1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
41 find_basic_blocks also finds any unreachable loops and deletes them.
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
49 ** live-register info **
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
88 ** Other actions of life_analysis **
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
93 life_analysis deletes insns whose only effect is to store a value
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
118 - pre/post modify transformation
126 #include "hard-reg-set.h"
127 #include "basic-block.h"
128 #include "insn-config.h"
132 #include "function.h"
140 #include "splay-tree.h"
142 #define obstack_chunk_alloc xmalloc
143 #define obstack_chunk_free free
145 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
146 the stack pointer does not matter. The value is tested only in
147 functions that have frame pointers.
148 No definition is equivalent to always zero. */
149 #ifndef EXIT_IGNORE_STACK
150 #define EXIT_IGNORE_STACK 0
153 #ifndef HAVE_epilogue
154 #define HAVE_epilogue 0
156 #ifndef HAVE_prologue
157 #define HAVE_prologue 0
159 #ifndef HAVE_sibcall_epilogue
160 #define HAVE_sibcall_epilogue 0
164 #define LOCAL_REGNO(REGNO) 0
166 #ifndef EPILOGUE_USES
167 #define EPILOGUE_USES(REGNO) 0
170 /* The obstack on which the flow graph components are allocated. */
172 struct obstack flow_obstack
;
173 static char *flow_firstobj
;
175 /* Number of basic blocks in the current function. */
179 /* Number of edges in the current function. */
183 /* The basic block array. */
185 varray_type basic_block_info
;
187 /* The special entry and exit blocks. */
189 struct basic_block_def entry_exit_blocks
[2]
194 NULL
, /* local_set */
195 NULL
, /* cond_local_set */
196 NULL
, /* global_live_at_start */
197 NULL
, /* global_live_at_end */
199 ENTRY_BLOCK
, /* index */
208 NULL
, /* local_set */
209 NULL
, /* cond_local_set */
210 NULL
, /* global_live_at_start */
211 NULL
, /* global_live_at_end */
213 EXIT_BLOCK
, /* index */
219 /* Nonzero if the second flow pass has completed. */
222 /* Maximum register number used in this function, plus one. */
226 /* Indexed by n, giving various register information */
228 varray_type reg_n_info
;
230 /* Size of a regset for the current function,
231 in (1) bytes and (2) elements. */
236 /* Regset of regs live when calls to `setjmp'-like functions happen. */
237 /* ??? Does this exist only for the setjmp-clobbered warning message? */
239 regset regs_live_at_setjmp
;
241 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
242 that have to go in the same hard reg.
243 The first two regs in the list are a pair, and the next two
244 are another pair, etc. */
247 /* Callback that determines if it's ok for a function to have no
248 noreturn attribute. */
249 int (*lang_missing_noreturn_ok_p
) PARAMS ((tree
));
251 /* Set of registers that may be eliminable. These are handled specially
252 in updating regs_ever_live. */
254 static HARD_REG_SET elim_reg_set
;
256 /* The basic block structure for every insn, indexed by uid. */
258 varray_type basic_block_for_insn
;
260 /* The labels mentioned in non-jump rtl. Valid during find_basic_blocks. */
261 /* ??? Should probably be using LABEL_NUSES instead. It would take a
262 bit of surgery to be able to use or co-opt the routines in jump. */
264 static rtx label_value_list
;
265 static rtx tail_recursion_label_list
;
267 /* Holds information for tracking conditional register life information. */
268 struct reg_cond_life_info
270 /* A boolean expression of conditions under which a register is dead. */
272 /* Conditions under which a register is dead at the basic block end. */
275 /* A boolean expression of conditions under which a register has been
279 /* ??? Could store mask of bytes that are dead, so that we could finally
280 track lifetimes of multi-word registers accessed via subregs. */
283 /* For use in communicating between propagate_block and its subroutines.
284 Holds all information needed to compute life and def-use information. */
286 struct propagate_block_info
288 /* The basic block we're considering. */
291 /* Bit N is set if register N is conditionally or unconditionally live. */
294 /* Bit N is set if register N is set this insn. */
297 /* Element N is the next insn that uses (hard or pseudo) register N
298 within the current basic block; or zero, if there is no such insn. */
301 /* Contains a list of all the MEMs we are tracking for dead store
305 /* If non-null, record the set of registers set unconditionally in the
309 /* If non-null, record the set of registers set conditionally in the
311 regset cond_local_set
;
313 #ifdef HAVE_conditional_execution
314 /* Indexed by register number, holds a reg_cond_life_info for each
315 register that is not unconditionally live or dead. */
316 splay_tree reg_cond_dead
;
318 /* Bit N is set if register N is in an expression in reg_cond_dead. */
322 /* The length of mem_set_list. */
323 int mem_set_list_len
;
325 /* Non-zero if the value of CC0 is live. */
328 /* Flags controling the set of information propagate_block collects. */
332 /* Maximum length of pbi->mem_set_list before we start dropping
333 new elements on the floor. */
334 #define MAX_MEM_SET_LIST_LEN 100
336 /* Store the data structures necessary for depth-first search. */
337 struct depth_first_search_dsS
{
338 /* stack for backtracking during the algorithm */
341 /* number of edges in the stack. That is, positions 0, ..., sp-1
345 /* record of basic blocks already seen by depth-first search */
346 sbitmap visited_blocks
;
348 typedef struct depth_first_search_dsS
*depth_first_search_ds
;
350 /* Forward declarations */
351 static int count_basic_blocks
PARAMS ((rtx
));
352 static void find_basic_blocks_1
PARAMS ((rtx
));
353 static rtx find_label_refs
PARAMS ((rtx
, rtx
));
354 static void clear_edges
PARAMS ((void));
355 static void make_edges
PARAMS ((rtx
));
356 static void make_label_edge
PARAMS ((sbitmap
*, basic_block
,
358 static void make_eh_edge
PARAMS ((sbitmap
*, basic_block
, rtx
));
359 static void mark_critical_edges
PARAMS ((void));
361 static void commit_one_edge_insertion
PARAMS ((edge
));
363 static void delete_unreachable_blocks
PARAMS ((void));
364 static int can_delete_note_p
PARAMS ((rtx
));
365 static void expunge_block
PARAMS ((basic_block
));
366 static int can_delete_label_p
PARAMS ((rtx
));
367 static int tail_recursion_label_p
PARAMS ((rtx
));
368 static int merge_blocks_move_predecessor_nojumps
PARAMS ((basic_block
,
370 static int merge_blocks_move_successor_nojumps
PARAMS ((basic_block
,
372 static int merge_blocks
PARAMS ((edge
,basic_block
,basic_block
));
373 static void try_merge_blocks
PARAMS ((void));
374 static void tidy_fallthru_edges
PARAMS ((void));
375 static int verify_wide_reg_1
PARAMS ((rtx
*, void *));
376 static void verify_wide_reg
PARAMS ((int, rtx
, rtx
));
377 static void verify_local_live_at_start
PARAMS ((regset
, basic_block
));
378 static int set_noop_p
PARAMS ((rtx
));
379 static int noop_move_p
PARAMS ((rtx
));
380 static void delete_noop_moves
PARAMS ((rtx
));
381 static void notice_stack_pointer_modification_1
PARAMS ((rtx
, rtx
, void *));
382 static void notice_stack_pointer_modification
PARAMS ((rtx
));
383 static void mark_reg
PARAMS ((rtx
, void *));
384 static void mark_regs_live_at_end
PARAMS ((regset
));
385 static int set_phi_alternative_reg
PARAMS ((rtx
, int, int, void *));
386 static void calculate_global_regs_live
PARAMS ((sbitmap
, sbitmap
, int));
387 static void propagate_block_delete_insn
PARAMS ((basic_block
, rtx
));
388 static rtx propagate_block_delete_libcall
PARAMS ((basic_block
, rtx
, rtx
));
389 static int insn_dead_p
PARAMS ((struct propagate_block_info
*,
391 static int libcall_dead_p
PARAMS ((struct propagate_block_info
*,
393 static void mark_set_regs
PARAMS ((struct propagate_block_info
*,
395 static void mark_set_1
PARAMS ((struct propagate_block_info
*,
396 enum rtx_code
, rtx
, rtx
,
398 #ifdef HAVE_conditional_execution
399 static int mark_regno_cond_dead
PARAMS ((struct propagate_block_info
*,
401 static void free_reg_cond_life_info
PARAMS ((splay_tree_value
));
402 static int flush_reg_cond_reg_1
PARAMS ((splay_tree_node
, void *));
403 static void flush_reg_cond_reg
PARAMS ((struct propagate_block_info
*,
405 static rtx elim_reg_cond
PARAMS ((rtx
, unsigned int));
406 static rtx ior_reg_cond
PARAMS ((rtx
, rtx
, int));
407 static rtx not_reg_cond
PARAMS ((rtx
));
408 static rtx and_reg_cond
PARAMS ((rtx
, rtx
, int));
411 static void attempt_auto_inc
PARAMS ((struct propagate_block_info
*,
412 rtx
, rtx
, rtx
, rtx
, rtx
));
413 static void find_auto_inc
PARAMS ((struct propagate_block_info
*,
415 static int try_pre_increment_1
PARAMS ((struct propagate_block_info
*,
417 static int try_pre_increment
PARAMS ((rtx
, rtx
, HOST_WIDE_INT
));
419 static void mark_used_reg
PARAMS ((struct propagate_block_info
*,
421 static void mark_used_regs
PARAMS ((struct propagate_block_info
*,
423 void dump_flow_info
PARAMS ((FILE *));
424 void debug_flow_info
PARAMS ((void));
425 static void dump_edge_info
PARAMS ((FILE *, edge
, int));
426 static void print_rtl_and_abort
PARAMS ((void));
428 static void invalidate_mems_from_autoinc
PARAMS ((struct propagate_block_info
*,
430 static void invalidate_mems_from_set
PARAMS ((struct propagate_block_info
*,
432 static void remove_fake_successors
PARAMS ((basic_block
));
433 static void flow_nodes_print
PARAMS ((const char *, const sbitmap
,
435 static void flow_edge_list_print
PARAMS ((const char *, const edge
*,
437 static void flow_loops_cfg_dump
PARAMS ((const struct loops
*,
439 static int flow_loop_nested_p
PARAMS ((struct loop
*,
441 static int flow_loop_entry_edges_find
PARAMS ((basic_block
, const sbitmap
,
443 static int flow_loop_exit_edges_find
PARAMS ((const sbitmap
, edge
**));
444 static int flow_loop_nodes_find
PARAMS ((basic_block
, basic_block
, sbitmap
));
445 static int flow_depth_first_order_compute
PARAMS ((int *, int *));
446 static void flow_dfs_compute_reverse_init
447 PARAMS ((depth_first_search_ds
));
448 static void flow_dfs_compute_reverse_add_bb
449 PARAMS ((depth_first_search_ds
, basic_block
));
450 static basic_block flow_dfs_compute_reverse_execute
451 PARAMS ((depth_first_search_ds
));
452 static void flow_dfs_compute_reverse_finish
453 PARAMS ((depth_first_search_ds
));
454 static void flow_loop_pre_header_scan
PARAMS ((struct loop
*));
455 static basic_block flow_loop_pre_header_find
PARAMS ((basic_block
,
457 static void flow_loop_tree_node_add
PARAMS ((struct loop
*, struct loop
*));
458 static void flow_loops_tree_build
PARAMS ((struct loops
*));
459 static int flow_loop_level_compute
PARAMS ((struct loop
*, int));
460 static int flow_loops_level_compute
PARAMS ((struct loops
*));
461 static void allocate_bb_life_data
PARAMS ((void));
463 /* Find basic blocks of the current function.
464 F is the first insn of the function and NREGS the number of register
468 find_basic_blocks (f
, nregs
, file
)
470 int nregs ATTRIBUTE_UNUSED
;
471 FILE *file ATTRIBUTE_UNUSED
;
475 /* Flush out existing data. */
476 if (basic_block_info
!= NULL
)
482 /* Clear bb->aux on all extant basic blocks. We'll use this as a
483 tag for reuse during create_basic_block, just in case some pass
484 copies around basic block notes improperly. */
485 for (i
= 0; i
< n_basic_blocks
; ++i
)
486 BASIC_BLOCK (i
)->aux
= NULL
;
488 VARRAY_FREE (basic_block_info
);
491 n_basic_blocks
= count_basic_blocks (f
);
493 /* Size the basic block table. The actual structures will be allocated
494 by find_basic_blocks_1, since we want to keep the structure pointers
495 stable across calls to find_basic_blocks. */
496 /* ??? This whole issue would be much simpler if we called find_basic_blocks
497 exactly once, and thereafter we don't have a single long chain of
498 instructions at all until close to the end of compilation when we
499 actually lay them out. */
501 VARRAY_BB_INIT (basic_block_info
, n_basic_blocks
, "basic_block_info");
503 find_basic_blocks_1 (f
);
505 /* Record the block to which an insn belongs. */
506 /* ??? This should be done another way, by which (perhaps) a label is
507 tagged directly with the basic block that it starts. It is used for
508 more than that currently, but IMO that is the only valid use. */
510 max_uid
= get_max_uid ();
512 /* Leave space for insns life_analysis makes in some cases for auto-inc.
513 These cases are rare, so we don't need too much space. */
514 max_uid
+= max_uid
/ 10;
517 compute_bb_for_insn (max_uid
);
519 /* Discover the edges of our cfg. */
520 make_edges (label_value_list
);
522 /* Do very simple cleanup now, for the benefit of code that runs between
523 here and cleanup_cfg, e.g. thread_prologue_and_epilogue_insns. */
524 tidy_fallthru_edges ();
526 mark_critical_edges ();
528 #ifdef ENABLE_CHECKING
534 check_function_return_warnings ()
536 if (warn_missing_noreturn
537 && !TREE_THIS_VOLATILE (cfun
->decl
)
538 && EXIT_BLOCK_PTR
->pred
== NULL
539 && (lang_missing_noreturn_ok_p
540 && !lang_missing_noreturn_ok_p (cfun
->decl
)))
541 warning ("function might be possible candidate for attribute `noreturn'");
543 /* If we have a path to EXIT, then we do return. */
544 if (TREE_THIS_VOLATILE (cfun
->decl
)
545 && EXIT_BLOCK_PTR
->pred
!= NULL
)
546 warning ("`noreturn' function does return");
548 /* If the clobber_return_insn appears in some basic block, then we
549 do reach the end without returning a value. */
550 else if (warn_return_type
551 && cfun
->x_clobber_return_insn
!= NULL
552 && EXIT_BLOCK_PTR
->pred
!= NULL
)
554 int max_uid
= get_max_uid ();
556 /* If clobber_return_insn was excised by jump1, then renumber_insns
557 can make max_uid smaller than the number still recorded in our rtx.
558 That's fine, since this is a quick way of verifying that the insn
559 is no longer in the chain. */
560 if (INSN_UID (cfun
->x_clobber_return_insn
) < max_uid
)
562 /* Recompute insn->block mapping, since the initial mapping is
563 set before we delete unreachable blocks. */
564 compute_bb_for_insn (max_uid
);
566 if (BLOCK_FOR_INSN (cfun
->x_clobber_return_insn
) != NULL
)
567 warning ("control reaches end of non-void function");
572 /* Count the basic blocks of the function. */
575 count_basic_blocks (f
)
579 register RTX_CODE prev_code
;
580 register int count
= 0;
581 int saw_abnormal_edge
= 0;
583 prev_code
= JUMP_INSN
;
584 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
586 enum rtx_code code
= GET_CODE (insn
);
588 if (code
== CODE_LABEL
589 || (GET_RTX_CLASS (code
) == 'i'
590 && (prev_code
== JUMP_INSN
591 || prev_code
== BARRIER
592 || saw_abnormal_edge
)))
594 saw_abnormal_edge
= 0;
598 /* Record whether this insn created an edge. */
599 if (code
== CALL_INSN
)
603 /* If there is a nonlocal goto label and the specified
604 region number isn't -1, we have an edge. */
605 if (nonlocal_goto_handler_labels
606 && ((note
= find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)) == 0
607 || INTVAL (XEXP (note
, 0)) >= 0))
608 saw_abnormal_edge
= 1;
610 else if (can_throw_internal (insn
))
611 saw_abnormal_edge
= 1;
613 else if (flag_non_call_exceptions
615 && can_throw_internal (insn
))
616 saw_abnormal_edge
= 1;
622 /* The rest of the compiler works a bit smoother when we don't have to
623 check for the edge case of do-nothing functions with no basic blocks. */
626 emit_insn (gen_rtx_USE (VOIDmode
, const0_rtx
));
633 /* Scan a list of insns for labels referred to other than by jumps.
634 This is used to scan the alternatives of a call placeholder. */
636 find_label_refs (f
, lvl
)
642 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
643 if (INSN_P (insn
) && GET_CODE (insn
) != JUMP_INSN
)
647 /* Make a list of all labels referred to other than by jumps
648 (which just don't have the REG_LABEL notes).
650 Make a special exception for labels followed by an ADDR*VEC,
651 as this would be a part of the tablejump setup code.
653 Make a special exception to registers loaded with label
654 values just before jump insns that use them. */
656 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
657 if (REG_NOTE_KIND (note
) == REG_LABEL
)
659 rtx lab
= XEXP (note
, 0), next
;
661 if ((next
= next_nonnote_insn (lab
)) != NULL
662 && GET_CODE (next
) == JUMP_INSN
663 && (GET_CODE (PATTERN (next
)) == ADDR_VEC
664 || GET_CODE (PATTERN (next
)) == ADDR_DIFF_VEC
))
666 else if (GET_CODE (lab
) == NOTE
)
668 else if (GET_CODE (NEXT_INSN (insn
)) == JUMP_INSN
669 && find_reg_note (NEXT_INSN (insn
), REG_LABEL
, lab
))
672 lvl
= alloc_EXPR_LIST (0, XEXP (note
, 0), lvl
);
679 /* Find all basic blocks of the function whose first insn is F.
681 Collect and return a list of labels whose addresses are taken. This
682 will be used in make_edges for use with computed gotos. */
685 find_basic_blocks_1 (f
)
688 register rtx insn
, next
;
690 rtx bb_note
= NULL_RTX
;
696 /* We process the instructions in a slightly different way than we did
697 previously. This is so that we see a NOTE_BASIC_BLOCK after we have
698 closed out the previous block, so that it gets attached at the proper
699 place. Since this form should be equivalent to the previous,
700 count_basic_blocks continues to use the old form as a check. */
702 for (insn
= f
; insn
; insn
= next
)
704 enum rtx_code code
= GET_CODE (insn
);
706 next
= NEXT_INSN (insn
);
712 int kind
= NOTE_LINE_NUMBER (insn
);
714 /* Look for basic block notes with which to keep the
715 basic_block_info pointers stable. Unthread the note now;
716 we'll put it back at the right place in create_basic_block.
717 Or not at all if we've already found a note in this block. */
718 if (kind
== NOTE_INSN_BASIC_BLOCK
)
720 if (bb_note
== NULL_RTX
)
723 next
= flow_delete_insn (insn
);
729 /* A basic block starts at a label. If we've closed one off due
730 to a barrier or some such, no need to do it again. */
731 if (head
!= NULL_RTX
)
733 /* While we now have edge lists with which other portions of
734 the compiler might determine a call ending a basic block
735 does not imply an abnormal edge, it will be a bit before
736 everything can be updated. So continue to emit a noop at
737 the end of such a block. */
738 if (GET_CODE (end
) == CALL_INSN
&& ! SIBLING_CALL_P (end
))
740 rtx nop
= gen_rtx_USE (VOIDmode
, const0_rtx
);
741 end
= emit_insn_after (nop
, end
);
744 create_basic_block (i
++, head
, end
, bb_note
);
752 /* A basic block ends at a jump. */
753 if (head
== NULL_RTX
)
757 /* ??? Make a special check for table jumps. The way this
758 happens is truly and amazingly gross. We are about to
759 create a basic block that contains just a code label and
760 an addr*vec jump insn. Worse, an addr_diff_vec creates
761 its own natural loop.
763 Prevent this bit of brain damage, pasting things together
764 correctly in make_edges.
766 The correct solution involves emitting the table directly
767 on the tablejump instruction as a note, or JUMP_LABEL. */
769 if (GET_CODE (PATTERN (insn
)) == ADDR_VEC
770 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
778 goto new_bb_inclusive
;
781 /* A basic block ends at a barrier. It may be that an unconditional
782 jump already closed the basic block -- no need to do it again. */
783 if (head
== NULL_RTX
)
786 /* While we now have edge lists with which other portions of the
787 compiler might determine a call ending a basic block does not
788 imply an abnormal edge, it will be a bit before everything can
789 be updated. So continue to emit a noop at the end of such a
791 if (GET_CODE (end
) == CALL_INSN
&& ! SIBLING_CALL_P (end
))
793 rtx nop
= gen_rtx_USE (VOIDmode
, const0_rtx
);
794 end
= emit_insn_after (nop
, end
);
796 goto new_bb_exclusive
;
800 /* Record whether this call created an edge. */
801 rtx note
= find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
);
802 int region
= (note
? INTVAL (XEXP (note
, 0)) : 0);
804 if (GET_CODE (PATTERN (insn
)) == CALL_PLACEHOLDER
)
806 /* Scan each of the alternatives for label refs. */
807 lvl
= find_label_refs (XEXP (PATTERN (insn
), 0), lvl
);
808 lvl
= find_label_refs (XEXP (PATTERN (insn
), 1), lvl
);
809 lvl
= find_label_refs (XEXP (PATTERN (insn
), 2), lvl
);
810 /* Record its tail recursion label, if any. */
811 if (XEXP (PATTERN (insn
), 3) != NULL_RTX
)
812 trll
= alloc_EXPR_LIST (0, XEXP (PATTERN (insn
), 3), trll
);
815 /* A basic block ends at a call that can either throw or
816 do a non-local goto. */
817 if ((nonlocal_goto_handler_labels
&& region
>= 0)
818 || can_throw_internal (insn
))
821 if (head
== NULL_RTX
)
826 create_basic_block (i
++, head
, end
, bb_note
);
827 head
= end
= NULL_RTX
;
835 /* Non-call exceptions generate new blocks just like calls. */
836 if (flag_non_call_exceptions
&& can_throw_internal (insn
))
837 goto new_bb_inclusive
;
839 if (head
== NULL_RTX
)
848 if (GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == CALL_INSN
)
852 /* Make a list of all labels referred to other than by jumps.
854 Make a special exception for labels followed by an ADDR*VEC,
855 as this would be a part of the tablejump setup code.
857 Make a special exception to registers loaded with label
858 values just before jump insns that use them. */
860 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
861 if (REG_NOTE_KIND (note
) == REG_LABEL
)
863 rtx lab
= XEXP (note
, 0), next
;
865 if ((next
= next_nonnote_insn (lab
)) != NULL
866 && GET_CODE (next
) == JUMP_INSN
867 && (GET_CODE (PATTERN (next
)) == ADDR_VEC
868 || GET_CODE (PATTERN (next
)) == ADDR_DIFF_VEC
))
870 else if (GET_CODE (lab
) == NOTE
)
872 else if (GET_CODE (NEXT_INSN (insn
)) == JUMP_INSN
873 && find_reg_note (NEXT_INSN (insn
), REG_LABEL
, lab
))
876 lvl
= alloc_EXPR_LIST (0, XEXP (note
, 0), lvl
);
881 if (head
!= NULL_RTX
)
882 create_basic_block (i
++, head
, end
, bb_note
);
884 flow_delete_insn (bb_note
);
886 if (i
!= n_basic_blocks
)
889 label_value_list
= lvl
;
890 tail_recursion_label_list
= trll
;
893 /* Tidy the CFG by deleting unreachable code and whatnot. */
898 delete_unreachable_blocks ();
900 mark_critical_edges ();
902 /* Kill the data we won't maintain. */
903 free_EXPR_LIST_list (&label_value_list
);
904 free_EXPR_LIST_list (&tail_recursion_label_list
);
907 /* Create a new basic block consisting of the instructions between
908 HEAD and END inclusive. Reuses the note and basic block struct
909 in BB_NOTE, if any. */
912 create_basic_block (index
, head
, end
, bb_note
)
914 rtx head
, end
, bb_note
;
919 && ! RTX_INTEGRATED_P (bb_note
)
920 && (bb
= NOTE_BASIC_BLOCK (bb_note
)) != NULL
923 /* If we found an existing note, thread it back onto the chain. */
927 if (GET_CODE (head
) == CODE_LABEL
)
931 after
= PREV_INSN (head
);
935 if (after
!= bb_note
&& NEXT_INSN (after
) != bb_note
)
936 reorder_insns (bb_note
, bb_note
, after
);
940 /* Otherwise we must create a note and a basic block structure.
941 Since we allow basic block structs in rtl, give the struct
942 the same lifetime by allocating it off the function obstack
943 rather than using malloc. */
945 bb
= (basic_block
) obstack_alloc (&flow_obstack
, sizeof (*bb
));
946 memset (bb
, 0, sizeof (*bb
));
948 if (GET_CODE (head
) == CODE_LABEL
)
949 bb_note
= emit_note_after (NOTE_INSN_BASIC_BLOCK
, head
);
952 bb_note
= emit_note_before (NOTE_INSN_BASIC_BLOCK
, head
);
955 NOTE_BASIC_BLOCK (bb_note
) = bb
;
958 /* Always include the bb note in the block. */
959 if (NEXT_INSN (end
) == bb_note
)
965 BASIC_BLOCK (index
) = bb
;
967 /* Tag the block so that we know it has been used when considering
968 other basic block notes. */
972 /* Records the basic block struct in BB_FOR_INSN, for every instruction
973 indexed by INSN_UID. MAX is the size of the array. */
976 compute_bb_for_insn (max
)
981 if (basic_block_for_insn
)
982 VARRAY_FREE (basic_block_for_insn
);
983 VARRAY_BB_INIT (basic_block_for_insn
, max
, "basic_block_for_insn");
985 for (i
= 0; i
< n_basic_blocks
; ++i
)
987 basic_block bb
= BASIC_BLOCK (i
);
994 int uid
= INSN_UID (insn
);
996 VARRAY_BB (basic_block_for_insn
, uid
) = bb
;
999 insn
= NEXT_INSN (insn
);
1004 /* Free the memory associated with the edge structures. */
1012 for (i
= 0; i
< n_basic_blocks
; ++i
)
1014 basic_block bb
= BASIC_BLOCK (i
);
1016 for (e
= bb
->succ
; e
; e
= n
)
1026 for (e
= ENTRY_BLOCK_PTR
->succ
; e
; e
= n
)
1032 ENTRY_BLOCK_PTR
->succ
= 0;
1033 EXIT_BLOCK_PTR
->pred
= 0;
1038 /* Identify the edges between basic blocks.
1040 NONLOCAL_LABEL_LIST is a list of non-local labels in the function. Blocks
1041 that are otherwise unreachable may be reachable with a non-local goto.
1043 BB_EH_END is an array indexed by basic block number in which we record
1044 the list of exception regions active at the end of the basic block. */
1047 make_edges (label_value_list
)
1048 rtx label_value_list
;
1051 sbitmap
*edge_cache
= NULL
;
1053 /* Assume no computed jump; revise as we create edges. */
1054 current_function_has_computed_jump
= 0;
1056 /* Heavy use of computed goto in machine-generated code can lead to
1057 nearly fully-connected CFGs. In that case we spend a significant
1058 amount of time searching the edge lists for duplicates. */
1059 if (forced_labels
|| label_value_list
)
1061 edge_cache
= sbitmap_vector_alloc (n_basic_blocks
, n_basic_blocks
);
1062 sbitmap_vector_zero (edge_cache
, n_basic_blocks
);
1065 /* By nature of the way these get numbered, block 0 is always the entry. */
1066 make_edge (edge_cache
, ENTRY_BLOCK_PTR
, BASIC_BLOCK (0), EDGE_FALLTHRU
);
1068 for (i
= 0; i
< n_basic_blocks
; ++i
)
1070 basic_block bb
= BASIC_BLOCK (i
);
1073 int force_fallthru
= 0;
1075 /* Examine the last instruction of the block, and discover the
1076 ways we can leave the block. */
1079 code
= GET_CODE (insn
);
1082 if (code
== JUMP_INSN
)
1086 /* Recognize exception handling placeholders. */
1087 if (GET_CODE (PATTERN (insn
)) == RESX
)
1088 make_eh_edge (edge_cache
, bb
, insn
);
1090 /* Recognize a non-local goto as a branch outside the
1091 current function. */
1092 else if (find_reg_note (insn
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
1095 /* ??? Recognize a tablejump and do the right thing. */
1096 else if ((tmp
= JUMP_LABEL (insn
)) != NULL_RTX
1097 && (tmp
= NEXT_INSN (tmp
)) != NULL_RTX
1098 && GET_CODE (tmp
) == JUMP_INSN
1099 && (GET_CODE (PATTERN (tmp
)) == ADDR_VEC
1100 || GET_CODE (PATTERN (tmp
)) == ADDR_DIFF_VEC
))
1105 if (GET_CODE (PATTERN (tmp
)) == ADDR_VEC
)
1106 vec
= XVEC (PATTERN (tmp
), 0);
1108 vec
= XVEC (PATTERN (tmp
), 1);
1110 for (j
= GET_NUM_ELEM (vec
) - 1; j
>= 0; --j
)
1111 make_label_edge (edge_cache
, bb
,
1112 XEXP (RTVEC_ELT (vec
, j
), 0), 0);
1114 /* Some targets (eg, ARM) emit a conditional jump that also
1115 contains the out-of-range target. Scan for these and
1116 add an edge if necessary. */
1117 if ((tmp
= single_set (insn
)) != NULL
1118 && SET_DEST (tmp
) == pc_rtx
1119 && GET_CODE (SET_SRC (tmp
)) == IF_THEN_ELSE
1120 && GET_CODE (XEXP (SET_SRC (tmp
), 2)) == LABEL_REF
)
1121 make_label_edge (edge_cache
, bb
,
1122 XEXP (XEXP (SET_SRC (tmp
), 2), 0), 0);
1124 #ifdef CASE_DROPS_THROUGH
1125 /* Silly VAXen. The ADDR_VEC is going to be in the way of
1126 us naturally detecting fallthru into the next block. */
1131 /* If this is a computed jump, then mark it as reaching
1132 everything on the label_value_list and forced_labels list. */
1133 else if (computed_jump_p (insn
))
1135 current_function_has_computed_jump
= 1;
1137 for (x
= label_value_list
; x
; x
= XEXP (x
, 1))
1138 make_label_edge (edge_cache
, bb
, XEXP (x
, 0), EDGE_ABNORMAL
);
1140 for (x
= forced_labels
; x
; x
= XEXP (x
, 1))
1141 make_label_edge (edge_cache
, bb
, XEXP (x
, 0), EDGE_ABNORMAL
);
1144 /* Returns create an exit out. */
1145 else if (returnjump_p (insn
))
1146 make_edge (edge_cache
, bb
, EXIT_BLOCK_PTR
, 0);
1148 /* Otherwise, we have a plain conditional or unconditional jump. */
1151 if (! JUMP_LABEL (insn
))
1153 make_label_edge (edge_cache
, bb
, JUMP_LABEL (insn
), 0);
1157 /* If this is a sibling call insn, then this is in effect a
1158 combined call and return, and so we need an edge to the
1159 exit block. No need to worry about EH edges, since we
1160 wouldn't have created the sibling call in the first place. */
1162 if (code
== CALL_INSN
&& SIBLING_CALL_P (insn
))
1163 make_edge (edge_cache
, bb
, EXIT_BLOCK_PTR
,
1164 EDGE_ABNORMAL
| EDGE_ABNORMAL_CALL
);
1166 /* If this is a CALL_INSN, then mark it as reaching the active EH
1167 handler for this CALL_INSN. If we're handling non-call
1168 exceptions then any insn can reach any of the active handlers.
1170 Also mark the CALL_INSN as reaching any nonlocal goto handler. */
1172 else if (code
== CALL_INSN
|| flag_non_call_exceptions
)
1174 /* Add any appropriate EH edges. */
1175 make_eh_edge (edge_cache
, bb
, insn
);
1177 if (code
== CALL_INSN
&& nonlocal_goto_handler_labels
)
1179 /* ??? This could be made smarter: in some cases it's possible
1180 to tell that certain calls will not do a nonlocal goto.
1182 For example, if the nested functions that do the nonlocal
1183 gotos do not have their addresses taken, then only calls to
1184 those functions or to other nested functions that use them
1185 could possibly do nonlocal gotos. */
1186 /* We do know that a REG_EH_REGION note with a value less
1187 than 0 is guaranteed not to perform a non-local goto. */
1188 rtx note
= find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
);
1189 if (!note
|| INTVAL (XEXP (note
, 0)) >= 0)
1190 for (x
= nonlocal_goto_handler_labels
; x
; x
= XEXP (x
, 1))
1191 make_label_edge (edge_cache
, bb
, XEXP (x
, 0),
1192 EDGE_ABNORMAL
| EDGE_ABNORMAL_CALL
);
1196 /* Find out if we can drop through to the next block. */
1197 insn
= next_nonnote_insn (insn
);
1198 if (!insn
|| (i
+ 1 == n_basic_blocks
&& force_fallthru
))
1199 make_edge (edge_cache
, bb
, EXIT_BLOCK_PTR
, EDGE_FALLTHRU
);
1200 else if (i
+ 1 < n_basic_blocks
)
1202 rtx tmp
= BLOCK_HEAD (i
+ 1);
1203 if (GET_CODE (tmp
) == NOTE
)
1204 tmp
= next_nonnote_insn (tmp
);
1205 if (force_fallthru
|| insn
== tmp
)
1206 make_edge (edge_cache
, bb
, BASIC_BLOCK (i
+ 1), EDGE_FALLTHRU
);
1211 sbitmap_vector_free (edge_cache
);
1214 /* Create an edge between two basic blocks. FLAGS are auxiliary information
1215 about the edge that is accumulated between calls. */
1218 make_edge (edge_cache
, src
, dst
, flags
)
1219 sbitmap
*edge_cache
;
1220 basic_block src
, dst
;
1226 /* Don't bother with edge cache for ENTRY or EXIT; there aren't that
1227 many edges to them, and we didn't allocate memory for it. */
1228 use_edge_cache
= (edge_cache
1229 && src
!= ENTRY_BLOCK_PTR
1230 && dst
!= EXIT_BLOCK_PTR
);
1232 /* Make sure we don't add duplicate edges. */
1233 switch (use_edge_cache
)
1236 /* Quick test for non-existance of the edge. */
1237 if (! TEST_BIT (edge_cache
[src
->index
], dst
->index
))
1240 /* The edge exists; early exit if no work to do. */
1246 for (e
= src
->succ
; e
; e
= e
->succ_next
)
1255 e
= (edge
) xcalloc (1, sizeof (*e
));
1258 e
->succ_next
= src
->succ
;
1259 e
->pred_next
= dst
->pred
;
1268 SET_BIT (edge_cache
[src
->index
], dst
->index
);
1271 /* Create an edge from a basic block to a label. */
1274 make_label_edge (edge_cache
, src
, label
, flags
)
1275 sbitmap
*edge_cache
;
1280 if (GET_CODE (label
) != CODE_LABEL
)
1283 /* If the label was never emitted, this insn is junk, but avoid a
1284 crash trying to refer to BLOCK_FOR_INSN (label). This can happen
1285 as a result of a syntax error and a diagnostic has already been
1288 if (INSN_UID (label
) == 0)
1291 make_edge (edge_cache
, src
, BLOCK_FOR_INSN (label
), flags
);
1294 /* Create the edges generated by INSN in REGION. */
1297 make_eh_edge (edge_cache
, src
, insn
)
1298 sbitmap
*edge_cache
;
1302 int is_call
= (GET_CODE (insn
) == CALL_INSN
? EDGE_ABNORMAL_CALL
: 0);
1305 handlers
= reachable_handlers (insn
);
1307 for (i
= handlers
; i
; i
= XEXP (i
, 1))
1308 make_label_edge (edge_cache
, src
, XEXP (i
, 0),
1309 EDGE_ABNORMAL
| EDGE_EH
| is_call
);
1311 free_INSN_LIST_list (&handlers
);
1314 /* Identify critical edges and set the bits appropriately. */
1317 mark_critical_edges ()
1319 int i
, n
= n_basic_blocks
;
1322 /* We begin with the entry block. This is not terribly important now,
1323 but could be if a front end (Fortran) implemented alternate entry
1325 bb
= ENTRY_BLOCK_PTR
;
1332 /* (1) Critical edges must have a source with multiple successors. */
1333 if (bb
->succ
&& bb
->succ
->succ_next
)
1335 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
1337 /* (2) Critical edges must have a destination with multiple
1338 predecessors. Note that we know there is at least one
1339 predecessor -- the edge we followed to get here. */
1340 if (e
->dest
->pred
->pred_next
)
1341 e
->flags
|= EDGE_CRITICAL
;
1343 e
->flags
&= ~EDGE_CRITICAL
;
1348 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
1349 e
->flags
&= ~EDGE_CRITICAL
;
1354 bb
= BASIC_BLOCK (i
);
1358 /* Split a block BB after insn INSN creating a new fallthru edge.
1359 Return the new edge. Note that to keep other parts of the compiler happy,
1360 this function renumbers all the basic blocks so that the new
1361 one has a number one greater than the block split. */
1364 split_block (bb
, insn
)
1374 /* There is no point splitting the block after its end. */
1375 if (bb
->end
== insn
)
1378 /* Create the new structures. */
1379 new_bb
= (basic_block
) obstack_alloc (&flow_obstack
, sizeof (*new_bb
));
1380 new_edge
= (edge
) xcalloc (1, sizeof (*new_edge
));
1383 memset (new_bb
, 0, sizeof (*new_bb
));
1385 new_bb
->head
= NEXT_INSN (insn
);
1386 new_bb
->end
= bb
->end
;
1389 new_bb
->succ
= bb
->succ
;
1390 bb
->succ
= new_edge
;
1391 new_bb
->pred
= new_edge
;
1392 new_bb
->count
= bb
->count
;
1393 new_bb
->loop_depth
= bb
->loop_depth
;
1396 new_edge
->dest
= new_bb
;
1397 new_edge
->flags
= EDGE_FALLTHRU
;
1398 new_edge
->probability
= REG_BR_PROB_BASE
;
1399 new_edge
->count
= bb
->count
;
1401 /* Redirect the src of the successor edges of bb to point to new_bb. */
1402 for (e
= new_bb
->succ
; e
; e
= e
->succ_next
)
1405 /* Place the new block just after the block being split. */
1406 VARRAY_GROW (basic_block_info
, ++n_basic_blocks
);
1408 /* Some parts of the compiler expect blocks to be number in
1409 sequential order so insert the new block immediately after the
1410 block being split.. */
1412 for (i
= n_basic_blocks
- 1; i
> j
+ 1; --i
)
1414 basic_block tmp
= BASIC_BLOCK (i
- 1);
1415 BASIC_BLOCK (i
) = tmp
;
1419 BASIC_BLOCK (i
) = new_bb
;
1422 /* Create the basic block note. */
1423 bb_note
= emit_note_before (NOTE_INSN_BASIC_BLOCK
,
1425 NOTE_BASIC_BLOCK (bb_note
) = new_bb
;
1426 new_bb
->head
= bb_note
;
1428 update_bb_for_insn (new_bb
);
1430 if (bb
->global_live_at_start
)
1432 new_bb
->global_live_at_start
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
1433 new_bb
->global_live_at_end
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
1434 COPY_REG_SET (new_bb
->global_live_at_end
, bb
->global_live_at_end
);
1436 /* We now have to calculate which registers are live at the end
1437 of the split basic block and at the start of the new basic
1438 block. Start with those registers that are known to be live
1439 at the end of the original basic block and get
1440 propagate_block to determine which registers are live. */
1441 COPY_REG_SET (new_bb
->global_live_at_start
, bb
->global_live_at_end
);
1442 propagate_block (new_bb
, new_bb
->global_live_at_start
, NULL
, NULL
, 0);
1443 COPY_REG_SET (bb
->global_live_at_end
,
1444 new_bb
->global_live_at_start
);
1451 /* Split a (typically critical) edge. Return the new block.
1452 Abort on abnormal edges.
1454 ??? The code generally expects to be called on critical edges.
1455 The case of a block ending in an unconditional jump to a
1456 block with multiple predecessors is not handled optimally. */
1459 split_edge (edge_in
)
1462 basic_block old_pred
, bb
, old_succ
;
1467 /* Abnormal edges cannot be split. */
1468 if ((edge_in
->flags
& EDGE_ABNORMAL
) != 0)
1471 old_pred
= edge_in
->src
;
1472 old_succ
= edge_in
->dest
;
1474 /* Remove the existing edge from the destination's pred list. */
1477 for (pp
= &old_succ
->pred
; *pp
!= edge_in
; pp
= &(*pp
)->pred_next
)
1479 *pp
= edge_in
->pred_next
;
1480 edge_in
->pred_next
= NULL
;
1483 /* Create the new structures. */
1484 bb
= (basic_block
) obstack_alloc (&flow_obstack
, sizeof (*bb
));
1485 edge_out
= (edge
) xcalloc (1, sizeof (*edge_out
));
1488 memset (bb
, 0, sizeof (*bb
));
1490 /* ??? This info is likely going to be out of date very soon. */
1491 if (old_succ
->global_live_at_start
)
1493 bb
->global_live_at_start
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
1494 bb
->global_live_at_end
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
1495 COPY_REG_SET (bb
->global_live_at_start
, old_succ
->global_live_at_start
);
1496 COPY_REG_SET (bb
->global_live_at_end
, old_succ
->global_live_at_start
);
1501 bb
->succ
= edge_out
;
1502 bb
->count
= edge_in
->count
;
1505 edge_in
->flags
&= ~EDGE_CRITICAL
;
1507 edge_out
->pred_next
= old_succ
->pred
;
1508 edge_out
->succ_next
= NULL
;
1510 edge_out
->dest
= old_succ
;
1511 edge_out
->flags
= EDGE_FALLTHRU
;
1512 edge_out
->probability
= REG_BR_PROB_BASE
;
1513 edge_out
->count
= edge_in
->count
;
1515 old_succ
->pred
= edge_out
;
1517 /* Tricky case -- if there existed a fallthru into the successor
1518 (and we're not it) we must add a new unconditional jump around
1519 the new block we're actually interested in.
1521 Further, if that edge is critical, this means a second new basic
1522 block must be created to hold it. In order to simplify correct
1523 insn placement, do this before we touch the existing basic block
1524 ordering for the block we were really wanting. */
1525 if ((edge_in
->flags
& EDGE_FALLTHRU
) == 0)
1528 for (e
= edge_out
->pred_next
; e
; e
= e
->pred_next
)
1529 if (e
->flags
& EDGE_FALLTHRU
)
1534 basic_block jump_block
;
1537 if ((e
->flags
& EDGE_CRITICAL
) == 0
1538 && e
->src
!= ENTRY_BLOCK_PTR
)
1540 /* Non critical -- we can simply add a jump to the end
1541 of the existing predecessor. */
1542 jump_block
= e
->src
;
1546 /* We need a new block to hold the jump. The simplest
1547 way to do the bulk of the work here is to recursively
1549 jump_block
= split_edge (e
);
1550 e
= jump_block
->succ
;
1553 /* Now add the jump insn ... */
1554 pos
= emit_jump_insn_after (gen_jump (old_succ
->head
),
1556 jump_block
->end
= pos
;
1557 if (basic_block_for_insn
)
1558 set_block_for_insn (pos
, jump_block
);
1559 emit_barrier_after (pos
);
1561 /* ... let jump know that label is in use, ... */
1562 JUMP_LABEL (pos
) = old_succ
->head
;
1563 ++LABEL_NUSES (old_succ
->head
);
1565 /* ... and clear fallthru on the outgoing edge. */
1566 e
->flags
&= ~EDGE_FALLTHRU
;
1568 /* Continue splitting the interesting edge. */
1572 /* Place the new block just in front of the successor. */
1573 VARRAY_GROW (basic_block_info
, ++n_basic_blocks
);
1574 if (old_succ
== EXIT_BLOCK_PTR
)
1575 j
= n_basic_blocks
- 1;
1577 j
= old_succ
->index
;
1578 for (i
= n_basic_blocks
- 1; i
> j
; --i
)
1580 basic_block tmp
= BASIC_BLOCK (i
- 1);
1581 BASIC_BLOCK (i
) = tmp
;
1584 BASIC_BLOCK (i
) = bb
;
1587 /* Create the basic block note.
1589 Where we place the note can have a noticable impact on the generated
1590 code. Consider this cfg:
1600 If we need to insert an insn on the edge from block 0 to block 1,
1601 we want to ensure the instructions we insert are outside of any
1602 loop notes that physically sit between block 0 and block 1. Otherwise
1603 we confuse the loop optimizer into thinking the loop is a phony. */
1604 if (old_succ
!= EXIT_BLOCK_PTR
1605 && PREV_INSN (old_succ
->head
)
1606 && GET_CODE (PREV_INSN (old_succ
->head
)) == NOTE
1607 && NOTE_LINE_NUMBER (PREV_INSN (old_succ
->head
)) == NOTE_INSN_LOOP_BEG
)
1608 bb_note
= emit_note_before (NOTE_INSN_BASIC_BLOCK
,
1609 PREV_INSN (old_succ
->head
));
1610 else if (old_succ
!= EXIT_BLOCK_PTR
)
1611 bb_note
= emit_note_before (NOTE_INSN_BASIC_BLOCK
, old_succ
->head
);
1613 bb_note
= emit_note_after (NOTE_INSN_BASIC_BLOCK
, get_last_insn ());
1614 NOTE_BASIC_BLOCK (bb_note
) = bb
;
1615 bb
->head
= bb
->end
= bb_note
;
1617 /* Not quite simple -- for non-fallthru edges, we must adjust the
1618 predecessor's jump instruction to target our new block. */
1619 if ((edge_in
->flags
& EDGE_FALLTHRU
) == 0)
1621 rtx tmp
, insn
= old_pred
->end
;
1622 rtx old_label
= old_succ
->head
;
1623 rtx new_label
= gen_label_rtx ();
1625 if (GET_CODE (insn
) != JUMP_INSN
)
1628 /* ??? Recognize a tablejump and adjust all matching cases. */
1629 if ((tmp
= JUMP_LABEL (insn
)) != NULL_RTX
1630 && (tmp
= NEXT_INSN (tmp
)) != NULL_RTX
1631 && GET_CODE (tmp
) == JUMP_INSN
1632 && (GET_CODE (PATTERN (tmp
)) == ADDR_VEC
1633 || GET_CODE (PATTERN (tmp
)) == ADDR_DIFF_VEC
))
1638 if (GET_CODE (PATTERN (tmp
)) == ADDR_VEC
)
1639 vec
= XVEC (PATTERN (tmp
), 0);
1641 vec
= XVEC (PATTERN (tmp
), 1);
1643 for (j
= GET_NUM_ELEM (vec
) - 1; j
>= 0; --j
)
1644 if (XEXP (RTVEC_ELT (vec
, j
), 0) == old_label
)
1646 RTVEC_ELT (vec
, j
) = gen_rtx_LABEL_REF (VOIDmode
, new_label
);
1647 --LABEL_NUSES (old_label
);
1648 ++LABEL_NUSES (new_label
);
1651 /* Handle casesi dispatch insns */
1652 if ((tmp
= single_set (insn
)) != NULL
1653 && SET_DEST (tmp
) == pc_rtx
1654 && GET_CODE (SET_SRC (tmp
)) == IF_THEN_ELSE
1655 && GET_CODE (XEXP (SET_SRC (tmp
), 2)) == LABEL_REF
1656 && XEXP (XEXP (SET_SRC (tmp
), 2), 0) == old_label
)
1658 XEXP (SET_SRC (tmp
), 2) = gen_rtx_LABEL_REF (VOIDmode
,
1660 --LABEL_NUSES (old_label
);
1661 ++LABEL_NUSES (new_label
);
1666 /* This would have indicated an abnormal edge. */
1667 if (computed_jump_p (insn
))
1670 /* A return instruction can't be redirected. */
1671 if (returnjump_p (insn
))
1674 /* If the insn doesn't go where we think, we're confused. */
1675 if (JUMP_LABEL (insn
) != old_label
)
1678 redirect_jump (insn
, new_label
, 0);
1681 emit_label_before (new_label
, bb_note
);
1682 bb
->head
= new_label
;
1688 /* Queue instructions for insertion on an edge between two basic blocks.
1689 The new instructions and basic blocks (if any) will not appear in the
1690 CFG until commit_edge_insertions is called. */
1693 insert_insn_on_edge (pattern
, e
)
1697 /* We cannot insert instructions on an abnormal critical edge.
1698 It will be easier to find the culprit if we die now. */
1699 if ((e
->flags
& (EDGE_ABNORMAL
|EDGE_CRITICAL
))
1700 == (EDGE_ABNORMAL
|EDGE_CRITICAL
))
1703 if (e
->insns
== NULL_RTX
)
1706 push_to_sequence (e
->insns
);
1708 emit_insn (pattern
);
1710 e
->insns
= get_insns ();
1714 /* Update the CFG for the instructions queued on edge E. */
1717 commit_one_edge_insertion (e
)
1720 rtx before
= NULL_RTX
, after
= NULL_RTX
, insns
, tmp
, last
;
1723 /* Pull the insns off the edge now since the edge might go away. */
1725 e
->insns
= NULL_RTX
;
1727 /* Figure out where to put these things. If the destination has
1728 one predecessor, insert there. Except for the exit block. */
1729 if (e
->dest
->pred
->pred_next
== NULL
1730 && e
->dest
!= EXIT_BLOCK_PTR
)
1734 /* Get the location correct wrt a code label, and "nice" wrt
1735 a basic block note, and before everything else. */
1737 if (GET_CODE (tmp
) == CODE_LABEL
)
1738 tmp
= NEXT_INSN (tmp
);
1739 if (NOTE_INSN_BASIC_BLOCK_P (tmp
))
1740 tmp
= NEXT_INSN (tmp
);
1741 if (tmp
== bb
->head
)
1744 after
= PREV_INSN (tmp
);
1747 /* If the source has one successor and the edge is not abnormal,
1748 insert there. Except for the entry block. */
1749 else if ((e
->flags
& EDGE_ABNORMAL
) == 0
1750 && e
->src
->succ
->succ_next
== NULL
1751 && e
->src
!= ENTRY_BLOCK_PTR
)
1754 /* It is possible to have a non-simple jump here. Consider a target
1755 where some forms of unconditional jumps clobber a register. This
1756 happens on the fr30 for example.
1758 We know this block has a single successor, so we can just emit
1759 the queued insns before the jump. */
1760 if (GET_CODE (bb
->end
) == JUMP_INSN
)
1766 /* We'd better be fallthru, or we've lost track of what's what. */
1767 if ((e
->flags
& EDGE_FALLTHRU
) == 0)
1774 /* Otherwise we must split the edge. */
1777 bb
= split_edge (e
);
1781 /* Now that we've found the spot, do the insertion. */
1783 /* Set the new block number for these insns, if structure is allocated. */
1784 if (basic_block_for_insn
)
1787 for (i
= insns
; i
!= NULL_RTX
; i
= NEXT_INSN (i
))
1788 set_block_for_insn (i
, bb
);
1793 emit_insns_before (insns
, before
);
1794 if (before
== bb
->head
)
1797 last
= prev_nonnote_insn (before
);
1801 last
= emit_insns_after (insns
, after
);
1802 if (after
== bb
->end
)
1806 if (returnjump_p (last
))
1808 /* ??? Remove all outgoing edges from BB and add one for EXIT.
1809 This is not currently a problem because this only happens
1810 for the (single) epilogue, which already has a fallthru edge
1814 if (e
->dest
!= EXIT_BLOCK_PTR
1815 || e
->succ_next
!= NULL
1816 || (e
->flags
& EDGE_FALLTHRU
) == 0)
1818 e
->flags
&= ~EDGE_FALLTHRU
;
1820 emit_barrier_after (last
);
1824 flow_delete_insn (before
);
1826 else if (GET_CODE (last
) == JUMP_INSN
)
1830 /* Update the CFG for all queued instructions. */
1833 commit_edge_insertions ()
1838 #ifdef ENABLE_CHECKING
1839 verify_flow_info ();
1843 bb
= ENTRY_BLOCK_PTR
;
1848 for (e
= bb
->succ
; e
; e
= next
)
1850 next
= e
->succ_next
;
1852 commit_one_edge_insertion (e
);
1855 if (++i
>= n_basic_blocks
)
1857 bb
= BASIC_BLOCK (i
);
1861 /* Add fake edges to the function exit for any non constant calls in
1862 the bitmap of blocks specified by BLOCKS or to the whole CFG if
1863 BLOCKS is zero. Return the nuber of blocks that were split. */
1866 flow_call_edges_add (blocks
)
1870 int blocks_split
= 0;
1874 /* Map bb indicies into basic block pointers since split_block
1875 will renumber the basic blocks. */
1877 bbs
= xmalloc (n_basic_blocks
* sizeof (*bbs
));
1881 for (i
= 0; i
< n_basic_blocks
; i
++)
1882 bbs
[bb_num
++] = BASIC_BLOCK (i
);
1886 EXECUTE_IF_SET_IN_SBITMAP (blocks
, 0, i
,
1888 bbs
[bb_num
++] = BASIC_BLOCK (i
);
1893 /* Now add fake edges to the function exit for any non constant
1894 calls since there is no way that we can determine if they will
1897 for (i
= 0; i
< bb_num
; i
++)
1899 basic_block bb
= bbs
[i
];
1903 for (insn
= bb
->end
; ; insn
= prev_insn
)
1905 prev_insn
= PREV_INSN (insn
);
1906 if (GET_CODE (insn
) == CALL_INSN
&& ! CONST_CALL_P (insn
))
1910 /* Note that the following may create a new basic block
1911 and renumber the existing basic blocks. */
1912 e
= split_block (bb
, insn
);
1916 make_edge (NULL
, bb
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
1918 if (insn
== bb
->head
)
1924 verify_flow_info ();
1927 return blocks_split
;
1930 /* Delete all unreachable basic blocks. */
1933 delete_unreachable_blocks ()
1935 basic_block
*worklist
, *tos
;
1940 tos
= worklist
= (basic_block
*) xmalloc (sizeof (basic_block
) * n
);
1942 /* Use basic_block->aux as a marker. Clear them all. */
1944 for (i
= 0; i
< n
; ++i
)
1945 BASIC_BLOCK (i
)->aux
= NULL
;
1947 /* Add our starting points to the worklist. Almost always there will
1948 be only one. It isn't inconcievable that we might one day directly
1949 support Fortran alternate entry points. */
1951 for (e
= ENTRY_BLOCK_PTR
->succ
; e
; e
= e
->succ_next
)
1955 /* Mark the block with a handy non-null value. */
1959 /* Iterate: find everything reachable from what we've already seen. */
1961 while (tos
!= worklist
)
1963 basic_block b
= *--tos
;
1965 for (e
= b
->succ
; e
; e
= e
->succ_next
)
1973 /* Delete all unreachable basic blocks. Count down so that we
1974 don't interfere with the block renumbering that happens in
1975 flow_delete_block. */
1977 for (i
= n
- 1; i
>= 0; --i
)
1979 basic_block b
= BASIC_BLOCK (i
);
1982 /* This block was found. Tidy up the mark. */
1985 flow_delete_block (b
);
1988 tidy_fallthru_edges ();
1993 /* Return true if NOTE is not one of the ones that must be kept paired,
1994 so that we may simply delete them. */
1997 can_delete_note_p (note
)
2000 return (NOTE_LINE_NUMBER (note
) == NOTE_INSN_DELETED
2001 || NOTE_LINE_NUMBER (note
) == NOTE_INSN_BASIC_BLOCK
);
2004 /* Unlink a chain of insns between START and FINISH, leaving notes
2005 that must be paired. */
2008 flow_delete_insn_chain (start
, finish
)
2011 /* Unchain the insns one by one. It would be quicker to delete all
2012 of these with a single unchaining, rather than one at a time, but
2013 we need to keep the NOTE's. */
2019 next
= NEXT_INSN (start
);
2020 if (GET_CODE (start
) == NOTE
&& !can_delete_note_p (start
))
2022 else if (GET_CODE (start
) == CODE_LABEL
2023 && ! can_delete_label_p (start
))
2025 const char *name
= LABEL_NAME (start
);
2026 PUT_CODE (start
, NOTE
);
2027 NOTE_LINE_NUMBER (start
) = NOTE_INSN_DELETED_LABEL
;
2028 NOTE_SOURCE_FILE (start
) = name
;
2031 next
= flow_delete_insn (start
);
2033 if (start
== finish
)
2039 /* Delete the insns in a (non-live) block. We physically delete every
2040 non-deleted-note insn, and update the flow graph appropriately.
2042 Return nonzero if we deleted an exception handler. */
2044 /* ??? Preserving all such notes strikes me as wrong. It would be nice
2045 to post-process the stream to remove empty blocks, loops, ranges, etc. */
2048 flow_delete_block (b
)
2051 int deleted_handler
= 0;
2054 /* If the head of this block is a CODE_LABEL, then it might be the
2055 label for an exception handler which can't be reached.
2057 We need to remove the label from the exception_handler_label list
2058 and remove the associated NOTE_INSN_EH_REGION_BEG and
2059 NOTE_INSN_EH_REGION_END notes. */
2063 never_reached_warning (insn
);
2065 if (GET_CODE (insn
) == CODE_LABEL
)
2066 maybe_remove_eh_handler (insn
);
2068 /* Include any jump table following the basic block. */
2070 if (GET_CODE (end
) == JUMP_INSN
2071 && (tmp
= JUMP_LABEL (end
)) != NULL_RTX
2072 && (tmp
= NEXT_INSN (tmp
)) != NULL_RTX
2073 && GET_CODE (tmp
) == JUMP_INSN
2074 && (GET_CODE (PATTERN (tmp
)) == ADDR_VEC
2075 || GET_CODE (PATTERN (tmp
)) == ADDR_DIFF_VEC
))
2078 /* Include any barrier that may follow the basic block. */
2079 tmp
= next_nonnote_insn (end
);
2080 if (tmp
&& GET_CODE (tmp
) == BARRIER
)
2083 /* Selectively delete the entire chain. */
2084 flow_delete_insn_chain (insn
, end
);
2086 /* Remove the edges into and out of this block. Note that there may
2087 indeed be edges in, if we are removing an unreachable loop. */
2091 for (e
= b
->pred
; e
; e
= next
)
2093 for (q
= &e
->src
->succ
; *q
!= e
; q
= &(*q
)->succ_next
)
2096 next
= e
->pred_next
;
2100 for (e
= b
->succ
; e
; e
= next
)
2102 for (q
= &e
->dest
->pred
; *q
!= e
; q
= &(*q
)->pred_next
)
2105 next
= e
->succ_next
;
2114 /* Remove the basic block from the array, and compact behind it. */
2117 return deleted_handler
;
2120 /* Remove block B from the basic block array and compact behind it. */
2126 int i
, n
= n_basic_blocks
;
2128 for (i
= b
->index
; i
+ 1 < n
; ++i
)
2130 basic_block x
= BASIC_BLOCK (i
+ 1);
2131 BASIC_BLOCK (i
) = x
;
2135 basic_block_info
->num_elements
--;
2139 /* Delete INSN by patching it out. Return the next insn. */
2142 flow_delete_insn (insn
)
2145 rtx prev
= PREV_INSN (insn
);
2146 rtx next
= NEXT_INSN (insn
);
2149 PREV_INSN (insn
) = NULL_RTX
;
2150 NEXT_INSN (insn
) = NULL_RTX
;
2151 INSN_DELETED_P (insn
) = 1;
2154 NEXT_INSN (prev
) = next
;
2156 PREV_INSN (next
) = prev
;
2158 set_last_insn (prev
);
2160 if (GET_CODE (insn
) == CODE_LABEL
)
2161 remove_node_from_expr_list (insn
, &nonlocal_goto_handler_labels
);
2163 /* If deleting a jump, decrement the use count of the label. Deleting
2164 the label itself should happen in the normal course of block merging. */
2165 if (GET_CODE (insn
) == JUMP_INSN
2166 && JUMP_LABEL (insn
)
2167 && GET_CODE (JUMP_LABEL (insn
)) == CODE_LABEL
)
2168 LABEL_NUSES (JUMP_LABEL (insn
))--;
2170 /* Also if deleting an insn that references a label. */
2171 else if ((note
= find_reg_note (insn
, REG_LABEL
, NULL_RTX
)) != NULL_RTX
2172 && GET_CODE (XEXP (note
, 0)) == CODE_LABEL
)
2173 LABEL_NUSES (XEXP (note
, 0))--;
2178 /* True if a given label can be deleted. */
2181 can_delete_label_p (label
)
2186 if (LABEL_PRESERVE_P (label
))
2189 for (x
= forced_labels
; x
; x
= XEXP (x
, 1))
2190 if (label
== XEXP (x
, 0))
2192 for (x
= label_value_list
; x
; x
= XEXP (x
, 1))
2193 if (label
== XEXP (x
, 0))
2195 for (x
= exception_handler_labels
; x
; x
= XEXP (x
, 1))
2196 if (label
== XEXP (x
, 0))
2199 /* User declared labels must be preserved. */
2200 if (LABEL_NAME (label
) != 0)
2207 tail_recursion_label_p (label
)
2212 for (x
= tail_recursion_label_list
; x
; x
= XEXP (x
, 1))
2213 if (label
== XEXP (x
, 0))
2219 /* Blocks A and B are to be merged into a single block A. The insns
2220 are already contiguous, hence `nomove'. */
2223 merge_blocks_nomove (a
, b
)
2227 rtx b_head
, b_end
, a_end
;
2228 rtx del_first
= NULL_RTX
, del_last
= NULL_RTX
;
2231 /* If there was a CODE_LABEL beginning B, delete it. */
2234 if (GET_CODE (b_head
) == CODE_LABEL
)
2236 /* Detect basic blocks with nothing but a label. This can happen
2237 in particular at the end of a function. */
2238 if (b_head
== b_end
)
2240 del_first
= del_last
= b_head
;
2241 b_head
= NEXT_INSN (b_head
);
2244 /* Delete the basic block note. */
2245 if (NOTE_INSN_BASIC_BLOCK_P (b_head
))
2247 if (b_head
== b_end
)
2252 b_head
= NEXT_INSN (b_head
);
2255 /* If there was a jump out of A, delete it. */
2257 if (GET_CODE (a_end
) == JUMP_INSN
)
2261 for (prev
= PREV_INSN (a_end
); ; prev
= PREV_INSN (prev
))
2262 if (GET_CODE (prev
) != NOTE
2263 || NOTE_LINE_NUMBER (prev
) == NOTE_INSN_BASIC_BLOCK
2270 /* If this was a conditional jump, we need to also delete
2271 the insn that set cc0. */
2272 if (prev
&& sets_cc0_p (prev
))
2275 prev
= prev_nonnote_insn (prev
);
2284 else if (GET_CODE (NEXT_INSN (a_end
)) == BARRIER
)
2285 del_first
= NEXT_INSN (a_end
);
2287 /* Delete everything marked above as well as crap that might be
2288 hanging out between the two blocks. */
2289 flow_delete_insn_chain (del_first
, del_last
);
2291 /* Normally there should only be one successor of A and that is B, but
2292 partway though the merge of blocks for conditional_execution we'll
2293 be merging a TEST block with THEN and ELSE successors. Free the
2294 whole lot of them and hope the caller knows what they're doing. */
2296 remove_edge (a
->succ
);
2298 /* Adjust the edges out of B for the new owner. */
2299 for (e
= b
->succ
; e
; e
= e
->succ_next
)
2303 /* B hasn't quite yet ceased to exist. Attempt to prevent mishap. */
2304 b
->pred
= b
->succ
= NULL
;
2306 /* Reassociate the insns of B with A. */
2309 if (basic_block_for_insn
)
2311 BLOCK_FOR_INSN (b_head
) = a
;
2312 while (b_head
!= b_end
)
2314 b_head
= NEXT_INSN (b_head
);
2315 BLOCK_FOR_INSN (b_head
) = a
;
2325 /* Blocks A and B are to be merged into a single block. A has no incoming
2326 fallthru edge, so it can be moved before B without adding or modifying
2327 any jumps (aside from the jump from A to B). */
2330 merge_blocks_move_predecessor_nojumps (a
, b
)
2333 rtx start
, end
, barrier
;
2339 barrier
= next_nonnote_insn (end
);
2340 if (GET_CODE (barrier
) != BARRIER
)
2342 flow_delete_insn (barrier
);
2344 /* Move block and loop notes out of the chain so that we do not
2345 disturb their order.
2347 ??? A better solution would be to squeeze out all the non-nested notes
2348 and adjust the block trees appropriately. Even better would be to have
2349 a tighter connection between block trees and rtl so that this is not
2351 start
= squeeze_notes (start
, end
);
2353 /* Scramble the insn chain. */
2354 if (end
!= PREV_INSN (b
->head
))
2355 reorder_insns (start
, end
, PREV_INSN (b
->head
));
2359 fprintf (rtl_dump_file
, "Moved block %d before %d and merged.\n",
2360 a
->index
, b
->index
);
2363 /* Swap the records for the two blocks around. Although we are deleting B,
2364 A is now where B was and we want to compact the BB array from where
2366 BASIC_BLOCK (a
->index
) = b
;
2367 BASIC_BLOCK (b
->index
) = a
;
2369 a
->index
= b
->index
;
2372 /* Now blocks A and B are contiguous. Merge them. */
2373 merge_blocks_nomove (a
, b
);
2378 /* Blocks A and B are to be merged into a single block. B has no outgoing
2379 fallthru edge, so it can be moved after A without adding or modifying
2380 any jumps (aside from the jump from A to B). */
2383 merge_blocks_move_successor_nojumps (a
, b
)
2386 rtx start
, end
, barrier
;
2390 barrier
= NEXT_INSN (end
);
2392 /* Recognize a jump table following block B. */
2393 if (GET_CODE (barrier
) == CODE_LABEL
2394 && NEXT_INSN (barrier
)
2395 && GET_CODE (NEXT_INSN (barrier
)) == JUMP_INSN
2396 && (GET_CODE (PATTERN (NEXT_INSN (barrier
))) == ADDR_VEC
2397 || GET_CODE (PATTERN (NEXT_INSN (barrier
))) == ADDR_DIFF_VEC
))
2399 end
= NEXT_INSN (barrier
);
2400 barrier
= NEXT_INSN (end
);
2403 /* There had better have been a barrier there. Delete it. */
2404 if (GET_CODE (barrier
) != BARRIER
)
2406 flow_delete_insn (barrier
);
2408 /* Move block and loop notes out of the chain so that we do not
2409 disturb their order.
2411 ??? A better solution would be to squeeze out all the non-nested notes
2412 and adjust the block trees appropriately. Even better would be to have
2413 a tighter connection between block trees and rtl so that this is not
2415 start
= squeeze_notes (start
, end
);
2417 /* Scramble the insn chain. */
2418 reorder_insns (start
, end
, a
->end
);
2420 /* Now blocks A and B are contiguous. Merge them. */
2421 merge_blocks_nomove (a
, b
);
2425 fprintf (rtl_dump_file
, "Moved block %d after %d and merged.\n",
2426 b
->index
, a
->index
);
2432 /* Attempt to merge basic blocks that are potentially non-adjacent.
2433 Return true iff the attempt succeeded. */
2436 merge_blocks (e
, b
, c
)
2440 /* If C has a tail recursion label, do not merge. There is no
2441 edge recorded from the call_placeholder back to this label, as
2442 that would make optimize_sibling_and_tail_recursive_calls more
2443 complex for no gain. */
2444 if (GET_CODE (c
->head
) == CODE_LABEL
2445 && tail_recursion_label_p (c
->head
))
2448 /* If B has a fallthru edge to C, no need to move anything. */
2449 if (e
->flags
& EDGE_FALLTHRU
)
2451 merge_blocks_nomove (b
, c
);
2455 fprintf (rtl_dump_file
, "Merged %d and %d without moving.\n",
2456 b
->index
, c
->index
);
2464 int c_has_outgoing_fallthru
;
2465 int b_has_incoming_fallthru
;
2467 /* We must make sure to not munge nesting of exception regions,
2468 lexical blocks, and loop notes.
2470 The first is taken care of by requiring that the active eh
2471 region at the end of one block always matches the active eh
2472 region at the beginning of the next block.
2474 The later two are taken care of by squeezing out all the notes. */
2476 /* ??? A throw/catch edge (or any abnormal edge) should be rarely
2477 executed and we may want to treat blocks which have two out
2478 edges, one normal, one abnormal as only having one edge for
2479 block merging purposes. */
2481 for (tmp_edge
= c
->succ
; tmp_edge
; tmp_edge
= tmp_edge
->succ_next
)
2482 if (tmp_edge
->flags
& EDGE_FALLTHRU
)
2484 c_has_outgoing_fallthru
= (tmp_edge
!= NULL
);
2486 for (tmp_edge
= b
->pred
; tmp_edge
; tmp_edge
= tmp_edge
->pred_next
)
2487 if (tmp_edge
->flags
& EDGE_FALLTHRU
)
2489 b_has_incoming_fallthru
= (tmp_edge
!= NULL
);
2491 /* If B does not have an incoming fallthru, then it can be moved
2492 immediately before C without introducing or modifying jumps.
2493 C cannot be the first block, so we do not have to worry about
2494 accessing a non-existent block. */
2495 if (! b_has_incoming_fallthru
)
2496 return merge_blocks_move_predecessor_nojumps (b
, c
);
2498 /* Otherwise, we're going to try to move C after B. If C does
2499 not have an outgoing fallthru, then it can be moved
2500 immediately after B without introducing or modifying jumps. */
2501 if (! c_has_outgoing_fallthru
)
2502 return merge_blocks_move_successor_nojumps (b
, c
);
2504 /* Otherwise, we'll need to insert an extra jump, and possibly
2505 a new block to contain it. */
2506 /* ??? Not implemented yet. */
2512 /* Top level driver for merge_blocks. */
2519 /* Attempt to merge blocks as made possible by edge removal. If a block
2520 has only one successor, and the successor has only one predecessor,
2521 they may be combined. */
2523 for (i
= 0; i
< n_basic_blocks
;)
2525 basic_block c
, b
= BASIC_BLOCK (i
);
2528 /* A loop because chains of blocks might be combineable. */
2529 while ((s
= b
->succ
) != NULL
2530 && s
->succ_next
== NULL
2531 && (s
->flags
& EDGE_EH
) == 0
2532 && (c
= s
->dest
) != EXIT_BLOCK_PTR
2533 && c
->pred
->pred_next
== NULL
2534 /* If the jump insn has side effects, we can't kill the edge. */
2535 && (GET_CODE (b
->end
) != JUMP_INSN
2536 || onlyjump_p (b
->end
))
2537 && merge_blocks (s
, b
, c
))
2540 /* Don't get confused by the index shift caused by deleting blocks. */
2545 /* The given edge should potentially be a fallthru edge. If that is in
2546 fact true, delete the jump and barriers that are in the way. */
2549 tidy_fallthru_edge (e
, b
, c
)
2555 /* ??? In a late-running flow pass, other folks may have deleted basic
2556 blocks by nopping out blocks, leaving multiple BARRIERs between here
2557 and the target label. They ought to be chastized and fixed.
2559 We can also wind up with a sequence of undeletable labels between
2560 one block and the next.
2562 So search through a sequence of barriers, labels, and notes for
2563 the head of block C and assert that we really do fall through. */
2565 if (next_real_insn (b
->end
) != next_real_insn (PREV_INSN (c
->head
)))
2568 /* Remove what will soon cease being the jump insn from the source block.
2569 If block B consisted only of this single jump, turn it into a deleted
2572 if (GET_CODE (q
) == JUMP_INSN
2574 && (any_uncondjump_p (q
)
2575 || (b
->succ
== e
&& e
->succ_next
== NULL
)))
2578 /* If this was a conditional jump, we need to also delete
2579 the insn that set cc0. */
2580 if (any_condjump_p (q
) && sets_cc0_p (PREV_INSN (q
)))
2587 NOTE_LINE_NUMBER (q
) = NOTE_INSN_DELETED
;
2588 NOTE_SOURCE_FILE (q
) = 0;
2594 /* We don't want a block to end on a line-number note since that has
2595 the potential of changing the code between -g and not -g. */
2596 while (GET_CODE (q
) == NOTE
&& NOTE_LINE_NUMBER (q
) >= 0)
2603 /* Selectively unlink the sequence. */
2604 if (q
!= PREV_INSN (c
->head
))
2605 flow_delete_insn_chain (NEXT_INSN (q
), PREV_INSN (c
->head
));
2607 e
->flags
|= EDGE_FALLTHRU
;
2610 /* Fix up edges that now fall through, or rather should now fall through
2611 but previously required a jump around now deleted blocks. Simplify
2612 the search by only examining blocks numerically adjacent, since this
2613 is how find_basic_blocks created them. */
2616 tidy_fallthru_edges ()
2620 for (i
= 1; i
< n_basic_blocks
; ++i
)
2622 basic_block b
= BASIC_BLOCK (i
- 1);
2623 basic_block c
= BASIC_BLOCK (i
);
2626 /* We care about simple conditional or unconditional jumps with
2629 If we had a conditional branch to the next instruction when
2630 find_basic_blocks was called, then there will only be one
2631 out edge for the block which ended with the conditional
2632 branch (since we do not create duplicate edges).
2634 Furthermore, the edge will be marked as a fallthru because we
2635 merge the flags for the duplicate edges. So we do not want to
2636 check that the edge is not a FALLTHRU edge. */
2637 if ((s
= b
->succ
) != NULL
2638 && ! (s
->flags
& EDGE_COMPLEX
)
2639 && s
->succ_next
== NULL
2641 /* If the jump insn has side effects, we can't tidy the edge. */
2642 && (GET_CODE (b
->end
) != JUMP_INSN
2643 || onlyjump_p (b
->end
)))
2644 tidy_fallthru_edge (s
, b
, c
);
2648 /* Perform data flow analysis.
2649 F is the first insn of the function; FLAGS is a set of PROP_* flags
2650 to be used in accumulating flow info. */
2653 life_analysis (f
, file
, flags
)
2658 #ifdef ELIMINABLE_REGS
2660 static struct {int from
, to
; } eliminables
[] = ELIMINABLE_REGS
;
2663 /* Record which registers will be eliminated. We use this in
2666 CLEAR_HARD_REG_SET (elim_reg_set
);
2668 #ifdef ELIMINABLE_REGS
2669 for (i
= 0; i
< (int) ARRAY_SIZE (eliminables
); i
++)
2670 SET_HARD_REG_BIT (elim_reg_set
, eliminables
[i
].from
);
2672 SET_HARD_REG_BIT (elim_reg_set
, FRAME_POINTER_REGNUM
);
2676 flags
&= ~(PROP_LOG_LINKS
| PROP_AUTOINC
);
2678 /* The post-reload life analysis have (on a global basis) the same
2679 registers live as was computed by reload itself. elimination
2680 Otherwise offsets and such may be incorrect.
2682 Reload will make some registers as live even though they do not
2685 We don't want to create new auto-incs after reload, since they
2686 are unlikely to be useful and can cause problems with shared
2688 if (reload_completed
)
2689 flags
&= ~(PROP_REG_INFO
| PROP_AUTOINC
);
2691 /* We want alias analysis information for local dead store elimination. */
2692 if (optimize
&& (flags
& PROP_SCAN_DEAD_CODE
))
2693 init_alias_analysis ();
2695 /* Always remove no-op moves. Do this before other processing so
2696 that we don't have to keep re-scanning them. */
2697 delete_noop_moves (f
);
2699 /* Some targets can emit simpler epilogues if they know that sp was
2700 not ever modified during the function. After reload, of course,
2701 we've already emitted the epilogue so there's no sense searching. */
2702 if (! reload_completed
)
2703 notice_stack_pointer_modification (f
);
2705 /* Allocate and zero out data structures that will record the
2706 data from lifetime analysis. */
2707 allocate_reg_life_data ();
2708 allocate_bb_life_data ();
2710 /* Find the set of registers live on function exit. */
2711 mark_regs_live_at_end (EXIT_BLOCK_PTR
->global_live_at_start
);
2713 /* "Update" life info from zero. It'd be nice to begin the
2714 relaxation with just the exit and noreturn blocks, but that set
2715 is not immediately handy. */
2717 if (flags
& PROP_REG_INFO
)
2718 memset (regs_ever_live
, 0, sizeof (regs_ever_live
));
2719 update_life_info (NULL
, UPDATE_LIFE_GLOBAL
, flags
);
2722 if (optimize
&& (flags
& PROP_SCAN_DEAD_CODE
))
2723 end_alias_analysis ();
2726 dump_flow_info (file
);
2728 free_basic_block_vars (1);
2730 #ifdef ENABLE_CHECKING
2734 /* Search for any REG_LABEL notes whih reference deleted labels. */
2735 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2737 rtx inote
= find_reg_note (insn
, REG_LABEL
, NULL_RTX
);
2739 if (inote
&& GET_CODE (inote
) == NOTE_INSN_DELETED_LABEL
)
2746 /* A subroutine of verify_wide_reg, called through for_each_rtx.
2747 Search for REGNO. If found, abort if it is not wider than word_mode. */
2750 verify_wide_reg_1 (px
, pregno
)
2755 unsigned int regno
= *(int *) pregno
;
2757 if (GET_CODE (x
) == REG
&& REGNO (x
) == regno
)
2759 if (GET_MODE_BITSIZE (GET_MODE (x
)) <= BITS_PER_WORD
)
2766 /* A subroutine of verify_local_live_at_start. Search through insns
2767 between HEAD and END looking for register REGNO. */
2770 verify_wide_reg (regno
, head
, end
)
2777 && for_each_rtx (&PATTERN (head
), verify_wide_reg_1
, ®no
))
2781 head
= NEXT_INSN (head
);
2784 /* We didn't find the register at all. Something's way screwy. */
2786 fprintf (rtl_dump_file
, "Aborting in verify_wide_reg; reg %d\n", regno
);
2787 print_rtl_and_abort ();
2790 /* A subroutine of update_life_info. Verify that there are no untoward
2791 changes in live_at_start during a local update. */
2794 verify_local_live_at_start (new_live_at_start
, bb
)
2795 regset new_live_at_start
;
2798 if (reload_completed
)
2800 /* After reload, there are no pseudos, nor subregs of multi-word
2801 registers. The regsets should exactly match. */
2802 if (! REG_SET_EQUAL_P (new_live_at_start
, bb
->global_live_at_start
))
2806 fprintf (rtl_dump_file
,
2807 "live_at_start mismatch in bb %d, aborting\n",
2809 debug_bitmap_file (rtl_dump_file
, bb
->global_live_at_start
);
2810 debug_bitmap_file (rtl_dump_file
, new_live_at_start
);
2812 print_rtl_and_abort ();
2819 /* Find the set of changed registers. */
2820 XOR_REG_SET (new_live_at_start
, bb
->global_live_at_start
);
2822 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start
, 0, i
,
2824 /* No registers should die. */
2825 if (REGNO_REG_SET_P (bb
->global_live_at_start
, i
))
2828 fprintf (rtl_dump_file
,
2829 "Register %d died unexpectedly in block %d\n", i
,
2831 print_rtl_and_abort ();
2834 /* Verify that the now-live register is wider than word_mode. */
2835 verify_wide_reg (i
, bb
->head
, bb
->end
);
2840 /* Updates life information starting with the basic blocks set in BLOCKS.
2841 If BLOCKS is null, consider it to be the universal set.
2843 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
2844 we are only expecting local modifications to basic blocks. If we find
2845 extra registers live at the beginning of a block, then we either killed
2846 useful data, or we have a broken split that wants data not provided.
2847 If we find registers removed from live_at_start, that means we have
2848 a broken peephole that is killing a register it shouldn't.
2850 ??? This is not true in one situation -- when a pre-reload splitter
2851 generates subregs of a multi-word pseudo, current life analysis will
2852 lose the kill. So we _can_ have a pseudo go live. How irritating.
2854 Including PROP_REG_INFO does not properly refresh regs_ever_live
2855 unless the caller resets it to zero. */
2858 update_life_info (blocks
, extent
, prop_flags
)
2860 enum update_life_extent extent
;
2864 regset_head tmp_head
;
2867 tmp
= INITIALIZE_REG_SET (tmp_head
);
2869 /* For a global update, we go through the relaxation process again. */
2870 if (extent
!= UPDATE_LIFE_LOCAL
)
2872 calculate_global_regs_live (blocks
, blocks
,
2873 prop_flags
& PROP_SCAN_DEAD_CODE
);
2875 /* If asked, remove notes from the blocks we'll update. */
2876 if (extent
== UPDATE_LIFE_GLOBAL_RM_NOTES
)
2877 count_or_remove_death_notes (blocks
, 1);
2882 EXECUTE_IF_SET_IN_SBITMAP (blocks
, 0, i
,
2884 basic_block bb
= BASIC_BLOCK (i
);
2886 COPY_REG_SET (tmp
, bb
->global_live_at_end
);
2887 propagate_block (bb
, tmp
, NULL
, NULL
, prop_flags
);
2889 if (extent
== UPDATE_LIFE_LOCAL
)
2890 verify_local_live_at_start (tmp
, bb
);
2895 for (i
= n_basic_blocks
- 1; i
>= 0; --i
)
2897 basic_block bb
= BASIC_BLOCK (i
);
2899 COPY_REG_SET (tmp
, bb
->global_live_at_end
);
2900 propagate_block (bb
, tmp
, NULL
, NULL
, prop_flags
);
2902 if (extent
== UPDATE_LIFE_LOCAL
)
2903 verify_local_live_at_start (tmp
, bb
);
2909 if (prop_flags
& PROP_REG_INFO
)
2911 /* The only pseudos that are live at the beginning of the function
2912 are those that were not set anywhere in the function. local-alloc
2913 doesn't know how to handle these correctly, so mark them as not
2914 local to any one basic block. */
2915 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR
->global_live_at_end
,
2916 FIRST_PSEUDO_REGISTER
, i
,
2917 { REG_BASIC_BLOCK (i
) = REG_BLOCK_GLOBAL
; });
2919 /* We have a problem with any pseudoreg that lives across the setjmp.
2920 ANSI says that if a user variable does not change in value between
2921 the setjmp and the longjmp, then the longjmp preserves it. This
2922 includes longjmp from a place where the pseudo appears dead.
2923 (In principle, the value still exists if it is in scope.)
2924 If the pseudo goes in a hard reg, some other value may occupy
2925 that hard reg where this pseudo is dead, thus clobbering the pseudo.
2926 Conclusion: such a pseudo must not go in a hard reg. */
2927 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp
,
2928 FIRST_PSEUDO_REGISTER
, i
,
2930 if (regno_reg_rtx
[i
] != 0)
2932 REG_LIVE_LENGTH (i
) = -1;
2933 REG_BASIC_BLOCK (i
) = REG_BLOCK_UNKNOWN
;
2939 /* Free the variables allocated by find_basic_blocks.
2941 KEEP_HEAD_END_P is non-zero if basic_block_info is not to be freed. */
2944 free_basic_block_vars (keep_head_end_p
)
2945 int keep_head_end_p
;
2947 if (basic_block_for_insn
)
2949 VARRAY_FREE (basic_block_for_insn
);
2950 basic_block_for_insn
= NULL
;
2953 if (! keep_head_end_p
)
2956 VARRAY_FREE (basic_block_info
);
2959 ENTRY_BLOCK_PTR
->aux
= NULL
;
2960 ENTRY_BLOCK_PTR
->global_live_at_end
= NULL
;
2961 EXIT_BLOCK_PTR
->aux
= NULL
;
2962 EXIT_BLOCK_PTR
->global_live_at_start
= NULL
;
2966 /* Return nonzero if the destination of SET equals the source. */
2972 rtx src
= SET_SRC (set
);
2973 rtx dst
= SET_DEST (set
);
2975 if (GET_CODE (src
) == SUBREG
&& GET_CODE (dst
) == SUBREG
)
2977 if (SUBREG_WORD (src
) != SUBREG_WORD (dst
))
2979 src
= SUBREG_REG (src
);
2980 dst
= SUBREG_REG (dst
);
2983 return (GET_CODE (src
) == REG
&& GET_CODE (dst
) == REG
2984 && REGNO (src
) == REGNO (dst
));
2987 /* Return nonzero if an insn consists only of SETs, each of which only sets a
2994 rtx pat
= PATTERN (insn
);
2996 /* Insns carrying these notes are useful later on. */
2997 if (find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
3000 if (GET_CODE (pat
) == SET
&& set_noop_p (pat
))
3003 if (GET_CODE (pat
) == PARALLEL
)
3006 /* If nothing but SETs of registers to themselves,
3007 this insn can also be deleted. */
3008 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3010 rtx tem
= XVECEXP (pat
, 0, i
);
3012 if (GET_CODE (tem
) == USE
3013 || GET_CODE (tem
) == CLOBBER
)
3016 if (GET_CODE (tem
) != SET
|| ! set_noop_p (tem
))
3025 /* Delete any insns that copy a register to itself. */
3028 delete_noop_moves (f
)
3032 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
3034 if (GET_CODE (insn
) == INSN
&& noop_move_p (insn
))
3036 PUT_CODE (insn
, NOTE
);
3037 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
3038 NOTE_SOURCE_FILE (insn
) = 0;
3043 /* Determine if the stack pointer is constant over the life of the function.
3044 Only useful before prologues have been emitted. */
3047 notice_stack_pointer_modification_1 (x
, pat
, data
)
3049 rtx pat ATTRIBUTE_UNUSED
;
3050 void *data ATTRIBUTE_UNUSED
;
3052 if (x
== stack_pointer_rtx
3053 /* The stack pointer is only modified indirectly as the result
3054 of a push until later in flow. See the comments in rtl.texi
3055 regarding Embedded Side-Effects on Addresses. */
3056 || (GET_CODE (x
) == MEM
3057 && GET_RTX_CLASS (GET_CODE (XEXP (x
, 0))) == 'a'
3058 && XEXP (XEXP (x
, 0), 0) == stack_pointer_rtx
))
3059 current_function_sp_is_unchanging
= 0;
3063 notice_stack_pointer_modification (f
)
3068 /* Assume that the stack pointer is unchanging if alloca hasn't
3070 current_function_sp_is_unchanging
= !current_function_calls_alloca
;
3071 if (! current_function_sp_is_unchanging
)
3074 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
3078 /* Check if insn modifies the stack pointer. */
3079 note_stores (PATTERN (insn
), notice_stack_pointer_modification_1
,
3081 if (! current_function_sp_is_unchanging
)
3087 /* Mark a register in SET. Hard registers in large modes get all
3088 of their component registers set as well. */
3091 mark_reg (reg
, xset
)
3095 regset set
= (regset
) xset
;
3096 int regno
= REGNO (reg
);
3098 if (GET_MODE (reg
) == BLKmode
)
3101 SET_REGNO_REG_SET (set
, regno
);
3102 if (regno
< FIRST_PSEUDO_REGISTER
)
3104 int n
= HARD_REGNO_NREGS (regno
, GET_MODE (reg
));
3106 SET_REGNO_REG_SET (set
, regno
+ n
);
3110 /* Mark those regs which are needed at the end of the function as live
3111 at the end of the last basic block. */
3114 mark_regs_live_at_end (set
)
3119 /* If exiting needs the right stack value, consider the stack pointer
3120 live at the end of the function. */
3121 if ((HAVE_epilogue
&& reload_completed
)
3122 || ! EXIT_IGNORE_STACK
3123 || (! FRAME_POINTER_REQUIRED
3124 && ! current_function_calls_alloca
3125 && flag_omit_frame_pointer
)
3126 || current_function_sp_is_unchanging
)
3128 SET_REGNO_REG_SET (set
, STACK_POINTER_REGNUM
);
3131 /* Mark the frame pointer if needed at the end of the function. If
3132 we end up eliminating it, it will be removed from the live list
3133 of each basic block by reload. */
3135 if (! reload_completed
|| frame_pointer_needed
)
3137 SET_REGNO_REG_SET (set
, FRAME_POINTER_REGNUM
);
3138 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3139 /* If they are different, also mark the hard frame pointer as live. */
3140 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM
))
3141 SET_REGNO_REG_SET (set
, HARD_FRAME_POINTER_REGNUM
);
3145 #ifdef PIC_OFFSET_TABLE_REGNUM
3146 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
3147 /* Many architectures have a GP register even without flag_pic.
3148 Assume the pic register is not in use, or will be handled by
3149 other means, if it is not fixed. */
3150 if (fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
3151 SET_REGNO_REG_SET (set
, PIC_OFFSET_TABLE_REGNUM
);
3155 /* Mark all global registers, and all registers used by the epilogue
3156 as being live at the end of the function since they may be
3157 referenced by our caller. */
3158 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3159 if (global_regs
[i
] || EPILOGUE_USES (i
))
3160 SET_REGNO_REG_SET (set
, i
);
3162 if (HAVE_epilogue
&& reload_completed
)
3164 /* Mark all call-saved registers that we actually used. */
3165 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3166 if (regs_ever_live
[i
] && ! call_used_regs
[i
] && ! LOCAL_REGNO (i
))
3167 SET_REGNO_REG_SET (set
, i
);
3170 #ifdef EH_RETURN_DATA_REGNO
3171 /* Mark the registers that will contain data for the handler. */
3172 if (reload_completed
&& current_function_calls_eh_return
)
3175 unsigned regno
= EH_RETURN_DATA_REGNO(i
);
3176 if (regno
== INVALID_REGNUM
)
3178 SET_REGNO_REG_SET (set
, regno
);
3181 #ifdef EH_RETURN_STACKADJ_RTX
3182 if ((! HAVE_epilogue
|| ! reload_completed
)
3183 && current_function_calls_eh_return
)
3185 rtx tmp
= EH_RETURN_STACKADJ_RTX
;
3186 if (tmp
&& REG_P (tmp
))
3187 mark_reg (tmp
, set
);
3190 #ifdef EH_RETURN_HANDLER_RTX
3191 if ((! HAVE_epilogue
|| ! reload_completed
)
3192 && current_function_calls_eh_return
)
3194 rtx tmp
= EH_RETURN_HANDLER_RTX
;
3195 if (tmp
&& REG_P (tmp
))
3196 mark_reg (tmp
, set
);
3200 /* Mark function return value. */
3201 diddle_return_value (mark_reg
, set
);
3204 /* Callback function for for_each_successor_phi. DATA is a regset.
3205 Sets the SRC_REGNO, the regno of the phi alternative for phi node
3206 INSN, in the regset. */
3209 set_phi_alternative_reg (insn
, dest_regno
, src_regno
, data
)
3210 rtx insn ATTRIBUTE_UNUSED
;
3211 int dest_regno ATTRIBUTE_UNUSED
;
3215 regset live
= (regset
) data
;
3216 SET_REGNO_REG_SET (live
, src_regno
);
3220 /* Propagate global life info around the graph of basic blocks. Begin
3221 considering blocks with their corresponding bit set in BLOCKS_IN.
3222 If BLOCKS_IN is null, consider it the universal set.
3224 BLOCKS_OUT is set for every block that was changed. */
3227 calculate_global_regs_live (blocks_in
, blocks_out
, flags
)
3228 sbitmap blocks_in
, blocks_out
;
3231 basic_block
*queue
, *qhead
, *qtail
, *qend
;
3232 regset tmp
, new_live_at_end
, call_used
;
3233 regset_head tmp_head
, call_used_head
;
3234 regset_head new_live_at_end_head
;
3237 tmp
= INITIALIZE_REG_SET (tmp_head
);
3238 new_live_at_end
= INITIALIZE_REG_SET (new_live_at_end_head
);
3239 call_used
= INITIALIZE_REG_SET (call_used_head
);
3241 /* Inconveniently, this is only redily available in hard reg set form. */
3242 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; ++i
)
3243 if (call_used_regs
[i
])
3244 SET_REGNO_REG_SET (call_used
, i
);
3246 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
3247 because the `head == tail' style test for an empty queue doesn't
3248 work with a full queue. */
3249 queue
= (basic_block
*) xmalloc ((n_basic_blocks
+ 2) * sizeof (*queue
));
3251 qhead
= qend
= queue
+ n_basic_blocks
+ 2;
3253 /* Queue the blocks set in the initial mask. Do this in reverse block
3254 number order so that we are more likely for the first round to do
3255 useful work. We use AUX non-null to flag that the block is queued. */
3258 /* Clear out the garbage that might be hanging out in bb->aux. */
3259 for (i
= n_basic_blocks
- 1; i
>= 0; --i
)
3260 BASIC_BLOCK (i
)->aux
= NULL
;
3262 EXECUTE_IF_SET_IN_SBITMAP (blocks_in
, 0, i
,
3264 basic_block bb
= BASIC_BLOCK (i
);
3271 for (i
= 0; i
< n_basic_blocks
; ++i
)
3273 basic_block bb
= BASIC_BLOCK (i
);
3280 sbitmap_zero (blocks_out
);
3282 while (qhead
!= qtail
)
3284 int rescan
, changed
;
3293 /* Begin by propogating live_at_start from the successor blocks. */
3294 CLEAR_REG_SET (new_live_at_end
);
3295 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
3297 basic_block sb
= e
->dest
;
3299 /* Call-clobbered registers die across exception and call edges. */
3300 /* ??? Abnormal call edges ignored for the moment, as this gets
3301 confused by sibling call edges, which crashes reg-stack. */
3302 if (e
->flags
& EDGE_EH
)
3304 bitmap_operation (tmp
, sb
->global_live_at_start
,
3305 call_used
, BITMAP_AND_COMPL
);
3306 IOR_REG_SET (new_live_at_end
, tmp
);
3309 IOR_REG_SET (new_live_at_end
, sb
->global_live_at_start
);
3312 /* The all-important stack pointer must always be live. */
3313 SET_REGNO_REG_SET (new_live_at_end
, STACK_POINTER_REGNUM
);
3315 /* Before reload, there are a few registers that must be forced
3316 live everywhere -- which might not already be the case for
3317 blocks within infinite loops. */
3318 if (! reload_completed
)
3320 /* Any reference to any pseudo before reload is a potential
3321 reference of the frame pointer. */
3322 SET_REGNO_REG_SET (new_live_at_end
, FRAME_POINTER_REGNUM
);
3324 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3325 /* Pseudos with argument area equivalences may require
3326 reloading via the argument pointer. */
3327 if (fixed_regs
[ARG_POINTER_REGNUM
])
3328 SET_REGNO_REG_SET (new_live_at_end
, ARG_POINTER_REGNUM
);
3331 #ifdef PIC_OFFSET_TABLE_REGNUM
3332 /* Any constant, or pseudo with constant equivalences, may
3333 require reloading from memory using the pic register. */
3334 if (fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
3335 SET_REGNO_REG_SET (new_live_at_end
, PIC_OFFSET_TABLE_REGNUM
);
3339 /* Regs used in phi nodes are not included in
3340 global_live_at_start, since they are live only along a
3341 particular edge. Set those regs that are live because of a
3342 phi node alternative corresponding to this particular block. */
3344 for_each_successor_phi (bb
, &set_phi_alternative_reg
,
3347 if (bb
== ENTRY_BLOCK_PTR
)
3349 COPY_REG_SET (bb
->global_live_at_end
, new_live_at_end
);
3353 /* On our first pass through this block, we'll go ahead and continue.
3354 Recognize first pass by local_set NULL. On subsequent passes, we
3355 get to skip out early if live_at_end wouldn't have changed. */
3357 if (bb
->local_set
== NULL
)
3359 bb
->local_set
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
3360 bb
->cond_local_set
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
3365 /* If any bits were removed from live_at_end, we'll have to
3366 rescan the block. This wouldn't be necessary if we had
3367 precalculated local_live, however with PROP_SCAN_DEAD_CODE
3368 local_live is really dependent on live_at_end. */
3369 CLEAR_REG_SET (tmp
);
3370 rescan
= bitmap_operation (tmp
, bb
->global_live_at_end
,
3371 new_live_at_end
, BITMAP_AND_COMPL
);
3375 /* If any of the registers in the new live_at_end set are
3376 conditionally set in this basic block, we must rescan.
3377 This is because conditional lifetimes at the end of the
3378 block do not just take the live_at_end set into account,
3379 but also the liveness at the start of each successor
3380 block. We can miss changes in those sets if we only
3381 compare the new live_at_end against the previous one. */
3382 CLEAR_REG_SET (tmp
);
3383 rescan
= bitmap_operation (tmp
, new_live_at_end
,
3384 bb
->cond_local_set
, BITMAP_AND
);
3389 /* Find the set of changed bits. Take this opportunity
3390 to notice that this set is empty and early out. */
3391 CLEAR_REG_SET (tmp
);
3392 changed
= bitmap_operation (tmp
, bb
->global_live_at_end
,
3393 new_live_at_end
, BITMAP_XOR
);
3397 /* If any of the changed bits overlap with local_set,
3398 we'll have to rescan the block. Detect overlap by
3399 the AND with ~local_set turning off bits. */
3400 rescan
= bitmap_operation (tmp
, tmp
, bb
->local_set
,
3405 /* Let our caller know that BB changed enough to require its
3406 death notes updated. */
3408 SET_BIT (blocks_out
, bb
->index
);
3412 /* Add to live_at_start the set of all registers in
3413 new_live_at_end that aren't in the old live_at_end. */
3415 bitmap_operation (tmp
, new_live_at_end
, bb
->global_live_at_end
,
3417 COPY_REG_SET (bb
->global_live_at_end
, new_live_at_end
);
3419 changed
= bitmap_operation (bb
->global_live_at_start
,
3420 bb
->global_live_at_start
,
3427 COPY_REG_SET (bb
->global_live_at_end
, new_live_at_end
);
3429 /* Rescan the block insn by insn to turn (a copy of) live_at_end
3430 into live_at_start. */
3431 propagate_block (bb
, new_live_at_end
, bb
->local_set
,
3432 bb
->cond_local_set
, flags
);
3434 /* If live_at start didn't change, no need to go farther. */
3435 if (REG_SET_EQUAL_P (bb
->global_live_at_start
, new_live_at_end
))
3438 COPY_REG_SET (bb
->global_live_at_start
, new_live_at_end
);
3441 /* Queue all predecessors of BB so that we may re-examine
3442 their live_at_end. */
3443 for (e
= bb
->pred
; e
; e
= e
->pred_next
)
3445 basic_block pb
= e
->src
;
3446 if (pb
->aux
== NULL
)
3457 FREE_REG_SET (new_live_at_end
);
3458 FREE_REG_SET (call_used
);
3462 EXECUTE_IF_SET_IN_SBITMAP (blocks_out
, 0, i
,
3464 basic_block bb
= BASIC_BLOCK (i
);
3465 FREE_REG_SET (bb
->local_set
);
3466 FREE_REG_SET (bb
->cond_local_set
);
3471 for (i
= n_basic_blocks
- 1; i
>= 0; --i
)
3473 basic_block bb
= BASIC_BLOCK (i
);
3474 FREE_REG_SET (bb
->local_set
);
3475 FREE_REG_SET (bb
->cond_local_set
);
3482 /* Subroutines of life analysis. */
3484 /* Allocate the permanent data structures that represent the results
3485 of life analysis. Not static since used also for stupid life analysis. */
3488 allocate_bb_life_data ()
3492 for (i
= 0; i
< n_basic_blocks
; i
++)
3494 basic_block bb
= BASIC_BLOCK (i
);
3496 bb
->global_live_at_start
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
3497 bb
->global_live_at_end
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
3500 ENTRY_BLOCK_PTR
->global_live_at_end
3501 = OBSTACK_ALLOC_REG_SET (&flow_obstack
);
3502 EXIT_BLOCK_PTR
->global_live_at_start
3503 = OBSTACK_ALLOC_REG_SET (&flow_obstack
);
3505 regs_live_at_setjmp
= OBSTACK_ALLOC_REG_SET (&flow_obstack
);
3509 allocate_reg_life_data ()
3513 max_regno
= max_reg_num ();
3515 /* Recalculate the register space, in case it has grown. Old style
3516 vector oriented regsets would set regset_{size,bytes} here also. */
3517 allocate_reg_info (max_regno
, FALSE
, FALSE
);
3519 /* Reset all the data we'll collect in propagate_block and its
3521 for (i
= 0; i
< max_regno
; i
++)
3525 REG_N_DEATHS (i
) = 0;
3526 REG_N_CALLS_CROSSED (i
) = 0;
3527 REG_LIVE_LENGTH (i
) = 0;
3528 REG_BASIC_BLOCK (i
) = REG_BLOCK_UNKNOWN
;
3532 /* Delete dead instructions for propagate_block. */
3535 propagate_block_delete_insn (bb
, insn
)
3539 rtx inote
= find_reg_note (insn
, REG_LABEL
, NULL_RTX
);
3541 /* If the insn referred to a label, and that label was attached to
3542 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
3543 pretty much mandatory to delete it, because the ADDR_VEC may be
3544 referencing labels that no longer exist.
3546 INSN may reference a deleted label, particularly when a jump
3547 table has been optimized into a direct jump. There's no
3548 real good way to fix up the reference to the deleted label
3549 when the label is deleted, so we just allow it here.
3551 After dead code elimination is complete, we do search for
3552 any REG_LABEL notes which reference deleted labels as a
3555 if (inote
&& GET_CODE (inote
) == CODE_LABEL
)
3557 rtx label
= XEXP (inote
, 0);
3560 /* The label may be forced if it has been put in the constant
3561 pool. If that is the only use we must discard the table
3562 jump following it, but not the label itself. */
3563 if (LABEL_NUSES (label
) == 1 + LABEL_PRESERVE_P (label
)
3564 && (next
= next_nonnote_insn (label
)) != NULL
3565 && GET_CODE (next
) == JUMP_INSN
3566 && (GET_CODE (PATTERN (next
)) == ADDR_VEC
3567 || GET_CODE (PATTERN (next
)) == ADDR_DIFF_VEC
))
3569 rtx pat
= PATTERN (next
);
3570 int diff_vec_p
= GET_CODE (pat
) == ADDR_DIFF_VEC
;
3571 int len
= XVECLEN (pat
, diff_vec_p
);
3574 for (i
= 0; i
< len
; i
++)
3575 LABEL_NUSES (XEXP (XVECEXP (pat
, diff_vec_p
, i
), 0))--;
3577 flow_delete_insn (next
);
3581 if (bb
->end
== insn
)
3582 bb
->end
= PREV_INSN (insn
);
3583 flow_delete_insn (insn
);
3586 /* Delete dead libcalls for propagate_block. Return the insn
3587 before the libcall. */
3590 propagate_block_delete_libcall (bb
, insn
, note
)
3594 rtx first
= XEXP (note
, 0);
3595 rtx before
= PREV_INSN (first
);
3597 if (insn
== bb
->end
)
3600 flow_delete_insn_chain (first
, insn
);
3604 /* Update the life-status of regs for one insn. Return the previous insn. */
3607 propagate_one_insn (pbi
, insn
)
3608 struct propagate_block_info
*pbi
;
3611 rtx prev
= PREV_INSN (insn
);
3612 int flags
= pbi
->flags
;
3613 int insn_is_dead
= 0;
3614 int libcall_is_dead
= 0;
3618 if (! INSN_P (insn
))
3621 note
= find_reg_note (insn
, REG_RETVAL
, NULL_RTX
);
3622 if (flags
& PROP_SCAN_DEAD_CODE
)
3624 insn_is_dead
= insn_dead_p (pbi
, PATTERN (insn
), 0, REG_NOTES (insn
));
3625 libcall_is_dead
= (insn_is_dead
&& note
!= 0
3626 && libcall_dead_p (pbi
, note
, insn
));
3629 /* If an instruction consists of just dead store(s) on final pass,
3631 if ((flags
& PROP_KILL_DEAD_CODE
) && insn_is_dead
)
3633 /* If we're trying to delete a prologue or epilogue instruction
3634 that isn't flagged as possibly being dead, something is wrong.
3635 But if we are keeping the stack pointer depressed, we might well
3636 be deleting insns that are used to compute the amount to update
3637 it by, so they are fine. */
3638 if (reload_completed
3639 && !(TREE_CODE (TREE_TYPE (current_function_decl
)) == FUNCTION_TYPE
3640 && (TYPE_RETURNS_STACK_DEPRESSED
3641 (TREE_TYPE (current_function_decl
))))
3642 && (((HAVE_epilogue
|| HAVE_prologue
)
3643 && prologue_epilogue_contains (insn
))
3644 || (HAVE_sibcall_epilogue
3645 && sibcall_epilogue_contains (insn
)))
3646 && find_reg_note (insn
, REG_MAYBE_DEAD
, NULL_RTX
) == 0)
3649 /* Record sets. Do this even for dead instructions, since they
3650 would have killed the values if they hadn't been deleted. */
3651 mark_set_regs (pbi
, PATTERN (insn
), insn
);
3653 /* CC0 is now known to be dead. Either this insn used it,
3654 in which case it doesn't anymore, or clobbered it,
3655 so the next insn can't use it. */
3658 if (libcall_is_dead
)
3659 prev
= propagate_block_delete_libcall (pbi
->bb
, insn
, note
);
3661 propagate_block_delete_insn (pbi
->bb
, insn
);
3666 /* See if this is an increment or decrement that can be merged into
3667 a following memory address. */
3670 register rtx x
= single_set (insn
);
3672 /* Does this instruction increment or decrement a register? */
3673 if ((flags
& PROP_AUTOINC
)
3675 && GET_CODE (SET_DEST (x
)) == REG
3676 && (GET_CODE (SET_SRC (x
)) == PLUS
3677 || GET_CODE (SET_SRC (x
)) == MINUS
)
3678 && XEXP (SET_SRC (x
), 0) == SET_DEST (x
)
3679 && GET_CODE (XEXP (SET_SRC (x
), 1)) == CONST_INT
3680 /* Ok, look for a following memory ref we can combine with.
3681 If one is found, change the memory ref to a PRE_INC
3682 or PRE_DEC, cancel this insn, and return 1.
3683 Return 0 if nothing has been done. */
3684 && try_pre_increment_1 (pbi
, insn
))
3687 #endif /* AUTO_INC_DEC */
3689 CLEAR_REG_SET (pbi
->new_set
);
3691 /* If this is not the final pass, and this insn is copying the value of
3692 a library call and it's dead, don't scan the insns that perform the
3693 library call, so that the call's arguments are not marked live. */
3694 if (libcall_is_dead
)
3696 /* Record the death of the dest reg. */
3697 mark_set_regs (pbi
, PATTERN (insn
), insn
);
3699 insn
= XEXP (note
, 0);
3700 return PREV_INSN (insn
);
3702 else if (GET_CODE (PATTERN (insn
)) == SET
3703 && SET_DEST (PATTERN (insn
)) == stack_pointer_rtx
3704 && GET_CODE (SET_SRC (PATTERN (insn
))) == PLUS
3705 && XEXP (SET_SRC (PATTERN (insn
)), 0) == stack_pointer_rtx
3706 && GET_CODE (XEXP (SET_SRC (PATTERN (insn
)), 1)) == CONST_INT
)
3707 /* We have an insn to pop a constant amount off the stack.
3708 (Such insns use PLUS regardless of the direction of the stack,
3709 and any insn to adjust the stack by a constant is always a pop.)
3710 These insns, if not dead stores, have no effect on life. */
3714 /* Any regs live at the time of a call instruction must not go
3715 in a register clobbered by calls. Find all regs now live and
3716 record this for them. */
3718 if (GET_CODE (insn
) == CALL_INSN
&& (flags
& PROP_REG_INFO
))
3719 EXECUTE_IF_SET_IN_REG_SET (pbi
->reg_live
, 0, i
,
3720 { REG_N_CALLS_CROSSED (i
)++; });
3722 /* Record sets. Do this even for dead instructions, since they
3723 would have killed the values if they hadn't been deleted. */
3724 mark_set_regs (pbi
, PATTERN (insn
), insn
);
3726 if (GET_CODE (insn
) == CALL_INSN
)
3732 if (GET_CODE (PATTERN (insn
)) == COND_EXEC
)
3733 cond
= COND_EXEC_TEST (PATTERN (insn
));
3735 /* Non-constant calls clobber memory. */
3736 if (! CONST_CALL_P (insn
))
3738 free_EXPR_LIST_list (&pbi
->mem_set_list
);
3739 pbi
->mem_set_list_len
= 0;
3742 /* There may be extra registers to be clobbered. */
3743 for (note
= CALL_INSN_FUNCTION_USAGE (insn
);
3745 note
= XEXP (note
, 1))
3746 if (GET_CODE (XEXP (note
, 0)) == CLOBBER
)
3747 mark_set_1 (pbi
, CLOBBER
, XEXP (XEXP (note
, 0), 0),
3748 cond
, insn
, pbi
->flags
);
3750 /* Calls change all call-used and global registers. */
3751 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3752 if (call_used_regs
[i
] && ! global_regs
[i
]
3755 /* We do not want REG_UNUSED notes for these registers. */
3756 mark_set_1 (pbi
, CLOBBER
, gen_rtx_REG (reg_raw_mode
[i
], i
),
3758 pbi
->flags
& ~(PROP_DEATH_NOTES
| PROP_REG_INFO
));
3762 /* If an insn doesn't use CC0, it becomes dead since we assume
3763 that every insn clobbers it. So show it dead here;
3764 mark_used_regs will set it live if it is referenced. */
3769 mark_used_regs (pbi
, PATTERN (insn
), NULL_RTX
, insn
);
3771 /* Sometimes we may have inserted something before INSN (such as a move)
3772 when we make an auto-inc. So ensure we will scan those insns. */
3774 prev
= PREV_INSN (insn
);
3777 if (! insn_is_dead
&& GET_CODE (insn
) == CALL_INSN
)
3783 if (GET_CODE (PATTERN (insn
)) == COND_EXEC
)
3784 cond
= COND_EXEC_TEST (PATTERN (insn
));
3786 /* Calls use their arguments. */
3787 for (note
= CALL_INSN_FUNCTION_USAGE (insn
);
3789 note
= XEXP (note
, 1))
3790 if (GET_CODE (XEXP (note
, 0)) == USE
)
3791 mark_used_regs (pbi
, XEXP (XEXP (note
, 0), 0),
3794 /* The stack ptr is used (honorarily) by a CALL insn. */
3795 SET_REGNO_REG_SET (pbi
->reg_live
, STACK_POINTER_REGNUM
);
3797 /* Calls may also reference any of the global registers,
3798 so they are made live. */
3799 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3801 mark_used_reg (pbi
, gen_rtx_REG (reg_raw_mode
[i
], i
),
3806 /* On final pass, update counts of how many insns in which each reg
3808 if (flags
& PROP_REG_INFO
)
3809 EXECUTE_IF_SET_IN_REG_SET (pbi
->reg_live
, 0, i
,
3810 { REG_LIVE_LENGTH (i
)++; });
3815 /* Initialize a propagate_block_info struct for public consumption.
3816 Note that the structure itself is opaque to this file, but that
3817 the user can use the regsets provided here. */
3819 struct propagate_block_info
*
3820 init_propagate_block_info (bb
, live
, local_set
, cond_local_set
, flags
)
3822 regset live
, local_set
, cond_local_set
;
3825 struct propagate_block_info
*pbi
= xmalloc (sizeof (*pbi
));
3828 pbi
->reg_live
= live
;
3829 pbi
->mem_set_list
= NULL_RTX
;
3830 pbi
->mem_set_list_len
= 0;
3831 pbi
->local_set
= local_set
;
3832 pbi
->cond_local_set
= cond_local_set
;
3836 if (flags
& (PROP_LOG_LINKS
| PROP_AUTOINC
))
3837 pbi
->reg_next_use
= (rtx
*) xcalloc (max_reg_num (), sizeof (rtx
));
3839 pbi
->reg_next_use
= NULL
;
3841 pbi
->new_set
= BITMAP_XMALLOC ();
3843 #ifdef HAVE_conditional_execution
3844 pbi
->reg_cond_dead
= splay_tree_new (splay_tree_compare_ints
, NULL
,
3845 free_reg_cond_life_info
);
3846 pbi
->reg_cond_reg
= BITMAP_XMALLOC ();
3848 /* If this block ends in a conditional branch, for each register live
3849 from one side of the branch and not the other, record the register
3850 as conditionally dead. */
3851 if (GET_CODE (bb
->end
) == JUMP_INSN
3852 && any_condjump_p (bb
->end
))
3854 regset_head diff_head
;
3855 regset diff
= INITIALIZE_REG_SET (diff_head
);
3856 basic_block bb_true
, bb_false
;
3857 rtx cond_true
, cond_false
, set_src
;
3860 /* Identify the successor blocks. */
3861 bb_true
= bb
->succ
->dest
;
3862 if (bb
->succ
->succ_next
!= NULL
)
3864 bb_false
= bb
->succ
->succ_next
->dest
;
3866 if (bb
->succ
->flags
& EDGE_FALLTHRU
)
3868 basic_block t
= bb_false
;
3872 else if (! (bb
->succ
->succ_next
->flags
& EDGE_FALLTHRU
))
3877 /* This can happen with a conditional jump to the next insn. */
3878 if (JUMP_LABEL (bb
->end
) != bb_true
->head
)
3881 /* Simplest way to do nothing. */
3885 /* Extract the condition from the branch. */
3886 set_src
= SET_SRC (pc_set (bb
->end
));
3887 cond_true
= XEXP (set_src
, 0);
3888 cond_false
= gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true
)),
3889 GET_MODE (cond_true
), XEXP (cond_true
, 0),
3890 XEXP (cond_true
, 1));
3891 if (GET_CODE (XEXP (set_src
, 1)) == PC
)
3894 cond_false
= cond_true
;
3898 /* Compute which register lead different lives in the successors. */
3899 if (bitmap_operation (diff
, bb_true
->global_live_at_start
,
3900 bb_false
->global_live_at_start
, BITMAP_XOR
))
3902 rtx reg
= XEXP (cond_true
, 0);
3904 if (GET_CODE (reg
) == SUBREG
)
3905 reg
= SUBREG_REG (reg
);
3907 if (GET_CODE (reg
) != REG
)
3910 SET_REGNO_REG_SET (pbi
->reg_cond_reg
, REGNO (reg
));
3912 /* For each such register, mark it conditionally dead. */
3913 EXECUTE_IF_SET_IN_REG_SET
3916 struct reg_cond_life_info
*rcli
;
3919 rcli
= (struct reg_cond_life_info
*) xmalloc (sizeof (*rcli
));
3921 if (REGNO_REG_SET_P (bb_true
->global_live_at_start
, i
))
3925 rcli
->condition
= cond
;
3926 rcli
->stores
= const0_rtx
;
3927 rcli
->orig_condition
= cond
;
3929 splay_tree_insert (pbi
->reg_cond_dead
, i
,
3930 (splay_tree_value
) rcli
);
3934 FREE_REG_SET (diff
);
3938 /* If this block has no successors, any stores to the frame that aren't
3939 used later in the block are dead. So make a pass over the block
3940 recording any such that are made and show them dead at the end. We do
3941 a very conservative and simple job here. */
3943 && ! (TREE_CODE (TREE_TYPE (current_function_decl
)) == FUNCTION_TYPE
3944 && (TYPE_RETURNS_STACK_DEPRESSED
3945 (TREE_TYPE (current_function_decl
))))
3946 && (flags
& PROP_SCAN_DEAD_CODE
)
3947 && (bb
->succ
== NULL
3948 || (bb
->succ
->succ_next
== NULL
3949 && bb
->succ
->dest
== EXIT_BLOCK_PTR
3950 && ! current_function_calls_eh_return
)))
3953 for (insn
= bb
->end
; insn
!= bb
->head
; insn
= PREV_INSN (insn
))
3954 if (GET_CODE (insn
) == INSN
3955 && GET_CODE (PATTERN (insn
)) == SET
3956 && GET_CODE (SET_DEST (PATTERN (insn
))) == MEM
)
3958 rtx mem
= SET_DEST (PATTERN (insn
));
3960 /* This optimization is performed by faking a store to the
3961 memory at the end of the block. This doesn't work for
3962 unchanging memories because multiple stores to unchanging
3963 memory is illegal and alias analysis doesn't consider it. */
3964 if (RTX_UNCHANGING_P (mem
))
3967 if (XEXP (mem
, 0) == frame_pointer_rtx
3968 || (GET_CODE (XEXP (mem
, 0)) == PLUS
3969 && XEXP (XEXP (mem
, 0), 0) == frame_pointer_rtx
3970 && GET_CODE (XEXP (XEXP (mem
, 0), 1)) == CONST_INT
))
3973 /* Store a copy of mem, otherwise the address may be scrogged
3974 by find_auto_inc. This matters because insn_dead_p uses
3975 an rtx_equal_p check to determine if two addresses are
3976 the same. This works before find_auto_inc, but fails
3977 after find_auto_inc, causing discrepencies between the
3978 set of live registers calculated during the
3979 calculate_global_regs_live phase and what actually exists
3980 after flow completes, leading to aborts. */
3981 if (flags
& PROP_AUTOINC
)
3982 mem
= shallow_copy_rtx (mem
);
3984 pbi
->mem_set_list
= alloc_EXPR_LIST (0, mem
, pbi
->mem_set_list
);
3985 if (++pbi
->mem_set_list_len
>= MAX_MEM_SET_LIST_LEN
)
3994 /* Release a propagate_block_info struct. */
3997 free_propagate_block_info (pbi
)
3998 struct propagate_block_info
*pbi
;
4000 free_EXPR_LIST_list (&pbi
->mem_set_list
);
4002 BITMAP_XFREE (pbi
->new_set
);
4004 #ifdef HAVE_conditional_execution
4005 splay_tree_delete (pbi
->reg_cond_dead
);
4006 BITMAP_XFREE (pbi
->reg_cond_reg
);
4009 if (pbi
->reg_next_use
)
4010 free (pbi
->reg_next_use
);
4015 /* Compute the registers live at the beginning of a basic block BB from
4016 those live at the end.
4018 When called, REG_LIVE contains those live at the end. On return, it
4019 contains those live at the beginning.
4021 LOCAL_SET, if non-null, will be set with all registers killed
4022 unconditionally by this basic block.
4023 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
4024 killed conditionally by this basic block. If there is any unconditional
4025 set of a register, then the corresponding bit will be set in LOCAL_SET
4026 and cleared in COND_LOCAL_SET.
4027 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
4028 case, the resulting set will be equal to the union of the two sets that
4029 would otherwise be computed. */
4032 propagate_block (bb
, live
, local_set
, cond_local_set
, flags
)
4036 regset cond_local_set
;
4039 struct propagate_block_info
*pbi
;
4042 pbi
= init_propagate_block_info (bb
, live
, local_set
, cond_local_set
, flags
);
4044 if (flags
& PROP_REG_INFO
)
4048 /* Process the regs live at the end of the block.
4049 Mark them as not local to any one basic block. */
4050 EXECUTE_IF_SET_IN_REG_SET (live
, 0, i
,
4051 { REG_BASIC_BLOCK (i
) = REG_BLOCK_GLOBAL
; });
4054 /* Scan the block an insn at a time from end to beginning. */
4056 for (insn
= bb
->end
;; insn
= prev
)
4058 /* If this is a call to `setjmp' et al, warn if any
4059 non-volatile datum is live. */
4060 if ((flags
& PROP_REG_INFO
)
4061 && GET_CODE (insn
) == NOTE
4062 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_SETJMP
)
4063 IOR_REG_SET (regs_live_at_setjmp
, pbi
->reg_live
);
4065 prev
= propagate_one_insn (pbi
, insn
);
4067 if (insn
== bb
->head
)
4071 free_propagate_block_info (pbi
);
4074 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
4075 (SET expressions whose destinations are registers dead after the insn).
4076 NEEDED is the regset that says which regs are alive after the insn.
4078 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.
4080 If X is the entire body of an insn, NOTES contains the reg notes
4081 pertaining to the insn. */
4084 insn_dead_p (pbi
, x
, call_ok
, notes
)
4085 struct propagate_block_info
*pbi
;
4088 rtx notes ATTRIBUTE_UNUSED
;
4090 enum rtx_code code
= GET_CODE (x
);
4093 /* If flow is invoked after reload, we must take existing AUTO_INC
4094 expresions into account. */
4095 if (reload_completed
)
4097 for (; notes
; notes
= XEXP (notes
, 1))
4099 if (REG_NOTE_KIND (notes
) == REG_INC
)
4101 int regno
= REGNO (XEXP (notes
, 0));
4103 /* Don't delete insns to set global regs. */
4104 if ((regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
4105 || REGNO_REG_SET_P (pbi
->reg_live
, regno
))
4112 /* If setting something that's a reg or part of one,
4113 see if that register's altered value will be live. */
4117 rtx r
= SET_DEST (x
);
4120 if (GET_CODE (r
) == CC0
)
4121 return ! pbi
->cc0_live
;
4124 /* A SET that is a subroutine call cannot be dead. */
4125 if (GET_CODE (SET_SRC (x
)) == CALL
)
4131 /* Don't eliminate loads from volatile memory or volatile asms. */
4132 else if (volatile_refs_p (SET_SRC (x
)))
4135 if (GET_CODE (r
) == MEM
)
4139 if (MEM_VOLATILE_P (r
))
4142 /* Walk the set of memory locations we are currently tracking
4143 and see if one is an identical match to this memory location.
4144 If so, this memory write is dead (remember, we're walking
4145 backwards from the end of the block to the start). Since
4146 rtx_equal_p does not check the alias set or flags, we also
4147 must have the potential for them to conflict (anti_dependence). */
4148 for (temp
= pbi
->mem_set_list
; temp
!= 0; temp
= XEXP (temp
, 1))
4149 if (anti_dependence (r
, XEXP (temp
, 0)))
4151 rtx mem
= XEXP (temp
, 0);
4153 if (rtx_equal_p (mem
, r
))
4156 /* Check if memory reference matches an auto increment. Only
4157 post increment/decrement or modify are valid. */
4158 if (GET_MODE (mem
) == GET_MODE (r
)
4159 && (GET_CODE (XEXP (mem
, 0)) == POST_DEC
4160 || GET_CODE (XEXP (mem
, 0)) == POST_INC
4161 || GET_CODE (XEXP (mem
, 0)) == POST_MODIFY
)
4162 && GET_MODE (XEXP (mem
, 0)) == GET_MODE (r
)
4163 && rtx_equal_p (XEXP (XEXP (mem
, 0), 0), XEXP (r
, 0)))
4170 while (GET_CODE (r
) == SUBREG
4171 || GET_CODE (r
) == STRICT_LOW_PART
4172 || GET_CODE (r
) == ZERO_EXTRACT
)
4175 if (GET_CODE (r
) == REG
)
4177 int regno
= REGNO (r
);
4180 if (REGNO_REG_SET_P (pbi
->reg_live
, regno
))
4183 /* If this is a hard register, verify that subsequent
4184 words are not needed. */
4185 if (regno
< FIRST_PSEUDO_REGISTER
)
4187 int n
= HARD_REGNO_NREGS (regno
, GET_MODE (r
));
4190 if (REGNO_REG_SET_P (pbi
->reg_live
, regno
+n
))
4194 /* Don't delete insns to set global regs. */
4195 if (regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
4198 /* Make sure insns to set the stack pointer aren't deleted. */
4199 if (regno
== STACK_POINTER_REGNUM
)
4202 /* ??? These bits might be redundant with the force live bits
4203 in calculate_global_regs_live. We would delete from
4204 sequential sets; whether this actually affects real code
4205 for anything but the stack pointer I don't know. */
4206 /* Make sure insns to set the frame pointer aren't deleted. */
4207 if (regno
== FRAME_POINTER_REGNUM
4208 && (! reload_completed
|| frame_pointer_needed
))
4210 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4211 if (regno
== HARD_FRAME_POINTER_REGNUM
4212 && (! reload_completed
|| frame_pointer_needed
))
4216 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4217 /* Make sure insns to set arg pointer are never deleted
4218 (if the arg pointer isn't fixed, there will be a USE
4219 for it, so we can treat it normally). */
4220 if (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
4224 /* Otherwise, the set is dead. */
4230 /* If performing several activities, insn is dead if each activity
4231 is individually dead. Also, CLOBBERs and USEs can be ignored; a
4232 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
4234 else if (code
== PARALLEL
)
4236 int i
= XVECLEN (x
, 0);
4238 for (i
--; i
>= 0; i
--)
4239 if (GET_CODE (XVECEXP (x
, 0, i
)) != CLOBBER
4240 && GET_CODE (XVECEXP (x
, 0, i
)) != USE
4241 && ! insn_dead_p (pbi
, XVECEXP (x
, 0, i
), call_ok
, NULL_RTX
))
4247 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
4248 is not necessarily true for hard registers. */
4249 else if (code
== CLOBBER
&& GET_CODE (XEXP (x
, 0)) == REG
4250 && REGNO (XEXP (x
, 0)) >= FIRST_PSEUDO_REGISTER
4251 && ! REGNO_REG_SET_P (pbi
->reg_live
, REGNO (XEXP (x
, 0))))
4254 /* We do not check other CLOBBER or USE here. An insn consisting of just
4255 a CLOBBER or just a USE should not be deleted. */
4259 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
4260 return 1 if the entire library call is dead.
4261 This is true if INSN copies a register (hard or pseudo)
4262 and if the hard return reg of the call insn is dead.
4263 (The caller should have tested the destination of the SET inside
4264 INSN already for death.)
4266 If this insn doesn't just copy a register, then we don't
4267 have an ordinary libcall. In that case, cse could not have
4268 managed to substitute the source for the dest later on,
4269 so we can assume the libcall is dead.
4271 PBI is the block info giving pseudoregs live before this insn.
4272 NOTE is the REG_RETVAL note of the insn. */
4275 libcall_dead_p (pbi
, note
, insn
)
4276 struct propagate_block_info
*pbi
;
4280 rtx x
= single_set (insn
);
4284 register rtx r
= SET_SRC (x
);
4285 if (GET_CODE (r
) == REG
)
4287 rtx call
= XEXP (note
, 0);
4291 /* Find the call insn. */
4292 while (call
!= insn
&& GET_CODE (call
) != CALL_INSN
)
4293 call
= NEXT_INSN (call
);
4295 /* If there is none, do nothing special,
4296 since ordinary death handling can understand these insns. */
4300 /* See if the hard reg holding the value is dead.
4301 If this is a PARALLEL, find the call within it. */
4302 call_pat
= PATTERN (call
);
4303 if (GET_CODE (call_pat
) == PARALLEL
)
4305 for (i
= XVECLEN (call_pat
, 0) - 1; i
>= 0; i
--)
4306 if (GET_CODE (XVECEXP (call_pat
, 0, i
)) == SET
4307 && GET_CODE (SET_SRC (XVECEXP (call_pat
, 0, i
))) == CALL
)
4310 /* This may be a library call that is returning a value
4311 via invisible pointer. Do nothing special, since
4312 ordinary death handling can understand these insns. */
4316 call_pat
= XVECEXP (call_pat
, 0, i
);
4319 return insn_dead_p (pbi
, call_pat
, 1, REG_NOTES (call
));
4325 /* Return 1 if register REGNO was used before it was set, i.e. if it is
4326 live at function entry. Don't count global register variables, variables
4327 in registers that can be used for function arg passing, or variables in
4328 fixed hard registers. */
4331 regno_uninitialized (regno
)
4334 if (n_basic_blocks
== 0
4335 || (regno
< FIRST_PSEUDO_REGISTER
4336 && (global_regs
[regno
]
4337 || fixed_regs
[regno
]
4338 || FUNCTION_ARG_REGNO_P (regno
))))
4341 return REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start
, regno
);
4344 /* 1 if register REGNO was alive at a place where `setjmp' was called
4345 and was set more than once or is an argument.
4346 Such regs may be clobbered by `longjmp'. */
4349 regno_clobbered_at_setjmp (regno
)
4352 if (n_basic_blocks
== 0)
4355 return ((REG_N_SETS (regno
) > 1
4356 || REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start
, regno
))
4357 && REGNO_REG_SET_P (regs_live_at_setjmp
, regno
));
4360 /* INSN references memory, possibly using autoincrement addressing modes.
4361 Find any entries on the mem_set_list that need to be invalidated due
4362 to an address change. */
4365 invalidate_mems_from_autoinc (pbi
, insn
)
4366 struct propagate_block_info
*pbi
;
4369 rtx note
= REG_NOTES (insn
);
4370 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
4372 if (REG_NOTE_KIND (note
) == REG_INC
)
4374 rtx temp
= pbi
->mem_set_list
;
4375 rtx prev
= NULL_RTX
;
4380 next
= XEXP (temp
, 1);
4381 if (reg_overlap_mentioned_p (XEXP (note
, 0), XEXP (temp
, 0)))
4383 /* Splice temp out of list. */
4385 XEXP (prev
, 1) = next
;
4387 pbi
->mem_set_list
= next
;
4388 free_EXPR_LIST_node (temp
);
4389 pbi
->mem_set_list_len
--;
4399 /* EXP is either a MEM or a REG. Remove any dependant entries
4400 from pbi->mem_set_list. */
4403 invalidate_mems_from_set (pbi
, exp
)
4404 struct propagate_block_info
*pbi
;
4407 rtx temp
= pbi
->mem_set_list
;
4408 rtx prev
= NULL_RTX
;
4413 next
= XEXP (temp
, 1);
4414 if ((GET_CODE (exp
) == MEM
4415 && output_dependence (XEXP (temp
, 0), exp
))
4416 || (GET_CODE (exp
) == REG
4417 && reg_overlap_mentioned_p (exp
, XEXP (temp
, 0))))
4419 /* Splice this entry out of the list. */
4421 XEXP (prev
, 1) = next
;
4423 pbi
->mem_set_list
= next
;
4424 free_EXPR_LIST_node (temp
);
4425 pbi
->mem_set_list_len
--;
4433 /* Process the registers that are set within X. Their bits are set to
4434 1 in the regset DEAD, because they are dead prior to this insn.
4436 If INSN is nonzero, it is the insn being processed.
4438 FLAGS is the set of operations to perform. */
4441 mark_set_regs (pbi
, x
, insn
)
4442 struct propagate_block_info
*pbi
;
4445 rtx cond
= NULL_RTX
;
4450 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
4452 if (REG_NOTE_KIND (link
) == REG_INC
)
4453 mark_set_1 (pbi
, SET
, XEXP (link
, 0),
4454 (GET_CODE (x
) == COND_EXEC
4455 ? COND_EXEC_TEST (x
) : NULL_RTX
),
4459 switch (code
= GET_CODE (x
))
4463 mark_set_1 (pbi
, code
, SET_DEST (x
), cond
, insn
, pbi
->flags
);
4467 cond
= COND_EXEC_TEST (x
);
4468 x
= COND_EXEC_CODE (x
);
4474 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
4476 rtx sub
= XVECEXP (x
, 0, i
);
4477 switch (code
= GET_CODE (sub
))
4480 if (cond
!= NULL_RTX
)
4483 cond
= COND_EXEC_TEST (sub
);
4484 sub
= COND_EXEC_CODE (sub
);
4485 if (GET_CODE (sub
) != SET
&& GET_CODE (sub
) != CLOBBER
)
4491 mark_set_1 (pbi
, code
, SET_DEST (sub
), cond
, insn
, pbi
->flags
);
4506 /* Process a single SET rtx, X. */
4509 mark_set_1 (pbi
, code
, reg
, cond
, insn
, flags
)
4510 struct propagate_block_info
*pbi
;
4512 rtx reg
, cond
, insn
;
4515 int regno_first
= -1, regno_last
= -1;
4516 unsigned long not_dead
= 0;
4519 /* Modifying just one hardware register of a multi-reg value or just a
4520 byte field of a register does not mean the value from before this insn
4521 is now dead. Of course, if it was dead after it's unused now. */
4523 switch (GET_CODE (reg
))
4526 /* Some targets place small structures in registers for return values of
4527 functions. We have to detect this case specially here to get correct
4528 flow information. */
4529 for (i
= XVECLEN (reg
, 0) - 1; i
>= 0; i
--)
4530 if (XEXP (XVECEXP (reg
, 0, i
), 0) != 0)
4531 mark_set_1 (pbi
, code
, XEXP (XVECEXP (reg
, 0, i
), 0), cond
, insn
,
4537 case STRICT_LOW_PART
:
4538 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
4540 reg
= XEXP (reg
, 0);
4541 while (GET_CODE (reg
) == SUBREG
4542 || GET_CODE (reg
) == ZERO_EXTRACT
4543 || GET_CODE (reg
) == SIGN_EXTRACT
4544 || GET_CODE (reg
) == STRICT_LOW_PART
);
4545 if (GET_CODE (reg
) == MEM
)
4547 not_dead
= (unsigned long) REGNO_REG_SET_P (pbi
->reg_live
, REGNO (reg
));
4551 regno_last
= regno_first
= REGNO (reg
);
4552 if (regno_first
< FIRST_PSEUDO_REGISTER
)
4553 regno_last
+= HARD_REGNO_NREGS (regno_first
, GET_MODE (reg
)) - 1;
4557 if (GET_CODE (SUBREG_REG (reg
)) == REG
)
4559 enum machine_mode outer_mode
= GET_MODE (reg
);
4560 enum machine_mode inner_mode
= GET_MODE (SUBREG_REG (reg
));
4562 /* Identify the range of registers affected. This is moderately
4563 tricky for hard registers. See alter_subreg. */
4565 regno_last
= regno_first
= REGNO (SUBREG_REG (reg
));
4566 if (regno_first
< FIRST_PSEUDO_REGISTER
)
4568 #ifdef ALTER_HARD_SUBREG
4569 regno_first
= ALTER_HARD_SUBREG (outer_mode
, SUBREG_WORD (reg
),
4570 inner_mode
, regno_first
);
4572 regno_first
+= SUBREG_WORD (reg
);
4574 regno_last
= (regno_first
4575 + HARD_REGNO_NREGS (regno_first
, outer_mode
) - 1);
4577 /* Since we've just adjusted the register number ranges, make
4578 sure REG matches. Otherwise some_was_live will be clear
4579 when it shouldn't have been, and we'll create incorrect
4580 REG_UNUSED notes. */
4581 reg
= gen_rtx_REG (outer_mode
, regno_first
);
4585 /* If the number of words in the subreg is less than the number
4586 of words in the full register, we have a well-defined partial
4587 set. Otherwise the high bits are undefined.
4589 This is only really applicable to pseudos, since we just took
4590 care of multi-word hard registers. */
4591 if (((GET_MODE_SIZE (outer_mode
)
4592 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
4593 < ((GET_MODE_SIZE (inner_mode
)
4594 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
))
4595 not_dead
= (unsigned long) REGNO_REG_SET_P (pbi
->reg_live
,
4598 reg
= SUBREG_REG (reg
);
4602 reg
= SUBREG_REG (reg
);
4609 /* If this set is a MEM, then it kills any aliased writes.
4610 If this set is a REG, then it kills any MEMs which use the reg. */
4611 if (optimize
&& (flags
& PROP_SCAN_DEAD_CODE
))
4613 if (GET_CODE (reg
) == MEM
|| GET_CODE (reg
) == REG
)
4614 invalidate_mems_from_set (pbi
, reg
);
4616 /* If the memory reference had embedded side effects (autoincrement
4617 address modes. Then we may need to kill some entries on the
4619 if (insn
&& GET_CODE (reg
) == MEM
)
4620 invalidate_mems_from_autoinc (pbi
, insn
);
4622 if (pbi
->mem_set_list_len
< MAX_MEM_SET_LIST_LEN
4623 && GET_CODE (reg
) == MEM
&& ! side_effects_p (reg
)
4624 /* ??? With more effort we could track conditional memory life. */
4626 /* We do not know the size of a BLKmode store, so we do not track
4627 them for redundant store elimination. */
4628 && GET_MODE (reg
) != BLKmode
4629 /* There are no REG_INC notes for SP, so we can't assume we'll see
4630 everything that invalidates it. To be safe, don't eliminate any
4631 stores though SP; none of them should be redundant anyway. */
4632 && ! reg_mentioned_p (stack_pointer_rtx
, reg
))
4635 /* Store a copy of mem, otherwise the address may be
4636 scrogged by find_auto_inc. */
4637 if (flags
& PROP_AUTOINC
)
4638 reg
= shallow_copy_rtx (reg
);
4640 pbi
->mem_set_list
= alloc_EXPR_LIST (0, reg
, pbi
->mem_set_list
);
4641 pbi
->mem_set_list_len
++;
4645 if (GET_CODE (reg
) == REG
4646 && ! (regno_first
== FRAME_POINTER_REGNUM
4647 && (! reload_completed
|| frame_pointer_needed
))
4648 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4649 && ! (regno_first
== HARD_FRAME_POINTER_REGNUM
4650 && (! reload_completed
|| frame_pointer_needed
))
4652 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4653 && ! (regno_first
== ARG_POINTER_REGNUM
&& fixed_regs
[regno_first
])
4657 int some_was_live
= 0, some_was_dead
= 0;
4659 for (i
= regno_first
; i
<= regno_last
; ++i
)
4661 int needed_regno
= REGNO_REG_SET_P (pbi
->reg_live
, i
);
4664 /* Order of the set operation matters here since both
4665 sets may be the same. */
4666 CLEAR_REGNO_REG_SET (pbi
->cond_local_set
, i
);
4667 if (cond
!= NULL_RTX
4668 && ! REGNO_REG_SET_P (pbi
->local_set
, i
))
4669 SET_REGNO_REG_SET (pbi
->cond_local_set
, i
);
4671 SET_REGNO_REG_SET (pbi
->local_set
, i
);
4673 if (code
!= CLOBBER
)
4674 SET_REGNO_REG_SET (pbi
->new_set
, i
);
4676 some_was_live
|= needed_regno
;
4677 some_was_dead
|= ! needed_regno
;
4680 #ifdef HAVE_conditional_execution
4681 /* Consider conditional death in deciding that the register needs
4683 if (some_was_live
&& ! not_dead
4684 /* The stack pointer is never dead. Well, not strictly true,
4685 but it's very difficult to tell from here. Hopefully
4686 combine_stack_adjustments will fix up the most egregious
4688 && regno_first
!= STACK_POINTER_REGNUM
)
4690 for (i
= regno_first
; i
<= regno_last
; ++i
)
4691 if (! mark_regno_cond_dead (pbi
, i
, cond
))
4692 not_dead
|= ((unsigned long) 1) << (i
- regno_first
);
4696 /* Additional data to record if this is the final pass. */
4697 if (flags
& (PROP_LOG_LINKS
| PROP_REG_INFO
4698 | PROP_DEATH_NOTES
| PROP_AUTOINC
))
4701 register int blocknum
= pbi
->bb
->index
;
4704 if (flags
& (PROP_LOG_LINKS
| PROP_AUTOINC
))
4706 y
= pbi
->reg_next_use
[regno_first
];
4708 /* The next use is no longer next, since a store intervenes. */
4709 for (i
= regno_first
; i
<= regno_last
; ++i
)
4710 pbi
->reg_next_use
[i
] = 0;
4713 if (flags
& PROP_REG_INFO
)
4715 for (i
= regno_first
; i
<= regno_last
; ++i
)
4717 /* Count (weighted) references, stores, etc. This counts a
4718 register twice if it is modified, but that is correct. */
4719 REG_N_SETS (i
) += 1;
4720 REG_N_REFS (i
) += (optimize_size
? 1
4721 : pbi
->bb
->loop_depth
+ 1);
4723 /* The insns where a reg is live are normally counted
4724 elsewhere, but we want the count to include the insn
4725 where the reg is set, and the normal counting mechanism
4726 would not count it. */
4727 REG_LIVE_LENGTH (i
) += 1;
4730 /* If this is a hard reg, record this function uses the reg. */
4731 if (regno_first
< FIRST_PSEUDO_REGISTER
)
4733 for (i
= regno_first
; i
<= regno_last
; i
++)
4734 regs_ever_live
[i
] = 1;
4738 /* Keep track of which basic blocks each reg appears in. */
4739 if (REG_BASIC_BLOCK (regno_first
) == REG_BLOCK_UNKNOWN
)
4740 REG_BASIC_BLOCK (regno_first
) = blocknum
;
4741 else if (REG_BASIC_BLOCK (regno_first
) != blocknum
)
4742 REG_BASIC_BLOCK (regno_first
) = REG_BLOCK_GLOBAL
;
4746 if (! some_was_dead
)
4748 if (flags
& PROP_LOG_LINKS
)
4750 /* Make a logical link from the next following insn
4751 that uses this register, back to this insn.
4752 The following insns have already been processed.
4754 We don't build a LOG_LINK for hard registers containing
4755 in ASM_OPERANDs. If these registers get replaced,
4756 we might wind up changing the semantics of the insn,
4757 even if reload can make what appear to be valid
4758 assignments later. */
4759 if (y
&& (BLOCK_NUM (y
) == blocknum
)
4760 && (regno_first
>= FIRST_PSEUDO_REGISTER
4761 || asm_noperands (PATTERN (y
)) < 0))
4762 LOG_LINKS (y
) = alloc_INSN_LIST (insn
, LOG_LINKS (y
));
4767 else if (! some_was_live
)
4769 if (flags
& PROP_REG_INFO
)
4770 REG_N_DEATHS (regno_first
) += 1;
4772 if (flags
& PROP_DEATH_NOTES
)
4774 /* Note that dead stores have already been deleted
4775 when possible. If we get here, we have found a
4776 dead store that cannot be eliminated (because the
4777 same insn does something useful). Indicate this
4778 by marking the reg being set as dying here. */
4780 = alloc_EXPR_LIST (REG_UNUSED
, reg
, REG_NOTES (insn
));
4785 if (flags
& PROP_DEATH_NOTES
)
4787 /* This is a case where we have a multi-word hard register
4788 and some, but not all, of the words of the register are
4789 needed in subsequent insns. Write REG_UNUSED notes
4790 for those parts that were not needed. This case should
4793 for (i
= regno_first
; i
<= regno_last
; ++i
)
4794 if (! REGNO_REG_SET_P (pbi
->reg_live
, i
))
4796 = alloc_EXPR_LIST (REG_UNUSED
,
4797 gen_rtx_REG (reg_raw_mode
[i
], i
),
4803 /* Mark the register as being dead. */
4805 /* The stack pointer is never dead. Well, not strictly true,
4806 but it's very difficult to tell from here. Hopefully
4807 combine_stack_adjustments will fix up the most egregious
4809 && regno_first
!= STACK_POINTER_REGNUM
)
4811 for (i
= regno_first
; i
<= regno_last
; ++i
)
4812 if (!(not_dead
& (((unsigned long) 1) << (i
- regno_first
))))
4813 CLEAR_REGNO_REG_SET (pbi
->reg_live
, i
);
4816 else if (GET_CODE (reg
) == REG
)
4818 if (flags
& (PROP_LOG_LINKS
| PROP_AUTOINC
))
4819 pbi
->reg_next_use
[regno_first
] = 0;
4822 /* If this is the last pass and this is a SCRATCH, show it will be dying
4823 here and count it. */
4824 else if (GET_CODE (reg
) == SCRATCH
)
4826 if (flags
& PROP_DEATH_NOTES
)
4828 = alloc_EXPR_LIST (REG_UNUSED
, reg
, REG_NOTES (insn
));
4832 #ifdef HAVE_conditional_execution
4833 /* Mark REGNO conditionally dead.
4834 Return true if the register is now unconditionally dead. */
4837 mark_regno_cond_dead (pbi
, regno
, cond
)
4838 struct propagate_block_info
*pbi
;
4842 /* If this is a store to a predicate register, the value of the
4843 predicate is changing, we don't know that the predicate as seen
4844 before is the same as that seen after. Flush all dependent
4845 conditions from reg_cond_dead. This will make all such
4846 conditionally live registers unconditionally live. */
4847 if (REGNO_REG_SET_P (pbi
->reg_cond_reg
, regno
))
4848 flush_reg_cond_reg (pbi
, regno
);
4850 /* If this is an unconditional store, remove any conditional
4851 life that may have existed. */
4852 if (cond
== NULL_RTX
)
4853 splay_tree_remove (pbi
->reg_cond_dead
, regno
);
4856 splay_tree_node node
;
4857 struct reg_cond_life_info
*rcli
;
4860 /* Otherwise this is a conditional set. Record that fact.
4861 It may have been conditionally used, or there may be a
4862 subsequent set with a complimentary condition. */
4864 node
= splay_tree_lookup (pbi
->reg_cond_dead
, regno
);
4867 /* The register was unconditionally live previously.
4868 Record the current condition as the condition under
4869 which it is dead. */
4870 rcli
= (struct reg_cond_life_info
*) xmalloc (sizeof (*rcli
));
4871 rcli
->condition
= cond
;
4872 rcli
->stores
= cond
;
4873 rcli
->orig_condition
= const0_rtx
;
4874 splay_tree_insert (pbi
->reg_cond_dead
, regno
,
4875 (splay_tree_value
) rcli
);
4877 SET_REGNO_REG_SET (pbi
->reg_cond_reg
, REGNO (XEXP (cond
, 0)));
4879 /* Not unconditionaly dead. */
4884 /* The register was conditionally live previously.
4885 Add the new condition to the old. */
4886 rcli
= (struct reg_cond_life_info
*) node
->value
;
4887 ncond
= rcli
->condition
;
4888 ncond
= ior_reg_cond (ncond
, cond
, 1);
4889 if (rcli
->stores
== const0_rtx
)
4890 rcli
->stores
= cond
;
4891 else if (rcli
->stores
!= const1_rtx
)
4892 rcli
->stores
= ior_reg_cond (rcli
->stores
, cond
, 1);
4894 /* If the register is now unconditionally dead, remove the entry
4895 in the splay_tree. A register is unconditionally dead if the
4896 dead condition ncond is true. A register is also unconditionally
4897 dead if the sum of all conditional stores is an unconditional
4898 store (stores is true), and the dead condition is identically the
4899 same as the original dead condition initialized at the end of
4900 the block. This is a pointer compare, not an rtx_equal_p
4902 if (ncond
== const1_rtx
4903 || (ncond
== rcli
->orig_condition
&& rcli
->stores
== const1_rtx
))
4904 splay_tree_remove (pbi
->reg_cond_dead
, regno
);
4907 rcli
->condition
= ncond
;
4909 SET_REGNO_REG_SET (pbi
->reg_cond_reg
, REGNO (XEXP (cond
, 0)));
4911 /* Not unconditionaly dead. */
4920 /* Called from splay_tree_delete for pbi->reg_cond_life. */
4923 free_reg_cond_life_info (value
)
4924 splay_tree_value value
;
4926 struct reg_cond_life_info
*rcli
= (struct reg_cond_life_info
*) value
;
4930 /* Helper function for flush_reg_cond_reg. */
4933 flush_reg_cond_reg_1 (node
, data
)
4934 splay_tree_node node
;
4937 struct reg_cond_life_info
*rcli
;
4938 int *xdata
= (int *) data
;
4939 unsigned int regno
= xdata
[0];
4941 /* Don't need to search if last flushed value was farther on in
4942 the in-order traversal. */
4943 if (xdata
[1] >= (int) node
->key
)
4946 /* Splice out portions of the expression that refer to regno. */
4947 rcli
= (struct reg_cond_life_info
*) node
->value
;
4948 rcli
->condition
= elim_reg_cond (rcli
->condition
, regno
);
4949 if (rcli
->stores
!= const0_rtx
&& rcli
->stores
!= const1_rtx
)
4950 rcli
->stores
= elim_reg_cond (rcli
->stores
, regno
);
4952 /* If the entire condition is now false, signal the node to be removed. */
4953 if (rcli
->condition
== const0_rtx
)
4955 xdata
[1] = node
->key
;
4958 else if (rcli
->condition
== const1_rtx
)
4964 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
4967 flush_reg_cond_reg (pbi
, regno
)
4968 struct propagate_block_info
*pbi
;
4975 while (splay_tree_foreach (pbi
->reg_cond_dead
,
4976 flush_reg_cond_reg_1
, pair
) == -1)
4977 splay_tree_remove (pbi
->reg_cond_dead
, pair
[1]);
4979 CLEAR_REGNO_REG_SET (pbi
->reg_cond_reg
, regno
);
4982 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
4983 For ior/and, the ADD flag determines whether we want to add the new
4984 condition X to the old one unconditionally. If it is zero, we will
4985 only return a new expression if X allows us to simplify part of
4986 OLD, otherwise we return OLD unchanged to the caller.
4987 If ADD is nonzero, we will return a new condition in all cases. The
4988 toplevel caller of one of these functions should always pass 1 for
4992 ior_reg_cond (old
, x
, add
)
4998 if (GET_RTX_CLASS (GET_CODE (old
)) == '<')
5000 if (GET_RTX_CLASS (GET_CODE (x
)) == '<'
5001 && GET_CODE (x
) == reverse_condition (GET_CODE (old
))
5002 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (old
, 0)))
5004 if (GET_CODE (x
) == GET_CODE (old
)
5005 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (old
, 0)))
5009 return gen_rtx_IOR (0, old
, x
);
5012 switch (GET_CODE (old
))
5015 op0
= ior_reg_cond (XEXP (old
, 0), x
, 0);
5016 op1
= ior_reg_cond (XEXP (old
, 1), x
, 0);
5017 if (op0
!= XEXP (old
, 0) || op1
!= XEXP (old
, 1))
5019 if (op0
== const0_rtx
)
5021 if (op1
== const0_rtx
)
5023 if (op0
== const1_rtx
|| op1
== const1_rtx
)
5025 if (op0
== XEXP (old
, 0))
5026 op0
= gen_rtx_IOR (0, op0
, x
);
5028 op1
= gen_rtx_IOR (0, op1
, x
);
5029 return gen_rtx_IOR (0, op0
, op1
);
5033 return gen_rtx_IOR (0, old
, x
);
5036 op0
= ior_reg_cond (XEXP (old
, 0), x
, 0);
5037 op1
= ior_reg_cond (XEXP (old
, 1), x
, 0);
5038 if (op0
!= XEXP (old
, 0) || op1
!= XEXP (old
, 1))
5040 if (op0
== const1_rtx
)
5042 if (op1
== const1_rtx
)
5044 if (op0
== const0_rtx
|| op1
== const0_rtx
)
5046 if (op0
== XEXP (old
, 0))
5047 op0
= gen_rtx_IOR (0, op0
, x
);
5049 op1
= gen_rtx_IOR (0, op1
, x
);
5050 return gen_rtx_AND (0, op0
, op1
);
5054 return gen_rtx_IOR (0, old
, x
);
5057 op0
= and_reg_cond (XEXP (old
, 0), not_reg_cond (x
), 0);
5058 if (op0
!= XEXP (old
, 0))
5059 return not_reg_cond (op0
);
5062 return gen_rtx_IOR (0, old
, x
);
5073 enum rtx_code x_code
;
5075 if (x
== const0_rtx
)
5077 else if (x
== const1_rtx
)
5079 x_code
= GET_CODE (x
);
5082 if (GET_RTX_CLASS (x_code
) == '<'
5083 && GET_CODE (XEXP (x
, 0)) == REG
)
5085 if (XEXP (x
, 1) != const0_rtx
)
5088 return gen_rtx_fmt_ee (reverse_condition (x_code
),
5089 VOIDmode
, XEXP (x
, 0), const0_rtx
);
5091 return gen_rtx_NOT (0, x
);
5095 and_reg_cond (old
, x
, add
)
5101 if (GET_RTX_CLASS (GET_CODE (old
)) == '<')
5103 if (GET_RTX_CLASS (GET_CODE (x
)) == '<'
5104 && GET_CODE (x
) == reverse_condition (GET_CODE (old
))
5105 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (old
, 0)))
5107 if (GET_CODE (x
) == GET_CODE (old
)
5108 && REGNO (XEXP (x
, 0)) == REGNO (XEXP (old
, 0)))
5112 return gen_rtx_AND (0, old
, x
);
5115 switch (GET_CODE (old
))
5118 op0
= and_reg_cond (XEXP (old
, 0), x
, 0);
5119 op1
= and_reg_cond (XEXP (old
, 1), x
, 0);
5120 if (op0
!= XEXP (old
, 0) || op1
!= XEXP (old
, 1))
5122 if (op0
== const0_rtx
)
5124 if (op1
== const0_rtx
)
5126 if (op0
== const1_rtx
|| op1
== const1_rtx
)
5128 if (op0
== XEXP (old
, 0))
5129 op0
= gen_rtx_AND (0, op0
, x
);
5131 op1
= gen_rtx_AND (0, op1
, x
);
5132 return gen_rtx_IOR (0, op0
, op1
);
5136 return gen_rtx_AND (0, old
, x
);
5139 op0
= and_reg_cond (XEXP (old
, 0), x
, 0);
5140 op1
= and_reg_cond (XEXP (old
, 1), x
, 0);
5141 if (op0
!= XEXP (old
, 0) || op1
!= XEXP (old
, 1))
5143 if (op0
== const1_rtx
)
5145 if (op1
== const1_rtx
)
5147 if (op0
== const0_rtx
|| op1
== const0_rtx
)
5149 if (op0
== XEXP (old
, 0))
5150 op0
= gen_rtx_AND (0, op0
, x
);
5152 op1
= gen_rtx_AND (0, op1
, x
);
5153 return gen_rtx_AND (0, op0
, op1
);
5158 /* If X is identical to one of the existing terms of the AND,
5159 then just return what we already have. */
5160 /* ??? There really should be some sort of recursive check here in
5161 case there are nested ANDs. */
5162 if ((GET_CODE (XEXP (old
, 0)) == GET_CODE (x
)
5163 && REGNO (XEXP (XEXP (old
, 0), 0)) == REGNO (XEXP (x
, 0)))
5164 || (GET_CODE (XEXP (old
, 1)) == GET_CODE (x
)
5165 && REGNO (XEXP (XEXP (old
, 1), 0)) == REGNO (XEXP (x
, 0))))
5168 return gen_rtx_AND (0, old
, x
);
5171 op0
= ior_reg_cond (XEXP (old
, 0), not_reg_cond (x
), 0);
5172 if (op0
!= XEXP (old
, 0))
5173 return not_reg_cond (op0
);
5176 return gen_rtx_AND (0, old
, x
);
5183 /* Given a condition X, remove references to reg REGNO and return the
5184 new condition. The removal will be done so that all conditions
5185 involving REGNO are considered to evaluate to false. This function
5186 is used when the value of REGNO changes. */
5189 elim_reg_cond (x
, regno
)
5195 if (GET_RTX_CLASS (GET_CODE (x
)) == '<')
5197 if (REGNO (XEXP (x
, 0)) == regno
)
5202 switch (GET_CODE (x
))
5205 op0
= elim_reg_cond (XEXP (x
, 0), regno
);
5206 op1
= elim_reg_cond (XEXP (x
, 1), regno
);
5207 if (op0
== const0_rtx
|| op1
== const0_rtx
)
5209 if (op0
== const1_rtx
)
5211 if (op1
== const1_rtx
)
5213 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
5215 return gen_rtx_AND (0, op0
, op1
);
5218 op0
= elim_reg_cond (XEXP (x
, 0), regno
);
5219 op1
= elim_reg_cond (XEXP (x
, 1), regno
);
5220 if (op0
== const1_rtx
|| op1
== const1_rtx
)
5222 if (op0
== const0_rtx
)
5224 if (op1
== const0_rtx
)
5226 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
5228 return gen_rtx_IOR (0, op0
, op1
);
5231 op0
= elim_reg_cond (XEXP (x
, 0), regno
);
5232 if (op0
== const0_rtx
)
5234 if (op0
== const1_rtx
)
5236 if (op0
!= XEXP (x
, 0))
5237 return not_reg_cond (op0
);
5244 #endif /* HAVE_conditional_execution */
5248 /* Try to substitute the auto-inc expression INC as the address inside
5249 MEM which occurs in INSN. Currently, the address of MEM is an expression
5250 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
5251 that has a single set whose source is a PLUS of INCR_REG and something
5255 attempt_auto_inc (pbi
, inc
, insn
, mem
, incr
, incr_reg
)
5256 struct propagate_block_info
*pbi
;
5257 rtx inc
, insn
, mem
, incr
, incr_reg
;
5259 int regno
= REGNO (incr_reg
);
5260 rtx set
= single_set (incr
);
5261 rtx q
= SET_DEST (set
);
5262 rtx y
= SET_SRC (set
);
5263 int opnum
= XEXP (y
, 0) == incr_reg
? 0 : 1;
5265 /* Make sure this reg appears only once in this insn. */
5266 if (count_occurrences (PATTERN (insn
), incr_reg
, 1) != 1)
5269 if (dead_or_set_p (incr
, incr_reg
)
5270 /* Mustn't autoinc an eliminable register. */
5271 && (regno
>= FIRST_PSEUDO_REGISTER
5272 || ! TEST_HARD_REG_BIT (elim_reg_set
, regno
)))
5274 /* This is the simple case. Try to make the auto-inc. If
5275 we can't, we are done. Otherwise, we will do any
5276 needed updates below. */
5277 if (! validate_change (insn
, &XEXP (mem
, 0), inc
, 0))
5280 else if (GET_CODE (q
) == REG
5281 /* PREV_INSN used here to check the semi-open interval
5283 && ! reg_used_between_p (q
, PREV_INSN (insn
), incr
)
5284 /* We must also check for sets of q as q may be
5285 a call clobbered hard register and there may
5286 be a call between PREV_INSN (insn) and incr. */
5287 && ! reg_set_between_p (q
, PREV_INSN (insn
), incr
))
5289 /* We have *p followed sometime later by q = p+size.
5290 Both p and q must be live afterward,
5291 and q is not used between INSN and its assignment.
5292 Change it to q = p, ...*q..., q = q+size.
5293 Then fall into the usual case. */
5297 emit_move_insn (q
, incr_reg
);
5298 insns
= get_insns ();
5301 if (basic_block_for_insn
)
5302 for (temp
= insns
; temp
; temp
= NEXT_INSN (temp
))
5303 set_block_for_insn (temp
, pbi
->bb
);
5305 /* If we can't make the auto-inc, or can't make the
5306 replacement into Y, exit. There's no point in making
5307 the change below if we can't do the auto-inc and doing
5308 so is not correct in the pre-inc case. */
5311 validate_change (insn
, &XEXP (mem
, 0), inc
, 1);
5312 validate_change (incr
, &XEXP (y
, opnum
), q
, 1);
5313 if (! apply_change_group ())
5316 /* We now know we'll be doing this change, so emit the
5317 new insn(s) and do the updates. */
5318 emit_insns_before (insns
, insn
);
5320 if (pbi
->bb
->head
== insn
)
5321 pbi
->bb
->head
= insns
;
5323 /* INCR will become a NOTE and INSN won't contain a
5324 use of INCR_REG. If a use of INCR_REG was just placed in
5325 the insn before INSN, make that the next use.
5326 Otherwise, invalidate it. */
5327 if (GET_CODE (PREV_INSN (insn
)) == INSN
5328 && GET_CODE (PATTERN (PREV_INSN (insn
))) == SET
5329 && SET_SRC (PATTERN (PREV_INSN (insn
))) == incr_reg
)
5330 pbi
->reg_next_use
[regno
] = PREV_INSN (insn
);
5332 pbi
->reg_next_use
[regno
] = 0;
5337 /* REGNO is now used in INCR which is below INSN, but
5338 it previously wasn't live here. If we don't mark
5339 it as live, we'll put a REG_DEAD note for it
5340 on this insn, which is incorrect. */
5341 SET_REGNO_REG_SET (pbi
->reg_live
, regno
);
5343 /* If there are any calls between INSN and INCR, show
5344 that REGNO now crosses them. */
5345 for (temp
= insn
; temp
!= incr
; temp
= NEXT_INSN (temp
))
5346 if (GET_CODE (temp
) == CALL_INSN
)
5347 REG_N_CALLS_CROSSED (regno
)++;
5352 /* If we haven't returned, it means we were able to make the
5353 auto-inc, so update the status. First, record that this insn
5354 has an implicit side effect. */
5356 REG_NOTES (insn
) = alloc_EXPR_LIST (REG_INC
, incr_reg
, REG_NOTES (insn
));
5358 /* Modify the old increment-insn to simply copy
5359 the already-incremented value of our register. */
5360 if (! validate_change (incr
, &SET_SRC (set
), incr_reg
, 0))
5363 /* If that makes it a no-op (copying the register into itself) delete
5364 it so it won't appear to be a "use" and a "set" of this
5366 if (REGNO (SET_DEST (set
)) == REGNO (incr_reg
))
5368 /* If the original source was dead, it's dead now. */
5371 while ((note
= find_reg_note (incr
, REG_DEAD
, NULL_RTX
)) != NULL_RTX
)
5373 remove_note (incr
, note
);
5374 if (XEXP (note
, 0) != incr_reg
)
5375 CLEAR_REGNO_REG_SET (pbi
->reg_live
, REGNO (XEXP (note
, 0)));
5378 PUT_CODE (incr
, NOTE
);
5379 NOTE_LINE_NUMBER (incr
) = NOTE_INSN_DELETED
;
5380 NOTE_SOURCE_FILE (incr
) = 0;
5383 if (regno
>= FIRST_PSEUDO_REGISTER
)
5385 /* Count an extra reference to the reg. When a reg is
5386 incremented, spilling it is worse, so we want to make
5387 that less likely. */
5388 REG_N_REFS (regno
) += (optimize_size
? 1 : pbi
->bb
->loop_depth
+ 1);
5390 /* Count the increment as a setting of the register,
5391 even though it isn't a SET in rtl. */
5392 REG_N_SETS (regno
)++;
5396 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
5400 find_auto_inc (pbi
, x
, insn
)
5401 struct propagate_block_info
*pbi
;
5405 rtx addr
= XEXP (x
, 0);
5406 HOST_WIDE_INT offset
= 0;
5407 rtx set
, y
, incr
, inc_val
;
5409 int size
= GET_MODE_SIZE (GET_MODE (x
));
5411 if (GET_CODE (insn
) == JUMP_INSN
)
5414 /* Here we detect use of an index register which might be good for
5415 postincrement, postdecrement, preincrement, or predecrement. */
5417 if (GET_CODE (addr
) == PLUS
&& GET_CODE (XEXP (addr
, 1)) == CONST_INT
)
5418 offset
= INTVAL (XEXP (addr
, 1)), addr
= XEXP (addr
, 0);
5420 if (GET_CODE (addr
) != REG
)
5423 regno
= REGNO (addr
);
5425 /* Is the next use an increment that might make auto-increment? */
5426 incr
= pbi
->reg_next_use
[regno
];
5427 if (incr
== 0 || BLOCK_NUM (incr
) != BLOCK_NUM (insn
))
5429 set
= single_set (incr
);
5430 if (set
== 0 || GET_CODE (set
) != SET
)
5434 if (GET_CODE (y
) != PLUS
)
5437 if (REG_P (XEXP (y
, 0)) && REGNO (XEXP (y
, 0)) == REGNO (addr
))
5438 inc_val
= XEXP (y
, 1);
5439 else if (REG_P (XEXP (y
, 1)) && REGNO (XEXP (y
, 1)) == REGNO (addr
))
5440 inc_val
= XEXP (y
, 0);
5444 if (GET_CODE (inc_val
) == CONST_INT
)
5446 if (HAVE_POST_INCREMENT
5447 && (INTVAL (inc_val
) == size
&& offset
== 0))
5448 attempt_auto_inc (pbi
, gen_rtx_POST_INC (Pmode
, addr
), insn
, x
,
5450 else if (HAVE_POST_DECREMENT
5451 && (INTVAL (inc_val
) == -size
&& offset
== 0))
5452 attempt_auto_inc (pbi
, gen_rtx_POST_DEC (Pmode
, addr
), insn
, x
,
5454 else if (HAVE_PRE_INCREMENT
5455 && (INTVAL (inc_val
) == size
&& offset
== size
))
5456 attempt_auto_inc (pbi
, gen_rtx_PRE_INC (Pmode
, addr
), insn
, x
,
5458 else if (HAVE_PRE_DECREMENT
5459 && (INTVAL (inc_val
) == -size
&& offset
== -size
))
5460 attempt_auto_inc (pbi
, gen_rtx_PRE_DEC (Pmode
, addr
), insn
, x
,
5462 else if (HAVE_POST_MODIFY_DISP
&& offset
== 0)
5463 attempt_auto_inc (pbi
, gen_rtx_POST_MODIFY (Pmode
, addr
,
5464 gen_rtx_PLUS (Pmode
,
5467 insn
, x
, incr
, addr
);
5469 else if (GET_CODE (inc_val
) == REG
5470 && ! reg_set_between_p (inc_val
, PREV_INSN (insn
),
5474 if (HAVE_POST_MODIFY_REG
&& offset
== 0)
5475 attempt_auto_inc (pbi
, gen_rtx_POST_MODIFY (Pmode
, addr
,
5476 gen_rtx_PLUS (Pmode
,
5479 insn
, x
, incr
, addr
);
5483 #endif /* AUTO_INC_DEC */
5486 mark_used_reg (pbi
, reg
, cond
, insn
)
5487 struct propagate_block_info
*pbi
;
5489 rtx cond ATTRIBUTE_UNUSED
;
5492 unsigned int regno_first
, regno_last
, i
;
5493 int some_was_live
, some_was_dead
, some_not_set
;
5495 regno_last
= regno_first
= REGNO (reg
);
5496 if (regno_first
< FIRST_PSEUDO_REGISTER
)
5497 regno_last
+= HARD_REGNO_NREGS (regno_first
, GET_MODE (reg
)) - 1;
5499 /* Find out if any of this register is live after this instruction. */
5500 some_was_live
= some_was_dead
= 0;
5501 for (i
= regno_first
; i
<= regno_last
; ++i
)
5503 int needed_regno
= REGNO_REG_SET_P (pbi
->reg_live
, i
);
5504 some_was_live
|= needed_regno
;
5505 some_was_dead
|= ! needed_regno
;
5508 /* Find out if any of the register was set this insn. */
5510 for (i
= regno_first
; i
<= regno_last
; ++i
)
5511 some_not_set
|= ! REGNO_REG_SET_P (pbi
->new_set
, i
);
5513 if (pbi
->flags
& (PROP_LOG_LINKS
| PROP_AUTOINC
))
5515 /* Record where each reg is used, so when the reg is set we know
5516 the next insn that uses it. */
5517 pbi
->reg_next_use
[regno_first
] = insn
;
5520 if (pbi
->flags
& PROP_REG_INFO
)
5522 if (regno_first
< FIRST_PSEUDO_REGISTER
)
5524 /* If this is a register we are going to try to eliminate,
5525 don't mark it live here. If we are successful in
5526 eliminating it, it need not be live unless it is used for
5527 pseudos, in which case it will have been set live when it
5528 was allocated to the pseudos. If the register will not
5529 be eliminated, reload will set it live at that point.
5531 Otherwise, record that this function uses this register. */
5532 /* ??? The PPC backend tries to "eliminate" on the pic
5533 register to itself. This should be fixed. In the mean
5534 time, hack around it. */
5536 if (! (TEST_HARD_REG_BIT (elim_reg_set
, regno_first
)
5537 && (regno_first
== FRAME_POINTER_REGNUM
5538 || regno_first
== ARG_POINTER_REGNUM
)))
5539 for (i
= regno_first
; i
<= regno_last
; ++i
)
5540 regs_ever_live
[i
] = 1;
5544 /* Keep track of which basic block each reg appears in. */
5546 register int blocknum
= pbi
->bb
->index
;
5547 if (REG_BASIC_BLOCK (regno_first
) == REG_BLOCK_UNKNOWN
)
5548 REG_BASIC_BLOCK (regno_first
) = blocknum
;
5549 else if (REG_BASIC_BLOCK (regno_first
) != blocknum
)
5550 REG_BASIC_BLOCK (regno_first
) = REG_BLOCK_GLOBAL
;
5552 /* Count (weighted) number of uses of each reg. */
5553 REG_N_REFS (regno_first
)
5554 += (optimize_size
? 1 : pbi
->bb
->loop_depth
+ 1);
5558 /* Record and count the insns in which a reg dies. If it is used in
5559 this insn and was dead below the insn then it dies in this insn.
5560 If it was set in this insn, we do not make a REG_DEAD note;
5561 likewise if we already made such a note. */
5562 if ((pbi
->flags
& (PROP_DEATH_NOTES
| PROP_REG_INFO
))
5566 /* Check for the case where the register dying partially
5567 overlaps the register set by this insn. */
5568 if (regno_first
!= regno_last
)
5569 for (i
= regno_first
; i
<= regno_last
; ++i
)
5570 some_was_live
|= REGNO_REG_SET_P (pbi
->new_set
, i
);
5572 /* If none of the words in X is needed, make a REG_DEAD note.
5573 Otherwise, we must make partial REG_DEAD notes. */
5574 if (! some_was_live
)
5576 if ((pbi
->flags
& PROP_DEATH_NOTES
)
5577 && ! find_regno_note (insn
, REG_DEAD
, regno_first
))
5579 = alloc_EXPR_LIST (REG_DEAD
, reg
, REG_NOTES (insn
));
5581 if (pbi
->flags
& PROP_REG_INFO
)
5582 REG_N_DEATHS (regno_first
)++;
5586 /* Don't make a REG_DEAD note for a part of a register
5587 that is set in the insn. */
5588 for (i
= regno_first
; i
<= regno_last
; ++i
)
5589 if (! REGNO_REG_SET_P (pbi
->reg_live
, i
)
5590 && ! dead_or_set_regno_p (insn
, i
))
5592 = alloc_EXPR_LIST (REG_DEAD
,
5593 gen_rtx_REG (reg_raw_mode
[i
], i
),
5598 /* Mark the register as being live. */
5599 for (i
= regno_first
; i
<= regno_last
; ++i
)
5601 SET_REGNO_REG_SET (pbi
->reg_live
, i
);
5603 #ifdef HAVE_conditional_execution
5604 /* If this is a conditional use, record that fact. If it is later
5605 conditionally set, we'll know to kill the register. */
5606 if (cond
!= NULL_RTX
)
5608 splay_tree_node node
;
5609 struct reg_cond_life_info
*rcli
;
5614 node
= splay_tree_lookup (pbi
->reg_cond_dead
, i
);
5617 /* The register was unconditionally live previously.
5618 No need to do anything. */
5622 /* The register was conditionally live previously.
5623 Subtract the new life cond from the old death cond. */
5624 rcli
= (struct reg_cond_life_info
*) node
->value
;
5625 ncond
= rcli
->condition
;
5626 ncond
= and_reg_cond (ncond
, not_reg_cond (cond
), 1);
5628 /* If the register is now unconditionally live,
5629 remove the entry in the splay_tree. */
5630 if (ncond
== const0_rtx
)
5631 splay_tree_remove (pbi
->reg_cond_dead
, i
);
5634 rcli
->condition
= ncond
;
5635 SET_REGNO_REG_SET (pbi
->reg_cond_reg
,
5636 REGNO (XEXP (cond
, 0)));
5642 /* The register was not previously live at all. Record
5643 the condition under which it is still dead. */
5644 rcli
= (struct reg_cond_life_info
*) xmalloc (sizeof (*rcli
));
5645 rcli
->condition
= not_reg_cond (cond
);
5646 rcli
->stores
= const0_rtx
;
5647 rcli
->orig_condition
= const0_rtx
;
5648 splay_tree_insert (pbi
->reg_cond_dead
, i
,
5649 (splay_tree_value
) rcli
);
5651 SET_REGNO_REG_SET (pbi
->reg_cond_reg
, REGNO (XEXP (cond
, 0)));
5654 else if (some_was_live
)
5656 /* The register may have been conditionally live previously, but
5657 is now unconditionally live. Remove it from the conditionally
5658 dead list, so that a conditional set won't cause us to think
5660 splay_tree_remove (pbi
->reg_cond_dead
, i
);
5666 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
5667 This is done assuming the registers needed from X are those that
5668 have 1-bits in PBI->REG_LIVE.
5670 INSN is the containing instruction. If INSN is dead, this function
5674 mark_used_regs (pbi
, x
, cond
, insn
)
5675 struct propagate_block_info
*pbi
;
5678 register RTX_CODE code
;
5680 int flags
= pbi
->flags
;
5683 code
= GET_CODE (x
);
5703 /* If we are clobbering a MEM, mark any registers inside the address
5705 if (GET_CODE (XEXP (x
, 0)) == MEM
)
5706 mark_used_regs (pbi
, XEXP (XEXP (x
, 0), 0), cond
, insn
);
5710 /* Don't bother watching stores to mems if this is not the
5711 final pass. We'll not be deleting dead stores this round. */
5712 if (optimize
&& (flags
& PROP_SCAN_DEAD_CODE
))
5714 /* Invalidate the data for the last MEM stored, but only if MEM is
5715 something that can be stored into. */
5716 if (GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
5717 && CONSTANT_POOL_ADDRESS_P (XEXP (x
, 0)))
5718 /* Needn't clear the memory set list. */
5722 rtx temp
= pbi
->mem_set_list
;
5723 rtx prev
= NULL_RTX
;
5728 next
= XEXP (temp
, 1);
5729 if (anti_dependence (XEXP (temp
, 0), x
))
5731 /* Splice temp out of the list. */
5733 XEXP (prev
, 1) = next
;
5735 pbi
->mem_set_list
= next
;
5736 free_EXPR_LIST_node (temp
);
5737 pbi
->mem_set_list_len
--;
5745 /* If the memory reference had embedded side effects (autoincrement
5746 address modes. Then we may need to kill some entries on the
5749 invalidate_mems_from_autoinc (pbi
, insn
);
5753 if (flags
& PROP_AUTOINC
)
5754 find_auto_inc (pbi
, x
, insn
);
5759 #ifdef CLASS_CANNOT_CHANGE_MODE
5760 if (GET_CODE (SUBREG_REG (x
)) == REG
5761 && REGNO (SUBREG_REG (x
)) >= FIRST_PSEUDO_REGISTER
5762 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (x
),
5763 GET_MODE (SUBREG_REG (x
))))
5764 REG_CHANGES_MODE (REGNO (SUBREG_REG (x
))) = 1;
5767 /* While we're here, optimize this case. */
5769 if (GET_CODE (x
) != REG
)
5774 /* See a register other than being set => mark it as needed. */
5775 mark_used_reg (pbi
, x
, cond
, insn
);
5780 register rtx testreg
= SET_DEST (x
);
5783 /* If storing into MEM, don't show it as being used. But do
5784 show the address as being used. */
5785 if (GET_CODE (testreg
) == MEM
)
5788 if (flags
& PROP_AUTOINC
)
5789 find_auto_inc (pbi
, testreg
, insn
);
5791 mark_used_regs (pbi
, XEXP (testreg
, 0), cond
, insn
);
5792 mark_used_regs (pbi
, SET_SRC (x
), cond
, insn
);
5796 /* Storing in STRICT_LOW_PART is like storing in a reg
5797 in that this SET might be dead, so ignore it in TESTREG.
5798 but in some other ways it is like using the reg.
5800 Storing in a SUBREG or a bit field is like storing the entire
5801 register in that if the register's value is not used
5802 then this SET is not needed. */
5803 while (GET_CODE (testreg
) == STRICT_LOW_PART
5804 || GET_CODE (testreg
) == ZERO_EXTRACT
5805 || GET_CODE (testreg
) == SIGN_EXTRACT
5806 || GET_CODE (testreg
) == SUBREG
)
5808 #ifdef CLASS_CANNOT_CHANGE_MODE
5809 if (GET_CODE (testreg
) == SUBREG
5810 && GET_CODE (SUBREG_REG (testreg
)) == REG
5811 && REGNO (SUBREG_REG (testreg
)) >= FIRST_PSEUDO_REGISTER
5812 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (testreg
)),
5813 GET_MODE (testreg
)))
5814 REG_CHANGES_MODE (REGNO (SUBREG_REG (testreg
))) = 1;
5817 /* Modifying a single register in an alternate mode
5818 does not use any of the old value. But these other
5819 ways of storing in a register do use the old value. */
5820 if (GET_CODE (testreg
) == SUBREG
5821 && !(REG_SIZE (SUBREG_REG (testreg
)) > REG_SIZE (testreg
)))
5826 testreg
= XEXP (testreg
, 0);
5829 /* If this is a store into a register or group of registers,
5830 recursively scan the value being stored. */
5832 if ((GET_CODE (testreg
) == PARALLEL
5833 && GET_MODE (testreg
) == BLKmode
)
5834 || (GET_CODE (testreg
) == REG
5835 && (regno
= REGNO (testreg
),
5836 ! (regno
== FRAME_POINTER_REGNUM
5837 && (! reload_completed
|| frame_pointer_needed
)))
5838 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
5839 && ! (regno
== HARD_FRAME_POINTER_REGNUM
5840 && (! reload_completed
|| frame_pointer_needed
))
5842 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5843 && ! (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
5848 mark_used_regs (pbi
, SET_DEST (x
), cond
, insn
);
5849 mark_used_regs (pbi
, SET_SRC (x
), cond
, insn
);
5856 case UNSPEC_VOLATILE
:
5860 /* Traditional and volatile asm instructions must be considered to use
5861 and clobber all hard registers, all pseudo-registers and all of
5862 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
5864 Consider for instance a volatile asm that changes the fpu rounding
5865 mode. An insn should not be moved across this even if it only uses
5866 pseudo-regs because it might give an incorrectly rounded result.
5868 ?!? Unfortunately, marking all hard registers as live causes massive
5869 problems for the register allocator and marking all pseudos as live
5870 creates mountains of uninitialized variable warnings.
5872 So for now, just clear the memory set list and mark any regs
5873 we can find in ASM_OPERANDS as used. */
5874 if (code
!= ASM_OPERANDS
|| MEM_VOLATILE_P (x
))
5876 free_EXPR_LIST_list (&pbi
->mem_set_list
);
5877 pbi
->mem_set_list_len
= 0;
5880 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
5881 We can not just fall through here since then we would be confused
5882 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
5883 traditional asms unlike their normal usage. */
5884 if (code
== ASM_OPERANDS
)
5888 for (j
= 0; j
< ASM_OPERANDS_INPUT_LENGTH (x
); j
++)
5889 mark_used_regs (pbi
, ASM_OPERANDS_INPUT (x
, j
), cond
, insn
);
5895 if (cond
!= NULL_RTX
)
5898 mark_used_regs (pbi
, COND_EXEC_TEST (x
), NULL_RTX
, insn
);
5900 cond
= COND_EXEC_TEST (x
);
5901 x
= COND_EXEC_CODE (x
);
5905 /* We _do_not_ want to scan operands of phi nodes. Operands of
5906 a phi function are evaluated only when control reaches this
5907 block along a particular edge. Therefore, regs that appear
5908 as arguments to phi should not be added to the global live at
5916 /* Recursively scan the operands of this expression. */
5919 register const char *fmt
= GET_RTX_FORMAT (code
);
5922 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5926 /* Tail recursive case: save a function call level. */
5932 mark_used_regs (pbi
, XEXP (x
, i
), cond
, insn
);
5934 else if (fmt
[i
] == 'E')
5937 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
5938 mark_used_regs (pbi
, XVECEXP (x
, i
, j
), cond
, insn
);
5947 try_pre_increment_1 (pbi
, insn
)
5948 struct propagate_block_info
*pbi
;
5951 /* Find the next use of this reg. If in same basic block,
5952 make it do pre-increment or pre-decrement if appropriate. */
5953 rtx x
= single_set (insn
);
5954 HOST_WIDE_INT amount
= ((GET_CODE (SET_SRC (x
)) == PLUS
? 1 : -1)
5955 * INTVAL (XEXP (SET_SRC (x
), 1)));
5956 int regno
= REGNO (SET_DEST (x
));
5957 rtx y
= pbi
->reg_next_use
[regno
];
5959 && SET_DEST (x
) != stack_pointer_rtx
5960 && BLOCK_NUM (y
) == BLOCK_NUM (insn
)
5961 /* Don't do this if the reg dies, or gets set in y; a standard addressing
5962 mode would be better. */
5963 && ! dead_or_set_p (y
, SET_DEST (x
))
5964 && try_pre_increment (y
, SET_DEST (x
), amount
))
5966 /* We have found a suitable auto-increment and already changed
5967 insn Y to do it. So flush this increment instruction. */
5968 propagate_block_delete_insn (pbi
->bb
, insn
);
5970 /* Count a reference to this reg for the increment insn we are
5971 deleting. When a reg is incremented, spilling it is worse,
5972 so we want to make that less likely. */
5973 if (regno
>= FIRST_PSEUDO_REGISTER
)
5975 REG_N_REFS (regno
) += (optimize_size
? 1
5976 : pbi
->bb
->loop_depth
+ 1);
5977 REG_N_SETS (regno
)++;
5980 /* Flush any remembered memories depending on the value of
5981 the incremented register. */
5982 invalidate_mems_from_set (pbi
, SET_DEST (x
));
5989 /* Try to change INSN so that it does pre-increment or pre-decrement
5990 addressing on register REG in order to add AMOUNT to REG.
5991 AMOUNT is negative for pre-decrement.
5992 Returns 1 if the change could be made.
5993 This checks all about the validity of the result of modifying INSN. */
5996 try_pre_increment (insn
, reg
, amount
)
5998 HOST_WIDE_INT amount
;
6002 /* Nonzero if we can try to make a pre-increment or pre-decrement.
6003 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
6005 /* Nonzero if we can try to make a post-increment or post-decrement.
6006 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
6007 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
6008 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
6011 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
6014 /* From the sign of increment, see which possibilities are conceivable
6015 on this target machine. */
6016 if (HAVE_PRE_INCREMENT
&& amount
> 0)
6018 if (HAVE_POST_INCREMENT
&& amount
> 0)
6021 if (HAVE_PRE_DECREMENT
&& amount
< 0)
6023 if (HAVE_POST_DECREMENT
&& amount
< 0)
6026 if (! (pre_ok
|| post_ok
))
6029 /* It is not safe to add a side effect to a jump insn
6030 because if the incremented register is spilled and must be reloaded
6031 there would be no way to store the incremented value back in memory. */
6033 if (GET_CODE (insn
) == JUMP_INSN
)
6038 use
= find_use_as_address (PATTERN (insn
), reg
, 0);
6039 if (post_ok
&& (use
== 0 || use
== (rtx
) 1))
6041 use
= find_use_as_address (PATTERN (insn
), reg
, -amount
);
6045 if (use
== 0 || use
== (rtx
) 1)
6048 if (GET_MODE_SIZE (GET_MODE (use
)) != (amount
> 0 ? amount
: - amount
))
6051 /* See if this combination of instruction and addressing mode exists. */
6052 if (! validate_change (insn
, &XEXP (use
, 0),
6053 gen_rtx_fmt_e (amount
> 0
6054 ? (do_post
? POST_INC
: PRE_INC
)
6055 : (do_post
? POST_DEC
: PRE_DEC
),
6059 /* Record that this insn now has an implicit side effect on X. */
6060 REG_NOTES (insn
) = alloc_EXPR_LIST (REG_INC
, reg
, REG_NOTES (insn
));
6064 #endif /* AUTO_INC_DEC */
6066 /* Find the place in the rtx X where REG is used as a memory address.
6067 Return the MEM rtx that so uses it.
6068 If PLUSCONST is nonzero, search instead for a memory address equivalent to
6069 (plus REG (const_int PLUSCONST)).
6071 If such an address does not appear, return 0.
6072 If REG appears more than once, or is used other than in such an address,
6076 find_use_as_address (x
, reg
, plusconst
)
6079 HOST_WIDE_INT plusconst
;
6081 enum rtx_code code
= GET_CODE (x
);
6082 const char *fmt
= GET_RTX_FORMAT (code
);
6084 register rtx value
= 0;
6087 if (code
== MEM
&& XEXP (x
, 0) == reg
&& plusconst
== 0)
6090 if (code
== MEM
&& GET_CODE (XEXP (x
, 0)) == PLUS
6091 && XEXP (XEXP (x
, 0), 0) == reg
6092 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
6093 && INTVAL (XEXP (XEXP (x
, 0), 1)) == plusconst
)
6096 if (code
== SIGN_EXTRACT
|| code
== ZERO_EXTRACT
)
6098 /* If REG occurs inside a MEM used in a bit-field reference,
6099 that is unacceptable. */
6100 if (find_use_as_address (XEXP (x
, 0), reg
, 0) != 0)
6101 return (rtx
) (HOST_WIDE_INT
) 1;
6105 return (rtx
) (HOST_WIDE_INT
) 1;
6107 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
6111 tem
= find_use_as_address (XEXP (x
, i
), reg
, plusconst
);
6115 return (rtx
) (HOST_WIDE_INT
) 1;
6117 else if (fmt
[i
] == 'E')
6120 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
6122 tem
= find_use_as_address (XVECEXP (x
, i
, j
), reg
, plusconst
);
6126 return (rtx
) (HOST_WIDE_INT
) 1;
6134 /* Write information about registers and basic blocks into FILE.
6135 This is part of making a debugging dump. */
6138 dump_regset (r
, outf
)
6145 fputs (" (nil)", outf
);
6149 EXECUTE_IF_SET_IN_REG_SET (r
, 0, i
,
6151 fprintf (outf
, " %d", i
);
6152 if (i
< FIRST_PSEUDO_REGISTER
)
6153 fprintf (outf
, " [%s]",
6162 dump_regset (r
, stderr
);
6163 putc ('\n', stderr
);
6167 dump_flow_info (file
)
6171 static const char * const reg_class_names
[] = REG_CLASS_NAMES
;
6173 fprintf (file
, "%d registers.\n", max_regno
);
6174 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_regno
; i
++)
6177 enum reg_class
class, altclass
;
6178 fprintf (file
, "\nRegister %d used %d times across %d insns",
6179 i
, REG_N_REFS (i
), REG_LIVE_LENGTH (i
));
6180 if (REG_BASIC_BLOCK (i
) >= 0)
6181 fprintf (file
, " in block %d", REG_BASIC_BLOCK (i
));
6183 fprintf (file
, "; set %d time%s", REG_N_SETS (i
),
6184 (REG_N_SETS (i
) == 1) ? "" : "s");
6185 if (REG_USERVAR_P (regno_reg_rtx
[i
]))
6186 fprintf (file
, "; user var");
6187 if (REG_N_DEATHS (i
) != 1)
6188 fprintf (file
, "; dies in %d places", REG_N_DEATHS (i
));
6189 if (REG_N_CALLS_CROSSED (i
) == 1)
6190 fprintf (file
, "; crosses 1 call");
6191 else if (REG_N_CALLS_CROSSED (i
))
6192 fprintf (file
, "; crosses %d calls", REG_N_CALLS_CROSSED (i
));
6193 if (PSEUDO_REGNO_BYTES (i
) != UNITS_PER_WORD
)
6194 fprintf (file
, "; %d bytes", PSEUDO_REGNO_BYTES (i
));
6195 class = reg_preferred_class (i
);
6196 altclass
= reg_alternate_class (i
);
6197 if (class != GENERAL_REGS
|| altclass
!= ALL_REGS
)
6199 if (altclass
== ALL_REGS
|| class == ALL_REGS
)
6200 fprintf (file
, "; pref %s", reg_class_names
[(int) class]);
6201 else if (altclass
== NO_REGS
)
6202 fprintf (file
, "; %s or none", reg_class_names
[(int) class]);
6204 fprintf (file
, "; pref %s, else %s",
6205 reg_class_names
[(int) class],
6206 reg_class_names
[(int) altclass
]);
6208 if (REG_POINTER (regno_reg_rtx
[i
]))
6209 fprintf (file
, "; pointer");
6210 fprintf (file
, ".\n");
6213 fprintf (file
, "\n%d basic blocks, %d edges.\n", n_basic_blocks
, n_edges
);
6214 for (i
= 0; i
< n_basic_blocks
; i
++)
6216 register basic_block bb
= BASIC_BLOCK (i
);
6219 fprintf (file
, "\nBasic block %d: first insn %d, last %d, loop_depth %d, count %d.\n",
6220 i
, INSN_UID (bb
->head
), INSN_UID (bb
->end
), bb
->loop_depth
, bb
->count
);
6222 fprintf (file
, "Predecessors: ");
6223 for (e
= bb
->pred
; e
; e
= e
->pred_next
)
6224 dump_edge_info (file
, e
, 0);
6226 fprintf (file
, "\nSuccessors: ");
6227 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
6228 dump_edge_info (file
, e
, 1);
6230 fprintf (file
, "\nRegisters live at start:");
6231 dump_regset (bb
->global_live_at_start
, file
);
6233 fprintf (file
, "\nRegisters live at end:");
6234 dump_regset (bb
->global_live_at_end
, file
);
6245 dump_flow_info (stderr
);
6249 dump_edge_info (file
, e
, do_succ
)
6254 basic_block side
= (do_succ
? e
->dest
: e
->src
);
6256 if (side
== ENTRY_BLOCK_PTR
)
6257 fputs (" ENTRY", file
);
6258 else if (side
== EXIT_BLOCK_PTR
)
6259 fputs (" EXIT", file
);
6261 fprintf (file
, " %d", side
->index
);
6264 fprintf (file
, " count:%d", e
->count
);
6268 static const char * const bitnames
[] = {
6269 "fallthru", "crit", "ab", "abcall", "eh", "fake"
6272 int i
, flags
= e
->flags
;
6276 for (i
= 0; flags
; i
++)
6277 if (flags
& (1 << i
))
6283 if (i
< (int) ARRAY_SIZE (bitnames
))
6284 fputs (bitnames
[i
], file
);
6286 fprintf (file
, "%d", i
);
6293 /* Print out one basic block with live information at start and end. */
6304 fprintf (outf
, ";; Basic block %d, loop depth %d, count %d",
6305 bb
->index
, bb
->loop_depth
, bb
->count
);
6308 fputs (";; Predecessors: ", outf
);
6309 for (e
= bb
->pred
; e
; e
= e
->pred_next
)
6310 dump_edge_info (outf
, e
, 0);
6313 fputs (";; Registers live at start:", outf
);
6314 dump_regset (bb
->global_live_at_start
, outf
);
6317 for (insn
= bb
->head
, last
= NEXT_INSN (bb
->end
);
6319 insn
= NEXT_INSN (insn
))
6320 print_rtl_single (outf
, insn
);
6322 fputs (";; Registers live at end:", outf
);
6323 dump_regset (bb
->global_live_at_end
, outf
);
6326 fputs (";; Successors: ", outf
);
6327 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
6328 dump_edge_info (outf
, e
, 1);
6336 dump_bb (bb
, stderr
);
6343 dump_bb (BASIC_BLOCK (n
), stderr
);
6346 /* Like print_rtl, but also print out live information for the start of each
6350 print_rtl_with_bb (outf
, rtx_first
)
6354 register rtx tmp_rtx
;
6357 fprintf (outf
, "(nil)\n");
6361 enum bb_state
{ NOT_IN_BB
, IN_ONE_BB
, IN_MULTIPLE_BB
};
6362 int max_uid
= get_max_uid ();
6363 basic_block
*start
= (basic_block
*)
6364 xcalloc (max_uid
, sizeof (basic_block
));
6365 basic_block
*end
= (basic_block
*)
6366 xcalloc (max_uid
, sizeof (basic_block
));
6367 enum bb_state
*in_bb_p
= (enum bb_state
*)
6368 xcalloc (max_uid
, sizeof (enum bb_state
));
6370 for (i
= n_basic_blocks
- 1; i
>= 0; i
--)
6372 basic_block bb
= BASIC_BLOCK (i
);
6375 start
[INSN_UID (bb
->head
)] = bb
;
6376 end
[INSN_UID (bb
->end
)] = bb
;
6377 for (x
= bb
->head
; x
!= NULL_RTX
; x
= NEXT_INSN (x
))
6379 enum bb_state state
= IN_MULTIPLE_BB
;
6380 if (in_bb_p
[INSN_UID (x
)] == NOT_IN_BB
)
6382 in_bb_p
[INSN_UID (x
)] = state
;
6389 for (tmp_rtx
= rtx_first
; NULL
!= tmp_rtx
; tmp_rtx
= NEXT_INSN (tmp_rtx
))
6394 if ((bb
= start
[INSN_UID (tmp_rtx
)]) != NULL
)
6396 fprintf (outf
, ";; Start of basic block %d, registers live:",
6398 dump_regset (bb
->global_live_at_start
, outf
);
6402 if (in_bb_p
[INSN_UID (tmp_rtx
)] == NOT_IN_BB
6403 && GET_CODE (tmp_rtx
) != NOTE
6404 && GET_CODE (tmp_rtx
) != BARRIER
)
6405 fprintf (outf
, ";; Insn is not within a basic block\n");
6406 else if (in_bb_p
[INSN_UID (tmp_rtx
)] == IN_MULTIPLE_BB
)
6407 fprintf (outf
, ";; Insn is in multiple basic blocks\n");
6409 did_output
= print_rtl_single (outf
, tmp_rtx
);
6411 if ((bb
= end
[INSN_UID (tmp_rtx
)]) != NULL
)
6413 fprintf (outf
, ";; End of basic block %d, registers live:\n",
6415 dump_regset (bb
->global_live_at_end
, outf
);
6428 if (current_function_epilogue_delay_list
!= 0)
6430 fprintf (outf
, "\n;; Insns in epilogue delay list:\n\n");
6431 for (tmp_rtx
= current_function_epilogue_delay_list
; tmp_rtx
!= 0;
6432 tmp_rtx
= XEXP (tmp_rtx
, 1))
6433 print_rtl_single (outf
, XEXP (tmp_rtx
, 0));
6437 /* Dump the rtl into the current debugging dump file, then abort. */
6439 print_rtl_and_abort ()
6443 print_rtl_with_bb (rtl_dump_file
, get_insns ());
6444 fclose (rtl_dump_file
);
6449 /* Recompute register set/reference counts immediately prior to register
6452 This avoids problems with set/reference counts changing to/from values
6453 which have special meanings to the register allocators.
6455 Additionally, the reference counts are the primary component used by the
6456 register allocators to prioritize pseudos for allocation to hard regs.
6457 More accurate reference counts generally lead to better register allocation.
6459 F is the first insn to be scanned.
6461 LOOP_STEP denotes how much loop_depth should be incremented per
6462 loop nesting level in order to increase the ref count more for
6463 references in a loop.
6465 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
6466 possibly other information which is used by the register allocators. */
6469 recompute_reg_usage (f
, loop_step
)
6470 rtx f ATTRIBUTE_UNUSED
;
6471 int loop_step ATTRIBUTE_UNUSED
;
6473 allocate_reg_life_data ();
6474 update_life_info (NULL
, UPDATE_LIFE_LOCAL
, PROP_REG_INFO
);
6477 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
6478 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
6479 of the number of registers that died. */
6482 count_or_remove_death_notes (blocks
, kill
)
6488 for (i
= n_basic_blocks
- 1; i
>= 0; --i
)
6493 if (blocks
&& ! TEST_BIT (blocks
, i
))
6496 bb
= BASIC_BLOCK (i
);
6498 for (insn
= bb
->head
;; insn
= NEXT_INSN (insn
))
6502 rtx
*pprev
= ®_NOTES (insn
);
6507 switch (REG_NOTE_KIND (link
))
6510 if (GET_CODE (XEXP (link
, 0)) == REG
)
6512 rtx reg
= XEXP (link
, 0);
6515 if (REGNO (reg
) >= FIRST_PSEUDO_REGISTER
)
6518 n
= HARD_REGNO_NREGS (REGNO (reg
), GET_MODE (reg
));
6526 rtx next
= XEXP (link
, 1);
6527 free_EXPR_LIST_node (link
);
6528 *pprev
= link
= next
;
6534 pprev
= &XEXP (link
, 1);
6541 if (insn
== bb
->end
)
6550 /* Update insns block within BB. */
6553 update_bb_for_insn (bb
)
6558 if (! basic_block_for_insn
)
6561 for (insn
= bb
->head
; ; insn
= NEXT_INSN (insn
))
6563 set_block_for_insn (insn
, bb
);
6565 if (insn
== bb
->end
)
6571 /* Record INSN's block as BB. */
6574 set_block_for_insn (insn
, bb
)
6578 size_t uid
= INSN_UID (insn
);
6579 if (uid
>= basic_block_for_insn
->num_elements
)
6583 /* Add one-eighth the size so we don't keep calling xrealloc. */
6584 new_size
= uid
+ (uid
+ 7) / 8;
6586 VARRAY_GROW (basic_block_for_insn
, new_size
);
6588 VARRAY_BB (basic_block_for_insn
, uid
) = bb
;
6591 /* Record INSN's block number as BB. */
6592 /* ??? This has got to go. */
6595 set_block_num (insn
, bb
)
6599 set_block_for_insn (insn
, BASIC_BLOCK (bb
));
6602 /* Verify the CFG consistency. This function check some CFG invariants and
6603 aborts when something is wrong. Hope that this function will help to
6604 convert many optimization passes to preserve CFG consistent.
6606 Currently it does following checks:
6608 - test head/end pointers
6609 - overlapping of basic blocks
6610 - edge list corectness
6611 - headers of basic blocks (the NOTE_INSN_BASIC_BLOCK note)
6612 - tails of basic blocks (ensure that boundary is necesary)
6613 - scans body of the basic block for JUMP_INSN, CODE_LABEL
6614 and NOTE_INSN_BASIC_BLOCK
6615 - check that all insns are in the basic blocks
6616 (except the switch handling code, barriers and notes)
6617 - check that all returns are followed by barriers
6619 In future it can be extended check a lot of other stuff as well
6620 (reachability of basic blocks, life information, etc. etc.). */
6625 const int max_uid
= get_max_uid ();
6626 const rtx rtx_first
= get_insns ();
6627 rtx last_head
= get_last_insn ();
6628 basic_block
*bb_info
;
6630 int i
, last_bb_num_seen
, num_bb_notes
, err
= 0;
6632 bb_info
= (basic_block
*) xcalloc (max_uid
, sizeof (basic_block
));
6634 for (i
= n_basic_blocks
- 1; i
>= 0; i
--)
6636 basic_block bb
= BASIC_BLOCK (i
);
6637 rtx head
= bb
->head
;
6640 /* Verify the end of the basic block is in the INSN chain. */
6641 for (x
= last_head
; x
!= NULL_RTX
; x
= PREV_INSN (x
))
6646 error ("End insn %d for block %d not found in the insn stream.",
6647 INSN_UID (end
), bb
->index
);
6651 /* Work backwards from the end to the head of the basic block
6652 to verify the head is in the RTL chain. */
6653 for (; x
!= NULL_RTX
; x
= PREV_INSN (x
))
6655 /* While walking over the insn chain, verify insns appear
6656 in only one basic block and initialize the BB_INFO array
6657 used by other passes. */
6658 if (bb_info
[INSN_UID (x
)] != NULL
)
6660 error ("Insn %d is in multiple basic blocks (%d and %d)",
6661 INSN_UID (x
), bb
->index
, bb_info
[INSN_UID (x
)]->index
);
6664 bb_info
[INSN_UID (x
)] = bb
;
6671 error ("Head insn %d for block %d not found in the insn stream.",
6672 INSN_UID (head
), bb
->index
);
6679 /* Now check the basic blocks (boundaries etc.) */
6680 for (i
= n_basic_blocks
- 1; i
>= 0; i
--)
6682 basic_block bb
= BASIC_BLOCK (i
);
6683 /* Check corectness of edge lists */
6692 "verify_flow_info: Basic block %d succ edge is corrupted\n",
6694 fprintf (stderr
, "Predecessor: ");
6695 dump_edge_info (stderr
, e
, 0);
6696 fprintf (stderr
, "\nSuccessor: ");
6697 dump_edge_info (stderr
, e
, 1);
6701 if (e
->dest
!= EXIT_BLOCK_PTR
)
6703 edge e2
= e
->dest
->pred
;
6704 while (e2
&& e2
!= e
)
6708 error ("Basic block %i edge lists are corrupted", bb
->index
);
6720 error ("Basic block %d pred edge is corrupted", bb
->index
);
6721 fputs ("Predecessor: ", stderr
);
6722 dump_edge_info (stderr
, e
, 0);
6723 fputs ("\nSuccessor: ", stderr
);
6724 dump_edge_info (stderr
, e
, 1);
6725 fputc ('\n', stderr
);
6728 if (e
->src
!= ENTRY_BLOCK_PTR
)
6730 edge e2
= e
->src
->succ
;
6731 while (e2
&& e2
!= e
)
6735 error ("Basic block %i edge lists are corrupted", bb
->index
);
6742 /* OK pointers are correct. Now check the header of basic
6743 block. It ought to contain optional CODE_LABEL followed
6744 by NOTE_BASIC_BLOCK. */
6746 if (GET_CODE (x
) == CODE_LABEL
)
6750 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d",
6756 if (!NOTE_INSN_BASIC_BLOCK_P (x
) || NOTE_BASIC_BLOCK (x
) != bb
)
6758 error ("NOTE_INSN_BASIC_BLOCK is missing for block %d\n",
6765 /* Do checks for empty blocks here */
6772 if (NOTE_INSN_BASIC_BLOCK_P (x
))
6774 error ("NOTE_INSN_BASIC_BLOCK %d in the middle of basic block %d",
6775 INSN_UID (x
), bb
->index
);
6782 if (GET_CODE (x
) == JUMP_INSN
6783 || GET_CODE (x
) == CODE_LABEL
6784 || GET_CODE (x
) == BARRIER
)
6786 error ("In basic block %d:", bb
->index
);
6787 fatal_insn ("Flow control insn inside a basic block", x
);
6795 last_bb_num_seen
= -1;
6800 if (NOTE_INSN_BASIC_BLOCK_P (x
))
6802 basic_block bb
= NOTE_BASIC_BLOCK (x
);
6804 if (bb
->index
!= last_bb_num_seen
+ 1)
6805 /* Basic blocks not numbered consecutively. */
6808 last_bb_num_seen
= bb
->index
;
6811 if (!bb_info
[INSN_UID (x
)])
6813 switch (GET_CODE (x
))
6820 /* An addr_vec is placed outside any block block. */
6822 && GET_CODE (NEXT_INSN (x
)) == JUMP_INSN
6823 && (GET_CODE (PATTERN (NEXT_INSN (x
))) == ADDR_DIFF_VEC
6824 || GET_CODE (PATTERN (NEXT_INSN (x
))) == ADDR_VEC
))
6829 /* But in any case, non-deletable labels can appear anywhere. */
6833 fatal_insn ("Insn outside basic block", x
);
6838 && GET_CODE (x
) == JUMP_INSN
6839 && returnjump_p (x
) && ! condjump_p (x
)
6840 && ! (NEXT_INSN (x
) && GET_CODE (NEXT_INSN (x
)) == BARRIER
))
6841 fatal_insn ("Return not followed by barrier", x
);
6846 if (num_bb_notes
!= n_basic_blocks
)
6848 ("number of bb notes in insn chain (%d) != n_basic_blocks (%d)",
6849 num_bb_notes
, n_basic_blocks
);
6858 /* Functions to access an edge list with a vector representation.
6859 Enough data is kept such that given an index number, the
6860 pred and succ that edge represents can be determined, or
6861 given a pred and a succ, its index number can be returned.
6862 This allows algorithms which consume a lot of memory to
6863 represent the normally full matrix of edge (pred,succ) with a
6864 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
6865 wasted space in the client code due to sparse flow graphs. */
6867 /* This functions initializes the edge list. Basically the entire
6868 flowgraph is processed, and all edges are assigned a number,
6869 and the data structure is filled in. */
6874 struct edge_list
*elist
;
6880 block_count
= n_basic_blocks
+ 2; /* Include the entry and exit blocks. */
6884 /* Determine the number of edges in the flow graph by counting successor
6885 edges on each basic block. */
6886 for (x
= 0; x
< n_basic_blocks
; x
++)
6888 basic_block bb
= BASIC_BLOCK (x
);
6890 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
6893 /* Don't forget successors of the entry block. */
6894 for (e
= ENTRY_BLOCK_PTR
->succ
; e
; e
= e
->succ_next
)
6897 elist
= (struct edge_list
*) xmalloc (sizeof (struct edge_list
));
6898 elist
->num_blocks
= block_count
;
6899 elist
->num_edges
= num_edges
;
6900 elist
->index_to_edge
= (edge
*) xmalloc (sizeof (edge
) * num_edges
);
6904 /* Follow successors of the entry block, and register these edges. */
6905 for (e
= ENTRY_BLOCK_PTR
->succ
; e
; e
= e
->succ_next
)
6907 elist
->index_to_edge
[num_edges
] = e
;
6911 for (x
= 0; x
< n_basic_blocks
; x
++)
6913 basic_block bb
= BASIC_BLOCK (x
);
6915 /* Follow all successors of blocks, and register these edges. */
6916 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
6918 elist
->index_to_edge
[num_edges
] = e
;
6925 /* This function free's memory associated with an edge list. */
6928 free_edge_list (elist
)
6929 struct edge_list
*elist
;
6933 free (elist
->index_to_edge
);
6938 /* This function provides debug output showing an edge list. */
6941 print_edge_list (f
, elist
)
6943 struct edge_list
*elist
;
6946 fprintf (f
, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
6947 elist
->num_blocks
- 2, elist
->num_edges
);
6949 for (x
= 0; x
< elist
->num_edges
; x
++)
6951 fprintf (f
, " %-4d - edge(", x
);
6952 if (INDEX_EDGE_PRED_BB (elist
, x
) == ENTRY_BLOCK_PTR
)
6953 fprintf (f
, "entry,");
6955 fprintf (f
, "%d,", INDEX_EDGE_PRED_BB (elist
, x
)->index
);
6957 if (INDEX_EDGE_SUCC_BB (elist
, x
) == EXIT_BLOCK_PTR
)
6958 fprintf (f
, "exit)\n");
6960 fprintf (f
, "%d)\n", INDEX_EDGE_SUCC_BB (elist
, x
)->index
);
6964 /* This function provides an internal consistency check of an edge list,
6965 verifying that all edges are present, and that there are no
6969 verify_edge_list (f
, elist
)
6971 struct edge_list
*elist
;
6973 int x
, pred
, succ
, index
;
6976 for (x
= 0; x
< n_basic_blocks
; x
++)
6978 basic_block bb
= BASIC_BLOCK (x
);
6980 for (e
= bb
->succ
; e
; e
= e
->succ_next
)
6982 pred
= e
->src
->index
;
6983 succ
= e
->dest
->index
;
6984 index
= EDGE_INDEX (elist
, e
->src
, e
->dest
);
6985 if (index
== EDGE_INDEX_NO_EDGE
)
6987 fprintf (f
, "*p* No index for edge from %d to %d\n", pred
, succ
);
6990 if (INDEX_EDGE_PRED_BB (elist
, index
)->index
!= pred
)
6991 fprintf (f
, "*p* Pred for index %d should be %d not %d\n",
6992 index
, pred
, INDEX_EDGE_PRED_BB (elist
, index
)->index
);
6993 if (INDEX_EDGE_SUCC_BB (elist
, index
)->index
!= succ
)
6994 fprintf (f
, "*p* Succ for index %d should be %d not %d\n",
6995 index
, succ
, INDEX_EDGE_SUCC_BB (elist
, index
)->index
);
6998 for (e
= ENTRY_BLOCK_PTR
->succ
; e
; e
= e
->succ_next
)
7000 pred
= e
->src
->index
;
7001 succ
= e
->dest
->index
;
7002 index
= EDGE_INDEX (elist
, e
->src
, e
->dest
);
7003 if (index
== EDGE_INDEX_NO_EDGE
)
7005 fprintf (f
, "*p* No index for edge from %d to %d\n", pred
, succ
);
7008 if (INDEX_EDGE_PRED_BB (elist
, index
)->index
!= pred
)
7009 fprintf (f
, "*p* Pred for index %d should be %d not %d\n",
7010 index
, pred
, INDEX_EDGE_PRED_BB (elist
, index
)->index
);
7011 if (INDEX_EDGE_SUCC_BB (elist
, index
)->index
!= succ
)
7012 fprintf (f
, "*p* Succ for index %d should be %d not %d\n",
7013 index
, succ
, INDEX_EDGE_SUCC_BB (elist
, index
)->index
);
7015 /* We've verified that all the edges are in the list, no lets make sure
7016 there are no spurious edges in the list. */
7018 for (pred
= 0; pred
< n_basic_blocks
; pred
++)
7019 for (succ
= 0; succ
< n_basic_blocks
; succ
++)
7021 basic_block p
= BASIC_BLOCK (pred
);
7022 basic_block s
= BASIC_BLOCK (succ
);
7026 for (e
= p
->succ
; e
; e
= e
->succ_next
)
7032 for (e
= s
->pred
; e
; e
= e
->pred_next
)
7038 if (EDGE_INDEX (elist
, BASIC_BLOCK (pred
), BASIC_BLOCK (succ
))
7039 == EDGE_INDEX_NO_EDGE
&& found_edge
!= 0)
7040 fprintf (f
, "*** Edge (%d, %d) appears to not have an index\n",
7042 if (EDGE_INDEX (elist
, BASIC_BLOCK (pred
), BASIC_BLOCK (succ
))
7043 != EDGE_INDEX_NO_EDGE
&& found_edge
== 0)
7044 fprintf (f
, "*** Edge (%d, %d) has index %d, but there is no edge\n",
7045 pred
, succ
, EDGE_INDEX (elist
, BASIC_BLOCK (pred
),
7046 BASIC_BLOCK (succ
)));
7048 for (succ
= 0; succ
< n_basic_blocks
; succ
++)
7050 basic_block p
= ENTRY_BLOCK_PTR
;
7051 basic_block s
= BASIC_BLOCK (succ
);
7055 for (e
= p
->succ
; e
; e
= e
->succ_next
)
7061 for (e
= s
->pred
; e
; e
= e
->pred_next
)
7067 if (EDGE_INDEX (elist
, ENTRY_BLOCK_PTR
, BASIC_BLOCK (succ
))
7068 == EDGE_INDEX_NO_EDGE
&& found_edge
!= 0)
7069 fprintf (f
, "*** Edge (entry, %d) appears to not have an index\n",
7071 if (EDGE_INDEX (elist
, ENTRY_BLOCK_PTR
, BASIC_BLOCK (succ
))
7072 != EDGE_INDEX_NO_EDGE
&& found_edge
== 0)
7073 fprintf (f
, "*** Edge (entry, %d) has index %d, but no edge exists\n",
7074 succ
, EDGE_INDEX (elist
, ENTRY_BLOCK_PTR
,
7075 BASIC_BLOCK (succ
)));
7077 for (pred
= 0; pred
< n_basic_blocks
; pred
++)
7079 basic_block p
= BASIC_BLOCK (pred
);
7080 basic_block s
= EXIT_BLOCK_PTR
;
7084 for (e
= p
->succ
; e
; e
= e
->succ_next
)
7090 for (e
= s
->pred
; e
; e
= e
->pred_next
)
7096 if (EDGE_INDEX (elist
, BASIC_BLOCK (pred
), EXIT_BLOCK_PTR
)
7097 == EDGE_INDEX_NO_EDGE
&& found_edge
!= 0)
7098 fprintf (f
, "*** Edge (%d, exit) appears to not have an index\n",
7100 if (EDGE_INDEX (elist
, BASIC_BLOCK (pred
), EXIT_BLOCK_PTR
)
7101 != EDGE_INDEX_NO_EDGE
&& found_edge
== 0)
7102 fprintf (f
, "*** Edge (%d, exit) has index %d, but no edge exists\n",
7103 pred
, EDGE_INDEX (elist
, BASIC_BLOCK (pred
),
7108 /* This routine will determine what, if any, edge there is between
7109 a specified predecessor and successor. */
7112 find_edge_index (edge_list
, pred
, succ
)
7113 struct edge_list
*edge_list
;
7114 basic_block pred
, succ
;
7117 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
7119 if (INDEX_EDGE_PRED_BB (edge_list
, x
) == pred
7120 && INDEX_EDGE_SUCC_BB (edge_list
, x
) == succ
)
7123 return (EDGE_INDEX_NO_EDGE
);
7126 /* This function will remove an edge from the flow graph. */
7132 edge last_pred
= NULL
;
7133 edge last_succ
= NULL
;
7135 basic_block src
, dest
;
7138 for (tmp
= src
->succ
; tmp
&& tmp
!= e
; tmp
= tmp
->succ_next
)
7144 last_succ
->succ_next
= e
->succ_next
;
7146 src
->succ
= e
->succ_next
;
7148 for (tmp
= dest
->pred
; tmp
&& tmp
!= e
; tmp
= tmp
->pred_next
)
7154 last_pred
->pred_next
= e
->pred_next
;
7156 dest
->pred
= e
->pred_next
;
7162 /* This routine will remove any fake successor edges for a basic block.
7163 When the edge is removed, it is also removed from whatever predecessor
7167 remove_fake_successors (bb
)
7171 for (e
= bb
->succ
; e
;)
7175 if ((tmp
->flags
& EDGE_FAKE
) == EDGE_FAKE
)
7180 /* This routine will remove all fake edges from the flow graph. If
7181 we remove all fake successors, it will automatically remove all
7182 fake predecessors. */
7185 remove_fake_edges ()
7189 for (x
= 0; x
< n_basic_blocks
; x
++)
7190 remove_fake_successors (BASIC_BLOCK (x
));
7192 /* We've handled all successors except the entry block's. */
7193 remove_fake_successors (ENTRY_BLOCK_PTR
);
7196 /* This function will add a fake edge between any block which has no
7197 successors, and the exit block. Some data flow equations require these
7201 add_noreturn_fake_exit_edges ()
7205 for (x
= 0; x
< n_basic_blocks
; x
++)
7206 if (BASIC_BLOCK (x
)->succ
== NULL
)
7207 make_edge (NULL
, BASIC_BLOCK (x
), EXIT_BLOCK_PTR
, EDGE_FAKE
);
7210 /* This function adds a fake edge between any infinite loops to the
7211 exit block. Some optimizations require a path from each node to
7214 See also Morgan, Figure 3.10, pp. 82-83.
7216 The current implementation is ugly, not attempting to minimize the
7217 number of inserted fake edges. To reduce the number of fake edges
7218 to insert, add fake edges from _innermost_ loops containing only
7219 nodes not reachable from the exit block. */
7222 connect_infinite_loops_to_exit ()
7224 basic_block unvisited_block
;
7226 /* Perform depth-first search in the reverse graph to find nodes
7227 reachable from the exit block. */
7228 struct depth_first_search_dsS dfs_ds
;
7230 flow_dfs_compute_reverse_init (&dfs_ds
);
7231 flow_dfs_compute_reverse_add_bb (&dfs_ds
, EXIT_BLOCK_PTR
);
7233 /* Repeatedly add fake edges, updating the unreachable nodes. */
7236 unvisited_block
= flow_dfs_compute_reverse_execute (&dfs_ds
);
7237 if (!unvisited_block
)
7239 make_edge (NULL
, unvisited_block
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
7240 flow_dfs_compute_reverse_add_bb (&dfs_ds
, unvisited_block
);
7243 flow_dfs_compute_reverse_finish (&dfs_ds
);
7248 /* Redirect an edge's successor from one block to another. */
7251 redirect_edge_succ (e
, new_succ
)
7253 basic_block new_succ
;
7257 /* Disconnect the edge from the old successor block. */
7258 for (pe
= &e
->dest
->pred
; *pe
!= e
; pe
= &(*pe
)->pred_next
)
7260 *pe
= (*pe
)->pred_next
;
7262 /* Reconnect the edge to the new successor block. */
7263 e
->pred_next
= new_succ
->pred
;
7268 /* Redirect an edge's predecessor from one block to another. */
7271 redirect_edge_pred (e
, new_pred
)
7273 basic_block new_pred
;
7277 /* Disconnect the edge from the old predecessor block. */
7278 for (pe
= &e
->src
->succ
; *pe
!= e
; pe
= &(*pe
)->succ_next
)
7280 *pe
= (*pe
)->succ_next
;
7282 /* Reconnect the edge to the new predecessor block. */
7283 e
->succ_next
= new_pred
->succ
;
7288 /* Dump the list of basic blocks in the bitmap NODES. */
7291 flow_nodes_print (str
, nodes
, file
)
7293 const sbitmap nodes
;
7301 fprintf (file
, "%s { ", str
);
7302 EXECUTE_IF_SET_IN_SBITMAP (nodes
, 0, node
, {fprintf (file
, "%d ", node
);});
7303 fputs ("}\n", file
);
7307 /* Dump the list of edges in the array EDGE_LIST. */
7310 flow_edge_list_print (str
, edge_list
, num_edges
, file
)
7312 const edge
*edge_list
;
7321 fprintf (file
, "%s { ", str
);
7322 for (i
= 0; i
< num_edges
; i
++)
7323 fprintf (file
, "%d->%d ", edge_list
[i
]->src
->index
,
7324 edge_list
[i
]->dest
->index
);
7325 fputs ("}\n", file
);
7329 /* Dump loop related CFG information. */
7332 flow_loops_cfg_dump (loops
, file
)
7333 const struct loops
*loops
;
7338 if (! loops
->num
|| ! file
|| ! loops
->cfg
.dom
)
7341 for (i
= 0; i
< n_basic_blocks
; i
++)
7345 fprintf (file
, ";; %d succs { ", i
);
7346 for (succ
= BASIC_BLOCK (i
)->succ
; succ
; succ
= succ
->succ_next
)
7347 fprintf (file
, "%d ", succ
->dest
->index
);
7348 flow_nodes_print ("} dom", loops
->cfg
.dom
[i
], file
);
7351 /* Dump the DFS node order. */
7352 if (loops
->cfg
.dfs_order
)
7354 fputs (";; DFS order: ", file
);
7355 for (i
= 0; i
< n_basic_blocks
; i
++)
7356 fprintf (file
, "%d ", loops
->cfg
.dfs_order
[i
]);
7359 /* Dump the reverse completion node order. */
7360 if (loops
->cfg
.rc_order
)
7362 fputs (";; RC order: ", file
);
7363 for (i
= 0; i
< n_basic_blocks
; i
++)
7364 fprintf (file
, "%d ", loops
->cfg
.rc_order
[i
]);
7369 /* Return non-zero if the nodes of LOOP are a subset of OUTER. */
7372 flow_loop_nested_p (outer
, loop
)
7376 return sbitmap_a_subset_b_p (loop
->nodes
, outer
->nodes
);
7380 /* Dump the loop information specified by LOOP to the stream FILE
7381 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
7383 flow_loop_dump (loop
, file
, loop_dump_aux
, verbose
)
7384 const struct loop
*loop
;
7386 void (*loop_dump_aux
) PARAMS((const struct loop
*, FILE *, int));
7389 if (! loop
|| ! loop
->header
)
7392 fprintf (file
, ";;\n;; Loop %d (%d to %d):%s%s\n",
7393 loop
->num
, INSN_UID (loop
->first
->head
),
7394 INSN_UID (loop
->last
->end
),
7395 loop
->shared
? " shared" : "",
7396 loop
->invalid
? " invalid" : "");
7397 fprintf (file
, ";; header %d, latch %d, pre-header %d, first %d, last %d\n",
7398 loop
->header
->index
, loop
->latch
->index
,
7399 loop
->pre_header
? loop
->pre_header
->index
: -1,
7400 loop
->first
->index
, loop
->last
->index
);
7401 fprintf (file
, ";; depth %d, level %d, outer %ld\n",
7402 loop
->depth
, loop
->level
,
7403 (long) (loop
->outer
? loop
->outer
->num
: -1));
7405 if (loop
->pre_header_edges
)
7406 flow_edge_list_print (";; pre-header edges", loop
->pre_header_edges
,
7407 loop
->num_pre_header_edges
, file
);
7408 flow_edge_list_print (";; entry edges", loop
->entry_edges
,
7409 loop
->num_entries
, file
);
7410 fprintf (file
, ";; %d", loop
->num_nodes
);
7411 flow_nodes_print (" nodes", loop
->nodes
, file
);
7412 flow_edge_list_print (";; exit edges", loop
->exit_edges
,
7413 loop
->num_exits
, file
);
7414 if (loop
->exits_doms
)
7415 flow_nodes_print (";; exit doms", loop
->exits_doms
, file
);
7417 loop_dump_aux (loop
, file
, verbose
);
7421 /* Dump the loop information specified by LOOPS to the stream FILE,
7422 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
7424 flow_loops_dump (loops
, file
, loop_dump_aux
, verbose
)
7425 const struct loops
*loops
;
7427 void (*loop_dump_aux
) PARAMS((const struct loop
*, FILE *, int));
7433 num_loops
= loops
->num
;
7434 if (! num_loops
|| ! file
)
7437 fprintf (file
, ";; %d loops found, %d levels\n",
7438 num_loops
, loops
->levels
);
7440 for (i
= 0; i
< num_loops
; i
++)
7442 struct loop
*loop
= &loops
->array
[i
];
7444 flow_loop_dump (loop
, file
, loop_dump_aux
, verbose
);
7450 for (j
= 0; j
< i
; j
++)
7452 struct loop
*oloop
= &loops
->array
[j
];
7454 if (loop
->header
== oloop
->header
)
7459 smaller
= loop
->num_nodes
< oloop
->num_nodes
;
7461 /* If the union of LOOP and OLOOP is different than
7462 the larger of LOOP and OLOOP then LOOP and OLOOP
7463 must be disjoint. */
7464 disjoint
= ! flow_loop_nested_p (smaller
? loop
: oloop
,
7465 smaller
? oloop
: loop
);
7467 ";; loop header %d shared by loops %d, %d %s\n",
7468 loop
->header
->index
, i
, j
,
7469 disjoint
? "disjoint" : "nested");
7476 flow_loops_cfg_dump (loops
, file
);
7480 /* Free all the memory allocated for LOOPS. */
7483 flow_loops_free (loops
)
7484 struct loops
*loops
;
7493 /* Free the loop descriptors. */
7494 for (i
= 0; i
< loops
->num
; i
++)
7496 struct loop
*loop
= &loops
->array
[i
];
7498 if (loop
->pre_header_edges
)
7499 free (loop
->pre_header_edges
);
7501 sbitmap_free (loop
->nodes
);
7502 if (loop
->entry_edges
)
7503 free (loop
->entry_edges
);
7504 if (loop
->exit_edges
)
7505 free (loop
->exit_edges
);
7506 if (loop
->exits_doms
)
7507 sbitmap_free (loop
->exits_doms
);
7509 free (loops
->array
);
7510 loops
->array
= NULL
;
7513 sbitmap_vector_free (loops
->cfg
.dom
);
7514 if (loops
->cfg
.dfs_order
)
7515 free (loops
->cfg
.dfs_order
);
7517 if (loops
->shared_headers
)
7518 sbitmap_free (loops
->shared_headers
);
7523 /* Find the entry edges into the loop with header HEADER and nodes
7524 NODES and store in ENTRY_EDGES array. Return the number of entry
7525 edges from the loop. */
7528 flow_loop_entry_edges_find (header
, nodes
, entry_edges
)
7530 const sbitmap nodes
;
7536 *entry_edges
= NULL
;
7539 for (e
= header
->pred
; e
; e
= e
->pred_next
)
7541 basic_block src
= e
->src
;
7543 if (src
== ENTRY_BLOCK_PTR
|| ! TEST_BIT (nodes
, src
->index
))
7550 *entry_edges
= (edge
*) xmalloc (num_entries
* sizeof (edge
*));
7553 for (e
= header
->pred
; e
; e
= e
->pred_next
)
7555 basic_block src
= e
->src
;
7557 if (src
== ENTRY_BLOCK_PTR
|| ! TEST_BIT (nodes
, src
->index
))
7558 (*entry_edges
)[num_entries
++] = e
;
7565 /* Find the exit edges from the loop using the bitmap of loop nodes
7566 NODES and store in EXIT_EDGES array. Return the number of
7567 exit edges from the loop. */
7570 flow_loop_exit_edges_find (nodes
, exit_edges
)
7571 const sbitmap nodes
;
7580 /* Check all nodes within the loop to see if there are any
7581 successors not in the loop. Note that a node may have multiple
7582 exiting edges ????? A node can have one jumping edge and one fallthru
7583 edge so only one of these can exit the loop. */
7585 EXECUTE_IF_SET_IN_SBITMAP (nodes
, 0, node
, {
7586 for (e
= BASIC_BLOCK (node
)->succ
; e
; e
= e
->succ_next
)
7588 basic_block dest
= e
->dest
;
7590 if (dest
== EXIT_BLOCK_PTR
|| ! TEST_BIT (nodes
, dest
->index
))
7598 *exit_edges
= (edge
*) xmalloc (num_exits
* sizeof (edge
*));
7600 /* Store all exiting edges into an array. */
7602 EXECUTE_IF_SET_IN_SBITMAP (nodes
, 0, node
, {
7603 for (e
= BASIC_BLOCK (node
)->succ
; e
; e
= e
->succ_next
)
7605 basic_block dest
= e
->dest
;
7607 if (dest
== EXIT_BLOCK_PTR
|| ! TEST_BIT (nodes
, dest
->index
))
7608 (*exit_edges
)[num_exits
++] = e
;
7616 /* Find the nodes contained within the loop with header HEADER and
7617 latch LATCH and store in NODES. Return the number of nodes within
7621 flow_loop_nodes_find (header
, latch
, nodes
)
7630 stack
= (basic_block
*) xmalloc (n_basic_blocks
* sizeof (basic_block
));
7633 /* Start with only the loop header in the set of loop nodes. */
7634 sbitmap_zero (nodes
);
7635 SET_BIT (nodes
, header
->index
);
7637 header
->loop_depth
++;
7639 /* Push the loop latch on to the stack. */
7640 if (! TEST_BIT (nodes
, latch
->index
))
7642 SET_BIT (nodes
, latch
->index
);
7643 latch
->loop_depth
++;
7645 stack
[sp
++] = latch
;
7654 for (e
= node
->pred
; e
; e
= e
->pred_next
)
7656 basic_block ancestor
= e
->src
;
7658 /* If each ancestor not marked as part of loop, add to set of
7659 loop nodes and push on to stack. */
7660 if (ancestor
!= ENTRY_BLOCK_PTR
7661 && ! TEST_BIT (nodes
, ancestor
->index
))
7663 SET_BIT (nodes
, ancestor
->index
);
7664 ancestor
->loop_depth
++;
7666 stack
[sp
++] = ancestor
;
7674 /* Compute the depth first search order and store in the array
7675 DFS_ORDER if non-zero, marking the nodes visited in VISITED. If
7676 RC_ORDER is non-zero, return the reverse completion number for each
7677 node. Returns the number of nodes visited. A depth first search
7678 tries to get as far away from the starting point as quickly as
7682 flow_depth_first_order_compute (dfs_order
, rc_order
)
7689 int rcnum
= n_basic_blocks
- 1;
7692 /* Allocate stack for back-tracking up CFG. */
7693 stack
= (edge
*) xmalloc ((n_basic_blocks
+ 1) * sizeof (edge
));
7696 /* Allocate bitmap to track nodes that have been visited. */
7697 visited
= sbitmap_alloc (n_basic_blocks
);
7699 /* None of the nodes in the CFG have been visited yet. */
7700 sbitmap_zero (visited
);
7702 /* Push the first edge on to the stack. */
7703 stack
[sp
++] = ENTRY_BLOCK_PTR
->succ
;
7711 /* Look at the edge on the top of the stack. */
7716 /* Check if the edge destination has been visited yet. */
7717 if (dest
!= EXIT_BLOCK_PTR
&& ! TEST_BIT (visited
, dest
->index
))
7719 /* Mark that we have visited the destination. */
7720 SET_BIT (visited
, dest
->index
);
7723 dfs_order
[dfsnum
++] = dest
->index
;
7727 /* Since the DEST node has been visited for the first
7728 time, check its successors. */
7729 stack
[sp
++] = dest
->succ
;
7733 /* There are no successors for the DEST node so assign
7734 its reverse completion number. */
7736 rc_order
[rcnum
--] = dest
->index
;
7741 if (! e
->succ_next
&& src
!= ENTRY_BLOCK_PTR
)
7743 /* There are no more successors for the SRC node
7744 so assign its reverse completion number. */
7746 rc_order
[rcnum
--] = src
->index
;
7750 stack
[sp
- 1] = e
->succ_next
;
7757 sbitmap_free (visited
);
7759 /* The number of nodes visited should not be greater than
7761 if (dfsnum
> n_basic_blocks
)
7764 /* There are some nodes left in the CFG that are unreachable. */
7765 if (dfsnum
< n_basic_blocks
)
7770 /* Compute the depth first search order on the _reverse_ graph and
7771 store in the array DFS_ORDER, marking the nodes visited in VISITED.
7772 Returns the number of nodes visited.
7774 The computation is split into three pieces:
7776 flow_dfs_compute_reverse_init () creates the necessary data
7779 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
7780 structures. The block will start the search.
7782 flow_dfs_compute_reverse_execute () continues (or starts) the
7783 search using the block on the top of the stack, stopping when the
7786 flow_dfs_compute_reverse_finish () destroys the necessary data
7789 Thus, the user will probably call ..._init(), call ..._add_bb() to
7790 add a beginning basic block to the stack, call ..._execute(),
7791 possibly add another bb to the stack and again call ..._execute(),
7792 ..., and finally call _finish(). */
7794 /* Initialize the data structures used for depth-first search on the
7795 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
7796 added to the basic block stack. DATA is the current depth-first
7797 search context. If INITIALIZE_STACK is non-zero, there is an
7798 element on the stack. */
7801 flow_dfs_compute_reverse_init (data
)
7802 depth_first_search_ds data
;
7804 /* Allocate stack for back-tracking up CFG. */
7806 (basic_block
*) xmalloc ((n_basic_blocks
- (INVALID_BLOCK
+ 1))
7807 * sizeof (basic_block
));
7810 /* Allocate bitmap to track nodes that have been visited. */
7811 data
->visited_blocks
= sbitmap_alloc (n_basic_blocks
- (INVALID_BLOCK
+ 1));
7813 /* None of the nodes in the CFG have been visited yet. */
7814 sbitmap_zero (data
->visited_blocks
);
7819 /* Add the specified basic block to the top of the dfs data
7820 structures. When the search continues, it will start at the
7824 flow_dfs_compute_reverse_add_bb (data
, bb
)
7825 depth_first_search_ds data
;
7828 data
->stack
[data
->sp
++] = bb
;
7832 /* Continue the depth-first search through the reverse graph starting
7833 with the block at the stack's top and ending when the stack is
7834 empty. Visited nodes are marked. Returns an unvisited basic
7835 block, or NULL if there is none available. */
7838 flow_dfs_compute_reverse_execute (data
)
7839 depth_first_search_ds data
;
7845 while (data
->sp
> 0)
7847 bb
= data
->stack
[--data
->sp
];
7849 /* Mark that we have visited this node. */
7850 if (!TEST_BIT (data
->visited_blocks
, bb
->index
- (INVALID_BLOCK
+ 1)))
7852 SET_BIT (data
->visited_blocks
, bb
->index
- (INVALID_BLOCK
+ 1));
7854 /* Perform depth-first search on adjacent vertices. */
7855 for (e
= bb
->pred
; e
; e
= e
->pred_next
)
7856 flow_dfs_compute_reverse_add_bb (data
, e
->src
);
7860 /* Determine if there are unvisited basic blocks. */
7861 for (i
= n_basic_blocks
- (INVALID_BLOCK
+ 1); --i
>= 0;)
7862 if (!TEST_BIT (data
->visited_blocks
, i
))
7863 return BASIC_BLOCK (i
+ (INVALID_BLOCK
+ 1));
7867 /* Destroy the data structures needed for depth-first search on the
7871 flow_dfs_compute_reverse_finish (data
)
7872 depth_first_search_ds data
;
7875 sbitmap_free (data
->visited_blocks
);
7880 /* Find the root node of the loop pre-header extended basic block and
7881 the edges along the trace from the root node to the loop header. */
7884 flow_loop_pre_header_scan (loop
)
7890 loop
->num_pre_header_edges
= 0;
7892 if (loop
->num_entries
!= 1)
7895 ebb
= loop
->entry_edges
[0]->src
;
7897 if (ebb
!= ENTRY_BLOCK_PTR
)
7901 /* Count number of edges along trace from loop header to
7902 root of pre-header extended basic block. Usually this is
7903 only one or two edges. */
7905 while (ebb
->pred
->src
!= ENTRY_BLOCK_PTR
&& ! ebb
->pred
->pred_next
)
7907 ebb
= ebb
->pred
->src
;
7911 loop
->pre_header_edges
= (edge
*) xmalloc (num
* sizeof (edge
*));
7912 loop
->num_pre_header_edges
= num
;
7914 /* Store edges in order that they are followed. The source
7915 of the first edge is the root node of the pre-header extended
7916 basic block and the destination of the last last edge is
7918 for (e
= loop
->entry_edges
[0]; num
; e
= e
->src
->pred
)
7920 loop
->pre_header_edges
[--num
] = e
;
7926 /* Return the block for the pre-header of the loop with header
7927 HEADER where DOM specifies the dominator information. Return NULL if
7928 there is no pre-header. */
7931 flow_loop_pre_header_find (header
, dom
)
7935 basic_block pre_header
;
7938 /* If block p is a predecessor of the header and is the only block
7939 that the header does not dominate, then it is the pre-header. */
7941 for (e
= header
->pred
; e
; e
= e
->pred_next
)
7943 basic_block node
= e
->src
;
7945 if (node
!= ENTRY_BLOCK_PTR
7946 && ! TEST_BIT (dom
[node
->index
], header
->index
))
7948 if (pre_header
== NULL
)
7952 /* There are multiple edges into the header from outside
7953 the loop so there is no pre-header block. */
7962 /* Add LOOP to the loop hierarchy tree where PREVLOOP was the loop
7963 previously added. The insertion algorithm assumes that the loops
7964 are added in the order found by a depth first search of the CFG. */
7967 flow_loop_tree_node_add (prevloop
, loop
)
7968 struct loop
*prevloop
;
7972 if (flow_loop_nested_p (prevloop
, loop
))
7974 prevloop
->inner
= loop
;
7975 loop
->outer
= prevloop
;
7979 while (prevloop
->outer
)
7981 if (flow_loop_nested_p (prevloop
->outer
, loop
))
7983 prevloop
->next
= loop
;
7984 loop
->outer
= prevloop
->outer
;
7987 prevloop
= prevloop
->outer
;
7990 prevloop
->next
= loop
;
7994 /* Build the loop hierarchy tree for LOOPS. */
7997 flow_loops_tree_build (loops
)
7998 struct loops
*loops
;
8003 num_loops
= loops
->num
;
8007 /* Root the loop hierarchy tree with the first loop found.
8008 Since we used a depth first search this should be the
8010 loops
->tree
= &loops
->array
[0];
8011 loops
->tree
->outer
= loops
->tree
->inner
= loops
->tree
->next
= NULL
;
8013 /* Add the remaining loops to the tree. */
8014 for (i
= 1; i
< num_loops
; i
++)
8015 flow_loop_tree_node_add (&loops
->array
[i
- 1], &loops
->array
[i
]);
8018 /* Helper function to compute loop nesting depth and enclosed loop level
8019 for the natural loop specified by LOOP at the loop depth DEPTH.
8020 Returns the loop level. */
8023 flow_loop_level_compute (loop
, depth
)
8033 /* Traverse loop tree assigning depth and computing level as the
8034 maximum level of all the inner loops of this loop. The loop
8035 level is equivalent to the height of the loop in the loop tree
8036 and corresponds to the number of enclosed loop levels (including
8038 for (inner
= loop
->inner
; inner
; inner
= inner
->next
)
8042 ilevel
= flow_loop_level_compute (inner
, depth
+ 1) + 1;
8047 loop
->level
= level
;
8048 loop
->depth
= depth
;
8052 /* Compute the loop nesting depth and enclosed loop level for the loop
8053 hierarchy tree specfied by LOOPS. Return the maximum enclosed loop
8057 flow_loops_level_compute (loops
)
8058 struct loops
*loops
;
8064 /* Traverse all the outer level loops. */
8065 for (loop
= loops
->tree
; loop
; loop
= loop
->next
)
8067 level
= flow_loop_level_compute (loop
, 1);
8075 /* Scan a single natural loop specified by LOOP collecting information
8076 about it specified by FLAGS. */
8079 flow_loop_scan (loops
, loop
, flags
)
8080 struct loops
*loops
;
8084 /* Determine prerequisites. */
8085 if ((flags
& LOOP_EXITS_DOMS
) && ! loop
->exit_edges
)
8086 flags
|= LOOP_EXIT_EDGES
;
8088 if (flags
& LOOP_ENTRY_EDGES
)
8090 /* Find edges which enter the loop header.
8091 Note that the entry edges should only
8092 enter the header of a natural loop. */
8094 = flow_loop_entry_edges_find (loop
->header
,
8096 &loop
->entry_edges
);
8099 if (flags
& LOOP_EXIT_EDGES
)
8101 /* Find edges which exit the loop. */
8103 = flow_loop_exit_edges_find (loop
->nodes
,
8107 if (flags
& LOOP_EXITS_DOMS
)
8111 /* Determine which loop nodes dominate all the exits
8113 loop
->exits_doms
= sbitmap_alloc (n_basic_blocks
);
8114 sbitmap_copy (loop
->exits_doms
, loop
->nodes
);
8115 for (j
= 0; j
< loop
->num_exits
; j
++)
8116 sbitmap_a_and_b (loop
->exits_doms
, loop
->exits_doms
,
8117 loops
->cfg
.dom
[loop
->exit_edges
[j
]->src
->index
]);
8119 /* The header of a natural loop must dominate
8121 if (! TEST_BIT (loop
->exits_doms
, loop
->header
->index
))
8125 if (flags
& LOOP_PRE_HEADER
)
8127 /* Look to see if the loop has a pre-header node. */
8129 = flow_loop_pre_header_find (loop
->header
, loops
->cfg
.dom
);
8131 /* Find the blocks within the extended basic block of
8132 the loop pre-header. */
8133 flow_loop_pre_header_scan (loop
);
8139 /* Find all the natural loops in the function and save in LOOPS structure
8140 and recalculate loop_depth information in basic block structures.
8141 FLAGS controls which loop information is collected.
8142 Return the number of natural loops found. */
8145 flow_loops_find (loops
, flags
)
8146 struct loops
*loops
;
8158 /* This function cannot be repeatedly called with different
8159 flags to build up the loop information. The loop tree
8160 must always be built if this function is called. */
8161 if (! (flags
& LOOP_TREE
))
8164 memset (loops
, 0, sizeof (*loops
));
8166 /* Taking care of this degenerate case makes the rest of
8167 this code simpler. */
8168 if (n_basic_blocks
== 0)
8174 /* Compute the dominators. */
8175 dom
= sbitmap_vector_alloc (n_basic_blocks
, n_basic_blocks
);
8176 calculate_dominance_info (NULL
, dom
, CDI_DOMINATORS
);
8178 /* Count the number of loop edges (back edges). This should be the
8179 same as the number of natural loops. */
8182 for (b
= 0; b
< n_basic_blocks
; b
++)
8186 header
= BASIC_BLOCK (b
);
8187 header
->loop_depth
= 0;
8189 for (e
= header
->pred
; e
; e
= e
->pred_next
)
8191 basic_block latch
= e
->src
;
8193 /* Look for back edges where a predecessor is dominated
8194 by this block. A natural loop has a single entry
8195 node (header) that dominates all the nodes in the
8196 loop. It also has single back edge to the header
8197 from a latch node. Note that multiple natural loops
8198 may share the same header. */
8199 if (b
!= header
->index
)
8202 if (latch
!= ENTRY_BLOCK_PTR
&& TEST_BIT (dom
[latch
->index
], b
))
8209 /* Compute depth first search order of the CFG so that outer
8210 natural loops will be found before inner natural loops. */
8211 dfs_order
= (int *) xmalloc (n_basic_blocks
* sizeof (int));
8212 rc_order
= (int *) xmalloc (n_basic_blocks
* sizeof (int));
8213 flow_depth_first_order_compute (dfs_order
, rc_order
);
8215 /* Save CFG derived information to avoid recomputing it. */
8216 loops
->cfg
.dom
= dom
;
8217 loops
->cfg
.dfs_order
= dfs_order
;
8218 loops
->cfg
.rc_order
= rc_order
;
8220 /* Allocate loop structures. */
8222 = (struct loop
*) xcalloc (num_loops
, sizeof (struct loop
));
8224 headers
= sbitmap_alloc (n_basic_blocks
);
8225 sbitmap_zero (headers
);
8227 loops
->shared_headers
= sbitmap_alloc (n_basic_blocks
);
8228 sbitmap_zero (loops
->shared_headers
);
8230 /* Find and record information about all the natural loops
8233 for (b
= 0; b
< n_basic_blocks
; b
++)
8237 /* Search the nodes of the CFG in reverse completion order
8238 so that we can find outer loops first. */
8239 header
= BASIC_BLOCK (rc_order
[b
]);
8241 /* Look for all the possible latch blocks for this header. */
8242 for (e
= header
->pred
; e
; e
= e
->pred_next
)
8244 basic_block latch
= e
->src
;
8246 /* Look for back edges where a predecessor is dominated
8247 by this block. A natural loop has a single entry
8248 node (header) that dominates all the nodes in the
8249 loop. It also has single back edge to the header
8250 from a latch node. Note that multiple natural loops
8251 may share the same header. */
8252 if (latch
!= ENTRY_BLOCK_PTR
8253 && TEST_BIT (dom
[latch
->index
], header
->index
))
8257 loop
= loops
->array
+ num_loops
;
8259 loop
->header
= header
;
8260 loop
->latch
= latch
;
8261 loop
->num
= num_loops
;
8268 for (i
= 0; i
< num_loops
; i
++)
8270 struct loop
*loop
= &loops
->array
[i
];
8272 /* Keep track of blocks that are loop headers so
8273 that we can tell which loops should be merged. */
8274 if (TEST_BIT (headers
, loop
->header
->index
))
8275 SET_BIT (loops
->shared_headers
, loop
->header
->index
);
8276 SET_BIT (headers
, loop
->header
->index
);
8278 /* Find nodes contained within the loop. */
8279 loop
->nodes
= sbitmap_alloc (n_basic_blocks
);
8281 = flow_loop_nodes_find (loop
->header
, loop
->latch
, loop
->nodes
);
8283 /* Compute first and last blocks within the loop.
8284 These are often the same as the loop header and
8285 loop latch respectively, but this is not always
8288 = BASIC_BLOCK (sbitmap_first_set_bit (loop
->nodes
));
8290 = BASIC_BLOCK (sbitmap_last_set_bit (loop
->nodes
));
8292 flow_loop_scan (loops
, loop
, flags
);
8295 /* Natural loops with shared headers may either be disjoint or
8296 nested. Disjoint loops with shared headers cannot be inner
8297 loops and should be merged. For now just mark loops that share
8299 for (i
= 0; i
< num_loops
; i
++)
8300 if (TEST_BIT (loops
->shared_headers
, loops
->array
[i
].header
->index
))
8301 loops
->array
[i
].shared
= 1;
8303 sbitmap_free (headers
);
8306 loops
->num
= num_loops
;
8308 /* Build the loop hierarchy tree. */
8309 flow_loops_tree_build (loops
);
8311 /* Assign the loop nesting depth and enclosed loop level for each
8313 loops
->levels
= flow_loops_level_compute (loops
);
8319 /* Update the information regarding the loops in the CFG
8320 specified by LOOPS. */
8322 flow_loops_update (loops
, flags
)
8323 struct loops
*loops
;
8326 /* One day we may want to update the current loop data. For now
8327 throw away the old stuff and rebuild what we need. */
8329 flow_loops_free (loops
);
8331 return flow_loops_find (loops
, flags
);
8335 /* Return non-zero if edge E enters header of LOOP from outside of LOOP. */
8338 flow_loop_outside_edge_p (loop
, e
)
8339 const struct loop
*loop
;
8342 if (e
->dest
!= loop
->header
)
8344 return (e
->src
== ENTRY_BLOCK_PTR
)
8345 || ! TEST_BIT (loop
->nodes
, e
->src
->index
);
8348 /* Clear LOG_LINKS fields of insns in a chain.
8349 Also clear the global_live_at_{start,end} fields of the basic block
8353 clear_log_links (insns
)
8359 for (i
= insns
; i
; i
= NEXT_INSN (i
))
8363 for (b
= 0; b
< n_basic_blocks
; b
++)
8365 basic_block bb
= BASIC_BLOCK (b
);
8367 bb
->global_live_at_start
= NULL
;
8368 bb
->global_live_at_end
= NULL
;
8371 ENTRY_BLOCK_PTR
->global_live_at_end
= NULL
;
8372 EXIT_BLOCK_PTR
->global_live_at_start
= NULL
;
8375 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
8376 correspond to the hard registers, if any, set in that map. This
8377 could be done far more efficiently by having all sorts of special-cases
8378 with moving single words, but probably isn't worth the trouble. */
8381 reg_set_to_hard_reg_set (to
, from
)
8387 EXECUTE_IF_SET_IN_BITMAP
8390 if (i
>= FIRST_PSEUDO_REGISTER
)
8392 SET_HARD_REG_BIT (*to
, i
);
8396 /* Called once at intialization time. */
8401 static int initialized
;
8405 gcc_obstack_init (&flow_obstack
);
8406 flow_firstobj
= (char *) obstack_alloc (&flow_obstack
, 0);
8411 obstack_free (&flow_obstack
, flow_firstobj
);
8412 flow_firstobj
= (char *) obstack_alloc (&flow_obstack
, 0);