* tree-ssa-live.c (live_worklist): Take a stack allocated on
[official-gcc.git] / gcc / ada / sem_ch3.adb
blob609871aa1c8a2f81f4f91a2a530c7f582a285ebb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2005, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Elists; use Elists;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Eval_Fat; use Eval_Fat;
33 with Exp_Ch3; use Exp_Ch3;
34 with Exp_Dist; use Exp_Dist;
35 with Exp_Tss; use Exp_Tss;
36 with Exp_Util; use Exp_Util;
37 with Freeze; use Freeze;
38 with Itypes; use Itypes;
39 with Layout; use Layout;
40 with Lib; use Lib;
41 with Lib.Xref; use Lib.Xref;
42 with Namet; use Namet;
43 with Nmake; use Nmake;
44 with Opt; use Opt;
45 with Restrict; use Restrict;
46 with Rident; use Rident;
47 with Rtsfind; use Rtsfind;
48 with Sem; use Sem;
49 with Sem_Case; use Sem_Case;
50 with Sem_Cat; use Sem_Cat;
51 with Sem_Ch6; use Sem_Ch6;
52 with Sem_Ch7; use Sem_Ch7;
53 with Sem_Ch8; use Sem_Ch8;
54 with Sem_Ch13; use Sem_Ch13;
55 with Sem_Disp; use Sem_Disp;
56 with Sem_Dist; use Sem_Dist;
57 with Sem_Elim; use Sem_Elim;
58 with Sem_Eval; use Sem_Eval;
59 with Sem_Mech; use Sem_Mech;
60 with Sem_Res; use Sem_Res;
61 with Sem_Smem; use Sem_Smem;
62 with Sem_Type; use Sem_Type;
63 with Sem_Util; use Sem_Util;
64 with Sem_Warn; use Sem_Warn;
65 with Stand; use Stand;
66 with Sinfo; use Sinfo;
67 with Snames; use Snames;
68 with Tbuild; use Tbuild;
69 with Ttypes; use Ttypes;
70 with Uintp; use Uintp;
71 with Urealp; use Urealp;
73 package body Sem_Ch3 is
75 -----------------------
76 -- Local Subprograms --
77 -----------------------
79 procedure Build_Derived_Type
80 (N : Node_Id;
81 Parent_Type : Entity_Id;
82 Derived_Type : Entity_Id;
83 Is_Completion : Boolean;
84 Derive_Subps : Boolean := True);
85 -- Create and decorate a Derived_Type given the Parent_Type entity.
86 -- N is the N_Full_Type_Declaration node containing the derived type
87 -- definition. Parent_Type is the entity for the parent type in the derived
88 -- type definition and Derived_Type the actual derived type. Is_Completion
89 -- must be set to False if Derived_Type is the N_Defining_Identifier node
90 -- in N (ie Derived_Type = Defining_Identifier (N)). In this case N is not
91 -- the completion of a private type declaration. If Is_Completion is
92 -- set to True, N is the completion of a private type declaration and
93 -- Derived_Type is different from the defining identifier inside N (i.e.
94 -- Derived_Type /= Defining_Identifier (N)). Derive_Subps indicates whether
95 -- the parent subprograms should be derived. The only case where this
96 -- parameter is False is when Build_Derived_Type is recursively called to
97 -- process an implicit derived full type for a type derived from a private
98 -- type (in that case the subprograms must only be derived for the private
99 -- view of the type).
100 -- ??? These flags need a bit of re-examination and re-documentation:
101 -- ??? are they both necessary (both seem related to the recursion)?
103 procedure Build_Derived_Access_Type
104 (N : Node_Id;
105 Parent_Type : Entity_Id;
106 Derived_Type : Entity_Id);
107 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
108 -- create an implicit base if the parent type is constrained or if the
109 -- subtype indication has a constraint.
111 procedure Build_Derived_Array_Type
112 (N : Node_Id;
113 Parent_Type : Entity_Id;
114 Derived_Type : Entity_Id);
115 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
116 -- create an implicit base if the parent type is constrained or if the
117 -- subtype indication has a constraint.
119 procedure Build_Derived_Concurrent_Type
120 (N : Node_Id;
121 Parent_Type : Entity_Id;
122 Derived_Type : Entity_Id);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived task or pro-
124 -- tected type, inherit entries and protected subprograms, check legality
125 -- of discriminant constraints if any.
127 procedure Build_Derived_Enumeration_Type
128 (N : Node_Id;
129 Parent_Type : Entity_Id;
130 Derived_Type : Entity_Id);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
132 -- type, we must create a new list of literals. Types derived from
133 -- Character and Wide_Character are special-cased.
135 procedure Build_Derived_Numeric_Type
136 (N : Node_Id;
137 Parent_Type : Entity_Id;
138 Derived_Type : Entity_Id);
139 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
140 -- an anonymous base type, and propagate constraint to subtype if needed.
142 procedure Build_Derived_Private_Type
143 (N : Node_Id;
144 Parent_Type : Entity_Id;
145 Derived_Type : Entity_Id;
146 Is_Completion : Boolean;
147 Derive_Subps : Boolean := True);
148 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
149 -- because the parent may or may not have a completion, and the derivation
150 -- may itself be a completion.
152 procedure Build_Derived_Record_Type
153 (N : Node_Id;
154 Parent_Type : Entity_Id;
155 Derived_Type : Entity_Id;
156 Derive_Subps : Boolean := True);
157 -- Subsidiary procedure to Build_Derived_Type and
158 -- Analyze_Private_Extension_Declaration used for tagged and untagged
159 -- record types. All parameters are as in Build_Derived_Type except that
160 -- N, in addition to being an N_Full_Type_Declaration node, can also be an
161 -- N_Private_Extension_Declaration node. See the definition of this routine
162 -- for much more info. Derive_Subps indicates whether subprograms should
163 -- be derived from the parent type. The only case where Derive_Subps is
164 -- False is for an implicit derived full type for a type derived from a
165 -- private type (see Build_Derived_Type).
167 function Inherit_Components
168 (N : Node_Id;
169 Parent_Base : Entity_Id;
170 Derived_Base : Entity_Id;
171 Is_Tagged : Boolean;
172 Inherit_Discr : Boolean;
173 Discs : Elist_Id) return Elist_Id;
174 -- Called from Build_Derived_Record_Type to inherit the components of
175 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
176 -- For more information on derived types and component inheritance please
177 -- consult the comment above the body of Build_Derived_Record_Type.
179 -- N is the original derived type declaration.
181 -- Is_Tagged is set if we are dealing with tagged types.
183 -- If Inherit_Discr is set, Derived_Base inherits its discriminants
184 -- from Parent_Base, otherwise no discriminants are inherited.
186 -- Discs gives the list of constraints that apply to Parent_Base in the
187 -- derived type declaration. If Discs is set to No_Elist, then we have
188 -- the following situation:
190 -- type Parent (D1..Dn : ..) is [tagged] record ...;
191 -- type Derived is new Parent [with ...];
193 -- which gets treated as
195 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
197 -- For untagged types the returned value is an association list. The list
198 -- starts from the association (Parent_Base => Derived_Base), and then it
199 -- contains a sequence of the associations of the form
201 -- (Old_Component => New_Component),
203 -- where Old_Component is the Entity_Id of a component in Parent_Base
204 -- and New_Component is the Entity_Id of the corresponding component
205 -- in Derived_Base. For untagged records, this association list is
206 -- needed when copying the record declaration for the derived base.
207 -- In the tagged case the value returned is irrelevant.
209 procedure Build_Discriminal (Discrim : Entity_Id);
210 -- Create the discriminal corresponding to discriminant Discrim, that is
211 -- the parameter corresponding to Discrim to be used in initialization
212 -- procedures for the type where Discrim is a discriminant. Discriminals
213 -- are not used during semantic analysis, and are not fully defined
214 -- entities until expansion. Thus they are not given a scope until
215 -- initialization procedures are built.
217 function Build_Discriminant_Constraints
218 (T : Entity_Id;
219 Def : Node_Id;
220 Derived_Def : Boolean := False) return Elist_Id;
221 -- Validate discriminant constraints, and return the list of the
222 -- constraints in order of discriminant declarations. T is the
223 -- discriminated unconstrained type. Def is the N_Subtype_Indication
224 -- node where the discriminants constraints for T are specified.
225 -- Derived_Def is True if we are building the discriminant constraints
226 -- in a derived type definition of the form "type D (...) is new T (xxx)".
227 -- In this case T is the parent type and Def is the constraint "(xxx)" on
228 -- T and this routine sets the Corresponding_Discriminant field of the
229 -- discriminants in the derived type D to point to the corresponding
230 -- discriminants in the parent type T.
232 procedure Build_Discriminated_Subtype
233 (T : Entity_Id;
234 Def_Id : Entity_Id;
235 Elist : Elist_Id;
236 Related_Nod : Node_Id;
237 For_Access : Boolean := False);
238 -- Subsidiary procedure to Constrain_Discriminated_Type and to
239 -- Process_Incomplete_Dependents. Given
241 -- T (a possibly discriminated base type)
242 -- Def_Id (a very partially built subtype for T),
244 -- the call completes Def_Id to be the appropriate E_*_Subtype.
246 -- The Elist is the list of discriminant constraints if any (it is set to
247 -- No_Elist if T is not a discriminated type, and to an empty list if
248 -- T has discriminants but there are no discriminant constraints). The
249 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
250 -- The For_Access says whether or not this subtype is really constraining
251 -- an access type. That is its sole purpose is the designated type of an
252 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
253 -- is built to avoid freezing T when the access subtype is frozen.
255 function Build_Scalar_Bound
256 (Bound : Node_Id;
257 Par_T : Entity_Id;
258 Der_T : Entity_Id) return Node_Id;
259 -- The bounds of a derived scalar type are conversions of the bounds of
260 -- the parent type. Optimize the representation if the bounds are literals.
261 -- Needs a more complete spec--what are the parameters exactly, and what
262 -- exactly is the returned value, and how is Bound affected???
264 procedure Build_Underlying_Full_View
265 (N : Node_Id;
266 Typ : Entity_Id;
267 Par : Entity_Id);
268 -- If the completion of a private type is itself derived from a private
269 -- type, or if the full view of a private subtype is itself private, the
270 -- back-end has no way to compute the actual size of this type. We build
271 -- an internal subtype declaration of the proper parent type to convey
272 -- this information. This extra mechanism is needed because a full
273 -- view cannot itself have a full view (it would get clobbered during
274 -- view exchanges).
276 procedure Check_Access_Discriminant_Requires_Limited
277 (D : Node_Id;
278 Loc : Node_Id);
279 -- Check the restriction that the type to which an access discriminant
280 -- belongs must be a concurrent type or a descendant of a type with
281 -- the reserved word 'limited' in its declaration.
283 procedure Check_Delta_Expression (E : Node_Id);
284 -- Check that the expression represented by E is suitable for use
285 -- as a delta expression, i.e. it is of real type and is static.
287 procedure Check_Digits_Expression (E : Node_Id);
288 -- Check that the expression represented by E is suitable for use as
289 -- a digits expression, i.e. it is of integer type, positive and static.
291 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id);
292 -- Validate the initialization of an object declaration. T is the
293 -- required type, and Exp is the initialization expression.
295 procedure Check_Or_Process_Discriminants
296 (N : Node_Id;
297 T : Entity_Id;
298 Prev : Entity_Id := Empty);
299 -- If T is the full declaration of an incomplete or private type, check
300 -- the conformance of the discriminants, otherwise process them. Prev
301 -- is the entity of the partial declaration, if any.
303 procedure Check_Real_Bound (Bound : Node_Id);
304 -- Check given bound for being of real type and static. If not, post an
305 -- appropriate message, and rewrite the bound with the real literal zero.
307 procedure Constant_Redeclaration
308 (Id : Entity_Id;
309 N : Node_Id;
310 T : out Entity_Id);
311 -- Various checks on legality of full declaration of deferred constant.
312 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
313 -- node. The caller has not yet set any attributes of this entity.
315 procedure Convert_Scalar_Bounds
316 (N : Node_Id;
317 Parent_Type : Entity_Id;
318 Derived_Type : Entity_Id;
319 Loc : Source_Ptr);
320 -- For derived scalar types, convert the bounds in the type definition
321 -- to the derived type, and complete their analysis. Given a constraint
322 -- of the form:
323 -- .. new T range Lo .. Hi;
324 -- Lo and Hi are analyzed and resolved with T'Base, the parent_type.
325 -- The bounds of the derived type (the anonymous base) are copies of
326 -- Lo and Hi. Finally, the bounds of the derived subtype are conversions
327 -- of those bounds to the derived_type, so that their typing is
328 -- consistent.
330 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id);
331 -- Copies attributes from array base type T2 to array base type T1.
332 -- Copies only attributes that apply to base types, but not subtypes.
334 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id);
335 -- Copies attributes from array subtype T2 to array subtype T1. Copies
336 -- attributes that apply to both subtypes and base types.
338 procedure Create_Constrained_Components
339 (Subt : Entity_Id;
340 Decl_Node : Node_Id;
341 Typ : Entity_Id;
342 Constraints : Elist_Id);
343 -- Build the list of entities for a constrained discriminated record
344 -- subtype. If a component depends on a discriminant, replace its subtype
345 -- using the discriminant values in the discriminant constraint.
346 -- Subt is the defining identifier for the subtype whose list of
347 -- constrained entities we will create. Decl_Node is the type declaration
348 -- node where we will attach all the itypes created. Typ is the base
349 -- discriminated type for the subtype Subt. Constraints is the list of
350 -- discriminant constraints for Typ.
352 function Constrain_Component_Type
353 (Comp : Entity_Id;
354 Constrained_Typ : Entity_Id;
355 Related_Node : Node_Id;
356 Typ : Entity_Id;
357 Constraints : Elist_Id) return Entity_Id;
358 -- Given a discriminated base type Typ, a list of discriminant constraint
359 -- Constraints for Typ and a component of Typ, with type Compon_Type,
360 -- create and return the type corresponding to Compon_type where all
361 -- discriminant references are replaced with the corresponding
362 -- constraint. If no discriminant references occur in Compon_Typ then
363 -- return it as is. Constrained_Typ is the final constrained subtype to
364 -- which the constrained Compon_Type belongs. Related_Node is the node
365 -- where we will attach all the itypes created.
367 procedure Constrain_Access
368 (Def_Id : in out Entity_Id;
369 S : Node_Id;
370 Related_Nod : Node_Id);
371 -- Apply a list of constraints to an access type. If Def_Id is empty,
372 -- it is an anonymous type created for a subtype indication. In that
373 -- case it is created in the procedure and attached to Related_Nod.
375 procedure Constrain_Array
376 (Def_Id : in out Entity_Id;
377 SI : Node_Id;
378 Related_Nod : Node_Id;
379 Related_Id : Entity_Id;
380 Suffix : Character);
381 -- Apply a list of index constraints to an unconstrained array type. The
382 -- first parameter is the entity for the resulting subtype. A value of
383 -- Empty for Def_Id indicates that an implicit type must be created, but
384 -- creation is delayed (and must be done by this procedure) because other
385 -- subsidiary implicit types must be created first (which is why Def_Id
386 -- is an in/out parameter). The second parameter is a subtype indication
387 -- node for the constrained array to be created (e.g. something of the
388 -- form string (1 .. 10)). Related_Nod gives the place where this type
389 -- has to be inserted in the tree. The Related_Id and Suffix parameters
390 -- are used to build the associated Implicit type name.
392 procedure Constrain_Concurrent
393 (Def_Id : in out Entity_Id;
394 SI : Node_Id;
395 Related_Nod : Node_Id;
396 Related_Id : Entity_Id;
397 Suffix : Character);
398 -- Apply list of discriminant constraints to an unconstrained concurrent
399 -- type.
401 -- SI is the N_Subtype_Indication node containing the constraint and
402 -- the unconstrained type to constrain.
404 -- Def_Id is the entity for the resulting constrained subtype. A value
405 -- of Empty for Def_Id indicates that an implicit type must be created,
406 -- but creation is delayed (and must be done by this procedure) because
407 -- other subsidiary implicit types must be created first (which is why
408 -- Def_Id is an in/out parameter).
410 -- Related_Nod gives the place where this type has to be inserted
411 -- in the tree
413 -- The last two arguments are used to create its external name if needed.
415 function Constrain_Corresponding_Record
416 (Prot_Subt : Entity_Id;
417 Corr_Rec : Entity_Id;
418 Related_Nod : Node_Id;
419 Related_Id : Entity_Id) return Entity_Id;
420 -- When constraining a protected type or task type with discriminants,
421 -- constrain the corresponding record with the same discriminant values.
423 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id);
424 -- Constrain a decimal fixed point type with a digits constraint and/or a
425 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
427 procedure Constrain_Discriminated_Type
428 (Def_Id : Entity_Id;
429 S : Node_Id;
430 Related_Nod : Node_Id;
431 For_Access : Boolean := False);
432 -- Process discriminant constraints of composite type. Verify that values
433 -- have been provided for all discriminants, that the original type is
434 -- unconstrained, and that the types of the supplied expressions match
435 -- the discriminant types. The first three parameters are like in routine
436 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
437 -- of For_Access.
439 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id);
440 -- Constrain an enumeration type with a range constraint. This is
441 -- identical to Constrain_Integer, but for the Ekind of the
442 -- resulting subtype.
444 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id);
445 -- Constrain a floating point type with either a digits constraint
446 -- and/or a range constraint, building a E_Floating_Point_Subtype.
448 procedure Constrain_Index
449 (Index : Node_Id;
450 S : Node_Id;
451 Related_Nod : Node_Id;
452 Related_Id : Entity_Id;
453 Suffix : Character;
454 Suffix_Index : Nat);
455 -- Process an index constraint in a constrained array declaration. The
456 -- constraint can be a subtype name, or a range with or without an
457 -- explicit subtype mark. The index is the corresponding index of the
458 -- unconstrained array. The Related_Id and Suffix parameters are used to
459 -- build the associated Implicit type name.
461 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id);
462 -- Build subtype of a signed or modular integer type
464 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id);
465 -- Constrain an ordinary fixed point type with a range constraint, and
466 -- build an E_Ordinary_Fixed_Point_Subtype entity.
468 procedure Copy_And_Swap (Priv, Full : Entity_Id);
469 -- Copy the Priv entity into the entity of its full declaration
470 -- then swap the two entities in such a manner that the former private
471 -- type is now seen as a full type.
473 procedure Decimal_Fixed_Point_Type_Declaration
474 (T : Entity_Id;
475 Def : Node_Id);
476 -- Create a new decimal fixed point type, and apply the constraint to
477 -- obtain a subtype of this new type.
479 procedure Complete_Private_Subtype
480 (Priv : Entity_Id;
481 Full : Entity_Id;
482 Full_Base : Entity_Id;
483 Related_Nod : Node_Id);
484 -- Complete the implicit full view of a private subtype by setting
485 -- the appropriate semantic fields. If the full view of the parent is
486 -- a record type, build constrained components of subtype.
488 procedure Derived_Standard_Character
489 (N : Node_Id;
490 Parent_Type : Entity_Id;
491 Derived_Type : Entity_Id);
492 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
493 -- derivations from types Standard.Character and Standard.Wide_Character.
495 procedure Derived_Type_Declaration
496 (T : Entity_Id;
497 N : Node_Id;
498 Is_Completion : Boolean);
499 -- Process a derived type declaration. This routine will invoke
500 -- Build_Derived_Type to process the actual derived type definition.
501 -- Parameters N and Is_Completion have the same meaning as in
502 -- Build_Derived_Type. T is the N_Defining_Identifier for the entity
503 -- defined in the N_Full_Type_Declaration node N, that is T is the
504 -- derived type.
506 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id;
507 -- Given a subtype indication S (which is really an N_Subtype_Indication
508 -- node or a plain N_Identifier), find the type of the subtype mark.
510 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id);
511 -- Insert each literal in symbol table, as an overloadable identifier
512 -- Each enumeration type is mapped into a sequence of integers, and
513 -- each literal is defined as a constant with integer value. If any
514 -- of the literals are character literals, the type is a character
515 -- type, which means that strings are legal aggregates for arrays of
516 -- components of the type.
518 function Expand_To_Stored_Constraint
519 (Typ : Entity_Id;
520 Constraint : Elist_Id) return Elist_Id;
521 -- Given a Constraint (ie a list of expressions) on the discriminants of
522 -- Typ, expand it into a constraint on the stored discriminants and
523 -- return the new list of expressions constraining the stored
524 -- discriminants.
526 function Find_Type_Of_Object
527 (Obj_Def : Node_Id;
528 Related_Nod : Node_Id) return Entity_Id;
529 -- Get type entity for object referenced by Obj_Def, attaching the
530 -- implicit types generated to Related_Nod
532 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id);
533 -- Create a new float, and apply the constraint to obtain subtype of it
535 function Has_Range_Constraint (N : Node_Id) return Boolean;
536 -- Given an N_Subtype_Indication node N, return True if a range constraint
537 -- is present, either directly, or as part of a digits or delta constraint.
538 -- In addition, a digits constraint in the decimal case returns True, since
539 -- it establishes a default range if no explicit range is present.
541 function Is_Valid_Constraint_Kind
542 (T_Kind : Type_Kind;
543 Constraint_Kind : Node_Kind) return Boolean;
544 -- Returns True if it is legal to apply the given kind of constraint
545 -- to the given kind of type (index constraint to an array type,
546 -- for example).
548 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id);
549 -- Create new modular type. Verify that modulus is in bounds and is
550 -- a power of two (implementation restriction).
552 procedure New_Concatenation_Op (Typ : Entity_Id);
553 -- Create an abbreviated declaration for an operator in order to
554 -- materialize concatenation on array types.
556 procedure Ordinary_Fixed_Point_Type_Declaration
557 (T : Entity_Id;
558 Def : Node_Id);
559 -- Create a new ordinary fixed point type, and apply the constraint
560 -- to obtain subtype of it.
562 procedure Prepare_Private_Subtype_Completion
563 (Id : Entity_Id;
564 Related_Nod : Node_Id);
565 -- Id is a subtype of some private type. Creates the full declaration
566 -- associated with Id whenever possible, i.e. when the full declaration
567 -- of the base type is already known. Records each subtype into
568 -- Private_Dependents of the base type.
570 procedure Process_Incomplete_Dependents
571 (N : Node_Id;
572 Full_T : Entity_Id;
573 Inc_T : Entity_Id);
574 -- Process all entities that depend on an incomplete type. There include
575 -- subtypes, subprogram types that mention the incomplete type in their
576 -- profiles, and subprogram with access parameters that designate the
577 -- incomplete type.
579 -- Inc_T is the defining identifier of an incomplete type declaration, its
580 -- Ekind is E_Incomplete_Type.
582 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
584 -- Full_T is N's defining identifier.
586 -- Subtypes of incomplete types with discriminants are completed when the
587 -- parent type is. This is simpler than private subtypes, because they can
588 -- only appear in the same scope, and there is no need to exchange views.
589 -- Similarly, access_to_subprogram types may have a parameter or a return
590 -- type that is an incomplete type, and that must be replaced with the
591 -- full type.
593 -- If the full type is tagged, subprogram with access parameters that
594 -- designated the incomplete may be primitive operations of the full type,
595 -- and have to be processed accordingly.
597 procedure Process_Real_Range_Specification (Def : Node_Id);
598 -- Given the type definition for a real type, this procedure processes
599 -- and checks the real range specification of this type definition if
600 -- one is present. If errors are found, error messages are posted, and
601 -- the Real_Range_Specification of Def is reset to Empty.
603 procedure Record_Type_Declaration
604 (T : Entity_Id;
605 N : Node_Id;
606 Prev : Entity_Id);
607 -- Process a record type declaration (for both untagged and tagged
608 -- records). Parameters T and N are exactly like in procedure
609 -- Derived_Type_Declaration, except that no flag Is_Completion is
610 -- needed for this routine. If this is the completion of an incomplete
611 -- type declaration, Prev is the entity of the incomplete declaration,
612 -- used for cross-referencing. Otherwise Prev = T.
614 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id);
615 -- This routine is used to process the actual record type definition
616 -- (both for untagged and tagged records). Def is a record type
617 -- definition node. This procedure analyzes the components in this
618 -- record type definition. Prev_T is the entity for the enclosing record
619 -- type. It is provided so that its Has_Task flag can be set if any of
620 -- the component have Has_Task set. If the declaration is the completion
621 -- of an incomplete type declaration, Prev_T is the original incomplete
622 -- type, whose full view is the record type.
624 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id);
625 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
626 -- build a copy of the declaration tree of the parent, and we create
627 -- independently the list of components for the derived type. Semantic
628 -- information uses the component entities, but record representation
629 -- clauses are validated on the declaration tree. This procedure replaces
630 -- discriminants and components in the declaration with those that have
631 -- been created by Inherit_Components.
633 procedure Set_Fixed_Range
634 (E : Entity_Id;
635 Loc : Source_Ptr;
636 Lo : Ureal;
637 Hi : Ureal);
638 -- Build a range node with the given bounds and set it as the Scalar_Range
639 -- of the given fixed-point type entity. Loc is the source location used
640 -- for the constructed range. See body for further details.
642 procedure Set_Scalar_Range_For_Subtype
643 (Def_Id : Entity_Id;
644 R : Node_Id;
645 Subt : Entity_Id);
646 -- This routine is used to set the scalar range field for a subtype
647 -- given Def_Id, the entity for the subtype, and R, the range expression
648 -- for the scalar range. Subt provides the parent subtype to be used
649 -- to analyze, resolve, and check the given range.
651 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id);
652 -- Create a new signed integer entity, and apply the constraint to obtain
653 -- the required first named subtype of this type.
655 procedure Set_Stored_Constraint_From_Discriminant_Constraint
656 (E : Entity_Id);
657 -- E is some record type. This routine computes E's Stored_Constraint
658 -- from its Discriminant_Constraint.
660 -----------------------
661 -- Access_Definition --
662 -----------------------
664 function Access_Definition
665 (Related_Nod : Node_Id;
666 N : Node_Id) return Entity_Id
668 Anon_Type : constant Entity_Id :=
669 Create_Itype (E_Anonymous_Access_Type, Related_Nod,
670 Scope_Id => Scope (Current_Scope));
671 Desig_Type : Entity_Id;
673 begin
674 if Is_Entry (Current_Scope)
675 and then Is_Task_Type (Etype (Scope (Current_Scope)))
676 then
677 Error_Msg_N ("task entries cannot have access parameters", N);
678 end if;
680 -- Ada 2005 (AI-254): In case of anonymous access to subprograms
681 -- call the corresponding semantic routine
683 if Present (Access_To_Subprogram_Definition (N)) then
684 Access_Subprogram_Declaration
685 (T_Name => Anon_Type,
686 T_Def => Access_To_Subprogram_Definition (N));
688 if Ekind (Anon_Type) = E_Access_Protected_Subprogram_Type then
689 Set_Ekind
690 (Anon_Type, E_Anonymous_Access_Protected_Subprogram_Type);
691 else
692 Set_Ekind
693 (Anon_Type, E_Anonymous_Access_Subprogram_Type);
694 end if;
696 return Anon_Type;
697 end if;
699 Find_Type (Subtype_Mark (N));
700 Desig_Type := Entity (Subtype_Mark (N));
702 Set_Directly_Designated_Type
703 (Anon_Type, Desig_Type);
704 Set_Etype (Anon_Type, Anon_Type);
705 Init_Size_Align (Anon_Type);
706 Set_Depends_On_Private (Anon_Type, Has_Private_Component (Anon_Type));
708 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
709 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify
710 -- if the null value is allowed. In Ada 95 the null value is never
711 -- allowed.
713 if Ada_Version >= Ada_05 then
714 Set_Can_Never_Be_Null (Anon_Type, Null_Exclusion_Present (N));
715 else
716 Set_Can_Never_Be_Null (Anon_Type, True);
717 end if;
719 -- The anonymous access type is as public as the discriminated type or
720 -- subprogram that defines it. It is imported (for back-end purposes)
721 -- if the designated type is.
723 Set_Is_Public (Anon_Type, Is_Public (Scope (Anon_Type)));
725 -- Ada 2005 (AI-50217): Propagate the attribute that indicates that the
726 -- designated type comes from the limited view (for back-end purposes).
728 Set_From_With_Type (Anon_Type, From_With_Type (Desig_Type));
730 -- Ada 2005 (AI-231): Propagate the access-constant attribute
732 Set_Is_Access_Constant (Anon_Type, Constant_Present (N));
734 -- The context is either a subprogram declaration or an access
735 -- discriminant, in a private or a full type declaration. In the case
736 -- of a subprogram, If the designated type is incomplete, the operation
737 -- will be a primitive operation of the full type, to be updated
738 -- subsequently. If the type is imported through a limited with clause,
739 -- it is not a primitive operation of the type (which is declared
740 -- elsewhere in some other scope).
742 if Ekind (Desig_Type) = E_Incomplete_Type
743 and then not From_With_Type (Desig_Type)
744 and then Is_Overloadable (Current_Scope)
745 then
746 Append_Elmt (Current_Scope, Private_Dependents (Desig_Type));
747 Set_Has_Delayed_Freeze (Current_Scope);
748 end if;
750 return Anon_Type;
751 end Access_Definition;
753 -----------------------------------
754 -- Access_Subprogram_Declaration --
755 -----------------------------------
757 procedure Access_Subprogram_Declaration
758 (T_Name : Entity_Id;
759 T_Def : Node_Id)
761 Formals : constant List_Id := Parameter_Specifications (T_Def);
762 Formal : Entity_Id;
764 Desig_Type : constant Entity_Id :=
765 Create_Itype (E_Subprogram_Type, Parent (T_Def));
767 begin
768 if Nkind (T_Def) = N_Access_Function_Definition then
769 Analyze (Subtype_Mark (T_Def));
770 Set_Etype (Desig_Type, Entity (Subtype_Mark (T_Def)));
772 if not (Is_Type (Etype (Desig_Type))) then
773 Error_Msg_N
774 ("expect type in function specification", Subtype_Mark (T_Def));
775 end if;
777 else
778 Set_Etype (Desig_Type, Standard_Void_Type);
779 end if;
781 if Present (Formals) then
782 New_Scope (Desig_Type);
783 Process_Formals (Formals, Parent (T_Def));
785 -- A bit of a kludge here, End_Scope requires that the parent
786 -- pointer be set to something reasonable, but Itypes don't have
787 -- parent pointers. So we set it and then unset it ??? If and when
788 -- Itypes have proper parent pointers to their declarations, this
789 -- kludge can be removed.
791 Set_Parent (Desig_Type, T_Name);
792 End_Scope;
793 Set_Parent (Desig_Type, Empty);
794 end if;
796 -- The return type and/or any parameter type may be incomplete. Mark
797 -- the subprogram_type as depending on the incomplete type, so that
798 -- it can be updated when the full type declaration is seen.
800 if Present (Formals) then
801 Formal := First_Formal (Desig_Type);
803 while Present (Formal) loop
804 if Ekind (Formal) /= E_In_Parameter
805 and then Nkind (T_Def) = N_Access_Function_Definition
806 then
807 Error_Msg_N ("functions can only have IN parameters", Formal);
808 end if;
810 if Ekind (Etype (Formal)) = E_Incomplete_Type then
811 Append_Elmt (Desig_Type, Private_Dependents (Etype (Formal)));
812 Set_Has_Delayed_Freeze (Desig_Type);
813 end if;
815 Next_Formal (Formal);
816 end loop;
817 end if;
819 if Ekind (Etype (Desig_Type)) = E_Incomplete_Type
820 and then not Has_Delayed_Freeze (Desig_Type)
821 then
822 Append_Elmt (Desig_Type, Private_Dependents (Etype (Desig_Type)));
823 Set_Has_Delayed_Freeze (Desig_Type);
824 end if;
826 Check_Delayed_Subprogram (Desig_Type);
828 if Protected_Present (T_Def) then
829 Set_Ekind (T_Name, E_Access_Protected_Subprogram_Type);
830 Set_Convention (Desig_Type, Convention_Protected);
831 else
832 Set_Ekind (T_Name, E_Access_Subprogram_Type);
833 end if;
835 Set_Etype (T_Name, T_Name);
836 Init_Size_Align (T_Name);
837 Set_Directly_Designated_Type (T_Name, Desig_Type);
839 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
841 Set_Can_Never_Be_Null (T_Name, Null_Exclusion_Present (T_Def));
843 Check_Restriction (No_Access_Subprograms, T_Def);
844 end Access_Subprogram_Declaration;
846 ----------------------------
847 -- Access_Type_Declaration --
848 ----------------------------
850 procedure Access_Type_Declaration (T : Entity_Id; Def : Node_Id) is
851 S : constant Node_Id := Subtype_Indication (Def);
852 P : constant Node_Id := Parent (Def);
854 Desig : Entity_Id;
855 -- Designated type
857 begin
858 -- Check for permissible use of incomplete type
860 if Nkind (S) /= N_Subtype_Indication then
861 Analyze (S);
863 if Ekind (Root_Type (Entity (S))) = E_Incomplete_Type then
864 Set_Directly_Designated_Type (T, Entity (S));
865 else
866 Set_Directly_Designated_Type (T,
867 Process_Subtype (S, P, T, 'P'));
868 end if;
870 else
871 Set_Directly_Designated_Type (T,
872 Process_Subtype (S, P, T, 'P'));
873 end if;
875 if All_Present (Def) or Constant_Present (Def) then
876 Set_Ekind (T, E_General_Access_Type);
877 else
878 Set_Ekind (T, E_Access_Type);
879 end if;
881 if Base_Type (Designated_Type (T)) = T then
882 Error_Msg_N ("access type cannot designate itself", S);
883 end if;
885 Set_Etype (T, T);
887 -- If the type has appeared already in a with_type clause, it is
888 -- frozen and the pointer size is already set. Else, initialize.
890 if not From_With_Type (T) then
891 Init_Size_Align (T);
892 end if;
894 Set_Is_Access_Constant (T, Constant_Present (Def));
896 Desig := Designated_Type (T);
898 -- If designated type is an imported tagged type, indicate that the
899 -- access type is also imported, and therefore restricted in its use.
900 -- The access type may already be imported, so keep setting otherwise.
902 -- Ada 2005 (AI-50217): If the non-limited view of the designated type
903 -- is available, use it as the designated type of the access type, so
904 -- that the back-end gets a usable entity.
906 declare
907 N_Desig : Entity_Id;
909 begin
910 if From_With_Type (Desig) then
911 Set_From_With_Type (T);
913 if Ekind (Desig) = E_Incomplete_Type then
914 N_Desig := Non_Limited_View (Desig);
916 else pragma Assert (Ekind (Desig) = E_Class_Wide_Type);
917 if From_With_Type (Etype (Desig)) then
918 N_Desig := Non_Limited_View (Etype (Desig));
919 else
920 N_Desig := Etype (Desig);
921 end if;
922 end if;
924 pragma Assert (Present (N_Desig));
925 Set_Directly_Designated_Type (T, N_Desig);
926 end if;
927 end;
929 -- Note that Has_Task is always false, since the access type itself
930 -- is not a task type. See Einfo for more description on this point.
931 -- Exactly the same consideration applies to Has_Controlled_Component.
933 Set_Has_Task (T, False);
934 Set_Has_Controlled_Component (T, False);
936 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
937 -- attributes
939 Set_Can_Never_Be_Null (T, Null_Exclusion_Present (Def));
940 Set_Is_Access_Constant (T, Constant_Present (Def));
941 end Access_Type_Declaration;
943 -----------------------------------
944 -- Analyze_Component_Declaration --
945 -----------------------------------
947 procedure Analyze_Component_Declaration (N : Node_Id) is
948 Id : constant Entity_Id := Defining_Identifier (N);
949 T : Entity_Id;
950 P : Entity_Id;
952 function Contains_POC (Constr : Node_Id) return Boolean;
953 -- Determines whether a constraint uses the discriminant of a record
954 -- type thus becoming a per-object constraint (POC).
956 ------------------
957 -- Contains_POC --
958 ------------------
960 function Contains_POC (Constr : Node_Id) return Boolean is
961 begin
962 case Nkind (Constr) is
963 when N_Attribute_Reference =>
964 return Attribute_Name (Constr) = Name_Access
966 Prefix (Constr) = Scope (Entity (Prefix (Constr)));
968 when N_Discriminant_Association =>
969 return Denotes_Discriminant (Expression (Constr));
971 when N_Identifier =>
972 return Denotes_Discriminant (Constr);
974 when N_Index_Or_Discriminant_Constraint =>
975 declare
976 IDC : Node_Id := First (Constraints (Constr));
978 begin
979 while Present (IDC) loop
981 -- One per-object constraint is sufficent
983 if Contains_POC (IDC) then
984 return True;
985 end if;
987 Next (IDC);
988 end loop;
990 return False;
991 end;
993 when N_Range =>
994 return Denotes_Discriminant (Low_Bound (Constr))
995 or else
996 Denotes_Discriminant (High_Bound (Constr));
998 when N_Range_Constraint =>
999 return Denotes_Discriminant (Range_Expression (Constr));
1001 when others =>
1002 return False;
1004 end case;
1005 end Contains_POC;
1007 -- Start of processing for Analyze_Component_Declaration
1009 begin
1010 Generate_Definition (Id);
1011 Enter_Name (Id);
1013 if Present (Subtype_Indication (Component_Definition (N))) then
1014 T := Find_Type_Of_Object
1015 (Subtype_Indication (Component_Definition (N)), N);
1017 -- Ada 2005 (AI-230): Access Definition case
1019 else
1020 pragma Assert (Present
1021 (Access_Definition (Component_Definition (N))));
1023 T := Access_Definition
1024 (Related_Nod => N,
1025 N => Access_Definition (Component_Definition (N)));
1027 -- Ada 2005 (AI-230): In case of components that are anonymous
1028 -- access types the level of accessibility depends on the enclosing
1029 -- type declaration
1031 Set_Scope (T, Current_Scope); -- Ada 2005 (AI-230)
1033 -- Ada 2005 (AI-254)
1035 if Present (Access_To_Subprogram_Definition
1036 (Access_Definition (Component_Definition (N))))
1037 and then Protected_Present (Access_To_Subprogram_Definition
1038 (Access_Definition
1039 (Component_Definition (N))))
1040 then
1041 T := Replace_Anonymous_Access_To_Protected_Subprogram (N, T);
1042 end if;
1043 end if;
1045 -- If the subtype is a constrained subtype of the enclosing record,
1046 -- (which must have a partial view) the back-end does not handle
1047 -- properly the recursion. Rewrite the component declaration with
1048 -- an explicit subtype indication, which is acceptable to Gigi. We
1049 -- can copy the tree directly because side effects have already been
1050 -- removed from discriminant constraints.
1052 if Ekind (T) = E_Access_Subtype
1053 and then Is_Entity_Name (Subtype_Indication (Component_Definition (N)))
1054 and then Comes_From_Source (T)
1055 and then Nkind (Parent (T)) = N_Subtype_Declaration
1056 and then Etype (Directly_Designated_Type (T)) = Current_Scope
1057 then
1058 Rewrite
1059 (Subtype_Indication (Component_Definition (N)),
1060 New_Copy_Tree (Subtype_Indication (Parent (T))));
1061 T := Find_Type_Of_Object
1062 (Subtype_Indication (Component_Definition (N)), N);
1063 end if;
1065 -- If the component declaration includes a default expression, then we
1066 -- check that the component is not of a limited type (RM 3.7(5)),
1067 -- and do the special preanalysis of the expression (see section on
1068 -- "Handling of Default and Per-Object Expressions" in the spec of
1069 -- package Sem).
1071 if Present (Expression (N)) then
1072 Analyze_Per_Use_Expression (Expression (N), T);
1073 Check_Initialization (T, Expression (N));
1074 end if;
1076 -- The parent type may be a private view with unknown discriminants,
1077 -- and thus unconstrained. Regular components must be constrained.
1079 if Is_Indefinite_Subtype (T) and then Chars (Id) /= Name_uParent then
1080 if Is_Class_Wide_Type (T) then
1081 Error_Msg_N
1082 ("class-wide subtype with unknown discriminants" &
1083 " in component declaration",
1084 Subtype_Indication (Component_Definition (N)));
1085 else
1086 Error_Msg_N
1087 ("unconstrained subtype in component declaration",
1088 Subtype_Indication (Component_Definition (N)));
1089 end if;
1091 -- Components cannot be abstract, except for the special case of
1092 -- the _Parent field (case of extending an abstract tagged type)
1094 elsif Is_Abstract (T) and then Chars (Id) /= Name_uParent then
1095 Error_Msg_N ("type of a component cannot be abstract", N);
1096 end if;
1098 Set_Etype (Id, T);
1099 Set_Is_Aliased (Id, Aliased_Present (Component_Definition (N)));
1101 -- The component declaration may have a per-object constraint, set
1102 -- the appropriate flag in the defining identifier of the subtype.
1104 if Present (Subtype_Indication (Component_Definition (N))) then
1105 declare
1106 Sindic : constant Node_Id :=
1107 Subtype_Indication (Component_Definition (N));
1109 begin
1110 if Nkind (Sindic) = N_Subtype_Indication
1111 and then Present (Constraint (Sindic))
1112 and then Contains_POC (Constraint (Sindic))
1113 then
1114 Set_Has_Per_Object_Constraint (Id);
1115 end if;
1116 end;
1117 end if;
1119 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1120 -- out some static checks.
1122 if Ada_Version >= Ada_05
1123 and then (Null_Exclusion_Present (Component_Definition (N))
1124 or else Can_Never_Be_Null (T))
1125 then
1126 Set_Can_Never_Be_Null (Id);
1127 Null_Exclusion_Static_Checks (N);
1128 end if;
1130 -- If this component is private (or depends on a private type),
1131 -- flag the record type to indicate that some operations are not
1132 -- available.
1134 P := Private_Component (T);
1136 if Present (P) then
1137 -- Check for circular definitions
1139 if P = Any_Type then
1140 Set_Etype (Id, Any_Type);
1142 -- There is a gap in the visibility of operations only if the
1143 -- component type is not defined in the scope of the record type.
1145 elsif Scope (P) = Scope (Current_Scope) then
1146 null;
1148 elsif Is_Limited_Type (P) then
1149 Set_Is_Limited_Composite (Current_Scope);
1151 else
1152 Set_Is_Private_Composite (Current_Scope);
1153 end if;
1154 end if;
1156 if P /= Any_Type
1157 and then Is_Limited_Type (T)
1158 and then Chars (Id) /= Name_uParent
1159 and then Is_Tagged_Type (Current_Scope)
1160 then
1161 if Is_Derived_Type (Current_Scope)
1162 and then not Is_Limited_Record (Root_Type (Current_Scope))
1163 then
1164 Error_Msg_N
1165 ("extension of nonlimited type cannot have limited components",
1167 Explain_Limited_Type (T, N);
1168 Set_Etype (Id, Any_Type);
1169 Set_Is_Limited_Composite (Current_Scope, False);
1171 elsif not Is_Derived_Type (Current_Scope)
1172 and then not Is_Limited_Record (Current_Scope)
1173 then
1174 Error_Msg_N
1175 ("nonlimited tagged type cannot have limited components", N);
1176 Explain_Limited_Type (T, N);
1177 Set_Etype (Id, Any_Type);
1178 Set_Is_Limited_Composite (Current_Scope, False);
1179 end if;
1180 end if;
1182 Set_Original_Record_Component (Id, Id);
1183 end Analyze_Component_Declaration;
1185 --------------------------
1186 -- Analyze_Declarations --
1187 --------------------------
1189 procedure Analyze_Declarations (L : List_Id) is
1190 D : Node_Id;
1191 Next_Node : Node_Id;
1192 Freeze_From : Entity_Id := Empty;
1194 procedure Adjust_D;
1195 -- Adjust D not to include implicit label declarations, since these
1196 -- have strange Sloc values that result in elaboration check problems.
1197 -- (They have the sloc of the label as found in the source, and that
1198 -- is ahead of the current declarative part).
1200 --------------
1201 -- Adjust_D --
1202 --------------
1204 procedure Adjust_D is
1205 begin
1206 while Present (Prev (D))
1207 and then Nkind (D) = N_Implicit_Label_Declaration
1208 loop
1209 Prev (D);
1210 end loop;
1211 end Adjust_D;
1213 -- Start of processing for Analyze_Declarations
1215 begin
1216 D := First (L);
1217 while Present (D) loop
1219 -- Complete analysis of declaration
1221 Analyze (D);
1222 Next_Node := Next (D);
1224 if No (Freeze_From) then
1225 Freeze_From := First_Entity (Current_Scope);
1226 end if;
1228 -- At the end of a declarative part, freeze remaining entities
1229 -- declared in it. The end of the visible declarations of package
1230 -- specification is not the end of a declarative part if private
1231 -- declarations are present. The end of a package declaration is a
1232 -- freezing point only if it a library package. A task definition or
1233 -- protected type definition is not a freeze point either. Finally,
1234 -- we do not freeze entities in generic scopes, because there is no
1235 -- code generated for them and freeze nodes will be generated for
1236 -- the instance.
1238 -- The end of a package instantiation is not a freeze point, but
1239 -- for now we make it one, because the generic body is inserted
1240 -- (currently) immediately after. Generic instantiations will not
1241 -- be a freeze point once delayed freezing of bodies is implemented.
1242 -- (This is needed in any case for early instantiations ???).
1244 if No (Next_Node) then
1245 if Nkind (Parent (L)) = N_Component_List
1246 or else Nkind (Parent (L)) = N_Task_Definition
1247 or else Nkind (Parent (L)) = N_Protected_Definition
1248 then
1249 null;
1251 elsif Nkind (Parent (L)) /= N_Package_Specification then
1252 if Nkind (Parent (L)) = N_Package_Body then
1253 Freeze_From := First_Entity (Current_Scope);
1254 end if;
1256 Adjust_D;
1257 Freeze_All (Freeze_From, D);
1258 Freeze_From := Last_Entity (Current_Scope);
1260 elsif Scope (Current_Scope) /= Standard_Standard
1261 and then not Is_Child_Unit (Current_Scope)
1262 and then No (Generic_Parent (Parent (L)))
1263 then
1264 null;
1266 elsif L /= Visible_Declarations (Parent (L))
1267 or else No (Private_Declarations (Parent (L)))
1268 or else Is_Empty_List (Private_Declarations (Parent (L)))
1269 then
1270 Adjust_D;
1271 Freeze_All (Freeze_From, D);
1272 Freeze_From := Last_Entity (Current_Scope);
1273 end if;
1275 -- If next node is a body then freeze all types before the body.
1276 -- An exception occurs for expander generated bodies, which can
1277 -- be recognized by their already being analyzed. The expander
1278 -- ensures that all types needed by these bodies have been frozen
1279 -- but it is not necessary to freeze all types (and would be wrong
1280 -- since it would not correspond to an RM defined freeze point).
1282 elsif not Analyzed (Next_Node)
1283 and then (Nkind (Next_Node) = N_Subprogram_Body
1284 or else Nkind (Next_Node) = N_Entry_Body
1285 or else Nkind (Next_Node) = N_Package_Body
1286 or else Nkind (Next_Node) = N_Protected_Body
1287 or else Nkind (Next_Node) = N_Task_Body
1288 or else Nkind (Next_Node) in N_Body_Stub)
1289 then
1290 Adjust_D;
1291 Freeze_All (Freeze_From, D);
1292 Freeze_From := Last_Entity (Current_Scope);
1293 end if;
1295 D := Next_Node;
1296 end loop;
1297 end Analyze_Declarations;
1299 ----------------------------------
1300 -- Analyze_Incomplete_Type_Decl --
1301 ----------------------------------
1303 procedure Analyze_Incomplete_Type_Decl (N : Node_Id) is
1304 F : constant Boolean := Is_Pure (Current_Scope);
1305 T : Entity_Id;
1307 begin
1308 Generate_Definition (Defining_Identifier (N));
1310 -- Process an incomplete declaration. The identifier must not have been
1311 -- declared already in the scope. However, an incomplete declaration may
1312 -- appear in the private part of a package, for a private type that has
1313 -- already been declared.
1315 -- In this case, the discriminants (if any) must match
1317 T := Find_Type_Name (N);
1319 Set_Ekind (T, E_Incomplete_Type);
1320 Init_Size_Align (T);
1321 Set_Is_First_Subtype (T, True);
1322 Set_Etype (T, T);
1323 New_Scope (T);
1325 Set_Stored_Constraint (T, No_Elist);
1327 if Present (Discriminant_Specifications (N)) then
1328 Process_Discriminants (N);
1329 end if;
1331 End_Scope;
1333 -- If the type has discriminants, non-trivial subtypes may be be
1334 -- declared before the full view of the type. The full views of those
1335 -- subtypes will be built after the full view of the type.
1337 Set_Private_Dependents (T, New_Elmt_List);
1338 Set_Is_Pure (T, F);
1339 end Analyze_Incomplete_Type_Decl;
1341 -----------------------------
1342 -- Analyze_Itype_Reference --
1343 -----------------------------
1345 -- Nothing to do. This node is placed in the tree only for the benefit
1346 -- of Gigi processing, and has no effect on the semantic processing.
1348 procedure Analyze_Itype_Reference (N : Node_Id) is
1349 begin
1350 pragma Assert (Is_Itype (Itype (N)));
1351 null;
1352 end Analyze_Itype_Reference;
1354 --------------------------------
1355 -- Analyze_Number_Declaration --
1356 --------------------------------
1358 procedure Analyze_Number_Declaration (N : Node_Id) is
1359 Id : constant Entity_Id := Defining_Identifier (N);
1360 E : constant Node_Id := Expression (N);
1361 T : Entity_Id;
1362 Index : Interp_Index;
1363 It : Interp;
1365 begin
1366 Generate_Definition (Id);
1367 Enter_Name (Id);
1369 -- This is an optimization of a common case of an integer literal
1371 if Nkind (E) = N_Integer_Literal then
1372 Set_Is_Static_Expression (E, True);
1373 Set_Etype (E, Universal_Integer);
1375 Set_Etype (Id, Universal_Integer);
1376 Set_Ekind (Id, E_Named_Integer);
1377 Set_Is_Frozen (Id, True);
1378 return;
1379 end if;
1381 Set_Is_Pure (Id, Is_Pure (Current_Scope));
1383 -- Process expression, replacing error by integer zero, to avoid
1384 -- cascaded errors or aborts further along in the processing
1386 -- Replace Error by integer zero, which seems least likely to
1387 -- cause cascaded errors.
1389 if E = Error then
1390 Rewrite (E, Make_Integer_Literal (Sloc (E), Uint_0));
1391 Set_Error_Posted (E);
1392 end if;
1394 Analyze (E);
1396 -- Verify that the expression is static and numeric. If
1397 -- the expression is overloaded, we apply the preference
1398 -- rule that favors root numeric types.
1400 if not Is_Overloaded (E) then
1401 T := Etype (E);
1403 else
1404 T := Any_Type;
1405 Get_First_Interp (E, Index, It);
1407 while Present (It.Typ) loop
1408 if (Is_Integer_Type (It.Typ)
1409 or else Is_Real_Type (It.Typ))
1410 and then (Scope (Base_Type (It.Typ))) = Standard_Standard
1411 then
1412 if T = Any_Type then
1413 T := It.Typ;
1415 elsif It.Typ = Universal_Real
1416 or else It.Typ = Universal_Integer
1417 then
1418 -- Choose universal interpretation over any other
1420 T := It.Typ;
1421 exit;
1422 end if;
1423 end if;
1425 Get_Next_Interp (Index, It);
1426 end loop;
1427 end if;
1429 if Is_Integer_Type (T) then
1430 Resolve (E, T);
1431 Set_Etype (Id, Universal_Integer);
1432 Set_Ekind (Id, E_Named_Integer);
1434 elsif Is_Real_Type (T) then
1436 -- Because the real value is converted to universal_real, this
1437 -- is a legal context for a universal fixed expression.
1439 if T = Universal_Fixed then
1440 declare
1441 Loc : constant Source_Ptr := Sloc (N);
1442 Conv : constant Node_Id := Make_Type_Conversion (Loc,
1443 Subtype_Mark =>
1444 New_Occurrence_Of (Universal_Real, Loc),
1445 Expression => Relocate_Node (E));
1447 begin
1448 Rewrite (E, Conv);
1449 Analyze (E);
1450 end;
1452 elsif T = Any_Fixed then
1453 Error_Msg_N ("illegal context for mixed mode operation", E);
1455 -- Expression is of the form : universal_fixed * integer.
1456 -- Try to resolve as universal_real.
1458 T := Universal_Real;
1459 Set_Etype (E, T);
1460 end if;
1462 Resolve (E, T);
1463 Set_Etype (Id, Universal_Real);
1464 Set_Ekind (Id, E_Named_Real);
1466 else
1467 Wrong_Type (E, Any_Numeric);
1468 Resolve (E, T);
1470 Set_Etype (Id, T);
1471 Set_Ekind (Id, E_Constant);
1472 Set_Never_Set_In_Source (Id, True);
1473 Set_Is_True_Constant (Id, True);
1474 return;
1475 end if;
1477 if Nkind (E) = N_Integer_Literal
1478 or else Nkind (E) = N_Real_Literal
1479 then
1480 Set_Etype (E, Etype (Id));
1481 end if;
1483 if not Is_OK_Static_Expression (E) then
1484 Flag_Non_Static_Expr
1485 ("non-static expression used in number declaration!", E);
1486 Rewrite (E, Make_Integer_Literal (Sloc (N), 1));
1487 Set_Etype (E, Any_Type);
1488 end if;
1489 end Analyze_Number_Declaration;
1491 --------------------------------
1492 -- Analyze_Object_Declaration --
1493 --------------------------------
1495 procedure Analyze_Object_Declaration (N : Node_Id) is
1496 Loc : constant Source_Ptr := Sloc (N);
1497 Id : constant Entity_Id := Defining_Identifier (N);
1498 T : Entity_Id;
1499 Act_T : Entity_Id;
1501 E : Node_Id := Expression (N);
1502 -- E is set to Expression (N) throughout this routine. When
1503 -- Expression (N) is modified, E is changed accordingly.
1505 Prev_Entity : Entity_Id := Empty;
1507 function Build_Default_Subtype return Entity_Id;
1508 -- If the object is limited or aliased, and if the type is unconstrained
1509 -- and there is no expression, the discriminants cannot be modified and
1510 -- the subtype of the object is constrained by the defaults, so it is
1511 -- worthile building the corresponding subtype.
1513 function Count_Tasks (T : Entity_Id) return Uint;
1514 -- This function is called when a library level object of type is
1515 -- declared. It's function is to count the static number of tasks
1516 -- declared within the type (it is only called if Has_Tasks is set for
1517 -- T). As a side effect, if an array of tasks with non-static bounds or
1518 -- a variant record type is encountered, Check_Restrictions is called
1519 -- indicating the count is unknown.
1521 ---------------------------
1522 -- Build_Default_Subtype --
1523 ---------------------------
1525 function Build_Default_Subtype return Entity_Id is
1526 Constraints : constant List_Id := New_List;
1527 Act : Entity_Id;
1528 Decl : Node_Id;
1529 Disc : Entity_Id;
1531 begin
1532 Disc := First_Discriminant (T);
1534 if No (Discriminant_Default_Value (Disc)) then
1535 return T; -- previous error.
1536 end if;
1538 Act := Make_Defining_Identifier (Loc, New_Internal_Name ('S'));
1539 while Present (Disc) loop
1540 Append (
1541 New_Copy_Tree (
1542 Discriminant_Default_Value (Disc)), Constraints);
1543 Next_Discriminant (Disc);
1544 end loop;
1546 Decl :=
1547 Make_Subtype_Declaration (Loc,
1548 Defining_Identifier => Act,
1549 Subtype_Indication =>
1550 Make_Subtype_Indication (Loc,
1551 Subtype_Mark => New_Occurrence_Of (T, Loc),
1552 Constraint =>
1553 Make_Index_Or_Discriminant_Constraint
1554 (Loc, Constraints)));
1556 Insert_Before (N, Decl);
1557 Analyze (Decl);
1558 return Act;
1559 end Build_Default_Subtype;
1561 -----------------
1562 -- Count_Tasks --
1563 -----------------
1565 function Count_Tasks (T : Entity_Id) return Uint is
1566 C : Entity_Id;
1567 X : Node_Id;
1568 V : Uint;
1570 begin
1571 if Is_Task_Type (T) then
1572 return Uint_1;
1574 elsif Is_Record_Type (T) then
1575 if Has_Discriminants (T) then
1576 Check_Restriction (Max_Tasks, N);
1577 return Uint_0;
1579 else
1580 V := Uint_0;
1581 C := First_Component (T);
1582 while Present (C) loop
1583 V := V + Count_Tasks (Etype (C));
1584 Next_Component (C);
1585 end loop;
1587 return V;
1588 end if;
1590 elsif Is_Array_Type (T) then
1591 X := First_Index (T);
1592 V := Count_Tasks (Component_Type (T));
1593 while Present (X) loop
1594 C := Etype (X);
1596 if not Is_Static_Subtype (C) then
1597 Check_Restriction (Max_Tasks, N);
1598 return Uint_0;
1599 else
1600 V := V * (UI_Max (Uint_0,
1601 Expr_Value (Type_High_Bound (C)) -
1602 Expr_Value (Type_Low_Bound (C)) + Uint_1));
1603 end if;
1605 Next_Index (X);
1606 end loop;
1608 return V;
1610 else
1611 return Uint_0;
1612 end if;
1613 end Count_Tasks;
1615 -- Start of processing for Analyze_Object_Declaration
1617 begin
1618 -- There are three kinds of implicit types generated by an
1619 -- object declaration:
1621 -- 1. Those for generated by the original Object Definition
1623 -- 2. Those generated by the Expression
1625 -- 3. Those used to constrained the Object Definition with the
1626 -- expression constraints when it is unconstrained
1628 -- They must be generated in this order to avoid order of elaboration
1629 -- issues. Thus the first step (after entering the name) is to analyze
1630 -- the object definition.
1632 if Constant_Present (N) then
1633 Prev_Entity := Current_Entity_In_Scope (Id);
1635 -- If homograph is an implicit subprogram, it is overridden by the
1636 -- current declaration.
1638 if Present (Prev_Entity)
1639 and then Is_Overloadable (Prev_Entity)
1640 and then Is_Inherited_Operation (Prev_Entity)
1641 then
1642 Prev_Entity := Empty;
1643 end if;
1644 end if;
1646 if Present (Prev_Entity) then
1647 Constant_Redeclaration (Id, N, T);
1649 Generate_Reference (Prev_Entity, Id, 'c');
1650 Set_Completion_Referenced (Id);
1652 if Error_Posted (N) then
1654 -- Type mismatch or illegal redeclaration, Do not analyze
1655 -- expression to avoid cascaded errors.
1657 T := Find_Type_Of_Object (Object_Definition (N), N);
1658 Set_Etype (Id, T);
1659 Set_Ekind (Id, E_Variable);
1660 return;
1661 end if;
1663 -- In the normal case, enter identifier at the start to catch
1664 -- premature usage in the initialization expression.
1666 else
1667 Generate_Definition (Id);
1668 Enter_Name (Id);
1670 T := Find_Type_Of_Object (Object_Definition (N), N);
1672 if Error_Posted (Id) then
1673 Set_Etype (Id, T);
1674 Set_Ekind (Id, E_Variable);
1675 return;
1676 end if;
1677 end if;
1679 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1680 -- out some static checks
1682 if Ada_Version >= Ada_05
1683 and then (Null_Exclusion_Present (N)
1684 or else Can_Never_Be_Null (T))
1685 then
1686 Set_Can_Never_Be_Null (Id);
1687 Null_Exclusion_Static_Checks (N);
1688 end if;
1690 Set_Is_Pure (Id, Is_Pure (Current_Scope));
1692 -- If deferred constant, make sure context is appropriate. We detect
1693 -- a deferred constant as a constant declaration with no expression.
1694 -- A deferred constant can appear in a package body if its completion
1695 -- is by means of an interface pragma.
1697 if Constant_Present (N)
1698 and then No (E)
1699 then
1700 if not Is_Package (Current_Scope) then
1701 Error_Msg_N
1702 ("invalid context for deferred constant declaration ('R'M 7.4)",
1704 Error_Msg_N
1705 ("\declaration requires an initialization expression",
1707 Set_Constant_Present (N, False);
1709 -- In Ada 83, deferred constant must be of private type
1711 elsif not Is_Private_Type (T) then
1712 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
1713 Error_Msg_N
1714 ("(Ada 83) deferred constant must be private type", N);
1715 end if;
1716 end if;
1718 -- If not a deferred constant, then object declaration freezes its type
1720 else
1721 Check_Fully_Declared (T, N);
1722 Freeze_Before (N, T);
1723 end if;
1725 -- If the object was created by a constrained array definition, then
1726 -- set the link in both the anonymous base type and anonymous subtype
1727 -- that are built to represent the array type to point to the object.
1729 if Nkind (Object_Definition (Declaration_Node (Id))) =
1730 N_Constrained_Array_Definition
1731 then
1732 Set_Related_Array_Object (T, Id);
1733 Set_Related_Array_Object (Base_Type (T), Id);
1734 end if;
1736 -- Special checks for protected objects not at library level
1738 if Is_Protected_Type (T)
1739 and then not Is_Library_Level_Entity (Id)
1740 then
1741 Check_Restriction (No_Local_Protected_Objects, Id);
1743 -- Protected objects with interrupt handlers must be at library level
1745 if Has_Interrupt_Handler (T) then
1746 Error_Msg_N
1747 ("interrupt object can only be declared at library level", Id);
1748 end if;
1749 end if;
1751 -- The actual subtype of the object is the nominal subtype, unless
1752 -- the nominal one is unconstrained and obtained from the expression.
1754 Act_T := T;
1756 -- Process initialization expression if present and not in error
1758 if Present (E) and then E /= Error then
1759 Analyze (E);
1761 -- In case of errors detected in the analysis of the expression,
1762 -- decorate it with the expected type to avoid cascade errors
1764 if not Present (Etype (E)) then
1765 Set_Etype (E, T);
1766 end if;
1768 -- If an initialization expression is present, then we set the
1769 -- Is_True_Constant flag. It will be reset if this is a variable
1770 -- and it is indeed modified.
1772 Set_Is_True_Constant (Id, True);
1774 -- If we are analyzing a constant declaration, set its completion
1775 -- flag after analyzing the expression.
1777 if Constant_Present (N) then
1778 Set_Has_Completion (Id);
1779 end if;
1781 if not Assignment_OK (N) then
1782 Check_Initialization (T, E);
1783 end if;
1785 Set_Etype (Id, T); -- may be overridden later on
1786 Resolve (E, T);
1787 Check_Unset_Reference (E);
1789 if Compile_Time_Known_Value (E) then
1790 Set_Current_Value (Id, E);
1791 end if;
1793 -- Check incorrect use of dynamically tagged expressions. Note
1794 -- the use of Is_Tagged_Type (T) which seems redundant but is in
1795 -- fact important to avoid spurious errors due to expanded code
1796 -- for dispatching functions over an anonymous access type
1798 if (Is_Class_Wide_Type (Etype (E)) or else Is_Dynamically_Tagged (E))
1799 and then Is_Tagged_Type (T)
1800 and then not Is_Class_Wide_Type (T)
1801 then
1802 Error_Msg_N ("dynamically tagged expression not allowed!", E);
1803 end if;
1805 Apply_Scalar_Range_Check (E, T);
1806 Apply_Static_Length_Check (E, T);
1807 end if;
1809 -- If the No_Streams restriction is set, check that the type of the
1810 -- object is not, and does not contain, any subtype derived from
1811 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
1812 -- Has_Stream just for efficiency reasons. There is no point in
1813 -- spending time on a Has_Stream check if the restriction is not set.
1815 if Restrictions.Set (No_Streams) then
1816 if Has_Stream (T) then
1817 Check_Restriction (No_Streams, N);
1818 end if;
1819 end if;
1821 -- Abstract type is never permitted for a variable or constant.
1822 -- Note: we inhibit this check for objects that do not come from
1823 -- source because there is at least one case (the expansion of
1824 -- x'class'input where x is abstract) where we legitimately
1825 -- generate an abstract object.
1827 if Is_Abstract (T) and then Comes_From_Source (N) then
1828 Error_Msg_N ("type of object cannot be abstract",
1829 Object_Definition (N));
1831 if Is_CPP_Class (T) then
1832 Error_Msg_NE ("\} may need a cpp_constructor",
1833 Object_Definition (N), T);
1834 end if;
1836 -- Case of unconstrained type
1838 elsif Is_Indefinite_Subtype (T) then
1840 -- Nothing to do in deferred constant case
1842 if Constant_Present (N) and then No (E) then
1843 null;
1845 -- Case of no initialization present
1847 elsif No (E) then
1848 if No_Initialization (N) then
1849 null;
1851 elsif Is_Class_Wide_Type (T) then
1852 Error_Msg_N
1853 ("initialization required in class-wide declaration ", N);
1855 else
1856 Error_Msg_N
1857 ("unconstrained subtype not allowed (need initialization)",
1858 Object_Definition (N));
1859 end if;
1861 -- Case of initialization present but in error. Set initial
1862 -- expression as absent (but do not make above complaints)
1864 elsif E = Error then
1865 Set_Expression (N, Empty);
1866 E := Empty;
1868 -- Case of initialization present
1870 else
1871 -- Not allowed in Ada 83
1873 if not Constant_Present (N) then
1874 if Ada_Version = Ada_83
1875 and then Comes_From_Source (Object_Definition (N))
1876 then
1877 Error_Msg_N
1878 ("(Ada 83) unconstrained variable not allowed",
1879 Object_Definition (N));
1880 end if;
1881 end if;
1883 -- Now we constrain the variable from the initializing expression
1885 -- If the expression is an aggregate, it has been expanded into
1886 -- individual assignments. Retrieve the actual type from the
1887 -- expanded construct.
1889 if Is_Array_Type (T)
1890 and then No_Initialization (N)
1891 and then Nkind (Original_Node (E)) = N_Aggregate
1892 then
1893 Act_T := Etype (E);
1895 else
1896 Expand_Subtype_From_Expr (N, T, Object_Definition (N), E);
1897 Act_T := Find_Type_Of_Object (Object_Definition (N), N);
1898 end if;
1900 Set_Is_Constr_Subt_For_U_Nominal (Act_T);
1902 if Aliased_Present (N) then
1903 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
1904 end if;
1906 Freeze_Before (N, Act_T);
1907 Freeze_Before (N, T);
1908 end if;
1910 elsif Is_Array_Type (T)
1911 and then No_Initialization (N)
1912 and then Nkind (Original_Node (E)) = N_Aggregate
1913 then
1914 if not Is_Entity_Name (Object_Definition (N)) then
1915 Act_T := Etype (E);
1916 Check_Compile_Time_Size (Act_T);
1918 if Aliased_Present (N) then
1919 Set_Is_Constr_Subt_For_UN_Aliased (Act_T);
1920 end if;
1921 end if;
1923 -- When the given object definition and the aggregate are specified
1924 -- independently, and their lengths might differ do a length check.
1925 -- This cannot happen if the aggregate is of the form (others =>...)
1927 if not Is_Constrained (T) then
1928 null;
1930 elsif Nkind (E) = N_Raise_Constraint_Error then
1932 -- Aggregate is statically illegal. Place back in declaration
1934 Set_Expression (N, E);
1935 Set_No_Initialization (N, False);
1937 elsif T = Etype (E) then
1938 null;
1940 elsif Nkind (E) = N_Aggregate
1941 and then Present (Component_Associations (E))
1942 and then Present (Choices (First (Component_Associations (E))))
1943 and then Nkind (First
1944 (Choices (First (Component_Associations (E))))) = N_Others_Choice
1945 then
1946 null;
1948 else
1949 Apply_Length_Check (E, T);
1950 end if;
1952 elsif (Is_Limited_Record (T)
1953 or else Is_Concurrent_Type (T))
1954 and then not Is_Constrained (T)
1955 and then Has_Discriminants (T)
1956 then
1957 Act_T := Build_Default_Subtype;
1958 Rewrite (Object_Definition (N), New_Occurrence_Of (Act_T, Loc));
1960 elsif not Is_Constrained (T)
1961 and then Has_Discriminants (T)
1962 and then Constant_Present (N)
1963 and then Nkind (E) = N_Function_Call
1964 then
1965 -- The back-end has problems with constants of a discriminated type
1966 -- with defaults, if the initial value is a function call. We
1967 -- generate an intermediate temporary for the result of the call.
1968 -- It is unclear why this should make it acceptable to gcc. ???
1970 Remove_Side_Effects (E);
1971 end if;
1973 if T = Standard_Wide_Character or else T = Standard_Wide_Wide_Character
1974 or else Root_Type (T) = Standard_Wide_String
1975 or else Root_Type (T) = Standard_Wide_Wide_String
1976 then
1977 Check_Restriction (No_Wide_Characters, Object_Definition (N));
1978 end if;
1980 -- Now establish the proper kind and type of the object
1982 if Constant_Present (N) then
1983 Set_Ekind (Id, E_Constant);
1984 Set_Never_Set_In_Source (Id, True);
1985 Set_Is_True_Constant (Id, True);
1987 else
1988 Set_Ekind (Id, E_Variable);
1990 -- A variable is set as shared passive if it appears in a shared
1991 -- passive package, and is at the outer level. This is not done
1992 -- for entities generated during expansion, because those are
1993 -- always manipulated locally.
1995 if Is_Shared_Passive (Current_Scope)
1996 and then Is_Library_Level_Entity (Id)
1997 and then Comes_From_Source (Id)
1998 then
1999 Set_Is_Shared_Passive (Id);
2000 Check_Shared_Var (Id, T, N);
2001 end if;
2003 -- Case of no initializing expression present. If the type is not
2004 -- fully initialized, then we set Never_Set_In_Source, since this
2005 -- is a case of a potentially uninitialized object. Note that we
2006 -- do not consider access variables to be fully initialized for
2007 -- this purpose, since it still seems dubious if someone declares
2009 -- Note that we only do this for source declarations. If the object
2010 -- is declared by a generated declaration, we assume that it is not
2011 -- appropriate to generate warnings in that case.
2013 if No (E) then
2014 if (Is_Access_Type (T)
2015 or else not Is_Fully_Initialized_Type (T))
2016 and then Comes_From_Source (N)
2017 then
2018 Set_Never_Set_In_Source (Id);
2019 end if;
2020 end if;
2021 end if;
2023 Init_Alignment (Id);
2024 Init_Esize (Id);
2026 if Aliased_Present (N) then
2027 Set_Is_Aliased (Id);
2029 if No (E)
2030 and then Is_Record_Type (T)
2031 and then not Is_Constrained (T)
2032 and then Has_Discriminants (T)
2033 then
2034 Set_Actual_Subtype (Id, Build_Default_Subtype);
2035 end if;
2036 end if;
2038 Set_Etype (Id, Act_T);
2040 if Has_Controlled_Component (Etype (Id))
2041 or else Is_Controlled (Etype (Id))
2042 then
2043 if not Is_Library_Level_Entity (Id) then
2044 Check_Restriction (No_Nested_Finalization, N);
2045 else
2046 Validate_Controlled_Object (Id);
2047 end if;
2049 -- Generate a warning when an initialization causes an obvious
2050 -- ABE violation. If the init expression is a simple aggregate
2051 -- there shouldn't be any initialize/adjust call generated. This
2052 -- will be true as soon as aggregates are built in place when
2053 -- possible. ??? at the moment we do not generate warnings for
2054 -- temporaries created for those aggregates although a
2055 -- Program_Error might be generated if compiled with -gnato
2057 if Is_Controlled (Etype (Id))
2058 and then Comes_From_Source (Id)
2059 then
2060 declare
2061 BT : constant Entity_Id := Base_Type (Etype (Id));
2063 Implicit_Call : Entity_Id;
2064 pragma Warnings (Off, Implicit_Call);
2065 -- What is this about, it is never referenced ???
2067 function Is_Aggr (N : Node_Id) return Boolean;
2068 -- Check that N is an aggregate
2070 -------------
2071 -- Is_Aggr --
2072 -------------
2074 function Is_Aggr (N : Node_Id) return Boolean is
2075 begin
2076 case Nkind (Original_Node (N)) is
2077 when N_Aggregate | N_Extension_Aggregate =>
2078 return True;
2080 when N_Qualified_Expression |
2081 N_Type_Conversion |
2082 N_Unchecked_Type_Conversion =>
2083 return Is_Aggr (Expression (Original_Node (N)));
2085 when others =>
2086 return False;
2087 end case;
2088 end Is_Aggr;
2090 begin
2091 -- If no underlying type, we already are in an error situation
2092 -- don't try to add a warning since we do not have access
2093 -- prim-op list.
2095 if No (Underlying_Type (BT)) then
2096 Implicit_Call := Empty;
2098 -- A generic type does not have usable primitive operators.
2099 -- Initialization calls are built for instances.
2101 elsif Is_Generic_Type (BT) then
2102 Implicit_Call := Empty;
2104 -- if the init expression is not an aggregate, an adjust
2105 -- call will be generated
2107 elsif Present (E) and then not Is_Aggr (E) then
2108 Implicit_Call := Find_Prim_Op (BT, Name_Adjust);
2110 -- if no init expression and we are not in the deferred
2111 -- constant case, an Initialize call will be generated
2113 elsif No (E) and then not Constant_Present (N) then
2114 Implicit_Call := Find_Prim_Op (BT, Name_Initialize);
2116 else
2117 Implicit_Call := Empty;
2118 end if;
2119 end;
2120 end if;
2121 end if;
2123 if Has_Task (Etype (Id)) then
2124 Check_Restriction (No_Tasking, N);
2126 if Is_Library_Level_Entity (Id) then
2127 Check_Restriction (Max_Tasks, N, Count_Tasks (Etype (Id)));
2128 else
2129 Check_Restriction (Max_Tasks, N);
2130 Check_Restriction (No_Task_Hierarchy, N);
2131 Check_Potentially_Blocking_Operation (N);
2132 end if;
2134 -- A rather specialized test. If we see two tasks being declared
2135 -- of the same type in the same object declaration, and the task
2136 -- has an entry with an address clause, we know that program error
2137 -- will be raised at run-time since we can't have two tasks with
2138 -- entries at the same address.
2140 if Is_Task_Type (Etype (Id)) and then More_Ids (N) then
2141 declare
2142 E : Entity_Id;
2144 begin
2145 E := First_Entity (Etype (Id));
2146 while Present (E) loop
2147 if Ekind (E) = E_Entry
2148 and then Present (Get_Attribute_Definition_Clause
2149 (E, Attribute_Address))
2150 then
2151 Error_Msg_N
2152 ("?more than one task with same entry address", N);
2153 Error_Msg_N
2154 ("\?Program_Error will be raised at run time", N);
2155 Insert_Action (N,
2156 Make_Raise_Program_Error (Loc,
2157 Reason => PE_Duplicated_Entry_Address));
2158 exit;
2159 end if;
2161 Next_Entity (E);
2162 end loop;
2163 end;
2164 end if;
2165 end if;
2167 -- Some simple constant-propagation: if the expression is a constant
2168 -- string initialized with a literal, share the literal. This avoids
2169 -- a run-time copy.
2171 if Present (E)
2172 and then Is_Entity_Name (E)
2173 and then Ekind (Entity (E)) = E_Constant
2174 and then Base_Type (Etype (E)) = Standard_String
2175 then
2176 declare
2177 Val : constant Node_Id := Constant_Value (Entity (E));
2178 begin
2179 if Present (Val)
2180 and then Nkind (Val) = N_String_Literal
2181 then
2182 Rewrite (E, New_Copy (Val));
2183 end if;
2184 end;
2185 end if;
2187 -- Another optimization: if the nominal subtype is unconstrained and
2188 -- the expression is a function call that returns an unconstrained
2189 -- type, rewrite the declaration as a renaming of the result of the
2190 -- call. The exceptions below are cases where the copy is expected,
2191 -- either by the back end (Aliased case) or by the semantics, as for
2192 -- initializing controlled types or copying tags for classwide types.
2194 if Present (E)
2195 and then Nkind (E) = N_Explicit_Dereference
2196 and then Nkind (Original_Node (E)) = N_Function_Call
2197 and then not Is_Library_Level_Entity (Id)
2198 and then not Is_Constrained (T)
2199 and then not Is_Aliased (Id)
2200 and then not Is_Class_Wide_Type (T)
2201 and then not Is_Controlled (T)
2202 and then not Has_Controlled_Component (Base_Type (T))
2203 and then Expander_Active
2204 then
2205 Rewrite (N,
2206 Make_Object_Renaming_Declaration (Loc,
2207 Defining_Identifier => Id,
2208 Access_Definition => Empty,
2209 Subtype_Mark => New_Occurrence_Of
2210 (Base_Type (Etype (Id)), Loc),
2211 Name => E));
2213 Set_Renamed_Object (Id, E);
2215 -- Force generation of debugging information for the constant
2216 -- and for the renamed function call.
2218 Set_Needs_Debug_Info (Id);
2219 Set_Needs_Debug_Info (Entity (Prefix (E)));
2220 end if;
2222 if Present (Prev_Entity)
2223 and then Is_Frozen (Prev_Entity)
2224 and then not Error_Posted (Id)
2225 then
2226 Error_Msg_N ("full constant declaration appears too late", N);
2227 end if;
2229 Check_Eliminated (Id);
2230 end Analyze_Object_Declaration;
2232 ---------------------------
2233 -- Analyze_Others_Choice --
2234 ---------------------------
2236 -- Nothing to do for the others choice node itself, the semantic analysis
2237 -- of the others choice will occur as part of the processing of the parent
2239 procedure Analyze_Others_Choice (N : Node_Id) is
2240 pragma Warnings (Off, N);
2241 begin
2242 null;
2243 end Analyze_Others_Choice;
2245 --------------------------------
2246 -- Analyze_Per_Use_Expression --
2247 --------------------------------
2249 procedure Analyze_Per_Use_Expression (N : Node_Id; T : Entity_Id) is
2250 Save_In_Default_Expression : constant Boolean := In_Default_Expression;
2251 begin
2252 In_Default_Expression := True;
2253 Pre_Analyze_And_Resolve (N, T);
2254 In_Default_Expression := Save_In_Default_Expression;
2255 end Analyze_Per_Use_Expression;
2257 -------------------------------------------
2258 -- Analyze_Private_Extension_Declaration --
2259 -------------------------------------------
2261 procedure Analyze_Private_Extension_Declaration (N : Node_Id) is
2262 T : constant Entity_Id := Defining_Identifier (N);
2263 Indic : constant Node_Id := Subtype_Indication (N);
2264 Parent_Type : Entity_Id;
2265 Parent_Base : Entity_Id;
2267 begin
2268 Generate_Definition (T);
2269 Enter_Name (T);
2271 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
2272 Parent_Base := Base_Type (Parent_Type);
2274 if Parent_Type = Any_Type
2275 or else Etype (Parent_Type) = Any_Type
2276 then
2277 Set_Ekind (T, Ekind (Parent_Type));
2278 Set_Etype (T, Any_Type);
2279 return;
2281 elsif not Is_Tagged_Type (Parent_Type) then
2282 Error_Msg_N
2283 ("parent of type extension must be a tagged type ", Indic);
2284 return;
2286 elsif Ekind (Parent_Type) = E_Void
2287 or else Ekind (Parent_Type) = E_Incomplete_Type
2288 then
2289 Error_Msg_N ("premature derivation of incomplete type", Indic);
2290 return;
2291 end if;
2293 -- Perhaps the parent type should be changed to the class-wide type's
2294 -- specific type in this case to prevent cascading errors ???
2296 if Is_Class_Wide_Type (Parent_Type) then
2297 Error_Msg_N
2298 ("parent of type extension must not be a class-wide type", Indic);
2299 return;
2300 end if;
2302 if (not Is_Package (Current_Scope)
2303 and then Nkind (Parent (N)) /= N_Generic_Subprogram_Declaration)
2304 or else In_Private_Part (Current_Scope)
2306 then
2307 Error_Msg_N ("invalid context for private extension", N);
2308 end if;
2310 -- Set common attributes
2312 Set_Is_Pure (T, Is_Pure (Current_Scope));
2313 Set_Scope (T, Current_Scope);
2314 Set_Ekind (T, E_Record_Type_With_Private);
2315 Init_Size_Align (T);
2317 Set_Etype (T, Parent_Base);
2318 Set_Has_Task (T, Has_Task (Parent_Base));
2320 Set_Convention (T, Convention (Parent_Type));
2321 Set_First_Rep_Item (T, First_Rep_Item (Parent_Type));
2322 Set_Is_First_Subtype (T);
2323 Make_Class_Wide_Type (T);
2325 if Unknown_Discriminants_Present (N) then
2326 Set_Discriminant_Constraint (T, No_Elist);
2327 end if;
2329 Build_Derived_Record_Type (N, Parent_Type, T);
2330 end Analyze_Private_Extension_Declaration;
2332 ---------------------------------
2333 -- Analyze_Subtype_Declaration --
2334 ---------------------------------
2336 procedure Analyze_Subtype_Declaration (N : Node_Id) is
2337 Id : constant Entity_Id := Defining_Identifier (N);
2338 T : Entity_Id;
2339 R_Checks : Check_Result;
2341 begin
2342 Generate_Definition (Id);
2343 Set_Is_Pure (Id, Is_Pure (Current_Scope));
2344 Init_Size_Align (Id);
2346 -- The following guard condition on Enter_Name is to handle cases
2347 -- where the defining identifier has already been entered into the
2348 -- scope but the declaration as a whole needs to be analyzed.
2350 -- This case in particular happens for derived enumeration types. The
2351 -- derived enumeration type is processed as an inserted enumeration
2352 -- type declaration followed by a rewritten subtype declaration. The
2353 -- defining identifier, however, is entered into the name scope very
2354 -- early in the processing of the original type declaration and
2355 -- therefore needs to be avoided here, when the created subtype
2356 -- declaration is analyzed. (See Build_Derived_Types)
2358 -- This also happens when the full view of a private type is derived
2359 -- type with constraints. In this case the entity has been introduced
2360 -- in the private declaration.
2362 if Present (Etype (Id))
2363 and then (Is_Private_Type (Etype (Id))
2364 or else Is_Task_Type (Etype (Id))
2365 or else Is_Rewrite_Substitution (N))
2366 then
2367 null;
2369 else
2370 Enter_Name (Id);
2371 end if;
2373 T := Process_Subtype (Subtype_Indication (N), N, Id, 'P');
2375 -- Inherit common attributes
2377 Set_Is_Generic_Type (Id, Is_Generic_Type (Base_Type (T)));
2378 Set_Is_Volatile (Id, Is_Volatile (T));
2379 Set_Treat_As_Volatile (Id, Treat_As_Volatile (T));
2380 Set_Is_Atomic (Id, Is_Atomic (T));
2381 Set_Is_Ada_2005 (Id, Is_Ada_2005 (T));
2383 -- In the case where there is no constraint given in the subtype
2384 -- indication, Process_Subtype just returns the Subtype_Mark,
2385 -- so its semantic attributes must be established here.
2387 if Nkind (Subtype_Indication (N)) /= N_Subtype_Indication then
2388 Set_Etype (Id, Base_Type (T));
2390 case Ekind (T) is
2391 when Array_Kind =>
2392 Set_Ekind (Id, E_Array_Subtype);
2393 Copy_Array_Subtype_Attributes (Id, T);
2395 when Decimal_Fixed_Point_Kind =>
2396 Set_Ekind (Id, E_Decimal_Fixed_Point_Subtype);
2397 Set_Digits_Value (Id, Digits_Value (T));
2398 Set_Delta_Value (Id, Delta_Value (T));
2399 Set_Scale_Value (Id, Scale_Value (T));
2400 Set_Small_Value (Id, Small_Value (T));
2401 Set_Scalar_Range (Id, Scalar_Range (T));
2402 Set_Machine_Radix_10 (Id, Machine_Radix_10 (T));
2403 Set_Is_Constrained (Id, Is_Constrained (T));
2404 Set_RM_Size (Id, RM_Size (T));
2406 when Enumeration_Kind =>
2407 Set_Ekind (Id, E_Enumeration_Subtype);
2408 Set_First_Literal (Id, First_Literal (Base_Type (T)));
2409 Set_Scalar_Range (Id, Scalar_Range (T));
2410 Set_Is_Character_Type (Id, Is_Character_Type (T));
2411 Set_Is_Constrained (Id, Is_Constrained (T));
2412 Set_RM_Size (Id, RM_Size (T));
2414 when Ordinary_Fixed_Point_Kind =>
2415 Set_Ekind (Id, E_Ordinary_Fixed_Point_Subtype);
2416 Set_Scalar_Range (Id, Scalar_Range (T));
2417 Set_Small_Value (Id, Small_Value (T));
2418 Set_Delta_Value (Id, Delta_Value (T));
2419 Set_Is_Constrained (Id, Is_Constrained (T));
2420 Set_RM_Size (Id, RM_Size (T));
2422 when Float_Kind =>
2423 Set_Ekind (Id, E_Floating_Point_Subtype);
2424 Set_Scalar_Range (Id, Scalar_Range (T));
2425 Set_Digits_Value (Id, Digits_Value (T));
2426 Set_Is_Constrained (Id, Is_Constrained (T));
2428 when Signed_Integer_Kind =>
2429 Set_Ekind (Id, E_Signed_Integer_Subtype);
2430 Set_Scalar_Range (Id, Scalar_Range (T));
2431 Set_Is_Constrained (Id, Is_Constrained (T));
2432 Set_RM_Size (Id, RM_Size (T));
2434 when Modular_Integer_Kind =>
2435 Set_Ekind (Id, E_Modular_Integer_Subtype);
2436 Set_Scalar_Range (Id, Scalar_Range (T));
2437 Set_Is_Constrained (Id, Is_Constrained (T));
2438 Set_RM_Size (Id, RM_Size (T));
2440 when Class_Wide_Kind =>
2441 Set_Ekind (Id, E_Class_Wide_Subtype);
2442 Set_First_Entity (Id, First_Entity (T));
2443 Set_Last_Entity (Id, Last_Entity (T));
2444 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
2445 Set_Cloned_Subtype (Id, T);
2446 Set_Is_Tagged_Type (Id, True);
2447 Set_Has_Unknown_Discriminants
2448 (Id, True);
2450 if Ekind (T) = E_Class_Wide_Subtype then
2451 Set_Equivalent_Type (Id, Equivalent_Type (T));
2452 end if;
2454 when E_Record_Type | E_Record_Subtype =>
2455 Set_Ekind (Id, E_Record_Subtype);
2457 if Ekind (T) = E_Record_Subtype
2458 and then Present (Cloned_Subtype (T))
2459 then
2460 Set_Cloned_Subtype (Id, Cloned_Subtype (T));
2461 else
2462 Set_Cloned_Subtype (Id, T);
2463 end if;
2465 Set_First_Entity (Id, First_Entity (T));
2466 Set_Last_Entity (Id, Last_Entity (T));
2467 Set_Has_Discriminants (Id, Has_Discriminants (T));
2468 Set_Is_Constrained (Id, Is_Constrained (T));
2469 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
2470 Set_Has_Unknown_Discriminants
2471 (Id, Has_Unknown_Discriminants (T));
2473 if Has_Discriminants (T) then
2474 Set_Discriminant_Constraint
2475 (Id, Discriminant_Constraint (T));
2476 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
2478 elsif Has_Unknown_Discriminants (Id) then
2479 Set_Discriminant_Constraint (Id, No_Elist);
2480 end if;
2482 if Is_Tagged_Type (T) then
2483 Set_Is_Tagged_Type (Id);
2484 Set_Is_Abstract (Id, Is_Abstract (T));
2485 Set_Primitive_Operations
2486 (Id, Primitive_Operations (T));
2487 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
2488 end if;
2490 when Private_Kind =>
2491 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
2492 Set_Has_Discriminants (Id, Has_Discriminants (T));
2493 Set_Is_Constrained (Id, Is_Constrained (T));
2494 Set_First_Entity (Id, First_Entity (T));
2495 Set_Last_Entity (Id, Last_Entity (T));
2496 Set_Private_Dependents (Id, New_Elmt_List);
2497 Set_Is_Limited_Record (Id, Is_Limited_Record (T));
2498 Set_Has_Unknown_Discriminants
2499 (Id, Has_Unknown_Discriminants (T));
2501 if Is_Tagged_Type (T) then
2502 Set_Is_Tagged_Type (Id);
2503 Set_Is_Abstract (Id, Is_Abstract (T));
2504 Set_Primitive_Operations
2505 (Id, Primitive_Operations (T));
2506 Set_Class_Wide_Type (Id, Class_Wide_Type (T));
2507 end if;
2509 -- In general the attributes of the subtype of a private
2510 -- type are the attributes of the partial view of parent.
2511 -- However, the full view may be a discriminated type,
2512 -- and the subtype must share the discriminant constraint
2513 -- to generate correct calls to initialization procedures.
2515 if Has_Discriminants (T) then
2516 Set_Discriminant_Constraint
2517 (Id, Discriminant_Constraint (T));
2518 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
2520 elsif Present (Full_View (T))
2521 and then Has_Discriminants (Full_View (T))
2522 then
2523 Set_Discriminant_Constraint
2524 (Id, Discriminant_Constraint (Full_View (T)));
2525 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
2527 -- This would seem semantically correct, but apparently
2528 -- confuses the back-end (4412-009). To be explained ???
2530 -- Set_Has_Discriminants (Id);
2531 end if;
2533 Prepare_Private_Subtype_Completion (Id, N);
2535 when Access_Kind =>
2536 Set_Ekind (Id, E_Access_Subtype);
2537 Set_Is_Constrained (Id, Is_Constrained (T));
2538 Set_Is_Access_Constant
2539 (Id, Is_Access_Constant (T));
2540 Set_Directly_Designated_Type
2541 (Id, Designated_Type (T));
2543 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
2544 -- and carry out some static checks
2546 if Null_Exclusion_Present (N)
2547 or else Can_Never_Be_Null (T)
2548 then
2549 Set_Can_Never_Be_Null (Id);
2551 if Null_Exclusion_Present (N)
2552 and then Can_Never_Be_Null (T)
2553 then
2554 Error_Msg_N
2555 ("(Ada 2005) null exclusion not allowed if parent "
2556 & "is already non-null", Subtype_Indication (N));
2557 end if;
2558 end if;
2560 -- A Pure library_item must not contain the declaration of a
2561 -- named access type, except within a subprogram, generic
2562 -- subprogram, task unit, or protected unit (RM 10.2.1(16)).
2564 if Comes_From_Source (Id)
2565 and then In_Pure_Unit
2566 and then not In_Subprogram_Task_Protected_Unit
2567 then
2568 Error_Msg_N
2569 ("named access types not allowed in pure unit", N);
2570 end if;
2572 when Concurrent_Kind =>
2573 Set_Ekind (Id, Subtype_Kind (Ekind (T)));
2574 Set_Corresponding_Record_Type (Id,
2575 Corresponding_Record_Type (T));
2576 Set_First_Entity (Id, First_Entity (T));
2577 Set_First_Private_Entity (Id, First_Private_Entity (T));
2578 Set_Has_Discriminants (Id, Has_Discriminants (T));
2579 Set_Is_Constrained (Id, Is_Constrained (T));
2580 Set_Last_Entity (Id, Last_Entity (T));
2582 if Has_Discriminants (T) then
2583 Set_Discriminant_Constraint (Id,
2584 Discriminant_Constraint (T));
2585 Set_Stored_Constraint_From_Discriminant_Constraint (Id);
2586 end if;
2588 -- If the subtype name denotes an incomplete type
2589 -- an error was already reported by Process_Subtype.
2591 when E_Incomplete_Type =>
2592 Set_Etype (Id, Any_Type);
2594 when others =>
2595 raise Program_Error;
2596 end case;
2597 end if;
2599 if Etype (Id) = Any_Type then
2600 return;
2601 end if;
2603 -- Some common processing on all types
2605 Set_Size_Info (Id, T);
2606 Set_First_Rep_Item (Id, First_Rep_Item (T));
2608 T := Etype (Id);
2610 Set_Is_Immediately_Visible (Id, True);
2611 Set_Depends_On_Private (Id, Has_Private_Component (T));
2613 if Present (Generic_Parent_Type (N))
2614 and then
2615 (Nkind
2616 (Parent (Generic_Parent_Type (N))) /= N_Formal_Type_Declaration
2617 or else Nkind
2618 (Formal_Type_Definition (Parent (Generic_Parent_Type (N))))
2619 /= N_Formal_Private_Type_Definition)
2620 then
2621 if Is_Tagged_Type (Id) then
2622 if Is_Class_Wide_Type (Id) then
2623 Derive_Subprograms (Generic_Parent_Type (N), Id, Etype (T));
2624 else
2625 Derive_Subprograms (Generic_Parent_Type (N), Id, T);
2626 end if;
2628 elsif Scope (Etype (Id)) /= Standard_Standard then
2629 Derive_Subprograms (Generic_Parent_Type (N), Id);
2630 end if;
2631 end if;
2633 if Is_Private_Type (T)
2634 and then Present (Full_View (T))
2635 then
2636 Conditional_Delay (Id, Full_View (T));
2638 -- The subtypes of components or subcomponents of protected types
2639 -- do not need freeze nodes, which would otherwise appear in the
2640 -- wrong scope (before the freeze node for the protected type). The
2641 -- proper subtypes are those of the subcomponents of the corresponding
2642 -- record.
2644 elsif Ekind (Scope (Id)) /= E_Protected_Type
2645 and then Present (Scope (Scope (Id))) -- error defense!
2646 and then Ekind (Scope (Scope (Id))) /= E_Protected_Type
2647 then
2648 Conditional_Delay (Id, T);
2649 end if;
2651 -- Check that constraint_error is raised for a scalar subtype
2652 -- indication when the lower or upper bound of a non-null range
2653 -- lies outside the range of the type mark.
2655 if Nkind (Subtype_Indication (N)) = N_Subtype_Indication then
2656 if Is_Scalar_Type (Etype (Id))
2657 and then Scalar_Range (Id) /=
2658 Scalar_Range (Etype (Subtype_Mark
2659 (Subtype_Indication (N))))
2660 then
2661 Apply_Range_Check
2662 (Scalar_Range (Id),
2663 Etype (Subtype_Mark (Subtype_Indication (N))));
2665 elsif Is_Array_Type (Etype (Id))
2666 and then Present (First_Index (Id))
2667 then
2668 -- This really should be a subprogram that finds the indications
2669 -- to check???
2671 if ((Nkind (First_Index (Id)) = N_Identifier
2672 and then Ekind (Entity (First_Index (Id))) in Scalar_Kind)
2673 or else Nkind (First_Index (Id)) = N_Subtype_Indication)
2674 and then
2675 Nkind (Scalar_Range (Etype (First_Index (Id)))) = N_Range
2676 then
2677 declare
2678 Target_Typ : constant Entity_Id :=
2679 Etype
2680 (First_Index (Etype
2681 (Subtype_Mark (Subtype_Indication (N)))));
2682 begin
2683 R_Checks :=
2684 Range_Check
2685 (Scalar_Range (Etype (First_Index (Id))),
2686 Target_Typ,
2687 Etype (First_Index (Id)),
2688 Defining_Identifier (N));
2690 Insert_Range_Checks
2691 (R_Checks,
2693 Target_Typ,
2694 Sloc (Defining_Identifier (N)));
2695 end;
2696 end if;
2697 end if;
2698 end if;
2700 Check_Eliminated (Id);
2701 end Analyze_Subtype_Declaration;
2703 --------------------------------
2704 -- Analyze_Subtype_Indication --
2705 --------------------------------
2707 procedure Analyze_Subtype_Indication (N : Node_Id) is
2708 T : constant Entity_Id := Subtype_Mark (N);
2709 R : constant Node_Id := Range_Expression (Constraint (N));
2711 begin
2712 Analyze (T);
2714 if R /= Error then
2715 Analyze (R);
2716 Set_Etype (N, Etype (R));
2717 else
2718 Set_Error_Posted (R);
2719 Set_Error_Posted (T);
2720 end if;
2721 end Analyze_Subtype_Indication;
2723 ------------------------------
2724 -- Analyze_Type_Declaration --
2725 ------------------------------
2727 procedure Analyze_Type_Declaration (N : Node_Id) is
2728 Def : constant Node_Id := Type_Definition (N);
2729 Def_Id : constant Entity_Id := Defining_Identifier (N);
2730 T : Entity_Id;
2731 Prev : Entity_Id;
2733 Is_Remote : constant Boolean :=
2734 (Is_Remote_Types (Current_Scope)
2735 or else Is_Remote_Call_Interface (Current_Scope))
2736 and then not (In_Private_Part (Current_Scope)
2737 or else
2738 In_Package_Body (Current_Scope));
2740 begin
2741 Prev := Find_Type_Name (N);
2743 -- The full view, if present, now points to the current type
2745 -- Ada 2005 (AI-50217): If the type was previously decorated when
2746 -- imported through a LIMITED WITH clause, it appears as incomplete
2747 -- but has no full view.
2749 if Ekind (Prev) = E_Incomplete_Type
2750 and then Present (Full_View (Prev))
2751 then
2752 T := Full_View (Prev);
2753 else
2754 T := Prev;
2755 end if;
2757 Set_Is_Pure (T, Is_Pure (Current_Scope));
2759 -- We set the flag Is_First_Subtype here. It is needed to set the
2760 -- corresponding flag for the Implicit class-wide-type created
2761 -- during tagged types processing.
2763 Set_Is_First_Subtype (T, True);
2765 -- Only composite types other than array types are allowed to have
2766 -- discriminants.
2768 case Nkind (Def) is
2770 -- For derived types, the rule will be checked once we've figured
2771 -- out the parent type.
2773 when N_Derived_Type_Definition =>
2774 null;
2776 -- For record types, discriminants are allowed
2778 when N_Record_Definition =>
2779 null;
2781 when others =>
2782 if Present (Discriminant_Specifications (N)) then
2783 Error_Msg_N
2784 ("elementary or array type cannot have discriminants",
2785 Defining_Identifier
2786 (First (Discriminant_Specifications (N))));
2787 end if;
2788 end case;
2790 -- Elaborate the type definition according to kind, and generate
2791 -- subsidiary (implicit) subtypes where needed. We skip this if
2792 -- it was already done (this happens during the reanalysis that
2793 -- follows a call to the high level optimizer).
2795 if not Analyzed (T) then
2796 Set_Analyzed (T);
2798 case Nkind (Def) is
2800 when N_Access_To_Subprogram_Definition =>
2801 Access_Subprogram_Declaration (T, Def);
2803 -- If this is a remote access to subprogram, we must create
2804 -- the equivalent fat pointer type, and related subprograms.
2806 if Is_Remote then
2807 Process_Remote_AST_Declaration (N);
2808 end if;
2810 -- Validate categorization rule against access type declaration
2811 -- usually a violation in Pure unit, Shared_Passive unit.
2813 Validate_Access_Type_Declaration (T, N);
2815 when N_Access_To_Object_Definition =>
2816 Access_Type_Declaration (T, Def);
2818 -- Validate categorization rule against access type declaration
2819 -- usually a violation in Pure unit, Shared_Passive unit.
2821 Validate_Access_Type_Declaration (T, N);
2823 -- If we are in a Remote_Call_Interface package and define
2824 -- a RACW, Read and Write attribute must be added.
2826 if Is_Remote
2827 and then Is_Remote_Access_To_Class_Wide_Type (Def_Id)
2828 then
2829 Add_RACW_Features (Def_Id);
2830 end if;
2832 -- Set no strict aliasing flag if config pragma seen
2834 if Opt.No_Strict_Aliasing then
2835 Set_No_Strict_Aliasing (Base_Type (Def_Id));
2836 end if;
2838 when N_Array_Type_Definition =>
2839 Array_Type_Declaration (T, Def);
2841 when N_Derived_Type_Definition =>
2842 Derived_Type_Declaration (T, N, T /= Def_Id);
2844 when N_Enumeration_Type_Definition =>
2845 Enumeration_Type_Declaration (T, Def);
2847 when N_Floating_Point_Definition =>
2848 Floating_Point_Type_Declaration (T, Def);
2850 when N_Decimal_Fixed_Point_Definition =>
2851 Decimal_Fixed_Point_Type_Declaration (T, Def);
2853 when N_Ordinary_Fixed_Point_Definition =>
2854 Ordinary_Fixed_Point_Type_Declaration (T, Def);
2856 when N_Signed_Integer_Type_Definition =>
2857 Signed_Integer_Type_Declaration (T, Def);
2859 when N_Modular_Type_Definition =>
2860 Modular_Type_Declaration (T, Def);
2862 when N_Record_Definition =>
2863 Record_Type_Declaration (T, N, Prev);
2865 when others =>
2866 raise Program_Error;
2868 end case;
2869 end if;
2871 if Etype (T) = Any_Type then
2872 return;
2873 end if;
2875 -- Some common processing for all types
2877 Set_Depends_On_Private (T, Has_Private_Component (T));
2879 -- Both the declared entity, and its anonymous base type if one
2880 -- was created, need freeze nodes allocated.
2882 declare
2883 B : constant Entity_Id := Base_Type (T);
2885 begin
2886 -- In the case where the base type is different from the first
2887 -- subtype, we pre-allocate a freeze node, and set the proper link
2888 -- to the first subtype. Freeze_Entity will use this preallocated
2889 -- freeze node when it freezes the entity.
2891 if B /= T then
2892 Ensure_Freeze_Node (B);
2893 Set_First_Subtype_Link (Freeze_Node (B), T);
2894 end if;
2896 if not From_With_Type (T) then
2897 Set_Has_Delayed_Freeze (T);
2898 end if;
2899 end;
2901 -- Case of T is the full declaration of some private type which has
2902 -- been swapped in Defining_Identifier (N).
2904 if T /= Def_Id and then Is_Private_Type (Def_Id) then
2905 Process_Full_View (N, T, Def_Id);
2907 -- Record the reference. The form of this is a little strange,
2908 -- since the full declaration has been swapped in. So the first
2909 -- parameter here represents the entity to which a reference is
2910 -- made which is the "real" entity, i.e. the one swapped in,
2911 -- and the second parameter provides the reference location.
2913 Generate_Reference (T, T, 'c');
2914 Set_Completion_Referenced (Def_Id);
2916 -- For completion of incomplete type, process incomplete dependents
2917 -- and always mark the full type as referenced (it is the incomplete
2918 -- type that we get for any real reference).
2920 elsif Ekind (Prev) = E_Incomplete_Type then
2921 Process_Incomplete_Dependents (N, T, Prev);
2922 Generate_Reference (Prev, Def_Id, 'c');
2923 Set_Completion_Referenced (Def_Id);
2925 -- If not private type or incomplete type completion, this is a real
2926 -- definition of a new entity, so record it.
2928 else
2929 Generate_Definition (Def_Id);
2930 end if;
2932 Check_Eliminated (Def_Id);
2933 end Analyze_Type_Declaration;
2935 --------------------------
2936 -- Analyze_Variant_Part --
2937 --------------------------
2939 procedure Analyze_Variant_Part (N : Node_Id) is
2941 procedure Non_Static_Choice_Error (Choice : Node_Id);
2942 -- Error routine invoked by the generic instantiation below when
2943 -- the variant part has a non static choice.
2945 procedure Process_Declarations (Variant : Node_Id);
2946 -- Analyzes all the declarations associated with a Variant.
2947 -- Needed by the generic instantiation below.
2949 package Variant_Choices_Processing is new
2950 Generic_Choices_Processing
2951 (Get_Alternatives => Variants,
2952 Get_Choices => Discrete_Choices,
2953 Process_Empty_Choice => No_OP,
2954 Process_Non_Static_Choice => Non_Static_Choice_Error,
2955 Process_Associated_Node => Process_Declarations);
2956 use Variant_Choices_Processing;
2957 -- Instantiation of the generic choice processing package
2959 -----------------------------
2960 -- Non_Static_Choice_Error --
2961 -----------------------------
2963 procedure Non_Static_Choice_Error (Choice : Node_Id) is
2964 begin
2965 Flag_Non_Static_Expr
2966 ("choice given in variant part is not static!", Choice);
2967 end Non_Static_Choice_Error;
2969 --------------------------
2970 -- Process_Declarations --
2971 --------------------------
2973 procedure Process_Declarations (Variant : Node_Id) is
2974 begin
2975 if not Null_Present (Component_List (Variant)) then
2976 Analyze_Declarations (Component_Items (Component_List (Variant)));
2978 if Present (Variant_Part (Component_List (Variant))) then
2979 Analyze (Variant_Part (Component_List (Variant)));
2980 end if;
2981 end if;
2982 end Process_Declarations;
2984 -- Variables local to Analyze_Case_Statement
2986 Discr_Name : Node_Id;
2987 Discr_Type : Entity_Id;
2989 Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N));
2990 Last_Choice : Nat;
2991 Dont_Care : Boolean;
2992 Others_Present : Boolean := False;
2994 -- Start of processing for Analyze_Variant_Part
2996 begin
2997 Discr_Name := Name (N);
2998 Analyze (Discr_Name);
3000 if Ekind (Entity (Discr_Name)) /= E_Discriminant then
3001 Error_Msg_N ("invalid discriminant name in variant part", Discr_Name);
3002 end if;
3004 Discr_Type := Etype (Entity (Discr_Name));
3006 if not Is_Discrete_Type (Discr_Type) then
3007 Error_Msg_N
3008 ("discriminant in a variant part must be of a discrete type",
3009 Name (N));
3010 return;
3011 end if;
3013 -- Call the instantiated Analyze_Choices which does the rest of the work
3015 Analyze_Choices
3016 (N, Discr_Type, Case_Table, Last_Choice, Dont_Care, Others_Present);
3017 end Analyze_Variant_Part;
3019 ----------------------------
3020 -- Array_Type_Declaration --
3021 ----------------------------
3023 procedure Array_Type_Declaration (T : in out Entity_Id; Def : Node_Id) is
3024 Component_Def : constant Node_Id := Component_Definition (Def);
3025 Element_Type : Entity_Id;
3026 Implicit_Base : Entity_Id;
3027 Index : Node_Id;
3028 Related_Id : Entity_Id := Empty;
3029 Nb_Index : Nat;
3030 P : constant Node_Id := Parent (Def);
3031 Priv : Entity_Id;
3033 begin
3034 if Nkind (Def) = N_Constrained_Array_Definition then
3035 Index := First (Discrete_Subtype_Definitions (Def));
3036 else
3037 Index := First (Subtype_Marks (Def));
3038 end if;
3040 -- Find proper names for the implicit types which may be public.
3041 -- in case of anonymous arrays we use the name of the first object
3042 -- of that type as prefix.
3044 if No (T) then
3045 Related_Id := Defining_Identifier (P);
3046 else
3047 Related_Id := T;
3048 end if;
3050 Nb_Index := 1;
3051 while Present (Index) loop
3052 Analyze (Index);
3053 Make_Index (Index, P, Related_Id, Nb_Index);
3054 Next_Index (Index);
3055 Nb_Index := Nb_Index + 1;
3056 end loop;
3058 if Present (Subtype_Indication (Component_Def)) then
3059 Element_Type := Process_Subtype (Subtype_Indication (Component_Def),
3060 P, Related_Id, 'C');
3062 -- Ada 2005 (AI-230): Access Definition case
3064 else pragma Assert (Present (Access_Definition (Component_Def)));
3065 Element_Type := Access_Definition
3066 (Related_Nod => Related_Id,
3067 N => Access_Definition (Component_Def));
3069 -- Ada 2005 (AI-230): In case of components that are anonymous
3070 -- access types the level of accessibility depends on the enclosing
3071 -- type declaration
3073 Set_Scope (Element_Type, Current_Scope); -- Ada 2005 (AI-230)
3075 -- Ada 2005 (AI-254)
3077 declare
3078 CD : constant Node_Id :=
3079 Access_To_Subprogram_Definition
3080 (Access_Definition (Component_Def));
3081 begin
3082 if Present (CD) and then Protected_Present (CD) then
3083 Element_Type :=
3084 Replace_Anonymous_Access_To_Protected_Subprogram
3085 (Def, Element_Type);
3086 end if;
3087 end;
3088 end if;
3090 -- Constrained array case
3092 if No (T) then
3093 T := Create_Itype (E_Void, P, Related_Id, 'T');
3094 end if;
3096 if Nkind (Def) = N_Constrained_Array_Definition then
3098 -- Establish Implicit_Base as unconstrained base type
3100 Implicit_Base := Create_Itype (E_Array_Type, P, Related_Id, 'B');
3102 Init_Size_Align (Implicit_Base);
3103 Set_Etype (Implicit_Base, Implicit_Base);
3104 Set_Scope (Implicit_Base, Current_Scope);
3105 Set_Has_Delayed_Freeze (Implicit_Base);
3107 -- The constrained array type is a subtype of the unconstrained one
3109 Set_Ekind (T, E_Array_Subtype);
3110 Init_Size_Align (T);
3111 Set_Etype (T, Implicit_Base);
3112 Set_Scope (T, Current_Scope);
3113 Set_Is_Constrained (T, True);
3114 Set_First_Index (T, First (Discrete_Subtype_Definitions (Def)));
3115 Set_Has_Delayed_Freeze (T);
3117 -- Complete setup of implicit base type
3119 Set_First_Index (Implicit_Base, First_Index (T));
3120 Set_Component_Type (Implicit_Base, Element_Type);
3121 Set_Has_Task (Implicit_Base, Has_Task (Element_Type));
3122 Set_Component_Size (Implicit_Base, Uint_0);
3123 Set_Has_Controlled_Component
3124 (Implicit_Base, Has_Controlled_Component
3125 (Element_Type)
3126 or else
3127 Is_Controlled (Element_Type));
3128 Set_Finalize_Storage_Only
3129 (Implicit_Base, Finalize_Storage_Only
3130 (Element_Type));
3132 -- Unconstrained array case
3134 else
3135 Set_Ekind (T, E_Array_Type);
3136 Init_Size_Align (T);
3137 Set_Etype (T, T);
3138 Set_Scope (T, Current_Scope);
3139 Set_Component_Size (T, Uint_0);
3140 Set_Is_Constrained (T, False);
3141 Set_First_Index (T, First (Subtype_Marks (Def)));
3142 Set_Has_Delayed_Freeze (T, True);
3143 Set_Has_Task (T, Has_Task (Element_Type));
3144 Set_Has_Controlled_Component (T, Has_Controlled_Component
3145 (Element_Type)
3146 or else
3147 Is_Controlled (Element_Type));
3148 Set_Finalize_Storage_Only (T, Finalize_Storage_Only
3149 (Element_Type));
3150 end if;
3152 Set_Component_Type (Base_Type (T), Element_Type);
3154 if Aliased_Present (Component_Definition (Def)) then
3155 Set_Has_Aliased_Components (Etype (T));
3156 end if;
3158 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
3159 -- array to ensure that objects of this type are initialized.
3161 if Ada_Version >= Ada_05
3162 and then (Null_Exclusion_Present (Component_Definition (Def))
3163 or else Can_Never_Be_Null (Element_Type))
3164 then
3165 Set_Can_Never_Be_Null (T);
3167 if Null_Exclusion_Present (Component_Definition (Def))
3168 and then Can_Never_Be_Null (Element_Type)
3169 then
3170 Error_Msg_N
3171 ("(Ada 2005) already a null-excluding type",
3172 Subtype_Indication (Component_Definition (Def)));
3173 end if;
3174 end if;
3176 Priv := Private_Component (Element_Type);
3178 if Present (Priv) then
3180 -- Check for circular definitions
3182 if Priv = Any_Type then
3183 Set_Component_Type (Etype (T), Any_Type);
3185 -- There is a gap in the visibility of operations on the composite
3186 -- type only if the component type is defined in a different scope.
3188 elsif Scope (Priv) = Current_Scope then
3189 null;
3191 elsif Is_Limited_Type (Priv) then
3192 Set_Is_Limited_Composite (Etype (T));
3193 Set_Is_Limited_Composite (T);
3194 else
3195 Set_Is_Private_Composite (Etype (T));
3196 Set_Is_Private_Composite (T);
3197 end if;
3198 end if;
3200 -- Create a concatenation operator for the new type. Internal
3201 -- array types created for packed entities do not need such, they
3202 -- are compatible with the user-defined type.
3204 if Number_Dimensions (T) = 1
3205 and then not Is_Packed_Array_Type (T)
3206 then
3207 New_Concatenation_Op (T);
3208 end if;
3210 -- In the case of an unconstrained array the parser has already
3211 -- verified that all the indices are unconstrained but we still
3212 -- need to make sure that the element type is constrained.
3214 if Is_Indefinite_Subtype (Element_Type) then
3215 Error_Msg_N
3216 ("unconstrained element type in array declaration",
3217 Subtype_Indication (Component_Def));
3219 elsif Is_Abstract (Element_Type) then
3220 Error_Msg_N
3221 ("The type of a component cannot be abstract",
3222 Subtype_Indication (Component_Def));
3223 end if;
3225 end Array_Type_Declaration;
3227 ------------------------------------------------------
3228 -- Replace_Anonymous_Access_To_Protected_Subprogram --
3229 ------------------------------------------------------
3231 function Replace_Anonymous_Access_To_Protected_Subprogram
3232 (N : Node_Id;
3233 Prev_E : Entity_Id) return Entity_Id
3235 Loc : constant Source_Ptr := Sloc (N);
3237 Curr_Scope : constant Scope_Stack_Entry :=
3238 Scope_Stack.Table (Scope_Stack.Last);
3240 Anon : constant Entity_Id :=
3241 Make_Defining_Identifier (Loc,
3242 Chars => New_Internal_Name ('S'));
3244 Acc : Node_Id;
3245 Comp : Node_Id;
3246 Decl : Node_Id;
3247 P : Node_Id := Parent (N);
3249 begin
3250 Set_Is_Internal (Anon);
3252 case Nkind (N) is
3253 when N_Component_Declaration |
3254 N_Unconstrained_Array_Definition |
3255 N_Constrained_Array_Definition =>
3256 Comp := Component_Definition (N);
3257 Acc := Access_Definition (Component_Definition (N));
3259 when N_Discriminant_Specification =>
3260 Comp := Discriminant_Type (N);
3261 Acc := Discriminant_Type (N);
3263 when N_Parameter_Specification =>
3264 Comp := Parameter_Type (N);
3265 Acc := Parameter_Type (N);
3267 when others =>
3268 raise Program_Error;
3269 end case;
3271 Decl := Make_Full_Type_Declaration (Loc,
3272 Defining_Identifier => Anon,
3273 Type_Definition =>
3274 Copy_Separate_Tree (Access_To_Subprogram_Definition (Acc)));
3276 Mark_Rewrite_Insertion (Decl);
3278 -- Insert the new declaration in the nearest enclosing scope
3280 while Present (P) and then not Has_Declarations (P) loop
3281 P := Parent (P);
3282 end loop;
3284 pragma Assert (Present (P));
3286 if Nkind (P) = N_Package_Specification then
3287 Prepend (Decl, Visible_Declarations (P));
3288 else
3289 Prepend (Decl, Declarations (P));
3290 end if;
3292 -- Replace the anonymous type with an occurrence of the new declaration.
3293 -- In all cases the rewriten node does not have the null-exclusion
3294 -- attribute because (if present) it was already inherited by the
3295 -- anonymous entity (Anon). Thus, in case of components we do not
3296 -- inherit this attribute.
3298 if Nkind (N) = N_Parameter_Specification then
3299 Rewrite (Comp, New_Occurrence_Of (Anon, Loc));
3300 Set_Etype (Defining_Identifier (N), Anon);
3301 Set_Null_Exclusion_Present (N, False);
3302 else
3303 Rewrite (Comp,
3304 Make_Component_Definition (Loc,
3305 Subtype_Indication => New_Occurrence_Of (Anon, Loc)));
3306 end if;
3308 Mark_Rewrite_Insertion (Comp);
3310 -- Temporarily remove the current scope from the stack to add the new
3311 -- declarations to the enclosing scope
3313 Scope_Stack.Decrement_Last;
3314 Analyze (Decl);
3315 Scope_Stack.Append (Curr_Scope);
3317 Set_Original_Access_Type (Anon, Prev_E);
3318 return Anon;
3319 end Replace_Anonymous_Access_To_Protected_Subprogram;
3321 -------------------------------
3322 -- Build_Derived_Access_Type --
3323 -------------------------------
3325 procedure Build_Derived_Access_Type
3326 (N : Node_Id;
3327 Parent_Type : Entity_Id;
3328 Derived_Type : Entity_Id)
3330 S : constant Node_Id := Subtype_Indication (Type_Definition (N));
3332 Desig_Type : Entity_Id;
3333 Discr : Entity_Id;
3334 Discr_Con_Elist : Elist_Id;
3335 Discr_Con_El : Elmt_Id;
3336 Subt : Entity_Id;
3338 begin
3339 -- Set the designated type so it is available in case this is
3340 -- an access to a self-referential type, e.g. a standard list
3341 -- type with a next pointer. Will be reset after subtype is built.
3343 Set_Directly_Designated_Type
3344 (Derived_Type, Designated_Type (Parent_Type));
3346 Subt := Process_Subtype (S, N);
3348 if Nkind (S) /= N_Subtype_Indication
3349 and then Subt /= Base_Type (Subt)
3350 then
3351 Set_Ekind (Derived_Type, E_Access_Subtype);
3352 end if;
3354 if Ekind (Derived_Type) = E_Access_Subtype then
3355 declare
3356 Pbase : constant Entity_Id := Base_Type (Parent_Type);
3357 Ibase : constant Entity_Id :=
3358 Create_Itype (Ekind (Pbase), N, Derived_Type, 'B');
3359 Svg_Chars : constant Name_Id := Chars (Ibase);
3360 Svg_Next_E : constant Entity_Id := Next_Entity (Ibase);
3362 begin
3363 Copy_Node (Pbase, Ibase);
3365 Set_Chars (Ibase, Svg_Chars);
3366 Set_Next_Entity (Ibase, Svg_Next_E);
3367 Set_Sloc (Ibase, Sloc (Derived_Type));
3368 Set_Scope (Ibase, Scope (Derived_Type));
3369 Set_Freeze_Node (Ibase, Empty);
3370 Set_Is_Frozen (Ibase, False);
3371 Set_Comes_From_Source (Ibase, False);
3372 Set_Is_First_Subtype (Ibase, False);
3374 Set_Etype (Ibase, Pbase);
3375 Set_Etype (Derived_Type, Ibase);
3376 end;
3377 end if;
3379 Set_Directly_Designated_Type
3380 (Derived_Type, Designated_Type (Subt));
3382 Set_Is_Constrained (Derived_Type, Is_Constrained (Subt));
3383 Set_Is_Access_Constant (Derived_Type, Is_Access_Constant (Parent_Type));
3384 Set_Size_Info (Derived_Type, Parent_Type);
3385 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
3386 Set_Depends_On_Private (Derived_Type,
3387 Has_Private_Component (Derived_Type));
3388 Conditional_Delay (Derived_Type, Subt);
3390 -- Ada 2005 (AI-231). Set the null-exclusion attribute
3392 if Null_Exclusion_Present (Type_Definition (N))
3393 or else Can_Never_Be_Null (Parent_Type)
3394 then
3395 Set_Can_Never_Be_Null (Derived_Type);
3396 end if;
3398 -- Note: we do not copy the Storage_Size_Variable, since
3399 -- we always go to the root type for this information.
3401 -- Apply range checks to discriminants for derived record case
3402 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
3404 Desig_Type := Designated_Type (Derived_Type);
3405 if Is_Composite_Type (Desig_Type)
3406 and then (not Is_Array_Type (Desig_Type))
3407 and then Has_Discriminants (Desig_Type)
3408 and then Base_Type (Desig_Type) /= Desig_Type
3409 then
3410 Discr_Con_Elist := Discriminant_Constraint (Desig_Type);
3411 Discr_Con_El := First_Elmt (Discr_Con_Elist);
3413 Discr := First_Discriminant (Base_Type (Desig_Type));
3414 while Present (Discr_Con_El) loop
3415 Apply_Range_Check (Node (Discr_Con_El), Etype (Discr));
3416 Next_Elmt (Discr_Con_El);
3417 Next_Discriminant (Discr);
3418 end loop;
3419 end if;
3420 end Build_Derived_Access_Type;
3422 ------------------------------
3423 -- Build_Derived_Array_Type --
3424 ------------------------------
3426 procedure Build_Derived_Array_Type
3427 (N : Node_Id;
3428 Parent_Type : Entity_Id;
3429 Derived_Type : Entity_Id)
3431 Loc : constant Source_Ptr := Sloc (N);
3432 Tdef : constant Node_Id := Type_Definition (N);
3433 Indic : constant Node_Id := Subtype_Indication (Tdef);
3434 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
3435 Implicit_Base : Entity_Id;
3436 New_Indic : Node_Id;
3438 procedure Make_Implicit_Base;
3439 -- If the parent subtype is constrained, the derived type is a
3440 -- subtype of an implicit base type derived from the parent base.
3442 ------------------------
3443 -- Make_Implicit_Base --
3444 ------------------------
3446 procedure Make_Implicit_Base is
3447 begin
3448 Implicit_Base :=
3449 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
3451 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
3452 Set_Etype (Implicit_Base, Parent_Base);
3454 Copy_Array_Subtype_Attributes (Implicit_Base, Parent_Base);
3455 Copy_Array_Base_Type_Attributes (Implicit_Base, Parent_Base);
3457 Set_Has_Delayed_Freeze (Implicit_Base, True);
3458 end Make_Implicit_Base;
3460 -- Start of processing for Build_Derived_Array_Type
3462 begin
3463 if not Is_Constrained (Parent_Type) then
3464 if Nkind (Indic) /= N_Subtype_Indication then
3465 Set_Ekind (Derived_Type, E_Array_Type);
3467 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
3468 Copy_Array_Base_Type_Attributes (Derived_Type, Parent_Type);
3470 Set_Has_Delayed_Freeze (Derived_Type, True);
3472 else
3473 Make_Implicit_Base;
3474 Set_Etype (Derived_Type, Implicit_Base);
3476 New_Indic :=
3477 Make_Subtype_Declaration (Loc,
3478 Defining_Identifier => Derived_Type,
3479 Subtype_Indication =>
3480 Make_Subtype_Indication (Loc,
3481 Subtype_Mark => New_Reference_To (Implicit_Base, Loc),
3482 Constraint => Constraint (Indic)));
3484 Rewrite (N, New_Indic);
3485 Analyze (N);
3486 end if;
3488 else
3489 if Nkind (Indic) /= N_Subtype_Indication then
3490 Make_Implicit_Base;
3492 Set_Ekind (Derived_Type, Ekind (Parent_Type));
3493 Set_Etype (Derived_Type, Implicit_Base);
3494 Copy_Array_Subtype_Attributes (Derived_Type, Parent_Type);
3496 else
3497 Error_Msg_N ("illegal constraint on constrained type", Indic);
3498 end if;
3499 end if;
3501 -- If the parent type is not a derived type itself, and is
3502 -- declared in a closed scope (e.g., a subprogram), then we
3503 -- need to explicitly introduce the new type's concatenation
3504 -- operator since Derive_Subprograms will not inherit the
3505 -- parent's operator. If the parent type is unconstrained, the
3506 -- operator is of the unconstrained base type.
3508 if Number_Dimensions (Parent_Type) = 1
3509 and then not Is_Limited_Type (Parent_Type)
3510 and then not Is_Derived_Type (Parent_Type)
3511 and then not Is_Package (Scope (Base_Type (Parent_Type)))
3512 then
3513 if not Is_Constrained (Parent_Type)
3514 and then Is_Constrained (Derived_Type)
3515 then
3516 New_Concatenation_Op (Implicit_Base);
3517 else
3518 New_Concatenation_Op (Derived_Type);
3519 end if;
3520 end if;
3521 end Build_Derived_Array_Type;
3523 -----------------------------------
3524 -- Build_Derived_Concurrent_Type --
3525 -----------------------------------
3527 procedure Build_Derived_Concurrent_Type
3528 (N : Node_Id;
3529 Parent_Type : Entity_Id;
3530 Derived_Type : Entity_Id)
3532 D_Constraint : Node_Id;
3533 Disc_Spec : Node_Id;
3534 Old_Disc : Entity_Id;
3535 New_Disc : Entity_Id;
3537 Constraint_Present : constant Boolean :=
3538 Nkind (Subtype_Indication (Type_Definition (N)))
3539 = N_Subtype_Indication;
3541 begin
3542 Set_Stored_Constraint (Derived_Type, No_Elist);
3544 if Is_Task_Type (Parent_Type) then
3545 Set_Storage_Size_Variable (Derived_Type,
3546 Storage_Size_Variable (Parent_Type));
3547 end if;
3549 if Present (Discriminant_Specifications (N)) then
3550 New_Scope (Derived_Type);
3551 Check_Or_Process_Discriminants (N, Derived_Type);
3552 End_Scope;
3554 elsif Constraint_Present then
3556 -- Build constrained subtype and derive from it
3558 declare
3559 Loc : constant Source_Ptr := Sloc (N);
3560 Anon : constant Entity_Id :=
3561 Make_Defining_Identifier (Loc,
3562 New_External_Name (Chars (Derived_Type), 'T'));
3563 Decl : Node_Id;
3565 begin
3566 Decl :=
3567 Make_Subtype_Declaration (Loc,
3568 Defining_Identifier => Anon,
3569 Subtype_Indication =>
3570 New_Copy_Tree (Subtype_Indication (Type_Definition (N))));
3571 Insert_Before (N, Decl);
3572 Rewrite (Subtype_Indication (Type_Definition (N)),
3573 New_Occurrence_Of (Anon, Loc));
3574 Analyze (Decl);
3575 Set_Analyzed (Derived_Type, False);
3576 Analyze (N);
3577 return;
3578 end;
3579 end if;
3581 -- All attributes are inherited from parent. In particular,
3582 -- entries and the corresponding record type are the same.
3583 -- Discriminants may be renamed, and must be treated separately.
3585 Set_Has_Discriminants
3586 (Derived_Type, Has_Discriminants (Parent_Type));
3587 Set_Corresponding_Record_Type
3588 (Derived_Type, Corresponding_Record_Type (Parent_Type));
3590 if Constraint_Present then
3591 if not Has_Discriminants (Parent_Type) then
3592 Error_Msg_N ("untagged parent must have discriminants", N);
3594 elsif Present (Discriminant_Specifications (N)) then
3596 -- Verify that new discriminants are used to constrain
3597 -- the old ones.
3599 Old_Disc := First_Discriminant (Parent_Type);
3600 New_Disc := First_Discriminant (Derived_Type);
3601 Disc_Spec := First (Discriminant_Specifications (N));
3602 D_Constraint :=
3603 First
3604 (Constraints
3605 (Constraint (Subtype_Indication (Type_Definition (N)))));
3607 while Present (Old_Disc) and then Present (Disc_Spec) loop
3609 if Nkind (Discriminant_Type (Disc_Spec)) /=
3610 N_Access_Definition
3611 then
3612 Analyze (Discriminant_Type (Disc_Spec));
3614 if not Subtypes_Statically_Compatible (
3615 Etype (Discriminant_Type (Disc_Spec)),
3616 Etype (Old_Disc))
3617 then
3618 Error_Msg_N
3619 ("not statically compatible with parent discriminant",
3620 Discriminant_Type (Disc_Spec));
3621 end if;
3622 end if;
3624 if Nkind (D_Constraint) = N_Identifier
3625 and then Chars (D_Constraint) /=
3626 Chars (Defining_Identifier (Disc_Spec))
3627 then
3628 Error_Msg_N ("new discriminants must constrain old ones",
3629 D_Constraint);
3630 else
3631 Set_Corresponding_Discriminant (New_Disc, Old_Disc);
3632 end if;
3634 Next_Discriminant (Old_Disc);
3635 Next_Discriminant (New_Disc);
3636 Next (Disc_Spec);
3637 end loop;
3639 if Present (Old_Disc) or else Present (Disc_Spec) then
3640 Error_Msg_N ("discriminant mismatch in derivation", N);
3641 end if;
3643 end if;
3645 elsif Present (Discriminant_Specifications (N)) then
3646 Error_Msg_N
3647 ("missing discriminant constraint in untagged derivation",
3649 end if;
3651 if Present (Discriminant_Specifications (N)) then
3652 Old_Disc := First_Discriminant (Parent_Type);
3653 while Present (Old_Disc) loop
3655 if No (Next_Entity (Old_Disc))
3656 or else Ekind (Next_Entity (Old_Disc)) /= E_Discriminant
3657 then
3658 Set_Next_Entity (Last_Entity (Derived_Type),
3659 Next_Entity (Old_Disc));
3660 exit;
3661 end if;
3663 Next_Discriminant (Old_Disc);
3664 end loop;
3666 else
3667 Set_First_Entity (Derived_Type, First_Entity (Parent_Type));
3668 if Has_Discriminants (Parent_Type) then
3669 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
3670 Set_Discriminant_Constraint (
3671 Derived_Type, Discriminant_Constraint (Parent_Type));
3672 end if;
3673 end if;
3675 Set_Last_Entity (Derived_Type, Last_Entity (Parent_Type));
3677 Set_Has_Completion (Derived_Type);
3678 end Build_Derived_Concurrent_Type;
3680 ------------------------------------
3681 -- Build_Derived_Enumeration_Type --
3682 ------------------------------------
3684 procedure Build_Derived_Enumeration_Type
3685 (N : Node_Id;
3686 Parent_Type : Entity_Id;
3687 Derived_Type : Entity_Id)
3689 Loc : constant Source_Ptr := Sloc (N);
3690 Def : constant Node_Id := Type_Definition (N);
3691 Indic : constant Node_Id := Subtype_Indication (Def);
3692 Implicit_Base : Entity_Id;
3693 Literal : Entity_Id;
3694 New_Lit : Entity_Id;
3695 Literals_List : List_Id;
3696 Type_Decl : Node_Id;
3697 Hi, Lo : Node_Id;
3698 Rang_Expr : Node_Id;
3700 begin
3701 -- Since types Standard.Character and Standard.Wide_Character do
3702 -- not have explicit literals lists we need to process types derived
3703 -- from them specially. This is handled by Derived_Standard_Character.
3704 -- If the parent type is a generic type, there are no literals either,
3705 -- and we construct the same skeletal representation as for the generic
3706 -- parent type.
3708 if Root_Type (Parent_Type) = Standard_Character
3709 or else Root_Type (Parent_Type) = Standard_Wide_Character
3710 or else Root_Type (Parent_Type) = Standard_Wide_Wide_Character
3711 then
3712 Derived_Standard_Character (N, Parent_Type, Derived_Type);
3714 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
3715 declare
3716 Lo : Node_Id;
3717 Hi : Node_Id;
3719 begin
3720 Lo :=
3721 Make_Attribute_Reference (Loc,
3722 Attribute_Name => Name_First,
3723 Prefix => New_Reference_To (Derived_Type, Loc));
3724 Set_Etype (Lo, Derived_Type);
3726 Hi :=
3727 Make_Attribute_Reference (Loc,
3728 Attribute_Name => Name_Last,
3729 Prefix => New_Reference_To (Derived_Type, Loc));
3730 Set_Etype (Hi, Derived_Type);
3732 Set_Scalar_Range (Derived_Type,
3733 Make_Range (Loc,
3734 Low_Bound => Lo,
3735 High_Bound => Hi));
3736 end;
3738 else
3739 -- If a constraint is present, analyze the bounds to catch
3740 -- premature usage of the derived literals.
3742 if Nkind (Indic) = N_Subtype_Indication
3743 and then Nkind (Range_Expression (Constraint (Indic))) = N_Range
3744 then
3745 Analyze (Low_Bound (Range_Expression (Constraint (Indic))));
3746 Analyze (High_Bound (Range_Expression (Constraint (Indic))));
3747 end if;
3749 -- Introduce an implicit base type for the derived type even
3750 -- if there is no constraint attached to it, since this seems
3751 -- closer to the Ada semantics. Build a full type declaration
3752 -- tree for the derived type using the implicit base type as
3753 -- the defining identifier. The build a subtype declaration
3754 -- tree which applies the constraint (if any) have it replace
3755 -- the derived type declaration.
3757 Literal := First_Literal (Parent_Type);
3758 Literals_List := New_List;
3760 while Present (Literal)
3761 and then Ekind (Literal) = E_Enumeration_Literal
3762 loop
3763 -- Literals of the derived type have the same representation as
3764 -- those of the parent type, but this representation can be
3765 -- overridden by an explicit representation clause. Indicate
3766 -- that there is no explicit representation given yet. These
3767 -- derived literals are implicit operations of the new type,
3768 -- and can be overriden by explicit ones.
3770 if Nkind (Literal) = N_Defining_Character_Literal then
3771 New_Lit :=
3772 Make_Defining_Character_Literal (Loc, Chars (Literal));
3773 else
3774 New_Lit := Make_Defining_Identifier (Loc, Chars (Literal));
3775 end if;
3777 Set_Ekind (New_Lit, E_Enumeration_Literal);
3778 Set_Enumeration_Pos (New_Lit, Enumeration_Pos (Literal));
3779 Set_Enumeration_Rep (New_Lit, Enumeration_Rep (Literal));
3780 Set_Enumeration_Rep_Expr (New_Lit, Empty);
3781 Set_Alias (New_Lit, Literal);
3782 Set_Is_Known_Valid (New_Lit, True);
3784 Append (New_Lit, Literals_List);
3785 Next_Literal (Literal);
3786 end loop;
3788 Implicit_Base :=
3789 Make_Defining_Identifier (Sloc (Derived_Type),
3790 New_External_Name (Chars (Derived_Type), 'B'));
3792 -- Indicate the proper nature of the derived type. This must
3793 -- be done before analysis of the literals, to recognize cases
3794 -- when a literal may be hidden by a previous explicit function
3795 -- definition (cf. c83031a).
3797 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
3798 Set_Etype (Derived_Type, Implicit_Base);
3800 Type_Decl :=
3801 Make_Full_Type_Declaration (Loc,
3802 Defining_Identifier => Implicit_Base,
3803 Discriminant_Specifications => No_List,
3804 Type_Definition =>
3805 Make_Enumeration_Type_Definition (Loc, Literals_List));
3807 Mark_Rewrite_Insertion (Type_Decl);
3808 Insert_Before (N, Type_Decl);
3809 Analyze (Type_Decl);
3811 -- After the implicit base is analyzed its Etype needs to be changed
3812 -- to reflect the fact that it is derived from the parent type which
3813 -- was ignored during analysis. We also set the size at this point.
3815 Set_Etype (Implicit_Base, Parent_Type);
3817 Set_Size_Info (Implicit_Base, Parent_Type);
3818 Set_RM_Size (Implicit_Base, RM_Size (Parent_Type));
3819 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Type));
3821 Set_Has_Non_Standard_Rep
3822 (Implicit_Base, Has_Non_Standard_Rep
3823 (Parent_Type));
3824 Set_Has_Delayed_Freeze (Implicit_Base);
3826 -- Process the subtype indication including a validation check
3827 -- on the constraint, if any. If a constraint is given, its bounds
3828 -- must be implicitly converted to the new type.
3830 if Nkind (Indic) = N_Subtype_Indication then
3831 declare
3832 R : constant Node_Id :=
3833 Range_Expression (Constraint (Indic));
3835 begin
3836 if Nkind (R) = N_Range then
3837 Hi := Build_Scalar_Bound
3838 (High_Bound (R), Parent_Type, Implicit_Base);
3839 Lo := Build_Scalar_Bound
3840 (Low_Bound (R), Parent_Type, Implicit_Base);
3842 else
3843 -- Constraint is a Range attribute. Replace with the
3844 -- explicit mention of the bounds of the prefix, which must
3845 -- be a subtype.
3847 Analyze (Prefix (R));
3848 Hi :=
3849 Convert_To (Implicit_Base,
3850 Make_Attribute_Reference (Loc,
3851 Attribute_Name => Name_Last,
3852 Prefix =>
3853 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
3855 Lo :=
3856 Convert_To (Implicit_Base,
3857 Make_Attribute_Reference (Loc,
3858 Attribute_Name => Name_First,
3859 Prefix =>
3860 New_Occurrence_Of (Entity (Prefix (R)), Loc)));
3861 end if;
3862 end;
3864 else
3865 Hi :=
3866 Build_Scalar_Bound
3867 (Type_High_Bound (Parent_Type),
3868 Parent_Type, Implicit_Base);
3869 Lo :=
3870 Build_Scalar_Bound
3871 (Type_Low_Bound (Parent_Type),
3872 Parent_Type, Implicit_Base);
3873 end if;
3875 Rang_Expr :=
3876 Make_Range (Loc,
3877 Low_Bound => Lo,
3878 High_Bound => Hi);
3880 -- If we constructed a default range for the case where no range
3881 -- was given, then the expressions in the range must not freeze
3882 -- since they do not correspond to expressions in the source.
3884 if Nkind (Indic) /= N_Subtype_Indication then
3885 Set_Must_Not_Freeze (Lo);
3886 Set_Must_Not_Freeze (Hi);
3887 Set_Must_Not_Freeze (Rang_Expr);
3888 end if;
3890 Rewrite (N,
3891 Make_Subtype_Declaration (Loc,
3892 Defining_Identifier => Derived_Type,
3893 Subtype_Indication =>
3894 Make_Subtype_Indication (Loc,
3895 Subtype_Mark => New_Occurrence_Of (Implicit_Base, Loc),
3896 Constraint =>
3897 Make_Range_Constraint (Loc,
3898 Range_Expression => Rang_Expr))));
3900 Analyze (N);
3902 -- If pragma Discard_Names applies on the first subtype of the
3903 -- parent type, then it must be applied on this subtype as well.
3905 if Einfo.Discard_Names (First_Subtype (Parent_Type)) then
3906 Set_Discard_Names (Derived_Type);
3907 end if;
3909 -- Apply a range check. Since this range expression doesn't have an
3910 -- Etype, we have to specifically pass the Source_Typ parameter. Is
3911 -- this right???
3913 if Nkind (Indic) = N_Subtype_Indication then
3914 Apply_Range_Check (Range_Expression (Constraint (Indic)),
3915 Parent_Type,
3916 Source_Typ => Entity (Subtype_Mark (Indic)));
3917 end if;
3918 end if;
3919 end Build_Derived_Enumeration_Type;
3921 --------------------------------
3922 -- Build_Derived_Numeric_Type --
3923 --------------------------------
3925 procedure Build_Derived_Numeric_Type
3926 (N : Node_Id;
3927 Parent_Type : Entity_Id;
3928 Derived_Type : Entity_Id)
3930 Loc : constant Source_Ptr := Sloc (N);
3931 Tdef : constant Node_Id := Type_Definition (N);
3932 Indic : constant Node_Id := Subtype_Indication (Tdef);
3933 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
3934 No_Constraint : constant Boolean := Nkind (Indic) /=
3935 N_Subtype_Indication;
3936 Implicit_Base : Entity_Id;
3938 Lo : Node_Id;
3939 Hi : Node_Id;
3941 begin
3942 -- Process the subtype indication including a validation check on
3943 -- the constraint if any.
3945 Discard_Node (Process_Subtype (Indic, N));
3947 -- Introduce an implicit base type for the derived type even if there
3948 -- is no constraint attached to it, since this seems closer to the Ada
3949 -- semantics.
3951 Implicit_Base :=
3952 Create_Itype (Ekind (Parent_Base), N, Derived_Type, 'B');
3954 Set_Etype (Implicit_Base, Parent_Base);
3955 Set_Ekind (Implicit_Base, Ekind (Parent_Base));
3956 Set_Size_Info (Implicit_Base, Parent_Base);
3957 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
3958 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Parent_Base));
3959 Set_Parent (Implicit_Base, Parent (Derived_Type));
3961 if Is_Discrete_Or_Fixed_Point_Type (Parent_Base) then
3962 Set_RM_Size (Implicit_Base, RM_Size (Parent_Base));
3963 end if;
3965 Set_Has_Delayed_Freeze (Implicit_Base);
3967 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
3968 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
3970 Set_Scalar_Range (Implicit_Base,
3971 Make_Range (Loc,
3972 Low_Bound => Lo,
3973 High_Bound => Hi));
3975 if Has_Infinities (Parent_Base) then
3976 Set_Includes_Infinities (Scalar_Range (Implicit_Base));
3977 end if;
3979 -- The Derived_Type, which is the entity of the declaration, is a
3980 -- subtype of the implicit base. Its Ekind is a subtype, even in the
3981 -- absence of an explicit constraint.
3983 Set_Etype (Derived_Type, Implicit_Base);
3985 -- If we did not have a constraint, then the Ekind is set from the
3986 -- parent type (otherwise Process_Subtype has set the bounds)
3988 if No_Constraint then
3989 Set_Ekind (Derived_Type, Subtype_Kind (Ekind (Parent_Type)));
3990 end if;
3992 -- If we did not have a range constraint, then set the range from the
3993 -- parent type. Otherwise, the call to Process_Subtype has set the
3994 -- bounds.
3996 if No_Constraint
3997 or else not Has_Range_Constraint (Indic)
3998 then
3999 Set_Scalar_Range (Derived_Type,
4000 Make_Range (Loc,
4001 Low_Bound => New_Copy_Tree (Type_Low_Bound (Parent_Type)),
4002 High_Bound => New_Copy_Tree (Type_High_Bound (Parent_Type))));
4003 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
4005 if Has_Infinities (Parent_Type) then
4006 Set_Includes_Infinities (Scalar_Range (Derived_Type));
4007 end if;
4008 end if;
4010 -- Set remaining type-specific fields, depending on numeric type
4012 if Is_Modular_Integer_Type (Parent_Type) then
4013 Set_Modulus (Implicit_Base, Modulus (Parent_Base));
4015 Set_Non_Binary_Modulus
4016 (Implicit_Base, Non_Binary_Modulus (Parent_Base));
4018 elsif Is_Floating_Point_Type (Parent_Type) then
4020 -- Digits of base type is always copied from the digits value of
4021 -- the parent base type, but the digits of the derived type will
4022 -- already have been set if there was a constraint present.
4024 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
4025 Set_Vax_Float (Implicit_Base, Vax_Float (Parent_Base));
4027 if No_Constraint then
4028 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Type));
4029 end if;
4031 elsif Is_Fixed_Point_Type (Parent_Type) then
4033 -- Small of base type and derived type are always copied from the
4034 -- parent base type, since smalls never change. The delta of the
4035 -- base type is also copied from the parent base type. However the
4036 -- delta of the derived type will have been set already if a
4037 -- constraint was present.
4039 Set_Small_Value (Derived_Type, Small_Value (Parent_Base));
4040 Set_Small_Value (Implicit_Base, Small_Value (Parent_Base));
4041 Set_Delta_Value (Implicit_Base, Delta_Value (Parent_Base));
4043 if No_Constraint then
4044 Set_Delta_Value (Derived_Type, Delta_Value (Parent_Type));
4045 end if;
4047 -- The scale and machine radix in the decimal case are always
4048 -- copied from the parent base type.
4050 if Is_Decimal_Fixed_Point_Type (Parent_Type) then
4051 Set_Scale_Value (Derived_Type, Scale_Value (Parent_Base));
4052 Set_Scale_Value (Implicit_Base, Scale_Value (Parent_Base));
4054 Set_Machine_Radix_10
4055 (Derived_Type, Machine_Radix_10 (Parent_Base));
4056 Set_Machine_Radix_10
4057 (Implicit_Base, Machine_Radix_10 (Parent_Base));
4059 Set_Digits_Value (Implicit_Base, Digits_Value (Parent_Base));
4061 if No_Constraint then
4062 Set_Digits_Value (Derived_Type, Digits_Value (Parent_Base));
4064 else
4065 -- the analysis of the subtype_indication sets the
4066 -- digits value of the derived type.
4068 null;
4069 end if;
4070 end if;
4071 end if;
4073 -- The type of the bounds is that of the parent type, and they
4074 -- must be converted to the derived type.
4076 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
4078 -- The implicit_base should be frozen when the derived type is frozen,
4079 -- but note that it is used in the conversions of the bounds. For fixed
4080 -- types we delay the determination of the bounds until the proper
4081 -- freezing point. For other numeric types this is rejected by GCC, for
4082 -- reasons that are currently unclear (???), so we choose to freeze the
4083 -- implicit base now. In the case of integers and floating point types
4084 -- this is harmless because subsequent representation clauses cannot
4085 -- affect anything, but it is still baffling that we cannot use the
4086 -- same mechanism for all derived numeric types.
4088 if Is_Fixed_Point_Type (Parent_Type) then
4089 Conditional_Delay (Implicit_Base, Parent_Type);
4090 else
4091 Freeze_Before (N, Implicit_Base);
4092 end if;
4093 end Build_Derived_Numeric_Type;
4095 --------------------------------
4096 -- Build_Derived_Private_Type --
4097 --------------------------------
4099 procedure Build_Derived_Private_Type
4100 (N : Node_Id;
4101 Parent_Type : Entity_Id;
4102 Derived_Type : Entity_Id;
4103 Is_Completion : Boolean;
4104 Derive_Subps : Boolean := True)
4106 Der_Base : Entity_Id;
4107 Discr : Entity_Id;
4108 Full_Decl : Node_Id := Empty;
4109 Full_Der : Entity_Id;
4110 Full_P : Entity_Id;
4111 Last_Discr : Entity_Id;
4112 Par_Scope : constant Entity_Id := Scope (Base_Type (Parent_Type));
4113 Swapped : Boolean := False;
4115 procedure Copy_And_Build;
4116 -- Copy derived type declaration, replace parent with its full view,
4117 -- and analyze new declaration.
4119 --------------------
4120 -- Copy_And_Build --
4121 --------------------
4123 procedure Copy_And_Build is
4124 Full_N : Node_Id;
4126 begin
4127 if Ekind (Parent_Type) in Record_Kind
4128 or else
4129 (Ekind (Parent_Type) in Enumeration_Kind
4130 and then Root_Type (Parent_Type) /= Standard_Character
4131 and then Root_Type (Parent_Type) /= Standard_Wide_Character
4132 and then Root_Type (Parent_Type) /= Standard_Wide_Wide_Character
4133 and then not Is_Generic_Type (Root_Type (Parent_Type)))
4134 then
4135 Full_N := New_Copy_Tree (N);
4136 Insert_After (N, Full_N);
4137 Build_Derived_Type (
4138 Full_N, Parent_Type, Full_Der, True, Derive_Subps => False);
4140 else
4141 Build_Derived_Type (
4142 N, Parent_Type, Full_Der, True, Derive_Subps => False);
4143 end if;
4144 end Copy_And_Build;
4146 -- Start of processing for Build_Derived_Private_Type
4148 begin
4149 if Is_Tagged_Type (Parent_Type) then
4150 Build_Derived_Record_Type
4151 (N, Parent_Type, Derived_Type, Derive_Subps);
4152 return;
4154 elsif Has_Discriminants (Parent_Type) then
4155 if Present (Full_View (Parent_Type)) then
4156 if not Is_Completion then
4158 -- Copy declaration for subsequent analysis, to provide a
4159 -- completion for what is a private declaration. Indicate that
4160 -- the full type is internally generated.
4162 Full_Decl := New_Copy_Tree (N);
4163 Full_Der := New_Copy (Derived_Type);
4164 Set_Comes_From_Source (Full_Decl, False);
4166 Insert_After (N, Full_Decl);
4168 else
4169 -- If this is a completion, the full view being built is
4170 -- itself private. We build a subtype of the parent with
4171 -- the same constraints as this full view, to convey to the
4172 -- back end the constrained components and the size of this
4173 -- subtype. If the parent is constrained, its full view can
4174 -- serve as the underlying full view of the derived type.
4176 if No (Discriminant_Specifications (N)) then
4177 if Nkind (Subtype_Indication (Type_Definition (N))) =
4178 N_Subtype_Indication
4179 then
4180 Build_Underlying_Full_View (N, Derived_Type, Parent_Type);
4182 elsif Is_Constrained (Full_View (Parent_Type)) then
4183 Set_Underlying_Full_View (Derived_Type,
4184 Full_View (Parent_Type));
4185 end if;
4187 else
4188 -- If there are new discriminants, the parent subtype is
4189 -- constrained by them, but it is not clear how to build
4190 -- the underlying_full_view in this case ???
4192 null;
4193 end if;
4194 end if;
4195 end if;
4197 -- Build partial view of derived type from partial view of parent
4199 Build_Derived_Record_Type
4200 (N, Parent_Type, Derived_Type, Derive_Subps);
4202 if Present (Full_View (Parent_Type))
4203 and then not Is_Completion
4204 then
4205 if not In_Open_Scopes (Par_Scope)
4206 or else not In_Same_Source_Unit (N, Parent_Type)
4207 then
4208 -- Swap partial and full views temporarily
4210 Install_Private_Declarations (Par_Scope);
4211 Install_Visible_Declarations (Par_Scope);
4212 Swapped := True;
4213 end if;
4215 -- Build full view of derived type from full view of parent which
4216 -- is now installed. Subprograms have been derived on the partial
4217 -- view, the completion does not derive them anew.
4219 if not Is_Tagged_Type (Parent_Type) then
4220 Build_Derived_Record_Type
4221 (Full_Decl, Parent_Type, Full_Der, False);
4223 else
4224 -- If full view of parent is tagged, the completion
4225 -- inherits the proper primitive operations.
4227 Set_Defining_Identifier (Full_Decl, Full_Der);
4228 Build_Derived_Record_Type
4229 (Full_Decl, Parent_Type, Full_Der, Derive_Subps);
4230 Set_Analyzed (Full_Decl);
4231 end if;
4233 if Swapped then
4234 Uninstall_Declarations (Par_Scope);
4236 if In_Open_Scopes (Par_Scope) then
4237 Install_Visible_Declarations (Par_Scope);
4238 end if;
4239 end if;
4241 Der_Base := Base_Type (Derived_Type);
4242 Set_Full_View (Derived_Type, Full_Der);
4243 Set_Full_View (Der_Base, Base_Type (Full_Der));
4245 -- Copy the discriminant list from full view to the partial views
4246 -- (base type and its subtype). Gigi requires that the partial
4247 -- and full views have the same discriminants.
4249 -- Note that since the partial view is pointing to discriminants
4250 -- in the full view, their scope will be that of the full view.
4251 -- This might cause some front end problems and need
4252 -- adjustment???
4254 Discr := First_Discriminant (Base_Type (Full_Der));
4255 Set_First_Entity (Der_Base, Discr);
4257 loop
4258 Last_Discr := Discr;
4259 Next_Discriminant (Discr);
4260 exit when No (Discr);
4261 end loop;
4263 Set_Last_Entity (Der_Base, Last_Discr);
4265 Set_First_Entity (Derived_Type, First_Entity (Der_Base));
4266 Set_Last_Entity (Derived_Type, Last_Entity (Der_Base));
4267 Set_Stored_Constraint (Full_Der, Stored_Constraint (Derived_Type));
4269 else
4270 -- If this is a completion, the derived type stays private
4271 -- and there is no need to create a further full view, except
4272 -- in the unusual case when the derivation is nested within a
4273 -- child unit, see below.
4275 null;
4276 end if;
4278 elsif Present (Full_View (Parent_Type))
4279 and then Has_Discriminants (Full_View (Parent_Type))
4280 then
4281 if Has_Unknown_Discriminants (Parent_Type)
4282 and then Nkind (Subtype_Indication (Type_Definition (N)))
4283 = N_Subtype_Indication
4284 then
4285 Error_Msg_N
4286 ("cannot constrain type with unknown discriminants",
4287 Subtype_Indication (Type_Definition (N)));
4288 return;
4289 end if;
4291 -- If full view of parent is a record type, Build full view as
4292 -- a derivation from the parent's full view. Partial view remains
4293 -- private. For code generation and linking, the full view must
4294 -- have the same public status as the partial one. This full view
4295 -- is only needed if the parent type is in an enclosing scope, so
4296 -- that the full view may actually become visible, e.g. in a child
4297 -- unit. This is both more efficient, and avoids order of freezing
4298 -- problems with the added entities.
4300 if not Is_Private_Type (Full_View (Parent_Type))
4301 and then (In_Open_Scopes (Scope (Parent_Type)))
4302 then
4303 Full_Der := Make_Defining_Identifier (Sloc (Derived_Type),
4304 Chars (Derived_Type));
4305 Set_Is_Itype (Full_Der);
4306 Set_Has_Private_Declaration (Full_Der);
4307 Set_Has_Private_Declaration (Derived_Type);
4308 Set_Associated_Node_For_Itype (Full_Der, N);
4309 Set_Parent (Full_Der, Parent (Derived_Type));
4310 Set_Full_View (Derived_Type, Full_Der);
4311 Set_Is_Public (Full_Der, Is_Public (Derived_Type));
4312 Full_P := Full_View (Parent_Type);
4313 Exchange_Declarations (Parent_Type);
4314 Copy_And_Build;
4315 Exchange_Declarations (Full_P);
4317 else
4318 Build_Derived_Record_Type
4319 (N, Full_View (Parent_Type), Derived_Type,
4320 Derive_Subps => False);
4321 end if;
4323 -- In any case, the primitive operations are inherited from
4324 -- the parent type, not from the internal full view.
4326 Set_Etype (Base_Type (Derived_Type), Base_Type (Parent_Type));
4328 if Derive_Subps then
4329 Derive_Subprograms (Parent_Type, Derived_Type);
4330 end if;
4332 else
4333 -- Untagged type, No discriminants on either view
4335 if Nkind (Subtype_Indication (Type_Definition (N))) =
4336 N_Subtype_Indication
4337 then
4338 Error_Msg_N
4339 ("illegal constraint on type without discriminants", N);
4340 end if;
4342 if Present (Discriminant_Specifications (N))
4343 and then Present (Full_View (Parent_Type))
4344 and then not Is_Tagged_Type (Full_View (Parent_Type))
4345 then
4346 Error_Msg_N
4347 ("cannot add discriminants to untagged type", N);
4348 end if;
4350 Set_Stored_Constraint (Derived_Type, No_Elist);
4351 Set_Is_Constrained (Derived_Type, Is_Constrained (Parent_Type));
4352 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
4353 Set_Has_Controlled_Component
4354 (Derived_Type, Has_Controlled_Component
4355 (Parent_Type));
4357 -- Direct controlled types do not inherit Finalize_Storage_Only flag
4359 if not Is_Controlled (Parent_Type) then
4360 Set_Finalize_Storage_Only
4361 (Base_Type (Derived_Type), Finalize_Storage_Only (Parent_Type));
4362 end if;
4364 -- Construct the implicit full view by deriving from full view of
4365 -- the parent type. In order to get proper visibility, we install
4366 -- the parent scope and its declarations.
4368 -- ??? if the parent is untagged private and its completion is
4369 -- tagged, this mechanism will not work because we cannot derive
4370 -- from the tagged full view unless we have an extension
4372 if Present (Full_View (Parent_Type))
4373 and then not Is_Tagged_Type (Full_View (Parent_Type))
4374 and then not Is_Completion
4375 then
4376 Full_Der :=
4377 Make_Defining_Identifier (Sloc (Derived_Type),
4378 Chars => Chars (Derived_Type));
4379 Set_Is_Itype (Full_Der);
4380 Set_Has_Private_Declaration (Full_Der);
4381 Set_Has_Private_Declaration (Derived_Type);
4382 Set_Associated_Node_For_Itype (Full_Der, N);
4383 Set_Parent (Full_Der, Parent (Derived_Type));
4384 Set_Full_View (Derived_Type, Full_Der);
4386 if not In_Open_Scopes (Par_Scope) then
4387 Install_Private_Declarations (Par_Scope);
4388 Install_Visible_Declarations (Par_Scope);
4389 Copy_And_Build;
4390 Uninstall_Declarations (Par_Scope);
4392 -- If parent scope is open and in another unit, and parent has a
4393 -- completion, then the derivation is taking place in the visible
4394 -- part of a child unit. In that case retrieve the full view of
4395 -- the parent momentarily.
4397 elsif not In_Same_Source_Unit (N, Parent_Type) then
4398 Full_P := Full_View (Parent_Type);
4399 Exchange_Declarations (Parent_Type);
4400 Copy_And_Build;
4401 Exchange_Declarations (Full_P);
4403 -- Otherwise it is a local derivation
4405 else
4406 Copy_And_Build;
4407 end if;
4409 Set_Scope (Full_Der, Current_Scope);
4410 Set_Is_First_Subtype (Full_Der,
4411 Is_First_Subtype (Derived_Type));
4412 Set_Has_Size_Clause (Full_Der, False);
4413 Set_Has_Alignment_Clause (Full_Der, False);
4414 Set_Next_Entity (Full_Der, Empty);
4415 Set_Has_Delayed_Freeze (Full_Der);
4416 Set_Is_Frozen (Full_Der, False);
4417 Set_Freeze_Node (Full_Der, Empty);
4418 Set_Depends_On_Private (Full_Der,
4419 Has_Private_Component (Full_Der));
4420 Set_Public_Status (Full_Der);
4421 end if;
4422 end if;
4424 Set_Has_Unknown_Discriminants (Derived_Type,
4425 Has_Unknown_Discriminants (Parent_Type));
4427 if Is_Private_Type (Derived_Type) then
4428 Set_Private_Dependents (Derived_Type, New_Elmt_List);
4429 end if;
4431 if Is_Private_Type (Parent_Type)
4432 and then Base_Type (Parent_Type) = Parent_Type
4433 and then In_Open_Scopes (Scope (Parent_Type))
4434 then
4435 Append_Elmt (Derived_Type, Private_Dependents (Parent_Type));
4437 if Is_Child_Unit (Scope (Current_Scope))
4438 and then Is_Completion
4439 and then In_Private_Part (Current_Scope)
4440 and then Scope (Parent_Type) /= Current_Scope
4441 then
4442 -- This is the unusual case where a type completed by a private
4443 -- derivation occurs within a package nested in a child unit,
4444 -- and the parent is declared in an ancestor. In this case, the
4445 -- full view of the parent type will become visible in the body
4446 -- of the enclosing child, and only then will the current type
4447 -- be possibly non-private. We build a underlying full view that
4448 -- will be installed when the enclosing child body is compiled.
4450 declare
4451 IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
4453 begin
4454 Full_Der :=
4455 Make_Defining_Identifier (Sloc (Derived_Type),
4456 Chars (Derived_Type));
4457 Set_Is_Itype (Full_Der);
4458 Set_Itype (IR, Full_Der);
4459 Insert_After (N, IR);
4461 -- The full view will be used to swap entities on entry/exit
4462 -- to the body, and must appear in the entity list for the
4463 -- package.
4465 Append_Entity (Full_Der, Scope (Derived_Type));
4466 Set_Has_Private_Declaration (Full_Der);
4467 Set_Has_Private_Declaration (Derived_Type);
4468 Set_Associated_Node_For_Itype (Full_Der, N);
4469 Set_Parent (Full_Der, Parent (Derived_Type));
4470 Full_P := Full_View (Parent_Type);
4471 Exchange_Declarations (Parent_Type);
4472 Copy_And_Build;
4473 Exchange_Declarations (Full_P);
4474 Set_Underlying_Full_View (Derived_Type, Full_Der);
4475 end;
4476 end if;
4477 end if;
4478 end Build_Derived_Private_Type;
4480 -------------------------------
4481 -- Build_Derived_Record_Type --
4482 -------------------------------
4484 -- 1. INTRODUCTION
4486 -- Ideally we would like to use the same model of type derivation for
4487 -- tagged and untagged record types. Unfortunately this is not quite
4488 -- possible because the semantics of representation clauses is different
4489 -- for tagged and untagged records under inheritance. Consider the
4490 -- following:
4492 -- type R (...) is [tagged] record ... end record;
4493 -- type T (...) is new R (...) [with ...];
4495 -- The representation clauses of T can specify a completely different
4496 -- record layout from R's. Hence the same component can be placed in
4497 -- two very different positions in objects of type T and R. If R and T
4498 -- are tagged types, representation clauses for T can only specify the
4499 -- layout of non inherited components, thus components that are common
4500 -- in R and T have the same position in objects of type R and T.
4502 -- This has two implications. The first is that the entire tree for R's
4503 -- declaration needs to be copied for T in the untagged case, so that T
4504 -- can be viewed as a record type of its own with its own representation
4505 -- clauses. The second implication is the way we handle discriminants.
4506 -- Specifically, in the untagged case we need a way to communicate to Gigi
4507 -- what are the real discriminants in the record, while for the semantics
4508 -- we need to consider those introduced by the user to rename the
4509 -- discriminants in the parent type. This is handled by introducing the
4510 -- notion of stored discriminants. See below for more.
4512 -- Fortunately the way regular components are inherited can be handled in
4513 -- the same way in tagged and untagged types.
4515 -- To complicate things a bit more the private view of a private extension
4516 -- cannot be handled in the same way as the full view (for one thing the
4517 -- semantic rules are somewhat different). We will explain what differs
4518 -- below.
4520 -- 2. DISCRIMINANTS UNDER INHERITANCE
4522 -- The semantic rules governing the discriminants of derived types are
4523 -- quite subtle.
4525 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
4526 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
4528 -- If parent type has discriminants, then the discriminants that are
4529 -- declared in the derived type are [3.4 (11)]:
4531 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
4532 -- there is one;
4534 -- o Otherwise, each discriminant of the parent type (implicitly declared
4535 -- in the same order with the same specifications). In this case, the
4536 -- discriminants are said to be "inherited", or if unknown in the parent
4537 -- are also unknown in the derived type.
4539 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
4541 -- o The parent subtype shall be constrained;
4543 -- o If the parent type is not a tagged type, then each discriminant of
4544 -- the derived type shall be used in the constraint defining a parent
4545 -- subtype [Implementation note: this ensures that the new discriminant
4546 -- can share storage with an existing discriminant.].
4548 -- For the derived type each discriminant of the parent type is either
4549 -- inherited, constrained to equal some new discriminant of the derived
4550 -- type, or constrained to the value of an expression.
4552 -- When inherited or constrained to equal some new discriminant, the
4553 -- parent discriminant and the discriminant of the derived type are said
4554 -- to "correspond".
4556 -- If a discriminant of the parent type is constrained to a specific value
4557 -- in the derived type definition, then the discriminant is said to be
4558 -- "specified" by that derived type definition.
4560 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
4562 -- We have spoken about stored discriminants in point 1 (introduction)
4563 -- above. There are two sort of stored discriminants: implicit and
4564 -- explicit. As long as the derived type inherits the same discriminants as
4565 -- the root record type, stored discriminants are the same as regular
4566 -- discriminants, and are said to be implicit. However, if any discriminant
4567 -- in the root type was renamed in the derived type, then the derived
4568 -- type will contain explicit stored discriminants. Explicit stored
4569 -- discriminants are discriminants in addition to the semantically visible
4570 -- discriminants defined for the derived type. Stored discriminants are
4571 -- used by Gigi to figure out what are the physical discriminants in
4572 -- objects of the derived type (see precise definition in einfo.ads).
4573 -- As an example, consider the following:
4575 -- type R (D1, D2, D3 : Int) is record ... end record;
4576 -- type T1 is new R;
4577 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
4578 -- type T3 is new T2;
4579 -- type T4 (Y : Int) is new T3 (Y, 99);
4581 -- The following table summarizes the discriminants and stored
4582 -- discriminants in R and T1 through T4.
4584 -- Type Discrim Stored Discrim Comment
4585 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
4586 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
4587 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
4588 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
4589 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
4591 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
4592 -- find the corresponding discriminant in the parent type, while
4593 -- Original_Record_Component (abbreviated ORC below), the actual physical
4594 -- component that is renamed. Finally the field Is_Completely_Hidden
4595 -- (abbreviated ICH below) is set for all explicit stored discriminants
4596 -- (see einfo.ads for more info). For the above example this gives:
4598 -- Discrim CD ORC ICH
4599 -- ^^^^^^^ ^^ ^^^ ^^^
4600 -- D1 in R empty itself no
4601 -- D2 in R empty itself no
4602 -- D3 in R empty itself no
4604 -- D1 in T1 D1 in R itself no
4605 -- D2 in T1 D2 in R itself no
4606 -- D3 in T1 D3 in R itself no
4608 -- X1 in T2 D3 in T1 D3 in T2 no
4609 -- X2 in T2 D1 in T1 D1 in T2 no
4610 -- D1 in T2 empty itself yes
4611 -- D2 in T2 empty itself yes
4612 -- D3 in T2 empty itself yes
4614 -- X1 in T3 X1 in T2 D3 in T3 no
4615 -- X2 in T3 X2 in T2 D1 in T3 no
4616 -- D1 in T3 empty itself yes
4617 -- D2 in T3 empty itself yes
4618 -- D3 in T3 empty itself yes
4620 -- Y in T4 X1 in T3 D3 in T3 no
4621 -- D1 in T3 empty itself yes
4622 -- D2 in T3 empty itself yes
4623 -- D3 in T3 empty itself yes
4625 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
4627 -- Type derivation for tagged types is fairly straightforward. if no
4628 -- discriminants are specified by the derived type, these are inherited
4629 -- from the parent. No explicit stored discriminants are ever necessary.
4630 -- The only manipulation that is done to the tree is that of adding a
4631 -- _parent field with parent type and constrained to the same constraint
4632 -- specified for the parent in the derived type definition. For instance:
4634 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
4635 -- type T1 is new R with null record;
4636 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
4638 -- are changed into:
4640 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
4641 -- _parent : R (D1, D2, D3);
4642 -- end record;
4644 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
4645 -- _parent : T1 (X2, 88, X1);
4646 -- end record;
4648 -- The discriminants actually present in R, T1 and T2 as well as their CD,
4649 -- ORC and ICH fields are:
4651 -- Discrim CD ORC ICH
4652 -- ^^^^^^^ ^^ ^^^ ^^^
4653 -- D1 in R empty itself no
4654 -- D2 in R empty itself no
4655 -- D3 in R empty itself no
4657 -- D1 in T1 D1 in R D1 in R no
4658 -- D2 in T1 D2 in R D2 in R no
4659 -- D3 in T1 D3 in R D3 in R no
4661 -- X1 in T2 D3 in T1 D3 in R no
4662 -- X2 in T2 D1 in T1 D1 in R no
4664 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
4666 -- Regardless of whether we dealing with a tagged or untagged type
4667 -- we will transform all derived type declarations of the form
4669 -- type T is new R (...) [with ...];
4670 -- or
4671 -- subtype S is R (...);
4672 -- type T is new S [with ...];
4673 -- into
4674 -- type BT is new R [with ...];
4675 -- subtype T is BT (...);
4677 -- That is, the base derived type is constrained only if it has no
4678 -- discriminants. The reason for doing this is that GNAT's semantic model
4679 -- assumes that a base type with discriminants is unconstrained.
4681 -- Note that, strictly speaking, the above transformation is not always
4682 -- correct. Consider for instance the following excerpt from ACVC b34011a:
4684 -- procedure B34011A is
4685 -- type REC (D : integer := 0) is record
4686 -- I : Integer;
4687 -- end record;
4689 -- package P is
4690 -- type T6 is new Rec;
4691 -- function F return T6;
4692 -- end P;
4694 -- use P;
4695 -- package Q6 is
4696 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
4697 -- end Q6;
4699 -- The definition of Q6.U is illegal. However transforming Q6.U into
4701 -- type BaseU is new T6;
4702 -- subtype U is BaseU (Q6.F.I)
4704 -- turns U into a legal subtype, which is incorrect. To avoid this problem
4705 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
4706 -- the transformation described above.
4708 -- There is another instance where the above transformation is incorrect.
4709 -- Consider:
4711 -- package Pack is
4712 -- type Base (D : Integer) is tagged null record;
4713 -- procedure P (X : Base);
4715 -- type Der is new Base (2) with null record;
4716 -- procedure P (X : Der);
4717 -- end Pack;
4719 -- Then the above transformation turns this into
4721 -- type Der_Base is new Base with null record;
4722 -- -- procedure P (X : Base) is implicitly inherited here
4723 -- -- as procedure P (X : Der_Base).
4725 -- subtype Der is Der_Base (2);
4726 -- procedure P (X : Der);
4727 -- -- The overriding of P (X : Der_Base) is illegal since we
4728 -- -- have a parameter conformance problem.
4730 -- To get around this problem, after having semantically processed Der_Base
4731 -- and the rewritten subtype declaration for Der, we copy Der_Base field
4732 -- Discriminant_Constraint from Der so that when parameter conformance is
4733 -- checked when P is overridden, no semantic errors are flagged.
4735 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
4737 -- Regardless of whether we are dealing with a tagged or untagged type
4738 -- we will transform all derived type declarations of the form
4740 -- type R (D1, .., Dn : ...) is [tagged] record ...;
4741 -- type T is new R [with ...];
4742 -- into
4743 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
4745 -- The reason for such transformation is that it allows us to implement a
4746 -- very clean form of component inheritance as explained below.
4748 -- Note that this transformation is not achieved by direct tree rewriting
4749 -- and manipulation, but rather by redoing the semantic actions that the
4750 -- above transformation will entail. This is done directly in routine
4751 -- Inherit_Components.
4753 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
4755 -- In both tagged and untagged derived types, regular non discriminant
4756 -- components are inherited in the derived type from the parent type. In
4757 -- the absence of discriminants component, inheritance is straightforward
4758 -- as components can simply be copied from the parent.
4760 -- If the parent has discriminants, inheriting components constrained with
4761 -- these discriminants requires caution. Consider the following example:
4763 -- type R (D1, D2 : Positive) is [tagged] record
4764 -- S : String (D1 .. D2);
4765 -- end record;
4767 -- type T1 is new R [with null record];
4768 -- type T2 (X : positive) is new R (1, X) [with null record];
4770 -- As explained in 6. above, T1 is rewritten as
4771 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
4772 -- which makes the treatment for T1 and T2 identical.
4774 -- What we want when inheriting S, is that references to D1 and D2 in R are
4775 -- replaced with references to their correct constraints, ie D1 and D2 in
4776 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
4777 -- with either discriminant references in the derived type or expressions.
4778 -- This replacement is achieved as follows: before inheriting R's
4779 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
4780 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
4781 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
4782 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
4783 -- by String (1 .. X).
4785 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
4787 -- We explain here the rules governing private type extensions relevant to
4788 -- type derivation. These rules are explained on the following example:
4790 -- type D [(...)] is new A [(...)] with private; <-- partial view
4791 -- type D [(...)] is new P [(...)] with null record; <-- full view
4793 -- Type A is called the ancestor subtype of the private extension.
4794 -- Type P is the parent type of the full view of the private extension. It
4795 -- must be A or a type derived from A.
4797 -- The rules concerning the discriminants of private type extensions are
4798 -- [7.3(10-13)]:
4800 -- o If a private extension inherits known discriminants from the ancestor
4801 -- subtype, then the full view shall also inherit its discriminants from
4802 -- the ancestor subtype and the parent subtype of the full view shall be
4803 -- constrained if and only if the ancestor subtype is constrained.
4805 -- o If a partial view has unknown discriminants, then the full view may
4806 -- define a definite or an indefinite subtype, with or without
4807 -- discriminants.
4809 -- o If a partial view has neither known nor unknown discriminants, then
4810 -- the full view shall define a definite subtype.
4812 -- o If the ancestor subtype of a private extension has constrained
4813 -- discriminants, then the parent subtype of the full view shall impose a
4814 -- statically matching constraint on those discriminants.
4816 -- This means that only the following forms of private extensions are
4817 -- allowed:
4819 -- type D is new A with private; <-- partial view
4820 -- type D is new P with null record; <-- full view
4822 -- If A has no discriminants than P has no discriminants, otherwise P must
4823 -- inherit A's discriminants.
4825 -- type D is new A (...) with private; <-- partial view
4826 -- type D is new P (:::) with null record; <-- full view
4828 -- P must inherit A's discriminants and (...) and (:::) must statically
4829 -- match.
4831 -- subtype A is R (...);
4832 -- type D is new A with private; <-- partial view
4833 -- type D is new P with null record; <-- full view
4835 -- P must have inherited R's discriminants and must be derived from A or
4836 -- any of its subtypes.
4838 -- type D (..) is new A with private; <-- partial view
4839 -- type D (..) is new P [(:::)] with null record; <-- full view
4841 -- No specific constraints on P's discriminants or constraint (:::).
4842 -- Note that A can be unconstrained, but the parent subtype P must either
4843 -- be constrained or (:::) must be present.
4845 -- type D (..) is new A [(...)] with private; <-- partial view
4846 -- type D (..) is new P [(:::)] with null record; <-- full view
4848 -- P's constraints on A's discriminants must statically match those
4849 -- imposed by (...).
4851 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
4853 -- The full view of a private extension is handled exactly as described
4854 -- above. The model chose for the private view of a private extension is
4855 -- the same for what concerns discriminants (ie they receive the same
4856 -- treatment as in the tagged case). However, the private view of the
4857 -- private extension always inherits the components of the parent base,
4858 -- without replacing any discriminant reference. Strictly speaking this is
4859 -- incorrect. However, Gigi never uses this view to generate code so this
4860 -- is a purely semantic issue. In theory, a set of transformations similar
4861 -- to those given in 5. and 6. above could be applied to private views of
4862 -- private extensions to have the same model of component inheritance as
4863 -- for non private extensions. However, this is not done because it would
4864 -- further complicate private type processing. Semantically speaking, this
4865 -- leaves us in an uncomfortable situation. As an example consider:
4867 -- package Pack is
4868 -- type R (D : integer) is tagged record
4869 -- S : String (1 .. D);
4870 -- end record;
4871 -- procedure P (X : R);
4872 -- type T is new R (1) with private;
4873 -- private
4874 -- type T is new R (1) with null record;
4875 -- end;
4877 -- This is transformed into:
4879 -- package Pack is
4880 -- type R (D : integer) is tagged record
4881 -- S : String (1 .. D);
4882 -- end record;
4883 -- procedure P (X : R);
4884 -- type T is new R (1) with private;
4885 -- private
4886 -- type BaseT is new R with null record;
4887 -- subtype T is BaseT (1);
4888 -- end;
4890 -- (strictly speaking the above is incorrect Ada)
4892 -- From the semantic standpoint the private view of private extension T
4893 -- should be flagged as constrained since one can clearly have
4895 -- Obj : T;
4897 -- in a unit withing Pack. However, when deriving subprograms for the
4898 -- private view of private extension T, T must be seen as unconstrained
4899 -- since T has discriminants (this is a constraint of the current
4900 -- subprogram derivation model). Thus, when processing the private view of
4901 -- a private extension such as T, we first mark T as unconstrained, we
4902 -- process it, we perform program derivation and just before returning from
4903 -- Build_Derived_Record_Type we mark T as constrained.
4905 -- ??? Are there are other uncomfortable cases that we will have to
4906 -- deal with.
4908 -- 10. RECORD_TYPE_WITH_PRIVATE complications
4910 -- Types that are derived from a visible record type and have a private
4911 -- extension present other peculiarities. They behave mostly like private
4912 -- types, but if they have primitive operations defined, these will not
4913 -- have the proper signatures for further inheritance, because other
4914 -- primitive operations will use the implicit base that we define for
4915 -- private derivations below. This affect subprogram inheritance (see
4916 -- Derive_Subprograms for details). We also derive the implicit base from
4917 -- the base type of the full view, so that the implicit base is a record
4918 -- type and not another private type, This avoids infinite loops.
4920 procedure Build_Derived_Record_Type
4921 (N : Node_Id;
4922 Parent_Type : Entity_Id;
4923 Derived_Type : Entity_Id;
4924 Derive_Subps : Boolean := True)
4926 Loc : constant Source_Ptr := Sloc (N);
4927 Parent_Base : Entity_Id;
4928 Type_Def : Node_Id;
4929 Indic : Node_Id;
4930 Discrim : Entity_Id;
4931 Last_Discrim : Entity_Id;
4932 Constrs : Elist_Id;
4934 Discs : Elist_Id := New_Elmt_List;
4935 -- An empty Discs list means that there were no constraints in the
4936 -- subtype indication or that there was an error processing it.
4938 Assoc_List : Elist_Id;
4939 New_Discrs : Elist_Id;
4940 New_Base : Entity_Id;
4941 New_Decl : Node_Id;
4942 New_Indic : Node_Id;
4944 Is_Tagged : constant Boolean := Is_Tagged_Type (Parent_Type);
4945 Discriminant_Specs : constant Boolean :=
4946 Present (Discriminant_Specifications (N));
4947 Private_Extension : constant Boolean :=
4948 (Nkind (N) = N_Private_Extension_Declaration);
4950 Constraint_Present : Boolean;
4951 Inherit_Discrims : Boolean := False;
4953 Save_Etype : Entity_Id;
4954 Save_Discr_Constr : Elist_Id;
4955 Save_Next_Entity : Entity_Id;
4957 begin
4958 if Ekind (Parent_Type) = E_Record_Type_With_Private
4959 and then Present (Full_View (Parent_Type))
4960 and then Has_Discriminants (Parent_Type)
4961 then
4962 Parent_Base := Base_Type (Full_View (Parent_Type));
4963 else
4964 Parent_Base := Base_Type (Parent_Type);
4965 end if;
4967 -- Before we start the previously documented transformations, here is
4968 -- a little fix for size and alignment of tagged types. Normally when
4969 -- we derive type D from type P, we copy the size and alignment of P
4970 -- as the default for D, and in the absence of explicit representation
4971 -- clauses for D, the size and alignment are indeed the same as the
4972 -- parent.
4974 -- But this is wrong for tagged types, since fields may be added,
4975 -- and the default size may need to be larger, and the default
4976 -- alignment may need to be larger.
4978 -- We therefore reset the size and alignment fields in the tagged
4979 -- case. Note that the size and alignment will in any case be at
4980 -- least as large as the parent type (since the derived type has
4981 -- a copy of the parent type in the _parent field)
4983 if Is_Tagged then
4984 Init_Size_Align (Derived_Type);
4985 end if;
4987 -- STEP 0a: figure out what kind of derived type declaration we have
4989 if Private_Extension then
4990 Type_Def := N;
4991 Set_Ekind (Derived_Type, E_Record_Type_With_Private);
4993 else
4994 Type_Def := Type_Definition (N);
4996 -- Ekind (Parent_Base) in not necessarily E_Record_Type since
4997 -- Parent_Base can be a private type or private extension. However,
4998 -- for tagged types with an extension the newly added fields are
4999 -- visible and hence the Derived_Type is always an E_Record_Type.
5000 -- (except that the parent may have its own private fields).
5001 -- For untagged types we preserve the Ekind of the Parent_Base.
5003 if Present (Record_Extension_Part (Type_Def)) then
5004 Set_Ekind (Derived_Type, E_Record_Type);
5005 else
5006 Set_Ekind (Derived_Type, Ekind (Parent_Base));
5007 end if;
5008 end if;
5010 -- Indic can either be an N_Identifier if the subtype indication
5011 -- contains no constraint or an N_Subtype_Indication if the subtype
5012 -- indication has a constraint.
5014 Indic := Subtype_Indication (Type_Def);
5015 Constraint_Present := (Nkind (Indic) = N_Subtype_Indication);
5017 -- Check that the type has visible discriminants. The type may be
5018 -- a private type with unknown discriminants whose full view has
5019 -- discriminants which are invisible.
5021 if Constraint_Present then
5022 if not Has_Discriminants (Parent_Base)
5023 or else
5024 (Has_Unknown_Discriminants (Parent_Base)
5025 and then Is_Private_Type (Parent_Base))
5026 then
5027 Error_Msg_N
5028 ("invalid constraint: type has no discriminant",
5029 Constraint (Indic));
5031 Constraint_Present := False;
5032 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
5034 elsif Is_Constrained (Parent_Type) then
5035 Error_Msg_N
5036 ("invalid constraint: parent type is already constrained",
5037 Constraint (Indic));
5039 Constraint_Present := False;
5040 Rewrite (Indic, New_Copy_Tree (Subtype_Mark (Indic)));
5041 end if;
5042 end if;
5044 -- STEP 0b: If needed, apply transformation given in point 5. above
5046 if not Private_Extension
5047 and then Has_Discriminants (Parent_Type)
5048 and then not Discriminant_Specs
5049 and then (Is_Constrained (Parent_Type) or else Constraint_Present)
5050 then
5051 -- First, we must analyze the constraint (see comment in point 5.)
5053 if Constraint_Present then
5054 New_Discrs := Build_Discriminant_Constraints (Parent_Type, Indic);
5056 if Has_Discriminants (Derived_Type)
5057 and then Has_Private_Declaration (Derived_Type)
5058 and then Present (Discriminant_Constraint (Derived_Type))
5059 then
5060 -- Verify that constraints of the full view conform to those
5061 -- given in partial view.
5063 declare
5064 C1, C2 : Elmt_Id;
5066 begin
5067 C1 := First_Elmt (New_Discrs);
5068 C2 := First_Elmt (Discriminant_Constraint (Derived_Type));
5070 while Present (C1) and then Present (C2) loop
5071 if not
5072 Fully_Conformant_Expressions (Node (C1), Node (C2))
5073 then
5074 Error_Msg_N (
5075 "constraint not conformant to previous declaration",
5076 Node (C1));
5077 end if;
5078 Next_Elmt (C1);
5079 Next_Elmt (C2);
5080 end loop;
5081 end;
5082 end if;
5083 end if;
5085 -- Insert and analyze the declaration for the unconstrained base type
5087 New_Base := Create_Itype (Ekind (Derived_Type), N, Derived_Type, 'B');
5089 New_Decl :=
5090 Make_Full_Type_Declaration (Loc,
5091 Defining_Identifier => New_Base,
5092 Type_Definition =>
5093 Make_Derived_Type_Definition (Loc,
5094 Abstract_Present => Abstract_Present (Type_Def),
5095 Subtype_Indication =>
5096 New_Occurrence_Of (Parent_Base, Loc),
5097 Record_Extension_Part =>
5098 Relocate_Node (Record_Extension_Part (Type_Def))));
5100 Set_Parent (New_Decl, Parent (N));
5101 Mark_Rewrite_Insertion (New_Decl);
5102 Insert_Before (N, New_Decl);
5104 -- Note that this call passes False for the Derive_Subps parameter
5105 -- because subprogram derivation is deferred until after creating
5106 -- the subtype (see below).
5108 Build_Derived_Type
5109 (New_Decl, Parent_Base, New_Base,
5110 Is_Completion => True, Derive_Subps => False);
5112 -- ??? This needs re-examination to determine whether the
5113 -- above call can simply be replaced by a call to Analyze.
5115 Set_Analyzed (New_Decl);
5117 -- Insert and analyze the declaration for the constrained subtype
5119 if Constraint_Present then
5120 New_Indic :=
5121 Make_Subtype_Indication (Loc,
5122 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
5123 Constraint => Relocate_Node (Constraint (Indic)));
5125 else
5126 declare
5127 Constr_List : constant List_Id := New_List;
5128 C : Elmt_Id;
5129 Expr : Node_Id;
5131 begin
5132 C := First_Elmt (Discriminant_Constraint (Parent_Type));
5133 while Present (C) loop
5134 Expr := Node (C);
5136 -- It is safe here to call New_Copy_Tree since
5137 -- Force_Evaluation was called on each constraint in
5138 -- Build_Discriminant_Constraints.
5140 Append (New_Copy_Tree (Expr), To => Constr_List);
5142 Next_Elmt (C);
5143 end loop;
5145 New_Indic :=
5146 Make_Subtype_Indication (Loc,
5147 Subtype_Mark => New_Occurrence_Of (New_Base, Loc),
5148 Constraint =>
5149 Make_Index_Or_Discriminant_Constraint (Loc, Constr_List));
5150 end;
5151 end if;
5153 Rewrite (N,
5154 Make_Subtype_Declaration (Loc,
5155 Defining_Identifier => Derived_Type,
5156 Subtype_Indication => New_Indic));
5158 Analyze (N);
5160 -- Derivation of subprograms must be delayed until the full subtype
5161 -- has been established to ensure proper overriding of subprograms
5162 -- inherited by full types. If the derivations occurred as part of
5163 -- the call to Build_Derived_Type above, then the check for type
5164 -- conformance would fail because earlier primitive subprograms
5165 -- could still refer to the full type prior the change to the new
5166 -- subtype and hence would not match the new base type created here.
5168 Derive_Subprograms (Parent_Type, Derived_Type);
5170 -- For tagged types the Discriminant_Constraint of the new base itype
5171 -- is inherited from the first subtype so that no subtype conformance
5172 -- problem arise when the first subtype overrides primitive
5173 -- operations inherited by the implicit base type.
5175 if Is_Tagged then
5176 Set_Discriminant_Constraint
5177 (New_Base, Discriminant_Constraint (Derived_Type));
5178 end if;
5180 return;
5181 end if;
5183 -- If we get here Derived_Type will have no discriminants or it will be
5184 -- a discriminated unconstrained base type.
5186 -- STEP 1a: perform preliminary actions/checks for derived tagged types
5188 if Is_Tagged then
5190 -- The parent type is frozen for non-private extensions (RM 13.14(7))
5192 if not Private_Extension then
5193 Freeze_Before (N, Parent_Type);
5194 end if;
5196 if Type_Access_Level (Derived_Type) /= Type_Access_Level (Parent_Type)
5197 and then not Is_Generic_Type (Derived_Type)
5198 then
5199 if Is_Controlled (Parent_Type) then
5200 Error_Msg_N
5201 ("controlled type must be declared at the library level",
5202 Indic);
5203 else
5204 Error_Msg_N
5205 ("type extension at deeper accessibility level than parent",
5206 Indic);
5207 end if;
5209 else
5210 declare
5211 GB : constant Node_Id := Enclosing_Generic_Body (Derived_Type);
5213 begin
5214 if Present (GB)
5215 and then GB /= Enclosing_Generic_Body (Parent_Base)
5216 then
5217 Error_Msg_NE
5218 ("parent type of& must not be outside generic body"
5219 & " ('R'M 3.9.1(4))",
5220 Indic, Derived_Type);
5221 end if;
5222 end;
5223 end if;
5224 end if;
5226 -- STEP 1b : preliminary cleanup of the full view of private types
5228 -- If the type is already marked as having discriminants, then it's the
5229 -- completion of a private type or private extension and we need to
5230 -- retain the discriminants from the partial view if the current
5231 -- declaration has Discriminant_Specifications so that we can verify
5232 -- conformance. However, we must remove any existing components that
5233 -- were inherited from the parent (and attached in Copy_And_Swap)
5234 -- because the full type inherits all appropriate components anyway, and
5235 -- we do not want the partial view's components interfering.
5237 if Has_Discriminants (Derived_Type) and then Discriminant_Specs then
5238 Discrim := First_Discriminant (Derived_Type);
5239 loop
5240 Last_Discrim := Discrim;
5241 Next_Discriminant (Discrim);
5242 exit when No (Discrim);
5243 end loop;
5245 Set_Last_Entity (Derived_Type, Last_Discrim);
5247 -- In all other cases wipe out the list of inherited components (even
5248 -- inherited discriminants), it will be properly rebuilt here.
5250 else
5251 Set_First_Entity (Derived_Type, Empty);
5252 Set_Last_Entity (Derived_Type, Empty);
5253 end if;
5255 -- STEP 1c: Initialize some flags for the Derived_Type
5257 -- The following flags must be initialized here so that
5258 -- Process_Discriminants can check that discriminants of tagged types
5259 -- do not have a default initial value and that access discriminants
5260 -- are only specified for limited records. For completeness, these
5261 -- flags are also initialized along with all the other flags below.
5263 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
5264 Set_Is_Limited_Record (Derived_Type, Is_Limited_Record (Parent_Type));
5266 -- STEP 2a: process discriminants of derived type if any
5268 New_Scope (Derived_Type);
5270 if Discriminant_Specs then
5271 Set_Has_Unknown_Discriminants (Derived_Type, False);
5273 -- The following call initializes fields Has_Discriminants and
5274 -- Discriminant_Constraint, unless we are processing the completion
5275 -- of a private type declaration.
5277 Check_Or_Process_Discriminants (N, Derived_Type);
5279 -- For non-tagged types the constraint on the Parent_Type must be
5280 -- present and is used to rename the discriminants.
5282 if not Is_Tagged and then not Has_Discriminants (Parent_Type) then
5283 Error_Msg_N ("untagged parent must have discriminants", Indic);
5285 elsif not Is_Tagged and then not Constraint_Present then
5286 Error_Msg_N
5287 ("discriminant constraint needed for derived untagged records",
5288 Indic);
5290 -- Otherwise the parent subtype must be constrained unless we have a
5291 -- private extension.
5293 elsif not Constraint_Present
5294 and then not Private_Extension
5295 and then not Is_Constrained (Parent_Type)
5296 then
5297 Error_Msg_N
5298 ("unconstrained type not allowed in this context", Indic);
5300 elsif Constraint_Present then
5301 -- The following call sets the field Corresponding_Discriminant
5302 -- for the discriminants in the Derived_Type.
5304 Discs := Build_Discriminant_Constraints (Parent_Type, Indic, True);
5306 -- For untagged types all new discriminants must rename
5307 -- discriminants in the parent. For private extensions new
5308 -- discriminants cannot rename old ones (implied by [7.3(13)]).
5310 Discrim := First_Discriminant (Derived_Type);
5311 while Present (Discrim) loop
5312 if not Is_Tagged
5313 and then not Present (Corresponding_Discriminant (Discrim))
5314 then
5315 Error_Msg_N
5316 ("new discriminants must constrain old ones", Discrim);
5318 elsif Private_Extension
5319 and then Present (Corresponding_Discriminant (Discrim))
5320 then
5321 Error_Msg_N
5322 ("only static constraints allowed for parent"
5323 & " discriminants in the partial view", Indic);
5324 exit;
5325 end if;
5327 -- If a new discriminant is used in the constraint, then its
5328 -- subtype must be statically compatible with the parent
5329 -- discriminant's subtype (3.7(15)).
5331 if Present (Corresponding_Discriminant (Discrim))
5332 and then
5333 not Subtypes_Statically_Compatible
5334 (Etype (Discrim),
5335 Etype (Corresponding_Discriminant (Discrim)))
5336 then
5337 Error_Msg_N
5338 ("subtype must be compatible with parent discriminant",
5339 Discrim);
5340 end if;
5342 Next_Discriminant (Discrim);
5343 end loop;
5345 -- Check whether the constraints of the full view statically
5346 -- match those imposed by the parent subtype [7.3(13)].
5348 if Present (Stored_Constraint (Derived_Type)) then
5349 declare
5350 C1, C2 : Elmt_Id;
5352 begin
5353 C1 := First_Elmt (Discs);
5354 C2 := First_Elmt (Stored_Constraint (Derived_Type));
5355 while Present (C1) and then Present (C2) loop
5356 if not
5357 Fully_Conformant_Expressions (Node (C1), Node (C2))
5358 then
5359 Error_Msg_N (
5360 "not conformant with previous declaration",
5361 Node (C1));
5362 end if;
5364 Next_Elmt (C1);
5365 Next_Elmt (C2);
5366 end loop;
5367 end;
5368 end if;
5369 end if;
5371 -- STEP 2b: No new discriminants, inherit discriminants if any
5373 else
5374 if Private_Extension then
5375 Set_Has_Unknown_Discriminants
5376 (Derived_Type,
5377 Has_Unknown_Discriminants (Parent_Type)
5378 or else Unknown_Discriminants_Present (N));
5380 -- The partial view of the parent may have unknown discriminants,
5381 -- but if the full view has discriminants and the parent type is
5382 -- in scope they must be inherited.
5384 elsif Has_Unknown_Discriminants (Parent_Type)
5385 and then
5386 (not Has_Discriminants (Parent_Type)
5387 or else not In_Open_Scopes (Scope (Parent_Type)))
5388 then
5389 Set_Has_Unknown_Discriminants (Derived_Type);
5390 end if;
5392 if not Has_Unknown_Discriminants (Derived_Type)
5393 and then not Has_Unknown_Discriminants (Parent_Base)
5394 and then Has_Discriminants (Parent_Type)
5395 then
5396 Inherit_Discrims := True;
5397 Set_Has_Discriminants
5398 (Derived_Type, True);
5399 Set_Discriminant_Constraint
5400 (Derived_Type, Discriminant_Constraint (Parent_Base));
5401 end if;
5403 -- The following test is true for private types (remember
5404 -- transformation 5. is not applied to those) and in an error
5405 -- situation.
5407 if Constraint_Present then
5408 Discs := Build_Discriminant_Constraints (Parent_Type, Indic);
5409 end if;
5411 -- For now mark a new derived type as constrained only if it has no
5412 -- discriminants. At the end of Build_Derived_Record_Type we properly
5413 -- set this flag in the case of private extensions. See comments in
5414 -- point 9. just before body of Build_Derived_Record_Type.
5416 Set_Is_Constrained
5417 (Derived_Type,
5418 not (Inherit_Discrims
5419 or else Has_Unknown_Discriminants (Derived_Type)));
5420 end if;
5422 -- STEP 3: initialize fields of derived type
5424 Set_Is_Tagged_Type (Derived_Type, Is_Tagged);
5425 Set_Stored_Constraint (Derived_Type, No_Elist);
5427 -- Fields inherited from the Parent_Type
5429 Set_Discard_Names
5430 (Derived_Type, Einfo.Discard_Names (Parent_Type));
5431 Set_Has_Specified_Layout
5432 (Derived_Type, Has_Specified_Layout (Parent_Type));
5433 Set_Is_Limited_Composite
5434 (Derived_Type, Is_Limited_Composite (Parent_Type));
5435 Set_Is_Limited_Record
5436 (Derived_Type, Is_Limited_Record (Parent_Type));
5437 Set_Is_Private_Composite
5438 (Derived_Type, Is_Private_Composite (Parent_Type));
5440 -- Fields inherited from the Parent_Base
5442 Set_Has_Controlled_Component
5443 (Derived_Type, Has_Controlled_Component (Parent_Base));
5444 Set_Has_Non_Standard_Rep
5445 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
5446 Set_Has_Primitive_Operations
5447 (Derived_Type, Has_Primitive_Operations (Parent_Base));
5449 -- Direct controlled types do not inherit Finalize_Storage_Only flag
5451 if not Is_Controlled (Parent_Type) then
5452 Set_Finalize_Storage_Only
5453 (Derived_Type, Finalize_Storage_Only (Parent_Type));
5454 end if;
5456 -- Set fields for private derived types
5458 if Is_Private_Type (Derived_Type) then
5459 Set_Depends_On_Private (Derived_Type, True);
5460 Set_Private_Dependents (Derived_Type, New_Elmt_List);
5462 -- Inherit fields from non private record types. If this is the
5463 -- completion of a derivation from a private type, the parent itself
5464 -- is private, and the attributes come from its full view, which must
5465 -- be present.
5467 else
5468 if Is_Private_Type (Parent_Base)
5469 and then not Is_Record_Type (Parent_Base)
5470 then
5471 Set_Component_Alignment
5472 (Derived_Type, Component_Alignment (Full_View (Parent_Base)));
5473 Set_C_Pass_By_Copy
5474 (Derived_Type, C_Pass_By_Copy (Full_View (Parent_Base)));
5475 else
5476 Set_Component_Alignment
5477 (Derived_Type, Component_Alignment (Parent_Base));
5479 Set_C_Pass_By_Copy
5480 (Derived_Type, C_Pass_By_Copy (Parent_Base));
5481 end if;
5482 end if;
5484 -- Set fields for tagged types
5486 if Is_Tagged then
5487 Set_Primitive_Operations (Derived_Type, New_Elmt_List);
5489 -- All tagged types defined in Ada.Finalization are controlled
5491 if Chars (Scope (Derived_Type)) = Name_Finalization
5492 and then Chars (Scope (Scope (Derived_Type))) = Name_Ada
5493 and then Scope (Scope (Scope (Derived_Type))) = Standard_Standard
5494 then
5495 Set_Is_Controlled (Derived_Type);
5496 else
5497 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Base));
5498 end if;
5500 Make_Class_Wide_Type (Derived_Type);
5501 Set_Is_Abstract (Derived_Type, Abstract_Present (Type_Def));
5503 if Has_Discriminants (Derived_Type)
5504 and then Constraint_Present
5505 then
5506 Set_Stored_Constraint
5507 (Derived_Type, Expand_To_Stored_Constraint (Parent_Base, Discs));
5508 end if;
5510 else
5511 Set_Is_Packed (Derived_Type, Is_Packed (Parent_Base));
5512 Set_Has_Non_Standard_Rep
5513 (Derived_Type, Has_Non_Standard_Rep (Parent_Base));
5514 end if;
5516 -- STEP 4: Inherit components from the parent base and constrain them.
5517 -- Apply the second transformation described in point 6. above.
5519 if (not Is_Empty_Elmt_List (Discs) or else Inherit_Discrims)
5520 or else not Has_Discriminants (Parent_Type)
5521 or else not Is_Constrained (Parent_Type)
5522 then
5523 Constrs := Discs;
5524 else
5525 Constrs := Discriminant_Constraint (Parent_Type);
5526 end if;
5528 Assoc_List := Inherit_Components (N,
5529 Parent_Base, Derived_Type, Is_Tagged, Inherit_Discrims, Constrs);
5531 -- STEP 5a: Copy the parent record declaration for untagged types
5533 if not Is_Tagged then
5535 -- Discriminant_Constraint (Derived_Type) has been properly
5536 -- constructed. Save it and temporarily set it to Empty because we
5537 -- do not want the call to New_Copy_Tree below to mess this list.
5539 if Has_Discriminants (Derived_Type) then
5540 Save_Discr_Constr := Discriminant_Constraint (Derived_Type);
5541 Set_Discriminant_Constraint (Derived_Type, No_Elist);
5542 else
5543 Save_Discr_Constr := No_Elist;
5544 end if;
5546 -- Save the Etype field of Derived_Type. It is correctly set now,
5547 -- but the call to New_Copy tree may remap it to point to itself,
5548 -- which is not what we want. Ditto for the Next_Entity field.
5550 Save_Etype := Etype (Derived_Type);
5551 Save_Next_Entity := Next_Entity (Derived_Type);
5553 -- Assoc_List maps all stored discriminants in the Parent_Base to
5554 -- stored discriminants in the Derived_Type. It is fundamental that
5555 -- no types or itypes with discriminants other than the stored
5556 -- discriminants appear in the entities declared inside
5557 -- Derived_Type, since the back end cannot deal with it.
5559 New_Decl :=
5560 New_Copy_Tree
5561 (Parent (Parent_Base), Map => Assoc_List, New_Sloc => Loc);
5563 -- Restore the fields saved prior to the New_Copy_Tree call
5564 -- and compute the stored constraint.
5566 Set_Etype (Derived_Type, Save_Etype);
5567 Set_Next_Entity (Derived_Type, Save_Next_Entity);
5569 if Has_Discriminants (Derived_Type) then
5570 Set_Discriminant_Constraint
5571 (Derived_Type, Save_Discr_Constr);
5572 Set_Stored_Constraint
5573 (Derived_Type, Expand_To_Stored_Constraint (Parent_Type, Discs));
5574 Replace_Components (Derived_Type, New_Decl);
5575 end if;
5577 -- Insert the new derived type declaration
5579 Rewrite (N, New_Decl);
5581 -- STEP 5b: Complete the processing for record extensions in generics
5583 -- There is no completion for record extensions declared in the
5584 -- parameter part of a generic, so we need to complete processing for
5585 -- these generic record extensions here. The Record_Type_Definition call
5586 -- will change the Ekind of the components from E_Void to E_Component.
5588 elsif Private_Extension and then Is_Generic_Type (Derived_Type) then
5589 Record_Type_Definition (Empty, Derived_Type);
5591 -- STEP 5c: Process the record extension for non private tagged types
5593 elsif not Private_Extension then
5595 -- Add the _parent field in the derived type
5597 Expand_Record_Extension (Derived_Type, Type_Def);
5599 -- Analyze the record extension
5601 Record_Type_Definition
5602 (Record_Extension_Part (Type_Def), Derived_Type);
5603 end if;
5605 End_Scope;
5607 if Etype (Derived_Type) = Any_Type then
5608 return;
5609 end if;
5611 -- Set delayed freeze and then derive subprograms, we need to do
5612 -- this in this order so that derived subprograms inherit the
5613 -- derived freeze if necessary.
5615 Set_Has_Delayed_Freeze (Derived_Type);
5616 if Derive_Subps then
5617 Derive_Subprograms (Parent_Type, Derived_Type);
5618 end if;
5620 -- If we have a private extension which defines a constrained derived
5621 -- type mark as constrained here after we have derived subprograms. See
5622 -- comment on point 9. just above the body of Build_Derived_Record_Type.
5624 if Private_Extension and then Inherit_Discrims then
5625 if Constraint_Present and then not Is_Empty_Elmt_List (Discs) then
5626 Set_Is_Constrained (Derived_Type, True);
5627 Set_Discriminant_Constraint (Derived_Type, Discs);
5629 elsif Is_Constrained (Parent_Type) then
5630 Set_Is_Constrained
5631 (Derived_Type, True);
5632 Set_Discriminant_Constraint
5633 (Derived_Type, Discriminant_Constraint (Parent_Type));
5634 end if;
5635 end if;
5637 -- Update the class_wide type, which shares the now-completed
5638 -- entity list with its specific type.
5640 if Is_Tagged then
5641 Set_First_Entity
5642 (Class_Wide_Type (Derived_Type), First_Entity (Derived_Type));
5643 Set_Last_Entity
5644 (Class_Wide_Type (Derived_Type), Last_Entity (Derived_Type));
5645 end if;
5647 end Build_Derived_Record_Type;
5649 ------------------------
5650 -- Build_Derived_Type --
5651 ------------------------
5653 procedure Build_Derived_Type
5654 (N : Node_Id;
5655 Parent_Type : Entity_Id;
5656 Derived_Type : Entity_Id;
5657 Is_Completion : Boolean;
5658 Derive_Subps : Boolean := True)
5660 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
5662 begin
5663 -- Set common attributes
5665 Set_Scope (Derived_Type, Current_Scope);
5667 Set_Ekind (Derived_Type, Ekind (Parent_Base));
5668 Set_Etype (Derived_Type, Parent_Base);
5669 Set_Has_Task (Derived_Type, Has_Task (Parent_Base));
5671 Set_Size_Info (Derived_Type, Parent_Type);
5672 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
5673 Set_Convention (Derived_Type, Convention (Parent_Type));
5674 Set_Is_Controlled (Derived_Type, Is_Controlled (Parent_Type));
5676 -- The derived type inherits the representation clauses of the parent.
5677 -- However, for a private type that is completed by a derivation, there
5678 -- may be operation attributes that have been specified already (stream
5679 -- attributes and External_Tag) and those must be provided. Finally,
5680 -- if the partial view is a private extension, the representation items
5681 -- of the parent have been inherited already, and should not be chained
5682 -- twice to the derived type.
5684 if Is_Tagged_Type (Parent_Type)
5685 and then Present (First_Rep_Item (Derived_Type))
5686 then
5687 -- The existing items are either operational items or items inherited
5688 -- from a private extension declaration.
5690 declare
5691 Rep : Node_Id := First_Rep_Item (Derived_Type);
5692 Found : Boolean := False;
5694 begin
5695 while Present (Rep) loop
5696 if Rep = First_Rep_Item (Parent_Type) then
5697 Found := True;
5698 exit;
5699 else
5700 Rep := Next_Rep_Item (Rep);
5701 end if;
5702 end loop;
5704 if not Found then
5705 Set_Next_Rep_Item
5706 (First_Rep_Item (Derived_Type), First_Rep_Item (Parent_Type));
5707 end if;
5708 end;
5710 else
5711 Set_First_Rep_Item (Derived_Type, First_Rep_Item (Parent_Type));
5712 end if;
5714 case Ekind (Parent_Type) is
5715 when Numeric_Kind =>
5716 Build_Derived_Numeric_Type (N, Parent_Type, Derived_Type);
5718 when Array_Kind =>
5719 Build_Derived_Array_Type (N, Parent_Type, Derived_Type);
5721 when E_Record_Type
5722 | E_Record_Subtype
5723 | Class_Wide_Kind =>
5724 Build_Derived_Record_Type
5725 (N, Parent_Type, Derived_Type, Derive_Subps);
5726 return;
5728 when Enumeration_Kind =>
5729 Build_Derived_Enumeration_Type (N, Parent_Type, Derived_Type);
5731 when Access_Kind =>
5732 Build_Derived_Access_Type (N, Parent_Type, Derived_Type);
5734 when Incomplete_Or_Private_Kind =>
5735 Build_Derived_Private_Type
5736 (N, Parent_Type, Derived_Type, Is_Completion, Derive_Subps);
5738 -- For discriminated types, the derivation includes deriving
5739 -- primitive operations. For others it is done below.
5741 if Is_Tagged_Type (Parent_Type)
5742 or else Has_Discriminants (Parent_Type)
5743 or else (Present (Full_View (Parent_Type))
5744 and then Has_Discriminants (Full_View (Parent_Type)))
5745 then
5746 return;
5747 end if;
5749 when Concurrent_Kind =>
5750 Build_Derived_Concurrent_Type (N, Parent_Type, Derived_Type);
5752 when others =>
5753 raise Program_Error;
5754 end case;
5756 if Etype (Derived_Type) = Any_Type then
5757 return;
5758 end if;
5760 -- Set delayed freeze and then derive subprograms, we need to do this
5761 -- in this order so that derived subprograms inherit the derived freeze
5762 -- if necessary.
5764 Set_Has_Delayed_Freeze (Derived_Type);
5765 if Derive_Subps then
5766 Derive_Subprograms (Parent_Type, Derived_Type);
5767 end if;
5769 Set_Has_Primitive_Operations
5770 (Base_Type (Derived_Type), Has_Primitive_Operations (Parent_Type));
5771 end Build_Derived_Type;
5773 -----------------------
5774 -- Build_Discriminal --
5775 -----------------------
5777 procedure Build_Discriminal (Discrim : Entity_Id) is
5778 D_Minal : Entity_Id;
5779 CR_Disc : Entity_Id;
5781 begin
5782 -- A discriminal has the same name as the discriminant
5784 D_Minal :=
5785 Make_Defining_Identifier (Sloc (Discrim),
5786 Chars => Chars (Discrim));
5788 Set_Ekind (D_Minal, E_In_Parameter);
5789 Set_Mechanism (D_Minal, Default_Mechanism);
5790 Set_Etype (D_Minal, Etype (Discrim));
5792 Set_Discriminal (Discrim, D_Minal);
5793 Set_Discriminal_Link (D_Minal, Discrim);
5795 -- For task types, build at once the discriminants of the corresponding
5796 -- record, which are needed if discriminants are used in entry defaults
5797 -- and in family bounds.
5799 if Is_Concurrent_Type (Current_Scope)
5800 or else Is_Limited_Type (Current_Scope)
5801 then
5802 CR_Disc := Make_Defining_Identifier (Sloc (Discrim), Chars (Discrim));
5804 Set_Ekind (CR_Disc, E_In_Parameter);
5805 Set_Mechanism (CR_Disc, Default_Mechanism);
5806 Set_Etype (CR_Disc, Etype (Discrim));
5807 Set_CR_Discriminant (Discrim, CR_Disc);
5808 end if;
5809 end Build_Discriminal;
5811 ------------------------------------
5812 -- Build_Discriminant_Constraints --
5813 ------------------------------------
5815 function Build_Discriminant_Constraints
5816 (T : Entity_Id;
5817 Def : Node_Id;
5818 Derived_Def : Boolean := False) return Elist_Id
5820 C : constant Node_Id := Constraint (Def);
5821 Nb_Discr : constant Nat := Number_Discriminants (T);
5823 Discr_Expr : array (1 .. Nb_Discr) of Node_Id := (others => Empty);
5824 -- Saves the expression corresponding to a given discriminant in T
5826 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat;
5827 -- Return the Position number within array Discr_Expr of a discriminant
5828 -- D within the discriminant list of the discriminated type T.
5830 ------------------
5831 -- Pos_Of_Discr --
5832 ------------------
5834 function Pos_Of_Discr (T : Entity_Id; D : Entity_Id) return Nat is
5835 Disc : Entity_Id;
5837 begin
5838 Disc := First_Discriminant (T);
5839 for J in Discr_Expr'Range loop
5840 if Disc = D then
5841 return J;
5842 end if;
5844 Next_Discriminant (Disc);
5845 end loop;
5847 -- Note: Since this function is called on discriminants that are
5848 -- known to belong to the discriminated type, falling through the
5849 -- loop with no match signals an internal compiler error.
5851 raise Program_Error;
5852 end Pos_Of_Discr;
5854 -- Declarations local to Build_Discriminant_Constraints
5856 Discr : Entity_Id;
5857 E : Entity_Id;
5858 Elist : constant Elist_Id := New_Elmt_List;
5860 Constr : Node_Id;
5861 Expr : Node_Id;
5862 Id : Node_Id;
5863 Position : Nat;
5864 Found : Boolean;
5866 Discrim_Present : Boolean := False;
5868 -- Start of processing for Build_Discriminant_Constraints
5870 begin
5871 -- The following loop will process positional associations only.
5872 -- For a positional association, the (single) discriminant is
5873 -- implicitly specified by position, in textual order (RM 3.7.2).
5875 Discr := First_Discriminant (T);
5876 Constr := First (Constraints (C));
5878 for D in Discr_Expr'Range loop
5879 exit when Nkind (Constr) = N_Discriminant_Association;
5881 if No (Constr) then
5882 Error_Msg_N ("too few discriminants given in constraint", C);
5883 return New_Elmt_List;
5885 elsif Nkind (Constr) = N_Range
5886 or else (Nkind (Constr) = N_Attribute_Reference
5887 and then
5888 Attribute_Name (Constr) = Name_Range)
5889 then
5890 Error_Msg_N
5891 ("a range is not a valid discriminant constraint", Constr);
5892 Discr_Expr (D) := Error;
5894 else
5895 Analyze_And_Resolve (Constr, Base_Type (Etype (Discr)));
5896 Discr_Expr (D) := Constr;
5897 end if;
5899 Next_Discriminant (Discr);
5900 Next (Constr);
5901 end loop;
5903 if No (Discr) and then Present (Constr) then
5904 Error_Msg_N ("too many discriminants given in constraint", Constr);
5905 return New_Elmt_List;
5906 end if;
5908 -- Named associations can be given in any order, but if both positional
5909 -- and named associations are used in the same discriminant constraint,
5910 -- then positional associations must occur first, at their normal
5911 -- position. Hence once a named association is used, the rest of the
5912 -- discriminant constraint must use only named associations.
5914 while Present (Constr) loop
5916 -- Positional association forbidden after a named association
5918 if Nkind (Constr) /= N_Discriminant_Association then
5919 Error_Msg_N ("positional association follows named one", Constr);
5920 return New_Elmt_List;
5922 -- Otherwise it is a named association
5924 else
5925 -- E records the type of the discriminants in the named
5926 -- association. All the discriminants specified in the same name
5927 -- association must have the same type.
5929 E := Empty;
5931 -- Search the list of discriminants in T to see if the simple name
5932 -- given in the constraint matches any of them.
5934 Id := First (Selector_Names (Constr));
5935 while Present (Id) loop
5936 Found := False;
5938 -- If Original_Discriminant is present, we are processing a
5939 -- generic instantiation and this is an instance node. We need
5940 -- to find the name of the corresponding discriminant in the
5941 -- actual record type T and not the name of the discriminant in
5942 -- the generic formal. Example:
5944 -- generic
5945 -- type G (D : int) is private;
5946 -- package P is
5947 -- subtype W is G (D => 1);
5948 -- end package;
5949 -- type Rec (X : int) is record ... end record;
5950 -- package Q is new P (G => Rec);
5952 -- At the point of the instantiation, formal type G is Rec
5953 -- and therefore when reanalyzing "subtype W is G (D => 1);"
5954 -- which really looks like "subtype W is Rec (D => 1);" at
5955 -- the point of instantiation, we want to find the discriminant
5956 -- that corresponds to D in Rec, ie X.
5958 if Present (Original_Discriminant (Id)) then
5959 Discr := Find_Corresponding_Discriminant (Id, T);
5960 Found := True;
5962 else
5963 Discr := First_Discriminant (T);
5964 while Present (Discr) loop
5965 if Chars (Discr) = Chars (Id) then
5966 Found := True;
5967 exit;
5968 end if;
5970 Next_Discriminant (Discr);
5971 end loop;
5973 if not Found then
5974 Error_Msg_N ("& does not match any discriminant", Id);
5975 return New_Elmt_List;
5977 -- The following is only useful for the benefit of generic
5978 -- instances but it does not interfere with other
5979 -- processing for the non-generic case so we do it in all
5980 -- cases (for generics this statement is executed when
5981 -- processing the generic definition, see comment at the
5982 -- beginning of this if statement).
5984 else
5985 Set_Original_Discriminant (Id, Discr);
5986 end if;
5987 end if;
5989 Position := Pos_Of_Discr (T, Discr);
5991 if Present (Discr_Expr (Position)) then
5992 Error_Msg_N ("duplicate constraint for discriminant&", Id);
5994 else
5995 -- Each discriminant specified in the same named association
5996 -- must be associated with a separate copy of the
5997 -- corresponding expression.
5999 if Present (Next (Id)) then
6000 Expr := New_Copy_Tree (Expression (Constr));
6001 Set_Parent (Expr, Parent (Expression (Constr)));
6002 else
6003 Expr := Expression (Constr);
6004 end if;
6006 Discr_Expr (Position) := Expr;
6007 Analyze_And_Resolve (Expr, Base_Type (Etype (Discr)));
6008 end if;
6010 -- A discriminant association with more than one discriminant
6011 -- name is only allowed if the named discriminants are all of
6012 -- the same type (RM 3.7.1(8)).
6014 if E = Empty then
6015 E := Base_Type (Etype (Discr));
6017 elsif Base_Type (Etype (Discr)) /= E then
6018 Error_Msg_N
6019 ("all discriminants in an association " &
6020 "must have the same type", Id);
6021 end if;
6023 Next (Id);
6024 end loop;
6025 end if;
6027 Next (Constr);
6028 end loop;
6030 -- A discriminant constraint must provide exactly one value for each
6031 -- discriminant of the type (RM 3.7.1(8)).
6033 for J in Discr_Expr'Range loop
6034 if No (Discr_Expr (J)) then
6035 Error_Msg_N ("too few discriminants given in constraint", C);
6036 return New_Elmt_List;
6037 end if;
6038 end loop;
6040 -- Determine if there are discriminant expressions in the constraint
6042 for J in Discr_Expr'Range loop
6043 if Denotes_Discriminant (Discr_Expr (J), Check_Protected => True) then
6044 Discrim_Present := True;
6045 end if;
6046 end loop;
6048 -- Build an element list consisting of the expressions given in the
6049 -- discriminant constraint and apply the appropriate checks. The list
6050 -- is constructed after resolving any named discriminant associations
6051 -- and therefore the expressions appear in the textual order of the
6052 -- discriminants.
6054 Discr := First_Discriminant (T);
6055 for J in Discr_Expr'Range loop
6056 if Discr_Expr (J) /= Error then
6058 Append_Elmt (Discr_Expr (J), Elist);
6060 -- If any of the discriminant constraints is given by a
6061 -- discriminant and we are in a derived type declaration we
6062 -- have a discriminant renaming. Establish link between new
6063 -- and old discriminant.
6065 if Denotes_Discriminant (Discr_Expr (J)) then
6066 if Derived_Def then
6067 Set_Corresponding_Discriminant
6068 (Entity (Discr_Expr (J)), Discr);
6069 end if;
6071 -- Force the evaluation of non-discriminant expressions.
6072 -- If we have found a discriminant in the constraint 3.4(26)
6073 -- and 3.8(18) demand that no range checks are performed are
6074 -- after evaluation. If the constraint is for a component
6075 -- definition that has a per-object constraint, expressions are
6076 -- evaluated but not checked either. In all other cases perform
6077 -- a range check.
6079 else
6080 if Discrim_Present then
6081 null;
6083 elsif Nkind (Parent (Parent (Def))) = N_Component_Declaration
6084 and then
6085 Has_Per_Object_Constraint
6086 (Defining_Identifier (Parent (Parent (Def))))
6087 then
6088 null;
6090 elsif Is_Access_Type (Etype (Discr)) then
6091 Apply_Constraint_Check (Discr_Expr (J), Etype (Discr));
6093 else
6094 Apply_Range_Check (Discr_Expr (J), Etype (Discr));
6095 end if;
6097 Force_Evaluation (Discr_Expr (J));
6098 end if;
6100 -- Check that the designated type of an access discriminant's
6101 -- expression is not a class-wide type unless the discriminant's
6102 -- designated type is also class-wide.
6104 if Ekind (Etype (Discr)) = E_Anonymous_Access_Type
6105 and then not Is_Class_Wide_Type
6106 (Designated_Type (Etype (Discr)))
6107 and then Etype (Discr_Expr (J)) /= Any_Type
6108 and then Is_Class_Wide_Type
6109 (Designated_Type (Etype (Discr_Expr (J))))
6110 then
6111 Wrong_Type (Discr_Expr (J), Etype (Discr));
6112 end if;
6113 end if;
6115 Next_Discriminant (Discr);
6116 end loop;
6118 return Elist;
6119 end Build_Discriminant_Constraints;
6121 ---------------------------------
6122 -- Build_Discriminated_Subtype --
6123 ---------------------------------
6125 procedure Build_Discriminated_Subtype
6126 (T : Entity_Id;
6127 Def_Id : Entity_Id;
6128 Elist : Elist_Id;
6129 Related_Nod : Node_Id;
6130 For_Access : Boolean := False)
6132 Has_Discrs : constant Boolean := Has_Discriminants (T);
6133 Constrained : constant Boolean
6134 := (Has_Discrs
6135 and then not Is_Empty_Elmt_List (Elist)
6136 and then not Is_Class_Wide_Type (T))
6137 or else Is_Constrained (T);
6139 begin
6140 if Ekind (T) = E_Record_Type then
6141 if For_Access then
6142 Set_Ekind (Def_Id, E_Private_Subtype);
6143 Set_Is_For_Access_Subtype (Def_Id, True);
6144 else
6145 Set_Ekind (Def_Id, E_Record_Subtype);
6146 end if;
6148 elsif Ekind (T) = E_Task_Type then
6149 Set_Ekind (Def_Id, E_Task_Subtype);
6151 elsif Ekind (T) = E_Protected_Type then
6152 Set_Ekind (Def_Id, E_Protected_Subtype);
6154 elsif Is_Private_Type (T) then
6155 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
6157 elsif Is_Class_Wide_Type (T) then
6158 Set_Ekind (Def_Id, E_Class_Wide_Subtype);
6160 else
6161 -- Incomplete type. attach subtype to list of dependents, to be
6162 -- completed with full view of parent type, unless is it the
6163 -- designated subtype of a record component within an init_proc.
6164 -- This last case arises for a component of an access type whose
6165 -- designated type is incomplete (e.g. a Taft Amendment type).
6166 -- The designated subtype is within an inner scope, and needs no
6167 -- elaboration, because only the access type is needed in the
6168 -- initialization procedure.
6170 Set_Ekind (Def_Id, Ekind (T));
6172 if For_Access and then Within_Init_Proc then
6173 null;
6174 else
6175 Append_Elmt (Def_Id, Private_Dependents (T));
6176 end if;
6177 end if;
6179 Set_Etype (Def_Id, T);
6180 Init_Size_Align (Def_Id);
6181 Set_Has_Discriminants (Def_Id, Has_Discrs);
6182 Set_Is_Constrained (Def_Id, Constrained);
6184 Set_First_Entity (Def_Id, First_Entity (T));
6185 Set_Last_Entity (Def_Id, Last_Entity (T));
6186 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
6188 if Is_Tagged_Type (T) then
6189 Set_Is_Tagged_Type (Def_Id);
6190 Make_Class_Wide_Type (Def_Id);
6191 end if;
6193 Set_Stored_Constraint (Def_Id, No_Elist);
6195 if Has_Discrs then
6196 Set_Discriminant_Constraint (Def_Id, Elist);
6197 Set_Stored_Constraint_From_Discriminant_Constraint (Def_Id);
6198 end if;
6200 if Is_Tagged_Type (T) then
6201 Set_Primitive_Operations (Def_Id, Primitive_Operations (T));
6202 Set_Is_Abstract (Def_Id, Is_Abstract (T));
6203 end if;
6205 -- Subtypes introduced by component declarations do not need to be
6206 -- marked as delayed, and do not get freeze nodes, because the semantics
6207 -- verifies that the parents of the subtypes are frozen before the
6208 -- enclosing record is frozen.
6210 if not Is_Type (Scope (Def_Id)) then
6211 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
6213 if Is_Private_Type (T)
6214 and then Present (Full_View (T))
6215 then
6216 Conditional_Delay (Def_Id, Full_View (T));
6217 else
6218 Conditional_Delay (Def_Id, T);
6219 end if;
6220 end if;
6222 if Is_Record_Type (T) then
6223 Set_Is_Limited_Record (Def_Id, Is_Limited_Record (T));
6225 if Has_Discrs
6226 and then not Is_Empty_Elmt_List (Elist)
6227 and then not For_Access
6228 then
6229 Create_Constrained_Components (Def_Id, Related_Nod, T, Elist);
6230 elsif not For_Access then
6231 Set_Cloned_Subtype (Def_Id, T);
6232 end if;
6233 end if;
6235 end Build_Discriminated_Subtype;
6237 ------------------------
6238 -- Build_Scalar_Bound --
6239 ------------------------
6241 function Build_Scalar_Bound
6242 (Bound : Node_Id;
6243 Par_T : Entity_Id;
6244 Der_T : Entity_Id) return Node_Id
6246 New_Bound : Entity_Id;
6248 begin
6249 -- Note: not clear why this is needed, how can the original bound
6250 -- be unanalyzed at this point? and if it is, what business do we
6251 -- have messing around with it? and why is the base type of the
6252 -- parent type the right type for the resolution. It probably is
6253 -- not! It is OK for the new bound we are creating, but not for
6254 -- the old one??? Still if it never happens, no problem!
6256 Analyze_And_Resolve (Bound, Base_Type (Par_T));
6258 if Nkind (Bound) = N_Integer_Literal
6259 or else Nkind (Bound) = N_Real_Literal
6260 then
6261 New_Bound := New_Copy (Bound);
6262 Set_Etype (New_Bound, Der_T);
6263 Set_Analyzed (New_Bound);
6265 elsif Is_Entity_Name (Bound) then
6266 New_Bound := OK_Convert_To (Der_T, New_Copy (Bound));
6268 -- The following is almost certainly wrong. What business do we have
6269 -- relocating a node (Bound) that is presumably still attached to
6270 -- the tree elsewhere???
6272 else
6273 New_Bound := OK_Convert_To (Der_T, Relocate_Node (Bound));
6274 end if;
6276 Set_Etype (New_Bound, Der_T);
6277 return New_Bound;
6278 end Build_Scalar_Bound;
6280 --------------------------------
6281 -- Build_Underlying_Full_View --
6282 --------------------------------
6284 procedure Build_Underlying_Full_View
6285 (N : Node_Id;
6286 Typ : Entity_Id;
6287 Par : Entity_Id)
6289 Loc : constant Source_Ptr := Sloc (N);
6290 Subt : constant Entity_Id :=
6291 Make_Defining_Identifier
6292 (Loc, New_External_Name (Chars (Typ), 'S'));
6294 Constr : Node_Id;
6295 Indic : Node_Id;
6296 C : Node_Id;
6297 Id : Node_Id;
6299 procedure Set_Discriminant_Name (Id : Node_Id);
6300 -- If the derived type has discriminants, they may rename discriminants
6301 -- of the parent. When building the full view of the parent, we need to
6302 -- recover the names of the original discriminants if the constraint is
6303 -- given by named associations.
6305 ---------------------------
6306 -- Set_Discriminant_Name --
6307 ---------------------------
6309 procedure Set_Discriminant_Name (Id : Node_Id) is
6310 Disc : Entity_Id;
6312 begin
6313 Set_Original_Discriminant (Id, Empty);
6315 if Has_Discriminants (Typ) then
6316 Disc := First_Discriminant (Typ);
6318 while Present (Disc) loop
6319 if Chars (Disc) = Chars (Id)
6320 and then Present (Corresponding_Discriminant (Disc))
6321 then
6322 Set_Chars (Id, Chars (Corresponding_Discriminant (Disc)));
6323 end if;
6324 Next_Discriminant (Disc);
6325 end loop;
6326 end if;
6327 end Set_Discriminant_Name;
6329 -- Start of processing for Build_Underlying_Full_View
6331 begin
6332 if Nkind (N) = N_Full_Type_Declaration then
6333 Constr := Constraint (Subtype_Indication (Type_Definition (N)));
6335 elsif Nkind (N) = N_Subtype_Declaration then
6336 Constr := New_Copy_Tree (Constraint (Subtype_Indication (N)));
6338 elsif Nkind (N) = N_Component_Declaration then
6339 Constr :=
6340 New_Copy_Tree
6341 (Constraint (Subtype_Indication (Component_Definition (N))));
6343 else
6344 raise Program_Error;
6345 end if;
6347 C := First (Constraints (Constr));
6348 while Present (C) loop
6349 if Nkind (C) = N_Discriminant_Association then
6350 Id := First (Selector_Names (C));
6351 while Present (Id) loop
6352 Set_Discriminant_Name (Id);
6353 Next (Id);
6354 end loop;
6355 end if;
6357 Next (C);
6358 end loop;
6360 Indic :=
6361 Make_Subtype_Declaration (Loc,
6362 Defining_Identifier => Subt,
6363 Subtype_Indication =>
6364 Make_Subtype_Indication (Loc,
6365 Subtype_Mark => New_Reference_To (Par, Loc),
6366 Constraint => New_Copy_Tree (Constr)));
6368 -- If this is a component subtype for an outer itype, it is not
6369 -- a list member, so simply set the parent link for analysis: if
6370 -- the enclosing type does not need to be in a declarative list,
6371 -- neither do the components.
6373 if Is_List_Member (N)
6374 and then Nkind (N) /= N_Component_Declaration
6375 then
6376 Insert_Before (N, Indic);
6377 else
6378 Set_Parent (Indic, Parent (N));
6379 end if;
6381 Analyze (Indic);
6382 Set_Underlying_Full_View (Typ, Full_View (Subt));
6383 end Build_Underlying_Full_View;
6385 -------------------------------
6386 -- Check_Abstract_Overriding --
6387 -------------------------------
6389 procedure Check_Abstract_Overriding (T : Entity_Id) is
6390 Op_List : Elist_Id;
6391 Elmt : Elmt_Id;
6392 Subp : Entity_Id;
6393 Type_Def : Node_Id;
6395 begin
6396 Op_List := Primitive_Operations (T);
6398 -- Loop to check primitive operations
6400 Elmt := First_Elmt (Op_List);
6401 while Present (Elmt) loop
6402 Subp := Node (Elmt);
6404 -- Special exception, do not complain about failure to override the
6405 -- stream routines _Input and _Output, since we always provide
6406 -- automatic overridings for these subprograms.
6408 if Is_Abstract (Subp)
6409 and then not Is_TSS (Subp, TSS_Stream_Input)
6410 and then not Is_TSS (Subp, TSS_Stream_Output)
6411 and then not Is_Abstract (T)
6412 then
6413 if Present (Alias (Subp)) then
6414 -- Only perform the check for a derived subprogram when
6415 -- the type has an explicit record extension. This avoids
6416 -- incorrectly flagging abstract subprograms for the case
6417 -- of a type without an extension derived from a formal type
6418 -- with a tagged actual (can occur within a private part).
6420 Type_Def := Type_Definition (Parent (T));
6421 if Nkind (Type_Def) = N_Derived_Type_Definition
6422 and then Present (Record_Extension_Part (Type_Def))
6423 then
6424 Error_Msg_NE
6425 ("type must be declared abstract or & overridden",
6426 T, Subp);
6427 end if;
6428 else
6429 Error_Msg_NE
6430 ("abstract subprogram not allowed for type&",
6431 Subp, T);
6432 Error_Msg_NE
6433 ("nonabstract type has abstract subprogram&",
6434 T, Subp);
6435 end if;
6436 end if;
6438 Next_Elmt (Elmt);
6439 end loop;
6440 end Check_Abstract_Overriding;
6442 ------------------------------------------------
6443 -- Check_Access_Discriminant_Requires_Limited --
6444 ------------------------------------------------
6446 procedure Check_Access_Discriminant_Requires_Limited
6447 (D : Node_Id;
6448 Loc : Node_Id)
6450 begin
6451 -- A discriminant_specification for an access discriminant
6452 -- shall appear only in the declaration for a task or protected
6453 -- type, or for a type with the reserved word 'limited' in
6454 -- its definition or in one of its ancestors. (RM 3.7(10))
6456 if Nkind (Discriminant_Type (D)) = N_Access_Definition
6457 and then not Is_Concurrent_Type (Current_Scope)
6458 and then not Is_Concurrent_Record_Type (Current_Scope)
6459 and then not Is_Limited_Record (Current_Scope)
6460 and then Ekind (Current_Scope) /= E_Limited_Private_Type
6461 then
6462 Error_Msg_N
6463 ("access discriminants allowed only for limited types", Loc);
6464 end if;
6465 end Check_Access_Discriminant_Requires_Limited;
6467 -----------------------------------
6468 -- Check_Aliased_Component_Types --
6469 -----------------------------------
6471 procedure Check_Aliased_Component_Types (T : Entity_Id) is
6472 C : Entity_Id;
6474 begin
6475 -- ??? Also need to check components of record extensions, but not
6476 -- components of protected types (which are always limited).
6478 if not Is_Limited_Type (T) then
6479 if Ekind (T) = E_Record_Type then
6480 C := First_Component (T);
6481 while Present (C) loop
6482 if Is_Aliased (C)
6483 and then Has_Discriminants (Etype (C))
6484 and then not Is_Constrained (Etype (C))
6485 and then not In_Instance
6486 then
6487 Error_Msg_N
6488 ("aliased component must be constrained ('R'M 3.6(11))",
6490 end if;
6492 Next_Component (C);
6493 end loop;
6495 elsif Ekind (T) = E_Array_Type then
6496 if Has_Aliased_Components (T)
6497 and then Has_Discriminants (Component_Type (T))
6498 and then not Is_Constrained (Component_Type (T))
6499 and then not In_Instance
6500 then
6501 Error_Msg_N
6502 ("aliased component type must be constrained ('R'M 3.6(11))",
6504 end if;
6505 end if;
6506 end if;
6507 end Check_Aliased_Component_Types;
6509 ----------------------
6510 -- Check_Completion --
6511 ----------------------
6513 procedure Check_Completion (Body_Id : Node_Id := Empty) is
6514 E : Entity_Id;
6516 procedure Post_Error;
6517 -- Post error message for lack of completion for entity E
6519 ----------------
6520 -- Post_Error --
6521 ----------------
6523 procedure Post_Error is
6524 begin
6525 if not Comes_From_Source (E) then
6527 if Ekind (E) = E_Task_Type
6528 or else Ekind (E) = E_Protected_Type
6529 then
6530 -- It may be an anonymous protected type created for a
6531 -- single variable. Post error on variable, if present.
6533 declare
6534 Var : Entity_Id;
6536 begin
6537 Var := First_Entity (Current_Scope);
6539 while Present (Var) loop
6540 exit when Etype (Var) = E
6541 and then Comes_From_Source (Var);
6543 Next_Entity (Var);
6544 end loop;
6546 if Present (Var) then
6547 E := Var;
6548 end if;
6549 end;
6550 end if;
6551 end if;
6553 -- If a generated entity has no completion, then either previous
6554 -- semantic errors have disabled the expansion phase, or else we had
6555 -- missing subunits, or else we are compiling without expan- sion,
6556 -- or else something is very wrong.
6558 if not Comes_From_Source (E) then
6559 pragma Assert
6560 (Serious_Errors_Detected > 0
6561 or else Configurable_Run_Time_Violations > 0
6562 or else Subunits_Missing
6563 or else not Expander_Active);
6564 return;
6566 -- Here for source entity
6568 else
6569 -- Here if no body to post the error message, so we post the error
6570 -- on the declaration that has no completion. This is not really
6571 -- the right place to post it, think about this later ???
6573 if No (Body_Id) then
6574 if Is_Type (E) then
6575 Error_Msg_NE
6576 ("missing full declaration for }", Parent (E), E);
6577 else
6578 Error_Msg_NE
6579 ("missing body for &", Parent (E), E);
6580 end if;
6582 -- Package body has no completion for a declaration that appears
6583 -- in the corresponding spec. Post error on the body, with a
6584 -- reference to the non-completed declaration.
6586 else
6587 Error_Msg_Sloc := Sloc (E);
6589 if Is_Type (E) then
6590 Error_Msg_NE
6591 ("missing full declaration for }!", Body_Id, E);
6593 elsif Is_Overloadable (E)
6594 and then Current_Entity_In_Scope (E) /= E
6595 then
6596 -- It may be that the completion is mistyped and appears
6597 -- as a distinct overloading of the entity.
6599 declare
6600 Candidate : constant Entity_Id :=
6601 Current_Entity_In_Scope (E);
6602 Decl : constant Node_Id :=
6603 Unit_Declaration_Node (Candidate);
6605 begin
6606 if Is_Overloadable (Candidate)
6607 and then Ekind (Candidate) = Ekind (E)
6608 and then Nkind (Decl) = N_Subprogram_Body
6609 and then Acts_As_Spec (Decl)
6610 then
6611 Check_Type_Conformant (Candidate, E);
6613 else
6614 Error_Msg_NE ("missing body for & declared#!",
6615 Body_Id, E);
6616 end if;
6617 end;
6618 else
6619 Error_Msg_NE ("missing body for & declared#!",
6620 Body_Id, E);
6621 end if;
6622 end if;
6623 end if;
6624 end Post_Error;
6626 -- Start processing for Check_Completion
6628 begin
6629 E := First_Entity (Current_Scope);
6630 while Present (E) loop
6631 if Is_Intrinsic_Subprogram (E) then
6632 null;
6634 -- The following situation requires special handling: a child
6635 -- unit that appears in the context clause of the body of its
6636 -- parent:
6638 -- procedure Parent.Child (...);
6640 -- with Parent.Child;
6641 -- package body Parent is
6643 -- Here Parent.Child appears as a local entity, but should not
6644 -- be flagged as requiring completion, because it is a
6645 -- compilation unit.
6647 elsif Ekind (E) = E_Function
6648 or else Ekind (E) = E_Procedure
6649 or else Ekind (E) = E_Generic_Function
6650 or else Ekind (E) = E_Generic_Procedure
6651 then
6652 if not Has_Completion (E)
6653 and then not Is_Abstract (E)
6654 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
6655 N_Compilation_Unit
6656 and then Chars (E) /= Name_uSize
6657 then
6658 Post_Error;
6659 end if;
6661 elsif Is_Entry (E) then
6662 if not Has_Completion (E) and then
6663 (Ekind (Scope (E)) = E_Protected_Object
6664 or else Ekind (Scope (E)) = E_Protected_Type)
6665 then
6666 Post_Error;
6667 end if;
6669 elsif Is_Package (E) then
6670 if Unit_Requires_Body (E) then
6671 if not Has_Completion (E)
6672 and then Nkind (Parent (Unit_Declaration_Node (E))) /=
6673 N_Compilation_Unit
6674 then
6675 Post_Error;
6676 end if;
6678 elsif not Is_Child_Unit (E) then
6679 May_Need_Implicit_Body (E);
6680 end if;
6682 elsif Ekind (E) = E_Incomplete_Type
6683 and then No (Underlying_Type (E))
6684 then
6685 Post_Error;
6687 elsif (Ekind (E) = E_Task_Type or else
6688 Ekind (E) = E_Protected_Type)
6689 and then not Has_Completion (E)
6690 then
6691 Post_Error;
6693 -- A single task declared in the current scope is a constant, verify
6694 -- that the body of its anonymous type is in the same scope. If the
6695 -- task is defined elsewhere, this may be a renaming declaration for
6696 -- which no completion is needed.
6698 elsif Ekind (E) = E_Constant
6699 and then Ekind (Etype (E)) = E_Task_Type
6700 and then not Has_Completion (Etype (E))
6701 and then Scope (Etype (E)) = Current_Scope
6702 then
6703 Post_Error;
6705 elsif Ekind (E) = E_Protected_Object
6706 and then not Has_Completion (Etype (E))
6707 then
6708 Post_Error;
6710 elsif Ekind (E) = E_Record_Type then
6711 if Is_Tagged_Type (E) then
6712 Check_Abstract_Overriding (E);
6713 end if;
6715 Check_Aliased_Component_Types (E);
6717 elsif Ekind (E) = E_Array_Type then
6718 Check_Aliased_Component_Types (E);
6720 end if;
6722 Next_Entity (E);
6723 end loop;
6724 end Check_Completion;
6726 ----------------------------
6727 -- Check_Delta_Expression --
6728 ----------------------------
6730 procedure Check_Delta_Expression (E : Node_Id) is
6731 begin
6732 if not (Is_Real_Type (Etype (E))) then
6733 Wrong_Type (E, Any_Real);
6735 elsif not Is_OK_Static_Expression (E) then
6736 Flag_Non_Static_Expr
6737 ("non-static expression used for delta value!", E);
6739 elsif not UR_Is_Positive (Expr_Value_R (E)) then
6740 Error_Msg_N ("delta expression must be positive", E);
6742 else
6743 return;
6744 end if;
6746 -- If any of above errors occurred, then replace the incorrect
6747 -- expression by the real 0.1, which should prevent further errors.
6749 Rewrite (E,
6750 Make_Real_Literal (Sloc (E), Ureal_Tenth));
6751 Analyze_And_Resolve (E, Standard_Float);
6752 end Check_Delta_Expression;
6754 -----------------------------
6755 -- Check_Digits_Expression --
6756 -----------------------------
6758 procedure Check_Digits_Expression (E : Node_Id) is
6759 begin
6760 if not (Is_Integer_Type (Etype (E))) then
6761 Wrong_Type (E, Any_Integer);
6763 elsif not Is_OK_Static_Expression (E) then
6764 Flag_Non_Static_Expr
6765 ("non-static expression used for digits value!", E);
6767 elsif Expr_Value (E) <= 0 then
6768 Error_Msg_N ("digits value must be greater than zero", E);
6770 else
6771 return;
6772 end if;
6774 -- If any of above errors occurred, then replace the incorrect
6775 -- expression by the integer 1, which should prevent further errors.
6777 Rewrite (E, Make_Integer_Literal (Sloc (E), 1));
6778 Analyze_And_Resolve (E, Standard_Integer);
6780 end Check_Digits_Expression;
6782 --------------------------
6783 -- Check_Initialization --
6784 --------------------------
6786 procedure Check_Initialization (T : Entity_Id; Exp : Node_Id) is
6787 begin
6788 if (Is_Limited_Type (T)
6789 or else Is_Limited_Composite (T))
6790 and then not In_Instance
6791 and then not In_Inlined_Body
6792 then
6793 -- Ada 2005 (AI-287): Relax the strictness of the front-end in
6794 -- case of limited aggregates and extension aggregates.
6796 if Ada_Version >= Ada_05
6797 and then (Nkind (Exp) = N_Aggregate
6798 or else Nkind (Exp) = N_Extension_Aggregate)
6799 then
6800 null;
6801 else
6802 Error_Msg_N
6803 ("cannot initialize entities of limited type", Exp);
6804 Explain_Limited_Type (T, Exp);
6805 end if;
6806 end if;
6807 end Check_Initialization;
6809 ------------------------------------
6810 -- Check_Or_Process_Discriminants --
6811 ------------------------------------
6813 -- If an incomplete or private type declaration was already given for
6814 -- the type, the discriminants may have already been processed if they
6815 -- were present on the incomplete declaration. In this case a full
6816 -- conformance check is performed otherwise just process them.
6818 procedure Check_Or_Process_Discriminants
6819 (N : Node_Id;
6820 T : Entity_Id;
6821 Prev : Entity_Id := Empty)
6823 begin
6824 if Has_Discriminants (T) then
6826 -- Make the discriminants visible to component declarations
6828 declare
6829 D : Entity_Id := First_Discriminant (T);
6830 Prev : Entity_Id;
6832 begin
6833 while Present (D) loop
6834 Prev := Current_Entity (D);
6835 Set_Current_Entity (D);
6836 Set_Is_Immediately_Visible (D);
6837 Set_Homonym (D, Prev);
6839 -- Ada 2005 (AI-230): Access discriminant allowed in
6840 -- non-limited record types.
6842 if Ada_Version < Ada_05 then
6844 -- This restriction gets applied to the full type here; it
6845 -- has already been applied earlier to the partial view
6847 Check_Access_Discriminant_Requires_Limited (Parent (D), N);
6848 end if;
6850 Next_Discriminant (D);
6851 end loop;
6852 end;
6854 elsif Present (Discriminant_Specifications (N)) then
6855 Process_Discriminants (N, Prev);
6856 end if;
6857 end Check_Or_Process_Discriminants;
6859 ----------------------
6860 -- Check_Real_Bound --
6861 ----------------------
6863 procedure Check_Real_Bound (Bound : Node_Id) is
6864 begin
6865 if not Is_Real_Type (Etype (Bound)) then
6866 Error_Msg_N
6867 ("bound in real type definition must be of real type", Bound);
6869 elsif not Is_OK_Static_Expression (Bound) then
6870 Flag_Non_Static_Expr
6871 ("non-static expression used for real type bound!", Bound);
6873 else
6874 return;
6875 end if;
6877 Rewrite
6878 (Bound, Make_Real_Literal (Sloc (Bound), Ureal_0));
6879 Analyze (Bound);
6880 Resolve (Bound, Standard_Float);
6881 end Check_Real_Bound;
6883 ------------------------------
6884 -- Complete_Private_Subtype --
6885 ------------------------------
6887 procedure Complete_Private_Subtype
6888 (Priv : Entity_Id;
6889 Full : Entity_Id;
6890 Full_Base : Entity_Id;
6891 Related_Nod : Node_Id)
6893 Save_Next_Entity : Entity_Id;
6894 Save_Homonym : Entity_Id;
6896 begin
6897 -- Set semantic attributes for (implicit) private subtype completion.
6898 -- If the full type has no discriminants, then it is a copy of the full
6899 -- view of the base. Otherwise, it is a subtype of the base with a
6900 -- possible discriminant constraint. Save and restore the original
6901 -- Next_Entity field of full to ensure that the calls to Copy_Node
6902 -- do not corrupt the entity chain.
6904 -- Note that the type of the full view is the same entity as the
6905 -- type of the partial view. In this fashion, the subtype has
6906 -- access to the correct view of the parent.
6908 Save_Next_Entity := Next_Entity (Full);
6909 Save_Homonym := Homonym (Priv);
6911 case Ekind (Full_Base) is
6912 when E_Record_Type |
6913 E_Record_Subtype |
6914 Class_Wide_Kind |
6915 Private_Kind |
6916 Task_Kind |
6917 Protected_Kind =>
6918 Copy_Node (Priv, Full);
6920 Set_Has_Discriminants (Full, Has_Discriminants (Full_Base));
6921 Set_First_Entity (Full, First_Entity (Full_Base));
6922 Set_Last_Entity (Full, Last_Entity (Full_Base));
6924 when others =>
6925 Copy_Node (Full_Base, Full);
6926 Set_Chars (Full, Chars (Priv));
6927 Conditional_Delay (Full, Priv);
6928 Set_Sloc (Full, Sloc (Priv));
6929 end case;
6931 Set_Next_Entity (Full, Save_Next_Entity);
6932 Set_Homonym (Full, Save_Homonym);
6933 Set_Associated_Node_For_Itype (Full, Related_Nod);
6935 -- Set common attributes for all subtypes
6937 Set_Ekind (Full, Subtype_Kind (Ekind (Full_Base)));
6939 -- The Etype of the full view is inconsistent. Gigi needs to see the
6940 -- structural full view, which is what the current scheme gives:
6941 -- the Etype of the full view is the etype of the full base. However,
6942 -- if the full base is a derived type, the full view then looks like
6943 -- a subtype of the parent, not a subtype of the full base. If instead
6944 -- we write:
6946 -- Set_Etype (Full, Full_Base);
6948 -- then we get inconsistencies in the front-end (confusion between
6949 -- views). Several outstanding bugs are related to this ???
6951 Set_Is_First_Subtype (Full, False);
6952 Set_Scope (Full, Scope (Priv));
6953 Set_Size_Info (Full, Full_Base);
6954 Set_RM_Size (Full, RM_Size (Full_Base));
6955 Set_Is_Itype (Full);
6957 -- A subtype of a private-type-without-discriminants, whose full-view
6958 -- has discriminants with default expressions, is not constrained!
6960 if not Has_Discriminants (Priv) then
6961 Set_Is_Constrained (Full, Is_Constrained (Full_Base));
6963 if Has_Discriminants (Full_Base) then
6964 Set_Discriminant_Constraint
6965 (Full, Discriminant_Constraint (Full_Base));
6967 -- The partial view may have been indefinite, the full view
6968 -- might not be.
6970 Set_Has_Unknown_Discriminants
6971 (Full, Has_Unknown_Discriminants (Full_Base));
6972 end if;
6973 end if;
6975 Set_First_Rep_Item (Full, First_Rep_Item (Full_Base));
6976 Set_Depends_On_Private (Full, Has_Private_Component (Full));
6978 -- Freeze the private subtype entity if its parent is delayed, and not
6979 -- already frozen. We skip this processing if the type is an anonymous
6980 -- subtype of a record component, or is the corresponding record of a
6981 -- protected type, since ???
6983 if not Is_Type (Scope (Full)) then
6984 Set_Has_Delayed_Freeze (Full,
6985 Has_Delayed_Freeze (Full_Base)
6986 and then (not Is_Frozen (Full_Base)));
6987 end if;
6989 Set_Freeze_Node (Full, Empty);
6990 Set_Is_Frozen (Full, False);
6991 Set_Full_View (Priv, Full);
6993 if Has_Discriminants (Full) then
6994 Set_Stored_Constraint_From_Discriminant_Constraint (Full);
6995 Set_Stored_Constraint (Priv, Stored_Constraint (Full));
6997 if Has_Unknown_Discriminants (Full) then
6998 Set_Discriminant_Constraint (Full, No_Elist);
6999 end if;
7000 end if;
7002 if Ekind (Full_Base) = E_Record_Type
7003 and then Has_Discriminants (Full_Base)
7004 and then Has_Discriminants (Priv) -- might not, if errors
7005 and then not Has_Unknown_Discriminants (Priv)
7006 and then not Is_Empty_Elmt_List (Discriminant_Constraint (Priv))
7007 then
7008 Create_Constrained_Components
7009 (Full, Related_Nod, Full_Base, Discriminant_Constraint (Priv));
7011 -- If the full base is itself derived from private, build a congruent
7012 -- subtype of its underlying type, for use by the back end. For a
7013 -- constrained record component, the declaration cannot be placed on
7014 -- the component list, but it must neverthess be built an analyzed, to
7015 -- supply enough information for gigi to compute the size of component.
7017 elsif Ekind (Full_Base) in Private_Kind
7018 and then Is_Derived_Type (Full_Base)
7019 and then Has_Discriminants (Full_Base)
7020 and then (Ekind (Current_Scope) /= E_Record_Subtype)
7021 then
7022 if not Is_Itype (Priv)
7023 and then
7024 Nkind (Subtype_Indication (Parent (Priv))) = N_Subtype_Indication
7025 then
7026 Build_Underlying_Full_View
7027 (Parent (Priv), Full, Etype (Full_Base));
7029 elsif Nkind (Related_Nod) = N_Component_Declaration then
7030 Build_Underlying_Full_View (Related_Nod, Full, Etype (Full_Base));
7031 end if;
7033 elsif Is_Record_Type (Full_Base) then
7035 -- Show Full is simply a renaming of Full_Base
7037 Set_Cloned_Subtype (Full, Full_Base);
7038 end if;
7040 -- It is unsafe to share to bounds of a scalar type, because the Itype
7041 -- is elaborated on demand, and if a bound is non-static then different
7042 -- orders of elaboration in different units will lead to different
7043 -- external symbols.
7045 if Is_Scalar_Type (Full_Base) then
7046 Set_Scalar_Range (Full,
7047 Make_Range (Sloc (Related_Nod),
7048 Low_Bound =>
7049 Duplicate_Subexpr_No_Checks (Type_Low_Bound (Full_Base)),
7050 High_Bound =>
7051 Duplicate_Subexpr_No_Checks (Type_High_Bound (Full_Base))));
7053 -- This completion inherits the bounds of the full parent, but if
7054 -- the parent is an unconstrained floating point type, so is the
7055 -- completion.
7057 if Is_Floating_Point_Type (Full_Base) then
7058 Set_Includes_Infinities
7059 (Scalar_Range (Full), Has_Infinities (Full_Base));
7060 end if;
7061 end if;
7063 -- ??? It seems that a lot of fields are missing that should be copied
7064 -- from Full_Base to Full. Here are some that are introduced in a
7065 -- non-disruptive way but a cleanup is necessary.
7067 if Is_Tagged_Type (Full_Base) then
7068 Set_Is_Tagged_Type (Full);
7069 Set_Primitive_Operations (Full, Primitive_Operations (Full_Base));
7070 Set_Class_Wide_Type (Full, Class_Wide_Type (Full_Base));
7072 -- If this is a subtype of a protected or task type, constrain its
7073 -- corresponding record, unless this is a subtype without constraints,
7074 -- i.e. a simple renaming as with an actual subtype in an instance.
7076 elsif Is_Concurrent_Type (Full_Base) then
7077 if Has_Discriminants (Full)
7078 and then Present (Corresponding_Record_Type (Full_Base))
7079 and then
7080 not Is_Empty_Elmt_List (Discriminant_Constraint (Full))
7081 then
7082 Set_Corresponding_Record_Type (Full,
7083 Constrain_Corresponding_Record
7084 (Full, Corresponding_Record_Type (Full_Base),
7085 Related_Nod, Full_Base));
7087 else
7088 Set_Corresponding_Record_Type (Full,
7089 Corresponding_Record_Type (Full_Base));
7090 end if;
7091 end if;
7092 end Complete_Private_Subtype;
7094 ----------------------------
7095 -- Constant_Redeclaration --
7096 ----------------------------
7098 procedure Constant_Redeclaration
7099 (Id : Entity_Id;
7100 N : Node_Id;
7101 T : out Entity_Id)
7103 Prev : constant Entity_Id := Current_Entity_In_Scope (Id);
7104 Obj_Def : constant Node_Id := Object_Definition (N);
7105 New_T : Entity_Id;
7107 procedure Check_Recursive_Declaration (Typ : Entity_Id);
7108 -- If deferred constant is an access type initialized with an
7109 -- allocator, check whether there is an illegal recursion in the
7110 -- definition, through a default value of some record subcomponent.
7111 -- This is normally detected when generating init procs, but requires
7112 -- this additional mechanism when expansion is disabled.
7114 ---------------------------------
7115 -- Check_Recursive_Declaration --
7116 ---------------------------------
7118 procedure Check_Recursive_Declaration (Typ : Entity_Id) is
7119 Comp : Entity_Id;
7121 begin
7122 if Is_Record_Type (Typ) then
7123 Comp := First_Component (Typ);
7124 while Present (Comp) loop
7125 if Comes_From_Source (Comp) then
7126 if Present (Expression (Parent (Comp)))
7127 and then Is_Entity_Name (Expression (Parent (Comp)))
7128 and then Entity (Expression (Parent (Comp))) = Prev
7129 then
7130 Error_Msg_Sloc := Sloc (Parent (Comp));
7131 Error_Msg_NE
7132 ("illegal circularity with declaration for&#",
7133 N, Comp);
7134 return;
7136 elsif Is_Record_Type (Etype (Comp)) then
7137 Check_Recursive_Declaration (Etype (Comp));
7138 end if;
7139 end if;
7141 Next_Component (Comp);
7142 end loop;
7143 end if;
7144 end Check_Recursive_Declaration;
7146 -- Start of processing for Constant_Redeclaration
7148 begin
7149 if Nkind (Parent (Prev)) = N_Object_Declaration then
7150 if Nkind (Object_Definition
7151 (Parent (Prev))) = N_Subtype_Indication
7152 then
7153 -- Find type of new declaration. The constraints of the two
7154 -- views must match statically, but there is no point in
7155 -- creating an itype for the full view.
7157 if Nkind (Obj_Def) = N_Subtype_Indication then
7158 Find_Type (Subtype_Mark (Obj_Def));
7159 New_T := Entity (Subtype_Mark (Obj_Def));
7161 else
7162 Find_Type (Obj_Def);
7163 New_T := Entity (Obj_Def);
7164 end if;
7166 T := Etype (Prev);
7168 else
7169 -- The full view may impose a constraint, even if the partial
7170 -- view does not, so construct the subtype.
7172 New_T := Find_Type_Of_Object (Obj_Def, N);
7173 T := New_T;
7174 end if;
7176 else
7177 -- Current declaration is illegal, diagnosed below in Enter_Name
7179 T := Empty;
7180 New_T := Any_Type;
7181 end if;
7183 -- If previous full declaration exists, or if a homograph is present,
7184 -- let Enter_Name handle it, either with an error, or with the removal
7185 -- of an overridden implicit subprogram.
7187 if Ekind (Prev) /= E_Constant
7188 or else Present (Expression (Parent (Prev)))
7189 or else Present (Full_View (Prev))
7190 then
7191 Enter_Name (Id);
7193 -- Verify that types of both declarations match
7195 elsif Base_Type (Etype (Prev)) /= Base_Type (New_T) then
7196 Error_Msg_Sloc := Sloc (Prev);
7197 Error_Msg_N ("type does not match declaration#", N);
7198 Set_Full_View (Prev, Id);
7199 Set_Etype (Id, Any_Type);
7201 -- If so, process the full constant declaration
7203 else
7204 Set_Full_View (Prev, Id);
7205 Set_Is_Public (Id, Is_Public (Prev));
7206 Set_Is_Internal (Id);
7207 Append_Entity (Id, Current_Scope);
7209 -- Check ALIASED present if present before (RM 7.4(7))
7211 if Is_Aliased (Prev)
7212 and then not Aliased_Present (N)
7213 then
7214 Error_Msg_Sloc := Sloc (Prev);
7215 Error_Msg_N ("ALIASED required (see declaration#)", N);
7216 end if;
7218 -- Check that placement is in private part and that the incomplete
7219 -- declaration appeared in the visible part.
7221 if Ekind (Current_Scope) = E_Package
7222 and then not In_Private_Part (Current_Scope)
7223 then
7224 Error_Msg_Sloc := Sloc (Prev);
7225 Error_Msg_N ("full constant for declaration#"
7226 & " must be in private part", N);
7228 elsif Ekind (Current_Scope) = E_Package
7229 and then List_Containing (Parent (Prev))
7230 /= Visible_Declarations
7231 (Specification (Unit_Declaration_Node (Current_Scope)))
7232 then
7233 Error_Msg_N
7234 ("deferred constant must be declared in visible part",
7235 Parent (Prev));
7236 end if;
7238 if Is_Access_Type (T)
7239 and then Nkind (Expression (N)) = N_Allocator
7240 then
7241 Check_Recursive_Declaration (Designated_Type (T));
7242 end if;
7243 end if;
7244 end Constant_Redeclaration;
7246 ----------------------
7247 -- Constrain_Access --
7248 ----------------------
7250 procedure Constrain_Access
7251 (Def_Id : in out Entity_Id;
7252 S : Node_Id;
7253 Related_Nod : Node_Id)
7255 T : constant Entity_Id := Entity (Subtype_Mark (S));
7256 Desig_Type : constant Entity_Id := Designated_Type (T);
7257 Desig_Subtype : Entity_Id := Create_Itype (E_Void, Related_Nod);
7258 Constraint_OK : Boolean := True;
7260 begin
7261 if Is_Array_Type (Desig_Type) then
7262 Constrain_Array (Desig_Subtype, S, Related_Nod, Def_Id, 'P');
7264 elsif (Is_Record_Type (Desig_Type)
7265 or else Is_Incomplete_Or_Private_Type (Desig_Type))
7266 and then not Is_Constrained (Desig_Type)
7267 then
7268 -- ??? The following code is a temporary kludge to ignore a
7269 -- discriminant constraint on access type if it is constraining
7270 -- the current record. Avoid creating the implicit subtype of the
7271 -- record we are currently compiling since right now, we cannot
7272 -- handle these. For now, just return the access type itself.
7274 if Desig_Type = Current_Scope
7275 and then No (Def_Id)
7276 then
7277 Set_Ekind (Desig_Subtype, E_Record_Subtype);
7278 Def_Id := Entity (Subtype_Mark (S));
7280 -- This call added to ensure that the constraint is analyzed
7281 -- (needed for a B test). Note that we still return early from
7282 -- this procedure to avoid recursive processing. ???
7284 Constrain_Discriminated_Type
7285 (Desig_Subtype, S, Related_Nod, For_Access => True);
7286 return;
7287 end if;
7289 if Ekind (T) = E_General_Access_Type
7290 and then Has_Private_Declaration (Desig_Type)
7291 and then In_Open_Scopes (Scope (Desig_Type))
7292 then
7293 -- Enforce rule that the constraint is illegal if there is
7294 -- an unconstrained view of the designated type. This means
7295 -- that the partial view (either a private type declaration or
7296 -- a derivation from a private type) has no discriminants.
7297 -- (Defect Report 8652/0008, Technical Corrigendum 1, checked
7298 -- by ACATS B371001).
7300 declare
7301 Pack : constant Node_Id :=
7302 Unit_Declaration_Node (Scope (Desig_Type));
7303 Decls : List_Id;
7304 Decl : Node_Id;
7306 begin
7307 if Nkind (Pack) = N_Package_Declaration then
7308 Decls := Visible_Declarations (Specification (Pack));
7309 Decl := First (Decls);
7310 while Present (Decl) loop
7311 if (Nkind (Decl) = N_Private_Type_Declaration
7312 and then
7313 Chars (Defining_Identifier (Decl)) =
7314 Chars (Desig_Type))
7316 or else
7317 (Nkind (Decl) = N_Full_Type_Declaration
7318 and then
7319 Chars (Defining_Identifier (Decl)) =
7320 Chars (Desig_Type)
7321 and then Is_Derived_Type (Desig_Type)
7322 and then
7323 Has_Private_Declaration (Etype (Desig_Type)))
7324 then
7325 if No (Discriminant_Specifications (Decl)) then
7326 Error_Msg_N
7327 ("cannot constrain general access type " &
7328 "if designated type has unconstrained view", S);
7329 end if;
7331 exit;
7332 end if;
7334 Next (Decl);
7335 end loop;
7336 end if;
7337 end;
7338 end if;
7340 Constrain_Discriminated_Type (Desig_Subtype, S, Related_Nod,
7341 For_Access => True);
7343 elsif (Is_Task_Type (Desig_Type)
7344 or else Is_Protected_Type (Desig_Type))
7345 and then not Is_Constrained (Desig_Type)
7346 then
7347 Constrain_Concurrent
7348 (Desig_Subtype, S, Related_Nod, Desig_Type, ' ');
7350 else
7351 Error_Msg_N ("invalid constraint on access type", S);
7352 Desig_Subtype := Desig_Type; -- Ignore invalid constraint.
7353 Constraint_OK := False;
7354 end if;
7356 if No (Def_Id) then
7357 Def_Id := Create_Itype (E_Access_Subtype, Related_Nod);
7358 else
7359 Set_Ekind (Def_Id, E_Access_Subtype);
7360 end if;
7362 if Constraint_OK then
7363 Set_Etype (Def_Id, Base_Type (T));
7365 if Is_Private_Type (Desig_Type) then
7366 Prepare_Private_Subtype_Completion (Desig_Subtype, Related_Nod);
7367 end if;
7368 else
7369 Set_Etype (Def_Id, Any_Type);
7370 end if;
7372 Set_Size_Info (Def_Id, T);
7373 Set_Is_Constrained (Def_Id, Constraint_OK);
7374 Set_Directly_Designated_Type (Def_Id, Desig_Subtype);
7375 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
7376 Set_Is_Access_Constant (Def_Id, Is_Access_Constant (T));
7378 Conditional_Delay (Def_Id, T);
7379 end Constrain_Access;
7381 ---------------------
7382 -- Constrain_Array --
7383 ---------------------
7385 procedure Constrain_Array
7386 (Def_Id : in out Entity_Id;
7387 SI : Node_Id;
7388 Related_Nod : Node_Id;
7389 Related_Id : Entity_Id;
7390 Suffix : Character)
7392 C : constant Node_Id := Constraint (SI);
7393 Number_Of_Constraints : Nat := 0;
7394 Index : Node_Id;
7395 S, T : Entity_Id;
7396 Constraint_OK : Boolean := True;
7398 begin
7399 T := Entity (Subtype_Mark (SI));
7401 if Ekind (T) in Access_Kind then
7402 T := Designated_Type (T);
7403 end if;
7405 -- If an index constraint follows a subtype mark in a subtype indication
7406 -- then the type or subtype denoted by the subtype mark must not already
7407 -- impose an index constraint. The subtype mark must denote either an
7408 -- unconstrained array type or an access type whose designated type
7409 -- is such an array type... (RM 3.6.1)
7411 if Is_Constrained (T) then
7412 Error_Msg_N
7413 ("array type is already constrained", Subtype_Mark (SI));
7414 Constraint_OK := False;
7416 else
7417 S := First (Constraints (C));
7419 while Present (S) loop
7420 Number_Of_Constraints := Number_Of_Constraints + 1;
7421 Next (S);
7422 end loop;
7424 -- In either case, the index constraint must provide a discrete
7425 -- range for each index of the array type and the type of each
7426 -- discrete range must be the same as that of the corresponding
7427 -- index. (RM 3.6.1)
7429 if Number_Of_Constraints /= Number_Dimensions (T) then
7430 Error_Msg_NE ("incorrect number of index constraints for }", C, T);
7431 Constraint_OK := False;
7433 else
7434 S := First (Constraints (C));
7435 Index := First_Index (T);
7436 Analyze (Index);
7438 -- Apply constraints to each index type
7440 for J in 1 .. Number_Of_Constraints loop
7441 Constrain_Index (Index, S, Related_Nod, Related_Id, Suffix, J);
7442 Next (Index);
7443 Next (S);
7444 end loop;
7446 end if;
7447 end if;
7449 if No (Def_Id) then
7450 Def_Id :=
7451 Create_Itype (E_Array_Subtype, Related_Nod, Related_Id, Suffix);
7452 Set_Parent (Def_Id, Related_Nod);
7454 else
7455 Set_Ekind (Def_Id, E_Array_Subtype);
7456 end if;
7458 Set_Size_Info (Def_Id, (T));
7459 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
7460 Set_Etype (Def_Id, Base_Type (T));
7462 if Constraint_OK then
7463 Set_First_Index (Def_Id, First (Constraints (C)));
7464 end if;
7466 Set_Is_Constrained (Def_Id, True);
7467 Set_Is_Aliased (Def_Id, Is_Aliased (T));
7468 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
7470 Set_Is_Private_Composite (Def_Id, Is_Private_Composite (T));
7471 Set_Is_Limited_Composite (Def_Id, Is_Limited_Composite (T));
7473 -- Build a freeze node if parent still needs one. Also, make sure
7474 -- that the Depends_On_Private status is set (explanation ???)
7475 -- and also that a conditional delay is set.
7477 Set_Depends_On_Private (Def_Id, Depends_On_Private (T));
7478 Conditional_Delay (Def_Id, T);
7480 end Constrain_Array;
7482 ------------------------------
7483 -- Constrain_Component_Type --
7484 ------------------------------
7486 function Constrain_Component_Type
7487 (Comp : Entity_Id;
7488 Constrained_Typ : Entity_Id;
7489 Related_Node : Node_Id;
7490 Typ : Entity_Id;
7491 Constraints : Elist_Id) return Entity_Id
7493 Loc : constant Source_Ptr := Sloc (Constrained_Typ);
7494 Compon_Type : constant Entity_Id := Etype (Comp);
7496 function Build_Constrained_Array_Type
7497 (Old_Type : Entity_Id) return Entity_Id;
7498 -- If Old_Type is an array type, one of whose indices is constrained
7499 -- by a discriminant, build an Itype whose constraint replaces the
7500 -- discriminant with its value in the constraint.
7502 function Build_Constrained_Discriminated_Type
7503 (Old_Type : Entity_Id) return Entity_Id;
7504 -- Ditto for record components
7506 function Build_Constrained_Access_Type
7507 (Old_Type : Entity_Id) return Entity_Id;
7508 -- Ditto for access types. Makes use of previous two functions, to
7509 -- constrain designated type.
7511 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id;
7512 -- T is an array or discriminated type, C is a list of constraints
7513 -- that apply to T. This routine builds the constrained subtype.
7515 function Is_Discriminant (Expr : Node_Id) return Boolean;
7516 -- Returns True if Expr is a discriminant
7518 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id;
7519 -- Find the value of discriminant Discrim in Constraint
7521 -----------------------------------
7522 -- Build_Constrained_Access_Type --
7523 -----------------------------------
7525 function Build_Constrained_Access_Type
7526 (Old_Type : Entity_Id) return Entity_Id
7528 Desig_Type : constant Entity_Id := Designated_Type (Old_Type);
7529 Itype : Entity_Id;
7530 Desig_Subtype : Entity_Id;
7531 Scop : Entity_Id;
7533 begin
7534 -- if the original access type was not embedded in the enclosing
7535 -- type definition, there is no need to produce a new access
7536 -- subtype. In fact every access type with an explicit constraint
7537 -- generates an itype whose scope is the enclosing record.
7539 if not Is_Type (Scope (Old_Type)) then
7540 return Old_Type;
7542 elsif Is_Array_Type (Desig_Type) then
7543 Desig_Subtype := Build_Constrained_Array_Type (Desig_Type);
7545 elsif Has_Discriminants (Desig_Type) then
7547 -- This may be an access type to an enclosing record type for
7548 -- which we are constructing the constrained components. Return
7549 -- the enclosing record subtype. This is not always correct,
7550 -- but avoids infinite recursion. ???
7552 Desig_Subtype := Any_Type;
7554 for J in reverse 0 .. Scope_Stack.Last loop
7555 Scop := Scope_Stack.Table (J).Entity;
7557 if Is_Type (Scop)
7558 and then Base_Type (Scop) = Base_Type (Desig_Type)
7559 then
7560 Desig_Subtype := Scop;
7561 end if;
7563 exit when not Is_Type (Scop);
7564 end loop;
7566 if Desig_Subtype = Any_Type then
7567 Desig_Subtype :=
7568 Build_Constrained_Discriminated_Type (Desig_Type);
7569 end if;
7571 else
7572 return Old_Type;
7573 end if;
7575 if Desig_Subtype /= Desig_Type then
7577 -- The Related_Node better be here or else we won't be able
7578 -- to attach new itypes to a node in the tree.
7580 pragma Assert (Present (Related_Node));
7582 Itype := Create_Itype (E_Access_Subtype, Related_Node);
7584 Set_Etype (Itype, Base_Type (Old_Type));
7585 Set_Size_Info (Itype, (Old_Type));
7586 Set_Directly_Designated_Type (Itype, Desig_Subtype);
7587 Set_Depends_On_Private (Itype, Has_Private_Component
7588 (Old_Type));
7589 Set_Is_Access_Constant (Itype, Is_Access_Constant
7590 (Old_Type));
7592 -- The new itype needs freezing when it depends on a not frozen
7593 -- type and the enclosing subtype needs freezing.
7595 if Has_Delayed_Freeze (Constrained_Typ)
7596 and then not Is_Frozen (Constrained_Typ)
7597 then
7598 Conditional_Delay (Itype, Base_Type (Old_Type));
7599 end if;
7601 return Itype;
7603 else
7604 return Old_Type;
7605 end if;
7606 end Build_Constrained_Access_Type;
7608 ----------------------------------
7609 -- Build_Constrained_Array_Type --
7610 ----------------------------------
7612 function Build_Constrained_Array_Type
7613 (Old_Type : Entity_Id) return Entity_Id
7615 Lo_Expr : Node_Id;
7616 Hi_Expr : Node_Id;
7617 Old_Index : Node_Id;
7618 Range_Node : Node_Id;
7619 Constr_List : List_Id;
7621 Need_To_Create_Itype : Boolean := False;
7623 begin
7624 Old_Index := First_Index (Old_Type);
7625 while Present (Old_Index) loop
7626 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
7628 if Is_Discriminant (Lo_Expr)
7629 or else Is_Discriminant (Hi_Expr)
7630 then
7631 Need_To_Create_Itype := True;
7632 end if;
7634 Next_Index (Old_Index);
7635 end loop;
7637 if Need_To_Create_Itype then
7638 Constr_List := New_List;
7640 Old_Index := First_Index (Old_Type);
7641 while Present (Old_Index) loop
7642 Get_Index_Bounds (Old_Index, Lo_Expr, Hi_Expr);
7644 if Is_Discriminant (Lo_Expr) then
7645 Lo_Expr := Get_Discr_Value (Lo_Expr);
7646 end if;
7648 if Is_Discriminant (Hi_Expr) then
7649 Hi_Expr := Get_Discr_Value (Hi_Expr);
7650 end if;
7652 Range_Node :=
7653 Make_Range
7654 (Loc, New_Copy_Tree (Lo_Expr), New_Copy_Tree (Hi_Expr));
7656 Append (Range_Node, To => Constr_List);
7658 Next_Index (Old_Index);
7659 end loop;
7661 return Build_Subtype (Old_Type, Constr_List);
7663 else
7664 return Old_Type;
7665 end if;
7666 end Build_Constrained_Array_Type;
7668 ------------------------------------------
7669 -- Build_Constrained_Discriminated_Type --
7670 ------------------------------------------
7672 function Build_Constrained_Discriminated_Type
7673 (Old_Type : Entity_Id) return Entity_Id
7675 Expr : Node_Id;
7676 Constr_List : List_Id;
7677 Old_Constraint : Elmt_Id;
7679 Need_To_Create_Itype : Boolean := False;
7681 begin
7682 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
7683 while Present (Old_Constraint) loop
7684 Expr := Node (Old_Constraint);
7686 if Is_Discriminant (Expr) then
7687 Need_To_Create_Itype := True;
7688 end if;
7690 Next_Elmt (Old_Constraint);
7691 end loop;
7693 if Need_To_Create_Itype then
7694 Constr_List := New_List;
7696 Old_Constraint := First_Elmt (Discriminant_Constraint (Old_Type));
7697 while Present (Old_Constraint) loop
7698 Expr := Node (Old_Constraint);
7700 if Is_Discriminant (Expr) then
7701 Expr := Get_Discr_Value (Expr);
7702 end if;
7704 Append (New_Copy_Tree (Expr), To => Constr_List);
7706 Next_Elmt (Old_Constraint);
7707 end loop;
7709 return Build_Subtype (Old_Type, Constr_List);
7711 else
7712 return Old_Type;
7713 end if;
7714 end Build_Constrained_Discriminated_Type;
7716 -------------------
7717 -- Build_Subtype --
7718 -------------------
7720 function Build_Subtype (T : Entity_Id; C : List_Id) return Entity_Id is
7721 Indic : Node_Id;
7722 Subtyp_Decl : Node_Id;
7723 Def_Id : Entity_Id;
7724 Btyp : Entity_Id := Base_Type (T);
7726 begin
7727 -- The Related_Node better be here or else we won't be able to
7728 -- attach new itypes to a node in the tree.
7730 pragma Assert (Present (Related_Node));
7732 -- If the view of the component's type is incomplete or private
7733 -- with unknown discriminants, then the constraint must be applied
7734 -- to the full type.
7736 if Has_Unknown_Discriminants (Btyp)
7737 and then Present (Underlying_Type (Btyp))
7738 then
7739 Btyp := Underlying_Type (Btyp);
7740 end if;
7742 Indic :=
7743 Make_Subtype_Indication (Loc,
7744 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
7745 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
7747 Def_Id := Create_Itype (Ekind (T), Related_Node);
7749 Subtyp_Decl :=
7750 Make_Subtype_Declaration (Loc,
7751 Defining_Identifier => Def_Id,
7752 Subtype_Indication => Indic);
7754 Set_Parent (Subtyp_Decl, Parent (Related_Node));
7756 -- Itypes must be analyzed with checks off (see package Itypes)
7758 Analyze (Subtyp_Decl, Suppress => All_Checks);
7760 return Def_Id;
7761 end Build_Subtype;
7763 ---------------------
7764 -- Get_Discr_Value --
7765 ---------------------
7767 function Get_Discr_Value (Discrim : Entity_Id) return Node_Id is
7768 D : Entity_Id := First_Discriminant (Typ);
7769 E : Elmt_Id := First_Elmt (Constraints);
7770 G : Elmt_Id;
7772 begin
7773 -- The discriminant may be declared for the type, in which case we
7774 -- find it by iterating over the list of discriminants. If the
7775 -- discriminant is inherited from a parent type, it appears as the
7776 -- corresponding discriminant of the current type. This will be the
7777 -- case when constraining an inherited component whose constraint is
7778 -- given by a discriminant of the parent.
7780 while Present (D) loop
7781 if D = Entity (Discrim)
7782 or else Corresponding_Discriminant (D) = Entity (Discrim)
7783 then
7784 return Node (E);
7785 end if;
7787 Next_Discriminant (D);
7788 Next_Elmt (E);
7789 end loop;
7791 -- The corresponding_Discriminant mechanism is incomplete, because
7792 -- the correspondence between new and old discriminants is not one
7793 -- to one: one new discriminant can constrain several old ones. In
7794 -- that case, scan sequentially the stored_constraint, the list of
7795 -- discriminants of the parents, and the constraints.
7797 if Is_Derived_Type (Typ)
7798 and then Present (Stored_Constraint (Typ))
7799 and then Scope (Entity (Discrim)) = Etype (Typ)
7800 then
7801 D := First_Discriminant (Etype (Typ));
7802 E := First_Elmt (Constraints);
7803 G := First_Elmt (Stored_Constraint (Typ));
7805 while Present (D) loop
7806 if D = Entity (Discrim) then
7807 return Node (E);
7808 end if;
7810 Next_Discriminant (D);
7811 Next_Elmt (E);
7812 Next_Elmt (G);
7813 end loop;
7814 end if;
7816 -- Something is wrong if we did not find the value
7818 raise Program_Error;
7819 end Get_Discr_Value;
7821 ---------------------
7822 -- Is_Discriminant --
7823 ---------------------
7825 function Is_Discriminant (Expr : Node_Id) return Boolean is
7826 Discrim_Scope : Entity_Id;
7828 begin
7829 if Denotes_Discriminant (Expr) then
7830 Discrim_Scope := Scope (Entity (Expr));
7832 -- Either we have a reference to one of Typ's discriminants,
7834 pragma Assert (Discrim_Scope = Typ
7836 -- or to the discriminants of the parent type, in the case
7837 -- of a derivation of a tagged type with variants.
7839 or else Discrim_Scope = Etype (Typ)
7840 or else Full_View (Discrim_Scope) = Etype (Typ)
7842 -- or same as above for the case where the discriminants
7843 -- were declared in Typ's private view.
7845 or else (Is_Private_Type (Discrim_Scope)
7846 and then Chars (Discrim_Scope) = Chars (Typ))
7848 -- or else we are deriving from the full view and the
7849 -- discriminant is declared in the private entity.
7851 or else (Is_Private_Type (Typ)
7852 and then Chars (Discrim_Scope) = Chars (Typ))
7854 -- or we have a class-wide type, in which case make sure the
7855 -- discriminant found belongs to the root type.
7857 or else (Is_Class_Wide_Type (Typ)
7858 and then Etype (Typ) = Discrim_Scope));
7860 return True;
7861 end if;
7863 -- In all other cases we have something wrong
7865 return False;
7866 end Is_Discriminant;
7868 -- Start of processing for Constrain_Component_Type
7870 begin
7871 if Nkind (Parent (Comp)) = N_Component_Declaration
7872 and then Comes_From_Source (Parent (Comp))
7873 and then Comes_From_Source
7874 (Subtype_Indication (Component_Definition (Parent (Comp))))
7875 and then
7876 Is_Entity_Name
7877 (Subtype_Indication (Component_Definition (Parent (Comp))))
7878 then
7879 return Compon_Type;
7881 elsif Is_Array_Type (Compon_Type) then
7882 return Build_Constrained_Array_Type (Compon_Type);
7884 elsif Has_Discriminants (Compon_Type) then
7885 return Build_Constrained_Discriminated_Type (Compon_Type);
7887 elsif Is_Access_Type (Compon_Type) then
7888 return Build_Constrained_Access_Type (Compon_Type);
7890 else
7891 return Compon_Type;
7892 end if;
7893 end Constrain_Component_Type;
7895 --------------------------
7896 -- Constrain_Concurrent --
7897 --------------------------
7899 -- For concurrent types, the associated record value type carries the same
7900 -- discriminants, so when we constrain a concurrent type, we must constrain
7901 -- the value type as well.
7903 procedure Constrain_Concurrent
7904 (Def_Id : in out Entity_Id;
7905 SI : Node_Id;
7906 Related_Nod : Node_Id;
7907 Related_Id : Entity_Id;
7908 Suffix : Character)
7910 T_Ent : Entity_Id := Entity (Subtype_Mark (SI));
7911 T_Val : Entity_Id;
7913 begin
7914 if Ekind (T_Ent) in Access_Kind then
7915 T_Ent := Designated_Type (T_Ent);
7916 end if;
7918 T_Val := Corresponding_Record_Type (T_Ent);
7920 if Present (T_Val) then
7922 if No (Def_Id) then
7923 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
7924 end if;
7926 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
7928 Set_Depends_On_Private (Def_Id, Has_Private_Component (Def_Id));
7929 Set_Corresponding_Record_Type (Def_Id,
7930 Constrain_Corresponding_Record
7931 (Def_Id, T_Val, Related_Nod, Related_Id));
7933 else
7934 -- If there is no associated record, expansion is disabled and this
7935 -- is a generic context. Create a subtype in any case, so that
7936 -- semantic analysis can proceed.
7938 if No (Def_Id) then
7939 Def_Id := Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
7940 end if;
7942 Constrain_Discriminated_Type (Def_Id, SI, Related_Nod);
7943 end if;
7944 end Constrain_Concurrent;
7946 ------------------------------------
7947 -- Constrain_Corresponding_Record --
7948 ------------------------------------
7950 function Constrain_Corresponding_Record
7951 (Prot_Subt : Entity_Id;
7952 Corr_Rec : Entity_Id;
7953 Related_Nod : Node_Id;
7954 Related_Id : Entity_Id) return Entity_Id
7956 T_Sub : constant Entity_Id :=
7957 Create_Itype (E_Record_Subtype, Related_Nod, Related_Id, 'V');
7959 begin
7960 Set_Etype (T_Sub, Corr_Rec);
7961 Init_Size_Align (T_Sub);
7962 Set_Has_Discriminants (T_Sub, Has_Discriminants (Prot_Subt));
7963 Set_Is_Constrained (T_Sub, True);
7964 Set_First_Entity (T_Sub, First_Entity (Corr_Rec));
7965 Set_Last_Entity (T_Sub, Last_Entity (Corr_Rec));
7967 Conditional_Delay (T_Sub, Corr_Rec);
7969 if Has_Discriminants (Prot_Subt) then -- False only if errors.
7970 Set_Discriminant_Constraint
7971 (T_Sub, Discriminant_Constraint (Prot_Subt));
7972 Set_Stored_Constraint_From_Discriminant_Constraint (T_Sub);
7973 Create_Constrained_Components
7974 (T_Sub, Related_Nod, Corr_Rec, Discriminant_Constraint (T_Sub));
7975 end if;
7977 Set_Depends_On_Private (T_Sub, Has_Private_Component (T_Sub));
7979 return T_Sub;
7980 end Constrain_Corresponding_Record;
7982 -----------------------
7983 -- Constrain_Decimal --
7984 -----------------------
7986 procedure Constrain_Decimal (Def_Id : Node_Id; S : Node_Id) is
7987 T : constant Entity_Id := Entity (Subtype_Mark (S));
7988 C : constant Node_Id := Constraint (S);
7989 Loc : constant Source_Ptr := Sloc (C);
7990 Range_Expr : Node_Id;
7991 Digits_Expr : Node_Id;
7992 Digits_Val : Uint;
7993 Bound_Val : Ureal;
7995 begin
7996 Set_Ekind (Def_Id, E_Decimal_Fixed_Point_Subtype);
7998 if Nkind (C) = N_Range_Constraint then
7999 Range_Expr := Range_Expression (C);
8000 Digits_Val := Digits_Value (T);
8002 else
8003 pragma Assert (Nkind (C) = N_Digits_Constraint);
8004 Digits_Expr := Digits_Expression (C);
8005 Analyze_And_Resolve (Digits_Expr, Any_Integer);
8007 Check_Digits_Expression (Digits_Expr);
8008 Digits_Val := Expr_Value (Digits_Expr);
8010 if Digits_Val > Digits_Value (T) then
8011 Error_Msg_N
8012 ("digits expression is incompatible with subtype", C);
8013 Digits_Val := Digits_Value (T);
8014 end if;
8016 if Present (Range_Constraint (C)) then
8017 Range_Expr := Range_Expression (Range_Constraint (C));
8018 else
8019 Range_Expr := Empty;
8020 end if;
8021 end if;
8023 Set_Etype (Def_Id, Base_Type (T));
8024 Set_Size_Info (Def_Id, (T));
8025 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8026 Set_Delta_Value (Def_Id, Delta_Value (T));
8027 Set_Scale_Value (Def_Id, Scale_Value (T));
8028 Set_Small_Value (Def_Id, Small_Value (T));
8029 Set_Machine_Radix_10 (Def_Id, Machine_Radix_10 (T));
8030 Set_Digits_Value (Def_Id, Digits_Val);
8032 -- Manufacture range from given digits value if no range present
8034 if No (Range_Expr) then
8035 Bound_Val := (Ureal_10 ** Digits_Val - Ureal_1) * Small_Value (T);
8036 Range_Expr :=
8037 Make_Range (Loc,
8038 Low_Bound =>
8039 Convert_To (T, Make_Real_Literal (Loc, (-Bound_Val))),
8040 High_Bound =>
8041 Convert_To (T, Make_Real_Literal (Loc, Bound_Val)));
8042 end if;
8044 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expr, T);
8045 Set_Discrete_RM_Size (Def_Id);
8047 -- Unconditionally delay the freeze, since we cannot set size
8048 -- information in all cases correctly until the freeze point.
8050 Set_Has_Delayed_Freeze (Def_Id);
8051 end Constrain_Decimal;
8053 ----------------------------------
8054 -- Constrain_Discriminated_Type --
8055 ----------------------------------
8057 procedure Constrain_Discriminated_Type
8058 (Def_Id : Entity_Id;
8059 S : Node_Id;
8060 Related_Nod : Node_Id;
8061 For_Access : Boolean := False)
8063 E : constant Entity_Id := Entity (Subtype_Mark (S));
8064 T : Entity_Id;
8065 C : Node_Id;
8066 Elist : Elist_Id := New_Elmt_List;
8068 procedure Fixup_Bad_Constraint;
8069 -- This is called after finding a bad constraint, and after having
8070 -- posted an appropriate error message. The mission is to leave the
8071 -- entity T in as reasonable state as possible!
8073 --------------------------
8074 -- Fixup_Bad_Constraint --
8075 --------------------------
8077 procedure Fixup_Bad_Constraint is
8078 begin
8079 -- Set a reasonable Ekind for the entity. For an incomplete type,
8080 -- we can't do much, but for other types, we can set the proper
8081 -- corresponding subtype kind.
8083 if Ekind (T) = E_Incomplete_Type then
8084 Set_Ekind (Def_Id, Ekind (T));
8085 else
8086 Set_Ekind (Def_Id, Subtype_Kind (Ekind (T)));
8087 end if;
8089 Set_Etype (Def_Id, Any_Type);
8090 Set_Error_Posted (Def_Id);
8091 end Fixup_Bad_Constraint;
8093 -- Start of processing for Constrain_Discriminated_Type
8095 begin
8096 C := Constraint (S);
8098 -- A discriminant constraint is only allowed in a subtype indication,
8099 -- after a subtype mark. This subtype mark must denote either a type
8100 -- with discriminants, or an access type whose designated type is a
8101 -- type with discriminants. A discriminant constraint specifies the
8102 -- values of these discriminants (RM 3.7.2(5)).
8104 T := Base_Type (Entity (Subtype_Mark (S)));
8106 if Ekind (T) in Access_Kind then
8107 T := Designated_Type (T);
8108 end if;
8110 -- Check that the type has visible discriminants. The type may be
8111 -- a private type with unknown discriminants whose full view has
8112 -- discriminants which are invisible.
8114 if not Has_Discriminants (T)
8115 or else
8116 (Has_Unknown_Discriminants (T)
8117 and then Is_Private_Type (T))
8118 then
8119 Error_Msg_N ("invalid constraint: type has no discriminant", C);
8120 Fixup_Bad_Constraint;
8121 return;
8123 elsif Is_Constrained (E)
8124 or else (Ekind (E) = E_Class_Wide_Subtype
8125 and then Present (Discriminant_Constraint (E)))
8126 then
8127 Error_Msg_N ("type is already constrained", Subtype_Mark (S));
8128 Fixup_Bad_Constraint;
8129 return;
8130 end if;
8132 -- T may be an unconstrained subtype (e.g. a generic actual).
8133 -- Constraint applies to the base type.
8135 T := Base_Type (T);
8137 Elist := Build_Discriminant_Constraints (T, S);
8139 -- If the list returned was empty we had an error in building the
8140 -- discriminant constraint. We have also already signalled an error
8141 -- in the incomplete type case
8143 if Is_Empty_Elmt_List (Elist) then
8144 Fixup_Bad_Constraint;
8145 return;
8146 end if;
8148 Build_Discriminated_Subtype (T, Def_Id, Elist, Related_Nod, For_Access);
8149 end Constrain_Discriminated_Type;
8151 ---------------------------
8152 -- Constrain_Enumeration --
8153 ---------------------------
8155 procedure Constrain_Enumeration (Def_Id : Node_Id; S : Node_Id) is
8156 T : constant Entity_Id := Entity (Subtype_Mark (S));
8157 C : constant Node_Id := Constraint (S);
8159 begin
8160 Set_Ekind (Def_Id, E_Enumeration_Subtype);
8162 Set_First_Literal (Def_Id, First_Literal (Base_Type (T)));
8164 Set_Etype (Def_Id, Base_Type (T));
8165 Set_Size_Info (Def_Id, (T));
8166 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8167 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
8169 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
8171 Set_Discrete_RM_Size (Def_Id);
8172 end Constrain_Enumeration;
8174 ----------------------
8175 -- Constrain_Float --
8176 ----------------------
8178 procedure Constrain_Float (Def_Id : Node_Id; S : Node_Id) is
8179 T : constant Entity_Id := Entity (Subtype_Mark (S));
8180 C : Node_Id;
8181 D : Node_Id;
8182 Rais : Node_Id;
8184 begin
8185 Set_Ekind (Def_Id, E_Floating_Point_Subtype);
8187 Set_Etype (Def_Id, Base_Type (T));
8188 Set_Size_Info (Def_Id, (T));
8189 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8191 -- Process the constraint
8193 C := Constraint (S);
8195 -- Digits constraint present
8197 if Nkind (C) = N_Digits_Constraint then
8198 Check_Restriction (No_Obsolescent_Features, C);
8200 if Warn_On_Obsolescent_Feature then
8201 Error_Msg_N
8202 ("subtype digits constraint is an " &
8203 "obsolescent feature ('R'M 'J.3(8))?", C);
8204 end if;
8206 D := Digits_Expression (C);
8207 Analyze_And_Resolve (D, Any_Integer);
8208 Check_Digits_Expression (D);
8209 Set_Digits_Value (Def_Id, Expr_Value (D));
8211 -- Check that digits value is in range. Obviously we can do this
8212 -- at compile time, but it is strictly a runtime check, and of
8213 -- course there is an ACVC test that checks this!
8215 if Digits_Value (Def_Id) > Digits_Value (T) then
8216 Error_Msg_Uint_1 := Digits_Value (T);
8217 Error_Msg_N ("?digits value is too large, maximum is ^", D);
8218 Rais :=
8219 Make_Raise_Constraint_Error (Sloc (D),
8220 Reason => CE_Range_Check_Failed);
8221 Insert_Action (Declaration_Node (Def_Id), Rais);
8222 end if;
8224 C := Range_Constraint (C);
8226 -- No digits constraint present
8228 else
8229 Set_Digits_Value (Def_Id, Digits_Value (T));
8230 end if;
8232 -- Range constraint present
8234 if Nkind (C) = N_Range_Constraint then
8235 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
8237 -- No range constraint present
8239 else
8240 pragma Assert (No (C));
8241 Set_Scalar_Range (Def_Id, Scalar_Range (T));
8242 end if;
8244 Set_Is_Constrained (Def_Id);
8245 end Constrain_Float;
8247 ---------------------
8248 -- Constrain_Index --
8249 ---------------------
8251 procedure Constrain_Index
8252 (Index : Node_Id;
8253 S : Node_Id;
8254 Related_Nod : Node_Id;
8255 Related_Id : Entity_Id;
8256 Suffix : Character;
8257 Suffix_Index : Nat)
8259 Def_Id : Entity_Id;
8260 R : Node_Id := Empty;
8261 T : constant Entity_Id := Etype (Index);
8263 begin
8264 if Nkind (S) = N_Range
8265 or else
8266 (Nkind (S) = N_Attribute_Reference
8267 and then Attribute_Name (S) = Name_Range)
8268 then
8269 -- A Range attribute will transformed into N_Range by Resolve
8271 Analyze (S);
8272 Set_Etype (S, T);
8273 R := S;
8275 Process_Range_Expr_In_Decl (R, T, Empty_List);
8277 if not Error_Posted (S)
8278 and then
8279 (Nkind (S) /= N_Range
8280 or else not Covers (T, (Etype (Low_Bound (S))))
8281 or else not Covers (T, (Etype (High_Bound (S)))))
8282 then
8283 if Base_Type (T) /= Any_Type
8284 and then Etype (Low_Bound (S)) /= Any_Type
8285 and then Etype (High_Bound (S)) /= Any_Type
8286 then
8287 Error_Msg_N ("range expected", S);
8288 end if;
8289 end if;
8291 elsif Nkind (S) = N_Subtype_Indication then
8293 -- The parser has verified that this is a discrete indication
8295 Resolve_Discrete_Subtype_Indication (S, T);
8296 R := Range_Expression (Constraint (S));
8298 elsif Nkind (S) = N_Discriminant_Association then
8300 -- Syntactically valid in subtype indication
8302 Error_Msg_N ("invalid index constraint", S);
8303 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
8304 return;
8306 -- Subtype_Mark case, no anonymous subtypes to construct
8308 else
8309 Analyze (S);
8311 if Is_Entity_Name (S) then
8312 if not Is_Type (Entity (S)) then
8313 Error_Msg_N ("expect subtype mark for index constraint", S);
8315 elsif Base_Type (Entity (S)) /= Base_Type (T) then
8316 Wrong_Type (S, Base_Type (T));
8317 end if;
8319 return;
8321 else
8322 Error_Msg_N ("invalid index constraint", S);
8323 Rewrite (S, New_Occurrence_Of (T, Sloc (S)));
8324 return;
8325 end if;
8326 end if;
8328 Def_Id :=
8329 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix, Suffix_Index);
8331 Set_Etype (Def_Id, Base_Type (T));
8333 if Is_Modular_Integer_Type (T) then
8334 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
8336 elsif Is_Integer_Type (T) then
8337 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
8339 else
8340 Set_Ekind (Def_Id, E_Enumeration_Subtype);
8341 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
8342 end if;
8344 Set_Size_Info (Def_Id, (T));
8345 Set_RM_Size (Def_Id, RM_Size (T));
8346 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8348 Set_Scalar_Range (Def_Id, R);
8350 Set_Etype (S, Def_Id);
8351 Set_Discrete_RM_Size (Def_Id);
8352 end Constrain_Index;
8354 -----------------------
8355 -- Constrain_Integer --
8356 -----------------------
8358 procedure Constrain_Integer (Def_Id : Node_Id; S : Node_Id) is
8359 T : constant Entity_Id := Entity (Subtype_Mark (S));
8360 C : constant Node_Id := Constraint (S);
8362 begin
8363 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
8365 if Is_Modular_Integer_Type (T) then
8366 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
8367 else
8368 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
8369 end if;
8371 Set_Etype (Def_Id, Base_Type (T));
8372 Set_Size_Info (Def_Id, (T));
8373 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8374 Set_Discrete_RM_Size (Def_Id);
8375 end Constrain_Integer;
8377 ------------------------------
8378 -- Constrain_Ordinary_Fixed --
8379 ------------------------------
8381 procedure Constrain_Ordinary_Fixed (Def_Id : Node_Id; S : Node_Id) is
8382 T : constant Entity_Id := Entity (Subtype_Mark (S));
8383 C : Node_Id;
8384 D : Node_Id;
8385 Rais : Node_Id;
8387 begin
8388 Set_Ekind (Def_Id, E_Ordinary_Fixed_Point_Subtype);
8389 Set_Etype (Def_Id, Base_Type (T));
8390 Set_Size_Info (Def_Id, (T));
8391 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
8392 Set_Small_Value (Def_Id, Small_Value (T));
8394 -- Process the constraint
8396 C := Constraint (S);
8398 -- Delta constraint present
8400 if Nkind (C) = N_Delta_Constraint then
8401 Check_Restriction (No_Obsolescent_Features, C);
8403 if Warn_On_Obsolescent_Feature then
8404 Error_Msg_S
8405 ("subtype delta constraint is an " &
8406 "obsolescent feature ('R'M 'J.3(7))?");
8407 end if;
8409 D := Delta_Expression (C);
8410 Analyze_And_Resolve (D, Any_Real);
8411 Check_Delta_Expression (D);
8412 Set_Delta_Value (Def_Id, Expr_Value_R (D));
8414 -- Check that delta value is in range. Obviously we can do this
8415 -- at compile time, but it is strictly a runtime check, and of
8416 -- course there is an ACVC test that checks this!
8418 if Delta_Value (Def_Id) < Delta_Value (T) then
8419 Error_Msg_N ("?delta value is too small", D);
8420 Rais :=
8421 Make_Raise_Constraint_Error (Sloc (D),
8422 Reason => CE_Range_Check_Failed);
8423 Insert_Action (Declaration_Node (Def_Id), Rais);
8424 end if;
8426 C := Range_Constraint (C);
8428 -- No delta constraint present
8430 else
8431 Set_Delta_Value (Def_Id, Delta_Value (T));
8432 end if;
8434 -- Range constraint present
8436 if Nkind (C) = N_Range_Constraint then
8437 Set_Scalar_Range_For_Subtype (Def_Id, Range_Expression (C), T);
8439 -- No range constraint present
8441 else
8442 pragma Assert (No (C));
8443 Set_Scalar_Range (Def_Id, Scalar_Range (T));
8445 end if;
8447 Set_Discrete_RM_Size (Def_Id);
8449 -- Unconditionally delay the freeze, since we cannot set size
8450 -- information in all cases correctly until the freeze point.
8452 Set_Has_Delayed_Freeze (Def_Id);
8453 end Constrain_Ordinary_Fixed;
8455 ---------------------------
8456 -- Convert_Scalar_Bounds --
8457 ---------------------------
8459 procedure Convert_Scalar_Bounds
8460 (N : Node_Id;
8461 Parent_Type : Entity_Id;
8462 Derived_Type : Entity_Id;
8463 Loc : Source_Ptr)
8465 Implicit_Base : constant Entity_Id := Base_Type (Derived_Type);
8467 Lo : Node_Id;
8468 Hi : Node_Id;
8469 Rng : Node_Id;
8471 begin
8472 Lo := Build_Scalar_Bound
8473 (Type_Low_Bound (Derived_Type),
8474 Parent_Type, Implicit_Base);
8476 Hi := Build_Scalar_Bound
8477 (Type_High_Bound (Derived_Type),
8478 Parent_Type, Implicit_Base);
8480 Rng :=
8481 Make_Range (Loc,
8482 Low_Bound => Lo,
8483 High_Bound => Hi);
8485 Set_Includes_Infinities (Rng, Has_Infinities (Derived_Type));
8487 Set_Parent (Rng, N);
8488 Set_Scalar_Range (Derived_Type, Rng);
8490 -- Analyze the bounds
8492 Analyze_And_Resolve (Lo, Implicit_Base);
8493 Analyze_And_Resolve (Hi, Implicit_Base);
8495 -- Analyze the range itself, except that we do not analyze it if
8496 -- the bounds are real literals, and we have a fixed-point type.
8497 -- The reason for this is that we delay setting the bounds in this
8498 -- case till we know the final Small and Size values (see circuit
8499 -- in Freeze.Freeze_Fixed_Point_Type for further details).
8501 if Is_Fixed_Point_Type (Parent_Type)
8502 and then Nkind (Lo) = N_Real_Literal
8503 and then Nkind (Hi) = N_Real_Literal
8504 then
8505 return;
8507 -- Here we do the analysis of the range
8509 -- Note: we do this manually, since if we do a normal Analyze and
8510 -- Resolve call, there are problems with the conversions used for
8511 -- the derived type range.
8513 else
8514 Set_Etype (Rng, Implicit_Base);
8515 Set_Analyzed (Rng, True);
8516 end if;
8517 end Convert_Scalar_Bounds;
8519 -------------------
8520 -- Copy_And_Swap --
8521 -------------------
8523 procedure Copy_And_Swap (Priv, Full : Entity_Id) is
8524 begin
8525 -- Initialize new full declaration entity by copying the pertinent
8526 -- fields of the corresponding private declaration entity.
8528 -- We temporarily set Ekind to a value appropriate for a type to
8529 -- avoid assert failures in Einfo from checking for setting type
8530 -- attributes on something that is not a type. Ekind (Priv) is an
8531 -- appropriate choice, since it allowed the attributes to be set
8532 -- in the first place. This Ekind value will be modified later.
8534 Set_Ekind (Full, Ekind (Priv));
8536 -- Also set Etype temporarily to Any_Type, again, in the absence
8537 -- of errors, it will be properly reset, and if there are errors,
8538 -- then we want a value of Any_Type to remain.
8540 Set_Etype (Full, Any_Type);
8542 -- Now start copying attributes
8544 Set_Has_Discriminants (Full, Has_Discriminants (Priv));
8546 if Has_Discriminants (Full) then
8547 Set_Discriminant_Constraint (Full, Discriminant_Constraint (Priv));
8548 Set_Stored_Constraint (Full, Stored_Constraint (Priv));
8549 end if;
8551 Set_First_Rep_Item (Full, First_Rep_Item (Priv));
8552 Set_Homonym (Full, Homonym (Priv));
8553 Set_Is_Immediately_Visible (Full, Is_Immediately_Visible (Priv));
8554 Set_Is_Public (Full, Is_Public (Priv));
8555 Set_Is_Pure (Full, Is_Pure (Priv));
8556 Set_Is_Tagged_Type (Full, Is_Tagged_Type (Priv));
8558 Conditional_Delay (Full, Priv);
8560 if Is_Tagged_Type (Full) then
8561 Set_Primitive_Operations (Full, Primitive_Operations (Priv));
8563 if Priv = Base_Type (Priv) then
8564 Set_Class_Wide_Type (Full, Class_Wide_Type (Priv));
8565 end if;
8566 end if;
8568 Set_Is_Volatile (Full, Is_Volatile (Priv));
8569 Set_Treat_As_Volatile (Full, Treat_As_Volatile (Priv));
8570 Set_Scope (Full, Scope (Priv));
8571 Set_Next_Entity (Full, Next_Entity (Priv));
8572 Set_First_Entity (Full, First_Entity (Priv));
8573 Set_Last_Entity (Full, Last_Entity (Priv));
8575 -- If access types have been recorded for later handling, keep them in
8576 -- the full view so that they get handled when the full view freeze
8577 -- node is expanded.
8579 if Present (Freeze_Node (Priv))
8580 and then Present (Access_Types_To_Process (Freeze_Node (Priv)))
8581 then
8582 Ensure_Freeze_Node (Full);
8583 Set_Access_Types_To_Process
8584 (Freeze_Node (Full),
8585 Access_Types_To_Process (Freeze_Node (Priv)));
8586 end if;
8588 -- Swap the two entities. Now Privat is the full type entity and
8589 -- Full is the private one. They will be swapped back at the end
8590 -- of the private part. This swapping ensures that the entity that
8591 -- is visible in the private part is the full declaration.
8593 Exchange_Entities (Priv, Full);
8594 Append_Entity (Full, Scope (Full));
8595 end Copy_And_Swap;
8597 -------------------------------------
8598 -- Copy_Array_Base_Type_Attributes --
8599 -------------------------------------
8601 procedure Copy_Array_Base_Type_Attributes (T1, T2 : Entity_Id) is
8602 begin
8603 Set_Component_Alignment (T1, Component_Alignment (T2));
8604 Set_Component_Type (T1, Component_Type (T2));
8605 Set_Component_Size (T1, Component_Size (T2));
8606 Set_Has_Controlled_Component (T1, Has_Controlled_Component (T2));
8607 Set_Finalize_Storage_Only (T1, Finalize_Storage_Only (T2));
8608 Set_Has_Non_Standard_Rep (T1, Has_Non_Standard_Rep (T2));
8609 Set_Has_Task (T1, Has_Task (T2));
8610 Set_Is_Packed (T1, Is_Packed (T2));
8611 Set_Has_Aliased_Components (T1, Has_Aliased_Components (T2));
8612 Set_Has_Atomic_Components (T1, Has_Atomic_Components (T2));
8613 Set_Has_Volatile_Components (T1, Has_Volatile_Components (T2));
8614 end Copy_Array_Base_Type_Attributes;
8616 -----------------------------------
8617 -- Copy_Array_Subtype_Attributes --
8618 -----------------------------------
8620 procedure Copy_Array_Subtype_Attributes (T1, T2 : Entity_Id) is
8621 begin
8622 Set_Size_Info (T1, T2);
8624 Set_First_Index (T1, First_Index (T2));
8625 Set_Is_Aliased (T1, Is_Aliased (T2));
8626 Set_Is_Atomic (T1, Is_Atomic (T2));
8627 Set_Is_Volatile (T1, Is_Volatile (T2));
8628 Set_Treat_As_Volatile (T1, Treat_As_Volatile (T2));
8629 Set_Is_Constrained (T1, Is_Constrained (T2));
8630 Set_Depends_On_Private (T1, Has_Private_Component (T2));
8631 Set_First_Rep_Item (T1, First_Rep_Item (T2));
8632 Set_Convention (T1, Convention (T2));
8633 Set_Is_Limited_Composite (T1, Is_Limited_Composite (T2));
8634 Set_Is_Private_Composite (T1, Is_Private_Composite (T2));
8635 end Copy_Array_Subtype_Attributes;
8637 -----------------------------------
8638 -- Create_Constrained_Components --
8639 -----------------------------------
8641 procedure Create_Constrained_Components
8642 (Subt : Entity_Id;
8643 Decl_Node : Node_Id;
8644 Typ : Entity_Id;
8645 Constraints : Elist_Id)
8647 Loc : constant Source_Ptr := Sloc (Subt);
8648 Comp_List : constant Elist_Id := New_Elmt_List;
8649 Parent_Type : constant Entity_Id := Etype (Typ);
8650 Assoc_List : constant List_Id := New_List;
8651 Discr_Val : Elmt_Id;
8652 Errors : Boolean;
8653 New_C : Entity_Id;
8654 Old_C : Entity_Id;
8655 Is_Static : Boolean := True;
8657 procedure Collect_Fixed_Components (Typ : Entity_Id);
8658 -- Collect parent type components that do not appear in a variant part
8660 procedure Create_All_Components;
8661 -- Iterate over Comp_List to create the components of the subtype
8663 function Create_Component (Old_Compon : Entity_Id) return Entity_Id;
8664 -- Creates a new component from Old_Compon, copying all the fields from
8665 -- it, including its Etype, inserts the new component in the Subt entity
8666 -- chain and returns the new component.
8668 function Is_Variant_Record (T : Entity_Id) return Boolean;
8669 -- If true, and discriminants are static, collect only components from
8670 -- variants selected by discriminant values.
8672 ------------------------------
8673 -- Collect_Fixed_Components --
8674 ------------------------------
8676 procedure Collect_Fixed_Components (Typ : Entity_Id) is
8677 begin
8678 -- Build association list for discriminants, and find components of the
8679 -- variant part selected by the values of the discriminants.
8681 Old_C := First_Discriminant (Typ);
8682 Discr_Val := First_Elmt (Constraints);
8683 while Present (Old_C) loop
8684 Append_To (Assoc_List,
8685 Make_Component_Association (Loc,
8686 Choices => New_List (New_Occurrence_Of (Old_C, Loc)),
8687 Expression => New_Copy (Node (Discr_Val))));
8689 Next_Elmt (Discr_Val);
8690 Next_Discriminant (Old_C);
8691 end loop;
8693 -- The tag, and the possible parent and controller components
8694 -- are unconditionally in the subtype.
8696 if Is_Tagged_Type (Typ)
8697 or else Has_Controlled_Component (Typ)
8698 then
8699 Old_C := First_Component (Typ);
8700 while Present (Old_C) loop
8701 if Chars ((Old_C)) = Name_uTag
8702 or else Chars ((Old_C)) = Name_uParent
8703 or else Chars ((Old_C)) = Name_uController
8704 then
8705 Append_Elmt (Old_C, Comp_List);
8706 end if;
8708 Next_Component (Old_C);
8709 end loop;
8710 end if;
8711 end Collect_Fixed_Components;
8713 ---------------------------
8714 -- Create_All_Components --
8715 ---------------------------
8717 procedure Create_All_Components is
8718 Comp : Elmt_Id;
8720 begin
8721 Comp := First_Elmt (Comp_List);
8722 while Present (Comp) loop
8723 Old_C := Node (Comp);
8724 New_C := Create_Component (Old_C);
8726 Set_Etype
8727 (New_C,
8728 Constrain_Component_Type
8729 (Old_C, Subt, Decl_Node, Typ, Constraints));
8730 Set_Is_Public (New_C, Is_Public (Subt));
8732 Next_Elmt (Comp);
8733 end loop;
8734 end Create_All_Components;
8736 ----------------------
8737 -- Create_Component --
8738 ----------------------
8740 function Create_Component (Old_Compon : Entity_Id) return Entity_Id is
8741 New_Compon : constant Entity_Id := New_Copy (Old_Compon);
8743 begin
8744 -- Set the parent so we have a proper link for freezing etc. This
8745 -- is not a real parent pointer, since of course our parent does
8746 -- not own up to us and reference us, we are an illegitimate
8747 -- child of the original parent!
8749 Set_Parent (New_Compon, Parent (Old_Compon));
8751 -- We do not want this node marked as Comes_From_Source, since
8752 -- otherwise it would get first class status and a separate
8753 -- cross-reference line would be generated. Illegitimate
8754 -- children do not rate such recognition.
8756 Set_Comes_From_Source (New_Compon, False);
8758 -- But it is a real entity, and a birth certificate must be
8759 -- properly registered by entering it into the entity list.
8761 Enter_Name (New_Compon);
8762 return New_Compon;
8763 end Create_Component;
8765 -----------------------
8766 -- Is_Variant_Record --
8767 -----------------------
8769 function Is_Variant_Record (T : Entity_Id) return Boolean is
8770 begin
8771 return Nkind (Parent (T)) = N_Full_Type_Declaration
8772 and then Nkind (Type_Definition (Parent (T))) = N_Record_Definition
8773 and then Present (Component_List (Type_Definition (Parent (T))))
8774 and then Present (
8775 Variant_Part (Component_List (Type_Definition (Parent (T)))));
8776 end Is_Variant_Record;
8778 -- Start of processing for Create_Constrained_Components
8780 begin
8781 pragma Assert (Subt /= Base_Type (Subt));
8782 pragma Assert (Typ = Base_Type (Typ));
8784 Set_First_Entity (Subt, Empty);
8785 Set_Last_Entity (Subt, Empty);
8787 -- Check whether constraint is fully static, in which case we can
8788 -- optimize the list of components.
8790 Discr_Val := First_Elmt (Constraints);
8791 while Present (Discr_Val) loop
8792 if not Is_OK_Static_Expression (Node (Discr_Val)) then
8793 Is_Static := False;
8794 exit;
8795 end if;
8797 Next_Elmt (Discr_Val);
8798 end loop;
8800 New_Scope (Subt);
8802 -- Inherit the discriminants of the parent type
8804 Old_C := First_Discriminant (Typ);
8805 while Present (Old_C) loop
8806 New_C := Create_Component (Old_C);
8807 Set_Is_Public (New_C, Is_Public (Subt));
8808 Next_Discriminant (Old_C);
8809 end loop;
8811 if Is_Static
8812 and then Is_Variant_Record (Typ)
8813 then
8814 Collect_Fixed_Components (Typ);
8816 Gather_Components (
8817 Typ,
8818 Component_List (Type_Definition (Parent (Typ))),
8819 Governed_By => Assoc_List,
8820 Into => Comp_List,
8821 Report_Errors => Errors);
8822 pragma Assert (not Errors);
8824 Create_All_Components;
8826 -- If the subtype declaration is created for a tagged type derivation
8827 -- with constraints, we retrieve the record definition of the parent
8828 -- type to select the components of the proper variant.
8830 elsif Is_Static
8831 and then Is_Tagged_Type (Typ)
8832 and then Nkind (Parent (Typ)) = N_Full_Type_Declaration
8833 and then
8834 Nkind (Type_Definition (Parent (Typ))) = N_Derived_Type_Definition
8835 and then Is_Variant_Record (Parent_Type)
8836 then
8837 Collect_Fixed_Components (Typ);
8839 Gather_Components (
8840 Typ,
8841 Component_List (Type_Definition (Parent (Parent_Type))),
8842 Governed_By => Assoc_List,
8843 Into => Comp_List,
8844 Report_Errors => Errors);
8845 pragma Assert (not Errors);
8847 -- If the tagged derivation has a type extension, collect all the
8848 -- new components therein.
8850 if Present
8851 (Record_Extension_Part (Type_Definition (Parent (Typ))))
8852 then
8853 Old_C := First_Component (Typ);
8854 while Present (Old_C) loop
8855 if Original_Record_Component (Old_C) = Old_C
8856 and then Chars (Old_C) /= Name_uTag
8857 and then Chars (Old_C) /= Name_uParent
8858 and then Chars (Old_C) /= Name_uController
8859 then
8860 Append_Elmt (Old_C, Comp_List);
8861 end if;
8863 Next_Component (Old_C);
8864 end loop;
8865 end if;
8867 Create_All_Components;
8869 else
8870 -- If the discriminants are not static, or if this is a multi-level
8871 -- type extension, we have to include all the components of the
8872 -- parent type.
8874 Old_C := First_Component (Typ);
8875 while Present (Old_C) loop
8876 New_C := Create_Component (Old_C);
8878 Set_Etype
8879 (New_C,
8880 Constrain_Component_Type
8881 (Old_C, Subt, Decl_Node, Typ, Constraints));
8882 Set_Is_Public (New_C, Is_Public (Subt));
8884 Next_Component (Old_C);
8885 end loop;
8886 end if;
8888 End_Scope;
8889 end Create_Constrained_Components;
8891 ------------------------------------------
8892 -- Decimal_Fixed_Point_Type_Declaration --
8893 ------------------------------------------
8895 procedure Decimal_Fixed_Point_Type_Declaration
8896 (T : Entity_Id;
8897 Def : Node_Id)
8899 Loc : constant Source_Ptr := Sloc (Def);
8900 Digs_Expr : constant Node_Id := Digits_Expression (Def);
8901 Delta_Expr : constant Node_Id := Delta_Expression (Def);
8902 Implicit_Base : Entity_Id;
8903 Digs_Val : Uint;
8904 Delta_Val : Ureal;
8905 Scale_Val : Uint;
8906 Bound_Val : Ureal;
8908 -- Start of processing for Decimal_Fixed_Point_Type_Declaration
8910 begin
8911 Check_Restriction (No_Fixed_Point, Def);
8913 -- Create implicit base type
8915 Implicit_Base :=
8916 Create_Itype (E_Decimal_Fixed_Point_Type, Parent (Def), T, 'B');
8917 Set_Etype (Implicit_Base, Implicit_Base);
8919 -- Analyze and process delta expression
8921 Analyze_And_Resolve (Delta_Expr, Universal_Real);
8923 Check_Delta_Expression (Delta_Expr);
8924 Delta_Val := Expr_Value_R (Delta_Expr);
8926 -- Check delta is power of 10, and determine scale value from it
8928 declare
8929 Val : Ureal := Delta_Val;
8931 begin
8932 Scale_Val := Uint_0;
8934 if Val < Ureal_1 then
8935 while Val < Ureal_1 loop
8936 Val := Val * Ureal_10;
8937 Scale_Val := Scale_Val + 1;
8938 end loop;
8940 if Scale_Val > 18 then
8941 Error_Msg_N ("scale exceeds maximum value of 18", Def);
8942 Scale_Val := UI_From_Int (+18);
8943 end if;
8945 else
8946 while Val > Ureal_1 loop
8947 Val := Val / Ureal_10;
8948 Scale_Val := Scale_Val - 1;
8949 end loop;
8951 if Scale_Val < -18 then
8952 Error_Msg_N ("scale is less than minimum value of -18", Def);
8953 Scale_Val := UI_From_Int (-18);
8954 end if;
8955 end if;
8957 if Val /= Ureal_1 then
8958 Error_Msg_N ("delta expression must be a power of 10", Def);
8959 Delta_Val := Ureal_10 ** (-Scale_Val);
8960 end if;
8961 end;
8963 -- Set delta, scale and small (small = delta for decimal type)
8965 Set_Delta_Value (Implicit_Base, Delta_Val);
8966 Set_Scale_Value (Implicit_Base, Scale_Val);
8967 Set_Small_Value (Implicit_Base, Delta_Val);
8969 -- Analyze and process digits expression
8971 Analyze_And_Resolve (Digs_Expr, Any_Integer);
8972 Check_Digits_Expression (Digs_Expr);
8973 Digs_Val := Expr_Value (Digs_Expr);
8975 if Digs_Val > 18 then
8976 Digs_Val := UI_From_Int (+18);
8977 Error_Msg_N ("digits value out of range, maximum is 18", Digs_Expr);
8978 end if;
8980 Set_Digits_Value (Implicit_Base, Digs_Val);
8981 Bound_Val := UR_From_Uint (10 ** Digs_Val - 1) * Delta_Val;
8983 -- Set range of base type from digits value for now. This will be
8984 -- expanded to represent the true underlying base range by Freeze.
8986 Set_Fixed_Range (Implicit_Base, Loc, -Bound_Val, Bound_Val);
8988 -- Set size to zero for now, size will be set at freeze time. We have
8989 -- to do this for ordinary fixed-point, because the size depends on
8990 -- the specified small, and we might as well do the same for decimal
8991 -- fixed-point.
8993 Init_Size_Align (Implicit_Base);
8995 -- If there are bounds given in the declaration use them as the
8996 -- bounds of the first named subtype.
8998 if Present (Real_Range_Specification (Def)) then
8999 declare
9000 RRS : constant Node_Id := Real_Range_Specification (Def);
9001 Low : constant Node_Id := Low_Bound (RRS);
9002 High : constant Node_Id := High_Bound (RRS);
9003 Low_Val : Ureal;
9004 High_Val : Ureal;
9006 begin
9007 Analyze_And_Resolve (Low, Any_Real);
9008 Analyze_And_Resolve (High, Any_Real);
9009 Check_Real_Bound (Low);
9010 Check_Real_Bound (High);
9011 Low_Val := Expr_Value_R (Low);
9012 High_Val := Expr_Value_R (High);
9014 if Low_Val < (-Bound_Val) then
9015 Error_Msg_N
9016 ("range low bound too small for digits value", Low);
9017 Low_Val := -Bound_Val;
9018 end if;
9020 if High_Val > Bound_Val then
9021 Error_Msg_N
9022 ("range high bound too large for digits value", High);
9023 High_Val := Bound_Val;
9024 end if;
9026 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
9027 end;
9029 -- If no explicit range, use range that corresponds to given
9030 -- digits value. This will end up as the final range for the
9031 -- first subtype.
9033 else
9034 Set_Fixed_Range (T, Loc, -Bound_Val, Bound_Val);
9035 end if;
9037 -- Complete entity for first subtype
9039 Set_Ekind (T, E_Decimal_Fixed_Point_Subtype);
9040 Set_Etype (T, Implicit_Base);
9041 Set_Size_Info (T, Implicit_Base);
9042 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
9043 Set_Digits_Value (T, Digs_Val);
9044 Set_Delta_Value (T, Delta_Val);
9045 Set_Small_Value (T, Delta_Val);
9046 Set_Scale_Value (T, Scale_Val);
9047 Set_Is_Constrained (T);
9048 end Decimal_Fixed_Point_Type_Declaration;
9050 -----------------------
9051 -- Derive_Subprogram --
9052 -----------------------
9054 procedure Derive_Subprogram
9055 (New_Subp : in out Entity_Id;
9056 Parent_Subp : Entity_Id;
9057 Derived_Type : Entity_Id;
9058 Parent_Type : Entity_Id;
9059 Actual_Subp : Entity_Id := Empty)
9061 Formal : Entity_Id;
9062 New_Formal : Entity_Id;
9063 Visible_Subp : Entity_Id := Parent_Subp;
9065 function Is_Private_Overriding return Boolean;
9066 -- If Subp is a private overriding of a visible operation, the in-
9067 -- herited operation derives from the overridden op (even though
9068 -- its body is the overriding one) and the inherited operation is
9069 -- visible now. See sem_disp to see the details of the handling of
9070 -- the overridden subprogram, which is removed from the list of
9071 -- primitive operations of the type. The overridden subprogram is
9072 -- saved locally in Visible_Subp, and used to diagnose abstract
9073 -- operations that need overriding in the derived type.
9075 procedure Replace_Type (Id, New_Id : Entity_Id);
9076 -- When the type is an anonymous access type, create a new access type
9077 -- designating the derived type.
9079 procedure Set_Derived_Name;
9080 -- This procedure sets the appropriate Chars name for New_Subp. This
9081 -- is normally just a copy of the parent name. An exception arises for
9082 -- type support subprograms, where the name is changed to reflect the
9083 -- name of the derived type, e.g. if type foo is derived from type bar,
9084 -- then a procedure barDA is derived with a name fooDA.
9086 ---------------------------
9087 -- Is_Private_Overriding --
9088 ---------------------------
9090 function Is_Private_Overriding return Boolean is
9091 Prev : Entity_Id;
9093 begin
9094 -- The visible operation that is overriden is a homonym of the
9095 -- parent subprogram. We scan the homonym chain to find the one
9096 -- whose alias is the subprogram we are deriving.
9098 Prev := Homonym (Parent_Subp);
9099 while Present (Prev) loop
9100 if Is_Dispatching_Operation (Parent_Subp)
9101 and then Present (Prev)
9102 and then Ekind (Prev) = Ekind (Parent_Subp)
9103 and then Alias (Prev) = Parent_Subp
9104 and then Scope (Parent_Subp) = Scope (Prev)
9105 and then not Is_Hidden (Prev)
9106 then
9107 Visible_Subp := Prev;
9108 return True;
9109 end if;
9111 Prev := Homonym (Prev);
9112 end loop;
9114 return False;
9115 end Is_Private_Overriding;
9117 ------------------
9118 -- Replace_Type --
9119 ------------------
9121 procedure Replace_Type (Id, New_Id : Entity_Id) is
9122 Acc_Type : Entity_Id;
9123 IR : Node_Id;
9124 Par : constant Node_Id := Parent (Derived_Type);
9126 begin
9127 -- When the type is an anonymous access type, create a new access
9128 -- type designating the derived type. This itype must be elaborated
9129 -- at the point of the derivation, not on subsequent calls that may
9130 -- be out of the proper scope for Gigi, so we insert a reference to
9131 -- it after the derivation.
9133 if Ekind (Etype (Id)) = E_Anonymous_Access_Type then
9134 declare
9135 Desig_Typ : Entity_Id := Designated_Type (Etype (Id));
9137 begin
9138 if Ekind (Desig_Typ) = E_Record_Type_With_Private
9139 and then Present (Full_View (Desig_Typ))
9140 and then not Is_Private_Type (Parent_Type)
9141 then
9142 Desig_Typ := Full_View (Desig_Typ);
9143 end if;
9145 if Base_Type (Desig_Typ) = Base_Type (Parent_Type) then
9146 Acc_Type := New_Copy (Etype (Id));
9147 Set_Etype (Acc_Type, Acc_Type);
9148 Set_Scope (Acc_Type, New_Subp);
9150 -- Compute size of anonymous access type
9152 if Is_Array_Type (Desig_Typ)
9153 and then not Is_Constrained (Desig_Typ)
9154 then
9155 Init_Size (Acc_Type, 2 * System_Address_Size);
9156 else
9157 Init_Size (Acc_Type, System_Address_Size);
9158 end if;
9160 Init_Alignment (Acc_Type);
9161 Set_Directly_Designated_Type (Acc_Type, Derived_Type);
9163 Set_Etype (New_Id, Acc_Type);
9164 Set_Scope (New_Id, New_Subp);
9166 -- Create a reference to it
9168 IR := Make_Itype_Reference (Sloc (Parent (Derived_Type)));
9169 Set_Itype (IR, Acc_Type);
9170 Insert_After (Parent (Derived_Type), IR);
9172 else
9173 Set_Etype (New_Id, Etype (Id));
9174 end if;
9175 end;
9177 elsif Base_Type (Etype (Id)) = Base_Type (Parent_Type)
9178 or else
9179 (Ekind (Etype (Id)) = E_Record_Type_With_Private
9180 and then Present (Full_View (Etype (Id)))
9181 and then
9182 Base_Type (Full_View (Etype (Id))) = Base_Type (Parent_Type))
9183 then
9184 -- Constraint checks on formals are generated during expansion,
9185 -- based on the signature of the original subprogram. The bounds
9186 -- of the derived type are not relevant, and thus we can use
9187 -- the base type for the formals. However, the return type may be
9188 -- used in a context that requires that the proper static bounds
9189 -- be used (a case statement, for example) and for those cases
9190 -- we must use the derived type (first subtype), not its base.
9192 -- If the derived_type_definition has no constraints, we know that
9193 -- the derived type has the same constraints as the first subtype
9194 -- of the parent, and we can also use it rather than its base,
9195 -- which can lead to more efficient code.
9197 if Etype (Id) = Parent_Type then
9198 if Is_Scalar_Type (Parent_Type)
9199 and then
9200 Subtypes_Statically_Compatible (Parent_Type, Derived_Type)
9201 then
9202 Set_Etype (New_Id, Derived_Type);
9204 elsif Nkind (Par) = N_Full_Type_Declaration
9205 and then
9206 Nkind (Type_Definition (Par)) = N_Derived_Type_Definition
9207 and then
9208 Is_Entity_Name
9209 (Subtype_Indication (Type_Definition (Par)))
9210 then
9211 Set_Etype (New_Id, Derived_Type);
9213 else
9214 Set_Etype (New_Id, Base_Type (Derived_Type));
9215 end if;
9217 else
9218 Set_Etype (New_Id, Base_Type (Derived_Type));
9219 end if;
9221 else
9222 Set_Etype (New_Id, Etype (Id));
9223 end if;
9224 end Replace_Type;
9226 ----------------------
9227 -- Set_Derived_Name --
9228 ----------------------
9230 procedure Set_Derived_Name is
9231 Nm : constant TSS_Name_Type := Get_TSS_Name (Parent_Subp);
9232 begin
9233 if Nm = TSS_Null then
9234 Set_Chars (New_Subp, Chars (Parent_Subp));
9235 else
9236 Set_Chars (New_Subp, Make_TSS_Name (Base_Type (Derived_Type), Nm));
9237 end if;
9238 end Set_Derived_Name;
9240 -- Start of processing for Derive_Subprogram
9242 begin
9243 New_Subp :=
9244 New_Entity (Nkind (Parent_Subp), Sloc (Derived_Type));
9245 Set_Ekind (New_Subp, Ekind (Parent_Subp));
9247 -- Check whether the inherited subprogram is a private operation that
9248 -- should be inherited but not yet made visible. Such subprograms can
9249 -- become visible at a later point (e.g., the private part of a public
9250 -- child unit) via Declare_Inherited_Private_Subprograms. If the
9251 -- following predicate is true, then this is not such a private
9252 -- operation and the subprogram simply inherits the name of the parent
9253 -- subprogram. Note the special check for the names of controlled
9254 -- operations, which are currently exempted from being inherited with
9255 -- a hidden name because they must be findable for generation of
9256 -- implicit run-time calls.
9258 if not Is_Hidden (Parent_Subp)
9259 or else Is_Internal (Parent_Subp)
9260 or else Is_Private_Overriding
9261 or else Is_Internal_Name (Chars (Parent_Subp))
9262 or else Chars (Parent_Subp) = Name_Initialize
9263 or else Chars (Parent_Subp) = Name_Adjust
9264 or else Chars (Parent_Subp) = Name_Finalize
9265 then
9266 Set_Derived_Name;
9268 -- If parent is hidden, this can be a regular derivation if the
9269 -- parent is immediately visible in a non-instantiating context,
9270 -- or if we are in the private part of an instance. This test
9271 -- should still be refined ???
9273 -- The test for In_Instance_Not_Visible avoids inheriting the derived
9274 -- operation as a non-visible operation in cases where the parent
9275 -- subprogram might not be visible now, but was visible within the
9276 -- original generic, so it would be wrong to make the inherited
9277 -- subprogram non-visible now. (Not clear if this test is fully
9278 -- correct; are there any cases where we should declare the inherited
9279 -- operation as not visible to avoid it being overridden, e.g., when
9280 -- the parent type is a generic actual with private primitives ???)
9282 -- (they should be treated the same as other private inherited
9283 -- subprograms, but it's not clear how to do this cleanly). ???
9285 elsif (In_Open_Scopes (Scope (Base_Type (Parent_Type)))
9286 and then Is_Immediately_Visible (Parent_Subp)
9287 and then not In_Instance)
9288 or else In_Instance_Not_Visible
9289 then
9290 Set_Derived_Name;
9292 -- The type is inheriting a private operation, so enter
9293 -- it with a special name so it can't be overridden.
9295 else
9296 Set_Chars (New_Subp, New_External_Name (Chars (Parent_Subp), 'P'));
9297 end if;
9299 Set_Parent (New_Subp, Parent (Derived_Type));
9300 Replace_Type (Parent_Subp, New_Subp);
9301 Conditional_Delay (New_Subp, Parent_Subp);
9303 Formal := First_Formal (Parent_Subp);
9304 while Present (Formal) loop
9305 New_Formal := New_Copy (Formal);
9307 -- Normally we do not go copying parents, but in the case of
9308 -- formals, we need to link up to the declaration (which is the
9309 -- parameter specification), and it is fine to link up to the
9310 -- original formal's parameter specification in this case.
9312 Set_Parent (New_Formal, Parent (Formal));
9314 Append_Entity (New_Formal, New_Subp);
9316 Replace_Type (Formal, New_Formal);
9317 Next_Formal (Formal);
9318 end loop;
9320 -- If this derivation corresponds to a tagged generic actual, then
9321 -- primitive operations rename those of the actual. Otherwise the
9322 -- primitive operations rename those of the parent type, If the
9323 -- parent renames an intrinsic operator, so does the new subprogram.
9324 -- We except concatenation, which is always properly typed, and does
9325 -- not get expanded as other intrinsic operations.
9327 if No (Actual_Subp) then
9328 if Is_Intrinsic_Subprogram (Parent_Subp) then
9329 Set_Is_Intrinsic_Subprogram (New_Subp);
9331 if Present (Alias (Parent_Subp))
9332 and then Chars (Parent_Subp) /= Name_Op_Concat
9333 then
9334 Set_Alias (New_Subp, Alias (Parent_Subp));
9335 else
9336 Set_Alias (New_Subp, Parent_Subp);
9337 end if;
9339 else
9340 Set_Alias (New_Subp, Parent_Subp);
9341 end if;
9343 else
9344 Set_Alias (New_Subp, Actual_Subp);
9345 end if;
9347 -- Derived subprograms of a tagged type must inherit the convention
9348 -- of the parent subprogram (a requirement of AI-117). Derived
9349 -- subprograms of untagged types simply get convention Ada by default.
9351 if Is_Tagged_Type (Derived_Type) then
9352 Set_Convention (New_Subp, Convention (Parent_Subp));
9353 end if;
9355 Set_Is_Imported (New_Subp, Is_Imported (Parent_Subp));
9356 Set_Is_Exported (New_Subp, Is_Exported (Parent_Subp));
9358 if Ekind (Parent_Subp) = E_Procedure then
9359 Set_Is_Valued_Procedure
9360 (New_Subp, Is_Valued_Procedure (Parent_Subp));
9361 end if;
9363 -- A derived function with a controlling result is abstract. If the
9364 -- Derived_Type is a nonabstract formal generic derived type, then
9365 -- inherited operations are not abstract: the required check is done at
9366 -- instantiation time. If the derivation is for a generic actual, the
9367 -- function is not abstract unless the actual is.
9369 if Is_Generic_Type (Derived_Type)
9370 and then not Is_Abstract (Derived_Type)
9371 then
9372 null;
9374 elsif Is_Abstract (Alias (New_Subp))
9375 or else (Is_Tagged_Type (Derived_Type)
9376 and then Etype (New_Subp) = Derived_Type
9377 and then No (Actual_Subp))
9378 then
9379 Set_Is_Abstract (New_Subp);
9381 -- Finally, if the parent type is abstract we must verify that all
9382 -- inherited operations are either non-abstract or overridden, or
9383 -- that the derived type itself is abstract (this check is performed
9384 -- at the end of a package declaration, in Check_Abstract_Overriding).
9385 -- A private overriding in the parent type will not be visible in the
9386 -- derivation if we are not in an inner package or in a child unit of
9387 -- the parent type, in which case the abstractness of the inherited
9388 -- operation is carried to the new subprogram.
9390 elsif Is_Abstract (Parent_Type)
9391 and then not In_Open_Scopes (Scope (Parent_Type))
9392 and then Is_Private_Overriding
9393 and then Is_Abstract (Visible_Subp)
9394 then
9395 Set_Alias (New_Subp, Visible_Subp);
9396 Set_Is_Abstract (New_Subp);
9397 end if;
9399 New_Overloaded_Entity (New_Subp, Derived_Type);
9401 -- Check for case of a derived subprogram for the instantiation of a
9402 -- formal derived tagged type, if so mark the subprogram as dispatching
9403 -- and inherit the dispatching attributes of the parent subprogram. The
9404 -- derived subprogram is effectively renaming of the actual subprogram,
9405 -- so it needs to have the same attributes as the actual.
9407 if Present (Actual_Subp)
9408 and then Is_Dispatching_Operation (Parent_Subp)
9409 then
9410 Set_Is_Dispatching_Operation (New_Subp);
9411 if Present (DTC_Entity (Parent_Subp)) then
9412 Set_DTC_Entity (New_Subp, DTC_Entity (Parent_Subp));
9413 Set_DT_Position (New_Subp, DT_Position (Parent_Subp));
9414 end if;
9415 end if;
9417 -- Indicate that a derived subprogram does not require a body and that
9418 -- it does not require processing of default expressions.
9420 Set_Has_Completion (New_Subp);
9421 Set_Default_Expressions_Processed (New_Subp);
9423 if Ekind (New_Subp) = E_Function then
9424 Set_Mechanism (New_Subp, Mechanism (Parent_Subp));
9425 end if;
9426 end Derive_Subprogram;
9428 ------------------------
9429 -- Derive_Subprograms --
9430 ------------------------
9432 procedure Derive_Subprograms
9433 (Parent_Type : Entity_Id;
9434 Derived_Type : Entity_Id;
9435 Generic_Actual : Entity_Id := Empty)
9437 Op_List : constant Elist_Id :=
9438 Collect_Primitive_Operations (Parent_Type);
9439 Act_List : Elist_Id;
9440 Act_Elmt : Elmt_Id;
9441 Elmt : Elmt_Id;
9442 Subp : Entity_Id;
9443 New_Subp : Entity_Id := Empty;
9444 Parent_Base : Entity_Id;
9446 begin
9447 if Ekind (Parent_Type) = E_Record_Type_With_Private
9448 and then Has_Discriminants (Parent_Type)
9449 and then Present (Full_View (Parent_Type))
9450 then
9451 Parent_Base := Full_View (Parent_Type);
9452 else
9453 Parent_Base := Parent_Type;
9454 end if;
9456 if Present (Generic_Actual) then
9457 Act_List := Collect_Primitive_Operations (Generic_Actual);
9458 Act_Elmt := First_Elmt (Act_List);
9459 else
9460 Act_Elmt := No_Elmt;
9461 end if;
9463 -- Literals are derived earlier in the process of building the derived
9464 -- type, and are skipped here.
9466 Elmt := First_Elmt (Op_List);
9467 while Present (Elmt) loop
9468 Subp := Node (Elmt);
9470 if Ekind (Subp) /= E_Enumeration_Literal then
9471 if No (Generic_Actual) then
9472 Derive_Subprogram
9473 (New_Subp, Subp, Derived_Type, Parent_Base);
9475 else
9476 Derive_Subprogram (New_Subp, Subp,
9477 Derived_Type, Parent_Base, Node (Act_Elmt));
9478 Next_Elmt (Act_Elmt);
9479 end if;
9480 end if;
9482 Next_Elmt (Elmt);
9483 end loop;
9484 end Derive_Subprograms;
9486 --------------------------------
9487 -- Derived_Standard_Character --
9488 --------------------------------
9490 procedure Derived_Standard_Character
9491 (N : Node_Id;
9492 Parent_Type : Entity_Id;
9493 Derived_Type : Entity_Id)
9495 Loc : constant Source_Ptr := Sloc (N);
9496 Def : constant Node_Id := Type_Definition (N);
9497 Indic : constant Node_Id := Subtype_Indication (Def);
9498 Parent_Base : constant Entity_Id := Base_Type (Parent_Type);
9499 Implicit_Base : constant Entity_Id :=
9500 Create_Itype
9501 (E_Enumeration_Type, N, Derived_Type, 'B');
9503 Lo : Node_Id;
9504 Hi : Node_Id;
9506 begin
9507 Discard_Node (Process_Subtype (Indic, N));
9509 Set_Etype (Implicit_Base, Parent_Base);
9510 Set_Size_Info (Implicit_Base, Root_Type (Parent_Type));
9511 Set_RM_Size (Implicit_Base, RM_Size (Root_Type (Parent_Type)));
9513 Set_Is_Character_Type (Implicit_Base, True);
9514 Set_Has_Delayed_Freeze (Implicit_Base);
9516 -- The bounds of the implicit base are the bounds of the parent base.
9517 -- Note that their type is the parent base.
9519 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Base));
9520 Hi := New_Copy_Tree (Type_High_Bound (Parent_Base));
9522 Set_Scalar_Range (Implicit_Base,
9523 Make_Range (Loc,
9524 Low_Bound => Lo,
9525 High_Bound => Hi));
9527 Conditional_Delay (Derived_Type, Parent_Type);
9529 Set_Ekind (Derived_Type, E_Enumeration_Subtype);
9530 Set_Etype (Derived_Type, Implicit_Base);
9531 Set_Size_Info (Derived_Type, Parent_Type);
9533 if Unknown_RM_Size (Derived_Type) then
9534 Set_RM_Size (Derived_Type, RM_Size (Parent_Type));
9535 end if;
9537 Set_Is_Character_Type (Derived_Type, True);
9539 if Nkind (Indic) /= N_Subtype_Indication then
9541 -- If no explicit constraint, the bounds are those
9542 -- of the parent type.
9544 Lo := New_Copy_Tree (Type_Low_Bound (Parent_Type));
9545 Hi := New_Copy_Tree (Type_High_Bound (Parent_Type));
9546 Set_Scalar_Range (Derived_Type, Make_Range (Loc, Lo, Hi));
9547 end if;
9549 Convert_Scalar_Bounds (N, Parent_Type, Derived_Type, Loc);
9551 -- Because the implicit base is used in the conversion of the bounds,
9552 -- we have to freeze it now. This is similar to what is done for
9553 -- numeric types, and it equally suspicious, but otherwise a non-
9554 -- static bound will have a reference to an unfrozen type, which is
9555 -- rejected by Gigi (???).
9557 Freeze_Before (N, Implicit_Base);
9558 end Derived_Standard_Character;
9560 ------------------------------
9561 -- Derived_Type_Declaration --
9562 ------------------------------
9564 procedure Derived_Type_Declaration
9565 (T : Entity_Id;
9566 N : Node_Id;
9567 Is_Completion : Boolean)
9569 Def : constant Node_Id := Type_Definition (N);
9570 Indic : constant Node_Id := Subtype_Indication (Def);
9571 Extension : constant Node_Id := Record_Extension_Part (Def);
9572 Parent_Type : Entity_Id;
9573 Parent_Scope : Entity_Id;
9574 Taggd : Boolean;
9576 function Comes_From_Generic (Typ : Entity_Id) return Boolean;
9577 -- Check whether the parent type is a generic formal, or derives
9578 -- directly or indirectly from one.
9580 ------------------------
9581 -- Comes_From_Generic --
9582 ------------------------
9584 function Comes_From_Generic (Typ : Entity_Id) return Boolean is
9585 begin
9586 if Is_Generic_Type (Typ) then
9587 return True;
9589 elsif Is_Generic_Type (Root_Type (Parent_Type)) then
9590 return True;
9592 elsif Is_Private_Type (Typ)
9593 and then Present (Full_View (Typ))
9594 and then Is_Generic_Type (Root_Type (Full_View (Typ)))
9595 then
9596 return True;
9598 elsif Is_Generic_Actual_Type (Typ) then
9599 return True;
9601 else
9602 return False;
9603 end if;
9604 end Comes_From_Generic;
9606 -- Start of processing for Derived_Type_Declaration
9608 begin
9609 Parent_Type := Find_Type_Of_Subtype_Indic (Indic);
9611 if Parent_Type = Any_Type
9612 or else Etype (Parent_Type) = Any_Type
9613 or else (Is_Class_Wide_Type (Parent_Type)
9614 and then Etype (Parent_Type) = T)
9615 then
9616 -- If Parent_Type is undefined or illegal, make new type into a
9617 -- subtype of Any_Type, and set a few attributes to prevent cascaded
9618 -- errors. If this is a self-definition, emit error now.
9620 if T = Parent_Type
9621 or else T = Etype (Parent_Type)
9622 then
9623 Error_Msg_N ("type cannot be used in its own definition", Indic);
9624 end if;
9626 Set_Ekind (T, Ekind (Parent_Type));
9627 Set_Etype (T, Any_Type);
9628 Set_Scalar_Range (T, Scalar_Range (Any_Type));
9630 if Is_Tagged_Type (T) then
9631 Set_Primitive_Operations (T, New_Elmt_List);
9632 end if;
9634 return;
9636 -- Ada 2005 (AI-231): Static check
9638 elsif Is_Access_Type (Parent_Type)
9639 and then Null_Exclusion_Present (Type_Definition (N))
9640 and then Can_Never_Be_Null (Parent_Type)
9641 then
9642 Error_Msg_N ("(Ada 2005) null exclusion not allowed if parent is "
9643 & "already non-null", Type_Definition (N));
9644 end if;
9646 -- Only composite types other than array types are allowed to have
9647 -- discriminants.
9649 if Present (Discriminant_Specifications (N))
9650 and then (Is_Elementary_Type (Parent_Type)
9651 or else Is_Array_Type (Parent_Type))
9652 and then not Error_Posted (N)
9653 then
9654 Error_Msg_N
9655 ("elementary or array type cannot have discriminants",
9656 Defining_Identifier (First (Discriminant_Specifications (N))));
9657 Set_Has_Discriminants (T, False);
9658 end if;
9660 -- In Ada 83, a derived type defined in a package specification cannot
9661 -- be used for further derivation until the end of its visible part.
9662 -- Note that derivation in the private part of the package is allowed.
9664 if Ada_Version = Ada_83
9665 and then Is_Derived_Type (Parent_Type)
9666 and then In_Visible_Part (Scope (Parent_Type))
9667 then
9668 if Ada_Version = Ada_83 and then Comes_From_Source (Indic) then
9669 Error_Msg_N
9670 ("(Ada 83): premature use of type for derivation", Indic);
9671 end if;
9672 end if;
9674 -- Check for early use of incomplete or private type
9676 if Ekind (Parent_Type) = E_Void
9677 or else Ekind (Parent_Type) = E_Incomplete_Type
9678 then
9679 Error_Msg_N ("premature derivation of incomplete type", Indic);
9680 return;
9682 elsif (Is_Incomplete_Or_Private_Type (Parent_Type)
9683 and then not Comes_From_Generic (Parent_Type))
9684 or else Has_Private_Component (Parent_Type)
9685 then
9686 -- The ancestor type of a formal type can be incomplete, in which
9687 -- case only the operations of the partial view are available in
9688 -- the generic. Subsequent checks may be required when the full
9689 -- view is analyzed, to verify that derivation from a tagged type
9690 -- has an extension.
9692 if Nkind (Original_Node (N)) = N_Formal_Type_Declaration then
9693 null;
9695 elsif No (Underlying_Type (Parent_Type))
9696 or else Has_Private_Component (Parent_Type)
9697 then
9698 Error_Msg_N
9699 ("premature derivation of derived or private type", Indic);
9701 -- Flag the type itself as being in error, this prevents some
9702 -- nasty problems with subsequent uses of the malformed type.
9704 Set_Error_Posted (T);
9706 -- Check that within the immediate scope of an untagged partial
9707 -- view it's illegal to derive from the partial view if the
9708 -- full view is tagged. (7.3(7))
9710 -- We verify that the Parent_Type is a partial view by checking
9711 -- that it is not a Full_Type_Declaration (i.e. a private type or
9712 -- private extension declaration), to distinguish a partial view
9713 -- from a derivation from a private type which also appears as
9714 -- E_Private_Type.
9716 elsif Present (Full_View (Parent_Type))
9717 and then Nkind (Parent (Parent_Type)) /= N_Full_Type_Declaration
9718 and then not Is_Tagged_Type (Parent_Type)
9719 and then Is_Tagged_Type (Full_View (Parent_Type))
9720 then
9721 Parent_Scope := Scope (T);
9722 while Present (Parent_Scope)
9723 and then Parent_Scope /= Standard_Standard
9724 loop
9725 if Parent_Scope = Scope (Parent_Type) then
9726 Error_Msg_N
9727 ("premature derivation from type with tagged full view",
9728 Indic);
9729 end if;
9731 Parent_Scope := Scope (Parent_Scope);
9732 end loop;
9733 end if;
9734 end if;
9736 -- Check that form of derivation is appropriate
9738 Taggd := Is_Tagged_Type (Parent_Type);
9740 -- Perhaps the parent type should be changed to the class-wide type's
9741 -- specific type in this case to prevent cascading errors ???
9743 if Present (Extension) and then Is_Class_Wide_Type (Parent_Type) then
9744 Error_Msg_N ("parent type must not be a class-wide type", Indic);
9745 return;
9746 end if;
9748 if Present (Extension) and then not Taggd then
9749 Error_Msg_N
9750 ("type derived from untagged type cannot have extension", Indic);
9752 elsif No (Extension) and then Taggd then
9754 -- If this declaration is within a private part (or body) of a
9755 -- generic instantiation then the derivation is allowed (the parent
9756 -- type can only appear tagged in this case if it's a generic actual
9757 -- type, since it would otherwise have been rejected in the analysis
9758 -- of the generic template).
9760 if not Is_Generic_Actual_Type (Parent_Type)
9761 or else In_Visible_Part (Scope (Parent_Type))
9762 then
9763 Error_Msg_N
9764 ("type derived from tagged type must have extension", Indic);
9765 end if;
9766 end if;
9768 Build_Derived_Type (N, Parent_Type, T, Is_Completion);
9769 end Derived_Type_Declaration;
9771 ----------------------------------
9772 -- Enumeration_Type_Declaration --
9773 ----------------------------------
9775 procedure Enumeration_Type_Declaration (T : Entity_Id; Def : Node_Id) is
9776 Ev : Uint;
9777 L : Node_Id;
9778 R_Node : Node_Id;
9779 B_Node : Node_Id;
9781 begin
9782 -- Create identifier node representing lower bound
9784 B_Node := New_Node (N_Identifier, Sloc (Def));
9785 L := First (Literals (Def));
9786 Set_Chars (B_Node, Chars (L));
9787 Set_Entity (B_Node, L);
9788 Set_Etype (B_Node, T);
9789 Set_Is_Static_Expression (B_Node, True);
9791 R_Node := New_Node (N_Range, Sloc (Def));
9792 Set_Low_Bound (R_Node, B_Node);
9794 Set_Ekind (T, E_Enumeration_Type);
9795 Set_First_Literal (T, L);
9796 Set_Etype (T, T);
9797 Set_Is_Constrained (T);
9799 Ev := Uint_0;
9801 -- Loop through literals of enumeration type setting pos and rep values
9802 -- except that if the Ekind is already set, then it means that the
9803 -- literal was already constructed (case of a derived type declaration
9804 -- and we should not disturb the Pos and Rep values.
9806 while Present (L) loop
9807 if Ekind (L) /= E_Enumeration_Literal then
9808 Set_Ekind (L, E_Enumeration_Literal);
9809 Set_Enumeration_Pos (L, Ev);
9810 Set_Enumeration_Rep (L, Ev);
9811 Set_Is_Known_Valid (L, True);
9812 end if;
9814 Set_Etype (L, T);
9815 New_Overloaded_Entity (L);
9816 Generate_Definition (L);
9817 Set_Convention (L, Convention_Intrinsic);
9819 if Nkind (L) = N_Defining_Character_Literal then
9820 Set_Is_Character_Type (T, True);
9821 end if;
9823 Ev := Ev + 1;
9824 Next (L);
9825 end loop;
9827 -- Now create a node representing upper bound
9829 B_Node := New_Node (N_Identifier, Sloc (Def));
9830 Set_Chars (B_Node, Chars (Last (Literals (Def))));
9831 Set_Entity (B_Node, Last (Literals (Def)));
9832 Set_Etype (B_Node, T);
9833 Set_Is_Static_Expression (B_Node, True);
9835 Set_High_Bound (R_Node, B_Node);
9836 Set_Scalar_Range (T, R_Node);
9837 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
9838 Set_Enum_Esize (T);
9840 -- Set Discard_Names if configuration pragma set, or if there is
9841 -- a parameterless pragma in the current declarative region
9843 if Global_Discard_Names
9844 or else Discard_Names (Scope (T))
9845 then
9846 Set_Discard_Names (T);
9847 end if;
9849 -- Process end label if there is one
9851 if Present (Def) then
9852 Process_End_Label (Def, 'e', T);
9853 end if;
9854 end Enumeration_Type_Declaration;
9856 ---------------------------------
9857 -- Expand_To_Stored_Constraint --
9858 ---------------------------------
9860 function Expand_To_Stored_Constraint
9861 (Typ : Entity_Id;
9862 Constraint : Elist_Id) return Elist_Id
9864 Explicitly_Discriminated_Type : Entity_Id;
9865 Expansion : Elist_Id;
9866 Discriminant : Entity_Id;
9868 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id;
9869 -- Find the nearest type that actually specifies discriminants
9871 ---------------------------------
9872 -- Type_With_Explicit_Discrims --
9873 ---------------------------------
9875 function Type_With_Explicit_Discrims (Id : Entity_Id) return Entity_Id is
9876 Typ : constant E := Base_Type (Id);
9878 begin
9879 if Ekind (Typ) in Incomplete_Or_Private_Kind then
9880 if Present (Full_View (Typ)) then
9881 return Type_With_Explicit_Discrims (Full_View (Typ));
9882 end if;
9884 else
9885 if Has_Discriminants (Typ) then
9886 return Typ;
9887 end if;
9888 end if;
9890 if Etype (Typ) = Typ then
9891 return Empty;
9892 elsif Has_Discriminants (Typ) then
9893 return Typ;
9894 else
9895 return Type_With_Explicit_Discrims (Etype (Typ));
9896 end if;
9898 end Type_With_Explicit_Discrims;
9900 -- Start of processing for Expand_To_Stored_Constraint
9902 begin
9903 if No (Constraint)
9904 or else Is_Empty_Elmt_List (Constraint)
9905 then
9906 return No_Elist;
9907 end if;
9909 Explicitly_Discriminated_Type := Type_With_Explicit_Discrims (Typ);
9911 if No (Explicitly_Discriminated_Type) then
9912 return No_Elist;
9913 end if;
9915 Expansion := New_Elmt_List;
9917 Discriminant :=
9918 First_Stored_Discriminant (Explicitly_Discriminated_Type);
9919 while Present (Discriminant) loop
9920 Append_Elmt (
9921 Get_Discriminant_Value (
9922 Discriminant, Explicitly_Discriminated_Type, Constraint),
9923 Expansion);
9924 Next_Stored_Discriminant (Discriminant);
9925 end loop;
9927 return Expansion;
9928 end Expand_To_Stored_Constraint;
9930 --------------------
9931 -- Find_Type_Name --
9932 --------------------
9934 function Find_Type_Name (N : Node_Id) return Entity_Id is
9935 Id : constant Entity_Id := Defining_Identifier (N);
9936 Prev : Entity_Id;
9937 New_Id : Entity_Id;
9938 Prev_Par : Node_Id;
9940 begin
9941 -- Find incomplete declaration, if one was given
9943 Prev := Current_Entity_In_Scope (Id);
9945 if Present (Prev) then
9947 -- Previous declaration exists. Error if not incomplete/private case
9948 -- except if previous declaration is implicit, etc. Enter_Name will
9949 -- emit error if appropriate.
9951 Prev_Par := Parent (Prev);
9953 if not Is_Incomplete_Or_Private_Type (Prev) then
9954 Enter_Name (Id);
9955 New_Id := Id;
9957 elsif Nkind (N) /= N_Full_Type_Declaration
9958 and then Nkind (N) /= N_Task_Type_Declaration
9959 and then Nkind (N) /= N_Protected_Type_Declaration
9960 then
9961 -- Completion must be a full type declarations (RM 7.3(4))
9963 Error_Msg_Sloc := Sloc (Prev);
9964 Error_Msg_NE ("invalid completion of }", Id, Prev);
9966 -- Set scope of Id to avoid cascaded errors. Entity is never
9967 -- examined again, except when saving globals in generics.
9969 Set_Scope (Id, Current_Scope);
9970 New_Id := Id;
9972 -- Case of full declaration of incomplete type
9974 elsif Ekind (Prev) = E_Incomplete_Type then
9976 -- Indicate that the incomplete declaration has a matching full
9977 -- declaration. The defining occurrence of the incomplete
9978 -- declaration remains the visible one, and the procedure
9979 -- Get_Full_View dereferences it whenever the type is used.
9981 if Present (Full_View (Prev)) then
9982 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
9983 end if;
9985 Set_Full_View (Prev, Id);
9986 Append_Entity (Id, Current_Scope);
9987 Set_Is_Public (Id, Is_Public (Prev));
9988 Set_Is_Internal (Id);
9989 New_Id := Prev;
9991 -- Case of full declaration of private type
9993 else
9994 if Nkind (Parent (Prev)) /= N_Private_Extension_Declaration then
9995 if Etype (Prev) /= Prev then
9997 -- Prev is a private subtype or a derived type, and needs
9998 -- no completion.
10000 Error_Msg_NE ("invalid redeclaration of }", Id, Prev);
10001 New_Id := Id;
10003 elsif Ekind (Prev) = E_Private_Type
10004 and then
10005 (Nkind (N) = N_Task_Type_Declaration
10006 or else Nkind (N) = N_Protected_Type_Declaration)
10007 then
10008 Error_Msg_N
10009 ("completion of nonlimited type cannot be limited", N);
10010 end if;
10012 elsif Nkind (N) /= N_Full_Type_Declaration
10013 or else Nkind (Type_Definition (N)) /= N_Derived_Type_Definition
10014 then
10015 Error_Msg_N
10016 ("full view of private extension must be an extension", N);
10018 elsif not (Abstract_Present (Parent (Prev)))
10019 and then Abstract_Present (Type_Definition (N))
10020 then
10021 Error_Msg_N
10022 ("full view of non-abstract extension cannot be abstract", N);
10023 end if;
10025 if not In_Private_Part (Current_Scope) then
10026 Error_Msg_N
10027 ("declaration of full view must appear in private part", N);
10028 end if;
10030 Copy_And_Swap (Prev, Id);
10031 Set_Has_Private_Declaration (Prev);
10032 Set_Has_Private_Declaration (Id);
10034 -- If no error, propagate freeze_node from private to full view.
10035 -- It may have been generated for an early operational item.
10037 if Present (Freeze_Node (Id))
10038 and then Serious_Errors_Detected = 0
10039 and then No (Full_View (Id))
10040 then
10041 Set_Freeze_Node (Prev, Freeze_Node (Id));
10042 Set_Freeze_Node (Id, Empty);
10043 Set_First_Rep_Item (Prev, First_Rep_Item (Id));
10044 end if;
10046 Set_Full_View (Id, Prev);
10047 New_Id := Prev;
10048 end if;
10050 -- Verify that full declaration conforms to incomplete one
10052 if Is_Incomplete_Or_Private_Type (Prev)
10053 and then Present (Discriminant_Specifications (Prev_Par))
10054 then
10055 if Present (Discriminant_Specifications (N)) then
10056 if Ekind (Prev) = E_Incomplete_Type then
10057 Check_Discriminant_Conformance (N, Prev, Prev);
10058 else
10059 Check_Discriminant_Conformance (N, Prev, Id);
10060 end if;
10062 else
10063 Error_Msg_N
10064 ("missing discriminants in full type declaration", N);
10066 -- To avoid cascaded errors on subsequent use, share the
10067 -- discriminants of the partial view.
10069 Set_Discriminant_Specifications (N,
10070 Discriminant_Specifications (Prev_Par));
10071 end if;
10072 end if;
10074 -- A prior untagged private type can have an associated class-wide
10075 -- type due to use of the class attribute, and in this case also the
10076 -- full type is required to be tagged.
10078 if Is_Type (Prev)
10079 and then (Is_Tagged_Type (Prev)
10080 or else Present (Class_Wide_Type (Prev)))
10081 then
10082 -- The full declaration is either a tagged record or an
10083 -- extension otherwise this is an error
10085 if Nkind (Type_Definition (N)) = N_Record_Definition then
10086 if not Tagged_Present (Type_Definition (N)) then
10087 Error_Msg_NE
10088 ("full declaration of } must be tagged", Prev, Id);
10089 Set_Is_Tagged_Type (Id);
10090 Set_Primitive_Operations (Id, New_Elmt_List);
10091 end if;
10093 elsif Nkind (Type_Definition (N)) = N_Derived_Type_Definition then
10094 if No (Record_Extension_Part (Type_Definition (N))) then
10095 Error_Msg_NE (
10096 "full declaration of } must be a record extension",
10097 Prev, Id);
10098 Set_Is_Tagged_Type (Id);
10099 Set_Primitive_Operations (Id, New_Elmt_List);
10100 end if;
10102 else
10103 Error_Msg_NE
10104 ("full declaration of } must be a tagged type", Prev, Id);
10106 end if;
10107 end if;
10109 return New_Id;
10111 else
10112 -- New type declaration
10114 Enter_Name (Id);
10115 return Id;
10116 end if;
10117 end Find_Type_Name;
10119 -------------------------
10120 -- Find_Type_Of_Object --
10121 -------------------------
10123 function Find_Type_Of_Object
10124 (Obj_Def : Node_Id;
10125 Related_Nod : Node_Id) return Entity_Id
10127 Def_Kind : constant Node_Kind := Nkind (Obj_Def);
10128 P : Node_Id := Parent (Obj_Def);
10129 T : Entity_Id;
10130 Nam : Name_Id;
10132 begin
10133 -- If the parent is a component_definition node we climb to the
10134 -- component_declaration node
10136 if Nkind (P) = N_Component_Definition then
10137 P := Parent (P);
10138 end if;
10140 -- Case of an anonymous array subtype
10142 if Def_Kind = N_Constrained_Array_Definition
10143 or else Def_Kind = N_Unconstrained_Array_Definition
10144 then
10145 T := Empty;
10146 Array_Type_Declaration (T, Obj_Def);
10148 -- Create an explicit subtype whenever possible
10150 elsif Nkind (P) /= N_Component_Declaration
10151 and then Def_Kind = N_Subtype_Indication
10152 then
10153 -- Base name of subtype on object name, which will be unique in
10154 -- the current scope.
10156 -- If this is a duplicate declaration, return base type, to avoid
10157 -- generating duplicate anonymous types.
10159 if Error_Posted (P) then
10160 Analyze (Subtype_Mark (Obj_Def));
10161 return Entity (Subtype_Mark (Obj_Def));
10162 end if;
10164 Nam :=
10165 New_External_Name
10166 (Chars (Defining_Identifier (Related_Nod)), 'S', 0, 'T');
10168 T := Make_Defining_Identifier (Sloc (P), Nam);
10170 Insert_Action (Obj_Def,
10171 Make_Subtype_Declaration (Sloc (P),
10172 Defining_Identifier => T,
10173 Subtype_Indication => Relocate_Node (Obj_Def)));
10175 -- This subtype may need freezing, and this will not be done
10176 -- automatically if the object declaration is not in declarative
10177 -- part. Since this is an object declaration, the type cannot always
10178 -- be frozen here. Deferred constants do not freeze their type
10179 -- (which often enough will be private).
10181 if Nkind (P) = N_Object_Declaration
10182 and then Constant_Present (P)
10183 and then No (Expression (P))
10184 then
10185 null;
10187 else
10188 Insert_Actions (Obj_Def, Freeze_Entity (T, Sloc (P)));
10189 end if;
10191 else
10192 T := Process_Subtype (Obj_Def, Related_Nod);
10193 end if;
10195 return T;
10196 end Find_Type_Of_Object;
10198 --------------------------------
10199 -- Find_Type_Of_Subtype_Indic --
10200 --------------------------------
10202 function Find_Type_Of_Subtype_Indic (S : Node_Id) return Entity_Id is
10203 Typ : Entity_Id;
10205 begin
10206 -- Case of subtype mark with a constraint
10208 if Nkind (S) = N_Subtype_Indication then
10209 Find_Type (Subtype_Mark (S));
10210 Typ := Entity (Subtype_Mark (S));
10212 if not
10213 Is_Valid_Constraint_Kind (Ekind (Typ), Nkind (Constraint (S)))
10214 then
10215 Error_Msg_N
10216 ("incorrect constraint for this kind of type", Constraint (S));
10217 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
10218 end if;
10220 -- Otherwise we have a subtype mark without a constraint
10222 elsif Error_Posted (S) then
10223 Rewrite (S, New_Occurrence_Of (Any_Id, Sloc (S)));
10224 return Any_Type;
10226 else
10227 Find_Type (S);
10228 Typ := Entity (S);
10229 end if;
10231 if Typ = Standard_Wide_Character
10232 or else Typ = Standard_Wide_Wide_Character
10233 or else Typ = Standard_Wide_String
10234 or else Typ = Standard_Wide_Wide_String
10235 then
10236 Check_Restriction (No_Wide_Characters, S);
10237 end if;
10239 return Typ;
10240 end Find_Type_Of_Subtype_Indic;
10242 -------------------------------------
10243 -- Floating_Point_Type_Declaration --
10244 -------------------------------------
10246 procedure Floating_Point_Type_Declaration (T : Entity_Id; Def : Node_Id) is
10247 Digs : constant Node_Id := Digits_Expression (Def);
10248 Digs_Val : Uint;
10249 Base_Typ : Entity_Id;
10250 Implicit_Base : Entity_Id;
10251 Bound : Node_Id;
10253 function Can_Derive_From (E : Entity_Id) return Boolean;
10254 -- Find if given digits value allows derivation from specified type
10256 ---------------------
10257 -- Can_Derive_From --
10258 ---------------------
10260 function Can_Derive_From (E : Entity_Id) return Boolean is
10261 Spec : constant Entity_Id := Real_Range_Specification (Def);
10263 begin
10264 if Digs_Val > Digits_Value (E) then
10265 return False;
10266 end if;
10268 if Present (Spec) then
10269 if Expr_Value_R (Type_Low_Bound (E)) >
10270 Expr_Value_R (Low_Bound (Spec))
10271 then
10272 return False;
10273 end if;
10275 if Expr_Value_R (Type_High_Bound (E)) <
10276 Expr_Value_R (High_Bound (Spec))
10277 then
10278 return False;
10279 end if;
10280 end if;
10282 return True;
10283 end Can_Derive_From;
10285 -- Start of processing for Floating_Point_Type_Declaration
10287 begin
10288 Check_Restriction (No_Floating_Point, Def);
10290 -- Create an implicit base type
10292 Implicit_Base :=
10293 Create_Itype (E_Floating_Point_Type, Parent (Def), T, 'B');
10295 -- Analyze and verify digits value
10297 Analyze_And_Resolve (Digs, Any_Integer);
10298 Check_Digits_Expression (Digs);
10299 Digs_Val := Expr_Value (Digs);
10301 -- Process possible range spec and find correct type to derive from
10303 Process_Real_Range_Specification (Def);
10305 if Can_Derive_From (Standard_Short_Float) then
10306 Base_Typ := Standard_Short_Float;
10307 elsif Can_Derive_From (Standard_Float) then
10308 Base_Typ := Standard_Float;
10309 elsif Can_Derive_From (Standard_Long_Float) then
10310 Base_Typ := Standard_Long_Float;
10311 elsif Can_Derive_From (Standard_Long_Long_Float) then
10312 Base_Typ := Standard_Long_Long_Float;
10314 -- If we can't derive from any existing type, use long_long_float
10315 -- and give appropriate message explaining the problem.
10317 else
10318 Base_Typ := Standard_Long_Long_Float;
10320 if Digs_Val >= Digits_Value (Standard_Long_Long_Float) then
10321 Error_Msg_Uint_1 := Digits_Value (Standard_Long_Long_Float);
10322 Error_Msg_N ("digits value out of range, maximum is ^", Digs);
10324 else
10325 Error_Msg_N
10326 ("range too large for any predefined type",
10327 Real_Range_Specification (Def));
10328 end if;
10329 end if;
10331 -- If there are bounds given in the declaration use them as the bounds
10332 -- of the type, otherwise use the bounds of the predefined base type
10333 -- that was chosen based on the Digits value.
10335 if Present (Real_Range_Specification (Def)) then
10336 Set_Scalar_Range (T, Real_Range_Specification (Def));
10337 Set_Is_Constrained (T);
10339 -- The bounds of this range must be converted to machine numbers
10340 -- in accordance with RM 4.9(38).
10342 Bound := Type_Low_Bound (T);
10344 if Nkind (Bound) = N_Real_Literal then
10345 Set_Realval
10346 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
10347 Set_Is_Machine_Number (Bound);
10348 end if;
10350 Bound := Type_High_Bound (T);
10352 if Nkind (Bound) = N_Real_Literal then
10353 Set_Realval
10354 (Bound, Machine (Base_Typ, Realval (Bound), Round, Bound));
10355 Set_Is_Machine_Number (Bound);
10356 end if;
10358 else
10359 Set_Scalar_Range (T, Scalar_Range (Base_Typ));
10360 end if;
10362 -- Complete definition of implicit base and declared first subtype
10364 Set_Etype (Implicit_Base, Base_Typ);
10366 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
10367 Set_Size_Info (Implicit_Base, (Base_Typ));
10368 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
10369 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
10370 Set_Digits_Value (Implicit_Base, Digits_Value (Base_Typ));
10371 Set_Vax_Float (Implicit_Base, Vax_Float (Base_Typ));
10373 Set_Ekind (T, E_Floating_Point_Subtype);
10374 Set_Etype (T, Implicit_Base);
10376 Set_Size_Info (T, (Implicit_Base));
10377 Set_RM_Size (T, RM_Size (Implicit_Base));
10378 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
10379 Set_Digits_Value (T, Digs_Val);
10380 end Floating_Point_Type_Declaration;
10382 ----------------------------
10383 -- Get_Discriminant_Value --
10384 ----------------------------
10386 -- This is the situation:
10388 -- There is a non-derived type
10390 -- type T0 (Dx, Dy, Dz...)
10392 -- There are zero or more levels of derivation, with each derivation
10393 -- either purely inheriting the discriminants, or defining its own.
10395 -- type Ti is new Ti-1
10396 -- or
10397 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
10398 -- or
10399 -- subtype Ti is ...
10401 -- The subtype issue is avoided by the use of Original_Record_Component,
10402 -- and the fact that derived subtypes also derive the constraints.
10404 -- This chain leads back from
10406 -- Typ_For_Constraint
10408 -- Typ_For_Constraint has discriminants, and the value for each
10409 -- discriminant is given by its corresponding Elmt of Constraints.
10411 -- Discriminant is some discriminant in this hierarchy
10413 -- We need to return its value
10415 -- We do this by recursively searching each level, and looking for
10416 -- Discriminant. Once we get to the bottom, we start backing up
10417 -- returning the value for it which may in turn be a discriminant
10418 -- further up, so on the backup we continue the substitution.
10420 function Get_Discriminant_Value
10421 (Discriminant : Entity_Id;
10422 Typ_For_Constraint : Entity_Id;
10423 Constraint : Elist_Id) return Node_Id
10425 function Search_Derivation_Levels
10426 (Ti : Entity_Id;
10427 Discrim_Values : Elist_Id;
10428 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id;
10429 -- This is the routine that performs the recursive search of levels
10430 -- as described above.
10432 ------------------------------
10433 -- Search_Derivation_Levels --
10434 ------------------------------
10436 function Search_Derivation_Levels
10437 (Ti : Entity_Id;
10438 Discrim_Values : Elist_Id;
10439 Stored_Discrim_Values : Boolean) return Node_Or_Entity_Id
10441 Assoc : Elmt_Id;
10442 Disc : Entity_Id;
10443 Result : Node_Or_Entity_Id;
10444 Result_Entity : Node_Id;
10446 begin
10447 -- If inappropriate type, return Error, this happens only in
10448 -- cascaded error situations, and we want to avoid a blow up.
10450 if not Is_Composite_Type (Ti) or else Is_Array_Type (Ti) then
10451 return Error;
10452 end if;
10454 -- Look deeper if possible. Use Stored_Constraints only for
10455 -- untagged types. For tagged types use the given constraint.
10456 -- This asymmetry needs explanation???
10458 if not Stored_Discrim_Values
10459 and then Present (Stored_Constraint (Ti))
10460 and then not Is_Tagged_Type (Ti)
10461 then
10462 Result :=
10463 Search_Derivation_Levels (Ti, Stored_Constraint (Ti), True);
10464 else
10465 declare
10466 Td : constant Entity_Id := Etype (Ti);
10468 begin
10469 if Td = Ti then
10470 Result := Discriminant;
10472 else
10473 if Present (Stored_Constraint (Ti)) then
10474 Result :=
10475 Search_Derivation_Levels
10476 (Td, Stored_Constraint (Ti), True);
10477 else
10478 Result :=
10479 Search_Derivation_Levels
10480 (Td, Discrim_Values, Stored_Discrim_Values);
10481 end if;
10482 end if;
10483 end;
10484 end if;
10486 -- Extra underlying places to search, if not found above. For
10487 -- concurrent types, the relevant discriminant appears in the
10488 -- corresponding record. For a type derived from a private type
10489 -- without discriminant, the full view inherits the discriminants
10490 -- of the full view of the parent.
10492 if Result = Discriminant then
10493 if Is_Concurrent_Type (Ti)
10494 and then Present (Corresponding_Record_Type (Ti))
10495 then
10496 Result :=
10497 Search_Derivation_Levels (
10498 Corresponding_Record_Type (Ti),
10499 Discrim_Values,
10500 Stored_Discrim_Values);
10502 elsif Is_Private_Type (Ti)
10503 and then not Has_Discriminants (Ti)
10504 and then Present (Full_View (Ti))
10505 and then Etype (Full_View (Ti)) /= Ti
10506 then
10507 Result :=
10508 Search_Derivation_Levels (
10509 Full_View (Ti),
10510 Discrim_Values,
10511 Stored_Discrim_Values);
10512 end if;
10513 end if;
10515 -- If Result is not a (reference to a) discriminant, return it,
10516 -- otherwise set Result_Entity to the discriminant.
10518 if Nkind (Result) = N_Defining_Identifier then
10519 pragma Assert (Result = Discriminant);
10520 Result_Entity := Result;
10522 else
10523 if not Denotes_Discriminant (Result) then
10524 return Result;
10525 end if;
10527 Result_Entity := Entity (Result);
10528 end if;
10530 -- See if this level of derivation actually has discriminants
10531 -- because tagged derivations can add them, hence the lower
10532 -- levels need not have any.
10534 if not Has_Discriminants (Ti) then
10535 return Result;
10536 end if;
10538 -- Scan Ti's discriminants for Result_Entity,
10539 -- and return its corresponding value, if any.
10541 Result_Entity := Original_Record_Component (Result_Entity);
10543 Assoc := First_Elmt (Discrim_Values);
10545 if Stored_Discrim_Values then
10546 Disc := First_Stored_Discriminant (Ti);
10547 else
10548 Disc := First_Discriminant (Ti);
10549 end if;
10551 while Present (Disc) loop
10552 pragma Assert (Present (Assoc));
10554 if Original_Record_Component (Disc) = Result_Entity then
10555 return Node (Assoc);
10556 end if;
10558 Next_Elmt (Assoc);
10560 if Stored_Discrim_Values then
10561 Next_Stored_Discriminant (Disc);
10562 else
10563 Next_Discriminant (Disc);
10564 end if;
10565 end loop;
10567 -- Could not find it
10569 return Result;
10570 end Search_Derivation_Levels;
10572 Result : Node_Or_Entity_Id;
10574 -- Start of processing for Get_Discriminant_Value
10576 begin
10577 -- ??? This routine is a gigantic mess and will be deleted. For the
10578 -- time being just test for the trivial case before calling recurse.
10580 if Base_Type (Scope (Discriminant)) = Base_Type (Typ_For_Constraint) then
10581 declare
10582 D : Entity_Id := First_Discriminant (Typ_For_Constraint);
10583 E : Elmt_Id := First_Elmt (Constraint);
10585 begin
10586 while Present (D) loop
10587 if Chars (D) = Chars (Discriminant) then
10588 return Node (E);
10589 end if;
10591 Next_Discriminant (D);
10592 Next_Elmt (E);
10593 end loop;
10594 end;
10595 end if;
10597 Result := Search_Derivation_Levels
10598 (Typ_For_Constraint, Constraint, False);
10600 -- ??? hack to disappear when this routine is gone
10602 if Nkind (Result) = N_Defining_Identifier then
10603 declare
10604 D : Entity_Id := First_Discriminant (Typ_For_Constraint);
10605 E : Elmt_Id := First_Elmt (Constraint);
10607 begin
10608 while Present (D) loop
10609 if Corresponding_Discriminant (D) = Discriminant then
10610 return Node (E);
10611 end if;
10613 Next_Discriminant (D);
10614 Next_Elmt (E);
10615 end loop;
10616 end;
10617 end if;
10619 pragma Assert (Nkind (Result) /= N_Defining_Identifier);
10620 return Result;
10621 end Get_Discriminant_Value;
10623 --------------------------
10624 -- Has_Range_Constraint --
10625 --------------------------
10627 function Has_Range_Constraint (N : Node_Id) return Boolean is
10628 C : constant Node_Id := Constraint (N);
10630 begin
10631 if Nkind (C) = N_Range_Constraint then
10632 return True;
10634 elsif Nkind (C) = N_Digits_Constraint then
10635 return
10636 Is_Decimal_Fixed_Point_Type (Entity (Subtype_Mark (N)))
10637 or else
10638 Present (Range_Constraint (C));
10640 elsif Nkind (C) = N_Delta_Constraint then
10641 return Present (Range_Constraint (C));
10643 else
10644 return False;
10645 end if;
10646 end Has_Range_Constraint;
10648 ------------------------
10649 -- Inherit_Components --
10650 ------------------------
10652 function Inherit_Components
10653 (N : Node_Id;
10654 Parent_Base : Entity_Id;
10655 Derived_Base : Entity_Id;
10656 Is_Tagged : Boolean;
10657 Inherit_Discr : Boolean;
10658 Discs : Elist_Id) return Elist_Id
10660 Assoc_List : constant Elist_Id := New_Elmt_List;
10662 procedure Inherit_Component
10663 (Old_C : Entity_Id;
10664 Plain_Discrim : Boolean := False;
10665 Stored_Discrim : Boolean := False);
10666 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
10667 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
10668 -- True, Old_C is a stored discriminant. If they are both false then
10669 -- Old_C is a regular component.
10671 -----------------------
10672 -- Inherit_Component --
10673 -----------------------
10675 procedure Inherit_Component
10676 (Old_C : Entity_Id;
10677 Plain_Discrim : Boolean := False;
10678 Stored_Discrim : Boolean := False)
10680 New_C : constant Entity_Id := New_Copy (Old_C);
10682 Discrim : Entity_Id;
10683 Corr_Discrim : Entity_Id;
10685 begin
10686 pragma Assert (not Is_Tagged or else not Stored_Discrim);
10688 Set_Parent (New_C, Parent (Old_C));
10690 -- Regular discriminants and components must be inserted
10691 -- in the scope of the Derived_Base. Do it here.
10693 if not Stored_Discrim then
10694 Enter_Name (New_C);
10695 end if;
10697 -- For tagged types the Original_Record_Component must point to
10698 -- whatever this field was pointing to in the parent type. This has
10699 -- already been achieved by the call to New_Copy above.
10701 if not Is_Tagged then
10702 Set_Original_Record_Component (New_C, New_C);
10703 end if;
10705 -- If we have inherited a component then see if its Etype contains
10706 -- references to Parent_Base discriminants. In this case, replace
10707 -- these references with the constraints given in Discs. We do not
10708 -- do this for the partial view of private types because this is
10709 -- not needed (only the components of the full view will be used
10710 -- for code generation) and cause problem. We also avoid this
10711 -- transformation in some error situations.
10713 if Ekind (New_C) = E_Component then
10714 if (Is_Private_Type (Derived_Base)
10715 and then not Is_Generic_Type (Derived_Base))
10716 or else (Is_Empty_Elmt_List (Discs)
10717 and then not Expander_Active)
10718 then
10719 Set_Etype (New_C, Etype (Old_C));
10720 else
10721 Set_Etype
10722 (New_C,
10723 Constrain_Component_Type
10724 (Old_C, Derived_Base, N, Parent_Base, Discs));
10725 end if;
10726 end if;
10728 -- In derived tagged types it is illegal to reference a non
10729 -- discriminant component in the parent type. To catch this, mark
10730 -- these components with an Ekind of E_Void. This will be reset in
10731 -- Record_Type_Definition after processing the record extension of
10732 -- the derived type.
10734 if Is_Tagged and then Ekind (New_C) = E_Component then
10735 Set_Ekind (New_C, E_Void);
10736 end if;
10738 if Plain_Discrim then
10739 Set_Corresponding_Discriminant (New_C, Old_C);
10740 Build_Discriminal (New_C);
10742 -- If we are explicitly inheriting a stored discriminant it will be
10743 -- completely hidden.
10745 elsif Stored_Discrim then
10746 Set_Corresponding_Discriminant (New_C, Empty);
10747 Set_Discriminal (New_C, Empty);
10748 Set_Is_Completely_Hidden (New_C);
10750 -- Set the Original_Record_Component of each discriminant in the
10751 -- derived base to point to the corresponding stored that we just
10752 -- created.
10754 Discrim := First_Discriminant (Derived_Base);
10755 while Present (Discrim) loop
10756 Corr_Discrim := Corresponding_Discriminant (Discrim);
10758 -- Corr_Discrimm could be missing in an error situation
10760 if Present (Corr_Discrim)
10761 and then Original_Record_Component (Corr_Discrim) = Old_C
10762 then
10763 Set_Original_Record_Component (Discrim, New_C);
10764 end if;
10766 Next_Discriminant (Discrim);
10767 end loop;
10769 Append_Entity (New_C, Derived_Base);
10770 end if;
10772 if not Is_Tagged then
10773 Append_Elmt (Old_C, Assoc_List);
10774 Append_Elmt (New_C, Assoc_List);
10775 end if;
10776 end Inherit_Component;
10778 -- Variables local to Inherit_Component
10780 Loc : constant Source_Ptr := Sloc (N);
10782 Parent_Discrim : Entity_Id;
10783 Stored_Discrim : Entity_Id;
10784 D : Entity_Id;
10785 Component : Entity_Id;
10787 -- Start of processing for Inherit_Components
10789 begin
10790 if not Is_Tagged then
10791 Append_Elmt (Parent_Base, Assoc_List);
10792 Append_Elmt (Derived_Base, Assoc_List);
10793 end if;
10795 -- Inherit parent discriminants if needed
10797 if Inherit_Discr then
10798 Parent_Discrim := First_Discriminant (Parent_Base);
10799 while Present (Parent_Discrim) loop
10800 Inherit_Component (Parent_Discrim, Plain_Discrim => True);
10801 Next_Discriminant (Parent_Discrim);
10802 end loop;
10803 end if;
10805 -- Create explicit stored discrims for untagged types when necessary
10807 if not Has_Unknown_Discriminants (Derived_Base)
10808 and then Has_Discriminants (Parent_Base)
10809 and then not Is_Tagged
10810 and then
10811 (not Inherit_Discr
10812 or else First_Discriminant (Parent_Base) /=
10813 First_Stored_Discriminant (Parent_Base))
10814 then
10815 Stored_Discrim := First_Stored_Discriminant (Parent_Base);
10816 while Present (Stored_Discrim) loop
10817 Inherit_Component (Stored_Discrim, Stored_Discrim => True);
10818 Next_Stored_Discriminant (Stored_Discrim);
10819 end loop;
10820 end if;
10822 -- See if we can apply the second transformation for derived types, as
10823 -- explained in point 6. in the comments above Build_Derived_Record_Type
10824 -- This is achieved by appending Derived_Base discriminants into Discs,
10825 -- which has the side effect of returning a non empty Discs list to the
10826 -- caller of Inherit_Components, which is what we want. This must be
10827 -- done for private derived types if there are explicit stored
10828 -- discriminants, to ensure that we can retrieve the values of the
10829 -- constraints provided in the ancestors.
10831 if Inherit_Discr
10832 and then Is_Empty_Elmt_List (Discs)
10833 and then Present (First_Discriminant (Derived_Base))
10834 and then
10835 (not Is_Private_Type (Derived_Base)
10836 or else Is_Completely_Hidden
10837 (First_Stored_Discriminant (Derived_Base))
10838 or else Is_Generic_Type (Derived_Base))
10839 then
10840 D := First_Discriminant (Derived_Base);
10841 while Present (D) loop
10842 Append_Elmt (New_Reference_To (D, Loc), Discs);
10843 Next_Discriminant (D);
10844 end loop;
10845 end if;
10847 -- Finally, inherit non-discriminant components unless they are not
10848 -- visible because defined or inherited from the full view of the
10849 -- parent. Don't inherit the _parent field of the parent type.
10851 Component := First_Entity (Parent_Base);
10852 while Present (Component) loop
10853 if Ekind (Component) /= E_Component
10854 or else Chars (Component) = Name_uParent
10855 then
10856 null;
10858 -- If the derived type is within the parent type's declarative
10859 -- region, then the components can still be inherited even though
10860 -- they aren't visible at this point. This can occur for cases
10861 -- such as within public child units where the components must
10862 -- become visible upon entering the child unit's private part.
10864 elsif not Is_Visible_Component (Component)
10865 and then not In_Open_Scopes (Scope (Parent_Base))
10866 then
10867 null;
10869 elsif Ekind (Derived_Base) = E_Private_Type
10870 or else Ekind (Derived_Base) = E_Limited_Private_Type
10871 then
10872 null;
10874 else
10875 Inherit_Component (Component);
10876 end if;
10878 Next_Entity (Component);
10879 end loop;
10881 -- For tagged derived types, inherited discriminants cannot be used in
10882 -- component declarations of the record extension part. To achieve this
10883 -- we mark the inherited discriminants as not visible.
10885 if Is_Tagged and then Inherit_Discr then
10886 D := First_Discriminant (Derived_Base);
10887 while Present (D) loop
10888 Set_Is_Immediately_Visible (D, False);
10889 Next_Discriminant (D);
10890 end loop;
10891 end if;
10893 return Assoc_List;
10894 end Inherit_Components;
10896 ------------------------------
10897 -- Is_Valid_Constraint_Kind --
10898 ------------------------------
10900 function Is_Valid_Constraint_Kind
10901 (T_Kind : Type_Kind;
10902 Constraint_Kind : Node_Kind) return Boolean
10904 begin
10905 case T_Kind is
10906 when Enumeration_Kind |
10907 Integer_Kind =>
10908 return Constraint_Kind = N_Range_Constraint;
10910 when Decimal_Fixed_Point_Kind =>
10911 return
10912 Constraint_Kind = N_Digits_Constraint
10913 or else
10914 Constraint_Kind = N_Range_Constraint;
10916 when Ordinary_Fixed_Point_Kind =>
10917 return
10918 Constraint_Kind = N_Delta_Constraint
10919 or else
10920 Constraint_Kind = N_Range_Constraint;
10922 when Float_Kind =>
10923 return
10924 Constraint_Kind = N_Digits_Constraint
10925 or else
10926 Constraint_Kind = N_Range_Constraint;
10928 when Access_Kind |
10929 Array_Kind |
10930 E_Record_Type |
10931 E_Record_Subtype |
10932 Class_Wide_Kind |
10933 E_Incomplete_Type |
10934 Private_Kind |
10935 Concurrent_Kind =>
10936 return Constraint_Kind = N_Index_Or_Discriminant_Constraint;
10938 when others =>
10939 return True; -- Error will be detected later
10940 end case;
10941 end Is_Valid_Constraint_Kind;
10943 --------------------------
10944 -- Is_Visible_Component --
10945 --------------------------
10947 function Is_Visible_Component (C : Entity_Id) return Boolean is
10948 Original_Comp : Entity_Id := Empty;
10949 Original_Scope : Entity_Id;
10950 Type_Scope : Entity_Id;
10952 function Is_Local_Type (Typ : Entity_Id) return Boolean;
10953 -- Check whether parent type of inherited component is declared locally,
10954 -- possibly within a nested package or instance. The current scope is
10955 -- the derived record itself.
10957 -------------------
10958 -- Is_Local_Type --
10959 -------------------
10961 function Is_Local_Type (Typ : Entity_Id) return Boolean is
10962 Scop : Entity_Id := Scope (Typ);
10964 begin
10965 while Present (Scop)
10966 and then Scop /= Standard_Standard
10967 loop
10968 if Scop = Scope (Current_Scope) then
10969 return True;
10970 end if;
10972 Scop := Scope (Scop);
10973 end loop;
10975 return False;
10976 end Is_Local_Type;
10978 -- Start of processing for Is_Visible_Component
10980 begin
10981 if Ekind (C) = E_Component
10982 or else Ekind (C) = E_Discriminant
10983 then
10984 Original_Comp := Original_Record_Component (C);
10985 end if;
10987 if No (Original_Comp) then
10989 -- Premature usage, or previous error
10991 return False;
10993 else
10994 Original_Scope := Scope (Original_Comp);
10995 Type_Scope := Scope (Base_Type (Scope (C)));
10996 end if;
10998 -- This test only concerns tagged types
11000 if not Is_Tagged_Type (Original_Scope) then
11001 return True;
11003 -- If it is _Parent or _Tag, there is no visibility issue
11005 elsif not Comes_From_Source (Original_Comp) then
11006 return True;
11008 -- If we are in the body of an instantiation, the component is visible
11009 -- even when the parent type (possibly defined in an enclosing unit or
11010 -- in a parent unit) might not.
11012 elsif In_Instance_Body then
11013 return True;
11015 -- Discriminants are always visible
11017 elsif Ekind (Original_Comp) = E_Discriminant
11018 and then not Has_Unknown_Discriminants (Original_Scope)
11019 then
11020 return True;
11022 -- If the component has been declared in an ancestor which is currently
11023 -- a private type, then it is not visible. The same applies if the
11024 -- component's containing type is not in an open scope and the original
11025 -- component's enclosing type is a visible full type of a private type
11026 -- (which can occur in cases where an attempt is being made to reference
11027 -- a component in a sibling package that is inherited from a visible
11028 -- component of a type in an ancestor package; the component in the
11029 -- sibling package should not be visible even though the component it
11030 -- inherited from is visible). This does not apply however in the case
11031 -- where the scope of the type is a private child unit, or when the
11032 -- parent comes from a local package in which the ancestor is currently
11033 -- visible. The latter suppression of visibility is needed for cases
11034 -- that are tested in B730006.
11036 elsif Is_Private_Type (Original_Scope)
11037 or else
11038 (not Is_Private_Descendant (Type_Scope)
11039 and then not In_Open_Scopes (Type_Scope)
11040 and then Has_Private_Declaration (Original_Scope))
11041 then
11042 -- If the type derives from an entity in a formal package, there
11043 -- are no additional visible components.
11045 if Nkind (Original_Node (Unit_Declaration_Node (Type_Scope))) =
11046 N_Formal_Package_Declaration
11047 then
11048 return False;
11050 -- if we are not in the private part of the current package, there
11051 -- are no additional visible components.
11053 elsif Ekind (Scope (Current_Scope)) = E_Package
11054 and then not In_Private_Part (Scope (Current_Scope))
11055 then
11056 return False;
11057 else
11058 return
11059 Is_Child_Unit (Cunit_Entity (Current_Sem_Unit))
11060 and then Is_Local_Type (Type_Scope);
11061 end if;
11063 -- There is another weird way in which a component may be invisible
11064 -- when the private and the full view are not derived from the same
11065 -- ancestor. Here is an example :
11067 -- type A1 is tagged record F1 : integer; end record;
11068 -- type A2 is new A1 with record F2 : integer; end record;
11069 -- type T is new A1 with private;
11070 -- private
11071 -- type T is new A2 with null record;
11073 -- In this case, the full view of T inherits F1 and F2 but the private
11074 -- view inherits only F1
11076 else
11077 declare
11078 Ancestor : Entity_Id := Scope (C);
11080 begin
11081 loop
11082 if Ancestor = Original_Scope then
11083 return True;
11084 elsif Ancestor = Etype (Ancestor) then
11085 return False;
11086 end if;
11088 Ancestor := Etype (Ancestor);
11089 end loop;
11091 return True;
11092 end;
11093 end if;
11094 end Is_Visible_Component;
11096 --------------------------
11097 -- Make_Class_Wide_Type --
11098 --------------------------
11100 procedure Make_Class_Wide_Type (T : Entity_Id) is
11101 CW_Type : Entity_Id;
11102 CW_Name : Name_Id;
11103 Next_E : Entity_Id;
11105 begin
11106 -- The class wide type can have been defined by the partial view in
11107 -- which case everything is already done
11109 if Present (Class_Wide_Type (T)) then
11110 return;
11111 end if;
11113 CW_Type :=
11114 New_External_Entity (E_Void, Scope (T), Sloc (T), T, 'C', 0, 'T');
11116 -- Inherit root type characteristics
11118 CW_Name := Chars (CW_Type);
11119 Next_E := Next_Entity (CW_Type);
11120 Copy_Node (T, CW_Type);
11121 Set_Comes_From_Source (CW_Type, False);
11122 Set_Chars (CW_Type, CW_Name);
11123 Set_Parent (CW_Type, Parent (T));
11124 Set_Next_Entity (CW_Type, Next_E);
11125 Set_Has_Delayed_Freeze (CW_Type);
11127 -- Customize the class-wide type: It has no prim. op., it cannot be
11128 -- abstract and its Etype points back to the specific root type.
11130 Set_Ekind (CW_Type, E_Class_Wide_Type);
11131 Set_Is_Tagged_Type (CW_Type, True);
11132 Set_Primitive_Operations (CW_Type, New_Elmt_List);
11133 Set_Is_Abstract (CW_Type, False);
11134 Set_Is_Constrained (CW_Type, False);
11135 Set_Is_First_Subtype (CW_Type, Is_First_Subtype (T));
11136 Init_Size_Align (CW_Type);
11138 if Ekind (T) = E_Class_Wide_Subtype then
11139 Set_Etype (CW_Type, Etype (Base_Type (T)));
11140 else
11141 Set_Etype (CW_Type, T);
11142 end if;
11144 -- If this is the class_wide type of a constrained subtype, it does
11145 -- not have discriminants.
11147 Set_Has_Discriminants (CW_Type,
11148 Has_Discriminants (T) and then not Is_Constrained (T));
11150 Set_Has_Unknown_Discriminants (CW_Type, True);
11151 Set_Class_Wide_Type (T, CW_Type);
11152 Set_Equivalent_Type (CW_Type, Empty);
11154 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
11156 Set_Class_Wide_Type (CW_Type, CW_Type);
11157 end Make_Class_Wide_Type;
11159 ----------------
11160 -- Make_Index --
11161 ----------------
11163 procedure Make_Index
11164 (I : Node_Id;
11165 Related_Nod : Node_Id;
11166 Related_Id : Entity_Id := Empty;
11167 Suffix_Index : Nat := 1)
11169 R : Node_Id;
11170 T : Entity_Id;
11171 Def_Id : Entity_Id := Empty;
11172 Found : Boolean := False;
11174 begin
11175 -- For a discrete range used in a constrained array definition and
11176 -- defined by a range, an implicit conversion to the predefined type
11177 -- INTEGER is assumed if each bound is either a numeric literal, a named
11178 -- number, or an attribute, and the type of both bounds (prior to the
11179 -- implicit conversion) is the type universal_integer. Otherwise, both
11180 -- bounds must be of the same discrete type, other than universal
11181 -- integer; this type must be determinable independently of the
11182 -- context, but using the fact that the type must be discrete and that
11183 -- both bounds must have the same type.
11185 -- Character literals also have a universal type in the absence of
11186 -- of additional context, and are resolved to Standard_Character.
11188 if Nkind (I) = N_Range then
11190 -- The index is given by a range constraint. The bounds are known
11191 -- to be of a consistent type.
11193 if not Is_Overloaded (I) then
11194 T := Etype (I);
11196 -- If the bounds are universal, choose the specific predefined
11197 -- type.
11199 if T = Universal_Integer then
11200 T := Standard_Integer;
11202 elsif T = Any_Character then
11204 if Ada_Version >= Ada_95 then
11205 Error_Msg_N
11206 ("ambiguous character literals (could be Wide_Character)",
11208 end if;
11210 T := Standard_Character;
11211 end if;
11213 else
11214 T := Any_Type;
11216 declare
11217 Ind : Interp_Index;
11218 It : Interp;
11220 begin
11221 Get_First_Interp (I, Ind, It);
11223 while Present (It.Typ) loop
11224 if Is_Discrete_Type (It.Typ) then
11226 if Found
11227 and then not Covers (It.Typ, T)
11228 and then not Covers (T, It.Typ)
11229 then
11230 Error_Msg_N ("ambiguous bounds in discrete range", I);
11231 exit;
11232 else
11233 T := It.Typ;
11234 Found := True;
11235 end if;
11236 end if;
11238 Get_Next_Interp (Ind, It);
11239 end loop;
11241 if T = Any_Type then
11242 Error_Msg_N ("discrete type required for range", I);
11243 Set_Etype (I, Any_Type);
11244 return;
11246 elsif T = Universal_Integer then
11247 T := Standard_Integer;
11248 end if;
11249 end;
11250 end if;
11252 if not Is_Discrete_Type (T) then
11253 Error_Msg_N ("discrete type required for range", I);
11254 Set_Etype (I, Any_Type);
11255 return;
11256 end if;
11258 if Nkind (Low_Bound (I)) = N_Attribute_Reference
11259 and then Attribute_Name (Low_Bound (I)) = Name_First
11260 and then Is_Entity_Name (Prefix (Low_Bound (I)))
11261 and then Is_Type (Entity (Prefix (Low_Bound (I))))
11262 and then Is_Discrete_Type (Entity (Prefix (Low_Bound (I))))
11263 then
11264 -- The type of the index will be the type of the prefix, as long
11265 -- as the upper bound is 'Last of the same type.
11267 Def_Id := Entity (Prefix (Low_Bound (I)));
11269 if Nkind (High_Bound (I)) /= N_Attribute_Reference
11270 or else Attribute_Name (High_Bound (I)) /= Name_Last
11271 or else not Is_Entity_Name (Prefix (High_Bound (I)))
11272 or else Entity (Prefix (High_Bound (I))) /= Def_Id
11273 then
11274 Def_Id := Empty;
11275 end if;
11276 end if;
11278 R := I;
11279 Process_Range_Expr_In_Decl (R, T);
11281 elsif Nkind (I) = N_Subtype_Indication then
11283 -- The index is given by a subtype with a range constraint
11285 T := Base_Type (Entity (Subtype_Mark (I)));
11287 if not Is_Discrete_Type (T) then
11288 Error_Msg_N ("discrete type required for range", I);
11289 Set_Etype (I, Any_Type);
11290 return;
11291 end if;
11293 R := Range_Expression (Constraint (I));
11295 Resolve (R, T);
11296 Process_Range_Expr_In_Decl (R, Entity (Subtype_Mark (I)));
11298 elsif Nkind (I) = N_Attribute_Reference then
11300 -- The parser guarantees that the attribute is a RANGE attribute
11302 -- If the node denotes the range of a type mark, that is also the
11303 -- resulting type, and we do no need to create an Itype for it.
11305 if Is_Entity_Name (Prefix (I))
11306 and then Comes_From_Source (I)
11307 and then Is_Type (Entity (Prefix (I)))
11308 and then Is_Discrete_Type (Entity (Prefix (I)))
11309 then
11310 Def_Id := Entity (Prefix (I));
11311 end if;
11313 Analyze_And_Resolve (I);
11314 T := Etype (I);
11315 R := I;
11317 -- If none of the above, must be a subtype. We convert this to a
11318 -- range attribute reference because in the case of declared first
11319 -- named subtypes, the types in the range reference can be different
11320 -- from the type of the entity. A range attribute normalizes the
11321 -- reference and obtains the correct types for the bounds.
11323 -- This transformation is in the nature of an expansion, is only
11324 -- done if expansion is active. In particular, it is not done on
11325 -- formal generic types, because we need to retain the name of the
11326 -- original index for instantiation purposes.
11328 else
11329 if not Is_Entity_Name (I) or else not Is_Type (Entity (I)) then
11330 Error_Msg_N ("invalid subtype mark in discrete range ", I);
11331 Set_Etype (I, Any_Integer);
11332 return;
11334 else
11335 -- The type mark may be that of an incomplete type. It is only
11336 -- now that we can get the full view, previous analysis does
11337 -- not look specifically for a type mark.
11339 Set_Entity (I, Get_Full_View (Entity (I)));
11340 Set_Etype (I, Entity (I));
11341 Def_Id := Entity (I);
11343 if not Is_Discrete_Type (Def_Id) then
11344 Error_Msg_N ("discrete type required for index", I);
11345 Set_Etype (I, Any_Type);
11346 return;
11347 end if;
11348 end if;
11350 if Expander_Active then
11351 Rewrite (I,
11352 Make_Attribute_Reference (Sloc (I),
11353 Attribute_Name => Name_Range,
11354 Prefix => Relocate_Node (I)));
11356 -- The original was a subtype mark that does not freeze. This
11357 -- means that the rewritten version must not freeze either.
11359 Set_Must_Not_Freeze (I);
11360 Set_Must_Not_Freeze (Prefix (I));
11362 -- Is order critical??? if so, document why, if not
11363 -- use Analyze_And_Resolve
11365 Analyze (I);
11366 T := Etype (I);
11367 Resolve (I);
11368 R := I;
11370 -- If expander is inactive, type is legal, nothing else to construct
11372 else
11373 return;
11374 end if;
11375 end if;
11377 if not Is_Discrete_Type (T) then
11378 Error_Msg_N ("discrete type required for range", I);
11379 Set_Etype (I, Any_Type);
11380 return;
11382 elsif T = Any_Type then
11383 Set_Etype (I, Any_Type);
11384 return;
11385 end if;
11387 -- We will now create the appropriate Itype to describe the range, but
11388 -- first a check. If we originally had a subtype, then we just label
11389 -- the range with this subtype. Not only is there no need to construct
11390 -- a new subtype, but it is wrong to do so for two reasons:
11392 -- 1. A legality concern, if we have a subtype, it must not freeze,
11393 -- and the Itype would cause freezing incorrectly
11395 -- 2. An efficiency concern, if we created an Itype, it would not be
11396 -- recognized as the same type for the purposes of eliminating
11397 -- checks in some circumstances.
11399 -- We signal this case by setting the subtype entity in Def_Id
11401 if No (Def_Id) then
11402 Def_Id :=
11403 Create_Itype (E_Void, Related_Nod, Related_Id, 'D', Suffix_Index);
11404 Set_Etype (Def_Id, Base_Type (T));
11406 if Is_Signed_Integer_Type (T) then
11407 Set_Ekind (Def_Id, E_Signed_Integer_Subtype);
11409 elsif Is_Modular_Integer_Type (T) then
11410 Set_Ekind (Def_Id, E_Modular_Integer_Subtype);
11412 else
11413 Set_Ekind (Def_Id, E_Enumeration_Subtype);
11414 Set_Is_Character_Type (Def_Id, Is_Character_Type (T));
11415 Set_First_Literal (Def_Id, First_Literal (T));
11416 end if;
11418 Set_Size_Info (Def_Id, (T));
11419 Set_RM_Size (Def_Id, RM_Size (T));
11420 Set_First_Rep_Item (Def_Id, First_Rep_Item (T));
11422 Set_Scalar_Range (Def_Id, R);
11423 Conditional_Delay (Def_Id, T);
11425 -- In the subtype indication case, if the immediate parent of the
11426 -- new subtype is non-static, then the subtype we create is non-
11427 -- static, even if its bounds are static.
11429 if Nkind (I) = N_Subtype_Indication
11430 and then not Is_Static_Subtype (Entity (Subtype_Mark (I)))
11431 then
11432 Set_Is_Non_Static_Subtype (Def_Id);
11433 end if;
11434 end if;
11436 -- Final step is to label the index with this constructed type
11438 Set_Etype (I, Def_Id);
11439 end Make_Index;
11441 ------------------------------
11442 -- Modular_Type_Declaration --
11443 ------------------------------
11445 procedure Modular_Type_Declaration (T : Entity_Id; Def : Node_Id) is
11446 Mod_Expr : constant Node_Id := Expression (Def);
11447 M_Val : Uint;
11449 procedure Set_Modular_Size (Bits : Int);
11450 -- Sets RM_Size to Bits, and Esize to normal word size above this
11452 ----------------------
11453 -- Set_Modular_Size --
11454 ----------------------
11456 procedure Set_Modular_Size (Bits : Int) is
11457 begin
11458 Set_RM_Size (T, UI_From_Int (Bits));
11460 if Bits <= 8 then
11461 Init_Esize (T, 8);
11463 elsif Bits <= 16 then
11464 Init_Esize (T, 16);
11466 elsif Bits <= 32 then
11467 Init_Esize (T, 32);
11469 else
11470 Init_Esize (T, System_Max_Binary_Modulus_Power);
11471 end if;
11472 end Set_Modular_Size;
11474 -- Start of processing for Modular_Type_Declaration
11476 begin
11477 Analyze_And_Resolve (Mod_Expr, Any_Integer);
11478 Set_Etype (T, T);
11479 Set_Ekind (T, E_Modular_Integer_Type);
11480 Init_Alignment (T);
11481 Set_Is_Constrained (T);
11483 if not Is_OK_Static_Expression (Mod_Expr) then
11484 Flag_Non_Static_Expr
11485 ("non-static expression used for modular type bound!", Mod_Expr);
11486 M_Val := 2 ** System_Max_Binary_Modulus_Power;
11487 else
11488 M_Val := Expr_Value (Mod_Expr);
11489 end if;
11491 if M_Val < 1 then
11492 Error_Msg_N ("modulus value must be positive", Mod_Expr);
11493 M_Val := 2 ** System_Max_Binary_Modulus_Power;
11494 end if;
11496 Set_Modulus (T, M_Val);
11498 -- Create bounds for the modular type based on the modulus given in
11499 -- the type declaration and then analyze and resolve those bounds.
11501 Set_Scalar_Range (T,
11502 Make_Range (Sloc (Mod_Expr),
11503 Low_Bound =>
11504 Make_Integer_Literal (Sloc (Mod_Expr), 0),
11505 High_Bound =>
11506 Make_Integer_Literal (Sloc (Mod_Expr), M_Val - 1)));
11508 -- Properly analyze the literals for the range. We do this manually
11509 -- because we can't go calling Resolve, since we are resolving these
11510 -- bounds with the type, and this type is certainly not complete yet!
11512 Set_Etype (Low_Bound (Scalar_Range (T)), T);
11513 Set_Etype (High_Bound (Scalar_Range (T)), T);
11514 Set_Is_Static_Expression (Low_Bound (Scalar_Range (T)));
11515 Set_Is_Static_Expression (High_Bound (Scalar_Range (T)));
11517 -- Loop through powers of two to find number of bits required
11519 for Bits in Int range 0 .. System_Max_Binary_Modulus_Power loop
11521 -- Binary case
11523 if M_Val = 2 ** Bits then
11524 Set_Modular_Size (Bits);
11525 return;
11527 -- Non-binary case
11529 elsif M_Val < 2 ** Bits then
11530 Set_Non_Binary_Modulus (T);
11532 if Bits > System_Max_Nonbinary_Modulus_Power then
11533 Error_Msg_Uint_1 :=
11534 UI_From_Int (System_Max_Nonbinary_Modulus_Power);
11535 Error_Msg_N
11536 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr);
11537 Set_Modular_Size (System_Max_Binary_Modulus_Power);
11538 return;
11540 else
11541 -- In the non-binary case, set size as per RM 13.3(55)
11543 Set_Modular_Size (Bits);
11544 return;
11545 end if;
11546 end if;
11548 end loop;
11550 -- If we fall through, then the size exceed System.Max_Binary_Modulus
11551 -- so we just signal an error and set the maximum size.
11553 Error_Msg_Uint_1 := UI_From_Int (System_Max_Binary_Modulus_Power);
11554 Error_Msg_N ("modulus exceeds limit (2 '*'*^)", Mod_Expr);
11556 Set_Modular_Size (System_Max_Binary_Modulus_Power);
11557 Init_Alignment (T);
11559 end Modular_Type_Declaration;
11561 --------------------------
11562 -- New_Concatenation_Op --
11563 --------------------------
11565 procedure New_Concatenation_Op (Typ : Entity_Id) is
11566 Loc : constant Source_Ptr := Sloc (Typ);
11567 Op : Entity_Id;
11569 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id;
11570 -- Create abbreviated declaration for the formal of a predefined
11571 -- Operator 'Op' of type 'Typ'
11573 --------------------
11574 -- Make_Op_Formal --
11575 --------------------
11577 function Make_Op_Formal (Typ, Op : Entity_Id) return Entity_Id is
11578 Formal : Entity_Id;
11579 begin
11580 Formal := New_Internal_Entity (E_In_Parameter, Op, Loc, 'P');
11581 Set_Etype (Formal, Typ);
11582 Set_Mechanism (Formal, Default_Mechanism);
11583 return Formal;
11584 end Make_Op_Formal;
11586 -- Start of processing for New_Concatenation_Op
11588 begin
11589 Op := Make_Defining_Operator_Symbol (Loc, Name_Op_Concat);
11591 Set_Ekind (Op, E_Operator);
11592 Set_Scope (Op, Current_Scope);
11593 Set_Etype (Op, Typ);
11594 Set_Homonym (Op, Get_Name_Entity_Id (Name_Op_Concat));
11595 Set_Is_Immediately_Visible (Op);
11596 Set_Is_Intrinsic_Subprogram (Op);
11597 Set_Has_Completion (Op);
11598 Append_Entity (Op, Current_Scope);
11600 Set_Name_Entity_Id (Name_Op_Concat, Op);
11602 Append_Entity (Make_Op_Formal (Typ, Op), Op);
11603 Append_Entity (Make_Op_Formal (Typ, Op), Op);
11604 end New_Concatenation_Op;
11606 -------------------------------------------
11607 -- Ordinary_Fixed_Point_Type_Declaration --
11608 -------------------------------------------
11610 procedure Ordinary_Fixed_Point_Type_Declaration
11611 (T : Entity_Id;
11612 Def : Node_Id)
11614 Loc : constant Source_Ptr := Sloc (Def);
11615 Delta_Expr : constant Node_Id := Delta_Expression (Def);
11616 RRS : constant Node_Id := Real_Range_Specification (Def);
11617 Implicit_Base : Entity_Id;
11618 Delta_Val : Ureal;
11619 Small_Val : Ureal;
11620 Low_Val : Ureal;
11621 High_Val : Ureal;
11623 begin
11624 Check_Restriction (No_Fixed_Point, Def);
11626 -- Create implicit base type
11628 Implicit_Base :=
11629 Create_Itype (E_Ordinary_Fixed_Point_Type, Parent (Def), T, 'B');
11630 Set_Etype (Implicit_Base, Implicit_Base);
11632 -- Analyze and process delta expression
11634 Analyze_And_Resolve (Delta_Expr, Any_Real);
11636 Check_Delta_Expression (Delta_Expr);
11637 Delta_Val := Expr_Value_R (Delta_Expr);
11639 Set_Delta_Value (Implicit_Base, Delta_Val);
11641 -- Compute default small from given delta, which is the largest power
11642 -- of two that does not exceed the given delta value.
11644 declare
11645 Tmp : Ureal := Ureal_1;
11646 Scale : Int := 0;
11648 begin
11649 if Delta_Val < Ureal_1 then
11650 while Delta_Val < Tmp loop
11651 Tmp := Tmp / Ureal_2;
11652 Scale := Scale + 1;
11653 end loop;
11655 else
11656 loop
11657 Tmp := Tmp * Ureal_2;
11658 exit when Tmp > Delta_Val;
11659 Scale := Scale - 1;
11660 end loop;
11661 end if;
11663 Small_Val := UR_From_Components (Uint_1, UI_From_Int (Scale), 2);
11664 end;
11666 Set_Small_Value (Implicit_Base, Small_Val);
11668 -- If no range was given, set a dummy range
11670 if RRS <= Empty_Or_Error then
11671 Low_Val := -Small_Val;
11672 High_Val := Small_Val;
11674 -- Otherwise analyze and process given range
11676 else
11677 declare
11678 Low : constant Node_Id := Low_Bound (RRS);
11679 High : constant Node_Id := High_Bound (RRS);
11681 begin
11682 Analyze_And_Resolve (Low, Any_Real);
11683 Analyze_And_Resolve (High, Any_Real);
11684 Check_Real_Bound (Low);
11685 Check_Real_Bound (High);
11687 -- Obtain and set the range
11689 Low_Val := Expr_Value_R (Low);
11690 High_Val := Expr_Value_R (High);
11692 if Low_Val > High_Val then
11693 Error_Msg_NE ("?fixed point type& has null range", Def, T);
11694 end if;
11695 end;
11696 end if;
11698 -- The range for both the implicit base and the declared first subtype
11699 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
11700 -- set a temporary range in place. Note that the bounds of the base
11701 -- type will be widened to be symmetrical and to fill the available
11702 -- bits when the type is frozen.
11704 -- We could do this with all discrete types, and probably should, but
11705 -- we absolutely have to do it for fixed-point, since the end-points
11706 -- of the range and the size are determined by the small value, which
11707 -- could be reset before the freeze point.
11709 Set_Fixed_Range (Implicit_Base, Loc, Low_Val, High_Val);
11710 Set_Fixed_Range (T, Loc, Low_Val, High_Val);
11712 Init_Size_Align (Implicit_Base);
11714 -- Complete definition of first subtype
11716 Set_Ekind (T, E_Ordinary_Fixed_Point_Subtype);
11717 Set_Etype (T, Implicit_Base);
11718 Init_Size_Align (T);
11719 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
11720 Set_Small_Value (T, Small_Val);
11721 Set_Delta_Value (T, Delta_Val);
11722 Set_Is_Constrained (T);
11724 end Ordinary_Fixed_Point_Type_Declaration;
11726 ----------------------------------------
11727 -- Prepare_Private_Subtype_Completion --
11728 ----------------------------------------
11730 procedure Prepare_Private_Subtype_Completion
11731 (Id : Entity_Id;
11732 Related_Nod : Node_Id)
11734 Id_B : constant Entity_Id := Base_Type (Id);
11735 Full_B : constant Entity_Id := Full_View (Id_B);
11736 Full : Entity_Id;
11738 begin
11739 if Present (Full_B) then
11741 -- The Base_Type is already completed, we can complete the subtype
11742 -- now. We have to create a new entity with the same name, Thus we
11743 -- can't use Create_Itype.
11745 -- This is messy, should be fixed ???
11747 Full := Make_Defining_Identifier (Sloc (Id), Chars (Id));
11748 Set_Is_Itype (Full);
11749 Set_Associated_Node_For_Itype (Full, Related_Nod);
11750 Complete_Private_Subtype (Id, Full, Full_B, Related_Nod);
11751 end if;
11753 -- The parent subtype may be private, but the base might not, in some
11754 -- nested instances. In that case, the subtype does not need to be
11755 -- exchanged. It would still be nice to make private subtypes and their
11756 -- bases consistent at all times ???
11758 if Is_Private_Type (Id_B) then
11759 Append_Elmt (Id, Private_Dependents (Id_B));
11760 end if;
11762 end Prepare_Private_Subtype_Completion;
11764 ---------------------------
11765 -- Process_Discriminants --
11766 ---------------------------
11768 procedure Process_Discriminants
11769 (N : Node_Id;
11770 Prev : Entity_Id := Empty)
11772 Elist : constant Elist_Id := New_Elmt_List;
11773 Id : Node_Id;
11774 Discr : Node_Id;
11775 Discr_Number : Uint;
11776 Discr_Type : Entity_Id;
11777 Default_Present : Boolean := False;
11778 Default_Not_Present : Boolean := False;
11780 begin
11781 -- A composite type other than an array type can have discriminants.
11782 -- Discriminants of non-limited types must have a discrete type.
11783 -- On entry, the current scope is the composite type.
11785 -- The discriminants are initially entered into the scope of the type
11786 -- via Enter_Name with the default Ekind of E_Void to prevent premature
11787 -- use, as explained at the end of this procedure.
11789 Discr := First (Discriminant_Specifications (N));
11790 while Present (Discr) loop
11791 Enter_Name (Defining_Identifier (Discr));
11793 -- For navigation purposes we add a reference to the discriminant
11794 -- in the entity for the type. If the current declaration is a
11795 -- completion, place references on the partial view. Otherwise the
11796 -- type is the current scope.
11798 if Present (Prev) then
11800 -- The references go on the partial view, if present. If the
11801 -- partial view has discriminants, the references have been
11802 -- generated already.
11804 if not Has_Discriminants (Prev) then
11805 Generate_Reference (Prev, Defining_Identifier (Discr), 'd');
11806 end if;
11807 else
11808 Generate_Reference
11809 (Current_Scope, Defining_Identifier (Discr), 'd');
11810 end if;
11812 if Nkind (Discriminant_Type (Discr)) = N_Access_Definition then
11813 Discr_Type := Access_Definition (N, Discriminant_Type (Discr));
11815 -- Ada 2005 (AI-254)
11817 if Present (Access_To_Subprogram_Definition
11818 (Discriminant_Type (Discr)))
11819 and then Protected_Present (Access_To_Subprogram_Definition
11820 (Discriminant_Type (Discr)))
11821 then
11822 Discr_Type :=
11823 Replace_Anonymous_Access_To_Protected_Subprogram
11824 (Discr, Discr_Type);
11825 end if;
11827 else
11828 Find_Type (Discriminant_Type (Discr));
11829 Discr_Type := Etype (Discriminant_Type (Discr));
11831 if Error_Posted (Discriminant_Type (Discr)) then
11832 Discr_Type := Any_Type;
11833 end if;
11834 end if;
11836 if Is_Access_Type (Discr_Type) then
11838 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
11839 -- record types
11841 if Ada_Version < Ada_05 then
11842 Check_Access_Discriminant_Requires_Limited
11843 (Discr, Discriminant_Type (Discr));
11844 end if;
11846 if Ada_Version = Ada_83 and then Comes_From_Source (Discr) then
11847 Error_Msg_N
11848 ("(Ada 83) access discriminant not allowed", Discr);
11849 end if;
11851 elsif not Is_Discrete_Type (Discr_Type) then
11852 Error_Msg_N ("discriminants must have a discrete or access type",
11853 Discriminant_Type (Discr));
11854 end if;
11856 Set_Etype (Defining_Identifier (Discr), Discr_Type);
11858 -- If a discriminant specification includes the assignment compound
11859 -- delimiter followed by an expression, the expression is the default
11860 -- expression of the discriminant; the default expression must be of
11861 -- the type of the discriminant. (RM 3.7.1) Since this expression is
11862 -- a default expression, we do the special preanalysis, since this
11863 -- expression does not freeze (see "Handling of Default and Per-
11864 -- Object Expressions" in spec of package Sem).
11866 if Present (Expression (Discr)) then
11867 Analyze_Per_Use_Expression (Expression (Discr), Discr_Type);
11869 if Nkind (N) = N_Formal_Type_Declaration then
11870 Error_Msg_N
11871 ("discriminant defaults not allowed for formal type",
11872 Expression (Discr));
11874 -- Tagged types cannot have defaulted discriminants, but a
11875 -- non-tagged private type with defaulted discriminants
11876 -- can have a tagged completion.
11878 elsif Is_Tagged_Type (Current_Scope)
11879 and then Comes_From_Source (N)
11880 then
11881 Error_Msg_N
11882 ("discriminants of tagged type cannot have defaults",
11883 Expression (Discr));
11885 else
11886 Default_Present := True;
11887 Append_Elmt (Expression (Discr), Elist);
11889 -- Tag the defining identifiers for the discriminants with
11890 -- their corresponding default expressions from the tree.
11892 Set_Discriminant_Default_Value
11893 (Defining_Identifier (Discr), Expression (Discr));
11894 end if;
11896 else
11897 Default_Not_Present := True;
11898 end if;
11900 -- Ada 2005 (AI-231): Set the null-excluding attribute and carry
11901 -- out some static checks.
11903 if Ada_Version >= Ada_05
11904 and then (Null_Exclusion_Present (Discr)
11905 or else Can_Never_Be_Null (Discr_Type))
11906 then
11907 Set_Can_Never_Be_Null (Defining_Identifier (Discr));
11908 Null_Exclusion_Static_Checks (Discr);
11909 end if;
11911 Next (Discr);
11912 end loop;
11914 -- An element list consisting of the default expressions of the
11915 -- discriminants is constructed in the above loop and used to set
11916 -- the Discriminant_Constraint attribute for the type. If an object
11917 -- is declared of this (record or task) type without any explicit
11918 -- discriminant constraint given, this element list will form the
11919 -- actual parameters for the corresponding initialization procedure
11920 -- for the type.
11922 Set_Discriminant_Constraint (Current_Scope, Elist);
11923 Set_Stored_Constraint (Current_Scope, No_Elist);
11925 -- Default expressions must be provided either for all or for none
11926 -- of the discriminants of a discriminant part. (RM 3.7.1)
11928 if Default_Present and then Default_Not_Present then
11929 Error_Msg_N
11930 ("incomplete specification of defaults for discriminants", N);
11931 end if;
11933 -- The use of the name of a discriminant is not allowed in default
11934 -- expressions of a discriminant part if the specification of the
11935 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
11937 -- To detect this, the discriminant names are entered initially with an
11938 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
11939 -- attempt to use a void entity (for example in an expression that is
11940 -- type-checked) produces the error message: premature usage. Now after
11941 -- completing the semantic analysis of the discriminant part, we can set
11942 -- the Ekind of all the discriminants appropriately.
11944 Discr := First (Discriminant_Specifications (N));
11945 Discr_Number := Uint_1;
11947 while Present (Discr) loop
11948 Id := Defining_Identifier (Discr);
11949 Set_Ekind (Id, E_Discriminant);
11950 Init_Component_Location (Id);
11951 Init_Esize (Id);
11952 Set_Discriminant_Number (Id, Discr_Number);
11954 -- Make sure this is always set, even in illegal programs
11956 Set_Corresponding_Discriminant (Id, Empty);
11958 -- Initialize the Original_Record_Component to the entity itself.
11959 -- Inherit_Components will propagate the right value to
11960 -- discriminants in derived record types.
11962 Set_Original_Record_Component (Id, Id);
11964 -- Create the discriminal for the discriminant
11966 Build_Discriminal (Id);
11968 Next (Discr);
11969 Discr_Number := Discr_Number + 1;
11970 end loop;
11972 Set_Has_Discriminants (Current_Scope);
11973 end Process_Discriminants;
11975 -----------------------
11976 -- Process_Full_View --
11977 -----------------------
11979 procedure Process_Full_View (N : Node_Id; Full_T, Priv_T : Entity_Id) is
11980 Priv_Parent : Entity_Id;
11981 Full_Parent : Entity_Id;
11982 Full_Indic : Node_Id;
11984 begin
11985 -- First some sanity checks that must be done after semantic
11986 -- decoration of the full view and thus cannot be placed with other
11987 -- similar checks in Find_Type_Name
11989 if not Is_Limited_Type (Priv_T)
11990 and then (Is_Limited_Type (Full_T)
11991 or else Is_Limited_Composite (Full_T))
11992 then
11993 Error_Msg_N
11994 ("completion of nonlimited type cannot be limited", Full_T);
11995 Explain_Limited_Type (Full_T, Full_T);
11997 elsif Is_Abstract (Full_T) and then not Is_Abstract (Priv_T) then
11998 Error_Msg_N
11999 ("completion of nonabstract type cannot be abstract", Full_T);
12001 elsif Is_Tagged_Type (Priv_T)
12002 and then Is_Limited_Type (Priv_T)
12003 and then not Is_Limited_Type (Full_T)
12004 then
12005 -- GNAT allow its own definition of Limited_Controlled to disobey
12006 -- this rule in order in ease the implementation. The next test is
12007 -- safe because Root_Controlled is defined in a private system child
12009 if Etype (Full_T) = Full_View (RTE (RE_Root_Controlled)) then
12010 Set_Is_Limited_Composite (Full_T);
12011 else
12012 Error_Msg_N
12013 ("completion of limited tagged type must be limited", Full_T);
12014 end if;
12016 elsif Is_Generic_Type (Priv_T) then
12017 Error_Msg_N ("generic type cannot have a completion", Full_T);
12018 end if;
12020 if Is_Tagged_Type (Priv_T)
12021 and then Nkind (Parent (Priv_T)) = N_Private_Extension_Declaration
12022 and then Is_Derived_Type (Full_T)
12023 then
12024 Priv_Parent := Etype (Priv_T);
12026 -- The full view of a private extension may have been transformed
12027 -- into an unconstrained derived type declaration and a subtype
12028 -- declaration (see build_derived_record_type for details).
12030 if Nkind (N) = N_Subtype_Declaration then
12031 Full_Indic := Subtype_Indication (N);
12032 Full_Parent := Etype (Base_Type (Full_T));
12033 else
12034 Full_Indic := Subtype_Indication (Type_Definition (N));
12035 Full_Parent := Etype (Full_T);
12036 end if;
12038 -- Check that the parent type of the full type is a descendant of
12039 -- the ancestor subtype given in the private extension. If either
12040 -- entity has an Etype equal to Any_Type then we had some previous
12041 -- error situation [7.3(8)].
12043 if Priv_Parent = Any_Type or else Full_Parent = Any_Type then
12044 return;
12046 elsif not Is_Ancestor (Base_Type (Priv_Parent), Full_Parent) then
12047 Error_Msg_N
12048 ("parent of full type must descend from parent"
12049 & " of private extension", Full_Indic);
12051 -- Check the rules of 7.3(10): if the private extension inherits
12052 -- known discriminants, then the full type must also inherit those
12053 -- discriminants from the same (ancestor) type, and the parent
12054 -- subtype of the full type must be constrained if and only if
12055 -- the ancestor subtype of the private extension is constrained.
12057 elsif not Present (Discriminant_Specifications (Parent (Priv_T)))
12058 and then not Has_Unknown_Discriminants (Priv_T)
12059 and then Has_Discriminants (Base_Type (Priv_Parent))
12060 then
12061 declare
12062 Priv_Indic : constant Node_Id :=
12063 Subtype_Indication (Parent (Priv_T));
12065 Priv_Constr : constant Boolean :=
12066 Is_Constrained (Priv_Parent)
12067 or else
12068 Nkind (Priv_Indic) = N_Subtype_Indication
12069 or else Is_Constrained (Entity (Priv_Indic));
12071 Full_Constr : constant Boolean :=
12072 Is_Constrained (Full_Parent)
12073 or else
12074 Nkind (Full_Indic) = N_Subtype_Indication
12075 or else Is_Constrained (Entity (Full_Indic));
12077 Priv_Discr : Entity_Id;
12078 Full_Discr : Entity_Id;
12080 begin
12081 Priv_Discr := First_Discriminant (Priv_Parent);
12082 Full_Discr := First_Discriminant (Full_Parent);
12084 while Present (Priv_Discr) and then Present (Full_Discr) loop
12085 if Original_Record_Component (Priv_Discr) =
12086 Original_Record_Component (Full_Discr)
12087 or else
12088 Corresponding_Discriminant (Priv_Discr) =
12089 Corresponding_Discriminant (Full_Discr)
12090 then
12091 null;
12092 else
12093 exit;
12094 end if;
12096 Next_Discriminant (Priv_Discr);
12097 Next_Discriminant (Full_Discr);
12098 end loop;
12100 if Present (Priv_Discr) or else Present (Full_Discr) then
12101 Error_Msg_N
12102 ("full view must inherit discriminants of the parent type"
12103 & " used in the private extension", Full_Indic);
12105 elsif Priv_Constr and then not Full_Constr then
12106 Error_Msg_N
12107 ("parent subtype of full type must be constrained",
12108 Full_Indic);
12110 elsif Full_Constr and then not Priv_Constr then
12111 Error_Msg_N
12112 ("parent subtype of full type must be unconstrained",
12113 Full_Indic);
12114 end if;
12115 end;
12117 -- Check the rules of 7.3(12): if a partial view has neither known
12118 -- or unknown discriminants, then the full type declaration shall
12119 -- define a definite subtype.
12121 elsif not Has_Unknown_Discriminants (Priv_T)
12122 and then not Has_Discriminants (Priv_T)
12123 and then not Is_Constrained (Full_T)
12124 then
12125 Error_Msg_N
12126 ("full view must define a constrained type if partial view"
12127 & " has no discriminants", Full_T);
12128 end if;
12130 -- ??????? Do we implement the following properly ?????
12131 -- If the ancestor subtype of a private extension has constrained
12132 -- discriminants, then the parent subtype of the full view shall
12133 -- impose a statically matching constraint on those discriminants
12134 -- [7.3(13)].
12136 else
12137 -- For untagged types, verify that a type without discriminants
12138 -- is not completed with an unconstrained type.
12140 if not Is_Indefinite_Subtype (Priv_T)
12141 and then Is_Indefinite_Subtype (Full_T)
12142 then
12143 Error_Msg_N ("full view of type must be definite subtype", Full_T);
12144 end if;
12145 end if;
12147 -- Create a full declaration for all its subtypes recorded in
12148 -- Private_Dependents and swap them similarly to the base type. These
12149 -- are subtypes that have been define before the full declaration of
12150 -- the private type. We also swap the entry in Private_Dependents list
12151 -- so we can properly restore the private view on exit from the scope.
12153 declare
12154 Priv_Elmt : Elmt_Id;
12155 Priv : Entity_Id;
12156 Full : Entity_Id;
12158 begin
12159 Priv_Elmt := First_Elmt (Private_Dependents (Priv_T));
12160 while Present (Priv_Elmt) loop
12161 Priv := Node (Priv_Elmt);
12163 if Ekind (Priv) = E_Private_Subtype
12164 or else Ekind (Priv) = E_Limited_Private_Subtype
12165 or else Ekind (Priv) = E_Record_Subtype_With_Private
12166 then
12167 Full := Make_Defining_Identifier (Sloc (Priv), Chars (Priv));
12168 Set_Is_Itype (Full);
12169 Set_Parent (Full, Parent (Priv));
12170 Set_Associated_Node_For_Itype (Full, N);
12172 -- Now we need to complete the private subtype, but since the
12173 -- base type has already been swapped, we must also swap the
12174 -- subtypes (and thus, reverse the arguments in the call to
12175 -- Complete_Private_Subtype).
12177 Copy_And_Swap (Priv, Full);
12178 Complete_Private_Subtype (Full, Priv, Full_T, N);
12179 Replace_Elmt (Priv_Elmt, Full);
12180 end if;
12182 Next_Elmt (Priv_Elmt);
12183 end loop;
12184 end;
12186 -- If the private view was tagged, copy the new Primitive
12187 -- operations from the private view to the full view.
12189 if Is_Tagged_Type (Full_T) then
12190 declare
12191 Priv_List : Elist_Id;
12192 Full_List : constant Elist_Id := Primitive_Operations (Full_T);
12193 P1, P2 : Elmt_Id;
12194 Prim : Entity_Id;
12195 D_Type : Entity_Id;
12197 begin
12198 if Is_Tagged_Type (Priv_T) then
12199 Priv_List := Primitive_Operations (Priv_T);
12201 P1 := First_Elmt (Priv_List);
12202 while Present (P1) loop
12203 Prim := Node (P1);
12205 -- Transfer explicit primitives, not those inherited from
12206 -- parent of partial view, which will be re-inherited on
12207 -- the full view.
12209 if Comes_From_Source (Prim) then
12210 P2 := First_Elmt (Full_List);
12211 while Present (P2) and then Node (P2) /= Prim loop
12212 Next_Elmt (P2);
12213 end loop;
12215 -- If not found, that is a new one
12217 if No (P2) then
12218 Append_Elmt (Prim, Full_List);
12219 end if;
12220 end if;
12222 Next_Elmt (P1);
12223 end loop;
12225 else
12226 -- In this case the partial view is untagged, so here we
12227 -- locate all of the earlier primitives that need to be
12228 -- treated as dispatching (those that appear between the two
12229 -- views). Note that these additional operations must all be
12230 -- new operations (any earlier operations that override
12231 -- inherited operations of the full view will already have
12232 -- been inserted in the primitives list and marked as
12233 -- dispatching by Check_Operation_From_Private_View. Note that
12234 -- implicit "/=" operators are excluded from being added to
12235 -- the primitives list since they shouldn't be treated as
12236 -- dispatching (tagged "/=" is handled specially).
12238 Prim := Next_Entity (Full_T);
12239 while Present (Prim) and then Prim /= Priv_T loop
12240 if Ekind (Prim) = E_Procedure
12241 or else
12242 Ekind (Prim) = E_Function
12243 then
12245 D_Type := Find_Dispatching_Type (Prim);
12247 if D_Type = Full_T
12248 and then (Chars (Prim) /= Name_Op_Ne
12249 or else Comes_From_Source (Prim))
12250 then
12251 Check_Controlling_Formals (Full_T, Prim);
12253 if not Is_Dispatching_Operation (Prim) then
12254 Append_Elmt (Prim, Full_List);
12255 Set_Is_Dispatching_Operation (Prim, True);
12256 Set_DT_Position (Prim, No_Uint);
12257 end if;
12259 elsif Is_Dispatching_Operation (Prim)
12260 and then D_Type /= Full_T
12261 then
12263 -- Verify that it is not otherwise controlled by
12264 -- a formal or a return value ot type T.
12266 Check_Controlling_Formals (D_Type, Prim);
12267 end if;
12268 end if;
12270 Next_Entity (Prim);
12271 end loop;
12272 end if;
12274 -- For the tagged case, the two views can share the same
12275 -- Primitive Operation list and the same class wide type.
12276 -- Update attributes of the class-wide type which depend on
12277 -- the full declaration.
12279 if Is_Tagged_Type (Priv_T) then
12280 Set_Primitive_Operations (Priv_T, Full_List);
12281 Set_Class_Wide_Type
12282 (Base_Type (Full_T), Class_Wide_Type (Priv_T));
12284 -- Any other attributes should be propagated to C_W ???
12286 Set_Has_Task (Class_Wide_Type (Priv_T), Has_Task (Full_T));
12288 end if;
12289 end;
12290 end if;
12291 end Process_Full_View;
12293 -----------------------------------
12294 -- Process_Incomplete_Dependents --
12295 -----------------------------------
12297 procedure Process_Incomplete_Dependents
12298 (N : Node_Id;
12299 Full_T : Entity_Id;
12300 Inc_T : Entity_Id)
12302 Inc_Elmt : Elmt_Id;
12303 Priv_Dep : Entity_Id;
12304 New_Subt : Entity_Id;
12306 Disc_Constraint : Elist_Id;
12308 begin
12309 if No (Private_Dependents (Inc_T)) then
12310 return;
12312 else
12313 Inc_Elmt := First_Elmt (Private_Dependents (Inc_T));
12315 -- Itypes that may be generated by the completion of an incomplete
12316 -- subtype are not used by the back-end and not attached to the tree.
12317 -- They are created only for constraint-checking purposes.
12318 end if;
12320 while Present (Inc_Elmt) loop
12321 Priv_Dep := Node (Inc_Elmt);
12323 if Ekind (Priv_Dep) = E_Subprogram_Type then
12325 -- An Access_To_Subprogram type may have a return type or a
12326 -- parameter type that is incomplete. Replace with the full view.
12328 if Etype (Priv_Dep) = Inc_T then
12329 Set_Etype (Priv_Dep, Full_T);
12330 end if;
12332 declare
12333 Formal : Entity_Id;
12335 begin
12336 Formal := First_Formal (Priv_Dep);
12338 while Present (Formal) loop
12340 if Etype (Formal) = Inc_T then
12341 Set_Etype (Formal, Full_T);
12342 end if;
12344 Next_Formal (Formal);
12345 end loop;
12346 end;
12348 elsif Is_Overloadable (Priv_Dep) then
12350 if Is_Tagged_Type (Full_T) then
12352 -- Subprogram has an access parameter whose designated type
12353 -- was incomplete. Reexamine declaration now, because it may
12354 -- be a primitive operation of the full type.
12356 Check_Operation_From_Incomplete_Type (Priv_Dep, Inc_T);
12357 Set_Is_Dispatching_Operation (Priv_Dep);
12358 Check_Controlling_Formals (Full_T, Priv_Dep);
12359 end if;
12361 elsif Ekind (Priv_Dep) = E_Subprogram_Body then
12363 -- Can happen during processing of a body before the completion
12364 -- of a TA type. Ignore, because spec is also on dependent list.
12366 return;
12368 -- Dependent is a subtype
12370 else
12371 -- We build a new subtype indication using the full view of the
12372 -- incomplete parent. The discriminant constraints have been
12373 -- elaborated already at the point of the subtype declaration.
12375 New_Subt := Create_Itype (E_Void, N);
12377 if Has_Discriminants (Full_T) then
12378 Disc_Constraint := Discriminant_Constraint (Priv_Dep);
12379 else
12380 Disc_Constraint := No_Elist;
12381 end if;
12383 Build_Discriminated_Subtype (Full_T, New_Subt, Disc_Constraint, N);
12384 Set_Full_View (Priv_Dep, New_Subt);
12385 end if;
12387 Next_Elmt (Inc_Elmt);
12388 end loop;
12389 end Process_Incomplete_Dependents;
12391 --------------------------------
12392 -- Process_Range_Expr_In_Decl --
12393 --------------------------------
12395 procedure Process_Range_Expr_In_Decl
12396 (R : Node_Id;
12397 T : Entity_Id;
12398 Check_List : List_Id := Empty_List;
12399 R_Check_Off : Boolean := False)
12401 Lo, Hi : Node_Id;
12402 R_Checks : Check_Result;
12403 Type_Decl : Node_Id;
12404 Def_Id : Entity_Id;
12406 begin
12407 Analyze_And_Resolve (R, Base_Type (T));
12409 if Nkind (R) = N_Range then
12410 Lo := Low_Bound (R);
12411 Hi := High_Bound (R);
12413 -- If there were errors in the declaration, try and patch up some
12414 -- common mistakes in the bounds. The cases handled are literals
12415 -- which are Integer where the expected type is Real and vice versa.
12416 -- These corrections allow the compilation process to proceed further
12417 -- along since some basic assumptions of the format of the bounds
12418 -- are guaranteed.
12420 if Etype (R) = Any_Type then
12422 if Nkind (Lo) = N_Integer_Literal and then Is_Real_Type (T) then
12423 Rewrite (Lo,
12424 Make_Real_Literal (Sloc (Lo), UR_From_Uint (Intval (Lo))));
12426 elsif Nkind (Hi) = N_Integer_Literal and then Is_Real_Type (T) then
12427 Rewrite (Hi,
12428 Make_Real_Literal (Sloc (Hi), UR_From_Uint (Intval (Hi))));
12430 elsif Nkind (Lo) = N_Real_Literal and then Is_Integer_Type (T) then
12431 Rewrite (Lo,
12432 Make_Integer_Literal (Sloc (Lo), UR_To_Uint (Realval (Lo))));
12434 elsif Nkind (Hi) = N_Real_Literal and then Is_Integer_Type (T) then
12435 Rewrite (Hi,
12436 Make_Integer_Literal (Sloc (Hi), UR_To_Uint (Realval (Hi))));
12437 end if;
12439 Set_Etype (Lo, T);
12440 Set_Etype (Hi, T);
12441 end if;
12443 -- If the bounds of the range have been mistakenly given as string
12444 -- literals (perhaps in place of character literals), then an error
12445 -- has already been reported, but we rewrite the string literal as a
12446 -- bound of the range's type to avoid blowups in later processing
12447 -- that looks at static values.
12449 if Nkind (Lo) = N_String_Literal then
12450 Rewrite (Lo,
12451 Make_Attribute_Reference (Sloc (Lo),
12452 Attribute_Name => Name_First,
12453 Prefix => New_Reference_To (T, Sloc (Lo))));
12454 Analyze_And_Resolve (Lo);
12455 end if;
12457 if Nkind (Hi) = N_String_Literal then
12458 Rewrite (Hi,
12459 Make_Attribute_Reference (Sloc (Hi),
12460 Attribute_Name => Name_First,
12461 Prefix => New_Reference_To (T, Sloc (Hi))));
12462 Analyze_And_Resolve (Hi);
12463 end if;
12465 -- If bounds aren't scalar at this point then exit, avoiding
12466 -- problems with further processing of the range in this procedure.
12468 if not Is_Scalar_Type (Etype (Lo)) then
12469 return;
12470 end if;
12472 -- Resolve (actually Sem_Eval) has checked that the bounds are in
12473 -- then range of the base type. Here we check whether the bounds
12474 -- are in the range of the subtype itself. Note that if the bounds
12475 -- represent the null range the Constraint_Error exception should
12476 -- not be raised.
12478 -- ??? The following code should be cleaned up as follows
12480 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
12481 -- is done in the call to Range_Check (R, T); below
12483 -- 2. The use of R_Check_Off should be investigated and possibly
12484 -- removed, this would clean up things a bit.
12486 if Is_Null_Range (Lo, Hi) then
12487 null;
12489 else
12490 -- Capture values of bounds and generate temporaries for them
12491 -- if needed, before applying checks, since checks may cause
12492 -- duplication of the expression without forcing evaluation.
12494 if Expander_Active then
12495 Force_Evaluation (Lo);
12496 Force_Evaluation (Hi);
12497 end if;
12499 -- We use a flag here instead of suppressing checks on the
12500 -- type because the type we check against isn't necessarily
12501 -- the place where we put the check.
12503 if not R_Check_Off then
12504 R_Checks := Range_Check (R, T);
12505 Type_Decl := Parent (R);
12507 -- Look up tree to find an appropriate insertion point.
12508 -- This seems really junk code, and very brittle, couldn't
12509 -- we just use an insert actions call of some kind ???
12511 while Present (Type_Decl) and then not
12512 (Nkind (Type_Decl) = N_Full_Type_Declaration
12513 or else
12514 Nkind (Type_Decl) = N_Subtype_Declaration
12515 or else
12516 Nkind (Type_Decl) = N_Loop_Statement
12517 or else
12518 Nkind (Type_Decl) = N_Task_Type_Declaration
12519 or else
12520 Nkind (Type_Decl) = N_Single_Task_Declaration
12521 or else
12522 Nkind (Type_Decl) = N_Protected_Type_Declaration
12523 or else
12524 Nkind (Type_Decl) = N_Single_Protected_Declaration)
12525 loop
12526 Type_Decl := Parent (Type_Decl);
12527 end loop;
12529 -- Why would Type_Decl not be present??? Without this test,
12530 -- short regression tests fail.
12532 if Present (Type_Decl) then
12534 -- Case of loop statement (more comments ???)
12536 if Nkind (Type_Decl) = N_Loop_Statement then
12537 declare
12538 Indic : Node_Id := Parent (R);
12540 begin
12541 while Present (Indic) and then not
12542 (Nkind (Indic) = N_Subtype_Indication)
12543 loop
12544 Indic := Parent (Indic);
12545 end loop;
12547 if Present (Indic) then
12548 Def_Id := Etype (Subtype_Mark (Indic));
12550 Insert_Range_Checks
12551 (R_Checks,
12552 Type_Decl,
12553 Def_Id,
12554 Sloc (Type_Decl),
12556 Do_Before => True);
12557 end if;
12558 end;
12560 -- All other cases (more comments ???)
12562 else
12563 Def_Id := Defining_Identifier (Type_Decl);
12565 if (Ekind (Def_Id) = E_Record_Type
12566 and then Depends_On_Discriminant (R))
12567 or else
12568 (Ekind (Def_Id) = E_Protected_Type
12569 and then Has_Discriminants (Def_Id))
12570 then
12571 Append_Range_Checks
12572 (R_Checks, Check_List, Def_Id, Sloc (Type_Decl), R);
12574 else
12575 Insert_Range_Checks
12576 (R_Checks, Type_Decl, Def_Id, Sloc (Type_Decl), R);
12578 end if;
12579 end if;
12580 end if;
12581 end if;
12582 end if;
12584 elsif Expander_Active then
12585 Get_Index_Bounds (R, Lo, Hi);
12586 Force_Evaluation (Lo);
12587 Force_Evaluation (Hi);
12588 end if;
12589 end Process_Range_Expr_In_Decl;
12591 --------------------------------------
12592 -- Process_Real_Range_Specification --
12593 --------------------------------------
12595 procedure Process_Real_Range_Specification (Def : Node_Id) is
12596 Spec : constant Node_Id := Real_Range_Specification (Def);
12597 Lo : Node_Id;
12598 Hi : Node_Id;
12599 Err : Boolean := False;
12601 procedure Analyze_Bound (N : Node_Id);
12602 -- Analyze and check one bound
12604 -------------------
12605 -- Analyze_Bound --
12606 -------------------
12608 procedure Analyze_Bound (N : Node_Id) is
12609 begin
12610 Analyze_And_Resolve (N, Any_Real);
12612 if not Is_OK_Static_Expression (N) then
12613 Flag_Non_Static_Expr
12614 ("bound in real type definition is not static!", N);
12615 Err := True;
12616 end if;
12617 end Analyze_Bound;
12619 -- Start of processing for Process_Real_Range_Specification
12621 begin
12622 if Present (Spec) then
12623 Lo := Low_Bound (Spec);
12624 Hi := High_Bound (Spec);
12625 Analyze_Bound (Lo);
12626 Analyze_Bound (Hi);
12628 -- If error, clear away junk range specification
12630 if Err then
12631 Set_Real_Range_Specification (Def, Empty);
12632 end if;
12633 end if;
12634 end Process_Real_Range_Specification;
12636 ---------------------
12637 -- Process_Subtype --
12638 ---------------------
12640 function Process_Subtype
12641 (S : Node_Id;
12642 Related_Nod : Node_Id;
12643 Related_Id : Entity_Id := Empty;
12644 Suffix : Character := ' ') return Entity_Id
12646 P : Node_Id;
12647 Def_Id : Entity_Id;
12648 Full_View_Id : Entity_Id;
12649 Subtype_Mark_Id : Entity_Id;
12651 procedure Check_Incomplete (T : Entity_Id);
12652 -- Called to verify that an incomplete type is not used prematurely
12654 ----------------------
12655 -- Check_Incomplete --
12656 ----------------------
12658 procedure Check_Incomplete (T : Entity_Id) is
12659 begin
12660 if Ekind (Root_Type (Entity (T))) = E_Incomplete_Type then
12661 Error_Msg_N ("invalid use of type before its full declaration", T);
12662 end if;
12663 end Check_Incomplete;
12665 -- Start of processing for Process_Subtype
12667 begin
12668 -- Case of no constraints present
12670 if Nkind (S) /= N_Subtype_Indication then
12672 Find_Type (S);
12673 Check_Incomplete (S);
12675 -- Ada 2005 (AI-231): Static check
12677 if Ada_Version >= Ada_05
12678 and then Present (Parent (S))
12679 and then Null_Exclusion_Present (Parent (S))
12680 and then Nkind (Parent (S)) /= N_Access_To_Object_Definition
12681 and then not Is_Access_Type (Entity (S))
12682 then
12683 Error_Msg_N
12684 ("(Ada 2005) null-exclusion part requires an access type", S);
12685 end if;
12686 return Entity (S);
12688 -- Case of constraint present, so that we have an N_Subtype_Indication
12689 -- node (this node is created only if constraints are present).
12691 else
12693 Find_Type (Subtype_Mark (S));
12695 if Nkind (Parent (S)) /= N_Access_To_Object_Definition
12696 and then not
12697 (Nkind (Parent (S)) = N_Subtype_Declaration
12698 and then
12699 Is_Itype (Defining_Identifier (Parent (S))))
12700 then
12701 Check_Incomplete (Subtype_Mark (S));
12702 end if;
12704 P := Parent (S);
12705 Subtype_Mark_Id := Entity (Subtype_Mark (S));
12707 -- Explicit subtype declaration case
12709 if Nkind (P) = N_Subtype_Declaration then
12710 Def_Id := Defining_Identifier (P);
12712 -- Explicit derived type definition case
12714 elsif Nkind (P) = N_Derived_Type_Definition then
12715 Def_Id := Defining_Identifier (Parent (P));
12717 -- Implicit case, the Def_Id must be created as an implicit type.
12718 -- The one exception arises in the case of concurrent types, array
12719 -- and access types, where other subsidiary implicit types may be
12720 -- created and must appear before the main implicit type. In these
12721 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
12722 -- has not yet been called to create Def_Id.
12724 else
12725 if Is_Array_Type (Subtype_Mark_Id)
12726 or else Is_Concurrent_Type (Subtype_Mark_Id)
12727 or else Is_Access_Type (Subtype_Mark_Id)
12728 then
12729 Def_Id := Empty;
12731 -- For the other cases, we create a new unattached Itype,
12732 -- and set the indication to ensure it gets attached later.
12734 else
12735 Def_Id :=
12736 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12737 end if;
12738 end if;
12740 -- If the kind of constraint is invalid for this kind of type,
12741 -- then give an error, and then pretend no constraint was given.
12743 if not Is_Valid_Constraint_Kind
12744 (Ekind (Subtype_Mark_Id), Nkind (Constraint (S)))
12745 then
12746 Error_Msg_N
12747 ("incorrect constraint for this kind of type", Constraint (S));
12749 Rewrite (S, New_Copy_Tree (Subtype_Mark (S)));
12751 -- Set Ekind of orphan itype, to prevent cascaded errors.
12753 if Present (Def_Id) then
12754 Set_Ekind (Def_Id, Ekind (Any_Type));
12755 end if;
12757 -- Make recursive call, having got rid of the bogus constraint
12759 return Process_Subtype (S, Related_Nod, Related_Id, Suffix);
12760 end if;
12762 -- Remaining processing depends on type
12764 case Ekind (Subtype_Mark_Id) is
12765 when Access_Kind =>
12766 Constrain_Access (Def_Id, S, Related_Nod);
12768 when Array_Kind =>
12769 Constrain_Array (Def_Id, S, Related_Nod, Related_Id, Suffix);
12771 when Decimal_Fixed_Point_Kind =>
12772 Constrain_Decimal (Def_Id, S);
12774 when Enumeration_Kind =>
12775 Constrain_Enumeration (Def_Id, S);
12777 when Ordinary_Fixed_Point_Kind =>
12778 Constrain_Ordinary_Fixed (Def_Id, S);
12780 when Float_Kind =>
12781 Constrain_Float (Def_Id, S);
12783 when Integer_Kind =>
12784 Constrain_Integer (Def_Id, S);
12786 when E_Record_Type |
12787 E_Record_Subtype |
12788 Class_Wide_Kind |
12789 E_Incomplete_Type =>
12790 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
12792 when Private_Kind =>
12793 Constrain_Discriminated_Type (Def_Id, S, Related_Nod);
12794 Set_Private_Dependents (Def_Id, New_Elmt_List);
12796 -- In case of an invalid constraint prevent further processing
12797 -- since the type constructed is missing expected fields.
12799 if Etype (Def_Id) = Any_Type then
12800 return Def_Id;
12801 end if;
12803 -- If the full view is that of a task with discriminants,
12804 -- we must constrain both the concurrent type and its
12805 -- corresponding record type. Otherwise we will just propagate
12806 -- the constraint to the full view, if available.
12808 if Present (Full_View (Subtype_Mark_Id))
12809 and then Has_Discriminants (Subtype_Mark_Id)
12810 and then Is_Concurrent_Type (Full_View (Subtype_Mark_Id))
12811 then
12812 Full_View_Id :=
12813 Create_Itype (E_Void, Related_Nod, Related_Id, Suffix);
12815 Set_Entity (Subtype_Mark (S), Full_View (Subtype_Mark_Id));
12816 Constrain_Concurrent (Full_View_Id, S,
12817 Related_Nod, Related_Id, Suffix);
12818 Set_Entity (Subtype_Mark (S), Subtype_Mark_Id);
12819 Set_Full_View (Def_Id, Full_View_Id);
12821 else
12822 Prepare_Private_Subtype_Completion (Def_Id, Related_Nod);
12823 end if;
12825 when Concurrent_Kind =>
12826 Constrain_Concurrent (Def_Id, S,
12827 Related_Nod, Related_Id, Suffix);
12829 when others =>
12830 Error_Msg_N ("invalid subtype mark in subtype indication", S);
12831 end case;
12833 -- Size and Convention are always inherited from the base type
12835 Set_Size_Info (Def_Id, (Subtype_Mark_Id));
12836 Set_Convention (Def_Id, Convention (Subtype_Mark_Id));
12838 return Def_Id;
12839 end if;
12840 end Process_Subtype;
12842 -----------------------------
12843 -- Record_Type_Declaration --
12844 -----------------------------
12846 procedure Record_Type_Declaration
12847 (T : Entity_Id;
12848 N : Node_Id;
12849 Prev : Entity_Id)
12851 Def : constant Node_Id := Type_Definition (N);
12853 Is_Tagged : Boolean;
12854 Tag_Comp : Entity_Id;
12856 begin
12857 -- The flag Is_Tagged_Type might have already been set by Find_Type_Name
12858 -- if it detected an error for declaration T. This arises in the case of
12859 -- private tagged types where the full view omits the word tagged.
12861 Is_Tagged :=
12862 Tagged_Present (Def)
12863 or else (Serious_Errors_Detected > 0 and then Is_Tagged_Type (T));
12865 -- Records constitute a scope for the component declarations within.
12866 -- The scope is created prior to the processing of these declarations.
12867 -- Discriminants are processed first, so that they are visible when
12868 -- processing the other components. The Ekind of the record type itself
12869 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
12871 -- Enter record scope
12873 New_Scope (T);
12875 -- These flags must be initialized before calling Process_Discriminants
12876 -- because this routine makes use of them.
12878 Set_Is_Tagged_Type (T, Is_Tagged);
12879 Set_Is_Limited_Record (T, Limited_Present (Def));
12881 -- Type is abstract if full declaration carries keyword, or if
12882 -- previous partial view did.
12884 Set_Is_Abstract (T, Is_Abstract (T) or else Abstract_Present (Def));
12886 Set_Ekind (T, E_Record_Type);
12887 Set_Etype (T, T);
12888 Init_Size_Align (T);
12890 Set_Stored_Constraint (T, No_Elist);
12892 -- If an incomplete or private type declaration was already given for
12893 -- the type, then this scope already exists, and the discriminants have
12894 -- been declared within. We must verify that the full declaration
12895 -- matches the incomplete one.
12897 Check_Or_Process_Discriminants (N, T, Prev);
12899 Set_Is_Constrained (T, not Has_Discriminants (T));
12900 Set_Has_Delayed_Freeze (T, True);
12902 -- For tagged types add a manually analyzed component corresponding
12903 -- to the component _tag, the corresponding piece of tree will be
12904 -- expanded as part of the freezing actions if it is not a CPP_Class.
12906 if Is_Tagged then
12908 -- Do not add the tag unless we are in expansion mode
12910 if Expander_Active then
12911 Tag_Comp := Make_Defining_Identifier (Sloc (Def), Name_uTag);
12912 Enter_Name (Tag_Comp);
12914 Set_Is_Tag (Tag_Comp);
12915 Set_Ekind (Tag_Comp, E_Component);
12916 Set_Etype (Tag_Comp, RTE (RE_Tag));
12917 Set_DT_Entry_Count (Tag_Comp, No_Uint);
12918 Set_Original_Record_Component (Tag_Comp, Tag_Comp);
12919 Init_Component_Location (Tag_Comp);
12920 end if;
12922 Make_Class_Wide_Type (T);
12923 Set_Primitive_Operations (T, New_Elmt_List);
12924 end if;
12926 -- We must suppress range checks when processing the components
12927 -- of a record in the presence of discriminants, since we don't
12928 -- want spurious checks to be generated during their analysis, but
12929 -- must reset the Suppress_Range_Checks flags after having processed
12930 -- the record definition.
12932 if Has_Discriminants (T) and then not Range_Checks_Suppressed (T) then
12933 Set_Kill_Range_Checks (T, True);
12934 Record_Type_Definition (Def, Prev);
12935 Set_Kill_Range_Checks (T, False);
12936 else
12937 Record_Type_Definition (Def, Prev);
12938 end if;
12940 -- Exit from record scope
12942 End_Scope;
12943 end Record_Type_Declaration;
12945 ----------------------------
12946 -- Record_Type_Definition --
12947 ----------------------------
12949 procedure Record_Type_Definition (Def : Node_Id; Prev_T : Entity_Id) is
12950 Component : Entity_Id;
12951 Ctrl_Components : Boolean := False;
12952 Final_Storage_Only : Boolean;
12953 T : Entity_Id;
12955 begin
12956 if Ekind (Prev_T) = E_Incomplete_Type then
12957 T := Full_View (Prev_T);
12958 else
12959 T := Prev_T;
12960 end if;
12962 Final_Storage_Only := not Is_Controlled (T);
12964 -- If the component list of a record type is defined by the reserved
12965 -- word null and there is no discriminant part, then the record type has
12966 -- no components and all records of the type are null records (RM 3.7)
12967 -- This procedure is also called to process the extension part of a
12968 -- record extension, in which case the current scope may have inherited
12969 -- components.
12971 if No (Def)
12972 or else No (Component_List (Def))
12973 or else Null_Present (Component_List (Def))
12974 then
12975 null;
12977 else
12978 Analyze_Declarations (Component_Items (Component_List (Def)));
12980 if Present (Variant_Part (Component_List (Def))) then
12981 Analyze (Variant_Part (Component_List (Def)));
12982 end if;
12983 end if;
12985 -- After completing the semantic analysis of the record definition,
12986 -- record components, both new and inherited, are accessible. Set
12987 -- their kind accordingly.
12989 Component := First_Entity (Current_Scope);
12990 while Present (Component) loop
12991 if Ekind (Component) = E_Void then
12992 Set_Ekind (Component, E_Component);
12993 Init_Component_Location (Component);
12994 end if;
12996 if Has_Task (Etype (Component)) then
12997 Set_Has_Task (T);
12998 end if;
13000 if Ekind (Component) /= E_Component then
13001 null;
13003 elsif Has_Controlled_Component (Etype (Component))
13004 or else (Chars (Component) /= Name_uParent
13005 and then Is_Controlled (Etype (Component)))
13006 then
13007 Set_Has_Controlled_Component (T, True);
13008 Final_Storage_Only := Final_Storage_Only
13009 and then Finalize_Storage_Only (Etype (Component));
13010 Ctrl_Components := True;
13011 end if;
13013 Next_Entity (Component);
13014 end loop;
13016 -- A type is Finalize_Storage_Only only if all its controlled
13017 -- components are so.
13019 if Ctrl_Components then
13020 Set_Finalize_Storage_Only (T, Final_Storage_Only);
13021 end if;
13023 -- Place reference to end record on the proper entity, which may
13024 -- be a partial view.
13026 if Present (Def) then
13027 Process_End_Label (Def, 'e', Prev_T);
13028 end if;
13029 end Record_Type_Definition;
13031 ------------------------
13032 -- Replace_Components --
13033 ------------------------
13035 procedure Replace_Components (Typ : Entity_Id; Decl : Node_Id) is
13036 function Process (N : Node_Id) return Traverse_Result;
13038 -------------
13039 -- Process --
13040 -------------
13042 function Process (N : Node_Id) return Traverse_Result is
13043 Comp : Entity_Id;
13045 begin
13046 if Nkind (N) = N_Discriminant_Specification then
13047 Comp := First_Discriminant (Typ);
13049 while Present (Comp) loop
13050 if Chars (Comp) = Chars (Defining_Identifier (N)) then
13051 Set_Defining_Identifier (N, Comp);
13052 exit;
13053 end if;
13055 Next_Discriminant (Comp);
13056 end loop;
13058 elsif Nkind (N) = N_Component_Declaration then
13059 Comp := First_Component (Typ);
13061 while Present (Comp) loop
13062 if Chars (Comp) = Chars (Defining_Identifier (N)) then
13063 Set_Defining_Identifier (N, Comp);
13064 exit;
13065 end if;
13067 Next_Component (Comp);
13068 end loop;
13069 end if;
13071 return OK;
13072 end Process;
13074 procedure Replace is new Traverse_Proc (Process);
13076 -- Start of processing for Replace_Components
13078 begin
13079 Replace (Decl);
13080 end Replace_Components;
13082 -------------------------------
13083 -- Set_Completion_Referenced --
13084 -------------------------------
13086 procedure Set_Completion_Referenced (E : Entity_Id) is
13087 begin
13088 -- If in main unit, mark entity that is a completion as referenced,
13089 -- warnings go on the partial view when needed.
13091 if In_Extended_Main_Source_Unit (E) then
13092 Set_Referenced (E);
13093 end if;
13094 end Set_Completion_Referenced;
13096 ---------------------
13097 -- Set_Fixed_Range --
13098 ---------------------
13100 -- The range for fixed-point types is complicated by the fact that we
13101 -- do not know the exact end points at the time of the declaration. This
13102 -- is true for three reasons:
13104 -- A size clause may affect the fudging of the end-points
13105 -- A small clause may affect the values of the end-points
13106 -- We try to include the end-points if it does not affect the size
13108 -- This means that the actual end-points must be established at the point
13109 -- when the type is frozen. Meanwhile, we first narrow the range as
13110 -- permitted (so that it will fit if necessary in a small specified size),
13111 -- and then build a range subtree with these narrowed bounds.
13113 -- Set_Fixed_Range constructs the range from real literal values, and sets
13114 -- the range as the Scalar_Range of the given fixed-point type entity.
13116 -- The parent of this range is set to point to the entity so that it is
13117 -- properly hooked into the tree (unlike normal Scalar_Range entries for
13118 -- other scalar types, which are just pointers to the range in the
13119 -- original tree, this would otherwise be an orphan).
13121 -- The tree is left unanalyzed. When the type is frozen, the processing
13122 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
13123 -- analyzed, and uses this as an indication that it should complete
13124 -- work on the range (it will know the final small and size values).
13126 procedure Set_Fixed_Range
13127 (E : Entity_Id;
13128 Loc : Source_Ptr;
13129 Lo : Ureal;
13130 Hi : Ureal)
13132 S : constant Node_Id :=
13133 Make_Range (Loc,
13134 Low_Bound => Make_Real_Literal (Loc, Lo),
13135 High_Bound => Make_Real_Literal (Loc, Hi));
13137 begin
13138 Set_Scalar_Range (E, S);
13139 Set_Parent (S, E);
13140 end Set_Fixed_Range;
13142 ----------------------------------
13143 -- Set_Scalar_Range_For_Subtype --
13144 ----------------------------------
13146 procedure Set_Scalar_Range_For_Subtype
13147 (Def_Id : Entity_Id;
13148 R : Node_Id;
13149 Subt : Entity_Id)
13151 Kind : constant Entity_Kind := Ekind (Def_Id);
13153 begin
13154 Set_Scalar_Range (Def_Id, R);
13156 -- We need to link the range into the tree before resolving it so
13157 -- that types that are referenced, including importantly the subtype
13158 -- itself, are properly frozen (Freeze_Expression requires that the
13159 -- expression be properly linked into the tree). Of course if it is
13160 -- already linked in, then we do not disturb the current link.
13162 if No (Parent (R)) then
13163 Set_Parent (R, Def_Id);
13164 end if;
13166 -- Reset the kind of the subtype during analysis of the range, to
13167 -- catch possible premature use in the bounds themselves.
13169 Set_Ekind (Def_Id, E_Void);
13170 Process_Range_Expr_In_Decl (R, Subt);
13171 Set_Ekind (Def_Id, Kind);
13173 end Set_Scalar_Range_For_Subtype;
13175 --------------------------------------------------------
13176 -- Set_Stored_Constraint_From_Discriminant_Constraint --
13177 --------------------------------------------------------
13179 procedure Set_Stored_Constraint_From_Discriminant_Constraint
13180 (E : Entity_Id)
13182 begin
13183 -- Make sure set if encountered during Expand_To_Stored_Constraint
13185 Set_Stored_Constraint (E, No_Elist);
13187 -- Give it the right value
13189 if Is_Constrained (E) and then Has_Discriminants (E) then
13190 Set_Stored_Constraint (E,
13191 Expand_To_Stored_Constraint (E, Discriminant_Constraint (E)));
13192 end if;
13193 end Set_Stored_Constraint_From_Discriminant_Constraint;
13195 -------------------------------------
13196 -- Signed_Integer_Type_Declaration --
13197 -------------------------------------
13199 procedure Signed_Integer_Type_Declaration (T : Entity_Id; Def : Node_Id) is
13200 Implicit_Base : Entity_Id;
13201 Base_Typ : Entity_Id;
13202 Lo_Val : Uint;
13203 Hi_Val : Uint;
13204 Errs : Boolean := False;
13205 Lo : Node_Id;
13206 Hi : Node_Id;
13208 function Can_Derive_From (E : Entity_Id) return Boolean;
13209 -- Determine whether given bounds allow derivation from specified type
13211 procedure Check_Bound (Expr : Node_Id);
13212 -- Check bound to make sure it is integral and static. If not, post
13213 -- appropriate error message and set Errs flag
13215 ---------------------
13216 -- Can_Derive_From --
13217 ---------------------
13219 -- Note we check both bounds against both end values, to deal with
13220 -- strange types like ones with a range of 0 .. -12341234.
13222 function Can_Derive_From (E : Entity_Id) return Boolean is
13223 Lo : constant Uint := Expr_Value (Type_Low_Bound (E));
13224 Hi : constant Uint := Expr_Value (Type_High_Bound (E));
13225 begin
13226 return Lo <= Lo_Val and then Lo_Val <= Hi
13227 and then
13228 Lo <= Hi_Val and then Hi_Val <= Hi;
13229 end Can_Derive_From;
13231 -----------------
13232 -- Check_Bound --
13233 -----------------
13235 procedure Check_Bound (Expr : Node_Id) is
13236 begin
13237 -- If a range constraint is used as an integer type definition, each
13238 -- bound of the range must be defined by a static expression of some
13239 -- integer type, but the two bounds need not have the same integer
13240 -- type (Negative bounds are allowed.) (RM 3.5.4)
13242 if not Is_Integer_Type (Etype (Expr)) then
13243 Error_Msg_N
13244 ("integer type definition bounds must be of integer type", Expr);
13245 Errs := True;
13247 elsif not Is_OK_Static_Expression (Expr) then
13248 Flag_Non_Static_Expr
13249 ("non-static expression used for integer type bound!", Expr);
13250 Errs := True;
13252 -- The bounds are folded into literals, and we set their type to be
13253 -- universal, to avoid typing difficulties: we cannot set the type
13254 -- of the literal to the new type, because this would be a forward
13255 -- reference for the back end, and if the original type is user-
13256 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
13258 else
13259 if Is_Entity_Name (Expr) then
13260 Fold_Uint (Expr, Expr_Value (Expr), True);
13261 end if;
13263 Set_Etype (Expr, Universal_Integer);
13264 end if;
13265 end Check_Bound;
13267 -- Start of processing for Signed_Integer_Type_Declaration
13269 begin
13270 -- Create an anonymous base type
13272 Implicit_Base :=
13273 Create_Itype (E_Signed_Integer_Type, Parent (Def), T, 'B');
13275 -- Analyze and check the bounds, they can be of any integer type
13277 Lo := Low_Bound (Def);
13278 Hi := High_Bound (Def);
13280 -- Arbitrarily use Integer as the type if either bound had an error
13282 if Hi = Error or else Lo = Error then
13283 Base_Typ := Any_Integer;
13284 Set_Error_Posted (T, True);
13286 -- Here both bounds are OK expressions
13288 else
13289 Analyze_And_Resolve (Lo, Any_Integer);
13290 Analyze_And_Resolve (Hi, Any_Integer);
13292 Check_Bound (Lo);
13293 Check_Bound (Hi);
13295 if Errs then
13296 Hi := Type_High_Bound (Standard_Long_Long_Integer);
13297 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
13298 end if;
13300 -- Find type to derive from
13302 Lo_Val := Expr_Value (Lo);
13303 Hi_Val := Expr_Value (Hi);
13305 if Can_Derive_From (Standard_Short_Short_Integer) then
13306 Base_Typ := Base_Type (Standard_Short_Short_Integer);
13308 elsif Can_Derive_From (Standard_Short_Integer) then
13309 Base_Typ := Base_Type (Standard_Short_Integer);
13311 elsif Can_Derive_From (Standard_Integer) then
13312 Base_Typ := Base_Type (Standard_Integer);
13314 elsif Can_Derive_From (Standard_Long_Integer) then
13315 Base_Typ := Base_Type (Standard_Long_Integer);
13317 elsif Can_Derive_From (Standard_Long_Long_Integer) then
13318 Base_Typ := Base_Type (Standard_Long_Long_Integer);
13320 else
13321 Base_Typ := Base_Type (Standard_Long_Long_Integer);
13322 Error_Msg_N ("integer type definition bounds out of range", Def);
13323 Hi := Type_High_Bound (Standard_Long_Long_Integer);
13324 Lo := Type_Low_Bound (Standard_Long_Long_Integer);
13325 end if;
13326 end if;
13328 -- Complete both implicit base and declared first subtype entities
13330 Set_Etype (Implicit_Base, Base_Typ);
13331 Set_Scalar_Range (Implicit_Base, Scalar_Range (Base_Typ));
13332 Set_Size_Info (Implicit_Base, (Base_Typ));
13333 Set_RM_Size (Implicit_Base, RM_Size (Base_Typ));
13334 Set_First_Rep_Item (Implicit_Base, First_Rep_Item (Base_Typ));
13336 Set_Ekind (T, E_Signed_Integer_Subtype);
13337 Set_Etype (T, Implicit_Base);
13339 Set_Size_Info (T, (Implicit_Base));
13340 Set_First_Rep_Item (T, First_Rep_Item (Implicit_Base));
13341 Set_Scalar_Range (T, Def);
13342 Set_RM_Size (T, UI_From_Int (Minimum_Size (T)));
13343 Set_Is_Constrained (T);
13344 end Signed_Integer_Type_Declaration;
13346 end Sem_Ch3;