1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2005, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
20 -- MA 02111-1307, USA. --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
25 ------------------------------------------------------------------------------
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Elists
; use Elists
;
30 with Einfo
; use Einfo
;
31 with Errout
; use Errout
;
32 with Eval_Fat
; use Eval_Fat
;
33 with Exp_Ch3
; use Exp_Ch3
;
34 with Exp_Dist
; use Exp_Dist
;
35 with Exp_Tss
; use Exp_Tss
;
36 with Exp_Util
; use Exp_Util
;
37 with Freeze
; use Freeze
;
38 with Itypes
; use Itypes
;
39 with Layout
; use Layout
;
41 with Lib
.Xref
; use Lib
.Xref
;
42 with Namet
; use Namet
;
43 with Nmake
; use Nmake
;
45 with Restrict
; use Restrict
;
46 with Rident
; use Rident
;
47 with Rtsfind
; use Rtsfind
;
49 with Sem_Case
; use Sem_Case
;
50 with Sem_Cat
; use Sem_Cat
;
51 with Sem_Ch6
; use Sem_Ch6
;
52 with Sem_Ch7
; use Sem_Ch7
;
53 with Sem_Ch8
; use Sem_Ch8
;
54 with Sem_Ch13
; use Sem_Ch13
;
55 with Sem_Disp
; use Sem_Disp
;
56 with Sem_Dist
; use Sem_Dist
;
57 with Sem_Elim
; use Sem_Elim
;
58 with Sem_Eval
; use Sem_Eval
;
59 with Sem_Mech
; use Sem_Mech
;
60 with Sem_Res
; use Sem_Res
;
61 with Sem_Smem
; use Sem_Smem
;
62 with Sem_Type
; use Sem_Type
;
63 with Sem_Util
; use Sem_Util
;
64 with Sem_Warn
; use Sem_Warn
;
65 with Stand
; use Stand
;
66 with Sinfo
; use Sinfo
;
67 with Snames
; use Snames
;
68 with Tbuild
; use Tbuild
;
69 with Ttypes
; use Ttypes
;
70 with Uintp
; use Uintp
;
71 with Urealp
; use Urealp
;
73 package body Sem_Ch3
is
75 -----------------------
76 -- Local Subprograms --
77 -----------------------
79 procedure Build_Derived_Type
81 Parent_Type
: Entity_Id
;
82 Derived_Type
: Entity_Id
;
83 Is_Completion
: Boolean;
84 Derive_Subps
: Boolean := True);
85 -- Create and decorate a Derived_Type given the Parent_Type entity.
86 -- N is the N_Full_Type_Declaration node containing the derived type
87 -- definition. Parent_Type is the entity for the parent type in the derived
88 -- type definition and Derived_Type the actual derived type. Is_Completion
89 -- must be set to False if Derived_Type is the N_Defining_Identifier node
90 -- in N (ie Derived_Type = Defining_Identifier (N)). In this case N is not
91 -- the completion of a private type declaration. If Is_Completion is
92 -- set to True, N is the completion of a private type declaration and
93 -- Derived_Type is different from the defining identifier inside N (i.e.
94 -- Derived_Type /= Defining_Identifier (N)). Derive_Subps indicates whether
95 -- the parent subprograms should be derived. The only case where this
96 -- parameter is False is when Build_Derived_Type is recursively called to
97 -- process an implicit derived full type for a type derived from a private
98 -- type (in that case the subprograms must only be derived for the private
100 -- ??? These flags need a bit of re-examination and re-documentation:
101 -- ??? are they both necessary (both seem related to the recursion)?
103 procedure Build_Derived_Access_Type
105 Parent_Type
: Entity_Id
;
106 Derived_Type
: Entity_Id
);
107 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
108 -- create an implicit base if the parent type is constrained or if the
109 -- subtype indication has a constraint.
111 procedure Build_Derived_Array_Type
113 Parent_Type
: Entity_Id
;
114 Derived_Type
: Entity_Id
);
115 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
116 -- create an implicit base if the parent type is constrained or if the
117 -- subtype indication has a constraint.
119 procedure Build_Derived_Concurrent_Type
121 Parent_Type
: Entity_Id
;
122 Derived_Type
: Entity_Id
);
123 -- Subsidiary procedure to Build_Derived_Type. For a derived task or pro-
124 -- tected type, inherit entries and protected subprograms, check legality
125 -- of discriminant constraints if any.
127 procedure Build_Derived_Enumeration_Type
129 Parent_Type
: Entity_Id
;
130 Derived_Type
: Entity_Id
);
131 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
132 -- type, we must create a new list of literals. Types derived from
133 -- Character and Wide_Character are special-cased.
135 procedure Build_Derived_Numeric_Type
137 Parent_Type
: Entity_Id
;
138 Derived_Type
: Entity_Id
);
139 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
140 -- an anonymous base type, and propagate constraint to subtype if needed.
142 procedure Build_Derived_Private_Type
144 Parent_Type
: Entity_Id
;
145 Derived_Type
: Entity_Id
;
146 Is_Completion
: Boolean;
147 Derive_Subps
: Boolean := True);
148 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
149 -- because the parent may or may not have a completion, and the derivation
150 -- may itself be a completion.
152 procedure Build_Derived_Record_Type
154 Parent_Type
: Entity_Id
;
155 Derived_Type
: Entity_Id
;
156 Derive_Subps
: Boolean := True);
157 -- Subsidiary procedure to Build_Derived_Type and
158 -- Analyze_Private_Extension_Declaration used for tagged and untagged
159 -- record types. All parameters are as in Build_Derived_Type except that
160 -- N, in addition to being an N_Full_Type_Declaration node, can also be an
161 -- N_Private_Extension_Declaration node. See the definition of this routine
162 -- for much more info. Derive_Subps indicates whether subprograms should
163 -- be derived from the parent type. The only case where Derive_Subps is
164 -- False is for an implicit derived full type for a type derived from a
165 -- private type (see Build_Derived_Type).
167 function Inherit_Components
169 Parent_Base
: Entity_Id
;
170 Derived_Base
: Entity_Id
;
172 Inherit_Discr
: Boolean;
173 Discs
: Elist_Id
) return Elist_Id
;
174 -- Called from Build_Derived_Record_Type to inherit the components of
175 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
176 -- For more information on derived types and component inheritance please
177 -- consult the comment above the body of Build_Derived_Record_Type.
179 -- N is the original derived type declaration.
181 -- Is_Tagged is set if we are dealing with tagged types.
183 -- If Inherit_Discr is set, Derived_Base inherits its discriminants
184 -- from Parent_Base, otherwise no discriminants are inherited.
186 -- Discs gives the list of constraints that apply to Parent_Base in the
187 -- derived type declaration. If Discs is set to No_Elist, then we have
188 -- the following situation:
190 -- type Parent (D1..Dn : ..) is [tagged] record ...;
191 -- type Derived is new Parent [with ...];
193 -- which gets treated as
195 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
197 -- For untagged types the returned value is an association list. The list
198 -- starts from the association (Parent_Base => Derived_Base), and then it
199 -- contains a sequence of the associations of the form
201 -- (Old_Component => New_Component),
203 -- where Old_Component is the Entity_Id of a component in Parent_Base
204 -- and New_Component is the Entity_Id of the corresponding component
205 -- in Derived_Base. For untagged records, this association list is
206 -- needed when copying the record declaration for the derived base.
207 -- In the tagged case the value returned is irrelevant.
209 procedure Build_Discriminal
(Discrim
: Entity_Id
);
210 -- Create the discriminal corresponding to discriminant Discrim, that is
211 -- the parameter corresponding to Discrim to be used in initialization
212 -- procedures for the type where Discrim is a discriminant. Discriminals
213 -- are not used during semantic analysis, and are not fully defined
214 -- entities until expansion. Thus they are not given a scope until
215 -- initialization procedures are built.
217 function Build_Discriminant_Constraints
220 Derived_Def
: Boolean := False) return Elist_Id
;
221 -- Validate discriminant constraints, and return the list of the
222 -- constraints in order of discriminant declarations. T is the
223 -- discriminated unconstrained type. Def is the N_Subtype_Indication
224 -- node where the discriminants constraints for T are specified.
225 -- Derived_Def is True if we are building the discriminant constraints
226 -- in a derived type definition of the form "type D (...) is new T (xxx)".
227 -- In this case T is the parent type and Def is the constraint "(xxx)" on
228 -- T and this routine sets the Corresponding_Discriminant field of the
229 -- discriminants in the derived type D to point to the corresponding
230 -- discriminants in the parent type T.
232 procedure Build_Discriminated_Subtype
236 Related_Nod
: Node_Id
;
237 For_Access
: Boolean := False);
238 -- Subsidiary procedure to Constrain_Discriminated_Type and to
239 -- Process_Incomplete_Dependents. Given
241 -- T (a possibly discriminated base type)
242 -- Def_Id (a very partially built subtype for T),
244 -- the call completes Def_Id to be the appropriate E_*_Subtype.
246 -- The Elist is the list of discriminant constraints if any (it is set to
247 -- No_Elist if T is not a discriminated type, and to an empty list if
248 -- T has discriminants but there are no discriminant constraints). The
249 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
250 -- The For_Access says whether or not this subtype is really constraining
251 -- an access type. That is its sole purpose is the designated type of an
252 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
253 -- is built to avoid freezing T when the access subtype is frozen.
255 function Build_Scalar_Bound
258 Der_T
: Entity_Id
) return Node_Id
;
259 -- The bounds of a derived scalar type are conversions of the bounds of
260 -- the parent type. Optimize the representation if the bounds are literals.
261 -- Needs a more complete spec--what are the parameters exactly, and what
262 -- exactly is the returned value, and how is Bound affected???
264 procedure Build_Underlying_Full_View
268 -- If the completion of a private type is itself derived from a private
269 -- type, or if the full view of a private subtype is itself private, the
270 -- back-end has no way to compute the actual size of this type. We build
271 -- an internal subtype declaration of the proper parent type to convey
272 -- this information. This extra mechanism is needed because a full
273 -- view cannot itself have a full view (it would get clobbered during
276 procedure Check_Access_Discriminant_Requires_Limited
279 -- Check the restriction that the type to which an access discriminant
280 -- belongs must be a concurrent type or a descendant of a type with
281 -- the reserved word 'limited' in its declaration.
283 procedure Check_Delta_Expression
(E
: Node_Id
);
284 -- Check that the expression represented by E is suitable for use
285 -- as a delta expression, i.e. it is of real type and is static.
287 procedure Check_Digits_Expression
(E
: Node_Id
);
288 -- Check that the expression represented by E is suitable for use as
289 -- a digits expression, i.e. it is of integer type, positive and static.
291 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
);
292 -- Validate the initialization of an object declaration. T is the
293 -- required type, and Exp is the initialization expression.
295 procedure Check_Or_Process_Discriminants
298 Prev
: Entity_Id
:= Empty
);
299 -- If T is the full declaration of an incomplete or private type, check
300 -- the conformance of the discriminants, otherwise process them. Prev
301 -- is the entity of the partial declaration, if any.
303 procedure Check_Real_Bound
(Bound
: Node_Id
);
304 -- Check given bound for being of real type and static. If not, post an
305 -- appropriate message, and rewrite the bound with the real literal zero.
307 procedure Constant_Redeclaration
311 -- Various checks on legality of full declaration of deferred constant.
312 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
313 -- node. The caller has not yet set any attributes of this entity.
315 procedure Convert_Scalar_Bounds
317 Parent_Type
: Entity_Id
;
318 Derived_Type
: Entity_Id
;
320 -- For derived scalar types, convert the bounds in the type definition
321 -- to the derived type, and complete their analysis. Given a constraint
323 -- .. new T range Lo .. Hi;
324 -- Lo and Hi are analyzed and resolved with T'Base, the parent_type.
325 -- The bounds of the derived type (the anonymous base) are copies of
326 -- Lo and Hi. Finally, the bounds of the derived subtype are conversions
327 -- of those bounds to the derived_type, so that their typing is
330 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
);
331 -- Copies attributes from array base type T2 to array base type T1.
332 -- Copies only attributes that apply to base types, but not subtypes.
334 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
);
335 -- Copies attributes from array subtype T2 to array subtype T1. Copies
336 -- attributes that apply to both subtypes and base types.
338 procedure Create_Constrained_Components
342 Constraints
: Elist_Id
);
343 -- Build the list of entities for a constrained discriminated record
344 -- subtype. If a component depends on a discriminant, replace its subtype
345 -- using the discriminant values in the discriminant constraint.
346 -- Subt is the defining identifier for the subtype whose list of
347 -- constrained entities we will create. Decl_Node is the type declaration
348 -- node where we will attach all the itypes created. Typ is the base
349 -- discriminated type for the subtype Subt. Constraints is the list of
350 -- discriminant constraints for Typ.
352 function Constrain_Component_Type
354 Constrained_Typ
: Entity_Id
;
355 Related_Node
: Node_Id
;
357 Constraints
: Elist_Id
) return Entity_Id
;
358 -- Given a discriminated base type Typ, a list of discriminant constraint
359 -- Constraints for Typ and a component of Typ, with type Compon_Type,
360 -- create and return the type corresponding to Compon_type where all
361 -- discriminant references are replaced with the corresponding
362 -- constraint. If no discriminant references occur in Compon_Typ then
363 -- return it as is. Constrained_Typ is the final constrained subtype to
364 -- which the constrained Compon_Type belongs. Related_Node is the node
365 -- where we will attach all the itypes created.
367 procedure Constrain_Access
368 (Def_Id
: in out Entity_Id
;
370 Related_Nod
: Node_Id
);
371 -- Apply a list of constraints to an access type. If Def_Id is empty,
372 -- it is an anonymous type created for a subtype indication. In that
373 -- case it is created in the procedure and attached to Related_Nod.
375 procedure Constrain_Array
376 (Def_Id
: in out Entity_Id
;
378 Related_Nod
: Node_Id
;
379 Related_Id
: Entity_Id
;
381 -- Apply a list of index constraints to an unconstrained array type. The
382 -- first parameter is the entity for the resulting subtype. A value of
383 -- Empty for Def_Id indicates that an implicit type must be created, but
384 -- creation is delayed (and must be done by this procedure) because other
385 -- subsidiary implicit types must be created first (which is why Def_Id
386 -- is an in/out parameter). The second parameter is a subtype indication
387 -- node for the constrained array to be created (e.g. something of the
388 -- form string (1 .. 10)). Related_Nod gives the place where this type
389 -- has to be inserted in the tree. The Related_Id and Suffix parameters
390 -- are used to build the associated Implicit type name.
392 procedure Constrain_Concurrent
393 (Def_Id
: in out Entity_Id
;
395 Related_Nod
: Node_Id
;
396 Related_Id
: Entity_Id
;
398 -- Apply list of discriminant constraints to an unconstrained concurrent
401 -- SI is the N_Subtype_Indication node containing the constraint and
402 -- the unconstrained type to constrain.
404 -- Def_Id is the entity for the resulting constrained subtype. A value
405 -- of Empty for Def_Id indicates that an implicit type must be created,
406 -- but creation is delayed (and must be done by this procedure) because
407 -- other subsidiary implicit types must be created first (which is why
408 -- Def_Id is an in/out parameter).
410 -- Related_Nod gives the place where this type has to be inserted
413 -- The last two arguments are used to create its external name if needed.
415 function Constrain_Corresponding_Record
416 (Prot_Subt
: Entity_Id
;
417 Corr_Rec
: Entity_Id
;
418 Related_Nod
: Node_Id
;
419 Related_Id
: Entity_Id
) return Entity_Id
;
420 -- When constraining a protected type or task type with discriminants,
421 -- constrain the corresponding record with the same discriminant values.
423 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
);
424 -- Constrain a decimal fixed point type with a digits constraint and/or a
425 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
427 procedure Constrain_Discriminated_Type
430 Related_Nod
: Node_Id
;
431 For_Access
: Boolean := False);
432 -- Process discriminant constraints of composite type. Verify that values
433 -- have been provided for all discriminants, that the original type is
434 -- unconstrained, and that the types of the supplied expressions match
435 -- the discriminant types. The first three parameters are like in routine
436 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
439 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
);
440 -- Constrain an enumeration type with a range constraint. This is
441 -- identical to Constrain_Integer, but for the Ekind of the
442 -- resulting subtype.
444 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
);
445 -- Constrain a floating point type with either a digits constraint
446 -- and/or a range constraint, building a E_Floating_Point_Subtype.
448 procedure Constrain_Index
451 Related_Nod
: Node_Id
;
452 Related_Id
: Entity_Id
;
455 -- Process an index constraint in a constrained array declaration. The
456 -- constraint can be a subtype name, or a range with or without an
457 -- explicit subtype mark. The index is the corresponding index of the
458 -- unconstrained array. The Related_Id and Suffix parameters are used to
459 -- build the associated Implicit type name.
461 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
);
462 -- Build subtype of a signed or modular integer type
464 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
);
465 -- Constrain an ordinary fixed point type with a range constraint, and
466 -- build an E_Ordinary_Fixed_Point_Subtype entity.
468 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
);
469 -- Copy the Priv entity into the entity of its full declaration
470 -- then swap the two entities in such a manner that the former private
471 -- type is now seen as a full type.
473 procedure Decimal_Fixed_Point_Type_Declaration
476 -- Create a new decimal fixed point type, and apply the constraint to
477 -- obtain a subtype of this new type.
479 procedure Complete_Private_Subtype
482 Full_Base
: Entity_Id
;
483 Related_Nod
: Node_Id
);
484 -- Complete the implicit full view of a private subtype by setting
485 -- the appropriate semantic fields. If the full view of the parent is
486 -- a record type, build constrained components of subtype.
488 procedure Derived_Standard_Character
490 Parent_Type
: Entity_Id
;
491 Derived_Type
: Entity_Id
);
492 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
493 -- derivations from types Standard.Character and Standard.Wide_Character.
495 procedure Derived_Type_Declaration
498 Is_Completion
: Boolean);
499 -- Process a derived type declaration. This routine will invoke
500 -- Build_Derived_Type to process the actual derived type definition.
501 -- Parameters N and Is_Completion have the same meaning as in
502 -- Build_Derived_Type. T is the N_Defining_Identifier for the entity
503 -- defined in the N_Full_Type_Declaration node N, that is T is the
506 function Find_Type_Of_Subtype_Indic
(S
: Node_Id
) return Entity_Id
;
507 -- Given a subtype indication S (which is really an N_Subtype_Indication
508 -- node or a plain N_Identifier), find the type of the subtype mark.
510 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
511 -- Insert each literal in symbol table, as an overloadable identifier
512 -- Each enumeration type is mapped into a sequence of integers, and
513 -- each literal is defined as a constant with integer value. If any
514 -- of the literals are character literals, the type is a character
515 -- type, which means that strings are legal aggregates for arrays of
516 -- components of the type.
518 function Expand_To_Stored_Constraint
520 Constraint
: Elist_Id
) return Elist_Id
;
521 -- Given a Constraint (ie a list of expressions) on the discriminants of
522 -- Typ, expand it into a constraint on the stored discriminants and
523 -- return the new list of expressions constraining the stored
526 function Find_Type_Of_Object
528 Related_Nod
: Node_Id
) return Entity_Id
;
529 -- Get type entity for object referenced by Obj_Def, attaching the
530 -- implicit types generated to Related_Nod
532 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
533 -- Create a new float, and apply the constraint to obtain subtype of it
535 function Has_Range_Constraint
(N
: Node_Id
) return Boolean;
536 -- Given an N_Subtype_Indication node N, return True if a range constraint
537 -- is present, either directly, or as part of a digits or delta constraint.
538 -- In addition, a digits constraint in the decimal case returns True, since
539 -- it establishes a default range if no explicit range is present.
541 function Is_Valid_Constraint_Kind
543 Constraint_Kind
: Node_Kind
) return Boolean;
544 -- Returns True if it is legal to apply the given kind of constraint
545 -- to the given kind of type (index constraint to an array type,
548 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
549 -- Create new modular type. Verify that modulus is in bounds and is
550 -- a power of two (implementation restriction).
552 procedure New_Concatenation_Op
(Typ
: Entity_Id
);
553 -- Create an abbreviated declaration for an operator in order to
554 -- materialize concatenation on array types.
556 procedure Ordinary_Fixed_Point_Type_Declaration
559 -- Create a new ordinary fixed point type, and apply the constraint
560 -- to obtain subtype of it.
562 procedure Prepare_Private_Subtype_Completion
564 Related_Nod
: Node_Id
);
565 -- Id is a subtype of some private type. Creates the full declaration
566 -- associated with Id whenever possible, i.e. when the full declaration
567 -- of the base type is already known. Records each subtype into
568 -- Private_Dependents of the base type.
570 procedure Process_Incomplete_Dependents
574 -- Process all entities that depend on an incomplete type. There include
575 -- subtypes, subprogram types that mention the incomplete type in their
576 -- profiles, and subprogram with access parameters that designate the
579 -- Inc_T is the defining identifier of an incomplete type declaration, its
580 -- Ekind is E_Incomplete_Type.
582 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
584 -- Full_T is N's defining identifier.
586 -- Subtypes of incomplete types with discriminants are completed when the
587 -- parent type is. This is simpler than private subtypes, because they can
588 -- only appear in the same scope, and there is no need to exchange views.
589 -- Similarly, access_to_subprogram types may have a parameter or a return
590 -- type that is an incomplete type, and that must be replaced with the
593 -- If the full type is tagged, subprogram with access parameters that
594 -- designated the incomplete may be primitive operations of the full type,
595 -- and have to be processed accordingly.
597 procedure Process_Real_Range_Specification
(Def
: Node_Id
);
598 -- Given the type definition for a real type, this procedure processes
599 -- and checks the real range specification of this type definition if
600 -- one is present. If errors are found, error messages are posted, and
601 -- the Real_Range_Specification of Def is reset to Empty.
603 procedure Record_Type_Declaration
607 -- Process a record type declaration (for both untagged and tagged
608 -- records). Parameters T and N are exactly like in procedure
609 -- Derived_Type_Declaration, except that no flag Is_Completion is
610 -- needed for this routine. If this is the completion of an incomplete
611 -- type declaration, Prev is the entity of the incomplete declaration,
612 -- used for cross-referencing. Otherwise Prev = T.
614 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
);
615 -- This routine is used to process the actual record type definition
616 -- (both for untagged and tagged records). Def is a record type
617 -- definition node. This procedure analyzes the components in this
618 -- record type definition. Prev_T is the entity for the enclosing record
619 -- type. It is provided so that its Has_Task flag can be set if any of
620 -- the component have Has_Task set. If the declaration is the completion
621 -- of an incomplete type declaration, Prev_T is the original incomplete
622 -- type, whose full view is the record type.
624 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
);
625 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
626 -- build a copy of the declaration tree of the parent, and we create
627 -- independently the list of components for the derived type. Semantic
628 -- information uses the component entities, but record representation
629 -- clauses are validated on the declaration tree. This procedure replaces
630 -- discriminants and components in the declaration with those that have
631 -- been created by Inherit_Components.
633 procedure Set_Fixed_Range
638 -- Build a range node with the given bounds and set it as the Scalar_Range
639 -- of the given fixed-point type entity. Loc is the source location used
640 -- for the constructed range. See body for further details.
642 procedure Set_Scalar_Range_For_Subtype
646 -- This routine is used to set the scalar range field for a subtype
647 -- given Def_Id, the entity for the subtype, and R, the range expression
648 -- for the scalar range. Subt provides the parent subtype to be used
649 -- to analyze, resolve, and check the given range.
651 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
652 -- Create a new signed integer entity, and apply the constraint to obtain
653 -- the required first named subtype of this type.
655 procedure Set_Stored_Constraint_From_Discriminant_Constraint
657 -- E is some record type. This routine computes E's Stored_Constraint
658 -- from its Discriminant_Constraint.
660 -----------------------
661 -- Access_Definition --
662 -----------------------
664 function Access_Definition
665 (Related_Nod
: Node_Id
;
666 N
: Node_Id
) return Entity_Id
668 Anon_Type
: constant Entity_Id
:=
669 Create_Itype
(E_Anonymous_Access_Type
, Related_Nod
,
670 Scope_Id
=> Scope
(Current_Scope
));
671 Desig_Type
: Entity_Id
;
674 if Is_Entry
(Current_Scope
)
675 and then Is_Task_Type
(Etype
(Scope
(Current_Scope
)))
677 Error_Msg_N
("task entries cannot have access parameters", N
);
680 -- Ada 2005 (AI-254): In case of anonymous access to subprograms
681 -- call the corresponding semantic routine
683 if Present
(Access_To_Subprogram_Definition
(N
)) then
684 Access_Subprogram_Declaration
685 (T_Name
=> Anon_Type
,
686 T_Def
=> Access_To_Subprogram_Definition
(N
));
688 if Ekind
(Anon_Type
) = E_Access_Protected_Subprogram_Type
then
690 (Anon_Type
, E_Anonymous_Access_Protected_Subprogram_Type
);
693 (Anon_Type
, E_Anonymous_Access_Subprogram_Type
);
699 Find_Type
(Subtype_Mark
(N
));
700 Desig_Type
:= Entity
(Subtype_Mark
(N
));
702 Set_Directly_Designated_Type
703 (Anon_Type
, Desig_Type
);
704 Set_Etype
(Anon_Type
, Anon_Type
);
705 Init_Size_Align
(Anon_Type
);
706 Set_Depends_On_Private
(Anon_Type
, Has_Private_Component
(Anon_Type
));
708 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
709 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify
710 -- if the null value is allowed. In Ada 95 the null value is never
713 if Ada_Version
>= Ada_05
then
714 Set_Can_Never_Be_Null
(Anon_Type
, Null_Exclusion_Present
(N
));
716 Set_Can_Never_Be_Null
(Anon_Type
, True);
719 -- The anonymous access type is as public as the discriminated type or
720 -- subprogram that defines it. It is imported (for back-end purposes)
721 -- if the designated type is.
723 Set_Is_Public
(Anon_Type
, Is_Public
(Scope
(Anon_Type
)));
725 -- Ada 2005 (AI-50217): Propagate the attribute that indicates that the
726 -- designated type comes from the limited view (for back-end purposes).
728 Set_From_With_Type
(Anon_Type
, From_With_Type
(Desig_Type
));
730 -- Ada 2005 (AI-231): Propagate the access-constant attribute
732 Set_Is_Access_Constant
(Anon_Type
, Constant_Present
(N
));
734 -- The context is either a subprogram declaration or an access
735 -- discriminant, in a private or a full type declaration. In the case
736 -- of a subprogram, If the designated type is incomplete, the operation
737 -- will be a primitive operation of the full type, to be updated
738 -- subsequently. If the type is imported through a limited with clause,
739 -- it is not a primitive operation of the type (which is declared
740 -- elsewhere in some other scope).
742 if Ekind
(Desig_Type
) = E_Incomplete_Type
743 and then not From_With_Type
(Desig_Type
)
744 and then Is_Overloadable
(Current_Scope
)
746 Append_Elmt
(Current_Scope
, Private_Dependents
(Desig_Type
));
747 Set_Has_Delayed_Freeze
(Current_Scope
);
751 end Access_Definition
;
753 -----------------------------------
754 -- Access_Subprogram_Declaration --
755 -----------------------------------
757 procedure Access_Subprogram_Declaration
761 Formals
: constant List_Id
:= Parameter_Specifications
(T_Def
);
764 Desig_Type
: constant Entity_Id
:=
765 Create_Itype
(E_Subprogram_Type
, Parent
(T_Def
));
768 if Nkind
(T_Def
) = N_Access_Function_Definition
then
769 Analyze
(Subtype_Mark
(T_Def
));
770 Set_Etype
(Desig_Type
, Entity
(Subtype_Mark
(T_Def
)));
772 if not (Is_Type
(Etype
(Desig_Type
))) then
774 ("expect type in function specification", Subtype_Mark
(T_Def
));
778 Set_Etype
(Desig_Type
, Standard_Void_Type
);
781 if Present
(Formals
) then
782 New_Scope
(Desig_Type
);
783 Process_Formals
(Formals
, Parent
(T_Def
));
785 -- A bit of a kludge here, End_Scope requires that the parent
786 -- pointer be set to something reasonable, but Itypes don't have
787 -- parent pointers. So we set it and then unset it ??? If and when
788 -- Itypes have proper parent pointers to their declarations, this
789 -- kludge can be removed.
791 Set_Parent
(Desig_Type
, T_Name
);
793 Set_Parent
(Desig_Type
, Empty
);
796 -- The return type and/or any parameter type may be incomplete. Mark
797 -- the subprogram_type as depending on the incomplete type, so that
798 -- it can be updated when the full type declaration is seen.
800 if Present
(Formals
) then
801 Formal
:= First_Formal
(Desig_Type
);
803 while Present
(Formal
) loop
804 if Ekind
(Formal
) /= E_In_Parameter
805 and then Nkind
(T_Def
) = N_Access_Function_Definition
807 Error_Msg_N
("functions can only have IN parameters", Formal
);
810 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
then
811 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Formal
)));
812 Set_Has_Delayed_Freeze
(Desig_Type
);
815 Next_Formal
(Formal
);
819 if Ekind
(Etype
(Desig_Type
)) = E_Incomplete_Type
820 and then not Has_Delayed_Freeze
(Desig_Type
)
822 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Desig_Type
)));
823 Set_Has_Delayed_Freeze
(Desig_Type
);
826 Check_Delayed_Subprogram
(Desig_Type
);
828 if Protected_Present
(T_Def
) then
829 Set_Ekind
(T_Name
, E_Access_Protected_Subprogram_Type
);
830 Set_Convention
(Desig_Type
, Convention_Protected
);
832 Set_Ekind
(T_Name
, E_Access_Subprogram_Type
);
835 Set_Etype
(T_Name
, T_Name
);
836 Init_Size_Align
(T_Name
);
837 Set_Directly_Designated_Type
(T_Name
, Desig_Type
);
839 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
841 Set_Can_Never_Be_Null
(T_Name
, Null_Exclusion_Present
(T_Def
));
843 Check_Restriction
(No_Access_Subprograms
, T_Def
);
844 end Access_Subprogram_Declaration
;
846 ----------------------------
847 -- Access_Type_Declaration --
848 ----------------------------
850 procedure Access_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
851 S
: constant Node_Id
:= Subtype_Indication
(Def
);
852 P
: constant Node_Id
:= Parent
(Def
);
858 -- Check for permissible use of incomplete type
860 if Nkind
(S
) /= N_Subtype_Indication
then
863 if Ekind
(Root_Type
(Entity
(S
))) = E_Incomplete_Type
then
864 Set_Directly_Designated_Type
(T
, Entity
(S
));
866 Set_Directly_Designated_Type
(T
,
867 Process_Subtype
(S
, P
, T
, 'P'));
871 Set_Directly_Designated_Type
(T
,
872 Process_Subtype
(S
, P
, T
, 'P'));
875 if All_Present
(Def
) or Constant_Present
(Def
) then
876 Set_Ekind
(T
, E_General_Access_Type
);
878 Set_Ekind
(T
, E_Access_Type
);
881 if Base_Type
(Designated_Type
(T
)) = T
then
882 Error_Msg_N
("access type cannot designate itself", S
);
887 -- If the type has appeared already in a with_type clause, it is
888 -- frozen and the pointer size is already set. Else, initialize.
890 if not From_With_Type
(T
) then
894 Set_Is_Access_Constant
(T
, Constant_Present
(Def
));
896 Desig
:= Designated_Type
(T
);
898 -- If designated type is an imported tagged type, indicate that the
899 -- access type is also imported, and therefore restricted in its use.
900 -- The access type may already be imported, so keep setting otherwise.
902 -- Ada 2005 (AI-50217): If the non-limited view of the designated type
903 -- is available, use it as the designated type of the access type, so
904 -- that the back-end gets a usable entity.
910 if From_With_Type
(Desig
) then
911 Set_From_With_Type
(T
);
913 if Ekind
(Desig
) = E_Incomplete_Type
then
914 N_Desig
:= Non_Limited_View
(Desig
);
916 else pragma Assert
(Ekind
(Desig
) = E_Class_Wide_Type
);
917 if From_With_Type
(Etype
(Desig
)) then
918 N_Desig
:= Non_Limited_View
(Etype
(Desig
));
920 N_Desig
:= Etype
(Desig
);
924 pragma Assert
(Present
(N_Desig
));
925 Set_Directly_Designated_Type
(T
, N_Desig
);
929 -- Note that Has_Task is always false, since the access type itself
930 -- is not a task type. See Einfo for more description on this point.
931 -- Exactly the same consideration applies to Has_Controlled_Component.
933 Set_Has_Task
(T
, False);
934 Set_Has_Controlled_Component
(T
, False);
936 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
939 Set_Can_Never_Be_Null
(T
, Null_Exclusion_Present
(Def
));
940 Set_Is_Access_Constant
(T
, Constant_Present
(Def
));
941 end Access_Type_Declaration
;
943 -----------------------------------
944 -- Analyze_Component_Declaration --
945 -----------------------------------
947 procedure Analyze_Component_Declaration
(N
: Node_Id
) is
948 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
952 function Contains_POC
(Constr
: Node_Id
) return Boolean;
953 -- Determines whether a constraint uses the discriminant of a record
954 -- type thus becoming a per-object constraint (POC).
960 function Contains_POC
(Constr
: Node_Id
) return Boolean is
962 case Nkind
(Constr
) is
963 when N_Attribute_Reference
=>
964 return Attribute_Name
(Constr
) = Name_Access
966 Prefix
(Constr
) = Scope
(Entity
(Prefix
(Constr
)));
968 when N_Discriminant_Association
=>
969 return Denotes_Discriminant
(Expression
(Constr
));
972 return Denotes_Discriminant
(Constr
);
974 when N_Index_Or_Discriminant_Constraint
=>
976 IDC
: Node_Id
:= First
(Constraints
(Constr
));
979 while Present
(IDC
) loop
981 -- One per-object constraint is sufficent
983 if Contains_POC
(IDC
) then
994 return Denotes_Discriminant
(Low_Bound
(Constr
))
996 Denotes_Discriminant
(High_Bound
(Constr
));
998 when N_Range_Constraint
=>
999 return Denotes_Discriminant
(Range_Expression
(Constr
));
1007 -- Start of processing for Analyze_Component_Declaration
1010 Generate_Definition
(Id
);
1013 if Present
(Subtype_Indication
(Component_Definition
(N
))) then
1014 T
:= Find_Type_Of_Object
1015 (Subtype_Indication
(Component_Definition
(N
)), N
);
1017 -- Ada 2005 (AI-230): Access Definition case
1020 pragma Assert
(Present
1021 (Access_Definition
(Component_Definition
(N
))));
1023 T
:= Access_Definition
1025 N
=> Access_Definition
(Component_Definition
(N
)));
1027 -- Ada 2005 (AI-230): In case of components that are anonymous
1028 -- access types the level of accessibility depends on the enclosing
1031 Set_Scope
(T
, Current_Scope
); -- Ada 2005 (AI-230)
1033 -- Ada 2005 (AI-254)
1035 if Present
(Access_To_Subprogram_Definition
1036 (Access_Definition
(Component_Definition
(N
))))
1037 and then Protected_Present
(Access_To_Subprogram_Definition
1039 (Component_Definition
(N
))))
1041 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
, T
);
1045 -- If the subtype is a constrained subtype of the enclosing record,
1046 -- (which must have a partial view) the back-end does not handle
1047 -- properly the recursion. Rewrite the component declaration with
1048 -- an explicit subtype indication, which is acceptable to Gigi. We
1049 -- can copy the tree directly because side effects have already been
1050 -- removed from discriminant constraints.
1052 if Ekind
(T
) = E_Access_Subtype
1053 and then Is_Entity_Name
(Subtype_Indication
(Component_Definition
(N
)))
1054 and then Comes_From_Source
(T
)
1055 and then Nkind
(Parent
(T
)) = N_Subtype_Declaration
1056 and then Etype
(Directly_Designated_Type
(T
)) = Current_Scope
1059 (Subtype_Indication
(Component_Definition
(N
)),
1060 New_Copy_Tree
(Subtype_Indication
(Parent
(T
))));
1061 T
:= Find_Type_Of_Object
1062 (Subtype_Indication
(Component_Definition
(N
)), N
);
1065 -- If the component declaration includes a default expression, then we
1066 -- check that the component is not of a limited type (RM 3.7(5)),
1067 -- and do the special preanalysis of the expression (see section on
1068 -- "Handling of Default and Per-Object Expressions" in the spec of
1071 if Present
(Expression
(N
)) then
1072 Analyze_Per_Use_Expression
(Expression
(N
), T
);
1073 Check_Initialization
(T
, Expression
(N
));
1076 -- The parent type may be a private view with unknown discriminants,
1077 -- and thus unconstrained. Regular components must be constrained.
1079 if Is_Indefinite_Subtype
(T
) and then Chars
(Id
) /= Name_uParent
then
1080 if Is_Class_Wide_Type
(T
) then
1082 ("class-wide subtype with unknown discriminants" &
1083 " in component declaration",
1084 Subtype_Indication
(Component_Definition
(N
)));
1087 ("unconstrained subtype in component declaration",
1088 Subtype_Indication
(Component_Definition
(N
)));
1091 -- Components cannot be abstract, except for the special case of
1092 -- the _Parent field (case of extending an abstract tagged type)
1094 elsif Is_Abstract
(T
) and then Chars
(Id
) /= Name_uParent
then
1095 Error_Msg_N
("type of a component cannot be abstract", N
);
1099 Set_Is_Aliased
(Id
, Aliased_Present
(Component_Definition
(N
)));
1101 -- The component declaration may have a per-object constraint, set
1102 -- the appropriate flag in the defining identifier of the subtype.
1104 if Present
(Subtype_Indication
(Component_Definition
(N
))) then
1106 Sindic
: constant Node_Id
:=
1107 Subtype_Indication
(Component_Definition
(N
));
1110 if Nkind
(Sindic
) = N_Subtype_Indication
1111 and then Present
(Constraint
(Sindic
))
1112 and then Contains_POC
(Constraint
(Sindic
))
1114 Set_Has_Per_Object_Constraint
(Id
);
1119 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1120 -- out some static checks.
1122 if Ada_Version
>= Ada_05
1123 and then (Null_Exclusion_Present
(Component_Definition
(N
))
1124 or else Can_Never_Be_Null
(T
))
1126 Set_Can_Never_Be_Null
(Id
);
1127 Null_Exclusion_Static_Checks
(N
);
1130 -- If this component is private (or depends on a private type),
1131 -- flag the record type to indicate that some operations are not
1134 P
:= Private_Component
(T
);
1137 -- Check for circular definitions
1139 if P
= Any_Type
then
1140 Set_Etype
(Id
, Any_Type
);
1142 -- There is a gap in the visibility of operations only if the
1143 -- component type is not defined in the scope of the record type.
1145 elsif Scope
(P
) = Scope
(Current_Scope
) then
1148 elsif Is_Limited_Type
(P
) then
1149 Set_Is_Limited_Composite
(Current_Scope
);
1152 Set_Is_Private_Composite
(Current_Scope
);
1157 and then Is_Limited_Type
(T
)
1158 and then Chars
(Id
) /= Name_uParent
1159 and then Is_Tagged_Type
(Current_Scope
)
1161 if Is_Derived_Type
(Current_Scope
)
1162 and then not Is_Limited_Record
(Root_Type
(Current_Scope
))
1165 ("extension of nonlimited type cannot have limited components",
1167 Explain_Limited_Type
(T
, N
);
1168 Set_Etype
(Id
, Any_Type
);
1169 Set_Is_Limited_Composite
(Current_Scope
, False);
1171 elsif not Is_Derived_Type
(Current_Scope
)
1172 and then not Is_Limited_Record
(Current_Scope
)
1175 ("nonlimited tagged type cannot have limited components", N
);
1176 Explain_Limited_Type
(T
, N
);
1177 Set_Etype
(Id
, Any_Type
);
1178 Set_Is_Limited_Composite
(Current_Scope
, False);
1182 Set_Original_Record_Component
(Id
, Id
);
1183 end Analyze_Component_Declaration
;
1185 --------------------------
1186 -- Analyze_Declarations --
1187 --------------------------
1189 procedure Analyze_Declarations
(L
: List_Id
) is
1191 Next_Node
: Node_Id
;
1192 Freeze_From
: Entity_Id
:= Empty
;
1195 -- Adjust D not to include implicit label declarations, since these
1196 -- have strange Sloc values that result in elaboration check problems.
1197 -- (They have the sloc of the label as found in the source, and that
1198 -- is ahead of the current declarative part).
1204 procedure Adjust_D
is
1206 while Present
(Prev
(D
))
1207 and then Nkind
(D
) = N_Implicit_Label_Declaration
1213 -- Start of processing for Analyze_Declarations
1217 while Present
(D
) loop
1219 -- Complete analysis of declaration
1222 Next_Node
:= Next
(D
);
1224 if No
(Freeze_From
) then
1225 Freeze_From
:= First_Entity
(Current_Scope
);
1228 -- At the end of a declarative part, freeze remaining entities
1229 -- declared in it. The end of the visible declarations of package
1230 -- specification is not the end of a declarative part if private
1231 -- declarations are present. The end of a package declaration is a
1232 -- freezing point only if it a library package. A task definition or
1233 -- protected type definition is not a freeze point either. Finally,
1234 -- we do not freeze entities in generic scopes, because there is no
1235 -- code generated for them and freeze nodes will be generated for
1238 -- The end of a package instantiation is not a freeze point, but
1239 -- for now we make it one, because the generic body is inserted
1240 -- (currently) immediately after. Generic instantiations will not
1241 -- be a freeze point once delayed freezing of bodies is implemented.
1242 -- (This is needed in any case for early instantiations ???).
1244 if No
(Next_Node
) then
1245 if Nkind
(Parent
(L
)) = N_Component_List
1246 or else Nkind
(Parent
(L
)) = N_Task_Definition
1247 or else Nkind
(Parent
(L
)) = N_Protected_Definition
1251 elsif Nkind
(Parent
(L
)) /= N_Package_Specification
then
1252 if Nkind
(Parent
(L
)) = N_Package_Body
then
1253 Freeze_From
:= First_Entity
(Current_Scope
);
1257 Freeze_All
(Freeze_From
, D
);
1258 Freeze_From
:= Last_Entity
(Current_Scope
);
1260 elsif Scope
(Current_Scope
) /= Standard_Standard
1261 and then not Is_Child_Unit
(Current_Scope
)
1262 and then No
(Generic_Parent
(Parent
(L
)))
1266 elsif L
/= Visible_Declarations
(Parent
(L
))
1267 or else No
(Private_Declarations
(Parent
(L
)))
1268 or else Is_Empty_List
(Private_Declarations
(Parent
(L
)))
1271 Freeze_All
(Freeze_From
, D
);
1272 Freeze_From
:= Last_Entity
(Current_Scope
);
1275 -- If next node is a body then freeze all types before the body.
1276 -- An exception occurs for expander generated bodies, which can
1277 -- be recognized by their already being analyzed. The expander
1278 -- ensures that all types needed by these bodies have been frozen
1279 -- but it is not necessary to freeze all types (and would be wrong
1280 -- since it would not correspond to an RM defined freeze point).
1282 elsif not Analyzed
(Next_Node
)
1283 and then (Nkind
(Next_Node
) = N_Subprogram_Body
1284 or else Nkind
(Next_Node
) = N_Entry_Body
1285 or else Nkind
(Next_Node
) = N_Package_Body
1286 or else Nkind
(Next_Node
) = N_Protected_Body
1287 or else Nkind
(Next_Node
) = N_Task_Body
1288 or else Nkind
(Next_Node
) in N_Body_Stub
)
1291 Freeze_All
(Freeze_From
, D
);
1292 Freeze_From
:= Last_Entity
(Current_Scope
);
1297 end Analyze_Declarations
;
1299 ----------------------------------
1300 -- Analyze_Incomplete_Type_Decl --
1301 ----------------------------------
1303 procedure Analyze_Incomplete_Type_Decl
(N
: Node_Id
) is
1304 F
: constant Boolean := Is_Pure
(Current_Scope
);
1308 Generate_Definition
(Defining_Identifier
(N
));
1310 -- Process an incomplete declaration. The identifier must not have been
1311 -- declared already in the scope. However, an incomplete declaration may
1312 -- appear in the private part of a package, for a private type that has
1313 -- already been declared.
1315 -- In this case, the discriminants (if any) must match
1317 T
:= Find_Type_Name
(N
);
1319 Set_Ekind
(T
, E_Incomplete_Type
);
1320 Init_Size_Align
(T
);
1321 Set_Is_First_Subtype
(T
, True);
1325 Set_Stored_Constraint
(T
, No_Elist
);
1327 if Present
(Discriminant_Specifications
(N
)) then
1328 Process_Discriminants
(N
);
1333 -- If the type has discriminants, non-trivial subtypes may be be
1334 -- declared before the full view of the type. The full views of those
1335 -- subtypes will be built after the full view of the type.
1337 Set_Private_Dependents
(T
, New_Elmt_List
);
1339 end Analyze_Incomplete_Type_Decl
;
1341 -----------------------------
1342 -- Analyze_Itype_Reference --
1343 -----------------------------
1345 -- Nothing to do. This node is placed in the tree only for the benefit
1346 -- of Gigi processing, and has no effect on the semantic processing.
1348 procedure Analyze_Itype_Reference
(N
: Node_Id
) is
1350 pragma Assert
(Is_Itype
(Itype
(N
)));
1352 end Analyze_Itype_Reference
;
1354 --------------------------------
1355 -- Analyze_Number_Declaration --
1356 --------------------------------
1358 procedure Analyze_Number_Declaration
(N
: Node_Id
) is
1359 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1360 E
: constant Node_Id
:= Expression
(N
);
1362 Index
: Interp_Index
;
1366 Generate_Definition
(Id
);
1369 -- This is an optimization of a common case of an integer literal
1371 if Nkind
(E
) = N_Integer_Literal
then
1372 Set_Is_Static_Expression
(E
, True);
1373 Set_Etype
(E
, Universal_Integer
);
1375 Set_Etype
(Id
, Universal_Integer
);
1376 Set_Ekind
(Id
, E_Named_Integer
);
1377 Set_Is_Frozen
(Id
, True);
1381 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
1383 -- Process expression, replacing error by integer zero, to avoid
1384 -- cascaded errors or aborts further along in the processing
1386 -- Replace Error by integer zero, which seems least likely to
1387 -- cause cascaded errors.
1390 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), Uint_0
));
1391 Set_Error_Posted
(E
);
1396 -- Verify that the expression is static and numeric. If
1397 -- the expression is overloaded, we apply the preference
1398 -- rule that favors root numeric types.
1400 if not Is_Overloaded
(E
) then
1405 Get_First_Interp
(E
, Index
, It
);
1407 while Present
(It
.Typ
) loop
1408 if (Is_Integer_Type
(It
.Typ
)
1409 or else Is_Real_Type
(It
.Typ
))
1410 and then (Scope
(Base_Type
(It
.Typ
))) = Standard_Standard
1412 if T
= Any_Type
then
1415 elsif It
.Typ
= Universal_Real
1416 or else It
.Typ
= Universal_Integer
1418 -- Choose universal interpretation over any other
1425 Get_Next_Interp
(Index
, It
);
1429 if Is_Integer_Type
(T
) then
1431 Set_Etype
(Id
, Universal_Integer
);
1432 Set_Ekind
(Id
, E_Named_Integer
);
1434 elsif Is_Real_Type
(T
) then
1436 -- Because the real value is converted to universal_real, this
1437 -- is a legal context for a universal fixed expression.
1439 if T
= Universal_Fixed
then
1441 Loc
: constant Source_Ptr
:= Sloc
(N
);
1442 Conv
: constant Node_Id
:= Make_Type_Conversion
(Loc
,
1444 New_Occurrence_Of
(Universal_Real
, Loc
),
1445 Expression
=> Relocate_Node
(E
));
1452 elsif T
= Any_Fixed
then
1453 Error_Msg_N
("illegal context for mixed mode operation", E
);
1455 -- Expression is of the form : universal_fixed * integer.
1456 -- Try to resolve as universal_real.
1458 T
:= Universal_Real
;
1463 Set_Etype
(Id
, Universal_Real
);
1464 Set_Ekind
(Id
, E_Named_Real
);
1467 Wrong_Type
(E
, Any_Numeric
);
1471 Set_Ekind
(Id
, E_Constant
);
1472 Set_Never_Set_In_Source
(Id
, True);
1473 Set_Is_True_Constant
(Id
, True);
1477 if Nkind
(E
) = N_Integer_Literal
1478 or else Nkind
(E
) = N_Real_Literal
1480 Set_Etype
(E
, Etype
(Id
));
1483 if not Is_OK_Static_Expression
(E
) then
1484 Flag_Non_Static_Expr
1485 ("non-static expression used in number declaration!", E
);
1486 Rewrite
(E
, Make_Integer_Literal
(Sloc
(N
), 1));
1487 Set_Etype
(E
, Any_Type
);
1489 end Analyze_Number_Declaration
;
1491 --------------------------------
1492 -- Analyze_Object_Declaration --
1493 --------------------------------
1495 procedure Analyze_Object_Declaration
(N
: Node_Id
) is
1496 Loc
: constant Source_Ptr
:= Sloc
(N
);
1497 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1501 E
: Node_Id
:= Expression
(N
);
1502 -- E is set to Expression (N) throughout this routine. When
1503 -- Expression (N) is modified, E is changed accordingly.
1505 Prev_Entity
: Entity_Id
:= Empty
;
1507 function Build_Default_Subtype
return Entity_Id
;
1508 -- If the object is limited or aliased, and if the type is unconstrained
1509 -- and there is no expression, the discriminants cannot be modified and
1510 -- the subtype of the object is constrained by the defaults, so it is
1511 -- worthile building the corresponding subtype.
1513 function Count_Tasks
(T
: Entity_Id
) return Uint
;
1514 -- This function is called when a library level object of type is
1515 -- declared. It's function is to count the static number of tasks
1516 -- declared within the type (it is only called if Has_Tasks is set for
1517 -- T). As a side effect, if an array of tasks with non-static bounds or
1518 -- a variant record type is encountered, Check_Restrictions is called
1519 -- indicating the count is unknown.
1521 ---------------------------
1522 -- Build_Default_Subtype --
1523 ---------------------------
1525 function Build_Default_Subtype
return Entity_Id
is
1526 Constraints
: constant List_Id
:= New_List
;
1532 Disc
:= First_Discriminant
(T
);
1534 if No
(Discriminant_Default_Value
(Disc
)) then
1535 return T
; -- previous error.
1538 Act
:= Make_Defining_Identifier
(Loc
, New_Internal_Name
('S'));
1539 while Present
(Disc
) loop
1542 Discriminant_Default_Value
(Disc
)), Constraints
);
1543 Next_Discriminant
(Disc
);
1547 Make_Subtype_Declaration
(Loc
,
1548 Defining_Identifier
=> Act
,
1549 Subtype_Indication
=>
1550 Make_Subtype_Indication
(Loc
,
1551 Subtype_Mark
=> New_Occurrence_Of
(T
, Loc
),
1553 Make_Index_Or_Discriminant_Constraint
1554 (Loc
, Constraints
)));
1556 Insert_Before
(N
, Decl
);
1559 end Build_Default_Subtype
;
1565 function Count_Tasks
(T
: Entity_Id
) return Uint
is
1571 if Is_Task_Type
(T
) then
1574 elsif Is_Record_Type
(T
) then
1575 if Has_Discriminants
(T
) then
1576 Check_Restriction
(Max_Tasks
, N
);
1581 C
:= First_Component
(T
);
1582 while Present
(C
) loop
1583 V
:= V
+ Count_Tasks
(Etype
(C
));
1590 elsif Is_Array_Type
(T
) then
1591 X
:= First_Index
(T
);
1592 V
:= Count_Tasks
(Component_Type
(T
));
1593 while Present
(X
) loop
1596 if not Is_Static_Subtype
(C
) then
1597 Check_Restriction
(Max_Tasks
, N
);
1600 V
:= V
* (UI_Max
(Uint_0
,
1601 Expr_Value
(Type_High_Bound
(C
)) -
1602 Expr_Value
(Type_Low_Bound
(C
)) + Uint_1
));
1615 -- Start of processing for Analyze_Object_Declaration
1618 -- There are three kinds of implicit types generated by an
1619 -- object declaration:
1621 -- 1. Those for generated by the original Object Definition
1623 -- 2. Those generated by the Expression
1625 -- 3. Those used to constrained the Object Definition with the
1626 -- expression constraints when it is unconstrained
1628 -- They must be generated in this order to avoid order of elaboration
1629 -- issues. Thus the first step (after entering the name) is to analyze
1630 -- the object definition.
1632 if Constant_Present
(N
) then
1633 Prev_Entity
:= Current_Entity_In_Scope
(Id
);
1635 -- If homograph is an implicit subprogram, it is overridden by the
1636 -- current declaration.
1638 if Present
(Prev_Entity
)
1639 and then Is_Overloadable
(Prev_Entity
)
1640 and then Is_Inherited_Operation
(Prev_Entity
)
1642 Prev_Entity
:= Empty
;
1646 if Present
(Prev_Entity
) then
1647 Constant_Redeclaration
(Id
, N
, T
);
1649 Generate_Reference
(Prev_Entity
, Id
, 'c');
1650 Set_Completion_Referenced
(Id
);
1652 if Error_Posted
(N
) then
1654 -- Type mismatch or illegal redeclaration, Do not analyze
1655 -- expression to avoid cascaded errors.
1657 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
1659 Set_Ekind
(Id
, E_Variable
);
1663 -- In the normal case, enter identifier at the start to catch
1664 -- premature usage in the initialization expression.
1667 Generate_Definition
(Id
);
1670 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
1672 if Error_Posted
(Id
) then
1674 Set_Ekind
(Id
, E_Variable
);
1679 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
1680 -- out some static checks
1682 if Ada_Version
>= Ada_05
1683 and then (Null_Exclusion_Present
(N
)
1684 or else Can_Never_Be_Null
(T
))
1686 Set_Can_Never_Be_Null
(Id
);
1687 Null_Exclusion_Static_Checks
(N
);
1690 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
1692 -- If deferred constant, make sure context is appropriate. We detect
1693 -- a deferred constant as a constant declaration with no expression.
1694 -- A deferred constant can appear in a package body if its completion
1695 -- is by means of an interface pragma.
1697 if Constant_Present
(N
)
1700 if not Is_Package
(Current_Scope
) then
1702 ("invalid context for deferred constant declaration ('R'M 7.4)",
1705 ("\declaration requires an initialization expression",
1707 Set_Constant_Present
(N
, False);
1709 -- In Ada 83, deferred constant must be of private type
1711 elsif not Is_Private_Type
(T
) then
1712 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
1714 ("(Ada 83) deferred constant must be private type", N
);
1718 -- If not a deferred constant, then object declaration freezes its type
1721 Check_Fully_Declared
(T
, N
);
1722 Freeze_Before
(N
, T
);
1725 -- If the object was created by a constrained array definition, then
1726 -- set the link in both the anonymous base type and anonymous subtype
1727 -- that are built to represent the array type to point to the object.
1729 if Nkind
(Object_Definition
(Declaration_Node
(Id
))) =
1730 N_Constrained_Array_Definition
1732 Set_Related_Array_Object
(T
, Id
);
1733 Set_Related_Array_Object
(Base_Type
(T
), Id
);
1736 -- Special checks for protected objects not at library level
1738 if Is_Protected_Type
(T
)
1739 and then not Is_Library_Level_Entity
(Id
)
1741 Check_Restriction
(No_Local_Protected_Objects
, Id
);
1743 -- Protected objects with interrupt handlers must be at library level
1745 if Has_Interrupt_Handler
(T
) then
1747 ("interrupt object can only be declared at library level", Id
);
1751 -- The actual subtype of the object is the nominal subtype, unless
1752 -- the nominal one is unconstrained and obtained from the expression.
1756 -- Process initialization expression if present and not in error
1758 if Present
(E
) and then E
/= Error
then
1761 -- In case of errors detected in the analysis of the expression,
1762 -- decorate it with the expected type to avoid cascade errors
1764 if not Present
(Etype
(E
)) then
1768 -- If an initialization expression is present, then we set the
1769 -- Is_True_Constant flag. It will be reset if this is a variable
1770 -- and it is indeed modified.
1772 Set_Is_True_Constant
(Id
, True);
1774 -- If we are analyzing a constant declaration, set its completion
1775 -- flag after analyzing the expression.
1777 if Constant_Present
(N
) then
1778 Set_Has_Completion
(Id
);
1781 if not Assignment_OK
(N
) then
1782 Check_Initialization
(T
, E
);
1785 Set_Etype
(Id
, T
); -- may be overridden later on
1787 Check_Unset_Reference
(E
);
1789 if Compile_Time_Known_Value
(E
) then
1790 Set_Current_Value
(Id
, E
);
1793 -- Check incorrect use of dynamically tagged expressions. Note
1794 -- the use of Is_Tagged_Type (T) which seems redundant but is in
1795 -- fact important to avoid spurious errors due to expanded code
1796 -- for dispatching functions over an anonymous access type
1798 if (Is_Class_Wide_Type
(Etype
(E
)) or else Is_Dynamically_Tagged
(E
))
1799 and then Is_Tagged_Type
(T
)
1800 and then not Is_Class_Wide_Type
(T
)
1802 Error_Msg_N
("dynamically tagged expression not allowed!", E
);
1805 Apply_Scalar_Range_Check
(E
, T
);
1806 Apply_Static_Length_Check
(E
, T
);
1809 -- If the No_Streams restriction is set, check that the type of the
1810 -- object is not, and does not contain, any subtype derived from
1811 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
1812 -- Has_Stream just for efficiency reasons. There is no point in
1813 -- spending time on a Has_Stream check if the restriction is not set.
1815 if Restrictions
.Set
(No_Streams
) then
1816 if Has_Stream
(T
) then
1817 Check_Restriction
(No_Streams
, N
);
1821 -- Abstract type is never permitted for a variable or constant.
1822 -- Note: we inhibit this check for objects that do not come from
1823 -- source because there is at least one case (the expansion of
1824 -- x'class'input where x is abstract) where we legitimately
1825 -- generate an abstract object.
1827 if Is_Abstract
(T
) and then Comes_From_Source
(N
) then
1828 Error_Msg_N
("type of object cannot be abstract",
1829 Object_Definition
(N
));
1831 if Is_CPP_Class
(T
) then
1832 Error_Msg_NE
("\} may need a cpp_constructor",
1833 Object_Definition
(N
), T
);
1836 -- Case of unconstrained type
1838 elsif Is_Indefinite_Subtype
(T
) then
1840 -- Nothing to do in deferred constant case
1842 if Constant_Present
(N
) and then No
(E
) then
1845 -- Case of no initialization present
1848 if No_Initialization
(N
) then
1851 elsif Is_Class_Wide_Type
(T
) then
1853 ("initialization required in class-wide declaration ", N
);
1857 ("unconstrained subtype not allowed (need initialization)",
1858 Object_Definition
(N
));
1861 -- Case of initialization present but in error. Set initial
1862 -- expression as absent (but do not make above complaints)
1864 elsif E
= Error
then
1865 Set_Expression
(N
, Empty
);
1868 -- Case of initialization present
1871 -- Not allowed in Ada 83
1873 if not Constant_Present
(N
) then
1874 if Ada_Version
= Ada_83
1875 and then Comes_From_Source
(Object_Definition
(N
))
1878 ("(Ada 83) unconstrained variable not allowed",
1879 Object_Definition
(N
));
1883 -- Now we constrain the variable from the initializing expression
1885 -- If the expression is an aggregate, it has been expanded into
1886 -- individual assignments. Retrieve the actual type from the
1887 -- expanded construct.
1889 if Is_Array_Type
(T
)
1890 and then No_Initialization
(N
)
1891 and then Nkind
(Original_Node
(E
)) = N_Aggregate
1896 Expand_Subtype_From_Expr
(N
, T
, Object_Definition
(N
), E
);
1897 Act_T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
1900 Set_Is_Constr_Subt_For_U_Nominal
(Act_T
);
1902 if Aliased_Present
(N
) then
1903 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
1906 Freeze_Before
(N
, Act_T
);
1907 Freeze_Before
(N
, T
);
1910 elsif Is_Array_Type
(T
)
1911 and then No_Initialization
(N
)
1912 and then Nkind
(Original_Node
(E
)) = N_Aggregate
1914 if not Is_Entity_Name
(Object_Definition
(N
)) then
1916 Check_Compile_Time_Size
(Act_T
);
1918 if Aliased_Present
(N
) then
1919 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
1923 -- When the given object definition and the aggregate are specified
1924 -- independently, and their lengths might differ do a length check.
1925 -- This cannot happen if the aggregate is of the form (others =>...)
1927 if not Is_Constrained
(T
) then
1930 elsif Nkind
(E
) = N_Raise_Constraint_Error
then
1932 -- Aggregate is statically illegal. Place back in declaration
1934 Set_Expression
(N
, E
);
1935 Set_No_Initialization
(N
, False);
1937 elsif T
= Etype
(E
) then
1940 elsif Nkind
(E
) = N_Aggregate
1941 and then Present
(Component_Associations
(E
))
1942 and then Present
(Choices
(First
(Component_Associations
(E
))))
1943 and then Nkind
(First
1944 (Choices
(First
(Component_Associations
(E
))))) = N_Others_Choice
1949 Apply_Length_Check
(E
, T
);
1952 elsif (Is_Limited_Record
(T
)
1953 or else Is_Concurrent_Type
(T
))
1954 and then not Is_Constrained
(T
)
1955 and then Has_Discriminants
(T
)
1957 Act_T
:= Build_Default_Subtype
;
1958 Rewrite
(Object_Definition
(N
), New_Occurrence_Of
(Act_T
, Loc
));
1960 elsif not Is_Constrained
(T
)
1961 and then Has_Discriminants
(T
)
1962 and then Constant_Present
(N
)
1963 and then Nkind
(E
) = N_Function_Call
1965 -- The back-end has problems with constants of a discriminated type
1966 -- with defaults, if the initial value is a function call. We
1967 -- generate an intermediate temporary for the result of the call.
1968 -- It is unclear why this should make it acceptable to gcc. ???
1970 Remove_Side_Effects
(E
);
1973 if T
= Standard_Wide_Character
or else T
= Standard_Wide_Wide_Character
1974 or else Root_Type
(T
) = Standard_Wide_String
1975 or else Root_Type
(T
) = Standard_Wide_Wide_String
1977 Check_Restriction
(No_Wide_Characters
, Object_Definition
(N
));
1980 -- Now establish the proper kind and type of the object
1982 if Constant_Present
(N
) then
1983 Set_Ekind
(Id
, E_Constant
);
1984 Set_Never_Set_In_Source
(Id
, True);
1985 Set_Is_True_Constant
(Id
, True);
1988 Set_Ekind
(Id
, E_Variable
);
1990 -- A variable is set as shared passive if it appears in a shared
1991 -- passive package, and is at the outer level. This is not done
1992 -- for entities generated during expansion, because those are
1993 -- always manipulated locally.
1995 if Is_Shared_Passive
(Current_Scope
)
1996 and then Is_Library_Level_Entity
(Id
)
1997 and then Comes_From_Source
(Id
)
1999 Set_Is_Shared_Passive
(Id
);
2000 Check_Shared_Var
(Id
, T
, N
);
2003 -- Case of no initializing expression present. If the type is not
2004 -- fully initialized, then we set Never_Set_In_Source, since this
2005 -- is a case of a potentially uninitialized object. Note that we
2006 -- do not consider access variables to be fully initialized for
2007 -- this purpose, since it still seems dubious if someone declares
2009 -- Note that we only do this for source declarations. If the object
2010 -- is declared by a generated declaration, we assume that it is not
2011 -- appropriate to generate warnings in that case.
2014 if (Is_Access_Type
(T
)
2015 or else not Is_Fully_Initialized_Type
(T
))
2016 and then Comes_From_Source
(N
)
2018 Set_Never_Set_In_Source
(Id
);
2023 Init_Alignment
(Id
);
2026 if Aliased_Present
(N
) then
2027 Set_Is_Aliased
(Id
);
2030 and then Is_Record_Type
(T
)
2031 and then not Is_Constrained
(T
)
2032 and then Has_Discriminants
(T
)
2034 Set_Actual_Subtype
(Id
, Build_Default_Subtype
);
2038 Set_Etype
(Id
, Act_T
);
2040 if Has_Controlled_Component
(Etype
(Id
))
2041 or else Is_Controlled
(Etype
(Id
))
2043 if not Is_Library_Level_Entity
(Id
) then
2044 Check_Restriction
(No_Nested_Finalization
, N
);
2046 Validate_Controlled_Object
(Id
);
2049 -- Generate a warning when an initialization causes an obvious
2050 -- ABE violation. If the init expression is a simple aggregate
2051 -- there shouldn't be any initialize/adjust call generated. This
2052 -- will be true as soon as aggregates are built in place when
2053 -- possible. ??? at the moment we do not generate warnings for
2054 -- temporaries created for those aggregates although a
2055 -- Program_Error might be generated if compiled with -gnato
2057 if Is_Controlled
(Etype
(Id
))
2058 and then Comes_From_Source
(Id
)
2061 BT
: constant Entity_Id
:= Base_Type
(Etype
(Id
));
2063 Implicit_Call
: Entity_Id
;
2064 pragma Warnings
(Off
, Implicit_Call
);
2065 -- What is this about, it is never referenced ???
2067 function Is_Aggr
(N
: Node_Id
) return Boolean;
2068 -- Check that N is an aggregate
2074 function Is_Aggr
(N
: Node_Id
) return Boolean is
2076 case Nkind
(Original_Node
(N
)) is
2077 when N_Aggregate | N_Extension_Aggregate
=>
2080 when N_Qualified_Expression |
2082 N_Unchecked_Type_Conversion
=>
2083 return Is_Aggr
(Expression
(Original_Node
(N
)));
2091 -- If no underlying type, we already are in an error situation
2092 -- don't try to add a warning since we do not have access
2095 if No
(Underlying_Type
(BT
)) then
2096 Implicit_Call
:= Empty
;
2098 -- A generic type does not have usable primitive operators.
2099 -- Initialization calls are built for instances.
2101 elsif Is_Generic_Type
(BT
) then
2102 Implicit_Call
:= Empty
;
2104 -- if the init expression is not an aggregate, an adjust
2105 -- call will be generated
2107 elsif Present
(E
) and then not Is_Aggr
(E
) then
2108 Implicit_Call
:= Find_Prim_Op
(BT
, Name_Adjust
);
2110 -- if no init expression and we are not in the deferred
2111 -- constant case, an Initialize call will be generated
2113 elsif No
(E
) and then not Constant_Present
(N
) then
2114 Implicit_Call
:= Find_Prim_Op
(BT
, Name_Initialize
);
2117 Implicit_Call
:= Empty
;
2123 if Has_Task
(Etype
(Id
)) then
2124 Check_Restriction
(No_Tasking
, N
);
2126 if Is_Library_Level_Entity
(Id
) then
2127 Check_Restriction
(Max_Tasks
, N
, Count_Tasks
(Etype
(Id
)));
2129 Check_Restriction
(Max_Tasks
, N
);
2130 Check_Restriction
(No_Task_Hierarchy
, N
);
2131 Check_Potentially_Blocking_Operation
(N
);
2134 -- A rather specialized test. If we see two tasks being declared
2135 -- of the same type in the same object declaration, and the task
2136 -- has an entry with an address clause, we know that program error
2137 -- will be raised at run-time since we can't have two tasks with
2138 -- entries at the same address.
2140 if Is_Task_Type
(Etype
(Id
)) and then More_Ids
(N
) then
2145 E
:= First_Entity
(Etype
(Id
));
2146 while Present
(E
) loop
2147 if Ekind
(E
) = E_Entry
2148 and then Present
(Get_Attribute_Definition_Clause
2149 (E
, Attribute_Address
))
2152 ("?more than one task with same entry address", N
);
2154 ("\?Program_Error will be raised at run time", N
);
2156 Make_Raise_Program_Error
(Loc
,
2157 Reason
=> PE_Duplicated_Entry_Address
));
2167 -- Some simple constant-propagation: if the expression is a constant
2168 -- string initialized with a literal, share the literal. This avoids
2172 and then Is_Entity_Name
(E
)
2173 and then Ekind
(Entity
(E
)) = E_Constant
2174 and then Base_Type
(Etype
(E
)) = Standard_String
2177 Val
: constant Node_Id
:= Constant_Value
(Entity
(E
));
2180 and then Nkind
(Val
) = N_String_Literal
2182 Rewrite
(E
, New_Copy
(Val
));
2187 -- Another optimization: if the nominal subtype is unconstrained and
2188 -- the expression is a function call that returns an unconstrained
2189 -- type, rewrite the declaration as a renaming of the result of the
2190 -- call. The exceptions below are cases where the copy is expected,
2191 -- either by the back end (Aliased case) or by the semantics, as for
2192 -- initializing controlled types or copying tags for classwide types.
2195 and then Nkind
(E
) = N_Explicit_Dereference
2196 and then Nkind
(Original_Node
(E
)) = N_Function_Call
2197 and then not Is_Library_Level_Entity
(Id
)
2198 and then not Is_Constrained
(T
)
2199 and then not Is_Aliased
(Id
)
2200 and then not Is_Class_Wide_Type
(T
)
2201 and then not Is_Controlled
(T
)
2202 and then not Has_Controlled_Component
(Base_Type
(T
))
2203 and then Expander_Active
2206 Make_Object_Renaming_Declaration
(Loc
,
2207 Defining_Identifier
=> Id
,
2208 Access_Definition
=> Empty
,
2209 Subtype_Mark
=> New_Occurrence_Of
2210 (Base_Type
(Etype
(Id
)), Loc
),
2213 Set_Renamed_Object
(Id
, E
);
2215 -- Force generation of debugging information for the constant
2216 -- and for the renamed function call.
2218 Set_Needs_Debug_Info
(Id
);
2219 Set_Needs_Debug_Info
(Entity
(Prefix
(E
)));
2222 if Present
(Prev_Entity
)
2223 and then Is_Frozen
(Prev_Entity
)
2224 and then not Error_Posted
(Id
)
2226 Error_Msg_N
("full constant declaration appears too late", N
);
2229 Check_Eliminated
(Id
);
2230 end Analyze_Object_Declaration
;
2232 ---------------------------
2233 -- Analyze_Others_Choice --
2234 ---------------------------
2236 -- Nothing to do for the others choice node itself, the semantic analysis
2237 -- of the others choice will occur as part of the processing of the parent
2239 procedure Analyze_Others_Choice
(N
: Node_Id
) is
2240 pragma Warnings
(Off
, N
);
2243 end Analyze_Others_Choice
;
2245 --------------------------------
2246 -- Analyze_Per_Use_Expression --
2247 --------------------------------
2249 procedure Analyze_Per_Use_Expression
(N
: Node_Id
; T
: Entity_Id
) is
2250 Save_In_Default_Expression
: constant Boolean := In_Default_Expression
;
2252 In_Default_Expression
:= True;
2253 Pre_Analyze_And_Resolve
(N
, T
);
2254 In_Default_Expression
:= Save_In_Default_Expression
;
2255 end Analyze_Per_Use_Expression
;
2257 -------------------------------------------
2258 -- Analyze_Private_Extension_Declaration --
2259 -------------------------------------------
2261 procedure Analyze_Private_Extension_Declaration
(N
: Node_Id
) is
2262 T
: constant Entity_Id
:= Defining_Identifier
(N
);
2263 Indic
: constant Node_Id
:= Subtype_Indication
(N
);
2264 Parent_Type
: Entity_Id
;
2265 Parent_Base
: Entity_Id
;
2268 Generate_Definition
(T
);
2271 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
2272 Parent_Base
:= Base_Type
(Parent_Type
);
2274 if Parent_Type
= Any_Type
2275 or else Etype
(Parent_Type
) = Any_Type
2277 Set_Ekind
(T
, Ekind
(Parent_Type
));
2278 Set_Etype
(T
, Any_Type
);
2281 elsif not Is_Tagged_Type
(Parent_Type
) then
2283 ("parent of type extension must be a tagged type ", Indic
);
2286 elsif Ekind
(Parent_Type
) = E_Void
2287 or else Ekind
(Parent_Type
) = E_Incomplete_Type
2289 Error_Msg_N
("premature derivation of incomplete type", Indic
);
2293 -- Perhaps the parent type should be changed to the class-wide type's
2294 -- specific type in this case to prevent cascading errors ???
2296 if Is_Class_Wide_Type
(Parent_Type
) then
2298 ("parent of type extension must not be a class-wide type", Indic
);
2302 if (not Is_Package
(Current_Scope
)
2303 and then Nkind
(Parent
(N
)) /= N_Generic_Subprogram_Declaration
)
2304 or else In_Private_Part
(Current_Scope
)
2307 Error_Msg_N
("invalid context for private extension", N
);
2310 -- Set common attributes
2312 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
2313 Set_Scope
(T
, Current_Scope
);
2314 Set_Ekind
(T
, E_Record_Type_With_Private
);
2315 Init_Size_Align
(T
);
2317 Set_Etype
(T
, Parent_Base
);
2318 Set_Has_Task
(T
, Has_Task
(Parent_Base
));
2320 Set_Convention
(T
, Convention
(Parent_Type
));
2321 Set_First_Rep_Item
(T
, First_Rep_Item
(Parent_Type
));
2322 Set_Is_First_Subtype
(T
);
2323 Make_Class_Wide_Type
(T
);
2325 if Unknown_Discriminants_Present
(N
) then
2326 Set_Discriminant_Constraint
(T
, No_Elist
);
2329 Build_Derived_Record_Type
(N
, Parent_Type
, T
);
2330 end Analyze_Private_Extension_Declaration
;
2332 ---------------------------------
2333 -- Analyze_Subtype_Declaration --
2334 ---------------------------------
2336 procedure Analyze_Subtype_Declaration
(N
: Node_Id
) is
2337 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2339 R_Checks
: Check_Result
;
2342 Generate_Definition
(Id
);
2343 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
2344 Init_Size_Align
(Id
);
2346 -- The following guard condition on Enter_Name is to handle cases
2347 -- where the defining identifier has already been entered into the
2348 -- scope but the declaration as a whole needs to be analyzed.
2350 -- This case in particular happens for derived enumeration types. The
2351 -- derived enumeration type is processed as an inserted enumeration
2352 -- type declaration followed by a rewritten subtype declaration. The
2353 -- defining identifier, however, is entered into the name scope very
2354 -- early in the processing of the original type declaration and
2355 -- therefore needs to be avoided here, when the created subtype
2356 -- declaration is analyzed. (See Build_Derived_Types)
2358 -- This also happens when the full view of a private type is derived
2359 -- type with constraints. In this case the entity has been introduced
2360 -- in the private declaration.
2362 if Present
(Etype
(Id
))
2363 and then (Is_Private_Type
(Etype
(Id
))
2364 or else Is_Task_Type
(Etype
(Id
))
2365 or else Is_Rewrite_Substitution
(N
))
2373 T
:= Process_Subtype
(Subtype_Indication
(N
), N
, Id
, 'P');
2375 -- Inherit common attributes
2377 Set_Is_Generic_Type
(Id
, Is_Generic_Type
(Base_Type
(T
)));
2378 Set_Is_Volatile
(Id
, Is_Volatile
(T
));
2379 Set_Treat_As_Volatile
(Id
, Treat_As_Volatile
(T
));
2380 Set_Is_Atomic
(Id
, Is_Atomic
(T
));
2381 Set_Is_Ada_2005
(Id
, Is_Ada_2005
(T
));
2383 -- In the case where there is no constraint given in the subtype
2384 -- indication, Process_Subtype just returns the Subtype_Mark,
2385 -- so its semantic attributes must be established here.
2387 if Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
then
2388 Set_Etype
(Id
, Base_Type
(T
));
2392 Set_Ekind
(Id
, E_Array_Subtype
);
2393 Copy_Array_Subtype_Attributes
(Id
, T
);
2395 when Decimal_Fixed_Point_Kind
=>
2396 Set_Ekind
(Id
, E_Decimal_Fixed_Point_Subtype
);
2397 Set_Digits_Value
(Id
, Digits_Value
(T
));
2398 Set_Delta_Value
(Id
, Delta_Value
(T
));
2399 Set_Scale_Value
(Id
, Scale_Value
(T
));
2400 Set_Small_Value
(Id
, Small_Value
(T
));
2401 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
2402 Set_Machine_Radix_10
(Id
, Machine_Radix_10
(T
));
2403 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
2404 Set_RM_Size
(Id
, RM_Size
(T
));
2406 when Enumeration_Kind
=>
2407 Set_Ekind
(Id
, E_Enumeration_Subtype
);
2408 Set_First_Literal
(Id
, First_Literal
(Base_Type
(T
)));
2409 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
2410 Set_Is_Character_Type
(Id
, Is_Character_Type
(T
));
2411 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
2412 Set_RM_Size
(Id
, RM_Size
(T
));
2414 when Ordinary_Fixed_Point_Kind
=>
2415 Set_Ekind
(Id
, E_Ordinary_Fixed_Point_Subtype
);
2416 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
2417 Set_Small_Value
(Id
, Small_Value
(T
));
2418 Set_Delta_Value
(Id
, Delta_Value
(T
));
2419 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
2420 Set_RM_Size
(Id
, RM_Size
(T
));
2423 Set_Ekind
(Id
, E_Floating_Point_Subtype
);
2424 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
2425 Set_Digits_Value
(Id
, Digits_Value
(T
));
2426 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
2428 when Signed_Integer_Kind
=>
2429 Set_Ekind
(Id
, E_Signed_Integer_Subtype
);
2430 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
2431 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
2432 Set_RM_Size
(Id
, RM_Size
(T
));
2434 when Modular_Integer_Kind
=>
2435 Set_Ekind
(Id
, E_Modular_Integer_Subtype
);
2436 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
2437 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
2438 Set_RM_Size
(Id
, RM_Size
(T
));
2440 when Class_Wide_Kind
=>
2441 Set_Ekind
(Id
, E_Class_Wide_Subtype
);
2442 Set_First_Entity
(Id
, First_Entity
(T
));
2443 Set_Last_Entity
(Id
, Last_Entity
(T
));
2444 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
2445 Set_Cloned_Subtype
(Id
, T
);
2446 Set_Is_Tagged_Type
(Id
, True);
2447 Set_Has_Unknown_Discriminants
2450 if Ekind
(T
) = E_Class_Wide_Subtype
then
2451 Set_Equivalent_Type
(Id
, Equivalent_Type
(T
));
2454 when E_Record_Type | E_Record_Subtype
=>
2455 Set_Ekind
(Id
, E_Record_Subtype
);
2457 if Ekind
(T
) = E_Record_Subtype
2458 and then Present
(Cloned_Subtype
(T
))
2460 Set_Cloned_Subtype
(Id
, Cloned_Subtype
(T
));
2462 Set_Cloned_Subtype
(Id
, T
);
2465 Set_First_Entity
(Id
, First_Entity
(T
));
2466 Set_Last_Entity
(Id
, Last_Entity
(T
));
2467 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
2468 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
2469 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
2470 Set_Has_Unknown_Discriminants
2471 (Id
, Has_Unknown_Discriminants
(T
));
2473 if Has_Discriminants
(T
) then
2474 Set_Discriminant_Constraint
2475 (Id
, Discriminant_Constraint
(T
));
2476 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
2478 elsif Has_Unknown_Discriminants
(Id
) then
2479 Set_Discriminant_Constraint
(Id
, No_Elist
);
2482 if Is_Tagged_Type
(T
) then
2483 Set_Is_Tagged_Type
(Id
);
2484 Set_Is_Abstract
(Id
, Is_Abstract
(T
));
2485 Set_Primitive_Operations
2486 (Id
, Primitive_Operations
(T
));
2487 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
2490 when Private_Kind
=>
2491 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
2492 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
2493 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
2494 Set_First_Entity
(Id
, First_Entity
(T
));
2495 Set_Last_Entity
(Id
, Last_Entity
(T
));
2496 Set_Private_Dependents
(Id
, New_Elmt_List
);
2497 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
2498 Set_Has_Unknown_Discriminants
2499 (Id
, Has_Unknown_Discriminants
(T
));
2501 if Is_Tagged_Type
(T
) then
2502 Set_Is_Tagged_Type
(Id
);
2503 Set_Is_Abstract
(Id
, Is_Abstract
(T
));
2504 Set_Primitive_Operations
2505 (Id
, Primitive_Operations
(T
));
2506 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
2509 -- In general the attributes of the subtype of a private
2510 -- type are the attributes of the partial view of parent.
2511 -- However, the full view may be a discriminated type,
2512 -- and the subtype must share the discriminant constraint
2513 -- to generate correct calls to initialization procedures.
2515 if Has_Discriminants
(T
) then
2516 Set_Discriminant_Constraint
2517 (Id
, Discriminant_Constraint
(T
));
2518 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
2520 elsif Present
(Full_View
(T
))
2521 and then Has_Discriminants
(Full_View
(T
))
2523 Set_Discriminant_Constraint
2524 (Id
, Discriminant_Constraint
(Full_View
(T
)));
2525 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
2527 -- This would seem semantically correct, but apparently
2528 -- confuses the back-end (4412-009). To be explained ???
2530 -- Set_Has_Discriminants (Id);
2533 Prepare_Private_Subtype_Completion
(Id
, N
);
2536 Set_Ekind
(Id
, E_Access_Subtype
);
2537 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
2538 Set_Is_Access_Constant
2539 (Id
, Is_Access_Constant
(T
));
2540 Set_Directly_Designated_Type
2541 (Id
, Designated_Type
(T
));
2543 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
2544 -- and carry out some static checks
2546 if Null_Exclusion_Present
(N
)
2547 or else Can_Never_Be_Null
(T
)
2549 Set_Can_Never_Be_Null
(Id
);
2551 if Null_Exclusion_Present
(N
)
2552 and then Can_Never_Be_Null
(T
)
2555 ("(Ada 2005) null exclusion not allowed if parent "
2556 & "is already non-null", Subtype_Indication
(N
));
2560 -- A Pure library_item must not contain the declaration of a
2561 -- named access type, except within a subprogram, generic
2562 -- subprogram, task unit, or protected unit (RM 10.2.1(16)).
2564 if Comes_From_Source
(Id
)
2565 and then In_Pure_Unit
2566 and then not In_Subprogram_Task_Protected_Unit
2569 ("named access types not allowed in pure unit", N
);
2572 when Concurrent_Kind
=>
2573 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
2574 Set_Corresponding_Record_Type
(Id
,
2575 Corresponding_Record_Type
(T
));
2576 Set_First_Entity
(Id
, First_Entity
(T
));
2577 Set_First_Private_Entity
(Id
, First_Private_Entity
(T
));
2578 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
2579 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
2580 Set_Last_Entity
(Id
, Last_Entity
(T
));
2582 if Has_Discriminants
(T
) then
2583 Set_Discriminant_Constraint
(Id
,
2584 Discriminant_Constraint
(T
));
2585 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
2588 -- If the subtype name denotes an incomplete type
2589 -- an error was already reported by Process_Subtype.
2591 when E_Incomplete_Type
=>
2592 Set_Etype
(Id
, Any_Type
);
2595 raise Program_Error
;
2599 if Etype
(Id
) = Any_Type
then
2603 -- Some common processing on all types
2605 Set_Size_Info
(Id
, T
);
2606 Set_First_Rep_Item
(Id
, First_Rep_Item
(T
));
2610 Set_Is_Immediately_Visible
(Id
, True);
2611 Set_Depends_On_Private
(Id
, Has_Private_Component
(T
));
2613 if Present
(Generic_Parent_Type
(N
))
2616 (Parent
(Generic_Parent_Type
(N
))) /= N_Formal_Type_Declaration
2618 (Formal_Type_Definition
(Parent
(Generic_Parent_Type
(N
))))
2619 /= N_Formal_Private_Type_Definition
)
2621 if Is_Tagged_Type
(Id
) then
2622 if Is_Class_Wide_Type
(Id
) then
2623 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, Etype
(T
));
2625 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, T
);
2628 elsif Scope
(Etype
(Id
)) /= Standard_Standard
then
2629 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
);
2633 if Is_Private_Type
(T
)
2634 and then Present
(Full_View
(T
))
2636 Conditional_Delay
(Id
, Full_View
(T
));
2638 -- The subtypes of components or subcomponents of protected types
2639 -- do not need freeze nodes, which would otherwise appear in the
2640 -- wrong scope (before the freeze node for the protected type). The
2641 -- proper subtypes are those of the subcomponents of the corresponding
2644 elsif Ekind
(Scope
(Id
)) /= E_Protected_Type
2645 and then Present
(Scope
(Scope
(Id
))) -- error defense!
2646 and then Ekind
(Scope
(Scope
(Id
))) /= E_Protected_Type
2648 Conditional_Delay
(Id
, T
);
2651 -- Check that constraint_error is raised for a scalar subtype
2652 -- indication when the lower or upper bound of a non-null range
2653 -- lies outside the range of the type mark.
2655 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
2656 if Is_Scalar_Type
(Etype
(Id
))
2657 and then Scalar_Range
(Id
) /=
2658 Scalar_Range
(Etype
(Subtype_Mark
2659 (Subtype_Indication
(N
))))
2663 Etype
(Subtype_Mark
(Subtype_Indication
(N
))));
2665 elsif Is_Array_Type
(Etype
(Id
))
2666 and then Present
(First_Index
(Id
))
2668 -- This really should be a subprogram that finds the indications
2671 if ((Nkind
(First_Index
(Id
)) = N_Identifier
2672 and then Ekind
(Entity
(First_Index
(Id
))) in Scalar_Kind
)
2673 or else Nkind
(First_Index
(Id
)) = N_Subtype_Indication
)
2675 Nkind
(Scalar_Range
(Etype
(First_Index
(Id
)))) = N_Range
2678 Target_Typ
: constant Entity_Id
:=
2681 (Subtype_Mark
(Subtype_Indication
(N
)))));
2685 (Scalar_Range
(Etype
(First_Index
(Id
))),
2687 Etype
(First_Index
(Id
)),
2688 Defining_Identifier
(N
));
2694 Sloc
(Defining_Identifier
(N
)));
2700 Check_Eliminated
(Id
);
2701 end Analyze_Subtype_Declaration
;
2703 --------------------------------
2704 -- Analyze_Subtype_Indication --
2705 --------------------------------
2707 procedure Analyze_Subtype_Indication
(N
: Node_Id
) is
2708 T
: constant Entity_Id
:= Subtype_Mark
(N
);
2709 R
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
2716 Set_Etype
(N
, Etype
(R
));
2718 Set_Error_Posted
(R
);
2719 Set_Error_Posted
(T
);
2721 end Analyze_Subtype_Indication
;
2723 ------------------------------
2724 -- Analyze_Type_Declaration --
2725 ------------------------------
2727 procedure Analyze_Type_Declaration
(N
: Node_Id
) is
2728 Def
: constant Node_Id
:= Type_Definition
(N
);
2729 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2733 Is_Remote
: constant Boolean :=
2734 (Is_Remote_Types
(Current_Scope
)
2735 or else Is_Remote_Call_Interface
(Current_Scope
))
2736 and then not (In_Private_Part
(Current_Scope
)
2738 In_Package_Body
(Current_Scope
));
2741 Prev
:= Find_Type_Name
(N
);
2743 -- The full view, if present, now points to the current type
2745 -- Ada 2005 (AI-50217): If the type was previously decorated when
2746 -- imported through a LIMITED WITH clause, it appears as incomplete
2747 -- but has no full view.
2749 if Ekind
(Prev
) = E_Incomplete_Type
2750 and then Present
(Full_View
(Prev
))
2752 T
:= Full_View
(Prev
);
2757 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
2759 -- We set the flag Is_First_Subtype here. It is needed to set the
2760 -- corresponding flag for the Implicit class-wide-type created
2761 -- during tagged types processing.
2763 Set_Is_First_Subtype
(T
, True);
2765 -- Only composite types other than array types are allowed to have
2770 -- For derived types, the rule will be checked once we've figured
2771 -- out the parent type.
2773 when N_Derived_Type_Definition
=>
2776 -- For record types, discriminants are allowed
2778 when N_Record_Definition
=>
2782 if Present
(Discriminant_Specifications
(N
)) then
2784 ("elementary or array type cannot have discriminants",
2786 (First
(Discriminant_Specifications
(N
))));
2790 -- Elaborate the type definition according to kind, and generate
2791 -- subsidiary (implicit) subtypes where needed. We skip this if
2792 -- it was already done (this happens during the reanalysis that
2793 -- follows a call to the high level optimizer).
2795 if not Analyzed
(T
) then
2800 when N_Access_To_Subprogram_Definition
=>
2801 Access_Subprogram_Declaration
(T
, Def
);
2803 -- If this is a remote access to subprogram, we must create
2804 -- the equivalent fat pointer type, and related subprograms.
2807 Process_Remote_AST_Declaration
(N
);
2810 -- Validate categorization rule against access type declaration
2811 -- usually a violation in Pure unit, Shared_Passive unit.
2813 Validate_Access_Type_Declaration
(T
, N
);
2815 when N_Access_To_Object_Definition
=>
2816 Access_Type_Declaration
(T
, Def
);
2818 -- Validate categorization rule against access type declaration
2819 -- usually a violation in Pure unit, Shared_Passive unit.
2821 Validate_Access_Type_Declaration
(T
, N
);
2823 -- If we are in a Remote_Call_Interface package and define
2824 -- a RACW, Read and Write attribute must be added.
2827 and then Is_Remote_Access_To_Class_Wide_Type
(Def_Id
)
2829 Add_RACW_Features
(Def_Id
);
2832 -- Set no strict aliasing flag if config pragma seen
2834 if Opt
.No_Strict_Aliasing
then
2835 Set_No_Strict_Aliasing
(Base_Type
(Def_Id
));
2838 when N_Array_Type_Definition
=>
2839 Array_Type_Declaration
(T
, Def
);
2841 when N_Derived_Type_Definition
=>
2842 Derived_Type_Declaration
(T
, N
, T
/= Def_Id
);
2844 when N_Enumeration_Type_Definition
=>
2845 Enumeration_Type_Declaration
(T
, Def
);
2847 when N_Floating_Point_Definition
=>
2848 Floating_Point_Type_Declaration
(T
, Def
);
2850 when N_Decimal_Fixed_Point_Definition
=>
2851 Decimal_Fixed_Point_Type_Declaration
(T
, Def
);
2853 when N_Ordinary_Fixed_Point_Definition
=>
2854 Ordinary_Fixed_Point_Type_Declaration
(T
, Def
);
2856 when N_Signed_Integer_Type_Definition
=>
2857 Signed_Integer_Type_Declaration
(T
, Def
);
2859 when N_Modular_Type_Definition
=>
2860 Modular_Type_Declaration
(T
, Def
);
2862 when N_Record_Definition
=>
2863 Record_Type_Declaration
(T
, N
, Prev
);
2866 raise Program_Error
;
2871 if Etype
(T
) = Any_Type
then
2875 -- Some common processing for all types
2877 Set_Depends_On_Private
(T
, Has_Private_Component
(T
));
2879 -- Both the declared entity, and its anonymous base type if one
2880 -- was created, need freeze nodes allocated.
2883 B
: constant Entity_Id
:= Base_Type
(T
);
2886 -- In the case where the base type is different from the first
2887 -- subtype, we pre-allocate a freeze node, and set the proper link
2888 -- to the first subtype. Freeze_Entity will use this preallocated
2889 -- freeze node when it freezes the entity.
2892 Ensure_Freeze_Node
(B
);
2893 Set_First_Subtype_Link
(Freeze_Node
(B
), T
);
2896 if not From_With_Type
(T
) then
2897 Set_Has_Delayed_Freeze
(T
);
2901 -- Case of T is the full declaration of some private type which has
2902 -- been swapped in Defining_Identifier (N).
2904 if T
/= Def_Id
and then Is_Private_Type
(Def_Id
) then
2905 Process_Full_View
(N
, T
, Def_Id
);
2907 -- Record the reference. The form of this is a little strange,
2908 -- since the full declaration has been swapped in. So the first
2909 -- parameter here represents the entity to which a reference is
2910 -- made which is the "real" entity, i.e. the one swapped in,
2911 -- and the second parameter provides the reference location.
2913 Generate_Reference
(T
, T
, 'c');
2914 Set_Completion_Referenced
(Def_Id
);
2916 -- For completion of incomplete type, process incomplete dependents
2917 -- and always mark the full type as referenced (it is the incomplete
2918 -- type that we get for any real reference).
2920 elsif Ekind
(Prev
) = E_Incomplete_Type
then
2921 Process_Incomplete_Dependents
(N
, T
, Prev
);
2922 Generate_Reference
(Prev
, Def_Id
, 'c');
2923 Set_Completion_Referenced
(Def_Id
);
2925 -- If not private type or incomplete type completion, this is a real
2926 -- definition of a new entity, so record it.
2929 Generate_Definition
(Def_Id
);
2932 Check_Eliminated
(Def_Id
);
2933 end Analyze_Type_Declaration
;
2935 --------------------------
2936 -- Analyze_Variant_Part --
2937 --------------------------
2939 procedure Analyze_Variant_Part
(N
: Node_Id
) is
2941 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
2942 -- Error routine invoked by the generic instantiation below when
2943 -- the variant part has a non static choice.
2945 procedure Process_Declarations
(Variant
: Node_Id
);
2946 -- Analyzes all the declarations associated with a Variant.
2947 -- Needed by the generic instantiation below.
2949 package Variant_Choices_Processing
is new
2950 Generic_Choices_Processing
2951 (Get_Alternatives
=> Variants
,
2952 Get_Choices
=> Discrete_Choices
,
2953 Process_Empty_Choice
=> No_OP
,
2954 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
2955 Process_Associated_Node
=> Process_Declarations
);
2956 use Variant_Choices_Processing
;
2957 -- Instantiation of the generic choice processing package
2959 -----------------------------
2960 -- Non_Static_Choice_Error --
2961 -----------------------------
2963 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
2965 Flag_Non_Static_Expr
2966 ("choice given in variant part is not static!", Choice
);
2967 end Non_Static_Choice_Error
;
2969 --------------------------
2970 -- Process_Declarations --
2971 --------------------------
2973 procedure Process_Declarations
(Variant
: Node_Id
) is
2975 if not Null_Present
(Component_List
(Variant
)) then
2976 Analyze_Declarations
(Component_Items
(Component_List
(Variant
)));
2978 if Present
(Variant_Part
(Component_List
(Variant
))) then
2979 Analyze
(Variant_Part
(Component_List
(Variant
)));
2982 end Process_Declarations
;
2984 -- Variables local to Analyze_Case_Statement
2986 Discr_Name
: Node_Id
;
2987 Discr_Type
: Entity_Id
;
2989 Case_Table
: Choice_Table_Type
(1 .. Number_Of_Choices
(N
));
2991 Dont_Care
: Boolean;
2992 Others_Present
: Boolean := False;
2994 -- Start of processing for Analyze_Variant_Part
2997 Discr_Name
:= Name
(N
);
2998 Analyze
(Discr_Name
);
3000 if Ekind
(Entity
(Discr_Name
)) /= E_Discriminant
then
3001 Error_Msg_N
("invalid discriminant name in variant part", Discr_Name
);
3004 Discr_Type
:= Etype
(Entity
(Discr_Name
));
3006 if not Is_Discrete_Type
(Discr_Type
) then
3008 ("discriminant in a variant part must be of a discrete type",
3013 -- Call the instantiated Analyze_Choices which does the rest of the work
3016 (N
, Discr_Type
, Case_Table
, Last_Choice
, Dont_Care
, Others_Present
);
3017 end Analyze_Variant_Part
;
3019 ----------------------------
3020 -- Array_Type_Declaration --
3021 ----------------------------
3023 procedure Array_Type_Declaration
(T
: in out Entity_Id
; Def
: Node_Id
) is
3024 Component_Def
: constant Node_Id
:= Component_Definition
(Def
);
3025 Element_Type
: Entity_Id
;
3026 Implicit_Base
: Entity_Id
;
3028 Related_Id
: Entity_Id
:= Empty
;
3030 P
: constant Node_Id
:= Parent
(Def
);
3034 if Nkind
(Def
) = N_Constrained_Array_Definition
then
3035 Index
:= First
(Discrete_Subtype_Definitions
(Def
));
3037 Index
:= First
(Subtype_Marks
(Def
));
3040 -- Find proper names for the implicit types which may be public.
3041 -- in case of anonymous arrays we use the name of the first object
3042 -- of that type as prefix.
3045 Related_Id
:= Defining_Identifier
(P
);
3051 while Present
(Index
) loop
3053 Make_Index
(Index
, P
, Related_Id
, Nb_Index
);
3055 Nb_Index
:= Nb_Index
+ 1;
3058 if Present
(Subtype_Indication
(Component_Def
)) then
3059 Element_Type
:= Process_Subtype
(Subtype_Indication
(Component_Def
),
3060 P
, Related_Id
, 'C');
3062 -- Ada 2005 (AI-230): Access Definition case
3064 else pragma Assert
(Present
(Access_Definition
(Component_Def
)));
3065 Element_Type
:= Access_Definition
3066 (Related_Nod
=> Related_Id
,
3067 N
=> Access_Definition
(Component_Def
));
3069 -- Ada 2005 (AI-230): In case of components that are anonymous
3070 -- access types the level of accessibility depends on the enclosing
3073 Set_Scope
(Element_Type
, Current_Scope
); -- Ada 2005 (AI-230)
3075 -- Ada 2005 (AI-254)
3078 CD
: constant Node_Id
:=
3079 Access_To_Subprogram_Definition
3080 (Access_Definition
(Component_Def
));
3082 if Present
(CD
) and then Protected_Present
(CD
) then
3084 Replace_Anonymous_Access_To_Protected_Subprogram
3085 (Def
, Element_Type
);
3090 -- Constrained array case
3093 T
:= Create_Itype
(E_Void
, P
, Related_Id
, 'T');
3096 if Nkind
(Def
) = N_Constrained_Array_Definition
then
3098 -- Establish Implicit_Base as unconstrained base type
3100 Implicit_Base
:= Create_Itype
(E_Array_Type
, P
, Related_Id
, 'B');
3102 Init_Size_Align
(Implicit_Base
);
3103 Set_Etype
(Implicit_Base
, Implicit_Base
);
3104 Set_Scope
(Implicit_Base
, Current_Scope
);
3105 Set_Has_Delayed_Freeze
(Implicit_Base
);
3107 -- The constrained array type is a subtype of the unconstrained one
3109 Set_Ekind
(T
, E_Array_Subtype
);
3110 Init_Size_Align
(T
);
3111 Set_Etype
(T
, Implicit_Base
);
3112 Set_Scope
(T
, Current_Scope
);
3113 Set_Is_Constrained
(T
, True);
3114 Set_First_Index
(T
, First
(Discrete_Subtype_Definitions
(Def
)));
3115 Set_Has_Delayed_Freeze
(T
);
3117 -- Complete setup of implicit base type
3119 Set_First_Index
(Implicit_Base
, First_Index
(T
));
3120 Set_Component_Type
(Implicit_Base
, Element_Type
);
3121 Set_Has_Task
(Implicit_Base
, Has_Task
(Element_Type
));
3122 Set_Component_Size
(Implicit_Base
, Uint_0
);
3123 Set_Has_Controlled_Component
3124 (Implicit_Base
, Has_Controlled_Component
3127 Is_Controlled
(Element_Type
));
3128 Set_Finalize_Storage_Only
3129 (Implicit_Base
, Finalize_Storage_Only
3132 -- Unconstrained array case
3135 Set_Ekind
(T
, E_Array_Type
);
3136 Init_Size_Align
(T
);
3138 Set_Scope
(T
, Current_Scope
);
3139 Set_Component_Size
(T
, Uint_0
);
3140 Set_Is_Constrained
(T
, False);
3141 Set_First_Index
(T
, First
(Subtype_Marks
(Def
)));
3142 Set_Has_Delayed_Freeze
(T
, True);
3143 Set_Has_Task
(T
, Has_Task
(Element_Type
));
3144 Set_Has_Controlled_Component
(T
, Has_Controlled_Component
3147 Is_Controlled
(Element_Type
));
3148 Set_Finalize_Storage_Only
(T
, Finalize_Storage_Only
3152 Set_Component_Type
(Base_Type
(T
), Element_Type
);
3154 if Aliased_Present
(Component_Definition
(Def
)) then
3155 Set_Has_Aliased_Components
(Etype
(T
));
3158 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
3159 -- array to ensure that objects of this type are initialized.
3161 if Ada_Version
>= Ada_05
3162 and then (Null_Exclusion_Present
(Component_Definition
(Def
))
3163 or else Can_Never_Be_Null
(Element_Type
))
3165 Set_Can_Never_Be_Null
(T
);
3167 if Null_Exclusion_Present
(Component_Definition
(Def
))
3168 and then Can_Never_Be_Null
(Element_Type
)
3171 ("(Ada 2005) already a null-excluding type",
3172 Subtype_Indication
(Component_Definition
(Def
)));
3176 Priv
:= Private_Component
(Element_Type
);
3178 if Present
(Priv
) then
3180 -- Check for circular definitions
3182 if Priv
= Any_Type
then
3183 Set_Component_Type
(Etype
(T
), Any_Type
);
3185 -- There is a gap in the visibility of operations on the composite
3186 -- type only if the component type is defined in a different scope.
3188 elsif Scope
(Priv
) = Current_Scope
then
3191 elsif Is_Limited_Type
(Priv
) then
3192 Set_Is_Limited_Composite
(Etype
(T
));
3193 Set_Is_Limited_Composite
(T
);
3195 Set_Is_Private_Composite
(Etype
(T
));
3196 Set_Is_Private_Composite
(T
);
3200 -- Create a concatenation operator for the new type. Internal
3201 -- array types created for packed entities do not need such, they
3202 -- are compatible with the user-defined type.
3204 if Number_Dimensions
(T
) = 1
3205 and then not Is_Packed_Array_Type
(T
)
3207 New_Concatenation_Op
(T
);
3210 -- In the case of an unconstrained array the parser has already
3211 -- verified that all the indices are unconstrained but we still
3212 -- need to make sure that the element type is constrained.
3214 if Is_Indefinite_Subtype
(Element_Type
) then
3216 ("unconstrained element type in array declaration",
3217 Subtype_Indication
(Component_Def
));
3219 elsif Is_Abstract
(Element_Type
) then
3221 ("The type of a component cannot be abstract",
3222 Subtype_Indication
(Component_Def
));
3225 end Array_Type_Declaration
;
3227 ------------------------------------------------------
3228 -- Replace_Anonymous_Access_To_Protected_Subprogram --
3229 ------------------------------------------------------
3231 function Replace_Anonymous_Access_To_Protected_Subprogram
3233 Prev_E
: Entity_Id
) return Entity_Id
3235 Loc
: constant Source_Ptr
:= Sloc
(N
);
3237 Curr_Scope
: constant Scope_Stack_Entry
:=
3238 Scope_Stack
.Table
(Scope_Stack
.Last
);
3240 Anon
: constant Entity_Id
:=
3241 Make_Defining_Identifier
(Loc
,
3242 Chars
=> New_Internal_Name
('S'));
3247 P
: Node_Id
:= Parent
(N
);
3250 Set_Is_Internal
(Anon
);
3253 when N_Component_Declaration |
3254 N_Unconstrained_Array_Definition |
3255 N_Constrained_Array_Definition
=>
3256 Comp
:= Component_Definition
(N
);
3257 Acc
:= Access_Definition
(Component_Definition
(N
));
3259 when N_Discriminant_Specification
=>
3260 Comp
:= Discriminant_Type
(N
);
3261 Acc
:= Discriminant_Type
(N
);
3263 when N_Parameter_Specification
=>
3264 Comp
:= Parameter_Type
(N
);
3265 Acc
:= Parameter_Type
(N
);
3268 raise Program_Error
;
3271 Decl
:= Make_Full_Type_Declaration
(Loc
,
3272 Defining_Identifier
=> Anon
,
3274 Copy_Separate_Tree
(Access_To_Subprogram_Definition
(Acc
)));
3276 Mark_Rewrite_Insertion
(Decl
);
3278 -- Insert the new declaration in the nearest enclosing scope
3280 while Present
(P
) and then not Has_Declarations
(P
) loop
3284 pragma Assert
(Present
(P
));
3286 if Nkind
(P
) = N_Package_Specification
then
3287 Prepend
(Decl
, Visible_Declarations
(P
));
3289 Prepend
(Decl
, Declarations
(P
));
3292 -- Replace the anonymous type with an occurrence of the new declaration.
3293 -- In all cases the rewriten node does not have the null-exclusion
3294 -- attribute because (if present) it was already inherited by the
3295 -- anonymous entity (Anon). Thus, in case of components we do not
3296 -- inherit this attribute.
3298 if Nkind
(N
) = N_Parameter_Specification
then
3299 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
3300 Set_Etype
(Defining_Identifier
(N
), Anon
);
3301 Set_Null_Exclusion_Present
(N
, False);
3304 Make_Component_Definition
(Loc
,
3305 Subtype_Indication
=> New_Occurrence_Of
(Anon
, Loc
)));
3308 Mark_Rewrite_Insertion
(Comp
);
3310 -- Temporarily remove the current scope from the stack to add the new
3311 -- declarations to the enclosing scope
3313 Scope_Stack
.Decrement_Last
;
3315 Scope_Stack
.Append
(Curr_Scope
);
3317 Set_Original_Access_Type
(Anon
, Prev_E
);
3319 end Replace_Anonymous_Access_To_Protected_Subprogram
;
3321 -------------------------------
3322 -- Build_Derived_Access_Type --
3323 -------------------------------
3325 procedure Build_Derived_Access_Type
3327 Parent_Type
: Entity_Id
;
3328 Derived_Type
: Entity_Id
)
3330 S
: constant Node_Id
:= Subtype_Indication
(Type_Definition
(N
));
3332 Desig_Type
: Entity_Id
;
3334 Discr_Con_Elist
: Elist_Id
;
3335 Discr_Con_El
: Elmt_Id
;
3339 -- Set the designated type so it is available in case this is
3340 -- an access to a self-referential type, e.g. a standard list
3341 -- type with a next pointer. Will be reset after subtype is built.
3343 Set_Directly_Designated_Type
3344 (Derived_Type
, Designated_Type
(Parent_Type
));
3346 Subt
:= Process_Subtype
(S
, N
);
3348 if Nkind
(S
) /= N_Subtype_Indication
3349 and then Subt
/= Base_Type
(Subt
)
3351 Set_Ekind
(Derived_Type
, E_Access_Subtype
);
3354 if Ekind
(Derived_Type
) = E_Access_Subtype
then
3356 Pbase
: constant Entity_Id
:= Base_Type
(Parent_Type
);
3357 Ibase
: constant Entity_Id
:=
3358 Create_Itype
(Ekind
(Pbase
), N
, Derived_Type
, 'B');
3359 Svg_Chars
: constant Name_Id
:= Chars
(Ibase
);
3360 Svg_Next_E
: constant Entity_Id
:= Next_Entity
(Ibase
);
3363 Copy_Node
(Pbase
, Ibase
);
3365 Set_Chars
(Ibase
, Svg_Chars
);
3366 Set_Next_Entity
(Ibase
, Svg_Next_E
);
3367 Set_Sloc
(Ibase
, Sloc
(Derived_Type
));
3368 Set_Scope
(Ibase
, Scope
(Derived_Type
));
3369 Set_Freeze_Node
(Ibase
, Empty
);
3370 Set_Is_Frozen
(Ibase
, False);
3371 Set_Comes_From_Source
(Ibase
, False);
3372 Set_Is_First_Subtype
(Ibase
, False);
3374 Set_Etype
(Ibase
, Pbase
);
3375 Set_Etype
(Derived_Type
, Ibase
);
3379 Set_Directly_Designated_Type
3380 (Derived_Type
, Designated_Type
(Subt
));
3382 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Subt
));
3383 Set_Is_Access_Constant
(Derived_Type
, Is_Access_Constant
(Parent_Type
));
3384 Set_Size_Info
(Derived_Type
, Parent_Type
);
3385 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
3386 Set_Depends_On_Private
(Derived_Type
,
3387 Has_Private_Component
(Derived_Type
));
3388 Conditional_Delay
(Derived_Type
, Subt
);
3390 -- Ada 2005 (AI-231). Set the null-exclusion attribute
3392 if Null_Exclusion_Present
(Type_Definition
(N
))
3393 or else Can_Never_Be_Null
(Parent_Type
)
3395 Set_Can_Never_Be_Null
(Derived_Type
);
3398 -- Note: we do not copy the Storage_Size_Variable, since
3399 -- we always go to the root type for this information.
3401 -- Apply range checks to discriminants for derived record case
3402 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
3404 Desig_Type
:= Designated_Type
(Derived_Type
);
3405 if Is_Composite_Type
(Desig_Type
)
3406 and then (not Is_Array_Type
(Desig_Type
))
3407 and then Has_Discriminants
(Desig_Type
)
3408 and then Base_Type
(Desig_Type
) /= Desig_Type
3410 Discr_Con_Elist
:= Discriminant_Constraint
(Desig_Type
);
3411 Discr_Con_El
:= First_Elmt
(Discr_Con_Elist
);
3413 Discr
:= First_Discriminant
(Base_Type
(Desig_Type
));
3414 while Present
(Discr_Con_El
) loop
3415 Apply_Range_Check
(Node
(Discr_Con_El
), Etype
(Discr
));
3416 Next_Elmt
(Discr_Con_El
);
3417 Next_Discriminant
(Discr
);
3420 end Build_Derived_Access_Type
;
3422 ------------------------------
3423 -- Build_Derived_Array_Type --
3424 ------------------------------
3426 procedure Build_Derived_Array_Type
3428 Parent_Type
: Entity_Id
;
3429 Derived_Type
: Entity_Id
)
3431 Loc
: constant Source_Ptr
:= Sloc
(N
);
3432 Tdef
: constant Node_Id
:= Type_Definition
(N
);
3433 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
3434 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
3435 Implicit_Base
: Entity_Id
;
3436 New_Indic
: Node_Id
;
3438 procedure Make_Implicit_Base
;
3439 -- If the parent subtype is constrained, the derived type is a
3440 -- subtype of an implicit base type derived from the parent base.
3442 ------------------------
3443 -- Make_Implicit_Base --
3444 ------------------------
3446 procedure Make_Implicit_Base
is
3449 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
3451 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
3452 Set_Etype
(Implicit_Base
, Parent_Base
);
3454 Copy_Array_Subtype_Attributes
(Implicit_Base
, Parent_Base
);
3455 Copy_Array_Base_Type_Attributes
(Implicit_Base
, Parent_Base
);
3457 Set_Has_Delayed_Freeze
(Implicit_Base
, True);
3458 end Make_Implicit_Base
;
3460 -- Start of processing for Build_Derived_Array_Type
3463 if not Is_Constrained
(Parent_Type
) then
3464 if Nkind
(Indic
) /= N_Subtype_Indication
then
3465 Set_Ekind
(Derived_Type
, E_Array_Type
);
3467 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
3468 Copy_Array_Base_Type_Attributes
(Derived_Type
, Parent_Type
);
3470 Set_Has_Delayed_Freeze
(Derived_Type
, True);
3474 Set_Etype
(Derived_Type
, Implicit_Base
);
3477 Make_Subtype_Declaration
(Loc
,
3478 Defining_Identifier
=> Derived_Type
,
3479 Subtype_Indication
=>
3480 Make_Subtype_Indication
(Loc
,
3481 Subtype_Mark
=> New_Reference_To
(Implicit_Base
, Loc
),
3482 Constraint
=> Constraint
(Indic
)));
3484 Rewrite
(N
, New_Indic
);
3489 if Nkind
(Indic
) /= N_Subtype_Indication
then
3492 Set_Ekind
(Derived_Type
, Ekind
(Parent_Type
));
3493 Set_Etype
(Derived_Type
, Implicit_Base
);
3494 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
3497 Error_Msg_N
("illegal constraint on constrained type", Indic
);
3501 -- If the parent type is not a derived type itself, and is
3502 -- declared in a closed scope (e.g., a subprogram), then we
3503 -- need to explicitly introduce the new type's concatenation
3504 -- operator since Derive_Subprograms will not inherit the
3505 -- parent's operator. If the parent type is unconstrained, the
3506 -- operator is of the unconstrained base type.
3508 if Number_Dimensions
(Parent_Type
) = 1
3509 and then not Is_Limited_Type
(Parent_Type
)
3510 and then not Is_Derived_Type
(Parent_Type
)
3511 and then not Is_Package
(Scope
(Base_Type
(Parent_Type
)))
3513 if not Is_Constrained
(Parent_Type
)
3514 and then Is_Constrained
(Derived_Type
)
3516 New_Concatenation_Op
(Implicit_Base
);
3518 New_Concatenation_Op
(Derived_Type
);
3521 end Build_Derived_Array_Type
;
3523 -----------------------------------
3524 -- Build_Derived_Concurrent_Type --
3525 -----------------------------------
3527 procedure Build_Derived_Concurrent_Type
3529 Parent_Type
: Entity_Id
;
3530 Derived_Type
: Entity_Id
)
3532 D_Constraint
: Node_Id
;
3533 Disc_Spec
: Node_Id
;
3534 Old_Disc
: Entity_Id
;
3535 New_Disc
: Entity_Id
;
3537 Constraint_Present
: constant Boolean :=
3538 Nkind
(Subtype_Indication
(Type_Definition
(N
)))
3539 = N_Subtype_Indication
;
3542 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
3544 if Is_Task_Type
(Parent_Type
) then
3545 Set_Storage_Size_Variable
(Derived_Type
,
3546 Storage_Size_Variable
(Parent_Type
));
3549 if Present
(Discriminant_Specifications
(N
)) then
3550 New_Scope
(Derived_Type
);
3551 Check_Or_Process_Discriminants
(N
, Derived_Type
);
3554 elsif Constraint_Present
then
3556 -- Build constrained subtype and derive from it
3559 Loc
: constant Source_Ptr
:= Sloc
(N
);
3560 Anon
: constant Entity_Id
:=
3561 Make_Defining_Identifier
(Loc
,
3562 New_External_Name
(Chars
(Derived_Type
), 'T'));
3567 Make_Subtype_Declaration
(Loc
,
3568 Defining_Identifier
=> Anon
,
3569 Subtype_Indication
=>
3570 New_Copy_Tree
(Subtype_Indication
(Type_Definition
(N
))));
3571 Insert_Before
(N
, Decl
);
3572 Rewrite
(Subtype_Indication
(Type_Definition
(N
)),
3573 New_Occurrence_Of
(Anon
, Loc
));
3575 Set_Analyzed
(Derived_Type
, False);
3581 -- All attributes are inherited from parent. In particular,
3582 -- entries and the corresponding record type are the same.
3583 -- Discriminants may be renamed, and must be treated separately.
3585 Set_Has_Discriminants
3586 (Derived_Type
, Has_Discriminants
(Parent_Type
));
3587 Set_Corresponding_Record_Type
3588 (Derived_Type
, Corresponding_Record_Type
(Parent_Type
));
3590 if Constraint_Present
then
3591 if not Has_Discriminants
(Parent_Type
) then
3592 Error_Msg_N
("untagged parent must have discriminants", N
);
3594 elsif Present
(Discriminant_Specifications
(N
)) then
3596 -- Verify that new discriminants are used to constrain
3599 Old_Disc
:= First_Discriminant
(Parent_Type
);
3600 New_Disc
:= First_Discriminant
(Derived_Type
);
3601 Disc_Spec
:= First
(Discriminant_Specifications
(N
));
3605 (Constraint
(Subtype_Indication
(Type_Definition
(N
)))));
3607 while Present
(Old_Disc
) and then Present
(Disc_Spec
) loop
3609 if Nkind
(Discriminant_Type
(Disc_Spec
)) /=
3612 Analyze
(Discriminant_Type
(Disc_Spec
));
3614 if not Subtypes_Statically_Compatible
(
3615 Etype
(Discriminant_Type
(Disc_Spec
)),
3619 ("not statically compatible with parent discriminant",
3620 Discriminant_Type
(Disc_Spec
));
3624 if Nkind
(D_Constraint
) = N_Identifier
3625 and then Chars
(D_Constraint
) /=
3626 Chars
(Defining_Identifier
(Disc_Spec
))
3628 Error_Msg_N
("new discriminants must constrain old ones",
3631 Set_Corresponding_Discriminant
(New_Disc
, Old_Disc
);
3634 Next_Discriminant
(Old_Disc
);
3635 Next_Discriminant
(New_Disc
);
3639 if Present
(Old_Disc
) or else Present
(Disc_Spec
) then
3640 Error_Msg_N
("discriminant mismatch in derivation", N
);
3645 elsif Present
(Discriminant_Specifications
(N
)) then
3647 ("missing discriminant constraint in untagged derivation",
3651 if Present
(Discriminant_Specifications
(N
)) then
3652 Old_Disc
:= First_Discriminant
(Parent_Type
);
3653 while Present
(Old_Disc
) loop
3655 if No
(Next_Entity
(Old_Disc
))
3656 or else Ekind
(Next_Entity
(Old_Disc
)) /= E_Discriminant
3658 Set_Next_Entity
(Last_Entity
(Derived_Type
),
3659 Next_Entity
(Old_Disc
));
3663 Next_Discriminant
(Old_Disc
);
3667 Set_First_Entity
(Derived_Type
, First_Entity
(Parent_Type
));
3668 if Has_Discriminants
(Parent_Type
) then
3669 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
3670 Set_Discriminant_Constraint
(
3671 Derived_Type
, Discriminant_Constraint
(Parent_Type
));
3675 Set_Last_Entity
(Derived_Type
, Last_Entity
(Parent_Type
));
3677 Set_Has_Completion
(Derived_Type
);
3678 end Build_Derived_Concurrent_Type
;
3680 ------------------------------------
3681 -- Build_Derived_Enumeration_Type --
3682 ------------------------------------
3684 procedure Build_Derived_Enumeration_Type
3686 Parent_Type
: Entity_Id
;
3687 Derived_Type
: Entity_Id
)
3689 Loc
: constant Source_Ptr
:= Sloc
(N
);
3690 Def
: constant Node_Id
:= Type_Definition
(N
);
3691 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
3692 Implicit_Base
: Entity_Id
;
3693 Literal
: Entity_Id
;
3694 New_Lit
: Entity_Id
;
3695 Literals_List
: List_Id
;
3696 Type_Decl
: Node_Id
;
3698 Rang_Expr
: Node_Id
;
3701 -- Since types Standard.Character and Standard.Wide_Character do
3702 -- not have explicit literals lists we need to process types derived
3703 -- from them specially. This is handled by Derived_Standard_Character.
3704 -- If the parent type is a generic type, there are no literals either,
3705 -- and we construct the same skeletal representation as for the generic
3708 if Root_Type
(Parent_Type
) = Standard_Character
3709 or else Root_Type
(Parent_Type
) = Standard_Wide_Character
3710 or else Root_Type
(Parent_Type
) = Standard_Wide_Wide_Character
3712 Derived_Standard_Character
(N
, Parent_Type
, Derived_Type
);
3714 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
3721 Make_Attribute_Reference
(Loc
,
3722 Attribute_Name
=> Name_First
,
3723 Prefix
=> New_Reference_To
(Derived_Type
, Loc
));
3724 Set_Etype
(Lo
, Derived_Type
);
3727 Make_Attribute_Reference
(Loc
,
3728 Attribute_Name
=> Name_Last
,
3729 Prefix
=> New_Reference_To
(Derived_Type
, Loc
));
3730 Set_Etype
(Hi
, Derived_Type
);
3732 Set_Scalar_Range
(Derived_Type
,
3739 -- If a constraint is present, analyze the bounds to catch
3740 -- premature usage of the derived literals.
3742 if Nkind
(Indic
) = N_Subtype_Indication
3743 and then Nkind
(Range_Expression
(Constraint
(Indic
))) = N_Range
3745 Analyze
(Low_Bound
(Range_Expression
(Constraint
(Indic
))));
3746 Analyze
(High_Bound
(Range_Expression
(Constraint
(Indic
))));
3749 -- Introduce an implicit base type for the derived type even
3750 -- if there is no constraint attached to it, since this seems
3751 -- closer to the Ada semantics. Build a full type declaration
3752 -- tree for the derived type using the implicit base type as
3753 -- the defining identifier. The build a subtype declaration
3754 -- tree which applies the constraint (if any) have it replace
3755 -- the derived type declaration.
3757 Literal
:= First_Literal
(Parent_Type
);
3758 Literals_List
:= New_List
;
3760 while Present
(Literal
)
3761 and then Ekind
(Literal
) = E_Enumeration_Literal
3763 -- Literals of the derived type have the same representation as
3764 -- those of the parent type, but this representation can be
3765 -- overridden by an explicit representation clause. Indicate
3766 -- that there is no explicit representation given yet. These
3767 -- derived literals are implicit operations of the new type,
3768 -- and can be overriden by explicit ones.
3770 if Nkind
(Literal
) = N_Defining_Character_Literal
then
3772 Make_Defining_Character_Literal
(Loc
, Chars
(Literal
));
3774 New_Lit
:= Make_Defining_Identifier
(Loc
, Chars
(Literal
));
3777 Set_Ekind
(New_Lit
, E_Enumeration_Literal
);
3778 Set_Enumeration_Pos
(New_Lit
, Enumeration_Pos
(Literal
));
3779 Set_Enumeration_Rep
(New_Lit
, Enumeration_Rep
(Literal
));
3780 Set_Enumeration_Rep_Expr
(New_Lit
, Empty
);
3781 Set_Alias
(New_Lit
, Literal
);
3782 Set_Is_Known_Valid
(New_Lit
, True);
3784 Append
(New_Lit
, Literals_List
);
3785 Next_Literal
(Literal
);
3789 Make_Defining_Identifier
(Sloc
(Derived_Type
),
3790 New_External_Name
(Chars
(Derived_Type
), 'B'));
3792 -- Indicate the proper nature of the derived type. This must
3793 -- be done before analysis of the literals, to recognize cases
3794 -- when a literal may be hidden by a previous explicit function
3795 -- definition (cf. c83031a).
3797 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
3798 Set_Etype
(Derived_Type
, Implicit_Base
);
3801 Make_Full_Type_Declaration
(Loc
,
3802 Defining_Identifier
=> Implicit_Base
,
3803 Discriminant_Specifications
=> No_List
,
3805 Make_Enumeration_Type_Definition
(Loc
, Literals_List
));
3807 Mark_Rewrite_Insertion
(Type_Decl
);
3808 Insert_Before
(N
, Type_Decl
);
3809 Analyze
(Type_Decl
);
3811 -- After the implicit base is analyzed its Etype needs to be changed
3812 -- to reflect the fact that it is derived from the parent type which
3813 -- was ignored during analysis. We also set the size at this point.
3815 Set_Etype
(Implicit_Base
, Parent_Type
);
3817 Set_Size_Info
(Implicit_Base
, Parent_Type
);
3818 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Type
));
3819 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Type
));
3821 Set_Has_Non_Standard_Rep
3822 (Implicit_Base
, Has_Non_Standard_Rep
3824 Set_Has_Delayed_Freeze
(Implicit_Base
);
3826 -- Process the subtype indication including a validation check
3827 -- on the constraint, if any. If a constraint is given, its bounds
3828 -- must be implicitly converted to the new type.
3830 if Nkind
(Indic
) = N_Subtype_Indication
then
3832 R
: constant Node_Id
:=
3833 Range_Expression
(Constraint
(Indic
));
3836 if Nkind
(R
) = N_Range
then
3837 Hi
:= Build_Scalar_Bound
3838 (High_Bound
(R
), Parent_Type
, Implicit_Base
);
3839 Lo
:= Build_Scalar_Bound
3840 (Low_Bound
(R
), Parent_Type
, Implicit_Base
);
3843 -- Constraint is a Range attribute. Replace with the
3844 -- explicit mention of the bounds of the prefix, which must
3847 Analyze
(Prefix
(R
));
3849 Convert_To
(Implicit_Base
,
3850 Make_Attribute_Reference
(Loc
,
3851 Attribute_Name
=> Name_Last
,
3853 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
3856 Convert_To
(Implicit_Base
,
3857 Make_Attribute_Reference
(Loc
,
3858 Attribute_Name
=> Name_First
,
3860 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
3867 (Type_High_Bound
(Parent_Type
),
3868 Parent_Type
, Implicit_Base
);
3871 (Type_Low_Bound
(Parent_Type
),
3872 Parent_Type
, Implicit_Base
);
3880 -- If we constructed a default range for the case where no range
3881 -- was given, then the expressions in the range must not freeze
3882 -- since they do not correspond to expressions in the source.
3884 if Nkind
(Indic
) /= N_Subtype_Indication
then
3885 Set_Must_Not_Freeze
(Lo
);
3886 Set_Must_Not_Freeze
(Hi
);
3887 Set_Must_Not_Freeze
(Rang_Expr
);
3891 Make_Subtype_Declaration
(Loc
,
3892 Defining_Identifier
=> Derived_Type
,
3893 Subtype_Indication
=>
3894 Make_Subtype_Indication
(Loc
,
3895 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
3897 Make_Range_Constraint
(Loc
,
3898 Range_Expression
=> Rang_Expr
))));
3902 -- If pragma Discard_Names applies on the first subtype of the
3903 -- parent type, then it must be applied on this subtype as well.
3905 if Einfo
.Discard_Names
(First_Subtype
(Parent_Type
)) then
3906 Set_Discard_Names
(Derived_Type
);
3909 -- Apply a range check. Since this range expression doesn't have an
3910 -- Etype, we have to specifically pass the Source_Typ parameter. Is
3913 if Nkind
(Indic
) = N_Subtype_Indication
then
3914 Apply_Range_Check
(Range_Expression
(Constraint
(Indic
)),
3916 Source_Typ
=> Entity
(Subtype_Mark
(Indic
)));
3919 end Build_Derived_Enumeration_Type
;
3921 --------------------------------
3922 -- Build_Derived_Numeric_Type --
3923 --------------------------------
3925 procedure Build_Derived_Numeric_Type
3927 Parent_Type
: Entity_Id
;
3928 Derived_Type
: Entity_Id
)
3930 Loc
: constant Source_Ptr
:= Sloc
(N
);
3931 Tdef
: constant Node_Id
:= Type_Definition
(N
);
3932 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
3933 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
3934 No_Constraint
: constant Boolean := Nkind
(Indic
) /=
3935 N_Subtype_Indication
;
3936 Implicit_Base
: Entity_Id
;
3942 -- Process the subtype indication including a validation check on
3943 -- the constraint if any.
3945 Discard_Node
(Process_Subtype
(Indic
, N
));
3947 -- Introduce an implicit base type for the derived type even if there
3948 -- is no constraint attached to it, since this seems closer to the Ada
3952 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
3954 Set_Etype
(Implicit_Base
, Parent_Base
);
3955 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
3956 Set_Size_Info
(Implicit_Base
, Parent_Base
);
3957 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Base
));
3958 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Base
));
3959 Set_Parent
(Implicit_Base
, Parent
(Derived_Type
));
3961 if Is_Discrete_Or_Fixed_Point_Type
(Parent_Base
) then
3962 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Base
));
3965 Set_Has_Delayed_Freeze
(Implicit_Base
);
3967 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
3968 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
3970 Set_Scalar_Range
(Implicit_Base
,
3975 if Has_Infinities
(Parent_Base
) then
3976 Set_Includes_Infinities
(Scalar_Range
(Implicit_Base
));
3979 -- The Derived_Type, which is the entity of the declaration, is a
3980 -- subtype of the implicit base. Its Ekind is a subtype, even in the
3981 -- absence of an explicit constraint.
3983 Set_Etype
(Derived_Type
, Implicit_Base
);
3985 -- If we did not have a constraint, then the Ekind is set from the
3986 -- parent type (otherwise Process_Subtype has set the bounds)
3988 if No_Constraint
then
3989 Set_Ekind
(Derived_Type
, Subtype_Kind
(Ekind
(Parent_Type
)));
3992 -- If we did not have a range constraint, then set the range from the
3993 -- parent type. Otherwise, the call to Process_Subtype has set the
3997 or else not Has_Range_Constraint
(Indic
)
3999 Set_Scalar_Range
(Derived_Type
,
4001 Low_Bound
=> New_Copy_Tree
(Type_Low_Bound
(Parent_Type
)),
4002 High_Bound
=> New_Copy_Tree
(Type_High_Bound
(Parent_Type
))));
4003 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
4005 if Has_Infinities
(Parent_Type
) then
4006 Set_Includes_Infinities
(Scalar_Range
(Derived_Type
));
4010 -- Set remaining type-specific fields, depending on numeric type
4012 if Is_Modular_Integer_Type
(Parent_Type
) then
4013 Set_Modulus
(Implicit_Base
, Modulus
(Parent_Base
));
4015 Set_Non_Binary_Modulus
4016 (Implicit_Base
, Non_Binary_Modulus
(Parent_Base
));
4018 elsif Is_Floating_Point_Type
(Parent_Type
) then
4020 -- Digits of base type is always copied from the digits value of
4021 -- the parent base type, but the digits of the derived type will
4022 -- already have been set if there was a constraint present.
4024 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
4025 Set_Vax_Float
(Implicit_Base
, Vax_Float
(Parent_Base
));
4027 if No_Constraint
then
4028 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Type
));
4031 elsif Is_Fixed_Point_Type
(Parent_Type
) then
4033 -- Small of base type and derived type are always copied from the
4034 -- parent base type, since smalls never change. The delta of the
4035 -- base type is also copied from the parent base type. However the
4036 -- delta of the derived type will have been set already if a
4037 -- constraint was present.
4039 Set_Small_Value
(Derived_Type
, Small_Value
(Parent_Base
));
4040 Set_Small_Value
(Implicit_Base
, Small_Value
(Parent_Base
));
4041 Set_Delta_Value
(Implicit_Base
, Delta_Value
(Parent_Base
));
4043 if No_Constraint
then
4044 Set_Delta_Value
(Derived_Type
, Delta_Value
(Parent_Type
));
4047 -- The scale and machine radix in the decimal case are always
4048 -- copied from the parent base type.
4050 if Is_Decimal_Fixed_Point_Type
(Parent_Type
) then
4051 Set_Scale_Value
(Derived_Type
, Scale_Value
(Parent_Base
));
4052 Set_Scale_Value
(Implicit_Base
, Scale_Value
(Parent_Base
));
4054 Set_Machine_Radix_10
4055 (Derived_Type
, Machine_Radix_10
(Parent_Base
));
4056 Set_Machine_Radix_10
4057 (Implicit_Base
, Machine_Radix_10
(Parent_Base
));
4059 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
4061 if No_Constraint
then
4062 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Base
));
4065 -- the analysis of the subtype_indication sets the
4066 -- digits value of the derived type.
4073 -- The type of the bounds is that of the parent type, and they
4074 -- must be converted to the derived type.
4076 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
4078 -- The implicit_base should be frozen when the derived type is frozen,
4079 -- but note that it is used in the conversions of the bounds. For fixed
4080 -- types we delay the determination of the bounds until the proper
4081 -- freezing point. For other numeric types this is rejected by GCC, for
4082 -- reasons that are currently unclear (???), so we choose to freeze the
4083 -- implicit base now. In the case of integers and floating point types
4084 -- this is harmless because subsequent representation clauses cannot
4085 -- affect anything, but it is still baffling that we cannot use the
4086 -- same mechanism for all derived numeric types.
4088 if Is_Fixed_Point_Type
(Parent_Type
) then
4089 Conditional_Delay
(Implicit_Base
, Parent_Type
);
4091 Freeze_Before
(N
, Implicit_Base
);
4093 end Build_Derived_Numeric_Type
;
4095 --------------------------------
4096 -- Build_Derived_Private_Type --
4097 --------------------------------
4099 procedure Build_Derived_Private_Type
4101 Parent_Type
: Entity_Id
;
4102 Derived_Type
: Entity_Id
;
4103 Is_Completion
: Boolean;
4104 Derive_Subps
: Boolean := True)
4106 Der_Base
: Entity_Id
;
4108 Full_Decl
: Node_Id
:= Empty
;
4109 Full_Der
: Entity_Id
;
4111 Last_Discr
: Entity_Id
;
4112 Par_Scope
: constant Entity_Id
:= Scope
(Base_Type
(Parent_Type
));
4113 Swapped
: Boolean := False;
4115 procedure Copy_And_Build
;
4116 -- Copy derived type declaration, replace parent with its full view,
4117 -- and analyze new declaration.
4119 --------------------
4120 -- Copy_And_Build --
4121 --------------------
4123 procedure Copy_And_Build
is
4127 if Ekind
(Parent_Type
) in Record_Kind
4129 (Ekind
(Parent_Type
) in Enumeration_Kind
4130 and then Root_Type
(Parent_Type
) /= Standard_Character
4131 and then Root_Type
(Parent_Type
) /= Standard_Wide_Character
4132 and then Root_Type
(Parent_Type
) /= Standard_Wide_Wide_Character
4133 and then not Is_Generic_Type
(Root_Type
(Parent_Type
)))
4135 Full_N
:= New_Copy_Tree
(N
);
4136 Insert_After
(N
, Full_N
);
4137 Build_Derived_Type
(
4138 Full_N
, Parent_Type
, Full_Der
, True, Derive_Subps
=> False);
4141 Build_Derived_Type
(
4142 N
, Parent_Type
, Full_Der
, True, Derive_Subps
=> False);
4146 -- Start of processing for Build_Derived_Private_Type
4149 if Is_Tagged_Type
(Parent_Type
) then
4150 Build_Derived_Record_Type
4151 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
4154 elsif Has_Discriminants
(Parent_Type
) then
4155 if Present
(Full_View
(Parent_Type
)) then
4156 if not Is_Completion
then
4158 -- Copy declaration for subsequent analysis, to provide a
4159 -- completion for what is a private declaration. Indicate that
4160 -- the full type is internally generated.
4162 Full_Decl
:= New_Copy_Tree
(N
);
4163 Full_Der
:= New_Copy
(Derived_Type
);
4164 Set_Comes_From_Source
(Full_Decl
, False);
4166 Insert_After
(N
, Full_Decl
);
4169 -- If this is a completion, the full view being built is
4170 -- itself private. We build a subtype of the parent with
4171 -- the same constraints as this full view, to convey to the
4172 -- back end the constrained components and the size of this
4173 -- subtype. If the parent is constrained, its full view can
4174 -- serve as the underlying full view of the derived type.
4176 if No
(Discriminant_Specifications
(N
)) then
4177 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
4178 N_Subtype_Indication
4180 Build_Underlying_Full_View
(N
, Derived_Type
, Parent_Type
);
4182 elsif Is_Constrained
(Full_View
(Parent_Type
)) then
4183 Set_Underlying_Full_View
(Derived_Type
,
4184 Full_View
(Parent_Type
));
4188 -- If there are new discriminants, the parent subtype is
4189 -- constrained by them, but it is not clear how to build
4190 -- the underlying_full_view in this case ???
4197 -- Build partial view of derived type from partial view of parent
4199 Build_Derived_Record_Type
4200 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
4202 if Present
(Full_View
(Parent_Type
))
4203 and then not Is_Completion
4205 if not In_Open_Scopes
(Par_Scope
)
4206 or else not In_Same_Source_Unit
(N
, Parent_Type
)
4208 -- Swap partial and full views temporarily
4210 Install_Private_Declarations
(Par_Scope
);
4211 Install_Visible_Declarations
(Par_Scope
);
4215 -- Build full view of derived type from full view of parent which
4216 -- is now installed. Subprograms have been derived on the partial
4217 -- view, the completion does not derive them anew.
4219 if not Is_Tagged_Type
(Parent_Type
) then
4220 Build_Derived_Record_Type
4221 (Full_Decl
, Parent_Type
, Full_Der
, False);
4224 -- If full view of parent is tagged, the completion
4225 -- inherits the proper primitive operations.
4227 Set_Defining_Identifier
(Full_Decl
, Full_Der
);
4228 Build_Derived_Record_Type
4229 (Full_Decl
, Parent_Type
, Full_Der
, Derive_Subps
);
4230 Set_Analyzed
(Full_Decl
);
4234 Uninstall_Declarations
(Par_Scope
);
4236 if In_Open_Scopes
(Par_Scope
) then
4237 Install_Visible_Declarations
(Par_Scope
);
4241 Der_Base
:= Base_Type
(Derived_Type
);
4242 Set_Full_View
(Derived_Type
, Full_Der
);
4243 Set_Full_View
(Der_Base
, Base_Type
(Full_Der
));
4245 -- Copy the discriminant list from full view to the partial views
4246 -- (base type and its subtype). Gigi requires that the partial
4247 -- and full views have the same discriminants.
4249 -- Note that since the partial view is pointing to discriminants
4250 -- in the full view, their scope will be that of the full view.
4251 -- This might cause some front end problems and need
4254 Discr
:= First_Discriminant
(Base_Type
(Full_Der
));
4255 Set_First_Entity
(Der_Base
, Discr
);
4258 Last_Discr
:= Discr
;
4259 Next_Discriminant
(Discr
);
4260 exit when No
(Discr
);
4263 Set_Last_Entity
(Der_Base
, Last_Discr
);
4265 Set_First_Entity
(Derived_Type
, First_Entity
(Der_Base
));
4266 Set_Last_Entity
(Derived_Type
, Last_Entity
(Der_Base
));
4267 Set_Stored_Constraint
(Full_Der
, Stored_Constraint
(Derived_Type
));
4270 -- If this is a completion, the derived type stays private
4271 -- and there is no need to create a further full view, except
4272 -- in the unusual case when the derivation is nested within a
4273 -- child unit, see below.
4278 elsif Present
(Full_View
(Parent_Type
))
4279 and then Has_Discriminants
(Full_View
(Parent_Type
))
4281 if Has_Unknown_Discriminants
(Parent_Type
)
4282 and then Nkind
(Subtype_Indication
(Type_Definition
(N
)))
4283 = N_Subtype_Indication
4286 ("cannot constrain type with unknown discriminants",
4287 Subtype_Indication
(Type_Definition
(N
)));
4291 -- If full view of parent is a record type, Build full view as
4292 -- a derivation from the parent's full view. Partial view remains
4293 -- private. For code generation and linking, the full view must
4294 -- have the same public status as the partial one. This full view
4295 -- is only needed if the parent type is in an enclosing scope, so
4296 -- that the full view may actually become visible, e.g. in a child
4297 -- unit. This is both more efficient, and avoids order of freezing
4298 -- problems with the added entities.
4300 if not Is_Private_Type
(Full_View
(Parent_Type
))
4301 and then (In_Open_Scopes
(Scope
(Parent_Type
)))
4303 Full_Der
:= Make_Defining_Identifier
(Sloc
(Derived_Type
),
4304 Chars
(Derived_Type
));
4305 Set_Is_Itype
(Full_Der
);
4306 Set_Has_Private_Declaration
(Full_Der
);
4307 Set_Has_Private_Declaration
(Derived_Type
);
4308 Set_Associated_Node_For_Itype
(Full_Der
, N
);
4309 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
4310 Set_Full_View
(Derived_Type
, Full_Der
);
4311 Set_Is_Public
(Full_Der
, Is_Public
(Derived_Type
));
4312 Full_P
:= Full_View
(Parent_Type
);
4313 Exchange_Declarations
(Parent_Type
);
4315 Exchange_Declarations
(Full_P
);
4318 Build_Derived_Record_Type
4319 (N
, Full_View
(Parent_Type
), Derived_Type
,
4320 Derive_Subps
=> False);
4323 -- In any case, the primitive operations are inherited from
4324 -- the parent type, not from the internal full view.
4326 Set_Etype
(Base_Type
(Derived_Type
), Base_Type
(Parent_Type
));
4328 if Derive_Subps
then
4329 Derive_Subprograms
(Parent_Type
, Derived_Type
);
4333 -- Untagged type, No discriminants on either view
4335 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
4336 N_Subtype_Indication
4339 ("illegal constraint on type without discriminants", N
);
4342 if Present
(Discriminant_Specifications
(N
))
4343 and then Present
(Full_View
(Parent_Type
))
4344 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
4347 ("cannot add discriminants to untagged type", N
);
4350 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
4351 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
4352 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
4353 Set_Has_Controlled_Component
4354 (Derived_Type
, Has_Controlled_Component
4357 -- Direct controlled types do not inherit Finalize_Storage_Only flag
4359 if not Is_Controlled
(Parent_Type
) then
4360 Set_Finalize_Storage_Only
4361 (Base_Type
(Derived_Type
), Finalize_Storage_Only
(Parent_Type
));
4364 -- Construct the implicit full view by deriving from full view of
4365 -- the parent type. In order to get proper visibility, we install
4366 -- the parent scope and its declarations.
4368 -- ??? if the parent is untagged private and its completion is
4369 -- tagged, this mechanism will not work because we cannot derive
4370 -- from the tagged full view unless we have an extension
4372 if Present
(Full_View
(Parent_Type
))
4373 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
4374 and then not Is_Completion
4377 Make_Defining_Identifier
(Sloc
(Derived_Type
),
4378 Chars
=> Chars
(Derived_Type
));
4379 Set_Is_Itype
(Full_Der
);
4380 Set_Has_Private_Declaration
(Full_Der
);
4381 Set_Has_Private_Declaration
(Derived_Type
);
4382 Set_Associated_Node_For_Itype
(Full_Der
, N
);
4383 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
4384 Set_Full_View
(Derived_Type
, Full_Der
);
4386 if not In_Open_Scopes
(Par_Scope
) then
4387 Install_Private_Declarations
(Par_Scope
);
4388 Install_Visible_Declarations
(Par_Scope
);
4390 Uninstall_Declarations
(Par_Scope
);
4392 -- If parent scope is open and in another unit, and parent has a
4393 -- completion, then the derivation is taking place in the visible
4394 -- part of a child unit. In that case retrieve the full view of
4395 -- the parent momentarily.
4397 elsif not In_Same_Source_Unit
(N
, Parent_Type
) then
4398 Full_P
:= Full_View
(Parent_Type
);
4399 Exchange_Declarations
(Parent_Type
);
4401 Exchange_Declarations
(Full_P
);
4403 -- Otherwise it is a local derivation
4409 Set_Scope
(Full_Der
, Current_Scope
);
4410 Set_Is_First_Subtype
(Full_Der
,
4411 Is_First_Subtype
(Derived_Type
));
4412 Set_Has_Size_Clause
(Full_Der
, False);
4413 Set_Has_Alignment_Clause
(Full_Der
, False);
4414 Set_Next_Entity
(Full_Der
, Empty
);
4415 Set_Has_Delayed_Freeze
(Full_Der
);
4416 Set_Is_Frozen
(Full_Der
, False);
4417 Set_Freeze_Node
(Full_Der
, Empty
);
4418 Set_Depends_On_Private
(Full_Der
,
4419 Has_Private_Component
(Full_Der
));
4420 Set_Public_Status
(Full_Der
);
4424 Set_Has_Unknown_Discriminants
(Derived_Type
,
4425 Has_Unknown_Discriminants
(Parent_Type
));
4427 if Is_Private_Type
(Derived_Type
) then
4428 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
4431 if Is_Private_Type
(Parent_Type
)
4432 and then Base_Type
(Parent_Type
) = Parent_Type
4433 and then In_Open_Scopes
(Scope
(Parent_Type
))
4435 Append_Elmt
(Derived_Type
, Private_Dependents
(Parent_Type
));
4437 if Is_Child_Unit
(Scope
(Current_Scope
))
4438 and then Is_Completion
4439 and then In_Private_Part
(Current_Scope
)
4440 and then Scope
(Parent_Type
) /= Current_Scope
4442 -- This is the unusual case where a type completed by a private
4443 -- derivation occurs within a package nested in a child unit,
4444 -- and the parent is declared in an ancestor. In this case, the
4445 -- full view of the parent type will become visible in the body
4446 -- of the enclosing child, and only then will the current type
4447 -- be possibly non-private. We build a underlying full view that
4448 -- will be installed when the enclosing child body is compiled.
4451 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(N
));
4455 Make_Defining_Identifier
(Sloc
(Derived_Type
),
4456 Chars
(Derived_Type
));
4457 Set_Is_Itype
(Full_Der
);
4458 Set_Itype
(IR
, Full_Der
);
4459 Insert_After
(N
, IR
);
4461 -- The full view will be used to swap entities on entry/exit
4462 -- to the body, and must appear in the entity list for the
4465 Append_Entity
(Full_Der
, Scope
(Derived_Type
));
4466 Set_Has_Private_Declaration
(Full_Der
);
4467 Set_Has_Private_Declaration
(Derived_Type
);
4468 Set_Associated_Node_For_Itype
(Full_Der
, N
);
4469 Set_Parent
(Full_Der
, Parent
(Derived_Type
));
4470 Full_P
:= Full_View
(Parent_Type
);
4471 Exchange_Declarations
(Parent_Type
);
4473 Exchange_Declarations
(Full_P
);
4474 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
4478 end Build_Derived_Private_Type
;
4480 -------------------------------
4481 -- Build_Derived_Record_Type --
4482 -------------------------------
4486 -- Ideally we would like to use the same model of type derivation for
4487 -- tagged and untagged record types. Unfortunately this is not quite
4488 -- possible because the semantics of representation clauses is different
4489 -- for tagged and untagged records under inheritance. Consider the
4492 -- type R (...) is [tagged] record ... end record;
4493 -- type T (...) is new R (...) [with ...];
4495 -- The representation clauses of T can specify a completely different
4496 -- record layout from R's. Hence the same component can be placed in
4497 -- two very different positions in objects of type T and R. If R and T
4498 -- are tagged types, representation clauses for T can only specify the
4499 -- layout of non inherited components, thus components that are common
4500 -- in R and T have the same position in objects of type R and T.
4502 -- This has two implications. The first is that the entire tree for R's
4503 -- declaration needs to be copied for T in the untagged case, so that T
4504 -- can be viewed as a record type of its own with its own representation
4505 -- clauses. The second implication is the way we handle discriminants.
4506 -- Specifically, in the untagged case we need a way to communicate to Gigi
4507 -- what are the real discriminants in the record, while for the semantics
4508 -- we need to consider those introduced by the user to rename the
4509 -- discriminants in the parent type. This is handled by introducing the
4510 -- notion of stored discriminants. See below for more.
4512 -- Fortunately the way regular components are inherited can be handled in
4513 -- the same way in tagged and untagged types.
4515 -- To complicate things a bit more the private view of a private extension
4516 -- cannot be handled in the same way as the full view (for one thing the
4517 -- semantic rules are somewhat different). We will explain what differs
4520 -- 2. DISCRIMINANTS UNDER INHERITANCE
4522 -- The semantic rules governing the discriminants of derived types are
4525 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
4526 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
4528 -- If parent type has discriminants, then the discriminants that are
4529 -- declared in the derived type are [3.4 (11)]:
4531 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
4534 -- o Otherwise, each discriminant of the parent type (implicitly declared
4535 -- in the same order with the same specifications). In this case, the
4536 -- discriminants are said to be "inherited", or if unknown in the parent
4537 -- are also unknown in the derived type.
4539 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
4541 -- o The parent subtype shall be constrained;
4543 -- o If the parent type is not a tagged type, then each discriminant of
4544 -- the derived type shall be used in the constraint defining a parent
4545 -- subtype [Implementation note: this ensures that the new discriminant
4546 -- can share storage with an existing discriminant.].
4548 -- For the derived type each discriminant of the parent type is either
4549 -- inherited, constrained to equal some new discriminant of the derived
4550 -- type, or constrained to the value of an expression.
4552 -- When inherited or constrained to equal some new discriminant, the
4553 -- parent discriminant and the discriminant of the derived type are said
4556 -- If a discriminant of the parent type is constrained to a specific value
4557 -- in the derived type definition, then the discriminant is said to be
4558 -- "specified" by that derived type definition.
4560 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
4562 -- We have spoken about stored discriminants in point 1 (introduction)
4563 -- above. There are two sort of stored discriminants: implicit and
4564 -- explicit. As long as the derived type inherits the same discriminants as
4565 -- the root record type, stored discriminants are the same as regular
4566 -- discriminants, and are said to be implicit. However, if any discriminant
4567 -- in the root type was renamed in the derived type, then the derived
4568 -- type will contain explicit stored discriminants. Explicit stored
4569 -- discriminants are discriminants in addition to the semantically visible
4570 -- discriminants defined for the derived type. Stored discriminants are
4571 -- used by Gigi to figure out what are the physical discriminants in
4572 -- objects of the derived type (see precise definition in einfo.ads).
4573 -- As an example, consider the following:
4575 -- type R (D1, D2, D3 : Int) is record ... end record;
4576 -- type T1 is new R;
4577 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
4578 -- type T3 is new T2;
4579 -- type T4 (Y : Int) is new T3 (Y, 99);
4581 -- The following table summarizes the discriminants and stored
4582 -- discriminants in R and T1 through T4.
4584 -- Type Discrim Stored Discrim Comment
4585 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
4586 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
4587 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
4588 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
4589 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
4591 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
4592 -- find the corresponding discriminant in the parent type, while
4593 -- Original_Record_Component (abbreviated ORC below), the actual physical
4594 -- component that is renamed. Finally the field Is_Completely_Hidden
4595 -- (abbreviated ICH below) is set for all explicit stored discriminants
4596 -- (see einfo.ads for more info). For the above example this gives:
4598 -- Discrim CD ORC ICH
4599 -- ^^^^^^^ ^^ ^^^ ^^^
4600 -- D1 in R empty itself no
4601 -- D2 in R empty itself no
4602 -- D3 in R empty itself no
4604 -- D1 in T1 D1 in R itself no
4605 -- D2 in T1 D2 in R itself no
4606 -- D3 in T1 D3 in R itself no
4608 -- X1 in T2 D3 in T1 D3 in T2 no
4609 -- X2 in T2 D1 in T1 D1 in T2 no
4610 -- D1 in T2 empty itself yes
4611 -- D2 in T2 empty itself yes
4612 -- D3 in T2 empty itself yes
4614 -- X1 in T3 X1 in T2 D3 in T3 no
4615 -- X2 in T3 X2 in T2 D1 in T3 no
4616 -- D1 in T3 empty itself yes
4617 -- D2 in T3 empty itself yes
4618 -- D3 in T3 empty itself yes
4620 -- Y in T4 X1 in T3 D3 in T3 no
4621 -- D1 in T3 empty itself yes
4622 -- D2 in T3 empty itself yes
4623 -- D3 in T3 empty itself yes
4625 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
4627 -- Type derivation for tagged types is fairly straightforward. if no
4628 -- discriminants are specified by the derived type, these are inherited
4629 -- from the parent. No explicit stored discriminants are ever necessary.
4630 -- The only manipulation that is done to the tree is that of adding a
4631 -- _parent field with parent type and constrained to the same constraint
4632 -- specified for the parent in the derived type definition. For instance:
4634 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
4635 -- type T1 is new R with null record;
4636 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
4638 -- are changed into:
4640 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
4641 -- _parent : R (D1, D2, D3);
4644 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
4645 -- _parent : T1 (X2, 88, X1);
4648 -- The discriminants actually present in R, T1 and T2 as well as their CD,
4649 -- ORC and ICH fields are:
4651 -- Discrim CD ORC ICH
4652 -- ^^^^^^^ ^^ ^^^ ^^^
4653 -- D1 in R empty itself no
4654 -- D2 in R empty itself no
4655 -- D3 in R empty itself no
4657 -- D1 in T1 D1 in R D1 in R no
4658 -- D2 in T1 D2 in R D2 in R no
4659 -- D3 in T1 D3 in R D3 in R no
4661 -- X1 in T2 D3 in T1 D3 in R no
4662 -- X2 in T2 D1 in T1 D1 in R no
4664 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
4666 -- Regardless of whether we dealing with a tagged or untagged type
4667 -- we will transform all derived type declarations of the form
4669 -- type T is new R (...) [with ...];
4671 -- subtype S is R (...);
4672 -- type T is new S [with ...];
4674 -- type BT is new R [with ...];
4675 -- subtype T is BT (...);
4677 -- That is, the base derived type is constrained only if it has no
4678 -- discriminants. The reason for doing this is that GNAT's semantic model
4679 -- assumes that a base type with discriminants is unconstrained.
4681 -- Note that, strictly speaking, the above transformation is not always
4682 -- correct. Consider for instance the following excerpt from ACVC b34011a:
4684 -- procedure B34011A is
4685 -- type REC (D : integer := 0) is record
4690 -- type T6 is new Rec;
4691 -- function F return T6;
4696 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
4699 -- The definition of Q6.U is illegal. However transforming Q6.U into
4701 -- type BaseU is new T6;
4702 -- subtype U is BaseU (Q6.F.I)
4704 -- turns U into a legal subtype, which is incorrect. To avoid this problem
4705 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
4706 -- the transformation described above.
4708 -- There is another instance where the above transformation is incorrect.
4712 -- type Base (D : Integer) is tagged null record;
4713 -- procedure P (X : Base);
4715 -- type Der is new Base (2) with null record;
4716 -- procedure P (X : Der);
4719 -- Then the above transformation turns this into
4721 -- type Der_Base is new Base with null record;
4722 -- -- procedure P (X : Base) is implicitly inherited here
4723 -- -- as procedure P (X : Der_Base).
4725 -- subtype Der is Der_Base (2);
4726 -- procedure P (X : Der);
4727 -- -- The overriding of P (X : Der_Base) is illegal since we
4728 -- -- have a parameter conformance problem.
4730 -- To get around this problem, after having semantically processed Der_Base
4731 -- and the rewritten subtype declaration for Der, we copy Der_Base field
4732 -- Discriminant_Constraint from Der so that when parameter conformance is
4733 -- checked when P is overridden, no semantic errors are flagged.
4735 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
4737 -- Regardless of whether we are dealing with a tagged or untagged type
4738 -- we will transform all derived type declarations of the form
4740 -- type R (D1, .., Dn : ...) is [tagged] record ...;
4741 -- type T is new R [with ...];
4743 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
4745 -- The reason for such transformation is that it allows us to implement a
4746 -- very clean form of component inheritance as explained below.
4748 -- Note that this transformation is not achieved by direct tree rewriting
4749 -- and manipulation, but rather by redoing the semantic actions that the
4750 -- above transformation will entail. This is done directly in routine
4751 -- Inherit_Components.
4753 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
4755 -- In both tagged and untagged derived types, regular non discriminant
4756 -- components are inherited in the derived type from the parent type. In
4757 -- the absence of discriminants component, inheritance is straightforward
4758 -- as components can simply be copied from the parent.
4760 -- If the parent has discriminants, inheriting components constrained with
4761 -- these discriminants requires caution. Consider the following example:
4763 -- type R (D1, D2 : Positive) is [tagged] record
4764 -- S : String (D1 .. D2);
4767 -- type T1 is new R [with null record];
4768 -- type T2 (X : positive) is new R (1, X) [with null record];
4770 -- As explained in 6. above, T1 is rewritten as
4771 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
4772 -- which makes the treatment for T1 and T2 identical.
4774 -- What we want when inheriting S, is that references to D1 and D2 in R are
4775 -- replaced with references to their correct constraints, ie D1 and D2 in
4776 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
4777 -- with either discriminant references in the derived type or expressions.
4778 -- This replacement is achieved as follows: before inheriting R's
4779 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
4780 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
4781 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
4782 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
4783 -- by String (1 .. X).
4785 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
4787 -- We explain here the rules governing private type extensions relevant to
4788 -- type derivation. These rules are explained on the following example:
4790 -- type D [(...)] is new A [(...)] with private; <-- partial view
4791 -- type D [(...)] is new P [(...)] with null record; <-- full view
4793 -- Type A is called the ancestor subtype of the private extension.
4794 -- Type P is the parent type of the full view of the private extension. It
4795 -- must be A or a type derived from A.
4797 -- The rules concerning the discriminants of private type extensions are
4800 -- o If a private extension inherits known discriminants from the ancestor
4801 -- subtype, then the full view shall also inherit its discriminants from
4802 -- the ancestor subtype and the parent subtype of the full view shall be
4803 -- constrained if and only if the ancestor subtype is constrained.
4805 -- o If a partial view has unknown discriminants, then the full view may
4806 -- define a definite or an indefinite subtype, with or without
4809 -- o If a partial view has neither known nor unknown discriminants, then
4810 -- the full view shall define a definite subtype.
4812 -- o If the ancestor subtype of a private extension has constrained
4813 -- discriminants, then the parent subtype of the full view shall impose a
4814 -- statically matching constraint on those discriminants.
4816 -- This means that only the following forms of private extensions are
4819 -- type D is new A with private; <-- partial view
4820 -- type D is new P with null record; <-- full view
4822 -- If A has no discriminants than P has no discriminants, otherwise P must
4823 -- inherit A's discriminants.
4825 -- type D is new A (...) with private; <-- partial view
4826 -- type D is new P (:::) with null record; <-- full view
4828 -- P must inherit A's discriminants and (...) and (:::) must statically
4831 -- subtype A is R (...);
4832 -- type D is new A with private; <-- partial view
4833 -- type D is new P with null record; <-- full view
4835 -- P must have inherited R's discriminants and must be derived from A or
4836 -- any of its subtypes.
4838 -- type D (..) is new A with private; <-- partial view
4839 -- type D (..) is new P [(:::)] with null record; <-- full view
4841 -- No specific constraints on P's discriminants or constraint (:::).
4842 -- Note that A can be unconstrained, but the parent subtype P must either
4843 -- be constrained or (:::) must be present.
4845 -- type D (..) is new A [(...)] with private; <-- partial view
4846 -- type D (..) is new P [(:::)] with null record; <-- full view
4848 -- P's constraints on A's discriminants must statically match those
4849 -- imposed by (...).
4851 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
4853 -- The full view of a private extension is handled exactly as described
4854 -- above. The model chose for the private view of a private extension is
4855 -- the same for what concerns discriminants (ie they receive the same
4856 -- treatment as in the tagged case). However, the private view of the
4857 -- private extension always inherits the components of the parent base,
4858 -- without replacing any discriminant reference. Strictly speaking this is
4859 -- incorrect. However, Gigi never uses this view to generate code so this
4860 -- is a purely semantic issue. In theory, a set of transformations similar
4861 -- to those given in 5. and 6. above could be applied to private views of
4862 -- private extensions to have the same model of component inheritance as
4863 -- for non private extensions. However, this is not done because it would
4864 -- further complicate private type processing. Semantically speaking, this
4865 -- leaves us in an uncomfortable situation. As an example consider:
4868 -- type R (D : integer) is tagged record
4869 -- S : String (1 .. D);
4871 -- procedure P (X : R);
4872 -- type T is new R (1) with private;
4874 -- type T is new R (1) with null record;
4877 -- This is transformed into:
4880 -- type R (D : integer) is tagged record
4881 -- S : String (1 .. D);
4883 -- procedure P (X : R);
4884 -- type T is new R (1) with private;
4886 -- type BaseT is new R with null record;
4887 -- subtype T is BaseT (1);
4890 -- (strictly speaking the above is incorrect Ada)
4892 -- From the semantic standpoint the private view of private extension T
4893 -- should be flagged as constrained since one can clearly have
4897 -- in a unit withing Pack. However, when deriving subprograms for the
4898 -- private view of private extension T, T must be seen as unconstrained
4899 -- since T has discriminants (this is a constraint of the current
4900 -- subprogram derivation model). Thus, when processing the private view of
4901 -- a private extension such as T, we first mark T as unconstrained, we
4902 -- process it, we perform program derivation and just before returning from
4903 -- Build_Derived_Record_Type we mark T as constrained.
4905 -- ??? Are there are other uncomfortable cases that we will have to
4908 -- 10. RECORD_TYPE_WITH_PRIVATE complications
4910 -- Types that are derived from a visible record type and have a private
4911 -- extension present other peculiarities. They behave mostly like private
4912 -- types, but if they have primitive operations defined, these will not
4913 -- have the proper signatures for further inheritance, because other
4914 -- primitive operations will use the implicit base that we define for
4915 -- private derivations below. This affect subprogram inheritance (see
4916 -- Derive_Subprograms for details). We also derive the implicit base from
4917 -- the base type of the full view, so that the implicit base is a record
4918 -- type and not another private type, This avoids infinite loops.
4920 procedure Build_Derived_Record_Type
4922 Parent_Type
: Entity_Id
;
4923 Derived_Type
: Entity_Id
;
4924 Derive_Subps
: Boolean := True)
4926 Loc
: constant Source_Ptr
:= Sloc
(N
);
4927 Parent_Base
: Entity_Id
;
4930 Discrim
: Entity_Id
;
4931 Last_Discrim
: Entity_Id
;
4934 Discs
: Elist_Id
:= New_Elmt_List
;
4935 -- An empty Discs list means that there were no constraints in the
4936 -- subtype indication or that there was an error processing it.
4938 Assoc_List
: Elist_Id
;
4939 New_Discrs
: Elist_Id
;
4940 New_Base
: Entity_Id
;
4942 New_Indic
: Node_Id
;
4944 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Parent_Type
);
4945 Discriminant_Specs
: constant Boolean :=
4946 Present
(Discriminant_Specifications
(N
));
4947 Private_Extension
: constant Boolean :=
4948 (Nkind
(N
) = N_Private_Extension_Declaration
);
4950 Constraint_Present
: Boolean;
4951 Inherit_Discrims
: Boolean := False;
4953 Save_Etype
: Entity_Id
;
4954 Save_Discr_Constr
: Elist_Id
;
4955 Save_Next_Entity
: Entity_Id
;
4958 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
4959 and then Present
(Full_View
(Parent_Type
))
4960 and then Has_Discriminants
(Parent_Type
)
4962 Parent_Base
:= Base_Type
(Full_View
(Parent_Type
));
4964 Parent_Base
:= Base_Type
(Parent_Type
);
4967 -- Before we start the previously documented transformations, here is
4968 -- a little fix for size and alignment of tagged types. Normally when
4969 -- we derive type D from type P, we copy the size and alignment of P
4970 -- as the default for D, and in the absence of explicit representation
4971 -- clauses for D, the size and alignment are indeed the same as the
4974 -- But this is wrong for tagged types, since fields may be added,
4975 -- and the default size may need to be larger, and the default
4976 -- alignment may need to be larger.
4978 -- We therefore reset the size and alignment fields in the tagged
4979 -- case. Note that the size and alignment will in any case be at
4980 -- least as large as the parent type (since the derived type has
4981 -- a copy of the parent type in the _parent field)
4984 Init_Size_Align
(Derived_Type
);
4987 -- STEP 0a: figure out what kind of derived type declaration we have
4989 if Private_Extension
then
4991 Set_Ekind
(Derived_Type
, E_Record_Type_With_Private
);
4994 Type_Def
:= Type_Definition
(N
);
4996 -- Ekind (Parent_Base) in not necessarily E_Record_Type since
4997 -- Parent_Base can be a private type or private extension. However,
4998 -- for tagged types with an extension the newly added fields are
4999 -- visible and hence the Derived_Type is always an E_Record_Type.
5000 -- (except that the parent may have its own private fields).
5001 -- For untagged types we preserve the Ekind of the Parent_Base.
5003 if Present
(Record_Extension_Part
(Type_Def
)) then
5004 Set_Ekind
(Derived_Type
, E_Record_Type
);
5006 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
5010 -- Indic can either be an N_Identifier if the subtype indication
5011 -- contains no constraint or an N_Subtype_Indication if the subtype
5012 -- indication has a constraint.
5014 Indic
:= Subtype_Indication
(Type_Def
);
5015 Constraint_Present
:= (Nkind
(Indic
) = N_Subtype_Indication
);
5017 -- Check that the type has visible discriminants. The type may be
5018 -- a private type with unknown discriminants whose full view has
5019 -- discriminants which are invisible.
5021 if Constraint_Present
then
5022 if not Has_Discriminants
(Parent_Base
)
5024 (Has_Unknown_Discriminants
(Parent_Base
)
5025 and then Is_Private_Type
(Parent_Base
))
5028 ("invalid constraint: type has no discriminant",
5029 Constraint
(Indic
));
5031 Constraint_Present
:= False;
5032 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
5034 elsif Is_Constrained
(Parent_Type
) then
5036 ("invalid constraint: parent type is already constrained",
5037 Constraint
(Indic
));
5039 Constraint_Present
:= False;
5040 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
5044 -- STEP 0b: If needed, apply transformation given in point 5. above
5046 if not Private_Extension
5047 and then Has_Discriminants
(Parent_Type
)
5048 and then not Discriminant_Specs
5049 and then (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
5051 -- First, we must analyze the constraint (see comment in point 5.)
5053 if Constraint_Present
then
5054 New_Discrs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
5056 if Has_Discriminants
(Derived_Type
)
5057 and then Has_Private_Declaration
(Derived_Type
)
5058 and then Present
(Discriminant_Constraint
(Derived_Type
))
5060 -- Verify that constraints of the full view conform to those
5061 -- given in partial view.
5067 C1
:= First_Elmt
(New_Discrs
);
5068 C2
:= First_Elmt
(Discriminant_Constraint
(Derived_Type
));
5070 while Present
(C1
) and then Present
(C2
) loop
5072 Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
5075 "constraint not conformant to previous declaration",
5085 -- Insert and analyze the declaration for the unconstrained base type
5087 New_Base
:= Create_Itype
(Ekind
(Derived_Type
), N
, Derived_Type
, 'B');
5090 Make_Full_Type_Declaration
(Loc
,
5091 Defining_Identifier
=> New_Base
,
5093 Make_Derived_Type_Definition
(Loc
,
5094 Abstract_Present
=> Abstract_Present
(Type_Def
),
5095 Subtype_Indication
=>
5096 New_Occurrence_Of
(Parent_Base
, Loc
),
5097 Record_Extension_Part
=>
5098 Relocate_Node
(Record_Extension_Part
(Type_Def
))));
5100 Set_Parent
(New_Decl
, Parent
(N
));
5101 Mark_Rewrite_Insertion
(New_Decl
);
5102 Insert_Before
(N
, New_Decl
);
5104 -- Note that this call passes False for the Derive_Subps parameter
5105 -- because subprogram derivation is deferred until after creating
5106 -- the subtype (see below).
5109 (New_Decl
, Parent_Base
, New_Base
,
5110 Is_Completion
=> True, Derive_Subps
=> False);
5112 -- ??? This needs re-examination to determine whether the
5113 -- above call can simply be replaced by a call to Analyze.
5115 Set_Analyzed
(New_Decl
);
5117 -- Insert and analyze the declaration for the constrained subtype
5119 if Constraint_Present
then
5121 Make_Subtype_Indication
(Loc
,
5122 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
5123 Constraint
=> Relocate_Node
(Constraint
(Indic
)));
5127 Constr_List
: constant List_Id
:= New_List
;
5132 C
:= First_Elmt
(Discriminant_Constraint
(Parent_Type
));
5133 while Present
(C
) loop
5136 -- It is safe here to call New_Copy_Tree since
5137 -- Force_Evaluation was called on each constraint in
5138 -- Build_Discriminant_Constraints.
5140 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
5146 Make_Subtype_Indication
(Loc
,
5147 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
5149 Make_Index_Or_Discriminant_Constraint
(Loc
, Constr_List
));
5154 Make_Subtype_Declaration
(Loc
,
5155 Defining_Identifier
=> Derived_Type
,
5156 Subtype_Indication
=> New_Indic
));
5160 -- Derivation of subprograms must be delayed until the full subtype
5161 -- has been established to ensure proper overriding of subprograms
5162 -- inherited by full types. If the derivations occurred as part of
5163 -- the call to Build_Derived_Type above, then the check for type
5164 -- conformance would fail because earlier primitive subprograms
5165 -- could still refer to the full type prior the change to the new
5166 -- subtype and hence would not match the new base type created here.
5168 Derive_Subprograms
(Parent_Type
, Derived_Type
);
5170 -- For tagged types the Discriminant_Constraint of the new base itype
5171 -- is inherited from the first subtype so that no subtype conformance
5172 -- problem arise when the first subtype overrides primitive
5173 -- operations inherited by the implicit base type.
5176 Set_Discriminant_Constraint
5177 (New_Base
, Discriminant_Constraint
(Derived_Type
));
5183 -- If we get here Derived_Type will have no discriminants or it will be
5184 -- a discriminated unconstrained base type.
5186 -- STEP 1a: perform preliminary actions/checks for derived tagged types
5190 -- The parent type is frozen for non-private extensions (RM 13.14(7))
5192 if not Private_Extension
then
5193 Freeze_Before
(N
, Parent_Type
);
5196 if Type_Access_Level
(Derived_Type
) /= Type_Access_Level
(Parent_Type
)
5197 and then not Is_Generic_Type
(Derived_Type
)
5199 if Is_Controlled
(Parent_Type
) then
5201 ("controlled type must be declared at the library level",
5205 ("type extension at deeper accessibility level than parent",
5211 GB
: constant Node_Id
:= Enclosing_Generic_Body
(Derived_Type
);
5215 and then GB
/= Enclosing_Generic_Body
(Parent_Base
)
5218 ("parent type of& must not be outside generic body"
5219 & " ('R'M 3.9.1(4))",
5220 Indic
, Derived_Type
);
5226 -- STEP 1b : preliminary cleanup of the full view of private types
5228 -- If the type is already marked as having discriminants, then it's the
5229 -- completion of a private type or private extension and we need to
5230 -- retain the discriminants from the partial view if the current
5231 -- declaration has Discriminant_Specifications so that we can verify
5232 -- conformance. However, we must remove any existing components that
5233 -- were inherited from the parent (and attached in Copy_And_Swap)
5234 -- because the full type inherits all appropriate components anyway, and
5235 -- we do not want the partial view's components interfering.
5237 if Has_Discriminants
(Derived_Type
) and then Discriminant_Specs
then
5238 Discrim
:= First_Discriminant
(Derived_Type
);
5240 Last_Discrim
:= Discrim
;
5241 Next_Discriminant
(Discrim
);
5242 exit when No
(Discrim
);
5245 Set_Last_Entity
(Derived_Type
, Last_Discrim
);
5247 -- In all other cases wipe out the list of inherited components (even
5248 -- inherited discriminants), it will be properly rebuilt here.
5251 Set_First_Entity
(Derived_Type
, Empty
);
5252 Set_Last_Entity
(Derived_Type
, Empty
);
5255 -- STEP 1c: Initialize some flags for the Derived_Type
5257 -- The following flags must be initialized here so that
5258 -- Process_Discriminants can check that discriminants of tagged types
5259 -- do not have a default initial value and that access discriminants
5260 -- are only specified for limited records. For completeness, these
5261 -- flags are also initialized along with all the other flags below.
5263 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged
);
5264 Set_Is_Limited_Record
(Derived_Type
, Is_Limited_Record
(Parent_Type
));
5266 -- STEP 2a: process discriminants of derived type if any
5268 New_Scope
(Derived_Type
);
5270 if Discriminant_Specs
then
5271 Set_Has_Unknown_Discriminants
(Derived_Type
, False);
5273 -- The following call initializes fields Has_Discriminants and
5274 -- Discriminant_Constraint, unless we are processing the completion
5275 -- of a private type declaration.
5277 Check_Or_Process_Discriminants
(N
, Derived_Type
);
5279 -- For non-tagged types the constraint on the Parent_Type must be
5280 -- present and is used to rename the discriminants.
5282 if not Is_Tagged
and then not Has_Discriminants
(Parent_Type
) then
5283 Error_Msg_N
("untagged parent must have discriminants", Indic
);
5285 elsif not Is_Tagged
and then not Constraint_Present
then
5287 ("discriminant constraint needed for derived untagged records",
5290 -- Otherwise the parent subtype must be constrained unless we have a
5291 -- private extension.
5293 elsif not Constraint_Present
5294 and then not Private_Extension
5295 and then not Is_Constrained
(Parent_Type
)
5298 ("unconstrained type not allowed in this context", Indic
);
5300 elsif Constraint_Present
then
5301 -- The following call sets the field Corresponding_Discriminant
5302 -- for the discriminants in the Derived_Type.
5304 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
, True);
5306 -- For untagged types all new discriminants must rename
5307 -- discriminants in the parent. For private extensions new
5308 -- discriminants cannot rename old ones (implied by [7.3(13)]).
5310 Discrim
:= First_Discriminant
(Derived_Type
);
5311 while Present
(Discrim
) loop
5313 and then not Present
(Corresponding_Discriminant
(Discrim
))
5316 ("new discriminants must constrain old ones", Discrim
);
5318 elsif Private_Extension
5319 and then Present
(Corresponding_Discriminant
(Discrim
))
5322 ("only static constraints allowed for parent"
5323 & " discriminants in the partial view", Indic
);
5327 -- If a new discriminant is used in the constraint, then its
5328 -- subtype must be statically compatible with the parent
5329 -- discriminant's subtype (3.7(15)).
5331 if Present
(Corresponding_Discriminant
(Discrim
))
5333 not Subtypes_Statically_Compatible
5335 Etype
(Corresponding_Discriminant
(Discrim
)))
5338 ("subtype must be compatible with parent discriminant",
5342 Next_Discriminant
(Discrim
);
5345 -- Check whether the constraints of the full view statically
5346 -- match those imposed by the parent subtype [7.3(13)].
5348 if Present
(Stored_Constraint
(Derived_Type
)) then
5353 C1
:= First_Elmt
(Discs
);
5354 C2
:= First_Elmt
(Stored_Constraint
(Derived_Type
));
5355 while Present
(C1
) and then Present
(C2
) loop
5357 Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
5360 "not conformant with previous declaration",
5371 -- STEP 2b: No new discriminants, inherit discriminants if any
5374 if Private_Extension
then
5375 Set_Has_Unknown_Discriminants
5377 Has_Unknown_Discriminants
(Parent_Type
)
5378 or else Unknown_Discriminants_Present
(N
));
5380 -- The partial view of the parent may have unknown discriminants,
5381 -- but if the full view has discriminants and the parent type is
5382 -- in scope they must be inherited.
5384 elsif Has_Unknown_Discriminants
(Parent_Type
)
5386 (not Has_Discriminants
(Parent_Type
)
5387 or else not In_Open_Scopes
(Scope
(Parent_Type
)))
5389 Set_Has_Unknown_Discriminants
(Derived_Type
);
5392 if not Has_Unknown_Discriminants
(Derived_Type
)
5393 and then not Has_Unknown_Discriminants
(Parent_Base
)
5394 and then Has_Discriminants
(Parent_Type
)
5396 Inherit_Discrims
:= True;
5397 Set_Has_Discriminants
5398 (Derived_Type
, True);
5399 Set_Discriminant_Constraint
5400 (Derived_Type
, Discriminant_Constraint
(Parent_Base
));
5403 -- The following test is true for private types (remember
5404 -- transformation 5. is not applied to those) and in an error
5407 if Constraint_Present
then
5408 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
5411 -- For now mark a new derived type as constrained only if it has no
5412 -- discriminants. At the end of Build_Derived_Record_Type we properly
5413 -- set this flag in the case of private extensions. See comments in
5414 -- point 9. just before body of Build_Derived_Record_Type.
5418 not (Inherit_Discrims
5419 or else Has_Unknown_Discriminants
(Derived_Type
)));
5422 -- STEP 3: initialize fields of derived type
5424 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged
);
5425 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
5427 -- Fields inherited from the Parent_Type
5430 (Derived_Type
, Einfo
.Discard_Names
(Parent_Type
));
5431 Set_Has_Specified_Layout
5432 (Derived_Type
, Has_Specified_Layout
(Parent_Type
));
5433 Set_Is_Limited_Composite
5434 (Derived_Type
, Is_Limited_Composite
(Parent_Type
));
5435 Set_Is_Limited_Record
5436 (Derived_Type
, Is_Limited_Record
(Parent_Type
));
5437 Set_Is_Private_Composite
5438 (Derived_Type
, Is_Private_Composite
(Parent_Type
));
5440 -- Fields inherited from the Parent_Base
5442 Set_Has_Controlled_Component
5443 (Derived_Type
, Has_Controlled_Component
(Parent_Base
));
5444 Set_Has_Non_Standard_Rep
5445 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
5446 Set_Has_Primitive_Operations
5447 (Derived_Type
, Has_Primitive_Operations
(Parent_Base
));
5449 -- Direct controlled types do not inherit Finalize_Storage_Only flag
5451 if not Is_Controlled
(Parent_Type
) then
5452 Set_Finalize_Storage_Only
5453 (Derived_Type
, Finalize_Storage_Only
(Parent_Type
));
5456 -- Set fields for private derived types
5458 if Is_Private_Type
(Derived_Type
) then
5459 Set_Depends_On_Private
(Derived_Type
, True);
5460 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
5462 -- Inherit fields from non private record types. If this is the
5463 -- completion of a derivation from a private type, the parent itself
5464 -- is private, and the attributes come from its full view, which must
5468 if Is_Private_Type
(Parent_Base
)
5469 and then not Is_Record_Type
(Parent_Base
)
5471 Set_Component_Alignment
5472 (Derived_Type
, Component_Alignment
(Full_View
(Parent_Base
)));
5474 (Derived_Type
, C_Pass_By_Copy
(Full_View
(Parent_Base
)));
5476 Set_Component_Alignment
5477 (Derived_Type
, Component_Alignment
(Parent_Base
));
5480 (Derived_Type
, C_Pass_By_Copy
(Parent_Base
));
5484 -- Set fields for tagged types
5487 Set_Primitive_Operations
(Derived_Type
, New_Elmt_List
);
5489 -- All tagged types defined in Ada.Finalization are controlled
5491 if Chars
(Scope
(Derived_Type
)) = Name_Finalization
5492 and then Chars
(Scope
(Scope
(Derived_Type
))) = Name_Ada
5493 and then Scope
(Scope
(Scope
(Derived_Type
))) = Standard_Standard
5495 Set_Is_Controlled
(Derived_Type
);
5497 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Base
));
5500 Make_Class_Wide_Type
(Derived_Type
);
5501 Set_Is_Abstract
(Derived_Type
, Abstract_Present
(Type_Def
));
5503 if Has_Discriminants
(Derived_Type
)
5504 and then Constraint_Present
5506 Set_Stored_Constraint
5507 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Base
, Discs
));
5511 Set_Is_Packed
(Derived_Type
, Is_Packed
(Parent_Base
));
5512 Set_Has_Non_Standard_Rep
5513 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
5516 -- STEP 4: Inherit components from the parent base and constrain them.
5517 -- Apply the second transformation described in point 6. above.
5519 if (not Is_Empty_Elmt_List
(Discs
) or else Inherit_Discrims
)
5520 or else not Has_Discriminants
(Parent_Type
)
5521 or else not Is_Constrained
(Parent_Type
)
5525 Constrs
:= Discriminant_Constraint
(Parent_Type
);
5528 Assoc_List
:= Inherit_Components
(N
,
5529 Parent_Base
, Derived_Type
, Is_Tagged
, Inherit_Discrims
, Constrs
);
5531 -- STEP 5a: Copy the parent record declaration for untagged types
5533 if not Is_Tagged
then
5535 -- Discriminant_Constraint (Derived_Type) has been properly
5536 -- constructed. Save it and temporarily set it to Empty because we
5537 -- do not want the call to New_Copy_Tree below to mess this list.
5539 if Has_Discriminants
(Derived_Type
) then
5540 Save_Discr_Constr
:= Discriminant_Constraint
(Derived_Type
);
5541 Set_Discriminant_Constraint
(Derived_Type
, No_Elist
);
5543 Save_Discr_Constr
:= No_Elist
;
5546 -- Save the Etype field of Derived_Type. It is correctly set now,
5547 -- but the call to New_Copy tree may remap it to point to itself,
5548 -- which is not what we want. Ditto for the Next_Entity field.
5550 Save_Etype
:= Etype
(Derived_Type
);
5551 Save_Next_Entity
:= Next_Entity
(Derived_Type
);
5553 -- Assoc_List maps all stored discriminants in the Parent_Base to
5554 -- stored discriminants in the Derived_Type. It is fundamental that
5555 -- no types or itypes with discriminants other than the stored
5556 -- discriminants appear in the entities declared inside
5557 -- Derived_Type, since the back end cannot deal with it.
5561 (Parent
(Parent_Base
), Map
=> Assoc_List
, New_Sloc
=> Loc
);
5563 -- Restore the fields saved prior to the New_Copy_Tree call
5564 -- and compute the stored constraint.
5566 Set_Etype
(Derived_Type
, Save_Etype
);
5567 Set_Next_Entity
(Derived_Type
, Save_Next_Entity
);
5569 if Has_Discriminants
(Derived_Type
) then
5570 Set_Discriminant_Constraint
5571 (Derived_Type
, Save_Discr_Constr
);
5572 Set_Stored_Constraint
5573 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Type
, Discs
));
5574 Replace_Components
(Derived_Type
, New_Decl
);
5577 -- Insert the new derived type declaration
5579 Rewrite
(N
, New_Decl
);
5581 -- STEP 5b: Complete the processing for record extensions in generics
5583 -- There is no completion for record extensions declared in the
5584 -- parameter part of a generic, so we need to complete processing for
5585 -- these generic record extensions here. The Record_Type_Definition call
5586 -- will change the Ekind of the components from E_Void to E_Component.
5588 elsif Private_Extension
and then Is_Generic_Type
(Derived_Type
) then
5589 Record_Type_Definition
(Empty
, Derived_Type
);
5591 -- STEP 5c: Process the record extension for non private tagged types
5593 elsif not Private_Extension
then
5595 -- Add the _parent field in the derived type
5597 Expand_Record_Extension
(Derived_Type
, Type_Def
);
5599 -- Analyze the record extension
5601 Record_Type_Definition
5602 (Record_Extension_Part
(Type_Def
), Derived_Type
);
5607 if Etype
(Derived_Type
) = Any_Type
then
5611 -- Set delayed freeze and then derive subprograms, we need to do
5612 -- this in this order so that derived subprograms inherit the
5613 -- derived freeze if necessary.
5615 Set_Has_Delayed_Freeze
(Derived_Type
);
5616 if Derive_Subps
then
5617 Derive_Subprograms
(Parent_Type
, Derived_Type
);
5620 -- If we have a private extension which defines a constrained derived
5621 -- type mark as constrained here after we have derived subprograms. See
5622 -- comment on point 9. just above the body of Build_Derived_Record_Type.
5624 if Private_Extension
and then Inherit_Discrims
then
5625 if Constraint_Present
and then not Is_Empty_Elmt_List
(Discs
) then
5626 Set_Is_Constrained
(Derived_Type
, True);
5627 Set_Discriminant_Constraint
(Derived_Type
, Discs
);
5629 elsif Is_Constrained
(Parent_Type
) then
5631 (Derived_Type
, True);
5632 Set_Discriminant_Constraint
5633 (Derived_Type
, Discriminant_Constraint
(Parent_Type
));
5637 -- Update the class_wide type, which shares the now-completed
5638 -- entity list with its specific type.
5642 (Class_Wide_Type
(Derived_Type
), First_Entity
(Derived_Type
));
5644 (Class_Wide_Type
(Derived_Type
), Last_Entity
(Derived_Type
));
5647 end Build_Derived_Record_Type
;
5649 ------------------------
5650 -- Build_Derived_Type --
5651 ------------------------
5653 procedure Build_Derived_Type
5655 Parent_Type
: Entity_Id
;
5656 Derived_Type
: Entity_Id
;
5657 Is_Completion
: Boolean;
5658 Derive_Subps
: Boolean := True)
5660 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
5663 -- Set common attributes
5665 Set_Scope
(Derived_Type
, Current_Scope
);
5667 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
5668 Set_Etype
(Derived_Type
, Parent_Base
);
5669 Set_Has_Task
(Derived_Type
, Has_Task
(Parent_Base
));
5671 Set_Size_Info
(Derived_Type
, Parent_Type
);
5672 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
5673 Set_Convention
(Derived_Type
, Convention
(Parent_Type
));
5674 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
5676 -- The derived type inherits the representation clauses of the parent.
5677 -- However, for a private type that is completed by a derivation, there
5678 -- may be operation attributes that have been specified already (stream
5679 -- attributes and External_Tag) and those must be provided. Finally,
5680 -- if the partial view is a private extension, the representation items
5681 -- of the parent have been inherited already, and should not be chained
5682 -- twice to the derived type.
5684 if Is_Tagged_Type
(Parent_Type
)
5685 and then Present
(First_Rep_Item
(Derived_Type
))
5687 -- The existing items are either operational items or items inherited
5688 -- from a private extension declaration.
5691 Rep
: Node_Id
:= First_Rep_Item
(Derived_Type
);
5692 Found
: Boolean := False;
5695 while Present
(Rep
) loop
5696 if Rep
= First_Rep_Item
(Parent_Type
) then
5700 Rep
:= Next_Rep_Item
(Rep
);
5706 (First_Rep_Item
(Derived_Type
), First_Rep_Item
(Parent_Type
));
5711 Set_First_Rep_Item
(Derived_Type
, First_Rep_Item
(Parent_Type
));
5714 case Ekind
(Parent_Type
) is
5715 when Numeric_Kind
=>
5716 Build_Derived_Numeric_Type
(N
, Parent_Type
, Derived_Type
);
5719 Build_Derived_Array_Type
(N
, Parent_Type
, Derived_Type
);
5723 | Class_Wide_Kind
=>
5724 Build_Derived_Record_Type
5725 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
5728 when Enumeration_Kind
=>
5729 Build_Derived_Enumeration_Type
(N
, Parent_Type
, Derived_Type
);
5732 Build_Derived_Access_Type
(N
, Parent_Type
, Derived_Type
);
5734 when Incomplete_Or_Private_Kind
=>
5735 Build_Derived_Private_Type
5736 (N
, Parent_Type
, Derived_Type
, Is_Completion
, Derive_Subps
);
5738 -- For discriminated types, the derivation includes deriving
5739 -- primitive operations. For others it is done below.
5741 if Is_Tagged_Type
(Parent_Type
)
5742 or else Has_Discriminants
(Parent_Type
)
5743 or else (Present
(Full_View
(Parent_Type
))
5744 and then Has_Discriminants
(Full_View
(Parent_Type
)))
5749 when Concurrent_Kind
=>
5750 Build_Derived_Concurrent_Type
(N
, Parent_Type
, Derived_Type
);
5753 raise Program_Error
;
5756 if Etype
(Derived_Type
) = Any_Type
then
5760 -- Set delayed freeze and then derive subprograms, we need to do this
5761 -- in this order so that derived subprograms inherit the derived freeze
5764 Set_Has_Delayed_Freeze
(Derived_Type
);
5765 if Derive_Subps
then
5766 Derive_Subprograms
(Parent_Type
, Derived_Type
);
5769 Set_Has_Primitive_Operations
5770 (Base_Type
(Derived_Type
), Has_Primitive_Operations
(Parent_Type
));
5771 end Build_Derived_Type
;
5773 -----------------------
5774 -- Build_Discriminal --
5775 -----------------------
5777 procedure Build_Discriminal
(Discrim
: Entity_Id
) is
5778 D_Minal
: Entity_Id
;
5779 CR_Disc
: Entity_Id
;
5782 -- A discriminal has the same name as the discriminant
5785 Make_Defining_Identifier
(Sloc
(Discrim
),
5786 Chars
=> Chars
(Discrim
));
5788 Set_Ekind
(D_Minal
, E_In_Parameter
);
5789 Set_Mechanism
(D_Minal
, Default_Mechanism
);
5790 Set_Etype
(D_Minal
, Etype
(Discrim
));
5792 Set_Discriminal
(Discrim
, D_Minal
);
5793 Set_Discriminal_Link
(D_Minal
, Discrim
);
5795 -- For task types, build at once the discriminants of the corresponding
5796 -- record, which are needed if discriminants are used in entry defaults
5797 -- and in family bounds.
5799 if Is_Concurrent_Type
(Current_Scope
)
5800 or else Is_Limited_Type
(Current_Scope
)
5802 CR_Disc
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
5804 Set_Ekind
(CR_Disc
, E_In_Parameter
);
5805 Set_Mechanism
(CR_Disc
, Default_Mechanism
);
5806 Set_Etype
(CR_Disc
, Etype
(Discrim
));
5807 Set_CR_Discriminant
(Discrim
, CR_Disc
);
5809 end Build_Discriminal
;
5811 ------------------------------------
5812 -- Build_Discriminant_Constraints --
5813 ------------------------------------
5815 function Build_Discriminant_Constraints
5818 Derived_Def
: Boolean := False) return Elist_Id
5820 C
: constant Node_Id
:= Constraint
(Def
);
5821 Nb_Discr
: constant Nat
:= Number_Discriminants
(T
);
5823 Discr_Expr
: array (1 .. Nb_Discr
) of Node_Id
:= (others => Empty
);
5824 -- Saves the expression corresponding to a given discriminant in T
5826 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
;
5827 -- Return the Position number within array Discr_Expr of a discriminant
5828 -- D within the discriminant list of the discriminated type T.
5834 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
is
5838 Disc
:= First_Discriminant
(T
);
5839 for J
in Discr_Expr
'Range loop
5844 Next_Discriminant
(Disc
);
5847 -- Note: Since this function is called on discriminants that are
5848 -- known to belong to the discriminated type, falling through the
5849 -- loop with no match signals an internal compiler error.
5851 raise Program_Error
;
5854 -- Declarations local to Build_Discriminant_Constraints
5858 Elist
: constant Elist_Id
:= New_Elmt_List
;
5866 Discrim_Present
: Boolean := False;
5868 -- Start of processing for Build_Discriminant_Constraints
5871 -- The following loop will process positional associations only.
5872 -- For a positional association, the (single) discriminant is
5873 -- implicitly specified by position, in textual order (RM 3.7.2).
5875 Discr
:= First_Discriminant
(T
);
5876 Constr
:= First
(Constraints
(C
));
5878 for D
in Discr_Expr
'Range loop
5879 exit when Nkind
(Constr
) = N_Discriminant_Association
;
5882 Error_Msg_N
("too few discriminants given in constraint", C
);
5883 return New_Elmt_List
;
5885 elsif Nkind
(Constr
) = N_Range
5886 or else (Nkind
(Constr
) = N_Attribute_Reference
5888 Attribute_Name
(Constr
) = Name_Range
)
5891 ("a range is not a valid discriminant constraint", Constr
);
5892 Discr_Expr
(D
) := Error
;
5895 Analyze_And_Resolve
(Constr
, Base_Type
(Etype
(Discr
)));
5896 Discr_Expr
(D
) := Constr
;
5899 Next_Discriminant
(Discr
);
5903 if No
(Discr
) and then Present
(Constr
) then
5904 Error_Msg_N
("too many discriminants given in constraint", Constr
);
5905 return New_Elmt_List
;
5908 -- Named associations can be given in any order, but if both positional
5909 -- and named associations are used in the same discriminant constraint,
5910 -- then positional associations must occur first, at their normal
5911 -- position. Hence once a named association is used, the rest of the
5912 -- discriminant constraint must use only named associations.
5914 while Present
(Constr
) loop
5916 -- Positional association forbidden after a named association
5918 if Nkind
(Constr
) /= N_Discriminant_Association
then
5919 Error_Msg_N
("positional association follows named one", Constr
);
5920 return New_Elmt_List
;
5922 -- Otherwise it is a named association
5925 -- E records the type of the discriminants in the named
5926 -- association. All the discriminants specified in the same name
5927 -- association must have the same type.
5931 -- Search the list of discriminants in T to see if the simple name
5932 -- given in the constraint matches any of them.
5934 Id
:= First
(Selector_Names
(Constr
));
5935 while Present
(Id
) loop
5938 -- If Original_Discriminant is present, we are processing a
5939 -- generic instantiation and this is an instance node. We need
5940 -- to find the name of the corresponding discriminant in the
5941 -- actual record type T and not the name of the discriminant in
5942 -- the generic formal. Example:
5945 -- type G (D : int) is private;
5947 -- subtype W is G (D => 1);
5949 -- type Rec (X : int) is record ... end record;
5950 -- package Q is new P (G => Rec);
5952 -- At the point of the instantiation, formal type G is Rec
5953 -- and therefore when reanalyzing "subtype W is G (D => 1);"
5954 -- which really looks like "subtype W is Rec (D => 1);" at
5955 -- the point of instantiation, we want to find the discriminant
5956 -- that corresponds to D in Rec, ie X.
5958 if Present
(Original_Discriminant
(Id
)) then
5959 Discr
:= Find_Corresponding_Discriminant
(Id
, T
);
5963 Discr
:= First_Discriminant
(T
);
5964 while Present
(Discr
) loop
5965 if Chars
(Discr
) = Chars
(Id
) then
5970 Next_Discriminant
(Discr
);
5974 Error_Msg_N
("& does not match any discriminant", Id
);
5975 return New_Elmt_List
;
5977 -- The following is only useful for the benefit of generic
5978 -- instances but it does not interfere with other
5979 -- processing for the non-generic case so we do it in all
5980 -- cases (for generics this statement is executed when
5981 -- processing the generic definition, see comment at the
5982 -- beginning of this if statement).
5985 Set_Original_Discriminant
(Id
, Discr
);
5989 Position
:= Pos_Of_Discr
(T
, Discr
);
5991 if Present
(Discr_Expr
(Position
)) then
5992 Error_Msg_N
("duplicate constraint for discriminant&", Id
);
5995 -- Each discriminant specified in the same named association
5996 -- must be associated with a separate copy of the
5997 -- corresponding expression.
5999 if Present
(Next
(Id
)) then
6000 Expr
:= New_Copy_Tree
(Expression
(Constr
));
6001 Set_Parent
(Expr
, Parent
(Expression
(Constr
)));
6003 Expr
:= Expression
(Constr
);
6006 Discr_Expr
(Position
) := Expr
;
6007 Analyze_And_Resolve
(Expr
, Base_Type
(Etype
(Discr
)));
6010 -- A discriminant association with more than one discriminant
6011 -- name is only allowed if the named discriminants are all of
6012 -- the same type (RM 3.7.1(8)).
6015 E
:= Base_Type
(Etype
(Discr
));
6017 elsif Base_Type
(Etype
(Discr
)) /= E
then
6019 ("all discriminants in an association " &
6020 "must have the same type", Id
);
6030 -- A discriminant constraint must provide exactly one value for each
6031 -- discriminant of the type (RM 3.7.1(8)).
6033 for J
in Discr_Expr
'Range loop
6034 if No
(Discr_Expr
(J
)) then
6035 Error_Msg_N
("too few discriminants given in constraint", C
);
6036 return New_Elmt_List
;
6040 -- Determine if there are discriminant expressions in the constraint
6042 for J
in Discr_Expr
'Range loop
6043 if Denotes_Discriminant
(Discr_Expr
(J
), Check_Protected
=> True) then
6044 Discrim_Present
:= True;
6048 -- Build an element list consisting of the expressions given in the
6049 -- discriminant constraint and apply the appropriate checks. The list
6050 -- is constructed after resolving any named discriminant associations
6051 -- and therefore the expressions appear in the textual order of the
6054 Discr
:= First_Discriminant
(T
);
6055 for J
in Discr_Expr
'Range loop
6056 if Discr_Expr
(J
) /= Error
then
6058 Append_Elmt
(Discr_Expr
(J
), Elist
);
6060 -- If any of the discriminant constraints is given by a
6061 -- discriminant and we are in a derived type declaration we
6062 -- have a discriminant renaming. Establish link between new
6063 -- and old discriminant.
6065 if Denotes_Discriminant
(Discr_Expr
(J
)) then
6067 Set_Corresponding_Discriminant
6068 (Entity
(Discr_Expr
(J
)), Discr
);
6071 -- Force the evaluation of non-discriminant expressions.
6072 -- If we have found a discriminant in the constraint 3.4(26)
6073 -- and 3.8(18) demand that no range checks are performed are
6074 -- after evaluation. If the constraint is for a component
6075 -- definition that has a per-object constraint, expressions are
6076 -- evaluated but not checked either. In all other cases perform
6080 if Discrim_Present
then
6083 elsif Nkind
(Parent
(Parent
(Def
))) = N_Component_Declaration
6085 Has_Per_Object_Constraint
6086 (Defining_Identifier
(Parent
(Parent
(Def
))))
6090 elsif Is_Access_Type
(Etype
(Discr
)) then
6091 Apply_Constraint_Check
(Discr_Expr
(J
), Etype
(Discr
));
6094 Apply_Range_Check
(Discr_Expr
(J
), Etype
(Discr
));
6097 Force_Evaluation
(Discr_Expr
(J
));
6100 -- Check that the designated type of an access discriminant's
6101 -- expression is not a class-wide type unless the discriminant's
6102 -- designated type is also class-wide.
6104 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
6105 and then not Is_Class_Wide_Type
6106 (Designated_Type
(Etype
(Discr
)))
6107 and then Etype
(Discr_Expr
(J
)) /= Any_Type
6108 and then Is_Class_Wide_Type
6109 (Designated_Type
(Etype
(Discr_Expr
(J
))))
6111 Wrong_Type
(Discr_Expr
(J
), Etype
(Discr
));
6115 Next_Discriminant
(Discr
);
6119 end Build_Discriminant_Constraints
;
6121 ---------------------------------
6122 -- Build_Discriminated_Subtype --
6123 ---------------------------------
6125 procedure Build_Discriminated_Subtype
6129 Related_Nod
: Node_Id
;
6130 For_Access
: Boolean := False)
6132 Has_Discrs
: constant Boolean := Has_Discriminants
(T
);
6133 Constrained
: constant Boolean
6135 and then not Is_Empty_Elmt_List
(Elist
)
6136 and then not Is_Class_Wide_Type
(T
))
6137 or else Is_Constrained
(T
);
6140 if Ekind
(T
) = E_Record_Type
then
6142 Set_Ekind
(Def_Id
, E_Private_Subtype
);
6143 Set_Is_For_Access_Subtype
(Def_Id
, True);
6145 Set_Ekind
(Def_Id
, E_Record_Subtype
);
6148 elsif Ekind
(T
) = E_Task_Type
then
6149 Set_Ekind
(Def_Id
, E_Task_Subtype
);
6151 elsif Ekind
(T
) = E_Protected_Type
then
6152 Set_Ekind
(Def_Id
, E_Protected_Subtype
);
6154 elsif Is_Private_Type
(T
) then
6155 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
6157 elsif Is_Class_Wide_Type
(T
) then
6158 Set_Ekind
(Def_Id
, E_Class_Wide_Subtype
);
6161 -- Incomplete type. attach subtype to list of dependents, to be
6162 -- completed with full view of parent type, unless is it the
6163 -- designated subtype of a record component within an init_proc.
6164 -- This last case arises for a component of an access type whose
6165 -- designated type is incomplete (e.g. a Taft Amendment type).
6166 -- The designated subtype is within an inner scope, and needs no
6167 -- elaboration, because only the access type is needed in the
6168 -- initialization procedure.
6170 Set_Ekind
(Def_Id
, Ekind
(T
));
6172 if For_Access
and then Within_Init_Proc
then
6175 Append_Elmt
(Def_Id
, Private_Dependents
(T
));
6179 Set_Etype
(Def_Id
, T
);
6180 Init_Size_Align
(Def_Id
);
6181 Set_Has_Discriminants
(Def_Id
, Has_Discrs
);
6182 Set_Is_Constrained
(Def_Id
, Constrained
);
6184 Set_First_Entity
(Def_Id
, First_Entity
(T
));
6185 Set_Last_Entity
(Def_Id
, Last_Entity
(T
));
6186 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
6188 if Is_Tagged_Type
(T
) then
6189 Set_Is_Tagged_Type
(Def_Id
);
6190 Make_Class_Wide_Type
(Def_Id
);
6193 Set_Stored_Constraint
(Def_Id
, No_Elist
);
6196 Set_Discriminant_Constraint
(Def_Id
, Elist
);
6197 Set_Stored_Constraint_From_Discriminant_Constraint
(Def_Id
);
6200 if Is_Tagged_Type
(T
) then
6201 Set_Primitive_Operations
(Def_Id
, Primitive_Operations
(T
));
6202 Set_Is_Abstract
(Def_Id
, Is_Abstract
(T
));
6205 -- Subtypes introduced by component declarations do not need to be
6206 -- marked as delayed, and do not get freeze nodes, because the semantics
6207 -- verifies that the parents of the subtypes are frozen before the
6208 -- enclosing record is frozen.
6210 if not Is_Type
(Scope
(Def_Id
)) then
6211 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
6213 if Is_Private_Type
(T
)
6214 and then Present
(Full_View
(T
))
6216 Conditional_Delay
(Def_Id
, Full_View
(T
));
6218 Conditional_Delay
(Def_Id
, T
);
6222 if Is_Record_Type
(T
) then
6223 Set_Is_Limited_Record
(Def_Id
, Is_Limited_Record
(T
));
6226 and then not Is_Empty_Elmt_List
(Elist
)
6227 and then not For_Access
6229 Create_Constrained_Components
(Def_Id
, Related_Nod
, T
, Elist
);
6230 elsif not For_Access
then
6231 Set_Cloned_Subtype
(Def_Id
, T
);
6235 end Build_Discriminated_Subtype
;
6237 ------------------------
6238 -- Build_Scalar_Bound --
6239 ------------------------
6241 function Build_Scalar_Bound
6244 Der_T
: Entity_Id
) return Node_Id
6246 New_Bound
: Entity_Id
;
6249 -- Note: not clear why this is needed, how can the original bound
6250 -- be unanalyzed at this point? and if it is, what business do we
6251 -- have messing around with it? and why is the base type of the
6252 -- parent type the right type for the resolution. It probably is
6253 -- not! It is OK for the new bound we are creating, but not for
6254 -- the old one??? Still if it never happens, no problem!
6256 Analyze_And_Resolve
(Bound
, Base_Type
(Par_T
));
6258 if Nkind
(Bound
) = N_Integer_Literal
6259 or else Nkind
(Bound
) = N_Real_Literal
6261 New_Bound
:= New_Copy
(Bound
);
6262 Set_Etype
(New_Bound
, Der_T
);
6263 Set_Analyzed
(New_Bound
);
6265 elsif Is_Entity_Name
(Bound
) then
6266 New_Bound
:= OK_Convert_To
(Der_T
, New_Copy
(Bound
));
6268 -- The following is almost certainly wrong. What business do we have
6269 -- relocating a node (Bound) that is presumably still attached to
6270 -- the tree elsewhere???
6273 New_Bound
:= OK_Convert_To
(Der_T
, Relocate_Node
(Bound
));
6276 Set_Etype
(New_Bound
, Der_T
);
6278 end Build_Scalar_Bound
;
6280 --------------------------------
6281 -- Build_Underlying_Full_View --
6282 --------------------------------
6284 procedure Build_Underlying_Full_View
6289 Loc
: constant Source_Ptr
:= Sloc
(N
);
6290 Subt
: constant Entity_Id
:=
6291 Make_Defining_Identifier
6292 (Loc
, New_External_Name
(Chars
(Typ
), 'S'));
6299 procedure Set_Discriminant_Name
(Id
: Node_Id
);
6300 -- If the derived type has discriminants, they may rename discriminants
6301 -- of the parent. When building the full view of the parent, we need to
6302 -- recover the names of the original discriminants if the constraint is
6303 -- given by named associations.
6305 ---------------------------
6306 -- Set_Discriminant_Name --
6307 ---------------------------
6309 procedure Set_Discriminant_Name
(Id
: Node_Id
) is
6313 Set_Original_Discriminant
(Id
, Empty
);
6315 if Has_Discriminants
(Typ
) then
6316 Disc
:= First_Discriminant
(Typ
);
6318 while Present
(Disc
) loop
6319 if Chars
(Disc
) = Chars
(Id
)
6320 and then Present
(Corresponding_Discriminant
(Disc
))
6322 Set_Chars
(Id
, Chars
(Corresponding_Discriminant
(Disc
)));
6324 Next_Discriminant
(Disc
);
6327 end Set_Discriminant_Name
;
6329 -- Start of processing for Build_Underlying_Full_View
6332 if Nkind
(N
) = N_Full_Type_Declaration
then
6333 Constr
:= Constraint
(Subtype_Indication
(Type_Definition
(N
)));
6335 elsif Nkind
(N
) = N_Subtype_Declaration
then
6336 Constr
:= New_Copy_Tree
(Constraint
(Subtype_Indication
(N
)));
6338 elsif Nkind
(N
) = N_Component_Declaration
then
6341 (Constraint
(Subtype_Indication
(Component_Definition
(N
))));
6344 raise Program_Error
;
6347 C
:= First
(Constraints
(Constr
));
6348 while Present
(C
) loop
6349 if Nkind
(C
) = N_Discriminant_Association
then
6350 Id
:= First
(Selector_Names
(C
));
6351 while Present
(Id
) loop
6352 Set_Discriminant_Name
(Id
);
6361 Make_Subtype_Declaration
(Loc
,
6362 Defining_Identifier
=> Subt
,
6363 Subtype_Indication
=>
6364 Make_Subtype_Indication
(Loc
,
6365 Subtype_Mark
=> New_Reference_To
(Par
, Loc
),
6366 Constraint
=> New_Copy_Tree
(Constr
)));
6368 -- If this is a component subtype for an outer itype, it is not
6369 -- a list member, so simply set the parent link for analysis: if
6370 -- the enclosing type does not need to be in a declarative list,
6371 -- neither do the components.
6373 if Is_List_Member
(N
)
6374 and then Nkind
(N
) /= N_Component_Declaration
6376 Insert_Before
(N
, Indic
);
6378 Set_Parent
(Indic
, Parent
(N
));
6382 Set_Underlying_Full_View
(Typ
, Full_View
(Subt
));
6383 end Build_Underlying_Full_View
;
6385 -------------------------------
6386 -- Check_Abstract_Overriding --
6387 -------------------------------
6389 procedure Check_Abstract_Overriding
(T
: Entity_Id
) is
6396 Op_List
:= Primitive_Operations
(T
);
6398 -- Loop to check primitive operations
6400 Elmt
:= First_Elmt
(Op_List
);
6401 while Present
(Elmt
) loop
6402 Subp
:= Node
(Elmt
);
6404 -- Special exception, do not complain about failure to override the
6405 -- stream routines _Input and _Output, since we always provide
6406 -- automatic overridings for these subprograms.
6408 if Is_Abstract
(Subp
)
6409 and then not Is_TSS
(Subp
, TSS_Stream_Input
)
6410 and then not Is_TSS
(Subp
, TSS_Stream_Output
)
6411 and then not Is_Abstract
(T
)
6413 if Present
(Alias
(Subp
)) then
6414 -- Only perform the check for a derived subprogram when
6415 -- the type has an explicit record extension. This avoids
6416 -- incorrectly flagging abstract subprograms for the case
6417 -- of a type without an extension derived from a formal type
6418 -- with a tagged actual (can occur within a private part).
6420 Type_Def
:= Type_Definition
(Parent
(T
));
6421 if Nkind
(Type_Def
) = N_Derived_Type_Definition
6422 and then Present
(Record_Extension_Part
(Type_Def
))
6425 ("type must be declared abstract or & overridden",
6430 ("abstract subprogram not allowed for type&",
6433 ("nonabstract type has abstract subprogram&",
6440 end Check_Abstract_Overriding
;
6442 ------------------------------------------------
6443 -- Check_Access_Discriminant_Requires_Limited --
6444 ------------------------------------------------
6446 procedure Check_Access_Discriminant_Requires_Limited
6451 -- A discriminant_specification for an access discriminant
6452 -- shall appear only in the declaration for a task or protected
6453 -- type, or for a type with the reserved word 'limited' in
6454 -- its definition or in one of its ancestors. (RM 3.7(10))
6456 if Nkind
(Discriminant_Type
(D
)) = N_Access_Definition
6457 and then not Is_Concurrent_Type
(Current_Scope
)
6458 and then not Is_Concurrent_Record_Type
(Current_Scope
)
6459 and then not Is_Limited_Record
(Current_Scope
)
6460 and then Ekind
(Current_Scope
) /= E_Limited_Private_Type
6463 ("access discriminants allowed only for limited types", Loc
);
6465 end Check_Access_Discriminant_Requires_Limited
;
6467 -----------------------------------
6468 -- Check_Aliased_Component_Types --
6469 -----------------------------------
6471 procedure Check_Aliased_Component_Types
(T
: Entity_Id
) is
6475 -- ??? Also need to check components of record extensions, but not
6476 -- components of protected types (which are always limited).
6478 if not Is_Limited_Type
(T
) then
6479 if Ekind
(T
) = E_Record_Type
then
6480 C
:= First_Component
(T
);
6481 while Present
(C
) loop
6483 and then Has_Discriminants
(Etype
(C
))
6484 and then not Is_Constrained
(Etype
(C
))
6485 and then not In_Instance
6488 ("aliased component must be constrained ('R'M 3.6(11))",
6495 elsif Ekind
(T
) = E_Array_Type
then
6496 if Has_Aliased_Components
(T
)
6497 and then Has_Discriminants
(Component_Type
(T
))
6498 and then not Is_Constrained
(Component_Type
(T
))
6499 and then not In_Instance
6502 ("aliased component type must be constrained ('R'M 3.6(11))",
6507 end Check_Aliased_Component_Types
;
6509 ----------------------
6510 -- Check_Completion --
6511 ----------------------
6513 procedure Check_Completion
(Body_Id
: Node_Id
:= Empty
) is
6516 procedure Post_Error
;
6517 -- Post error message for lack of completion for entity E
6523 procedure Post_Error
is
6525 if not Comes_From_Source
(E
) then
6527 if Ekind
(E
) = E_Task_Type
6528 or else Ekind
(E
) = E_Protected_Type
6530 -- It may be an anonymous protected type created for a
6531 -- single variable. Post error on variable, if present.
6537 Var
:= First_Entity
(Current_Scope
);
6539 while Present
(Var
) loop
6540 exit when Etype
(Var
) = E
6541 and then Comes_From_Source
(Var
);
6546 if Present
(Var
) then
6553 -- If a generated entity has no completion, then either previous
6554 -- semantic errors have disabled the expansion phase, or else we had
6555 -- missing subunits, or else we are compiling without expan- sion,
6556 -- or else something is very wrong.
6558 if not Comes_From_Source
(E
) then
6560 (Serious_Errors_Detected
> 0
6561 or else Configurable_Run_Time_Violations
> 0
6562 or else Subunits_Missing
6563 or else not Expander_Active
);
6566 -- Here for source entity
6569 -- Here if no body to post the error message, so we post the error
6570 -- on the declaration that has no completion. This is not really
6571 -- the right place to post it, think about this later ???
6573 if No
(Body_Id
) then
6576 ("missing full declaration for }", Parent
(E
), E
);
6579 ("missing body for &", Parent
(E
), E
);
6582 -- Package body has no completion for a declaration that appears
6583 -- in the corresponding spec. Post error on the body, with a
6584 -- reference to the non-completed declaration.
6587 Error_Msg_Sloc
:= Sloc
(E
);
6591 ("missing full declaration for }!", Body_Id
, E
);
6593 elsif Is_Overloadable
(E
)
6594 and then Current_Entity_In_Scope
(E
) /= E
6596 -- It may be that the completion is mistyped and appears
6597 -- as a distinct overloading of the entity.
6600 Candidate
: constant Entity_Id
:=
6601 Current_Entity_In_Scope
(E
);
6602 Decl
: constant Node_Id
:=
6603 Unit_Declaration_Node
(Candidate
);
6606 if Is_Overloadable
(Candidate
)
6607 and then Ekind
(Candidate
) = Ekind
(E
)
6608 and then Nkind
(Decl
) = N_Subprogram_Body
6609 and then Acts_As_Spec
(Decl
)
6611 Check_Type_Conformant
(Candidate
, E
);
6614 Error_Msg_NE
("missing body for & declared#!",
6619 Error_Msg_NE
("missing body for & declared#!",
6626 -- Start processing for Check_Completion
6629 E
:= First_Entity
(Current_Scope
);
6630 while Present
(E
) loop
6631 if Is_Intrinsic_Subprogram
(E
) then
6634 -- The following situation requires special handling: a child
6635 -- unit that appears in the context clause of the body of its
6638 -- procedure Parent.Child (...);
6640 -- with Parent.Child;
6641 -- package body Parent is
6643 -- Here Parent.Child appears as a local entity, but should not
6644 -- be flagged as requiring completion, because it is a
6645 -- compilation unit.
6647 elsif Ekind
(E
) = E_Function
6648 or else Ekind
(E
) = E_Procedure
6649 or else Ekind
(E
) = E_Generic_Function
6650 or else Ekind
(E
) = E_Generic_Procedure
6652 if not Has_Completion
(E
)
6653 and then not Is_Abstract
(E
)
6654 and then Nkind
(Parent
(Unit_Declaration_Node
(E
))) /=
6656 and then Chars
(E
) /= Name_uSize
6661 elsif Is_Entry
(E
) then
6662 if not Has_Completion
(E
) and then
6663 (Ekind
(Scope
(E
)) = E_Protected_Object
6664 or else Ekind
(Scope
(E
)) = E_Protected_Type
)
6669 elsif Is_Package
(E
) then
6670 if Unit_Requires_Body
(E
) then
6671 if not Has_Completion
(E
)
6672 and then Nkind
(Parent
(Unit_Declaration_Node
(E
))) /=
6678 elsif not Is_Child_Unit
(E
) then
6679 May_Need_Implicit_Body
(E
);
6682 elsif Ekind
(E
) = E_Incomplete_Type
6683 and then No
(Underlying_Type
(E
))
6687 elsif (Ekind
(E
) = E_Task_Type
or else
6688 Ekind
(E
) = E_Protected_Type
)
6689 and then not Has_Completion
(E
)
6693 -- A single task declared in the current scope is a constant, verify
6694 -- that the body of its anonymous type is in the same scope. If the
6695 -- task is defined elsewhere, this may be a renaming declaration for
6696 -- which no completion is needed.
6698 elsif Ekind
(E
) = E_Constant
6699 and then Ekind
(Etype
(E
)) = E_Task_Type
6700 and then not Has_Completion
(Etype
(E
))
6701 and then Scope
(Etype
(E
)) = Current_Scope
6705 elsif Ekind
(E
) = E_Protected_Object
6706 and then not Has_Completion
(Etype
(E
))
6710 elsif Ekind
(E
) = E_Record_Type
then
6711 if Is_Tagged_Type
(E
) then
6712 Check_Abstract_Overriding
(E
);
6715 Check_Aliased_Component_Types
(E
);
6717 elsif Ekind
(E
) = E_Array_Type
then
6718 Check_Aliased_Component_Types
(E
);
6724 end Check_Completion
;
6726 ----------------------------
6727 -- Check_Delta_Expression --
6728 ----------------------------
6730 procedure Check_Delta_Expression
(E
: Node_Id
) is
6732 if not (Is_Real_Type
(Etype
(E
))) then
6733 Wrong_Type
(E
, Any_Real
);
6735 elsif not Is_OK_Static_Expression
(E
) then
6736 Flag_Non_Static_Expr
6737 ("non-static expression used for delta value!", E
);
6739 elsif not UR_Is_Positive
(Expr_Value_R
(E
)) then
6740 Error_Msg_N
("delta expression must be positive", E
);
6746 -- If any of above errors occurred, then replace the incorrect
6747 -- expression by the real 0.1, which should prevent further errors.
6750 Make_Real_Literal
(Sloc
(E
), Ureal_Tenth
));
6751 Analyze_And_Resolve
(E
, Standard_Float
);
6752 end Check_Delta_Expression
;
6754 -----------------------------
6755 -- Check_Digits_Expression --
6756 -----------------------------
6758 procedure Check_Digits_Expression
(E
: Node_Id
) is
6760 if not (Is_Integer_Type
(Etype
(E
))) then
6761 Wrong_Type
(E
, Any_Integer
);
6763 elsif not Is_OK_Static_Expression
(E
) then
6764 Flag_Non_Static_Expr
6765 ("non-static expression used for digits value!", E
);
6767 elsif Expr_Value
(E
) <= 0 then
6768 Error_Msg_N
("digits value must be greater than zero", E
);
6774 -- If any of above errors occurred, then replace the incorrect
6775 -- expression by the integer 1, which should prevent further errors.
6777 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), 1));
6778 Analyze_And_Resolve
(E
, Standard_Integer
);
6780 end Check_Digits_Expression
;
6782 --------------------------
6783 -- Check_Initialization --
6784 --------------------------
6786 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
) is
6788 if (Is_Limited_Type
(T
)
6789 or else Is_Limited_Composite
(T
))
6790 and then not In_Instance
6791 and then not In_Inlined_Body
6793 -- Ada 2005 (AI-287): Relax the strictness of the front-end in
6794 -- case of limited aggregates and extension aggregates.
6796 if Ada_Version
>= Ada_05
6797 and then (Nkind
(Exp
) = N_Aggregate
6798 or else Nkind
(Exp
) = N_Extension_Aggregate
)
6803 ("cannot initialize entities of limited type", Exp
);
6804 Explain_Limited_Type
(T
, Exp
);
6807 end Check_Initialization
;
6809 ------------------------------------
6810 -- Check_Or_Process_Discriminants --
6811 ------------------------------------
6813 -- If an incomplete or private type declaration was already given for
6814 -- the type, the discriminants may have already been processed if they
6815 -- were present on the incomplete declaration. In this case a full
6816 -- conformance check is performed otherwise just process them.
6818 procedure Check_Or_Process_Discriminants
6821 Prev
: Entity_Id
:= Empty
)
6824 if Has_Discriminants
(T
) then
6826 -- Make the discriminants visible to component declarations
6829 D
: Entity_Id
:= First_Discriminant
(T
);
6833 while Present
(D
) loop
6834 Prev
:= Current_Entity
(D
);
6835 Set_Current_Entity
(D
);
6836 Set_Is_Immediately_Visible
(D
);
6837 Set_Homonym
(D
, Prev
);
6839 -- Ada 2005 (AI-230): Access discriminant allowed in
6840 -- non-limited record types.
6842 if Ada_Version
< Ada_05
then
6844 -- This restriction gets applied to the full type here; it
6845 -- has already been applied earlier to the partial view
6847 Check_Access_Discriminant_Requires_Limited
(Parent
(D
), N
);
6850 Next_Discriminant
(D
);
6854 elsif Present
(Discriminant_Specifications
(N
)) then
6855 Process_Discriminants
(N
, Prev
);
6857 end Check_Or_Process_Discriminants
;
6859 ----------------------
6860 -- Check_Real_Bound --
6861 ----------------------
6863 procedure Check_Real_Bound
(Bound
: Node_Id
) is
6865 if not Is_Real_Type
(Etype
(Bound
)) then
6867 ("bound in real type definition must be of real type", Bound
);
6869 elsif not Is_OK_Static_Expression
(Bound
) then
6870 Flag_Non_Static_Expr
6871 ("non-static expression used for real type bound!", Bound
);
6878 (Bound
, Make_Real_Literal
(Sloc
(Bound
), Ureal_0
));
6880 Resolve
(Bound
, Standard_Float
);
6881 end Check_Real_Bound
;
6883 ------------------------------
6884 -- Complete_Private_Subtype --
6885 ------------------------------
6887 procedure Complete_Private_Subtype
6890 Full_Base
: Entity_Id
;
6891 Related_Nod
: Node_Id
)
6893 Save_Next_Entity
: Entity_Id
;
6894 Save_Homonym
: Entity_Id
;
6897 -- Set semantic attributes for (implicit) private subtype completion.
6898 -- If the full type has no discriminants, then it is a copy of the full
6899 -- view of the base. Otherwise, it is a subtype of the base with a
6900 -- possible discriminant constraint. Save and restore the original
6901 -- Next_Entity field of full to ensure that the calls to Copy_Node
6902 -- do not corrupt the entity chain.
6904 -- Note that the type of the full view is the same entity as the
6905 -- type of the partial view. In this fashion, the subtype has
6906 -- access to the correct view of the parent.
6908 Save_Next_Entity
:= Next_Entity
(Full
);
6909 Save_Homonym
:= Homonym
(Priv
);
6911 case Ekind
(Full_Base
) is
6912 when E_Record_Type |
6918 Copy_Node
(Priv
, Full
);
6920 Set_Has_Discriminants
(Full
, Has_Discriminants
(Full_Base
));
6921 Set_First_Entity
(Full
, First_Entity
(Full_Base
));
6922 Set_Last_Entity
(Full
, Last_Entity
(Full_Base
));
6925 Copy_Node
(Full_Base
, Full
);
6926 Set_Chars
(Full
, Chars
(Priv
));
6927 Conditional_Delay
(Full
, Priv
);
6928 Set_Sloc
(Full
, Sloc
(Priv
));
6931 Set_Next_Entity
(Full
, Save_Next_Entity
);
6932 Set_Homonym
(Full
, Save_Homonym
);
6933 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
6935 -- Set common attributes for all subtypes
6937 Set_Ekind
(Full
, Subtype_Kind
(Ekind
(Full_Base
)));
6939 -- The Etype of the full view is inconsistent. Gigi needs to see the
6940 -- structural full view, which is what the current scheme gives:
6941 -- the Etype of the full view is the etype of the full base. However,
6942 -- if the full base is a derived type, the full view then looks like
6943 -- a subtype of the parent, not a subtype of the full base. If instead
6946 -- Set_Etype (Full, Full_Base);
6948 -- then we get inconsistencies in the front-end (confusion between
6949 -- views). Several outstanding bugs are related to this ???
6951 Set_Is_First_Subtype
(Full
, False);
6952 Set_Scope
(Full
, Scope
(Priv
));
6953 Set_Size_Info
(Full
, Full_Base
);
6954 Set_RM_Size
(Full
, RM_Size
(Full_Base
));
6955 Set_Is_Itype
(Full
);
6957 -- A subtype of a private-type-without-discriminants, whose full-view
6958 -- has discriminants with default expressions, is not constrained!
6960 if not Has_Discriminants
(Priv
) then
6961 Set_Is_Constrained
(Full
, Is_Constrained
(Full_Base
));
6963 if Has_Discriminants
(Full_Base
) then
6964 Set_Discriminant_Constraint
6965 (Full
, Discriminant_Constraint
(Full_Base
));
6967 -- The partial view may have been indefinite, the full view
6970 Set_Has_Unknown_Discriminants
6971 (Full
, Has_Unknown_Discriminants
(Full_Base
));
6975 Set_First_Rep_Item
(Full
, First_Rep_Item
(Full_Base
));
6976 Set_Depends_On_Private
(Full
, Has_Private_Component
(Full
));
6978 -- Freeze the private subtype entity if its parent is delayed, and not
6979 -- already frozen. We skip this processing if the type is an anonymous
6980 -- subtype of a record component, or is the corresponding record of a
6981 -- protected type, since ???
6983 if not Is_Type
(Scope
(Full
)) then
6984 Set_Has_Delayed_Freeze
(Full
,
6985 Has_Delayed_Freeze
(Full_Base
)
6986 and then (not Is_Frozen
(Full_Base
)));
6989 Set_Freeze_Node
(Full
, Empty
);
6990 Set_Is_Frozen
(Full
, False);
6991 Set_Full_View
(Priv
, Full
);
6993 if Has_Discriminants
(Full
) then
6994 Set_Stored_Constraint_From_Discriminant_Constraint
(Full
);
6995 Set_Stored_Constraint
(Priv
, Stored_Constraint
(Full
));
6997 if Has_Unknown_Discriminants
(Full
) then
6998 Set_Discriminant_Constraint
(Full
, No_Elist
);
7002 if Ekind
(Full_Base
) = E_Record_Type
7003 and then Has_Discriminants
(Full_Base
)
7004 and then Has_Discriminants
(Priv
) -- might not, if errors
7005 and then not Has_Unknown_Discriminants
(Priv
)
7006 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(Priv
))
7008 Create_Constrained_Components
7009 (Full
, Related_Nod
, Full_Base
, Discriminant_Constraint
(Priv
));
7011 -- If the full base is itself derived from private, build a congruent
7012 -- subtype of its underlying type, for use by the back end. For a
7013 -- constrained record component, the declaration cannot be placed on
7014 -- the component list, but it must neverthess be built an analyzed, to
7015 -- supply enough information for gigi to compute the size of component.
7017 elsif Ekind
(Full_Base
) in Private_Kind
7018 and then Is_Derived_Type
(Full_Base
)
7019 and then Has_Discriminants
(Full_Base
)
7020 and then (Ekind
(Current_Scope
) /= E_Record_Subtype
)
7022 if not Is_Itype
(Priv
)
7024 Nkind
(Subtype_Indication
(Parent
(Priv
))) = N_Subtype_Indication
7026 Build_Underlying_Full_View
7027 (Parent
(Priv
), Full
, Etype
(Full_Base
));
7029 elsif Nkind
(Related_Nod
) = N_Component_Declaration
then
7030 Build_Underlying_Full_View
(Related_Nod
, Full
, Etype
(Full_Base
));
7033 elsif Is_Record_Type
(Full_Base
) then
7035 -- Show Full is simply a renaming of Full_Base
7037 Set_Cloned_Subtype
(Full
, Full_Base
);
7040 -- It is unsafe to share to bounds of a scalar type, because the Itype
7041 -- is elaborated on demand, and if a bound is non-static then different
7042 -- orders of elaboration in different units will lead to different
7043 -- external symbols.
7045 if Is_Scalar_Type
(Full_Base
) then
7046 Set_Scalar_Range
(Full
,
7047 Make_Range
(Sloc
(Related_Nod
),
7049 Duplicate_Subexpr_No_Checks
(Type_Low_Bound
(Full_Base
)),
7051 Duplicate_Subexpr_No_Checks
(Type_High_Bound
(Full_Base
))));
7053 -- This completion inherits the bounds of the full parent, but if
7054 -- the parent is an unconstrained floating point type, so is the
7057 if Is_Floating_Point_Type
(Full_Base
) then
7058 Set_Includes_Infinities
7059 (Scalar_Range
(Full
), Has_Infinities
(Full_Base
));
7063 -- ??? It seems that a lot of fields are missing that should be copied
7064 -- from Full_Base to Full. Here are some that are introduced in a
7065 -- non-disruptive way but a cleanup is necessary.
7067 if Is_Tagged_Type
(Full_Base
) then
7068 Set_Is_Tagged_Type
(Full
);
7069 Set_Primitive_Operations
(Full
, Primitive_Operations
(Full_Base
));
7070 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Full_Base
));
7072 -- If this is a subtype of a protected or task type, constrain its
7073 -- corresponding record, unless this is a subtype without constraints,
7074 -- i.e. a simple renaming as with an actual subtype in an instance.
7076 elsif Is_Concurrent_Type
(Full_Base
) then
7077 if Has_Discriminants
(Full
)
7078 and then Present
(Corresponding_Record_Type
(Full_Base
))
7080 not Is_Empty_Elmt_List
(Discriminant_Constraint
(Full
))
7082 Set_Corresponding_Record_Type
(Full
,
7083 Constrain_Corresponding_Record
7084 (Full
, Corresponding_Record_Type
(Full_Base
),
7085 Related_Nod
, Full_Base
));
7088 Set_Corresponding_Record_Type
(Full
,
7089 Corresponding_Record_Type
(Full_Base
));
7092 end Complete_Private_Subtype
;
7094 ----------------------------
7095 -- Constant_Redeclaration --
7096 ----------------------------
7098 procedure Constant_Redeclaration
7103 Prev
: constant Entity_Id
:= Current_Entity_In_Scope
(Id
);
7104 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
7107 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
);
7108 -- If deferred constant is an access type initialized with an
7109 -- allocator, check whether there is an illegal recursion in the
7110 -- definition, through a default value of some record subcomponent.
7111 -- This is normally detected when generating init procs, but requires
7112 -- this additional mechanism when expansion is disabled.
7114 ---------------------------------
7115 -- Check_Recursive_Declaration --
7116 ---------------------------------
7118 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
) is
7122 if Is_Record_Type
(Typ
) then
7123 Comp
:= First_Component
(Typ
);
7124 while Present
(Comp
) loop
7125 if Comes_From_Source
(Comp
) then
7126 if Present
(Expression
(Parent
(Comp
)))
7127 and then Is_Entity_Name
(Expression
(Parent
(Comp
)))
7128 and then Entity
(Expression
(Parent
(Comp
))) = Prev
7130 Error_Msg_Sloc
:= Sloc
(Parent
(Comp
));
7132 ("illegal circularity with declaration for&#",
7136 elsif Is_Record_Type
(Etype
(Comp
)) then
7137 Check_Recursive_Declaration
(Etype
(Comp
));
7141 Next_Component
(Comp
);
7144 end Check_Recursive_Declaration
;
7146 -- Start of processing for Constant_Redeclaration
7149 if Nkind
(Parent
(Prev
)) = N_Object_Declaration
then
7150 if Nkind
(Object_Definition
7151 (Parent
(Prev
))) = N_Subtype_Indication
7153 -- Find type of new declaration. The constraints of the two
7154 -- views must match statically, but there is no point in
7155 -- creating an itype for the full view.
7157 if Nkind
(Obj_Def
) = N_Subtype_Indication
then
7158 Find_Type
(Subtype_Mark
(Obj_Def
));
7159 New_T
:= Entity
(Subtype_Mark
(Obj_Def
));
7162 Find_Type
(Obj_Def
);
7163 New_T
:= Entity
(Obj_Def
);
7169 -- The full view may impose a constraint, even if the partial
7170 -- view does not, so construct the subtype.
7172 New_T
:= Find_Type_Of_Object
(Obj_Def
, N
);
7177 -- Current declaration is illegal, diagnosed below in Enter_Name
7183 -- If previous full declaration exists, or if a homograph is present,
7184 -- let Enter_Name handle it, either with an error, or with the removal
7185 -- of an overridden implicit subprogram.
7187 if Ekind
(Prev
) /= E_Constant
7188 or else Present
(Expression
(Parent
(Prev
)))
7189 or else Present
(Full_View
(Prev
))
7193 -- Verify that types of both declarations match
7195 elsif Base_Type
(Etype
(Prev
)) /= Base_Type
(New_T
) then
7196 Error_Msg_Sloc
:= Sloc
(Prev
);
7197 Error_Msg_N
("type does not match declaration#", N
);
7198 Set_Full_View
(Prev
, Id
);
7199 Set_Etype
(Id
, Any_Type
);
7201 -- If so, process the full constant declaration
7204 Set_Full_View
(Prev
, Id
);
7205 Set_Is_Public
(Id
, Is_Public
(Prev
));
7206 Set_Is_Internal
(Id
);
7207 Append_Entity
(Id
, Current_Scope
);
7209 -- Check ALIASED present if present before (RM 7.4(7))
7211 if Is_Aliased
(Prev
)
7212 and then not Aliased_Present
(N
)
7214 Error_Msg_Sloc
:= Sloc
(Prev
);
7215 Error_Msg_N
("ALIASED required (see declaration#)", N
);
7218 -- Check that placement is in private part and that the incomplete
7219 -- declaration appeared in the visible part.
7221 if Ekind
(Current_Scope
) = E_Package
7222 and then not In_Private_Part
(Current_Scope
)
7224 Error_Msg_Sloc
:= Sloc
(Prev
);
7225 Error_Msg_N
("full constant for declaration#"
7226 & " must be in private part", N
);
7228 elsif Ekind
(Current_Scope
) = E_Package
7229 and then List_Containing
(Parent
(Prev
))
7230 /= Visible_Declarations
7231 (Specification
(Unit_Declaration_Node
(Current_Scope
)))
7234 ("deferred constant must be declared in visible part",
7238 if Is_Access_Type
(T
)
7239 and then Nkind
(Expression
(N
)) = N_Allocator
7241 Check_Recursive_Declaration
(Designated_Type
(T
));
7244 end Constant_Redeclaration
;
7246 ----------------------
7247 -- Constrain_Access --
7248 ----------------------
7250 procedure Constrain_Access
7251 (Def_Id
: in out Entity_Id
;
7253 Related_Nod
: Node_Id
)
7255 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
7256 Desig_Type
: constant Entity_Id
:= Designated_Type
(T
);
7257 Desig_Subtype
: Entity_Id
:= Create_Itype
(E_Void
, Related_Nod
);
7258 Constraint_OK
: Boolean := True;
7261 if Is_Array_Type
(Desig_Type
) then
7262 Constrain_Array
(Desig_Subtype
, S
, Related_Nod
, Def_Id
, 'P');
7264 elsif (Is_Record_Type
(Desig_Type
)
7265 or else Is_Incomplete_Or_Private_Type
(Desig_Type
))
7266 and then not Is_Constrained
(Desig_Type
)
7268 -- ??? The following code is a temporary kludge to ignore a
7269 -- discriminant constraint on access type if it is constraining
7270 -- the current record. Avoid creating the implicit subtype of the
7271 -- record we are currently compiling since right now, we cannot
7272 -- handle these. For now, just return the access type itself.
7274 if Desig_Type
= Current_Scope
7275 and then No
(Def_Id
)
7277 Set_Ekind
(Desig_Subtype
, E_Record_Subtype
);
7278 Def_Id
:= Entity
(Subtype_Mark
(S
));
7280 -- This call added to ensure that the constraint is analyzed
7281 -- (needed for a B test). Note that we still return early from
7282 -- this procedure to avoid recursive processing. ???
7284 Constrain_Discriminated_Type
7285 (Desig_Subtype
, S
, Related_Nod
, For_Access
=> True);
7289 if Ekind
(T
) = E_General_Access_Type
7290 and then Has_Private_Declaration
(Desig_Type
)
7291 and then In_Open_Scopes
(Scope
(Desig_Type
))
7293 -- Enforce rule that the constraint is illegal if there is
7294 -- an unconstrained view of the designated type. This means
7295 -- that the partial view (either a private type declaration or
7296 -- a derivation from a private type) has no discriminants.
7297 -- (Defect Report 8652/0008, Technical Corrigendum 1, checked
7298 -- by ACATS B371001).
7301 Pack
: constant Node_Id
:=
7302 Unit_Declaration_Node
(Scope
(Desig_Type
));
7307 if Nkind
(Pack
) = N_Package_Declaration
then
7308 Decls
:= Visible_Declarations
(Specification
(Pack
));
7309 Decl
:= First
(Decls
);
7310 while Present
(Decl
) loop
7311 if (Nkind
(Decl
) = N_Private_Type_Declaration
7313 Chars
(Defining_Identifier
(Decl
)) =
7317 (Nkind
(Decl
) = N_Full_Type_Declaration
7319 Chars
(Defining_Identifier
(Decl
)) =
7321 and then Is_Derived_Type
(Desig_Type
)
7323 Has_Private_Declaration
(Etype
(Desig_Type
)))
7325 if No
(Discriminant_Specifications
(Decl
)) then
7327 ("cannot constrain general access type " &
7328 "if designated type has unconstrained view", S
);
7340 Constrain_Discriminated_Type
(Desig_Subtype
, S
, Related_Nod
,
7341 For_Access
=> True);
7343 elsif (Is_Task_Type
(Desig_Type
)
7344 or else Is_Protected_Type
(Desig_Type
))
7345 and then not Is_Constrained
(Desig_Type
)
7347 Constrain_Concurrent
7348 (Desig_Subtype
, S
, Related_Nod
, Desig_Type
, ' ');
7351 Error_Msg_N
("invalid constraint on access type", S
);
7352 Desig_Subtype
:= Desig_Type
; -- Ignore invalid constraint.
7353 Constraint_OK
:= False;
7357 Def_Id
:= Create_Itype
(E_Access_Subtype
, Related_Nod
);
7359 Set_Ekind
(Def_Id
, E_Access_Subtype
);
7362 if Constraint_OK
then
7363 Set_Etype
(Def_Id
, Base_Type
(T
));
7365 if Is_Private_Type
(Desig_Type
) then
7366 Prepare_Private_Subtype_Completion
(Desig_Subtype
, Related_Nod
);
7369 Set_Etype
(Def_Id
, Any_Type
);
7372 Set_Size_Info
(Def_Id
, T
);
7373 Set_Is_Constrained
(Def_Id
, Constraint_OK
);
7374 Set_Directly_Designated_Type
(Def_Id
, Desig_Subtype
);
7375 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
7376 Set_Is_Access_Constant
(Def_Id
, Is_Access_Constant
(T
));
7378 Conditional_Delay
(Def_Id
, T
);
7379 end Constrain_Access
;
7381 ---------------------
7382 -- Constrain_Array --
7383 ---------------------
7385 procedure Constrain_Array
7386 (Def_Id
: in out Entity_Id
;
7388 Related_Nod
: Node_Id
;
7389 Related_Id
: Entity_Id
;
7392 C
: constant Node_Id
:= Constraint
(SI
);
7393 Number_Of_Constraints
: Nat
:= 0;
7396 Constraint_OK
: Boolean := True;
7399 T
:= Entity
(Subtype_Mark
(SI
));
7401 if Ekind
(T
) in Access_Kind
then
7402 T
:= Designated_Type
(T
);
7405 -- If an index constraint follows a subtype mark in a subtype indication
7406 -- then the type or subtype denoted by the subtype mark must not already
7407 -- impose an index constraint. The subtype mark must denote either an
7408 -- unconstrained array type or an access type whose designated type
7409 -- is such an array type... (RM 3.6.1)
7411 if Is_Constrained
(T
) then
7413 ("array type is already constrained", Subtype_Mark
(SI
));
7414 Constraint_OK
:= False;
7417 S
:= First
(Constraints
(C
));
7419 while Present
(S
) loop
7420 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
7424 -- In either case, the index constraint must provide a discrete
7425 -- range for each index of the array type and the type of each
7426 -- discrete range must be the same as that of the corresponding
7427 -- index. (RM 3.6.1)
7429 if Number_Of_Constraints
/= Number_Dimensions
(T
) then
7430 Error_Msg_NE
("incorrect number of index constraints for }", C
, T
);
7431 Constraint_OK
:= False;
7434 S
:= First
(Constraints
(C
));
7435 Index
:= First_Index
(T
);
7438 -- Apply constraints to each index type
7440 for J
in 1 .. Number_Of_Constraints
loop
7441 Constrain_Index
(Index
, S
, Related_Nod
, Related_Id
, Suffix
, J
);
7451 Create_Itype
(E_Array_Subtype
, Related_Nod
, Related_Id
, Suffix
);
7452 Set_Parent
(Def_Id
, Related_Nod
);
7455 Set_Ekind
(Def_Id
, E_Array_Subtype
);
7458 Set_Size_Info
(Def_Id
, (T
));
7459 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
7460 Set_Etype
(Def_Id
, Base_Type
(T
));
7462 if Constraint_OK
then
7463 Set_First_Index
(Def_Id
, First
(Constraints
(C
)));
7466 Set_Is_Constrained
(Def_Id
, True);
7467 Set_Is_Aliased
(Def_Id
, Is_Aliased
(T
));
7468 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
7470 Set_Is_Private_Composite
(Def_Id
, Is_Private_Composite
(T
));
7471 Set_Is_Limited_Composite
(Def_Id
, Is_Limited_Composite
(T
));
7473 -- Build a freeze node if parent still needs one. Also, make sure
7474 -- that the Depends_On_Private status is set (explanation ???)
7475 -- and also that a conditional delay is set.
7477 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
7478 Conditional_Delay
(Def_Id
, T
);
7480 end Constrain_Array
;
7482 ------------------------------
7483 -- Constrain_Component_Type --
7484 ------------------------------
7486 function Constrain_Component_Type
7488 Constrained_Typ
: Entity_Id
;
7489 Related_Node
: Node_Id
;
7491 Constraints
: Elist_Id
) return Entity_Id
7493 Loc
: constant Source_Ptr
:= Sloc
(Constrained_Typ
);
7494 Compon_Type
: constant Entity_Id
:= Etype
(Comp
);
7496 function Build_Constrained_Array_Type
7497 (Old_Type
: Entity_Id
) return Entity_Id
;
7498 -- If Old_Type is an array type, one of whose indices is constrained
7499 -- by a discriminant, build an Itype whose constraint replaces the
7500 -- discriminant with its value in the constraint.
7502 function Build_Constrained_Discriminated_Type
7503 (Old_Type
: Entity_Id
) return Entity_Id
;
7504 -- Ditto for record components
7506 function Build_Constrained_Access_Type
7507 (Old_Type
: Entity_Id
) return Entity_Id
;
7508 -- Ditto for access types. Makes use of previous two functions, to
7509 -- constrain designated type.
7511 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
;
7512 -- T is an array or discriminated type, C is a list of constraints
7513 -- that apply to T. This routine builds the constrained subtype.
7515 function Is_Discriminant
(Expr
: Node_Id
) return Boolean;
7516 -- Returns True if Expr is a discriminant
7518 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
;
7519 -- Find the value of discriminant Discrim in Constraint
7521 -----------------------------------
7522 -- Build_Constrained_Access_Type --
7523 -----------------------------------
7525 function Build_Constrained_Access_Type
7526 (Old_Type
: Entity_Id
) return Entity_Id
7528 Desig_Type
: constant Entity_Id
:= Designated_Type
(Old_Type
);
7530 Desig_Subtype
: Entity_Id
;
7534 -- if the original access type was not embedded in the enclosing
7535 -- type definition, there is no need to produce a new access
7536 -- subtype. In fact every access type with an explicit constraint
7537 -- generates an itype whose scope is the enclosing record.
7539 if not Is_Type
(Scope
(Old_Type
)) then
7542 elsif Is_Array_Type
(Desig_Type
) then
7543 Desig_Subtype
:= Build_Constrained_Array_Type
(Desig_Type
);
7545 elsif Has_Discriminants
(Desig_Type
) then
7547 -- This may be an access type to an enclosing record type for
7548 -- which we are constructing the constrained components. Return
7549 -- the enclosing record subtype. This is not always correct,
7550 -- but avoids infinite recursion. ???
7552 Desig_Subtype
:= Any_Type
;
7554 for J
in reverse 0 .. Scope_Stack
.Last
loop
7555 Scop
:= Scope_Stack
.Table
(J
).Entity
;
7558 and then Base_Type
(Scop
) = Base_Type
(Desig_Type
)
7560 Desig_Subtype
:= Scop
;
7563 exit when not Is_Type
(Scop
);
7566 if Desig_Subtype
= Any_Type
then
7568 Build_Constrained_Discriminated_Type
(Desig_Type
);
7575 if Desig_Subtype
/= Desig_Type
then
7577 -- The Related_Node better be here or else we won't be able
7578 -- to attach new itypes to a node in the tree.
7580 pragma Assert
(Present
(Related_Node
));
7582 Itype
:= Create_Itype
(E_Access_Subtype
, Related_Node
);
7584 Set_Etype
(Itype
, Base_Type
(Old_Type
));
7585 Set_Size_Info
(Itype
, (Old_Type
));
7586 Set_Directly_Designated_Type
(Itype
, Desig_Subtype
);
7587 Set_Depends_On_Private
(Itype
, Has_Private_Component
7589 Set_Is_Access_Constant
(Itype
, Is_Access_Constant
7592 -- The new itype needs freezing when it depends on a not frozen
7593 -- type and the enclosing subtype needs freezing.
7595 if Has_Delayed_Freeze
(Constrained_Typ
)
7596 and then not Is_Frozen
(Constrained_Typ
)
7598 Conditional_Delay
(Itype
, Base_Type
(Old_Type
));
7606 end Build_Constrained_Access_Type
;
7608 ----------------------------------
7609 -- Build_Constrained_Array_Type --
7610 ----------------------------------
7612 function Build_Constrained_Array_Type
7613 (Old_Type
: Entity_Id
) return Entity_Id
7617 Old_Index
: Node_Id
;
7618 Range_Node
: Node_Id
;
7619 Constr_List
: List_Id
;
7621 Need_To_Create_Itype
: Boolean := False;
7624 Old_Index
:= First_Index
(Old_Type
);
7625 while Present
(Old_Index
) loop
7626 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
7628 if Is_Discriminant
(Lo_Expr
)
7629 or else Is_Discriminant
(Hi_Expr
)
7631 Need_To_Create_Itype
:= True;
7634 Next_Index
(Old_Index
);
7637 if Need_To_Create_Itype
then
7638 Constr_List
:= New_List
;
7640 Old_Index
:= First_Index
(Old_Type
);
7641 while Present
(Old_Index
) loop
7642 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
7644 if Is_Discriminant
(Lo_Expr
) then
7645 Lo_Expr
:= Get_Discr_Value
(Lo_Expr
);
7648 if Is_Discriminant
(Hi_Expr
) then
7649 Hi_Expr
:= Get_Discr_Value
(Hi_Expr
);
7654 (Loc
, New_Copy_Tree
(Lo_Expr
), New_Copy_Tree
(Hi_Expr
));
7656 Append
(Range_Node
, To
=> Constr_List
);
7658 Next_Index
(Old_Index
);
7661 return Build_Subtype
(Old_Type
, Constr_List
);
7666 end Build_Constrained_Array_Type
;
7668 ------------------------------------------
7669 -- Build_Constrained_Discriminated_Type --
7670 ------------------------------------------
7672 function Build_Constrained_Discriminated_Type
7673 (Old_Type
: Entity_Id
) return Entity_Id
7676 Constr_List
: List_Id
;
7677 Old_Constraint
: Elmt_Id
;
7679 Need_To_Create_Itype
: Boolean := False;
7682 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
7683 while Present
(Old_Constraint
) loop
7684 Expr
:= Node
(Old_Constraint
);
7686 if Is_Discriminant
(Expr
) then
7687 Need_To_Create_Itype
:= True;
7690 Next_Elmt
(Old_Constraint
);
7693 if Need_To_Create_Itype
then
7694 Constr_List
:= New_List
;
7696 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
7697 while Present
(Old_Constraint
) loop
7698 Expr
:= Node
(Old_Constraint
);
7700 if Is_Discriminant
(Expr
) then
7701 Expr
:= Get_Discr_Value
(Expr
);
7704 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
7706 Next_Elmt
(Old_Constraint
);
7709 return Build_Subtype
(Old_Type
, Constr_List
);
7714 end Build_Constrained_Discriminated_Type
;
7720 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
is
7722 Subtyp_Decl
: Node_Id
;
7724 Btyp
: Entity_Id
:= Base_Type
(T
);
7727 -- The Related_Node better be here or else we won't be able to
7728 -- attach new itypes to a node in the tree.
7730 pragma Assert
(Present
(Related_Node
));
7732 -- If the view of the component's type is incomplete or private
7733 -- with unknown discriminants, then the constraint must be applied
7734 -- to the full type.
7736 if Has_Unknown_Discriminants
(Btyp
)
7737 and then Present
(Underlying_Type
(Btyp
))
7739 Btyp
:= Underlying_Type
(Btyp
);
7743 Make_Subtype_Indication
(Loc
,
7744 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
7745 Constraint
=> Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
7747 Def_Id
:= Create_Itype
(Ekind
(T
), Related_Node
);
7750 Make_Subtype_Declaration
(Loc
,
7751 Defining_Identifier
=> Def_Id
,
7752 Subtype_Indication
=> Indic
);
7754 Set_Parent
(Subtyp_Decl
, Parent
(Related_Node
));
7756 -- Itypes must be analyzed with checks off (see package Itypes)
7758 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
7763 ---------------------
7764 -- Get_Discr_Value --
7765 ---------------------
7767 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
is
7768 D
: Entity_Id
:= First_Discriminant
(Typ
);
7769 E
: Elmt_Id
:= First_Elmt
(Constraints
);
7773 -- The discriminant may be declared for the type, in which case we
7774 -- find it by iterating over the list of discriminants. If the
7775 -- discriminant is inherited from a parent type, it appears as the
7776 -- corresponding discriminant of the current type. This will be the
7777 -- case when constraining an inherited component whose constraint is
7778 -- given by a discriminant of the parent.
7780 while Present
(D
) loop
7781 if D
= Entity
(Discrim
)
7782 or else Corresponding_Discriminant
(D
) = Entity
(Discrim
)
7787 Next_Discriminant
(D
);
7791 -- The corresponding_Discriminant mechanism is incomplete, because
7792 -- the correspondence between new and old discriminants is not one
7793 -- to one: one new discriminant can constrain several old ones. In
7794 -- that case, scan sequentially the stored_constraint, the list of
7795 -- discriminants of the parents, and the constraints.
7797 if Is_Derived_Type
(Typ
)
7798 and then Present
(Stored_Constraint
(Typ
))
7799 and then Scope
(Entity
(Discrim
)) = Etype
(Typ
)
7801 D
:= First_Discriminant
(Etype
(Typ
));
7802 E
:= First_Elmt
(Constraints
);
7803 G
:= First_Elmt
(Stored_Constraint
(Typ
));
7805 while Present
(D
) loop
7806 if D
= Entity
(Discrim
) then
7810 Next_Discriminant
(D
);
7816 -- Something is wrong if we did not find the value
7818 raise Program_Error
;
7819 end Get_Discr_Value
;
7821 ---------------------
7822 -- Is_Discriminant --
7823 ---------------------
7825 function Is_Discriminant
(Expr
: Node_Id
) return Boolean is
7826 Discrim_Scope
: Entity_Id
;
7829 if Denotes_Discriminant
(Expr
) then
7830 Discrim_Scope
:= Scope
(Entity
(Expr
));
7832 -- Either we have a reference to one of Typ's discriminants,
7834 pragma Assert
(Discrim_Scope
= Typ
7836 -- or to the discriminants of the parent type, in the case
7837 -- of a derivation of a tagged type with variants.
7839 or else Discrim_Scope
= Etype
(Typ
)
7840 or else Full_View
(Discrim_Scope
) = Etype
(Typ
)
7842 -- or same as above for the case where the discriminants
7843 -- were declared in Typ's private view.
7845 or else (Is_Private_Type
(Discrim_Scope
)
7846 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
7848 -- or else we are deriving from the full view and the
7849 -- discriminant is declared in the private entity.
7851 or else (Is_Private_Type
(Typ
)
7852 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
7854 -- or we have a class-wide type, in which case make sure the
7855 -- discriminant found belongs to the root type.
7857 or else (Is_Class_Wide_Type
(Typ
)
7858 and then Etype
(Typ
) = Discrim_Scope
));
7863 -- In all other cases we have something wrong
7866 end Is_Discriminant
;
7868 -- Start of processing for Constrain_Component_Type
7871 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
7872 and then Comes_From_Source
(Parent
(Comp
))
7873 and then Comes_From_Source
7874 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
7877 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
7881 elsif Is_Array_Type
(Compon_Type
) then
7882 return Build_Constrained_Array_Type
(Compon_Type
);
7884 elsif Has_Discriminants
(Compon_Type
) then
7885 return Build_Constrained_Discriminated_Type
(Compon_Type
);
7887 elsif Is_Access_Type
(Compon_Type
) then
7888 return Build_Constrained_Access_Type
(Compon_Type
);
7893 end Constrain_Component_Type
;
7895 --------------------------
7896 -- Constrain_Concurrent --
7897 --------------------------
7899 -- For concurrent types, the associated record value type carries the same
7900 -- discriminants, so when we constrain a concurrent type, we must constrain
7901 -- the value type as well.
7903 procedure Constrain_Concurrent
7904 (Def_Id
: in out Entity_Id
;
7906 Related_Nod
: Node_Id
;
7907 Related_Id
: Entity_Id
;
7910 T_Ent
: Entity_Id
:= Entity
(Subtype_Mark
(SI
));
7914 if Ekind
(T_Ent
) in Access_Kind
then
7915 T_Ent
:= Designated_Type
(T_Ent
);
7918 T_Val
:= Corresponding_Record_Type
(T_Ent
);
7920 if Present
(T_Val
) then
7923 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
7926 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
7928 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
7929 Set_Corresponding_Record_Type
(Def_Id
,
7930 Constrain_Corresponding_Record
7931 (Def_Id
, T_Val
, Related_Nod
, Related_Id
));
7934 -- If there is no associated record, expansion is disabled and this
7935 -- is a generic context. Create a subtype in any case, so that
7936 -- semantic analysis can proceed.
7939 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
7942 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
7944 end Constrain_Concurrent
;
7946 ------------------------------------
7947 -- Constrain_Corresponding_Record --
7948 ------------------------------------
7950 function Constrain_Corresponding_Record
7951 (Prot_Subt
: Entity_Id
;
7952 Corr_Rec
: Entity_Id
;
7953 Related_Nod
: Node_Id
;
7954 Related_Id
: Entity_Id
) return Entity_Id
7956 T_Sub
: constant Entity_Id
:=
7957 Create_Itype
(E_Record_Subtype
, Related_Nod
, Related_Id
, 'V');
7960 Set_Etype
(T_Sub
, Corr_Rec
);
7961 Init_Size_Align
(T_Sub
);
7962 Set_Has_Discriminants
(T_Sub
, Has_Discriminants
(Prot_Subt
));
7963 Set_Is_Constrained
(T_Sub
, True);
7964 Set_First_Entity
(T_Sub
, First_Entity
(Corr_Rec
));
7965 Set_Last_Entity
(T_Sub
, Last_Entity
(Corr_Rec
));
7967 Conditional_Delay
(T_Sub
, Corr_Rec
);
7969 if Has_Discriminants
(Prot_Subt
) then -- False only if errors.
7970 Set_Discriminant_Constraint
7971 (T_Sub
, Discriminant_Constraint
(Prot_Subt
));
7972 Set_Stored_Constraint_From_Discriminant_Constraint
(T_Sub
);
7973 Create_Constrained_Components
7974 (T_Sub
, Related_Nod
, Corr_Rec
, Discriminant_Constraint
(T_Sub
));
7977 Set_Depends_On_Private
(T_Sub
, Has_Private_Component
(T_Sub
));
7980 end Constrain_Corresponding_Record
;
7982 -----------------------
7983 -- Constrain_Decimal --
7984 -----------------------
7986 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
) is
7987 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
7988 C
: constant Node_Id
:= Constraint
(S
);
7989 Loc
: constant Source_Ptr
:= Sloc
(C
);
7990 Range_Expr
: Node_Id
;
7991 Digits_Expr
: Node_Id
;
7996 Set_Ekind
(Def_Id
, E_Decimal_Fixed_Point_Subtype
);
7998 if Nkind
(C
) = N_Range_Constraint
then
7999 Range_Expr
:= Range_Expression
(C
);
8000 Digits_Val
:= Digits_Value
(T
);
8003 pragma Assert
(Nkind
(C
) = N_Digits_Constraint
);
8004 Digits_Expr
:= Digits_Expression
(C
);
8005 Analyze_And_Resolve
(Digits_Expr
, Any_Integer
);
8007 Check_Digits_Expression
(Digits_Expr
);
8008 Digits_Val
:= Expr_Value
(Digits_Expr
);
8010 if Digits_Val
> Digits_Value
(T
) then
8012 ("digits expression is incompatible with subtype", C
);
8013 Digits_Val
:= Digits_Value
(T
);
8016 if Present
(Range_Constraint
(C
)) then
8017 Range_Expr
:= Range_Expression
(Range_Constraint
(C
));
8019 Range_Expr
:= Empty
;
8023 Set_Etype
(Def_Id
, Base_Type
(T
));
8024 Set_Size_Info
(Def_Id
, (T
));
8025 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
8026 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
8027 Set_Scale_Value
(Def_Id
, Scale_Value
(T
));
8028 Set_Small_Value
(Def_Id
, Small_Value
(T
));
8029 Set_Machine_Radix_10
(Def_Id
, Machine_Radix_10
(T
));
8030 Set_Digits_Value
(Def_Id
, Digits_Val
);
8032 -- Manufacture range from given digits value if no range present
8034 if No
(Range_Expr
) then
8035 Bound_Val
:= (Ureal_10
** Digits_Val
- Ureal_1
) * Small_Value
(T
);
8039 Convert_To
(T
, Make_Real_Literal
(Loc
, (-Bound_Val
))),
8041 Convert_To
(T
, Make_Real_Literal
(Loc
, Bound_Val
)));
8044 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expr
, T
);
8045 Set_Discrete_RM_Size
(Def_Id
);
8047 -- Unconditionally delay the freeze, since we cannot set size
8048 -- information in all cases correctly until the freeze point.
8050 Set_Has_Delayed_Freeze
(Def_Id
);
8051 end Constrain_Decimal
;
8053 ----------------------------------
8054 -- Constrain_Discriminated_Type --
8055 ----------------------------------
8057 procedure Constrain_Discriminated_Type
8058 (Def_Id
: Entity_Id
;
8060 Related_Nod
: Node_Id
;
8061 For_Access
: Boolean := False)
8063 E
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
8066 Elist
: Elist_Id
:= New_Elmt_List
;
8068 procedure Fixup_Bad_Constraint
;
8069 -- This is called after finding a bad constraint, and after having
8070 -- posted an appropriate error message. The mission is to leave the
8071 -- entity T in as reasonable state as possible!
8073 --------------------------
8074 -- Fixup_Bad_Constraint --
8075 --------------------------
8077 procedure Fixup_Bad_Constraint
is
8079 -- Set a reasonable Ekind for the entity. For an incomplete type,
8080 -- we can't do much, but for other types, we can set the proper
8081 -- corresponding subtype kind.
8083 if Ekind
(T
) = E_Incomplete_Type
then
8084 Set_Ekind
(Def_Id
, Ekind
(T
));
8086 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
8089 Set_Etype
(Def_Id
, Any_Type
);
8090 Set_Error_Posted
(Def_Id
);
8091 end Fixup_Bad_Constraint
;
8093 -- Start of processing for Constrain_Discriminated_Type
8096 C
:= Constraint
(S
);
8098 -- A discriminant constraint is only allowed in a subtype indication,
8099 -- after a subtype mark. This subtype mark must denote either a type
8100 -- with discriminants, or an access type whose designated type is a
8101 -- type with discriminants. A discriminant constraint specifies the
8102 -- values of these discriminants (RM 3.7.2(5)).
8104 T
:= Base_Type
(Entity
(Subtype_Mark
(S
)));
8106 if Ekind
(T
) in Access_Kind
then
8107 T
:= Designated_Type
(T
);
8110 -- Check that the type has visible discriminants. The type may be
8111 -- a private type with unknown discriminants whose full view has
8112 -- discriminants which are invisible.
8114 if not Has_Discriminants
(T
)
8116 (Has_Unknown_Discriminants
(T
)
8117 and then Is_Private_Type
(T
))
8119 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
8120 Fixup_Bad_Constraint
;
8123 elsif Is_Constrained
(E
)
8124 or else (Ekind
(E
) = E_Class_Wide_Subtype
8125 and then Present
(Discriminant_Constraint
(E
)))
8127 Error_Msg_N
("type is already constrained", Subtype_Mark
(S
));
8128 Fixup_Bad_Constraint
;
8132 -- T may be an unconstrained subtype (e.g. a generic actual).
8133 -- Constraint applies to the base type.
8137 Elist
:= Build_Discriminant_Constraints
(T
, S
);
8139 -- If the list returned was empty we had an error in building the
8140 -- discriminant constraint. We have also already signalled an error
8141 -- in the incomplete type case
8143 if Is_Empty_Elmt_List
(Elist
) then
8144 Fixup_Bad_Constraint
;
8148 Build_Discriminated_Subtype
(T
, Def_Id
, Elist
, Related_Nod
, For_Access
);
8149 end Constrain_Discriminated_Type
;
8151 ---------------------------
8152 -- Constrain_Enumeration --
8153 ---------------------------
8155 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
) is
8156 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
8157 C
: constant Node_Id
:= Constraint
(S
);
8160 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
8162 Set_First_Literal
(Def_Id
, First_Literal
(Base_Type
(T
)));
8164 Set_Etype
(Def_Id
, Base_Type
(T
));
8165 Set_Size_Info
(Def_Id
, (T
));
8166 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
8167 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
8169 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
8171 Set_Discrete_RM_Size
(Def_Id
);
8172 end Constrain_Enumeration
;
8174 ----------------------
8175 -- Constrain_Float --
8176 ----------------------
8178 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
) is
8179 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
8185 Set_Ekind
(Def_Id
, E_Floating_Point_Subtype
);
8187 Set_Etype
(Def_Id
, Base_Type
(T
));
8188 Set_Size_Info
(Def_Id
, (T
));
8189 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
8191 -- Process the constraint
8193 C
:= Constraint
(S
);
8195 -- Digits constraint present
8197 if Nkind
(C
) = N_Digits_Constraint
then
8198 Check_Restriction
(No_Obsolescent_Features
, C
);
8200 if Warn_On_Obsolescent_Feature
then
8202 ("subtype digits constraint is an " &
8203 "obsolescent feature ('R'M 'J.3(8))?", C
);
8206 D
:= Digits_Expression
(C
);
8207 Analyze_And_Resolve
(D
, Any_Integer
);
8208 Check_Digits_Expression
(D
);
8209 Set_Digits_Value
(Def_Id
, Expr_Value
(D
));
8211 -- Check that digits value is in range. Obviously we can do this
8212 -- at compile time, but it is strictly a runtime check, and of
8213 -- course there is an ACVC test that checks this!
8215 if Digits_Value
(Def_Id
) > Digits_Value
(T
) then
8216 Error_Msg_Uint_1
:= Digits_Value
(T
);
8217 Error_Msg_N
("?digits value is too large, maximum is ^", D
);
8219 Make_Raise_Constraint_Error
(Sloc
(D
),
8220 Reason
=> CE_Range_Check_Failed
);
8221 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
8224 C
:= Range_Constraint
(C
);
8226 -- No digits constraint present
8229 Set_Digits_Value
(Def_Id
, Digits_Value
(T
));
8232 -- Range constraint present
8234 if Nkind
(C
) = N_Range_Constraint
then
8235 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
8237 -- No range constraint present
8240 pragma Assert
(No
(C
));
8241 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
8244 Set_Is_Constrained
(Def_Id
);
8245 end Constrain_Float
;
8247 ---------------------
8248 -- Constrain_Index --
8249 ---------------------
8251 procedure Constrain_Index
8254 Related_Nod
: Node_Id
;
8255 Related_Id
: Entity_Id
;
8260 R
: Node_Id
:= Empty
;
8261 T
: constant Entity_Id
:= Etype
(Index
);
8264 if Nkind
(S
) = N_Range
8266 (Nkind
(S
) = N_Attribute_Reference
8267 and then Attribute_Name
(S
) = Name_Range
)
8269 -- A Range attribute will transformed into N_Range by Resolve
8275 Process_Range_Expr_In_Decl
(R
, T
, Empty_List
);
8277 if not Error_Posted
(S
)
8279 (Nkind
(S
) /= N_Range
8280 or else not Covers
(T
, (Etype
(Low_Bound
(S
))))
8281 or else not Covers
(T
, (Etype
(High_Bound
(S
)))))
8283 if Base_Type
(T
) /= Any_Type
8284 and then Etype
(Low_Bound
(S
)) /= Any_Type
8285 and then Etype
(High_Bound
(S
)) /= Any_Type
8287 Error_Msg_N
("range expected", S
);
8291 elsif Nkind
(S
) = N_Subtype_Indication
then
8293 -- The parser has verified that this is a discrete indication
8295 Resolve_Discrete_Subtype_Indication
(S
, T
);
8296 R
:= Range_Expression
(Constraint
(S
));
8298 elsif Nkind
(S
) = N_Discriminant_Association
then
8300 -- Syntactically valid in subtype indication
8302 Error_Msg_N
("invalid index constraint", S
);
8303 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
8306 -- Subtype_Mark case, no anonymous subtypes to construct
8311 if Is_Entity_Name
(S
) then
8312 if not Is_Type
(Entity
(S
)) then
8313 Error_Msg_N
("expect subtype mark for index constraint", S
);
8315 elsif Base_Type
(Entity
(S
)) /= Base_Type
(T
) then
8316 Wrong_Type
(S
, Base_Type
(T
));
8322 Error_Msg_N
("invalid index constraint", S
);
8323 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
8329 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
, Suffix_Index
);
8331 Set_Etype
(Def_Id
, Base_Type
(T
));
8333 if Is_Modular_Integer_Type
(T
) then
8334 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
8336 elsif Is_Integer_Type
(T
) then
8337 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
8340 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
8341 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
8344 Set_Size_Info
(Def_Id
, (T
));
8345 Set_RM_Size
(Def_Id
, RM_Size
(T
));
8346 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
8348 Set_Scalar_Range
(Def_Id
, R
);
8350 Set_Etype
(S
, Def_Id
);
8351 Set_Discrete_RM_Size
(Def_Id
);
8352 end Constrain_Index
;
8354 -----------------------
8355 -- Constrain_Integer --
8356 -----------------------
8358 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
) is
8359 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
8360 C
: constant Node_Id
:= Constraint
(S
);
8363 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
8365 if Is_Modular_Integer_Type
(T
) then
8366 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
8368 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
8371 Set_Etype
(Def_Id
, Base_Type
(T
));
8372 Set_Size_Info
(Def_Id
, (T
));
8373 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
8374 Set_Discrete_RM_Size
(Def_Id
);
8375 end Constrain_Integer
;
8377 ------------------------------
8378 -- Constrain_Ordinary_Fixed --
8379 ------------------------------
8381 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
) is
8382 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
8388 Set_Ekind
(Def_Id
, E_Ordinary_Fixed_Point_Subtype
);
8389 Set_Etype
(Def_Id
, Base_Type
(T
));
8390 Set_Size_Info
(Def_Id
, (T
));
8391 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
8392 Set_Small_Value
(Def_Id
, Small_Value
(T
));
8394 -- Process the constraint
8396 C
:= Constraint
(S
);
8398 -- Delta constraint present
8400 if Nkind
(C
) = N_Delta_Constraint
then
8401 Check_Restriction
(No_Obsolescent_Features
, C
);
8403 if Warn_On_Obsolescent_Feature
then
8405 ("subtype delta constraint is an " &
8406 "obsolescent feature ('R'M 'J.3(7))?");
8409 D
:= Delta_Expression
(C
);
8410 Analyze_And_Resolve
(D
, Any_Real
);
8411 Check_Delta_Expression
(D
);
8412 Set_Delta_Value
(Def_Id
, Expr_Value_R
(D
));
8414 -- Check that delta value is in range. Obviously we can do this
8415 -- at compile time, but it is strictly a runtime check, and of
8416 -- course there is an ACVC test that checks this!
8418 if Delta_Value
(Def_Id
) < Delta_Value
(T
) then
8419 Error_Msg_N
("?delta value is too small", D
);
8421 Make_Raise_Constraint_Error
(Sloc
(D
),
8422 Reason
=> CE_Range_Check_Failed
);
8423 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
8426 C
:= Range_Constraint
(C
);
8428 -- No delta constraint present
8431 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
8434 -- Range constraint present
8436 if Nkind
(C
) = N_Range_Constraint
then
8437 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
8439 -- No range constraint present
8442 pragma Assert
(No
(C
));
8443 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
8447 Set_Discrete_RM_Size
(Def_Id
);
8449 -- Unconditionally delay the freeze, since we cannot set size
8450 -- information in all cases correctly until the freeze point.
8452 Set_Has_Delayed_Freeze
(Def_Id
);
8453 end Constrain_Ordinary_Fixed
;
8455 ---------------------------
8456 -- Convert_Scalar_Bounds --
8457 ---------------------------
8459 procedure Convert_Scalar_Bounds
8461 Parent_Type
: Entity_Id
;
8462 Derived_Type
: Entity_Id
;
8465 Implicit_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
8472 Lo
:= Build_Scalar_Bound
8473 (Type_Low_Bound
(Derived_Type
),
8474 Parent_Type
, Implicit_Base
);
8476 Hi
:= Build_Scalar_Bound
8477 (Type_High_Bound
(Derived_Type
),
8478 Parent_Type
, Implicit_Base
);
8485 Set_Includes_Infinities
(Rng
, Has_Infinities
(Derived_Type
));
8487 Set_Parent
(Rng
, N
);
8488 Set_Scalar_Range
(Derived_Type
, Rng
);
8490 -- Analyze the bounds
8492 Analyze_And_Resolve
(Lo
, Implicit_Base
);
8493 Analyze_And_Resolve
(Hi
, Implicit_Base
);
8495 -- Analyze the range itself, except that we do not analyze it if
8496 -- the bounds are real literals, and we have a fixed-point type.
8497 -- The reason for this is that we delay setting the bounds in this
8498 -- case till we know the final Small and Size values (see circuit
8499 -- in Freeze.Freeze_Fixed_Point_Type for further details).
8501 if Is_Fixed_Point_Type
(Parent_Type
)
8502 and then Nkind
(Lo
) = N_Real_Literal
8503 and then Nkind
(Hi
) = N_Real_Literal
8507 -- Here we do the analysis of the range
8509 -- Note: we do this manually, since if we do a normal Analyze and
8510 -- Resolve call, there are problems with the conversions used for
8511 -- the derived type range.
8514 Set_Etype
(Rng
, Implicit_Base
);
8515 Set_Analyzed
(Rng
, True);
8517 end Convert_Scalar_Bounds
;
8523 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
) is
8525 -- Initialize new full declaration entity by copying the pertinent
8526 -- fields of the corresponding private declaration entity.
8528 -- We temporarily set Ekind to a value appropriate for a type to
8529 -- avoid assert failures in Einfo from checking for setting type
8530 -- attributes on something that is not a type. Ekind (Priv) is an
8531 -- appropriate choice, since it allowed the attributes to be set
8532 -- in the first place. This Ekind value will be modified later.
8534 Set_Ekind
(Full
, Ekind
(Priv
));
8536 -- Also set Etype temporarily to Any_Type, again, in the absence
8537 -- of errors, it will be properly reset, and if there are errors,
8538 -- then we want a value of Any_Type to remain.
8540 Set_Etype
(Full
, Any_Type
);
8542 -- Now start copying attributes
8544 Set_Has_Discriminants
(Full
, Has_Discriminants
(Priv
));
8546 if Has_Discriminants
(Full
) then
8547 Set_Discriminant_Constraint
(Full
, Discriminant_Constraint
(Priv
));
8548 Set_Stored_Constraint
(Full
, Stored_Constraint
(Priv
));
8551 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
8552 Set_Homonym
(Full
, Homonym
(Priv
));
8553 Set_Is_Immediately_Visible
(Full
, Is_Immediately_Visible
(Priv
));
8554 Set_Is_Public
(Full
, Is_Public
(Priv
));
8555 Set_Is_Pure
(Full
, Is_Pure
(Priv
));
8556 Set_Is_Tagged_Type
(Full
, Is_Tagged_Type
(Priv
));
8558 Conditional_Delay
(Full
, Priv
);
8560 if Is_Tagged_Type
(Full
) then
8561 Set_Primitive_Operations
(Full
, Primitive_Operations
(Priv
));
8563 if Priv
= Base_Type
(Priv
) then
8564 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Priv
));
8568 Set_Is_Volatile
(Full
, Is_Volatile
(Priv
));
8569 Set_Treat_As_Volatile
(Full
, Treat_As_Volatile
(Priv
));
8570 Set_Scope
(Full
, Scope
(Priv
));
8571 Set_Next_Entity
(Full
, Next_Entity
(Priv
));
8572 Set_First_Entity
(Full
, First_Entity
(Priv
));
8573 Set_Last_Entity
(Full
, Last_Entity
(Priv
));
8575 -- If access types have been recorded for later handling, keep them in
8576 -- the full view so that they get handled when the full view freeze
8577 -- node is expanded.
8579 if Present
(Freeze_Node
(Priv
))
8580 and then Present
(Access_Types_To_Process
(Freeze_Node
(Priv
)))
8582 Ensure_Freeze_Node
(Full
);
8583 Set_Access_Types_To_Process
8584 (Freeze_Node
(Full
),
8585 Access_Types_To_Process
(Freeze_Node
(Priv
)));
8588 -- Swap the two entities. Now Privat is the full type entity and
8589 -- Full is the private one. They will be swapped back at the end
8590 -- of the private part. This swapping ensures that the entity that
8591 -- is visible in the private part is the full declaration.
8593 Exchange_Entities
(Priv
, Full
);
8594 Append_Entity
(Full
, Scope
(Full
));
8597 -------------------------------------
8598 -- Copy_Array_Base_Type_Attributes --
8599 -------------------------------------
8601 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
) is
8603 Set_Component_Alignment
(T1
, Component_Alignment
(T2
));
8604 Set_Component_Type
(T1
, Component_Type
(T2
));
8605 Set_Component_Size
(T1
, Component_Size
(T2
));
8606 Set_Has_Controlled_Component
(T1
, Has_Controlled_Component
(T2
));
8607 Set_Finalize_Storage_Only
(T1
, Finalize_Storage_Only
(T2
));
8608 Set_Has_Non_Standard_Rep
(T1
, Has_Non_Standard_Rep
(T2
));
8609 Set_Has_Task
(T1
, Has_Task
(T2
));
8610 Set_Is_Packed
(T1
, Is_Packed
(T2
));
8611 Set_Has_Aliased_Components
(T1
, Has_Aliased_Components
(T2
));
8612 Set_Has_Atomic_Components
(T1
, Has_Atomic_Components
(T2
));
8613 Set_Has_Volatile_Components
(T1
, Has_Volatile_Components
(T2
));
8614 end Copy_Array_Base_Type_Attributes
;
8616 -----------------------------------
8617 -- Copy_Array_Subtype_Attributes --
8618 -----------------------------------
8620 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
) is
8622 Set_Size_Info
(T1
, T2
);
8624 Set_First_Index
(T1
, First_Index
(T2
));
8625 Set_Is_Aliased
(T1
, Is_Aliased
(T2
));
8626 Set_Is_Atomic
(T1
, Is_Atomic
(T2
));
8627 Set_Is_Volatile
(T1
, Is_Volatile
(T2
));
8628 Set_Treat_As_Volatile
(T1
, Treat_As_Volatile
(T2
));
8629 Set_Is_Constrained
(T1
, Is_Constrained
(T2
));
8630 Set_Depends_On_Private
(T1
, Has_Private_Component
(T2
));
8631 Set_First_Rep_Item
(T1
, First_Rep_Item
(T2
));
8632 Set_Convention
(T1
, Convention
(T2
));
8633 Set_Is_Limited_Composite
(T1
, Is_Limited_Composite
(T2
));
8634 Set_Is_Private_Composite
(T1
, Is_Private_Composite
(T2
));
8635 end Copy_Array_Subtype_Attributes
;
8637 -----------------------------------
8638 -- Create_Constrained_Components --
8639 -----------------------------------
8641 procedure Create_Constrained_Components
8643 Decl_Node
: Node_Id
;
8645 Constraints
: Elist_Id
)
8647 Loc
: constant Source_Ptr
:= Sloc
(Subt
);
8648 Comp_List
: constant Elist_Id
:= New_Elmt_List
;
8649 Parent_Type
: constant Entity_Id
:= Etype
(Typ
);
8650 Assoc_List
: constant List_Id
:= New_List
;
8651 Discr_Val
: Elmt_Id
;
8655 Is_Static
: Boolean := True;
8657 procedure Collect_Fixed_Components
(Typ
: Entity_Id
);
8658 -- Collect parent type components that do not appear in a variant part
8660 procedure Create_All_Components
;
8661 -- Iterate over Comp_List to create the components of the subtype
8663 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
;
8664 -- Creates a new component from Old_Compon, copying all the fields from
8665 -- it, including its Etype, inserts the new component in the Subt entity
8666 -- chain and returns the new component.
8668 function Is_Variant_Record
(T
: Entity_Id
) return Boolean;
8669 -- If true, and discriminants are static, collect only components from
8670 -- variants selected by discriminant values.
8672 ------------------------------
8673 -- Collect_Fixed_Components --
8674 ------------------------------
8676 procedure Collect_Fixed_Components
(Typ
: Entity_Id
) is
8678 -- Build association list for discriminants, and find components of the
8679 -- variant part selected by the values of the discriminants.
8681 Old_C
:= First_Discriminant
(Typ
);
8682 Discr_Val
:= First_Elmt
(Constraints
);
8683 while Present
(Old_C
) loop
8684 Append_To
(Assoc_List
,
8685 Make_Component_Association
(Loc
,
8686 Choices
=> New_List
(New_Occurrence_Of
(Old_C
, Loc
)),
8687 Expression
=> New_Copy
(Node
(Discr_Val
))));
8689 Next_Elmt
(Discr_Val
);
8690 Next_Discriminant
(Old_C
);
8693 -- The tag, and the possible parent and controller components
8694 -- are unconditionally in the subtype.
8696 if Is_Tagged_Type
(Typ
)
8697 or else Has_Controlled_Component
(Typ
)
8699 Old_C
:= First_Component
(Typ
);
8700 while Present
(Old_C
) loop
8701 if Chars
((Old_C
)) = Name_uTag
8702 or else Chars
((Old_C
)) = Name_uParent
8703 or else Chars
((Old_C
)) = Name_uController
8705 Append_Elmt
(Old_C
, Comp_List
);
8708 Next_Component
(Old_C
);
8711 end Collect_Fixed_Components
;
8713 ---------------------------
8714 -- Create_All_Components --
8715 ---------------------------
8717 procedure Create_All_Components
is
8721 Comp
:= First_Elmt
(Comp_List
);
8722 while Present
(Comp
) loop
8723 Old_C
:= Node
(Comp
);
8724 New_C
:= Create_Component
(Old_C
);
8728 Constrain_Component_Type
8729 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
8730 Set_Is_Public
(New_C
, Is_Public
(Subt
));
8734 end Create_All_Components
;
8736 ----------------------
8737 -- Create_Component --
8738 ----------------------
8740 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
is
8741 New_Compon
: constant Entity_Id
:= New_Copy
(Old_Compon
);
8744 -- Set the parent so we have a proper link for freezing etc. This
8745 -- is not a real parent pointer, since of course our parent does
8746 -- not own up to us and reference us, we are an illegitimate
8747 -- child of the original parent!
8749 Set_Parent
(New_Compon
, Parent
(Old_Compon
));
8751 -- We do not want this node marked as Comes_From_Source, since
8752 -- otherwise it would get first class status and a separate
8753 -- cross-reference line would be generated. Illegitimate
8754 -- children do not rate such recognition.
8756 Set_Comes_From_Source
(New_Compon
, False);
8758 -- But it is a real entity, and a birth certificate must be
8759 -- properly registered by entering it into the entity list.
8761 Enter_Name
(New_Compon
);
8763 end Create_Component
;
8765 -----------------------
8766 -- Is_Variant_Record --
8767 -----------------------
8769 function Is_Variant_Record
(T
: Entity_Id
) return Boolean is
8771 return Nkind
(Parent
(T
)) = N_Full_Type_Declaration
8772 and then Nkind
(Type_Definition
(Parent
(T
))) = N_Record_Definition
8773 and then Present
(Component_List
(Type_Definition
(Parent
(T
))))
8775 Variant_Part
(Component_List
(Type_Definition
(Parent
(T
)))));
8776 end Is_Variant_Record
;
8778 -- Start of processing for Create_Constrained_Components
8781 pragma Assert
(Subt
/= Base_Type
(Subt
));
8782 pragma Assert
(Typ
= Base_Type
(Typ
));
8784 Set_First_Entity
(Subt
, Empty
);
8785 Set_Last_Entity
(Subt
, Empty
);
8787 -- Check whether constraint is fully static, in which case we can
8788 -- optimize the list of components.
8790 Discr_Val
:= First_Elmt
(Constraints
);
8791 while Present
(Discr_Val
) loop
8792 if not Is_OK_Static_Expression
(Node
(Discr_Val
)) then
8797 Next_Elmt
(Discr_Val
);
8802 -- Inherit the discriminants of the parent type
8804 Old_C
:= First_Discriminant
(Typ
);
8805 while Present
(Old_C
) loop
8806 New_C
:= Create_Component
(Old_C
);
8807 Set_Is_Public
(New_C
, Is_Public
(Subt
));
8808 Next_Discriminant
(Old_C
);
8812 and then Is_Variant_Record
(Typ
)
8814 Collect_Fixed_Components
(Typ
);
8818 Component_List
(Type_Definition
(Parent
(Typ
))),
8819 Governed_By
=> Assoc_List
,
8821 Report_Errors
=> Errors
);
8822 pragma Assert
(not Errors
);
8824 Create_All_Components
;
8826 -- If the subtype declaration is created for a tagged type derivation
8827 -- with constraints, we retrieve the record definition of the parent
8828 -- type to select the components of the proper variant.
8831 and then Is_Tagged_Type
(Typ
)
8832 and then Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
8834 Nkind
(Type_Definition
(Parent
(Typ
))) = N_Derived_Type_Definition
8835 and then Is_Variant_Record
(Parent_Type
)
8837 Collect_Fixed_Components
(Typ
);
8841 Component_List
(Type_Definition
(Parent
(Parent_Type
))),
8842 Governed_By
=> Assoc_List
,
8844 Report_Errors
=> Errors
);
8845 pragma Assert
(not Errors
);
8847 -- If the tagged derivation has a type extension, collect all the
8848 -- new components therein.
8851 (Record_Extension_Part
(Type_Definition
(Parent
(Typ
))))
8853 Old_C
:= First_Component
(Typ
);
8854 while Present
(Old_C
) loop
8855 if Original_Record_Component
(Old_C
) = Old_C
8856 and then Chars
(Old_C
) /= Name_uTag
8857 and then Chars
(Old_C
) /= Name_uParent
8858 and then Chars
(Old_C
) /= Name_uController
8860 Append_Elmt
(Old_C
, Comp_List
);
8863 Next_Component
(Old_C
);
8867 Create_All_Components
;
8870 -- If the discriminants are not static, or if this is a multi-level
8871 -- type extension, we have to include all the components of the
8874 Old_C
:= First_Component
(Typ
);
8875 while Present
(Old_C
) loop
8876 New_C
:= Create_Component
(Old_C
);
8880 Constrain_Component_Type
8881 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
8882 Set_Is_Public
(New_C
, Is_Public
(Subt
));
8884 Next_Component
(Old_C
);
8889 end Create_Constrained_Components
;
8891 ------------------------------------------
8892 -- Decimal_Fixed_Point_Type_Declaration --
8893 ------------------------------------------
8895 procedure Decimal_Fixed_Point_Type_Declaration
8899 Loc
: constant Source_Ptr
:= Sloc
(Def
);
8900 Digs_Expr
: constant Node_Id
:= Digits_Expression
(Def
);
8901 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
8902 Implicit_Base
: Entity_Id
;
8908 -- Start of processing for Decimal_Fixed_Point_Type_Declaration
8911 Check_Restriction
(No_Fixed_Point
, Def
);
8913 -- Create implicit base type
8916 Create_Itype
(E_Decimal_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
8917 Set_Etype
(Implicit_Base
, Implicit_Base
);
8919 -- Analyze and process delta expression
8921 Analyze_And_Resolve
(Delta_Expr
, Universal_Real
);
8923 Check_Delta_Expression
(Delta_Expr
);
8924 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
8926 -- Check delta is power of 10, and determine scale value from it
8929 Val
: Ureal
:= Delta_Val
;
8932 Scale_Val
:= Uint_0
;
8934 if Val
< Ureal_1
then
8935 while Val
< Ureal_1
loop
8936 Val
:= Val
* Ureal_10
;
8937 Scale_Val
:= Scale_Val
+ 1;
8940 if Scale_Val
> 18 then
8941 Error_Msg_N
("scale exceeds maximum value of 18", Def
);
8942 Scale_Val
:= UI_From_Int
(+18);
8946 while Val
> Ureal_1
loop
8947 Val
:= Val
/ Ureal_10
;
8948 Scale_Val
:= Scale_Val
- 1;
8951 if Scale_Val
< -18 then
8952 Error_Msg_N
("scale is less than minimum value of -18", Def
);
8953 Scale_Val
:= UI_From_Int
(-18);
8957 if Val
/= Ureal_1
then
8958 Error_Msg_N
("delta expression must be a power of 10", Def
);
8959 Delta_Val
:= Ureal_10
** (-Scale_Val
);
8963 -- Set delta, scale and small (small = delta for decimal type)
8965 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
8966 Set_Scale_Value
(Implicit_Base
, Scale_Val
);
8967 Set_Small_Value
(Implicit_Base
, Delta_Val
);
8969 -- Analyze and process digits expression
8971 Analyze_And_Resolve
(Digs_Expr
, Any_Integer
);
8972 Check_Digits_Expression
(Digs_Expr
);
8973 Digs_Val
:= Expr_Value
(Digs_Expr
);
8975 if Digs_Val
> 18 then
8976 Digs_Val
:= UI_From_Int
(+18);
8977 Error_Msg_N
("digits value out of range, maximum is 18", Digs_Expr
);
8980 Set_Digits_Value
(Implicit_Base
, Digs_Val
);
8981 Bound_Val
:= UR_From_Uint
(10 ** Digs_Val
- 1) * Delta_Val
;
8983 -- Set range of base type from digits value for now. This will be
8984 -- expanded to represent the true underlying base range by Freeze.
8986 Set_Fixed_Range
(Implicit_Base
, Loc
, -Bound_Val
, Bound_Val
);
8988 -- Set size to zero for now, size will be set at freeze time. We have
8989 -- to do this for ordinary fixed-point, because the size depends on
8990 -- the specified small, and we might as well do the same for decimal
8993 Init_Size_Align
(Implicit_Base
);
8995 -- If there are bounds given in the declaration use them as the
8996 -- bounds of the first named subtype.
8998 if Present
(Real_Range_Specification
(Def
)) then
9000 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
9001 Low
: constant Node_Id
:= Low_Bound
(RRS
);
9002 High
: constant Node_Id
:= High_Bound
(RRS
);
9007 Analyze_And_Resolve
(Low
, Any_Real
);
9008 Analyze_And_Resolve
(High
, Any_Real
);
9009 Check_Real_Bound
(Low
);
9010 Check_Real_Bound
(High
);
9011 Low_Val
:= Expr_Value_R
(Low
);
9012 High_Val
:= Expr_Value_R
(High
);
9014 if Low_Val
< (-Bound_Val
) then
9016 ("range low bound too small for digits value", Low
);
9017 Low_Val
:= -Bound_Val
;
9020 if High_Val
> Bound_Val
then
9022 ("range high bound too large for digits value", High
);
9023 High_Val
:= Bound_Val
;
9026 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
9029 -- If no explicit range, use range that corresponds to given
9030 -- digits value. This will end up as the final range for the
9034 Set_Fixed_Range
(T
, Loc
, -Bound_Val
, Bound_Val
);
9037 -- Complete entity for first subtype
9039 Set_Ekind
(T
, E_Decimal_Fixed_Point_Subtype
);
9040 Set_Etype
(T
, Implicit_Base
);
9041 Set_Size_Info
(T
, Implicit_Base
);
9042 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
9043 Set_Digits_Value
(T
, Digs_Val
);
9044 Set_Delta_Value
(T
, Delta_Val
);
9045 Set_Small_Value
(T
, Delta_Val
);
9046 Set_Scale_Value
(T
, Scale_Val
);
9047 Set_Is_Constrained
(T
);
9048 end Decimal_Fixed_Point_Type_Declaration
;
9050 -----------------------
9051 -- Derive_Subprogram --
9052 -----------------------
9054 procedure Derive_Subprogram
9055 (New_Subp
: in out Entity_Id
;
9056 Parent_Subp
: Entity_Id
;
9057 Derived_Type
: Entity_Id
;
9058 Parent_Type
: Entity_Id
;
9059 Actual_Subp
: Entity_Id
:= Empty
)
9062 New_Formal
: Entity_Id
;
9063 Visible_Subp
: Entity_Id
:= Parent_Subp
;
9065 function Is_Private_Overriding
return Boolean;
9066 -- If Subp is a private overriding of a visible operation, the in-
9067 -- herited operation derives from the overridden op (even though
9068 -- its body is the overriding one) and the inherited operation is
9069 -- visible now. See sem_disp to see the details of the handling of
9070 -- the overridden subprogram, which is removed from the list of
9071 -- primitive operations of the type. The overridden subprogram is
9072 -- saved locally in Visible_Subp, and used to diagnose abstract
9073 -- operations that need overriding in the derived type.
9075 procedure Replace_Type
(Id
, New_Id
: Entity_Id
);
9076 -- When the type is an anonymous access type, create a new access type
9077 -- designating the derived type.
9079 procedure Set_Derived_Name
;
9080 -- This procedure sets the appropriate Chars name for New_Subp. This
9081 -- is normally just a copy of the parent name. An exception arises for
9082 -- type support subprograms, where the name is changed to reflect the
9083 -- name of the derived type, e.g. if type foo is derived from type bar,
9084 -- then a procedure barDA is derived with a name fooDA.
9086 ---------------------------
9087 -- Is_Private_Overriding --
9088 ---------------------------
9090 function Is_Private_Overriding
return Boolean is
9094 -- The visible operation that is overriden is a homonym of the
9095 -- parent subprogram. We scan the homonym chain to find the one
9096 -- whose alias is the subprogram we are deriving.
9098 Prev
:= Homonym
(Parent_Subp
);
9099 while Present
(Prev
) loop
9100 if Is_Dispatching_Operation
(Parent_Subp
)
9101 and then Present
(Prev
)
9102 and then Ekind
(Prev
) = Ekind
(Parent_Subp
)
9103 and then Alias
(Prev
) = Parent_Subp
9104 and then Scope
(Parent_Subp
) = Scope
(Prev
)
9105 and then not Is_Hidden
(Prev
)
9107 Visible_Subp
:= Prev
;
9111 Prev
:= Homonym
(Prev
);
9115 end Is_Private_Overriding
;
9121 procedure Replace_Type
(Id
, New_Id
: Entity_Id
) is
9122 Acc_Type
: Entity_Id
;
9124 Par
: constant Node_Id
:= Parent
(Derived_Type
);
9127 -- When the type is an anonymous access type, create a new access
9128 -- type designating the derived type. This itype must be elaborated
9129 -- at the point of the derivation, not on subsequent calls that may
9130 -- be out of the proper scope for Gigi, so we insert a reference to
9131 -- it after the derivation.
9133 if Ekind
(Etype
(Id
)) = E_Anonymous_Access_Type
then
9135 Desig_Typ
: Entity_Id
:= Designated_Type
(Etype
(Id
));
9138 if Ekind
(Desig_Typ
) = E_Record_Type_With_Private
9139 and then Present
(Full_View
(Desig_Typ
))
9140 and then not Is_Private_Type
(Parent_Type
)
9142 Desig_Typ
:= Full_View
(Desig_Typ
);
9145 if Base_Type
(Desig_Typ
) = Base_Type
(Parent_Type
) then
9146 Acc_Type
:= New_Copy
(Etype
(Id
));
9147 Set_Etype
(Acc_Type
, Acc_Type
);
9148 Set_Scope
(Acc_Type
, New_Subp
);
9150 -- Compute size of anonymous access type
9152 if Is_Array_Type
(Desig_Typ
)
9153 and then not Is_Constrained
(Desig_Typ
)
9155 Init_Size
(Acc_Type
, 2 * System_Address_Size
);
9157 Init_Size
(Acc_Type
, System_Address_Size
);
9160 Init_Alignment
(Acc_Type
);
9161 Set_Directly_Designated_Type
(Acc_Type
, Derived_Type
);
9163 Set_Etype
(New_Id
, Acc_Type
);
9164 Set_Scope
(New_Id
, New_Subp
);
9166 -- Create a reference to it
9168 IR
:= Make_Itype_Reference
(Sloc
(Parent
(Derived_Type
)));
9169 Set_Itype
(IR
, Acc_Type
);
9170 Insert_After
(Parent
(Derived_Type
), IR
);
9173 Set_Etype
(New_Id
, Etype
(Id
));
9177 elsif Base_Type
(Etype
(Id
)) = Base_Type
(Parent_Type
)
9179 (Ekind
(Etype
(Id
)) = E_Record_Type_With_Private
9180 and then Present
(Full_View
(Etype
(Id
)))
9182 Base_Type
(Full_View
(Etype
(Id
))) = Base_Type
(Parent_Type
))
9184 -- Constraint checks on formals are generated during expansion,
9185 -- based on the signature of the original subprogram. The bounds
9186 -- of the derived type are not relevant, and thus we can use
9187 -- the base type for the formals. However, the return type may be
9188 -- used in a context that requires that the proper static bounds
9189 -- be used (a case statement, for example) and for those cases
9190 -- we must use the derived type (first subtype), not its base.
9192 -- If the derived_type_definition has no constraints, we know that
9193 -- the derived type has the same constraints as the first subtype
9194 -- of the parent, and we can also use it rather than its base,
9195 -- which can lead to more efficient code.
9197 if Etype
(Id
) = Parent_Type
then
9198 if Is_Scalar_Type
(Parent_Type
)
9200 Subtypes_Statically_Compatible
(Parent_Type
, Derived_Type
)
9202 Set_Etype
(New_Id
, Derived_Type
);
9204 elsif Nkind
(Par
) = N_Full_Type_Declaration
9206 Nkind
(Type_Definition
(Par
)) = N_Derived_Type_Definition
9209 (Subtype_Indication
(Type_Definition
(Par
)))
9211 Set_Etype
(New_Id
, Derived_Type
);
9214 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
9218 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
9222 Set_Etype
(New_Id
, Etype
(Id
));
9226 ----------------------
9227 -- Set_Derived_Name --
9228 ----------------------
9230 procedure Set_Derived_Name
is
9231 Nm
: constant TSS_Name_Type
:= Get_TSS_Name
(Parent_Subp
);
9233 if Nm
= TSS_Null
then
9234 Set_Chars
(New_Subp
, Chars
(Parent_Subp
));
9236 Set_Chars
(New_Subp
, Make_TSS_Name
(Base_Type
(Derived_Type
), Nm
));
9238 end Set_Derived_Name
;
9240 -- Start of processing for Derive_Subprogram
9244 New_Entity
(Nkind
(Parent_Subp
), Sloc
(Derived_Type
));
9245 Set_Ekind
(New_Subp
, Ekind
(Parent_Subp
));
9247 -- Check whether the inherited subprogram is a private operation that
9248 -- should be inherited but not yet made visible. Such subprograms can
9249 -- become visible at a later point (e.g., the private part of a public
9250 -- child unit) via Declare_Inherited_Private_Subprograms. If the
9251 -- following predicate is true, then this is not such a private
9252 -- operation and the subprogram simply inherits the name of the parent
9253 -- subprogram. Note the special check for the names of controlled
9254 -- operations, which are currently exempted from being inherited with
9255 -- a hidden name because they must be findable for generation of
9256 -- implicit run-time calls.
9258 if not Is_Hidden
(Parent_Subp
)
9259 or else Is_Internal
(Parent_Subp
)
9260 or else Is_Private_Overriding
9261 or else Is_Internal_Name
(Chars
(Parent_Subp
))
9262 or else Chars
(Parent_Subp
) = Name_Initialize
9263 or else Chars
(Parent_Subp
) = Name_Adjust
9264 or else Chars
(Parent_Subp
) = Name_Finalize
9268 -- If parent is hidden, this can be a regular derivation if the
9269 -- parent is immediately visible in a non-instantiating context,
9270 -- or if we are in the private part of an instance. This test
9271 -- should still be refined ???
9273 -- The test for In_Instance_Not_Visible avoids inheriting the derived
9274 -- operation as a non-visible operation in cases where the parent
9275 -- subprogram might not be visible now, but was visible within the
9276 -- original generic, so it would be wrong to make the inherited
9277 -- subprogram non-visible now. (Not clear if this test is fully
9278 -- correct; are there any cases where we should declare the inherited
9279 -- operation as not visible to avoid it being overridden, e.g., when
9280 -- the parent type is a generic actual with private primitives ???)
9282 -- (they should be treated the same as other private inherited
9283 -- subprograms, but it's not clear how to do this cleanly). ???
9285 elsif (In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
9286 and then Is_Immediately_Visible
(Parent_Subp
)
9287 and then not In_Instance
)
9288 or else In_Instance_Not_Visible
9292 -- The type is inheriting a private operation, so enter
9293 -- it with a special name so it can't be overridden.
9296 Set_Chars
(New_Subp
, New_External_Name
(Chars
(Parent_Subp
), 'P'));
9299 Set_Parent
(New_Subp
, Parent
(Derived_Type
));
9300 Replace_Type
(Parent_Subp
, New_Subp
);
9301 Conditional_Delay
(New_Subp
, Parent_Subp
);
9303 Formal
:= First_Formal
(Parent_Subp
);
9304 while Present
(Formal
) loop
9305 New_Formal
:= New_Copy
(Formal
);
9307 -- Normally we do not go copying parents, but in the case of
9308 -- formals, we need to link up to the declaration (which is the
9309 -- parameter specification), and it is fine to link up to the
9310 -- original formal's parameter specification in this case.
9312 Set_Parent
(New_Formal
, Parent
(Formal
));
9314 Append_Entity
(New_Formal
, New_Subp
);
9316 Replace_Type
(Formal
, New_Formal
);
9317 Next_Formal
(Formal
);
9320 -- If this derivation corresponds to a tagged generic actual, then
9321 -- primitive operations rename those of the actual. Otherwise the
9322 -- primitive operations rename those of the parent type, If the
9323 -- parent renames an intrinsic operator, so does the new subprogram.
9324 -- We except concatenation, which is always properly typed, and does
9325 -- not get expanded as other intrinsic operations.
9327 if No
(Actual_Subp
) then
9328 if Is_Intrinsic_Subprogram
(Parent_Subp
) then
9329 Set_Is_Intrinsic_Subprogram
(New_Subp
);
9331 if Present
(Alias
(Parent_Subp
))
9332 and then Chars
(Parent_Subp
) /= Name_Op_Concat
9334 Set_Alias
(New_Subp
, Alias
(Parent_Subp
));
9336 Set_Alias
(New_Subp
, Parent_Subp
);
9340 Set_Alias
(New_Subp
, Parent_Subp
);
9344 Set_Alias
(New_Subp
, Actual_Subp
);
9347 -- Derived subprograms of a tagged type must inherit the convention
9348 -- of the parent subprogram (a requirement of AI-117). Derived
9349 -- subprograms of untagged types simply get convention Ada by default.
9351 if Is_Tagged_Type
(Derived_Type
) then
9352 Set_Convention
(New_Subp
, Convention
(Parent_Subp
));
9355 Set_Is_Imported
(New_Subp
, Is_Imported
(Parent_Subp
));
9356 Set_Is_Exported
(New_Subp
, Is_Exported
(Parent_Subp
));
9358 if Ekind
(Parent_Subp
) = E_Procedure
then
9359 Set_Is_Valued_Procedure
9360 (New_Subp
, Is_Valued_Procedure
(Parent_Subp
));
9363 -- A derived function with a controlling result is abstract. If the
9364 -- Derived_Type is a nonabstract formal generic derived type, then
9365 -- inherited operations are not abstract: the required check is done at
9366 -- instantiation time. If the derivation is for a generic actual, the
9367 -- function is not abstract unless the actual is.
9369 if Is_Generic_Type
(Derived_Type
)
9370 and then not Is_Abstract
(Derived_Type
)
9374 elsif Is_Abstract
(Alias
(New_Subp
))
9375 or else (Is_Tagged_Type
(Derived_Type
)
9376 and then Etype
(New_Subp
) = Derived_Type
9377 and then No
(Actual_Subp
))
9379 Set_Is_Abstract
(New_Subp
);
9381 -- Finally, if the parent type is abstract we must verify that all
9382 -- inherited operations are either non-abstract or overridden, or
9383 -- that the derived type itself is abstract (this check is performed
9384 -- at the end of a package declaration, in Check_Abstract_Overriding).
9385 -- A private overriding in the parent type will not be visible in the
9386 -- derivation if we are not in an inner package or in a child unit of
9387 -- the parent type, in which case the abstractness of the inherited
9388 -- operation is carried to the new subprogram.
9390 elsif Is_Abstract
(Parent_Type
)
9391 and then not In_Open_Scopes
(Scope
(Parent_Type
))
9392 and then Is_Private_Overriding
9393 and then Is_Abstract
(Visible_Subp
)
9395 Set_Alias
(New_Subp
, Visible_Subp
);
9396 Set_Is_Abstract
(New_Subp
);
9399 New_Overloaded_Entity
(New_Subp
, Derived_Type
);
9401 -- Check for case of a derived subprogram for the instantiation of a
9402 -- formal derived tagged type, if so mark the subprogram as dispatching
9403 -- and inherit the dispatching attributes of the parent subprogram. The
9404 -- derived subprogram is effectively renaming of the actual subprogram,
9405 -- so it needs to have the same attributes as the actual.
9407 if Present
(Actual_Subp
)
9408 and then Is_Dispatching_Operation
(Parent_Subp
)
9410 Set_Is_Dispatching_Operation
(New_Subp
);
9411 if Present
(DTC_Entity
(Parent_Subp
)) then
9412 Set_DTC_Entity
(New_Subp
, DTC_Entity
(Parent_Subp
));
9413 Set_DT_Position
(New_Subp
, DT_Position
(Parent_Subp
));
9417 -- Indicate that a derived subprogram does not require a body and that
9418 -- it does not require processing of default expressions.
9420 Set_Has_Completion
(New_Subp
);
9421 Set_Default_Expressions_Processed
(New_Subp
);
9423 if Ekind
(New_Subp
) = E_Function
then
9424 Set_Mechanism
(New_Subp
, Mechanism
(Parent_Subp
));
9426 end Derive_Subprogram
;
9428 ------------------------
9429 -- Derive_Subprograms --
9430 ------------------------
9432 procedure Derive_Subprograms
9433 (Parent_Type
: Entity_Id
;
9434 Derived_Type
: Entity_Id
;
9435 Generic_Actual
: Entity_Id
:= Empty
)
9437 Op_List
: constant Elist_Id
:=
9438 Collect_Primitive_Operations
(Parent_Type
);
9439 Act_List
: Elist_Id
;
9443 New_Subp
: Entity_Id
:= Empty
;
9444 Parent_Base
: Entity_Id
;
9447 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
9448 and then Has_Discriminants
(Parent_Type
)
9449 and then Present
(Full_View
(Parent_Type
))
9451 Parent_Base
:= Full_View
(Parent_Type
);
9453 Parent_Base
:= Parent_Type
;
9456 if Present
(Generic_Actual
) then
9457 Act_List
:= Collect_Primitive_Operations
(Generic_Actual
);
9458 Act_Elmt
:= First_Elmt
(Act_List
);
9460 Act_Elmt
:= No_Elmt
;
9463 -- Literals are derived earlier in the process of building the derived
9464 -- type, and are skipped here.
9466 Elmt
:= First_Elmt
(Op_List
);
9467 while Present
(Elmt
) loop
9468 Subp
:= Node
(Elmt
);
9470 if Ekind
(Subp
) /= E_Enumeration_Literal
then
9471 if No
(Generic_Actual
) then
9473 (New_Subp
, Subp
, Derived_Type
, Parent_Base
);
9476 Derive_Subprogram
(New_Subp
, Subp
,
9477 Derived_Type
, Parent_Base
, Node
(Act_Elmt
));
9478 Next_Elmt
(Act_Elmt
);
9484 end Derive_Subprograms
;
9486 --------------------------------
9487 -- Derived_Standard_Character --
9488 --------------------------------
9490 procedure Derived_Standard_Character
9492 Parent_Type
: Entity_Id
;
9493 Derived_Type
: Entity_Id
)
9495 Loc
: constant Source_Ptr
:= Sloc
(N
);
9496 Def
: constant Node_Id
:= Type_Definition
(N
);
9497 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
9498 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
9499 Implicit_Base
: constant Entity_Id
:=
9501 (E_Enumeration_Type
, N
, Derived_Type
, 'B');
9507 Discard_Node
(Process_Subtype
(Indic
, N
));
9509 Set_Etype
(Implicit_Base
, Parent_Base
);
9510 Set_Size_Info
(Implicit_Base
, Root_Type
(Parent_Type
));
9511 Set_RM_Size
(Implicit_Base
, RM_Size
(Root_Type
(Parent_Type
)));
9513 Set_Is_Character_Type
(Implicit_Base
, True);
9514 Set_Has_Delayed_Freeze
(Implicit_Base
);
9516 -- The bounds of the implicit base are the bounds of the parent base.
9517 -- Note that their type is the parent base.
9519 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
9520 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
9522 Set_Scalar_Range
(Implicit_Base
,
9527 Conditional_Delay
(Derived_Type
, Parent_Type
);
9529 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
9530 Set_Etype
(Derived_Type
, Implicit_Base
);
9531 Set_Size_Info
(Derived_Type
, Parent_Type
);
9533 if Unknown_RM_Size
(Derived_Type
) then
9534 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
9537 Set_Is_Character_Type
(Derived_Type
, True);
9539 if Nkind
(Indic
) /= N_Subtype_Indication
then
9541 -- If no explicit constraint, the bounds are those
9542 -- of the parent type.
9544 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Type
));
9545 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Type
));
9546 Set_Scalar_Range
(Derived_Type
, Make_Range
(Loc
, Lo
, Hi
));
9549 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
9551 -- Because the implicit base is used in the conversion of the bounds,
9552 -- we have to freeze it now. This is similar to what is done for
9553 -- numeric types, and it equally suspicious, but otherwise a non-
9554 -- static bound will have a reference to an unfrozen type, which is
9555 -- rejected by Gigi (???).
9557 Freeze_Before
(N
, Implicit_Base
);
9558 end Derived_Standard_Character
;
9560 ------------------------------
9561 -- Derived_Type_Declaration --
9562 ------------------------------
9564 procedure Derived_Type_Declaration
9567 Is_Completion
: Boolean)
9569 Def
: constant Node_Id
:= Type_Definition
(N
);
9570 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
9571 Extension
: constant Node_Id
:= Record_Extension_Part
(Def
);
9572 Parent_Type
: Entity_Id
;
9573 Parent_Scope
: Entity_Id
;
9576 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean;
9577 -- Check whether the parent type is a generic formal, or derives
9578 -- directly or indirectly from one.
9580 ------------------------
9581 -- Comes_From_Generic --
9582 ------------------------
9584 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean is
9586 if Is_Generic_Type
(Typ
) then
9589 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
9592 elsif Is_Private_Type
(Typ
)
9593 and then Present
(Full_View
(Typ
))
9594 and then Is_Generic_Type
(Root_Type
(Full_View
(Typ
)))
9598 elsif Is_Generic_Actual_Type
(Typ
) then
9604 end Comes_From_Generic
;
9606 -- Start of processing for Derived_Type_Declaration
9609 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
9611 if Parent_Type
= Any_Type
9612 or else Etype
(Parent_Type
) = Any_Type
9613 or else (Is_Class_Wide_Type
(Parent_Type
)
9614 and then Etype
(Parent_Type
) = T
)
9616 -- If Parent_Type is undefined or illegal, make new type into a
9617 -- subtype of Any_Type, and set a few attributes to prevent cascaded
9618 -- errors. If this is a self-definition, emit error now.
9621 or else T
= Etype
(Parent_Type
)
9623 Error_Msg_N
("type cannot be used in its own definition", Indic
);
9626 Set_Ekind
(T
, Ekind
(Parent_Type
));
9627 Set_Etype
(T
, Any_Type
);
9628 Set_Scalar_Range
(T
, Scalar_Range
(Any_Type
));
9630 if Is_Tagged_Type
(T
) then
9631 Set_Primitive_Operations
(T
, New_Elmt_List
);
9636 -- Ada 2005 (AI-231): Static check
9638 elsif Is_Access_Type
(Parent_Type
)
9639 and then Null_Exclusion_Present
(Type_Definition
(N
))
9640 and then Can_Never_Be_Null
(Parent_Type
)
9642 Error_Msg_N
("(Ada 2005) null exclusion not allowed if parent is "
9643 & "already non-null", Type_Definition
(N
));
9646 -- Only composite types other than array types are allowed to have
9649 if Present
(Discriminant_Specifications
(N
))
9650 and then (Is_Elementary_Type
(Parent_Type
)
9651 or else Is_Array_Type
(Parent_Type
))
9652 and then not Error_Posted
(N
)
9655 ("elementary or array type cannot have discriminants",
9656 Defining_Identifier
(First
(Discriminant_Specifications
(N
))));
9657 Set_Has_Discriminants
(T
, False);
9660 -- In Ada 83, a derived type defined in a package specification cannot
9661 -- be used for further derivation until the end of its visible part.
9662 -- Note that derivation in the private part of the package is allowed.
9664 if Ada_Version
= Ada_83
9665 and then Is_Derived_Type
(Parent_Type
)
9666 and then In_Visible_Part
(Scope
(Parent_Type
))
9668 if Ada_Version
= Ada_83
and then Comes_From_Source
(Indic
) then
9670 ("(Ada 83): premature use of type for derivation", Indic
);
9674 -- Check for early use of incomplete or private type
9676 if Ekind
(Parent_Type
) = E_Void
9677 or else Ekind
(Parent_Type
) = E_Incomplete_Type
9679 Error_Msg_N
("premature derivation of incomplete type", Indic
);
9682 elsif (Is_Incomplete_Or_Private_Type
(Parent_Type
)
9683 and then not Comes_From_Generic
(Parent_Type
))
9684 or else Has_Private_Component
(Parent_Type
)
9686 -- The ancestor type of a formal type can be incomplete, in which
9687 -- case only the operations of the partial view are available in
9688 -- the generic. Subsequent checks may be required when the full
9689 -- view is analyzed, to verify that derivation from a tagged type
9690 -- has an extension.
9692 if Nkind
(Original_Node
(N
)) = N_Formal_Type_Declaration
then
9695 elsif No
(Underlying_Type
(Parent_Type
))
9696 or else Has_Private_Component
(Parent_Type
)
9699 ("premature derivation of derived or private type", Indic
);
9701 -- Flag the type itself as being in error, this prevents some
9702 -- nasty problems with subsequent uses of the malformed type.
9704 Set_Error_Posted
(T
);
9706 -- Check that within the immediate scope of an untagged partial
9707 -- view it's illegal to derive from the partial view if the
9708 -- full view is tagged. (7.3(7))
9710 -- We verify that the Parent_Type is a partial view by checking
9711 -- that it is not a Full_Type_Declaration (i.e. a private type or
9712 -- private extension declaration), to distinguish a partial view
9713 -- from a derivation from a private type which also appears as
9716 elsif Present
(Full_View
(Parent_Type
))
9717 and then Nkind
(Parent
(Parent_Type
)) /= N_Full_Type_Declaration
9718 and then not Is_Tagged_Type
(Parent_Type
)
9719 and then Is_Tagged_Type
(Full_View
(Parent_Type
))
9721 Parent_Scope
:= Scope
(T
);
9722 while Present
(Parent_Scope
)
9723 and then Parent_Scope
/= Standard_Standard
9725 if Parent_Scope
= Scope
(Parent_Type
) then
9727 ("premature derivation from type with tagged full view",
9731 Parent_Scope
:= Scope
(Parent_Scope
);
9736 -- Check that form of derivation is appropriate
9738 Taggd
:= Is_Tagged_Type
(Parent_Type
);
9740 -- Perhaps the parent type should be changed to the class-wide type's
9741 -- specific type in this case to prevent cascading errors ???
9743 if Present
(Extension
) and then Is_Class_Wide_Type
(Parent_Type
) then
9744 Error_Msg_N
("parent type must not be a class-wide type", Indic
);
9748 if Present
(Extension
) and then not Taggd
then
9750 ("type derived from untagged type cannot have extension", Indic
);
9752 elsif No
(Extension
) and then Taggd
then
9754 -- If this declaration is within a private part (or body) of a
9755 -- generic instantiation then the derivation is allowed (the parent
9756 -- type can only appear tagged in this case if it's a generic actual
9757 -- type, since it would otherwise have been rejected in the analysis
9758 -- of the generic template).
9760 if not Is_Generic_Actual_Type
(Parent_Type
)
9761 or else In_Visible_Part
(Scope
(Parent_Type
))
9764 ("type derived from tagged type must have extension", Indic
);
9768 Build_Derived_Type
(N
, Parent_Type
, T
, Is_Completion
);
9769 end Derived_Type_Declaration
;
9771 ----------------------------------
9772 -- Enumeration_Type_Declaration --
9773 ----------------------------------
9775 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
9782 -- Create identifier node representing lower bound
9784 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
9785 L
:= First
(Literals
(Def
));
9786 Set_Chars
(B_Node
, Chars
(L
));
9787 Set_Entity
(B_Node
, L
);
9788 Set_Etype
(B_Node
, T
);
9789 Set_Is_Static_Expression
(B_Node
, True);
9791 R_Node
:= New_Node
(N_Range
, Sloc
(Def
));
9792 Set_Low_Bound
(R_Node
, B_Node
);
9794 Set_Ekind
(T
, E_Enumeration_Type
);
9795 Set_First_Literal
(T
, L
);
9797 Set_Is_Constrained
(T
);
9801 -- Loop through literals of enumeration type setting pos and rep values
9802 -- except that if the Ekind is already set, then it means that the
9803 -- literal was already constructed (case of a derived type declaration
9804 -- and we should not disturb the Pos and Rep values.
9806 while Present
(L
) loop
9807 if Ekind
(L
) /= E_Enumeration_Literal
then
9808 Set_Ekind
(L
, E_Enumeration_Literal
);
9809 Set_Enumeration_Pos
(L
, Ev
);
9810 Set_Enumeration_Rep
(L
, Ev
);
9811 Set_Is_Known_Valid
(L
, True);
9815 New_Overloaded_Entity
(L
);
9816 Generate_Definition
(L
);
9817 Set_Convention
(L
, Convention_Intrinsic
);
9819 if Nkind
(L
) = N_Defining_Character_Literal
then
9820 Set_Is_Character_Type
(T
, True);
9827 -- Now create a node representing upper bound
9829 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
9830 Set_Chars
(B_Node
, Chars
(Last
(Literals
(Def
))));
9831 Set_Entity
(B_Node
, Last
(Literals
(Def
)));
9832 Set_Etype
(B_Node
, T
);
9833 Set_Is_Static_Expression
(B_Node
, True);
9835 Set_High_Bound
(R_Node
, B_Node
);
9836 Set_Scalar_Range
(T
, R_Node
);
9837 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
9840 -- Set Discard_Names if configuration pragma set, or if there is
9841 -- a parameterless pragma in the current declarative region
9843 if Global_Discard_Names
9844 or else Discard_Names
(Scope
(T
))
9846 Set_Discard_Names
(T
);
9849 -- Process end label if there is one
9851 if Present
(Def
) then
9852 Process_End_Label
(Def
, 'e', T
);
9854 end Enumeration_Type_Declaration
;
9856 ---------------------------------
9857 -- Expand_To_Stored_Constraint --
9858 ---------------------------------
9860 function Expand_To_Stored_Constraint
9862 Constraint
: Elist_Id
) return Elist_Id
9864 Explicitly_Discriminated_Type
: Entity_Id
;
9865 Expansion
: Elist_Id
;
9866 Discriminant
: Entity_Id
;
9868 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
;
9869 -- Find the nearest type that actually specifies discriminants
9871 ---------------------------------
9872 -- Type_With_Explicit_Discrims --
9873 ---------------------------------
9875 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
is
9876 Typ
: constant E
:= Base_Type
(Id
);
9879 if Ekind
(Typ
) in Incomplete_Or_Private_Kind
then
9880 if Present
(Full_View
(Typ
)) then
9881 return Type_With_Explicit_Discrims
(Full_View
(Typ
));
9885 if Has_Discriminants
(Typ
) then
9890 if Etype
(Typ
) = Typ
then
9892 elsif Has_Discriminants
(Typ
) then
9895 return Type_With_Explicit_Discrims
(Etype
(Typ
));
9898 end Type_With_Explicit_Discrims
;
9900 -- Start of processing for Expand_To_Stored_Constraint
9904 or else Is_Empty_Elmt_List
(Constraint
)
9909 Explicitly_Discriminated_Type
:= Type_With_Explicit_Discrims
(Typ
);
9911 if No
(Explicitly_Discriminated_Type
) then
9915 Expansion
:= New_Elmt_List
;
9918 First_Stored_Discriminant
(Explicitly_Discriminated_Type
);
9919 while Present
(Discriminant
) loop
9921 Get_Discriminant_Value
(
9922 Discriminant
, Explicitly_Discriminated_Type
, Constraint
),
9924 Next_Stored_Discriminant
(Discriminant
);
9928 end Expand_To_Stored_Constraint
;
9930 --------------------
9931 -- Find_Type_Name --
9932 --------------------
9934 function Find_Type_Name
(N
: Node_Id
) return Entity_Id
is
9935 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
9941 -- Find incomplete declaration, if one was given
9943 Prev
:= Current_Entity_In_Scope
(Id
);
9945 if Present
(Prev
) then
9947 -- Previous declaration exists. Error if not incomplete/private case
9948 -- except if previous declaration is implicit, etc. Enter_Name will
9949 -- emit error if appropriate.
9951 Prev_Par
:= Parent
(Prev
);
9953 if not Is_Incomplete_Or_Private_Type
(Prev
) then
9957 elsif Nkind
(N
) /= N_Full_Type_Declaration
9958 and then Nkind
(N
) /= N_Task_Type_Declaration
9959 and then Nkind
(N
) /= N_Protected_Type_Declaration
9961 -- Completion must be a full type declarations (RM 7.3(4))
9963 Error_Msg_Sloc
:= Sloc
(Prev
);
9964 Error_Msg_NE
("invalid completion of }", Id
, Prev
);
9966 -- Set scope of Id to avoid cascaded errors. Entity is never
9967 -- examined again, except when saving globals in generics.
9969 Set_Scope
(Id
, Current_Scope
);
9972 -- Case of full declaration of incomplete type
9974 elsif Ekind
(Prev
) = E_Incomplete_Type
then
9976 -- Indicate that the incomplete declaration has a matching full
9977 -- declaration. The defining occurrence of the incomplete
9978 -- declaration remains the visible one, and the procedure
9979 -- Get_Full_View dereferences it whenever the type is used.
9981 if Present
(Full_View
(Prev
)) then
9982 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
9985 Set_Full_View
(Prev
, Id
);
9986 Append_Entity
(Id
, Current_Scope
);
9987 Set_Is_Public
(Id
, Is_Public
(Prev
));
9988 Set_Is_Internal
(Id
);
9991 -- Case of full declaration of private type
9994 if Nkind
(Parent
(Prev
)) /= N_Private_Extension_Declaration
then
9995 if Etype
(Prev
) /= Prev
then
9997 -- Prev is a private subtype or a derived type, and needs
10000 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
10003 elsif Ekind
(Prev
) = E_Private_Type
10005 (Nkind
(N
) = N_Task_Type_Declaration
10006 or else Nkind
(N
) = N_Protected_Type_Declaration
)
10009 ("completion of nonlimited type cannot be limited", N
);
10012 elsif Nkind
(N
) /= N_Full_Type_Declaration
10013 or else Nkind
(Type_Definition
(N
)) /= N_Derived_Type_Definition
10016 ("full view of private extension must be an extension", N
);
10018 elsif not (Abstract_Present
(Parent
(Prev
)))
10019 and then Abstract_Present
(Type_Definition
(N
))
10022 ("full view of non-abstract extension cannot be abstract", N
);
10025 if not In_Private_Part
(Current_Scope
) then
10027 ("declaration of full view must appear in private part", N
);
10030 Copy_And_Swap
(Prev
, Id
);
10031 Set_Has_Private_Declaration
(Prev
);
10032 Set_Has_Private_Declaration
(Id
);
10034 -- If no error, propagate freeze_node from private to full view.
10035 -- It may have been generated for an early operational item.
10037 if Present
(Freeze_Node
(Id
))
10038 and then Serious_Errors_Detected
= 0
10039 and then No
(Full_View
(Id
))
10041 Set_Freeze_Node
(Prev
, Freeze_Node
(Id
));
10042 Set_Freeze_Node
(Id
, Empty
);
10043 Set_First_Rep_Item
(Prev
, First_Rep_Item
(Id
));
10046 Set_Full_View
(Id
, Prev
);
10050 -- Verify that full declaration conforms to incomplete one
10052 if Is_Incomplete_Or_Private_Type
(Prev
)
10053 and then Present
(Discriminant_Specifications
(Prev_Par
))
10055 if Present
(Discriminant_Specifications
(N
)) then
10056 if Ekind
(Prev
) = E_Incomplete_Type
then
10057 Check_Discriminant_Conformance
(N
, Prev
, Prev
);
10059 Check_Discriminant_Conformance
(N
, Prev
, Id
);
10064 ("missing discriminants in full type declaration", N
);
10066 -- To avoid cascaded errors on subsequent use, share the
10067 -- discriminants of the partial view.
10069 Set_Discriminant_Specifications
(N
,
10070 Discriminant_Specifications
(Prev_Par
));
10074 -- A prior untagged private type can have an associated class-wide
10075 -- type due to use of the class attribute, and in this case also the
10076 -- full type is required to be tagged.
10079 and then (Is_Tagged_Type
(Prev
)
10080 or else Present
(Class_Wide_Type
(Prev
)))
10082 -- The full declaration is either a tagged record or an
10083 -- extension otherwise this is an error
10085 if Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
10086 if not Tagged_Present
(Type_Definition
(N
)) then
10088 ("full declaration of } must be tagged", Prev
, Id
);
10089 Set_Is_Tagged_Type
(Id
);
10090 Set_Primitive_Operations
(Id
, New_Elmt_List
);
10093 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
10094 if No
(Record_Extension_Part
(Type_Definition
(N
))) then
10096 "full declaration of } must be a record extension",
10098 Set_Is_Tagged_Type
(Id
);
10099 Set_Primitive_Operations
(Id
, New_Elmt_List
);
10104 ("full declaration of } must be a tagged type", Prev
, Id
);
10112 -- New type declaration
10117 end Find_Type_Name
;
10119 -------------------------
10120 -- Find_Type_Of_Object --
10121 -------------------------
10123 function Find_Type_Of_Object
10124 (Obj_Def
: Node_Id
;
10125 Related_Nod
: Node_Id
) return Entity_Id
10127 Def_Kind
: constant Node_Kind
:= Nkind
(Obj_Def
);
10128 P
: Node_Id
:= Parent
(Obj_Def
);
10133 -- If the parent is a component_definition node we climb to the
10134 -- component_declaration node
10136 if Nkind
(P
) = N_Component_Definition
then
10140 -- Case of an anonymous array subtype
10142 if Def_Kind
= N_Constrained_Array_Definition
10143 or else Def_Kind
= N_Unconstrained_Array_Definition
10146 Array_Type_Declaration
(T
, Obj_Def
);
10148 -- Create an explicit subtype whenever possible
10150 elsif Nkind
(P
) /= N_Component_Declaration
10151 and then Def_Kind
= N_Subtype_Indication
10153 -- Base name of subtype on object name, which will be unique in
10154 -- the current scope.
10156 -- If this is a duplicate declaration, return base type, to avoid
10157 -- generating duplicate anonymous types.
10159 if Error_Posted
(P
) then
10160 Analyze
(Subtype_Mark
(Obj_Def
));
10161 return Entity
(Subtype_Mark
(Obj_Def
));
10166 (Chars
(Defining_Identifier
(Related_Nod
)), 'S', 0, 'T');
10168 T
:= Make_Defining_Identifier
(Sloc
(P
), Nam
);
10170 Insert_Action
(Obj_Def
,
10171 Make_Subtype_Declaration
(Sloc
(P
),
10172 Defining_Identifier
=> T
,
10173 Subtype_Indication
=> Relocate_Node
(Obj_Def
)));
10175 -- This subtype may need freezing, and this will not be done
10176 -- automatically if the object declaration is not in declarative
10177 -- part. Since this is an object declaration, the type cannot always
10178 -- be frozen here. Deferred constants do not freeze their type
10179 -- (which often enough will be private).
10181 if Nkind
(P
) = N_Object_Declaration
10182 and then Constant_Present
(P
)
10183 and then No
(Expression
(P
))
10188 Insert_Actions
(Obj_Def
, Freeze_Entity
(T
, Sloc
(P
)));
10192 T
:= Process_Subtype
(Obj_Def
, Related_Nod
);
10196 end Find_Type_Of_Object
;
10198 --------------------------------
10199 -- Find_Type_Of_Subtype_Indic --
10200 --------------------------------
10202 function Find_Type_Of_Subtype_Indic
(S
: Node_Id
) return Entity_Id
is
10206 -- Case of subtype mark with a constraint
10208 if Nkind
(S
) = N_Subtype_Indication
then
10209 Find_Type
(Subtype_Mark
(S
));
10210 Typ
:= Entity
(Subtype_Mark
(S
));
10213 Is_Valid_Constraint_Kind
(Ekind
(Typ
), Nkind
(Constraint
(S
)))
10216 ("incorrect constraint for this kind of type", Constraint
(S
));
10217 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
10220 -- Otherwise we have a subtype mark without a constraint
10222 elsif Error_Posted
(S
) then
10223 Rewrite
(S
, New_Occurrence_Of
(Any_Id
, Sloc
(S
)));
10231 if Typ
= Standard_Wide_Character
10232 or else Typ
= Standard_Wide_Wide_Character
10233 or else Typ
= Standard_Wide_String
10234 or else Typ
= Standard_Wide_Wide_String
10236 Check_Restriction
(No_Wide_Characters
, S
);
10240 end Find_Type_Of_Subtype_Indic
;
10242 -------------------------------------
10243 -- Floating_Point_Type_Declaration --
10244 -------------------------------------
10246 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
10247 Digs
: constant Node_Id
:= Digits_Expression
(Def
);
10249 Base_Typ
: Entity_Id
;
10250 Implicit_Base
: Entity_Id
;
10253 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
10254 -- Find if given digits value allows derivation from specified type
10256 ---------------------
10257 -- Can_Derive_From --
10258 ---------------------
10260 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
10261 Spec
: constant Entity_Id
:= Real_Range_Specification
(Def
);
10264 if Digs_Val
> Digits_Value
(E
) then
10268 if Present
(Spec
) then
10269 if Expr_Value_R
(Type_Low_Bound
(E
)) >
10270 Expr_Value_R
(Low_Bound
(Spec
))
10275 if Expr_Value_R
(Type_High_Bound
(E
)) <
10276 Expr_Value_R
(High_Bound
(Spec
))
10283 end Can_Derive_From
;
10285 -- Start of processing for Floating_Point_Type_Declaration
10288 Check_Restriction
(No_Floating_Point
, Def
);
10290 -- Create an implicit base type
10293 Create_Itype
(E_Floating_Point_Type
, Parent
(Def
), T
, 'B');
10295 -- Analyze and verify digits value
10297 Analyze_And_Resolve
(Digs
, Any_Integer
);
10298 Check_Digits_Expression
(Digs
);
10299 Digs_Val
:= Expr_Value
(Digs
);
10301 -- Process possible range spec and find correct type to derive from
10303 Process_Real_Range_Specification
(Def
);
10305 if Can_Derive_From
(Standard_Short_Float
) then
10306 Base_Typ
:= Standard_Short_Float
;
10307 elsif Can_Derive_From
(Standard_Float
) then
10308 Base_Typ
:= Standard_Float
;
10309 elsif Can_Derive_From
(Standard_Long_Float
) then
10310 Base_Typ
:= Standard_Long_Float
;
10311 elsif Can_Derive_From
(Standard_Long_Long_Float
) then
10312 Base_Typ
:= Standard_Long_Long_Float
;
10314 -- If we can't derive from any existing type, use long_long_float
10315 -- and give appropriate message explaining the problem.
10318 Base_Typ
:= Standard_Long_Long_Float
;
10320 if Digs_Val
>= Digits_Value
(Standard_Long_Long_Float
) then
10321 Error_Msg_Uint_1
:= Digits_Value
(Standard_Long_Long_Float
);
10322 Error_Msg_N
("digits value out of range, maximum is ^", Digs
);
10326 ("range too large for any predefined type",
10327 Real_Range_Specification
(Def
));
10331 -- If there are bounds given in the declaration use them as the bounds
10332 -- of the type, otherwise use the bounds of the predefined base type
10333 -- that was chosen based on the Digits value.
10335 if Present
(Real_Range_Specification
(Def
)) then
10336 Set_Scalar_Range
(T
, Real_Range_Specification
(Def
));
10337 Set_Is_Constrained
(T
);
10339 -- The bounds of this range must be converted to machine numbers
10340 -- in accordance with RM 4.9(38).
10342 Bound
:= Type_Low_Bound
(T
);
10344 if Nkind
(Bound
) = N_Real_Literal
then
10346 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
10347 Set_Is_Machine_Number
(Bound
);
10350 Bound
:= Type_High_Bound
(T
);
10352 if Nkind
(Bound
) = N_Real_Literal
then
10354 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
10355 Set_Is_Machine_Number
(Bound
);
10359 Set_Scalar_Range
(T
, Scalar_Range
(Base_Typ
));
10362 -- Complete definition of implicit base and declared first subtype
10364 Set_Etype
(Implicit_Base
, Base_Typ
);
10366 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
10367 Set_Size_Info
(Implicit_Base
, (Base_Typ
));
10368 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
10369 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
10370 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Base_Typ
));
10371 Set_Vax_Float
(Implicit_Base
, Vax_Float
(Base_Typ
));
10373 Set_Ekind
(T
, E_Floating_Point_Subtype
);
10374 Set_Etype
(T
, Implicit_Base
);
10376 Set_Size_Info
(T
, (Implicit_Base
));
10377 Set_RM_Size
(T
, RM_Size
(Implicit_Base
));
10378 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
10379 Set_Digits_Value
(T
, Digs_Val
);
10380 end Floating_Point_Type_Declaration
;
10382 ----------------------------
10383 -- Get_Discriminant_Value --
10384 ----------------------------
10386 -- This is the situation:
10388 -- There is a non-derived type
10390 -- type T0 (Dx, Dy, Dz...)
10392 -- There are zero or more levels of derivation, with each derivation
10393 -- either purely inheriting the discriminants, or defining its own.
10395 -- type Ti is new Ti-1
10397 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
10399 -- subtype Ti is ...
10401 -- The subtype issue is avoided by the use of Original_Record_Component,
10402 -- and the fact that derived subtypes also derive the constraints.
10404 -- This chain leads back from
10406 -- Typ_For_Constraint
10408 -- Typ_For_Constraint has discriminants, and the value for each
10409 -- discriminant is given by its corresponding Elmt of Constraints.
10411 -- Discriminant is some discriminant in this hierarchy
10413 -- We need to return its value
10415 -- We do this by recursively searching each level, and looking for
10416 -- Discriminant. Once we get to the bottom, we start backing up
10417 -- returning the value for it which may in turn be a discriminant
10418 -- further up, so on the backup we continue the substitution.
10420 function Get_Discriminant_Value
10421 (Discriminant
: Entity_Id
;
10422 Typ_For_Constraint
: Entity_Id
;
10423 Constraint
: Elist_Id
) return Node_Id
10425 function Search_Derivation_Levels
10427 Discrim_Values
: Elist_Id
;
10428 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
;
10429 -- This is the routine that performs the recursive search of levels
10430 -- as described above.
10432 ------------------------------
10433 -- Search_Derivation_Levels --
10434 ------------------------------
10436 function Search_Derivation_Levels
10438 Discrim_Values
: Elist_Id
;
10439 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
10443 Result
: Node_Or_Entity_Id
;
10444 Result_Entity
: Node_Id
;
10447 -- If inappropriate type, return Error, this happens only in
10448 -- cascaded error situations, and we want to avoid a blow up.
10450 if not Is_Composite_Type
(Ti
) or else Is_Array_Type
(Ti
) then
10454 -- Look deeper if possible. Use Stored_Constraints only for
10455 -- untagged types. For tagged types use the given constraint.
10456 -- This asymmetry needs explanation???
10458 if not Stored_Discrim_Values
10459 and then Present
(Stored_Constraint
(Ti
))
10460 and then not Is_Tagged_Type
(Ti
)
10463 Search_Derivation_Levels
(Ti
, Stored_Constraint
(Ti
), True);
10466 Td
: constant Entity_Id
:= Etype
(Ti
);
10470 Result
:= Discriminant
;
10473 if Present
(Stored_Constraint
(Ti
)) then
10475 Search_Derivation_Levels
10476 (Td
, Stored_Constraint
(Ti
), True);
10479 Search_Derivation_Levels
10480 (Td
, Discrim_Values
, Stored_Discrim_Values
);
10486 -- Extra underlying places to search, if not found above. For
10487 -- concurrent types, the relevant discriminant appears in the
10488 -- corresponding record. For a type derived from a private type
10489 -- without discriminant, the full view inherits the discriminants
10490 -- of the full view of the parent.
10492 if Result
= Discriminant
then
10493 if Is_Concurrent_Type
(Ti
)
10494 and then Present
(Corresponding_Record_Type
(Ti
))
10497 Search_Derivation_Levels
(
10498 Corresponding_Record_Type
(Ti
),
10500 Stored_Discrim_Values
);
10502 elsif Is_Private_Type
(Ti
)
10503 and then not Has_Discriminants
(Ti
)
10504 and then Present
(Full_View
(Ti
))
10505 and then Etype
(Full_View
(Ti
)) /= Ti
10508 Search_Derivation_Levels
(
10511 Stored_Discrim_Values
);
10515 -- If Result is not a (reference to a) discriminant, return it,
10516 -- otherwise set Result_Entity to the discriminant.
10518 if Nkind
(Result
) = N_Defining_Identifier
then
10519 pragma Assert
(Result
= Discriminant
);
10520 Result_Entity
:= Result
;
10523 if not Denotes_Discriminant
(Result
) then
10527 Result_Entity
:= Entity
(Result
);
10530 -- See if this level of derivation actually has discriminants
10531 -- because tagged derivations can add them, hence the lower
10532 -- levels need not have any.
10534 if not Has_Discriminants
(Ti
) then
10538 -- Scan Ti's discriminants for Result_Entity,
10539 -- and return its corresponding value, if any.
10541 Result_Entity
:= Original_Record_Component
(Result_Entity
);
10543 Assoc
:= First_Elmt
(Discrim_Values
);
10545 if Stored_Discrim_Values
then
10546 Disc
:= First_Stored_Discriminant
(Ti
);
10548 Disc
:= First_Discriminant
(Ti
);
10551 while Present
(Disc
) loop
10552 pragma Assert
(Present
(Assoc
));
10554 if Original_Record_Component
(Disc
) = Result_Entity
then
10555 return Node
(Assoc
);
10560 if Stored_Discrim_Values
then
10561 Next_Stored_Discriminant
(Disc
);
10563 Next_Discriminant
(Disc
);
10567 -- Could not find it
10570 end Search_Derivation_Levels
;
10572 Result
: Node_Or_Entity_Id
;
10574 -- Start of processing for Get_Discriminant_Value
10577 -- ??? This routine is a gigantic mess and will be deleted. For the
10578 -- time being just test for the trivial case before calling recurse.
10580 if Base_Type
(Scope
(Discriminant
)) = Base_Type
(Typ_For_Constraint
) then
10582 D
: Entity_Id
:= First_Discriminant
(Typ_For_Constraint
);
10583 E
: Elmt_Id
:= First_Elmt
(Constraint
);
10586 while Present
(D
) loop
10587 if Chars
(D
) = Chars
(Discriminant
) then
10591 Next_Discriminant
(D
);
10597 Result
:= Search_Derivation_Levels
10598 (Typ_For_Constraint
, Constraint
, False);
10600 -- ??? hack to disappear when this routine is gone
10602 if Nkind
(Result
) = N_Defining_Identifier
then
10604 D
: Entity_Id
:= First_Discriminant
(Typ_For_Constraint
);
10605 E
: Elmt_Id
:= First_Elmt
(Constraint
);
10608 while Present
(D
) loop
10609 if Corresponding_Discriminant
(D
) = Discriminant
then
10613 Next_Discriminant
(D
);
10619 pragma Assert
(Nkind
(Result
) /= N_Defining_Identifier
);
10621 end Get_Discriminant_Value
;
10623 --------------------------
10624 -- Has_Range_Constraint --
10625 --------------------------
10627 function Has_Range_Constraint
(N
: Node_Id
) return Boolean is
10628 C
: constant Node_Id
:= Constraint
(N
);
10631 if Nkind
(C
) = N_Range_Constraint
then
10634 elsif Nkind
(C
) = N_Digits_Constraint
then
10636 Is_Decimal_Fixed_Point_Type
(Entity
(Subtype_Mark
(N
)))
10638 Present
(Range_Constraint
(C
));
10640 elsif Nkind
(C
) = N_Delta_Constraint
then
10641 return Present
(Range_Constraint
(C
));
10646 end Has_Range_Constraint
;
10648 ------------------------
10649 -- Inherit_Components --
10650 ------------------------
10652 function Inherit_Components
10654 Parent_Base
: Entity_Id
;
10655 Derived_Base
: Entity_Id
;
10656 Is_Tagged
: Boolean;
10657 Inherit_Discr
: Boolean;
10658 Discs
: Elist_Id
) return Elist_Id
10660 Assoc_List
: constant Elist_Id
:= New_Elmt_List
;
10662 procedure Inherit_Component
10663 (Old_C
: Entity_Id
;
10664 Plain_Discrim
: Boolean := False;
10665 Stored_Discrim
: Boolean := False);
10666 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
10667 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
10668 -- True, Old_C is a stored discriminant. If they are both false then
10669 -- Old_C is a regular component.
10671 -----------------------
10672 -- Inherit_Component --
10673 -----------------------
10675 procedure Inherit_Component
10676 (Old_C
: Entity_Id
;
10677 Plain_Discrim
: Boolean := False;
10678 Stored_Discrim
: Boolean := False)
10680 New_C
: constant Entity_Id
:= New_Copy
(Old_C
);
10682 Discrim
: Entity_Id
;
10683 Corr_Discrim
: Entity_Id
;
10686 pragma Assert
(not Is_Tagged
or else not Stored_Discrim
);
10688 Set_Parent
(New_C
, Parent
(Old_C
));
10690 -- Regular discriminants and components must be inserted
10691 -- in the scope of the Derived_Base. Do it here.
10693 if not Stored_Discrim
then
10694 Enter_Name
(New_C
);
10697 -- For tagged types the Original_Record_Component must point to
10698 -- whatever this field was pointing to in the parent type. This has
10699 -- already been achieved by the call to New_Copy above.
10701 if not Is_Tagged
then
10702 Set_Original_Record_Component
(New_C
, New_C
);
10705 -- If we have inherited a component then see if its Etype contains
10706 -- references to Parent_Base discriminants. In this case, replace
10707 -- these references with the constraints given in Discs. We do not
10708 -- do this for the partial view of private types because this is
10709 -- not needed (only the components of the full view will be used
10710 -- for code generation) and cause problem. We also avoid this
10711 -- transformation in some error situations.
10713 if Ekind
(New_C
) = E_Component
then
10714 if (Is_Private_Type
(Derived_Base
)
10715 and then not Is_Generic_Type
(Derived_Base
))
10716 or else (Is_Empty_Elmt_List
(Discs
)
10717 and then not Expander_Active
)
10719 Set_Etype
(New_C
, Etype
(Old_C
));
10723 Constrain_Component_Type
10724 (Old_C
, Derived_Base
, N
, Parent_Base
, Discs
));
10728 -- In derived tagged types it is illegal to reference a non
10729 -- discriminant component in the parent type. To catch this, mark
10730 -- these components with an Ekind of E_Void. This will be reset in
10731 -- Record_Type_Definition after processing the record extension of
10732 -- the derived type.
10734 if Is_Tagged
and then Ekind
(New_C
) = E_Component
then
10735 Set_Ekind
(New_C
, E_Void
);
10738 if Plain_Discrim
then
10739 Set_Corresponding_Discriminant
(New_C
, Old_C
);
10740 Build_Discriminal
(New_C
);
10742 -- If we are explicitly inheriting a stored discriminant it will be
10743 -- completely hidden.
10745 elsif Stored_Discrim
then
10746 Set_Corresponding_Discriminant
(New_C
, Empty
);
10747 Set_Discriminal
(New_C
, Empty
);
10748 Set_Is_Completely_Hidden
(New_C
);
10750 -- Set the Original_Record_Component of each discriminant in the
10751 -- derived base to point to the corresponding stored that we just
10754 Discrim
:= First_Discriminant
(Derived_Base
);
10755 while Present
(Discrim
) loop
10756 Corr_Discrim
:= Corresponding_Discriminant
(Discrim
);
10758 -- Corr_Discrimm could be missing in an error situation
10760 if Present
(Corr_Discrim
)
10761 and then Original_Record_Component
(Corr_Discrim
) = Old_C
10763 Set_Original_Record_Component
(Discrim
, New_C
);
10766 Next_Discriminant
(Discrim
);
10769 Append_Entity
(New_C
, Derived_Base
);
10772 if not Is_Tagged
then
10773 Append_Elmt
(Old_C
, Assoc_List
);
10774 Append_Elmt
(New_C
, Assoc_List
);
10776 end Inherit_Component
;
10778 -- Variables local to Inherit_Component
10780 Loc
: constant Source_Ptr
:= Sloc
(N
);
10782 Parent_Discrim
: Entity_Id
;
10783 Stored_Discrim
: Entity_Id
;
10785 Component
: Entity_Id
;
10787 -- Start of processing for Inherit_Components
10790 if not Is_Tagged
then
10791 Append_Elmt
(Parent_Base
, Assoc_List
);
10792 Append_Elmt
(Derived_Base
, Assoc_List
);
10795 -- Inherit parent discriminants if needed
10797 if Inherit_Discr
then
10798 Parent_Discrim
:= First_Discriminant
(Parent_Base
);
10799 while Present
(Parent_Discrim
) loop
10800 Inherit_Component
(Parent_Discrim
, Plain_Discrim
=> True);
10801 Next_Discriminant
(Parent_Discrim
);
10805 -- Create explicit stored discrims for untagged types when necessary
10807 if not Has_Unknown_Discriminants
(Derived_Base
)
10808 and then Has_Discriminants
(Parent_Base
)
10809 and then not Is_Tagged
10812 or else First_Discriminant
(Parent_Base
) /=
10813 First_Stored_Discriminant
(Parent_Base
))
10815 Stored_Discrim
:= First_Stored_Discriminant
(Parent_Base
);
10816 while Present
(Stored_Discrim
) loop
10817 Inherit_Component
(Stored_Discrim
, Stored_Discrim
=> True);
10818 Next_Stored_Discriminant
(Stored_Discrim
);
10822 -- See if we can apply the second transformation for derived types, as
10823 -- explained in point 6. in the comments above Build_Derived_Record_Type
10824 -- This is achieved by appending Derived_Base discriminants into Discs,
10825 -- which has the side effect of returning a non empty Discs list to the
10826 -- caller of Inherit_Components, which is what we want. This must be
10827 -- done for private derived types if there are explicit stored
10828 -- discriminants, to ensure that we can retrieve the values of the
10829 -- constraints provided in the ancestors.
10832 and then Is_Empty_Elmt_List
(Discs
)
10833 and then Present
(First_Discriminant
(Derived_Base
))
10835 (not Is_Private_Type
(Derived_Base
)
10836 or else Is_Completely_Hidden
10837 (First_Stored_Discriminant
(Derived_Base
))
10838 or else Is_Generic_Type
(Derived_Base
))
10840 D
:= First_Discriminant
(Derived_Base
);
10841 while Present
(D
) loop
10842 Append_Elmt
(New_Reference_To
(D
, Loc
), Discs
);
10843 Next_Discriminant
(D
);
10847 -- Finally, inherit non-discriminant components unless they are not
10848 -- visible because defined or inherited from the full view of the
10849 -- parent. Don't inherit the _parent field of the parent type.
10851 Component
:= First_Entity
(Parent_Base
);
10852 while Present
(Component
) loop
10853 if Ekind
(Component
) /= E_Component
10854 or else Chars
(Component
) = Name_uParent
10858 -- If the derived type is within the parent type's declarative
10859 -- region, then the components can still be inherited even though
10860 -- they aren't visible at this point. This can occur for cases
10861 -- such as within public child units where the components must
10862 -- become visible upon entering the child unit's private part.
10864 elsif not Is_Visible_Component
(Component
)
10865 and then not In_Open_Scopes
(Scope
(Parent_Base
))
10869 elsif Ekind
(Derived_Base
) = E_Private_Type
10870 or else Ekind
(Derived_Base
) = E_Limited_Private_Type
10875 Inherit_Component
(Component
);
10878 Next_Entity
(Component
);
10881 -- For tagged derived types, inherited discriminants cannot be used in
10882 -- component declarations of the record extension part. To achieve this
10883 -- we mark the inherited discriminants as not visible.
10885 if Is_Tagged
and then Inherit_Discr
then
10886 D
:= First_Discriminant
(Derived_Base
);
10887 while Present
(D
) loop
10888 Set_Is_Immediately_Visible
(D
, False);
10889 Next_Discriminant
(D
);
10894 end Inherit_Components
;
10896 ------------------------------
10897 -- Is_Valid_Constraint_Kind --
10898 ------------------------------
10900 function Is_Valid_Constraint_Kind
10901 (T_Kind
: Type_Kind
;
10902 Constraint_Kind
: Node_Kind
) return Boolean
10906 when Enumeration_Kind |
10908 return Constraint_Kind
= N_Range_Constraint
;
10910 when Decimal_Fixed_Point_Kind
=>
10912 Constraint_Kind
= N_Digits_Constraint
10914 Constraint_Kind
= N_Range_Constraint
;
10916 when Ordinary_Fixed_Point_Kind
=>
10918 Constraint_Kind
= N_Delta_Constraint
10920 Constraint_Kind
= N_Range_Constraint
;
10924 Constraint_Kind
= N_Digits_Constraint
10926 Constraint_Kind
= N_Range_Constraint
;
10933 E_Incomplete_Type |
10936 return Constraint_Kind
= N_Index_Or_Discriminant_Constraint
;
10939 return True; -- Error will be detected later
10941 end Is_Valid_Constraint_Kind
;
10943 --------------------------
10944 -- Is_Visible_Component --
10945 --------------------------
10947 function Is_Visible_Component
(C
: Entity_Id
) return Boolean is
10948 Original_Comp
: Entity_Id
:= Empty
;
10949 Original_Scope
: Entity_Id
;
10950 Type_Scope
: Entity_Id
;
10952 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean;
10953 -- Check whether parent type of inherited component is declared locally,
10954 -- possibly within a nested package or instance. The current scope is
10955 -- the derived record itself.
10957 -------------------
10958 -- Is_Local_Type --
10959 -------------------
10961 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean is
10962 Scop
: Entity_Id
:= Scope
(Typ
);
10965 while Present
(Scop
)
10966 and then Scop
/= Standard_Standard
10968 if Scop
= Scope
(Current_Scope
) then
10972 Scop
:= Scope
(Scop
);
10978 -- Start of processing for Is_Visible_Component
10981 if Ekind
(C
) = E_Component
10982 or else Ekind
(C
) = E_Discriminant
10984 Original_Comp
:= Original_Record_Component
(C
);
10987 if No
(Original_Comp
) then
10989 -- Premature usage, or previous error
10994 Original_Scope
:= Scope
(Original_Comp
);
10995 Type_Scope
:= Scope
(Base_Type
(Scope
(C
)));
10998 -- This test only concerns tagged types
11000 if not Is_Tagged_Type
(Original_Scope
) then
11003 -- If it is _Parent or _Tag, there is no visibility issue
11005 elsif not Comes_From_Source
(Original_Comp
) then
11008 -- If we are in the body of an instantiation, the component is visible
11009 -- even when the parent type (possibly defined in an enclosing unit or
11010 -- in a parent unit) might not.
11012 elsif In_Instance_Body
then
11015 -- Discriminants are always visible
11017 elsif Ekind
(Original_Comp
) = E_Discriminant
11018 and then not Has_Unknown_Discriminants
(Original_Scope
)
11022 -- If the component has been declared in an ancestor which is currently
11023 -- a private type, then it is not visible. The same applies if the
11024 -- component's containing type is not in an open scope and the original
11025 -- component's enclosing type is a visible full type of a private type
11026 -- (which can occur in cases where an attempt is being made to reference
11027 -- a component in a sibling package that is inherited from a visible
11028 -- component of a type in an ancestor package; the component in the
11029 -- sibling package should not be visible even though the component it
11030 -- inherited from is visible). This does not apply however in the case
11031 -- where the scope of the type is a private child unit, or when the
11032 -- parent comes from a local package in which the ancestor is currently
11033 -- visible. The latter suppression of visibility is needed for cases
11034 -- that are tested in B730006.
11036 elsif Is_Private_Type
(Original_Scope
)
11038 (not Is_Private_Descendant
(Type_Scope
)
11039 and then not In_Open_Scopes
(Type_Scope
)
11040 and then Has_Private_Declaration
(Original_Scope
))
11042 -- If the type derives from an entity in a formal package, there
11043 -- are no additional visible components.
11045 if Nkind
(Original_Node
(Unit_Declaration_Node
(Type_Scope
))) =
11046 N_Formal_Package_Declaration
11050 -- if we are not in the private part of the current package, there
11051 -- are no additional visible components.
11053 elsif Ekind
(Scope
(Current_Scope
)) = E_Package
11054 and then not In_Private_Part
(Scope
(Current_Scope
))
11059 Is_Child_Unit
(Cunit_Entity
(Current_Sem_Unit
))
11060 and then Is_Local_Type
(Type_Scope
);
11063 -- There is another weird way in which a component may be invisible
11064 -- when the private and the full view are not derived from the same
11065 -- ancestor. Here is an example :
11067 -- type A1 is tagged record F1 : integer; end record;
11068 -- type A2 is new A1 with record F2 : integer; end record;
11069 -- type T is new A1 with private;
11071 -- type T is new A2 with null record;
11073 -- In this case, the full view of T inherits F1 and F2 but the private
11074 -- view inherits only F1
11078 Ancestor
: Entity_Id
:= Scope
(C
);
11082 if Ancestor
= Original_Scope
then
11084 elsif Ancestor
= Etype
(Ancestor
) then
11088 Ancestor
:= Etype
(Ancestor
);
11094 end Is_Visible_Component
;
11096 --------------------------
11097 -- Make_Class_Wide_Type --
11098 --------------------------
11100 procedure Make_Class_Wide_Type
(T
: Entity_Id
) is
11101 CW_Type
: Entity_Id
;
11103 Next_E
: Entity_Id
;
11106 -- The class wide type can have been defined by the partial view in
11107 -- which case everything is already done
11109 if Present
(Class_Wide_Type
(T
)) then
11114 New_External_Entity
(E_Void
, Scope
(T
), Sloc
(T
), T
, 'C', 0, 'T');
11116 -- Inherit root type characteristics
11118 CW_Name
:= Chars
(CW_Type
);
11119 Next_E
:= Next_Entity
(CW_Type
);
11120 Copy_Node
(T
, CW_Type
);
11121 Set_Comes_From_Source
(CW_Type
, False);
11122 Set_Chars
(CW_Type
, CW_Name
);
11123 Set_Parent
(CW_Type
, Parent
(T
));
11124 Set_Next_Entity
(CW_Type
, Next_E
);
11125 Set_Has_Delayed_Freeze
(CW_Type
);
11127 -- Customize the class-wide type: It has no prim. op., it cannot be
11128 -- abstract and its Etype points back to the specific root type.
11130 Set_Ekind
(CW_Type
, E_Class_Wide_Type
);
11131 Set_Is_Tagged_Type
(CW_Type
, True);
11132 Set_Primitive_Operations
(CW_Type
, New_Elmt_List
);
11133 Set_Is_Abstract
(CW_Type
, False);
11134 Set_Is_Constrained
(CW_Type
, False);
11135 Set_Is_First_Subtype
(CW_Type
, Is_First_Subtype
(T
));
11136 Init_Size_Align
(CW_Type
);
11138 if Ekind
(T
) = E_Class_Wide_Subtype
then
11139 Set_Etype
(CW_Type
, Etype
(Base_Type
(T
)));
11141 Set_Etype
(CW_Type
, T
);
11144 -- If this is the class_wide type of a constrained subtype, it does
11145 -- not have discriminants.
11147 Set_Has_Discriminants
(CW_Type
,
11148 Has_Discriminants
(T
) and then not Is_Constrained
(T
));
11150 Set_Has_Unknown_Discriminants
(CW_Type
, True);
11151 Set_Class_Wide_Type
(T
, CW_Type
);
11152 Set_Equivalent_Type
(CW_Type
, Empty
);
11154 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
11156 Set_Class_Wide_Type
(CW_Type
, CW_Type
);
11157 end Make_Class_Wide_Type
;
11163 procedure Make_Index
11165 Related_Nod
: Node_Id
;
11166 Related_Id
: Entity_Id
:= Empty
;
11167 Suffix_Index
: Nat
:= 1)
11171 Def_Id
: Entity_Id
:= Empty
;
11172 Found
: Boolean := False;
11175 -- For a discrete range used in a constrained array definition and
11176 -- defined by a range, an implicit conversion to the predefined type
11177 -- INTEGER is assumed if each bound is either a numeric literal, a named
11178 -- number, or an attribute, and the type of both bounds (prior to the
11179 -- implicit conversion) is the type universal_integer. Otherwise, both
11180 -- bounds must be of the same discrete type, other than universal
11181 -- integer; this type must be determinable independently of the
11182 -- context, but using the fact that the type must be discrete and that
11183 -- both bounds must have the same type.
11185 -- Character literals also have a universal type in the absence of
11186 -- of additional context, and are resolved to Standard_Character.
11188 if Nkind
(I
) = N_Range
then
11190 -- The index is given by a range constraint. The bounds are known
11191 -- to be of a consistent type.
11193 if not Is_Overloaded
(I
) then
11196 -- If the bounds are universal, choose the specific predefined
11199 if T
= Universal_Integer
then
11200 T
:= Standard_Integer
;
11202 elsif T
= Any_Character
then
11204 if Ada_Version
>= Ada_95
then
11206 ("ambiguous character literals (could be Wide_Character)",
11210 T
:= Standard_Character
;
11217 Ind
: Interp_Index
;
11221 Get_First_Interp
(I
, Ind
, It
);
11223 while Present
(It
.Typ
) loop
11224 if Is_Discrete_Type
(It
.Typ
) then
11227 and then not Covers
(It
.Typ
, T
)
11228 and then not Covers
(T
, It
.Typ
)
11230 Error_Msg_N
("ambiguous bounds in discrete range", I
);
11238 Get_Next_Interp
(Ind
, It
);
11241 if T
= Any_Type
then
11242 Error_Msg_N
("discrete type required for range", I
);
11243 Set_Etype
(I
, Any_Type
);
11246 elsif T
= Universal_Integer
then
11247 T
:= Standard_Integer
;
11252 if not Is_Discrete_Type
(T
) then
11253 Error_Msg_N
("discrete type required for range", I
);
11254 Set_Etype
(I
, Any_Type
);
11258 if Nkind
(Low_Bound
(I
)) = N_Attribute_Reference
11259 and then Attribute_Name
(Low_Bound
(I
)) = Name_First
11260 and then Is_Entity_Name
(Prefix
(Low_Bound
(I
)))
11261 and then Is_Type
(Entity
(Prefix
(Low_Bound
(I
))))
11262 and then Is_Discrete_Type
(Entity
(Prefix
(Low_Bound
(I
))))
11264 -- The type of the index will be the type of the prefix, as long
11265 -- as the upper bound is 'Last of the same type.
11267 Def_Id
:= Entity
(Prefix
(Low_Bound
(I
)));
11269 if Nkind
(High_Bound
(I
)) /= N_Attribute_Reference
11270 or else Attribute_Name
(High_Bound
(I
)) /= Name_Last
11271 or else not Is_Entity_Name
(Prefix
(High_Bound
(I
)))
11272 or else Entity
(Prefix
(High_Bound
(I
))) /= Def_Id
11279 Process_Range_Expr_In_Decl
(R
, T
);
11281 elsif Nkind
(I
) = N_Subtype_Indication
then
11283 -- The index is given by a subtype with a range constraint
11285 T
:= Base_Type
(Entity
(Subtype_Mark
(I
)));
11287 if not Is_Discrete_Type
(T
) then
11288 Error_Msg_N
("discrete type required for range", I
);
11289 Set_Etype
(I
, Any_Type
);
11293 R
:= Range_Expression
(Constraint
(I
));
11296 Process_Range_Expr_In_Decl
(R
, Entity
(Subtype_Mark
(I
)));
11298 elsif Nkind
(I
) = N_Attribute_Reference
then
11300 -- The parser guarantees that the attribute is a RANGE attribute
11302 -- If the node denotes the range of a type mark, that is also the
11303 -- resulting type, and we do no need to create an Itype for it.
11305 if Is_Entity_Name
(Prefix
(I
))
11306 and then Comes_From_Source
(I
)
11307 and then Is_Type
(Entity
(Prefix
(I
)))
11308 and then Is_Discrete_Type
(Entity
(Prefix
(I
)))
11310 Def_Id
:= Entity
(Prefix
(I
));
11313 Analyze_And_Resolve
(I
);
11317 -- If none of the above, must be a subtype. We convert this to a
11318 -- range attribute reference because in the case of declared first
11319 -- named subtypes, the types in the range reference can be different
11320 -- from the type of the entity. A range attribute normalizes the
11321 -- reference and obtains the correct types for the bounds.
11323 -- This transformation is in the nature of an expansion, is only
11324 -- done if expansion is active. In particular, it is not done on
11325 -- formal generic types, because we need to retain the name of the
11326 -- original index for instantiation purposes.
11329 if not Is_Entity_Name
(I
) or else not Is_Type
(Entity
(I
)) then
11330 Error_Msg_N
("invalid subtype mark in discrete range ", I
);
11331 Set_Etype
(I
, Any_Integer
);
11335 -- The type mark may be that of an incomplete type. It is only
11336 -- now that we can get the full view, previous analysis does
11337 -- not look specifically for a type mark.
11339 Set_Entity
(I
, Get_Full_View
(Entity
(I
)));
11340 Set_Etype
(I
, Entity
(I
));
11341 Def_Id
:= Entity
(I
);
11343 if not Is_Discrete_Type
(Def_Id
) then
11344 Error_Msg_N
("discrete type required for index", I
);
11345 Set_Etype
(I
, Any_Type
);
11350 if Expander_Active
then
11352 Make_Attribute_Reference
(Sloc
(I
),
11353 Attribute_Name
=> Name_Range
,
11354 Prefix
=> Relocate_Node
(I
)));
11356 -- The original was a subtype mark that does not freeze. This
11357 -- means that the rewritten version must not freeze either.
11359 Set_Must_Not_Freeze
(I
);
11360 Set_Must_Not_Freeze
(Prefix
(I
));
11362 -- Is order critical??? if so, document why, if not
11363 -- use Analyze_And_Resolve
11370 -- If expander is inactive, type is legal, nothing else to construct
11377 if not Is_Discrete_Type
(T
) then
11378 Error_Msg_N
("discrete type required for range", I
);
11379 Set_Etype
(I
, Any_Type
);
11382 elsif T
= Any_Type
then
11383 Set_Etype
(I
, Any_Type
);
11387 -- We will now create the appropriate Itype to describe the range, but
11388 -- first a check. If we originally had a subtype, then we just label
11389 -- the range with this subtype. Not only is there no need to construct
11390 -- a new subtype, but it is wrong to do so for two reasons:
11392 -- 1. A legality concern, if we have a subtype, it must not freeze,
11393 -- and the Itype would cause freezing incorrectly
11395 -- 2. An efficiency concern, if we created an Itype, it would not be
11396 -- recognized as the same type for the purposes of eliminating
11397 -- checks in some circumstances.
11399 -- We signal this case by setting the subtype entity in Def_Id
11401 if No
(Def_Id
) then
11403 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, 'D', Suffix_Index
);
11404 Set_Etype
(Def_Id
, Base_Type
(T
));
11406 if Is_Signed_Integer_Type
(T
) then
11407 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
11409 elsif Is_Modular_Integer_Type
(T
) then
11410 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
11413 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
11414 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
11415 Set_First_Literal
(Def_Id
, First_Literal
(T
));
11418 Set_Size_Info
(Def_Id
, (T
));
11419 Set_RM_Size
(Def_Id
, RM_Size
(T
));
11420 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
11422 Set_Scalar_Range
(Def_Id
, R
);
11423 Conditional_Delay
(Def_Id
, T
);
11425 -- In the subtype indication case, if the immediate parent of the
11426 -- new subtype is non-static, then the subtype we create is non-
11427 -- static, even if its bounds are static.
11429 if Nkind
(I
) = N_Subtype_Indication
11430 and then not Is_Static_Subtype
(Entity
(Subtype_Mark
(I
)))
11432 Set_Is_Non_Static_Subtype
(Def_Id
);
11436 -- Final step is to label the index with this constructed type
11438 Set_Etype
(I
, Def_Id
);
11441 ------------------------------
11442 -- Modular_Type_Declaration --
11443 ------------------------------
11445 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
11446 Mod_Expr
: constant Node_Id
:= Expression
(Def
);
11449 procedure Set_Modular_Size
(Bits
: Int
);
11450 -- Sets RM_Size to Bits, and Esize to normal word size above this
11452 ----------------------
11453 -- Set_Modular_Size --
11454 ----------------------
11456 procedure Set_Modular_Size
(Bits
: Int
) is
11458 Set_RM_Size
(T
, UI_From_Int
(Bits
));
11463 elsif Bits
<= 16 then
11464 Init_Esize
(T
, 16);
11466 elsif Bits
<= 32 then
11467 Init_Esize
(T
, 32);
11470 Init_Esize
(T
, System_Max_Binary_Modulus_Power
);
11472 end Set_Modular_Size
;
11474 -- Start of processing for Modular_Type_Declaration
11477 Analyze_And_Resolve
(Mod_Expr
, Any_Integer
);
11479 Set_Ekind
(T
, E_Modular_Integer_Type
);
11480 Init_Alignment
(T
);
11481 Set_Is_Constrained
(T
);
11483 if not Is_OK_Static_Expression
(Mod_Expr
) then
11484 Flag_Non_Static_Expr
11485 ("non-static expression used for modular type bound!", Mod_Expr
);
11486 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
11488 M_Val
:= Expr_Value
(Mod_Expr
);
11492 Error_Msg_N
("modulus value must be positive", Mod_Expr
);
11493 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
11496 Set_Modulus
(T
, M_Val
);
11498 -- Create bounds for the modular type based on the modulus given in
11499 -- the type declaration and then analyze and resolve those bounds.
11501 Set_Scalar_Range
(T
,
11502 Make_Range
(Sloc
(Mod_Expr
),
11504 Make_Integer_Literal
(Sloc
(Mod_Expr
), 0),
11506 Make_Integer_Literal
(Sloc
(Mod_Expr
), M_Val
- 1)));
11508 -- Properly analyze the literals for the range. We do this manually
11509 -- because we can't go calling Resolve, since we are resolving these
11510 -- bounds with the type, and this type is certainly not complete yet!
11512 Set_Etype
(Low_Bound
(Scalar_Range
(T
)), T
);
11513 Set_Etype
(High_Bound
(Scalar_Range
(T
)), T
);
11514 Set_Is_Static_Expression
(Low_Bound
(Scalar_Range
(T
)));
11515 Set_Is_Static_Expression
(High_Bound
(Scalar_Range
(T
)));
11517 -- Loop through powers of two to find number of bits required
11519 for Bits
in Int
range 0 .. System_Max_Binary_Modulus_Power
loop
11523 if M_Val
= 2 ** Bits
then
11524 Set_Modular_Size
(Bits
);
11529 elsif M_Val
< 2 ** Bits
then
11530 Set_Non_Binary_Modulus
(T
);
11532 if Bits
> System_Max_Nonbinary_Modulus_Power
then
11533 Error_Msg_Uint_1
:=
11534 UI_From_Int
(System_Max_Nonbinary_Modulus_Power
);
11536 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr
);
11537 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
11541 -- In the non-binary case, set size as per RM 13.3(55)
11543 Set_Modular_Size
(Bits
);
11550 -- If we fall through, then the size exceed System.Max_Binary_Modulus
11551 -- so we just signal an error and set the maximum size.
11553 Error_Msg_Uint_1
:= UI_From_Int
(System_Max_Binary_Modulus_Power
);
11554 Error_Msg_N
("modulus exceeds limit (2 '*'*^)", Mod_Expr
);
11556 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
11557 Init_Alignment
(T
);
11559 end Modular_Type_Declaration
;
11561 --------------------------
11562 -- New_Concatenation_Op --
11563 --------------------------
11565 procedure New_Concatenation_Op
(Typ
: Entity_Id
) is
11566 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
11569 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
;
11570 -- Create abbreviated declaration for the formal of a predefined
11571 -- Operator 'Op' of type 'Typ'
11573 --------------------
11574 -- Make_Op_Formal --
11575 --------------------
11577 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
is
11578 Formal
: Entity_Id
;
11580 Formal
:= New_Internal_Entity
(E_In_Parameter
, Op
, Loc
, 'P');
11581 Set_Etype
(Formal
, Typ
);
11582 Set_Mechanism
(Formal
, Default_Mechanism
);
11584 end Make_Op_Formal
;
11586 -- Start of processing for New_Concatenation_Op
11589 Op
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Concat
);
11591 Set_Ekind
(Op
, E_Operator
);
11592 Set_Scope
(Op
, Current_Scope
);
11593 Set_Etype
(Op
, Typ
);
11594 Set_Homonym
(Op
, Get_Name_Entity_Id
(Name_Op_Concat
));
11595 Set_Is_Immediately_Visible
(Op
);
11596 Set_Is_Intrinsic_Subprogram
(Op
);
11597 Set_Has_Completion
(Op
);
11598 Append_Entity
(Op
, Current_Scope
);
11600 Set_Name_Entity_Id
(Name_Op_Concat
, Op
);
11602 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
11603 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
11604 end New_Concatenation_Op
;
11606 -------------------------------------------
11607 -- Ordinary_Fixed_Point_Type_Declaration --
11608 -------------------------------------------
11610 procedure Ordinary_Fixed_Point_Type_Declaration
11614 Loc
: constant Source_Ptr
:= Sloc
(Def
);
11615 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
11616 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
11617 Implicit_Base
: Entity_Id
;
11624 Check_Restriction
(No_Fixed_Point
, Def
);
11626 -- Create implicit base type
11629 Create_Itype
(E_Ordinary_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
11630 Set_Etype
(Implicit_Base
, Implicit_Base
);
11632 -- Analyze and process delta expression
11634 Analyze_And_Resolve
(Delta_Expr
, Any_Real
);
11636 Check_Delta_Expression
(Delta_Expr
);
11637 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
11639 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
11641 -- Compute default small from given delta, which is the largest power
11642 -- of two that does not exceed the given delta value.
11645 Tmp
: Ureal
:= Ureal_1
;
11649 if Delta_Val
< Ureal_1
then
11650 while Delta_Val
< Tmp
loop
11651 Tmp
:= Tmp
/ Ureal_2
;
11652 Scale
:= Scale
+ 1;
11657 Tmp
:= Tmp
* Ureal_2
;
11658 exit when Tmp
> Delta_Val
;
11659 Scale
:= Scale
- 1;
11663 Small_Val
:= UR_From_Components
(Uint_1
, UI_From_Int
(Scale
), 2);
11666 Set_Small_Value
(Implicit_Base
, Small_Val
);
11668 -- If no range was given, set a dummy range
11670 if RRS
<= Empty_Or_Error
then
11671 Low_Val
:= -Small_Val
;
11672 High_Val
:= Small_Val
;
11674 -- Otherwise analyze and process given range
11678 Low
: constant Node_Id
:= Low_Bound
(RRS
);
11679 High
: constant Node_Id
:= High_Bound
(RRS
);
11682 Analyze_And_Resolve
(Low
, Any_Real
);
11683 Analyze_And_Resolve
(High
, Any_Real
);
11684 Check_Real_Bound
(Low
);
11685 Check_Real_Bound
(High
);
11687 -- Obtain and set the range
11689 Low_Val
:= Expr_Value_R
(Low
);
11690 High_Val
:= Expr_Value_R
(High
);
11692 if Low_Val
> High_Val
then
11693 Error_Msg_NE
("?fixed point type& has null range", Def
, T
);
11698 -- The range for both the implicit base and the declared first subtype
11699 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
11700 -- set a temporary range in place. Note that the bounds of the base
11701 -- type will be widened to be symmetrical and to fill the available
11702 -- bits when the type is frozen.
11704 -- We could do this with all discrete types, and probably should, but
11705 -- we absolutely have to do it for fixed-point, since the end-points
11706 -- of the range and the size are determined by the small value, which
11707 -- could be reset before the freeze point.
11709 Set_Fixed_Range
(Implicit_Base
, Loc
, Low_Val
, High_Val
);
11710 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
11712 Init_Size_Align
(Implicit_Base
);
11714 -- Complete definition of first subtype
11716 Set_Ekind
(T
, E_Ordinary_Fixed_Point_Subtype
);
11717 Set_Etype
(T
, Implicit_Base
);
11718 Init_Size_Align
(T
);
11719 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
11720 Set_Small_Value
(T
, Small_Val
);
11721 Set_Delta_Value
(T
, Delta_Val
);
11722 Set_Is_Constrained
(T
);
11724 end Ordinary_Fixed_Point_Type_Declaration
;
11726 ----------------------------------------
11727 -- Prepare_Private_Subtype_Completion --
11728 ----------------------------------------
11730 procedure Prepare_Private_Subtype_Completion
11732 Related_Nod
: Node_Id
)
11734 Id_B
: constant Entity_Id
:= Base_Type
(Id
);
11735 Full_B
: constant Entity_Id
:= Full_View
(Id_B
);
11739 if Present
(Full_B
) then
11741 -- The Base_Type is already completed, we can complete the subtype
11742 -- now. We have to create a new entity with the same name, Thus we
11743 -- can't use Create_Itype.
11745 -- This is messy, should be fixed ???
11747 Full
:= Make_Defining_Identifier
(Sloc
(Id
), Chars
(Id
));
11748 Set_Is_Itype
(Full
);
11749 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
11750 Complete_Private_Subtype
(Id
, Full
, Full_B
, Related_Nod
);
11753 -- The parent subtype may be private, but the base might not, in some
11754 -- nested instances. In that case, the subtype does not need to be
11755 -- exchanged. It would still be nice to make private subtypes and their
11756 -- bases consistent at all times ???
11758 if Is_Private_Type
(Id_B
) then
11759 Append_Elmt
(Id
, Private_Dependents
(Id_B
));
11762 end Prepare_Private_Subtype_Completion
;
11764 ---------------------------
11765 -- Process_Discriminants --
11766 ---------------------------
11768 procedure Process_Discriminants
11770 Prev
: Entity_Id
:= Empty
)
11772 Elist
: constant Elist_Id
:= New_Elmt_List
;
11775 Discr_Number
: Uint
;
11776 Discr_Type
: Entity_Id
;
11777 Default_Present
: Boolean := False;
11778 Default_Not_Present
: Boolean := False;
11781 -- A composite type other than an array type can have discriminants.
11782 -- Discriminants of non-limited types must have a discrete type.
11783 -- On entry, the current scope is the composite type.
11785 -- The discriminants are initially entered into the scope of the type
11786 -- via Enter_Name with the default Ekind of E_Void to prevent premature
11787 -- use, as explained at the end of this procedure.
11789 Discr
:= First
(Discriminant_Specifications
(N
));
11790 while Present
(Discr
) loop
11791 Enter_Name
(Defining_Identifier
(Discr
));
11793 -- For navigation purposes we add a reference to the discriminant
11794 -- in the entity for the type. If the current declaration is a
11795 -- completion, place references on the partial view. Otherwise the
11796 -- type is the current scope.
11798 if Present
(Prev
) then
11800 -- The references go on the partial view, if present. If the
11801 -- partial view has discriminants, the references have been
11802 -- generated already.
11804 if not Has_Discriminants
(Prev
) then
11805 Generate_Reference
(Prev
, Defining_Identifier
(Discr
), 'd');
11809 (Current_Scope
, Defining_Identifier
(Discr
), 'd');
11812 if Nkind
(Discriminant_Type
(Discr
)) = N_Access_Definition
then
11813 Discr_Type
:= Access_Definition
(N
, Discriminant_Type
(Discr
));
11815 -- Ada 2005 (AI-254)
11817 if Present
(Access_To_Subprogram_Definition
11818 (Discriminant_Type
(Discr
)))
11819 and then Protected_Present
(Access_To_Subprogram_Definition
11820 (Discriminant_Type
(Discr
)))
11823 Replace_Anonymous_Access_To_Protected_Subprogram
11824 (Discr
, Discr_Type
);
11828 Find_Type
(Discriminant_Type
(Discr
));
11829 Discr_Type
:= Etype
(Discriminant_Type
(Discr
));
11831 if Error_Posted
(Discriminant_Type
(Discr
)) then
11832 Discr_Type
:= Any_Type
;
11836 if Is_Access_Type
(Discr_Type
) then
11838 -- Ada 2005 (AI-230): Access discriminant allowed in non-limited
11841 if Ada_Version
< Ada_05
then
11842 Check_Access_Discriminant_Requires_Limited
11843 (Discr
, Discriminant_Type
(Discr
));
11846 if Ada_Version
= Ada_83
and then Comes_From_Source
(Discr
) then
11848 ("(Ada 83) access discriminant not allowed", Discr
);
11851 elsif not Is_Discrete_Type
(Discr_Type
) then
11852 Error_Msg_N
("discriminants must have a discrete or access type",
11853 Discriminant_Type
(Discr
));
11856 Set_Etype
(Defining_Identifier
(Discr
), Discr_Type
);
11858 -- If a discriminant specification includes the assignment compound
11859 -- delimiter followed by an expression, the expression is the default
11860 -- expression of the discriminant; the default expression must be of
11861 -- the type of the discriminant. (RM 3.7.1) Since this expression is
11862 -- a default expression, we do the special preanalysis, since this
11863 -- expression does not freeze (see "Handling of Default and Per-
11864 -- Object Expressions" in spec of package Sem).
11866 if Present
(Expression
(Discr
)) then
11867 Analyze_Per_Use_Expression
(Expression
(Discr
), Discr_Type
);
11869 if Nkind
(N
) = N_Formal_Type_Declaration
then
11871 ("discriminant defaults not allowed for formal type",
11872 Expression
(Discr
));
11874 -- Tagged types cannot have defaulted discriminants, but a
11875 -- non-tagged private type with defaulted discriminants
11876 -- can have a tagged completion.
11878 elsif Is_Tagged_Type
(Current_Scope
)
11879 and then Comes_From_Source
(N
)
11882 ("discriminants of tagged type cannot have defaults",
11883 Expression
(Discr
));
11886 Default_Present
:= True;
11887 Append_Elmt
(Expression
(Discr
), Elist
);
11889 -- Tag the defining identifiers for the discriminants with
11890 -- their corresponding default expressions from the tree.
11892 Set_Discriminant_Default_Value
11893 (Defining_Identifier
(Discr
), Expression
(Discr
));
11897 Default_Not_Present
:= True;
11900 -- Ada 2005 (AI-231): Set the null-excluding attribute and carry
11901 -- out some static checks.
11903 if Ada_Version
>= Ada_05
11904 and then (Null_Exclusion_Present
(Discr
)
11905 or else Can_Never_Be_Null
(Discr_Type
))
11907 Set_Can_Never_Be_Null
(Defining_Identifier
(Discr
));
11908 Null_Exclusion_Static_Checks
(Discr
);
11914 -- An element list consisting of the default expressions of the
11915 -- discriminants is constructed in the above loop and used to set
11916 -- the Discriminant_Constraint attribute for the type. If an object
11917 -- is declared of this (record or task) type without any explicit
11918 -- discriminant constraint given, this element list will form the
11919 -- actual parameters for the corresponding initialization procedure
11922 Set_Discriminant_Constraint
(Current_Scope
, Elist
);
11923 Set_Stored_Constraint
(Current_Scope
, No_Elist
);
11925 -- Default expressions must be provided either for all or for none
11926 -- of the discriminants of a discriminant part. (RM 3.7.1)
11928 if Default_Present
and then Default_Not_Present
then
11930 ("incomplete specification of defaults for discriminants", N
);
11933 -- The use of the name of a discriminant is not allowed in default
11934 -- expressions of a discriminant part if the specification of the
11935 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
11937 -- To detect this, the discriminant names are entered initially with an
11938 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
11939 -- attempt to use a void entity (for example in an expression that is
11940 -- type-checked) produces the error message: premature usage. Now after
11941 -- completing the semantic analysis of the discriminant part, we can set
11942 -- the Ekind of all the discriminants appropriately.
11944 Discr
:= First
(Discriminant_Specifications
(N
));
11945 Discr_Number
:= Uint_1
;
11947 while Present
(Discr
) loop
11948 Id
:= Defining_Identifier
(Discr
);
11949 Set_Ekind
(Id
, E_Discriminant
);
11950 Init_Component_Location
(Id
);
11952 Set_Discriminant_Number
(Id
, Discr_Number
);
11954 -- Make sure this is always set, even in illegal programs
11956 Set_Corresponding_Discriminant
(Id
, Empty
);
11958 -- Initialize the Original_Record_Component to the entity itself.
11959 -- Inherit_Components will propagate the right value to
11960 -- discriminants in derived record types.
11962 Set_Original_Record_Component
(Id
, Id
);
11964 -- Create the discriminal for the discriminant
11966 Build_Discriminal
(Id
);
11969 Discr_Number
:= Discr_Number
+ 1;
11972 Set_Has_Discriminants
(Current_Scope
);
11973 end Process_Discriminants
;
11975 -----------------------
11976 -- Process_Full_View --
11977 -----------------------
11979 procedure Process_Full_View
(N
: Node_Id
; Full_T
, Priv_T
: Entity_Id
) is
11980 Priv_Parent
: Entity_Id
;
11981 Full_Parent
: Entity_Id
;
11982 Full_Indic
: Node_Id
;
11985 -- First some sanity checks that must be done after semantic
11986 -- decoration of the full view and thus cannot be placed with other
11987 -- similar checks in Find_Type_Name
11989 if not Is_Limited_Type
(Priv_T
)
11990 and then (Is_Limited_Type
(Full_T
)
11991 or else Is_Limited_Composite
(Full_T
))
11994 ("completion of nonlimited type cannot be limited", Full_T
);
11995 Explain_Limited_Type
(Full_T
, Full_T
);
11997 elsif Is_Abstract
(Full_T
) and then not Is_Abstract
(Priv_T
) then
11999 ("completion of nonabstract type cannot be abstract", Full_T
);
12001 elsif Is_Tagged_Type
(Priv_T
)
12002 and then Is_Limited_Type
(Priv_T
)
12003 and then not Is_Limited_Type
(Full_T
)
12005 -- GNAT allow its own definition of Limited_Controlled to disobey
12006 -- this rule in order in ease the implementation. The next test is
12007 -- safe because Root_Controlled is defined in a private system child
12009 if Etype
(Full_T
) = Full_View
(RTE
(RE_Root_Controlled
)) then
12010 Set_Is_Limited_Composite
(Full_T
);
12013 ("completion of limited tagged type must be limited", Full_T
);
12016 elsif Is_Generic_Type
(Priv_T
) then
12017 Error_Msg_N
("generic type cannot have a completion", Full_T
);
12020 if Is_Tagged_Type
(Priv_T
)
12021 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
12022 and then Is_Derived_Type
(Full_T
)
12024 Priv_Parent
:= Etype
(Priv_T
);
12026 -- The full view of a private extension may have been transformed
12027 -- into an unconstrained derived type declaration and a subtype
12028 -- declaration (see build_derived_record_type for details).
12030 if Nkind
(N
) = N_Subtype_Declaration
then
12031 Full_Indic
:= Subtype_Indication
(N
);
12032 Full_Parent
:= Etype
(Base_Type
(Full_T
));
12034 Full_Indic
:= Subtype_Indication
(Type_Definition
(N
));
12035 Full_Parent
:= Etype
(Full_T
);
12038 -- Check that the parent type of the full type is a descendant of
12039 -- the ancestor subtype given in the private extension. If either
12040 -- entity has an Etype equal to Any_Type then we had some previous
12041 -- error situation [7.3(8)].
12043 if Priv_Parent
= Any_Type
or else Full_Parent
= Any_Type
then
12046 elsif not Is_Ancestor
(Base_Type
(Priv_Parent
), Full_Parent
) then
12048 ("parent of full type must descend from parent"
12049 & " of private extension", Full_Indic
);
12051 -- Check the rules of 7.3(10): if the private extension inherits
12052 -- known discriminants, then the full type must also inherit those
12053 -- discriminants from the same (ancestor) type, and the parent
12054 -- subtype of the full type must be constrained if and only if
12055 -- the ancestor subtype of the private extension is constrained.
12057 elsif not Present
(Discriminant_Specifications
(Parent
(Priv_T
)))
12058 and then not Has_Unknown_Discriminants
(Priv_T
)
12059 and then Has_Discriminants
(Base_Type
(Priv_Parent
))
12062 Priv_Indic
: constant Node_Id
:=
12063 Subtype_Indication
(Parent
(Priv_T
));
12065 Priv_Constr
: constant Boolean :=
12066 Is_Constrained
(Priv_Parent
)
12068 Nkind
(Priv_Indic
) = N_Subtype_Indication
12069 or else Is_Constrained
(Entity
(Priv_Indic
));
12071 Full_Constr
: constant Boolean :=
12072 Is_Constrained
(Full_Parent
)
12074 Nkind
(Full_Indic
) = N_Subtype_Indication
12075 or else Is_Constrained
(Entity
(Full_Indic
));
12077 Priv_Discr
: Entity_Id
;
12078 Full_Discr
: Entity_Id
;
12081 Priv_Discr
:= First_Discriminant
(Priv_Parent
);
12082 Full_Discr
:= First_Discriminant
(Full_Parent
);
12084 while Present
(Priv_Discr
) and then Present
(Full_Discr
) loop
12085 if Original_Record_Component
(Priv_Discr
) =
12086 Original_Record_Component
(Full_Discr
)
12088 Corresponding_Discriminant
(Priv_Discr
) =
12089 Corresponding_Discriminant
(Full_Discr
)
12096 Next_Discriminant
(Priv_Discr
);
12097 Next_Discriminant
(Full_Discr
);
12100 if Present
(Priv_Discr
) or else Present
(Full_Discr
) then
12102 ("full view must inherit discriminants of the parent type"
12103 & " used in the private extension", Full_Indic
);
12105 elsif Priv_Constr
and then not Full_Constr
then
12107 ("parent subtype of full type must be constrained",
12110 elsif Full_Constr
and then not Priv_Constr
then
12112 ("parent subtype of full type must be unconstrained",
12117 -- Check the rules of 7.3(12): if a partial view has neither known
12118 -- or unknown discriminants, then the full type declaration shall
12119 -- define a definite subtype.
12121 elsif not Has_Unknown_Discriminants
(Priv_T
)
12122 and then not Has_Discriminants
(Priv_T
)
12123 and then not Is_Constrained
(Full_T
)
12126 ("full view must define a constrained type if partial view"
12127 & " has no discriminants", Full_T
);
12130 -- ??????? Do we implement the following properly ?????
12131 -- If the ancestor subtype of a private extension has constrained
12132 -- discriminants, then the parent subtype of the full view shall
12133 -- impose a statically matching constraint on those discriminants
12137 -- For untagged types, verify that a type without discriminants
12138 -- is not completed with an unconstrained type.
12140 if not Is_Indefinite_Subtype
(Priv_T
)
12141 and then Is_Indefinite_Subtype
(Full_T
)
12143 Error_Msg_N
("full view of type must be definite subtype", Full_T
);
12147 -- Create a full declaration for all its subtypes recorded in
12148 -- Private_Dependents and swap them similarly to the base type. These
12149 -- are subtypes that have been define before the full declaration of
12150 -- the private type. We also swap the entry in Private_Dependents list
12151 -- so we can properly restore the private view on exit from the scope.
12154 Priv_Elmt
: Elmt_Id
;
12159 Priv_Elmt
:= First_Elmt
(Private_Dependents
(Priv_T
));
12160 while Present
(Priv_Elmt
) loop
12161 Priv
:= Node
(Priv_Elmt
);
12163 if Ekind
(Priv
) = E_Private_Subtype
12164 or else Ekind
(Priv
) = E_Limited_Private_Subtype
12165 or else Ekind
(Priv
) = E_Record_Subtype_With_Private
12167 Full
:= Make_Defining_Identifier
(Sloc
(Priv
), Chars
(Priv
));
12168 Set_Is_Itype
(Full
);
12169 Set_Parent
(Full
, Parent
(Priv
));
12170 Set_Associated_Node_For_Itype
(Full
, N
);
12172 -- Now we need to complete the private subtype, but since the
12173 -- base type has already been swapped, we must also swap the
12174 -- subtypes (and thus, reverse the arguments in the call to
12175 -- Complete_Private_Subtype).
12177 Copy_And_Swap
(Priv
, Full
);
12178 Complete_Private_Subtype
(Full
, Priv
, Full_T
, N
);
12179 Replace_Elmt
(Priv_Elmt
, Full
);
12182 Next_Elmt
(Priv_Elmt
);
12186 -- If the private view was tagged, copy the new Primitive
12187 -- operations from the private view to the full view.
12189 if Is_Tagged_Type
(Full_T
) then
12191 Priv_List
: Elist_Id
;
12192 Full_List
: constant Elist_Id
:= Primitive_Operations
(Full_T
);
12195 D_Type
: Entity_Id
;
12198 if Is_Tagged_Type
(Priv_T
) then
12199 Priv_List
:= Primitive_Operations
(Priv_T
);
12201 P1
:= First_Elmt
(Priv_List
);
12202 while Present
(P1
) loop
12205 -- Transfer explicit primitives, not those inherited from
12206 -- parent of partial view, which will be re-inherited on
12209 if Comes_From_Source
(Prim
) then
12210 P2
:= First_Elmt
(Full_List
);
12211 while Present
(P2
) and then Node
(P2
) /= Prim
loop
12215 -- If not found, that is a new one
12218 Append_Elmt
(Prim
, Full_List
);
12226 -- In this case the partial view is untagged, so here we
12227 -- locate all of the earlier primitives that need to be
12228 -- treated as dispatching (those that appear between the two
12229 -- views). Note that these additional operations must all be
12230 -- new operations (any earlier operations that override
12231 -- inherited operations of the full view will already have
12232 -- been inserted in the primitives list and marked as
12233 -- dispatching by Check_Operation_From_Private_View. Note that
12234 -- implicit "/=" operators are excluded from being added to
12235 -- the primitives list since they shouldn't be treated as
12236 -- dispatching (tagged "/=" is handled specially).
12238 Prim
:= Next_Entity
(Full_T
);
12239 while Present
(Prim
) and then Prim
/= Priv_T
loop
12240 if Ekind
(Prim
) = E_Procedure
12242 Ekind
(Prim
) = E_Function
12245 D_Type
:= Find_Dispatching_Type
(Prim
);
12248 and then (Chars
(Prim
) /= Name_Op_Ne
12249 or else Comes_From_Source
(Prim
))
12251 Check_Controlling_Formals
(Full_T
, Prim
);
12253 if not Is_Dispatching_Operation
(Prim
) then
12254 Append_Elmt
(Prim
, Full_List
);
12255 Set_Is_Dispatching_Operation
(Prim
, True);
12256 Set_DT_Position
(Prim
, No_Uint
);
12259 elsif Is_Dispatching_Operation
(Prim
)
12260 and then D_Type
/= Full_T
12263 -- Verify that it is not otherwise controlled by
12264 -- a formal or a return value ot type T.
12266 Check_Controlling_Formals
(D_Type
, Prim
);
12270 Next_Entity
(Prim
);
12274 -- For the tagged case, the two views can share the same
12275 -- Primitive Operation list and the same class wide type.
12276 -- Update attributes of the class-wide type which depend on
12277 -- the full declaration.
12279 if Is_Tagged_Type
(Priv_T
) then
12280 Set_Primitive_Operations
(Priv_T
, Full_List
);
12281 Set_Class_Wide_Type
12282 (Base_Type
(Full_T
), Class_Wide_Type
(Priv_T
));
12284 -- Any other attributes should be propagated to C_W ???
12286 Set_Has_Task
(Class_Wide_Type
(Priv_T
), Has_Task
(Full_T
));
12291 end Process_Full_View
;
12293 -----------------------------------
12294 -- Process_Incomplete_Dependents --
12295 -----------------------------------
12297 procedure Process_Incomplete_Dependents
12299 Full_T
: Entity_Id
;
12302 Inc_Elmt
: Elmt_Id
;
12303 Priv_Dep
: Entity_Id
;
12304 New_Subt
: Entity_Id
;
12306 Disc_Constraint
: Elist_Id
;
12309 if No
(Private_Dependents
(Inc_T
)) then
12313 Inc_Elmt
:= First_Elmt
(Private_Dependents
(Inc_T
));
12315 -- Itypes that may be generated by the completion of an incomplete
12316 -- subtype are not used by the back-end and not attached to the tree.
12317 -- They are created only for constraint-checking purposes.
12320 while Present
(Inc_Elmt
) loop
12321 Priv_Dep
:= Node
(Inc_Elmt
);
12323 if Ekind
(Priv_Dep
) = E_Subprogram_Type
then
12325 -- An Access_To_Subprogram type may have a return type or a
12326 -- parameter type that is incomplete. Replace with the full view.
12328 if Etype
(Priv_Dep
) = Inc_T
then
12329 Set_Etype
(Priv_Dep
, Full_T
);
12333 Formal
: Entity_Id
;
12336 Formal
:= First_Formal
(Priv_Dep
);
12338 while Present
(Formal
) loop
12340 if Etype
(Formal
) = Inc_T
then
12341 Set_Etype
(Formal
, Full_T
);
12344 Next_Formal
(Formal
);
12348 elsif Is_Overloadable
(Priv_Dep
) then
12350 if Is_Tagged_Type
(Full_T
) then
12352 -- Subprogram has an access parameter whose designated type
12353 -- was incomplete. Reexamine declaration now, because it may
12354 -- be a primitive operation of the full type.
12356 Check_Operation_From_Incomplete_Type
(Priv_Dep
, Inc_T
);
12357 Set_Is_Dispatching_Operation
(Priv_Dep
);
12358 Check_Controlling_Formals
(Full_T
, Priv_Dep
);
12361 elsif Ekind
(Priv_Dep
) = E_Subprogram_Body
then
12363 -- Can happen during processing of a body before the completion
12364 -- of a TA type. Ignore, because spec is also on dependent list.
12368 -- Dependent is a subtype
12371 -- We build a new subtype indication using the full view of the
12372 -- incomplete parent. The discriminant constraints have been
12373 -- elaborated already at the point of the subtype declaration.
12375 New_Subt
:= Create_Itype
(E_Void
, N
);
12377 if Has_Discriminants
(Full_T
) then
12378 Disc_Constraint
:= Discriminant_Constraint
(Priv_Dep
);
12380 Disc_Constraint
:= No_Elist
;
12383 Build_Discriminated_Subtype
(Full_T
, New_Subt
, Disc_Constraint
, N
);
12384 Set_Full_View
(Priv_Dep
, New_Subt
);
12387 Next_Elmt
(Inc_Elmt
);
12389 end Process_Incomplete_Dependents
;
12391 --------------------------------
12392 -- Process_Range_Expr_In_Decl --
12393 --------------------------------
12395 procedure Process_Range_Expr_In_Decl
12398 Check_List
: List_Id
:= Empty_List
;
12399 R_Check_Off
: Boolean := False)
12402 R_Checks
: Check_Result
;
12403 Type_Decl
: Node_Id
;
12404 Def_Id
: Entity_Id
;
12407 Analyze_And_Resolve
(R
, Base_Type
(T
));
12409 if Nkind
(R
) = N_Range
then
12410 Lo
:= Low_Bound
(R
);
12411 Hi
:= High_Bound
(R
);
12413 -- If there were errors in the declaration, try and patch up some
12414 -- common mistakes in the bounds. The cases handled are literals
12415 -- which are Integer where the expected type is Real and vice versa.
12416 -- These corrections allow the compilation process to proceed further
12417 -- along since some basic assumptions of the format of the bounds
12420 if Etype
(R
) = Any_Type
then
12422 if Nkind
(Lo
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
12424 Make_Real_Literal
(Sloc
(Lo
), UR_From_Uint
(Intval
(Lo
))));
12426 elsif Nkind
(Hi
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
12428 Make_Real_Literal
(Sloc
(Hi
), UR_From_Uint
(Intval
(Hi
))));
12430 elsif Nkind
(Lo
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
12432 Make_Integer_Literal
(Sloc
(Lo
), UR_To_Uint
(Realval
(Lo
))));
12434 elsif Nkind
(Hi
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
12436 Make_Integer_Literal
(Sloc
(Hi
), UR_To_Uint
(Realval
(Hi
))));
12443 -- If the bounds of the range have been mistakenly given as string
12444 -- literals (perhaps in place of character literals), then an error
12445 -- has already been reported, but we rewrite the string literal as a
12446 -- bound of the range's type to avoid blowups in later processing
12447 -- that looks at static values.
12449 if Nkind
(Lo
) = N_String_Literal
then
12451 Make_Attribute_Reference
(Sloc
(Lo
),
12452 Attribute_Name
=> Name_First
,
12453 Prefix
=> New_Reference_To
(T
, Sloc
(Lo
))));
12454 Analyze_And_Resolve
(Lo
);
12457 if Nkind
(Hi
) = N_String_Literal
then
12459 Make_Attribute_Reference
(Sloc
(Hi
),
12460 Attribute_Name
=> Name_First
,
12461 Prefix
=> New_Reference_To
(T
, Sloc
(Hi
))));
12462 Analyze_And_Resolve
(Hi
);
12465 -- If bounds aren't scalar at this point then exit, avoiding
12466 -- problems with further processing of the range in this procedure.
12468 if not Is_Scalar_Type
(Etype
(Lo
)) then
12472 -- Resolve (actually Sem_Eval) has checked that the bounds are in
12473 -- then range of the base type. Here we check whether the bounds
12474 -- are in the range of the subtype itself. Note that if the bounds
12475 -- represent the null range the Constraint_Error exception should
12478 -- ??? The following code should be cleaned up as follows
12480 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
12481 -- is done in the call to Range_Check (R, T); below
12483 -- 2. The use of R_Check_Off should be investigated and possibly
12484 -- removed, this would clean up things a bit.
12486 if Is_Null_Range
(Lo
, Hi
) then
12490 -- Capture values of bounds and generate temporaries for them
12491 -- if needed, before applying checks, since checks may cause
12492 -- duplication of the expression without forcing evaluation.
12494 if Expander_Active
then
12495 Force_Evaluation
(Lo
);
12496 Force_Evaluation
(Hi
);
12499 -- We use a flag here instead of suppressing checks on the
12500 -- type because the type we check against isn't necessarily
12501 -- the place where we put the check.
12503 if not R_Check_Off
then
12504 R_Checks
:= Range_Check
(R
, T
);
12505 Type_Decl
:= Parent
(R
);
12507 -- Look up tree to find an appropriate insertion point.
12508 -- This seems really junk code, and very brittle, couldn't
12509 -- we just use an insert actions call of some kind ???
12511 while Present
(Type_Decl
) and then not
12512 (Nkind
(Type_Decl
) = N_Full_Type_Declaration
12514 Nkind
(Type_Decl
) = N_Subtype_Declaration
12516 Nkind
(Type_Decl
) = N_Loop_Statement
12518 Nkind
(Type_Decl
) = N_Task_Type_Declaration
12520 Nkind
(Type_Decl
) = N_Single_Task_Declaration
12522 Nkind
(Type_Decl
) = N_Protected_Type_Declaration
12524 Nkind
(Type_Decl
) = N_Single_Protected_Declaration
)
12526 Type_Decl
:= Parent
(Type_Decl
);
12529 -- Why would Type_Decl not be present??? Without this test,
12530 -- short regression tests fail.
12532 if Present
(Type_Decl
) then
12534 -- Case of loop statement (more comments ???)
12536 if Nkind
(Type_Decl
) = N_Loop_Statement
then
12538 Indic
: Node_Id
:= Parent
(R
);
12541 while Present
(Indic
) and then not
12542 (Nkind
(Indic
) = N_Subtype_Indication
)
12544 Indic
:= Parent
(Indic
);
12547 if Present
(Indic
) then
12548 Def_Id
:= Etype
(Subtype_Mark
(Indic
));
12550 Insert_Range_Checks
12556 Do_Before
=> True);
12560 -- All other cases (more comments ???)
12563 Def_Id
:= Defining_Identifier
(Type_Decl
);
12565 if (Ekind
(Def_Id
) = E_Record_Type
12566 and then Depends_On_Discriminant
(R
))
12568 (Ekind
(Def_Id
) = E_Protected_Type
12569 and then Has_Discriminants
(Def_Id
))
12571 Append_Range_Checks
12572 (R_Checks
, Check_List
, Def_Id
, Sloc
(Type_Decl
), R
);
12575 Insert_Range_Checks
12576 (R_Checks
, Type_Decl
, Def_Id
, Sloc
(Type_Decl
), R
);
12584 elsif Expander_Active
then
12585 Get_Index_Bounds
(R
, Lo
, Hi
);
12586 Force_Evaluation
(Lo
);
12587 Force_Evaluation
(Hi
);
12589 end Process_Range_Expr_In_Decl
;
12591 --------------------------------------
12592 -- Process_Real_Range_Specification --
12593 --------------------------------------
12595 procedure Process_Real_Range_Specification
(Def
: Node_Id
) is
12596 Spec
: constant Node_Id
:= Real_Range_Specification
(Def
);
12599 Err
: Boolean := False;
12601 procedure Analyze_Bound
(N
: Node_Id
);
12602 -- Analyze and check one bound
12604 -------------------
12605 -- Analyze_Bound --
12606 -------------------
12608 procedure Analyze_Bound
(N
: Node_Id
) is
12610 Analyze_And_Resolve
(N
, Any_Real
);
12612 if not Is_OK_Static_Expression
(N
) then
12613 Flag_Non_Static_Expr
12614 ("bound in real type definition is not static!", N
);
12619 -- Start of processing for Process_Real_Range_Specification
12622 if Present
(Spec
) then
12623 Lo
:= Low_Bound
(Spec
);
12624 Hi
:= High_Bound
(Spec
);
12625 Analyze_Bound
(Lo
);
12626 Analyze_Bound
(Hi
);
12628 -- If error, clear away junk range specification
12631 Set_Real_Range_Specification
(Def
, Empty
);
12634 end Process_Real_Range_Specification
;
12636 ---------------------
12637 -- Process_Subtype --
12638 ---------------------
12640 function Process_Subtype
12642 Related_Nod
: Node_Id
;
12643 Related_Id
: Entity_Id
:= Empty
;
12644 Suffix
: Character := ' ') return Entity_Id
12647 Def_Id
: Entity_Id
;
12648 Full_View_Id
: Entity_Id
;
12649 Subtype_Mark_Id
: Entity_Id
;
12651 procedure Check_Incomplete
(T
: Entity_Id
);
12652 -- Called to verify that an incomplete type is not used prematurely
12654 ----------------------
12655 -- Check_Incomplete --
12656 ----------------------
12658 procedure Check_Incomplete
(T
: Entity_Id
) is
12660 if Ekind
(Root_Type
(Entity
(T
))) = E_Incomplete_Type
then
12661 Error_Msg_N
("invalid use of type before its full declaration", T
);
12663 end Check_Incomplete
;
12665 -- Start of processing for Process_Subtype
12668 -- Case of no constraints present
12670 if Nkind
(S
) /= N_Subtype_Indication
then
12673 Check_Incomplete
(S
);
12675 -- Ada 2005 (AI-231): Static check
12677 if Ada_Version
>= Ada_05
12678 and then Present
(Parent
(S
))
12679 and then Null_Exclusion_Present
(Parent
(S
))
12680 and then Nkind
(Parent
(S
)) /= N_Access_To_Object_Definition
12681 and then not Is_Access_Type
(Entity
(S
))
12684 ("(Ada 2005) null-exclusion part requires an access type", S
);
12688 -- Case of constraint present, so that we have an N_Subtype_Indication
12689 -- node (this node is created only if constraints are present).
12693 Find_Type
(Subtype_Mark
(S
));
12695 if Nkind
(Parent
(S
)) /= N_Access_To_Object_Definition
12697 (Nkind
(Parent
(S
)) = N_Subtype_Declaration
12699 Is_Itype
(Defining_Identifier
(Parent
(S
))))
12701 Check_Incomplete
(Subtype_Mark
(S
));
12705 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
12707 -- Explicit subtype declaration case
12709 if Nkind
(P
) = N_Subtype_Declaration
then
12710 Def_Id
:= Defining_Identifier
(P
);
12712 -- Explicit derived type definition case
12714 elsif Nkind
(P
) = N_Derived_Type_Definition
then
12715 Def_Id
:= Defining_Identifier
(Parent
(P
));
12717 -- Implicit case, the Def_Id must be created as an implicit type.
12718 -- The one exception arises in the case of concurrent types, array
12719 -- and access types, where other subsidiary implicit types may be
12720 -- created and must appear before the main implicit type. In these
12721 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
12722 -- has not yet been called to create Def_Id.
12725 if Is_Array_Type
(Subtype_Mark_Id
)
12726 or else Is_Concurrent_Type
(Subtype_Mark_Id
)
12727 or else Is_Access_Type
(Subtype_Mark_Id
)
12731 -- For the other cases, we create a new unattached Itype,
12732 -- and set the indication to ensure it gets attached later.
12736 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
12740 -- If the kind of constraint is invalid for this kind of type,
12741 -- then give an error, and then pretend no constraint was given.
12743 if not Is_Valid_Constraint_Kind
12744 (Ekind
(Subtype_Mark_Id
), Nkind
(Constraint
(S
)))
12747 ("incorrect constraint for this kind of type", Constraint
(S
));
12749 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
12751 -- Set Ekind of orphan itype, to prevent cascaded errors.
12753 if Present
(Def_Id
) then
12754 Set_Ekind
(Def_Id
, Ekind
(Any_Type
));
12757 -- Make recursive call, having got rid of the bogus constraint
12759 return Process_Subtype
(S
, Related_Nod
, Related_Id
, Suffix
);
12762 -- Remaining processing depends on type
12764 case Ekind
(Subtype_Mark_Id
) is
12765 when Access_Kind
=>
12766 Constrain_Access
(Def_Id
, S
, Related_Nod
);
12769 Constrain_Array
(Def_Id
, S
, Related_Nod
, Related_Id
, Suffix
);
12771 when Decimal_Fixed_Point_Kind
=>
12772 Constrain_Decimal
(Def_Id
, S
);
12774 when Enumeration_Kind
=>
12775 Constrain_Enumeration
(Def_Id
, S
);
12777 when Ordinary_Fixed_Point_Kind
=>
12778 Constrain_Ordinary_Fixed
(Def_Id
, S
);
12781 Constrain_Float
(Def_Id
, S
);
12783 when Integer_Kind
=>
12784 Constrain_Integer
(Def_Id
, S
);
12786 when E_Record_Type |
12789 E_Incomplete_Type
=>
12790 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
12792 when Private_Kind
=>
12793 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
12794 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
12796 -- In case of an invalid constraint prevent further processing
12797 -- since the type constructed is missing expected fields.
12799 if Etype
(Def_Id
) = Any_Type
then
12803 -- If the full view is that of a task with discriminants,
12804 -- we must constrain both the concurrent type and its
12805 -- corresponding record type. Otherwise we will just propagate
12806 -- the constraint to the full view, if available.
12808 if Present
(Full_View
(Subtype_Mark_Id
))
12809 and then Has_Discriminants
(Subtype_Mark_Id
)
12810 and then Is_Concurrent_Type
(Full_View
(Subtype_Mark_Id
))
12813 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
12815 Set_Entity
(Subtype_Mark
(S
), Full_View
(Subtype_Mark_Id
));
12816 Constrain_Concurrent
(Full_View_Id
, S
,
12817 Related_Nod
, Related_Id
, Suffix
);
12818 Set_Entity
(Subtype_Mark
(S
), Subtype_Mark_Id
);
12819 Set_Full_View
(Def_Id
, Full_View_Id
);
12822 Prepare_Private_Subtype_Completion
(Def_Id
, Related_Nod
);
12825 when Concurrent_Kind
=>
12826 Constrain_Concurrent
(Def_Id
, S
,
12827 Related_Nod
, Related_Id
, Suffix
);
12830 Error_Msg_N
("invalid subtype mark in subtype indication", S
);
12833 -- Size and Convention are always inherited from the base type
12835 Set_Size_Info
(Def_Id
, (Subtype_Mark_Id
));
12836 Set_Convention
(Def_Id
, Convention
(Subtype_Mark_Id
));
12840 end Process_Subtype
;
12842 -----------------------------
12843 -- Record_Type_Declaration --
12844 -----------------------------
12846 procedure Record_Type_Declaration
12851 Def
: constant Node_Id
:= Type_Definition
(N
);
12853 Is_Tagged
: Boolean;
12854 Tag_Comp
: Entity_Id
;
12857 -- The flag Is_Tagged_Type might have already been set by Find_Type_Name
12858 -- if it detected an error for declaration T. This arises in the case of
12859 -- private tagged types where the full view omits the word tagged.
12862 Tagged_Present
(Def
)
12863 or else (Serious_Errors_Detected
> 0 and then Is_Tagged_Type
(T
));
12865 -- Records constitute a scope for the component declarations within.
12866 -- The scope is created prior to the processing of these declarations.
12867 -- Discriminants are processed first, so that they are visible when
12868 -- processing the other components. The Ekind of the record type itself
12869 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
12871 -- Enter record scope
12875 -- These flags must be initialized before calling Process_Discriminants
12876 -- because this routine makes use of them.
12878 Set_Is_Tagged_Type
(T
, Is_Tagged
);
12879 Set_Is_Limited_Record
(T
, Limited_Present
(Def
));
12881 -- Type is abstract if full declaration carries keyword, or if
12882 -- previous partial view did.
12884 Set_Is_Abstract
(T
, Is_Abstract
(T
) or else Abstract_Present
(Def
));
12886 Set_Ekind
(T
, E_Record_Type
);
12888 Init_Size_Align
(T
);
12890 Set_Stored_Constraint
(T
, No_Elist
);
12892 -- If an incomplete or private type declaration was already given for
12893 -- the type, then this scope already exists, and the discriminants have
12894 -- been declared within. We must verify that the full declaration
12895 -- matches the incomplete one.
12897 Check_Or_Process_Discriminants
(N
, T
, Prev
);
12899 Set_Is_Constrained
(T
, not Has_Discriminants
(T
));
12900 Set_Has_Delayed_Freeze
(T
, True);
12902 -- For tagged types add a manually analyzed component corresponding
12903 -- to the component _tag, the corresponding piece of tree will be
12904 -- expanded as part of the freezing actions if it is not a CPP_Class.
12908 -- Do not add the tag unless we are in expansion mode
12910 if Expander_Active
then
12911 Tag_Comp
:= Make_Defining_Identifier
(Sloc
(Def
), Name_uTag
);
12912 Enter_Name
(Tag_Comp
);
12914 Set_Is_Tag
(Tag_Comp
);
12915 Set_Ekind
(Tag_Comp
, E_Component
);
12916 Set_Etype
(Tag_Comp
, RTE
(RE_Tag
));
12917 Set_DT_Entry_Count
(Tag_Comp
, No_Uint
);
12918 Set_Original_Record_Component
(Tag_Comp
, Tag_Comp
);
12919 Init_Component_Location
(Tag_Comp
);
12922 Make_Class_Wide_Type
(T
);
12923 Set_Primitive_Operations
(T
, New_Elmt_List
);
12926 -- We must suppress range checks when processing the components
12927 -- of a record in the presence of discriminants, since we don't
12928 -- want spurious checks to be generated during their analysis, but
12929 -- must reset the Suppress_Range_Checks flags after having processed
12930 -- the record definition.
12932 if Has_Discriminants
(T
) and then not Range_Checks_Suppressed
(T
) then
12933 Set_Kill_Range_Checks
(T
, True);
12934 Record_Type_Definition
(Def
, Prev
);
12935 Set_Kill_Range_Checks
(T
, False);
12937 Record_Type_Definition
(Def
, Prev
);
12940 -- Exit from record scope
12943 end Record_Type_Declaration
;
12945 ----------------------------
12946 -- Record_Type_Definition --
12947 ----------------------------
12949 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
) is
12950 Component
: Entity_Id
;
12951 Ctrl_Components
: Boolean := False;
12952 Final_Storage_Only
: Boolean;
12956 if Ekind
(Prev_T
) = E_Incomplete_Type
then
12957 T
:= Full_View
(Prev_T
);
12962 Final_Storage_Only
:= not Is_Controlled
(T
);
12964 -- If the component list of a record type is defined by the reserved
12965 -- word null and there is no discriminant part, then the record type has
12966 -- no components and all records of the type are null records (RM 3.7)
12967 -- This procedure is also called to process the extension part of a
12968 -- record extension, in which case the current scope may have inherited
12972 or else No
(Component_List
(Def
))
12973 or else Null_Present
(Component_List
(Def
))
12978 Analyze_Declarations
(Component_Items
(Component_List
(Def
)));
12980 if Present
(Variant_Part
(Component_List
(Def
))) then
12981 Analyze
(Variant_Part
(Component_List
(Def
)));
12985 -- After completing the semantic analysis of the record definition,
12986 -- record components, both new and inherited, are accessible. Set
12987 -- their kind accordingly.
12989 Component
:= First_Entity
(Current_Scope
);
12990 while Present
(Component
) loop
12991 if Ekind
(Component
) = E_Void
then
12992 Set_Ekind
(Component
, E_Component
);
12993 Init_Component_Location
(Component
);
12996 if Has_Task
(Etype
(Component
)) then
13000 if Ekind
(Component
) /= E_Component
then
13003 elsif Has_Controlled_Component
(Etype
(Component
))
13004 or else (Chars
(Component
) /= Name_uParent
13005 and then Is_Controlled
(Etype
(Component
)))
13007 Set_Has_Controlled_Component
(T
, True);
13008 Final_Storage_Only
:= Final_Storage_Only
13009 and then Finalize_Storage_Only
(Etype
(Component
));
13010 Ctrl_Components
:= True;
13013 Next_Entity
(Component
);
13016 -- A type is Finalize_Storage_Only only if all its controlled
13017 -- components are so.
13019 if Ctrl_Components
then
13020 Set_Finalize_Storage_Only
(T
, Final_Storage_Only
);
13023 -- Place reference to end record on the proper entity, which may
13024 -- be a partial view.
13026 if Present
(Def
) then
13027 Process_End_Label
(Def
, 'e', Prev_T
);
13029 end Record_Type_Definition
;
13031 ------------------------
13032 -- Replace_Components --
13033 ------------------------
13035 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
) is
13036 function Process
(N
: Node_Id
) return Traverse_Result
;
13042 function Process
(N
: Node_Id
) return Traverse_Result
is
13046 if Nkind
(N
) = N_Discriminant_Specification
then
13047 Comp
:= First_Discriminant
(Typ
);
13049 while Present
(Comp
) loop
13050 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
13051 Set_Defining_Identifier
(N
, Comp
);
13055 Next_Discriminant
(Comp
);
13058 elsif Nkind
(N
) = N_Component_Declaration
then
13059 Comp
:= First_Component
(Typ
);
13061 while Present
(Comp
) loop
13062 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
13063 Set_Defining_Identifier
(N
, Comp
);
13067 Next_Component
(Comp
);
13074 procedure Replace
is new Traverse_Proc
(Process
);
13076 -- Start of processing for Replace_Components
13080 end Replace_Components
;
13082 -------------------------------
13083 -- Set_Completion_Referenced --
13084 -------------------------------
13086 procedure Set_Completion_Referenced
(E
: Entity_Id
) is
13088 -- If in main unit, mark entity that is a completion as referenced,
13089 -- warnings go on the partial view when needed.
13091 if In_Extended_Main_Source_Unit
(E
) then
13092 Set_Referenced
(E
);
13094 end Set_Completion_Referenced
;
13096 ---------------------
13097 -- Set_Fixed_Range --
13098 ---------------------
13100 -- The range for fixed-point types is complicated by the fact that we
13101 -- do not know the exact end points at the time of the declaration. This
13102 -- is true for three reasons:
13104 -- A size clause may affect the fudging of the end-points
13105 -- A small clause may affect the values of the end-points
13106 -- We try to include the end-points if it does not affect the size
13108 -- This means that the actual end-points must be established at the point
13109 -- when the type is frozen. Meanwhile, we first narrow the range as
13110 -- permitted (so that it will fit if necessary in a small specified size),
13111 -- and then build a range subtree with these narrowed bounds.
13113 -- Set_Fixed_Range constructs the range from real literal values, and sets
13114 -- the range as the Scalar_Range of the given fixed-point type entity.
13116 -- The parent of this range is set to point to the entity so that it is
13117 -- properly hooked into the tree (unlike normal Scalar_Range entries for
13118 -- other scalar types, which are just pointers to the range in the
13119 -- original tree, this would otherwise be an orphan).
13121 -- The tree is left unanalyzed. When the type is frozen, the processing
13122 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
13123 -- analyzed, and uses this as an indication that it should complete
13124 -- work on the range (it will know the final small and size values).
13126 procedure Set_Fixed_Range
13132 S
: constant Node_Id
:=
13134 Low_Bound
=> Make_Real_Literal
(Loc
, Lo
),
13135 High_Bound
=> Make_Real_Literal
(Loc
, Hi
));
13138 Set_Scalar_Range
(E
, S
);
13140 end Set_Fixed_Range
;
13142 ----------------------------------
13143 -- Set_Scalar_Range_For_Subtype --
13144 ----------------------------------
13146 procedure Set_Scalar_Range_For_Subtype
13147 (Def_Id
: Entity_Id
;
13151 Kind
: constant Entity_Kind
:= Ekind
(Def_Id
);
13154 Set_Scalar_Range
(Def_Id
, R
);
13156 -- We need to link the range into the tree before resolving it so
13157 -- that types that are referenced, including importantly the subtype
13158 -- itself, are properly frozen (Freeze_Expression requires that the
13159 -- expression be properly linked into the tree). Of course if it is
13160 -- already linked in, then we do not disturb the current link.
13162 if No
(Parent
(R
)) then
13163 Set_Parent
(R
, Def_Id
);
13166 -- Reset the kind of the subtype during analysis of the range, to
13167 -- catch possible premature use in the bounds themselves.
13169 Set_Ekind
(Def_Id
, E_Void
);
13170 Process_Range_Expr_In_Decl
(R
, Subt
);
13171 Set_Ekind
(Def_Id
, Kind
);
13173 end Set_Scalar_Range_For_Subtype
;
13175 --------------------------------------------------------
13176 -- Set_Stored_Constraint_From_Discriminant_Constraint --
13177 --------------------------------------------------------
13179 procedure Set_Stored_Constraint_From_Discriminant_Constraint
13183 -- Make sure set if encountered during Expand_To_Stored_Constraint
13185 Set_Stored_Constraint
(E
, No_Elist
);
13187 -- Give it the right value
13189 if Is_Constrained
(E
) and then Has_Discriminants
(E
) then
13190 Set_Stored_Constraint
(E
,
13191 Expand_To_Stored_Constraint
(E
, Discriminant_Constraint
(E
)));
13193 end Set_Stored_Constraint_From_Discriminant_Constraint
;
13195 -------------------------------------
13196 -- Signed_Integer_Type_Declaration --
13197 -------------------------------------
13199 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
13200 Implicit_Base
: Entity_Id
;
13201 Base_Typ
: Entity_Id
;
13204 Errs
: Boolean := False;
13208 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
13209 -- Determine whether given bounds allow derivation from specified type
13211 procedure Check_Bound
(Expr
: Node_Id
);
13212 -- Check bound to make sure it is integral and static. If not, post
13213 -- appropriate error message and set Errs flag
13215 ---------------------
13216 -- Can_Derive_From --
13217 ---------------------
13219 -- Note we check both bounds against both end values, to deal with
13220 -- strange types like ones with a range of 0 .. -12341234.
13222 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
13223 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(E
));
13224 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(E
));
13226 return Lo
<= Lo_Val
and then Lo_Val
<= Hi
13228 Lo
<= Hi_Val
and then Hi_Val
<= Hi
;
13229 end Can_Derive_From
;
13235 procedure Check_Bound
(Expr
: Node_Id
) is
13237 -- If a range constraint is used as an integer type definition, each
13238 -- bound of the range must be defined by a static expression of some
13239 -- integer type, but the two bounds need not have the same integer
13240 -- type (Negative bounds are allowed.) (RM 3.5.4)
13242 if not Is_Integer_Type
(Etype
(Expr
)) then
13244 ("integer type definition bounds must be of integer type", Expr
);
13247 elsif not Is_OK_Static_Expression
(Expr
) then
13248 Flag_Non_Static_Expr
13249 ("non-static expression used for integer type bound!", Expr
);
13252 -- The bounds are folded into literals, and we set their type to be
13253 -- universal, to avoid typing difficulties: we cannot set the type
13254 -- of the literal to the new type, because this would be a forward
13255 -- reference for the back end, and if the original type is user-
13256 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
13259 if Is_Entity_Name
(Expr
) then
13260 Fold_Uint
(Expr
, Expr_Value
(Expr
), True);
13263 Set_Etype
(Expr
, Universal_Integer
);
13267 -- Start of processing for Signed_Integer_Type_Declaration
13270 -- Create an anonymous base type
13273 Create_Itype
(E_Signed_Integer_Type
, Parent
(Def
), T
, 'B');
13275 -- Analyze and check the bounds, they can be of any integer type
13277 Lo
:= Low_Bound
(Def
);
13278 Hi
:= High_Bound
(Def
);
13280 -- Arbitrarily use Integer as the type if either bound had an error
13282 if Hi
= Error
or else Lo
= Error
then
13283 Base_Typ
:= Any_Integer
;
13284 Set_Error_Posted
(T
, True);
13286 -- Here both bounds are OK expressions
13289 Analyze_And_Resolve
(Lo
, Any_Integer
);
13290 Analyze_And_Resolve
(Hi
, Any_Integer
);
13296 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
13297 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
13300 -- Find type to derive from
13302 Lo_Val
:= Expr_Value
(Lo
);
13303 Hi_Val
:= Expr_Value
(Hi
);
13305 if Can_Derive_From
(Standard_Short_Short_Integer
) then
13306 Base_Typ
:= Base_Type
(Standard_Short_Short_Integer
);
13308 elsif Can_Derive_From
(Standard_Short_Integer
) then
13309 Base_Typ
:= Base_Type
(Standard_Short_Integer
);
13311 elsif Can_Derive_From
(Standard_Integer
) then
13312 Base_Typ
:= Base_Type
(Standard_Integer
);
13314 elsif Can_Derive_From
(Standard_Long_Integer
) then
13315 Base_Typ
:= Base_Type
(Standard_Long_Integer
);
13317 elsif Can_Derive_From
(Standard_Long_Long_Integer
) then
13318 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
13321 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
13322 Error_Msg_N
("integer type definition bounds out of range", Def
);
13323 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
13324 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
13328 -- Complete both implicit base and declared first subtype entities
13330 Set_Etype
(Implicit_Base
, Base_Typ
);
13331 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
13332 Set_Size_Info
(Implicit_Base
, (Base_Typ
));
13333 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
13334 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
13336 Set_Ekind
(T
, E_Signed_Integer_Subtype
);
13337 Set_Etype
(T
, Implicit_Base
);
13339 Set_Size_Info
(T
, (Implicit_Base
));
13340 Set_First_Rep_Item
(T
, First_Rep_Item
(Implicit_Base
));
13341 Set_Scalar_Range
(T
, Def
);
13342 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
13343 Set_Is_Constrained
(T
);
13344 end Signed_Integer_Type_Declaration
;