Mark ChangeLog
[official-gcc.git] / gcc / ssa.c
blobd57720e032f9f76a47d09591045457d1b3ad3f0b
1 /* Static Single Assignment conversion routines for the GNU compiler.
2 Copyright (C) 2000 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 2, or (at your option) any
9 later version.
11 GNU CC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
21 /* References:
23 Building an Optimizing Compiler
24 Robert Morgan
25 Butterworth-Heinemann, 1998
27 Static Single Assignment Construction
28 Preston Briggs, Tim Harvey, Taylor Simpson
29 Technical Report, Rice University, 1995
30 ftp://ftp.cs.rice.edu/public/preston/optimizer/SSA.ps.gz. */
32 #include "config.h"
33 #include "system.h"
35 #include "rtl.h"
36 #include "varray.h"
37 #include "partition.h"
38 #include "sbitmap.h"
39 #include "hashtab.h"
40 #include "regs.h"
41 #include "hard-reg-set.h"
42 #include "flags.h"
43 #include "function.h"
44 #include "real.h"
45 #include "insn-config.h"
46 #include "recog.h"
47 #include "basic-block.h"
48 #include "output.h"
49 #include "ssa.h"
51 /* TODO:
53 Handle subregs better, maybe. For now, if a reg that's set in a
54 subreg expression is duplicated going into SSA form, an extra copy
55 is inserted first that copies the entire reg into the duplicate, so
56 that the other bits are preserved. This isn't strictly SSA, since
57 at least part of the reg is assigned in more than one place (though
58 they are adjacent).
60 ??? What to do about strict_low_part. Probably I'll have to split
61 them out of their current instructions first thing.
63 Actually the best solution may be to have a kind of "mid-level rtl"
64 in which the RTL encodes exactly what we want, without exposing a
65 lot of niggling processor details. At some later point we lower
66 the representation, calling back into optabs to finish any necessary
67 expansion. */
69 /* All pseudo-registers and select hard registers are converted to SSA
70 form. When converting out of SSA, these select hard registers are
71 guaranteed to be mapped to their original register number. Each
72 machine's .h file should define CONVERT_HARD_REGISTER_TO_SSA_P
73 indicating which hard registers should be converted.
75 When converting out of SSA, temporaries for all registers are
76 partitioned. The partition is checked to ensure that all uses of
77 the same hard register in the same machine mode are in the same
78 class. */
80 /* If conservative_reg_partition is non-zero, use a conservative
81 register partitioning algorithm (which leaves more regs after
82 emerging from SSA) instead of the coalescing one. This is being
83 left in for a limited time only, as a debugging tool until the
84 coalescing algorithm is validated. */
86 static int conservative_reg_partition;
88 /* This flag is set when the CFG is in SSA form. */
89 int in_ssa_form = 0;
91 /* Element I is the single instruction that sets register I. */
92 varray_type ssa_definition;
94 /* Element I is an INSN_LIST of instructions that use register I. */
95 varray_type ssa_uses;
97 /* Element I-PSEUDO is the normal register that originated the ssa
98 register in question. */
99 varray_type ssa_rename_from;
101 /* Element I is the normal register that originated the ssa
102 register in question.
104 A hash table stores the (register, rtl) pairs. These are each
105 xmalloc'ed and deleted when the hash table is destroyed. */
106 htab_t ssa_rename_from_ht;
108 /* The running target ssa register for a given pseudo register.
109 (Pseudo registers appear in only one mode.) */
110 static rtx *ssa_rename_to_pseudo;
111 /* Similar, but for hard registers. A hard register can appear in
112 many modes, so we store an equivalent pseudo for each of the
113 modes. */
114 static rtx ssa_rename_to_hard[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
116 /* ssa_rename_from maps pseudo registers to the original corresponding
117 RTL. It is implemented as using a hash table. */
119 typedef struct {
120 unsigned int reg;
121 rtx original;
122 } ssa_rename_from_pair;
124 struct ssa_rename_from_hash_table_data {
125 sbitmap canonical_elements;
126 partition reg_partition;
129 static void ssa_rename_from_initialize
130 PARAMS ((void));
131 static rtx ssa_rename_from_lookup
132 PARAMS ((int reg));
133 static unsigned int original_register
134 PARAMS ((unsigned int regno));
135 static void ssa_rename_from_insert
136 PARAMS ((unsigned int reg, rtx r));
137 static void ssa_rename_from_free
138 PARAMS ((void));
139 typedef int (*srf_trav) PARAMS ((int regno, rtx r, sbitmap canonical_elements, partition reg_partition));
140 static void ssa_rename_from_traverse
141 PARAMS ((htab_trav callback_function, sbitmap canonical_elements, partition reg_partition));
142 /*static Avoid warnign message. */ void ssa_rename_from_print
143 PARAMS ((void));
144 static int ssa_rename_from_print_1
145 PARAMS ((void **slot, void *data));
146 static hashval_t ssa_rename_from_hash_function
147 PARAMS ((const void * srfp));
148 static int ssa_rename_from_equal
149 PARAMS ((const void *srfp1, const void *srfp2));
150 static void ssa_rename_from_delete
151 PARAMS ((void *srfp));
153 static rtx ssa_rename_to_lookup
154 PARAMS ((rtx reg));
155 static void ssa_rename_to_insert
156 PARAMS ((rtx reg, rtx r));
158 /* The number of registers that were live on entry to the SSA routines. */
159 static unsigned int ssa_max_reg_num;
161 /* Local function prototypes. */
163 struct rename_context;
165 static inline rtx * phi_alternative
166 PARAMS ((rtx, int));
167 static rtx first_insn_after_basic_block_note
168 PARAMS ((basic_block));
169 static int remove_phi_alternative
170 PARAMS ((rtx, int));
171 static void compute_dominance_frontiers_1
172 PARAMS ((sbitmap *frontiers, int *idom, int bb, sbitmap done));
173 static void compute_dominance_frontiers
174 PARAMS ((sbitmap *frontiers, int *idom));
175 static void find_evaluations_1
176 PARAMS ((rtx dest, rtx set, void *data));
177 static void find_evaluations
178 PARAMS ((sbitmap *evals, int nregs));
179 static void compute_iterated_dominance_frontiers
180 PARAMS ((sbitmap *idfs, sbitmap *frontiers, sbitmap *evals, int nregs));
181 static void insert_phi_node
182 PARAMS ((int regno, int b));
183 static void insert_phi_nodes
184 PARAMS ((sbitmap *idfs, sbitmap *evals, int nregs));
185 static void create_delayed_rename
186 PARAMS ((struct rename_context *, rtx *));
187 static void apply_delayed_renames
188 PARAMS ((struct rename_context *));
189 static int rename_insn_1
190 PARAMS ((rtx *ptr, void *data));
191 static void rename_block
192 PARAMS ((int b, int *idom));
193 static void rename_registers
194 PARAMS ((int nregs, int *idom));
196 static inline int ephi_add_node
197 PARAMS ((rtx reg, rtx *nodes, int *n_nodes));
198 static int * ephi_forward
199 PARAMS ((int t, sbitmap visited, sbitmap *succ, int *tstack));
200 static void ephi_backward
201 PARAMS ((int t, sbitmap visited, sbitmap *pred, rtx *nodes));
202 static void ephi_create
203 PARAMS ((int t, sbitmap visited, sbitmap *pred, sbitmap *succ, rtx *nodes));
204 static void eliminate_phi
205 PARAMS ((edge e, partition reg_partition));
206 static int make_regs_equivalent_over_bad_edges
207 PARAMS ((int bb, partition reg_partition));
209 /* These are used only in the conservative register partitioning
210 algorithms. */
211 static int make_equivalent_phi_alternatives_equivalent
212 PARAMS ((int bb, partition reg_partition));
213 static partition compute_conservative_reg_partition
214 PARAMS ((void));
215 static int record_canonical_element_1
216 PARAMS ((void **srfp, void *data));
217 static int check_hard_regs_in_partition
218 PARAMS ((partition reg_partition));
219 static int rename_equivalent_regs_in_insn
220 PARAMS ((rtx *ptr, void *data));
222 /* These are used in the register coalescing algorithm. */
223 static int coalesce_if_unconflicting
224 PARAMS ((partition p, conflict_graph conflicts, int reg1, int reg2));
225 static int coalesce_regs_in_copies
226 PARAMS ((basic_block bb, partition p, conflict_graph conflicts));
227 static int coalesce_reg_in_phi
228 PARAMS ((rtx, int dest_regno, int src_regno, void *data));
229 static int coalesce_regs_in_successor_phi_nodes
230 PARAMS ((basic_block bb, partition p, conflict_graph conflicts));
231 static partition compute_coalesced_reg_partition
232 PARAMS ((void));
233 static int mark_reg_in_phi
234 PARAMS ((rtx *ptr, void *data));
235 static void mark_phi_and_copy_regs
236 PARAMS ((regset phi_set));
238 static int rename_equivalent_regs_in_insn
239 PARAMS ((rtx *ptr, void *data));
240 static void rename_equivalent_regs
241 PARAMS ((partition reg_partition));
243 /* Deal with hard registers. */
244 static int conflicting_hard_regs_p
245 PARAMS ((int reg1, int reg2));
247 /* ssa_rename_to maps registers and machine modes to SSA pseudo registers. */
249 /* Find the register associated with REG in the indicated mode. */
251 static rtx
252 ssa_rename_to_lookup (reg)
253 rtx reg;
255 if (!HARD_REGISTER_P (reg))
256 return ssa_rename_to_pseudo[REGNO (reg) - FIRST_PSEUDO_REGISTER];
257 else
258 return ssa_rename_to_hard[REGNO (reg)][GET_MODE (reg)];
261 /* Store a new value mapping REG to R in ssa_rename_to. */
263 static void
264 ssa_rename_to_insert(reg, r)
265 rtx reg;
266 rtx r;
268 if (!HARD_REGISTER_P (reg))
269 ssa_rename_to_pseudo[REGNO (reg) - FIRST_PSEUDO_REGISTER] = r;
270 else
271 ssa_rename_to_hard[REGNO (reg)][GET_MODE (reg)] = r;
274 /* Prepare ssa_rename_from for use. */
276 static void
277 ssa_rename_from_initialize ()
279 /* We use an arbitrary initial hash table size of 64. */
280 ssa_rename_from_ht = htab_create (64,
281 &ssa_rename_from_hash_function,
282 &ssa_rename_from_equal,
283 &ssa_rename_from_delete);
286 /* Find the REG entry in ssa_rename_from. Return NULL_RTX if no entry is
287 found. */
289 static rtx
290 ssa_rename_from_lookup (reg)
291 int reg;
293 ssa_rename_from_pair srfp;
294 ssa_rename_from_pair *answer;
295 srfp.reg = reg;
296 srfp.original = NULL_RTX;
297 answer = (ssa_rename_from_pair *)
298 htab_find_with_hash (ssa_rename_from_ht, (void *) &srfp, reg);
299 return (answer == 0 ? NULL_RTX : answer->original);
302 /* Find the number of the original register specified by REGNO. If
303 the register is a pseudo, return the original register's number.
304 Otherwise, return this register number REGNO. */
306 static unsigned int
307 original_register (regno)
308 unsigned int regno;
310 rtx original_rtx = ssa_rename_from_lookup (regno);
311 return original_rtx != NULL_RTX ? REGNO (original_rtx) : regno;
314 /* Add mapping from R to REG to ssa_rename_from even if already present. */
316 static void
317 ssa_rename_from_insert (reg, r)
318 unsigned int reg;
319 rtx r;
321 void **slot;
322 ssa_rename_from_pair *srfp = xmalloc (sizeof (ssa_rename_from_pair));
323 srfp->reg = reg;
324 srfp->original = r;
325 slot = htab_find_slot_with_hash (ssa_rename_from_ht, (const void *) srfp,
326 reg, INSERT);
327 if (*slot != 0)
328 free ((void *) *slot);
329 *slot = srfp;
332 /* Apply the CALLBACK_FUNCTION to each element in ssa_rename_from.
333 CANONICAL_ELEMENTS and REG_PARTITION pass data needed by the only
334 current use of this function. */
336 static void
337 ssa_rename_from_traverse (callback_function,
338 canonical_elements, reg_partition)
339 htab_trav callback_function;
340 sbitmap canonical_elements;
341 partition reg_partition;
343 struct ssa_rename_from_hash_table_data srfhd;
344 srfhd.canonical_elements = canonical_elements;
345 srfhd.reg_partition = reg_partition;
346 htab_traverse (ssa_rename_from_ht, callback_function, (void *) &srfhd);
349 /* Destroy ssa_rename_from. */
351 static void
352 ssa_rename_from_free ()
354 htab_delete (ssa_rename_from_ht);
357 /* Print the contents of ssa_rename_from. */
359 /* static Avoid erroneous error message. */
360 void
361 ssa_rename_from_print ()
363 printf ("ssa_rename_from's hash table contents:\n");
364 htab_traverse (ssa_rename_from_ht, &ssa_rename_from_print_1, NULL);
367 /* Print the contents of the hash table entry SLOT, passing the unused
368 sttribute DATA. Used as a callback function with htab_traverse (). */
370 static int
371 ssa_rename_from_print_1 (slot, data)
372 void **slot;
373 void *data ATTRIBUTE_UNUSED;
375 ssa_rename_from_pair * p = *slot;
376 printf ("ssa_rename_from maps pseudo %i to original %i.\n",
377 p->reg, REGNO (p->original));
378 return 1;
381 /* Given a hash entry SRFP, yield a hash value. */
383 static hashval_t
384 ssa_rename_from_hash_function (srfp)
385 const void *srfp;
387 return ((const ssa_rename_from_pair *) srfp)->reg;
390 /* Test whether two hash table entries SRFP1 and SRFP2 are equal. */
392 static int
393 ssa_rename_from_equal (srfp1, srfp2)
394 const void *srfp1;
395 const void *srfp2;
397 return ssa_rename_from_hash_function (srfp1) ==
398 ssa_rename_from_hash_function (srfp2);
401 /* Delete the hash table entry SRFP. */
403 static void
404 ssa_rename_from_delete (srfp)
405 void *srfp;
407 free (srfp);
410 /* Given the SET of a PHI node, return the address of the alternative
411 for predecessor block C. */
413 static inline rtx *
414 phi_alternative (set, c)
415 rtx set;
416 int c;
418 rtvec phi_vec = XVEC (SET_SRC (set), 0);
419 int v;
421 for (v = GET_NUM_ELEM (phi_vec) - 2; v >= 0; v -= 2)
422 if (INTVAL (RTVEC_ELT (phi_vec, v + 1)) == c)
423 return &RTVEC_ELT (phi_vec, v);
425 return NULL;
428 /* Given the SET of a phi node, remove the alternative for predecessor
429 block C. Return non-zero on success, or zero if no alternative is
430 found for C. */
432 static int
433 remove_phi_alternative (set, c)
434 rtx set;
435 int c;
437 rtvec phi_vec = XVEC (SET_SRC (set), 0);
438 int num_elem = GET_NUM_ELEM (phi_vec);
439 int v;
441 for (v = num_elem - 2; v >= 0; v -= 2)
442 if (INTVAL (RTVEC_ELT (phi_vec, v + 1)) == c)
444 if (v < num_elem - 2)
446 RTVEC_ELT (phi_vec, v) = RTVEC_ELT (phi_vec, num_elem - 2);
447 RTVEC_ELT (phi_vec, v + 1) = RTVEC_ELT (phi_vec, num_elem - 1);
449 PUT_NUM_ELEM (phi_vec, num_elem - 2);
450 return 1;
453 return 0;
456 /* For all registers, find all blocks in which they are set.
458 This is the transform of what would be local kill information that
459 we ought to be getting from flow. */
461 static sbitmap *fe_evals;
462 static int fe_current_bb;
464 static void
465 find_evaluations_1 (dest, set, data)
466 rtx dest;
467 rtx set ATTRIBUTE_UNUSED;
468 void *data ATTRIBUTE_UNUSED;
470 if (GET_CODE (dest) == REG
471 && CONVERT_REGISTER_TO_SSA_P (REGNO (dest)))
472 SET_BIT (fe_evals[REGNO (dest)], fe_current_bb);
475 static void
476 find_evaluations (evals, nregs)
477 sbitmap *evals;
478 int nregs;
480 int bb;
482 sbitmap_vector_zero (evals, nregs);
483 fe_evals = evals;
485 for (bb = n_basic_blocks; --bb >= 0; )
487 rtx p, last;
489 fe_current_bb = bb;
490 p = BLOCK_HEAD (bb);
491 last = BLOCK_END (bb);
492 while (1)
494 if (INSN_P (p))
495 note_stores (PATTERN (p), find_evaluations_1, NULL);
497 if (p == last)
498 break;
499 p = NEXT_INSN (p);
504 /* Computing the Dominance Frontier:
506 As decribed in Morgan, section 3.5, this may be done simply by
507 walking the dominator tree bottom-up, computing the frontier for
508 the children before the parent. When considering a block B,
509 there are two cases:
511 (1) A flow graph edge leaving B that does not lead to a child
512 of B in the dominator tree must be a block that is either equal
513 to B or not dominated by B. Such blocks belong in the frontier
514 of B.
516 (2) Consider a block X in the frontier of one of the children C
517 of B. If X is not equal to B and is not dominated by B, it
518 is in the frontier of B.
521 static void
522 compute_dominance_frontiers_1 (frontiers, idom, bb, done)
523 sbitmap *frontiers;
524 int *idom;
525 int bb;
526 sbitmap done;
528 basic_block b = BASIC_BLOCK (bb);
529 edge e;
530 int c;
532 SET_BIT (done, bb);
533 sbitmap_zero (frontiers[bb]);
535 /* Do the frontier of the children first. Not all children in the
536 dominator tree (blocks dominated by this one) are children in the
537 CFG, so check all blocks. */
538 for (c = 0; c < n_basic_blocks; ++c)
539 if (idom[c] == bb && ! TEST_BIT (done, c))
540 compute_dominance_frontiers_1 (frontiers, idom, c, done);
542 /* Find blocks conforming to rule (1) above. */
543 for (e = b->succ; e; e = e->succ_next)
545 if (e->dest == EXIT_BLOCK_PTR)
546 continue;
547 if (idom[e->dest->index] != bb)
548 SET_BIT (frontiers[bb], e->dest->index);
551 /* Find blocks conforming to rule (2). */
552 for (c = 0; c < n_basic_blocks; ++c)
553 if (idom[c] == bb)
555 int x;
556 EXECUTE_IF_SET_IN_SBITMAP (frontiers[c], 0, x,
558 if (idom[x] != bb)
559 SET_BIT (frontiers[bb], x);
564 static void
565 compute_dominance_frontiers (frontiers, idom)
566 sbitmap *frontiers;
567 int *idom;
569 sbitmap done = sbitmap_alloc (n_basic_blocks);
570 sbitmap_zero (done);
572 compute_dominance_frontiers_1 (frontiers, idom, 0, done);
574 sbitmap_free (done);
577 /* Computing the Iterated Dominance Frontier:
579 This is the set of merge points for a given register.
581 This is not particularly intuitive. See section 7.1 of Morgan, in
582 particular figures 7.3 and 7.4 and the immediately surrounding text.
585 static void
586 compute_iterated_dominance_frontiers (idfs, frontiers, evals, nregs)
587 sbitmap *idfs;
588 sbitmap *frontiers;
589 sbitmap *evals;
590 int nregs;
592 sbitmap worklist;
593 int reg, passes = 0;
595 worklist = sbitmap_alloc (n_basic_blocks);
597 for (reg = 0; reg < nregs; ++reg)
599 sbitmap idf = idfs[reg];
600 int b, changed;
602 /* Start the iterative process by considering those blocks that
603 evaluate REG. We'll add their dominance frontiers to the
604 IDF, and then consider the blocks we just added. */
605 sbitmap_copy (worklist, evals[reg]);
607 /* Morgan's algorithm is incorrect here. Blocks that evaluate
608 REG aren't necessarily in REG's IDF. Start with an empty IDF. */
609 sbitmap_zero (idf);
611 /* Iterate until the worklist is empty. */
614 changed = 0;
615 passes++;
616 EXECUTE_IF_SET_IN_SBITMAP (worklist, 0, b,
618 RESET_BIT (worklist, b);
619 /* For each block on the worklist, add to the IDF all
620 blocks on its dominance frontier that aren't already
621 on the IDF. Every block that's added is also added
622 to the worklist. */
623 sbitmap_union_of_diff (worklist, worklist, frontiers[b], idf);
624 sbitmap_a_or_b (idf, idf, frontiers[b]);
625 changed = 1;
628 while (changed);
631 sbitmap_free (worklist);
633 if (rtl_dump_file)
635 fprintf(rtl_dump_file,
636 "Iterated dominance frontier: %d passes on %d regs.\n",
637 passes, nregs);
641 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
642 note associated with the BLOCK. */
644 static rtx
645 first_insn_after_basic_block_note (block)
646 basic_block block;
648 rtx insn;
650 /* Get the first instruction in the block. */
651 insn = block->head;
653 if (insn == NULL_RTX)
654 return NULL_RTX;
655 if (GET_CODE (insn) == CODE_LABEL)
656 insn = NEXT_INSN (insn);
657 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
658 abort ();
660 return NEXT_INSN (insn);
663 /* Insert the phi nodes. */
665 static void
666 insert_phi_node (regno, bb)
667 int regno, bb;
669 basic_block b = BASIC_BLOCK (bb);
670 edge e;
671 int npred, i;
672 rtvec vec;
673 rtx phi, reg;
674 rtx insn;
675 int end_p;
677 /* Find out how many predecessors there are. */
678 for (e = b->pred, npred = 0; e; e = e->pred_next)
679 if (e->src != ENTRY_BLOCK_PTR)
680 npred++;
682 /* If this block has no "interesting" preds, then there is nothing to
683 do. Consider a block that only has the entry block as a pred. */
684 if (npred == 0)
685 return;
687 /* This is the register to which the phi function will be assigned. */
688 reg = regno_reg_rtx[regno];
690 /* Construct the arguments to the PHI node. The use of pc_rtx is just
691 a placeholder; we'll insert the proper value in rename_registers. */
692 vec = rtvec_alloc (npred * 2);
693 for (e = b->pred, i = 0; e ; e = e->pred_next, i += 2)
694 if (e->src != ENTRY_BLOCK_PTR)
696 RTVEC_ELT (vec, i + 0) = pc_rtx;
697 RTVEC_ELT (vec, i + 1) = GEN_INT (e->src->index);
700 phi = gen_rtx_PHI (VOIDmode, vec);
701 phi = gen_rtx_SET (VOIDmode, reg, phi);
703 insn = first_insn_after_basic_block_note (b);
704 end_p = PREV_INSN (insn) == b->end;
705 emit_insn_before (phi, insn);
706 if (end_p)
707 b->end = PREV_INSN (insn);
710 static void
711 insert_phi_nodes (idfs, evals, nregs)
712 sbitmap *idfs;
713 sbitmap *evals ATTRIBUTE_UNUSED;
714 int nregs;
716 int reg;
718 for (reg = 0; reg < nregs; ++reg)
719 if (CONVERT_REGISTER_TO_SSA_P (reg))
721 int b;
722 EXECUTE_IF_SET_IN_SBITMAP (idfs[reg], 0, b,
724 if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start, reg))
725 insert_phi_node (reg, b);
730 /* Rename the registers to conform to SSA.
732 This is essentially the algorithm presented in Figure 7.8 of Morgan,
733 with a few changes to reduce pattern search time in favour of a bit
734 more memory usage. */
736 /* One of these is created for each set. It will live in a list local
737 to its basic block for the duration of that block's processing. */
738 struct rename_set_data
740 struct rename_set_data *next;
741 /* This is the SET_DEST of the (first) SET that sets the REG. */
742 rtx *reg_loc;
743 /* This is what used to be at *REG_LOC. */
744 rtx old_reg;
745 /* This is the REG that will replace OLD_REG. It's set only
746 when the rename data is moved onto the DONE_RENAMES queue. */
747 rtx new_reg;
748 /* This is what to restore ssa_rename_to_lookup (old_reg) to. It is
749 usually the previous contents of ssa_rename_to_lookup (old_reg). */
750 rtx prev_reg;
751 /* This is the insn that contains all the SETs of the REG. */
752 rtx set_insn;
755 /* This struct is used to pass information to callback functions while
756 renaming registers. */
757 struct rename_context
759 struct rename_set_data *new_renames;
760 struct rename_set_data *done_renames;
761 rtx current_insn;
764 /* Queue the rename of *REG_LOC. */
765 static void
766 create_delayed_rename (c, reg_loc)
767 struct rename_context *c;
768 rtx *reg_loc;
770 struct rename_set_data *r;
771 r = (struct rename_set_data *) xmalloc (sizeof(*r));
773 if (GET_CODE (*reg_loc) != REG
774 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*reg_loc)))
775 abort();
777 r->reg_loc = reg_loc;
778 r->old_reg = *reg_loc;
779 r->prev_reg = ssa_rename_to_lookup(r->old_reg);
780 r->set_insn = c->current_insn;
781 r->next = c->new_renames;
782 c->new_renames = r;
785 /* This is part of a rather ugly hack to allow the pre-ssa regno to be
786 reused. If, during processing, a register has not yet been touched,
787 ssa_rename_to[regno][machno] will be NULL. Now, in the course of pushing
788 and popping values from ssa_rename_to, when we would ordinarily
789 pop NULL back in, we pop RENAME_NO_RTX. We treat this exactly the
790 same as NULL, except that it signals that the original regno has
791 already been reused. */
792 #define RENAME_NO_RTX pc_rtx
794 /* Move all the entries from NEW_RENAMES onto DONE_RENAMES by
795 applying all the renames on NEW_RENAMES. */
797 static void
798 apply_delayed_renames (c)
799 struct rename_context *c;
801 struct rename_set_data *r;
802 struct rename_set_data *last_r = NULL;
804 for (r = c->new_renames; r != NULL; r = r->next)
806 int new_regno;
808 /* Failure here means that someone has a PARALLEL that sets
809 a register twice (bad!). */
810 if (ssa_rename_to_lookup (r->old_reg) != r->prev_reg)
811 abort();
812 /* Failure here means we have changed REG_LOC before applying
813 the rename. */
814 /* For the first set we come across, reuse the original regno. */
815 if (r->prev_reg == NULL_RTX && !HARD_REGISTER_P (r->old_reg))
817 r->new_reg = r->old_reg;
818 /* We want to restore RENAME_NO_RTX rather than NULL_RTX. */
819 r->prev_reg = RENAME_NO_RTX;
821 else
822 r->new_reg = gen_reg_rtx (GET_MODE (r->old_reg));
823 new_regno = REGNO (r->new_reg);
824 ssa_rename_to_insert (r->old_reg, r->new_reg);
826 if (new_regno >= (int) ssa_definition->num_elements)
828 int new_limit = new_regno * 5 / 4;
829 VARRAY_GROW (ssa_definition, new_limit);
830 VARRAY_GROW (ssa_uses, new_limit);
833 VARRAY_RTX (ssa_definition, new_regno) = r->set_insn;
834 ssa_rename_from_insert (new_regno, r->old_reg);
835 last_r = r;
837 if (last_r != NULL)
839 last_r->next = c->done_renames;
840 c->done_renames = c->new_renames;
841 c->new_renames = NULL;
845 /* Part one of the first step of rename_block, called through for_each_rtx.
846 Mark pseudos that are set for later update. Transform uses of pseudos. */
848 static int
849 rename_insn_1 (ptr, data)
850 rtx *ptr;
851 void *data;
853 rtx x = *ptr;
854 struct rename_context *context = data;
856 if (x == NULL_RTX)
857 return 0;
859 switch (GET_CODE (x))
861 case SET:
863 rtx *destp = &SET_DEST (x);
864 rtx dest = SET_DEST (x);
866 /* Some SETs also use the REG specified in their LHS.
867 These can be detected by the presence of
868 STRICT_LOW_PART, SUBREG, SIGN_EXTRACT, and ZERO_EXTRACT
869 in the LHS. Handle these by changing
870 (set (subreg (reg foo)) ...)
871 into
872 (sequence [(set (reg foo_1) (reg foo))
873 (set (subreg (reg foo_1)) ...)])
875 FIXME: Much of the time this is too much. For many libcalls,
876 paradoxical SUBREGs, etc., the input register is dead. We should
877 recognise this in rename_block or here and not make a false
878 dependency. */
880 if (GET_CODE (dest) == STRICT_LOW_PART
881 || GET_CODE (dest) == SUBREG
882 || GET_CODE (dest) == SIGN_EXTRACT
883 || GET_CODE (dest) == ZERO_EXTRACT)
885 rtx i, reg;
886 reg = dest;
888 while (GET_CODE (reg) == STRICT_LOW_PART
889 || GET_CODE (reg) == SUBREG
890 || GET_CODE (reg) == SIGN_EXTRACT
891 || GET_CODE (reg) == ZERO_EXTRACT)
892 reg = XEXP (reg, 0);
894 if (GET_CODE (reg) == REG
895 && CONVERT_REGISTER_TO_SSA_P (REGNO (reg)))
897 /* Generate (set reg reg), and do renaming on it so
898 that it becomes (set reg_1 reg_0), and we will
899 replace reg with reg_1 in the SUBREG. */
901 struct rename_set_data *saved_new_renames;
902 saved_new_renames = context->new_renames;
903 context->new_renames = NULL;
904 i = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
905 for_each_rtx (&i, rename_insn_1, data);
906 apply_delayed_renames (context);
907 context->new_renames = saved_new_renames;
910 else if (GET_CODE (dest) == REG &&
911 CONVERT_REGISTER_TO_SSA_P (REGNO (dest)))
913 /* We found a genuine set of an interesting register. Tag
914 it so that we can create a new name for it after we finish
915 processing this insn. */
917 create_delayed_rename (context, destp);
919 /* Since we do not wish to (directly) traverse the
920 SET_DEST, recurse through for_each_rtx for the SET_SRC
921 and return. */
922 if (GET_CODE (x) == SET)
923 for_each_rtx (&SET_SRC (x), rename_insn_1, data);
924 return -1;
927 /* Otherwise, this was not an interesting destination. Continue
928 on, marking uses as normal. */
929 return 0;
932 case REG:
933 if (CONVERT_REGISTER_TO_SSA_P (REGNO (x)) &&
934 REGNO (x) < ssa_max_reg_num)
936 rtx new_reg = ssa_rename_to_lookup (x);
938 if (new_reg != NULL_RTX && new_reg != RENAME_NO_RTX)
940 if (GET_MODE (x) != GET_MODE (new_reg))
941 abort ();
942 *ptr = new_reg;
944 /* Else this is a use before a set. Warn? */
946 return -1;
948 case CLOBBER:
949 /* There is considerable debate on how CLOBBERs ought to be
950 handled in SSA. For now, we're keeping the CLOBBERs, which
951 means that we don't really have SSA form. There are a couple
952 of proposals for how to fix this problem, but neither is
953 implemented yet. */
955 rtx dest = XCEXP (x, 0, CLOBBER);
956 if (REG_P (dest))
958 if (CONVERT_REGISTER_TO_SSA_P (REGNO (dest))
959 && REGNO (dest) < ssa_max_reg_num)
961 rtx new_reg = ssa_rename_to_lookup (dest);
962 if (new_reg != NULL_RTX && new_reg != RENAME_NO_RTX)
963 XCEXP (x, 0, CLOBBER) = new_reg;
965 /* Stop traversing. */
966 return -1;
968 else
969 /* Continue traversing. */
970 return 0;
973 case PHI:
974 /* Never muck with the phi. We do that elsewhere, special-like. */
975 return -1;
977 default:
978 /* Anything else, continue traversing. */
979 return 0;
983 static void
984 rename_block (bb, idom)
985 int bb;
986 int *idom;
988 basic_block b = BASIC_BLOCK (bb);
989 edge e;
990 rtx insn, next, last;
991 struct rename_set_data *set_data = NULL;
992 int c;
994 /* Step One: Walk the basic block, adding new names for sets and
995 replacing uses. */
997 next = b->head;
998 last = b->end;
1001 insn = next;
1002 if (INSN_P (insn))
1004 struct rename_context context;
1005 context.done_renames = set_data;
1006 context.new_renames = NULL;
1007 context.current_insn = insn;
1009 start_sequence ();
1010 for_each_rtx (&PATTERN (insn), rename_insn_1, &context);
1011 for_each_rtx (&REG_NOTES (insn), rename_insn_1, &context);
1013 /* Sometimes, we end up with a sequence of insns that
1014 SSA needs to treat as a single insn. Wrap these in a
1015 SEQUENCE. (Any notes now get attached to the SEQUENCE,
1016 not to the old version inner insn.) */
1017 if (get_insns () != NULL_RTX)
1019 rtx seq;
1020 int i;
1022 emit (PATTERN (insn));
1023 seq = gen_sequence ();
1024 /* We really want a SEQUENCE of SETs, not a SEQUENCE
1025 of INSNs. */
1026 for (i = 0; i < XVECLEN (seq, 0); i++)
1027 XVECEXP (seq, 0, i) = PATTERN (XVECEXP (seq, 0, i));
1028 PATTERN (insn) = seq;
1030 end_sequence ();
1032 apply_delayed_renames (&context);
1033 set_data = context.done_renames;
1036 next = NEXT_INSN (insn);
1038 while (insn != last);
1040 /* Step Two: Update the phi nodes of this block's successors. */
1042 for (e = b->succ; e; e = e->succ_next)
1044 if (e->dest == EXIT_BLOCK_PTR)
1045 continue;
1047 insn = first_insn_after_basic_block_note (e->dest);
1049 while (PHI_NODE_P (insn))
1051 rtx phi = PATTERN (insn);
1052 rtx reg;
1054 /* Find out which of our outgoing registers this node is
1055 intended to replace. Note that if this is not the first PHI
1056 node to have been created for this register, we have to
1057 jump through rename links to figure out which register
1058 we're talking about. This can easily be recognized by
1059 noting that the regno is new to this pass. */
1060 reg = SET_DEST (phi);
1061 if (REGNO (reg) >= ssa_max_reg_num)
1062 reg = ssa_rename_from_lookup (REGNO (reg));
1063 if (reg == NULL_RTX)
1064 abort ();
1065 reg = ssa_rename_to_lookup (reg);
1067 /* It is possible for the variable to be uninitialized on
1068 edges in. Reduce the arity of the PHI so that we don't
1069 consider those edges. */
1070 if (reg == NULL || reg == RENAME_NO_RTX)
1072 if (! remove_phi_alternative (phi, bb))
1073 abort ();
1075 else
1077 /* When we created the PHI nodes, we did not know what mode
1078 the register should be. Now that we've found an original,
1079 we can fill that in. */
1080 if (GET_MODE (SET_DEST (phi)) == VOIDmode)
1081 PUT_MODE (SET_DEST (phi), GET_MODE (reg));
1082 else if (GET_MODE (SET_DEST (phi)) != GET_MODE (reg))
1083 abort();
1085 *phi_alternative (phi, bb) = reg;
1086 /* ??? Mark for a new ssa_uses entry. */
1089 insn = NEXT_INSN (insn);
1093 /* Step Three: Do the same to the children of this block in
1094 dominator order. */
1096 for (c = 0; c < n_basic_blocks; ++c)
1097 if (idom[c] == bb)
1098 rename_block (c, idom);
1100 /* Step Four: Update the sets to refer to their new register,
1101 and restore ssa_rename_to to its previous state. */
1103 while (set_data)
1105 struct rename_set_data *next;
1106 rtx old_reg = *set_data->reg_loc;
1108 if (*set_data->reg_loc != set_data->old_reg)
1109 abort();
1110 *set_data->reg_loc = set_data->new_reg;
1112 ssa_rename_to_insert (old_reg, set_data->prev_reg);
1114 next = set_data->next;
1115 free (set_data);
1116 set_data = next;
1120 static void
1121 rename_registers (nregs, idom)
1122 int nregs;
1123 int *idom;
1125 VARRAY_RTX_INIT (ssa_definition, nregs * 3, "ssa_definition");
1126 VARRAY_RTX_INIT (ssa_uses, nregs * 3, "ssa_uses");
1127 ssa_rename_from_initialize ();
1129 ssa_rename_to_pseudo = (rtx *) alloca (nregs * sizeof(rtx));
1130 memset ((char *) ssa_rename_to_pseudo, 0, nregs * sizeof(rtx));
1131 memset ((char *) ssa_rename_to_hard, 0,
1132 FIRST_PSEUDO_REGISTER * NUM_MACHINE_MODES * sizeof (rtx));
1134 rename_block (0, idom);
1136 /* ??? Update basic_block_live_at_start, and other flow info
1137 as needed. */
1139 ssa_rename_to_pseudo = NULL;
1142 /* The main entry point for moving to SSA. */
1144 void
1145 convert_to_ssa ()
1147 /* Element I is the set of blocks that set register I. */
1148 sbitmap *evals;
1150 /* Dominator bitmaps. */
1151 sbitmap *dfs;
1152 sbitmap *idfs;
1154 /* Element I is the immediate dominator of block I. */
1155 int *idom;
1157 int nregs;
1159 /* Don't do it twice. */
1160 if (in_ssa_form)
1161 abort ();
1163 /* Need global_live_at_{start,end} up to date. */
1164 life_analysis (get_insns (), NULL, PROP_KILL_DEAD_CODE | PROP_SCAN_DEAD_CODE);
1166 idom = (int *) alloca (n_basic_blocks * sizeof (int));
1167 memset ((void *)idom, -1, (size_t)n_basic_blocks * sizeof (int));
1168 calculate_dominance_info (idom, NULL, CDI_DOMINATORS);
1170 if (rtl_dump_file)
1172 int i;
1173 fputs (";; Immediate Dominators:\n", rtl_dump_file);
1174 for (i = 0; i < n_basic_blocks; ++i)
1175 fprintf (rtl_dump_file, ";\t%3d = %3d\n", i, idom[i]);
1176 fflush (rtl_dump_file);
1179 /* Compute dominance frontiers. */
1181 dfs = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
1182 compute_dominance_frontiers (dfs, idom);
1184 if (rtl_dump_file)
1186 dump_sbitmap_vector (rtl_dump_file, ";; Dominance Frontiers:",
1187 "; Basic Block", dfs, n_basic_blocks);
1188 fflush (rtl_dump_file);
1191 /* Compute register evaluations. */
1193 ssa_max_reg_num = max_reg_num();
1194 nregs = ssa_max_reg_num;
1195 evals = sbitmap_vector_alloc (nregs, n_basic_blocks);
1196 find_evaluations (evals, nregs);
1198 /* Compute the iterated dominance frontier for each register. */
1200 idfs = sbitmap_vector_alloc (nregs, n_basic_blocks);
1201 compute_iterated_dominance_frontiers (idfs, dfs, evals, nregs);
1203 if (rtl_dump_file)
1205 dump_sbitmap_vector (rtl_dump_file, ";; Iterated Dominance Frontiers:",
1206 "; Register", idfs, nregs);
1207 fflush (rtl_dump_file);
1210 /* Insert the phi nodes. */
1212 insert_phi_nodes (idfs, evals, nregs);
1214 /* Rename the registers to satisfy SSA. */
1216 rename_registers (nregs, idom);
1218 /* All done! Clean up and go home. */
1220 sbitmap_vector_free (dfs);
1221 sbitmap_vector_free (evals);
1222 sbitmap_vector_free (idfs);
1223 in_ssa_form = 1;
1225 reg_scan (get_insns (), max_reg_num (), 1);
1228 /* REG is the representative temporary of its partition. Add it to the
1229 set of nodes to be processed, if it hasn't been already. Return the
1230 index of this register in the node set. */
1232 static inline int
1233 ephi_add_node (reg, nodes, n_nodes)
1234 rtx reg, *nodes;
1235 int *n_nodes;
1237 int i;
1238 for (i = *n_nodes - 1; i >= 0; --i)
1239 if (REGNO (reg) == REGNO (nodes[i]))
1240 return i;
1242 nodes[i = (*n_nodes)++] = reg;
1243 return i;
1246 /* Part one of the topological sort. This is a forward (downward) search
1247 through the graph collecting a stack of nodes to process. Assuming no
1248 cycles, the nodes at top of the stack when we are finished will have
1249 no other dependancies. */
1251 static int *
1252 ephi_forward (t, visited, succ, tstack)
1253 int t;
1254 sbitmap visited;
1255 sbitmap *succ;
1256 int *tstack;
1258 int s;
1260 SET_BIT (visited, t);
1262 EXECUTE_IF_SET_IN_SBITMAP (succ[t], 0, s,
1264 if (! TEST_BIT (visited, s))
1265 tstack = ephi_forward (s, visited, succ, tstack);
1268 *tstack++ = t;
1269 return tstack;
1272 /* Part two of the topological sort. The is a backward search through
1273 a cycle in the graph, copying the data forward as we go. */
1275 static void
1276 ephi_backward (t, visited, pred, nodes)
1277 int t;
1278 sbitmap visited, *pred;
1279 rtx *nodes;
1281 int p;
1283 SET_BIT (visited, t);
1285 EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
1287 if (! TEST_BIT (visited, p))
1289 ephi_backward (p, visited, pred, nodes);
1290 emit_move_insn (nodes[p], nodes[t]);
1295 /* Part two of the topological sort. Create the copy for a register
1296 and any cycle of which it is a member. */
1298 static void
1299 ephi_create (t, visited, pred, succ, nodes)
1300 int t;
1301 sbitmap visited, *pred, *succ;
1302 rtx *nodes;
1304 rtx reg_u = NULL_RTX;
1305 int unvisited_predecessors = 0;
1306 int p;
1308 /* Iterate through the predecessor list looking for unvisited nodes.
1309 If there are any, we have a cycle, and must deal with that. At
1310 the same time, look for a visited predecessor. If there is one,
1311 we won't need to create a temporary. */
1313 EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
1315 if (! TEST_BIT (visited, p))
1316 unvisited_predecessors = 1;
1317 else if (!reg_u)
1318 reg_u = nodes[p];
1321 if (unvisited_predecessors)
1323 /* We found a cycle. Copy out one element of the ring (if necessary),
1324 then traverse the ring copying as we go. */
1326 if (!reg_u)
1328 reg_u = gen_reg_rtx (GET_MODE (nodes[t]));
1329 emit_move_insn (reg_u, nodes[t]);
1332 EXECUTE_IF_SET_IN_SBITMAP (pred[t], 0, p,
1334 if (! TEST_BIT (visited, p))
1336 ephi_backward (p, visited, pred, nodes);
1337 emit_move_insn (nodes[p], reg_u);
1341 else
1343 /* No cycle. Just copy the value from a successor. */
1345 int s;
1346 EXECUTE_IF_SET_IN_SBITMAP (succ[t], 0, s,
1348 SET_BIT (visited, t);
1349 emit_move_insn (nodes[t], nodes[s]);
1350 return;
1355 /* Convert the edge to normal form. */
1357 static void
1358 eliminate_phi (e, reg_partition)
1359 edge e;
1360 partition reg_partition;
1362 int n_nodes;
1363 sbitmap *pred, *succ;
1364 sbitmap visited;
1365 rtx *nodes;
1366 int *stack, *tstack;
1367 rtx insn;
1368 int i;
1370 /* Collect an upper bound on the number of registers needing processing. */
1372 insn = first_insn_after_basic_block_note (e->dest);
1374 n_nodes = 0;
1375 while (PHI_NODE_P (insn))
1377 insn = next_nonnote_insn (insn);
1378 n_nodes += 2;
1381 if (n_nodes == 0)
1382 return;
1384 /* Build the auxilliary graph R(B).
1386 The nodes of the graph are the members of the register partition
1387 present in Phi(B). There is an edge from FIND(T0)->FIND(T1) for
1388 each T0 = PHI(...,T1,...), where T1 is for the edge from block C. */
1390 nodes = (rtx *) alloca (n_nodes * sizeof(rtx));
1391 pred = sbitmap_vector_alloc (n_nodes, n_nodes);
1392 succ = sbitmap_vector_alloc (n_nodes, n_nodes);
1393 sbitmap_vector_zero (pred, n_nodes);
1394 sbitmap_vector_zero (succ, n_nodes);
1396 insn = first_insn_after_basic_block_note (e->dest);
1398 n_nodes = 0;
1399 for (; PHI_NODE_P (insn); insn = next_nonnote_insn (insn))
1401 rtx* preg = phi_alternative (PATTERN (insn), e->src->index);
1402 rtx tgt = SET_DEST (PATTERN (insn));
1403 rtx reg;
1405 /* There may be no phi alternative corresponding to this edge.
1406 This indicates that the phi variable is undefined along this
1407 edge. */
1408 if (preg == NULL)
1409 continue;
1410 reg = *preg;
1412 if (GET_CODE (reg) != REG || GET_CODE (tgt) != REG)
1413 abort();
1415 reg = regno_reg_rtx[partition_find (reg_partition, REGNO (reg))];
1416 tgt = regno_reg_rtx[partition_find (reg_partition, REGNO (tgt))];
1417 /* If the two registers are already in the same partition,
1418 nothing will need to be done. */
1419 if (reg != tgt)
1421 int ireg, itgt;
1423 ireg = ephi_add_node (reg, nodes, &n_nodes);
1424 itgt = ephi_add_node (tgt, nodes, &n_nodes);
1426 SET_BIT (pred[ireg], itgt);
1427 SET_BIT (succ[itgt], ireg);
1431 if (n_nodes == 0)
1432 goto out;
1434 /* Begin a topological sort of the graph. */
1436 visited = sbitmap_alloc (n_nodes);
1437 sbitmap_zero (visited);
1439 tstack = stack = (int *) alloca (n_nodes * sizeof (int));
1441 for (i = 0; i < n_nodes; ++i)
1442 if (! TEST_BIT (visited, i))
1443 tstack = ephi_forward (i, visited, succ, tstack);
1445 sbitmap_zero (visited);
1447 /* As we find a solution to the tsort, collect the implementation
1448 insns in a sequence. */
1449 start_sequence ();
1451 while (tstack != stack)
1453 i = *--tstack;
1454 if (! TEST_BIT (visited, i))
1455 ephi_create (i, visited, pred, succ, nodes);
1458 insn = gen_sequence ();
1459 end_sequence ();
1460 insert_insn_on_edge (insn, e);
1461 if (rtl_dump_file)
1462 fprintf (rtl_dump_file, "Emitting copy on edge (%d,%d)\n",
1463 e->src->index, e->dest->index);
1465 sbitmap_free (visited);
1466 out:
1467 sbitmap_vector_free (pred);
1468 sbitmap_vector_free (succ);
1471 /* For basic block B, consider all phi insns which provide an
1472 alternative corresponding to an incoming abnormal critical edge.
1473 Place the phi alternative corresponding to that abnormal critical
1474 edge in the same register class as the destination of the set.
1476 From Morgan, p. 178:
1478 For each abnormal critical edge (C, B),
1479 if T0 = phi (T1, ..., Ti, ..., Tm) is a phi node in B,
1480 and C is the ith predecessor of B,
1481 then T0 and Ti must be equivalent.
1483 Return non-zero iff any such cases were found for which the two
1484 regs were not already in the same class. */
1486 static int
1487 make_regs_equivalent_over_bad_edges (bb, reg_partition)
1488 int bb;
1489 partition reg_partition;
1491 int changed = 0;
1492 basic_block b = BASIC_BLOCK (bb);
1493 rtx phi;
1495 /* Advance to the first phi node. */
1496 phi = first_insn_after_basic_block_note (b);
1498 /* Scan all the phi nodes. */
1499 for (;
1500 PHI_NODE_P (phi);
1501 phi = next_nonnote_insn (phi))
1503 edge e;
1504 int tgt_regno;
1505 rtx set = PATTERN (phi);
1506 rtx tgt = SET_DEST (set);
1508 /* The set target is expected to be an SSA register. */
1509 if (GET_CODE (tgt) != REG
1510 || !CONVERT_REGISTER_TO_SSA_P (REGNO (tgt)))
1511 abort ();
1512 tgt_regno = REGNO (tgt);
1514 /* Scan incoming abnormal critical edges. */
1515 for (e = b->pred; e; e = e->pred_next)
1516 if ((e->flags & (EDGE_ABNORMAL | EDGE_CRITICAL))
1517 == (EDGE_ABNORMAL | EDGE_CRITICAL))
1519 rtx *alt = phi_alternative (set, e->src->index);
1520 int alt_regno;
1522 /* If there is no alternative corresponding to this edge,
1523 the value is undefined along the edge, so just go on. */
1524 if (alt == 0)
1525 continue;
1527 /* The phi alternative is expected to be an SSA register. */
1528 if (GET_CODE (*alt) != REG
1529 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt)))
1530 abort ();
1531 alt_regno = REGNO (*alt);
1533 /* If the set destination and the phi alternative aren't
1534 already in the same class... */
1535 if (partition_find (reg_partition, tgt_regno)
1536 != partition_find (reg_partition, alt_regno))
1538 /* ... make them such. */
1539 if (conflicting_hard_regs_p (tgt_regno, alt_regno))
1540 /* It is illegal to unify a hard register with a
1541 different register. */
1542 abort ();
1544 partition_union (reg_partition,
1545 tgt_regno, alt_regno);
1546 ++changed;
1551 return changed;
1554 /* Consider phi insns in basic block BB pairwise. If the set target
1555 of both isns are equivalent pseudos, make the corresponding phi
1556 alternatives in each phi corresponding equivalent.
1558 Return nonzero if any new register classes were unioned. */
1560 static int
1561 make_equivalent_phi_alternatives_equivalent (bb, reg_partition)
1562 int bb;
1563 partition reg_partition;
1565 int changed = 0;
1566 basic_block b = BASIC_BLOCK (bb);
1567 rtx phi;
1569 /* Advance to the first phi node. */
1570 phi = first_insn_after_basic_block_note (b);
1572 /* Scan all the phi nodes. */
1573 for (;
1574 PHI_NODE_P (phi);
1575 phi = next_nonnote_insn (phi))
1577 rtx set = PATTERN (phi);
1578 /* The regno of the destination of the set. */
1579 int tgt_regno = REGNO (SET_DEST (PATTERN (phi)));
1581 rtx phi2 = next_nonnote_insn (phi);
1583 /* Scan all phi nodes following this one. */
1584 for (;
1585 PHI_NODE_P (phi2);
1586 phi2 = next_nonnote_insn (phi2))
1588 rtx set2 = PATTERN (phi2);
1589 /* The regno of the destination of the set. */
1590 int tgt2_regno = REGNO (SET_DEST (set2));
1592 /* Are the set destinations equivalent regs? */
1593 if (partition_find (reg_partition, tgt_regno) ==
1594 partition_find (reg_partition, tgt2_regno))
1596 edge e;
1597 /* Scan over edges. */
1598 for (e = b->pred; e; e = e->pred_next)
1600 int pred_block = e->src->index;
1601 /* Identify the phi alternatives from both phi
1602 nodes corresponding to this edge. */
1603 rtx *alt = phi_alternative (set, pred_block);
1604 rtx *alt2 = phi_alternative (set2, pred_block);
1606 /* If one of the phi nodes doesn't have a
1607 corresponding alternative, just skip it. */
1608 if (alt == 0 || alt2 == 0)
1609 continue;
1611 /* Both alternatives should be SSA registers. */
1612 if (GET_CODE (*alt) != REG
1613 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt)))
1614 abort ();
1615 if (GET_CODE (*alt2) != REG
1616 || !CONVERT_REGISTER_TO_SSA_P (REGNO (*alt2)))
1617 abort ();
1619 /* If the alternatives aren't already in the same
1620 class ... */
1621 if (partition_find (reg_partition, REGNO (*alt))
1622 != partition_find (reg_partition, REGNO (*alt2)))
1624 /* ... make them so. */
1625 if (conflicting_hard_regs_p (REGNO (*alt), REGNO (*alt2)))
1626 /* It is illegal to unify a hard register with
1627 a different register. */
1628 abort ();
1630 partition_union (reg_partition,
1631 REGNO (*alt), REGNO (*alt2));
1632 ++changed;
1639 return changed;
1642 /* Compute a conservative partition of outstanding pseudo registers.
1643 See Morgan 7.3.1. */
1645 static partition
1646 compute_conservative_reg_partition ()
1648 int bb;
1649 int changed = 0;
1651 /* We don't actually work with hard registers, but it's easier to
1652 carry them around anyway rather than constantly doing register
1653 number arithmetic. */
1654 partition p =
1655 partition_new (ssa_definition->num_elements);
1657 /* The first priority is to make sure registers that might have to
1658 be copied on abnormal critical edges are placed in the same
1659 partition. This saves us from having to split abnormal critical
1660 edges. */
1661 for (bb = n_basic_blocks; --bb >= 0; )
1662 changed += make_regs_equivalent_over_bad_edges (bb, p);
1664 /* Now we have to insure that corresponding arguments of phi nodes
1665 assigning to corresponding regs are equivalent. Iterate until
1666 nothing changes. */
1667 while (changed > 0)
1669 changed = 0;
1670 for (bb = n_basic_blocks; --bb >= 0; )
1671 changed += make_equivalent_phi_alternatives_equivalent (bb, p);
1674 return p;
1677 /* The following functions compute a register partition that attempts
1678 to eliminate as many reg copies and phi node copies as possible by
1679 coalescing registers. This is the strategy:
1681 1. As in the conservative case, the top priority is to coalesce
1682 registers that otherwise would cause copies to be placed on
1683 abnormal critical edges (which isn't possible).
1685 2. Figure out which regs are involved (in the LHS or RHS) of
1686 copies and phi nodes. Compute conflicts among these regs.
1688 3. Walk around the instruction stream, placing two regs in the
1689 same class of the partition if one appears on the LHS and the
1690 other on the RHS of a copy or phi node and the two regs don't
1691 conflict. The conflict information of course needs to be
1692 updated.
1694 4. If anything has changed, there may be new opportunities to
1695 coalesce regs, so go back to 2.
1698 /* If REG1 and REG2 don't conflict in CONFLICTS, place them in the
1699 same class of partition P, if they aren't already. Update
1700 CONFLICTS appropriately.
1702 Returns one if REG1 and REG2 were placed in the same class but were
1703 not previously; zero otherwise.
1705 See Morgan figure 11.15. */
1707 static int
1708 coalesce_if_unconflicting (p, conflicts, reg1, reg2)
1709 partition p;
1710 conflict_graph conflicts;
1711 int reg1;
1712 int reg2;
1714 int reg;
1716 /* Work only on SSA registers. */
1717 if (!CONVERT_REGISTER_TO_SSA_P (reg1) || !CONVERT_REGISTER_TO_SSA_P (reg2))
1718 return 0;
1720 /* Find the canonical regs for the classes containing REG1 and
1721 REG2. */
1722 reg1 = partition_find (p, reg1);
1723 reg2 = partition_find (p, reg2);
1725 /* If they're already in the same class, there's nothing to do. */
1726 if (reg1 == reg2)
1727 return 0;
1729 /* If the regs conflict, our hands are tied. */
1730 if (conflicting_hard_regs_p (reg1, reg2) ||
1731 conflict_graph_conflict_p (conflicts, reg1, reg2))
1732 return 0;
1734 /* We're good to go. Put the regs in the same partition. */
1735 partition_union (p, reg1, reg2);
1737 /* Find the new canonical reg for the merged class. */
1738 reg = partition_find (p, reg1);
1740 /* Merge conflicts from the two previous classes. */
1741 conflict_graph_merge_regs (conflicts, reg, reg1);
1742 conflict_graph_merge_regs (conflicts, reg, reg2);
1744 return 1;
1747 /* For each register copy insn in basic block BB, place the LHS and
1748 RHS regs in the same class in partition P if they do not conflict
1749 according to CONFLICTS.
1751 Returns the number of changes that were made to P.
1753 See Morgan figure 11.14. */
1755 static int
1756 coalesce_regs_in_copies (bb, p, conflicts)
1757 basic_block bb;
1758 partition p;
1759 conflict_graph conflicts;
1761 int changed = 0;
1762 rtx insn;
1763 rtx end = bb->end;
1765 /* Scan the instruction stream of the block. */
1766 for (insn = bb->head; insn != end; insn = NEXT_INSN (insn))
1768 rtx pattern;
1769 rtx src;
1770 rtx dest;
1772 /* If this isn't a set insn, go to the next insn. */
1773 if (GET_CODE (insn) != INSN)
1774 continue;
1775 pattern = PATTERN (insn);
1776 if (GET_CODE (pattern) != SET)
1777 continue;
1779 src = SET_SRC (pattern);
1780 dest = SET_DEST (pattern);
1782 /* We're only looking for copies. */
1783 if (GET_CODE (src) != REG || GET_CODE (dest) != REG)
1784 continue;
1786 /* Coalesce only if the reg modes are the same. As long as
1787 each reg's rtx is unique, it can have only one mode, so two
1788 pseudos of different modes can't be coalesced into one.
1790 FIXME: We can probably get around this by inserting SUBREGs
1791 where appropriate, but for now we don't bother. */
1792 if (GET_MODE (src) != GET_MODE (dest))
1793 continue;
1795 /* Found a copy; see if we can use the same reg for both the
1796 source and destination (and thus eliminate the copy,
1797 ultimately). */
1798 changed += coalesce_if_unconflicting (p, conflicts,
1799 REGNO (src), REGNO (dest));
1802 return changed;
1805 struct phi_coalesce_context
1807 partition p;
1808 conflict_graph conflicts;
1809 int changed;
1812 /* Callback function for for_each_successor_phi. If the set
1813 destination and the phi alternative regs do not conflict, place
1814 them in the same paritition class. DATA is a pointer to a
1815 phi_coalesce_context struct. */
1817 static int
1818 coalesce_reg_in_phi (insn, dest_regno, src_regno, data)
1819 rtx insn ATTRIBUTE_UNUSED;
1820 int dest_regno;
1821 int src_regno;
1822 void *data;
1824 struct phi_coalesce_context *context =
1825 (struct phi_coalesce_context *) data;
1827 /* Attempt to use the same reg, if they don't conflict. */
1828 context->changed
1829 += coalesce_if_unconflicting (context->p, context->conflicts,
1830 dest_regno, src_regno);
1831 return 0;
1834 /* For each alternative in a phi function corresponding to basic block
1835 BB (in phi nodes in successor block to BB), place the reg in the
1836 phi alternative and the reg to which the phi value is set into the
1837 same class in partition P, if allowed by CONFLICTS.
1839 Return the number of changes that were made to P.
1841 See Morgan figure 11.14. */
1843 static int
1844 coalesce_regs_in_successor_phi_nodes (bb, p, conflicts)
1845 basic_block bb;
1846 partition p;
1847 conflict_graph conflicts;
1849 struct phi_coalesce_context context;
1850 context.p = p;
1851 context.conflicts = conflicts;
1852 context.changed = 0;
1854 for_each_successor_phi (bb, &coalesce_reg_in_phi, &context);
1856 return context.changed;
1859 /* Compute and return a partition of pseudos. Where possible,
1860 non-conflicting pseudos are placed in the same class.
1862 The caller is responsible for deallocating the returned partition. */
1864 static partition
1865 compute_coalesced_reg_partition ()
1867 int bb;
1868 int changed = 0;
1870 partition p =
1871 partition_new (ssa_definition->num_elements);
1873 /* The first priority is to make sure registers that might have to
1874 be copied on abnormal critical edges are placed in the same
1875 partition. This saves us from having to split abnormal critical
1876 edges (which can't be done). */
1877 for (bb = n_basic_blocks; --bb >= 0; )
1878 make_regs_equivalent_over_bad_edges (bb, p);
1882 regset_head phi_set;
1883 conflict_graph conflicts;
1885 changed = 0;
1887 /* Build the set of registers involved in phi nodes, either as
1888 arguments to the phi function or as the target of a set. */
1889 INITIALIZE_REG_SET (phi_set);
1890 mark_phi_and_copy_regs (&phi_set);
1892 /* Compute conflicts. */
1893 conflicts = conflict_graph_compute (&phi_set, p);
1895 /* FIXME: Better would be to process most frequently executed
1896 blocks first, so that most frequently executed copies would
1897 be more likely to be removed by register coalescing. But any
1898 order will generate correct, if non-optimal, results. */
1899 for (bb = n_basic_blocks; --bb >= 0; )
1901 basic_block block = BASIC_BLOCK (bb);
1902 changed += coalesce_regs_in_copies (block, p, conflicts);
1903 changed +=
1904 coalesce_regs_in_successor_phi_nodes (block, p, conflicts);
1907 conflict_graph_delete (conflicts);
1909 while (changed > 0);
1911 return p;
1914 /* Mark the regs in a phi node. PTR is a phi expression or one of its
1915 components (a REG or a CONST_INT). DATA is a reg set in which to
1916 set all regs. Called from for_each_rtx. */
1918 static int
1919 mark_reg_in_phi (ptr, data)
1920 rtx *ptr;
1921 void *data;
1923 rtx expr = *ptr;
1924 regset set = (regset) data;
1926 switch (GET_CODE (expr))
1928 case REG:
1929 SET_REGNO_REG_SET (set, REGNO (expr));
1930 /* Fall through. */
1931 case CONST_INT:
1932 case PHI:
1933 return 0;
1934 default:
1935 abort ();
1939 /* Mark in PHI_SET all pseudos that are used in a phi node -- either
1940 set from a phi expression, or used as an argument in one. Also
1941 mark regs that are the source or target of a reg copy. Uses
1942 ssa_definition. */
1944 static void
1945 mark_phi_and_copy_regs (phi_set)
1946 regset phi_set;
1948 unsigned int reg;
1950 /* Scan the definitions of all regs. */
1951 for (reg = 0; reg < VARRAY_SIZE (ssa_definition); ++reg)
1952 if (CONVERT_REGISTER_TO_SSA_P (reg))
1954 rtx insn = VARRAY_RTX (ssa_definition, reg);
1955 rtx pattern;
1956 rtx src;
1958 if (insn == NULL)
1959 continue;
1960 pattern = PATTERN (insn);
1961 /* Sometimes we get PARALLEL insns. These aren't phi nodes or
1962 copies. */
1963 if (GET_CODE (pattern) != SET)
1964 continue;
1965 src = SET_SRC (pattern);
1967 if (GET_CODE (src) == REG)
1969 /* It's a reg copy. */
1970 SET_REGNO_REG_SET (phi_set, reg);
1971 SET_REGNO_REG_SET (phi_set, REGNO (src));
1973 else if (GET_CODE (src) == PHI)
1975 /* It's a phi node. Mark the reg being set. */
1976 SET_REGNO_REG_SET (phi_set, reg);
1977 /* Mark the regs used in the phi function. */
1978 for_each_rtx (&src, mark_reg_in_phi, phi_set);
1980 /* ... else nothing to do. */
1984 /* Rename regs in insn PTR that are equivalent. DATA is the register
1985 partition which specifies equivalences. */
1987 static int
1988 rename_equivalent_regs_in_insn (ptr, data)
1989 rtx *ptr;
1990 void* data;
1992 rtx x = *ptr;
1993 partition reg_partition = (partition) data;
1995 if (x == NULL_RTX)
1996 return 0;
1998 switch (GET_CODE (x))
2000 case REG:
2001 if (CONVERT_REGISTER_TO_SSA_P (REGNO (x)))
2003 unsigned int regno = REGNO (x);
2004 unsigned int new_regno = partition_find (reg_partition, regno);
2005 rtx canonical_element_rtx = ssa_rename_from_lookup (new_regno);
2007 if (canonical_element_rtx != NULL_RTX &&
2008 HARD_REGISTER_P (canonical_element_rtx))
2010 if (REGNO (canonical_element_rtx) != regno)
2011 *ptr = canonical_element_rtx;
2013 else if (regno != new_regno)
2015 rtx new_reg = regno_reg_rtx[new_regno];
2016 if (GET_MODE (x) != GET_MODE (new_reg))
2017 abort ();
2018 *ptr = new_reg;
2021 return -1;
2023 case PHI:
2024 /* No need to rename the phi nodes. We'll check equivalence
2025 when inserting copies. */
2026 return -1;
2028 default:
2029 /* Anything else, continue traversing. */
2030 return 0;
2034 /* Record the register's canonical element stored in SRFP in the
2035 canonical_elements sbitmap packaged in DATA. This function is used
2036 as a callback function for traversing ssa_rename_from. */
2038 static int
2039 record_canonical_element_1 (srfp, data)
2040 void **srfp;
2041 void *data;
2043 unsigned int reg = ((ssa_rename_from_pair *) *srfp)->reg;
2044 sbitmap canonical_elements =
2045 ((struct ssa_rename_from_hash_table_data *) data)->canonical_elements;
2046 partition reg_partition =
2047 ((struct ssa_rename_from_hash_table_data *) data)->reg_partition;
2049 SET_BIT (canonical_elements, partition_find (reg_partition, reg));
2050 return 1;
2053 /* For each class in the REG_PARTITION corresponding to a particular
2054 hard register and machine mode, check that there are no other
2055 classes with the same hard register and machine mode. Returns
2056 nonzero if this is the case, i.e., the partition is acceptable. */
2058 static int
2059 check_hard_regs_in_partition (reg_partition)
2060 partition reg_partition;
2062 /* CANONICAL_ELEMENTS has a nonzero bit if a class with the given register
2063 number and machine mode has already been seen. This is a
2064 problem with the partition. */
2065 sbitmap canonical_elements;
2066 int element_index;
2067 int already_seen[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
2068 int reg;
2069 int mach_mode;
2071 /* Collect a list of canonical elements. */
2072 canonical_elements = sbitmap_alloc (max_reg_num ());
2073 sbitmap_zero (canonical_elements);
2074 ssa_rename_from_traverse (&record_canonical_element_1,
2075 canonical_elements, reg_partition);
2077 /* We have not seen any hard register uses. */
2078 for (reg = 0; reg < FIRST_PSEUDO_REGISTER; ++reg)
2079 for (mach_mode = 0; mach_mode < NUM_MACHINE_MODES; ++mach_mode)
2080 already_seen[reg][mach_mode] = 0;
2082 /* Check for classes with the same hard register and machine mode. */
2083 EXECUTE_IF_SET_IN_SBITMAP (canonical_elements, 0, element_index,
2085 rtx hard_reg_rtx = ssa_rename_from_lookup (element_index);
2086 if (hard_reg_rtx != NULL_RTX &&
2087 HARD_REGISTER_P (hard_reg_rtx) &&
2088 already_seen[REGNO (hard_reg_rtx)][GET_MODE (hard_reg_rtx)] != 0)
2089 /* Two distinct partition classes should be mapped to the same
2090 hard register. */
2091 return 0;
2094 sbitmap_free (canonical_elements);
2096 return 1;
2099 /* Rename regs that are equivalent in REG_PARTITION. Also collapse
2100 any SEQUENCE insns. */
2102 static void
2103 rename_equivalent_regs (reg_partition)
2104 partition reg_partition;
2106 int bb;
2108 for (bb = n_basic_blocks; --bb >= 0; )
2110 basic_block b = BASIC_BLOCK (bb);
2111 rtx next = b->head;
2112 rtx last = b->end;
2113 rtx insn;
2117 insn = next;
2118 if (INSN_P (insn))
2120 for_each_rtx (&PATTERN (insn),
2121 rename_equivalent_regs_in_insn,
2122 reg_partition);
2123 for_each_rtx (&REG_NOTES (insn),
2124 rename_equivalent_regs_in_insn,
2125 reg_partition);
2127 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
2129 rtx s = PATTERN (insn);
2130 int slen = XVECLEN (s, 0);
2131 int i;
2133 if (slen <= 1)
2134 abort();
2136 PATTERN (insn) = XVECEXP (s, 0, slen-1);
2137 for (i = 0; i < slen - 1; i++)
2138 emit_block_insn_before (XVECEXP (s, 0, i), insn, b);
2142 next = NEXT_INSN (insn);
2144 while (insn != last);
2148 /* The main entry point for moving from SSA. */
2150 void
2151 convert_from_ssa()
2153 int bb;
2154 partition reg_partition;
2155 rtx insns = get_insns ();
2157 /* Need global_live_at_{start,end} up to date. */
2158 life_analysis (insns, NULL,
2159 PROP_KILL_DEAD_CODE | PROP_SCAN_DEAD_CODE | PROP_DEATH_NOTES);
2161 /* Figure out which regs in copies and phi nodes don't conflict and
2162 therefore can be coalesced. */
2163 if (conservative_reg_partition)
2164 reg_partition = compute_conservative_reg_partition ();
2165 else
2166 reg_partition = compute_coalesced_reg_partition ();
2168 if (!check_hard_regs_in_partition (reg_partition))
2169 /* Two separate partitions should correspond to the same hard
2170 register but do not. */
2171 abort ();
2173 rename_equivalent_regs (reg_partition);
2175 /* Eliminate the PHI nodes. */
2176 for (bb = n_basic_blocks; --bb >= 0; )
2178 basic_block b = BASIC_BLOCK (bb);
2179 edge e;
2181 for (e = b->pred; e; e = e->pred_next)
2182 if (e->src != ENTRY_BLOCK_PTR)
2183 eliminate_phi (e, reg_partition);
2186 partition_delete (reg_partition);
2188 /* Actually delete the PHI nodes. */
2189 for (bb = n_basic_blocks; --bb >= 0; )
2191 rtx insn = BLOCK_HEAD (bb);
2193 while (1)
2195 /* If this is a PHI node delete it. */
2196 if (PHI_NODE_P (insn))
2198 if (insn == BLOCK_END (bb))
2199 BLOCK_END (bb) = PREV_INSN (insn);
2200 insn = delete_insn (insn);
2202 /* Since all the phi nodes come at the beginning of the
2203 block, if we find an ordinary insn, we can stop looking
2204 for more phi nodes. */
2205 else if (INSN_P (insn))
2206 break;
2207 /* If we've reached the end of the block, stop. */
2208 else if (insn == BLOCK_END (bb))
2209 break;
2210 else
2211 insn = NEXT_INSN (insn);
2215 /* Commit all the copy nodes needed to convert out of SSA form. */
2216 commit_edge_insertions ();
2218 in_ssa_form = 0;
2220 count_or_remove_death_notes (NULL, 1);
2222 /* Deallocate the data structures. */
2223 VARRAY_FREE (ssa_definition);
2224 VARRAY_FREE (ssa_uses);
2225 ssa_rename_from_free ();
2228 /* Scan phi nodes in successors to BB. For each such phi node that
2229 has a phi alternative value corresponding to BB, invoke FN. FN
2230 is passed the entire phi node insn, the regno of the set
2231 destination, the regno of the phi argument corresponding to BB,
2232 and DATA.
2234 If FN ever returns non-zero, stops immediately and returns this
2235 value. Otherwise, returns zero. */
2238 for_each_successor_phi (bb, fn, data)
2239 basic_block bb;
2240 successor_phi_fn fn;
2241 void *data;
2243 edge e;
2245 if (bb == EXIT_BLOCK_PTR)
2246 return 0;
2248 /* Scan outgoing edges. */
2249 for (e = bb->succ; e != NULL; e = e->succ_next)
2251 rtx insn;
2253 basic_block successor = e->dest;
2254 if (successor == ENTRY_BLOCK_PTR
2255 || successor == EXIT_BLOCK_PTR)
2256 continue;
2258 /* Advance to the first non-label insn of the successor block. */
2259 insn = first_insn_after_basic_block_note (successor);
2261 if (insn == NULL)
2262 continue;
2264 /* Scan phi nodes in the successor. */
2265 for ( ; PHI_NODE_P (insn); insn = NEXT_INSN (insn))
2267 int result;
2268 rtx phi_set = PATTERN (insn);
2269 rtx *alternative = phi_alternative (phi_set, bb->index);
2270 rtx phi_src;
2272 /* This phi function may not have an alternative
2273 corresponding to the incoming edge, indicating the
2274 assigned variable is not defined along the edge. */
2275 if (alternative == NULL)
2276 continue;
2277 phi_src = *alternative;
2279 /* Invoke the callback. */
2280 result = (*fn) (insn, REGNO (SET_DEST (phi_set)),
2281 REGNO (phi_src), data);
2283 /* Terminate if requested. */
2284 if (result != 0)
2285 return result;
2289 return 0;
2292 /* Assuming the ssa_rename_from mapping has been established, yields
2293 nonzero if 1) only one SSA register of REG1 and REG2 comes from a
2294 hard register or 2) both SSA registers REG1 and REG2 come from
2295 different hard registers. */
2297 static int
2298 conflicting_hard_regs_p (reg1, reg2)
2299 int reg1;
2300 int reg2;
2302 int orig_reg1 = original_register (reg1);
2303 int orig_reg2 = original_register (reg2);
2304 if (HARD_REGISTER_NUM_P (orig_reg1) && HARD_REGISTER_NUM_P (orig_reg2)
2305 && orig_reg1 != orig_reg2)
2306 return 1;
2307 if (HARD_REGISTER_NUM_P (orig_reg1) && !HARD_REGISTER_NUM_P (orig_reg2))
2308 return 1;
2309 if (!HARD_REGISTER_NUM_P (orig_reg1) && HARD_REGISTER_NUM_P (orig_reg2))
2310 return 1;
2312 return 0;