pred);
7080 basic_block s = EXIT_BLOCK_PTR;
7082 int found_edge = 0;
7084 for (e = p->succ; e; e = e->succ_next)
7085 if (e->dest == s)
7087 found_edge = 1;
7088 break;
7090 for (e = s->pred; e; e = e->pred_next)
7091 if (e->src == p)
7093 found_edge = 1;
7094 break;
7096 if (EDGE_INDEX (elist, BASIC_BLOCK (pred), EXIT_BLOCK_PTR)
7097 == EDGE_INDEX_NO_EDGE && found_edge != 0)
7098 fprintf (f, "*** Edge (%d, exit) appears to not have an index\n",
7099 pred);
7100 if (EDGE_INDEX (elist, BASIC_BLOCK (pred), EXIT_BLOCK_PTR)
7101 != EDGE_INDEX_NO_EDGE && found_edge == 0)
7102 fprintf (f, "*** Edge (%d, exit) has index %d, but no edge exists\n",
7103 pred, EDGE_INDEX (elist, BASIC_BLOCK (pred),
7104 EXIT_BLOCK_PTR));
7108 /* This routine will determine what, if any, edge there is between
7109 a specified predecessor and successor. */
7112 find_edge_index (edge_list, pred, succ)
7113 struct edge_list *edge_list;
7114 basic_block pred, succ;
7116 int x;
7117 for (x = 0; x < NUM_EDGES (edge_list); x++)
7119 if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
7120 && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
7121 return x;
7123 return (EDGE_INDEX_NO_EDGE);
7126 /* This function will remove an edge from the flow graph. */
7128 void
7129 remove_edge (e)
7130 edge e;
7132 edge last_pred = NULL;
7133 edge last_succ = NULL;
7134 edge tmp;
7135 basic_block src, dest;
7136 src = e->src;
7137 dest = e->dest;
7138 for (tmp = src->succ; tmp && tmp != e; tmp = tmp->succ_next)
7139 last_succ = tmp;
7141 if (!tmp)
7142 abort ();
7143 if (last_succ)
7144 last_succ->succ_next = e->succ_next;
7145 else
7146 src->succ = e->succ_next;
7148 for (tmp = dest->pred; tmp && tmp != e; tmp = tmp->pred_next)
7149 last_pred = tmp;
7151 if (!tmp)
7152 abort ();
7153 if (last_pred)
7154 last_pred->pred_next = e->pred_next;
7155 else
7156 dest->pred = e->pred_next;
7158 n_edges--;
7159 free (e);
7162 /* This routine will remove any fake successor edges for a basic block.
7163 When the edge is removed, it is also removed from whatever predecessor
7164 list it is in. */
7166 static void
7167 remove_fake_successors (bb)
7168 basic_block bb;
7170 edge e;
7171 for (e = bb->succ; e;)
7173 edge tmp = e;
7174 e = e->succ_next;
7175 if ((tmp->flags & EDGE_FAKE) == EDGE_FAKE)
7176 remove_edge (tmp);
7180 /* This routine will remove all fake edges from the flow graph. If
7181 we remove all fake successors, it will automatically remove all
7182 fake predecessors. */
7184 void
7185 remove_fake_edges ()
7187 int x;
7189 for (x = 0; x < n_basic_blocks; x++)
7190 remove_fake_successors (BASIC_BLOCK (x));
7192 /* We've handled all successors except the entry block's. */
7193 remove_fake_successors (ENTRY_BLOCK_PTR);
7196 /* This function will add a fake edge between any block which has no
7197 successors, and the exit block. Some data flow equations require these
7198 edges to exist. */
7200 void
7201 add_noreturn_fake_exit_edges ()
7203 int x;
7205 for (x = 0; x < n_basic_blocks; x++)
7206 if (BASIC_BLOCK (x)->succ == NULL)
7207 make_edge (NULL, BASIC_BLOCK (x), EXIT_BLOCK_PTR, EDGE_FAKE);
7210 /* This function adds a fake edge between any infinite loops to the
7211 exit block. Some optimizations require a path from each node to
7212 the exit node.
7214 See also Morgan, Figure 3.10, pp. 82-83.
7216 The current implementation is ugly, not attempting to minimize the
7217 number of inserted fake edges. To reduce the number of fake edges
7218 to insert, add fake edges from _innermost_ loops containing only
7219 nodes not reachable from the exit block. */
7221 void
7222 connect_infinite_loops_to_exit ()
7224 basic_block unvisited_block;
7226 /* Perform depth-first search in the reverse graph to find nodes
7227 reachable from the exit block. */
7228 struct depth_first_search_dsS dfs_ds;
7230 flow_dfs_compute_reverse_init (&dfs_ds);
7231 flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
7233 /* Repeatedly add fake edges, updating the unreachable nodes. */
7234 while (1)
7236 unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds);
7237 if (!unvisited_block)
7238 break;
7239 make_edge (NULL, unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
7240 flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
7243 flow_dfs_compute_reverse_finish (&dfs_ds);
7245 return;
7248 /* Redirect an edge's successor from one block to another. */
7250 void
7251 redirect_edge_succ (e, new_succ)
7252 edge e;
7253 basic_block new_succ;
7255 edge *pe;
7257 /* Disconnect the edge from the old successor block. */
7258 for (pe = &e->dest->pred; *pe != e; pe = &(*pe)->pred_next)
7259 continue;
7260 *pe = (*pe)->pred_next;
7262 /* Reconnect the edge to the new successor block. */
7263 e->pred_next = new_succ->pred;
7264 new_succ->pred = e;
7265 e->dest = new_succ;
7268 /* Redirect an edge's predecessor from one block to another. */
7270 void
7271 redirect_edge_pred (e, new_pred)
7272 edge e;
7273 basic_block new_pred;
7275 edge *pe;
7277 /* Disconnect the edge from the old predecessor block. */
7278 for (pe = &e->src->succ; *pe != e; pe = &(*pe)->succ_next)
7279 continue;
7280 *pe = (*pe)->succ_next;
7282 /* Reconnect the edge to the new predecessor block. */
7283 e->succ_next = new_pred->succ;
7284 new_pred->succ = e;
7285 e->src = new_pred;
7288 /* Dump the list of basic blocks in the bitmap NODES. */
7290 static void
7291 flow_nodes_print (str, nodes, file)
7292 const char *str;
7293 const sbitmap nodes;
7294 FILE *file;
7296 int node;
7298 if (! nodes)
7299 return;
7301 fprintf (file, "%s { ", str);
7302 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {fprintf (file, "%d ", node);});
7303 fputs ("}\n", file);
7307 /* Dump the list of edges in the array EDGE_LIST. */
7309 static void
7310 flow_edge_list_print (str, edge_list, num_edges, file)
7311 const char *str;
7312 const edge *edge_list;
7313 int num_edges;
7314 FILE *file;
7316 int i;
7318 if (! edge_list)
7319 return;
7321 fprintf (file, "%s { ", str);
7322 for (i = 0; i < num_edges; i++)
7323 fprintf (file, "%d->%d ", edge_list[i]->src->index,
7324 edge_list[i]->dest->index);
7325 fputs ("}\n", file);
7329 /* Dump loop related CFG information. */
7331 static void
7332 flow_loops_cfg_dump (loops, file)
7333 const struct loops *loops;
7334 FILE *file;
7336 int i;
7338 if (! loops->num || ! file || ! loops->cfg.dom)
7339 return;
7341 for (i = 0; i < n_basic_blocks; i++)
7343 edge succ;
7345 fprintf (file, ";; %d succs { ", i);
7346 for (succ = BASIC_BLOCK (i)->succ; succ; succ = succ->succ_next)
7347 fprintf (file, "%d ", succ->dest->index);
7348 flow_nodes_print ("} dom", loops->cfg.dom[i], file);
7351 /* Dump the DFS node order. */
7352 if (loops->cfg.dfs_order)
7354 fputs (";; DFS order: ", file);
7355 for (i = 0; i < n_basic_blocks; i++)
7356 fprintf (file, "%d ", loops->cfg.dfs_order[i]);
7357 fputs ("\n", file);
7359 /* Dump the reverse completion node order. */
7360 if (loops->cfg.rc_order)
7362 fputs (";; RC order: ", file);
7363 for (i = 0; i < n_basic_blocks; i++)
7364 fprintf (file, "%d ", loops->cfg.rc_order[i]);
7365 fputs ("\n", file);
7369 /* Return non-zero if the nodes of LOOP are a subset of OUTER. */
7371 static int
7372 flow_loop_nested_p (outer, loop)
7373 struct loop *outer;
7374 struct loop *loop;
7376 return sbitmap_a_subset_b_p (loop->nodes, outer->nodes);
7380 /* Dump the loop information specified by LOOP to the stream FILE
7381 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
7382 void
7383 flow_loop_dump (loop, file, loop_dump_aux, verbose)
7384 const struct loop *loop;
7385 FILE *file;
7386 void (*loop_dump_aux) PARAMS((const struct loop *, FILE *, int));
7387 int verbose;
7389 if (! loop || ! loop->header)
7390 return;
7392 fprintf (file, ";;\n;; Loop %d (%d to %d):%s%s\n",
7393 loop->num, INSN_UID (loop->first->head),
7394 INSN_UID (loop->last->end),
7395 loop->shared ? " shared" : "",
7396 loop->invalid ? " invalid" : "");
7397 fprintf (file, ";; header %d, latch %d, pre-header %d, first %d, last %d\n",
7398 loop->header->index, loop->latch->index,
7399 loop->pre_header ? loop->pre_header->index : -1,
7400 loop->first->index, loop->last->index);
7401 fprintf (file, ";; depth %d, level %d, outer %ld\n",
7402 loop->depth, loop->level,
7403 (long) (loop->outer ? loop->outer->num : -1));
7405 if (loop->pre_header_edges)
7406 flow_edge_list_print (";; pre-header edges", loop->pre_header_edges,
7407 loop->num_pre_header_edges, file);
7408 flow_edge_list_print (";; entry edges", loop->entry_edges,
7409 loop->num_entries, file);
7410 fprintf (file, ";; %d", loop->num_nodes);
7411 flow_nodes_print (" nodes", loop->nodes, file);
7412 flow_edge_list_print (";; exit edges", loop->exit_edges,
7413 loop->num_exits, file);
7414 if (loop->exits_doms)
7415 flow_nodes_print (";; exit doms", loop->exits_doms, file);
7416 if (loop_dump_aux)
7417 loop_dump_aux (loop, file, verbose);
7421 /* Dump the loop information specified by LOOPS to the stream FILE,
7422 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
7423 void
7424 flow_loops_dump (loops, file, loop_dump_aux, verbose)
7425 const struct loops *loops;
7426 FILE *file;
7427 void (*loop_dump_aux) PARAMS((const struct loop *, FILE *, int));
7428 int verbose;
7430 int i;
7431 int num_loops;
7433 num_loops = loops->num;
7434 if (! num_loops || ! file)
7435 return;
7437 fprintf (file, ";; %d loops found, %d levels\n",
7438 num_loops, loops->levels);
7440 for (i = 0; i < num_loops; i++)
7442 struct loop *loop = &loops->array[i];
7444 flow_loop_dump (loop, file, loop_dump_aux, verbose);
7446 if (loop->shared)
7448 int j;
7450 for (j = 0; j < i; j++)
7452 struct loop *oloop = &loops->array[j];
7454 if (loop->header == oloop->header)
7456 int disjoint;
7457 int smaller;
7459 smaller = loop->num_nodes < oloop->num_nodes;
7461 /* If the union of LOOP and OLOOP is different than
7462 the larger of LOOP and OLOOP then LOOP and OLOOP
7463 must be disjoint. */
7464 disjoint = ! flow_loop_nested_p (smaller ? loop : oloop,
7465 smaller ? oloop : loop);
7466 fprintf (file,
7467 ";; loop header %d shared by loops %d, %d %s\n",
7468 loop->header->index, i, j,
7469 disjoint ? "disjoint" : "nested");
7475 if (verbose)
7476 flow_loops_cfg_dump (loops, file);
7480 /* Free all the memory allocated for LOOPS. */
7482 void
7483 flow_loops_free (loops)
7484 struct loops *loops;
7486 if (loops->array)
7488 int i;
7490 if (! loops->num)
7491 abort ();
7493 /* Free the loop descriptors. */
7494 for (i = 0; i < loops->num; i++)
7496 struct loop *loop = &loops->array[i];
7498 if (loop->pre_header_edges)
7499 free (loop->pre_header_edges);
7500 if (loop->nodes)
7501 sbitmap_free (loop->nodes);
7502 if (loop->entry_edges)
7503 free (loop->entry_edges);
7504 if (loop->exit_edges)
7505 free (loop->exit_edges);
7506 if (loop->exits_doms)
7507 sbitmap_free (loop->exits_doms);
7509 free (loops->array);
7510 loops->array = NULL;
7512 if (loops->cfg.dom)
7513 sbitmap_vector_free (loops->cfg.dom);
7514 if (loops->cfg.dfs_order)
7515 free (loops->cfg.dfs_order);
7517 if (loops->shared_headers)
7518 sbitmap_free (loops->shared_headers);
7523 /* Find the entry edges into the loop with header HEADER and nodes
7524 NODES and store in ENTRY_EDGES array. Return the number of entry
7525 edges from the loop. */
7527 static int
7528 flow_loop_entry_edges_find (header, nodes, entry_edges)
7529 basic_block header;
7530 const sbitmap nodes;
7531 edge **entry_edges;
7533 edge e;
7534 int num_entries;
7536 *entry_edges = NULL;
7538 num_entries = 0;
7539 for (e = header->pred; e; e = e->pred_next)
7541 basic_block src = e->src;
7543 if (src == ENTRY_BLOCK_PTR || ! TEST_BIT (nodes, src->index))
7544 num_entries++;
7547 if (! num_entries)
7548 abort ();
7550 *entry_edges = (edge *) xmalloc (num_entries * sizeof (edge *));
7552 num_entries = 0;
7553 for (e = header->pred; e; e = e->pred_next)
7555 basic_block src = e->src;
7557 if (src == ENTRY_BLOCK_PTR || ! TEST_BIT (nodes, src->index))
7558 (*entry_edges)[num_entries++] = e;
7561 return num_entries;
7565 /* Find the exit edges from the loop using the bitmap of loop nodes
7566 NODES and store in EXIT_EDGES array. Return the number of
7567 exit edges from the loop. */
7569 static int
7570 flow_loop_exit_edges_find (nodes, exit_edges)
7571 const sbitmap nodes;
7572 edge **exit_edges;
7574 edge e;
7575 int node;
7576 int num_exits;
7578 *exit_edges = NULL;
7580 /* Check all nodes within the loop to see if there are any
7581 successors not in the loop. Note that a node may have multiple
7582 exiting edges ????? A node can have one jumping edge and one fallthru
7583 edge so only one of these can exit the loop. */
7584 num_exits = 0;
7585 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {
7586 for (e = BASIC_BLOCK (node)->succ; e; e = e->succ_next)
7588 basic_block dest = e->dest;
7590 if (dest == EXIT_BLOCK_PTR || ! TEST_BIT (nodes, dest->index))
7591 num_exits++;
7595 if (! num_exits)
7596 return 0;
7598 *exit_edges = (edge *) xmalloc (num_exits * sizeof (edge *));
7600 /* Store all exiting edges into an array. */
7601 num_exits = 0;
7602 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {
7603 for (e = BASIC_BLOCK (node)->succ; e; e = e->succ_next)
7605 basic_block dest = e->dest;
7607 if (dest == EXIT_BLOCK_PTR || ! TEST_BIT (nodes, dest->index))
7608 (*exit_edges)[num_exits++] = e;
7612 return num_exits;
7616 /* Find the nodes contained within the loop with header HEADER and
7617 latch LATCH and store in NODES. Return the number of nodes within
7618 the loop. */
7620 static int
7621 flow_loop_nodes_find (header, latch, nodes)
7622 basic_block header;
7623 basic_block latch;
7624 sbitmap nodes;
7626 basic_block *stack;
7627 int sp;
7628 int num_nodes = 0;
7630 stack = (basic_block *) xmalloc (n_basic_blocks * sizeof (basic_block));
7631 sp = 0;
7633 /* Start with only the loop header in the set of loop nodes. */
7634 sbitmap_zero (nodes);
7635 SET_BIT (nodes, header->index);
7636 num_nodes++;
7637 header->loop_depth++;
7639 /* Push the loop latch on to the stack. */
7640 if (! TEST_BIT (nodes, latch->index))
7642 SET_BIT (nodes, latch->index);
7643 latch->loop_depth++;
7644 num_nodes++;
7645 stack[sp++] = latch;
7648 while (sp)
7650 basic_block node;
7651 edge e;
7653 node = stack[--sp];
7654 for (e = node->pred; e; e = e->pred_next)
7656 basic_block ancestor = e->src;
7658 /* If each ancestor not marked as part of loop, add to set of
7659 loop nodes and push on to stack. */
7660 if (ancestor != ENTRY_BLOCK_PTR
7661 && ! TEST_BIT (nodes, ancestor->index))
7663 SET_BIT (nodes, ancestor->index);
7664 ancestor->loop_depth++;
7665 num_nodes++;
7666 stack[sp++] = ancestor;
7670 free (stack);
7671 return num_nodes;
7674 /* Compute the depth first search order and store in the array
7675 DFS_ORDER if non-zero, marking the nodes visited in VISITED. If
7676 RC_ORDER is non-zero, return the reverse completion number for each
7677 node. Returns the number of nodes visited. A depth first search
7678 tries to get as far away from the starting point as quickly as
7679 possible. */
7681 static int
7682 flow_depth_first_order_compute (dfs_order, rc_order)
7683 int *dfs_order;
7684 int *rc_order;
7686 edge *stack;
7687 int sp;
7688 int dfsnum = 0;
7689 int rcnum = n_basic_blocks - 1;
7690 sbitmap visited;
7692 /* Allocate stack for back-tracking up CFG. */
7693 stack = (edge *) xmalloc ((n_basic_blocks + 1) * sizeof (edge));
7694 sp = 0;
7696 /* Allocate bitmap to track nodes that have been visited. */
7697 visited = sbitmap_alloc (n_basic_blocks);
7699 /* None of the nodes in the CFG have been visited yet. */
7700 sbitmap_zero (visited);
7702 /* Push the first edge on to the stack. */
7703 stack[sp++] = ENTRY_BLOCK_PTR->succ;
7705 while (sp)
7707 edge e;
7708 basic_block src;
7709 basic_block dest;
7711 /* Look at the edge on the top of the stack. */
7712 e = stack[sp - 1];
7713 src = e->src;
7714 dest = e->dest;
7716 /* Check if the edge destination has been visited yet. */
7717 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
7719 /* Mark that we have visited the destination. */
7720 SET_BIT (visited, dest->index);
7722 if (dfs_order)
7723 dfs_order[dfsnum++] = dest->index;
7725 if (dest->succ)
7727 /* Since the DEST node has been visited for the first
7728 time, check its successors. */
7729 stack[sp++] = dest->succ;
7731 else
7733 /* There are no successors for the DEST node so assign
7734 its reverse completion number. */
7735 if (rc_order)
7736 rc_order[rcnum--] = dest->index;
7739 else
7741 if (! e->succ_next && src != ENTRY_BLOCK_PTR)
7743 /* There are no more successors for the SRC node
7744 so assign its reverse completion number. */
7745 if (rc_order)
7746 rc_order[rcnum--] = src->index;
7749 if (e->succ_next)
7750 stack[sp - 1] = e->succ_next;
7751 else
7752 sp--;
7756 free (stack);
7757 sbitmap_free (visited);
7759 /* The number of nodes visited should not be greater than
7760 n_basic_blocks. */
7761 if (dfsnum > n_basic_blocks)
7762 abort ();
7764 /* There are some nodes left in the CFG that are unreachable. */
7765 if (dfsnum < n_basic_blocks)
7766 abort ();
7767 return dfsnum;
7770 /* Compute the depth first search order on the _reverse_ graph and
7771 store in the array DFS_ORDER, marking the nodes visited in VISITED.
7772 Returns the number of nodes visited.
7774 The computation is split into three pieces:
7776 flow_dfs_compute_reverse_init () creates the necessary data
7777 structures.
7779 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
7780 structures. The block will start the search.
7782 flow_dfs_compute_reverse_execute () continues (or starts) the
7783 search using the block on the top of the stack, stopping when the
7784 stack is empty.
7786 flow_dfs_compute_reverse_finish () destroys the necessary data
7787 structures.
7789 Thus, the user will probably call ..._init(), call ..._add_bb() to
7790 add a beginning basic block to the stack, call ..._execute(),
7791 possibly add another bb to the stack and again call ..._execute(),
7792 ..., and finally call _finish(). */
7794 /* Initialize the data structures used for depth-first search on the
7795 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
7796 added to the basic block stack. DATA is the current depth-first
7797 search context. If INITIALIZE_STACK is non-zero, there is an
7798 element on the stack. */
7800 static void
7801 flow_dfs_compute_reverse_init (data)
7802 depth_first_search_ds data;
7804 /* Allocate stack for back-tracking up CFG. */
7805 data->stack =
7806 (basic_block *) xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1))
7807 * sizeof (basic_block));
7808 data->sp = 0;
7810 /* Allocate bitmap to track nodes that have been visited. */
7811 data->visited_blocks = sbitmap_alloc (n_basic_blocks - (INVALID_BLOCK + 1));
7813 /* None of the nodes in the CFG have been visited yet. */
7814 sbitmap_zero (data->visited_blocks);
7816 return;
7819 /* Add the specified basic block to the top of the dfs data
7820 structures. When the search continues, it will start at the
7821 block. */
7823 static void
7824 flow_dfs_compute_reverse_add_bb (data, bb)
7825 depth_first_search_ds data;
7826 basic_block bb;
7828 data->stack[data->sp++] = bb;
7829 return;
7832 /* Continue the depth-first search through the reverse graph starting
7833 with the block at the stack's top and ending when the stack is
7834 empty. Visited nodes are marked. Returns an unvisited basic
7835 block, or NULL if there is none available. */
7837 static basic_block
7838 flow_dfs_compute_reverse_execute (data)
7839 depth_first_search_ds data;
7841 basic_block bb;
7842 edge e;
7843 int i;
7845 while (data->sp > 0)
7847 bb = data->stack[--data->sp];
7849 /* Mark that we have visited this node. */
7850 if (!TEST_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1)))
7852 SET_BIT (data->visited_blocks, bb->index - (INVALID_BLOCK + 1));
7854 /* Perform depth-first search on adjacent vertices. */
7855 for (e = bb->pred; e; e = e->pred_next)
7856 flow_dfs_compute_reverse_add_bb (data, e->src);
7860 /* Determine if there are unvisited basic blocks. */
7861 for (i = n_basic_blocks - (INVALID_BLOCK + 1); --i >= 0;)
7862 if (!TEST_BIT (data->visited_blocks, i))
7863 return BASIC_BLOCK (i + (INVALID_BLOCK + 1));
7864 return NULL;
7867 /* Destroy the data structures needed for depth-first search on the
7868 reverse graph. */
7870 static void
7871 flow_dfs_compute_reverse_finish (data)
7872 depth_first_search_ds data;
7874 free (data->stack);
7875 sbitmap_free (data->visited_blocks);
7876 return;
7880 /* Find the root node of the loop pre-header extended basic block and
7881 the edges along the trace from the root node to the loop header. */
7883 static void
7884 flow_loop_pre_header_scan (loop)
7885 struct loop *loop;
7887 int num = 0;
7888 basic_block ebb;
7890 loop->num_pre_header_edges = 0;
7892 if (loop->num_entries != 1)
7893 return;
7895 ebb = loop->entry_edges[0]->src;
7897 if (ebb != ENTRY_BLOCK_PTR)
7899 edge e;
7901 /* Count number of edges along trace from loop header to
7902 root of pre-header extended basic block. Usually this is
7903 only one or two edges. */
7904 num++;
7905 while (ebb->pred->src != ENTRY_BLOCK_PTR && ! ebb->pred->pred_next)
7907 ebb = ebb->pred->src;
7908 num++;
7911 loop->pre_header_edges = (edge *) xmalloc (num * sizeof (edge *));
7912 loop->num_pre_header_edges = num;
7914 /* Store edges in order that they are followed. The source
7915 of the first edge is the root node of the pre-header extended
7916 basic block and the destination of the last last edge is
7917 the loop header. */
7918 for (e = loop->entry_edges[0]; num; e = e->src->pred)
7920 loop->pre_header_edges[--num] = e;
7926 /* Return the block for the pre-header of the loop with header
7927 HEADER where DOM specifies the dominator information. Return NULL if
7928 there is no pre-header. */
7930 static basic_block
7931 flow_loop_pre_header_find (header, dom)
7932 basic_block header;
7933 const sbitmap *dom;
7935 basic_block pre_header;
7936 edge e;
7938 /* If block p is a predecessor of the header and is the only block
7939 that the header does not dominate, then it is the pre-header. */
7940 pre_header = NULL;
7941 for (e = header->pred; e; e = e->pred_next)
7943 basic_block node = e->src;
7945 if (node != ENTRY_BLOCK_PTR
7946 && ! TEST_BIT (dom[node->index], header->index))
7948 if (pre_header == NULL)
7949 pre_header = node;
7950 else
7952 /* There are multiple edges into the header from outside
7953 the loop so there is no pre-header block. */
7954 pre_header = NULL;
7955 break;
7959 return pre_header;
7962 /* Add LOOP to the loop hierarchy tree where PREVLOOP was the loop
7963 previously added. The insertion algorithm assumes that the loops
7964 are added in the order found by a depth first search of the CFG. */
7966 static void
7967 flow_loop_tree_node_add (prevloop, loop)
7968 struct loop *prevloop;
7969 struct loop *loop;
7972 if (flow_loop_nested_p (prevloop, loop))
7974 prevloop->inner = loop;
7975 loop->outer = prevloop;
7976 return;
7979 while (prevloop->outer)
7981 if (flow_loop_nested_p (prevloop->outer, loop))
7983 prevloop->next = loop;
7984 loop->outer = prevloop->outer;
7985 return;
7987 prevloop = prevloop->outer;
7990 prevloop->next = loop;
7991 loop->outer = NULL;
7994 /* Build the loop hierarchy tree for LOOPS. */
7996 static void
7997 flow_loops_tree_build (loops)
7998 struct loops *loops;
8000 int i;
8001 int num_loops;
8003 num_loops = loops->num;
8004 if (! num_loops)
8005 return;
8007 /* Root the loop hierarchy tree with the first loop found.
8008 Since we used a depth first search this should be the
8009 outermost loop. */
8010 loops->tree = &loops->array[0];
8011 loops->tree->outer = loops->tree->inner = loops->tree->next = NULL;
8013 /* Add the remaining loops to the tree. */
8014 for (i = 1; i < num_loops; i++)
8015 flow_loop_tree_node_add (&loops->array[i - 1], &loops->array[i]);
8018 /* Helper function to compute loop nesting depth and enclosed loop level
8019 for the natural loop specified by LOOP at the loop depth DEPTH.
8020 Returns the loop level. */
8022 static int
8023 flow_loop_level_compute (loop, depth)
8024 struct loop *loop;
8025 int depth;
8027 struct loop *inner;
8028 int level = 1;
8030 if (! loop)
8031 return 0;
8033 /* Traverse loop tree assigning depth and computing level as the
8034 maximum level of all the inner loops of this loop. The loop
8035 level is equivalent to the height of the loop in the loop tree
8036 and corresponds to the number of enclosed loop levels (including
8037 itself). */
8038 for (inner = loop->inner; inner; inner = inner->next)
8040 int ilevel;
8042 ilevel = flow_loop_level_compute (inner, depth + 1) + 1;
8044 if (ilevel > level)
8045 level = ilevel;
8047 loop->level = level;
8048 loop->depth = depth;
8049 return level;
8052 /* Compute the loop nesting depth and enclosed loop level for the loop
8053 hierarchy tree specfied by LOOPS. Return the maximum enclosed loop
8054 level. */
8056 static int
8057 flow_loops_level_compute (loops)
8058 struct loops *loops;
8060 struct loop *loop;
8061 int level;
8062 int levels = 0;
8064 /* Traverse all the outer level loops. */
8065 for (loop = loops->tree; loop; loop = loop->next)
8067 level = flow_loop_level_compute (loop, 1);
8068 if (level > levels)
8069 levels = level;
8071 return levels;
8075 /* Scan a single natural loop specified by LOOP collecting information
8076 about it specified by FLAGS. */
8079 flow_loop_scan (loops, loop, flags)
8080 struct loops *loops;
8081 struct loop *loop;
8082 int flags;
8084 /* Determine prerequisites. */
8085 if ((flags & LOOP_EXITS_DOMS) && ! loop->exit_edges)
8086 flags |= LOOP_EXIT_EDGES;
8088 if (flags & LOOP_ENTRY_EDGES)
8090 /* Find edges which enter the loop header.
8091 Note that the entry edges should only
8092 enter the header of a natural loop. */
8093 loop->num_entries
8094 = flow_loop_entry_edges_find (loop->header,
8095 loop->nodes,
8096 &loop->entry_edges);
8099 if (flags & LOOP_EXIT_EDGES)
8101 /* Find edges which exit the loop. */
8102 loop->num_exits
8103 = flow_loop_exit_edges_find (loop->nodes,
8104 &loop->exit_edges);
8107 if (flags & LOOP_EXITS_DOMS)
8109 int j;
8111 /* Determine which loop nodes dominate all the exits
8112 of the loop. */
8113 loop->exits_doms = sbitmap_alloc (n_basic_blocks);
8114 sbitmap_copy (loop->exits_doms, loop->nodes);
8115 for (j = 0; j < loop->num_exits; j++)
8116 sbitmap_a_and_b (loop->exits_doms, loop->exits_doms,
8117 loops->cfg.dom[loop->exit_edges[j]->src->index]);
8119 /* The header of a natural loop must dominate
8120 all exits. */
8121 if (! TEST_BIT (loop->exits_doms, loop->header->index))
8122 abort ();
8125 if (flags & LOOP_PRE_HEADER)
8127 /* Look to see if the loop has a pre-header node. */
8128 loop->pre_header
8129 = flow_loop_pre_header_find (loop->header, loops->cfg.dom);
8131 /* Find the blocks within the extended basic block of
8132 the loop pre-header. */
8133 flow_loop_pre_header_scan (loop);
8135 return 1;
8139 /* Find all the natural loops in the function and save in LOOPS structure
8140 and recalculate loop_depth information in basic block structures.
8141 FLAGS controls which loop information is collected.
8142 Return the number of natural loops found. */
8145 flow_loops_find (loops, flags)
8146 struct loops *loops;
8147 int flags;
8149 int i;
8150 int b;
8151 int num_loops;
8152 edge e;
8153 sbitmap headers;
8154 sbitmap *dom;
8155 int *dfs_order;
8156 int *rc_order;
8158 /* This function cannot be repeatedly called with different
8159 flags to build up the loop information. The loop tree
8160 must always be built if this function is called. */
8161 if (! (flags & LOOP_TREE))
8162 abort ();
8164 memset (loops, 0, sizeof (*loops));
8166 /* Taking care of this degenerate case makes the rest of
8167 this code simpler. */
8168 if (n_basic_blocks == 0)
8169 return 0;
8171 dfs_order = NULL;
8172 rc_order = NULL;
8174 /* Compute the dominators. */
8175 dom = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
8176 calculate_dominance_info (NULL, dom, CDI_DOMINATORS);
8178 /* Count the number of loop edges (back edges). This should be the
8179 same as the number of natural loops. */
8181 num_loops = 0;
8182 for (b = 0; b < n_basic_blocks; b++)
8184 basic_block header;
8186 header = BASIC_BLOCK (b);
8187 header->loop_depth = 0;
8189 for (e = header->pred; e; e = e->pred_next)
8191 basic_block latch = e->src;
8193 /* Look for back edges where a predecessor is dominated
8194 by this block. A natural loop has a single entry
8195 node (header) that dominates all the nodes in the
8196 loop. It also has single back edge to the header
8197 from a latch node. Note that multiple natural loops
8198 may share the same header. */
8199 if (b != header->index)
8200 abort ();
8202 if (latch != ENTRY_BLOCK_PTR && TEST_BIT (dom[latch->index], b))
8203 num_loops++;
8207 if (num_loops)
8209 /* Compute depth first search order of the CFG so that outer
8210 natural loops will be found before inner natural loops. */
8211 dfs_order = (int *) xmalloc (n_basic_blocks * sizeof (int));
8212 rc_order = (int *) xmalloc (n_basic_blocks * sizeof (int));
8213 flow_depth_first_order_compute (dfs_order, rc_order);
8215 /* Save CFG derived information to avoid recomputing it. */
8216 loops->cfg.dom = dom;
8217 loops->cfg.dfs_order = dfs_order;
8218 loops->cfg.rc_order = rc_order;
8220 /* Allocate loop structures. */
8221 loops->array
8222 = (struct loop *) xcalloc (num_loops, sizeof (struct loop));
8224 headers = sbitmap_alloc (n_basic_blocks);
8225 sbitmap_zero (headers);
8227 loops->shared_headers = sbitmap_alloc (n_basic_blocks);
8228 sbitmap_zero (loops->shared_headers);
8230 /* Find and record information about all the natural loops
8231 in the CFG. */
8232 num_loops = 0;
8233 for (b = 0; b < n_basic_blocks; b++)
8235 basic_block header;
8237 /* Search the nodes of the CFG in reverse completion order
8238 so that we can find outer loops first. */
8239 header = BASIC_BLOCK (rc_order[b]);
8241 /* Look for all the possible latch blocks for this header. */
8242 for (e = header->pred; e; e = e->pred_next)
8244 basic_block latch = e->src;
8246 /* Look for back edges where a predecessor is dominated
8247 by this block. A natural loop has a single entry
8248 node (header) that dominates all the nodes in the
8249 loop. It also has single back edge to the header
8250 from a latch node. Note that multiple natural loops
8251 may share the same header. */
8252 if (latch != ENTRY_BLOCK_PTR
8253 && TEST_BIT (dom[latch->index], header->index))
8255 struct loop *loop;
8257 loop = loops->array + num_loops;
8259 loop->header = header;
8260 loop->latch = latch;
8261 loop->num = num_loops;
8263 num_loops++;
8268 for (i = 0; i < num_loops; i++)
8270 struct loop *loop = &loops->array[i];
8272 /* Keep track of blocks that are loop headers so
8273 that we can tell which loops should be merged. */
8274 if (TEST_BIT (headers, loop->header->index))
8275 SET_BIT (loops->shared_headers, loop->header->index);
8276 SET_BIT (headers, loop->header->index);
8278 /* Find nodes contained within the loop. */
8279 loop->nodes = sbitmap_alloc (n_basic_blocks);
8280 loop->num_nodes
8281 = flow_loop_nodes_find (loop->header, loop->latch, loop->nodes);
8283 /* Compute first and last blocks within the loop.
8284 These are often the same as the loop header and
8285 loop latch respectively, but this is not always
8286 the case. */
8287 loop->first
8288 = BASIC_BLOCK (sbitmap_first_set_bit (loop->nodes));
8289 loop->last
8290 = BASIC_BLOCK (sbitmap_last_set_bit (loop->nodes));
8292 flow_loop_scan (loops, loop, flags);
8295 /* Natural loops with shared headers may either be disjoint or
8296 nested. Disjoint loops with shared headers cannot be inner
8297 loops and should be merged. For now just mark loops that share
8298 headers. */
8299 for (i = 0; i < num_loops; i++)
8300 if (TEST_BIT (loops->shared_headers, loops->array[i].header->index))
8301 loops->array[i].shared = 1;
8303 sbitmap_free (headers);
8306 loops->num = num_loops;
8308 /* Build the loop hierarchy tree. */
8309 flow_loops_tree_build (loops);
8311 /* Assign the loop nesting depth and enclosed loop level for each
8312 loop. */
8313 loops->levels = flow_loops_level_compute (loops);
8315 return num_loops;
8319 /* Update the information regarding the loops in the CFG
8320 specified by LOOPS. */
8322 flow_loops_update (loops, flags)
8323 struct loops *loops;
8324 int flags;
8326 /* One day we may want to update the current loop data. For now
8327 throw away the old stuff and rebuild what we need. */
8328 if (loops->array)
8329 flow_loops_free (loops);
8331 return flow_loops_find (loops, flags);
8335 /* Return non-zero if edge E enters header of LOOP from outside of LOOP. */
8338 flow_loop_outside_edge_p (loop, e)
8339 const struct loop *loop;
8340 edge e;
8342 if (e->dest != loop->header)
8343 abort ();
8344 return (e->src == ENTRY_BLOCK_PTR)
8345 || ! TEST_BIT (loop->nodes, e->src->index);
8348 /* Clear LOG_LINKS fields of insns in a chain.
8349 Also clear the global_live_at_{start,end} fields of the basic block
8350 structures. */
8352 void
8353 clear_log_links (insns)
8354 rtx insns;
8356 rtx i;
8357 int b;
8359 for (i = insns; i; i = NEXT_INSN (i))
8360 if (INSN_P (i))
8361 LOG_LINKS (i) = 0;
8363 for (b = 0; b < n_basic_blocks; b++)
8365 basic_block bb = BASIC_BLOCK (b);
8367 bb->global_live_at_start = NULL;
8368 bb->global_live_at_end = NULL;
8371 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
8372 EXIT_BLOCK_PTR->global_live_at_start = NULL;
8375 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
8376 correspond to the hard registers, if any, set in that map. This
8377 could be done far more efficiently by having all sorts of special-cases
8378 with moving single words, but probably isn't worth the trouble. */
8380 void
8381 reg_set_to_hard_reg_set (to, from)
8382 HARD_REG_SET *to;
8383 bitmap from;
8385 int i;
8387 EXECUTE_IF_SET_IN_BITMAP
8388 (from, 0, i,
8390 if (i >= FIRST_PSEUDO_REGISTER)
8391 return;
8392 SET_HARD_REG_BIT (*to, i);
8396 /* Called once at intialization time. */
8398 void
8399 init_flow ()
8401 static int initialized;
8403 if (!initialized)
8405 gcc_obstack_init (&flow_obstack);
8406 flow_firstobj = (char *) obstack_alloc (&flow_obstack, 0);
8407 initialized = 1;
8409 else
8411 obstack_free (&flow_obstack, flow_firstobj);
8412 flow_firstobj = (char *) obstack_alloc (&flow_obstack, 0);